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Chapter 1

Integers

Notation. The “natural numbers”, which we will denote byN, are

{1, 2, 3, . . . }.

The integersZ are

{. . . ,−2,−1, 0, 1, 2, . . . }.

We will also use the non-negative integers, denoted either byN0 or Z+, which isN ∪
{0}. There are also the rational numbersQ and the real numbersR.

Given a setS, we writex ∈ S if x belongs toS, andx /∈ S otherwise.

There are operations+ and· onZ. They have certain “nice” properties which we
will take for granted. There is also “ordering”.N is said to be “well-ordered”, which
means that every non-empty subset ofN has a least element. The principle of induction
follows from well-ordering.

Proposition (Principle of Induction). LetP (n) be a statement aboutn for eachn ∈
N. SupposeP (1) is true andP (k) true implies thatP (k + 1) is true for eachk ∈ N.
ThenP is true for alln.

Proof. SupposeP is not true for alln. Then consider the subsetS of N of all numbers
k for which P is false. ThenS has a least elementl. We know thatP (l − 1) is true
(sincel > 1), so thatP (l) must also be true. This is a contradiction andP holds for all
n.

1.1 Division

Given two integersa, b ∈ Z, we say thata dividesb (and writea | b) if a 6= 0 and
b = a · q for someq ∈ Z (a is a divisor ofb). a is aproper divisorof b if a is not±1
or±b.

Note. If a | b and b | c thena | c, for if b = q1a and c = q2b for q1, q2 ∈ Z then
c = (q1 ·q2)a. If d | a andd | b thend | ax+ by. The proof of this is left as an exercise.

1



2 CHAPTER 1. INTEGERS

1.2 The division algorithm

Lemma 1.1. Givena, b ∈ N there exist unique integersq, r ∈ N with a = qb + r,
0 ≤ r < b.

Proof. Takeq the largest possible such thatqb ≤ a and putr = a−qb. Then0 ≤ r < b
sincea− qb ≥ 0 but (q + 1)b ≥ a. Now suppose thata = q1b + r with q1, r1 ∈ N and
0 ≤ r1 < b. Then0 = (q − q1)b + (r − r1) andb | r − r1. But−b < r − r1 < b so
thatr = r1 and henceq = q1.

It is clear thatb | a iff r = 0 in the above.

Definition. Givena, b ∈ N thend ∈ N is the highest common factor (greatest common
divisor) ofa andb if:

1. d | a andd | b,

2. if d′ | a andd′ | b thend′ | d (d′ ∈ N).

The highest common factor (henceforth hcf) ofa andb is written(a, b) or hcf(a, b).
The hcf is obviously unique — ifc andc′ are both hcf’s then they both divide each

other and are therefore equal.

Theorem 1.1 (Existance of hcf).For a, b ∈ N hcf(a, b) exists. Moreover there exist
integersx andy such that(a, b) = ax + by.

Proof. Consider the setI = {ax + by : x, y ∈ Z andax + by > 0}. ThenI 6= ∅ so let
d be the least member ofI. Now∃x0, y0 such thatd = ax0 + by0, so that ifd′ | a and
d′ | b thend′ | d.

Now write a = qd + r with q, r ∈ N0, 0 ≤ r < d. We haver = a − qd =
a(1−qx0)+b(−qy0). Sor = 0, as otherwiser ∈ I: contrary tod minimal. Similiarly,
d | b and thusd is the hcf ofa andb.

Lemma 1.2. If a, b ∈ N and a = qb + r with q, r ∈ N0 and 0 ≤ r < b then
(a, b) = (b, r).

Proof. If c | a andc | b thenc | r and thusc | (b, r). In particular,(a, b) | (b, r). Now
note that ifc | b andc | r thenc | a and thusc | (a, b). Therefore(b, r) | (a, b) and
hence(b, r) = (a, b).

1.3 The Euclidean algorithm

Suppose we want to find(525, 231). We use lemmas (1.1) and (1.2) to obtain:

525 = 2× 231 + 63
231 = 3× 63 + 42
63 = 1× 42 + 21
42 = 2× 21 + 0

So(525, 231) = (231, 63) = (63, 42) = (42, 21) = 21. In general, to find(a, b):
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a = q1b + r1 with 0 < r1 < b

b = q2r1 + r2 with 0 < r2 < r1

r1 = q3r2 + r3 with 0 < r3 < r2

...

ri−2 = qiri−1 + ri with 0 < ri < ri−1

...

rn−3 = qn−1rn−2 + rn−1 with 0 < rn < rn−1

rn−2 = qnrn−1 + 0.

This process must terminate asb > r1 > r2 > · · · > rn−1 > 0. Using Lemma
(1.2), (a, b) = (b, r1) = · · · = (rn−2, rn−1) = rn−1. So (a, b) is the last non-zero
remainder in this process.

We now wish to findx0 andy0 ∈ Z with (a, b) = ax0 + by0. We can do this by
backsubstitution.

21 = 63− 1× 42
= 63− (231− 3× 63)
= 4× 63− 231
= 4× (525− 2× 231)− 231
= 4× 525− 9× 231.

This works in general but can be confusing and wasteful. These numbers can be
calculated at the same time as(a, b) if we know we shall need them.

We introduceAi andBi. We putA−1 = B0 = 0 andA0 = B−1 = 1. We
iteratively define

Ai = qiAi−1 + Ai−2

Bi = qiBi−1 + Bi−2.

Now consideraBj − bAj .

Lemma 1.3.

aBj − bAj = (−1)j+1rj .

Proof. We shall do this using strong induction. We can easily see that (1.3) holds for
j = 1 andj = 2. Now assume we are ati ≥ 2 and we have already checked that
ri−2 = (−1)i−1(aBi−2 − bAi−2) andri−i = (−1)i(aBi−1 − bAi−1). Now

ri = ri−2 − qiri−1

= (−1)i−1(aBi−2 − bAi−2)− qi(−1)i(aBi−1 − bAi−1)

= (−1)i+1(aBi − bAi), using the definition ofAi andBi.
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Lemma 1.4.

AiBi+1 −Ai+1Bi = (−1)i

Proof. This is done by backsubstitution and using the definition ofAi andBi.

An immediate corollary of this is that(Ai, Bi) = 1.

Lemma 1.5.

An =
a

(a, b)
Bn =

b

(a, b)
.

Proof. (1.3) for i = n givesaBn = bAn. Therefore a
(a,b)Bn = b

(a,b)An. Now a
(a,b)

and b
(a,b) are coprime.An andBn are coprime and thus this lemma is therefore an

immediate consequence of the following theorem.

Theorem 1.2. If d | ce and(c, d) = 1 thend | e.

Proof. Since(c, d) = 1 we can write1 = cx + dy for somex, y ∈ Z. Thene =
ecx + edy andd | e.

Definition. The least common multiple (lcm) ofa andb (written [a, b]) is the integerl
such that

1. a | l andb | l,

2. if a | l′ andb | l′ thenl | l′.

It is easy to show that[a, b] = ab
(a,b) .

1.4 Applications of the Euclidean algorithm

Takea, b andc ∈ Z. Suppose we want to find all the solutionsx, y ∈ Z of ax+by = c.
A necessary condition for a solution to exist is that(a, b) | c, so assume this.

Lemma 1.6. If (a, b) | c thenax + by = c has solutions inZ.

Proof. Takex′ andy′ ∈ Z such thatax′ + by′ = (a, b). Then if c = q(a, b) then if
x0 = qx′ andy0 = qy′, ax0 + by0 = c.

Lemma 1.7. Any other solution is of the formx = x0 + bk
(a,b) , y = y0 − ak

(a,b) for
k ∈ Z.

Proof. These certainly work as solutions. Now supposex1 andy1 is also a solution.
Then a

(a,b) (x0 − x1) = − b
(a,b) (y0 − y1). Since a

(a,b) and b
(a,b) are coprime we have

a
(a,b) | (y0 − y1) and b

(a,b) | (x0 − x1). Say thaty1 = y0 − ak
(a,b) , k ∈ Z. Then

x1 = x0 + bk
(a,b) .
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1.4.1 Continued Fractions

We return to525 and231. Note that

535
231

= 2 +
63
231

= 2 +
1

231
63

= 2 +
1

3 + 42
63

= 2 +
1

3 + 1
1+ 1

2

.

Notation.

535
231

= 2 +
1

3+
1

1+
1
2

= [2, 3, 1, 2] = 2; 3, 1, 2.

Note that2, 3, 1 and2 are just theqi’s in the Euclidean algorithm. The rational
a
b > 0 is written as a continued fraction

a

b
= q1 +

1
q2+

1
q3+

. . .
1
qn

,

with all theqi ∈ N0, qi ≥ 1 for 1 < i < n andqn ≥ 2.

Lemma 1.8. Every rational a
b with a and b ∈ N has exactly one expression in this

form.

Proof. Existance follows immediately from the Euclidean algorithm. As for unique-
ness, suppose that

a

b
= p1 +

1
p2+

1
p3+

. . .
1

pm

with thepi’s as before. Firstlyp1 = q1 as both are equal toba
b c. Since 1

p2+
1

...

< 1 then

(a

b
− p1

)−1

= p2 +
1

p3 + 1
...

=
(a

b
− q1

)−1

= q2 +
1

q3 + 1
...

.

Thusp2 = q2 and so on.

Now, suppose that given[q1, q2, . . . , qn] we wish to finda
b equal to it. Then we

work out the numbersAi andBi as in the Euclidean algorithm. Thenab = An

Bn
by

lemma (1.3).
If we stop doing this afteri steps we getAi

Bi
= [q1, q2, . . . , qi]. The numbersAi

Bi
are

called the “convergents” toab .

Using lemma (1.4), we get thatAi

Bi
− Ai−1

Bi−1
= (−1)i

Bi−1Bi
. Now theBi are strictly

increasing, so the gaps are getting smaller and the signs alternate. We get

A1

B1
<

A3

B3
< · · · < a

b
< · · · < A4

B4
<

A2

B2
.

The approximations are getting better and better; in fact
∣∣∣Ai

Bi
− a

b

∣∣∣ ≤ 1
BiBi+1

.

∗ — Continued fractions for irrationals

This can also be done for irrationals, but the continued fractions become infinite. For
instance we can get approximations toπ using the calculator. Take the integral part,
print, subtract it, invert and repeat. We getπ = [3, 7, 15, 1, . . . ]. The convergents are
3, 22

7 and 333
106 . We are already within10−4 of π. There is a good approximation asBi

increases. As an exercise, show that
√

2 = [1, 2, 2, 2, . . . ].
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1.5 Complexity of Euclidean Algorithm

Givena andb, how many steps does it take to find(a, b). The Euclidean algorithm is
good.

Proposition. The Euclidean algorithm will find(a, b), a > b in fewer than5d(b) steps,
whered(b) is the number of digits ofb in base10.

Proof. We look at the worst case scenario. What are the smallest numbers needingn
steps. In this caseqi = 1 for 1 ≤ i < n andqn = 2. Using theseqi’s to calculateAn

andBn we find the Fibonacci numbers, that is the numbers such thatF1 = F2 = 1,
Fi+2 = Fi+1 + Fi. We getAn = Fn+2 andBn = Fn+1. So if b < Fn+1 then fewer
thann steps will do. Ifb hasd digits then

b ≤ 10d − 1 ≤ 1√
5

(
1 +

√
5

2

)5d+2

− 1 < F5d+2,

as

Fn =
1√
5

[(
1 +

√
5

2

)n

−
(

1−√5
2

)n]
. This will be shown later.

1.6 Prime Numbers

A natural numberp is a prime iffp > 1 andp has no proper divisors.

Theorem 1.3. Any natural numbern > 1 is a prime or a product of primes.

Proof. If n is a prime then we are finished. Ifn is not prime thenn = n1 · n2 with n1

andn2 proper divisors. Repeat withn1 andn2.

Theorem 1.4 (Euclid). There are infinitely many primes.

Proof. Assume not. Then letp1, p2, . . . , pn be all the primes. Form the numberN =
p1p2 . . . pn +1. NowN is not divisible by any of thepi — butN must either be prime
or a product of primes, giving a contradiction.

This can be made more precise. The following argument of Erdös shows that thekth

smallest primepk satisfiespk ≤ 4k−1 + 1. Let M be an integer such that all numbers
≤ M can be written as the product of the powers of the firstk primes. So any such
number can be written

m2pi1
1 pi2

2 . . . pik

k ,

with i1, . . . , ik ∈ {0, 1}. Now m ≤ √
M , so there are at most

√
M 2k possible num-

bers less thanM . HenceM ≤ 2k
√

M , or M ≤ 4k. Hencepk+1 ≤ 4k + 1.
A much deeper result (which will not be proved in this course!) is the Prime Num-

ber Theorem, thatpk ∼ k log k.
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1.6.1 Uniqueness of prime factorisation

Lemma 1.9. If p | ab, a, b ∈ N thenp | a and/orp | b.

Proof. If p - a then(p, a) = 1 and sop | b by theorem (1.2).

Theorem 1.5. Every natural number> 1 has a unique expression as the product of
primes.

Proof. The existence part is theorem (1.3). Now supposen = p1p2 . . . pk = q1q2 . . . ql

with thepi’s andqj ’s primes. Thenp1 | q1 . . . ql, sop1 = qj for somej. By renumber-
ing (if necessary) we can assume thatj = 1. Now repeat withp2 . . . pk andq2 . . . ql,
which we know must be equal.

There are perfectly nice algebraic systems where the decomposition into primes
is not unique, for instanceZ

[√−5
]

= {a + b
√−5 : a, b ∈ Z}, where6 = (1 +√−5)(1 − √−5) = 2 × 3 and2, 3 and1 ± √−5 are each “prime”. Or alternatively,

2Z = {all even numbers}, where “prime” means “not divisible by4”.

1.7 Applications of prime factorisation

Lemma 1.10. If n ∈ N is not a square number then
√

n is irrational.

Proof. Suppose
√

n = a
b , with (a, b) = 1. Thennb2 = a2. If b > 1 then letp be a

prime dividingb. Thusp | a2 and sop | a, which is impossible as(a, b) = 1. Thus
b = 1 andn = a2.

This lemma can also be stated: “ifn ∈ N with
√

n ∈ Q then
√

n ∈ N”.

Definition. A real numberθ is algebraic if it satisfies a polynomial equation with co-
efficients inZ.

Real numbers which are not algebraic are transcendental (for instanceπ ande).
Most reals are transcendental.

If the rational a
b ( with (a, b) = 1 ) satisfies a polynomial with coefficients inZ

then

cnan + cn−1a
n−1b + . . . bnc0 = 0

sob | cn anda | c0. In particular ifcn = 1 thenb = 1, which is stated as “algebraic
integers which are rational are integers”.

Note that ifa = pα1
1 pα2

2 . . . pαk

k and b = pβ1
1 pβ2

2 . . . pβk

k with αi, βi ∈ N0 then
(a, b) = pγ1

1 pγ2
2 . . . pγk

k and [a, b] = pδ1
1 pδ2

2 . . . pδk

k , γi = min{αi, βi} and δi =
max{αi, βi}.

Major open problems in the area of prime numbers are the Goldbach conjecture
(“every even number greater than two is the sum of two primes”) and the twin primes
conjecture (“there are infinitely many prime pairsp andp + 2”).
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1.8 Modular Arithmetic

Definition. If a andb ∈ Z, m ∈ N we say thata andb are “congruent mod(ulo)m”
if m | a− b. We writea ≡ b (mod m).

It is a bit like= but less restrictive. It has some nice properties:

• a ≡ a (mod m),

• if a ≡ b (mod m) thenb ≡ a (mod m),

• if a ≡ b (mod m) andb ≡ c (mod m) thena ≡ c (mod m).

Also, if a1 ≡ b1 (mod m) anda2 ≡ b2 (mod m)

• a1 + a2 ≡ b1 + b2 (mod m),

• a1a2 ≡ b1a2 ≡ b1b2 (mod m).

Lemma 1.11. For a fixedm ∈ N, each integer is congruent to precisely one of the
integers

{0, 1, . . . ,m− 1}.
Proof. Takea ∈ Z. Thena = qm + r for q, r ∈ Z and0 ≤ r < m. Thena ≡ r
(mod m).

If 0 ≤ r1 < r2 < m then0 < r2 − r1 < m, som - r2 − r1 and thusr1 6≡ r2

(mod m).

Example. No integer congruent to3 (mod 4) is the sum of two squares.

Solution. Every integer is congruent to one of0, 1, 2, 3 (mod 4). The square of any
integer is congruent to0 or 1 (mod 4) and the result is immediate.

Similarly, using congruence modulo 8, no integer congruent to7 (mod 8) is the
sum of 3 squares.

1.9 Solving Congruences

We wish to solve equations of the formax ≡ b (mod m) givena, b ∈ Z andm ∈ N
for x ∈ Z. We can often simplify these equations, for instance7x ≡ 3 (mod 5)
reduces tox ≡ 4 (mod 5) (since21 ≡ 1 and9 ≡ 4 (mod 5)).

This equations are not always soluble, for instance6x ≡ 4 (mod 9), as9 - 6x− 4
for anyx ∈ Z.

How to do it

The equationax ≡ b (mod m) can have no solutions if(a,m) - b since thenm - ax−b
for anyx ∈ Z. So assume that(a, m) | b.

We first consider the case(a,m) = 1. Then we can findx0 andy0 ∈ Z such
that ax0 + my0 = b (use the Euclidean algorithm to getx′ andy′ ∈ Z such that
ax′ + my′ = 1). Then putx0 = bx′ so ax0 ≡ b (mod m). Any other solution is
congruent tox0 (mod m), asm | a(x0 − x1) and(a,m) = 1.

So if (a,m) = 1 then a solution exists and is unique modulom.
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1.9.1 Systems of congruences

We consider the system of equations

x ≡ a mod m

x ≡ b mod n.

Our main tool will be the Chinese Remainder Theorem.

Theorem 1.6 (Chinese Remainder Theorem).Assumem,n ∈ N are coprime and
let a, b ∈ Z. Then∃x0 satisfying simultaneouslyx0 ≡ a (mod m) and x0 ≡ b
(mod n). Moreover the solution is unique up to congruence modulomn.

Proof. Write cm + dn = 1 with m,n ∈ Z. Thencm is congruent to0 modulom
and1 modulon. Similarly dn is congruent to1 modulom and0 modulon. Hence
x0 = adn + bcm satifiesx0 ≡ a (mod m) andx0 ≡ b (mod n). Any other solution
x1 satisfiesx0 ≡ x1 both modulom and modulon, so that since(m,n) = 1, mn |
x0 − x1 andx1 ≡ x0 (mod mn).

Finally, if 1 < (a,m) then replace the congruence with one obtained by dividing
by (a,m) — that is consider

a

(a,m)
x ≡ b

(a,m)
mod

m

(a,m)
.

Theorem 1.7. If p is a prime then(p− 1)! ≡ −1 (mod p).

Proof. If a ∈ N, a ≤ p − 1 then(a, p) = 1 and there is a unique solution ofax ≡ 1
(mod p) with x ∈ N andx ≤ p − 1. x is the inverse ofa modulop. Observe that

a = x iff a2 ≡ 1 (mod p), iff p | (a + 1)(a − 1), which gives thata = 1 or p − 1.
Therefore the elements in{2, 3, 4, . . . , p−2} pair off so that2×3×4×· · ·×(p−2) ≡ 1
(mod p) and the theorem is proved.

1.10 Euler’s Phi Function

Definition. For m ∈ N, defineφ(m) to be the number of nonnegative integers less
thanm which are coprime tom.

φ(1) = 1. If p is prime thenφ(p) = p− 1 andφ(pa) = pa
(
1− 1

p

)
.

Lemma 1.12. If m,n ∈ N with (m,n) = 1 thenφ(mn) = φ(m)φ(n). φ is said to be
multiplicative.

Let Um = {x ∈ Z : 0 ≤ x < m, (x,m) = 1, the reduced set of residues or set of
invertible elements. Note thatφ(m) = |Um|.

Proof. If a ∈ Um and b ∈ Un then there exists a uniquex ∈ Umn. with c ≡ a
(mod m) andc ≡ b (mod n) (by theorem (1.6)). Such ac is prime tomn, since it

is prime tom and ton. Conversely, anyc ∈ Umn arises in this way, from thea ∈ Um

andb ∈ Un such thata ≡ c (mod m), b ≡ c (mod n). Thus|Umn| = |Um| |Un| as
required.
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An immediate corollary of this is that for anyn ∈ N,

φ(n) = n
∏

p|n
p prime

(
1− 1

p

)
.

Theorem 1.8 (Fermat-Euler Theorem). Takea, m ∈ N such that(a,m) = 1. Then
aφ(m) ≡ 1 (mod m).

Proof. Multiply each residueri by a and reduce modulom. Theφ(m) numbers thus
obtained are prime tom and are all distinct. So theφ(m) new numbers are just
r1, . . . , rφ(m) in a different order. Therefore

r1r2 . . . rφ(m) ≡ ar1ar2 . . . arφ(m) (mod m)

≡ aφ(m)r1r2 . . . rφ(m) (mod m).

Since(m, r1r2 . . . rφ(m)) = 1 we can divide to obtain the result.

Corollary (Fermat’s Little Theorem). If p is a prime anda ∈ Z such thatp - a then
ap−1 ≡ 1 (mod p).

This can also be seen as a consequence of Lagrange’s Theorem, sinceUm is a group
under multiplication modulom.

Fermat’s Little Theorem can be used to check thatn ∈ N is prime. If∃a coprime
to n such thatan−1 6≡ 1 (mod n) thenn is not prime.

1.10.1 Public Key Cryptography

Private key cryptosystems rely on keeping the encoding key secret. Once it is known
the code is not difficult to break. Public key cryptography is different. The encoding
keys are public knowledge but decoding remains “impossible” except to legitimate
users. It is usually based of the immense difficulty of factorising sufficiently large
numbers. At present 150 – 200 digit numbers cannot be factorised in a lifetime.

We will study the RSA system of Rivest, Shamir and Adleson. The userA (for
Alice) takes two large primespA andqA with > 100 digits. She obtainsNA = pAqA

and chooses at randomρA such that(ρA, φ(NA)) = 1. We can ensure thatpA − 1 and
qA − 1 have few factors. NowA publishes the pairNA andρA.

By some agreed methodB (for Bob) codes his message for Alice as a sequence of
numbersM < NA. ThenB sendsA the numberMρA (mod NA). When Alice wants
to decode the message she choosesdA such thatdAρA ≡ 1 (mod φ)(NA). Then
MρAdA ≡ M (mod NA) sinceMφ(NA) ≡ 1. No-one else can decode messages to
Alice since they would need to factoriseNA to obtainφ(NA).

If Alice and Bob want to be sure who is sending them messages, then Bob could
send AliceEA(DB(M)) and Alice could applyEBDA to get the message — if it’s
from Bob.



Chapter 2

Induction and Counting

2.1 The Pigeonhole Principle

Proposition (The Pigeonhole Principle).If nm + 1 objects are placed inton boxes
then some box contains more thanm objects.

Proof. Assume not. Then each box has at mostm objects so the total number of objects
is nm — a contradiction.

A few examples of its use may be helpful.

Example. In a sequence of at leastkl+1 distinct numbers there is either an increasing
subsequence of length at leastk+1 or a decreasing subsequence of length at leastl+1.

Solution. Let the sequence bec1, c2, . . . , ckl+1. For each position letai be the length
of the longest increasing subsequence starting withci. Let dj be the length of the
longest decreasing subsequence starting withcj . If ai ≤ k anddi ≤ l then there are
only at mostkl distinct pairs(ai, dj). Thus we havear = as anddr = ds for some
1 ≤ r < s ≤ kl + 1. This is impossible, for ifcr < cs thenar > as and if cr > cs

thendr > ds. Hence either someai > k or dj > l.

Example. In a group of 6 people any two are either friends or enemies. Then there
are either 3 mutual friends or 3 mutual enemies.

Solution. Fix a personX. ThenX has either 3 friends or 3 enemies. Assume the
former. If a couple of friends ofX are friends of each other then we have 3 mutual
friends. Otherwise,X ’s 3 friends are mutual enemies.

Dirichlet used the pigeonhole principle to prove that for any irrationalα there are

infinitely many rationalspq satisfying
∣∣∣α− p

q

∣∣∣ < 1
q2 .

2.2 Induction

Recall the well-ordering axiom forN0: that every non-empty subset ofN0 has a least
element. This may be stated equivalently as: “there is no infinite descending chain in
N0”. We also recall the (weak) principle of induction from before.

11
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Proposition (Principle of Induction). LetP (n) be a statement aboutn for eachn ∈
N0. SupposeP (k0) is true for somek0 ∈ N0 andP (k) true implies thatP (k + 1) is
true for eachk ∈ N. ThenP (n) is true for alln ∈ N0 such thatn ≥ k0.

The favourite example is the Tower of Hanoi. We haven rings of increasing radius
and 3 vertical rods (A, B andC) on which the rings fit. The rings are initially stacked
in order of size on rodA. The challenge is to move the rings fromA to B so that a
larger ring is never placed on top of a smaller one.

We write the number of moves required to moven rings asTn and claim that
Tn = 2n− 1 for n ∈ N0. We note thatT0 = 0 = 20− 1, so the result is true forn = 0.

We takek > 0 and suppose we havek rings. Now the only way to move the largest
ring is to move the otherk − 1 rings ontoC (in Tk−1 moves). We then put the largest
ring on rodB (in 1 move) and move thek−1 smaller rings on top of it (inTk−1 moves
again). Assume thatTk−1 = 2k−1 − 1. ThenTk = 2Tk−1 + 1 = 2k − 1. Hence the
result is proven by the principle of induction.

2.3 Strong Principle of Mathematical Induction

Proposition (Strong Principle of Induction). If P (n) is a statement aboutn for each
n ∈ N0, P (k0) is true for somek0 ∈ N0 and the truth ofP (k) is implied by the truth
of P (k0), P (k0 + 1), . . . , P (k− 1) thenP (n) is true for alln ∈ N0 such thatn ≥ k0.

The proof is more or less as before.

Example (Evolutionary Trees). Every organism can mutate and produce2 new ver-
sions. Thenn mutations are required to producen + 1 end products.

Proof. Let P (n) be the statement “n mutations are required to producen + 1 end
products”.P0 is clear. Consider a tree withk + 1 end products. The first mutation (the
root) produces 2 trees, say withk1 + 1 andk2 + 1 end products withk1, k2 < k. Then
k + 1 = k1 + 1 + k2 + 1 sok = k1 + k2 + 1. If both P (k1) andP (k2) are true then
there arek1 mutations on the left andk2 on the right. So in total we havek1 + k2 + 1
mutations in our tree andP (k) is true isP (k1) andP (k2) are true. HenceP (n) is true
for all n ∈ N0.

2.4 Recursive Definitions

(Or in other words) Definingf(n), a formula or functions, for alln ∈ N0 with n ≥ k0

by definingf(k0) and then defining fork > k0, f(k) in terms off(k0), f(k0 + 1),
. . . , f(k − 1).

The obvious example is factorials, which can be defined byn! = n(n − 1)! for
n ≥ 1 and0! = 1.

Proposition. The number of ways to order a set ofn points isn! for all n ∈ N0.

Proof. This is true forn = 0. So, to order ann-set, choose the1st element inn ways
and then order the remainingn− 1-set in(n− 1)! ways.

Another example is the Ackermann function, which appears on example sheet 2.
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2.5 Selection and Binomial Coefficients

We define a set of polynomials form ∈ N0 as

xm = x(x− 1)(x− 2) . . . (x−m + 1),

which is pronounced “x to them falling”. We can do this recursively byx0 = 1 and
xm = (x−m + 1)xm−1 for m > 0. We also define “x to them rising” by

xm = x(x + 1)(x + 2) . . . (x + m− 1).

We further define
(

x
m

)
(read “x choosem”) by

(
x

m

)
=

xm

m!
.

It is also convienient to extend this definition to negativem by
(

x
m

)
= 0 if m < 0,

m ∈ Z. By fiddling a little, we can see that forn ∈ N, n ≥ m
(

n

m

)
=

n!
m!(n−m)!

.

Proposition. The number ofk-subsets of a givenn-set is
(
n
k

)
.

Proof. We can choose the first element to be included in ourk-subset inn ways, then
then next inn − 1 ways, down to thekth which can be chosen inn − k + 1 ways.
However, ordering of thek-subset is not important (at the moment), so dividenk

k! to get
the answer.

Theorem 2.1 (The Binomial Theorem).For a andb ∈ R, n ∈ N0 then

(a + b)n =
∑

k

(
n

k

)
akbn−k.

There are many proofs of this fact. We give one and outline a second.

Proof. (a+b)n = (a+b)(a+b) . . . (a+b), so the coefficient ofakbn−k is the number
of k-subsets of ann-set — so the coefficient is

(
n
k

)
.

Proof. This can also be done by induction onn, using the fact that
(

n

k

)
=

(
n− 1
k − 1

)
+

(
n− 1

k

)
.

There are a few conseqences of the binomial expansion.

1. For m,n ∈ N0 andn ≥ m,
(

n
m

) ∈ N0 so m! divides the product of anym
consecutive integers.

2. Puttinga = b = 1 in the binomial theorem gives2n =
∑

k

(
n
k

)
— so the number

of subsets of ann-set is2n. There are many proofs of this fact. An easy one is
by induction onn. Write Sn for the total number of subsets of ann-set. Then
S0 = 1 and forn > 0, Sn = 2Sn−1. (Pick a point in then-set and observe that
there areSn−1 subsets not containing it andSn−1 subsets containing it.
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3. (1 − 1)n = 0 =
∑

k

(
n
k

)
(−1)k — so in any finite set the number of subsets of

even sizes equals the number of subsets of odd sizes.

It also gives us another proof of Fermat’s Little Theorem: ifp is prime thenap ≡ a
(mod p) for all a ∈ N0.

Proof. It is done by induction ona. It is obviously true whena = 0, so takea > 0 and
assume the theorem is true fora− 1. Then

ap = ((a− 1) + 1)p

≡ (a− 1)p + 1 mod p as

(
p

k

)
≡ 0 (mod p) unlessk = 0 or k = p

≡ a− 1 + 1 mod p

≡ a mod p

2.5.1 Selections

The number of ways of choosingm objects out ofn objects is

ordered unordered
no repeats nm

(
n
m

)
repeats nm

(
n−m+1

m

)

The only entry that needs justification is
(
n−m+1

m

)
. But there is a one-to-one cor-

respondance betwen the set of ways of choosingm out of n unordered with possible
repeats and the set of all binary strings of lengthn + m − 1 with m zeros andn − 1
ones. For suppose there aremi occurences of elementi, mi ≥ 0. Then

n∑

i=1

mi = m ↔ 0 . . . 0︸ ︷︷ ︸
m1

1 0 . . . 0︸ ︷︷ ︸
m2

1 . . . 1 0 . . . 0︸ ︷︷ ︸
mn

.

There are
(
n−m+1

m

)
such strings (choosing where to put the1’s).

2.5.2 Some more identities

Proposition.
(

n

k

)
=

(
n

n− k

)
n ∈ N0, k ∈ Z

Proof. For: choosing ak-subset is the same as choosing ann− k-subset to reject.

Proposition.
(

n

k

)
=

(
n− 1
k − 1

)
+

(
n− 1

k

)
n ∈ N0, k ∈ Z

Proof. This is trivial if n < 0 or k ≤ 0, so assumen ≥ 0 andk > 0. Choose a special
element in then-set. Anyk-subset will either contain this special element (there are(
n−1
k−1

)
such) or not contain it (there are

(
n−1

k

)
such).
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In fact

Proposition.
(

x

k

)
=

(
x− 1
k − 1

)
+

(
x− 1

k

)
k ∈ Z

Proof. Trivial if k < 0, so letk ≥ 0. Both sides are polynomials of degreek and are
equal on all elements ofN0 and so are equal as polynomials as a consequence of the
Fundamental Theorem of Algebra. This is the “polynomial argument”.

This can also be proved from the definition, if you want to.

Proposition.
(

x

m

)(
m

k

)
=

(
x

k

)(
x− k

m− k

)
m, k ∈ Z.

Proof. If k < 0 or m < k then both sides are zero. Assumem ≥ k ≥ 0. Assume
x = n ∈ N (the general case follows by the polynomial argument). This is “choosing
ak-subset contained in anm-subset of an-set”.

Proposition.
(

x

k

)
=

x

k

(
x− 1
k − 1

)
k ∈ Z \ {0}

Proof. We may assumex = n ∈ N andk > 0. This is “choosing ak-team and its
captain”.

Proposition.
(

n + 1
m + 1

)
=

n∑

k=0

(
k

m

)
, m, n ∈ N0

Proof. For
(

n + 1
m + 1

)
=

(
n

m

)
+

(
n

m + 1

)
=

(
n

m

)
+

(
n− 1

m

)
+

(
n− 1
m + 1

)

and so on.

A consequence of this is that
∑n

k=1 km = 1
m+1 (n + 1)m+1, which is obtained by

multiplying the previous result bym!. This can be used to sum
∑n

k=1 km.

Proposition.
(

r + s

m + n

)
=

∑

k

(
r

m + k

)(
s

n− k

)
r, s,m, n ∈ Z

Proof. We can replacen by m+n andk by m+k and so we may assume thatm = 0.
So we have to prove:

(
r + s

n

)
=

∑

k

(
r

k

)(
s

n− k

)
r, s, n ∈ Z.

Take an(r + s)-set and split it into anr-set and ans-set. Choosing ann-subset
amounts to choosing ak-subset from ther-set and an(n− k)-subset from thes-set for
variousk.
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2.6 Special Sequences of Integers

2.6.1 Stirling numbers of the second kind

Definition. The Stirling number of the second kind,S(n, k), n, k ∈ N0 is defined
as the number of partitions of{1, . . . , n} into exactlyk non-empty subsets. Also
S(n, 0) = 0 if n > 0 and1 if n = 0.

Note thatS(n, k) = 0 if k > n, S(n, n) = 1 for all n, S(n, n − 1) =
(
n
2

)
and

S(n, 2) = 2n−1 − 1.

Lemma 2.1. A recurrence:S(n, k) = S(n− 1, k − 1) + kS(n− 1, k).

Proof. In any partition of{1, . . . , n}, the elementn is either in a part on its own (S(n−
1, k − 1) such) or with other things (kS(n− 1, k) such).

Proposition. For n ∈ N0, xn =
∑

k S(n, k)xk.

Proof. Proof is by induction onn. It is clearly true whenn = 0, so taken > 0 and
assume the result is true forn− 1. Then

xn = xxn−1

= x
∑

k

S(n− 1, k)xk

=
∑

k

S(n− 1, k)xk(x− k + k)

=
∑

k

S(n− 1, k)xk+1 +
∑

k

kS(n− 1, k)xk

=
∑

k

S(n− 1, k − 1)xk +
∑

k

kS(n− 1, k)xk

=
∑

k

S(n, k)xk as required.

2.6.2 Generating Functions

Recall the Fibonacci numbers,Fn such thatF1 = F2 = 1 andFn+2 = Fn+1 + Fn.
Suppose that we wish to obtain a closed formula.

First method

Try a solution of the formFn = αn. Then we getα2 − α− 1 = 0 andα = 1±√5
2 . We

then take

Fn = A

(
1 +

√
5

2

)n

+ B

(
1−√5

2

)n

and use the initial conditions to determineA andB. It turns out that

Fn =
1√
5

[(
1 +

√
5

2

)n

−
(

1−√5
2

)n]
.
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Note that1+
√

5
2 > 1 and

∣∣∣1−√5
2

∣∣∣ < 1 so the solution grows exponentially. A shorter

form is thatFn is the nearest integer to1√
5

(
1+
√

5
2

)n

.

Second Method

Or we can form an ordinary generating function

G(z) =
∑

n≥0

Fnzn.

Then using the recurrence forFn and initial conditions we get thatG(z)(1−z−z2) =
z. We wish to find the coefficient ofzn in the expansion ofG(z) (which is denoted
[zn]G(z)). We use partial fractions and the binomial expansion to obtain the same
result as before.

In general, the ordinary generating function associated with the sequence(an)n∈N0

is G(z) =
∑

n≥0 anzn, a “formal power series”. It is deduced from the recurrence and
the initial conditions.

Addition, subtraction, scalar multiplication, differentiation and integration work as
expected. The new thing is the “product” of two such series:

∑

k≥0

akzk
∑

l≥0

blz
l =

∑

n≥0

cnzn, wherecn =
n∑

k=0

akbn−k.

(cn)n∈N0 is the “convolution” of the sequences(an)n∈N0 and (bn)n∈N0 . Some
functional substitution also works.

Any identities give information about the coefficients. We are not concered about
convergence, but within the radius of convergence we get extra information about val-
ues.

2.6.3 Catalan numbers

A binary tree is a tree where each vertex has a left child or a right child or both or
neither. The Catalan numberCn is the number of binary trees onn vertices.

Lemma 2.2.

Cn =
∑

0≤k≤n−1

CkCn−1−k

Proof. On removing the root we get a left subtree of sizek and a right subtree of size
n− 1− k for 0 ≤ k ≤ n− 1. Summing overk gives the result.

This looks like a convolution. In fact, it is[zn−1]C(z)2 where

C(z) =
∑

n≥0

Cnzn.

We observe that thereforeC(z) = zC(z)2 +1, where the multiplication byz shifts
the coefficients up by1 and then+1 adjusts forC0. This equation can be solved for
C(z) to get

C(z) =
1±√1− 4z

2z
.
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SinceC(0) = 1 we must have the− sign. From the binomial theorem

(1− 4z)
1
2 =

∑

k≥0

(1
2

k

)
(−4)kzk.

ThusCn = − 1
2

( 1
2

n+1

)
(−4)n+1. Simplifying this we obtainCn = 1

n+1

(
2n
n

)
and note

the corollary that(n + 1) | (2n
n

)
.

Other possible definitions forCn are:

• The number of ways of bracketingn + 1 variables.

• The number of sequences of length2n with n each of±1 such that all partial
sums are non-negative.

2.6.4 Bell numbers

Definition. The Bell numberBn is the number of partitions of{1, . . . , n}.
It is obvious from the definitions thatBn =

∑
k S(n, k).

Lemma 2.3.

Bn+1 =
∑

0≤k≤n

(
n

k

)
Bk

Proof. For, put the elementn + 1 in with a k-subset of{1, . . . , n} for k = 0 to k =
n.

There isn’t a nice closed formula forBn, but there is a nice expression for its
exponential generating function.

Definition. The exponential generating function that is associated with the sequence
(an)n∈N0 is

Â(z) =
∑

n

an

n!
zn.

If we haveÂ(z) andB̂(z) (with obvious notation) and̂A(z)B̂(z) =
∑

n
cn

n! z
n then

cn =
∑

k

(
n
k

)
akbn−k, the exponential convolution of(an)n∈N0 and(bn)n∈N0 .

HenceBn+1 is the coefficient ofzn in the exponential convolution of the sequences
1, 1, 1, 1, . . . andB0, B1, B2, . . . . ThusB̂(z)′ = ezB̂(z). (Shifting is achieved by
differentiation for exponential generating functions.) ThereforeB̂(z) = eez+C and
using the condition̂B(0) = 1 we find thatC = −1. So

B̂(z) = eez−1.

2.6.5 Partitions of numbers and Young diagrams

For n ∈ N let p(n) be the number of ways to writen as the sum of natural numbers.
We can also definep(0) = 1.

For instance,p(5) = 7:
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5 4 + 1 3 + 2 3 + 1 + 1
Notation 5 4 13 3 2 3 12

2 + 2 + 1 2 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1
Notation 22 1 2 13 15

These partitions ofn are usefully pictured by Young diagrams.

The “conjugate partition” is obtained by taking the mirror image in the main diag-
onal of the Young diagram. (Or in other words, consider columns instead of rows.)

By considering (conjugate) Young diagrams this theorem is immediate.

Theorem 2.2. The number of partions ofn into exactlyk parts equals the number of
partitions ofn with largest partk.

We now define an ordinary generating function forp(n)

P (z) = 1 +
∑

n∈N
p(n)zn.

Proposition.

P (z) =
1

1− z

1
1− z2

1
1− z3

· · · =
∏

k∈N

1
1− zk

.

Proof. The RHS is(1 + z + z2 + . . . )(1 + z2 + z4 + . . . )(1 + z3 + z6 . . . ) . . . .
We get a termzn whenever we selectza1 from the first bracket,z2a2 from the

second,z3a3 from the third and so on, andn = a1 +2a2 +3a3 + . . . , or in other words
1a1 2a2 3a3 . . . is a partition ofn. There arep(n) of these.

We can similarly prove these results.

Proposition. The generating functionPm(z) of the sequencepm(n) of partitions ofn
into at mostm parts (or the generating function for the sequencepm(n) of partitions
of n with largest part≤ m) satisfies

Pm(z) =
1

1− z

1
1− z2

1
1− z3

. . .
1

1− zm
.

Proposition. The generating function for the number of partitions into odd parts is

1
1− z

1
1− z3

1
1− z5

. . . .

Proposition. The generating function for the number of partitions into unequal parts
is

(1 + z)(1 + z2)(1 + z3) . . . .
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Theorem 2.3. The number of partitions ofn into odd parts equals the number of par-
titions ofn into unequal parts.

Proof.

(1 + z)(1 + z2)(1 + z3) . . . =
1− z2

1− z

1− z4

1− z2

1− z6

1− z3
. . .

=
1

1− z

1
1− z3

1
1− z5

. . .

Theorem 2.4. The number of self-conjugate partitions ofn equals the number of par-
titions ofn into odd unequal parts.

Proof. Consider hooks along the main diagonal like this.

This process can be reversed, so there is a one-to-one correspondance.

2.6.6 Generating function for self-conjugate partitions

Observe that any self-conjugate partition consists of a largestk×k subsquare and twice
a partition of12 (n− k2) into at mostk parts. Now

1
(1− z2)(1− z4) . . . (1− z2m)

is the generating function for partitions ofn into even parts of size at most2m, or
alternatively the generating function for partitions of1

2n into parts of size≤ m. We
deduce that

zl

(1− z2)(1− z4) . . . (1− z2m)

is the generating function for partitions of1
2 (n − l) into at mostm parts. Hence the

generating function for self-conjugate partitions is

1 +
∑

k∈N

zk2

(1− z2)(1− z4) . . . (1− z2k)
.

Note also that this equals
∏

k∈N0

(1 + z2k+1),

as the number of self-conjugate partitions ofn equals the number of partitions ofn into
unequal odd parts.

In fact in any partition we can consider the largestk × k subsquare, leaving two
partitions of at mostk parts, one of(n−k2−j), the other ofj for somej. The number



2.6. SPECIAL SEQUENCES OF INTEGERS 21

of these two lots are the coefficients ofzn−k2−j and zj in
∏k

i=1
1

1−zi respectively.
Thus

P (z) = 1 +
∑

k∈N

zk2

((1− z)(1− z2) . . . (1− zk))2
.
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Chapter 3

Sets, Functions and Relations

3.1 Sets and indicator functions

We fix some universal setS. We writeP (S) for the set of all subsets ofS — the “power
set” ofS. If S is finite with |S| = m (the number of elements), then|P (S)| = 2m.

Given a subsetA of S (A ⊆ S) we define the “complement”̄A of A in S as
Ā = {s ∈ S : s /∈ A}.

Given two subsetsA, B of S we can define various operations to get new subsets
of S.

A ∩B = {s ∈ S : s ∈ A ands ∈ B}
A ∪B = {s ∈ S : s ∈ A (inclusive) ors ∈ B}
A \B = {s ∈ A : s /∈ B}
A ◦B = {s ∈ S : s ∈ A (exclusive) ors ∈ B} the symmetric difference

= (A ∪B) \ (A ∩B)
= (A \B) ∪ (B \A).

The indicator functionIA of the subsetA of S is the functionIA : S 7→ {0, 1}
defined by

IA(s) =

{
1 x ∈ A

0 otherwise.

It is also known as the characteristic functionχA. Two subsetsA andB of S are equal
iff IA(s) = IB(s) ∀s ∈ S. These relations are fairly obvious:

IĀ = 1− IA

IA∩B = IA · IB

IA∪B = IA + IB

IA◦B = IA + IB mod 2.

Proposition. A ◦ (B ◦ C) = (A ◦B) ◦ C.

23
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Proof. For, modulo 2,

IA◦(B◦C) = IA + IB◦C = IA + IB + IC = IA◦B + IC = I(A◦B)◦C mod 2.

ThusP (S) is a group under◦. Checking the group axioms we get:

• GivenA,B ∈ P (S), A ◦B ∈ P (S) — closure,

• A ◦ (B ◦ C) = (A ◦B) ◦ C — associativity,

• A ◦ ∅ = A for all A ∈ P (S) — identity,

• A ◦A = ∅ for all A ∈ P (S) — inverse.

We note thatA ◦B = B ◦A so that this group is abelian.

3.1.1 De Morgan’s Laws

Proposition. 1. A ∩B = Ā ∪ B̄

2. A ∪B = Ā ∩ B̄

Proof.

IA∩B = 1− IA∩B = 1− IAIB

= (1− IA) + (1− IB)− (1− IA)(1− IB)
= IĀ + IB̄ − IĀ∩B̄

= IĀ∪B̄ .

We prove2 by using1 on Ā andB̄.

A more general version of this is: SupposeA1, . . . , An ⊆ S. Then

1.
⋂n

i=1 Ai =
⋃n

i=1 Āi

2.
⋃n

i=1 Ai =
⋂n

i=1 Āi.

These can be proved by induction onn.

3.1.2 Inclusion-Exclusion Principle

Note that|A| = ∑
s∈S IA(s).

Theorem 3.1 (Principle of Inclusion-Exclusion). GivenA1, . . . , An ⊆ S then

|A1 ∪ · · · ∪An| =
∑

∅6=J⊆{1,...,n}
(−1)|J|−1 |AJ | , whereAJ =

⋂

i∈J

Ai.



3.1. SETS AND INDICATOR FUNCTIONS 25

Proof. We considerA1 ∪ · · · ∪An and note that

IA1∪···∪An
= IĀ1∩···∩Ān

= IĀ1
IĀ2

. . . IĀn

= (1− IA1)(1− IA2) . . . (1− IAn)

=
∑

J⊆{1,...,n}
(−1)|J|IAJ

,

Summing overs ∈ S we obtain the result

∣∣A1 ∪ · · · ∪An

∣∣ =
∑

J⊆{1,...,n}
(−1)|J| |AJ | ,

which is equivalent to the required result.

Just for the sake of it, we’ll prove it again!

Proof. For eachs ∈ S we calculate the contribution. Ifs ∈ S but s is in noAi then
there is a contribution1 to the left. The only contribution to the right is+1 whenJ = ∅.
If s ∈ S andK = {i ∈ {1, . . . , n} : s ∈ Ai} is non-empty then the contribution to the
right is

∑
I⊆K(−1)|I| =

∑k
i=0

(
k
i

)
(−1)i = 0, the same as on the left.

Example (Euler’s Phi Function).

φ(m) = m
∏

p prime
p|m

(
1− 1

p

)
.

Solution. Let m =
∏n

i=1 pai
i , where thepi are distinct primes andai ∈ N. Let Ai be

the set of integers less thanm which are divisible bypi. Henceφ(m) =
∣∣⋂n

i=1 Āi

∣∣.
Now |Ai| = m

pi
, in fact forJ ⊆ {1, . . . , m} we have|AJ | = mQ

i∈J pi
. Thus

φ(m) = m− m

p1
− m

p2
− · · · − m

pn

+
m

p1p2
+

m

p1p3
+ · · ·+ m

p2p3
+ · · ·+ m

pn−1pn

...

+ (−1)n m

p1p2 . . . pn

= m
∏

p prime
p|m

(
1− 1

p

)
as required.

Example (Derangements).Suppose we haven psychologists at a meeting. Leaving
the meeting they pick up their overcoats at random. In how many ways can this be
done so that none of them has his own overcoat. This number isDn, the number of
derangements ofn objects.
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Solution. Let Ai be the number of ways in which psychologisti collects his own coat.
ThenDn =

∣∣Ā1 ∩ · · · ∩ Ān

∣∣. If J ⊆ {1, . . . , n} with |J | = k then|AJ | = (n − k)!.
Thus

∣∣Ā1 ∩ · · · ∩ Ān

∣∣ = n!−
(

n

1

)
(n− 1)! +

(
n

2

)
(n− 2)!− . . .

= n!
n∑

k=0

(−1)k

k!
.

ThusDn is the nearest integer ton! e−1, sinceDn

n! → e−1 asn →∞.

3.2 Functions

Let A,B be sets. A function (or mapping, or map)f : A 7→ B is a way to associate
a unique imagef(a) ∈ B with eacha ∈ A. If A andB are finite with|A| = m and
|B| = n then the set of all functions fromA to B is finite withnm elements.

Definition. The functionf : A 7→ B is injective (or one-to-one) iff(a1) = f(a2)
implies thata1 = a2 for all a1, a2 ∈ A.

The number of injective functions from anm-set to ann-set isnm.

Definition. The functionf : A 7→ B is surjective (or onto) if eachb ∈ B has at least
one preimagea ∈ A.

The number of surjective functions from anm-set to ann-set isn! S(m,n).

Definition. The functionf : A 7→ B is bijective if it is both injective and surjective.

If A and B are finite thenf : A 7→ B can only be bijective if|A| = |B|. If
|A| = |B| < ∞ then any injection is a bijection; similarly any surjection is a bijection.
There aren! bijections between twon-sets.

If A andB are infinite then there exist injections which are not bijections andvice
versa. For instance ifA = B = N, define

f(n) =

{
1 n = 1
n− 1 otherwise

and g(n) = n + 1.

Thenf is surjective but not injective andg is injective but not surjective.

Proposition.

n!S(m,n) =
n∑

k=0

(−1)k

(
n

k

)
(n− k)m

Proof. This is another application of the Inclusion-Exclusion principle. Consider the
set of functions fromA to B with |A| = m and|B| = n. For anyi ∈ B, defineXi to
be the set of functions avoidingi.

So the set of surjections is̄X1∩· · ·∩X̄n. Thus the number of surjections fromA to
B is

∣∣X̄1 ∩ · · · ∩ X̄n

∣∣. By the inclusion-exclusion principle this is
∑

J⊆B(−1)|J| |XJ |.
If |J | = k then|XJ | = (n− k)m. The result follows.

Mappings can be “composed”. Givenf : A 7→ B andg : B 7→ C we can define
gf : A 7→ C by gf(a) = g(f(a)). If f andg are injective then so isgf , similarly for
surjectivity. If we also haveh : C 7→ D, then associativity of composition is easily
verified : (hg)f ≡ h(gf).
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3.3 Permutations

A permutation ofA is a bijectionf : A 7→ A. One notation is

f =
(

1 2 3 4 5 6 7 8
1 3 4 2 8 7 6 5

)
.

The set of permutations ofA is a group under composition, the symmetric group
symA. If |A| = n thensym A is also denotedSn and|sym A| = n!. Sn is not abelian
— you can come up with a counterexample yourself. We can also think of permutations
as directed graphs, in which case the following becomes clear.

Proposition. Any permutation is the product of disjoint cycles.

We have a new notation for permutations, cycle notation.1 For our functionf
above, we write

f = (1)(2 3 4)(5 8)(6 7) = (2 3 4)(5 8)(6 7).

3.3.1 Stirling numbers of the first kind

Definition. s(n, k) is the number of permutations of{1, . . . , n}with preciselyk cycles
(including fixed points).

For instances(n, n) = 1, s(n, n − 1) =
(
n
2

)
, s(n, 1) = (n − 1)!, s(n, 0) =

s(0, k) = 0 for all k, n ∈ N buts(0, 0) = 1.

Lemma 3.1.

s(n, k) = s(n− 1, k − 1) + (n− 1)s(n− 1, k)

Proof. Either the pointn is in a cycle on its own (s(n−1, k−1) such) or it is not. In this
case,n can be inserted into any ofn− 1 places in any of thes(n− 1, k) permutations
of {1, . . . , n− 1}.

We can use this recurrence to prove this proposition. (Proof left as exercise.)

Proposition.

xn =
∑

k

s(n, k)xk

3.3.2 Transpositions and shuffles

A transposition is a permutation which swaps two points and fixes the rest.

Theorem 3.2. Every permutation is the product of transpositions.

Proof. Since every permutations is the product of cycles we only need to check for
cycles. This is easy:(i1 i2 . . . ik) = (i1 i2)(i2 i3) . . . (ik−1 ik).

Theorem 3.3. For a given permutationπ, the number of transpositions used to write
π as their product is either always even or always odd.

1See the Algebra and Geometry course for more details.
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We writesign π =

{
+1 if always even

−1 if always odd
. We say thatπ is an

even
odd

permutation.

Let c(π) be the number of cycles in the disjoint cycle representation ofπ (including
fixed points).

Lemma 3.2. If σ = (a b) is a transposition thatc(πσ) = c(π)± 1.

Proof. If a and b are in the same cycle ofπ then πσ has two cycles, soc(πσ) =
c(π)+1. If a andb are in different cycles then they contract them together andc(πσ) =
c(π)− 1.

Proof of theorem 3.3.Assumeπ = σ1 . . . σkι = τ1 . . . τlι. Thenc(π) = c(ι) + k ≡
c(ι) + l (mod 2). Hencek ≡ l (mod 2) as required.

We note thatsign π = (−1)n−c(π), thussign(π1π2) = sign π1 sign π2 and thus
sign is a homomorphism fromSn to {±1}.

A k-cycle is an even permutation iffk is odd. A permutation is an
even
odd

per-

mutation iff the number of even length cycles in the disjoint cycle representation is
even
odd

.

3.3.3 Order of a permutation

If π is a permutation then the order ofπ is the least natural numbern such thatπn = ι.
The order of the permutationπ is the lcm of the lengths of the cycles in the disjoint
cycle decomposition ofπ.

In card shuffling we need to maximise the order of the relevant permutationπ. One
can show (see) that forπ of maximal length we can take all the cycles in the disjoint
cycle representation to have prime power length. For instance with30 cards we can get
aπ ∈ S30 with an order of4620 (cycle type3 4 5 7 11).

3.3.4 Conjugacy classes inSn

Two permutationsα, β ∈ Sn are conjugate iff∃π ∈ Sn such thatα = πβπ−1.

Theorem 3.4. Two permutations are conjugate iff they have the same cycle type.

This theorem is proved in the Algebra and Geometry course. We note the corollary
that the number of conjugacy classes inSn equals the number of partitions ofn.

3.3.5 Determinants of ann× n matrix

In the Linear Maths course you will prove that ifA = (aij) is ann× n matrix then

detA =
∑

π∈Sn

sign π

n∏

j=1

aj π(j).
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3.4 Binary Relations

A binary relation on a setS is a property that any pair of elements ofS may or may
not have. More precisely:

Write S×S, the Cartesian square ofS for the set of pairs of elements ofS, S×S =
{(a, b) : a, b ∈ S}. A binary relationR onS is a subset ofS × S. We writea R b iff
(a, b) ∈ R. We can think ofR as a directed graph with an edge froma to b iff a R b.

A relationR is:

• reflexive iff a R a ∀a ∈ S,

• symmetric iffa R b ⇒ b R a ∀a, b ∈ S,

• transitive iffa R b, b R c ⇒ a R c ∀a, b, c ∈ S,

• antisymmetric iffa R b, b R a ⇒ a = b ∀a, b ∈ S.

The relationR on S is an equivalence relation if it is reflexive, symmetric and
transitive. These are “nice” properties designed to makeR behave something like=.

Definition. If R is a relation onS, then

[a]R = [a] = {b ∈ S : a R b}.

If R is an equivalence then these are the equivalence classes.

Theorem 3.5. If R is an equivalence relation then the equivalence classes form a par-
tition of S.

Proof. If a ∈ S thena ∈ [a], so the classes cover all ofS. If [a] ∩ [b] 6= ∅ then
∃c ∈ [a] ∩ [b]. Now a R c andb R c ⇒ c R b. Thusa R b andb ∈ [a]. If d ∈ [b]
thenb R d soa R d and thus[b] ⊆ [a]. We can similarly show that[a] ⊆ [b] and thus
[a] = [b].

The converse of this is true: if we have a partition ofS we can define an equivalence
relation onS by a R b iff a andb are in the same part.

An application of this is the proof of Lagrange’s Theorem. The idea is to show that
being in the same (left/right) coset is an equivalence relation.

Given an equivalence class onS the quotient set isS/R, the set of all equivalence
classes. For instance ifS = R anda R b iff a − b ∈ Z thenS/R is (topologically) a
circle. If S = R2 and(a1, b1) R (a2, b2) iff a1 − a2 ∈ Z andb1 − b2 ∈ Z the quotient
set is a torus.

Returning to a general relationR, for eachk ∈ N we define

R(k) = {(a, b) : there is a path of length atk from a to b}.

R(1) = R andR(∞) = t(R), the transitive closure ofR. R(∞) is defined as⋃
i≥1R(i).
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3.5 Posets

R is a (partial) order onS if it is reflexive, anti-symmetric and transitive. The setS is
a poset (partially ordered set) if there is an orderR onS.

We generally writea ≤ b iff (a, b) ∈ R, anda < b iff a ≤ b anda 6= b.
ConsiderDn, the set of divisors ofn. Dn is partially ordered by division,a ≤ b if

a | b. We have the Hasse diagram, in this case forD36:

A descending chain is a sequencea1 > a2 > a3 > . . . . An antichain is a subset of
S with no two elements directly comparable, for instance{4, 6, 9} in D36.

Proposition. If S is a poset with no chains of length> n thenS can be covered by at
mostn antichains.

Proof. Induction onn. Taken > 1 and letM be the set of all maximal elements inS.
Now S \M has no chains of length> n− 1 andM is an antichain.

3.5.1 Products of posets

SupposeA andB are posets. ThenA×B has various orders; two of them being

• product order:(a1, b1) ≤ (a2, b2) iff a1 ≤ a2 andb1 ≤ b2,

• lexicographic order:(a1, b1) ≤ (a2, b2) if either a1 ≤ a2 or if a1 = a2 then
b1 ≤ b2.

Exercise: check that these are orders.
Note that there are no infinite descending chains inN × N under lexicographic

order. Such posets are said to be well ordered. The principle of induction follows from
well-ordering as discussed earlier.

3.5.2 Eulerian Digraphs

A digraph is Eulerian if there is a closed path covering all the edges. A necessary
condition is: the graph is connected and even (each vertex has an equal number of “in”
and “out” edges). This is in fact sufficient.

Proposition. The set of such digraphs is well-ordered under containment.
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Proof. Assume proposition is false and letG be a minimal counterexample. LetT be
a non-trivial closed path inG, for instance the longest closed path. NowT must be
even, soG \ T is even. Hence each connected component ofG \ T is Eulerian asG
is minimal. But thenG is Eulerian: you can walk alongT and include all edges of
connected components ofG \ T when encountered — giving a contradiction. Hence
there are no minimal counterexamples.

3.6 Countability

Definition. A setS is countable if either|S| < ∞ or ∃ a bijectionf : S 7→ N.

The countable sets can be equivalently thought of as those that can be listed on a
line.

Lemma 3.3. Any subsetS ⊂ N is countable.

Proof. For: map the smallest element ofS to 1, the next smallest to2 and so on.

Lemma 3.4. A setS is countable iff∃ an injectionf : S 7→ N.

Proof. This is clear for finiteS. Hence assumeS is infinite. If f : S 7→ N is an
injection thenf(S) is an infinite subset ofN. Hence∃ a bijectiong : f(S) 7→ N. Thus
gf : S 7→ N is a bijection.

An obvious result is that ifS′ is countable and∃ an injectionf : S 7→ S′ thenS is
countable.

Proposition. Z is countable.

Proof. Considerf : Z 7→ N,

f : x 7→
{

2x + 1 if x ≥ 0
−2x if x < 0.

This is clearly a bijection.

Proposition. Nk is countable fork ∈ N.

Proof. The map(i1, . . . , ik) 7→ 2i13i2 . . . pik

k (pj is thejth prime) is an injection by
uniqueness of prime factorisation.

Lemma 3.5. If A1, . . . , Ak are countable withk ∈ N, then so isA1 × · · · ×Ak.

Proof. SinceAi is countable there exists an injectionfi : Ai 7→ N. Hence the function
g : A1, . . . , Ak 7→ Nk defined byg(a1, . . . , ak) = (f1(a1), . . . , fk(ak)) is an injection.

Proposition. Q is countable.

Proof. Definef : Q 7→ N by

f :
a

b
7→ 2|a|3b51+sign a,

where(a, b) = 1 andb > 0.
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Theorem 3.6. A countable union of countable sets is countable. That is, ifI is a
countable indexing set andAi is countable∀i ∈ I then

⋃
i∈I Ai is countable.

Proof. Identify first I with the subsetf(I) ⊆ N. DefineF : A 7→ N by a 7→ 2n3m

wheren is the smallest indexi with a ∈ Ai, andm = fn(a). This is well-defined and
injective (stop to think about it for a bit).

Theorem 3.7. The set of all algebraic numbers is countable.

Proof. Let Pn be the set of all polynomials of degree at mostn with integral coeffi-
cients. Then the mapcnxn + · · ·+ c1x+ c0 7→ (cn, . . . , c1, c0) is an injection fromPn

to Zn+1. Hence eachPn is countable. It follows that the set of all polynomials with
integral coefficients is countable. Each polynomial has finitely many roots, so the set
of algebraic numbers is countable.

Theorem 3.8 (Cantor’s diagonal argument).R is uncountable.

Proof. AssumeR is countable, then the elements can be listed as

r1 = n1.d11d12d13 . . .

r2 = n2.d21d22d13 . . .

r3 = n3.d31d32d33 . . .

(in decimal notation). Now define the realr = 0.d1d2d3 . . . by di = 0 if dii 6= 0 and
di = 1 if dii = 0. This is real, but it differs fromri in theith decimal place. So the list
is incomplete and the reals are uncountable.

Exercise: use a similiar proof to show thatP (N) is uncountable.

Theorem 3.9. The set of all transcendental numbers is uncountable. (And therefore at
least non-empty!)

Proof. Let A be the set of algebraic numbers andT the set of transcendentals. Then
R = A ∪ T , so if T was countable then so wouldR be. ThusT is uncountable.

3.7 Bigger sets

The material from now on is starred.
Two setsS andT have the samecardinality (|S| = |T |) if there is a bijection

betweenS andT . One can show (the Schröder-Bernstein theorem) that if there is an
injection fromS to T and an injection fromT to S then there is a bijection betweenS
andT .

For any setS, there is an injection fromS to P (S), simply x 7→ {x}. However
there is never a surjectionS 7→ P (S), so|S| < |P (S)|, and so

|N| < |P (N)| < |P (P (N))| < . . .

for some sensible meaning of<.

Theorem 3.10. There is no surjectionS 7→ P (S).
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Proof. Let f : S 7→ P (S) be a surjection and considerX ∈ P (S) defined by{x ∈
S : x /∈ f(x)}. Now ∃x′ ∈ S such thatf(x′) = X. If x′ ∈ X thenx′ /∈ f(x′) but
f(x′) = X — a contradiction. But ifx′ /∈ X thenx′ /∈ f(x′) andx′ ∈ X — giving a
contradiction either way.

If there is an
injection
surjection

f : A 7→ B then there exists a
surjection
injection

g : B 7→ A.

Moreover we can ensure that
g ◦ f = ιA
f ◦ g = ιB
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