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PREFACE

r "\HE fortunate organization of higher studies in

I the University of Neuchatel l has, for many
JL years, given M. Arnold Reymond the oppor-

tunity of teaching the history of science in a course

followed both by the students of the Faculti des Lettres

and those of the Faculti des Sciences. That portion of

this course which relates to antiquity is the subject of

the present publication. Its merits are so apparent
and so real that it would be superfluous to insist upon
them.
From the first pages of the book it can be seen with

what skill M. Reymond has extricated himself from
the learned controversies which the historian must
have mastered in order to arrive at truths so deeply
hidden to-day ; with what honesty in his references,

with what certainty in his choice of details, he retains,

in the most simple and clear manner, whatever can

effectively give the reader food for thought and help
him to revive in all its depth and integrity that ancient

Western civilization, the perspective of which is often

spoiled and distorted by a purely literary tradition.

Many great names in the realm of science are also

great names in philosophy. However, there is ground
for distinction between work of a purely scientific order

and speculations having a universal bearing. M.

Reymond has striven to define the distinction and to

keep as much as possible within the philosophic limit,

so that his book, fat from covering the same ground as

* And now at the University of LAB
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classical studies on ancient philosophy, particularly the

excellent work of my colleague and friend, M. Lon
Robin, La Penste Grecque, may serve as an introduction

to them. But, at the same time, being both a philoso-

pher and a man of science, he has been able to place
the technical exposition in the atmosphere best adapted
to put in relief the tendency of Hellenic science, the

curve of its growth, and its destiny.
The achievements of science are not to be confused

with its field. The latter comprises all the questions
studied by men who are called men of science, whilst

the former comprises only those problems which they
have succeeded in solving. The achievements of

Greek science are extremely limited compared with the

field which the savants of antiquity have explored.
But within these limits the human mind did reach the

exactitude of demonstration ;
it gave to truth the

characteristics of certainty and security without which
the appeal to truth is nothing but a mask for idleness

or presumption. As M. Reymond remarks, the pre-
tension to universal infallibility could easily find satis-

faction in the primitive mentality which attributes

the apparent inconsistency of natural phenomena to

the fundamental caprice of invisible powers. It is

quite another kind of infallibility that the Hellenic

genius has apprehended, when it has established the

methodology of mathematical proof.
The success of this methodology was not without its

drawback. With it came an intricate connection

between logic and mathematics, which was only broken

by the Cartesian philosophy. This solidarity, to which
we owe two masterpieces, the Analytics of Aristotle

and the Elements of Euclid, made Greek science timid
in face of its own conquests. As M. Reymond rightly
insists, the illusory shadow of Zeno of Elea must have

weighed upon the genius of Archimedes and prevented
him from giving to the intellectual treatment of the
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infinite the positive evidence and practical fecundity
which we today know that it implied*
On the other hand, the astronomy of position, a

science which is purely mathematical, is subordinated

to an astrology which seemed explanatory because it

entirely filled the frames prepared by the verbalism

of the Aristotelian categories.
Ancient science has in this way missed the very

thing which, to us, seems the essential condition of

knowledge, the connection between the mathematical
and the physical, between calculation and experiment.
On that depend twenty centuries of history. Rome
remained totally indifferent to the purely disinterested

speculative spirit which the followers of Pythagoras
and Plato carried to its highest expression in mathe-
matical research. She deliberately circumscribed the

horizon of science by her anxiety for immediate utility,
as is shown by an almost tragic statement by Cicero,

quoted by M. Reymond. The spiritual decadence
linked to the triumph of Roman imperialism, only
ended with the Renaissance, when Hellenizing savants

re-opened the book of exact Science at the page where
the Greeks of Syracuse and Alexandria had left it

unfinished.

Such considerations show clearly the utility of a work
as skilfully adapted to its object as this which we have
the honour of presenting to the public. Thanks to

it, our men of letters will have the means of com-

pleting and rectifying their knowledge of antiquity,

supporting it by an understanding of the mental sub-

structure which will enable them at last to appreciate
the order and solidity of the whole edifice. But it is

addressed also to our young men of science. From
lack of official institutions in harmony with a general

survey of human knowledge, they are, for the most

part, left in ignorance of the history of science, incap-
able of following the way opened up by our com-
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patriots: Paul Tannery, Pierre Duhem, Gaston

Mflhaud, Pierre Boutroux, whose admirable works are

so often recalled to mind by M. Reymond. The study
of the Past seems to be left to lovers of phrases, to

devotees of the Verbum oratio who can only conceive

a superficial and almost grotesque representation of

human nature, but whose influence, preponderant in

assemblies which are governed by words, directs our

education in a way contrary to the needs of our civiliza-

tion and our country. The present generation suffers

cruelly for not having listened to Pierre Curie beseech-

ing that the teaching of science should be the principal

teaching in schools for boys and girls.
1

Better informed by their own history, the future

representatives of Science will understand, and will

make those around them understand, that those alone

whose works witness to the sincerity of their attach-

ment to the Verbum ratio are the lawful heirs of the

Hellenic wisdom in its true and most truly beautiful

form.

LEON BRUNSCHVICG
1 Pierre Curie, by Madame Curie. Paris, Payot, 1924, p. 98.
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HISTORY OF THE SCIENCES
IN GRECO-ROMAN

ANTIQUITY

INTRODUCTION
EGYPT AND CHALDEA

THE
information which ancient Greece has left

us concerning the scientific knowledge of

Oriental nations amounts to little. The
traditions reported by Herodotus, Diodorus of Sicily
and Strabo remain fragmentary and open to doubt. 1

The same remark applies to the explanations which

geometers, such as Proclus, attempt to give in order to

determine the contribution of these nations to the

various branches of science. Information more direct

and more reliable has been supplied in the nineteenth

century by archaeology and the methodical study of

monuments.
The drawings and paintings which appear on the

walls of temples or of tombs are valuable evidence.

These drawings teach us that the Egyptians knew, for

example, a practical method of drawing a hexagon,
but not a pentagon. The unfinished decoration of

a funeral chamber reveals an application, equally prac-
tical, of proportions and of similitude. The wall to

*<J. Jequier, Histoirc de la civilisation tgyptienne, 2nd edi-

tion, Payot, Paris, 1923, with a systematic bibliography of

the principal works on Egyptology.
1
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be decorated and tie image-model which is depicted on

it, are in fact divided by parallel lines into the same
number of squares and in each square of the wall are

reproduced the forms and colours in the corresponding

square of the image-model.
1

Finally the shape, aspect
and construction of monuments such as the pyramids
bear witness to a fairly precise practical knowledge of

geometry, mechanics and astronomy. As to the infor-

mation furnished by hieroglyphics and cuneiforms, it

amounts to little. The only document of any impor-
tance is a manual of calculation, whose author is the

scribe Ahmes, and which was probably written between
the years 1700 and 1750 B.C. 8

Thus, seeing the paucity of information available, we
are reduced for the most part to conjectures concerning
the scientific knowledge of the Egyptians and Chaldeans.

What is certain at all events is that their knowledge was

always dominated by needs of a practical or religious
order.

1. THE MATHEMATICAL SCIENCES

Theoretical arithmetic was little developed amongst
the Egyptians, as amongst the Chaldeans.

In practice and for reckoning they made use of

abacuses the arrangement of which calls to mind the
ball-frame formerly used in infants

1

schools.8 As a

1 29 Zeuthen, Histoire des mathtmatiques, p. 5.

This document (Rhind papyrus of the British Museum)
has been translated into German and studied by A. Eisenlohr :

Bin mathematisches Handbuch der Alien Aegypter, 2 vois.,

Leipzig, 1877. Of. 22 Milhaud, Nouvettes Etudes, p, 58.
A recent and more profound study of this document has been
made by T. Eric Peet : The Rhind Mathematical Papyrus,
The University Press of Liverpool, Hodder & Stoughton,
London. (See Isis, vi, p. 553-7.) There exists in Moscow,
if it has not been destroyed in these latter years, another

important geometrical papyrus whichhas not yet been studied,
and of which no one possesses a copy.

23 Bouse Ball, History of Mathematics, t, pp. 3 and 133.
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written numeration, the Egyptians used the following

system. A special sign represented unity, another sign

represented ten, and so on. So that, if one had to
write the figure 23, it was necessary to repeat three
times the sign for unity and twice that for ten.1 This

proceeding made writings singularly complicated. It

was the more inconvenient because the Egyptians had
not our abbreviated methods of multiplication and
division. For them multiplication was reduced to a
series of additions, and division to repeated subtrac-
tions. A further cause of complication in the calcula-

tions arose from the manner in which the fractions were
considered. The idea of a fraction must have been
evolved in the mind of man at a very early period. It

was imposed upon him as soon as he knew how to
measure a field, for it rarely happens that the unit
chosen as a measure is contained an exact number of

times in material objects. This being so, the idea of a

simple fraction can be conceived in two ways. One
may proceed as we do. In this case, the unit is under-
stood in the denominator which indicates the number
of subdivisions into which it is divided, while the
numerator shows the sum of the parts thus obtained
which one wishes to consider. To write \ , for example,
is to say that of the seven subdivisions of the unit, one
only considers the sum of four of them. This being so,
to add or subtract two different fractions does not pre-
sent any difficulty. It is enough to reduce these
fractions to the same denominator, i.e. to the same
divisor of the unit, then to add or subtract the numera-
tors and the problem is solved. But it is possible, and
this is what the Egyptians did, to consider the fraction
as always representing apart of the same unit. In this
case the fractions will always have i for numerator,
the denominator indicating as before the number of

parts into which the unit is divided. Hence what we
1 22 Milhaud, NouveUes Etudes, p. 51.
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express as a simple fraction, A for example, appeared
to the Egyptians as a problem, viz., to what sum of

fractions of the unit is the division of 2 by 29 equal ?

They showed that the sum was equal to -& +

When the number to divide was greater than 2, e.g.

A, the Egyptians resolved it in the following manner :

A^A+tfV+A+A*
Replacing A by the value found above, one obtains

finally after simplification :

The manual of the scribe Ahmes gives a table of reduc-

tion for all fractions having 2 as numerator, and the
n,

odd numbers from 3 to 90 as denominator ; i.e. -
2n + 1

(where n may have any value from i to 49) .* By what
process has it been possible to compile this table ? This

is difficult to say, owing to want of information on this

point. According to M. Zeuthen the operation was

originally purely empirical, as follows :
* Given the

fraction , we represent the numerator by the length
a b (Fig. i), and the denominator by the length a c,

</ 6
.

,
-HH-------------- Hi

jff C
FIG. i.

Now, let us take a cord, equal in length to a c, which we
can fold in such a way as to get one-half, one-third, etc.,

of its length. If we mark off on a c half of this cord, we
reach a point beyond 6, ifwe take one-third, we fall sbort
of 6, at the point d. There still remains a length d 6,

which, marked off 15 times, is equal to the whole length
1 9 Cantor, Geschichte der Math., i, p. 25.
1
30 Zeuthen, Math. Wissensch., p. B 19.
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of the cord. Thenf $ 4- iV- It is, however, open to

question whether this process always leads to the exact

results given us by the table of reduction. However
that may be, the practice of expressing fractional

quantities by a sum of fractions all having unity as

numerator, persisted amongst the Greeks until the

sixth century of our era. This practice, besides,

facilitated the treatment of certain problems which,
for us, lead to the solution of a numerical equation.
Such is the foUowing, propounded by Ahmes : To find

a number, which, increased by its seventh, is equal to

19. The answer given : 16 + J + i is accurate. 1

The tablets of Senkereh, discovered in 1854 in the

library of Sardanapalus IV, give undeniable proof that

the Chaldeans, besides the decimal system, used an
advanced sexagesimal system based on the principle of

the position value of figures.
1

These tablets, taking sixty as unit base, give us a list

of squares and cubes of which the following is an

example :

1-4 (i.e. 60 + 4) is the square of 8.

i '2i (i.e. 60 + 21) is the square of 9.

More recent inscriptions even show an empty space and
sometimes a special sign representing zero, when that is

necessary.* The positional notation which charac-
terizes our arithmetic was thus dearly known by the

Chaldeans, and it is very curious, seeing its practical

advantages, that it did not pass into Greco-Roman
|

science.

How were the Chaldeans led to choose the sexagesimal
division as well as the decimal system ? * Is it because

they originally divided the year into 360 days ? Or did

1 29 Zeuthea, Histoire dts matMmatiqtus, p. 8. 6 Boyer,
Histoire des mathdmatiques, p. 4.

* 22 Milhaud, Nouvelles Etudes, p. 54.
*3o Zeuthen, Math. Wisstnsck., p. B i*.
*lbid.t p. B 13.
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they desire to have as a fundamental number, the num-
ber 2 '.3.5 which is divisible by the majority of small

numbers in constant use ? Or again, is it because the

hexagon, inscribed in a circle, divides it into six equal

parts?
*

It is very difficult to decide between these various

hypotheses.
It will be seen that our knowledge of the arithmetic

of the Oriental nations is very small ; the same is true

concerning their geometry. According to the accepted
tradition of Greek writers,* this science owed its birth

to purely practical needs. It was the overflowing of

the Nile which led the Egyptians to think of geometry,
for, as soon as the inundations were over, they
endeavoured to restore to each cultivator the

boundaries of his fields. Hence the necessity for an
exact survey. The formulae used were, however,

empirical, and were far from being always accurate.

For example, to estimate the surface of a quadrilateral,
the Egyptians did not attempt more than finding the

product of half the sum of the opposite sides ;
in order

to calculate the area of a circle they used a value of n

equal to 3-1604 instead of 3-1415.... They knew,

however, that if the sides of a triangle are respectively

5> 4, 3, it is a right-angled triangle, and they made use

of this property to erect in the field a perpendicular
to a straight line. For this purpose, they used a cord

divided by two knots into lengths equal to 5, 4, and 3 ;

by means of pegs they made the length 4 coincide

with the straight line at the extremity of which the

perpendicular had to be erected (Fig. 2), then keeping
taut the lengths 5 and 3, they brought them together
in such a way as to join the ends.

It is for this reason that the Egyptian geometricians

1
29 Zeuthen, Histdre des mathAnatiqtits, p. 7.

f Produs, Com. Euclid, i, p. 64, 18.
* 22 Milhaud, Nouvelles Etudes, p. 66.
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were called harpedonapta, which signifies rope-
stretchers.1 It would appear also that the Egyptians,
as well as the Hindoos, had dis-

covered, before Pythagoras, the K
relation between the surfaces

\ ^^
of squares constructed on the

|

X
N

sides of a right-angled triangle. i
x
v

However, the demonstration
j
/ v

v /
which they gave of this relation r ^/
must have been purely intuitive _

, . . i r, 11 rlG. 2.
and empincal : it probably con-
sisted in dividing the squares so constructed into small

squares, all equal, and showing the equality of the sums :

FIG. 3

25 = 16 + 9 (Fig. 3). This demonstration is not appli-
cable to any right-angled triangle whatever ; it neces-

1 Clenuni of Alexandria, edit. Pettier, p. 357.

2
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sarily supposed the sides of the triangle to be in a cer-

tain proportion of whole numbers, 3, 4, 5, for example.
1

It may be asked whether the construction of the pyra-
mids and temples did not require more advanced
theoretical knowledge than that which we attribute

to the Egyptians. M. Milhaud has clearly shown
that this was not the case.2

Whilst the Egyptians were ignorant of the art of

calculating an angle, this was the branch of mathe-
matics which above all interested the Chaldeans. For

them, indeed, the position and movements of the

heavenly bodies (especially the planets) had a vital

interest, since this movement influenced the destinies

both of nations and individuals. So it was necessary
to know how to measure exactly, at every instant, the

relative positions of the planets and stars, which is

impossible without the help of angles and their pro-

perties. To measure the magnitude of angles the

Chaldeans, aswe have seen, conceived the brilliant idea

of dividing the circumference into 360 parts. Hence-

forward, to estimate the height of a star in the sky, it

was sufficient to fix, perpendicularly to a horizontal

plane, the quarter of a graduated circumference

furnished with a mobile radial arm. In sighting the

star by means of this radial arm, an angular displace-
ment would be found, which corresponded to the

height required. It is a curious fact, that, as we shall

see, the Chaldeans had recourse to quite different

methods to determine the positions of the stars. The
kck of trigonometry did not impel astronomers to the
direct measurement of angles,

8

To sum up, the characteristics which distinguish

Egyptian mathematics from Chaldean mathematics

correspond to a difference in the practical uses to which

1 22 Milfcaud, Nouvettes Etudes, p. 108,
*
Ibid., p. 75 et $eq.

*a Bigourdan, Astronomie, p. 107.
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this science was put. The same distinctive feature

appears again in astronomy.

2.
( THE ASTRONOMICAL SCIENCES

In connection with the annual risings of the Nile, the

Egyptians attached great importance to the exact

determination of the periodic return of the seasons,
and the religious festivals held in its celebration ; and
their observations relating to the measurement of time

were far advanced.
As far back as we go in the history of Egypt, we see

that the year was always divided into 12 months of 30

days each, plus 5 supplementary days ; but it is prob-
able that originally the year had only 360 days, if the

following tradition, reported by Plutarch, is to be be-

lieved :
l Saturn haying secretly wedded Rhea, the

Sun forbade her to give birth either during the course

of a month or of a year. Hermes, the devoted servant

of the goddess, played at dice with the Moon and gained
from her the 72nd part of each day ; thus a total of

5 supplementary days was provided during which Rhea

might bring her child into the world.

The Egyptians had therefore ascertained, at a very
remote epoch, that the period of 360 days for a year is

too short. They recognized also that 365 days is not

enough, and must be extended to 365^ days. For if

once the sun rose at the same time as Sinus on the

first day of the year, the following year at the same
period, Sinus would rise six hours later than the sun,
and at the end of four years one day later. Thus,
there would have to be 365 x 4 = 1460 years before
the risings of the sun and Sirius coincided again on the
first day of the year. This period of 1460 years is the

celebrated
Spthiac period (Sothis being the Egyptian

name for Sirius) which regulated the celebration of

** Isid* $t Osiride, ch. 22 (18 Maspero, Histoire Ancitnne,
p. So).
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great religious festivals. The precision of these calcu-

lations may appear surprising at first sight, but they
can be made with very simple instruments.1

Whilst the Egyptians were chiefly interested in the

movement of the sun, the Chaldeans studied carefully
themovements of the planets, believinghuman destinies

to be bound up with these mysterious movements.
Favoured by exceptional atmospheric conditions, they
extended their observations very far. They quickly

recognized that the planets, the sun and the moon move
across practically the same region of the heavens, i.e.

the zodiac or plane of the ecliptic. Therefore
"
as a

result of their astrological ideas, the Chaldeans, instead

of referring the positions of the stars or of the planets
to the equator, have referred them to the mean circle

of the zodiac, and this circumstance has been of great
historical importance, because, when the Greeks

inherited the Chaldean science, Hipparchus could

thereby discover the precession of the equinoxes. It is

clear that, if the system of co-ordinates by right
ascensions and declinations had then prevailed, the

complex law of the variations of these co-ordinates

could not have been discovered." * It is well known
that, by virtue of the precession, everything takes place
as if the axis of the earth described a cone of revolution,

and took a period of 26,000 years to describe it. The
result of this is that the North Pole slowly changes
its position in the sky, and that each year the plane of

the equator cuts that of the ediptic at a point slightly
different from that at which it cut it the preceding

year at the same time of the year.
s The Greeks,

1 22 Milhaud, Nouvelles Etudes, p. 89.
Paul Tannery, La Grande Encycloptdie, article:

Tfce following fact illustrates this progressive displace-
ment If the Ram occupies the foremost place in the nomen-
clature of our zodiacal signs, it is because, at the time when
these were depicted, the sun was entering the constellation
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moreover, did not deny having borrowed from the

Chaldeans the idea of the zodiac and the animal con-

figurations which divide it into 12 regions.
"
They,

themselves, acknowledged the fishes of the Euphrates
in their sign of the Fishes. But, afterwards, they con-

nected all these constellations with their national

mythology, and thus made unrecognizable the original
exotic characters which would have indicated their

origin."
l However this may be, it was by the use of

the zodiacal circle that the Chaldean astronomers
were able to predict with more or less exactitude

the eclipses of the moon and of the sun. They
noticed that the orbit described by the moon is

slightly inclined to this circle, and cuts it at two

points called nodes, or the head and tail of the

dragon, because it is always at these two points that

the eclipses of the sun or moon occur. By noting
the position of these nodes with regard to the fixed

stars, they were able to ascertain that these gradually
moved along the zodiacal circle, and returned to their

original position at the end of a certain cycle of

lunations.

Having noted the succession of eclipses which were

produced during the cycle, it was possible for them to

predict their return. It is probable, however, that a
calculation of this kind does not belong to a period
earlier than the second or third century B.C., and that,

before that epoch, the Babylonians were ignorant of

the so-called cycle of Saros.

At first the prediction of the eclipses of the moon
could be made by very simple methods, thanks to

especially favourable circumstances, which return

of the Ram at the spring equinox. Now, owing to the pre-
cession of the equinoxes, it only arrives there in April C.

Flammarion, Initiation asfronomique, Hachette, Pwk, 1908,

P* *47-
1 a Bigourdan, Astronomic, p. 21.
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periodically in the course of centuries. From 755 to

432 B.C. the eclipses succeeded one another in series

alternately of 5 and 6. In each series the edipses took

place every six months, and the series were separated

by an interval of 17 lunations.1 Thus it became

possible to make predictions at short notice, which

explains some of the inscriptions found on the cuneiform
tablets.

As to the instruments of observation, we have little

information. The Chaldeans certainly made use of

the gnomon, which appears to be the most ancient

instrument used for studying the movements of the

stars, for it is everywhere mentioned before all others,

whether amongst the Chinese or the Chaldeans, the

Greeks or the Incas. It is, besides, a marvellously

simple instrument, composed of a vertical style stand-

ing on a horizontal plane. By reproducing the move-
ment of the sun, the extremity of the shadow pro-

jected by the style makes the division of the day
possible.

2 At first sight the precision of the observa-

tions made by means of the gnomon would seem to

increase with the length of the shadow, and therefore

with that of the style ; but in reality the shadow of

the style is not very sharp because of the penumbra.
8

Further, as the length and even the direction of the

shadow vary for the same hour on different days, it

was necessary to have recourse to some sort of table,

which gave for each month the length of the shadow at

different hours.

Later on, the gnomon with the vertical style was

replaced by a gnomon with the style pointing towards
the pole. It was then only necessary to observe the

1 2 Bigourdan, Astronomic p. 34.

24 Sageret, Systtme, p. 95.
In order to remedy this disadvantage Factmdus Novus

bad the idea of fixing a ball on the point of the gnomon.
Pliny, xxxvi, 72.
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direction of the shadow in order to conveniently reckon
the time.1

Besides the gnomon, the Chaldeans used the polos.
The polos is a half sphere hollowed out in a block of

stone or metal, at the bottom of which is fixed a style
with its end reaching exactly to the centre of the

sphere.
8 Hence the name axdyrq (boat) given by the

Greeks to the polos. By this means an exact repre-
sentation of the sun's movement was obtained ;

"
the

shadow of the point of the style moves in the interior

of the polos as the sun moves in the heavens, in the

same direction and with the same angular velocity at

each instant ; it is only the sense of the motion which is

reversed." * The hourly division of the time, repre-
sented by the meridians of the hemisphere, remains
the same for all periods of the year. The shadow, in its

curved path, sweeps a zone in latitude, whose breadth

corresponds to the difference between the shadows pro-

jected at the summer and winter solstices.

To measure time during the night the Chaldeans at

first used the clepsydra, and it is probably by means of

this instrument that they divided the zodiac into 12

equal regions.
4

Later, by combining the polos with a kind of

armillary sphere, they could verify their nocturnal

measurements in the following manner :
*

Imagine an

open-work sphere, made of strips of metal for instance,

representing the celestial sphere, and more especially
the zodiacal zone with its principal constellations, and
let this sphere be constructed in such a manner that it

can move within the polos and be exactly adjusted to

it Suppose the zodiac to be divided into 360 degrees,

1 2 Bigourdan, Astronomic, p. 92 et seq.

24 Sageret, Syst&me, p. 106.

Ibid.
4 2 Bigourdan, Astronomic, p. 95.
*
25 Tannery, Science heltene, p. 84*
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according to the Babylonian custom, and that, on the

night of the observation, the degree occupied by the

sun at the instant of its setting be known.
"
Then, if,

at the moment of which it is desired to ascertain the

time, the zodiacal stars on the eastern, western and
southern horizons be observed, the stars represented
on the sphere of the instrument can be brought into the

same position ;
the degree in which the sun is situated

will then play exactly the same part as the shadow
of the end of the style during the day, and its position
with regard to the horary lines traced on the polos,

gives the required time/' The Chaldeans thus suc-

ceeded in solving, by mechanical means, problems for

whose solution we have recourse to spherical

trigonometry.

By dint of patient observations and in spite of the

imperfection of their instruments, they succeeded in

accumulating a considerable number of data, amongst
others ephemerides of the sun, moon, and principal

planets. The tablets of Cambyses, for example, give
a list of the conjunctions of the moon with five

planets, and also a list of the conjunctions of the

planets with each other. The celebrated astronomer
KIDINNU had calculated the synodic lunar month with

astonishing accuracy, to an error of 0-4 seconds

(29 days 12 hours 44 minutes 3-3 seconds instead of

3*9 seconds).
1

However, throughout all these splendid discoveries,
the distinctive features of Chaldean astronomy persist ;

being calculators and traders, the Chaldeans merely
sought to draw up numerical tables which would meet
flidrastrctaomicai needs. They did not seek, as did the

Greeks, to represent geometrically the real or apparent
movements which explain the variable positions of the

heavenly bodies on the celestial sphere.

1 a Bigourdan, Astronomic, p. 217.
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3, THE PHYSICAL AND NATURAL SCIENCES

The technique of the manufacture of metals and even
that of perfumes seems to have reached a remarkable

stage of development among the Oriental peoples.
The same may be said of medicine, at least, in one
of its branches. For, amongst the Egyptians, the

physician was required to perform two tasks of equal

importance. He had, first of all, to discover the nature

and if possible the name of the malevolent spirit which,

by its intrusion into the body, had caused the malady ;

then he had to attack it, drive it away, and even destroy
it.

" He can only succeed in this by being a powerful
magician, expert in exorcisms, skilful in manufacturing
amulets. Then, with his drugs, he must fight the dis-

orders which the presence of a strange being produces
in the body ; it is a question of regime and of carefully

graduated remedies.
" l In the treatment of diseases,

magic and incantations play therefore the principal

part.
As to medicines, they were of four kinds : ointments,

potions, poultices and injections. They were composed
of a large number of various natural products.

8 Most
of these remedies were believed to have a divine origin.
The Egyptian physicians, the majority of whom be-

longed to the priestly caste, also used prescriptions
borrowed from the Phoenicians and Syrians, or collected

during their personal practice. In this manner, the

experience gained was never lost and the treasure of

medical science increased from generation to generation.
The whole of this medical knowledge is not to be

discarded ; for instance, modern science has shown that

remedies composed of excrements contain ammonia,
and can be advantageously used in certain diseases.

Nevertheless in Egyptian or Chaldean medical science,

*
19 Maspero, Lectures historigues, p. 125,

1 18 Maspero, Histoin Ancienne, p. 84.
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there is nothing but prescriptions, methods, and
formulas of every-day practice.

1

In the domain of physical science, likewise, the
Oriental cosmogonies reveal no sign of systematic

conceptions. The Egyptian and Chaldean astronomers

held that the primaeval chaos became order by the
effect of a divine will. The sky became a liquid mass
which surrounded the earth, and rested upon the atmos-

phere as upon a solid foundation. The planets and all

the stars floated on this celestial ocean, each sailing
in its boat in the wake of Osiris. Another theory,

equally widespread, represented the fixed stars as

lamps suspended from the celestial vault, which a
divine power lit every evening to illuminate the nights
of the earth.8

1 This statement perhaps needs qualification. A papyrus
recently discovered by Edwin Smith and studied by J. H.
Breasted (Recueil Champottion, 1922, p. 387-429) describes

and diagnoses in order, beginning from the head, the principal
diseases, indicating appropriate remedies for them, and the

possible chances of recovery.
1 18 Maspero, Histoire Ancienne, p. 78.



GREEK AND ROMAN SCIENCE

PART I. HISTORICAL OUTLINE

GENERAL CHARACTERISTICS

AMONGST
the problems with which Greek

science confronts us, there is one which is

particularly complicated, that of its birth.

This has doubtless been influenced by the intimate

connection which existed between the inhabitants of

the countries bordering on the -SSgean Sea and the

East, particularly Egypt, as is shown by their many
commercial transactions. The Greeks themselves are

unanimous in recognizing this (legend of Cadmus,
traditions reported by Herodotus, and by Proclus in

his Commentaries on Book I of Euclid, etc.).

The question here arises in what really consists this

influence of Oriental thought on Greek science ? Has
the latter merely received from the former a mass of

empirical knowledge, or also, in some measure, the

rational direction which characterizes it ? The recent

discoveries of Minoan civilization have further com-

plicated this problem. The remains of this civilization

seem to have survived, outside Greece and Crete, for

some time after the Dorian invasions. 1 Did these

remains, together with material imported from the

East, form the foundation of the civilizations which

*L von Lichtenberg, Die aegaische Kultur, Teubner,

Leipzig, 1911. See also the complete and graphic work just
published by G. Glotz: La civilisation tgfame, Renaissance du

1923, p, 445, *J seq.
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in the eighth century B.C. flourished in the coastal

regions of Asia Minor ? It is difficult to say, for lack

of historical data. But it seems probable that the

characteristic rationalism of Greek science is proper
to this science ;

* in regard to the empirical and

fragmentary knowledge of the East, it constitutes a

veritable miracle. For the first time, the human mind
conceived the possibility of establishing a limited

number of principles and of deducing from them a

number of truths which are their strict consequence.
This achievement, without analogy in the history of

humanity, is all the more astonishing because Greek

science, in its first beginnings, had a precarious exist-

ence. Not having any influence upon economic life,

it could only exist within the schools of philosophy,
whose lot and vicissitudes it shared. It developed
spasmodically in a discontinuous fashion, in different

countries, according to the civilizations which sporadi-

cally arose on the borders of the Mediterranean. Its

first cradle was Ionia, of necessity the intermediary
between Greece and Oriental civilization, but in con-

sequence of the political troubles which disturbed this

country, Greek science was transported into Greater

Greece, in the South of Italy. It was there that

Pythagoras and his school established the lasting
foundations of the geometrical and astronomical

sciences, which the Greeks afterwards employed. We
know how, even during the lifetime of Pythagoras, a
revolution put an end to the school he had founded,
without however compromising the existence of his doc-
trines. These survived partly in Greater Greece, where

they inspired the subtle dialectic of Zeno of Elea ; and

partly in Greece and the countries which came under
Greek influence. They also helped to establish new
centres of scientific life : amongst others, at Athens,

1 22 Milhaud, Nouvelks Etudes, p. 99. 25 Tannery,
Science heU&ne, p. 62. 17 Loria, Stienxe esatte, p, 5.
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at Cyrene on the African coast, at Cyzicus on the

borders of the Sea of Marmora.
From the fourth century B.C. onwards, Greece lost

her economic and political independence. The effect

of the conquests of Alexander was the transference of

scientific activity to Alexandria in Egypt, and in a
lesser degree, to Pergamum, in Asia Minor. When the

Roman Empire was definitely established in the first

century of the Christian era, Rome and Athens natur-

ally became the fostering centres of science, on the

same basis as Alexandria. Owing to the religious and

political revolution achieved by Constantine, the

Hellenized Orient recovered an independence and

vitality, which were lacking in the Latin Occident ; the

sciences, nevertheless, were in peril. It was the age of

decadence, or better still, as P. Tannery has put it, the

age of commentators.1

Accordingly, the development of the Greekand Roman
Sciences can be divided into three quite distinct periods :

1. A Hellenic period (from its origin to the conquests
of Alexander, i.e. from 650 to 300 B.C.).

2. An Alexandrian period (from the dynasty of the

Ptolemies, about 300 B.C. until the Christian era).

3. A Greco-Roman period (from the Christian era

until towards the middle of the sixth century).

1
25 Tannery, Science hell&ne, p. 7.





CHAPTER I

THE HELLENIC PERIOD
(from 650 to 300 B.C.)

THE
beginnings of this period are marked by

an intimate mingling of scientific, cosmogoni-
cal and philosophical considerations. If Hegel

is to be believed, these considerations would have

manifested themselves in the form of a thesis, anti-

thesis and synthesis on the problem of existence. But
the historic reality does not correspond to this brilliant

conception. In fact, from its first appearance, Greek

philosophical thought betrayed diverse tendencies more
or less opposed, which often ignored one another. It

was not with one single problem that it was occupied,
but rather with a number of questions more or less

disconnected, concerning the origin and the purpose
of the Universe. From the first there can be clearly

perceived three tendencies, which persisted through
the centuries unto our own times. The school called

Ionian applied itself to external phenomena, and en-

deavoured to find in them the final explanation of

reality. At almost the same period, the Pythagorean
school, in the south of Italy, sought, on the contrary,
this explanation in number, an abstract principle which
is not directly provided by the senses. Heraditus,

indeed, considered that the unstable
"
becoming

"
was

the very substance of reality, and that, in order to

know it, recourse must be had, not to intelligence,
but to intuition.

In spite of these divergences, there is, however,
21
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amongst all these thinkers, a certain community of

ideas, in that they did not clearly distinguish between

spirit and matter. The natural philosophers of Ionia,

like Heraclitus, attributed spiritual properties to

matter, and the Pythagoreans considered numbers as

having perceptible and even moral qualities. The
differences of opinion, however, rapidly became more
and more accentuated. The Eleatic school, which was

inspired by the speculations of Pythagoras, tended
towards idealism ;

whilst the new Ionian school, whose
last representatives were Leucippus and Democritus,
enunciated the theories of the atomic philosophy and

prepared the way for materialism.

1. IONIA AND ASIA MINOR
The ancient philosophy of Ionia is often given the

name of Hylozoism. Its chief characteristic is the

inseparable connection between matter and life, every
material element having life and reciprocally. There-

fore, the discovery of the fundamental material ele-

ment is sufficient to explain all reality.

Amongst the representatives of this school may be

pointed out, on the one hand, Thales, Anaximander,
Anaximenes, and, on the other, Heraclitus, whose
ideas remain of fundamental importance to philosophy,
but of little interest to the history of science.1

In the seventh century before our era, Miletus

still enjoyed her political independence, and kept up
a flourishing commercial connection with Egypt and

Babylon. It was in this town that THALES lived

(about 624-548 B.C.). According to tradition, he made
his fortune by selling salt; but he also used other

means : one year, foreseeing an abundant harvest, he

1
25 Tannery, Science heltene, pp. 52-200. 8 Burnet, Awore,

pp. 37-85, 145-194. 17 Loria, Scienze $$

Kobin, Penste grecque, pp. 41-56, 86-94.
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rented all the olive trees and thus made a good profit.
In his capacity of merchant he seems to have travelled

in Egypt and perhaps even in Chaldea. According to

Herodotus (I, 75) Thales accompanied Croesus, prob-
ably as an engineer, in his unfortunate military expedi-
tion against Pteria, Herodotus (I, 74) also attributes

to him the prediction of the solar eclipse which put an
end to the war between the Persians and the Lydians,
and which took place in either 610, 597, or 585 B.C.,

this last date being the most probable. M. Bigourdan,
however, believes this to be a legend,

1 as the cycle of

Saros by which solar eclipses were predicted had not

been established at that epoch. But in verification of

this fact, ancient testimonies may be quoted, amongst
them, that of Xenophanes (Diogenes Laertius, 23), and
it might be explained in the following manner : as we
have seen, in the seventh century B.C. the Babylonians,
owing to the simpler periodicity of the eclipses of the

moon at this epoch, were able to predict them without
the aid of the cycle of Saros. It is quite likely that

they also ventured to foretell the eclipses of the sun,
and that Thales might have brought back from one of

his travels their predictions, which by chance happened
to be correct for the eclipse of 585 B.C.

Thales might also have brought back from his travels

the Egyptian knowledge of the division of the year
and of the solstices. His cosmogony likewise seems
to betray an Oriental origin. The following are its out-

standing features. Water is the origin of everything.

Expanded by evaporation it produces air
; congealed

and contracted, it gives birth to the earth. The
alluvial deposits at the mouth of rivers confirmed this

belief in a water which could change into earth. * More-
over every living organism perishes when it is deprived
of water,

1 2 Bigourdan, Astronomic, p. 44.
*8 Burnet, Aurore, p. 50.



24 SCIENCE IN GRECO-ROMAN ANTIQUITY

This being so, the universe is a great liquid mass,
which encloses a large hemispherical bubble of air

(Fig. 4). The concave surface of the bubble forms the

sky, while on the plane surface, the earth, which is

cylindrical, floats like a cork. The stars are boats

steered by divinities ; the interior of these boats is

luminous, but not the exterior, so that, when the stars

float on the diametral surface of the bubble, they are

invisible. The eclipses are produced every time the

boats of the Sun or Moon tend to overturn.

FIG. 4.

According to P. Tannery, this conception is funda-

mentally of Egyptian origin, but to Thales belongs the
merit of having rationalized it by interpreting it

according to a rudimentary natural philosophy. Thus,
from the beginning, Greek thought asserted at the same
time its dependence and its independence with regard
to the East.

In another realm of knowledge it appears that Thales
also imported into Ionia the methods of surveying in

use in Egypt Was he, however, the founder of rational

geometry ? It is difficult to say, although it is true
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that the theorem of proportions by which he calculated

the height of the pyramids, and the theorem of the

triangle inscribed in a semi-circle are attributed to

him. In arithmetic, it appears to have been Thales

also who introduced into Greece the use of Egyptian
fractions, the numerator of which is always equal to

one.

Belonging to a younger generation, ANAXIMANDER
was the disciple as well as the fellow-citizen of Thales,

He was born about 610 B.C. ; the date of his death is

uncertain, but is generally supposed to be about 546
B.C. Anaximander wrote a treatise which contained

his doctrines, and which Theophrastus certainly may
have read. According to the latter, this doctrine was
as follows (Diels, Dox, 476, 3) :

"
Amongst those who

admit one sole primary element, mobile and infinite,

Anaximander of Miletus, the son of Praxiades and

disciple and successor of Thales, says that the fazeigov

is the essence and element of beings ;
it was, besides, he

who first introduced this term of primary element,

understanding by this, not the water or any other of the

elements known to us, but a certain endless unlimited

mass (SjteiQw) from which were formed all the heavens
and all the worlds which they have contained, etc."

What is to be understood by the word dneiQov ? Does
it stand for a substance extending to infinity in space,
or a substance finite in its extent, but qualitatively
indeterminate ? The great majority of commentators,
ancient or modern, lean towards the former inter-

pretation; at the origin of all things is a primitive
matter, which extends to infinity and which we cannot

perceive, since it has been transformed into derivative

dements such as water, fire, etc. Teichmiiller and P.

Tannery consider that such a conception cannot be
attributed to Anaximander, because the idea of spatial

infinity only appeared later in philosophy and in
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science.1 It is, moreover, in disagreement with the

perception of the motion, which, according to

Anaximander, brings the heavens back into the same

position every 24 hours. Therefore it is in a qual-
itative sense that primitive matter is, not infinite,

but indeterminate, that is to say, susceptible of

taking manifold and varied properties. The same

divergence of opinions exists as to the ideas of

Anaximander on the progressive constitution of the

universe.

According to J. Burnet the &JIBIQOV is submitted to

shocks which shake it up and down, and which, in

certain regions, determine the opposition of heat and
cold. 2 The heat then appears as a sphere of flames,

which surrounds the cold, represented by a world

whose entire surface is covered with water. Under the

influence of the heat, part of the water evaporates and

changes into moist air.
, Owing to its force of expan-

sion, the air then penetrates the flaming sphere and
divides it into rings, in which the fire is imprisoned and
becomes invisible. It can, however, escape if an open-
ing has been left by chance on the ring, when, bursting
forth, it takes again its luminous consistency and forms
one of the heavenly bodies we see. This being so, the

eclipses of the sun or moon, and the waxing and waning
of the moon are easily explained. These phenomena
occur every time the openings of the solar or lunar rings
become completely pr partially closed up. This explana-
tion appears, at first sight, surprisingly ingenious.

Anaximander, however, may have derived the inspira-
tion of his theory of rings from the appearance of the

Milky Way, and, on the other hand, he has but extended
to the heavenly bodies the explanation which he gave of

lightning and thunder, namely, a fire escaping through
the air contained in the clouds.

"
Anaximander held

1
25 Tannery, Science Hellene, p. 94.

1 8 Burnet, Aurore, p. 62.
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that thunder and lightning are caused by the wind.

When it is imprisoned in a dense cloud and escapes
with violence, the disruption of the clbud produces the

noise, and the rent appears luminous in contrast with

the darkness of the cloud
"

(Aetius : Diels, Dox, 367,

22). However this may be, Anaximander held that

there were three distinct regions in which the rings
were placed : the rings of the fixed stars formed the

nearest region, beyond was the ring of the moon, and,
further still, that of the sun.1

Teichmiiller and Tannery admit this conception as a

whole, but for them the eternal movement which
animates the SneiQov is not an irregular disturbance,
it is the movement of the diurnal rotation.2 It is

this movement, which, in the midst of primitive matter,
creates the opposing forces, places in the centre of the

universe the heavier elements, namely, the earth and
water, then disposes around the earth the lighter

elements, an envelope of air, and an envelope, lighter

still, of fire. Finally, it is the centrifugal force, created

by the movement of rotation, which causes the sphere of

fire to burst and to divide into rings. The question
of the innumerable worlds, of which Anaximander
admits the existence, likewise gives rise to a divergence
of interpretation which is explicable for the same
reasons. The adherents to a qualitative faieiQov,

limited in space and subject to a perpetual movement
of rotation, think that by

"
innumerable worlds

" we
must understand that the actual world will be dis-

integrated and destroyed by the same cause (diurnal

rotation) which has created it. Thus a state of chaos
will be produced, from which will arise a new world,

and so on. If, on the contrary, we believe faetfwv to

2 The respective distances of the lings were fixed by sacred

numbers, and not by observation. 22 a Robin, Pensfa

&&que, p. 49-

25 Tannery, Science helUnc, p. 88.
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be matter spatially infinite, it is more natural to admit

that, in the universe, innumerable worlds can arise and

develop at the same time. The word innumerable then

signifies a co-existence in space, and not the simple
enumeration of worlds succeeding one another in time.

Thus, the cosmology of Anaximander can be con-

sistently interpreted in two opposite ways, and, con-

sidering the texts which have been preserved, it is

difficult to make a choice. The whole problem is

focussed on the following question : Was it possible
in the seventh century B.C. to conceive a universe,

which, without being infinite in the modern sense of the

term, was unlimited to such a degree that one region
alone of this universe could be subject to a general
movement of rotation ?

There remains to mention the views of Anaximander
on the birth of living beings, for they are a very

singular anticipation of evolutionary doctrines,
" The

first animals were produced in moisture, and were
each covered with a spiny integument ;

in course of

time they reached dry land. When the integument
burst they modified in a short time their mode of

living." (Aetius : Diels, Dox 579, 17).
"
Living

creatures were born from the moist element when it

had been evaporated by the sun. Man, in the begin-

ning, resembled another animal, to wit, a fish."

(Hippolytus : Diels, Dox, 560, 6).

Finally, a persistent tradition, reported by Strabo
on the authority of Eratosthenes (Diels, Vor, i, 12, 41)
attributes to Anaximander the first geographical map.
He was also supposed to have introduced into Greece

the use of the gnomon and of the polos.

ANAXIMENBS, the successor and associate of

Anaximander, was the last representative of the School

of Miletus. We do not know the exact period at which
he lived, except that he was younger than Anaximander
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and reached his
" acme " 1 before 494 B.C., the yearwhen

Miletus was conquered. He produced a work, which
has actually survived till the age of literary criticism.1

His ideas are less daring but perhaps more thought out
than those of his predecessor. For him, the air was the

primitive boundless matter, which by condensation

gave birth to earth and water, and by rarefaction to

fire. It must not be forgotten that for the first

cosmologists the air was always a form of vapour,
darkness being another form. It was Empedocles who
first discovered that the air is a distinct body, differing
from vapour, and from empty space. It was he also

who showed that darkness is a shadow. Anaximenes
introduced several interesting theories on astronomical

matters, thus justifying the esteem in which he was held

by the Ancients. He considered the celestial vault, to

which the stars are fixed, as solid and turning round the

earth. In the interior of this vault float the sun, moon
and planets, upheld by the surrounding air. In this

way, the planets are distinguished from the stars for

the first time in Greek astronomy. Anaximenes also

supposed that dark solid bodieswander under the celes-

tial vault.
' ' The heavenly bodies proceed from the earth

whose moisture has evaporated and, by its expansion*
has formed fire ; the latter rises and forms the heavenly
bodies. In the region occupied by these, there are also

bodies of a terrestrial nature, carried likewise by the

movement of revolution
"
(Hippplytus

: Diels, Dox, 561,

4) . Thiswas a fruitful conception, for itwasbound to

lead to the true explanation of eclipses. Indeed there

was but one step needed to arrive at the supposition that

themoon is one of these dark bodies, iUuminated wholly
or partly by the sun, according to its position, and

capable of being eclipsed by the shadow of the earth.1

1 Epoch of full intellectual maturity ; about the age of 40,
8 Burnet, Aurore, p. 77.

25 Tannery, Science HtlUne, p, 153,
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The advance of the Persians in Lydia put an end to the

School of Miletus, and, at the beginning of the sixth cen-

tury B.C., caused an emigration of philosophical thought
to Sicily and the south of Italy. The introduction of

Oriental cults, amongst which the most important was
that of Dionysus, caused, at the same epoch, in Greece
and the Greek colonies, a religious awakening which
had a profound effect on philosophical speculations.

Although belonging to a younger generation than

Pythagoras and Xenophanes, HERACLITUS of Ephesus
must be mentioned before them. Descended from the

kings of Ephesus, Heraclitus reached maturity about
the year 504 B.C. He renounced his royal rank in

favour of his brother and remained all his life in Ionia,

living solitary and disdainful, despising alike the men
of science and the common people

" who cram their

bellies like cattle/' This contempt was partly justifi-

able, for the Greeks of Ephesus lived in indolent luxury
under a foreign yoke.

Primarily a theologian, Heraclitus appeals not to

science but to inspiration.
1 and in his writings, he

expresses himself in a sibylline manner, which caused
him to be designated "obscure." His astronomical

system is closely related to that of Thales. The
fundamental idea of this system is the ndviagel (every-

thing is in a perpetual state of flux). Nothing is

stable, nothing is fixed. Life and death, good and evil,

cold and heat, change incessantly one into the other.

Nothing is either this or that, but everything is becom-

ing. This perpetual becoming has its source in the

1
According to the majority of commentators (amongst

others, 25 Tannery, Science Hellene, p. 186), the source of this

inspiration was the divine logos. 8 Burnet (Aurore, p. 148
and p. 159) thinks this interpretation erroneous and based on
paraphrases added by the Stoics to the original sentences of
Heraclitus in handing them down to us. Logos means simply
the discourse of Heraclitus in as far as it was prophetic.



THE HELLENIC PERIOD 31

vital fire, which is transformed into all things and which
is perpetually one and many at the same time. By
this, Heraclitus did not in any wise think to resolve a

logical problem and to affirm the identity of con-

tradictory propositions. This problem did not present
itself to his mind, it was on the ground of experience
that he based his affirmation of the union of contraries.

The changes which transform fire into water, then into

earth, form the up-road. The changes which inversely
transform earth into water, then into fire, are called

the down-road. Thus between the earth and the sky
there is a perpetual exchange of effluxes following a
double way, ascending and descending. From the

earth and sea arise effluxes, some dry, others moist.

The former are of an igneous nature, they are collected in

the hollow basins which constitute the heavenly bodies,
at the moment when these rise on the horizon ; they
then ignite to become extinguished when setting, giving
a residuum of water. The damp effluxes, by their

mixture with the dry ones, form our atmospheric air,

which extends to the moon, whence the water falls

back either as rain, or frozen in the form of snow. The
various proportions of the dry and moist effluxes

determine the vicissitude of days and nights, months
and seasons. In winter, for example, the sun in its

course is lower on the horizon, and it causes a greater

evaporation of the damp layers near the earth, hence
the aqueous element threatens to predominate and to

completely extinguish the sun, and this is why the sun
must return to the north to find there new sustenance

(Cicero, de natura deorum, III, 14).*

According to Tannery, the basis of these conceptions
was borrowed from Egyptian solar myths, imported
into Asia Minor with the cult of Dionysus ; but this

is a debatable point.
1 So also is the signification to be

1 8 Baraet, Aurore, p. 177.

25 Tannery, Science helttne, pp. 177 and 179,
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given to the great year, containing 18,000 ordinary

years, at the end of which there would be a universal

conflagration, and afterwards a reconstitution- of the

universe, periodically. This law of periodicity is quite

contrary to the central idea of incessant flux affirmed

by Heraditus.1 However this may be, Heraditus

applied to anthropology his ideas of the nature of

being. To him, man was a mixture of fire, water and
earth. The soul is a dry vapour which, in the waking
state, is nourished by the fire spread throughout the

world. In sleep, the exchange is less active, there is

an encroachment of the moisture contained in the body,
and this is why we lose consciousness. The same takes

place in intoxication.
" When a man is drunk, he is

led by a young beardless boy ;
he stumbles, not knowing

where he walks, because his soul is moist."
" The dry

soul is the wisest and the best
"

(Diels, Vor. I, frag.

117, 118, p. 78). Finally, when the soul changes into

water or fire through the predominance of one of these

elements, it leaves the body to begin once again its

incessant journey above and below.2

2. PYTHAGORAS AND HIS SCHOOL

Amongst the thinkers who, in the sixth century B.C.

left Ionia in order to escape from the Persian rule, we
must first mention PYTHAGORAS, who was probably
born in 572 and died in the year 500 B.C. It is not easy
to reconstitute the life and doctrine of this famous
man from the legends which surround them, and
which for the most part were the creation of Neo-

Pythagoreanism in the first centuries of the Christian

era.* In particular the lives of Pythagoras written by

1 8 Burnet, Auvore, p. 180.
1 8 Burnet, Aurore, p. 175.
f
Pythagoras, for example, kills a venomous serpent by

biting it; he was seen at the same time in Crotona and

Metapcmtum, etc.
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lamblichus, Porphyry, and even by Diogenes Laertius,

are doubtful, but they contain much more ancient

material which is worthy of belief. l From an authorita-

tive source we know that Pythagoras passed the first

years of his life at Samos, and that he was the son of

Mnesarchus. He left Samos to escape from the

tyranny of Polycrates and settled in the south of Italy
at Crotona, a town already famous for its school of

medicine. The travels in the East attributed to him,
with the exception perhaps of the journey to Egypt,

appear to have been invented later to justify his

teachings.
At Crotona, Pythagoras founded a phUosophical-

religious school, probably after the type of the Orphic
communities. Its adherents were submitted to a severe

discipline ; they were obliged to abstain from eating
beans * and meat, except when they were sacrificing to

the gods, for in that case, an act, which in ordinary
circumstances was impiety, became an obligatory rite.8

The Pythagoreans had, moreover, to observe not only
moral rules but veritable taboos, such as

"
not to touch

a white cock ; not to sit on a quart measure ; not to

walk on the high roads ; not to leave the mark of the

pot on the ashes, when it is lifted off, but smooth the

ashes/
1

Did the school of Pythagoras really comprise various

degrees of initiation, acousmatical, mathematical and

physical, with an exoteric and an esoteric teaching,

jealously guarded? Or were these designations in-

vented to explain the diversity of tendencies which

1 8 Burnet, Aurore, p. 94. 22 a Robin, Pensfa Grecque,

p. 58. On the life of Pythagoras by lamblichus, see G. Mean-
tis, Recherches sur k pytkagorisme, Attinger, Neuch&tel, 1921,

P- 87-
* For the signification of this abstinence see J. Larguier dea

Bancels, Archives de psychologic, xvii, pp. 58-68.* 8 Bwaet, Aumrt, p. 106,
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manifested themselves later in the Pythagorean teach-

ing ? It is difficult to say. It appears to be incorrect

also to attribute to primitive Pythagoreanism, as

several historians do, a political, aristocratic and
Dorian ideal, and to see in the conflict of this ideal with

popular aspirations the principal cause of the fall of the

school. This fall was doubtless caused by the domina-
tion which the Pythagoreans had for a time over the

town, and which from its religious and moral nature
must have been very tyrannical. However this may
be, from the beginning of the struggle with the rich and
noble Cylon, Pythagoras withdrew to Metapontum
where he died soon after. His disciples remained for

some time in possession of power, but overcome in the

end, most of them were massacred. The survivors

concentrated at Rhegium, until, with the exception of

Archippus, they were forced to leave Italy. It was then
that LYSIS and PHILOLAUS, whose

" acme "
occurred

about the year 440 B.C., went to continental Greece and

finally settled at Thebes. In this town they founded
an important Pythagorean community to which be-

longed SIMMIAS and CEBES, the two Thebans intro-

duced by Plato in the Phado. Philolaus, however,

appears to have returned to Italy, a little before

the death of Socrates in 399 B.C. At this time the

chief seat of the school was Tarentum, whence the

Pythagoreans directed the opposition against Dionysius
of Syracuse. To this period ARCHYTAS belongs.

" He
was the friend of Plato and almost realized, if he
did not suggest, the ideal of a king-philosopher. He
governed Tarentum for some years, and Aristoxenus

tdls us that he was never defeated in any battle. He
was also the inventor of mathematical mechanics,1

Thebes and Tarentum were not the only towns in

which the Pythagorean doctrine found a refuge; it

flourished also in other places, amongst them Phlias in

1 8 Burnet, Aurore, p. 317.
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Argolis. The doctrine of Pythagoras raises as difficult

problems as does his life, for he has left no writing to

enable us to distinguish his own thought from that of

his disciples. We can, however, affirm that he pro-
fessed belief in the transmigration of souls, for the

testimony of Xenophanes is precise on this point.
" One day, it is said, as he (Pythagoras) was passing

by a dog which was being beaten, he cried, full of pity,
'

Stop, beat no more, it is the soul of a friend ;
I recog-

nized it, hearing its complaints/
"

(Diels, Vor. I, 47,

20). On the other hand, Pythagoras was in reality a

great thinker, as the testimony of Heraditus proves.
"
Pythagoras, the son of Mnesarchus, extended his

researches further than any other man, and choosing
from certain writings, claimed as his own wisdom what
was only polymathy and art of wickedness." (Diels,
Vor. I, 80, 14).
As a thinker, Pythagoras was certainly struck by the

fact that phenomena which are heterogeneous from the

point of view of sensation, may nevertheless show a
definite numerical relationship. Figures very different

in shape may have the same surface. Musical sounds
are produced according to intervals (octave, fifth,

fourth) which follow a numerical law. Imbued with
this idea Pythagoras extended the study of arithmetic

beyond commercial needs (Stobaeus, I, p. 20, i)
l He

and his school came to the conclusion that number and
its properties constitute the basis of all things. Hence,
number is not a pure abstraction, it is a concrete reality,

although our senses cannot directly apprehend it,

Numbers have each spatial, physical and even spiritual

properties, clearly defined. By their combinations

they give birth to the beings and the things which we
see. The contributions which the Pythagorean school
made to arithmetic, geometry and astronomy were
vary remarkable. They definitely ducted

Quoted by 8 Buraet, Awort, p. uz



3& SCIENCE IN GRECO-ROMAN ANTIQUITY

science along rational paths. Some Pythagoreans also,

for example, Philolaus and Alcmaeon, carried out

successful physiological and medical researches.

3. THE ELEATIG SCHOOL
XENOPHANES is generally considered the foremost

representative of this school ; he was born in 576 B.C.

at Colophon, when this opulent city had been under

the Lyctians for 60 years. Driven from his native land,
he travelled through Greece, criticizing the religious

opinions and social customs of his time.1 He finally

settled in Sicily, but he does not seem to have stayed
at Elea, although he had composed a poem in honour
of this town. He died in 480 B.C. The cosmology of

Xenophanes is not of great scientific interest for his

aim was primarily to discredit anthropomorphic con-

ceptions of the divinity. Being convinced that men
made gods in their own image, Xenophanes affirmed

the existence of a God, one, eternal, immovable who,

seeing and hearing all, governs all things. This
affirmation must not, however, be interpreted in the

sense of a spiritualistic monotheism. The one God of

Xenophanes is the heaven, the perceptible universe to

which the poet attributes senses and intelligence. It

is composed of two regions : the earth, flat and immov-
able, which extends in all directions, and the air which
covers it, also illimitable. The heavenly bodies have

nothing of the divine, they are incandescent clouds,
similar to St. Elmo's fire ; they become ignited at one
end of the earth, then follow a rectilinear trajectory, and,
as meteorites,bury themselves in the sands of the desert.

The moist vapours of the night incessantly form new
clouds, which are lit up in the morning ; in this way a

1
14 Gomperz, Pensews (i, p. 167), represents Ms life as

that of a Homeric poet ; but 8 Burnet, Aurorc, p, 129, disputes
this point.
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new sun is born each day. Thus he explains the fact

that the universe is motionless although it appears
to move as a whole. By an optical illusion, easy to

detect, we attribute to everything the changes which

characterize particular phenomena. Thanks to the

distinction which he established between the apparent
and the real, Xenophanes opened the way for his dis-

ciple PARMENIDES.

According to Diogenes Laertius (IX, ch. Ill, 23)
Parmenides reached his

" acme "
in the year 500 B.C. ;

but if we accept the somewhat doubtful indications

given by Plato in his dialogue (Parmenides, 127 b), he
was born in 516 B.C. and could not have reached his
" acme

"
before 480 B.C. He scarcely left Elea, his

native town. It was there that he received instruc-

tion from the Pythagorean Ameinias, who made a

profound impression upon him. In the famous poem
which he wrote, he shows us the virgins, daughters of

the Sun, leading him to the dwellings guarded by
avenging Justice and inhabited by the Goddess, who
takes him by the hand and teaches him to distinguish
between the truth which rests on the real being and the
ideas suggested by appearances. The Being or Ent is

what the intelligence understands and plainly identifies ;

the not-Being, or Nonent, is what cannot exist because
of internal contradictions. The real Being is space
materially extended, immovable, indivisible, uncreated
and imperishable; this space is also limited and
spherical, for an indefinite whole is inconceivable.
The not-Being is empty space, the conception of which
corresponds to nothing, since by its definition the

empty space excludes a]! positive reality. Beside the
true Being there are particular phenomena, changing
and perishable. These arise from appearances and can
only create ideas in our mind. In expounding these
ideas, Parmenides is inspired by the cosmology of
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Anaximander, complemented by that of Pythagoras.
He also sets forth ideas on physiological subjects in

accord with the medical science of his time. By plac-

ing in opposition the immovable and indivisible Being,
and the sensible phenomena which move and divide,

Parmenides raised a problem which up to modern times

has been a stumbling block to philosophical reflection :

what relation is there between the movement of an

object and the immovable portion of space in which
this movement takes place ?

This problem was clearly defined by a disciple of

Parmenides named ZENO. Twenty-five years younger
than his master, Zeno also dwelt at Elea where he was
born in 489 B.C. ; he took an important part in the

direction of public affairs and meanwhile made a

journey to Athens, which was recorded by Plato.

According to tradition, Zeno was put to torture for

having conspired against a personage who tyrannized
over the town of Elea, and, rather than denounce his

fellow conspirators, he cut out his tongue. Tradition

also attributes to him several works : An Interpretation

of Etnpedocles ; Against Philosophers ; The Disputa-
tions ; Treatise on Nature. Because of the systematic
manner in which he exposed and criticized the opinions
of bis adversaries, he was called by Aristotle the father

of dialectic. (Diog. Laert, IX, 25).
As to his celebrated arguments, some have been

preserved to us by Simplicius
x and others by Aristotle

(Phys. VI; 239 b, 9-33). The former treat of the

relation of unity and plurality; the latter of the

problem of motion. What was the exact meaning of

these terms in the doctrine of Zeno ? Did he, by their

exposition, attempt to demonstrate the impossibility
of motion and of plurality ? Or did he simply desire to

1 Ritter and Preller, Historia philosophiae graecae, 9th
edition, Gotba, 1913, 131-4.
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prove that the Pythagorean theses on discontinuity led

to consequences still more absurd than the affirmations

of Parmenides ?
l This latter hypothesis would seem

to be more correct, for Plato says of Zeno concerning

the subject of his writing that
"
this is a kind of

reinforcement of the argument of Parmenides against

those who try to turn it into ridicule, for this reason,

that, if reality be one, this argument is entangled in a

mass of absurdities and contradictions. This writing

argues against those who uphold plurality and gives

them as much as and more than they have given ; the

aim is to show that their hypothesis of multiplicity will

be .confused with still more absurdities than the

hypothesis of unity if elaborated with sufficient care
"

(Parmenides 128 c). Whatever may have been the

aim pursued by Zeno, his reasonings have an inde-

pendent value, for they emphasize forcibly the difficulty

of explaining logically the relations of the one and the

multiple, the finite and the infinite, the mobile and the

immobile.

MELISSUS (of Samos) appears to have been like Zeno

the disciple of Parmenides at almost the same epoch.
He affirmed in a more systematic manner than his

master the unity of Being, but his views on this subject
concern the history of philosophy more than that of

science.

4. ATOMISTIC TENDENCIES
Both the works and the personality of EMPEDOCLES

have always been a subject of discussion. The
Ancients considered him either an impostor or a genius

(Lucretius, 1, 716). In modern times, Hegel treats him
with contempt, Nietzsche admires him, and Goniperz
sees in him a precursor of modern chemists.

Empedocles was probably born in 490 and died in

1 20 Milhaud, Phi. georn, p. 132. 25 Tannery, Sdtnc*

Burnet, Awore, p. 360.
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424 B.C. He scarcely left Agrigentum, his native

town, except towards the end of his life, when he was
forced into exile for having ardently supported demo-
cratic principles in spite of his wealth and titles of

nobility. The most diverse reports of his death have
been current ; according to some, he threw himself

voluntarily into the crater of Etna, according to others

he was hanged. But it is certain that Empedocles
played an active part as philosopher, physician and

politician, and that he made a profound impression

upon his contemporaries. He believed in his own
worth.

"
I am for you/' said he to his listeners,

" as

an immortal god, no longer a man ; I am honoured by
all, as is just ; wreathed with fillets and green coronets,

I go into the neighbouring towns receiving the homage
of men and women ; they follow me in thousands

asking the way of deliverance. . . ." (Diels, For.

I, p. 205). Despite the high opinion which Empedocles
had of himself the deeds attributed to him appear to

be legendary. It was not he who made healthy the

marshes round Agrigentum. Still less did he protect
the town against the Etesian winds, and resuscitate a

woman supposed to have been dead for thirty days.
These beliefs seem to have originated from certain

passages in his poem which have been distorted from
their original meaning.

1

As a philosopher, Empedocles appears to have been
influenced both by Pythagorism and by Parmenides.
He admits with the latter that reality is a plenum,
spherical, continuous, eternal and immobile ; but he

attempts to explain the birth of motion and sensible

phenomena by a method different from that of the

arithmetical pluralism professed by the Pythagoreans.
The universe is based on four imperishable elements,

namely, earth, water, fire, and air, which Empedocles
was the first to distinguish clearly from moisture and

1 8 Burnet, Aware, p. 235.
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darkness. These elements have natural attractions or

repulsions for each other which cause them to combine

or to separate. They float in two surrounding media,

which are love and hatred. These media, although
invisible to the senses, are material forces just like the

ether of the physicists. They act indifferently on all

bodies. Love, for example, has the effect of uniting
elements whose natural affinities do not impel them to

unite; hatred, on the contrary, separates the bodies

which are naturally inclined to combine. The natural

affinities of corporeal molecules and the combined
action of hatred and love are sufficient to explain the

changes and the astonishing diversity of sensible

phenomena. In the beginning the four elements

formed a harmonious spherical whole, entirely enveloped

by love ; around the universe thus constituted ex-

tended the finite medium of hatred, This latter,

similar to the empty space of the Pythagoreans, at a

given moment absorbed the four elements, and taking
the place of love, drove the latter to the end of the

world, thereby creating a veritable chaos. But this

chaos did not last for ever
;
a movement of revolution

was gradually produced in the universe, at first very
slow (nine months instead of a day) then becoming
more and more rapid. The central region was but little

affected by this movement of universal rotation, and it

was into this region where tranquillity reigns that love

hastened to build up the world anew.1 The air escapes
first, but compressed by the limits of the universe, it

is transformed into a hollow crystalline sphere. Fire

1 Here we are following the current interpretation, which
is also that of 25 Tannery, Science helUne, p. 310, but not of
8 Burnet, Aurore, p. 268, who thinks that according to Empe-
docles our actual world would be in the cycle of disorganiza-
tion due to hatred, and not in the period of organization by
love. This difference of opinion is of secondary importance
because it does not modify the cosmological conceptions of

Empedocles as a whole.
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accumulates on one half of this sphere, making it

luminous
; the other half remains dark. This is why

the earth, placed in the centre of the universe, sees the

alternation of day and night. As to the sun, it is

merely the image of the earth, produced by reflection.
" The sun is not a fiery substance, but an image of

reflected flame, similar to that which comes from water
"

(Diels, Vor. I, p. 158, 35). The light which comes from
the fiery hemisphere strikes the earth, then, concen-

trated there, it is sent back on to this same hemisphere,
where it appears to us as a luminous disk. That this

really was the idea of Empedocles, Plutarch confirms

by one of the characters he introduces ;

" You laugh
at Empedocles/' said he,

" because he attributes to the

sun the following origin : the light of the sky after

having been reflected on the surface of the earth, reflects

the image of the earth again on the sky
"

(Diels, Vor.

I, p. 188, 8). This conception, although at first sight

curious, is very easily explained.
1 The discovery had

just been made that the moon shone by reflected light,

and Empedocles was naturally led to give to this theory
a wider application than was legitimate.

2

*8 Buraet, Aurore, p. 272.
1 It is interesting to compare the views of Empedocles with

the ideas expressed by the astronomer Nordmann in his

scientific romance, entitled
"
Einstein and the Universe."

The curvature of space being constant and such that it closes

upon itself like a spherical surface, one may imagine "that
the rays emanating from a star, from the sun, for example,
will converge at a diametrically opposite point of the Universe,
after having gone round it," and that they thus form a new
star. Jt is true, adds Nordmann, we have not yet been able

to prove the existence of these phantom stars,
" But what

observers could not do yesterday, they will be able to do
to-morrow by the help of the suggestions of the new science/'

One can thus foresee
"
the surprising and unexpected conse-

quences of the new conceptions, which exceed in their fan-

tastic poetry all the most romantic <jonstructions of imagina-
tive extrapolation. The real or at least the possible ascends
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Beside the nature of the lunar light, Empedodes laid

daim to another equally important discovery of his

tunes, which enabled him to determine the true cause

of solar edipses. On the othdr hand, he professed

strange opinions on the evolution of living beings. These
had their birth in the following manner : the limbs,

heads, arms, legs, etc., appeared separately, then they
were united indiscriminately by love. Thus there came
into existence cattle with human heads, and monsters

with several heads. Of these strange animals only the

fittest survived and perpetuated themselves by the

ordinary methods of procreation. In physiology,

Empedocles maintained that respiration takes place
not only by the mouth, but by all the pores of the body.
He also had an interesting theory of perception which
has been preserved by Theophrastus. Perception is

due to the contact of an element found in the organs of

our senses (fire, for example, in the eye) with the same
element placed outside us (Diels, Dox, 500, 19). By his

conceptions as a whole and above all by his doctrine

of the four elements, Empedodes was bound to exercise

a lasting influence on medicine as well as metaphysics,

ANAXAGORAS was the contemporary of Empedocles
and Leucippus. He was born in the year 500 B.C. at

Clazomenae, where he possessed much property. In
order to devote himself entirely to philosophy he con-

verted his arable land into pasture for sheep, and after-

wards left it entirely to his family. He then settled in

Athens, where he introduced philosophical speculations,

to giddy heights, which have never been reached by the golden
wings of fancy

"
(p. 180 et seq.}. Empedocles would certainly

have been surprised, could he have known that at the begin-
ning of the twentieth century the theory of phantom stars,
in a finite and spherical universe, would be considered as a
giddy height which human imagination up to the present
bad never dared to attempt.
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but being accused of atheism for having said that the

heavenly bodies were simple material bodies, even the

friendship and protection of Pericles could not save him
from banishment, and he took refuge at Lampsacus,
where he died in 428 B.C., honoured by all for the no-

bility of his character. He left a
' *

Treatise on Nature/
'

several fragments of which have come down to us. In

this treatise he is the first to give the true explanation of

the phases of the moon, likewise the first to discover the

true nature of the light of the moon, and consequently
he expounds the theory of eclipses. On the other hand,
he considers the sun, moon, and all the stars to be burn-

ing stones, which are moved in a circle by the rotation

of the ether. Unfortunately, on other points, he holds

the opinions of Anaximenes, and regards the earth as a
flat and concave body. As to the universe, Anaxagoras
declares that it is at one and the same time infinite and
animated by a movement of diurnal rotation, and in

order to remove the contradiction implied by this

affirmation, he admits that one part only of the universe

is in motion, and, with the exception of this part, all

that extends to the infinite is motionless. Motion is

not inherent in matter, it is communicated to it from
without by means of a subtle and intelligent fluid which
is Mind or Nous (votis). This is not the supreme intelli-

gence, in the meaning which Plato and Aristotle give to

this term. It is rather an organizing omniscient force,

which is at the same time corporeal, personal and im-

personal, and which relates more to the physical order

than to the moral order (Plato : Phaedo, 97 c).

This being so, the universe is formed as follows : The
Nous puts in motion a portion of the infinite and
immobile matter, then it propagates its organizing
influence over a vaster and vaster region of the universe.

No limit can be assigned to this influence, since on one
hand the universe is indefinitely extended, and on the
other hand matter is indefinitely divisible, for vacuum



THE HELLENIC PERIOD 45

is incomprehensible and therefore cannot exist.
"
In

relation to the small, there is not a least, but there is

always a smaller, for it is not possible for Being to be

annihilated by division. In the same way in relation

to the great, there is not a greater, and it is equal to

the small in plurality, and in itself each thing is at the

same time great and small
"

(Diels, Vor. I, p. 314, 16).

In giving these definitions, Anaxagoras was the first

to bring to light one of the aspects of the mathematical

infinite, which he wrongly connects with sensible

phenomena. The world is a magnitude which increases

beyond all limits, and matter is indefinitely divisible.

Thus, according as it is indefinitely divided or inde-

finitely added to, the same thing may be said to be

infinitely great or infinitely small. Only if matter

be infinitely continuous and divisible, how can it

form individual and distinct beings ? Aristotle and
Zeller answer this question by saying that Anaxagoras
believed matter to be composed of an infinite number
of elements all qualitatively different, and which the

influence of the Nous had gradually grouped according
to their affinities. The various groups which were
formed in this manner could separate, and this explains
the birth and death of phenomena. This conception
was very nearly analogous to that of Democritus,

Tannery judges it unacceptable as Anaxagoras
expressly declared that empty space does not exist.

According to Tannery the atomism taught by
Anaxagoras was essentially qualitative. The infini-

tesimal elements of matter are of the same nature

as matter taken as a whole. For example, a part of

the human body, however small it may be, contains

heat, cold, hairs, teeth, muscles, etc. Finite bodies

do not therefore result from a mechanical mixture ol

atoms differing in quality, for Being, however much
it is divided, remains the same qualitativdv* But,
if this be so, whence come the diversities which our
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senses reveal to us? They result simply, answers

Anaxagoras, from the fact that the Nous intensifies

such or such a quality and makes it predominate over

some other in the constitution of the body. This is

the reason why objects which we perceive appear to

us to differ from one another, although they are com-

posed of exactly the same substance. The qualitative
atomism of Anaxagoras is a remarkable effort to

reconcile the unity and plurality of Being ;
but it is

unfortunately a hypothesis which scarcely seems

susceptible of scientific verification. It had, never-

theless, a great influence on Plato and Aristotle. How,
asked Anaxagoras, can qualities, which sensation

shows to be irreducible (red and blue for example)
mix together? Transferring this problem to the

world of ideas, Plato likewise examined in what
manner ideas, which each formed an indissoluble

whole, could form a group and partake of each other's

properties. As to Aristotle, if he borrowed from

Empedocles the theory of the four elements, under
the influence of Anaxagoras, he gave them a purely

qualitative signification, which persisted during the

Middle Ages and which hampered the progress of

physical science, as such a conception discards the

use of mathematics.

About 460 B.C., LEUCIPPUS of Miletus, a disciple
of Parmenides, and a contemporary of Empedocles,
taught another system of atomic philosophy more
scientific and more important. His ideas were taken

up and developed by DEMOCRITUS of Abdera (460-370
B.C.) who, according to tradition, travelled in Egypt
and as far as the Indies. Amongst the works attri-

buted to him, several were really written either by
his master or his disciples. The outstanding idea of

all these works is the following : In spite of the opinion
of the Eleatic school, the existence of empty space
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and not-Being must be admitted, for without empty
space movement is inconceivable ;

if movement exists,

empty space also exists. On the other hand, to enable

particular movements to be effected everywhere,

empty space must penetrate and divide Being. But
this division cannot go on indefinitely or Being would

be annihilated. It results therefore that all bodies

must be composed of ultimate elements or atoms.

From a metaphysical point of view, these atoms

possess all the properties attributed by the Eleatics

to Being. They exist from all eternity, they are quite

complete and hence indivisible ; they are absolutely

simple, without any internal property which would

distinguish them qualitatively from one another.

However, they differ physically in form and magnitude,
and this is why the natural bodies resulting from their

combination appear to us so varied. The atoms have,

moreover, a weight which is proportional to their

magnitude. According to Burnet, this property exists

in a relative sense, for it does not appear in an isolated

atom. The lightness and heaviness of the atoms is

only due to a whirling collective movement.1 Under
these conditions natural phenomena are easily

explained. Change, birth, and death result from the

combination or dissociation of atoms. Everything
is done in a purely mechanical manner, and where we
believe we discern a distant action, there is an inter-

mediate medium which transmits the action. Further,
to account for the perceptions of the senses, we must
distinguish between the primary or objective qualities

(weight, density, hardness) and the secondary qualities
(colour, taste) which depend upon our manner of per-
ception. On this atomic theory is based the explana-
tion given by the school ofAbdera of the formation and
structure of the world. Unfortunately, having once
postulated the whirlingmovement and the combination

1 8 Burnet, Aurore, p. 396.
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of atoms resulting therefrom, it simply adopted the

cosmological ideas of the first lonians, without taking
account of the progress made by the Pythagoreans.
The ideas of Democritus on the soul and sensation

are more interesting. The soul, according to him, is

composed of round, extremely tenuous atoms of an

igneous nature. Because of their tenuity these atoms

continually tend to escape from the body, but

respiration constantly renews their number. When
this weakens, there is sleep and sometimes lethargy ;

when it ceases altogether, death supervenes. As to

sensations, these imply a direct contact with objects
or emanations coming from them. For example, if

we perceive bodies at great distances it is because a

group of atoms keeping the shape of these bodies

makes an impression on our visual organ. In a more

general way, the function of thought is connected with
the temperature and mobility of psychical atoms. If

the soul is too hot or too cold, it makes an inaccurate

representation of reality.

As a system of philosophy, atomism marks an impor-
tant stage in Greek thought . By affirming the existence

of empty space, and conceiving Being under the form of

immutable atoms, which incessantly unite and separate,
the school of Abdera reconciles the theories of Herac-
litus with those of the school of Elea. Becoming is

not the whole of reality but it is an important part
of it. The controversy in which Greek philosophy
had been involved from its beginning was thus settled

and the dialectics of Plato could come to birth.

5. MEDICAL SCIENCE
Between the fifth and sixth centuries B.C. mathe-

matics, astronomy and biplogy separated more and
more from philosophical speculations and began to

establish themselves as independent sciences. Medical

science, however, had not waited until this period to
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live its own life. Philosophers such as Pythagoras
and Empedocles had devoted much thought to this

science. Unfortunately, all the medical literature prior

to the Hippocratic writings has disappeared, absorbed

by these writings. We can, nevertheless, form some
idea of what medical science was before Hippocrates.

1

It had its beginnings in magic, but the priests were

able to direct it into other channels and to found

numerous clinics called asclepieia or temples of Ascle-

pius. The one at Epidaurus, a veritable sanatorium,
was celebrated for a long time. Dreams and their

interpretation played a great part in the treatment

given to the sick. There were also lay asclepieia

equally important. The gymnasia in which a dietetic

regime was imposed upon the athletes often supplanted
the other establishments both religious and lay. At
this time various schools arose, amongst which must
be mentioned those of Cyrene, Crotona, Rhodes, and

especially Cos and Cnidus, the two most celebrated.

From the sixth century B.C. the Greek physicians had

acquired a great reputation. Democedes (521-485 B.C.)

who, after having tended Polycrates of Samos, was
taken a prisoner by Darius and became his confidential

councillor, bears witness to this (Herodotus, III, 125).
He came from the school of Crotona, made famous by
ALCMAEON, who practised the dissection of animals,
and discovered the most important sensory nerves,

considering them as empty canals. He explained
illness as a disturbance of equilibrium between the

opposing elements which constitute the body, to wit
cold and heat, dryness and moisture, etc. This

Pythagorean theory had consequently a great influence
on pathology.

2
Nevertheless, to the schools of Cos

and Cnidus belongs the honour of having established

1 La Grande Encyclopedia, article Gvbce, with bibUograpfcicai
notes. See also 14 Gompetz, Penseurs, I, p. 291.

*
15 Heiberg, N&farwss., p. 11.
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the Science of Medidne, thanks above all to Hippo-
crates, who lived at Cos in the second half of the fifth

century B.C. We know little of the beginnings of

these two schools and the exact causes of their cele-

brated rivalry. But we know that both at Cos and
Cnidus the teaching comprised : (i) ordinary lessons ;

(2) clinical studies ; (3) a practical apprenticeship.
The student was initiated by a solemn oath, which was
at the same time a rule of conduct for the exercise

of his future vocation. He "
promised to honour his

master
"
as his parents, to aid him in all his necessities,

and to instruct gratuitously his descendants if they
chose the same profession as himself. Apart from

these, he might only instruct in medicine his own sons

and pupils bound by contract and oath. He swore to

help the sick
"
according to his knowledge and power

"

and to rigidly abstain from any culpable or criminal

use of therapeutic means. He must not give poison,
even to those who ask it ; he must not give any abortive
to women, and must not practise even where healing
seems to require it the operation of castration, which
was strongly condemned by Greek sentiment. Finally
he promised to abstain from all the abuses open to

one in his position, especially erotic abuse towards the
free or slaves of both sexes, and he pledged himself
to keep inviolably all the secrets into which he might
be initiated either in the exercise of his profession or
outside it.

1 Other precepts still were given : the

physician must observe the most scrupulous cleanli-

ness but avoid the abuse of perfumes ; he must shun
all appearance of quackery, must be modest in his

fees and not demand them before giving his attend-

ance, for fear of enervating the sick and aggravating
their condition, for

" where is the love of humanity,
1
Passages taken from the translation by littrd of the

Works of Hippocrates, and quoted according to 14 Gomperst,
I, p. 297.
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is also the love of the profession.
' '

These recommenda-
tions are the more significant, because in the absence

of all supervision by the State, they formed the only
official rule for the practice of medicine. They are

taken from a collection of writings which bear the

name of Hippocrates, but were certainly not all written

by him. In fact these writings form a very varied

collection ; they contain fragments from the school of

Cnidus, which was on many points in opposition to that

of Cos ;
in them there are also observations of the sick,

noted day by day, which were never intended to be

made public ;
and violent criticisms against super-

naturalism and mystical arithmetic. For example, in

a manuscript entitled : On ancient medicine, the author

holds up to derision those who postulate arbitrarily a

single primary cause and pretend to explain all maladies

by heat or cold, moisture or dryness. Such a pro-

ceeding is excusable in the speculations of philosophers,
but when health and life are at stake, it is inadmissible.

Every substance that gives out heat possesses special

properties, which act very differently on man; it is

these different effects which must be known in each

particular case. General theories, such as those of

Empedodes, belong to philosophy, they have no value
in medical science. Doubtless the physician must
strive after a knowledge of nature, but in detail. This
aim can never be attained by empty speculations;

experience and observation of individual cases alone
are fruitful. But the task is hard, most physicians are

like inexperienced pilots, who know how to navigate
in calm weather, but whose incapability is revealed

by the tempest at the cost of a shipwreck. Fortun-

ately, slight maladies are more common than serious

ones, in which any mistake has swift and fatal conse-

quences.1

The Collection of Observations shows us the cot*-

1
15 Heiberg, Nafarwiss., p. 15.
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scientious physician noting every day the state of

his patient, practising
"
his art with reflection," and

hating empty hypotheses. Elsewhere, the author of

the fragment entitled : On the Sacred Disease (epilepsy)

pours scorn on those who attribute its cause to a

Divinity, Hera, Poseidon or Ares. Epilepsy is not a
more sacred disease than any other, for it is due to

the same natural causes. All is equally human and
divine in the reality which contains nothing miraculous

or mythical. Mental diseases, like all others, must be
treated by a suitable regimen. Together with these

general considerations, the Hippocratic writings con-

tain more definite theories, but these are ofttimes

contradictory. It is difficult, in particular, to know

exactly what principles of medicine were taught by
HIPPOCRATES (460-350 B.C.). One thing is certain,

that he, more than any other, helped to base medical

science on observation and experience, and to free it

from rash philosophical speculations. He was more-
over a remarkable surgeon. Littr has reconstructed

his doctrine as follows : Hippocrates starts from the

principle that there is no other internal force in the

human body but its natural heat. Hence the essential

cause of diseases must be looked for in the changes
of the seasons which affect the human constitution.

The air also plays an important part. Diet is less

important because its errors only produce individual

diseases. The pathogeny of Hippocrates is purely
humoral, it has its roots in the pre-Socratic philosophy
and draws its inspiration from Alcmaeon. Perfect

health corresponds to a perfect equilibrium in the

proportion and qualities of the four radical humours :

blood, phlegm or pituite, yellow bile and black bile.

Illness arises from the superabundance, alteration or

displacement of one of these humours. In an unhealthy
state, these may collect and be expelled (there is then
a crisis). If the evacuation be incomplete congestion
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and gangrene result. The crisis of the disease can be

foreseen, and the skill of the physician consists in

giving it a favourable turn. All tjie followers of

Hippocrates agree on the importance of prognosis and

diagnosis. The urine, salts, perspiration, respiration,

sleep, temperature, etc., must be examined, and also

the body as a whole.
"

It is not difficult to recognize
the state of health of a man seen naked on the

palaestra." Hence there are descriptions of the pro-

gress of disease, the accuracy of which is becoming
recognized more and more by modern science. For

example, Littr6, for a long time, was unable to identify
one of the epidemics mentioned in the Hippocratic

writings, which, after having affected the throat,

leaves traces of paralysis. He could do so, however,
when in 1860 it was recognized by English and French
doctors that this results from a form of diphtheria.

1

In therapeutics, the school of Cos seems to have
recommended regimens, rather than the remedies used

by the school of Cnidus, which chiefly consisted of

herbal decoctions.

As to anatomy, it progressed as far as was possible
at a time when only the dissection of animals was
sanctioned. The Hippocratists were acquainted with

the general structure of the skeleton and the heart ;

they distinguished between the veins (conducting
channels of the blood) and the arteries which, accord-

ing to them, contained air. They knew nothing of

the nervous system. Hippocrates, however, places the

seat' of intelligence in the brain, but this knowledge,
inherited from Alcmaeon, was afterwards lost and had
to be re-discovered by science. The treatment of

fractures and sprains was described in a manner which
is remarkable, but not so surprising, when one remem-
bers the part played by gymnastics in Greece. In

surgery, the Hippocratists were not afraid to perform
1
15 Heiberg, Naturwss., p. 18.
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trepanning, and they describe the operations with great
skill. They are cautious in recommending amputations
because the only means known to them for stopping the

flow of blood was a red-hot iron. When surgical
intervention is possible

"
the patient must cry out to

facilitate the operation.
11 But for the amputation of

a doomed limb, it was necessary to wait until the

gangrene reached a joint. From all the preceding facts

we can see to what wealth and precision of knowledge
the Hippocratic writings bear witness. From ancient

times they have been the subject of many commentaries
the most important, the greater part of which is unfor-

tunately lost, being that of Galen (second century
A.D.).

Amongst the immediate successors of Hippocrates
must be mentioned PRAXAGORAS of Cos and DIOCLES
of Carystus. The latter has left precise and detailed

prescriptions of hygiene to be followed from morning
to evening, according to the seasons. However, the

methods recommended by Hippocrates and his disciples
were far from gaining universal adherence. The votive

tablets found at Epidaurus betray a totally different

mentality by the accounts of cures which they give.
A woman, for example, remained pregnant for five

years, then after a sojourn in the temple, gave birth to
a boy, who by himself bathed in the stream and then

began to frolic round his mother.

6. THE EXACT SCIENCES IN THE FIFTH AND
FOURTH CENTURIES B.C. THE SCHOOLS OF
ATHENS AND CYZICUS

The mathematical and astronomical writings of this

period have not been preserved, but we can reconstruct
them in some measure from the testimony of subse-

quent writers. Arithmetical researches were carried on

along the mystical path opened up by the Pythagor-
eans, but did not attain to any remarkable results,
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Geometry, on the contrary, made rapid progress.

THEODORUS of Cyrene enunciated the problem of

the incommensurables V t̂ Vs, etc., up to ^/I^

(Plato, Theaetetus, 147, D). Three problems especially

attracted attention, for although they present them-

selves as the natural generalization from simple

geometrical constructions, yet they cannot be directly

solved by the means of the rule and compass. These

three problems, fa-

mous in the history
of mathematics,
are: the trisection

of the angle, the

quadrature of the

circle, the duplica-
tion of the cube. 1

They gave rise to

numerous and fruit-

ful investigations,
and gradually led

to the theory of

conic sections. The

primary impulse
was given by the

sophists. HIPPIAS FIO . 5 .

of Elis first dis-

covered the curve called the quadratrix. This

curve (Fig. 5) is obtained by the intersection of

the moving radius of a circle and a straight line which

1 The duplication of the cube is also called the Ddiac prob-
lem. Apollo, having been consulted about the plague which

ravaged Athens in 430 B.C., directed that, in order to end it,

the volume of the altar of Delos, which was cubical, should be

doubled. The Athenians thought to do this by simply doub-

ling the sides of the altar ; but, the scourge having redoubled,

they recognized their error and applied to Plato. Aristoteli*

opera. IV, p. 209, scholies de PkiHpon aux Analytigu**
tfrieures.

5
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moves parallel to itself from BC to OA in the same time
as the radius moves from OB to OA. The curve

can be constructed by successive divisions of the arc

BA and the straight line BO. This being done, it is

enough to divide BO into three parts, to obtain the

trisection sought. (Proclus, Comm. Eucl. I, p. 356,
ii and p. 272, 7 ; Pappus, I, p. 253). From an

analytical point of view the equation of the quadratrix
is the natural result of the following equation in which
r is the radius vector of the quadratrix, a the radius

of the circle, and 6 the angle AOR.

w u Or sinWe have - =
n a

hence nr = 2a0 cosec

The authenticity of the discovery of Hippias has

often been disputed ; P. Tannery, however, after

detailed discussion, upholds it.
1

Another sophist, ANTIPHON, likens the ultimate

elements of the curved line to those of the straight line,

and he attempts to solve problems by regarding the

circle as the limit of a polygon with an infinite number
of sides. BRYSON of Heraclea takes this conception
and completes it by considering at the same time
inscribed and circumscribed polygons. But these two

sophists appear to have postulated that there is no
real difference between the straight line and the curve

(Simplicius : Diels, Vor. II, 594) and for this reason

their solutions, which might have been a guiding light,

remain doubtful, the more so because they bring in

the notion of infinity. The disputations aroused by
this subject became so popular that Aristophanes

directly alludes to them (Birds, act II, scene vi)."
These, said the astronomer Meton, are instruments

1 28 Tannery, Mem. scientifiqws, II, p. I.



THE HELLENIC PERIOD 57

for measuring the air. For you must know that the
air is formed like an oven. This is why applying the

top of this curved rule, then placing the compass,
I shall use a straight rule and I shall take my dimen-
sions so well that I shall make a squared circle/'

This METON, whom Aristophanes introduces, seems to

have been a good astronomer. He rediscovered' the

so-called cycle of Saros, which henceforward bore his

name, and which helped to reform the calendar and
fix religious rites. A short time after the sophists,
there appeared the works of the schools of Athens
and Cnidus, which were so closely united that it is

difficult to separate them. According to tradition

Hippocrates, Plato, and Theaetetus belong to the

school of Athens, whilst Eudoxus, Menaechmus and
Aristo represent that of Cnidus.

HIPPOCRATES of Chios was born in 470 B.C.

Despoiled of his wealth by the Athenian customs,

according to Eudemus, by pirates, according to

Philoponus (Diels, Vor. I, p. 231, 27, 30) he came to

Athens to beg for justice and the recovery of his

property. Having been unable to gain his cause, he
devoted himself to philosophy and opened a school

of geometry. He was the first to compile a treatise of

geometry, thus breaking away from the Pythagorean
tradition, which kept secret all mathematical know-

ledge ; hereby he provided a solid basis for instruction

and foreshadowed the Elements of Euclid. He also

introduced the use of letters to indicate lines and

figures, and it was really he who created the geometry
of the circle by means of the two following propositions :

Circles are to one another in the ratio of the squares
of their diameters. Similar segments are to one
another in the ratio of the squares of their chords.

Hippocrates also recognized that the duplication of

the cube leads to the investigation of mean pro-

portionals:
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_ =* t=
% y b

Then we have a?
1 = ay ; jy

s = #6, hence #4

and x9 = a*ft. Now if we put b = za we obtain

#8 2a8
, which is the solution required.

The quadrature of the circle is, as we know, an
insoluble geometrical problem. In attempting to

solve it, Hippocrates was led to several interesting
discoveries on lunes. He found, for example, that

the lune AECD (Fig. 6) is equal to half the right-

angled triangle ACB. In order to prove it, it is

sufficient to notice that the semi-circle constructed on
the hypotenuse BC is equal in area to the two semi-

circles constructed on the sides BA and AC which, by
hypothesis, are equal. If we take away the common
parts of the semi-circles (small and large) we obtain the

required equality.
1

Having thus demonstrated that

a surface bounded by curvi-linear elements is equal
to a surface limited by straight lines, Hippocrates
thought it was possible to find a square equal to a

1
23 Rouse Ball, History of Matfumatics, I, p. 42.
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circle. Without labouring the point, we see how
fruitful the work of this geometrician was.

ARCHYTAS of Tarentum followed it up in the dupli-
cation of the cube; he pointed out a very elegant
method of discovering the mean proportionals, a
method which implies a very clear understanding of
"
geometrical loci." According to Archytas the two

mean proportionals sought are obtained by the inter-

section of the three following surfaces :

the cylinder x* +y* ax

the cone x* +y* +z* ~ #

the tore or anchor-ring (x* +y* + 2*)*
= a* (x* + y*)

this latter being produced by the revolution of a circle

around one of its tangents.
1

As for PLATO (427-347 B.C.) we know the value he
attached to mathematics. He borrowed from it the

basis of his idealism, since mathematical demonstration
cannot be based upon the observations of sensible

phenomena, for Nature displays only imperfect figures.
On the other hand, this demonstration could not be

arbitrarily created by the mind. There exists there-

fore beyond the realm of sensible perception a realm
of ideas of which our minds gradually become aware.
Thus scepticism and sensualism are checked. Without

making any real discoveries, Plato has defined the

conditions of mathematical research. He insists on
the necessity of reducing axioms and definitions to

the smallest number possible. He distinguishes be-

tween the analytical method by which one can ascer-

tain if the problem be solvable or not, and the synthetic
method by which the solutions are worked out. In
this way Plato rendered invaluable service as much in

the research of primary propositions as in the con-

struction of geometrical figures. His advice led to a
1 28 Tannery, Mtm. set., II, p. 19.
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revision of the treatise of geometry, written by Hippo-
crates. This revision was made first by LEON, and
then by THEUDIUS of Magnesia, both pupils of the

Academy (Proclus, Comm. Eucl. I, pp. 66, 20; 67,

12). The trend given by Plato to astronomy was no
less important. His harmonious vision of the world

impelled him to the opinion that the irregular move-
ments of the planets were unreal

; preserving the

Pythagorean axiom of circular movement, he assigned
to astronomy the task of finding a combination of

circular movements which would account for the

apparent irregularity of the motion of the planets
w fd (pcuv fjLeva).

EUDOXUS of Cnidus, a contemporary of Plato, was
a great geometrician as well as an astronomer. Born
in 408 B.C., he studied under Archytas at Tarentum,
then he settled with his disciples at Cyzicus, which he
left for a time to live in Athens. He discovered

almost the whole of the contents of Book V of Euclid,
on proportions, and obtained these results by extend-

ing the notion of proportionality so as to include all

rational and irrational magnitudes. He postulates that

~ = ^ if ma ^ nb at the same time as mc^nd (m
o d
and n being numbers chosen arbitrarily and a, b, c 9 d t

any magnitudes). On these foundations he established

the basis of the method of exhaustion, so brilliantly

developed by Archimedes, and which has for its com-

plement the reduction to absurdity. To conform to

the outline of astronomy sketched by Plato, he con-

ceived a system of homocentric spheres, the essential

features of which were conserved by Aristotle. It was
Eudoxus also who compiled the catalogue of stars,

used in the third century B.C. by Aratus in his poetic

description of the starry sky ; and it was he who
estimated the circumference of the earth to be 400,000
stadia, a value which was, accepted by Aristotle. His
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disciple Menaechmus was equally remarkable. The
tutor of Alexander the Great, he replied to a question
of his royal pupil by saying that there are no royal
roads in geometry.

1
Following the suggestions of

Archytas, he resolved the problem of the duplication
of the cube by finding the point of intersection of either

the two parabolas %* = ay, y* = 2ax> or the parabola
x* = ay and the hyperbola xy = 2a a

. These equations
result directly from the mean proportionals enunciated

by Archytas and Hippocrates.

% 2-
x y 2a

Menaechmus may have shown besides that these curves

can be obtained by the intersection of a plane and a
cone of revolution, and thus opened up the way for the

theory of conic sections.

7. ARISTOTLE AND THE PERIPATETIC
SCHOOL. THE NATURAL SCIENCES

ARISTOTLE (384-322 B.C.) directed the study of

science into new paths. The son of a physician, he
was as much interested in natural science and inductive

methods as in metaphysics and exact science. He was
at first a disciple of Plato, but he left the Academy after

the death of his master. The writings he has left are

valuable and varied. The greater part have come down
to us in the form of notes written for an oral exposition,
and they constitute a veritable encyclopaedia of the

knowledge of the period. But Aristotle not only col-

lected, systematized, and discussed the opinions of his

predecessors and contemporaries, he created entirely
new systems such as logic, morphology, and biological

classifications. It must be noted, however, that

although he had sufficient mastery of elementary
mathematics to use them as illustrations of his logic,

1 This saying is also attributed to Euclid,
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he does not appear to have understood the interest of

higher mathematics. The ideas of function, and of

geometrical loci were unknown to him ; on this point
he was inferior to Plato.1 With the help of the

astronomer Calippus, Aristotle attempted to perfect
the system of Eudoxus by introducing compensating
spheres so as to give solidarity to the movements of

the planets and of the celestial vault. He was also

interested in meteorological phenomena. In his eyes
it is heat which plays the most important part ; it

contributes to the formation of comets, the MilkyWay,
clouds, winds, etc. The rainbow is only a phenomena
of reflection, the droplets of the cloud acting as mirrors

to the sunlight. (Meteor., Bk. Ill, ch. iv.
; 373 to

32.) Aristotle approaches physics as a theorist and
a metaphysician ;

he discusses carefully ideas of

place, motion, etc., but very often interprets pheno-
mena erroneously, although he was on the point
of discovering specific gravity. With Plato, he adds
to the four known elements a fifth, the quintessence.

By his ideas, he has, up to a certain point, impeded
the progress of physics ; on the other hand he exercised

a happy influence on the evolution of alchemy and

consequently of chemistry. The collection of writings
entitled Problems shows us the extent and variety of

the instruction which was given in the Peripatetic

School, for it deals with medicine, physiology, mathe-

matics, optics, music, philology, etc. In this collec-

tion the mechanical problems are particularly remark-

able, because side by side with palpable errors there

are glimpses of the most important laws of mechanics

(the principle of virtual velocities, parallelogram of

forces, law of inertia, use of tackle). The influence of

the investigations of Archytas can be seen here.1 But,
as we have already remarked, Aristotle was, before all,

1 21 Milhaud, fciudes, p. 101 et seq.
1
15 Heiberg, Natunviss., p. 35.
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a biologist. It may even be maintained that his

system of logic, in so far as it deals with the classifica-

tion of the real, is fundamentally biological.
1 It is

especially in the natural sciences that Aristotle displays
his predominant qualities, creative genius, power of

observation, faculty of discovering and comprehending
analogies, finalistic interpretation of phenomena. Not
content with co-ordinating and explaining the work of

his predecessors, Aristotle was the creator of scientific

zoology and comparative anatomy. He classified

animals with remarkable accuracy, placing, for example,
the whale amongst mammals, contrary to the current

opinion of his time. His two works entitled De
partibus animaliwm and De generatione animalium
abound in observations and analogical reasonings of

great exactitude. This is all the more surprising in

view of the fact that Aristotle had none of the modern
scientific apparatus, the microscope in particular.
Such results are only obtained by dint of patience and

ingenuity. Aristotle drew his information from fisher-

men, hunters, shepherds, etc., but he checked it care-

fully. He observed, analysed, and verified. By a
method fundamentally inductive and empirical, he

purposely, in this branch of science, puts aside philoso-

phical speculation. Doubtless, he sometimes drew too

hasty conclusions, and misunderstood the discoveries

of his predecessors, especially in medical science ; but
in general he has the great merit of taking into con-

sideration the opinions of all those who preceded him,
and thus became the creator of the historical method.
His work was carried on by his disciples. THEO-

PHRASTUS, whose characters were imitated by La
Bruy&re, has left us a very valuable book containing
the opinions of the ancient natural philosophers.
MENON wrote the history of medicine; EuDEMUS,
that of astronomy and mathematics ; ARISTOXBNUS,

1
7 L. Brunschvicg, Les Etapes, p. 72.
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that of music. The work of Theophrastus is of special

importance, not only for the information it contains,

but also for its criticisms. Besides natural philosophy,
it comprises a treatise on the sensations, and another

on botany, both full of accurate and extensive observa-

tions. According to Heiberg, the most praiseworthy
result of the knowledge and methods of the Aristotelian

school in zoology and botany, was the description and
classification of the hitherto unknown specimens of

fauna and flora brought back from the expedition of

Alexander the Great to India. 1

In another realm of science, the ethnographical

descriptions of ARISTOBULUS, the geographical descrip-
tion of the southern coast by NEARCHUS, the systematic
treatise on geography by DICEARCHUS, a disciple of

Theophrastus and an author much esteemed by
Cicero, are all worthy of mention. The two short

writings of AUTOLYCUS (spherical geometry applied to

astronomy) are noteworthy as being the most ancient

works on exact sciences which have come down to us.

HERACLIDES of Pontus, the friend and contemporary
of Aristotle, also studied Astronomy ;

he invented an

ingenious heliocentric system, and contrary to the

opinion of Aristotle, maintained the infinity of the

universe. 2 STRATO of Lampsacus is renowned for his

works on physics; he opposed Democritus' theory of

empty continuous space, although he admits, on the

ground of experience, the existence of small empty
spaces distributed discontinuously in the interior of

bodies.8

1
15 Heiberg, Natunviss., p. 38.
The ideas of Heraclides of Pontus have been preserved

by the Jew Chalcidius, who in the fourth century of our era

wrote a commentary on the
" Timaeus "

of Plato. Doublet,
Histoire de I'astronomie, p. 126.

G. Rodier, La Physique de Straton de Lampsaque, Alcan,

1890.



CHAPTER II

THE ALEXANDRIAN PERIOD

(from 300 B.C. to the first century of the Christian Era)

IF
the conquests of Alexander the Great caused

Greek language and science to penetrate into the

East, they also brought about an upheaval of

existing conditions. Greece lost her creative originality
at the same time as her political autonomy. Athens

certainly remained the seat of the philosophical schools,

but in reality other towns, foremost amongst them
Alexandria, became the centres of intellectual life.

This now changed its character
;
instead of, as in the

past, spreading through small democratic states, it

concentrated in the capitals of the kingdoms which
arose on the ruins of Alexander's empire, and hence
was confined to smaller and smaller circles, for in spite
of its diffusion, the Greek language, with its charac-

teristic syntax and vocabulary, remained an unknown

tongue to the masses of Asia Minor and Egypt. The
classical works of Greece could only be appreciated by
the chosen few. This state of affairs was unfavourable
for literary and philosophical production. The latter,

when it is intended for only a small circle of readers,
is no longer animated by popular inspiration, and loses

itself in subtlety, affectation and erudition. 1 But for

the sciences properly so called, these conditions were

very advantageous. Owing to the diffusion of Greek
culture throughout the eastern littoral of the Mediter-

ranean, specialists were sure to meet with savants
1
I5 Heiberg, Natorwiss., p. 42.
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capable of understanding them ; thanks to the muni-
ficence of princes, they had at their disposal the neces-

sary resources for their work, and the wise administra-

tion of the kingdom secured to them the peace of mind
needful for their meditations. Such peace and material

independence could not be offered by the little demo-
cratic states of Greece, always a prey to revolutions.

The Ptolemaic dynasty is especially noteworthy for

its intelligent initiative in establishing Alexandria as

the new and indisputable centre of Hellenic culture.

The founder of this dynasty summoned to him
Demetrius of Phalerus and Strato of Lampsacus, both

representatives of science and the Aristotelian tradition;

but it was his son Ptolemy II (Philadelphus), who,
like the American millionaires of to-day, founded a
museum where savants were generously supported on
the sole condition of furthering science. He also

established two great libraries of which Aristotle's

works formed the nucleus, and which 50 years after

their foundation, contained more than 600,000 manu-

scripts. In addition to this there was an active trade

in manuscripts, favoured by the fact that Egypt
possessed the monopoly of papyrus. Thanks to these

exceptional conditions, Alexandria quickly became the

refuge of students and professors, and even kept in

touch with foreign savants. Thus the sciences in all

departments made rapid progress, and reached their

zenith in the third century B.C.

1. MATHEMATICS, PHYSICS, AND MECHANICS
The mathematics of this period are represented by

three great names, which dominate antiquity : Euclid,

Archimedes, and Apollonius. Of EUCLID (330-270

B.C.) we know little except that he was called by
Ptolemy Soter to teach mathematics in Alexandria.

It was there that he wrote the Elements which made
him famous, and which, translated almost literally,
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have been used in English schools until these latter

years. The fame of Euclid was so great that already
in the Middle Ages his existence was doubted. Accord-

ing to the commentators of this period, the name of

Euclid does not belong to a real person but to the book
itself of the Elements, and signifies the key of geometry
(#x>U

= key, dig = geometry). This hypothesis, it is

unnecessary to state, is more ingenious than well-

founded.1 Doubtless the Elements were not entirely
the work of Euclid. He borrowed largely from his

predecessors, but to him belongs indisputably the merit

of having developed and co-ordinated into a faultless

logic all the geometrical work accomplished before him.
He has brought into relief the essentially rational

character of geometry, and has shown that, certain

principles being postulated, the sequence of mathe-
matical propositions unfolds itself in an irresistible

manner. His method is synthetic, proceeding from
the simple to the complex, i.e. starting from the most

elementary figures to reach the most complicated.
1

Modern analysis proceeds in a different manner. For

example, to study the curves of the second degree, it

begins by assuming the general equation of conies,

then by successive limitations determines the circle,

ellipse, parabola, etc.

The Elements comprise thirteen books, each of which
is prefaced by definitions of the meaning, use and
limits of the concepts employed. The first book also

contains five postulates and five axioms which, added
to the definitions, are intended to secure the logical

construction of the whole edifice. In this anxiety to

distinguish rigorously the nature of the fundamental

propositions, we see the effect of the Platonic investiga-
tions on the foundations of mathematics. This order,

adopted by Euclid, has been often criticized even by the

1
23 Rouse Bail, History of Mathematics, I, p. 55.

1 29 Zeuthen, Histoire des mathfrnatiques, p. 93.



68 SCIENCE IN GRECO-ROMAN ANTIQUITY

Ancients, but modern researches have justified it.

Even the famous postulate concerning parallels has

been recognized for what it was in Euclid's conception,
i.e. a proposition which establishes the existence of a

point of intersection between two straight lines, if the

sum of the interior angles formed by these lines and
a line which cuts them be less than n. The four other

postulates are for the purpose of establishing the exist-

ence and unity of the elements needed for geometrical
constructions since these cannot be rigorously demon-
strated. The only purpose of the axioms is to set forth

as briefly and completely as possible the conditions of

equality and inequality of geometrical magnitudes.
These foundations once established, the geometrical
edifice can be constructed theorem by theorem without

any appeal to intuition.

The books which form the Elements are divided

according to their contents as follows : I, straight lines,

triangles, parallelograms, the theorem of Pythagoras ;

II, geometrical algebra ; III the circle, angles ; IV,
inscribed and circumscribed polygons. These four

books were certainly borrowed from the Pythagorean
teaching, for they avoid the use of proportions even
when it would be most natural.1 Book V, which treats

of proportions, is entirely inspired by the works of

Eudoxus. Book VI treats of the similitude of figures.
Books VII-IX make use of the works of Theaetetus
and treat of rational numbers, progressions, and con-

tinuous proportions. As to Book X (incommensurable

quantities) it appears to be entirely the work of Euclid.

In dealing with these questions, he uses the graphical
method, which consists in representing numbers by
fines, and has the advantage of providing demonstra-
tions applicable to all numbers, rational or irrational.

Books XI-XIII treat of geometry in space and are

inspiredby Pythagoras and Plato ; they are less finished
1 26 Tannery, Gtom. grecque, p. 98.
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than the others, having been left in the experimental

stage. For example, congruency and symmetry are

not clearly distinguished and in the chain of proofs
there is sometimes a break. As a whole the Elements

display faults of method and detail which we shall

have to examine later, but they remain nevertheless an
admirable work, whose solidity and success have been

proved by the succession of editions through the

centuries from antiquity to the Middle Ages and from
the Renaissance to our own times. 1

Besides the Elements, Euclid has left a collection of

Data, the aim of which was to facilitate the analytical

study of theorems. The contents of this work are the
same as that of the first six books of the Elements , but
the enunciation of the propositions is stated in the

form of conditions according to which a geometrical

figure is given or rather determined. For example,"
if two lines enclose a given space and form with each

other a given angle, and if their sum be given, then
each of these lines will be given

"
(prop. 85). Another

collection, the Porisms, had a similar purpose; it

showed what figures could be constructed, certain

conditions being given. This work is unfortunately
lost

; several savants have attempted to reconstruct it

from some imperfect texts of Pappus, but all these

attempts (including that of Chasles) have been un-

successful. 2 Two other works also have been lost.

The first treats of Surfaces as Geometrical Loci
;
the

second, inspired by the works of Menaechmus and

Aristo, gave the Elements of Conic Sections. The latter

was soon supplanted by the works of Apollonius, but
it has been possible to partially reconstruct it. No
vestige remains of the work entitled Fallacies. We

1 For the history of tfcese editions, see 17 Loria, Sdenze
esatte, p. 190 et seq., and 6 Boyer, Histoire des Mathtmatiques,
P- 29-

1
17 Loria, Stienx* esatte, p. 259 et seq.
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can only suppose it to have been modelled after the

type of the
"
Sophistical arguments" of Aristotle,

and to have contained historical comments of great
interest. Another dissertation, of which only the

Arabic version has come down to us, entitled the

Division of Figures, shows how triangles, quadrilaterals,
and circles can be divided into equal parts, or according
to a certain ratio.1

Finally Euclid composed books on optics (or per-

spective), astronomy and mathematical acoustics, all

with a view to teaching. By his didactic methods,
Euclid differs essentially from Archimedes, whose
creative genius ranks him amongst the greatest mathe-
maticians of all times.

ARCHIMEDES (257-212 B.C.) was born at Syracuse,
1

and was on intimate terms with, if not related to,

King Hiero. It was to Gelo, the son of Hiero, that he
addressed the curious problem of the Arenarius, relat-

ing to the number of grains of sand which could be
contained in the universe. In spite of the advantages
offered by Alexandria, he preferred to live in his own

country, to which he was much attached. In his

writings, for instance, he uses the local dialect rather

than the common speech, thus showing his patriotism
and independence of character. It was especially

during the siege of Syracuse that he applied his talents

to the service of his country. By his wonderful

inventions, he held in check the Roman armies and
fleet, commanded by Marcellus. Polybius (bk. VIII,

fgmt. iv), Livy (bk. XXIV, ch. 34), and Plutarch have
left us an account of these inventions, but they pass
over in silence the burning of the ships by means of

1
15 Heiberg, Naturwiss., p. 50.

1 For a critical study of the life and works of Archimedes,
consult P. ver Eecke, Les CEuvres completes d'Archimtde,

Paris, 1921 ; T. L. Heath, The Works of Archimedes, Cam-
bridge, 1897.
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a circular arrangement of mirrors. This feat was
related for the first time by Lucius of Samosatus in

the second century, so it is open to question, although
Buffon has demonstrated its physical possibility* It

is well known how at the fall of Syracuse, Archimedes
was brutally slain by a soldier, contrary to the express
desire of Marcellus, and how his tomb was discovered

by Cicero many years after (Tusculanes, Bk. V, ch. 23).

According to his own testimony (Heiberg edition,

II, p. 248, 8) Archimedes was initiated to astronomy
by his father Pheidias ; he afterwards had Conon as

his friend and fellow-student, and showed himself

unrivalled in the construction of astronomical instru-

ments. He constructed two planetaria, which were
taken to Rome after the fall of Syracuse. One was

placed in the temple of Victory, the other was pre-
served by the family of Marcellus, and was admired

by Cicero, who speaks of it in the following terms :

" What is most to be admired in the invention of

Archimedes is that he was able with a single motor
to reproduce all the unequal and different movements
of the heavenly bodies

1 '

(Repub., I, ch. 14). In
another field, the pursuit of astronomy certainly
led Archimedes to the study of catoptrics (laws of

reflection), and to the creation of an ingenious system
of numeration by which numbers of any desired

magnitude can be expressed. After having benefited

by his father's teaching, Archimedes, as Diodorus of

Sicily relates, must have sojourned for some time in

Egypt, or he would not have brought out his works
in Alexandria, dedicating them to Eratosthenes,
Conon and Dositheus, who lived in that city. During
that sojourn he must have had some painful experi-
ences with certain pedantic professors, for speaking
of some problems propounded by Conon, the solution

of which was impossible, he says this :

" Those who
pretend to have discovered them all, without pro*
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ducing any proof, are convicted of imposture since

they boast of having found a demonstration which is

in fact impossible" (Heiberg edition, II, p. 5). It

was likewise in Egypt, if Diodorus of Sicily is to be

believed, that Archimedes discovered the screw which
bears his name, called also a snail or spiral pump.
This pump consists of a tube open at both ends and
twisted like a corkscrew. When inclined to the

vertical and rotated on its axis, it raises the water

in which its lower extremity is immersed. It is

doubtful, however, whether such an apparatus had
not been used in Egypt before the time of Archimedes.

Similarly it is not known exactly by what means
Archimedes launched the huge ship which Hiero had
had built, and which the Syracusans could not move
from the slipway (Proclus, Comm., EucL, I, p. 63, 19).

According to Plutarch the machinery used was com-

posed of cords and pulleys, but the use of tackle had
been known from the time of Archytas. It is more

probable that it was an endless screw, working a

system of toothed wheels.1 However this may be,

it was through meditating on the construction of

these engines that Archimedes was led to formulate

the exact laws of mechanics. The task which he

assigns to this science, namely,
"
to move a given

weight by a given force," is only the theoretical trans-

lation of the famous saying,
"
Give me but a place to

stand on and I will move the earth,
1 '

which he uttered

at the time of the launching of the vessel, the difficul-

ties of which have been referred to. For this reason

it is very likely that the writings by which Archimedes
established the basis of rational mechanics (at least as

far as statics is concerned) belong to the first years
of his scientific activity. Perhaps it was also at this

time that he discovered the infinitesimal method of

integration, based on mechanics, which he used together
1 Ver Eecke, work quoted, p. xiii.
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with the method of exhaustion to determine surfaces

and volumes. Of his works, we only possess the

following : On the Sphere and Cylinder, an enunciation

of five postulates, which, in the absence of any con-

sideration of mathematical infinity, allow of the

demonstration of the problems proposed : area of the

sphere equal to that of four great circles ; ratio of the

surface and volume of the sphere to those of the cylinder
circumscribed to it

; sphere equal in volume to a given
cone or cylinder ; spherical segments. Several pro-

positions remain obscure because Archimedes, address-

ing the savants of his period, takes these for granted.
It was to remove these obscurities that EUTOCIUS
wrote his Commentary, which is full of valuable

historical information, On the Measurement of the Circle.

A circle is equal to a right-angled triangle of which
one of the sides of the right-angle is equal to the radius,
the other to the circumference of the circle, i.e.

X R

Then the theorem which proves that the ratio of the

circumference to the diameter lies between

On Conoids and Spheroids. In this work, the curves
of the second degree are defined by means of a plane
section taken perpendicularly to the generatrix of a

right cone. According as this cone is right-angled;

obtuse-angled or acute-angled, a parabola, a hyperbola,
or an ellipse is obtained. These curves, by revolution

round their axes, generate what Archimedes calls a

right-angled conoid (paraboloid of revolution), an

obtuse-angled conoid (hyperboloid of revolution) and

elongated or flattened spheroids (ellipsoids of revolu-

tion) (Fig. 7).

Amongst the results found by Archimedes, the

following may be mentioned: The segment of the
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paraboloid of revolution is equal to one and a half times

the cone having the same base and axis as this segment.
Two segments cut off from a paraboloid of revolution

Right angle

I

Parabola Ellipse

FIG. 7.

by any planes are to each other as the squares of their

axes. To prove these demonstrations Archimedes
uses the method of exhaustion, which consists in

limiting the quantity sought between two known
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quantities whose difference may be less than any
given quantity.
The work On Spirals contains the study of the curve

to which Archimedes has given his name, and which is

described by a radius vector r increasing uniformly with

the vectorial angle 6 : r = c6, c being a constant.

The writing entitled On the Equilibrium of Planes

or The Centres of Gravity of Planes is composed of two
books. The first one begins by establishing the theory
of the equilibrium of the lever, then enunciates and
demonstrates various theorems relating to the centres

of gravity of the parallelogram, triangle, and recti-

linear trapezium. The second treats of the deter-

mination of the centre of gravity of a parabolic seg-
ment. The Arenarius is one of the most valuable

documents we possess on the astronomy and system
of numeration of the Greeks ; amongst other things
it contains a description of the heliocentric system of

Aristarchus of Samos (Heiberg edition, II, p. 244, 12).
To calculate numbers of any desired magnitude,
Archimedes makes use of progressions, one arithmetical,

the other geometrical, the former being used to find

any term of the latter. On the Quadrature of the

Parabola estimates the area of the parabola, first

by means of pure geometry (method of exhaustion),
then by considerations of equilibrium (infinitesimal
mechanical method). The treatise On Floating Bodies

establishes the fundamental laws of hydrostatics ; the
state of equilibrium of a liquid ; the position of equi-
librium of a solid immersed in a liquid according to

the ratio of its density to that of this liquid. Accord-

ing to a legend related by Vitruvius (Bk. IX, 215, to)
Archimedes discovered the laws of hydrostatics whilst

in his bath, thinking of the crown adulterated by the

goldsmith of King Hiero.

The treatise On the Method relating to Mechanical

Theorems has been recently discovered on a palimpsest
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of Jerusalem. In it new examples of the use of

infinitesimal mechanical integration are described and
worked out. 1 The Lemmas is perhaps an apocry-

phal work. As to the celebrated Cattle-Problem, it

was propounded by Archimedes in the form of an

epigram of forty-seven lines. It relates to the calcu-

lation of the number of oxen in a herd, being given
that they are penned in order according to a regular

figure, and that the animals of different colours occur

in proportions successively dependent on one another.

The work of Archimedes is so profound and original
that we heartily endorse the judgment of Leibnitz :

41 He who understands Archimedes and Apollonius
finds less to admire in the inventions of the greatest
modern scientists/'

APOLLONIUS OF PERGA (260-200 B.C.) is the third

great mathematician of this period. Pappus repre-
sents him as vain and always ready to depreciate the

worth of other geometers (Pappus, Hultsch edition, p.

678). In reality we do not know much about him,

except that he was surnamed Epsilon, probably because

the hall in which he gave his lectures bore the number

6=5. He taught for several years in Alexandria,
then in the university of Pergamum which had just
been founded ; after which he returned to Alexandria,
where he remained until his death. 2 Of his masterly
work on Conic Sections we only possess the four first

books in the original Greek, the next three have been

preserved in an Arabic translation, but the eighth and
last is entirely lost. These books are dedicated partly
to Eudemus, partly to Attalus, who is supposed by
some to be Attalus I, King of Pergamum. In these

dedications, Apollonius specifies the relation of his own

1 See the articles of Th. Reinach and P. Painlev in the
Revue generate des Sciences pures et appliquees, November 50
and December 15, 1907.

23 Rouse Ball, History of Mathematics, p. 81.
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discoveries to those of his predecessors. He shows
how, in the first four volumes of his work, he has

generalized and extended the elements of the theory
already known. The third book enunciates new pro-

positions which make it possible to solve a problem
imperfectly treated by Euclid ; the fourth rectifies the

results of Conon relating to points of contact and inter-

section of conies. The rest of the work contains

further developments of the properties of conies and
their applications.

1 In fact, what is really new in

the work of Apollonius is his definition of conic

sections. Archimedes and Euclid defined these as

the sections taken perpendicularly to the sides of right

cones, i.e. cones whose axis is perpendicular to the

circle of the base, but of which the angle at the

apex may be a right, obtuse, or acute angle (Fig. 7).

Apollonius shows that the parabola, hyperbola and

ellipse can be obtained by sections taken on one and the

same oblique cone having a circular base. If through
the axis of this cone we take a plane perpendicular to

the circle of the base, we obtain the triangle formed by
the two sides of the cone and the diameter of the base.

If we now draw a plane perpendicular to the plane of

this triangle, the sides of this triangle will be cut at

two points, which will be the vertices of the curve.

A similar geometrical construction will enable us to

find a ratio indicating whether this curve or conic

section is an ellipse, hyperbola or parabola. The

geometrical constructions of lines and surfaces thus

play the same part as algebraical equations in analytical

geometry. But Apollonius not only expounds general
theories, he applies them to numerous and difficult

problems, carefully studying their conditions of possi-

bility. The collections of these problems were for a

long time in use in the school of Alexandria ; after-

wards they were lost, with the exception of those
1
15 Heiberg, Naturwi$$, f p. 56.
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preserved in an Arabic translation. In one disserta-

tion, unfortunately also lost, Apollonius examines the

Foundations of Mathematics, and the fragments which
have come down to us witness to his desire to connect

mathematical concepts with reality, to reduce the

number of fundamental propositions, and to justify

their scope in the Elements of Euclid. Probably the

other works published by Apollonius likewise had the

aim of taking up again and investigating questions

already studied by Euclid and Archimedes. For ex-

ample a short work on Unclassified Incommensurables,
and another on The Dodecahedron and Icosahedron

are clearly inspired by Euclid, whilst the investigations
of the Helicoidal Line, the Contracted Method of Calcu-

lation, and The Burning Mirrors were suggested

by Archimedes. A treatise on Contacts of which

many attempts at reconstruction have been made,
must also be mentioned. Finally must be noted an
astronomical treatise on the positions and retro-

gradations of the planets, which reveals Apollonius
as the author of the ingenious theory of epicycles.

1

As mathematicians belonging to the Alexandrian

period, we must mention NICOMEDES, the inventor of

the conchoid (r
= a sec 6 d) t and DIOCLES, the

inventor of the cissoid (y
2
(2a x)

= #3
)

these curves

being used to solve the trisection of the angle and the

duplication of the cube ; and also GEMINUS, who wrote
a valuable history of mathematics.
Whilst mathematics were advancing, practical me-

chanics also made remarkable progress as more
and more importance was attached to engines of war
used in besieging and defending fortified towns. The
honour of having created the technics of this practical
mechanics belongs to CTESIBIUS, a contemporary of

Archimedes, who lived at Alexandria about the middle
of the third century B.C. He constructed heavy

1
15 Heiberg, Naturwiss., p. 58.
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cannon, which were partly operated by compressed
air. His works were unfortunately lost, but we find

their essential features in the Mechanics published by
his immediate successor PHILO of Byzantium, several

fragments of whose work have come down to us.1

A general introduction prefaces this most important
work ; then comes the description of catapults, which
it has been possible to reconstruct in recent times by
the aid of the drawings which accompany the descrip-
tion. The accuracy and long range of these engines
were a revelation. 2 Reflections on the art of besieging

follow, then an accurate account of the theory of the

lever, further on a description of automata and
mechanical apparatus intended for use in theatres or

gardens, such as magic goblets, water cans pouring
different liquids as desired, fountains with animals

drinking and birds singing, etc. Beside these there

were other more useful apparatus, such as for wash-

ing automatically the steps of the temples. The
mechanism of all these machines is based principally
on the action of levers and compressed air.

Two centuries later HERO of Alexandria took up the

work begun by Ctesibius. He probably lived about
the end of the first century B.C., but the dates of his

life, death and works are very uncertain.8
Although

Hero of Alexandria is more famous in history than

Ctesibius, his work is far from being of equal originality
and accuracy.
From a mathematical point of view it consists of :

(i) An elementary geometry, with applications to

1 A. de Rochas, La science des philosophes et I'art des thau-

maturges, Dorbon, Paris, p. 59.
1 10 Diels, Antike, p. 92.
1
J. L. Heiberg and P. Tannery place Hero in the second

century after Christ, but the majority of historians decide
in favour of the first century before the Christian Era (17
Loria, Sc< esatte, p. 583, and W. Schmidt in his introduction
to the works of Hero).
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the determination of the areas of fields having a given

shape;
(2) Propositions on the method of calculating the

volumes of certain solids, with applications to buildings
used as theatres, baths, banqueting-halls, etc.

(3) A rule for finding the height of inaccessible

objects.

(4) A table of weights and measures.

Amongst his writings on mathematics, must be

mentioned, besides the Definitions and a Commentary
on the Elements of Euclid, a recently discovered work
on Measurements, in which the rules and formulae

for estimating the most important volumes and
surfaces are enunciated together with theoretical

proofs. The main part is borrowed from Euclid

and Archimedes ; even the formula which gives the

surface of a triangle in terms of its three sides a, b, c i.e.

S = Vp(p - a)(p
-

b)(p
-

c) (where p = the semi-

perimeter) is not an original invention, for it was

probably used by the Egyptian land-surveyors, and
it is only the demonstration which can be attributed

to Hero. He also attempted to perfect the levelling
instrument hitherto used in surveying. These improve-
ments are carefully described and theoretically correct,

but they reveal the great practical ignorance of their

author. The work entitled The Construction of Vaults

was also probably written with a practical aim in view,
and at any rate had the honour of being studied and
commented upon by one of the architects of St. Sophia,
Isidore of Miletus. Inspired by previous works, Hero
has been able to give very exact information on The
Construction of Catapults ;

on the other hand, some of

his writings, which are similar in conception to those of

Archimedes and Philo, display great defects, especially
the Pneumatics, in which the theory of the pressure of

the air is applied to various apparatus* These are for

the most part borrowed from Philo, and their descrip-
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tion, containing some new additions, reveals an
imitator who is unfamiliar with experiments and

technique. The instructions given for the construction

of a troupe of performing automata on a larger scale

than that of Philo suffers from the same defect : the

author, for example, forgets to describe the motive

power which puts the whole in motion. 1 These latter

writings were, however, much appreciated both by the

Arabs and the savants of the Renaissance
; they gave

rise to the construction of many garden fountains with

figures moving automatically, which excited the

admiration of visitors. The old clock of Strasbourg
with its moving figures is a direct descendant of the

Automata of Hero. The Mechanics, of which we only

possess the Arabic version, is less defective : it explains,
in accord with Archimedes, the principles of statics

and the parallelogram of forces, and describes the use

of the toothed wheel, the lever, the tackle, the wedge,
and the screw. Hero has also devoted a work to the

study of the crane, and the problem of Archimedes : to

move a given weight with a given force. Despite its

defects, his work remains one of our chief authorities on
the history of Greek mechanics.

2. GEOGRAPHY AND ASTRONOMY
The interest in geography awakened by the conquests

of Alexander the Great, far from declining, continued

and developed thanks to the fostering care of the

Seleucids and the Ptolemies. The progress of mathe-

matics, also, had a favourable influence on the

development of this science, which, from the purely
descriptive stage, grew more and more systematic and
accurate.

ERATOSTHENES of Cyrene (275-194 B.C.), the learned

librarian of Alexandria, must be regarded as the creator

of geography as a science. His history of geography
1
15 Heiberg, Naturwss., p. 79 et uq.
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since the Homeric age displays true historical per-

ception, especially in comparison with the fantastic

descriptions given at the same period by certain com-
mentators on Homer. After having calculated mathe-

matically the habitable regions (78,000 stadia by
38,000), Eratosthenes divides them by parallels to the

equator and meridians into unequal rectangles. The

parallel which passes through Gibraltar and Rhodes is

in the middle and separates the northern parallels

(Byzantium, Borysthenes or Dnieper, Thule) from the

southern (Alexandria, Syene, and Meroe). The
extreme meridians are formed by the Pillars of

Hercules (Gibraltar) and the Ganges.
1 Eratosthenes

also measured the length of the circumference of the

earth by a method as ingenious as accurate. He
observed that at Alexandria at noon, at the time of

the summer solstice, the distance of the sun from the

zenith is one-fiftieth of the circumference of the heavens,
whilst at Syene at the same moment the sun is at the

zenith, since it lights up perpendicularly the bottom
of the wells. These two towns, situated on the same

meridian, are 5,000 stadia apart. Therefore, by
multiplying 5,000 by 50, the required measurement is

found, namely, 250,000 stadia, which is equal to about

44,000,000 metres, the stadium being equal to 177-4

metres(Cleomedes,deMotucirculari,p.g6, 21). (Fig. 8.)

Although the method used is correct, the result

obtained is not accurate. Firstly, Syene and Alexan-
dria are not on the same meridian: between these two
towns there is a difference of longitude of 3.* Further,

*G. Lespagnol, Geographic g&ndrale, Delagrave, Paris,

p. 83. For the authenticity and interpretation of the frag-
ments of Erastosthenes, see A. Thalamas, Etude bibliographique
de la geographic d'Eratosthtne, Riviere, Paris, 1921 ; La gto-

graphie d'Eratostktne, Riviere, Paris, 1921.
* "

Astronomie," Kuttur der Gegenwart, Teubner, Leipzig,
1921, p. 187.
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the length of 5,000 stadia, calculated by the day's
march accomplished by caravans, is necessarily only

approximate. The measurement found by Eratos-

thenes is nevertheless an interesting datum. Had
Newton been acquainted with it, he would have been

able to verify his hypothesis of gravitation, without

being obliged to shelve it for years
1 until Picard

succeeded in measuring the radius of the earth more

exactly. In other realms of knowledge, Eratosthenes

showed himself to be an erudite and remarkable

savant, whom Archimedes held in high esteem, and with
whom he wished to collaborate in his own researches.

We do not know very much of his work, except the

FIG. 8.

Sieve, which bears his name, which is a method of

finding the sequence of prime numbers. He also

invented, for finding the value of two mean propor-
tionals, an ingenious mesolabe, which he placed in a

temple of Alexandria with a dedication in honour of

Ptolemy II. Finally, he devised the Calendar after-

wards known as the Julian Calendar.

Astronomy, like geography, developed in a remark-
able manner during this period, owing to the combined

progress of mathematics, mechanics and technique.
The surveying instruments with their screws and
toothed wheels were of great assistance to astronomers,
for instance the apparatus invented by Archimedes for

measuring the diameter of the sun.

1
23 Rouse Ball, History of Mathematics, II, p. 16.
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As a result, the observatory of Alexandria was able

to undertake a systematically planned series of measure-

ments to check the figures furnished by Chaldean

astronomy. The customary divisions of the day and

night being too inaccurate, the Babylonian division

into exact hours, already known by Herodotus (II,

109), was adopted, and this, coming into current use,

was afterwards accepted by the Romans. The sexa-

gesimal division of the circle (degrees, minutes, seconds)
was also borrowed from the Babylonians ;

but other-

wise the Egyptian use of fractions having numerators

always equal to i was preserved. The foundations

of trigonometry were also laid. This is proved by a

writing of Aristarchus of Samos (310-250 B.C.) in

which, following the example of Eudoxus, he attempts
to determine the magnitude of the sun and moon and
their distance from the earth. The results obtained

are satisfactory for the moon but not for the sun. In
this writing Aristarchus keeps to the geocentric hypo-
thesis, although, as we have seen, he elsewhere maintains
the heliocentric hypothesis taken up by Copernicus

many centuries later. The way for this hypothesis had

already been prepared by the Pythagoreans and by the

opinions held by certain groups of Athenian philoso-

phers. It is also possible that Aristarchus was en-

couraged in his views by the influence of his master, the

physician Strato. In spite of its simplicity, the helio-

centric hypothesiswas opposed for physical and religious
reasons

; for example, the Stoic Cleanthes considered

it a blasphemy. Its only defender was SELEUCUS of

Seleucis (about 150 B.C.), who gave at the same time a
correct explanation of the ebb and flow of the sea,

showing by observations the dependence of these

phenomena on the position of the moon. He also

affirmed, with Heraclides of Pontus, the infinity of the

universe.1

*
15 Heiberg, Naturwiss., p. 62.
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CONON and DOSITHEUS, the friends of Archimedes,
were especially notable observers. Conon, in .par-

ticular, discovered a group of stars which he called
"
Berenice's Hair

"
in honour of the wife of Ptolemy

Euergetes.

Taking as a basis the celestial map of Eudoxus,
ARATUS of Soli wrote a descriptive poem on the starry

heavens, which, although possessing no great literary

qualities, made an enormous sensation. It had several

Roman commentators, amongst them Cicero, and,
with its illustrations of antique figures, enjoyed great
fame in the Middle Ages.

However, the greatest astronomer of antiquity was

incontestably HIPPARCHUS, who was born at Nicaea in

Bithynia and spent the greater part of his life at Rhodes.
One of his observations on the star

r\
Canis Majoris

enables us (as Delambre has shown) to fix the date of his

work at about the year 120 B.C. His scientific activity
was prodigious. In his youth, he composed a Com-

mentary on the Phenomena of Aratus and Eudoxus,
which is unfortunately the only one of his writings
now extant. He constructed several instruments,

amongst others a dioptra for measuring the apparent
diameter of the sun by a much simpler method than
that of Archimedes. His apparatus is composed of a

graduated scale on one end of which is a sight and on
which slides a cursor. To take an angular measure-
ment the cursor is moved until the eye looking through
the sight sees it cover the magnitude to be measured,
such as, for example, the diameter of the sun. This
instrument with few modifications became that known
as Jacob's staff, or cross-staff. Hipparchus also made
use of two instruments to which he gave the name of

astrolabe.
"
The first, or spherical, astrolabe was com-

posed of several metallic circles, some fixed, others
movable. The first circle of all was the meridian ; it

was suspended from a fixed point, or better still, sup-
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ported by a small pillar, to which it was fixed by its

lowest point ;
another circle, movable about the axis

of the earth, could always be brought to coincide with
the ecliptic ;

a third circle turned round the poles of

the ecliptic on two cylinders which were fixed thereto

and marked the longitudes ; finally, a fourth circle,

placed inside the three others, carried two sights used
for sighting the heavenly body, whose position it was
desired to determine." The second, or planispherical,
astrolabe was quite different from the spherical
astrolabe, or anmllary sphere ;

it was composed of a
disc which could be suspended vertically or placed

horizontally ;
it was used for taking the altitude of the

stars and for solving triangles.
" Thus the same name

has been given to two things which have no resemblance

and thereby regrettable confusions have arisen." 1

Hipparchus also invented trigonometry, but, in order

to solve a triangle, he always supposes it to be in-

scribed in a circle ; the sides of this triangle are then
chords which are calculated as a function of the radius

of the circle. This being so, Hipparchus calculated a
table of chords and laid down the formulae by which
the problems of spherical astronomy can be solved.

He is thus more truly than Aristarchus the creator of

trigonometry.

Having seen a new star appear, he had the idea of

making for posterity a catalogue of the positions of the

stars and principal constellations. One can never,
said Pliny, praise him enough for this undertaking,
which would have made even a god shrink back

(Nat. Hist., I, p. 159, 10). Thanks to the accuracy of

his observations, which he compared with those of his

predecessors, Hipparchus proved that, if the latitudes

of the stars have remained constant, their longitudes
have all increased by the same amount. He concluded

1
Doublet, Hi&toire de I'Astronomic, Doin, Paris, 1923, p.

105.
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from this that the vernal equinox is displaced along the

ecliptic, and thus he discovered the precession of the

equinoxes.
1 He propounded the problem, which bears

his name, concerning the irregular movement of the

sun, and he solved it by means of an eccentric move-
ment which he calculated. He also discussed the

irregularities of the moon and attempted to determine

its parallax, and he thus succeeded in accurately pre-

dicting eclipses, which justifies the admiration of

Pliny (Nat. Hist., I, p. 143, 14). As Bigourdan re-

marks,
" With this extraordinary man there suddenly

appears a perfected astronomy, far superior to that of

the preceding age ; the theories of the sun and moon
are formulated, and those of the planets outlined ; the

great desideratum of ancient astronomy, the prediction
of eclipses, is now a problem solved. For the first

time, the positions of a great number of stars scattered

in the sky were known, and by the discovery of the

precession their co-ordinates for any period could be
calculated.

" a
Hipparchus considered that geography

as a science must be based on precise astronomical

data, and he severely reproached Eratosthenes for not

having satisfied this condition. But taking into

account the difficulties of the work, these reproaches
are unjust. Moreover they had the effect of retarding
the scientific development of geography, which from
that time became merely descriptive and ethno-

graphical until its mathematical and astronomical

aspects were once more studied by STRABO. The
latter, however, looked upon exact science as only an
occasional help to geography, the main work being to

describe the countries known and inhabited in the time
of Augustus, and not to make a study of the dimensions
of the earth. Strabo certainly acquitted himself mar-

vellously of his self-appointed task, particularly as
1 Doublet, Histoirt de I'Astronomic, p. 106.
2 Bigotirdan, A&onomU> p. 279.

7
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regards Italy. His writings abound in narrative and
vivid descriptions, gathered in the course of his travels

from Armenia as far as Sardinia, and from the Euxine
to Ethiopia. This period was rich in geographical
literature, of which we only possess a small portion,

comprising some fragments of POLEMON ; and a

description, by an unknown author, of Thebes in

Greece as a town with somewhat unsafe streets,

but charming with its fruitful gardens and veiled

women.

Although the mathematical and astronomical side

of geography was not neglected by Strabo, it is

POSIDONIUS (133-49 B -C to whom it is most indebted.

Posidonius was a native of Syria, but settled at Rhodes,
where his school was frequented by Cicero and Pompey.
Although a Stoic, he was interested in mathematics
and natural science. He wrote an important work on
the Ocean and a Commentary on the Timaeus of Plato,

in which he treats of the mystic arithmetic of the

Pythagoreans. Besides this, he was a champion of

divination and astrology, the constructor of a planet-

arium, and a student of meteorology and astronomical

problems. Geminus has given us a sketch of these

works, and in the second century CLEOMEDES made use

of them in his summary of astronomy (de Motu circular*,

p. 90, 22). It certainly cannot be denied that

Posidonius made original researches in geography and

ethnography, but his claim to fame chiefly rests on the

fact that he popularized and brought the principal

geographical and astronomical attainments of the Greek
science of his period within the reach of the cultivated

public of Rome. In doing this, he often passes over in

silence interesting theories, which thus, for long cen-

turies, fell again into oblivion, for example, the helio-

centric hypothesis of Aristarchus, and the explanation
of the tides by Seleucus.
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3* MEDICINE AND THE NATURAL SCIENCES 1

Although Ptolemy II was a lover of curious and rare

animals, the natural sciences made scarcely any pro-

gress during his reign ; they remained as Aristotle and

Theophrastus had left them. The writings on these

subjects had a practical aim ; the culture of fields and

gardens, the raising of cattle. Certainly the poet
CALLIMACHUS compiled a catalogue of birds, and the

grammarian ARISTOPHANES of Byzantium wrote a

history of animals, but these writers too often indulge
in wonders and fables.

Medicine on the contrary, made real progress,

largely due to the practice of dissection, which, for-

bidden in Greece, was practised in Egypt, favoured by
the custom of embalming the bodies of the dead. It

appears that the Ptolemies even authorized the

physicians to make use of the living bodies of criminals

condemned to death (Celsus : de Medecina, p. 4).
Under these conditions an anatomy rapidly arose,

founded on exact observation, and discovery followed

discovery.
HEROPHILUS of Chalcedon is justly regarded as the

creator of human anatomy as well as being the founder
of the medical school of Alexandria. A disciple of

Praxagoras (of the school of Cos), he avoided all dog-
matism and made observation and experience the sole

basis of his work. He discovered the nervous system
and was the first to explain its nature and function ;

he also dissected the eye and the liver. In practical
medicine he brought to light the importance of the

pulse in diagnosis. In some respects, ERASISTRATUS
of Ceos, the physician of Seleucus, was antagonistic
to Herophilus. For example, he opposed the Hippo-
cratic doctrine of the humours, and disapproved of the

practice of bleeding, so much favoured in ancient

1
15 Heiberg, Na*wrwi$$.> pp. 44, 46.
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medicine. As an anatomist, he is remarkable : he

distinguished between the nerves of sensation and
those of motion, a distinction which had never before

been made ; he accurately described the heart, and

recognized the importance of the brain, taking note of

its convolutions. But he still believed with Praxagoras
that the arteries contained air and not blood. If in

wounds the blood spurted from the arteries, it was
because there existed canals of communication between
the veins and the arteries, and the blood, being no

longer compressed by the air, passed from the former

into the latter, conformably to Strata's theory of

nature's abhorrence of a vacuum. The disciples of

Herophilus and Erasistratus soon fell into a dogmatism,
which brought about a reaction. A school arose called

the Empiric, which confined itself to purely descriptive
work and prohibited the inquiry into the general
causes of things. At Rome medicine for a long time

was in disfavour. CATO the Elder exhorted his son to

distrust the poisonous potions of the Greeks ; he
recommended savoy cabbage as a remedy for all ills,

and healed fractured limbs by magic words. But with
the progress of civilization the need for physicians made
itself felt. So that when ASCLEPIADES settled at Rome
in the first century B.C. he met with immediate success.

A native of Asia Minor, he was at first a rhetorician,

but attained such distinction as a physician that he
refused the offers of King Mithridates, He protested

against the abuse of drugs and purgatives, he exalted

the importance of hygiene and recommended cures by
water, massage and exercise. In this way, without

possessing very profound medical knowledge, he
exercised a happy influence. Theoretically he adopted
the humoral pathology of Hippocrates and completed
it by Epicurean atomism. In fact Hippocrates re-

mained the indisputable authority and his writings
had many commentators, amongst them, APOLLONIUS
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of Citium (50 B.C.). As the physicians were also

pharmaceutists, botany benefited by their study of

plants, for example CRATEVAS, the physician of

Mithridates, wrote an excellent book on plants with
illustrations and notes on pharmacy ; and the poet
NICANDER of Colophon composed a work on poisons
and their antidotes, which in spite of its dulness found
readers and commentators.



CHAPTER III

THE GRECO-ROMAN PERIOD

(From the Christian Era to the Sixth Century A.D.)

THE
Roman Empire once established, Greek

science was able to spread throughout the

civilized world ;
it remained, however, foreign

to the Western mind, while in the East it made some

progress or remained stationary, before falling into

decadence.

I. THE ROMANS AND SCIENCE

The Romans, owing to their essentially practical and

political turn of mind, had little appreciation of pure
science. They even despised it, and Cicero praises
them because, thanks to the gods, they were not like

the Greeks, and knew how to limit the study of mathe-
matics to utilitarian purposes (Tusculanae, i, 2).

The mathematical rudiments of which the Roman
surveyors had need were borrowed from Greek writ-

ings in such a way as to enable them to be used in

practice without the aid of theoretical knowledge.
When need arose, specialists were called from Alexan-

dria and shown the measurements to be made. It

must have been in this way that Agrippa carried out

the cadastral survey of the empire.
1 The fragments

which appear in the mathematical compendiums are

very poor. MARTIANUS CAPELLA (about 400 A.D.)

published a work of bad taste, entitled The Marriage
of Mercury and Philosophy, which was held in high

*
15 Heiberg, N&htvwiss., p. 73 ei seq.
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repute in the Middle Ages. In this work, he displays
an utter incomprehension of mathematics by trans-

lating the first definition of Euclid,
"
the point is that

which has no parts," by "the point is that of which
the part is nothing." The works of Boetius, which,
in the Middle Ages, were the basis of the teaching of

geometry, arithmetic and music, have more value.

ANICIUS MANLIUS SEVERINUS BOETIUS (480-525 A,D.)

belonged to one of the most illustrious families of Rome.
At first a student, he afterwards unwillingly took part
in the political life of his country and was notable for

his charity and moral integrity. When elected consul,

he tried to reform the coinage, but in so doing aroused
hatred and envy, and being condemned by a tribunal

was put to death, to the great regret of Theodoric.

As a writer, he is well known by his De consolatione

philosophiae. As to his book on Arithmetic, it is a
rather crude copy of that of Nicomachus. In another

work he gives without demonstrations the contents of

the four first books of the Elements of Euclid, as

well as some methods of surveying, drawn from various

authors. This work is so little in agreement with what
we know of Boetius that P. Tannery considers it a

forgery, and Cantor supposes it to have been completely
distorted by unskilful copyists. Such as it is, it con-

tains a curious passage, which seems to describe a

system of numeration based on the rule of position, the

zeros being represented by empty places.
1

If the Romans were antagonistic to pure science,

they were, on the other hand, much addicted to super-
stitions. NIGRIDIUS FIGULUS by introducing astrology
into Latin literature gained great fame amongst the

cultivated classes. It was the same with the manual
of astrology written with zeal and conviction by
FIRMICUS MATERNUS. The short work of CENSOEimxs

Cantor, Geschichte, I, p. 533. -6 Boyer, Histoire 40$

s, p* 64.
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on The Day of Birth, and the intelligent views of

astronomy and physics, which Seneca, inspired by
Posidonius, gives in a popular form in his Naturales

Quacstioncs, must be pointed out as worthy of interest.

Amongst other subjects, Seneca devoted a long study
to comets, to demonstrate that they must be likened to

planets and consequently possess a periodic movement.
The work of VITRUVIUS On Architecture is quite crude ;

the extracts from Greek authors on mechanics and

technique are expounded so foolishly and in such

obscure language that it would seem that the author,
in spite of his pretensions, could not really have been
an architect to Augustus.

1 The natural sciences are

well represented by The Natural History of PLINY THE

ELDER, whose death in 79 A.D. was caused by his

desire to observe the eruption of Vesuvius from a near

point of view. This vast compilation is a mass of

observations collected with astonishing and often

uncritical zeal and drawn from the most diverse writers ;

it brings before the reader a comprehensive survey of

geography, anthropology, zoology, botany, medicine,

mineralogy, and art. Perhaps the finest product of

Roman scientific literature was the text-book of

CORNELIUS CELSUS On Medicine. It formed part of

an encyclopaedia which has been lost, and although
not written by a specialist, it makes intelligent use of

Greek authorities and has preservedmany an interesting
detail, for instance, of Alexandrian surgery. Apart
from the work of Celsus, there were only books of pre-

scriptions. However, during the decline of antiquity

many excellent translations of Greek authors appeared,
such as the translation of the therapeutics of Soranus

by CAELIUS AURELIANUS in the fifth century A.D.

Works of this kind continued to appear until well into

the Middle Ages, and even in the darkest periods the
Greeks were acknowledged as the masters of medicine.

1
15 Heiberg, Natorwiss., p. 75,
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Geographical and ethnographical studies were much
in favour amongst the Romans. Sallustus and Caesar

give interesting information, the former on Northern

Africa, the latter on Gaul. Tacitus describes Great
Britain and particularly Germany and Scandinavia.

In the only mention he makes of astronomical subjects,
he shows how little the cultured Romans knew, for

he explains the light of the polar nights by the flatness

of the outermost countries of the earth, thus forgetting
what had been a commonplace of knowledge in Greece
for several centuries, to wit, the rotundity of our globe

(Agricola, ch. 12). It is evident that the Romans did

not study geography for its own sake, though we must

except POMPONIUS MELA (first century A.D.) who
utilized in a small but excellent text-book the statistical

material collected by Agrippa.

2. GREEK SCIENCE IN THE EAST
Thanks to the power of tradition, intellectual activity

was maintained, in spite of unfavourable conditions,

simultaneously in Greece, Egypt and Asia Minor.1 As
soon as the imperial power came into the hands of the

Antonines, Greek literature and science revived in

some degree. There was a return to the past, which
was specially favourable to the latter studies. The
scientists were kept in practice by studying the great
works of their predecessors, and if they made no

original discoveries, they produced interesting com-

mentaries, or systematized the results already obtained.

Astronomy was brilliantly represented by CLAUDIUS
PTOLEMY (date of birth uncertain, death probably
168 J*,fl^ Belonging to the Peripatetic School of

philosophy, Ptolemy defended the views of Aristotle on
the nature of matter and on gravitation ;

he main*

tained, for example, that a bather does not fed any
pressure of the water above him, and that a bladder

1
25 Tannery, Science hetline, p. 3.
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full of air is lighter than an empty bladder. His Optics,
of which the first book has been preserved to us in a
laborious translation from Arabic into Latin, treats not

only of perspective as Euclid had done, but also of the

physical conditions of vision and of optical illusions, and
here Ptolemy accepts the theory of Plato that visual per-

ception is produced by the rays proceeding from the

eye meeting those proceeding from the object. In his

Catoptrics he studies mirrors, and by measurements
seeks to establish the law of angles of incidence and
reflection. He also made comparative experiments
on refraction in water and glass, and ascertained the

existence of an astronomical refraction, the distance

from a star to the pole being smaller when the star is on
the horizon than when it passes the meridian. The

figures found are not always accurate, but the experi-
ments and ideas remain none the less of prime import-
ance. Another work, more important still, was the

one which Ptolemy devoted to astronomy. It was
soon used as a text-book in the schools of Alexandria,
and in order to distinguish it from similar but much
smaller works, it was given the title of

"
fljuey/cm?,"

the greatest (book understood), which translated into

Arabic became corrupted into Almagest.
1 The work

is divided into 13 books. In the first, Ptolemy gives
an exposition of plane and spherical trigonometry and
a table of chords. The second book discusses the

phenomena arising from the spherical shape of the

earth, with the admission that the hypothesis, which
he rejects, of the revolution of the earth round its axis,

would greatly simplify the explanations. Books III-

VI treat of the movements of the sun and moon and
of eclipses, all explained by means of epicycles and
eccentrics. Books VH-VIII contain the catalogue of

Hipparchus, completed and enlarged. The last books

enumerate the sidereal phenomena which occur every
1
15 Heiberg, Naturwiss., p. 82.
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year. A set of well-arranged astronomical tables

enables the time and eclipses to be determined accord**

ing to the seasons and the days. These tables, because
of their convenience, remained long in use.

The work thus accomplished is worthy of admiration,

although Ptolemy lays himself open to the reproach
of not having passed on to us any accurate observations,

perhaps even of having made fictitious observations to

justify his hypotheses.
1

The Tetrabiblos is a compendium of astrology, which
was wrongly, for a long time, not attributed to Ptolemy,

being considered unworthy of him. It gives a sys-
tematic outline of astrological questions and contains

many interesting ideas on the psychology of nations ;

it is far superior to similar works of that period.

Amongst these must be mentioned the dialogue

Hermippus, in which an unknown author defines the

position of Christianity in relation to astrology.

Finally, in a geographical work, Ptolemy solves,

with much skill, the problem of the projection of a

spherical surface on a plane.
In the realm of mathematics MENELAUS published,

towards the end of the first century A.D., a writing
entitled On Spherics, which contains an important
theorem on the spherical triangle. NICOMACHUS of

Gerasa (Syria) brought out at almost the same time

(A.D. 150) an Introduction to Arithmetic, which was, as

we have seen, translated into Latin by Boetius. This

introduction, amongst other propositions, enunciates

the following: the cubes of whole ^numbers are

successively obtained by the addition of odd numbers
in this manner:

3 +5 = 2, 7 +9 + n - 3
f

> *3 + 15 + *7 + *9 -4f
-

21 + 23 -f 25 -f 27 + 29 = 5
1
, etc*

As to THEON of Smyrna, he is chiefly known by an

1 2 Bigoundan, Astronomit, p. 295.
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exposition of the mathematical, astronomical and
musical knowledge necessary to the understanding of

Plato.

PAPPUS, who lived at Alexandria towards the end of

the third century A.D., was remarkable for other reasons.

He wrote several works of which we only possess one.

This is a systematic account, with explanatory com-

ments, of the great geometrical problems studied in

antiquity. Designed as an aid to the understanding
of the theories of Euclid, Apollonius and Archimedes, it

contains a quantity of historical information of the

greatest interest, the accuracy of which has often been

verified. It is, besides, more than a mere compilation ;

in it we already find an enunciation of the theorem of

Guldinus, the fundamental relation of the anharmonic
ratio of four points, and the famous problem of Pappus
on geometrical loci, the problem which was the starting-

point of Descartes' researches on analytical geometry.
The dissertation of SERENUS of Antinopolis (Egypt)

on the sections of the cone and cylinder do not contain

anything very new
;

his proposition on transversals is

of greater interest. However, it was DIOPHANTUS in

particular, who, between the third and fourth centuries

A.D., directed mathematics into a new path. His

writings soon fell into oblivion, and it was not until the

year 1460 that they became known to the scientific

world through Regiomontanus. They contrast so

much with the works of other geometers that some
critics have found in them traces of Hindoo influence.

Others, more enlightened, have recognized in them the

contents, in a new form, of the geometrical algebra
which had from the beginning been used by Greek
mathematicians. It is scarcely credible besides that

one man alone could have collected so many problems
and solved so many equations. Diophantus had the

great merit of creating a language and appropriate

symbols : in doing this he has not altogether broken
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with geometrical tradition, he still calls a square the

product of two numbers ; his method, on the contrary,
is purely arithmetical. The problems are treated with
much elegance, but point by point, without bringing in

any general formulae. The result is that Diophantus
rejects as impossible the negative or irrational roots of

an equation, and that, where two positive roots are

possible he only keeps one. The problems set are

very varied and lead to equations of the first, second,
and sometimes third degree with one or more variables,

One of these problems relates to the price of wine, and
it is by the data of this problem that P. Tannery has
fixed the period in which Diophantus lived. 1

An interesting fact to be noted in the history of the

mathematics of this period is the lively interest taken
in them by the Neo-platonic school of philosophy.
PORPHYRY and IAMBLICHUS devoted several writings
to arithmetical questions, and PROCLUS in the fifth

century A.D. wrote an interesting commentary on the

works of Plato and the first book of Euclid.

Amongst other commentators of the period we must

point out SIMPLICIUS, who, in 529 A.D., after the dosing
of the university of Athens by Justinian, fled into

Persia, and whose commentaries on Aristotle are

invaluable ; also EUTOCIUS of Ascalon, to whom we owe
an edition of the Conic Sections of Apollonius, and of

some writings of Archimedes with explanatory notes.

His work was rescued from oblivion by Isidore of

Miletus, the architect of St. Sophia.
It was likewise to such commentaries that the later

representatives of the mathematical school of Alexan-

dra devoted their energies. THEON, about the year

370 A.D., edited the Elements of Euclid and the short

course of astronomy which had been extracted from

the Almagest for the purpose of teaching. His

daughter HYPATIA, who fell a victim to the fanaticism
1 28 Tannery, Mtmoirts scitntijiquts, p. 70.
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of Christian monks, commented on Diophantus and

Apollonius.

If the exact sciences made but little progress, it

was not the same with medicine.1 A disciple of

Asclepiades, THEMISON of Laodicea, founded the

methodic school, who considered that all maladies

arose from the general state of the body, a theory
which might, however, lead to regrettable negligence
of special symptoms. SORANUS of Ephesus was the
most distinguished representative of this school in

the second century. His literary output was very
abundant and embraced all the subjects of medical

interest, as well as the history of this science ; unfor-

tunately we only possess fragments of it, but these are

sufficient to justify their author's reputation as a

gynaecologist. Soranus treats not only of the child to

be born and of the birth, but gives wise advice on the
first cares to be lavished after the accouchement, on the
choice of a wet-nurse, and on the treatment of abnormal
and sickly infants. During the accouchement the

mother must not be lying on a bed, but placed in a
chair, specially constructed for this purpose. As to

abortion, it must only be practised in an exceptional
manner, and only in cases where the woman is unable
to bring her child into the world without endangering
her life. The newly-born babe must be nursed by its

mother if possible. In any case, the meals must be

regular, and the breast must not be given to quiet a
chM because it cries

;
for its cries, provided they do

not last too long, are excellent exercise for the lungs.
After a year and a half or two years the baby must be
weaned, preferably in the spring.

In opposition to the Methodic school, there arose

the Pneumatic school founded by ATHENAEUS (of Asia

Minor)! which connected its principles with the Stoic
1
15 Heibetg, Natorwiss. t p. 89 et seq.
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philosophy. The spirit or pneuma (mevpa), which is

innate in every man, regulates health and disease.

ARCHIGENES of Syria, about the year 100 A.D., some-

what modified this theory. His writings are lost,

but we can reconstruct them partly by the quotations
of Galen and partly by a compilation of ARETAEUS
of Cappadocia, who borrowed from Archigenes the

best part of its contents. It contains faithful and

penetrating observations of nature, and a remarkable

description of elephantiasis, a disease which was still

unknown in the West. In therapeutics, Archigenes
favoured regimen ; he studied the effects of wine and
mineral waters, and recommended cold water baths
and sun baths.

Apart from some minor works of Rupusx>f Ephesus,
none of the medical literature of the first century A,D.

is extant. This lack is due to CLAUDIUS GALEN, who
played the same part in Greek medicine as Ptolemy in

astronomy, that is, in his works, he absorbed and
rendered useless those of his predecessors.

1 He was
born at Pergamum in 129 and died at Rome in 200

A.D., received a careful and extensive education, and
in the midst of a busy life, found time to write more
than 150 medical works, of which about 60 are

extant. This enormous production inevitably contains

repetitions and superficial pages, and it is stamped
with childish vanity, but it possesses none the less

real merit, independently of the part it has played
in the history of medicine. Galen indeed was not a
mere compiler and arm-chair philosopher; he was a

practitioner and knew how to cany out successful

researches; he raised the level of medicine at an
epoch when the schools in repute proclaimed, in the
name of empiricism, the futility of theoretical pre-

paratory studies for this science, and when it was
* For tbe Kfe and writings of Galen, see Croiaet, Hi&toir*

& la litttratute grecqut, V. p. 715, Foatemoing, Paris, 1899.
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necessary to go from Rome to Alexandria to learn

anatomy from a human skeleton. After having
studied at Smyrna, Corinth and Alexandria, Galen, at

the age of 28, settled at Pergamum as physician to the
athletes. After some years he decided to try his

fortune in Rome, in which city he soon gained great
renown. When attacked by his colleagues he defended
himself by publishing some pamphlets of which the

tone and matter is often coarse. When he was about
to be presented to the Emperor Marcus Aurelius, he

abruptly quitted Rome, fearing that a plague, which
had just broken out in the East, would spread
there. He returned after a short time, and displayed

great activity for another thirty years. His physio-

logical conceptions are based on the humoral theory of

Hippocrates, an author with whom he was very
familiar and whom he followed intelligently ; his doc-

trine of the vital forces placed by Nature in the body
to control it, had a great influence in later times. In

therapeutics, Galen recommends cures of fresh air and
of milk, also medicines of doubtful composition.

Amongst these, he highly commends theriac, an
antidote against poison, specially prepared for the

emperor, which was composed of 70 ingredients, includ-

ing the bodies of boiled vipers. With all this, however,
he recognized the importance of anatomy, and in

default of human bodies the dissection of which was

forbidden, he operated on animals, more especially

monkeys.
1 After him, medical literature produced

nothing but compilations of which the most celebrated

is, justly, that of ORIBASIUS, the physician of Julian
the Apostate.

Among the natural sciences, botany continued to

benefit from the progress made by medicine*

DIOSCORIDES of Cilicia in the first century compiled a

catalogue of useful plants (to the number of 600),
1
15 Heiberg, Naturwits., p. 94.
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which was very popular in the Middle Ages. Zoology,
on the contrary, came to a standstill. Already in

the second century, an unknown author, surnamed

Physiologus, had foreshadowed by his fabulous and

mythical descriptions of animals the Bestiary litera-

ture, and his work had a great influence on the animal
decorations of the Middle Ages. In this period we
must also mention Alchemy, to which we shall have to

return and of which ZOSIMUS, about the year 300 A.D.,

summarizes the knowledge, sometimes fantastic, some-
times useful, relating to the working of metals.





PART II. PRINCIPLES AND METHODS

IN

glancing at the history of humanity, one fact

immediately attracts attention. It is the su-

premacy over all the continents which Europe has
been able to win and to keep until the present day.
The cause of this supremacy has not been either

numerical superiority or a more advanced social organi-
zation or even any particular religious and literary ideas.

The Chinese, as is well known, were civilized long before

the Europeans, and, long before them, were acquainted
with the use of the compass and even of gunpowder.
The Hindoos, on the other hand, have possessed from
the remote past a religion and a literature whose

attraction, even to Western minds, is far from being
exhausted ; and in Central America there existed a
state of advanced civilization, which was annihilated

by the Spanish conquest. As to numerical superiority,
it is sufficient to recall the fact, that even at the present
time, either India or China has a larger population
than Europe. If the white race has triumphed over
other races, it is because it possessed weapons infinitely
more formidable than those of its adversaries, and that
for commercial transactions it had at its disposal manu-
factured products far superior to those of other nations.

Now, the manufacture of these weapons and products
has only been rendered possible through the progres-
sive development of the mathematical and physical
sciences of which the Greek nation laid down the

principles and established the solid foundations. So it

may be said that if ancient Greece had not created
and transmitted rational science to Europe, the latter

105
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would never have gained and kept its world-supremacy.
Doubtless, long before the Greeks, men possessed
scientific knowledge, instinctive and practical. Already,
in the Stone Age, they knew how to use the lever to

move heavy objects, and how to make spears and
arrows. At a later period the Chaldean and Egyptian
civilizations witness to a very remarkable technical

knowledge ; but as we have seen, they did not succeed

in creating rational science, that is, in giving a reasoned

explanation of natural phenomena and technical

processes.
In the presence of Nature, two types of explanation

can be utilized : the one brings into play the rational

mentality, the other belongs to what M. L^vy-Bruhl
calls the pre-logical mentality, and which it would be

preferable to call with M. Brunschvicg the pre-scientific

mentality.
1

The latter is common amongst primitive peoples ;
it

conceives of the links of causality between natural

phenomena as a form of mystical participation, which
is in a sense extra-spatial and extra-temporal.

1 An
individual is devoured by a crocodile or a lion. If he
dies in this manner, it is not, in the mind of the savage,
because he has imprudently approached one of these

ferocious animals ; it is because a malevolent spirit has

l ln fact, in the reasoning of the savage, the use of the

principle of contradiction is by no means abolished as M.
L6vy-Bruhl seems to imagine. Only it is exercised on another

plane. To primitive man contradictions manifested them-
selves in the realm of the mystical, not in that of sensible

experience. See our article,
" Le probldme de veritd," in

the Revue de thfologie et philosophic, Lausanne, Dec. 1923.
This is why we choose in preference to the appellation of M.

L&vy-Bruhl that which M. Brunschvicg has adopted in his

masterly work, Uexperience et la causalite* physique, Alcan,

Paris, 1922, p. 113.
1
L^vy-Bruhl, Mentalite* primitive. Alcan, Paris, 1022, pp.

S3 and 516.
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incited the crocodile or lion to devour him. These
animals have not acted by themselves in obedience to

their instincts, they are only an instrument used by the

malevolent spirit. The latter could have chosen some
other instrument, disease, for example, and in this case

the individual destined to perish from its attack could

have approached the lion or crocodile without danger.
Here is another fact : Some one swallows poison and
dies. To modern science, the poison, through the

stomach, penetrates the blood, and corrupts it, or acts

on the nervous system by causing an arrest of essential

vital functions. There is here a whole chain of causes

and effects produced from the moment when the poison
is swallowed until that in which death supervenes.
This succession of links is more or less rapid according
to the case, and by the use of an antidote it may be
checked. To the pre-scientific mind, things happen
differently. It is an evil spirit, and he alone, who gives
to the poison its hurtfulness ; by itself it has no power
and without the spirit incarnate in it, would be harm-
less. Hence the custom of ordeals or judgments by
poison, so common amongst savage tribes. Every
accused person could vindicate himself by submitting
to the test of poison ; if he vomited it, it was because
he was innocent ; if he died, it was because he was

guilty. Thus, whilst the scientific mentality always
seeks the cause of a sensible phenomenon in a com-
bination of conditioning phenomena, also sensible, the

pre-scientific mentality appeals to mystical and occult

forces invisible and imperceptible to the ordinary
means of perception. These forces are the real causes
of sensible phenomena ; they float around man, who
cannot always locate them in time and space, or even

distinguish them, for they are in a sense extra-spatial
and extra-temporal. They seem to imply to the

primitive mentality a supplementary dimension ignored
by us, not a spatial dimension likf & fourth dimension,
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but rather a dimension of experience as a whole. We
see that, for the linking of secondary causes which our

sciences explain by formulae and laws, primitive man
substitutes another type of connection, that of occult

and mystical powers. It is these powers which render

effective the connections which we perceive between
sensible phenomena in the effects of poison, drought,
etc. It is therefore to these that heed must be taken

for the guidance and right direction of life. Conse-

quently the links which the scientist carefully notes in

the succession of phenomena, have, for the primitive

mind, only a relative importance, since they can be
used indifferently by the occult power, and their con-

nection is not inevitable. It is only the purpose of

the spirits acting on these phenomena which needs to

be considered, and not the means they use for its

realization. Certainly savage races are not lacking in

technical skill, and the pottery, baskets and canoes

which they have succeeded in constructing with their

clumsy tools are admirable. But this technical skill

may be merely the result of long practice, it does not

necessarily imply a scientific and thoughtful mental

activity. It may be compared
"
to the skill of a good

billiard player, who, without knowing a word of

geometry or mechanics, without need for reflection,

has acquired a rapid and sure intuition of the move-
ment to be made in a given position of the balls." l To
sum up, there is a profound difference between the

conceptions of the pre-scientific mind and those of the

rational mind. To the former, the production of each

phenomenon is linked to the benevolent or malevolent

disposition of the occult powers. The man may make
use of certain talismans and practices to ensure the

regular and favourable course of phenomena. By
ritual prayers and sacrifices, fixed according to circum-

stances, he may propitiate the spirits and hence the
1
L6vy-Bruhl, work quoted, p. 518.



PRINCIPLES AND METHODS

events. But on the one hand it is not always easy to
discover the really efficacious rite, and on the other

hand, the desired result always remains uncertain since

it depends on the good will of the spirits, The scientific

and rational mind proceeds otherwise. In its concep-
tion the relation which unites one sensible phenomenon
to another, such as a cause to its effects, is constant.

Hence, this relation once discovered, the phenomena
and the resulting consequences can be made use of

with certainty.

Strange as it may appear, it is much easier to inter-

pret natural phenomena according to the pre-scientific
mind than according to the rational mind.1 The
actions and reactions which take place in nature are

so complex and so varied that research into causes

and laws in the scientific sense is extraordinarily diffi-

cult and arduous. In fact, no people except the Greeks
have attempted it. The Hindoos, for example, in spite
of their very advanced civilization, have never in their

reasoning gone beyond the stage of the pre-scientific

mentality. The flux of sensations which creates in us

the image of the perceptible world does not, according
to them, obey constant and fixed laws ; it cannot give
birth to a science, properly so called. Ancient Greece

has had the genius and audacity to conceive that the

matter on which our mental activity is exercised is

subject to determinate relations. It has formed the

opinion that these relations could not exist without
a community of nature between the terms of which

they are constituted: the effect must have some
resemblance to the cause which produces it. It is

1 M. Jean Piaget has just published a book which is very
suggestive on this point, Le langage et la pen$& chez I'enfant.
Delachaux and Nietste, Neuch&tel, 1923. This book, original
in its method and results, shows in particular how, in the

child, scientific notions are gradually and with difficulty
substituted for pre-scientific and egocentric ideas.
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the same in what concerns the relation of law to

consequence.
This being so, it is necessary, for the explanation of

the relations between the lines and surfaces of which

geometrical figures are constituted, to have recourse to

geometrical and numerical reasonings ; to account for

the phenomena of the physical world, it is necessary to

appeal to mechanical and physical reasonings, and,

finally, it is by physiological reasonings that health and
disease must be explained, and not by invisible powers
outside the body.

By these entirely new ideas the Greeks revealed to

the human mind for the first time the true foundations

of the sciences which, from the time of the Renaissance,
were to blossom and give to Europe her supremacy.
It may be objected with truth that these foundations

had been laid already by the Egyptians and Chaldeans.

But, as we have already remarked, these peoples had

simply imparted to the Greeks mathematical facts and

empirical formulae which they had been able to estab-

lish through centuries of experience ; they had never

conceived of the possibility of creating a science worthy
of the name. Between the fragments of knowledge
which they discovered and the scientific conceptions of

the Greeks there is an abyss which we may fathom by
the following example. The Egyptians knew and made
use of the numerical properties of the squares con-

structed on the sides of a right-angled triangle. We
do not know how they discovered these properties,
but it is probable, as we have remarked before (p. 7),
that it was in the following manner. On the sides of a

right-angled triangle whose magnitudes are 5, 4, and 3,
let squares be described. We can divide these squares
into smaller squares all equal to I s and easily prove the

equality 25 * 16 + 9. This demonstration is purely
empirical. It is so intuitive that a child can easily
understand it. As it simply states a mathematical
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fact, it does not rest on any group of axioms or pro-

positions previously demonstrated. It is complete in

itself, but it lacks generality, since the sides of the

triangle must be whole numbers of a certain value.

Let us take, on the other hand, the theorem which tra-

dition attributes to Pythagoras, We see immediately

FIG. 9.

how different the demonstration is. The large square

(Fig. 9) constructed on the hypotenuse, is divided into

two rectangles ; the question being to demonstrate the

equality of their areas with those of the squares con-

structed on the sides of the right angle. Auxiliary

figures, viz. pairs of triangles, intervene ; this being



na SCIENCE IN GRECO-ROMAN ANTIQUITY

so, it is necessary to prove first that the triangles of

each pair are equal and then that one of them is equal
in area to the half of one of the squares, etc. The
demonstration in this form is quite general, independent
of particular cases, but it supposes a whole series of

propositions previously demonstrated and which are

rigorously linked together ; for example, all triangles
which have the same base and the same height as a

rectangle have equal areas, which are equivalent to

half that of the rectangle.
1 To establish all these pro-

positions, they must be based on the general properties
of the straight line and the angle, in other words, on
axioms and definitions. These axioms or definitions

must be logical and in no way obscure to the mind,
otherwise the deduction would remain doubtful and
would lack exactitude.

Thus, the ideal which the Greeks have more and more

conscientiously pursued is the following : to place at

the basis of all science a number of principles which

guarantee a strict logical reasoning, and then by their

means to construct an edifice of consequences the value

of which is assured by a rational deduction. Without

insisting further it can be seen how much the Greek
ideal of knowledge differed from that of primitive

peoples or even of the peoples of the East.

1 In this demonstration the investigation of the congruency
plays a preponderant part as M. E. Meyerson rightly remarks :

De Vexplication dans les sciences, vol. I, p. 137 et seq. t Payot,
Paris, 1921).



CHAPTER I

THE MATHEMATICAL SCIENCES

1. THE PURPOSE AND SCOPE OP GREEK
MATHEMATICS

WHEN
we consider the questions studied by

the Greek mathematicians, we are at first

astonished at their great diversity. Be-
sides completed works, we find in the compendium
of Diophantus the principles of a theory of numbers,
in Apollonius the first idea of an analytical geometry,
in Archimedes the clear conception of the infinitesimal

calculus, and in Euclid the almost perfect application
of a method of exposition which has remained the

basis of more modern works.1

Important as they are, these discoveries only
embrace a portion of the vast field of mathematics.
The relations of numbers and figures constitute a world

so extraordinarily complex, that much of it is still

unexplored by modern science. And amongst all the

aspects of this world of relations, the Greek scientists

have been obliged to make a choice. What have been
the reasons and circumstances which determined their

choice ? It is on this question that we must attempt
to shed some light.
On the nature of the mathematical fact there is

unanimous agreement. The Greek mathematician

admits implicitly or explicitly that the science of

number and space deals with ideal objects, changeless
and incorruptible. Plato has powerfully expounded

*
4 Boutroux, Idtal, p. 31.
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this manner of thinking, supporting it by meta-

physical arguments. The mathematical sciences can-

not be founded on the unstable and changeful

phenomena of the sensible world ;
for instance, the

aim of geometry is the knowledge of the eternal, and
hence it attracts the soul towards truth, and makes it

look upwards instead of downwards ; arithmetic like-

wise has the virtue of elevating the soul by compelling
it to reason about abstract numbers, without ever

suffering its calculations to revolve about visible or

tangible objects (Rep. 525 D). Thus there exists a

world of notions or ideas which is complete in itself, and
which has no need of support from the sensible world.

These notions or ideas maintain between themselves

immutable relations, the discovery of which is the

province of the human mind.
On this point, all the Greek geometers, whether they

accept or reject the Platonic idealism, are in accord.

The figures about which we reason are not those per-
ceived by our senses. There does not exist in reality

any point which has no parts, any line without breadth,
or surface without thickness. The material figures aid

the imagination and thus are a help to the reasoning,
but they are only an accessory aid. What constitutes

the essential character of a geometrical figure, what
causes it to be a mathematical entity, is the connection,
defined once for all, of its component parts. Let us

take, for example, the circle. Having once postulated
the notions of straight line, distance, equal distance, we
create, so to speak, the circle ideally, declaring with
Euclid (Definition xv, Elements, I, p. 4) that a circle is a

plane figure, bounded by one line, and such that from
one interior point we can draw to this line straight
lines all equal to one another. The circle thus created

has no definite magnitude in the imagination, for it may
represent a microscopic surface just as well as a region
extended as far as desired into space. The definition
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of a circle may therefore take a concrete form in

sensible representations, but it is not exhausted by any
of them, and it is not these representations which

justify its existence, for they are never anything but
an imperfect image. As will be seen, the definition

sheds light upon the structure of mathematical

principles and shows them to be distinct from the data
furnished by sensible perception. This distinction

impresses itself on the geometer apart from the meta-

physical reasons, always debatable, by which it may be

justified. What is certain, is that the principles of

mathematics, thanks to their definition, can serve as

a basis for strict reasoning, which can never be con-

tradicted by any sensible experience. If we take at

random two points on a circumference and if with these

two points and the centre of the circle as vertex, we
construct a triangle, we can affirm that this triangle
is isosceles and has two equal angles. This affirmation

is directly derived from the definitions which have been

given of the isosceles triangle and of the circle. Thus to

the Greeks belongs the great merit of having demon-
strated that numerical expressions and geometrical

figures possess peculiar properties of their own, judged by
other criteria, and dependent on othermethods of investi-

gation than the phenomena of the sensible world. But
this does not enable us to understand what has guided
them in their choice of the innumerable problems pre-
sented by arithmetic and geometry. Doubtless it is

very important to recognize the quality of the materials

and the way to utilize them for the construction of a

building, but it is also necessary to sort them according
to the plan of the building. Now, the regular combina-
tions of numbers or figures are unlimited in number.

Analytical geometry has revealed to us several curves

(the curve called by French mathematicians to coufbe

du diable, for example) of which the Greek scientists

had not the slightest idea. Why did they stop at a
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certain property of numbers or a certain class of figures

rather than at any other ? The standard by which

they made their choice of figures was the construction.

This construction, as P. Boutroux points out, has

nothing in common with the concrete measurements of

surveyors. "It is a rational operation by which the

theoretical existence of the figures on which the reason-

ing is based can be stated and proved. To attain this

object, the most simple means evidently consist in

constructing the figure, or rather in defining a
theoretical process which would permit the construc-

tion to be made if it were possible to draw perfectly."
l

It is quite possible, however, to conceive of a figure

being constructed or drawn by means of straight lines

and circles, or even by considering the path traced by
a point which moves on a plane or in space according to

a given law (cycloid, spiral, etc.). Here a choice need
not necessarily be made. The Greeks, after some
hesitation, would only admit as legitimate construc-

tions those which could be made by means of the

straight line and the circle, or, in concrete terms, by
means of the rule and compass. The objects of plane

geometry are thus clearly defined. In dealing with

spatial geometry, however, a difficulty at once arises.

Solid bodies cannot be represented by a plane draw-

ing without using descriptive geometry. The Greek

geometers did not think of having recourse to this

expedient, and did not at first know how to get over
this difficulty, for which Plato reproaches them very
severely (Laws, 528 B). They ended by admitting
a priori the legitimacy of constructions, which corre-

spond spatially to plane constructions made with rule

and compass ;
the construction of a plane, a straight line

or a circle in space, and also of round bodies such as the

cylinder, cone, sphere, generated respectively by the

revolution of a rectangle, triangle, and circle round a

*4 Boutroux, Idtal, p. 38.
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rectilinear axis.1 At the same time conic sections took
their rightful place in geometry, since they could be

obtained, as we have seen, by the intersection of a cone
and a plane suitably placed. Such curves as the

quadratrix of Hippias, the conchoid of Nicomedes and
the cissoid of Diodes remained rather on the margin
of the pure and officially recognized science ; they were
considered too mechanical because instruments other

than the rule and compass were needed for their con-

struction.

Descartes rightly points out how arbitrary such a
distinction is. I cannot understand, he says in effect,

why the Ancients called these curves mechanical rather

than geometrical.
" For if we say that it might have

been because it is necessary to use some instrument to

describe them, it would be necessary to reject for the
same reasons circles and straight lines, since these can

only be described on paper by means of compass and

rule, which may also be called instruments." * The

argument of Descartes appears to be unanswerable.

But then, whence came the self-imposed limitation of

the Greek geometer ? According to P. Boutroux there

was no other reason for this but the desire to obtain

a science which was simple and well arranged and

consequently beautiful and harmonious. This reason

does not seem absolutely decisive. Certainly the

tracing of a straight line or a circumference is done by
means of a very simple process ; besides, the straight
line and the circumference represent perfect and

homogeneous mathematical facts, for two arcs of the

same circumference can be superposed just as two
sections of the straight line, but there the simplicity
ends. As soon as the relation of the radius to the

circumference is sought, the problem becomes obscure.

Hence the fruitless attempt to effect the quadrature of

1
4 Boutroux, IdJal, p. 40.

*Geometoyt Bk. II ; edit Adam and P. Tannery, VI, p. 388.
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the circle, which Greek geometry made from its

beginnings and never ceased to pursue.
The search after harmonious simplicity is not sufficient

by itself to explain the direction of Greek mathematics.
It seems to us that it is necessary to add on one hand
the influence of the technical arts, and on the other the

fear of clouding reason by bringing in mechanical means
other than the rule and compass. The first point

appears to be beyond question. As G. Sorel has

repeatedly pointed out, it was certainly from the art

of the engineer and the architect that Greek geometry
borrowed its primary problems and, up to a certain

point, its definitions. Thales was an engineer as well

as a geometer ; according to a tradition, which appears
to be true in spite of the reservations of Herodotus

(I, 75), he diverted by a canal the waters of the river

Halys and rendered it fordable by the armies of Croesus.

It must not be forgotten either that the father of

Pythagoras at Samos was an engraver of seals. These

possessed a magical value universally recognized, and
the glyptography of Samos was famous for its produc-
tions. 1

Perhaps the invention of regular polyhedra
ought to be attributed to the stone-cutters whose

fumblings must have preceded the reasonings of

geometers. G. Sorel believes likewise that a consider-

able part of the Elements of Euclid is derived from the

art of building. He considers that the definition

XXIII of parallels as straight lines produced to infinity
and never meeting, is an interpolation, because it is not
in keeping with the necessity for Greek geometry of

avoiding the direct intervention of infinity. Euclid

certainly ought to have defined the parallelism of two
lines as a function of their equidistance. He was only

translating into geometrical language the practice of

architects, who for the construction of a wall use

1 G. Sorel, De I'utilitf du pragmatisme, Riviere, Paris, 1921,

p. 198.
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rectangular blocks carefully cut in such a way as to be
able to interchange them in their superposition.
Further, the obscure definition of a straight line given
in the Elements (definition IV) takes on a new light if

considered in connection with the art of the mason.
The latter in order to verify the facing of a chiselled

surface applies to it a stone rule coated with red oil.

If the facing is perfect, the imprint made by the rule

appears without any break ; if not, there are gaps.
Hence, the definition of the straight line

"
as a line

lying equally between its points." However, it seems
that Greek geometry, as it progressed, was able to free

itself from the shackles laid on it by the age-long use of

the rule and compass, and to conquer new and vaster

realms by adopting figures constructed by other

means.
If it has not accomplished this, it is doubtless because

of the contempt in which tools fashioned and handled

by slaves were held ;

* but it is probably also because
the geometrical tracings obtained by these instruments

raised problems insoluble by logic, for the following
reasons : The instruments by which figures can be
described mechanicallymay be divided into two groups :

the first comprises the instruments whose arrangement
remains exactly the same whilst the figure is described ;

for example, the legs of a pair of compasses keep the

same length and the same opening, while one of them
traces the circle. In the same way a triangle which

generates a cone remains identical in area and length

1 As M. E. Meyerson reminds us, Plato, speaking of the

geometrical demonstrations into which mechanics enter,
declares that this is to degrade geometry by making it pass,
like a fugitive slave, from the study of things incorporal and
intelligible to that of objects perceptible by the senses, and
by using, besides reasoning, objects laboriously and slavishly
fashioned by manual labour. Bulletin de la Socittt frangaiw
fa pktiosophit, Feb.-Mar., 1914, p, zoz.

9
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of sides, and it is this identity which logically

guarantees the properties of the figure generated.
The instruments which form the second group are, on
the contrary, composed of one or more parts which

change their respective positions whilst the figure is

described. Consequently these parts do not occupy
the same position at the beginning and the end of the

operation. In tracing a quadratrix, for example, the

radius of the circle moves angularly whilst the straight
line which cuts it moves so as to remain constantly

parallel to itself (p. 55). How can the point of inter-

section resulting from the combination of these two
movements be logically defined ? This intersection

involves the indefinite divisibility of the radius and
the straight line, and thus runs counter to the objections
raised by Zeno of Elea. It would seem that it was a
reason of this kind that consciously or unconsciously

impelled the Greek geometers to admit only figures
constructed by rule and compass, and the solids of

revolution generated by these figures.

2. ARITHMETIC AND ALGEBRA

The Greek scientists took little interest in concrete

applications of science, and they early distinguished
between theoretical arithmetic and the art of calculat-

ing numerically concrete magnitudes. According to

Plato's saying, we must reason about numbers as

abstractions and not about numbers which are visible

and tangible (Rep. 252 D). Hence " when we speak
of Greek arithmetic, we understand the theory of the

properties of numbers and exclude all that concerns

calculation, namely, that which, since Plato at least,

has been called logistic."
l A scholium on the Char-

mides> translated by P. Tannery,
1 endeavours to define

1
25 Tannery, Science fotttne, p. 369.
'26 Tannery, G4o. grecque, pp. 48 and 49.
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what must be understood by this science, as distinct

from pure arithmetic. Inspired by this scholium, P.

Boutroux justly points out that
"
Far from likening

magnitudes to numbers, according to Greek tradition

it was not permissible to consider as true numbers the

numbers resulting from measurements of magnitudes,
such as phialitic numbers, or relating to phials, melitic

numbers, or relating to apples (or flocks). And this

is why problems dealing with magnitudes were enun-
ciated in concrete and not theoretical terms ; what for

us is the
'

solution of an equation of such or such type
'

was formerly the solution of the problem of the oxen,
the problem of the trees, the problem of the rabbits,
etc." l Even in our own times schoolboys speak of

the problem of the runners, the problem of the foun-

tains, etc.

At first, however, the distinction between logistics
and pure arithmetic was not clearly defined. It is

certain that though Euclid surpassed the knowledge
of the Pythagorean school, he left aside many of the

questions studied by it.
a The Pythagorean arithmetic

was certainly more varied in its researches and, up to
a certain point, in its conceptions, than the arithmetic

of its successors. The fact is easily explained.

Although the Pythagoreans had the indisputable
credit of laying the foundations of mathematical science

in Greece, they were not able to free them from all

metaphysical considerations. This fact is especially

striking in regard to arithmetic, which was in a sense
the corner stone of the Pythagorean philosophy, in

whose eyes number and its properties constituted the
basis of reality. In truth, sensible phenomena which
are most diverse from a qualitative point of view, can
show identical ntimerical relations. There is, for

example, from the standpoint of the impression received,
1
3 Boutroux, Analyse, I, p. 121.

25 Tannery, Science heU&ne, p. 370.
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a great difference between the shape of a right-angled

triangle and that of a scalene triangle ; nevertheless,

if the bases and heights of these triangles be equal,
their areas will be expressed by exactly the same
number. A regular hexagon and an equilateral triangle

appear to us very different, but the hexagon can be

decomposed into six equilateral triangles.
But it is not only motionless figures which can be

measured, the movements of the stars are likewise

subject to the law of number. And furthermore,
musical sounds are heterogeneous as to quality with

respect to each other, for a number of low notes cannot

produce a high note and inversely ; but there exist

numerical relations between the quality of sounds and
the dimension of the objects producing them. Thus
number is at the basis of everything. To the Pytha-
goreans it was not an abstract symbol, but a concrete

reality,
1
occupying a determinate place in space, hav-

ing clearly defined qualities and affinities, both moral
and physical, something like the chemical atom.
Under these conditions numbers are identified with

space, they not only resemble it, but they create it.

Thus, by a suitable analysis it is possible to find groups
of numbers which correspond to certain spatial forms.

According to the Pythagoreans the best analysis is

that obtained by means of the gnomon or set-square.
As defined by Hero of Alexandria (iv Definitiones, p. 44,

13) the gnomon is that which, being added to a number
or figure, gives a whole similar to that to which it has
been added.1 This being so, let us suppose a set of

gnomons (or set-squares) which fit into one another.

If the first encloses one point, the second three points,

etc., then it will be seen that the sum of the uneven
numbers forms squares (Fig. 10). If the gnomons
enclose even numbers, the result is no longer squares,

1
7 Brunschvicg, Etapes, p. 34.
20 Milhaud, Phi. gto., p. 88.
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but rectangles (Fig. n). We notice also that the sum
1^-2+3+ .... +n otn consec-

utive numbers beginning by one

is a triangle (Fig. 12).

It is not only plane figures
which thus correspond to sums of

numbers arranged in series, it is

also spatial figures. For example,

by superposing the triangular
numbers we obtain the pyra- Fjo I0
midal numbers I, then I + 3 "

4>

then again 1+3+6 10, etc., this being represented
as in Figure 13.

FIG. ii. FIG. 12.

It was probably from these arithmetical-spatial con-

ceptions there originated the classification of numbers
into squared numbers (obtained by multiplying a num-
ber by itself), plane numbers (formed by two factors),
and solid numbers such as the cube. Of this classifi-

cation only the terms square and cube still remain.

Further, as numbers were not abstractions, but

beings endowed with qualities and almost feelings,
there were some which were perfect, that is, equal to

the sum of their divisors (for example, 6 = i + 2 + 3),
and there were others which were

"
friendly," that is,

such that each was equal to the sum of the divisors

of the other.1

1
3 Boutroiuc, Analyse. I, p. 5,
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According to G. Milhaud it is possible to explain

by arithmetic the table of metaphysical categories
framed by the Pythagoreans.

1 This table sets forth,

on the one hand, the ideas of
"

finite,"
"
odd,"

"
unity,"

\

' ' \
^ i ^

/ v / --"A
/ r \

I

FIG. 13.

"
square," etc., with, on the other hand, the opposite

ideas of "infinite/
1 "

even," "plurality," "hetero-

geneous factors," etc. In order to understand these

oppositions we must remember this : if we build up
the odd numbers with the gnomon, we obtain a square,

i.e., a finite and complete figure, whose sides have a

ratio - always identical and equal to unity. On the

contrary, the construction of the even numbers by the

gnomon gives a rectangle, a figure indefinite in this

sense that its sides n and n + i have a ratio changing
O O ft

with the value of n, namely : , , ..

3 4 * +i
We know also that, in their arithmetic, the Pytha-

goreans went so far as to consider that even moral
realities were formed of numbers.1

Justice, for

1 20 Milhaud, Phi. gto. t p. 116 et seq.

Robin, La penste grecque, p. 73.
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instance, was identified with the number four, the

square representing perfect equilibrium. Nevertheless,
in spite of their metaphysical and mystical tendency,
the Pythagorean researches led to several interesting
discoveries. Besides the properties of certain series

of numbers, they have defined different types of means :

1. The arithmetic mean such that a + b = 2m,

a m _ a

m b a

2. The geometric mean such that m a = ab,

a m ^a_
m b m

2 I I
3. The harmonic mean such that = - + Tm a b

a m a

m b b

But these proportions had no meaning for the

Pythagoreans unless they were formed of whole num-

bers; they do not apply to any kinds whatever of

magnitudes, commensurable or not, even when these

are proportional. However, the advance made by
spatial arithmetic through the Pythagorean school was
checked on the one hand by the discovery of the

irrational \/2, and on the other by the criticism of

Zeno. Besides, the mystical speculations on which this

science appeared to rest became more and more repel-
lent to the minds of scientists desirous of obtaining

positive results. The consequence was that, amongst
the Greeks, arithmetic made little or no progress.

Euclid, however, systematized in Books VII-IX of

the Elements the results which had been obtained.1

He represented numbers as lengths, and deduced their

1
23 Rouse Ball, History of Mathematics, I, p. 63,
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properties from those of geometrical figures. He
studied the theory of rational numbers, indicated the

rules for finding the greatest common factor and the

least common multiple ; he also studied fractions and

geometrical progressions and demonstrated that the

number of prime numbers is unlimited.

Is it to the system of numeration in use amongst
the Greeks that their lack of progress in arithmetic

should be attributed ? Certainly this system was not

as practical as our own, but this was not an insur-

mountable barrier, as is shown by the Arenarius of

Archimedes.
However this may be, arithmetical speculations were

only revived in Greece by Diophantus and then in an

algebraical form. The originality of Diophantus con-

sists in the first place in having entitled his work

AQiBprivixd (Arithmetic), and then in treating of matters

which are logistical. This innovation was more than
a matter of words, it brought into abstract science

that which had formerly been considered to belong to

concrete science ;
it announced a change in form and

method. With one exception (Opera I, p. 385) the

numbers of Diophantus are abstract and do not relate

to oxen or rabbits ;
the problems also are treated

methodically, their solution is not merely enunciated
without demonstration, as had been the case with the

logisticians.

Although Diophantus had eclipsed all his predeces-
sors, his aim was not understood in the way he desired.

Nicomachus, in his treatise on arithmetic, still considers

the numbers of Diophantus as concrete. The tradi-

tional distinction between arithmetic and calculation

remained, although the deep abyss which separates
them is henceforward filled up.

1

As a matter of fact, the Arabs did not translate

Diophantus until the tenth century, and it was only
1 26 Tannery, Gto. grecque, p. 52.
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in the year 1575 that he became known to the Western
world.1

3. THEIRRATIONALV2. THEARGUMENTS OF
ZENO OF ELEA. PROPORTIONS AND THEMETHOD
OF EXHAUSTION. INTEGRAL CALCULUS.1

The arithmetical realism, naively proclaimed by the

Pythagoreans, was checked by the discovery that in

a square the diagonal and the side are incommensurable.
If space be number or ratio of numbers, this discovery
is disconcerting. The Pythagoreans doubtless did not

pretend to estimate the number of points which com-

pose a segment of a straight line, but they affirmed

that this number exists, and that it is necessarily a
whole number, since the point is indivisible. Between
two straight lines A and B of unequal length, there

must be the ratio A/B, in which A and B, representing
a sum of points, are necessarily two whole numbers.
This ratio leads in fact to a more simple ratio n/N,
if a suitable unit of measurement be chosen to estimate

the lengths A and B, since this now plays the part of

common factor. Let us now suppose that the sides of

a square each have 10 times the unknown number of

points. According to the so-called theorem of Pytha-

goras, the square described on the diagonal will contain

200 times this number. The diagonal must therefore

be equal to a whole number which, multiplied by itself,

gives exactly 200. Now 14 is too small, for 14 x 14 =

196, and 15 is too great, since 15 x 15 = 225. Then
let us take the side of a square equal to not 10 times

but 100 times, to 1,000 times, to n times the number
of points, etc. Whatever be the figure chosen, we
shall never find for the diagonal a number which

1
23 Rouse Ball, History of Mathematics, I, p. 118.

See our book, Logique et Mathfrnatiques, Delacbaux,
Neuch&tel, 1900, and our article in the Revue de Metapky-
siqut et Morale, July 1911,

"
Infini et science grecque."



SCIENCE IN GRECO-ROMAN ANTIQUITY

when squared will exactly equal 2 x 10*. Of this

fact the Pythagoreans were able to give the following
demonstration. Let a be the diagonal and b the side

of the square. These two numbers may be supposed
to be prime to one another, for if they were not, they
could always become so by the suppression of their

common factors. From the equation a a = 26* we
must conclude that a 2 and consequently a is an even
number. Since a and 6 are prime to one another,
6 can only be odd. But if a be even, we can postulate
a = 20! and the original relation becomes 40 j* = 26*

or 20 !
2 = & a

. In this case b is even, but then a and b

are no longer prime to one another, which is contrary
to the hypothesis. The side and the diagonal of a

square are thus incommensurable.

Although disconcerted by this discovery, the Pytha-
goreans regarded it as an isolated instance ;

it did not

cause them to modify their arithmetical-spatial con-

ceptions, and they were not able to glimpse the

relationship between the continuum and infinity.

Zeno of Elea was the first to propound this problem
with precision. According to a generally accepted
opinion, he desired, in discussing this question, to prove
first of all the impossibility of motion, and, indirectly,
to deny the plurality of Being. But, as we have seen,
a passage of Plato (Parmenides, 128 C) shows that Zeno

simply sought to oppose the idea of plurality as

affirmed by the Pythagoreans. The testimony of

Plato is the more convincing since the argument of

Zeno has no significance if it denies the fact of motion,
but is, on the contrary, decisive in showing that motion
is incompatible with the hypothesis of plurality. Of
this argument briefly summed up by Aristotle (Phys.

239 b 9) we only possess the parts which deal with

continuity in its relations with infinity.

According to Zeno it must be admitted that either

the division of space, time and motion can be continued
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indefinitely or else that it has a limit. Let us suppose
in the first place that the division be indefinite. In
this case a moving body cannot traverse the length
AB because before reaching the point B, it must

traverse the length and, before that, , -5- , etc.
2 4

*

The dichotomous division of AB being infinite, one
cannot see how the displacement of the moving body
can be produced. There is the same difficulty if we
consider the relation between two objects in motion.

Achilles runs ten times faster than a tortoise, but

if he gives it a start of ten yards he will not be able

to overtake it. The space he would have to traverse

in order to do this is represented by the sum of the

following stages, the length of which certainly dim-

inishes but never becomes zero :

Each time that Achilles traverses one of these spaces
the tortoise traverses the following one. It may be

objected, it is true, that the meeting point between
Achilles and the tortoise can be calculated by the well-

known formula giving the limit of the sum of an infinite

number of terms of geometrical progression, of which
the first term is a and the common ratio r is less than I,

S = -^ that is S =

I r

But, as Zeuthen l has pointed out, the very reasons

appealed to by Zeno show that even in his time it

was known how to effect this summation. What they

disputed was precisely the legitimacy of the formula

I -r
1
29 Zeuthen, Histotre des nwthAnatiques, p. 54.
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since, in order to establish this, it is necessary, in

S
* "

i r I r

/I***

to neglect the term as insignificant. Up to what
x * m i

point is it right to do this? That is the question.
Instead of admitting the possibility of an infinite

division, let us suppose that this division has a limit

and that there exist ultimate elements of space, time

and motion (whether in finite or infinite number, it

matters little). To this Zeno replies with the paradox
of the arrow. The extremities and the body of an arrow
in flight must coincide at each instant with the points
which compose its trajectory ; but if there be a coin-

cidence for however brief an instant of time, there is

immobility. Then the movement of the arrow is re-

duced to a sum of instantaneous immobilities, which
is absurd. If we attempt to avoid this objection by
affirming that each instant corresponds, not to a certain

position of the arrow, but to the passage from each

position to the next, Zeno appeals to the argument
of bodies which moving inversely to one another cross

one another's paths, and he shows that the speeds

supposed to be different are in reality equal, since by
dichotomy the sum of the instants of which these

speeds are composed can always be reduced to the
same number, that is to infinity.

The arguments of Zeno in fact amount to the proof

by reductio ad absurdum that a geometrical body is

not a sum of points, that time is not a sum of instants,

that motion is not the sum of passages from one point
to another. They had the result of establishing once
for all the infinite divisibility of space. Henceforward
the discussion relating to divisibility dealt with matter,
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and atomism could take shape, thanks to the work of

Leucippus and Democritus.

From a mathematical point of view the problem to

be solved is the following : no longer to identify dis-

continuous number with continuous magnitude, and

yet to find a means of adapting number to the study
of geometrical figures. This problem is difficult, for

the reasoning of Zeno seems to be faultless, and the

impossibility of reconciling it with the data of spatial
intuition seems to condemn for ever the rational and
direct use of mathematical infinity. On the other

hand, in practical applications, certain sophists such

as Antiphon affirm, on the basis of these reasonings,
an identity between curvilinear and rectilinear elements

which is inacceptable.

Thus, in spite of the efforts of Aristotle to render

legitimate the notion of continuity, the confidence of

Greek mathematicians in directly infinitesimal specu-
lations was for ever shaken. Besides, the formulae

enunciated by Aristotle were not of any practical use

in mathematics ; they belonged to a treatise on physics
which had in the highest degree a metaphysical
character. To Aristotle, indeed, the question which

presented itself is the following : "If infinity be a

given reality, the enumeration of all the whole numbers
must have a limit, which is logically impossible (Phys.,

204 b 4-10). But to reject infinity is to declare that

time has a beginning, that magnitude is discontinuous

and that the power to reckon has a limit (Phys., 206
a 9-12). To remove these difficulties it is necessary,

according to Aristotle, to distinguish between magni-
tude and number in the problem of infinity.

1 An
infinite magnitude could no more exist than an in-

finite space. As a matter of fact, space could not

extend beyond the material world of which it forms

the boundary (Phys., 212-31). If the universe were
' a. 21 Milhaud, Etofcs, p. 120.
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unlimited, it would not be able to accomplish its daily
revolution in 24 hours. Further, what is infinite is

imperfect, unfinished, and unthinkable ; yet the world
is a finite whole which can be conceived in the mind.
But if magnitude be not infinitely great, it is per

contra infinitely divisible, and, in this sense, there is

an infinity of magnitudes, but only potentially and not

actually, since the division is never completed. Con-

tinuity must be defined thus : that which is divisible

into parts which are always divisible (de coelo, 268 to 6).

If this be so, the arguments of the Eleatic school

against the reality of motion lose all their force, for

it is not necessary that the possible divisions of time
and space should be performed in order that motion

may really take place.
With regard to number, Aristotle adopts a quite

opposite attitude. He admits the virtual existence of

an infinite number, in this sense that after each whole
number there is always another. But a numerical

infinitely small is inconceivable, since unity is an
element below which it is impossible to go.
To sum up, Aristotle considers all magnitude as

finite, but he admits its infinite divisibility, thus

rejecting spatial atomism. On the other hand, he
affirms the extensible infinity of number, but not its

infinite divisibility.

We see that though the views of Aristotle have
undeniable metaphysical interest, they do not present

any method of symbolizing and using, mathematically,

continuity and infinity. From this point of view the

problem discussed by Zeno remained untouched.
In order to avoid running counter to this problem,

Greek science, with Eudoxus, had recourse to strata-

gem. This geometer begins by enunciating a theory
of proportions which, taking into consideration geo-
metrical continuity, is applicable to all ratios of mag-
nitude, whether commensurable or not. If (A, B)
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and (C, D) be two pairs of magnitudes, the proportions

A/B and C/D will be equal, if, whatever may be the

whole numbers m and p, we always have

mA. mC

In this way the ratios of magnitudes become geo-
metrical, and no longer simply arithmetical, as they
had been to the Pythagoreans.

Having established this point, Eudoxus laid the

foundations of an infinitesimal method by which it

would be possible to pass gradually from a regular

figure to the figure which circumscribes it. This

method, called the method of exhaustion, is based on
the following principles which are derived from the

lemmas formulated for geometrical proportions.
1

1. If two magnitudes a and b be unequal, the

lesser repeated a sufficient number of times (n) will

end by equalling or exceeding the greater. In other

terms if a < b, na > b.

2. If from a magnitude there be taken more than its

half, then from the remainder a part greater than
half of this remainder, and so on indefinitely, there will

be finally obtained a remainder less than any given

magnitude.
It was by taking these principles as a basis that

Eudoxus demonstrated, amongst other things, that

circles have areas proportional to the squares of their

diameter. The proposition is true for regular figures
of 4, 8, 16, 32, etc., sides which are successively in-

scribed in the circles. Now, at each operation, the

difference between the area of the circles and that of
the new polygons inscribed is diminished by more than
half. It tends to become zero, so that the properties
established for polygons hold good for circles.

The method of exhaustion was taken up and given

*26 Tannery, Gto. grecque. p. 96.
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new life by Archimedes, who made successful and
fruitful applications of it. Eudoxus had contented

himself with showing by what lemmas a certain figure

may be considered as the limit of another figure in-

creasing progressively ; but he did not know how to

evaluate the successive terms of this progression. It

was Archimedes who first discovered the practical
means of effecting this calculation. He succeeded, for

instance, in determining the circumference of a circle

by defining it as the boundary of two polygonal
perimeters, inscribed and circumscribed, of which the

number of sides is indefinitely increased.

FIG. 14.

By an analogous process he was able to calculate

oirvilinear areas or areas bounded by curves. He
showed that any segment bounded by a straight line

and a parabola is equal to four-thirds of the triangle

having the same base and the same height as the

segment (Fig. 14). In this demonstration the passage
to the limit is not directly used. In order to avoid
this Archimedes proves that it would be absurd to

suppose the area of the parabolic segment to be greater
or less than four-thirds of the triangle having the same
base and height.
The method of exhaustion rests on a reductio ad

absurdum which proves its perfect logical exactitude.



THE MATHEMATICAL SCIENCES 135

This same exactitude prevented the Greek geometers
from looking in another direction for the solution of

the problem of areas and curvilinear volumes. By a
stroke of genius Archimedes invented a method of

integration based on the comparative study of the
static moments of two figures, and which necessitates

for this study the use of an infinite number of lines

or parallel planes ; the comparison of suitably selected

sections then gives the equation of equilibrium between
the known surface or volume of one of the figures and
the unknown surface or volume of the other. Thus
to have equilibrium with a sphere, it is necessary to

have four cones having as base the great circle and
as height the radius of the sphere. The sphere has
therefore a volume four times greater than that of the
cone constructed with its radius. Archimedes, how-
ever, would not acknowledge any power of demon-
stration in this mechanical method, whose results, to

be valid in his eyes, had to be confirmed by exhaustive

reasoning. In fact, the Greek geometers considered
that it was only by this reasoning that the dialectic

of Zeno could be successfully refuted. On the one

hand, the condition imposed on the difference (line
or surface) of always diminishing by more than its

half ensures that this difference can become less than

any given quantity, after a finite number of operations.
On the other hand, the method of construction em-

ployed in each problem ensures that the law of diminu-
tion is really obeyed by the decreasing magnitudes;
hence the terms which form the numerical representa-
tion of these constitute a series the convergence of

which is evident and has no need of proof. In every
way the direct use of infinity, which results from

dichotomy, and which Zeno had criticized, is avoided.

However, the method of exhaustion thus understood
remains difficult to manipulate. To make its applica-
tion general, it would have been necessary to examine,

10
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as Cavalieri, Fermat and specially Pascal did later,

the nature of the progressions which represent the

decomposition of the geometrical figure. It would
have been necessary to establish, once for all, the con-

ditions which these progressions must satisfy in order

to be used in the solution of any problem of quadrature.

By following this path, the Greek geometers would

perhaps have discovered some device similar to that

used by Newton and Leibnitz, and they would have

brought into their method a generalization of which

they possessed the essential elements. But, being
desirous above all to avoid the direct use of infinity,

they were so intent on ensuring the rigour of the

method of exhaustion in each particular case
"
that

it left them no room to develop, beyond the need of

the moment, the methods they employed to prove
their results, or to create new methods." l

Already

necessitating lengthy demonstrations for relatively

simple cases, the method of exhaustion became most

complicated when used for the integration of surfaces

and volumes of which the elements are connected by
complex relations. So it is not astonishing that the

successors of Archimedes, adhering to this method, were
not able to carry on the brilliant work of their master,

notwithstanding the time and knowledge at their

disposal.

4. GEOMETRICAL ALGEBRA

Although the way opened up by Archimedes was
but little followed, the comparative study of lines,

surfaces and volumes nevertheless made real progress

by means of what may be called geometrical algebra.
The Pythagoreans had already employed geometry

in the study of the numerical properties of magnitudes
regarded as commensurables, and thereby, as we have

seen, they were restricted in spatial arithmetic.
1 29 Zeuthen, Histoire dts maiMmatiqws, p. 142.
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The discovery of the irrational \/2 dealt a first blow
to this conception, which was completely shaken by
the arguments of Zeno of Elea ; but, before even the

theory of proportions had been established Jt>y Eudoxus,
the Greek geometers had succeeded in generalizing
the quantitative study of magnitudes and in creating
thus a kind of geometrical algebra. Their method was
as follows:

The representation of a magnitude by the length of

a segment can play the same part as the symbolical
letters of algebra. This being so, in order to subtract

or add two rational or irrational magnitudes, it is

sufficient to represent them by segments, and then
to place one of these segments on the other or on its

extension.

The quantities which we call imaginary or negative

certainly cannot be represented in this way ; still, in

many cases, the variations of the figure lend themselves

partly to the same generalizations as the use of negative

quantities in algebra.
As to the multiplication of magnitudes, in the direct

sense, it is nonsensical, but it is possible to represent
it indirectly by means of a rectangle whose sides are

formed by the segments representing the two magni-
tudes to be multiplied.

In this manner a second geometrical expression of

magnitudes is obtained, that is, as rectangular or

square surfaces. To add or subtract them in this new
form, it is necessary to give them a common side ; one
of the rectangles, whilst keeping the same area, is

then transformed in such a way as to enable it to

be applied exactly to the other. This operation is

performed by means of the following proposition : the

lines parallel to the sides of a rectangle, which intersect

on one of the diagonals, divide this rectangle into

four others, of which two are equal, that is, those which
do not cross this diagonal (Fig. 15).
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For example, to add the rectangle B to the rectangle
A of which one side is 6, it is necessary to find a rect-

angle C (with sides 6 and x) which, being equal to B,
can be applied to A by
the common side b (Fig.

16).
To solve this problem

it is necessary to proceed
in the following way : On
the extension of one of the
sides of the rectangle B
(Fig. 15) take the length 6,

then from the extremity
FIG . I5 .

of this side thus produced,
draw the new diagonal to

the point where it cuts the other side of B likewise

produced. We have thus all the elements for con-

structing the rectangle C, which evidently fulfils the

requirements of the problem and can be applied to
the rectangle A. This construction is called noQafloAri,
or the application of surfaces. When made as we
have just seen, it is simple, but it may be elliptic

FIG. 16.

or hyperbolic. When elliptic* it corresponds to the

following problem : on a given segment a construct a

rectangle ax which when diminished by an unknown
square x* is equal to a given square 6* (Fig. 17).
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In modern language the problem is expressed by
the equation

ax - * = 6*

a 1

or again, by adding and subtracting ,

The problem leads therefore to the construction of a

FIG. 17.

difference of squares. By putting the equation in the
form

the length f-- x
j
and the length # are easily found

by means of the theorem of Pythagoras.
Let a be the given segment and 6 the side of the

given square. On one of the extremities of b, raise

a perpendicular, then from the other describe an arc

of circle of radius - which will cut the perpendicular.
2

In this way we find the side - * and the length

x (Fig. 18).
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Once x is found, it is easy to construct the rectangle
/# \ * /# \ *

ax and the difference of the squares f-j
and f %\

(Fig. 19).

FIG. 18. FIG. 19.

It can be seen that the rectangle ax t diminished by
the square %* is equal to a gnomon whose surface is

equal to the given square 6 2
(Fig. 20).

The problem was afterwards generalized in the

following manner: to determine two quantities of

which the sum a is known and the product is con-

FlG. 20.

sidered as equal to a square t 2
. To find the unknown

value % one can proceed as follows : In a* semi-circle

of radius a inscribe the right-angled triangle of which
b is the perpendicular dropped from the vertex of the
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right angle (Fig. 21), Under these conditions we hav*
J* * x (a x) and when the roots of the equation are
both positive they can immediately be found.

It can be seen that the treatment of magnitudes by
geometrical representations is generally equivalent to
their treatment by algebra. There is, however, a
difference. Geometry is always fundamentally quali-
tative, while algebra is quantitative.

1

Whilst the elliptic application is by defect, the

hyperbolic application is by excess and corresponds
to the following problem: on a given segment a
construct a rectangle ax which when increased by the
unknown square x* is equal to a given square 6*.

This problem is equal to the solution of the modern
1

equation ax + * f 61 or by adding and subtracting ,

ax + x* + - -
&*,

It is necessary, then, to construct as before a
difference of squares. By means of the theorem of

*4 Boutroux, IMal, p, 74,
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Pythagoras we quickly find f h x )
and consequently

% (Fig. 22). The rectangle ax is then easily obtained ;

the square x* is then added
to it externally, instead of

being taken away as in the

elliptic application (Fig. 23).
Without labouring the

point, it can be seen that

the Ancients have treated all

the forms of the equation of

the second degree which give

positive roots
;

for them
there could be no question

of other roots, since they had no conception of them.1

The constructions which we have just mentioned
axe of no use when problems arise concerning the

quadrature of the circle, the trisection of the angle

FIG. 22.

FIG. 23.

and the duplication of the cube, which cannot be
solved by means of the circle and the straight line.

Recourse had then to be made to intercalations.

1 29 Zeuthen, Histoire des math&natiques, p. 39.
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For example, to divide the angle ABC into three

equal parts (Fig. 24). First AC is drawn perpendicular
to BC and to AE which is parallel to BC ; then between

AC and AE is intercalated DE = 2AB in such a way
that its prolongation passes through B. F being the

middle of DE and the triangle ADE being a right-

angled triangle capable of being inscribed in a semi-

circle of radius FE, we have radius AF = radius

FE = AB by construction. The triangle ABF is

FIG. 24.

isoceles ; the angle ABF = AFB = twice the angle
AEF = twice CBD. Hence

angle CBD = i angle CBA, 1

By intercalation must therefore be understood
"
the

construction of a segment of a straight line of which

the extremities are situated on given lines and which,
when produced, passes through a given point. This

segment can easily be obtained by means of a ruler

(or piece of folded paper) in the following manner.

On the ruler two marks are first made, the space
between them being equal to the length of the given

segment, then the ruler is turned round a fixed point
and moved at the same time in such a way that one of

the marks follows exactly one of the given lines. This

1
Pappoa, Hultsch Edition, Book IV, Prop. 32.
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movement is continued until the other mark comes
on the second given line." l

There was very probably a time when intercalation

was admitted as a means of construction, together
with the rule and compass, but it was soon rejected
for reasons we have indicated (p. 119). It became
then necessary to have recourse to conic sections, when
the rule and compass were obviously insufficient. The

consequence of the study of these sections was the

development of the fruitful conception of "geometrical
loti," for a conic section may be considered as the

i

3

FIG. 25.

locus in which a cone and a plane meet. Hence there

arose the expression of
"
solid loci," since the cone

is a volume.

However, even in its most developed form, the theory
of conic sections is closely connected with the first

works on geometrical algebra. This is strikingly

shown by the works of Apollonius.
1

In these, the study of magnitudes and their ratios is

always done by geometrical operations, only the field

is enlarged thanks to the theory of proportions and

similitude. This allows of the construction of surface!

1
29 Zeuthen, Histowe des matMmatiq*tet p. 66.

1
3 Boutroux, Analyse, p. 491 * eg.
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which are similar (and not equal) to given surfaces.

For example, to construct on a given segment a a

rectangle &x, which, diminished by a rectangle similar

to a given rectangle cd, is equal to a given square 6 1
,

we must have (Fig. 25) :

DB
c

^ whence DB =
a a

AD is then equal to a * and the unknown rectangle
a

/ c \
has for surface x( a

~-jX );
but as this must be equal to

6 f
, we have finally the equation of condition

c
ax -5$

a

The theory of proportions also enables the magni-
tudes which correspond to a given problem to be found

\
FIG. 26.

in a more direct manner. For example, to construct a

square #*, equal to a given rectangle ab, comes to

finding a mean proportional between a and b, which is

easy. Taking as diameter the segment AB of the

length a
*

+ b (Fig. 26), describe a semicircle, then at th*

extremity of a at H, raise a perpendicular HD *.

The triangle ADB inscribed in a semicircle is right-

angled and we have ** ab.



146 SCIENCE IN GRECO-ROMAN ANTIQUITY

We can generalize the scope of this problem and say
that the geometrical locus of the pointsD such that the

perpendicular DH to AB is the mean proportional
between the two segments which it determines on this

straight line, is a circumference of diameter AB.
We can also, and it is here that conic sections inter-

vene as geometrical loci, conceive of a more complicated
relation of measurements

;
for instance, let us suppose

that the segment AB being given, the segment DH is

the side of a square subjected to the condition of being
equal to a rectangle which, when applied to another

AV 1

FIG. 27.

given segment LM, is at the same time diminished by
a rectangle similar to the rectangle of dimensions LM
and AB (Fig. 27).
To find any point of the locus, on the given segment

AB, erect at its extremity a perpendicular AM equal to

the second given segment LM. Construct the rectangle
of the dimensions AB and AM, having MB as diagonal.
From any point H draw a parallel to AM ; this, at the

point where it cuts the diagonal MB, determines the

rectangle which, similar to the rectangle AB x AM,
must be taken away from the rectangle of the dimen-
sions AM and AH, applied to the segment AM (= LM).
Thai there only remains to find the side DH of the

square equal to the rectangle AH x AN*
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It can be demonstrated that the locus of the points

satisfying the enunciation of the problem is an ellipse.

If AB = 20, LM =
2p, AH = x, HD =*y t we shall

have, according to the equation of condition (p. 145),

,1-2^-^*^
2a

*ory
a =

2^># t-x*.

When the rectangle to which the square DH* is

equal is to be increased, instead of diminished, by a

rectangle similar to the rectangle of dimensions AB

FIG. 28.

and LM, the geometrical locus is no longer an ellipse,

but a hyperbola (Fig. 28).

Finally if the rectangle is not to be either diminished

or increased but simply applied to the segment LM, we
have the parabola.

Apollonius was of the opinion that whatever the conic

section considered might be, the segment LM must

always be perpendicular to the extremity of the

segment AB even if the half chord HD be oblique
in respect to the diameter AB. Hence the name of

latus rectum (right side), which was given to it. For
this reason, geometrical algebra renders the same ser-
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vices as those rendered later by analytical geometry." Whilst we now express the fundamental property of

a curve by an algebraical equation, Apollonius repre-
sented it by a figure ; and owing to the fact that this

auxiliary figure is drawn at right angles to the axis of

abscissae, even when the ordinates cut this axis at

another angle, it always remains in some degree

independent of the figure for the study of which it is

used.1

Another fact, no less remarkable, was brought to

v

H

FIG. 29.

light by the Greek geometers (Pappus, Hultsch edit.,

book vii, prop. 238). Given an infinite straight line

DD' (Fig. 29) and a point F, it can be demonstrated
that the geometrical locus of the points M such that

the ratios of the distances MF and MH from M to the

point F and to the straight line be constant and equal
to a given number, is a conic section. Inversely, being
given any conic section, it is always possible to find a

straight line and a point F which will allow the ratio

in question to be established with regard to each point
1 29 Zeuthen, Histoire des matMmatiques, p. 168.
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of the curve. Further, according as this constant ratio

MF
is smaller than, greater than, or equal to i, the conic

is an ellipse, a hyperbola or a parabola.
1

It is useless to enter into the details of the demon-
strations, our aim being merely to show that the geomet-

FIG. 30

rical algebra of the Greeks, even in their most perfect

works, remained faithful to its primary inspiration.
Let us add also that it was owing to conic sections

that the study and investigation of loci was generalized.

Among the problems considered by Pappus there are

a number of this kind: from a point P drop the

perpendiculars a, b, c, d on four straight lines. Find
the locus of the pointsP such that the rectangle ab may
be equal (or similar) to the rectangle cd (Fig, 30).

*3 Boatroux, Analyse, I, p, 250.
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The same problem may be stated in respect of six

straight lines ; the given ratio then relates no longer
to areas but to volumes. The search for the geometrical
locus then becomes very difficult by means of the

methods known to the Ancients. Beyond six straight

lines, they could not conceive that the problem could

even be considered (Pappus, Hultsch edit., p. 680,

14). We know how Descartes by the -help of analy-
tical geometry surmounted the difficulties which had
arrested their progress, and how he succeeded in solv-

ing in its generality the problem stated by Pappus.

5, THE ELEMENTS OF EUCLID METHODS OP
DEMONSTRATION AXIOMS AND POSTULATES

It was not without difficulty that the Greek philo-

sophers began to realize the rational structure of

mathematics. As Proclus says,
"
It is difficult, in every

science, to choose and to arrange in suitable order the

elements from which and to which all the remainder

proceeds. Of those who have attempted this, some
have enlarged their collection, others have diminished
it ; some have used abridged demonstrations, others

have lengthened indefinitely their demonstrations
;

some have avoided the reduction to the impossible,
some, proportions; others have imagined prelimin-

ary developments in opposition to those who reject
first principles ; in a word, the various authors
of Elements have invented a number of different

systems."
In such a treatise, it is necessary to avoid all that

is superfluous it is an impediment to the student ;

to bring together what is connected with the subject
an^essential point for Science ; to aim chiefly at clear-

ness and conciseness for their opposites perplex the

intelligence ; to seek to give the most general form to

theorems for the detail of instruction in particular
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cases only renders knowledge more difficult of attain-

ment.
" From all these points of view, it will be found that

the elementary treatise of Euclid surpasses any other :

if its utility be considered, it leads to the theory of

primordial figures ;

l its lucidity and regular chain of

reasoning are ensured by its progression from the most

simple to the most complex, and by basing the theory
on common ideas ;

the generality of the demonstra-

tions, by the choice of the starting-point in the problems
to be dealt with, in the theorems which set forth the

principles
"

(Proclus, Comm. EucL I, p. 73, 15 et

sag.)-
1

The elementary treatise of Euclid is indeed a model
of truly rational science. It begins by a collection of

primary propositions which are enunciated in such a

way as to make them universally acceptable and which,

although as limited in number as possible, are sufficient

to secure the construction of the whole mathematical
edifice. This construction proceeds from the simple to

the complex by way of demonstration and resolution

of problems. It begins by establishing the properties
of the most elementary figures, then by their means
it demonstrates the properties of more and more com-

plex figures. In this way the work of synthetic

geometry is accomplished, and this work must be

logically unassailable.

In dealing with the primary propositions, the

Elements, as they have come down to us, distinguish
between definitions and hypotheses (postulates and

axioms).
The definitions (Spot) define the meaning and limits

of the concepts used. The postulates (oJn}/ata)
demand that certain constructions (for example, to
draw a straight line between two points) shall be

1
Polyhcdra composed of material elements.

Quoted from 26 Tannery, Gfo. grecqut, p, 142.

11
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granted as possible without requiring proofs. The
axioms or common notions (xoival gwouu) are truths

which cannot be demonstrated but are self-evident (for

example, the whole is greater than the part). It

appears, however, that Euclid only admitted two kinds

of primary propositions, definitions and postulates,
and that he classified as one or the other propositions
which were afterwards called axioms. This question is

of secondary importance ; it is of greater interest to

examine whether the primary propositions of the

Elements are in agreement with the conditions laid

down by Euclid himself, and whether, on the other

hand, they satisfy the exigencies of the modern use of

axioms. With regard to the first point, it must be

noted that the form of the definitions often leaves

something to be desired. Such is the definition of the

straight line, the empirical origin of which is purposely
concealed, thus rendering it obscure. x

Further, certain

definitions, such as that of the diameter, contain useless

elements. If the diameter be defined as passing

through the centre, it is superfluous to add that it

divides the circle into two equal parts.
As to the relation of the Elements to the modern

theory of axioms, the following statements may be
made :

Firstly, the primary propositions must be compatible,
that is to say, not contradictory to each other, other-

wise the consequences deduced from their combinations
would necessarily be contradictory. The Elements

fulfil this condition without proving it theoretically.

Secondly, the enunciation of a primary proposition
must be rigorously complete. When we say that the

whole is greater than the part, we must add, which
Euclid has not done, that such an enunciation only
concerns finite magnitudes and numbers. We know,
in fact, that in infinity the part is equal to the whole ;

1 See page ng.
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for instance, the summation of the series of even whole
numbers is equivalent to the summation of all whole

numbers, since between the terms of these two sum-
mations we can establish a univocal and reciprocal

correspondence. It is easy to verify this by writing
the two series as follows :

123 4 *

246 8....N....

To every whole number a corresponding even number
can be found ad infinitum.

Thirdly, the primary propositions must be in

sufficient number, without any being superfluous.
The Elements, in spite of their endeavour to be

complete, sometimes leave much to be desired in this

respect. Often they omit to justify by an axiom facts

regarded as evident, even when they are not derived
from the principles primarily postulated ;

for example,
the following statement : if A, B, C be three points

belonging to the same straight line and if B be between
A and C, it will also be between C and A.1

Finally, it is essential that the primary propositions
considered necessary for the building up of geometry
should form a logically indissoluble whole, that is com-

posed in such a way that not one part can be suppressed
or altered without involving the ruin of the whole edifice.

If the suppression or change of one of the primary
propositions should lead to consequences which,
without being logically absurd, were simply different

from what they were before, the necessary conclusion

would be that various types of geometry are equally

possible, that is to say equally true from a logical point
of view.

This problem did not present itself to Euclid ; but
he has intuitively understood its importance, by
claiming as a postulate that from a point taken outside

*
5 Boutroux, Us matMmatigw$, p. 73.
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a straight line only one parallel can be drawn to it.

Seeing the hypothetical character which he gives to

this proposition, Euclid has had regard to the exigencies
of the modern theory of axioms, but if, as he believed,

only one geometry is possible, his hypothesis would

appear strange and superfluous, for one would neces-

sarily be able to affirm the singleness of the parallel
and deduce from it the definitions already postulated
of the straight line, the plane and angles. It would
seem that he must speak of a theorem of parallels and
not of a postulate if logically there only exists but one

geometry.
The successors of Euclid were of this opinion, and

not without reason, and this is why they endeavoured
to demonstrate the proposition which Euclid had
enunciated as a hypothesis, but all their attempts in

this direction were in vain.

In the nineteenth century they surrendered to

evidence. It is possible to abandon the postulate of the

parallels, whilst keeping the other primary propositions.
Geometries can then be constructed which have other

properties than that of Euclid and which for this reason

are called non-Euclidean (Lobatschewsky, Riemann),
These geometries, the truth of which is guaranteed by
logic, deal with mathematical facts (lines, surfaces,

angles) which are real and in no wise fanciful, although
we cannot picture them by intuitive perception. The
field of geometry is therefore vaster than Euclid sup-

posed, but although he did not entirely construct the

modern theory of axioms, to him belongs the merit of

having established it upon a permanent basis.

The primary notions having once been elucidated,

it is possible by logical deduction to link to them a series

of propositions entirely derived from one another.

These propositions are classified and distinguished

according to their nature. There is first the theorem
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or principal proposition ; then the lemma, a secondary
proposition intended to facilitate the demonstration of
a theorem to follow ; and the corollary, a direct conse-

quence of a theorem which has just been established.

But how are these propositions to be demonstrated ?

Although all agree as to the method to be followed, there
is a divergence of views as to the interpretation to be

given to the demonstration. At the time of Plato
and probably of Euclid also l there were subtle discus-

sions on the question whether mathematical pro-

positions must be considered as problems to be solved,
or on the contrary as theorems to be demonstrated.
Proclus (Comm. Eucl., I, p. 77, 15 et seq.) sums up the
discussions on this subject in the following way. The
Platonists such as Speusippus and Geminus held that

figures and their properties exist in the eternal world
of ideas independently of the construction the mathe-
matician can make of them ; the latter can only make
manifest to the understanding what already existed.

For example, equilateral triangles are such by
definition, that is to say, by an eternal relation of

ideas, and the fact of constructing them cannot add to

or take away anything from their existence. There-

fore it is not correct to speak of problems, but only
of theorems (objects of contemplation). Some philo-

sophers, such as the mathematicians of the school of

Menaechmus, were of the opinion that all should be

regarded as problems ; others said with Carpus that

problems as a class precede theorems, because it is by
the former that the subjects are found to which belong
the properties to be studied.

Finally, many considered as a theorem that which
contained only one possibility, and as a problem
that which was capable of several possibilities. For

example,
"
to propose to inscribe a right angle in a

semicircle is not to speak geometrically, since all the
* 26 Tannery, G/o. grecque, p. 145.
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inscribed angles are right angles; on the contrary,
to inscribe an equilateral triangle in a circle is really a

problem, since it is possible to inscribe in it a triangle
which is not equilateral/'

*

The disagreement is deeper in appearance than in

reality, and arises, as Proclus explains, from a difference

of point of view. The distinction between ideal science

and didactic science is itself sufficient to show that both
Geminus and Carpus may be right,

"
for if it is accord-

ing to the order that Carpus gives the pre-eminence to

problems, it is according to the degree of perfection
that Geminus gives it to theorems/

1 * In as far as it

is ideally conceived of, mathematical truth only contains

theorems, but to the mind that conquers it by degrees
it appears in the form of problems. However, whether
it is a question of problems to solve or theorems to

demonstrate, it is necessary to have recourse to methods
of which the Greeks, starting from Plato, had carefully
fixed the stages. By analysis they decomposed a

complex whole into simpler propositions, already
admitted or demonstrated. For example, to draw a

tangent to two circles, they supposed the problem
solved, and showed that in order to find this solution,

it is necessary to start from the known construction of

a tangent drawn to a circle through an external point.

Synthesis, on the contrary, enables the complex
geometrical relation, of which the demonstration is

needed, to be reconstructed by means of primitive

propositions.
For the Greeks the typical question consists of seven

parts:
1, The protasis, or enunciation indicating the data of

the problem and what is required ;

2, The ecthtsis, or repetition of the enunciation in

relation to a particular figure ;

1 26 Tannery, G/o. grccque, p. 145.
1
Quoted according to 4 Boutroux, IdJal, p. 63.
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3. The apagogee (faayayrfj),
1 which changes the ques-

tion propounded into another more simple ;

4. The solution, which shows the possibility of solv-

ing this simpler question by means of the data of the
enunciation in defining by division the conditions of

possibility ;

5. The construction, which completes the ecthesis by
defining the various accessory lines which it is necessary
to consider in order to make the demonstration ;

6. The demonstration properly so called, which
deduces from the construction the figure required ;

7. The conclusion, which affirms that this figure
satisfies the required conditions. 8

As M. Zeuthen remarks,
"
whilst the analysis con-

tained in Nos. 3 and 4, i.e. in the transformation and
the solution, is methodically important for finding the

solution, it is no longer necessary when it is merely a

question of expounding in an unassailable manner
what has been found, which was always the chief aim
of Greek writers. It is therefore very often omitted,
so that the exposition consists only of the use of

operations numbered i, 2, 5, 6, 7 ;
thus the form which

we call synthetic is obtained/' 8 By their very nature

theorems assume the form of a synthetical rather than
an analytical exposition. They are capable, however,
of an antithetical demonstration, the procedure of

which is analytical. One supposes that the proposed
theorem be true or false, then one considers whether
the consequences deduced from this supposition be

apparently right ; according to the conclusion reached,
the theorem will be judged true or false. One supposes,
for example, that two triangles, having one side and

*G. Friedlein, In primum Euclidis EUmentorum librum
Procli Commentarii, Teubner, Leipzig, 1873, p. 212.

*
4 Boutroux, Idial, p. 55. 29 Zeuthen, Histoire de$

matiques, p. 80. 26 Tannery, G4o, grecque, p. 148.
*
29 Zeuthen, Histvirt $4$ wathtmatiques, p* 83,
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two angles adjacent to this side equal each to each,
are equal. To affirm the contrary would be to admit
that the two triangles cannot be exactly superposed,
and that the angles supposed to be equal are not so in

reality, which is not in agreement with the data of the

question.
If we now consider Greek geometry, having no

longer regard to its particular methods, but to its

spirit, there are other characteristics yet to be noted.

The demonstrations are always instinctively based on

logical and statical ideas
; they generally avoid making

any appeal to considerations which, in spite of their

evidence, arise from intuitive perception. It is thus
that Euclid demonstrates the following fact which

might appear however unquestionably evident : if

from a given point a perpendicular and two oblique
lines are let fall on a straight line, of those two oblique
lines that which diverges most from the perpendicular
will be the longer.
As far as possible Euclid also avoids, if not the dis-

placement, the turning over of a figure, although this

operation, now considered correct, allows of a more

rapid demonstration. For instance, it is enough to

turn over an isosceles triangle in order to demonstrate
that the angles opposite to the equal sides are them-
selves equal. Euclid however prefers to decompose
the isosceles triangle into two right-angled triangles,
whose equality he then proves. It is the same when
he wishes to demonstrate, pair by pair, the equality of

the angles formed by a secant which cuts two parallel

straight lines. The simplest method would be to

displace one of the parallels until it coincides with the

other. Euclid here again brings in two right-angled

triangles, of which he establishes the equality. In this

way the demonstration preserves a static character

more in agreement with the exigencies of logic. This is

so true that wherever displacement occurs in plane
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geometry, it is equivalent to a construction. Thus to

superpose a triangle B on another triangle A in such a

way as to be able to compare them, comes to construct-

ing the triangle B on the triangle A according to the
conditions stated in the enunciation.

We see that plane geometry avoids the direct use of

the methods of displacement, especially of turning over,
and the reason for this must be sought in the fear of

giving a hold to the arguments of Zeno respecting
motion and infinity.

It was also for this same reason, we think, that the

Greek philosophers avoided the geometrical infinity
in the same way as they rejected the direct use
of numerical infinity in their methods of integration.

They possessed, however, since the works of Apollonius,
the essential elements (points of involution, anharmonic

ratio) for reaching, by generalization, to geometrical

infinity. But on this question they remained faithful

to the teaching of Aristotle, who considered real space,
and therefore geometrical space, to be finite. Conse-

quently, the conception of points, straight lines, and

planes, removed to infinity, is not only obscure from
a logical point of view, but contrary to experience.
Therefore it would not be possible, even as a convenient

symbolism, to appeal to geometrical infinity and make
it the starting-point of new methods. For want of

searching in this direction and from loyalty to its

logical ideal, Greek geometry was obliged to resort to
a complicated kind of demonstration, the application
of which rendered difficult the linking of theorems in

correct sequence. It was an event of outstanding

importance when Desargues, in the seventeenth cen-

tury, made a direct use of geometrical infinity. The

simplifications wrought by this act were so great that

they struck the contemporaries of the great geometer.

Speaking of Desargues, the engraver Bosse says that

the work which he has published on conic sections, one
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proposition of which includes as consequences sixty of

those of the four first books of Apollonius, has gained
for him the esteem of savants.1

In conclusion, what characterized the spirit and
methods of Greek geometry was an ideal of logical

rationality which may be defined in the following
terms :

1. To postulate primary propositions (definitions,

hypotheses) as logical and as few in number as possible.
2. To construct by means of reasoned deduction

the whole edifice of mathematics on the basis of these

propositions.

Logical rigour is thus safeguarded, but at the price
of complications which, as we have just seen, do not

allow the methods of invention and demonstration to

be given all the generality of which they are capable.

1
Chasles, Aperpu historique des mtihodes, Gauthier-Villars,

Paris, 1875, p. 78.



CHAPTER II

ASTRONOMY

FROM
its beginnings Greek Astronomy, like

Geometry, sought to model itself after the

type of a rational science ; having to explain

physical facts, it tried to do so by physical causes,
that is to say causes of the same nature as these facts.

To primitive peoples, celestial phenomena are divine,

that is, they depend entirely on the more or less

capricious will of divinities. Doubtless, as we have

seen, the Egyptians and Chaldeans already possessed
some amount of astronomical knowledge, but this

knowledge consisted, after all, in ascertaining the

periodicity of celestial phenomena, without giving any
explanation of these.

From the first, Greek astronomy launched out in

another direction, as the works of the Ionian school

show. These works appear incredibly daring if we
compare them with the religious beliefs of the Chaldeans

and Egyptians.
Thales, for example, lays down as a principle that

water is the unique element from which all things arise

by the action of purely physical causes, for water can

be solidified into ice, be changed into vapour, that is,

air, etc. Having once laid down this principle, Thales

deduces from it a cosmology which, in spite of its

childish simplicity, remains physically rational.

However it was only with difficulty that Greek

astronomy succeeded in specifying its ideal and object.

It passed through a series of stages which may be

161
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roughly indicated as follows : in the first phase
astronomy is entirely confused with meteorology ; in

the second, the physical and geometrical hypotheses
which it needs are distinguished more or less clearly ;

in the third and last phase an attempt is made to give
a mathematical representation as exact as possible of

the movement of the heavenly bodies.

1. METEOROLOGICAL IDEAS

As long as the earth and the sky were regarded as

being situated on the confines of one another, celes-

tial phenomena were assimilated to meteorological

phenomena and an explanation pf the former was

sought in the latter. The meteorological ideas them-
selves were very confused. Vapour was simply con-

densed air. Furthermore up to the eighth century
B.C. darkness was considered as a material thing,

composed of vapour. Heraclitus, for instance, affirms

that darkness is a concrete vapour, which, rising from
the sea and the bottom of the valleys, is able by its

aqueous nature to extinguish the sun. Plato likewise

makes the Pythagorean Timaeus say that fog and
darkness are condensed air (Timaeus, 58 D, 2). The air

possesses different properties according as it is hot or

cold : in the first case it is light and mobile ; in the
second it is heavy and stable. On the other hand, when
it is compressed in the form of vapour, it is partially

changed into invisible fire which suddenly bursts forth

as lightning, when, for lack of compression, the cloud

is rent. For a long time the Greeks, like the Chaldeans
and the Hebrews, regarded daylight as distinct from

sunlight. Shadow even had a concrete reality of its

own, it was not a function of light; it was only
strengthened by its opposition to fight. These ideas

persisted until the time of Empedocles, when the

reflection of light and the true nature of vapour,
shadow, and darkness were discovered
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In agreement with the meteorological opinions which
we have just called to mind, there were, concerning the
nature and the movement of the heavenly bodies, the

eclipses, the shape and position of the earth, very diverse

hypotheses of which the following are the principal.
First of all, to explain the constitution and the

movements of the heavenly bodies, Thales and with him
Heraclitus considered them as basins which move on the

liquid vault of the heavens and in which the dry exha-
lations arising from the earth are consumed. Anaxi-
mander and probably with him Pythagoras likened the

celestial bodies to the felloes of a wheel, which, formed

by the compression of the air, encloses an invisible

fire ; owing to the compression, openings by which
the fire escapes are produced on the periphery of the

felloes, which revolve with a uniform movement. 1

Anaximenes, on the contrary, declares that the celestial

bodies are of an igneous nature and are supported by
the air

"
like thin leaves." *

Xenophanes considered

them to be fiery clouds, similar to St. Elmo's fire,

which move in a straight line from east to west.1

Empedocles thought, as we have seen, that the sun was

produced by the rays which proceed from the lighted

hemisphere and which, after being reflected on the

surface of the earth, are concentrated at one point of

the crystalline vault. Anaxagoras appears to have
been the first to describe the sun, the moon, etc., as

fiery stones which are drawn round by the rotation of

the ether.

The explanation of eclipses arises quite naturally
from these various ideas. In the cosmology of Thales

and Heraclitus, the eclipses, according as they are

partial or total, are caused by the inclination or

turning over of the luminous face of the basins which

*8 Burnet, Aurore, pp. 68 and 124.
*Ibid. t p. 31.

p. 135.
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are the stars. According to Anaximander, they result

from the partial or total obstruction of the opening of

the felloes. Anaximenes explains them by the inter-

vention of earthy dark bodies which move around the

celestial vault. Empedocles, however, knew the true

theory of the solar eclipses, though it was Anaxagoras
who clearly formulated it, as Hippolytus reports :

" The moon is eclipsed by the earth which robs it of

the light of the sun, and also sometimes by the bodies

which are below it and pass in front of it. The sun is

eclipsed at new moon, when the moon hides it from us."

(Diels, For. I, 301, 47.)
As to the shape and position of the earth, the first

lonians generally considered this as a cylinder sup-

ported by water or suspended in the air, or as a thin

disc, or again as a dish with turned-up edges.

Pythagoras seems to have been the first to affirm the

sphericity of the earth, which was distinctly proclaimed

by Parmenides. 1

Finally, it may be said that the conceptions of the

comparative movements of the heavenly bodies are

lacking in precision, and vary according to their authors.

These all agree that the region of the fixed stars accom-

plishes a revolution round the celestial pole in 24 hours ;

but they differ in their views regarding the sun, moon
and planets. These heavenly bodies are sometimes re-

garded as meteors which traverse the atmosphere by
an independent motion, sometimes as bodies partially
drawn by the movement of revolution of the starry
heaven.

2. THE PHYSICAL HYPOTHESES
The Pythagorean school did not entirely abandon

the meteorological studies of its predecessors, but it

added to them the desire to comprehend the mechanism

1
25 Tannery, Science helUne, p. 208.
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of the celestial movements. In the doctrines professed

by this school, it is very difficult to separate the ideas

of the master from those of his disciples.

Although Pythagoras affirmed that the earth is

motionless,1 it appears that he must be given the credit

of recognizing that it is a sphere, it may be because

he considered this figure perfect, or it may be that he
had recognized it in the shape of the terrestrial shadow
which causes the lunar eclipses. He was the first to

distinguish, in the progression of the sun, of the moon
and even of the planets, two movements which take

place about distinct poles. One of these movements
is diurnal, along the plane of the equator ; the other is

annual, in an opposite direction to the first, along the

plane of the ecliptic. This is all that can be reasonably
attributed to Pythagoras.
One of his disciples, Philolaus, a contemporary of

Socrates, developed the conceptions of his master in

the following manner. The spherical universe is sur-

rounded by a fire which sustains it, and of which a

part is also condensed at its centre. The central fire

produces the diffused light of day and the outer fire

feeds the stars. The space which separates them is

divided into three concentric regions. The most distant

is the Olympus, or the sphere of the fixed stars. Then
comes the Cosmos, in which are found successively, as

the central fire is approached, the planets, the sun, and
the moon. The sun, moreover, is not self-luminous,
it is a transparent mass like glass, which receives the

illumination of the fire from above and sends it back
to the earth. Lastly, the Uranus forms the sublunar

region in which "
are found the things subject to genera-

tion! the prerogative of that which animates the trans*

mutations." (Aetius, Diels, Vor. I, 237, 23.) This

radical distinction between the sublunar region and
the space which extends from the moon to the confines

1
13 Duhem, Systttm, I, p. 8.
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of the universe was revived by Aristotle and affirmed

until the Renaissance.

The bodies which exist above the moon are composed
of pure fire or pure elements, which cannot be impaired
or changed ; they are therefore eternal, and, being un-

created, are imperishable.
The sub-lunar bodies, on the contrary, are all com-

plex ; they are subject to generation and destruction,

since the mixtures of which they are formed are

subject to all sorts of changes.
The earth is in the Uranus as well as its opposite

the counter-earth (Antichthon), which was postulated
to satisfy the law of perfection which required that the

number of the heavenly bodies in circular motion
should reach the perfect figure ten. The existence of

the counter-earth was also necessary to explain the

greater frequency of eclipses of the moon than of the

sun.

The earth and the counter-earth turn around the

central fire as if they were rigidly fixed to the extremi-

ties of one diameter. This is why we cannot see either

the central fire or the counter-earth from the side on
which we live. The ten celestial bodies (sphere of the

stars, five planets, sun, moon, earth and counter-earth)
move around the central fire, the hearth of the universe,
after the manner of a chorus on the stage ; moving at

different speeds, they produce by their revolution a

perfect musical harmony. The earth is not the only

heavenly body inhabited. The moon is also inhabited,

but the lunar beings are more beautiful and fifteen

times as big as the terrestrial beings. (Aetius, Diels,

For., 237, 43.)
Hicetas and Ecphantus, two disciples of Pythagoras

later than Philolaus, abandoned the hypothesis of the

counter-earth; they placed the central fire in the

interior of the earth and the earth itself at the centre

of the universe. Furthermore, to explain the move-
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ment of the heaven and the heavenly bodies, which
movement they considered as being apparent, they
endowed the earth with a movement of rotation on
itself. Their doctrine, preserved by Cicero amongst
others, certainly guided Copernicus in his investiga-

tions, for he twice quotes the passage from Cicero

(Quaestioncs Academicae priores, II, 39), in which
Hicetas is erroneously called Nicetas. This passage
is as follows :

"
According to Theophrastus, Nicetas of Syracuse

professed the opinion that the sun, moon and all the

celestial bodies remained motionless, and that nothing
moves in the world, except the earth, which, turning
round its axis at a great speed, produces the same

appearances as those observed when it was supposed
that the earth was fixed and the heaven in motion.
Some think that Plato, in the Timaeus, said the same

thing in a somewhat more obscure manner." l

As M. Duhem remarks, 2 the little that we know of

the systems elaborated by the Pythagoreans to explain
the celestial movements is enough to awaken our
astonishment and admiration. The fecundity and the

ingenuity of the Hellenic mind are surprising : scarcely
had it found itself at grips with the astronomical

problem when it multiplied its attempts at solution,

and attacked it in most diverse ways. The conceptions
of the Pythagorean school had in fact an incalculable

influence on astronomy, for they distinguished for the

first time between movements which are real and move-
ments which are only apparent ; they bring into

relief the fact that outside the data immediately
furnished by the senses there must be sought a har-

monious reason to explain them.
Plato incorporates in his teaching the principal

elements of the Pythagorean astronomy. He retains

1 Quoted after 13 Duhem, Sys&me I, p. 22,

*Ibid. t p. 27.

12
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the fundamental distinction between the diurnal

motion and the annual retrogradation of the planets,
sun and moon, movement and retrogradation which
take place on two planes and about two different poles.
The Timaeus shows us the Demiurge who, after having
created a world-soul, cuts it in the shape of a X,
then curves back the extremities of this X so as to

obtain two circles. One of these circles represents the

equator and the uniform changeless movement of the

diurnal revolution ; the other represents the ecliptic
and the varied movements of the celestial bodies other

than the stars.

The two circles are found again in the movements of

the mind, which sometimes seeks after the eternal, some-

times, on the contrary, clings to the changing elements

of reality. But the principal idea of the Pythagorean
astronomy, which Plato kept, was the opposition
between real and apparent movements. For this

reason, he assigns to astronomy the following task : to

account for these appearances, that is, to discover

behind the sensible phenomena the geometrical reasons

which explain and justify them. "
Plato, says Sim-

plicius in his Commentaries (in Aristotelis libros de

coelo commentarii, Bk, II, cap. xii, Karsten edit., p. 219,
col. a), admits in principle that the celestial bodies

move with a circular motion, uniform and constantly

regular (that is, in the same direction) ; he propounds
therefore this problem to mathematicians What are

the circular and perfectly regular movements which

may properly be taken as hypotheses to account for

the appearances of the wandering heavenly bodies ?
M *

The problem having been thus stated, it is necessary,

starting from Plato, to distinguish in Greek astronomy
two kinds of hypotheses which until that time had
been more or less mingled : the physical hypotheses

regarding the nature and constitution of the stars, and
1 Quoted from 13 Duhem, Systtme I, p. 103.
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the mathematical hypotheses which attempt to account
for their movements. The physical hypotheses, al-

though in some degree supplemented by Aristotle,

remained in antiquity and the Middle Ages practically
the same as in the time of Plato and his immediate

predecessors. At this epoch, as we have seen, the air

and humidity were no longer confused ; darkness was
considered as a shadow and no more as a material fact.

It was also admitted that although the sun, planets
and stars shine by themselves, the moon has a borrowed

light.

This being so, the physical hypotheses may be
reduced to four :

1. The universe forms a finite and finished whole.

To suppose it illimitable, is to contradict both reason

and fact. Our reason cannot in fact conceive of some-

thing which exists in reality and does not occupy a
definite place. On the other hand, if the universe

were infinite, its extremities would have to traverse

infinite spaces in a finite period of twenty-four hours,
which is actually impossible.

2. Since the universe is finite, it has a spherical form
and a centre, and it is the earth which must occupy
this centre. If we consider the earth alone, we see

that it is motionless. Besides, of all the elements
known to us, it is the terrestrial element which is

heaviest and consequently must occupy the centre of

the universe.

3. The universe as a whole is composed of two

regions : one celestial, the other sublunar. The sub-
lunar region comprises the bodies formed by the

mixture of the four elements, water, air, earth and fire,

and which are therefore subject to birth and death.

The celestial region is occupied by the heavenly bodies,

which, being formed of a fifth and unique element

(quintessence), are, like this element, incorruptible*

4. Physically there is but one possible movement,
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regular and uniform, for a body which turns freely
about another; it is the circular movement. For,
if the revolving body begins to approach or recede

from the central body, it will end either by falling on
it or by going away from it altogether.

3. THE MATHEMATICAL HYPOTHESES
The mathematical hypotheses were on the whole

much more varied than the physical ones. In order

to grasp their significance, it must be remembered
that they do not pretend to explain the movements
of the heavenly bodies in regard to one another by
any physical cause such as Newton's law of attraction,
for instance.1

They only attempt to give a geometrical

representation of these movements. This representa-
tion may be imaginary like the mechanical means for

going from the earth to the moon imagined by modern
novelists. The novelist must doubtless take into

account the known laws of physics and not contradict

these : but nevertheless it matters little to him that

the engineer has not the necessary funds for the con-

struction of the cannon which will send a bullet to the

moon. In the same way Greek astronomy was obliged
to take into consideration the four physical facts

mentioned above, but for the rest it was entirely free

to invent whatever geometrical representation appeared
to be most appropriate. Plato and his Pythagorean

1 " We must, however, except a curious opinion reported
by Plutarch (De fade in orbe lunae, Ch. VI) which seems to
foreshadow the mechanics of Newton, and which may be
summarized as follows : What keeps the moon from falling
is its own movement and the rapidity of its rotation ; similarly,
for a projectile put in a sling, the force which prevents it from

falling comes from circular rotation. In, fact, natural motion

only carries along a given body if nothing else opposes it.

The moon is not carried along by its weight, for this weight
is repelled and destroyed by the force of its rotation." Quoted
from Doublet, Histoire de I

1

Astronomic, p. 119.
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predecessors thought to account for the appearance of

the wandering heavenly bodies by endowing them
with a dual revolution, diurnal and non-diurnal, in an

opposite direction to each other
;
but this conception

did not solve the problem.
The planets situated on the same plane (the ecliptic)

as the sun doubtless traverse the same region as the

sun, namely, the constellations of the zodiac, but their

progression is irregular and shows stationary points
followed by a retrograde movement, then an advance,
and so on.

To account for this irregular motion, Eudoxus of

Cnidus gave to each wandering heavenly body a
mechanism of homocentric spheres touching and

enclosing one another and having the earth as their

centre.
" The heavenly body is situated in the thick-

ness of the last of these spheres, the one which is within

all the others, and its centre is on the equator of this

sphere."
*

The first sphere, that which is exterior to all the

rest, turns with a uniform motion from east to west,
in twenty-four hours round the axis of the earth shown

by the Pole star. In this manner all the planets share
in the diurnal rotation which moves the heavenly
bodies. The second sphere, resting by means of its

axis on the first sphere, is animated by the same uniform

movement, but the speed and sense, as well as the

direction, of its own movement are different. In

fact, this second sphere turns uniformly from west to

east around an axis which is normal to the ecliptic.
The duration of this revolution is not the same for the
various planets ; it is, for example according to Eudoxus,
one year for Mercury, eleven years for Jupiter, etc.

The third sphere, which is interior and contiguous
to the second, is affected by the complex movement of

1 The system of Eudoxus has been reconstituted by Schia-

parelH and summarized by 13 Duhem, Systtme I p. 114.
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the latter and combines this with its own uniform
movement.

Things proceed in this manner down to the last

sphere, which carries the planet on its equator, and as

many spheres are required as there are particular
movements of the planet to explain.
For instance, if the plane of the moon were the same

as that of the ecliptic, there would be as many eclipses
of the sun and moon as there are new and full moons,
and two spheres would be sufficient to account for the

observed facts. But the plane of the moon being
inclined to that of the ecliptic, the latter is cut by the

lunar orbit at two points or nodes, at which points
alone eclipses can take place. As these nodes are dis-

placed by a uniform and regular movement, it requires
a special sphere to explain this displacement. So that

three spheres in all are necessary to explain the move-
ment of the moon in the heaven.

The problem is more complicated where the planets
are concerned, since here there are stationary points
and retrogradations followed by new progressions.
Thus for each planet Eudoxus had recourse to four

spheres : the first is connected with the diurnal revolu-

tion, the second with the zodiacal revolution, the third

and fourth with the irregular movements.
There would be in all 27 spheres (20 for the planets,

three for the sun, three for the moon, and one for the

stars).
Aristotle adopted the system of Eudoxus and sought

to perfect it, partly by his own ideas and partly by
those of Calippus. In the system of Eudoxus the

movement of each planet forms an independent whole.

Aristotle imagined compensating spheres which are

intercalated in the spaces between the various

mechanisms of the heavenly bodies. All the move-
ments of the planets then become one with the single

movement which animates the starry sphere. Aristotle
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also affirmed the materiality of the spheres by consider*

ing them to be composed of ether. This materialization

was generally abandoned later on, until the time when
the idea was revived by the Arabs.
The system of homocentric spheres, perfected by

Calippus and Aristotle a hundred years before, sur-

vived until towards the end of the third century B.C.

It clashed, however, with weighty arguments based on
the noticeable variations of brightness shown by the

planets, especially Mars and Venus. These variations

of brightness indicate that the distances of the planets
from the observer change in a manner which is incom-

patible with a system of spheres concentric to the

earth, in which the planets are always equally distant

from the earth. 1
Further, the theory of Eudoxus

does not explain why Mercury and Venus are the only
planets which always remain in the neighbourhood of

the sun.

To surmount these difficulties, a disciple of Plato,

namely Heraclides of Pontus, had recourse to two

hypotheses, of which one, which is quite original,

admits a partial heliocentrism. Like the Pythagorean
Ecphantus he first of all affirmed that the earth is at

the centre of an infinite universe and that it turns

on its axis in twenty-four hours, which explains the

apparent revolution of the starry heavens. This

being so, he supposed that Venus and Mercury revolve

round the sun, whilst the latter moves round the earth

as do the other planets.
Aristarchus of Samos, the date of whose scientific

work is about 280 B.C., went farther still in the same
direction. He conceived a heliocentric system, the

essential ideas of which were reproduced by Copernicus
in the sixteenth century, and which may be described

as follows : the motionless sun is situated at the centre

of the universe which is bounded by the immobile
1 2 Bigourdan, Asfronomie, p. 254.
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sphere of the fixed stars. The earth is animated by a
dual movement : the diurnal movement of rotation on
its axis, and the annual movement of revolution round
the sun. The planets also revolve round the sun.

According to Aristarchus it must also be supposed
that the sphere of the stars is very far away, otherwise

the existence of parallaxes would be ascertained,

which, in his opinion, is not the case.

This conception, as ingenious as audacious, had no
renown in antiquity. The reasons for this failure are

diverse, religious as well as scientific. To liken the

earth to the planets, by making it, like them, revolve

round the sun, was to be guilty of impiety, for it

abolished the distinction between the corruptible
matter of the earth and the incorruptible essence of

the stars. The hypothesis of Aristarchus was also

contradictory to the then known laws of physics, since

the earth, being composed of the heaviest elements, must

necessarily occupy the centre of the universe. Lastly,
this hypothesis by its use of circular movements alone,

did not account for the inequality of the seasons. For
these reasons we can well understand why it was not
followed up.
The solution of the difficulties which the system of

Eudoxus could not overcome was sought in another
direction. Hipparchus and Ptolemy, using the works
of Apollonius, had recourse to a combination of

eccentrics and epicycles. An eccentric movement
is that described by a circle turning round a point
within it other than its centre. A system of epicycles
is formed by an arrangement of successive circles

such that the centre of one is at a point on the circum-
ference of the other. It is therefore necessary first to

observe the stationary points, the retrogradations and
the variable brightness of a planet, and notice the
differences according to the region of the heaven it

traverses, and then find the combination of epicycles
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and eccentrics which will account for the facts

observed.

Hipparchus acquitted himself of this task in a

masterly fashion. He not only succeeded in sur-

mounting the difficulties which had arrested his pre-

decessors, but he discovered new facts such as the

precession of the equinoxes and gave a geometrical

explanation of them.1

Inspired by the conceptions of Hipparchus, Ptolemy
summarized and completed the astronomical know-

ledge of antiquity in the form in which it was be-

queathed to the Middle Ages. At this period, two
tendencies manifested themselves: one amongst the

Arabs, the other amongst scholastic thinkers.

The Arabs could not be satisfied with the abstract

conceptions of Greek astronomers; they sought un-

dauntedly to materialize the geometrical fictions, and
to give them a physical basis.

"
In reality/' said

Averroes,
" the astronomy of our time does not exist ;

it is suitable for calculation, but does not agree with
what really is."

* To fill this gap Al-Bitrogi imagined
nine solid and transparent spheres and attempted to

explain all the celestial phenomena by their arrange-
ment. 8 This realistic conception found favour in the

Middle Ages. As Paradise was situated at the outer-

most part of the heavens, in order to reach it it was

necessary to cross the solid spheres by certain fixed

1 He ignored the physical cause of this phenomenon, namely
the equatorial bulging of the earth. In consequence of this

bulging, the earth in its movement of rotation moves like an

oscillating spinning-top, therefore the plane of the equator
and the plane of the ecliptic do not intersect at the same point
at the end of an annual revolution. The result is that after

each year the sun returns to the equinox slightly sooner than
it otherwise would do with respect to a star taken as a guiding
mark of reference.

f
i3 Duhem, Systtme II, p. 139.

f
Ibid., p. 149.
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paths. The journey, under these conditions, was not

easy, as is shown by the fabliau
"
of the villein who

gained Paradise by pleading
"

:

A son chevct par grand hasard
II ne se trouva pas un diable, pas un ang$
Qui put le rfolamer au moment du depart.
Embarrass^ le pauvre here

Partit sans guide et ne sachant que faire.
Par bonheur il rencontre et suit range Michel

Qui menait lors un bienheureux au del.

The scholastic philosophers, particularly Thomas

Aquinas, preserved the attitude adopted by the Greek

astronomers, whose hypotheses they discussed very
freely.

"
It might be possible," declared Thomas

Aquinas,
"
to explain the apparent movements of the

stars by some other method not yet conceived by
man." *

We know how Copernicus during the Renaissance

brought into fame the heliocentric system proposed
by Aristarchus, while at the same time, like the latter,

he kept the conception of a finite universe. Under these

conditions his hypothesis could not have a revolutionary
character. Being regarded as a mathematical specu-
lation, it was studied from this point of view and was
found wanting, even by thinkers such as Tycho Brahe.
It contradicted the physics of Aristotle without supply-

ing the proofs required ; moreover it scarcely simpli-
fied the calculations at all, since the movement of the

planet Venus, for instance, still required a machinery
of five epicycles.

1

In order to disturb beneficially the minds of men and
to find credence, the hypothesis of Copernicus needed
to be completed :

i. By the considerations of Giordano Bruno on the

1
13 Duhem, System* III, p. 354.

24 Sageret, Systeme, p, 194.
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relative movements and the infinite magnitude of the
universe ;

2. By the hypothesis of Kepler regarding the

elliptic movement of the planets, a brilliant hypothesis,
since it led to a very great simplification in the calcula-

tions, without being contrary to the appearances ;

3. By the researches of Galileo on weight, and by his

observations on sun-spots ; for the results thus obtained

finally demolished the physical theories of Aristotle

concerning loci and the opposition between ^he celestial

and sublunar regions.
It was therefore owing to the works of Kepler and

Galileo that the mathematical and physical hypotheses
could harmoniously blend and that astronomy could

enter upon new paths.



CHAPTER III

MECHANICS AND PHYSICS

TO
build up, as did the Greeks, a scientific

astronomy which was altogether different from

astrology, is a task which presents very great
difficulties ; but when it is a question of explaining

physical and mechanical phenomena, these difficulties

become almost insurmountable. In this domain we
come into collision with such a variety of aspects
that it seems impossible to derive them all from a

small number of primary notions,

A badly-hewn tree trunk is in equilibrium on a

beam. We feel instinctively that the equal division

of the weight round the point of support is the cause

of this phenomenon. But how can it be explained

accurately ? And is the equality of weights the sole

cause ? A bag of sand placed on a bar of iron can
remain in equilibrium even if the sand is not equally
distributed on the two sides of the bar.

A piece of deal and a piece of cork of the same size

are thrown into the water. The latter sinks less than
the former. Is it possible to explain this fact by means
of the same theories which make comprehensible the

state of equilibrium of the beam or of the bag of

sand?

Again, it is quite another matter if we pass from the

study of bodies at rest or in equilibrium to the study
of bodies in motion. We know that a stone falling

freely from the height of a tower accelerates its faJL

How is this increase of speed to be accurately measured ?

178
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We know also that a pebble thrown almost vertically

by means of a sling stops at the highest point of its

path and then falls back again. But what path has
this pebble travelled and what has been its speed at

each instant ? Can we hope to deduce the explanation
of such diverse phenomena from a few conceptions
and a few principles ?

It must be stated at the outset that the Greeks did

not succeed in realizing this ideal or at least they
could only do so imperfectly. It is the opinion of

many thinkers that the Greek mind was too logical
to be able to create sciences exclusively based on

experience and experimentation. The reproach stated

in these terms is certainly unjust. The Greeks were
able not only to observe but to control phenomena
as far as they were in a position to do so with the

instruments at their disposal. G. Milhaud has clearly

brought out this point, which proves the truth of the

technical inventions of the Greeks and of the physical

concepts which guided them. 1

1. TECHNICAL INVENTIONS AND PHYSICAL
CONCEPTS

We already find in Homeric times an advanced

technique, especially in the construction of swing-
doors and their fastenings (Odyssey, xxi, 42).* A
little later, at the time of Thales, the engineer Eupalinus
constructed in the island of Samos a tunnel which

passed under the hill of Kastro. This was dug out

from the two sides of the hill at the same time and
the meeting-point of the miners was almost exact,

which implies quite advanced methods of triangulation.
In Magna Gratia in the south of Italy, Archytas, the

distiple of Pythagoras, became celebrated for his

mechanical inventions and discovered the use of the

I 2i Milhaud, Etudes, p. 257.
* 10 Diels, Antikc, p. 34.
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pulley (Aulus Gellius, X, 12). However, it was

especially engines of war which appeared at the court

of Dionysius the Elder towards the year 400 B.C., to

be developed a century and a half later by the genius
of Archimedes.

Besides powerful cross-bows and formidable catapults
stretched by means of a windlass, the Greeks had even
conceived the idea of the machine-gun : an ingenious
mechanism made balls of metal slide automatically in

the groove of a cross-bow each time it was drawn. 1

The works of Hero show us also that the Greeks

already knew how to utilize currents of hot air, and

compressed air, and that they were on the way to

discover the motive power of steam, as is shown by
the aeolipile. This apparatus is composed of a hollow

sphere pivoted horizontally, which is supplied with
steam from a boiler through one of the pipes serving
as a pivot. This steam escapes from the sphere in

opposite directions by two pipes situated at the

opposite ends of a diameter perpendicular to the axis

of rotation. By this arrangement the escape of the

steam causes the sphere to revolve with increasing

rapidity (Hero, I Pneumatica, p. 230). In these works
there is a description of a lift and force pump for use

in case of fire (Hero, I Pnewmtica, p, 133), and also

the description of a hodometer similar in all points
to our taximeter. A small pin is fixed to the hub of

the carriage wheel, at each turn it moves a horizontal

wheel with spaced teeth. An ingenious system of

toothed wheels and endless screws transmits the move-
ment and turns the hands of the meters which mark
units of different magnitudes (Hero, III, Rationes

dimetiendi, p. 292).
The construction of the automata employed in the

temples and theatres likewise reveals an intelligent use
of the physical forces then known. A mechanism

1 xo Did*, Antike, p. 93,
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was cleverly hidden underground just beneath the
altars and communicating with them. Currents of

hot and cold air, or streams of hot and cold water,
or sometimes compressed air, could be used at will.

All that was necessary was to light the fire on the

altar. This fire heated the air and the water which
worked the subterranean mechanism. This in turn
acted on the statues, doves, etc., which the people
then beheld moving mysteriously. The gods and

goddesses raised their arms to bless the crowd and shed
tears or poured out libations. Or again a dove, lifted

by the hot air, rose by itself and fell to the ground
(Hero, I, Pneumatica, p. 338 et seq.). It is needless

to dwell on this point ; the interest to us of these con-

structions is the degree of physical and mechanical

knowledge which they imply.
In this respect the forces recognized by the Ancients

in the realm of physics were fire, air and gravitation,
and also magnetic force.

Plato spoke of the stone which Euripides called

Magnetic, and which was generally called the stone

of Hercules, which not only attracted iron rings but

imparted to them its own virtue (Ion, 533 D). He
attributed this attraction to the following phenomenon :

a fluid exudes from the pores of the magnet or of the
amber rubbed, and as a vacuum cannot exist in

nature, the air rushes into the pores and its movement
draws objects towards the magnet or electrified body.
As regards the air, the Ancients knew that it tended

to rise or descend according as it is heated or cooled,

and that, when compressed, it escapes with violence.

They also knew that if the air be sucked up from a
tube half plunged in water, the water rises in the tube,

and they explained the fact as follows: bodies are

superposed in order of density, at the bottom the

solids and liquids, above them the air, then the fire ;

they always tend to follow one another in this order
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without leaving any space between. Moreover the
force of attraction is not at all the same between all

these elements. It is little felt between a liquid and
a solid, but it is felt much more between a liquid and
the air. This is why the air sucked up out of a tube
half plunged in water attracts the water strongly and
counterbalances its weight. There is equilibrium when
the weight of the column of water raised is equal to

the force of the attraction of the air.

The Ancients also admitted that sound is propagated
in the air by spherical waves (Vitruvius, de architect.,

Bk. V), and that it can be sent back by an obstacle

and produce an echo.1

They admitted as well that light is propagated in

a straight line, and that it is reflected on a polished
surface at an angle equal to the angle of incidence.

This law seems to have been known by Plato, judging

by certain passages in the Timaeus (45 B and parti-

cularly 46 B) ; it was clearly enunciated by Euclid,
who demonstrated its principal consequences (Euclid,

VII, Optica). Refraction was also studied, chiefly by
Ptolemy.'
The property possessed by concave mirrors of giving

an enlarged image of an object was certainly utilized.

The Ancients were also acquainted with magnifying
lenses, although they did not know how to combine
them for the construction of telescopes or binoculars

or even eye-glasses. In the Clouds of Aristophanes
(Act II, Scene i) Strepsiades undertakes to efface by
means of a lens the characters engraved on a tablet

of wax :

" When the registrar has written his summons
against me, I shall take the glass and standing thus

in the sun, I shall make his writing melt." Seneca,

* A. de Rochas, La Science des philosophes et I'art des thau-

maturges dans rantiquitt, Dorbon Ain, Paris, pp. 35 and 39.
* On the beginnings of mathematical physics, see x 7 Loria,

Scienge esatte, p. 557.
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in his Quastioncs Naturales (Bk. I, Ch. vi., 5), says
that small letters looked at through a glass ball full

of water appear magnified.
In the realm of mechanics the Ancients knew that

a movement can be transmitted by means of toothed
wheels and endless screws, and that it is possible to

produce great effects with a small force, by allowing
it time and by using a system of pulleys in sufficient

number ; they also knew that water is incompressible
and that this property can be utilized.

Thus the technique of the Greeks was highly de-

veloped, and was well on the way towards the dis-

coveries which came to light during and after the
Renaissance. If its efforts failed to obtain greater
results, it was probably because the cheapness of slave

labour rendered the construction of machines unneces-

sary.
1

Leaving aside this important question, it

remains to be seen if and how the technical results

obtained were interpreted from a theoretical point of

view. With the exception of some passages from Plato,

it was Aristotle who first attempted to formulate in

order the general laws of physics and mechanics.1

2. ARISTOTELIAN DYNAMICS*

Strictly speaking, Aristotle does not distinguish, as

do modern scientists, between statics and dynamics ;

he does not separate the theory of equilibrium from

1
. Meyerson, Bulletin de la SociMfrancaise de Philosophic,

Feb.-March, 1914, p. 103.
On the conceptions anterior to Aristotle, see Evolution-

nisme et platonisme, by R. Berthelot, p. 139, the chapter
entitled: L'idte de physique mathtmatique et Videe de phy-

sique evolutionniste chez les philosophes grecs entre Pythagore
et Platon.

For the general characters of Aristotelian physics, consult

A. Mansion, Introduction a la physique aristotelicienne, Louvain,

1913 ; and H. Carteron, La notion de force dans le systtme

d'AristoU. 1924.

13
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the theory of motion ; he does not assign to the former
its own principles quite independent of the latter;

he deals generally with the movements which can take

place in a mechanism ; when no movement takes place
the mechanism remains in equilibrium.

1 It must not

be forgotten, moreover, that, for Aristotle, mechanics
as a whole rested mainly on philosophical doctrines

regarding the nature of movement and of natural

position, the distinction between celestial and sublunar

bodies, the opposition of natural and "
violent

" move-
ments, etc.

The idea of motion had primarily a much wider

meaning than that which we give it.
1 As a matter

of fact, by motion Aristotle understood :

x. A substantial change, which, for a given body,
can take place in two opposite senses : the passage
from form to formlessness which causes corruption,
or, inversely, a passage from formlessness to form
which gives rise to a birth.

2. A quantitative change, owing to which a body
is diminished or increased in volume.

3. A qualitative change which causes in a body a
transformation of its properties.

4. A local movement which brings about the dis-

placement of a body from one position to another.

Of these four species of motion, the qualitative

change presents a special character because it cannot
be reduced to a mechanism or to a simple study of

spatial ratios. A substance which changes in quality
does so, not by a displacement of its molecules, but

by an internal variation of its nature. The changes
in quantity and substance, on the contrary, imply a
local movement, This latter is therefore the most

important in mechanics. Besides, it concerns the in-

corruptible celestial bodies as well as the terrestrial

*n Dubem, Origines, I, p. 5.

13 Duhem, SysVme, I, p. 161.
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bodies which are subject to the phenomena of birth

and death.

This being so, the local movement can assume two
forms, the one natural, the other violent.

The natural movement arises from the fact that

for each body there is a place in which it exists in

perfect equilibrium and towards which it naturally
tends. This natural movement is necessarily simple
like each of the simple substances affected by it.

Only two kinds of simple movements exist, the move-
ment of rotation, which Aristotle calls the circular,

and the movement of translation, which he called the

rectilinear 1
(Phys. 261 b). The circular movement is

that which belongs by its nature to celestial bodies,
for it is, like them, perfect. The rectilinear movement,
on the contrary, is the movement of bodies situated

in the sublunar regions, which are subject to generation
and corruption.
The simple movements of translation are of two

kinds, some are directed towards the centre of the

universe, others follow directions issuing from this

point; the rectilinear centripetal movement (down-
ward movement) naturally affects the heavy or weighty
bodies whose position of equilibrium is the centre of

the universe; the rectilinear centrifugal movement

(upward movement) belongs to the light bodies which
are situated in the concavity of the lunar orbit. Of
the four elements which exist in the sublunar region,
two are heavy, namely earth and water, and two
are light, air and fire.

Thus heaviness and lightness impart rectilinear

movements to the bodies possessing these qualities;
but these movements cease as soon as the bodies have
reached their position of equilibrium, that is to say
the region of space in which they are naturally in

equilibrium. So this position is not only a reality
1
13 Duhem, System*, I, p. 205.
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but it possesses a certain power (Phys., 208 b, 10).
This fact explains why the fall of heavy bodies is

accelerated; the force of the weight increases in

proportion as the body approaches its position of

equilibrium.
1

The movements enumerated above, rectilinear down-
wards for heavy bodies, rectilinear upwards for light

bodies, circular for celestial bodies, are, as natural

movements, in opposition to violent movements, which
result from an external constraint and which are not
directed towards the position of equilibrium of a body ;

such, for instance, as the throwing of a projectile and
the towing of a vessel.

Further, whether the movement be natural or

violent, it can only be either rectilinear or circular

or composed of both,
"
for all that which is in motion

is moved either circularly or rectilinearly or both
"

(Phys., 261 b, 25).
In postulating this principle Aristotle foresees one

of the most fruitful theorems of modern kinematics

which may be formulated thus : in its most general
form, an infinitely small movement of a solid body
is composed of an infinitely small rotation around a
certain axis and of an infinitely small translation parallel
to this axis.* However, by applying this principle
without any consideration of the infinitesimal, the

Aristotelian dynamics was bound to lead to manifest

errors. Consider, for example, a stone which, thrown
into the air by means of a sling, falls back to the

ground. To the disciples of Aristotle, the trajectory
described by the stone is not a parabola, but it is

composed of two straight lines which are joined by
a circular arc.

Having once established the distinctions between

1 16 Jouguet, Lectures de mtcanique, I, p. 3.
*
13 Duhem, System*, I, p. 171. 24 Sageret, Systtmt,

p. 214.
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celestial and terrestrial (light and heavy) bodies, and
between natural and violent movements and their

kinds, Aristotle defined the conditions and laws of all

motion.
In his eyes any body which is moved is necessarily

subjected to two influences, a force and a resistance ;

without the force it would not be able to move, but
without the resistance, its movement would be accom-

plished in an instant, and it would immediately reach

the point to which it is impelled by the force
; the

velocity with which a body moves depends therefore

both on the magnitude of the force and the magnitude
of the resistance.1

This being so, if bodies of different weights, balls,

for instance, of the same material and of various sizes,

are placed on a plane horizontal surface, and if each
of them is pushed at the same time with the same force,

the lighter balls will roll more quickly and further than
the heavy ones. From this, and other analogous facts,

Aristotle deduces the following law which he considers

the basis of mechanics.

The force F which moves a body is equal to the

resistance R which acts on this body, multiplied by
the velocity V imparted to it by the force

This law of mechanics excludes the possibility of empty
space in nature, for if empty space existed anywhere,
bodies would not be subject to any resistance when

passing through it, and the ratio F/R which expresses
the velocity would lose all numerical significance

(Phys., 216 b). Thus, the existence of empty space
is far from being that which rendered movement pos-
sible, as the atomists pretended ;

on the contrary it

is inconceivable that a body may move in empty
space with a local movement.1

1
13 Duhem, Systim*. I, p. 192.

*
Ibid., p. 197.
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Further, according as the movement is natural or

violent, the resistance and the force manifest themselves

differently. In the natural movement, the force is

constituted by the quality of heaviness or lightness
which impels a body towards its position of equilibrium
and which acts inexhaustibly until this point is reached

by the body. As to the resistance, it is simply that

offered by the medium traversed, for instance the air

in the fall of a heavy body.
Observation shows us, besides, that the natural

movement, in as far as it is rectilinear, is accelerated

(Simplicius in Aristotelis. Diels, Bk. V, ch. vi, p. 916).
When a streamlet of water falls from a height, from

a gutter, for example, it appears continuous near its

origin, but soon the acceleration of the fall detaches

the drops of water from one another and they fall to

the ground separately.
When a stone falls from a height, it strikes an

obstacle more violently if it is stopped towards the
end of its fall than at the middle or beginning ;

this

more violent impact is the sign of a greater velocity.
1

Moreover, the theory confirms the observation. The
rectilinear movement cannot go on for ever, it has a

beginning and an end. Hence, starting from rest at

a determinate moment of the duration, a moving body
only passes from a zero velocity to a given velocity

by means of an acceleration, and this acceleration

continues for the same reasons as it began. It only
ends when the moving body has readied its goal, its

position of equilibrium.
1

In violent movements such as the traction of a
cart and the towing of a vessel, resistance is represented

by the weight of the object to be moved, and force by
the motive power continuously acting on this object.
The movement of a projectile in the air is a special

1
13 Duhem, Syst&me, I, p. 388.

24 Sageret, Systtme, p. 214.
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case. Here, it is the air which plays the part of

motive power. When displaced by the projectile

coining out of the catapult or sling, the air flows

back behind the projectile and pushes it forward.

Whilst the rectilinear natural movement is accelerated,
the violent movement is of necessity retarded (Phys. 9

230 b, 25).
From the mechanical point of view, the interest of

Aristotle's teaching lies in the law of proportions which
he establishes, as we have seen, between the velocity
V, the force F and the resistance R. The same force

can move successively a heavy body and a light body ;

but it will move the heavy body slowly and the light

body quickly; thus the velocities of the movements

imparted to these bodies will be inversely proportional
to their weights.

" The velocity of the lighter body
will be to the velocity of the heavier body as the

weight of the heavier body is to the weight of the lighter

body
"
(De Coelo, 301 b).

This law appears to be a faithful translation of com-
mon observation. At first sight, it even seems to

apply to the free fall of bodies in space. In this case

the motive force is the weight, the resistance is the air.

As a matter of fact, a light body like a feather falls

more slowly than a heavy body like a piece of lead.

If, however, we take two bodies of the same shape
but weighing respectively I Ib. and 2 Ibs., we ought
to have, since the resistance of the air is the same,

i lb,RV and 2 lbs, R2V,

The body weighing 2 Ibs, should fall twice as quickly
as the one of i Ib., which is contradicted by experience.
Thus the law postulated by Aristotle, which persisted

until the Renaissance, is manifestly false. The resis-

tance of the air does not play the part attributed to

it by the Stagirite, and bodies fall with equal speed
in empty space as had been supposed by the Atomistic
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philosophers and with them Lucretius (II, 235) :

"
Consequently the atoms, in spite of the inequality

of their masses, must move with equal velocity in

empty space."

Again let us take a body subject to a force which
remains the same and to a resistance which continuously
increases until it becomes equal to the force, for ex-

ample, when a stake is driven into the sand. Ex-

perience teaches us that the velocity becomes nil at

a given moment, but, according to the law of Aristotle,

that is impossible, since we have the constant :

Aristotle saw this difficulty, but in order to remove
it he simply laid down the law that a small force

cannot move a large body.
"
Because a whole force

moves a body along a certain distance, it does not
result that half this force moves this body along any
distance during any time. A single man would in

that case be able to move the ship which all the

haulers pull, if, the force of the haulers being divided

by a certain number, the distance traversed were also

divided by the same number." l Aristotle could not

explain by his theory why it is easier to move with
a given force a carriage having large wheels than one

having small wheels. His mistake lay in considering
as simple and elementary, facts which are really very
complex.
From the formula he had stated, F = R x V, Aris-

totle drew the conclusion that the properties of the

lever and the balance are related to the study of the

velocities with which circular arcs are described Two
forces are equivalent if by moving unequal weights
with unequal velocities they give the same value to

the product of the weight by the velocity.

1
Pkys. 250 a, 10, quoted from 13 Dtthem, System*, I, p. 194.
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"
If we take a rectilinear lever divided by a fulcrum

into two unequal arms to the ends of which two

unequal masses hang ; when the lever turns round its

fulcrum, the two weights will move with different

velocities, the one which is farthest from the fulcrum

will describe in a given time a greater arc than the one
which is nearest to it ; the velocities with which the

two weights move have the same ratio to each other

as the lengths of the arms of the lever.

When, therefore, we wish to compare the forces of

FIG. 31.

the two weights, we must find, for each of them, the

product of the weight by the length of the arm of the

lever ;
that one which corresponds to the greater pro-

duct will outweigh the other ; and if the two products
are equal, the two weights will remain in equilibrium."

*

By an intuition of genius, Aristotle extended to

other mechanisms his theory of the lever; he shows
that the various operations of these mechanisms can
be explained merely by considering the velocities with

which certain circular arcs are described; hence he

Duhem, Origins, I, p. 7.
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foreshadows the principle of virtual velocities.
"
For,"

said he,
"
the properties of the balance are reduced to

those of the circle ; the properties of the lever to those

of the balance ; and the greater part of the other

peculiarities of mechanical movements are reduced to

the properties of the lever" (Quastiones mechanics,

848 a, n).
Aristotle, however, was not able to deduce from the

principle which he discovered all the rigorous conse-

quences which arise from it. He applies it to problems
which are too complex for the means by which he

attempts to solve them. Already as regards the lever

he had been confronted with the following difficulty :

"
the line described in a movement of the lever through

the point of application of the force of resistance is

a circumference of a circle ; it does not coincide with
the vertical line along which this force or resistance

acts." l Aristotle perceived the problem, but he did

not succeed in solving it. He contented himself with

supposing that a balance is more accurate the longer
its arms are, for then the circular arc described ap-

proximates more nearly to a vertical line. 1

3. ARCHIMEDES AND STATICS

The method adopted by Archimedes is very different

from that of Aristotle. Archimedes limited the domain
of theoretical mechanics to the study of problems of

equilibrium, and in this manner he succeeded in estab-

lishing the foundations of statics and hydrostatics.
He did not dream of seeking his fundamental hypo-
theses in kinematics, for the laws which govern the

displacement of bodies in space do not seem to be
reducible to the intelligible and clear conceptions of

reason. On the other hand, the phenomena of equili-

brium can be interpreted by means of very simple rules,

*n Duhem, Origines, I, p. 9,

Jouguet, Lectures & mtcanique, I, p. 35.
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by a method similar in all points to that adopted by
Euclid in his Elements.

This being so, Archimedes only required that the

two following propositions should be granted :

1. Two equal weights applied at equal distances

from the fulcrum are in equilibrium.
2. Two equal weights applied at unequal distances

(from the fulcrum) are not in equilibrium and the more
distant weight descends.

These and similar postulates were considered by
Archimedes to be self-evident and independent of all

experience. If a rod supposed to have no weight
rests freely at its middle point on a fulcrum, and if

/ Z

A

FIG. 32.

two equal weights are suspended from its extremities,
it would appear a priori that the whole system is in

equilibrium, for as the system is symmetrical there

seems no reason why a movement should take place
in one direction more than in another. It seems
therefore evident, by virtue of the law of adequate
reason, that the hypothesis is independent of all

experience.
1

When this hypothesis is admitted, the law of

equilibrium is easily established in the case of a lever,

namely pL P/, the relation in which the greater force

P is exerted at the shorter arm I of the lever (Fig, 32).
* Mach, La Mtowique, Hermann, Paris, 1904, p. 18.
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To demonstrate this relation it is sufficient to replace,
in the example given, the weight of 4 Ibs. by an arrange-
ment of two weights of 2 Ibs. each, then there will be

symmetry round the fulcrum and consequently equi-
librium (Fig. 33).

After having established the law of the lever,

Archimedes used it in the investigation of the centre

of gravity of various surfaces such as triangles, trapez-

iums, and segments of a parabola. He demonstrated,
for instance, that the centre of gravity of a triangle is

the point of intersection of the medians. In fact, if

A

FIG. 33

a triangle be placed on the blade of a knife in such a

manner that the latter coincides in each position with

one of the medians, the triangle is in equilibrium.

Consequently, it will also be in equilibrium if it be

suspended by the point of intersection of the medians.

By a similar method, but making use of new hypo-
theses, Archimedes demonstrates in a masterly fashion

a series of propositions in hydrostatics, which are still

renowned. Amongst other things, he proves that a

body plunged in a fluid of equal density to its own is

entirely immersed, but remains suspended in the fluid
;

and that a solid floating in equilibrium on the surface

of a liquid displaces a weight of this liquid equal to

its own weight. It can be dearly seen that, in

mechanics, Archimedes did not, like Aristotle, deduce

his principles from the general laws of motion. He
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based his theories on certain simple laws of equilibrium,
taken as self-evident. Thus he made the science of

equilibrium an independent science which owes nothing
to the other branches of physics ; he established

statics.1 But the rigour and lucidity which he obtained

were bought at the price of a real sacrifice of the

generality and fecundity of the method.
The laws which govern the equilibrium of two heavy

bodies suspended from the arms of a lever have been
deduced from hypotheses peculiar to this problem.
They are of no use when there arises a case of equili-
brium in entirely different conditions

;
when analysed,

they cannot give any indication as to the choice of

new hypotheses. So that, when Archimedes studied

the equilibrium of floating bodies, he was obliged to

have recourse to principles which have no analogy
to the requirements of the theory of the lever.

As M. Duhem remarks :

"
Although an admirable

method of demonstration, the path followed by
Archimedes in mechanics is not a method of invention ;

the certainty and lucidity of his principles are largely
due to the fact that they are gathered, so to speak,
from the surface of phenomena and not dug out from
the depths."

It seems to us that this is the reason why the

demonstration of Archimedes is not entirely satisfactory
even from a logical point of view, for it finally comes
back to the disguised verification of a fact.

Doubtless, by virtue of the principle of symmetry,
we can logically maintain that two equal weights A
and B suspended from two equal arms of a lever will

be in equilibrium ; but we cannot know a priori
what will happen if we replace one of these weights
A by two smaller weights a and a l which are in

equilibrium and whose sum is equal to A. Experience
& n Duhem, Origins, I, p. ix,

Ibid., p. 12.
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alone can inform us on this point. An example will

show more clearly that this is so.1 Let us consider

a compound pendulum formed of a rigid rod of

negligible weight to which are fixed a weight of 2 Ibs.

at a distance of 4 inches, and another weight of 2 Ibs.

at a distance of 8 inches (Fig. 34).

FIG. 34* **<* 35-

When the pendulum is held in a horizontal position
the moment of the force acting on it is equal to

2x4+2 x 8 = 24.

According to the reasoning of Archimedes, we can
1 Cf. L. Lecornu, La Mtcaniqut, Flammarion, Paris, 1918,

p. 5&
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replace the two weights by a single weight equal to

4 Ibs. and fixed at a distance of 6 inches. The moment
of the force acting on the pendulum in a horizontal

position is still equal to 24, i.e., the product of 6 by 4.

Under these conditions it would seem that if we
allow the pendulum to oscillate, we must obtain the

same result in both cases and find that the duration
of the oscillations is the same. But in fact it is not
so. Why ? Because the conditions of symmetry for

a system in motion are not the same as for a system
in equilibrium. By changing the compound pendulum
into a simple pendulum we certainly have not changed
the static moment of the system but we have modified
its moment of inertia, and for this reason the times

of oscillations can no longer be equal.
1

Thus from the logical principle of symmetry one
cannot a priori deduce consequences before making
any experiment. It is experience alone which can
teach us in what way this principle works in nature,
for a mass of unknown factors may interfere and
confuse its application just where the latter might
rightly be expected. Concerning the lever, we know
for example that to maintain equilibrium, it is im-

material to hang the arrangement of two weights

higher or lower than the weight it replaces, and to

place this arrangement parallel or perpendicular to

the direction of the lever.

If, notwithstanding, the demonstration of Archi-

1 Tbe moment of inertia I is the sum of the masses m
multiplied by the squares of their distances r from the axis
of suspension. The time of oscillation is then equal to

T 2 n\ when M represents the static moment.

If the calculations in the chosen numerical example be

made, it will be found that I for the compound pendulum is

equal to 2 x 4* + a x 8 1 ~ 160, while for the simple pendu-
lum it is only equal to 4 x 61

144.
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medes is accurate, it is solely because it is based on
an intuitive empirical statement, namely that the

effective power of a force at a given moment is equal
to this force multiplied by its distance from the

vertical axis which passes through the fulcrum

(Fig. 36).

Fw. 36.

This relation, which is based on the moments of

forces, was not clearly formulated until the end of

the Middle Ages; it is equivalent, in a horizontal

position, to the relation PI = pL ;
it was by this

that Archimedes was instinctively guided.
As we have seen, from a desire for lucidity he con-

fined his theoretical researches to statics, that is, to
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a very special class of phenomena ; and for this reason
his method, in the course of time, proved leas fruitful

than the dynamical conceptions of Aristotle*

At first sight it may seem surprising that Archimedes,
after having invented and perfected so many ballistic

machines, did not attempt to study their theory.
This abstention may be accounted for by the logical
difficulties raised by the idea of motion. The argu-
ments of Zeno of Elea on this point had produced
in the minds of the ancient philosophers an uneasiness

which was never dispelled.
For example, the space in which a body moves is

motionless : how are we to understand the relationship
of a moving body to something motionless ? Look at

the arrow in flight. It follows an immovable line

which is its trajectory, and it must at each instant

coincide with a portion of this trajectory since it

traverses it. Now it cannot do this without itself

coming to rest for an instant, however short, therefore

its whole movement is a sum of instants of rest.

To the Greek geometers it did not appear possible
to avoid the objections raised by Zeno, and this

perhaps was the reason that Archimedes did not

attempt to establish the foundations of rational

dynamics.

4. LATER DEVELOPMENTS
It would be a mistake to consider the works of

Aristotle and Archimedes as isolated examples of their

kind.1 The statics of Archimedes, in particular, by
its subtle analysis and marvellously clever solutions,

the interest of which is not apparent to the uneducated,
bears witness to a science already far advanced, and in

no way resemble the uncertainties of a science newly
born* Moreover history confirms this supposition,
since it places prior to Archimedes the mechanical

1 n Duhem, Origin**, II, p. 280 ft &q.

14
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problems perhaps falsely attributed by tradition to

Aristotle, and which enunciate with remarkable

accuracy the composition of movements by the

parallelogram
of forces. If this work is not Aristotle's,

its distinctly peripatetic inspiration points to its being
due to one of his immediate disciples.

1

Another tradition preserved by the Arabs attributes

to Euclid various treatises on the lever and heavy and

light bodies. These may not have been the work of

Euclid, but they were certainly written by one of his

contemporaries ; for, whilst drawing their inspiration
from peripatetic dynamics they use an axiomatic

method similar to that of the Elements, but much less

elaborate than that of Archimedes.*
If Archimedes had precursors, he assuredly had also

followers in antiquity. Byzantine and Alexandrian
science pursued the various paths opened up by him.
The art of engineering, developed by him to such a high

degree, inspired, as we have seen, the labours of

Ctesibius, Philo of Byzantium and Hero of Alexandria.

Pappus, on the other hand, endeavoured in theory to

equal the demonstrations of the great Syracusan. He
alone of all the geometers of antiquity attacked the

problem of the inclined plane, without, however,

succeeding in solving it correctly (Pappus, Hultsch

edit., pp. 1032 and 1033) -
8 Cta the other hand, he

discovered the two following theorems, which are

known by his name, though sometimes called the
theorems of Guldinus (idem, p. 652), namely :

The volume generated by the revolution of a surface,

bounded by a curved line, about an axis is equal to

the product of the area of the surface and the circum-

ference or arc of circumference described by its centre

erf gravity.
The surface generated by a curve turning round an

Duhem, Origines, I, p. 108. *Ibid.. p. $7,

p. 144.
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axis is equal to the product of the perimeter of the
curve ana the circumference or portion ofcircumference

described by its centre of gravity.
The foundations which Aristotle had assigned to

mechanics were criticized by Joannes Philoponus, called

the Grammarian or the Christian, because he was con-

verted from Alexandrian Neo-platonism to Christianity
about the year A.D. 520. In his Commentaries on the

five later books of Aristotle's Physics, Philoponus dis-

putes Aristotle's arguments against the existence of

empty space, for "if the medium were solid, it would
hinder the movements of bodies, which in order to move
would be obliged to divide it

;
these bodies nevertheless

are in motion. If the medium were empty, what is

there to prevent the flight of an arrow, a stone or any
other thing, as long as there is an instrument for

throwing, a projectile and space ?
" x Thus the air, far

from sustaining the movement of a projectile, only
hinders it.

The Arabs confined themselves to accepting and

commenting on the treatises of mechanics bequeathed
to them by antiquity. The Western Middle Ages were
more venturesome. The fragments received from

Byzantium and from Islamitic science were sufficient to

awaken their attention and fertilize their intelligence.
From the thirteenth century, perhaps even before, the
school of Jordanes opened up paths unknown to

antiquity. Jordanes of Nemora, whose real name and

nationality are unknown to us, discovered the following
law : If a force can raise a certain weight to a certain

height, it will be able to raise a weight n times greater
to a height n times smaller.

Another savant worthy of mention is he whom P.

Duhem calls the forerunner of Leonardo da Vinci. We
know nothing about him, except that he lived later

than Jordanes and was a man of genius. Inspired by
1 Quoted from 13 Duhem, System*, I, p. 383.
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the law discovered by Jordans, he was able to discover

the law of equilibrium of the bait lever, and the idea of

moment, and also to give to the problem of the inclined

plane a solution which was rediscovered by Stevinus in

the sixteenth century.
It is evident, that although the Greeks displayed

much ingenuity in the domain of technical applications,

they were not able, except in certain special cases,

to explain physical and mechanical phenomena in

conformity with their ideal of science.



CHAPTER IV

THE CHEMICAL AND NATURAL SCIENCES

1. CHEMISTRY

IN
the sciences which we have hitherto considered,

observation and practice have, up to a certain

point, guided theory. It was not the same with

chemistry, the theories of which were closely connected
with metaphysics and had no great influence on the

technical processes. The first gropings of chemical

technique are very ancient. They seem to go back to a

prehistoric epoch, to the time when metals were first

used for manufacturing weapons, and when certain

alloys were perceived to be advantageous. Amongst
these alloys, that of tin and copper was specially

important. From the most remote antiquity Egypt
was an important centre of the trade in tin

; which in

later times was supplied by Phoenician traders.1 Other
metals were afterwards discovered and alloyed. In

Egypt, the method of treating them was preserved by
tradition in the form of short and probably mysterious

receipts whose secret was jealously guarded by the

priests. Certain hieroglyphic signs, completed by oral

instructions, were sufficient to ensure the transmission

of the methods of manufacture.

As to the Greeks, the sum of their practical know*

ledge amounts approximately to the following :

"
They

knew how to prepare certain salts of copper, of

* It Delacre, Histoire de la Chimie, Gauthier-Villan, Paris,

1920, p. 16. J. de Morgan, VHumaniU pr4hi$toriqt*t Renais-

sance du Livre, Paris, 1922, p.
20S
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potassium and of sodium, how to render fabrics incom-

bustible, how to treat minerals. Some substances, like

alum, were used for the same purposes as at the present
time. The manufacture of pigments, which implies
chemical reactions, was far advanced at the time of the

great Greek painters. But it was more particularly in

the preparation of poisons that antiquity excelled.

Owing to the limitations of the science of the time, the

same name was often given to very different substances.

Thus oA*<fc denoted either copper, or its various alloys
with tin, zinc, lead or other metals." x The Romans

merely practised, without developing, the science which

they received from Greece and Egypt.
'

Although very ancient, chemistry did not produce any
systematic publications until relatively late. In fact

it was in the Alexandrian period, under the Ptolemies,
that there appeared for the first time a work sum-

marizing the metallurgical and chemical knowledge of

the period. This work was published under the name
of Democritus, but its author was in reality a certain

Bolos, who lived about 250 to 200 B.C. Inspired by
him, there arose a series of writings, the most important
of which is entitled Physica et Mystica by Democritus,

which, in four books, treats of gold, silver, pearls and

precious stones, and lastly of the manufacture of purple.
It is probable that the first alchemistic and hermetic

treatises also belong to this period.*

Unfortunately we only possess fragments of all this

literature. These, however, are sufficient to show that

the idea of the transmutation of elements was already
common, as also the belief that a single substance

(prima materia) is the base of all material bodies.

Of the manuscripts relating to chemistry the most

*L. Laurand, Les Sciences dans I'antiquiU, Picard, Paris,

1923, p. 29. For the terminology and composition of minerals,
ee I Berthelot, Introduction, pp. 228-268,

IO Dids, Antikt, p. 113.
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important by far were discovered in a tomb in

almost a century ago. One is called the

papyrus, the other the Hohniensis papyrus.
1

They
were written in the third century A.D., but their matter
is much more ancient and is largely a reproduction of

the Physica et Mystica mentioned above. It is prob-
able that the possessor of these manuscripts had

requested that they should be buried with him at his

death in order to avoid trouble to his heirs ; for

Diocletian, from fear of coiners of base money, had
caused all books treating of the manufacture of gold,
silver and precious stones to be burnt.

The Leiden and Hohniensis papyri are of great

importance, especially because they give exact and
detailed receipts for the working of metals and the

method of obtaining certain alloys (amongst others

the asemon), and also how to manufacture imitation

pearls, rubies and topazes. Magical and astrological

prescriptions were added to these receipts, for metal*

lurgical operations may be aided by propitious con-

junctions of stars and planets.
" A metal was assigned

to each heavenly body. To the sun, gold; to the

moon, silver ; to Mars, iron ; to Saturn, lead ; to

Jupiter, electrum; to Hermes, tin; to Venus,

copper."
8

It was in the fourth century A.D. that the terms

Alchemy and Chemistry first made their appearance.
For a long time their authorship was attributed to the

astrologer Firmicus Maternus ; but in reality these

terms were introduced by the famous Zosimus of

Panopolis, who lived at about the same time as Finnicus

Maternus (A.D. 336). Zosimus derived the word

Chemistry from the name of the Jewish prophet
Chemes ; according to Diels it is more probable that

* For the history of these papyri, see x Berthelot, Introduc-

tion, p. 4, et seq., and to Diels, Antiht, p. 118,

I Berthekrt, Introduction, p. 77,
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Chemistry, or better Chymistry, comes from the Greek
word x$/*a (fusion).

1

This same Zosimus traces the origin of chemical

science back to the epoch before the Flood, when,
according to the story of Genesis (ch. vi) afterwards

enlarged in the Book of Enoch, the sons of God married

the daughters of men. In order to seduce the latter,

one of the former, the angel Asasel, revealed to them
the secrets of the healing properties of plants and the

beauty of artificial jewels. Hence the diabolical

character of Chemistry.
The writings of Zosimus certainly contain valuable

information as to the treatment and alloying of metals,
the fabrication of precious stones, and even describe

interesting processes of distillation ; but they are

cumbered with gnostic and magical ideas which per-
sisted for centuries ; and these gave to alchemy the

character of an occult science feared by the unlearned,
because its secrets belonged rather to demons than to

God.

However, notwithstanding these mystical dreams,
the researches of the Alchemists were directed by ideas

of a philosophical and even scientific nature.

As we have seen, the lonians, from the dawn of

Greek philosophy, admitted that matter is one in its

essence, but that it can assume various forms.

A century later, Empedocles formed the conception
of two imponderable media, one endowed with the

power of attraction, the other with the power of dis-

integration. These two media constantly acted on the
four constituent elements of matter, namely, water,

earth, air and fire. They ceaselessly united and

separated these elements, and in this manner worlds
and phenomena were evolved.

At almost the same epoch Democritus boldly postu-
lated the existence of empty space, and established the

1 10 Diels, Antihe, p. no.
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foundations of the atomic theory. Bodies are composed
of material atoms which differ from one another only in

magnitude, shape and weight. These atoms by com-

bining and separating produce all sensible phenomena*
Up to a certain point Plato combines the ideas of

Empedocles with those of Democritus. According to

him, mathematical facts constitute the intelligible
basis of the world which the Demiurge desired to

create ; but in order that this world might become

tangible and visible, it had to be brought into existence

under the form of earth and fire. Moreover, as earth

and fire cannot enter into direct relationship with one

another, it was necessary to unite them by means of

water and air in the following proportions :
l

fire air water

"air

^
water

~
earth

In order that combinations may be formed between
these constituent elements of the universe, it is neces-

sary that these should take the form of regular poly-
hedra ; therefore the earth-element will be a cube; the

water-element an octahedron, the air-element an

icosahedron, and the fire-element a tetrahedron.

From the fact that there exists a fifth regular poly-

hedron, the dodecahedron (the faces of which are

pentagonal) Plato deduced the existence of a fifth

element also, namely, the ether. The ideas of Plato

and particularly of Democritus resemble in many
respects the conceptions of modern chemistry. They
had, however, but slight influence on the development
of the science because they evaded the methods of

experimental verification which were in use until the

end of the eighteenth century.
In this domain also, the conceptions of Aristotle,

afterwards seen to be false, had an important influence,

Aristotle begins by opposing matter and form. The
1
13 Duhem, Systtone, I, p. 30 ei $eq.
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"
prima materia

"
is neither fire, air, water nor earth ;

but it is capable of becoming all these elements. At
the same time it assumes certain fundamental qualities
which are irreducible to one another (white and black,

cold and hot, etc.) ;
the same body can successively

receive these qualities. The task of physics and hence

of chemistry is to determine in the first place all the

irreducible forms which exist in nature, and then study
the laws by which a body can successively assume aU
or part of these forms. Now experience teaches us

that only the following properties are suitable for all

bodies, namely heat and cold, dryness and humidity.
These therefore are the properties which constitute

the irreducible forms. By combining them in all

possible ways six pairs are obtained of which two, the

dry-damp and the cold-hot, must be eliminated as

contradictions.

The four pairs which remain are represented by the

following bodies :
l

cold-damp water

cold-dry ..... earth

damp-hot . . . . .air
dry-hot fire

This conception of Aristotle is not well adapted to

mathematical considerations, especially to a geometrical
representation ; but it appears to take into account the

immediate facts of existence, and was therefore adopted
in the Middle Ages by the Arabian philosophers.

These latter, however, were gradually led to modify
the classification of Aristotle which does not take
into account the exceptional importance of metals.

According to them, mercury symbolizes metal and
must form the basis of all metals. Sulphur constitutes

another most important property, combustibility ; the

W* Ostwald, L'EvoIution cTunc sciene*. la Ckimie, Flam-
marion, Paris, 1909, p. &
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earth represents non-metallic minerals, salt the solu-

bility in water and solvent action on other bodies*

These ideas relate to ideal elements yet to be discovered,

and not to mercury, sulphur, earth and salt as known to

us through our senses. The discovery of these elements

would enable the transmutation of substances to be

effected, that is to say the transfer of a property from
one body to another. In particular it would be possible
to transmute any metal into gold. Only, the trans-

mutation must be effected in a certain order.

As, in the eyes of modern chemistry, an element has
an affinity for certain known elements, so the alchemists

held the opinion that, although every body can be
transmuted into something else, this can only be done

by following an invariable order. For example, if F
represents iron and gold, in order to transmute
F into O it is necessary to give to F the property G,
then by means of G the property H, and so on up to 0,

If one of the links be omitted, the transmutation will

not take place. Hence the famous symbol of the

serpent biting its tail.

This investigation of the characteristic circular order

of the transfer of the properties of bodies could not

reach its goal, but it had the result of perfecting

metallurgy, the manufacture of glass and the remedies

employed in medicine, and discovered, by means of

distillation, several essences or spirits such as

turpentine.
The history of chemistry is of a strange character.

From the fifth century B.C. Democritus had laid its

theoretical foundations. However, these were not

verified until after the work of Lavoisier at the end of

the eighteenth century. Until that time, practical

research gave rise to conceptions which, while doubtless

erroneous, seemed to be more in agreement with the

data directly furnished by experience.
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2. THE MEDICAL AND NATURAL SCIENCES
In the first part of this book we have shown the

progressive development of medical science, and noted
the remarkable discoveries which were due to it. It is

sufficient here to recall briefly the spirit and methods
which characterized these discoveries.

Like other primitive peoples, the Egyptians and
Chaldeans considered disease either as a punishment
sent by a Divinity, the work of malevolent spirits, or

the consequence of spells wrought by man. In every
case the agent of the disease was a spirit which entered

the body and destroyed the tissues.

Therefore to obtain healing, the intervention of both
the priest and the physician was necessary. The
former had to appease the Divinity by sacrifices and

prayers. The latter had a twofold task. He had to

drive away the spirit who caused the disease, by
exorcisms and incantations on the one hand, and on
the other hand by drugs which were feared by the spirit
and at the same time built up the tissues of the patient.
The choice of these drugs was determined more often

by a fantastic association of ideas than by specific

experience.
" The euphrasia was supposed to heal

diseases of the eye because its corolla has a black mark
resembling the pupil of the eye, whilst the red tint of

haematite seemed to point it out as a means of stopping

haemorrhage. The Egyptians believed that the blood
of black animals would prevent the hair from turning
white, and even to-day in Styria, as formerly in India,

Greece and Italy, jaundice is banished into the bodies

of yellow birds." I

Greek medicine from the first took up a different

position : The Iliadt speaking of the care of the

wounded, makes no mention of superstitious practices.
The wounds must be dressed with special balms and the

warriors revived with wine, barley and cheese.
&
X4 Gomperz, Pensturs, I, p. 294.
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Doubtless there existed in Greece, side by side with
the scientific and lay medicine, a medical art practised

by the priests and thaumaturgists, in which incanta-

tions played a preponderant part. But this fact did
not prevent the lay medicine from following an entirely
different direction. In accordance with the scientific

ideal glimpsed by the Greek philosophers, it considered
that all disease, including epilepsy, had its origin in a
natural cause. The primary consideration was there-

fore to know the exact structure of the human body, and
it was to this that Greek anatomy applied itself with

conspicuous success, especially during the Alexandrian

period. In the study and the treatment of diseases,

Greek medicine displayed a no less remarkable skill.

It held that the health of the body consisted in a

state of equilibrium maintained by food and exercise.
" The fundamental condition of health is to observe

a just proportion between work and food, by taking into

account the constitution of the individual, differences

of age, season, climate, etc. A man would be protected
from all disease if one of these factors the individual

constitution could be ascertained beforehand by the

doctor." * We have seen how Hippocrates tried by
means of his humoral theory to define the conditions

of right and wrong proportions which constitute health

and sickness.

Whatever explanations might be suggested, Greek
medicine was as a rule distrustful of philosophic

opinions which could not be directly verified by experi-
ence. It only accepted hypotheses which were founded
on and verified by facts. It had a very clear per-

ception of the individual and general characteristics of

diseases. Hence it succeeded in noting the symptoms
and courses of most of them with remarkable accuracy,
and in ascertaining causes as well as remedies. Surgical
art was likewise systematically practised, and brought

1
14 Gomperz, Ptnseurs, I, p. 304.
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to a high degree of perfection thanks to a comprehen-
sive set of implements, as is shown by the surgical

installments discovered at Pompeii.
1

The credit of having established the scientific bases

of the natural sciences belongs to Aristotle and his

disciples. It has been mentioned that Aristotle rescued

zoology from oblivion. This, however, as Gomperz
points out, is to honour him both too much and too

little, for it is attributing to him an almost superhuman
work and at the same time a mass of errors for which he
is not responsible.

2 Aristotle had predecessors amongst
the philosophers and especially amongst the physicians,
whose opinions he often quotes either with approval
or disapproval. However, although he profited by the

work of his predecessors, he made more use of the

observations he himself was able to make, and the

information he methodically gleaned.
In the three great works which he published

(Historia animalium ; De partibus animalium ; De

generatione animalium) he interprets the facts observed

according to finalistic views, and by considering
mechanical causes as aids to final causes. According
to him, the life of nature is divided into two spheres,
in one of which necessity reigns, whilst the other is

ruled by tendencies and by finality (De generatione

animalium, 759 b).
2 Life is motion. Now all motion

implies both a form which moves and a matter which
is moved. The form is the soul, the matter is the

body. The soul is the permanent force which moves the

body and determines its structure. But as form only
gradually overcomes the resistance of matter, the

psychic life comprises three degrees : nutrition, sensa-

1 10 Diela, Antike, p. 23.
*
24 Gomperz, Ptnsturs, III, p. 150. F. Houssay, Natwre *f

Sciences natttreUes, Plammarion, Paris, p. 62. 2a* Robin,
La Ptn$& grecqu*. p. 351 ei $eq.
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tion, and intelligence.
1

Having established these

foundations, Aristotle explains the anatomical structure
and constitution of living beings, in conformity with his

doctrine, by final causes. This kind of explanation
presents difficulties which Aristotle was not always able

to avoid. Thus he attributed baldness to the coldness

of the brain, and the timidity of certain animals to the

size of their hearts. But as a rule Ideological principles
led him to happy results.

In his classification of animals, Aristotle had the

great merit of abandoning the dichotomous division

praised by Plato, which was based solely on the presence
or absence of some particular feature (winged and wing-
less, for example) .* According to this method of division

a species is composed a priori of two sub-species, which
in their turn are each divided into two, and so on. A
classification of this kind is not organic, because it

forcibly separates beings which are in reality closely

allied, for instance, the winged ants (males and females)
from the wingless (workers), the male fire-fly which has

wings from the female which has none.

Aristotle also considered that, in classification,

anatomical characteristics should outweigh physio-

logical characteristics, which depend on the mode of

existence and on adaptation. He excelled in discover-

ing organic correlations and reciprocal dependences.
He showed how the removal of a small organ can bring
about a change in the whole body ; how, for example,
in eunuchs there is a transition from the masculine to

the feminine. He formulated the law of the balance of

organs.
"
Everywhere nature restores to one part what

she takes away from another. . . . She cannot make
the same expenditure in two directions. . . - It is

impossible for her to expend the same material in

* E, Boutroux, ttudts d'histoirt d* la philosophic, Alcan,

Paris, 1897, P- 155-

14 Compare, P*ns$w*> III, p. 163.
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several places at the same time
"

(De gene?, awtm.,

750-3).
1 Aristotle also affirmed the subordination and

the hierarchy of beings in the animal scale. The organic

individuality becomes stronger as we pass from inferior

to superior beings. Only, to Aristotle, this hierarchy
was not the result of a progressive and continuous

evolution, as Lamarck and Darwin were to maintain.

It remains the same for all time, since different species,
even those most akin, cannot form a fertile and lasting
union.

Connected with the anatomical generalizations there

are physiological generalizations of which Alcmaeon,

Empedocles, and the followers of Hippocrates had al-

ready set the example. In this domain, Aristotle very

clearly established the modern distinction between

organs and tissues. Starting from this point, he dis-

covered remarkable analogies of the tissues, between

hairs, feathers and the prickles of the hedgehog ; and
of the organs, between the arms of a man and the wings
of a bird, and between the hands of a man and the claws

of a lobster or the trunk of an elephant.

Regarding the assimilation of nourishment by the

body, Aristotle held the opinion that foods are cooked

by the stomach and are transformed into phlegm or

blood according to their degree of cooking.

Finally, Aristotle opened up several new and fruitful

paths in embryology, and his observations on terato-

logical cases have not lost their interest. The disciples
and successors of Aristotle, although they extended the

field of the discoveries made by their master, added

nothing to the principles and methods by which he was

guided. However, in the vegetable kingdom Theo-

phrastus distinguished the cotyledons (the food leaves

contained in the seed) from lie ordinary leaves pro-
duced on the stem ; and recognized the difference of

internal structure between palms and other trees.

1
Quoted from 14 Compere, Ptnsturs, HI, p. 168.
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Phanias separated flowerless plants such as ferns,

mosses and fungi from flowering plants ; and it was only

eighteen centuries later that this important distinction

was revived.1

1 G. Bonnier, Le monde vtgttal, Flammarion, Paris, 1907,

P. 38.

IS
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THE
chosen daughter of Zeus, the goddess of

the wisdom which inspired war, science and
art, Pallas Athene, above all the divinities,

was honoured and reverenced by the Athenians
; the

temple of the Parthenon on the Acropolis symbolizes,
even at the present time, the genius of the Greek nation

in all its purity. We recall the beautiful prayer of

Renan inspired by the sight of this temple :

" O
nobility, O beauty simple and true, Goddess whose cult

symbolizes reason and wisdom, thou, whose temple is an
eternal lesson of justice and sincerity, late I come to the

threshold of thy mysteries. To find thee has needed

an infinity of searching. The initiation which thou

didst confer on the newly-born Athenian by a smile, I

have won by dint of reflection, at the cost of long

struggles.'
1

This homage rendered to the tutelary goddess
of Athens expresses in moving words the reverence

and gratitude which are inspired by the tremendous
labour of civilization accomplished by Ancient Greece.

Merely a few centuries have sufficed her, not only for

the realization of an incomparable architecture and

statuary, but also for the creation of all the known types
bf literature, and for the establishment of the lasting
foundations of most of the sciences. Apparently it was
almost without efforts and without gropings in the dark
that these conquests were made, in consequence of, as

Renan says, the spontaneous initiation granted by
reason to every Greek at his birth. In particular, the

question arises, How did Ancient Greece succeed in
916
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breaking the mental habits of a thousand years, and in

forming a true conception of scientific relationships ?

Compared with the empirical and fragmentary know-

ledge which the peoples of the East had kboriously
gathered during long centuries, Greek science con-

stitutes a veritable miracle. Here the human mind
for the first time conceived of the possibility of estab-

lishing a limited number of principles, and of deducing
from these a number of truths which are their rigorous

consequence.

Beyond the fugitive data of sensation, the Greeks

sought for the relationships, which impress the mind
as being founded on fact and reason. They were the
first to make known the connection of thought and

language, and to notice the difference between reason-

ing and the facts on which it is based.

This work, begun by Parmenides and the sophists,
was carried on by Socrates and Plato, and completed

by Aristotle. Parmenides caught a glimpse of a realm
of truth unshaken by changing opinions ; the sophists
laid the foundations of grammar ; Socrates established

the relationship which exists between the general idea

and particular ideas contained in it. Plato dis-

tinguished two dialectic processes in the realm of

thought, the one which proceeds from hypotheses to

consequences, the other which starting from hypotheses

goes back to the principles which justify them. Finally,

Aristotle, in the imposing edifice of his logic, co-ordinates

the results obtained by his predecessors. In no other

civilization and amongst no other nation do we find

any similar systematic and rational analysis of human
thought.

Through this analysis the Greeks were led to visualize

in every science a matter and a form. The former

varies with the object peculiar to each science ; the

latter is found in every system of reasoned knowledge.

By the form, a consequence is connected to its law
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in a necessary manner in the same way as a particular
fact to its cause. The objects of science can be classified,

as regards their matter, in two groups, according as they
arise directly or not from sensible observation.

When the object is not directly related to sensation,

as is the case with mathematical facts, the science can

be rigorously constituted, because there are a number
of primary conceptions from which consequences can be

inferred by means of reasoned deduction. For this it

is necessary that these primary conceptions should be
as logical and as few as possible. The mind is then

master both of the form and of the matter of the

science, since the latter contains no element foreign to

reason.

The sciences which are based upon sensible observa-

tion show, like mathematics, a disagreement between
form and matter, between a collection of data and a
chain of reasoning based on these data. In this case,

however, the matter is composed of the individual

elements revealed to us by sensation, which can be
classified according to the genus, species, etc., to which

they belong. In order to make this classification it is

necessary in the first place to have recourse to analogical

reasoning founded on observation, but, when the classi-

fication has once been effected, a deductive syllogism
enables each thing to be assigned its place in the

universe.

To the Greeks, there was no radical opposition
between the inductive and the deductive syllogism.

When, having a knowledge of the science, we reason by
deduction, we are reproducing the order of nature which
creates individuals as a function of the genus and species
to which they belong. On the other hand, in order to

acquire a knowledge of the science we must start from
individual observations and have recourse to inductive

syllogism. "Men, horses and mules are long-lived.
Now men, horses and mules are animals which have no
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gall. Therefore animals without gall are long-lived*"
The opposition between induction and deduction, which
has been pointed out in modern times, is not, according
to Aristotelianism, founded upon nature. The unity
of the two perspectives, which, from the standpoint of

critical reflection, appear incompatible, is, according to

Aristotle, ensured by the inversion of the order of pro-
gressively acquired knowledge and the order of nature,"
between order as it appears to us and order in itself.

1 *

According to a remarkable saying of the Nicomachean
Ethics (1112 b 23),

" To la^atov h rfj AvoAtaei, TtQ&rov
& rfj yevfoei."

l The aim of the sciences which are

based on sensible observation is thus to discover the
classification and natural hierarchies of phenomena in

relation to one another. Their main work is to group
extensively and comprehensively the conceptions to

which these phenomena correspond. The physical

causality which justifies this grouping is imbued with

finality and cannot admit absolute quantitative
relations, except in rare cases.

For the Greeks there existed a cleft between the

mathematical sciences and the physical or natural

sciences, and in their opinion this cleft could never be

closed up. The reason appears to be as follows.

The sciences whose data are exclusively provided by
sensation are concerned with bodies which, with the

exception of the heavenly bodies, are subject to birth,

death, and compulsory motion. These bodies, besides,

obey a cause which displays its effects in time by virtue

of the finality inherent in nature. As individuals they
never realize, except imperfectly, the form towards

which they aspire. Consequently, between form and

matter, there cannot exist an adequate relation,

mathematically measurable, and from a logical point

of view there are always obscurities. Doubtless

L. Bronschvicg, Experience hwmaine et cau$alM, p. 157.



220 SCIENCE IN GRECO-ROMAN ANTIQUITY

nature tends to be penetrated by rationality, but this

penetration is never complete because of the resistance

which matter offers to form, and this is why individual

beings are always imperfect examples of form. The
numerical and spatial relations as conceived by arith-

metic and geometry have a totally different character,
for these relations are eternal, independent of time,
of physical place and of circumstances. If, as Aristotle

thought, mathematical entities have been gradually
disentangled by abstraction from the sensible world,

having once been obtained by this process, they appear
in a perfect and immutable form. This being so,

individual mathematical entities are an exact reproduc-
tion of the genus and species to which they belong.

Every isosceles triangle, whether small or large,

possesses completely and perfectly all the properties
of the isosceles triangle, in this sense, that, having two
sides equal, it necessarily has two angles equal. Mathe-
matical entities attain their perfect form without any
progression in time. The abstract relation of which

they are constituted is eternal, or rather it is a relation,

irrespective of time, between laws and consequences,
in which the efficient cause and the final cause are

merged by an indivisible action of the mind.
This fact determines the nature of mathematical

conceptions and demonstrations within the following
limits:

The primary propositions (axioms, definitions, postu-

lates) must avoid making any appeal to obscure ideas

of the sensible intuition such as indefinite dichotomous

divisibility and the relation of motion to space.
On the other hand, in geometrical demonstration it

is most necessary to use static methods, and to consider

as foreign to science the constructions which result

from the meeting of two lines in motion.

In the same way, in dealing with integration, the

passage to the limit cannot be directly effected. It can
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only be demonstrated that a curvilinear area is con-
tained between two rectilinear areas whose surfaces
differ by a quantity as small as desired. A circle,

for example, is contained between the increasing
surface of an inscribed polygon and the decreasing
surface of a circumscribed polygon.

Because of their distinctive characteristics, it was the
mathematical sciences alone which could realize the
Greek ideal of axiomatic science, namely a number of

logical principles whose rigorous consequences are

ensured by reasoned deduction.

The physical and astronomical sciences, in as far as

they have attempted to realize this ideal, have been

obliged to limit the field of their investigations.

Astronomy, for instance, extricated itself from

meteorology, with which it was at first mingled, and

attempted, with the Pythagoreans, to unite physics and
mathematics. This effort having but imperfectly
succeeded, there arose a division between the mechanics

of the eternal celestial bodies and that of the terrestrial

bodies subject to birth and death. Astronomy then

attributed to the celestial bodies a circular motion,
and limited its ambition to a geometrical representation
of their movement in the heavens. It mattered little

whether this representation was physically realizable ;

it was sufficient that it accounted for the appearances
of the celestial phenomena. This being so, the theory
of axioms is satisfied, because the circular movement
is the only regular and periodic movement which can be

logically conceived for a body in space. In fact, if this

body did not move circularly, either it would set off

at a tangent and go away into infinity, which is

impossible in a finite universe ;
or it would fall to the

centre of the universe and everything would be motion-

less, which is contrary to appearances.
Similar observations apply to mechanics. Being

desirous of constituting this science according to an
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axiomatic type similar to that which characterizes the

Elements of Euclid, Archimedes confined his studies

to statics. In doing this, he thought to find in a purely

logical principle the principle of symmetry a suffi-

cient foundation for the law of the lever and that of

the equilibrium of bodies. If he did not attempt to

found dynamics, it was probably for fear of being

obliged to have recourse to an obscure sensible intuition.

The study of a body in motion implies notions of con-

tinuity and indefinite divisibility in time and space,
notions which are always in some degree irreconcilable

with logic.

Aristotle was more venturesome ; but his dynamic
theses are rendered obscure by a notion of force which is

borrowed from biological conceptions.

Greek science directed along these lines was bound to

come to a standstill.

In the first place, the field assigned to mathematics
is too restrained and too arbitrary, since the curves

called mechanical are excluded from it. Then, within

these limits, the demonstrations become more and
more complicated from fear of making a direct appeal
to infinity. Doubtless the use of infinity offers advan-

tages which are inappreciable from the standpoint of

demonstrative rigour, but it is difficult and incon-

venient to manipulate, and it lacks generality and
necessitates, in its progressive application, more and
more complicated geometrical constructions.

This mistrust of infinity, already so great as concerns

integration, appears again and in a more marked degree
in questions relating to geometrical space. The Greeks

refused to think of this as infinite. Consequently
they never imagined as possible the geometrical exis-

tence of points and straight lines removed to infinity.

We know how much these ideas have vivified modem
geometry ; they have rendered possible generalizations
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and simplifications of which the Ancients had no

conception.
In a quite different direction the physical and

natural sciences were likewise arrested in their develop-
ment. For the conception of finality, upon which

they were based by Aristotle, clashes with a difficulty

which is clearly emphasized by M. Brunschvicg. The
Aristotelian formula leaves the mind undecided between
two contrary tendencies : immanence and transcen-

dence.
" On the one hand, beings develop by realizing

the proper form inherent to them, which is themselves
in what is intimate and specific in their reality. On
the other hand, this realization implies nevertheless

in each being an aspiration to pass beyond its actual

state, which cannot be wholly explained except by
an attraction towards a higher and in some measure
exterior end. The world of spontaneous living beings
forms a hierachy turned towards God and of which
God Himself, although He does not turn towards the

world, is the origin, the prime mover, The doctrine

of causation, as it was elaborated by the Aristotelians,

oscillates between two tendencies which, if singly

developed, would lead to two antagonistic visions of

God and the universe." l

The Greek conception of the science of axioms is

certainly very remarkable, for it accustoms the mind
to be very exacting as regards proofs and demon-
strations. It evidences, however, an exaggerated

prudence and timidity. It not only hampered the

progress of mathematics, but it showed itself to be

impracticable in the domain of physical science, for

the foundations which it specifies for scientific research

in this domain are too narrow to support the ideas

deduced from experience, such as those of motion,

continuity and indefinite divisibility.
Now these notions inevitably appear when one comes

1
Experience humaine et causalitiphysique, p. 158, Alcan, 1922.
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to closer grips with truth, hence an important problem

presents itself : How did the savants of the Renaissance

succeed in filling up the gap which, to the Greek mind,
existed between physics and mathematics ? How did

they succeed in reconciling the requirements of the

Greek theory of axioms with the no less irresistible

data of experience.
This question may be answered in a few words as

follows. As we have seen, Greek science had two

requirements :

1. A rigorous chain of propositions ;

2. A collection of ideas which serves as the basis of

this chain of reasoning and whose logical truth is

convincing to the mind.

The scientists of the Renaissance maintained the

first of these two requirements in its integrity, but

they partially modified the second.

In every science the connection between proposi-
tions must be rigorous, there can be no dispute on this

point.

However, the primary notions (axioms, definitions)

which form the basis of the reasoned deduction are

not necessarily logically clear ;
a constant verification

by experience is sufficient to make them valid. We
do not know, for instance, what motion is in itself,

but if we can decompose it into certain measurable

elements (time, space), and if this decomposition is

useful and accounts for observed facts, we can include

it in our primary notions.

By proceeding in this fashion the scientists of the

Renaissance succeeded in constituting a science which
was both rational and experimental. The aim which

they pursued more or less consciously was to make the

mathematical conceptions less rigid so as to adapt
them to the interpretation of mechanical and physical
facts ; and to create a type of law which, whilst allow-

ing of rigorous deductions, expresses the real con-
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nections of phenomena. The task was immense, and
in order to accomplish it successfully it was necessary
to surmount difficulties which appeared insoluble.

These difficulties having been overcome, it might
have been believed that the way was definitely open
and that it was only necessary to advance along it

without fear of meeting with insurmountable obstacles.

As a matter of fact, until the beginning of the twentieth,

century, the conception of scientific law, formed by
the scientists of the Renaissance, was not seriously
shaken. According to this conception, there exist, at

the base of all science, rational and experimental laws

which having once been discovered are eternally true

and incapable of modification. Hence, it is only
through the more and more extended application of

these laws that science in all its branches will make

progress.
We know how the theory of relativity enunciated

by Einstein and upheld by Langevin has shaken this

conception and put in check certain postulates of the

Newtonian kinematics. It is a curious fact that the

partial abandonment of the conceptions formulated

in the sixteenth and seventeenth centuries marks at

the same time a return to many of the opinions held

by Greek science in antiquity ;
this return is all the

more significant because it was unpremeditated. It

is beyond question that analogies, both as regards

hypotheses and methods, can be found between the

physics of relativity and the cosmology of the ancient

Greeks.

The first philosophers of Ionia, for instance, did not

distinguish between an empty space which would be

self-existent, and a fluid substance (air, water or fire)

which would accidentally fill it. In their eyes there

was no
separation

between the physical properties of

space and space itself. In the physics of relativity the

same thing occurs in a form, needless to say, infinitely
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more complex and more justified. There are gravita-
tional and electromagnetic properties which confer on

space, in every region, its geometrical qualities (curva-

ture, possible kinds of triangles, etc.).

This being so, there cannot be a universal system
of reference, granted once for all, to which the study
of a group of localized phenomena, in any part what-

ever of the universe, can be related. The system of

reference must in every case be intrinsic to this group
of phenomena, which are then studied by methods

necessitating the use of tensorial calculus and absolute

differential calculus. As G. Juvet points out,
"
the

characteristic feature of these methods arises from
the fact that they enable a geometrical entity to be
studied from a purely intrinsic point of view. The
Greeks never studied their geometry in any other way,
when they were searching for the properties of a figure,

they always examined the figure itself, considered by
itself and taken independently of any system of

reference." l It is evident that in Greek geometry,
as in the algorithm of relativity, the relations of a

figure are sufficient in themselves, and although they

may be studied by means of a method and by universal

formulae, it is not necessary, as in Cartesian geometry,
to relate them to an exterior system of co-ordinates.

We know, besides, that the universe of the physics
of relativity, while lending itself to questions of

infinity, remains finite in its dimensions by virtue of

its curvature. Now, as we have seen, the hypothesis
of finiteness is characteristic of Greek astronomy. As
we have pointed out, Empedocles expressed an idea

concerning the universe, considered as finite, which
recalls that of phantom stars; he declared in fact

that the sun has no real existence, that it is formed by
a simple concentration of luminous rays which are

1 G. Juvet, Introduction au calcui tcnsoriel, A. Blanchard,
Paris, 1922,
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reflected on the earth and then stopped by the celestial

vault.

Another no less interesting analogy to be noted is

the following : The so-called theorem of Pythagoras
is at the base of the earliest speculations of Greek

geometry ; it was this which gave rise to the problem
of incommensurables and indirectly to the dialectic

of Zeno. Now this dialectic is chiefly concerned with
the following problem ; space, according to the Greeks,
is an objective reality which is postulated as motionless.

How then is it possible to conceive the relation between
a moving object such as an arrow and motionless

space ?

The difficulty which gave birth to the physics of

relativity, and which the Michelson-Morley experiment
has brought fully into light, is quite analogous. A
source of light, according as it is motionless or moving,
ought to behave differently in relation to the ether

supposed to be motionless. But as a matter of fact

this is not so. How is this to be explained ? Here
comes in the conception of a spatial-temporal interval

and the quadratic expression

ds* = <*#! + dxS + dx** + dx<*,

which is only a generalized form of the theorem of

Pythagoras.
Without investigating the metaphysical range and

practical use of this fusion of space and time, the

important fact remains that the physics of relativity,

considered theoretically, is a remarkable attempt to

constitute a theory of axioms comparable to that of

Euclid. Only this attempt does not aim at establish-

ing the domain of a mathematics which is separated
from reality ;

it tends to unite in one whole the geo-

metrical, mechanical and physical properties of the

universe. Evidently, as Winter points out, such a
science of axioms cannot pretend to create logically
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and a priori the real world apart from experience;
it can only analyse, that is to say elaborate, the group
of axioms necessary and sufficient to explain red

phenomena.
1 The axiomatic analysis as thus under-

stood seeks to substitute clear and distinct ideas for

intuitive, experimental and often confused notions.

It is thereby carrying on not only the work of Descartes

but also that of Greek science.

Hence we are forced to the following conclusion:

the physics of relativity in returning to the immediate
data of sensible experience seeks to reduce them to

axioms, and for this reason it comes into line with the

realistic and logical tendencies of the Greek thinkers

of antiquity.

1 Revue de MJtaphysique et de Morale,
" The Theorem of

Pythagoras," p. 23, year 1923.
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