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Chapter 1

Integers

Notation. The “natural numbers”, which we will denote iy, are
{1,2,3,...}.
The integer<, are
{..,-2,-1,0,1,2,...}.

We will also use the non-negative integers, denoted eith&byr Z, which isN U
{0}. There are also the rational numbegsand the real numberR.
Given a setS, we writex € S if « belongs taS, andz ¢ S otherwise.

There are operations and- onZ. They have certain “nice” properties which we
will take for granted. There is also “orderingN is said to be “well-ordered”, which
means that every non-empty subselNdias a least element. The principle of induction
follows from well-ordering.

Proposition (Principle of Induction). Let P(n) be a statement aboutfor eachn €
N. SupposeP(1) is true andP (k) true implies thatP(k + 1) is true for eachk € N.
ThenP is true for alln.

Proof. SupposeP is not true for alln. Then consider the subsgtof N of all numbers
k for which P is false. ThenS has a least elemeit We know thatP(l — 1) is true
(sincel > 1), so thatP(l) must also be true. This is a contradiction @diolds for all
n. O

1.1 Division

Given two integers, b € Z, we say that dividesb (and writea | b) if a # 0 and
b = a-qforsomeq € Z (a is a divisor ofb). a is aproper divisorof b if a is not+1
or £b.

Note. If a | bandb | cthena | ¢, forif b = gua andc = b for ¢1, ¢2 € Z then
¢=(q1-¢2)a. Ifd | aandd | bthend | ax + by. The proof of this is left as an exercise.
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1.2 The division algorithm

Lemma 1.1. Givena, b € N there exist unique integeig » € N witha = ¢b + r,
0<r<hb.

Proof. Takeq the largest possible such thgt< a and put- = a—qgb. Then0 < r < b
sincea — gb > 0 but(¢+ 1)b > a. Now suppose that = ¢1b + r with ¢;, 7, € Nand
0<ry <b.Then0=(¢q—q )b+ (r—ry)andb|r—r;. But—b<r—r; <bso
thatr = r; and henceg = ¢;. O

Itis clear thab | a iff » = 0 in the above.

Definition. Givena, b € Nthend € N is the highest common factor (greatest common
divisor) ofa andb if:

1. d|aandd|b,
2. ifd |aandd’' | bthend’ | d (d’ € N).

The highest common factor (henceforth hcfaindb is written(a, b) or hef(a, b).
The hcf is obviously unique — if and¢’ are both hcf’s then they both divide each
other and are therefore equal.

Theorem 1.1 (Existance of hcf).For a, b € N hef(a, b) exists. Moreover there exist
integersz andy such that(a, b) = ax + by.

Proof. Consider the set = {az + by : =,y € Z andax + by > 0}. ThenI # () so let
d be the least member &f Now 3z, yo such thatl = axq + byo, so thatifd’ | « and
d' | bthend’ | d.

Now write a = gd + r with ¢, r € Ny, 0 < r < d. We haver = a — qd =
a(l—qxo)+b(—qyo). Sor = 0, as otherwise € I: contrary tod minimal. Similiarly,
d | b and thusd is the hcf ofa andb. O

Lemmal2.lfa, b € Nanda = ¢gb+ r with ¢, r € Ng and0 < r < b then
(a,b) = (b, 7).

Proof. If ¢ | a andc | bthenc | r and thusc | (b, ). In particular,(a,b) | (b,r). Now
note that ifc | b andc | r thenc | a and thusc | (a,b). Therefore(b,r) | (a,b) and
hence(b, r) = (a,b). O

1.3 The Euclidean algorithm
Suppose we want to find25, 231). We use lemmas (1.1) and (1.2) to obtain:

525 =2 x 231463
231 =3 x 63 + 42
63 =1x42421
42=2x21+0

S0(525,231) = (231,63) = (63,42) = (42,21) = 21. In general, to finda, b):
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a=qb+mr with0 <r <b
b=qori +12 With 0 < ry < 7
r1 = Q32 + 13 with 0 < r3 < 19
Ti—o = ¢;Ti—1 +T; with0 < r; <74
Tn—3 = qn-1Tn—2 + n_1 with0 < r, < 7rp_1

Tn—2 = qnTn—1+ 0.

This process must terminate &s> r; > ro > --- > r,_1; > 0. Using Lemma
(1.2), (a,b) = (b,r1) = -+ = (rn—2,7"n—1) = rn—1. S0(a,b) is the last non-zero
remainder in this process.

We now wish to findzy andyy € Z with (a,b) = axg + byo. We can do this by
backsubstitution.

21 = 63 — 1 x 42
=63 — (231 — 3 x 63)
=4 x 63 — 231
=4 x (525 — 2 x 231) — 231
=4 x 525 —9 x 231.

This works in general but can be confusing and wasteful. These numbers can be
calculated at the same time @s b) if we know we shall need them.
We introduceA; and B;. We putA_; = By = 0 and4y = B_; = 1. We
iteratively define
Ai=qiAi1+ A2
B; =q;Bi_ 1+ B;_».

Now considezB; — bA;.
Lemma 1.3.
aBj — bA] = (71)j+17’j.

Proof. We shall do this using strong induction. We can easily see that (1.3) holds for
j = landj = 2. Now assume we are at> 2 and we have already checked that
Ti—o = (71)1.71(U,Bi_2 — bA»L‘_Q) andr;,_; = (71)7;(0431'_1 — bAi_l). Now
T = Ti—2 = ¢iTi—1
= (=1)""NaBi—z — bAi_3) — q;(—1)"(aBi—1 — bA;_1)
= (—=1)""*(aB; — bA;), using the definition ofd; and B;.
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Lemma 1.4.

AiBii1 — Ai1 B = (—1)'
Proof. This is done by backsubstitution and using the definitiod.pénd B;. O

An immediate corollary of this is thdt4,, B;) = 1.

Lemma 1.5.
a b
A, = B, = )
(a,b) (a,b)
Proof. (1 3) fori = n givesaB, = bA,. Therefore( “b)B @ b)A Now (a 3]
and (0] b) are coprime. A,, and B,, are coprime and thus this lemma is therefore an
immediate consequence of the following theorem. O

Theorem 1.2.If d | ce and(c¢,d) = 1 thend | e.

Proof. Since(c,d) = 1 we can writel = cx + dy for somex, y € Z. Thene =
ecx + edy andd | e. O

Definition. The least common multiple (Icm) @&andb (written [a, b]) is the integer
such that

1. a|landb|l,
2. ifa|l'andb |l thenl | I'.

It is easy to show thdt:, b] = (;l;)).

1.4 Applications of the Euclidean algorithm

Takea, b andc € Z. Suppose we want to find all the solutiongy € Z of ax + by = c.
A necessary condition for a solution to exist is thatb) | ¢, so assume this.

Lemma 1.6. If (a,b) | c thenax + by = ¢ has solutions irZ.

Proof. Takez’ andy’ € Z such thatuz’ + by’ = (a,b). Then ifc = ¢(a,b) then if
ro = qx’ andyo = qy’, axo + by = c. O

Lemma 1.7. Any other solution is of the form = z + % Y= yo — ((‘;—’“b) for
k€ Z. '

Proof. These certainly work as solutions. Now suppmseandyl is also a solution.
Then .45 (z0 — 21) = —ﬁ(yo y1). Since.%; and ;% are coprime we have

w5 | o —w1) and 25 | (o — 1), Say thaty1 = yo — (&5, k € Z. Then
I :$0+%. D
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1.4.1 Continued Fractions
We return to525 and231. Note that

535 94 63 24 1 91 1 94 1
591 231 2 1
231 231 %5 3+ 55 3+1+%

Notation.
535 _,, 111
231 34+ 142
Note that2, 3, 1 and2 are just they;’s in the Euclidean algorithm. The rational
7 > 0is written as a continued fraction

=2,3,1,2] = 2;3,1,2.

a + 1 1 1
—=qt— ... —,
b ' G2+ g3+ an

with all theg; € Ng, ¢; > 1for1 <i < nandg, > 2.

Lemma 1.8. Every rational 7 with a andb € N has exactly one expression in this
form.

Proof. Existance follows immediately from the Euclidean algorithm. As for unique-
ness, suppose that
a 1 1 1

-—=p+t— ... —
b P2+ p3+ DPm

with thep;'s as before. Firstly; = ¢; as both are equal tio; |. SincemiL < 1then

a -1 a -1 1
(g_pl) =p2+ Z(*—Ch) =Gz +

p3 + L b q3 + L
Thusp, = ¢» and so on. O
Now, suppose that givefy:, g2, . . ., ¢,] we wish to find$ equal to it. Then we
work out the numbers!; and B; as in the Euclidean algorithm. Theh = g—: by

lemma (1.3).
If we stop doing this after steps we ge% = [q1,2,-..,¢]. The number%—j are
called the “convergents” t§.

Using lemma (1.4), we get th% = é_’ll)j;i. Now the B; are strictly
increasing, so the gaps are getting smaIIer and the signs alternate. We get
Al A3 a A4 A2
B, < = B, <--e < 3 << B, < B,

The approximations are getting better and better; m‘fget— 4

7.+1

* — Continued fractions for irrationals

This can also be done for irrationals, but the continued fractions become infinite. For
instance we can get approximationsstaising the calculator. Take the integral part,
print subtract it, invert and repeat. We get= [3,7,15,1,...]. The convergents are
3, 2 and 323, We are already within0—* of 7. There is a good approximation &
mcreases. As an exercise, show th@ = [1,2,2,2,...].
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1.5 Complexity of Euclidean Algorithm

Givena andb, how many steps does it take to fid b). The Euclidean algorithm is
good.

Proposition. The Euclidean algorithm will finda, b), a > b in fewer tharbd(b) steps,
whered(b) is the number of digits dfin basel0.

Proof. We look at the worst case scenario. What are the smallest numbers needing
steps. Inthiscasg = 1for1 < ¢ < n andg, = 2. Using thesey;’s to calculate4,,

and B,, we find the Fibonacci numbers, that is the numbers such®hat > = 1,

Fiyo = Fi11+ F;. We getd,, = F,,.0 andB,, = F,,+1. Soifb < F,,; then fewer
thann steps will do. Ifb hasd digits then

5d+2
1 (1+5
b§10d1§\/5<2> 71<F5d+2,

as

(1 + \/5> _ <1 _2\/5> 1 . This will be shown later.

1.6 Prime Numbers

A natural numbep is a prime iffp > 1 andp has no proper divisors.
Theorem 1.3. Any natural number. > 1 is a prime or a product of primes.

Proof. If n is a prime then we are finished.-ifis not prime them = n, - ny with n;
andn, proper divisors. Repeat withy, andn.. O

Theorem 1.4 (Euclid). There are infinitely many primes.

Proof. Assume not. Then lai;, po, .. ., p, be all the primes. Form the numbatr =
p1p2 - .- pn + 1. Now IV is not divisible by any of the; — but V must either be prime
or a product of primes, giving a contradiction. O

This can be made more precise. The following argument cf&stiows that thet"
smallest primey,, satisfiegp, < 4*~! + 1. Let M be an integer such that all numbers
< M can be written as the product of the powers of the firgtimes. So any such
number can be written

2 41 i ik
mopy'py’ ... Py,
with i1, ...,4, € {0,1}. Nowm < v/ M, so there are at mostM 2 possible num-
bers less than/. HenceM < 2¥v/M, or M < 4%, Hencep1 < 4% + 1.

A much deeper result (which will not be proved in this course!) is the Prime Num-
ber Theorem, that, ~ klog k.



1.7. APPLICATIONS OF PRIME FACTORISATION 7

1.6.1 Uniqueness of prime factorisation

Lemma 1.9.If p | ab, a,b € Nthenp | a and/orp | b.

Proof. If p t a then(p,a) =1 and sop | b by theorem (1.2). O

Theorem 1.5. Every natural number- 1 has a unique expression as the product of
primes.

Proof. The existence partis theorem (1.3). Now SUppose€p 1ps ... pxr = q1q2 - - - q
with thep;’s andg;’s primes. Therp, | ¢; ... g, Sop; = ¢; for somej. By renumber-
ing (if necessary) we can assume thiat 1. Now repeat withps ... px andqs . . . q;,
which we know must be equal. O

There are perfectly nice algebraic systems where the decomposition into primes
is not unique, for instancg [/—5] = {a + bv/=5 : a,b € Z}, where6 = (1 +
V=5)(1 —v/=5) = 2 x 3and2,3 and1 4 /-5 are each “prime”. Or alternatively,
27 = {all even numbers where “prime” means “not divisible by".

1.7 Applications of prime factorisation
Lemma 1.10. If n € N is not a square number theyin is irrational.

Proof. Suppose/n = ¢, with (a,b) = 1. Thennb® = a*. If b > 1 then letp be a
prime dividingb. Thusp | a? and sop | a, which is impossible aga, b) = 1. Thus
b=1andn = a?. O

This lemma can also be stated: #ife N with \/n € Q then/n € N".

Definition. A real numbem is algebraic if it satisfies a polynomial equation with co-
efficients inZ.

Real numbers which are not algebraic are transcendental (for instaand e).
Most reals are transcendental.

If the rational ¢ (with (a,b) = 1) satisfies a polynomial with coefficients i
then

Cn@™ + Cp_1a™ b+ .. b"cp =0

sob | ¢, anda | ¢o. In particular ifc,, = 1 thend = 1, which is stated as “algebraic
integers which are rational are integers”.

Note that ifa = p{'p3*...pr* andb = pflpgz pf’“ with «;, 5; € Ny then
(a,b) = pi'p3®...p)* and[a,b] = P pd? ...pi’“, vi = min{a;, G;} andd; =
max{a;, 5; }.

Major open problems in the area of prime numbers are the Goldbach conjecture
(“every even number greater than two is the sum of two primes”) and the twin primes
conjecture (“there are infinitely many prime pairandp + 2").
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1.8 Modular Arithmetic

Definition. If ¢ andb € Z, m € N we say that: andb are “congruent mod(ulo)n”
if m | a—b. Wewritea =b (mod m).

Itis a bit like = but less restrictive. It has some nice properties:
e a =a (mod m),

o if a =b (mod m) thenb = a (mod m),

e if a =b (mod m) andb = ¢ (mod m) thena = ¢ (mod m).
Also, if a; = b1 (mod m) anday = by (mod m)

® a1+ as = by + b (mod m),

e ajas = bjag = biby (mod m).

Lemma 1.11. For a fixedm € N, each integer is congruent to precisely one of the
integers

{0,1,...,m—1}.

Proof. Takea € Z. Thena = gm + r for ¢,r € Z and0 < r < m. Thena = r
(mod m). O

If0<r <ry<mthenl < re —ry < m,som{ry —ry and thusr; # ro
(mod m).

Example. No integer congruent t8 (mod 4) is the sum of two squares.

Solution. Every integer is congruent to one @f1,2,3 (mod 4). The square of any
integer is congruent td or 1 (mod 4) and the result is immediate. O

Similarly, using congruence modulo 8, no integer congruert tmod 8) is the
sum of 3 squares.

1.9 Solving Congruences

We wish to solve equations of the form: = b (mod m) givena,b € Z andm € N
for x € Z. We can often simplify these equations, for instafice= 3 (mod 5)
reduces tac = 4 (mod 5) (since2l =1 and9 =4 (mod 5)).

This equations are not always soluble, for instafice= 4 (mod 9), as9 { 6z — 4
foranyzx € Z.

How to do it

The equatioma = b (mod m) can have no solutions (&, m) 1 b since thenn t az—b
foranyx € Z. So assume that,, m) | b.

We first consider the cas@, m) = 1. Then we can findeg andy, € Z such
that axg + myy = b (use the Euclidean algorithm to get andy’ € Z such that
az’ +my’ = 1). Then putzy = bz’ soaxy = b (mod m). Any other solution is
congruent tazy (mod m), asm | a(xo — 1) and(a, m) = 1.

Soif (a,m) = 1 then a solution exists and is unique moduio
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1.9.1 Systems of congruences

We consider the system of equations

r=a modm

rz=b mod n.

Our main tool will be the Chinese Remainder Theorem.

Theorem 1.6 (Chinese Remainder Theorem)Assumen,n € N are coprime and
let a,b € Z. Then3z, satisfying simultaneously, = a (mod m) andzy = b
(mod n). Moreover the solution is unique up to congruence moduto

Proof. Write em + dn = 1 with m,n € Z. Thencm is congruent td modulom
and1 modulon. Similarly dn is congruent ta. modulom and0 modulon. Hence
xo = adn + bem satifieszg = a (mod m) andzy = b (mod n). Any other solution
x; satisfiestg = 7 both modulom and modulon, so that sincém,n) = 1, mn |
xg — 1 andx; = 2o (mod mn). O

Finally, if 1 < (a, m) then replace the congruence with one obtained by dividing
by (a, m) — that is consider

a b m
@m” = @m " @m)

Theorem 1.7. If pis a prime then(p — 1)! = —1 (mod p).

Proof. If a € N, a < p — 1 then(a,p) = 1 and there is a unique solution et = 1
(mod p) with x € Nandx < p — 1. z is the inverse ok modulop. Observe that

a =z iff a®> =1 (mod p), iff p | (a + 1)(a — 1), which gives thatt = 1 orp — 1.

Therefore the elements {12, 3,4, ...,p—2} pairoffsotha x3x4x---x(p—2) =1
(mod p) and the theorem is proved. O

1.10 Euler's Phi Function

Definition. For m € N, define¢(m) to be the number of nonnegative integers less
thanm which are coprime ton.

#(1) = 1. If pis prime thenp(p) = p — 1 andg(p®) = p® (1 — %)

Lemma 1.12. If m,n € N with (m,n) = 1 theng(mn) = ¢(m)¢p(n). ¢ is said to be
multiplicative.

LetU,, ={z € Z:0 <z <m,(x,m) = 1, the reduced set of residues or set of
invertible elements. Note thai(m) = |U,,|.

Proof. If a € U,, andb € U, then there exists a unique € U,,,. withc = «a

(mod m) andc = b (mod n) (by theorem (1.6)). Suchais prime tomn, since it
is prime tom and ton. Conversely, any € U,,, arises in this way, from the € U,,
andb € U, such thata = ¢ (mod m), b = ¢ (mod n). Thus|U,,n| = |Un||Un| @s
required. O



10 CHAPTER 1. INTEGERS

An immediate corollary of this is that for any € N,

pln
p prime

Theorem 1.8 (Fermat-Euler Theorem). Takea, m € N such that(a,m) = 1. Then
a®™ =1 (mod m).

Proof. Multiply each residue; by a and reduce module:. The ¢(m) numbers thus
obtained are prime ton and are all distinct. So the(m) new numbers are just
T1,. .-, T(m) iN a different order. Therefore

TIT9 ... Tg(m) = AT1AT2 ... AT¢(m) (mod m)

=a®"™ppy . To(m) (mod m).
Since(m, rir2 ... T¢m)) = 1 we can divide to obtain the result. O

Corollary (Fermat's Little Theorem). If p is a prime andz € Z such thatp 1 a then
a?~' =1 (mod p).

This can also be seen as a consequence of Lagrange’s Theorent/,sirsc& group
under multiplication modulen.

Fermat’s Little Theorem can be used to check that N is prime. If 3a coprime
ton such that™ ! # 1 (mod n) thenn is not prime.

1.10.1 Public Key Cryptography

Private key cryptosystems rely on keeping the encoding key secret. Once it is known
the code is not difficult to break. Public key cryptography is different. The encoding
keys are public knowledge but decoding remains “impossible” except to legitimate
users. It is usually based of the immense difficulty of factorising sufficiently large
numbers. At present 150 — 200 digit numbers cannot be factorised in a lifetime.

We will study the RSA system of Rivest, Shamir and Adleson. The dséor
Alice) takes two large primegs4 andq with > 100 digits. She obtain&v, = paqa
and chooses at random such that{pa, #(N4)) = 1. We can ensure thaty — 1 and
qga — 1 have few factors. Nowd publishes the paiv4 andp.

By some agreed methdd (for Bob) codes his message for Alice as a sequence of
numbersM < N,4. ThenB sendsA the numbed/#4 (mod N,4). When Alice wants
to decode the message she choatgsuch thatdsps = 1 (mod ¢)(N4). Then
Mrada = M (mod N,) sinceM?™4) = 1. No-one else can decode messages to
Alice since they would need to factorigé, to obtaing(N,).

If Alice and Bob want to be sure who is sending them messages, then Bob could
send Alice E4(Dp(M)) and Alice could applyEs D 4 to get the message — if it’s
from Bob.
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Induction and Counting

2.1 The Pigeonhole Principle

Proposition (The Pigeonhole Principle).If nm + 1 objects are placed inta boxes
then some box contains more thanobjects.

Proof. Assume not. Then each box has at magibjects so the total number of objects
is nm — a contradiction. O

A few examples of its use may be helpful.

Example. In a sequence of at leakt+1 distinct numbers there is either an increasing
subsequence of length at least 1 or a decreasing subsequence of length at léast.

Solution. Let the sequence hg, cs, . . ., cx;1. FOr each position lei; be the length
of the longest increasing subsequence starting withLet d; be the length of the
longest decreasing subsequence starting witHf a; < k andd; < [ then there are
only at mostk! distinct pairs(a;,d;). Thus we have, = a, andd, = d, for some
1 <r < s <kl+ 1. Thisis impossible, for it, < ¢; thena, > a, and ifc, > ¢
thend, > d,. Hence either some; > k ord; > [. O

Example. In a group of 6 people any two are either friends or enemies. Then there
are either 3 mutual friends or 3 mutual enemies.

Solution. Fix a personX. Then X has either 3 friends or 3 enemies. Assume the
former. If a couple of friends o are friends of each other then we have 3 mutual
friends. OtherwiseX’s 3 friends are mutual enemies. O

Dirichlet used the pigeonhole principle to prove that for any irratienttiere are

infinitely many rationaIsZ— satisfying‘a — %" < qiz

2.2 Induction
Recall the well-ordering axiom fd¥,: that every non-empty subset bf) has a least

element. This may be stated equivalently as: “there is no infinite descending chain in
Ny”. We also recall the (weak) principle of induction from before.

11
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Proposition (Principle of Induction). Let P(n) be a statement aboutfor eachn €
Ny. SupposeP (ko) is true for somés, € Ny and P(k) true implies thatP(k + 1) is
true for eachk € N. ThenP(n) is true for alln € Ny such thate > k.

The favourite example is the Tower of Hanoi. We hauéngs of increasing radius
and 3 vertical rods4, B andC’) on which the rings fit. The rings are initially stacked
in order of size on rodl. The challenge is to move the rings framto B so that a
larger ring is never placed on top of a smaller one.

We write the number of moves required to maveaings asT,, and claim that
T, = 2" —1forn € Ny. We note thafl, = 0 = 2° — 1, so the result is true far = 0.

We takek > 0 and suppose we hawerings. Now the only way to move the largest
ring is to move the othet — 1 rings ontoC' (in T}, _; moves). We then put the largest
ring on rodB (in 1 move) and move the — 1 smaller rings on top of it (i —; moves
again). Assume thaf,_, = 2*~! — 1. ThenT}, = 2T,_, + 1 = 2* — 1. Hence the
result is proven by the principle of induction.

2.3 Strong Principle of Mathematical Induction

Proposition (Strong Principle of Induction). If P(n) is a statement aboui for each
n € Ny, P(ko) is true for some, € Ny and the truth ofP (k) is implied by the truth
of P(kg), P(ko+1), ..., P(k—1)thenP(n) is true for alln € Ny such thatn > k.

The proof is more or less as before.

Example (Evolutionary Trees). Every organism can mutate and produteew ver-
sions. Them mutations are required to produee+ 1 end products.

Proof. Let P(n) be the statementr' mutations are required to produee+ 1 end
products”. P, is clear. Consider a tree with+ 1 end products. The first mutation (the
root) produces 2 trees, say with + 1 andk, + 1 end products wittk;, ks < k. Then
k+1=k +1+ky+1s0k=ks+ ko + 1. If both P(k;) and P(k2) are true then
there aré; mutations on the left ankh on the right. So in total we havg + ks + 1
mutations in our tree anB (k) is true isP(k;) and P(k2) are true. Henc#(n) is true
forall n € Ny. O

2.4 Recursive Definitions

(Or in other words) Defining (n), a formula or functions, for alk € Ny with n > kg
by defining f (ko) and then defining fok > ko, f(k) in terms of f(ko), f(ko + 1),
oy fk=1).
The obvious example is factorials, which can be definedby= n(n — 1)! for
n > 1and0! = 1.
Proposition. The number of ways to order a setropoints isn! for all n € Nj.

Proof. This is true forn = 0. So, to order am-set, choose th&st element inn ways
and then order the remaining— 1-setin(n — 1)! ways. O

Another example is the Ackermann function, which appears on example sheet 2.



2.5. SELECTION AND BINOMIAL COEFFICIENTS 13

2.5 Selection and Binomial Coefficients

We define a set of polynomials fat € Ny as
e =z(x—-1)(xz—2)...(x —m+1),

which is pronounced to them falling”. We can do this recursively by? = 1 and
2™ = (x —m + 1)z™=L for m > 0. We also define to them rising” by

" =x(x+1)(x+2)...(x+m—1).

We further defing ) (read ‘=z choosen”) by

T r
m m!’

It is also convienient to extend this definition to negativdy (;L) =0if m <0,
m € Z. By fiddling a little, we can see that fare N,n > m

() = =

Proposition. The number ok-subsets of a given-set is(;”).

Proof. We can choose the first element to be included infeaubset im ways, then
then next inn — 1 ways, down to thé™ which can be chosen in — k + 1 ways.

However, ordering of thé-subset is not important (at the moment), so diviéeto get
the answer. O

Theorem 2.1 (The Binomial Theorem).For ¢ andb € R, n € Ny then
(a+b)" = Z ") akprk
k k .

There are many proofs of this fact. We give one and outline a second.

Proof. (a+b)" = (a+b)(a+0b)...(a+b), sothe coefficient af*b"~* is the number
of k-subsets of an-set — so the coefficient i§}). O

Proof. This can also be done by induction anusing the fact that
n\ (n-—1 n n—1
k) \k-1 k)

There are a few conseqgences of the binomial expansion.

1. Form,n € Ng andn > m, (") € Ny som! divides the product of any:
consecutive integers.

2. Puttinga = b = 1 in the binomial theorem give®' = 3=, () — so the number
of subsets of am-set is2™. There are many proofs of this fact. An easy one is
by induction onn. Write S,, for the total number of subsets of anset. Then
So = 1andforn > 0, S,, = 25,,_1. (Pick a point in the:-set and observe that
there areS,,_; subsets not containing it arff),_; subsets containing it.
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3.(1-1)"=0=3,(3)(~=1)" — soin any finite set the number of subsets of
even sizes equals the number of subsets of odd sizes.

It also gives us another proof of Fermat'’s Little Theoremu i prime theru? = a
(mod p) for all a € Np.

Proof. Itis done by induction om. It is obviously true whei = 0, so takez > 0 and
assume the theorem is true for- 1. Then

o = ((a—1)+1)

p

=(a—-1"+1 modp as(k

) =0 (mod p)unlessk =00rk=p

a—14+1 modp

=a modp

2.5.1 Selections

The number of ways of choosing objects out of: objects is

| ordered unordered

no repeat nt "
_m+1

repeats| n™ ("

m

The only entry that needs justification Q%‘ZZ“). But there is a one-to-one cor-
respondance betwen the set of ways of choosingut of n unordered with possible
repeats and the set of all binary strings of length m — 1 with m zeros andv — 1
ones. For suppose there ang occurences of elementm; > 0. Then

Zmi:m<—>0...010...01...10...0.
1=1

miy ma2 Mn

There are(”*;’l‘“) such strings (choosing where to put thg).

2.5.2 Some more identities

n n
()-(,7) neturez

Proof. For: choosing &-subset is the same as choosingian k-subset to reject. O

n n—1 n—1
(-7 (75) wemnes

Proof. This is trivial if n < 0 or k£ < 0, so assume > 0 andk > 0. Choose a special
element in thex-set. Anyk-subset will either contain this special element (there are

(1) such) or not contain it (there a(&; ') such). O

Proposition.

Proposition.
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In fact

Proposition.

x x—1 rx—1
= Z
Proof. Trivial if k£ < 0, so letk > 0. Both sides are polynomials of degre@and are

equal on all elements d@f, and so are equal as polynomials as a consequence of the
Fundamental Theorem of Algebra. This is the “polynomial argument”. O

This can also be proved from the definition, if you want to.

() ()= () (k) mren

Proof. If £ < 0 orm < k then both sides are zero. Assume> k£ > 0. Assume
x = n € N (the general case follows by the polynomial argument). This is “choosing
a k-subset contained in an-subset of a-set”. O

©)-i() remo

Proof. We may assume = n € N andk > 0. This is “choosing &-team and its
captain”. O

Proposition.

Proposition.

Proposition.

Proof. For

andsoog_;1i><;)+<mil><;>+<”m1>+<;;+a> D

A consequence of this is thaf;_, k™ = 15 (n + 1)™*L, which is obtained by

multiplying the previous result by:!. This can be used to subn, _, k™.

r+s r S
= Z
<m+n> zk:(m%)(n—k) hE e

Proof. We can replace by m +n andk by m + k£ and so we may assume that= 0.
So we have to prove:

(r;—s> :%:(I:)(nik) r,s,n € L.

Take an(r + s)-set and split it into am-set and ars-set. Choosing an-subset
amounts to choosing/asubset from the-set and arin — k)-subset from the-set for
variousk. O

Proposition.
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2.6 Special Sequences of Integers

2.6.1 Stirling numbers of the second kind

Definition. The Stirling number of the second kinfl(n, k), n,k € Ny is defined
as the number of partitions oft,...,n} into exactlyk non-empty subsets. Also
S(n,0)=0ifn>0andlifn=0.

Note thatS(n, k) = 0if k > n, S(n,n) = 1forall n, S(n,n — 1) = (}) and
S(n,2) =21 -1,
Lemma 2.1. Arecurrence:S(n, k) = S(n — 1,k — 1) + kS(n — 1, k).
Proof. Inany partition of{1, ..., n}, the element is either in a part on its owr(n—
1,k — 1) such) or with other things«(S(n — 1, k) such). O
Proposition. Forn € No, 2" = Y, S(n, k)zk.

Proof. Proof is by induction om. It is clearly true whem = 0, so taken > 0 and
assume the result is true far— 1. Then

2" =zt

= xZS(n— 1,k)zk
k
= ZS(n— 1Lk (z — k+ k)
k

=S — 1, k)2 + > kS(n — 1, k)ak

k k
=Y S(n—1,k=1)2%+> kS(n—1,k)z"
k k

= S(n, k)2 as required.
k

2.6.2 Generating Functions

Recall the Fibonacci numbers,, such thatt}y, = F, = 1 andF, 12 = F41 + F.
Suppose that we wish to obtain a closed formula.

First method

Try a solution of the formF,, = a™. Thenwe gety? —a — 1 = 0 anda = 1£/5, We

2
then take
Fn:A<1+2\/S> +B<1—2¢5)

and use the initial conditions to determideand B. It turns out that

(7))

1

F,=—
NG
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Note that“Tﬁ >1 and‘ #‘ < 1 so the solution grows exponentially. A shorter

n
form is thatF,, is the nearest integer tg- <1+2\/5) :

Second Method

Or we can form an ordinary generating function

G(z2) = Z F,z".

n>0

Then using the recurrence féF, and initial conditions we get th&#(z)(1 — 2z —22) =

z. We wish to find the coefficient of” in the expansion o&(z) (which is denoted
[2"]G(#)). We use partial fractions and the binomial expansion to obtain the same
result as before.

In general, the ordinary generating function associated with the sequencen,
isG(z) =) ,>0 anz", a“formal power series”. It is deduced from the recurrence and
the initial conditions.

Addition, subtraction, scalar multiplication, differentiation and integration work as
expected. The new thing is the “product” of two such series:

Z apz® Z b2t = Z cn2", wherec,, = Zn: arby_-
k=0

k>0 1>0 n>0

(cn)nen, Is the “convolution” of the sequencés,,),en, and (by)nen,. Some
functional substitution also works.

Any identities give information about the coefficients. We are not concered about
convergence, but within the radius of convergence we get extra information about val-
ues.

2.6.3 Catalan numbers

A binary tree is a tree where each vertex has a left child or a right child or both or
neither. The Catalan numbeér, is the number of binary trees envertices.

Lemma 2.2.
C, = Z CrCr_1—%
0<k<n—1

Proof. On removing the root we get a left subtree of sizend a right subtree of size
n—1—kfor0 <k <n— 1. Summing ovek gives the result. O

This looks like a convolution. In fact, it ig"~1]C(2)? where

C(z) = Z Cp2".

n>0

We observe that therefot®(z) = 2C(z)? + 1, where the multiplication by shifts
the coefficients up by and then+1 adjusts forCy. This equation can be solved for
C(z) to get

1++1—-4z

Cz) = 2z
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SinceC(0) = 1 we must have the- sign. From the binomial theorem

(1-42)% =) (i) (—4)F 2",

k>0

ThusC,, = —%(nil)(—@”“. Simplifying this we obtairC,, = -1 (*") and note
the corollary thatn + 1) | (*").

Other possible definitions far, are:
e The number of ways of bracketing+ 1 variables.

e The number of sequences of length with n each of+1 such that all partial
sums are non-negative.

2.6.4 Bell numbers

Definition. The Bell numbei,, is the number of partitions dfl, ..., n}.
It is obvious from the definitions thdt,, = >, S(n, k).

Lemma 2.3.

l3n+1:: j{: (Z><Bk

0<k<n

Proof. For, put the element + 1 in with a k-subset of{1,...,n} fork = 0to k =
n. O

There isn’t a nice closed formula fdB,,, but there is a nice expression for its
exponential generating function.

Definition. The exponential generating function that is associated with the sequence
(an)nENois

Az) =Y %z"

If we haveA(z) andB(z) (with obvious notation) and (z)B(z) = 3", 2" then
cn = 2, (7)arbn—r, the exponential convolution ¢fi,,),cr, and(by, ) e, -
HenceB,, ;1 is the coefficient ot™ in the exponential convolution of the sequences
1,1,1,1,... and By, By, Bs, .... ThusB(z)’ = e*B(z). (Shifting is achieved by

differentiation for exponential generating functions.) Therefér(e) = e 1t¢ and
using the conditior3(0) = 1 we find thatC' = —1. So

B(z) =e* L.

2.6.5 Partitions of numbers and Young diagrams

Forn € N let p(n) be the number of ways to write as the sum of natural numbers.
We can also defing(0) = 1.
For instancep(5) = 7:
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5 4+1 3+2 3+1+1
Notation 5 413 32 312
24241 2+414+1+1 1+14+1+1+1
Notation 221 213 15

These partitions of. are usefully pictured by Young diagrams.

The “conjugate partition” is obtained by taking the mirror image in the main diag-
onal of the Young diagram. (Or in other words, consider columns instead of rows.)
By considering (conjugate) Young diagrams this theorem is immediate.

Theorem 2.2. The number of partions of into exactlyk parts equals the number of
partitions ofn with largest partk.

We now define an ordinary generating function fon)
() =1+ p(n)z
neN

Proposition.

1 1 1 1
Pz) = 1—21—221-23 H 1— 2k
keN
Proof. The RHSis(1 + 2z + 22+ ... )1+ 22+ 2 +... )1+ 22 +20...)..
We get a termz” whenever we select®* from the first bracket,sz12 from the
secondz3%s from the third and so on, and= a; + 2as + 3as +. . ., or in other words
191292393 is a partition ofn. There arep(n) of these. O

We can similarly prove these results.

Proposition. The generating functio®,, (z) of the sequencg,, (n) of partitions ofn
into at mostn parts (or the generating function for the sequepggn) of partitions
of n with largest part< m) satisfies

1 1 1 1

Pm(z):1—z1—221—z3'”1—zm'

Proposition. The generating function for the number of partitions into odd parts is
1 1 1
1—21—231—-25"""

Proposition. The generating function for the number of partitions into unequal parts
is

(14+2)1+22)(1+2%)....
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Theorem 2.3. The number of partitions of into odd parts equals the number of par-
titions of n into unequal parts.

Proof.

1—221—2%1—26
1—21—221—-23""
1 1 1

1—21—231—-25"""

(1+2) 14221 +2%)... =

O

Theorem 2.4. The number of self-conjugate partitionsroéquals the number of par-
titions ofn into odd unequal parts.

Proof. Consider hooks along the main diagonal like this.

This process can be reversed, so there is a one-to-one correspondance. [

2.6.6 Generating function for self-conjugate partitions

Observe that any self-conjugate partition consists of a lakgegtsubsquare and twice
a partition of1 (n — k?) into at mostk parts. Now

1
(1-22)1—-2%...(1 =22

is the generating function for partitions afinto even parts of size at mo8tn, or
alternatively the generating function for partitionsgwi into parts of size< m. We
deduce that

P

(1-22)(1—2%...(1 =22

is the generating function for partitions é(n — () into at mostm parts. Hence the
generating function for self-conjugate partitions is

k2
z
1+ .
% (1—22)(1—2%)...(1 —22k)
Note also that this equals
H (1 + Z2k+1),

keNy

as the number of self-conjugate partitionswquals the number of partitionsofinto
unequal odd parts.

In fact in any partition we can consider the largést k subsquare, leaving two
partitions of at most parts, one ofn — k2 — 5), the other ofj for somej. The number
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F 1 respectively.

i=11—2

of these two lots are the coefficients gf**~7 and 27 in []
Thus

2
Zk

P(z)=1 .
S Py T T
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Chapter 3

Sets, Functions and Relations

3.1 Sets and indicator functions

We fix some universal sé&t. We write P(S) for the set of all subsets &f — the “power
set” of S. If S is finite with | S| = m (the number of elements), théR(S)| = 2™.

Given a subsefd of S (A C S) we define the “complement4 of A in S as
A={seS:s¢ A}.

Given two subsetsl, B of S we can define various operations to get new subsets
of §.

ANB={seS:sc Aands € B}

AUB = {s € S:se Afinclusive) ors € B}

A\B={seA:s¢ B}

AoB={se€S:se A(exclusive) ors € B} the symmetric difference
=(AUB)\ (ANB)
=(A\B)U(B\ A4).

The indicator function/4 of the subsetd of S is the functionl4: S — {0,1}
defined by

0 otherwise.

IA(S):{l reA

Itis also known as the characteristic functipn. Two subsetsl and B of S are equal
iff 14(s) = Ig(s)Vs € S. These relations are fairly obvious:

Ii=1—-14
Isnp=14-1Ip
Tawp =14+ 1p
Taop =14+ 15 mod 2.

Proposition. Ao (BoC) = (Ao B)oC.

23
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Proof. For, modulo 2,

Iyo(Bocy = Ia+ Ipoc = Ia+Ip + 1o = Laop + Ic = I 40B)oc  mod 2.

ThusP(S) is a group undes. Checking the group axioms we get:
e GivenA, B € P(S), Ao B € P(S)— closure,

e Ao (Bo()= (Ao B)oC — associativity,

e Ao()= Aforall A e P(S)— identity,

e Ao A={forall A e P(S)—inverse.

We note thatd o B = B o A so that this group is abelian.

3.1.1 De Morgan’s Laws
Proposition. 1. ANB=AUB

Ii=g=1—Ianp =1—Islp
=1 —=1a)+ (1~ 1p) = (1 1a)(1—1Ip)
=Ii+1p—1lang

= Liup-
We prove2 by usingl on A andB. O
A more general version of this is: Suppade, ..., A, C S. Then
1. m =UiL1 4
2. m =iz A;.

These can be proved by induction on

3.1.2 Inclusion-Exclusion Principle
Note thatA| = > g 1a(s).

Theorem 3.1 (Principle of Inclusion-Exclusion). Given Ay, ..., A, C S then

[AyU-UA = > (=DYITNA,] whered; = () A..
0£JC{1,....,n} i€J
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Proof. We considetd; U - - - U A4,, and note that

Iooa,; = 14n-nA4,
—Ig 04, 14
=1 =1a)(A = La,) ... (1= 1a,)

Summing oves € S we obtain the result

A0 U4 = Y (-4,
JC{1,...,n}

which is equivalent to the required result. O
Just for the sake of it, we’'ll prove it again!

Proof. For eachs € S we calculate the contribution. § € S but s is in no A; then
there is a contributioi to the left. The only contribution to the rightisl whenJ = §.
If se SandK = {i € {1,...,n}: s € A;}is non-empty then the contribution to the
rightis ;e (DI = 3% ()(~1)" = 0, the same as on the left. O

i

Example (Euler’s Phi Function).

o= 11 (1-3)

p prime
plm

Solution. Let m = [];-_, p{*, where thep; are distinct primes and; € N. Let A; be
the set of integers less than which are divisible byp,. Henceg(m) = |ﬁ?:1 Ai|.

Now [4;| = 7, infactforJ C {1,...,m} we havel4,| = H:}pi. Thus
m m m
QS(m) - M- — — — — . — _
pPr P2 Pn
m m m m
pip2  Pip3 p2ps3 Pn—1Pn
(_DWL
pPip2.-.-Pn
1 .
=m [] (1 - > as required.
p prime p
plm

O

Example (Derangements).Suppose we have psychologists at a meeting. Leaving
the meeting they pick up their overcoats at random. In how many ways can this be
done so that none of them has his own overcoat. This numkey, ishe number of
derangements of objects.
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Solution. Let A; be the number of ways in which psychologigtllects his own coat.
ThenD, = [A;N---NA,|. If J C{1,...,n} with |J| = k then|A;| = (n — k).

Thus
|Ain-NA,|=n!— <711>(n—1)!+ <g>(n—2)!—...
e (DR
=n! Z X
k=0
ThusD,, is the nearest integer td e, since2» — e~ asn — oo. O

3.2 Functions

Let A, B be sets. A function (or mapping, or map) A — B is a way to associate
a unique image¢f (a) € B with eacha € A. If A andB are finite with|A| = m and
|B| = n then the set of all functions from to B is finite withn™ elements.

Definition. The functionf: A — B is injective (or one-to-one) if (a1) = f(as2)
implies thata; = a for all ay,as € A.

The number of injective functions from an-set to am-set isn™.

Definition. The functionf: A — B is surjective (or onto) if each € B has at least
one preimage: € A.

The number of surjective functions from anset to am-set isn! S(m,n).
Definition. The functionf: A — B is bijective if it is both injective and surjective.

If A and B are finite thenf: A — B can only be bijective ifA| = |B|. If
|A| = |B| < oo then any injection is a bijection; similarly any surjection is a bijection.
There aren! bijections between twa-sets.

If A andB are infinite then there exist injections which are not bijections\aoel
versa For instance ifA = B = N, define

f(n):{l n=1 and  g(n)=n+1.

n —1 otherwise

Thenf is surjective but not injective anglis injective but not surjective.
Proposition.

n!S(m,n) = 1k<n)nkm
(mm) = 3D ) =)
Proof. This is another application of the Inclusion-Exclusion principle. Consider the
set of functions fromA4 to B with |A| = m and|B| = n. For any: € B, defineX; to
be the set of functions avoiding
So the set of surjections %; N- - -N X,,. Thus the number of surjections framto
Bis|X1 NN X,|. Bytheinclusion-exclusion principle this}s ;- ;(—1)//1 |X .
If |J| = k then| X ;| = (n — k)™. The result follows. O

Mappings can be “composed”. Giveh A — B andg: B — C we can define
gf: A— Chbygf(a) = g(f(a)). If fandg are injective then so igf, similarly for
surjectivity. If we also havé: C' — D, then associativity of composition is easily

verified : (hg)f = h(gf).
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3.3 Permutations

A permutation ofA is a bijectionf: A — A. One notation is

The set of permutations of is a group under composition, the symmetric group
sym A. If |[A] = n thensym A is also denoted,, and|sym A| = n!. S, is not abelian
— you can come up with a counterexample yourself. We can also think of permutations
as directed graphs, in which case the following becomes clear.

Proposition. Any permutation is the product of disjoint cycles.

We have a new notation for permutations, cycle notatioRor our function f
above, we write

fF=1)(234)(58)(67)=(234)(58)(67).

3.3.1 Stirling numbers of the first kind

Definition. s(n, k) is the number of permutations ff, . . ., n} with preciselyk cycles
(including fixed points).

For instances(n,n) = 1, s(n,n — 1) = (3), s(n,1) = (n — 1)1, s(n,0) =
s(0,k) =0forall k,n € Nbuts(0,0) = 1.

Lemma 3.1.
s(nyk)=s(n—1,k—1)4+ (n—1)s(n —1,k)

Proof. Either the point: is in a cycle on its ownd(n—1, k—1) such) oritis not. In this
casey can be inserted into any af— 1 places in any of the(n — 1, k) permutations
of {1,...,n—1}. O

We can use this recurrence to prove this proposition. (Proof left as exercise.)

Proposition.

3.3.2 Transpositions and shuffles

A transposition is a permutation which swaps two points and fixes the rest.
Theorem 3.2. Every permutation is the product of transpositions.

Proof. Since every permutations is the product of cycles we only need to check for
CyCleS. This is eaS)(:’il 19 ... Zk) = (7,1 22)(22 Zg) Ce (ik—l Zk) O

Theorem 3.3. For a given permutationr, the number of transpositions used to write
« as their product is either always even or always odd.

1See the Algebra and Geometry course for more details.
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. 1 if always even . .
We writesign m = + ) y . We say thatr is an even permutation.
—1 ifalways odd odd

Letc(7) be the number of cycles in the disjoint cycle representation(@fcluding
fixed points).

Lemma 3.2. If 0 = (a b) is a transposition that(ro) = ¢(m) £ 1.

Proof. If a andb are in the same cycle of thenwo has two cycles, se(ro) =
c(m)+1. If a andb are in different cycles then they contract them togethercgmd) =
e(m) — 1. O

Proof of theorem 3.3Assumer = o1 ...0kt = 71 ...73t. Thene(n) = ¢(v) + k
c(t) +1 (mod 2). Hencek = [ (mod 2) as required.

o

We note thatignm = (—1)"~¢(™), thussign(rim2) = sign signm, and thus
sign is a homomorphism frons,, to {+1}.

A k-cycle is an even permutation iff is odd. A permutation is ani\:j%n per-

mutation iff the number of even length cycles in the disjoint cycle representation is
even
odd -

3.3.3 Order of a permutation

If 7 is a permutation then the orderofs the least natural numbersuch thatr” = ..
The order of the permutation is the Icm of the lengths of the cycles in the disjoint
cycle decomposition of.

In card shuffling we need to maximise the order of the relevant permutatiOme
can show (see) that for of maximal length we can take all the cycles in the disjoint
cycle representation to have prime power length. For instance3withrds we can get
am € S3p with an order of4620 (cycle type3 4 5 7 11).

3.3.4 Conjugacy classes i,
Two permutationsy, 3 € S,, are conjugate ifir € S, such thaty = 737~ 1.
Theorem 3.4. Two permutations are conjugate iff they have the same cycle type.
This theorem is proved in the Algebra and Geometry course. We note the corollary

that the number of conjugacy classesinequals the number of partitions of

3.3.5 Determinants of ann x n matrix

In the Linear Maths course you will prove thatdf= (a;;) is ann x n matrix then

det A = Z signwﬁajw(j).
j=1

TES,
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3.4 Binary Relations

A binary relation on a se$ is a property that any pair of elements.®fmay or may
not have. More precisely:

Write S x S, the Cartesian square Sffor the set of pairs of elements 8f S x S =
{(a,b) : a,b € S}. A binary relationR on S is a subset of x S. We writea R b iff
(a,b) € R. We can think ofR as a directed graph with an edge franto b iff a R b.

ArelationR is:

o reflexive iffa R aVa € S,
e symmetriciffa R b= bR aVa,be S,
e transitive iffa R b,b R ¢ = a R c¢Va,b,c € S,

e antisymmetric iffa R b,b R a = a =bVa,b € S.

The relationR on S is an equivalence relation if it is reflexive, symmetric and
transitive. These are “nice” properties designed to nfakeehave something like.

Definition. If R is a relation onS, then
[alg =[a] ={be€ S:aR b}
If R is an equivalence then these are the equivalence classes.

Theorem 3.5. If R is an equivalence relation then the equivalence classes form a par-
tition of S.

Proof. If a« € S thena € [a], so the classes cover all 6f If [a] N [b] # 0 then
Je € [a]N[b]. Nowa R candb R ¢ = ¢ R b. Thusa R bandb € [a]. If d € [b]
thenb R d soa R d and thugb] C [a]. We can similarly show thdt] C [b] and thus
[a] = [b]. O

The converse of this is true: if we have a partitiorbofre can define an equivalence
relation onS by a R b iff a andb are in the same part.

An application of this is the proof of Lagrange’s Theorem. The idea is to show that
being in the same (left/right) coset is an equivalence relation.

Given an equivalence class 6fthe quotient set i$/R, the set of all equivalence
classes. Forinstance$f = R anda R b iff a — b € Z thenS/R is (topologically) a
circle. If S = R? and(ay, b1) R (az, bo) iff a1 — as € Z andb; — by € Z the quotient
setis a torus.

Returning to a general relatidR, for eachk € N we define

R*) = {(a,b) : there is a path of length a&tfrom a to b}.

RO = R andR(*) = t(R), the transitive closure gR. R(*) is defined as
Uiz1 R
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3.5 Posets

R is a (partial) order orf if it is reflexive, anti-symmetric and transitive. The $eis
a poset (partially ordered set) if there is an oreon S.
We generally writer < biff (a,b) € R, anda < biff a < banda # b.
ConsiderD,,, the set of divisors of.. D,, is partially ordered by divisiorg < b if
a | b. We have the Hasse diagram, in this casel¥gs:

A descending chain is a sequenge> as > ag > .... An antichain is a subset of
S with no two elements directly comparable, for instafdes, 9} in Dsg.

Proposition. If S is a poset with no chains of length n thenS can be covered by at
mostn antichains.

Proof. Induction onn. Taken > 1 and letM be the set of all maximal elements$h
Now S\ M has no chains of lengtls n — 1 and}/ is an antichain. O
3.5.1 Products of posets
Supposed and B are posets. TheA x B has various orders; two of them being

e product orderi{ay, b1) < (ag,be) iff a1 < ag andby < bo,

e lexicographic orderi(ai,b1) < (az,bs) if eithera; < ay orif a1 = as then
b1 < bo.

Exercise: check that these are orders.

Note that there are no infinite descending chain®lixx N under lexicographic
order. Such posets are said to be well ordered. The principle of induction follows from
well-ordering as discussed earlier.

3.5.2 Eulerian Digraphs

A digraph is Eulerian if there is a closed path covering all the edges. A necessary
condition is: the graph is connected and even (each vertex has an equal number of “in”
and “out” edges). This is in fact sufficient.

Proposition. The set of such digraphs is well-ordered under containment.
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Proof. Assume proposition is false and I8tbe a minimal counterexample. L&tbe

a non-trivial closed path id/, for instance the longest closed path. N&wmust be
even, so& \ T is even. Hence each connected componertt §fT" is Eulerian as&

is minimal. But thenG is Eulerian: you can walk alon@ and include all edges of
connected components 6f\ T when encountered — giving a contradiction. Hence
there are no minimal counterexamples. O

3.6 Countability

Definition. A setS is countable if eithefS| < oo or 3 a bijectionf: S — N.

The countable sets can be equivalently thought of as those that can be listed on a
line.

Lemma 3.3. Any subsef C N is countable.
Proof. For: map the smallest element.8fto 1, the next smallest td and so on. [
Lemma 3.4. A setS is countable ifH an injectionf: S +— N.

Proof. This is clear for finiteS. Hence assumé is infinite. If f: S — N is an
injection thenf (.S) is an infinite subset d¥. Henced a bijectiong: f(S) — N. Thus
gf: S — Nis a bijection. O

An obvious result is that i’ is countable and an injectionf: S — S’ thenS'is
countable.

Proposition. Z is countable.

Proof. Considerf: Z — N,

20 +1 ifz>0
fix— )
—2x if z <0.
This is clearly a bijection. O
Proposition. N* is countable fork € N.

Proof. The map(iy, ... ,i,) — 211372 ... pi* (p; is the M prime) is an injection by
uniqueness of prime factorisation. O

Lemma3.5. If A,..., Ay are countable withk € N, thensoisd; x --- x Ay.

Proof. SinceA; is countable there exists an injectifn A; — N. Hence the function
g: Aq,..., Ay — NF defined byg(as, . .., ar) = (fi(a1),- .., fx(ax)) is aninjection.
O

Proposition. Q is countable.

Proof. Definef: Q — N by
f: g — 2|u\3b51+signa
b )

where(a, b) = 1 andb > 0. O
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Theorem 3.6. A countable union of countable sets is countable. That i$, i a
countable indexing set and; is countablevi € I thenlJ,.; 4; is countable.

Proof. Identify first I with the subseff(I) C N. DefineF': A — N bya — 2"3™
wheren is the smallest indexwith a € A;, andm = f,,(a). This is well-defined and
injective (stop to think about it for a bit). O

Theorem 3.7. The set of all algebraic numbers is countable.

Proof. Let P, be the set of all polynomials of degree at maswith integral coeffi-
cients. Thenthe map,2"™ +---+c1x+co — (cn, ..., c1,co) iS an injection fromp,,

to Z"*t1. Hence eacltP, is countable. It follows that the set of all polynomials with
integral coefficients is countable. Each polynomial has finitely many roots, so the set
of algebraic numbers is countable. O

Theorem 3.8 (Cantor’s diagonal argument).R is uncountable.

Proof. AssumeR is countable, then the elements can be listed as

r = ’nl.dudlgdlg A
r9 = No.do1doodys . ..
rs = n3.d31d32d33 .
(in decimal notation). Now define the reak= 0.d;d2ds ... by d; = 0if d;; # 0 and

d; = 1if d;; = 0. This is real, but it differs from; in thei" decimal place. So the list
is incomplete and the reals are uncountable. O

Exercise: use a similiar proof to show tha{N) is uncountable.

Theorem 3.9. The set of all transcendental numbers is uncountable. (And therefore at
least non-empty!)

Proof. Let A be the set of algebraic numbers dfidhe set of transcendentals. Then
R = AUT,soifT was countable then so wouRlbe. ThusI" is uncountable. [

3.7 Bigger sets

The material from now on is starred.

Two setsS andT have the sameardinality (|S| = |T'|) if there is a bijection
betweenS andT. One can show (the Sdbder-Bernstein theorem) that if there is an
injection fromS to T and an injection fron7" to S then there is a bijection betweéh
andT.

For any setS, there is an injection fron$ to P(S), simplyz — {z}. However
there is never a surjectiost — P(S), so|S| < |P(S)|, and so

IN| < |P(N)| < |P(P(N))| < ...
for some sensible meaning af

Theorem 3.10. There is no surjectioy — P(.5).
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Proof. Let f: S — P(S) be a surjection and considé&f € P(S) defined by{z €
S:x ¢ f(x)}. Now3dz' € S suchthatf(z') = X. If 2/ € X thenz’ ¢ f(2) but
f(z') = X — a contradiction. But ift’ ¢ X thenz’ ¢ f(2') anda’ € X — giving a

contradiction either way. O
If there is an mJE.ECt".)n f: A — B then there exists as_,u_rjec_tlon g: B— A.
surjection injection

Of:LA
°g

Moreover we can ensure tha L
= lB
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