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PREFACE

Discrete Mathematics, the study of finite systems, remains at the heart of any contemporary stedy
of computer science, which is a need for every student 1o extend mathematical maturity and ability 1o
deal with abstraction, algorithms and graphs. Our intention in writing this book is to offer fundamental
concepts and methods of discrete mathematics in a precise and clear manner. In writing, the book our
attempt is to provide the students of computer science and information technology the fundamental
mathematical basis required to achieve in depth knowledge in the field of computer science. It will
also help those students who have interest in mathematics to keep insight into mathematical techniques
and their importance for application in real life.

This book is intended for one semester introductory course in discrete mathematics. The book is
specially appropriate for the students of BE (Computer Science/IT), B.Tech. (Computer Science/IT),
MCA and M.S¢. (Computer Science). The material in this book includes fundamental concepts,
figures, tables, exercises and solved examples to help the reader master introductory discrete
mathemartics.

A discrete mathematics course has many objectives that students should leam the essentials of
mathematics and how to think mathematically. To achieve these objectives we emphasized on
mathematical reasoning and problem solving techniques in this book. Each chapter begins with a clear
statement of definition, principles and theorems with illustrative and other descriptive materials. This
is followed by sets of solved examples and exercises. The solved examples serve to illustrate and
amplify the matenial. This has been done to make the book more flexible and to stimulate further
interest in topics. Once basic mathematical concepts have been developed then more complex material
and applications are presented.

The mathematical topics 1o be discussed are mathematical logic, set theory, binary relation,
function, algebraic structure such as group theory and ring theory, Boolean algebra, graph theory and
introduction to lattices. Although many excellent books exists in this area, we introduce this topic still
keeping in mind that the reader will use them in practical applications related to computer science and
information technology. It is hoped that the theoretical concepts present in this book will permit a
student to understand most of the fundamental concepts, The text is designed that the students who
do not have a strong background in discrete mathematics will find it very useful 1o begin with and the
students with an exposure to discrete mathematics will also find the book very useful as some of
exercises given are thought provoking and help them for application building.

We have the unigue opportunity to express our deepest sense of gratitude to Prof. S. Nanda, NIT,
Rourkela; Prof. B.K. Tripathy, Berhampur University, Prof. G.N. Patel, Sambalpur University and Dr.
Md. N. Khan, IGIT, Sarang for their effective guidance, sincere advise and valuable suggestions
during the project work and thus inspired us to take up an interesting and challenging project like this.
We acknowledge to Prof. Sourya Patnaik, Director, Rourkela Institute of Management Studies
(RIMS), Rourkela who motivated and guided us in this project. We would like to acknowledge the
contribution of many people, who have helped to bring this project successful.
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No book-certainly no technical book is the product of its authors alone. We are pleased to
acknowledge here the contributions of several colleagues who have had a major influence in this book
and the course from which it arose. We shall be grateful to the readers for pointing out errors
and omissions that, in spite of all care might have crept in. We shall be delighted if this book
is accepted and appreciated by the scholars of today. You c¢an e-mail your comments to
debi_69@ rediffmail.com; debi_rims@ yahoo.co.in or sreekumar42003@ yahoo.com .

At last but not the lest we express our heartfelt thanks to M/s New Age Intemational (P) Lid,

Publishers, New Delhi, for the cooperation and publication with high accuracy.

D.P. Acharjya
Sreekumar
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Mathematical Logic
o

H1.0 INTRODUCTION

Mathematics is considered to be a deductive science. We infer things from certain premises
through logical reasoning. Consider an Example.

Three cap problem. A certain father had three sons: Sudeep, Sumeet and Ankeet. The
father brought three caps of different colors; say Red, Blue and Black. He showed them the
caps. After which they are blind folded. The father put three caps on the heads of three sons.
Then the sons were taken away from his father to another room. Few minutes after father
“called Ankeet and removed the blindfold of Ankeet and asked him to tell the color of his cap.
Ankeet said he could not infer about the color of his own cap. Then he called Sumeet and
removed the blindfold of Sumeet and asked him to tell the color of his cap by looking at the
color of the cap of Ankeet. He too could not infer. Then he called Sudeep and asked him to tell
the color of his cap without removing the blindfold of Sudeep. Sudeep replied he could tell the
color of the cap on his own head.

How Sudeep come to that conclusion? Let us see. Sudeep asked two questions one to Ankeet
and another to Sumeet. He asked to Ankeet about the color of Sumeet’s cap and asked to
Sumeet about the color of Ankeet’s cap. By the way he got two colors of the cap. As a result
Sudeep got the color of his own cap.

In the above reasoning we have certain premises and we conclude from them by a pure
deductive reasoning. In the following passages we shall formalize the process of deduction.

H1.1 STATEMENT (PROPOSITION)

A statement is a declarative sentence which is either true or false but not both. The statement
is also known as proposition. The truth value True and False are denoted by the symbols T
and F respectively. Some times it is also denoted by 1 and 0, where 1 stands for true and 0
stands for false. As it depends on only two possible truth values, we call it as two-valued logic
or bi-valued logic.

Consider the following examples

(@) Man is mortal.
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(b) Sun rises in the east.
(¢) Two is less then five.
(d) May God bless you!

(e) xis a Dog.

() Kittu is a nice Cat.

(g) Itis too cold today.

(h) 6 1is a composite number.

From the above example it is very clear that (a), (b), (c) and (h) are statements as they
declare a definite truth value T or F. The other example (d), (e), (f), and (g) are not statements
as they do not declare any truth value T or F.

Consider the sentence 111011 + 11 =111110

The above sentence is a statement but its truth value depends on the context. If we con-
sider the binary number system, the statement is True (T) but in decimal number system the
statement is False (F).

H1.2 LOGICAL CONNECTIVES

Another important aspect is that logical connectives. We use some logical connectives to con-
nect several statements into a single statement. The most basic and fundamental connectives
are Negation, Composition and Disjunction.

1.2.1 Negation

It is observed that the negation of a statement is also a statement. We use the connective Not
for negation. Usually the statements are denoted by single letters P, Q, R etc. If P be a
statement, then the negation of P is denoted as — P.

Consider the example of a statement.
P: Agrais the capital of India.
—P: Agra is not the capital of India.

As we all know that New Delhi is the capital of India, the truth value for the statements P
is False (F) and — P is True (T). from the above it is clear that P and — P has opposite truth
values. — P can also be written as

—P: It is not true that Agra is the capital of India.
Rule: If P is True, then — P is False and if P is false, then — P is True.

Truth Table (Negation)

P -P
T F
F T

1.2.2 Conjunction

The conjunction of two statements P and Q is also a statement denoted by (P A Q). We use the
connective And for conjunction.

Consider the example where P and Q are two statements.
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P:2+3=5

Q: 5 is a composite number.
So, (P AQ): 2+ 3 =5 and 5 is a composite number.

As another example if P: Sudeep went to the college and Q: Aditi went to the college then
(P A Q): Sudeep and Aditi went to the college.

It is clear that (P A Q) stand for P and Q. In order to make (P A Q) true, P and Q have to be
simultaneously true.

Rule: (P A Q) is true if both P and Q are true, otherwise false.

Truth Table (Conjunction)

P Q P A Q
T T T
T F F
F T F
F F F

1.2.3 Disjunction

The disjunction of two statements P and Q is also a statement denoted by (Pv Q). We use the
connective Or for disjunction. Consider the example where P and Q are two statements

P: 2 + 3 is not equal to 5

Q: 5is a prime number

So, (P v Q) : 2 + 3 is not equal to 5 or 5 is a prime number.

It is observed that (P v Q) is true when P may be true or Q may be true and this also
includes the case when both are true, that is the truth value of one statement is not assumed
in exclusion of the truth value of the other statement. We call it as also inclusive or.

Rule: (P v Q) is true if either P or Q is true and it is false when both P and Q are false.

Truth Table (Disjunction)

P Q ®vQ
T T T
T F T
F T T
F F F

H1.3 CONDITIONAL

Let P and Q be any two statements. Then the statement P — Q is called a conditional state-
ment. This can be put in any one of the following forms.

(@) IfP, then Q ) PonlyifQ

(c) Pimplies Q (d) QifP

In an implication P — Q, P is called the antecedent (hypothesis) and Q is called the conse-
quent (conclusion). To explain the conditional statement, consider the example
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A boy promises a girl “I will take you boating on Sunday if it is not raining”.

Now if it is raining, then the boy would not be deemed to have broken his promise. The boy
would be deemed to have broken his promise only when it is not raining and the boy did not
take the girl for boating on Sunday.

Let us break the above conditional statement to symbolic from.
P: Itis not raining

Q: Iwill take you boating on Sunday

So, the above statement reduces to P — Q.

From the above discussion it is clear that if P is false then P — Q is true, whatever be the
truth value of Q. The conditional P — Q is false if P is true and Q is false.

Rule: An implication (conditional) P — Q is False only when the hypothesis (P) is true and
conclusion (Q) is false, otherwise True.

Truth Table (Conditional)

P Q P->Q
T T T
T F F
F T T
F F T

H1.4 BI-CONDITIONAL

Let P and Q be any two statements. Then the statement P <> Q is called a bi-conditional
statement. This P <> Q can be put in any one of the following forms.

(a) Pifandonlyif Q (®) P is necessary and sufficient of Q
() Pisnecessary and sufficient for Q (d) Pisimplies and implied by Q
The bi-conditional (double implication) P <> Q is defined as
PeocQ:P-Q9QArQ—-P)
From the truth table discussed below it is clear that P <» Q has the truth value T whenever
both P and Q have identical truth values.

Truth Table (Bi-Conditional)

P Q P->Q Q- P P < Q)
T T T T T
T F F T F
F T T F F
F F T T T

Rule: (P < Q) is True only when both P and Q have identical truth Values, otherwise false.
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H1.5 CONVERSE

Let P and Q be any two statements. The converse statement of the conditional P — Q is given
as Q —» P.

Consider the example “all concurrent triangles are similar”. The above statement can also
be written as “if triangles are concurrent, then they are similar”.

Let P :Triangles are concurrent
Q : Triangles are similar

So, the statement becomes P — Q. The converse statement is given as “if triangles are
similar, then they are concurrent” or all similar triangles are concurrent.

H1.6 INVERSE

Let P and Q be any two statements. The inverse statement of the conditional
(P> Q)isgivenas (- P —-—-Q).
Consider the Example “all concurrent triangles are similar”. The above statement can also
be written as “if triangles are concurrent, then they are similar”.
Let P :Triangles are concurrent
Q : Triangles are similar

So, the statement becomes P — Q. The inverse statement is given as “if triangles are not
concurrent, then they are not similar”.

H1.7 CONTRA POSITIVE

Let P and Q be any two statements. The contra positive statement of the conditional
(P - Q) is given as (- Q — — P). Consider the Example “all concurrent triangles are similar”.
The above statement can also be written as “if triangles are concurrent, then they are simi-
lar”.

Let P : Triangles are concurrent and
Q : Triangles are similar

So, the statement becomes P — Q. The contra positive statement is given as “if triangles
are not similar, then they are not concurrent”.

Truth Table (Contra positive)

P5Q | -Q | =P |[(=Q > —P)

I
1=
L
L
3
L

From the truth table it is observed that both conditional (P — Q) and contra positive
(= Q —» — P) have same truth values.
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H1.8 EXCLUSIVE OR

Let P and Q be any two statements. The exclusive OR of two statements P and Q is denoted

by (P vV Q). We use the connective XOR for exclusive OR. The exclusive OR (P v Q) is true if
either P or Q is True but not both. The exclusive OR is also termed as exclusive disjunction.

Consider the example where P and Q be two statements such that P = 2 + 3 = 5 and
Q =5 -3 =2. Here both the statements are true. Therefore (P v Q) is false.
Rule : (P Vv Q) is true if either P or Q is True but not both, otherwise false.
Truth Table (Exclusive OR)

P Q PV Q
T T F
T F T
F T T
F F F

H1.9 NAND

The word NAND stands for NOT and AND. The connective NAND is denoted by the
symbol T. If P and Q be two statements, then NAND of P and Q is given as (P T Q) defined by

PTQ==(PArQ).
Rule : (P T Q) is True if either P or Q is false, otherwise False.

Truth Table (NAND)

P Q PTQ
T T F
T F T
F T T
F F T

H1.10 NOR

The word NOR stands for NOT and OR. The connective NOR is denoted by the symbol |. If P
and Q be two statements, then NOR of P and Q is given as (P | Q) defined by

PlQ==-(PvQ)
Rule : (P | Q) is True only when both P and Q are false, otherwise false.

Truth Table (NOR)

P Q ®PlQ
T T F
T F F
F T F
F F T
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E1.11 TAUTOLOGY

If the truth values of a composite statement are always true irrespective of the truth values of
the atomic (individual) statements, then it is called a tautology.

For example the composite statement (P A (P —» Q)) — Q is a tautology. To verify this draw
the truth table with composite statement as (P A (P - Q)) > Q

Truth Table

PrP-Q PAP->Q PAP-Q)—->Q

HEa33 N
HaEHAa O

L
SRS
B

So, (P A (P - Q)) — Q is a tautology.

H1.12 CONTRADICTION

If the truth values of a composite statement are always false irrespective of the truth values
of the atomic statements, then it is called a contradiction or unsatisfiable.

For example the composite statement — (P— (Q — (P A Q))) is a contradiction.
To verify this draw the truth table of = (P > (Q > (P A Q). Let R=P - (Q » (P A Q))
Truth Table

PArQ Q- PrQ (P-Q->-PArQ)|—-R

S I
1=
SRS
S
B
PR

So,—-R=—=(P - (Q — (P AQ))) is a contradiction.

H1.13 SATISFIABLE

If the truth values of a composite statement are some times true and some times false
irrespective of the truth values of the atomic statements, then it is called a satisfiable.

Consider the composite statement (P —» Q) — (Q — P). To verify this draw the truth table of
P->Q)—>(@Q—P).

Truth Table

P Q P-Q Q- P P-Q->-@Q-P)
T T T T T
T F F T T
F T T F F
F F T T T

So, the composite statement (P —» Q) — (Q — P) is satisfiable.
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H1.14 DUALITY LAW

Two formulae P and P* are said to be duals of each other if either one can be obtained from the
other by interchanging A by v and v by A . The two connectives A and v are called dual to each
other.

Consider the formulae P=(P v Q) A R and P* = (P A Q) v R which are dual to each other.

H1.15 ALGEBRA OF PROPOSITIONS

If P, Q and R be three statements, then the following laws hold good.
(@) Commutative Laws: PAQ=QAPand
PvQ=QvP
(b) Associative Laws: PAQAR)=(PAQ)ARand
PviQvR)=(PvQ) VR
(¢) Distributive Laws: PAQVv R)=(PAQ)v(PAR)and
Pv(QAR)=(PvQA(PVR)

(d) Idempotent Laws: PAP=Pand
PvP=P

(e) Absorption Laws: Pv(PAQ) =Pand
PAPvQ)=P

1.15.1 De Morgan's Laws

If P and Q be two statements, then
@) - (PvQQ e =P)A=Q)

H1.16 MATHEMATICAL INDUCTION

Generally direct methods are adopted for proving theorems and propositions. Sometimes it is
too difficult and tedious. As a result the other methods are developed for proving theorems
and propositions. These are (i) method of contra positive, (if) method of contradiction and (iii)
method of induction. The method of induction is otherwise known as mathematical induction.

Suppose that n be a natural number. Our aim is to show that some statement P(n) involving
n is true for any n. The following steps are used in mathematical induction.

1. Suppose that P(n) be a statement.

2. Show that P(1) and P(2) are true. i.e. P(n) is true forn =1 and n = 2.
3. Assume that P(%) is true. i.e. P(n) is true for n = &.

4. Show that P(k + 1) follows from P(%).

: n(n+1)
Consider an example 1+ 2 +3 + ... + n = 5
+1
Suppose that Pn)=1+2+3 + ... +n = n(nz )
1(1+1)

So, P)=1-=
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2(2+1)

and P2)=1+2=3= 5

So, P(1) and P(2) are true.
Assume that P(%) is true. So,
k(k+1)
2
So, Pk+1)=1+2+3+...+k+(k+1)

k(k+1)

1+42+3+...+k=

+(k+1) [ P(k)istrue.]

- (k;l)(mz):w

Which shows that P(k + 1) is also true. Hence P(n) is true for all n.

e SOLVED EXAMPLES ®

Example 1 Find the negation of P — Q.
Solution: P — Q is equivalently written as (=P v Q)
So, negation of P-Q=-(-PvQ)
=—(=P)A(=Q), (By De-Morgan’s Law)
=PA(=Q)
Hence the negation of P -5 Qis P A (= Q).
Example 2 Construct the truth table for (P - Q) <> (=P v Q).

Solution : The given compound statement is (P - Q) < (— P v Q) where P and Q are two
atomic statements.

P Q ~P | P5Q | -PvQ | P>Q o -PvQ
T T F T T T
T F F F F T
F T T T T T
F F T T T T

Example 3 Construct the truth table for P — ( <> P 1 Q).

Solution: The given compound statement is P— (Q <> P A Q), where P and Q are two atomic
statements.

P Q PAQ Qo PAQ P5>QoPAQ
T T T T T
T F F T T
F T F F T
F F F T T
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Example 4 Find the negation of the following statement. “ If Cows are Crows then Crows are
four legged”.

Solution: Let P: Cows are Crows
Q : Crows are four legged
Given statement: If Cows are Crows then Crows are four legged.
=P->Q
So, the negation is given as P A (— Q) i.e. Cows are Crows and Crows are not four legged.
Example 5 Find the negation of the following statement.
He is rich and unhappy.
Solution: LetP = He is rich
Q = He is unhappy
Given statement: He is rich and unhappy
=PAQ
By De-Morgan'slaw—(PAQ)=—Pv-Q
= He is neither rich nor unhappy.
Example 6 Prove by constructing truth table
P>@vR)=(P—-Q) v(P—-R)
Solution: Our aim to prove P > (QvR)=(P—> Q) v (P—>R)
Let P, Q and R be three atomic statements.

!
&L
=
&L
<
=

P5(@QVR)

"
\J
&
"
\J
=

P-Q v
P > R)

CEL LIS
CE LIS
o
e
P
L
L
L

From the truth table it is clear that P (Q vR)=(P - Q) v (P — R).
Example 7 Find the negation of P < Q.
Solution : P < Q is equivalently written as (P — Q) A (Q —»P)

So, - PeQ==(P->QAQ-P)
=—(P—>Q)v—-(Q—P); (De-Morgan’s law)
=-(-PvQ)v-(=QvP)
=(PA-Q) Vv (QA—=P); (De-Morgan’s Law)

Hence - PeQ=PAr—- Q) v(Qa-P).

Example 8 With the help of truth table prove that —(P A @Q) == P v— Q.
Solution: Ourclaimis— (PAQ)=—-Pv-Q.
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Let P and Q be two atomic statements.

T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

From the truth table it is clear that = (PA Q)=—-P v - Q.
Example 9 Show that (P - Q) < (=P v Q) is a tautology.

Solution : Let P and Q be two atomic statements. Our aim is to show (P — Q) <> (—P v Q) is
a tautology.

P Q P5Q | -P [-PvQ | P>Q < -PvQ
T T T F T T
T F F F F T
F T T T T T
F F T T T T

Hence (P - Q) <> (=P v Q) is a tautology.

Example 10 Show that the following statements are equivalent.
Statement 1 : Good food is not cheap
Statement 2 : Cheap food is not good.

Solution: Let P =Food is good and Q = Food is cheap
Statement 1 : Good food is not cheap

Le. P—->-Q
Statement 2 : Cheap food is not good

Le. Q——-P

Truth Table

~P| -QP>-Q Q- P

P
1=
L
L
B
L

From truth table it is clear that both statements are equivalent.

Example 11 Express P — Q using Y and Tonly.

Solution : P-Q=-PvQ

—Pv—= (= Q)

~(PA=-Q=PT=Q
=PT(-Qv-Q)
=PT-QAQ=PTQTQ

ie. P->Q=PTQTQ
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Example 12 Prove that (P A Q) A — (P v Q) is a contradiction.
Solution : Truth table for (PAQ) A= (P v Q)

P Q PAQ| PVvQ |-PvQ| PAQAr-PvQ
T T T T F F
T F F T F F
F T F T F F
F F F F T F

Hence (P A Q) A — (P v Q) is a contradiction.
Example 13 Express P «» Q using and Tonly.
Solution PcQ=P->QA(Q—P)
=PvQAPvVv-Q)

(=PvQAP)V((PvQA=Q)

ﬂ(ﬂ((ﬂP\/Q)/\P)/\ﬁ((ﬂP\/Q)/\ﬂQ))
= (=PvQAP)T=(=PvQ) A—Q)
=(-PvQTPT(-PvQT-Q
=(-PA=QTP)T(=PAr-QT-Q
=(PT-QTPT((PT-QT-Q
=(PTEQv-QTP)T((PTEQv-Q)T=Qv-Q)
=(PT-QAQTPT((PT-QAQ)T=(QAQ)
=(PTQTQTPT(PTQTTQTQ)

Note: These expressions are not unique.

Alternative Solution: P Q=P->QA(Q—P)
=(-PvQAPv-Q)
=(wPvQAP)VI(=PvQ)A—=Q)
=(=PAP)VQAP)VI(=PA=-Q)Vv(QAr=Q))

QAP)V(=PA-Q)

- (=(QAP)Vv-(PvQ)

(= (QAP)A(PVQ)

- QAP)T(PvQ

QTP)T=(=(PvQ)

=QTP)T— (wPA=Q)
=QTP)T=PT-Q
E(QTP)T((ﬂP\/ﬂP)T(ﬁQVﬂQ))
=QTP)T(-PAP)T-(QAQ)
=QTPT(PTP)TQTQ)

Example 14 Prove that n (n + 1) is an even natural number.

Solution : Suppose that P(n)=n (n + 1) is even.

So, P(1)=1(1 + 1) = 2, which is even and
P(2)=2 (2 + 1) = 6, which is also even.
Hence P(1) and P(2) are true.
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Assume that P(k) =k (k + 1) is even
le k(k+1)=2m;me N
So, Pe+1)=(k+1)k+2)=ktk+1)+2((,+1)
=2m+2Fk+1) [... P(k)istrue.]

=2(m + k + 1), which is even
Which shows that P(% + 1) is also true.
So, P(n) is true for all n.
Example 15 Show by truth table the following statements are equivalent.
Statement 1 : Rich men are unhappy.
Statement 2 : Men are unhappy or poor.
Solution: Let P =Men are Rich and Q = Men are unhappy.
Statement 1 : Rich men are unhappy.
i.e. If men are rich then they are unhappy.
Le. P—-Q.
Statement 2 : Men are unhappy or poor.

ie Q v — P ; (Here poor indicates not rich)
P Q P>Q | -P |Qv—P
T T T F T
T F F F F
F T T T T
F F T T T

So, it is clear that both statements are equivalent

Example 16 A boy promises a girl “I will take you park on Monday if it is not raining”. When
the boy would be deemed to have broken his promise. Explain with the help of truth table.

Solution Let P : I will take you park on Monday
Q : It is raining.
Given statement : I will take you park on Monday if it is not raining
i.e. Pif-Q
Le. -Q—-P

Truth Table

P Q - Q ~Q>P
T T F T
T F T T
F T F T
F F T F

It indicates that if — Q is true and P is false, then the boy is deemed to have broken his
promise. i.e. When it is not raining and the boy does not take her park on Monday, Then the
boy is deemed to have broken his promise.
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Example 17 Prove by method of induction

2
PB+22433 4. +nd= [M]

2
n(n+1) ?
Solution :  Suppose that P(n) =13+ 23 + 33 +.... + n3= [T]
2
1(1+1
So, P(1)=13=1= [(’L)]
2
2(2+1))’
and P(2)=13+23=9=[2]

Hence P(1) and P(2) are true.
Assume that P(%) is true, so

2

2
=(k+12F2+4(k+1)/4

_[@+1ﬂk+mf

- 2

2
- [M] +(E+1)7 [- P(k)istrue.]

Which shows that P(%& + 1) is also true.
So, P(n) is true for all n .
Example 18 Show by method of induction
1 1 1 1 n
+ + +...+ =
1%2 2%3 3%4 n¥(n+1) n+l

Solution: Suppose that

1 1 1 1 n

P(n) = + + +.o.+ =
1*2 2%3 3%4 n*(n+l) n+1
1 1

PQ1) = === d

5 V== 1 ™

Pz o+ 1t =1, 2 2

1*2 2*3 2 6 3 2+1
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Assume that P(%) is true . So,
1 1

1 1 k

P(k) = 1

Pk+1)= L 1

+ + +o.t
*2 2*%3 3%4

R (k+1) k+1
1 1 1

k

+ + +o.t
1*2 2*%3 3%4

Ke(k+1)  (h+1)%(k+2)

T hr1l (k+1)*(k+2)

[+ P(k)1is true]

1
=(k+1)[k+(k+2)]

1 [k2+2*k+1]

(k+1)

(k+ 1)2

(k+2)

k+1

(+1)(k+2)

Which shows that P(k + 1) is also true.
So, P(n) is true for all n.

EXERCISES

k+2

1. Find the negation of the following statements.

(@) Today is Sunday or Monday.

(b) IfI am tired and busy, then I cannot study.
(c) Either it is raining or some one left the shower on.

(d) The moon rises in the west.

(e) The triangles are equilateral is necessary and sufficient for three equal sides.

@ 2+3=18.
2. Prove the following by using truth table.
@ Pv(QAR)=(PvQ) A(PVR)
(C) ﬁ(P\/Q)EﬂP/\ﬂQ
e PAQAR=PA(QAR)
@ PVvQQ=PvQAr-(PAQ
@) PrQ=PIPIQIQ

() PAQvRI=(PAQ V(PAR)
d P->(QAR=P->QA(P->R)
O PvQ=—(=PAr-Q)

) PlQYlPLQ=PvQ

() =PvQvV(=PAQ=-P

3. For each of the following formulas tell whether it is () tautology, (ii) satisfiable, or

(ii1) contradiction.

@ P->Q->R)>(P->Q—->P—->R)G) P>(Q—->R)<(PAQ >R)

) PA=Q

e =(P-Q —->PAr-Q)
@ (P->QeQ—-P
@D P>PAQ)

) PvQ)«(QADP)

d PvQ) —>P

" P-Q—-@Q—P)

(h) =PA(PvQ) —P

(Hh P>(Q—=>PAQ)

D P-Q->PAQ))«<P
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4. Prove by using different laws.
(@ —(PvQv(=PAQ=-P ®) PvPAQ=P
) PvQar=P==PAQ
5. Write each of the following in symbolic form by indicating statements.
(@) Ram is rich and unhappy.
(b) Sudeep speaks English or Oriya.
(¢) Tam hungry and I can study.
(d) T am tired if and only if I work hard.
(e) If Bhubaneswar is a city, then it is the capital of Orissa.
O 5+2=T7if7-2=5.
6. Write the truth value of each of the following statements.
(@) Sun rises in the south.
() Man is mortal.
(c¢) Delhi is the capital of India.
(d) If three sides of a triangle are equal, then it is an equilateral triangle.
(e) (11101),+ (1), =(11110),
) (11101)y5+ (1)3, = (11110)y,
(@ (11111)9+ (1)5=(100000)5 and (111)y = (7)1
(h) (270)g+ (5)g=(184);50r (11101), +(111), =(100101),
G) 22=9ifand onlyif 2% 3
(» (111), +(010), = (1001), if and only if (1001), — (010)y = (111),,.
7. Write the converse, inverse and contra positive of the following statement by indicating
the conditional statement.
(@) In binary number system 1 + 1 = 10.
(b) Good food are not cheap.
() If 9x + 36 = 9 then x # 17.
(d) If cos(x) =1 thenx =0.
(e) Two sets are similar if they contains equal number of elements.
8. Prove by using method of induction.

n(n+1)(2n+1)

@ 12+22+3%+.....+n?=
6
_ n
G 1+r+r’+.. +rn_1=11 r ir#1
-r
1- n+1
© 1+r+r2+... +r"=+;r¢1
-r
a 1_rn+1
d) a+ar+ar’+.... +ar"=¥;r¢l
-r

n(2a+(n—1)d)
@ a+@+d)+@+2d)+...+(a+n-1)d) =
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@ 3+7+11+...+(4n-1)=n2n+1)
© 2+4+6+....+2n=nn+1)

) 12+42+72+....+(3n—2)2=n(6n2_23n_1)

@) 3¥6+6%9+...+3nBn+3)=3n(n+1) (n+2)

) 1*2+2*3+3*4+....+n(n+1)=n(’”l?z(””)
n(n+1)(n+2)(n+3)

k) 1*2*%3+2*3*4+....+nn+1)(n+2) =

4

n(n+1)(4n-1)
6
m) 1%83%5+3%5%7+ . ... +2n-1)2n+1)2n+3)=nn +2)2n%+4n-1).

D 1+2*3+3*5+...+n2n-1)=

n(n+1)* (n+2)

n 2+(12+2)+(12+22+43)+ ... +(12+ 2%+ ... +n? =

12
(0) 1*22+2*32+...+n(n+1)2=n(n+1)(n1;2)(3n+5)
P 3% 8+6*11+...+3nBn+5)=3nn+1)(n+3)
n® (n+1)
(@ 1+(1+4)+(1+4+7)+....+(1+4+7+...+(3n—2))=T

) 2+46+12+20 + ... +n(2’;+2)=”(”+13)(”+2)

&) 1+1+14 gL 2ot
2 4 2n71_ anl

O 1*4+2*7T+3%10+...4nBn+1)=n{+ 1)
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Set Theory
®

H 2.0 INTRODUCTION

An ordinary understanding of a set is a collection of objects. In our day-to-day life we use
phrases like a set of utensils, a bunch of flowers, a set of books, a herd of cattle, a set of birds
and etc.. Which are all examples of sets.

In the 19th century the German Mathematician George Cantor developed the theory of sets
to define numbers and to base mathematics on a solid logical foundation. In late 19th century,
Frege developed these ideas further, but his work did not attract much attention. In 20th
century Bertrand Russell rediscovered his analysis independently. His works in 1903 led to
the monumental work with North Whitehead the principia Mathematica a land mark in the
foundations of mathematics. It was observed in 1940s that all mathematics could develop from
the idea of sets and mathematics was systematized.

In this chapter we try to impart fundamental concepts and approach to the problem. i.e.
how to proceed for the expected solution as for as set theory is concerned. By the way we will
study and learn about the basic concepts of sets, some of the operations on sets, Venn dia-
grams, Cartesian product of sets and its applications.

H 2.1 SETS

Collection of well defined objects is called a set. Well defined means distinct and distinguish-
able. The objects are called as elements of the set. The ordering of elements in a set does not
change the set. i.e. the ordering of elements can not play a vital role in the set theory. For
example

A=la,b,c d}and B = {b, a, d, c} are equal sets.
The symbol € stands for 'belongs to’. x € A meansx is an element of the set A. It is observed

that if A be a set andx is any object, then eitherx € A orx ¢ A but not both. Generally sets are
denoted by capital letters A, B, C and etc.

Consider the examples of set:
A=1{24,6,8, 10,12, 14, 16, 18}
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B=1{x,y,2z, u,v,w)
N={1,2,3,...}
I={...-2,-1,0,1,2,3, ...}
In general the set can be expressed in two ways. i.e. Tabular method (Roster method) and
Set-builder method (Specification method).

2.1.1 Tabular Method

Expressing the elements of a set within a parenthesis where the elements are separated by
commas is known as tabular method, roster method or method of extension.

Consider the example
A={1,3,5,7,9,11, 13, 15}
2.1.2 Set Builder Method
Expressing the elements of a set by a rule or formula is known as set-builder method, specifi-
cation method or method of intension. Mathematically
S=1{x | P)

where P(x) is the property that describes the elements of the set. The symbol | stands for
‘such that’. It is not possible to write every set in tabular form. Consider an example

S ={x | xis an Italian}

The above set S can not be expressed in tabular form as it is impossible to list all Italians.
Consider the examples

A={x |x=2n+1;,0<n<T;ne I}
={1,3,5,7,9, 11, 13, 15}
and B={x | x =1, x = a, x = Book, x = Pen}

= {1, a, Book, Pen}
From the second example given above it is clear that the elements of a set do not have any
common property also.

H 2.2 TYPES OF SETS

Here we will discuss the different types of sets.

2.2.1 Finite Set
A set which contains finite number of elements is known as finite set. Consider the example of
finite set as

A={a,b,c,d, e}

2.2.2 Infinite Set
A set which contains infinite number of elements is known as infinite set. Consider the exam-
ple of infinite set as
N=1{1,2,3,4,...}
I=¢{..-3,-2,-1,0,1,2,3, ...}
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2.2.3 Singleton Set

A set which contains only one element is known as a singleton set. Consider the example
S =1{9}

2.2.4 Pair Set

A set which contains only two elements is known as a pair set. Consider the examples
S= {e7ﬂ
S ={{a}, {1, 3, 5}}

2.2.5 Empty Set
A set which contains no element is known as empty set. The empty set is also known as void
set or null set. Generally denoted by ¢. Consider the examples

@) ¢o={x:x =x)
(@) ¢ = {x : x is a month of the year containing 368 days}

2.2.6 Set of Sets

A set which contains sets is known as set of sets. Consider the example
A={{a, b}, {1}, (1, 2, 3, 4}, {u, v}, {Book, Pen}}

2.2.7 Universal Set

A set which is superset of all the sets under consideration or particular discussion is known as
universal set. Generally denoted by U or E or Q.

Generally, the universal set can be chosen arbitrarily for discussion, but once chosen it is
fixed for discussion. Consider the example

Let A={a,b,c}
B={a,e,i,0,u}
C={p,q,r,s}
So, we can take the universal set U as {a, b, c, ...., 2}
ie. U={a,b,c,d,e, ...z}

B 2.3 CARDINALITY OF A SET

If S be a set, then the number of elements present in the set S is known as cardinality of S and
is denoted by |S|. Mathematically if S = {s4, s9, s3, ..... , Sp), then |S| =k; ke N.

Consider the example

Let A=1{2,4,8,16, 32, 64, 128, 256}

So, |A] =8

2.3.1 Equivalent Sets

Two sets A and B are said to be equivalent if they contains equal number of elements. In other
words A and B are said to be equivalent if they have same cardinality, i.e.|A| = |B|. The
equivalent sets are also known as similar sets and denoted by A = B.
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Consider the example of two sets.
A={a,e, i,o0,u}
B=1{7,9,11, 13, 15}
Here, |[A| =5 = |B]|. Thus A and B are similar.

N 2.4 SUBSET AND SUPERSET

Set A is said to be a subset of B or set B is said to be the superset of A if each element of A is
also an element of the set B. We write A ¢ B.
lee AcBolxe A—-xe B;Vxe Al
Consider the examples
(@) Let A={1,2,3,4,5,6}
B=11,2,3,4,5,6,7,8)}

So A cB.
(i) Let A={a,b,c}
B=1{b,c,al

so,AcBand BcA.
(i) Let A={}and B={1, 2, 3}
So, A c B.

2.41 Equal Sets

Two sets A and B are said to be equal if and only if every element of A is in B and every
element of Bisin A.i.e. Ac B and. B c A. Mathematically
A=Bo {AcBand BcA}
ie. A=Bo {xe A xe B}
Consider the example: Let A = {x, y, 2z, p, q, r}
B=1{p,q,r,x,,2]
So, Bc A and A < B. Thus A =B.

2.4.2 Proper Subset

Set A is said to be a proper subset of B if each element of A is also an element of B and set B
has at least one element which is not an element of set A. We write A c B.

Mathematically

AcBo{xe A—>xe Bandforatleastoneye B—oy¢ A}
Consider an example
Let A={a,b,c,d}
B=1{a,b,c,d,e,f, g}
Here forx ¢ Awehavex € Bandy =e e B suchthaty =e¢ A. Thus A c B.
Note

1. Every set is a subset of itself. i.e. A C A.
2. Empty set is a subset of every set. i.e. 6 C A.
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H 2.5 COMPARABILITY OF SETS

Two sets A and B are said to be comparable if any one of the following relation holds.
i.e. @ AcBor @) BcAor (@ii) A =B.
Consider the following sets
A={a,b,c,d,e};B=1{2,3,5} and C ={c, d, e}.
It is clear that A ¢ B, B« A and A # B. So, A and B are not comparable.

Similarly B¢ C, C ¢ B or C # B. So, B and C are also not comparable. Where as C c A, thus
A and C are comparable.

N 2.6 POWER SET

If A be a set, then the set of all subsets of A is known as power set of A. Which is denoted
by P(A).

Mathematically, P(A) = {(X: X c A}

Consider the example

Let A ={a}

- PA) = { D, {a}}

Let A={a,b}

= P(A) ={{a}, {b}, {a, b}, D}

Let A={a,b,c}

= P(A) = {{a}, {b}, {c}, {a, b}, b, c}, {c, a}, {a, b, c}, D}

From the above examples it is clear that if a set A contains n elements then the power set
of Ai.e. P(A) contains 2" elements.

ie. |A] =n = |PA)| 2~

N 2.7 OPERATIONS ON SETS

Here we will discuss certain operations such as union, intersection and difference in order to
develop an algebra of sets.

2.7.1 Union
If A and B be two sets, then the union (A U B) is defined as a set of all those elements which
are either in A or in B or in both.
Symbolically,
AUB={x:xe Aorxe B}
Venn diagram
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X
/ \
/ / \
[ / \ AuB
A I/ | B
| ]
\ \ / /
\ \ / /
\ \__/ /
Consider the example
Let A={a,b,c,d, e}
B={a,e,i,o0, u}
Therefore, (AuB)={a,b,c,d,e,i,o0,u}

2.7.2 Intersection
If A and B be two sets, then the intersection (A N B) is defined as a set of all those elements

which are common to both the sets. Symbolically
(AnB)={x:xe Aandx e B}
Venn diagram
PN
AN
/N

A ANB
./
N
~—

Consider the example

Let A={a,b,c,d, e}
B=

{a, e, i,0, u}

Therefore (A N B) = {a, e}

2.7.3 Difference
If A and B be two sets, then the difference (A — B) is defined as a set of all those elements of A

which are not in B. Symbolically, (A—-B) ={x | x € A and x ¢ B}

Venn diagram

el N
A4
([ 7
A A-B
o\
NN
N>
~_
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Consider the example

Let A={a;b; C,d,e,f}
B={a,c,i,0,u,k)
Therefore (A-B)=1{b,d,e,f}

2.7.4 Symmetric Difference

If A and B be two sets, then the symmetric difference (AA B) or (A ® B) is defined as a set of all
those elements which are either in A or in B but not in both.

Symbolically,
(A®B)=(A-B)u(B-A)
Venn diagram
A®B
ﬁ ( \ \
| ]
/
B
A
Consider the example
Let A={a;bycyk7p7Q7r;S}
B= {b7 k; q,m,n,o, t}
SO, (A—B)={a,c,p;r,3}
and B-A)={m,n,o, t}
Therefore, (A®B)=(A-B)u(B-A)

= {a7 ¢p,r,s,m,n,o, t}
2.7.5 Complement of a Set

If A be a set, then the complement of A is given as A°, A’ or A and is defined as a set of all those
elements of the universal set U which are not in A. Symbolically,

A={x |xeUandx ¢ A}
Venn diagram

——( . —

Consider the example:

Let A={b;cyk7d7i7p7Q7rys;t}
So, we can take the universal set U = {a, b, ¢, ..., x, y, z}.
Therefore A=U-A

={a,e,f,8, h,j,l,m,n,0,u,v,w,x,y, 2}
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2.7.6 Theorem

Let A, B and C be subsets of the universal set U. Then the following important laws hold.

(@) Commutative laws:

(AUuB)=(BuUA) ; (AnB)=(BnA)
(b) Associative laws:

AuBulC)=(AuB)uC; AnBNC)=(AnB)NC
(¢) Idempotent laws:

(AUA)=A ; (AnA)=A
(d) Identity laws:

Audp)=A ; (AnU)=A
(e) Bound laws:

Auvl)=0 ; And)=0¢
() Absorption laws:

AUAnNB)=A ; An(AUuB)=A
(&) Complement laws:

(AUA)Y=U ; (AnAY=¢
(h) Involution law:

(A=A

(@) Distributive laws :
@) AuBNC)=(AUuB) N(AUCQC)
@ AnBulC)=(AnB)UANC)

Proof : Proofs of (a), (b), (¢), (d), (e), (), (g) and (h) are immediate consequences of the defini-

tions. We prove only the distributive laws.

@) x e AuBANC)
& x eAorxe BnC)
& x €eAor(xe Bandxe C)
& (xeAorxeB)and(xe Aorxe C)
< x e (AuB)andxe (AUC)
o x e AuUB)N(AUC)
So, AuBnNC)=(AuB)Nn(AuC)

@) xe AnBuUCQC)
& x e Aandxe (BuOQ)
< x eAand(xe Borxe C)
& (x eAandxe B)or(xe Aandxe C)
& x e (AnB)orxe (AnC)
o x e AnB)UANC)
So, An(BuC)=(AnB)UANC)

2.7.7 Theorem

Let A, B and C be subsets of the universal set U. Then the following properties hold.

@ (AAA)=¢ ®) (AAB)=(BAA)
) AnBAC)=(AnB)AANC) (d) (AAB)=(AuB)-(AnB)

Proof : Proofs of () and (b) are immediate consequences of definitions. Here we prove

(c) and (d).
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() e An(BAC)
e Aandxe (BAC)
ecAandxe (B-C)u(C-B))
eAand(xe (B-C)orxe (C-B))
(x e Aandx e (B-C))or(x € Aandx e (C - B))
(x e Aand (x e Bandx ¢ C))
or (x e Aand (x € Candx ¢ B))
& (x e Aandxe B)and (xe Aandx ¢ C))
or (x e Aandx e C)and (xe A andx ¢ B))
o (x e (AnB)andx¢ (AnC))or
(x e AnC)andxe (ANB))
s x e ((AnB)—(AnC)orxe (AnC)—(AnB))
s x e (AnB)-(AnCHU(ANC)-(ANnB))
s x e AnB)AANC)
So,An(BAC)=(AnB)A(ANC).
(d x e (AuB)—(AnB)
< x € (AuB)andx¢ (AnB)
< x €e(AuB)and(x¢ Aorxe¢ B)
< (x e(AuB)andx¢ A)or (xe (AuB)andx ¢ B)
< ((x e Aorxe B)andx g A)
or ((x e Aorxe B)and x ¢ B)
< (x e Aandx¢ A)or(xe Bandx ¢ A))
or (x e Aandx ¢ B)or (x € Band x ¢ B))
(x e porxe B-A)or(xe (A-B)orx e ¢)
e (u(B-A)orxe (A-B)u o)
e B-A)U(A-B) [By Identity law]
e (BAA)
€ (AAB) [By Commutative law]
So,(AAB)=(AuB)-(AnB)

8 8 8 R

2.7.8 De-Morgan's Law

Let A and B be subsets of the universal set U. Then
@ (AuB)Y =(A“nBY)
b)) (AnB)Y'=(A“UB")

Proof: (a)x € (AUB)°

& x ¢(AUB)

< «x ¢Aandxe¢ B

< x e A°andxe B¢

& x e A°NB°

So, (AU B) =(A°nBY
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®) e (AnBY

¢ (AN B)

¢ Aorx¢ B

€ A°orx e B°
x € AU B

So, (AN B) =(A°U B

t180¢
8 8 ® R

N 2.8 DISJOINT SETS

Two sets A and B are called disjoint or non-overlapping if both sets have no common element.
Mathematically, (A" B) = ¢.

Venn diagram

H 2.9 APPLICATION OF SET THEORY

Let A and B be finite sets. Let n(A) be the number of distinct elements of the set A. Then
n(AuB) =n(A) +n(B)-n(AnB).
Further if A and B are disjoint, then
n(AuB)=n(A) +n(B)
Proof: A and B be finite sets and n(A) represent the number of distinct elements of the set A.

U

From the above Venn diagram it is clear that
n(A) =n(A-B) +n(AnB)
and n(B)=nB-A)+n(AnB)
and n(AuB)=n(A-B)+n(AnB)+n(B-A)
=n(A)-n(AnB)+n(AnB) +nB)-n(AnB)
=n(A) +n(B)—-n(AnB)
ie. n(AuB) =n(A) +n(B) —n(AnB)
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If A and B are disjoint, then (AN B) =¢i.e. n(ANnB)=0
Therefore, n(A U B) =n(A) + n(B).

N 2.10 PRODUCT OF SETS

The product of sets is defined with the help of an order pair. An order pair is usually denoted
by (x, ¥) such that (x, y) # (v, x) whenever x # y. The product of two sets A and B is the set of all
those order pairs whose first coordinate is an element of A and the second coordinate is an
element of B. The set is denoted by (A x B). Mathematically,

(AxB)={(x,y) | xe Aandx e B}
Consider the example
Let A=(1,23,517}
B={4,9, 25}

So, (AxB)=1{(1,4),(1,9),(1, 25),(2,4),(2,9), (2, 25), (3, 4), (3, 9), (3, 25), (5, 4), (5, 9), (5, 25),
(7,4),(7,9), (7, 25)}

Note : The product of sets can be extendable for n sets A;, Ay, Ag, ....... ,A,. Thus A; x A,
xAgx....x A, can be defined as

A; XAy xAgx ... x A, ={(x1, X9, X3, ..., x,) | x,€ Ajand xg€ Ay andxse Agand ... andx, €
A, }where (x4, 29, X3, ....,x,) is called as n-tuple of x,, x5, X3, ...., x,. To explain this consider the
example in which A = {a, b, c}; B = {1, 2} and C = {«a, B}. Therefore

AxBxC={(a, 1, o), (a,1,p), (a, 2, n), (a, 2,P),®,1,a),®,1,p),®, 2, a), ®,2,pB), (1,0,
(c, 1,B), (c, 2, 1), (c, 2, B)}.

From the above example it is very clear that [AXxBxC| = |A | x |B |x|C]|. In general,
|Ay XAy X Agx ... XA, |= |A]] X |Ay| X |Ag|x.. X |A,|.

2.10.1 Theorem

Let A, B and C be three subsets of the universal set U. Then
@ AxBulC)=(AxB)uU(AxC)
b) Ax(BNC)=(AxB)n(AxC)
Proof: (a) (x,y) e Ax(BuUC)
< xe€ Aandye (BuO)
< x€ Aand(ye Borye C)
< (xe Aandye B)or(xe Aandye C)
<S(x,y) e (AxB)or(x,y) e (AxC)
sx,y)e (AxB)U(AxC)
Therefore, Ax (BuU C)=(AxB)uU (AxC).
®) (x,y)e Ax(BNnC)
< x € Aandye Bn ()
< x€ Aand(ye Bandye C)
< (xe Aandye B)and (xe Aandy e C)
<(x,y)e (AxB)and (x,y) e (AxC)
sx,y)e (AxB)n(AxC)
Therefore Ax(BNC)=(AxB)n (Ax C).
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H 2.11 FUNDAMENTAL PRODUCTS

Let Aj, Ay, A, ...., A, be n sets. A fundamental product of these n sets is an expression of the
form (B; "By "By ... nB,) where B; is either A; or A;.

Consider an example with three sets A, B and C. The fundamental products of these three
sets are as follows which are 2% in number.

Le. AnBnNnC; A°nBnC; AnB°NC; ANnBnC¢;
A°NB°NC; AnB°NCS A°nBnNCS A°NB‘NC".

® SOLVED EXAMPLE J

Example 1 Let A, B and C be any three subsets of the universal set U. Then prove that
(@) A-(BuC)=(A-B) n(A-C)
®) A-(BuC)=(A-B)-C
¢ AnB)-C=ANB-0C)
Solution: (@)xe A—-(BuC)
= x €e Aandx¢ (BuUC)
S x e Aand(x ¢ Bandx ¢ C)
S (x e Aandx ¢ B)and (x € Aandx ¢ C)
& x e (A—B)andxe (A-C)
o x € (A-B)n(A-C)
Therefore A—-(BuC)=(A-B)n(A-C)
b xeA-BuUCOC)
= x €e Aandx¢ (BuUC)
S x e Aand(x ¢ Bandx ¢ C)
S (x e Aandx¢ B)andx e C
& x € (A-B)andx ¢ C
& x e (A-B)-C
Therefore A—-(BuC)=(A-B)-C
) xe AnB)-C
& (x e Aandxe B)andx ¢ C
& x e Aand (x e Bandx ¢ C)
o x €e Aandx e (B-C)
= x e AnB-0)
Therefore AnB)—-C=An(B-C)

Example 2 Show that A - UB ﬂ

1=1

Solution: xe A- UBi

= x € Aandx ¢ UBi
i=1
= x € Aandx¢ B;uB,UBsU...UB,)
= x € Aand (x ¢ B;andx ¢ Byandx ¢ Byand ... andx ¢ B,)



30 Fundamental Approach to Discrete Mathematics

o (x e Aandx ¢ B;)and(xe Aandx ¢ By)and .... and (x € Aandx ¢ B,)
=3 x € (A-Byandxe (A-By)and ... andxe (A-B,)
= x€eA-B)n(A-By)n..nxe (A-B,)
o x € ﬂ(A—Bi)
i=1
Therefore A — UBi = ﬂ(A—Bi)
i=1 i=1
Example 3 If A and B subsets of the universal set U, then show that
(@ (A)=A
b A-B=ANB°
(¢ A-B)nB=¢
Solution : (a) xe (A

= x ¢ A°
= x €A
So, (A% =A

®) x € (A-B)
S x € Aandx ¢B
= x € Aandx e B¢
SN x € (AnB9

So, (A-B)=(AnB°
(¢c) xe (A-B)nB
x € (A-B)andxe B
(x e Aandx¢ B)andxe B
x € Aand (x ¢ Bandx e B)
€ Aandxe ¢
e (AN ¢)
€0

So,(A-B)nB=0¢

Example 4 Let A, B be the subsets of the universal set U, then prove that

(@ A—-(AnB)=ANB°

b (ANBY)=A°UB
Solution: (@) x € A—(AnB)
x € Aandx¢ (AnB)
x e Aand (x ¢ Aorx ¢ B)
(x e Aandx ¢ A)or(x € Aandx ¢ B)
x € por(x e Aandx e B°)
x e porxe (AnB°)
x € 0U(ANBY
x € (AnB9
So,A—-(AnB)=AnNnB°

tggeee

R K R

tggeeTe
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®) e (AnB°"
¢ (AN B°
¢ Aorx ¢ B¢
€ A°orxe B
e (A°UB)
So, (AN B =(A°UB)
Example 5 Let A, B and C be three subsets of the universal set U. Then show that
n(A B vC)=n(A) +n(B) +n(C)—n(A"B)—-n(BNnC)-n(CnNA)+n(AnBNC)
Solution : Let (B u C) = D. So, we have
n(AuBuUC)=n(AuD)
=n(A) +n(D) —n(AnD)
=n(A)+n(BuC)-n(An(Bu())
=n(A) +n(B) +n(C)—n(BN C)-n((AnB)U (AN (C))
=n(A) +n(B) +n(C)—n(BNC)—n(AnB)—n(AnC)+n(AnBnNC)
Therefore nAuBUC) =n(A) +nB) +n(C)—n(AnB)—n(BNC)—n(CnA)+n(An BN C).

Example 6 In the CSI conference held at Delhi, 500 delegates attended. 200 of them could
take tea, 350 could take coffee and 10 did not take either coffee or tea. Then answer the following
questions.

(@) How many can take both tea and coffee.
(b) How many can take tea only and
(¢) How many can take coffee only.

Solution : Let T : Set of persons who take tea.

C : Set of persons who take coffee.
U : Total number of delegates.
Hence we have n(U) = 500; n(T) = 200; n(C) = 350
Number of delegates did not take either coffee or tea = 10
Therefore number of delegates who take either coffee or tea = 500 —10 = 490
ie.n(TuC)=490
ie. n(T) + n(C) —n(T N C) = 490
i.e. n(T N C) =n(T) + n(C) — 490 = 200 + 350 — 490 = 60
So, the number of persons who take both coffee and tea = n(T N C) = 60
Number of persons take tea only = n(T) — n(T n C) = 140
Number of persons take coffee only = n(C) — n(T n C) = 290.

Example 7 If 65% of students like apples where 75% like grapes then what percentage of
students likes both apples and grapes?

Solution: Let n(S) : Total number of students = 100
n(A) : Total number of students who like apples = 65

t180¢
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n(B) : Total number of students who like grapes = 75
Therefore n(S)=n(AuB)=n(A)+n(B)-n(AnB)
i.e. 100 =65 + 75 -n(AnB)
ie. n(AnB) =40
So, 40% of students like both apples and grapes.
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Example8 IfA={2,3,4,5,6},B=(3,4,5,6, 7} and C={4, 5, 6, 7, 8} then find the followings.
i) (AUB)N(AuC) i) (AnB)uU(ANC)
(iii) A-(B-C)and (iv) (AAB).
Solution : Given A =1{2,3,4,5,6},B=1{3,4,5,6,7and C={4, 5, 6, 7, 8}
@ AuB)=12,3,4,5,6, 7}
(AuC)=1{2,3,4,5,6,7, 8}
Therefore AuB)Nn(Au C)=1{2,3,4,5,6, 7}
@) (AnB)={3,4,5,6}
(AnC)=1{4,5,6)}
Therefore AnB) U(ANnC)={3, 4,5, 6}
@) B-C)=1{3}
Therefore A— (B-C) =1{2, 4, 5, 6}
@) (AuB)={2,3,4,5,6, 7}
(AnB)=13,4,5, 6}
Therefore AAB)=(AuB)-(AnB)={2, 7}
Example 9 Find the power sets of the following sets.
@) {0}
i) {1, {1, 2}} and
(i) {4, 1, 8).
Solution : (i) Let A = {0}
Therefore P(A) {{0}, o}
@) Let =1{1,1{1, 2}}
So, P(A) = {1}, {{1, 2}}, A, ¢}
(@ii) Let A={4,1,8}
So, P(A) = {{4}, {1}, {8}, {4, 1}, {4, 8}, {1, 8}, A, ¢}.
Example 10 IfA={4, 5}, B={7, 8} and C = {9, 10} then find the followings.
(@) (AxB) U(BxC)and (b)A x(B UC).
Solution : Given A = {4, 5}, B={7, 8} and C = {9, 10}
(@ (AxB)=1{4,7),4,8),(5,7),(5,8)}
BxC)={(7,9),(7,10),(8,9), (8, 10)}
So, (AxB)u (BxC) ={(4,7), (4, 8),(5,7), (5,8), (7,9, (7, 10), (8, 9), (8, 10)}
® BulC)=1{7,8,9, 10}
So, Ax(BuC)={(4,7),(4,8),4,9),(4,10), (5,7), (5, 8), (5,9), (5, 10)}.
Example 11 IfA={1,2, 3}, B=1{2, 3, 4} and C = {3, 4, 5}, then verify the product laws.
Solution : Given A = {1, 2, 3}, B=1{2, 3,4} and C = {3, 4, 5}
Therefore (B U C) = {2, 3, 4, 5} and
Ax(BuC)=1{(1,2),(1,3),1,4),Q1,5),(2,2),(2,3),(2,4), (2,5),(3, 2), (3, 3), (3, 4), (3, 5)}
(AxB) =1{(1, 2),(1, 3), (1, 4), (2, 2), (2, 3),(2, 4), (3, 2), (3, 3), (3, 4)}
(AxC)=1{(1,3),(1,4),1,5),(2,3),(2,4),(2,5), (3, 3),(3,4), (3, 5)}
Thus (AxB) U(AxC)={(1,2),(1, 3),(1,4),(1,5),(2,2),(2,3),(2,4),(2,5),(3,2),(3, 3),(3,4),(3,5)}
=Ax(BuUC)
Similarly the second product law A x (B nC) = (Ax B) N (A x C) can be verified.
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Example 12 IfP={a, c, e}, @ =(100, 101, 102} and R = {m, ¢, e, 101} Compute (@ U P)- (P NQ))
XR. Where n, U, — and x are well known set theoretic binary operations.
Solution : Given P ={a,c,e}; Q ={100, 101, 102} and R = {m, ¢, e, 101}.

So, (QuP)=1{100,101,102,a,c,e} and PN Q) =0

Therefore (QuP)-(PnQ))=1{100,101,102,a,c,e}

Thus (Q UP) - (P n Q) xR ={(100, m), (100, ¢), (100, e), (100, 101), (101, m), (101, ¢),
(101,e), (101, 101), (102,m), (102,¢), (102, e), (102, 101), (&, m), (@, ¢), (@, e), (a, 101), (c, m), (c, ¢),
(c,e), (c,101), (e, m), (e, c), (e, e), (e, 101)}

Example 13 Show the following sets by Venn diagram.

() (A—B) (b) A°HB (©) ANBAC
Solution :
(@) U
X
A\
3 e —
X
A B ]
b)) (A°-B)=(B-A)
u
T
N
N
A'NB

) AnBnC

Example 14 In a group of 64 students 26 can speak Hindi only, 14 can speak English only.
How many can speak both Hindi and English.

Solution: Let H: Set of students who can speak Hindi.
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E : Set of students who can speak English.
Let n(S) : Total number of students = 64
Le. nS)=n(HUE) =64
Given n(H — E): Number of students speak Hindi only = 26
and n(E — H): Number of students speak English only = 14
Therefore n(HUE) =n(H-E) + n(E-H) + n(HNE)
Le. n(HNE)=64-26-14=24
So, 24 students can speak both Hindi and English.

Example 15 Draw a Venn diagram to represent the following facts for the sets P, @, R and S.
PNQ) =4 ScQ cRand (PNS) =¢.

Solution : Given conditions are (PN Q)# 0, Sc Q cR and (P S) = ¢. The Venn diagram for
the above facts is given below.

)
Example 16 Ifin a city 60% of the residents can speak Bengali and 50% can speak Kannada,

What percentage of residents can speak both the languages, if 20% residents can not speak any
of these two languages?

Solution: Letn(S) : Total number of residents = 100
n(B) : Total number of residents who speak Bengali = 60
n(K) : Total number of residents who speak Kannada = 50
n(B U KY : Total number of residents who cannot speak any of these two languages = 20

So, n(BUK)=n(S)-n(BuK)~=100-20 =80
Le. n(B) +n(K)-n(BNK)=80
ie. n(BNK)=60+50-80=30

Therefore 30% of the residents can speak both the languages Bengali and Kannada.

Example 17 In a survey about liking for colours, it was found that everyone who was
surveyed had a liking for at least one of the three colours namely Red, Green and Blue. Further
30% liked Red; 40% liked Green and 50% liked Blue. Further 10% people liked both Red and
Green, 5% liked both Green and Blue and 10% liked both Red and Blue. Find the percentage of
the surveyed people who like all the colours.

Solution :Let R : Set of people who like Red colour
G : Set of people who like Green colour
B : Set of people who like Blue colour
and S: Set of all people who was surveyed.
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Therefore n(S) = 100; n(R) =30;n(G) =40;n(B) =50;n(RN G) =10; n(GNB) =5; n(RNB) = 10.

Thus n(S)=n(RuGuUB)=100
ie. nR) +n(G) +nB)—n(RNG)—n(GNB)-n(RNB) +n(RNGNB)
=100
Le. n(RNnGNB)=100-30-40-50+10+5+10=5

So, 5% of the surveyed people like all the colours, i.e. Red, Green and Blue.
Example 18 IfA cB and B cC, then show that A cC.
Solution: GivenBcCie.xe B=>xe C
Again AcBie.xe A=>xe B Vxe A
ie. xeA=>xeB=xeC
ie. xe A=xe C
Therefore A c C.

Example 19 For all sets A and B prove that Ax B= A x B.

Solution : (x,y)e AxB
= (x,y)z AxB
= x¢ Aandy¢ B
= xeKandyeE
=3 (x,y)e AxB
So, (x,y) e m?u:)(x,y)e AxB

Therefore AxB = AxB

Example 20 For all sets A, B and C prove that A x(B-C) =(A xB) - (A xC).
Solution: (x,y)e Ax(B-C)
xe Aandye (B-C)
xe€Aand(ye Bandy ¢ C)
(xe Aandye B)and (x e Aandy ¢ C)
(x,y) e (AxB)and (x,y) ¢ (AxC)
(x,y) e (AxB)-(AxC)
Therefore Ax(B-C)=(AxB)-(AxC).
Example 21 In a group of 191 students, 10 are taking English, Computer Science and Music;
36 are taking English and Computer Science; 20 are taking English and Music; 18 are taking
Computer Science and Music; 65 are taking English; 76 are taking Computer Science and 63
are taking Music. Then answer the followings
(@) How many are taking English and Music but not Computer Science.
(b) How many are taking Computer Science and Music but not English.
(¢) How many are taking Computer Science and neither English nor Music.
(d) How many are taking none of the three subjects.
Solution : Let  S: Set of students
E : Set of students taking English
C : Set of students taking Computer Science

M : Set of students taking Music.

tgeee
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Given that n(S) = 191; n(E) = 65; n(C) = 76; n(M) = 63; n(EN C M) = 10; n(E n C) = 36;
n(ENnM)=20;n(CnM)=18

(@) Number of students taking English and Music but not Computer Science
=n(EnM)-n(ENnCnM)=20-10=10

(b) Number of students taking Computer Science and Music but not English
=n(CAnM)-n(EnCnM)=18-10=8

(¢) Number of students taking Computer Science and neither English nor Music = n(C)

-nEnC)-n(CAM)+n(ENnCnM) =76-36-18 + 10 = 32

(d) Number of students taking none of the three subjects
=n(Eu CuM)*
=n(S)-n(EuCuM)
=n(S)—{n(E) +n(C) +n(M) —n(ENnC)-n(CnM) —n(EnM) + n(EnC M)}
=191-(65+63 +76—-20-36-18 +10)

=51.

Example 22 Examine whether the following sets are equivalent or not.
(a)A:{x|x2—7x+12=0;x6N} ®) B={x | x=aandx =25}
© C={a,b,c d, e d D={x |x*-4=0;x eI}

Solution : Giventhat A={x | x>~ 7x +12=0;x € N}

Therefore A={(3, 4]}

ie. |A] =2

Similarly B={x|x=c and x = b}
={a, b}

ie. |IB| =2
Also C={a,b,c,d,e}

ie. |C| =5
Again D={x|x2-4=0;xe I} = {2, -2}

ie. |ID| =

Therefore |[A| = |B| = |[D| =2# |C| =5; So A, B and D are equivalent.
Example 23 For all Sets A and B prove that (ANB) u(B-A) =B.
Solution: (AnB)UB-A)=(AnB)U(BNA

=(AnB)UB)N((AnB)UA [Distributive law]
=BNn((AnB)UAY [Absorption law]
=BNn((AUA)YN(BUA) [Distributive law]
=BNn(UnBUAY) [Complement law]
=BnN(BUA")

=B [ Absorption law]

Example 24 By applying properties of sets prove that (A - B) N (B -A) = ¢for all sets A and B.
Solution: (A-B)n(B-A)=(AnB)n(BNA"

=ANn BN (BNAY%) [ Associative law]
=An((B°nB)NA° [ Associative law]
=An(pNA° [ Complement law]
=(And) [Bound law]

]

=0 [Bound law
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Example 25 For all sets X, Y and Z prove that X Nn(Y-2) = (X NnY) - (X NZ).
Solution : xe Xn(Y-7)

= xe Xandxe (Y-Z)

S xe Xand(xe Yandx ¢ Z)

=3 (xe Xandxe Y)and (x € Xand x ¢ Z)

= xe XnY)andx ¢ XNZ)

P xe XNY)—-XnZ)

Therefore XNnY-2)=XNnY)-(XnZ)
Example 26 For all sets X, Y and Z prove that X - (Y vZ) = (X-Y) nZ“.
Solution : xeX-YuZ)

S xeXandx ¢ (YUZ)

S xe Xand (x¢ Yandx ¢ Z)

S (xeXandx¢ Y)andx ¢ Z

= xe X-Y)andxe Z°

= xe X=-Y)nZ

Therefore X — (YU Z) =X -Y)n Z°.
Example 27 Determine the equality for the following pair of sets.
A={1,2 3land B = {x|x eN;x*-6x2+11x-6=0)
Solution : Given A = {1, 2, 3} and
B=f{x|xe N;x®-6x2+11x-6=0)
={x|x e N; (x — D(x — 2)(x — 3) =0}
={1, 2, 3}
Therefore sets A and B are equal as Ac B and B c A.
Example 28 Express A (B - C) as the union of fundamental products.

Solution : The figure given below represents the Venn diagram for A U (B — C). From this it
is clear that A U (B — C) consists of the five areas of the Venn diagram corresponding to the
fundamental products (ANnB N C), (ANnBNC),(AnB*nC), (A°nB N C and (AnB°nC).

/ 7 N B—\

A i Y \
— | — )
\ T ] ]
A\ X 7 7

AU (B-C)is shaded
Thus AuB-C)=(ANnBNC)UANBNCHUANB*NC) UA°"BNC) U(ANB N C.
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® EXERCISES L
1. Express the following sets in tabular form.
(@ A={x]| xis aletter in the word MATHEMATICS}
® B={&x|x=2n+1;1<n<5;ne N}
(¢) C={x| x=Book and x =1 and x = @ and x = pen}
(d) D ={x]| xis an even integer and 1 <x < 15}
() E={x| xe Iand x® + x — 20 = 0}
2. Express the following sets in set builder form.
@ A={1,8,27,64, 125} ®) B={a,e,i, o, u}
() C=12,9, 28, 65, 126} (d) D={a,b,?2,4,6, Book}
e E={1,2,3,4,5,6,7,...... } » F=1{1, 3}
3. Find the power sets of the following sets.
(@ {0} ®) {k,1,m,n}
(¢) x| xe Nandx?—4x + 3 =0} @ 11,11, 2}, (1, 2, 3}}
(e) {x| x1is a letter of the word wolf}
4. Let the universalset U=1{1,2,3,4,5,6,7,8,9,10}, Let A={1,2, 3,4, 5}, B=1{2, 4, 6, 8}
and C = {1, 4, 7, 10}, then find the followings.
@) (AuB) @) (AuB)NC
@) (AUB)N(AUC) (tv) (AnB)U(ANC)
w) A-BuO) (i) (AnB)—
(vii) B°—(C-A) (viii) A°N B¢
(ix) AB (x) A°
(xi) C-B (xit) (AUB)-(C-B)
5. Draw the Venn diagram and indicate the region for the given sets.
(@ AuBnCOC) b) An(BuUC)
() A°-B d (AuB)-
(e) (A°UB)N(C°-A) ®» BN (CUAY
@ BuC)-A (h) (AUBUCY
6. In a group of 1000 people, there are 800 people who can speak English and 500 people
who can speak German. Except 100 people in the group, each person speaks at least one
of English and German. Find how many people can speak both English and German.
7. IfP={a,c,e},Q=1{100, 101,102} and R = {m, c, e, 101}, then compute (PUR) - (PN R))x Q.
8. IfG=1{p, q,r}, H=1{20, 70, 90} and K = {r, 70, s}, then compute (G — K) x (K- H).
9. Let X ={a, b, c}and Y = {1, 2}, then compute the followings.
(@) XxY b) YxX
() YXY (d) XxX
(&) XAY)xY
10. If B, By, ....., B, and A are sets, then prove that A — ﬂ B, = U (A -B,
11. IfB,, B, ..... , B, are sets, then prove the following De Morgan S laws.
n ’ n
@ (U] ﬂB’ ®) (ﬂsi] =B’
i=1 i=1 i=1
12. Let X, Y and Z be three sets. Show that X - (Y nZ) =X -Y) u X -7).
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13.

14.

15.

16.

17.

18.
19.

20.

21.

In a class of 120 students, 80 students study Mathematics, 45 study history and 20 stu-
dents neither study History nor study Mathematics. What is the number of students
who study both Mathematics and History.

Let A ={1, 2}, B={o} and C = {«, B} then compute the followings.
(@ AxBxC (b) AxBxB

() BxAxC (d) AxAxA

(e) (A-B)xC.
Examine the comparability with the following sets.

@ A={a,b,c} @) B=la,e,i,o0,u}
@@i) C=1{b,c, o0, u} @) D=1{b,c,i,0,u,k}.

In a class containing 100 students, 30 play tennis; 40 play cricket; 40 do athletics; 6
play tennis and cricket; 12 play cricket and do athletics; and 10 play tennis and do
athletics; while 14 play no game or do athletics at all. How many play cricket, tennis
and do athletics.

If in a city 70% of the residents can speak Tamil and 50% can speak Kannada, what
percentage of residents can speak both the languages, if 10% residents cannot speak
any of these two languages?

Let X, Y, Z and T be four sets. Then Prove that X NnZ)x (Y NT)=XxY)N(ZxT)
Write the following sets as the union of fundamental products.

@ An(BuUC) (b) AN (BuUC)

(00 AuBNC) (d Au@B-0).
Identify the smallest set X containing the sets.
{Book, Pen}; {Pen, Pencil, Box}; {Book, Box, Ball}.
One hundred students were asked whether they had taken courses in any of the three
subjects, Mathematics, Computer Science and Information Technology. The results
were given below. 45 had taken Mathematics; 18 had taken Mathematics and Computer
Science; 38 had taken Computer Science; 21 had taken Information Technology; 9 had
taken Mathematics and Information Technology.; 4 had taken Computer Science and
Information Technology and 23 had taken no courses in any of the subjects. Draw a
Venn diagram that will show the results of the survey.
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Binary Relation
J

H 3.0 INTRODUCTION

After the development of set theory we shall try to develop another concept based on it. In this
chapter we will introduce an important modeling in mathematics known as relation. This has
tremendous application in Computer Science. The relations which are used in Mathematics

and Computer Science are “less then”, “is a subset of”, “is perpendicular to”, “is equal to”, and
S0 on.

Table 3.0.1

Student Names Subjects Taken
Aditi Computer Science
Sudeep Mathematics
Lipsa Computer Science
Aparupa Human Resource
Ashirbad Marketing
Srimant Mathematics
Aditi Mathematics

A relation can be thought of as a table. Consider the Table 3.0.1 given above in which the
first column represent the student names and the second column represent the subject taken
by the students. From the table it is clear that Aditi is taking Computer Science and Math-
ematics, Lipsa is taking Computer Science and Sudeep is taking Mathematics. This is nothing
but a set of ordered pairs. We define a relation to be a set of ordered pairs.

Mostly the relations we come across are defined with two entities. We call such relation as
binary relation or simply relation.

H 3.1 BINARY RELATION

Let A and B be two sets. Then any subset R of the Cartesian product (A x B) is a relation
(binary relation) from the set A to the set B. Symbolically R c (A x B).

ie. R={(x,y) | x€e Aandy e B}
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If (x, ) € R, then we write x Ry and say that x is related to y. If (x, y) ¢ R, then we write
x R y and say that x is not related to y. If A = B, then R is a relation (binary relation) on A.
Consider the example A = {1, 2, 3,4, 5} and B = {5, 6, 7, 8, 9} and let the relation R from the
set A to the set B as
R={(x,y) | xe Aandy =2x + 3 € B}
ie. R=1{(1,5),(2,7),(3,9), (4, 11), (5, 13)}
ie. RcAxB

3.1.1 Domain of a Relation

Let R be a relation from the set A to the set B. Then the set of all first constituents of the
ordered pairs present in the relation R is known as domain of R . Denoted by dom. R or D(R).
Mathematically,

DR) = {x| (x,y) € R, forx e A}

ie. DR) cA.

3.1.2 Range of a Relation

Let R be a relation from the set A to the set B. Then the set of all second constituents of the
ordered pairs present in the relation R is known as range of R. Denoted by rng.R or R(R).
Mathematically,

RR)={y| x,y) € R, fory € B}
Le. R(R)cB.
Consider the example: Let A = {a, b, ¢, d} and B = {5, 6, 7}. Let us define a relation R from the
set A to the set B as below.
R ={(a, 5), (a, 6), (c, 6), (d, 6)}
So, D®R) ={a, ¢, d} and R(R) = {5, 6}

B 3.2 INVERSE RELATION

Let R be a relation from the set A to the set B. Then the inverse of the relation R is a relation
from the set B to the set A. Which is denoted by R™and is defined as
R ={(y,» | (x,y) e R}
Consider the example: Let A ={1, 2, 3, 4, 5}
and B=1{4,9, 16,17, 25}
Let us consider the relation R from the set A to the set Bas R ={(2, 4), (3, 9), (4, 16), (3, 17)}.
Therefore R '={(4, 2), (9, 3), (16, 4), (17, 3)}.

3.2.1 Theorem
If R be a relation from the set A to the set B, then (/) D(R) = R(R™) and (ii)) R(R) = D(R™).
Proof: Given that R be a relation from the set A to the set B. i.e. R — (A x B). Thus
R={(x,y) | x€e Aandy e B}
Let x € D(R). Then there exists x € A and y € B such that
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(x,y)e R
This implies (y, x) € R™!
ie. xe R®R™
So, xe DR =xe RR™D
Thus, DR) cR®R™
Again let x € R (R™}). Then there exists x € A and y € B such that (y, x) e R™.
This implies (x,y)e R
Le. x € D(R)
So, x e RR 1) =xeDR)
Thus R[R™ cDR)

Therefore from equations (1) and (2) it is clear that D(R) =R (R™)
Similarly, let y € R(R), Then there exists x € A and y € B such that (x,y) e R
This implies (y, x) € R™!

i.e. y e DR™)
So, y e R(R)=ye DR™)
Thus R®R) cDR™

Again lety € D (R™)), Then there exists x € A andy € B such that (y, x) € R™
This implies (x,y) € R

i.e. y € R(R).
So, ye DR YH=yeRR)
Thus DR™) cRR)

Therefore from equations (3) and (4) it is clear that R(R) = D(R™ ).
Note: Let R be a relation from the set A to the set B. Then (R™) "' = R.
Proof: Given that R be a relation from the set A to the set B.i.e. R < (A x B).

Let (x,y)e RH™

& (y,x) e R!

= (x,y)e R

So, x,y)e RH1e@®yeR

Therefore (R™) =R

B 3.3 GRAPH OF RELATION

(D

. (2)

.3

. (4)

Let R be a relation from the set A to the set B; that is R is a subset of (A x B). Since (A x B) can
be represented by the set of points on the coordinate diagram of (A x B), we can picture R by
emphasizing those points in the plane which belong to R. The pictorial representation of the

relation R on the coordinate diagram of (A x B) is known as graph of the relation.

Consider the example: Let A={-3,-2,-1,1,2,3}and B={1, 2, 3,4, 5,6, 7, 8, 9} and

x R y such that y = % . Thus we have
R={-1,1),(1,1),(-2,4),(2,4),(-3,9), (3,9).

So, the graph of R is represented on the coordinate diagram of (A x B) as shown in the

following fig. 1.
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Fugure - 1
. . 4
B O
* 4 L 4
s | &
-4 -2 "o 2 4
A

Consider another example: Let A = {x| x is a real number} and x R y such that 2x + 3y <6.
Thus we have R={(x,y) | 2x + 3y <6 andx,y € A}.

So, the graph of R is represented on the coordinate diagram of (A x A) as shown in the
following Fig. 2.

Figure - 2
® 34 4+
3 |
202
< 1
T \'} T e q’ Q T
ta 2 = 2 4 6
_2: e 6, -2
A
N 3.4 KINDS OF RELATION
A relation R from a set A to a set B may be of four kinds.
(@) One — One (®) One — Many
(¢) Many — One (d) Many — Many .

The relation R from the set A to the set B is said to be One — One relation if (x;,y;) € R,
(%9, ¥9) € Rtheny; =y, = x; = x5.

The relation R from the set A to the set B is said to be One — Many relation if (x4, y;) € R,
(x1,y9) € R for somex; € Aandy,,y, € B withy; #y,.

The relation R from the set A to the set B is said to be Many — One relation if (x;,y;) € R,
(x9, 1) € R for somey; € B and x; , x5 € A with x; # x,.

The relation R from the set A to the set B is said to be Many — Many relation if (x;, y;) € R,
(x1,y2) € R, (xg y1) € R, and (xq, y5) € R for somexy, x, € A andyy,y, € B withx; #x, andy; #y,.
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H 3.5 ARROW DIAGRAM

We use arrow diagrams to represent relations. Write down the elements of the set A and the
elements of the set B in two disjoint sets, and then draw an arrow from x € Ato y € B
whenever xRy.

Consider the example: Let A = {1, 2, 3, 4, 5} and B = {2, 4, 6, 8}. Let us define the relations
from the set A to the set B as

{(1,2),(8,6), (4, 8)}
{(2,4),(2,6),(2,8),(1,2)}
{

{

R,
R,
R3 (1,4), (2, 4), (3,4), (5, 8)}
and

(1,4),(2,4),(1,8),(2,8), (5, 2)}

A Rs B A Ry B

The arrow diagrams for the above relations are given above. From the above diagrams it is
clear that R;, Ry, R; and R, are One—One, One—Many, Many—One and Many—Many relations
respectively.

N 3.6 VOID RELATION

A relation R from a set A to a set B is said to be a void relation or empty relation if R = ¢.
Consider the example: Let A=1{3,5,7}; B={2,4,8;; RcAxBandx Ry | x dividesy; x € A,
y € B. Hence we observe that R = ¢ < A x B is a void relation from the set A to the set B.

N 3.7 IDENTITY RELATION

Let R be a relation on a set A; that is R is a subset of (A x A). Then the relation R is said to be
an identity relation if (x, x) € R. Generally denoted by I,. Mathematically,

Iy ={x,x) | x€ A}
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Consider the example: Let A = {a, b, ¢} and I, be a relation on A such that I, = {(a, @), (b, b),
(c, ¢)}. This is an identity relation on A.

H 3.8 UNIVERSAL RELATION

A relation R from a set A to a set B is said to be an universal relation if R is equal to (A x B).
That is R = (A x B).

Let A ={1, 2, 3} and B = {a, b}. Therefore the universal relation R from the set A to the set
B is given as

R = {(1, a), (1, b), (2, a)’ (2’ b)’ (3’ a)’ (3’ b)}
B 3.9 RELATION MATRIX (MATRIX OF THE RELATION)

A matrix is a convenient way to represent a relation R. Such a representation can be used by
a computer to analyze the relation.

Let A={ay, 09,04, ....,0, ..... , 0}
and B =1{by, b5, b3, ....,bj, ..., by }
be two finite sets and R be a relation from the set A to the set B. Then the matrix of the
relation R, i.e. M(R) is defined as

M®) = [my] of order (& x 1)

where "= 0, if @; R
In other words label the rows of rectangular array by the elements of A and the columns by
the elements of B. Each position of the array is to be filled with a 1 (one) or 0 (zero) according
as a € Ais related or not related to b € B. Consider the example
LetA={1,2,3};B={a,b,c,d,e} and Rc (AxB)such that R ={(1,a), (1,d), (2,b), (3,¢), (3,d)}.
So the matrix of the above relation R is given as

a bc de
M(R)=110010
210 1 0 00
310 0110

H 3.10 COMPOSITION OF RELATIONS

Let R, be a relation from the set A to the set B and R, be a relation from the set B to the set
C. That is R, is a subset of (Ax B) and R, is a subset of (B x C). Then the composition of R; and
R, is given by R, R, and is defined by
R;R, = {(x,2) € (AXC) | for somey € B, (x,y) e Ry and (y, 2) € R,}
Consider the example: Let A = {1, 2, 4, 5, 7};
B={a,b,c,d,e}

and C =11, 4, 16, 25}.

Consider the relations R;: A—» B and Ry: B— C as



46 Fundamental Approach to Discrete Mathematics

R, =1{(1,a), (1,0, (2,d), (2,e), (5, d)} and R, = {(c, 1), (d, 4), (e, 25)}. The arrow diagram is
given as

So, RR, =1{(1,1),(2, 4), (2, 25), (5, 4)}

3.10.1 Composition of Relations and Relation Matrix

Let R, be a relation from the set A to the set B and R, be a relation from the set B to the set
C. That is R, is a subset of (A x B) and R, is a subset of (B x C). Then the composition of R; and
R, is given by R;R, and the matrix of the composition R;R, is defined as
M®R,R,) =M([R;) M(R,)
And replace all nonzero entries by 1in M (R;R,) where M (R;) is the matrix of the relation
R; and M (R,) is the matrix of the relation R,.
Consider the same example stated above; we have

1 0100 0 00O
0 0011 0 00O
M®R)=|0 0 0 0 0/andM(®y)=|1 0 0 0
0 0010 0100
0000 0 0001
So, M[R,R,) = M (R,) M (Ry)
1 0 1 0 O0][0 0 0 O 1 0 00
0 001 1||0 000 01 01
=0 0 00 O0{{1 O 0 O|=|0 OO0 O
0 001 O0||01O00O0 0100
10 0 00 0/]|0O 0 01 0 00O
Therefore R R, = {(1, 1), (2, 4), (2, 25), (5, 4)}.

3.10.2 Theorem

Let R, and R, are relations from the set A to the set B. Let R; and R, are relations from the set
B to the set C. If R, c R, and R; c R, then R;R5 c R R,.

Proof: Given R, and R, are relations from the set A to the set B. R; and R, are relations from
the set B to the set C.

Suppose that R, c R, and R;c R, .
Let (x,2) € R Ry

Then for some y € B, we have (x, y) € R; and (y, 2) € Ry . Therefore we have (x, y) € R;
R, and (y,2) € RycR,.
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i.e. (x,y) € Ryand (y, 2) € R,.
This implies (x,2) € Ry Ry.
Hence (x,2) e RiIR3 = (x,2) € Ry R,
i.e. R,R; cR,R,.

3.10.3 Theorem
Let R be relation from the set A to the set B and R, be a relation from the set B to the set C.
Then.

(RiRy)™" =R;'Ry ™
Proof: Let R, be a relation from the set A to the set B and R, be a relation from the set B to
the set C.

Our claim: (R,Ry) " =R;'R; ™.
ie. (R;R,)" cR;'R, 'andRy'R; ' (R,Ry) ™
Let (x,2) e (R;Ry)™"

This implies (z, x) € R{R,. Then for some y € B we have
(z,y) e Ry and (y,x) € R,

= (y,2) € Ry and (x,y) € Ry?
i.e. (x,y) € Ryland (y,2) € R,
This implies (x,2) € R;'R™
Therefore (x,2) € (RlRZ)f1 = (x,2) e Ry'R;™
ie. (R,Ry) " cR;'R;™ . ()

Again let (x, 2) € R;'R; ™. Then for somey € B we have
(x,y) € Ry'and (y,2z) e R;!

= (y,x) € Ryand (z,y) € R
i.e. (z,y) € Ryand (y,x) € R,
This implies (z,x) € R{R,
i.e. (x,z) € (R{Ry) !
Therefore (x,2) € Ry'R; 1= (x,2) € (RlRZ)f1
ie. R;'R;" ¢ (R,R,)”" ... Gi)

Thus from equations (i) and (ii) we get (R;R,) ™" = Ry'R; ™.

N 3.11 TYPES OF RELATIONS
This section discusses a number of different important types of relations on a set A.

3.11.1 Reflexive Relations

A relation R defined on a set A is said to be reflexive if (x, x) € R for every element x € A.
ie. xRx VxeA
Consider the following relations on the set A = {1, 3, 5, 7}

Rl = {(1, 1), (1, 3)’ (1, 5)’ (5’ 5)7 (5, 7)}
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R, =11, 3),(1,5),(5,7), (3, T}
R; =1{(1, 1), (1, 3), (3, 3), (5, 5), (5,7, (1, D), (7, N}
From the above relations it is clear that R is a reflexive relation. R, is not a reflexive
relation as (3, 3) ¢ Ry and (7, 7) ¢ R;. Similarly R, is also not reflexive.

3.11.2 Symmetric Relations

A relation R defined on a set A is said to be symmetric if (x, y) € R then (y, x) € R.
ie. xRy=yRux.
Consider the following relations on the set A = {1, 3, 5, 7}
R, =1{(1,1),(1, 3), (3, 5), (3, 1), (5, 3), (5, 5)}
R, =1{(1,1),(1,3),(3,1),(3,5),(5,3),(5,7), (7, 7)}

From the above relations it is clear that R, is a symmetric relation, but R, is not a symmet-
ric relation as (5, 7) € Ry = (7, 5) ¢ R,.

3.11.3 Transitive Relations

A relation R defined on a set A is said to be transitive if (x, y) € R and (y, z) € R then (x, z) € R.
ie. xRyandyRz=xRz
Consider the following relations on the set A = {1, 3, 5, 7}.
R, =1{1,1),(Q,3),(1,5),1,7),3,3),3,5),(3,7),(5,3),(5,5), (5, N}
R, =1{(1,1),(1,3),(3,5), (5,5), (7, T}

From the above relations it is clear that R, is a transitive relation. The relation R, is not
transitive as (1,3) e R,, (3,5) e Ry, = (1,5) ¢ R,,.

3.11.4 Anti-Reflexive Relations
A relation R defined on a set A is said to be anti-reflexive or irreflexive if (x, x) ¢ R for every
element x € A.
le.xRx VxeA
Consider the following relations on the set A = {1, 3, 5, 7}
Rl = {(1, 1), (1, 3), (17 7)’ (3, 3)7 (5, 5), (57 7)7 (7, 7)}
R, =1{(1, 3),(1,5),(5,7), (3, N}
R; =1{(1,1),(1, 3),(,5), (7, N}

From the above relations it is clear that R, is an anti-reflexive relation. R5 is not an anti
reflexive relation as (1, 1) € Ry and (7, 7) € Rs. Similarly R, is not anti-reflexive relation.

3.11.5 Asymmetric Relations

A relation R defined on a set A is said to be asymmetric if (x, y) € R then (y, x) ¢ R.
te.xRy=yRx
Consider the following relations on the set A = {1, 3, 5, 7}
R, ={(1, 3),(3,5),(3,7), (5,7}

Ry, =1{(1,3),(3,5), (3,7, (5, 3), (5, T}
From the above relations it is clear that R, is an asymmetric relation. R, is not an asymmet-
ric relation as (3, 5) € Ry = (5, 3) € R,.
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3.11.6 Anti-Symmetric Relations

A relation R defined on a set A is said to be anti-symmetric relation if (x, y) € R and (y, x) € R,
then x = y.
ie. xRyandyRx=x=y.
Consider the following relations on the set A = {1, 3, 5, 7}
R, ={(1,1),(1, 3), (3, 5), (5, 5), (5, T}

R, ={(1, 1), (8, 3), (7, 1}
Ry =1{(8, 3), (3, 5), (5, 3), (5,7, (7,5), (7, 7}
From the above relations it is clear that R; and R, are anti-symmetric. R is not an anti-
symmetric relation as (3, 5)e R and (5, 3) € R, but 3#5. Similarly (5, 7)e R and (7, 5) € R, but
5#17.

B 3.12 TYPES OF RELATIONS AND RELATION MATRIX

Let A={ay,ay, ... ,a; ... ,@j, ...... ,a, } be a non-empty set and R be a relation defined on the
set A. Hence the matrix of the relation R relative to the ordering ay, ay, ... , a;, .... , @, ...... ,
a,, is defined as

M®) =[m;l,n

1 Ifg; Ra;
where m; =1 If g, Ra,

3.12.1 Reflexive Relations

The relation R is said to be reflexive if m; =1V 1<i<n
i.e. all elements of the main diagonal in relation matrix M(R) are 1.

3.12.2 Symmetric Relations

The relation R is said to be symmetricifm;=m; V1<i<n and 1<j<n.
In other words the relation R is said to be symmetric if M(R) = [ M(R)]™. where [M(R)]”
represents the transpose of the relation matrix M(R).

3.12.3 Transitive Relation
The relation R is said to be transitive if m;;=1and m;, = 1,thenm;, =1for 1<i<n;1<j<n
and 1<k <n.

In other words the relation R is said to be transitive if and only if R c R. i.e. Whenever
entry i, j in [M(R)]? is non-zero, entry i, j in M(R) is also non-zero.

Let R be a relation on the set A and R is transitive.
Let (x,2) e R =R.R.

So, there exists y € A such that (x,y) € Rand (y,z) e R

Thus (x,z) € R [+ Ristransitive]
ie. (x,2)e R2=(x,2)e R

Therefore R? cR.
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Conversely,Suppose that RZc R.
Let (x,y)e Rand (y,z) e R

This implies (x,z) e R.R=R?
ie. (x,z) e R?cR
ie. (x,z) e R

Therefore R is transitive.

3.12.4 Anti-Reflexive Relations

The relation R is said to be anti-reflexive if m; =0V 1<i<n

i.e. All elements of the main diagonal in relation matrix M(R) are 0 (zero).
3.12.5 Asymmetric Relations

The relation R is said to be asymmetric if m;;=1, then m;; = 0 and m;; = 0.

3.12.6 Anti-Symmetric Relations

The relation R is said to be anti-symmetric if a; # a; then either m;;=0 or m; =0 and m;; = 1
=mj; implies a; = a;.
Consider the following relations on the set A = {1, 3, 5, 7}

Rl = {(1, 1)7 (1, 3), (1, 7), (37 3)> (3, 7)7 (57 5), (57 7)7 (77 7)}

R, =1{(1,1),(1,5),(1,7),3,5),(3,7,(5,1),(5,3),(7,1),(17, 3))
Ry =1{(1,1),(1, 3),(1,5),(1,7),(3, 1), (3, 3),(3,5), (3,7, (5, N}
R, =1{(1,3),(1,7),(3,7), (5,7, (7, 1)}
R; =1{(1,3),(3,5),(5,7), (7, 1), (7, 3)}
R, =1{(1,1D), (1,7, (7,5),(7,3), (5, 3)}
Relative to the ordering 1, 3, 5, 7 we get
1 1 0 1] 1 0 1 1]
01 0 1) 10 0 1 1],
M(Rl) = 001 1/ M(Rz) {110 ol
10 0 0 1] 11 0 0]
1 1 1 1] [0 1 0 1]
1 11 1), 10 0 0 1,
M(Rg) = 00 0 1) M(R4) =0 0 0 1/
10 0 0 0] 1 0 0 0]
[0 1 0 0] 1 0 0 1]
0 01 0. 10 0 0 Of.
M(R5) = 00 0 1) M(Rg) {01 0 0Of
110 0] 0110

From the above matrices it is clear thatm;; = 1 in M(R;) and m;; = 0 in M(R,) and M(R;). Thus
the relation R, is reflexive where as the relations R, and R; are anti-reflexive. Again
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1
S|=M®y)
0

OO HH

10
00
M(Roz)]T = 11
11

So, the relation R, is symmetric. Also [M(R)]” # M(R,), and hence the relation R, is not
symmetric. Similarly it can be shown that the relations R, R, R; and Ry are not symmetric.

Now in M(R;), M(R,), M(R3) and M(R;), we see thatm; # 0, so the relations R, Ry, R;and Rg
are not asymmetric. In M(R,) we see that m;; = 0, butm,, = 1 =my;. This violate the conditions
of asymmetric relation hence not asymmetric. It is also observed that in M(R;), m;; = 0; mq4
=1,my;=0;my3=1,mgy=0;mgy=1,my5=0;my; =1, myy, =0 and myy =1, my, = 0. Thus the
relation Ry is asymmetric. Again

11111111 2 2 2 3
2|11 1 1|1 11 1(_(2 2 2 3
MBI =106 0 0 1{l0 0 0 1|0 0 0 0
0 0 0 0[{|O OO O] |0 0O0O
We see that whenever i, j in [M(R3)]? is non-zero, entry i, j in M(R;) is also non-zero. So the

relation Ry is transitive. It is also cleared that [M(Ri)]2 ¢ M(R)) fori=1,2,4,5,6. Thus the
relations R, Ry, Ry, R5 and Rg are not transitive. Also it can be shown that the relation Rg is
anti-symmetric.

B 3.13 EQUIVALENCE RELATION

A relation R defined on a set A is said to be an equivalence relation in A if and only if R is
reflexive, symmetric and transitive.

Consider the relation R in the real numbers defined by x = y,i.e.x Ry :x =y
Reflexive: For all xe R
X=X
Le. xRx
i.e. R is reflexive.
Symmetric: Suppose x Ry

Le. x=y
Le. y=x
Le. yRx

i.e. R is symmetric.
Transitive: Supposex Ry andy Rz
ie. x=yandy=z
This implies x = z
Le. xRz
i.e. R is transitive.
So, the relation R in the real numbers defined by x = y is an equivalence relation.

3.13.1 Theorem

If R be an equivalence relation defined in a set A, then R™ is also an equivalence relation in
the set A.
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Proof: Let R be an equivalence relation defined in a set A. Thus R is reflexive, symmetric and
transitive.

Our claim : R ~! is an equivalence relation in the set A.

Reflexive : Forallxe A
(x,x)e R [*- Risreflexive]
= (x,x)e R71!
So, (x,x)e R"1Vxe A
Symmetric: Suppose (x,y) € R™1
= (y,x) e R
= (x,y)e R [~ Rissymmetric]
= (y,x)e R7!

i.e. R™lis symmetric.
Transitive: Suppose (x,y) € R~ 1and (y,z)e R~}

= (y,x)e R and (z,y) € R

i.e. (z,y)e Rand (y,x) € R
= (z,x)e R [ - Ris transitive]
= (x,z)e R7!

i.e. R7listransitive.
Therefore, R ~! is an equivalence relation in the set A.

B 3.14 PARTIAL ORDER RELATION

Let R be a relation defined on a set A. Then the relation R is said to be a partial order relation
in A if R is reflexive, transitive and anti-symmetric.

Consider the relation R in the real numbers defined by x <y.ie.x Ry :x <y
Reflexive: For allx € R, x <x

Le. xRx

i.e. Risreflexive.
Transitive: Suppose thatx Ry andy Rz

ie. x<yandy<z
This implies x<z
Le. xRz

i.e. R is transitive.
Anti-Symmetric: Suppose that x Ry andy Rx
ie. x<yandy<x
This implies x=y
i.e. R is anti-symmetric.
So, the relation R in the real numbers defined by x <y is a partial order relation.

3.14.1 Theorem

Let A be a set and R be a partial order relation on A. Then R is also a partial order relation
on A.
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Proof: Let R be a partial order relation defined in a set A. Therefore R is reflexive, transitive
and anti-symmetric.

Our claim: R7!is a partial order relation.
Reflexive: Forallx e A
(x,x)e R [*- Risreflexive]
This implies (x,x)e R7!
i.e. R ~1is reflexive.
Transitive: Suppose that (x,y)e R"'and (y,2)e R~!
This implies(y,x) € Rand (z,y) € R

i.e. (z,y)e Rand (y,x) e R
This implies (z,x)e R [- Ristransitive]
ie. (x,z)e R~!

i.e. R7listransitive.

Anti-symmetric: Suppose that (x,y) € R 1and (y,x) e R!

This implies(y, x) € Rand (x,y) € R

This implies x=y [ Risanti-symmetric]
ie. R71lis anti-symmetric.

Therefore R ~ ! is a partial order relation in the set A.

B 3.15 TOTAL ORDER RELATION

Let R be a relation defined on a set A. Then the relation R is said to be a total order relation in
A if R is a partial order relation and for any two elements x, y in A eitherx <y, x =y orx >y
holds.

Consider the relation R in D(6) defined by x <y, where D(6) is the set of all positive divisors
of 6.
Therefore D®6)=1{1,2,3,6}and x Ry :x<y
i.e. R = {(1, 1), (1, 2), (1, 3), (1, 6)7 (2, 2); (2’ 3)7 (27 6)7 (37 3)7 (37 6)7 (67 6)}
So, R is reflexive, transitive and anti-symmetric. i.e. R is a partial order relation in D(6).

Besides this for any two elements x, y belongs D(6), one of the relations x <y or y <x holds.
Thus the relation R in D(6) defined by x <y is a total order relation.

Consider another relation Rin A = {1, 2, 3, ...., 10} defined by x is a multiple of y.
ie. x Ry :xis a multiple of y
Reflexive: Forallxe A

x is a multiple of x
Le. xRx
i.e. R is reflexive.
Transitive:Supposex Ry andy R z
i.e.x is a multiple of y and y is a multiple of z
= x=K;yandy=Kyzfor K, Kye I; K;, K, #0
= x=KKyz; K{, Ky e I; KiK,;#0
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i.e. x is a multiple of z
ile.x Rz
i.e. Ris transitive.
Anti-symmetric: Supposex Ry andy Rx
i.e.x is a multiple of y and y is a multiple of x

= x=K;yandy=KyxforK;, Kye I, K, Ky # 0

= x =K Kyx

= KK, =1

= K =K,=1 [ K, Kyz0andK;,K,e Il

So,x =y, i.e. Ris anti-symmetric. Therefore the relation in A defined by x is a multiple of y
is a partial order relation.

Now R ={(1, 1), (1, 2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9), (1, 10), (2, 2), (2, 4), (2, 6),
(2, 8), (2, 10), (3, 3), (3, 6), (3,9), (4, 8), (5, 10)}

Again for 2 and 5 belongs to A either of the relations 2 <5 or 2 > 5 do not hold because 2 is
not a multiple of 5. Therefore R is not a total order relation.

B 3.16 CLOSURES OF RELATIONS

If R be a relation defined on A, then the closure of the relation R is the smallest relation R’ that
includes all the pairs of R and possesses the required properties of the closure.

3.16.1 Reflexive Closure

Let R be a relation defined on the set A. Then the reflexive closure r(R) is defined by

(@) if (x,y) € R then (x,y) € r(R)

@) Ifx e A, then (x, x) e r(R)

(zir) Nothing is in r(R) unless it is so follows from (i) and (i7).
Consider the following relation on the set A = {2, 4, 6, 8}

R =1{(2, 2), (2, 4), (6, 8), (6, 6), (6, 4)}
Therefore r(R) ={(2, 2), (2, 4), (6, 8), (6, 6), (6, 4), (4, 4), (8, 8)}

3.16. 2 Symmetric Closure

Let R be a relation defined on the set A. Then the symmetric closure s(R) is defined by
(@) if (x,y) € R then (x,y) € s(R)
@) If (x,y) € R, then (y, x) € s(R)
(zir) Nothing is in s(R) unless it is so follows from () and (i7).
Consider the following relation on the set A = {2, 4, 6, 8}
R={(2,2),(2,4),(2,6),4,2),4,6),(6,4),(6,8), (8, 2)}
Therefore s(R) = {(2, 2), (2, 4), (2, 6), (4, 2), (4, 6), (6, 4), (6, 8), (8, 2), (6, 2), (8, 6), (2, 8)}

3.16.3 Transitive Closure

Let R be a relation defined on the set A. Then the transitive closure #(R) is defined by
(@) if (x,y) € R then (x, y) € t(R)
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@) If(x,y) e R, (y,2z) € Rthen (x, 2) € t(R)
(zir) Nothing is in #(R) unless it is so follows from (i) and (ii).
Consider the following relation on the set A = {2, 4, 6, 8}
R=1{(2,2),(2,4), 4,6), 4,8),(2,8))
Therefore t(R) = {(2, 2), (2, 4), (4, 6), (4, 8), (2, 8), (2, 6)}

B 3.17 EQUIVALENCE CLASSES

Let A be a non empty set. R be an equivalence relation in A. For each x € A, the sets [x] are
called equivalence classes of A given by the relation R defined as

xl={ye A|yRx}
Consider the equivalence relation R defined on the set A ={1, 3, 5, 7, 9} as
R={(1,1),(1,3),@1,5),3,1),(3,3),(3,5),(5, 1), (5, 3), (5,5),(7,7),(7,9), (9, 7), (9, 9)}
So, the equivalence classes are given as

1] = [3] = [5] = {1, 3, 5}

[71 = [9] = {7, 9}

3.17.1 Theorem
Let R be an equivalence relation defined on a non-empty set A and x, y be arbitrary elements
in A. Then

(@) x € [x] and (i7) If y € [x], then [x] = [y]
Proof: Let R be an equivalence relation defined on a non-empty set A.

(©) Letx € A. Therefore [x] ={y e A | y R«}
As R is reflexive in A, we have x R x. i.e. x € [x]

(i) Suppose that y € [x]
= yRx [by definition]
= xRy [ Rissymmetric]

Let a € [x]; this impliesa Rx
So,a Rxandx Ry

This impliesa Ry [» Ristransitive]
Le. ae [yl

Therefore ae [x] =>ae [ylie. lx] clyl .. (@

Similarly, Let b € [y]

This implies b Ry [by definition]

So,b Ryandy Rx.

= bRx [» Ristransitive]
ie. b e [x].

Therefore b € [yl = b € [x] i.e. [y] < [x] ... (@)

Therefore from equations (i) and (ii) we have [x] = [y].
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3.17.2 Theorem

Let A be a non-empty set and R be an equivalence relation defined in A. Let x, y be two
arbitrary elements of A. Then [x] = [y] if and only if x R y.

Proof: Let R be an equivalence relation defined in A, and let x, y € A. Assume that [x] = [y].
Our claimis x R y.
As R is reflexive, we have x R x

ie. x € [x]
x € [x] =yl

= x € [yl
ie xRy

Conversely, suppose that x Ry,
Le. yRx [ Rissymmetric]

Our claim is [x] = [y]

Let a € [x] this implies a Rx
ie. aRxandx Ry

This implies aRy [» Ristransitive]
ie. ae [yl

Therefore a € [x] impliesa € [y, i.e. [x] < [y] )
Again a € [y] this impliesa Ry
ie. aRyandy Rx

This implies aRx [» Ristransitive]
ie. a € [x]

Therefore a € [y] impliesa € [x].i.e [y] c [x] ... (@)

Thus from equations (i) and (ii) we get [x] = [y].

3.17.3 Theorem

Let A be a non-empty set and R be an equivalence relation in A, Let x, y € A. Then the
equivalence classes [x] and [y] are either equal or disjoint.

Proof: Let A be a non empty set and R be an equivalence relation defined in A. Let x,y € A
Assume that the equivalence classes [x] and [y] are not disjoint, i.e. [x] N [y] # ¢
Thus there exists at least one element a in [x] N [y] .

Le. ae [x] Nyl

Le. aRxanda Ry

Le. xRaandaRy [ Rissymmetric]
This implies xRy [ - Ristransitive]

Hence by previous theorem 3.17.2 it is clear that [x] = [y]. Therefore it is clear that if two
equivalence classes [x] and [y] are either disjoint or equal.

N 3.18 PARTITIONS

Let A be a non-empty set. A partition P of A is a collection {A;} of non-empty subsets of A with
the following two properties.
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@ UA = A and

(@) A NA=0 for A=A

In other words a partltlon of A is a collection of non-empty disjoint subset of A whose
union is A.

Consider the relation x =y (mod 3) defined on the set of integers I. The above relation is an
equivalence relation in I. The set of three equivalence classes are [0], [1] and [2]. Where

[0l ={... —6—30369 ...... }
ar={.. -2,1,4,7,10, ...}
2] ={... —4—125811 ..... }

It is clear that [0], [1] and [2] are non empty subsets of I with [0] U [1] U [2] =1, and [0], [1] and
[2] are pair-wise disjoint. Thus {[0], [1], [2]} is a partition of .

® SOLVED EXAMPLES )

Example 1 Show that the relation x =y (mod 5) defined on the set of integers I is an equiva-
lence relation.

Solution :  Given that the relation isx =y (mod 5)

ie. (x —y) is divisible by 5

Le. (x—y)=5kkel

ie. xRy:(x—-y)=5bkkel
Reflexive: For all x € I we have (x —x) =

ie. (x—x)=56k;k=0e1

Le. xRx

ie. R is reflexive.

Symmetric: Suppose that x Ry

ie. (x—-y) =

= (y —x)=-5k
i.e. (y —x)=5(-Fk)
Le. yRx

So, x Ry implies y R «.
Le. R is symmetric.
Transitive: Suppose thatx Ry andy Rz
ie. (x—y) =5k, and (y —2) = 5ky ; by, kg e 1

= (x—y)+@y—2)=5(ky+ky); (ky+ky e
= (x—2)=5(,+ky)
Le. xRz

i.e. Ris transitive.
So, the relation R on I defined by x =y (mod 5) is an equivalence relation.

Example 2 Is every relation which is symmetric and transitive on a set A, always reflexive?
Why or why not ?
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Solution : Let R be a symmetric and transitive relation on A.

Let x,ye Randx Ry
As Ris symmetric, xRy =>yRx
Againx Ryandy Rx=xRx [- Ristransitive]

Therefore R is reflexive, but the argument is not true.

Consider an example: A = {1, 2, 3, 4, 5}

Let R be a relation defined on A such that

R=1{(2,3),(3,4),(2,4),3,2),4,3), 4, 2),(2,2),(3,3), (4, 4}

Which is symmetric and transitive but not reflexive. Therefore every relation which is
symmetric and transitive on a set A is not always reflexive.
Example 3 Let R be the relation in A ={1, 2, 3, 4, 5, 6} defined by ‘x and y are relative prime’.
Find the relation R and draw R on a coordinate diagram of (A xA).
Solution: Given A ={1, 2, 3,4, 5, 6} and R < (A x A) defined by x Ry : x and y are relative
prime.

ie. R=1{(1,1),(1,2),Q1,3),1,4),Q1,5),Q1,6),(2,1),(2,3),(2,5),(3, 1), (3, 2), (3, 4),(3,5),
(4,1), (4, 3), (4, 5),(5, 1), (5, 2),(5,3), (5, 4), (5, 6), (6, 1), (6, 5)}

The coordinate diagram of R is given below.

Coordinate Diagram

7
6 * *
5 * * * * *
< 4 * * *
3 * * * *
2 * * *
1 * * * * * *
0 T T
0 2 4 6 8

Example 4 Prove that a relation R on a set A is symmetric if and only if R =1 = R.
Solution: Suppose that a relation R on a set A is symmetric. Our claim is R "' =R.
Let (x,y) e R71!
(y,x) e R
(x,y)e R [ Rissymmetric]
i.e. (x,y)e R"1=(x,y»eR
ie. R !cR )
Again let (x,y) e R
=
=

=
=

(y,x) e R [ Rissymmetric]
(x,y) e R-!

ie. (x,y)e R=(x,y) e R}

ie. RcR™! ... (id)
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Hence we have R=R"!
Conversely, suppose that R=R = 1.
Our claim isR on A is symmetric.
Let (x,y)e R=(y,x)e R"1=R
i.e. R is symmetric.
Example5 Let N be the set of all natural numbers. R be a relation in N defined by x R y if and
only if x + 3y = 12. Examine the relation for (i) reflexive, (ii) symmetric and (iii) transitive.
Solution: Let R be a relation in N defined by
xRy x+3y=12
Reflexive: Assume that x + 3y = 12 for y = x.
This implies 4x =12
Le. x=3
i.e. x R x for x = 3 only.
Le. xRxVxeN
Hence R is not reflexive.
Symmetric: Assume thatx Ry
ie. x+3y=12
i.e,y + 3x may or may not equal to 12.
Le. y R x.
Hence R is not symmetric.
Transitive: Assume thatx Ry and y R z.

ie. x+3y=12andy + 3z =12
This holds only whenx=y=2=3¢ N

ie. x+3z2=12

ie. xRz

So, R is transitive.
Example 6 For a relation Ronaset A=1{1,2, 3,4, 5} givenby R ={(1, 3), (1, 2), (2, 2), (3, 4)},
find reflexive closure, symmetric closure and transitive closure of R on the given set A.
Solution: Given A ={1, 2, 3, 4, 5} and the relation
R=1{(1, 3), (1, 2), (2, 2), (3, 4)}.

Therefore r(R) ={Q1, 3),(1, 2), (1, 1), (2, 2), (3, 3),(3, 4), (4, 4),(5, 5)}

s(R) ={(1, 3),(1, 2), (2, 2),(3, 4), (3, 1), (2, 1),(4, 3)}

tR) =1{(1, 3),(1, 2), (2, 2),(3,4), (1, 4)}
Example7 Let N be the set of all natural numbers. R be a relation in N defined by x R y if and
only if x + y = 18. Show that R is symmetric but neither reflexive nor transitive.

Solution: Let R be a relation in N defined by
xRy:x+y=18
Reflexive: Assume that x +y = 18 fory = x
= 2x =18
= x=9
i.e. x R x for x = 9 only. So, R is not reflexive.
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Symmetric: Suppose that x Ry

Le. x+y=18
= y+x=18

Le. y R «x, i.e. R is symmetric.
Transitive: Assume thatx Ry andy Rz

ie. x+y=18andy +z =18

i.e. (x +z) may or may not equal to 18.

For example let x =4, y = 14 and z = 4. Hence we have (x + y) = 18 and (y + z) = 18, but
(x+2)=8=18

Therefore x R z, i.e. R is not transitive.

Example 8 A relation R defined on the set of natural numbers N by x R y if and only if
(x.y)>0forx,y € Nis an equivalence relation.

Solution: Given R be a relation in N defined by
xRy:(x.y)>0forx,ye N
Reflexive: For all x € N we have
(x.x)=x2>0
i.e. x Rx. Thus R is reflexive.
Symmetric: Suppose that x Ry

= (xy) >0
= (y.x)>0
Le. yRx

Thus R is symmetric.
Transitive: Suppose thatx Ry andy Rz

i.e. (x.y)>0and (y.z)>0
This implies (x.y)(y.2)>0
i.e. (x.2)y*>0

Asy? > 0 for all y € N we have (x. 2) > 0.
Le. xRz

Hencex RyandyRz=x Rz

Thus R is transitive.

Therefore, the relation R in N defined by (x. y) > 0 is an equivalence relation.
Example 9 LetA=1{2,4,6, 8);B=1{(1,5,7 9} and Let R be a relation from A to B defined as
x Ry ifand only if x <y. Find the domain, range and inverse of the relation R.
Solution: Giventhat A=1{2,4,6,8};B={1,5, 7,9} and R be a relation from A to B defined as
x Ry ifand only ifx <y.

Therefore, R = {(2, 5), (2, 7), (2,9), (4, 5), (4, 7), (4, 9), (6, 7), (6, 9), (8, 9)}

Thus, D(R) = {2, 4, 6, 8}; R(R) = {5, 7,9} and R} = {(5, 2), (7, 2), (9, 2), (5, 4), (7, 4), (9, 4), (7,
6), (9, 6), (9, 8)}
Example 10 Let I be the set of all integers and R be a relation defined on I such that x R y if
and only if x >y. show that R is reflexive, transitive but not symmetric.
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Solution: Given R be a relation in I defined by
xRy:x2yforx,yel
Reflexive: For all x € I we have
xX2x
Le. x Rux.
Thus R is reflexive.
Transitive:Suppose thatx Ry andy R z

ie. x2yandy >z
This implies x2z
ie. xRz

Thus R is transitive.
Symmetric: Suppose that x Ry

ie. x2y
This implies y 2 x

le. yRx
Thus R is not symmetric.

Therefore the relation x >y defined in I is reflexive, transitive but not symmetric.
Example 11 Show that the relation x <y defined on the set of integers is a partial order

relation.
Solution: Let R be a relation in I defined by
xRy:x<yforx,yel
Reflexive: For all x € I we have
x<x
le. x Rx.
Thus R is reflexive.
Transitive: Suppose thatx Ry andy Rz

ie. x<yandy<z
This implies x<z
i.e. xRz

Thus R is transitive.

Anti-symmetric: Suppose thatx Ry andy Rx
ie. x<yandy<x

This implies x =y

Thus R is anti-symmetric.

Therefore the relation x < y defined in I is reflexive, transitive and anti-symmetric. So,

x <y is a partial order relation.

Example 12 Let R be the relation on the set {1, 2, 3, 4, 5] defined by the rule (x, y) € R if

x +y <6. Find the followings.
(@) List the elements of R
(¢) Domain of R
(e) Range of R~!

®) List the elements of R !
(d) Range of R
(/) Domain of R ~!

Check that domain of R is equal to range of R ~! and range of R is equal to domain of R ~1.
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Solution: Let A=1{1,2,3,4,5}and R={(x,y) e R | x+y<6;x,y e A}
@ R=1{(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2), (2, 3),(2,4),(3,1),(3, 2), (3, 3), (4, 1), (4,

2), (5, 1)}

® R '={1,1),(2,1),(3,1),4,1),(5,1),(1,2),(2,2),(3,2),4,2),(1,3),(2,3),(3,3),(1,4),
(2,4),(1,5)}

(¢) Domain of R le. DR) =11, 2, 3, 4, 5}

(d) Range of R ie. RR) = {1, 2, 3, 4, 5}

(¢) Range of R™1 ie. RR™H=1{(1,2,3,4,5)

(f) Domain of R~! ie. DR YH=1{1,2,3,4,5)

From this it is clear that D(R) = R(R 1) and R(R) = DR ™).
Example 13 Consider a relation R on {1, 2, 3, 4} as R = ((1, 3), (1, 4), (2, 2), (3, 3), (4, 1)}.
Examine the relation for reflexive, symmetric and transitive with the help of relation matrix.

Solution: Given that the relation R = {(1, 3), (1, 4), (2, 2), (3, 3), (4, 1)}. Relative to the
ordering 1, 2, 3, 4 we get

0 011
EIESE

From the above matrix it is clear thatm,; # 1 and m,4 # 1. So, the relation R is not reflexive.
Again R is not symmetric because

0001
MRIT=|2 3 Y Ol=M®)
1000
Also we have ) )
0011001 1] L 010
(3 4 8 81888808 844
1000f1000 0011

From this it is clear that the 1st row and 1st column entry in [M(R)]” is non-zero where as
the 1st row and 1st column entry in M(R) is zero. Therefore the relation R is not transitive.
Hence the relation R is neither reflexive nor symmetric and transitive.
Example 14 Let A=1{1,2, 3,4, 5}, B=1{a, b, c, d}] and C = {1, 4, 9, 16, 25}. Consider the
relations R; from Ato Band R, from BtoCasR;={(1, a), (1,b), (2, ¢), (2,d), (3, b), (5, d)} and
R,={(a, 1), (d, 4), (b, 9), (d, 25)}. Find the composition R,R, with the help of relation matrix.
Solution: Let A=1{1,2,3,4,5}; B={a,b,c,d} and C={1, 4, 9, 16, 25}. Given R; c (Ax B) and
R, c (Bx C) with

R, ={1,0a),(1,0),(2,0), (2,d), (3,b), (5,d)}

and R, =1{(a, 1),(d, 4), (b, 9), (d, 25)}.

Therefore we get

1100 10000
0011 00100

M(R1)=0100andM(R2)=00000
0000 01001
000 1

So, M®R;Ry) = M(R)M(Ry)
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1l
SOoOoOoOH+
oSo+HOH
SooH+HO
HOORO

HOoOOoOOo
[N eNeNe)
HOoOOoOOo

1l
SOoOOoOoOH+
HOORO
OO OH
SOOOO

0
1
0
0
1

SooHr
ooH+HO

Thus R;R, =1{(1, 1), (1, 9), (2, 4), (2, 25), (8, 9), (5, 4), (5, 25)}
Example 15 Let R; and R, be the relations on {1, 2, 3, 4} given by R,={(1, 1), (1, 2), (3, 4),
(4, 2)land Ry, ={(1, 1), 2, 1), (3, 1), (4, 4), (2, 2)} List the elements of R;R, and R,R;. Show that
R,R, #R,R,.
Solution: Given R, and R, be relations on {1, 2, 3, 4} as

R, =1{(1, 1), (1, 2), (3, 4), (4, 2)} and R, ={(1, 1), (2, 1), (3, 1), (4, 4), (2, 2)} Relative to the
ordering {1, 2, 3, 4} we have

1100 1 000
ity <[3 8 8 Dlanariny |1 3 0 ¢
10 1 0 0] 0 001
Therefore M(R;R,) = M(R;) M(R,)
1 1 0 0|1 0 0 0] [2 100
_|/0 0 0 O0j|1 1 0 O0|_{0 O OO
“10 0 0 1|1 0 O O|7|0 O O 1
0 1.0 0/|[0 0 O 1 1100
1100
Replacing all non-zero entries by 1 in M(R;R,) we have M(R;R,) = 0 8 8 (1)
1100
ie. RiR, =1{(1,1),(1,2),(3,4),(4,1), (4, 2)}
Similarly, M(R,R,) =M(R,) MR))
1000|1100 1100
/11 0 0{|0O O O O_{1 1 0O
~1/1 0 0 0/|O O O 1|7j1 10O
0 0O01/|0 1 0 0] [O1 0O
i.e. R2R1 = {(1, 1), (1, 2), (2, 1)’ (2a 2)’ (3) 1)) (3’ 2)) (4a 2)}
Therefore RR, #R,R;

Example 16 Let R be the relation on the set {1, 2, 3, 4, 5] defined by the rule (x, y) € R if
x =y - 1. Find R in terms of relation matrix. Check the relation R for symmetric and irreflexive.

Solution: Let A=1{1,2,3,4,5}

and R={(x,y):x=y—-1x,ye A}

i.e. R = {(1, 2), (27 3)7 (37 4), (4) 5)}

Relative to the ordering {1, 2, 3, 4, 5} we have
01000
00100
MR)=|(0 0 0 1 O

00001
000 0O
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Now, IMR)]T = #M(R)

SOoOOoOH+HO
OO OO
OHOOO
HOOOO
SOOOO

So, R is not symmetric. It is clear that R is irreflexive as m;; = 0 for all 1 <i = 5. Therefore,
R is irreflexive but not symmetric.

Example 17 Let R and S be the following relationson A ={2,4, 5, 6}. R={(2, 4), (2, 5), (2, 6),
4,2), (4, U} and S = {(5, 4), (5, 5), (5, 6), (6, 2), (6, 4)}. Find (R US)° and R®.
Solution: Given R ={(2, 4), (2, 5), (2, 6), (4, 2), (4,4)} and S = {(5, 4), (5, 5), (5, 6), (6, 2), (6, 4)}

@ (RuUS)={(2,4),(2,5),(2,6),(4,2),4,4),(5,4),(5,5),(5,6), (6, 2), (6, 4)}
This implies (RU S)* = {(2, 2), (4, 5), (4, 6), (5, 2), (6, 5), (6, 6)}
(i) Relative to the ordering 2, 4, 5, 6 we have

0 1 1 1
ww- [} 3 00
0 0 0 0
So, M(R?) = M(R) M(R)
011 1][0 11 1] 1100
1100|1100 |1 211
=10 0 0 0[|0O 0 0 O0||0 0 0 O
0 00 0/|0O0OOO| [00O0O
Replacing all non-zero entries by 1 in M(R?) we get
1 1 0 0]
o |11 11
MRY=19 0 0 0
0 0 0 0
So, RZ=1{(2, 2),(2,4), (4, 2), (4, 4), (4, 5), (4, 6)}

Example 18 Let R be the relation on the set {2, 3, 4, 5, 6] defined by the rule (x, y) € R if
x + 2y <12. Find the relation R. Also find the reflexive, symmetric and transitive closure of R.

Solution: Let A=1{2,3,4,5,6}and R={(x,y) € Rifx + 2y <12;x,y € A}
i.e. R=1{(2,2),(2,3),(2,4),(2,5),(3,2),(3, 3),(3,4), 4, 2), (4, 3), (4,4), (5, 2), (5, 3), (6, 2), (6, 3)}
The reflexive closure of Ri.e. r(R) ={(2, 2), (2, 3), (2, 4), (2, 5), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3),
4, 4),(5,2),(5,3),(5,5),(6,2),(6,3), (6, 6)
The symmetric closure of R i.e. s(R) = {(2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 2), (3, 3), (3, 4),
3,5),(3,6),4,2),4,3),4,4), (5,2), (5, 3), (6,2), (6, 3)}
The transitive closure of R i.e. t(R) = {(2, 2), (2, 3), (2, 4), (2, 5), (3, 2), (3, 3), (3, 4), (4, 2),
(4, 3), (4, 4), (5, 2), (5, 3), (6, 2), (6, 3), (3, 5), (4, 5), (5, 4), (5, 5), (6, 4), (6, 5)}
Example 19 Let R be the relation in the integers I defined by (x —y) is an even integer. Prove
that R is an equivalence relation and find the disjoint equivalence classes.
Solution: Let R be the relation in the integers I defined by (x — y) is an even integer. i.e.
(x —y) is divisible by 2.
Reflexive: For all x € I we have (x —x) =0
le. (x—x)=2k;k=0¢e1
Le. xRxVxel
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i.e. R is reflexive.
Symmetric: Suppose that x Ry
i.e. (x —y) is divisible by 2

ie. (x—y)=2k;kel
= (y—-x)=2(—-Fk);—kel
i.e. yRx

Thus R is symmetric.
Transitive: Suppose thatx Ry andy Rz
i.e.(x —y) and (y — z) are even integer.
i.e. (x—y) =2k, and (y —2) = 2ky ;kq, ke €1
= -y + @y —2)=2(k; +ky); (ky +ky) e 1
i.e. (x—z)is an even integer.
le. xRz
Thus R is transitive.
Therefore the relation R on I defined by (x — y) is even integer is an equivalence relation.
The disjoint equivalence classes are
0] ={..... ,—4,-2,0,2, 4,6, ...}
[l =H{..... ,—3,-1,1,3,5,7, ...... }
Example 20 Let R be a relation definedin A =1{1,2,3,5,7,9}asR=((1, 1), (1, 3), (1, 5), (1,
7),03,1),(3,3),(3,5),3,7),(5,1),(5,3),(5,5),(5,7),(7, 1, (7,3),(7,5), (7, 7), (9, 9), (2, 2)}. Find
the partitions of A based on the equivalence relation R.
Solution: Given A={1,2,3,5,7,9}and
R=1{(1,1),(1,3),(1,5),(1,7),(3,1),(3, 3),(3,5),(3,7),(5,1), (5, 3),(5,5),(5,7),(7,1),(7,3),
(7,5),(7,7),(9,9), (2, 2)}
The disjoint equivalence classes are
(1] = {1, 3, 5, 7}; [9] = {9} and [2] = {2}.
Obviously
(2) The sets [1], [2] and [9] are non-empty
@) [N [2]=6¢; [11 N [9] =¢ and [2] N [9] = ¢
@) [1Jul2]u9]=A
Hence { [1], [2], [9]} is a partition of A.
Example 21 Find the number of relations from the set A to the set B if |A|=m and|B|=n.
Solution: Given |A| =m and |B|=n
Therefore |A x B| = mn.

A relation R from the set A to the set B is a subset of (A x B). So, the number of subsets of
(A x B) is equal to 2 ™. Therefore total number of relations from the set A to the set B is 2",

[ EXERCISES ®

1. Let A ={p, q,r, s} and R be an universal relation on A. Write down the relation R. Find
out the smallest and largest subset of the universal relation which is an equivalence
relation.
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2. Let A=1{1,2,3,4,5}and B ={1, 2, 4, 6, 7}. Find the relation from A to B defined by

(@) Greater then () Less then

(¢) Greater then equal to (d) Less then equal to

(e) Equalto.

For the above No. 2, determine the domains and ranges of each of the cases.

For the above No. 2, determine the inverse relation in each of the above cases.

Prove that the relation x =y mod(3) on the set of integers Z is an equivalence relation.
Give an example of a relation which is

(@) Reflexive, Symmetric but not Transitive.

(b) Reflexive, Transitive but not Symmetric.

(¢) Symmetric, Transitive but not Reflexive.

(d) Reflexive but not Symmetric and Transitive.

(e) Symmetric but not Reflexive and Transitive.

(/) Transitive but not Reflexive and Symmetric.

(@) Neither Reflexive nor Symmetric and Transitive.

(h) Reflexive, Symmetric and Transitive.

(@) Symmetric and Anti-symmetric.

() Anti-symmetric but not Reflexive.

7. Prove that the relation on the set of natural numbers N determined by x R y if and only
if x divides y is reflexive, transitive but not symmetric.

8. Consider the relations R, and R, on {a, b, ¢, d, e} as R; = {(a, b), (a, ¢), (b, b), (c, d), (c, ¢),
(c,e)} and Ry = {(a, @), (a,d), (d, b), (d, e), (d, d), (e, c)}. Find the reflexive, symmetric and
transitive closures of R; and R,

9 Write the following relations as a table
@ R,={1,1),(2,4),(3,9), 4, 16), (6, 36), (7, 49)}
®) Ry=1(2,5),(5,8),(8,11),(11, 14)}
(© Ry=1{(8,1),(1,D), 4,0),(1,v),4,e), (0, u)}
(d) R,={(Bapa, Comp. Sc.), (Megha, Math), (Suni, Math)}
10. Let R be the relation in the natural numbers N defined by (a — b) is divisible by 8. Show
that R is an equivalence relation.
11. Let L be the set of lines in the Euclidean plane and let R be the relation in L defined by
l; Rl,if and only if /, is parallel to /,. Show that R is an equivalence relation.
12. Write the following relations as a set of order pairs.

S oRw

Cloth Pricein Names Course
Material | Rupees Aditi | Comp. Sc.
@ Cotton 55 ®) Sudeep Math
Teri cot 60 Sudeep | Comp. Sc.
Woolen 50 Amita | Chemistry
Fancy 45 Ashima | Economics
Number | Square Alphabet | Number
5 25 a 1
4 16 c 3
() 3 9 (d) . 5
2 4 z 26
1 1 m 13
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

217.

LetA=1{5,6,7,8,9; B={x,y,2,p,q,r}; C=1{5,7, 25, 36, 81} and let R, = {(5, p), (5, ),
(6,2), (7,y), (9,x), (9,2)} and Ry = { (p, 25), (x, 81), (2, 36), (y, 7), (r, 5)}. Find the composi-
tion R;R, with the help of relation matrix.

For the relation R on the set {5, 6, 7, ,8, 9} defined by the rule (x, y) ifx + 2y < 20. Find
the followings.

(@) Elements of R ®) Elements of R !

(¢) Domain of R (d) Range of R
Let S ={1, 2, 3, 4, 5} and let R be a relation defined by a rule (x, y) if (x — y) is an even
natural number. Find the followings.

(@) Elements of R (b) Inverse relation of R

(¢) Domain of R (d) Range of R~ 1.

Let R be a relation defined on the set S = {1, 2, 3, 4, 5} by a rule (x, y) ifx* + y? < 16. Find
the reflexive, symmetric and transitive closures of R.

Let R be a relation on {a, b, ¢, d} defined as R = {(a, ), (a, b), (a, ¢), (b, a), (b, b), (b, ¢),
(c, a), (¢, b), (c, ¢), (d, d)}. Show that the relation R is an equivalence relation using
relation matrix.

Let N be the set of all natural numbers. Define a relation R in N by x R y if and only if
(x —y) = 34. Show that R is anti-symmetric.

Let R be a relation defined by a rule A R B if and only if A ¢ B. Show that R is a partial
order relation.

Test the following relations on N for being reflexive, symmetric and transitive. Let
x,y € N.

(@) x +yiseven ®) Yisa power of 2.

() x+y<20

Examine the following relations on the set of integers I for partial order relations. Let
(x,y) € Rif and only if

(@ x=y ®) x>y

) x=y> d) x<y.

Let R, and R, be relations on the set S. Show that (R; UR,) is reflexive if both R; and R,
are reflexive.

Let R, be an anti-symmetric relation on the set S. Prove that R is also an anti-symmet-
ric relation on the set S.

Show that if R; and R, be transitive relations on a set A, then (R; U R,) is not necessarily
transitive on A.

Find the equivalence classes determined by the equivalence relation R on Z defined by
a Rb if and only ifa = b mod (5) for a, b € Z.

Sketch each of the following relations on R.
@ x®+y?<25 ®) x®+4y*=16
) x2-4y*=16 d) 3x+2y>6

Let R be a relation in the natural number N defined bya R b if and only if ‘a is a multiple
of &’ for a, b € N. Examine the above relation for reflexive, symmetric, anti-symmetric,
transitive and anti-reflexive.
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28. Let R be a relation in the natural number N defined by x Ry if and only if ¢? = y* for x,
y € N. Examine the above relation for reflexive, symmetric, anti-symmetric, transitive
and partial order.

29. Let A be the set of non zero integers and R be a relation in A defined by (a, &) R (¢, d)
if and only ifa + d = b + c. Prove that R is an equivalence relation.

30. Let A be the set of non-zero integers and R be a relation in A defined by (a, b) R (¢, d) if
and only if ad = bc. Show that R is an equivalence relation.
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H 4.0 INTRODUCTION

One of the most important concepts in mathematics is that of a function. It is being used in our
day- to-day life. At every moment by knowingly or unknowingly.

German Mathematician Leibniz was first to use the term function (1646 —1716). The terms
mapping, map and transformation mean the same thing. Computer Science has many applica-
tions of function. Hashing function is one of that.

Consider a computing device that accepts any real number, multiplies it by 5 and adds 3
with the product, and gives the output.

Stage 1
Multiplies by 5

INPUT

A 4

\
Addss [—>10UTPUT]
A 3 OUTPUT

(Computing Devise)

If the input is 1, then the out put is 8. If the input is %, then the output is 4. If the input is

10, then the out put is (10 x 5 + 3) = 53. This clear indicates that if the input is x, x € R, then
the out put is (5x + 3). As a result the computing device pairs off the elementx € R as (x, 5x + 3)
in a definite way or principle. This is nothing but a function.

H 4.1 FUNCTION

Let A and B be two non-empty sets. A relation f from the set A to the set B is said to be a
function if it satisfies the following two conditions.

@ D(f)=A  and
@) if (x4, y,) € fand (xy, y5) € ftheny; = y,.
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In other words a relation f from the set A to the set B is said to be a function if for each
element x in A there exists unique element y in B. A function from A to B is some times
denoted asf: A — B.

Consider the following relations from the set A = {1, 2, 3, 4} to the set B={1, 4, 6, 9, 16, 18}.

fi=11,1),(2,6),(4,9), (4, 18)}
f=11,1),(2,6),(3,9),4,9), (4, 16)}
f3=11,1),(2,4),(3,9), (4, 16)}

and f:=1{1,1),(2,4),(3,9), (4, 9)}

Now, D(f}) = {1, 2, 4} # A. Therefore f; is not a function from the set A to the set B. Further
D) =1(1, 2, 3,4} = A; but (4, 9) € [, and (4, 16) € f, with 9 # 16. This implies f; can not be a
function from the set A to the set B.

Again D(f3) = {1, 2, 3, 4} = A and for every elementx € A there exists uniquey € B. Therefore
f5 is a function from the set A to the set B. Similarly f, is also a function. The arrow diagrams
are given below.

Note: From the above discussions it is clear that One-Many and Many-Many relations are
not functions.
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4.1.1 Domain and Co-domain of a Function

Suppose that f be a function from the set A to the set B. The set A is called the domain of the
function f where as the set B is called the co-domain of the function f.

Consider the function f from the set A = {a, b, ¢, d} to the set B ={1, 2, 3, 4} as

f=1a 1), (b, 2), (c, 2), (d, 4)}
Therefore, domain of f = {a, b, ¢, d} and co-domain of f = {1, 2, 3, 4}.i.e. D(f) = {a, b, ¢, d} and
Co-domain /= {1, 2, 3, 4}.

4.1.2 Range of a Function

Let f be a function from the set A to the set B. The element y € B which the function
f associates to an element x € A is called the image of x or the value of the function f for x.
From the definition of function it is clear that each element of A has an unique image on B.
Therefore the range of a functionf: A— B is defined as the image of its domain A. Mathemati-
cally,

R orrng () ={y=f(x) :x € A}
It is clear that R (f) ¢ B.
Consider the function f from A = {a, b, ¢} to B ={1, 3, 5, 7, 9} as f = {(a, 3), (b, 5), (c, 5)}.
Therefore R(f) = {3, 5}.

4.2 EQUALITY OF FUNCTIONS

If f and g are functions from A to B, then they are said to be equal i.e. f = g if the following
conditions hold.

(@ D) =D(g) b) R(H=R(g)

() flx)zg(x) Vxe A.

Consider f(x) = 3x2 + 6 : R > R and g(x) = 3x% + 6 : C — C, where R and C are the set of real
numbers and complex numbers respectively. Now it is clear that D(f) # D(g). Therefore
flx) g ).

Let us consider A=1{1,2,3,4};B=1{1,2,7,8,17, 18, 31, 32} and the functionf: A — B defined
by f=1{Q1, 2), (2, 8), (3, 18), (4, 32)}. Consider another function g : A — N defined by g(x) = 2x2.
Now it is clear that D(f) = {1, 2, 3, 4} with f(1) = 2, A2) = 8, f(3) = 18, f(4) = 32. Similarly D(g)
=A=1{1,2, 3,4} withg(1) = 2, g(2) = 8, g(3) = 18, g(4) = 32. Therefore, we get

@ D(f)=1(1, 2,3, 4} =D(g) ®) R(H=12,8,18,32}=R(g) and

() fx)=gx)Vxe{l,2,3,4}.

This implies f and g are equal. i.e. f=g.

4.3 TYPES OF FUNCTION
In this section we will discuss different types of function.

4.3.1 One-One Function

A function f: A — B is said to be an One—One function or Injective if f(x;) = flxy), then x; = x4
forxy, x9 € A.i.e.xq #x9 = flxy) # flxcy)
Consider a function /: Q — Q defined by f(x) = 4x + 3; x € Q.
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Suppose that f(x;) = flx,) for x;, x5 € Q.

= 4x1+3=4.7C2+3
= 4x1=4x2
= X1 = X9

ie. flay) =flxy) = x1=x9.80,f(x) =(4x+3): Q— Qis One-One.
Consider another function f: R — R defined by f(x) = x% x € R. Suppose that flxq) = flxy)
= xl=x
= X1 = %X
= Xy # Xg
i.e. flxy) = flxy) = x; #x,. It is also clear that f(1) = 1 = (- 1); but 1 # — 1. Therefore f(x) = x? :
R — R; x € R is not One-One.

4.3.2 oOnto Function

A function f: A — B is said to be an onto function or Surjective if for everyy € B there exists at
least one element x € A such that f(x) = y.

In other words a functionf: A — B is said to be an Onto function if f(A) = B.i.e. range of f is
equal to co-domain of f.

Consider a functionf: Q — Q defined by f(x) = 4x + 3,x € Q. Then for everyy € co-domain set
Q there exists x = Y ; 3 belongs to domain set Q. Therefore f(x) = 4x + 3 is an Onto function.

4.3.3 One-One Onto Function
A functionf: A— Bis said to be an One-One Onto function or Bijective iffis both One-One and
Onto function.

Consider a function f: Q — Q defined by f(x) = 4x + 3, x € Q. From the above discussions it
is clear that f(x) = 4x + 3, x € Q is an One-One Onto function.

4.3.4 Into Function

A function f: A — B is said to be an into function if for at least one y € B there exists no
element x € A such that f(x) = y. In other words

A functionf: A — B is said to be an into function if f(A) c B, i.e. range of fis a proper subset
of co-domain of f.

Consider a function f: Q — R defined by fix) =x + 4, x € Q. Hence it is clear that fory = /3 € R

there exists no element x = V3 —4 € Q. Therefore, fix) = x + 4 : Q — R is an into function.

N 4.4 GRAPH OF FUNCTION

Let fbe a function from A to B, i.e. for every x € A there exists unique y € B such thaty = f(x).
Further note that using the functional notation, f can be expressed as
f =1, fx):x e A}
This representation is known as the graph of the function f.
Consider the functions f; : R — R defined by f;(x) =x + 1; and
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-2 ifx>0
2 ifx<0
The graphs of above functions are given below.

fo : R — {— 2, 2} defined by f5(x) = {
Y

fi(x)=x+1

A

-«
\
x

Y -2ifx=20

A

-2ifx<0

A

» X

Now consider the relationsf; : [- 4, 4] — [—4, 4] defined by [fl(x)]2 =16-x%xe [-4,4] and

fo : R = R defined by [f,(x)]? = 16x; x € R. The graphs of above relations are given below.

These are nothing but a circle and parabola respectively. Where in figure — 1,y =f;(x) and in

figure — 2,y = fo(x).

From the graph it is clear that for one value ofx in the domain set leads to two values in the

range set. Hence these relations are not functions.

AY

[f,() =16 —x

(-4,0) 4, 0)

A
\ 4
x

\/
Figure — 1
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Y
[£(x)] = 16x

H 4.5 COMPOSITION OF FUNCTIONS

Let f be a function from the set A to the set B and g be a function from the set B to the set C.
Then the composition of the functions f and g is given as (g , ) or gf. This is a function from
the set A to the set C. It may also be noted that domain of g is equal to co-domain of /.

f g

(9,f)

As fis a function from the set A to the set B, then for every x € A there exists uniquey € B
such that y = fix). Similarly g is a function from the set B to the set C, then for every y € B
there exists uniquez € C such thatz =g(y). Again (g ,f) is a function from the set A to the set

C, so we get (g, =zforallx e A.
Le. 8o @) =gy)
ie. (g,h &) =g (flx)

Consider two functions f(x) = 2x + 5 and g(x) = 3x.
Therefore (g , ) (x) =g (fx))

=g (2x +5)
=3(2x +5)
i.e. (g,hHx)=6x+15
Similarly, (f,2) ) =f(gl)

=f(3x)
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=2(3x)+5
ie. (fo,8) (x)=6x+5

4.5.1 Theorem

Letf: A— Bandg:B — C be two functions. Then (g ,f) is one-one if both f and g are one-one
and (g , f) is onto if both f and g are onto.

Proof:Letf: A— B andg: B— C be two functions. Since fis a function from the set A to the
set B, then for every x € A there exists unique y € B such that y = f(x). Similarly g is a function
from the set B to the set C, then for every y € B there exists unique z € C such that z = g(y).

Suppose the fand g are both one-one. Our claim is (g , f) is one-one. Since f: A — B and
g:B—>Cwehave(g, f):A—>C.

Letxy,x5€ Aand (g, /) (x1) = (g , ) (x5)

This implies g(f(xy)) =g (fxy)
i.e. fxq) =flxs) [*© gisone-one]
ie. X1 = X9 [+ fis one-one]

Therefore g(f (x,)) = g( flxy)) implies x; = x4. So (g , ) is one-one.

Suppose that both f and g are onto. Since g is onto, for every z € C there is at least one
y € Bsuch thatg (y) =z. Again asfis onto, for every y € B there exists at least onex € A such
that f(x) =y.

As a result for every z € C there is at least one x € A such that (g , f) (x) = z. Therefore

(g ,f) is onto.

4.5.2 Theorem

Iff:A->B;g:B—>Candh:C—D,thent (g ,f)=(h,g),[, L.e. composition of functions
holds the associative law.

Proof:Let f: A > B,g:B > Cand 2 : C - D be three functions. So, (g ,f): A — C.
Therefore h , (g ,f): A — D.

Further (A ,g):B—>D. So, (h ,g),f:A— D. Therefore both 2 ,(g ,f)and (2 ,g) ,f are
functions from A — D.

Since /: A — B, then for every x € A there exists unique y € B such that f(x) = y. Further
g : B — C, then for every y € B there exists unique z € C such that g(y) =z. Again 2 : C —» D,
then for every z € C there exists unique ¢ € D such that A(z) =¢.

Then hol@,Hx)=h(g, fx)
=h(@gFfx)
=h(@EgWy))=h() =t

Further, (ho8) of @) =(h g )fx)
=(h,8) ()

=h@QW))=h) =t
Therefore forx €« Awehaveh ,(g ) @W=0", g ,f&forallxe A ie. h, g ,N=(, 2 ,f
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N 4.6 INVERSE FUNCTION

Let f: A — B be a bijective function. Then the inverse of f, i.e. f~! be a function from B to A.
Since fis a function from A to B, for every x € A, there exists unique y € B such that f (x) = y.

f

Sincef~!: B — Afor everyy € B there exists uniquex € A such thatf~'(y) =x, i.e. f~ 1(f (x))
= x.

4.6.1 Theorem

If f: A — B is bijective, then the function f posses inverse mapping.

Proof: Suppose thatf: A — Bis not bijective and posses an inverse mapping, i.e. (i) fis onto
but not one-one. (i7) fis one-one but not onto or (iii) f is neither one-one nor onto.

Case (i) Suppose that fis onto but not one-one.

As f'is onto, so for every y; € B there exists at least one x; € A such that f(x;) = y; and
R(f) = B. Again as fis not one-one we have x; #x,, X1 , x5 € A implies y; = f(x;) = f(xy) = yso.

Since f':B - A,s0Df"H =R (f)=B,ie DFf Y =B.Also (x;,y,), (X, y5) € fimplies
(1, 1), (Y9, %9) € £~ 1 with x; #x, as y; =y,. Hence f~! can not be a function.

Case (ii) Suppose that fis one-one but not onto.

As fis not onto, so for at least one y; € B there exists nox; € A such that f(x;) =y; and R (f)
#B. Since, f~1: B - A, so

D Y =R(H =B, i.e. D(f"1) = B. Hence f~! can not be a function.

Case (iii) Similarly it can be proved that f ~! can not be a function if / is neither onto nor
one-one.

Therefore, it is a contradiction. So our supposition is wrong. Hence f: B — A must be
bijective to posses a inverse mapping.

4.6.2 Theorem

Let fl: A - Bandg : B — C be two functions. If both f and g are invertible, then (g ,f) ' =f""!
o8

Proof: Suppose that both fand g are invertible. This indicates that bothfand g are bijective
functions. So by theorem 4.5.1, (g , f) is also bijective and hence invertible.

Asf:A—>Bandg:B—>Cwehave(g f):A—Cie. (g ,f)"':C—A Alsof ':B—Aand
gl:Co>Bwehavef ! g 1:C—A

Hence first of all it is evident that both (g , )" *are f~! g ~! are functions from the set
Ctotheset Aand (g, f) (z)=xforze Candx e A.
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Again g ~1: C — B, so for every z € C there exists unique y € B such that g ~(z) = y.
Similarly f~!: B — A, so for every y € B there exists x € A such that f~(y) = x. Further
g '@=f1e '@ =" =x
ie. fl,ge N2)=x=(g, N ). Therefore (g ;N =f"' g~ "

4.6.3 Theorem

Iff: A - B is a bijective function, then f =1 : B — A is also a bijective function.

Proof: Letf: A— Bis a bijective function, i.e. fis one-one and onto function. Sincefis one-
one and onto, for every y € B there exists unique x € A such that f(x) =y. Againf~!:B 5 A
such that £~ X(y) = x.

Let y1,y5 € Bwithf~'(yy) =~ '(yp)

This implies X1 = X9
ie. flxy) =flxy) [- fisone-one]
Le. Y1=Ye

ie.f Yy =f"Yyy) =y, =y, Thusf~'is one-one. Besides this R(f ") =D() = A.i.e. R(f 1)
= A. This indicates that f~! is onto. Therefore f~! is both one-one and onto.i.e. f~ ! is bijective.

N 4.7 SOME IMPORTANT FUNCTIONS
In this section we will discuss some important functions.

4.7.1 Ildentity Function

Let A be a set. The function f: A — A is said to be an identity function if for every x € A, f(x)
=x. Mathematically flx) =x Vx € A.

A B
4.7.2 Constant Function

The function f: A — B is said to be a constant function if for every x € A there exists unique
y € B such that f(x) = y. Mathematically,

fx)=y Vxe A
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Consider a function f: R — I defined by f(x) = 2 for x € R. Which is a constant function.
4.7.3 Absolute Function

The absolute function or absolute value function f(x) = [x] is defined as

x| = x; ifx>0
= -x; ifx<0

The graph of f= {(x, |x]|) : x € R} is shown in the following figure.
Y

\/
x

A

4.7.4 Greatest Integer Function

The greatest integer function f(x) = [x] is defined as the greatest integer less than or equal to
x. The value of flx) = [x] is equal ton if n <x<(n+1) ne’Z.

Consider the examples [6] =5;[6.71=5;[-391=-—4;[-22] =—3 and [6.1] =
4.7.5 Floor and Ceiling Function

The floor function f(x) = |_xJ is defined as the greatest integer less than or equal to x. The
ceiling function f(x) = |_xJ is defined as the least integer greater than or equal to x.
Let x be any real number, then x lies between two integers called floor of x and ceiling of x.

Consider the following examples. |35] = 3; |5] = 5; [-72]| =-8;[35] =4;[5] = 5; [-7.2]
-

Note: From the above discussion it is clear that |_x-| = |_xJ + 1 if x is not an integer

otherwise |_x-| = |_xJ

4.7.6 Even and 0dd Functions

A real function y = f(x) is said to be even if f(—x) = f(x) and odd if f(— x) = — f(x).

Consider the function f(x) = 5x° + 2x* — 2.

Therefore f(— x) = 5(— x)® + 2(— x)* — (= x)? = 525 + 2x * — x? = f(x). Hence f(x) = 5x% + 2x*
—x? is an even function.

Similarly consider another function f(x) = sin x — 5x3. Therefore fi— x) = sin (- x) — 5(— x)3
= —sinx + 5x® = — (sin x — 5x°) = — f(x).

Hence f(x) = sin x — 5x°is an odd function.

Note Iti 1s to be noted that a function can neither be even nor odd. Consider the example
fao)y=xt+x®+2%—x.

Therefore f(— x) = (= x)* + (= )3 + (= ) = (= x) = x* — 2% + 2% + x. This implies neither
f(=x) = flx) nor fl—x) = — f(x).

Therefore, flx) = x* + x> + % — x is neither even nor odd function.
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4.7.7 Characteristic Function

Suppose A be any subset of the universal set U. The characteristic function of Ai.e. x4 is a real
valued function x4 : U — {0, 1} defined by

() = 1, ifxeA
XA =90, ifxeA

Consider the example where A = {2, 5, 7} and U = {1, 2, 3, 4, 5,7}. Then we have y,(1) =0,
Xa (2) =1, 5a(3) =0, x5 (4) = 0, xa(5) = 1, xa(7) = 1. The arrow diagram is given below.

4.7.8 Remainder Function

Letx be a non-negative integer andy be a positive integer. We definex mod y or R,(x) to be the
remainder when x is divided by y. Thus R, is a function on Z.

Consider the following examples
8 mod 2 =0, 15 mod 4 = 3, 251 mod 2 =1, 177mod 3=0
i.e.Ry,(8)=0, R, (15) =3, R, (251)=1, R; (177)=0.

4.7.9 Signum Function

The signum function sgn(x) on R is defined as

0 ifx=0
sgn () =12 4 rz0
|

The range of this function is {-1, 0, 1}.

4.8 HASH FUNCTION

Suppose that we have cells in a computer memory indexed from 0 to 16. This is given in the
following figure.
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We wish to store and retrieve arbitrary positive integers in these empty cells. One way is to
use a hash function. A hash function takes a data item to be stored or retrieved and computes
the first choice for a location for the data item by the relation

H() = n mod k.

Where n is the data item (number) to be stored or retrieved. k is the size of the computer
memory (preferably prime). If the first choice for a location is already occupied, then we say
that a collision has occurred. To handle collisions, a collision resolution policy is required. One
simple policy is to find the next highest unoccupied cell.

If we want to locate a stored value n, compute m = H(n) and begin looking at location m. If
n is not at this location, move forward in the next highest location. In this context we used one
collision resolution policy. Besides this there are several other methods to handle collision,
which is beyond the scope of this Book.

Consider an example in which the data item 15, 286, 77, 18, 5, 572, 102, 257 and 55 are to be
stored in order in a computer memory indexed from 0 to 16. Here £ = 17. It is clear that

H(15) = 15 mod 17 = 15, H(286) = 286 mod 17 = 14. Similarly H(77) =9, H(18) = 1, H(5) = 5,
H(572) =11, H(102) = 0, H(257) = 2, H(55) = 4. Thus the allocation in the computer memory is
given in the following figure.

1102 |18 | 257 | [55 |5 |89 | | |77 ] [572 ] | | 286 | 15| |

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Now suppose we want to store 89. Since H(89) = 89 mod 17 = 4, 89 should be stored at
location 4; but this position is already occupied. If we use the collision resolution policy dis-
cussed earlier, we would store 89 at location 6, which is as shown in the above figure.

® SOLVED EXAMPLES ®

Example1l LetA={a,b,c, d}and B={7,8, 9). Find whether the following subsets of (A xB)
are functions from A to B.

@) fi=1{a,7),(®,8),(c 8)
i) fo=1{(a, 7), (a, 8), (b, 9), (c, 9), (d, 9)}
(i) fs=1{(a, 7), (b, 8), (c, 9), (d, 9)}
() fy=1{a, 7), (b, 7),(9),(d, 8))
Solution: Given that A ={a, b, c,d}and B ={7, 8, 9}.
@ Given f; ={(a, D), (b, 8), (c, 8)}
This implies D(f}) = {a, b, ¢} # A. Hence f; can not be a function.
@) Givenf, ={(a, ), (a,8), (b,9),(c,9), (d, 9}
This implies D(f;) ={a, b, c,d} =Aand (a, 7)€ [, (a, 8) € f, with 7# 8. Thusf, can not be
a function.
@) Given fs ={(a, 7), (b, 8), (¢, 9), (d, 9)}
This implies D(f3) = {a, b, ¢, d} = A and there is no such order pair (x,y) € f3, (x, 2) € f3
such that y =z. So f;5 is a function.
() Givenfy={(a,7), b, 7),(c,9), (d, 8)}
This implies D(f}) = {a, b, ¢, d} = A and there is no such order pair (x,y) € f;, (x,2) € f4
such that y =z. So f; is a function.
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Example 2 Give an example of a function which is

(@) Injective but not surjective. (b) Surjective but not Injective.
(c) Bijective (d) Neither Injective nor Surjective.
(e) Constant.

Explain with the help of arrow diagrams.
Solution: (¢) Let A={a, b,c,d,eland B ={1, 2, 3, 4, 5, 6}. Consider a function f; from A to B as

®)

()

@

(e)

fi=1a, 1), (b, 2), (c, 3), (d, 4), (e, 5)}
Now R (f}) =1{1, 2, 3, 4, 5} # B. Hence f; is not a surjective function but injective. The
arrow diagram is given below.
LetA={a,b,c,d, e} and B ={1, 2, 3}
Consider a function f, from A to B as f;, = {(a, 1), (b, 2), (c, 3), (d, 3), (e, 3)}
Here R(f;) =1{1,2,3} =B and (¢, 3) € f5, (d, 3) € f5, (e, 3) € fy such thatc #d #e. Thusf,is
surjective but not injective. The arrow diagram is given below.
Let A={a,b,cland B=1{1, 2, 3}
Consider a function f; from A to B as f; = {(a, 2), (b, 3), (¢, 1)}. Here R (f5) = {1, 2, 3} = B.
Therefore f; is bijective. The arrow diagram is given below.
Let A={a,b,c,d}and B=1{1, 2, 3, 4, 5}.
Consider a function f; from A to B as f, = {(a, 2), (b, 3), (c, 4), (d, 4)}. Here R(f,) = {2, 3, 4}
# B and (c, 4) € fy, (d, 4) € f;, such that ¢ # d. Therefore f, is neither injective nor
surjective. The arrow diagram is given below.
LetA={a,b,c,d}and B ={1, 2, 3}
Consider a function f; from A to B as f; = {(a, 2), (b, 2), (¢, 2), (d, 2)}. This implies f5 (x)
= 2 for every x € A. Therefore f; is constant. The arrow diagram is given below.
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W~
—

\/

Example 3 Iff:x »2x;g:x »x’and h:x — (x + 1), then find (f ,g), h and f , (g , h). Show
that (f o 8)o h =, (8 o W)
Solution: Let f:x — 2x; g:x > x2and A :x — (x + 1).

i.e. fx) = 2x, g(x) =x% and A(x) =x + 1.
So, (f ,8)(x) =flg(x))
= flx®) = 24
Therefore, (fo8)oh@) = (f,8)Rx) = (f,8) (x+1) =2 (x + )™
Again (g o h)x) = g(h(x))
=glx+1)=(x+ 1)
Therefore Fol@ M@ =flx+1)2=2(@+1)>2%
Hence fo8 o h=F,(,h).
Example 4 Let f(x) be any real function. Show that g;(x) = W is always an even
function where as gy(x) = w is always an odd function.
Solution: Let g1x) = W
Therefore g(-x)= W =g,(x), i.e. g(—x) =g,(x).
Also let go(x) = w
Therefore go(— x) = ! (—x)2— f _ [ —2f(—x) = — go(x). This implies g,(x) is an even

function where as go(x) is an odd function.
Example 5 Find the composition (f ,g) and (g , ) in the following cases.
G f(x) =sin’x and gx) =" +1
i) flx) = €* and gx) =x°
(i) fix) =2x° +x and gx) =" +1
Hence show that (f ,8) #(g , .
Solution: (i) Let fix) = sin? xand g(x) =x2 + 1
Therefore fog)x)=f(gx)
=flx?+1)=sin’ &?+ 1)
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Similarly @,Nx) =g (fx) =g (sin®x) =sin*x + 1
So, o8 #(g o1

(i) Let flx) = ¢* and g(x) = x®
Therefore f,8)x) =flgx)=f&*)=e"
Similarly (g, Nx) = g( f(x) =g(e") = (e )® = ™.
So, (f,8) # (g, /)

@ii) Let fix) =2x® + x and g(x) =x% + 1
Therefore (f, @) =flgx) =flx® + 1)

=22+ 1%+ 2+ D =22 + 522+ 3
(g, Nx) = g(fx)) =g(2x2 +20) =22 +x)?%+1
=4t + 4P+ 22+ 1
So, (fo2)) =g, ).
Example 6 Determine whether the given functions are one-one, onto or bijective.
(@ f:R* — R" defined by f(x) = | x|
(®) f: I > R*defined by f(x) =2x + 7
(¢) R = R defined by f(x) = | x|
Solution: (a) Givenf: R* — R" defined by f(x) = |x|.
Suppose that flxq) =flxy)
= |xq| = |xg]; t-e. Xy =X
So, f: R* — R* defined by f(x) = | x| is one-one. Again fix) = |x| ; x € R"
This impliesy = |x| =x [*- x € R*]. This indicates that for every y € R" there existsx € R*
such thaty = f(x) = |x|. Hence, /: R* — R* defined by f(x) = | x| is onto. Therefore, bijective.
®) f: 1—> R*" defined by flx) =2x + 7

Assume that f(x;) =f(x,)

This implies 2%+ 7 =2x9 + 7;1.6. X1 = Xg.
So, flix) = 2x + 7; x € I, is One-One.
Again f)=2x+T;xe 1
= y=2x+7 [y =fx)]
= x=221
2

It is clear that fory = 5 we get x = —1 ¢ I (Set of positive integers). Hence f(x) = 2x + 7 is not
onto. Thus f(x) = 2x + 7 is One-One only.

() Givenf: R — R defined by flx) = |x|
Suppose that flx;) = flx,)

= |1 ] = [xg]
= + X1 =%9
= Xq # Xg.

So, f: R — R defined by fix) = | x| is not One-One. Again for f(x) =y = — 5 in the co-domain R
there exists no element x in the domain R. Hence f: R — R defined by f(x) = |x| is neither
One-One nor onto.

Example7 LetA={1,2,3,4,,B={x,y,z,t}and C=1(2,4, 9}). Let f={(1, x), (2, 2), (3, y), (4, t)}
and g=1{(x,2), (v, 2), (z, 4), (t, 9)} be two functions from A — B and B — C respectively. Find the
composition (g , ).
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Solution: Let A={1,2,3,4},B={x,y,z,t} and C = {2, 4, 9}. Letf={(1,x), (2,2), (3,y), (4,£)} and

g =1k 2),(,2),(z4), ¢ 9}
Therefore g , /= {(1, 2), (3, 2), (2, 4), (4, 9)}. Which is a function from A — C . The arrow
diagram is given below.

Example 8 Let @ be the set of rational numbers. Show that the function f: @ — Q defined by
fix) = 2x + 7, x € Q is a bijective function. Find f 1(0), f (1) and f(2).
Solution: f: Q > Qdefined by flx)=2x +7;x € Q
Let x4, x9 € Q such that f(x;) = flxy)
= 201+ 7 =2x9+ 7
= Xy = Xg.
ie. flxy) =flxy) = x; =x9. S0,f(x) =2x + 7;x € Qis One-One. Again for everyy € Q (co-domain

in the domain set Q such thaty =f(x) = 2x + 7. Hence flx) = 2x + 7 is

onto. Therefore flx) = 2x + 7, x € Q is a bijective function.
To compute the inverse we have f~ }(y) = x

ie. iy =

set) there exists x = Y

y-7

2

In general £ }(x) = :x € Q. Hence we have f~1(0) = _77,]‘“1(1) =—3andf 12 = _?5
Example 9 LetA=R- {3} and B=R - {1}, where R is the set of real numbers. Let f: A - B

- i, x € A. Show that fis One-One and onto. Find the inverse function of f.

x-17

defined by f(x) =

x f—
Solution: Let A=R - {3} and B = R — {1}, where R is the set of real numbers. Let /: A — B
defined by f(x) = L_;, x € A. Let x1, x9 € A such that f(x;) =f(xy)

x —

x1—2 x2—2

- -
X -3  x9-—3
= X1Xg — 2%9— 31 + 6 =x1X9 — 3x9 — 2%, + 6
= —2x9 — 3x1 = — 3x9 — 2%,
= X1 =Xy
i.e. ) =Ray)
= X1 = Xg.
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So, f(x) is One-One.

. -2, -2
Again for every y € B, there exists x = 3y 12 in A such that y = flx) = L3 Hence
y- x-
flx) = x-2 is onto.
x—3

Therefore flx) = X 3’ x € Ais a bijective function. To compute inverse we have f~(y) = x.

ie. [y = M In general £~ X(x) = Sx -2

y-1 x—1
Example 10 Let A=1{1,2,4,6}); B=(3,5,7,9},C=1{1,2,4, 6] and f: A — B defined by
f=1{(1,3),(2,5),4,7),(6,9);g:B—>Cdefinedbyg={(5,6),(3,2), (7, 1), (9, 4} be two functions.
Find the compositions (f , g) and (g , f). Show that (f ,g) #(g , .
Solution: Let A={1,2,4,6}; B={3,5,7,9}and C = {1, 2, 4, 6}. Also given f = {(1, 3), (2, 5),
(4,7, (6,9)} withg = {(5, 6), (3, 2), (7, 1), (9, 4)}. Consider the arrow diagram to compute (g , ).

;x € B.

Therefore, (g , ) ={(1, 2), (2, 6), (4, 1), (6, 4)}.
Similarly, to compute (f , g) the arrow diagram becomes
g f

Therefore, (f , 2) = {(5,9), (3, 5), (7, 3), (9, T)}. Hence, it is clear that (f , g) # (g , ).
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Example 11 Let f: R — (- 1, 1) defined by f(x) = 1%, x € R. Find the inverse of above
+x

function if exists, where R is the set of real numbers.
X

Solution: Letf:R— (-1, 1) defined by flx) = 1aa? x € R. Letxq, x9 € R such thatflx;) =flx,)
+x
X1 X9
= =
1+xf 1+x5

= X1 +x1x22—x2—x2x12=0

= (7 —29)(1 —x729) =0

= xq = 29 01 (1/ x9)

So, flx) = Lz’ x € R is not One-One, hence not bijective. Therefore inverse does not

+

exists.

Example 12 Find the characteristic function for the set A. Where the Universal set U ={1, 2,
3,4,5,6,7,8 andA=(1,4,7,8).

Solution: Given UniversalsetU={(1,2,3,4,5,6,7,8 and A={1, 4, 7, 8}. The characteristic
function for the set Ais given asy ,(1) = 1,5 a(2) =0, a(3) =0, o(4) =1, o(5) =0,y A(6) =0,
% a(7) =1, x o(8) = 1. The arrow diagram is given below.

Example 13 If flx) and g(x) are both even or both odd, then prove that f(x) g(x) is even.
Solution: Suppose that f(x) and g(x) are both even.

i.e. f(=x) = f(x) and g(— x) = g(x).
Let hlx) =flx) g(x)
Therefore h(—x) = fl—x) g(—x) = Rx)g(x) = h(x).

This indicates that flx) g(x) is even. Similarly it can be proved that if both f{x) and g(x) are
odd, then f(x) g(x) is even.
Example 14 Sketch the graph of

1 .
flx) = ;; if x#0
0, ifx=0
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1 i 0
Solution: Given thatflx) =4 > —**Y;
0; ifx=0

It is clear that if x is very large, then f(x) is nearly equals to 0 and flx) is very large when x
is nearly equals to zero. The graph is given below.

Example 15 Let f(x) and g(x) are both even functions. Prove that (f , g) is also an even func-
tion.

Solution: Suppose that f(x) and g(x) are both even.

Le. fl=x) = flx) and g(— x) = g(x).
Now (f,8)(—x) =flg(—x)) =flglx)) = (f ,8)(x)
ie. (f,8)(—x) = (f,8)x). Therefore (f , g)(x) is an even function.

Example 16 Prove that (f , g)(x) is an odd function if both f(x) and g(x) are odd functions.
Solution: Suppose that f{x) and g(x) are odd functions.

ie. f(—x) =—flx) and g(-x) = —g(x)

Now (f ,8)(—x) =flg(—x))
=f(—g(x)) [+ g(x)is an odd function]
=—flg(x)) [ Ax) is an odd function]
=—(f,8)x)

ie. (f,8(-x)=-(f,g) (x). Therefore (f,g)(x)is an odd function.

Example 17 Ifg(x) =e* and (f , g) is an identity function, prove that f(x) = In x.
Solution: Let g(x) =" and (f , g) is an identity function. i.e.(f , g) (x) = x

i.e. flelx)) =x

Le. fle¥)=x=1In (")

Therefore in general f{x) = In x.
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Example 18 Letf(x) = 2x + 1 and g(x) =x° + 2. Find the values of (g, (4 and (f,8) (4). Show
that they are not equal.

Solution: Given that flx)=2x + 1 and g(x) =x2 + 2

Therefore (g,N4) =g(f(4))=g9) [ A4)=2(4)+1=9]
=83 [+ g(9)=9%+2=83]
Again (F,9)4) =flg(4) =f18) [ g)=4"+2=18]
=37 [~ f(18)=2(18)+1=37]
Therefore (f,8)4) =g ,H4)

Example 19 Let f: R — R be defined as f(x) =x° - 3x, if x <2 and x + 2, if x >2. Find f(5), {(2),
f(0) and f(- 2 ).

Solution:
Given that flx) ={x2 ~3% %f x<2
x+2; ifx=>2
So, f5)=5+2=17
f0)=0-0=0
f=2) = (-2 -3(-2)=10
f2)=2+2=4,

Example 20 Find the domain D(f) of each of the following functions. (i) flx) = 16 — xZ;

(ii) fix) = 1 ; (i) flx) =x°-5x+6
x—4

Solution: (i) Given flx) = {16 — x? ; it is clear that fix) is not defined for 16 —x%<0.i.e. —4<x <
4. So, flx) is not defined for x € [- 4, 4]. Therefore D(f) = R — [- 4, 4].
(ir) Given f(x) = e i D ; it is clear that f{x) is not defined for (x —4) = 0,i.e. Ax) is not de-
fined at x = 4. Therefore D(f) = R — {4}.
(iii) Given fix) = x% — 5x + 6. It is clear that fix) is defined for every real number R. Therefore
D@ =R.
Example 21 Find the graph of the following functions.
3x-1 ifx>3
@ flx)=4x2-2 if-2<x<3 ®) f(x)={
2x+3 ifx<-2
Solution: (a) Given that

x+6 ifx<-1
5-x ifx>-1

3x-1 ifx>3
fx)=4x2-2 if-2<x<3
2x+3 ifx<-2

The graph of above function is given below.
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T T T T X
-4 -2 2 4
-3
. x+6 ifx<-1
(b) Given that flx) = {5 Tk ifxs—1
The graph is given below.
\6;
5
4]
3 -
o
1
¢ 5 X
-6 -4 2 0 2 4 T~
o EXERCISES ®

1. Let A=1{1,2,3,4,5,6}and B ={qa, b, ¢, d, e, f}. Determine whether each relation given
below is a function from A to B. If it is a function, find domain, range. Draw the arrow
diagram of each relation.
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(@ {(1,d),(1,e),(2,a),(3,b), (4,e), (5,e), (6, N}

®) {(3,d), (4,e), (5,e)}

(e {(1,86),(2,b),(3,¢), (4,¢), (5, ), (6, N}

d) {(1,0),(2,¢),(3,¢), 4,¢),(5,¢), (6, c)}

(e {(1,a),(2,b),(3,¢),(4,d), (5,e), (6, /}

» {(1,a),(2,b),3,0),3,d), (3,

@ {(1,e),(4,e),(5,¢), (6,e)

Let £ be a function from the set R to the set R, where R is a set of real numbers. Deter-
mine whether the following are One-One, Onto or both.

(@) f(x)=cos(x) ®) fx)=Tx+3
() flx)=x°+27 d) fx)=8x2-3x +1
(e) lx)=3"+2 P flx)=e*—4
2x +3
© flx) = 2x —4

Let f and g be functions from I to I, where I is the set of positive integers. Find the
compositions (', g) and (g , ).

(@) flx)=2x +7; g(x) = cos(x) ®) fx)=x>+2;8x)=3+5

(e) flx) =log (x); g(x) = 5x + 2 d) flx)=x+4;gx) = |x|

() fix) =2%+2; g(x) = x>

Let A={a,b,c,d},B=1{1,2,3},C=1{4,5,6} and f: A — B defined by f = {(a, 1), (b, 1),
(c, 2),(d, 2)};8: B— C defined by g = {(1, 4), (2, 5), (3, 6)} be two functions. Find (g , /). Is
(f ,8) defined?

Let A =11, 8, 27, 64}; B ={a, b, ¢, d, e}; C = {1, 8, 27, 64} and f: A — B defined by
=11, a), (8,d), (27,b), (64,e)};g : B— C defined by g = {(a, 1), (b, 64), (c, 8), (d, 27), (e, 8)}
be two functions. Find both (f , g) and (g , f). Show that (f,g) # (g , ).

Let U ={a, e, I, 0, u} be the universal set. Find the characteristic function for the set A
={e, 0, u}.

Sketch the functions given below on R — R.

(@ flx)=1Ix];-2<x<3 ®) flx)=3"
2ifx>0
= 3x +2 d =t
() flx) =3x+ d) flx) {6ifx<0

2¢+1 if 0<x <2
(e) flx) =<-2 if x<0
x+4 ifx>2
Find the domain of each of the following functions.

1 1
. b -t
@ fx) (x—2)(x - 3) ®) fx) x% —Tx+12
() flx) =x%—Tx +12 d) fx)=x2;0<x<2

(e) fix)=+/36—x2
Let/: R — R defined by Ax) = x% + x — 6. Find f~1(14) and f~ (- 8).
Draw the graph of following functions.

@ flx)=x3—3x+2 ®) fix)=x*-10x2+9

() flx)= g +1
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11.

12.

13.
14.

15.

16.

17.

18.

If f(x) = 2x — 3 and g(x) = x® + 3x + 5, find (f , g)(5) and (g , /)(5). Show that they are not
equal.

If lx) = 2x — 3 and g(x) =x? + 2x + 1. Find the compositions (£, g) and (g , /). Find (f ,g)(2)
and (g ,)(2).

If fix) = 5x + 1. Find a formula for the composition function 2 . [Hint : f3 = (f .,/ ]
Let A = {x, v, z} and B = {2, 4, 6, 8}. State whether or not each diagram given below
defines a function from A into B.

A

Letf: R — R defined by fix) = 2x + 5. Show that fix) is invertible. Find the values of f~X2),
f~i(4) andf~1(5).

Letfand g be functions from the positive integers to the positive integers defined by f{x)
= 3x + 1, and g(x) = 2x + 1. Find the compositions (f, /), (f ,8), (g , ) and (g , ).

LetA=R-{2}and B=R - {%}, where R is the set of real numbers. Letf: A — B defined

3x-9
by flx) =
T

For each Hash function, show how the data would be inserted in the order given in
initially empty cells. Use collision resolution policy if required.

(@ h(n) =n mod 11; cells indexed O to 10; data 55, 15, 285, 743, 375, 22, 10, 800.

(b) h(n) =n mod 13; cells indexed 0 to 12; data 714, 635, 26, 775, 42, 30, 10, 136, 509.

; x € R. Show that fis bijective and hence find the inverse of /.
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19.

20.

21.

22.

23.

24.

Show that the inverse of Ax) =x% — 1 does not exists in general, but f: [0,o) — [-1,) has

an inverse given by f " '(x) = Jx +1 and f "1 : [ 1, ) = [0, o).

Let fbe a function from X — X; X = {1, 2, 3, 4, 5, 6} defined by f(x) = 3x mod 5. Write the
function and draw the arrow diagram.

Letf: X—>X;X=1{0, 1,2, 3, 4, 5, 6} defined by f(x) = 4x mod 5. Write the function fas a
set of order pairs. With the help of arrow diagram check whether or not fis one-to-one
or onto.

Let /: A — B be a function . Show that fis injective if and only if £~ *( £ (X)) = X for all
XcA.

Letf: R - {0} — R —{0} defined by f(x) = l Show thatfis bijective and its inverse is given
x

by f~ M) = L.
X

Show that the function fx) = : R = R is neither one-one nor onto.

x2+1
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Group Theory
®

H 5.0 INTRODUCTION

In this chapter we will study the algebraic structure known as group which is the building
block of “Abstract Algebra”. Group is a one operational system.i.e. it has one binary operation
using which we can combine two elements of a set to get the third element. In this chapter we
will discuss definition of group, subgroup, cyclic group, group homomorphism and etc. Group
theory has also wide application in the areas of Computer Science specially in the field of
binary coding.

H 5.1 BINARY OPERATION ON A SET

Let A be a non-empty set. If f be a function from (A x A) — A, then fis said to be a binary
operation on the set A. So the binary operation must satisfy the following two conditions, i.e.
f assigns an element f (a, b) of A to every ordered pair (a, b) in (A X A) and only one element of
A is assigned to each ordered pair; as the operation is a function.

Generally we use the symbols +, x, *, o etc. for representing the binary operation on a set.
So o will be the binary operation in A if and only if

@ (@,b)e A Va,be A

®) (a,b)is unique.

We will use the symbol () to represent the binary operation in place of f and the element
assigned to (a, b) by (a , b). It is clear that binary operation function is a special case of Binary
Operation.

Let us consider the operation addition in the set of Natural numbers N.

Leta,b € N;i.e.a and b are two natural numbers. But we know that sum of any two natural
numbers is again a natural number and is unique,i.e. (a + b) € N for alla, b € N. Hence +is a
binary operation.

N 5.2 ALGEBRAIC STRUCTURE

A non-empty set A along with one or more binary operations is called an algebraic structure.
So if A is a non empty set & o is a binary operation then (A, o) is a algebraic Structure.
Consider the examples of algebraic structures as (N, +), (R, X) and (I, +).
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5.2.1 Semi Group

A algebraic structure (G, o) is said to be a semi group if the binary operation (o) is associative
in G.
i.e. a,b,c)=@,b)oc;a,b,ceG.

Let us consider the algebraic Structure (N, 0), where o is a usual product. We know that for
any three natural numbers a, b,c € N, we havea , (b ,¢) =(a ,b) , ¢, as product is associative
in N. This implies that (N, o) is a semi group.

5.2.2 Monoid

A algebraic structure (G, o) is said to be a monoid if the binary operation (o) is associative in G
with an identity element e in G.

ie. a,b,c)=@,b),canda e=e,a=aV a,b,ce G, where e is the identity element of G.
Let us consider the algebraic structure (Z, +), where Z is the set of positive integers and the
binary operation is an addition. It will become monoid if there exists an identity element e in
Z such that
a+e=aVaeclZ

This implies that e = 0, but 0 ¢ Z. Hence (Z, +) is not a monoid.

H 5.3 GROUP

A non empty set G is said to be a Group under the binary operation o if the following conditions
are satisfied. It is also to be noted that a Group is a monoid with unit element e.

(@) Closure Law: For alla,b e G;(a  b)e G

(b) Associative Law: For alla,b,ce G,a ,(b ,c)=(a ,b),c

(c) Identity: For all a € G, there exists an identity element e € G such that (a ,e) = «a
= (e , @), where e is called the identity element.

(d) Inverse: For alla € G, there exists an elementa "' € G such that (@ j,a ) =e=( "', a).

5.3.1 Commutative Group

A group G is said to be a commutative group or abelian group if the commutative law holds. i.e.
(@,b)=b,a)Va, be G

5.3.2 Finite and Infinite Group

If the number of elements in a group G is finite, then it is called a finite group. Otherwise it is
called an infinite group.

5.3.3 Order of a Group

The number of elements in a finite group G is called the order of the group and is denoted by
O(G).

Let us consider the group G ={a, e}, then O(G)= 2, i.e. G is a group of order 2.
5.3.4 Order of an element

Let G be a group and a € G, then the order of an element « is the least positive integer n such
that a” = e. If there exists no such n, then the order of a is infinity or zero.
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Let us consider the set of integers G with the binary operation addition.
(@) Closure Law: We know that the sum of two integers is also an integer,
ie. (a+b)e GVa,beG.
(b) Associative Law: We know that the addition of integers is associative,
ie. a+b+c)=(@+b)+cVa,b,cG.
(c) Existence of Identity: For every integer a € G there exists identity element 0 € G such
that
a+0=0+a=a
(d) Existence of Inverse: For every integer a € G, there exists inverse element —a € G such
that a + (—a)=(-a) + a =0. So every element of G has an additive inverse.
This implies that the set of integers G together with the binary operation addition (+) is a
group.
Note
1. Since addition of Integers is Commutative i.e. (@ + b) = (b + a) for all a, b € G, the group G is an
abelian or commutative group.
2. Since G Contains infinite element, So G is a commutative group of infinite order.

5.3.5 Theorem

If G be a group, then

(@) The identity element is unique.

(b) Every a € G has an unique inverse in G.

(¢) Foreveryae G;(a ) t=a

d) Foralla,be G;(a by 1=b"1 a!
Proof: (a) If not and if possible let e and f be the two identity elements of group G. Thus
we have

e , [ =f(Takinge as identity)

and e . =e (Taking f as identity).

Now (e , /) is an unique element of G as G is a group. Therefore f = ¢, i.e. Identity element
is unique.

(b) Let a € G and e € G be the identity element of G. If not and if possible let a; € G and
ay € G be two inverses of a € G. Therefore

(@,a;)=(a;,a)=eand(a, ay =(ay,a)=e.

Now; ay,(a,a)) =ay,e=ay @)

And (ag,a) a1 =€,0a; =01 ... (@)

Again by associative property a, , (@ ,a;) =(ay , @) , a;. Therefore from equations (i) and (i7)
we get @; = a4 . This implies that the inverse of an element is unique.

(¢) Given that G is a group. Let a € G, this implies ¢ ‘e G. Similarly (@ 1) ! € G. Lete be
the identity element of G. Hence we have (@ "', a) =e

= (a @ ha)=@H',e

= (e HlabH,a=@H? [Using associative and identity law]
= e,a=@@ N [Using identity law]
= a=( 1! [Using inverse law]

So, @ Hl=a.
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(d) Given that G is a group. Leta, b € G

Now (@ ,b)btaH)=Wa,b)b Y, a?t [Associative law]
=a,b,b°YH,a? [Associative law]
=(@,e),a ! [Inverse law]
=a,a ! [Identity law]
=e [Inverse law]

So, (@, )b lal) =e

Similarly it can be shown that (6=, a™!)(a , b) =e.
Thus it is clear that (b~ !, a™!) is the inverse of (a , b).

ie. (@,by '=b"tat.

5.3.6 Theorem
Let G be a group and for alla, b,ce G

@) if(a@ ,b)=(a ,c)thenb=c [Left cancellation law]
(@) if (b ,a)=(c ,a) thend =¢ [Right cancellation law]
Proof: (i) Let G be a group and a, b,c € G

Assume that (@,b)=(a,c)

= a la,b)=a"' (a,c)

= @ a), b= ,a),c [Associative law]
= e,b=e,c [Existence of inverse]
= b=c [Existence of identity]

So, if (@ ,b) = (a , ¢) then b = c. This is called the left cancellation law.
(1) Let G be a group and a, b,ce G

Assume that b,a)=(,a)

= b,a),a t=(C,a),a !

= b,a,a H=c,(@,a™ b [Associative law]
= b,e=c,e [Existence of inverse]
= b=c [Existence of identity]

So,if (b ,a) = (¢ , @) then b = c. This is called the right cancellation law.

5.3.7 Theorem

Let G be a group and a, b be the elements of G, then
(z) The equation ax = b has unique solution in G.
(&z) The equation ya = b has unique solution in G.
Proof: (i) Let G be a group and let e, b € G.
According to closure law (¢"1b) € G,asa 'e Gandb e G. Letx =a~ ' b. Now
ax=al@'b)=(a ,aHb=e b=b
Therefore x = a1 b is the solution to the equation ax = b.
Let us assume that x; and x, be two solutions to the equation ax = 6. Hence we have

ax; =b and ax,=b.
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This implies that ax; = ax,. Therefore by left cancellation law x; = x,. Hence the solution is
unique.

(i) Let G be a group and let a, b € G.
According to closure law (ba™ ') € G,asa '€ Gandb € G. Lety = ba™!. Now
ya=®ba HNa=bla'ja)=b,e=b
Therefore y = b a™ ! is the solution to the equation ya = b.
Let us assume that y; and y, be two solutions to the equation ya = b. Hence we have
yia =bandy.a =b.
This implies that y,a = y,a. Therefore by right cancellation law y; =y,. Hence, the solution
is unique.

5.3.8 Theorem
The order of all the elements of a finite group is finite and is less than or equal to the order of
the group.

Proof : Let G be a finite group and the composition being multiplication.

Let aeG.

This implies (@a*a)=a’e G.

= (@*a®) =a®e G.

= (a*a®) =a* e G and so on.

ie. a,a’a® a* a’ .... are the elements of G. This implies that G has infinite order.

But it is given that G is of finite order. So there must exist two integers j and % such that
& =a" forj> k.

= daF=ata*=e

= alk=e

= d =e; Wherel = (j— k) e I* (Set of positive integers)

Now the set of all these positive integers [ satisfying a’ = e will have a least member say m.
So,a™ =e.

Therefore O(a) is finite. Let O(a) = n.

Now we have to show that O(a) < O(G), i.e. n < O(G). If not and if possible let us assume
that n > O(G).

Let a € G. Therefore by closure property we have a, a2, a3, a*, d®, .... a" € G. If they are not
distinct then there exists two integers r and s such thata”" =a®, 1<s<r<n
= a" f=e.

Thus O@)=(r—s)as(r—s)<n.
This contradicts to the fact that O(a) = n. Hence our supposition is wrong. Similarly this is
not possible if n > O(G).

Therefore O(a) < O(G).

5.3.9 Theorem

The order of any integral power of an element a can not exceed the order of a.
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Proof : Let G be a group and a € G. Let us assume that the order of the element «a is n, i.e.
O(a) = n. This implies that " = e, where e is the identity element of G.

Suppose that a™ be the integral power of a.

Again d'=e
= @) =e"=e
= (@")=e
= @'=e

This implies that the order of the element a™ can not exceed the order of a, i.e. O(a™) < n.

5.3.10 Theorem

The order of an elementa of a group G is the same as the order of itsa™*, i.e. If G is a group and
a € G, then O(a) = O(a™ 1).
Proof : Let the order of an elementa of a group G bem and that ofa™ ! ben.i.e. O(a) =m and

O™ ) =n.
Now O(a) = m.
This implies that a™ =e.
= @™ l=e
= @hHm=e
Therefore order of a~ ! is less than or equal to m, i.e. O(@™!) < m. Thus we have n < m ... (i)
Again O YH=n
This implies that (o~ !)" =e
= @y l=e
= @) =e [+ a l=eimpliesa =e]
Therefore order of a is less than or equal to n, i.e. <O(na). Thus we havem <n.... (i)

Hence from equations (i) and (i) it is clear that m = n. Therefore, the order of an element a
of a group G is the same as the order of its inverse o™ '.

H 5.4 SUBGROUP

A non-empty subset H of a group G is said to be subgroup of G if H forms the group under the
binary operation defined on G.

As every set is subset of itself, so G is subset of itself and hence G is subgroup of G.

5.4.1 Theorem

A non empty subset H of a group G is said to be subgroup of G if and only if

(@) a,be Himplies(a ,b) e H [Closure Law] and

(i1) a € Himpliesa™ le H [Inverse Law]

Proof : Let H be a subgroup of G. Therefore H satisfies all properties of a group. Thus
closure law and existence of inverse holds.

Conversely, suppose that

(@) a,b e Himplies(a ,0) e H [Closure Law] and

(i1) a € Himpliesa™ leH [Inverse Law]
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Now we have to show that H is a subgroup of G, i.e. Existence of identity and associative law
holds in H.

Associative Law : Let a, b, ¢ € H. This implies that a, b, ¢c € G as H ¢ G. Thus we get
a,b,c)=(,b),c. Therefore associative law holds in H.

Existence of Identity: Given thata € Himpliesa™ ' e H. So, by closure law (a ,a™') € H.i.e.
e € H. Therefore identity element exists in H. Thus H is a subgroup of G.

5.4.2 Theorem

A non empty subset H of a group G is the subgroup of G if and only if (@ ;6™ ') € H fora, b € H.

Proof : Let H be a subgroup of G. Therefore H satisfies all properties of a group G. Thus
closure law and existence of inverse holds.

Let a, b € H. Again by existence of inverse we have b~ ! € H. Therefore by closure property
(@a,bhYe Hasaec H,b'c H.

Conversely, Suppose that (a ,6~ ') € Hfora, b € H.

Now we have to show that H is a subgroup of G, i.e. H satisfies all the four properties of the
group G.

Given that (¢ , 1) € H for a, b € H. Hence we have (b , b~ ') € H. This implies thate ¢ H.
So, identity element exists in H. Againe € H and @ € H implies that (e ;a ") € H.i.e.a™' e H.
Thus inverse element for every element exist in H.

Alsoa € H,b" ' € Himplies that (@ ,(b~')"!) e H.i.e. (@ ,b) € H. So, closure law holds in H.
As H is a subset of G and G is a group, so associative law also holds in H.

Therefore H is a subgroup of G.

5.4.3 Theorem

Intersection of two subgroups of a group G is also a subgroup of G.
Proof: Let H and K be two subgroups of group G. So, H ¢ G and K ¢ G. This implies that
(H nK) is also a subset of G.

Now our claim is to show that (H n K) is a subgroup of G, i.e. Closure law and existence of
inverse holds in (H N K).

Closure Law: Leta,be (HNnK)

= a,be Handa,b e K

= (@a,b)e Hand (¢ ,b) e K [*- H and K are subgroups]
= (@,b)e (HNK).

Existence of Inverse: Leta € (HNK).

= ae Handa € K.

= ale Handa 'e K [ H and K are subgroups]
= ale (HNK)

Therefore (H N K) satisfies both closure law and inverse axiom. Hence (H "N K) is a subgroup
of G.

5.4.4 Theorem

If H is a non empty finite subset of a group G, then H is a subgroup of G if and only if H is
closed under multiplication.
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Proof : (Necessary Part). Let H be a multiplicative subgroup of the group G.

As H is a subgroup G so it satisfies all the properties of group, hence the closure properties.
ie. a,b € Himplies (a ,b) € H.

(Sufficient Part) Let H be non-empty finite subset of group G and H is closed under multipli-
cation.
ie. a,b € Himplies (a ,b) € H.

Now we have to show that every element of H has an inverse element in H, i.e. a € H
impliesa™!e H.

Let a € H. This implies that (¢ ,a) =a? € H. Similarly a® = (¢® , @) € H and so on. Therefore
we get

H={a,d% d® a?, ....,a", ...}
This indicates that H is an infinite set. But, it is given that H is a finite set. So, all the

elements of H listed above are not distinct. Thus there exists two integers j and & such that
o =a" forj>k>0.

This implies that daF=dbaF=e
ie. @ F=e... e @
Now asj >k > 0 are two positive integers we have (j—k)>1.i.e. j—k—-1)>0.
So, a’~#~1V e H, as H contains elements of type a™.
Again ac Handa’ %~V e Himplies that
(@,aV *VYeH [By closure law]
ie. @ "=ec H.

Therefore (@ oa’ " *"Y)=e ...(i1) _
From equation it is clear that @ Y =%~ Vis the inverse element of a. i.e.a "' =a Y%=V, So,
inverse element exists in H. Therefore H is a subgroup of G.

5.4.5 Definition

Let G be a group and H is subgroup of G. Now for a, b € G we say “a is congruent to b mod H”
written asa =b mod Hifa b~ 'e H.

5.4.6 Theorem

Let G be a group and H is a subgroup of G. Then show that relation a = & mod H is an
equivalence relation.

Proof : Given G be a group and H be a subgroup of G. We have to show that the relation
a =b mod H is an equivalence relation.

Reflexive : Let a € H. This implies that o™ e H.
Hence by closure axiom we have (@ ,a™!) e H.
ie. a=amodH.
Symmetric :  Suppose that a =b mod H.
This implies that ab"'ecH
= (@bH e H [By Existence of inverse]
= b HlaleH [By Theorem]
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= bale H

= b =a mod H.

Transitive: Suppose thata =b mod H and 6 =¢ mod H

This implies that ab-'e Handbc 'e H

= (@b HbechHeH [By Closure law]

= ab'b)cleH [By Associative law]

= (@e)c'e H [By Existence of Inverse]

= ac’'e H [By Existence of Identity]
ie. a=cmod H

Therefore the relation « =b mod H is an equivalence relation.

H 5.5 CYCLIC GROUP

A group G is called the cyclic group if for any a € G all other elements are of type a", where n
is any integer. ‘@’ is called the generator of G. A cyclic group may have more than one genera-
tor and the generator is denoted by (a). Therefore a cyclic group G is of the type

G={x | x =a"; n is any integer}

The elements of G is of the form ... ,a 2,0 2, a ', a’ =e, a, a? d°, ...

5.5.1 Theorem

Every cyclic group is an abelian group.

Proof: Let G be a cyclic group with generatora. Leta™ and a” be two elements of G,i.e. a™,
a"e G.

NOW (amoan)=am+n=an+m=(an0am).

Therefore G is an abelian group.

5.5.2 Theorem

G be a cyclic group with generator a, then ¢~ ! is also the generator.
Proof : Let G be a cyclic group with generator a. So, a”" € G, where n is some integer.
Now =@l ";-nel

This indicates that every element can be expressed as some powers of a 1. Therefore a ~!is

also the generator of G.

5.5.3 Theorem

The order of cyclic group is same as the order of its generator.
Proof: Let G be a cyclic group with generator ¢ and let the order of @ be n, i.e. a” =e.
Now we have to show that the order of cyclic group G is n, i.e. G contains exactly n
elements.
Let m be an integer; m > n and a™ € G.
As m > n, we have by division algorithm m =nk +r;0<r<n.

Thereforea™ =a™ *" =a™ o" = (a")* a" =e* a" =" . This implies thata™ =a”, i.e. a™ is one of

the element from a, a?, @®, ... , a" . Therefore G can not have more than n elements.
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Now we have to show G contains exactlyn elements,i.e. all the elementsa, a?,a®, ... ,a" are
distinct.

If not and if possible, let there be repetition. i.e. a™ = a” ; 0 < r < m. Thus we have

r r

aa "=a"a "=e ie.a” "=ewithO<(m—-r)<n.

This contradicts to the fact that the order of a is n. So, our supposition is wrong. Hence all
elements are distinct. Therefore G contains exactly n elements.

5.5.4 Theorem

A finite group G of order n containing an element of order n must be cyclic.
Proof : Let us consider G be a finite group of order n. Let a be an element of G with order n.
This implies that
a'=e.
Let us construct an cyclic group G, with generator a. Thus we have G, = {a, a®,d?, .... ,a" =e¢}

But we know that order of group and order of its generator is same. This implies that
O(Gy) = O(a) = O(G).

ie. 0(Gy =0(G)
Again let ae Gy
= a'e Gy
= d'eG

This implies that G; ¢ G; but O(G;) = O(G). Therefore G = G;. Hence G is a cyclic group.

5.5.5 Theorem

Subgroup of a cyclic group is itself a cyclic group.
Proof : Let G be a cyclic group with generator a and let H be the subgroup of G.

Now as H is contained in G, the elements of H are of the type a*. Let m be the least positive
integer such that

a"e H
Let a* € H, where £ is an integer greater than m, i.e. k > m.
This implies that k=mn+r;0<r<ma™ ()

But we know that the elements of H are in the form of integral power of a. Therefore
a™ e H. This implies thata ~™" € H.

Now a* € H and ¢ ~™" € H. So by closure property we havea® .a "™ ¢ H

N ak—mn cH
: amn +r—mn c H

= a"e H

This contradicts to the assumption that m is the least positive integer for whicha™ € H. So
a” € H is possible only if 7 = 0. Thus we have from equation (i) & = mn.

Thus " =a™ = (a™)".

Therefore H is a cyclic group with generator a™.
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m 5.6 COSETS

Associated with any subgroup there are two cosets namely left coset and right coset. Let G be
a group and H be any subgroup of G and let a € G. The left coset of H in G is the set aH given
by
eaH={x |x=ah,V he H}
The Right coset of H in G is the set Ha given by
He ={x | x =ha,V h € H}
The cosets are not necessarily subgroup of G. If G is an abelian group, then the left coset of
H in G is equal to the right coset of H in G.

5.6.1 Theorem

If H is subgroup of a group G and 2 € H, then Hx» = H = AH.
Proof : Given that H is a subgroup of group G and 2 € H.
Our claim is HA = H, i.e. Hh ¢ H and H c HhA.

Let h, € H. Again A, € H and 4 € H implies that (h; 2) € H.
But we know that being the right coset (h, h) € Hh.

Thus (hih)e Hh = (h; h) e H.
Therefore Hh cH ()
Now hie H
and hi=he
=hy(h~*h) [By existence of identity]
=(h k" Hh [By associative law]
Therefore, hy=(h,h"Yhe Hh
Hence, we get h; € H= h; € Hh. Thus we get
HcHh ... (@)

Therefore on combining equations (i) and (ii) we get Hh = H.
Similarly it can be shown that 2H = H.
Therefore we have Hh =H = hH.

5.7 HOMOMORPHISM

A mapping ¢ defined from a group G; with binary operation (o) to the group G, with binary
operation (¥) is said to be homomorphism if

¢(xoy)=¢(x)*¢(y)vx7ye Gl

5.7.1 Theorem

If ¢ is a homomorphism defined from G, to Gy, then

(@) ¢ (e1) =eq;e;is the identity element of G; and e, is the identity element of Gs,.

@) o H=@w);Vae Gy

Proof: (i) Given that ¢ is a homomorphism from G; to Gy. Also given that e; is the identity
element of G; and e, is the identity element of G,.

Let x € G;. This implies that ¢ (x) € G,. Now e; € G; such thatx e; = x.

Therefore o (x)=0(xeq)
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=0 (x) ¢ (e)) [*© ¢is a homomorphism]

ie. ¢ (x) =0 (x) ¢ (eq) ..@
Again as e, is the identity element of Gy we have

() =0x) e, (73]

Hence from equations (i) and (i7) it is clear that
O D) =0 =0 ey
= dleg) =eqy [Left cancellation law]

(i) Given that ¢ is a homomorphism from G, to G,. Also given thate; is the identity element
of G; and e, is the identity element of G,

Let x € Gysuch that (xx ~H =¢,

= o ((xx™1) =0 (e

= o (x) ox 1) =0 (ey) [¢ is a homomorphism]
= o (@) ox Y =ey

Hence it is clear that ¢(x ~!) is the inverse element of ¢ (x).

Thus we have o H=0w) ' Vae G,

i.e. Inverse element corresponds to the inverse element.

5.7.2 Theorem

If ¢ : G; > Gy is a homomorphism, then ¢ (G,) is a subgroup of G,.
Proof:Given ¢ : G; = Gy is a homomorphism. Then forx,y € G; we have ¢ (xy) =6 (x) 6 (y).
Again ¢ (x) € 6(Gy),d (¥) € ¢ (Gy) such that
d@ o) =0y e ¢ (Gy).
Therefore the closure property is satisfied.
Alsoy € G, impliesy ~! € G, such that (y y ~!) = e;, where e, is the identity element of G,.
Thus we have

Oy D=0y

= ooy H=0(y [+ ¢ is a homomorphism]
= o) oy H= ey ; where e, identity element of ¢ (G;).
Therefore, Oy t=0 @k .

This indicates that for every element ¢ (y) € ¢ (G,) there exist inverse element ¢ (y ~') in
¢ (Gy).
Hence ¢ (G,) is a subgroup of G,,.

® SOLVED EXAMPLES ®

Example 1 Show that the subtraction is not a binary operation on the set of natural numbers N.
Solution: We know that o will be a binary operation in N if and only if (a ,6) e NV a,be N
and (a , b) is unique. Here the binary operation is subtraction (-). It is clear that fora, b € N,
(a — b) may or may not belongs to N. Let us takea = 5 and b = 10, so (a —b) =— 5 ¢ N. Hence
the subtraction is not a binary operation.

Example 2 The operation o defined by the relation (a ,b) = % is not a binary operation in the

set of real number R.
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Solution: We know that o will be a binary operation in Rif and only if(a ;6)¢ RV a,be Rand

(a ,b)is unique. Here the binary operation o defined by the relation (a ,6) = % .Itis clear that
% is not defined forb = 0. Let us takea =5 and b = 0, but % is not defined. Hence the operation

o defined by the relation (a ,b) = % is not a binary operation on R.

Example 3 Is the following a valid definition of binary operation.
(@ (a,b)=ab+2bonR
® (a,b)=a’onT*
(¢) (a,b)=Min(a,b)onR
Solution: (a)Leta,be R
= (ab) e R [Product of two real numbers is also a real number]
Again b € Rimplies that 2b € R.

We know that addition of two real numbers is also a real number, so (ab + 2b) € R and it is
unique. Hence the operation (a ,b) =a b + 2b on R satisfies the definition of binary operation.

(®) Leta,b e I*(Set of positive integers)

Given that (a , b) = a®. We know that a positive integer raised to the power by a positive
integer will always result on a positive integer and it is unique also.

This implies that a® is a unique positive integer. Hence (a , b) = a® is a binary operation.
(d) Let a, b € R (Set of real numbers)
Given that (a , b) = Min (a, b). Which is equal to either a or b € R. This implies that (a , b)
= Min (a, b) is a binary operation in R.
Example 4 Let A = (0, 1}, then define the binary operations for and (A) and or (V).
Solution: Given that A = {0, 1}. The binary operations for and (1) and or (v) is given as below.

v 1 0 A 1 0
1 1 1 1 1 0
0 1 0 0 0 0

Example 5 Complete the following table so that the binary operation (o) is commutative.

0 a b ¢
b
c b a
c a c

Solution: A binary operation (o) in set G is said to be commutative if (@ ,b) = (b , a). Since
binary operation (o) is commutative we have the followings.

(@,b)=0b,a)=c

(@,0)=(,a)=a

(co,d)=b,0)=a
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Thus the complete table is given below.

0 a b ¢
a b c a
b c b a
c a a ¢

Example 6 For the algebraic structure (G, o), defined by (a ,b) =a + b — ab; a, b € G. Show
that G is a semi group, monoid and also show that commutative property holds.

Solution: Given that for alle,b € G, (e ,6) =a +b —ab.
Semi group: Leta,b,ce G
Now a,b,c)=a,b+c—-bc)
=a+ (b +c—-be)—alb+c—bec)
=a+b+c—bc—ab—ac+abc
Again (@,b),c=(@+b-ab),c
=(@+b-ab)+c—c(a+b—-ab)
=a+b+c—ab—-ca-bc+abc
Comparing the above two we see a , (b , ¢) = (@ , b) , c. This implies that (G, o) is a semi
group.
Monoid : We know that the algebraic structure (G, o) is monoid if it is a semi group and has
an identity element. We have already shown that (G, o) is a semi group.

Let us now try to find the unit element e € G such that (¢ je) =a.i.e. a +e—ae=a

= a+e(l—a)=a
= e(l-a)=a-a=0
= e=0

So, the unit element 0 (Zero) exist in G.

Commutative Law: G is said to be commutative if (a , b) = (b ,@).

Now (@ ,b)=a+b—ab and (b ,a) =b + a — ba . This implies that (a ,6) = (b , a), hence
commutative.
Example 7 Aset G={a,b, c, d}, the binary operation (o) on this set is defined by the following
figure. Find the followings.

@ (a,b)and (b ,a)

(b) Is binary operation (o) commutative.

(c) Is binary operation (o) associative.

o | a b ¢ d

a | a ¢ b d
b | d a b ¢

o
Q
Q
Q
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Solution: Given that G = {a, b, ¢, d}. The binary operation (o) on this set is defined by the
following figure.

=]
S

QU O o Q
QU o Q& Q)| Q
S QL QR o
Q Q o o
o Q o Q&

@ (@,b)=cand (b ,a)=d

() As(a,b)# (b ,a),sothe binary operation as defined is not commutative.

(¢) Now a,(b,c)=a,(b)=cand

(@,b),c=c,c=a
So, a,b,c)#(@,b),ec.

This implies that the binary operation defined above is not associative.
Example 8 Given the algebraic structure (G, o), defined by the following table. Show that G is
a semi group, monoid and find the unit element.

0 a b ¢
a c b a
b b c b
c a b ¢
Solution: Given the algebraic structure (G, o), defined by the following table as
0 a b ¢
a c b a
b b c b
c b ¢

Semi group: Let a, b,c e G

Now a,b,c)=a,b=band(e b)) ,c=b,c
b,la,c)=b,a=band b, a),c=b,c
c,la,b)=c,b=band(c,a) ,b=a,b

Therefore, the algebraic structure (G, o) is a semi group.

Monoid: We know that the algebraic structure (G, o) is monoid if it is a semi group and has

an identity element.
We have already shown that (G, o) is a semi group.
Let us now try to find the unit element e € G. It is very clear from the table that

b
b
b

(@,c)=a=(,a)
b,c)=b=(c,b)and
(c,c)=c=(c,0)
Therefore the identity element is given as e = c.
Thus the algebraic structure (G, o) is a monoid.
Example 9 G contains real numbers 1, — 1 under the usual multiplication. Then show that G
is a commutative group of order 2.
Solution: Given G ={1, -1} and the binary operation (o) is multiplication (*). Let us construct
the table.
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* | 1 -1
1 1 -1
-1 -1 1

Closure Law: From the above table it is clear that the binary operation with any two

element results either 1 or —1. So the closure property is satisfied.

Associative Law: From the above table it is clear that the associative property is also satisfied.

Existence of Identity: From the above table it is clear that the identity element is 1 € G.

Existence of Inverse: From the above table it is clear that (1 * 1) = 1 and (-1 * -1) = 1.
Therefore 1 and — 1 are their own inverses.

Commutative Law: From the table it is clear that 1 * (-1) = (1) * 1. So, commutative
property is also satisfied.

Therefore G is an abelian group of order 2.
Example 10 Show that the set G = {1, o &’} is a group with respect to binary operation
maultiplication, where @is the cube root of unity.
Solution: Given o is the cube root of unity. Thus us have ®® = 1 and 1 + ® + ®® = 0. It is also
given that the binary operation (o) is also a multiplication. Let us construct the table.

* 1 o o
1 1 o o
® o o 1
0% 0% 1 o

Closure Law : As seen from the table all the elements belongs to the Set G. So, Closure law
is satisfied.

Associative Law : The elements of G are complex numbers and we know that complex
number multiplication is associative. Thus associative law is satisfied.

Existence of Identity: From the table it is clear that 1 € G is the identity element.

Esxistence of Inverse: From the table it is also clear that 1 *1=1;0 * @*=®’ =1 and o® * ®
=0’ =1.

Hence it is clear that o is the inverse element of ®, ®” is the inverse element of ® and 1 is
the inverse element of 1. So, every element of G has its inverse in G.

Therefore the set G = {1, 0, ®? }is a group with respect to binary operation multiplication.
Example 11 Give an example of a group of second order such that every element is its own
inverse.

Solution: Let us consider the set G = {1, -1} and the binary operation (o) is multiplication (*).
Let us construct the table.

* | 1 -1
1 1 -1
-1 -1 1

Closure Law: From the above table it is clear that the binary operation with any two ele-
ment results either 1 or — 1. So the closure property is satisfied.

Associative Law: From the above table it is clear that the associative property is also satisfied.

Existence of Identity: From the above table it is clear that the identity element is 1 € G.

Existence of Inverse: From the above table it is clear that (1 * 1) =1and (-1 *-1) = 1.
Therefore 1 and — 1 are their own inverses.

Therefore, G is a group of second order. i.e. O(G) = 2.
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Example 12 G is a set of all non-zero real numbers and let (a ,b) = %b. Show that (G, o) is an

abelian group.
Solution: Given that G is a set of real numbers.
Closure Law: Leta, b € G. We know that product of any two real numbers is a real number.

This implies that (ab) € G. Similarly a—; € G. Therefore (a ,b) € G.

Associative Law: Let a, b, ¢ € G.
Nowea , b, ,0=a, (%) = % and (@ ,b) ,c= (a—zbjoc= aTbc' Therefore a , (b ,¢)=(@ b)), ¢
Existence of Identity: Let ¢ € G and e € G be the identity element such that (e je) =a.

ie. % = a. This implies that e = 2 € G. So every element of G has 2 as the identity element.

Existence of Inverse: Let a € G and a~ ' € G be the inverse element of a.

Thus we have (a ,a™ ') =e = 2. This implies thata ' = 4 € Gas4e G,a e Gandratio of two
a

non zero real number is a real number.

ab _ba

2 2

Therefore commutative law also holds in G.
Thus (G, o) is an abelian group.

Commutative Law: Now (a , b) = = (b , @). This implies that (@ , ) = (b , a).

b
Example 13 Let G be the set of all (2 x2) real matrices [a dJ where (ad — bc) #0 is a rational
c

number. Prove that G forms a group under multiplication.

b
Solution: Let us consider G be the set of all (2 x 2) real matrices [a dj where (ad — bc) #0 is
c

a rational number.
Closure Law: Let A, B € G. i.e. A and B are two matrices of order (2 x 2). This implies that
(A x B) is also a real matrix of order (2 x 2).

From the definition it is clear that|A|# 0 and |B| # 0, Hence |AxB|= |A| x |B| #0. Thus
(A x B) is a matrix of order (2 x 2) and |A xB| # 0. So, (A x B) € G. Therefore closure law is
satisfied.

Associative Law: We know that matrix multiplication is associative. So, for A, B, Ce G we
have A x (B x C) = (A x B) x C. Therefore associative law is satisfied.

Existence of Inverse: The matrix I = ((1) (1)

a b\(1 0) (a b
c d){0 1) \ec d
Existence of Inverse: For every A € G, there exists inverse A7le G suchthat (AxA™ H =1,
where

)e G, since |I|=1 # 0, will act as the identity

element since
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Adj(A
A l= i(a) _ 1 [cn Clzj ; ¢;; is the cofactor of a;; .

|Al - |Al\car  co9
Therefore G forms a group under multiplication.
Example 14 Let G be the set {a,, a;, ay, ...., ag}).The binary operation (o) is defined as below.

Check whether (G, o) is a group or not.
ai+j lf(l+])<7
(ai 0@j) = . . .
a;,j_7if (+J)=7
Solution: Let G={ay,a;,as, ....,as}. The binary operation (o) is defined as
a;.; G@+))<7
(aio aj) = ep (e .
a;,;_7if (i+7)27
Based on the binary operation defined above we have
(@goa0) =ag; (ay,a1) =aq; (@5, aq) =ag;

(@5,a9) =a 7 _qg=ag;(ag,a3) =a g_7=ay; and so on. Thus we have the following table.

0 Qg a, Qs as ay  as ag
Qo Qo a Q as Qy as Qg
%1 a Qg as Qy as Qg Qo
Qg Qy as Qy as Qg Qo a4
as as Qy as Qg Qo a Q
Qy Qay Qs Qg Qo %1 Q as
as as Qg Qo a4 Qg as Qy
Qg Qg Qo a Qy as Qy as

Closure Law: From the table it is clear that all the elements are in G. So, closure property
is satisfied.
Associative Law: Let a;, a; , a;, € G. Now it is evident from the table that
Qi jrry HE+T+R<T
@ (o) =0 jap_g ET<@+j+R)<14
Qi s j+h—14) ifG+j+k 214
Same definition holds for (a; ,a)) 0 @;, . So, associative property is satisfied.
Existence of Identity: From the first row of the table it is clear that a, € G is the identity
element as (a, , aj) =q; forallj=0,1,2,3,4,5,6.
Existence of Inverse: From the table it is clear that a is the inverse of a, and q; is the
inverse element of a (; _j for J = 1, 2, 3, 4, 5, 6. So, every element has its inverse in G.
Therefore, G is a group under the binary operation defined above.
Example 15 If G is a group of even order then there exists an element a #e such that a® = e.
Solution: Given G is a group of even order.
Let there be n elements and its n number of inverses. So altogether there are 2n number of
elements. Again in this 2z number of elements there is an identity elemente € G ande ~! =e.
This implies G contains (2n — 1) number of elements, but it is given that G is of even order.
So there must exist at-least one element which is its own inverse.
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Le. aeG = al=a
= (@,a V) =(a,a)
= e=a’
i.e. & =e.

Example 16 Suppose that G is a group and o’ = a, a € G. Prove that a =e.
Solution: Giventhat a®=a
= (@,a)=(a,e). So, by left cancellation law a = e.
Example 17 If every element of the group G is its own inverse, then it is an abelian group.
Solution: Given every element of group G is its own inverse.
Let a, b € G implies thata !=a and b~ ! = b.
Again by closure law a, b € G implies that (@ ;) e Gand (a ,b)" ' =(a ,b).
b tahH=(a,db) [By Theorem]
b,a)=(a,b) [a'=aandb ' =b]
Therefore G is an abelian group.
Example 18 If G is a group with (a ,b)" = a " b" for three consecutive integers, then G is an
abelian group.
Solution: Given G is a group and (a ,b)" = a " b" for three consecutive integers.
Let the three consecutive integers be n, (n + 1) and (n + 2). So, by definition we have

=
=

(aob)n=anbn; (aob)n+1=an+lbn+land
(aob)n+2 =an+2bn+2
Now (@ ,b)"*2=(a b)) 1 (a,b)
- an+2bn+2=(an+lbn+l)(aob)
N (an+1a)bn+2=(an+1)(bn+la)0b
N (an+1)(abn+2)=(an+l)(bn+la)ob
= @"*?) =@®"*'a) b [Left cancellation law]
= @"*Ho=0"*1a),b
= @"*hH=b""1a) [Right cancellation law]
N an(abn+l)=an(bn+la)
N (an+1bn+1)=(anbn)(boa)
N (@b =(a,b)" b ,a)
= (@,b)" (@, b)=(a,b)"(®,a)
= (@,b)=(0®,a) [Left cancellation law]

This implies that G is an abelian group.
Example 19 G is the set of all integers and the binary operation (o) is defined by (a , b) =
a —b. Test whether G is a group.
Solution: Given that G is the set of all integers and the binary operation (o) is defined by
(@ ,b)=a-b.
Closure Law : We know that difference of two integers is an integer. So, for a, b € G, we have
(@ —b) € G. Thus (a ,b) € G. Therefore closure law is satisfied.

Associative Law: Leta,b,ce G.
Now a,b,c)=a,b-c)
=a-(b-c)
=a-b+c .. @
Again (@,b),c=(@-b),c
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=a-b-c ... (@)
From the equations (i) and (i7) it is clear thata , (b ,¢) # (a ,b) , c. Therefore associative law
is not satisfied. Hence G is not a group.
Example 20 Let G={1,-1,1i, -1} be agroup under the binary operation multiplication. Find
the order of elements.
Solution: Given G ={1, -1, i, — i } be a group under the binary operation multiplication.
Therefore the identity element is 1.

Now o1)=1 [ (Di=1]
0(-1)=2 [+ (D2=1]

0G) =4 [ @)*=0*2=(-1?=1]

O(-i)=4 [+ D)*=0)* =G =(-1)?=1]

Example 21 G is the set of positive integers and the binary operation (o) is defined by (a ,b) =
ab. Test whether G is a group.
Solution: G is the set of positive integers and the binary operation (o) is defined by
(@,b)=(ab).

Closure Law: We know that product of two positive integers is a positive integer. So, for
a,b € G, we have (a b) € G. Thus (¢ ,b) € G.

Therefore, closure law is satisfied.
Associative Law: Let a, b, c € G.

Nowa ,(b,c)=(@bc)=(a,b),c. Therefore associative law is satisfied.
Existence of Identity: G is the set of positive integer. This implies that 1 € G and (1, a)
=(a ,1) =aforall a € G. Therefore 1 is the identity element of G.
Existence of Inverse : Let a € G and let b be the inverse of a. Thus we have (a ,b) = 1. This

1 1 .
implies that b =— ¢ G. Since— is not a positive integer. So, inverse element does not exist in

a a
G.
Therefore, G is not a group.
Example 22 Let G = {a, o2, a°, a?, a®, a® = e } be a group under the binary operation multipli-
cation. Find the order of elements.
Solution: Let G = {a, a% @, a*, a®, a® = } be a group under the binary operation multiplica-

tion.

Now Ola) =6 [ ab=e]
0 =3 [ (@®P=ab=e]
0’ =2 [ (@®)?=ab=e]
O(a4)=3 [ (a4)3=a12=(a6)2=e]
O(a5) =6 [ (a5)6=a30=(a6)5=e]
0® =1 [ (@®l=e]

Example 23 Let G=1{0, 1, 2, 3, 4, 5} be a group under the binary operation addition modulo 6.
Find the order of elements of the group.
Solution: Given G =1{0, 1, 2, 3, 4, 5} be a group under the binary operation addition modulo 6.
Here the identity element is 0 (Zero). i.e. O(0) = 1 as 0' = 0. Let us now find out the order of 1.
1'=1
?=1®4,1=2
P=1®;12=1®,2=3



Group Theory 113

*=1e;13=19,3=4
1°=1@41*=1®,4=5
1°=10,1°=1®;5=0
Therefore O =6
Similarly 02) =3;0(3) =2; 0(4) =3; O(5) = 6.
Example 24 Let G is a group and order of every element a #e of the group G is two. Show that
G is an abelian group.
Solution: Given G is a group and order of every element a # e of the group G is two.
Let a € G. This implies that O(a) = 2.i.e.a’=e

(@, a)=e

(@,a),a '=e,a t=a"? [Existence of Identity]

—1 [Associative Law]

]
]

a,l@a,a H=a

1

a,e=a” [Existence of Inverse

1

L

a=a’” [Existence of Identity
So, every element of G is its own inverse. i.e. Fora,b € Gwehavea=a " 'and b =b 1.
Again by closure law (a ,b) € G and (a ,b)" ! = (a , b). This implies that ® "' ;a ") =(a ,b)
i.e. (b,a)=(a,b).
Therefore, G is an abelian group.
Example 25 Show that in a additive group of integers G the order of every element except
0 (zero) is infinite.
Solution: Given G is the additive group of integers. The identity element in case of additive
group of integers is 0 (zero). This implies that O(0) = 1 as 0 = 0. Let us consider the next
element 1.

Now 1'=1
2=1+1=2
P=1+1+1=3
and so on .... . From this it is clear that there exists no such n for which 1" = 0. This implies

that order of 1 is infinite. The same argument also holds for other integers.

Example 26 Let G be a group and the order of a, b and (a , b) be two. Show that G is an
abelian group.

Solution: Given G be a group and the order of a, b and (a , b) be two. i.e. a?=¢e b’ =e
and (a ,b)? =e.

Now (@,b’=e

= (@, b)(@,b)=e

= (@,b)(a,b)=e,e=a’, b

= a,b,a),b=(@,a),b,b)

= a,b,0),b=a,(@,b),b [Associative Law]

= b,a)=(,b) [Cancellation Law]

Therefore, G is an abelian group.

Example 27 Is union of two subgroups of a group G is a subgroup of G? If no then explain with
the help of a counter example.
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Solution: The union of two subgroups of a group G is not a subgroup of G.

Let us consider the group G ={... - 3,-2,-1,0, 1, 2, 3, ...} with the binary operation
addition. Let us define two subgroups H; and H, of G as

H,={0,+2,+4,+6,....}and Hy, ={0,+ 3, £ 6,+ 9, ...}. Hence (H; uUH,) ={0, +2, +3, +4,
+6, ...}. From this it is clear that 2, 3e (H; UH,) implies that (2 + 3) =5 ¢ (H; U Hy). Therefore
closure law is not satisfied.

Hence, (H; U Hy) is not a subgroup of G.
Example 28 Suppose G=/{..., 2 3972971122223  Jisthe multiplicative group. Let
H={1,2 2% 23 ..} be the subset of G. Test whether H is a subgroup of G or not.
Solution: Given G ={..., 273 272,271 1,2 22 23 ...} is the multiplicative group.
Let H={1, 2, 22 23, ...} be the non empty subset of G anda, b € H implies that (¢ ,b) € H. So,
H is closed under multiplication.

Again 2 € H implies 2 ~'¢ H. Thus inverse axiom is not satisfied. Therefore H is not the
subgroup of G.
Example 29 Let G be a group of integers under addition and H is the subset of G consisting of
all multiples of n € N. Show that H is a subgroup for every value of n.
Solution: Given G be a group of integers under addition and H is the subset of G consisting
of all multiples of n € N.

Let a,b € H. This implies that a and b are both multiples of n. Therefore (a + b) is also a multiple
of n. So, (@ ,b) =(a + b) € H. Again a € H implies —a € H. Therefore H is a subgroup of G.
Example 30 Suppose that G be the set of all ordered pairs (a, b) of Real numbers; a #0. The
binary operation (o) is defined by (a, b) , (c, d) = (ac, bc + d). Show that (G, o) is a non abelian
group. Let H be a subset of G containing elements of the form (1, b). Does H is a subgroup of G.
Solution: Given G be the set of all ordered pairs (a, b); a, b € R, a #0. The binary operation is
defined as (a, b) , (¢, d) = (ac, bc + d).

We have to show that G is a group. i.e. G satisfies all the four properties of the group.
Closure Law: Let (a, b), (¢, d) € G; This implies that a # 0 and ¢ # 0.

Now (a,b),(c,d)=(ac,bc +d) e G [ac #0;ac, be +d € R]

Associative Law: Let (a, b), (c,d), (e, f) € G.

Now  (a,b),llc,d), (e, =(a,b),(ce,de+f)

= (ace, bce + de +f) ... (@)
Again [(a, b) , (c,d)] , (e,f) =(ac,bc+d),(e,f)
= (ace,bce +de +f) ... (@)

So, from equations (i) and (ii) we have
(@,b),lc,d),(e,Nl =la,db),(c,d)],(e,[)
Existence of Identity: Let (a, b) € G. Let (u, v) be the identity element. Thus we have
(a,b),(u,v) =(a,b)

ie. (au,bu +v) =(a,b)

This implies that au = ¢ and bu + v = b. i.e. u = 1 and v = 0. So, the identity element
(u,v)=(1,0) e G.
Existence of Inverse: Let (a, b) € G and let (i, v) be the inverse element of (a, b). Thus, we have

(@,b),(u,v)=(1,0) [+ (1, 0)is the identity element]
ie. (au,bu +v) =(1,0)
This implies that au =1 and bu + v =0 i.e. u = 1 and v = _—b So, the inverse element of
a a

1 -
(a, b)is (—, —b) € G. Thus G satisfies all the four properties of group and hence G is a group.
a a



Group Theory 115

Commutative Law: Let (a, b), (¢, d) € G.
Thus we have (a, ), (c,d) =(ac, bc +d) and
(c,d),(a,b) =(ca,da +b).
Hence it is clear that (a, b) , (¢, d) # (¢, d) , (a, b). Therefore G is not an abelian group.
Let H be a subset of G containing elements of the form (1, ). Now we have check whether
H is subgroup or not.
Let (1, 6), (1, ¢) € H. Such that (1,5) ,(1,¢) =(1, b + ¢) € H. Hence closure law holds in H.
Let (1,5) € H. The inverse of (1, 5) is (1, —b) € H. Hence every element of H has an inverse
element.
Therefore H is a subgroup of G.
Example 31 The set of all integers under addition is a cyclic group with generator 1.
Solution: Let G be the set of all integers.
Now 1°=0 [+ 10=e=0]1'=1;12=1+1=2;1°=1+1+1=83andsoon.....1 1=—1;
172=(1%>"1=-2;1"3=(1%"1=-3 and so on.... . So, all the elements of G can be expressed
as some powers of 1.
Example 32 Let G=/{0, 1, 2, 3, 4, 5). Show that G is the cyclic group with generator 1 under
addition modulo 6.
Solution: Giventhat G =10, 1, 2, 3, 4, 5}. Here the generator is 1. Again 1' = 1
1?=1®31=2
P=1®;12=1®,2=3
*=19,1°=1@®;3=4
P=1@®g1*=1@®;4=5
=1@;1°=19,5=0
"=1@;15=1®,0=1
Therefore we get G = {1, 12,13, 1%, 15, 1% = 0}. This indicates that G is the cyclic group with
generator 1.
Example 33 Prove that any group of order 3 is cyclic.
Solution: Given G is a group of order 3. So G contains 3 elements and one of this element is
e where as the other two are distinct elements. Let the distinct elements of G be a and b.
le. G={a,b,e}
Now by closure property a € G, b € G implies (a . b) € G. As G has only three elements, we
have the following possibilities.
@ (@.b)=a;Gi)(a.b)=b or (iii)(a.b) =e.
Suppose that (@ .b) =a

= (@.b)=a.e

= b=e [Left cancellation law]
Suppose that (@.b)=b

= (@.b)=b.e=e.b [Existence of identity]
= a=e [Right cancellation law]

We have taken that a and b are two distinct elements other then e. Hence both (a . b) = a
and (a . b) = b are not possible. Thus we must have (a . b) =e.
Similarlya € G impliesa® € G. Hence there arises three cases.i.e. (i) a® =e; (ii) a® = a or (iii)
2
a” =b.
Suppose that
=

2=e

>=(a.b) [(a.b)=el

a
a
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This implies that @ = 6. This is not possible as @ and b are distinct.

Suppose that =a

= (@.a)=a.e

This implies that a = e. This is also not possible as a is other than e. Hence we must have
a?=b. Thus we get

G={e,a,b} =le,a,a’

Therefore, G is a cyclic group with generator a.
Example 34 Let G be the additive group of integers.i.e. G={...,-3,-2,-1,0,1,2, 3, ...). Let
H be the subgroup of G givenby H={...,-9,-6,-3,0, 3,6, 9, ... J. Form the right cosets and
left cosets.
Solution: GiventhatG={...,-3,-2,-1,0,1,2, 3, ...}.

H={...,-9,-6,-3,0,3,6,9, ...}
Let us now form the Right cosets.
Now 0 € G, so
H=H+0={...,-9+0,-6+0,-3+0,0+0,3+0,6+0, ...}
={...,-9,-6,-3,0,3,6,9, ...}
Again 1 € G, so
H+1={..,-9+1,-6+1,-3+1,0+1,3+1,6+1, ...}
={...,-8,-5,-2,1,4,7, 10, ... }
Similarly 2 € G, so
H+2={...,-9+2,-6+2,-3+2,0+2,3+2,6+2,...}

={..,-7,-4,-1,2,5,8,11, ... }
Example 35 Let ¢: G — G defined by ¢ (x) = e, for all x € G, where e is the identity element.
Show that ¢ is a homomorphism.
Solution: Given that ¢ : G — G defined by ¢ (x) =e V x € G, where e is the identity element.
Let x,ye G

= dx)=eand ¢ (y)=e
Now x,y € G implies that (xy) e G
Therefore dxy)=e
=e.e=0®) 0
ie. dxy)=0x) )

Hence ¢ is a homomorphism.

In this way we can form the right cosets and the left cosets.
Example 36 Let ¢: G, — Gy defined by ¢ (x) = 2%, where G, is a group of Real numbers under
addition and G, is a group of non-zero Real numbers under multiplication. Show that ¢is a
homomorphism.
Proof: Given that G, is a group of Real numbers under addition and G, is a group of non-zero
Real numbers under multiplication. Let x,y € G

This implies d@)=2"e Gyand ¢ (y) =27 € Gy
Now x, y € Gy implies that(x +y) € Gy
Therefore O(x+y =2
=2727=0@) o)
ie. O x+y)=0@) o)

Hence ¢ is a homomorphism.
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EXERCISES ®

Define the binary operation. Show that the binary operation multiplication is closed on

Show that the addition and multiplication are associative binary operation in the set of

Show that the set of integers and real numbers are abelian group under ordinary addi-
Show that G =1{..., 33,372 371 1, 3,32 3% ... forms an infinite abelian group under
(@) under addition (Z1) under multiplication.

Distinguish between abelian and non-abelian group. Explain with the help of examples.
Let G is a semi group and for any a, b € G; a®> b = b = b a?. Show that G is an abelian

. Distinguish between the order of an element of a group and order of the group.

Show that every finite group of order less than six (6) must be abelian.

If G be a cyclic group of order 10, then find out how many generators are there in G.
Show that a cyclic group is abelian. Show by an example that the converse is not true.
G is a group of all real numbers under addition and H is the set of all integers. Then

Show that homomorphic image of an abelian group is abelian.
Show that G = {1, ®, ®?} is the cyclic group under multiplication , where o is the cube

Show that G = {1, — 1, i, — i } is the cyclic group under multiplication, where i is the
Form two cyclic subgroups of a cyclic group G = {a, a2, ¢®, ... , a® = e}and how many

Let G; be a group of non zero Real numbers under multiplication and G, = {- 1, 1}be a

-1 ifx<0

Let ¢: G; = G, defined by ¢ (x) = log;, (x), where G, is a group of positive Real numbers
under multiplication and G, is a group of all Real numbers under addition. Show that ¢

b
Let ¢: G; —» G, defined by d)[ d) = ad — bc, where G, be a group of all (2 x 2) matrix

a b
( ): ad — bc # 0 under matrix multiplication and G, be a group of non zero Real

numbers under multiplication. Show that ¢ is a homomorphism.

1.
the set A = {1, — 1}.
2.
rational numbers.
3. Show that (I, +) and (R, +) are semi group.
4,
tion but is not a group under ordinary multiplication.
5.
ordinary multiplication.
6. Is the set of all even natural numbers forms a group
7.
8.
group.
9
10.
11.
12,
13.
show that H is a subgroup of G.
14. Can an abelian group have non-abelian subgroup?
15. Can a non-abelian group have an abelian subgroup?
16. Can a non-abelian group have a non-abelian subgroup?
17.
18.
root of unity.
19.
imaginary quantity such thati 2 = — 1.
20.
generators are there for G.
21.
group under multiplication. Let ¢ : G; — G, defined by
1 ifx>0
¢ (x) = {
Show that ¢ is a homomorphism.
22,
is homomorphism.
a
23.
c
c d
24,

Show that homomorphic image of an abelian group is abelian.
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Codes and Group Codes
®

H 6.0 INTRODUCTION

When we want to send a message to someone, we send it through some communication chan-
nel. This transmission of message over a channel entails some chances of undesirable inter-
ference in the channel some times deliberate and sometimes due to random defects in the
channel.

The coding problem is to represent distinct messages by distinct sequence of letters from a
given alphabet set.

For example, in a Morse code we represent a message by dots and dashes. Similarly over
alphabet can be {0, 1) i.e., binary alphabet.

When a message is to be transmitted then the message is first given by the source to the
encoder, the encoder converts the message into the code word. The encoded message is then
sent through the channel, where noise may occur and change the message. When this mes-
sage arrives at the decoder at the receivers end, it is equated to most likely code word.

Noise
Transmitted
Channel ! Decoder
Code Word
Source Message Encoder Receiver

Communication Channel with Noise

H 6.1 TERMINOLOGIES

We will use the following terms in our discussion.

Word: A word is the sequence of letters drawn from the alphabet set.
Code: Code is the collection of words to represent a distinct message.
Code word: A word represented by a code is called the code word.
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Block Code: A code consisting of words that are of same length is called Block code. One of
the advantages of using the Block Code is its ability to correct errors.

N 6.2 ERROR CORRECTION

When we transmit a message from the source to the destination, due to the presence of noise
in the communication channel the message may get altered, i.e. some of the 1’s transmitted
may be received as 0's and some of the 0's may be received as 1’s. So the received message is
no more is the transmitted message. Now we would want to recover the transmitted message
from the received message. This is called error correction.

H 6.3 GROUP CODES

Let A be the Set of all binary sequence of length . Let us define a binary operation ® in A such
that X, Y € A implies X ® Y) € Ai.e., a sequence of length n. Where
1 if X, Y differs in position
XeY)= . . »
0 ifX, Y are same in position

The set A together with the binary operation @, i.e. (A, ®) forms a Group and a subset G of
A is called the group code if (G, ®) is a subgroup of (A, ®).

Let us consider X=1001001andY=010100 1. Therefore we have X®Y)=1100
000.

N 6.4 WEIGHT OF CODE WORD

Let A be the set of all binary sequence of length n. Let X be a code word in A, the weight of X
denoted by w(X) is the number of 1’s in X.

Let us consider the code words X = 10101 and Y = 00011. The number of 1’s present in X are
three where as the number of 1’s present in Y are two. So, the weight of X is 3 and the weight
of Y is 2.

ie., oX)=3 and w(Y)=2.

B 6.5 DISTANCE BETWEEN THE CODE WORDS

Let A be the set of all binary sequence of length n. Let X and Y be two code words in A, the
distance between X and Y denoted by d (X, Y) and is defined as the weight of ® (X ® Y).
ie., dX,Y)=0XeY)

The distance between the two code words gives the number of positions in which they
differ.

Let us consider code words X = 01011 and Y = 10101. Now the distance between X and Y is
defined as ® (X @ Y). Now

X =01011
Y =10101

(X@Y)=11110
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Therefore, dX, Y)=00X®Y)=4

6.5.1 Theorem

Let A be the set of all binary sequence of length n. The distance between two code words X and
Y satisfies the following properties.

(@) Commutative law i.e. d(X,Y) =d(Y, X)

(0) Triangle's inequalityi.e.d(X,Y)<d (X, Z) +d(Z,Y).
Proof: (a) Let A be the set of all binary sequence of length n. Let X and Y be two code words
in A.

Therefore XeoY=Yo®X
This implies that ® (X®Y) = (Y ® X)
Thus, dX,Y)=d(Y,X)

(b) Let A be the set of all binary sequence of length . Let X ,Y and Z be three code words in A.
We know that o (X) is the number of 1’'s in X and (X @ X) = 0. This implies that

oUeV)<o @) +w (V) ..
Now, OXEY)=0XPZOZDY) [+ (Z®Z)=0]
SOXPZL)+0(ZOY) [By Equation (1)]

Therefore, dX,Y) <dX, Z) +d(Z,Y).

B 6.6 ERROR CORRECTION FOR BLOCK CODE

We know that block code is a code consisting of words that are of same length. The advantage
of using block code is its ability to correct the errors.

Let G be a Block code, the distance of G is defined as the minimum distance between any
pair of distinct code words in G. The ability of Block codes to correct the errors depends on its
distance.

Let a word has been transmitted and we received a word Y (say). Now there is a likelihood
of received word containing an error. Now we will like to have the transmitted word corre-
sponding to the received word Y.

We can use two methods. i.e. Maximum likelihood decoding criterion and Minimum dis-
tance decoding criterion.

6.6.1 Maximum Likelihood Criterion

Let X;, Xg, coevv e , X, be the code words in G. One of this is transmitted and we have received
the code word Y. The received word may contain error and we are interested to find the word
transmitted. Maximum likelihood criterion says that compute the conditional probabilities
PX, | Y),PX,| Y), ... PX, | Y). Where P(X;| Y) means the probability that X, is transmitted
when the received word is Y. Let

PX, | Y) = Max {PX;|V};i=1, 2, .......... , N
Then X, is the transmitted word.
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6.6.2 Minimum Distance Decoding Criterion

In the minimum distance decoding criterion we compute d (X;, Y), d (X,, Y), d (X5, Y), ....... ,
d (X,,,Y). Let us define

d(X,Y) = Min {d(X;,Y)}; i = 1, 2, 3, ,n

Then, X, is taken as the transmitted word when the received word is y.

H 6.7 COSETS

Let (G, @) be a group code. Let a word y is received. Then the coset with respect to y denoted
by (G @ y) is defined as
(Goy) =X, @y | X;e G,ie N}
Againd(X;,Y) =0 (X; ®y). So the weights of the words in the coset (G® y) are the distances
between the code words in G and y.
The decoding procedure includes the followings:

1. Determine all cosets of G.
2. For each coset, choose the coset leader., i.e., the word of smallest weight.
3. For the received word y, (e @ y) is the transmitted word.

® SOLVED EXAMPLES ®

Example 1 Let X=0101011 and Y =1010101. Find (X &Y).
Solution: GiventhatX=0101011and Y=1010101
Now X =0101011
Y =1010101

X®Y)=1111110

Therefore, X®Y)=1111110.
Example 2 A s a set of all binary sequence of length n. Show that (A, &) forms a group.
Solution:  Given that is a set of all binary sequence of length n, say for our convenience we
take the length to be 5.

Closure Law: Let X =01011and Y =10101

Now X®Y=01011®10101=11110

This is again a code word of length 5.

Therefore, X, Y € A implies (X @ Y) € A. So, closure law holds.

Associative Law: Let X =10101,Y =10000 and Z = 01010

Now (Y®Z)=10000®01010=11010
Therefore, X®(Y®Z)=10101©11010=01111
So, X®(Y®Z) =01111 .. (1)
Again X®Y)=10101®10000=00101
Therefore, X®eY)®Z =001019©01010=01111

So, XeY)®Z=01111 .. (2)
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Therefore from equations (1) and (2) we get X @ Y) @ Z =X ® (Y ® Z). So, associative law
holds.

Existence of Identity: A code word with all zeros of specified length will act as the identity
element.
Let X =10101 and Y =e = 00000 such that
X®Y =10101®00000=10101=X
Therefore, X ®Y) =X
So, Y = 00000 € A acts as an identity element.
Existence of Inverse: A code word itself is inverse of its own.

Let X =10101 such that (X ® X) = 10101 ® 10101 = 00000 = e. Therefore, (X ® X) = e. This
implies that every code word is its own inverse. So, (A, @) satisfies all the properties of group
and hence called group codes.

Example 3 Illustrate by example distance function satisfies the commutative and triangle’s
inequality.
Solution: Commutative Law: Let X =101010 and Y = 010101

So, X®Y)=101010®© 010101 =111111
Therefore, dX,Y)=00X®Y)=6 @)
Again, (Y®X)=010101®101010=111111
Therefore, d¥Y,X) =0 (Y®X)=6 ... (@)

So, from equations (i) and (i7) it is clear that d (X, Y) = d(Y, X).
Triangle's inequality: Let us take X = 101010, Y = 100010 and Z = 101000. Now
X®Y) =101010® 100010 = 001000
X®Z) =101010® 101000 = 000010
(Z®Y) =101000® 100010 =001010
Therefore, dX,Y) =oX®Y)=1
dX,Z) =0 X®Z)=1
dZ,Y) =0 (Z®Y)=2
Thus we have dX,Z)+d(Z,Y) =1+2=3>dX,Y)=1
ie. dX,Y) <dX,Z)+d(Z,Y)
Example 4 In the minimum distance criterion, a code of distance (2t + 1) can correct t or
fewer transmission errors.
Solution: Let X be the transmitted word and Y be the received word.
Now if ¢ or less number of errors has occurred during the transmission we will have

dX,Y)<t¢ (@
Now since the distance is (2¢ + 1), so for any code word X; we have
dX,X)22t+1 ... @)

Since the distance means the minimum distance between any pairs of distinct code words.
Again from triangle's inequality we have

dX,X)sd X, Y)+d (Y, X))



Codes and Group Codes 123

= 2t +1<dX, X)) <t +d (Y, Xy)

= 2t+1<t+d (¥, X;)

= d(Y,X)2(+1) (22
So, we have dX,Y)<tandd(Y,X))>({+1)

From the minimum distance decoding criterion X will be selected as the transmitted word.

EXERCISES ®
1. Let X and Y be two code words. Find (X @ Y) in each of the following cases.
(@ X=11111 and Y=11111
® X=11111 and Y =00000
(¢) X=1010101 and Y =0101010
(d) X=00101101 and Y =11101100
(e) X=1100110 and Y =0011101
2. Find the weight of the following code words.
(@ X=11111 (b)) X=11111
() X=1010101 (d) X=00101101
(e) X=1100110
3. Find the distance between the code words in each of the following cases.
(@ X=10011 and Y =00000
(b) X=01101 and Y =10110
(¢) X=0011101 and Y =0101010
(d) X=11101101 and Y =10011101
(e) X=1100110 and Y =1110110
4, Illustrate by example distance function satisfies the associative law and triangle’s in-
equality.
5. Illustrate by example (A, @) forms a group. Where A is a set of all binary sequence of

length 7.
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Ring Theory
®

H 7.0 INTRODUCTION

As we have discussed group as an algebraic structure, in this chapter we will discuss about
“Ring” which is quite different from the Group in a way that it is two operational systems viz,;
Addition and multiplication where as the Group is a one operational system. In Ring theory
many of the notions of Group theory will be extended to the system with two operations.

H 7.1 RING

A non empty set R with two binary operations addition (+) and multiplication (.) defined in it is
said to be associative Ring if it satisfies the following properties.

Under Addition:
(@) Closure Axiom: For a,be R; a+beR
(b) Associative Axiom: For a,b,ce R;(a+b)+c=a+ (b +c)
(c) Existence of Identity: For every element a € R, there exist an identity element 0 € R
such that
a+0=0+a=aVaeR.
(d) Existence of Inverse: For every element a € R there exist an inverse element — a € R
such that
a+(-a)=0
() Commutative Axiom: Fora,be R;(a +b) =(b +a)
Under Multiplication
(@) Closure Axiom : For a,b e R;(a.b)e R
(b) Associative Axiom : For a,b,ce R;(a.b).c=a.((b.c)
(¢) Distributive Axiom : For a,b,c € R we have
@ a.b+c)=a.b+a.c [Left distributive Law]
@ Bb+c).a=b.a+c.a [Right distributive Law]

7.1.1 Theorem
If R is a Ring, then for alla, b,c € R
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@) a.0=0.a=0

(@) a(-b)=(-a)b=-(ab)

@) (—a)(-b)=abd

@) a.b-c)=a.b-a.c

) b-¢).a=b.a-c.a

Proof: (i) We know that 0 =0+ 0

This implies that a.0=a.(0+0)

=a.0+a.0 [Distributive Law]
So, a.0=a.0+a.0 ...(1)
Again, a.0=a.0+0 ...(2) [Additive Identity Law]

Therefore from equations (1) and (2) we have

a.0+0=a.0+a.0

= 0=a.0 [Left Cancellation law]
Thus, a.0=0 .3
Similarly 0=0+0
This implies that 0.a=(0+0).a

=0.a+0.a [Distributive Law]
So, 0.a=0.a+0.a ...(4)
Again, 0.a+0=0.a ...(5) [Additive Identity Law]

Therefore from equations (4) and (5) we have
0.a+0=0.2¢+0.a

= 0=0.a ...(6) [Left Cancellation Law]
Combining equations (3) and (6) we get
a.0=0.a=0

(ii) Given b € R, so by existence of additive inverse (- ) € R such that b + (-b6)=0
= a.b+(=b)=a.0

= a.b+a.(-b)=0 [By previous (2)]
= a.(-b)=-(ab) (D
Again a € R implies that —a € R such that

a+(-a)=0
= (@+(-a)).b=0.b
= a.b+(-a).b=0 [By previous (i)]
= (-a).b=-(ab) ...(2)

Combining equations (1) and (2) we get
a.(-b)=—(a.b)=(-a).b
(iii) Givena, b € R implies that —a, —-b € R.
Now, —a)(-b)=(-a).x; x=-b
—(a.x) [By previous (ii)]
—(a.(-b))
=—(-(a.b)) [By previous (ii)]
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=a.b
Therefore, (-a).(-b)=a.b
(iv) a.b-c)=a.b+(-0)
=a.b+a.(-c) [Left distributive Law]
=a.b+(-(a.0)
=a.b-a.c
Therefore, a.b-¢c)=a.b-a.c
() b-c).a=0b+(-c)).a
=b.a+(—c).a [Right distributive Law]
=b.a+(-(c.a)
=b.a-c.a
Therefore, b-c).a=b.a-c.a

7.1.2 Theorem

If R is a ring with unit element then

@ -.a=-a

(@) -1 =1

Proof: (i) Given R is a ring with unit element i.e. 1 € R.

Now 0=0.a
=(1+(-1).a
=l.a+(-1).a
=a+(-1).a

ie. a+(-1).a=0

Therefore, -1).a=-a

(i) In the previous we have proved that (- 1).a = —a.

Let a=-1

So, DED=-(-D=1

Therefore, -DED=1

7.2 SPECIAL TYPES OF RING
In this section we will discuss special types of ring.

7.2.1 Commutative Ring

A ring R is said to be commutative ring if under multiplication
(a.b)=0b.a)V a,beR.

7.2.2 Ring with Unit Element

A ring R is said to be ring with unit element if there exist an element 1 € R such that
l.a)=(@.l)=aVaeckR



Ring Theory 127

7.2.3 Null Ring

The singleton set {0} with binary operation + and . defined as

0+0=0 and 0.0=0
is called a Null Ring or zero Ring.

7.2.4 Boolean Ring

A ring R is said to be Boolean ring if a® = @ for alla € R.

7.2.5 Division Ring

A ring R is said to be division ring if the non zero elements of R forms a group under multipli-
cation.

7.2.6 Zero Divisor

Let R be a commutative ring, a elementa # 0 € R is said to be zero divisor if there exists b # 0
such that

(@.b)=0; a,beR

7.2.7 Integral Domain

An integral domain is a commutative ring that has no zero divisors.

Let us consider a set R of integers. From the discussion given below it is clear that R is a
commutative ring with unit element.

Under Addition
(©) Closure Axiom: We know that the addition of two integer is again an integer.
Le. a,be R=(@+b)e R
(1) Associative Axiom: We know that addition of integers is associative.
i.e. a+®+c)=(@+b)+c; V a,b,ceR
(1) Existence of Identity : For all a € R, there exists 0 € R such that
(@+0)=0+a)=a
(iv) Existence of Inverse: For every a € R there exists —a € R such that
a+(-a)=(-a)+a=0.
(v) Commutative Axiom: For anya, b € R we know that the addition of integers is com-
mutative.
i.e. (@+b)=(0b+a)
Under Multiplication
(?) Closure Axiom: We know that multiplication of two integers is again an integer.
ie. (a.b)eR V a,beR.
(1) Associative Axiom: We know that integer multiplication is associative.
ie. a.b.c)=(@.b).c V a,b,ceR.

(@) Distributive Laws: Set of integers follow both left distributive and right distributive
property
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ie. a.b+c)=(a.b)+(a.c)
and b+c).a=0b.a)+(c.a) Va,b,ceR

(tv) Commutative Law: We know that multiplication of integers is commutative,
ie. (a.b)=(b .a)foralla,b e R.

(v) Unit Element: As R contains integers, so 1 € R.

Again (@a.1)=1.a)=aVaecR

Therefore, R is a commutative ring with unit element.

B 7.3 RING WITHOUT Z2ERO DIVISOR

A commutative ring R is said to be without zero divisor if fora, b € R

a.b =01impliesa = 0 or b = 0 or both a and b are zero.

Set of integers I is a ring without zero divisor as product of integers is zero only if any one
of them is zero.

7.3.1 Theorem

A commutative ring R is without zero divisor if and only if the cancellation law holds.

Proof: (Necessary part) Let the commutative ring R does not have zero divisor.

Let a,b,ce R,a#0andab =ac
= ab-ac=0
= ab-¢c)=0

As a # 0 and R does not have zero divisor, so we must have (b — ¢) = 0. This implies that b = c.

Hence left cancellation law holds.

Similarly it can be shown that right cancellation also holds.

(Sufficient part) Let the cancellation law holds in the ring R. We have to show that R has
no zero divisor.

If possible, let(a.b)=0with a=#0andb =0

= (a.b)=(a.0) [.. a.0=0]

Hence by left cancellation b = 0. This contradicts to the fact that b = 0.

Therefore, R is a ring without zero divisor.

H 7.4 INTEGRAL DOMAIN

A commutative ring without zero divisors is an integral domain.

Set of integers is an integral domain since it forms a commutative ring but does not have
zero divisors.

H 7.5 DIVISION RING

If the non-zero elements of a ring R form a group under multiplication then the ring R is said
to be a division ring.
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7.6 FIELD

A ring F is said to be a field if the non-zero elements form a multiplicative abelian group. It is
defined also as a commutative division ring. Besides this if, every element a # 0 of an integral
domain has a multiplicative inverse a™ !, then the integral domain is called as a field.

7.6.1 Theorem

Every field is an integral domain.

Proof: Suppose that F be a field. This indicates that F is a commutative division ring.
i.e. The non-zero elements of F forms a group under multiplication.

Our claim is to show F is an integral domain. i.e. F does not have the zero divisor.

Let a,b e Fanda # 0 such that
a.b=0
= al@.b=a10 [az20=a ‘e F]
= (@la).b=0 [Associative Law]
= 1.6=0
= b=0
Thus, we get (@.b)=0,a20=b=0

Similarly we can show that (@ .6)=0,b6#0=>a=0
So, the field F does not have a zero divisor. Hence, F is an integral domain.

7.6.2 Theorem

A finite integral domain is a field.

Proof: LetR be a finite integral domain.

Let R = {xq, x9, ...... , X,}; where the elements of R are distinct.
ie. X # X; for all i #j; wherei,j=1,2, ..., n.

Now since R is an integral domain, so R is a commutative ring without zero divisors.

Our claim is to prove R is a field. i.e. It is sufficient to prove that R contains the unit element
and every non-zero element has multiplicative inverse.

(Existence of unity) Leta#0e R
Now, axq, axy, AXs , ...., ax, € R and all these elements are distinct. If not,

let ax;=ax; for i#j

= (@ax;—ax)=0

= a(x;-x)=0

= (x;—x) =0 [ a#01is the additive Identity]
= X; = X;

This contradicts to the statement x4, x, ..., x,, are all distinct.

So,  axy, axy, axg, ..., ax, € R and are distinct. Therefore one of these elements must be

equal to ‘@’ since @ € R.
Let a =axy

ie. ax, =a =x,a [R is commutative]
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Let us take any element x,, € R. Now x,, must be equal to (a x,) for some value of r. 1 <r <n.

ie., ax,=x,=%x..%xa
Now, Xy . X, =% (@ x,)
=(x; . a) . x, [Associative Law]
=a.x. =X,

So, x;, . x,,, = x,,,. This implies that x;’ is the identity element and is denoted by 1. Thus, we
have the unit element in R.

(Multiplicative Inverse)
We have proved that 1€ R. So 1 must be equal to ‘ax;” for some i.
ie. ax; = 1. Therefore there is some b € R such that
a.b=1=b.a
Hence, b is the multiplicative inverse of the non-zero element a.

7.6.3 Theorem

The commutative ring Z, = {0, 1, 2, ....,p —1} under the operation®, and ®, is a field if and only
if p is a prime number.

Proof: GivenZ,=1{0,1,2, ..... ,p —1} is a commutative ring under addition and multiplica-
tion modulo p.

Suppose that p is a prime number.
Let a,beZ,anda=#0,b#0andlet(a.b)=0modp.
This implies p | ab.i.e. p| a or p| b. Therefore, we get
a=0modp orb=0modp.
This contradicts to the fact p is a prime number. Hence, Z, does not have zero divisors.
Therefore, Z , is a field.
Conversely, Suppose that Z, is a field. We have to show that p is a prime number.
Suppose that p is not a prime number.

= p=m.n (Q<m,n<p)
= m.n=0modp .. (1)
Now n=1.nmodp

=(m~ 1. m)n modp [-m Lm=1]

=m~ 1 (m n) mod p

=m 1.0=0
Thus, we get n = 0. This is a contradiction.
Therefore, p is a prime number.

B 7.7 THE PIGEONHOLE PRINCIPLE

If n objects are distributed over m places and if (n > m) then some places will receive at least
two objects. So if n objects are distributed over m places in such a way that no place receives
more than one object, then each place will receive exactly one object. This principle is known
as Pigeonhole principle.
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H 7.8 CHARACTERISTICS OF A RING

Let (R, +, .) be a ring with 0 as zero element. If there exist a positive integer ‘n’ such that

n.a=a+a+a+..+a(ntimes)=0VaeR.

Then such smallest positive integer ‘n’ is called the characteristic of the ring. Thus, the
characteristic of a ring R is defined as
Ch(R) = Smallest positive integer n such thatna = 0,VaeR
10 otherwise
If no such ‘n’ exist then the ring R is said to have a characteristic zero or infinite.

Let us consider the ring I = {0, 1, 2, 3, 4, 5} with the binary operations ®; , ®; . Then the
characteristic of this ring R will be 6 since 6.a =0 for alla € I;.

7.8.1 Theorem

The characteristic of a ring with unity is 0 or n > 0 depending on whether unity element is
regarded as the member of additive group has the order 0 or ‘n’ respectively.

Proof: Let R be a ring with unity 1. Hence, there arises two cases.
Case 1: Ifthe order of 1 is zero then obviously the characteristic of ring is zero.
Case 2: If the order of 1 is n (finite), then

1+1+1..... +1=0 VaeR

T n—tmes
= nl1=0
Now for any a € R we have
ne=a+a+--—--—--—-- +a (n terms)
=1l-a+1-a+---—-- +1-a [+ 1isthe unity]
=(1+1+ - +1)-a
=(n.1).a=00.a)=0
ie. na=0

Therefore, the characteristic of R is n.

7.8.2 Theorem

The characteristic of an integral domain is either 0 or a prime number.

Proof: Let R be an integral domain. We have to show that the characteristic of R, i.e.
Ch (R) is either 0 or a prime number.

Let ChR)=n

Let if possible assume that n # 0 and not a prime number. Therefore, n = n, . n, withn,, n,
less then n.

Now as the characteristic of R is n, we have the order of the unit element e is ‘n’. i.e. 0(e) = n

= n.e=0
= (ny.ny)e=0
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= ny.(ng.e)=0 [Associative Law]

= (ny.e)(ny.e)=0 [ (ny.e)=n4]

As R does not have zero divisor son; .e =0 orn, . e = 0. This indicates that the characteristic
of R is either ‘ny’ or ‘ny.

This is a contradiction to the assumption that characteristic of R is ‘n’. So, our assumption
was wrong. Therefore, ‘n’ is zero or a prime number.

H 7.9 SUB RING

For a ring (R, +, .), a nonempty subset S of R is called a sub ring of R if (S,+, .) forms a ring
under the binary operations defined in R.

For the ring (I, +, .) the subset of even integers is a sub ring.

7.9.1 Theorem

The necessary and sufficient condition for (S, +, .) to be a sub ring of the ring (R, +, .) is
@ a-beS V a,be S
@ a.be S v a,be S
Where S is the sub set of R.

Proof: (Necessary part) Suppose that (S, +, .) be the sub ring of the ring (R, +, .). This
implies that S is a group with respect to addition.

Now, forb € Swe have (-b) € S.
Again since S is closed under addition so, (@ + (-b)) € Sfora e S,and (-b) € S.i.e. (a-b) e S.
Similarly since S is closed under multiplication we have
aecS,beS
= a.beS
(Sufficient part) Suppose that
@a-be S V a,be Sand
@ a.be S vV a,beS

Now aeS,aeS
= (@-—a)e S
= 0eS .. @
Again, 0e S,ae S
= (0-a)e S
ie. -aeS
Again, aeS,-beS
= a-(-b)e S
ie. (a+b)e S.

The addition and commutative axiom under addition holds in R so it will hold in S. There-
fore, (S, +, .) is an abelian group. The remaining postulates will hold in S as they hold in R.
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H 710 HOMOMORPHISM

Let R, and R, be two rings, then the mapping
¢: R; = R, is said to be homomorphism if it satisfies the following conditions.

(@) ola +b) =dla) +d(b)
®) o(a.b)=0@). o) V a,beR

7.10.1 Theorem

If ¢ is homomorphism from ring R; into Ring R, then

@ $0)=0

@) o(—a)=—o(a)

Proof: (i) Leta € Ry. Then there exists an identity element 0 € R; such that (¢ + 0) =a
= d(a+0) =0a)

= o(a) +9(0) = d(a) [¢ is a homomorphism]
= o(a) +9(0) =o(a) +0 [0 is additive identity of R,]
= o0) =0 [Left cancellation Law]
(i) For the ring R,, a € R;implies—a e R,

Now, a+(-a)=0

= o(a +(-a)) =6(0)

= ¢(a) +¢(=a)=0 [~ ¢ (0)=0]

This indicates that ¢ (— a) is the additive inverse of ¢ (a) in R,,.
Therefore, ¢(— a) = — d(a).

7.10.2 Theorem

Let R, is a ring with unit element 1 and ¢ is a homomorphism of R, into R,, then ¢ (1) is the
unit element of R,.

Proof : Given that the mapping ¢ is homomorphism from ring R, into R,

i.e. ¢: Ry - Ry is homomorphism.

Let 1€ R4, this implies that ¢ (1) € R,.

Now for any a; € Ry, we have a; = ¢(a) for somea € R;.

Therefore, o(1).a; =0(1). 0(a)
=0(1.a) [0 is a homomorphism]
=0(a) [Existence of Identity]

Therefore, ¢ (1) . a; = a;. Hence, ¢(1) is the unit element of R,.

7.10.3 Theorem

Every homomorphic image of a commutative ring is commutative.

Proof: LetR be a commutative ring and ¢ is a homomorphic mapping from R into R’. i.e.
R’ is the homomorphic image of the commutative ring R.

Our claim is R’ is commutative.
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Let a’,b’ € R’. Hence there exists a, b € R such that
o =0(a), and & =¢(b),

Now, a . b =6(a).od)
=0(a.b) [0 is a homomorphism]
=00 .a) [R is commutative]
=0(). o(a) [0 is a homomorphism]
Therefore, a’.b'=00).¢a@)=b".a’

Hence the homomorphic image R’ is commutative.

H 7.11 KERNEL OF HOMOMORPHISM OF RING

If ¢ is a homomorphism from ring R into R/, then the kernel of homomorphism is a set denoted
by I (¢) containing elements of R which are mapped to the additive identity element of R’.

ie. 1@ =eR|ox)=0;0e R}

7.11.1 Theorem

If ¢ is homomorphism from R into R’ with kernel I(¢) then

() I(¢)is a subgroup of R under addition
(@) Ifa € I(¢) andx € R, then (x .a) and (a . x) € 1(¢)

Proof: (i) Given ¢ is homomorphism from R into R’ with kernel I(®)

Our claim is I(¢) is a subgroup of R under addition. i.e. I(¢) satisfies the closure and inverse
axiom.

Let a, b e I(o).

This implies that d@) =0 and 6(b) =0

Now, da+b)=0@)+0(B)=0+0=0
Hence, d(a+b)=0.

Therefore, (a +b) € 1(0).

Again o0(-a)=—0(a)=0

Hence, o(-a)=0

Therefore, —ael(d)

This implies that I (¢) is subgroup under addition.
(&1) Suppose thata € I(¢p) andx € R.

Now, dla.x)=0(a). o (x) [¢ is a homomorphism]
=0.06k) [a e I(¢)= ¢ (a)=0]
=0

So, d(a.x)=0.

This implies that (a.x) e I(0).
Similarly it can be shown that (x . a) € I(¢).
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N 7.12 ISOMORPHISM

A mapping ¢ from ring R into R’ is said to be isomorphism if
(?) ¢ is homomorphism
(1) ¢ is one -one
i.e. A homomorphism ¢ of R into R’ is said to be isomorphism if it is one-to-one mapping.

7.12.1 Theorem

The homomorphism ¢ defined from the ring R into R’ is an isomorphism if and only if I(¢) = (0).
Proof: (Necessarypart) Let¢: R — R’ is an isomorphism.
This implies that ¢ is a homomorphism and one-one.

Let acl(@®)=06(a)=0

= d(a) =9(0) [¢ is homomorphism; ¢ (0) = 0]
= a=0 [0 is one-one]
So, acl(0)>a=0 VaeR

Therefore, 1(¢) = (0)

(Sufficient part) Let 1(¢) =(0)

Let x,y € Rand ¢(x) = ¢(y)

Now, d(x) = o (y)

= o(x)—0y)=0

= d(x—-y)=0

= (x—y)e o) =(0)

Therefore, x—y =0, hence x = y.

So, ox) =0(y) >x=y

This implies that ¢ is one - one and hence ¢ is isomorphism.

o SOLVED EXAMPLES ®

Example 1 Show that the set of all square matrix of order (m xm) under the binary opera-
tions addition and multiplication is a non commutative ring.

Solution Let R be a set of all square matrices of order (m x m).
We have to show that R is a ring, i.e. R satisfies all the eight properties of ring.
Under Addition
Closure Law : Let A and B be two square matrices of order (m x m).
So, (A + B) will be a square matrix of order (m x m)
This implies (A+B)eR
le. ALBeR = (A+B)eR
Associative Law : We know that matrix addition is associative. i.e. A, B, C € R implies that
A+B+0O)=A+B)+C

Existence of Identity: For every square matrix A € R, there exists null matrix [0],, ,,, € R
such that
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A+0=0+A=A
Existence of Inverse : For every A € R there exist inverse element (— A) € R such that
A+(-A)=0
Commutative Law: We know that matrix addition is commutative,i.e. For A, Be R we have
A+B)=B+4A)

Under Multiplication

Closure Law : Let A, B € R. i.e. A and B are two square matrices of order (m x m). Now
multiplying A and B we will get a matrix of order (mx m).

ie. A.BeR
Associative Law : We know that matrix multiplication is associative.
ie. A.B.CO)=(A.B).C vV AB,CeR

Distributive Laws : Let A, B, Ce R.i.e. A, B and C are three square matrices of order (mxm).
Also we know that
A.B+C)=A.B+A.C
Therefore, R satisfies all the properties of Ring. Hence R is a ring.
Example 2 If R is a Boolean ring, then prove that
@) a+a=0 v aeR
(i) a+b=0impliesa=b Va,b e R
(iit) R is a commutative ring.
Solution Given that R is Boolean ring.

Le. @ =a VaeR
(7)) Let a e R,thisimpliesthat (¢ +a)e R
= (@+a)? =(@+a) [ a%=da]
= (@a+a).(a+a) =a+a
= a.(la+a)+a.(@a+a) =a+a [Distributive Law]
= (a.a+a.a)+@.a+a.a) =a+a [Distributive Law]
= @ +a’>+a’+a?) =a+a
= a+a+a+a =a+a
= a+a =0 [Cancellation Law]
(i1) Suppose that a+b =0Va,beR
Again, we have proved thata +a =0
Thus we have a+b =a+a
This implies that b =a [Cancellation Law]

(iir)Let a, b € R, this implies that (@ + ) € R. As R is a Boolean ring, so we have (a + bl =a+b

= (a+b).(a+bdb) =a+b

= a.a+b)+b.(a+b) =a+b [Distributive Law]
= (@.a+a.b)+b.a+b.b) =a+b [Distributive Law]
= a®+a.b+b.a+b?> =a+b

= a+a.b+b.a+b =(a+b)

= a.b+b.a =0

= a.b =b.a [@ + b =0 implies a =b]

Therefore R is a commutative ring.
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Example 3 If R is a ring with unity 1 = 0; then show that R is a singleton set.
Solution Given R is a ring with unity 1=0andleta € R

Now a=1.a=0.a=0
The above argument is true for alla € R
Therefore, R ={0}

Hence R is a singleton set with 0 as its element.
Example 4 Let R is a set satisfying all the properties of ring except the commutative axiom
under addition. If R has the unit element, then prove that R is a ring.
Solution Given that R is a set satisfying all the properties of ring except the commutative
axiom under addition.

ie. a+b=b+a

It is also given that R contains unit element, i.e. 1 € R

Let a,b € R implies that (a +b) € R [Closure Law]

Again, leR=10+1eR

Now, (a+b).A+1)=a.1+1)+db.(1+1) [Distributive Law]
=a.l+a.1+b6.1+b.1 [Distributive Law]
=@+a)+®+b @)

Again, (@+b).1+1)=(a+b).1+(a+b).1 [Distributive Law]
=@+b)+@+b) (@)

Combining equations (i) and (if) we get
(@+a)+(b+b)=(a+b)+(a+b)

= a+{la+ B +b)=a+{b+(a+b)} [Associative Law]
= a+b+b)=b+(a+b) [Cancellation Law]
= (@+b)+b=0b+a)+b [Associative Law]
= (a+b)=(0b+a) [Cancellation Law]

Therefore, R is a ring.
Example 5 Let R be a ring of all square matrices of order (2 x2). Show that R has zero divisor.
Solution Let us consider two square matrices A and B of the ring R as

A [50] 45 [00]
“lo o™ 7750

Here A # 0 and B # 0, but

(A.B) = eR

5 0170 0] [0 0]

10 0] [5 0}_0 0]
Therefore, R is a ring with zero divisor.

Example 6 Let R is a ring with unity and (x . y)?> =x° .y Vx,y € R. Show that R is a

commutative ring.

Solution Given R is a ring with unity, i.e. 1 € R. Also given that (x . y)2=x%.y?V x,y € R.
Again,(y+1)e Rasye Rand1e R

Therefore, x.(y+1))?=x2. @y +1)>
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xy+x)?=x2. (y2+2y+1)
xy+x).xy+x)=2>. % +2y+1)
Xy.xy+xy.x+x.xy +x%=x2y?+ 2x% + 2

2
2+ 2%y + 42
2

xy)l+xy. x+x.xy+x>=xy
2y + ey . x+x.xy) +x% =x2y? + 2%y + &2
xyx+xxy=2x2y [Left and Right Cancellation Law]
xyx+xly=xly+xly

xyx=x’y [Cancellation Law]

L A A A

Now on replacing x by (x +1) we have
@+D)y@x+1)=(x+ 1)2y
xy+y) @+ =@2+2x+ 1y

=
= xyx+xy+yx+y=x2y+2xy+y

= y+xy+yx+y=x>y+2xy+y [ xy x =22 y]
= xy+yx=2xy [Left and Right Cancellation Law]
= yx=xy

Therefore, R is commutative ring.
Example 7 LetR=1{0, 1, 2, 3, 4, 5} be a ring under binary operations &; and &;. Show that
R is a ring with zero divisor.
Solution Given that R ={0, 1, 2, 3, 4, 5} be a ring under binary operations ®g and ®; .

Here 2 € R and 3 € R are two non zero elements such that

2-3=0

Therefore, R is a ring with zero divisor.
Example 8 R isthe set of integer mod 7 under addition and multiplication mod 7. Show that
R is a commutative ring with unit element.

Solution Given R is the set of integer mod 7 under addition and multiplication mod 7. The
operation is defined as

(Z) a +b =c where c is the remainder of a + b when divided by 7.
(@1) a.b =c where c is the remainder of a . 5 when divided by 7.

So, it is clear that R contains 7 elements. i.e. R = {0, 1, 2, 3, 4, 5, 6}.

Table for addition modulo 7

+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5
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Table for multiplication modulo 7

0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

Under Addition

Closure Law : From the table for addition modulo 7 it is clear that for any

a,be R=(@+b)e R
Associative Law : From the table for addition modulo 7 it is clear that for any
a+b+c)=@+b)+c V a,b,ceR.
Let a=1,6=3,c=5.
Therefore, we have
a+b+c)=1+B+5)=1+1=2
and (@+b)+c=(1+3)+5=4+5=2
Therefore,. a+b+c)=(a+b)+c
Existence of Identity : From first row of the table for addition modulo 7 it is clear that 0 R
is the identity element.
ie. O+a=a V aeR

Existence of Inverse : From the table for addition modulo 7 it is clear that the inverse
elements of 0, 1, 2, 3,4, 5,6 are 0, 6, 5, 4, 3, 2, 1 € R respectively. The inverse element of 3 is
4 because 3 + 4 =0.

i.e. For every a € R there exists an (—a) € R such thata + (—a) =0.
Commutative Law : From the table for addition modulo 7 it is clear that
a+b=b+a V a,beR
Under Multiplication
Closure Law : From the table for multiplication modulo 7 it is clear that for all

a,be R=>a.beR
Associative Law : From the table for multiplication modulo 7 it is clear that

a.b.c)=(@.b).c V a,b,ceR
Let a=3,b=4,c=6.
Therefore we have

a.b.c)=3.(4.6)=3.3=2and

(@.b).c=(3.4).6=5.6=2
Therefore, we get a.(b.c)=(a.b).c
Distributive Law :
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Leta=1,b=4,c=2.
Hence we have
a.b+c)=1.(4+2)=1.6=6 and
(@.b)+(@a.c)=(1.4)+(1.2)=6
Therefore, we get a . (b +¢c)=a.b+a.c
Commutative Law : From the table for multiplication modulo 7 it is clear that
a.b=b.a V a,beR
Unit Element : From the table for multiplication modulo 7, the 2nd row or column indicates
that 1 € R is the identity element for every element a € R. Hence for every a € R there exists
unit element 1 € R such that
(l.a)=a V acR.
Therefore, R is commutative ring with unit element.

Example 9 Show that if R is a ring with unity, then any nonzero element with multiplicative
inverse in R cannot be the zero divisor.

Solution Given that R is a ring with unity.
Letae Randa #0.
Again a# 0 impliesa™'e R
Suppose that (a . b) =0withb#0e R

= al.(@a.b)=a"1.0
= @l.a)b=0
= b=0 [ Ya)=1]

This is a contradiction. This contradicts to the fact thatb # 0. This indicates thata is not the
zero divisor.

Example 10 For the ring R = M, . o(1), show that the subset S defined as
+
S = {( rox y]: X,y € I} is a sub string.

X+y X
Solution Given R = M, o(I) be a ring and

S={(x x+y]:x,yel}
X+y «x

Putting x =y =0 we have

00
(O O] € S = Sisnon-empty. i.e. S #¢.

To prove S is a sub ring we have to show that S satisfies two axioms
@ A-BeS; A,BeS
@ A.BeS; A,BeS

x x+ U u+v
Let A=( y]andB=( ]; u,v,x,yel
x+y «x u+v u

x—u X+y-—u-v
Now, AfJB=( ]eS
X+y—u-v x—u
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and A.B=( x x+y)( u u+w)
x+y x Jlu+tw u

{xu+(x+y)(u+w) (9c)(u+w)+(3c+y)u]e S
(x+yu+x(u+w) (x+y)(w+w)+xu

This implies that all the entries of the matrices (A—B) and A.B are integers. Therefore, S is
a sub ring.

Example 11 Let R=/0, 1, 2, 3, 4} be a commutative ring with respect to the binary operations
@5 and &5 Show that R is an integral domain.

Solution Given that R = {0, 1, 2, 3, 4} be a commutative ring with respect to the binary
operations @ 5 and ® ;.

It is also clear that there is no such nonzero element in R for which (a¢ . ) = 0. Hence R is an
integral domain.

Example 12 Let R=1{0, 1, 2, 3, 4, 5, 6, 7} be a commutative ring under the binary operations
@gand ®g - Show that R is not an integral domain.

Solution Giventhat R={0,1, 2, 3, 4, 5, 6, 7} be a commutative ring under the binary opera-
tions ® gand ® ¢

Now 2e Rand4e€ Rsuchthat2® 44 =0

Therefore, R is not an integral domain.
Example 13 R = {u, v, w, t} define the operations + and . in such a way that R will be a ring.

+ u v w t u v w t
u u v w t u u u u u
v v u t w v u v

w w t u v w u v t
t t w v u t u u

(@) Using the associative and distributive law determine the entries in the blank space.
(b) Isit a commutative ring ?

(¢) Does it have unity ? If yes, find the unit element.

(d) Isthe ring an integral domain or a field.

Solution (a) Now, w.w)=w . +1) [ (v+8)=w]
=w.v+w.t [Distributive Law]
=v+t=w

Therefore, w.w=w

Again, t.v)=(w+v).v [+ (w+v)=t]
=w.v+v.V [Distributive Law]
=v+v=u

Therefore, t.v=u

Again, t.t)=t.v+w) [ (w+v)=t]

=t.v+t.w [Distributive Law]
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=u+u=u

Therefore, t.t)=u

Similarly, w.w=t+w). w [ (¢t +w)=0]
=t.w+w.w [Distributive Law]
—u+w=w

Therefore, w.w)=w

And v.t=@F+w).t [ (w+¢)=v]
=t.t+w.t [Distributive Law]
=u+t=t

So, the complete table is given as

u v w t
u u u u u
v u v w t
w u v w t
t u v u u

() From the above table it is clear that (v . w) =w and (w . v) = v. This implies (v . w) # W . v).
Thus, R is not a commutative ring.
() Asitis clear from the table, the ring does not contain unity and hence does not have unit
element.
(d) Since R is not commutative, so it is neither integral domain nor field.
Example 14 Ifa, b, ¢, d € R and R is a ring then evaluate (a + b).(c + d).

Solution Given Risaringanda,b,c,de R

Now, (a+bd).(c+d)=u.(c+d); [Let u = a + b]
=u.c+u.d [Distributive Law]
=(@+b).c+(a+b).d
=a.c+b.c+a.d+b.d [Distributive Law]

Example 15 IfRis a ring and (x +y)? =x° + 2xy + y° then prove that R is commutative for all
x,y € R.
Solution Given Ris aring and (x +y)? =x + 2xy + y?forx,y € R.

x+y) x+y)=o+ 2y +y

XYy +yx=xy+xy
yx=xy [Cancellation Law]

- 2
= x(x+y)+y (x+y)=x2 + 2y + y>

= xoc+xy+yx+yy=x2+2xy+y2

= x2+xy+yx+y2=x2+2xy+y2

= xy+yx=2xy [Cancellation Law]
=

=

Therefore, R is commutative ring.
Example 16 For a commutative ring R with characteristic 2 show that

(@+b?=a?+b%=(@a-b% V a,beR
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Solution Let R be a commutative ring with characteristic 2. This indicates that (2. a) = 0 for

alla € R.

Now, (@+b)’=(+b).(a+b)
=aa+ab+ba+bbd
=a’+ab+ab+b?
=a? + 2ab + b2

=a?+ 0+ b2
—a?+ b2

= (a+b)2—a2+b2

Similarly, (a-b)? =a®-2ab +b>
a?+0+b2=qa?+b?

= (a- b)z—a2+b2

Therefore, (@+b)’=a’+b%>=(a-b)?

[R is commutative]

[2a = 0]

Example 17 Show that a Boolean ring R is a commutative ring with characteristic 2.

Solution Given R is a Boolean ring. This implies a? = a for alla € R.

Let

L A A

a,beR
(@+b)e R
(@+b)’=(a+b)
(@+b).(a+d)=(a+b)
aa+ab+ba+bb=a+b

a?+ab+ba+bi=(a+b)+0
a+rab+ba+b=@+b)+0
(@a+b)+(ab+ba)=@+b)+0
ab+ba=0
ab=ba

Therefore, R is a commutative ring.

Again,

=
=

=
=

(@a+a)’=(a+a)

a2+a2+a2+a2=a+a

a+a)+@+a)=(@+a)+0
a+a=0
20 =0

[Associative Law]

[ In Boolean ring (a + b) = 0 = a = b]

[Left Cancellation Law]

Hence, R is a commutative ring with characteristic 2.
Example 18 For the ring (I, & ©®©) with binary operation defined as x @y =x +y — 1 and
x ©®y=x+y —xy, show that the subset S of all odd integers is a sub ring.

Solution Suppose that S be the set of all odd integers. Let @, b € S. This implies ¢ and b are
odd integers.

Now,

a®b=a+b-1

Again (e + b) is even as sum of odds is even.

=
=

a+b-1isodd
a+b-1¢ S
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= a®be S

Similarly, a ® b = a + b — a b. However, we know that (a + b) is even and (a b) is odd.
Therefore (@ + b —a b) is odd.

= a®be S

Let a € S, then the additive inverse is — a which is odd hence belongs to S, i.e. —a € S.

Therefore, S is a sub ring.
Example 19 Show that isomorphic image of a division ring is division ring.
Solution Let R be a division ring. Therefore, the non zero elements of R forms a group under
multiplication.

Let ¢ be a isomorphism defined from R into R’.i.e.6 : R > R’.

Leta#0ec R=a '#20€eR.

As ¢ is isomorphism, so ¢ (@) # 0. We have to show that ¢ (¢~ 1) = ¢(a) .

Again, 0@ .o@H=0@.a H=01)=1eR

= o@). 0@ H=1

Therefore we get @ =@ L

This indicates that every non-zero element of R” has an inverse. Thus R’ is a division ring.
Example 20 Show that the isomorphic image of an integral domain is an integral domain.
Solution Let R be an integral domain and ¢ be a isomorphism from R into R’,i.e. : R—> R".

Since R is an integral domain, so it is a commutative ring without zero divisors. Let a,
be R,a#0andb #0 such that (a.b) #0.

= d(a.b)#0
= o(a). o) = ¢(0)
= o(a).9®) =0

Since ¢ is an isomorphism, a # 0, b # 0 implies that ¢(a) =0, ¢(b) #0.
Therefore we get ¢(a) # 0 and ¢ (b) # 0 implies 6(a). d(b) #0. Hence R’ is without zero divisor.
Again we know that isomorphic image of a commutative ring is a commutative ring.

This indicates that R’ is a commutative ring without zero divisor, thus is an integral do-
main.

® EXERCISES ®

1. Prove that the set of Real numbers R forms a Ring under ordinary addition multiplica-
tion.

2. Show that the set of Rational numbers Q forms a commutative ring with unit element
under ordinary addition and multiplication.

3. Let S ={a + b2 | a and b are integers} forms a Ring under addition and multiplication.
4. Theset R=1{0, 1, 2, 3, 4, 5} is a commutative ring with unit element under @ 5 and ®; .

5. The operations a ®b =(a+ b + 1) and a ® b = (a + b + ab) are defined on the set of
integers. Show that I forms a commutative ring under the operations defined. Does it
have unit element?

6. Show that set of Real numbers of the type (@ + 5 V2) ; a, b € R is an integral domain.
Show that ring of integers (I, +) is an integral domain but not field.
8. Rp=1{0,1,2,...,P -1}, where P is a prime. Show that Rp is an integral domain.

N
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9.

10.

Show that the set of numbers given by {a + b V2;a, b € I} is a ring under ordinary addition
and multiplication.

Let R ={a, b, ¢, d, e}. The operations + and . on R is defined as

+ a b c d e a b c d e
a a b c d e a a a a a a
b b c d e a b a b c d e
c c d e a b c a c b d
d d e a b c d a d b e e
e e a b c d e a e d c b

(@) Show that (R, +, .) is a commutative ring.
() What is the additive identity and unity ?

(¢) What are the inverse elements ofa, b,c,d ?

11.

12.

13.

14.

15.

16.

17.
18.
19.

20.
21.

22,

Show that set of all rational numbers is a commutative ring with unity under ordinary
addition and multiplication.

Do the following sets forms an integral domain with respect to ordinary addition and
multiplication. If yes, then test whether they are field.

(@ 1 (\/5) =fx | x =b+/2 : b is rational)

(b) Set of even integers

(c) Set of positive integers.
Show that (I, +, .) is a sub ring of (Q, +, .) which is a sub ring of (R, +, .) which is a sub ring
of (C, +, .). Where

I: Set of integers

Q : Set of rational numbers

R: Set of real numbers

C: Set of complex numbers
Give an example of each of the followings.

(@) A non-commutative ring (®) Ring without zero divisor

(c) Division ring (d) A ring which is not an integral domain.
Show that set of all square matrix of order (n x n) is a non-commutative ring with unity
under the matrix addition and multiplication.
Show that set of even integers under ordinary addition and multiplication is a commuta-
tive ring without unit element.
The set of rational numbers under usual addition and multiplication is a field.
Let R be a ring. Prove that (n a) (m b) =(n m) (a b) for alla,be Rand m,n € 1.
Give an example of a ring which contains an element a # 0 such that ® = 0. Is it an
integral domain.
Givena, b be two elements of a field F with characteristic 3. Show that (a +5)® =a® + b3.
Prove that for a field

(@) %z%@adzbc ®) (~a) " t==@™ 1
a c¢ _ad-bc -a_a
(C) 3_3— bd (d) —b_b

R is a ring with unit element 1 and ¢ is a homomorphism of R onto R;. Then prove that
¢ (1) is the unit element of R,.
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Boolean Algebra
® ®

H 8.0 INTRODUCTION

For centuries mathematicians felt there was a connection between mathematics and logic,
but no one could find this missing link before George Boole. In 1854 he introduced symbolic
logic known as Boolean Algebra, Boolean function, Boolean expression, Boolean ring and many
more honor the nineteenth century mathematician George Boole. Each variable in Boolean
algebra has either of two values: true or false. The purpose of this two - state algebra was to
solve logic problems.

Almost after a century of Boole's work, it was observed by C.E. Shannon in 1938, that
Boolean algebra could be used to analyze electrical circuits. This was developed by Shannon
while he analyzed telephone switching circuits. Because of Shannon’s work, engineers real-
ized that Boolean algebra could be applied to Computer electronics.

This chapter introduces the Gate, Combinatorial Circuits, Boolean Expression, Boolean
Algebra, Boolean Functions and Various Normal Forms.

H 8.1 GCATES

In logic we have discussed about the logical connectives —, A and v. The connectives A and v
can be considered as circuits connected in series and parallel respectively. A circuit with one
or more input signals but only one output signal is known as a gate. Gates are digital circuits
because of input and output signals, which are either low or high. Gates are also called logical
circuits because they can be analyzed with Boolean algebra. In gates, the connectives —, A

and v are usually denoted by the symbols ’, . and + respectively. The block diagrams for
different gates are discussed below.

8.1.1 A NOT Gate

A NOT gate receives input x, where x is a bit (binary digit) and produces output x” where

, 1if x=0
Y0 x=1



Boolean Algebra 147

The output state is always the opposite of the input state. The output is sometimes called
the complement of the input. A NOT gate is drawn as shown in the following figure.

8.1.2 An AND Gate

An AND gate receives inputs x; andx,, wherex; and x, are bits, and produces output (x; Axy),
where
X1 AXg) =
1A% 0 Otherwise

An AND gate may have more inputs also but the output is always one. An AND gate is
drawn as shown in the following figure.

X,

X' —
(XA X,) Xy s (Xy A X, A X5)
X,

(2 input AND gate) (3 input AND gate)

8.1.3 An OR Gate

An OR gate receives inputs x; and x,, where x; and x, are bits, and produces output (x; v x,),
where
X1V xg) =
1o 0 Otherwise
An OR gate may have more inputs also but the output is always one. An OR gate is drawn as
shown in the following figure.

X, X
(Xw v Xz) %, (X1V Xy V XS)
X, X,

(2 input OR gate) (3 input OR gate)
The logic tables for the basic AND, OR and NOT gates are given below.

X Xq (1A x9) X Xq (1V x9) x x’
1 1 1 1 1 1
1 0 0 1 0 1 0 1
1 0 0 0 1 1
0 0 0 0 0 0
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H 8.2 MORE LOGIC GATES

There are some other types of gates which are useful and frequently used in Computer Sci-
ence. These are called NAND, NOR, XOR and XNOR gates.

The block diagrams for these different gates are given below.
8.2.1 NOR Gate

A NOR gate receives inputs x; and x, wherex; and x, are bits, and produces output (x; v x,),
where

1if xy=24=0
0 Otherwise

A NOR gate may have more inputs also, but the output is always one. A NOR gate is drawn
as shown in the following figure.

(1 V) = {

X1
(X1 v X9)
XZ
(2 input NOR gate)
According to De Morgan’s first theorem we have

(X 1vxg) = 2" Axg’ Te. (x1+x9) = x7" .29

8.2.2 NAND Gate

A NAND gate receives inputs x; andx,, wherex; andx, are bits, and produces output (x; A x,)’,
where
. J1if x;=00rx,=0
(ey nxp)' = 0 Otherwise
A NAND gate may have more inputs also, but the output is always one. A NAND gate is
drawn as shown in the following figure.
According to the De Morgan’s second theorem we have

(k1 Axg) = x'1+ 25" e, (X1.%9) = 27" + 25

X4

(Xinx)’

PA—

8.2.3 XOR Gate (Exclusive OR Gate)

A XOR gate receives inputs x; and x,, where x; and x4 are bits, and produces output (x; vV x5)
or (x; @ xy), where

1 if x; =1or x, =1 but not both

(1 ®x5) = {O Otherwise
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From the definition, it is clear that, the Exclusive OR gate, i.e. XOR gate produces 1 that
have an odd number of 1’s. A XOR gate may have more inputs also, but the output is always
one. A XOR gate is drawn as shown in the following figure.

X4

(X, ® x,)
X,

8.2.4 XNOR Gate (Exclusive NOR Gate)

A XNOR gate receives inputsx; and x,, wherex; andx, are bits, and produces outputx; XNOR
x9 where

1 if x,and x, are same bits
0 Otherwise

XNOR gate may have more inputs also, but the output is always one. In this case it recog-
nizes even-parity words. Even parity means a word has an even number of 1’s. For example
11100111 has even parity because it contains six 1’s. Odd parity means a word has an odd
number of 1’s. For example 1101 has odd parity because it contains three 1’s.

x; XNOR x, = {

A XNOR gate is drawn as shown in the following figure.
X1
X; XNOR x,

X,

The logic tables for the above NOR, NAND, XOR and XNOR gates are given below.

X1 X2 (2cr Oxp) ' X1 X (1 Oxp) '
1 1 0 1 1 0
1 0 1 1 0 0
0 1 1 0 1 0
0 0 1 0 0 1
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X X (21 O xy) X1 X2 (x1 XNORx,)
1 1 0 1 1 1
1 0 1 1 0 0
0 1 1 0 1 0
0 0 0 0 0 1

H 8.3 COMBINATORIAL CIRCUIT

In digital computer electronics, there are only two possibilities, i.e. 0 and 1, for the smallest,
indivisible object. These 0 and 1 are known as binary digits (bit). A bit in one part of a circuit
is transmitted to another part of the circuit as a voltage. Thus two voltage levels are needed.
i.e. high voltage level and low voltage level. A high voltage level communicates 1 where as a
low voltage level communicates O.

A combinatorial circuit is a circuit which produces an unique output for every combination
of inputs. A combinatorial circuit has no memory, previous inputs and the state of the system
do not affect the output of a combinatorial circuit. These circuits can be constructed using
gates which we have already discussed.

Let us consider the circuit

X4
e [ S
. [
Xy X x3 y
1 1 1 0
1 1 0 1
0 1 1 0
1 0 1 0
0 0 1 1
0 1 0 1
1 0 0 1
0 0 0 1

The logic table for the above circuit is given in the side table. From the table it is cleared
that the output y is uniquely defined for each combination of inputs x4, x5 and x3. Therefore,
the circuit is a combinatorial circuit.

If x; =1 andx, = 1, then the output of OR gate is 1. Now the input for AND gate is 1 and O,
so the output of AND gate is 0. Since the input to the Not gate is 0, the output y = 1.



Boolean Algebra 151

Consider another circuit as

— e D o

—

X3

The above circuit is not a combinatorial circuit, as the output y is not defined uniquely for
every combination of inputs x;, xs and x5 .

m 8.4 BOOLEAN EXPRESSION

Any expression built up from the variables x4, y1, 21, X9, ¥9, 29, ... by applying the operations A, v
and ’ a finite number of times. If X; and X, are Boolean expressions, then (X,), Xy, (X; A Xy)
and (X; v X,) are also Boolean expressions. The output of a combinatorial circuit is also a
Boolean expression.

Let us consider the combinatorial circuit as

S

The Boolean expression to the above circuit is given as ((x; A x5) v (x5 A %)) .

X1—

X,

X,  e—

0 U

X, —

8.4.1 Theorem

If A, vand’ are connectives defined earlier, then the following properties hold.
(z) Associative Laws: For all a, b, c € {0, 1}
(@anb)arc=anbrc) and
(@avb)ve=av(bve)
(1) Identity Laws: For all a € {0, 1}
(arl)=a and (av0)=a
(7ii) Commutative Laws: For all a, b € {0, 1}
(@anb)=(bAra) and
(avb)=((bva)
(fv) Complement Laws: For all a € {0, 1}
(@ana’)=0 and
(ava)=1
(v) Distributive Laws : For all a, b, ¢ € {0, 1}
avbac)=@vbdb)a(ave) and
arbve)=(@aanb)vianc)
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Proof: Proofs of (i), (ii), (iii) and (iv) are immediate consequences of the definitions. We
prove only the first distributive law. Here we simply evaluate both sides of law for all possible
values of a, b, ¢ € {0, 1} and verify that in each case we obtain the same result.

We must show that av b Ac)=(avb)alave)

a b c (b rc) av(bac (a vb) (@ ve) (@ vb) A(a vc)
1 1 1 1 1 1 1 1
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
1 0 0 0 1 1 1 1
1 1 0 0 1 1 1 1
1 0 1 0 1 1 1 1
0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
Therefore, av®ac)=(avb)alave)

8.4.2 De-Morgan's Laws

If x4, x4 are bits, i.e. xq, x4 €{0, 1}, then
@) (1 Ax9) =27 vy
@) (g vy =x1" Axy
Proof: We prove only the first De-Morgan’s Law.

i.e. (g Axg) " =21" vy
Construct the logical table.
xX; | % (x; Ax9)” X7 x| x vy’
1 1 0 0 0 0
1 0 1 0 1 1
0 1 1 1 0 1
0 0 1 1 1 1
Therefore, (X1 Ax9) =21 Vg

H 8.5 EQUIVALENT COMBINATORIAL CIRCUITS

Two combinatorial circuits, each having inputs x;, x, .... , x,, are said to be equivalent if they
produce the same outputs for same inputs, i.e., the output for both the circuits remains same
if the circuits receive same inputs.

Consider the following combinatorial circuits.



Boolean Algebra 153

=) {>< Y _D— Y.
X ]
— .

Figure 1 Figure 2
The logic tables for both the circuits are given below, which are identical.

X1 | X2 | N1 X1 | X2 | Yo
11110 11110
1101 1,01
0|1]1 011
0]0]1 001

From the logic tables it is clear that both the combinatorial circuits are equivalent.

N 8.6 BOOLEAN ALGEBRA

A Boolean algebra B consists of a set S together with two binary operations A and v on S, a
singular operation ' on S and two specific elements 0 and 1 of S such that the following laws

hold. We write B = (S, A, v, ’, 0, 1}.
(@) Associative Laws: For all a,b,ce S
(anb)rc=an(bnac)
and (@avb)ve=av(bve)
(b) Commutative Laws: For alla,b e S
(@anb)=0Bra)
and (@avdb)=(bva)
(¢) Distributive Laws: For all a,b,ce S
anbve)=(@nrnb)vianrc)
and avbac)=(avbd)alave)
(d) Identity Laws: Forall a e S
(@anl)=a and (av0)=a

() Complement Laws: Forall ae S
(@ara’)=0 and (@va’)=1

8.6.1 Theorem

In a Boolean algebra; if (a vb) =1 and (a A b) =0, then b =a’,i.e. the complement is unique.
Proof: Supposethat(avbdb)=1and(aArb)=0

b=bv0) [Identity Lawl]

Now
[Complement Law]

=bvanra)
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=(bv a)abv a)
=(av b)Abv a’)
=1A(bva)
=bva’)

This implies b=(va)

Againa’ =(a’v0)
=a’v(aAb)
=@’ va)ala’vb)
=1A(a’vb)
=(a’vb)
=bva’)

This implies a’=bva’)=b

8.6.2 Theorem

In a Boolean algebra B = (S, v, A, ", 0, 1) ; the following properties hold.

(@) Idempotent Laws: For all x € S

xvax)=x and (Ax)=x
(b) Bound Laws: Forallx e S

(xv1l)=1 and (xA0)=0
(c) Absorption Laws: For allx,y e S

xAalxvy)=x and xv(xAy =x
(d) Involution Laws: Forallx € S
(x)" =x

(e)0and1Laws:0’=1and 1’=0
() De Morgan’s Laws: For allx,y € S

xAy) =x"vy
and xvy) =x"ny
Proof: (a) x=xvO0
=xv (X Ax)
=@xvx)alxvx)
=xvx)al
=(x vx)
Therefore, xvx)==x
Again x=x A1l
=xAlxvx)
=(xArx)VvxAx)
=xAx)v0
=(x Ax)
Therefore, xAx)=x
b) xv)=@xv1)al

=(xv1lAalxvx)

[Distributive Law]
[Commutative Law]
[Given condition]
[Identity Law]

...@)
[Identity Law

~
~

[Given condition
[Distributive Law

]
]
]
[Complement Law]
[Identity Law]
[Commutative law]
]

[Equation 1

[Identity Law]
[Complement Law]
[Distributive Law]
[Complement Law]
[Identity Law]

[Identity Law]
[Complement Law]
[Distributive Law]
[Complement Law]
[Identity Law]

[Identity Law]
[Complement Law]
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Therefore,
Again,

Therefore,

@)

Therefore,
Again,

Therefore,
(d)

ie.
Also,

ie.,
Thus we have

=(xvArx)vxv1)ax)

=((xArx) v Ax)Vv(xAax)v(Aax))
=@xv@Aarx)vxax)v(Aax))
=@xvx)vxax)vx))

=xvx)v(Ovx)
=xv(0vx)
=(xvx)
=1
xvl)=1
xA0)=xA0VO
=xA0)vxAax)

=((xA0)v)A(xA0)vx)
=((xvx)AOva) Allxvx)AOvx))
=((@xvx)rx)Allxvx)ax)
=xArx)A((xvx)Aax)

=@ Ax)A((xAx)vX'AX))
=xA(xAx)vxAx))

=x A0V (X'Ax))
=xA(0vx)
=x AX
=0
xA0)=0
xAlxvy)=@v0O)alxvy)
=xv(O0Ay)
=xv(yna0)
=xvO0
=x
xAlxvy)=x
xvxay)=@Aalvixay)
=xA(lvy)
=xA(yv])
=xAl
=x
xv@xAay) =x
Xvx=x v
=1
x’vx=1
X Ax=x Ax
=0
X Ax=0
x’vx=1landx ' Ax =0

[Distributive Law]

[Idempotent Law]
[Identity Law]
[Complement Law]
[Idempotent Law]
[Identity Law]
[Complement Law]
[Identity Law]
[Complement Law]
[Distributive Law]

[Identity Law]
[Idempotent Law]
[Distributive Law]
[Idempotent Law]
[Complement Law]
[Idempotent Law]
[Identity Law]
[Complement law]
[Identity Law
[Distributive Law

]

]

[Commutative Law]
[Bound Law]
[Identity Law]
[Identity Law
[Distributive Law

]

]

[Commutative Law]
[Bound Law]
[Identity Law]
[Commutative Law]
[Complement Law]

[Commutative Law]
[Complement Law]
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Therefore, x=@") ie &) =x
(e) We know that ovl)=(1vo=1
i.e. (ovl=1

Again by Theorem (0A1)=(1A0)=0

Thus we have (Ov1l)=1and(0Al1l)=0

Therefore, 1=0" and 0'=1
Similarly we also have(lv0)=1and (1A0)=0
Therefore, 0=1 and 1'=0

() Let a=xAy)and b = (x'vy’)
Now (avb)=@xAy)vbd

=(xv b)Alyv d)
=@v@vyNa yvvy))
=((xvax)vy)a yvx'vy))
=(Avy)a (yv'vy))

[Distributive Law]

[Associative Law
[Complement Law

—(1vy) A (yv (' va)
=1vy)a (yvy)va)

]
]
[Commutative Law]
]

[Associative Law

=(1vy)a(lvx) [Complement Law]

=1Aa1 [Bound Law]

=1 [Idempotent Law]
Again, (@anb)=@Ary) A@'vy)

=@ Ay Ax)VvxAy)AY) [Distributive Law

]
=((yAx)Ax) Vv (xAy) Ay) [Commutative Law]
]

=(yA@AX)DVAYAy)) [Associative Law
=(yA0)vxAO0) [Complement Law]
=0vO0 [Bound Law]
=0 [Idempotent Law]
Therefore, (avb)=1 and (aAb)=0
This implies that b=a" ie. a'=b
ie. xAy) ='vy)

Similarly the other De Morgan's law (x vy) ’ = (x" Ay’) can be proved.

N 8.7 DUAL OF A STATEMENT

The dual of a statement involving Boolean expressions is obtained by replacing 0 by 1, 1 by O,
A by v, and v by A. Two Boolean expressions are said to be dual of each other if one expression
is obtained from other by replacing 0 by 1, 1 by 0, A by v, and v by A.

Consider the statement (x A y)" = x’vy’. The dual of above statement is (x vy) =x" Ay’
Similarly the Boolean expressions (x A 1) =x and (x v 0) = x are dual of each other.

8.7.1 Theorem

In Boolean algebra, the dual of a theorem is also a theorem.
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Proof: Suppose that T is a theorem in Boolean algebra. Then there is a proof P of T
involving definitions of a Boolean algebra. Let P, be the sequence of statements obtained by
replacing 0 by 1,1by 0, A by v and v by A. Then P; is a proof of the dual of T.

m 8.8 BOOLEAN FUNCTION

Let B=(S, v, A,”’, 0, 1) be a Boolean algebra and let X (x;, xg, %3, ...., x,,) be a Boolean
expression in 'n'variables. A function f: B” — B is called a Boolean function if f is of the form

[, X9, % g5 ceey X)) = X (%, X9y X g5 eey X))
Let us consider the example of a Boolean function f': B> >B; B= {0, 1} defined by
f(xl7x27x3) =x1/\(x2v 3?3)
The inputs and outputs are given in the following table.

X1 X2 X 3 flaxg x g x3)
1 1 1 1
1 1 0 1
1 0 1 0
0 1 1 0
1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 0

8.8.1 Representations of Boolean Functions

We have seen that Boolean functions are nothing but the evaluation functions of Boolean
expressions. It is also to be noted that two Boolean expressions give rise to the same evalua-
tion function if and only if they are equivalent. Therefore we identify a Boolean function with
any of the equivalent Boolean expressions, whose evaluation function gives it.

This gives rise to the representation of a Boolean function. There are several ways for
representing Boolean functions. These are

(@) Tabular Representation

() n Space Representation

(¢) Cube Representation

Here we will discuss only tabular representation.

Tabular Representation : We know that, a Boolean function is completely determined by
its evaluation over any Boolean algebra. In tabular representation, the procedure is very
clear. We consider a row R of the table where the output is 1. We then form the combination
(X1 Axg AXg A ....Ax,)and place a bar over each x; whose value is 0 in row R. The combination
formed is 1 if and only if x; have the values given in row R. We thus OR the terms to obtain the
Boolean expression.

To clear the procedure let us consider the Boolean function given by the following table.
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X1 X x3 f(xp xg x3)
1 1 1 1< Rowl
1 1 0 0
1 0 1 1 < Row 3
0 1 1 0
1 0 0 0
0 1 0 1 < Row 6
0 0 1 0
0 0 0 0

From the table it is clear that, the output is 1 for the rows 1, 3 and 6. Consider the first row
of the table and the combination is (x; Axg A x3) as x; =x9 =x3 = 1. Similarly for third row of

the table we may construct the combination (x; A x4 A x3) asx; =1,x, = 0,3 = 1. Thus for sixth

row the combination is (x; A x4 A %3 ).

Therefore, the Boolean function f (x4, x4, x5) is given as

@, 09, x8) =@ AX g ARV (] AXgAXg) V(X AXg AXg).

H 8.9 VARIOUS NORMAL FORMS

In this section we will discuss about two normal forms. i.e. Disjunctive normal form and
Conjunctive normal form.

8.9.1 Disjunctive Normal Form

A Boolean function f: B* — B which consists of a sum of elementary products is called the
disjunctive normal form of the given function f.

Let f: B® - B is a Boolean function. If f is not identically zero, let A;, Ay, As, .... , A,
denote the elements A; of Bj , for which f(A)) = 1,
where A, =(ay,aq,.....a, ).
For each A; set m;= 1A Yo AY3 A ccee A V)
x; if a; =1
where, Yi= {x ifa; =0
Then f (xq, %9, X3, ... , X,) = M1 V Mg VMg Vv .... vm, . This representation of a Boolean

function is called the disjunctive normal form.
Let us consider the Boolean function (x; @ x5). The truth table for this function is given
below.

x; x; (x; @xg)
1 1 0
1 0 1
0 1 1
0 0 0
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The disjunctive normal form of this function is given as

(xl @xZ) = (xl A.’)_Cz) \% (J_Cl /\xz)

8.9.2 Conjunctive Normal Form

A Boolean function f: B* - B which consists of a product of elementary sums is called the
conjunctive normal form of the given function f.
Let/: B"— B is a Boolean function. If/is not identically one, let A;, Ay, A;, ...., A;, denote

the elements A, of Bj , for which f(A;) =0,
where A =(aq, a9, ag,....... a,).
For each A; set
M, =(@1vyavysV...v ¥,)

x; if ;=0
here, =4 !
v Vi {xi’ifaizl
Then [ (xq, %9, X3, ... , x ) = M A Mg A Mg A .... A M, . This representation of a Boolean

function is called the conjunctive normal form.
Let us consider the Boolean function (x; @ x5). The truth table for this function is given
below.

x; x; (x; @xg)
1 1 0
1 0 1
0 1 1
0 0 0

From the table it is clear that, the output is O for the rows 1 and 4. Consider the first row of
the table and the combination is (x; v x;). Similarly for the fourth row the combination is
(xx1 V x9). So the conjunctive normal form for this function is given as

(X1 @ xg) = (7 V) A Vay)

Note: A term of the form (y; A ¥9 Ay3 A ....A ¥,), Where each y; is either x; or x; is called

a minterm where as a term of the form (y;v y,vy; Vv ....v ¥,), where each y; is eitherx; or x;

is called a maxterm.

® SOLVED EXAMPLES o

Example 1 Construct an AND gate using three NOR gates.
Solution : The output to an AND gate is (x A y), if the inputs are x and y. The output to a

NOR gate is (x vy ), if the inputs are x and y. The gating network is given below.
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From the diagram given above it is clear that the output to the first NOR gate is (x v x) = x.

X E
y E
Similarly the output to the second NOR gate is ( yVvy ) =y . Therefore the output to the final

NOR gate is (x A y).
Example 2 Construct an OR gate using three NAND gates.
Solution : The output to an OR gate is (x v y), if the inputs are x and y. The output to an

NAND gate is (x A y) , if the inputs are x and y. The gating network is given as below.
T )
0 -

Example 3 Describe a gating network corresponding to the statement (x .y) + (y . 2) + (z . x).
Solution: Given statement is (x.y) + (y . 2) + (z . x). The gating network is given as

= -
-

Example 4 Describe a gating network corresponding to the statement

(x_+y) (z.ou)+ (ﬂ) (z+u)

Solution: Given statement is (x + y) (z.u)+ (x_y) (z+u). The gating network is given as

below.
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— -

Example 5 Describe the output of the following gating network.
X y z

VISl

v

VoY

— -

1

i

Solution : Consider the gating network given above. The output to the above gating
network is given as

(3.2)+((x+).2) = yz+(x+y)+z [De Morgan’s Law]
=yz4+X.y+2 [De Morgan’s Law]
=yz+xy+z

Example 6 Construct a gating network using inverter and OR gate corresponding to the
statement (x.y)+(y.z) +(z.x).
Solution : Given statement is (x .y) + (y . 2) + (z . x). The gating network is given below.
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X y z

Example 7 Find the value of the Boolean expression given below for x=1,y=1and z = 0.

ANV EATIIV (X ATV (X AZ))
Solution : Given that the value of the inputs arex =1,y = 1 and z = 0. Now,the value of
(x Ay)is 0
The value of (y v (x Ay))is 1
The value of (x A (y v (x Ay )))is 1

Similarly, the value of the (x Az) is 0

The value of (x AY)v(xAaz))is O
So, the value of the Boolean expression

@Ay vExaAy)))vlx Ay)vixaz))is 1.
Example 8 Construct an AND gate using inverters and three NOR gates.
Solution: Output to an AND gate is (x Ay) or xy, if the inputs are x and y. The output to a

NOR gate is (x v y), if the inputs are x and y. The gating network is given below.
x oy

) —

Example 9 Write the Boolean expression that represents the combinatorial circuit, write the
logic table and write the output of each gate symbolically.
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=D
Z_D_

5

Solution: Given the gating network as below.

X —

Yy —

(xAy)

The Boolean expression that represents the combinatorial circuit is ((x A ¥) vz). The logic

table is given as below.

x y z (x Ay) x Ayvz
1 1 1 1 1
1 1 0 1 1
1 0 1 0 0
0 1 1 0 0
1 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 0 1

Example 10 If(x +y)
Solution : Given that
And

Now,

Therefore,

=(x+z)and (x+y) =(x"+2), theny =z.

x+y)=@+2z) le. (@vy=kvz)
@+y)=&"+2) ie. vy = vz)
y=yvO0
=yvxax)
=yva)alyvx)

=@ vy)a@vy)
=(xvz)Alx'vz)
=(zvx)alzvx)
=zvxAx)
=zv0
=z

y=z.

[Identity Law
[Complement Law
[Distributive Law

—_— e

[Commutative Law
[Given Condition]
[Commutative Law
[Distributive Law
[Complement Law
[Identity Law

—_— e —

Example 11 Given the Boolean function f, write f in its disjunctive normal form.
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x y z fix, y, 2)
1 1 1 1
1 1 0 1
1 0 1 0
0 1 1 0
1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

Solution From the table given below it is clear that, the output is 1 for the rows 1, 2, 6 and
8. For the first row the combination is (x Ay A z) . Similarly for rows 2, 6 and 8 the combina-

tions are (x Ay AZ), (X AyAz) and (x Ay A z) respectively.

Thus, the disjunctive normal form to the above function fis given as

[, y,2) =@ Ay rz2)vV@AyAZ) VX AYAZ) VX AY AZ)

X

y flx, v, 2)

1<~ Row 1

1 < Row 2

0

0

0

1<~ Row 6

ClO|H|O|H|H|H

O|lR | O|R|[O|H|F
==l = R

0

o
o

1<~ Row 8

Example 12. Show that the combinatorial circuits (a) and (b) are equivalent.

@ X, > i>_yl
Xy —]
X3

®) Xy

X3

X, __/ {>° _D—yz

Solution: Given combinatorial circuits are

(@ X,

)

X3

> =
e
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®)

X1 — {>c

=
X3
The output y, for combinatorial circuit (a) is given as

y1 =% V(Xy vViag) = (X vXy) Vg =(x1 /\xz)vx3

The output y, for combinatorial circuit (b) is given as y, = (xl /\xz)vx3 . Hence, the combi-

natorial circuits () and (b) are equivalent.
Example 13 Reduce the following Boolean products to either 0 or a fundamental product.
(@ xyxz B)xyzyx

Solution: (a) xyxz=xx"yz [Commutative Law]
=0yz [Complement Law]
=0 [Bound Law]

ie. xyxz=0

®) xyZyx=xyyz «x [Commutative Law]
=xyz'«x [Idempotent Law]
=xyxz [Commutative Law]
=xxyz [Commutative Law]
=xyz [Idempotent law]
ie. xyzZyx=xyz
Example 14 Given the Boolean function f, write f in its conjunctive normal form.
x y z flx, y, 2)
1 1 1 1
1 1 0 1
1 0 1 0
0 1 1 0
1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

Solution Given the Boolean function f as below.

x y z flx, y, 2)
1 1 1 1

1 1 0 1

1 0 1 0 « Row 3
0 1 1 0 < Row 4
1 0 0 0« Row 5
0 1 0 1

0 0 1 0 < Row 7
0 0 0 1
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From the table it is clear that, the output is O for the rows 3, 4, 5 and 7. For the third row
the combination is (xvyvz). Similarly for rows 4, 5 and 7 the combinations are (xvyvz),
(xvyvz) and (*VYV2) respectively.

Thus, the conjunctive normal form to the above function is given as

fle,y,2) = @XvyvaalxvyvzIaxvyvz)alxvyvz).
Example 15 Design a combinatorial circuit that computes exclusive OR; XOR of x and y.

Solution : Let the inputs to the XOR gate be x and y. The logic table for XOR gate is given
below.

x y x @y
1 1 0
1 0 1
0 1 1
0 0 0

So, the disjunctive normal form of this function is given as
x@y=@Ay)vix’ Ay)

The combinatorial circuit corresponding to (x @ y) is given below.
X Yy

(x@y)

=
=

Example 16 Find the disjunctive and conjunctive normal form of the given function and
draw the combinatorial circuit corresponding to the disjunctive normal form.

x y z flx, y, 2)
1 1 1 0
1 1 0 0
1 0 1 0
0 1 1 1
1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 0

Solution Given Boolean function is
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flx, y, 2)

0

0

0

1< Row 4

1<~ Row 5

1<~ Row 6

olo|lo|lr|k|r|~]| &

OlRR|olo|m|H|<

Hlolr|o|~|lo|R]| n

1<~ Row 7

0

0

0

0

From the table it is clear that the output is 1 for rows 4, 5, 6 and 7. For the fourth row the
combination is (x A y’A z’). Similarly the combinations (' Ay Az), @ Ay Az’),and (x" Ay'Az)
are for rows 5, 6 and 7 respectively. So, the disjunctive normal form to the above function is

given as

o, y,2) =@ Ay rA2Z)V @ AyArz2) vV Ay AnzZ) v & Ay Az).
Similarly, corresponding to the output 0 for rows 1, 2, 3 and 8, the conjunctive normal form

to the above function is given as

fl,y,z2)=@vyv 2Z)A@ vyvz)al@ vyvzZ)alxvyva).
The combinatorial circuit corresponding to the disjunctive normal form is given below.

X y z

[RARi kA

o
-
-
o

= -

Example 17 Find the disjunctive normal form of the function using algebraic technique.

fo, y)=(x vy Alxvy)

Solution : fa,y)=@v y)Alx'vy’)

=@A@vy)Dv (yAalx'vy’)
=@ AXIWV @AYV YAV AY)

=0v@Ay)vViyAx)vO

= @Ay)vy Ax)
ie. fle,y) =@ Ay)v(y Ax’)
Which is the disjunctive normal form of the function f (x, y).

Distributive Law]
Distributive Law]
Complement Law]
Identity Law]

—_—— — —

Example 18 Find the disjunctive normal form for the following combinatorial circuit.
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By

—— >
Solution Given that the combinatorial circuit as

X

y

— >

The output of the above combinatorial circuit is given as f(x, y,2) = (x Ay) A (y v 2). The
logic table for the above expression is given below. From the table it is clear that the function
has output 1 for rows 1 and 2. For the first row the combination is (x Ay A 2z) where as for

second row the combination is (x Ay A 2°). Thus, the disjunctive normal form for the above
function is given as

fle,y,2)=(@xAyAn 2)vAy A 2)

x y z x Ay) yvz) | Ay Aly vz)
1 1 1 1 1 1
1 1 0 1 1 1
1 0 1 0 1 0
0 1 1 0 1 0
1 0 0 0 0 0
0 1 0 0 1 0
0 0 1 0 1 0
0 0 0 0 0 0
® EXERCISES o

1. Find the disjunctive normal form of each function using algebraic technique.
(@ flx,y)=xvxAy)
®) flx,y,z)=xvyanlvz)

©) flx,y,z)=xv(y’'vxy vxz))

2. Reduce the following Boolean products to either 0 or a fundamental product.
@ xyzy ®) xyz'yx'z © xy zxy d xyz'ty't
e xy xz'ty

3. Write the logic table for the circuit given below.
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0

4. Find the disjunctive normal form of a Boolean expression having a logic table the same
as the given table and draw the combinatorial circuit corresponding to the disjunctive
normal form.

x y z f
1 1 1 1
1 1 0 1
1 0 1 0
0 1 1 0
1 0 0 1
0 1 0 0
0 0 1 1
0 0 0 0
5. Are the combinatorial circuits equivalent? Explain.
@) X
(a)
y >
x >
(b)
y

@)

X

(a) y —_—
X —

(b)
y —

T
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>

S

6. Find the Boolean expression in disjunctive normal form for the circuit given below.

Y
e
1)

7. Find the disjunctive normal form of each function corresponding to the logic tables
given below.

(@
x y fxy)
1 1 1
1 0 0
0 1 1
0 0 1
®) x ¥ f(x, y)
1 1 0
1 0 1
0 1 0
0 0 1
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© x y z fix, y, 2)

1 1 1 1

1 1 0 0

1 0 1 1

0 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
) x y z flx, y, 2)

1 1 1 0

1 1 0 0

1 0 1 1

0 1 1 0

1 0 0 1

0 1 0 1

0 0 1 1

0 0 0 1

8. Find the conjunctive normal form of each function given in question 7.
9. Draw the logic circuit (Combinatorial circuit) with inputs x, y, z and output Y which
corresponds to each Boolean expression.
@D Y=xyz+xyz' +xyz
@ Y=xyz+xz'+y' z
10. Construct a combinatorial circuit that represents the following Boolean function.

x y z fix, y, 2)
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1
1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 0

11. Write the dual of each Boolean equation.
(@ (@rl)v(Ova)=0
®) an(a’vb)=anb

) av@arb)=avb
d (@v1l)a(av0)=a
@ @ra)viieanl)=a
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@ @vb)abve)=(a@arc)vd
[Hint: To obtain the dual equation, interchange v and A, and interchange 0 and 1]
12. Discuss a XOR gate with four inputs x, y, z and ¢.
13. Express the following Boolean expression flx, y, z) as a sum of products and then in its
complete sum- of- products form.

(@ flx,y,2)=x(xy +xy +y 2)

®) fx,y,2)=&"+y) +y' 2

© fx,y,2)=+y2z)@y+ 2)
14. Express the output Y as a Boolean expression in the inputs «x, y, z, ¢t and u for the logic

circuits given below.

X

(@) v

VY

e
S HD—
) o
. —

© X
y —
e Y

)
t -
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Introduction to Lattices
o o

H 9.0 INTRODUCTION

In this chapter, we shall introduce the fundamental concepts of Lattices. After defining them
as particular kind of poset (partial ordered sets) we shall show that they could be introduced
as algebraic systems possessing some specific properties. Here we will discuss Lattices, Dual-
ity principle, Distributed lattices, Bounded lattices, Complemented lattices and some special
kind of lattices.

H 9.1 LATTICES

Lattices is a partially ordered set (poset) in which every two elements have a unique least
upper bound (L.U.B.) and a unique greatest lower bound (G.L.B.) i.e. a lattice is a poset { L. , <)
in which every subset {a, b} has a least upper bound and greatest lower bound. Where

LUB({a,b)=avb (join of @ and b)

G.LB{a,b})=a b (meet of @ and b)
Let us consider the poset (N, <); where N is a set of natural numbers and <is the ordinary
less than or equal to relation. To show (N , <) is a lattice, it is sufficient to define the
L.U.B.and G.L.B. in N.
Now, Leta,be N
L.U.B.({a,b}) =(a vb) =Max (a, b) and
G.L.B. ({a, b}) = (a Ab) = Min (a, b)
Therefore, (N, <) is a lattice.

9.1.1 Theorem

For a lattice (B, <);a,be B
a<(avb)and(a Abd)<a.
Proof: Given (B,<)is alatticeanda ,b e B
Now, (e vb)=L.U.B. ({a, b})
i.e., (@ v b)is an upper bound of both ¢ and b.
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This implies thata < (a v d).

Again, (@ Ab) =G.L.B. ({e, b})
i.e., (a Ab)isthelower bound of botha and b.
This implies that (a A b) <a.

N 9.2 HASSE DIAGRAM

In principle, it is possible to draw a diagram which shows the order relation on a finite poset.
Let (B, <) be a poset. Define the relation<on B byx Ry if and only ifx <y but x #y forx, y € B.
Given a partial order <on B, ‘y’ is said to cover ¢’ ifx <y and there is no element ‘2’ in B such
thatx Rzandz Ry.

A Hasse diagram of a poset (B, <) is a graphical representation consisting of points labeled
by the members of B, with a line segment directed generally upward from x to wherever y
covers x.

Let us consider B = D(12); set of all positive divisors of 12. Therefore, B = {1, 2, 3, 4, 6, 12}.
Let us define the relation x R y means x is a divisor of y for x, y € B. Thus we get

R=1{(1,2),(1,3),(1,4),(1,6),(1, 12), (2, 4), (2,6), (2,12), (3, 6), (3, 12), (4, 12), (6, 12)}

From the above relation it is clear that 4 does not cover 1 because there exists 2 such that
1R 2 and 2 R 4. Similarly 6 does not cover 1, 12 does not cover 1, 12 does not cover 2 and 12
does not cover 3. Again it is also clear that 2 covers 1, 3 covers 1, 6 covers both 2 and 3 and 12
covers both 4 and 6. Therefore, the Hasse diagram is given below.

12

1

Note: We can distinguish lattices by looking at their Hasse diagrams. Because any two elements
have a common predecessor and a common successor, the Hasse diagram of a lattice always is made up
as a combination of closed polygons and thus its name lattice. A poset which has polygons open above
or below is not a lattice because of lack of supremum or infimum.

Consider the following Hasse diagram.
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(Figure 1) (Figure 2)

The above Hasse diagrams are posets, but figure 1 which is open above as well as open
below is not a lattice where as figure 2 is a lattice.

H 9.3 PRINCIPLE OF DUALITY

Given a valid statement for a Lattice we can obtain another valid statement by replacing the
relation < with >, join with meet and meet with join operation. This is known as the princi-
ples of duality in lattices.

9.3.1 Theorem

Let B be a Lattice with a, b, ¢ € B, then following properties holds.
1. Idempotent Properties
(@ (ava)=a
®) (@anra)=a
2. Commutative Properties
(@ (@avb)=0bBva)

®) (@anb)=bBnra)

3. Associative Properties
(@ avve)=(@vb)ve
®) anbarc)=(@nb)rc

4. Absorption Properties
(@ avi@anb)=a
b) an(avb)=a

Proof:

1. Idempotent Properties
(@) We know that (a v b) =L.U.B. ({a, b})

This implies that a<(ava) .. (@)
Again, a<a
This implies (@ava)<a ... (@)

Combining (i) and (if) we will get
(ava)=a
(b) Applying the principle of duality, we have,
(@arna)=a
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2. Commutative Properties
(@ We know that (avbd)=L.U.B. ({a, b})

and (bva)=LUB.{b,a})
=L.UB. (a,b})
=(avb)

Therefore, (avb)=0bva)

(b) Applying the principle of duality, we have
(@nb)=(0bnra)

3. Associative Properties
(@) Let avbve=d

and (avb)vc=e
This implies thata <d and (b ve¢)<d ["a<(avbd);b<(avb)

a<d,b<d,c<d
(avb)<dandc<d
(@vb)ve<d
e<d .. @
(@avb)vcec=e
(avb)<e,c<e
a<e,b<e,c<e

a<e,(bvec)<e

i.e.

ki

av(bve)<e
d<e ... @)
Therefore from equations (i) and (i) we have d =e

L LUl
]
=]

ie. avve)=(avbd)ve
(b) Applying the principle of duality, we have
anbac)=(@rdb)ac

4. Absorption Properties
(@ We know thata v (a A b) =L.U.B. ({a, a A b})

This implies that a<av(anb) .. (@)
Again, a<a and (aabd)<a [ (@ Anb)=G.L.B. ({a, b})]
= aviaab)<(ava)=a

= av(arb)<a ... (@)

Combining equations (i) and (ii) we get
a=av(anb)
(b) Applying the principle of duality, we have

anr(avb)=a
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9.3.2 Theorem

Let (B, <) be a lattice. For anya, b, ¢, d in Lattice Bifa <b and ¢ <d, then (a v¢)<(b vd) and
(@anrnc)<(bad).
Proof: Given (B, <) is a lattice and a, b, ¢, d € B.

Suppose that, a<bandc<d

We know that (bvd)=L.U.B. ({b,d})

This implies that b<(bvd)andd<(bvd)

= a<(bvd)andec<(bvd) [ a<bandc<d]

So, (b v d) is an upper bound of a and c. Again (a v ¢) is the least upper bound of a and c.
Therefore,

(@ave)<bvd)
Again, we know that (a Ac) = G.L.B. ({a, ¢})
This implies that (@nc)<aand(anc)<c
= (@nc)<band(anc)<d [+ a<bandc<d]

Therefore, (a A c) is the lower bound of b and d. Again (b A d) is the greatest lower bound of
b and d. Hence, we get

(@nc)<(bAd)

9.3.3 Theorem

Let (B, <) be a lattice. For any a, b, c € B we have

(o) If a<b,a<c,

then as(®vc)anda<(b ac)
b) It a>b,a>c,

then az2(bac)anda=(bve)

Proof: (a) Given that (B, <) be a lattice and a, b, ¢ € B.
Suppose that a < b, a <c. This indicates that a is a lower bound of {5, c}.

Therefore, a<G.LB.({b,chH)=0bnrc)
ie. a<(®nac)

Again, (bve)=L.UB.({b,c})

This implies that bs(bve).

Also by hypothesis a<b.

Therefore, we have a<b<(bveo).
ie. a<s(bve).
i.e. a<b,a<c,

= a<(vc)anda <(b Ac).

(b) On applying the principle of duality we can prove thatifa >b,a >¢,
then a>((b Arc)anda =2(bve).

N 9.4 DISTRIBUTIVE LATTICE

A lattice B is said to be distributive lattice if for a, b, ¢ € B we have
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(@) arnbve)=@ab)vianc)

) avbac)=(@vbd)alave)
If a lattice is not distributive then it is called “non distributive” lattice.

9.4.1 Theorem

If the meet operation is distributive over the join operation in a Lattice, then the join opera-
tion is also distributive over the meet operation and vice versa.

Proof: Let (B, <) be a Lattice and the meet operation is distributive over the joint opera-
tion.

Le anbve)=(anb)vianc),a,b,ce B
Now, (avb)alave)=[lavb)ralvil@avd)Aac]
=av[l@avd)ac] [Absorption Law]
=avil@anc)v(bnac)
=flav@nrc)vbnac) [Associative Law]
=av(bnac) [Absorption Law]

Therefore, avbac)=(avbd)alave)

9.4.2 Theorem

In any distributive lattice (B, <), the joint cancellation law holds.

ie If (avb)=(ave)and (@ Ab)=(a rc)
then b=c.
Proof: Suppose that (a vb)=(avc)and(a Abd)=(ac)
Now, b=bv(anrb) [Absorption Law
=bvianc) [Hypothesis

=bva)rbve)
=(@avb)abve)
=(@ve)adbve)
=(anb)ve
=(arc)ve
=c

Therefore, b=c.

9.4.3 Theorem

[Distributive Law

[Hypothesis
[Distributive Law
[Hypothesis

]

]

]

[Commutative Law]
]

]

]

[Absorption Law]

In a distributed lattice (B, <) the following equality holds for alla, b,c € B

(@anb)varce)vicrna)=@avb)abve) alcva)
Proof: Suppose that B be a distributive lattice with a, b, ¢ € B.
Now, (@ ab)vibarc)vicrna)=[{arb)vbla{lanb)vellvicaa)
=[bAllanb)vellvicna) [Absorption Law]
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=[baflave)advellvicra) [Distributive Law]
=llave)afbabvellvicra) [Associative Law]
=[lave)ablvicrna) [Absorption Law]
={lave)vicra)albvicra) [Distributive Law]
=(cva)abve)abva) [Distributive Law]

=(avb)abvelalcva)
Therefore,

(anb)vbac)vicna)=@avb)abve)alcva)

H 9.5 BOUNDED LATTICE

A lattice B is said to be bounded if it has a lower bound and an upper bound. The universal
lower bound and the universal upper bound are denoted by 0 and 1 respectively.

9.5.1 Universal Lower Bound

Let (B, <) be a lattice. An element a € B is said to be universal lower bound if
a<bVbeB.

9.5.2 Universal Upper Bound

Let (B, <) be a lattice. An element a € B is said to be universal upper bound if
b<aVbe B.

9.5.3 Theorem

The universal lower bound and the universal upper bound are unique.

Proof: Let us first show that the universal lower bound is unique. Suppose two the con-
trary there exists two universal lower bound ¢ and b of the lattice (B, <).

Therefore, a,b € B.
Now as ‘@’ is the universal lower bound we have

a<b .. @
Similarly, as ‘6’ is the universal lower bound we have

b<a. .. (@)
Hence, from equations (i) and (i7) we get

a=>b

Therefore, our supposition is wrong. Thus, the universal lower bound is unique.
Similarly, it can be shown that the universal upper bound is also unique.

9.5.4 Theorem

In a bounded lattice (B, <), the universal upper and lower bounds 1 and 0 clearly satisfy the
followings for any element a € B.
@ avl=1 @ anl=a
@) av0=a () an0=0
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Proof: (i) We know that for any lattice (B, <)

a<(avb)fora,be B

So, 1<(avl) .. (@)
Again, since 1 is the universal upper bound
(@avl) <1 ... (@)

Combining (i) and (ii) we get (a v 1) =1
(it) We know that for any lattice (B, <)
(anb)<afora,be B
So, (@nl)<a ..@)

Again, since 1 is the universal upper bound we have a < 1. Also we know that a < a.
Therefore,

(ara)<(a@anl)

ie. a<(anl) .. (@)
Combining (i) and (ii) we get (a A 1) =a
Similarly, (iif) and (iv) can be proved.

N 9.6 COMPLEMENTED LATTICE

A lattice (B, <) is said to be complemented lattice if every element in the lattice has a comple-
ment.

9.6.1 Complement of an Element

Let (B, <) be a lattice with 0 and 1 as its universal lower bound and upper bound respectively.
An element b is said to be complement of @ € B if

(@avb)=1land(anb)=0
From the commutative property, if ‘b6’ is complement of ‘a’ then ‘@’ is also complement of ‘b’.

9.6.2 Theorem

In a bounded distributive lattice, if a complement exists then it is unique.
Proof : Let (B, <) be a bounded distributive lattice.
Leta € B and a4, ay are two complements of a. Hence by definition we have

ava,=1; avayg=1
ana;=0; anay=0
Now, a;=(a;v0)=a;viaray) [ (@ Aay) =0]
=(a;va)ala,Vvay) [Distributive Law]
=1a(a;vay)
=(a; v ay)
So, a, =(a;vasy) .. (@
Similarly, ay=(ayv0)=ayvianra;) [ (@raq)=0]

=(agva)alaygvay) [Distributive Law]
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=(avay Ala;vay)
=1A(a;Vvay)
=(a;Vvay)
So, ay =(a; vay)
Therefore, from equations (i) and (ii) we get
a1 =0y
Thus, in a bounded distributive lattice, if a complement exists then it is unique.

N 9.7 SOME SPECIAL LATTICES
Here we will discuss some special type of lattices.

9.7.1 Boolean Lattice

A complemented and distributive Lattice is called a Boolean Lattice.

9.7.2 Sublattice

Let (B, <) be a Lattice. Then any nonempty subset L of B is called a sub lattice of B if
(avb)e Land(anb)e L;Va,be

In general if D(n) be a lattice and if m divides n, D(m) is a sublattice of D(n).
9.7.3 Isomorphic Lattices

Let (B, <) and (B, <) be two Lattices, then f: B, — B, is an isomorphism if
fla Ab) =fla) Afib) andfla vb) =fla) v fib) for alla,b e A

If two lattices are isomorphic as posets then they are said to be isomorphic lattices.

® SOLVED EXAMPLES

... (@)

Example 1 Show that (I ,/)is a lattice ; where I is the set of positive integers and the

relation | is defined as a | b if and only if a divides b.

Solution: Toshow (I, |)is lattice, first of all we have to show that (I, |) is a poset. Here the

relation is defined as
aRb : al|b; a,bel
i.e. aRb a divides d
Reflexive: It is clear that for everya € I, a divides a, i.e. a| a for every a € I.
Anti Symmetric: Suppose thata Rb and b Ra.
ie. adividesb and b dividesa.
This implies that a=>.
i.e.a Rband b R a implies that a = b.
Transitive: Suppose thata Rb andb Re¢
i.e. adividesb and b dividesc.

This implies b=akjandc=bky;k;andkyc 1
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Now, c=bky=a(kky).
This indicates that a divides c.
ie. aRb and b Rc implies aRe.
Therefore, (I, |) is a poset. To show it is a lattice, it is sufficient to define the L.U.B. and
G.L.B.in L.
Now, let a, be 1
LUB.({a,b}))=(@vb)=L.CM. (a,b)and
G.LB.({a,b})=(aAb)=G.C.D.(a,d)
Therefore, (I, |) is a lattice.
Example 2 For a Lattice B; a, b € B prove the following
(i) (a vb)=bifandonlyifa <b
(i) (a Ab)=aifandonlyifa <b
(iti) (a Ab) =aifandonlyif(a vb)=b
Solution Given Bis a Lattice anda, b € B
(i) Suppose that (a v b) =b.

Our claim is that a<b.

Now, (avb)=LUB. ({a,bd)

ie. a<(avb)

ie. a<b [“b=(avbd)]

Conversely, suppose that a <b.

Our claim is that (avbd)=b

Given thata <b. Also we know thatb <b. Hence it is clear that b is an upper bound ofa and
b. Again (a v b) is the least upper bound, so

(@vbdb)<b ..(D

Again since (a v b) is an upper bound of ¢ and b. So,
b<(avb) .. (2)

Hence, from equations (1) and (2) we get

(@avb)=>.
(i1) Suppose that (@anb)=a
Our claim is a<b
We know that (a Ab) =G.L.B. ({a, b})
i.e. (an b)<b
This implies that a<b [ (an b)=al

Conversely, Suppose that a <b
Our Claim is (a A b)=a.
Given a < b, also we know thata <a .

Hence it is clear that ‘a’ is the lower bound of both a and b. Again (a A b) is the G.L.B. of
both @ and b. Therefore,

a<(anb) ... (D)
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Also, (a A b) is the lower bound of @ and 4. Therefore,
(an b)<a ... (@)
Combining (i) and (ii) we get (a A b) =a.
(i1i) On combining the proofs of (i) and (ii) we can get
(a A b)=aifand only if (a vb) =b
Example 3 Let B be the power set of S = {1, 2, 3} and (B, <) be a poset defined by X <Y if X
cYfor X, Y € B. Draw the Hasse diagram of the poset (B, <.
Solution : Given that B be the power set of S = {1, 2, 3}.
Therefore, B = {0, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
Given that (B, <) be a poset. Where the relation < is defined as
XRY : XcY forX,Ye B
Therefore, the Hasse diagram is given as

{1.2}

{1,2,3}

{1} .3

{2

{2,3}

0
{3}
Example 4 Set of all positive divisors of 30 i.e. D(30), forms a poset under the relation x <y
means x divides y for x, y € D(30). Draw the Hasse diagram.
Solution : D@30)={1, 2, 3, 5, 6, 10, 15, 30}.
Let us define the relation x R y means x is a divisor of y for x, y € D(30). Thus we get
R=1{(1,2),(1,3),(,5),(1,6),(1, 10), (1, 15), (1, 30), (2, 6), (2, 10),(2, 30),
(3, 6), (3, 15), (3, 30), (5, 10), (5, 15), (5, 30), (6, 30), (10, 30), (15, 30)}
From the above relation it is clear that 6 does not cover 1 because there exists 2 such that
1R 2 and 2 R 6. Similarly 10 does not cover 1, 15 does not cover 1 and 30 does not cover 1, 2,
3, 5. Again it is also clear that 2 covers 1, 3 covers 1, 5 covers 1 and so on.
Therefore, the Hasse diagram is given below.
30

N
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Example 5 Draw Hasse diagrams of all lattices with four elements.
Solution: Hasse diagrams of all lattices with four elements are given below.
®

[ J
Example 6 If B = D(24) be a lattice, then find all the sublattices of D(24). Also draw the

Hasse diagram.
Solution: Given that B =D(24) be a lattice. Where D(24) is the set of all positive divisors of
24. Therefore,

D24) =11, 2, 3, 4, 6, 8, 12, 24}

The Hasse diagram for the above lattice is given below.
24

1
The sublattices of D(24) are D(6) = {1, 2, 3, 6}, {2, 4, 6, 12} and {4, 8, 12, 24}. Another
sublattice is D(12) = {1, 2, 3, 4, 6, 12} as 12 divides 24.

® EXERCISES ®

1. Let n be the positive integer and D(n) be the set of all positive divisor of n, then show
that D(n) is a lattice under the relation of divisibility.

2. Let A={1,2,3,4,5,6}. Wedefinex Ry as x <y if x divides y. Draw the Hasse diagram
of the poset (A, ).

3. Draw the Hasse diagram of (P(A), ). Where A = {1, 2} and P(A) is the power set of A.

4. Draw the Hasse diagram of (P(A), ). Where A = {0, 1, 2, 3} and P(A) is the power set of A.

5. Draw the Hasse diagram of (D(n), |) forn = 6, 16, 24, 32, 100.
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Draw Hasse diagrams of all lattices with five elements.

Show that set of all positive divisors of 105 i.e. D(105), forms a poset under the relation
x <y means x divides y for x, y € D(105). Draw the Hasse diagram.

8. Show that the poset with the Hasse diagram given below is not a lattice.

o

9. Prove that for all ¢, b, ¢ in a lattice B,
[@rb)viarc) All@anb)v(bac)

10. If B = D(30) be a lattice, then find all the sublattices of D(30). Also draw the Hasse
diagram.
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Graph Theory
J

H 10.0 INTRODUCTION

Graph theory has applications in many areas like Mathematics, Computer Science,
Engineering, Communication Science etc. Oystein Ore, the prominent graph theorist and
author of the first graph theory book said in that “the theory of graphs is one of the few fields
of mathematics with a definite birth date”. Graph theory is considered to have begun in 1736
with the publication of Euler’s solution of the Konigsberg Bridge problem. In 1936, Denes
Konig wrote the first book on graph theory. The major developments of graph theory
occurred by the ever growing importance of Computer Science and its connection with graph
theory.

Now the question arises “what is a graph”? Consider the example. Suppose there are four
sales persons Niraj, Sriram, Debasis, Anuj and five territories T;, Ty, T3, T4, T5. Niraj is
interested to work in the territories T, Ty, T5. Sriram is interested to work in the territories
Ty, Ty. Debasis is interested to work in the territories T;, T,, T5 where as Anuj is interested
for the territories Ty, T, T5. This is explained in the following figure. This is nothing but a
graph, a concept which we are about to study extensively.

T, T, T, T, T,
N : Niraj
S : Sriram
D : Debasis
A Anyj
N S D A

In this chapter, we will study the basic components of graph theory.

H 10.1 GRAPH

A graph G consists of a finite set of vertices V and a finite set of edges E. Mathematically,
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G=(V,E)
Where, E ={(v,;, vj)| v;,v;€ Vi
Let us consider vV=A{1,2,3,4,5}
and E ={(1,2),(1,3),(2,3),(2,4), (3, 4)}.

Hence the graph G = (V, E) becomes

1 2

G:
®5
3 4

H 10.1.1 Order and Size

The number of vertices in a graph G(V, E) is called its order, and the number of edges is its
size. That is the order of G is |V | and its size |E |

Consider the following graph G

The order of G i.e. V=4
The size of G i.e. E|=8
H10.1.2 Adjacent Vertices

Two vertices v; and v; are said to be adjacent if there exists an edge (v;, v;) in the graph G(V, E).
Consider the graph G as
1 2

3
Here the vertices 1 and 2 are adjacent. Similarly, the vertices 1 and 3 are also adjacent.

H10.1.3 Parallel edges

If there is more than one edge between the same pair of vertices, then the edges are termed
as parallel edges. Consider the graph G as
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Here the edges e; and ej are parallel edges.

N 10.1.4 Loop

An edge whose starting and ending vertex are same is known as a loop. Mathematically
e = (v;,v;). Consider the graph G as

From the graph, it is clear that the edge e; is a loop.

N 10.2 KINDS OF GRAPH
In this section, we will discuss different kinds of graph.

H 10.2.1 Simple Graph

A graph G(V, E) that has no self-loop or parallel edges is called a simple graph. Consider the
graphs G; and G, as

3 4 1 2

The graph G, is not a simple graph because there exists parallel edges between the verti-
ces 1 and 2 whereas the graph G, is a simple graph.

H 10.2.2 Multi Graph

A graph G(V, E) is known as a multi graph if it contains parallel edges, i.e. two or more edges
between a pair of vertices. It is to be noted that every simple graph is a multi graph but the
converse is not true. Consider the graph G as



Graph Theory 189

u \

The above graph is a multi graph because there are parallel edges between the vertices u,
tanduv, s.

N 10.2.3 Pseudo Graph

A graph G(V,E) is known as a pseudo graph if we allow both parallel edges and loops. It is to
be noted that every simple graph and multi graph are pseudo graph but the converse is not

true.
t S
w
G:
u v

A graph G(V, E) where V is the set of nodes or vertices and E is the set of edges having
direction. If (v;, v;) is an edge, then there is an edge from the vertex v; to the vertex v;. A
digraph is also called a directed graph. Let us consider

V= {1, 2, 37 47 5} and E= {(17 2), (17 3)’ (27 3), (27 4)’ (3’ 4)7 (47 5)}
Hence, the digraph G becomes

Consider the graph G as

H 10.3 DIGRAPH

1 »>e2

\
3 Y

N 10.4 WEIGHTED GRAPH

A graph (or digraph) is known as a weighted graph (or digraph) if each edge of the graph has
some weights. Let us consider

V=I{1,2,3,4,5}and E = {e, ey, e3, e, €5}
Where e1=(1,2),e9=(1,3),e5=(2,4),e,=(3,4),e5=(4, 5)

and wley) =5, wley) =6, wleg) =1, wley) =6, wles) =3



190 Fundamental Approach to Discrete Mathematics

Hence, the weighted graph G becomes

1 5

3
m 10.5 DEGREE OF A VERTEX

The number of edges connected to the vertex v’ is known as degree of vertex ‘v’, generally
denoted by degree (v). In case of a digraph, there are two degreesi.e. indegree and outdegree.

The number of edges coming to the vertex ‘v’ is known as indegree of ‘v’ where as the
number of edges emanating from the vertex ‘v’ is known as outdegree of ‘v’. Generally, the
indegree is denoted by indegree (v) and the outdegree is denoted by outdegree (v).

Note: In case of a loop, it contributes 2 to the degree of a vertex.

H10.5.1 Isolated Vertex

A vertex is said to be an isolated vertex if there is no edge connected from any other vertex to
the vertex.

In other words a vertex is said to be an isolated vertex if the degree of that vertex is zero.

i.e. If degree (v) = 0, then v is isolated.
Consider the graph G as
w S
t
G:
®g
u '
Now, degree (u) = 2; degree (v) = 4; degree (#) = 1
degree (g) = 0; degree (s) = 3; degree (w) = 2
Therefore, it is clear that ‘¢’ is an isolated vertex.
N 10.6 PATH
A path in a graph is a sequence vy, vy, ..., 0, of vertices each adjacent to the next, and a choice
of an edge between each ‘v;” to v; , ;” so that no edge is chosen more than once.
Consider the graph G as
vy Vs,
Vs
G:
Va
V3

Here one path is U Ug Uy Ug Uy U .
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H 10.7 COMPLETE GRAPH

A graph (digraph) G is said to be complete if each vertex ‘u’ is adjacent to every other vertex
v in G.

In other words, there are edges from any vertex to all other vertices. Consider the graph G
as

Vi Vy

V4 \/3

The above graph G is a complete graph.

N 10.8 REGULAR GRAPH

A graph G (V, E) is said to be regular if the degree of every vertex are equal. Mathematically,
G is denoted as regular if

degree (v;) = degree (v)) V i, j.
Where, v;, v;€ G(V,E).
Consider the graph G as

Va Vj
In the above graph, degree (v,) = degree (v,) = degree (v3) = 2. Therefore, the graph G is
regular (2 regular). The above graph is also complete.
Consider another example G, as

Vv
1 Vo

Vy V3

Here the degree of every vertex is 3. So, the above graph is 3-regular but not complete.

H 10.9 CYCLE

If there is a path containing one or more edges which starts from a vertex ‘v’ and terminates
into the same vertex, then the path is known as a cycle. Consider the graph G as
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vy Vv,

\7 V3
In the above graph G, one cycle is v;v, v5 v4. Similarly, another cycle is v; vy V5 V4 V;.

H 10.10 PENDANT VERTEX

A vertex ‘v’ in a graph G is said to be a pendant vertex if the degree (v) =1. In case of a digraph,
a vertex ‘v’ is said to be a pendant vertex if the indegree (v) = 1 and outdegree (v) = 0. In the
graph ‘G(figure 1)’ given below, indegree of the verticesv, , v5 ,vg and v, is equal to 1 and the
outdegree is equal to 0. Therefore, these vertices are pendant vertices. Similarly, in the
graph 'G(figure 2) given below the vertices v, v and vg are pendent vertices.

Vi

Vs Ve

(Figure 1) (Figure 2)

N 10.11 ACYCLIC GRAPH

A graph (digraph) which does not have any cycle is known as an acyclic graph (digraph).
Consider the graph G as

Vi

Here, G is an acyclic graph.
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H 10.12 MATRIX REPRESENTATION OF GRAPHS

A matrix is a convenient way to represent a graph. A computer to analyze them can use such
a representation.

E10.12.1 Adjacency Matrix

The most useful way of representing any graph is the matrix representation. It is a square
matrix of order (n x n) wheren is the number of vertices in the graph G. Generally denoted by
A [a;] where a;;is the ith row and jth column element. The general form of adjacency matrix
is given as below.

a;; Q2 Qg - - . Oy
Qg1 Qg9 Qg3 . . . Qg
Q3; Qg9 Q33 . . . Q3
A=
_anl an2 an3 L ann i

1; if thereis an edge from ‘v;” to ‘v;’
where, =

0; Otherwise

This matrix is termed as adjacency matrix, because an entry stores the information
whether two vertices are adjacent or not. This is also known as bit matrix or Boolean matrix
as each entry is either 1 or 0.

Note 1. In the adjacency matrix if the main diagonal elements are zero, then the graph is
said to be a simple graph.
2. In case of a multi graph the adjacency matrix can be found out with the relation.
n; n be thenumber of edges from ‘v;” to‘v;’
%= {O; Otherwise

3. In case of a weighted graph the adjacency matrix can be found out with the relation

a;j

n; wis theweight of the edges from ‘v;” to ‘v;’
0; Otherwise

Consider the graph G as

Hence, the adjacency matrix is given as
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c
[

<
)

c
[9S)

Uy Us Us
Uy 0
Uy 1
Us 1
Uy 0
Vs 0

1

cCo o R OHR
CoOoOH O R K
OO R OO
oo+~ oo O
cC oo oo

Ug

Consider the graph G as

The adjacency matrix of the above graph with respect to the ordering A, B, C and D is
given below.

00360
5017
A=
2 00 4
06 80
Consider the graph G as
G:

The adjacency matrix of the above graph with respect to the ordering A, B, C and D is
given below.

0120

1012
A=

210 2

0220

H10.12.2 Incidence Matrix

Suppose that G be a simple undirected graph with m vertices and n edges, then the incidence
matrix is a matrix of order (m x n) where the element a;; is defined as
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_|1; If vertexi belongs to edges ;.
"~ ]10; Otherwise

a;j

Consider the graph G as

Hence, the incidence matrix of the graph G is of order (5 x 7). The incidence matrix rela-
tive to the ordering vq, vy, U3, U4, U5 and ey, ey, €3, €4, €5, €4, €7 is given as below.

1000101
1100010
I=(0110000
0011110
000100 1]

B 10.12.3 Path Matrix

Suppose that G be simple graph with n-vertices. Then the (n x n) matrix P = [P;; |(n x n)
defined by

1; if thereis a path from v; tov;
v 0; Otherwise

is known as the path matrix or reachability matrix.
Consider the graph G as

Vi @ v2

V3

Vs @ vy

Therefore, the path matrix of the above graph relative to the ordering v4, vy, v3, V4 , U5 iS
given as

01011
10011
P=/00000
11001
1101 0]
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N 10.13 CONNECTED GRAPH

A graph (not digraph) G (V, E) is said to be connected if for every pair of distinct vertices ‘v’
and ‘v’ in G, there is a path. A directed graph is said to be strongly connected if for every pair
of distinct vertices ‘u’ and ‘v’ in G, there is a directed path from ‘u’ to ‘v’ and also from ‘v’ to ‘u’.
A directed graph is said to be weakly connected if for every pair of distinct vertices, there is
a path without taking the direction.

Consider the following graphs

V2
G, vy P> Vs,
Vq
V1 vy V3 [ ] Vg
V7
G, Gy
Vg vy Vs Vg
From the above graphs, it is clear that
G : Strongly Connected, Gy: Weakly Connected

G5 : Connected; G,: Disconnected

H10.13.1 Theorem
Suppose that G be a graph with n-verticesv,, v, ...., v, and let A be the adjacency matrix of G.
Let us define B = [b,;] such that

B=A+A+A%+ ... + A" L
If for every pair of distinct indices i and j, b;; # 0, then the graph is said to be connected.
The proof of the above theorem is beyond the scope of this book.
Consider the graph G as

A

\Z1
V3
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Hence, the adjacency matrix A is given as

0110
1010
1101
0010
Here, number of vertices (n) = 4. Therefore, B = A + A? + A®

2111

Now, AZ = cA3=AZA=

o W N
o N oW
W o o
S o

1211
1130
1101

Therefore, B=A+A%2+A%=

Since, all b; # 0 for i # j; the graph G is connected. All elements except the diagonal
elements must not be zero for connected graph.

N 10.14 GRAPH ISOMORPHISM

Suppose Gy : (V4, E;) and Gy : (V4, Ey) be two graphs. Then the two graphs G, and G, are said
to be isomorphic if there is one to one correspondence between the edges E; of G; and E, of G,
which indicates that if (v, v;) € G; then (u4, v7) € Gs.

Such a pair of correspondence is known as graph isomorphism. The different way of repre-
senting the same graph is known as graph isomorphism. Consider graph G; and G, as

vy vy 2 V3

Vo

V3 Vo Vy

Therefore, the graphs G; and G4 are isomorphic to each other.

N 10.15 BIPARTITE GRAPH

Suppose that G: (V, E) be the graph. If the vertex set V can be partitioned into two non empty
disjoint sets V; and V, such that each edge of the graph G has one end in V; and other end in
V,, then the graph is said to be bipartite graph.

Consider the graph G as



198 Fundamental Approach to Discrete Mathematics

Let V; ={vq, v3, U5, U7} and Vg = {vy, vy, Vg, Ug}

Now, (Vi V,) = ¢ and each edge of G has one vertex in V; and other vertex
at V, . So, G is said to be a bipartite graph.

H 10.15.1 Complete Bipartite Graph

Suppose that G: (V, E) be the graph. If the vertex set V=(V; U Vy) and V;, Vo 0, (V1 Vy) =0,
such that each edge of the graph G has one end in V; and other end in V, , then the graph G
is termed as bipartite.

If every vertex of V, is joined to every vertex of V,, then the graph G is termed as complete
bipartite graph. Consider the graph G as

vy Vs,
G:
Vv, V3
Let Vl = {U17 U3} and V2 ={U2, U4}.
Therefore, V=(V,uUV,); V;, Vy# 0, and (V; " Vy) = 0.

Also, every vertex of V; is joined to every vertex of V,. So, G is a complete bipartite graph.

N 10.16 SUBGRAPH

Suppose that G and H be two graphs with vertex sets V(G) and V(H). Let the edge sets be E(G)
and E(H). Now H is said to be subgraph of G if

VH) c V(G) and E(H)c E(G)
Consider two graphs G and H as

Vi Vo

Ve Vs

Therefore, it is clear that V(H) ¢ V(G) and E(H) ¢ E(G). So, H is a subgraph of G.
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H10.16.1 Vertex Deleted Subgraph

Suppose that G(V, E) be a graph. If we delete a subset U of the set V and all the edges, which
have a vertex in U as an end, then the resultant graph is termed as vertex deleted subgraph
of G. Consider the graph G as

Vi
Vo

Vg
V3

On deleting the vertex v, the vertex deleted subgraph H is given as

B 10.16.2 Edge Deleted Subgraph

Suppose that G: (V, E) be a graph. If a subset F from the set of edges E is deleted from the
graph G, then the resultant graph is edge deleted subgraph of G. Consider the graph G as

H 10.17 WALKS

Let G be a graph, then a walk W in a graph G is a finite sequence W =v, e, vie509€5 ............
U;_1€;U; eeune. U _1 € U Whose terms are alternately vertices and edges such that for 1 <i <k,
the edge e; has ends v; _; and v, . The starting vertex v, is the origin and the end vertex v, is
the terminus of the walk W. The vertices vy, vy, ....... . U, _, are known as internal vertices.
The walk is termed as v,— v, walk.
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The number of edges present in the walk W is known as the length of walk W. Note
that in a walk W there may be repetition of vertices and edges. In a simple graph, a walk
W =vpe; U1€geenennennen.. e,v;, is determined by a sequence of vertices vy v Uy .......... Uy _1Us
because each pair of vertices v, _; v; has one edge only. Even if a graph is not simple, a walk
is often simply denoted by a sequence of vertices v, v, vy -..... U _ 1V, where the consecutive
vertices are adjacent.

Note : 1. A walk containing no edges is known as a trivial walk.

2. A walk containing no repeated edges is termed as a trail.

3. A walk containing no repeated vertices is termed as a path. Which indicates that if
the sequence of vertices vy vy vy ...... vy, _ Uy, of the walk W = vy ejv €90y ......... Up_1 € Uy,
are distinct, then the walk is a path.

4. Every path is a trail but the converse is not true always.

Consider the graph G as

Vo

Consider the following walks
Wi =vie; vgey V16 Useq Ugeqg Ugeg Uy
W, =v,eq 092 V1€ Ugey U181 Ug
W3 =vge1q Ugeg U1€ Ugey Uy
W, =vieqV9e5 V€7 U5

The length of W, is 6. Similarly, the length of other walks can be found out. Here W, and
W, are walks; W, is trail and W, is a path.

H10.17.1 Open and Closed Walk

Suppose that u and v be two vertices of a graph. An u — v walk is said to be open or closed
according to u # v or u = v respectively. In other words a walk is closed if the starting vertex
(z) and the terminus (v) are same otherwise it is open.

N 10.18 OPERATIONS ON GRAPHS
In this section we will discuss the different operations on graphs.

m10.18.1 Union

If G; and G, be two graphs, then their union (G; U Gy) is a graph with V (G; U Gy) = V(G U V (Gy)
and E (G, UGy) =E (G)) UE (Gy).
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E10.18.2 Intersection

If G; and Gy be two graphs with at least one vertex in common, then their intersection (G; N Gy)
is a graph with

V(G; NGy =V (G) NV (Gy)
and E(G;nGy =E (G nE(Gy)

H10.18.3 Complement

Suppose that G be a simple graph with n-vertices. Then the complement of G is given by G
and is defined to be the simple graph with the same vertices of G and where two vertices (u, v)

are adjacent in G, if v and v are not adjacent in G. In other words the complement of G can

be obtained from the complete graph K, by deleting all the edges of G. Consider the graph G
as

v
1
V3

V,
6
Vq

To obtain the complement of G construct the complete graph with the same vertices and
then delete the edges of the graph G. The complement graph of G i.e. G is given below.

Vo

/P\V2
Vi V3 vy V3
G G:
v
6
Vg
v V4 v
6
Vs

Vs

N 10.18.4 Product of Graphs

Suppose that Gy: (V4, E;) and G,: (V,, E,) be two graphs. Then the product of graphs G; and G,
is given as (G; X Gy) and is defined as (G; X Gy): (V, E). Where V = (V; xV,) and the edge set E
can be found out from the following relation.

If (uq, uy) and (vq, vy) be two vertices of (G; x Gy), Then there is an edge between them if

() (uq=v;and u, is adjacent to v,) or

(@) (uq1is adjacent to v, and ug = vy).
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Consider the graphs G; and G, as

Gy: ® o G,: ®
v
Uy uz 1

Vo

V3

(ug,v4) (uq,vy) (ug,v3)

(G xGy)

(upvy) (CPA%Y) (up,v3)
m 10.18.5 Composition

Suppose that Gi: (V4, E;) and Gg: (V,, Ey) be two graphs. Then the composition of G;[G,] and
is defined as
G1[Gy) : (V,E)

Where, V = (V; x V,) and the edge set E can be found out from the following relation. If
(uq, uy) and (vq, vy) be two vertices of G;[Gyl, then there is an edge between them if

(?) u,is adjacent to v, or

(@) (uq=v; and u, is adjacent to vy)

Consider the graphs G; and G, as

G: ©® L G, @

V.
uy Uy V4 2

V3
The composition G;[G,] is defined as

(ug,vq) (ug,v,) (uq,v3)

GGyl

(Up,vyq) (Uy,Vvy) (uz,v3)

N 10.19 FUSION OF GRAPHS

Let u and v be distinct vertices of a graph G, we can construct a new graph G, by fusing the
two vertices. This means by replacing them by a single new vertex ¢’ such that every edge
that was incident with either ‘%’ or ‘v’ is now incident with x.



Graph Theory 203

Consider the graph G as

Vo
v
1 e,

€4

V3

On fusing the vertices ‘v’ and ‘v’ the graph becomes

H 10.19.1 Adjacency Matrix (After fusion of two adjacent vertices)

The following steps are used to find the new adjacency matrix after fusion of two adjacent
vertices ‘v’ and v’.
Step 1. Replace the uth row by the sum of uth row and vth row. Similarly, replace the uth
column by the sum of uth column and vth column.
Step 2. Delete the row and column corresponding to the vertex v. The resulting matrix is
the new adjacency matrix.
Consider the graph G as

A
Vo

V,
4 V3

After fusing v, and v, we have the new graph G, as
Va
V4

V3
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0011

. . 0010
Relative to the ordering vy, vy, v3 and v, we have A(G) = 110 %9
1020

Now on replacing Row (v;) < Row (v;) + Row (v,) and Col (v;) < Col (v;) + Col (v,) we get

1031
0010
3102
1020
On deleting the row and column corresponding to v, the adjacency matrix of G; is given as

103
AG)=1{0 0 1
310

A(G) =

H 10.19.2 Fusion Algorithm (Connectedness)

The following steps are used to check the connectedness of a graph G.

Step 1. Replace the graph G by its underlying simple graph. The adjacency matrix can be
obtained by replacing all non zero entries off the diagonal by 1 and all entries on the
diagonal by 0.

Step 2. Fuse vertex v; to the first of the vertices vy, v; ...., v, with which it is adjacent to
give a new graph. Denote it by G in which the new vertex is also denoted by v;.

Step 3. Carry out stepl on the new graph G.

Step 4. Carry out step 2 to step 3 repeatedly with v, until v, is not adjacent to any of the
other vertices.

Step 5. Carry out steps 2 to 4 on the vertex v, of the latest graph and than on all the
remaining vertices of the resulting graphs in turn. The final graph is empty and the
number of its isolated vertices is the number of connected components of the initial
graph G.

Consider the following graph G.

V.
3 V.
Vy 2

Vg4

The adjacency matrix A (G) relative to the ordering v, vy, v5 and v, becomes
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0 11
0 0 2
1 01

O = O

A(G) =

1210
The underlying simple graph of G is given as

v
3
vy 2
Gy:

The adjacency matrix becomes

0
0
1

S o o

11
01
A(Gy = 01

1110
On fusing v; with v; we have the graph G as

Vo

Vyq

Therefore, on replacing Row (v;) < Row (v;) + Row (v3); Col (v;) < Col. (v;) + Col. (v3) and on
removing the row and column corresponding to v the adjacency matrix relative to the order-

ing v4, vy and v, becomes
10 2
AG=]0 01
210

The underlying simple graph of G is given as
V2
Vi

Gy

The adjacency matrix becomes
001
AGyp=1|0 01
110
On fusing v, with v, we have the graph G as

G: O L
vy Vy
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Therefore, on replacing Row (v;) < Row (v;) + Row (v,); Col (v;) « Col (v,) + Col. (v,) and on
removing the row and column corresponding tov,, the adjacency matrix relative to the order-

ing v; and v, becomes
A(G) = Pl
1o

The underlying spanning graph of G is given as
Gy: Vi @ @ Vv,
The adjacency matrix becomes

01

On fusing v; with v, we have the graph G as

G: O vy
Therefore, on replacing Row (v;) < Row (v;) + Row (vy); Col (v;) « Col (v;) + Col (vy) and on

removing the row and column corresponding to vy, the adjacency matrix relative to v; be-
comes

AG) =)
The underlying spanning graph of G is given as
GOZ [ ) Vyq
The adjacency matrix becomes
A(Gy) =(0)

As the final graph is empty, the process terminates. Here the number of isolated point is
one. So, the graph is said to be connected.

® SOLVED EXAMPLES o
Example 1 Draw the graph having the following matrix as its adjacency matrix

012 3
103 2
2 301
3210
Solution : Given that the adjacency matrix is

0123
103 2
2301
3210

The order of the adjacency matrix is (4 x 4). So, the graph G has four vertices, say vy, vq, g
and v, . Relative to the ordering v, vy, v5 and v, the graph G is given below.
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\
1 Vo

V3 V4
Example 2 Write down the path matrix of the following graph.

Vi@ Vs V2

Vs " ) Vg

Solution : Given that the graph is

Vi@ Vs V2

Vs " ) Vg

The path matrix relative to the ordering v, vy, vg, U4, U5 and v is given as

001010

0
0
1
0

= o O o

01
10
01
00

S o O~

0
1
P(G) = 0
1

010100
Example 3 Write the adjacency matrix of the following graphs

Vi
vy V2

(a) ® 2 Y3
V3 Vy
V5 V6
Vg4
Solution: (a) Given graph is
Vi v,
Vs vy

The adjacency matrix relative to the ordering v,, vy, v3 and v, is given as
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0111
1011
A =
@ 1100
1100

(b) Given graph is

N
V2 V3
V5 V6
Vs
The adjacency matrix relative to the ordering v4, vy, v3, U4, U5 and vg is given as

A(G) =

Solution : The weighted graph is

The adjacency matrix relative to the ordering vy, vy, Ug, U4, U5 and vy is given as
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AG) =

S B O N O
W o Ot o N
S g © o o
N O O B
SN O W o
O W o

803060
Example 5 Write down the incidence matrix of the following graph G.

Solution: Inthe above graph GV ={v;, vy, v3, v and E = {e4, ey, e, e4, €5, eg, €7}. Therefore
the order of incidence matrix is (4 x 7). Relative to the ordering of V and E, the incidence
matrix is given as

1010110
0111000
I =
@ 0100011
0001101
Example 6 Find the union of the following graphs.
Solution : Here, V(Gy) = {vq, vy, U3, U4}
and V(Gy) = {vq, vy, Vg, Uy, Us}-
Therefore, V(G; U Gy) = {vy, vy, s, Uy, Us}.
Similarly, E(Gl W) GZ) = {(Ul, Uz), (Uz, U3), (U3, U4), (U4, Ul), (Ul, U3), (Uz, U4), (US: U5)’ (05: U5)}'
Therefore, the graph (G; U G,) becomes
V4 V2
(G, UG,):
Vs
Va

Example 7 Write the adjacency matrix of the following directed weighted graph
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Solution : In the above directed weighted graph the total number of vertices are 4. So, the

adjacency matrix is of order (4 x 4). The adjacency matrix relative to the ordering vy, vy, vg
and v, is given as below.

010 3
AG) = 2020
0605
4 030
Example 8 Find the intersection of the following graphs.
Vi Vo 2 Va2
Gy G.:
Vy z vy
V3 V3
Vg Vs
Solution Here, V(Gy) = {vy, vy, U3, U, U5}
and V(Gy) = {vy, vy, U3, Uy, U5}
Therefore, V(G; N Gy) ={vq, vg, Vs, Uy, Us).

Similarly, E(G; n Gy)

={(vy, vy), (Vy, V3), (U3, Uy), (Vy, U5), (U5, V7))
Therefore, the graph (G; N Gy) becomes

Vo

Vi

(GynGy): v,

Vs

Example 9 Find the complement of the following graphs.

V.
2
V4 vy Vo

\Z1

Vs
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Solution (a) To obtain the complement of G, find the complete graph with the same verti-

ces. This is given below.
V4 vy
Va
V3
Vs

On deleting the edges of G, the complement G of G is given below.

V1 V2
Vg4
V3
Vs

(b) To obtain the complement of G, find the complete graph with the same vertices. This is
given below.

Vi \Z)

Vs

Vg4

V3

On deleting the edges of G, the complement G of G is given below.

Vv
1 Vo

Vs

V,
4
V3

Example 10 IfG; and G, be two graphs given below, then find the product of graphs (G; xGy).
Where

v, u @ u;

V3 L@ us

Solution : Here V(Gy) = {vq, vy, U3}

and V(Gz) = {ul, uZ, LL3, LL4}.
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Therefore, V(Gl X G’z) = {(Ul, ul)’ (Ul’ uz), (Uly u3), (Uly u4), (UZ; ul), (UZ; uz), (027 u3)’
(Vg, uy), (Vg, Uq), (U, Uy), (Vg, Ug), (Vg, Uy}

(Vy,Uy) (v4,Up) (vq,U3) (V4,Ug)
G,xG
( 1X 2) @ (V2 U1) b b D
(vV3,uy (V3,Up) (V3,U3) (V3,Uy)

Example 11 Given G; and G, be two graphs. Find the composition G;[G,] where
Uy

G vi@e———e Vy Gy:

Solution : In the above graph
V(G = {vy, vy}
and V(Gz) = {ul, Uog, LL3}.

Therefore, the vertex set of G;[Gy] is {(vy, ©q), (U, Uy), (U1, ug), (Vy, Uuq), (Vg, Uy), (Vy, ug)}. Thus
the composition graph G;[G,] is given below.

G4[G,]

Example 12 Let G be the graph given below.

(@) Find G- U; where U = {x;, x5, x5 x,/
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(®) Find G(U); where U = {x;, x5, X4 Xg/
(c) Find G-V; where V ={ey e5 eq €19 €14 €5, €5 €15 €4 €19, €00/
(d) Find G(V); where V ={e, eze,e;;,ers

Solution (a) Given U = {xq, x5, x5, X7}

Therefore, G — U becomes

XZ‘

(d) Given V = {eq, e, e, €41, e15}. Therefore, G(V) becomes

X4 ey X,

€6

€1

€15

Example 13 Determine whether the graph given below by its adjacency matrix is connected

or not.
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0111
1010
1101
1010
Solution : The adjacency matrix A is given as
0111
1010
A=
1101
1010
Here, the number of vertices (n) = 4. Let B= A + A% + A3
01110111 3121
N A2_10101010_1212
o “l1101fjt101]7 2131
1 010J){1 010 1212
31210111 4 555
121211010 |5252
Again, A*=A’A=|2131|[1101| |55 45
1212)l1 010 52 5 2
7787
747 4
Therefore, B=A+A%2+A%=
8 7717
747 4

As all b; # 0 fori #j, the graph G is connected.
Example 14 Draw a complete bipartite graph on two and four vertices.
Solution : Complete bipartite graph on m and n is the simple graph whose vertex set is
partitioned into sets V; and V, with m and n vertices respectively. Generally, denoted by K, ,,.
The complete bipartite graph on two and four vertices is shown in the following figure.

vy v,

Example 15 Use the fusion algorithm to determine whether the graph given below by its
adjacency matrix is connected or not.
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o o+ N O
6o OO+ O oM

=
-+

O O N O o=
O O O N = O

o © © O O
o w O O o o

0
Solution : The adjacency matrix

3
he graph

AG) =

S O+ O O N
o O N O o
S O O N =

S O O = N
w o O © O
oS w O © O

Therefore, the graph G becomes

Vyq

V3

The underlying simple graph of G is given as

vy Vy

Gy

Vg4

The adjacency matrix is given as

AGy) =

S o = = O
o = O O =
o H O O+
o O H H O
o O © O O
O = O ©O © O

000O01

G is given as

Vs Ve

Vs @ @ Ve

On fusing vertex v, with v, we have the graph G as
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Vi

Vs @ ® Ve

A V3

So, on replacing Row (v;) « Row (v;) + Row (v,); Col (v;) « Col (v;) + Col (vy) and on
removing the row and column corresponding to v, the adjacency matrix becomes

11100
10100
AG®=|11000
000O01
00010
The underlying simple graph of G is given as
Vi Vs @ ® Vs
Gy:
vy V3
The adjacency matrix becomes
01100
10100
AGy)=1]/11000
000O01
00010

On fusing v; with v; we have the graph G as

v, 2
G: U ) V5 @ @ Ve

So, on replacing Row (v;) « Row (v;) + Row (v3); Col (v;) « Col (v;) + Col (vg) and on
removing the row and column corresponding to v4 the adjacency matrix becomes
1200
2000
AD=16001
0010

The underlying simple graph of G is given as

Gy v\ @ o Vi V5@ ® Vs
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The adjacency matrix becomes

(=N N =]

1
0
0

o O O

0
0
A(Gy) = 1

0010
On fusing v, with v, we have the graph G as

. @ V5@ oV

So, on replacing Row (v;) « Row (v;) + Row (v,); Col (v;) « Col (v,) + Col (v,) and on
removing the row and column corresponding to v, the adjacency matrix becomes
100
A®=|0 01
010
The underlying simple graph of G is given as

. V V,
Gy: ° 5@ @ Vs
Vi

The adjacency matrix becomes

000
AGy=1(0 01
010
On fusing vy with v; we have the graph G as

So, on replacing Row (v;) « Row (v5) + Row (vg); Col (v5) « Col (v5) + Col (vg) and on
removing the row and column corresponding to vz the adjacency matrix becomes

00
xo- [

The underlying simple graph of G is given as
Go! oV, o v
The adjacency matrix becomes

00

As the final graph is empty, the process terminates. The number of isolated points is the
order of the matrix i.e. two. So, the graph is not connected.
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Example 16 Draw the following graphs.

(i) 3 regular but not complete
(it) 3 regular and complete
(iit) 4 regular but not complete
(iv) 2 regular but not complete.
Solution :
(?) In the graph given below, the degree of every vertex is 3 but for vertices v, and v, there
is no edge. Hence the graph is 3 regular but not complete.

(@) In the graph given below, the degree of every vertex is 3 and for any two vertices v, and
v; there is an edge. Hence the graph is 3 regular and complete.

vy \7)
vy Vg

(@ii) In the graph given below, the degree of every vertex is 4 and for the vertices vy and vy
there exists no edge. Hence the graph is 4 regular but not complete.

Vo
V1 V3
Ve Vy
Vs

(tv) In the graph given below, the degree of every vertex is 2 and for the vertices v, and vj
there exists no edge. Hence the graph is 2 regular but not complete.

Vo
v
3
Vi
Vg4
Ve
Vs

Example 17 Find whether the graph given below is connected or not.
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v
2 A .\/ﬁ vy
G:
Vs

Solution: The adjacency matrix A(G) of the above graph relative to the ordering v, vy, vs,
v, and vj is given as

0100 2
1 000 2
AG=|(0 00 2 0
00210
22000
Here, the number of vertices (n) = 5. Let B = A + A% + A3 + A*. Therefore, we get
5400 2 8 9 0 0 18
4 500 2 9 8 00 18
A’=AA=|0 0 4 2 0|;A3=A%2A=|0 04 10 O
00250 0 010 9 0
2 2 00 8 1818 0 0 8
45 44 0 0 34
44 45 0 0 34

A*=A3A=|0 0 20 18 0
00 18 29 0
3434 0 0 72

Therefore, B=A+A%+A%+A*

58 58 0 0 56
58 58 0 0 56
=10 0 28 32 0
00 32 44 0
5656 0 0 88
As some b;; = 0 for i # j, the graph G is not connected.
Example 18 Find the complement graph of the following graph G, where

Vo

V.
3
Vi
Vg

Ve
Vs
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Solution: On considering the above graph G, construct the complete graph with the same
vertices as G. The graph is given below.

V2
V1 V3
V6 V4
Vs

On deleting the edges of the graph G, the complement G of G is given below.

\P)
Vi V3
\Y \7
6
Vs

o EXERCISES ®

1. Using fusion algorithm determine whether the graph given below is connected or not.

A@@

2. Show that the graph G given by its adjacency matrix is connected by using fusion algo-
rithm.

AG) =

(=N N =]

101

002

011
1210

3. Find the complement of the following graphs.

© % ) e
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4. Find the product graph where G; and G, are given below.

1 2
3 4
1 3
4 5
5. Construct a graph of order 5, whose vertices have degrees 1, 2, 2, 3 and 4. What is the
size of this graph?

a b

(@) G

6. Construct a 3-regular graph G. Determine the complement of G. Show that G is also
regular.
7. Write the graph which is the composition of the following graphs G; and Gs.

- N
e

8. For the following graphs, find the adjacency matrix.

Vi
Vs
(a) v, @
V4 Vs
Vg4
) N ‘L
(c) (d) vy vy

(
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Vi

(f)

Vg4

9. Find the path matrix of the following graphs.

\%
1 v,
V7

Ve

(b)

V3

Vi

V7

() Vo V3

Vy Vg Vg

10. Write the incidence matrix of the following graphs.

(a)

(b)

(c)
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11. Let the graph G is given below. Find the followings.
(@ G-V;; where V;=(1,3,5,6,7,8)
® G-E;; where E,={a,cd,f g,t,j,m,n,q,r,t)
() G-V, where V,={1,3,5,7,9,11, 13}
(d G-Ey; where Ey,={m,[l,n,k o0,j,f e, d}
(e) G(U); where U=({1, 2, 3, 4}
O GV, where V={a,b,c,d,e,
12. Write the union and intersection of the following graphs.
2
2
3
(a) G1I 1 3 G2 1
4 5
4
(b) Gy G, 5 6

13. Let G be the set of all graphs. Show that the relation “is isomorphic” is an equivalence

relation on the set G.
14. Find the degree of every vertex for the following graphs.

4
oo
1
[T | = [ X
(a)
3 5



224 Fundamental Approach to Discrete Mathematics

15. Determine the degrees of the vertices v; ; I = 1, 2, 3, 4, 5 and 6 of the graph G shown
below. Compute Zdeg (v;). Use this to determine the size of G.

Ve

16. Determine which pairs of the graphs G, Gy and G4 are isomorphic.

®
Gy Gy
®

17. From the graphs given below identify
@) Regular Graphs
(i) Complete graphs and
(#ii) Neither regular nor complete graphs.

| @ (b) D
’ E ’ W
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’ % ’ W

18. Determine whether the graphs G; and G, shown below are isomorphic.

19. Determine whether the graph G shown below is strongly connected or weakly connected.

v w
u X
t
z y

20. In the digraph G shown below, find the indegree and outdegree of every vertex.
v

w
u
G: Z X



-
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Tree
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H 11.0 INTRODUCTION

Another very simple and important graph is tree. Computer science makes extensive use of
trees. Trees are useful in organizing and relating data in a database. These are interesting
not only for their applications to computer science but also for their theoretical properties.
Let us consider a single elimination tournament, which means when a player loses, he/she is
out of the tournament. Winners continue to play until only one person, the champion,
remains. The following figure shows that Rani defeated Swati and Sudeep defeated Sunil.
The winners Rani and Sudeep, then played, and Sudeep defeated Rani. i.e. Sudeep became

champion. This is nothing but a tree.

H 11.1 TREE

A connected acyclic graph G is called a tree. A tree T is a finite set of one or more nodes such
that

(©) There is a specially designated node called the root.
(ii) Remaining nodes are partitioned into % disjoint sets Ty, Ty, ...., T, ; £ > 0. Where each
T, fori=1,2,..,kis atree. T;, Ty, ..., T, are called subtrees of the root.
In the example given below the tree T has 14 number of nodes. Which are partitioned into
three sets Ty, Ty and Ty called the subtrees of T.
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B 11.2 FUNDAMENTAL TERMINOLOGIES
A tree has the following fundamental terminologies.

11.2.1 Node

The main component of a tree is the node. This stores the actual data and links to the other
node.

11.2.2 Child

Child of a node is the immediate successor of a node. Child, which is at the left side, is called
left child and the child, which is at the right side, is called right child.

11.2.3 Parent

Parent of a node is the immediate predecessor of a node.
In the figure given below ‘x’ is the parent of ‘@’ and ‘6’. Where, ‘@’ is the left child and ‘b’ is

the right child of ‘x’.
11.2.4 Root

A node that has no parent is termed as the root of the tree. In the above figure ‘¢’ is termed
as the root.

11.2.5 Leaf

The node which is at the end and which does not have any child is called leaf node. Leaf node
is also termed as terminal node and external node.
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11.2.6 Level

The rank of the hierarchy is known as level. The root node is termed as level 0. If a node is
at level n, then its parent is at level (n — 1) and child is at level (n + 1).

11.2.7 Height

The height h of a tree T is defined as maximum number of nodes that is present in a path
starting from root node to a leaf node. The height of a tree is also termed as depth of tree.
Mathematically,

h = Maximum level + 1
Consider the example of a tree

Level 0

Height of the tree = Maximum level + 1 =3 + 1 = 4.
11.2.8 Sibling

The nodes, which have the same parent, are termed as siblings. In the above figure 2 and i
are siblings. Similarly / and m are siblings.

H 11.3 BINARY TREE

A binary tree T is a finite set of nodes such that
() Tis empty or
(@) T contains a specially designed node called the root of T and the remaining nodes of T
form two disjoint binary trees T; and Ty. This implies that in case of a binary tree a
node may have at most two children.
Consider the following simple binary tree T as
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11.3.1 Full Binary Tree

A binary tree T is said to be a full binary tree if it contains maximum possible number of
nodes in all level. This indicates that, for the level ‘n’ of the tree it must contain 2” number of
nodes.

11.3.2 Complete Binary Tree

A binary tree T is said to be a complete binary tree if it contains maximum possible number
of nodes in all levels except the last level.

Consider the following examples. In the figure given below T} is a full binary tree where as
Ty is a complete binary tree.

(Full Binary Tree) (Complete Binary Tree)

H 11.4 BRIDGE

An edge of a graph G (V, E) is said to be a bridge if we remove the edge from the graph G, then
the graph G has more connected components. Consider the graph G as

On removing the edgeeg from the above graph G, the graph has two connected components
such as
e, %

and e €10

Hence, the edge e; is called as a bridge. In the above figure e; and e, are also bridges. The
bridge is also known as cut edge.
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11.4.1 Theorem

A tree of order n has size (n — 1).
Proof : We prove this by the method of induction.

For n =1 we have a single vertex and hence size is 0.

For n =2, the tree T contains two vertices, so size is 1.

Hence the result follows forn = 1 and 2. Assume that the result is true for all trees of order
less than k. Let T be a tree of order n = & and size q, and let e be an edge of T.

We have already observed that e is a bridge of T, so that (T — e) is a forest. Let the two
components of (T —e) are T; and Ty, where T; is a tree of order n; and size g; for i = 1 and 2.

As,n; <k fori=1and 2 so we have ¢g; = (n; — 1) and ¢, = (n, — 1). Since, n = (n1+ ny) and
q=(q;+¢gy+1) we get
g=n;-D+myg—-1D+1=Mny+ny9)-1=(n-1)
Therefore, by induction the size of a tree is (n — 1), i.e. one less than its order.

11.4.2 Theorem

Every nontrivial tree contains at least two end vertices.

Proof : Suppose that T be a tree of order n and size q. Let d;, d,..., d, denote the degrees
of its vertices, ordered so that d; <d,<d;<... <d,. Since T is connected and nontrivial, d; > 1
for eachi; 1<i<n.

Assume that T does not contain two end-vertices. Henced; > 1 andd; > 2 for 2<i <n. Thus,

Nd =dy+dy+dg+ ... +d,21+20n-1)=2n-1 ()
i=1
But we know Zdi=2q=2(n—1)=2n—2

i=1

This contradicts inequality (7). So our assumption is wrong. Hence, T contains at least two
end-vertices.

H11.5 DISTANCE

Letu and v be two vertices of the graph G. The distance between z and v is denoted by d(u, v)
and is defined as the length of a shortest u — v path. If there is no path between u and v, then
d (u, v) = oo,

H 11.6 ECCENTRICITY

Let V be the vertex set of G. Let v € V. The eccentricity of v is denoted as e(v) and is defined
as

e(v)=Max{d (u,v):ue Vandu #v}
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E11.7 RADIUS

Let G be the graph, then the radius of G is denoted as rad (G) and is defined as
rad (G) = Min {e(v): v e V}.

H 11.8 DIAMETER

Let V be the vertex set of the graph G. The diameter of G is denoted as diam (G) and is defined
as

diam (G) = Max {e(v):v e V}.

H 11.9 CENTRAL POINT AND CENTRE

Let V be the vertex set of the graph G. Thenv € V is said to be a central point ife(v) = rad (G).
The set of all central points of G is known as centre of G.

Consider the following graph G where each edge is of length 1.

Vq
\Z Vi3
Vie
G: Vo L J
Via
Vs Vis
Vs
Here V = {vy, vy, Ug, ..., U16). Now, we get
d(vy,v9) = 1; d(vy,v3) = 2; d(vy, vy = 4; d(vy,v5) = 4;  d(vy,ve) = 35
d(Ul, U7) =2; d(Up Ug) = 3; d(Up Ug) = 4; d(Ul; Ul()) = 4; d(Up Uu) = 4;

d(vq,019) = 3; d(vy,v13) = 5; d(vq,v14) = 4; d(vq,v15) =5; dvy, v = 3.
Therefore, e(v;) =Max ({1, 2, 3, 4, 5} =5.
dy,v1) =1; dg,vy)=1; dvg,vy) =3; dvg,vg) =3; dvg,vg) =2; dvy,vy) =1;
d(vy,vg) = 2; d(vg,vg) =3; d(vg,v19) =3; dvg,vq7) = 3; d(vg,019) = 2; d(vg, V13) = 4;
d(vg,v14) = 3; d(vg,v15) = 4; d(vg, v1g) = 4.
Therefore, e(vy) = Max {1, 2, 3, 4} = 4. Proceeding in this manner, we will get

e(vg) = 5; e(vy) = 5; e(vs) = 5; e(vg) = 4; e(vy) = 3;
e(vg) = 4; e(vg) = 5; e(vqy) = 5; e(v;) =4;  elvyy) = 3;
e(vy) = 5; e(vyy) = 4; e(vys) = 5; e(vg) = 5.

Now, radius = rad (G) = Min {e(v), v € V} = Min {5, 4, 3}
= 3 and diameter = diam (G) = Max {e(v),v € V}
= Max (5, 4, 3} = 5.

Therefore, the central points are v; and v, and center = {v,, v{4}.
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H 11.10 SPANNING TREE

Suppose G = (V, E) be a graph. A sub graph H of G is said to be a spanning sub graph of G if
both H and G has same vertex set. A spanning tree of a graph G is a tree which is a spanning
sub graph of G. In this section we will discuss the algorithms for finding minimum spanning tree.

11.10.1 Prim'’s Algorithm

The following steps are used in Prim’s algorithm for finding a minimum spanning tree of a
graph G. Assume that the graph G has n vertices.

1. Choose any vertex v; of G

2. Choose an edge e;= v; vy of G such that v; # vy and e; has smallest weight among the
edges of G incident with v;.

3. If edges ey, €5 ceeeeunnenn. e; have been chosen involving vertices vy, vy, ... , U;,1, then
choose an edgee;,;=u v withu € {v, vy, .... ,v;,1} and v ¢ {v4, vy, .... , U;,1} such thate,,
has smallest weight among the edges of G.

4. The step 3 is to be repeated until we are getting the total (n — 1) edges.

Consider the following connected weighted graph G. Here the number of vertices n = 7

A
6 3
F B
G:
7 9
E
C
10 10
D
(V;= A ; One can choose any (e; = AB, So that vy = B)

other vertex)

(eg =BG ; Sothatvy =G ; An (e3 = GD ; So that v, = D; No
alternative choice is AG) alternative choice)
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(e, = AF ; So that v, = F ; No (e;=FE; Sothatv,=E; An
altrative choice) alternative choice is GC)
A A
| y
6 3 6 3
' °
i 4.7 °
T 71 o
e
E® 5 ®
c
10
[ J
D
(eg = GC ; So that vy = C; No w(T) = 32

alternative choice)

Since the total edges are 6 = (7 — 1), the process terminates. Hence, the minimum span-
ning tree T is given as shown in the above figure.

11.10.2 Kruskal's Algorithm

The following steps are used in Kruskal’s algorithm for finding a minimum spanning tree of
a graph G. Assume that the graph G has n vertices.
1. Choose an edge e, of G, which is as small as possible and e; must not be a loop.
2. Suppose the edgesey, e, ..., e, have been chosen. Then the edgee,,; (not already chosen)
can be chosen such that
() The induced sub graph Glley, eg ,.......... , e .1}] is acyclic and
(ii) Weight ofe,,; is as small as possible.
3. The step 2 is to be repeated until we are getting the total (n — 1) edges.

Consider the following connected weighted graph G. Here the number of verticesn = 5. On
applying Kruskal’s algorithm we have the following stages.
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(e;=BD;w(e;)=1;No
alternative choice)

(eg=DE ;w (eg) =2; An (e5=BC;w (e3) =2 ; No
alternative choice is BC) alternative choice)
A
®
3
T E @
1
(2 e C

(e, =AC;w (ey) = 3 ; Alternative w(TM=1+2+2+3=8

choices are AE and AD)

Since the total edges are 4 = (5 — 1), the process terminates. Hence, the minimum span-
ning tree T is given as shown in the above figure.

H 11.11 SEARCHING ALGORITHMS

This section presents methods for searching a graph. This means systematically following
the edges of the graph so as to visit the vertices of the graph. The graph searching algorithms
can discover much about the structure of a graph. Here we present two algorithms, depth
first search and breadth first search. In addition, we will discuss to create a breadth first and
depth first tree.
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11.11.1 Breadth First Search

Breadth first search is one of the simplest algorithms for searching a graph. Given a graph
G(V, E) and a distinguished source vertex s, breadth first search systematically explores the
edges of G to discover every vertex that is reachable from s. It computes the distance ( fewest
number of edges) from s to all such reachable vertices. Breadth first search is so named
because it expands the frontier between discovered and un discovered vertices uniformly
across the breadth of the frontier. It constructs a breadth first tree, initially containing only
its root, that is the source vertex s.

Suppose that v;, v;, be two specified vertices of G. We will now describe a method of finding
a path from v; to v; which uses the least number of edges. Such a path is known as shortest
path, if it exists. The method assigns labels 0, 1, 2, ... to the vertices of G and is called the
Breadth First Search (BFS) technique. The BFS algorithm consists of the following steps.

1. Label the vertex v; with 0. Set i =0

2. Find all unlabelled vertices in G, which are adjacent to vertices, labeled i. If there are

no such vertices, then v; is not connected to v; else label them by ( + 1).

3. Ifv; is labeled go to step 4, else replace i by (i + 1) and go to step 2.

4. The length of shortest path from v; to v; is i + 1) then stop.

Consider the following graph G. Now we have to find out the shortest path from the source
vertex a to the vertex z. On using the BFS technique, we get the following stages.

In the above figure the adjacent vertices of a are b and d. Therefore we get label (b) =i + 1
=0+1=1andlabel (d) =i+ 1=0+ 1= 1. Similarly, adjacent vertices of b are ¢ and e.
Therefore, label (¢c) =i+ 1=1+1=2andlabel (e)=71+1=1+1=2.
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In the above figure the adjacent vertices of d is g. Therefore we get label (g) =i +1=1+1
= 2. Similarly, adjacent vertices ofe arefand z. Therefore, label (f) =i + 1 =2 + 1 = 3 and label
(z)=i+1=2+1=3. Hence, the breadth first tree T becomes

b e f
,q o @
' 1‘ 2 y 3
c
T: a @0 ®
2
d g z
e o o
1 2 3

11.11.2 Back-Tracking Algorithm

The following steps are use in back-tracking algorithm.

1.
2.
3.

Set A (t) = i and assign v; = ¢, where ¢’ is the terminating node.
Find a vertex ‘u’ which is adjacent to v; and with A (w) = (i — 1). Setv; _; = u.
Ifi = 1, then stop else replace i by (i — 1) and go to step 2.

Consider the following graph G. Now we have to find out the shortest path from the source
vertex ‘a’ to the vertex 2’. On using the BFS technique, we get.

On using back-tracking algorithm we have

NN =

3.

Seti=Mz)=3andv,=vgy=2

The adjacent tovg=ziseand A (e) =(i—1) = 2. Set vy =e.
Asi=3#1,s0i=(@{-1)=2, Go to step 2.

The adjacent tovy =eisb and A (b) =(@—-1)=1. Setv; =b.
Asi=2#1,s0i=@{-1)=1, Go to step 2.

The adjacent tov; =biseand A (a)=(G—-1)=0.Setv,=a
As i =1, so the process terminates.

Therefore, the shortest path from ‘@’ to z is given as ‘a b e z’. Besides that, there could be
several paths from ‘a’ to ‘z

11.11.3 Depth First Search

Basic philosophy in depth first search is that first all vertices reachable from the vertex ‘v’
are searched before proceeding to see the siblings. In depth first search, edges are explored
out of the most recently discovered vertex ‘v’ that still has unexplored edges leaving it. When
all of v’s edges have been explored, then the search “backtracks” to explore edges leaving the
vertex from which ‘v’ was discovered. The process is being continued until we have discov-
ered all the vertices that are reachable from the original source vertex. If any undiscovered
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vertices remain, then one of them is selected as a new source vertex and the search is
repeated. This process is repeated until all vertices are discovered.
Consider the graph G as below. Let us consider the source vertex as ‘a’. On using the DFS

technique, the order in which the vertices are being visited is described below by the se-
quence of graphs.

Therefore, the depth first tree T is given below. Besides that, there could be several depth
first trees from the same vertex ‘a’. This indicates that the depth first tree is not unique.

b e f
L ® »
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H 11.12 SHORTEST PATH ALGORITHMS

This section presents methods for finding shortest path from a source vertex to a terminating
vertex in a graph G. This problem is a real life problem, where cities are connected through
roads, rails and air routes and we want to find out the shortest path between the vertices.
Here we present two algorithms Dijkastra’s Algorithm and Floyd-Warshall Algorithm.

11.12.1 Dijkstra's Algorithm

In a given graph G(V, E), we want to find a shortest path from a given source vertex ‘se V’ to
every vertex ‘v € V’. This is otherwise known as single source shortest path problem.
Dijkastra’s Algorithm solves the single source shortest path problems in weighted graphs
that to non-negative weights. Therefore, we assume that w(uv) > 0 for each edge (uv) € E.
1. SetA (v,) = 0 and for all vertices v; # v, A (v;) = . Set T = V; where V is the set of vertices
of G and T is the set of uncolored vertices.
2. Let u be the vertex in T for which A (&) is minimum.
3. If u = v, (Terminating node), then stop. Else, go to step 4.
4. For every edge e = uv, incident with u, ifv € T, then replace A (v) with Min {A (v), A (u) +
w (uv)}.
i.e. A () =Min (A (v), A () +w (wv)}
5. Change T by T — {u} and go to step 2.
Consider the following graph G. Let us consider the source vertex as e and the terminating
vertex as f. We have to find out the shortest distance between the vertices ¢ and f.

a 9 b

In the above graph G, the source vertexisv, =e and v, =f. Set Ale) = 0 and Ma) = Ab) = Ac)
=Md)=Mf)=.T=V=le, a,b,c,d,[l. Hence, we have the following table

Vertex e a b c d f
AMv) 0 oo oo oo oo oo
T e a b c d f

Now, u =e as Mu) = Me) = 0 which is minimum. The edges incident on u = e are ea and ec.
Therefore,

Ma) = Min [Ma), Me) +w(ea)]
= Min [, 18] = 18.
Me) = Min [AMc), Me) +w(ec)]
= Min [e, 15 ] = 15.
Again, T=T-{u=e}={a,b,c,d, [} Thus, we have the following table
Vertex e a b c d f
AMv) 0 18 oo 15 oo oo
T a b c d f
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Now, u = c¢ as Mu) = AMc) = 15 which is minimum. The edges incident with u = ¢ are ca, cb
and cd. Therefore,
Ma) = Min [Ma), Me) +w(ca)]
= Min [18, 21] = 18.
AMbB) = Min [Mb), Mc) +w(ch)]
= Min [, 29] = 29.
Md) = Min [Md), Me) +w(cd)]
= Min [e, 22] = 22.

Again, T=T-{u=c}=la,b,d,f}. Thus, we have the following table
Vertex e a b c d f
AMv) 0 18 29 15 22 oo
T a b d f

Now, u = a as AMu) = Ma) = 18 which is minimum. The edges incident with u = a is ab.
Therefore,

AbB) = Min [Mb), Ma) +w(abd)]
= Min [29, 27] = 27.

Again, T =T - {u =a} ={b, d, f}. Thus, we have the following table
Vertex e a b c d f
AMv) 0 18 27 15 22 oo
T b d f

Now, u =d as Mu) = Md) = 22 which is minimum. The edges incident withu =d are db and
df. Therefore,

Mb) = Min [MD), Md) +w(db)]
= Min [27, 32] = 27.

M) = Min [AMH), Md) + w(df)]
= Min [, 58] = 58.

Again, T =T - {u =d} ={b, f1. Thus, we have the following table.
Vertex e a b c d f
AMv) 0 18 27 15 22 58
T b f

Now, u = b as Mu) = Mb) = 27 which is minimum. The edges incident with u = b is bf.
Therefore,

M) = Min [A(P), Mb) +w(b)]
= Min [58, 55 ] = 55.

Again, T =T — {u = b} ={f}. Thus, we have the following table
Vertex e a b c d f
M) 0 18 27 15 22 55
T f
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Now, u = f and fis the terminating node, so the process terminates. Hence the shortest
distances from e to a, b, ¢, d and f are 18, 27, 15, 22, 55 respectively. The shortest distance
between e and fis given in the following figure.

a 9 b

11.12.2 Floyd-Warshall Algorithm

Floyd-Warshall algorithm solves all-pairs shortest paths problem on a directed weighted
graph G = (V, E). The weighted graph may contain negative weight edges, but we shall as-
sume that there are no negative weight cycles. In this algorithm, we use the adjacency
matrix of the graph to find out the shortest distance between any pair of vertices.

Suppose that G(V, E) be a graph. Let W be the adjacency matrix of the weighted directed
graph G. The algorithm has the following steps.

1. n=Rows [W]

2. DV=w

3. Fok=1ton

4, Dofori=1ton

5 Doforj=1ton

6 dY) =Min (dff Y, dfy ™ + dyy V)

7. Write D™
Where, D™ = (dl';)

H 11.13 CUT VERTICES

Suppose that G(V, E) be the graph. A vertex v’ of a graph G is called a cut vertex of G if the
number of component of (G —v) is greater than the number of components of G.i.e. w (G —v)
> w(g), where w(G) represents number of component of G.

Consider the graph G as below. In the graph G, v, is a cut vertex as w(G —-v,) =3 >w(G) = 1.

\P)
Ve
Vq
G: Vi
V7
V3
Vs
Vo
Ve
Y
(G=V,): ™M
V7
v
5 e
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H 11.14 EULER GRAPH

A tour is a closed walk of G, which include every edge of G at least once. An Euler tour is a
closed walk of G, which include every edge of G exactly once. A graph G is said to be an Euler
or Eulerian if the graph G has an Euler tour.

In this section, we will discuss two algorithms i.e. Fleury’s algorithm and Hierholzer’s
algorithm to construct Euler tour in a Euler graph.

11.14.1 Fleury’s Algorithm

This algorithm is generally developed to construct an Euler tour in a Euler graph. The follow-
ing steps are used in this algorithm.

1.
2.

3.

Choose any vertex v, in the Euler graph G and set W = v,
If the trail W, = vy e; v1 €5 Vg weveeennnnnen. e; v; has been chosen, then choose an edge e,
different from e, e, ...., ¢; such that
@) e;,;isincident withv; and
(i1) unless there is no alternative, e;,; is not a bridge of the edge deleted subgraph
G —{eq, €9y veuee , e}
Stop if w; contains every edge of G; otherwise go to step 2.

Consider the following Euler graph G. We have to find out the Euler tour using Fleury’s
algorithm for the Euler graph G.

Let us choose vy = a; and Set w, = a,

Choose edge e; = d; such that W, =v,e; =a; d; a,

As W, contains only one edge, so go to step 2.

Choose edge e, = dg such that Wy, =a, d; aydga;

As W, contains 2 edges, so go to step 2.

Choose edge e =d;, such that Wy =a, d; ay, dg a5 dya;

As W, contains 3 edges, so go to step 2.

Choose edgee, =dy such that Wy =a, d; asdgas dyga; dgay
As W, contains 4 edges, so go to step 2.

Choose edge e; =d; such that Wy =a, d; aydga; dyga;dya, dsa,
As W; contains 5 edges, so go to step 2.

Proceeding in this manner, we will get

Wi =a,dyaydgasdigardgaydsagdsardigagdgasdya; dsagdyagdyay

As Wy, contains all the 12 edges once, so the process terminates. Thus the Euler tour
produced is given as

aydiagdgasdigasdgasdsasdyardigagdgasdyasdsagdyagdray
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11.14.2 Hierholzer’'s Algorithm

Like Fleury’s algorithm, this algorithm is also developed to construct an Euler tour in a
Euler graph. The following steps are used in this algorithm.

1. Choose any vertex v in G and choose any closed trail W, in G. Set i = 0.

2. IfE (W) = E(GQ), then stop and W, is an Euler tour of G; else chose a vertexv; on W; which
is incident with an edge in G but not in W;. Choose a closed trail W,*in the subgraph G -
E(W,), starting at the vertex v;, Where W;* is the detour trail.

3. Let W,,; be the closed trail consisting of the edges of both W, and W;* obtained by
starting at the vertex v, traversing the trail W, until v, is reached, then traversing the
closed trail W;* and returning to v, , completing the rest of the trail W,. Replace i by
(i +1) and go to step 2.

Consider the graph G. We have to find out the Euler tour using Hierholzer’s algorithm for

the Euler graph G.

1. Letv = a4 choose the closed trail Wyas Wy =a,d;,aqdsa,dga;digagdsaq. Seti=0.

2. As E(W;) # E(Q), choose ay on W, incident with dg not in W,. Choose Wy*=aqdg a5 dqyay
d, ay; where all d; e G- E(W,);i =6, 4, 10.

3. Now, we have W, =W,,; =a;d;a9dgasdgardsaydsa,dgardisagdsa; andi= 3G+ 1)
=0+ 1=1. Go to step 2.

2. As E(W,) # E(G), choose a; on W, incident with d, not in W;. Choose W *=a; dyasdgag
di1agd;aq; wherealld; e G-EW,);1=2,8,11,7.

3. Now,weget Wo=W,,;=a,dyasdgagd 1agd;a;diasdgasdgar;dgasdsasdgardqisag
dsa; and i = (i + 1) = 2. Go to step 2. Since, E(W,) = E(G); the process terminates.
Therefore, the Euler tour is given as

aidyazdgagdyiagdraydyasdgasdigardsasdsasdgardigagdsa;.

11.14.3 Euler Trail

Suppose that G be the graph. A trail in G is said to be an Euler trail if it contains every edge
of G exactly once. So every Euler tour is a closed Euler Trail.

Consider the graph G as below. One Euler trail in the graph G is given as
U1€1VUg€oV05€304€4Ugp€5U3€50,4€70g€5VU;5€9U7€10 Vg -

Consider another graph G as below. In the graph G the closed Euler trail is given as
UV1€1VUg€3U5€30,€gU3€5VUg€4 0 €E7V06€305€9U7 €10 V6€E171 V7 €19 V1.
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This is known as an Euler Tour.

H 11.15 HAMILTONIAN PATH

A path of a graph G(V, E) which contains every vertex of G exactly once is known as
Hamiltonian path. Consider the following graphs

v,
4
Vj V3
Vs
G € e
1 €3 G,: €3 e,
e e
1 1
v v
Vy 1 Vo 1

The graph G; has no Hamiltonian path where as G, has a Hamiltonian path, i.e.
UV1€q1Ugeglge€ Uy.

11.15.1 Hamiltonian Graph

A cycle in a graph G, which contains every vertex of G only once, is known as a Hamiltonian
cycle. It is to be noted that no vertex of a cycle is repeated apart from the final vertex, which
is same as the starting vertex. A graph G is said to be Hamiltonian if it has a Hamiltonian
cycle. Consider the graph G as

v,
4
V3
G:
62 es
\
2 1

The Hamiltonian cycle is v, e;vye,v5e4v4e50;. Therefore, the graph G is a Hamiltonian
graph.

H 11.16 CLOSURE OF A GRAPH

Let G be a simple graph. If there are two non-adjacent vertices u; and v, in G such that
d(uq) +d(v;) 2 n (number of vertices in G) then join u; and v, by an edge to get the super graph
G, of G. Continue this process recursively joining pairs of non-adjacent vertices whose degree
sum is at least n until no such pair remains. The final super graph thus obtained is called the
closure of G denoted by C(G).
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Consider the graph G as

V4 Vv,

Vg Vg
Here, V ={vy, vy, 03,04 } and n = 4 (number of vertices). Now for the non-adjacent vertices
v, and v we get
dv)) +dvy) =2+2=42n=4.
Therefore, there exists an edge between v; and v5. Similarly, for the non adjacent vertices
vy and v, we get d(vy) + d(vy) =2 + 2 =4 >4 = n. So, there exists an edge between vy and v,.
Thus, the final super graph is given as below. This is nothing but the closure of G, i.e. C(G).

Vyq Vs

vy Vg

H 11.17 TRAVELLING SALESMAN PROBLEM

The job of a travelling salesman is to visit all the towns linked with roads in a particular
territory. He has to visit all the towns exactly once in such a manner that the total distance
travelled by himself will be minimum.

In graph theory we denote nodes as towns joined by a weighted edge if and only if road
connects them which does not pass through any of the other towns. In travelling salesman
problem, we have to construct a minimum Hamiltonian cycle. The following algorithms pro-
vide minimum Hamiltonian cycle in case of a complete weighted graph.

(?) Two optimal Algorithm and
@) Closest insertion Algorithm

11.17.1 Two Optimal Algorithm

Suppose that G(V, E) be a complete weighted graph. Where V{v,, v, ...., v,}. Here we choose
a Hamiltonian cycle C and perform a sequence of modifications to C to find a smaller weight.
The following steps are used in two optimal algorithm.
1. Let C =v v, ...... v,,v; be a Hamiltonian cycle of the complete weighted graph G. Calcu-
late the weight w of C by the relation

w =w(vy, Vg) + WUy, Vg) + .uuee. +w(v,, vy).
Where, w(v;, v;) denote the weight of the edge joining v; and v;.
2. Seti=1
3. Setj=1+2
4. Let C;; denote the Hamiltonian cycle as
Cj = V1UgU3 . VU071 Uj g wees Ujyq Ujyq weee V01

Calculate w;; of C;;, where w;; =w —w(v; v;,1) —w(V; vj,1) + WQ; V) + W(V;,1 Vj4q)-

5. Ifw;; <w, then replace C by C;; and w by w;; . Also relabel the vertices of C;; in the order
U1UgV3 ... v,Uq; else go to step 6.

6. Setj=(G+1).Ifj<n,gotostep4elseseti=>G+1).

7. Ifi <(n - 2), go to step 3 else stop.
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11.17.2 The Closest Insertion Algorithm

In this algorithm we gradually build up a sequence of cycles in the graph which involve more
and more vertices until all the vertices are chosen up. In this case one more vertex is in-
serted into the cycle each time in cheapest possible way. The description uses the idea of the
distance of a vertex v from a walk W. The following steps are used in this algorithm.

1. Choose any vertex v, as a starting vertex.

2. Choose the 2nd vertex v, which is closest tov; from the (n — 1) vertices not chosen so far.
Let wy = vv9v1 denote the walk.

3. Choose the 3rd vertex vy which is closest to the walk wy = vv5v4 from the (n — 2) vertices
not chosen so far. Let wg = v;v9v5v; denote the walk.

4. Choose the 4th vertex v, which is closest to the walk w3 = v;v9v5v; from the (n — 3)
vertices not chosen so far. Find the shortest walk from the walksv, vy v3v,v1; 01 Vg V4 Vg
Uq; U1 U4 Ug U3 V7. Let w, denote the shortest walk. Relabel the vertices as v, vy v3 v, v if
necessary.

5. Choose the 5th vertex v; which is closest to the walk w, from the (n — 4) vertices not
chosen so far. Find the shortest walk from the walks v; vy v3 V4 U5 V1; U] Ug U3 Us U4 U1; U
Vg Ug Ug Uy Uq; Uy Ug Uy Ug Uy Uq. Let wy denote the shortest walk. Relabel the vertices as v,
Uy U3 U4 U U7 if necessary.

6. The process is being repeated until all the vertices are included in the cycle. Therefore
the walk w,, is the Hamiltonian cycle of the graph G.

Note: Both the algorithms i.e. Two optimal algorithm and Closest insertion algorithm provide

reasonably good solutions. Therefore, both are approximately optimal.

® SOLVED EXAMPLES o

Example 1 Ifu and v are distinct vertices of a tree T, then T contains exactly one u — v path.
Solution: Suppose, to the contrary, the tree T contains two u —v paths. Let us assume that
the two u — v paths are Q and S.

Since Q and S are different u — v paths, there must exists a vertex x belonging to both Q
and S such that the vertex immediately following x on Q is different from the vertex immedi-
ately following x on S. This can be easily understandable from the figure shown below.

u
oo o = » e °

Let us assume that y be the first vertex of Q following x, which also belongs to S. This
implies that there exists two x — y paths that have only x and y in common. It is clear that
these two paths produce a cycle in T. This is a contradiction. This contradict to the fact that
T is a tree.

Therefore, our supposition is wrong. Hence, T has only one u — v path.

Example 2  For the following weighted graph G apply Floyd-Warshall algorithm to find the
shortest path between any pair of vertices a, b, ¢, d and e. Show at least one iteration in
details.
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Solution : The adjacency matrix W with respect to the nodes b, a, c, e

0 2 7 o -5
o 0 o 7 6
anddisgivenas [ 3 0 oo o
1 ©« 6 0 o
Hence, n =Row[W] =5
0 2 7 o -5
o 0 7 6
© _ (@) _
D = (d” )— 3 O e e
1 ©« 6 0 o
For k=1,i=1andj=1to5 we get

di, =Min(dy;,d}; +dy;) = Min(0,0 + 0) = 0
diy = Min(dyy,dy; +diy) = Min(2,0 + 2) = 2
di; =Min(dyy,d}; +dfs) = Min(7,0 +7) =7
di, = Min(dy,,dY; +dy,) = Min(ee,0 + o) = oo
dis =Min(d%,d?, +d%) = Min(-5,0-5) = -5
For k=1,i=2andj=1to5 we get

d3; = Min(dy,,d3; +dy}) = Min(eo,e0 + 0) = oo
dys = Min(dgy,dd; +dy) = Min(0,e0 +2) = 0
dys = Min(dgs,d3; +dy3) = Min(eo,e0 +7) = e
ds, =Min(dy,,dy; +dY,) = Min(7,e0 +00) =7
dys = Min(dgs,d3; +djs) = Min(6,00 — 5) = 6
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For

For

For

Therefore, we have

Similarly for

Similarly for

k=1,i=3andj=1to5 we get
d3; =Min(dy,,d3; +d)) = Min(es,c0 + 0) = oo
d3s = Min(d5y,dd; +dy) = Min(3,0 +2) = 3
d3s = Min(d3s,d3; +dis) = Min(0,00+7) = 0
d3, = Min(dy,,d3; +dYy) = Min(ss,c0 + o0) = oo
d3s = Min(d3,d3; +djs) = Min(eo, o0 — 5) = oo
k=1,i=4andj=1to5 we get
dj; =Min(dy,,d}; +df)) =Min(1,1+0) =1
djy = Min(dYy,dd; +dy) = Min(eo,1 +2) = 3
djs = Min(djs,d}; +dj3) = Min(-6,1 +7) = -6
dy, =Min(d),,dY; +dY,) =Min(0,1 +) =0
dis = Min(dg;,dJ; +dl5) = Min(w,1-5) = -4
k=1,i=5andj=1to5 we get
di, =Min(dy,,dJ; +dy}) = Min(eo,e0 +0) = oo
diy = Min(ddy,dd; +diy) = Min(es,c0 +2) = o
dis = Min(dd;,dd; +dyy) = Min(eo,c0 +7) = oo
di, =Min(dl,,d2; +dY,) = Min(5,00 + 00) = 5
dis =Min(d3s,d?2;, +d}s) = Min(0,00—5) = 0

0 2 7 = -5
© 0 o 7 6
DV=]cc 3 0 o oo
1 3 60 —4
© w0 o 5 0

k=2,i=1to5andj=1to5 we get

02 7 9 -5
o 0 o 7 6
D?=|~ 3 0 10 9
1 3 6 0 —4
o o0 oo 5 0

k=3,i=1to5andj=1to5 we get

0 2 7 9 -5

o 0 o 7 6
DP=| 3 0 10 9
-6 0 —4
o o o 5 0

[y
|
[$N]
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Similarly for k=4,i=1to5andj=1to5 we get

0 2 3 9 -5
8§ 0 1 7 3
D¥=111 3 0 10 6
1 3 6 0 4
6 2 -1 5 0

Similarly for k=5,i=1to5andj=1to5 we get

0 3 6 0 -5
8§ 0 1 7 3
DP”=111 3 0 10 6
1 3 6 0 4
6 2 -1 5 0

From the above matrix, the shortest distance for any pair of vertices can be found out.
Example 3 Find the closure of the graph G where

3

Solution : In the above graph G we have V = {vq, vy, v3, vy, U5, Ug) and number of vertices
(n) = 6. Now for the non adjacent vertices v, and v, we have

dv)) +dvy)=4+2=62n=6.

Therefore, there exists an edge between v; and v,. Let the super graph G; be
V4

V3

For the non-adjacent vertices v, and v, we have d(v,) + d(v,) = 3 + 3 = 6 2 n . Therefore,
there exists an edge between v, and v, . Let the super graph G, be
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Vi

Vo

N
<7

V,
5 V3

Again, v,y and vy are non-adjacent such thatd(vy) + d(vs) =4 + 3 =7>n = 6. Therefore, there
exists an edge between v, and v;. Let the super graph G be

Vo

.
4

V
5 V3

For the non-adjacent vertices vy and v; we have d(vs) + d(vs) = 3 + 4 = 7 2 n. Therefore,
there exists an edge between v; and v;. Let the super graph G, be

Vo

V3

=/

For the non-adjacent vertices vy and vz we have d(vsg) + d(vg) =4 + 3 = 7 2 n. Therefore,
there exists an edge between v3 and vg . Let the super graph G5 be.
V4

For the non-adjacent vertices v, and vz we have d(vy) + d(vg) = 4 + 4 = 8 > n. Therefore,
there exists an edge between v, and vg . Let the super graph be G . In the above graph, there

is no two non-adjacent vertices. Thus, Gg is the final super graph. Therefore, the closure of
the graph G is given as
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Vi
Vg v,
C(G)=Gq;:
Vg vy
Vyq

Example 4 For the following travelling salesman problem, carry out the closest insertion

algorithm.

Solution :  Given that the complete weighted graph G as

1. Choose the vertex v,
2. Choose the vertex vy, which is closest to v;. So, wy = v; vy vy

3. Choose the vertex vg, which is close to wy. So, ws = vy vy V3 V1

4. Choose the vertex v,, which is close to w;. Hence, we have the following cases.

Wy =0Vq Vg Ugly Uy O

U1 Ug Uy Ug Vg OT

U104 Ug V30,
Now length of v, v5v5040; =10 +40 + 30 + 20 =100

Length of U1 Uy U, U307 =10+ 45+ 30 + 15 =100
Length of U1 UgUyU30 =20 +45+40+ 15 =120
Therefore, Wy = Uy Ug Ug Uy U7 1s minimum.

5. Choose the vertex v;, which is close to w,. Hence, we have the following cases. The

length of following cycles is given as below.
U1 Vg U304 U507 =10+ 40 + 30 + 55 + 25 =160
U1 U9 V3050401 =10+40 + 35+ 55 + 20 =160
V1 Uy U5 U304 07 =10+ 50+ 35+ 30+20=145
U1 U5U9U30401=25+50+40+30+20=165

As all the vertices are included in the cycle, so the process terminates. Hence , the short-

est Hamiltonian cycle is given as v, vy U5 U3 U4 V7.
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Vs Vo
20

h 35
v, O O vs

Example 5 For the travelling salesman problem given in example 4, carry out the two opti-
mal algorithm.

Solution :  For the complete weighted graph G given above, the number of vertices (n) = 5.
According to the two optimal algorithm we have the following steps.

1. Let C =vq, vy, v, Uy, Us, v; be a Hamiltonian cycle.
Therefore, we get
w =w(v1vy) + w(vyvs) + w(vgvy) + wW(vyws) +w(vsv,)
=10+40 + 30 + 55 + 25 =160
Seti=1
Setj=i+2=3
4. Set C;; = C13 =07 U309 4 U5V

w N

Wyg =W —w(V1Vg) —w (Vv ) + W(V1Vg) + W(VgV,)
=160-10-30+ 15 + 45 =180
5. As wq5 ¢ w; Go to step 6.
Setj=(G+1)=4and 4 <n =5. Go to step 4.
4. Set CLJ = Cl4 =UVUqU40U3 Vg Uy Uy

2

Wiy =W —w(vqvy) —w(vavs) + wW(vivy) +w(vyvy) = 165
5. As wy, =165 £ 160 = w; Go to step 6.
Setj=(G+1)=5and 5<n =>5. Go to step 4.
. Set C;; = Cy5 = v U504 U3V U

-~ o

wqs =w —w(vvy) —w(vgvy) +w(vvs) +wlvyw,) = 160
. As wy; = 160 £ 160 = w; Go to step 6
Setj=(G+1)=6and 6 £ n=5. Gotostep 7withi=0G+1)=2.
As i=2<(n-2)=3, Go to step 3.
Setj=(+2)=2+2=4
. Set CLJ = 024 =UV1 U9 Uy Vg U5 0Vq

B W o o

Wy =w —w(vgvg) —w(vg vg) + w(vg vy) + w(vg vg) = 145
5. As wyy = 145 < 160 = w; go to step 1
1. C=Cyy =0, 05040530507 Withw = wy, = 145.
After re-labeling the vertices we have
C =Cyy =1 Vg U3 V4 U5 V7.
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w N

o AW 1o ; Q=N

o

B W o o

5.
6.
7.

V1

Seti =1
Setj=G+2)=3

. Set CLJ = C13 = Ul U3 Uz U4 U5 Ul

wig =w —w(vy vy) —w(vg vy) + W, v3) + wW(vy vy) = 165

. As wy3 = 165 ¢ 145 = w; go to step 6

Setj=(G+1)=4and 4 <n =5. Go to step 4

. Set C;; = C14 = vy vy V309 V5 V4

Wy =w —w(vyvy) —w(vy vs) + wvy vy) + w(vy vs) = 165

. As wy, =165 £ 145 = w; go to step 6

Setj=(G+1)=5and 5<n =>5. Go to step 4

. Set C;; = Cq5 = v U504 U3V U

wis =w —w(vy vy) —w(vs V) + w(vy vg) +w(vg vy) = 145

.As wy; = 145 ¢ 145 = w; go to step 6

Setj=(G+1)=6¢n=5withi=@+1)=2.

As i=2<(n-2)=3, Gotostep 3

Setj=(+2)=2+2=4

. Set CLJ = 024 =UVq1 U9 Uy Ug U5 0Vq

Wy =w —w(Vg Ug) —w(vy Ug) + wW(vyvy) +w(vg vg) = 160

. As wy, = 160 ¢ 145 = w; go to step 6

Setj=(G+1)=5<5=n,gotostep4

. Set CLJ = C25 = Ul Uz U5 U4 U3 Ul

Wes =W —w(Vy Ug) —w(v5 V7)) + w(vy Ug) + wW(vgvy) = 145

. As wos = 145 ¢ 145 = w; go to step 6

Setj=G+1)=6¢ n=5withi=(G+1)=3.gotostep7

.As 1=3<(n-2)=3,gotostep3

Setj=G+2)=5

. Set C;; = Cg5 =1 Vg U3 V5 V4 Vg

wes =w —w(vgvy) —w(vs vy) + wvgvg) + w(vy vq) = 160
As wgs = 160 £ 145 = w; go to step 6
Setj=G+1)=6¢£ n=5withi=>G+1)=4,gotostep7

Asi=4 ¢ (n — 2) = 3, therefore the process terminates. Hence, the minimum

Hamiltonian path is given as v, vy v3 U4 U5 v;. The path for travelling salesman is given
below.
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Example 6 Find the eccentricity of all vertices, radius, diameter and centre of the graph
given below. It is given that the distance between any two adjacent vertices is 1.

vy V3 Vy Ve

V7

L

Solution : In the graph given above V = {v,, vy, v3, vy, Us, Ug, U5} It is also given that length
of each edge is 1. Now,

Vs Vs

dy,vy) =1; d(vy,v3) = 2; d(vy,vy) = 3;
d(vy,v5) =2 d(vy,vg) = 3; d(vy,vq) = 3;
Therefore, e(vy) = Max (1, 2, 3} = 3.
Similarly, we get
dy,vy) = 1; dg, vg) = 1; d(vg,vy) = 2;
d(vg, v5) = 1; d(vg, Vg) = 2; d(vy, v7) = 2;
Therefore, e(vy) = Max {1, 2} = 2.

Proceeding in this way we get
e(vy) =3;e(vy) = 3; e(v) = 2; e(vg) = 3; e(vy) = 3.
Now, radius = rad (G) = Min {e(v): v € V} = Min (2, 3) = 2.
Diameter = diam (G) = Max {e(v): v € V} = Max (2, 3) = 3.
So, the central points are vy, v; and centre {v,, vs}.
Example 7 Let T be a tree of order p and size q having p; vertices of degreei (i=1,2, 3, ... ).

Let Y. p =pand Y ip;=2g=2(p-1.
i i

Show that D1 =Ds+2p,+3ps+4pg+ ... + 2.
Solution : Given that T is a tree of order p and size q. It is also given that

Zpi =p and Zipi =2(p-1)

i

i.e.p1+2py+3ps+4p,+...2(p—-1)=2p -2

ie. D1+ 2Py +3py +4py+ .. = 2 p —2
i



254 Fundamental Approach to Discrete Mathematics

i.e. Dpy+2py+3ps+4ps+...=2(p+py+pg+..)—2
Le. DP1=DP3+2ps+3ps+4pg+ ... + 2.
Example 8 If T is a binary tree of height h and order p, then
(h+1)<p<2®+V_1
Solution : Let p, denote the number of vertices of T at level %2 for 0 <% < A.
Therefore, we get

h
Zpk =p
k=0

Since p;, > 1 for each %k, and p, < 2p;, _ ) for 1 <k < h, it follows, inductively, that p, < 2k,
Again,

h
sz =14+2+224234  4+2h=9o1_1

k=0
h h
Again, Zpk < Z2k =2l _q
k=0 k=0
ie. p<2ti_1 o (@)
h h
Also, 21£Zpk =p
k=0 k=0
ie. (h+1)<p .. (@)

On combining equations (i) and (ii) we get
(h+1)<p<2ti_1.
Example 9 Construct the binary tree for the arithmetic expression
(AB-C)/((D-E)F +G-H)).
Solution : Given arithmetic expression is
(AB-C)/((D-E)F +G-H)).
The binary tree corresponding to the above expression is given below.
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Example 10 For the graph G shown below, use Dijkstra’s algorithm to compute the shortest
path between a and f.

Solution : In the above graph G, the source vertex is
v,=aandv,=f. Set Ma)=0

and Mb)=Ac)=Md) =Me) =Mf) ==. T=V ={a, b,c,d,e, f}.
Hence, we have the following table

Vertex a b c d e f
Mv) 0 oo oo oo oo oo
T a b c d e f
Now, u=aasMu)=Ma)=0
which is minimum.
The edges incident on u =a are ab and ac.
Therefore, AMb) = Min [Mb), Ma) + w(ab)]

= Min [, 20] = 20.
Me) = Min [Me), Ma) +w(ac)]
= Min [, 30] = 30.

Again, T=T-{u=a}=1b,c¢,d,e,[}.
Therefore, we have the following table

Vertex a b c d e f
M) 0 20 30 oo oo oo
T b c d e f
Now, u=>basMu)=Mb)=20

which is minimum.
The edges incident with u = b are bc and be. Therefore,
Me) = Min [AMe), Mb) +w(bce)]
= Min [30, 43] = 30.
Me) = Min [Ae), Mb) +w(be)]
= Min [, 37] = 37.

Again, T=T-{u=5}=lc,d,e,f.
Thus, we have the following table
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Now,

The edges incident with u =c is cd.

Therefore,

Again,

Vertex a b c d e f
AMv) 0 20 30 oo 37 oo
T c d e f

u =c as Mu) = Mc) = 30 which is minimum.

Md) = Min [Md), Me) +w(cd)]
= Min [o», 45] = 45.

T=T-{u=c}={d,e,f.
Thus, we have the following table

Vertex a b c d e f
M) 0 20 30 45 37 oo
T d e f

Now, u =e as Mu) = Ae) = 37 which is minimum.

The edges incident with u = e are ed and ef.

Therefore, Md) = Min [Md), Me) +w(ed)]
= Min [45, 67] = 45.
M) = Min [MP), Me) +w(ef)]
= Min [e, 70] = 70.
Again, T=T-{u=e}=1{d,fl.
Thus, we have the following table
Vertex a b c d e f
AMv) 0 20 30 45 37 70
T d f

Now, u =d as Mu) = Md) = 45 which is minimum.
The edges incident with u = d is df. Therefore,
M) =Min [AM(7), Md) +w(df)]

= Min [70, 68] = 68.

Again, T=T-{u=d}={fl
Thus, we have the following table
Vertex a b c d e f
M) 0 20 30 45 37 68
T f

Now, u =fand fis the terminating node, so the process terminates.

Hence the shortest distances froma to b, ¢, d, e and f are 20, 30, 45, 37, 68 respectively. The
shortest distance between a and fis given in the figure below.
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Example 11 Construct the following graphs

(@) Eulerian but not Hamiltonian (b) Hamiltonian but not Eulerian
(¢c) Neither Eulerian nor Hamiltonian (d) Eulerian and Hamiltonian

Solution : The different graphs are given below.

b d b d
aéme aDc

Eulrian but not Hamiltonian Hamiltonian but not Eulerian
b d b d
Jm @
Neiher Eulerian not Hamiltonian Hamiltonian and Eulerian

Example 12 For the graph G shown below, find the depth first search forest.

a e
G: d@g c&f
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Solution : Let us consider the source vertex as ‘a’ in the above graph G. On using the DFS
technique, the order in which the vertices are being visited is described below by the se-
quence of graphs.

a

AN
AN
AN

e

2°

. .
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Therefore, the dotted graph shown above is the depth first forest T of the graph G. Besides
that there could be several depth first forest from the same vertex ‘a’. This indicates that the
depth first forest is not unique.

Example 13 For the graph G shown below, find the breadth first search tree.
d f

b g
Solution :  Consider the graph G given above. Now we have to find out the shortest path
from the source vertex a to the vertex h. On using the BFS technique, we get the following

stages.
d f

e h
a (Label (@) =0 and seti=0)

b

In the above figure the adjacent vertices of a are b, ¢ and d. Therefore we get label
label (3)=i+1=0+1=1;
label(¢c)=i+1=0+1=1andlabel(d)=i+1=0+1=1.

Similarly, the adjacent vertex of d is e.

Therefore we get label (e)=i+1=1+1=2.

Therefore, we have

d f [
e h
a & 2 &
o™, °© 0 ™
b 1 g

In the above figure, the adjacent vertex of e is f. Therefore we get
label(H=i+1=2+1=3.

Similarly, the adjacent vertex of fis h. So,
label (h)=i+1=3+1=4.
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Therefore, the breadth first search tree is given as below.

| e
T a @ @ L4 ®h
0 c 1 2 4
b®
° EXERCISES

1. With reference to the given tree T find the followings.
(@) Height of the tree
(b) Degree of the tree T
(¢) Longest path of the tree
(d) Level (L); Level (H); Level (N)
(e) Parent (M); Sibling (B); Child (D)
2. (a) Draw all trees of order 5 K
(b) Draw all trees of order 7 and A(T) > 4, where A(T) represents maximum degree of
tree T.
3. In a binary tree of height &, there are at most 2" ~! leaf nodes.

4, IfTis a binary tree of height 2 and order p, then A > |_g (p+1)/ 2)-|. The equality holds

if T is a balanced complete binary tree.
5. Find the eccentricity of all vertices, radius, diameter and centre of the graph G given
below. It is given that the distance between any two adjacent vertices is 1.

6. Construct the following graphs.
(@) Eulerian but not Hamiltonian
(b) Hamiltonian but not Eulerian
(¢) Neither Eulerian nor Hamiltonian
(d) Eulerian and Hamiltonian.
7. For the graph G shown below, find the depth-first search tree.
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b
(@) (b)

a e a d
c c
(©) (d)
b d g b e

8. For the graphs given on No. 7, find the breadth first search tree.
9. Solve the travelling salesman problem for the complete weighted graph G given below
by using
(@) Closest Insertion algorithm and
(b) Two optimal algorithm.

10

9
1" 18

N

9

10. Let G be the weighted graph shown below. Use Dijkstra’s algorithm to compute the
shortest distance between u and v.

11. Determine which of the graphs given below are Euler graph by using the following
algorithms.
(@) Fleury’s algorithm and () Hierholzer's algorithm
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’ ’ @

12. Find the closure graph C(G) for the graphs shown below

’ ’ @
® 9

(c) (d)
e @

13. Find the binary tree representation of the followings.
(@) (4x + 2)(2x + xy) ®b) (x + 3y)—((bx + y)/4)

14. Let G be a connected weighted graph. Use Dijkstra’s algorithms to find the length of
shortest paths from the vertex a to each of the other vertices.
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15. Apply Dijkstra’s algorithm to the weighted graph G below to find the shortest distance
for each vertex from the source vertex a.

16. Use Floyd-Warshall algorithm on the weighted, directed graph G shown below to find out
shortest path between any pair of vertices. Show the matrix D(%) that results for each itera-
tion.

17. Find the minimum spanning tree of the graphs shown below by using
(@) Prim’s algorithm and () Kruskal’s algorithm.
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18.

19.

20.

Find a maximal spanning tree for each of the graphs of No 17. using either Prim's
algorithm or Kruskal’s algorithm. [Hint: To get the maximal spanning tree replace the
weight of each edge of the graph by M — w(e), where M is any number greater than the
weight w(e) of every edge e of the graph. Then apply Prim’s algorithm or Kruskal’s
algorithm. The corresponding spanning tree in the original weighted graph is a maximal
spanning tree.]

Find the closure graph C(G) of the following graphs.

(a) (b)

Let G be a connected weighted graph. Use Floyd-Warshall algorithm to find the length
of shortest path between any pair of vertices.

1

b
20
19
a 13 16
’
e 1

2 d




	Cover

	Preface

	Contents
	Chapter 1. Mathematical Logic 
	1.0 Introduction

	1.1 Statement (Proposition)

	1.2 Logical Connectives

	1.3 Conditional

	1.4 Bi-Conditional

	1.5 Converse

	1.6 Inverse

	1.7 Contra Positive

	1.8 Exclusive OR

	1.9 NAND
 
	1.10 NOR

	1.11 Tautology

	1.12 Contradiction

	1.13 Satisfiable

	1.14 Duality Law

	1.15 Algebra of Propositions

	1.16 Mathematical Induction

	Solved Examples

	Exercises


	Chapter 2. Set Theory 
	2.0 Introduction

	2.1 Sets

	2.2 Types of Sets

	2.3 Cardinality of a Set

	2.4 Subset and Superset

	2.5 Comparability of Sets

	2.6 Power Set

	2.7 Operations on Sets

	2.8 Disjoint Sets

	2.9 Application of Set Theory

	2.10 Product of Sets

	2.11 Fundamental Products

	Solved Examples

	Exercises


	Chapter 3. Binary Relation 
	3.0 Introduction

	3.1 Binary Relation 
	3.2 Inverse Relation

	3.3 Graph of Relation

	3.4 Kind of Relation

	3.5 Arrow Diagram

	3.6 Void Relation

	3.7 Identity Relation

	3.8 Universal Relation

	3.9 Relation Matrix (Matrix of the Relation)

	3.10 Composition of Relations

	3.11 Types of Relations

	3.12 Types of Relations and Relation Matrix

	3.13 Equivalence Relation

	3.14 Partial Order Relation

	3.15 Total Order Relation

	3.16 Closures of Relations

	3.17 Equivalence Classes

	3.18 Partitions 
	Solved Examples

	Exercises 

	Chapter 4. Function 
	4.0 Introduction

	4.1 Function

	4.2 Equality of Functions

	4.3 Types of Function

	4.4 Graph of Function

	4.5 Composition of Functions

	4.6 Inverse Function

	4.7 Some Important Functions

	4.8 Hash Function

	Solved Examples

	Exercises


	Chapter 5. Group Theory 
	5.0 Introduction

	5.1 Binary Operation on a Set

	5.2 Algebraic Structure

	5.3 Group

	5.4 Subgroup

	5.5 Cyclic Group

	5.6 Cosets

	5.7 Homomorphism

	Solved Examples

	Exercises


	Chapter 6. Codes and Group Codes 
	6.0 Introduction

	6.1 Terminologies

	6.2 Error Correction

	6.3 Group Codes

	6.4 Weight of Code Word

	6.5 Distance Between the Code Words

	6.6 Error Correction for Block Code

	6.7 Cosets

	Solved Examples

	Exercises


	Chapter 7. Ring Theory 
	7.0 Introduction

	7.1 Ring

	7.2 Special Types of Ring

	7.3 Ring without Zero Divisor

	7.4 Integral Domain

	7.5 Division Ring

	7.6 Field

	7.7 The Pigeonhole Principle

	7.8 Characteristics of a Ring

	7.9 Sub Ring

	7.10 Homomorphism

	7.11 Kernel of Homomorphism of Ring

	7.12 Isomorphism

	Solved Examples

	Exercises


	Chapter 8. Boolean Algebra 
	8.0 Introduction

	8.1 Gates

	8.2 More Logic Gates

	8.3 Combinatorial Circuit

	8.4 Boolean Expression

	8.5 Equivalent Combinatorial Circuits

	8.6 Boolean Algebra

	8.7 Dual of a Statement

	8.8 Boolean Function

	8.9 Various Normal Forms

	Solved Examples

	Exercises


	Chapter 9. Introduction to Lattices 
	9.0 Introduction

	9.1 Lattices

	9.2 Hasse Diagram

	9.3 Principle of Duality

	9.4 Distributive Lattice

	9.5 Bounded Lattice

	9.6 Complemented Lattice

	9.7 Some Special Lattices

	Solved Examples

	Exercises


	Chapter 10. Graph Theory 
	10.0 Introduction

	10.1 Graph

	10.2 Kinds of Graph

	10.3 Digraph

	10.4 Weighted Graph

	10.5 Degree of a Vertex

	10.6 Path

	10.7 Complete Graph

	10.8 Regular Graph

	10.9 Cycle

	10.10 Pendant Vertex

	10.11 Acyclic Graph

	10.12 Matrix Representation of Graphs

	10.13 Connected Graph

	10.14 Graph Isomorphism

	10.15 Bipartite Graph

	10.16 Subgraph

	10.17 Walks

	10.18 Operations on Graphs

	10.19 Fusion of Graphs

	Solved Examples

	Exercises


	Chapter 11. Tree
	11.0 Introduction

	11.1 Tree

	11.2 Fundamental Terminologies

	11.3 Binary Tree

	11.4 Bridge

	11.5 Distance

	11.6 Eccentricity

	11.7 Radius

	11.8 Diameter

	11.9 Central Point and Centre

	11.10 Spanning Tree

	11.11 Searching Algorithms

	11.12 Shortest Path Algorithms

	11.13 Cut Vertices

	11.14 Euler Graph

	11.15 Hamiltonian Path

	11.16 Closure of a Graph

	11.17 Travelling Salesman Problem

	Solved Examples

	Exercises





