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Preface

Matrix theory is a fundamental area of mathematics with appli-
cations not only to many branches of mathematics but also to sci-
ence and engineering. Its connections to many different branches
of mathematics include: (i) algebraic structures such as groups,
fields, and vector spaces; (ii) combinatorics, including graphs and
other discrete structures; and (iii) analysis, including systems of
linear differential equations and functions of a matrix argument.

Generally, elementary (and some advanced) books on matri-
ces ignore or only touch on the combinatorial or graph-theoretical
connections with matrices. This is unfortunate in that these con-
nections can be used to shed light on the subject, and to clarify and
deepen one’s understanding. In fact, a matrix and a (weighted)
graph can each be regarded as different models of the same math-
ematical concept.

Most researchers in matrix theory, and most users of its meth-
ods, are aware of the importance of graphs in linear algebra. This
can be seen from the great number of papers in which graph-
theoretic methods for solving problems in linear algebra are used.
Also, electrical engineers apply these methods in practical work.
But, in most instances, the graph is considered as an auxiliary,
but nonetheless very useful, tool for solving important problems.

This book differs from most other books on matrices in that
the combinatorial, primarily graph-theoretic, tools are put in the
forefront of the development of the theory. Graphs are used to
explain and illuminate basic matrix constructions, formulas, com-
putations, ideas, and results. Such an approach fosters a better
understanding of many ideas of matrix theory and, in some in-
stances, contributes to easier descriptions of them. The approach

xi



xii PREFACE

taken in this book should be of interest to mathematicians, elec-
trical engineers, and other specialists in sciences such as chemistry
and physics.

Each of us has written a previous book that is related to the
present book:

I. R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory,
Cambridge: Cambridge University Press, 1991; reprinted
1992.

II. D. Cvetković, Combinatorial Matrix Theory, with Applica-
tions to Electrical Engineering, Chemistry and Physics, (in
Serbian), Beograd: Naučna knjiga, 1980; 2nd ed. 1987.

This joint book came about as a result of a proposal from the
second-named author (D.C.) to the first-named author (R.A.B.)
to join in reworking and translating (parts of) his book (II). While
that book—mainly the theoretical parts of it—has been used as
a guide in preparing this book, the material has been rewritten
in a major way with some new organization and with substantial
new material added throughout. The stress in this book is on
the combinatorial aspects of the topics treated; other aspects of
the theory (e.g., algebraic and analytic) are described as much as
necessary for the book to be reasonably self-contained and to pro-
vide some coherence. Some material that is rarely found in books
at this level, for example, Gers̆gorin’s theorem and its extensions,
Kronecker product of matrices, and sign-nonsingular matrices and
evaluation of the permanent, is included in the book.

Thus our goal in writing this book is to increase one’s under-
standing of and intuition for the fundamentals of matrix theory,
and its application to science, with the aid of combinatorial/graph-
theoretic tools. The book is not written as a first course in linear
algebra. It could be used in a special course in matrix theory for
students who know the basics of vector spaces. More likely, this
book could be used as a supplementary book for courses in matrix
theory (or linear algebra). It could also be used as a book for an
undergraduate seminar or as a book for self-study.

We now briefly describe the chapters of the book. In the first
chapter we review the basics and terminology of graph theory,
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elementary counting formulas, fields, and vector spaces. It is ex-
pected that someone reading this book has a previous acquain-
tence with vector spaces. In Chapter 2 the algebra of matrices
is explained, and the König digraph is introduced and then used
in understanding and carrying out basic matrix operations. The
short Chapter 3 is concerned with matrix powers and their de-
scription in terms of another digraph associated with a matrix.

In Chapter 4 we introduce the Coates digraph of a matrix and
use it to give a graph-theoretic definition of the determinant. The
fundamental properties of determinants are established using the
Coates digraph. These include the Binet–Cauchy formula and the
Laplace development of the determinant along a row or column.
The classical formula for the determinant is also derived. Chapter
5 is concerned with matrix inverses and a graph-theoretic interpre-
tation is given. In Chapter 6 we develop the elementary theory of
solutions of systems of linear equations, including Cramer’s rule,
and show how the Coates digraph can be used to solve a linear
system. Some brief mention is made of sparse matrices.

In Chapter 7 we study the eigenvalues, eigenvectors, and char-
acteristic polynomial of a matrix. We give a combinatorial argu-
ment for the classical Cayley–Hamilton theorem and a very com-
binatorial proof of the Jordan canonical form of a matrix. Chapter
8 is about nonnegative matrices and their special properties that
highly depend on their digraphs. We discuss, but do not prove,
the important properties of nonnegative matrices that are part of
the Perron–Frobenius theory. We also describe some basic proper-
ties of graph spectra. There are three unrelated topics in Chapter
9, namely, Kronecker products of matrices, eigenvalue inclusion
regions, and the permanent of a matrix and its connection with
sign-nonsingular matrices. In Chapter 10 we describe some appli-
cations in electrical engineering, physics, and chemistry.

Our hope is that this book will be useful for both students,
teachers, and users of matrix theory.

Richard A. Brualdi

Dragoš Cvetković
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Chapter 1

Introduction

In this introductory chapter, we discuss ideas and results from
combinatorics (especially graph theory) and algebra (fields and
vector spaces) that will be used later. Analytical tools, as well as
the elements of polynomial theory, which are sometimes used in
this book, are not specifically mentioned or defined, believing, as
we do, that the reader will be familiar with them. In accordance
with the goals of this book, vector spaces are described in a very
limited way. The emphasis of this book is on matrix theory and
computation, and not on linear algebra in general.

The first two sections are devoted to the basic concepts of graph
theory. In Section 1.1 (undirected) graphs are introduced while
Section 1.2 is concerned with digraphs (directed graphs). Section
1.3 gives a short overview of permutations and combinations of
finite sets, including their enumeration. The last two sections
contain algebraic topics. Section 1.4 summarizes basic facts on
fields while Section 1.5 reviews the basic structure of vector spaces
of n-tuples over a field.

Matrices, the main objects of study in this book, will be in-
troduced in the next chapter. They act on vector spaces but,
together with many algebraic properties, contain much combina-
torial, in particular, graph-theoretical, structure. In this book we
exploit these combinatorial properties of matrices to present and
explain many of their basic features.

1



2 CHAPTER 1. INTRODUCTION

1.1 Graphs

The basic notions of graph theory are very intuitive, and as a result
we shall dispense with some formality in our explanations. Most
of what follows consists of definitions and elementary properties.

Definition 1.1.1 A graph G consists of a finite set V of elements
called vertices and a set E of unordered pairs of vertices called
edges. The order of the graph G is the number |V | of its vertices.
If α = {x, y} is an edge, then α joins vertices x and y, and x and
y are vertices of the edge α. If x = y, then α is a loop. A subgraph
of G is a graph H with vertex set W ⊆ V whose edges are some,
possibly all, of the edges of G joining vertices in W . The subgraph
H is a induced subgraph of G provided each edge of G that joins
vertices in W is also an edge of H . The subgraph H is a spanning
subgraph of G provided W = V , that is, provided H contains all
the vertices of G (but not necessarily all the edges). A multigraph
differs from a graph in that there may be several edges joining the
same two vertices. Thus the edges of a multigraph form a multiset
of pairs of vertices. A weighted graph is a graph in which each edge
has an assigned weight (generally, a real or complex number). If all
the weights of a graph G are positive integers, then the weighted
graph could be regarded as a multigraph G′ with the weight of an
edge {x, y} in G regarded as the number of edges in G′ joining the
vertices x and y. 2

G H1 H2

Figure 1.1

Graphs can be pictured geometrically by representing each ver-
tex by a (geometric) point in the plane, and each edge by a (geo-
metric) edge, that is, a straight line or curve joining corresponding
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geometric points. Care needs to be taken so that a geometric edge,
except for its two endpoints, contains no other point representing
a vertex of the graph. A graph G and two subgraphs H1 and H2

are drawn in Figure 1.1. The graph H1 is a spanning subgraph
of G; the graph H2 is not a spanning subgraph but is an induced
subgraph.

Definition 1.1.2 Let G be a graph. A walk in G, joining vertices
u and v, is a sequence γ of vertices u = x0, x1, . . . , xk−1, xk = y
such that {xi, xi+1} is an edge for each i = 0, 1, . . . , k − 1. The
edges of the walk γ are these k edges, and the length of γ is k. If
u = v, then γ is a closed walk. If the vertices x0, x1, . . . , xk−1, xk

are distinct, then γ is a path joining u and v. If u = v and the
vertices x0, x1, . . . , xk−1, xk are otherwise distinct, then γ is a cycle.
The graph G is connected provided that for each pair of distinct
vertices u and v there is a walk joining u and v. A graph that is
not connected is called disconnected. 2

It is to be noted that if there is a walk γ joining vertices u and v,
then there is a path joining u and v. Such a path can be obtained
from γ by eliminating cycles as they are formed in traversing γ.
A path has one fewer edge than it has vertices. The number of
vertices of a cycle equals the number of its edges. We sometimes
regard a path (respectively, cycle) as a graph whose vertices are
the vertices on the path (respectively, cycle) and whose edges are
the edges of the path (respectively, cycle). A path with n vertices
is denoted by Pn, and a cycle with n vertices is denoted by Cn.

Definition 1.1.3 Let G be a graph with vertex set V . Define
u ≡ v provided there is a walk joining u and v in G. Then it
is easy to verify that this is an equivalence relation and thus V
is partitioned into equivalence classes V1, V2, . . . , Vl whereby two
vertices are joined by a walk in G if and only if they are in the
same equivalence class. The subgraphs of G induced on the sets
of vertices V1, V2, . . . , Vl are the connected components of G. The
graph G is connected if and only if it has exactly one connected
component.
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A tree is a connected graph with no cycles. A spanning tree
of G is a spanning subgraph of G that is a tree. Only connected
graphs have a spanning tree, and a spanning tree can be obtained
by recursively removing an edge of a cycle until no cycles remain.
The graph in Figure 1.2 is a tree with 5 vertices and 4 edges. A
forest is a graph each of whose connected components is a tree. 2

Figure 1.2

The next theorem contains some basic properties of trees.

Theorem 1.1.4 Let G be a graph of order n ≥ 2 without any
loops. The following are equivalent:

(i) G is a tree.

(ii) For each pair of distinct vertices u and v there is a unique
path joining u and v.

(iii) G is connected and has exactly n − 1 edges.

(iv) G is connected and removing an edge of G always results in
a disconnected graph.

2

An edge of a connected graph whose removal results in a dis-
connected graph is called a bridge. A bridge cannot be an edge of
any cycle. Property (iv) above thus asserts that a graph is a tree
if and only if it is connected and every edge is a bridge.

In Figure 1.3 we show all the structurally different trees of
order k with k ≤ 5.
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Definition 1.1.5 In a graph G (or multigraph) the degree of a
vertex u is the number of edges containing u where, in the case of a
loop, there is a contribution of 2 to the degree. Let G be of order n,
and let the degrees of its vertices be d1, d2, . . . , dn, where, without
loss of generality, we may assume that d1 ≥ d2 ≥ · · · ≥ dn ≥ 0.
Then d1, d2, . . . , dn is the degree sequence of G. Since each edge
contributes 1 to the degree of two vertices, or, in the case of loops,
2 to the degree of one vertex, we have

d1 + d2 + · · · + dn = 2e,

where e is the number of edges. A graph is regular provided each
vertex has the same degree. If k is the common degree, then the
graph is regular of degree k. A connected regular graph of degree
2 is a circuit. A pendent vertex of a graph is a vertex of degree
1. The unique edge containing a particular pendent vertex is a
pendent edge. 2

Figure 1.3

The complete graph Kn of order n is the graph in which each
pair of distinct vertices forms an edge. Thus Kn is a regular graph
of degree n and has exactly n(n−1)/2 edges. Since a tree of order
n has n − 1 edges, the sum of the degrees of its vertices equals
2(n − 1). Thus a tree of order n ≥ 2 has at least two pendent
vertices, and indeed has exactly 2 pendent vertices if and only if
it is a path. Removing a pendent vertex–pendent edge pair from
a tree leaves a tree of order 1 less.
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Definition 1.1.6 A vertex-coloring of a graph is an assignment of
a color to each vertex so that vertices that are joined by an edge
are colored differently. One way to color a graph is to assign a
different color to each vertex. The chromatic number of a graph G
is the smallest number χ(G) of colors needed to color its vertices.
2

The chromatic number of the complete graph Kn equals n.
The chromatic number of a circuit is 2 if it has even length and
is 3 if it has odd length. The chromatic number of a tree of order
n ≥ 2 equals 2. This latter fact follows easily by induction on the
order of a tree, by removing a pendent vertex–pendent edge pair.

Definition 1.1.7 A graph G is bipartite provided its chromatic
number satisfies χ(G) ≤ 2. Only when G has no edges can the
chromatic number of a bipartite graph be 1. Assume that G is
a bipartite graph with vertex set V and at least one edge. Then
V can be partitioned into two sets U and W such that each edge
joins a vertex in U to a vertex in W . The pair U, W is called a
bipartition of V (or of G). 2

If G is a connected bipartite graph, its bipartition is unique. A
tree is a bipartite graph. Bipartite graphs are usually drawn with
one set of the bipartition on the left and the other on the right (or
one on top and the other on the bottom); so edges go from left to
right (or from top to bottom). An example of such a drawing of a
bipartite graph is given in Figure 1.4.

Figure 1.4
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Let m and n be positive integers. The complete bipartite graph
Km,n is the bipartite graph with vertex set V = U ∪ W , where
U contains m vertices and W contains n vertices and each pair
{u, w} where u ∈ U and w ∈ W is an edge of Km,n. Thus Km,n

has exactly mn edges.

Definition 1.1.8 Let G be a graph of order n. A matching M
in G is a collection of edges no two of which have a vertex in
common. If v is a vertex and there is an edge of M containing v,
then v meets the matching M and the matching M meets the vertex
v. A perfect matching of G, also called a 1-factor, is a matching
that meets all vertices of G. The largest number of edges in a
matching in G is the matching number m(G). If G has at least
one edge, then 1 ≤ m(G) ≤ ⌊n/2⌋. A matching with k edges is
called a k-matching.

A subset U of the vertices of G is a vertex-cover provided each
edge of G has at least one of its vertices in U . The smallest number
of vertices in a vertex-cover is the cover number c(G) of G. If G
has at least one edge that is not a loop, then 1 ≤ c(G) ≤ n − 1.2

The complete bipartite graph Km,n has matching and covering
number equal to min{m, n}. The complete graph Kn has a match-
ing number equal to ⌊n/2⌋ and covering number equal to n − 1.
The following theorem of König asserts that for bipartite graphs,
the matching and covering numbers are equal.

Theorem 1.1.9 Let G be a bipartite graph. Then m(G) = c(G),
that is, the largest number of edges in a matching equals the small-
est number of vertices in a vertex-cover. 2

The notion of isomorphism of graphs is meant to make precise
the statement that two graphs are structurally the same.

Definition 1.1.10 Let G be a graph with vertex set V and let
H be a graph with vertex set W . An isomorphism from G to H
is a bijection φ : V → W such that {x, y} is an edge of G if and
only if {φ(x), φ(y)} is an edge of H . If φ is an isomorphism from
G to H , then clearly φ−1 : W → V is an isomorphism from H
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to G. The graphs G and H are isomorphic provided there is an
isomorphism from G to H (and thus one from H to G). The notion
of isomorphism carries over to multigraphs by requiring that the
edge {x, y} occur as many times in G as the edge {φ(x), φ(y)}
occurs in H . 2

1.2 Digraphs

In a graph, edges are unordered pairs of vertices and thus have no
direction. In a directed graph, edges are ordered pairs of vertices
and thus have a direction (or orientation) from the first vertex to
the second vertex in the ordered pair. Most of the ideas introduced
for graphs can be carried over to directed graphs, modified only
to take into account the directions of the edges. As a result, we
shall be somewhat brief.

Definition 1.2.1 A directed graph (for short, a digraph) G con-
sists of a finite set V of elements called vertices and a set E of
ordered pairs of vertices called (directed) edges. The order of the
digraph G is the number |V | of its vertices. If α = (x, y) is an
edge, then x is the initial vertex of α and y is the terminal ver-
tex, and we say that α is an edge from x to y. In case x = y,
α is a loop with initial and terminal vertices both equal to x. A
multidigraph differs from a digraph in that there may be several
edges with the same initial vertex and the same terminal vertex.
A weighted digraph is a digraph in which each edge has an assigned
weight. 2

The notions of subgraph, spanning subgraph, and induced sub-
graph of a graph carry over in the obvious way to subdigraph, span-
ning subdigraph, and induced subdigraph of a digraph. Digraphs
are pictured as graphs, except now the edges have arrows on them
to indicate their direction. A digraph G with a spanning subdi-
graph H1 and an induced subdigraph H2 are pictured in Figure
1.5.
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G H1 H2

Figure 1.5

In a digraph G, a vertex has two degrees. The outdegree d+(v)
of a vertex v is the number of edges of which v is an initial vertex;
the indegree d−(v) of v is the number of edges of which v is
a terminal vertex. A loop at a vertex contributes 1 to both its
indegree and its outdegree. Clearly, the sum of the indegrees of
the vertices of a digraph equals the sum of the outdegrees.

Definition 1.2.2 Let G be a digraph. A walk in G from vertex u
to vertex v is a sequence γ of vertices u = x0, x1, . . . , xk−1, xk = v
such that (xi, xi+1) is an edge for each i = 0, 1, . . . , k − 1. The
edges of the walk γ are these k edges and γ has length k. In a
closed walk, u = v. In a path, the vertices x0, x1, . . . , xk−1, xk are
distinct. If u = v and the vertices x0, x1, . . . , xk−1, xk are otherwise
distinct, then the subdigraph consisting of the vertices and edges
of γ is a cycle. The digraph G is acyclic provided it has no cycles.
If there is a walk from vertex u to vertex v, then there is a path
from u to v. The digraph G is strongly connected provided that
for each pair u and v of distinct vertices, there is a path from u to
v and a path from v to u.

Define u ≡ v provided there is a walk from u to v and a walk
from v to u. This is an equivalence relation and thus V is par-
titioned into equivalence classes V1, V2, . . . , Vl. The l subdigraphs
induced on the sets of vertices V1, V2, . . . , Vl are the strong compo-
nents of D. The digraph D is strongly connected if and only if it
has exactly one strong component. 2

The following theorem summarizes some important properties
concerning these notions:



10 CHAPTER 1. INTRODUCTION

Theorem 1.2.3 Let G be a digraph with vertex set V .

(i) Then G is strongly connected if and only if there does not
exist a partition of V into two nonempty sets U and W such
that all the edges between U and W have their initial vertex
in U and their terminal vertex in W .

(ii) The strong components of G can be ordered as G1, G2, . . . , Gl

so that if (x, y) is an edge of G with x in Gi and y in Gj with
i 6= j, then i < j (in the ordering G1, G2, . . . , Gl all edges
between the strong components go from left to right). 2

Let G be a digraph (or multidigraph) with vertex set V . By
replacing each directed edge (x, y) of G by an undirected edge
{x, y} and deleting any duplicate edges, we obtain a graph G′

called the underlying graph of G. The digraph G is called weakly
connected provided its underlying graph G′ is connected. The
digraph G is called unilaterally connected provided that for each
pair of distinct vertices u and v, there is a path from u to v or
a path from v to u. A unilaterally connected digraph is clearly
weakly connected.

The notion of isomorphism of digraphs (and multidigraphs) is
quite analogous to that of graphs. The only difference is that the
direction of edges has to be taken into account.

Definition 1.2.4 Let G be a digraph with vertex set V , and let
H be a digraph with vertex set W . An isomorphism from G to
H is a bijection φ : V → W such that (x, y) is an edge of G if
and only if (φ(x), φ(y)) is an edge of H . If φ is an isomorphism
from G to H , then φ−1 : W → V is an isomorphism from H to
G. The digraphs G and H are isomorphic provided there is an
isomorphism from G to H (and thus one from H to G). 2

1.3 Some Classical Combinatorics

In this section we review the notions of permutations and combi-
nations and corresponding basic counting formulas.
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Definition 1.3.1 Let X be a set with n elements that, for ease
of description, we can assume to be the set {1, 2, . . . , n} consisting
of the first n positive integers. A permutation of X is a listing
i1i2 . . . in of the elements of X in some order. There are n! =
n(n−1)(n−2) · · · 1 permutations of X. The permutation i1i2 . . . in
can be regarded as a bijection σ : X → X from X to X by defining
σ(k) = ik for k = 1, 2, . . . , n.

Now let r be a nonnegative integer with 1 ≤ r ≤ n. An r-
permutation of X is a listing i1i2 . . . ir of r of the elements of X in
some order. There are n(n − 1) · · · (n − r + 1) r-permutations of
X, and this number can be written as n!/(n− r)!. (Here we adopt
the convention that 0! = 1 to allow for the case that r = n in the
formula.)

An r-combination of X is a selection of r of the objects of X
without regard for order. Thus an r-combination of X is just a
subset of X with r elements. Each r-combination can be ordered
in r! ways, and in this way we obtain all the r-permutations of X.
Thus the number of r-combinations of X equals

n!

r!(n − r)!
,

a number we denote by
(

n
r

)
(read as n choose r). 2

For instance,

(
n

0

)
= 1,

(
n

1

)
= n,

(
n

2

)
=

n(n − 1

2
, . . . ,

(
n

n − 1

)
= n,

(
n

n

)
= 1.

In general, we have

(
n

r

)
=

(
n

n − r

)
, (0 ≤ r ≤ n),

since the complement of an r-combination is a (n−r)-combination.
The number of combinations (of any size) of the set {1, 2, . . . , n}
equals 2n, since each integer in the set can be chosen or left out of
a combination. Counting combinations by size k = 0, 1, 2, . . . , n,
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we thus get the identity

n∑

k=0

(
n

k

)
= 2n.

The above formulas hold for permutations and combinations
in which one is not allowed to repeat an object. If we are allowed
to repeat objects in a permutation, then more general formulas
hold. The number of permutations of X = {1, 2, . . . , n} in which,
for each k = 1, 2, . . . , n, the integer k appears mk times equals

(m1 + m2 + · · ·+ mn)!

m1!m2! · · ·mn!
.

This follows by observing that such a permutation is a list of length
N = m1 + m2 + · · · + mn, and to form such a list we choose m1

places for the 1’s, m2 of the remaining places for the 2’s, m3 of the
remaining places for the 3’s, and so forth, giving

(
N

m1

)(
N − m1

m2

)(
N − m1 − m2

m3

)
· · · .

After substitution and cancellation, this reduces to the given
formula. The number of r-permutations i1i2 . . . ir of X =
{1, 2, . . . , n}, where the number of times each integer in X can
be repeated is not restricted, that is, can occur any number of
times (sometimes called an r-permutation-with-repetition), of X is
nr, since there are n choices for each of the r integers ik.

For r-combinations of X = {1, 2, . . . , n} in which the number
of times an integer occurs is not restricted (other than by the size
r of the combination), we have to choose how many times (denote
it by xk) each integer k occurs in the r-combination. Thus the
number of such r-combinations equals the number of solutions in
nonnegative integers of the equation

x1 + x2 + · · ·+ xn = r.

This is the same as the number of permutations of the two integers
0 and 1 in which 1 occurs r times and 0 occurs n − 1 times (the
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number of 1’s to the left of the first 0, in between the 0’s, and to
the right of the last 0 give the values of x1, x2, . . . , xn). Thus the
number of such r-combinations equals

(n + r − 1)!

r!(n − 1)!
=

(
n + r − 1

r

)
=

(
n + r − 1

n − 1

)
.

Another useful counting technique is provided by the inclusion-
exclusion formula. Let X1, X2, . . . , Xn be subsets of a finite set
U . Then the number of elements of U in none of the sets
X1, X2, . . . , Xn is given by

|X1 ∩ X2 ∩ · · · ∩ Xn| =
n∑

k=0

(−1)|K|
∑

K⊂{1,2,...,n};|K|=k

| ∩i∈K Xi|.

Here Xi is the complement of Xi in U , that is, the subset of ele-
ments of U that are not in Xi. For the value k = 0 in the formula,
we have K = ∅, and ∩i∈∅Xi is an intersection over an empty set
and is interpreted as U .

The set of n! permutations of {1, 2, . . . , n} can be naturally
partitioned into two sets of the same cardinality using properties
called evenness and oddness. These properties and the resulting
partition are discussed in Chapter 4.

1.4 Fields

The number systems with which we work in this book are primarily
the real number system ℜ and the complex number system C. But
much of what we develop does not use any special properties of
these familiar number systems,1 and works for any number system
called a field. We give a working definition of a field since it is not
in our interest to systematically develop properties of fields.

1One notable exception is that polynomials of degree at least 1 with com-
plex coefficients (in particular, polynomials with real coefficients) always have
roots (real or complex). In fact a polynomial of degree n ≥ 1 with complex
coefficients can be completely factored in the form c(x−r1)(x−r2) · · · (x−rn),
where c, r1, r2, . . . , rn are complex numbers. This property of complex num-
bers is expressed by saying that the complex numbers are algebraicaly closed.
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Definition 1.4.1 Let F be a set on which two binary operations2

are defined, called addition and multiplication, respectively, and
denoted as usual by “+′′ and “·”. Then F is a field provided the
following properites hold:

(i) (associative law for addition) a + (b + c) = (a + b) + c.

(ii) (commutative law for addition) a + b = b + a.

(iii) (zero element) There is an element 0 in F such that a + 0 =
0 + a = a.

(iv) (additive inverses) Corresponding to each element a, there is
an element a′ in F such that a+a′ = a′+a = 0. The element
a′ is usually denoted by −a. Thus a + (−a) = (−a) + a = 0.

(v) (associative law for multiplication) a · (b · c) = (a · b) · c.

(vi) (commutative law for multiplication) a · b = b · a.

(vii) (identity element) There exists an element 1 in F diferent
from 0 such that 1 · a = a · 1 = a.

(viii) (multiplicative inverses) Corresponding to each element a 6=
0, there is an element a′′ in F such that a · a′′ = a′′ · a = 1.
The element a′′ is usually denoted by a−1. Thus a · a−1 =
a−1 · a = 1.

(ix) (distributive laws) a·(b+c) = a·b+a·c and (b+c)·a = b·a+c·a.

It is understood that the above properties are to hold for all choices
of the elements a, b, and c in F . Note that properties (i)–(iv) in-
volve only addition and properties (v)–(viii) involve only multipli-
cation. The distributive laws connect the two binary operations
and make them dependent on one another. We often drop the
multiplication symbol and write ab in place of a · b. Thus, for
instance, the associative law (v) becomes a(bc) = (ab)c. 2

2A binary operation on F means that given an ordered pair a, b of elements
in F , they can be combined using the operation to produce another element
in F . This is sometimes expressed by saying that the operation of combining
two elements satisfies the closure property.
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Examples of fields are (a) the set ℜ of real numbers with the
usual addition and multiplication, (b) the set C of complex num-
bers with the usual addition and multiplication, and (c) the set
Q of rational numbers with the usual addition and multiplication.
A familiar number systen that is not a field is the set of integers
with the usual addition and multiplication (e.g., 2 does not have
a multiplicative inverse).

Properties (i), (iii), and (iv) are the defining properties for an
algebraic system with one binary operation, denoted here by +,
called a group. If property (ii) also holds then we have a com-
mutative group. By properties (v)–(viii) the nonzero elements of
a field form a commutative group under the binary operation of
multiplication.

In the next theorem we collect a number of elementary prop-
erties of fields whose proofs are straightforward.

Theorem 1.4.2 Let F be a field. Then the following hold:

(i) The zero element 0 and identity element 1 are unique.

(ii) The additive inverse of an element of F is unique.

(iii) The multiplicative inverse of a nonzero element of F is
unique.

(iv) a · 0 = 0 · a = 0 for all a in F .

(v) −(−a) = a for all a in F .

(vi) (a−1)−1 = a for all nonzero a in F .

(vii) (cancellation laws) If a · b = 0, then a = 0 or b = 0. If
a · b = a · c and a 6= 0, then b = c. 2

We now show how one can construct fields with a finite number
of elements. Let m be a positive integer. First we recall the
division algorithm, which asserts that if a is any integer, there
are unique integers q (the quotient) and r (the remainder), with
0 ≤ r ≤ m−1, such that a = qm+r. For integers a and b, define a
to be congruent modulo m to b, denoted a ≡ b (mod m), provided
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m is a divisor of a − b. Congruence modulo m is an equivalence
relation, and as a result the set Z of integers is partitioned into
equivalence classes. The equivalence class containing a is denoted
by [a]m. Thus [a]m = [b]m if and only if m is a divisor of a − b.

It follows easily that a ≡ b (mod m) if and only if a and b
have the same remainder when divided by m. Thus there is a
one-to-one correspondence between equivalence classes modulo m
and the possible remainders 0, 1, 2, . . . , m − 1 when an integer is
divided by m. We can thus identify the equivalence classes with
0, 1, 2, . . . , m−1. Congruence satisfies a basic property with regard
to addition and mutltiplication that is easily verified:

If a ≡ b (mod m) and c ≡ d (mod m), then

a + c ≡ b + d (mod m) and ac ≡ bd (mod m).

This property allows one to add and multiply equivalence classes
unambiguously as follows:

[a]m + [b]m = [a + b]m and [a]m · [b]m = [ab]m.

Let Zm = {0, 1, 2, . . . , m − 1}. Then Zm contains exactly one ele-
ment from each equivalence class, and we can regard addition and
multiplication of equivalence classes as addition and multiplica-
tion of integers in Zm. For instance, let m = 9. Then, examples
of addition and multiplication in Z9 are

4 + 3 = 7 and 6 + 7 = 4

5 + 0 = 5 and 1 · 6 = 6

4 · 8 = 5 and 7 · 4 = 1

If m is a prime number, then, as shown in the next theorem, Zm

is actually a field. To prove this, we require another basic property
of integers, namely, that if a and m are integers whose greatest
common divisor is d, then there are integers s and t expressing d
as a linear integer combination of a and m:

d = sa + tm.
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Theorem 1.4.3 Let m be a prime number. With the addition and
multiplication as defined above, Zm is a field.

Proof. Most of the proof of this theorem is routine. It is
clear that 0 ∈ Zm and 1 ∈ Zm are the zero element and identity
element. If a ∈ Zm and a 6= 0, then m − a is the additive inverse
of a. If a ∈ Zm and a 6= 0, then the greatest common divisor
of a and m is 1, and hence there exist integers s and t such that
sa + tm = 1. Thus sa = 1 − tm is congruent to 1 modulo m. Let
s∗ be the integer in Zm congruent to s modulo m. Then we also
have s∗a ≡ 1 mod m. Hence s∗ is the multiplicative inverse of a
modulo m. Verification of the rest of the field properties is now
routine. 2

As an example, let m = 7. Then Z7 is a field with

2 · 4 = 1 so that 2−1 = 4 and 4−1 = 2;

3 · 5 = 1 so that 3−1 = 5 and 5−1 = 3;

6 · 6 = 1 so that 6−1 = 6.

Two fields F and F ′ are isomorphic provided there is a bijection
φ : F → F ′ that preserves both addition and multiplication:

φ(a + b) = φ(a) + φ(b), and φ(a · b) = φ(a) · φ(b).

In these equations the leftmost binary operations (addition and
multiplication, respectively) are those of F and the rightmost are
those of F ′. It is a fundamental fact that any two fields with the
same finite number of elements are isomorphic.

1.5 Vector Spaces

There is an important, abstract notion of a vector space over a
field that does not have to concern us here. We shall confine our
attention to the vector space F n of n-tuples over a field F , whose
elements are called vectors, that is,

F n = {(a1, a2, . . . , an) : ai ∈ F, i = 1, 2, . . . , n}.
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The zero vector is the n-tuple (0, 0, . . . , 0), where 0 is the zero
element of F . As usual, the zero vector is also denoted by 0 with
the context determining whether the zero element of F or the zero
vector is intended. The elements of F are now called scalars.

Using the addition and multiplication of the field F , vectors
can be added componentwise and multiplied by scalars. Let u =
(a1, a2, . . . , an) and v = (b1, b2, . . . , bn) be in F n. Then

u + v = (a1 + b1, a2 + b2, . . . , an + bn).

If c is in F , then

cu = (ca1, ca2, . . . , can).

Since vector addition and scalar multiplication are defined in terms
of addition and multiplication in F that satisfy certain associa-
tive, commutative, and distributive laws, we obtain associative,
commutative, and distributive laws for vector addition and scalar
multiplication. These laws are quite transparent from those for F ,
and we only mention the following:

(i) u + 0 = 0 + u = u for all vectors u.

(ii) 0u = u0 = 0 for all vectors u.

(iii) u + v = v + u for all vectors u and v.

(iv) (c + d)u = cu + du for all vectors u and scalars c and d.

(v) c(u + v) = cu + cv for all vectors u and v and scalars c.

(vi) 1u = u for all vectors u.

(vii) (−1)u = (−u1,−u2, . . . ,−un) for all vectors u; this vector is
denoted by −u and is called the negative of u and satisfies
u + (−u) = (−u) + u = 0, for all vectors u.

(viii) c(du) = (cd)u for all vectors u and scalars c and d.

A fundamental notion is that of a subspace of F n. Let V be a
nonempty subset of F n. Then V is a subspace of F n provided V
is closed under vector addition and scalar multiplication, that is,
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(a) For all u and v in V , u + v is also in V .

(b) For all u in V and c in F , cu is in V .

Let u be in the subspace V . Because 0u = 0, it follows that
the zero vector is in V . Similarly, −u is in V for all u in V .
A simple example of a subspace of F n is the set of all vectors
(0, a2, . . . , an) with first coordinate equal to 0. The zero vector
itself is a subspace.

Definition 1.5.1 Let u(1), u(2), . . . , u(m) be vectors in F n, and let
c1, c2, . . . , cm be scalars. Then the vector

c1u
(1) + c2u

(2) + · · ·+ cmu(m)

is called a linear combination of u(1), u(2), . . . , u(m). If V is a sub-
space of F n, then V is closed under vector addition and scalar
multiplication, and it follows easily by induction that a linear com-
bination of vectors in V is also a vector in V . Thus subspaces are
closed under linear combinations; in fact, this can be taken as
the defining property of subspaces. The vectors u(1), u(2), . . . , u(m)

span V (equivalently, form a spanning set of V ) provided every
vector in V is a linear combination of u(1), u(2), . . . , u(m). The zero
vector can be written as a linear combination of u(1), u(2), . . . , u(m)

with all scalars equal to 0; this is a trivial linear combination. The
vectors u(1), u(2), . . . , u(m) are linearly dependent provided there are
scalars c1, c2, . . . , cm, not all of which are zero, such that

c1u
(1) + c2u

(2) + · · ·+ cmu(m) = 0,

that is, the zero vector can be written as a nontrivial lin-
ear combination of u(1), u(2), . . . , u(m). For example, the vectors
(1, 4), (3,−1), and (3, 5) in ℜ2 are linearly dependent since

3(1, 4) + 1(3,−2) − 2(3, 5) = (0, 0).

Vectors are linearly independent provided they are not linearly
dependent. The vectors u(1), u(2), . . . , u(m) are a basis of V provided
they are linearly independent and span V . By an ordered basis
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we mean a basis in which the vectors of the basis are listed in
a specified order; to indicate that we have an ordered basis we
write (u(1), u(2), . . . , u(m)). A spanning set S of V is a minimal
spanning set of V provided that each set of vectors obtained from
S by removing a vector is not a spanning set for V . A linearly
independent set S of vectors of V is a maximal linearly independent
set of vectors of V provided that for each vector w of V that is not
in S, S ∪ {w} is linearly dependent (when this happens, w must
be a linear combination of the vectors in S). 2

In the next theorem, we collect some basic facts about these
properties.

Theorem 1.5.2 Let V be a subspace of F n.

(i) Then V has a basis and any two bases of V contain the same
number of vectors.

(ii) A minimal spanning set of V is a basis of V . Thus every
spanning set of vectors contains a basis of V .

(iii) A maximal linearly independent set of vectors of V is a basis
of V . Thus every linearly independent set of vectors can be
extended to a basis of V .

(iv) If (u(1), u(2), . . . , u(m)) is an ordered basis of V , then each
vector u in V can be written uniquely as a linear combination
of these vectors: u = c1u

(1) + c2u
(2) + · · ·+ cmu(m), where the

scalars c1, c2, . . . , cm are uniquely determined. 2

The number of vectors in a basis of a subspace V and so, by
(i) of Theorem 1.5.2, the number of vectors in every basis of V , is
the dimension of V , denoted by dim V . In (iv) of Theorem 1.5.2,
the scalars c1, c2, . . . , cn are the coordinates of u with respect to
the ordered basis (u(1), u(2), . . . , u(m)).

Definition 1.5.3 Let U be a subspace of F m and let V be a
subspace of F n. A mapping T : U → V is a linear transformation
provided

T (cu + dw) = cT (u) + dT (v)
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for all vectors u and w in U and all scalars c and d. The kernel of
the linear transformation T is the set

ker (T ) = {u ∈ U : T (u) = 0}

of all vectors of U that are mapped to the zero vector of V . The
linear transformation T is an injective linear transformation if and
only if ker (T ) = {0}. The range of T is the set

range (T ) = {T (u) : u ∈ U}

of all values (images) of vectors in U . It follows by induction from
the definition of a linear transformation that linear transforma-
tions preserve all linear combinations, that is,

T (c1u
(1)+c2u

(2)+· · ·+cku
(k)) = c1T (u(1))+c2T (u(2))+· · ·+T (cku

(k))

for all vectors u(1), u(2), . . . , u(k) and all scalars c1, c2, . . . , ck. 2

Finally, we review the notion of the dot product of vectors in
ℜn and Cn.

Definition 1.5.4 Let u = (a1, a2, . . . , an) and v = (b1, b2, . . . , bn)
be vectors in either ℜn or Cn. Then their dot product u·v is defined
by

(i) u · v = a1b1 + a2b2 + · · ·anbn, u, v ∈ ℜn;

(ii) u · v = a1b1 + a2b2 + · · ·anbn, u, v ∈ Cn.

Here b denotes the complex conjugate3 of b. In particular, we have
that

u · u = a1a1 + a2a2 + · · ·+ anan = |a1|2| + |a2|2 + · · ·+ |an|2 ≥ 0

with equality if and only if u is a zero vector. The norm (or length)
||u|| of a vector u is defined by

||u|| =
√

u · u.

2

3Recall that a + b = a + b and ab = ab.
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The next theorem contains some elementary properties of dot
products and norms.

Theorem 1.5.5 Let u, v, and w be vectors in ℜn or Cn. Then
the following hold:

(i) ||u|| ≥ 0 with equality if and only if u = 0.

(ii) (u + v) · w = u · w + v · w and u · (v + w) = u · v + u · w.

(iii) cu · v = c(u · v) and u · cv = c̄u · v (so if c is a real scalar,
u · cv = c(u · v)).

(iv) u · v = v · u (so if u and v are real vectors. u · v = v · u)

(v) (Cauchy–Schwarz inequality) |u · v| ≤ ||u||||v|| with equality
if and only if u and v are linearly dependent.

2

Let u and v be nonzero vectors in ℜn. By the Cauchy–Schwarz
inequality,

−1 ≤ u · v
||u||||v| ≤ 1.

Hence there is an angle θ with 0 ≤ θ ≤ π such that

cos θ =
u · v

||u||||v|.

The angle θ is the angle between the vectors u and v. It follows
that u · v = 0 if and only if θ = π/2, in which case u and v are
orthogonal. The zero vector is orthogonal to every vector. For
vectors u and v in Cn, we also say that u and v are orthogonal
if u · v = 0. Mutually orthogonal, nonzero vectors are linearly
independent. In particular, n mutually orthogonal, nonzero vec-
tors u1, u2, . . . , un of ℜn or Cn form a basis. If, in addition, each
of the vectors u1, u2, . . . , un has unit length (which can always be
achieved by multiplying each ui by 1/||ui||), then u1, u2, . . . , un is
an orthonormal basis.

Now let v1, v2, . . . , vm be an arbitrary basis of a subspace V
of ℜn or of Cn. The Gram–Schmidt orthogonalization algorithm
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determines an orthonormal basis u1, u2, . . . , um with the property
that the subspace spanned by v1, v2, . . . , vk equals the subspace
spanned by u1, u2, . . . , uk for each k = 1, 2, . . . , m. After first
normalizing v1 to obtain a vector u1 = v1/||v1|| of unit length,
the algorithm proceeds recursively by orthogonally projecting vi+1

onto the subspace Vi spanned by u1, . . . , ui (equivalently, the sub-
space spanned by v1, . . . , vi), forming the difference vector that is
orthogonal to this subspace Vi, and then normalizing this vector
to have length 1. Algebraically, we have

ui+1 =
vi+1 − ProjVi

(vi+1)

||vi+1 − ProjVi
(vi+1)||

=
vi+1 −

∑i
j=1(vj · uj)uj

||vi+1 −
∑i

j=1(vj · uj)uj||
,

for i = 1, 2, . . . , m − 1.
For each θ with 0 ≤ θ ≤ π, the vector (cos θ, sin θ)T and the

vector (− sin θ, cos θ)T form an orthonormal basis of ℜ2; this is
the orthonormal basis obtained by rotating the standard basis
(1, 0), (0, 1) by an angle θ in the counterclockwise direction.

In this first chapter, we have given a very brief introduction to
elementary graph theory, combinatorics, and linear algebra. For
more about these areas of mathematics, and indeed for many of
the topics discussed in the next chapters, one may consult the
extensive material given in the handbooks Handbook of Discrete
and Combinatorial Mathematics [68], Handbook of Graph Theory
[39], and Handbook of Linear Algebra [46].

1.6 Exercises

1. Prove Theorem 1.1.4.

2. List the structurally different trees of order 6.

3. Prove that there does not exist a regular graph of degree k
with n vertices if both n and k are odd.

4. Determine the chromatic numbers of the following graphs:
(a) the graph obtained from Kn by removing an edge; (b) the
graph obtained from Kn by removing two edges (there are
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two possibilities: the removed edges may or may not have a
vertex in common); (c) the graph obtained from a tree by
adding a new edge (the new edge may create either a cycle
of even length or a cycle of odd length).

5. Let G be the bipartite graph with bipartition

U = {u1, u2, u3, u4, u5, u6} and W = {w1, w2, w3, w4, w5, w6}

whose edges are all those pairs {ui, wj} for which 2i + 3j is
congruent to 0, 1, or 5 modulo 6. Draw the graph G and
determine a matching with the largest number of edges and
a vertex-cover with the smallest number of vertices.

6. Let the digraph G be obtained from the complete graph Kn

by giving a direction to each edge. (Such a digraph is usually
called a tournament.) Let d+

1 , d+
2 , . . . , d+

n be the outdegrees
of G in some order. Prove that

d+
1 + d+

2 + · · · + d+
k ≤

(
k

2

)
(k = 1, 2, . . . , n)

with equality for k = n.

7. Let D be the digraph with vertex set {1, 2, 3, 4, 5, 6, 7, 8},
where there is an edge from i to j if and only if 2i + 3j is
congruent to 1 or 4 modulo 8. Determine whether or not D
is strongly connected.

8. Use the inclusion-exclusion formula to show that the number
of permutations i1i2 . . . in of {1, 2, . . . , n} such that ik 6= k
for k = 1, 2, . . . , n is given by

n!
n∑

j=0

(−1)k

k!
.

9. Prove that the number of even (respectively, odd) combina-
tions of {1, 2, . . . , n} equals 2n−1. (By an even combination
we understand a combination with an even number of ele-
ments; an odd combination has an odd number of elements.)
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10. Determine the number of solutions in nonnegative integers
of

x1 + x2 + x3 + x4 + x5 = 24,

where x1 ≥ 2 and x5 ≥ 3.

11. Write out the complete addition and multiplication tables
for the field Z5.

12. Prove Theorem 1.4.2.

13. Show that 101500 ≡ 1 (mod 100) and that 99501 ≡
−1 (mod 100).

14. Let V be the set of all vectors (a1, a2, . . . , an) in F n such
that a1 + a2 + . . . + an = 0. Prove that V is a subspace of
F n and find a basis of V .

15. Let u(1), u(2), . . . , u(n) be an orthonormal basis of ℜn. Prove
that if u is a vector in ℜn, then

u =
n∑

i=1

(u · u(i))u(i).

16. Prove Theorem 1.5.5.

17. Show that (1, 0, 0), (1, 1, 0), (1, 1, 1) is a basis of ℜ3 and use
the Gram–Schmidt orthogonalization algorithm to obtain an
orthonormal basis.





Chapter 2

Basic Matrix Operations

In this chapter we introduce matrices as arrays of numbers and
define their basic algebraic operations: sum, product, and trans-
position. Next, we associate to a matrix a digraph called the König
digraph and establish connections of matrix operations with cer-
tain operations on graphs. These graph-theoretic operations il-
luminate the matrix operations and aid in understanding their
properties. In particular, we use the König digraph to explain
how matrices can be partitioned into blocks in order to facilitate
matrix operations.

2.1 Basic Concepts

Let m and n be positive integers.1 A matrix is an m by n rectan-
gular array of numbers2 of the form

A =




a11 a12 · · · amn

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn




. (2.1)

1There will be occasions later when we will want to allow m and n to be
0, resulting in empty matrices in the definition.

2These may be real numbers, complex numbers, or numbers from some
other arithmetic system, such as the integers modulo n.

27
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The matrix A has size m by n and we often say that its type is
m×n. The mn numbers aij are called the entries or (elements) of
the matrix A. If m = n, then A is a square matrix, and instead of
saying A has size n by n we usually say that A is a square matrix
of order n.

The matrix A in (2.1) has m rows of the form

αi =
[

ai1 ai2 · · · ain

]
, (i = 1, 2, . . . , m)

and n columns

βj =




a1j

a2j
...

amj




, (j = 1, 2, . . . , n).

The entry aij contained in both αi and βj, that is, the entry at the
intersection of row i and column j, is the (i, j)-entry of A. The
rows αi are 1 by n matrices, or row vectors; the columns βj are m
by 1 matrices, or column vectors. For brevity we denote the m by
n matrix A by

A = [aij ]m,n

and usually more simply as [aij] if the size is understood.
Two matrices A = [aij] and B = [bij ] are equal matrices pro-

vided that they have the same size m by n and corresponding
entries are equal:

aij = bij , (i = 1, 2, . . . , m; j = 1, 2, . . . , n).

Thus, for instance, a 2 by 3 matrix can never equal a 3 by 2 matrix,
and [

2 0 5
1 3 4

]
6=
[

2 1 5
1 3 4

]
,

because the (1, 2)-entries of these matrices are not equal.
Addition and subtraction of matrices are defined in a natu-

ral way by the addition and subtraction of corresponding entries.
More precisely, if A = [aij ] and B = [bij ] are matrices of the same
size m by n, then their matrix sum is the m by n matrix

A + B = [aij + bij ]
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and their matrix difference is the m by n matrix

A − B = [aij − bij ].

In both cases we perform the operation entrywise.

Example 2.1.1
[

1 −3 0
4 2 −3

]
+

[
2 3 4

−1 5 6

]
=

[
3 0 4
3 7 3

]
.

Two matrices of different sizes can never be added or subtracted.
2

The multiplication of matrices is more complicated and, as a
result, more interesting and, as we shall see, important and useful.
First of all, the multiplication A ·B, or simply AB, of two matrices
A and B is possible if and only if the number of columns of A equals
the number of rows of B. So let A = [aij ]m,n and B = [bij ]n,p. Then
the matrix product A · B (more simply, AB) is the m by p matrix
C = [cij ], where

cij = ai1b1j+ai2b2j +· · ·+ainbnj, (i = 1, 2, . . . , m; j = 1, 2, . . . , p).

Thus the (i, j)-entry of AB is determined only by the ith row
of A and the jth column of B.

Example 2.1.2 We have the matrix product

[
1 −3 0
4 2 −3

] 


1 2 5 −1
0 3 −2 5
4 0 1 6


 =

[
1 −7 11 −16

−8 14 13 −12

]
.

Here, for instance, 1 = 4 · 5 + 2 · (−2) + (−3) · 1 = 20 − 4 − 3. 2

There are some important observations to be made here. First,
even though the product AB is defined (because the number of
columns of A equals the number of rows of B), the product BA
may not be defined (because the number of columns of B may not
equal the number of rows of A). In fact, if A is m by n, then both
AB and BA are defined if and only if B is n by m. In particular,
if A and B are square matrices of the same order n, then both AB
and BA are defined. But they need not be equal matrices.
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Example 2.1.3 We have

[
0 1
0 0

] [
1 0
0 0

]
=

[
0 0
0 0

]
,

while [
1 0
0 0

] [
0 1
0 0

]
=

[
0 1
0 0

]
.

Notice also that we have, in this case, an instance of matrix mul-
tiplication where BA = A. 2

In addition to matrix addition, subtraction, and multiplication,
there is one additional operation that we define now. It’s perhaps
the simplest of them all. Let A = [aij ] be an m by n matrix and
let c be a number. Then the matrix c · A, or simply cA, is the m
by n matrix obtained by multiplying each entry of A by c:

cA = [caij ].

The matrix cA is called a scalar multiple of A.
Matrix transposition is an operation defined on one matrix by

interchanging rows with columns in the following way. Let

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn




be an m by n matrix. Then the transpose of the matrix A is the
n by m matrix

AT =




a11 a21 · · · am1

a12 a22 · · · am2
...

...
. . .

...
a1n a2n · · · amn




.

Matrix transposition satisfies the following properties (where
the matrices are assumed to be of the appropriate sizes so that
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the operations can be carried out), and these properties can be
verified in a straightforward manner:

(AT )T = A (transposition is an involutory operation),

(A + B)T = AT + BT (transposition commutes with addition),

(cA)T = cAT

(transposition commutes with scalar multiplication).

Elementary, but not as straightforward, is the relation

(AB)T = BT AT ,

(transposition “anticommutes” with multiplication).

This relationship can be verified by observing that the entry in
position (i, j) of (AB)T (so the (j, i)-entry of AB) is obtained
from the jth row of A and the ith column of B as prescribed by
matrix multiplication, while the entry in position (i, j) of BT AT

is obtained from the ith row of BT (so the ith column of B) and
the jth column of AT (so the jth row of A), again as prescribed
by matrix multiplication. In the next section, we give a graph-
theoretic viewpoint of the relation (AB)T = BT AT .

To conclude this section we define some special matrices that
are very useful. A zero matrix is a matrix each of whose entries
equals 0. A zero matrix of size m by n is denoted by Om,n. We
often simply write O with the size of the matrix being understood
from the context. An identity matrix (or unit matrix) is a square
matrix A = [aij ] such that aii = 1 for all i and aij = 0 if i 6= j.
An identity matrix of order n is denoted by In, and we often write
I with the order being understood from the context. Thus the
identity matrix of order n is the matrix In = [δij ]n where δ is the
so-called Kronecker δ-symbol defined by

δij =

{
1, if i = j,
0, if i 6= j.

Example 2.1.4 The identity matrix of order 3 is

I3 =




1 0 0
0 1 0
0 0 1


 .

2
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For matrix addition, zero matrices act like the number 0 acts
for ordinary addition. For matrix multiplication, identity matri-
ces act like the number 1 acts for ordinary multiplication. These
properties are expressed more precisely in the following equations,
which are easily verified:

O + A = A + O = A (2.2)

if A and O have the same size, and

ImA = A and BIn = B, (2.3)

if A has m rows and B has n columns.
The main diagonal or simply diagonal, of a square matrix A =

[aij ] of order n consists of the n entries a11, a22, . . . , ann. We also
refer to the n positions of these n entries of A as the main diagonal
of A, and we refer to the remaining positions of A as the off-
diagonal of A. A square matrix is a diagonal matrix provided
each off-diagonal entry of A equals 0.

Example 2.1.5 The matrix




3 0 0
0 −1 0
0 0 2




is a diagonal matrix. Identity matrices as well as square zero
matrices are diagonal matrices. 2

A diagonal matrix with diagonal entries d1, d2, · · · , dn is some-
times denoted by

D = diag(d1, d2, · · · , dn).

If d1 = d2 = · · · = dn, with the common value equal to d, then
D = dIn and D is called a scalar matrix. A square matrix
is an upper triangular matrix provided all its entries below the
main diagonal equal zero (thus the nonzero entries are confined
to those positions on and above the main diagonal). A lower
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triangular matrix is defined in an analogous way. Note that if A
is a square matrix, then A is upper triangular if and only if AT is
lower triangular.

A permutation matrix P = [pij ] of order m is a square ma-
trix that has exactly one 1 in each row and column and 0’s else-
where. Thus a permutation matrix of order m has exactly m
nonzero entries and each of these m entries equals 1. Permutation
matrices correspond to permutations in the following way: Let
σ = k1k2 . . . km be a permutation of {1, 2, . . . , m}. Let P = [pij ]
be the square matrix of order m defined by

pij =

{
1, if j = ki,
0, otherwise.

Then P is a permutation matrix and every permutation matrix of
order m corresponds to a permutation of {1, 2, . . . , m} in this way.
If A is an m by n matrix, then PA is obtained by permuting the
rows of A so that in PA the rows of A are in the order: row k1,
row k2, ..., row km.

Example 2.1.6 If σ = 3124, then

P =




0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


 .

2

The definition of a permutation matrix treats rows and
columns in the same way. Thus the transpose of a permutation
matrix is a permutation matrix, and we have from the properties
of transposition that

(PA)T = AT P T .

It thus follows that to permute the columns of an m by n matrix
so that they occur in the order l1, l2, · · · , ln, we multiply A on the
right by the permutation matrix QT , where Q is the permutation
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matrix corresponding to the permutation l1l2 · · · ln of {1, 2, . . . , n}.
In particular, if A is a square matrix of order n, then the matrix
QAQT is obtained from A by permuting the rows to put them in
the order l1, l2, . . . , ln and permuting the columns to put them in
the order l1, l2, . . . , ln. The matrix QAQT is obtained from A by
simultaneous permutations of its rows and columns.

Example 2.1.7 Let A = [aij ] be a general matrix of order 4. Let
P be the permutation matrix corresponding to the permutation
2431 of {1, 2, 3, 4}. Then

PAP T =




0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0







a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44







0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0




=




a22 a24 a23 a21

a42 a44 a43 a41

a32 a34 a33 a31

a12 a14 a13 a11


 .

Note that the main diagonal entries of A occur in the order 2, 4, 3, 1
on the main diagonal of PAP T . 2

Finally, let A and B be matrices of sizes m by n and p by q,
respectively. Then the direct sum of A with B is the m + p by
n + q matrix given by

A ⊕ B =

[
A Om,q

Op,n B

]
.

In case A and B are square matrices, so is their direct sum. The
direct sum of more than two matrices is defined in the obvious
way.

In the next section, we introduce the König digraph of a matrix
that illuminates much of our discussion in this section.
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2.2 The König Digraph of a Matrix

Let A = [aij ] be an m by n matrix. Corresponding to A we
introduce a digraph G(A), defined in the following way. The di-
graph G(A) has m + n vertices and these are colored either black
or white. There are m black vertices, in one-to-one correspon-
dence with the rows of A, and they are denoted by the numbers
1, 2, . . . , m. There are n white vertices, in one-to-one correspon-
dence with the columns of A, and they are denoted by 1, 2, . . . , n.
There is an edge from each black vertex to each of the white ver-
tices. Drawing the black vertices in a column and the white ver-
tices in another column to the right, all edges are directed from
left to right. To the edge going out from the black vertex i and
terminating at the white vertex j we let correspond the matrix
entry aij , where aij is called the weight of the edge. The digraph
G(A) is called the König digraph of the matrix A. The edges of
the König digraph are in one-to-one correspondence with the po-
sitions of the matrix, with each edge weighted (or labeled) by the
entry of A in the corresponding position. In summary, the vertices
of a König digraph are of either color black or white, and the sets
of black vertices and of white vertices have labels that are consec-
utive ordinal numbers beginning with 1; the edges can have any
numbers as labels. Any digraph with these properties is the König
digraph of a matrix. In fact, as should be clear, the König digraph
is just an alternative structure to a rectangular array for viewing
a matrix. The type of a König digraph is m by n (or m × n), if
there are m black vertices and n white vertices.

Example 2.2.1 The König digraph of the matrix

A =

[
1 2 3
4 5 6

]

is displayed in Figure 2.1. 2

The digraph G(A) of the matrix A is called the König digraph,
because König used the corresponding bipartite graph in his pa-
pers (see [56]). In fact, D. König, the Hungarian mathematician
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who is considered to be the founder of modern graph theory, was
the first to use graphical methods in matrix theory [55], [56]. There
are many mathematical papers in which results from the matrix
theory are obtained or proved by graph-theoretical means (see the
Coda).

2

1

3

2

1

6

5

4
3

2

1

Figure 2.1

The matrix operations defined in the last section have coun-
terparts for the König digraph, and we define these now.

Definition 2.2.2 Let G1 and G2 be two König digraphs.

1. Digraph Sum: Assume that G1 and G2 are of the same type.
Then their sum G1 + G2 is the König digraph of that same
type, where the weight of the edge from black vertex i to
white vertex j is the sum of the weights of the corresponding
edges of G1 and G2.

2. Digraph Composition: Let G1 be of type m by n, and let G2

be of type n by p. Then the number of white vertices of G1

equals the number of black vertices of G2. The composition
G1∗G2 is the digraph of type m by p obtained by identifying
each white vertex of G1 with the correspondingly labeled
black vertex of G2. The digraph G1 ∗ G2 has vertices of
three colors: black (the black vertices of G1), white (the
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white vertices of G2), and gray (the vertices obtained by
identifying the white vertices of G1 with the black vertices
of G2). Note that G1 ∗ G2, having vertices of three different
colors, is not a König digraph.

3. Digraph Product: Let G1 be of type m by n, let G2 be of
type n by p, and consider the digraph composition G1 ∗ G2.
The product G1 · G2 is the König digraph of type m by p
whose black vertices are the black vertices of G1 ∗ G2 and
whose white vertices are the white vertices of G1 ∗ G2. The
weight of the edge from the ith black vertex to jth white
vertex of G1 · G2 equals the sum of the weights of all paths
of length 2 between the ith black vertex and the jth white
vertex of G1 ∗ G2. (There are n such paths, and, in general,
the weight of a path is the product of the weights of each of
its edges.)

4. Scalar Multiplication of a Digraph: Let c be a scalar. Then
c · G1 (or, sometimes, more simply, cG1) is the digraph ob-
tained from G1 by multiplying the weight of each of its edges
by c. 2

Example 2.2.3 Two digraphs, G1 and G2, together with their
composition G1 ∗G2 and product G1 ·G2, are displayed in Figure
2.2. In that figure, only the weights of some of the edges are
given; namely, the weights of the edges leaving black vertex 1 in
G1, the weights of the edges terminating in white vertex 1 in G2,
and the weight of the edge from black vertex 1 to white vertex
1 in G1 · G2. 2

It should be clear that digraph addition and scalar multiplica-
tion of a digraph correspond to matrix addition and scalar multi-
plication of a matrix, respectively. More precisely, if A and B are
matrices of the same size, then

G(cA) = cG(A) and G(A + B) = G(A) + G(B).

An analogous conclusion holds for product, and we state and prove
this in the next theorem.
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Theorem 2.2.4 Let A = [aij ] be a matrix of type m by n, and let
B = [bij ] be a matrix of type n by p. Then

G(A · B) = G(A) · G(B).
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Proof. In the composition G(A) ∗G(B), there is a path of weight
aikbkj from the ith black vertex to the jth white vertex that passes
through the kth gray vertex for each k = 1, 2, . . . , n. Hence the
sum of the weights of all the paths of length 2 from the ith black
vertex to the jth white vertex is

n∑

j=1

aijbjk,

and this equals, according to the definition of a matrix product,
the (i, j)-entry of AB. 2

In the next theorem we collect some basic properties expressed
in terms of graph operations and the corresponding matrix opera-
tions. In the theorem we assume that the types of the graphs and
matrices are such that the operations can be carried out.

Theorem 2.2.5 The following properties hold:

1. The composition of König digraphs is an associative opera-
tion:

G1 ∗ (G2 ∗ G3) = (G1 ∗ G2) ∗ G3.

2. The product of König digraphs is an associative operation:

G1 · (G2 · G3) = (G1 · G2) · G3.

Equivalently, for matrices we have A1(A2A3) = (A1A2)A3.

3. Graph multiplication is distributive over addition:

G1 · (G2 + G3) = G1 · G2 + G1 · G3 and

(G1 + G2) · G3 = G1 · G3 + G2 · G3.

Equivalently, for matrices we have A1(A2 + A3) = A1A2 +
A1A3 and (A1 + A2)A3 = A1A3 + A2A3.

Proof. These relations are readily verified. The equivalence of the
distributive properties of graph multiplication and matrix multi-
plication are a consequence of

G(A) · (G(B) + G(C)) = G(A) · G(B) + G(A) · G(C)
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and

(G(A) + G(B)) · G(C) = G(A) · G(C) + G(B) · G(C).

2

We now relate the König digraph to transposition. The König
digraph G(AT ) of the matrix AT is obtained from the König di-
graph G(A) of A by changing the color of black vertices to white,
changing the color of white vertices to black, and then changing
the orientation of all edges so that once again edges go from a
black vertex to a white vertex.

Example 2.2.6 For the matrix

A =

[
1 2 3
4 5 6

]
,

given along with its König digraph in Example 2.2.1, the transpose
AT equals

AT =




1 4
2 5
3 6


 ,

and its digraph is given in Figure 2.3. 2

3

6

2
3

12

5

2

2
4

1

1

Figure 2.3
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The anticommutativity property (AB)T = BT AT can be un-
derstood in terms of the König digraph. Consider the composition
digraphs G(A) ∗ G(B) and G(BT ) ∗ G(AT ). If in G(A) ∗ G(B)
we make the black vertices white and make the white vertices
black and change the orientation of all edges, then we get the di-
graph G(BT ) ∗G(AT ). This implies that (AB)T = BT AT . Finally
we note that using induction we get the more general product-
transposition rule:

(A1A2 · · ·Ak)
T = AT

k · · ·AT
2 AT

1 (k ≥ 2).

To conclude this section we establish a convention that at times
is helpful in both presentation and understanding. By definition,
in a König digraph G there is an edge from each black vertex
to each white vertex. However, if the weight of an edge is zero
(corresponding to a zero entry in a matrix), then we can can just
delete the edge from G. Thus, with this convention, a König
digraph has black vertices 1, 2, . . . , m and white vertices 1, 2, . . . , n
and there are edges from some of the black vertices to some of
the white vertices. This convention does not influence our matrix
calculations. For example, in the proof of Theorem 2.2.4, the path
of length 2 in the composition G(A) ∗ G(B) from the ith black
vertex to the jth white vertex that passes through the kth gray
vertex disappears if either

(i) in G(A) there is no edge from the ith black vertex to the kth
white vertex (because aik = 0), or

(ii) in G(B) there is no edge from the k black vertex to the jth
white vertex (because bkj = 0).

If (i) or (ii) holds, then the path of length 2 in the composition
G(A) ∗ G(B) has weight aikbkj = 0, and our calculation is not
affected.

This same convention can be applied to any digraph with
weighted edges.
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Example 2.2.7 Consider the permutation matrix

P =




0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0




corresponding to the permutation σ = 2413 of {1, 2, 3, 4}. If we
apply our convention, then the König digraph G(P ) has only four
edges, each of weight equal to 1: an edge from black vertex 1 to
white vertex 2, an edge from black vertex 2 to white vertex 4,
an edge from black vertex 3 to white vertex 1, and an edge from
black vertex 4 to white vertex 3. In general, the König digraph of
a permutation matrix of order n corresponding to the permutation
σ = k1k2 . . . kn has n edges of weight 1, namely, the edges from
black vertex i to white vertex ki (i = 1, 2, . . . , n). There is exactly
one edge beginning at each black vertex and exactly one edge
terminating at each white vertex; these edges can be regarded as
defining a one-to-one corespondence between the black vertices
and the white vertices. 2

Using our convention illuminates the proof of the following
basic fact.

Theorem 2.2.8 The product of two permutation matrices of the
same order n is also a permutation matrix of order n.

Proof. Let P and Q be the permutation matrices corresponding
to the permutations σ = k1k2 · · · kn and π = l1l2 · · · ln, respec-
tively. Then, in G(P ∗ Q), there are exactly n paths of length
2 from black vertices to white vertices, each of weight equal to
1 · 1 = 1, and these paths have no vertices in common. In G(PQ),
there is exactly one edge from each black vertex to each white ver-
tex, and these edges all have weight equal to 1. More precisely, for
each i = 1, 2, . . . , n, there is an edge of weight 1 from black vertex
i to white vertex lki

. Because k1k2 · · · kn and l1l2 · · · ln are both
permutations of {1, 2, . . . , n}, lk1

lk2
· · · lkn

is also a permutation of
{1, 2 . . . , n}. Thus PQ is a permutation matrix. 2
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2.3 Partitioned Matrices

A matrix A may be partitioned into smaller matrices by inserting
horizontal and vertical lines that partition its set of rows and its set
of columns, respectively. Such a matrix is then called a partitioned
or block matrix, with the resulting smaller matrices called blocks.

Example 2.3.1 Let

A =




1 2 3 4
5 6 7 8
8 7 6 5
4 3 2 1


 .

We can, for instance, partition A into blocks in the following
way:

A =




1 2 3 4
5 6 7 8
8 7 6 5
4 3 2 1


 .

The blocks of A are the matrices

B1 = [1], B2 = [2 3], B3 = [4]

B4 =




5
8
4


 , B5 =




6 7
7 6
3 2


 , B6 =




8
5
1


 .

Using these blocks we may write A as

A =

[
B1 B2 B3

B4 B5 B6

]
.

2

Example 2.3.2 The matrix

A =

[
O I2

I2 O

]
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is, in fact, the permutation matrix

A =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 .

2

If a matrix is partitioned into blocks by partitioning its rows
into µ nonempty sets and its columns into ν nonempty sets, then
it is of the form

A =




A11 A12 · · · A1ν

A21 A22 · · · A2ν
...

...
. . .

...
Aµ1 Aµ2 · · · Aµν




, (2.4)

where the Aij are the blocks of the matrix partition. The parti-
tioned matrix A in (2.4) can be regarded as a matrix of type µ by
ν whose entries are themselves matrices (the blocks). We say that
A is a block matrix of type µ by ν. Using these ideas we can carry
over our basic matrix operations to partitioned matrices.

If c is a number, then evidently

cA =




cA11 cA12 · · · cA1ν

cA21 cA22 · · · cA2ν
...

...
. . .

...
cAµ1 cAµ2 · · · cAµν




.

If B is a matrix of the same type as A, and B is partitioned
into blocks in the same way that A is partitioned in (2.4), then
the definition of matrix addition implies that

A + B =




A11 + B11 A12 + B12 · · · A1ν + B1ν

A21 + B21 A22 + B22 · · · A2ν + B2ν
...

...
. . .

...
Aµ1 + Bµ1 Aµ2 + Bµ2 · · · Aµν + Bµν




.
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The relationship of matrix multiplication to partitioned matrices
is a little more subtle.

Now let A = [aij ] and B = [bij ] be matrices of types m by n
and n by p, respectively. Assume that A and B are partitioned as
block matrices of types µ by ν and ν by λ, respectively:

A =




M11 M12 · · · M1ν

M21 M22 · · · M2ν
...

...
. . .

...
Mµ1 Mµ2 · · · Mµν




, B =




N11 N12 · · · N1λ

N21 N22 · · · N2λ
...

...
. . .

...
Nν1 Nν2 · · · Nνλ




.

Assume also that the column partition of A agrees with the row
partition of B. This means that Mik is an mi by nk matrix and Nkj

is an nk by pj matrix. Here the integers m, n, and p are partitioned
as m = m1 + m2 + · · · + mµ, n = n1 + n2 + · · · + nν , and p =
p1 + p2 + · · ·+ pλ. Under these circumstances, we say that A and
B are conformally partitioned.

Let the set of black vertices of G(A) be partitioned in accor-
dance with the partition of the integer m, and let the set of white
vertices of G(A) be partitioned according to the partition of the
integer n. Similarly, let the black and white vertices of G(B) be
partitioned according to partitions for n and p, respectively. In
forming G(A) ∗ G(B) and G(A) · G(B), one gets a natural parti-
tioning for the product AB as

AB =




P11 P12 · · · P1λ

P21 P22 · · · P2λ
...

...
. . .

...
Pµ1 Pµ2 · · · Pµλ




where the blocks Pij are of size mi by pj.
Now we have to see how to calculate the block Pij. The paths

of length 2 that in G(A) ∗ G(B) start from the set of mi black
vertices and terminate in the set of pj white vertices correspond
to block Pij of AB. These paths, of course, cross through gray
vertices. We partition the n gray vertices into ν parts according to
the partition n = n1+n2+· · ·+nν of n. The paths of length 2 that
cross through the set of nk gray vertices correspond to the matrix
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product MikNkj. Because each path of length 2 in G(A) ∗ G(B)
crosses through exactly one of the ν sets of gray vertices, we obtain
the formula

Pij = Mi1N1k + Mi2N2k + · · ·+ MiνNνk. (2.5)

In other words, matrices conformally partitioned into blocks are
multiplied formally by the same rule as for matrix multiplication.

2.4 Exercises

1. Compute the matrix product




1 3
2 5
4 0




[
2 3 4
1 5 1

]
.

2. Let D = diag(d1, d2, . . . , dn), and let A be a matrix of order
n. Show that DA is the matrix obtained from A by multi-
plying each element in row i by di for i = 1, 2, . . . , n, and
that for AD we multiply each element in column i by di.

3. Let A be an m by n matrix and let B be an n by p matrix.
Let α1, α2, . . . , αm be the rows of A and let γ1, γ2, . . . , γp be
the columns of B. Show that the rows of AB are

α1B, α2B, . . . , αmB

and the columns of AB are

Aγ1, Aγ2, . . . , Aγp.

Conclude that if A has a row of all zeros, so does AB, and
that if B has a column of all zeros, so does AB.

4. Let A and B be upper (lower) triangular matrices of order
n. By using the König digraph, show that the matrix AB is
also upper (lower) triangular matrix.
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5. Construct the König digraphs of the two matrices in Exercise
1, and compute their digraph composition and product.

6. Let

A =




a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45


 .

Let P be the permutation matrix corresponding to the
permutation 2341 of {1, 2, 3, 4}, and let Q be the permu-
tation matrix corresponding to the permutation 43512 of
{1, 2, 3, 4, 5}. Using the König digraph, compute PAQ.

7. Let r be a nonnegative integer, and define Hr = [h
(r)
ij ] to be

the matrix of order n with h
(r)
ij = δi,j−r+1 (1 ≤ i, j ≤ n).

(Here the subscript j − r + 1 is whichever of 1, 2, . . . , n it is
congruent to modulo n.) First show that Hr is a permuta-
tion matrix, and then, using the König digraph, show that
HpHq = Hp+q whenever p and q are nonnegative integers.

8. Let In(i, j) be the (permutation) matrix of order n obtained
by interchanging rows i and j of the identity matrix In.
Thus, In(i, j) = In(j, i). Show that the following identities
hold:

In(i, j)2 = In and In(i, k)In(k, j)In(j, i) = In(k, j).

9. Let P be a permutation matrix of order n. Use the König
digraph to prove that

PP T = P T P = In.

10. Using block multiplication, compute the product

[
I2 O2 I2

O2 I2 I2

] 


I2 I2

O2 −I2

−I2 I2


 .





Chapter 3

Powers of Matrices

In this chapter we consider powers of square matrices and describe
them in terms of a digraph, different from the König digraph, that
we associate with a square matrix. The basic result here is a
theorem by which the entries of powers of a square matrix can
be calculated by enumeration of certain walks in the associated
digraph. As applications we consider Markov chains, finite au-
tomata, and counting permutations with certain restrictions. We
also show how a certain structured matrix called a circulant results
from the powers of a matrix whose digraph is a cycle.

3.1 Matrix Powers and Digraphs

An associative groupoid is a pair (X, ·) consisting of a nonempty
set X and a binary operation, denoted by the usual multiplica-
tion symbol ·, that satisfies the associative law. The associative
groupoid may have an identity element e satisfying a ·e = e ·a = a
for every element a in X. In an associative groupoid (X, ·), for
every element a ∈ X and every nonnegative integer k, the kth
power of a is defined inductively as follows:

ak =

{
a, if k = 1,
a · ak−1, if k > 1.

If (X, ·) has an identity element e, then we also set a0 = e.

49



50 CHAPTER 3. POWERS OF MATRICES

The set of square matrices of a given order n over a field is an
associative groupoid under multiplication with identity element
equal to the identity matrix In. Thus nonnegative integral powers
of a matrix A of order n are defined by A0 = In, A

1 = A, and Ak =
A · Ak−1 for k > 1.

Now that we have defined matrix powers, we can also define
matrix polynomials in a natural way. If

p(x) = a0x
k + a1x

k−1 + · · ·+ ak−1x + ak

is a polynomial of degree k, where the coefficients a0, a1, . . . , ak

are elements of a field F and A is a square matrix over F , then
we define the matrix polynomial p(A) (really, the evaluation of a
polynomial at a square matrix) to be

p(A) = a0A
k + a1A

k−1 + · · ·+ ak−1A + akI.

Example 3.1.1 Let

A =

[
1 2
3 5

]
and p(x) = 2x2 − x + 3.

Then

p(A) = 2A2 − A + 3I2 = 2

[
7 12
18 31

]
−
[

1 2
3 5

]
+

[
1 0
0 1

]

=

[
7 10
15 27

]
.

2

Let A = [aij ] be a matrix of order n. We associate with A a
digraph D(A) with n vertices. The vertices of D(A) are denoted
by 1, 2, . . . , n. (Unlike the König digraph, the vertices correspond
simultaneously to the n rows and the n columns of A.) There
is an edge from vertex i to vertex j of weight aij for each i, j =
1, 2, . . . , n. Thus D(A) has a loop at each vertex i of weight aii.
As with the König digraph, an edge of weight zero, corresponding
to a zero entry of A, can be removed from D(A) without any effect
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in our subsequent calculations; indeed, removing such edges can
have the effect of making certain calculations more transparent as
it reveals more clearly the structure of the digraph. The weight of
a walk in D(A) is defined to be the product of the weights of all
edges of the walk.1 Powers of a matrix can be calculated using the
digraph D(A).

Theorem 3.1.2 Let A = [aij ] be a matrix of order n. For each

positive integer k, the entry a
(k)
ij of Ak in the ith row and jth

column equals the sum of the weights of all walks in D(A) of length
k from vertex i to vertex j.

Proof. We shall give two proofs of this result: the first uses
directly the digraph D(A), and the second uses the König digraph
G(A) in an auxiliarly way.

First proof: We proceed by induction on k. If k = 1, the theorem is
a direct consequence of the definition of the digraph D(A). This is
because for each i and j, there is exactly one walk of length 1 from
i to j and it has weight aij . Now assume the theorem holds for
the integer k. By the definition of matrix powers, Ak+1 = A · Ak,
and so by matrix multiplication we get

a
(k+1)
ij = ai1a

(k)
1j + ai2a

(k)
2j + · · ·+ aina

(k)
nj =

n∑

r=1

aira
(k)
rj .

By the inductive assumption, for each r = 1, 2, . . . , n, a
(k)
rj is the

sum of the weights of all walks of length k in D(A) from vertex
r to vertex j. Consider a walk γ of length k + 1 from vertex i to
vertex j. The walk γ consists of an edge from i to r for some r
between 1 and n, followed by a walk γ′ of length k from r to j.
The weight of γ equals air times the weight of γ′. Conversely, a
walk γ′ of length k from r to j preceded by the edge from i to r
gives a walk γ of length k+1 from i to j whose weights satisfy this

1Now we see the advantage of suppressing edges of weight zero. The weight
of a walk that contains an edge of weight zero is zero. If we suppress the edge
of weight zero, then the walk “disappears” and so makes no contribution to a
sum.
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same rule. It follows that aira
(k)
rj equals the weight of all walks of

length k from i to j whose first edge is an edge from i to r. Hence∑n
r=1 aira

(k)
rj is the sum of the weights of all walks of length k + 1

from i to j, completing the induction and proving the theorem.

Second proof: Here we will be more brief. Consider the digraph
G(A)(k) = G(A) ∗G(A) ∗ · · · ∗G(A) equal to the composition of k
copies of the König digraph G(A). This digraph has k + 1 sets of
n vertices with the first set black, the last set white, and all others
gray. The sum of the weights of all walks from black vertex i to
white vertex j equals a

(k)
ij . There is a one-to-one correspondence

between walks of length k in G(A)(k) from black vertex i to white
vertex j and walks of length k in D(A) from its vertex i to its
vertex j. Moreover, corresponding walks have the same weight.
Thus a

(k)
ij equals the sum of the weights of all walks of length k in

D(A) from i to j. 2

We give an example that demonstrates the usefulness of The-
orem 3.1.2. Omitting the edges of weight zero (if there are, rela-
tively speaking, many such edges) allows one to identify walks in
a digraph more readily.

Example 3.1.3 The digraph D(A) corresponding to the matrix

A =

[
a b
0 c

]

is drawn in Figure 3.1.

a c

1

b

2
Figure 3.1

From the vertex 1 to the vertex 1 there is only one walk of length
k, and its weight is ak. Similarly, there is only one walk of length
k from vertex 2 to itself and it has weight ck. From 1 to 2 there
are k walks of length k. These are the walks of weight aibck−1−i
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consisting of i loops of weight a, followed by the edge of weight b,
and then k − 1 − i loops of weight c. Here i can be any integer
from 0 to k − 1. Therefore, the element on the position (1, 2) of
the matrix Ak is equal to

∑k−1
i=0 aick−1−i. From the vertex 2 to the

vertex 1 there are no walks. Hence we have

Ak =

[
ak b(ak−1 + ak−2c + · · ·+ ck−1)
0 ck

]
.

2

A square matrix is nilpotent provided there is a positive inte-
ger k such that Ak = 0. Note that it follows from the inductive
definition of matrix powers that if Ak = O, then Ar = O for all
r ≥ k. An arbitrary matrix is nonnegative if all its entries are
nonnegative numbers. Using Theorem 3.1.2, we can characterize
nonnegative matrices A that are nilpotent.

Theorem 3.1.4 Let A be a square matrix of order n. Then A
is nilpotent if the corresponding digraph D(A) does not have any
cycles; in this case, An = O. A nonnegative square matrix A is
nilpotent if and only if the corresponding digraph D(A) does not
have any cycles.

Proof. Applying Theorem 3.1.2, we see that A is a nilpotent
matrix if and only if there exists a positive integer k such that the
digraph D(A) contains no walk of nonzero weight of length r for
all r ≥ k. If D(A) does not have a cycle, then there can be no
such walk of length n or greater, since such a walk would repeat a
vertex and thus create a cycle. Hence A is nilpotent and An = O
if D(A) does not have any cycles.

Now suppose that A is a nonnegative matrix and A is nilpotent.
If D(A) contains a cycle, then D(A) has walks of arbitrary long
length of positive weight, contradicting the assumption that A is
nilpotent. 2

Note that if a matrix A of order n is nilpotent, then Ar = O
for all r ≥ n + 1. This is because in the digraph D(A) with n
vertices, if there is a closed walk, then there is a cycle of length at
most n.
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−1 1 1 −1

1 −1 1 1

Figure 3.2

Example 3.1.5 A strictly upper triangular matrix is an upper
triangular matrix that also has only zeros on its main diagonal.
Thus a matrix A = [aij ] of order n is a strictly upper triangular
matrix if and only if aij = 0 for all i and i with j ≤ i. Let A be
a strictly upper triangular matrix. Then its digraph D(A) does
not have any cycles since all edges go from a vertex i to a vertex
j with j > i. By Theorem 3.1.4 the matrix A is nilpotent. 2

Example 3.1.6 Theorem 3.1.4 asserts, in particular, that the di-
graph of a nonnegative nilpotent matrix cannot have a cycle. The
assumption that the matrix is nonnegative cannot be omitted. The
digraph of the matrix




0 0 0 0 1 −1
0 0 1 −1 0 0

−1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0




is displayed in Figure 3.2. The matrix is nilpotent, yet the digraph
has cycles.2 Of course, if D(A) does not have any cycles, then A

2This example was constructed by Z. Lukić.
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is nilpotent, but, as the example shows, the converse is not true
in general. 2

Example 3.1.7 Let a digraph be obtained from a tree by orient-
ing its edges in an arbitrary way, and assign weights to the edges
in any way whatsoever. Consider a matrx A with D(A) equal to
this digraph. Because D(A) does not contain cycles, the matrix
must be nilpotent. For example, the matrices




0 −2 0 0
0 0 1 0
0 0 0 5
0 0 0 0


 and




0 1 0 0
0 0 0 0
0 3 0 0
0 0 2 0




are constructed from a path of 4 vertices in this way and are
nilpotent. 2

It follows from Theorem 3.1.4 that whether or not a nonneg-
ative matrix is nilpotent depends only on the structure of the di-
graph and not on the weights of its edges. There are also other
properties of matrices that depend only on which elements are 0
and do not depend on the values of the elements different from 0.
Such characteristics are described in a natural way by means of
digraphs.

We next describe an application of Theorem 3.1.2 in probability
theory.

Example 3.1.8 Some random processes can be described by the
following model:

Let G be a digraph with n vertices, containing all possible
edges, including a loop at each vertex. Consider the vertices to
be states of a system, and imagine that an object, let us call it a
particle, moves in a random way along the edges of the digraph in
the direction of the edge. Normally, the particle is on a vertex of
the digraph and at moments of time t = 1, 2, . . . moves along an
edge to another vertex or the same vertex in case of a loop. If the
particle at some initial moment t = t0 is on a vertex i (in state i),
at the next moment t = t0 + 1 it has moved to vertex j (to state
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j) with probability pij ≥ 0, (i, j = 1, 2, . . . , n). The values pij are
independent of the value of the discrete time variable t and, in
order that we have probability distributions for the transition at
each vertex, the pij satisfy the condition

pi1 + pi2 + · · ·+ pin = 1 (i = 1, 2, . . . , n).

In particular, the digraph of P satisfies D(P ) = G.3

The matrix P = [pij ] of order n is called the one-step transition
probability matrix. We call such a digraph G a Markov chain, and
indeed use this term for the matrix P itself.

It is interesting and important to investigate the behavior of
a Markov chain over a long period of time. Of special interest
are those cases when some of the values pij are equal to 0. When
drawing the digraph G, we may omit an edge from a vertex i to
a vertex j of weight 0, since the particle cannot move from i to
j in this case. In this way, and as we have discussed earlier, the
structure of the digraph, and hence the important characteristics
of the Markov chain, become clearer in the reduced digraph.

Because the values of the transition matrix P are the same for
all times, the probability that the particle gets from a vertex i in k
steps to a vertex j along a fixed walk (of length k) is equal to the
product of weights of the edges along that walk, i.e. to the weight
of the walk. According to Theorem 3.1.2, we conclude that the
probability of getting from a state i to a state j in k steps (along

any walk) equals the element p
(k)
ij in position (i, j) of the matrix P k.

Therefore, the behavior of a Markov chain is determined by the
structure of the matrices P k (k = 1, 2, . . .). Almost all interesting
characteristics of a matrix P k can be determined by means of the
structure of the corresponding digraph, while the weights of the
edges affect only the quantitative characteristics of the Markov
chain (see Chapter 8). 2

3Here is an amusing formulation of this problem. Think of the digraph as
a map of a city and the particle as a drunkard who is trying to get home (one
of the vertices of the digraph). At each intersection, he chooses one of the
streets to take according to the given probabilities. The question arises as to
whether the drunkard will reach home (of course, depending on his level of
inebriation, he may or may not recognize his home!). It turns out that under
some mild conditions, the drunkard will reach home with high probability.
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To conclude this section, we discuss briefly an application of
Theorem 3.1.2 in finite automata theory.

Example 3.1.9 A finite automaton is a map from finite sequences
of a certain finite set of symbols (the input symbols) into finite
sequences of another finite set of symbols (the output symbols). A
finite automaton can be represented by a digraph G. The vertices
1,2,. . . , n of the digraph represent the states of the automaton in
discrete moments of time t = 0, 1, 2, . . .. If in some moment of time
the automaton is in a state i, and if it is affected by a symbol xj of
the input alphabet, the automaton goes to a new state determined
by i and xj , while a symbol of the output alphabet, also determined
by the i and xj, appears at the output. Let X = {x1, x2, . . . , xn}
be the set of all input symbols. In the following we consider the
input symbols x1, x2, . . . , xn as variables. We extend this set by
the empty symbol with the meaning that at a given moment there
is no symbol affecting the input of the automaton. This empty
symbol is denoted by 0, and we will sometimes, according to need,
interpret it as the number 0. If the symbols xi1 , xi2 , . . . , xis are
those that turn the automaton from a state i to a state j, the edge
of the digraph joining the vertices i and j gets the following sum
as its weight:

aij = xi1 + xi2 + · · ·+ xis . (3.1)

If aij = 0, then this means that it is impossible to get from the
state i to the state j, and the automaton stays in state i. In
analogy with Markov chains, the matrix A = [aij ] of order n is
called the transition matrix of the automaton.

Consider a walk of a length k between vertices i and j. The
weight of that walk is the product of values of the form (3.1). If
we multiply k sums of the type (3.1), we get a sum of products,
every summand being the product of k members of the set X. We
assume that the multiplication of the elements of X is noncom-
mutative, so that the k factors in every product maintain their
original order. If xj1 xj2 · · · xjk

is some summand from the weight
of the walk, the sequence of input symbols xj1 , xj2, . . . , xjk

sends
the automaton from the state i to the state j. Therefore, the sum
of the weights of all walks of length k between vertices i and j
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produces the set of all sequences of k input symbols that turn the
automaton from the vertex i to the vertex j. According to The-
orem 3.1.2, the element in position (i, j) of the matrix Ak is the
sum of terms, where each term is the product of k elements of the
set X, and every such product determines a sequence of k symbols
that sends the automaton from the state i to the state j. 2

3.2 Circulant Matrices

A circulant is a square matrix of the form

A =




a0 a1 a2 · · · an−2 an−1

an−1 a0 a1 · · · an−3 an−2

an−2 an−1 a0 · · · an−4 an−3
...

...
...

. . .
...

...
a2 a3 a4 · · · a0 a1

a1 a2 a3 · · · an−1 a0




. (3.2)

Each row of such a matrix is a cyclic permutation of the first row;
each column is a cyclic permuation of the first column.

There is a representation of a circulant (3.2) in terms of powers
of a certain permutation matrix. Let P be the permutation matrix
of order n defined by

P =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

0 0 0 · · · 0 1
1 0 0 · · · 0 0




=

[
O In−1

I1 O

]
.

The digraph D(P ) corresponding to P is a cycle with n vertices
and n edges from vertex i to vertex i + 1 for i = 1, 2, . . . , n, where
n + 1 is treated as 1 (i.e., computed modulo n, taking as residues
1, 2, . . . , n). For each positive integer k and each vertex i there is
exactly one walk of length k beginning at i, and it terminates at



3.3. PERMUTATIONS WITH RESTRICTIONS 59

vertex j mod n. Thus we have that

P k =

[
O In−k

Ik O

]
(k = 1, 2, . . . , n − 1, n),

in particular, P n = In. Hence we obtain a representation of the
circulant given in (3.2) as

A = a0I + a1P + a2P
2 + · · · + an−1P

n−1.

If we define the polynomial

g(x) = a0 + a1x + a2x
2 + · · ·+ an−1x

n−1,

then

A = g(P ).

Let f(x) be any polynomial and divide f(x) by xn − 1 to get

f(x) = q(x)(xn − 1) + r(x),

where the remainder r(x) is a polynomial of degree at most n− 1
(including possibly the zero polynomial). Since P n = In, it follows
that

f(P ) = r(P ),

implying that circulants are precisely the matrices that are poly-
nomials in the permutation matrix P .

3.3 Permutations with Restrictions

Let X = {x1, x2, . . . , xn} be a set of n elements. As we saw in
Section 1.3, an r-permutation-with-repetition of X is an ordered
arrangement of r elements of X with repetition of elements per-
mitted, that is, an r-tuple xi1xi2 . . . xik , where 1 ≤ ij ≤ n for
j = 1, 2, . . . , n.

When we form permutations, we may impose certain restric-
tions. Here we consider restrictions of a very special type. Assume
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that for each i = 1, 2, . . . , n, the set X is partitioned into two sets,
X1

i and X2
i . Thus

X = X1
i ∪ X2

i where X1
i ∩ X2

i = ∅, (i = 1, 2, . . . , n).

We now require that the element xi, wherever it occurs in the
permutation, be followed, if it is not the last element in the per-
mutation, by an element of X1

i only (i = 1, 2, . . . , n). Thus a pair
xi, xj of adjacent elements in a permutation is a permitted pair
provided xj ∈ X1

i . Define a matrix A = [aij] of order n, where
aij = 1 if xi, xj is a permitted pair, and aij = 0 otherwise. The ma-
trix A is the matrix of the permitted pairs. The matrix A obtained
from A by replacing 0’s with 1’s, and viceversa, is the restriction
matrix.

We now determine the number pn,k(A) of k-permutations-with-
repetition of X if a matrix A of permitted pairs is given. Since
A is a matrix of 0’s and 1’s, all edges, and hence all walks, of the
digraph D(A) have weight 1. Thus the sum of the weights of the
walks of length k from vertex i to vertex j in D(A) equals the
number of such walks. By Theorem 3.1.2, the number of walks of
a length k from vertex i to vertex j equals the element a

(k)
ij in the

ith row and the jth column in the matrix Ak.
Denote the sum of all elements of a matrix Y by Σ(Y ). We

thus have the formula

pn,k(A) = Σ(Ak−1), (k ≥ 1).

3.4 Exercises

1. Let

A =




1 2 3 0
0 4 1 4
2 0 3 2
1 3 0 1


 .

Use the digraph D(A) to compute A2, A3, and A4.

2. Let A = [aij] be the matrix of order n defined by aij =
δi,j−1 (i, j = 1, 2, . . . , n), and let B = aIn + A, where a is
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some constant. For k a positive integer, use the digraph of
a matrix to compute Ak and Bk.

3. Let A = [aij ] be a matrix of order n such that all entries of
A satisfy |aij| ≤ r. Let k be a positive integer. By bounding
the number of walks of length k in the digraph D(A), show

that the entries a
(k)
ij of Ak satisfy |a(k)

ij | ≤ nk−1rk.

4. Let D be the digraph obtained from the complete graph
K5 (no loops) by replacing each edge with two oppositely
directed edges. At each discrete time t, a particle always
moves to a different vertex with equal probability 1/4. Com-
pute both the one-step and two-step transition probability
matrices P and P 2.

5. Let D be a digraph obtained from K5 by orienting each edge
(your choice how to orient). At each discrete time t, a parti-
cle chooses one of the edges leaving its current location with
equal probability. As in the previous exercise, compute both
the one-step and two-step transition probability matrices P
and P 2.

6. For each of the three trees of order 5 (see Section 1.1), give an
orientation to each of the edges and construct (and verify) a
nilpotent matrix A such that D(A) is the resulting digraph.

7. Show that the product of two circulants of order n is a cir-
culant.

8. Show that the transpose of a circulant is a circulant.





Chapter 4

Determinants

In this chapter we first define the Coates digraph of a square ma-
trix. The Coates digraph is a slight variation of the digraph used in
the previous chapter. We use the Coates digraph to give a nontra-
ditional definition of the determinant of a square matrix. Using
this definition, we derive the basic properties of a determinant
that are useful in its evaluation. In particular, it is shown how the
calculation of a determinant can be reduced to the calculation of
determinants of lower order. We also derive the formula for the
determinant that is used in its classical definition and actually es-
tablish the equivalence of the two definitions of the determinant.
The determinant can be defined yet again in a third way—using
the König digraph—a fact that will be useful later in the book. A
special determinantal formula, derived in Section 4.3, will be used
in Chapter 7. Section 4.5 describes the Laplace development of a
determinant.

4.1 Definition of the Determinant

A digraph with m vertices and m edges is called a cycle digraph,
or, more simply, a cycle, provided its vertices can be numbered as
1, 2, . . . , m so that its set of m edges consists of edges from vertex
i to vertex i+1, (i = 1, 2, . . . , m−1) and an edge from vertex m to
vertex 1. Let D be a digraph whose set of vertices is V and whose
set of edges is E. We recall from Chapter 1 that a subdigraph of

63
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D is a digraph whose set of vertices is a subset U of V and whose
set of edges is a subset F of the set EU of those edges of D that
join vertices in U . Thus, to form a subdigraph of D, we choose
some of the vertices (possibly all of them) and some of the edges
between these vertices (again, possibly all of them). If U = V ,
then we have a spanning subdigraph of D. If F = EU , then we
have an induced subdigraph (on the set U).

A linear subdigraph of D is a spanning subdigraph of D in which
each vertex has indegree 1 and outdegree 1 (i.e., exactly one edge
into each vertex and exactly one (possibly the same) out of each
vertex. Thus a linear subdigraph consists of a spanning collection
of pairwise vertex-disjoint cycles. In Figure 4.1. a digraph D is
drawn along with its three linear subdigraphs L1, L2, L3.

L1 L2

Figure 4.1
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L3

Figure 4.1 (continued)

Let A = [aij ] be a square matrix of order n. We have already
associated two weighted digraphs with A, the König digraph G(A)
and the digraph D(A). We now associate a third weighted digraph
D∗(A), which is nothing more than the digraph D(AT ) associated
with the transpose AT of A. Thus D∗(A) has n vertices 1, 2, . . . , n,
and for each i, j there exists an edge from vertex j to vertex i of
weight aij The elements of the main diagonal of A correspond in
D∗(A) to loops of D∗(A) as they do in D(A). The digraph D∗(A)
is called the Coates digraph of the matrix A.1

Let L be a linear subdigraph of the digraph D∗(A). The prod-
uct of the weights of the edges of L is the weight w(L) of L. The
number of cycles contained in L is denoted by c(L). By L(A) we
mean the set of all linear subdigraphs L of the Coates digraph
D∗(A).

Definition 4.1.1 Let A = [aij ] be a square matrix of order n.
The determinant of A is the number det A defined by the sum

det A = (−1)n
∑

L∈L(A)

(−1)c(L)w(L), (4.1)

where the summation extends over all linear subdigraphs L of the
digraph D∗(A). Since (−1)n+c(L) = (−1)n−c(L), another way to
write (4.1) is

det A =
∑

L∈L(A)

(−1)n−c(L)w(L). (4.2)
2

1We are using D∗(A) rather than D(A)—that is, associating aij with the
edge from j to i rather than the edge from i to j—because it aids in our later
discussion.
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The digraph D∗(A) is named the Coates digraph and formula
(4.1) is called the Coates formula, because Coates introduced these
in [13] in developing a procedure for treating systems of linear al-
gebraic equations (here described in Section 6.3). It is very hard
to establish who first came to the idea of such a graphical inter-
pretation of a determinant (see the Coda for some bibliographical
data). Perhaps, as presented here, the definition of the determi-
nant could be called the Harary–Coates definition since Harary,
referring to Coates, has proposed in [45] that this formula, in a
somewhat changed form, could be taken as the definition of the
determinant. The standard definition is given in Section 4.4, and
it is equivalent to the Harary–Coates definition.

Example 4.1.2 Let

A =

[
a11 a12

a21 a22

]
.

Then D∗(A) has two linear subdigraphs. One consists of the loops
at the two vertices (so two cycles of length 1) and has weight a11a22;
the other is a cycle with two vertices and has weight a12a21. Hence,
using (4.1),

det A = (−1)2((−1)2a11a22 + (−1)1a12a21) = a11a22 − a12a21.

Now let

A =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 .

The digraph D∗(A) is depicted in Figure 4.2 along with its six
linear subdigraphs L1, L2, . . . , L6.

Applying formula (4.2) for the determinant, we get

det A = (−1)3−3a11a22a33 + (−1)3−1a12a31a23 +

(−1)3−1a21a32a13 + (−1)3−2a11a23a32 +

(−1)3−2a22a13a31 + (−1)3−2a33a12a21

= a11a22a33 + a12a31a23 + a21a32a13 −
a11a23a32 − a22a13a31 − a33a12a21.
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From formula (4.3) we see that the determinant of a matrix of
order 3 is an algebraic sum of six products with three factors, each
taken according to the scheme in Figure 4.3. The + sign is ascribed
to the product of elements lying on the diagonal a11, a22, a33 and
to the products of elements from vertices of two triangles having
one side parallel to this diagonal. The − sign is ascribed to the
product of elements lying on the diagonal a31, a22, a13 and to the
products of elements from vertices of two triangles having one side
parallel to this diagonal. 2

21

3

a11

a33

a22

a32

a23

a21

a12

a31
a13

21

3

L1

a11

a33

a22

21

3

L2

a23

a12

a31

21

3

L3

a13

a21

a32

Figure 4.2
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21

3

L4

a11

a23

a32

21

3

L5

a31
a13

a22

21

3

L6

a33

a21

a12

Figure 4.2 (continued)

+ terms − terms

Figure 4.3
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As with the digraphs G(A) and D(A), we adopt the convention
that edges of D∗(A) of weight zero are not, in general, drawn.
The advantage is that, with zeros present in a matrix A, certain
linear subdigraphs are removed from L(A), namely, those that
have weight zero and thus those that do not affect the value of
the determinant of A. Thus, in calculating the determinant of a
matrix A = [aij ] of order 3, if a12 = 0, then the linear subdigraphs
L2 and L5 of weight zero do not appear in the calculation. When
a matrix A has a lot of zeros occuring in a structured way, it may
be possible to easily calculate the determinant.

Example 4.1.3 In calculating the determinant of the matrix

A1 =




a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an




,

whose only nonzero elements occur on the diagonal, we see that
D∗(A1) has only one linear subdigraph, namely, itself, and it is
drawn in Figure 4.4.

1

a1

2

a2

n − 1

an−1

n

an

Figure 4.4

Hence we get

det A1 = (−1)n (−1)na11a22 . . . ann = a11a22 . . . ann.

In calculating the determinant of the matrix

A2 =




0 0 · · · 0 a1n

0 0 · · · a2,n−1 0
...

...
...

...
...

an1 0 · · · 0 0




,
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whose only nonzero elements are a1n, a2,n−2, . . . , an1, we see again
that D∗(A2) has only itself as a linear subdigraph and it is drawn
in Figure 4.5.

1

an1

n

a1n

2

an−1,2

n − 1

a2,n−1

Figure 4.5

This linear subdigraph has ⌊(n + 1)/2⌋ cycles (when n is odd, one
is a loop; the others are cycles of length 2). Thus we get

det A2 = (−1)n−⌊n+1

2
⌋a1na2,n−1 . . . an1.

2

Example 4.1.4 We calculate the determinant of the matrix

A =




b a 0 0
c b a 0
0 c b a
0 0 c b


 .

The corresponding digraph D∗(A) is represented in Figure 4.6.

1

b

2

b

3

b

4

bc

a

c

a

c

a

Figure 4.6
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1

b

2

b

3

b

4

b

weight b4

3

b

4

bc

a

weight ab2c

1

b

4

bc

a

weight ab2c

1

b

2

b c

a

weight ab2c

c

a

c

a

weight a2c2

Figure 4.7

In Figure 4.7, all linear subdigraphs are given together with
the corresponding weights. Therefore we have

det A = (−1)4
(
(−1)4b4 + 3(−1)3ab2c + (−1)2a2c2

)

= b4 − 3ab2c + a2c2.

2
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4.2 Properties of Determinants

There are many elementary properties of determinants that are
useful in evaluating determinants. This section is devoted to
their derivations from our Definition 4.1.1. It is mainly based
on the paper [22] from 1975 where one of the authors of this
book outlined the elementary theory of determinants using graph-
theoretical means.

We begin with a theorem that is basically obvious as there is
no distinction made between rows and columns in the definition
of the determinant.

Theorem 4.2.1 det AT = det A.

Proof. The digraph D∗(AT ) is obtained from the digraph D∗(A)
by changing the orientation of all edges but not changing their
weights. Therefore, there is a one-to-one correspondence between
the linear subdigraphs in L(A) and those in L(AT ). Under this
correspondence both the weight and number of cycles are pre-
served. Hence it follows from definition 4.1.1 that det A = det AT .
2

Theorem 4.2.1 implies that every statement that holds for the
rows of a matrix also holds for the columns. In this way every
theorem becomes two theorems and, in general, we only present
one and leave it to the reader to formulate the other.

Theorem 4.2.2 If each element of some row of a matrix is mul-
tiplied by c, then the determinant is also multiplied by c.

Proof. Let each element of row i of A be multiplied by c, resulting
in a matrix B. Then D∗(A) and D∗(B) differ only in that the
weight of each edge going into vertex i is mutliplied by c in B.
Each linear subdigraph contains exactly one edge going into vertex
i. Hence the weight of each linear subgraph in L(B) is c times the
weight of the corresponding linear subdigraph in L(A). Using the
definition of the determinant, we see that det B = c det A. 2



4.2. PROPERTIES OF DETERMINANTS 73

i

j

i

j

Figure 4.8

Theorem 4.2.3 If two rows in a matrix A are interchanged, the
determinant is multiplied by −1.

Proof. Let rows i and j of the matrix A, where i 6= j, be inter-
changed, resulting in a matrix B. Then D∗(B) is obtained from
D∗(A) by changing each edge going into vertex i into an edge going
into vertex j, keeping the same weight, and viceversa. This estab-
lishes a one-to-one correspondence between the linear subdigraphs
L in L(A) and the linear subdigraphs L′ in L(B) that preserves
the weight. However, as illustrated in Figure 4.8, the number of
cycles is either increased or decreased by 1. More precisely, the
number of cycles is increased by 1 if vertices i and j belong to the
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same cycle in L, and is decreased by 1 if they belong to differ-
ent cycles. Thus (−1)c(L′) = −1 · (−1)c(L), and the theorem now
follows. 2

Theorem 4.2.4 If the elements of a row of a matrix A are equal
to the corresponding elements of a different row, then det A = 0.

Proof. If we interchange the two identical rows of A, then.
by Theorem 4.2.3, the determinant gets multiplied by −1. On
the other hand, interchanging these two rows does not change
the matrix. and so the determinant stays the same. Therefore,
det A = − det A, implying that det A = 0. 2

Corollary 4.2.5 If the elements of a row of matrix A are propor-
tional to the elements of a different row, then det A = 0.

Proof. This corollary is an immediate consequence Theorems
4.2.2 and 4.2.4. 2

Theorem 4.2.6 Let i be a fixed integer with 1 ≤ i ≤ n. Suppose
that row i of A is the sum of two other rows in the sense that

aij = a
(1)
ij + a

(2)
ij , (1 ≤ j ≤ n).

Let A(1) and A(2) be the matrices obtained from A by replacing the
element aij of row i of A with a

(1)
ij and a

(2)
ij , respectively. Then

det A is the sum of the determinants of A(1) and A(2):

det A = det A(1) + det A(2).

More generally, if row i of A is the sum of p other rows in the
sense that

aij = a
(1)
ij + a

(2)
ij + · · ·+ a

(p)
ij (1 ≤ j ≤ n),

and A(k) is the matrix obtained fom A by replacing the elements
aij in row i with a

(k)
ij , (1 ≤ k ≤ p), then

det A = det A(1) + det A(2) + · · ·+ det A(k).
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Proof. As in the proof of Theorem 4.2.2, each linear subdigraph
of D∗(A) contains exactly one edge going into vertex i. Thus
the weight of each linear subgraph L in L(A) contains a factor

a
(1)
ij + a

(2)
ij for exactly one j. This implies that there is a one-

to-one correspondence between the linear subdigraphs L in L(A)
and all pairs L(1), L(2) consisting of a linear subdigraph L(1) of
L(A(1)) and a linear subdigraph L(2) of L(A(2)). Moreover, in this
correspondence,

w(L) = w(L(1)) + w(L(2)).

Using Definition 4.1.1 we now compute that

det A = det A(1) + det A(2).

The theorem in its full generality now follows easily by induction.
2

Theorem 4.2.7 The determinant of a matrix is unchanged if the
elements of some row are multiplied by a number and added to a
different row.

Proof. This theorem is an immediate upon first applying Theo-
rem 4.2.6 and then applying Theorem 4.2.4. 2

Let v(1), v(2), . . . , v(p) be 1 by n row vectors (or n by 1 column
vectors), and let c1, c2, . . . , cp be numbers. Recall that

c1v
(1) + c2v

(2) + · · ·+ cpv
(p)

is a linear combination of v(1), v(2), . . . , v(p).

Theorem 4.2.8 Let A = [aij] be a matrix of order n. Assume
that some row of A is a linear combination of its other rows. Then
det A = 0.

Proof. Assume, for instance, that row 1 of A is a linear combina-
tion of rows 2, 3, . . . , n. It follows from Theorem 4.2.6 that det A
can be written as a sum of determinants of matrices whose first
row is proportional to some other row of A. By Corollary 4.2.5,
each of these determinants equals zero and thus det A = 0. 2
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Example 4.2.9 Let

A =




7 2 19
1 −2 3
2 4 5


 .

Because row 1 is three times the second row plus two times the
third row, det A = 0 by Theorem 4.2.8. 2

Definition 4.2.10 Let A = [aij ] be an m by n matrix. Let K =
{i1, i2, . . . , ik} be a set of k elements with K ⊆ {1, 2, . . . , m}, and
let L = {j1.j2, . . . , jl} be a set of l elements with L ⊆ {1, 2, . . . , n}.
The sets K and L designate a collection of row indices and column
indices, respectively, of the matrix A, and the k by l submatrix
determined by them is

A[K, L] =




ai1j1 ai1j2 · · · ai1jl

ai2j1 ai2j2 · · · ai2jl

...
...

. . .
...

aikj1 aikj2 · · · aikjl




.

If L = K, then A[K, K] is a principal submatrix of A, sometimes
denoted more simply as A[K].

The determinant of a square submatrix of A is called a minor
of A. Thus a minor of A equals det A[K, L], where |K| = |L|. If,
in addition, K = L, then det A[K] is a principal minor of A.

Now assume that A is a square matrix of order n. Let i and
j be integers with 1 ≤ i, j ≤ n. Let Aij be the submatrix of
A of order n − 1 obtained by striking out row i and column j
of A (thus, in the above notation, Aij = A[K, L], where K =
{1, 2, . . . , i − 1, i + 1, · · · , n} and L = {1, · · · , j − 1, j + 1, · · · , n}).
The cofactor (or algebraic complement) Aij of the element aij of
the matrix A is given by

αij = (−1)i+j det Aij.

Note that the matrix Aij , and hence the cofactor αij , do not de-
pend on any of the elements in row i and column j of A. 2



4.2. PROPERTIES OF DETERMINANTS 77

We now obtain a recursive formula for the determinant by
showing how the determinant of a matrix of order n can be eval-
uated in terms of the determinants of n matrices of order n − 1.

Theorem 4.2.11 The determinant of a matrix A = [aij ] of order
n can be evaluated by developing along row i as follows:

det A =
n∑

j=1

aijαij =
n∑

j=1

(−1)i+jaij det Aij (i = 1, 2, . . . , n).

It can also be evaluated by developing along column j:

det A =
n∑

i=1

aijαij =
n∑

i=1

(−1)i+jaij det Aij (j = 1, 2, . . . , n).

Proof. Because of Theorem 4.2.1, it suffices to prove the for-
mula for development along row i. In addition, by Theorem 4.2.3,
it suffices to prove the theorem for i = n. This is because by
successively interchanging row i with rows i + 1, i + 2, . . . , n, we
obtain a matrix B = [bij ], where in B the rows of A are in the
order 1, . . . , i − 1, i + 1, . . . , n, i. With these interchanges we have
det B = (−1)n−i det A. Moreover, using the notation in Definition
4.2.10, we have bnj = aij and Bnj = Aij. Hence, developing the
determinant of B along its row n, we get

det A = (−1)n−i det B

= (−1)n−i
n∑

j=1

(−1)n+jbnj det Bnj

= (−1)n−i
n∑

j=1

(−1)n+jaij det Aij

=
n∑

j=1

(−1)−i+jaij det Aij

=
n∑

j=1

(−1)i+jaij det Aij .

So we need only establish the case i = n, and we proceed to do so.
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Each term in the sum in Definition 4.1.1 for the determinant
contains one element from each row of A, since in a linear subdi-
graph there is exactly one edge coming into each vertex. Similarly,
each term contains one element from each column. Hence we may
write

det A =
n∑

j=1

anjβj, (4.3)

where βj does not depend on any of the elements in row n and
column j of A, (j = 1, 2, . . . , n). The terms in this summa-
tion correspond to a partition of the linear subdigraphs in L(A)
into L1(A),L2(A) . . . ,Ln(A), where Lj(A) consists of those lin-
ear subdigraphs where the edge from vertex j goes to vertex n
(j = 1, 2, . . . , n). The linear subdigraphs L in Ln(A) contain a
loop at vertex n. Deleting that loop (so a cycle) from L, we get
a linear subdigraph L′ in L(Ann), where w(L) = annw(L′) and
c(L) = c(L′) + 1, and so (−1)c(L) = −(−1)c(L′). Therefore

βn = (−1)n(−1)
∑

L′∈L(Ann)

(−1)c(L′)w(L′)

= (−1)n−1
∑

L′∈L(Ann)

(−1)c(L′)w(L′)

= det Ann

= (−1)n+n det Ann = αnn.

We now consider the coefficient βj of anj in (4.3) where 1 ≤ j <
n. By successively interchanging column j with columns j +1, j +
2, . . . , n we obtain a matrix C = [cij ], where in C the columns of
A are in the order 1, . . . , j − 1, j + 1, . . . , n, j. We have det C =
(−1)n−j det A. Using the notation in Definition 4.2.10, we have
cnn = anj and Cnn = Anj . It follows from what we have proved in
the preceding paragraph that

βj = (−1)n−j det Cnn = (−1)n+j det Cnj = (−1)n+j det Anj = αnj .

Therefore we have

det A =
n∑

j=1

anjαnj,

as desired. 2
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Example 4.2.12 Let

A =




1 0 2 1
0 3 2 0
2 1 3 4
1 3 2 0


 .

Developing the determinant along row 2 and taking into account
the two 0’s in row 2, we get that

det A = (−1)4 · 3 · det




1 2 1
2 3 4
1 2 0


+ (−1)5 · 2 · det




1 0 1
2 1 4
1 3 0




= (−1)4 · 3 · (1) + (−1)5 · 2 · (−7)

= 3 + 14 = 17.

The two determinants of order 3 can be computed either by the
formula given in Example 4.1.2 or by further determinant devel-
opment. 2

We conclude this section by deriving two more important prop-
erties of the determinant.

Theorem 4.2.13 Let

A =

[
A1 0
B A2

]
,

where A1 and A2 are square submatrices of A. Then

det A = det A1 det A2.

In particular, the determinant of A does not depend on B.

Proof. Let A, A1, A2 be matrices of orders n, n1, n2 respectively,
where n = n1 + n2. The digraph D = D∗(A) is formed from
the digraphs D1 = D∗(A1) and D2 = D∗(A2) by including some
edges that go from the vertices of D1 to the vertices of D2. These
edges correspond to the nonzero entries of B. Because no edges go
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from D2 to D1, no cycle of D contains edges corresponding to the
nonzero entries of B. Therefore, each linear subdigraph L of D
consists of the union of a linear subdigraph L1 of D1 and a linear
subdigraph L2 of D2. Moreover, every such union gives a linear
subdigraph of D. We thus have

c(L) = c(L1) + c(L2) and w(L) = w(L1)w(L2),

and

det A = (−1)n
∑

L∈L(A)

(−1)c(L)w(L)

= (−1)n1+n2

∑

L1∈L(A1)

∑

L2∈L(A2)

(−1)c(L1)+c(L2)w(L1)w(L2)

= (−1)n1

∑

L1∈L(A1)

(−1)c(L1)w(L1) · (−1)n2

∑

L2∈L(A2)

(−1)c(L2)w(L2)

= det A1 det A2.

2

Theorem 4.2.13 can be used to show that the determinant is a
multiplicative function.

Theorem 4.2.14 If A and B are square matrices of the same
order n, then

det AB = det A det B. (4.4)

Proof. From Theorem 4.2.13 we get

det

[
A 0

−In B

]
= det A detB. (4.5)

We multiply column 1 of the matrix of order 2n in (4.5) by b11,
column 2 by b21, . . . , and column n by bn1, and add each of them
to the column n + 1. Furthermore, we multiply column 1 by b12,
column 2 by b22, . . . , and column n by bn2, and add each of them
to the column n + 2. Continuing like and using the fact that by
Theorem 4.2.7 the determinant is unchanged, we obtain

det

[
A 0

−In B

]
= det

[
A AB

−In 0

]
. (4.6)
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Now by n interchanges of pairs of columns (1 and n + 1, 2 and
n + 2, . . . , n and 2n) we get by Theorems 4.2.3 and 4.2.13 that

det

[
A AB

−In 0

]
= (−1)n det

[
AB A

0 −In

]

= (−1)n det(AB) det(−In) (4.7)

= (−1)n det AB (−1)n = det AB.

Combining (4.5), (4.6), and (4.7), we obtain (4.4). 2

Theorem 4.2.14 asserts that the determinant of a product of
square matrices of the same order equals the product of the de-
terminants of each of the two matrices. The product AB of two
nonsquare matrices A and B may be a square matrix and then
will have a determinant, even though neither factor does. In fact,
this happens exactly when A is an m by n matrix and B is an n
by m matrix for some integers m and n. In this situation, AB is
a square matrix of order m, and it is natural to ask whether or
not there is a formula for det(AB) that generalizes the product
rule of Theorem 4.2.14. Such a formula exists, and it is called the
Binet–Cauchy formula.

Example 4.2.15 Let

A =




1
b
c


 and B =

[
x y z

]
.

Then

AB =




x y z
bx by bz
cx cy cz


 .

Applying Corollary 4.2.5, we see that since rows 1 and 2 are pro-
portional (as are rows 1 and 3), det(AB) = 0.

This example is a special case of a more general situation. Let

A =




a1

a2
...

am




and B =
[

b1 b2 · · · bm

]
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be m by 1 and 1 by m matrices, respectively. Then

AB =




a1b1 a1b2 · · · a1bm

a2b1 a2b2 · · · a2bm
...

...
. . .

...
amb1 amb2 · · · ambm




is a square matrix of order m. Each pair of rows and each pair of
columns is proportional. Thus, if m > 1, det(AB) = 0. 2

Let A = [aij ] and B = [bij ]. Let the columns of A be the m
by 1 matrices C1, C2, . . . , Cn, and let the rows of B be the 1 by
m matrices R1, R2, . . . , Rn. Then it follows from the definition of
matrix multiplication that

AB = C1R1 + C2R2 + · · · + CnRn. (4.8)

This is because the element in position (i, j) of AB is ai1b1j +
ai2b2j + · · ·+ainbnj , and this is the sum of the elements in position
(i, j) of the matrices C1R1, C2R2, . . . , CnRn.

The next theorem contains the Binet–Cauchy formula.

Theorem 4.2.16 Let A and B be m by n and n by m matrices,
respectively. If m > n, then det(AB) = 0. If m ≤ n, then

det(AB) =
∑

K

det A[{1, 2, . . . , m}, K] detB[K, {1, 2, . . . , m}],
(4.9)

where the summation extends over all subsets K of {1, 2, . . . , n}
of cardinality m.

Proof. First assume that m > n. Then, from (4.8), we conclude
that the columns of AB are linear combinations of the n columns
of B. Applying Theorem 4.2.8 and 4.2.2, we see that det A is a
sum of multiples of determinants of matrices, each of whose m
rows is one of the n rows of B. Because m > n, each of these
matrices has two equal rows and so by Theorem 4.2.4, det A = 0.

Now let m ≤ n. Let C be the matrix of order m + n defined
by

C =

[
A O
−In B

]
.
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Similar to the proof of Theorem 4.2.14, we obtain by interchanging
each of the last m columns with each of the first n columns in turn2,
that

det C = det

[
A AB
−In B

]
. (4.10)

Similar to the proof of Theorem 4.2.14, we also obtain by in-
terchanging each of the last m columns with each of the first n
columns in turn3 that

det C = det

[
A AB
−In O

]
= (−1)mn det

[
AB A
O −In

]

= (−1)mn+n det(AB). (4.11)

Since A and B are, in general, nonsquare matrices, we cannot
invoke Theorem 4.2.13 to conclude that the first determinant in
(4.11) equals det(A) det(B).

Consider the Coates digraph D∗(C) with vertices {1, 2, . . . , m+
n}, and a linear subdigraph L in L(C) with nonzero weight. In
order that L have nonzero weight, exactly n − m edges must cor-
respond to −1’s on the diagonal of −In. This implies that there
is a subset K of {1, 2, . . . , n} of cardinality m such that edges in
L from these vertices go to vertices 1, 2, . . . , m (and thus their
weights comes from elements of A). It then follows that the edges
in L from the last m vertices (the vertices n + 1, n+ 2, . . . , m + n)
go to the vertices corresponding to the rows of B whose ordinal
numbers are also in K.

Let LK(C) be the subset of L(C) consisting of all those linear
subdigraphs for which the edges from the vertices in K go to the
vertices {1, 2, . . . , m}. We then have

det(C) = (−1)m+n
∑

K⊆{1,2,...,n},|K|=m

w(LK(C)),

where
w(LK(C)) =

∑

L∈LK(C)

(−1)c(L)w(L).

2Note that if we had interchanged like this in the proof of Theorem 4.2.14
we would have the sign (−1)n2

instead of (−1)n. Since n2 is even if and only

if n is even, we have (−1)n2

= (−1)n.
3See the preceding footnote.
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We may perform column interchanges so that the columns in K
come first (followed by the remaining columns in A in the same
relative order they appear in A) and do similar row interchanges
so that the rows in K of B come first in C. This implies that
w(LK(C)) equals

det




A[{1, 2, . . . , m}, K] O O
O O B[K, {1, 2, . . . , m}]
O −In−m O


 .

By interchanging (n−m)m pairs of columns we see that w(LK(C))
equals

= (−1)m(n−m) det



A[{1, 2, . . . , m}, K] O O

O B[K, {1, 2, . . . , m}] O
O O −In−m


.

By two applications of Theorem 4.2.14 applied to this last deter-
minant, we see that w(LK(C)) equals

(−1)m(n−m) det A[{1, 2, . . . , m}, K] detB[K, {1, 2, . . . , m}](−1)n−m.

Now, using (4.10), we see that the contribution of LK(C) to the
determinant of C equals

(−1)mn+n+m(n−m)+(n−m) det A[{1, 2, . . . , m}, K]

det B[K, {1, 2, . . . , m}].

Because mn + n + m(n − m) + (n − m) = 2mn + 2n − m(m + 1)
is always an even number, we get (4.9). 2

Example 4.2.17 Let

A =

[
1 2 3
4 5 6

]
and B =




1 2
3 4
5 6


 .

Then

AB =

[
22 28
49 64

]
, and
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det(AB) = (22)(64) − (28)(49) = 1408 − 1372 = 36.

Using the Binet–Cauchy theorem we get

det(AB) = det

[
1 2
4 5

]
det

[
1 2
3 4

]
+ det

[
1 3
4 6

]
det

[
1 2
5 6

]
+

det

[
2 3
5 6

]
det

[
3 4
5 6

]
,

and so

det(AB) = (−3)(−2) + (−6)(−4) + (−3)(−2) = 6 + 24 + 6 = 36.

2

4.3 A Special Determinant Formula

Let A = [aij ] be a matrix of order n, and let λ be a variable. The
matrix A + λI is obtained from A by adding λ to each diagonal
entry. Thus the weight aii of the loop at vertex i in D∗(A) is
replaced by aii + λ in D∗(A + λI); there are no other changes in
the weights. It follows from the definition of the determinant that
det(A + λI) is a polynomial in λ of degree n. In this section, we
identify that polynomial.

Let L be the set of linear subdigraphs of D∗(A + λI). By
definition,

det(A + λI) = (−1)n
∑

L∈L

(−1)c(L)w(L). (4.12)

Consider a linear subdigraph L and suppose that L contains ex-
actly k loops (0 ≤ k ≤ n). Let the vertices with these loops be
the vertices i1, i2, . . . , ik with 1 ≤ i1 < i2 < · · · < ik ≤ n (if k = 0,
there are no loops). Then the weight of L is (ai1i1 + λ)(ai2i2 +
λ) · · · (aikik + λ)β(L), where β(L) is the product of the weights of
the nonloop edges in L and thus does not depend on λ. There are
2k terms when the product (ai1i1 + λ)(ai2i2 + λ) · · · (aikik + λ) is
multiplied out, and these terms are of the form

λpaj1j1aj2j2 · · ·ajk−pjk−p
,
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where 0 ≤ p ≤ k and {j1, j2, . . . , jk−p} is a subset of {i1, i2, . . . , ik}.
Thus the weight of L satisfies

w(L) = λpw(L′), (4.13)

where L′ is a linear subdigraph of the digraph D∗(A′) (an in-
duced subdigraph of D∗(A)) and where A′ is a principal sub-
matrix4 of A of order n − p obtained by striking out p rows
and p columns, namely, those rows and columns whose indices
belong to {i1, i2, . . . , ik} \ {j1, j2, . . . , jk−p}, the complement of
{j1, j2, . . . , jk−p} in {i1, i2, . . . , ik}. Conversely, every such linear
subdigraph L′ contributes a term to (4.13).

Putting this all together we obtain the determinant formula in
the following theorem:

Theorem 4.3.1 Let A be a matrix of order n. Then

det(A + λI) =
n∑

p=0

λpcn−p,

where cn−p equals the sum of the principal minors of order n − p
of A.

2

By replacing λ with −λ in Theorem 4.3.1, and then multiplying
A − λI by −1 to produce λI − A, and by using the fact that
(−1)n+p = (−1)n−p, we obtain the following corollary.

Corollary 4.3.2 Let A be a matrix of order n. Then

det(A − λI) =
n∑

p=0

(−1)pλpcn−p,

where cn−p equals the sum of the principal minors of order n − p
of A. Equivalently,

det(λI − A) =
n∑

p=0

(−1)n−pλpcn−p.

2

4Note: Principal submatrix of A, not principal submatrix of A + λI.
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In Theorem 4.3.1 and Corollary 4.3.2, because det A is the only
principal minor of order n of A, the constant term cn equals the
determinant of A. The coefficient c1 of λn−1 equals the sum of the
principal minors of order 1, and this is the trace of A. Thus the
trace of A is given by

tr(A) = a11 + a22 + · · ·+ ann.

Example 4.3.3 Let

A =




1 0 1
1 1 1
1 1 0


 .

Then

det(A + λI) = λ3 + 2λ2 + (−1)λ + (−1) = λ3 + 2λ2 − λ − 1.

2

4.4 Classical Definition of the

Determinant

The determinant formula in terms of linear subdigraphs of the
Coates digraph, as given in Definition 4.1.1, is not the formula
that is usually given initially for the determinant. The classical
formula involves permutations and their signs (±). In this section
we show that this classical formula is equivalent to our formula.

Let A = [aij ] be a square matrix of order n, and let L be a
linear subgraph of D∗(A). Because L contains one edge into each
vertex and one edge out of each vertex, the weight of L is the
product of n entries of A consisting simultaneously of one element
from each row of A (of the n edges in L, exactly one of them comes
into each vertex) and one entry from each column (of the n edges
in L, exactly one of them comes out of each vertex). If we arrange
these n entries according to increasing row indices, then we see
that

w(L) = a1j1a2j2 · · ·anjn
, (4.14)
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where (j1, j2, . . . , jn) is a permutation5 of {1, 2, . . . , n}. Thus the
edges of L are the n edges from vertex j1 to vertex 1, from vertex
j2 to vertex 2, . . . , and from vertex jn to vertex n. Conversely,
each product of n entries of A, one from each row and simulta-
neously one from each column (so a product as given in (4.14)),
is the weight of some linear subdigraph of D∗(A). In formula
(4.2) for the determinant, w(L) has a sign affixed in front of it,
namely, (−1)n−c(L). Let Sn denote the set of all n! permutations
of {1, 2, . . . , n}. Using our notation, we can write

det A =
∑

(j1,j2,...,jn)∈Sn

(−1)n−c(L)a1j1a2j2 · · ·anjn
.

What we would like to do is determine how to write the
sign (−1)n−c(L) in terms of the corresponding permutation
(j1, j2, . . . , jn).

Let σ = (j1, j2, . . . , jn) be in Sn. An inversion of σ is a pair
k, l of integers with 1 ≤ k < l ≤ n such that jk > jl. Thus an
inversion represents a pair of integers out of their natural order in
σ. Let #(σ) equal the number of inversions of σ. The sign of the
permutation σ is defined to be (−1)#(σ). The permutation σ is an
even permutation if it has an even number of inversions (i.e., its
sign is +1) and is an odd permutation if it has an odd number of
inversions (i.e., its sign is −1).

Example 4.4.1 Let n = 6 and let σ = (5, 4, 1, 3, 6, 2). Then σ
has inversions corresponding to the following pairs of integers out
of their natural order in σ:

5, 4; 5, 1; 5, 3; 5, 2; 4, 1; 4, 3; 4, 2; 3, 2; 6, 2.

Since #(σ) = 9, σ is an odd permutation (its sign is −1). The
permutation σ corresponds to a linear subdigraph L of the Coates
digraph of a matrix of order 6, where L is a cycle consisting of
edges from vertices 5 to 1, 1 to 3, 3 to 4, 4 to 2, 2 to 6, and 6 to 1,

Now consider the identity permutation ι = (1, 2, 3, 4, 5, 6).
Then ι has no inversions and so is an even permutation (its sign
is +1). The permutation ι corresponds to a linear subdigraph of
a Coates digraph consisting of a loop at each of the six vertices.2

5We now write a permutation of {1, 2, . . . , n} as an n-tuple.
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In what is to follow we refer to the decomposition into cycles
of the linear subdigraph L corresponding to a permutation σ of
{1, 2, . . . , n} as the cycle decomposition of the permutation σ, and
we denote the number of cycles by c(σ). Thus c(σ) = c(L).

Lemma 4.4.2 Let (j1, j2, . . . , jn) be a permutation of {1, 2, . . . , n}.
Then #(σ) and n − c(σ) have the same parity. Therefore,

(−1)n−c(σ) = (−1)#(σ).

Proof. We prove the lemma by backwards induction on the num-
ber of cycles of σ. To get the induction started, assume that
c(σ) = n, the largest possible number. Then σ is the identity
permutation, #(σ) = 0, and c(σ) = n. Hence, in this case,
n − c(σ) = #(σ) = 0, in particular, n − c(σ) and #(σ) have
the same parity.

We now assume that c(σ) < n. Then σ 6= ι and σ contains a
cycle jk1

to jk2
, jk2

to jk3
, jk3

to . . . to jkt−1
, jkt−1

to jkt
, jkt

to jk1

of t ≥ 2 elements where k1 < k2 < · · · < kt. There must be
an inversion pair jkr

and jks
with r < s and jkr

> jks
. If we

interchange jkr
and jks

in σ, we obtain a new permutation τ such
that #(τ) and #(σ) differ by an odd number and, in addition,
c(τ) = c(σ) + 1 (and so differ by an odd number). By induction,
#(τ) and n − c(τ) have the same parity, and hence so do #(σ)
and c(σ). 2

Summarizing, we now arrive at a theorem containing the clas-
sical definition of the determinant.

Theorem 4.4.3 Let A = [aij ] be a square matrix of order n. Then

det A =
∑

(j1,j2,...,jn)∈Sn

(−1)#(j1,j2,...,jn)a1j1a2j2 · · ·anjn
, (4.15)

where the summation extends over all permutations (j1, j2, . . . , jn)
of te integers 1, 2, . . . , n.

2
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Example 4.4.4 Let

A =




a b 0 c
0 d e 0
0 0 f g
p 0 0 q


 .

It is straighforward to check that there are only three permutations
that give nonzero terms in formula (4.15), namely, (1, 2, 3, 4) (no
inversions), (2, 3, 4, 1) (3 inversions), and (4, 2, 3, 1) (5 inversions).
These permutations are even, odd, and odd, respectively. Hence

det A = adeg − begp − cdfp.
2

We conclude this section by reformulating the classical defini-
tion of the determinant in terms of the König digraph of a matrix.

Let A = [aij ] be a square matrix of order n. The König digraph
G(A) has n black vertices and n white vertices. A collection F of n
edges of G(A), one leaving each black vertex and one terminating
at each white vertex, is a 1-factor of G(A) (see Section 1.1). The
weight w(F ) of the 1-factor F is the product of the weights of its
edges. The 1-factors of G(A) are in one-to-one correspondence
with the terms in the classical determinant formula (4.15). Let
(j1, j2, . . . , jn) be a permutation of {1, 2, . . . , n}. To the term

(−1)#(j1,j2,...,jn)a1j1a2j2 · · ·anjn

in formula (4.15) we let correspond the n edges e1, e2, . . . , en of
G(A), where ei is the edge from black vertex i to white vertex
ji, (i = 1, 2, . . . , n). Because (j1, j2, . . . , jn) is a permutation of
{1, 2, . . . , n}, the resulting set of edges {e1, e2, . . . , en} is a 1-factor
F of G(A) and its weight is w(F ) = a1j1a2j2 · · ·anjn

. Each 1-factor
of G(A) arises from a permutation of {1, 2, . . . , n} in this way.

Let us draw the digraph G(A) so that white vertex i is placed
directly above black vertex i, as in Figure 4.9.
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1 2 3 n

1 2 3 n

Figure 4.9

Let q(F ) equal the number of pairs of edges in F that intersect
each other in drawing G(A) in this way. Let ek, joining black ver-
tex k to white vertex jk, and el, joining black vertex l to white
vertex jl, be two edges in F with k < l. Then ek and el inter-
sect exactly when jl > jk. Thus the intersections of edges of F
are in one-to-one correspondence with the inversions of the per-
mutation (j1, j2, . . . , jn), and hence q(F ) = #(j1, j2, . . . , jn). Let
F(A) denote the collection of 1-factors of G(A). We then have the
following reformulation for the determinant of A:

det A =
∑

F∈F(A)

(−1)q(F )w(F ). (4.16)

4.5 Laplace Development of the

Determinant

In this section we generalize the recursive formula

det A =
n∑

j=1

(−1)i+jaij det Aij , (i = 1, 2, . . . , n)

for the determinant given in Theorem 4.2.11.
Let A = [aij ] be a square matrix of order n. Let

K = {k1, k2, . . . , kν} and L = {l1, l2, . . . , lν}

be subsets of {1, 2, . . . , n} of the same cardinality ν. Recall that
det A[K, L] is a minor of A of order ν.



92 CHAPTER 4. DETERMINANTS

Let K = {1, 2, . . . , n} \ K and L = {1, 2, . . . , n} \ L be the
complements of K and L in {1, 2, . . . , n}, respectively. (We always
assume that the indices are written in increasing order.) Then

∆[K, L] = (−1)k1+k2+···+kν+l1+l2+···+lν det A[K, L]

is the the algebraic complement or cofactor of the minor
det A[K, L]. This definition generalizes the definitions of cofac-
tor and algebraic complement given in Section 4.4 for elements
(i.e., minors of order 1). The generalization of Theorem 4.2.11,
the general Laplace development of the determinant, is given in
the next theorem. It asserts that the determinant of a matrix
A can be evaluated by first choosing a set K of rows and then
summing up the products of each minor formed out of those rows
with its algebraic complement. A similar development results by
replacing rows with columns.

Theorem 4.5.1 Let K ⊂ {1, 2, . . . , n} with |K| = ν. Then

det A =
∑

L⊆{1,2,...,n},|L|=ν

det A[K, L]∆[K, L], (4.17)

where, as indicated, the summation is taken over all the
(

n
ν

)
subsets

L of {1, 2, . . . , n} of cardinality ν.

Proof. We use the formula given in (4.16),

det A =
∑

F∈F(A)

(−1)q(F )w(F ), (4.18)

that evaluates the determinant in terms of the König digraph
G(A).

Let K = {k1, k2, . . . , kν}. A 1-factor F in F(A) contains one
edge leaving each black vertex. Let the edges of F leaving the black
vertices with labels in K terminate in those white vertices whose
set of labels is L = {l1, l2, . . . , lν}. We partition the 1-factors in

F(A) into
(

n
ν

)
sets by putting in FL(A) all those 1-factors F with

the same L. Thus we may write (4.18) as

det A =
∑

L⊆{1,2,...,n},|L|=ν

∑

F∈FL(A)

(−1)q(F )w(F ).
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Each 1-factor F in FL(A) consists of a 1-factor FL in the subgraph
of G induced on the black vertices with labels in K and white ver-
tices with labels in L, and a 1-factor FL joining the black vertices
with labels in the complement K and white vertices with labels in
the complement L. We see that FL corresponds to a 1-factor of
G(A[K, L]) with the same weight, and FL corresponds to a 1-factor
of G(A[K, L] with the same weight. We also see that

q(F ) = q(FL) + q(FL) + t,

where t is the number of intersections of edges in FL with edges
in FL. If we switch the places of a black vertex in K with a
black vertex in K immediate to its left, we reduce the number of
intersections of edges in FL with edges in Fl by 1. Hence, by

r = (k1 − 1) + (k2 − 2) + · · ·+ (kν − ν)

switches, we bring k1, k2, . . . , kν to the first ν positions, reducing
the number of intersections by r. Similarly, by

s = (l1 − 1) + (l2 − 2) + · · · + (lν − ν)

switches of white vertices, we bring l1, l2, . . . , lν to the first ν po-
sitions, reducing the number of intersections by s. We conclude
that

t = (k1 − 1) + (k2 − 2) + · · ·+ (kν − ν) +

(l1 − 1) + (l2 − 2) + · · ·+ (lν − ν)

= k1 + k2 + · · · + kν + l1 + l2 + · · ·+ lν + (an even number).

Now we obtain that (−1)q(F )w(F ) equals

(−1)q(FL)w(FL) · (−1)k1+k2+···+kν+l1+l2+···+lν (−1)q(F
L
)w(FL),

from which formula 4.17 now follows. 2

Example 4.5.2 Let

A =




1 0 2 0
3 1 1 0
0 1 3 2
2 0 0 1


 .
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In Theorem 4.5.1, let K = {1, 2}. Then

det A = (−1)1+2+1+2 det

[
1 0
3 1

]
det

[
3 2
0 1

]

+ (−1)1+2+1+3 det

[
1 2
3 1

]
det

[
1 2
0 1

]

+ (−1)1+2+1+4 det

[
1 0
3 0

]
det

[
1 3
0 0

]

+ (−1)1+2+2+3 det

[
0 2
1 1

]
det

[
0 2
2 1

]

+ (−1)1+2+2+4 det

[
0 0
1 0

]
det

[
0 3
2 0

]

+ (−1)1+2+3+4 det

[
2 0
1 0

]
det

[
0 1
2 0

]

= 3 + 5 + 0 + 8 + 0 − 0

= 16.

2

4.6 Exercises

1. Let A = [aij ] be the matrix of order 2n+1 such that aij = 0
whenever i + j is an even integer. Prove that det A = 0.

2. Let A be a matrix of order n and let k be a positive integer.
Show that if det(Ak) = 0, then det A = 0.

3. Calculate the determinant of the matrix

∆n(a1, a2, . . . , an) =




a1 1 1 · · · 1
1 a2 1 · · · 1
1 1 a3 · · · 1
...

...
...

. . .
...

1 1 1 · · · an




in which all the off-diagonal entries equal 1.
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4. Prove that

det




a0 a1 a2 · · · an−1 an

−1 x 0 · · · 0 0
0 −1 x · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 x




=
n∑

i=0

aix
n−i.

5. Let

A =




0 −1 0
0 0 −1

−3 −1 3


 .

Find all values of λ for which det(A + λI3) = 0.

6. Let A be a matrix of order n with a k × (n − k + 1) zero
submatrix for some k with k = 1, 2, . . . , n − 1. Show that
det A = 0.

7. From the fact that the matrix of order n ≥ 2 with all en-
tries equal to 1 has determinant equal to 0, conclude that
the number of odd permutations of {1, 2, . . . , n} equals the
number of even permutations.

8. Compute the determinant of the matrix




1 2 −3 1
2 0 1 0
3 1 2 −1
0 1 0 3




using the Laplace development along rows {2, 4}.

9. Compute the determinant of the matrix in the previous ex-
ercise using the Laplace development along columns {1, 2}.

10. Calculate the determinant of the matrix A3B3A2, where

A =




1 0 3
2 −1 −2
1 3 1


 and B =




0 3 1
1 0 −3
2 1 4


 .
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11. Prove that

det




1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2

1 x3 x2
3 · · · xn−1

3
...

...
...

. . .
...

1 xn x2
n · · · xn−1

n




=
∏

1≤i<j≤n

(xj − xi).

This determinant is called the Vandermonde determinant.

12. A matrix A = [aij] of order n is skew-symmetric provided
that aij + aji = 0 for all i 6= j. Thus each entry on the
main diagonal of A equals 0. Prove that the determinant of
a skew-symmetric matrix of odd order n is 0.

13. Use the Binet–Cauchy formula to evaluate the determinant
of

[
1 0 2 3
2 1 0 1

]



2 1
1 0
0 3
0 1


 .

14. Use the Laplace development and the Binet–Cauchy formula
to show that if A is an m by n matrix and B is an n by m
matrix, then

det

[
O A
−B O

]
= det(AB).

15. Let a 6= b. Show that

det




a + b ab 0 · · · 0 0
1 a + b ab · · · 0 0
0 1 a + b · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · a + b ab
0 0 0 · · · 1 a + b




=
an+1 − bn+1

a − b
.



Chapter 5

Matrix Inverses

In this chapter we define the inverse of a square matrix and study
some of its properties. We give a formula for the inverse in terms of
determinants, and then give an interpretation in terms of graphs.

Section 5.1 introduces the concept of the adjoint of a square
matrix and establishes some of its properties that enable a con-
struction of the inverse in Section 5.2. It is proved that a square
matrix has an inverse if and only if the determinant of the matrix
is different from zero. In Section 5.3, cofactors of matrix entries
are interpreted by special subgraphs of the Coates digraph associ-
ated with the matrix, and this finally leads to a graph-theoretical
formula for the entries of the inverse.

5.1 Adjoint and Its Determinant

Let A = [aij ] be a matrix of order n. We recall from Chapter 4
that the cofactor αij of the element aij is defined by

αij = (−1)i+j det Aij,

where Aij is the matrix of order n − 1 obtained from A by delet-
ing row i and column j. We also recall the developments of the
determinant along rows and columns given by

det A =
n∑

j=1

aijαij =
n∑

j=1

(−1)i+jaij det Aij (i = 1, 2, . . . , n),

(5.1)

97
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and

det A =
n∑

i=1

aijαij =
n∑

i=1

(−1)i+jaij det Aij (j = 1, 2, . . . , n).

(5.2)
Consider the sum

n∑

j=1

aijαkj, where k 6= i. (5.3)

The cofactors αkj occuring in this sum with k 6= i do not depend
on row k of A, since row k is deleted in their definitions. Thus we
can replace row k of A by any row whatsoever without changing
the αkj and (5.3). If we replace row k by row i in A giving a matrix
A′ in which row i of A appears twice, then no change occurs in
(5.3), but now it represents the development of the determinant
of A′ along its ith row. Because A′ has two identical rows, its
determinant equals zero. Thus we have

0 =
n∑

j=1

aijαkj =
n∑

j=1

aij(−1)k+j det Akj, (k 6= i), (5.4)

and in a similar way we conclude that

0 =
n∑

i=1

aijαik =
n∑

i=1

aij(−1)i+k det Aik, (k 6= j). (5.5)

We summarize what we have shown in the next theorem.

Theorem 5.1.1 Let A = [aij ] be a matrix of order n. Then

n∑

j=1

aij(−1)k+j det Akj =

{
det A if k = i,

0 if k 6= i.

Similarly,

n∑

i=1

aij(−1)i+k det Aik =

{
det A if k = j,

0 if k 6= j.

2
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In words, Theorem 5.1.1 asserts that the sum of the products
of the entries in a row, respectively, column, of a matrix times the
cofactors of the entries in a different row, respectively, column,
equals zero.

We now make a definition that will enable us to write the
equations in Theorem 5.1.1 in a more compact matrix form.

Definition 5.1.2 The adjoint of the matrix A = [aij ] of order n
is the matrix

adj A =




α11 α12 · · · α1n

α21 α22 · · · α2n
...

...
. . .

...
αn1 αn2 · · · αnn




T

obtained by replacing each entry aij of A by its cofactor αij =
(−1)i+j det Aij and then transposing the resulting matrix. 2

Example 5.1.3 The adjoint of the general matrix

A =

[
a b
c d

]

of order 2 is given by

adj A =

[
d −c

−b a

]T

=

[
d −b

−c a

]
.

The adjoint of the matrix

A =




1 0 2
2 1 0
0 2 1




is given by

adj A =




1 −2 4
4 1 −2

−2 4 1




T

=




1 4 −2
−2 1 4

4 −2 1


 .
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The adjoint of the identity matrix In is In itself. This follows
since deleting row i and column j with i 6= j always results in
a matrix with a zero row (and a zero column) and hence in a
matrix whose determinant equals 0, while deleting row and column
i results in In−1, a matrix with determinant equal to 1. 2

Let adj A = [βij] so that βij = αji for each i and j. Then the
equations in Theorem 5.1.1 can be written in the following forms:

n∑

j=1

aijβjk =
n∑

j=1

aij(−1)k+j det Akj =

{
det A if k = i,

0 if k 6= i,

and

n∑

i=1

βkiaij =
n∑

i=1

aij(−1)i+k det Aik =

{
det A if k = i,

0 if k 6= i.

These two sets of equations now give us the matrix equation
in the next theorem.

Theorem 5.1.4 If A is a square matrix of order n, then

A(adj A) = (adj A)A = (det A)In.

2

Example 5.1.5 Continuing with the matrix A of order 3 in Ex-
ample 5.1.3, we calculate that det A = 9,

A(adj A) =




1 0 2
2 1 0
0 2 1







1 4 −2
−2 1 4

4 −2 1


 = 9I3,

and

(adj A)A =




1 4 −2
−2 1 4

4 −2 1







1 0 2
2 1 0
0 2 1


 = 9I3.

2
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5.2 Inverse of a Square Matrix

We begin with the definition of an inverse of a matrix.

Definition 5.2.1 Let A = [aij ] be a square matrix of order n. A
matrix B = [bij ] of order n is an inverse of A provided AB =
BA = In. An inverse of a matrix A is denoted by A−1. If the
matrix A has an inverse, then A is called invertible and is also
sometimes called nonsingular. A singular matrix is a square matrix
that does not have an inverse.

In order that the notation for the inverse of a matrix not be
ambiguous, we need to know that if a matrix has an inverse, then
it has only one inverse. This, as well as some elementary properties
of inverses, are contained in the next theorem.

Theorem 5.2.2 Let A be a square matrix of order n. Then:

(i) A has at most one inverse.

(ii) A has an inverse if and only if det A 6= 0. If det A 6= 0, then

A−1 =
1

det A
(adj A).

(iii) If B is a matrix of order n such that AB = In, then also
BA = In and B is the inverse of A.

Proof. (i) Suppose that both B and C satisfy the definition
of an inverse of A. Then we calculate that

B = BIn = B(AC) = (BA)C = InC = C.

Thus B = C and A has at most one inverse.
(ii) First suppose that A has an inverse B. Then AB = In. By

the multiplicative property of determinants,

det A detB = det AB = det In = 1.
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Hence det A 6= 0. Conversely, suppose that det A 6= 0. Then by
Theorem 5.1.4 we have

A(adj A) = (adj A)A = (det A)In.

Because det A 6= 0, we get

A
(

1

det A
(adj A)

)
=
(

1

det A
(adj A)

)
A = In,

and hence

A−1 =
1

det A
(adj A).

(iii) Suppose B is a matrix of order n with AB = In. By the
multiplicative property of determinants again,

det A detB = det AB = det In = 1.

Hence det A 6= 0 and, by (ii), A has an inverse A−1. We calculate
that

A−1 = A−1In = A−1(AB) = (A−1A)B = InB = B.

Hence B = A−1. 2

Example 5.2.3 Continuing with the matrix

A =




1 0 2
2 1 0
0 2 1




in Example 5.1.5, we have that

A−1 =
1

9




1 4 −2
−2 1 4

4 −2 1


 =




1/9 4/9 −2/9
−2/9 1/9 4/9

4/9 −2/9 1/9


 .

2
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5.3 Graph-Theoretic Interpretation

In this section we give a formula for the inverse of an invertible
matrix in terms of its Coates digraph. In (ii) of Theorem 5.2.2, the
elements of the inverse are expressed in terms of the cofactors and
the determinant. In Chapter 4, we evaluated the determinant in
terms of the Coates digraph, and so we now consider the cofactors
from the viewpoint of the Coates digraph.

First we introduce the idea of a 1-connection of a digraph.

Definition 5.3.1 Let D be a digraph with vertices 1, 2, . . . , n.
Let i and j be vertices of D. A 1-connection of vertex i to vertex
j is a spanning subdigraph D[i → j] of D with the following
properties:

If i 6= j, then

(i) exactly one edge leaves, but no edge enters, vertex i;

(ii) exactly one edge enters, but no edge leaves, vertex j;

(iii) for each vertex k 6= i, j, exactly one edge enters, and exactly
one edge leaves, vertex k.

If i = j, then

(i) no edges enter or leave vertex i;

(ii) for each vertex k 6= i, exactly one edge enters, and exactly
one edge leaves, vertex k.

2

It follows from the definition that a 1-connection D[i → j] is a
spanning subdigraph of D consisting of a path from i to j (this
path is a path of length 0, that is, it is the single vertex i, if i = j)
and a possibly empty collection of pairwise vertex disjoint cycles
having no vertex in common with the path. We let c(D[i → j])
denote the number of cycles of D[i → j]. As usual, if D is a
weighted digraph, then the weight w(D[i → j]) of D(i → j) is the
product of the weights of its edges.
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In Figure 5.1, a digraph is displayed with several 1-connections
of it.

3 4

1 2

3 4

1 2

D D(1 → 1)

3 4

1 2

3 4

1 2

D(2 → 4) D(1 → 4)

Figure 5.1

Let A = [aij ] be a square matrix of order n and let D∗ = D∗(A)
be the Coates digraph of A whose edges are weighted by the entries
of A. There is a close relationship between the linear subdigraphs
of the digraph D∗ and their 1-connections. Let L be a linear
subdigraph of D∗, and let L contain the edge from vertex j to
vertex i of weight aij . Suppose that we delete from L this edge
from vertex j to vertex i. It follows from the definitions of a
1-connection and of a linear subdigraph that the result is a 1-
connection D∗[i → j]. If i = j, the edge deleted is a loop at vertex
i. The following relationships hold between the number of cycles
and the weight of the linear subdigraph L and a corresponding
1-connection D∗[i → j]:

c(L) = c(D∗[i → j]) + 1, (5.6)
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and
w(L) = aijw(D∗[i → j]). (5.7)

Conversely, if D∗[i → j] is a 1-connection from i to j, then, by
adding the edge from vertex j to vertex i, we obtain a linear sub-
digraph of D satisfying (5.6) and (5.7).

According to Theorem 4.2.11, the cofactor αij of the element aij

of A is the coefficient of aij in the development of the determinant
of A along row i. Let Lij denote the set of all linear subdigraphs
of D∗ containing the edge from j to i. Then, from the definition
of a determinant as given in (4.1), we have

αijaij = (−1)n
∑

L∈Lij(A)

(−1)c(L)w(L), (5.8)

where the summation extends over all linear subdigraphs L in
Lij(A). Using (5.6) and (5.7), we get from (5.8) that

αij = (−1)n
∑

D∗[i→j]

(−1)c(D∗[i→j])+1w(D∗[i → j]), (5.9)

where the summation extends over all 1-connections D∗[i → j] of
D∗ from i to j.

We now obtain the following formula for the entries of an in-
vertible matrix.

Theorem 5.3.2 Let A = [aij ] be an invertible matrix of order n,
and let A−1 = [a′

ji]. Then

a′
ji =

∑
D∗[i→j](−1)c(D∗[i→j])+1w(D∗[i → j])

∑
L∈L(A)(−1)c(L)w(L)

, (1 ≤ i, j ≤ n).

(5.10)

Proof. By (ii) of Theorem 5.2.2,

A−1 =
1

det A
adj A,

that is,

a′
ji =

αij

det A
.

Substituting for αij the formula given in (5.9) and for det A the
formula given in (4.1), we get (5.10) by cancellation of (−1)n. 2
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Example 5.3.3 Let

A =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

... · · · ...
0 0 0 0 · · · 1

−an −an−1 −an−2 −an−3 · · · −a1




whose Coates digraph D∗(A) is given in Figure 5.2, where all hor-
izontal edges from right to left have weight 1.

1 2 3 i i + 1 n − 1 n
−a1

−an

−an−1

−an−2

−an−i+1 −an−i −a2

Figure 5.2

The digraph D∗(A) has only one linear subdigraph, and we get
det A = (−1)n(−1)1(−an) = (−1)nan. The only 1-connections of
D∗(A) are the 1-connection D∗(A)[i → 1] with the weight −an−i

for i = 1, 2, . . . , n − 1, the 1-connection D∗(A)[n → 1] with the
weight 1, and the 1-connection D∗(A)[i → i + 1] with the weight
−an for i = 1, 2, . . . , n. Hence

A−1 =




an−1

an

−an−2

an

an−3

an
· · · a1

an

1
an

1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0




.

2
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5.4 Exercises

1. Let A be an invertible matrix of order n and let B be a
matrix of order n.

(a) Prove that det A−1 = (det A)−1.

(b) Prove that AT is invertible and (AT )−1 = (A−1)T .

(c) If det A = 3 and det B = 4, what is det(A−1BA3B2)?

2. Determine the inverse of a permutation matrix.

3. Prove that a triangular matrix is invertible if and only if it
does not have any zeros on its main diagonal.

4. Prove that the inverse of an invertible triangular matrix is
triangular.

5. Let A be a matrix of order n. Prove that if A is not invertible,
then neither is adj A.

6. Let A be a matrix of order n. Prove that det(adj A) =
(det A)n−1.

7. Let A and B be invertible matrices of order n. Prove that
AB is invertible, indeed, that (AB)−1 = B−1A−1.

8. Prove that

det




a11 a12 · · · a1n x1

a21 a22 · · · a2n x2
...

...
. . .

...
...

an1 an2 · · · ann xn

x1 x2 · · · xn 0




equals

−



n∑

i=1

αiix
2
i +

∑

1≤i<j≤n

(αij + αji)xixj



 .

Here αij is the cofactor of the element aij in the matrix
A = [aij] of order n.
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9. Find the inverses of each of the following matrices of order
n:

(a) A = [aij ], where aij = αiδij;

(b) B = [bij ], where bij = βiδi,n+1−j ;

(c) C = [cij ], where bij = γiδij + δi,j−1.

10. Determine the inverse of the matrix

A =




c 1 0 0
0 c 1 0
0 0 c 1
0 0 0 c


 .



Chapter 6

Systems of Linear
Equations

First, we give a brief introduction to the solution of a system of m
linear equations in n unknowns. In particular, we introduce the so-
called reduced row-echelon form of a matrix and explain how it can
be used in solving a system of linear equations. Then, using results
from Chapter 5 on the adjoint and inverse of a square matrix, we
derive an explicit formula (known as Cramer’s formula) for the
solution of a linear system of n equations in n unknowns whose
coefficient matrix is invertible. We then turn to graph-theoretical
techniques for solving systems. In Section 6.3 we show how to use
the Coates digraph (flow digraph) to solve the linear system. In
the next section, we discuss the signal flow digraph approach (a
variation of the previous technique) for solving a linear system.
These two techniques, although valid in general, are efficient if the
system matrix is sparse, that is, if it contains a lot of zero entries
and the other entries are variables. Finally, in the last section we
explain how to use graph-theoretical tools to treat systems with
sparse matrices whose entries are given numerically.

6.1 Solutions of Linear Systems

We begin with some definitions.

109
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Definition 6.1.1 Let F be a field. A linear system of m equations
in n unknowns is a system

a11x1 + a12x2 + · · ·+ a1nxn
= b1

a21x1 + a22x2 + · · · + a2nxn = b2

... =
...

am1x1 + am2x2 + · · · + amnxn = bm,

or, in matrix form,
Ax = b, (6.1)

where

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn




is the matrix of coefficients and

x =




x1

x2
...

xn




and b =




b1

b2
...

bm




are the matrix-columns of unknowns and constant terms, respec-
tively. The solution set of the system (6.1) is the set of all column
vectors x = u such that Au = b. The system may be consistent and
have at least one solution, or inconsistent and have no solutions.
If b = 0, then (6.1) is called a homogeneous system; otherwise,
it is called an inhomogeneous system. The homogeneous system
Ax = 0 is always consistent as x = 0 is always a solution; it is for
this reason that x = 0 is called the trivial solution of Ax = 0. The
solution set of the homogeneous system Ax = 0 is called the null
space of the matrix A. The null space of A is always nonempty
as it contains the zero vector. 2

The null space of a matrix is a subspace of F n. This follows
since if u and v are in the null space of A, then Au = 0 and Av = 0
imply that

A(cu + dv) = cAu + dAv = c0 + d0 = 0
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for every choice of constants c and d. In the next theorem we
relate the null space of A to the solution set of Ax = b.

Theorem 6.1.2 Consider a linear system Ax = b. Let x = w be
a particular solution of Ax = b, and let U be the null space of A.
Then the solution set of Ax = b is the set

w + U = {w + u : u ∈ U}

of all vectors obtained by adding to w a vector u in the null space
of A.

Proof. Let u be any vector in the null space of A. Then
A(w+u) = Aw+Au = b+0 = b, and thus x = w+u is a solution
of Ax = b. Conversely, let x = w′ be any solution of Ax = b, and
let u = w′ − w. Then

Au = A(w′ − w) = Aw′ − Aw = b − b = 0,

and so u is a vector in the null space of A. Hence w′ = w + u, so
that w′ has the required form. 2

It follows from Theorem 6.1.2 that by knowing one solution of
Ax = b and all solutions of Ax = 0, we can obtain all solutions of
Ax = b.

In addition to the null space of A there are two1 other subspaces
that we associate with A. The first is the row space of A consisting
of all vectors spanned by the rows of A; the second is the column
space of A consisting of all vectors spanned by the columns of A.
Let the rows of A be α1, α2, . . . , αm. It follows from the definition
of a dot product that the null space of A consists of all those vectors
u = [u1 u2 . . . un]T such that αT

i · u = 0, equivalently, αiu = 0,
for i = 1, 2, . . . , m. Because the row space of A is spanned by
α1, α2, . . . , αm, the null space of A consists of all those vectors u
such that α · u = 0 for all vectors α in the row space of A.2

1Actually there are three, but only two of them concern us in this brief
introduction. The third is the null space of the transpose AT of A, that is, all
vectors u in Fn such that AT u = 0, equivalently, uT A = 0.

2We can turn this around and say that the row space of A consists of all
those vectors α such that αT · u = 0 for all vectors u in the null space of A.
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Definition 6.1.3 Let A = [aij] be an m by n matrix. The row
rank of A is the dimension rr(A) of the row space of A, equiva-
lently, the maximum number of linearly independent rows of A.
The column rank of A is the dimension cr(A) of the column space
of A, equivalently, the maximum number of linearly independent
columns of A. The nullity of A is the dimension n(A) of the null
space of A. 2

We now show how to find a basis of the row, column, and null
spaces of a matrix A.

Definition 6.1.4 Consider the linear system (6.1) of m equations
in n unknowns. There are three types of elementary operations
that can be performed on (6.1) without changing its set of solu-
tions. These are

I. Switch the order of two equations.

II. Multiply both sides of one equation by a nonzero3 scalar c.

III. Add a multiple c of one equation to a second equation.

Let
A′ = [A b]

be the m by n + 1 augmented matrix of (6.1) obtained by affixing
to the coefficient matrix A the column vector b as a last column.
Then the elementary operations I, II, and III, when applied to A′

or A, are called elementary row operations (EROs for short) and
can be described as follows:

I. Switch the order of two rows.

II. Multiply a row by a nonzero scalar.

III. Add a multiple of one row to a second row.

2

3If we were to multiply by zero, we would wipe out the equation, that is,
replace it with 0 = 0.
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It is evident that operations I, II, and III do not change the
solution set. This is because each of them is reversible. To reverse
a type I operation, switch the equations (rows) back. To reverse a
type II operation, multiply the same equation (row) by the recip-
rocal of c. To reverse a type III operation, add the multiple −c of
the first equation (row) to the second equation (row).

EROs can be performed using matrix multiplication. Let
Im(i, j) be the matrix obtained by switching row i and row j of the
identity matrix Im of order m, where 1 ≤ i < j ≤ m. Let Im(c · i)
be the matrix obtained by multiplying row i of Im by the nonzero
scalar c, where 1 ≤ i ≤ m. Let Im(c · i+ j) be the matrix obtained
from Im by adding c times row i to row j, where 1 ≤ i 6= j ≤ m
and c is a scalar.4 The matrices of these three types are called
elementary matrices.

Example 6.1.5 To illustrate, we have

I4(2, 4) =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


 , I4(5 · 2) =




1 0 0 0
0 5 0 0
0 0 1 0
0 0 0 1


 , and

I4(3 · 4 + 2) =




1 0 0 0
0 1 0 3
0 0 1 0
0 0 0 1


 .

2

The above remark about reversibility of elementary operations
(EROs) can be restated in matrix terms as follows:

Im(i, j)−1 = Im(i, j), Im(c · i)−1 = Im(c−1 · i), and

Im(c · i + j)−1 = Im(−c · i + j).

In particular, the inverse of an elementary matrix is an elementary
matrix of the same type.

4It’s acceptable that c = 0, but then Im(0 · i + j) = Im.
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Using EROs, a system of linear equations (equivalently, its
augmented matrix) can be reduced to a simple form from which
the solution set is then evident. The EROs of type III are used to
eliminate variables from equations, that is, make the coefficients
equal to zero.

Definition 6.1.6 Let R be an m by n matrix. Then R has a
reduced row-echelon form, abbreviated rre-form, provided each of
the following properties hold:

(i) Zero rows, if present, come last.

(ii) The first nonzero entry in each nonzero row is a 1, called a
pivot, and every other entry in the column of that 1 equals
0.

(iii) If there are k nonzero rows and the pivot 1 in row i is in
column pi, then 1 ≤ p1 < p2 < · · · < pk ≤ n. (The matrix R
contains the identity matrix Ik as a submatrix.)

2

Example 6.1.7 A zero matrix O is already in rref-form. The
matrix 



1 3 0 0 4 0
0 0 1 0 2 0
0 0 0 1 3 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0




is in rre-form. 2

In the next theorem we show that every matrix may be put in
rre-form using EROs. This process is often referred to as Gaussian
elimination.

Theorem 6.1.8 Let A = [aij] be an m by n matrix. Then there
exists a sequence P1, P2, . . . , Ps of elementary matrices such that
Ps · · ·P2P1A is a matrix in reduced row-echelon form. The ma-
trix P = Ps · · ·P2P1, being a product of invertible matrices, is an
invertible matrix.
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Proof. We briefly describe the constructive proof in terms of
EROs. Let the first nonzero column of A be column p1. Using a
type I ERO, if necessary, we may bring a nonzero entry in column
p1 to row 1. Using a type II ERO, if necessary, we may make
that nonzero entry 1. Using type III EROs as necessary, we ob-
tain a matrix with all other entries in column p1 equal to 0. We
now repeat with the submatrix determined by rows 2, . . . , m and
columns p1 + 1, . . . , n, obtaining a matrix with a 1 in row 2 and
column p2 > p1 with all of the other entries in column 2 equal to
0. Using a type III ERO we can also make the entry in row 1 and
column p2 equal to zero. We then consider the submatrix formed
by rows 3, . . . , m and columns p2+1, . . . , n and continue until only
zero rows remain. 2

Example 6.1.9 When we obtain the rre-form of the augmented
matrix [A b] of a system of linear equation, we can immediately
read off its set of solutions, or conclude that the system is incon-
sistent. The system will be inconsistent exactly when one of the
pivots occurs in the last column, the column corresponding to b.
In this case, one of the equations becomes the contradictory equa-
tion 0 = 1. In case of a homogeneous system, which is always
consistent, we can use the coefficient matrix A itself rather than
the augmented matrix [A 0].

For instance, suppose the rre-form of the augmented matrix of
a system Ax = b of linear equations in unknowns x1, x2, . . . , x6 is




1 3 0 0 4 0 2
0 0 1 0 2 0 1
0 0 0 1 3 0 5
0 0 0 0 0 1 3
0 0 0 0 0 0 0
0 0 0 0 0 0 0




,

where we have drawn a vertical line to separate the last column
corresponding to b from the other columns. Thus, with elementary
operations, the original system of equations has been reduced to
the following system, with the same set of solutions:

x1 + 3x2 + 4x5 = 2
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x3 + 3x5 = 5

x4 + 3x5 = 1

x6 = 3.

The variables corresponding to the pivots are x1, x3, x4, x6 and can
be solved in terms of the free variables x2, x5 as follows:

x1 = 2 − 3x2 − 4x5

x3 = 5 − 3x5

x4 = 5 − 3x5

x6 = 3. (6.2)

Thus x2 and x5 can take any values with x1, x3, x4, and x6 deter-
mined by (6.2). The dimension of the null space is the number 2
of free variables. 2

The reduction to rre-form gives rise to some important conse-
quences, which we now elaborate on.

Let A be an invertible matrix of order n. Let R be the rre-form
of A so that, by Theorem 6.1.8, there is a product of elementary,
and so invertible, matrices, P = Ps · · ·P2P1 such that PA = R.
Thus R, being a product of invertible matrices, is also invertible.
Hence R cannot have any zero rows. Since A is a square matrix,
this means that R = In, and now PA = In implies that A−1 =
Ps · · ·P2P1. Thus the inverse of an invertible matrix can be found
by applying EROs to reduce A to In. One way to do this is to
apply these EROs to the matrix

[
A In

]
.

The result is

[
In P

]
=
[

In A−1
]
.

(If the rre-form of A does not equal In, then A is not invertible.)
From the above discussion, we now obtain the following corollary.
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Corollary 6.1.10 A square matrix of order n is invertible if and
only if it is a product of elementary matrices. 2

The row space of an m by n matrix A consisting as it does of
all the linear combinations of the rows of A is the set of all vectors
of the form uTA as u ranges over all m by 1 vectors. Let P be an
invertible matrix of order m. Then

uT (PA) = (uT P )A = vT A,

where vT = uT P ; conversely,

vT A = vT (P−1P )A = (vTP−1)(PA) = uT (PA),

where uT = vTP−1. These two equations imply that the row space
of A is the same as the row space of PA for any invertible matrix
P , and hence the row rank of A equals the row rank of PA. In
particular, the row rank of A equals the row rank of its rre-form,
and this is easily seen to be the number of pivots (number of
nonzero rows). In general, the column space does change, but the
linear dependence or linear independence of the columns does not.
Another way of saying the same thing is that the null space of A
equals the null space of PA for every invertible matrix:

If Au = 0, so does (PA)u = 0; conversely, if (PA)u = 0, then
multiplying by P−1 we see that Au = 0.

From this we conclude that the column rank of A equals the col-
umn rank of PA. In particular, the column rank of A equals the
column rank of its rre-form, and this is also easily seen to be the
number of pivots. We conclude that the row rank and column rank
of a matrix are always equal and the common value is the number
of pivots in its rref-form. This common value is called the rank of
A and is denoted as r(A). The dimension of the null space is the
number of free variables, and this equals n − r(A).

Suppose the m by n matrix A has an invertible submatrix of
order k. Then the k rows (and the k columns) of A containing
this submatrix are linearly independent, and so the rank of A is
at least equal to k. Conversely, suppose the rank of A equals k.
Then A has k linearly independent rows and these form a k by n
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submatrix A′ of A with rank equal to k. Since the row rank of
A′ equals its column rank, A′ has k linearly independent columns
forming a square submatrix B of order k of A′ and hence of A.
The matrix B has linearly independent rows and so its rre-form is
Ik. Hence B is invertible and det B 6= 0. It follows that the rank
of A equals the largest order of a submatrix of A that is invertible.

In the next theorem we collect some of these observations.

Theorem 6.1.11 Let A be an m by n matrix.

(i) The row and column ranks of A are equal. The common
value is the rank of A, denoted r(A).

(ii) The rank of A plus the nullity of A equals n:

r(A) + n(A) = n.

(iii) The rank of A equals the largest integer k such that A has a
submatrix of order k whose determinant is not zero, equiva-
lently, the largest order of an invertible submatrix of A. 2

6.2 Cramer’s Formula

Consider a linear system of n equations in n unknowns

a11x1 + a12x2 + · · · + a1nxn
= b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

an1x1 + an2x2 + · · · + annxn = bn,

or in matrix form
Ax = b, (6.3)

where

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann



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is the matrix of coefficients and

x =




x1

x2
...

xn




and b =




b1

b2
...
bn




are the column vectors of unknowns and constant terms, respec-
tively.

We now assume that the coefficient matrix A is invertible.
From Chapter 5 we know that

A−1 =
1

det A
(adj A) =

[
1

det A
βij

]
,

where

1

det A
βij = (−1)j+idet Aji

det A
(i, j = 1, 2, . . . , n) (6.4)

and Aji is the submatrix of A of order n− 1 obtained by deleting
row j and column i. Multiplying both sides of (6.3) by A−1, we
get

A−1(Ax) = A−1b.

Since A−1A = In and Inx = x, we get that

x = A−1b

is the unique solution of (6.3). To find the solution we multiply
b on its left by A−1. Using the formula for the entries of A−1 as
given in (6.4), we obtain

xi =
n∑

j=1

(−1)j+ibj
det Aji

det A
=

1

det A

n∑

j=1

(−1)j+ibj det Aji (6.5)

for i = 1, 2, . . . , n.
Let A(i) be the matrix of order n obtained from A by replacing

its ith column with the column vector b. As discussed in Chapter
4, the cofactors of the entries in column i of A(i) do not depend on
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what is actually contained in column i. This implies that these co-
factors are the same as the corresponding cofactors of the elements
in column i of A. It follows that by developing the determinant of
A(i) along column i, we get that

det A(i) =
n∑

j=1

(−1)j+ibj det Aji (i = 1, 2, . . . , n). (6.6)

Comparing (6.6) with (6.5), we see that

xi =
det A(i)

det A
(i = 1, 2, . . . , n). (6.7)

This is Cramer’s formula, which we summarize in the next the-
orem. It expresses the solution of Ax = b as the quotient of two
determinants.

Theorem 6.2.1 Let Ax = b be a system of linear equations in
n unknowns where the matrix A of coefficients is invertible. Let
A(i) be the matrix of order n obtained from A by replacing its ith
column with the column vector b, (1 ≤ i ≤ n). Then Ax = b has a
unique solution x = (x1, x2, . . . , xn)T given by

xi =
det A(i)

det A
, (i = 1, 2, . . . , n).

2

Example 6.2.2 We solve the system of linear equations

x1 + 3x2 − 4x3 = 2

0x1 − x2 + 3x3 = 0

3x1 + x2 + x3 = −1.

The matrix of coefficients is

A =




1 3 −4
0 −1 3
3 1 1



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with determinant equal to 11. Thus A is invertible and the unique
solution x = (x1, x2, x3)

T is given by

x1 = (1/11) det




2 3 −4
0 −1 3

−1 1 1


 =

−13

11
,

x2 = (1/11) det




1 2 −4
0 0 3
3 −1 1


 =

21

11
,

x3 = (1/11) det




1 3 2
0 −1 0
3 1 −1


 =

7

11
.

2

6.3 Solving Linear Systems

by Digraphs

Electrical engineers have developed a series of methods for solving
systems of linear algebraic equations that appear in the theory
of electrical circuits, control theory, and other areas. We start in
this section by explaining the flow graph method of Coates, known
since the 1950s. In the next section we will desccribe the signal
flow graph technique of Mason.

As in the previous section, we again consider a system

Ax = b, equivalently − b + Ax = 0 (6.8)

of n linear equations in n unknowns written as one matrix equa-
tion. The matrix A = [aij ] is a square matrix of order n.

Definition 6.3.1 The Coates digraph (also called the flow digraph
or simply flow graph) of the linear system (6.8) is the Coates di-
graph D∗(−b, A) of the matrix [−b A] with n + 1 vertices labeled
0, 1, 2, . . . , n whose directed edges are those given by the following
rules:
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(i) For each i, j with 1 ≤ i, j ≤ n and aij 6= 0, there is an edge
from vertex j to vertex i of weight aij.

(ii) For each i with 1 ≤ i ≤ n and bi 6= 0, there is an edge from
vertex 0 to vertex i of weight −bi.

It is to be observed that the subdigraph of D∗(−b, A) induced on
the set of vertices {1, 2, . . . , n} is just the Coates digraph D∗(A)
of the coefficient matrix A. It is also to be observed that there are
no directed edges entering vertex 0. 2

Writing, as we have, the system Ax = b in the equivalent way
−b + Ax = 0 and forming the n by n + 1 augmented matrix as

[−b A] =




−b1 a11 a12 · · · an1

−b2 a21 a22 · · · an2
...

...
...

. . .
...

−bn an1 an2 · · · ann




, (6.9)

we see that we could regard the Coates digraph of Ax = b as
being constructed from the matrix [−b A], where the vertex 0
corresponds to the initial column. To make this even more precise,
we could imagine that an initial row of all zeros has been attached
to (6.9) to obtain a square matrix of order n + 1; the Coates
digraph of the linear system Ax = b then becomes the Coates
digraph of the resulting matrix of order n+1, with vertices labeled
0, 1, 2, . . . , n.

Example 6.3.2 The Coates digraph D∗(−b, A) of the system of
linear equations

a11x1 + a12x2 + a13x3 + 0x4 = b1

0x1 + a22x2 + 0x3 + a24x4 = 0

a31x1 + 0x2 + a33x3 + 0x4 = b3 (6.10)

0x1 + a42x2 + a43x3 + a44x4 = 0

is displayed in Figure 6.1, where as usual edges of weight 0 are not
shown.
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3 4

1 2

0 a31 a13 a42 a24

a33

a11

a44

a22

a12

a43

−b1

−b3

Figure 6.1

The part of the Coates digraph obtained by deleting from
D∗(−b, A) the vertex 0 and all the edges that leave vertex 0 is
the Coates digraph D∗(A) corresponding to the matrix A. 2

We now relate the 1-connections of D∗(−b, A) to those of
D∗(A). Let D∗ = D∗(A). Let F = D∗[i → j] be a 1-connection
of D∗ from i to j. If bi 6= 0, then D∗(−b, A) contains the edge
from vertex 0 to vertex i of weight −bi. Appending this edge
to D∗[i → j], we obtain a 1-connection F ′ of D∗(−b, A) from 0
to j. Conversely, a 1-connection F ′ of D∗(−b, A) from vertex 0
to vertex j gives, upon deletion of vertex 0 and the unique edge
leaving it, a 1-connection F of D∗ from some vertex i to vertex
j. Because 1-connections of D∗(−b, A) can only go from vertex 0
to some vertex j ≥ 1, we have a one-to-one correspondence be-
tween the 1-connections of D∗(A) and those of D∗(−b, A). The
weights of these two 1-connections F and F ′ under this one-to-one
correspondence are related by the formula

w(F ′) = −biw(F ). (6.11)

We now show how to express the solution of (6.3) in terms of
its Coates digraph. The key to this is Cramer’s formula and the
determinant formula given in its definition.

Assume as before that A is invertible, that is, det A 6= 0. Then
Ax = b has a unique solution and, by Cramer’s formula, this
solution is

xi =
det A(i)

det A
=

1

det A

n∑

j=1

(−1)j+ibj det Aji (i = 1, 2, . . . , n).

(6.12)
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We now apply our definition of a determinant from Section 4.1
and our formula for the cofactors in terms of the Coates digraph
as given in (5.9) to each of the determinants given in (6.12). We
then obtain

xi =
(−1)n∑

D∗(A)[i→j] bj(−1)c(D∗(A)[j→i])+1w(D∗(A)[j → i])

(−1)n
∑

L∈L(A)(−1)c(L)w(L)
(6.13)

for i = 1, 2, . . . , n, where the summation in the numerator extends
over all of the 1-connections D∗(A)[j → i] of D∗(A) from j to
i, and the summation in the denominator extends over all linear
subdigraphs L of D∗(A). From our discussion comparing the 1-
connections of D∗(A) to those of D∗(−b, A), we can rewrite (6.13)
as

xi =

∑
D∗(−b,A)[0→i](−1)c(D∗(−b,A)[0→i])w(D∗(−b A)[0 → i])

∑
L∈L(A)(−1)c(L)w(L)

(6.14)

for i = 1, 2, . . . , n.

Formula (6.14) is the Coates formula for solving a system of
n linear equations in n unknowns with an invertible coefficient
matrix.

Example 6.3.3 We continue with Example 6.3.2. Figure 6.2 dis-
plays all linear subgraphs of the digraph corresponding to the ma-
trix of the system of equations (6.10), while Figure 6.3 displays
all 1-connections from the vertex 0 to the vertex 3 of the Coates
digraph in Figure 6.1.

Using the formula, we get that the value of x3 is

b3a11a22a44 − b3a11a42a24 − b1a31a22a44 + b1a31a24a42

a11a22a33a44 − a12a24a43a31 + a13a31a42a24 − a11a33a42a24 − a22a44a13a31
.

2
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Figure 6.2

The potential advantage of using the Coates formula for solv-
ing a system of linear equations results from the fact that the
digraph from which we find the solution can be drawn if we are
acquainted with the structure of the system described by linear
equations, without the need to write the equations; this happens,
e.g., in electric circuit theory and control theory. In practice we
usually do not list the linear subdigraphs and 1-connections, but
determine directly from the Coates digraph the unknown value
we are seeking. This requires some experience, because without
close attention, some 1-connections or linear subgraphs may be
overlooked. Although no efficient general rule for systematically
finding the linear subdigraphs and 1-connections is known, the



126 CHAPTER 6. SYSTEMS OF LINEAR EQUATIONS

following might help. The linear subdigraphs can be classified ac-
cording to the number of loops contained in them. In order to
find 1-connections D∗(−b, A)[0 → i] it is necessary to determine
all paths from the vertex 0 to the vertex i, and these paths can
be classified according to the vertices that come immediately after
the vertex 0.

3 4

1

2

0

a11

a44

a22

−b3

3 4

1 2

0

−b3

a11

a42 a24

3

4

1

2

0

−b1

a31

a44

a22

3 4

1 2

0

−b1

a31 a42 a24

Figure 6.3

The method we have described is intended for calculation by
hand. The use of a computer with this method is not recom-
mended, because the power of a computer can be better exploited
with other methods that are not suitable for hand calculations.
The practical usefulness of this method is limited to systems of
equations with not more than about ten unknowns, with the con-
dition that the corresponding digraph has a comparatively small
number of edges. Otherwise, it is not practical to find all linear
subgraphs and necessary 1-connections in a digraph.

The use of digraphs in solving a system of linear algebraic
equations is particularly convenient if the coefficients of the system
are not numerical values, as in Example 6.3.3.
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6.4 Signal Flow Digraphs of Linear

Systems

In this section we discuss a method of Mason for solving certain
systems of n linear equations in n + 1 unknowns x0, x1, x2, . . . , xn,
where x0 is distinguished as a parameter, with the resulting solu-
tion expressed in terms of x0.

The system of linear equations is assumed to be of the form

x1 = a10x0 + a11x1 + · · · + a1nxn,

x2 = a20x0 + a21x1 + · · · + a2nxn

...
... (6.15)

xn = an0x0 + an1x1 + · · · + annxn.

The coefficient matrix

B =




a10 a11 a12 · · · a1n

a20 a21 a22 · · · a2n
...

...
...

. . .
...

an0 an1 an2 · · · ann




is an n by n + 1 matrix. We will also want to consider the initial
column

A0 =




a10

a20
...

an0




,

of B, and the square matrix

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann




of order n obtained from B by deleting its initial column.
As with the augmented matrix of a linear system as discussed

in Section 6.2, we can imagine that the matrix B has been enlarged
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by adding an initial row of all zeros, thereby obtaining a square
matrix of order n+1. Then we consider the Coates digraph D∗(B)
with n+1 vertices denoted by x0, x1, x2, . . . , xn with an edge from
vertex xj to vertex xi if and only if bij 6= 0. In D∗(B), there are no
edges that enter vertex x0 (as vertex x0 corresponds to the initial
row of zeros we imagined). The digraph D∗(B) obtained in this
way is called the signal flow digraph, or Mason’s digraph, of the
system (6.15).

x0 x3

x1

x2

a32

a23

a11

a10 a31

a20

a21

Figure 6.4

Example 6.4.1 The signal flow digraph corresponding to the sys-
tem of equations

x1 = a10x0 + a11x1

x2 = a20x0 + a21x1 + a23x3,

x3 = a31x1 + a32x2,

is given in Figure 6.4. 2

As usual, we define the weight of paths and cycles to be the
product of the weight of their edges.

Definition 6.4.2 Let the directed cycles of the weighted digraph
D∗(A) be enumerated by C1, C2, . . . , Cj , . . . with weights, respec-
tively, t1, t2, . . . , tj , . . .. Let the paths from vertex x0 to vertex xi
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be enumerated by P i
1, P

i
2, . . . , P

i
j , . . . (i = 1, 2, . . . , n). We define

w
(i)
j to be the weight of P i

j (i = 1, 2, . . . , n; j ≥ 1).
Mason’s determinant ∆M = ∆M (D∗(B)) of the weighted di-

graph D∗(B) is defined by

∆M = 1 −
′∑

i

ti +
′∑

i,j

titj −
′∑

i,j,k

titjtk + · · · , (6.16)

where
∑′

i ti is the sum of the weights of all cycles in the digraph,∑′
i,j titj is the sum of the products of the weights of all pairs of

cycles having no common vertex,
∑′

i,j,k titjtk is the sum of the
products of the weights of all triples of nontouching cycles, that
is, cycles no two of which have a common vertex, and so forth. 2

Definition 6.4.3 Let G be a weighted digraph with n vertices.
Then the Coates determinant ∆C = ∆C(G) of G is defined by

∆C =
∑

L

(−1)c(L)w(L), (6.17)

where the summation extends over all linear subdigraphs of the
digraph G. Note that in the case that G is the Coates digraph
D∗(A) of a matrix A of order n, then ∆C(D∗(A)) = (−1)n det A.
2

The system of equations (6.15) can be written in the form

x = x0A0 + Ax, equivalently (A − In)x = −x0A0. (6.18)

Regarding x0 as fixed, the augmented matrix of (6.18) is the n by
n + 1 matrix

[x0A0 A − In] .

Thus the Coates digraph D∗(x0A0, A) of the system (6.18) is just
the Mason digraph with the weights changed as follows: the weight
of each edge leaving the vertex labeled x0 is obtained by multipling
by x0, and the weight of the loops at vertices labeled x1, x2, . . . , xn

is obtained by subtracting 1. Note that if there wasn’t a loop at
one of the vertices xi, (1 ≤ i ≤ n) (that is, aii = 0), then a loop
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of weight −1 is inserted; if there was a loop of weight 1 (that is,
aii = 1), then the loop disappears.

Our goal is to show that the solution of the system of linear
equations (6.15) is given by the following formula, known as Ma-
son’s formula:

xi =

∑
j w

(i)
j ∆

(i)
j

∆M
x0 (i = 1, . . . , n), (6.19)

where the summation extends over all the paths from x0 to xi in
D∗(B) as enumerated in Definition 6.4.2. In this formula,

(i) ∆
(i)
j denotes Mason’s determinant of the subdigraph of

D∗(B) obtained by deleting all vertices of the path P i
j .

(ii) ∆M is the (ordinary) determinant of the matrix A − In of
order n, where A, as previously explained, is obtained from
B by deleting its initial column.

x0 x2

x1

x3

a

d

g

f e

b c

Figure 6.5
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Example 6.4.4 Consider the system of linear equations

x1 = bx0 + dx1 + fx3

x2 = ax0 + cx1

x3 = ex1 + gx3,

whose corresponding signal flow digraph is displayed in Figure 6.5.
Using formula (6.19) we get

x2 =
a(1 − (d + ef + g) + gd) + bc(1 − g)

1 − (d + ef + g) + gd
x0.

2

The introduction of the distinguished variable x0 is not math-
ematically necessary but it is useful in applications of signal flow
graphs to control theory (see Section 10.1).

Not surprisingly, Mason’s formula is derived with the help of
the Coates formula.

Using Mason’s formula as a model, we can rewrite the Coates
formula (6.14) for the solution of a linear system of n equations in
n unknowns as

xi =

∑
k q

(i)
k ∆

(i)
C (D∗(−b, A)k

∆C(D∗(A))
, (6.20)

where q
(i)
k denotes the weight of the kth path P i

k from the vertex
0 to the vertex i and D∗(−b, A)k is the subdigraph of the Coates
digraph obtained by deleting the vertices of this kth path.

Consider the digraph D∗(A − In) that arises from the digraph
D∗(A) by subtracting 1 from the weight of every loop of D∗(A);
as before, if there is no loop at a vertex, then the vertex gets a
loop with the weight −1. We first verify the formula

∆C(D∗(A − In)) = ∆M(D∗(A)). (6.21)

To see this, first note that

∆C(D∗(A − In)) = (−1)n det(A − In).
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Setting λ = 1 in the formula given in Corollary 4.3.2, we get that

(−1)n det(A − In) = (−1)n



1 +
n∑

p=1

(−1)p
∑

Ap

det Ap



 , (6.22)

where the second sum is taken over all principal submatrices Ap

of A of order p. Now, applying the definition of the determinant
to the quantities det Ap, we see that (6.22) gives ∆M (D∗(A)) as
defined in (6.16).

Now consider the system of equations (6.15) written in the
form

(A − In)x = −x0A0

as given in (6.18). Solving this system using (6.20), and using
(6.21), we get

xj =

∑
k q

(j)
k ∆

(j)
C (D∗(x0A0, A)k)

∆C(D∗(A))

=

∑
k q

(j)
k ∆

(j)
C (D∗(A0, A)k)

∆C(D∗(A))
x0

=

∑
k w

(j)
k ∆

(j)
M (D∗(A0, A)k)

∆M(D∗(A)
x0.

Here q
(j)
k denotes the weight of the kth path from the vertex 0

to the vertex j and D∗(x0A0, A)k is the subdigraph of the Coates
digraph obtained by deleting the vertices of the kth path.

It is remarkable that the graphs introduced for treating sys-
tems of linear algebraic equations (and, especially, Mason’s signal
flow graph) give a better insight into the physical system under
description than the corresponding system of equations does. His-
torically, these graphs were introduced and used intuitively, the
theoretical background of them having been given later. See Sec-
tion 10.1 for examples of using these techniques in electrical circuit
and control theory.
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6.5 Sparse Matrices

In this section we shall describe some specific features for treating
systems of equations with a sparse matrix in which the entries are
given numerically. Often problems in electrical engineering, and
in engineering and science in general, lead to systems of linear
equations whose matrix is sparse with entries given numerically.
To a great extent, special methods of treating such matrices use
graph-theoretical means [4], [11], [76], [29].

There is no strict quantitative criterion that determines when
a matrix should be considered as a sparse matrix. Special proce-
dures for treating sparse matrices include the execution of some
additional operations, and therefore they are effective only if a
matrix contains a sufficient number of “well-placed” entries equal
to zero. Sometimes it is obvious that special techniques are not
efficient. For example, if a square matrix of order 100 contains 10
zeros, it is clearly best to ignore the zeros and to solve the system
by standard techniques. However, if a matrix of order 1000 con-
tains only 4000 entries different from zero, it may be advantageous
to specify the matrix by the value and the position of its nonzero
entries and deal with the matrix by special methods. Roughly
speaking, we should consider a matrix to be sparse if, indepen-
dent of its order, each of its rows and columns contain only “a
few” nonzero elements.

As indicated, a sparse matrix is stored in a computer by storing
only its nonzero entries along with its row and column index. The
König digraph G(A) and the digraph D(A) play an important role
in sparse matrix techniques applied to A.

When dealing with systems of equations with a sparse matrix
one would first try to split the system into subsystems, then solve
each of the subsystems, and finally get the solution of the whole
system from the solutions of the subsystems.

As already indicated in Section 6.1, when describing the reduc-
tion of a matrix to the reduced row-echelon form, permutation of
equations and the permutation of unknowns in the equations play
an important role. Permutations of rows and columns of the ma-
trix A correspond, respectively, to permutations of equations and
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unknowns. Contrary to the permutations of rows and columns,
which will be used in Chapter 8, it is allowed here to apply differ-
ent permutations to rows and columns. In general, the matrix A
is transformed by two permutation matrices P and Q, such that
the new matrix has the form A′ = PAQ. The digraph G(PAQ) is
obtained from the digraph G(A) by independent permutations of
the labels of its black vertices (action of the matrix P ) and of the
labels of its white vertices labels (action of the matrix Q).

Consider a system Ax = b, where A is a square matrix. We
assume that A is nonsingular so that Ax = b has a unique solution.
Since A is nonsingular, det A 6= 0 and hence G(A) has at least
one 1-factor F . We may permute the columns of A so that each
edge of the 1-factor joins a black and white vertex with the same
label. As a result, we get the system A′x = b, where each of the
entries on the diagonal of the matrix A′ is nonzero. As described in
Section 8.1, the digraph D(A′) has a number m (possibly m = 1)
of strong components. By properly relabeling rows and columns
of A′ (applying the same permutation to the rows and columns of
A′), the matrix A′ takes the following block-triangular form:

A′ =




A11 O · · · O
A21 A22 · · · O
...

...
. . .

...
Am1 Am2 · · · Amm




, (6.23)

where A11, A22, . . . , Amm, are square blocks and all the entries
above these blocks equal 0. The blocks Akk correspond to the
strong components of A′. (This is the Frobenius normal form of
A′—actually in transposed form—as described in Section 8.1.)

Let the vectors x and b from the system A′x = b be repre-
sented in the form xT = [x1 x2 . . . xm], bT = [b1 b2 . . . bm], where
x1, x2, . . . , xm and b1, b2, . . . , bm are vectors of dimensions that cor-
respond to the block sizes in (6.23). Then, solving the system
A′x = b is equivalent to solving the following subsystems:

Akkxk = bk −
k−1∑

j=1

Akjxj, k = 1, 2, . . . , m, (6.24)
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where we solve first the system (6.24) for k = 1, that is, A11x1 = b1,
and then solve, in order, the systems for k = 2, . . . , m. Of course,
if m = 1, we only have the original system Ax = b.

The digraphs D(A) and D(A′) are not in general isomorphic.
The digraph D(A′) depends on which 1-factor F of G(A) was
chosen. But what is true is that the number m of blocks in (6.23)
does not depend on which 1-factor F was chosen, and the blocks
Akk are uniquely determined up to row and column permutations.
This follows from the following observations: Similar to the proof
of Theorem 4.2.10, no linear subdigraph of D(A′) contains edges
corresponding to entries of off-diagonal blocks of A′. Therefore, for
any splitting of the system into subsystems (with nonzero diagonal
entries) each 1-factor of the König digraph G(A′) is a (disjoint)
union of 1-factors of the König digraphs of the diagonal blocks,
and therefore it does not matter which 1-factor we chose at the
beginning.

Keeping in mind the above considerations, it is useful to have
an algorithm for finding strong components of a digraph. Such an
algorithm is given in Section 3.7 of [7]. For graph algorithms in
general, one may consult see [31], [54], [39].

We are now left with the problem of solving a system that
cannot be further split into smaller subsystems as described above.
Thus consider a system Ax = b, where A is a sparse matrix, and
the system cannot be split into the subsystems. We again apply
the procedure for finding a reduced row-echelon form from Section
6.1 (Gaussian elimination), but its usage now has a number of
special features.

In order to avoid numerical difficulties when dividing by a num-
ber close to zero, it is usually required in working with general
matrices that the pivot element in each step is of maximal mod-
ulus. In sparse matrices it is required that the pivot is greater
in modulus than a minimal value that is recommended in the lit-
erature for several types of problems. We shall assume that this
condition is always fulfilled when making a choice of the pivoting
element. This additional freedom in choosing the pivoting element
enables the reduction in the number of nonzero entries by which
the matrix is filled when applying EROs of type III.
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Example 6.5.1 If we apply type III EROs on the system with
the matrix 



1 2 3 4 5
1 −3
1 2
1 −2
1 2




,

the lower right 4 × 4 submatrix will be completely filled (with
nonzero numbers) already in the first step of the process. However,
by permuting rows and columns we get the matrix




2 1
−2 1

2 1
−2 1

5 4 3 2 1




.

Now the process does not lead to the appearance of new nonzero
entries.

Keeping in mind the way of storing a sparse matrix in the
memory of a computer and the fact that arithmetical operations
are performed, only with nonzero entries, it is clear that the ap-
pearance of new nonzero elements leads to larger occupation of
the memory and a longer running time of the program. It can
also cause an interruption of the program execution if the space in
memory is exhausted. Therefore the minimization of the number
of new nonzero entries—the so-called fill—which appear in the
process, is one of the central questions in the work with sparse
matrices.

Consider the König digraph G(A) of the sparse matrix A. The
weight of the arc between the black vertex i and the white vertex j
is aij . Let d+

i be the outdegree of i and d−
j the indegree of j. If aij

is chosen for the pivot element, we must produce a zero at d−
j − 1

places in the j-th column, i.e., the ith row is added d−
j − 1 times

to other rows (previously multiplied by an appropriate number).
With each such addition we add d+

i − 1 entries that are different
from zero. In total, we add (d+

i −1)(d−
j −1) nonzero entries at this



6.6. EXERCISES 137

step. Since the matrix is sparse, as many as this number of new
nonzero entries will be added to zero entries, and thus as many
as (d+

i − 1)(d−
j − 1) new nonzero entries may appear in this step.

Hence, the pivot entry is often determined by the edge (i, j) of the
digraph G(A) for which (d+

i − 1)(d−
j − 1) is minimal. Of course,

in any step of the process we consider a vertex deleted subgraph
of the original digraph G(A).

6.6 Exercises

1. Use EROs to find all solutions of the following system of
linear equations:

x1 − 2x2 + x3 = 3

3x1 − 3x2 − 2x3 = 6

5x1 − 3x2 = 8

2. Use EROs to find all solutions of the system of equations
Ax = b, where

A =




0 1 1 3
1 3 −2 0
2 6 −2 4


 and b =




10
3
18


 .

3. Use EROs to find the inverse of the matrix



2 3 1
1 0 2
1 −1 2


 .

4. Find bases of the row space, column space, and null space
of the matrix




−1 −2 1 1 0
1 2 −2 −4 3
1 2 0 2 1
1 2 −3 −7 2


 .
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5. Use Cramer’s rule to find the solution of the following system
of linear equations:

x1 + 2x2 + 3x3 = 1

3x1 + 5x2 + 8x3 = 1

4x1 + 5x2 + 10x3 = 1

6. Use Cramer’s rule to find the solution of Ax = b, where

A =




1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1


 and b =




1
0
1
0


 .

7. Solve the system of equations given in Example 6.3.2.

8. Draw the Coates digraph corresponding to the linear system

ax2 + bx3 = A

cx1 + dx2 + ex4 = B

fx1 + gx3 + hx4 = 0

ux2 + vx3 = 0.

Under the assumption that acvh + bfeu− bcuh− afve 6= 0,
find its solution.

9. Using (6.24), solve the system of equations Ax = b, where

A =




2 1 0 0
1 1 0 0
3 1 1 4
1 0 1 2


 .

10. Solve the system of equations given in Example 10.1.1 in
Section 10.1.



Chapter 7

Spectrum of a Matrix

In this chapter we introduce the fundamental concepts of eigen-
values and eigenvectors of a square matrix in the classical way.
The eigenvalues of a matrix A of order n are roots of a polyno-
mial, called the characteristic polynomial of A. The coefficients
of this polynomial are sums of certain determinants of submatri-
ces of A and thus can be described using digraphs as shown in
Section 7.1. In Section 7.2, we give a combinatorial argument for
the Cayley–Hamilton theorem, which asserts that a matrix satis-
fies its characteristic polynomial. The study of eigenvalues leads
to the notion of similarity of matrices and this, in turn, leads to
the Jordan Canonical Form of a matrix in Section 7.3. We give
a highly combinatorial argument for the existence of the Jordan
Canonical Form of a matrix. The chapter is concluded with Sec-
tion 7.4 which describes how eigenvalues of circulants, introduced
in Chapter 3, can be calculated using associated digraphs.

7.1 Eigenvectors and Eigenvalues

We begin with an important definition.
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Definition 7.1.1 Let

A =




a11 a12 · · · ain

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann




be a matrix of order n. Let λ be a real or complex number. Then
λ is an eigenvalue of A provided there is a nonzero column vector

u =




u1

u2
...

un




in ℜn or Cn such that Au = λu. If the eigenvalue λ is a real
number, then there is a real vector u. However, if λ is a com-
plex number, which may happen even if A is real, the vector may
be a complex vector. The nonzero column vector u is called an
eigenvector of A corresponding to its eigenvalue λ. The eigenvalue-
eigenvector matrix equation Au = λu can be rewritten as

(λIn − A)u = 0.

2

Because eigenvectors of a real matrix may be nonreal, we gen-
erally take our eigenvectors in Cn. Let u be an eigenvector of A
corresponding to the eigenvalue λ. Since u is a nonzero vector,
the equation (λIn − A)u = 0 implies that λ is an eigenvalue of A
if and only if λIn − A is a singular matrix; equivalently, λ is an
eigenvalue of A if and only if

det(λIn − A) = 0. (7.1)

In particular, 0 is an eigenvalue of A if and only if det A = 0, that
is, if and only if A is a singular matrix.
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Example 7.1.2 Let

A =

[
1 2
3 2

]
.

A simple computation shows that

det(λI2 − A) = λ2 − 3λ − 4 = (λ − 4)(λ + 1),

which equals zero if and only if λ = 4 or − 1. Thus A has two
eigenvalues, namely, 4 and −1. We then have

4I2 − A =

[
3 −2

−3 2

]
.

To find an eigenvector of A corresponding to its eigenvalue 4, we
need to solve the homogeneous system of two linear equations

3x1 − 2x2 = 0

−3x1 + 2x2 = 0.

One solution is x1 = 2 and x2 = 3. Thus u = [2 3]T (and any
nonzero multiple of this vector) is an eigenvector of A correspond-
ing to λ = 4. A similar computation shows that u = [1 − 1]T

(and any nonzero multiple of this vector) is an eigenvector of A
corresponding to λ = −1.

Now let

A =

[
1 2

−1 −1

]
.

Then
det(λI2 − A) = λ2 + 1 = (λ − i)(λ + i).

Hence the eigenvalues of A are ±i. 2

It follows from the definition of the determinant given in Chap-
ter 4 that if A is a matrix of order n, then pA(λ) = det(λIn − A)
is a polynomial in λ of degree n, called the characteristic polyno-
mial1 of A. Since pA(λ) is a polynomial of degree n, and since

1An eigenvalue is also called a characteristic value and an eigenvector is
also called a characteristic vector.
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a polynomial of degree n has n roots (possibly complex numbers
even if A is a real matrix), counting multiplicities, the matrix A
has n eigenvalues λ1, λ2, . . . , λn. These n eigenvalues comprise the
spectrum of A.

Example 7.1.3 Let

A =




2 0 0 0
0 5 0 0
0 0 2 0
0 0 0 5


 .

Then pA(λ) = det(λI4−A) = (λ−2)2(λ−5)2. Thus the eigenvalues
of A are 2, 2, 5, 5. More generally, the eigenvalues of a diagonal
matrix, indeed a triangular matrix, of order n are its n diagonal
entries. 2

From Corollary 4.3.2 we obtain that the characteristic polyno-
mial of a matrix A of order n is given by

det(λIn − A) =
n∑

p=0

(−1)n−pcn−pλ
p, (7.2)

where

cn−p =
∑

1≤j1<j2<···<jn−p≤n

det A[{j1, j2, . . . , jn−p}, {j1, j2, . . . , jn−p}],

the sum of the determinants of all the principal submatrices of A
of order n − p. In particular, we have that the coefficient of λn−1

is
c1 = a11 + a22 + · · · + ann = trA,

and
cn = det A.

Example 7.1.4 Let A = [aij ] be a square matrix of order 3. Then

λI3 − A =




λ − a11 −a22 −a13

−a21 λ − a22 −a23

−a31 −a32 λ − a33


 .
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Thus the characteristic polynomial of A is

pA(λ) = λ3 − (trA)λ2 + c2λ − det A,

where

c2 = (a11a22 − a12a21) + (a11a33 − a13a31) + (a22a23 − a23a32),

a sum that can be rewritten as

c2 = det A[{1, 2}, {1, 2}]+detA[{1, 3}, {1, 3}]+detA[{2, 3}, {2, 3}].

Thus c2 is the sum of the determinants of the three principal sub-
matrices of A of order 2. 2

Example 7.1.5 Let

A =




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 .

Since the determinant of a matrix of order at least 2, each of whose
entries equals 1 is 0, computing the characteristic polynomial of
A using formula (7.2), we get that c1 = 4, c2 = c3 = c4 = 0, and
hence

pA(λ) = λ4 − 4λ3 = λ3(λ − 4).

Hence the eigenvalues of A are 4, 0, 0, 0. More generally, the eigen-
values of the matrix of all 1’s of order n are n, 0, . . . , 0 where there
are n − 1 0’s. 2

Example 7.1.6 Let a matrix A of order n be the direct sum of
square matrices, say,

A = A1 ⊕ A2 ⊕ A3

of orders n1, n2, and n3, respectively. Then

λIn − A = (λIn1
− A1) ⊕ (λIn2

− A2) ⊕ (λIn3
− A3),
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and hence

det(λIn − A) = det(λIn1
− A1) det(λIn2

− A2) det(λIn3
− A3),

and the characteristic polynomial of A is the product of the char-
acteristic polynomials of A1, A2, and A3. Thus the spectrum of A
is obtained by putting the spectra of A1, A2, and A3 together. 2

Let A be a matrix of order n with eigenvalues λ1, λ2, . . . , λn.
Because the eigenvalues are the n roots of the characteristic poly-
nomial pA(λ), which has leading coefficient 1, we have

pA(λ) = (λ − λ1)(λ − λ2) · · · (λ − λn)

= λn − (λ1 + λ2 + · · ·+ λn)λn−1 + · · ·+ (−1)nλ1λ2 · · ·λn.

Comparing with the coefficients of the characteristic polynomial
as given in (7.2), we see that the trace of A is the sum of its n
eigenvalues:

c1 = trA = λ1 + λ2 + · · · + λn,

and the determinant of A is the product of these eigenvalues:

cn = λ1λ2 · · ·λn.

Because λIn−AT = (λIn−A)T , and a matrix and its transpose
have the same determinant,

pAT (λ) = det(λIn−AT ) = det((λIn−A)T ) = det(λIn−A) = pA(λ),

that is, A and AT have the same characteristic polynomial and
hence the same eigenvalues.

Definition 7.1.7 Let A = [aij ] be a matrix of order n and let λ be
an eigenvalue of A. The algebraic multiplicity of λ is its multiplicity
as a root of the characteristic polynomial det(λIn −A). Thus the
multiplicity of an eigenvalue of A is an integer between 1 and n.
The eigenspace of A corresponding to λ is defined to be

Vλ(A) = {x ∈ Cn : (λIn − A)x = 0}.
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The eigenspace of A corresponding to λ is the null space of the
matrix λIn−A, and so is a subspace of Cn. (If all n eigenvalues of A
are real numbers, then we can take the eigenspace to be a subspace
of ℜn. But if A has a complex eigenvalue, then the eigenspaces are
taken to be subspaces of Cn.) The eigenspace consists of the zero
vector and all the eigenvectors of A corresponding to λ, and thus
has dimension at least 1. The geometric multiplicity of λ is the
dimension of the eigenspace Vλ(A) and thus equals n− r(λIn−A).
2

Example 7.1.8 First consider the identity matrix In. Each of
its n eigenvalues equals 1, and the eigenspace V1(In) is all of ℜn.
Thus both the algebraic and geometric multiplicities of 1 equal
n. More generally, if D is a diagonal matrix of order n with di-
agonal entries d1, d2, . . . , dn, then its eigenvalues are d1, d2, . . . , dn

and the geometric multiplicity of an eigenvalue equals its algebraic
multiplicity. For example, let

D =




4 0 0 0 0
0 4 0 0 0
0 0 7 0 0
0 0 0 7 0
0 0 0 0 7




.

Then the eigenvalues of D are 4, 4, 7, 7, 7, so that 4 is an eigenvalue
with algebraic multiplicity 2 and 7 is an eigenvalue with algebraic
multiplicity 3. We then have

4I5 − D =




0 0 0 0 0
0 0 0 0 0
0 0 −3 0 0
0 0 0 −3 0
0 0 0 0 −3




,

a matrix of rank 3. Hence the dimension of the null space of
4I5 − D, that is, the geometric multiplicity of 4, equals 2. In a
similar way, we see that the geometric multiplicity of 7 is 3.
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Now consider the matrix Tn that has 1’s on and above the main
diagonal. For instance, if n = 4, then

T4 =




1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


 .

The characteristic polynomial of Tn is pTn
(λ) = (λ − 1)n and so

1 is an eigenvalue of Tn with algebraic multiplicity equal to n.
The eigenspace V1(Tn) consists of all vectors u = [u1 u2 . . . un]T

such that (In − Tn)u = 0. The matrix In − Tn clearly has rank
equal to n − 1 and hence the dimension of its null space equals 1.
Thus the geometric multiplicity of 1 equals 1. We conclude from
this example that the algebraic and geometric multiplicities of an
eigenvalue need not be equal and indeed may be quite different.
These facts play an important role later in this chapter. 2

We conclude this section by showing that each of the eigenval-
ues of a real symmetric are real numbers.

Theorem 7.1.9 Let A = [aij ] be a real symmetric of order n.
Then each of the n eigenvalues of A is a real number.

Proof. We use the dot product of Cn as reviewed in Section
1.5. Let λ be any eigenvalue of A, and let x be an eigenvector (a
nonzero vector in Cn) for λ:

Ax = λx. (7.3)

For a matrix B, let BH denote the matrix obtained from B by
replacing each of its entries by its complex conjugate and trans-
posing (or, equivalently, transposing and then conjugating each
entry). We have (BC)H = CHBH , since (BC)T = CT BT , and
a + b = a+b and ab = ab. Since A is real and symmetric, AH = A.
Multiplying (7.3) by xH we get xHAx = λxHx. We also have from
(7.3) that

xHAx = (xHA)x = (Ax)Hx = (λx)Hx = λxHx.

Thus λxHx = λxHx. Because x is not a zero vector, xHx 6= 0, and
hence λ = λ and λ is a real number. 2
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7.2 The Cayley–Hamilton Theorem

The Cayley–Hamilton theorem asserts the rather surprising result
that a square matrix satisfies its characteristic polynomial. This is
a very important theorem with theoretical consequences and with
applications in physics and engineering disciplines. Before giving a
precise statement of the Cayley–Hamilton theorem, we introduce
some concepts that we will use in its verification.

Definition 7.2.1 Let D be a digraph with vertices 1, 2, . . . , n,
and let i and j be vertices of D. We recall that a 1-connection
D[i → j] of vertex i to vertex j is a spanning subdigraph of D
consisting of a path from i to j and a possibly empty collection of
pairwise vertex disjoint cycles having no vertex in common with
the path. The total number of edges in a 1-connection equals
n − 1. A quasi-1-connection D[i → j]∗ from i to j is defined like
a 1-connection except that the path from i to j is replaced with a
walk from i to j of length at most n where the walk may intersect
the cycles and where the total number of edges in the walk and
cycles is to equal n.2 Thus a quasi-1-connection D[i → j]∗ is a pair
consisting of a walk γ from i to j and a possibly empty collection C
of pairwise vertex-disjoint cycles, where the total number of edges
in the walk and cycles equals n. The weight w(D[i → j]∗) of a
quasi-1-connection D[i → j]∗ is the product of the weights of all
its edges. The number of cycles in the quasi-1-connection is the
number of cycles in C, and this number is denoted by c(D[i → j]∗).
2

Theorem 7.2.2 (Cayley–Hamilton theorem) Let A = [aij] be a
matrix of order n, and let

pA(λ) = λn − c1λ
n−1 + c2λ

n−2 − · · ·+ (−1)kcn−kλ
k + · · ·+ (−1)ncn

be the characteristic polynomial of A. Then p(A) = O, that is,

An − c1A
n−1 + c2A

n−2 −· · ·+(−1)kcn−kA
k + · · ·+(−1)ncnIn = O.

(7.4)

2Unlike a 1-connection, the total number of edges in a quasi-1-connection
is not determined by its walk and cycles.
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Before proving this theorem we give an example.

Example 7.2.3 Let

A =




1 2 0
−1 3 1

2 1 1


 .

A simple calculation shows that

pA(λ) = λ3 − 5λ2 + 8λ − 8.

We calculate that

A2 =



−1 8 2
−2 8 4

3 8 2


 and A3 =



−5 24 10
−2 24 12
−1 32 10


 .

Substituting into the characteristic polynomial of A we obtain



−5 24 10
−2 24 12
−1 32 10


− 5



−1 8 2
−2 8 4

3 8 2


+

8




1 2 0
−1 3 1

2 1 1


− 8




1 0 0
0 1 0
0 0 1


 = O.

2

Proof of Theorem 7.2.2. We have to show that each entry of
the matrix pA(A) as given in (7.4) equals 0. The coefficient cn−k

of λk in the characteristic polynomial equals the sum of all the
determinants of the principal submatrices of A of order n − k. It
follows from the definition of the determinant given in Chapter 4
that cn−k equals

(−1)n−k
∑

L

(−1)c(L)w(L),

where the summation extends over all linear subdigraphs of the
Coates digraph D∗(A) having n−k vertices and where c(L) is the
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number of cycles of L. From Chapter 3 we know that the entry in
position (i, j) of Ak equals the sum of the weights of all walks of
length k from vertex i to vertex j.

Therefore the entry in position (i, j) of (−1)n−kcn−kA
k equals

∑

D[i→j]∗
k

(−1)c(L)w(D[i → j]∗k),

where the summation extends over all quasi-1-connections D[i →
j]∗k whose walk γ from i to j has length k. We thus conclude that
the entry in position (i, j) of pA(A) equals

∑

D[i→j]∗

(−1)c(D[i→j]∗)w(D[i → j]∗), (7.5)

where the summation now extends over all quasi-connections from
i to j. (Recall that the walk in a quasi-1-connection has length at
most n.)

We now show how to pair up the terms3 in (7.5) so that the sum
of the terms of each pair equals zero. The total number of edges in
a quasi-1-connection consisting of a walk γ and a collection C of
pairwise vertex-disjoint cycles equals n. Thus either the walk γ is
not a path (and so contains a cycle) or the walk γ meets a vertex
of one of the cycles in C. We proceed along the walk γ until we
first (a) revisit a vertex, or (b) visit a vertex of one of the cycles
π in C, whichever comes first (note that these two events cannot
occur simultaneously). In case (a), the walk contains a cycle and
we remove this cycle from γ and add it to C to create a new quasi-
1-connection with one more cycle but the same weight. In case (b)
we remove the cycle π from C and add it to the walk γ to make it
larger. In each case the number of cycles changes by 1, so the sign
in (7.5) changes but the weight of the quasi-1-connection does not
change. This process is reversible, leading us to conclude that the
sum in (7.5) equals zero. Hence pA(A) = O, as was to be proved.
2

We have given a proof of the classical Cayley–Hamilton the-
orem that illustrates that it is really a theorem about weighted
digraphs; this was first noted by Rutherford [70] (see also [75],
[81] and [7]).

3That is, establish an involution.
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7.3 Similar Matrices and the JCF

An m by n matrix A = [aij ] represents the linear transformation
T from an n-tuple space F n to an m-tuple space F m defined by
multiplication by A as follows: If x = [x1 x2 · · · xn]T is an n-tuple,
then

T (x) = A




x1

x2
...

xn




=




y1

y2
...

ym




.

Here the vectors x and y are given in terms of their coordinates
with respect to the standard (ordered) basis η = (e1, e2, . . . , en)
of F n and the standard (ordered) basis η′ = (e′1, e

′
2, . . . , e

′
m)

of F m, respectively. If we choose a different (ordered) basis
α = (u(1), u(2), . . . , u(n)) for F n and a different (ordered) basis
β = (w(1), w(2), . . . , w(m)) for F m, then, with respect to coordi-
nates relative to these bases, a different matrix will represent the
linear transformation T . A vector u in F n can be uniquely repre-
sented as a linear combination of the vectors in α:

u = p1u
(1) + p2u

(2) + · · ·+ pnu
(n)

and has coordinate vector

[u]α =




p1

p2
...

pn




with respect to the basis α. Similarly, the vector w = T (u) in F m

can be uniquely represented as a linear combination of the vectors
in β:

T (u) = qiw
(1) + q2w

(2) + · · ·+ qmw(m)

and has coordinate vector

[T (u)]β =




q1

q2
...

qm



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with respect to the basis β. Let R = [rij ] be the n by n matrix
whose column vectors are the coordinate vectors

[u(1)]η, [u
(2)]η, . . . , [u

(n)]η,

and let S = [sij ] be the m by m matrix whose column vectors are
the coordinate vectors

[e′1]β, [e
′
2]β , . . . , [e′m]β.

A straightforward calculation shows that

T (u) = T

(
n∑

i=1

piu
(i)

)

=
n∑

i=1

piT
(
u(i)

)

=
n∑

i=1

piT




n∑

j=1

rjiej





=
n∑

i=1

pi

n∑

j=1

rjiT (ej)

=
n∑

i=1

pi

n∑

j=1

rji

(
m∑

k=1

akje
′
k

)

=
n∑

i=1

pi

n∑

j=1

rji

m∑

k=1

akj

m∑

l=1

slkw
(l)

=
m∑

l=1




n∑

i=1

m∑

k=1

n∑

j=1

slkakjrjipi



w(l).

Thus
[T (u)]β = SAR[u]α.

In the special case that n = m and α = β, the matrix S equals
R−1, and hence we get

[T (u)]α = R−1AR[u]α.

Hence, the matrix of the linear transformation T : ℜn → ℜn with
respect to a basis α of ℜn equals R−1AR, where A is the matrix of
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T with respect to the standard basis η of ℜn. This motivates the
following definition.

Definition 7.3.1 Let A and B be square matrices of the same
order n. Then B is similar to A provided there is an invertible
matrix X such that B = X−1AX. If B is similar to A, then we
write B ∼ A. 2

The relation of similarity on matrices of order n satisfies three
important properties:

(R) reflexive property: B ∼ B for all B: This is because we may

take X = In in the definition of similarity.

(S) symmetric property: If B ∼ A, then also A ∼ B: If B ∼ A,

then B = X−1AX for some invertible matrix X, and then
A = XBX−1 = (X−1)−1A(X−1) = Y −1BY , where Y =
X−1.

The symmetry property implies that we may simply say that
matrices A and B are similar rather than say that A is similar
to B.

(T) transitive property: If A ∼ B and B ∼ C, then A ∼ C.

If A ∼ B and B ∼ C, then A = X−1BX and B = Y −1CY
for some invertible matrices X and Y . Hence

A = X−1Y −1CY X = (Y X)−1C(Y X) = Z−1CZ,

where Z = Y X.

The properties of reflexive, symmetric, and transitive are the three
properties defining an equivalence relation. An equivalence rela-
tion on a set always partitions the set into equivalence classes
whereby two elements in the same class are equivalent and two
elements in different classes are not equivalent. Thus similarity
defines an equivalence relation on the set of square matrices of
order n and partitions the matrices into similarity classes, that is,
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classes such that matrices in the same class are similar and those
in different classes are not.

In the next theorem we collect several elementary properties
of similar matrices.

Theorem 7.3.2 Let A and B be similar matrices of order n.
Then the following properties hold:

(i) det A = det B.

(ii) The rank of A equals the rank of B.

(iii) A and B have the same characteristic polynomial and the
same spectrum. Thus the algebraic multiplicity of eigenval-
ues is the same for A and for B.

(iv) Let B be similar to A with B = X−1AX, and let λ be
an eigenvalue of A with corresponding eigenvector u. Then
X−1u is an eigenvector of B corresponding to its eigenvalue
λ. Likewise, if v is an eigenvector of B corresponding to
eigenvalue λ, then Xv is an eigenvector of A corresponding
to eigenvalue λ. Thus

Vλ(B) = {X−1u : u ∈ Vλ(A)},

and the geometric multiplicities of the eigenvalues are the
same for A and for B.

Proof. Assume that B = X−1AX. Then

det B = det(X−1AX) = det X−1 det A det X

= (det X)−1 det A det X = det A.

Thus (i) holds. Assertion (ii) follows from the fact that multiplying
a matrix by an invertible matrix, thus by a product of elementary
matrices, does not change its rank. For (iii) we calculate that

det(λIn − B) = det(λIn − X−1AX) = det(X−1(λIn − A)X)

= det X−1 det(λIn − A) detX = det(λIn − A).
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For property (iv) we simply calculate that

B(X−1u) = (X−1AX)(X−1u) = X−1Au = X−1λu = λ(X−1u)

and note that since u is a nonzero vector, so is X−1u. Let λ be
an eigenvalue of A, and thus for B, and let Bv = λv. A similar
calculation can be made with A and Xv. Thus Vλ(B) = {X−1u :
u ∈ Vλ(A)}. Because X−1 is a nonsingular matrix, it follows that
Vλ(A) and Vλ(B) have the same dimension. 2

Example 7.3.3 The conditions (i)–(iii) do not guarantee that the
matrices A and B are similar. For example, let

A = I2 =

[
1 0
0 1

]
and B =

[
1 1
0 1

]
.

Then A and B have determinant equal to 1, have rank equal to
2, and have characteristic polynomial equal to (λ − 1)2. But A
and B are not similar since the only matrix similar to I2 is I2 (in
general, X−1InX = In). The geometric multiplicity of 1 is 2 for A
and 1 for B.

If we also assume that the geometric multiplicities of the cor-
responding eigenvalues of A and B are equal, we still cannot con-
clude that A and B are similar. For example, let

A =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 and B =




0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 .

Then 0 is an eigenvalue of A and of B with algebraic multiplicity
4 and geometric multiplicity 2. By calculation we see that A2 =
O but B2 6= O. But if B = X−1AX, then B2 = X−1A2X =
X−1OX = O. So B is not similar to A. 2

Example 7.3.4 Let A and B be two square matrices of the same
order n. Suppose that the digraphs D(A) and D(B) are isomor-
phic. Then there is a permutation matrix P such that B = P TAP .
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Since the inverse of a permutation matrix equals its transpose, we
can rewrite this equation as B = P−1AP , and hence A and B
are similar via a permutation matrix. The converse also holds.
Thus the isomorphism of digraphs is equivalent to similarity via
a permutation matrix. A similar conclusion holds if we consider
the Coates digraphs D∗(A) and D∗(B). On the other hand, if
the König digraphs G(A) and G(B) are isomorphic, the matrices
A and B are connected by the relation A = QBP , where P and
Q are permutation matrices. Here the permutation matrix Q per-
mutes the black vertices of the digraph G(B) and the permutation
matrix P independently permutes the white vertices. If the ma-
trices A and B are similar, requiring Q = P−1, then the digraphs
G(A) and G(B) are isomorphic where the isomorphism ϕ preserves
the initial pairing of the black and white vertices. This means that
if ϕ takes the black vertex i of G(B) to the black vertex j of G(A),
then ϕ takes the white vertex i of G(B) to the white vertex j of
G(A). Hence, the digraph G(A) can be obtained from the digraph
G(B) by a permutation of the pairs of black and white vertices.
2

Definition 7.3.5 Let A be a square matrix of order n. Then an
elementary similarity of A is a matrix B = E−1AE, where E is
an elementary matrix. Since there are three types of elementary
matrices, there are three types of elementary similarities:

(i) (elementary permutation similarity)

In(i, j)AIn(i, j)−1 = In(i, j)AIn(i, j),

in which rows i and j are switched and columns i and j are
switched (i 6= j). In particular, the (i, i) and (j, j) entries of
the main diagonal of A are switched and the (i, j) and (j, i)
entries are switched in this type of elementary similarity.

(ii) (elementary diagonal similarity)

In(c · i)AIn(c · i)−1 = In(c · i)AIn(1/c · i),
in which row i is multiplied by c and column i is multiplied
by 1/c (c 6= 0). There is no change in the entries of the main
diagonal of A in this type of similarity.
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(iii) (elementary combination similarity)

In(c · i + j)AIn(c · i + j)−1 = In(c · i + j)AIn(−c · i + j),

in which c times row i is added to row j and −c times column
j is added to column i (i 6= j).

Since a matrix is invertible if and only if it is a product of ele-
mentary matrices, we conclude that A is similar to a matrix B if
and only if B can be obtained from A by a sequence of elementary
similarities. 2

We now consider the question of how simple a matrix we can
find in each similarity class. Here by simple we mean a matrix B
for which the structure of the digraph D(B) associated with the
nonzero off-diagonal entries of B is simple with very few edges (so
we ignore all loops of the digraph D(A)). Let us denote by D̂(B)
the digraph obtained from D(B) by removing all loops. Thus, if
B is a diagonal matrix, D̂(B) is a digraph with no edges and thus
consists of a collection of isolated vertices. This is the simplest
possible structure but one that cannot always be attained. For
example, for the matrix

B =

[
1 1
0 1

]

from Example 7.3.3, the digraph D̂(B) consists of two vertices and
an edge from one to the other. The matrix B cannot be similar
to a diagonal matrix, as that diagonal matrix would have to be
I2 and this has already been ruled out in Example 7.3.3. Since
similar matrices have the same spectrum, if a matrix A is similar
to a diagonal matrix B, then the entries on the main diagonal of
B are the n eigenvalues of A.

A matrix is diagonalizable provided it is similar to a diagonal
matrix. In the next theorem we give a characterization, in terms
of eigenvectors, of diagonalizable matrices.

Theorem 7.3.6 Let A be a square matrix of order n. Then A is
diagonalizable if and only if A has n linearly independent eigen-
vectors, that is, there is a basis of Cn (or ℜn if A only has real
eigenvalues) consisting of eigenvectors of A.
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Proof. First suppose that u(1), u(2), . . . , u(n) are n linearly in-
dependent eigenvectors of A with

Au(i) = λiu
(i) (i = 1, 2, . . . , n). (7.6)

Let U be the matrix whose columns are u(1), u(2), . . . , u(n), respec-
tively. Then U is an invertible matrix and the equations in (7.6)
can be written as the one matrix equation AU = UΛ, where Λ is
the diagonal matrix




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn




.

Since U is invertible, we have U−1AU = Λ, and A is similar to a
diagonal matrix.

Conversely, if A is similar to the diagonal matrix Λ, then there
is an invertible matrix P such that P−1AP = Λ and so AP = PΛ.
Since P is invertible, we see that the columns of P are n linearly
independent eigenvectors of A. 2

We shall find a simple matrix in each similarity class in steps.
We first prove a theorem that can be rephrased to say that a
matrix is similar to a matrix T whose digraph D̂(T ) is acyclic,
that is, has no cycles; indeed, the vertices can be ordered from top
to bottom with all edges pointing downward.

Theorem 7.3.7 The matrix A of order n is similar to an upper
triangular matrix T . The diagonal entries of T are the n eigen-
values of A, and T can be chosen so that these eigenvalues appear
on its main diagonal in any specified order λ1, λ2, . . . , λn.

Proof. The proof is by induction on n. If n = 1, there is
nothing to prove as a square matrix of order 1 is upper triangu-
lar. Let λ1 be any eigenvalue of A with corresponding eigenvector
u. Since u is not the zero vector, u can be extended to a basis
u(1) = u, u(2), . . . , u(n). Let U be the matrix whose columns are
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u(1), u(2), . . . , u(n), respectively. Then U is an invertible matrix.
The equations U−1U = In and Au(1) = λ1u

(1) imply that

U−1u(1) =




1
0
...
0




and

U−1AU =

[
λ1 α1

O A1

]
, (7.7)

where α1 is a 1 by n−1 matrix and A1 is a square matrix of order
n−1. The matrix in (7.7) is similar to A and hence the eigenvalues
of A1 are λ2, . . . , λn. By induction, there is an invertible matrix
W1 of order n − 1 such that W−1

1 A1W1 = T1, where T1 is an
upper triangular matrix with λ2, . . . , λn on its main diagonal in
this order. Define a partitioned matrix of order n by

W =

[
1 O
O W1

]
.

The matrix W is invertible with

W−1 =

[
1 O
O W−1

1

]
.

Then UW is an invertible matrix, and using block multiplication,
we get that

(UW )−1A(UW ) = W−1(U−1AU)W =

[
λ1 β
O T1

]
,

an upper triangular matrix with diagonal entries λ1, λ2, . . . , λn.
Hence the theorem holds by induction. 2

Corollary 7.3.8 Let A be a matrix of order n with eigenvalues
λ1, λ2, . . . , λn. Let k be a positive integer. Then the eigenvalues of
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Ak are λk
1, λ

k
2, . . . , λ

k
n. More generally, if q(x) = ckx

k + ck−1x
k−1 +

· · · + c1x + c0 is a polynomial, then the eigenvalues of

q(A) = ckA
k + ck−1A

k−1 + · · ·+ c1A + c0In

are q(λ1), q(λ2), . . . , q(λn). In addition, if A is invertible, then the
eigenvalues of A−1 are λ−1

1 , λ−1
2 , . . . , λ−1

n .

Proof. By Theorem 7.3.7 there is an invertible matrix Q such
that A = Q−1TQ, where T is an upper triangular matrix with
λ1, λ2, . . . , λn on its main diagonal. Then

Ak = (Q−1TQ)k = Q−1T kQ,

and hence Ak is similar to T k. Since T k is an upper triangular
matrix whose entries on the main diagonal are λk

1, λ
k
2, . . . , λ

k
n, the

eigenvalues of Ak are λk
1, λ

k
2, . . . , λ

k
n. More generally,

q(A) = q(Q−1TQ) = Q−1q(T )Q,

and it follows that the eigenvalues of q(A) are q(λ1), q(λ2), . . . , q(λn).
If A is invertible, then

A−1 = (Q−1TQ)−1 = QT−1Q−1,

where T−1 is an upper triangular matrix similar to A−1, whose
entries on the main diagonal are λ−1

1 , λ−1
2 , . . . , λ−1

n . Hence these
are the n eigenvalues of A−1. 2

Our next goal is to show that the matrix T in Theorem 7.3.7,
for which D̂(T ) is acyclic, is similar to a matrix J such that the
digraph D̂(J) is a collection of vertex-disjoint paths (and so cer-
tainly acyclic).

Definition 7.3.9 Let k be a positive integer. A matrix of order
k of the form

Jk(µ) =




µ 1 · · · 0 0
0 µ · · · 0 0
...

...
. . .

...
...

0 0 · · · µ 1
0 0 · · · 0 µ



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with µ’s on the main diagonal and 1’s on the superdiagonal (the
diagonal immediately above the main diagonal) is called a Jordan
block of order k. If k = 1, then J1(µ) is a matrix of order 1
whose unique entry equals µ. The Jordan block Jk(µ) has a
characteristic polynomial (λ − µ)k and hence has µ as an eigen-
value of algebraic multiplicity k. The geometric multiplicity of
µ equals the dimension of the eigenspace Vµ(Jk), and this equals

k − r(µIk − Jk) = k − (k − 1) = 1. Notice that the digraph D̂(Jk)
is a path with k vertices.

A matrix that is the direct sum of Jordan blocks,

J = Jk1
(λ1) ⊕ Jk2

(λ2) ⊕ · · · ⊕ Jkt
(λt),

is called a Jordan matrix. In a Jordan matrix, t may equal 1 (that
is, J may be a Jordan block), and the scalars λ1, λ2, . . . , λt need
not be different. The characteristic polynomial of J equals

(λ − λ1)
k1(λ − λ2)

k2 · · · (λ − λt)
kt ,

and hence its eigenvalues are

λ1 (k1 times), λ2 (k2 times), . . . , λt (kt times),

the n scalars that occur on the main diagonal of J . The scalars
λ1, λ2, . . . , λt are not necessarily distinct, so that the algebraic mul-
tiplicities of the eigenvalues are not necessarily k1, k2, . . . , kt. If µ
is one of the numbers λ1, λ2, . . . , λt, then the algebraic multiplic-
ity of µ equals the sum of the orders of the Jordan blocks whose
diagonal entries equal µ. Each Jordan block with diagonal entries
equal to µ contributes 1 to the geometric multiplicity of µ, and
hence the geometric multiplicity of µ equals the number of Jor-
dan blocks containing µ on its main diagonal. Finally, we note
that the digraph D̂(J) is a collection of vertex-disjoint paths with
k1, k2, . . . , kt vertices, respectively. 2



7.3. SIMILAR MATRICES AND THE JCF 161

Example 7.3.10 The matrix

J =




5 O O O

O
5 1 0
0 5 1
0 0 5

O O

O O
8 1
0 8

O

O O O

8 1 0 0
0 8 1 0
0 0 8 1
0 0 0 8




is a Jordan matrix J1(5) ⊕ J3(5) ⊕ J2(8) ⊕ J4(8) of order 10. The
eigenvalues of J are 5 with algebraic multiplicity 1 + 3 = 4 and 8
with algebraic multiplicity 2 + 4 = 6. The geometric multiplicity
of 5 equals 2, the number of Jordan blocks with 5 on their main
diagonal; the geometric multiplicity of 8 also equals 2, the number
of Jordan blocks with 8 on the main diagonal. 2

Our goal is to show that every matrix is similar to a Jordan
matrix. By Theorem 7.3.7, a matrix A of order n is similar to an
upper triangular matrix T where the eigenvalues of A occur on the
main diagonal of T in any specified order. We now specify that
equal eigenvalues occur consecutively on the main diagonal of T .
Suppose that A has at least two different eigenvalues and let µ be
the one that occurs in the initial positions of the main diagonal of
T . Thus T has the form

T =

[
T1 X
O U

]
,

where T1 is an upper triangular matrix each of whose diagonal
entries equals µ and U is an upper triangular matrix none of whose
diagonal entries equals µ. We now show that we may take X = O,
that is, T is similar to the matrix

[
T1 O
O U

]
, (7.8)
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by using elementary combination similarities. Consider rows i and
j of T where row i intersects T1 and row j intersects U , and the
elementary similarity T ′ = I(c · j + i)TI(−c · j + i). Let a be the
(i, j) entry of T and let the (j, j) entry of T be θ. Then θ 6= µ,
and the (i, j) entry of T ′ equals a + c(θ − µ). Thus, by choosing
c = −a/(θ − µ), the (i, j) entry of T ′ equals 0. Moreover, since
T1 and U are upper triangular, T ′ differs from T only in those
positions of row i in columns j, j + 1, . . . , n and those positions
of column j in rows 1, 2, . . . , i. It now follows that by a sequence
of elementary combination similarities, we may make each entry
of X equal to 0 with no change in T1 and U . We do this row by
row starting from the last row of T1 and working up to the first
row, and making 0 each entry of the current row beginning with
its first entry and working to the right to its last entry.

If the matrix U in (7.8) does not have a constant main diagonal,
we repeat the above argument on U . Eventually, we obtain that
our original matrix A is similar to a matrix of the form

T1 ⊕ T2 ⊕ · · · ⊕ Tp,

where each Ti is an upper triangular matrix with a constant main
diagonal, and no two of these constants are equal. The reduction
of T by similarity to a Jordan matrix is complete once each of the
Ti have been reduced by similarity to a Jordan matrix.

Thus we may now assume that T is an upper triangular matrix
of order m, each of whose main diagonal entries equals µ. The
proof is by induction on m. If m = 1, then T = [µ] is a Jordan
block of order 1. Now let m = 2. Then

T =

[
µ a
0 µ

]

for some scalar a. If a = 0, then T is a direct sum of two Jordan
blocks of order 1 and so is a Jordan matrix. Suppose that a 6= 0.
By an elementary diagonal similarity (multiply row 1 by 1/a and
column 1 by a) we obtain the Jordan matrix

[
µ 1
0 µ

]
.
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Now assume that m > 2. The leading principal submatrix T ′ of T
of order m−1 is upper triangular with all µ’s on its main diagonal.
By the inductive hypothesis, there is an invertible matrix Q of
order m−1 such that the matrix S ′ = Q−1T ′Q is a Jordan matrix.
Let P = Q ⊕ I1, an invertible matrix of order m with inverse
Q−1 ⊕ I1. Then

S = P−1TP =




S ′

∗
...
∗

0 · · · 0 µ




. (7.9)

If the last column of S is all zeros apart from µ at its end, then
since S ′ is a Jordan matrix, S is also a Jordan matrix, and we are
done. We now assume that there is a nonzero entry in the last
column of S above its last entry.

First suppose that there is an entry h 6= 0 in the last column
that is in the same row as an off-diagonal 1 in one of the Jordan
blocks of S ′. In this case, there is an elementary combination
similarity that replaces h with 0 and otherwise does not change S.
For example, if

S =




µ 1
0 µ

O
∗
∗

O

µ 1 0 0
0 µ 1 0
0 0 µ 1
0 0 0 µ

∗
h
∗
∗

0 0 0 0 0 0 µ




, (7.10)

the h is in the same row as the 1 in column 5. The elementary
combination similarity that adds −h times column 5 to column 7
and h times row 7 to row 5 replaces h with 0 and otherwise does
not change S. In this way we can reduce the matrix S in (7.9)
by elementary combination similarities so that the only nonzero
entries in its last column above the µ in its last position occur in
the same row as the last row of one of the Jordan blocks of S ′. We
now assume that S has this form. For instance, in the case S as
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given in (7.10), we get

S ′ =




µ 1
0 µ

O
0
p

O

µ 1 0 0
0 µ 1 0
0 0 µ 1
0 0 0 µ

0
0
0
q

0 0 0 0 0 0 µ




, (7.11)

where p and q may be nonzero.
The digraph D̂(S) has a very simple structure. It consists of a

number of pairwise vertex-disjoint paths (these correspond to the
Jordan blocks that have only 0’s across from them in column n)
and, entirely disjoint from them, a number of other paths that,
except for the fact that they all terminate at the vertex n (cor-
responding to column n), are also pairwise vertex-disjoint (these
correspond to the Jordan blocks that have one nonzero entry across
from their last row in column n). We now show that by elemen-
tary combination similarities we can replace all but one of the
nonzero off-diagonal entries in column n of S with 0, again with-
out changing any other entry of S. The nonzero off-diagonal entry
that remains is one corresponding to the largest Jordan block of
S ′ (if there is more than one such largest Jordan block, we can
choose one arbitrarily). We refer to the particular S in (7.11), but
our procedure works in general. The digraph D̂(S) in this case
consists of a path of length 2 and a path of length 5 that meet
in the vertex corresponding to column 7. Assume that p 6= 0 and
q 6= 0. The scalar q is opposite the largest Jordan block. Using an
elementary diagonal similarity, we may assume that q = 1. With
this in mind, we now perform a sequence of elementary similarities
that replaces p with 0 and otherwise makes no change:

(i) Add −p times row 6 to row 2 and p times column 2 to column
6.

(ii) Add −p times row 5 to row 1 and p times column 1 to column
6.
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Notice how this uses the fact that the second Jordan block (of
order 4) has more rows that the first Jordan block (of order 2). In
this way we reduce S to a Jordan matrix. Hence, by induction,
we have proved the following important theorem.

Theorem 7.3.11 Every matrix of order n is similar to a Jordan
matrix. 2

If J is a Jordan matrix similar to the matrix A, then J is called
a Jordan Canonical Form of A, abbreviated to JCF. A JCF of A
is unique apart from the obvious fact that the Jordan blocks may
occur in any order. For example,

J2(5) ⊕ J3(5) ⊕ J2(8) and J3(5) ⊕ J2(8) ⊕ J2(5)

are both JCFs of the same matrix A. Indeed, such an A would
have six JCFs, as there are 3! = 6 ways in which to order the three
different Jordan blocks. On the other hand, the matrix

J3(5) ⊕ J3(5)

is the unique JCF of a matrix B as there is only one way to list its
two (identical) Jordan blocks. We do not prove here the general
uniqueness property of the JCF.

We have seen how a large part of the proof for a JCF—starting
from Jacobi’s theorem that a matrix is similar to a triangular
matrix—can be made graph-theoretical (see [6] and the reference
to Turnbull and Aitken there). A similar proof also appears in
[23].

7.4 Spectrum of Circulants

We recall the definition of a circulant matrix from Section 3.2. Let
P be the permutation matrix of order n defined by

P =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0




.
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Let
g(x) = a0 + a1x + a2x

2 + · · · + an−1x
n−1

be a polynomial of degree at most n. Then

A = g(P ) = a0In + c1P + c2P
2 + · · ·+ an−1P

n−1

is a circulant of order n.
The digraph D(P ) is a cycle of length n and thus P satisfies

P n = In. The characteristic polynomial of P is det(λIn −P ). The
digraph D∗(λIn − P ) is a cycle of length n with a loop at each
of its vertices and hence has only two linear subdigraphs, namely,
the cycle itself and the linear subdigraph consisting of the n loops.
It follows from the definition of determinant that

det(λIn − P ) = λn + (−1)n−1(−1)n = λn − 1.

Hence the eigenvalues of P are the n nth roots of unity
1, ω, ω2, . . . , ωn−1, where ω = e2πi/n and i is the complex num-
ber equal to the square root of −1. Because the eigenvalues of
P are distinct, the Jordan Canonical Form of P has only Jordan
blocks of order 1. Hence the Jordan Canonical Form of P is the
diagonal matrix

D =




1 0 0 · · · 0
0 ω 0 · · · 0
0 0 ω2 · · · 0
...

...
...

. . . 0
0 0 0 · · · ωn−1




.

We now invoke Corollary 7.3.8 and conclude that the n eigenvalues
of the circulant C are

g(ωk) (k = 0, 1, . . . , n − 1).

Let

X =




1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)




.
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Then columns of X are the eigenvectors for the n eigenvalues
1, ω, ω2, . . . , ωn−1 of P and hence

PX = XD or, equivalently, X−1PX = D.

Since C = g(P ) we also have that

X−1CX = g(D).

Hence the columns of X are also eigenvectors for the eigenvalues

g(1), g(ω), g(ω2), . . . , g(ωn−1)

of C.

7.5 Exercises

1. Let x and y be eigenvectors for the eigenvalue λ of a square
matrix A, and let α and β be real numbers. Prove that
αx + βy is also an eigenvector for the eigenvalue λ of A.

2. Show that the eigenvalues of the matrix aIn+bJn are a (n−1
times) and a + nb (once). Here Jn is the square matrix of
order n, each of whose entries is 1.

3. A square matrix is idempotent provided A2 = A. For exam-
ple, the matrix [

1 1
0 0

]

is idempotent. Prove that 0 and 1 are the only possible
eigenvalues of an idempotent matrix. (Note that the zero
matrix is idempotent with each of its eigenvalues equal to
0, and the identity matrix is idempotent with each of its
eigenvalues equal to 1.)

4. Prove that the trace and rank of an idempotent matrix are
equal.

5. Let A and B be matrices of order n. Prove that λ is an
eigenvalue of AB if and only if λ is an eigenvalue of BA.
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6. Let A and B be matrices of order n, at least one of which is
invertible. Show that AB and BA are similar.

7. Let A be a nonsingular matrix of order n. Determine the
characteristic polynomial of A−1 in terms of the characteris-
tic polynomial of A.

8. Let A be an invertible matrix of order n. Use the Cayley-
Hamilton theorem to obtain a polynomial f(x) such that
A−1 = f(A).

9. Determine the characteristic polynomial of a general matrix
of order 4 by means of the Coates digraph.

10. Let u and v be vectors in ℜn. Let A be the matrix uvT of
order n (the (i, j) of this matrix is uivj (1 ≤ i, j ≤ n)). Find
the eigenvalues and eigenvectors of A.

11. Calculate the n eigenvalues of the matrix




0 0 · · · 0 a1

0 0 · · · 0 a2
...

...
. . .

...
...

0 0 · · · 0 an−1

a1 a2 · · · an−1 an




.

12. Determine all possible Jordan Canonical Forms for a matrix
of order 6, all of whose eigenvalues equal 3. Classify these
Jordan Canonical Forms according to the geometric multi-
plicity of 3.

13. Find the Jordan Canonical Form of the matrix




0 1 0 0
0 0 1 0
0 0 0 1
1 −4 6 4


 .
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14. Determine the Jordan Canonical Form of the matrix




2 0 0 0
0 1 1 1
0 0 2 0
1 0 0 1


 .

15. Let A be a matrix of order m and let B be a matrix of
order n. Let pA(λ) be the characteristic polynomial of A.
Prove that pA(B) is invertible if and only if A and B have
no common eigenvalues.

16. Determine the eigenvalues of the matrix




1 0 −1 0
0 1 0 −1

−1 0 1 0
0 −1 0 1


 .

17. For the Jordan block Jk(0), show that Jk(0)k = O but
Jk(0)k−1 6= O. Let pk(x) = (x−a)k. Deduce that the Jordan
block Jk(a) satisfies pk(Jk(a)) = O but pk−1(Jk(a)) 6= O.

18. Let A be a matrix of order n. Let λ1, λ2, . . . , λl be the dis-
tinct eigenvalues of A, and in the Jordan Canonical Form of
A, let the largest Jordan block corresponding to the eigen-
values λ1, λ2, . . . , λl be, respectively, m1, m2, . . . , ml. Let

q(x) = (x − λ1)
m1(x − λ2)

m2 · · · (x − λl)
ml .

Prove that q(A) = O and that if any of the exponents
m1, m2, . . . , ml in q(x) is decreased, resulting in the poly-
nomial p(x), then p(A) 6= O.





Chapter 8

Nonnegative Matrices

In this chapter we consider matrices each of whose entries is a
nonnegative number. These matrices have special spectral prop-
erties that depend solely on the digraph of the matrix and are
independent of the magnitude of the positive entries. Some im-
portant classes of nonnegative matrices, such as irreducible (Sec-
tion 8.1), primitive, and imprimitive matrices (Section 8.2), are
defined here, contrary to the standard approach, by properties of
associated digraphs (strong connectednes, lengths of cycles etc.).
We discuss, mostly without proof, many of the results of the so-
called Perron–Frobenius theory of nonnegative matrices (Section
8.3). This theory represents a basic ingredient of the theory of
graph spectra where tools from matrix theory are used to study
graphs (a direction quite opposite from our main stream here since
we want to show how graphs are used to treat matrices). Section
8.4 represents a short introduction to graph spectra.

8.1 Irreducible and Reducible

Matrices

A matrix is called nonnegative, respectively, positive, provided all
of its entries are nonnegative, respectively, positive. In the the-
ory of nonnegative matrices the notion of irreducibility plays an
important role, and this is equivalent to the notion of strong con-
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nectivity for digraphs discussed in Chapter 1.

Definition 8.1.1 A square matrix A of order n is irreducible pro-
vided that its digraph D(A) is strongly connected; otherwise, A
is reducible. Recall from Theorem 1.2.3 that a digraph is strongly
connected if and only if there does not exist a partition of its vertex
set into two nonempty sets U and W such that each edge between
U and W has itsr initial vertex in U and its terminal vertex in W .
Thus if we simultaneously permute the rows and columns of A so
that the first rows and columns correspond to U , we obtain that
A is reducible if and only if there is a permutation matrix P such
that

PAP T =

[
X Y
O Z

]
, (8.1)

where X and Z are square matrices of order at least 1. The matrix
A is irreducible provided the form (8.1) cannot be achieved for any
permutation matrix P . Note that the zero matrix in (8.1) is of
size p by q where p and q are positive integers with p + q = n.
It follows from the definition that a matrix of order 1 is always
irreducible. We also note that if we had listed the vertices of W
first, then we would get a permutation matrix Q such that

QAQT =

[
Z O
Y X

]
,

with the zero matrix occuring in the lower right corner. 2

Recall from Theorem 1.2.3 that a digraph G has l ≥ 1 strong
components (strongly connected, induced subdigraphs whose sets
of vertices partition the set of vertices of G) and that these strong
components can be ordered as G1, G2, . . . , Gl so that the only edges
between the components are edges whose initial vertex is a vertex
in Gi and whose terminal vertex is a vertex in Gj , where i < j,
that is, in the ordering G1, G2, . . . , Gl, all edges between compo-
nents go from left to right. We have l = 1 if and only if G is
strongly connected. Applying this fact to the digraph D(A) of a
square matrix A, we see that the rows and columns of A can be
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simultaneously permuted to achieve a block diagonal form called
the Frobenius normal form:

There exists a permutation matrix Q such that

QAQT =




A1 A12 A13 · · · A1l

O A2 A23 · · · A2l

O O A3 · · · A3l
...

...
...

. . .
...

O O O · · · Al




, (8.2)

where A1, A2, . . . , Al are irreducible square matrices. Because the
matrices A1, A2, . . . , Al correspond to the strong components of
D(A), and since strong components are uniquely determined (they
are the equivalence classes of an equivalence relation on the ver-
tices of D(A)), the matrices A1, A2, . . . , Al are uniquely deter-
mined up to simultaneous permutations of their rows and columns,
that is, up to the order in which the vertices of the strong com-
ponents are written down. The matrices A1, A2, . . . , Al are the
irreducible components of A. The matrix A is irreducible if and
only if it has exactly one irreducible component. The order in
which the irreducible components occur on the diagonal in (8.1)
is not necessarily unique; it all depends on whether or not the
matrices Aij are zero matrices.

Example 8.1.2 The following matrix is in Frobenius normal
form: 



0 1
1 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 1
1 0

1 0
0 1

0 1
0 1

0 0
0 0

0 0
0 0

1 1
1 0

1 1
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 1
1 1




.

There are four irreducible components, and the first irreducible
component could be in any one of the four places; the relative
order of the other three irreducible components is fixed. 2
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An important algebraic characterization of irreducible, non-
negative matrices is contained in the following theorem.

Theorem 8.1.3 Let A be a nonnegative matrix of order n. Then
A is irreducible if and only if (I + A)n−1 is a positive matrix,
equivalently, In + A + A2 + · · ·+ An−1 is a positive matrix.

Proof. The matrix In + A has positive diagonal entries and
hence the digraph D(In +A) has a loop at each vertex. First sup-
pose that A is irreducible. Then D(In + A) is strongly connected
and for each ordered pair u, v of distinct vertices there is a (short-
est) path from u to v of length at most n − 1. Because there is a
loop at each vertex, there is a walk of length exactly n − 1 from
u to v. Because In + A is a nonnegative matrix, all walks have
positive weights. It follows that (In + A)n−1 is a positive matrix.
Since

(In + A)n−1 = In +

(
n

1

)
A +

(
n

2

)
A2 + · · ·+

(
n − 1

n − 1

)
An−1,

it also follows that In + A + A2 + · · ·+ An−1 is a positive matrix.
Conversely, if (I + A)n−1 is a positive matrix, then for each

ordered pair of distinct vertices u, v there is a path of positive
weight in D(A) from u to v of length n−1. Hence D(A) is strongly
connected and A is irreducible. 2

The following corollary is an easy consequence of Theorem
8.1.3.

Corollary 8.1.4 Let A be an irreducible nonnegative matrix of
order n each of whose diagonal entries is positive. Then An−1 is
a positive matrix. 2

8.2 Primitive and Imprimitive

Matrices

The cycles of the (strongly connected) digraph D(A) of an ir-
reducible nonnegative matrix A have a strong influence on the
spectrum of A.
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Definition 8.2.1 Let G be a strongly connected digraph. The
greatest common divisor (abbreviated GCD) d of the lengths of
the cycles of G is called the index of imprimitivity of G. If d = 1,
then G is primitive; if d > 1, then G is imprimitive. Note that
since a closed walk is composed of cycles, in defining d we could
use the lengths of all the closed walks in G (see also Lemma 8.2.2
below). Let A be an irreducible nonnegative matrix of order n.
Then the index of imprimitivity of A is defined to be the index
of imprimitivity of the digraph D(A), and A is primitive or im-
primitive according to whether D(A) is primitive or imprimitive.
2

If the index of imprimitivity d is greater than 1, a certain
structure is imposed on a digraph and a matrix. First we make
the following observation.

Lemma 8.2.2 Let G be a strongly connected digraph with vertices
1, 2, . . . , n and with index of imprimitivity d. For each vertex i of
G, let di be the GCD of the lengths of all closed walks containing
i. Then d = d1 = d2 = · · · = dn. Moreover, the lengths of any two
walks with the same initial vertex and the same terminal vertex
are congruent modulo d.

Proof. Consider vertices i and j with i 6= j. Because G is
strongly connected, there exists a path γ from i to j and a path
γ′ from j to i. The path γ followed by γ′ gives a closed walk θ
containing both i and j. Let θ have length s. Then di and dj are
both divisors of s. Thus, for each integer l for which there exists
a closed walk of length l containing vertex i, there exists a closed
walk of length s + l containing vertex j. Because dj is a divisor
of s and of s + l, dj is a divisor of l. Because this is true for all
such l, we conclude that dj is a divisor of di. In a similar way one
shows that di is a divisor of dj . Thus di = dj and we conclude
that d1 = d2 = · · · = dn. The common value must be d.

Now let γ1 and γ2 be two walks with the same initial vertex i
and the same terminal vertex j of lengths k1 and k2, respectively.
There exists a walk γ3 from vertex j to vertex i of some length t,
giving two closed walks of lengths k1 + t and k2 + t. Because d
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divides both k1+t and k2+t, d divides (k1 +t)−(k2 +t) = k1−k2,
that is, k1 and k2 are congruent modulo d. 2

Theorem 8.2.3 Let G be a strongly connected digraph with vertex
set V having an index of imprimitivity equal to d > 1. Then V can
be partitioned into d nonempty sets V0, V1, . . . , Vd−1 such that each
edge of G has its initial vertex in some Vi and its terminal vertex
in Vi+1 (subscripts considered modulo d). Thus the subdigraphs
induced on each of V0, V1, . . . , Vd−1 do not contain any edges, and
the edges of G are arranged in a circular pattern V0 to V1, V1 to
V2, ... , Vd−2 to Vd−1, and Vd−1 to V0.

Proof. Consider any vertex a of G. For i = 0, 1, . . . , d − 1,
let Vi be the set of vertices x to which there is some walk from a
of length congruent to i modulo d (and so by Lemma 8.2.2, every
walk from a to x has length congruent to i modulo d). Note that
a belongs to V0, and the sets V0, V1, . . . , Vd−1 are pairwise disjoint
and nonempty (because there is a cycle containing a and it has
length at least d). Suppose that there is an arc from vertex u to
vertex v, where u is in Vi and v is in Vj . There is a walk from a to
u of length congruent to i modulo d and hence a walk from a to v
of length congruent to i + 1 modulo d. From the definition of the
V ′

ks we now conclude that i + 1 is congruent to j modulo d, that
is, modulo d, j equals i + 1. 2

The pairwise disjoint sets V0, V1, . . . , Vd−1 in Theorem 8.2.3 are
called the sets of imprimitivity of G. In case d = 1, the vertex set
V is the unique set of imprimitivity of G. A digraph G with the
structure as given in Theorem 8.2.3 is called cyclically d-partite.
Note that if m is a divisor of d, then G is also cyclically m-partite.

If G is the digraph of an irreducible nonnegative matrix and
we order the vertices of G as given in Theorem 8.2.3, so that the
vertices in V0 come first, followed by those in V2, ... , followed by
those in Vd−1, we obtain the the following matrix interpretation of
Theorem 8.2.3.
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Theorem 8.2.4 Let A be an irreducible nonnegative matrix of
order n with index of imprimitivity equal to d. Then there exists
a permutation matrix P such that

PAP T =




Ok0
A01 O · · · O O

O Ok1
A12 · · · O O

O O Ok2
· · · O O

...
...

...
. . .

...
...

O O O · · · Okd−2
Ad−2,d−1

Ad−1,0 O O · · · O Okd−1




, (8.3)

where the square zero matrices on the main diagonal have orders
k0, k1, . . . , kd−1 as indicated (these are the sizes of V0, V1, . . . , Vd−1

in Theorem 8.2.3). 2

In general, the matrices Ai,i+1 in (8.3) are rectangular. Using
block multiplication, we immediately obtain the following corol-
lary.

Corollary 8.2.5 Let A be an irreducible nonnegative matrix of
order n with index of imprimitivity equal to d. Then there exists
a permutation matrix P such that

PAdP T = B0 ⊕ B1 ⊕ · · · ⊕ Bd−1,

a block-diagonal matrix whose blocks B0, B1, . . . , Bd−1 are

B0 = A01A12 · · ·Ad−1,0, B1 = A12A23 · · ·A01, ...,

Bd−1 = Ad−1,0A01 · · ·Ad−2,d−1.

2

To conclude this section, we show that some positive integral
power of a primitive (nonnegative) matrix is a positive matrix. In
order to do this, we make use of a number-theoretic lemma that
we state without proof.
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Lemma 8.2.6 Let d1, d2, . . . , dk be positive integers whose GCD
equals 1. Then every sufficiently large positive integer can be ex-
pressed as a nonnegative linear combination of d1, d2, . . . , dk. That
is, there exists a positive integer M such that, for each integer
m ≥ M , there are nonnegative integers a1, a2, . . . , ak such that

m = a1d1 + a2d2 + · · ·+ akdk.

Theorem 8.2.7 Let A be a primitive matrix of order n. Then
there exists a positive integer p such that Ap is a positive matrix.

Proof. The matrix Ap is a positive matrix if and only if, in
the digraph D(A), for any ordered pair of not necessarily distinct
vertices u, v there is a walk of length p from u to v. Because A is
primitive, the digraph D(A) is strongly connected and the GCD
of the lengths of its cycles equals 1. Let the distinct cycle lengths
of D(A) be d1, d2, . . . , dk, where 1 ≤ d1, d2, . . . , dk ≤ n. Because
D(A) is strongly connected, we can find a walk γuv from u to v
that contains a vertex of a cycle of each length d1, d2, . . . , dk. Let
the length of such a walk be luv. We can extend γuv by going
around the cycles it meets any number of times. Applying Lemma
8.2.6, we can obtain walks from u to v of any length greater than
or equal to luv + M . Now let p be the maximum of the numbers
luv + M taken over all ordered pairs of vertices u, v. Then there
is a walk of length p from u to v for all u and v. Hence Ap is a
positive matrix. 2

If A is a primitive matrix of order n, then the smallest positive
power of A that gives a positive matrix is called the exponent of
A. It is known that the exponent of A is at most n2−2n+2. This
exponent is achieved by the following matrix of order n with n+1
positive entries:




0 a1 b 0 · · · 0
0 0 a2 0 · · · 0
0 0 0 a3 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · an−1

an 0 0 0 · · · 0




,
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where a1, a2, . . . , an, b are all positive. Note that because clearly
a primitive matrix (or irreducible matrix of order at least 2) has
at least one positive entry per row and column, it follows that if
Ap is a positive matrix, so are all powers of A greater than p. A
power of an imprimitive matrix cannot be positive. This follows,
for instance, from Lemma 8.2.2. Thus we can say that some power
of a nonnegative square matrix is a positive matrix if and only if
the matrix is primitive.

8.3 The Perron–Frobenius Theorem

The spectra of irreducible nonnegative matrices, in particular of
positive matrices, have many special properties, which we present
in this section without proof. First we make a general definition.

Definition 8.3.1 Let A be a matrix of order n with eigenvalues
λ1, λ2, . . . , λn. The spectral radius ρ(A) of A is the maximum of
the absolute values of its eigenvalues:

ρ(A) = max{|λ1|, |λ2|, . . . , , |λn|}.

The spectral radius of A is the radius of the smallest circle centered
at the origin that contains the spectrum of A. This circle is called
the spectral circle of A. The spectral radius of A is zero if A is a
nilpotent matrix and is positive otherwise.

Let A be an irreducible nonnegative matrix of order n. If
n > 1, then the digraph D(A) has a closed walk and hence cannot
be nilpotent; hence A has positive spectral radius. 2

Example 8.3.2 Let

A =




0 1 0
0 0 1
0 0 0


 ,

a nonnegative reducible matrix each of whose three irreducible
components is the zero matrix of order 1. Then A3 = O, and the
eigenvalues of A are 0, 0, 0. Hence the spectral radius of A is 0.
Note that A is the Jordan block J3(0). 2
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The following theorem gives an elementary bound for the spec-
tral radius of a matrix.

Theorem 8.3.3 Let A = [aij ] be a matrix of order n. Let

ri =
n∑

j=1

|aij| (1 ≤ i ≤ n)

be the sum of the absolute values of the entries in row i of A. Then

ρ(A) ≤ max{r1, r2, . . . , rn}.

A similar inequality holds for the sum of the absolute values of the
entries in the columns of A.

Proof. Let λ be any eigenvalue of A and let x = [x1 x2 . . . xn]T

be a corresponding eigenvector: Ax = λx. Let |xk| = max{|xi| :
1 ≤ i ≤ n} > 0 be the largest absolute value of an entry of x.
Then, taking absolute values in the equation

n∑

j=1

akjxj = λxk

and using the triangle inequality, we obtain

|λ||xk| = |λxk| =

∣∣∣∣∣∣

n∑

j=1

akjxj

∣∣∣∣∣∣

≤
n∑

j=1

|akj||xj |

≤ (
n∑

j=1

|akj|)|xk| = rk|xk|.

Cancelling |xk|, we obtain |λ| ≤ rk ≤ max{r1, r2, . . . , rn}. 2

In the next theorem we summarize the most important and
basic consequences of the Perron–Frobenius theory of nonnegative
matrices. In order to avoid the trivial situation of a zero matrix of
order 1 (which is an irreducible nonnegative matrix), we assume
that n > 1.
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Theorem 8.3.4 Let A be an irreducible nonnegative matrix of
order n > 1. Then

(i) The spectral radius ρ(A) of A is an eigenvalue of A, that is,
A has a positive eigenvalue r that is greater than or equal to
the absolute value of every eigenvalue of A. The number r,
which is the same as the spectral radius of A, is sometimes
called the Perron eigenvalue of A.

(ii) The algebraic multiplicity, and so the geometric multiplicity,
of the Perron eigenvalue r equals 1, that is, r is a simple
root of the characteristic polynomial of A.

(iii) Corresponding to the Perron eigenvalue r there is a positive
eigenvector y: Ay = ry, where y is a positive vector. The
vector y, and each of its positive multiples, is called a Perron
vector of A. The matrix A has no other nonnegative eigen-
vectors (corresponding to any eigenvalue) other than positive
multiples of its Perron vector.

(iv) Let h be the index of imprimitivity of A. Then A has exactly
h eigenvalues whose absolute value equals r, that is, there
are exactly h eigenvalues on the spectral circle of A. The h
eigenvalues of A on the spectral circle are the roots of the
equation λh − rh = 0, that is, the numbers

re2πi·j/h (j = 0, 1, . . . , h − 1).

In fact, the entire spectrum of A is mapped into itself under
a rotation of the plane about the origin through an angle of
2π/h.

(v) If A′ is a principal submatrix of A, then ρ(A′) ≤ ρ(A) with
equality if and only if A′ = A.

(vi) If B is a nonnegative matrix with B ≤ A (entrywise), then
ρ(B) ≤ ρ(A) with equality if and only if B = A.
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Example 8.3.5 Let Pn be the permutation matrix whose digraph
D(P ) has n edges arranged in the cycle that goes from 1 to 2, from
2 to 3, ... , from n − 1 to n, and from n to 1. For instance,

P4 =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 .

The matrix Pn is an irreducible nonnegative matrix with spectral
radius equal to 1 and with index of imprimitivity equal to n. Its
n eigenvalues are

e2πi·j/n (j = 0, 1, . . . , n − 1).

When j = 0, we get the Perron eigenvalue 1. A Perron eigenvector
is the vector of all 1’s or, more generally, a constant vector each
of whose entries is a positive number c.

Now let

A =




0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0




.

The matrix A is the adjacency matrix of the complete bipartite
graph K3,3. Then A is irreducible and has an index of imprimitiv-
ity equal to 2, and A2 = 3J3 ⊕ 3J3. The matrix J3 has eigenvalues
3, 0, 0 and hence A2 has eigenvalues 9, 9, 0, 0, 0, 0. The eigenvalues
of A are 3,−3, 0, 0, 0, 0 (because A has trace equal to zero, the
sum of the eigenvalues equals 0). Hence the Perron eigenvalue of
A equals 3 and a Perron vector is [1 1 1 1 1 1]T .

2

By Theorem 8.3.3, if A is an irreducible nonnegative matrix,
then the maximum sum of the elements in a row of A is an upper
bound for the spectral radius of A. Theorem 8.3.4 enables us to
obtain a lower bound as well.
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Theorem 8.3.6 Let A = [aij] be an irreducible nonnegative ma-
trix of order n > 1. Let

ri =
n∑

j=1

aij (1 ≤ i ≤ n).

Then

min{ri : 1 ≤ i ≤ n} ≤ ρ(A) ≤ max{ri : 1 ≤ i ≤ n}.

Equality occurs on the left if and only if it occurs on the right, and
this happens if and only if r1 = r2 = · · · = rn.

Proof. Let y = [y1 y2 · · · yn]T be a Perron vector correspond-
ing to the Perron eigenvalue ρ(A). Then y is a positive vector.
Let

ys = min{y1, y2, . . . , yn} and yt = max{y1, y2, . . . , yn}.

Then ys, yt > 0, and from the equations

n∑

j=1

asjyj = ρ(A)ys and
n∑

j=1

atjyj = ρ(A)yt

we get, similar to the proof of Theorem 8.3.3, that

ysrs ≤ ρ(A)ys and ρ(A)yt ≤ ytrt,

and hence

min{ri : 1 ≤ i ≤ n} ≤ ρ(A) ≤ max{ri : 1 ≤ i ≤ n}. (8.4)

It is straightforward to check that equality holds in either of the
two inequalities in (8.4) if and only if the Perron eigenvector y is
a constant vector. But a constant vector is a Perron eigenvector
if and only if r1 = r2 = · · · = rn, and the theorem now follows. 2

As we have seen, the Perron–Frobenius theory of nonnegative
matrices depends substantially on the zero-nonzero pattern of a
matrix, and this translates to the digraph. For instance, an irre-
ducible matrix becomes a strongly connected digraph; for more on
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this, one may consult [3] and [7]. We conclude this brief introduc-
tion to spectral properties of nonnegative matrices by mentioning
some applications to the adjacency matrices of graphs (more gen-
erally, multigraphs). (The Perron–Frobenius theorem can also be
applied to the adjacency matrix of a multidigraph, but we shall
not go in this direction.)

8.4 Graph Spectra

In the theory of graph spectra (see, for example, [18], [71], [24]),
the results of matrix theory are used for investigations of graphs.
In this section we present some basic properties of graph spectra.
In Sections 10.2 and 10.3 we discuss some applications of graph
spectra in physics and chemistry that also provide motivation for
founding the theory.

We start with the following definition:

Definition 8.4.1 Let G be a multigraph whose vertex set is
{1, 2, . . . , n}, and let A = [aij ] be an adjacency matrix of G. Then
aij equals the number of edges between vertices i and j and hence
A is a nonnegative, symmetric integral matrix of order n. By
Theorem 7.1.9. because A is a real symmetric matrix, each of its
eigenvalues λ1, λ2, . . . , λn is real, and we may choose our notation
so that

λ1 ≥ λ2 ≥ · · · ≥ λn.

The characteristic polynomial of A is called the characteristic poly-
nomial of the multigraph G, and the eigenvalues of A are called
the eigenvalues of the multigraph G. The spectrum of the multi-
graph G is the collection of its n eigenvalues λ1, λ2, . . . , λn. By
Theorem 8.3.4, the eigenvalue r = λ1 is the spectral radius of A
and λn ≥ −r. Thus the spectrum of G lies in the interval [−r, r],
where r is the largest eigenvalue. The eigenvalue r is called the
index of the multigraph G.

We now restrict our attention to graphs G. Thus G has no
loops and at most one edge joins each pair of vertices. The ad-
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jacency matrix A of G is a symmetric matrix of 0’s and 1’s with
only 0’s on the main diagonal.

Example 8.4.2 The complete graph Kn has adjacency matrix
A = Jn − In. All the row and column sums of A equal n − 1
and so, by Theorem 8.3.6, the index of Kn equals n − 1. We have
(−1)In−A = −Jn. Because −Jn has rank 1, this implies that −1 is
an eigenvalue of A with geometric, and thus algebraic, multiplicity
equal to n−1. Thus the eigenvalues of Kn are n−1, 0, . . . , 0 (n−1
zeros).

Now let G be the complete bipartite graph Kp,q. Then an
adjacency matrix is

A =

[
Op Jp,q

Jq,p Oq

]
.

Squaring A we see that

A2 =

[
qJp O
O pJq

]
.

The eigenvalues of A2 are

pq, 0, . . . , 0︸ ︷︷ ︸
p−1

, pq, 0, . . . , 0︸ ︷︷ ︸
q−1

and, because the trace of A equals 0, the eigenvalues of Kp,q are
±√

pq followed by (p + q − 2) 0’s.
If G is a connected bipartite graph with index r, then all cycles

have even length and hence the index of imprimitivity of its adja-
cency matrix (regarded as an adjacency matrix of a digraph and
so with an edge from a vertex u to a vertex v if and only if there
is an edge from vertex v to u as well) is a multiple of 2; hence it
follows from (iv) of Theorem 8.3.4 that the spectrum is symmetric
about zero, in particular, −r is also an eigenvalue of G. If G is
not bipartite, then the index of imprimitivity of G is 1, and hence
−r cannot be an eigenvalue of G.

Theorem 8.4.3 Let G be a graph whose eigenvalues are λ1 ≥
λ2 ≥ . . . ≥ λn, let r = λ1 be the index of G, and let s = λ be the
smallest eigenvalue of G. Then
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(i) The eigenvalues λ1, λ2, . . . , λn are real and satisfy

λ1 + λ2 + · · ·+ λn = 0.

(ii) The number of edges of G equals

λ2
1 + λ2

2 + · · ·+ λ2
n

2
.

(iii) If G has no edges, then all if its eigenvalues equal 0.

(iv) If G has at least one edge, then 1 ≤ r ≤ n−1 and −r ≤ s ≤
−1. We have r = n − 1 if and only if G = Kn and r = 1 if
and only if each connected component of G is either K1 or
K2 (there must be at least one K2 because G has at least one
edge). We also have s = −1 if and only if each connected
component of G is a complete graph, and s = −r if and only
if the connected component of G with the largest index is a
bipartie graph.

Proof. Let A be the adjacency matrix of G. Then A is sym-
metric with trace equal to zero. Hence (i) holds. Then the number
of edges of G equals the number of closed walks of length 2, and
this equals the trace of A2 divided by 2 (because each edge has
two vertices). Because A2 has eigenvalues λ2

1, λ
2
2, . . . , λ

2
n, (ii) holds.

The adjacency matrix of a graph with no edges is a zero matrix,
and (iii) follows. Because the index of Kn is n−1, every subgraph
of Kn not equal to Kn has a strictly smaller index by (v) and (vi)
of Theorem 8.3.4. Because G has at least one edge, K2 is a sub-
graph of G where the spectrum of K2 is 1,−1. The assertions in
(iv) about r now follow easily. Because K2 has least eigenvalue
equal to −1, it follows from the interlacing theorem for symmet-
ric matrices [47] that q ≤ −1 with equality if and only if each
connected component is a complete graph. That q ≥ −r follows
since the index of G is at most r and is the largest eigenvalue in
absolute value. That q = −r if and only if the connected compo-
nent of largest index is bipartite follows from the last assertion in
Example 8.4.2. 2
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When considering determinants of symmetric matrices, in par-
ticular adjacency matrices of graphs, it is useful to introduce a
concept that is related to linear subdigraphs.

Let G be a graph. A subgraph of G whose components are
circuits or graphs K2 is called a basic figure of G. A basic figure
is a spanning basic figure if it contains all vertices of G. If U is
a basic figure, then p(U) denotes the number of components and
c(U) the number of circuits of U .

Lemma 8.4.4 Let G be a graph on n vertices with adjacency ma-
trix A. Then

det A = (−1)n
∑

(−1)p(u)2c(U),

where the summation extends over all spanning basic figures of G.

Proof. The Coates digraph D(A∗) of A is obtained from G by
replacing each edge of G with a cycle of two vertices. Because all
nonzero entries of A equal 1, the weight of any linear subdigraph of
D(A∗) is equal to 1. Each linear subdigraph of D(A∗) can be ob-
tained from a spanning basic figure of G by replacing each isolated
edge (i.e., component equal to K2) by a cycle of two vertices, and
by introducing an orientation to each edge of each circuit in one
of the two possible ways so that we get a cycle. Therefore, start-
ing from a spanning basic figure U , we can construct 2c(U) linear
subdigraphs. Now formula (4.1), which defines the determinant of
a matrix, reduces to the formula in the lemma. 2

We now obtain a formula for the characteristic polynomial of
a graph.

Theorem 8.4.5 The characteristic polynomial of a graph G on n
vertices is given by

n∑

i=0

aiλ
n−i,

where
ai =

∑

Ui

(−1)p(Ui)2c(Ui), (i = 0, 1, . . . , n)

and the summation extends over all basic figures of G with i ver-
tices.
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Proof. If we apply formula (7.2) to the adjacency matrix
A of G, we get that ai is equal to (−1)i times the sum of the
determinants of all the principal submatrices of A of order i. The
result now follows from Lemma 8.4.4. 2

In the case of a forest, in particular a tree, we obtain a simpler
expression for the characteristic polynomial.

Corollary 8.4.6 The characteristic polynomial of a forest W with
n vertices is equal to

[n
2 ]∑

k=1

(−1)km(W, k)λn−2k, (8.5)

where m(W, k) is the number of k-matchings in W .

Proof. In a forest, basic figures with an odd number of vertices
do not exist. For even i = 2k, a basic figure with i vertices is just
a k-matching. The corollary now follows from Theorem 8.4.5. 2

8.5 Exercises

1. Explain how the Frobenius normal form of a permutation
matrix of order n is determined.

2. Determine the Frobenius normal form of the matrix




0 1 0 0 0 1 0
0 0 0 0 1 0 0
0 0 3 0 0 0 1
0 1 0 0 2 0 0
0 0 0 1 0 0 2
1 0 0 0 0 0 0
0 0 2 0 0 0 0




.
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3. Determine the Frobenius normal form of the matrix




0 0 0 1 0 1
1 2 2 0 0 1
1 0 1 0 1 1
2 0 0 0 0 3
0 3 1 1 0 0
1 0 0 0 0 3




.

4. Show that the following matrices are primitive and determine
their exponents:




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 1
1 0 0 0 0 0




and




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 1
1 1 0 0 0 0




.

5. Show that a primitive matrix of order n ≥ 2 contains at least
n + 1 positive entries.

6. Show that if A is primitive, so is Ak for every positive integer
k.

7. Let

A =




0 1 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0




.

Construct the digraph D(A) and show that A is primitive
with exponent 17.

8. Let A be an irreducible nonnegative matrix with at least
one positive diagonal element. Prove that A is primitive
with exponent at most 2(n − 1).
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9. Use the examples below to show that a nonnegative reducible
matrix may or may not have a positive eigenvector:

[
1 1
0 0

]
,

[
1 0
1 0

]
.

10. Determine the Perron root and Perron eigenvector of the
matrix [

2 3
1 2

]
.

11. Determine the eigenvalues of the graph obtained from the
complete graph K5 by removing an edge.

12. Prove that the largest eigenvalue of a regular graph of degree
r is equal to r.

13. Let G be a regular graph of degree r with characteristic
polynomial p(λ). Determine the characteristic polynomial
of the complement G of G obtained by joining two vertices
by an edge in G if and only if they are not joined in G.

14. Check whether the graphs K1,4 and C4 ∪ K1 have the same
spectrum.1

1Nonisomorphic graphs that have the same spectrum are called cospectral

graphs.



Chapter 9

Additional Topics

In this chapter we first introduce some special matrix products
(the tensor product and Hadamard product) and prove some of
their properties. In Section 9.2, given a square matrix, we show
how to determine regions in the complex plane that are sure to
contain all of its eigenvalues. In Section 9.3, we introduce an im-
portant combinatorial counting function, called the permanent,
which, although similar to the determinant in definition, is noto-
riously difficult to compute in general.

9.1 Tensor and Hadamard Product

Let A = [aij ] and B = [bij ] be matrices of sizes m by p and q by n,
respectively. If the number p of columns of A equals the number
q of rows of B, then, as we know, A and B can be multiplied to
give an m by n matrix whose (i, j)-entry equals

p∑

k=1

aikbkj (1 ≤ i ≤ m; 1 ≤ j ≤ n).

There are other special products of matrices that are often useful
in applications.

Definition 9.1.1 The tensor product (also called the Kronecker
product) of A and B in this order is the mq by pn matrix A ⊗ B

191
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obtained from A by replacing each entry aij of A with the q by n
matrix

aijB (1 ≤ i ≤ m; 1 ≤ j ≤ p).

The tensor product has a natural partitioned form. If A and B
have the same size, that is, m = q and n = p, then the Hadamard–
Schur product or entrywise product is the m by n matrix

A ◦ B = [aijbij ]

obtained by multipying corresponding entries of A and B.

Example 9.1.2 Let

A =

[
2 6 3
4 7 5

]
and B =

[
1 4
5 3

]
.

Then

A ⊗ B =

[
2B 6B 3B
4B 7B 5B

]

=




2 8 6 24 3 12
10 6 30 18 15 9
4 16 7 28 5 20
20 12 35 21 25 15


 .

If

C =

[
4 −3 5

−2 1 6

]
,

then

A ◦ B =

[
2(4) 6(−3) 3(5)

4(−2) 7(1) 5(6)

]
=

[
8 −18 15

−8 7 30

]
.

Assume now that A = [aij ] and B = [bkl] are square matrices
of orders m and n, respectively. Let the vertices of the digraph
D(A) of A be {1, 2, . . . , m}, and let the vertices of the digraph
D(B) be {1, 2, . . . , n}. Then the digraph D(A ⊗ B) has vertices

{(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, (9.1)
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with an edge from a vertex (i, j) to a vertex (k, l) if and only if
there is an edge from i to k in D(A) and an edge from j to l in
D(B). It is natural to label the rows and columns of A ⊗ B with
the ordered pairs given in (9.1). With these labels, the rows and
columns of A ⊗ B occur in the order

(1, 1), . . . , (1, n), (2, 1), . . . , (2, n), . . . , (m, 1), . . . , (m, n).

Moreover, the entry c(i,j),(k,l) in position ((i, j), (k, l)) is given by

c(i,j),(k,l) = aikbjl.

The digraph D(A⊗B) is the tensor product (or Kronecker product)
of the digraphs D(A) and D(B). As a weighted digraph, the edge
from (i, j) to (k, l) has weight aijbkl, the product of the weights of
the edge from i to k in D(A) and the edge from j to l in D(B).

Although A ⊗ B and B ⊗ A have the same size, it is not true
in general that A ⊗ B = B ⊗ A. For example, if A is the identity
matrix and J2 is the matrix of order 2 each of whose entries equals
1, then

I2 ⊗ J2 =




1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1


 6= J2 ⊗ I2 =




1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1


 .

Although A⊗B 6= B ⊗A in general, the following theorem about
their digraphs does hold.

Theorem 9.1.3 There exists a permutation matrix P of order
mn such that

P (A ⊗ B)P T = B ⊗ A.

Equivalently, the digraphs D(A⊗B) and D(B⊗A) are isomorphic
with the isomorphism preserving weight.

Proof. In the weighted digraph D(A ⊗ B) there is an edge
from (i, j) to (k, l) of weight aikbjl. Similarly, in the weighted
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digraph D(B ⊗ A) there is an edge from (j, i) to (l, k) of weight
bjlaik = aikbjl. Thus the bijection

((i, k), (j, l)) → ((j, l), (i, k))(1 ≤ i, j ≤ m, 1 ≤ k, l ≤ n)

is an isomorphism of the two weighted digraphs. 2

In the following theorem we collect a number of elementary
identities for the tensor product.

Theorem 9.1.4 If A, B, and C are matrices of appropriate sizes
in order to carry out the indicated operations, the following hold:

(i) (associative rule) A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C.

(ii) (distributive rule) A ⊗ (B + C) = A ⊗ B + A ⊗ C.

(iii) (distributive rule) (A + B) ⊗ C = A ⊗ C + B ⊗ C.

(iv) (transpose rule) (A ⊗ B)T = AT ⊗ BT .

(v) (product rule) (A ⊗ B)(C ⊗ D) = AC ⊗ BD.

Proof. Identities (i)–(iv) can be verified in a straightforward
manner. We now verify (v). In order for (v) to make sense, the
number of columns of A has to equal the number of rows of C,
and the number of columns of B has to equal the number of rows
of D.

The entry in position ((i, j), (k, l)) of (A ⊗ B)(C ⊗ D) equals
∑

p

∑

q

aipbjq · cpkdql =
∑

p

aipcpk ·
∑

q

bjqdql,

and this is the same as the entry in the ((i, j), (k, l)) position of
AC ⊗ BD. 2

Note that if A and B are square matrices of orders m and n,
respectively, then (v) implies that

A ⊗ B = (A ⊗ In)(Im ⊗ B).

The product rule (v) in Theorem 9.1.4 has some useful and,
in some cases, surprising consequences for the tensor product of
square matrices.
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Theorem 9.1.5 Let A and B be square matrices of orders m and
n, respectively.

Then the following hold:

(i) If A and B are invertible, then A⊗B is invertible and (A⊗
B)−1 = A−1 ⊗ B−1.

(ii) If λ1, λ2, . . . , λm are the eigenvalues of A and µ1, µ2, . . . , µn

are the eigenvalues of B, then the eigenvalues of A ⊗ B are
the mn products of the eigenvalues of A with the eigenvalues
of B:

λiµj (1 ≤ i ≤ m, 1 ≤ j ≤ n).

(iii) det(A ⊗ B) = (det A)n(det B)m.

Proof. To establish (i) we use the product rule for tensor
products to compute

(A ⊗ B)(A−1 ⊗ B−1) = (AA−1) ⊗ (BB−1) = Im ⊗ In = Imn.

Thus A−1 ⊗ B−1 is the inverse of A ⊗ B. It is easy to establish
that if λ is an eigenvalue of A and µ is an eigenvalue of B, then
λµ is an eigenvalue of A ⊗ B. We simply choose an eigenvector
u 6= 0 of A for λ and an eigenvector v 6= 0 of B for µ. Then u⊗ v
is not the zero vector and, by the product rule,

(A ⊗ B)(u ⊗ v) = (Au) ⊗ (Bv) = (λu) ⊗ (µv) = λµ(u ⊗ v).

In order to know that the entire collection of eigenvalues of A⊗B
is as given in (ii) (that is, that the multiplicities work out), we use
the Jordan canonical forms JA and JB of A and B, respectively.
There exist invertible matrices P and Q such that P−1AP = JA

and QBQ−1 = JB, and, by (i), P⊗Q is invertible with (P⊗Q)−1 =
P−1 ⊗ Q−1. Using the product rule, we get that

(P ⊗ Q)−1(A ⊗ B)(P ⊗ Q) = (P−1 ⊗ Q−1)(A ⊗ B)(P ⊗ Q)

= (P−1AP ) ⊗ (Q−1BQ)

= JA ⊗ JB.
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Now JA is a triangular matrix with λ1, λ2, . . . , λm on its main
diagonal, and JB is a triangular matrix with µ1, µ2, . . . , µn on its
main diagonal. The matrix JA ⊗ JB is then a triangular matrix
with the mn numbers λiµj (1 ≤ m ≤ n, 1 ≤ j ≤ n) on its main
diagonal. Because the eigenvalues of a triangular matrix are its
diagonal entries, this establishes (ii).

To prove (iii), we simply note that det A = λ1λ2 · · ·λm and
det B = µ1µ2 · · ·µn, and use (ii) to conclude that

det A ⊗ B =
m∏

i=1

n∏

j=1

λiµj

= (λ1λ2 · · ·λm)n(µ1µ2 · · ·µn)m

= (det A)n(det B)m.

2

We only briefy discuss the Hadamard–Schur product A ◦ B =
[aijbij ] of two square matrices A = [aij ] and B = [bij ] of order n.

The matrix A◦B is a principal submatrix of the tensor product
A⊗B. In fact, using our labeling of the rows and columns of A⊗B,
if we let K = {(1, 1), (2, 2), . . . , (n, n)}, then A ◦B is the principal
submatrix (A⊗B)[K, K] of A⊗B. The weighted digraph D(A◦B)
is obtained from the weighted digraphs of A and B by multiplying
the corresponding weights. In particular, there is an edge from
vertex i to vertex j of nonzero weight, if and only if there is an
edge from i to j of nonzero weight in both D(A) and D(B). In
unweighted terms, the edges of D(A ◦ B) are the edges common
to D(A) and D(B).

9.2 Eigenvalue Inclusion Regions

Usually the eigenvalues of a square matrix cannot be determined
exactly and, as a result, it is useful to determine regions in the
complex plane that include all the eigenvalues and which can easily
be computed. The first theorem giving an eigenvalue inclusion
region is the theorem of Gers̆gorin proved in 1931. To state this
theorem we require a few preliminaries.
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Let A = [aij ] be a matrix of order n. Let

ri(A) =
∑

j 6=i

|aij| (i = 1, 2, . . . , n)

be the sum of the absolute values of the entries in row i with the
entry aii on the main diagonal deleted. In addition, let

Γi(A) = {z : z a complex number, |z − aii| ≤ ri(A)}

be the disk in the complex plane centered at aii with radius ri(A),
called the ith Gers̆gorin disk of A. Finally, let

Γ(A) = ∪n
i=1Γi(A)

be the union of all the Gers̆gorin disks of A. Then Γ(A) is a union
of disks in the complex plane and is called the Gers̆gorin region of
A.

Example 9.2.1 Let

A =

[
2 4
3 i

]
.

Then Γ1(A) is the disk centered at the point (2, 0) on the real axis
with radius 4 and Γ2(A) is the disk centered at the point (0, 1) on
the imaginary axis with radius 3. Now let

A =




1 3 5
2 0 4

−1 3 −2


 .

Then Γ1(A), Γ2(A), Γ3(A) are, respectively, the disks centered at
(1, 0), (0, 0), and (−2, 0) with radii 8, 6, and 4, respectively. 2

The theorem of Gers̆gorin is that the Gers̆gorin region of a
matrix contains all its eigenvalues.

Theorem 9.2.2 Let A = [aij ] be a matrix of order n. Then all
the eigenvalues of A are contained in its Gers̆gorin region Γ(A) =
∪n

i=1Γi(A).
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Proof. Let λ be an eigenvalue of A and let x = [x1 x2 . . . xn]T

be an eigenvector of A corresponding to λ. Then Ax = λx implies
that

n∑

j=1

aijxi = λxi (i = 1, 2, . . . , n). (9.2)

Because x is an eigenvector, x has an entry different from zero.
We choose k so that

|xk| = max{|x1|, |x2|, . . . , |xn|}.

Then |xk| > 0, and we consider the kth equation in (9.2) and
obtain

n∑

j=1

akjxj = λxk.

Rewriting this equation by grouping together the two coefficients
of xk, we get

(λ − akk)xk =
∑

j 6=k

akjxj .

We now take the absolute value of both sides, and, using the tri-
angle inequality, we obtain

|λ − akk||xk| = |
∑

j 6=k

akjxj |

≤
∑

j 6=k

|akj||xj |

≤
∑

j 6=k

|akj||xk|

= rk(A)|xk|.

Because |xk| > 0, we obtain upon cancellation that

|λ − akk| ≤ rk(A).

Thus λ is in the kth Gers̆gorin disk, and hence in the Gers̆gorin
region. 2

As a corollary, we obtain an upper bound on the largest abso-
lute value of an eigenvalue of a matrix.
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Corollary 9.2.3 Let A = [aij ] be a matrix of order n. Let

r(A) = max{
n∑

j=1

|aij| : 1 ≤ i ≤ n},

the maximum of the sum of the absolute values of the entries in
each row of A. Then all the eigenvalues of A are contained in the
disk

{z : z a complex number, |z| ≤ r(A)}.

Proof. Let λ be an eigenvalue of A. By Theorem 9.2.2, there
exists a k such that λ is in the kth Gers̆gorin disk:

|λ − akk| ≤ rk(A) =
∑

i6=k

|aki|.

Because for complex numbers x and y, |x|−|y| ≤ |x−y|, we obtain

|λ| − |akk| ≤
∑

i6=k

|aki|,

that is,

|λ| ≤
n∑

i=1

|aki ≤ r(A).

2

Theorem 9.2.2 implies a result that gives a sufficient condition
for the invertibility of a matrix. We state this as another corollary.

Call a matrix A = [aij ] diagonally dominant provided

|aii| > ri(A) =
∑

j 6=i

|aij |. (9.3)

Corollary 9.2.4 Let A = [aij ] be a diagonally dominant matrix
of order n. Then A is invertible.

Proof. We know that a matrix is invertible if and only if 0 is
not an eigenvalue of A. The diagonal dominance condition (9.3)
implies that none of the Gers̆gorin disks

Γi(A) = {z : z a complex number, |z − aii| ≤ ri(A)}



200 CHAPTER 9. ADDITIONAL TOPICS

contains the complex number 0. Because by Theorem 9.2.2 the
eigenvalues of A are contained in the union of these Gers̆gorin
disks, 0 is not an eigenvalue of A and A is invertible. 2

It is natural to ask about the boundary of the Gers̆gorin re-
gion Γ(A) of A. We state without proof the following theorem of
Taussky.

Theorem 9.2.5 Let A be an irreducible matrix of order n, that
is, the digraph D(A) is strongly connected. Then, if an eigenvalue
λ lies on the boundary of the the Gers̆gorin region, then λ is on
the boundary of every one of the n Gers̆gorin disks, that is,

|λ − aii| = ri(A) (i = 1, 2, . . . , n).

We now turn to showing how knowledge of the digraph of a
matrix can be used to obtain refined eigenvalue inclusion regions.
We need a few preliminaries.

Let D be a digraph with vertex set {1, 2, . . . , n}, where there is
a weight wi associated with each vertex i (1 ≤ i ≤ n). Thus D is
a vertex-weighted digraph. Let u be a vertex of D and let (u, v) be
an edge leaving u. Then (u, v) is a dominant edge from u provided
that for each edge (u, x) leaving u, we have wv ≥ wx. Thus the
edge (u, v) is a dominant edge from u provided there is no edge
from u to a vertex of larger weight than the weight of v. Now
consider a cycle γ = a1, a2, . . . , ak, a1. Then γ is a dominant cycle
in D provided that each of its edges (a1, a2), . . . , (ak−1, ak), (ak, a1)
is a dominant edge.

Lemma 9.2.6 Let D be a vertex-weighted digraph such that each
vertex has a positive outdegree. Then D has a dominant cycle.

Proof. We start at any vertex x1 of D and choose a dominant
edge (x1, x2) leaving x1. Then we choose a dominant edge (x2, x3)
leaving x2. We continue like this until we first repeat a vertex, say
vertex xk, thereby obtaining a cycle

γ = xk, xk+1, . . . , xp = xk.
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Then γ is a dominant cycle. 2

Now let A = [aij ] be a matrix of order n and consider the
quantities

ri(A) =
∑

j 6=i

|aij | (i = 1, 2, . . . , n).

Let D0(A) be the digraph obtained by removing all loops (cycles
of length 1) from the digraph D(A). We regard D0(A) as a vertex-
weighted digraph where the weight of each vertex i equals ri(A).
We may also regard D0(A) as a vertex-weighted digraph where the
weight of vertex i is |aii| (i = 1, 2, . . . , n). We then have the follow-
ing theorem, which is a generalization of Corollary 9.2.4. (We shall
reverse the order above in which the eigenvalue inclusion region
given by Theorem 9.2.2 gave a condition (diagonal dominance) for
a matrix to be invertible by proving first an invertibility theorem
and obtaining from it an eigenvalue inclusion region.)

If γ is a cycle of a vertex-weighted digraph, then by
∏

γ wi we
mean the product of the weights of all the vertices i of γ.

Theorem 9.2.7 Let A = [aij] be a matrix of order n each of
whose entries on the main diagonal is different from zero. Assume
that ∏

γ

|aii| >
∏

γ

ri(A) (9.4)

for all cycles γ of D(A) of length at least 2. Then A is an invertible
matrix.

Proof. The graphs D(A) and D0(A) have the same cycles
of length at least 2. We show that A is invertible by showing
that det A 6= 0. The determinant of a matrix is the product of
the determinants of its irreducible components. Because we are
assuming that the entries on the main diagonal of A are different
from zero, we assume that A is an irreducible matrix of order
n ≥ 2; thus D0(A) is a strongly connected digraph with at least
two vertices.

Assume to the contrary that det A = 0. Then the rank of A is
strictly less than n and there is a nonzero vector x = [x1 x2 . . . xn]
such that Ax = 0. Let I = {i : xi 6= 0} and let A′ = A[I, I] be
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the principal submatrix of A obtained by deleting those rows and
columns whose index does not belong to I. Let x′ be obtained
from x in a similar way. Then each coordinate x′

j of x′ is different
from zero and

A′x′ = 0. (9.5)

Because each entry on the main diagonal of A′ is nonzero, (9.5)
implies that each vertex of D0(A

′) has an edge leaving it. We
weight the vertices of D0(A

′), that is, those i in I, by |xi| and apply
Lemma 9.2.6 to obtain a dominant cycle γ = i1, i2, . . . , ip, ip+1 = ip
of D0(A

′) of length p ≥ 2. From (9.5) we get that for 1 ≤ j ≤ p,

aij ijxij = −
∑

k∈I\{ij}

aijkxk.

Using the triangle inequality and the fact that γ is a dominant
cycle in D0(A

′) we obtain

|aijij ||xij | ≤
∑

k∈I\{ij}

|aijk||xk|

≤



∑

k∈I\{ij}

|aijk|


 |xik+1
|

≤ rij (A)|xij+1
|.

Multiplying the last inequalities for j = 1, 2, . . . , p we obtain
∏

γ

|aii|
∏

γ

|xj | ≤
∏

γ

rj(A)
∏

γ

|xj |,

and because xj 6= 0 for j in I,
∏

γ

|aii| ≤
∏

γ

rj(A).

This last inequality contradicts (9.4), and the proof is complete.
2

We remark that if the matrix A in Theorem 9.2.7 is irreducible,
the assumption that the entries on the main diagonal are different
from zero is implied by (9.4). This is because D(A) is then strongly
connected and every vertex is on a cycle.
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We now obtain the eigenvalue inclusion region corresponding
to Theorem 9.2.7. For simplicity, we assume that our matrix is an
irreducible matrix of order at least 2. For each cycle γ of D(A) of
length at least 2, we define the lemniscate

Zγ =

{
z :

∏

γ

|z − aii| ≤
∏

γ

ri(A)

}
.

Theorem 9.2.8 Let A = [aij] be an irreducible matrix of order
n ≥ 2. Then all the eigenvalues of A are included in the region of
the complex plane specified by the union of Zγ taken over all cycles
γ of D(A) of length at least 2.

Proof. Let λ be an eigenvalue of A and consider the singular
matrix λIn − A. The graphs D(A) and D(λIn − A) have the
same cycles of length at least 2, and ri(A) = ri(λIn − A) for each
i = 1, 2, . . . , n. Because the matrix λIn − A is singular, it follows
from Theorem 9.2.7 that there is a cycle γ of D(A) of length at
least 2 such that ∏

γ

|λ − aii| ≤
∏

γ

ri(A).

Thus λ is in Zγ and the theorem holds. 2

Special cases of Theorems 9.2.7 and 9.2.8 are contained in the
following theorem of Brauer. We leave it as an exercise to provide
the proof.

Corollary 9.2.9 Let A = [aij ] be a matrix of order n ≥ 2. If

|aiiajj| > ri(A)rj(A) (1 ≤ i < j ≤ n),

then A is invertible. The eigenvalues of A are all contained in the
region of the complex plane specified by the union of the ovals

Zij = {z : |z − aii‖z − ajj| ≤ ri(A)rj(A) (1 ≤ i < j ≤ n).

By use of the digraph, we were able to give a substantial gen-
eralization of the Gers̆gorin inclusion region for the eigenvaues of
a matrix. One can consult [7] and [78] for a lot more on this topic,
including proofs of results not given here.
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9.3 Permanent and SNS-Matrices

Let A = [aij ] be a matrix of order n. The definition of the perma-
nent of A follows the classical definition of the determinant given
in Theorem 4.4.2 but with a simplification. Ironically, this sim-
plification in the formula makes it more difficult to compute the
permanent.

The permanent of A is the number given by the formula

per A =
∑

(j1,j2,...,jn)∈Sn

a1j1a2j2 · · ·anjn
, (9.6)

where the summation is over all permutations (j1, j2, . . . , jn) of
{1, 2, . . . , n}. Thus, unlike the determinant, we don’t put a minus
sign in front of some of the terms in the summation in (9.6). In
the permanent we compute all possible products of n entries of
A provided these n entries come from different rows and different
columns. As a result, the permanent does not change if we per-
mute the rows of A and permute the columns of A. In addition,
the permanent does not change when a matrix is transposed. An
equivalent way to define the permanent uses the weighted Coates
digraph D∗(A). Recall that, according to Definition 4.1, the de-
terminant of A is given by

det A = (−1)n
∑

L∈L(A)

(−1)c(L)w(L)

where the summation is over all linear subdigraphs of D∗(A) and
the weight w(L) of L equals the product of the weights of its edges.
The corresponding formula for the permanent is the simpler

perA =
∑

L∈L(A)

w(L).

We record the basic, easily verifiable, properties of the perma-
nent in the next lemma and leave their verification to the reader.

Lemma 9.3.1 The following properties hold for a matrix A of
order n:
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(i) per PAQ = per A for all permutation matrices P and Q of
order n.

(ii) per AT = per A.

(iii) per cA = cnper A for all scalars c.

(iv) If A has a row (or column) of all zeros, then per A = 0.

(v) If some row (or some column) of A is multiplied by a scalar
c, then the permanent of the resulting matrix equals cperA.

(vi) per P = 1 for every permutation matrix P of order n. In
particular, per In = 1.

(vii) If A = B ⊕ C, where B and C are square matrices, then
per A = per Bper C. More generally, if

A =

[
B O
X C

]
,

where A and B are square matrices, then per A =
per BperC.

(viii) (Laplace expansion by a row or column)

perA =
n∑

j=1

aijperAi,j (j = 1, 2, . . . , n)

and

perA =
n∑

i=1

aijper Ai,j (i = 1, 2, . . . , n).

(Recall that Ai,j is the matrix of order n − 1 obtained from
A by striking out row i and column j.) 2

Example 9.3.2 Let

A =

[
a b
c d

]
.
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Then per A = ad + bc. Let

B =




a b 0
0 c d
e 0 f


 .

Then it is easy to see that in the permanent of B there are at most
two nonzero terms, namely, acf and bde. Hence per B = acf +bdf .
Now let

C =




1 2 2
3 1 1
1 2 1


 .

Then each of the 3! = 6 terms in the permanent of C is nonzero,
and adding them we obtain that

perC = 1 + 2 + 12 + 2 + 6 + 2 = 25.

Let D be the matrix obtained from C by adding the second row
to the first row. Then

D =




4 3 3
3 1 1
1 2 1


 .

A simple calculation shows that per D = 45. This example shows
that the elementary row operation of adding a multiple of one row
to another row can change the value of the permanent. In the
case of the determinant, we have det D = det C. The fact that
such elementary row (or column) operations can alter the perma-
nent leads to the general computational difficulty in evaluating the
permanent. 2

Let A = [aij] be a square matrix of order n. Recall that the
König digraph G(A) of A has n black vertices corresponding to the
rows of A and n white vertices corresponding to the columns of A,
and an edge from black vertex i to white vertex vertex j of weight
aij . Recall (see Section 4.4) also that a collection F of n edges, one
leaving each black vertex and simultaneously one entering each
white vertex, is a 1-factor (or perfect matching) of G(A) and its
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weight w(F ) is the product of weights of these n edges. If F(A)
denotes the collection of all 1-factors of G(A), then it follows that

per A =
∑

F∈F(A)

w(F ),

the sum of the weights of all the 1-factors of G(A).
As usual, when aij = 0, we can consider that there is no edge

from black vertex i to white vertex j, that is, weight equal zero
is interpreted as the absence of an edge, and thus edges of weight
zero are not part of any 1-factor. Now consider the special case
where each entry of A equals 0 or 1, that is, A is a (0, 1)-matrix.
Then w(F ) = 0 or 1 and so, with our convention, the permanent
of A counts the number of 1-factors of A. Thus the permanent is
a counting function and, indeed, one of some significance.

Another way to view the permanent of a (0,1)-matrix A is
as the number of permutation matrices P of order n such that
P ≤ A (entrywise). This is so because each such permutation
matrix P ≤ A corresponds to a 1-factor of weight 1 and viceversa.

Example 9.3.3 Let A be the matrix of order n having 0’s ev-
erywhere on its main diagonal and 1’s everywhere off the main
diagonal. Thus A = Jn − In, where Jn is the matrix of order n
of all 1’s. The permutation matrices P with P ≤ A (entrywise)
correspond to those permutations i1i2 . . . in of {1, 2, . . . , n} such
that ik 6= k for k = 1, 2, . . . , n. Such permutations are called de-
rangements (of order n) since in such a permutation matrix, no
integer is in its natural position (the natural position for integer
k is position k, and this is precluded under the assumption that
ik 6= k). The number of derangements is denoted by Dn and thus
we have per (Jn − In) = Dn. We easily calculate that D1 = 0,
D2 = 1, and D3 = 2 (the permutations 2, 1, 3 and 3, 1, 2 are the
derangements of order 3). The inclusion-exclusion formula (see
Section 1.3) can be used to count the number of permutations of
order n as follows. Let Xk be the set of permutations i1i2 . . . in of
{1, 2, . . . , n} in which ik = k (k = 1, 2, . . . , n). Then the derange-
ments are those permutation in the intersection X1∩X2∩· · ·∩Xn

of the complements of the Xk’s in the set of all permutations of
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{1, 2, . . . , n}. Thus

per (Jn − In) = |X1 ∩ X2 ∩ · · · ∩ Xn|

=
n∑

k=0

∑

K⊂{1,2,...,n};|K|=k

(−1)|K|| ∩i∈K Xi|

=
n∑

k=0

(−1)k

(
n

k

)
|X1 ∩ X2 ∩ · · · ∩ Xk|

=
n∑

k=0

(−1)k

(
n

k

)
(n − k)!

=
n∑

k=0

(−1)k n!

k!

= n!
n∑

k=0

(−1)k 1

k!
.

Here we have used the fact that | ∩i∈K Xi| depends only on the
cardinality k of K and thus equals |X1 ∩ X2 ∩ · · · ∩ Xk|. Since
|X1 ∩ X2 ∩ · · · ∩ Xk| counts the number of permutations of the
form 12 . . . kik+1 . . . in, its value is (n− k)!. As an example of this
formula, we calculate that

D4 = per (J4 − I4) = 4!
(
1 − 1

1!
+

1

2!
− 1

3!
+

1

4!

)
= 9.

The resemblance of the permanent to the determinant natu-
rally leads one to the question of whether it might be possible to
use the determinant in order to calculate the permanent.

Example 9.3.4 Let

A =

[
a b
c d

]
,

and let A′ be the matrix obtained from A by attaching a minus
sign to the entry b:

A′ =

[
a −b
c d

]
.

Then det A′ = ac− (−b)d = ac + bd = per A. Thus, attaching the
minus sign to b converts the determinant into the permanent; the
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determinant of the resulting matrix A′ equals the permanent of
the original matrix A, no matter what the values of a, b, c, and d.
In other words, the identity det A′ = per A is an algebraic identity.
Now let

A =




a b c
d e f
g h i


 .

Can we attach minus signs to some of the entries of A in order
to convert the determinant into the permanent? The matrix of
order 3 has the property that, in the classical formula for the de-
terminant, both the even permutations and the odd permutations
partition the entries of A:

(even permutation terms) aei, bfg, and cdh; (9.7)

(odd permutation terms) ceg, bdi, and ahf. (9.8)

If we are to convert the determinant into the permanent, then the
terms in (9.7) must each have an even number of minus signs in
them while the terms in (9.8) must each have an odd number of
signs in them. Since the sum of three odd numbers is odd and the
sum of three even numbers is even, this is impossible. Thus the
determinant of the general matrix of order 3 cannot be converted
into its permanent.

Now suppose we assume that c is identically zero. Thus A now
takes the form

A =




a b 0
d e f
g h i


 ,

and the permanent of A satisfies

perA = aei + bfg + bdi + ahf.

Let

A′ =




a −b 0
d e −f
g h i


 .

Then calculating the determinant of A′ gives the algebraic identity

det A′ = aei + bfg + bdi + ahf = per A. (9.9)
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Thus, affixing minus signs to b and f converts the determinant
into the permanent. Because (9.9) is an algebraic identity, we can
reformulate our discussion as follows. Let

B =




1 1 0
1 1 1
1 1 1


 .

There are four nonzero terms in the determinant and permanent
of B. All these terms in the permanent have value 1. In the deter-
minant, two have value 1 (corresponding to the even permutations
1, 2, 3 and 2, 3, 1) and two have value −1 (corresponding to the odd
permutations 2, 1, 3 and 1, 3, 2). To convert the determinant into
the permanent we need to change some of the 1’s to −1’s in order
that all the nonzero terms in the determinant now have value 1
(and so no cancellation occurs). This is accomplished with the
matrix

B′ =




1 −1 0
1 1 −1
1 1 1


 ,

where
det B′ = 4 = per B.

The examples above lead to the following definition.

Definition 9.3.5 Let A′ be a (0, 1,−1)-matrix, that is, a matrix
each of whose entries is 0, 1, or −1 with at least one nonzero
term in its classical determinant expansion. Let A be the matrix
obtained from A′ by replacing each of its −1’s with 1’s. Then A′

is a sign-nonsingular matrix (abbreviated SNS-matrix) provided
that det A′ = ±per A. If A′ is an SNS-matrix, then, in evaluating
the determinant of A′ using the classical expansion, there can be
no cancellation of nonzero terms; either all the nonzero terms equal
1 (so det A = per A) or all the nonzero terms have value −1 (so
det A = −per A).

Proceeding in the other direction we get the following. Start
with a (0, 1)-matrix A = [aij ] of order n such that the permanent
of A is not zero (the König digraph has a perfect matching). If an
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SNS-matrix A′ can be obtained from A by changing some of the
1’s of A to −1’s, then det A′ = ±per A, and we have succeeded in
converting the determinant into the permanent, or we might better
say, that we have succeeded in converting the permanent of A into
a determinant. We note that in case we get det A′ = −per A, then
by multiplying the entries of A′ in row 1 by −1, we obtain an
SNS-matrix A′′ with det A′′ = per A. As a result we can ignore,
with no loss in generality, the possibility that det A′ = −per A.

Example 9.3.6 The following matrices are SNS-matrices:

[
1 −1
1 1

]
,




1 −1 0
1 1 −1
1 1 1


 ,




1 −1 0 0
1 1 −1 0
1 1 1 −1
1 1 1 1


 .

The example of order 4 shows that the permanent of the matrix




1 1 0 0
1 1 1 0
1 1 1 1
1 1 1 1




can be converted into a determinant; the permanent equals 8.
Moreover, because we get no cancellation of nonzero terms in the
determinant, we obtain the algebraic identity that for

B =




a b 0 0
c d e 0
f g h i
j k l m




and

B′ =




a −b 0 0
c d −e 0
f g h −i
j k l m


 ,

we have
det B′ = per B.
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We collect some elementary properties of SNS-matrices in the
following lemma.

Lemma 9.3.7 Let A be an SNS-matrix of order n. Then the
following hold:

(i) A has a nonzero term in its classical determinant expansion.

(ii) AT is an SNS-matrix.

(iii) If P and Q are permutation matrices of order n, then PAQ
is an SNS-matrix.

(iv) Every matrix obtained from A by multiplying some rows and
columns by −1’s is an SNS-matrix. Equivalently, if D1 and
D2 are diagonal matrices with only 1’s and −1’s on the main
diagonal, then D1AD2 is an SNS-matrix. 2

We now discuss an important connection between SNS-
matrices and digraphs. Let A = [aij ] be a (0, 1,−1)-matrix of order
n. We consider under what circumstances A is an SNS-matrix. In
order for A to have a chance of being SNS, it must have a nonzero
term in its determinant expansion (see (i) of Lemma 9.3.7). By
(iii) of Lemma 9.3.7, we may assume that this nonzero term is the
product of the entries on the main diagonal, that is, all entries on
the main diagonal of A are nonzero. By (iv) of Lemma 9.3.7, we
may further assume that all entries on the main diagonal equal
−1. With these assumptions, we now consider the weighted di-
graph D(A). Each edge of D(A) has weight ±1 (as we often do,
we ignore edges of weight 0).

Theorem 9.3.8 Let A = [aij ] be a (0, 1,−1)-matrix of order n
each of whose entries on the main diagonal equals −1. Then A is
an SNS-matrix if and only if the weight of each cycle in the Coates
digraph D∗(A) equals −1.

Proof. We refer to the definition of the determinant given in
(4.1):

det(A) = (−1)n
∑

L∈L(A)

(−1)c(L)w(L), (9.10)
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where the summation extends over all linear subdigraphs L of the
Coates digraph D∗(A); we may restrict this summation to those
Ls for which w(L) 6= 0. The term corresponding to the linear
subdigraph consisting of n loops, one at each vertex, of weight −1
(corresponding to the identity permutation 1, 2, . . . , n) equals

(−1)na11a22 · · ·ann = (−1)n(−1)n = (−1)2n = 1.

The matrix A is an SNS-matrix if and only if all nonzero terms
(−1)c(L)w(L) in the summation (9.10) equal 1.

First suppose that A is an SNS-matrix. The weights of the
cycles of length 1, the loops, equal −1 because A has all −1’s on
its main diagonal. Let γ be a cycle of length k ≥ 2, and let L be
the linear subdigraph whose cycles are γ and the n − k loops at
the vertices are not contained on γ. Then c(L) = 1 + n − k and
w(L) = w(γ) · (−1)n−k. Because A is an SNS-matrix, we have

1 = (−1)c(L)w(L) = (−1)1+n−kw(γ) · (−1)n−k = (−1)w(γ).

Thus w(γ) = −1 for every cycle of length at least 2.
Now assume that the weight of each cycle equals −1. Let L

be a linear subdigraph of D∗(A) with k cycles (including cycles of
length 1). Then c(L) = k and w(L) = (−1)k. Hence

(−1)c(L)w(L) = (−1)k · (−1)k = (−1)2k = 1.

Hence A is an SNS-matrix. 2

Example 9.3.9 Let

A =




−1 1 0 0
0 −1 1 1

−1 −1 −1 1
−1 0 0 −1


 .

Each entry on the main diagonal of the matrix A equals −1, and
hence Theorem 9.3.8 applies. The digraph D(A) is pictured in
Figure 9.1. One easily checks that each cycle of the digraph D∗(A)
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has weight −1. Thus A is an SNS-matrix and its determinant
equals the permanent of the matrix




1 1 0 0
0 1 1 1
1 1 1 1
1 0 0 1


 .

The common value is 5.

1 2

34

1

1 −1

1

−1
1

−1

−1

−1−1

−1

Figure 9.1

It is possible that a (0, 1)-matrix (or (0,−1)-matrix) be an
SNS-matrix. Of course In and −In are SNS-matrices, as are P
and −P for every permutation matrix P . A nontrivial example is
the circulant 



1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1




whose permanent and determinant both equal 24. Replacing the
1’s in this matrix by any numbers whatsoever results in a matrix
whose determinant equals its permanent.
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The permanent is an important and fundamental combinatorial
function for which we have given a graphical interpretation. It
motivated for us the important notion of an SNS-matrix. More
about SNS-matrices and related topics can be found in [10].

9.4 Exercises

1. Let A be a matrix of order m, and let B be a matrix of order
n. Let the eigenvalues of A be λ1, λ2, . . . , λm, and let the
eigenvalues of B be µ1, µ2, . . . , µn. Prove that the eigenvalues
of aA ⊗ In + bIm ⊗ B are aλi + bµj (1 ≤ i ≤ m, 1 ≤ j ≤ n).

2. Let A and B be as in Exercise 1. Prove that A and B do not
have a common eigenvalue (a number that is an eigenvalue
of both A and B) if and only if

det(A ⊗ In − Im ⊗ B) 6= 0.

3. Determine the Gers̆gorin region for each of the following ma-
trices:

(a) A =

[
1 1
1 −1

]
.

(b) A =




1 0 1
1 −3 1
2 0 6


.

(c) A =




1 + i 2 −1
3 2 1
2 1 − i 2 − i


.

4. Let A = [aij ] be a matrix of order n, and let D be a diagonal
matrix of order n with positive diagonal entries d1, d2, . . . , dn.
Apply Gers̆gorin’s theorem to D−1AD to obtain an inclusion
region for the eigenvalues of A.

5. Prove Theorem 9.2.5.

6. Prove Corollary 9.2.9.
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7. Verify the properties of the permanent in Lemma 9.3.1.

8. Find a formula for the permanent of A = (a − b)In + bJn

in terms of the derangement numbers. (Here, as before, Jn

denotes the matrix of order n each of whose entries equals
1.)

9. Compute the permanent of the Hessenberg matrix H = [hij ]
of order n defined by

hij =

{
1 if i ≤ j + 1,
0 otherwise.

Thus H4 is the matrix




1 1 0 0
1 1 1 0
1 1 1 1
1 1 1 1


 .

10. Use Theorem 9.3.8 to determine whether or not the matrix



1 0 1 1 0 0
1 1 1 0 0 0
0 1 1 0 0 1
0 1 0 1 0 0
1 0 0 0 1 0
0 0 0 0 1 1




is an SNS-matrix.

11. For each of the following matrices, show how to affix minus
signs to some of the 1’s so that the matrix becomes an SNS-
matrix: 



0 1 1 0
1 0 1 1
1 1 0 1
1 1 1 0


 ,




1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1


 .



Chapter 10

Applications

This chapter is intended for those for whom mathematics is pri-
marily a tool to describe and understand phenomena in other sci-
entific disciplines. Because the applications of matrices and graphs
in science are so numerous, we can present only a few selected ex-
amples. We shall focus on several topics where it is possible or
even necessary to use the combinatorial approach developed in
this book.

The three sections of this chapter describe some applications
in electrical engineering, physics, and chemistry. These sections
should not be considered as introductions or as surveys of these
fields. In each section we assume a certain familiarity with the
problems considered, with only very short explanations of back-
ground and specific terminology1 given. However, we shall al-
ways give references to relevant general books where the interested
reader can find more information. We also assume that the reader
is acquainted with the fundamentals of basic mathematical analy-
sis, in particular with ordinary and partial differential equations.

1Sometimes the terminology of a specific field conflicts with the terminol-
ogy used in other chapters of this book.

217
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10.1 Electrical Engineering:

Flow Graphs

Applications of matrix theory in electrical engineering are numer-
ous and varied. The matrices that appear in this area are usu-
ally sparse, i.e., contain a lot of zero entries. This fact justifies
great popularity of graph-theoretical, i.e., combinatorial, methods
in matrix theory among electrical engineers.

Electrical engineers have developed a series of methods for solv-
ing systems of linear algebraic equations, which appear in the the-
ory of electrical circuits, control theory, and other areas. These
methods use flow graphs (Coates [13], [26], [15]), signal flow graphs
(Mason [59], [60], [80]) and Chan graphs (Chan and Mai [16], [14]);
the first two graphs are described in Chapter 6. For more recent
treatments, as well as for backgrounds, see, for example, [57] and
[28].

It is noteworthy that the mentioned graphs (and especially,
Mason’s signal flow graphs) give a better insight into the physical
system being described than the corresponding system of equa-
tions does. The signal flow graph technique is very effective and
therefore popular among engineers. It was, in fact, first developed
during the Second World War as an aid in designing weapon con-
trol systems by Shannon [73] but remained unknown to the public
for many years.

One of the basic problems in the theory of electrical circuits2

is to determine currents in all branches of a given electrical cir-
cuit when the voltages of electrical generators are given. For this
purpose one uses the Kirchhoff Voltage Law (KVL), which says

2An electrical circuit is an interconnection of some two terminal compo-
nents called branches. Branches are connected by their terminal points, called
nodes. Electrical circuits have graphs as a natural mathematical model. Nodes
become vertices and branches become edges of the associated graph. Depend-
ing on the problem, the associated graph can be undirected or directed. In
the later case, an orientation is (in an arbitrary way) associated with each
branch and (the same orientation) with the corresponding edge.
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that the algebraic sum of voltage drops around any loop3 is equal
to zero. Applying KVL to several loops we get a system of lin-
ear algebraic equations with loop currents as unknowns. Graph
theory helps to find a maximal set of independent loops ensuring
that the obtained system of equations will consist of independent
equations sufficent to determine all currents.

Example 10.1.1 We determine the current in the branch with
resistance R5 in the circuit of Figure 10.1.

We number the five loops in Figure 10.1 from 1 to 5 from left to
right and orient them in a counterclockwise fashion. The equations
for loop currents are

+

E1 E2

+
R2 R4 R6 R8

R1 R3 R5 R7 R9

Figure 10.1

R11I1 −R12I2 = −E1,
−R21I1 +R22I2 −R23I3 = 0,

−R32I2 +R33I3 −R34I4 = 0,
−R43I3 +R44I4 −R45I5 = 0,

−R54I4 +R55I5 = E2,

where

R11 = R1 + R2, R22 = R2 + R3 + R4, R33 = R4 + R5 + R6,

R44 = R6 + R7 + R8, R55 = R8 + R9,

R12 = R21 = R2, R23 = R32 = R4,

3Here a loop means a subgraph that is reduced to a cycle if we neglect
orientations of edges.
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R34 = R43 = R6, R45 = R54 = R8.

Instead of explicitly writing this system of equations, we can im-
mediately construct the corresponding Coates digraph (routine,
after some practice). In our case the Coates digraph is given in
Figure 10.2.

1
2 3 4

5

0

E1 −E2

−R21

−R12

−R32

−R23

−R43

−R34

−R54

−R45
R11

R22 R33 R44

R55

Figure 10.2

The current I3 through R5 corresponds to vertex 3 and can be
immediately obtained by using Coates formula (6.15):

I3 =
N

D
,

where
N = E1R21R32R44R55 − E1R21R32R45R54+

E2R45R34R12R21 − E2R45R34R11R22

and

D = R12R21R33R44R55 − R12R21R34R43R55 − R12R21R33R45R54+

R11R23R32R44R55 − R11R23R32R45R54 + R11R22R34R43R55+
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R11R22R33R45R54 − R11R22R33R44R55.

2

In control theory, where systems and signals are the main ob-
jects, we usually encounter mathematical models that reduce to
systems of ordinary linear diferential equations with constant co-
efficients. If to such a system we apply the Laplace transforma-
tion, we get a system of linear algebraic equations that is to be
solved. Instead of time dependent functions, which represent volt-
ages, currents, etc. (signals in general), the equations now contain
the Laplace transforms of these functions. Matrices of these sys-
tems are typically sparse, and again we are in a position to apply
techniques of combinatorial matrix theory, in particular signal and
signal flow graphs. As their name indicates, signal flow graphs are
specially designed to visualize and enable an easy analysis of the
signal flow through complex systems of control theory. More in-
formation can be found, for example, in [5] and [28].

Example 10.1.2 For the two-terminal network of Figure 10.3,
determine the transfer function G(s) defined as the ratio of the
Laplace transforms of the output U4(s) and imput signal U1(s).

U2 U3

U1

+

U4

+

c c c

R R R

i1 i2 i3

Figure 10.3

We have the following equations:

I1(s) =
1

R
(U1(s) − U2(s)), U2(s) =

1

Cs
(I1(s) − I2(s)),
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I2(s) =
1

R
(U2(s) − U3(s)), U3(s) =

1

Cs
(I2(s) − I3(s)),

I3(s) =
1

R
(U3(s) − U4(s)), U4(s) =

1

Cs
I3(s).

The corresponding signal flow graph is given in Figure 10.4.

U1(s)
I1(s) U2(s) I2(s) U3(s) I3(s)

U4(s)
1
R

1
Cs

1

1
R

2

1
Cs

3

1
R

4

1
Cs

5

− 1
R

− 1
Cs

− 1
R

− 1
Cs

− 1
R

Figure 10.4

R(s)

+
+ +

−− +

C(s)
G1 G2 G3 G4

G5

H2

H1

Figure 10.5

There exists just one path from vertex U1(s) to vertex U4(s).
Its weight is p1 = 1

R3C3s3 . All cycles touch this path, and for the
corresponding determinant we get ∆1 = 1.

There are five cycles, denoted by 1,2,3,4,5, in Figure 10.4, each
of which has weight − 1

RCs
. There are exactly six pairs of cycles

that do not touch each other, namely, cycles 1 and 3, 1 and 4, 1
and 5, 2 and 4, 2 and 5, and 3 and 5. There is only one triple 1,
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3, and 5 of mutually nontouching cycles. Four or more cycles that
mutually do not touch each other do not exist. Using Mason’s
formula we get

G(s) =
1

R3C3s3

1 − (−5 1
RCs

) + 6 1
R2C2s2

− (− 1

R3C3s3
)

=
1

τ 3s3 + 5τ 2s2 + 6τs + 1
.

2

Example 10.1.3 For the system in Figure 10.5 we immediately
get the corresponding signal flow graph in Figure 10.6.

R(s) C(s)

1 G1 G2 G3 G4 1

−H2

−H1

G5

Figure 10.6

There are two paths from vertex R(s) to vertex C(s). They
have weights

p1 = G1G2G3G4, p2 = G1G5G4.

The determinants of the corresponding subdigraphs are ∆1 =
∆2 = 1. The three cycles in the digraph do touch each other.
The transfer function reads

C(s)

R(s)
=

G1G2G3G4 + G1G4G5

1 + G3G4H1 + G1G2G3G4H2 + G1G4G5H2
.

2
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The last example demonstrates some useful features of the sig-
nal flow graph technique: the variables in the equations of the
system represented by a signal flow graph represent real signals in
a technical system! The equation corresponding to the ith vertex
of a signal flow graph (see (6.16)) says that the signal at the vertex
i is equal to the sum of signals from other vertices via incoming
edges multiplied by weights4 of the edges and thus corresponds to
the physical reality. In this way, a signal flow graph is, in fact, a
simplified block diagram of a technical system (compare the block
diagram of Figure 10.5 with the corresponding signal flow graph
in Figure 10.6).

10.2 Physics: Vibration of

a Membrane

Of the many applications of matrix theory to physics, we con-
sider only one in which the graph-theoretic approach to the ma-
trix theory involved is dominant—the problem of the vibration of
a membrane.

In the approximate numerical solution of certain partial differ-
ential equations, graphs and their spectra arise quite naturally.

Consider, for example, the partial differential equation

∂2z

∂x2
+

∂2z

∂y2
+ λz = 0 (10.1)

(or Az + λz = 0; where A =
∂2z

∂x2
+

∂2z

∂y2
is the Laplace operator).

Here the unknown function z = z(x, y) is subject to the boundary
condition z(x, y) = 0 on a simple closed curve ℓ′ lying in the
xy-plane. It is known that equation (10.1) has a solution only
for an infinite sequence λ1 ≤ λ2 ≤ . . . ≤ λn ≤ . . . of (discrete)
values of λ, which are called the eigenvalues of the equation. The
sequence of eigenvalues is called the spectrum of the equation, and
the solutions of (10.1) are the corresponding eigenfunctions.

4In applications the weights of edges are called transmittances.
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In an approximate determination of z we consider the val-
ues only for a set of points (xi, yi) that form a regular lattice
(square, triangular, or hexagonal) in the xy-plane. A correspond-
ing (infinite) graph can be associated, in a straightforward and
natural way, with this lattice. Points (xi, yi) are the vertices of
the graph and the edges connect pairs of points of minimal dis-
tance. The points (respectively, vertices) lying in the interior of Γ
are called internal points (respectively, internal vertices), and the
other points (respectively, vertices) of the lattice are called exter-
nal. Let zi = z(xi, yi). Because of the boundary condition, we can
take zi = 0 for all external points.

2

4

(x0, y0)

3

1

6 1

4 3

5 2
0

3 0

1

2

Figure 10.7

In the case of a square lattice (Figure 10.7), let z0 = z(x0, y0),
(x0, y0) being a fixed point of the lattice, and let z1 = z(x0 +h, y0),
z2 = z(x0 −h, y0), z3 = z(x0, y0 +h), and z4 = z(x0, y0 −h) be the
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values of z for the neighboring points (we assume that the points
of the lattice lie on lines that are parallel with the coordinate axes
and that the distance between any two neighboring points is h).

The value of
∂2z

∂x2
+

∂2z

∂y2
at the point (x0, y0) can, as usual, be

approximated by

1

h2
(z1 + z2 + z3 + z4 − 4z0).

Equation (10.1) then becomes

1

h2
(z1 + z2 + z3 + z4 − 4z0) + λz0 = 0, or

(4 − λh2)z0 = z1 + z2 + z3 + z4. (10.2)

Now let the internal points be labeled by 1, 2, . . . , n. Taking
ν = 4− λh2 and writing the equations corresponding to (10.2) for
all internal points (xi, yi), i = 1, 2, . . . , n of the lattice, we obtain

νzi =
∑

ji

zji
(i = 1, 2, . . . , n), (10.3)

where the summation is taken over all indices ji corresponding to
internal points (xji

, yji
) neighboring (xi, yi).

It is not necessary to include in the sum (10.3) those external
points neighboring (xi, yi) if the value of z for this point is zero. Let
G be the subgraph of the lattice graph induced by the internal ver-
tices. If we interpret ν as an eigenvalue of G and (z1, z2, . . . , zn)T

as the corresponding eigenvector, we see that (10.3) just defines
the eigenvalue problem for G. The graph G will be called the
membrane graph.

If νi are the eigenvalues of G, the approximate eigenvalues

of equation (10.1) are given by λ∗
i =

4 − νi

h2
. The corresponding

eigenvalues of G represent an approximate solution of (10.1). Note
that the λ∗

i (i = 1, 2, . . . , n) do not necessarily represent approxi-
mate values for the first n eigenvalues λ1, . . . , λn of (10.1), but for
some eigenvalues λi1 , . . . , λin.
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The adjacency matrix A of the graph G is a sparse matrix. For
an arbitrary large n, the number of nonzero entries in any row or
in any column is not greater than the vertex degrees in the lattice
(i.e., 4, 6 and 3 for the square, triangular and hexagonal lattices,
respectively). Therefore, such matrices can be treated, at least in
principle, by those methods described in Section 6.5. The digraphs
D(A) and D∗(A) are identical because A is a symmetric matrix
and a modification of them is just the membrane graph.

For the triangular and hexagonal lattices (see Figure 10.7), we
have, respectively, the following approximate expressions for Az
in the point (x0, y0):

2

3h2
(z1 + z2 + z3 + z4 + z5 + z6 − 6z0),

4

3h2
(z1 + z2 + z3 − 3z0).

We again obtain (10.3), but now the connection between the

eigenvalues of G and of (10.2) is given by λ∗
i =

2

3

6 − νi

h2
and

λ∗
i =

4

3

3 − νi

h2
, respectively.

The procedure described for approximately solving a partial
differential equation is often used in technical problems (see, for
example, [18]). In this way the theory of graph spectra can be
very useful in practical calculations.

The most interesting problem that can be treated by such a
procedure is that of membrane vibration. There are some other
problems of the same kind, for example, air oscillations in space,
etc. (see [19], [18], [51], and [69]). These problems motivated the
authors of [19] to consider graph spectra.

If a vibrating membrane Ω is held fixed along its boundary Γ,
its displacement F (x, y, t) in the direction orthogonal to its plane
is a function of the coordinates x, y and time t and satisfies the
wave equation

∂2F

∂t2
= c2

(
∂2F

∂x2
+

∂2F

∂y2

)
, (10.4)

where c is a constant depending on the physical properties of the
membrane and of the tension under which the membrane is held.
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The solutions of the form F (x, y, t) = z(x, y)eiωt are of partic-
ular interest. If we substitute this expression in (10.4), we obtain

−ω2z(x, y) = c2

(
∂2z(x, y)

∂x2
+

∂2z(x, y)

∂y2

)
. (10.5)

Setting λ =
ω2

c2
reduces (10.5) to (10.1).

The representation of a membrane by a graph is by no means a
mathematical abstraction. Equation (10.1) describes the vibration
of a membrane. The membrane is represented by a continuous
model. If the membrane is described by a discrete model as given
below, we arrive at the system (10.3) obtained in the approximate
solution.

According to the discrete model, the membrane consists of a
set of atoms that in the equilibrium state, lie on the vertices of
a regular lattice graph embedded in a plane. Each atom acts
on its neighboring atoms by elastic forces. We assume that all
atoms have the same mass and that elastic forces are of the same
intensity for all neighboring pairs of atoms. If zi(t) and zj(t) are
displacements of neighboring atoms i and j at time t, the elastic
force tending to reduce the relative displacement between these
atoms is

Fij = −K (zi(t) − zj(t)) ,

where K is a constant characteristic of the elastic properties of the
membrane.

The equation of motion of the kth atom is

m
d2zk(t)

dt2
= −K

∑

jk

(zk(t) − zjk
(t)) , (10.6)

where m is the mass of an atom and where the summation is taken
over the nearest neighbors jk of the kth atom. For a vertex j of
the lattice graph in which there is no atom of the membrane, we
have zj(t) = 0 (as before, such vertices are called external).

We can again consider pure harmonic oscillations and take
zk(t) = zke

iωt (where i =
√
−1). If we insert this expression into

(10.6) for each atom k, then we again obtain the graph eigenvalue
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problem (10.3). Thus, a solution of the discrete model is equivalent
to an approximate solution of the continuous model. (Of course,
in some cases the whole thing can be considered the other way
around; the continuous model could give an approximate solution
for the discrete model).

We conclude this section with the following observation. If the
problems of continuous mathematics (analysis) are to be solved
by means of computers, they must be approximated by the cor-
responding discrete models since computers operate with discrete
actions. They change their state in discrete moments and an in-
ner state of a computer is determined by the states of a finite
number of computer cells where the number of states of any cell is
finite. Therefore numerical mathematics represents a link (a union
of sorts) of the continuous and discrete.

10.3 Chemistry: Unsaturated

Hydrocarbons

In this section5 we present a specific chemical application of matrix
theory and graph theory. The applications of matrices and graphs
in chemistry (especially in physical and theoretical chemistry) are
so numerous that it is impossible to give any reasonable survey
in a limited space. The interested reader may consult [50]. Our
discussion is in four parts.

Hückel Molecular Orbital Theory

One of the basic goals of quantum chemistry is to describe the
electronic structure of molecules. This can be done by solving the
Schrödinger equation

ĤΨj = EjΨj, (10.7)

where Ĥ is the Hamiltonian operator (or energy operator), Ψj is
the wave function of the system under consideration, and Ej is
the energy of the system. The subscript j indicates that in the
general case a Schrödinger equation has more than one solution.

5This section is based on a chapter of [23] that was written by I. Gutman.
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The wave function Ψj fully describes the jth state of the system

whose Hamiltonian operator is Ĥ.
If the wave function describes the state of an electron in

a molecule, then it is called a molecular orbital. The phys-
ical meaning of a molecular orbital Ψ = Ψ(x, y, z) is that
|Ψ(x, y, z)|2dx dy dz is the probability of finding the pertinent elec-
tron in the volume element dV = dx dy dz at the point with the
space coordinates x, y, z.

The Hamiltonian operator requires (among other operations)
the calculation of the second partial derivatives with respect to
the space coordinates x, y, and z. Thus, the Schrödinger equation
is a second order partial differential equation. Under certain con-
ditions (which we will not specify here), the differential equation
(10.7) can be transformed into matrix form:

HΨj = EjΨj, (10.8)

where now H is a Hamiltonian matrix and Ψj is the wave function
in vector form. From (10.8) it is evident that Ψj is the eigenvector
and Ej is the eigenvalue of the matrix H .

In order to solve the Schrödinger equations (10.7) and (10.8)
for complicated many-electron molecular systems, various approx-
imations are used. In the pioneering days of quantum chemistry
(in the 1930s and 1940s) an approximate method for describing
the state of single electrons in conjugated hydrocarbons was de-
veloped, known under the name Hückel molecular orbital theory.6

Within the framework of the Hückel method, the Hamiltonian
matrix H = [hij ] is a square matrix of order n, where n is the

6Hydrocarbons are chemical compounds composed of only two elements—
carbon (C) and hydrogen (H). A hydrocarbon is saturated if its molecules
possess only single bonds. If in a molecule there are also multiple bonds, then
the hydrocarbon is unsaturated. An important class of unsaturated hydrocar-
bons is the conjugated hydrocarbons, each of whose carbon atoms participates
in exactly one double bond. We assume that in a hydrocarbon molecule all
carbon atoms have valency 4 and all hydrogen atoms have valency 1.

The Hückel graph [42] is used for an abbreviated representation of conju-
gated hydrocarbons. Its vertices represent only the carbon atoms, and all its
edges are simple (irrespective of whether the corresponding chemical bonds
are single or double). The vertices of a Hückel graph may be of degree 1,2, or
3.
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number of carbon atoms in the molecule. Let these carbon atoms
be labeled by 1, 2, . . . , n. Then the matrix elements hrs are given
by

hrs =






α if r = 1, 2, . . . , n
β if r 6= s and the atoms r and s are chemically bonded
0 if r 6= s and no chemical bond between the atoms

r and s exists.
(10.9)

The parameters α and β are called the Coulomb and the resonance
integral; in Hückel theory these are assumed to be constants. The
approximations imposed by the relations (10.9) are severe. There-
fore it is surprising that the results of the Hückel theory are (at
least sometimes) in good agreement with both experimental find-
ings and other, more advanced, theoretical approaches [67].

For example, for the hydrocarbon styrene (I, Figure 10.8) the
Hückel–Hamiltonian matrix has the form

H =




α β 0 0 0 0 0 0
β α β 0 0 0 0 0
0 β α β 0 0 0 β
0 0 β α β 0 0 0
0 0 0 β α β 0 0
0 0 0 0 β α β 0
0 0 0 0 0 β α β
0 0 β 0 0 0 β α




.

Keeping in mind relations (10.9), we see that the Hückel–
Hamiltonian matrix can be presented as

H = αIn + βA, (10.10)

where A is a symmetric matrix whose diagonal elements equal
0 and whose off-diagonal elements equal 1 or 0, depending on
whether the corresponding atoms are connected or not. In fact,
A = AH is just the adjacency matrix of the Hückel graph. Graph
II in Figure 10.8 is the Hückel graph of styrene I. Equation (10.10)
immediately gives the following result.
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Theorem 10.3.1 If λ is an eigenvalue and z is an eigenvector of
the matrix A, then α+βλ is an eigenvalue and z is an eigenvector
of the matrix H. 2

From this theorem it follows that the Hückel molecular orbitals
Ψj coincide with the eigenvectors zj of the adjacency matrix of the
Hückel graph, that is, Ψj = zj . The eigenvalues λj of the matrix
AH and the energies Ej of the corresponding electrons are related
simply as

Ej = α + βλj.

There are exactly n different molecular orbitals, namely, the zj for
j = 1, 2, . . . , n.

This important conclusion shows that there is a deep and far-
reaching relation between the Hückel molecular orbital theory and
graph spectral theory. The Hückel theory provides an important
field of application of the graph spectra.

For more information on Hückel theory the interested reader
can consult, for example, [2], [21], [27], [40], [36], [77], and [24].

Two Examples: Linear Polyenes and Annulenes

We are now going to determine the characteristic polynomials
and spectra of two important Hückel graphs, namely, those asso-
ciated with linear polyenes and annulenes, as given in Figure 10.9
for n = 8. The Hückel graphs of these compounds are given in
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Figure 10.10 and are, respectively, the path Pn with n vertices and
the circuit Cn of length n.

H C C C C C C C C H

H H H H H H H H

n = 8 C’s

C C
C

C
CC

C

C

H H

H

H

HH

H

H

n = 8

Figure 10.9

v1 v2 v3 vn−1 vn
vn−1

vn

v1

v2

v3

Figure 10.10

We prove first some general results [41], [42]. In Section 8.5,
the characteristic polynomial p(W, λ) of a forest W with n vertices
was shown to satisfy the formula

p(W, λ) =

[n
2 ]∑

k=1

(−1)km(W, k)λn−2k, (10.11)
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where m(W, k) is the number of k-matchings in W .
Let G be a graph with n vertices v1, v2, . . . , vn and let ers be an

arbitrary edge of G connecting the vertices vr and vs. The graphs
G−ers and G−vr−vs are obtained from G by deleting, respectively,
the edge ers and vertices vr and vs (and all their incident edges).

Lemma 10.3.2 For an arbitrary graph G, we have

m(G, k) = m(G − ers, k) + m(G − vr − vs, k − 1). (10.12)

Proof. The k-matchings in G are of two types: the edge ers is
(i) in the k-matching or (ii) is not in the matching. The number
of k-matchings of type (i) is the number of (k − 1)-matchings of
G− vr − vs, and thus equals m(G− vr − vs, k− 1). The number of
k-matchings of type (ii) is the number of k-matchings of G − ers,
and thus equals m(G − ers, k). The lemma now follows. 2

Combining equations (10.11) and (10.12), we obtain the fol-
lowing result.

Theorem 10.3.3 The characteristic polynomial of a forest W
satisfies the recurrence relation

p(W, λ) = p(W − ers, λ) + p(W − vr − vs, λ)

where ers is an arbitrary edge of W that connects the vertices vr

and vs. 2

We now apply Theorem 10.3.3 to the edge connecting the ver-
tices vn and vn−1 of the path Pn in Figure 10.10. Pn−en,n−1 is the
graph with connected components Pn−1 and P1. Therefore

p(Pn − en,n−1, λ) = p(P1, λ)p(Pn−1, λ) = λp(Pn−1, λ).

In addition, Pn − vn − vn−1 is the path with n − 2 vertices. Thus
from Theorem 10.3.3 we obtain

p(Pn, λ) = λp(Pn−1, λ) − p(Pn−2, λ), (10.13)

from which it is easy to recursively evaluate the polynomials
p(Pn, λ) starting with p(P1, λ) = λ and p(P2, λ) = λ2 − 1.
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In the theory of special functions, the Chebyshev functions
Tn(λ) of the first kind and the Chebyshev function Un(λ) of the
second are investigated. These are the two independent particular
solutions of the differential equation

d2y

d t2
+ n2y = 0,

where t = cos λ. The Chebyshev functions satisfy the recurrence
relations

Tn(λ) = 2λTn−1(λ) − Tn−2(λ),

Un(λ) = 2λUn−1(λ) − Un−2(λ),

whose forms are quite similar to that of equation (10.13).
Knowing that U2(λ) = 2λ

√
1 − λ2 and U3(λ) = (4λ2 −

1)
√

1 − λ2, it is easy to verify that

p(Pn, 2λ)
√

1 − λ2 = Un+1(λ). (10.14)

This identity (10.14) is an example of the interesting connections
that exist between graphs and special functions.

The general solution of the recurrence relation fn = afn−1 +
bfn−2 is fn = Axn

1 + Bxn
2 , where A and B are constants and x1

and x2 are the roots of the equation x2 = ax + b. We apply
this fact to (10.13). The roots of the equation x2 = λx − 1 are

x1,2 =
λ ±

√
λ2 − 4

2
. After substituting λ = 2 cos t, we get

x1,2 = cos t ±
√

cos2 t − 1 = cos t ± i sin t.

Taking into account the Euler formula cos t ± i sin t = e±it, we
further obtain

p(Pn, 2 cos t) = A
(
eit
)n

+ B
(
e−it

)n

= Aeint + Be−int

= (A + B) cos nt + i(A − B) sin nt.

The constants A and B are determined from the initial conditions:

p(P1, 2 cos t) = 2 cos t and p(P2, 2 cos t) = 4 cos2 t − 1.
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Elementary calculation gives A + B = 1 and i(A − B) =
cos t

sin t
, so

that

p(Pn, 2 cos t) = cos nt + cos t
sin nt

sin t

=
(cos nt sin t + sin nt cos t)

sin t

=
sin(n + 1)t

sin t
.

Consequently, the characteristic polynomial of the path with n
vertices has the following simple form:

p(Pn, λ) =
sin(n + 1)t

sin t
, (10.15)

with λ = 2 cos t. The spectrum of the path now follows immedi-
ately from the equation p(Pn, λ) = 0. The condition sin(n+1)t = 0
implies (n + 1)t = πj, that is,

λj = 2 cos
πj

n + 1
, j = 1, 2, . . . , n .

We now calculate the characteristic polynomial and spectrum
of the circuit Cn. The graph Cn is a connected graph with n ver-
tices and n edges. Theorem 8.4.5 from Section 8.5 implies that
this basic figure effects only the coefficient an and its contribution
to an is equal to (−1)121 = −2. All other basic figures are com-
posed exclusively of graphs K2. Therefore, the coefficients of the
characteristic polynomial of the cycle Cn are determined as aj = bj

for j = 1, 2, . . . , n − 1 and an = bn − 2, where

b2k = (−1)kp(Cn, k), k = 1, 2, . . . , and

b2k−1 = 0, k = 1, 2, . . . .

This result can be formulated as

p(Cn, λ) = −2 +

[n
2 ]∑

k=0

(−1)kp(Cn, 2k)λn−2k. (10.16)
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We now apply Lemma 10.3.2 to the edge e1n connecting the
vertices v1 and vn of the cycle Cn. It is easily seen that Cn−e1n =
Pn whereas Cn − v1 − vn = Pn−2. Hence m(Cn, k) = m(Pn, k) +
m(Pn−2, k − 1), which when substituted back into (10.16), gives

p(Cn, λ) = p(Pn, λ) − p(Pn−2, λ) − 2 (10.17)

Using (10.15), we have further

p(Cn, λ) =
sin(n + 1)t

sin t
− sin(n − 1)t

sin t
− 2 = 2(cosnt− 1), (10.18)

where λ = 2 cos t. From (10.18) we can directly determine the
spectrum of Cn. If p(Cn, λ) = 0, then nt = 2πj, and thus

λj = 2 cos
2πj

n
, j = 1, 2, . . . , n.

The Chebyshev functions of the first kind and the characteristic
polynomial of the cycle are related by

P (Cn, 2λ) = 2Tn(λ) − 2.

Finally we note that the knowledge of the spectrum of the graphs
Pn and Cn is of great importance in the quantum chemical descrip-
tions of the electronic structure of linear polyenes and annulenes.
In particular, it is important that the spectrum of the cycle Cn

possesses (two) zeros if and only if n = 4l (l = 1, 2, . . .). It will
be explained in the next part of this section that this means that
the annulenes with 4l carbon atoms have nonbonding molecular
orbitals and that these compounds are chemically unstable.

Stability of a Molecule

We shall discuss here some problems and results of Hückel the-
ory that can be formulated in a particularly simple way using
graph-theoretical terminology.

A molecular orbital Ψj with the energy Ej = α + βλj is called
bonding if λj > 0, antibonding if λj < 0, and nonbonding if λj = 0.
The electrons in the bonding molecular orbitals strengthen the
chemical bonds in the molecule, whereas the effect of the elec-
trons in antibonding orbitals is just the opposite. The electrons
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whose state is described by non-bonding molecular orbitals play a
less pronounced role in the creation of chemical bonds. However,
within the framework of the Hückel theory, it can be demonstrated
that conjugated hydrocarbons possessing nonbonding molecular
orbitals are extremely unstable and chemically reactive. The ori-
gin of this phenomenon cannot be explained here.

In the theory of conjugated compounds it is quite important
to establish which systems have nonbonding molecular orbitals.
Evidently, the number of nonbonding molecular orbitals coincides
with the multiplicity of 0 in the spectrum of the pertinent Hückel

graph. Because det A =
n∏

j=1

λj, 0 is in the spectrum of a graph if

and only if det A = 0.
A general solution of the problem of finding the multiplicity

of 0 in the spectrum of a graph is not known, but a variety of
partial results have been obtained. As an illustration we present
the following two statements (see also [24], Section 8.1).

Theorem 10.3.4 Assume the graph G has a vertex vr of degree
1, where vr is adjacent to the vertex vs. Then the graphs G and
G−vr−vs have equal multiplicity of the number 0 in their spectra.

Proof. Let c = [c1, c2, . . . , cn] be an eigenvector of the adjacency
matrix A = [aij ] of some graph on n vertices corresponding to the
eigenvalue 0. Then Ac = 0 and so

n∑

q=1

apqcq = 0 (p = 1, 2, . . . , n).

Because apq = 0 when the vertices vp and vq are not adjacent and
apq = 1 if these vertices are adjacent, we get

∑

qp

cqp
= 0 (p = 1, 2, . . . , n), (10.19)

where the summation is over all qp such that the vertex vqp
is

adjacent to vp. Hence if c is an eigenvector of a graph for eigen-
value 0, the sum of the components of the vector c “around” each
vertex vp equals zero. Hence the number of linearly independent
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eigenvectors with eigenvalue 0, equivalently, the multiplicity of 0
in the spectrum of a graph, is equal to the number of independent
components cp in the system of equations (10.19).

In the graph G, let the vertex vs be adjacent to the vertices
va, vb, . . . , vf in addition to vertex vr. Let the system (10.19) be
satisfied for the graph G−vr −vs so that the vertices va, vb, . . . , vf

correspond to the components ca, cb, . . . , cf of the vector c.
Now consider the graph G and the system (10.19). Then we

have to add to the system (10.19) for G − vr − vs two further
equations: cs = 0 and ca + cb + · · · + cf + cr = 0. Because of
the condition cs = 0, all equations (10.19) that were valid for the
graph G − vr − vs also hold for G. Because cs = 0 and cr =
−(ca + cb + · · ·+ cf ) are evidently not new independent variables,
we see that the number of independent components of the vector
c in the graphs G − vr − vs is the same as that for G. 2

Theorem 10.3.5 Assume that the graph G has a path

vr, va, vb, vc, vd, vs, vs

where the vertices va, vb, vc, vd have degree equal to 2. Let the graph
G′ be obtained from G by deleting the vertices va, vb, vc, and vd and
introducing a new edge ers between the vertices vr and vs. Then G
and G′ have equal multiplicity of the number 0 in their spectra.

Proof. In order that the system (10.19) be satisfied for the graph
G, the following equations (among others ) must hold:

cr + cb = 0, ca + cc = 0, cb + cd = 0, cc + cs = 0.

Consequently, ca = cs and cd = cr. Therefore, the deletion of
va, vb, vc, and vd and the simultaneous connection of vr and vs

cause no change in the number of independent components of the
vector c. 2

Alternant Hydrocarbons and Their Graphs

In theoretical chemistry, a frequently used concept is that of
alternant hydrocarbons. A conjugated hydrocarbon is said to be
alternant if all its atoms can be simultaneously labeled by two
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labels (usually called star and circle), so that every atom labeled
by a star has only neighbors labeled by a circle and viceversa.
Hydrocarbons for which such a labeling is not possible are called
nonalternant.

The labeling of the atoms of the molecule by stars and circles
is equivalent to the coloring of the vertices of the molecular graph
by two colors (as described in Section 1.1). Therefore alternant
(respectively, nonalternant) hydrocarbons have bipartite (respec-
tively, nonbipartite) molecular graphs.

In Section 8.3 it was proved that the spectrum of a bipartite
graph is symmetric with respect to zero, that is, λ and −λ are
eigenvalues with equal multiplicity. In Hückel theory this result is
interpreted to mean that the energy levels of the molecular orbitals
are symmetrically distributed around the energy E0 = α. Conse-
quently, the orbital with energy E = α + βλ is “paired” with an
orbital with energy E = α− βλ. This is the famous “Pairing the-
orem” that has a number of important consequences in quantum
chemistry.

10.4 Exercises

1. Assume that the graph G has two vertices vr and vp of degree
1 that are adjacent to the same vertex vs. Prove that 0 is an
eigenvalue of G.

2. Let M be the size of the maximal matching in a tree T on
n vertices. Show that the multiplicity of the eigenvalue 0 in
the spectrum of T is equal to n − 2M .

3. Prove or disprove: The adjacency matrix of a tree T is reg-
ular if and only if for each vertex v, the forest T − v has
exactly one component with an odd number of vertices.

4. Find values of n for which all eigenvalues of the circuit Cn

are integers.7

7Graphs whose spectra consist entirely of integers are called integral graphs.



Coda

As remarked in the preface, the graph-theoretical connections with
matrix theory are numerous, and emphasizing them often leads to
a clearer and deeper understanding of many of the concepts and
results of matrix theory. The first systematic use of graphs with
matrices seems to be by König [55]. We have introduced sev-
eral (weighted) graphs that can be associated to a matrix—the
König digraph and the (Coates) digraph of a matrix being the
most prominent of them. The digraph G(A) of the matrix A is
called the König digraph, because König used the corresponding
bipartite graph in his papers (see [56]). The digraph D∗(A) is
named the Coates digraph and formula (4.1) is called the Coates
formula, because C.L. Coates introduced them in [13], although
it is very hard to establish who first came to the idea of such a
graphical interpretation of a determinant (see the discussion about
this in Chapter 1 of [24]). F. Harary, referring to C.L. Coates, has
proposed in [45] that this formula, in a somewhat changed form,
could be taken as the definition of the determinant. Therefore,
this definition could be called the Harary–Coates definition. How-
ever, it seems that Harary’s suggestion from [45] was forgotten,
and one of the authors of this book later independently came to
the same idea and, starting from it, outlined the elementary the-
ory of determinants [22]. A similar development appeared a little
bit later and again independently [37]. These two digraphs have
been used to illuminate the basic algebraic properties of matrices,
including matrix multiplication, determinants, inverses of matri-
ces, cofactors, and Cramer’s formula, and including solutions of
linear systems of equations.

Consideration of the digraph often leads to an easier descrip-

241
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tion of many matrix properties. It also suggests different, and
sometimes more elementary, proofs of important theorems and the
possibility of generalization. We have given a proof of the classical
Cayley–Hamilton theorem which illustrates that it is really a the-
orem about weighted digraphs; this was first noted by Rutherford
[70] (see also [75], [81], and [7]). We have also seen how a large part
of the proof of the Jordan canonical form—starting from Jacobi’s
theorem that a matrix is similar to a triangular matrix—can be
made graph-theoretical (see [6] and the reference to Turnbull and
Aitken there).

The theory of positive, more generally nonnegative, matrices—
the so-called Perron–Frobenius theory—depends substantially on
the zero-nonzero pattern of a matrix, and this translates to the
digraph. For instance, an irreducible matrix becomes a strongly
connected digraph; for more on this, one may consult [3] and [7].
We have seen how properties of the eigenvalues of a nonnegative
matrix heavily depend on the digraph of the matrix. By use of
the digraph, we were able to give a substantial generalization of
the Gers̆gorin inclusion region for the eigenvaues of a matrix (see
[7] and [78] for a lot more on this topic).

The permanent is an important and fundamental combinatorial
function for which we have given a graphical interpretation. It can
be used to motivate the important notion of an SNS-matrix. More
about SNS-matrices and related topics can be found in [10].

We have included in the bibliography several books for further
study and historical information as well as several classical papers
that influenced the development of graph theory as a tool in ma-
trix theory. The book [23] (in Serbian) also contains related and
additional information.

Finally, we remark that the following four groups of papers,
from electrical engineering, mathematics, and chemistry, belong
to the origins of our combinatorial approach to matrix theory.

1. Electrical engineers have developed a series of methods for
solving systems of linear algebraic equations, which appear in the
theory of electrical circuits, control theory, and other areas. These
methods use flow graphs (Coates [13], [26], [15]), signal flow graphs
(Mason [59], [60], [80]), and Chan graphs (Chan and Mai [16],
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[14]); the first two graphs are described in Chapter 6. It is re-
markable that the mentioned graphs (and, especially, Mason’s sig-
nal flow graphs) give a better insight into the physical system un-
der description than the corresponding system of equations does.
Therefore these graphs were introduced and used intuitively, the
theoretical background of them often having been given later. The
terminology used in this book is partially based on the terminology
used in the literature of electrical engineering.

2. There are many mathematical papers in which results from
the matrix theory are obtained or proved by graph-theoretical
means. The founder of modern graph theory, Hungarian math-
ematician D. König, was the first who used graphical methods in
matrix theory [55], [56], although even before König there were
some attempts in this direction (see [64], footnote on p.260, where
the Cauchy rule for the determination of the sign of a term in the
development of a determinant is mentioned). See also more recent
papers that belong to this group ([30], [20], [32], [33]), represent-
ing only a few examples. It is interesting to note that only papers
with original and sufficiently nontrivial results obtained by graph
theory were published, and it was only very recently that a few
papers were published in which more elementary but more funda-
mental questions were also interpreted in this way ([22], [37], [38],
[58]).

3. In the theory of graph spectra (see, for example, [18], [71],
and [24]), including its applications to chemistry and to other
branches of sciences, the results of matrix theory are used for in-
vestigations of graphs. Although we have here just an inverse
procedure, compared with that of this book, a great number of
results contributed to realize how, in the other direction, graphs
can be used in matrix theory.

4. Some problems in electrical engineering, and in engineering
in general, lead to the need of considering systems of linear equa-
tions whose matrix is sparse and entries are given numerically.
Special methods of treating such matrices use graph-theoretical
means to a great extent [11], [4], [76].





Answers and Hints

We give (partial) solutions or hints to a few selected exercises.

Chapter 1 Exercises

3. We have kn = 2e, where e is the number of edges.

9. In forming an even combination of {1, 2, . . . , n}, one has two
choices for each of 1, 2, . . . , n− 1 (put in the combination of
leave it out). When one gets to n, there is only 1 choice (put
n in if an odd number of integers has already been taken;
leave n out if an even number has been taken). This gives
2n−1 even combinations.

13. Use the fact that 99 is −1 modulo 100.

14. A basis consists of the n − 1 vectors

(1,−1, 0, . . . , 0), (1, 0,−1, 0, . . . , 0), . . . , (1, 0, . . . , 0,−1).

Chapter 2 Exercises

4. Let A = [aij ] and B = [bij ] be upper triangular matrices of
order n, so that all entries below the main diagonal equal
0. If there is an edge with nonzero weight in their König
digraphs from black vertex i to white vertex j, then i ≤
j. Now draw the composition G(A) ∗ G(B) to see that in
G(A) · G(B) = G(AB) a similar property holds, implying
that AB is also upper triangular. A similar argument works
for lower triangular, or now use matrix transposiiton.
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8. The König digraph of In(i, j) has edges from black vertex
i to white vertex j and from black vertex j to white ver-
tex i. For p 6= i, j there is also an edge from black vertex
p to white vertex p. The identities now follow by examin-
ing the König digraphs G(In(i, j)2) = G(In(i, j)) ·G(In(i, j))
and G(In(i, k)In(k, j)In(j, i)) = G(In(i, k)) · G(In(k, j)) ·
G(In(j, i).

10. The product equals

[
O2 2I2

−I2 O2

]
.

Chapter 3 Exercises

2. The solution is easily obtained by using the digraphs D(A)
and D(B) as drawn in Figure I:

1 2 3 n − 1 n

1 1 1 1

1 2 3 n − 1 n

1 1 1 1

a a a a a

Figure I

8. Use the fact that for the permutation matrix P in the defi-
nition of a circulant of order n, P T = P n−1.
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Chapter 4 Exercises

1. If n = 2, the matrix A has the form




0 a12 0 a14 0
a21 0 a23 0 a25

0 a32 0 a34 0
a41 0 a43 0 a45

0 a52 0 a54 0




.

The only edges (of nonzero weight) in the digraph D∗(A)
join odd numbered vertices to even numbered vertices (a
directed bipartite graph). Hence no linear subdigraph exists,
implying that det A = 0.

Alternatively, one can consider the König digraph G(A) and
observe that the only edges go from even numbered black
vertices to odd numbered white vertices, and from odd num-
bered black vertices to even numbered white vertices. Since
there are n + 1 odd numbered black vertices and n even
numbered white vertices, there is no 1-factor with nonzero
weight; hence det A = 0.

3. Let Gn = Gn(a1, a2, . . . , an) be the König digraph of the
given matrix ∆n(a1, a2, . . . , an). Let Fn = Fn(a1, a2, . . . , an)
be the collection of 1-factors of Gn(a1, a2, . . . , an), and let
Fn,k be the collection of 1-factors with exactly k loops for
k = 0, 1, . . . , n. Then det ∆n(a1, a2, . . . , an) equals

∑

F∈Fn

(−1)q(F )w(F )

=
n∑

k=0

∑

Fk∈Fn,k

(−1)q(Fk)w(Fk)

=
n∑

k=0

∑

{i1,i2,...,ik}∈{1,2,...,n}

ai1ai2 · · ·aik

∑

F ′

k
∈F ′

k

(−1)q(F ′

k
)w(F ′

k),

where F ′
k represents the collection of 1-factors of

Gn−k(0, 0, . . . , 0). This implies that det ∆n(a1, a2, . . . , an)



248 ANSWERS AND HINTS

equals

n∑

k=0

det ∆n−k(0, 0, . . . , 0)ek(a1, a2, . . . , an),

where ek(a1, a2, . . . , an) is the kth elementary symmet-
ric function of a1, a2, . . . , an. It is easy to show
that det ∆l(0, 0, . . . , 0) = (−1)l−1(l − 1). Therefore
det ∆n(a1, a2, . . . , an) equals

n∑

k=0

(−1)n−k−1(n − k − 1)ek(a1, a2, . . . , an).

4. Drawing the digraph D∗(A) one sees that the only nonzero
linear subdigraphs are those consisting of a cycle of length
i + 1 containing the first i + 1 vertices and n − i loops (i =
0, 1, . . . , n). Such a linear subdigraph contributes

(−1)1+(n−i+1)(−1)iaix
n−i = (−1)naixn−i

to the Coates formula for the determinant. Hence

det A = (−1)n
n∑

i=0

(−1)naix
n−i =

n∑

i=0

axx
n−i.

6. The Coates digraph D∗(A) cannot have any linear subdi-
graphs of nonzero weight; equivalently, the König digraph
does not have any 1-factors of nonzero weight.

12. Observe that AT = −A.

Chapter 5 Exercises

2. Drawing the digraph of a permutation matrix reveals its in-
verse.

9. Consider the digraphs D∗(A), D∗(B), D∗(C) corresponding
to the matrices A, B, C (see Figure II).
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α1

α2

αn

D∗(A)

1

n

2

n − 1

βn β1 βn−1 β2

D∗(B)

1 2 n

γ1 γ2 γn

1 1 1

D∗(C)

Figure II

Chapter 6 Exercises

8. The Coates digraph is drawn in Figure III. By inspection we
get the following solution:

x1 =
−A(eug + dvh) + B(avh − uhb)

acvh + bfeu − bcuh − afve
,

x2 =
A(cvh + fve)

acvh + bfeu − bcuh − afve
,

x3 =
A(feu − cuh)

acvh + bfeu − bcuh − afve
,

x4 =
A(fvd + cug) + B(ubf − afv)

acvh + bfeu − bcuh − afve
.
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0

1

2

3

4

−A

−B

a c

f

b

u

e

v h

d

g

Figure III

Chapter 7 Exercises

5. Consider the cases λ = 0 and λ 6= 0 separately.

11. The characteristic polynomial is calculated using the Coates
digraph of the matrix λIn − A as drawn in Figure IV:

PG(λ) = (−1)n
(
(−1)nλn−1(λ − an) + (−1)n−1a2

1λ
n−2 +

+ (−1)n−1a2
2λ

n−2 + · · · + (−1)n−1a2
n−1λ

n−2
)

= λn − anλn−1 − λn−2
n−1∑

i=1

a2
i = 0.

The eigenvalues are

1

2



an ±
√√√√a2

n + 4
n−1∑

i=1

a2
i



 , 0 (n − 2 times).
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n

1

2

n − 1

−a1

−a1

−a2

−a2

−an−1

−an−1

λ − an

λ

λ
λ

Figure IV

12. The number of different Jordan canonical forms equals the
number of partitions of the integer 6:

6; 5, 1; 4, 2; 4, 1, 1; 3, 3; 3, 2, 1; 3, 1, 1; 2, 2, 2;

2, 2, 1, 1; 2, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1

and so equals 12.

Chapter 8 Exercises

4. The exponents are 26 and 25, respectively.

5. An irreducible matrix of order n ≥ 2 must contain at least
one nonzero entry in each row (and column) and so contains
at least n nonzero entries. If there are only n nonzero entries,
then its digraph is a circuit and hence not primitive.

8. The key is that the digraph of A has at least one loop.

11. The adjacency matrix has r 1’s in each row and column.

14. The graphs given are cospectral.
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Chapter 9 Exercises

8. The permanent is 2n−1.

11. The matrix 


−1 1 0 1
−1 −1 1 0

0 −1 −1 1
−1 0 −1 −1




is an SNS-matrix.

Chapter 10 Exercises

1. The adjacency matrix has two identical rows and so its de-
terminant equals 0.
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[25] D. Cvetković, I. Gutman, The algebraic multiplicity of the
number zero in the spectrum of a bipartite graph, Mat. Ves-
nik, 9(24)(1972), 141–150.

[26] C. A. Desoer, The optimum formula for the gain of a flow
graph or a simple derivation of Coates’ formula, Proc. IRE
48(1960), 883–889.

[27] J. R. Dias, Molecular Orbital Calculations Usig Chemi-
cal Graph Theory, Berlin-Heidelberg-New York: Springer-
Verlag, 1983.

[28] R. C. Dorf, The Electrical Engineering Handbook, Boca Ra-
ton, FL: CRC Press, 1999.

[29] I. S. Duff, A. M. Erisman, J.K. Reid, Direct Methods for
Sparse Matrices, 2nd edition, New York: Oxford Science
Publishers, The Clarendon Press, Oxford University Press,
1989.

[30] A. L. Dulmage, N. S. Mendelsohn, in Graphs and matrices,
Graph Theory and Theoretical Physics (Editor: F. Harary),
London-New York Academic Press, 1967, 167–227.



256 BIBLIOGRAPHY

[31] S. Even, Graph Algorithms, London: Pitman Publishing
Limited, 1979.

[32] M. Fiedler, Some applications of the theory of graphs in ma-
trix theory and geometry, Theory of Graphs and its Applica-
tions, Proc. Symp. held in Smolenice in June 1963, Praque
1964, 37–41.

[33] M. Fiedler, Inversion of bigraphs and connections with the
Gauss elimination, Graphs, Hypergraphs and Block Systems,
Proc. Symp. on Comb. Analysis, held in Zielona Góra,
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algebraic complement, 76
algebraic multiplicity, 153
angle between vectors, 22
annulenes, 232
augmented matrix, 114
automaton, 57

basic figure, 187
spanning, 187

basis, 19
ordered, 20, 150
orthonormal, 22

binary operation, 14
Binet–Cauchy formula, 82
bipartite graph, 6

bipartition of, 6
complete, 7

bipartition, 6
block matrix, 44
block multiplication, 45
bridge, 4

Cauchy–Schwarz inequality, 22

Cayley–Hamilton theorem, 147
characteristic polynomial, 141,

147, 153
characterstic polynomial, 184
Chebyshev function, 235, 237
chromatic number, 6
circuit, 5, 233

characteristic polynomial,
236

circulant, 58, 165
spectrum, 165

Coates determinant, 129
Coates digraph, 65, 103, 121,

212, 220
Coates formula, 124, 220
cofactor, 76, 97, 99, 124
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complete bipartite graph, 7
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cycle, 9
characteristic polynomial,

237
spectrum, 236

cycle digraph, 63

degree sequence, 5
derangement, 207
determinant, 65, 208

Binet–Cauchy formula, 82
classical definition of, 89
Coates, 129
development of, 77
Harary–Coates definition,

66
Laplace development of,

91
Mason’s, 129
multiplicative property, 80
properties of, 72
special formula, 86
transpose, 72
Vandermonde, 96

diagonal matrix, 32
diagonalizable matrix, 156
diagonally dominant matrix,

199
digraph, 8

acyclic, 9, 159
Coates, 65
composition, 36
cyclically d-partite, 176
edges of, 8
isomorphism, 10
König, 35
order of, 8
product, 37

scalar multiplication of,
37

signal flow, 127
strong component, 172
strong components of, 9
strongly connected, 9
subdigraph, 63

induced, 64
linear, 64
spanning, 64

sum, 36
underlying graph of, 10
unilaterally connected, 10
vertex-weighted, 200
vertices of, 8
weakly connected, 10
weighted, 8

digraph of a matrix, 50
digraph sum, 36
direct sum, 34
division algorithm, 15
dominant cycle, 200
dominant edge, 200
dot product, 21

edge, 2
pendent, 5
weight of, 2

eigenspace, 144
eigenvalue, 140

algebraic multiplicity, 144,
181

eigenspace, 144
geometric multiplicity, 145,

181
inclusion region, 197, 199,

203



INDEX 263

eigenvector, 140
electrical circuit, 218

branch, 218
Kirchhoff Law, 219
node, 218

elementary matrix, 113, 117
elementary operation, 112
elementary row operation, 112
elementary similarity, 155

combination, 156
diagonal, 155
permutation, 155

energy operator, 229
entrywise product, 192
equivalence relation, 152
ERO, 112

field, 14
forest, 233

characteristic polynomial,
234

Frobenius normal form, 172

Gaussian elimination, 114
geometric multiplicity, 153
Gers̆gorin disk, 197
Gers̆gorin region, 197
Gers̆gorin theorem, 197
Gram–Schmidt orthogonaliza-

tion, 23
graph, 2

bipartite, 6
characteristic polynomial,

184
complete, 5
connected, 3
connected components of,

3

directed, 8
disconnected, 3
eigenvalue, 185
index, 184, 185
integral, 240
isomorphism, 7
matching of, 7
order, 2
regular, 5
spectrum, 184
subgraph, 2
tensor product, 193
weighted, 2

group, 15
commutative, 15

groupoid, 49
associative, 49

identity element of, 49

Hückel graph, 230, 232
Hückel theory, 229
Hadamard-Schur product, 192
Hamiltonian matrix, 230
Hamiltonian operator, 229
hydrocarbon, 239

alternant, 240

idempotent matrix, 167
identity matrix, 31
inclusion-exclusion formula, 13,

207
indegree, 9
index of imprimitiviy, 175
induced subgraph, 2
integers modulo m, 15
inverse matrix

formula for, 105
invertible matrix, 201
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irreducible component, 173
isomorphism, 7, 10, 155

Jacobi’s theorem, 157
JCF, 165
Jordan block, 160

algebraic multiplicity, 160
geometric multiplicity, 160

Jordan Canonical Form, 165
Jordan matrix, 160, 165

König digraph, 35, 50, 90, 206
transposition, 40

König’s theorem, 7
kernel, 21
Kronecker product, 192

Laplace transform, 221
lemniscate, 203
length of a vector, 21
linear combination, 19

nontrivial, 19
trivial, 19

linear subdigraph, 64
weight of, 65

linear system, 110, 121
Coates digraph, 121, 123
Coates formula, 124
consistent, 110
homogeneous, 110

trivial solution of, 110
inconsistent, 110, 115
inhomogeneous, 110
matrix of coefficients of,

110
linear transformation, 20, 150

injective, 21
kernel of, 21

range, 21
linearly independent, 19

maximal, 20
loop, 2
lower triangular matrix, 33

Mason’s determinant, 129
Mason’s digraph, 128
Mason’s formula, 130
matching, 7, 234

k-matching, 7
number, 7, 234
perfect, 7

matching number, 7
matrix, 27

addition, 28
adjoint of, 99
augmented, 112
block, 44
circulant, 58
column rank, 112
column space of, 111
columns of, 28
diagonal, 32
diagonalizable, 156
diagonally dominant, 199
digraph of, 50

Coates, 65
direct sum, 34, 143
elementary, 113
elements of, 28
empty, 27
entries of, 28
entry

off-diagonal, 32
equal, 28
inverse, 101
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invertible, 101, 105, 116,
117, 120

irreducible, 172
irreducible components, 173
main diagonal of, 32
multiplication, 28, 29

block, 45
nilpotent, 53
nonnegative, 171

imprimitive, 175
index of imprimitivity,

175
primitive, 175

nonsingular, 101
null space of, 110
nullity of, 112
partitioned, 43
permanent of, 204
permutation, 33
positive, 171
rank, 118
reducible, 172
row rank, 112
row space of, 111
rows of, 28
scalar, 32
scalar multiple of, 30
scalar multiplication, 30
sign-nonsingular, 210
singular, 101
size of, 28
SNS, 210
square, 28
submatrix of, 76
trace of, 87
transpose of, 30
transposition, 30

triangular, 32
minor, 76

algebraic complement of,
92

cofactor of, 92
principal, 76

multidigraph, 8
multigraph, 2, 184

characteristic polynomial,
184

index, 184
spectrum, 184

nilpotent matrix, 53, 179
norm of a vector, 21
null space, 110, 112
nullity, 112, 118

orthogonal vectors, 22
orthonormal basis, 22
outdegree, 9

path, 3, 9, 233
characteristic polynomial,

236
spectrum, 236

perfect matching, 206
permanent, 204

Laplace expansion, 205
permutation, 11

cycle decomposition of,
89

even, 88
inversion of, 88
odd, 88
sign of, 88
with restrictions, 59

permutation matrix, 33
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product of, 42
Perron eigenvalue, 181
Perron vector, 181
Perron–Frobenius theorem, 181
pivot, 114
polyene, 232
positive matrix, 178
primitive matrix, 175

characterization, 178
principal minor, 76, 86
principal submatrix, 76

random process, 55
rank, 118, 153
reduced row-echelon form, 114
reflexive property, 152
row rank, 112, 117, 118
row space, 111, 117
rre-form, 114

scalar, 18
scalar matrix, 32
Schrödinger equation, 229
sets of imprimitivity, 176
sign-nonsingular matrix, 210
signal flow digraph, 127, 128,

224
signal flow graph, 222
similar matrices, 152
similarity, 152
similarity classes, 153
simultaneous permutation, 34
SNS-matrix, 210, 212
spanning set, 19

minimal, 20
spanning subgraph, 2
sparse matrix, 133, 218, 227

fill, 136

spectral circle, 179
spectral radius, 179, 180, 183
spectrum, 181, 224, 238
strong component, 9
strongly connected digraph,

172
index of imprimitivity, 175

subdigraph, 8
induced, 8
spanning, 8

subgraph, 2
induced, 2
spanning, 2

submatrix
principal, 76

subspace, 18
symmetric property, 152

tensor product, 192, 193
determinant, 195
eigenvalues, 195
invertibe, 195

trace, 87, 144
transitive property, 152
transposition

König digraph, 40
tree, 4

spanning, 4

upper triangular matrix, 32,
157

strictly, 54

Vandermonde determinant, 96
vector, 17
vector space, 17

dimension of, 20
subspace of, 18
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vertex, 2
degree, 5
indegree, 9
initial, 8
outdegree, 9
pendent, 5
terminal, 8

vertex-coloring, 6
vertex-cover, 7
vertices, 2
vibration of a membrane, 224

walk, 3, 9, 51
closed, 3, 9
edges of, 3, 9
length of, 3, 9

weighted digraph, 8
weighted graph, 2

zero matrix, 31
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