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COMBINATORIAL DESIGNS - A TRIBUTE TO HAIM HANANI

PREFACE

This volume is dedicated to a mathematician who laid the ground work for the
modern study of combinatorial design theory. Haim Hanani pioneered the
techniques for constructing designs and the theory of pairwise balanced designs,
leading directly to Wilson’s Existence Theorems. He also has lead the way in the
study of resolvable designs, covering and packing problems, latin squares,
3-designs, and other combinatorial configurations. All this is made more
remarkable by the fact that Haim’s first paper in design theory (the existence
theorem for Steiner quadruple systems) appeared only in 1960. His encylopaedic
papers are widely referenced, and his genius for construction is known and
respected throughout the design theory community.

Haim Hanani was born in Poland in 1912; he studied mathematics in Vienna
and Warsaw from 1929-34, graduating with an M.A. from the University of
Warsaw. In 1935 he emigrated to Israel and was awarded the Hebrew
University’s first Ph.D. in Mathematics in 1938. His dissertation was on the four
colour problem. While a student he joined the National Military Organization
(IZL), an underground force fighting for the establishment of a Jewish state in
the land of Israel. He was imprisoned by the British authorities in 1944 and exiled
to Eritrea, and then to Kenya, returning to Israel only in 1949 after Israel’s
independence. In 1955 he was appointed to the faculty of the Technion in Haifa.
During the period from 1969-73 he served as the first rector of Ben Gurion
University in Beersheba, and in 1979 he was awarded an honorary doctorate for
his work in founding the university. In 1980 he was appointed Professor Emeritus
at the Technion. Throughout his career he has held numerous administrative
posts in the Technion and in professional and government agencies. He is on the
editorial board of Discrete Mathematics, Journal of Combinatorial Theory and the
European Journal of Combinatorics.

I would like to take this opportunity to express my gratitude to Professor
Hanani for his contributions to mathematics, and to wish him a long, fruitful and
healthy life on his seventy-fifth birthday. This volume of research and survey
papers is a fitting tribute to a founding father, from his mathematical sons and
daughters.

Alan Hartman
Toronto, Ontario
July, 1988

0012-365X/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)
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OBITUARY: SHMUEL SCHREIBER (1920-1988)

It is with great sadness that we note the passing of Shmuel Schreiber. Shmuel’s
last two papers appear in this volume, and were completed only days before his
death. He was born in Romania, arriving in (then) Palestine in 1940. He received
his Master’s degree from the Hebrew University in 1947. His career was not in
academia, so his time for research was limited; nevertheless his papers on Steiner
triple systems and finite algebras remain as important works. His presence at
combinatorial meetings in Israel was inspiring, his questions and problems always
challenging, and his infectious enthusiasm for mathematics was remarkable. He
will be greatly missed by the Israeli mathematical community and the com-
binatorial theorists of the world who had the privilege to know him.

Alan Hartman
Toronto, Ontario
July, 1988
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RESOLVABLE GROUP DIVISIBLE DESIGNS WITH
BLOCK SIZE 3

Ahmed M. ASSAF* and Alan HARTMAN
IBM Israel — Haifa Research Group, Technion City, Haifa 32000, Israel

Dedicated to Professor Haim Hanani on the occasion of his 75th birthday.

Let v be a non negative integer, let A be a positive integer, and let K and M be sets of
positive integers. A group divisible design, denoted by GD[K, A, M, v], is a triple (X, I, B)
where X is a set of points, I'= {G,, G,, . . .} is a partition of X, and f is a class of subsets of X
with the following properties. (Members of I" are called groups and members of B are calied
blocks.)

1. The cardinality of X is v.

2. The cardinality of each group is a member of M.

3. The cardinality of each block is a member of K.

4. Every 2-subset {x,y} of X such that x and y belong to distinct groups is contained in
precisely A blocks.

5. Every 2-subset {x, y} of X such that x and y belong to the same group is contained in no
block.

A group divisible design is resolvable if there exists a partition IT={P,, P, ...} of f such
that each part P, is itself a partition of X. In this paper we investigate the existence of
resolvable group divisible designs with K = {3}, M a singleton set, and all A. The case where
M = {1} has been solved by Ray-Chaudhuri and Wilson for A =1, and by Hanani for ail A > 1.
The case wherec M is a singleton set, and A =1 has recently been investigated by Rees and
Stinson. We give some small improvements to Rees and Stinson’s results, and give new results
for the cases where 4> 1. We also investigate a class of designs, introduced by Hanani, which
we call frame resolvable group divisible designs and prove necessary and sufficient conditions
for their existence.

1. Introduction

Let v be a non negative integer, let A be a positive integer, and let K and M be
sets of positive integers. A group divisible design, denoted by GD[K, A, M, v], is
a triple (X, I', B) where X is a set of points, I'={G,, G,, . . .} is a partition of X,
and B is a class of subsets of X with the following properties. (Members of I" are
called groups and members of 8 are called blocks.)

1. The cardinality of X is v.
2. The cardinality of each group is a member of M.
3. The cardinality of each block is a member of K.

* Department of Algebra, Combinatorics and Analysis, Auburn University, Auburn, Ala. 36849,
US.A.

0012-365X/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)



6 A. M. Assaf, A. Hartman

4. Every 2-subset {x,y} of X such that x and y belong to distinct groups is
contained in precisely A blocks.

5. Every 2-subset {x, y} of X such that x and y belong to the same group is
contained in no block.

When M ={m} or K={k} are singleton sets we shorten the notation for
GD[K, 4, M, v] to GDIk, A, m, v}].

A group divisible design is resolvable if there exists a partition [I=
{P,, P,, ..., P} of Bsuch that each part F, is itself a partition of X. The parts P,
are called parallel classes, and the partition ITis called a resolution. The number r
of parallel classes in a resolvable GD[k, A, m, v] is given by r = A(v —m)/(k —
1)=Am(u — 1)/(k — 1), where u is the number of groups.

Group divisible designs are generalizations of many combinatorial design
structures, we give a short list below.

A pairwise balanced design B(K, A, v) is equivalent to a GD[K, 4, 1, v].

A balanced incomplete block design B(k, A, v) is equivalent to a
GD[k, 4, 1, v].

A transversal design T(k, A, m) is equivalent to a GD[k, 4, m, km].

The main purpose of this paper is to investigate the existence of resolvable
group divisible designs with parameters GD[3, A, m, v]. Note that the existence
of group divisible designs with block size 3 has been settled by Hanani [7] who
proved the following.

Theorem 1.1. A group divisible design GD[3, A, m, v] exists if and only if
v=0 (modm), v+#2m,
Mv—m)=0 (mod?2), and
Av{v—m)=(0 (mod6).

For such a design to be resolvable an obvious additional necessary condition on
the parameters is that

v=0 (mod3).

We shall show that in the majority of cases the above conditions are also
sufficient for the existence of resolvable designs GD[3, A, m, v]. However, we do
leave some cases where the necessary conditions are satisfied but the existence of
the designs is undecided.

We begin by surveying the known existence theorems for resolvable group
divisible designs with block size 3. The most celebrated existence problem for
resolvable designs was first posed by Kirkman [9] in 1847, and is known as
Kirkman’s schoolgirl problem. This was solved by Ray-Chaudhuri and Wilson
[11] in 1974 when they proved the following.
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Theorem 1.2. A resolvable group divisible design GD[3, 1, 1, v] exists if and only
if v=3 (mod 6).

Another well studied problem for resolvable group divisible designs is the
existence of resolvable transversal designs. A resolvable transversal design
T(3, 1, m) or resolvable GD{3, 1, m, 3m] is equivalent to a pair of mutually
orthogonal Latin squares of side m, and the following existence theorem was
proved by Bose, Parker and Shrikhande [2, 3] in 1960.

Theorem 1.3. A resolvable group divisible design GDI[3, 1, m, 3m] exists if and
only if m ¢ {2, 6}.

Further progress was made on the case m = 1 by Hanani {6] when he proved.

Theorem 1.4. A resolvable group divisible design GDI[3, 2, 1, v] exists if and only
ifv=0 (mod3), and v+#6.

An easy consequence of Theorems 1.2 and 1.4 is:

Theorem 1.5. A resolvable group divisible design GDI3, A, 1, v] exists if and

only if
A=1 (mod2),and v=3 (mod®6),or
A=0 (mod2),and v=0 (mod3),and v#6, or
A=0 (mod4), and v==6.

Proof. Theorems 1.2 and 1.4 cover thecases A=1and A=2. For A>2and v+#6
the designs are constructed by taking copies of the blocks and resolution classes
of the designs with A <2. For v =6 and A =4/ take j copies of all 3-subsets of a
6-set as blocks, and the resolution classes consist of a block and its complement.

Now let us assume that there exists a resolvable GDJ[3, 4/ +2, 1, 6]. We can
assume that X = {0, 1, 2, 3, 4, 5}. Every resolution class contains two blocks, and
these two blocks contain either 0 or 4 pairs {x, y} such that x £y (mod2)
(according to whether the resolution class is {{0,2,4}, {1,3,5}} or not). There
are a total of 9 such pairs, and thus 9(4j+2) is a multiple of 4, a
contradiction. [}

A resolvable group divisible design GD[3,1,2, v] with m =2 and A=1 has
been referred to in the literature as a nearly Kirkman triple system, and the
following existence theorem is mainly due to Baker and Wilson [1] with some
final small cases solved in the papers of Brouwer [4] and Rees and Stinson [10].
(Note that a resolvable GD[3, 1, 2, 6] is equivalent to a pair of orthogonal Latin
squares of side 2. which do not exist by Theorem 1.3.)
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Theorem 1.6. A resolvable group divisible design GDI3, 1, 2, v] exists if and only
if v=0 (mod6), and v=18.

Rees and Stinson also proved the following theorem, which is the state of the
art for resolvable group divisible designs with & =3, A =1, and arbitrary m.

Theorem 1.7. A resolvable group divisible design GD[3, 1, m, v} exists if and
only if

v=0 (modm), v#2m,

v—m=0 (mod?2),

v=0 (mod 3) and,

(m, v) ¢ {(2,6), (2, 12), (6, 18)}
with the possible exceptions of

(m, v) € {(6, 66), (18, 198)}

m=6or30 (mod36), and v=14m

m=2or 10 (mod 12), and v = 6m.

In this paper we improve on Rees and Stinson’s result by removing the first two
classes of exceptions, and some of the third class. We also prove a result similar
to Theorem 1.7 with A > 1. We denote the set of primes less than or equal to p by
D,,. Our main result is the following.

Theorem 1.8. A resolvable group divisible design GD|3, A, m, um] exists if and
only if

u#2,

Am(u—1)=0 (mod?2),

um =0 (mod3)and,

Amou)ye{(2/+1,2,3),(1,2,6),(1,6,3), (4 +2,1,6):=0,1,2,...}

with the possible exceptions of the cases where u=6 and A0 (mod4).
Moreover, there exist resolvable GD[3, A, m, 6m] for all odd A and even m such
that m/2 is divisible by a member of D,, and there exist resolvable
GDI[3, A, m, 6m] for all A=2 (mod4) and all m divisible by a member of D,,,
except possibly m € {22, 26, 34, 38}.

A further configuration investigated in this paper has appeared in Hanani’s
paper (6] in a disguised form, and explicitly in Stinson’s paper [12]. We have
chosen to use the terminology frame resolvable group divisible design as a
compromise between the terms currently in use. A group divisible design



Resolvable group divisible designs 9

(X, I, B) is said to be frame resolvable if there exists a partition [T=
{P, P.,..., B} of B such that each P, is itself a partition of X\G; for some
G; e I. The parts P, are called frame parallel classes, and the partition IT is called
a frame resolution.

Two obvious necessary conditions for the existence of a frame resolvable
GDI[k, A, m, v] are that v¥#km, and v—m =0 (mod k). The number of frame
parallel classes, f, is given by

_Av(v—m) v-m_ Av

F=%k=1 Tk k=1

and hence an additional necessary condition is that Av=0 (modk —1). Note
that the number of frame parallel classes which partition X\G; for some fixed
group G; is given by f —r = Am/(k — 1) and we shall sometimes use this fact to
index the frame resolution as [T={P;:i=1,2,...,u;j=1,2,..., Am/(k - 1)}
where u is the number of groups and F; is a partition of X\ G, for all j.

In the case k = 3 Stinson [12] has shown that the necessary conditions stated
above are also sufficient when A =1, and his result is stated below.

Theorem 1.9. A frame resolvable group divisible design GD[3, 1, m, v] exists if
and only if

v=0 (modm), v+#2m,3m
v—m=0 (mod3), and
m=0 (mod?2).

Hanani [6] has also shown that the necessary conditions are sufficient when
A=2and m =1. His result is:

Theorem 1.10. A frame resolvable group divisible design GD|3, 2, 1, v] exists if
and only if v=1 (mod3).

In the same paper Hanani also constructs frame resolvable GDJ[3,2,m, v|
designs with m € {3, 12, 24} and infinitely many values of v. In this paper we
extend the above results to prove:

Theorem 1.11. A frame resolvable group divisible design GD|3, &, m, v] exists if
and only if

v=0 (modm), v+#2m,3m,
AMv—m)=0 (mod?2),
v—m=(0 (mod3), and
Av=0 (mod2).
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In Section 2 we describe the major constructions necessary to prove Theorems
1.8 and 1.11. In Section 3 we prove these results, and the appendix contains the
constructions of resolvable and frame resolvable designs with small parameters
needed in the proofs.

2. Recursive constructions

In this section we show how to construct both resolvable and frame resolvable
group divisible designs using the existence of designs with smaller values of the
various parameters. Throughout the sequel we shall denote the set
{0, 1, ..., n—1} by [,. The first lemma shows how to increase A without altering
any of the other parameters.

Lemma 2.1 (Addition Lemma). If there exist a (frame) resolvable
GD[K, A, m, v] and a (frame) resolvable GD|K, u, m, v] then there exists a
(frame) resolvable GD[K, A+ u, m, v].

Proof. Take the union of the two postulated designs. [

In most cases this lemma reduces our problem to consideration of only two
cases namely A=1 or 2. The next theorem is multiplicative on the number of
points and the index A. In general we will be using the theorem with &, = & thus
keeping the block size constant, but we shall also have occasion to set k, # k.

Theorem 2.2 (Multiplication Theorem). If there exist a (frame) resolvable
GD[k,, A, m, v] and a resolvable GD[k, u, g, k,g] then there exists a (frame)
resolvable GD[k, Au, mg, vg|.

Proof. Let (X, I, ) be a (frame) resolvable GD[k,, A, m, v] with (frame)
resolution IT={m, m,,...}. We construct a (frame) resolvable
GDlk, Au, mg, vg] as follows. Let X'=X x[I,. Let I"={G x1,:GeT}. For
each block B € B we construct a resolvable GD[k, u, g, k,g] with point set B x [,
groups {x} X/, for each xeB, block set B(B), and resolution II(B)=
{P(B,j):j=1,2,...}. Now let B’ =Jg.s B(B), and construct (frame) parallel
classes P'(i, j) = Ugen, P(B, ). O

To apply this theorem we generally use Theorem 1.3 which guarantees the
existence of resolvable GD[3, 1, g, 3g] for all g #2, 6. Thus our problem usually
reduces to consideration of the cases where m =1, 2, 3, and 6. The next theorem
shows that the set U = {u:there exists a frame resolvable GD[k, A, m, mu]} is
PBD-closed.
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Theorem 2.3 (PBD-closure Theorem). If there exist a pairwise balanced design
B(K, 1, v] and for each u € K there exists a frame resolvable GD[k, A, m, mu] then
there exists a frame resolvable GD[k, A, m, mv].

Proof. Let (X, B) be a B[K,1,v]. We construct a frame resolvable
GDlk, A, m, mv| as follows. Let X' =X x1,. Let I'"={{x}x1,:xe X}. For
each block Bef of cardinality u we construct a frame resolvable
GD[k, A, m, mu] with point set B X I,,, groups {x} x I, for each x € B, and block
set B(B). Its frame resolution IT(B)={P(B, x,j):xeB,j=1,2,..., Am/(k —
1)}, is indexed so that P(B, x, ) is a partition of (B\{x}) X [, for all j. Now
let B'=UgpB(B), and construct frame parallel classes P'(x,j)=
Uenep P(B, x,j), forallxeXandallj=1,2,...,Am/(k-1). O

With k, A, and m fixed, this theorem reduces our existence problem for frame
resolvable GD{k, A, m, mu] to finitely many values of u, using the known finite
generating sets for U. An example of the kind of result we shall use is the
following theorem of Drake and Larson [5].

Theorem 2.4. For all v=<4 there exists a B(K,1,v) where K=
{4,5,6,7,8,9, 10, 11, 12, 14, 15, 18, 19, 23}.

The next theorem is similar to the PBD-closure theorem and it illustrates the
interplay between frame resolvable and resolvable group divisible designs.

Theorem 2.5 (FR + l-closure Theorem). If there exist a group divisible design
GDI[K, 1, M, v] and for each g € M there exists a resolvable GD[k, A, m, m(g +
1)] and for each u € K there exists a frame resolvable GD[k, A, m, mu] then there
exists a resolvable GD[k, A, m, m(v + 1)].

Proof. Let (X, 1, 8) be a GD[K,1,M,v]. We construct a resolvable
GDlk, A, m, m(v+1)] as follows. Let X'=(XU{o})x 1, Let I'={{x}x
I, :x e XU {}}. For each group G € I' of cardinality g we construct a resolvable
GD[k, A, m, m(g + 1)] with point set (G U {=}) X I,, groups {x} X I,, for each
x € GU{x}, and block set B(G). Its resolution IN(G)= {7(G, x,j):xe€C,j=
1,2,..., Am/(k—1)}, is indexed arbitrarily by the ordered pairs (x, j). This is
possible since the number of parallel classes is Amg/(k — 1). For each block B € 8
of cardinality u we construct a frame resolvable GD[k, A, m, mu] with point set
B x I,. groups {x} x 1, for each x € B, and block set $(B). Its frame resolution
nOB)={P(B,x,j):xeB,j=1,2,...,Am/(k—1)}, is indexed so that
P(B, x, j) is a partition of (B\{x})x 1, for all j. Now let B'=JsrB(G)U
Upep B(B), and construct the following parallel classes. Let x be a member of X
and let G be the unique group in I' which contains x, now for each
j=12,..., Am/(k — 1) define

P jy=a(G,x, ju U P(B,xj) O
xeBep
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This theorem, together with our results on the existence of frame resolvable
designs and standard results on group divisible designs, reduces the existence
problem for resolvable group divisible designs to a finite number of values of v.

Note that none of the results in this section are completely new, since variants
of these results have appeared in the papers of Hanani, Wilson and others. We
have restated and proved the results to make the paper self contained and to have
the results in the most convenient form for our purposes.

3. Proofs of the main theorems

We begin this section with a proof that the necessary conditions for existence of
frame resolvable group divisible designs with block size 3 are sufficient. We
restate the theorem here for the reader’s convenience.

Theorem 1.11. A frame resolvable group divisible design GD[3, A, m, v] exists if
and only if

v=0 (modm), v+#2m,3m,
AMv—m)=0 (mod?2),
v—-m=0 (mod3), and
Av=0 (mod?2).

Proof. Let v =um. We consider three cases.
Case 1. A=1 (mod?2).

In this case the necessary conditions reduce to u#2,3, m=0 (mod2), and
m({u —1)=0 (mod3). The existence of these designs follows from Stinson’s
theorem [12] (Theorem 1.9) and the Addition Lemma.

Case 2. A=0 (mod2)and m #0 (mod?3).

In this case the necessary conditions reduce to u=1 (mod3). The existence
of these designs follows from Stinson’s theorem [12] (Theorem 1.9) and the
Addition Lemma when m is even. When m is odd existence follows from
Hanani’s theorem [6] (Theorem 1.10), the Addition Lemma and the Multiplica-
tion Theorem, since, by Theorem 1.3, there exist resolvable GD[3, [, m, 3m] for
all odd m.

Case 3. A=0 (mod2)and m=0 (mod3).

In this case the necessary conditions reduce to u #2, 3. When m is even the
result follows from Stinson’s theorem and the Addition Lemma. When m is odd,
by the Addition Lemma and the Multiplication Theorem, it is sufficient to
establish the result in the case where A=2 and m =3. When u=1 (mod 3) and
in particular when u € {4, 7, 10, 19} the result follows from Hanani’s theorem and
the Multiplication Theorem. When u € {5, §, 9, 11, 12, 15, 23} Hanani {6] has
constructed frame resolvable GD[3,2,3,3u] designs. In Hanani’s paper the
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designs are given by developing the frame parallel classes denoted
M, 5(0; 0) modulo (1, 3). When u € {6, 14, 18} we construct frame resolvable
GDJ3, 2, 3, 3u] designs in the Appendix. For all other values of u the result then
follows from Drake and Larson’s theorem [5] (Theorem 2.4) and the PBD-
closure theorem. 0O

We turn now to resolvable group divisible designs, and we begin by giving a
small improvement to Rees and Stinson’s theorem [10] (Theorem 1.7).

Theorem 3.1. There exist resolvable GDI3, 1, m, 1lm] and resolvable
GDI[3, 1, m, 14m] for all m=0 (mod6). Furthermore, there exist resolvable
GD[3, 1, m, 6m] for all m =0 (mod 10), and for all m =0 (mod 14).

Proof. In the Appendix we construct resolvable designs GDJ[3, 1, 6, 66],
GDJ[3,1,6,84], GD[3,1,10,60], and GD[3,1, 14, 84]. Rees and Stinson have
constructed resolvable designs GD[3,1, 12, 132], GD{3, 1, 12, 168],
GD[3,1,20,120], and GDI[3,1,28,168]. The result then follows from the
Multiplication Theorem and the existence of a pair of orthogonal Latin squares of
side n #2, 6 (Theorem 1.3). O

This result, together with Rees and Stinson’s theorem proves our main result,
Theorem 1.8, for the case A=1. We now concentrate on A=2. In order to
establish our result in this case we use the following theorem due to Hanani,
Ray-Chaudhuri and Wilson [8] concerning the existence of resolvable balanced
incomplete block designs with block size 4.

Theorem 3.2. A resolvable GD[4, 1, 1, v] exists if and only if v=4 (mod 12).

We also use the following result concerning the existence of three mutually
orthogonal Latin squares of side g. This result is due to a combination of authors,
see [14] and [13] for a proof.

Theorem 3.3. A GDI[S5, 1, g, 5g] exists for all g=4, g+6, with the possible
exception of g = 10.

We are now able to state and prove the following.

Theorem 3.4. A resolvable GDI3,2, m, mu] exists if and only |if
mu=0 (mod3),u+#2, and (m, u)# (1, 6), with the possible exception of the
cases where u = 6. Moreover, there exists a resolvable GDI[3, 2, m, 6m] for all m
divisible by a member of Do, except possibly m € {22, 26, 34, 38}.
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Proof. Necessity of these conditions was established in the introduction. To
prove sufficiency we consider four cases.

Case 1. u=0 (mod3), and u #6.

When m =1 this is Hanani’s theorem (Theorem 1.4). When m =2 and u =3
we give a direct construction in the Appendix. When m =2 and u =9 the result
follows from the existence of nearly Kirkman triple systems (Theorem 1.6) and
the Addition Lemma. All other values of m then follow from the Multiplication
Theorem and the existence of mutually orthogonal Latin squares (Theorem 1.3).

Case 2. m=3 and u #2.

When u is odd, we can construct a resolvable GD(3, 1, 3, 3u] from a Kirkman
triple system (which exists by Theorem 1.2) simply by considering one of the
parallel classes as the set of groups. Using the Addition Lemma gives a resolvable
GD[3, 2, 3, 3u]. When u=0 (mod3), and u # 6, then the construction is given
in Case 1. When u € {4, 6, 8, 10, 14, 22} we give constructions in the Appendix.
When u =4 (mod 12), we can use the Multiplication Theorem with k; =4 and
k =3, since resolvable GD|4, 1, 1, u] exist by Theorem 3.2 and we have
constructed a resolvable GD[3, 2, 3, 12] in the Appendix.

From the above construction, we have the existence of resolvable
GDJ3, 2,3, 3u] for all u =30 with the exceptions of u =2, 20, 26. For u > 30 and
u =20, or 26 we use induction. Writec u =4g +n +1 where g =4, g ¢ {6, 10},
0<n=<gand n# 1. By Theorem 3.3 there exists a GD[S, 1, g, 5g]. and deleting
g —n points from a single group, and all the blocks containing them yiclds a
GD|{4, 5}, 1, {g, n}, 4g + n]. By Theorem 1.11 there exists a frame resolvable
GDJ[3,2,3, 12], and a frame resolvable GD[3,2, 3, 15]. Since u>g +1=5 and
g+ 1=n+1+#2 the induction hypothesis gives us the existence of a resolvable
GDJ3, 2, 3, 3(g + 1)], and a resolvable GDI[3, 2, 3, 3(n + 1)]. We now apply the
FR + 1 Closure Theorem to construct a GD[3, 2, 3, 3u].

Case 3. m=0 (mod3), and u #2.

Case 2 handles the case m = 3. The cases m =6, 18 are covered by Rees and
Stinson’s theorem (Theorem 1.7), Theorem 3.1, and the Addition Lemma. All
other cases are covered by applying the Multiplication Theorem to the designs
constructed in Case 2 and the existence theorem for mutually orthogonal Latin
squares (Theorem 1.3).

Case 4. u =6, m is divisible by a member of D,,, and m ¢ {22, 26, 34, 38}.

In the Appendix we construct resolvable GD[3, 2, m, 6m] for all m € D,. The
existence of a resolvable GDJ[3, 2, 6m, 36m] follows from Rees and Stinson’s
theorem. For m € D, the existence of a resolvable GD[3, 2, 2m, 12m] follows
from Rees and Stinson’s theorem and Theorem 3.1. The remaining cases follow
from the Multiplication Theorem. [

We are now ready to prove our main result which is restated below for the
reader’s convenience.

Theorem 1.8. A resolvable group divisible design GD(3, A, m, um) exists if and
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only if
u*2
Am(u—1)=0 (mod 2),
um=0 (mod3) and,
(A,mu)e {(2j+1,2,3),(1,2,6),(1,6,3), (4 +2,1,6):j=0,1,2,.. .}

with the possible exceptions of the cases where u=6 and A*+0 (mod4).
Moreover there exist resolvable GD[3, A, m, 6m] for all odd A and all even m such
that m/2 is divisible by a member of D,;, and there exist resolvable
GD[3, A, m, 6m] for all A=2 (mod4) and all m divisible by a member of D,
except possibly m € {22, 26, 34, 38}.

Proof. The theorem is true for A=<2 by Rees and Stinson’s theorem, Theorem
3.1 and Theorem 3.4. For even values of A we use the Addition Lemima. For odd
values of A, using the Addition Lemma, it is sufficient to construct a resolvable
GDJ[3, 3,2, 12] and a resolvable GD[3, 3, 6, 18]. This is done in the Appendix.

It remains to show the non-existence oa a resolvable GD|3, 2j + 1, 2, 6] for any
j. Assume that such a design exists with groups {0, 1}, {2,3}, {4,5}. There
are four possible resolution classes P, ={{0,2,4}, {1,3,5}}, P=
{{0, 2,5}, {1,3,4}}, P,={{0, 3,4}, {1,2,5}}, P,={{0,3,5},{L1,2,4}}. Let P,
occur p, times in the design. Counting occurrences of the pair {0,2} yields
pi+p.=2j+1, and hence p,# p,. Similarly considering the pairs {0, 4} and
(3,4} yields p,+p;=2j+1, and p,+p:=2j+1, hence p,=p, a
contradiction. [

Note added in proof

The proper reference for Theorem 2.4 is A.E. Brouwer, H. Hanani and A.
Schrijver, Group divisible designs with block size four, Discrete Math. 30 (1977)
1-10.
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Appendix

A frame resolvable GD|[3, 2, 3, 18].
X =2Z,5U{x,, o, 0,}.
I={{i,i+5i+10}, {oy, 0, 0,}:i=0,1,...,4}
Frame parallel classes
{[4,7,.8] [6,12,3] {9, 11, =] [14,1,0,] [13,2,9,]} (mod1S),
{[3/+ & 3j+k+7,3+k+14] j=0,1,...,4} k=0,12

A frame resolvable GD[3, 2, 3, 42].

X = Zay U {00y, 20y, ).

F={{i, i +13,i+26}, {x,, o, 0°,}:i=01,...,12}.
Frame parallel classes

([2,8, 14] [4,11,15] [9, 17, 19] [16,25, 30] [29,7, 12] [10, 28, 31] [38, 23,27
(34,20, 22] [3,32,35] [6,36,37] [I8 33, 0] [5,21,%,] [1,24,,]} (mod39),

(B +k 3+k+19,3j+k+38] j=0.1,...,12} k=012

A frame resolvable GD|3, 2, 3, 54].

X =Z5 U {my, %, %)

P={{i, i+ 17,i+34}, {=,, =, %:}:0i=0,1,..., 16},
Frame parallel classes

{12, 10, 18] 4,13, 19] [1, 11, 15] [3, 14, 16] [8, 20,26] [22, 41, 42] [27, 49, 5]
[7.30,35] [48,21,24] [50,29,32] [12,43,47] [6,38,45] [37,23,28] [44, 31, 33|

139, 9, %, [40, 25, ;] {46, 36, =,]} (mod S1), {[3j + k, 3j + k + 25,3+ k +50] j -
0,1,.... 16) k=0,1,2

A resolvable GD{3, 1, 6, 66].
X=ZN,U{OGU,00| ..... g},
F={{i+10j:5=01...,5} {=5>2,..., w}i=0,1,.. ., 9).
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Parallel classes are formed from the orbit of the following base parallel class under the action of the
permutation which fixes oo, %, ..., %5 and sends j—j +2 (mod 60) for all j in Zg,.

{10, 2, 16] [4,10,32] [1,3,29] [5,9,27] [7,13,56] [11,19,14] [23,35,28]
(25,39, 52] [37, 53, 44] [57, 21, 8] [42, 46, 45] (12,48, 31] [50, 38, 15] [22, 30, 51}
(18, 36, 59] [40, 6, 41] [34, 49, ®y] [20, 47, ®,] (24,55, ] [54, 33, =] (58, 43, %,
|26, 17, 4]}
A resolvable GD[3, 1, 6, 84].
X =2Z,U{®,, 0, ..., 9}
F={{i+13:j=0,1,...,5}, {®, ©,...,9:i=0,1,...,12}.

Parallel classes are formed from the orbit of the following base parallel class under the action of the
permutation which fixes %, ©,, ..., @; and sends j—j +2 (mod 78) for all jin Z,.

{[0, 19, 38] [2,23,44] [4,5,6] [1,3,39] [8,32,36] [7,31,35] [12,34,42) [11,33,41]
(20, 40, 52] {67, 9,21] [70,26,29] [25,59, 62] [48,58,63] [61,71,76] [54,68,77]
(51, 65, 74] [30, 46, 57) [75,13,24] (10,28, 45] [37,55,72] {18, 43,49} [69, 16, 22|
(64, 15, 0] [27, 56, ,] [14, 47, ;] [17, 50, ] (66,73, %], [S3, 60, o]}

A resolvable GD[3, 1, 10, 60].
X=ZS()U{mm TR ,°°9}.
F={{i+5j:j=0, 1,4‘ . ,9}, {w(lrm|n~- ‘,°°g}3i=0, l,.. . ,4}

Parallel classes are formed from the orbit of the following base parall.el class under the action of the
permutation which fixes %y, %, ..., ®, and sends j—j + 2 (mod 50) for all j in Zg,.

{{o, 4, 16} [1,5, 17] [6, 8,30] 7,9, 31] [12, 18, 26] [19, 22,25] [13, 14, 21]
(27, 40, 41] [29, 36, 47] [28, 37, 46] (33, 44, =] [48, 11, ] [32,49, @, [35,2, =0,
[34, 3, o ] [23, 42, =] [24, 45, o] [39, 10, ;] [20, 43, =,] [15, 38, =,}}
A resolvable GD[3, 1, 14, 84].
X =2Z,U{®, ®,...,°;}
F=({i+5:=0,1,..., 13}, {®, @, ..., 03}:i=0,1,...,4}.

Parallel classes are formed from the orbit of the following base paralle! class under the action of the
permutation which fixes o, ®,, ..., ;and sends j—j +2 (mod 70) for all j in Z,.

{[0, 2, 14] [1.3, 15] [4,8,30] [5,9,31] [10,18,42] [11,19,43] [6,22,40] (13, 16,29]
(17,26, 35] [7,24,41] [28,34,57] [21,27,50] {32,33,60] [67,68,25] [48, 51,0,
(49, 62, ,] [54, 61, ] [39, 46, 5] [S2, 63, =] [53, 64, 5] [36, 55, =] [47, 66, ;]
(44, 65, ] [37, 58, ,) [38, 69, @] [59, 20, ,,] [12, 45, @5} [23, 56, ]}

A resolvable GD[3, 2, 2, 6].

X =2Z,U{®y, =}

r= {{‘: i+2)- {m(p °°|} ) =0, l)
Parallel classes

{[0, 1, =] [2, 3, =]} (mod4).

A resolvable GD(3, 2, 3, 12].
X=2,xX2Z,
F={Z,x{i}:ieZ,}
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Parallel classes

{0, 0, (1, 1), 2,2)] mod (-, 4} {[(0,0),(1,1),(2, 3)] mod (—, 4)}
{1(0,0),(1,2), 2, D] mod (—.4)} {[(0,0),(1,3),(2,1)] mod(-.4)}
{{6, %), (1, 2),(2,3)] mod(—,4)}
{[(0,0), (0, 2), (0, (1, D, (1,2), (1L D2, 0), (2, 1), 2, DO, 1), (1,0),(2,3)]}  mod(—
4)
A resolvable GD[3, 2,3, (8].
X =275 U {o,, @, %}
F={{i,i+5,i+10}, {=, o, 6 0,}:i=0,1,...,4}.

Parallel classes

{0, 1,4] [5,7.14] [9,12,13] [2, 11,,] [3,10,0,] [6,8 =]} (mod15).

A resolvable GD[3, 2, 3, 24].

X = 2o U {og, oy, %)

F={{i,i+7, i+14}, [, ®,%}:i=0,1,...,6}.
Parallel classes

{[0,4,5] [2,12,15] [6,8 17} [7.10,16] [13,18,19] [, 14, %,) [3,20, ]
[9, 11, %,]}  (mod21).

A resolvable GD[3, 2, 3, 30].

X =25 U (=, ®, 0,}.

F={{i,i+9,i+ 18}, (g, 00, %} :i=0,1,...,8).
Parallel classes

(10,4, 6] [1,8 12] [3, 11, 13] [26,18,21] [23,16, 17] {5, 19,22] [9, 24, 25]
[10, 15, %] [2, 14, 0] (7,20, ,]} (mod27).

A resolvable GD[3, 2, 3, 42].
X =ZqyU {09, 0, 5},
I={{i, i +13,i 426}, {=,, ©,,0}:i=0,1,...,12}.
Parallel classes
(1,2,7] 14,8 28] [16,32,34] [11,19,25] [5,22,37] [10,20,31] (21,24, 35)
6, 18,23] [27.36,17] [15, 12, 14] [3,30,38] [9,0, %] [26,33, ]
(13,29, @,]}  (mod 39).
A resolvable GD(3, 2, 3, 66}.
X = Zg3U {0, ®y, ®,}.
F=({i,i+21,i +42}, {2, ®), ®,):i=0,1,...,20}.
Parallel classes

([0, 10,20] [2,13,21] [4,16,22] [1, 14, 18] [3,17, 19] [8,23,30] [S, 28, 37]

[7, 31, 38] [9,34,39] [33,59,62] [24,51,52] [46,27,35] [54,36,42] [57, 40, 44]
|61, 45, 47] [26, 60, 6] [12, 48, 53] [55,29,32] [11, 49, 50] [25, S8, =] [43, 15, =]
[56, 41, =,]}  (mod 63).
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A resolvable GD[3,2,2, 12].

X=2Z,,U (%, ®}

L= {{i,i+5}, {0, 0}:i=0,1,...,4}
Parallel classes

{10,1,9] [2.58] [3,7, 2] [46 %] (mod10).

A resolvable GDJ3, 2, 5, 30].

X =2 U{®y, @, ..., %)

F={{i+5j:j=0,1,...,4}, {0, %, ...,%9}:i=0,1,...,4}.
Parallel classes

(11,2,4] [7, 14, 16] [12,18,5] [13,21,0) [20,3,6] [9,10, ) (15,19, ] (17,23, )]
(24, 8, ;] [11,22, 0]} (mod25).

A resolvable GD[3,2,7, 42].
X=2Z,sU{oo,, o, ..., o}
C={{i+5:j=0,1,...,6} {0 ®,....%}:i=0,1,..., 4}
Parallel classes
(0,4, 6] [1,9,13] [3, 12, 14] (2,18,21] [5,22,23] (7,28,31] [10,32,33] (17, 24, =]
(30, 8, %,] [15,29, =] [25, 16, %3} [19, 11, ] [34, 27, 5] [26,20, =]}  (mod 35).
A resolvable GD[3,2, 11, 66].
X =2ZsU{my, o, ..., 20}
F={{i+5:=0,1,...,10}, (%9, ®, ..., ®0}:i=0,1,...,4).
Parallel classes

{[0,7,13] [2, 10, 14] [6,15,17] [1, 18,24] [3,21,25) [8,27,29] [4,28, 35] [5,31, 34]
[9, 36, 37] (11,47, 50] [16,53,54] (12,26, %] [30, 46, ] [42, 19, =] [45, 23, 5]
[43, 22, w,] [52, 38, =] (33,20, %56] [44, 32, ;] [51, 40, 0o5] [48, 39, o0g] [49, 41, o0y¢]}
(mod 55).

A resolvable GD[3, 2,13, 78].

X =ZgsU {2, @, ..., O}

F={{i+5:=0,1,...,12}, {0, ®, ..., ®,}:i=0,1,...,4}
Parallel classes

([0, 11,19] [2,14,20] [4,17,21] [8,22,24] [1,23,29] [3,26,30] [7,31,33]

[5, 34, 41] [6, 37, 40] [10, 42, 43] [9, 48, 55] [12, 53, 56] [15, 57, 58] [27, 35, |
(16, 25, ] (18,39, @,] [13, 50, 5] [59, 32, 0,] [46,28, 5] [61, 44, 0] [54, 38, ]
[63, 49, 20q) [60, 47, 5] [64, 52, 1] [62, 51, %0,,] (45,36, %]} (mod 65).

A resolvable GD{3, 2,17, 102].
X =ZgsU (™, @, - - P16}
F={{i+5:=0,1,...,16}, {2, %, ..., ©e}:i=0,1,...,4}.
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Parallel classes

{(0, 11, 19] [2, 14,20] [4, 17,21} [8,22,24] [5,26,34] [1,23,29] [9,32,36]

[7, 31, 33] [3,35, 46] [6,39,48] (10,44, 51] (13, 49, 52] [16, 53, 54] [12, 60, 69]

(15, 64, 71] [25,76,79] [28, 80, 81} [27, 58, =] [18, 62, 2,] [37, 83, =,] [68, 30, =4
(70, 43, c,] 73, 47, o] [74, 50, 2] [61, 38, ;] [67, 45, ] [63, 42, ] [75, 56, ,]
(77,59, =] {57, 40, 2] [82, 66, 053] [55, 41, @04] [78, 65, =]

[84, 72, 4]}  (mod 85).

A resolvable GD(3,2,19, 114].

X=2Z45U {=, 2, ..., O}

P={{i+5:=0,1,..., 18}, {2, @, ... o4} :i=0,1,..., 4}
Parallel classes

([0, 12, 23] [2,15,24] [4,18,25] [1, 17,20} [9,26,27] [3.30,41] [S,33, 42|
[7, 36, 43] [6,37,40] [13,45,46] [8,47,59] (11,52, 60] [14, 56, 62] [10, 53, 57
[19, 63, 65] [16,72,80] [21,78,84] [28, 86, 90] [22, 81,83] [31,55, =] [32, 58, =]
[35, 87, @,] [29, 82, 2,] [34, 88, oo,] [67, 38, 2] [76, 48, w0,] [66, 39, =, [70, 44, w,]
[85, 61, =,] [91, 68, ] {71, 49, 0,1 {75, 54, ;] [69, 50, =,] [92, 74, 4]
[94, 77, 2,5] [89, 73, 6] [93, 79, 22,,] [64, 51, %]} (modY5).
A resolvable GD[3, 3, 2, 12].
X=2Z,,U{x), o}
F={{i,i+5}, {2, ®}:i=0,1,..., 4}
Parallel classes
{[0,4,6] [57.8] [L,3,%25] [2,9 %]} (mod10)
{0,3,4) [58,9] [1,2,%] [6,7, ]}+i i=01,...,4

A resolvable GD[3, 3, 6, 18].
XZZISU{OOU! mlvml)'
F={{=,i+3:j=0,1,...,4}:i=0,1,2}.

Parallel classes are formed from the orbits of the following base parallel classes under the action of the
permutation of which sends o, —» o, | (reducing subscripts modulo 3), and sends i >i+ 1 (mod 15)
for all i in Z,5. Note that the first base parallel class has an orbit of length 3, and the second has an

orbit of length 15.
{[egs 2, 2] [3i,3i +10,3i +5]:i=0,1,...,4)}
{[0, 13, 11} [3,,,2] [9,10,,] [0,7, 14] [6,4,8] [12,1,5]}.
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We study Steiner systems which embed *‘in a minimal way” in projective planes, and
consider connections between the automorphism group of the Steiner systems and correspond-
ing planes. Under certain conditions we are able to show (see Theorem 2) that such Steiner
systems are either blocking sets or maximal arcs.

1. Introduction

A Steiner system S = S(2, k, v) is an ordered pair (P, B) where P is a finite set
of v elements called points, B is a set of subsets of size k =2, of P, called blocks,
such that two points are on a unique block. S is trivial if |B| < 1.

Let b=|B| and let r be the number of blocks per point. It follows that
v—1=r(k—1) and vr=>bk. Thus a necessary condition for the existence of
Steiner systems S(2,k,v) is that v—1=0(modk-1) and wv(v-
)=0(mod k(k — 1)) [9]. Hanani proved that these congruences are together
sufficient in case k =3, 4 or 5|10, 11].

A projective plane is a Steiner system S(2, ¢ +1,g°+q + 1) for g =2. Here g
is called the order of the projective plane. If S is a projective plane, we normally
refer to its blocks as lines.

It appears to be the case that the majority of Steiner systems embed in
projective planes [2]. In this article, we are interested in those Steiner systems
which embed in a ‘minimal’ way, as defined in the next section, and in the
resulting relationships between the automorphism groups acting on the two
structures. Clearly, if a Steiner system § embeds in a projective plane IT which in
turn embeds in a second projective plane IT’, there need be no connection
whatsoever between the automorphism groups of § and IT'. Thus some notion of
IT ‘lying minimally’ in S is crucial if we expect to be able to say anything at all
about the connections between the two structures.

We shall need the following definitions.

A subset of the points of a projective plane IT which is met by every line of IT
but which itself contains no line of IT, is called a blocking set.

* Research supported by NSERC grant A3485.
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A subset of the points of a projective plane IT which is met by every line of I1
in either 0 or a constant k points, but which contains more than k points of IT, is
called a maximal arc. It is obvious that a maximal arc forms a non-trivial Steiner
system S(2, &, v) and that a Steiner system in IT is a maximal arc if and only if
r=gq + 1, where ¢ is the order of II.

For more information on blocking sets and maximal arcs, we refer the reader to
the book [14] by Hirschfeld.

Our main results are presented in Theorems 1, 2 and 3.

2. The setting

We wish to consider the situation of a Steiner system embedded in a ‘smallest
possible’ projective plane. The definition we give below assumes conditions on a
Steiner system S which allow us to construct such a projective plane on S.

A Steiner system S =S(2, k, v) is minimally projectively embeddable (an
mpe-system) if for some integer g,

(i) S is equipped with a non-empty family & of sets of blocks, each containing
a set of =2 mutually non-intersecting blocks such that any two non-
intersecting blocks of S occur in precisely one element of #. If L€ F € %,
we write F € L and say that F “belongs to”, “is in”’, or “is on”, L;

Gii) |F|+v=q¢*+q+1,

(iii) for any distinct elements x and y of & U P, there is a unique set X of g + 1

elements of # U P including x and y, with the property that for each block
L of S, precisely one of the following holds: L < X; there is a unique
element of X on L.

If S is an mpe-system, we shall often refer to it more precisely as the pair
(S, %), where % is the family described in (i).

We say (S, ) embeds minimally in the projective plane IT if § is an
mpe-system which is a restriction of IT to some subset of its point set, and if for
all points x € IT\S, there is a unique element F € &% such that the blocks of F are
precisely the restrictions of the lines of IT on x to the points of S.

The following facts are immediate from the above definitions: S contains
non-intersecting blocks and so if S embeds minimally in IT, S is non-trivial and §
cannot equal IT; every point of IT\S is on at least two lines of IT which have
restrictions to blocks of S.

Proposition 1. Let II be a projective plane of order q and S = (P, B) a Steiner
system which is a restriction of Il to a point-set P of I1. Suppose that each point of
IT\S is on at least two lines which restricted to S are blocks of S. Then S is an
mpe-system provided with the family F corresponding to the points of IT\S, and
(8, F) embeds minimally in I
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Theorem 1. Let (S, ¥) be an mpe-system for some integer q. Then there is up to
isomorphism a unique projective plane I1 of order q such that S embeds minimally
in IL.

Proof. Consider the system IT=(F U P, &£), where Z is the set of all (g + 1)-sets
defined in (iii). Clearly IT is a Steiner system S(2,q+1,g*+q+1) and so a
projective plane of order q. We need to check that the restriction to P of a line of
IT which contains at least two points of P is a block of S. Let x and y be points of
the line ¢ in IT which are also in P. Then there is a block L of S on x and y. By
(iit), L c ¢. Conversely, using (iii), any block L of S is a subset of a unique line ¢
of II.

To show that s is unique, suppose (S, %) embeds minimally in both [T, and
IT,. Define a map ¢ from [T, to I1, as follows. We may identify S in both planes,
so that ¢(x) = x for all x € §. This induces a map on blocks of § and so on lines of
IT, which have restrictions to blocks of §. So for x € IT\\ S, since by (i), x is on at
least two elements of some F € %, we may define ¢(x) to be the intersection in
IT, of the image of the elements of F. Thus ¢ is well-defined on all points of IT,.
It remains only to check that for an arbitrary line € of IT, the set {¢(x), x € £} is
a line of IT,. But this follows easily from the definition given in (iii). Thus ¢ is an
isomorphism between II, and IT,. 0O

We call the plane IT of Theorem 1 the minimal projective extension of (S, F).
If (S, %) embeds minimally in I1, and ¢ is a line of I, we call € respectively a
secant, tangent, or exterior line, if it has k, 1 or 0 points in common with §.

Examples
1. Any maximal arc different from IT embeds minimally in I1. In particular, if
S is an affine plane this is well known. If IThas order g and S is a (g + 1)-arc
(oval) in ITif q is odd, or a (g + 2)-arc (hyperoval) in IT if g is even [14],
then § embeds minimally in I by Proposition 1.
2. §=AG(2,3) embeds minimally in IT=PG(2,4) in such a way that each
point of IT\S is the intersection of precisely two secants of IT[17].

In each of the above examples, the elements of % have the same size. When
this is the case, it is possible to compute this constant as a function of g, r and £,
as we show in the next proposition.

Proposition 2. Let (S, F) embed minimally in II such that each point of IT\S is
on the same number c of secants of I1. Then c=(r(q+1—k)rk—r+1))/
(k(g*+q — rk +r)). In particular, S is a maximal arc if and only if c=v/k =
g+ 1~—q/k; thus, in this case, k | q.

Proof. Counting in two ways flags (p, ¢), p a point of IT\S and ¢ a secant, gives
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b(g+1—k)=c(q*+q+1—v). Then using vr =bk and v—1=r(k —1) gives
the value for c. Since S is a maximal arc precisely when r = ¢ + 1, substituting this
value in the equation for c yields c=v/k=q+1—q/k. O

3. Automorphisms

In this section, we shall concentrate on the connections between the groups of
automorphisms acting on S and those acting on IT, where § embeds minimally in
II. 1t is clear that interesting results will be obtained only when we consider
automorphisms of S which can be extended to automorphisms of I1. In order to
ensure that this is the case, we shall subject (S, %) to the following condition.

(E) Let (S, ) be an mpe-system, and let G be a subgroup of Aut(S). Then for
all Fe ¥ and g € G we have g(F)e %.

Proposition 3. Let (S, ) be an mpe-system satisfying (E) for some subgroup G
of Aut(S). Then G extends to a subgroup G* of Aut(Il), where II is the minimal
projective extension of (S, F), such that each element of G* restricted to S is an
element of G.

Proof. Let ge G. Define g*=g on points of §. For x € IT\S such that x
corresponds to F € &, define g*(x) to be the point of IT\S corresponding to
g(F) e %. By (E), g* is well-defined. Let € be an arbitrary line of IT, and consider
g*(€)={g*(x) | x € ¢}. To show that g*(¢) is a line of IT, it suffices by the proof
of Theorem 1 and by (iii) to show that for any secant £ of I, either £ =g*(¢) or
| Ng*(¢)|=1. But {g(L)| L a block of S} = {L | L a block of S}, and since for
any secant & of I, either # =€ or |A N €] =1, the result follows. [
It is now trivial to show that G* = {g* | g € G} forms a group.

A number of results exist in the literature classifying Steiner systems with
automorphism groups satisfying certain kinds of transitivity conditions. We
mention two of the important ones here, commenting on minimal embeddability
and whether or not (E) holds for some subgroups of Aut(S). The reader is
referred to [1, 2,7] for more results on transitivity of Steiner systems, as well as
the pertinent definitions.

Kantor [15]. If S is a Steiner system with automorphism group 2-transitive on
points, then § is one of

(a) a Desarguesian affine or projective space (in the latter case, two points per
line are allowed),

(b) an Hermitian or Ree unital,

(c) the Hering affine plane of order 27 [12] or the near-field affine plane of
order 9,

(d) one of two Steiner systems S(2, 9, 9*) due to Hering [13].
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For a discussion of and examples of projective and therefore also affine spaces
embedded (not necessarily minimally) in projective planes, we refer the reader
to [3].

Any Hermitian unital H = S(2, g + 1, ¢ + 1) embeds minimally in PG(2, ¢%)
and forms a blocking set there. The number of secants of each point of IT\H is
g*—q [4]. It is known that the Ree unitals $(2,q+1,¢*+ 1) cannot be
embedded in any projective plane of order g [16].

The affine planes of (¢) are of course, minimally projectively embeddable. We
know nothing about minimal embeddability of the systems in (d).

Delandtsheer [8]. If S is a Steiner system with automorphism group transitive on
pairs of intersecting lines and transitive on pairs of non-intersecting lines, then S
is a Desarguesian affine plane, a Desarguesian projective space, or a complete
graph.

We shall see in Theorem 2 of the next section that if S is an mpe-system
satisfying (E) and the conditions of Delandtsheer’s theorem, then § is either a
maximal arc or a blocking set. If S is an affine or Desarguesian subspace of [1,
we again refer to [3]. If § is a complete graph and r = ¢ + 1, then S is a hyperoval
as in Example 2. § cannot be both a complete graph and a blocking set in I1.

It is clear that there is a connection between the way an automorphism of S acts
on non-intersecting blocks of S and the way an extension of this automorphism to
a projective plane IT on § would act on the point of intersection of these two
blocks in I1. In fact, we have casily the following result.

Proposition 4. Let G be a subgroup of Aut(S), (S, F) an mpe-system embedding
minimally in I1, and satisfying (E). Then v =v; + |{orbits of G on unordered
pairs of non-intersecting blocks of S}|, where v denotes the number of point
orbits of G in S, and v;. denotes the number of point orbits of G* in I1.

Corollary. Let G satisfy the conditions of Proposition 4, and in addition, be
homogeneous on puirs of non-intersecting blocks of S. Then v¢;- = v, + L.

For the proof of the next theorem we use the following result Block [5]. Let G
be a subgroup of Aut(S), § a Steiner system. Let v,; and b,; be respectively the
number of point and of line orbits of S under G. Then v <b,. Moreover,
Brauer [6], if v = b then v, = b;. For proofs of these results see [4].

Theorem 2. Let G be a subgroup of Aut(S), (S, %) minimally embeddable in I1
and satisfying (E). Suppose also that G is transitive on blocks of S and
homogeneous on puirs of non-intersecting blocks of S. Then v+ =b;- =2 and S is
either a maximal arc or a blocking set.
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Proof. G line transitive implies G point transitive by Block’s result. So
v;=b;=1. By the corollary to Proposition 4 and again using Brauer,
vGe=bg-=2.

Thus the lines of I fall into two orbits under G*. Clearly secants form a single
orbit. The other orbit therefore consists either entirely of tangents or entirely of
exterior lines. In the former case, S is a blocking set; in the latter, r=¢g + 1 and S
is a maximal arc. [

Delandtsheer [8] proved as a preliminary step in her result mentioned above,
that if G is a subgroup of Aut(S) for a Steiner system S which is transitive on
pairs of intersecting blocks and on pairs of non-intersecting blocks, then G is
2-transitive on points of §. A major question is what can be said with only the
assumption of transitivity on pairs of (non-) intersecting blocks.

If in addition to the assumptions of Theorem 2, the numbers of points of S and
IT are coprime, we are able to say more, as we show in the final result.

Theorem 3. Let S and G satisfy the conditions of Theorem 2. Suppose in addition
that (v, >+ q + 1) =1, q the order of I1. Then G is flag-transitive on S, and S is
not a blocking set.

Proof. Let p € S and consider the stabilizer G of p in I1. For x ¢ S, we have
IG*|=1{g(p) |g € G*}| - |IG}|=v |G} =v |Q||G},|, where Qs the orbit under
G, ofxin II.

Similarly, |G*|=(q°+q +1-v) |G} =(g*+q +1-v)|A]| |GY |, where A is
the orbit of p under G} in IT.

So v|Q|=(¢°+q+1-v)|A|. But (v,g*+q+1)=1 implies |Q|=¢g>+q +
1 —wv, and so = IT\S. Thus G, is transitive on IT\S.

Now consider flags (p, L) and (p’, L') of S. Since k = g + 1 would contradict
S #I1, we know that each block of § has at least one point in TT\S. It follows
from the above that for any p € §, G, is transitive on lines through p. Hence
there exist maps g, € G, taking (p, L) to (p, pp’), pp' the line on p and p’,
g.€ G* taking (p,pp’) to (p', g.(pp')), where g.(pp’) is a line on p’, and
g,€ G,, taking (p’, g2(pp')) to (p', L'). The composition of these three maps
gives the desired result.

Suppose now that § is a blocking set. Then, since there are no exterior lines,
counting lines of IT in two different ways yield g>+qg+1=b+v(g+1—-r)=
v(rlk+q+1-r). So (v,g>+qg+1)=1 implies g°+q +1|r+qgk +k —rk. If
r=gq+1, then § is a maximal arc and hence not a blocking set. So r=<gq. If
k =gq, then also r =q and we get g>+¢q +1]|2q, a contradiction. So k <g — 1,
implying >+ q + 1<q*+ q — 1 — rk, again a contradiction. [
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A quasigroup is an ordered pair (Q, -}, where Q is a set and (-) is a binary operation on Q
such that the equations ax = b and ya = b are uniquely solvable for every pair of elements a, b
in Q. It is well-known that the multiplication table of a quasigroup defines a Latin square, and
to each quasigroup are associated six (not necessarily distinct) conjugate quasigroups. The
spectrum of the two-variable quasigroup identity u(x, y) = v(x, y) is the set of all integers n
such that there exists a quasigroup of order n satisfying the identity u(x, y) = v(x, y). Trevor
Evans has provided a collection of two-variable quasigroup identities, which imply that two
conjugates are orthogonal and which are conjugate-equivalent to ““short conjugate-orthogonal
identities””. These identities include the familiar Stein identity, x(xy) = yx, which has been
given a considerable amount of attention. Apart from being associated with conjugate
orthogonal Latin squares, some of the identities have been used in the description of other
types of combinatorial designs, such as BIBDs, Mendelsohn designs, certain classes of graphs,
and orthogonal arrays with interesting conjugacy properties. We shall briefly survey the known
results and in some cases we present new results concerning the spectra of the short
conjugate-orthogonal identities, which have not been previously investigated. The emphasis
will be on the constructions and uses of pairwise balanced designs (PBDs) and related
combinatorial structures.

1. Introduction

A quasigroup is an ordered pair (Q, -), where Q is a set and (-) is a binary
operation on Q such that the equations ax = b and ya = b are uniquely solvable
for every pair of clements a, b in Q. It is fairly well-known (see, for example,
[24]) that the multiplication table of a quasigroup defines a Latin square, that is, a
Latin square can be considered as the multiplication table of a quasigroup with
the headline and sideline removed. We shall be concerned mainly with finite
quasigroups (Latin squares). A quasigroup (Q, -) is called idempotent if the
identity x*> = x holds for all x in Q.

The spectrum of the two-variable quasigroup identity u(x, y) = v(x, y) is the set
of all integers n such that there exists a quasigroup of order n satisfying the
identity u(x, y) = v(x, y). It is particularly useful to study the spectrum of certain
two-variable quasigroup identities, since such identities are quite often in-
strumental in the construction or algebraic description of combinatorial designs.
For example, it is well-known (see [22]) that an idempotent totally symmetric

* Research supported by the Natural Sciences and Engineering Research Council of Canada under
Grant A-5320.
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quasigroup (Q, -) (commonly called a Steiner quasigroup), {x*=x, x(xy)=y,
(xy)y = x}, corresponds to a Steiner triple system, where {x, y, z} is a triple if and
only if x -y =z, where x, y, z are distinct and x*=yx for all x. Similarly, an
idempotent semisymmetric quasigroup (Q, ), {x’=x, (xy)x =y, x(yx)=y},
corresponds to a Mendelsohn triple system (see [52]), with (x, y, z) as a cyclically
ordered triple if and only if x - y = z, where x, y, z are distinct and x* = x for all
x. A quasigroup (Q, -) satisfying both the Stein identity, x(xy)=yx, and the
Schrioder identity, (xy)(yx)=x, corresponds to a (2, 4)—Steiner system, the
blocks of size 4 being the 2-generator subquasigroups (see [66]). Indeed, most of
the two-variable identities, which we shall investigate in this paper, have been
used in the description and construction of combinatorial structures, such as
(2, k)-Steiner systems, Mendelsohn designs, certain classes of graphs, Latin
squares, and orthogonal arrays with interesting conjugacy properties. For more
details, the interested reader may wish to consult the references.

If (O, ®) is a quasigroup, we may define on the set Q six binary operations
®(1,2,3), ®(1,3,2), ®(2,1,3), ®(2,3,1), ®(3,1,2) and ®(3,2,1) as
follows: a ® b = ¢ if and only if

a®(1,2,3)b=c, a®(1,3,2)c=b, b®Q2,1,3)a=c
b&® (2,3, 1)c=aq, c®@G3,1,2)a=b, c®@G3,2, )b=a.

These six (not necessarily distinct) quasigroups (Q, ® (i, j, k)), where {i, j, k} =
{1, 2, 3}, are called the conjugates of (Q, ®) (see Stein [65]). If the multiplication
table of a quasigroup (Q, ®) defines a Latin square L, then the six Latin squares
defined by the multiplication tables of its conjugates (Q, ® (i, j, k)) are called the
conjugates of L. It is well-known (sec, for example, [49]) that the number of
distinct conjugates of a quasigroup (Latin square) is always I, 2, 3 or 6. The
interested reader may wish to refer to the book of Dénes and Keedwell [24] for
more details pertaining to Latin squares.

Two quasigroup identities u,(x, y) = us(x, y) and v,(x, y) = v,(x, y) are said to
be conjugate-equivalent if when (Q, -) is a quasigroup satisfying one of them, then
at least one conjugate of (Q, -) satisfies the other. For example, the Stein identity
x{xy) = yx is conjugate-equivalent to the identity (yx)x = xy, since the latter can
be obtained by taking the (2,1, 3)-conjugate (usually called transpose) of the
Stein quasigroup.

Two quasigroups (Q, -) and (Q, *) defined on the same set Q are said to be
orthogonal if the pair of equations x -y =g and x #y = b, where a and b are any
two given elements of Q, are satisfied simultaneously by a unique pair of
elements from (). Equivalently, we say that (Q, ) and (Q, *) are orthogonal if
x-y=z-tand x xy =z *¢ together imply x =z and y =¢. We remark that when
the two quasigroups (@, -) and (Q, *) are orthogonal then their corresponding
Latin squares are also orthogonal in the usual sense.

It is perhaps worth mentioning that the above definition of orthogonality
between quasigroups can be extended to more general algebraic systems, such as
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groupoids, as was done by Trevor Evans in [27]. If we adapt the notation of [27],
where the functional notation a(x, y) is conveniently used in place of the infix
notation x *y for the operation, then we say that the two binary operations
a(x, y) and b(x, y) defined on the same set Q are orthogonal operations, briefly
written a L b, if |{(x,y):a(x,y)=1i, b(x, y)=j}| =1 for every ordered pair i, j
in Q.

A quasigroup (Latin square) which is orthogonal to its (i, j, k)-conjugate is
called (i, j, k)-conjugate orthogonal. A (2,1, 3)-conjugate orthogonal quasigroup
(Latin square) is more commonly called self-orthogonal. Orthogonality relations
between pairs of conjugates of quasigroups (Latin squares) have been studied
quite extensively (see, for example, [2, 4, 5, 7, 12, 17, 27, 37, 46, 61, 65]).

In [27] Trevor Evans introduced the concept of ‘“‘short conjugate-orthogonal
identity”, which is perhaps best described in light of the following result.

Theorem 1.1 (Trevor Evans [27]). Let a(x, y) and b(x, y) be conjugate opera-
tions on Q. Then a L b if and only if there is a quasigroup word w(x, y) such that
w(a(x, y), b(x, y)) =x holds identically.

As Trevor Evans subsequently remarked, Theorem 1.1 provides a method of
producing many quasigroup identities which imply that two conjugates are
orthogonal. He called an identity of the type described in Theorem 1.1 where
w(x, y) is a word of length two a short conjugate-orthogonal identity. A simplified
description of all such identities to within conjugacy-equivalence was given by
Trevor Evans in [27, Theorem 6.2] which we state below. Note that, through
private communication [30] with Trevor Evans, the identities (y - yx)y =x and
(y *xy)y=x have replaced the identities (y-yx)xr=x and (y-xy}x=x
respectively, which, for example, are satisfied by Steiner quasigroups and
inadvertently appeared as a result of a typographical error.

Theorem 1.2 (Trevor Evans [27, 30]). Any non-trivial short conjugate-orthogonal
identity is conjugate-equivalent to one of the following:
i) xy-yx=x (i) yx-xy=x
(iii)) (x-yx)y =x (iv) (x-xy)y=x
(v) (xy-x)y=x (vi) (y -yx)y=x
(vii) (y-xy)y=x  (viii) (yx-x)y=x
(ix) (yx-y)y =x (x) (xy-y)y=x
(xi) X Xy=yx (xit) Xy -y=x-Xxy
(xiil) (xy-y)x=xy  (xiv) VX y=Xx-yx

Before proceeding, we wish to point out that, to within conjugacy-equivalence,
the list of identitics in Theorem 1.2 can further be reduced. For convenience and
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future reference, we formally state the following:

Proposition 1.3. Any identity listed in Theorem 1.2 is conjugate-equivalent to one

of the following:
(1) xy-yx=x 2) yx-xy=x
(3) (xy-y)y=x (4) x-xy=yx
(5) (yx-y)y=x (6) (xy-x)y=x

() xy-y=x-xy (8 yx-y=x-yx

Proof. First of all, it should be mentioned that the identities (vii) and (ix) of
Theorem 1.2 are actually equivalent. By replacing x by xy in (yx - y)y = x, we get
((y - xy)y)y =xy, and by cancellation, we have ((y - xy)y =x. Conversely, the
identity (y - xy)y = x implies yx - y = (y{((y - xy)y))y =y - xy, that is, the identity
(y -xy)y =x implies (yx-y)y=x. Secondly, the identities (vi) and (ix) of
Theorem 1.2 are conjugate equivalent. For if a quasigroup satisfies the identity
(y - yx)y = x, then its transpose will satisfy y(xy - y) = x which, by replacing x by
yx, implies y((yx -y)y)=yx and, by cancellation, (yx-y)y =x. In a similar
manner, one can verify the additional conjugacy-equivalence among the following
pairs of identities in Theorem 1.2:
(a) The (1,3, 2)-conjugate of a quasigroup satisfying the identity (ii) yx - xy =
x will satisfy the identity (iii) (x - yx)y = x.
(b) The (1, 3, 2)-conjugate of a quasigroup satisfying (xi) x - xy = yx will satisfy
(iv) (x - xy)y = x.
(c) The (2, 3, 1)-conjugate of a quasigroup satisfying the identity (xi) x - xy =
yx will satisfy (xiii) (xy - y)x = xy.
(d) The (3,2, 1)-conjugate of a quasigroup satisfying the identity (ix)
(yx - y)y = x will satisfy (viii) (yx - x)y = x.
This essentially completes the proof of the proposition. [

C.C. Lindner and E. Mendelsohn {45] extended the concept of a conjugate of a
quasigroup to that of a conjugate of an n” X k orthogonal array, which is obtained
by permuting the columns of the array. We define an n’ X k orthogonal array
based on an n-set, say S = {1, 2, ..., n}, to be a rectangular array of n* rows and
k columns where, for any two distinct columns, the set of ordered pairs occurring
in these two columns and the n® rows is precisely the set of all #* distinct ordered
pairs from S. Evidently, a quasigroup (Q, -) of order n is equivalent to an n* x 3
orthogonal array, where (x, y, z) is a row of the array if and only if x -y =2z,
Lindner and Mendelsohn also defined the conjugate invariant subgroup for an
n’ x k orthogonal array to be the group of all permutations on {1,2,..., k)
which yield conjugates equal to the original array. For the cases k = 3 and 4, the
interested reader may refer to the survey paper of Lindner [39]. For more
detailed results, refer to [45, 47, 48, 49], where a complete characterization of the
groups which can be conjugate invariant subgroups for n°x3 and n’x4
orthogonal arrays is given.
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Example 1.4. Below we give an example of a quasigroup of order 4 and its
associated 4° x 3 orthogonal array which has the cyclic group C;=((123)) as
conjugate invariant subgroup. Note that the quasigroup is idempotent and
semisymmetric, and it corresponds to a Mendelsohn triple system of order 4.

Quasigroup (Q, -) Orthogonal Array
|1 2 3 4 1,1, 1)
(1,2,3)
111{3:4]2 (1,3, 4)
1,4,2)
214(2]1¢3 (2,1,4)
(2,2,2)
31214131 (2,3, 1)
2,4,3)
413]1)2|4 (3,1,2)
(3,2,4)
(3,3,3)
(3,4, 1)
4,1,3)
4,2, 1
(4,3,2)
4,4,4)

It is fairly evident that, disregarding the level at which the rows occur, the above
orthogonal array remains invariant under cyclic permutation of its columns.

The main purpose of this paper is to focus attention on the spectrum of each of
the identities listed in Proposition 1.3. Some of these identities have been given a
considerable amount of attention by various authors, while others remain to be
investigated. We shall very briefly survey the known results and, in particular,
give some improvements on the spectrum of a variety of the familiar Stein
quasigroups. We shall also present some new results on the spectra of some of the
other identities which have not been previously investigated. We shall employ
both direct and recursive methods for constructing quasigroups, where the
emphasis will be on the constructions and uses of pairwise balanced designs
(PBDs) and other related combinatorial designs. In view of Proposition 1.3, this
paper presents fairly conclusive results regarding the spectra of most of the
identities listed by Trevor Evans in Theorem 1.2.

2. Finite models and recursive constructions of quasigroups

In what follows, we shall be concerned mainly with finite quasigroups. We shall
describe some of the techniques for constructing quasigroups which satisfy some
particular two-variable identity u(x, y) = v(x, y).
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The most direct method of constructing finite models of a quasigroup (Q, )
satisfying u(x, y) =v(x, y) is to look for a model of the identity of the form
X -y = Ax + uy, where the elements lie in a finite field (or finite near field). This
technique is fairly well-known and has been used quite extensively (see, for
example, [29, 47, 51, 54, 65]). In particular, for idempotent models, we shall look
for models of the identity of the form x -y = Ax + (1 — A)y in GF(gq), where g is a
prime power and A#0 or 1. This will require finding a solution to some
polynomial equation f(A)=0 in GF(q), depending on the identity being
investigated. We present the following useful example.

Example 2.1. Consider the identity (yx - y)y = x (identity (5) of Proposition 1.3).
This identity does not imply the idempotent law x*>=x. If, however, we are
interested in idempotent models of (yx - y)y =x, we may look for models of the
identity of the form x -y = Ax + (1 — A)y, where A#0 or | and the polynomial
equation f(1) = A*— A* + 1 = 0 is satisfied in GF(p). If f(A) has a root in GF(p),
then this value of A yields a solution in GF(p), and hence an idempotent model
of the identity in GF(p). For example, A=2 yields an idempotent model in
GF(5), while 1 =4 yields an idempotent model in GF(7). If f(4) does not have a
root in GF(p), then there is an extension field GF(p”) in which f(A) has a root,
and this root yields an idempotent model in GF(p?®). For example, there are
idempotent models in GF(2%) and GF(3’). In other words, there is an idempotent
quasigroup satisfying (yx - y)y = x for orders 5, 7, 8 and 27. In actual fact, for all
primes p < 300, it can readily be verified that f(4) has a root in GF(p) (and hence
produces an idempotent model in GF(p)) except for p € {2, 3, 13, 29, 31, 47, 71,
73, 127, 131, 151, 163, 179, 193, 197, 233, 239, 257, 269, 277}. Our investigation
will continue in subsequent sections.

Having found models of the two-variable quasigroup identity u(x, y) = v(x, y)
using finite fields (or finite near fields), one may recursively construct other
models by various techniques. In what follows, we shall describe some of these
techniques.

Let (P, ) and (Q, *) be two quasigroups. On the set P x Q we can define a
binary operation ® as follows:

(P, x)R®(qg, y)=(p-q,xxy), if pgeP and x,ye(.

Then it is easy to see that (P x @, &) is a quasigroup, called the direct product of
(P, -) and (Q, *). The following result is fairly well-known and can be readily
verified.

Theorem 2.2. Let (P, ) and (Q, *) be two quasigroups satisfying the identity
u(x, y)=uv(x, y), where |P| = mand |Q| = n. Then their direct product (P < Q, &)
is a quasigroup of order mn satisfying u(x, y) =v(x, y). Moreover, if (P, ') and
(Q, *) are idempotent, so is (P X Q, ®).
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Example 2.3. Using the fact that there are idempotent quasigroups of orders 5, 7
and 8 satisfying the identity (yx-y)y =x (see Example 2.1), we can apply
Theorem 2.2 to get idempotent models of (yx - y)y = x of orders 5" - 7* - 8, where
r, s, t are non-negative integers.

Our next construction is a generalized form of the above direct product
construction for quasigroups, and it is originally due to Sade [63] who called it
“produit direct-singulier”. This construction was subsequently generalized and
used extensively in various ways by C.C. Lindner (see, for example, [40-43]). We
shall adapt the definition of Lindner in the description which follows.

Let (V, -) be an idempotent quasigroup and (Q, *) a quasigroup containing a
subquasigroup (P, *). Let P=Q — P and let (P, @) be a quasigroup, where & is
not necessarily related to *. On the set S = P U (P x V) define a binary operation
@ as follows:

(1) pOg=p+q,ifp,qeP,

2 pD(q.v)=(p*q,v),ifpeP, qeP,

() (g v)Bp=(qg*p v) ifpeP, geP,

(4) (pv)®(q v)=pxq,ifprgeP

=(p*q,v), ifpxqeP

(5) (p,v)B(g w)=(pBgq,v-w), if v#w.

The quasigroup (S, D) so constructed is called the singular direct product of V
and Q.

Unlike the direct product construction, two-variable quasigroup identities are
not necessarily preserved by the singular direct product construction. However,
C.C. Lindner [41] has obtained some fairly general results on identities which are
preserved by the singular direct product for quasigroups. Before stating the
result, we need to adapt some of the terminology used in [41]. Let F(x, y) be the
free groupoid on two generators x and y. The components of a word w(x, y) of
F(x, y) are defined as follows:

(1) if the length of w(x, y) is 1, the only component of w(x, y) is w(x, y), and

(2) if the length of w(x, y) is greater than 1, the components of w(x, y) are

w(x, y) itself and the components of u(x, y) and v(x, y), where w(x, y) =
u(x, y)u(x, ).

Let (Q, ) be any quasigroup (written multiplicatively) such that if #(x, y) =
t,(x, y)-(x, y) is any component of w(x, y) of length at least 2 and a # b are any
two elements of Q, then ¢,(a, b)# t,(a, b). Such a quasigroup is called a discrete
w(x, y)-quasigroup. If (Q, -) is a discrete w(x, y) and v(x, y)-quasigroup and
satisfies the identity w(x, y) = v(x, y), we call (Q, ) a discrete w(x, y) =v(x, y)-
quasigroup. We now state:

Theorem 2.4 (C.C. Lindner [41]). Let (V,:) be a discrete w(x,y)=uv(x,y)-
idempotent quasigroup. Further let (Q, *) be a quasigroup satisfying w(x, y) =
v(x, y) and containing a subquasigroup (P, *). Let P=Q — P and suppose it is
possible to define on P a binary operation ® (not necessarily related to *) so that
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(P, ®) is a quasigroup satisfying w(x,y)=v(x,y). Then the singular direct
product (S, ®) of V and Q defined above satisfies the identity w(x, y) =v(x, y).
Moreover, if |V|=v, |Q|=gq, |P|=p and |P|=q —p, then |S|=v(q —p) +p.

We wish to remark, as Lindner himself has pointed out, that in the statement
of Theorem 2.4 only the quasigroup (V, -) need be idempotent and also (V, -) is
the only quasigroup that is required to be a discrete w(x, y) = v(x, y)-quasigroup.
Of course, if (Q, *) is an idempotent quasigroup, then the singular direct product
(S, @) of V and Q will also be an idempotent quasigroup.

Example 2.5. Let (V, -) be an idempotent quasigroup of order 7 satisfying the
identity (yx-y)y =x. Let (Q, *) be an idempotent quasigroup of order 5
satisfying the identity (yx-y)y =x based on the set Q={(1,2,3,4,5}. Let
P={5)and on P=Q — P = {1, 2, 3, 4} define the binary operation ® using the
multiplication table given below.

® 1 2 3 4

Now it is readily checked that (P, ®) is a quasigroup of order 4 satisfying the
identity (yx - y)y = x. It is also easy to verify that (V, -) is an idempotent discrete
(yx - y)y = x quasigroup and the singular direct product (S, @) of V and Q is an
idempotent quasigroup of order 29=7(5—1)+ 1 satisfying (yx - y)y =x. Note
that this is an addition to the list given in Example 2.1, where constructions using
finite fields were used.

While the direct product and singular direct product constructions are useful
tools in the construction of quasigroups satisfying two-variable identities, it is
fairly obvious that there are limitations with respect to their ability to determine
the spectrum. In general, the most effective recursive method of construction in
investigating the spectra of two-variable quasigroup identities makes use of the
concept of pairwise balanced designs (PBDs) and related combinatorial designs.
In what follows, we shall describe the techniques involved. However, the
interested reader may wish to refer to [16, 33, 71] for more detailed results on
PBDs and related designs.
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Definition 2.6. Let K be a set of positive integers. A pairwise balanced design
(PBD) of index unity B(K, 1;v) is a pair (X, B) where X is a v-set (of points)
and B is a collection of subsets of X (called blocks) with sizes from K such that
every pair of distinct points of X is contained in exactly one block of B. The
number |X| = v is called the order of the PBD.

Now let (Q, B) be a PBD B(K, 1;v) and for each block B e B let o(B) be a
binary operation on B so that (B, ¢(B)) is an idempotent quasigroup. Define a
binary operation (-) on Q by x -x =x for all xe Q, and x -y =x°(B)y, where
x #y and B is the unique block in B containing x and y. It is well-known and easy
to see that (Q, -) is an idempotent quasigroup of order v (see [71]). More
important is the fact that PBDs can be used to investigate the spectrum of certain
collections of two-variable quasigroup identities. The following theorem is now
well-known (see, for example, [28, 31, 66]) and has been used quite extensively.

Theorem 2.7. Let V be a variety (more generally universal class) of algebras
which is idempotent and which is based on two-variable identities. Suppose that
there is a PBD B(K, 1;v) such that for each block of size k € K there is a model of
V of order k, then there is a model of V of order v.

We shall denote by B(K) the set of all integers v for which there exists a PBD
B(K, 1;v). We briefly denote by B(k,, k,, ..., k,) the set of all integers v for
which there is a PBD B({k,, k», ..., k.}, 1;v). A set K is said to be PBD-closed
if B(K)=K. R.M. Wilson’s remarkable theory concerning the structure of
PBD-closed sets (see [72-74]) often provides us with some form of asymptotic
results in the following theorem.

Theorem 2.8 (R.M. Wilson [72-74]). Let K be a set of positive integers and
define the two parameters:

w(K)y=g-c-d{k—-1:keK},
B(K)=g -c-d{k(k—1):k eK}.

Then there exists a constant C (depending on K) such that, for all integers v > C,
veB(K) ifand only if v—1=0 (mod a(K)) and v(v—1)=0 (mod (K)).

Example 2.9. Using finite fields in Example 2.1, we constructed idempotent
quasigroups of orders 5, 7 and 8 satisfying the identity (yx -y)y =x. If we let
K ={5,7, 8} in Theorem 2.8, then o(K) =1 and B(K) =2, and consequently the
theorem guarantees v € B(S, 7, 8) for all sufficiently large values of v. Theorem
2.7 then further guarantees the existence of idempotent quasigroups satisfying
(yx - y)y = x for all sufficiently large orders, where the term “sufficiently large” is
unspecified.
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As already mentioned, the identity (yx - y)y = x does not imply the idempotent
identity x*> = x. Consequently, while Theorem 2.7 usually has a dramatic effect in
investigating the spectrum of certain collections of two-variable identities, the
requirement that the variety V be idempotent is a definite drawback in some
cases. To get around this, we sometimes use the notion of a group divisible design
(GDD).

Definition 2.10. Let K and M be sets of positive integers. A group divisible
design (GDD) GD(K, 1, M;v) is a triple (X, G, B), where
(i) X is a v-set (of points),
(ii) G is a collection of non-empty subsets of X (called groups) with sizes in M
and which partition X,
(iii) B is a collection of subsets of X (called blocks), each with size at least two
in K,
(iv) no block meets a group in more than one point, and
(v) each pairset {x, y} of points not contained in a group is contained in
exactly one block.

The group-type (or type) of the GDD (X, G, B) is the multiset {|G]: G € G}
and we usually use the “‘exponential’”’ notation for its description: a group-type
12/3% . . . denotes i occurrences of groups of size 1, j occurrences of groups of size
2, and so on.

Now let (Q, G, B) be a GDD GD(K, 1, M; v) and for each group G € G let
o(G) be a binary operation on G so that (G, (()) is a quasigroup (not necessarily
idempotent). Further, for each block B € [, let ¢(B) be a binary operation on B
so that (B, °(B)) is an idempotent quasigroup. Define on Q the binary operation
(*) by x*y=xo(G)y if x and y belong to the group G €G (in particular,
xxx =x°o(G)x for all x e Q, where G is the group in G containing x), and
x*y=xo(B)y, if x #y and the pairset {x, y} belongs to the block BeB. It is
readily checked that (Q,*) is a quasigroup of order v (cf. [71]). Unfortunately,
this construction of quasigroups using GDDs does not necessarily preserve
two-variable identities as C.C. Lindner has pointed out in {44]. However, Lindner
[44] (see also Ganter [31]) for a generalization) was able to use the concept of a
discrete model of a two-variable identity to obtain the following result.

Theorem 2.11. Let (Q, G, B) be a GDD and (Q, *) a quasigroup constructed
from (Q, G, B) such that the quasigroup (G, °(G)) constructed on each group G in
G satisfies the identity u(x, y) = v(x, y) and the quasigroup (B, °«(B)) constructed
for each block B in B is an idempotent discrete model of u(x, y)=v(x, y). Then
the quasigroup (Q, *) satisfies the identity u(x, y) = v(x, y).

We wish to remark that in the statement of Theorem 2.11 only the quasigroups
(B, o(B)) defined on the blocks of B need be discrete models of the identity
u(x, y)=wv(x, y), and that the quasigroups (G, o((;)) defined on the groups of G
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need only satisfy the identity u(x, y) = v(x, y). We also have the following easy
generalization of Theorem 2.11, which is a GDD analog of the singular direct
product construction result in Theorem 2.4.

Theorem 2.12. Let (X, G, B) be a GDD GD(K, 1, M;v) and let P be a set of
order p disjoint from X. Suppose for each block B in B it is possible to define a
binary operation «(B) on B so that (B, o(B)) is an idempotent discrete model of the
identity u(x, y)=v(x, y). Also suppose that for each group G in G, there is a
binary operation °(G,) on the set G U P which converts it into a u(x, y) = v(x, y)-
quasigroup containing P as a common subquasigroup. Then there exists a
quasigroup (X U P, %) of order v + p satisfying the identity u(x, y) = v(x, y).

Proof. We define the operation (*) on X U P as follows:
(1) x*y=x9o(B)y, if x#y and the pairset {x, y} is contained in the block
B e B;
(2) x*y=xo(Gp)y, ifx,yeG,orxeGandye P, or x e Pand y € G, where
GeG;
(3)y x*y=x-y, if x,ye P and (P, -) is a quasigroup satisfying the identity
u(x, y)=v(x, y).
The verification that (X U P, *) is a quasigroup satisfying u(x, y) = v(x, y) is fairly
straightforward. O

The following theorem is a slight modification of Theorem 2.12 and its proof is
very similar.

Theorem 2.13. Let (X, G, B) be a GDD GD(K, 1, M;v) and let P be a set of
order p disjoint from X. Suppose that for each block B in B it is possible to define
a binary operation «(B) on B so that (B, °(B)) is an idempotent discrete model of
the identity u(x, y) =uv(x,y). Suppose that G={G,, G,, ..., G,} and for each
group G,, i=1,2,...,m~—1, there is a binary operation °(G,p) on the set G; U P
which converts it into a u(x, y) =v(x, y)-quasigroup containing P as a common
subquasigroup. Further suppose that there is a binary operation (‘) on the set
G,, U P which converts it into a u(x, y) = v(x, y)-quasigroup. Then there exists a
quasigroup (X U P, *) of order v + p satisfying the identity u(x, y) = v(x, y).

Proof. We define the operation (*) on X U P as follows:
(1) x*y=xo(B)y, if x#y and the pairset {x, y} is contained in the block

BelB;
2) x*y=xo(Gp)y, if x,yeG;, or x€G, and ye P, or xe P and y € G,
where i=1,2,...,m—1.

(3) x*xy=x-y,ifx,yeG, UP.
Then (X U P, *) is a quasigroup satisfying u(x, y) = v(x, y). O
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3. Quasigroup identities and orthogonal arrays

As we have already mentioned, some of the identities listed in Proposition 1.3
have been used in the construction and description of orthogonal arrays with
interesting conjugacy properties. Indeed, the most conclusive results we have to
date regarding the spectra of short conjugate orthogonal identities pertain to
those identities associated with certain classes of n* X 4 orthogonal arrays. In this
section, we shall give only a brief summary of the known results concerning the
identities (1), (2) and (3) of Proposition 1.3, and the reader may consult the
references for more details. Henceforth, we let J(u(x, y) = v(x, y)) denote the
spectrum of the identity u(x, y) = v(x, y).

Quasigroups satisfying the identity xy - yx = x, called the Schréder identity, are
known to be self-orthogonal and a necessary condition for neJ(xy - yx = x) is
n=0or 1 (mod4). Several authors investigated J(xy - yx =x) including D.A.
Norton and S.K. Stein [58], S.K. Stein [66], R.D. Baker [1], C.C. Lindner, N.S.
Mendelsohn and S.R. Sun [47]. The most conclusive result was obtained by
Lindner, Mendelsohn and Sun in the following theorem.

Theorem 3.1 (Lindner, Mendelsohn and Sun [47]). J(xy - yx = x) contains pre-
cisely the set of all positive integers n =0 or 1 (mod 4) except n =35, and possibly
excepting n = 12 and 21.

More recently, C.J. Colbourn and D.R. Stinson [23] have proved the
following:

Theorem 3.2. There exists an idempotent Schréder quasigroup of order n for all
positive integers n=0 or 1 (mod 4) except n=5 and 9, and possibly excepting
n =12, 24, 33, 45, 69, 105, 117.

Combining Theorems 3.1 and 3.2, we now have

Theorem 3.3. J(xy - yx = x) contains precisely the set of all positive integers n =0
or I (mod 4) except n =5, and possibly excepting n = 12.

From the results of [47], we are able to use Theorem 3.3 to determine that the
spectrum of n” X 4 orthogonal arrays having K, (the Klein 4-group) as conjugate
invariant subgroup contains precisely the same set of values of n given in
Theorem 3.3. This result also applies to the spectrum of Latin squares which have
simultaneously the properties of being orthogonal to their transposes and have
the Weisner property (see [47] for more details).

A quasigroup satisfying the identity yx - xy =x, called Stein’s third law, is
known to be self-orthogonal. Moreover, a necessary condition for n € J(yx - xy =
x)is n=0 or 1 (mod4). In [48], Lindner, Mullin and Hoffman established a
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correspondence between quasigroups satisfying the identity yx - xy =x and n* X 4
orthogonal arrays having C, (the cyclic group of order 4) as conjugate invariant
subgroup (briefly denoted by COA in [48]). They essentially proved:

Theorem 3.4 (Lindner, Mullin and Hoffman [48]). J(yx - xy =x) contains pre-
cisely the set of all positive integers n=0 or 1 (mod4) except possibly n =12
and 48.

However, the possible exception n = 48 can now be removed and we can obtain
the following theorem.

Theorem 3.5. J(yx - xy = x) contains precisely the set of all positive integers n =0
or 1 (mod 4) except possibly n = 12.

Proof. We need only remove the possible exception n =48 from Theorem 3.4.
First of all, the result of Brouwer [20] can be used to establish the existence of a
{5}-GDD of group-type 8° (see, for example, (67, Example 3.4]). If v is a prime
power and v =1 (mod4), then [48, Lemma 6.6] guarantees the existence of an
idempotent quasigroup of order v satisfying the identity yx -xy =x. Thus in
particular, we can define an idempotent discrete model of the identity yx - xy =x
on the blocks of size 5 of the above mentioned GDD, and on each group of order
8, we define a model of yx-xy=x. We then apply Theorem 2.11 to get
48 € J(yx - xy =x). Alternatively, we may use the {5}-GDD of group-type 8° and
apply the result contained in [48, Lemma 6.5]. O

We wish to remark that, apart from COAs, there are some correspondences
between idempotent models of yx -xy =x and other types of combinatorial
structures (see, for example, [1, 51]). Note that the identity (x - yx)y = x ((iii) of
Theorem 1.2), which was studied by N.S. Mendelsohn in [51]), is conjugate
equivalent to the identity yx - xy = x. Obviously, J((x - yx)y =x)=J(yx - xy =x).
In this connection, it is worth mentioning that the combined result of Bennett [5]
and the more recent result of Zhang [75] on (v, 4, 1)-perfect Mendelsohn designs
establishes the following:

Theorem 3.6. There exists an idempotent quasigroup of order n satisfying Stein’s
third law for all positive integers n=0 or 1 (mod 4) except n =4, and possibly
excepting n =8, 12, 33,

Remark. K. Heinrich [private communication] has informed the author that an
exhaustive computer search established the non-existence of a (8,4, 1)-perfect

Mendelsohn design. Hence, n = 8 is a definite exception in Theorem 3.6.

In [3], the author established a correspondence between quasigroups satisfying
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the identity (xy - y)y = x and n” X 4 orthogonal arrays having C; (the cyclic group
of order 3) as conjugate invariant subgroup. As a corollary to the results
contained in [48, Theorem 5.1], the following result was obtained.

Theorem 3.7 (Bennett [3]). J((xy - y)y =x) contains precisely the set of all
positive integers n =0 or 1 (mod 3) except n = 6.

A quasigroup satisfying the identity (xy -y)y =x is known to be (3,2, 1)-
conjugate orthogonal. Also, idempotent models of (xy - y)y = x correspond to a
class of resolvable Mendelsohn triple systems (see, for example, [10]). It was also
shown [3] that idempotent models of (xy-y)y=x exist only for orders
n=1 (mod 3).

4. Stein quasigroups

A quasigroup satisfying the identity x - xy = yx is called a Stein quasigroup.
Stein quasigroups are necessarily idempotent and self-orthogonal. The Stein
identity x - xy = yx ((4) of Proposition 1.3) is perhaps the most extensively studied
of the two-variable identities listed in Proposition 1.3. Following S.K. Stein’s
original interest in the identity in 1957 (see [65]), several authors have given it a
considerable amount of attention (see, for example, [11, 27, 40, 51, 59, 60, 65,
66]). Stein had hoped to use quasigroups satisfying the constraint x -xz =y - yz
implies x =y to construct counter-examples to the Euler conjecture concerning
orthogonal Latin squares. Obviously, a quasigroup satisfying the identity x - xy =
yx became a suitable candidate for his investigation. However, most of the
current results we have relating to the spectrum J(x - xy = yx) came long after the
disproof of the Euler conjecture and, in fact, after the spectrum for self-
orthogonal Latin squares was determined to contain all positive integers n #2, 3
or 6 (see [17]). Undoubtedly, Stein quasigroups are of special interest in their
own right. Stein {65] and Mendelsohn [51] used Galois fields to show that
J(x - xy =yx) contained all positive integers of the form 4*m, where the
square-free part of m does not contain any prime p =2 or 3 (mod 5). Later on,
Stein [66] used BIBDs to show that the spectrum contained all numbers of the
form 12k + 1, 12k +4, 20k + 1, and 20k + 5. Lindner [40] further enlarged the
spectrum by using the singular direct product construction. In two subsequent
papers {59, 60], Pelling and Rogers showed that if n € {2, 3, 6, 7, 8, 10, 12, 14},
then n ¢ J(x - xy = yx) and they used PBDs in conjunction with the singular direct
product to show that neJ(x - xy = yx) for all n>1042. This bound was later
improved by Bennett and Mendelsohn in [11]. The main result was established on
the basis of the following two lemmas.

Lemma 4.1. B(4, 5,9, 11, 19, 31) = J(x - xy = yx).
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Lemma 4.2 (see [11, Theorems 4.3-4.6, 4.8-4.10]). Ifv=4and v ¢ {6, 7, 8, 10,
12, 14, 15, 18, 22, 23, 26, 27, 30, 34, 35, 38, 39, 42, 43, 46, 50, 54, 62, 66, 70,
74, 78, 82, 90, 98, 102, 106, 110, 114, 126, 130, 142, 158, 162, 174, 178, 190},
then ve B(4,5,9, 11, 19, 31).

Theorem 4.3 (Bennett and Mendelsohn [11]). v eJ(x - xy = yx) holds for all
positive integers v except ve{2,3,6,7, 8, 10,12, 14} and possibly excepting
ve {15, 18, 22, 23, 26, 27, 30, 34, 35, 38, 39, 42, 43, 46, 50, 54, 62, 66, 70, 74,
78, 82, 90, 98, 102, 106, 110, 114, 126, 130, 142, 158, 162, 174, 178, 190}.

In [8] the author improved the result of Lemma 4.2 and obtained the following
theorem:

Theorem 4.4. For all integers v=4, ve B(4,5,9,11, 19, 31) holds with the
exception of ve {6, 7, 8, 10, 12, 14, 15, 18, 22, 23, 26, 27, 30, 34} and with the
possible exception of v e {38, 42, 43, 46, 50, 54, 62, 66, 70, 74, 78, 82, 90, 98,
102, 114, 126}.

As a consequence of Lemma 4.1 and Theorem 4.4, we readily obtain the
following improvement of Theorem 4.3.

Theorem 4.5. velJ(x-xy=yx) holds for all positive integers v except v e
{2,3,6,7,8, 10, 12, 14} and possibly excepting v € {15, 18, 22, 23, 26, 27, 30,
34, 38, 42, 43, 46, 50, 54, 62, 66, 70, 74, 78, 82, 90, 98, 102, 114, 126}.

The result of Theorem 4.4 also allows us to enlarge the spectrum of certain
classes of Stein systems (see [11, 59, 60]). If a Stein system S contains a proper
subsystem T, then it is known that (S| =3|T|+ 1 (see, for example, [60]). The
case where equality holds is of special interest. If, as in [11, 59}, we write Q(n)
whenever there is a Stein system of order n which is a subsystem of one of order
3n + 1, then we have the following improvement of results contained in [11, 59}].

Theorem 4.6. If n=1 (mod 3), then Q(n) holds for all n =4 except n=17, 10
and possibly excepting n € {22, 34, 43, 46, 70, 82}.

Proof. We need only remove the possible exceptions n = 106, 130, 142, 178, 190
from [11, Theorem 5.1]. We now use the fact that, if k>1, then 9% +4¢
B(4, (3k + 1)*) holds from [18, Lemma 7]. Combining this with the fact that we
have {106, 130, 142, 178, 190} cJ(x - xy = yx), we get the desired result with
k € {35, 43, 47, 59, 63} and an application of Theorem 2.7. [

An extended medial Stein system is a Stein system with the property that every
2-element generated subsystem satisfies the medial law (xy)(zt) = (xz)(yt).
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Extended medial Stein systems were originally investigated by Pelling and Rogers
[59, 60] and later studied in [11]. Since it is known that a medial Stein system of
order n exists for ne {4, 5,9, 11, 19, 31}, we can use the result of Theorem 4.4
to further improve that contained in [11, Theorem 5.2]. We essentially have the
following theorem.

Theorem 4.7. An extended medial Stein system of order n exists for all integers
n=4exceptn e {6,7, 8, 10, 12, 14} and possibly excepting n € {15, 18, 22, 23, 26,
27, 30, 34, 38, 42, 43, 46, 50, 54, 62, 66, 70, 74, 78, 82, 90, 98, 102, 114, 126}.

Remark. D.G. Rogers [private communication] has recently shown that there is
no Stein quasigroup of order 18. Hence, 18 is an exception in both Theorems 4.5
and 4.7.

5. The spectrum of (yx - y)y =x and Mendelsohn designs

We have already seen in the proof of Proposition 1.3 that the identity
(yx - y)y = x is equivalent to (y - xy)y =x, and it is also conjugate equivalent to
the identities (y - yx)y = x and (yx - x)y = x. Consequently, the spectrum of each
of these identities ((vi), (vii), (viii), and (ix) of Theorem 1.2) is the same. A
quasigroup satisfying the identity (yx - y)y =x has the interesting property of
being orthogonal to its (2,3, 1)-, (3,1, 2)-, and (3, 2, 1)-conjugate. In particular,
idempotent models of (yx -y)y =x can be associated with a class of resolvable
Mendelsohn designs which we briefly describe below. For more details, the
reader is referred to [5, 6, 10, 36, 37, 51-53].

A (v, K, 1)-Mendelsohn design (briefly (v, K, 1)-MD) is a pair (X, B), where X
is a v-set (of points) and B is a collection of cyclically ordered subsets of X (called
blocks) with sizes in the set K such that every ordered pair of points of X are
consecutive in exactly one block of B.

If (X,B)isa(v, K, 1)-MD with X={1,2,...,v} and K={k,, k,,...,k,},
where ) <<, k; =v — 1, then (X, B) is called loosely resolvable if its blocks can
be separated into v parallel classes such that the set theoretic union of the
elements in the blocks of the jth parallel class is X — {j}. If each parallel class
contains one block of each of the sizes k,, k,, ..., k,, then (X, B) is called
precisely resolvable. The (v, K, 1)-MD is called r-fold perfect if each ordered pair
of points of X appears t-apart in exactly one block of B for all t=1,2,...,r. If
K = {k} and r =k — 1, the design is called perfect.

Let |Q|=v and suppose (Q,-) is an idempotent quasigroup satisfying
(yx - y)y =x. Then (Q, -) will be orthogonal to its (3, 2, 1)-conjugate, say (Q, *).
We can then define the blocks of a 2-fold perfect loosely resolvable (v, K, 1)-MD
as follows. For the block containing a of the xth parallel class, the right-hand
neighbour of a is a - x and the left-hand neighbour of a is a * x. This construction
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produces well-defined blocks of size kK =3 in K and it can be verified that the
resulting design is a 2-fold perfect loosely resolvable (v, K, 1)-MD (see, for
example, [5, 37]).

In Example 2.9, we are essentially guaranteed the existence of a constant C
such that for all n > C, there exists an idempotent quasigroup of order n satisfying
the identity (yx-y)y =x. In [9], the author carried out an investigation of
J((yx - y)y = x) with some emphasis on finding a concrete upper bound for the
constant C. Example 2.1 was employed in conjunction with the recursive
constructions of Section 2 and the notion of a quasigroup with “holes” (see, for
example, [13, 14, 25]). The main result of [9] pertaining to the spectrum of the
identity (yx - y)y = x can be summarized in the following theorems:

Theorem 5.1. For every integer n = 1 with the exception of n =2, 3, 4, 6, and the
possible exception of n € {9, 10, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 34,
38, 39, 42, 44, 46, 51, 52, 58, 60, 62, 66, 68, 70, 72, 74, 75, 76, 86, 87, 90, 94,
96, 98, 99, 100, 102, 106, 108, 110, 114, 116, 118, 122, 132, 142, 146, 154, 158,
164, 170, 174}, there exists an idempotent quasigroup of order n satisfying the
identity (yx - y)y = x.

Theorem 5.2. J((yx - y)y = x) contains every integer n =1 with the exception of
n =2, 6, and possibly excepting n = 10, 14, 18, 26, 30, 38, 42, 158.

6. Miscellaneous results and summary

In the preceding sections of this paper, we have been able to present fairly
conclusive results regarding the spectrum of most of the identities listed by Trevor
Evans in Theorem 1.2. However, the last three identities of Proposition 1.3
remain to be investigated, namely, (6) (xy - x)y =x ((v) of Theorem 1.2), (7)
xy-y=x-xy ((xii) of Theorem 1.2), and (8) yx -y =x - yx ((xiv) of Theorem
1.2). For the most part, the current results on the spectrum of each of these
identities are still somewhat inconclusive, and we shall provide only a brief
summary in this section.

Lemma 6.1. Each of the identities in {(xy -x)y =x, Xy -y =x Xy, yx -y =x - yx}
implies the idempotent law.

Proof. We first consider the identity (xy - x)y =x. If (xy - x)y =x holds, then,
replacing x by xy, we obtain (((xy)y)(xy))y = xy which implies ((xy)y)(xy)=x.
On the other hand, ((x(xy))x)(xy) = x also holds. Hence we have ((x(xy))x)(xy)=
((xy)y)(xy) and, by cancellation, (x(xy))x = (xy)y holds. In particular, we must
have (x(x*))x = (x*)x which implies x -x*=x? which further implies x’=x.
Next, we consider the identity xy -y =x -xy. If xy - y =x - xy holds, then ay =a
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implies that a’=a - ay =ay - y = ay = a. Finally, we consider the identity yx -y =
x-yx. If yx-y=ux-yx holds, then ax =a implies that a’=ax-a=x-ax=xa
which, by cancellation, implies a = x, that is, a> = a. This completes the proof of
the lemma. O

In what follows, we shall make use of a result due to Mullin et al. [56].

Lemma 6.2. A B({5,9, 13,17,29, 49}, 1;v) exists for all positive integers
v=1 (mod4) with the possible exception of v =33, 57, 93, 133.

A quasigroup satisfying the identity (xy -x)y =x is (3,2, 1)-conjugate or-
thogonal and, moreover, the identity itself is (3,2, I)-conjugate invariant.
Consequently, any quasigroup of order v satisfying the identity (xy - x)y = x can
always be associated with some 2-fold perfect loosely resolvable (v, K, 1)-MD as
described in the previous section. There are models of the identity (xy - x)y =x in
GF(q) for all prime powers ¢ =1 (mod 4). In particular, there are models of the
identity of order n, where ne{S, 9, 13, 17, 29, 49}. By using the result of
Lemma 6.2 and applying Theorem 2.7, we readily obtain the following result.

Theorem 6.3. J((xy - x)y = x) contains all positive integers v=1 (mod 4), except
possibly v =133, 57, 93, and 133.

It is still an open problem to determine more precisely J((xy - x)y = x). It is not
difficult to check that 2, 3, 4, and 6 do not belong to J((xy - x)y = x).

The identity xy - y = x - xy is conjugate invariant, and a quasigroup satisfying
this identity is (3, 2, 1)- and (1, 3, 2)-conjugate orthogonal. Hence these quasi-
groups can be associated with 2-fold perfect loosely resolvable Mendelsohn
designs. There are models of the identity xy -y =x - xy in GF(2¥) for all k =2. In
particular, there are models of the identity of orders 4 and 8. If we utilize a result
of Hanani [33], we readily obtain models of the identity of all orders v =1 or
4 (mod 12), and, more generally, if we appeal to Wilson’s result in Theorem 2.8
with K = {4, 8}, we easily obtain

Theorem 6.4. J(xy -y = x - xy) contains all sufficiently large integers v, where
v=00r1 (mod4).

It can be shown that J(xy -y = x - xy) does not contain 2, 3, 5, 6 or 7, and it
is possible to be more specific about the term “sufficiently large” in Theorem 6.4.
However, more conclusive results are being sought by the author.

Quasigroups satisfying the identity yx -y =x - yx are (3,1,2) (and (2, 3, 1))-
conjugate orthogonal, and there are models of the identity in GF(q) for all prime
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powers ¢ =1 (mod4). Consequently, it is possible to obtain a result similar to
that of Theorem 6.3, that is, we have

Theorem 6.5. J(yx -y =x-yx) contains all positive integers v=1 (mod4),
except possibly v =33, 57, 93 and 133.

In summary, the author has attempted to provide an up to date account of what
is known regarding the spectrum of each of the identities in Theorem 1.2. I would
like to reiterate that only a brief survey of the known results is given in this
paper. However, 1 have made a concerted effort to include many references to
the earlier investigations in the bibliography, and the interested reader should
find plenty of details therein.

Note added in proof. Since this paper was accepted for publication, the author
has discovered the following:

(1) The quasigroup identities (xy - x)y = x and yx -y = x - yx, namely, (6) and
(8), respectively, cf. Proposition 1.3, are conjugate-equivalent. Conse-
quently, the spectrum is the same for each of these identities and the list of
identities in Proposition 1.3 can further be reduced to seven.

(2) There exists a (33,4, 1)-perfect Mendelsohn design and the possible
exception n = 33 can be eliminated from Theorem 3.6.

(3) W.H. Mills has recently shown that {70, 82} < B(4, 19*). Consequently,
the numbers 70 and 82 can be removed from the list of possible exceptions
in Theorems 4.4, 4.5, 4.6 and 4.7.
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NOTE

NEW CYCLIC (61, 244,40, 10,6) BIBDs
Elizabeth J. BILLINGTON

Department of Mathematics, University of Queensland, St. Lucia 4067, Australia

Dedicated to Haim Hanani on the occasion of his 75th birthday.

Design number 1115 in the list of BIBD parameters given by Mathon and Rosa
[2] is listed as unknown; the parameters are (61, 244, 40, 10, 6). Using techniques
of cyclotomy (see [4] for instance) the following four initial blocks were found, by
hand, to generate such a design. The cyclotomic classes C;, 0=<i=11, are with
respect to e = 12; the primitive root used in GF[61] was 2. (The classes C; were
quickly obtained from Jacobi’s tables [1].)

Initial blocks:

CoUC ={1,9,20, 58, 34, 2, 18, 40, 55, 7},
C,uUC,= {8, 11, 38, 37, 28, 16, 22, 15, 13, 56},
CiUC3=1{2, 18, 40, 55, 7, 8, 11, 38, 37, 28},
C,UCs= {16, 22, 15, 13, 56, 3, 27, 60, 52, 41}.

Cyclotomic numbers of order 12 are known in general (Whiteman [5]). A check
of Whiteman’s Table 5 [5, page 72] shows that for any odd prime p = 12f +1,
f odd, where p=A?>+3B*=x>+4y?>, with m'=2(mod4), c=1 and
m =1 (mod 6) (see [5]), provided

2A—-B—-4y=0 (D
and
34+2—x—6y =0, 2)

the four sets C,UC,, C,UC,, C,UC; and C;UC, form a supplementary
difference set.
Since A%+ 3B%= x> + 4y*, we have from (1) and (2) that

x=2 2 2 2 2 2
( . +2y) +33(x —2)) =2 + 42,

which becomes x? + x(3y — 13) + (13 — 6y) = 0. Hence

13-3y + V(3 - 97+ 36
X = 2

, and so
(3y — 9)* + 36 = n?, say. 3
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Clearly n is divisible by 3; letting n = 3M reduces (3) to
M?—(y—3)’=4. 4)

The only solution to (4) in integers is M = £2 and y = 3; thus n = 6 and y =3,
so that x =5 or —1. Since x = 1 (mod 4), we have x = 5. Therefore p =x*+ 4y* =
25+ 4.9 =61, and so the prime 61 is an isolated case here.

Calling the four initial blocks (respectively) A, B, C and D, three of these at a
time were taken, and a fourth initial block was generated by computer, using a
program originally written by Peter Robinson [3]. The resulting designs were not
always isomorphic, as was easy to check by investigating block intersection
numbers. In this way 10 non-isomorphic cyclic designs were found with
parameters (61,244, 40, 10, 6). (See table.) There are probably many more than
10 cyclic designs with these parameters; the search was by no means exhaustive.
Note that design number 10 contains 61 repeated blocks.

The existence of a design with parameters (61, 122, 20, 10, 3) (number 255 in
[2]) remains open.

Initial block
1 6 8 17 19 33 39 54 S7=(CouCy) -1
10 12 13 19 24 38 49 53 57=(C,UC¢)~3
5 9 16 26 35 36 38 53=(C,UC;3)-2
14 20 29 30 48=(C,UC,) -8
21 39 40 49 55 D=(—-E)+8
8 23 29 43 45 54 56 A=(-F)+1
24 25 34 35 38 49 57=(C3UCe) -3
21 26 33 45 47 51 55
14 25 30 38 42 49 53

STQ3HTO® >

0
0
0
0
0
0
0
0
0

N = A e = W
AN W o Lt W L O

Design number  Initial blocks
1 ABCD)
ABCE
BCDF
BCEF
ADGH
DFGH
AEGH
CDEJ
EFGH
CEEJ |

N~

S VWO -NONWNME WN

—

Note added in proof. All ten of the designs listed above appear to be irreducible,
thanks to a program written by Peter J. Robinson.
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NOTE

A UNITAL IN THE HUGHES PLANE OF ORDER NINE

A.E. BROUWER
Dept. of Math., Techn. Univ. Eindhoven, Eindhoven, The Netherlands

Eight years ago I found four nonisomorphic 2-(28, 4, 1) designs embedded in the Hughes
plane of order nine, using a computer. This note gives an algebraic description of one of them.

1. Rosati’s unital

In [1] and [2] I described the construction of 138 nonisomorphic Steiner systems
S(2, 4, 28), 11 of which could be embedded in a projective plane of order 9 (of
which 4 in the Hughes plane).

Recently, Rosati [4] constructed a unital (2-(¢*>+1, g +1, 1) design, i.e.
Steiner system S(2, ¢ + 1, ¢° + 1)) in each Hughes plane of order ¢, and raised
the question whether his unital coincided in case g = 3 with one of the four I had
found earlier. This turns out not to be the case. Statistics for Rosati’s unital are:

s[3:7] = (0, 1152, 552, 72, 15), not resolvable, uniquely embeddable in a proj-

ective plane of order nine, self-dual, automorphism group of order 48, point

orbits of sizes 4 +12 + 12, block orbits of sizes 3 + 6 + 6 + 24 + 24, the binary
code spanned by the blocks has dimension 23 and the weight enumerator of its
dual has coefficients a,,= 8, a;, =7, a,,=0.

(Here s, is the number of maximal (partial) spreads of size i; see also [1, 2].)

Applying the process described in [1] to Rosati’s unital one finds 15 more
unitals, so that as far as I know 154 nonisomorphic Steiner systems S(2, 4, 28) are
known today, 12 of which embed in a projective plane.

2. My unital E.8

Seeing Rosati’s unital made me wonder whether one of my unitals has a
reasonable algebraic description. In this note I shall describe the one with the
largest group.

Consider the Hughes plane IT= (P, L) of order 9 defined over the ‘“mini-
quaternion” nearfield of order 9 (cf. [3]). Its group of automorphisms is
isomorphic to PGL(3,3) x Sym(3) where the first factor is the group of
projectivities, and the second factor the automorphism group of the nearfield.
This group stabilizes a unique Baer subplane IT, = (B, L,) of II.

Choose a nonincident point-line pair x, L in II,. The subgroup G of AutIT
fixing both x and L is isomorphic to GL(2, 3) x Sym(3) and has orbits of sizes
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1+ 4+ 8+ 6+ 24+ 48 on points and lines. (Namely: the point x, the 4 points of
L N P, the 8 remaining points of ), the 6 remaining points of L, the 24 points of
P\P, that are on a line M elL, containing x and meeting LNF,, and the
remaining 48 points. Dually for the lines.)

Let S be a Sylow 2-subgroup (of order 16) of GL(2, 3) and let T be the unique
cyclic group of order 8 contained in S. Put H = (T X Alt(3)) U ((S\T) x (Sym(3)\
Alt(3))) < G. Then H=2Z,,.2 has order 48 and orbits of sizes 1+4+8+6+
24, + 24, on points and lines. Our unital has as points those in orbits 4 + 24,, and
then its lines are those in orbits 1+ 6 + 8 + 24 + 24,. This unital is self-dual, but
not the set of fixed points of a polarity.

An explicit description of the unital independent of the plane can be given as
follows: Let X={a}xZ,N{b}xZ, and take as blocks the five blocks
{ao, ag, a2, ars}, (a0, a3, a4, a13}, {ay, as, ag, bo}, {ay, ag, a6, b2}, {bg, by, by, b3},
and their cyclic shifts (mod 24).

Note that also

(azi, Aziv1, b, b2j—l) > (A, ri—ai sz, b2j+1)

is an automorphism.
Remains the question whether this construction can be generalized to Hughes
planes of order ¢° for arbitrary odd gq.
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PERCENTAGES IN PAIRWISE BALANCED DESIGNS
Charles J. COLBOURN and Vojtech RODL

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario,
N2L 3G 1, Canada

To Professor Haim Hanani on the occasion of his seventy-fifth birthday,

Let K= {ky, ..., k,,} be a set of block sizes, and let {p,, ..., p,,} be nonnegative numbers
with £72, p,=1. We prove the following theorem: for any >0, if a (v, K, 1) pairwise
balanced design exists and v is sufficiently large, then a (v, K, 1) pairwise balanced design exists
in which the fraction of pairs appearing in blocks of size k; is p; + € for every i. We also show
that the necessary conditions for a pairwise balanced design having precisely the fraction p, of
its pairs in blocks of size k; for each i are asymptotically sufficient.

1. Preliminaries

Let K= {k,, ..., k,,} be a (finite) set of positive integers greater than one. A
pairwise balanced design (V, RB) is a set V of v elements, and a collection @B of
subsets of V with the properties that the size of each set of %4 is an integer in K,
and every 2-subset of V appears in precisely one set of 9. Such a pairwise
balanced design has order v, index one, and blocksizes K, and is termed a
(v, K, 1) PBD. When K = {k}, the PBD is a (v, k, 1) block design. When c ¢ K,
a PBD with exactly one block of size ¢ and all other block sizes from K is termed
a (v, KU {c*}, 1) PBD. See Hanani [5] for further definitions and background.

For a (v, K, 1) PBD to exist, two congruence conditions are necessary. Define

a(K)=ged{k,~1,k,~1,...,k,—1}, and
B(K) =ged{k (k, — 1), ko(ky = 1), . .., k(K — D}

Then we must have v — 1 =0 (mod a(K)), and v(v — 1) =0 (mod S(K)). Wilson
[6] proved that these conditions are asymptotically sufficient:

Theorem A [6]. For K a set of positive integers, there is a constant Ny so that if
v>Ng, v—1=0(mod a(K)) and v(v—1)=0(mod B(K)), then a (v, K, 1)
pairwise balanced design exists.

Wilson’s theorem guarantees the existence of some PBD with the required
block-sizes, but does not control the number of blocks of each size in any way. In
certain applications, however, it is important to ensure that “‘most” blocks are of
one size. In this context, one can view the Erd6s-Hanani theorem [4] as
establishing the existence of (v, {k, 2}, 1) PBDs with almost all blocks of size k.
Another context in which a majority of blocks of one size is required appears in
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[3]; there, (v, {6, 7}, 1) PBDs are constructed in which almost all blocks have size
6, for all orders which are sufficiently large and for which a (v, {6, 7}, 1) PBD
exists at all.

In this paper, we use Wilson’s theorem extensively to prove a general theorem
in this direction. Informally, we show that one can prescribe the fraction of blocks
of each size, and provided that the order is sufficiently large and the necessary
conditions are met, there is a PBD with the required fraction of blocks of each
size. More formally, we prove two theorems along these lines:

Theorem 1. Let € >0. Let K={ky, ..., k,,} be a set of block sizes. Then there is
a constant Cg,. so that if v=Cg,, v-1=0(moda(K)), and v(v-—
1)=0(mod B(K)), there is a (v, K, 1) PBD in which the fraction of the blocks
having size k, exceeds 1 — €.

Theorem 2. Let € >0. Let K={k,,...,k,} be a set of block sizes. Let
{pis...,DPm} be nonnegative numbers with ¥.72, p,=1. Then there is a constant
Pk so that if v=Pg ., v~ 1=0(mod a(K)) and v(v — 1) =0 (mod B(K)), there
is a (v, K, 1) PBD in which, for each 1 <i=<m, the fraction of pairs appearing in
blocks having size k; is in the range [p; — €, p; + €].

The proof of these theorems relies on constructing a large (but finite) collection
of PBDs in which blocks of one size predominate. In addition to Wilson's
theorem, we require a theorem due to Chowla, ErdGs and Straus [2] (see also
Wilson [7] and Beth [1]):

Theorem B. For every k=1, there is a constant L, so that a transversal design
TD(k, v) exists for all v= L,.

A question related to that settled in Theorem 2 is to settle the existence of
pairwise balanced designs having exactly the fraction p; of its pairs covered by
blocks of size k;. In addition to the basic necessary conditions for the PBD to
exist, we then have the additional necessary condition for each 1 <i<m:

pv(v —1)=0(mod k,(k, — 1)). (*)

We prove the following:

Theorem 3. Let K be a set of block sizes, and let {p,, ..., p,} be nonnegative
fractions with Y7L, p;=1. Then there is a constant C so that for every v>C
satisfying v —1=0(mod a(K)), v(v—1)=0(mod B(K)), and (*), there is a
(v, K, 1) PBD in which, for every i, blocks of size k; contain the fraction p; of all
pairs.

To prove this theorem, we employ a generalization of Theorem A to graph
designs established by Wilson [8]:
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Theorem C. Let 4 be a graph with e edges. Let a(%) be the greatest common
divisor of all vertex degrees in 4, and let B(9) =2e. Then there exists a constant
Cy such that for all v > Cg, if v —1=0(mod «(%)) and v(v — 1) =0 (mod B(9)),
the complete graph K, can be decomposed into edge-disjoint subgraphs, each
isomorphic to §.

In the remainder of the paper, we use Theorems A, B and C to prove theorems
1,2 and 3.

2. Proof of Theorem 1

The strategy of the proof is to construct PBDs %; of orders z + k; (where z is an
appropriately chosen positive integer), and a PBD %, of order z + 1, each of
which has all but € fraction of its pairs in blocks of size k,. To do this, we first
construct PBDs %; of orders ¢ +k;; we then construct PBDs %; of orders
y+c+k; and y +c¢+ 1, and many apply a product construction (see Fig. 1) to
form PBDs %, of orders xy + ¢ + k; and xy + ¢ + 1 with the required fraction of
blocks of size k,. Appropriate choices for the integers x, y and ¢ are given.

Finally applying Theorem A to PBDs with block sizes |9;| for 0<i<m, we
will infer Theorem 1.

Now we give a more detailed description of the proof. Choose ¢ sufficiently
large so that we can form a collection %, %4, ..., %,, of PBDs with block sizes
from K, with %, having order ¢,=c¢ +1 and %;, i >0, having order ¢, =c + k, (¢
can be chosen to be an appropriate multiple of [1I/2, k;(k; — 1)(k; —2)). Let y be a

multiple of [1/%, c;(¢; — 1), large enough so that a (y +¢;, ¢;, 1) block design exists

Fig. 1. 9,
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for each i, and a TD(k,, y) exists. Theorems A and B ensure that such a selection
is possible. Replace all but one blocks in a (y + ¢, ¢;, 1) block design to form a
(y+¢, KU{c!}, 1) PBD %, (i.e. € contains exactly one blocks of size c,).

Now choose a value x =1(mod B(K)) for which an (x, k,, 1) block design
exists, and

(5)7x(3) +(5) +oe
6"(2 o) T\ T

for every i, which exists by Theorem A. Let & be an (x, k,, 1) block design.

From & and €, we form a (v, K, 1) PBD %, on d,=xy + ¢, elements as
follows. Let V be the element set of . The element set of %, is then
Vx{l,...,y}U{o, ..., .} First, for j=1,..., x, we place a copy of €, on
the elements V X {j} U {,, ..., .}, so that the (unique) block of size c, is on
the elements {%, ..., }. Next, whenever A € &, place a copy of a TD(k, y)
on the elements A X {1, ..., y}, with groups of the transversal design on classes
of elements having the same second coordinate. Finally, replace the block of size
¢, on {, ..., .} by the blocks of %, The result, %, is a (v, K, 1) PBD in
which the fraction of pairs in blocks of size k; exceeds 1 — €.

Let D={d,,...,d,}. We want to apply Theorem A again to produce PBDs
with block sizes from D for all sufficiently large orders satisfying the necessary
condition for a PBD with block sizes from K to exist. To this end, we must verify
that a(D)= «(K) and $(D) = B(K). Since [I/L, k;(k; — 1)(k, — 2) divides both ¢
and y, and d; = xy + ¢ + k; holds, we infer that a(D)= a(K) and B(D) = (K).
Now we verify the opposite inequalities.

Since a(D) divides both dy—1=xy+c and d,— 1 Xxy+c+k;—1 for i=

1, ..., m, a(D) must divide their difference. That is, a(D) divides k;, — 1 for all
i=1,...,m, and hence a(D)=< a(K).

Now we show that B(D) < B(K). Let y be a prime power dividing 8(D). Set
z=xy+c. Then we have dy=z+ 1 and d;=z +k; fori=1,..., m. For every
i=0,...,m, ydivides d,(d; — 1) and hence y divides the difference

di(d; — 1) —dy(dy— 1) =2(k; — 1)z + k? — k,. 2.1

On the other hand, y divides dy(d, — 1), and hence

eithery |z or y|(z+1). (2.2)
We show that the latter case is impossible. Suppose to the contrary that y divides
z + 1. Note that z =xy +c is a multiple of I/, k;(k; — 1)(k; —2) and hence y
does not divide k; — 1 or k; —2 for any i. Rewriting (2.1), we obtain

Y | 2(k; = 1)(z + 1) + (k; — 1)(k; — 2),
which implies that y | (k; — 1)(k; ~ 2), a contradiction.

Thus y cannot divide z + 1, and hence by (2.2) must divide z. Together with

(2.1), this implies that y|k;(k,—1), proving that y|B(K) and hence also
B(D)=p(K). O
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Let v meet the necessary conditions for a (v, K, 1) PBD, and v > Np. Then a

(v, D, 1) PBD exists. Replacing each block of size d; by a copy of &, yields a
(v, K, 1) PBD in which the fraction of pairs in blocks of size k; exceeds 1 - €,

3. Proof of Theorem 2

Let & be small enough that

(1-8)
-6 >p,—¢ and .
(pi )(]+5)>P, €, an (3.1
(pi+6)1+8)+b=pi+e 3.2)
holds for everyi=1,...,m.

Using Theroem 1, produce a collection of PBDs with block sizes from K,
{B;:0<i<m, 1<j<m}, so that for each j, 1 <j<m, %; has all but (1- ) of
its pairs in blocks of size k;; the orders of &, . .., %, are by, . . ., b,,, which are
chosen as follows. Let z be a (sufficiently large) multiple of [1/Z, k;(k; — 1)(k; —
2), so that we can produce all of the designs required above with orders
by=z+1, and for 1si<m, b;=z — k;. Moreover, we require that z is large
enough that b;(b, — 1)< (1 4+ 8)b(b,—1) for all 1<, r<n.

Let S={b,, ..., b,}. We have a(K) = «a(S) and B(K) = B(S), as in the proof
of Theorem 1. For v sufficiently large with v —1=0(mod «(K)) and v(v —
1)=0 (mod $(K)), Theorem A ensures that a (v, S,1) PBD & exists. In
addition, for v sufficiently large, we can ensure that the blocks of & can be
partitioned into m classes so that [%;|/|9]| is in the range [p;, — §, p; + 8]. For
j=1,..., m, replace each block in %; of size b; by a copy of %;. The PBD €
which results is a (v, K, 1) PBD. If A; is the number of pairs in € which are in
blocks of size k;, then we have for eachi=1, ..., m that

A 13I0=8)_, . (-8
(T;T@(Ha)/("’ TS,
2

and

T
A B Sy ks (p+ S)(1+8)+ 6.

G

Therefore by (3.1) and (3.2), € satisfies the requirements of the theroem. [0

4. Proof of Theorem 3

Write the fraction p; of pairs in blocks of size k; in the form f;/b, so that ged
{fi, .- -, fn} =1. The necessary condition (*) states then that for all i,

v(v — 1)f, =0 (mod bk,(k; — 1)).
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We construct a PBD with the prescribed fraction of pairs in blocks of each size
whenever these necessary conditions are met. To do this, form a graph G
consisting of disjoint complete subgraphs; G has r; components isomorphic to K, ,
so that

riki(k; — 1) _Jj
inki(k,—1) b’

for each i. Moreover, we ensure that ged{r,,...,r,} =1. Letting e be the
number of edges of G, we can simplify to

ribk;(k; — 1) = 2ef.

Hence the necessary condition becomes
v(v — r, =0 (mod 2e).

Since the {r;} are relatively prime, we have
v(v — 1) =0 (mod 2e).

By Theorem C, the necessary conditions are asymptotically sufficient for the
existence of a decomposition of K, into graphs isomorphic to G; such a
decomposition trivially gives a PBD with the required fraction of pairs in each
block size.

5. Closing remarks

The theorems proved here are to a large extent straightforward consequences
of Wilson’s theorems. Nevertheless, they allow finer control of the distribution of
block sizes, and hence are useful for extremal questions in design theory, such as
that studied in [3].
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To Professor Haim Hanani on his seventy-fifth birthday.

A lower bound is provided for the size of complete arcs in an S(2, k, v) and examples are
exhibited for k =3 and 4 which show that the lower bound can be attained. Partitions are
examined of S(2, 4, v)’s into complete arcs.

1. Introduction

The well established facts that both S(2, 3, v)’s and S(2, 4, v)’s exist for all v’s
in their spectra and that the number of non-isomorphic systems increases with v
raise several questions. One is the classification of such Steiner systems.
However, in such general terms this problem seems hopeless. Hence, additional
conditions and more information are needed on the inner structure of STS’s and
S(2, 4, v)’s. Basically, there are two possible approaches to the investigation of
such inner structures. One of them appeals to possible automorphism groups
admitted by the Steiner system. This method recently produced many new Steiner
systems and enabled the classification of some of them, see e.g. [2, 4, 14, 21, 27,
28, 35, 36, 37]. The other approach looks at possible nice subsets of the point set
and/or at configurations formed by the blocks. Also from this standpoint our
knowledge is constantly increased by new results, see e.g. [9, 17, 18]. The inner
structure of a certain design is the design itself. This was the case in the very first
constructions [20] and since then it has been investigated focusing on different
objects. In particular, it is worth recalling that looking at possible generating
triangles enabled the classification of STS’s as planes, degenerate planes and
spaces [11, 34].

Here we shall present some results concerning the smallest possible size for a
complete arc in an S(2, k, v) and give some examples of S(2, 3, v)’s and
S(2, 4, v)'s containing complete arcs whose sizes attain the lower bounds.
Furthermore, we examine the inner structure of some S(2, 4, v)’s by looking for
possible partitions of the point set into complete arcs. Twenty-seven years ago
Hanani’s famous paper [15] appeared in which the existence was proved, by
construction, of an S(2, 4, v) for any v =1 or 4 (mod 12). Since then many other
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S(2, 4, v)’s were constructed so that it seems interesting to devise properties
which might enable one to determine when two systems of the same order are
inequivalent.

We assume that the reader is familiar with the Steiner system terminology and
we refer him to [1, 19] for background and to [12, 13] for literature on the
subject, our references being far from exhaustive.

2. Complete arcs in Steiner systems S(2, k, v)

An s-arc in an S(2, k, v) is a set of s points of the system no three of which are
on a block. Thus an arc is met by any block in 0, 1, or 2 points. Moreover, an arc
is complete if any point of the S(2, &, v) lies on at least one secant block. A
tangent (secant) block is briefly called a tangent (secant).

If there are no tangents, then the arc takes its maximum possible size, i.e.
r+1=(@w—-1)/(k—1)+1, and is referred to as a hyperoval. Hyperovals have
been thoroughly investigated in STS’s and results are known for any k [9, 22].
Furthermore, their use in the construction of S(2, 3, v)’s goes back to Kirkman
[20] and Reiss [32].

Since the spectrum of S(2, k, v)’s containing hyperovals is not the whole
spectrum of these systems [9], it makes sense to consider the next possible size for
a complete arc. More precisely, we require that there is a unique tangent to the
arc at each of its points. Such a complete arc is called an oval and clearly has r
points. Again, results are known on STS’s containing ovals of some particular
types, not necessarily complete [23, 38].

By an oval in an $(2, k, v) we always mean a complete r-arc with a unique
tangent at each point. This definition is suggested by the behaviour of ovals in any
odd order projective plane and is motivated by the fact that we are interested in
complete arcs.

An easy counting argument shows that the number of secants to an oval
through each exterior point equals the number of exterior blocks on that point.
Moreover, the number of tangents on an exterior point has the same parity as r.
Therefore, a necessary condition for an oval to admit interior points, i.e. points
on no tangent, is r =0 (mod 2).

It is well known [16] that in a projective plane IT of odd order g the g + 1
tangents to an oval £, i.e. a complete (g + 1)-arc, form an oval in the dual plane.
This means that each point in T\ Q lies on either two or zero tangents to €. This
is a consequence of the fact that any two lines in I always meet. On the other
hand, such a resuit is not true in a Steiner system S§(2, k, v) with b > v, since
there exist parallel blocks.

The next example shows an oval in an S(2, 3, 13), that is a complete 6-arc with
a unique tangent at each point. Notice that we started with the points on the oval
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to construct the STS(13). The points of the oval are 1,2, ..., 6. Then the secants
are:
12 7 1512 2412 34 9 4510

1311 16 9 25 9 3513 46 7
14 8 23 8 2613 3610 56 8.

Moreover, the tangents are 11013,21011,3712,41113,5711, 61112 and the
exterior blocks are 7913, 81213,91012, 7810, 89 11. This oval has two interior
points, namely 8 and 9, and 11 is a point on four tangents. The remaining points
off the arc all are on two tangents. (Ovals in the two nonisomorphic STS(13)’s are
thoroughly investigated in [39].)

Therefore, in looking for ovals in an S(2, k, v) one can add some conditions on
the oval, for instance the existence of a prescribed number of interior points
and/or a certain behaviour of the tangents. For STS’s this approach is used in
[23, 38].

We observe that the existence of an oval in an S(2, &, v) does not yield any
arithmetic condition on v. It depends on the structure of the Steiner system under
consideration only.

As we already remarked, the existence of hyperovals gives arithmetic condi-
tions on v [9] which are v =3 or 7 (mod 12) for an STS and v =4 (mod 12) for an
S(2, 4, v) (for any k, see Propositions 3 and 4 in [9]). If we delete one point from
a hyperoval in an S(2, k, v), we obtain an r-arc all of whose tangents pass
through the deleted point. Such an arc is not complete, so we do not consider it
as an oval as is done in [38]. Therefore, when an S(2, k, v) contains hyperovals it
can contain ovals too and none of these ovals is contained in a hyperoval.

Again, the situation is different from that occurring in projective planes. In
fact, any projective plane of even order g can contain hyperovals, but no oval as
the ¢ + 1 tangents to a (g + 1)-arc all pass through a point which completes the
arc to a hyperoval. This is an easy consequence of two facts; namely, the number
of tangents to the (g + 1)-arc on a point off it must be odd, as g is even, and any
two lines meet [16].

Next, we turn to the problem of the minimum possible size for a complete arc
in an S(2, k, v). We observe that such a lower bound is an open question for
projective planes which is settled only for small orders [6, 16]. On the other hand,
the following result shows that for §(2, k, v)’s with b > v the solution is easier.

Proposition 2.1. The minimum possible size s for a complete arc in an S(2, k, v),
say S, satisfies
s3k—=2)—stk—4)—2v=0. (2.2)

Proof. If y is a complete s-arc in S, then any point of S\y lies on one secant at
least. Therefore, the minimum possible size for y is attained when each point of
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S\ lies on exactly one secant block. This condition yields
s(s—1)

2
from which (2.2) follows. [

k=2)+s=v

Notice that Proposition 2.1 provides necessary conditions on v, since equation
(2.2) must have an integral solution.

Corollary 2.3. The minimum possible size for a complete arc in an §(2, 3, v) is
s=(—1+V1+8v)/2. Furthermore, a necessary condition for an STS to contain
a complete arc of the minimum possible size is that v takes one of the following
forms:

v=T2+ 18y +1, y=1, (2.4)
v =6m + 3, where m = (a} —25)/48 and a; is recursively defined
bya|=1l,a,«+,=aj+2(2j—1), j=1,2,... (25)

Proof. The first part of the statement immediately follows from Proposition 2.1.
Thus a necessary existence condition is provided by 1 + 8v being a square.

Suppose v=1(mod6), i.e. v=6m + 1. Then 1 + 8v =48m + 9. For this to be
a square, m =3w. So 16w + 1 must be a square. Thus 16w + 1 = (8y + 1)* which
implies that w =y(4y £1) and gives (2.4). Furthermore, s =12y +1 for the
former value of v and s = 12y — 2 for the latter.

Next, assume v =3 (mod6), i.e. v=6m+3. Thus, 8v+ 1 =48m +25=a’.
Therefore, m = (a® — 25)/48 must be an integer. The smallest value of a for which
this occurs is a,=11. We claim that m is an integer for a =a;, where q; is
recursively defined as in the statement. By induction, we show that 48 | a; — 25
implies 48 | aZ,, —25. This means that we have to prove that 12| (2j — 1)(a, +
2j —1). On the other hand, this easily follows from the observations below which
can all be proved by induction.

j=1(mod3)=>a;,=2(mod3), j=0o0r 2(mod3)=>a;=1(mod 3),

j=0(mod2)=>a;=1(mod4), j=1(mod2)=>a; =3 (mod 4).

To prove the necessity of the above form for m, we begin by observing that
a®*—25=0(mod 48) implies a’=1(mod 6). Therefore, a=1 or S(mod6). If
a =6z + 1, then (a*> —25)/48 = (3z> + z — 2)/4. For this to be an integer, z =2 or
3 (mod4). Consequently, a=13 or 19 (mod24). If a=6z+5, then (a°—
25)/48 = z(3z + 5)/4 which is an integer for z =0 or 1 (mod 4) only. Thus a =5 or
11 (mod 24). Therefore, necessary conditions for (a> — 25)/48 to be an integer are
a=5, 11, 13 or 19 (mod 24) and a >S5 to avoid a trival case. The solutions of
these congruences are precisely the above defined a/’s. O

By Corollary 2.3, v = 15 is an admissible order for complete arcs to exist of the
smallest possible size. In this case the size is 5. The next example shows an
S(2, 3, 15) containing a complete S-arc.
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Take the STS(15) no. 21 in [26] whose blocks are given below:

123145167189 11011 11213 11415
24 6 25 7 28102 912 21114 21315 3 4 7
3563 811 3 913 31015 31214 4 812 4 914
41013 41115 5 813 5 915 51014 51112 6 8 14

6 910 61113 61213 7 815 7 911 71012 7 13 14,

Then it is easy to check that the points 1910 12 14 form a complete 5-arc. Notice
that this STS(15) contains a subsystem (on the points 1,2,..,7); hence, it
contains a hyperoval on 8,9, ...,15. Moreover, the points 13791014 yield a
complete 6-arc. Two other complete 6-arcs are 15781214 and 13579 14.

Take now the STS(15) no. 19 [26]. Its blocks are:

12314516 7189 11011 11213 11415

246 2572810 2911 21214 21315 3 4 7

356 3 812 3 914 31013 31115 4 815 4 912

41014 41113 5 813 5 910 51114 51215 6 811

6 915 61012 61314 7 814 7 913 71015 7 11 12,
This $(2, 3, 15) contains a unique subsystem, that on the points 1, ..., 7. thus it
contains a hyperoval on 8,9, ...,15[9, 20]. It also contains an oval whose points

are 134611 12 14. This oval admits no interior point. The points 8, 9 and 15 are
on three tangents whereas the remaining ones are on one tangent only. Also this
STS(15) contains a complete 5-arc, namely the one on the points 79 12 14 15,

We observe that the STS(15) given by PG(3,2), no. 1 in [26], obviously
contains a complete 5-arc. It is provided by an ovoid in the projective 3-space
[16]. Moreover, PG(3, 2) has a partition into three ovoids.

The next admissible order is v =21 (Corollary 2.3) and the corresponding
smallest possible size for a complete arc is 6. So there might exist an STS(21)
containing a complete 6-arc. There are many known STS(21)’s [4, 26, 27, 28] and
no exhaustive search has been carried out to find those containing complete
6-arcs. The author picked at random a couple of S(2, 3, 21)’s in each of the
quoted papers and tried to uncover, by hand, some complete 6-arc. These very
few trials turned out to be unsuccessful.

The proof to Proposition 2.1 suggests a construction of Steiner systems
S(2, k, v) containing a complete arc of minimum possible size provided that the
necessary conditions on v are satisfied. The construction requires one to start with
the arc together with its secants (pairs of points) and complete the pairs to blocks
by taking into account that no two secant blocks meet outside the arc. A general
procedure has not been devised yet. It is quite obvious that the solution is not
going to be easy when k =4. However, a general construction is presently under
investigation of STS’s admitting a complete arc of minimum possible size.

Corollary 2.6. The minimum possible size for a complete arc in an $(2, 4, v) is
V. A necessary condition for such an arc to exist is that v has one of the following
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forms:
v=(6w+1)  v=(06w+5)> v=40C3w+ 1)} v=403w +2)%

Proof. The size of the arc comes from Proposition 2.1. The expressions for v
follow from the fact that v must be a square. Recall that u=1or 4 (mod 12). O

In [9] it was shown that an STS can be embedded in an S(2, 4, v) with two
intersection numbers 1 and 3, i.e. with no exterior block, provided that v =4
{mod 24) and v is a square. Under these assumptions, the order of the embedded
STS is (v £ Vv)/2. We observe that in case v = 4(3w + 1)?, the above conditions
are satisfied. Moreover, the possible complete (6w + 2)-arc in the $(2, 4, v) might
also be a complete (6w + 2)-arc in the embedded STS of order 18w”+ 15w + 3
(Corollary 2.3). Such a complete arc is of minimum possible size both in the
S(2, 4, v) and in the embedded STS. The smallest value of v for which such a
situation can occur is v =100 in which case the STS has order 55 and the
complete arc is a 10-arc.

Notice that Corollary 2.6 suggests the existence of S(2, 4, v)’s, v a square,
admitting a partition into Vv complete (Vv)-arcs. Steiner systems with this
property do exist as the next examples show.

The unique $(2, 4, 16) admits such a partition. To show this, we write its
blocks as follows, the points being Al, A2, A3, A4, Bl,...,B4, C1,..., C4,
D1,..., D4

Al A2 Bl B2 Al A3 Cl1 C3 Al A4 D1 D4 Al B3 C4 D2 Al B4 C2 D3
A3 A4 B3 B4 A2 A4 C2 C4 A2 A3 D2 D3 A2 B4 C3 D1 A2 B3 Cl D4
Cl1 C2 D1 D2 Bl B3 D1 D3 Bl B4 C1 C4 A3 Bl C2 D4 A3 B2 C4 DI
C3 C4 D3 D4 B2 B4 D2 D4 B2 B3 C2 C3 A4 B2 Cl1 D3 A4 Bl C3 D2.
Then it is easy to verify that Al,..., A4; Bl,...,B4; C1,...,(C4,
D1, ..., D4 are complete 4-arcs and it is clear that such 4-arcs partition the point
set. In this case a block is either secant to two arcs of the partition or tangent to
all four of them. Of course, such a situation cannot occur when v is odd.

The next possible value for v is 25. The §(2, 4, 25) no. 1 in [21] contains a
complete S-arc. The points of the arc are 13141725, For the reader’s
convenience, we list the blocks of this Steiner system.

1 2 319 2 91024 4 71314 6111821 11 1417 24
1 41011 2132122 4 91722 6171923 121518 22
1 61422 2141620 4121621 7 8 921 1 5 925
1 71617 3 51324 4181924 7101519 2 6 725
1 81223 3 61012 5 71823 7122024 3 4 825
1131820 3 71122 5 81415 8102022 10 14 18 25
1152124 3 91618 5101721 8111319 11 15 16 25
2 41523 3142123 5161922 9112023 121317 25
2 51112 3151720 6 81624 91214 19 19 20 21 25
2 81718 4 5 620 6 91315 10 13 16 23 22 23 24 25.
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We observe that this $(2, 4, 25) has a special point, namely 25, in the sense of B.
Rokowska [33]. She defines an S(2, 4, v) with a special points 0 as follows. For
any two blocks Ox, x,x; and Oy, y, y; there exist two blocks 0z, z, z; and
0w, w, wy such that x;y;z;w;, j=1, 2,3, is a block. The triples of points other
than 0 on the blocks through 0 are to be considered as ordered triples. For
instance, take the blocks 25159 and 252 6 7. They uniquely determine the blocks
25348 and 25192021 sothat 12319, 56420 and 97 8 21 are blocks. Next, take
25159 and 25672. These blocks pick out the pair 2514 18 10, 25222324 and
the resulting blocks are 161422, 57 1823 and 9210 24. In a similar manner one
obtains all the blocks of the $(2, 4, 25). The S(2, 4, 25) no. 1 in [21] and the
system in [33] might be isomorphic but this was not checked.

Also the S$(2, 4, 25) no. 6 in [21] contains complete 5-arcs. Furthermore, it
admits a partition into five such arcs. The blocks of the system are the following
ones.

1 2 625 4 5 923 11171822 2 51518 6 816 24
1 51024 4 61015 12181923 2101719 6 919 22
1 7 812 4182425 13192024 2111424 61421 23
1202122 5 6 711 14162025 3 51316 7 91725
2 3 721 5192125 15161721 3 61820 7 1020 23
2 8913 6121317 1 31119 3121525 7152224
2162223 7131418 1 41417 4 71619 81018 21
3 4 822 8141519 1 91618 4111321 8112325
3 91014 9111520 1131523 5 81720 91221 24
3172324 10111216 2 41220 5121422 10 13 22 25.

The partition is provided by the five 5-arcs 5+j, 10+j, 15+j, 20+, 25+,
j=0,1,...,4, addition mod 25.

We remark that the S(2, 4, 25)’s no.s 2 and 3 in [21] seem to contain no
complete 5-arc. However, they contain complete 6-arcs. Furthermore, no. 2 has a
special point, namely 25, in the sense of [33] and might be isomorphic to the
Steiner system there. Again, this was not checked.

Some of the cyclic {4] and elementary abelian [14] S(2, 4, 49)’s were examined
for complete 7-arcs. No exhaustive search was carried out but the performed
random search was unsuccessful. However, in each of the investigated cases the
orbit under Z, of a point yielded an incomplete 7-arc.

This raises two questions. First, the existence, for any square v=49, v=1o0r4
(mod 12), of an S(2,4,v) containing a complete (Vv)-arc. Secondly, the
existence, for any v as above, of an S(2, 4, v) whose point set admits a partition
into Vv complete (Vv)-arcs. We conjecture that such systems exist and, most
likely, are neither cyclic nor elementary abelian.

Of course, arcs in Steiner systems are independent sets, since no three points
are on a block. Some results on the largest cardinality of an independent set in an
STS can be found in [5, 31] but arcs are not considered there.
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Finally, we observe that in an S(2, k, v) maximal {s; n}-arcs can be considered,
i.e. s-sets of points met by any block in either 0 or n points. Necessary conditions
for such maximal arcs to exist were given in [9] and other results on them can be
found in [7, 30].
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1. Introduction

Let F be a set of f points in a finite projective geometry PG(s, q) of ¢
dimensions where t=2, f =1 and q is a prime power. If (a) |F N H|=m for any
hyperplane H in PG(¢t, q) and (b) |FNH|=m for some hyperplane H in
PG(t, q), then F is said to be an {f, m;¢, g}-min- hyper (or an {f, m;¢, q}-
minihyper) where m =0 and |A| denotes the number of points in the set A. The
concept of a min - hyper (called a minihyper) has been introduced by Hamada
and Tamari [22]. In the special case t =2, an {f, m;2, ¢q}-min - hyper F is called
an m-blocking set if F contains no 1-flat in PG(2, g).

Let E(t, q) be the set of all ordered sets (g, €, . . ., &—,) of integers &, such
that O0<eg,<q—-1 (@¢=0,1,...,¢t~1) and (&, &,...,&-1)%(0,0,...,0).
Let U(t, q) be the set of all ordered sets (&, 4y, 4, . . . , uy) of integers &, h and
W; such that 0se=<g—1, 1shs(t-1)(g-1), lspyysu,<---syu,<t-1
and O0sn(u)sqg—1forl=1,2,...,t—1 where n,(u) denotes the number of
integers p; in pu=(uy, 4y, . .., 4y) such that u; =1 for the given integer /. Note
that there is a one-to-one correspondence between the set E(f, g) and the set
U(t, q) as follows:

e=¢gy, ni(u)=¢e, nyu)==e,...,n_(p)=¢_ (1.1)

where p = (py, s, - . ., py) and Y57 €, = h. For example, (2,4,0,2) in E(4, 5)
corresponds to (2,1,1,1,1,3,3) in U(4, 5). In what follows, we shall use an
orderd set in either E(t, q) or U(t, q) as occasion demands.

Let V(n; q) be an n-dimensional vector space consisting of row vectors over a
Galois field GF(q) of order g where n is a positive integer. A k-dimensional
subspace C of V(n;q) is said to be an (n, k, d; q)-code (or a g-ary linear code

0012-365X/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)



76 N. Hamada, M. Deza

with length n, dimension k, and minimum distance d) if the minimum
(Hamming) distance of the code C is equal to d where n>k =3 and d=1 (cf.
Blake and Mullin [3] and MacWilliams and Sloane [29]).

It is well known (cf. Griesmer [11] and Solomon and Stiffler [30]) that if there
exists an (n, k, d; q)-code for given integers k, d and ¢q, then

=ik

where [x] denotes the smallest integer =x. In what follows, we shall confine
ourself to the case k =3 and 1 <d < g*~' — q. In this case, d can be expressed as
follows:

k—2 h
d=¢""'- 3 e.q° <ord=q""—(£+2 q“’)), (1.3)
a=0 i=1
using some ordered set (&g, €, ..., &-2) in E(k—1, q) (or some ordered set

(&, 11, U2y - . ., pp) in U(k — 1, q), resp.) and the Griesmer bound (1.2) can be
expressed as follows:

k-2 h
n=uy; — 2 EaVay1 (ornzvk— (e+2 v,‘iﬂ)), (1.4)
a=0 i=1

where v, = (¢’ — 1)/(g — 1) for any integer ! =0.

Recently, Hamada [12, 16] showed that in the case k=3 and d=¢*' -
Y4 2e,q% (or d=q" '~ (e+ L, q")), there is a one-to-one correspondence
between the set of all (n, X, d; g)-codes meeting the Griesmer bound (1.4) and
the set of all {LX2% e, v,y L%23 £,v,;k — 1, ¢}-min - hypers (or the set of all
{Er v, + & Xl v, ¢, g}-min - hypers, resp.) if we introduce an equivalence
relation between two (n, k, d; q)-codes as Definition 2.1 in Hamada [16] (cf.
Theorem 3.11, Remark 3.3 and Example 3.1 in Section 3). Hence in order to
obtain a necessary and sufficient condition for integers k, d and q that there exists
an (n, k, d; q)-code meeting the Griesmer bound (1.2) in the case 1<d=
g*~'— ¢ and to characterize all (n, k, d; g)-codes meeting the Griesmer bound
(1.2) in the case 1=sd=<gq*™!' —gq, it is sufficient to solve the following problem
with respect to a min - hyper. The purpose of this paper is to survey recent works
with respect to the following problem.

Problem A. (1) Find a necessary and sufficient condition for an ordered set

(0, €1, ..., &—y) in E(t, q) (or an ordered set (g, py, Uz, ..., wy) in U(t, q))
that there exists a

t—1 t—1
{2 EaVarts Dy EaVail, q}-min-hyper
a=0 a=0

h h
X (or a {2 Vprr + & 2 Uit q}-min . hyper).
i=1

i=1
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(2) Characterize all

t—1 =1
{E EaVnits 2 EqVUus 8, q}-min-hypers

a=0 a=0

h h
X (or all {2 Uyt & > Vit q}-min . hypers)
i=1 i=1
in the case where there exist such min - hypers.

Example 1.1. Let F be a p-flat in PG(t, q) where 1 <pu <t. Then |F|=(g**' -
1)/(g —1)=v,4, and |[FNH|=v, or v,,, for any hyperplane H in PG(t, q)
according as F ¢ H or Fc H. Hence F is a {v,,,, v,;¢, q}-min - hyper if Fis a
p-flat in PG(¢t, q). Tamari [31, 33] showed that the converse holds, i.e. if Fis a
{Vus1, Uu3 t, q}-min - hyper, then F is a p-flat in PG(t, q). Hence in the special
case gg=¢& ="--=¢€,,=0, g,=1, g,,,=---=¢_,=0 (or ¢=0, h=1 and
pr=n), Fis a {v,41, v, t, g}-min - hyper if and only if Fis a u-flat in PG(z, q).

Example 1.2. In the case t=2, ¢ =3, ¢=0 and h =2, it is shown by Hamada
[12, 13] that (1) in the case 4, + p,=1¢, there is no {v,,«1 + Vyyry, U, + U5 q)-
min - hyper and (2) in the case u,+pu,<t—1, Fis a {U, 41+ Va1, Uy, +
V,,; 1, ¢}-min - hyper if and only if F is a union of a p,-flat and a p,-flat in
PG(t, g) which are mutually disjoint where 1<y, < pu,<t.

2. Construction of several min - hypers

Let F be a set of g, 0-flats, £, 1-flats, . . ., g_, (¢t - 1)-flats in PG(¢, g) which are
mutually disjoint where (&g, €, ..., &_1) € E(t, ). Then |F|= 501 6,V041,
|FNH| =Y. e,v, for any hyperplane H in PG(t, ¢) and the equality holds for
some hyperplane H in PG(t, q). Hence F is a {E4 €,Va+1, Lot Ealait, 4)-
min - hyper (cf. Hamada [16]).

Let F be a set of ¢ points, a u,-flats, a u,-flat, . .., a y,-flat in PG(¢, g) which
are mutually disjoint where (& @y, s, ..., )€ U(t,g). Then F is a
{Zh v, + & Ly v, t, g)-min - hyper. Hence we have the following

Theorem 2.1. Let Jp(ey, €1y, &_13t, q) F0 and Jy(e, Py, Uoy - -, B3 t, ) #0
for given ordered sets (&, &, ..., &_,) in E(t,q) and (g, u,, pa, ..., ) in
U(t, q), respectively, where Jg(gq, €, ..., &-1;t, q) denotes a family of all
unions of €, O-flats, €, 1-flats, . . ., &_, (t — 1)-flats in PG(t, q) which are mutually
disjoint and 3,(&, (), o, - . ., Uns t, q) denotes a family of all unions of € points,
a u-flat, a uy-flat, . . ., a py-flat in PG(t, q) which are mutually disjoint.
(1) If FeJp(eo, €1, -, &—131, q), then Fis a {L52 €aVas1, Loz Ealas L,
q}-min - hyper.
(2) IfFESU(EJ By Boy oo s B L, CI), thenfis a {Zlh=| vu,+l t e, Z:'=l Uul;t, q}'
min - hyper.
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Remark 2.1. If there exists a relation between a set (g, £, ..., &_;) in E(t, q)
and a set (g, 4y, Uz, . . ., Wy) in U(t, q) as (1.1), then Jz(&o, €1, - .., E—138, q) =
Sv(E, s Mas -+ -5 W3, ).

Remark 2.2. It is known (cf. Hamada and Tamari [24] for example) that (1) in
the case h =1, Jy(e, pi;t, q) #0 for any (e, u;) in U(t, ¢) and (2) in the case

h=2, Ju(e, i, tas - - -, s, q)#FOifand only if y,_ +pu, <t —1.

Problem B. Find a necessary and sufficient condition for an ordered set
(g9, €1, ..., &—1) in E(t, q) (or an ordered set (&, 4y, Y, . . ., Wy) in U(t, q) that
the converse of (1) (or (2)) in Theorem 2.1 holds, i.e. FeJx(g, &,..., &_1;
t,q) for any {¥50EaVas1, Dol €4la;t, g)-min-hyper F (or Fe
SulE, s Uy - -, a3 t, ) for any {7, v, + & Liey v, ¢t g}-min - hyper F,
resp.).

Let V be a 8-flat in PG(¢, g) where 2< 8 <. A set S of m points in V is said to
be an m-arc in V if no 6 + 1 points in S are linearly dependent where m = 6 + 1.
In the special case 6 =1¢, S is said to be an m-arc in PG(¢, q). For convenience
sake, a set S of @ points in the #-flat V is said to be a 8-arc in V if 8 points in §
are linearly independent. Let 11(6, £;1, q) denote a family of all sets V\S of a
0-flat Vin PG(t,q) and a (g + 8 — g)-arc Sin Vwhere 2<f<tand 0<e<q.

Let M(6, ¢; & 7y, ®,, ..., M t, q) denote a family of all sets (VAS)UAUB
of a set V\S in (6, {;¢, q), a set A of & points in PG(¢, ¢q) and a set B in
Iu(0, 7y, 7a, ..., 75t q) such that VNA=8, (VN\S)NB=@® and ANB=§
where either (a) /=0, 2<0=<t-1, (=0, E=z0and t+E<qor (b) Isi<
t-2)(g-1), 2=<6=<m, (=0, £E=0, (+&E<q and 0,7, 7y, ..., W)€
U(t, q). Note that J,(0, &y, =5, ..., 7;5t, q) =9 in the case /=0 and A =@ in
the case & = 0. The following theorem due to Hamada [16] gives another method
of construction of a min - hyper.

Theorem 2.2. Ler U(8, €;¢t, q) #@ and PUO, §; &, 7y, 75, ..., 75t q) # D for
given integers.
(1) If FelW(B, €;1,q), then F is a {L821(q — Dvosr+ & L9Z1 (g — Du,;
t, q}-min - hyper.
(2) If FeDO, & & my, 7z, ..., W3t q), then F is a {L22) (g — Dvgy, +
DictUnsr+ E+ & L2210 (g — Do + Bioy vs;s 1, q}-min - hyper.

Helleseth [25] characterized all (n, k, d; q)-codes meeting the Griesmer bound
for the case k =3, g =2 and 1<d <2*"', In terms of a min - hyper, the result of
Helleseth can be expressed as follows.

Theorem 2.3. Let (&, uy, Uz, ..., n) be an ordered set in U(t,2) and let
f=Cl v+ eand m=Y}, v, where v, =2'—1 for any integer | =0.
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(1) In the case h=1, F is a {41+ ¢ v,;t, 2}-min - hyper if and only if
FeJu(e ut, 2).

(2) In the case h=2, p,_i+u,<t—1 and (u,, u)#1,2), F is an
{f, m;t, 2}-min - hyper if and only if F € Jy(€, p1, ta, - - - » fn3 1, 2).

(3) In the case h=2, p,.,+u,>t—1 and (u,, u)#(1,2), there is no
{f, m;t, 2}-min - hyper.

(4) In the case t =3, (U1, Mo, .- ., W) =(1,2,...,h) and t/2<h=<t-1 (ie.
Un-1+ pn>t—1), Fis an {f, m;t, 2}-min - hyper if and only if F € B(h +
1, &;t,2) where B(h+1,0;¢,2)=U(h +1,0;¢2) and Bh+1,1;1,2)=
Uh+1,1;,2)U(h+1,0;1;1¢ 2).

(5) In the case t=4, (Ui, Pz ..., )=(1,2,...,h) and 2<h=<t/2 (ie.
Ppa+u,<t—1), F is an {f, m;t,2}-min - hyper if and only if either
FeJu(e,1,2,...,ht,2) or FeB(h+1,e;1,2) or FeM(, §; 5 1, [+
1,...,h;t,2) for some integer | in {2,3,...,h} and some nonnegative
integers & and & such that { + §E = ¢.

(6) In the case h=0, (U, ..., phe-1)=(1,2,...,0—-1), u,>0 and
Pn-1+ p,<t—1 for some integer 6 =3, F is an {f, m;t, 2}-min - hyper if
and only if either F e Jy(g, py, Uz, - .-, 3 1, 2) or FeIM(, &; &, w,
Bists -+ Muy L 2) for some integer | in {2,3,...,0} and some
nonnegative integers £ and & such that { + & = ¢.

(7) In the case h=06, (U, py, ..., 4e-1)=(1,2,...,0-1), uy>0 and
Un-1+ pn >t — 1 for some integer 8 =3, there is no {f, m;t, 2}-min - hyper.

Remark 2.3. Theorem 2.3 shows that in the case g =2, there is no {f, m;¢, 2}-
min - hyper except for {f, m;t, 2}-min - hypers given by Theorems 2.1 and 2.2
where f and m are integers given in Theorem 2.3.

3. Characterization of certain min - hypers

In what follows, we shall survey recent works with respect to a characterisation
of a (X' ,v,.i+6Xiiv,;t q}-min-hyper where =2, ¢=3 and
(& 115 W2y - -, ) € UG, q).

Theorem 3.1 (Tamari [33]). Let € and u be any integers such that € € {0, 1} and
1su<t Then F is a {v,,,+& v,:t,q)-min-hyper if and only if Fe
%U(ex H; 3 ‘I)

Theorem 3.2 (Hamada and Deza [21)). Let € and p be any integers such that
O<sesg-landl=pu<t
(1) In the case 0<¢ <Vq, Fisa {vus1+ & vu5t, q}-min - hyper if and only if
FeJu(e uit, q).
(2) In the case e=V\gq and q=p¥ for a prime p and a positive integer r,
there exists at least one {v,+ g, vy;t, q}-min - hyper F such that F ¢
'\(\SU(E’ 1; L, ‘1)
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Remark 3.1. Let F be a square-root subplane (called a Baer subplane) in
PG(2, g) where q=p* (cf. p. 81 in Hughes and Piper [28]). Then |F|=
g+Vq+1, 1<|FNH|<Vgq+1 for any 1-flat H in PG(2, q) and [F N H| =1 for
some 1-flat H in PG(2, q). Hence F is a {v,+ Vg, 1;2, g}-min - hyper which
contains no 1-flat in PG(2, q).

Theorem 3.3 (Hamada [12]). Let (¢, py1, f2, . . ., 4s) be any ordered set in
U@, q) such that e € {0, 1}, 2<sh<tand 1spu, < p,<---<p, <t.
(1) In the case u,_+p,<t—1, F is a {E' v, +6& X v, q}-
min - hyper if and only if F € Jy(&, py, pha, - - -, Ba3 b, ).
(2) In the case pp_+p,=t, there is no {Lf v, +¢e Liv,tq)-
min - hyper F.

In what follows, Ju(€, Uy, fa, . . ., s t, g) will be denoted by J(4,, 4, ...,
Ap;t,q) where n=h+e A4,=0 (i=1,2,...,8)and A,,;=p; (j=1,2,...,
h).

Corollary 3.1. Let o and B be any integers such that 0 < a <f <t.
(1) In the case t=a+ B+ 1, Fis a {Vayy + gy, Vo + Vg3 t, q}-min - hyper if
and only if F € J(a, B;t, q).
(2) In the case t < o + B, there is no {V,.1+ Vgar, Vs + Ugs t, q}-min - hyper F.

Corollary 3.2. Let o, B and vy be any integers such that 0< o <fB <y <t
(1) In the case t=B+y+1, Fis a {Vyr) + Vg1 +Vysq, Vo g+ 0,58 q)-
min - hyper if and only if F € J(«, B, v;¢, q).
(2) In the case t< B+ vy, there is no {V,, + Vg + V4, Vo HUg+ 0,5t q}-
min - hyper.

The following proposition due to Hamada [16] plays an important role in
solving Problems A and B.

Proposition 3.1 (Hamada [16]). Let (0, A, A,, ..., A,) be an ordered set in
U(t, q) such that h=2 and A,_, + A, <t — 1 and let | be a positive integer such that
A Hist—1 If F*eJ(M, Ay, ..., A3 t, q) for any {Ti_ vy 41, Diivast, q)-
min - hyper F*, then (1) in the case 1<I<(t—A,_,—A)/2, FeJ(A +1, A, +
L...,A+1;t,q) for any (L=, Vs 4141, iy Vais t, q}-min - hyper F and (2) in
the case 1=(t—Ay-1—A,)/2, there is no {L/ v, Licivaist, q)-
min - hyper F.

Corollary 3.3. If F* e X(1, 1;¢, q) for any {2v,, 2v,;t, q}-min - hyper F*, then
(1) in the case t=2u+1=5, FeJ(u, u;t,q) for any {2v,.,,2v,;t q}-
min - hyper F and (2) in the case 3<p + 1<t<2p, there is no {2v,,,, 2v,;t, q}-
min - hyper F.
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Corollary 3.4. If F* € (1, 1, 15¢, q) for any {3v,, 3v,;t, q}-min - hyper F*, then
(1) in the case t=2u+1=5, FeJ(u, u, u;t, q) for any {3v,,1,3v,;t, q}-
min - hyper F and (2) in the case 3< p + 1<t =<2y, there is no {3v,., 3vu,;¢t, q}-
min - hyper F where q = 4.

Corollary 3.5. Let y be an integer such that 2<y <t If F*e J(1, 1, y; ¢, q) for
any {vy.+2vy, v, +2vy5 ¢, q}-min - hyper F*, then (1) in the case 1<[<(t—
1-v)/2, Fe3(I+1,1+1,1+y;t, q) for any {Uy+l+l + 2014, Uyys + 205445 L, q}-
min - hyper F and (2) in the case 1=(t—1—1y)/2, there is no {v,, .+
20142, Vysr + 20413 8, q}-min - hyper F.

Theroem 3.4 (Hamada [13]).
(1) In the case t=3, F is a {2v,, 2uy;t, q}-min - hyper if and only if
FeJ(Q, 1;¢, q).
(2) In the case t =2, there is no {2v,, 2v,; t, q}-min - hyper F.

Theorem 3.5 (Hamada [13]).
(1) In the case t=2u +1=3, Fis a {2v,4,, 2v,; t, q}-min - hyper if and only if

Fel3(u ut, q).
(2) In the case t <2y, there is no {2v,.,, 2v,;t, q}-min - hyper F.

Theorem 3.6 (Hamada [13]).

(1) In the case t=2 and q =3, F is a {2v,+ vy, 2v, + vy; 2, 3}-min - hyper if
and only if F € 1(2, 1;2, 3).

(2) In the case t =3 and q =3, F is a {2v,+ vy, 2v, + vy t, 3}-min - hyper if
and only if either F € 3(0, 1, 1;¢,3) or Fe (2, 151, 3).

(3) In the case t =2 and q = 4, there is no {2v,+ vy, 2v, + vg; 2, q }-min - hyper
F.

(4) In the case t=3 and q =4, F is a {2v,+ vy, 2vu, + vo; ¢, q}-min - hyper if
and only if F e (0, 1, 1;¢, q).

Theorem 3.7 (Hamada [14]).

(1) In the case t=2 and q =3, F is a {vy+2v,, v, +2vy; t, 3}-min - hyper if
and only if either FeJ(0,0,1;¢3) or F={(v), (vo+v)), Qvo+
v1), (v2), (vi+ v3), (cvo +2v, + v,)} for some integer c in {1, 2} and some
noncollinear points (vq), (vy) and (v,) in PG(t, 3).

(2) In the case t=2 and q =4, F is a {v,+2v,, v, +2v; ¢, 4}-min - hyper if
and only if either F € 3(0,0, 15, 4) or F = {(vo+ v;), (avo+ vy), (&?vo+
v, (v2), (cvo+ vi + Vo), (ca®vo+ av, + v,), (cavy+ a?v, + v,)} for some
element c in {1, «, o} and some noncollinear points (vo), (v,) and (v;) in
PG(t, 4) where « is a primitive element in GF(2%).

(3) In the case t=2 and q =5, F is a {v,+2v,, v; +2v,; ¢, q}-min - hyper if
and only if F € (0,0, 1;¢, q).
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Theorem 3.8 (Hamada [14, 15] and Hamada and Deza [20]). Let «, B and vy be
any integers such that either 0 a=p<y<torO0<a<B=y<twheret=2 and
q=5.
(1) In the case t=B+y+1, Fis a {Vay)+ Vg1 +Vpsp, Vo +Ug+ U1 g}
min - hyper if and only if F € }(a, B, v;t, q).
(2) In the case t<B+y, there is no {Vay1+Vge1+Vyi1, Vo +Ug+ 0,58 q}-
min - hyper F.

Theorem 3.9 (Hamada [14, 17]).

(1) In the case q =5, there is no {2v, + 2v,, 2v, + 2vy; 2, q}-min - hyper.

(2) In the case q =3, F is a {2v, + 2vy, 2v; + 2v,; 2, 3}-min - hyper if and only
if FeU(2, 2;2, 3) where v4=0, v,=1and v,=4.

(3) In the case q =4, Fis a {2v,+ 2v,, 2u, +2vy; 2, 4}-min-hyper if and only if
there exist some noncollinear points (v,), (v,) and (v,) in PG(2, 4) such that
either (a), (b) or (c) as follows:

(@) F=LoUL,U{(covo+ Vi +v3), (c1vo+ av,+v,), (cvo+ vy + v,)}
for some elements c,, ¢, and c, in {0, 1, a, a?®}.

(b) F=LoU{(vy), (vi+vy), (cvo+vi+vy), (cvo+ av,+v,), (cavy+
av, +v,), (cvo+ a®vy +v,), (ca®vy+ a®v, + v,)} for some element ¢
in {1, a, &?}.

(© F=(Lo\N{(vi)}) U (LN {(v2)} UM\ {(cvi + v2)}) U {(cavi + vy),
(ca®v, + v,)} for some element c in {1, a, a?}.

Where v,=0, v,=1, v,=5, Ly=(vy)) D (v,), Li=(vo)®(v)), M,=

(vo) B (cv, + v,) and (w,) D (w,) denotes a 1-flat in PG(2, 4) passing
through two points (w,) and (w,) in PG(2, 4) and « is a primitive element in

GF(2%) such that > =a + 1 and &’ = 1.

Theorem 3.10 (Hamada and Deza [18, 19]). Let o and B be any integers such that
Osa<f<twheret=2and q=5.
(1) Inthe case t =28+ 1, Fis a {2vu,,, +2vg,y, 20, + 2vp; t, q }-min - hyper if
and only if F € J(a, &, B, B; t, q).
(2) In the case t <2, there is no {2vq., +2vg4y, 2v, + 2ug; t, q}-min - hyper
F.

Remark 3.2. It is conjectured by Hamada (cf. Remark 4.1 in [16]) that in the
case t=3, ¢ =3, £=0, h=2and p, =2, “thereisno {L/, v\, B/ vt q)-
min - hyper” or “F is a {II, Uyt ts v, U3 t, g}-min - hyper if and only if
FeJ(u, Uay - - -, iy t, q)° according as py,— + pp=tor y, | +u,st—1.

Let W(k; q) be a k-dimensional vector space over GF(q) consisting of column
vectors. Then every point in a finite projective geometry PG(k — 1, ¢) may be
represented by (¢) using some nonzero vector ¢ in W(k;q) where (c,) = (¢2)
when and only when there exists some nonzero element o of GF(g) such that
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¢, = oc,. Hamada [16] showed that there is the following connection between a
min - hyper and an anticode.

Theorem 3.11. Let k and q be any integer =3 and any prime power, respectively,
and let f and m be some integers such that 0sm <f<wv,. Lete, (I=1,2,...,f)
be f nonzero vectors in W(k; q) such that any two vectors in (¢, e, . . . , &) are
linearly independent. Then {(e,),(ez),...,(e)} is an {f,m;k—1,q}-
min - hyper in PG(k — 1, q) if and only if [e,, e> . . . ¢/] is a k X f generator matrix
of a g-ary anticode with length f and-maximum distance f — m.

Remark 3.3. It is well known (cf. Ch. 17 Section 6 in MacWiiliams and Sloane
[29]) that in the case k=3 and d=¢*'— Xt} e,v,yy (or d=g"'—(e+

*_1q")), there is a one-to-one correspence between the set of all (n, k, d; q)-
codes meeting the Griesmer bound (1.4) and the set of all g-ary anticodes,
generated by a k X f matrix whose any two column vectors are linearly
independent over GF(q), with length f and maximum distance f —m if we
introduce some equivalence relation between two codes where f = L5423 £,v,,,
and m =343 g,v, (or f =€+ L/, v,+1 and m =X, v,). Hence Theorem 3.11
shows that in the case k=3 and d=¢*"'- L4 36,9 (ord=q""'—(e+

*_1q")), there is a one-to-one corresondence between the set of all (n, k, d; q)-
codes meeting the Griesmer bound (1.4) and the set of all
{(T422 U001, X2 £4va;k— 1, g}-min - hypers (or the set of all {e+
S vy, Dii v, k — 1, g}-min - hypers, resp.) if we introduce some equiv-
alence relation between two (n, k, d; g)-codes.

Finally, we shall give the following example in order to show a connection
between a {L/, v, 4, + & Li- u,; k — 1, g}-min - hyper and an (n, &, d; g)-code
meeting the Griesmer bound in the case d=g*"'—(e+ L/, q*) where
(& pis Mz .. )€Uk =1,q) and n=v, — (¢ + £/_ v, 4,) (cf. Theorem 5.2
and Example S.1 in Hamada [16] in detail).

Example 3.1. Consider the case k =3, d =4 and ¢ =3. In thiscase, h =1, ¢ =2,

py=1landv;=(3-1)/(3-1)=13. Let¢; (i=1,2, ..., 13) be 13 vectors given
by

€1 € €3 €4 €5 €6 €7 €8 €9 Cio €11 €12 €13

o 0 0 0 1 1 1 1 1 1 1 1 1

o 111 0 0 O 1 1 1 2 2 2

1 o1 2 0 1 2 0 1 2 o0 1 2.
Then any two vectors in (¢, ¢, - . . , €13) are linearly independent over GF(3).

Hence 13 points in PG(2,3) can be expressed by (ci), (¢2), ..., (c13). Let
F=A{(c1), (¢2), (c3), (¢a)s (c5), (€6)}, G*= [cica...¢co) and G=[¢c7¢5...cu3l
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Let C* be a subspace in V(6; 3) generated by 3 row vectors of G* and let C be a
subspace in V(7;3) generated by 3 row vectors of G where V(n;3) denotes an
n-dimensional vector space consisting of row vectors over GF(3). Then it is easy
to see that F is a {6, 1;2, 3}-min - hyper such that F € J(0, 0, 1;2, 3) (i.e. Fis a
set of a 1-flat {(¢,), (¢2), (¢3), (c4)} and two O-flats (¢s) and (¢¢) in PG(2, 3) which
are mutually disjoint) and C* is a 3-ary anticode with length 6 and maximum
distance 5 and C is a (7, 3, 4; 3)-code meeting the Griesmer bound. In this case, C
is said to be a (7, 3, 4; 3)-code constructed by using 1-flat {(c,), (¢>), (¢3), (¢4)}
and two 0-flats (¢s) and (¢q) in PG(2, 3).

4. A connection between a min - hyper and a linear programming derived from
a BIB design

It is well known that there are v,.; points and v,,; hyperplanes in PG(t, q)
where v,,,=(¢""'—1)/(g —1). After numbering v,,, hyperplanes and v,,,
points in PG(t, q) respectively in some way, let us denote v,,, hyperplanes and
V41 points in PG(t,q) by I, (i=1,2,...,v.4) and Q; (j=1,2,...,v,)),
respectively, and let N = (n;) where n; =1 or 0 according to whether or not the
jth point Q; in PG(¢, q) is contained in the ith hyperplane IT; in PG(t, g). Then N
is the incidence matrix of a BIB design (denoted by PG(s, g):¢t—1) with
parameters (V,.y, U,41, Uy Uy, U,—1). Consider the following integral linear pro-
gramming derived from the BIB design PG(¢, q):r — 1.

Problem C. Find a vector (y, y,,...,y,,) of integers y; (j=1,2,...,v,,))
that minimize the summation ;4 y; subject to the following inequalities:
Osy<sw (=1,2,...,v.4y) 4.1
Ve
2myEm (=12 .. ,0.) 4.2)

j=1
for given integers ¢, w, m and q where t=2, w=1, m=0 and v,,,=(¢'"" -

1)/(qg - 1).

It is known that if there exist nonnegative integes y; (j=1,2, ..., v,,,) which
satisfy conditions (4.1) and (4.2) for given integers ¢, w, ¢ and m = Y%, e, v,,
then

LTS 1—1
21 = Zl EVgt1s 4.3)
i= a=

where 0sg,<g-1 for a=1,2,...,r—1. Hence we shall consider the
following

Problem D. (1) Find a necessary and sufficient condition for an integer w and an
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ordered set (&, &,...,&-,) in E(t q) that there exists a vector
(71, ¥2, - ., y,,,) of integers y; which satisfy the following conditions:

Osy<w (=1,2,...,v4), (4.4)
Vi —1

2= 2 Ealar, (4.5)
=1 a=0

Uiy =1

2y =D gave (=12, .., 0.). (4.6)
j=1 w=1

(2) Find all vectors (y,, y2, . . ., y,,,,) Which satisfy conditions (4.4), (4.5) and
(4.6) in the case where there exists such a vector for given integers.

Definition 4.1. Let /" be a set of points in PG(t, ¢) and let w be a mapping of F
into z* where 1 =2 and z"* denotes the set of all positive integers. Let § be the
set of all hyperplancs in PG(¢, g). If F and w satisfy the following condition:

2 W(P) =f and mm{ E w(P) l H e SZ)} =m 4.7)
PeF PeFNH

for given integers f =1 and m =0, then (F, w) is said to be an {f, m;¢, q}-

min - hyper. In the special case w(P) =1 for any point P in F, a min- hyper

(F, w) is denoted simply by F.

Remark 4.1. In the special case w(P) =1 for any point P in F, condition (4.7)
can be expressed as follows:

|[F|=fand min{|FNH||HeH})=m. (4.8)

Hence a min - hyper F in Sections 1-3 is a min - hyper (F, w) such that w(P) =1
for any point P in F.

Theorem 4.1 (Hamada [12]). Let B,(1, w, & q) be the set of all veciors
(¥1s Y2r - - -5 Yu,,,) Of integers y, which satisfy conditions (4.4), (4.5) and (4.6) and
let B(t, w, g, q) be the set of all {X, €aVayr), o) €aVas L, g )-min - hypers
(F, w) such that 1=w(P)<w for any point P in F where t=2, w=1,
Ose,<=q—-1(a=0,1,...,t~1) and = (&, €,...,€_,). Then there is a
one-to-one correspondence between the set ¥ (1, w, €, q) and the set V,(1, w, g, q)
in the case £ # 0.
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BIBD’S WITH BLOCK-SIZE SEVEN

H. HANANI

Technion, Israel Institute of Technology, Haifa, Israel

It is proved that the obvious necessary conditions for the existence of a BIBD with & =7 and
A =3 and 21 are sufficient except, perhaps, for the values 2 = 3 and v = 323, 351, 407, 519, 525,
575, 6635.

This paper is an addition to Section 5.5 of the paper [0]. All the theorems and
lemmas referred to as well as all the relevant definitions may be found in [0]. The
lemmas and tables in the sequel of this paper will be numbered from 101 up. We
start with a list of group divisible designs v e GD(7, 1, 7).

49

91

217

301

343

427

469

Table 101

GD[7, 1,7;v]

X =1(Ty x I(7).
Form T[7, 1;7] on X.

X =Z(7,3) x Z(13, 2).
P={(9;0), Qa;4a+68+3y):a=0,1,2;8=0, 1)mod(7;13), y=0, 1.

X =2Z(7,3)x Z(31, 3).
P={(8;90), Qa; 100+ 158 +3y):a=0,1,2; =0, 1)mod(7, 31),
y=0,1,23, 4

X =Z(7, 3) x Z(43, 3).
P={(0;90), Qa;Ta+21+3y):a=0,1,2; =0, 1)mod(7; 43),
y=0,1,...,6.

X =1(7) x 1(49).
Form B[7, 1;49] on 1(49) by Theorem 2.2 and for every block B of this
design form T|7, 1;7] on I1(7) X B.

X =2(7,3) x Z(61, 2).
P={((0;90), 2a;28a+306+3y):a=0,1,2;8=0, 1)mod(7; 61),
y=0,1,...,9.

X =2Z(7,3)x 2(67, 2).

P={(®;9), Qa;26a +338+3y):a=0,1,2;8=0, 1)mod(7;67),
y=0,1,...,10.

0012-365X/89/$3.50 © 1989, Elsevier Scicnce Publishers B.V. (North-Holland)



90 H. Hanani

511 X =2Z(7,3)x Z(73, 5).
P=((®;%), 2a;25a+368 +3y):a=0,1,2; =0, 1)mod(7; 73),
y=0,1,...,11

553 X =2(7,3) X Z(79, 3).
P={((®;8), a;13a+3y):a=0, 1, 2,3,4, 5)mod(7, 79),
y=01,..., 12

637 X =1(7) x 1(91).
As above 91 € GD(7,1,7). By Lemma 2.10 form B[7, 1;91] on 1(91) and
for every block B of this design form 7[7, 1; 7] on I(7) x B.

679 X =2Z(7,3)x Z(97, 5).
P={(($;8), Qa;16a+3y):a=0,1,2,3,4, 5ymod(7, 97),
y=0,1,..., 15.

By Lemma 2.10 for every v in Table 101 v € B(7, 1) = B(7, 3) holds. Further we
have
Table 102
v B[7, 1, v]
169 X =2(13,2) x Z(13, 2).
B={(0,9), (8, 4a +3), (4a, P):a =0, 1, 2)mod(13, 13),
(8,0), (da+ 1,40 +4B), (da+7,4a+4B+1):a =0, 1, 2)mod(13, 13),
=012
385 X =1(6) x [(64) U {}.
Form, by Theorem 2.2, B[8, 1;64] on 1(64) and for every block B of this
design form B[7, 1;49] on I(6) x B U {=} in such way that it includes as
blocks the sets 1(6) X {i} U {=}, i € B;
delete these blocks, but leave each of them once.

We shall now prove an auxiliary lemma which will be used later.

Lemma 101. 32 € GD(7, 3, 4).
X=GF@4, x*=x+ 1) X (Z(7, 3) U {=)}).
P={(®®, ® a):a=0,1,...,5),
((@;0)(a;2a — B):a=0,1,2; =0, 1)mod(—, 7),
((9; ), (0;2a)(@;2a — 1):a =0, 1, 2;)mod(—, 7),
((9; ), (a;2a+38):a=0,1,2; =0, 1,)mod(—, 7),
((y, ), 3;28+2y+1),(y;2y— 1), (y+2;2a):a=0,1,2; =0, I )mod(—.7),
y=0,1,2,
((7; ), 0;0), (y:2B+2y+3), (y+ 152a): =0, 1,2: =0, 1Ymod(—, 7),
y=0,1,2
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Lemma 102. If u=0 or 3(mod7), and u ¢ {161, 175, 203, 259, 262, 287, 332} =
E then u e GD({7, 8}, 1, M) holds, where

M, ={3,7,10, 14, 17, 21, 24, 28, 31, 35, 38, 42, 45, 59, 63, 66, 70, 73, 77,
80, 84, 87, 91, 94, 98, 101, 105, 108, 112, 115, 140, 143, 147, 150,
154, 157, 164, 168, 171, 178, 182, 185, 189, 192, 196, 199, 206,
210, 213, 252, 255, 266, 269, 273, 276, 280, 283, 290, 294, 297, 301,
304, 308, 311, 315, 318, 322, 325, 329, 336, 339, 507}.

Proof. According to Lemma 2.13 with t=1, s =7, r=0 or 3 (mod 7) it may be
checked that if u =539, then there exists (use Theorem 3.7 and Remark) a
transversal design T[7+1, 1;r] such that by truncating one of its groups
7r + r,=u is obtained. Clearly r,=0 or 3(mod7) and there is no difficulty in
avoiding the situations where either r € E or r, € E. For u <539 use the truncated
transversal design T[7 + 1, 1; r| with values of r as in Table 103. O

Table 103

u r u r

49-56 7 395-448 56
119-136 17 451-504 63
217-248 31 511-539 73
343-392 49

Theorem 103. If v=1 or 7 (mod 14), and v ¢ {323, 351, 407, 519, 525, 575,
665} =2E + 1, then v e B(7, 3) holds.

Proof. Let v=2u+1, where u=0 or 3(mod7). By Lemma 101, ue
GD({7, 8}1, M;). By Lemmas 2.26 and 4.29 it suffices to show that v =2u + 1€
B(7, 3) for every p € M,. The case v =7 is trivial.

{49, 91, 169, 217, 301, 343, 385, 427, 511, 553, 631, 637, 679} < B(7, 1) as
shown in Tables 101 and 102, {29, 43, 71, 127, 197, 211, 281, 337, 379, 421, 547,
617, 659, 673} = B(7,3) by Lemma 4.3. {63, 77, 119, 133, 161, 175, 189, 203,
287, 329, 371, 413, 567, 581, 623} < B(7,3) by Lemmas 4.26 and 2.10.
{15,21,57, 141, 147, 183} < B(7, 3) is shown in Table 5.21. It remains to prove
that {35, 85, 155, 225, 231, 295, 309, 315, 323, 351, 357, 365, 393, 399, 407, 505,
519, 525, 533, 539. 561, 575, 589, 595, 603, 609, 645, 651, 665, 1015} < B(7, 3)
which is shown in Table 104 with the possible exception of {323, 351, 407, 519,
525, 575, 665} for which we do not know whether B[7, 3; v] exists.

We go over now to the case A =21.
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35

85

155

255

231

295

309
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Table 104
B{7, 3; v]

X=2Z(5,2)xZ(7,3).
Form T[7, 2;5] on Z(5) x Z(7) and the blocks
(@, 2a), (B, M:a=0,1,2; =0, 1, 2,3)mod(5, 7).

X =2(52)x Z(17, 3).

B={((®,9), (v,8a+4y+1), (y+1,8a+4y+3), (y+3,8a+4y+7):
a=0,1Ymod(5,17), y =0, 1,

((8;0), (y,8a+4y+7), (y+1,8a+4y+2), (y+3,8a+4y+4):
a =0, 1Ymod(5, 17), y =0, 1,

(8, 9), Qa+ 7y, 4y +1), Qa+y, 4y +2), Qa+y, 4y +5):
a=0, Ymod(5, 17), y=0, 1.

X =27(52) % Z(31, 3)

B={(@,0), 26, 10a+3y), (26+2,10a +3y+4):a=0, 1, 2)mod(5, 31),
y=0,1; 6 =0, 1,

(B, 10a+1), (B.9):a=0,1,2; =0, 1, 2, 3)mod(5, 31),

((8,0), (0, 150 +5y), (1, 15a+5y+1), (3, 15a+5y—1):a=0,1)
mod(5, 31), y=0, 1,2,

((8,9), (0,150+5y+2), (L, 15a+5y—2), (3, 15a+5y):a=0,1)
mod(5,31), y=0, 1, 2.

X = 1(4) X [(56) U {0}

Form GDI|8, 1, 7; 56] on {/(56) by Lemma 2.12 and Theorem 2.1.

For every group G of this design form B[7, 3;29] on I(4) X G U {=}, and
for every block B form GD[7, 3, 4;32] on /(4) x B by Lemma 101.

We prove 231 e GD(7, 3,21). X =(Z(3) X Z(7, 3)) x Z(11, 2).
P=((®0:28), B.6;28+3), (B 2a+428+4), B 2a+5,28+6),
(1,9;28+2), 0, 2a;28 + 1), (1,2 + 2, 2B +5)>mod(3, 7; 11),
a=012,=0,1,23, 4

Further form B[7, 3; 21} on (Z(3) x Z(7)) x {i}, ie Z(11).

X = 1(42) X I(7) U {)
Form T[7,3;42] on [(42) X I[(7) and B[7, 3;43] on [(42) x {i} U {x},
iel(7).

X=1(TyX((6) X Z(7,3) U {(i,*®):i =0, 1}) U {(cx, =)}

Form GD{7,3,{6,2%};44] on 1(6) X Z(7T)U {(i, ®):i =0, 1} as follows:
form T[7,2;6] on I(6) x Z(7) and the blocks {(8, a):a € Z(7)}, B e l(6)
and {(y, =), (a, a(f+3y+1):ael(6)}mod(—~,7), f=0,1,2; y=0, 1.
Now for every group G of this design form B[7, 3;43] and B][7, 3; 15]
respectively on /(7) X G U {(%, ®)} and for every block B form T[7, 1;7]
on I(7) X B.

*‘I'he asterisk means that there is exactly one group of size 2, all other groups being of size 6.
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539

561
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X=I17)xZ(3) X Z(3) X Z(5))

Form  GD[7,3,3;45] on (ZB)YXZB)xXZ(5) with blocks
((8;0,9), (0;a,8), (L& a+2B):a=0,1; B=0,1)mod(3;3,5)
(0;0,8), By 90, O;1-v60), (,a a+2B):a=0,1; B=01)
mod(3;3,5), y =0, 1; For every group G of this design form B[7, 3;21] on
I(7) x G, and for every block B form GD[7,1,7;49] on I(7) X B.

X =Z(2) x GF(25, x> =2x +2) X Z(7, 3) U {(, i):i € Z(7)}.

B = Blocks of T(7, 3;50] on (Z(2) x GF(25)) x Z(7),
((, 9), (8, 8o + 2, 9), (0,8a+2,0):a=0, 1, 2)mod(—, 25, 7),
((, B), @, 8B+ B, 90), (0,8a—F+1,0):a=0, 1, 2)mod(—, 25,7), =0, 1,
((, B+2), (B, Ba+B+2,0), (0, 8a—B+3,8):a=0, 1, 2)mod(—, 25, 7),
B=01,

((0,6,9), (0,8¢,8), (0,8¢+1,0):a=0, 1, 2Ymod(2, 25, 7),

((,8), (¢, @):@¢=0,1,...,5)3 times.

X =1(4) X [(91) U {oo}.

Form GDJ[7, 1, 7;91] on [(91) as in Table 101. For every group G of this
design form B[7, 3;29] on I(4) X GU {=}, and for every block B form
T|7,3;4] on /(4) x B.

X =1(56) X I{7T) U {=}.

Form T[7,3:56] on [(56) xI(7) and B[7,3;57] on [(56) X {i} U {=},
iel(7).

X =1(57) x I(7).
Form T[7, 3;57] on I(57) x I(7) and B[7, 3;57] on I(57) x {i}, i € I(7).

X =1(7) X (I(8) X I(9)) U {0}

Form T[9, 1; 8] on I(8) x I(9). for every group G of this design.

Form B[7,3;57] on I{7)xGuU{x}, and for every block B form
GDJ7,3,7;63] on I1(7) X B by Lemma 4.26.

X =1(76) X I(7) U {o°}.

Form T{7,3,76] on I(76) x I(7) and B[7,3;77] on [(76) X {i} U {=},
iel(7).

X =177y x I(7),

Form T[7, 3, 77] on I(77) x I(7) and B[7, 3; 77} on 1(77) x {i}, i € I(7).

X = [(7) x 1{(80) U {=}.

Form GD[9, I, 8; 80] on /(80) by Lemma 2.12 and Theorem 2.2.

For every group G of this design form B[7, 3;57] on I(7) X G U {=}, and
for every block B form GD[7,3,7:63] on I(7) X B by Lemma 4.26.

X =1(84) X [(Ty U {=}.

Form T[7,3,84] on [(84)xI(7) and B[7,3;85] on [(84) x {i} U {=},
iel(7).

X = 1(85) x I(7).

Form T[7, 3, 85] on I(85) x I(7) and B[7, 3;85] on 1(85) x {i}, i € I(7).
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603 X =1(84) x I(7) U I(15).
The construction of B[7, 3;99] shows that it contains B[7, 3; 15].
Form B|7, 3;99] on 1(84) x {i} UI(15), i € /(7) in such way that it contains
B[7, 3, 15] on I(15) and take this B[7, 3;15] once only. Further form
T[7, 3, 84] on I(84) x (7).

609 X =1(29) x I(21).
Form T[21, 1;29]. On every group G of this design form B[7, 3;29], and on
every block B form B[7, 3;21}.

645 X =I1(90) x I(7T) U I(15).
The construction of B[7, 3; 105] shows that it contains B[7, 3; 15].
Form B[7, 3; 105] on 1(90) x {i} UI(15), i € I(7) in such way that it contains
B[7,3,15] on [(15) and take this B[7,3;15] once only. Further form
T(7, 3;90] on 1(90) X I(7).

651 We prove 651e€GD(7.3.21). X=(ZB3)XZ(1,3))x Z(31,3). P=
(9, 9;28), B, 98:26+3), @B 2a+428+4), @B 2a+528+6),

(1,9,28 +2), (0, 2a;28 + 1), (1, 2a +2; 28 + 5))mod(3, 7: 31),
a=0,1,2;8=0,1,..., 14; Further form B[7, 3;: 21]on (Z(3) X Z(7)) x {i},
i e Z(31).

1015 X =1(29) x I1(35).
Form B(7,3, 35] on [(35) and for every block B of this design form
T[7, 1;29] on 1(29) X B. Further form B[7, 3,29] on [(29) X {i}, i € [(35).

Lemma 104. If wu=3, then ueGD({7,8},1, M) holds, where M;=
{3,4,...,48, 50, 51, 57, 58, 65, 73, 74, 75, 76, 78, 79, 89, 90, 92, 93, 105, 106,
107, 108, 109, 110, 111, 113, 114, 153, 154, 155, 156, 157, 158, 159, 160, 162,
163, 257, 258, 260, 261}.

Proof. According to Lemma 3.13 with r=1, s=7, r=7, r =3, it may be
checked that if w =542, then there exists (use Theorem 3.7 and Remark) a
transversal design T{7 + 1, I;r] such that by truncating one of its groups
7r + r, = u is obtained. for u <542 use T[7 + 1, 1; r| with values of r as in Table
105. O

Table 105

u r u r u r

49 7 115-128 16 259 37
52-56 7 129-136 17 262296 37
59-64 8 137-152 19 297-328% 41
66-72 9 161 23 329-344 43
77 11 164-184 23 345-376 46
80-88 11 185--200 25 377-424 53
91 13 201-216 27 425-472 59

94-104 13 217-232 29 473-536 67
112 16 233-256 32 537-542 73
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Lemma 105. If v =3q, where ¢ =1 (mod 6) is a prime-power, then v € B(7, 21).

Proof. Consider Lemma 4.2. By this lemma g € B(7, 7). Form B[7, 21;v] as
follows. Let X =1(3)x I(gq). On I(q) form B[7,7;q] as in Lemma 4.2. For
blocks B obtained for & =0 form B[7, 3;21] on I(3) X B. For other blocks B’
form T[7,3;3] on I(3)x B'. 0O

Lemma 106. If v = 5q, where g =1 (mod 6) is a prime-power, then v e B(7, 21).

Proof. As in Lemma 105, g € B(7, 7). Form B[7, 21;v] as follows. Let X =
1(5) x I(g). On I(q) form B[7,7;q]. For blocks B obtained for & =0 form
B[7, 3;35] on I(5) X B. For other blocks B’ form T[7,3;5] on I(S)x B'. O

Theorem 107. If v=1(mod?2), v=7, then v € B(7, 21) holds.

Proof. Let v =2u + 1, where u =3. By Lemma 104, u € GD({7, 8}, 1, M;). By
Lemmas 2.26 and 4.29 it suffices to show that v=2u + 1€ B(7, 21) for every
weM; {7, 13, 19, 25, 31, 37, 43, 49, SS, 61, 67, 73, 79, 85, 91, 97, 103, 115,
151, 157, 181, 187, 211, 217, 223, 229, 307, 313, 319, 325, 517, 523} = B(7, 7) by
Lemma 5.38; {15, 21, 29, 35, 57, 63, 71, 77, 147, 309, 315} = B(7, 3) by Lemma
103; {9, 11, 17, 23, 27, 41, 47, 53, 59, 81, 83, 89, 101, 131, 149, 179, 227, 311,
317, 521, 523} =« B(7, 21) by Lemma 4.2; for {33, 39,45} = B(7, 21) see Table
5.22, {65, 75, 93, 95, 185, 215, 219, 327, 515} = B(7, 21) by Lemmas 105 and 106.
It remains to prove that {51, 69, 87, 117, 153, 159, 213, 221, 321} = B(7, 21),
which is shown in Table 106. 0O

Table 106

v B[7, 21, v]

51 X =2@3)xZ(17, 3).
B=((8,0), 0,8ac+y+4), (B,8a+B+y):a=0,1; =0, 1)mod(3, 17),
y=0,1,...,15,
((9,9), B, « +4y), (B, a +4y +10), (a, 9):a=0, 1)mod(3,17), y=0, 1,
((0,90), @8,3c¢+4y—1), B, a+4y+8), (a,9):a=0, 1)mod(3,17), y=
0,1,
(0,9), (¢, 4a+y), (B,8):a=0,1,2,3; =0, 1)mod(3,17), y=0, 1,2
((8,9), (0,40 +3),(0,88+4y):a=0,1,2,3; =0, 1)mod(3,17), y =0, 1.

69 X=GF(@Y,x’=2x+1)xZ(7,3)UI(4)UI(2).
Form B[7, 3;63] on GF(9) x Z(7) and T[7, 1;9] on GF(9) x Z(7) 8 times.
Further form B(7, 3;15] on GF(9) x {i} UI(4)UI(2), i€ Z(7) and blocks
(), (@+4B+j,0):a=0,1,2;8=0, 1)mod(9,7), j € I(4).
Now form RT[7, 1;9] on GF(9) x Z(7), twice and obtain 18, parallel classes
of blocks. For every j e I(4) chose two such parallel classes and for every
j € I(2y—three classes. For every je I(4)U/(2) and for every block B =
{0, 1,2,3,4,5, 6} of the chosen classes form blocks {j} U {0, 1,2, 3, 4, 5}
.mod 7, and the blocks of the remaining 4 classes take S times each.
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87 X =1(3)x1(29).
Form B[7, 3;29] on [(29) as in Lemma 4.3. For blocks B obtained with
a =0 form B[7, 3;21] and T[7, 4; 3] on I(3) X B. For other blocks B' form
T(7,7;3]on I(3) X B'.

117 X =1(13) x I(9).
Form T[9, 1;13] on {(13) x I(9). On every block B of this design form
B[7, 21, 9] and on every group G form B[7, 21; 13].

153 X =1I(17) x I(9).
Form T[9, 1;17] on I(17) X I(9). On every block B of this design form
B[7, 21, 9] and on every group G form B[7, 21; 17].

1539 X =1(25) x 1(6) U () U {}.
Form RT[6, 1;25] on I(25) x I1(6), 7 times and obtain 175 parallel classes of
blocks of size 6. For every i € I(8) chose 21 such parallel classes and for
{0}, chose the remaining 7 classes. Now for every block B of the respective
chosen classes form B U {i}, i € I(8) and B U {»} respectively. Further form
B|7, 7; 151] on I(25) X I{6) U {=} twice by Lemma 5.38 and B[7, 7;25] on
1(25) x {j}, j € 1(6), by Lemma 5.38. Also form B[7, 21;9] on /(8) U {o:}.

213 X =1I(3)x I(T1).
Form B[7,3;71] on I(71) as in Lemma 4.3. For blocks B obtained with
a=0. Form B[7, 3;21] and T{7, 4;3] on I(3) X B. For other blocks B’
form T{7,7;3] on I(3) X B".

221 X =1(17) x I(13).
Form T[13, 1;17] on I{17) x 1(13). On every block B of this design form
B[7, 21; 13] and on every group G form B[7, 21; 17].

321 X=27Z(43,3)x Z(7, ) U I(19) U {e}.
Form B|7, 3;301] on Z(43) x Z(7) and T[7, 1;43], 13 times on Z(43) x
Z(7). Further form B[7, 3;63] on Z(43) X {i} UI(19) U {e}, i e Z(7) and
blocks ((j), (@ +218+/,8):a=0,1,2; B=0, 1)mod(43,7), j € I(19) and
(@), (@ +21+,0):0=0,1,2; B=0,1)mod(43,7), je {19, 20}. Now
form RT[7, 1;43] on Z(43) x Z(7) and obtain 43 parallel classes of blocks.
For every j € I(19) chose two such parallel classes and for « one class. For
every j e [(19) U {«} and every block B=1{0, 1, 2, 3, 4, 5, 6} of the chosen
classes form blocks {j}U{0, 1, 2,3, 4,5} mod7, and the blocks of the
remaining 4 classes take 5 times each.
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1. Introduction

Several years ago B. Alspach asked the following question. If n is odd and
ata,+ - +a,=nn-1)/2 (if n is even and aa,+ - +a, =n(n —2)/2),
3=<g; <n, can the edges of the complete graph K, (the edges of K, — F, the
complete graph from which a 1-factor has been removed) be partitioned into m
cycles C,,, C,,, . . ., C,, where C, has length g, [1]?

When all cycles are required to have the same length, we have the well known
uniform cycle decomposition problem on which considerable work has been
done, although the problem is still far from solved. For details on this problem,
the reader is referred to the forthcoming survey paper by Alspach, Bermond,
Heinrich, Rosa and Sotteau [2].

The third author has shown that when n < 10, all possible edge-partitions into
cycles exist [8]. Sun [11] has shown that if m and n are odd, then there exist
positive integers «, b and ¢ so that K,,,, = aC,, + bC,,, + ¢C,. In this paper we
consider the following three situations:

(i) q,e{n—-2,n—1,n}, 1<i=m,

(it) ;€ {3,4,6}, 1<i<mand

(iii) a; € {25, 257"}, k=2
We will show in each case that if a,+a,+---+a,,=n(n —1)/2 or n(n - 2)/2,
then an edge partition of the relevant graph (K, or K, — F) exists.

We first need some notation. Let G be a graph of even degree with |V (G)| = n.
Let S={b,, b,,...,b}, 3<b;,<n, and suppose that m,b,+myb,+ -+ -+
m,b, = |E(G)|. If the edge-set of G can be partitioned into m, cycles of length b,,
m, cycles of length b,,..., and m, cycles of length b,, we will write
G=mC, +myC,,+---+mCy,. If my=1, m;C, will be written as C,. (We

0012-365X/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)
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may also refer to this edge partition of GG as a decomposition of G into m, cycles

of length b,, m; of length b,, . . ., and m, cycles of length b,.) More generally we
will write G =m H, + myH, + - - - + m H, if G has an edge decomposition into
m, subgraphs H,, m, subgraphs H,, ..., m, subgraphs H,. Our first thcorem

resolves the case when all cycles are long.

Theorem 1.1. Let S={n—-2,n—1,n}. If nis odd and a(n —2)+b(n — 1)+
ecn=n(n—1)/2, then K,=aC, >+ bC,_+cC,. If n is even and a(n —2)+
b(n—1)+cn=n(n—-2)/2, then K,, — F=aC,_,+ bC,_; +cC,.

Proof. Let n be odd. It is not difficult to verify that the only solutions to
a(n =2)+b(n—1)+cn=n(n—1)/2 are a=b=0, c=(n—-1)/2, and a = (n -
1)/2, b=1, ¢=0. Since K, has a hamilton cycle decomposition we know that
K, = ((n — 1)/2)C,. Using the cycles in Fig. 1 we can see that K;;=6C,, + C,.
The cycles of length 11 are A, and A,,;, 1=<i=<35, where if (x,y)e E(A)),
(x+i,y+i)e E(A, +i) with addition modulo 12 and ©+i=0o, and B is the
cycle of length 12. This construction is easily generalized to obtain K, = ((n —
D/2)C,o + €y

For even n the only solutions to a(n ~2)+b(n —1)+cn=n(n—2)/2 are
a=b=0,c=(n—-2)/2, and a =n/2, b =c =0. B. Alspach has provided us with
simple decompositions in these two cases. Let D, be the cycle shown in Fig. 2 and
D;,,, 1=i<35 be cycles of length 12 defined by (x +i,y +i)e E(D,,,) if

Fig. 3
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(x, y) € E(D;) where addition is modulo 12 and o, +i =0, + i =1i. These cycles
yield K, — F = 6C,,. Clearly this generalizes to produce K, — F = ((n —2)/2)C,.

To obtain K, — F =(n/2)C,_, we again generalize the situation for n = 14,
Here six cycles of length 12 are obtained from E, as shown in Fig. 3. These are
E..,, 1=i<35, defined as were D,,,. The seventh cycle is the cycle F of
Fig. 3. O

2. Small cycle lengths

In this section we will show that if all cycles are of length 3, 4 or 6, and if n is
odd and 3a + 4b + 6¢c =n(n — 1)/2, or if n is even and 3a + 4b + 6¢c = n(n — 2)/2,
then G =aCy+ bC, + cCy, where G =K, if nis odd and G =K, — Fif n is even.

To begin we need some decompositions for small graphs. Let H, and H, be as
shown in Fig. 4.

Lemma 2.1. If G is Kis Kio Koo or H,, and 4b+6c=|E(G)|, then
G =bC, + cCe.

Proof. (a) G =K,,. We have 4b +6c =16 so we need to show that K, ,=
4C,= C,+2C,. Since K, = C, the first of these is immediate and the second is
given by the cycles (xy, yi, X3, ¥3, X2, ¥2), (X1, ¥a, X4, Y2, X3, ¥a) and (x3, y1, X4, ya),
where V(K. ) = {x,, X2, X3, X4, Y1, Y2, Y3, Ya)-

(b) G=K,4 Here 4b+6c¢ =24 and we want to show that K,,=6C,=
3C,+2C,=4C,. Again (as in (a)) the first is easy, and the second follows on
adding two vertices and two 4-cycles to K,,= C,+2C,. For the third let
V(Kqe)={x1, X2, X3, X4y Y1, ¥2, Y3, Ya» V5, Yo} and take the 6-cycles (x,, y;, X2,
V2, X3, ¥3)y (X2, Yar X3, Y5, Xau Yo)» (X1, Yar X4, Y1, X3, Ye) and (X4, ys, X2, Y3, X4, Y2)-

(¢) G =K, ,. Counting edges 4b + 6¢ = 36. Except for K, , = 6C, all follow by
adding two vertices and three 4-cycles to each of the decompositions of K, .. For
this remaining case let V(K¢ ) = {x,, X2, X3, X4, X5, X6, Y1, Y2, V3, Ya» V5, Yo} The
6-cycles are given by (xi, yi, X2, Ya, X4y ¥2), (X2, Y2, X3, ¥s, X5, ¥3), (X3, Y3, X4,
Yor Xo» Ya)» (X1, Yar X5, Yis Xa, ¥s5)s (X2, Y5, Xe, Y2, X5, Vo) and (X3, Yo, X1, Y3, X6, Y1)-

Fig. 4
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(d) G=H,. We see that H, is K, to which two 6-cycles have been added.
From the decompositions of K, . and 4b + 6¢ = 48, all cases except H, = 12C, are
resolved. With vertices as for K4 4 (above) the twelve 4-cycles are (x,, y1, X3, y4),
(X1, ¥s, X2, Ye)s (X3, Yis X4, Y2), (X3, ¥s, X4, Yo), (X5, Y1y Xe» ¥2), (X5, Y3, X6, ¥a),
(X1, Yis Yoo X6)s (X2, Y2, Y3, X3), (X4, Yay ¥s, xs), (X1, Y2, Y1, X2), (X3, ¥s, ¥3, x4) and
(X5, Yo» Y5, X6). O

Lemma 2.2, If 3a + 4b + 6¢ = 18, then Hy =aCy+ 6C, + ¢C,,.

Proof. Let V(H,) = {x,, x5, ¥1, ¥2. Y3, Y4, ¥s, Yo}. For each of the six possible
decompositions we will give a set of appropriate cycles.
(a) H2 = 6C3: (xl ’ YI; Y2): (xl y y3! y4)v (xl’ y5' yb)’ (x21 Y2, yB)v (Xz, )’4, yﬁ)’

(X2, Yor Y1)-

(b) Hy=4C3+ Cyt (X1, ¥1, Y6)s (X1, Vs, ¥s)y (X2, Y2, ¥3)s (X2, ¥s, Ye)s (X1, Y2, Y1,
X2, }’4,)’3)'

(¢) Hy=2C3+2Cq (x1,¥5, Yo)» (X2, 2, ¥3), (X1, Y15 Yer X2, ¥s, Ya), (X1, Yau Yy,
X2, Ya» ¥3)-

(d) Hy=3Cq: (X1, Y1, Y2, X2, Y55 Ya)s (X105 Y22 Y3 X24 Yoo Ys)s (X105 Y3u Yas X2, Y1 Yo)-

(e) H;=2C+3Cy: (x1,y1,¥2), (X2, Yes Y1)y (K15 Yas Y5, Yo)u (X2, Y2, V3, Ya)s
(x4, y3, X2, ¥s)

(f) H;=3C,+ Cy: (x1, 2, X2, Y3), (X1, Yas X2, Yo)o (X2, Y5, Yoo Y1), (X1, Y1 Yoo
Y3» Yar ¥5)- U

We will first show that if n is even and 3a +4b + 6¢c=n(n —2)/2, then
K, — F=aC;+ bC,+ cC,. Because of the nature of the proof it is necessary to
begin by constructing all such decompositions of K, — F for small even values
of n.

Lemma 2.3. If ne {4,6,8,10, 12, 14} and 3a + 4b + 6¢c = n(n —2)/2, then K,, —
F=aCy+ bC,+ cC,.

Proof. We will, in turn, do each value of n. When n =4, there is the one obvious
decomposition K, — F = C,. Now let V(K, - F)={1,2,...,n}.
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Fig. 6

(a) n=6. We find 3a +4b + 6¢ =12 and there are four decompositions. We
have done K,— F =2C4,=3C, in Theorem 1.1. This leaves K,— F =4C; for
which we take the 3-cycles (1,2,6), (2,3,4), (4,5,6) and (1,3,5), and
Ko— F=2C;+C, for which we use the cycles (1,3,5), (2,4,6) and
(1,2,3,4,5,6).

(b) n=8. We view Ky— F as shown in Fig. 5. Since Kq— F =2C;+C,=
3C,=2C,, H,=6(3=4C3+ Cy=2C3+2C,=3C,=2C3+3C,=3C,+ C, (Lemma
2.1) and K, , = 3C,, we easily obtain all the decompositions.

(¢) n=10. Viewing K,,— F as in Fig. 6(a), knowing the decompositions for
K~ F and the fact that K, ;, = 4C,, it is not difficult to see that if 3a + 4b + 6¢ =
40 and b = 4, then all such decompositions can be constructed. (To do this note
that 3a+4(b—4)+6c=24.) From 3a+4b+6c=40 it follows that
b =1 (mod 3) so only the cases with b = 1 remain; that is 3a + 4 + 6¢ = 40.

Using K, — F =2C,, and K4~ F = C,, we can think of K, — F as the union of
two copies of H, and one 4-cycle (as in Fig. 6(b)). Now using the decompositions
of H, (with b = 0) as given in Lemma 2.2, we obtain all remaining decompositions
of Kn) - F.

(d) n=12. Let 3a +4b + 6¢ = 60. We find the decompositions of K;, — F in
much the same way as we did for K, — F. Consider the view of K, — F as given
in Figs 7(a) and 7(b).

Using Fig. 7(a), K;10=35C,, the decompositions of K, — F and the fact that
3a + 4(b — 5) + 6¢ = 40 we obtain all decompositions of K, — F with b = 5. Since
b =0 (mod 3), this leaves the cases b =3 and b = 0. The view of K,, — F shown in
Fig. 7(b) allows us to think of K, — F as one copy of K,—F, two copies
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of H, and three 4-cycles. Thus we get all decompositions with b =3. For b =0
the constructions are a little more complicated. let V(K,,—F)=
{x, X35, X3, X4, Y12 Y2, Y3, Ya» 215 224 23, 24} and let the one-factor deleted from K,
be F={(x;,x3), (x2,%5), (yi,y3), O, ¥a), (21, 23), (22, 24)}. Now Kp,~F
consists of three copies of K.—F, on vertex sets {x, x,, x3, X4, 1, Y3},
{Y1s Y25 Y3, Yas 205 23}, {21, 22, 23, 24, Xy, x5}, and the four 6-cycles (yi, zy, ya,
21, Y2, 22), (X3, Yau X4y 23, X2, Y2) (24, X2, 22, Y3y 24, X3) and (Xo, 24, Vo, X4, 22, Y4).
Using our decompositions of K4 — F we obtain all decompositions of K, — F with
b=0 and ¢ =4. This leaves K, — F=20C;=18C++ C,=16C,+2C, = 14C, +
3C, to be constructed. For the first of these, see e.g. [6] and the rest are as
follows.

Let V(K — F)=1{x\, x5, X3, Xy, X5, X, Y15 Y2. V3, Yar Vs Yo} and we view K> —
F as in Fig. 7(b). In K, —F we have the 3-cycles (x,, xs, ys), (X2, X3, ¥s),
(X3, X2, Yo), (X4, X5, Y1)y (X5, Xeo Y2)y (X6 X0 ¥3), (X3, Xs, p), (g, X, ),
(x5, X1, ¥s5), (X6, X2, Yo)» (x1, x5, y1)  and  (xa, xq, ), the  6-cycles
(X1, Y2, X3, Yas Xs, Vo) and (xs, y3, X4, Vs, X6, ¥1) and a K, — F on the vertex-set
{¥i, ¥2, V3, Ya» ¥s, Vo). Thus we have K, — F=16C,+2C,=14C;+ 3C,. From
the 16C; + 2C,, delete the 6-cycles and two of the C, in K, — F = 4C, and replace
them by the 3-cycles (y2, X1, Yo)s (¥2, X3, Ya)y (Var Xs55 Yo)s (V1o X2, ¥3)s (V3. X4, ¥s)
and (ys, X,, v,)- This yields K, ~ F = 18C, + C,.

(e) n=14. As in the other cases, first view K, — F as in Fig. 8(a).

We immediately have all decompositions in which b = 6. Since 3a + 4b 4 6c =
84, b =0 (mod 3) and again the decompositions with b =3 and b = 0 remain to be
constructed. For b =3, take any decomposition of K, — F which has no 4-cycle
and at least one 6-cycle. Then K, — F as in Fig. 8(a) can be viewed as the cycles
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Fig. 9

of (K, — F) — Cg, one copy of H, and three 4-cycles (from the remaining K, ().
We now easily construct all decompositions with b = 3. This leaves the decom-
positions with b =0 and, as in the case of K,, — F, these take some work to
construct. Viewing K4 — F as in Fig. 8(b) and using the decompositions of K, — F
and K, , we obtain all the desired decompositions with ¢ = 6. This leaves six
cases: K 4,— F=18C;+5C,=20C;+4C,=22C3+3C,=24C;+2C,=26C++
Ce = 28C;. The last four of these can be constructed by viewing K, — F as in Fig.
8(c). Take a near 1-factorization of the K, with vertex set {x, x,, ..., x,}. Let
the vertices of the other K, be {yi, y», . . ., y;}. Pairing the near l-factors and the
vertices {yi, ¥,, . . ., ¥;} yields 21 3-cycles. What remains is a copy of K,. Adding
a vertex and the edges of F to K — F yields all decompositions of K; with a = 3.
Hence we have constructions showing K, — F = 28C; =26C; + C¢ = 24C5 + 2C,,.
Since K;=C;+3Cs (the «cycles are (xi,x;, x3), (X, X4, Xg, X7, X3, X5),
(x1, X6, X2, X5, X4, X7) and (x,, x4, X3, X4, X5, X7)) we also obtain K,,~ F=
22C5+ 3C,. Two cases remain. Return now to Fig. 8(b). On each K;— F use
Ky — F =8C;, and on the K, 4, use K¢ = 6C,. Choose two of the 6-cycles in K
and in positioning the Ky — F = 8C; place them so that in each a triangle can be
placed with one of the chosen 6-cycles so that we obtain two copies of the graph
H; in Fig. 9. Since H, = C;+ C, = 3C; we can, in turn, eliminate the two 6-cycles
and obtain the last two decompositions. [

We are now ready to give all decompositions for even n.

Theorem 2.4, When n is even and 3a +4b +6c=n(n —2)/2, then K, - F =
aCy+ bCy+ cCq.

Proof. Let n =2t and consider the residue classes of n modulo 12.

(a) n=2 or 6 (mod 12). In this case t=1 or 3 (mod 6) and there is an STS(¢)
[3]. Let V(K,, — F)y={a,,a,,...,a,b,,b,,..., b} where F={(a, b):1=i=<
t}. Take an STS(¢) on the point-set {a,, a,, . . . , a,}. Then each 3-cycle (a;, a;, a;)
in the STS(¢) corresponds to a copy of K,—F on the vertex set
{a;, a;, ax, b, bj, b,}. (The copies of K — F are all edge-disjoint and partition the
edges of K, — F.)

If n=12m+2, m=1, then 3a +4b + 6¢ = 12m(6m + 1) and so a =0 (mod 2)
and b =0(mod 3). There are two cases: (i) a=4a’, b=3b", c=2c’, and (ii)
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a=4a’'+2, b=3b', c=2¢c'+1. In the first a’ + b’ + ¢' =m(6m + 1), the num-
ber of 3-cycles in the STS(#). To see that K, — F =aCy+ bC,+ cC,, in a’ of the
K, — F use the decomposition K¢ — F =4C5, in b’ of them use K,— F =3C, and
in the remaining ¢’ use Ky~ F=2C4. In the second case we find that
a' +b' +c' +1=m(6m+ 1) so here in a’ of the Ko — Fuse Kq— F=4C,, in b’
of them use K,— F=3C,, in ¢' use K,— F =2C, and in the one remaining put
Ke— F=2C3+ Cq toyield K, — F =aCy+ bCy + cC.

If n=12m+6, m=1, then 3a+4b +6c=123m+ 1)(2m +1) and again
a=0{(mod2) and b =0 (mod 3). We now repeat thc argument given in the case
n =12m + 2. Finally, when n = 6 the result follows from Lemma 2.3.

(b) n=10(mod 12). Then r=5(mod 6) and there is ([6]}) a near-STS(¢) in
which one block has size five and all other size 3. Let V(K, —F)=
{a,,a5,...,a, by, by, ..., b} and, as before, to the 3-cycles (blocks of size 3)
in the near-STS(¢) correspond copies of Kq— F and to the block of size 5
corresponds a K,,— F. Letting n=12m+10, m=1, we get 3a+4b +6c=
36(2m +1)(m + 1)+ 4 and hence b=1(mod3) and 4 =0(mod2). Two cases
need be considered: (i) a=4a’, b=3b'+1, ¢=2¢’ and (ii) a=4a' +2,
b=3b"+1, ¢=2¢"+1. In case (i) a' +b' +c' =32m+ 1)(m+1). Now as
m=1, one of a’, b’, and ¢’ is at least three. Depending on which write either
(@' =3)+b' +c'=3m2m+3), a'+(b' -3)+c'=3m2m+3) or a' +b'+
(¢’ —3)=3m(2m + 3). Note that 3m(2m + 3) is the number of edge-disjoint
K,— F we have in K, — F. We are now ready to describe the decomposition.
Given a*+b* +¢c*=3m(2m + 3), in a* of the K,— F use K,— F=4C;, in b*
use K,— F=3C, and in ¢* of them use K,— F=2C,. All that remains is to
choose the appropriate decomposition of K,,— F. Choose respectively, K,—
F=12Cy+ C4, K\y-F=10C,0r K;,— F=C,+6C,.

Case (ii) follows in a similar fashion and the case n =10 was resolved in
Lemma 2.3.

(c) n=0, 8 (mod 12). Unfortunately we must work modulo 24, and consider
the two cases: (¢') n =0, 8 (mod 24), and (¢") n =12, 20 (mod 24).

(c') n=0, 8(mod 24).

Thus =0, 4(mod 12) and it is known ([5]) that there is a group divisible
design on ¢ symbols in which the groups have size 4 and the blocks size 3. As in
(a) this yields a partition of the edges of K, — F into copies of K, — Fand K, — F.

If n=24m, m=1, 3a+4b+ 6c=24m(12m ~ 1) and so b=0(mod 3) and
a=0(mod2). Thus b=3b" and either (i) a=4a’, c=2¢’ or (ii) a=4a’' +2,
c=2c'+1. We will discuss (i) as (ii) is done similarly. First list all K, — F and
then all Kz — Fin K, — F and from them choose a copies of C; as follows. In the
first Ko— F put K,— F=4C;. Continuing until we have a 3-cycles our last
decomposition will be either Kq— F=4C;, Ky— F=4C;+ xC,+ yC, or Ky—
F =8C;. Now we find the ¢ 6-cycles. The first decomposition containing C, will
be either K, — F=2Cs, Kq— F=4C3+2C,, Ky—F=4C, or K,—F=3C,+
2C,. When we have reached cC, the remainder of the K, — F and K, — F are to
be decomposed into C,.
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An almost identical construction works when n =24m + 8.

(c") n=12,20(mod 24). In this case =6, 10 (mod 12) and it is known ([9])
that if t —2=4, 8 (mod 12), there is a group divisible design on ¢ points with one
group of size 6, the rest of size 4 and all blocks of size 3. As in (c’) this gives us a
partition of the edges of K, — F into copies of Kq— F, Ky — F and one K, — F.
To construct the required decomposition of K, — F we list the K, — F, then the
Ky — F and last the one K, — F and decompose them in turn (using Lemma 2.3)
as was done in (c’).

(d) n=4(mod 12). Let n =12m + 4 so t = 6m + 2. We know ([7]) that K,,, —
F, m =3, has a resolvable decomposition into cycles of length 3.

Adding to K, — F one new vertex and the edges of F yields a decomposition
of Kep 1 into 3-cycles (an STS(6m + 1)) which has a set of 2m vertex-disjoint
3-cycles (from one of the resolutions). Now, duplicate as in (a) to get a partition
of the edges of K,,,.,— F into copies of K,— F. In particular this partition
has 2m vertex-disjoint copies of Kq— F and a copy of K,— F (as shown in
Fig. 10). Now add two more vertices (non-adjacent) to get Ki,,,,4— F which
is edge-partitioned into 2m copies of K, — F, one C, and m(6m — 1) copies of
Kq—F.

Since 3a + 4b + 6¢ = 12m(6m +3)+ 4, b =1(mod 3). Thus b =1 and we have
an obvious C, as shown in Fig. 10. The remainder of K, — F is decomposed
into K¢ — F and K, — F. We now fill these as we did in (c).

Two cases remain: K, — F and K5, — F. First we do K, — F viewing the graph
in the four different ways as shown in Fig. 11.

Here 3a + 4b + 6¢ = 112. From Fig. 11(a) we can construct all decompositions
K~ F=aC3+bCy+cCq with b=7. This leaves b=1 and b =4. From Fig.
11(b) we get all decompositions with ¢=6. From Fig. 11(c) we get all
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decompositions with b=4 and a =16 (observe that K, ,,— K, 4=K,,=4C,,
and recall the well-known fact that K, , 4 = 16C,). This leaves the case b =1 and
a=26 (as ¢ =5). Here we use Fig 11(d), noting that the unmarked edges are
those of K, 444 All that remains to be shown is that K, , 44 can be partitioned
into 24 triangles, or, equivalently, that K, 4 4, with two suitably chosen 1-factors
deleted, can be partitioned into 12 triangles. The latter is an easy exercise.
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Note that in Fig. 11(b) we require that in each decomposition of K,,— F one of
the C, (there is always at least one) has on its diagonals two of the edges of F.
From Figs 6(a) and 6(b) it is easy to see that this can always be arranged.

The last case is K3 — F. Since there is a group divisible design on 12 points
with groups of size 3 and blocks of size 4, we can view K, — F as in Fig. 12.

Noting the earlier comment regarding K;,— F we can now decompose the
Ky — F and (K, — F) — C, as in (c) to obtain all decompositions. [

The previous theorem immediately gives us many of the decompositions
K,=aC,+ bC,+ cC, when n is odd.

Corollary 2.5. When n is odd, a=(n —1)/2, and 3a +4b + 6¢c = n(n — 1)/2, then
K,, = aC; + bC4 + CC(,.

Proof. From 3a+4b +6c=n(n—1)/2 we obtain 3a’+4b+6c=(n—1)(n—
3)/2 where a’ =a — (n —1)/2 and by Theorem 2.5 K,, ,— F =a'C3+bC,+ ¢C,.
Now, adding a new vertex and the edges of F to K, ,—F, we obtain
K,=aC,+bCy+cCq. O

Hence, when n is odd we need only consider the cases a < (n —3)/2. As when
n was even we begin with a lemma which takes care of the small odd values of n.

Lemma 2.6. If ne{3,5,7,9,11,13,17} and 3a+4b+6¢c=n(n —1)/2, then
K" =aC3+bC4+('C6.

Proof. Thanks to Corollary 2.5 we consider only the cases a < (n — 3)/2. When
n =3 and n =5 there is only one decomposition and it is easily constructed.

(a) n="7, a<2. Since 3a +4b + 6¢c =21, a is odd and the only decompositions
are K;=C,+3C,+C, and K,=C;+3Cs. These are given by the cycles
(1,2,3), (1,6,3,7), (2,4,3,5), (4,6,7,5), (1,4,7,2,6,5), and (1,2,3),
(1,4,6,7,3,5), (1,6,2,5,4,7) and (2,4, 3,6,5,7), respectively, where V(K;) =
{1,2,3,4,5,6,7).

(b) n=9, a<3. Since 3a+4b+6c=236, a is even and we must consider
a=0and a=2. To K;=C3;+3C,= Cy;+ 3C,+ C, add two new vertices, replace
the C; by a K5 and add two more C,. This yields Ky =2C; +3C,+ 3C,=2C; +
6C,+ C,. For Ko=2C,+5C, let V(Ky)={1,2,3,4,5,6,7, 8,9} and take the
cycles (1,2,3), (2,6,7), (1,4,2,5,3,6), (4,7,5,8,6,9), (7,1,8,2,9,3),
(1,5,4,8,7,9) and (3,4,6,5,9,8). We now have the four cases with a=0:
Ko=9C,=6C,+2C,=3C4+4C,=6C,. These are given respectively by the
following sets of cycles: {(1,2,9,6), (2,3,1,7), (3,4,2,8), (4,5,3,9),
(5,6,4,1), (6,7,5,2), (7,8,6,3), (8,9,7,.4), (9,1,8,5)}, {(1,8,3,9), (2,7,9,95),
(4,7,6,8), (1,5,4,2), (2,6,5,3), (1,6,4,3), (1,4,9,8,5,7), (2,8,7,3,6,9)},
{(1,8,3,9), (2,7,9,5), (4,7,6.8), (1,4,9,8,5,7), (2,8,7,3,6,9), (1,5,4,6,2,3), -
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(1,6,5,3,4,2)}and {(1,5,4,6,2,3),(1,6,5,3,4,2),(1,4,9,8,2,7),(3,7,4,8,6,9),
(1,8,7,5,2,9), (3,8,5,9,7,6)}.

(c) n=11, a=4. It is easy to see that a is odd, so a=1 or a=3, and
b =1 (mod 3).

Using Fig. 13 and known decompositions of K,,, K5, and K; we get all
decompositions of K;; with a =3. Note that using Fig. 13 we must always have
two 3-cycles as K5 does. However, since H,=2C, (H, is shown in Fig. 14(a)),
K46=3C4+2C,=4C, and we have decompositions of K;, we easily obtain
Ki=Ci+ Cy+8C,=C3+4C,+6C,=C3+7C,+ 4C¢. Next, Hs (shown in Fig.
14(b)) easily decomposes as Hs= C,+ C, and since K, ,=6C, and K,=C;+
3C,+ C, we obtain K, = C3+ 10C, + 2C,. This leaves K, = C; + 13C, which is
given by the cycles (1,6,9), (6,8,1,10), (9,11,1,7), (11,8,10,7), (2,4,3,5),
(2,8,3,11), (4.8,5.11), (1,2,10,3), (2,6,.7,3), (2,7,8,9), (1,4,7.5),
(3,6,5,9), (4,9,10,5) and (4,6, 11, 10), where V(K,)={1,2,3,..., 11}.

(d) n =13, a=<5. Counting we find that a is even, so we must consider a =0, 2
and 4. Consider K,; as in Fig. 15. When a =4 decompose one K, as either
K;=Cy+3C,+Cq or K;=C3+3C,, and the other as K,=3C;+2C,.
Removing a 6-cycle from each of these and attaching them to K, , yields a copy of
H,. On now decomposing H, all possible decompositions of K,y with a =4 are
achieved. When a =2 decompose each K, as either K, =C,+3C,+ C, or as

Fig. 1S
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Fig. 16

K, =Cy+3C,. Using the above argument yields all decompositions of K;; with
a=2. When a =0 we first construct K;;=13Cs. Let V(K ;3)=1{0,1,2,...,12}
and G,=(1,4,10,2,3,5). The remaining 6-cycles are G;,,, =G +i where
(x+i,y+i)eE(G, ) if (x, y)e E(G)), 1=<i=12, and addition is modulo 13.
Since G;UG;,,=3C,, 1=<i=<12, all decompositions of K,; with a=0 are
constructed.

(e) n=17, a<7. Clearly a is even so a € {0, 2, 4, 6}. View K, as in Fig. 16.
We see that the edges of K, can be partitioned into one K5, one K,; and two
copies of K, By appropriately decomposing each of these we obtain all
decompositions of K;; with 2=qa =<6. This leaves a = 0. Again we use Fig. 16.
First, in the decomposition of one of the K, , make sure a 4-cycle (respectively a
6-cycle) from it and the two 3-cycles from Ks=2C;+ C4 are as in Hy=Cy4+ Cq
(respectively, H,=2C,). Choosing appropriate decompositions of K,, and K|,
yields all decompositions of K, with a =0 except for K, =34C,. If V(K,;) =
{0, 1, 2, ..., 16} the 4-cycles for this decomposition are J,=(1,3,2,9), K, =
(4,10,13,9) and J;,,=J,+i, K,y =K, +i, 1=i<16, where all addition is
modulo 17. O

We are now ready to prove the main result for odd n.

Theorem 2.7. If n is odd and 3a +4b + 6¢c =n(n —1)/2, then K, =aC;+bCy+
cCs.

Proof. We know by Corollary 2.5 that we may assume a < (n — 3)/2. The proof
will look at the residue classes of n modulo 12 and all cases will be based on Fig.
17 where s +t+ 1 =n.

(a) n=12m+ 1, m=2. Since 3a +4b + 6¢c = 6m(12m + 1), then a is even and
a<6m — 2. The construction of the decompositions is by induction on m; all
decompositions of K, (the case m = 1) are given in Lemma 2.6. In Fig. 17 let
s=12 and t =12(m — 1). We assume that all decompositions of K, -,,., are
possible. Since 3(6m —2)<6(m — 1)(12(m — 1) + 1) for m =2, we know that for
a<6m—2, and b' and ¢’ satisfying 3a +4b' +6¢' = 6(m — 1)(12(m = 1) + 1),
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Fig. 17

then K5 -1y+1 =aC3+b'Cy+c'C,. As well as the Ky and Kiogn-1yi1o Kz
also contains 4(m — 1) disjoint copies of K, Since Kq,=9C,=06C,+2C,=
3C,+4C,=6C, (by Lemma 2.1) and K,;=18C,+ C,=---=13C,, it appears
that we can, by appropriate choice of the decompositions of “the pieces”,
obtain the required deccompositions of K, .,. However, this is not quite correct
as if a=0(mod4) and m is even, or if ¢ =2(mod4) and m is odd, then we
require decompositions of the form K, ., =aC;+ bC,. But decompositions of
K, always contain a 6-cycle. Fortunately in these cases the decompositions of
K \3(m-1y+1 also all contain a 6-cycle and we simply locate these 6-cycles so that
one of the K, becomes the graph H,, and H, = 12C,.

(b)y n=12m+7, m=1. In this case 3a +4b + 6¢ = 6((12m + 1)(m + 1) + 2) +
3s0 ais odd and a <6m + 1. Choose s =6 and t = 12m in Fig. 17. From (a) we
have all decompositions of K, ., and from Lemma 2.6 all decompositions of
K;=Cy+b'Cy+c’'C,. Note that each decomposition of K, has both a 3-cycle
and a 6-cycle. Our decompositions of K, .» must have an odd number of
3-cycles. Since 18m <6m(12m + 1) when m =1, we can choose decompositions
of K3+ With (a — 1) 3-cycles which, with the one in K,, gives us a 3-cycles. We
now proceed as in (a) and again must pay particular attention to the case ¢ = 0. In
this case the difficulties occur when ¢ =1(mod4) and m is odd, or when
a=3(mod4) and m is even, but we use the same technique as before to obtain
the decompositions.

(¢) n=12m+5, m=2. Counting edges we have 3a+4b+ 6¢c =6(12m’+
9m + 1) + 4 so a is even and a < 6m. In this case we put s =16 and ¢ = 12(m — 1),
and note that K, has a 4-cycle in each decomposition, all decompositions of
Kis(n-1)+1 have an even number of 3-cycles and as 3a < 18m < 6(m — 1)(12(m —
1) + 1) for m =2, there are decompositions with exactly a 3-cycles. When viewed
as in Fig. 17, K ,,, s has also 8(m — 1) disjoint copies of K, and by Lemma 2.1
K, o=6C,=3C,+2C,=4C,. By suitably choosing decompositions of the K,;,
K4 and Ky, -+ all required decompositions of K,,,.s can be constructed.

(d) n=12m+9, m=1. This case is also easily dealt with. In Fig. 17 choose
s=8 and t=12n. From 3a +4b + 6c=6(4m +3)(3m +2) a is even and a <
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6m + 2. Since 3(6m +2) <6m(12m + 1), for m = 1, all 3-cycles will be found in
the decomposition of K\,,,,,. Now we just choose appropriate decompositions of
Ky, K341 and the 4m disjoint copies of K, ¢.

() n=12m+3, m=1. In Fig. 17 choose s=6 and r=12(m —1)+8.
Counting edges 3a + 4b + 6¢ = 6m(12m + 5)+ 3, and so a is odd and a <6m — 1,
Now 3(a—1)<3(6m —2)<6(4m —1)(3m —1), for m=1, and so we take a
decomposition of K; with exactly one 3-cycle, and of K,,(,-1)+¢ With (a —1)
3-cycles. The rest of K, 3 consists of two copies of K, and 2(m — 1) copies of
K¢s. As in (a) we have to pay special attention to the case ¢ =0 as each
decomposition of K, has a 6-cycle. When a=1(mod4) and m is even, or
a=3(mod4) and m odd both K, and K,,,_)+¢ have a 6-cycle. These can be
chosen so that one of the K, becomes a copy of H, and now we proceed as
before.

(f) n=12m + 11, m = 1. This last case follows as the others. In Fig. 17 choose
s =10 and t = 12m. From 3a + 4b + 6¢ = 6(12m* + 21m + 8) + 4 + 3 we know that
a is odd and so a <6m + 3. Each decomposition of K,, has a 3-cycle and a
4-cycle. Since 3(6m +2)y<6m(12m + 1), m =1, we choose decompositions of
K341 with (a — 1) 3-cycles. The remainder of Ki,,,,, consists of 2m disjoint
K¢ and 2m disjoint K4 . Decomposing all these graphs appropriately yields
the desired decompositions of K5, +1,. O

3. Cycles of length 2* and 2**!

We need to introduce the notion of switching on cycles. Suppose G contains
the three edge disjoint cycles of lengths s, ¢ and r as shown in Fig. 18(a). We can,
by switching on the cycle (v,, v,, v,, U;3), obtain the two cycles of lengths s + 7 and
r as shown in Fig. 18(b).

This switching procedure can be applied many times as illustrated in Fig. 19.

The next result, due to D. Sotteau [10], will be used often in the proofs.

2 gV T h / oY% ~_oh
( S ov | & o | /673*6‘/@ v, Co
"._\\\ / L \\ - \\ .

PR [ Y

/ , c

vzé C, ;“ v, ﬁf“}) v, !
\ )
a v3° S b Vao/\'//

Fig. 18



112 K. Heinrich et al.

0 1
- O\ /‘/ o
Vv v v
3 2
( Cs, > < C‘1> 1(:
N e v11
v v
- 4 5
O\ V.’ ' , O v6
<Cs, b ( Cl, V9
v
Vs AL AN
< O\ v o O v
Cc >11 < C 10
S3 ty
Fig. 19

Theorem 3.1. Suppose k<n, k<m, m and n are even and mn =2kt. Then
K/n.n = tc‘lk'

We now state and prove several lemmas.

Lemma 3.2, Let K, ,=C; +C,+---+C, where p and q are even. Then
Kyp2g="D; + Di,+ - - - + D, where either D, =4C, or D, =2C5,.

Proof. Let K,,=C, +C,,+---+C, and let V(K, )= {x,, X2, ..., %, ¥, y2,

W Ya)e Let V(Ky,o,)=Aay, ay, ..., a5, b;,by, ..., by} 1If C is a cycle
of K,,, then C is neccessarily even and we will assume (without loss of
generality) that C = (x,, y\, X2, Y2, - - ., X,, ¥,)- In K, 5, this describes either the

four 2r-cycles (a,, by, a>, by, ..., 4, b,), (A1, byirs Gpia byian - - -5 Apys b)),
(@, byir,az, b402, ... 0, by, )and(a, 1, by, 6,5, b5, ..., a,,,, b,), orthe two
4r-cycles (@, by, a2, by05,...a,b,,a,,,,b,_y,a,,,....b,a,.,b,.,)
and (a;, b, a2, by, ..., 8, b, Qyir by piry, o by a0, b)) O

Lemma 3.3, [fy and n are even and 0 <y < n, then K,, ,,= (2n —2y)C,, + yC,y,.

Proof. From Theorem 3.1 we know that K, , = (n/2)C,,. Applying Lemma 3.2
to this decomposition yields the result. [J

Although Theorem 3.1 yields K, ., =nC,, we need a very particular de-
composition in order to prove the main result. This decomposition is given in
Lemma 3.4.
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Lemma 3.4. Let A= (a;) be a latin square of order n based on the set

{1,2,...,n). Let X={x,x2,...,%0,} and Y={y,, ¥, ..., ¥2,}. Then the
n cycles of length 4n given by D;=(xy, Yau,—1> X2: Yau,» - -+ » X2j— 14
Yaa,— 1> X2 Yaays -+ s Xan—1y Y2a, 10 Xoms Y2a;,,) Where subscript calculations are
modulo 2n on the residues 1,2, ..., 2n, constitute a decomposition K, », =nC,,

with V(K ) = X U Y.

Proof. Since the ith row of A contains each of the entries 1,2,...,n, D;is a
4n-cycle. Since the jth column of A contains each of the entries 1, 2, . . ., n, then
K2n,2n = D] + D2 + -4 D" = nC4,,. D

Let G be either Kymom Of Komypom, m=2. Let V(G)=XUY where X =

{x1,...,x}, t=2"ort=2"+2,and Y={y, ¥, ..., yan}. The decomposition
G=aCym+bCoui is basic if a=0 and it contains the cycle
(X1, Y1, X2, Y2, - - - . Xamyam), or if b=0 and it contains both the cycle
(X1, Y1) X2, Yoy - v -, Xom-1, Yam1)  and  the  cycle  (Xpm-1yy, Yom-igq, -« oy Xom, Yom).

These are the basic cycles. Since by Theorem 3.1 G = bC(C,..\, then after suitably
labelling the vertices of G we can always obtain a basic decomposition. For a
basic decomposition G =aC,» we use the fact that both Kymm 1+ and Kom o
have decompositions into cycles of length 2™ (again use Theorem 3.1),

Lemma 3.5. There is a decomposition K,,—F =(n—1)C,,, n=2, with the
property that there is a set of edges E={e,,...,e,_,}, one from each cycle, so
that F U E is a path with edges alternating between E and F.

Proof. We use the decomposition given in Theorem 1.1. Let E = {(2, 2i +
1):0<sisn-3U{(2n—4,=,)} when n is even, and let E={(2i2i+1):0=<
is(n-3)2}U{i+1,2i+2):(n—-1)2<i<sn-3}U{(2n~3,»)} when n is
odd. Since F={(i,n —1+i):0si<sn—2}U{(%, »,)} it is not difficult to check
that £ U Fis as required. [

Note that the edges F form an independent set of edges.

Lemma 3.6. There is a decomposition K,, ,— F=n+1)C,,, n=2, with the
property that there is a set E={e,, ..., e,} of independent edges, each from a
different cycle. "

Proof. We again use the decomposition given in Theorem 1.1. Let E = {((n/2) +
i, (3n/2)-1+i):0<isn—-2}U{((n/2)—2,(n/2)-1)} if n is even, and let
E={((n+1)/2+i,Bn—1)/24i):0<i<n-2}U{((n=3)/2, (n - 1)/2)} if n
isodd. O
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Fig. 20

We now have the tools necessary to prove the main theorem when n is even.
First note that in this case if K, — F = aCyu + bCy1, then n =0, 2 (mod 2¥) and if
b#0, n=2"' We begin with the cases n =2"' and n =2*""+2 as if n =2¢
or n=2%+2, then b =0 and the situation has been dealt with in Theorem 1.1.

Theorem 3.7. If a2 + b2**' =2%71(2¥ — 1), then Ky — F = aCo + bCoson.

Proof. We view K, — F as in Fig. 20.

Let G, and G, denote the two copies of Ko — F with V(G)) = {x,, x5, . . ., xn}
and V(Gy) ={y;, y2, - - - » yau}-

We use the decomposition G, =G, = (2*"'—1)Cy of Lemma 3.5. Permute
labels of the vertices in GG, and G, so that the independent edges are given by
E = {(xz-1, X)) 1<i<2"' =1} and E; = {(ypi-y, yoi): 1 =i <27 =1},

Suppose b <2*~'. By Theorem 3.1 and the comments following Lemma 3.4
there is a basic decomposition of Ky o« into cycles of length 2¥. Now switching on
the cycles (xai_1, Yai—1» Yair X20), 1=<i=<b, we obtain Ky —F =aCu+ bCxu,
l<sbhb<2"""-1.

Consider the case b=2*"'. Here we use the fact that there is a basic
decomposition of this type Ko o« =2""Cu.. Since b —2""'<2*"'—1 we now
switch on b — 257! of the cycles (Xz_1, Yai—1, Yoi» X2), 1=i=<2*"' and obtain
Kpii—F=aCu+bCy, 25 'sb<2"-1. O

Theorem 3.8. If a2* +b2*"' =212+ 1), k=2, then Ky, —F=0aCu+
bCoin.

Proof. The proof is much like that of Theorem 3.7. We first view K1y, — F as
in Fig. 21.

Let V(Kp = F)={x;, x5, ..., X202} and V(Ku = F)={y,, y5, ..., y»}. By
Lemmas 3.5 and 3.6 there are decompositions Ky, — F = (27" + 1)Cyx with
edges E, = {(xy 1, X2;): 1 <i=<2*"'} cach from a different cycle, and Ky~ F =
(257"~ 1)Cyx with edges E;={yy_,, ya}: 1=i=<2¥"17—1} cach from a different
cycle.
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If b<2¥"' -1 we simply take a basic decomposition Ko, ; » = (2° +2)Cx and
switch on the cycles (X5, Yai_1, Yoir X2), | SI<b,

If 2571 + 1 < b < 2* we take a basic decomposition Ky, 5= (27" + 1)Cy1 and
switch on the cycles (x|, Yoi o1 Vair X2:), 1<i<b— (2" +1).

This leaves the two cases b=2"" and b=2+1. The case b=2+1 is
covered in Lemma 3.6. When b =2~ the construction is somewhat complicated.
Consider Ky, — F as in Fig. 22.

In Theorem 3.11 we will prove that Ky, =Cx ++27'Cyx so that there is
a set of edges E={e,,..., ex-, e} so that e,,..., ex are independent and
each lies in a different cycle of length 2%, e lies in the Cy-1 and e is incident
with both e, and e,. We now show that K, i 4ms1 — F =0@m+1)C,,,. Let
V(Kamstamst — F)={x1, X2, - . s Xamats Yis Var -« - » Vam+11- Then C, the first
cycle, is given by C = (Xpi1s YVors Xont2s Yon 1+« + s Xam—15 Y25 X2ms Yis Xom+25 Yams1s
Xomsas Yams -+ > X3nr Yam+3» Xam+1> Yam+2) and the remainder by C +i, 1=si<
4m, where (x,,,, v,.;) € E(C + i) if and only if (x,, y,) € E(C). (Subscript addition
is modulo 4m + 1).

In G, = Ky, with vertex set X, the decomposition can be arranged so that the
set E, of independent edges is E,;={(xy_,, xy):1<i<2*"'} and e=
(X2k-241, X26142), whereas in G, = Ky, with vertex set Y, the decomposition is
arranged so that E,={(yy_, y2,): 1 <i<2*"'} and e = (y, ys.» »,2). Now, for
the cycles containing edges (x,; |, x5,) and (y_,, y»;) switch these with the edges
(X2i-1» Y2i—1) and (x, y»;) of the 1-factor, 1=<i=<2*"! For the cycles of length

Kkrl» ‘_F:

+2

241,211

Fig. 22
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Fig. 23

271 switch the edges (xy 2,1, X2 1,2) and (y,, y3 24.) with the edges
(X2t 2415 Yaok-242) and (x 145, yy). This yields the desired decomposition. [

Theorem 3.9. Let n=3.2° or 3.2 +2, k =2, and suppose that a2* + b2**' =
n(n —2)/2. Then K, — F=aCu+ bCu.

Proof. View K, — F as in Fig. 23, where K, —F =G, + G, + G3; + Gy + G5 + G,

By Lemmas 3.5 and 3.6 Ky— F=(2"'=1)Cy and Kp,»— F =2+ 1)Cu
so that with each such decomposition of G;, 1=<i=<3, we have a set F; of
independent edges, each from a different cycle. Let us consider the two cases
separately.

(a) n=3.2% Here 0sb<2¢""+2¢2-2and |E|=2"-1.

IFO0sb<s2"—1, let Gi=Gy=2"Cx, G;=2* "= 1)Cx and G, + G, + G, =
K= F=a'Cu+bCun.

If 2 'sbhb=s2" 42— 1, Gs=2""Curr, Go=2"Cx, G;=(2*"'=1)Cx and
GCi+G,+Gi =Ky —F=a'Cu+ (b — 2k—.l)(,‘2k¢|

If 28428 'sb=<2"'— 1, let Gs=G,=2""Cy, G:=(2""'=1)Cx and
G+G+Gi=Kynn—F=a'Cu+(b— 2)Czko|

Finally if 2*"'<sb<2¢"'4+252-2 let G, =G, = (‘1— (24" = 1)Cye and let
the independent edges be E; = E! U E] where |E/|=2""%and |E}|=2"2~ 1. Let

7s=Gs=G, have a basic decomposition Ky o =2*" 'ij Now switch on

b —3.2"" of the cycles determined by E; and Ej, and G; , E5 and G,; and
Ei\{e;}, EY and Gs. Care must be taken in positioning the basic cycles so that the
switching operation is possible. Notice that one cycle of length 2 must remain.

(by n=3.2+2. In this case 0=<b=<2""'4+25"24 1 and |E||=2"", |E,|=
|[E4j=2""—1.

HOosbh<s2+1, let Gs=2*+2)Cx, Go=2"Co, Gy=(2*"7 = 1)Co and G, +
G+ Gy =Kaiyo—F=a'"Cou+ bepo.

If 25 +2<bhb=2"+2"+1, let Gs =2 +2)Cx, Go=2""Cuir, Gy=(2*""'+
DCuand G+ G+ Go=Kosviys— F=a'Cu+ (b — 2"7‘)(‘%”

Finally, if 2 + 2" '+ 2<b <2+ 2"+ |, let G, =(2*" '+ )Cx, G, =G, =
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(2" = 1)Cx and let the independent edges be, respectively E, = E; U E| where
|E}|=|E}| =27 and E;= E; UE}, i=2,3, where |E/| =22 and |E!| =2"% -
1. Let G,= G5 have basic decomposition Ky ;= (2*"'+ 1)Cx1 and G, have
basic decomposition Ky =2“"'Cpuu. Now switch on b — (2% +2¥7' +2) of the
cycles determined by E|, E; and G,, EY, E; and G5, and E%, E% and G,. Again
care must be taken when positioning the basic cycles. Note that there remains a
Cxin G,. O

Theorem 3.10. K, — F =aCyu +bCx, k=2, if and only if a2*+b2k"'=
n(n —2)/2.

Proof. It is clear that if K,— F=aCx+bCyu., k=2, then a2*+ p2*+' =
n(n —2)/2 and from this it follows that n =0, 2 (mod 2¥).

Suppose that n=0, 2(mod2*) and a2* + b2**' =n(n —2)/2. Let n=12* or
2 +2. If t=1,2, or 3 the decompositions K, — F = aCux + bCy1 have all been
determined in Lemmas 3.5 and 3.6, and Theorem 3.7, 3.8 and 3.9. We may
therefore assume that ¢t =4,

If ¢ is even, t=2r, then we view K, — F as in Fig. 24 where G, = Ky — F if

nEO(modZ"), G =Ky — F if nE2(mod2") and G,=Gy;=---=(, =
sz*l _[:.

Now Gy =a,Cu+b,Couri, Gy=a,Cor+by;Cotiv, ..., G, =a,Cx+ b,Cu+ and
Kokt gpr = 2k+lC2k+| = 2k+2C2k, Kokeipg o601 = (2k+l +2)Copir = (2k+2 + 4)Co,

Kok geer = (2872 = 4)Cypt + 2Cp+1 (from Theorem 3.1, Lemma 3.3 and the fact
that Kacoipen = 4Koe ) and Koeriyg o601 =28"2Cp + 2Co1 (from Theorem 3.1,
Lemma 3.3 and the fact that Kuiiyo o600 = 2K 50 + 2K, 5 ). Since each decom-
position of G;, Ky et and Kyieiyy 2o can be chosen independently it is not
difficult to see that all the required decompositions can be attained.

If tis odd, t =2r + 1, we again view K, — F as in Fig. 24 except that in this case
G, =K;»— Fif n=0(mod2"), and G, = K5 %, — F if n. =2 (mod 2*). The proof
now proceeds as in the case when r is even except that we use Ky =
(2k+1 + 2k)C2k+| = (2k+2 + 2k+l)C2k, K o6 e = 2k+3C2k +2Cxn (from Theorem
3.1, Lemma 3.3 and the fact that K3 5 o1 = 2Kk p0 + 2K 54 5501) and Ki i =
QR 4254+ 2)Cpn = 2K+ 2+ 4) 0. O
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Note that there are many other decompositions of ‘“‘the pieces” that can be
used to obtain the final decompositions of K, — F.

We have now completely solved the case when n is even and next we look at
the case n odd. If K, = Cx+bCy, then n=1(mod2**"). It remains to
construct the decompositions in these cases. We begin with the case n =2"' + [.
This is the critical case as from it all other decompositions are easily constructed.

Theorem 3.11. If a2 + b2*+' = 252" 4 1), then Kpo1,) = aCo + bCor..

In addition there is a decomposition Ky 1,y = Cy + 2XCoii with a set of edges
E={e,,...,ex e} so that each ¢, is from a different cycle of length 2°*', ¢ lies
in Cyx, E — {e} is an independent set of edges and e is incident with exactly two of
the e;,. Moreover, the cycle Cyx contains at most one vertex from each e,

1 <=2k

Proof. When k=2, a2’ + b2’ =4a +8b =36 implies a +2b =9 and the only
possible decompositions are Ky=C,+4C3=3C,+3C;=5C,+2C,=7C,+
Cy=9C,. Letting V(K,)= ({1, 2, ..., 9} the cycles are given by

(a) Ky=C,+4C¢ (1,2,6,5), (2,7,3,9,4,6,8,5), (1,4,7,9,8,2,3,6),
(1,7,5,3,8,4,2,9) and (1, 3,4,5,9,7, 8). Choosing E = {(4, 6), (2,8), (1,7),
(5,9), e =(5, 6)} we see that this decomposition satisfies the requirements of the
theorem.

(b) Ky=3C,+3Cs: (2,3,4,5), (1,7,9,8), (1,9,3,6), (2,7,3,8,4,9,5,6),
(1,2,4,7,6,8,5,3)and (1,4,6,9,2,8,7,5).

(c) Ko=5C,+2Cx:(1,4,6,8), (1,2,9,3), (1,6,9,7), (3,6,7,5), (2,8,5,4),
(2,7,3,8,4,9,5,6) and (1,9,8,7,4,3,2,5).

(d) Ky=7C,+Cy: (1,6,7,5), (1,4,6,9), (1,2,9,3), (1,7,9,8), (2,4, 3,5),
(2,3,6,8), (4,58 7),(2,7,3,8,4,9,5, 6).

(e) Ky=9C, (1,2,8,3), (2,3,9,4), (3,4, 1,5), (4,5,2,6), (5,6,3,7),
(6,7,4,8), (7,8,5,9), (8,9,6,1) and (9, 1,7, 2).

Suppose k =3, a2k + h2**' =25(2**' + 1) and that a2 + b2 =212 + 1),
t<k, implies Ky, =a'Cy+b'Cy with the edges E and the cycle C» as
described above when ¢’ = 1. Consider Ky, as in Fig. 25.

Let G, and G, denote the Ky,, with V(G)={x,, x,, ..., xx, ®} and
V(Gy)=A{y, y2 - .., y», =}. By the induction hypothesis there is a decomposi-
tion Ky, = Ca 1+ 25 7'Cy with a set of edges E and Cx 1 as described. Denote
this decomposition by %.

Suppose 0=<b <2*"". Decompose G, as in @ so that the cycle Cx 1 does not
contain ®, e=(x,,x;), and ¢, = (x3, x;). Decompose (. as in % so that
e =(y,¥), e, =(ys, ys) and the cycle represented here by ¢, does not contain .

YLl

Clearly the cycles represented by “e” are vertex disjoint as are those represented

»

by “‘e,".
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Fig. 25

According to Lemma 3.3, Ky 5 =5Cy + tCyoi where t =2|b/2|. Position this
decomposition so that one cycle contains the edges (x,, y,), (¥, X2), (x2, y2),
(¥2, x3), (X3, ¥3), (¥, x,) and (x4, y4). We now switch on the cycle (x,, x5, ¥,, y1).
If b is odd we also switch on the cycle (xs, x4, y4, y;). This yields the required
decompositions.

Suppose now that 2°7'<b <2* Again using the induction hypothesis we
position a decomposition % in G with cycles B, B,, ..., By-i, B so that
(X2i—1, x5;) € E(B;), 1<i<2*""and (xpx_3, xx_,) € E(B) where B has length 2¢~!
and, moreover, V(B) c {x,, x3, X5, . . ., Xk }.

Let A = (a;) be a latin square of order 27" with at least three pairwise disjoint
transversals  Tp={a; =i:1<i<2*""}, T, ={a;,:1<i<2*"'}) and T =
{@imeiy:1<i <27}, Since 27! =4, these exist by [4]. Use Lemma 3.4 and A to
construct a decomposition Ky 5 =2*"'Cy.: with cycles H,, H,, . .., Hy-.. Then
(X2i-15 Yaic)s  Gaicns X2)s (X2 Y2i)s (Xa500y5 y2a;,(,-))’ ()’2a”,,(,)—|» Xomey)  and
(X2m@iys Yaame,) are edges of H,, 1<i=<2*"'—1, and Hx-: contains the edges
(X26—3 Ya) (Var X2—2), 262, Yas1)s Yawrs ¥2r—1), (v, Y2roy), (X0 )’2::,,(,,),
(V2am, = X2m(y) AN (X2m(iys Y2a,.,)> Where d = 2ayc1 50— 1and i =27,

Note that:

(1) the edges (x5 Yaa,,), 1 <i=<2"" are independent,

(@) {Y2amiy-1> Yo 1 <i<2''={y,y....,yx} and

(3) the edge (X3, Yaa,,) is disjoint from the vertices x5y, y»i—1, X2 and y,;,
for each i, 1 <i<2**!

Finally, in G, — {=}, place the decomposition of K, — F as described in
Lemma 3.5 so that the cycles £, E,, ..., Ex i, of length 2% are represented by
the edges (yy_1, yu) € E;, 1<i<2*"'—1, and the edges of F are (y;, yys1),
s ¥ Va ¥s)y - ooy (Yaess Ya—2)s (Ya—rs Yav2)y  Dar Y1)y (Yarzs Yava)s
(Yassr Yawo)r - - - » (Y2r—as y2x_3) and (yx 5, yx) where d =2a5 11— 1.

We must now bring together all the cycles described and the edges (w«, y,),
1 <i<?2* for the desired decompositions.

In H, 1<i=<2""" replace the edges (Yau,.,,—1» X2mi)) AN (Xomiiys Yaan,) DY the
edges (¥a,..,-1, ©) and (%, y,,,..). The new cycles H; have length 2¢*".

Aijis)



120 K. Heinrich et al.

The edges {(Vau-1 X2m))r (X2m@iys Yaame) 11 SE<2""} together with the
edges of F form a cycle S of length 3.2*7'. (To see this consider the union of F
and the edges representing the E;, 1=<i<2‘"'—1.) This cycle contains the
vertices {y,, ¥a, - . ., ¥t X2, X4, . . ., X} and so is disjoint from the cycle B (of
length 2*~"). Using B and S and the cycle Hx-, and switching on the cycle
(x25_1, X2k 3, Ya» Y1) We replace B and § by a cycle W of length 2%*! and obtain

1. We currently have a decomposition Kaeei, ;= (28 = 1)Co + (27" + 1)Cien
and now wish to switch on B, E;, and H;, 1<i<2*"'—1, using the cycle
(X2i—1, X2, Y2i» ¥2i-1). Doing these switchings one at a time enables us to get all
decompositions Ky, =aCu+ bConi, 287" + 1 < b <2* (Note that the 2*-cycle
B« remains unchanged.)

However, we still need to show that the decomposition Ky, = Cu+
(2¥ — 1)Cy+1 obtained in this way satisfies the induction hypothesis.

Represent the cycles obtained by switching on B; and E; by the edge
(X2_1, Yo 1), 1=i<2""'—1, Represent the cycles H], but with H% 1 instead of
Hy, by the edge (x3i) Yoa,) 11 <27 Represent W by the edge
(x2_,, ya_,)- These edges are clearly all independent. The cycle of length 2* is
the cycle By + which can be represented by the edge (xx_,, x») and the vertices
of which occur in two of the independent edges already chosen, as required.
Finally, since B, has all of its vertices in the set {®, x|, x5, ..., X} it clearly
has at most one vertex in common with each of the edges representing the cycles
of length 2**'. This completes the proof. [

Theorem 3.12. K, =aCxu+bCyo, k=2, if and only if a2*+b2¥"'=
n(n —1)/2.

Proof. Clearly, if K, =aCoyu+ bCy, k=2, then a2* + b2**'=n(n — 1)/2 and
hence n =1 (mod 2°*').

Suppose that n =1 (mod 2*") and a2* + b2**'=n(n — 1)/2. Let n =12*""' + 1
and note that a =t (mod2). When =1 the decompositions are constructed in

Theorem 3.11. Assuming ¢t > 1 view K, as in Fig. 26 where G, =G, ==, =
K2k0|+|.
K 5 /J \\
<2m Kz“‘ e Kz“‘ ;
e
. G1 : 9/2’ t
B3
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Since Koei geer = 28" Couir = 2¥72C,i and each G; can be decomposed independ-
ently, then, using Theorem 3.11, it follows that we have decompositions
K, = aCy + bCyui provided a =t (each G; decomposition has a cycle Cy). When
a <t let G;=Cy+2*Gy+, and in each, position the cycle of length 2* so that it
does not contain vertex «, and so that when basic decompositions Ky«i 1 =
2¥*1Cu.\ are chosen between G,,_, and G,;, 1<i=< |t/2], a switch is possible so
that the two cycles of length 2“ become one of length 2¢*'. 0O
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Let D be a block design which has a blocking set. We call D self-blocking if the following
two conditions hold: (i) The committees of D (i.e. the blocking sets of minimum cardinality of
D) form a block design, which we denote by D and (ii) The committees of D€ are precisely
the blocks of /). (We also say that D and D are a pair of mutually blocking block designs,
then.) We show that the classical projective planes PG(2, ¢°) are self-blocking; the same holds
for PG(2, 3) and PG(2, 5) as well as for the classical affine planes AG(2, ¢) with g = 4.

1. Introduction

Let D be a finite incidence structure. A subset S of the point set P of D is
called a hitting set for D, if S meets every block of D. If moreover § does not
contain any block of D, S is called a blocking set for D. There are incidence
structures not containing any blocking set; for instance, this holds for every
Steiner triple system (see Drake [15]). We shall only consider structures D
admitting a blocking set in this paper. Then the blocking sets of smallest
cardinality will be called the commirtees of D (following Hirschfeld [16]).

Blocking sets arose in the theory of games, cf. Richardson [19], and have been
studied extensively. The systematic investigation of blocking sets begins with
Bruen’s papers [6, 7] on blocking sets in projective planes. Later blocking sets in
more general incidence structures were studied, in particular in affine planes (see
Bruen and Silverman [10]), in general block designs (see de Resmini [14] and
Drake [15]) and in (r, 4)-designs (see Jungnickel and Leclerc [18]).

In the present paper, we shall consider blocking sets in block designs and
introduce a new type of question about these structures. Let D be a block design
admitting blocking sets. We denote by D the incidence structure formed by all
committees of D (on the point set P of D). Our first condition will be as follows:

(1) The incidence structure D¢ formed by the committees of D is a block
design.

Note that this situation will arise quite often. (1) is certainly satisfied whenever D
admits a 2-transitive automorphism group. We shall call D a self-blocking block
design if it satisfies (1) and also the following condition (2).

(2) D¢ admits blocking sets, and one has (D)= D; in other words, the

committees of D€ are precisely the blocks of D (and vice versa).

0012-365X/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)
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In this case, we shall also say that D and D form a pair of mutually blocking
block designs. The characterisation of all self-blocking block design seems to be a
very hard problem, as we shall see. Our main result will be as follows.

Main Theorem. The Desarguesian projective planes PG(2, q%) and the Desar-
guesian affine planes AG(2, q) (with q = 4) are self-blocking block designs (for
every prime power q).

By a famous result of Bruen |7], the committees of PG(2, g%) are exactly the
Baer subplanes. Thus the first half of our Main Theorem will be an immediate
consequence of the following slightly stronger assertion: Every subset of
PG(2, g% which meets every Baer subplane has at least ¢g° + 1 points; equality
holds if and only if the subset is a line. We shall also use this result to study, more
generally, the Baer subplanes of PG(n, ¢°). Finally, we shall also show that the
designs PG(2, 3) and PG(2, 5) are self-blocking.

It should be mentioned that a related question is studied by Cameron and
Mazzocca [12]. These authors prove that the smallest hitting sets of the incidence
structure D” formed by all blocking sets of D are the lines, whenever D is a
projective or affine plane containing blocking sets. Since most blocking sets do
not contain a committee, this result is — though of a similar flavour - not related
to our results. (Our Main Theorem is stronger, but it only applies for the planes
PG(2, ¢*).) In a sequel to [12], Cameron et al. [13] study those sets hitting every
blocking set of D which do not contain a line of D (the so-called dual blocking
sets of D).

We refer the reader to Beth et al. [1] for background from Design Theory and
to Beutelspacher [3] and Hirschfeld [16] for background on blockings sets in
projective planes and spaces.

2. Preliminaries

In this section we shall collect some well-known preliminary results on hitting
sets and blocking sets of projective planes. The following simple lemma
characterizes the smallest hitting sets:

Lemma 2.1. Let D be a projective plane of order n, and let S be a hitting set for
D. Then |S| = n + 1; equality holds if and only if S is a line of D.

We next state a fundamental result of Bruen [7] which gives a lower bound for
the size of a blocking set in a projective plane of order n and which implies a
characterisation of the committees of PG(2, ¢g°). Bruen’s original proof was
somewhat involved; a simpler proof was given by Bruen and Thas [11]. An even
simpler version is a special case of a proof given in Jungnickel and Leclerc [18]
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where Bruen’s result was generalized to (r, A)-designs following a previous
generalization to symmetric designs, due to de Resmini [14] and Drake [15]. A
similar proof is also contained in Bruen and Silverman [10].

Theorem 2.2 (Bruen). Let D be a projective plane of order n, and let S be a
blocking set for D. Then |S|=n + Vn + 1; equality holds if and only if S is a Baer
subplane of D.

Corollary 2.3 (Bruen). The committees of the Desarguesian projective plane
PG(2, q°) (q a prime power) are precisely the Baer subplanes.

Writing D = PG(2, ¢°®), we thus have that the blocks of D¢ are just the Baer
subplanes of D. Since D has a 2-transitive group, it is clear that D¢ is a design
(and thus D satisfies condition (1)). We compute the parameters of D:

Proposition 2.4. Let D =PG(2,q°), q a prime power. Then the incidence
structure D€ (the blocks of which are the Baer subplanes of D) is a block design
with parameters

v=g*+q +1, k=q*+q+1, b=qg*(q*+1)(g*+1),
r=(g*+1)g*(g+1) and A=gq’(g+1)>.

Proof. The number b of Baer subplanes of PG(2, ¢°) is well-known, see e.g.
Hirschfeld [16, p. 8]. (Since each quadrangle of D determines a unique Baer
subplane this can be easily checked by the reader.) Then r is determined from
vr = bk, and 1 is obtained from A(v - 1)=r(k—-1). O

It is our aim to show that D¢ also satisfies condition (2), i.e. that the blocking
sets of D¢ are the lines of D. We remark that the bounds of Drake [15] and of
Jungnickel and Leclerc [18] yield only weak results here. The best result which
can be obtained by standard inequalities seems to be the following: It is known
that the minimum size of a blocking set § satisfies s = r/A (see Jungnickel and
Leclerc [18]), which here results in the bound s=q*— g + 1. Thus we require
special arguments.

3. Sets meeting all Baer subplanes of PG(2, ¢°)

In this section we shall prove that a hitting set S for the design D¢ of
Proposition 2.4 has at least g° + 1 points (with equality if and only if S is a line of
PG(2, g%)). We will proceed by first proving the following result complementing

Lemma 2.1:

Proposition 3.1. Let D be a projective plane of order n, and let S be a set of at



126 D. Jungnickel

most n + 1 points of D. Then one has one of the following alternatives:

There are three non-concurrent lines L, L', L" which are disjoint from S. (3)

S contains n collinear points. (4)

Proof. Assume that both (3) and (4) fail. Let G be a line that meets S in at least
two points. Since (4) fails, there are two points x, x’ in G\S. Then x and x’ are
on lines L and L’ disjoint from S, as |S|=<n + 1. Since (3) fails, every line must
contain a point of S U {p} where p = LN L', Considering the lines through x one
sees that |S| = n + 1. Thus some line H through p meets S in two points. Choose a
point g in H\(SU {p}). Then g lines on a line L" disjoint from SU{p}, a
contradiction to the assumption that (3) fails. O

Theorem 3.2. Let S be a set of points of PG(2, q°) which meets every Baer
subplane. Then \S| = q* + 1, and equality holds if and only if S is a line.

Proof. We may assume that |S|<g¢®+ 1; the assertion is that S is a line, then.
Assume otherwise. By Proposition 3.1, there are two cases to be considered.

Case 1. There are three non-concurrent lines L, L', L" which are disjoint from S.
Let p,q,r be the three points of intersection of these lines, and write
T=LUL UL" Then each point not in T forms together with p,q,r a
quadrangle and thus determines a unique Baer subplane of PG(2, ¢°). Each such
Baer subplane contains exactly (¢ — 1) points not in T; thus there are (g + 1)*
Baer subplanes containing p, g, r, and these subplanes split the points off T into
(q + 1)* sets of (g —1)* each. Since SN T =¢ and since |S|<g*+ 1, S cannot
meet all these Baer subplanes, a contradiction.

Case 2. S consists of n points of a line L and, possibly, of one further point p not
on L. Denote the unique point of L not in S by r, and note that Aut PG(2, ¢°) is
transitive on triples (L, p, r) with re L and p ¢ L, since it is transitive on
triangles. Choose any Baer subplane B, and let L' be a line meeting B only once,
say in r'. Moreover, choose a point p’ not in B' U L'. Mapping (L', p’, r’) onto
(L, p, r), we obtain a Baer subplane disjoint from §, a contradiction. 0O

Theorem 3.2 shows that the smallest hitting sets for the design D defined in
Proposition 2.4 are the lines of the original design D = PG(2, ¢°) Since no line
contains a Baer subplane, we see that these hitting sets are in fact the committees
of DY thus D satisfies condition (2) and we have proved the first half of our
principal result:

Theorem 3.3. The Desarguesian projective plane PG(2, g*) (q a prime power) is a
self-blocking block design.
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We shall consider some other designs in the following sections. But first we
mention the following consequence of Theorem 3.3,

Corollary 3.4. Let D =PG(2, %) and D€ as in Proposition 2.4. Then Aut D =
Aut D€. In other words: Any bijection of the point set of PG(2, q*) which maps
every Baer subplane onto a Baer subplane is a collineation of PG(2, ¢%), i.e. a
member of PTL(3, ¢°).

Cameron and Mazzocca [12] have shown that any bijection of a projective
plane of order #2 which preserves blockings sets is in fact a collineation. Corollary
3.4 strengthens this result for the planes PG(2, ¢%). As already mentioned, the
main interest in the sequel [13] is in sets meeting each blocking set of a projective
plane and not containing any line. This leads us to the following problem.

Problem 3.5. Let S be a set of points of PG(2, ¢*) meeting every Baer subplane
and not containing any line. What is the minimum size of §?7 (Note that such sets
exist: The simplest example is the complement of a line.)

4. Commiittees of PG(n, ¢°)

In this section we shall briefly consider the symmetric design PG,,_(n, g) with
n =3, the blocks of which are the hyperplanes of PG(n, g). By the theorem of
Bose and Burton [4], the committees of this design are the lines (if we use the
standard definitions for arbitrary incidence structures given above). Thus we
would have D€ = PG,(n, q) for D =PG, _,(n, q). Clearly D€ is a design, and the
hitting sets of minimal size of D€ are the hyperplanes, i.e. the blocks of D (again
using the theorem of Bose and Burton [4]). However, D is not self-blocking,
since the hyperplanes are not blocking sets of D¢ (they contain lines).

Since the correspondence between lines and hyperplanes sketched above is
somewhat trivial, Bruen [8] and Beutelspacher [2] have suggested to impose the
stronger condition

(*) S meets every hyperplane, but § contains no line

to define blocking sets in PG(#n, ¢). To avoid confusion, we shall call such a set S
a strong blocking set. Using Corollary 2.3 as the starting point for an induction
argument, one can prove the following result.

Theorem 4.1 (Bceutelspacher [2], Bruen [8]). Ler S be a strong blocking set of
PG, _,(n, q). Then one has |S|=q + Vq+ 1; equality holds if and only if S is a
Baer subplane of some plane of PG(n, q).
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Thus the strong committees of PG,_,(n, g°) are the Baer subplanes of the
planes of PG(n, ¢%). Clearly all these Baer subplanes form a block design; we will
not bother determining its parameters. We shall now show that Theorem 3.2 may
be used to obtain a lower bound on the cardinality of hitting sets for this design.

Theorem 4.2, Let S be a subset of PG(n, q), q a square, which meets every Baer
subplane. Then |S|=q" '+ ---+q+ 1.

Proof. We use induction on n; the case n =2 is true by Theorem 3.2. Now
assumne that the assertion holds for n — 1, where n = 3. Let H be any hyperplane
of PG(n, g), and put S, =SNH. Clearly S, meets every Baer subplane of
PG(n, q) contained in H. Since H is isomorphic to PG(n —1, q), we obtain
ISyl =¢q" ">+ - -+ g+ 1. Now count flags (p, H) where p is a point in S and H a
hyperplane to obtain

(@"+ g+t 1)@+ g+ D)SIS|(@ T+ g+,
hence
IS|=q" 7+ +q+1+q"(q" 2+ +q+ /(@ '+ +g+1)

which gives the assertion. O

We have not been able to characterize the case of equality in Theorem 4.2.
Note that the hyperplanes do give examples, but there might be other ones. Of
course, the hyperplanes are not blocking sets of the design formed by the Baer
subplanes of PG(n, q), g a square, and thus PG, _,(n, q) is not self-blocking for
n =3, no matter whether one considers ordinary or strong blockings sets. We
conclude this section with the following conjecture.

Conjecture 4.3. Let S be a subset of PG(n, q), q a square, which meets every Baer
subplane. Then |S|=q""'+---+q + 1 if and only if S is a hyperplane.

5. Committees of PG(2, 3) and PG(2,5)

In this section we shall show that PG(2, 3) and PG(2, 5) are self-blocking. First
let D =PG(2, 3). It is known that the committees of D are precisely the projective
triangles, see Hirschfeld [16, Th. 13.4.4]. This means the following (cf. Fig. ). A
committee consits of a triangle p,, p,, p; and of three collinear points q,, ¢,, g3,
where g, is on p;p, (i, j, k a permutation of 1, 2, 3). Note that the line q,¢9,q,
contains a unique fourth point g, (which forms a quadrangle together with the
pi’s) and that the line joining the g,’s is the unique line through g4 not containing
any p;. So in fact the committees of D are determined by the quadrangles with a
distinguished point g,. This shows that any triangle p,p,p; is contained in
precisely four committees as the complement of a collinear triple. But since the
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Fig. 1.

triangle p;q,q, together with the fourth point on p;p,q; determines the same
committee as p,p,p; and q,, each committee contains four triangles as the
complement of a collinear triple. Thus the number of committees agrees with the
number of triangles. Hence D* is a block design with parameters

v =13 b =234, k=6, r=108 and A=45.

Note that PGL(3, 3) acts transitively on committees.

We now claim that the blocking sets of D€ have size at least 4, and that
equality occurs only for the lines of D. (Clearly the lines of D are blocking sets
for D€.) Thus let S be a blocking set of D¢ and assume |§| =< 4. We have to show
that § is a line. This is accomplished by proving that any other configuration of at
most 4 points will be disjoint from a suitable committee. Because of the
transitivity properties of PGL(3, 3) it is clearly sufficient to consider a committee
and to show that every type of configuration of at most 4 points is contained in its
complement, excepting lines. This can be seen by elaborating Fig. I (see Fig. 2).
Let a=p,qsNp.ps, b=pip.Naq,, c=abNpq,, d=bq,Np,a, e=bq,N
PP f=aeNpc. This gives most of PG(2,3), and the complement of our
committee contains both the quadrangle abeq, and the three collinear points bde
together with the point a not on bde. This proves the assertion. We collect our
results:

Theorem 5.1. Let D = PG(2, 3). Then D€ is a design S,s(2, 6, 13), and the hitting
sets of minimal size of D€ are the lines of D. Thus D is self-blocking.
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Fig. 3.

We now turn our attention to the case D = PG(2, 5). Here the committees are
determined by a conic C together with two points p and q on C as follows (cf.
Hirschfeld [16, Th. 13.4.7]). Let r be the point of intersection of the tangents at C
in p and ¢, and let L = pq.

Then S =(CULU {r})\{p, q} is a committee. Note that PGL(2, 5) is transi-
tive on committees. Cf. Fig. 3. Clearly the committees form a design D the
determination of its parameters will be omitted. One can then use arguments
similar to those for PG(2, 3) to show that the smallest hitting sets of D are the
lines of D. The case analysis is, however, more involved. We omit all details and
just state the following result.

Theorem 5.2. PG(2, 5) is a self-blocking block design.
In the light of Theorems 5.1 and 5.2, the following problem is natural:
Problem 5.3. Is PG(2, q) self-blocking for all prime powers ¢?

Since at present not even the committees of PG(2, ¢) are known (unless ¢ is a
square or very small), there seems to be no hope of solving this problem with the
present methods. David A. Drake has shown that PG(2, 7) is also self-blocking
(private communication).

6. Committees of AG(2, q)

In this section we discuss the committees of the Desagruesian affine plane
AG(2, q), where g =4. (It is well known that AG(2,2) and AG(2,3) do not
contains any blocking sets.) We first recall the following fundamental result of
Jamison [17].

Theorem 6.1 (Jamison). Ler S be a hitting set of AG(2, q). Then |S|=2q — 1.

A somewhat simpler proof of 6.1 is given in Brouwer and Schrijver [5]. It
should be noted that 6.1 does not hold for non-Desarguesian affine planes, see
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Bruen and de Resmini [9]. For example, the Hughes plane of order 9 gives rise to
an affine plane of order 9 containing a blocking set with 16 points only.

Unfortunately, the case of equality in Theorem 6.1 has not been characterised.
In fact it seems that the committees of AG(2, ¢) have not been discussed in the
literature up to now (except for g =4). As we shall see, the case g=4 is
exceptional. We thus start by exhibiting three classes of committees of AG(2, ¢),
where g = 5.

Example 6.2. Let ¢ =5 be a prime power, and let D = AG(2, q). Choose a
triangle p, g, r and put L=pq, L'=gr. Let s be the intersection point of the
lines parallel to L (resp. L’) passing through r (resp. p), and let ¢ be any point
#p,r on pr. Then S=(LUL U{s, t})\{p, r} is a blocking set of cardinality
2g — 1 and thus (by 6.1) a committee of AG(2, q). Cf. Fig. 4.

Example 6.3. Let g =5 be a prime power, and let D = AG(2, gq). Choose a g-arc
C meeting each line in the parallel class of some line L. (C is a parabola obtained
from a conic in PG(2, q), where we take a tangent as line at infinity.) Let
p=CNL, and choose a point r ¥ p on the tangent at C through p. Then
S=(CULU{r})\{p} is a blocking set of cardinality 2¢ —1 and thus a
committee of AG(2, g). Cf. Fig. 5.

Example 6.4. Let g be any prime power =3 and consider a Baer subplane B of
PG(2, g%). Choose a tangent line L., of B and use this line in defining the affine

Fig. 5.
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P Lo

PG(2,9%)

Fig. 6.

plane AG(2, ¢°). Denote the point of intersection of B and L. by p and write
B'=B\{p}. Then the subset B’ of AG(2, ¢°) meets every line of AG(2, g°)
excepting the g> — g — 1 further tangents of B through p. Select one point on each
of these tangents (arbitrarily, but not using g> — g — 1 collinear points). Adjoining
these points to B’ then results in a committee § of AG(2, ¢°). Cf. Fig. 6.

Problem 6.5. Dectermine all committees of AG(2, q), where g = 5.

Since we do not know whether there are any committees of AG(2, gq) different
from those described in 6.2, 6.3 and 6.4, we cannot compute the parameters of
the design D¢ formed by the committees of D = AG(2, ¢). However, D* clearly
is a design, since Aut AG(2, g) is 2-transitive.

We now consider the case ¢ = 4. Note that the constructions of 6.2, 6.3 and 6.4
do not necessarily result in blocking sets here but only in hitting sets: In 6.2, S
may contain the line s¢, in 6.3, the point r may be on a line contained in §. We
first exhibit a class of blocking sets of size 8 (which is a special case of blocking
sets used by Cameron and Mazzocca [12]).

Example 6.6. Let L and L’ be two parallel lines of AG(2, 4), and choose points p
and p’ on L and L', respectively. Let r, s be the remaining two points on the line
pp'. Then S =(LUL'"U{r, s})\{p, p'} is a blocking set of size 8. Cf. Fig. 7.

There is some confusion in the literature regarding the size of the committees
of AG(2,4). By Theorem 6.1, each hitting set has at least 7 points. Now Bruen
and Thas [11] claim that it is easy to construct a blocking set of size 7 in AG(2, 4)
by using a Baer subplane of PG(2,4). On the other hand, Bruen and Silverman
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prove the following result in [10]:

If § is a blocking set in an affine plane of square order n,
then|{S|=n+Vn+2. (5

(Note that this result has been misquoted in [9] where the condition that n is a
square was omitted.) We shall provide a proof at the end of this section. Note
that (5) implies that any blocking set of AG(2, 4) has at least 8 points. We shall
now give a proof of this fact and also determine the structure of these sets. More
precisely, we show the following:

Proposition 6.7. All blocking sets of AG(2, 4) have 8 points and arise as described
in Example 6.6.

Proof. Let S be a blocking set of AG(2, 4); as already noted, 6.1 implies |S| = 7.
Assume that || =7. Embed AG(2, 4) into the projective plane PG(2, 4) and add
any point p on the line at infinity to S. This results in a blocking set S’ of size 8 of
PG(2,4). Now Theorem 3 of Bruen and Thas [11] yields two possible cases:

Case 1. §' is a Baer subplane B of PG(2, 4) together with a further point q.
Clearly g is one of the points of S, since B has to meet the line at infinity (in p).
Thus the point g has to be on the second line of PG(2, 4) which meets B exactly
in p. But this line is met by each of the four lines of B not containing p, and so ¢
is on one of these lines. Thus § contains a line of AG(2, 4) passing through ¢, a
contradiction.

Case 2. There is a triangle p, g, r and a point s on gr, such that §' = (pg Upr U
{sD\{q, r}, see Fig. 8 Note that p is indeed on the line at infinity. Thus the lines
pq and pr are parallel in AG(2,4), and S does not meet one of the parallels of
these two lines, a contradiction.

This shows that each blocking set of AG(2, 4) contains at least 8 points. Since
the complement of a blocking set is also a blocking set, we see that all blocking
sets of AG(2, 4) have size 8. Standard counting arguments show that b, =56, =8
and b, =4 where b; is the number of i-secants of a blocking set S (i.e., of lines
that meet S in exactly i points). Thus some parallel class of AG(2, 4) contains two
3-secants of S. It now follows easily that S is of the type of Example 6.6. O
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Corollary 6.8. Let D = AG(2,4). Then the committees of D form a resolvable
design D€ with parameters

v =16, b =120, k=28, r=60 and A=28.
Proof. Left to the reader. [

We conclude this section by proving (5); our proof will be different from the
one in [10]. Let A be an affine plane of order n, where n is a square, and let S be
a blocking set of A. Bruen and Thag [11] show that |S|=n + Vn + 1. (It is in fact
easy to deduce this from Theorem 2.2: Adding a point on the line at infinity to S
results in a blocking set of the projective extension P of A.) Assume now
IS|=n+ Vn+1. Arguing as in the proof of 6.7, we get a blocking set S’ of P
with |S'|=n + Vn+2. We may assume n > 4; then only Case 1 above can occur
(see [11, Th. 3]), and we obtain a contradiction as above. Thus we have:

Theorem 6.9 (Bruen and Silverman). Let S be a blocking set in an affine plane of
order n, where n is a square. Then |S|=n + Vn +2.

7. Sets meeting all committees of AG(2, q)
In this section we prove our second principal result:

Theorem 7.1. Let D = AG(2, q), g =4, and let S be a set of points of D which
meets every committee. Then |S| = q, and equality holds if and only if S is a line
of D.

Proof. We first assume g = 5. Assume that § meets all committees of D, where
[S] <g. We have to show that $ is a line, then. In fact we will prove that this
assertion already follows from the assumption that § meets all committees of the
type described in Example 6.2. To this end, we consider S as a subset of the
projective extension PG(2, ¢) of D. By Proposition 3.1, we see that either S is a
line of AG(2, q) or that there are three non-concurrent lines of PG(2, ¢) which
are disjoint form S. We have to show that the second alternative is impossible.
Assume otherwise; then there are two intersecting lines L and L' of D which are
disjoint from S. We can choose any one of the ¢° —2¢ + 1 points outside of
LU L’ as the point s described in Example 6.2 by suitably selecting the points p
and r on L and L', respectively. Thus there are at least g> — 3q + 1 choices of s for
which s ¢ S. A computation shows that we may then select s in such a way that
there is a point 1 on pr which is not contained in s. But this means that § misses
the commiitee just constructed, a contradiction.

It remains to consider the case g =4. The committees of AG(2, 4) have been
determined in Proposition 6.7 (see Fig. 7). Clearly the complement of the
committee given in Fig. 7 contains all types of configurations of at most 4 points,
excepting the lines. Using the transitivity properties of Aut AG(2,4) this will
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yield the assertion (cf. the analysis for PG(2, 3)). The details are left to the
reader. [

Corollary 7.2. The Desarguesian affine plane AG(2, q), q =4, is a self-blocking
block design.
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There are exactly 16 non-isomorphic Steiner systems S(2, 4, 25) with nontrivial automorph-
ism group. It is interesting to note that each of these designs has an automorphism of order 3.
These 16 designs are presented along with their groups and other invariants. In particular, we
determine and tabulate substructures for each of the sixteen designs including Fano subplanes,
ovals, complete S-arcs, parallel classes and near-resolutions. One design has three mutually
orthogonal near-resolutions and this leads to an (already known) elliptic semiplane. The
sixteen designs are discriminated by means of the substructures mentioned above. Although
not tabulated in this paper, we did compute the block-graph invariants which also discriminate
the sixteen designs.

1. Introduction

A Steiner system S(¢, k, v) is an ordered pair (X, B) where X is a v-set of
points and B a collection of k-subsets of X, called blocks, such that any ¢-subset
of X appears exactly once among the blocks in B. For details and basic facts on
Steiner systems and ¢-designs see [2, 9], or [15].

If H is a group of automorphisms of a ¢-design (X, B) let X, X,, ..., X,, be
the point-orbits and Oy, O,, ..., O, be the block-orbits of H. We define the
tactical decomposition of (X, B) with respect to H to be the m Xn matrix
T, = (t;) where t;=|X;NB| with Be O;. When o is an automorphism of the
design (X, B) we let T, be the tactical decomposition of the design with respect to
the cyclic group generated by o. For a more general and detailed treatment of
tactical decompositions see [2].

Let r be the number of blocks passing through any given point of X and A= A,
the number of blocks passing through any pair of points of X. If A = (a;) denotes
any point-block incidence matrix of (X, B), then easily

AA =M+ (r=A)I1, Al=1] (D)

0012-365X/89/$3.50 ©) 1989, Elsevier Science Publishers B.V. (North-Holland)
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where I, J are the identity and all ones matrices. We immediately get:

2 ligSq = I'i 2 ligliqSq = Ari;, (2)
g=1 g=1
where r,=|X;|, 5,= 0| and 1 <i, j<m, i#].

The block-intersection graph of the design (X, B) is the graph whose vertices
are the blocks of B, where two blocks B; and B, are adjacent whenever
B, N B, # 8. For a given vertex v, let n; be the number of pairs of v, ¥ different
from v such that exactly j other vertices are simultaneously adjacent to v, v, .
The matrix of row vectors (- - -, n;, - - ) one for each representative v of a block
orbit under the full automorphism group G of (X, B) is the block-graph invariant
of (X, B). The block-graph invariant of a design is also related to the so called
4-vertex condition (see [11]). When (X, B) is a Steiner 2-design, the block-
intersection graph is strongly regular (see [4]). The block-graph invariant
provided a discriminant during early stages of our study of S(2,4,25)%s.
Subsequently, we investigated substructures which had more interpretive value
than block-graph invariants, and these substructure properties also discriminate
the 16 known S(2, 4, 25)’s. Thus for each design we tabulate substructure data
but we do not present the block-invariants.

2. Structure of automorphisms and other facts

In this section we develop some of the structural properties of automorphisms
of $(2, 4, 25)’s. We denote by G the full automorphism group of an S(2, 4, 25).
The following theorem was proved in [12].

Theorem 2.1. Let p be a prime dividing the order of the full automorphism group
G of an §(2, 4, 25). Then, p =2, 3, 5 or 7. Further, if & € G has order p and
(1) p =3, then « fixes 1 or 4 points;
(ii) p =5, then « fixes no points;
(iii) p =7, then « fixes 4 points.

We presently establish the following:

Theorem 2.2. Let o be an automorphism of an S(2, 4, 25) where « has order 2.
Then, « fixes 1 or 5 points.

Proof. Let B be the 50 blocks of an S(2, 4, 25) on the set X =FUY, with
YN F =46, where F is the set of fixed points of a. Let B,={Be B:|BNF| =i},
0=i=<4, and set b, = |B;|. Let f = |F| and 1 = b,. Clearly f is odd and b, = 0. Let
by be the number of fixed blocks in By, and set by =b,— b, We will argue that
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the possible values for our parameters are given in the following table:

by| f by’ by b, b, bs
((25-1%/4) [(GrF-34f+175)/4) |f(9—1) |(f(f-1)/2)
t | f +3¢ —61 +8t —6t 0
0 36 8 0 0
5 20 20 10
5 14 28 4 4]

Now, any block in B, is uniquely determined by a pair of points of F which are
not covered by a block in B,, so we easily get the formula for b,. We call a pair
of points of X appearing in a 2-cycle of a a pure pair. Note that each block of B,
uses a unique pure pair. The blocks in B, that are fixed by « are formed by
pairing-off the pure pairs which are not covered by B,. An easy count yields the
formula for b, Observe that the number of fixed blocks b,+ b, + bo=(f —
1)2/4 + 2(3 — £) must be even and hence f =1 (mod 4). To cover pairs of points in
Y we have that b, + 3b, +6b,+ 6b}=(*57) and since b, + b, + b, + b+ b}, =
50, we easily get the formulas for b, and bj. Now 0=< b and 0 < bj easily gives
2(f% —25) <24t <3f*—34f + 175, and then 0<(f —25)(f —9). But « has order
250 f#25 and if f =9 then byby <0. Hence, f =1, or 5 and the possible values
for r complete our table. O

An S(2, 4, 25) with automorphism group of order 150 was constructed by R.C.
Bose in 1939. In 1980 three S(2, 4, 25)’s with automorphism groups of orders 504,
63 and 21 respectively were constructed by A.E. Brouwer (unpublished) and
independently by V.D. Tonchev (also unpublished). The four designs just
mentioned appear listed in [4]. Brouwer and Tonchev show the following:

Theorem 2.3. There are exactly 3 non-isomorphic Steiner systems S(2, 4, 25)
having an automorphism of order 7 and exactly one with an automorphism of
order 5. The orders of G are 504, 63, 21 and 150 respectively.

It was shown in [9] that 3* cannot divide the order of the automorphism group
G of an S(2, 4, 25) and that there are exactly five S(2, 4, 25)’s with 9 dividing the
order of G. It was also shown that when 9 divides the order of G, a 3-Sylow
subgroup of G is elementary abelian. An S(2, 4, 25) with |G| =9 was announced
by H. Gropp [5] but all eight of the designs mentioned above were constructed by
L.P. and A.Y. Petrenyuk [16, 17], by means of transformations on an initial
S(2, 4, 25). We briefly discuss these methods in Section 6.

In what follows we obtain 8 new S(2, 4, 25)’s each admitting a full automorph-
ism group of order 3, and we establish that there are no new S(2, 4, 25)’s in case
2 divides |G|. Thus, there are altogether sixteen nonisomorphic S(2, 4, 25)’s with
nontrivial automorphism group.
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3. Automorphism of order 3 and tactical decompositions

From Theorem 2.1 we sce that an automorphism of order 3 fixes either 1 or 4
points. In what follows, when the automorphism fixes 1 point we denote it by a,
when it fixes 4 points by . Unfortunately these elements a and 8 are not the a,
B used in [12]. We have chosen to present Designs 1 to 8 in exactly the same form
and order as in [12]. To alleviate notational problems in this paper we denote by
@&, P the automorphisms a, f in [11]. Thus Design 1 has automorphism

&B =(159)(267)(348)(10 14 18)(11 15 16)(12 13 17)(19 20 21)(22 23 24)(25)

which is conjugate to « in our present work. An isomorphic copy of Design 1
arises from Case A and has the fixed blocks {1,5,9,25},
{2,6,7,25},...,{22, 23, 24, 25} in our presentation.

First we consider the automorphism

a=(123)(456)(789)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25).

Let X, ={1,2,3}, X,={4,5,6}, ..., Xy={22, 23, 24} be the point-orbits of X
determined by the 3-cycles in a. Let O, be an orbit of blocks in B. Then, |0,| =1,
or 3. Note that |O;| = 1 if and only if O, = {X; U {25}} for some i € {1, 2, ..., 8}.

Our basic strategy is to construct all possible tactical decompositions correspond-
ing to a and then determine whether any of these tactical decompositions leads to
an S(2, 4, 25). In general, when we display T, we will omit the rows and columns
corresponding to fixed points and fixed blocks.

Now, any element of X appears exactly 8 times amongst the blocks B so that «
must fix 8, 5, or 2 blocks. This yields three cases to be considered.

Case A. « fixes 8 blocks.

Clearly a tactical decomposition T, has 8 columns with entries a single 3 and
seven 0’s. The remaining portion of T, is an 8 by 14 matrix of 0’s and 1’s with row
sums of 7, column sums of 4 and since each pair from X appears exactly once
among the blocks of B, the inner products of distinct rows of T, are all 3. Hence,
the tactical decompositions in this case correspond to 2 — (8, 4, 3) designs. There
are exactly 4 such nonisomorphic designs which we label A, A,, A;, A, In
Table 1 we list A; and A, since S(2, 4, 25)’s arise only from these cases.

Case B. « fixes 5 blocks.

We can assume that the 5 fixed blocks are X;U {25}, 4=<i<28 and that the
remaining orbit of blocks containing the point 25 is generated by the block
{1,4,7,25}. The remaining 14 columns of our tactical decomposition consists of 3
columns with one 2 in rows 1, 2, 3 respectively and 11 columns with exactly four
I's. In Table 1 we present the 8 by 15 portion of some tactical decompositions
corresponding to the orbits of length 3. Note that inner products between distinct
rows must again all be equal to 3. There are 8 nonisomorphic tactical
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Table 1
Some Tactical Decompositions for Automorphisms o« and g of Order 3

Ay ¢, Car D, B,
00000001111111  0000000001111111 0000000001111111 00000001111111  000101010001111
00011110000111  0000011110000111 0000011110000111 00011110000111  100001100110011
11100010001011  1000100120111000 1000100120111000 01100110011001  100110001010101
01101100110001  1001101102000001 1002001101001001 10001111101000  101010010201100
10110101010010  1011011000002010 1020011000011010 10110010110010  011001011021000
11010100101100  0101111000020100 0101210000010011 11011000011100  011010101000120
10101011100100  0111010100200001 0110101012000100 11100101000110  010100101101001
01011011011000  0120100011000110 0111010100200100

A, C Cyy D,
00000001111111  0000000001111111 0000000001111111 00000001111111
00011110000111  0000011110000111 0000011110000111 00011110000111
01100110011001  1000100120111000 1000200110011001 11100010001011
01111001100001  1001102001001001 1002001010101010 00101110111000
10101010101010  1010120001010010 1020001101001100 01110011010100
10110101010010  0102010100110001 0101110102000010 10110101100010
11001101001100  0111100011000200 0110111000200001 11011000101100
11010010110100  0120001100101010 0111010010020100

B, Cy Cgy Ey
100000000111112  0000000001111111 0000000001111111 000101010001111
100001112000110 0000011110000111 0000011110000111 100100100110011
100120110011000  1000100120111000 1000200110011001 100010011010101
001101010101010  1001102001001001 1002001010101010 101001101012000
010101100110100  1020011000110010 1020010011001100 011001010210100
011010001101100 0101020101011000 0101110102000010 011010101000120
011011100000011 0110200101000110 0110111000200001 010110001101001
011100011010001  0112000010100101 0111001100020100

B, Cy Ces E,
100000000111112  0000000001111111 0000000001111111 000101010001111
100001112000110 0000011110000111 0000011110000111 100001100110011
100120110011000 1000100120111000 1000200110011001 100110001010101
001101010101010  1002001101001001 1002001010101010 101010010112000
010111001100001  1011110000010020 1020010011010010 011010100100210
011000101111000 0100112001110000 0101120001001100 011001012100001
011011000010110 0111100100100200 0110102001100001 010100101011010
011100110000101  0120010011001001 0111000200110100

By Ciq Oy Eq
100000000111112  0000000001111111 0000000001111111 000101010001111
100001112000110 0000011110000111 0000011110000111 100100100110011
101120010001010  1000100120111000 1001100020011001 100010011010101
001101100110010 1002001101001001 1010100200101010 101001011201000
010010110110100 1020010101010010 1011002001001100 010110101012000
010101110001001  0101120000110001 0101110102000001 011010100100210
011011001010001 0110102000101010 0110111000020010 011001001010011
011100001101100  0111100011000200 0111010010200100

decompositions but we list only B, B,, and B, because only these give rise to

designs.

Case C. « fixes 2 blocks.

Here we can assume that the fixed blocks are {1,2,3,25}, {4,5,6,25} and
that the design contains the orbits generated by {7,10,13,25} and
{16, 19,22, 25}. 1t easily follows that the tactical decompositions have a single 2
in each of rows 3, 4, 6, 7, 8. In Table | we list 10 out of a total number of 91
tactical decompositions again presenting only the 8 by 16 portion related to the
orbits of length 3.
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We now consider the automorphism
B=(123)(456)(789)(1011 12)(13 14 15)(16 17 18)(19 20 21)(22)(23)(24)(25),

fixing 4 points of X. Let X, ={1,2,3},..., X;={19, 20, 21}. Since each point
appears in exactly 8 blocks it is clear that the number of fixed blocks through each
of 22, 23, 24, or 25 must be congruent to 2 modulo 3. It is easily seen that we
must consider exactly two cases.

Case D. B fixes 8 blocks.

Since the blocks fixed by 8 are unions of point-orbits of the group (B), it is
clear that the fixed blocks are {22,23, 24,25}, {19,20, 21,25}, {16, 17, 18, 25},
{13, 14,15,25}, {10,11,12,25}, {7,8,9,24}, {4,5,6,23}, and {1,2,3,22}.
Exactly two tactical decompositions D,, D, arise here and are given in Table 1.

Case E. B fixes 5 blocks.

Without loss of generality the five fixed blocks can be chosen to be
{22,23,24,25}, {19,20,21,25}, {7,8,9,24}, {4,5,6,23}, {1,2,3,22}. Exactly
9 tactical decompositions arise in this case. In Table I we list the four tactical
decompositions E,, L4, E,, and E; which produce S(2, 4, 25)’s.

Table 2
Some Tactical Decompositions for Automorphisms  and 6 of Order 2
An B, C, Dy
1000000000000000111111 1000000000000000111111 1000000000000000111111 00000000000001111111
1000000000011111000001 1000000000011111000001 1000000000011111000061  00000000111110000011
1000000111100001000010 1000000111100001000010 1000000111100001000010  00000111000110001100
0100001000100011001100  0100000001100110001100  0100000001100110001100  00001011011000110000
0100010000101100010010  0100001010000011110000  0010000010101010110000 10010001100011010000
0100100011000010010001 0100001100011000000110  0001000110010100010100 10011100001000000101
0010011101000110000000  0010011010101100000000  0100011011011000000000 10100100010101100000
0010110010100000100100  0010101101000000011000  0010101101000000100100  01010110100000100010
0010101000011000011000  0001110000001010010100  0001110000010010101000  01101010000011000001
0001100001010100100010  0010110000010001100010¢  0001101000001001010010  01110000001100011000
0001001110010000000101 0001010100110000001001  0100110100000100000011
0001010100001001101000  0001100011000100100001  0010011000100001001001
Dy Dy E,

00000000000001111111 00000000000001111111 000000010010010001111

00000000111110000011 00000000111110000011 000010000100100110011

00000111000110001100 00000111000110001100 000100100001001010101

00001011011000110000 00001011011000110000 001001001000001101001

10010001100011010000 10010001100011010000 100100010010101100000

10011100001000000101 10011100001000000101 100011000100011000100

10100110010001000010 10100110010001000010 101000010101000011000

01010100110000101000 01011000010101001000 010010101000010011000

01101001100000000110 01101001100000000110 011000100011000100010

01110010000100010001 01110010000010100001 010101001000100000110
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Table 3
5(2,4,25)’s and the Tactical Decompositions from which they arise
al=1Al=3 | ll-1s-2
Design No. |G| a B v §
1 504 4.0, E.| A
2 63 450 |  ExEr
3 9 B2Co | DaEs
1 9 B.Cu | DyEs
5 9 B Cqy DB,
6 150 Cm Do
7 21 Eq
8 6 Coe Do
9 3 C,
10 3 Ca:
11 3 Ce
12 3 Cer
13 3 Cas
14 3 Crs
15 3 Ee
16 3 E,

4. Solutions to tactical decompositions

Consider the tactical decomposition A,. In order for A, to actually give rise to
an S(2, 4, 25) for each column j of A, we need to select elements of a block B so
that BN X,| =¢;, 1=<i<8. Each such choice for 1=<j <14 will generate orbits
0;, 1 =j<14. Furthermore, for the $(2, 4, 25) to exist each pair from X must be
covered exactly once. A fairly fast algorithm run on a Mac+ microcomputer took
about 1 minute to find all solutions for a given tactical decomposition.

A fast graph-isomorphism program, written by Brendan McKay was used to sift
isomorphic designs. The public domain program, written in C, computes, among
other invariants, generators for the automorphism group of the graph, a canonical
form for the graph, and a hash code for this canonical form. Given a design
D = (X, B) we construct a graph with vertex set X UB where v,,v,e XUB
are adjacent if v, € X, v,e B and v, is incident with v,. Clearly two designs
D, D, are isomorphic if and only if their graphs are isomorphic and this can
be checked by means of the hash codes computed for the graphs. A similar
algorithm is used to sift out isomorphic tactical decompositions. In many
cases there are no solutions and in some cases more than one nonisomorphic
design arises from a single tactical decomposition. For the §(2, 4, 25)’s with an
automorphism group of order 9. since conjugates of both a and f are present in
the elementary abelian G, the S(2, 4, 25)’s naturally arise from more than one
tactical decomposition.

Occurrences of solutions are listed in Table 3. Note that all eight previously
known S(2, 4, 25)’s were rediscovered along with the 8 new S§(2, 4, 25)’s with
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Table 4
The S(2,4,25)'s with |G | > 3
Design 1 Design 2 Design 3 Design 4 Design 5 Design 6 Design 7 Design 8
123819 12319 12319 12319 12319 12625 12 414 1242
41011 14722 14722 14722 1 41015 131119 13713 13811

1

150925 16925 1502 156926 16925 1 41417 156611 15924
1 61422 161011 161011 161014 1 61122 1 51024 1 81525 16715
1
1

71817 181718 181718 181217 171216 17812 1 91722 1101317
81223 1121424 1121328 1111321 181823 191618 1101923 1121921
1131820 1131620 1141620 1152024 1181720 1131523 1121624 1141822
1152124 1152123 1152124 1161823 1142124 1202122 1182021 1162023

2 41523 241112 241112 2 41115 241223 23721 2358 2 31419
2 51112 25823 25 823 2 6823 251113 2 41220 26 712 25816
26725 26725 26726 26712 26712 2 51518 2 91625 26 912
281718 2 918618 2 91618 291018 2 81017 289138 2101822 2 71823

291024 2101522 2101424 2121421 2 91624 2101719 2112023 2101122
2132122 2132124 2132122 2132022 2141820 2111424 2131724 2131520
21416 20 2141720 2151720 2161724 2152122 2162223 2151921 2172124

348125 34825 34825 3482 34825 3 4 822 3469 3 41015
351324 3 51012 3 51012 3 51213 3 51024 3 51316 31017125 35713
361012 36924 36924 38 924 3 61214 3 61820 3111922 3 62125
371122 371817 3 71617 3 71116 3 71722 3 91014 31221123 3 91622

391618 3111323 3111522 3101521 391118 3121525 3141824 3121723
31421128 3142122 3131820 3142023 3132123 3172324 3151620 3182024

31561720 3151820 3142128 3171822 315 16 20 45 923 456 710 4 51120
45 620 4 6 620 45 620 4562 46 620 4 61015 4 81924 4 6 814
4 71314 4 91314 491314 4 91317 4 71318 4 71619 41118125 4 71621
4 91722 4101621 4101721 4101223 4 91422 4111321 4122022 4 91718

4121621 4151724 41516238 41416 19 4111621 4182425 4131523 4121824
4181924 4181923 4181924 4182124 41719 24 5671 4161721 41922123
6 71823 6 71415 5 71415 5 71418 5 71523 5 81720 5 92024 5 61722
5 81415 5111721 5111821 5101124 5 81416 5121422 5121925 5102123
5101721 51318 22 5131724 5151719 6121721 6192126 5132122 5121415
5161922 6161924 5161922 5162122 5181922 6 81624 5141623 5181925
6 81624 6 81315 6 81315 6 81516 6 81324 6 91922 5151718 61019 20
6 91315 61218 21 6121621 6111222 6 91517 6121317 6 81723 6112324
6111821 61416 23 61418 22 6131819 6101821 6142123 610 21 24 6131618
61719238 6171922 6171923 6172123 6161923 7 91728 6132025 7 81924
789121 789121 78092 780921 78921 7102023 614 15 22 7 91025
710156196 7101319 71018238 7101720 7101419 7131418 616 18 19 7111417
7122024 7111824 7111319 7121924 7112024 7152224 7 81622 7122022
8 10 20 22 7122023 7122024 7131523 8111519 8101821 791823 8 915123
8111319 8102024 8102022 8101922 8122022 8112325 7111524 8101218
9112023 8111419 8111624 8111820 9102023 8141519 7142125 8132122
9121419 8121622 8121419 8131424 9121319 9111520 7171920 81720125
10131623 9101723 9101519 9111923 10111225 9122124 8 91121 9111319
10141825 9112022 9112023 91216 20 1013 16 22 10111216 81014 20 9 14 20 21
111417 24 9121519 9121722 914 15 22 11141723 10132225 8121318 10 14 16 24
11151628 1014 18 25 101316 25 101316 25 12151824 111718 22 9101215 11121625
12131725 111516 25 11141726 11141725 13141525 12181923 5131419 111518 21
121518 22 12131726 12151826 12151825 16 17 18 25 131920 24 10111316 131423125
19202125 192021256 19202125 19202125 192021 26 1416 20 25 11121417 15161719
22232425 22232425 22232426 22232425 22232425 1516 17 21 2223 2425 1522 24 25

automorphism group of order exactly 3. All 16 designs are listed in Tables 4
and 5.

5. Automorphisms of order 2 and their tactical decompositions

From Theorem 2.2 an automorphism of order 2 fixes 1 or 5 points. First
consider the automorphism fixing a single point:

y = (12)(34)(56)(78)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21 22)(23 24)(25).
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Table 5
The S(2,4,25)’s with |G| =3
Design 9 | Design 10 [ Design 11 | Design 12 | Design 13 | Design 14 [ Design 15 | Design 16

1232 12325 12328 1282 1232 1232 12322 12322
1 41624 1 42024 1 41920 1 42022 1 41623 141823 1 41824 1 41324
151221 1 51123 151123 151018 15721 15719 151721 151620
1 61322 1 61421 161314 161517 161214 161214 16 820 16819
171415 171517 171518 171214 181018 181524 171125 171718
181718 1812186 1 81024 181316 1 91822 191116 1 91618 1 91025
1 91920 1 91322 191621 192324 1112024 1102022 1101415 1111415
1101123 1101819 1121722 1111921 11561719 1131721 1121923 1122123
2 41423 2 41519 2 41415 2 41318 2 41015 241015 24921 2492
2 51722 2 52122 25652021 252128 2 51724 2 51624 2 51424 2 51424
2 61019 2 61224 2 61224 2 61116 26819 26 820 2 61819 2 61721
2 72021 2 71423 271719 272224 2 71428 2 71217 271617 2 71125
2 81315 2 81318 2 81316 2 81015 291116 291322 2 81225 2 81618
2 91618 2 91017 2 91122 291417 2122122 2112123 2102023 2101923
2111224 21116 20 2101828 2121920 2131820 2141819 2111315 21213815
3 41120 3 41022 3 41022 3 41217 3492 340921 341620 3 41819
351524 3 51320 3 51315 3 51416 351113 351118 35719 3572
3 61823 3 61923 3 61921 361924 3 61822 361722 3 61524 3 61524
371617 371118 3 71223 371518 3 71217 371423 3 81718 3 81225
3 81921 3 81524 3 81820 382228 3 81524 381018 3 91025 3 91617
391314 3914186 3901417 391118 3101923 3121924 3112123 3101314
3101222 3121721 3111624 3102021 3141621 3151620 3121314 3112023
45625 45625 4 5625 45625 456 625 45625 4 5628 4 5 623
4 71219 4 71621 471121 4 711238 4 72224 4 72224 4 71022 4 71022
48 922 4 8 923 48923 48921 4 81213 4 81213 4 81519 4 81421

4101518 4111213 4121618 4101419 4111921 4111920 4111217 4111216
4131721 4141718 4131724 4151624 4141718 41416 17 4141825 41517125
57923 57 924 57924 57919 5 82223 § 82223 5 81122 5 81122
5 81020 5 81719 5 81219 5 81224 6§ 91014 5 91014 5 91320 § 91519
5111316 5101214 5101617 5111520 5121920 5122021 5101218 5101217
5141819 5151618 51418 22 5131722 65151618 5151718 5151625 5131825
67 824 6 7822 67 822 6 7 820 6 71115 6 71115 6 71421 6 71320
6 91121 6 91820 6 91020 6 91022 6 92824 6 92324 6 91222 6 91222
6121417 6101115 6111718 6121321 6102021 6101921 61011 16 6101118
61516 20 6131617 61516 23 6141823 6131617 6131618 6181726 6141625

7101325 7101328 7101326 7101325 7 81620 7 81621 78924 78924
7111822 7121920 7141620 7161721 791819 791820 7121620 7121419
8111425 8102021 8111425 8111425 7101328 7101326 71381823 7151623
8121623 8111425 8151721 8171819 8 91721 8 01719 8101321 8101520

91017 24 9111921 §121525 91215256 8111425 8111425 8141623 8131723
9121525 91215626 9131819 91618 20 91216125 9121525 9111419 9111321
101416 21 101623 24 10111519 101117 24 10111722 101117 24 9151723 9141823
11151719 111722 24 10121421 101216 23 101216 24 101216 23 101719 24 1016 21 24
121318 20 12182223 11121320 111218 22 11121823 111218 22 111820 24 11171924
131923 24 131419 24 13212223 131420 24 13141924 13142024 121621 24 1218 20 24
142022 24 13152123 141923 24 13151923 13152123 13151923 131619 22 1316 19 22
15212223 14 15 20 22 152022 24 141521 22 14 15 20 22 14152122 14 17 20 22 14172022
16192225 161922 25 16192225 161922 25 16192225 161922 25 1518 21 22 1518 21 22
17202326 17202325 17 20 23 25 172023 25 17202325 172023 25 19202125 19202125
18 21 24 26 18212425 18 21 24 25 18 21 24 25 18 21 24 25 18 21 24 25 22232425 222324125

Up to relabeling we can assume that the fixed blocks are: {1,2,13, 14},
{3,4,15,16}, {5,6,17,18}, {7,8,19,20}, {9,10,21,22}, {11,12,23,24}. We
distinguish three cases regarding the way y relates to the blocks containing the
point 25.

Case A.
Our design has the blocks {1,3,5,25}, {7,9,11,25}, {13,15,17,25}, and
{19, 21,23, 25}. In this case there arise 21 tactical decompositions but only A,
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produces a design, namely the S(2, 4, 25) with automorphism group of order 504
(see Table 2).

Case B.

Here B contains {1, 3, 5, 25}, {7, 9, 11, 25}, {13, 15,19, 25}, and {17, 21, 23, 25}.
There are 19 tactical decompositions here but none leads to an $(2, 4, 25) with
automorphism y. Even though no designs arise here Table 2 lists tactical
decomposition B, as an example of this case.

Case C.

In this case B contains {1,3,5,25}, {7,13,21,25}, {9,15,23,25}, and
{11,17, 19, 25}. There are 25 tactical decompositions here but none of these gives
rise to an S(2, 4, 25) with automorphism y. Table 2 lists C, as an example of a
tactical decomposition for Case C.

Now consider the automorphism:

6 —3
(12)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21)(22)(23)(24)(25).

There are two cases for & related to the way the fixed points {21, 22, 23, 24, 25}
are distributed among the fixed blocks as follows:

Case D.

In this case our design has the fixed blocks {21,22,1,2}, {21,23,3,4},
{21,24,5,6}, {21,25,7,8}, {22,23,9,10}, {22,24,11,12}, {22,25,13, 14},
(23,24, 15,16}, {23,25,17,18}, and {24,25,19,20}. In other words, the fixed
points of 4 form an arc (see Section 7). There are 45 tactical decompositons here
with designs arising from D,g, and D,, with groups of orders 150 and 6
respectively.

Interestingly enough, in cases Dy, Ds,, Dy, and D,s there are partial solutions
to the tactical decompositions which yield each time 20 blocks of size 3 and 20 of
size 4. We have checked however that there is no way of completing these partial
designs to S(2, 4, 25)’s by adding 5 points and 10 blocks.

Case E.

In this case our design has as fixed blocks {21,22,23,24}, {21,25,1,2},
{22,25,3,4}, {23,25,5,6} and {24,25,7, 8}, i.e. four out of the five fixed points
lie on a block. There arise 3 tactical decompositions here, but none leads to an
S(2, 4,25). We list E, in Table 2 as an example of this case.
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6. Transformation of designs

Given an S(2, 4, 25) it is sometimes possible to obtain a non-isomorphic system
with the same parameters by transforming a selected subset of blocks. In order to
describe such a transformation we require some definitions.

Let B € B be a block of an S(2, 4, 25) system (X, B) and denote by S all
blocks in B which have no point in common with B. Note that Sy is a symmetric
configuration (1-design) with v =56 =21 and k =r =4. We associate with Sy a
graph Gy as follows. The vertices of Gy are the points of S, two vertices are
adjacent if the corresponding points are not collinear in Sy (do not appear in the
same block). Clearly Gy has 21 vertices and is regular of valency 8. We say that
Gg has a trigngulation T if the 84 edges of Gy can be partitioned into 28 triangles.
T is called resolvable if its triangles can be partitioned into 4 parallel classes each
of 7 disjoint triangles. A resolution of T will be denoted by 7. Suppose that for
some S we know a resolution Tz of Gi. Then adding a new point x; to every
triangle in the ith parallel class, i=1, ..., 4, we obtain 28 blocks of size 4 on 25
points. Adding a new block {x,, x,, x3, x4} and the blocks in Sz we obtain an
5(2,4,25). Since Sy is symmetric we can consider its dual S% and the
corresponding G4 and repeat the procedure.

We are now in a position to describe the transformations Ty, and T4 of a design
(X, B) with respect to a block B € B.

Ty: Find all resolutions T, of G and complete each to a system.

T4: Find all resolutions T of G§ and complete each to a system.

We note that Ty and T4, B e B, generate sets g, > of system S(2, 4, 25).
From the construction it follows that |2g| =1, since Xy always contains the
original system (X, B).

We have applied the transformations Ty, T4 to all 16 systems with non-trivial

Fig. 1.
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automorphism groups. For each design we consider a representative from every
orbit of blocks. The results are summarized in the transformation graph of Fig. 1.
Two designs are connected by a line (broken line) if one can be obtained from the
other by T4 (1) for some B € B. The graph has 9 connected components, each
representing an equivalence class of designs under the transformations Ty, T4,

The transformation Ty has been used by Petrenyuk [16, 17] to obtain from the
previously known designs 1, 2, 6 and 7, in our numbering, the designs 3, 4, 5 and
8. The same approach in a different setting has been applied by Gropp [8] to
obtain Design No. 3, with a group of order 9. He also traces the origins of
transformations based on symmetric configurations to the nineteenth century
Italian geometers.

7. Subdesigns, parallel classes and near-resolutions

In this section we investigate the possible embedding of subdesigns in our
S(2, 4, 25) systems. A subdesign is understood to be a substructure in the usual
sense. Thus, an S(2, {, w) system (Y, D) is a subdesign of an S(2, k, v) system
(X, B), if Y€ X, and each D € D is contained in a block B € B. Points of Y are
called interior, while those of X — Y exterior. We let b = |B|, r = bk /v and denote
by B; the collection of all blocks of (X, B) which intersect Y in exactly i points.
Easy counting yields the following

Lemma 7.1. Suppose that (Y, D) is an §(2, |, w) subdesign of an S(2, k, v) design
(X, B). Let u; be the number of blocks on an exterior point which intersect Y in i
points, v; the number of blocks on an interior point which intersect Y in i points,
and let t; = |B,|, then

t()+t|+t1=b, tl+l‘t/=rw, l(l‘-l)‘t1=W(W_1),

ug+u tw=r, wt+luy=w, vi+tuy=r, and (—-1v,=w-1

Proposition 7.2. If (Y, D) is an S(2, |, w) subdesign of an S(2, 4,25) and if [ =3
then (Y, D) is a Fano plane S(2, 3, 7).

Proof. Suppose that (Y, D) is an S(2, /, w) subsystem occurring in an S(2, 4, 25)
system (X, B). In the case where / = k = 4 an inequality of Wilson’s requires that
w < r =8. This rules out the possibility of non-trivial subsystems S(2, 4, w) in an
S(2, 4,25). When /=3 we have that 1,+¢, +t;,=50, ¢, +3t,=8w, and 6f,=
w(w —1). Thus, £, =0 implies that w=<17 and since w € {7, 9, 13, 15, 21}, we
have that w < 15. On the other hand, ¢, = 0 implies w <9 or w = 15. Case w = 15
is ruled out by de Resmini [6], Proposition 4. Alternatively, the existence of a
subsystem S(2, 3, 15) would imply «,=0, u, + u;=8, and u, + 3u, = 15. Hence,
2uy =7, a contradiction. If w=9, then t,=2, t, =36, and t;=12. From Lemma
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7.1 we get (u; +3u;3) — (ug+uy+u;)=1, that is 2u; =1+ u,. Therefore, since
uy<t,=2, we have that u,=u;=1, that is, through each exterior point there is
one block of B,. This is a contradiction since there are altogether 1, =2 exterior
blocks covering 7 or 8 points of X — Y, while |[X - Y|=25—-9=16. O

There remains to investigate whether S(2, 3,7) systems occur in our 16
S(2, 4, 25) designs. A complete search through each of the 16 designs establishes
that embedded Funo planes are found in eleven out of the sixteen. We
acknowledge J. DiPaola for bringing to our attention the existence of some
embedded Fano planes. The number of Fano planes in each of the 16 designs is
given in Table 7, together with other structural information. These Fano planes
break up into orbits under the action of the automorphism group of each design.
The number of orbits, orbit representatives and orbit lengths is presented in
Section §.

It is of interest to investigate further the existence of certain subdesigns with
{=2. By an s-arc, or simply an arc, we mean a collection Y of s points of X no
three of which are collinear in (X, B). An arc can then be viewed as a subdesign
(Y, D) of (X, B) where D is the collection of all pairs of Y. An arc Y is called
complete if no point of X — Y can be adjoined to Y to obtain a larger arc. A block
B of (X, B) is a secant (tangent) of arc Y if it intersects Y in two (one) points.
Clearly, Y is a complete arc in (X, B) if and only if each point of X lies on at least
one secant of Y. An arc of maximum possible size is called an oval if there is
exactly one tangent to the arc at each of its points; it is called a hyperoval if it has
no tangents. Any arc of maximum possible size is of course complete. Using
Lemma 7.1, it is easy to verify that the size of a complete arc cannot exceed 8,
moreover, the same equations imply that any 8-arc might be an oval. Ovals occur
in each of our sixteen S(2, 4, 25) designs except for Design 7, and their number is
presented in Table 7. We present orbit representatives and orbit lengths of ovals
in Section 8.

Complete 5-arcs occur in all of our 8(2, 4, 25) designs with the exception of
Design 10. The number of complete 3-arcs appear in Table 7. The number of
orbit representatives, orbit lengths and the maximum number of mutually disjoint
complete S-arcs is given in Section 8. It is noteworthy that in the case of Design 6,
there are two orbits of complete S-arcs, one of size 15 and the other of size 75.
The 15 arcs in the first orbit are partitioned into three sets of five mutually
disjoint complete arcs. These three sets are carried into one another by an
automorphism of order 3. One of these sets consists of the arcs {1,2,3,4,5},
{6,7,8,9,10}, ..., {21,22,23,24,25}. We wish to thank Marialuisa de Resmini
for bringing this interesting fact to our attention, as well as for other helpful
discussions and comments related to this section. In her paper [7] she is interested
in the existence of complete S-arcs embedded in S(2, 4, 25) designs, and this
question has been answered here.

Two distinct blocks of a design (X, B) are said to be parallel if they are
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disjoint. The maximal number of mutually parallel blocks in an S(2, 4, 25) is six
and such a set of blocks is called a parallel class. In Table 7 we give the number of
parallel classes in each of our 16 designs and in Section 8 we display the orbit
representatives and orbit lengths for all parallel classes in each of our designs. If
we remove a point x together with the eight blocks through x, we say that we
have a near-resolution if the remaining 42 blocks partition into seven parallel
classes. We thank Frank Bennett for suggesting that we look for possible
near-resolutions in our designs. Near-resolutions exist only for Design 1, where
there are exactly 11 such near-solutions occurring only with the special point 25.
These 11 fall into orbits of lengths 1, 7 and 3 under the full automorphism group
of the design. In Table 6 the near-resolution No. 1 constitutes the orbit of length
1; the near-resolution No. 2 is a representative of the orbit of size 7; and the
near-resolutions 3, 4, 5 constitute the orbit of size 3.

Two near-resolutions n,={P,, ..., P), No={Q,,..., Q;}, where each P,
and Q; is a parallel class, are said to be orthogonal if |P.NQ,| <1 for all i, j.
Near-resolutions 3, 4, and 5 are in fact mutually orthogonal. From these three
orthogonal near-resolutions one can construct the unique elliptic semiplane on 45

Table 6
Some Near-Resolutions for Design 1

1 2 3 19| 4 5 6 2007 8 9 21(10 13 16 2311 14 17 24(12 15 18 22

2 24 10 9/14 6 22 1}23 18 7 5|20 3 15 17|16 21 4 12| 8 11 19 13

24 12 20 79121 22 13 2117 19 23 6| 1 10 11 415 5 14 8{18 16 9 3
1112 8 1 23 5 13 3 24| 4 9 17 221 2 20 16 14|11 6 21 18|19 15 7 10
8 18 2 17| 6 3 10 12(14 7 4 13124 1 15 21116 22 5 19 9 11 23 20

18 19 24 4|22 10 20 821 23 14 3|12 2 11 5{15 13 6 9| 7 16 17 1

19 9 12 14013 20 1 18| 5 17 21 10| 8 24 18 6[11 3 22 7(23 15 4 2

1 2 3 19{4 5 6 20, 7 8 9 21110 13 18 23111 14 17 24|12 15 18 22

2 24 10 9(14 6 22 1|23 18 7 5|20 3 15 17|16 21 4 12| 8 11 19 13

24 12 20 7|21 22 13 2|17 19 23 6] 1 10 11 4|15 5 14 8|18 18 9 3
211 7 18 17 2 4 15 23| 3 5 13 24| 6 11 18 21| 8 10 20 22| 9 12 14 19
8 18 2 17| 6 3 10 12(14 7 4 13124 1 15 21|18 22 5 19 9 11 23 20

1 8 12 23 2 14 16 201 3 7 11 22| 4 18 19 24| 5 10 17 21| 6 9 13 15

1 13 18 20( 2 5 11 12| 3 14 21 23| 4 9 17 22| 6 8 16 24| 7 10 15 19

1 2 3 19[4 7 13 14/ 5 10 17 21| 6 8 16 24| 9 11 20 23|12 15 18 22

1 4 10 11| 2 8 17 18] 3 14 21 23| 5 16 19 22| 6 9 13 15| 7 12 20 24

1 6 14 22| 2 5 11 12 3 15 17 20| 4 18 19 24( 7 8 9 21(10 13 16 23
31 8 12 23] 2 13 21 224 3 9 16 18 4 5 6 20| 7 10 15 19|11 14 17 24
1 13 18 200 2 9 10 247 3 7 11 22| 4 12 16 21| 5 8 14 15} 6 17 19 23

1 7 16 17( 2 4 15 23| 3 5 13 24| 6 11 18 21| 8 10 20 22] 9 12 14 19

1 15 21 24| 2 14 16 20| 3 6 10 12| 4 9 17 22{ 5 7 18 23| 8 11 13 19

2 3 1 19| 5 8 14 15( 6 11 18 21 4 9 17 22| 7 12 20 24|10 13 16 23

2 5 11 12( 3 9 18 16| 1 15 21 24| 6 17 19 23| 4 7 14 13| 8 10 20 22

2 4 15 231 3 6 12 104 1 13 18 20| & 16 19 22} 8 9 7 21|11 14 17 24

4 2 9 10 24y 3 14 21 23] 1 7 17 16| 5 6 4 20 8 11 13 19|12 15 18 22
2 14 16 20( 3 7 11 22( 1 8 12 23| 5 10 17 21| 6 9 15 13| 4 18 19 24

2 8 17 181 3 5 13 24| 1 6 14 221 4 12 16 21| 9 11 20 23| 7 10 15 19

2 13 21 22| 3 15 17 200 1 4 11 10{ 5 7 18 23| 6 8 16 24| 9 12 14 19

3 1 219 6 9 15 13| 4 12 16 21| 5 7 18 23| 8 10 20 22{11 14 17 24

3 6 12 10/ 1 7 16 17} 2 13 21 22| 4 18 19 24} 5 8 15 14| 9 11 20 23

3 5 13 24| 1 4 10 11| 2 14 16 20| 6 17 19 23| 9 7 8 21|12 15 18 22
5(3 7 11 22( 1 15 21 24| 2 8 18 17, 6 4 5 20 9 12 14 19|10 13 16 23
3 15 17 20( 1 8 12 23} 2 9 10 24| 6 11 18 21| 4 7 13 14{ 6 16 19 22

3 9 18 16| 1 6 14 22| 2 4 15 23| 5 10 17 21} 7 12 20 24| 8 11 13 19

3 14 21 23] 1 13 18 20| 2 5 12 11| 6 8 16 24| 4 9 17 22| 7 10 15 19
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points with block size 7 first discovered by Baker [1]. This provides an interesting
connection between the S(2, 4, 25) Design 1 and an elliptic semiplane. We refer
the reader to the paper by Lamken and Vanstone [13] for details of the
construction.

8. Designs, their groups, and other invariants

We presently display the 16 designs and various invariants. For each of the
sixteen S(2, 4, 25) designs, we present generators of the corresponding auto-
morphism group G, representatives of the block orbits under the action of G, and
orbit lengths. A block orbit is presented in the form [12 3 19]** where {1, 2,3, 19}
is a design block representative of an orbit of length 42. In a similar fashion we
exhibit the orbits of Fano subdesigns by exhibiting the point sets of orbit
representative Fano planes and corresponding orbit lengths. We also display
orbits of ovals, complete S-arcs and orbits of parallel classes of blocks. Here,
(1,23, 36,43,45,48)" indicates that blocks with indices 1,23,...,48 form a
parallel class which is moved into a G-orbit of 7 parallel classes.

Although we have computed the block-graph invariants for each of the 16
designs, because of the bulk of the data involved we are not displaying this
information here. It is worth noticing however that the sixteen designs are
discriminated by means of their block-graph invariants. We begin by listing the
union of generators of the automorphism groups.

a = (123)(456)(789)(10 11 12)(13 14 15)(16 17 18)(19 20 21) (22 23 24)(25)

B = (123)(456)(7 89)(10 11 12)(13 14 15)(16 17 18)(19 20 21) (22)(23)(24)(25)
&= (123)(456) (789)(10 11 12) (13 14 15)(16 17 18) (19)(20)(21)(22 23 24)(25)
B=(147)(258) (369)(10 13 16) (11 14 17)(12 15 18) (19 20 21)(22)(23)(24)(25)
v = (1224128 18199723174 14 21 5 6 22 13 3 10 20)(11 16 15)(25)

v, = (121131841525 1917 108 16 6 9 20 12 14 3 11 7)(22 23 24)(25)

s = (1 23)(2 24)(3 25)(4 21)(5 22)(6 17)(7 18)(8 19)(9 20)(10 16)(11)(12)(13)(14)(15)
4, = (125 5)(2 19 10)(3 13 15)(4 7 20)(6 21 24)(8 14 9)(11 22 18)(12 16 23)(17)

v == (1234567)(891011 12 13 14)(15 16 17 18 19 20 21)(22)(23)(24)(25)

46 = (12 4)(3 6 5)(7)(8 9 11)(10 13 12)(14)(15 16 18)(17 20 19)(21)(22 23 24)(25)

7 = (120 16)(2 10 3)(5 17 18)(4 19 22)(6 9 25)(11 15 14)(7 21 12)(8 13 24)(23)

¥ = (1)(2 18)(3 5)(4 22)(6 15)(7)(8 24)(0 11)(10 17)(12 21)(13)(14 25)(16 20)(19)(23)
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Design 1. H=(& f)<G={(& v,), |G|=7-8-9=504. It should be remarked
that the automorphism group G above is isomorphic to Z; X PSL,(7).

Bloek Orbits

12319%; 15925

Fano Planes

1231617 18 20/

Ovals

12457822 25"

Complete 5—arcs

121518 25)*

Parallel Classes

{1,23,36,43,45,48)7 ; {1,24,30,32,41,48}"

Design 2.

H=<af>< G =<amy> |G| =1T9=863

Block Orbits

123197 ; (147 22]7;[19 20 21 25]" ; [22 23 24 25[' ;

Fano Planes

12316171820 ; (126710 19 22|*

Ovals

1256121516 177 ;[12691213 22 23*

Complete 5—arcs

(121517 25]7; [1 6 13 22 24)*

Parallel Classes

None

Design 3.

G = <a,f>,

|G| =9,

Block Orbits

1610 11°; [1 12 13 237 ; [1 14 16 20° ; [1 15 21 24° ;
12319 [14722%;[15925°; [10 13 16 25 ;
19 20 21 25]' ; [22 23 24 25)'

Fano Planes

1231617 18 20

Quals

1245101315 18] ; [10 11 12 13 14 15 20 21°

Complete 5—ares

10 11 12 20 25]°

Parallel Classes

{2,10,21,33,43 47}°

Design 4,

G = <ifB>,

1G] =9

Block Orbits

1610 14P; (111 13 21]%; [1 15 20 24]° ; [1 16 18 23°
(12319P;[14722°;[15925°;[10 13 16 25°

sl .
[19 20 21 25]' ; [22 23 24 25)'

Fano Planes

1611121417 21,10 11 12 19 22 23 24"

Ovals

[124810162021]°; (12571012 15 16
10 11 12 13 14 15 19 20

Complete 5—arcs

1011 122021

Parallel Clusses

{2,10,20,34,44,47}°

Design 5.

G = <ifB>,

G| =09

Block Orbits

1410 15°; (1611 22)°; [1 1317 20P ; [1 14 21 247 ;
12319%;(159257; 10 11 12 25)° ; [10 13 16 22)* ;
19 20 21 25" ; [22 23 24 25]'

Fano Planes

147121518 23]

Ovals

1245782224]

Complete 5—ares

1472425

Parallel Classes

{1,23,36,44,45,46}"
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Design 6. G = <v3,v>, |G| = 2325 = 150,

Block Orbits 12625513 11 19]°
Fano Planes None
Ovals 1238101516 20]"
Complete 5—arcs 12345]™;{129 10207
Parallel Classes {1,17,36,41,43 46}%
Block Orbits (1917225124 14];[181525]; [1 18 20 21] ;
8911 21)7; [22 23 24 25)
Fano Planes 1234567
Ovals None
Complete 5—arcs [126 10 25/
Parallel Classes None

Design 8. G = <v,7%>, |G| =6.

Block Orbits l12425°;(13811;[231419°; (269 12)°;
[16715°;[1101317°;[1121921]°; (2718 23°;
(2172124 ;468 14]°; (412 13 24> ; [8 9 15 23*;
[1 16 20 23" ; [4 19 22 23]
Fano Planes None

Ovals [125611131421]°;[1491011121423[°; (17891213 14 16,
(2345121821 22)°;(235911151725°;[2579151921 22]*;
[289 1114 18 24 25°
Complete 5—ares | [17131923];234517; (24512237 ;[2613 14 17)°
Parallel Classes | {1,17,33,40,44,49)° ; {2,15,27,30,34,36}" ; {8,9,26,28,36,47}°

Design 9, G = <e>, |G| =3.

Block Orbits 141624 ; (151221 ;161322 ;1714 15
(1817 18%;{1919201°; (11011 23]>; [4 712 19)°;
[48922]°; (41015 18]>; [4 13 17 21J*; [7 10 13 25)*;
[7 11 18 22)*; [10 14 16 21)* ; |13 19 23 24]° ; [16 19 22 25]° ;
[12325)";[456 25

Fano Planes None

Ovals 451011 19 21 22 24" ; [7 8 10 14 17 19 22 23]°

Complete 5—arcs 12417197%; 1316 19 20 21°
Parallel Classes {2,13,22,31,33,49}°

Design 10, G = <a>, |G| =3.

Block Orbits 1420247 ;151123 (1614 21]; [1 7 15 17 ;
181216°;(191322)°; (11018 19 ; [4 7 16 21]°;

4892341112 13*; 414 17 18]* ; [7 10 13 25]°;

71219 20]% ; (10 16 23 24 ; [13 15 21 23)° ; [16 19 22 25]° ;

12325456 25]'

Fano Planes (15101216 18 23]

Ovals 12911141518 24]°; (148 11 1518 21 22]°; [16 8 13 15 19 20 25| ;
4591216 17 20 22]° ; [10 11 13 14 16 18 21 22)°
Complete 5—ares None

Parallel Classes None
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Design 11,
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G =<a> |G|=3

Block Orbits

141920 ;(151123; (1613 14; (1715 18];
1810247 ;(191621°; [1121722)°; (4711 21)°;
48923 ; (41216 18)°; [4 13 17 24° ; [7 10 13 25)° ;

714 16 20]* ; [10 12 14 21 ; [13 21 22 23] ; [16 19 22 25]° ;
12325]"; 456 25]*

Fano Planes

None

Ovals

124591012 13P; (1247162223 24; (1589 13 20 22 25 ;
71213 15 16 19 21 24)°

Complete 5—arcs

161215 19

Parallel Classes

{3,11,16,37,39,41}

Design 12,

G =<a>, |G| =3

Block Orbits

142022 ;{1510187; (161517 ;1712 14];
181316°;[192324°; [1111921}°; 4711 23]*;
48921°; (41014 19]°; [4 15 16 24]°; [7 10 13 25°;

716 17 21)3; (10 12 16 23] ; [13 15 19 23]° ; [16 19 22 25)° ;
12325)";[45625)

Fano Planes

None

Ovals

125681419227;[127913 1520 21)°; (1210 11 13 14 22 23]°
18101217 212225°; (1812151820 21 23°

Complete 5—arcs

[7 15 20 22 25)°

Parallel Classes

None

Design 13,

G =<a>, |G| =3.

Block Orbits

141623 ;15721 ;[161214];[181018];
191322°;[1112024)°; {11517 19]%; [4 722 24]°;
481213 ;{41119 21)°; [4 14 17 18)%; [7 8 16 20°;
71013 25]°; [10 11 17 22> ; [13 14 19 24]% ; [16 19 22 25° ;
12325)';[45625)

Fano Planes

12371214 21

Ovals (1251114181922 ; (17812192324 25]; (179 14 16 17 24 25 ;
(781012 14 15 19 21°
Complete 5—arcs | 17912 16]°
Parallel Classes None

Design 14,

G =<a> |G| =23.

Block Orbits

141823P;[15719;[161214]°; (1815 24 ;
191116]%; (11020 22]%; [1 1317 21} ; [4 7 22 24° ;
481213°;[4111920%; [4 1416 17)*; [7 8 16 21)°;
71013 25)° ; (10 11 17 24]* ; [13 14 20 24]° ; [16 19 22 25)° ;
12325)';[45625]"

Fano Planes

12371214 19F

Ovals

451112141523 24]°; [48910 16 20 24 25" ; [7 8 10 12 14 15 19 20

Complete 5—arcs

1121319 22[7; [4 15 20 24 25]

Parallel Classes

None
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Design 15, G = <f>, |G| =3.

Block Orbits 141324151721 ;[16820];[171125;
[191618)°; 11014 15]*; [1 12 19 23]*; [4 7 10 22)° ;
481519 ;4111217 ;|4 14 18 25* ; [7 12 15 20° ;
(71318 23)°; [10 17 19 24)* ; [13 16 19 22)* ; [1 2 3 22]*;
[45623)"; (78924 ;192021 25]' ; [22 23 24 25!

Fano Planes 12313141524)";[45610111222]'; (78916 17 18 23]
Ovals (7 10 13 14 16 20 24 25]°
Complete 5—arcs | [4589 18]°;[16 17 18 24 25|
Farallel Classes None

Design 186, G o <f>, |G| = 3.

Block Orbits [1413 24!3 ;[151620°; (16819 ;11 717 18P ;
[1o1025°; {11114 15°;[1 1221 23]*; 47 10 22®;

[481421°;[4111216]°; [4 1517 25)*; [T 12 14 19)*;

[7 15 16 23]°; [10 16 21 24° ; (13 16 19 22]*; [1 2 3 22]*;

[45623)"; (78924 ;[19 20 21 25]' ; [22 23 24 25)'

Fano Planes [[12313141524]';[456 101112 22)"; (789 16 17 18 23!

Ovals [126911162324;[126 151820 23 25°; [1 8 12 15 16 17 22 24
Complete 5—ares [[1246 11] ; [4 518 20 22 ; [16 17 18 24 25|
Parallel Classes None
Table 7
Summary of Properties of the 16 Designs
DESIGN | |G| | NO.FANO | NO.OVALS | NO.COMPLETE| MAX.NO.DISJOINT | NO. PARALLEL
NO. PLANES &-ARCS COMPLETE 5-ARCS | CLASSES
1 504 24 42 42 1 28
2 63 24 42 42 2 0
3 9 3 12 3 1 3
4 9 12 21 3 1 3
5 9 3 3 3 1 1
6 150 0 75 90 5 25
7 21 3 0 7 1 0
8 6 0 27 15 3 9
9 3 0 6 6 1 3
10 3 3 15 0 0 0
11 3 0 12 3 3 1
12 3 0 15 3 1 0
13 3 3 12 3 1 0
14 3 3 9 6 4 0
15 3 3 3 4 1 0
16 3 3 9 7 2 0

9. Concluding remarks

The above analysis establishes that there are precisely 16 pairwise non-
isomorphic Steiner systems S(2, 4, 25)’s with a nontrivial automorphism group,
and provides us with a number of invariant substructures which discriminate the
16 designs. For convenience we present in Table 7 a summary of properties of the
16 S(2, 4, 25)’s with non-trivial automorphism group.
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For emphasis we state:

Theorem 9.1. There are exactly 16 non-isomorphic Steiner systems S(2, 4, 25)
with non-trivial automorphism group. Each such design has an automorphism of
order 3. These designs are distinguished from one another either by the
substructures summarized in Table 7, or by their block-graph invariants.

An immediate problem is suggested:

Problem 1. Determine if there are any, or find all, $(2, 4, 25)’s with identity
automorphism group.

Another natural question concerns the extendability of each of our 16
S(2, 4, 25)’s. A single extension would yield an S(3, 5, 26) and such a design was
first given by Hanani [10]. The group of this S(3, S, 26) is transitive on the 26
points so a quick check establishes that all derived $(2, 4, 25)’s of Hanani’s design
are isomorphic to Design 1. Also, Denniston [5] has constructed an S(5, 7, 28)
which would be a triple extension of some S(2, 4, 25). Since Denniston’s design
has PSL,(27) as its automorphism group, acting as a 3-homogeneous group on
the 28 points, all doubly derived S(3, 5, 26) designs are isomorphic. In fact these
designs are isomorphic to Hanani’s S(3,5,26). Thus, the triply derived
S$(2, 4, 25)’s from Denniston’s design are all isomorphic to Design 1.

The necessary arithmetic conditions for an S(8, 10, 31) are satisfied so it is
theoretically possible that some S(2, 4, 25) could extend 6 times. We state:

Problem 2. How far does any given S(2, 4, 25) extend?

Note added in proof. The chromatic index of a design is the smallest number of
colors needed to color the points so that no blocks are monochromatic. Kevin
Phelps has determined that Design 9 and Design 10 have chromatic index 2. The
other fourteen designs in our list have chromatic index 3.
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BALANCED TOURNAMENT DESIGNS AND RELATED
TOPICS

E.R. LAMKEN and S.A. VANSTONE

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario,
Canada N2L 3G |

A balanced tournament design of order n, BTD(n), is an n X (2n — 1) array defined on a set
of 2n elements V such that (1) each cell of the array contains a pair of distinct elements from V,
(2) every pair of distinct elements from V is contained in some cell, (3) each element is
contained in each column, and (4) no element is contained in more than 2 cells of each row.
BTD(n)s are very useful for scheduling certain types of round robin tournaments such as tennis
and curling. Their existence has been complietely settled. In this paper we survey the known
results and discuss various extensions and generalizations.

1. Introduction

A round robin tournament is played among 2n players in 2n — 1 rounds. There
are n courts of unequal attractiveness available for the matches and each round is
played at one time using all the courts. To balance the effect of the different
courts it is desired to arrange the tournament so that no player competes more
than twice on any one court.

Haselgrove and Leech [10] established the existence of such designs for n =0
or 1 (mod 3). Schellenberg, van Rees and Vanstone [33] completed the spectrum
of existence. In the sequel we consider this problem and related topics. We begin
by giving a formal definition of the problem.

A tournament design, TD(n), defined on a 2n-set, V, is an arrangement of the
(%" distinct unordered pairs of the elements of V into an n X (2n — 1) array such
that

(1) every element of V is contained in precisely one cell of each column.

The parameter n is called the side of the TD(n). Clearly a TD(n) is equivalent to
a 1-factorization of the complete graph on 2n vertices. Such 1-factorizations have
been extensively studied ([28]).

Gelling and Odch [8] introduced the problem of constructing TD(n)s with the
following property:

(2) no element of V is contained in more than 2 cells of any row.

A TD(n) with property (2) is called a balanced tournament design and is denoted
BTD(n). If we let the elements of V correspond to the players in a round robin
tournament, the columns correspond to the rounds and the rows correspond to

0012-365X/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)



160 E.R. Lamken, S.A. Vanstone

the court assignments, then a BTD(n) represents a round robin tournament as
described at the beginning of this section.
A simple but very important observation is stated in the next lemma.

Lemma 1.1. Every element of a BTD(n) is contained twice in (n — 1) rows and
once in the remaining row.

An element which is contained only once in row i is called a deficient element of
row i. The two deficient elements of row i are referred to as the deficient pair of
row i. We note that the deficient pair of row i need not occur in a common cell of
that row.

Lemma 1.2. The deficient pairs of a BTD(n) on V partition the elements of V into
pairs.

As previously mentioned, the existence of BTD(n)s was established in [33].
The proof uses a particular class of BTD(n)s called factored BTD(n)s. A factored
BTD(n) is a BTD(n) with the property that in each row there exists n cells, called
a factor, which contain all 2n elements of V. Note that the pairs in a factor
correspond to a 1-factor of the complete graph on 2n vertices. An example of a
FBTD(4) is given in Fig. 1.

The following results are established in [33].

Theorem 1.3. There exists a FTBD(n) for each odd positive integer n.
The proof of this result is by a direct construction for the stated designs.

Theorem 1.4. If there exists a FBTD(n) and if there exists a pair of mutually
orthogonal Latin squares of order 2n, then there exists a FBTD(2n).

Since a pair of orthogonal Latin squares of order n is known to exist {[2]) for all
positive integers n, n # 2 or 6, the existence of a FBTD(4), and a FBTD(6) along
with Theorems 1.3 and 1.4 is enough to prove that a FBTD(n) exists for all
positive integers n, n #2. A FBTD(6) was recently found ([17]) and is displayed
in Fig. 2. We summarize this in the following statement.

M 0S6 12 78 45 67 83
16 24 35 46 28 13 57
27 18 47 15 36 48 26
S8 37 68 23 17 25 14

Fig. 1. A FBTD(4).
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e8 46 62 10 03 ¢3 91 17 5 58 27
69 ¢9 ST 73 1 14 ed4 02 28 16 38
17 70 ¢0 68 84 12 25 €5 13 39 49
40 8 8l el 79 95 13 36 e6 42 50
53 51 19 92 €2 80 06 4 47 €7 6l
12 23 34 45 56 67 78 89 90 01 e

Fig. 2. A FBTD(6).

Theorem 1.5 (Lamken and Vanstone [17]). A FBTD(n) exists if and only if nis a
positive integer and n + 2.

An alternate proof of the existence of FBTD(n)s can be given which requires
the direct construction of only a small number of designs. We state the result in
two theorems and give an outline of the proofs.

Theorem 1.6. There exists a FBTD(n) for n =1 (mod 2).

Proof. If n =1 (mod4) and n > 13, we apply Theorem 3.1 of [18] and if n =3
(mod 4) and n >7 we apply Theorem 3.1 of [19}. The cases n =3, 5, 7, 9 and 13
must be done directly. [

Theorem 1.7. There exists a FBTD(n) for n =0 (mod 2).

Proof. Use the doubling construction stated in Theorem 1.4. As before, a
FBTD(4) and a FBTD(6) must be constructed directly. O

In Section 2 we will consider BTD(n)s with additional properties. Section 3
looks at some graph theoretic properties of these designs and Section 4 discusses
an application of BTD(n)s to the construction of resolvable balanced incomplete
block designs. Finally, a generalization of the problem is considered in Section 5.

2. Factor balanced tournament designs and partitioned balanced tournament
designs

When designing a balanced tournament for 2n players it may be desirable to
have the property that each player plays exactly once on each court during the
first n rounds. Hence, we say that a BTD(n) is factor balanced, denoted
FBBTD(n), if it satisfies

(3) each row of the BTD(n) has a factor in the first n columns of the array.

In addition to property (3), if the BTD(n) also satisfics

(4) each row of the BTD(n) has a factor in the last n columns of the array,
then the BTD(n) is called a partitioned balanced tournament design and is
denoted by PBTD(n).
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To show that property (3) does not imply property (4), we construct
FBBTD(n)s which are not PBTD(n)s for all n, n #2, 3, or 4. We require several
definitions to do this.

A Howell design, H(s, 2n), is an s Xs array A defined on a 2n-set V of
elements such that

(i) every cell of A is either empty or contains a 2-subset of V,

(i1) every element of V is contained in precisely one cell of each row and
column of A;

(iii) every pair of distinct elements from V is contained in at most one cell of
the array.

It is not difficult to see that n<s=<2n—1. A number of papers on Howell
designs culminated in the following result.

Theorem 2.1 (Stinson [35]). An H(s, 2n) exists if and only if (2n,s) satisfies
n=s<2n—1and (2n,s) ¢ {4, 3), (4, 2). (6, 5), (8,5)}.

An H(2n — 1, 2n) is called a Room square of side 2n —- 1. A Room square is
said to be in standard form if some element of V is contained in each cell of the
main diagonal. Any Room square can be put into standard form by an
appropriate permutation of rows and columns. A standardized Room square is
said to be skew if it has the property that cell (i, j) of A contains a pair implies
cell (j, i) is empty for i #j. The spectrum for the existence of skew Room squares
is known.

Theorem 2.2 (Stinson [35]). A skew Room square of side n exists if and only if n
is an odd positive integer and n #+3 or 5.

We also require the following two theorems which are stated in modified form
[33]. In a PBTD(n), the deficient pairs must form a column of the array. A
careful inspection of the next two constructions [33] shows that the deficient pairs
of the resulting FBTDs will never form a column of the array. In addition, both
constructions use a pair of orthogonal Latin squares which insures that the BTDs
are factor balanced.

Theorem 2.3 (Schellenberg, van Rees, Vanstone [33]). If there exists a skew
Room square of side r, and if there exists a pair of orthogonal Latin squares of side
r, then there exists a FBBTD(r) which is not a PBTD(r).

Theorem 2.4 (Schellenberg, van Rees, Vanstone [33]). If there exists a FBTD(n)
and if there exists a pair of orthogonal Latin squares of side 2n, then there exists a

FBBTD(2n) which is not a PBTD(2n).

We can now state and prove our existence result.
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16 35 23 45 24
25 46 14 13 36
34 12 56 26 15

Fig. 3. A BTD(3).

Theorem 2.5. (i) There is no FBBTD(n) for n=2, 3, or 4. (ii) There exists a
FBBTD(n) which is not a PBTD(n) if and only if n =5.

Proof. (i) It is easily checked that no BTD(2) exists. Up to isomorphism there is
precisely one BTD(3) (Fig. 3). It is easily checked that this design is not a
FBBTD(3). Suppose A is a FBBTD(4). Let B be the subarray of A consisting of
the first 4 columns. B must be an H(4, 8). Rosa and Stinson [31] have proven that
any H(4, 8) is equivalent to a pair of orthogonal Latin squares of order 4. It is a
simple matter to check that a pair of orthogonal Latin squares cannot be
extended to a FBBTD(4).

(ii) The proof of this part follows from Theorems 2.2, 2.3, the existence of
orthogonal Latin squares and the existence of FBBTD(n)s for n =5, 6 and 8
which are displayed in Figs 4, 5 and 6, respectively. 0O

o0 23 13 al 02 03 12 a0 oI

23 o] a3 02 10 03 12 «3 g2

13 a0 =2 01 23 al =0 22 33

a2 02 01 o3 31 «2 a3 11 00

10 13 20 32 ax 12 03 30 12

Fig. 4. A FBBTD(5).

01 ad 34 23 ©2 01 11 =4 24 02 a3
03 12 «l 40 34 12 a4 22 =0 30 13
40 w4 23 ol 01 23 24 &0 33 =i 41
12 01 o0 34 «2 34 02 30 al 44 w2
@3 23 12 «!| 40 40 «3 13 41 a2 00
24 30 41 02 13 aw 03 14 20 31 42

Fig. 5. A FBBTD(6).

00 =3 16 25 25 16 a4 34 52 =1 31 60 ad 46 23
a5 11 o4 20 36 36 20 45 34 63 «2 42 01 &5 50
31 a6 22 «5 31 40 40 56 61 45 04 «©3 53 12 ab
51 42 a0 33 =6 42 51 60 «0 02 56 15 =4 64 23
62 62 53 al 44 =0 53 01 34 ol 13 60 26 =5 05
64 03 03 64 a2 55 o1 12 16 45 a2 24 01 30 =6
w2 05 14 14 05 a3 66 23 =0 20 56 o3 35 12 41
34 45 56 60 01 12 23 aw 25 36 40 51 62 03 14
Fig. 6. A FBBTD(8).
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The existence of PBTD(n)s is a much more difficult question and its spectrum
has not yet been completely determined; however, significant progress has been
made and only seven possible values of n are now in question. We state this result
in the next theorem. Since the constructions needed for the proof are quite
complicated and different from those used for BTD(n)s and FBBTD(n)s, we omit
even an outline of it.

Theorem 2.6 (Lamken and Vanstone [18, 19,20], Lamken [21]|). There exists a
PBTD(n) for all n =5 except possibly n € {9, 11, 15, 26, 28, 34, 44}.

The PBTD(n) problem was first considered by Stinson [36] in a different form.
We note that in a PBTD(n) the columns of the array can be partitioned to give
subarrays |, C,, and C; where C, consists of the first n — 1 columns, C, is
simply the nth column and Cj; is the last n — 1 columns. Clearly, C, and C, form
an H(n, 2n) as do (; and C;. These two designs are referred to as an almost
disjoint pair of Howell designs. Stinson [36] found the first example of a PBTD(5)
while investigating Howell designs on 10 points.

Recall that a Room square is an H(2n — 1, 2n). Each row of such an array
contains precisely n — 1 empty cells. Hence, the largest possible empty subarray
in a Room square of side 2n—1 is (n —~1)x(n—1). A Room square which
contains such a subarray is called a maximum empty subarray Room square of
side 2n — 1 and is denoted MESRS(2n — 1). Since all Room squares of side 7
have been enumerated ([38]) it is a simple matter to see than no MESRS(7)
exists. Since a MESRS(2n — 1) is equivalent to a PBTD(n), the non-existence of
a MESRS(7) also follows from Theorem 2.5. We should point out that the
constructions used to prove the existence of Room squares, in general, do not
apply to the more restrictive class of MESRS. Constructions which could exploit
the very powerful PBD-closure technique do not appear to apply to this class of
designs. Stinson [36] conjectured that MESRS(r) exist for all odd values of r
greater than 7. Theorem 2.6 confirms this conjecture in all but 7 possible cases.
We conclude this section with an example of a PBTD(5) ([36]) and its associated
MESRS(9). These are displayed in Figs 7 and 8 respectively. We note that the
existence of PBTD(n)s provides an alternate proof of the existence of Room
squares.

a4 2 13 57 06 23 45 =7 al
©3 a5 46 02 17 «©4 a2 05 63
56 03 a7 =1 42 67 01 a3 =5
12 47 »0 a6 53 o0 =6 14 72
07 16 25 43 ax 15 37 26 04

c, C, C,
Fig. 7. PBTD(S).
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06 23 45 7 «al

17 w4 a2 05 36

24 67 01 a3 =5

35 all =6 14 27

ax 15 37 26 04
a4 =3 56 12 07
w2 a5 03 47 16
13 46 «7 =0 25
57 02 =1 a6 34

Fig. 8. MESRS(9).
3. Graph theoretic aspects

We begin this section by defining a class of designs which is closely related to a
class of BTD(n)s. An odd balanced tournament design, OBTD(n), is an
n X (2n + 1) array of pairs defined on a (2n + 1)-set V such that

(i) each pair of distinct elements from V is contained in precisely one cell of
the array,

(ii) each column of the array is a near resolution class,

(iii) each element of V is in at most 2 cells of each row.

We note that (iii) implies that each element occurs exactly twice in each row.
Unlike BTD(n)s, it is a relatively simple task to construct OBTD(n)s for every
positive integer n by using a patterned starter [38]. The method is illustrated in
Fig. 9 where an OBTD(3) is displayed. The design is formed by developing
column | through the integers modulo 7.

A near 1-factor of K,, ., is a set of disjoint edges spanning 2n vertices of the
complete graph. A near l-factorization is a partition of K,, ., into near 1-factors.
Clearly, an OBTD(n) induces a near 1-factorization of K,,., with each column of
the array giving a near 1-factor. The rows of the array determine 2-factors in the
complete graph. If each row gives a 2-factor which is Hamiltonian cycle, then the
OBTD(n) is called a Kotzig factorization of order 2n + 1 ([4]). The existence
question for Kotzig factorizations has been completely settled.

Theorem 3.1 (Colbourn and Mendelsohn [4], Horton [11]). For each positive
integer n, there exists a Kotzig factorization of order 2n + 1.

We now consider the analogue of Kotzig factorizations for BTD(n)s. Clearly, a
row of a BTD(n) cannot give a Hamiltonian cycle in K, since there are precisely 2

16 27 31 42 53 64 75
25 36 47 51 62 73 14
34 45 56 67 71 12 23

Fig. 9. An OBTD(3).
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12 13 58 37 47 28 46
34 57 14 26 25 36 18
56 24 67 48 38 17 35
78 68 23 15 16 45 27

Fig. 10. An HBTD(4).

vertices with degree one in the induced subgraph. It is possible that this subgraph
could be a Hamiltonian path. If each row of a BTD(n) gives a Hamiltonian path
in K,,, then we call the design a Hamiltonian balanced tournament design and
denote it by HBTD(n). The existence of HBTD(n)s is far from settled. An
HBTD(1) trivially exists but an HBTD(2) and an HBTD(3) do not. The first
non-trivial case is an HBTD(4). Recently, Corriveau [S] has done an exhaustive
search and found that there are precisely 47 non-isomorphic BTD(4)s and, of
these, exactly 18 are HBTD(4)s. It is interesting to note that of the 6
non-isomorphic 1-factorizations ([38]) of Ky only 4 give rise to balanced
tournament designs. Corriveau [5] has also shown that each of the 396
non-isomorphic 1-factorizations of K, ([7]) gives rise to at least one BTD(S). At
present there is no HBTD(#n) known for n = 5. We display in Fig. 10 an example
of an HBTD(4) from Corriveau’s [ist.

We note that an HBTD(n) is a FBTD(n). The converse is false as the example
in Fig. 11 illustrates. The deficient pair of row 4 is 78 which actually occurs as a
pair in that row. Hence, the graph of this row must contain a component which is
a path of length one.

The graph theoretic questions posed above can be generalized.

Let G be a spanning subgraph of K,, (or K,,,,). Is it possible to construct a
BTD(n) (or an OBTD(n)) such that the graph associated with each row of the
array is isomorphic to G? The question, of course, is open since even the case
where G is a Hamiltonian path is not yet solved. For OBTD(n)s some interesting
results do exist.

Theorem 3.2 (Colbourn and Mendelsohn [4]). Let G be a spanning subgraph of
Ko, Which consists of disjoint triangles. There exists an OBTD(n) in which the
graph of each row is isomorphic to G if and only if there exists a Kirkman triple
system of order 2n + 1.

The analogous result for BTD(n)s would have a spanning subgraph G of K,,

12 57 14 36 28 38 47
34 68 58 27 45 17 26
56 13 67 48 37 25 18
78 24 23 15 16 46 35

Fig. 11. A FBTD(4).



Balanced tournament designs 167

which consists of (2n — 1)/3 disjoint triangles and an edge. No general result is
known. In fact, no example has been constructed yet. It is known ([5]) that such a
design does not exist for n = 4. Of course, n must be congruent to 1 modulo 3 for
this to be possible.

4, Balanced tournament designs and resolvable designs

Balanced tournament designs can be used to construct various types of
resolvable and ncar resolvable balanced incomplete block designs (BIBDs). A
(v, k, A)-BIBD D is said to be resolvable (and denoted by (v, k£, 1)-RBIBD if
the blocks of D can be partitioned into classes R,, R,, . . ., R, (resolution classes)
where 1 = (A(v — 1))/k — 1 such that each element of D is contained in precisely
one block of each class. A necessary condition for the existence of a (v, k, A)-
RBIBD is v =0 (mod k). A (v, k, A)-BIBD D is said to be near resolvable (and
denoted by NR(v, k, A)-BIBD) if the blocks of D can be partitioned into classes
R,, R,, ..., R, (resolution classes) such that for each element of D there is
precisely one class which does not contain x in any of its blocks and each class
contains precisely v — 1 distinct elements of the design. Necessary conditions for
the existence of NR(v, k, A)-BIBDs are v =1 (mod k) and A=k — 1.

In this section, we describe several constructions which use balanced tourna-
ment designs to produce (v, 3, 2)-BIBDs. We will use several well known
existence results for designs with block size k = 3.

Theorem 4.1 (Hanani [9]). (i) There exists a (v, 3, 2)-RBIBD if and only if v=0
(mod 3) and v#6. (ii) There exists a NR(v, 3, 2)-BIBD if and only if v=1
(mod 3), v=4

A resolvable (v, 3, 1)-BIBD is also known as a Kirkman triple system of order
v and is denoted by KTS(v).

Theorem 4.2 (Ray-Chaudhuri and Wilson [30}). There exists a KTS(v) if and only
if v=3 (mod 6).

We will also use nearly Kirkman triple systems in one of our constructions. A
nearly Kirkman triple system of order v (NKTS(v)) is a resolvable group divisible
design with block size 3, group size 2 and index A =1 for pairs meeting distinct
groups. Except for a few isolated cases the following result was proven by Baker
and Wilson [1]. (See also [3, 12].)

Theorem 4.3 (Baker and Wilson [1]). There exists a NKTS(v) if and only if v=10
(mod 6) and v#6 or 12.
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Balanced tournament designs and the designs described above can be used to
construct (v, 3, 2)-RBIBDs containing various subconfigurations. These con-
structions are described in detail in [22]; for completeness, we include the proof
of the first construction.

Theorem 4.4 (Lamken and Vanstone [22]). If there exists a BTD(3n +1), a
KTS(6n +3) and a NR(3n + 1, 3, 2)-BIBD, then there exists a (9n + 3, 3, 2)-
RBIBD.

Proof. Let Vi={x, %o oo Xans1s Yoo Yoo o« o5 Yana 1} and let V,=
{20, 220 o0 Zagar )

Let B’ be the 3n + 1 X 61 + 1 array constructed from a BTD(3n + 1) defined on
Vi. Suppose the deficient pair of elements for row i of B’ is {x,, y;} for
i=1,2,...,3n+1. Let D' be a resolvable (6n+3,3, 1)-BIBD defined on
Vi, U {®} so that the blocks containing ® are {o,x;, y;} fori=1,2,...,3n+1
Let D; be the resolution class of D which contains the triple {o, x;, y;} for
i=1,2,...,3n+ 1. N will denote a NR(3n + 1, 3, 2)-BIBD defined on V, and N,
will denote the resolution class of N which does not contain the element z,.

We construct a resolvable (9n + 2, 3, 2)-BIBD on V,U V, as follows. To each
pair in row i of B’ add the element z; (i =1, 2, ..., 3n + 1). Denote the resulting
array of triples by B. Let C,, C,, . .., Cg,4, be the columns of B. Replace each
triple {e, x;, y;,} in D' with the triple {z;, x;, y;} for i=1,2,...,3n+1. D will
denote the resulting configuration. Let D; be the corresponding resolution class of
D which contains the triple {z;, x;, y;} (i=1,2,...,3n+1).

The triples of BU D UN form a (9n + 3, 3, 2)-BIBD. Every pair in V| occurs
once in B and once in D. Every pair {z, v;} where v, € V| and z € V, occurs twice
in BUD. Every pair in V, occurs twice in N. It is easy to verify that
{C,Cyy ooy Copsrs, DIUN, D;UN,, ..., Dy, UN;, .} is a resolution for
this (9n + 3, 3, 2)-BIBD defined on ViU V,. O

Theorem 4.5 (Lamken and Vanstone [22]). If there exists a BTD(3n), a
NKTS(6n) and a (3n, 3, 2)-RBIBD, then there exists a (9n, 3, 2)-RBIBD.

As noted above, the complete spectrum of (v, 3, 2)-RBIBDs was determined
by Hanani [9]. The constructions used in the proofs of Theorems 4.4 and 4.5
provide several classes of these designs which contain various subconfigurations.
In Section 5, we will show how these results can be generalized to construct
resolvable (v, k, kK — 1)-BIBDs.

Before we generalize these results to use OBTDs and to construct doubly
resolvable designs, we illustrate Theorem 4.4 with an example. A KTS(9) defined
on the elements V = {1,2, ..., oo} is displayed in Fig. 12. A BTD(4) defined on
V — {«} where the deficient pairs are the pairs which occur with « in the KTS(9)
is displayed in Fig. 12, and a NR(4, 3,2)-BIBD defined on W ={4, b, ¢, d} is
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wl2 ©35 ©46 ©78
347 148 157 245
586 267 238 136

Fig. 12. A KTS(9).

displayed in Fig. 13. The design which is constructed from these designs is a
(12, 3, 2)-RBIBD defined on V U W and it appears in Fig. 14.
Similar constructions for NR(v, 3, 2)-BIBDs can be obtained from OBTD(n)s.

Theorem 4.6 (Lamken and Vanstone [22]). If there exists an OBTD(3n + 1), a
KTS(6n +3) and a NR(3n + 1, 3, 2)-BIBD, then there is a NR(Yn +4, 3, 2)-
BIBD.

We note than an analogous result to Theorem 4.5 using OBTD(n)s would
require a NR(6n + 1, 3, 1)-BIBD which cannot exist. As with (v, 3, 2)-RBIBDs,
the spectrum of NR(v, 3, 2)-BIBDs was settled by Hanani [9]. Theorem 4.6 can
also be generalized to provide near resolvable (v, k, kK — 1)-BIBDs [25].

Two interesting and useful applications of balanced tournament designs are
found in constructions of doubly resolvable (v, 3, 2)-BIBDs or Kirkman squares
and doubly near resolvable (v, 3, 2)-BIBDs [16].

A (v, k, A)-BIBD is said to be doubly (near) resolvable if there exist two (near)
resolutions R and R’ of the blocks such that |R,NR/| =<1 forall R,eR, R/ e R’".
(It should be noted that the blocks of the design are considered as being labeled
so that if a subset of the elements occurs as a block more than once the blocks are
treated as distinct.) The (near) resolutions R and R’ are called orthogonal
resolutions of the design. A doubly resolvable (v, k, A)-BIBD is denoted
by DR(v, k, A)-BIBD and a doubly near resolvable (v, k, A)-BIBD by
DNR(v, &, A)-BIBD.

A Kirkman square with block size k, order v and index A, KS,(v; 1, 4), is an
rx rarray K (r ={(A(v —1))/k — 1) defined on a v-set V such that

(i) each cell of K is either ecmpty or contains a k-subset of V,

abc abd acd bed
Fig. 13. A NR(4, 3, 2)-BIBD.

a34 a56 al2 a78 ad45 a67 a83
b16 b24 b35 b46 b28 b13 bS7T
c27 c¢ct8 ¢47 ¢1S5 ¢36 c48 26
d58 d37 d68 d23 d17 d25 dl14

al2 b78 ¢35 d4e6
347 24S 148 157
586 136 267 238
bcd acd abd abc
Fig. 14. A resolvable (12, 3, 2)-BIBD.
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(ii) each element of V is contained in precisely one cell of each row and
column of X,

(iii) the non-empty cells of K are the blocks of a (v, k, 1)-BIBD.

We can use a pair of orthogonal resolutions of a DR(v, &, A)-BIBD to
construct a KS,(v;1, A). The rows of the array form one resolution of the
DR(v, k, A)-BIBD and the columns form an orthogonal resolution. Similarly, we
can use a pair of orthogonal resolutions of a DNR(w, &, 1)-BIBD to construct a
v —1xv~—1 array. The rows of the array will form one resolution of the design
and the columns will form an orthogonal resolution. If the DNR(v, &, 1)-BIBD
has the additional property that under an appropriate ordering of the resolution
classes of the orthogonal resolutions R and R’, R, U R/ contains precisely v — |
distinct elements of the design for all i, then the array is called a (1, A; k, v, 1)-
frame [16]. Note that the diagonal of a (1, A; &, v, 1)-frame is empty and a unique
element of the design can be associated with each cell (i, 7). This distinction
between (1, 4; k, v, 1)-frames and DNR(v, k, 1)-BIBDs is important in recursive
constructions.)

In general, the spectrum of doubly resolvable and doubly near resolvable
(v, k, A)-BIBDs remains open. Although several infinite classes of DR(v, &, 4)-
BIBDS are known for k=3 [15], [37], the existence of DR(v, k, A)-BIBDs has
been settled only for k=2 and A =1, [29]. (DR(v, 2, 1)-BIBDs are also called
Room squares.) We should also note that the generalization of the Kirkman
square defined above has been studied and we refer to [13], {14] for some of these
results. We will use balanced tournament designs with additional properties to
construct DR and DNR(v, 3, 2)-BIBDs. Progress has been made in the past few
years in determining the spectrums of these designs. Surveys of these results can
be found in [15]. In this paper, we are only interested in the constructions which
use balanced tournament designs. We proceed to describe the additional
properties of BTDs and OBTDs that we require.

Let B be an OBTD(n). Let R,,R,,..., R, be the rows of B and let
C,,Cy, ..., Cyyyy be the columns of B. C={C,,C,,...,Cy,} is a near
resolution of the underlying (2n+1,2,1)-BIBD. A resolution D, D=
{Dy, Dy, ..., D, } is called an orthogonal resolution to C if

() IGNDj=1forl=<i j<s2n+1;

(i) [ID;NRj=1forl=j<2n+1, 1<i<n.
If D exists, then we say that the OBTD(n) has a pair of orthogonal resolutions
(ORs). With respect to these objects, the following existence result is known.

Theorem 4.7 (Lamken and Vanstone [23]). Let n be a positive integer, n =3 and

2n + 1#3m where (m,p)=1 for p a prime less than 333. Then there is an
OBTD(n) with a pair of orthogonal resolutions.

A similar definition for a BTD(n) with a pair of orthogonal resolutions can be
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made but no non-trivial examples of these objects have been found to date. For
BTD(n)s we make the following definition.

Let B be a BID(n+1). Let R,,R,,...,R,,., be the rows of B and let
Cy, Cy, ..., Cyy be the columns of B. C={C,, C,, ..., Cy,,,} is the resolu-
tion of B. A resolution D = {D,, D5, ..., Dy, .} will be called almost orthogonal
to C if

(i) Cons1 = Dayiy,

(i) |C;N Dy =<1 for 1<i, j<2n;

(iii) [D;NR|=1forl<j<2n I<is<n+1
If D exists, we say that B has a pair of almost orthogonal resolutions (denoted by
AORs). If B is a BTD(n + 1) with a pair of almost orthogonal resolutions with
the property that the deficient pairs of B are contained in the shared resolution
class C,,,,, then we say that B has property C'. Fig. 15 displays the smallest
example of such an array.

Balanced tournament designs with AORs are more difficult to construct than
OBTDs with ORs. Several infinite classes of these designs are known to exist and
we refer to [27] for the descriptions of these classes. We include just one example
of these results for BTDs with AORs.

Theorem 4.8 (Lamken and Vanstone [27]). Let n be a positive integer, n # 8 or
33. There exists a BTD(m) with AORs for m =8n + 3 and m = 16n + 5.

Our constructions will also require the existence of KS;(v; 1, 1)s with com-
plementary (1,2;3, (v —1)/2, 1)-frames. We give a brief description of these
designs and refer the interested reader to [24] for details.

Let K be a KS;(6n + 3; 1, 1) defined on V U {®} where % occurs in each cell of
the main diagonal (|V|=06n +2). We say K has a complementary (1, 2;3, 3n +
1, 1)-frame (or a complementary DNR(3n + 1, 3, 2)-BIBD) if there exists a
(1,2;3,3n + 1, 1)-frame (or a DNR(3n + 1, 3, 2)-BIBD) which can be written in
the empty cells of K. Although the spectrum has not been determined for either
KSi(v; 1, 1)s or (1,2;3, v, 1)-frames, we can construct infinite classes of
KSs(6n + 3; 1, 1)s with complementary (1, 2; 3, 3n + 1, 1)-frames [24].

Theorem 4.9 (Lamken [24]). Let i and j be nonnegative integers. There exists a
KS;(2n + 1; 1, 1) with a complementary (1, 2; 3, n, 1)-frame for n = 19’3V,

12 15 45 24 03
35 20 23 05 14
04 34 01 13 25

12 15 45 24 03
05 23 20 53 14
34 04 13 01 25

Fig. 15. A BTD(3) with AORs.
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We can now state our constructions which use BTDs with AORs and OBTDs
with ORs to produce DR(v, 3, 2)-BIBDs and DNR(v, 3, 2)-BIBDs respectively.
These constructions are applied and the resulting classes of designs described in
detail in [24].

Theorem 4.10 (Lamken and Vanstone [22]). If there is a BTD(3n + 1) with a pair
of almost orthogonal resolutions and Property C' and if there is a KS;(6n +3;1, 1)
with a complementary (1, 2;3, 3n + 1, 1)-frame, then there is a KS;(9n +3; 1, 2)
ora DR(Y9n + 3, 3, 2)-BIBD.

Theorem 4.11 (Lamken and Vanstone [22]). If there is an OBTD(3n + 1) with a
pair of orthogonal resolutions and a KSi(6n +3;1, 1) with a complementary
(1,2:3,3n + 1, 1)-frame, then there is a DNR(9n + 4, 3, 2)-BIBD.

We conclude this section by noting that the two smallest cases where these
theorems can be applied are n = 6 and n = 10. Using Theorems 4.10 and 4.11, we
can construct DR(v, 3, 2)-BIBDs for v =57 and v =93 and DNR(v, 3, 2)-BIBDs
for v=>58 and v =93 and DNR(v, 3, 2)-BIBDs for v =158 and v =94. These
designs were not previously known to exist.

5. A generalization

In this section we consider a generalization of balanced tournament designs
from pairs to k-subsets. We begin with a definition.

Definition 5.1. A gcneralized balanced tournament design, GBTD(#, k), defined
on a kn-set V, is an arrangement of the blocks of a (kn, k, k — 1)-BIBD defined
on Vinto an n X (kn — 1) array such that

(1) every clement of V is contained in precisely one cell of each column,

(2) every element of V' is contained in at most k cells of each row.

Let G be a GBTD(n, k). An element which is contained in only & — 1 cells of row
R; of G is called a deficient element of R,. It is easily seen that each row of G
contains exactly k deficient elements. These elements are called the deficient
k-tuple of row i. These deficient elements of row i need not occur in a common
block of this row. The deficient k-tuples of G partition the points of this design.
We illustrate the definition by displaying a GBTD(3, 3) in Fig. 16. The deficient
triples of rows 1, 2 and 3 are respectively {4, 6,8}, {1,2,9}, and {3,5,7}.

Let C=(C,, Cs, ..., C,)" where C;,, 1 <i=<n, is the deficient k-tuple of row
R; of G. If C occurs as a column in G &k — 1 times, G is said to have property C.
The GBTD(3, 3) displayed above does not have property C. A GBTD(4, 3) with
a property C is illustrated in Fig. 17. Suppose the blocks in row R; can be
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129 349 569 145 357 178 238 267
357 167 138 236 468 245 749 589
468 258 247 789 129 369 165 134

Fig. 16. A GBTD(3, 3).

partitioned into & sets of n blocks each, F,, F,, ..., F; so that every element in
V occurs precisely once in F;, 1=<j<k—1, and every element of V occurs
precisely once in F, UC, for 1 =i=<k. A GBTD(n, k) with this property is called
a factored generalized balanced tournament design and is denoted FGBTD(n, k)
and each of F,, K., ..., Fy_,, G4 UC,; is called a factor of row R;,. The
GBTD(4, 3) given above is factored with factors shown in Fig. 18.

We can now state a generalization of Theorem 1.4.

Theorem 5.1 (Lamken [25]). If there exists an FGBTD(n, k) and if there exists k
mutually orthogonal Latin squares of order kn, then there exists an
FGBTD(nk, k).

A number of other recursive constructions for GTBD(n, k)s exist (see [25]).
These and existence results for GBTD(n, k)s can be found in [25].

We conclude this section by showing how the results of Section 4 can be
generalized. Only two generalizations will be given to illustrate the ideas
involved. For a complete description the reader is referred to [26].

Theorem 5.2 (Lamken [25]). If there exists a GBTD(n, k), a (kn +1, k+ 1, 1)-
RBIBD and a near resolvable (n, k +1, k)-BIBD then there is a ((k + 1)n,
k +1, k)-RBIBD.

This result gencralizes Theorem 4.4. The next example (Fig. 19) shows how
Theorem 5.2 can be used to construct a resolvable (20,4,3)-BIBD. Since a
GBTD(5, 3) exists, a (16, 4, 1)-RBIBD exists and a near resolvable (5, 4, 3)-BIBD
exists, then a resolvable (20, 4, 3)-BIBD exists.

We conclude this section with a generalization of Theorem 4.5. The theorem
requires the existence of a RGDD, _,(nk;k +1;k;0, 1) which is a resolvable

FGJ | EIL |DHK| FHL | EGK|DIlJ FIK {DGL|EHJ] | ABC| ABC

AIL [CHK | CHJ BGJ] | BHL| AGK|AHJ | BIK | CGL| DEF| DEF

BEK | BFJ] {AEL |CDK|ADJ | CFL |BDL}CEJ | AFK| GHI | GHI

CDH|ADG|BFG | AEI | CFI | BEH|CEG|AFH | BDI } JKL [JKL

Fig. 17. A GBTD(4, 3) with property C.
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Rowl: ABC FGJ EIL DHK
ABC FHL EGK DIlJ
ABC FIK DGL EHIJ

Row?2: DEF BIK AHJ CGL
DEF AlIL CHK BGL
DEF ClJ BHL AGK

Row 3: GHI BEK  ADJ CFL
GHI BFJ AEL  CDK
GHI BDL CEJ AFK

Row 4. JKL CDH BFG  AEI
JKL AFH CEG  BDI
JKL BEH CFI ADG

Fig. 18. Factors of a GBTD(4, 3).

group divisible design having nk elements, group size k, block size k +1,
replication number n — 1 and pair balance 1 for pairs formed from elements in
distinct groups and pair balance 0 otherwise.

Theorem 5.3 (Lamken [26]). If there exists a GBTD(n, k), a RGDD,, _(nk;
k+1,k;0,1) and a (n, k+ 1, k)-RBIBD, then there exists a (kn +n, k + 1, k)-
RBIBD.

Proof. Let D= {x;;, X2, ..., xx}, 1=<i=<n, V,=UUJ_,D; and V,=
Yo,y b

Let G' be a GBTD(n, k) defined on V), such that the deficient k-tuple of row i
is D;. Let D be a RGDD,,_(nk; k + 1; k;0, 1) defined on V, so that the groups of
Dare D, 1=<i<n. Let R,,R,, ..., R,_, be the resolution classes of D. Let N
be a (n, k +1, k)-RBIBD defined on V,. We let N, N,, ..., N, _, denote the
resolution classes of N.

A (kn+n, k+1, k)-RBIBD can be constructed as follows. To each block in
row i of G' add the element y;, 1<i=<n. Denote the resulting array of blocks of
size k+1 by G. Let Cy, Cs, ..., C,- be the columns of GG. Let C,, ={D,U
{yi}:1=<i<n}. The blocks in GUDUNUC,, form a (kn+n, k + 1, k)-BIBD.
Every distinct pair in V| occurs k — 1 times in G and once in D U C,,. Every pair

234 | 28 | a1} y112]678 [ 60 |a003 | y36 10110 104 [ ad7 [y710] 159 159

y8i1}1345 | B39 | a90 | y03 |789 |B71 | ald y47 NOF|ALIS|asS8 | 2610|2010

a69 [ yo0 [ 456 {patofarot]|yi4 [8910] g82 | a25 [yss |o12 {pos |3711]371

B17 | a710| y101]1567 |BS1Jall2|y2S5 (91011 93 ald6 1y69 |123 [ 480 | 480
—

51011611270 {381 (492 [5103]16114] 705 816 927 11038 (1149 aBy | afBy

Fig. 19. A GBTD(S, 3).
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{yi, x;} occurs k times in G U C,,. Every pair in V, occurs k times in N. It is easy
to verify that {C,, C,, ..., Cu, DyUN,, D,UN,, ..., D,_,UN,_,} is a resolu-
tion for this (kn+n, k + 1, k)-BIBD defined on V,UV,. This completes the
proof. O

The following is an example of this construction. Since a GBTD(8, 3) exists
[25], a RGDD;(24;4;3;0, 1) exists [34] and a (8,4, 3)-RBIBD is easily con-
structed, then Theorem 5.3 establishes the existence of a (32, 4, 3)-RBIBD.
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It is shown that a 2-(22, 8, 4) design cannot possess any nontrivial automorphisms of an odd
order.

1. Introduction

The smallest, with respect to the number of points or blocks, parameter set for
a balanced incomplete block design, i.e. a 2-(v, k, A) design, for which the
existence question is still unsolved, is 2-(22,8,4), i.e. v=22, b=33, r=12,
k =8, A=4. This is the smallest case left open in Table 5.23 of the remarkable
Hanani’s article [7]. Many of the open problems from that table have been
resolved during the last decade, some of then by Professor Hanani himself (cf.
Mathon and Rosa [11]). However, the existence of the smallest and most
challenging 2-(22, &, 4) design is still in doubt.

In this paper we investigate possible automorphism groups of a design with
such parameters and show that if one exists, its full automorphism group must be
either a 2-group, or trivial. Our method is based on examination of possible orbit
structures of cyclic automorphism groups of a prime order by use of tactical
decompositions.

An essential case of automorphisms of order 3 fixing exactly one point has been
recently investigated by Kapralov [9], who found all (exactly 53) possible orbit
structures and showed (partially by computer) that none of those yields a design.
We show in this paper that for an odd prime order automorphism of any other
type, there is no possible orbit structure at all. Our proof does not involve any
computer computations.

2. Preliminaries

We asssume that the reader is familiar with the basic notions and facts from
design theory (cf. e.g. [3, 4. 5, 8, 13]).

* On leave from the University of Sofia, Bulgania.
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As usual, the total number of blocks in a 2-(v, k, A) design is denoted by b, and
the number of blocks containing a given point — by r.

The following easily checked statement is a variation of a similar but stronger
result for symmetric 2-designs (cf. [1]).

Lemma 2.1, If p is a prime being an order of an automorphism of a 2-(v, k, )
design with v > k, then either p divides v or p<r.

Applied for the parameters 2-(22, 8, 4), this gives as a corollary the following

Lemma 2.2. The only primes which might be orders of automorphisms of a
2-(22, 8, 4) design, are 2, 3, 5, 7 or 11.

The next result is a special case of Theorem 1.46 from [8] (see also [3, Th. 4,

17)).

Lemma 2.3. If v’ (resp. b') is the number of point (resp. block) orbits of a
nontrivial 2-(v, k, A) design with respect to a given automorphism group, then

Osbh'—v' =b—vw.

In the sequal we shall use frequently the following result due to Hamada and
Kobayashi [6]:

Lemma 2.4. Any two blocks in a 2-(22, 8, 4) design can have at most 4 common
points. More precisely, if n; denotes the number of blocks intersecting a given
block in exactly i points, then there are 4 possible types of blocks according to their
block intersection numbers (Table 1).

Given a design D with an automorphism group G, the orbit matrix M = (m,) of
D with respect to G is defined as a matrix whose rows and columns are indexed
by the point and block orbits of D under G respectively, where m,; is the number
of points from the ith point orbit contained in a block from the jth block orbit. In
other words, M is a matrix corresponding to the tactical decomposition of D
defined by the action of G.

Let r; (resp. k;) denote the length of the jth block (resp. ith point) orbit, and let

Table 1. Block intersection numbers of a
2-(22, 8, 4) design.

Type ng n n; ns ny
1 0 0 12 16 4
2 0 1 9 19 3
3 0 2 6 22 2
4 1 0 6 24 1
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b’ (resp. v') be the total number of block orbits. In this notation, the orbit matrix
M satisfies the following equations:

M=
iy |

m;=kir, 1si=suv, 2.1)

.
it

VL

rmg(m; — 1) =ki(k,— 1), 1<i<v’, (2.2)

-
it

S

rm mg =k.ksA forc+#d. (2.3)

j=1

-~
it

If G is a cyclic group of a prime order p then any orbit length is either p or 1.
In particular, considering a nontrivial (i.e. of length p) point orbit and denoting
by s =s; the number of blocks fixed by G and containing all points from that (ith)
orbit, equations (2.1)—(2.3) reduce to the following:

Z m;=r—s, (2.4)
5_,; my(m; —1)=(p - 1A -s,), (2.5)
> mgmy=p(A=s.), (c#d), (2.6)

jir=p

where s, denotes the number of fixed blocks containing the cth and dth point
orbit. Combined with (2.4), (2.5) gives also

> mi=p(A-s)+r—A 2.7)
jir=p
An evident necessary condition for the existence of a design with a given
automorphism group is the existence of an integral matrix M = (m;;) satisfying the
above system of equations.

3. Automorphisms of order 11

According to Lemma 2.2, the largest prime which can possibly be an order of
an automorphism of a 2-(22, 8, 4) design, is 11.

The impossibility of an automorphism without fixed points has been mentioned
by Baartmans and Danhof [2]: the system of Equations (2.4)~(2.6) then has no
solution.

Suppose fis an automorphism of order 11 fixing 11 points. Then by Lemma 2.3
f must fix at least 11 blocks. Any two blocks fixed by f must consist entirely of
points fixed by f and hence they have at least 5 common points, a contradiction to
Lemma 2.4.
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4. Automorphisms of order 7

Since b =33 =5 (mod 7), an automorphism of order 7 must fix at least 5 blocks.
Since a point orbit of length 7 can be contained in at most one fixed block (by
Lemma 2.4), this rules out immediately an automorphism fixing 1 or 8 points. If
there are 15 fixed points then by Lemma 2.3 there have to be at most 2 blocks
orbits of length 7. However, the corresponding system (2.4)—(2.7) has no solution
for p=7 and s5; <2.

S. Automorphisms of order 5

Since b =33=3 (mod>5), there must be at least 3 fixed blocks. According to
Lemma 2.4, a point orbit of length 5 can be contained in at most one fixed block.
The only (up to permutation) solutions of (2.4)-(2.7) for p =5 and s, <2 are
(1,1,2,2,3,3) (s;,=0) and (1, 1,2, 2,2,3) (s; = 1). Therefore, there are 3 fixed
blocks, whence by Lemma 2.3 there are only 2 fixed points. However, a fixed
block must contain at least 3 fixed points, a contradiction.

6. Automorphisms of order 3

The following lemma gives an upper bound for the number of blocks fixed by
an automorphism of order 3.

Lemma 6.1. An automorphism of order 3 of a 2-(v, k, A) design can fix at most
b —3r + 34 blocks.

Proof. Let § be a point orbit of length 3 and let n; be the number of blocks
containing exactly i points from S. Evidently

ngtn + nyt nia=bh,
n,+2n,+3ny=73r,
n2+3n3=3)(..

Since each fixed block contains either 3 or none points from S, the total
number of fixed blocks does not exceed

no+ny=b-3(r—4). 0O

Corollary 6.2. An automorphism of order 3 of a 2-(22, 8, 4) design fixes at most 9
blocks.

Lemma 6.3. Given a 2-(22, 8, 4) design D with an automorphism f of order 3, and
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a block B not fixed by f, there are at least 4 point orbits of length 3 intersecting B in
either 1 or 2 points.

Proof. Let B be a block not fixed by f. Denote by ¢ the number of points fixed by

f and contained in B, and let m, (i = 1, 2, 3) denote the number of point orbits of
length 3 intersecting B in exactly i points. Evidently
t+m,+2m,+3m,=8. (6.1)

On the other hand,
|IBOBf|=t+my+ 3m;<4,
whence
m,+m,=4.

In particular, there are at least 4 point orbits of length 3. [

Corollary 6.4. An automorphism of order 3 of a 2-(22, 8, 4) design fixes at most
10 points.

As we have already mentioned, the nonexistence of a 2-(22, 8, 4) design with
an automorphism of order 3 fixed exactly | point has been proved by Kapralov
[9]. Thus we have to consider automorphisms fixing 4, 7 or 10 points.

Lemma 6.5. If an automorphism of order 3 of a 2-(22, 8, 4) design fixes more than
1 point then each fixed point is contained in at least 3 fixed blocks.

Proof. Since r = 12 =0 (mod 3), the number of fixed blocks through a fixed point
is a multiple of 3. Any pair of fixed points is contained in 4 =1 (mod 3) blocks,
hence one or all of these 4 blocks must be fixed. Thus each fixed point occurs in a
fixed block, and consequently, in at least 3 fixed blocks. O

Suppose that D is a 2-(22, 8, 4) design with an automorphism f of order 3. The
orbit matrix M with respect to the cyclic group generated by f can be presented in
the following form

'T U
M= ,
Vv W
where T = (t;) has rows and columns indexed by the fixed points and blocks;
U = (u;) has rows indexed by fixed points and columns indexed by nontrivial
block orbits; V = (v;;) has rows indexed by nontrivial point orbits and columns by

fixed blocks; and W = (w;;) has rows and columns indexed by nontrivial point and
block orbits.

(6.3)

7. Automorphisms of order 3 fixing 10 points

In this case there are exactly 4 point orbits of length 3, i.e. the matrix (V, W)
from (6.3) has exactly 4 rows. By Lemma 6.3 each entry of W is either 1 or 2.
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Suppose that there are x fixed blocks, and hence y = (33 — x)/3 blocks orbits of
, w,,) be a row of (V, W), and denote by g;

length 3. Let (v,, . ..

(0=j=<3). Clearly

qs+2p,+p, =12,

q;t+ p»

) v,'x, w,l' L)
(resp. p;) the number of entries among v;,, . .

:4,

patpi=y,

whence y = 8, and x =9, i.e. there are exactly 9 fixed blocks.
Equations (2.4)-(2.7) now give the following possibilities for the rows of

(V, W) (Table 2):

Table 2. Rows of (V, W).

Type 14 w

i 0000 0000022221111
ii 3000 0000022211111
it 3300000002211 1111
iv 333 00000¢2 1111111
v 333300000111 11111

. U (resp. wy, ...

) equal to j

By equation (2.6) and Lemma 2.4 the scalar product of pair of rows of W must
be either 9 or 12. This is possible only for pairs of rows of the following types:

Furthermore, there is at most one row of type iv, and such a row can be
combined with at most 2 rows of type iii; hence a row of type iv is also excluded.
Eventually, up to permutation of rows and columns, (V, W) looks as follows:

0
(v, w)=

0

0

0

0

3 3

0
0

—_— e = RO

—_— = = N

—_— N =

—_—— ) —

—_ N =

—_— N = —

B = =

N = = -

Hence there are 8 fixed blocks each containing 5 fixed points, one fixed block
(say B) consisting entirely of fixed points, and each nonfixed block contains 3
fixed points. Let P be a fixed point belonging to B. Denote by R, the number of
fixed blocks other than B and containing P, and let R, be the number of nonfixed
blocks containing P. Counting in two ways the number of blocks containing P and
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another fixed point, one gets:
7+4R, +2R, =94,

a contradiction.
Therefore, there is no design with an automorphism of order 3 fixing 10 points.

8. Automorphisms of order 3 fixing 7 points

The number of point orbits is now 12, hence by Lemma 2.3 and Corollary 6.2
there are 3, 6 or 9 fixed blocks.

Each fixed block contains 2 or 5 fixed points. By Lemma 6.5 each fixed point is
contained in at least 3 fixed blocks. If there are only 3 fixed blocks then each of
the 7 fixed points must belong to each of the 3 fixed blocks, which contradicts to
Lemma 2.4. Hence there are 6 or 9 fixed blocks.

Assume that there are exactly 6 fixed blocks. Denote by n, (resp. ns) the
number of blocks containing exactly 2 (resp. 5) fixed points. Evidently

n2+n5=6,

and since each fixed point is contained in at least 3 fixed blocks (Lemma 6.5), we
have also

2n, 4+ Sns==17-3,

whence ns=3.

Two fixed blocks, each containing 5 fixed points, must intersect in at least 3
fixed points. Each pair of such a triple of points is contained in at least 2, and
hence in exactly 4 fixed blocks. Therefore, each point of such a triple occurs in at
least 4 fixed blocks, hence by the proof of Lemma 6.5 in at least 6 fixed blocks,
i.e. in all fixed blocks, which leads to a contradiction with A = 4.

Therefore, there must be exactly 9 fixed blocks.

Proceeding as in the case of 10 fixed points (Section 7), it can be seen that the
matrix (V, W) must consist of 5 rows of type iii (cf. Table 2). However, it is
readily seen that the matrix (7.1) cannot be extended with a 5th row of type iii so
that the scalar product of each pair of rows to be either 9 or 12.

9. Automorphisms of order 3 fixing 4 points

In this case a fixed block must consist of 2 fixed points and 2 point orbits of
length 3. Each pair of fixed points is contained in 4 blocks, either one or all of
them being fixed. However, if there is a pair of fixed points contained in 4 fixed
blocks then some pair of these 4 blocks must have at least 5 common points, in
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conflict with Lemma 2.4. Thus each pair of fixed points is contained in precisely
one fixed block, and hence there are exactly 6 fixed blocks.
In the notation of (6.3), the matrix 7 now is an incidence matrix of the trivial

2-(4,2,1) design, e.g.

U:

1
1
0
0

1
0
0
0

1
0
0
0
1
0
0
1

0
110
(9.1)
1
1

rows and columns there are 3 possibilities for the matrix

00
11
0 0
0
0 0 0
1 10
0 0 1
0 1
0 0 0
110 000
1 01 000
¢ 11000

000
0 0

0 0 ©-2)

S = o o
- O

(9.3)

o O = O o
<
<

(9.4)

Equations (2.4)-(2.7) give the following possibilities for rows of (V, W)

(Table 3):

Lemma 9.1. There is no design with a matrix U of the form (9.2).

Proof. Assume that U has the form (9.2). Then by Lemma 6.3 each block from
the only block orbit of length 3 containing 4 fixed points must contain at most one
point from a point orbit of length 3. Thus the orbit matrix M has the following
Table 3. Rows of (V, W).

Type Vv w
i 0000060222211T1T1°F°0
ii 3000002 221T1T11T10
iii 33000022111 10110
iv 00000021111 1113
v 333000211111 110
vi 3000001 11111113
vii 3333001 1 0111110
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form:
111000 1110O0DO0O0O0TUO0
1090110 100110000
0101t o01 100O0O0T1T1TV0OQO0
001011 10O06O0O0O0O0OT1I1
M= 0
0 9.5)
* 1 *
1
1
1

Hence the first two rows of the submatrix W of (9.5) contain a common zero
coordinate, and therefore, such a row cannot be of type iv or vi. Since the scalar
product of two rows of W must be either 9 or 12, the first two rows can be of the
row of (V, W) after replacing each entry 3 in V by 1 with each row of (7, UU) must
be equal to 4. This is not possible if one of the first two rows of W is of type i, ii,
iii, iv, or v. This completes the proof. [

In general, if (¢;,, ..., tx, Wiy, ..., Up), 1 =i=4 are the rows of (T, U), then
any row (v, ..., Us, W, ..., wy) of (V, W) must satisfy the following equations
(cf. (2.6)):

6 Y
Dyt +3 > wu; =12, i=1,2,3,4.
j=1 j

=1

Any solution of (9.6) must be of type i—vii (Table 3).

Lemma 9.2, If U is of the form (9.3) or (9.4), then there is no row of (V, W) of
type iv, vi, or vii.

Proof. Assume that U has the form (9.3). Then the system of Equations (9.6)
looks as follows:

v, +u,+uy+ 3w, + 3w, + 3wy =12,
v, + Uy, +Us+ 3w, + 3w, + 3w =12,
vy + v, + Ve + 3w, + 3w + 3w, =12,
UL+ Vs + Vg + 3w, + 3w, + 3w, =12.

If some w; =3 then there should be some w; = 0. Hence a solution of type iv or
vi is not possible.
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Assume now that there is a solution of type vii. Up to permutation, there are
only two possibilities: v, =+ -=v,4=3, v5=v,=0; or v, =v,=0, vV, =+ =
vs =3 (cf. (9.1)). In the first case two of w;, w,, w; must be zero, a contradiction
(see Table 3). In the second case, if w, =1 then one of w, or w;, as well as one of
w4 or ws must be zero, a contradiction; if w, =0, then the first 3 equations imply
w, = -+ =wy; =1, whence the 4th equation is violated.

The case when U has the form (9.4) is treated similarly; the system of
Equations (9.6) again does not admit any solution of type iv, vi or vii. [

Using the fact that the matrix V contains 12 entries equal to 3 and 24 zeros,
Lemmas 9.1, 9.2 and Eq. (2.4-2.7) imply the following

Lemma 9.3. There are 6 possibilities for the types of the rows of the matrix

vV, W):
1() + 1(ii) + 1(iii) + 3(v), 9.7)
3(ii) + 3(v), (9.8)
131) + 3(iii) + 2(v), (9.9)
2(ii) + 2(iii) + 2(v), (9.10)
13ii) + 4(ii) + 1(v), (9.11)
6(iii). (9.12)

Here a(b) means a rows of type b.

Let us now consider the incidence structure F with “points” the 6 nontrivial
point orbits and “blocks’ the 6 fixed blocks. Each block of F consists of a pair of
points and (by Lemma 2.4) there are no repeated blocks. Hence F is a collection
of 6 distinct 2-subsets of a given 6-set, or equivalently, F is a 6-subset of the set of
all 15 2-subsets of the point set. The set of all such (%) 6-subsets is divided into 21
orbits under the action of the symmetric group of degree 6 on the point set (cf.
e.g. Kramer and Mesner [10]). Thus there are at most 21 possible configurations
for F. By Lemmas 9.1 and 9.2 each point of F occurs in at most 3 blocks, which
reduces the possibilities from 21 to 14.

Let us define a graph G with vertices the points of F and edges the blocks of F.
By definition G has 6 vertices and 6 edges. Using Equations (2.4)-(2.7), the
possible types of rows of (V, W) (Table 3), and Lemmas 6.3, 9.1, 9.2, 9.3, it can
be seen that the graph G must possess the following properties:

9.4. Each vertex is of degree at most 3.

9.5. A vertex of degree 0, 1, 2 or 3 corresponds to a row of (V, W) of type i, ii,
iit, or v respectively.

9.6. Two vertices of degree 3 are necessarily adjacent.

9.7. Any vertex of degree 1 is adjacent to a vertex of degree 3.

9.8. A vertex of degree 3 is adjacent to at most one vertex of degree 1.
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9.9. A triple of vertices of degree 2 cannot form a complete graph of size 3.

9.10. Given a vertex P of degree 3, there is at most one vertex of degree 2
nonadjacent to P.

9.11. If G contains a pair of adjacent vertices of degree 1 and 3 respectively,
then there is no vertex of degree 0 in G.

9.12. The scalar product of two rows of W corresponding to a pair of adjacent
(resp. nonadjacent) vertices of G is 9 (resp. 12).

The properties 9.4-9.12 reduce the possible configurations for F to the
following 4 ones:

F = {12, 13, 14, 23, 25, 45},
F= {12, 16, 23, 34, 45, 56},
F=1{12, 14, 15, 23, 26, 34},
F,={12. 13, 14, 23, 25, 36}.

Using 9.12, it is straightforward to check that (up to permutation of rows and
columns) a triple of rows of (V, W) of type iii corresponding to 3 vertices of G of
degree 2, two adjacent and the third nonadjacent to any of them, looks as
follows:

33000022 111111°0
30300001 1111122 (9.13)
0 0033012011112 1.

The matrix (9.13) cannot be extended by a row of type i. This eliminates F;.

Similarly, the matrix (9.13) cannot be extended by a row of type iii, having
scalar product 12 with the first two rows and 9 with the third row. Thus F, is also
impossible.

Up to permutation, there is only one possibility for a triple of rows of (V, W)
of type v, iii, ii respectively, corresponding to a triple of pairwise nonadjacent
vertices of G':

333000211111 110
000330221111110 (9.14)
000003 202211T1T1 1.

The matrix (9.14) cannot be extended by a row of type ii having scalar product
9 with the first row, and 12 with each of the remaining two rows of (9.14). This
eliminates F;.

Finally, there is exactly one (up to permutation) matrix (V, W) corresponding
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to F;:
3330002111 11110¢0
3003 30121111101
0303031 12111¢01]1
003000022111112 (9:13)
00003 0202T1T1T1121
000003220111 7271H1.

The corresponding matrix U has to be of the form (9.4). However, the system
(9.6) has only two solutions for a row of (7, U):110100000000111 and
001011000111000. Hence, the matrix (9.15) is not extendable to an orbit matrix.

Consequently, there is no 2-(22, 8, 4) design with an automorphism of order 3
fixing exactly 4 points.

Combined with the Kapralov result [9], the above results can be summarized in
the following.

Theorem 9.13. The full automorphism group of a 2-(22, 8, 4) design must be
either a 2-group, or trivial.
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Final remark

The authors have been informed by one of the referees that an investigation of
2-(22, 8, 4) designs has been recently carried out by Hall, Roth, van Rees and
Vanstone [12]. Since the last paper had not yet been published by the time of
submission of our paper, we were unable to make any comparison with its results.
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Department of Computer Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2,
Canada

1. Introduction

Denote by K,, the complete undirected graph on n vertices. An m-cycle of K,, is

a collection of m edges {x,, x,}, {x2, x3}, . . ., {X_1, Xm}> {Xm, x,} such that the
vertices x,, X,, ..., X, are distinct. In what follows we will denote the m-cycle
{xi, x2},  {x2, %3}, oo {Xm-1, X}, {Xm, X} by any cyclic shift of
(x1, X2, . . -, X,). An m-cycle system is a pair (K,,, C), where C is a collection of

edge disjoint m-cycles which partition K,. The number n is called the order
of the m-cycle system (K,, C) and, of course, the number of m-cycles |C| is
n(n —1)/2m. A 3-cycle system is, of course, a Steiner triple system (everybody’s
favorite) and a S-cycle system is a pentagon system (well liked by those who know
what a pentagon system is).

A nesting of the m-cycle system (K,,, C) is a mapping

a:C—{1,2,3,...,n}

such that C(«) is an edge disjoint decomposition of K, where

X
X T X X - 2
C(a) = meya s |y = I eC
¢ X3
Xm—-1"g'
xm—l.(_ ‘_\.‘qu *{1
X;
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In what follows we will denote the

X3
X X
i .
star by (x1, X3, .« ., Xps UQ).
Xpp—1 g X3
X

A simple counting argument shows that a necessary condition for an m-cycle
system (K, C) to be nested is n=1 (mod2m). Whether or not an arbitrary
m-cycle system can be nested is undoubtedly an extremely difficult problem. A
much more reasonable problem is the following: For a given cycle length m,
determine the spectrum of m-cycle systems which can be nested (= the set of all
n=1 (mod2m) for which there exists an m-cycle system of order n which can
be nested). This problem has been completely settled for m =3 [2, 6, 9] (the
spectrum for Steiner triple systems which can be nested is precisely the set of all
n=1 (mod®6)) and with 11 possible exceptions for m =35 [5} (the spectrum for
pentagon systems which can be nested is the set of all n=1 (mod 10), except
possibly 111, 201, 221, 231, 261, 301, 381, 511, 581, 591, and 621).

The purpose of this paper is to prove that for any odd cycle length m the
spectrum of m-cycle systems which can be nested is the set of all
n=1 (mod2m) with at most 13 possible exceptions for each m. In addition we
remove some of these 13 possible exceptions for small values of m. In particular
we remove the possible exceptions for pentagon systems, showing that the
spectrum for pentagons systems which can be nested is precisely the set of all
n=1 (mod 10).

Finally, we remark that the nesting of an m-cycle system (K, C) is equivalent
to an edge disjoint decomposition of 2K, into wheels, each with m spokes with
the property that for each pair of vertices x and y, one of the edges {x, y} occurs
on the rim of wheel and one of the edges {x, y} is the spoke of a wheel.

In the following, m will always denote a positive ODD integer. Also, when we
write d =i (mod m) we assume that d e Z,,.

2. Preliminaries

The main ingredients in our construction of m-cycle systems which can be
nested are a skew Room frame and an m-nesting sequence. Weé begin with the
definition of a skew Room frame.

Let X={1,2,3,...,2s} and let H = {hy, h,, ..., h,} be a partition of X with
the property that each h, has size 2 or 4. The sets h € H are called holes. Using
this jargon, we can say that H is a partition of X into holes of size 2 or 4. Denote
by T(X) the set of all 2-element subsets of X and by T(H) the set of all
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2-elements subsets belonging to a hole of H. Let F be a 2s X 2s array and fill in (a
subset of) the cells of F as follows:
(1) For each hole h; € H, fill in the cells of h; X h; with

XX X1Xo X3X4

X1 X2 X X2 X3X4

X1 X2 X3X4
if h; = {xlrx2}

X3X4 X1X2

if h;={x,, X2, X3, x4}

(in what follows the cells h; X h;, h; € H, will be called a square hole);

(2) distribute the 2-element subsets in T(X)\T(H) among the cells not
belonging to a square hole (each 2-element subset used exactly once) so that each
row and column of F is a 1-factor of K,,; and

3) if {a, b} e T(X)\T(H), exactly one of the cells (a, b) and (b, a) of F is
occupied.

The resulting array is called a skew Room frame of order 2s with holes of size 2
or 4.

Example 2.1

12 69 810 35 (47
121610 79 45 38
510 34 27 19 |68
59 34 118 210 67
89 17 56 410)23
7 10 28 56139 14
46 29 310 78 15
36 110 49 78 25
48 57 13 261910
37 58 24 16 9 10
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Previous page: Skew Room frame of order 10 with holes of size 2 or 4. (In this
example all holes happen to be of size 2.)

We state the following existence theorem for skew Room frames with holes and
delay the proof until Section 5.

Theorem 2.2. There exists a skew Room frame in which all holes have size 2 for
every even order n ¢ {2, 4, 6, 8, 12, 44, 46, 48, 52, 54, 56, 60, 68, 76}. There
exists a skew Room frame with holes of size 2 or 4 for every even n ¢ {2, 4, 6, §,
12}.

Let [x] denote the greatest integer less than or equal to x and define
D@, j)=min{i —j (modm), j—i (modm)}. An m-nesting sequence is a

sequence (dy, dy, d3, . . ., djmp)), i € Z,,, such that
(1) {DW;, d;-)i=1,2,...,[m/2]}={1,2,...,[m/2]}, and
(@) {D@mpp d) 1E=0,1,...,[m2] -1} ={1,2,...,[m/2]}.

Example 2.3

(0, 1) is a 3-nesting sequence,

(0, 1, 4) is a S-nesting sequence,
(0,1,6,2) is a 7-nesting sequence, and
(0,1, 8,2,7) is a 9-nesting sequence.

Lemma 2.4. There exists an m-nesting sequence for every odd m = 3.

Proof. Define d, = (—1)"'[(i + 1)/2] (modm). Then (d,, d,, d, ..., d},.p) i$
an m-nesting sequence. [

We close this section with a construction of an m-cycle system of order 2m + 1
which, as we shall see in Section 3, is a principal ingredient in the skew Room
frame construction.

Lemma 2.5. There exists an m-cycle system of order 2m + 1 which can be nested
for every odd m = 3.

Proof. Let m=2n+1 and define c=((-1)'1, (=1D)*2,...,(=1)"n,
(-1 (n+1), (=1)"""(n+2),...,(—1)"(2n + 1)), where each coordinate is
reduced modulo 2m + 1. Let ¢ +i, i=0,1,2,...,2m, be formed by replacing
each coordinate x of ¢ by x +i (mod2m + 1). Let K,,,,,, be based on Z,,, ., and
define C={c+i|i=0,1,2,...,2m}. Then (K, +, C) is an m-cycle system of
order 2m + 1 and the mapping « defined by (¢ +i)a=iis a nesting. [

Example 2.6. For m=3, ¢ =(6,5,3), and C={(6 +i, 5+1i, 3+i)|ie Z,}. For
m=S5,¢=(10,2,3,7,5and C={(10+4, 2+, 3+, 7T+i, 5+ i€ Z,)}.
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3. The skew Room frame construction

We begin with some notation. Let (do, d,, d,, ..., d};) be an m-nesting
sequence and X = {1, 2, 3,..., 2k}. Further let x, y, and r be any 3 distinct
elements belonging to X and i any element belonging to Z,,. In what follows we
will denote the cycle

(x, dy+1) (y,do+i)

(X, dl+l) (y:dl+l)

(x, dy +1) (y, dy+1)

(x, d[m/2]—| +1i) (y, dlm/2]—l +1i)
(r, dypryy + i)
by (x,y,rido+i, di+i, ..., dy,r+1i), where d; + i is reduced modulo m.

The skew Room frame construction. Let m=3 be odd, X ={1,2,3, ..., 2k},
and let K,,,., be based on {>} U (X x Z,). Further, let § be a skew Room
frame (based on X) with holes H of size 2 or 4 and let (dy, d,, d,, . . ., d|,,2)) be

an m-nesting sequence. Now define a collection of m-cycles C of Ky, ., as
follows:

(1) For each hole h € H, define an m-cycle system (which can be nested) on
{o} U (h x Z,,) and place these cycles in C. (Important: If the hole h € H has size
2, then Lemma 2.5 guarantees the existence of an m-cycle system of order 2m + 1
which can be nested. It goes without saying that if &€ H has size 4, this
construction is used only if it is krown that an m-cycle system of order 4m + 1
which can be nested exists!); and

(2) for each x and y belonging to different holes and each i€ Z,,, place the
m-cycle (x, y, r; do+i, di+i,...,d.p+i) in C, where r is the row of §
containing the pair {x, y}.

It is straightforward to see that (Ky,,+i, C) is an m-cycle system, and so it
remains to show that (K54, C) can be nested.

Theorem 3.1. The m-cycle system (K, 11, C) constructed using the skew Room
frame construction can be nested.

Proof. For each hole & € H denote by ha a nesting of the m-cycle system defined
on {=} U(h X Z,) and define a mapping

(1) g(ha), if g € {} U (h X Z,,) for some h € H; and
ga = (2) (C’ d[m/2]+i): ifg=(x’ Y, r;d()+i1 d1+l’ ',d[m/2]+i);
where ¢ is the column of S containing {x, y}.
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Claim: «is a nesting of (Kaim+1, C). We must show that the collection of stars
C(«) obtained from C is an edge disjoint decomposition of Ky, . Trivially the
m-cycle systems defined on {®}U(hxZ,), heH, are partitioned by stars
belonging to C(a) and so it suffices to show that each edge of the form {(x, i),
(y, )}, x and y in different holes, belongs to some star of C(a). There are two
cases to consider: i =j and i # .

i=j Letdptt=i=j (modm). Since § is a skew Room frame and x and
y belong to different holes, exactly one of the cells (x, y) and (y, x) is occupied. If
cell (x,y) is occupied by {a, b}, then the m-cycle c=(a, b, x, d,+1,
di+t,...,dy., +t=1i=j)e C. Hence thestar ((a, dy+ 1), (b, dy + 1), (a, d, +1),
(b, di+t),....(x dupytt=i=j); (y, dpp+t=i=j))eC(a). The same
argument is valid if (y, x) is occupied.

i#j. Let d=min{i —j (mod m), j—i (modm)}. Then de
{1,2,3,...,[m/2]} and so there exists a t such that D(d.., d)=d. We
assume d=j —i=dj,p—d, (modm), the other three cases having similar
proofs. Then there exists a g such that j=d,; +q (modm) and i=d, +
q (modm). Since x and y belong to different holes, column y contains a pair of
the form {x, z}. Denote by (r, y) the cell containing {x, z}. Then the m-cycle (x,
2z, r;dy+q,d +q,...,d,2+q)eC and so the star ((x, dy, +q), (z, do+q),
(X, d1+q)r (Z: d1+(1)’ e (x) d1+q=i)’ (Zx d1+q=i)’ tr (rv d|m/2]+q=j);
(y’ d[m/Zl + q =I)) € C((X)

Combining the above two cases shows that the collection of stars C(«) is an
edge disjoint decomposition of Ky, ., which completes the proof. [

Theorem 3.2. For any odd m =3, the spectrum of m-cycle systems which can be
nested is the set of all n=1 (mod2m), with the 13 possible exceptions
n=km+1, ke {4, 6, 8, 12, 44, 46, 48, 52, 54, 56, 60, 68, 76}.

Proof. A skew Room frame in which all holes have size 2 exists for every even
order k ¢ {2, 4, 6, 8, 12, 44, 46, 48, 52, 54, 56, 60, 68, 76} (Theorem 2.2). Since
there exists an m-cycle system of order 2m + 1 which can be nested for every odd
m =3 (Lemma 2.5), the statement of the theorem follows from the skew Room
frame construction (Theorem 3.1). O

Corollary 3.3, If m is odd and there exists an m-cycle system of order 4m + 1
which can be nested, then the spectrum of m-cycle systems which can be nested is
the set of alln=1 (mod 2m), with the 3 possible exceptions 6m + 1, 8m + 1, and
12m + 1.

Proof. In the proof of Theorem 3.2 replace skew Room frames with holes of size
2 with skew Room frames with holes of size 2 or 4. 0O
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4. The spectrum for some small value of m

It should come as no surprise that for a given cycle length m we can improve on
the results guaranteed by Theorem 3.2 and Corollary 3.3. We list improvements
here for m < 15. There is, of course, nothing special about the number 15. We
could just as well use 50 or 100. However, m < 15 is sufficient for illustration.

The principle tool used to improve on the results in Theorem 3.2 and Corollary
3.3 is the finite field construction.

The finite field construction. Let n =2km + 1 be a prime power, x a primitive
element in F=GFQkm+1), and define: B={(x', x'*%*, x**% ..,
xRy =0, 1,2,...,k—1). If b=(a,, a3, ..., a,) € B and y € F denote
by b +y the m-cycle (a, +y, a,+y,...,a,+y), andset C={b+y|beB and
y € F}. If Kypm+1 is based on F, then (Kyi,+1, C) is an m-cycle system and the
mapping a given by (b + y)a =y is a nesting.

Finally, we will need the following two m-cycle systems (which can be nested).

(1) Let K, be based on Z,, and define B = {(1, 6, 19, 18,7), (4, 16, 13, 9, 11)}.
Let C,;={b+i|beB and i€ Z,}, where b +i is obtained from b by adding
i (mod21) to each coordinate of b. Then (K,,;, C,) is a pentagon system and
«: Cy— Z,, defined by (b +i)ar =i is a nesting.

(2) Let K45 be based on Z,s and define B={(1, 2, 4, 7, 3, 8, 14, 5, 12, 28,
20), (6, 23, 34, 16, 26, 13, 36, 21, 35, 15, 27)}. Set C;s={b+i|be B and
i€ Zys}, where b + i is obtained from b by adding i (mod 45) to each coordinate
of b. Then (K, Cs5) is an 1l-cycle system and a: Cy~— Z4s defined by
(b +i)a =1iis a nesting.

The finite field construction plus (K,,, C;) and (K,s, C4s) guarantees the
existence of an m-cycle system of order 4m + 1 which can be nested for every
me{3,5,7,9, 11, 13, 15}. Hence Corollary 3.3 further guarantees for m € {3, 5,
7, 9, 11, 13, 15} that 6m+1, 8n+1, and 12m + 1 are the only possible
exceptions in the spectrum of m-cycle systems which can be nested. In the
following table we have eliminated some of these possible exceptions using the
finite field construction.

m | spectrum of m-cycle systems which can be nested

3]alt n=1 (mod 6) Steiner triple systems [9]

5]alln=1 (mod 10) pentagon systems [5]

71alln=1 (mod 14) except possibly 57 and 85

9|alln=1 (mod 18) except possibly 55

11 |all n=1 (mod22) except possibly 133

13|alln=1 (mod26) except possibly 105

15 alln=1 (mod30) except possibly 91
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Comments. The spectrum for Steiner triple systems which can be nested was
first determined by Stinson [9]. The spectrum for pentagon systems was
determined with the 11 possible exceptions 111, 210, 221, 231, 261, 301, 381, 511,
581, 591, and 621 by Lindner and Rodger [5]. Denote by S(m) the spectrum of
m-cycle systems which can be nested. If 4m + 1 € $(m), then S(m) consists of all
n=1 (mod2m) with the three possible exceptions 6m + 1, 8m + 1, and 12m + 1
(Corollary 3.3). If 6m +1, 8m +1, and 12m + 1€ S(m) as well, then S(m) =
{n|n=1 (mod2m)}. The important problem of finding a general construction
to show that {dm+1, 6m +1, 8m+1, 12m + 1} € S(m) remains open. Since
it is “surely true” that {dm +1, 6m+1, 8m+1, 12m + 1} € S(m) for every
odd m, we do not hestitate to make the following conjecture: S(m)=
{n|n=1 (mod2m)} for every odd m.

5. Proof of Theorem 2.2

We begin with some notation. If S is a skew Room frame with holes H, the
type of § is defined to be the multiset T(S) = {|h||h € H}, where |h| is the size of
the hole heH. In what follows we will abbreviate the type T7T(S) by
1. 2. k'™ where t(i) denotes the number of holes & € H of size i, with
the proviso that i” occurs in this product if and only if ¢(i) # 0. So, for example,
a skew Room frame of order 54 with 5 holes of size 2 and 11 holes of size 4 is of
type 2° - 4''.

The following result was proved in [10].

Theorem S.1. There exists a skew Room frame of type 2" for all n =5, except
possibly for n € {6, 11, 15, 19, 20, 22, 23, 24, 26, 27, 28, 30, 31, 34, 36, 38, 43,
46, 51, 58, 59, 62, 67}.

We prove here the following two results.

Theorem 5.2. There exists a skew Room frame of type 2" for all n =5, except
possibly for n € {6, 22, 23, 24, 26, 27, 28, 30, 34, 38}.

Theorem 5.3. For all n =5, n #6, there exists a skew Room frame of order 2n,
having holes of size 2 and 4.

In what follows we will shorten skew Room frame ro skew frame. Now, let us
recall several constructions from [10]. Let G be an abelian group, written
additively, and let H be a subgroup of G. Denote g = |G|, h = |H| and suppose
that g —h is even. A frame starter in G\H is a set of unordered pairs
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S={{s;, t;} | 1=<i=(g—h)/2} satisfying (1) {s;} U{;} =G\H, and (2) {*(s,—
t;)} = G\H. An adder for S is an injection A: S— G\ H, such that

{s; +a;}U{t;+a;} =G\H, wherea,=A(s;, 1), 1sis(g-h)/2
A is skew if, in addition, {a;} U {—a;} = G\H.

Construction 1. Suppose there exists a frame starter S in G\H, and a skew
adder A for S. Then there is a skew frame of type h®", where g =|G| and
h =|H|.

We also use a modified starter-adder construction, which we now describe. As
before, let G be an abelian group and let H be a subgroup of G, where g = |G|,
h=|H|, and suppose that g —h is even. A 2k-intransitive starter in G\H is
defined to be a triple (S, R, C), where

N S={{s,t}1<i<(g-h—-2k)/2} U {{u}|1<i=<2k},
C={{pigq})l1<i<k}, and
R={{pi,qi}|1=<i<k},

satisfying

(1) {s3 U{t}U{w}U{p}U{q}=G\H,
(2) {x(si—1)}U{x(pi —g)} U {£(pi —qi)} = G\H, and
(3) all p; — g, and p; — q; have even order in G.

An adder for (8, R, C) is an injection A:S— G\H, such that {s;+4;} U
{t;+a;)U{u,+A)} U {p, qi} = G\H, where a,=A(s;, 1), 1<i<(@g—h-—
2k)/2. A is skew if, further,

(1) {a}U{-a}U{A(w), —A()}=G\H, and

(2) for each i, 1<i=<k, there exists a j=1 such that p, — ¢, has order 2m,

and p/ — g has order 2m,, where m, and m, are odd.

Construction 2. If there is a 2k-intransitive frame starter and a skew adder in
G\H, where g = |G| and h = |H|, then there is a skew frame of type h*"*(2k)".

We next describe recursive constructions for skew frames. All required design
theoretic terminology can be found in [1].

Construction 3. Let (X, G, B) be a group divisible design (GDD), and let
w: X— Z* U {0} (we say that w is a weighting). For every b € B suppose there is
a skew frame of type {w(x)|xeb}. Then there is a skew frame of type
{Beeew(x) |8 € G}

Construction 4. Suppose (X, B) is a pairwise balanced design (PBD), and there
exists a skew frame of type 2", for every b € B. Then there is a skew frame of
type 2%\,
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Construction 5. Suppose m =4, m # 6 or 10, and suppose 0 =< ¢ =3m. Suppose
also that there exist skew frames of types 2°" and 2'. Then there exists a skew
frame of type 2%"*".

Construction 6. Suppose s =u(v — 1)+ 1, and let ¢ be a rational number such
that 2¢ and (v — 1)/t are both integers. Suppose there exist skew frames of type
(2¢)* and 2%, and suppose that (v — 1)/t #2 or 6. Then there exists a skew Room
frame of type 2'.

Construction 7. Suppose there is a skew Room frame of type ¢{'t3*- - - ¢}, and
suppose also that r#2 or 6. Then there exists a skew Room frame of type

(£ )t 1) - (8- )"
Lemma 5.4. There is a skew frame of type 2%.

Proof. This is a special application of Construction 3. We start with a group
divisible design (GDD) of type 3" having blocks of size 4, in which the blocks can
be partitioned into 7 parallel classes (see [4] for a construction of this design).
Adding a new infinite point to each of 5 of the parallel classes, we obtain a GDD
of group-type 3*S' having blocks of size 4 and 5. Give every point weight 4, and
apply Construction 3, using input frames of type 4* and 4° (these are constructed
in [7]). A skew Room frame of type 12"20' is produced. Now, add on two new
rows and columns, and fill in the holes with skew frames of types 2" and 2. A
skew frame of type 2% results. O

Lemma 5.5. There exist skew frames of type 4''2', 4'2, and 4'12°.

Proof. The constructions are obtained by the methods of “projecting sets” as
described in [8]. The frames are all constructed by means of intransitive starters
and skew adders, by altering slightly the following starter and skew adder in
G\H, where G=2, X Z,X Z, and H= {0} X Z, X Z,. Suppose S = {{(x, 0, 0),
(2, 0,00}, {(x0,1), (21,0}, {10, 21,1}, {(x1,1),
(2x, 0, 1)} |x=1,3,4,5,9}, and A((x, i, ), (2x, k, ))=(x,i+k,j+!). Then S
and A generate a skew frame of type 4''. Now consider the two pairs (in S)
{(1,0,1), (2,1,0)} and {(3,0,1), (6,1,0)}. Suppose we delete these two pairs
from S, and adjoin the two singletons {(1,0,1)} and {(6, 1,0)}, obtaining S'.
Then, define C={(2,1,0), (3,0,1)}, and R={(3,0,1), (6, 1, 0)}. This prod-
uces a 2-intransitive starter and skew adder (§’, R, C), and hence there is a skew
frame of type 4''2'. Now, repeat the above procedure, starting with S, using the
pairs {(1,1,0), (2,1,1)} and {(3,1,0), (6,1, 1)}. This gives a 4-intransitive
starter and skew adder, producing a skew frame of type 4''4' = 4'2, We can do
this trick three times more, using pairs {(1,1,1), (2,0,1)} and {(3,1,1),
(6,0, 1)}; {(9,0,1), (7,1,0)} and {(5,0,1), (10, 1,0)}; and {(9,1,0), (7,1, 1)}
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and {(5,1,0), (10,1,1)}. Thus we obtain a 10-intransitive starter skew
adder, and a skew frame of type 4''10'. Filling in the hole of size 10 with a
skew frame of type 2°, we obtain the skew frame of type 4''2°. This completes the
constructions. [l

In a similar fashion, we can prove the following lemma.
Lemma 5.6. There is a skew frame of type 4"

Proof. The procedure is similar to that used in Lemma 5.5. We begin with the
following starter and skew adder in G\H, where G=Z,;%xZ,xZ, and

Table 1. Constructions for skew frames of type 2".

n Construction Remark
11 2 Table 3
15 2 Table 3
19 2 Table 3
20 1 Table 3
31=57-D+1¢t=3/2) 6 A skew frame of type 3°

is constructed in [3]

36=58-1+1(t=1) 6

43=8-4+11 5

46=5(10—- 1)+ 1(t=1) 6

51=5(11-1)+1(t=1) 6

58=78+1+1 4 There is a PBD on 58
points having blocks of
size 7, 8, and 9,
constructed by deleting
points from a TD(9, 8)

59 Lemma 5.4

62=78+5+1 4 There is a PBD on 62
points having blocks of
size 5,7, 8, and 9,
constructed by deleting
points from a TD(9, 8)

67=87+11 5

Table 2. Constructions for skew frames with holes of size 2 and 4.

n Frame Construction Remark

44 4" 7(t=4) a skew frame of type 1'' exists [7)
46 412! Lemma 5.5

48 412 Lemma 5.5

52 41 7(t=4) a skew frame of type 1'* exists [7]
54 41125 Lemma 5.5

56 4+ Lemma 5.6

60 415 7(t=4) a skew frame of type 1" exists {7]
68 4" T(=4) a skew frame of type 1'7 exists [7]

76 4" 7(t=4) a skew frame of type 1'* exists [7]
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Table 3. Starter-adder constructions for skew frames of type 2".

n=8

n=15

C=

n=19

5
10
14
15

4

7
11

1
7
14
11
18
6
8
5
19

19
15

—

—
RO W W= NN

—— _——
AW )

13

27
26
25
24
23
22
16
17
18
19
20

21

20
22

19

20
15
25
27

11
16
21

10

31
25

21

24
20

12
18
22
26

11
25

15
7
10
14
11
3

19
14
6
9
16
8
15

17

27
27
16
10
19
15
23

13

9

15
11

n=19

n=20

_—— = =
S—Pwha

DN N AW -

14
11

33
31
10
27
21
23
12
38
35
17
28

25
26

39

23
24
25
26
27
35
34
33
32
31
30
29

21

15
13
8
37
36
16
34
29
32
22
9
7
30
2
19
1
3
24
18

19
15
13

35

14
26
28

16
24

39
33
23
12
27
11
38
18
10

4
21

3

5

6
32
16
26
31
25

33
28
25
20

16
29
32

22
31
13
19

27

13

4
28

N
18
21
25
39
33
16
19
38
22
34
36

1
2
37
24

30
14

31

23
27
32

26
30
10
35

11
17
29
15

H={0} xZ,%x Z,.

{

Suppose S = {{(x, 0,0), (4x,0,0)}, {(x,0, 1), (4x, 1,0)},
{(x, 1,0), (4, 1, 1)}, {(x, 1, 1), (4x,0, D} [x =1, 2,3, 5, 6, 9},

A(x, i, ), (x, k, D))=Bx, i+ k, j+1),
Al i, f), (A, b, D)y =0x, i+ k, j+ 1),

ifx=1,3, or9Y, and
ifx=2,6, or 5.

Then § and A generate a skew frame of type 4", Now, consider the pairs (in )
{(5,0,1), (7,1,0)} and {(1,0, 1), (4,1,0)}. Delete these two pairs from S, and
adjoin the two singletons {(5,0,1} and {(4,1,0)}, obtaining S’. Then, define
C={(1,1,0), (7,0, 1)}, and R = {(4,0, 1), (5, 1, 0)}. Then, repeat this process,
using instead {(5,1,0), (7,1,1)} and {(1,1,0), (4,1, 1)}. This gives a 4-

intransitive starter and skew adder, giving rise to a skew frame of type 4'*. O

We present in Table 1 a list of skew frames of type 2" obtained using the above
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constructions. As an immediate consequence of Theorem 5.1 and Table 1, we
obtain Theorem 5.2. As well, we present in Table 2 a list of skew frames with
holes of size 2 and 4. As an immediate consequence of Theorem 5.2 and Table 2,
we obtain Theorem 5.3. Theorem 2.2 is, of course, the combination of Theorems
5.2 and 5.3.
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1. Introduction

Haim Hanani was the first to determine necessary and sufficient conditions for
the existence of BIBDs with k=3, 4, and 55, 6,7]. With a single exception,
these designs exist whenever obvious arithmetic conditions are satisfied. The
single exception occurs when v =15, k=5, A =2: the (15, 5, 2)-design does not
exist as it would be a residual of a nonexistent symmetric (22, 7, 2)-design. Thus
in order to show that a (15,5, 1)-BIBD exists for all even A=4 (A even is
necessary), Hanani had to construct a (15, S, 4)- and a (15, 5, 6)-BIBD.

Not many (15, 5, 4)-BIBDs are known. In our tables [10], where this design is
listed under No. 102, a lower bound of 1 is given. In Hall’'s book [4], a
1-rotational solution is given. Hanani gives a solution in 5], and another one in
[6, 7] (see also [1]). Another highly symmetric solution is given in [2, 9, 12], and
as shown in [12], this solution, Hall’s solution and the second of Hanani’s
solutions are mutually nonisomorphic. Another 1-rotational (15,5, 4)-design is
obtained from the twofold pentagon system of order 15 given in [8].

As for (15,5, 6)-BIBDs (No. 280 in [10]), the only ones known appear to be
that given by Hanani in [6] (and again in [7]) and by Dinitz and Stinson in [3]. No
resolvable (15, 5, 4)- or (15, 5, 6)-design appears to be known.

In this paper, we take a somewhat closer look at the (15,5, A)-family. In
particular, we investigate the existence of cyclic and 1-rotational, as well as the
existence of resolvable (15,5, A)-designs. We enumerate completely the 1-
rotational (15,5, 4)-BIBDs (there exists no cyclic (15,5, 4)-BIBD), and two
subclasses of cyclic, and 1-rotational (15,5, 6)-designs, respectively. In the
process, we substantially improve the lower bounds for the number of non-
isomorphic designs. We also obtain what we believe are first examples of
resolvable (15, 5, 6)-BIBDs, and enumerate completely the resolvable (15, 5, 6)-
BIBDs with an automorphism of order 5.

0012-365X/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)
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2. l-rotational (15, 5, 4)-BIBDs

A design with v elements is 1-rotational if it has an automorphism consisting of
one fixed point and a single (v — 1)-cycle. We performed a complete enumeration
of 1-rotational (15, 5, 4)-designs. These designs were generated and analyzed by a
computer (they were generated by an IBMPC, and analyzed on a Mac II).
Applying multipliers resulted in a reduced set of 85 distinct designs which
ultimately proved pairwise nonisomorphic. Our first attempt to distinguish
nonisomorphic designs involved employing intersection numbers: for each base
block, the number of biocks in each orbit intersecting the given base block in i
elements, i =0, 1,...,5, was calculated. In spite of its simplicity, this invariant
is fairly sensitive. It partitioned the set of 85 distinct designs into 50 nonisomor-
phic classes, 19 of which still contained more than one design (13 consisted of two
designs each but one of the classes still contained 8 nondistiguished designs).
Another invariant, the element counts in blocks containing a particular pair of
elements, proved even more sensitive. Here, one counts in the 4 blocks,
containing a given pair of elements x, y, the number of occurrences of the
remaining 13 elements. For each such pair x, y, one obtains an ordered triple
(a,, as, a;) where q; is the number of elements occurring i times in the 4 blocks in
question. Because the designs are 1-rotational, it clearly suffices to consider pairs
0,i) for i=1,2,...,13, and (0,*). A sorted list of obtained triples is an
invariant of the design.

This invariant partitioned the set of first 82 designs into 60 nonisomorphic
classes (the last three designs with 2 short orbits each were already distinguished
as nonisomorphic by the previous invariant), 16 of which still contained more
than one design (10 contained two, 6 contained three). The two invariants
combined failed to distinguish only 7 pairs of designs.

In the end, for each design D its element versus block incidence graph G(D)
was formed. As there are 15 elements and 42 blocks, G(D) has 57 vertices.
Canonical ordering of vertices of this graph is a complete invariant. All 85 distinct
designs are nonisomorphic, thus there exist exactly 85 nonisomorphic 1-rotational
(15, 5, 4)-BIBDs. These designs are listed in Table 1. First 82 designs have three
full-length-orbits, while the last 3 have two full-length orbits and two half-length
orbits (the last 3 designs have also a common half-orbit 0178¢ not shown in Table
1; all designs have an automorphism (0123456789abcd)(e)). The l-rotational
design occurring in [4], p. 410 (under No. 82) is isomorphic to our No. 40 in
Table 1, while the design obtained from [8] is isomorphic to our No. 76.

The order of the automorphism group of each design is 14. None of the designs
contains a single parallel class.

The two Hanani’s (15, 5, 4)-designs appearing in [5], and in [6, 7], respectively,
contain an automorphism of order 5. The automorphism group of the design in
[2,9, 12] has order 2520. These designs are mutually nonisomorphic, and also not
isomorphic to any of the 85 1-rotational designs. Thus, in the notation of [10],
Nd(15, 42, 14, 5, 4) = 88.
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Table 1. 1-rotational 2-(15, 5, 4)-designs

No Base blocks No Base blocks
1 01256 0247a 0138e 44 01257 0348a 0356e
2 01256 0247a 0578e 45 01457 01357 0169%e
3 01256 0368a 0138e 46 01457 02467 0l169%e
4 01256 0368a 0578e 47 01457 01359 0138e
5 01237 0148a 0358e 48 01457 01359 0578e
6 01237 0348a 0358e 49 01457 04689 0138e
7 01237 0247a 0149e 50 01457 04689 0578e
8 01237 0247a 0349%e 51 01457 01579 0136e
9 01237 0368a 0149 52 01457 01579 0356e
10 01237 0368a 0349%e 53 01457 02489 0l136e
11 01246 01479 0158e 54 01457 02489 0356e
12 01246 02589 0158e 55 02347 01468 0169e
13 01246 01479 0378e 56 02347 02478 016%e
14 01246 02589 0378e 57 02347 01379 0149%e
15 01246 0137a 0169%e 58 02347 01379 0349%e
16 01246 0237a 0l69%e 59 02347 02689 0149e
17 01356 01468 0158e 60 02347 02689 0349%e
18 01356 01468 0378e 61 01248 01358 0149%e
19 01356 01579 0147e 62 01248 01358 0349e
20 01356 01579 0367e 63 01248 03578 0l49%e
21 01356 0l48a 0138e 64 01248 03578 0349%e
22 01356 0148a 0578e 65 01568 02458 0237e
23 01247 01468 0149%e 66 01568 02458 0457e
24 01247 01468 0349%e 67 01568 03468 0237e
25 01247 02478 0149%e 68 01568 03468 0457e
26 01247 02478 0349%e 69 01568 0148a 0235e
27 01247 01359 0158e 70 01568 0348a 0235e
28 01247 01359 0378e 71 02348 01258 025%e
29 01247 04689 0158e 72 02348 01258 0479%e
30 01247 04689 (0378e 73 02348 03678 0259%e
31 01247 0247a 0156e 74 02348 03678 047%e
32 01247 0368a 0156e 75 02348 0136a 0138e
33 01257 02458 0158e 76 02348 0136a 0578e
34 01257 02458 0378e 77 02348 0356a 0138e
35 01257 03468 0158e 78 02348 0356a 0578e
36 01257 03468 0378Be 79 01249 0148a 01l36e
37 01257 01359 0147e 80 01249 0148a 0356e
38 01257 01359 0367e 81 01249 0348a 0136e
39 01257 04689 0147e 82 01249 0348a 0356e
40 01257 04689 0367e
41 01257 0l148a 0136e 83 03458 02458 0279
42 01257 0148a 0356e 84 01246 01469 037ae
43 01257 0348a 0136e 85 01246 03589 037ae

The number of 2-rotational (15,5, 4)-designs (those with an automorphism
consisting of a fixed element and two cycles of length 7) is apparently very
large—huge amounts of these were generated on Mac II.

On the other hand, an exhaustive search has shown that there exists no
resolvable (15, 5, 4)-design with an automorphism of order 7 or one of order 5, or
one of order 3. For more on this, see beginning of Section 5.

3. 1-rotational (15,5, 6)-BIBDs

Since the number of blocks in a (15,5,6)-BIBD is 63, a l-rotational
(15, 5, 6)-design could a priori have 4 full-length orbits and one half-length orbit
of blocks, or 3 full-length orbits and 3 half-length orbits. We expected the number
of 1-rotational (15, 5, 6)-designs to be quite large—an expectation that eventually
proved to be true—and since the latter possibility seemed to be more restrictive,
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we expected a smaller, more manageable subclass to emerge. To our surprise,
this class turned out to be empty. In other words, there exists no 1-rotational
(15, 5, 6)-design containing three half-length orbits of blocks, whether repeated or
not.

As for the former class, since the shorter orbits are multiplier-isomorphic, one
may assume one arbitrary (but fixed) half-length orbit to be present in the design.
With this assumption, we generated a set of 5268 distinct such designs,
conceivably all pairwise nonisomorphic. Since this is too large a number of
designs to analyze, we decide to focus on certain “reasonable” subclasses. One
such subclass contains 1-rotational (15,5, 6)-designs with repeated blocks (and
therefore necessarily repeated block orbits). The number of such distinct designs
is 29. The ‘‘intersection numbers” invariant partitioned these into 22 pairwise
nonisomorphic classes, and the ‘“‘canonical ordering of the incidence graph”
invariant proved all 29 designs to be pairwise nonisomorphic. These are listed in
Table 2.

The second subclass of 1-rotational (15,5, 6)-designs that we investigated was
the class of designs having at least three S-orbits of blocks. Here, an orbit is
called an S-orbit if it is invariant under the mapping i— —i(i € Z,,). This class
contained 79 distinct designs, of which 78 have exactly 3 S-orbits and 1 has
exactly 4 S-orbits (there is no design having all 5 orbits S-orbits). Again, the
intersection numbers partitioned the 79 distinct designs into 64 pairwise non-
isomorphic classes, and the ‘‘canonical ordering of the incidence graph™ invariant
proved all 79 designs to be pairwise nonisomorphic. These are listed in Table 3
(all designs in Tables 2 and 3 have also common half-orbit 0178¢ not shown, and
an automorphism (0123456789abcd)(e)).

None of the designs is resolvable, but some of them contain several parallel
classes. Of the 79 designs with at least 3 S-orbits, 20 have no parallel class, 52
have 7 parallel classes, 4 have 14 parallel classes and one (No. 37 in Table 3) has
35 parallel classes. The automorphism group of each design given in Tables 2 and
3 has order 14.

Table 2. 1-rotational 2-(15, 5, 6)-designs with repeated orbits

No Base blocks No Base blocks
1 01246 02569 02569 0238e 16 02348 01358 01358 0348e
2 01246 02569 02569 0568e 17 02348 01358 01358 0458e
3 02456 02569 02569 0238e 18 04568 01358 01358 0348e
4 02456 02569 02569 0568e 19 04568 01358 01358 0458e
5 01246 0136a 0136a 0238e 20 02348 02359 02359 0348e
6 01246 0136a 0136a 0568e 21 02348 02359 02359 0458e
7 02456 0136a 0136a 0238e 22 04568 02359 02359 0348e
] 02456 0136a 0136a 0568e 23 04568 02359 02359 0458e
9 01356 01356 01573 036ae 24 03458 03458 01379 0247e
10 01356 01356 0148a 026%e 25 03458 03458 01379 0357e
11 01356 01356 0148a 0379%e 26 01358 01358 0l1l26a 0236e
12 01247 01247 0146a 0359%e 27 01358 01358 0126a 0346e
13 01247 01247 0146a 0469%e 28 02359 02359 0126a 0236e
14 01247 01247 0256a 0359%e 29 02359 02359 0126a 0346e
15 01247 01247 0256a 0469%e
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Table 3. 1-rotational 2-(15, 5, 6)-designs with 3 or 4 S-orbits

No Base blocks No Base blocks
1 01236 01458 0258a 0249%e 41 01347 01349 01359 0249%e
2 01236 03478 0258a 0249%e 42 01347 01349 04689 0249%e
3 01236 0126a 0357a 0258e 43 01347 0126a 02358 0249e
4 01236 0126a (357a 0368e 44 01347 0l126a 03568 0249%e
5 01256 01347 0258a 0249%e 45 01457 01349 02458 0249%e
6 01256 03467 0258a 0249%e 46 01457 01349 03468 0249%e
7 01246 01349 0147a 0249%e 47 01457 03458 02368 0249%e
8 01246 01349 0369 0249%e 48 01457 03458 02568 0249e
] 01346 01349 0148a 0249%e 49 01367 03458 02458 0249%e
10 01346 01349 0269a 0249 50 01367 03458 03468 0249%e
11 01346 0126a 02369 0249%e 51 02347 03458 0258a 0157e
12 01346 0126a 03679 0249e 52 02347 03458 0258a 0267e
13 01346 0126a 0357a 0238e 53 01248 03458 03469 0249e
14 01346 0126a 0357a 0568e 54 01248 03458 03569 0249%e
15 01356 01257 01359 O036ae 55 01348 01349 02458 0249%e
16 01356 01257 04689 036ae 56 01348 01349 03468 0249%e
17 01356 02348 0147a 0249%e 57 01348 03458 02368 0249%e
18 01356 02348 0369a 0249%e 58 01348 03458 02568 024%e
19 01356 01249 013539 O036ae 59 02348 01349 0357a 0l46e
20 01356 01249 04683 O036ae 60 02348 01349 0357a 0256e
21 01356 01349 0148a 0247e 61 02348 03458 02369 0249e
22 01356 01349 0148a 0357e 62 02348 03458 03679 0249
23 01356 01349 02469 0l48e 63 02348 03458 0357a 0238e
24 01356 01349 02469 0478e 64 02348 03458 0357a 0568e
25 01356 01458 02368 0249%e 65 01349 03458 01357 0269%e
26 01356 01458 02568 0249%e 66 01349 03458 01357 0379%e
27 01356 (03458 01468 0269%e 67 01349 03458 01468 0247e
28 01356 02458 01468 0379%e 68 01349 03458 01468 0357e
29 01356 03458 0247a 0157e 69 01349 03458 02469 0137e
30 01356 03458 0247a 0267e 70 01349 03458 02469 0467e
31 01356 0126a 02369 0247e 71 01349 02458 0357a 0126e
32 01356 0126a 02369 0357e 72 01349 02458 0357a 0456e
33 02346 01349 0259a 0269%e 73 01258 03458 02458 0249%e
34 02346 01349 0259%9a 0379% 74 01258 03458 03468 0249%e
35 02346 01569 02369 0249%e 75 03458 02368 0357a 01l26e
36 02346 01569 03673 0249e 76 03458 02368 0357a 0456e
37 02346 01569 0357a 0238e 77 01369 0126a 0357a 0124e
38 02346 01569 0357a 0568e 78 01369 0126a 0357a 0234e
39 02346 01489 03469 0249%e 79 01356 01349 0236a 024%e

40 02346 01489 03563 0249%e

If the results concerning these two subclasses are any indication, most, if not
all, of the 5268 distinct 1-rotational designs are likely to be nonisomorphic.

As a consequence of our computational results of this and the preceding
section, we have the following.

Theorem 1. A 1-rotational (15, 5, A)-BIBD exists if and only if A=0 (mod 2),
A=A,

Proof. Necessity is obvious. There exists a l-rotational (15,5,4)- and a 1-
rotational (15, 5, 6)-design. Noting that every even number A >4 can be written
as A =4m + 6n, where m, n are nonnegative integers, completes the proof. [

4. Cydclic (15,5, 6)-BIBDs

In a sense, this section parallels the previous one. A design with v elements is
cyclic if it has an automorphism consisting of a single cycle of length v. Any cyclic
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Table 4. Cyclic 2-(15, 5, 6)-designs with repeated orbits

No Base blocks No Base blocks
1 01235 0148a 0l48a 0158a 20 01346 01268 0267a 0267a
2 01235 0148a 0148a 0259%a 21 01346 02678 0267a 0267a
3 02345 0148a 0148a 0158a 22 02356 01268 0267a 0267a
4 02345 0148a 0148a 0259a 23 02356 02678 0267a 0267a
5 01245 0249%a 0249a 0347a 24 01247 02349 0267a 0267a
6 01245 0249a 0249a 0367a 25 01247 05679 0267a 0267a
7 01236 02379 0267a 0267a 26 03567 02349 0267a 0267a
8 01236 02679 0267a 0267a 27 03567 05679 0267a 0267a
9 03456 02379 0267a 0267a 28 01347 03458 0249a 0249a
10 03456 02679 (0267a 0267a 29 01367 0125a 01468 01468
11 01237 02368 0267a 0267a 30 01367 0345a 01468 01468
12 01237 02568 0267a 0267a 31 01467 0125a 01468 01468
13 04567 02368 0267a 0267a 32 01467 0345a 01468 01468
14 04567 02568 0267a 0267a 33 01248 01248 0145a 0258a
15 01237 02359 0267a 0267a 34 01248 01248 0157a 0356a
16 01237 04679 0267a 0267a 35 02348 02348 01479 0158a
17 04567 02359 0267a 0267a 36 02348 02348 01479 0258%a
18 04567 04679 0267a 0267a 37 02348 02348 02589 0158a
18 01239 02459 02459 036ab 38 02348 02348 02589 0259a

(15, 5, 6)-design must have 4 full-length block orbits and one short orbit. After
generating all distinct cyclic designs and applying all possible multiplier iso-
morphisms, we arrived at a reduced set of 1953 distinct cyclic (15, 5, 6)-designs,
which are multiplier nonisomorphic, and therefore, according to [11], all pairwise
nonisomorphic. Although this number is somewhat smaller than the correspond-
ing number for 1-rotational (15, 5, 6)-designs, it is still too large for a complete
analysis. We have again restricted ourselves to the same subclasses as in the case
of 1-rotational designs: the cyclic (15, S, 6)-designs with repeated blocks, and the
cyclic (15,5, 6)-designs with at least three S-orbits of blocks. The number of
distinct designs in these 2 classes are 38, and 57, respectively. Of the 57 designs in
the latter class, 55 have exactly 3 S-orbits, and 2 have exactly 4 S-orbits (there is
no cyclic design with all 5 orbits S-orbits). The “canonical ordering of the
incidence graph’ invariant shows that all of the 38 cyclic (15, 5, 6)-designs with
repeated blocks are pairwise nonisomorphic (these designs are listed in Table 4)
as are the 57 cyclic (15,5, 6)-designs with at least 3 S-orbits (these designs are
listed in Table 5; all designs in Tables 4 and 5 contain also the short orbit with
base block (0369c), and have an automorphism (01 - - - Oabcde)). This follows
also from [11]: note that (15, @(15)) =1.

All designs in Table 4 have automorphism group of order 15, except for No. 26
(order 30) and No. 33 (order 60). All designs in Table 5 have automorphism
group of order 15, except for Nos. 39, 48, 52, 53, 57 (order 30) and No. 51 (order
120). We have the following analogue of Theorem 1.

Theorem 2. A cyclic (15, 5, A)-BIBD exists if and only if A=0 (mod2), A=6.

Proof. It is easy to see that there exists no cyclic (15, 5, 4)-BIBD (such a design
would necessarily contain the short orbit repeated 4 times, therefore any
full-length orbit of blocks in the design cannot contain pairs of elements covered
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Table 5. Cyclic 2-(15, 5, 6)-designs with 3 or 4 S-orbits

No
1 01235
2 02345
3 01245
4 01245
5 01245
6 01245
7 01245
8 01245
9 01236
10 01236
11 01256
12 01256
13 01256
14 01256
15 01237
16 01237
17 01237
18 01237
19 01237
20 01237
21 01237
22 01237
23 01267
24 01267
25 01267
26 01267
27 01267
28 01267
29 01238

Base blocks

0249a
0249%a
01279
02789
0127a
0127a
02379
02679
01468
02478
01269
03789
0127a
0127a
01249
05789
01478
01478
01569
03489
02458
03468
01356
01356
01457
02367
03458
03458
02348

0148a
0148a
0257b
0257b
0158a
0259%a
0249a
0249a
0249%a
024%a
0235a
0235a
01358
03578
0257b
0257b
0257b
0257b
0235a
0235a
0249%a
0249%a
0237a
0378a
0235a
0235a
01368
02578
0257b

036ab
036ab
036ab
036ab
0248b
0248b
036ab
036ab
036ab
036ab
0248b
0248b
0248b
0248b
036ab
036ab
0135a
0245a
0248b
0248b
036ab
036ab
0248b
0248b
0248b
0248b
0248b
0248b
036ab

No

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

01238
01238
01238
01238
01238
01238
01238
01239
01239
01239
01356
01356
01356
01356
01356
01356
01247
01247
01457
01367
01367
01248
01248
01248
02348
02348
01239
01356

Base blocks

04568
03458
03458
03458
03458
0145%5a
0145a
01348
01348
02459
01268
01268
01348
01348
01259
01259
03458
03458
03458
03458
03458
04678
03458
03458
03458
03458
03458
01248

0257b
0148a
0269a
0157a
0359%a
01358
03578
0256a
0458a
04579
01468
02478
0249%a
0249%a
0249%a
0249a
0l48a
026%a
02379
01468
02478
0l45a
0249%a
0249%a
0249%a
0249%a
0267a
0249%a

036ab
0257b
0257b
0248b
0248b
0248b
0248b
0257b
0257b
036ab
036ab
036ab
0l48a
0269%a
0236a
0478a
0249a
0249a
0249%a
0249a
0249%a
0258a
01469
03589
01479
02589
0257b
036ab
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by short orbits; but all possible full-length orbits do), hence necessity. For
sufficiency, we note that every even integer A = 6 can be written as A = 6m + 8n +
10p. Thus, in addition to the cyclic (15, 5, 6)-designs of this section, we need to
provide a cyclic (15, 5, 8)- and a cyclic (15, 5, 10)-design. These are given below:

(a) base blocks of a cyclic (15, 5, 8)-design:

01256, 01257, 01268, 02374, 0247b, 0369¢, 0369, 0369Yc.
(b) base blocks of a cyclic (15, 5, 10)-design:

01256, 01268, 01269, 02458, 02368, 02674, 0358b. O

5. Resolvable (15,5 6)-BIBDs

A resolvable (15, 5, 6)-design will contain 21 disjoint parallel classes of 3 blocks
each. It appears natural to investigate the existence of resolvable (15,5, 6)-
designs with an automorphism of order 7, and of order 5, respectively. In the
former case, the set of elements is taken to be Z; x {1, 2} U {}, and there would
be three base parallel classes (i.e. three orbits of 7 parallel classes each). In the
latter case, the set of elements is taken to be Zsx {1, 2, 3}, and there would be
five base parallel classes (i.e. 4 orbits of 5 parallel classes each, and one parallel
class fixed under Z).

In the case of an automorphism of order 7, there are following two tactical
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decompositions:

Table 6. Resolvable 2-(15, 5, 6) designs with automorphism of order 5

1st
1) 133
322
100

Tactical decomposition:

WDl Ub Wl

0125a
0125a
0125a
0125a
0125a
0125a
0125a
0125a
0125a
0125a
0125a
0125a
0125a
0l125a
0125a
0125a
0125a
0125a
0125a
0125a
01l25a
0125a
0125a
0125a
0125a
0125a
0125a
0125a
0125a
0l125a
0125a
0125a
0l25a
0l25a
0l25a
0125a
0125a
0125a
0125a
0l25a
0125a
0125a
0125a

3689d
3689%e
368%e
368%e
368%e
3689%e
36890
3689b
3689
368%c
3689¢
3689%e
3689d
3689c¢
3689e
3689b
3689¢c
3689d
3689b
3689¢c
3689%e
3689c
36894
3689b
3689%e
3689c¢
3689%e
3689d
3689c
3689c¢
3689%e
3789p
368%¢
3689c
378%e
3689%e
37894
378%e
3689¢
3789¢c
3789%b
3783%b
3789k

47bce
47bed
47bcd
47becd
47bcd
47bcd
47cde
47cde
47bcd
47bde
47bde
47bcd
47bce
47bde
47bcd
47cde
47bde
47bce
47cde
47bde
47bcd
47bde
47bce
47cde
47bcd
47bde
47bcd
47bce
47bde
47bde
47bed
46cde
47bde
47bde
46bcd
47bcd
46bce
46bcd
47bde
46bde
46cde
46cde
46cde

Tactical decomposition:

SO W N

21
21
21

21
21
21

0125a
0125a
0125a
0125a
0125a
0125a
0125a

3489d
3489%e
3468e
3489b
3478e
3478b
3478e

67bce
67bed
79bcd
67cde
69bcd
69cde
69bcd
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Base resolutions

3
1
1

- W
W

0135e
0135a
0135b
0135¢
0135d
0135e
0125d
0135c
0135%a
01254
0135a
0135¢
0126c
0135b
0126¢c
0126¢c
0126c
0135¢
0137d
0137a
01354
0126¢c
0126e
0137e
0135d
0135a
0127e
0127b
0127¢
0136b
0136a
0135b
0137¢
0137¢
0125d
0137d
0127e
0127a
01384
0128d
0135a
0137¢
0138d

- w
ISR RN
wNo

0168d
0157d
0256e
0269d
0157e
0157b
0257e

- W
W

4689a
2789d
2789%e
2789%a
2789b
2789%¢
3789%e
4689%e
2678d
3789b
2678e
4789b
3589b
4679¢c
3589d
3589%e
3589d
2679a
4568b
4568b
4789%a
4789d
4789%a
2568c¢
4678a
4678e
4589c
3568e
4568d
4589¢
2589d
4689d
4569d
4569d
4789b
2689b
3689¢
3689¢c
4569c
4679a
2689¢c
4689a
4679%a

= NN
= NN

2359c
2468a
14784
1478a
2489c
2489
1369%a

2nd  3rd
322 214
133 241

100 100

w e
SIS
[N

27bed
46bce
46acd
46bde
46ace
46abd
46abc
27abd
49bce
46ace
49bcd
26ade
47ade
28ade
47abe
47abd
47abe
48bde
2%ace
29cde
26bce
35abe
35bed
49abd
29%bce
29bcd
36abd
49acd
39%abe
27ade
4Tbce
27ace
28abe
28abe
36ace
45ace
45abd
45bde
27abe
35bce
47bde
25bde
25bce

W
N =N
[SERN]

47abe
39%bce
3%abe
35bce
36abd
3sacd
48bcd

1st
2) 142
313
100

R SIS
NN
NN

056cd
06Bae
06Bae
068Bae
068Bae
06Bae
078ab
056ac
068ae
078ac
068bd
058ae
057bd
069cd
057be
079bc
07%cd
079%ab
058ce
058ae
068cd
078ab
078be
067ac
068cd
068bd
057bd
056cd
06%ab
079ce
07%ae
068bc
058ad
067bc
068ae
059bd
07%bc
079%be
069be
057ab
068bd
067bc
067bc

w =
N =N
N =N

026de
018ad
016bd
017bc
017ac
0l7ac
017bc

=8N

23%ae
125¢cd
125cd
125cd
125¢d
125cd
239%ce
239de
129%cd
238de
129%ac
239bd
239ce
345ae
239ac
236ad
236be
128de
239bd
239%bd
345ae
23%ce
23%9ad
235de
34%ae
349%ac
23%ce
23%ae
235ce
346ad
126cd
239de
347be
348ae
239bd
128ce
235de
235ad
347ad
236ce
125ce
349ad
349ad

-

139%ac
247be
247ac
235ad
245bd
245de
248ad

2nd
313
142
100

1478b
3479b
34790
347%
3479b
3479b
14564
1478b
3457b
1456b
3457e
1467c
1468a
1278b
1468d
1458e
1458a
3456¢c
1467a
1467¢
1279b
1456d
1456¢c
1489b
1257b
1257e
1468a
1478b
1478d
1258b
3458b
1457a
1269c
12594
1457¢
3467a
1468a
1468¢c
1258¢
1489d
3479%a
1258e
1258e

4578b
3569¢
3589%e
4689%e
3689%e
3689k
3569%e

3rd
223
232
100

06%ce
067ad
067be
067ac
067bd
067ce
057be
069cd
067ad
068de
067bc
067ad
08%cd
083bd
089bd
067ce
067bd
056be
089bc
089bd
067ad
057cd
068bc
079cd
067ad
067bc
089%ab
089be
059ca
067bc
067ad
089%ac
067bc
058ad
067ac
057ae
08%ad
089bc
067bc
056cd
067be
058ad
069be

027cd
028bc
0l8ac
025ae
027de
027de
0l17ad

235bd
135ce
135ad
135be
135ac
135bd
139ad
235be
135ce
249%ab
135de
239ce
137ae
135ac
137ae
138ab
138ae
139cd
237de
237ae
135ce
139be
249de
238be
135ce
135de
137cd
246cd
138be
135de
135ce
235be
135de
137be
249de
136cd
245bc
245ae
135de
248ae
138ae
138%bc
135cd

135be
135de
246de
147bd
148bc
l48ac
246ce

1478a
2489b
2489c¢
2489d
2489%e
248%a
2468c
1478a
2489b
1357¢
2488%a
1458b
2456b
2467e
2456¢
2459d
2459c¢
2478a
1456a
1456¢
2489
2468a
1357a
1456a
2489b
2489%a
2456e
1357a
2467a
2489%a
2489b
1467d
2488%a
2469c
1358b
2489b
1367e
1367d
2489%a
1379b
2459d
2467e
2478a

4689a
4679%a
35790
3689c
3569%a
3569b
3589b
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Table 6 (Continued)

8 21 0125a 3478e 69bcd 0267e 1359a 48bcd 017bc 249ad 3568e 017ad 245ce 3689b

g 21 0125a 3469c 78bde 0257c 1389b 46ade O0l6ac 248bd 3579e 019cd 248ae 3567b
10 21 0125a 3469d 78bce 0267c 1458a 39%bde 017ad 249bc 3568e 019cd 245ab 3678e
11 21 0125a 3469d 78bce 0267d 1458e 39%9abc 017bc 24%ae 3568d 019ce 245bd 3678a
12 21 0125a 3469e 78bcd 0168c 2459a 37bde 015ce 248ab 3679d 027ae 148bd 3569c
13 26 0125a 3469d 78bce 0267a 1359c 48bde 01l6cd 249ab 3578e 018bd 245ae 3679c
14 21 0125a 3469d 78bce 0269%a 1357c 48bde 0l6cd 247ab 3589%e 018bd 247ae 3569c
15 21 0125a 3478d 6%bce 0256d 1478e 39%abc 017bc 239%ad 4568e 025de 138ac 4679b
16 21 0125a 3478e 69bcd 0256d 1478b 3%ace 017bd 345ac 268%e 025ae 138bc 4679d
17 21 0125a 3468e 7%bcd 0156c 2379a 48bde 027be 148cd 3569%9a 028ab 147ce 3569d
18 21 0125a 3469d 78bce 0267a 1389%e 45bcd 015bd 347ae 2689c 028de 135ac 4679b
19 21 0125a 3469d 78bce 0268b 1357c 49ade 0l6cd 235ae 4789b 027ad 148be 3569c
20 21 0125a 3478e 69bcd 0157a 2369e 48bcd 027bd 138ae 4569c 028ac 147bd 3569%e
21 21 0125a 3478e 69bcd 0167a 235%e 48bcd 026bd 138ae 4579c 028ce 135bd 467%a
22 21 0125a 3469d 78bce 0158d 3479a 26bce 026ad 147bc 358%e 027de 148ab 3569c
23 26 0125a 3469d 78bce 0167c 2359a 48bde 025cd 137be 4689%a 025de 148ab 3679c

Tactical decomposition: 320 122 122 122

032 212 212 212

203 221 221 221
1 21 0l2ab 34589 67cde 056ce 129ad 3478b 068ab 139de 2457c 079%ac 246bd 1358e
2 21 0l2ac 34589 67bde 057bc 348de 1269%9a 078ac 139%be 2456d 079cd 136ae 2458b
3 21 012ac 34589 67bde 057ae 129cd 3468b 078de 245ab 1369c 059ce 137bd 2468a
4 21 012ac 34589 €67bde 058bc 346ad 127%e 058de 137ab 2469c 089be 137cd 24S6a
5 21 012ab 34589 67cde 058cd 129be 3467a 058be 137ad 2469c 069bd 245ae 1378c¢c
6 21 0l2ac 34589 67bde 058ad 347be 1269c 067de 248bc 1359%9a 068bc 135ae 2479d
7 21 0l2ac 34589 67bde 058ab 347cd 126%e 079bd 245ae 1368c 067ce 248ab 13594
8 21 0l2ac 34589 67bde 067bd 348ce 1259a 068ab 135cd 247%e 079cd 136ae 2458b
9 21 0l2ac 34589 67bde 067ce 348bd 1259%a 068bc 135ae 2479d 079ab 136de 2458c
10 21 012ab 34589 67cde O068ae 129cd 3457b 058bd 246ac 137% 059ce 138ad 2467b
11 21 012ac 34589 67bde 069ae 128bd 3457c 068cd 135be 2479%9a 089%bc 247de 1356a
12 21 012ab 34589 €7cde 078ac 125de 3469b O069ac 138be 2457d 079be 248cd 1356a
13 21 012ac 34589 67bde 057ce 239ad 1468b 058de 236bc 147%a 089%bc 137de 2456a

Tactical decomposition: 302 122 122 122
032 221 122 122
221 212 311 311

21 012ab 567cd 3489e 078bd 146%9a 235ce 05cde 236%a 1478b 05acd 1379e 2468b
21 012ab 567ce 3489d 078bc 1469e 235ad O05bed 2369%9a 1478e 05bce 1379a 2468d
21 012ab 679de 3458c 05%ac 1478d 236be O0Ob6ace 2358d 1479b 07bcd 1356e 2489%a
21 0l12ac 679bd 3458e 059bc 1478d 236ae O6ade 2358b 1479c 0O7ace 1356b 2489d
012ab 679ce 3458d 058cd 3469%9a 127be O08abc 24674 1359e 09acd 1378e 2456b

21 0l2ac 679de 3458b 058ab 3469d 127ce O08bce 2467d 1359%9a 09cde 1378b 2456a

21 012ab 679ce 3458d 057be 2368a 149cd 06bcd 2359e 1478a 0%acd 2478e 1356b

21 0l2ac 679de 3458b 057ae 2368c 149bd 06bde 2359%9a 1478c 0%abc 2478d 135¢6e

21 012ab 567cd 348%e 068ad 2479c 135be 05bce 1289d 3467a 05cde 137%a 2468b
10 21 0l2ab 567ce 3489d 068ab 2479d 135ce 05acd 1289e 3467b 05bcd 137%a 2468e
11 21 012ac 567bd 3489e 068ab 2479c 135de 05cde 1289a 3467b 0S5bce 137%a 2468d
12 21 012ac 567bd 3489e 068cd 2479%e 135ab 05cde 1289b 3467a O05bde 1379c 2468a
13 21 012ac 567bd 348%e 068ab 2479¢c 135de O05bce 2369a 1478d 05cde 2369b 1478a
14 21 012ab 679de 3458c 056ce 2478a 139bd 08bde 1269c 3457a O07bcd 1356a 2489%e
15 26 012ac 679be 3458d 056cd 2478b 13%ae 08bcd 1269a 3457e 07abd 1356c 2489e
16 21 012ab 679ce 3458d 059bc 2467a 138de 0OB8ace 1279d 3456b 09bde 1367a 2458¢

W2 h s W
L%
-

Tactical decomposition: 311 311 122 122
032 212 212 212
212 032 221 221

1 21 0l2ac 4569b 378de 01257 46ade 389bc 068ad 235be 1479c 089%ce 246ab 1357d
2 21 0l2ac 4569b 378de 01257 46bde 38%ac 068ae 235bd 1479c 089cd 246ab 1357e
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Table 6 (Continued)

3 21 0l2ac 4569b 378de 01257 46ade 389bc 079cd 236be 1458a 078bd 245ce 1369a

4 21 012ac 4569e 378bd 01259 38abc 467de 068cd 23%ae 1457b 069be 247ad 1358¢
5 21 012ac 4569e 378bd 01259 47abc 368de 067ce 239%bd 1458a 069%cd 13Bae 2457b

6 21 012ac 4569d 378be 01259 47bcd 368ae 067be 23%ac 1458d 06%ab 138de 2457c
7 21 012ac 4569d 378be 01268 49bcd 357ae 089be 235ad 1467c 058ae 246bc 13794

8 21 0l2ac 4569d 378be 01269 38abd 457ce 067bc 235de 1489a 058de 246bc 1379%a

9 21 0l2ac 4569d 378be 01279 45cde 368ab 078ce 236bd 1459a 068bc 249%ae 1357d
10 21 012ab 3589c 467de 01268 37acd 459%be 057bc 236ae 1489d 058bd 246ac 137%e
11 21 012ac 3589d 467be 01279 36bcd 458ae 056bd 237ae 1489c 07%9de 136ac 2458b
12 21 012ab 4579c 368de 01267 3%acd 458be 078be 236ad 1459c 078cd 135ae 2469b
13 21 0l2ac 4579d 368be 01268 47bcd 359ae 079be 238ac 1456d 089%ab 135de 2467c
14 21 0l2ac 4579e 368bd 01269 37abc 458de 056cd 239%9ae 1478b 078be 24%ad 1356¢
15 21 0l2ac 4579e 368bd 01279 48abc 356de 068ce 237bd 145%9a 067cd 135ae 24890
l6 21 0l2ac 3689b 457de 01257 39ade 468bc 089%be 235ac 1467d 059bd 246ae 1378c
17 21 012ab 3689c 457de 01257 36bde 48%ac 079cd 23Bae 1456b 078ac 246bd 1359%e
18 21 01l2ac 3689b 457de 01257 48abc 369de 067cd 235be 148%9a 059ad 246be 1378¢c
19 21 0l2ac 3689b 457de 01259 46ace 378bd 067cd 239%9be 1458a 058bc 249de 1367a
20 21 0l2ac 3689b 457de 01267 35abe 489cd 079%ce 236ad 1458b 078be 136cd 2459%a
21 21 01l2ab 3689c 457de 01269 35kde 478ac 058cd 23%ae 1467b 059ac 246bd 1378e
22 21 0l2ac 4569e 378bd 01359 47abc 268de 057be 12%ac 3468d 068cd 137ae 2459b
23 21 0l12ac 45694 378be 01359 47abe 268cd 068be 129ad 3457c 057cd 136ab 2489%e
24 21 0l2ac 4569b 378de 01368 29bce 457ad 078bc 125ae 3469d 059bd 137ae 2468c¢c
25 21 012ac 4569d 378be 01369 28ade 457bc 057ad 348ce 1269b 078bc 246de 1359a
26 21 012ac 4569b 378de 01379 46ade 258bc 056ce 129ad 3478b 068bd 135ae 2479¢
27 21 012ac 4569b 378de 01379 46bde 258ac 056de 12%ac 3478k 068bc 135ae 2479d
28 21 012ac 4569d 378be 01379 46bcd 258ae 08%ac 346be 1257d 057ae 136bc 2489d
29 21 012ac 456%e 378bd 01379 48abe 256cd 057be 128ad 3469c 058cd 13%ae 2467b
30 21 0l2ac 4569b 378de 01379 48acd 256be 068bc 12%9ad 3457e 056de 138ab 2479c
31 21 0l12ac 4569b 378de 01379 48bcd 256ae 068bd 12%9ac 3457e 056ce 138ab 2479d
32 21 0l2ac 4569b 378de 01389 26ade 457bc 057ae 129bd 3468c 069ce 245ad 1378b
33 21 012ab 35894 467ce 01368 45abc 279de 089be 126ad 3457c 069%ac 135de 2478b
34 21 012ac 3589%e 467bd 01378 45bcd 269ae 069%bd 348ce 1257a 058ab 139cd 2467e
35 21 012ac 4579d 368be 01357 29cde 468ab 078ce 126ad 3459b 089%ae 245cd 1367b
36 21 012ac 4579b 368de 01367 2%abe 458cd 059%bd 127ac 3468e 078ce 246ab 1359d
37 21 012ac 4579b 368de 01367 29abc 458de 078ce 125ad 3469b 059bd 246ae 1378c¢c
38 21 0l2ab 4579c 368de 01378 49bcd 256ae 067ce 129bd 3458a 06%ac 135be 2478d
39 21 0l2ac 4579e 368bd 01378 49bcd 256ae 069%bc 127ad 3458e 078be 246cd 1359%a
40 21 0l2ac 4579d 368be 01378 45cde 269ab 056bc 128ad 3479%e 089%ac 135de 2467b
41 21 01l2ab 4579c 368de 01378 2Sabe 469cd 056ac 347be 1289d 059%bd 137ac 2468e
42 21 01l2ac 3689b 457de 01378 45bcd 26%ae 056ab 348ce 1279d 089bd 135ac 2467e
43 21 0l2ac 3689b 457de 01378 26bcd 45%ae  079bd 345ac 1268e 089ce 247ab 1356d
44 21 0l2ab 4569d 378ce 01368 29bde 457ac 06%ac 237de 1458b 089cd 235ab 1l467e
45 21 0l2ac 4569%e 378bd 01357 49%abc 268de 069de 147bc 2358a 078be 149ad 2356c
46 21 0l2ac 3589d 467be 01358 26cde 479ab 068de 23%ab 1457c 089ce 237bd 1456a
47 21 0l2ac 3589b 467de 01368 45abe 279cd 069be 237ad 1458c 078ce 236ab 1459d
48 21 0l2ab 3589d 467ce 01379 26cde 458ab 057be 238ad 1469c 078ce 236ab 1459d
49 21 0l2ac 4569b 378de 01389 45bde 267ac 057de 148ac 2369b 058cd 147ab 2369%e
50 21 012ac 4579d 368be 01357 48ade 269bc 067bd 238ac 1459e 089bc 235ae 1467d
51 21 0l12ac 4569b 378de 01389 26acd 457be 067ae 149cd 2358b 069be 148cd 2357a
52 21 01l2ab 4579e 368cd 01378 45abc 269de 078ac 236be 1459d 079ad 238be 1456¢
53 21 0l2ac 4579b 368de 01378 45bce 269ad 078cd 236be 1459a 056de l48ab 2379¢
54 21 0l2ab 368%e 457cd 01378 25cde 46%9ab 059ac 236be 1478d 079bd 238ac l456e

Above, the first row corresponds to the (element) orbit Z, X {1}, second row
to the orbit Z,;x {2}, and the third row to the fixed element . The columns
correspond to blocks in a base parallel class. Thus in (¢;), i=1,2,3,j=1,2,3,
a;; is the number of elements from ith orbit in the jth block of the base parallel
class in question.

An exhaustive search has shown that no resolvable (15,5, 6)-design with an
automorphism of order 7 exists. This, together with a similar negative result for
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A=4 (as a result of an exhaustive search, there exists no resolvable (15,5, 4)-
design with an automorphism of order 7, and there is not even an admissible
tactical configuration for a resolvable (15, 5, 4)-design with an automorphism of
order 5 or order 3) was quite disappointing.

However, the situation proved to be quite different in the case of resolvable
(15,5, 6)-BIBDs with an automorphism of order 5. In this case, there are 5
tactical decompositions. There exist resolvable (15, 5, 6)-designs corresponding to
each one of them. These are listed in Table 6, together with their tactical
decompositions. Only the base blocks for the 4 full-length orbits of the parallel
classes are shown. The fixed parallel class 01234 56789 abcde is common to all
designs; all designs have an automorphism (01234)(56789)(abcde).

The number of nonisomorphic resolvable (15,5, 6)-designs obtained is 43 +
23 + 13 + 16 + 54 = 149. Each of these 149 designs has an automorphism group of
order 5. The underlying designs are also pairwise nonisomorphic as in each case
the resolution is unique. The number of parallel classes, which each design
admits, is not constant, however. While most designs admit exactly 21 parallel
classes, i.e. exactly those that appear in the unique resolution, three designs
admit 26 parallel classes, and four designs admit 31 parallel classes.

6. Conclusion

As a result of Section 2, we have in the notation of [10] for A=4:
Nd(15, 42, 14, 5, 4) = 88.

For A =6, we see easily that the designs of Section 3, Section 4 and Section 5
are mutually nonisomorphic. The (15,5, 6)-design given by Hanani in [6, 7] is
isomorphic to our No. 51 in Table 5, but in Dinitz—Stinson design in [3] is not
isomorphic to either of them, thus Nd(15, 63, 21,5, 6)=108 + 1953 + 149+ 1 =
2211. We also have Nr(15, 63, 14, 5, 6) = 149.

One question that remains open is that about the existence of a resolvable
(15,5, 4)-BIBD.
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FINITE BASES FOR SOME PBD-CLOSED SETS
R.C. MULLIN

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario,
N2L 3G1 Canada

Let H*={v:v=a+1,v=1 (moda)}. It is well known that such sets are PBD-closed.
Finite bases are found for these sets for a =35, 6 and 7.

1. Introduction

The theory of PBD closure was developed by R.M. Wilson in a remarkable
series of papers (see 9, 10 and 11]). Amongst other results, he proved that every
PBD closed set contains a finite basis, and illustrated this fact by presenting finite
bases for certain instances. The following definitions allow these concepts to be
made more precise.

A pairwise balanced design (PBD) of index unity is a pair (V, A) where V is a
finite set (of points) and A is a class of subsets of V (called blocks) such that any
pair of distinct points of V occurs in exactly one of the blocks of A.

A PBDIK, v] is defined to be a PBD(V, A) where |V| = v and |B| € K for every
B € A. Here K is a (finite or infinite) set of positive integers.

If K consists of a single positive integer &, the resulting configuration is called a
(v, k, 1) balanced incomplete block design (BIBD).

If K is a (finite or infinite) set of positive integers, let B(K) denote the set of
positive integers v for which there exists a PBD[K, v]. A set K is PBD-closed (or
simply closed) if B(K) = K. Wilson has shown that every closed set K contains all
sufficiently large integers v with v =1 (mod a(K)) and v(v — 1) =0 (mod B(K)),
where a(K) is the greatest common divisor of the integers {k —1:k € K} and
B(K) is the greatest common divisor of the integers {k(k —1):keK}. As a
consequence of this, as Wilson has pointed out, if K is a closed set, then there
exists a finite subset J < K such that K = B(J). Such a set J is called a finite basis
for the closed set K. Using the notation of Wilson [11], let a be a positive integer.
Then H*={v:v>a,v=1 (moda)} is closed. In fact, Wilson points out the
following results.

H?=B({3, 5}),
H*=B({4, 7, 10, 19}),
H*=B({5, 9, 13, 17, 29, 33, 49, 57, 89, 93, 129, 137}).

0012-365X/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)
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It is clear that each closed set K has a unique minimal finite basis. An element
x € K is said to be essential in K iff x ¢ B(K\{x}), or equivalently x ¢ B({y €
K:y <x}). Thus in the unique minimal basis, every element is essential. In the
basis for H* above, not all listed elements are essential. Indeed, it was later
shown that 89, 129, and 137 are not essential. Therefore it is also true that

H*=B({5,9, 13, 17, 29, 33, 49, 57, 93}).

It is improbable that this is minimal. It is the purpose here to provide the
following bases:

H=B({6, 11, 16, 21, 26, 36, 41, 46, 51, 56, 61, 71, 86, 101, 116, 131, 141,
146, 161, 166, 191, 196, 201, 206, 221, 226, 231, 236, 251, 261, 266, 281, 286,
291, 296, 311, 316, 321, 326, 351, 356, 376, 386, 401, 416, 436, 441, 446, 476,
491, 591, 596}).

H%=B({7, 13, 19, 25, 31, 37, 43, 55, 61, 67, 73, 79, 97, 103, 109, 115, 121,
127, 139, 145, 157, 163, 181, 193, 199, 205, 211, 223, 229, 235, 241, 253, 265,
271, 277, 283, 289, 295, 307, 313, 319, 331, 349, 355, 361, 367, 373, 379, 391,
307, 409, 415, 421, 439, 445, 451, 457, 487, 493, 499, 643, 649, 655, 661, 667,
685, 691, 697, 709, 727, 733, 739, 745, 751, 781, 787, 811, 1063, 1069, 1231,
1237, 1243, 1249, 1255, 1315, 1321, 1327, 1543, 1549, 1567, 1579, 1585, 1783,
1789, 1795, 1801, 1819, 1831}).

H'=B({8, 15, 22, 29, 36, 43, 50, 71, 78, 85, 92, 99, 106, 113, 127, 134, 141,
148, 155, 162, 169, 176, 183, 190, 197, 204, 211, 218, 225, 239, 246, 253, 260,
267, 274, 281, 295, 302, 309, 316, 323, 330, 337, 351, 358, 365, 372, 379, 386,
414, 421, 428, 442, 575, 582, 589, 596, 603, 610, 701, 708, 715, 722, 827, 834,
1205, 1212, 1219, 1226, 1261, 1268, 1275, 1282, 2031, 2038, 2045, 2066)).

2. Constructions for pairwise balanced designs

For the definition of group divisible design (GDD), transversal design (TD),
resolvable balanced incomplete block design (RBIBD), and for a discussion of
Wilson’s fundamental construction for group divisible designs, and relevant
notation, see section 3 of [11]. For the definition of incomplete transversal design,
incomplete pairwise balanced design (IPBD), and a discussion of the singular
indirect product, and relevant notation, see section 2 of [6].

Let P be a finite set of positive prime integers. Define U(P) to be the smallest
integer & such that, for any positive n, there exists an integer s such that
n<ss<n+34 and (s, p)=1 for every p € P, where as usual, (s, p) denotes the
greatest common divisor of s and p. The function U(P) is investigated in [8], with
particular reference to U(P,) where P, = {g <k, q prime}. The main result of
interest here is the following lemma, taken from [8].
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Lemma 2.1. Let k be a positive integer. Then given any positive integer n, there
exists an integer s such that n <s <n + U(P,) and there exists a TD(k + 2, 5).

The following lemmas are useful in establishing finite bases for the sets H".

Lemma 2.2. Let a be a positive integer. Suppose that there exists a positive integer
u such that u=1 (moda) and that there exist both a TD(a+1,u—1) and a
TD(a + 1, u). If there exists a TD(u+ 1, m), then m(u—1¥a+ 1) +at+1 is
inessential in H” for 0<t=m.

Proof. By adjoining an ideal point « to a TD(a + 1, u — 1), and deleting any
other point a GDD[{a+1, u}] of type a“"'(u—1)" is formed. Similarly by
deleting a point from a TD(a + 1, u), a GDD[{a + 1, u}] of type a“(u—1)" is
formed.

Let G,, G,, ..., G,,, denote the groups of a TD(u + 1, m). Truncate G, to
obtain a group G of size ¢, and assign a weight a to each point of
G, G,, ..., G, and assign weight (4 — 1) to each point of G, ,,. Apply Wilson’s

fundamental theorem [11] to obtain a GDD[{a +1, u}] with group type
(am)“~'(at)'((u — 1)m)'. Adjoin a point to each group to obtain a PBD[{at +
Lu-1m+l,am+1,a+1,u},mu~1)(a+1)+at+1]. Since {ar+1, (u—
)m+1,am + 1} < H?, the result follows. O

Let V(a, b)={v:v=1(moda), a +1<v=<b}.

Theorem 2.3. Let a be a positive integer, and u be an integer such that u=1
(mod a) and there exists a TD(a+1, u—1) and a TD(a + 1, u). Let 6 =U(P,_,)
and let w be an integer such that

(i) there exists a TD(u + 1, w) and

(i) w=d(u—1)(a + 1)/a.
Then the set V(a, w(u —1)(a + 1) — a + 1) is a finite basis for H®.

Proof. For any integer s = 6(u — 1)(a + 1)/a, the inequality
E+O)u—-1)a+D)+1<s(u—1)(a+1)+as+1

holds. By the definition of w, all of the values congruent to 1 (moda) in the
interval [w(u —1)(@a+1)+1, w(u—1)(a +1) + aw + 1] are (by Lemma 2.2) in-
essential in H”. By the definition of 6, there exists an integer w,, satisfying
w+1l<w <w+0d such that there exists a TD(u + 1, w;) and trivially w, =
8(u—1)(a+ 1)/a. Hence, since w(u—-1)a+1l)—a+lswu—-1)a+1)+
wa+ 1, all values congruent to 1 (moda) in the interval {w(u —1(a + 1)+
1, w,(u — 1)(a + 1) —a + 1] are inessential in H". A simple induction completes
the proof. O
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The following values of U(P,) are required here and are cited from [8].

k UR)
5 6
7 10

11 14

13 22

(Note that this function increases only when k is prime.)
The following well known result is included for the sake of completeness.

Lemma 2.4, Let D be a pairwise balanced design on v points, whose smallest
blocks contain s elements and which contains a block L of length I. Then
v=I(s — 1) + 1, with equality only if there is a resolvable balanced complete block
design (I(s—1)+1,s—-1,1).

Proof. Let « denote any point not on L in D. Since o is contained in a block with
each of the points on L, there are at least / blocks containing %, each containing
(s — 1) points other than «. Therefore v=I(s — 1) + 1.

In the case of equality, all blocks other than L must contain precisely s points,
and the configuration determined by removing the points of / is a RBIBD(/(s —
1)+1,s—1,1). Clearly any RBIBD(/(a —1)+ 1,5~ 1, 1) can be extended to
such a pairwise balanced design. O

3. A basis for H®.

In Section 1, bases for H*>, H*, and H* were given. Unfortunately, the size of
bases for H which can be formed tends to increase rapidly with a, so that the
basis given for H’ is considerably larger. We begin by pointing out that
{6,11, 16,21, 26,36, 41} is a set of essential elements in any basis for H°. Indeed,
by Lemma 2.4, any PBD with block sizes from the above list which contains
blocks of more than one size must contain at least 46 points, so any inessential
elements in the above set must correspond to PBDs which contain blocks of only
one size. If any of these are non-trivial (that is, do not consist of a single block)
then there must be balanced incomplete block designs. But any balanced
incomplete block design of index one with a block size 11 or more must contain at
least 111 blocks, which reduces the problem to considering BIBDs of block size 6.
By a Lemma 2.4 in the case / =5, such a design must contain at least 31 points,
and the number v of such points must satisfy v=1 or v=6 (mod15). The
projective plane of order 5 provides an example for v =31, and it is well known
that there is no affine plane of order 6, so that the integer 36 is essential. Since
41 =11 (mod 15), 41 is also essential.

Since there exist both a TD(6, 15) and TD(6, 16), by Lemma 2.3, taking
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w =397, the set V(5, 35726) is a finite basis for H>. This result can be greatly
improved after the following lemmas.

Lemma 3.1. Let m be an integer such that there exists a TD(14, m). Then
65m + 15t + 1 is inessential in H> for 0<t<m. See Zhu [14].

Lemma 3.2. Let v be an integer such that v=1 or v =6 (mod 15) and v = 6. Then

v € B(6) with the possible exception of v € §, where S is the set of 99 values listed
in Table 1 below.

Table 1.

16 21 36 46 51 61 81 141 166 171
196 201 226 231 246 256 261 276 286 291
316 321 336 346 351 376 406 411 436 441
466 471 486 496 501 526 561 591 616 621
646 651 676 706 711 736 741 766 771 796
801 831 886 891 916 946 1011° 1066 1071 1096

1101 1131 1141 1156 1161 1176 1186 1191 1221 1246
1251 1276 1396 1401 1456 1461 1486 1491 1516 1521
1546 1611 1641 1671 1816 1821 1851 1881 1971 2031
2241 2601 3201 3471 3501 4191 4221 5391 5901

*See Corollary 3.13.1.

Proof sce [14]. The values 1551, 1636, 3621, 3771, 4346, 4251 have been obtained
by W.H. Mills (private communcation). [

Lemma 3.3. Let m be an integer such that there exists a TD(16, m). Then
75m + 5t + 1 is inessential in H’ for 0<t<m.

Proof. Since 76 € B(6), there exists a GDD[{6}] with group type 5'°. By
extending the resolvable BIBD(65,5,1) to a PBD[{6, 16}, 81] and deleting a
point not on the block of size 16, a GDD [{6, 16}] with group type 5'® is created.
Applying Wilson’s fundamental theorem establishes the result. O

Lemma 3.4. If there exists a TD(19, m), then 90m + 5t + 1 is inessential in H” for t
satisfying 0<t<m.

Proof. Apply Lemma 2.2 witha=5, u=16. 0O
Lemma 3.5. Let v be an integer such that v=1 (mod5) and v satisfies

1876 <v =< 35721. If v does not lie in the interval 2571 < v <2606, then v is
inessential in H°.
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Proof. First consider the interval 2666 < v < 35721. By Lemma 3.2, it is sufficient
to establish the result in this range for v =11 (mod 15) together with ve X =
{3201, 3471, 3501, 4191, 4221, 5391, 5901}. We first take care of values such that
v =11 (mod 15) using Lemma 3.1 in conjunction with appropriate m which satisfy
m =2 (mod 3). The results are given below.

m 65m+1 8m+1

41 2666 3281
47 3056 3761
53 3446 4241
59 3836 4721
71 4616 5681
83 5396 6641
89 5786 7121
101 6566 8081
113 7346 9041

131 8516 10481
149 9686 11921
167 10856 13361
197 12866 15761
227 14756 18161
269 17486 21521
323 20996 25841
383 24896 30641
443 28796 35441
449 29186 35921

Now if m=1 (mod3) in Lemma 3.1, then 65m + 15t + 1 =6 (mod 15), so that
the values of v in X are treated as follows.

m 6m+1 80m+1

49 3186 3921
61 3966 4880
79 5136 6321

The remaining values, apart from v satisfying 2006 < v <2021, are dealt with by
Lemmas 3.3 and 3.4 as below.

Lemma 3.3 Lemma 3.4
m Ts5m+1 80m+1 m 9O0m+1 95m+1
25 1876 2001 23 2071 2186
27 2026 2161 27 2431 2566
29 2176 2321 29 2611 2756

31 2326 2481
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In the interval 2006 < v <2021, we need only consider 2006 and 2021 in view of
Lemma 3.2. but 2006 =29.65+8.15+ 1 and 2021 =29.65+9.15 + 1. This com-
pletes the lemma. 0O

Lemma 3.6. Suppose that there exists a PBD[H®, v] which contains a flat of order
fand a TD(6, v —f +a)—TD(6, a), where 0<a <f. Then w=6v —5f + 5a is
inessential in H°, and there exists a PBD[H°, w] which contains a flat of order
f+5a.

Proof. The proof is analogous to that of construction 4.1 in [5]. O
For convenience, we record the well-known observation below.

Lemma 3.7. If there is a resolvable BIBD with block size 5 and r resolution
classes, then there exists a PBD[{6, r}, 5r + 1].

Lemma 3.8. Suppose that a, t, and m are integers satisfying 0<t<m and
O<sasm. If there exist a TD(8, m) and a TD(6,t), then there exists a
TD(6, Tm + t + a) — TD(6, a).

Proof. See Wilson [12]. O

For the existence of RBIBD(v, 5, 1), see [4]. As authority for the existence of
a TD(k, m), we use [2] unless otherwise indicated.

Lemma 3.9. If v is any integer such that v=1 (mod 5) and v satisfies 2571 <sv <
2606, then v is inessential in H.

Proof. Since there exists a TD(6, 76), then there exists a PBD[{6, 76}, 456] with
a flat of order 76. Also, since 380 + a =7.53 + 9 + a, there exists a TD(6, 380 +
a) — TD(6, a) for 0 < a < 53. Hence the values of v such that v =1 (mod 5) which
satisfy 2356 < v < 2621 are inessential in H> by Lemma 3.6. [

As the result of the above lemmas, note that if v = 1876, then v is inessential
in H°.

Lemma 3.10. Suppose that there exists a TD(26, m).
(i) If m=0 (mod 5), then 26m + 5t + 1 is inessential in H®, for 0<t<m.
(i) If m =1 (mod 5), then 26m + 5t is inessential in H® for 0<t<m.

Proof. There exists a trivial GDD[{26}] with group type 1?. Also, since
31€ B(6), there exists a GDD[{6}], with group type 25'6'. If there exists a
TD(26, m), then by Wilson’s fundamental construction [11], there exists a
GDD[{6,26}] with group type m®*(m +5t)'. To obtain the result, if m=1
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(mod 5), use the GDD as a PBD. If v =0 (mod 5), then adjoin a new point to
each group to obtain the required PBD. [0

Lemma 3.11. Let v be any integer such that v =1 (mod 5) and v satisfies v = 1001.
Then v is inessential in H*.

Proof. First use Lemma 3.6 to cover the following intervals.

PBD with flat  flat incomplete TD maxa interval

176(=11%x17) 11 165+a=11.15+a 11  1001-1056
181( € B(6)) 6 175+a=725+a 6 1056-1086

Now apply Lemma 3.10
m 2m 3lm

41 1066 1271
Again apply Lemma 3.6

PBD with flat flat incomplete TD maxa  interval
241(=6.40+1) 41 200+a=727+11+a 27 1241-1376
246( = 6.41) 41 205+a=727+16+a 27 1271-1406
271(=6.45+1) 46 225+a=732+1+a 32 1396-1556
276( = 6.46) 46 230+a=731+13+a 31 1426-1581

Now apply Lemma 3.10 again.

m 26m 3lm
61 1586 1891
These cover all required values in the interval 1001 < v =< 1891. This, together

with the fact that the result is true for v = 1876, establishes the lemma. [

Lemma 3.12. Let v be any integer such that v=1 (modS5) and v satisfies
516 <v <996 and v does not lie in the intervals 591 < v < 596 or 966 < v < 996.
Then v is inessential in H®.

Proof. Note that there exists a BIBD(601, 6, 1). Now apply Lemma 3.6 as below.

PBD with flat flat incomplete TD max a interval
91 (e B(6)) 6 85+a=7114+8+a 6 516-546
106 (RBIBD(85,5,1)) 21 85+a=7.11+8+a 11 531-586
106 (€ B(6)) 6 100+a=713+9+a 6 606-636

111 ( € B(6)) 6 105+a=715+a 6 636-666
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Now use Lemma 3.10

m

25

26m+1 31lm+1
651 776

Now again use Lemma 3.6.

PBD with flat
156(RBIBD(125, 5, 1))

flat
31

Now again apply Lemma 3.10.

m

31

26m  31m
806 961

This completes the Lemma.

Lemma 3.13. There exists a TD(6, 28) — TD(6, 3) and a TD(6, 29) — TD(6, 4).

ad

incomplete TD
125+a=7.16+13+a

maxa

16

interval

781-861

225

Proof. These are constructed by the matrix-minus diagonal method of Wilson
[13]. The following arrays lie in GF(25) as generated by x> +3=0. O

COOOOOOOO'

OOOOO‘

TD(6, 28) — TD(6, 3)

1
1

= o & |

3x+1
4x +1
x+2
3x+1 4x+3

=
+
ENH&WN'—"O

2
x+3
2

3x+2
3x+4
x+3
4x +3
3x+2

2
2x +1

4
4x +1

TD(6, 29) - TD(6, 4)

0 1
— 1
1 —
2 X
x x+2
x+2 2

2
3

x+3

3x+2
x+1

3
x+1
3x+4
2r+3

2x

4x + 4
2x +4
4x +1
x+4

4x +3
2x +2
x+3
3x+4

2x +1

x+1
2x +2
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Corollary 3.13.1. There exists a PBD[{6, 21}, 171] and a PBD[{6, 26}, 176] which
contains a unique block of size 26. Therefore 171 and 176 are inessential in H°.
Further there exists a BIBD(1011, 5, 1).

Proof. To obtain the pairwise balanced designs in the enunication, apply Lemma
3.6 to the BIBD(31, 6, 1) using a block of size 6 used as a flat.

Note that one can apply Lemma 3.6 to the PBD[{6, 26}, 176] above, using the
block of size 26 as a flat. Using the value a = 17, noting that 167=7.19+ 17 + 17,
yields a PBD [{6, 111}, 1011} which contains a unique block of size 111, which
can be “replaced” by a BIBD(111, 6, 1) to yield a BIBD(1011,6,1). O

Lemma 3.14. Suppose that v is any integer such that v=1 (mod 5) and v satisfies
v=516. If v ¢ {591, 596}, then v is inessential in H°.

Proof. In view of Lemmas 3.11 and 3.12, it is sufficient to treat the interval
966 < v < 996. This is dealt with using Lemma 3.6 and Corollary 3.13.1 and the

following table.

PBD with flat  flat incomplete TD maxa interval
176 26 150+a=17.19+17+a 19  926-1021
This establishes the result. [

We are now in a position to prove the main result of this section.

Table 2. A basis for H>.

6 11 16 21 26 36 41 46 51 56
61 71 86 101 116 131 141 146 161 166
191 196 201 206 221 226 231 236 251 261
266 281 286 291 296 311 316 321 326 351
356 376 386 401 416 436 441 446 476 491
591 596

Theorem 3.15. The 52 values in Table 2 above are a basis for H°.

Proof. In view of the above, we need only consider v <S511. After eliminating
those values in B(6), the set of values {81, 171, 176, 246, 256, 276, 336, 341, 346,
371, 406, 411, 431, 461, 466, 471, 486, 496, 501, 506} remain. These are treated
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below. (In all applications of Lemma 3.6, the existence of the required
Incomplete Transversal Design is immediate.)

81=65+16  RBIBD(65, 51)

171 Corollary 3.13.1

176 Corollary 3.13.1

246 = 6.41

256 = 167

276 =11.25+1

336 =6.56

341=6.55+11 (Lemma 3.6, f = 11) (66 =6.11)
346=6.55+16 (Lemma 3.6, f =11) (66=16.11)

371 =6.60+11 (Lemma 3.6, f =6) 66 € B(6)

406 = 325 + 81 ' 3 RBIBD(325,5,1)

411=6.65+21 (Lemma 3.6, f = 16) 81 =65 + 16(RBIBD)
431=6.70+11 (Lemma 3.6, f =6)

461=6.75+11 (Lemma 3.6, f =6) 81 = 65+ 16(RBIBD)
466 =6.75+16 (Lemma 3.6, f = 16) 91=6.15+1
471=6.75+21 (Lemma 3.6, f = 16) 91=6.15+1

486 = 6.81

496 = 16.31

501 =6.80+21 (Lemma 3.6, f = 16) 96 =6.16

506 = 405 + 101 3 RBIBD(405, 5, 1)

Thus all required cases are covered. [

4. A basis for H®

Since there exist both a TD(7, 12) and TD(7, 13), and since U(P;;) = 14, the
following lemma is immediate from Lemma 2.3 (using w = 197).

Lemma 4.1. The set V(7, 16543) is a basis for H®.

To improve upon this result, we note the following.
Lemma 4.2. If m satisfies

(i) m=1 (mod 6), and

(ii) there exists a TD(43, m),

then 43m + 6t is inessential in H® for 0<t<m.

Proof. There exists a BIBD (49,7, 1). Considering this, the proof is analogous to
that of Lemma 3.10. O
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Lemma 4.3. Suppose that there exists a PBD[H®, v] which contains a flat of order

f, and there exists a TD(6, v —f +a) — TD(6, a), where 0<a<f Then w=
Tv — 6f + 6a is inessential in H®.

Proof. The proof is that of Theorem 3.6, mutatis mutandis. [

The following theorems are direct analogues of Lemmas 3.7 and 3.8
respectively.

Lemma 4.4. If there exists a resolvable BIBD with block size 6 and r resolution

classes, then there exists a PBD[{7, r}, 6r + 1) which contains a unique flat of
order r.

Lemma 4.5. Suppose that a, t, and m are integers satisfying 0<t<m and

Osasm. If there exists a TD(8, m) and a TD(7,t), then there exists a
TD(7, Tm + t +a) — TD(7, a).

Lemma 4.6. Suppose there exists a TD(k, s), a TD(k,s+ 1), a TD(k,s +2), a
TD(k +t+ 1, m) and a TD(k,s +t+u) where ue{0,1}. Then there exists a
TD(k, ms +t +a)—TD(k, a) for 0<a<m — 1+ u. (cf. Zhu [14]).

Proof. This follows from Wilson’s constructions [12]. O

Corollary 4.6.1. If there exists a TD(8+t, m) and a TD(7,7+t+u) where

u e {0, 1}, then there exists a TD(7, Tm +t +a)—TD(7,a), for 0<asm -1+
u.

Lemma 4.7. Let m be an integer such that there exists a TD(14, m). Then
84m + 6t + 1 is inessential in H®.

Proof. Takea=6 and u =13 in Lemma 2.2. O

Lemma 4.8. If v satisfies v =1 (mod 6) and v = 1849, then v is inessential in H°.

Proof. Consider the following intervals.

m 43m 49m Lemma 4.2

43 1849 2107
49 2107 2401

m 8m+1 90m+1 Lemma 4.7
27 2269 2431

29 2437 2611
31 2605 2791



m

61
67
73
79

43m

2623
2881
3139
3397

Now apply Lemma 4.3.

PBD with flat

595=17.85
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49m

2989
3283
3577
3871
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Lemma 4.2

flat  incomplete TD maxa interval

8 S510=771+13+a 71 3655-4081

Now return to Lemmas 4.2 and 4.7.

m

47

m

97
109
121
127
139
151
163
181
199
223
241
271
307
343

84+1

3949

43m

4171
4687
5203
5461
5977
6493
7009
7783
8557
9589
10363
11653
13201
14749

90m +
4231

49m

4753
5341
5929
6223
6811
7399
7987
8869
9751
10927
11809
13279
15043
16807

This establishes the lemma. [0

1 Lemma 4.7

Lemma 4.2

Lemma 4.9. If there exists a TD(8, m), then 48m + 1 € B[{7, 6m + 1}].

Proof. Since 49 ¢ B(7), there exists a GDD[{7}] of group type 6°. Apply
Wilson’s fundamental theorem [11].

Lemma 4.,10. Suppose that v satisfies v=1 (mod 6) and v=1075. Then v is
inessential in H® with the possible exception of v € {1231, 1237, 1243, 1249, 1255,
1315, 1321, 1327, 1543, 1549, 1567, 1579, 1585, 1783, 1789, 1795, 1801, 1819, 1831}.
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Proof. We begin with Lemma 4.3.

PBD with flat flat incomplete TD max a interval
175=1.25 25 1504+a=719+17+a 19 1075-1189
175=17.25 7 168+a=723+7+a 7 1183-1225
187(RBIBD(156, 6, 1)) 7 180+a=725+5+a 7 1267-1309

(Corollary 4.6.1, u=1)
217=17.31 31 186+a=725+11+a 25 1333-1483

Use Lemma 4.7.

m 8m+1 90m+1
17 1429 1531

Again, use Lemma 4.3.

PBD with flat  flat incomplete TD maxa interval

259=7.37 37 222+a=1731+5+a 31 1591-1777
(Corollary 4.6.1, u=1)

The above intervals cover all cases except for the appropriate v in the intervals
listed below.

1231 s v <1261
1315 =v <1327
1537 <v <1585
1783 < v <1843

All but one of the remaining cases, namely 1837, are covered in the following.

List of equations

1261=13.97

1537=4832+1 (Lemma 4.9)
1555=7.222+1

1561 =17.223

1573 =13.121

1807 = 13.139

1813 =17.259

1825=25.73

1843 =19.97

The remaining case, v = 1837, can be disposed of as follows. We apply a more
general form of the indirect product (see [5]). Note that since there exists a
TD(7, 12), there exists a PBD[{7, 13}, 85] with a flat of order 13. Also there
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exists a TD(25,73) — TD(25,1). Since 1837 =25(85—12) + 12, it is inessential
in H%. O

Lemma 4.11. Let v be any integer such that v=1 (mod6) which satisfies
505 < v <1069. Then v is inessential in H® with the possible exception of v in the
intervals 643 <v <667, 727 <v <751, or v € {685, 691, 697, 709, 781, 787, 811,
1063, 1069}.

Proof. We begin by using Lemma 4.3.

PBD with flat flat incomplete TD maxa interval
85=7.12+1 13 2+a=79+9+a 9 517-571
91=7.13 13 78+a=7.11+1+a 11 559-625
91=7.13 7 84+a=711+11+a 7 595-637
133=7.19 19 114+a=7.16+2+a 15 817-907

(Corollary 4.6.1, u =0)
151 =126 + 25(RBIBD) 25 126 +a=717+7+a 17 907-1009
151 =126 + 25(RBIBD) 7 144+a=7.19+11+a 17 1015-1057

This covers all possibilities except those in the intervals listed below.

505 =v =511
643 < v <811
1063 = v < 1069

The remaining cases are treated below.

505=7.72+1 757=7.108+1

511=17.73 763 =7.109
673=7.96+1 769=48.16+1 (Lemma 4.9)
679="1.97 775 = 25.31

703 = 19.37 793 = 13.61

715=7.102+1 799=7.114+1

721=17.103 805 =7.115

These equations establish the lemma. O

Lemma 4.12. The values of v € {49, 85, 91, 133, 151, 169, 175, 187, 217, 247,
259, 301, 325, 337, 343, 385, 403, 427, 433, 463, 469, 475, 481} are inessential
in HS.
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Proof. Consider the following.

49eB(7) (AG(2,7)) 325=13.25

85=7.12 +1 337=48.7+1 (Lemma 4.9)
91=7.13 343 =7.49
133=17.19 385=48.8+1 (Lemma 4.9)
151 =126 +25 (RBIBD) 403=13.31
169 =132 427 =17.61
175=17.25 433=489+1 (Lemma 4.9)
187 =156+ 31 (RBIBD) 463=7.66+1
217=17.31 469 =7.67
247=13.19 475=19.25
259 =137 481 =13.37
301=17.43

These conditions establish the lemma. O
The foregoing can be summarized as foliows.
Theorem 4.13. The 98 values given in Table 3 are a basis H®.

Table 3.

7 13 19 25 31 37 43 55 61 67

73 79 97 103 109 115 121 127 139 145
157 163 181 193 199 205 211 223 229 235
241 253 265 271 277 283 289 295 307 313
319 331 349 355 361 367 373 379 391 397
409 415 421 439 445 451 457 487 493 499
643 649 655 661 667 685 691 697 709 727
733 739 745 751 781 787 811 1063 1069 1231
1237 1243 1249 1255 1315 1321 1327 1543 1549 1567
1579 1585 1783 1789 1795 1801 1819 1831

5. A basis for H’

In this section, we find a basis for H’ which has fewer elements than that found
for H®. This is because both 7 and 8 are prime powers. The importance of this
fact becomes apparent in Lemma 5.1.

Lemma 5.1. The set V(7, 4530) is a basis for H'.
Proof. Apply Lemma 23 witha=7, u=8, w=81. U

The following lemmas are useful in improving this result.
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Lemma 5.2. Suppose that there exists a PBD[H’, v] which contains a flat of size f.
If there exists a TD(8, v — f + a) where a € {0, 1}, then 8v —If + Ta is inessential
in H.

Proof. Again this is a special case of the indirect product (see [5]).

Lemma 5.3. If there exists a TD(8, m) where m=0 or 1 (mod7), m>1, then
8m + 1 or 8m respectively is inessential in H'.

Proof. Immediate. [

Lemma 5.4. If there exists a resolvable BIBD(v, 8, 1) with r resolution classes,
then Tv + Tt + 1 is inessential in H’ for 0<t<r.

Proof. Since {57, 64} — B(8), there exist group divisible designs GDD[{8}] of
group types 7% and 7° respectively.

Adjoin ¢ new points to obtain a PBD[{8,9,¢}, v +¢], and form a group
divisible design GDD[{8, 9}] of type 1% by taking as groups the block of size ¢
and the remaining points as groups of size 1. Apply Wilson’s fundamental
construction [11]. O

Lemma 5.5. If there exists a TD(9, m), then 56m + 7t + 1 is inessential in H’ for
Ost=m

Prrof. Apply Lemma 2.2 witha=7 and u = 8.

Lemma 5.6. Let m be an integer satisfying 1<m <43, where m=1 (mod7).
Then 57m is inessential in H’.

Proof. See [3], Theorem 3.8. O

Lemma 5.7. Suppose that v is any integer satisfying v=1 (mod7) and v = 449.
Then v is inessential in H’ with the possible exception of v in the intervals
575=v=610, T01<sv=<722, 827<v=<834, 1205=<v=<1226, 1261 v <1282,
2031 = v <2045 or v = 2066.

Proof. Begin by applying Lemma 5.5

m 5S6ém+1 63m+1

8 449 505
9 505 568
11 617 694

13 729 820
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Now use Lemma 5.4 and the fact that there exists an RBIBD(120, 8, 1) to cover
the following interval.
841 < v <960.

Continue with Lemma 5.5.

m 56m+1 63m+1

17 953 1072
19 1065 1198
23 1289 1450
25 1401 1576
27 1513 1702
29 1625 1828
32 1793 2017
37 2073 2332
41 2297 2584
43 2409 2710
47 2633 2962
53 2969 3340
59 3305 3718
61 3417 3844
67 3753 4222
73 4089 4600

These cover all required v except for v in the intervals below.

575=v =610

M<sv=sT722

827 <v <834
1205 <v <1282
2024 < v < 2066

For the remaining cases, note the following equations.

1233=8.154+1

1240 =8.155

1247 =29.43

1254 = 22.57 (Lemma 5.6)
2024 = 8.253

2052 =36.57 (Lemma 5.6)
2059 =29.71

This completes the proof. O

Lemma 5.8. The elements {57, 64, 120, 232, 288, 344, 393, 400, 407, 435, 449}
are inessential in H’.
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Proof. Consider the following.

57 € B(8) PG(2,7)

64 € B(8) AG(2,8)
120 € B(8)
232=8.29
288 € B(8) (See [1])
344 € B(8) 7*+1 (See [7])
393=8.49+1
400 € B(8) Lines in PG(3,7)
407=850+7 (Lemma 5.2)
435=15.29
449 =8.56 + 1

This completes the lemma. O
As a result of the above, we have the following.

Theorem 5.9. The 77 values given in Table 4 are a basis for H’.

Table 4. A basis for H.

8 15 22 29 36 43 50 1 78 85

92 99 106 113 127 134 141 148 155 162
169 176 183 190 197 204 211 218 225 239
246 253 260 267 274 281 295 302 309 316
323 330 337 351 358 365 372 379 386 414
421 428 442 575 582 589 596 603 610 701
708 715 722 827 834 1205 1212 1219 1226 1261

1268 1275 1282 2031 2038 2045 2066
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0. Introduction

We discuss two methods of constructive enumeration of packings. Their
common feature is that they both use certain systems of linear equations and
inequalities whose integer solutions are interpreted as packings. The paper also
describes results obtained by applying these methods.

Denote by Z* the set of nonnegative integers. Put I(n)={1,2, ..., n}.

1. Main definitions and the formulation of the problem

Let E be a finite set, |E|=wv, and let A, [, k be integers, 1<I/<k<v. A
collection & of k-subsets (k-blocks) of E is called a (4, [, k, v)-packing [1, 3] if
every l-subset of F is contained in at most A blocks of 9. The number of
nonisomorphic (4, /, k, v)-packings consisting of ¢ blocks is denoted by
N,(A, I, k, v). When A =1, we have a packing of index one.

Denote by P,(4, , k, v) the set of all (4, I, k, v)-packings consisting of ¢ blocks,
by P(4, , k, v) the set of representatives of isomorphism classes in P,(4, /, k, v),
one representative from each class. Clearly, N(4, [, k, v) = |PAA, I, k, v)|.

A (4, 1, k, v)-packing consisting of m blocks is maximum if there exists no
(A, |, k, v)-packing consisting of m +1 blocks. In such a case, we define
DA, Lk, v)y=m.

We are interested in the following: (1) values of D(A,/, k, v), (2) values of
N(A, I, k, v), and (3) construction of the lists P(4, I, k, v).

It was shown in [3] that

pa e <[ ([ (= =]l

and 1
viv- '

D(1,2,3,v)= [3[1131]] ifv#5 (mod6)

[5[ 2 ”'1 ifv=5 (mod6)

where [x] denotes the greatest integer not exceeding x.

0012-365X/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)
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In [5] (see also [12]) the following formula was obtained:

D(A, 2,3, v)=[E [Uﬂl]]—e

3L 2
where
_{1 ifv=A+1=2 (mod3)and A(v —-1)=0 (mod?2)
10 otherwise.
A (A, 1, k, v)-packing B = {B,, ..., B,} is called maximal if forevery B, Bc E,
|B| =k, the collection {B, B,, ..., B,,} is not a (4, [, k, v)-packing. In particu-

lar, maximum packings are all maximal. Define N..(4, [, k, v)=Np(4, [, k, v)
where D = D(A, [, k, v).
The table below contains information taken from [12].

v 4 56 7 8 9

Nowe(2,2,3,v) 1 1 1 4 22 36

In what follows we describe a method of constructing and analyzing (1, /, &, v)-
packings, as well as the results obtained by applying this method. These are
summarized in the following table:

t 123 4 5 6 78 9 10 11 12

N(1,3,5,11) 13 715 29 32 1531 1 1 0

2. Adding a block

Consider a (1, ], k, v)-packing 8= {B,, ..., B,,}. Define an equivalence ~
on E as follows: x ~y (x, y € E) if and only if for every block B;, i € I(m), either
{x, vy} € B, or both x ¢ B;, y ¢ B,. This equivalence is called inseparability, and its
classes are components of inseparability.

For example, it is easily seen that the (1, 3, 5, 11)-packing

12345 12678 34679

induces inseparability of elements with components X, = {1, 2}, X,={3, 4},
X;={5}, Xs={6,7}, Xs={8}, Xe={9}, X;= {10, 11}.

For convenience, let X, always denote that (possibly empty) component of
inseparability whose elements are not used in the packing.

Further, let a (1, /, k, v)-packing 2 induce on E the inseparability of elements
with components X;, X,,..., X,, and let a new block, B, contain exactly
t;=t(X;) elements of X;, j € I(n).
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Necessary and sufficient conditions for the collection 8= {B, B,, ..., B,,} to
be a (1, I, k, v)-packing are

n

2 (X)) =k @.1)

j=1

> X)) <! foralliel(m). (2.2)

Uij<n.X;=B))

In what follows we assume E = I(v).

A solution (¢, 1, ..., 1) of the system (2.1), (2.2), for which ¥ e Z* for
all j € I(n), will be called a Z*-solution. To every Z*-solution (t{”, .. ., 1) of
(2.1), (2.2) assign a k-block By, B, c E, containing exactly t” elements of X; for all
j€1(n), and moreover, these elements are the smallest in the linear order on E.
It is easy to see that a packing {B, B,, ..., B, } constructed without this order
condition is isomorphic to the packing {B,, B,, ..., B,}. The latter will be
called canonical.

Clearly, the system (2.1), (2.2) will have no Z*-solution if and only if the initial
packing % is maximal.

Consider the set P, (1, I, k, v). For every packing in P,.(1, [, k, v), let us write
down the system (2.1), (2.2), find all its Z"-solutions, and construct, for every
Z*-solution, the canonical packing. As a result we obtain a list of packings of size
m + 1 in which clearly every isomorphism class of P, (1, I, k, v) is represented
by at least one representative. Thus if we perform isomorph rejection and delete
from this list all duplicates, we obtain the set P,, (1, /, k, v).

Starting with the trivially obtained list P,(1, 1, k, v), we can construct recur-
sively alt lists P,,(1, /, k, v) for every m c (D), D = D(1, I, k, v).

The advantage of this method is in that elimination of all packings correspond-
ing to the Z*-solution of the system (2.1), (2.2), except for the canonical one,
makes it possible to obtain lists that are not too extensive, especially during initial
stages, i.e. for small m. In subsequent stages, when the initial packing contains
many blocks, the same effect is achieved due to “tightness”. We believe that
these circumstances justify calling our construction method economical.

Note that the system (2.1), (2.2) does not take into account at all the fact that
B,, ..., B, are k-blocks. Therefore out method is applicable to more general
packings, when the block size is allowed to vary.

3. Description of invariants

Below we describe invariants which are used to distinguish and identify
packings.
The element repetition (ER) count in the packing 8= {B,,..., B,} is the
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vector

ER(%B) = (po, p1, - - )

where p; is the number of elements in E which belong to exactly i blocks of 2.
Evidently, ¥ p; = v.
The IT-index of a block B, in the packing % is the vector

I(B)=(qo- 9\, - - )

where ¢, is the number of elements in B, belonging to exactly « blocks of &. ITis
a local characteristic of a block, invariant under any isomorphism of packings.
Clearly, ¥, q, = k.

The element repetition count by blocks (ERB) in 4 is given by the table

Q)

1
qo q(l) c n,

ERB(%) =

(v)

q0 qi n,

where n,(u € I(v)) is the number of those blocks B in % for which IT(B)=
(g%, ¢, . ..). Evidently, % n, = m.
The index of intersections of a block B in & is the vector

I(B) = (my, 1y, .. .)

where m, is the number of blocks in 9% which have exactly s common elements
with B. The table of block intersections in A is of the form

i) P ... h
TI(B) =

o | 2wk,

where h, denotes the number of blocks B in @ for which 1I(B) = (x{", 2", .. .).
It follows from the definition that Y, h, = m.

It is easy to see that ER, ERB and TI are isomorphism invariants not only of
packings but of arbitrary block collections.

The triple block intersection count (TBI) of a packing % is the vector

TBI(%) = (g()v glv . )

where g; is the number of those triples of blocks in 9% which have exactly i

common elements. By analogy we may define quadruple, quintuple etc. block
intersection counts.
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For example, the (1, 3, 5, 11)-packing
12345 12678 34679 136AB 279AB (3.1)
haS ER = (0, 2, 4y 53 O’ 07 0)’

ERB =

o o
-
W

(98]

5. TBI=(5,5,0).

o o o o
L S e i =
— o W™
W AW
o oo o
[ )

The described invariants are used mainly to distinguish nonisomorphic pack-
ings. But the information obtained in the process of their construction, namely
the correspondences “‘blocks — IT-indices” and “‘blocks — indices of intersections”
are used to construct some invariants for identification of isomorphic packings.

For identification we use Venn-like diagrams or their collections. For example,
the packing (3.1) yields a diagram presented in Fig. 1. Represent the two blocks
with IT-index (0,0, 2, 3, 0) in the form of a Greek letter A, then “hang on them”
the block with IT-index (0,1,1,3,0). Elements of the block with II=
(0, 1, 0, 4, 0) are circled, the elements of the last block are printed in bold type.

The values of the invariants ER, ERB and TI for the (1, 3, 5, 11)-packing

12345 12678 34679 136AB 478AB (3.2)
coincide with the respective values for the packing (3.1). Are these two packings
isomorphic?

Let us construct for the packing (3.2) a diagram (Fig. 2) similar to Fig. 1. It is
easy to see that there exist only two permutations on I(11), namely o, =
(13)(24)(89) and a, = (13)(24)(89)(AB) which superimpose Fig. 1 on Fig. 2. A
direct verification shows that they both realize an isomorphism between (3.1) and

(3.2). This illustrates how we identify packings.
A
a0
@

Fig. 1. Fig. 2.
The diagrams described above are subinvariants, i.e. invariants which make
sense for designs with equal values of other (basic) invariants, in this case of the
invariant ERB. One often needs to use subinvariants which are collections of

similar diagrams.
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Note that similar invariants were used for distinguishing and identification of
1-factorizations (8, 9].

We give an example of finding automorphism groups (which, incidentally, were
used with success to identify completions of packings) with the help of such
diagrams. To the packing 6-5 (see the list below) corresponds the value

0005 00;2
ERB=|0 0 1 4 0 0] 2
002304072

One of possible subinvariants for this packing has the value given in Fig. 3. Only
two permutations, the identity and (1B)(2A)(37)(59) map this collection of
diagrams into itself. It is verified directly that they constitute the automorphism
group of the packing 6-5.

4. Results on the enumeration of (1, 3, §, 11)-packings

A computer program implementation of the method presented in Section 2
enabled us to carry out a complete enumeration of the (1, 3, 5, 11)-packings. The
results are presented below.

The list P, (1,3, 5, 11)
1-1. 12345
The list P, (1,3,5,11)
2-1. 12345 6789A
2-2. 12345 16789
2-3. 12345 12678
The list P; (1,3, 5, 11)
3-1. 12345 16789 1267B
3-2. 12345 16789 126AB
3-3. 12345 16789 2367A
3-4. 12345 16789 236AB
3-5. 12345 12678 1369A
3-6. 12345 12678 34679
3-7. 12345 12678 129AB



4-1.
42.
4-3.
44,

4-6.
4-7.
4-8.
4-9.
4-10.
4-11.
4-12.
4-13.
4-14.
4-15.

5-9.
5-10.
S-11.
5-12.
5-13.
5-14.
5-15.
5-16.
5-17.
5-18.
5-19.
5-20.
5-21.
5-22.
5-23.
5-24.
5-25.
5-26.

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
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6789A
6789A
16789
12678
16789
16789
16789
16789
16789
16789
16789
16789
16789
12678
12678

16789
16789
16789
6789A
16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
6789A
12678
12678
12678

The list 2, (1,3,5, 11)

1267B

1267B

126 AB
1369A
2367A
2367A
2367A
2367A
126 AB
2367A
236AB
126AB
2367A
34679

1369A

The list P; (1, 3,5, 11)

126AB
126 AB
2367A
1267B

236AB
2367A
2367A
126AB
2367A
2367A
2367A
2367A
2367A
126AB
2367A
126AB
126AB
2367A
2367A
2367A
2367A
2367A
1267B

1369A
34679

34679

3489B
3468B
378AB
3467B
468AB
4568A
4567B
2468B
3467A
489AB
457AB
3478A
4589A
1569A
1479B

347AB
347AB
248AB
3489B
457AB
2489A
4567B
3478A
2489A
4589A
2468B
248AB
248AB
347AB
2489A
347AB
347AB
2468B
2489A
2468B
2489A
2468B
1389B
1479B
136AB
136AB

S89AB
2589A
569AB
356AB
2489A
4567B
4589A
3569A
4568B
146AB
4589A
4567B
2569B
2389A
568AB
3568A
2578A
156AB
2568B
4578A
146AB
147AB
4568B
158AB
4568A
247AB

243
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5-27.
5-27.
5-28.
5-29.

6-1.
6-2.
6-3.
6-4.
6-5.

6-7.

6-8.

6-9.
6-10.
6-11.
6-12.
6-13.
6-14.
6-15.
6-16.
6-17.
6-18.
6-19.
6-20.
6-21.
6-22.
6-23.
6-24.
6-25.
6-26.
6-27.
6-28.
6-29.
6-30.
6-31.
6-32.

7-1.

7-3.
7-4.
7-5.
7-6.

12345
12345
12345
12345

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345

12345
12345
12345
12345
12345
12345

12678
12678
16789
16789

16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
16789
6789A
12678
12678
12678
12678
16789
16789
16789
16789
16789
16789

16789
16789
16789
16789
16789
16789

34679
34679
126AB
126 AB
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1389A
1389A
3478A
347AB

4568A
4568A
3579B
3589A

The list £ (1,3,5, 11)

2367A
2367A
126AB
126AB
126AB
2367A
2367A
126AB
126AB
2367A
2367A
126AB
2367A
2367A
2367A
2367A
126AB
2367A
2367A
2367A
2367A
1267B
34679
34679
34679
34679
126AB
2367A
2367A
126AB
2367A
2367A

148AB
2489A
3478A
2378A
2378A
2489A
248AB
2378A
3478A
4589B
2468B
3478A
2489A
24688
2468B
2489A
347AB
24688
2489A
2489A
2489A
1389B
1389A
1389A
1389A
1389A
2378A
24688
2468B
3478A
2489A
4567B

259AB
3468B
2579B
34798
479AB
568AB
4567B
2479B
2379B
3578B
147AB
2379B
2568B
S78AB
147AB
138AB
2578A
578AB
2568B
3468B
138AB
346AB
236AB
236AB
236AB
4568B
4567B
4589A
4589A
2579A
4567B
4589A

4567B
159AB
35688
458AB
3568B
3479B
359AB
4569A
35688
2468B
3569B
2589A
457AB
129AB
569AB
456AB
3568B
34898
146AB
2578B
34698
4579B
3578B
1569B
4568A
2579A
3489B
157AB
3579A
34698
3589B
2389B

The list 2, (1,3,5,11)

126AB
126AB
2367A
2367A
126AB
2367A

3478A
2378A
2468B
2468B
3478A
2489A

2379B
2479B
4589A
147AB
2379B
2568B

2589A
4569A
3579B
3569B
3568B
146AB

4567B
3589B
1S6AB
2589A
459AB
4579B
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7-7. 12345 16789 2367A 2489A 138AB 3469B 2578B

7-8. 12345 16789 2367A 2468A 578AB 129AB 4569A

7-9. 12345 16789 2367A 2469A 2568B 457AB 3469B
7-10. 12345 16789 2367A 2468B 147AB 569AB 3578B
7-11. 12345 16789 2367A 2489A 2568B 146AB 3478B
7-12. 12345 6789A 1267B 1389B 346AB 4579B 258AB
7-13. 12345 12678 34679 1389A 236AB 4568A 2579A
7-14. 12345 12678 34679 1389A 236AB 4568A 1569B
7-15. 12345 12678 34679 1389A 236AB 4568A 147AB

The list B, (1,3, 5, 11)
8-1. 12345 16789 2367A 2468B S78AB 129AB 4569A 3479B
8-2. 12345 12678 34679 1389A 236AB 4568A 147AB 1569B
8-3. 12345 12678 34679 1389A 236AB 4568A 3579A 3578B

The list P, (1,3, 5,11)

9-1. 12345 12678 34679 1389A 236AB 4568A 147AB 1569B 2489B
The list Py, (1,3, 5, 11)

10-1. (9-1) + 3578B
The list P, (1,3, 5, 11)

11-1.  (9-1)+3578B 2579A

The last packing is maximal, hence D(1, 3, 5, 11) =11. From the lists given
above one can obtain the values D(1, 3, 5, v) for v <11. These values are given
in the following table.

v 7 8 9 10
D(1, 3,5, v) 1 2 3 5
Maximum packing -1 23 36 5-27

Consider the case k= 6. The list Pi(1,3, 6, 11) consists of a unique packing
123456, the list Py(1, 3, 6, 11) consists of two packings

2-1. 123456 1789AB

2-2. 123456 12789A,
hence N,(1, 3, 6, 11) =1, Ny(1, 3, 6, 11) = 2. The packings from Py(1, 3, 6, 11) are

both maximal therefore P(1, 3, 6, 11) =@ for t = 3. Thus D(1, 3, 6, 11) =2.
An obvious reasoning yields D(1, 3, k, 11) =1 for 6 <k < 11.

5. Enumeration of minimal exact (1, 3, 11)-coverings

An interesting application of the above results is associated with the question
about the minimal number g(1, 3, 11) of blocks in an exact (1, 3, 11)-covering [6].
Just as was done in [6] for the case v = 12, one can show (see [10], Theorem 7.2)
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that if g(1, 3, 11) <46 then a minimal (1, 3, 11)-covering contains only quintuples,
quadruples and triples.

Denote by F the set of 5-blocks (F-component) of a covering, by Q the set of
4-blocks (Q-component), and by T the set of triples (T-component). Then, up to
an isomorphism, it is either one of the (1,3, 5, 11)-packings in Section 4, or the
empty set of blocks, that can be the F-component.

Taking for the F-component one of these packings, F, examine all possible
Q-components with a maximum number of blocks of an exact (1, 3, 11)-covering.
Define an equivalence ~ in the set of such Q-components by: Q ~ Q, if and only
if there exists & € Aut(F) such that O, = Q,.

Construct a list g(F) of representatives of equivalence classes under ~ . Every
Q € q(F) uniquely determines the T-component. Call the exact (1,3,11)-
coverings so obtained F-minimal. Construct, for every F from Section 4, a list of
all F-minimal (1, 3, 11)-coverings. Evidently, the union of these lists contains all
minimal (1, 3, 11)-coverings with maximum block size k = 5.

After completing the described procedure, we obtain a complete list of minimal
exact (1, 3, 11)-coverings, and, consequently, we may determine g(1, 3, 11).

The author has written a program that implements the above algorithm. The
work is at present incomplete. We state below the results obtained up to the time
this paper was written.

For the F-component 11-1 the maximal Q-component is empty. Consequently,
there exists a unique exact (1,3, 11)-covering with this F-component. Its size is
66.

For the F-component 10-1 there exists, up to an isomorphism, a unique
F-maximal Q-component which consists of the unique block 2579. Hence for 10-1
there exists a unique F-minimal covering of size 72.

For the F-component 9-1 there exists a unique maximal Q-component

257B 259A 357A 358B 5789,

and the size of the corresponding F-minimal covering is 69.

For the F-component 8-1 the unique maximal Q-component consists of seven
blocks

138B  147A 156B 2389 2579 348A 3568,

and the unique F-minimal (1,3, 11)-covering consists of 72 blocks. For 8-2 two
maximal Q-components exist:

2389 257A 258B 279B 348B 357B 5789,
2489 258B 259A 279B 348B 357A 5789.

The corresponding nonisomorphic coverings have 72 blocks each. Finally, for 8-3
there exist two maximal Q-components,

129B 146B 147A 1569 15AB 247B 2489 459B 689B

and

129B 146B 147A 1569 15AB 247B 2489 49AB 689B,
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Table 1

F Aut |Ql Ng |g| I Spg
7-1 310 1 1 2 3
72 2 12 2 2 66 2?
73 12 17 1 1 51 12}
7-4 2 1 1 1 69 2!
7-5 1 1 1 1 6 1
76 111 16 16 69 1'°
77 2 12 34 17 66 17
7-8 1 12 1 1 66 1
7-9 1 12 3 3 66 1°
7-10 2 1 9 5 66 1%
7-11 1 12 33 33 66 17
712 20 15 1 1 57 20
7-13 12 16 1 1 54 12!
7-14 4 12 16 6 66 1%2¢
7-15 6 11 58 100 69 1%2!

and the corresponding two F-minimal (1, 3, 11)-coverings have size 65.

The results for the F-components having 7 blocks are presented in Table 1.
Column F contains the numbers of the F-components, column Aut the order of
the automorphism group of F, column |Q| the size of the maximal Q-component,
Ng the number of distinct maximal Q-components, |g| the cardinality of q(F),
|I1| the size of F-minimal (1, 3, 11)-covering, and Spg contains a specification of
the set of F-minimal coverings by automorphism group orders.

Most of the above results are contained in [11].

Table 2 (next page) contains similar information about F-maximal Q-
components of (1,3, 11)-coverings with |F|=6. The additional column b
contains, for every F, the cardinality of the set of those 4-blocks which have at
most two common elements with every block of F.

The enumeration of minimal (1, 3, 11)-coverings for |F| =<5 is being continued.

6. List of coverings of size 51

The smallest known size (see [10]) of an exact (1, 3, 11)-covering with block
cardinality k=<5 is 51. There exist exactly 11 nonisomorphic coverings with
|F| > 5. They are as follows:

1. 7-3+127B 128A 138B 139A 147A 149B 2389 2479 2569
2578 29AB 3469 3478 34AB 3568 4567 78AB
2. 622+ 158A 137A 1468 149A 1569 1578 15AB 2368 2379 2469
247A 248B 256A 2589 29AB 3478 3467 359A 458A 568B
3. 6-29+ 127B 128A 136B 139A 146A 157A 158B 2389 2479 2569 2578
25AB 3469 3478 34AB 3568 4567 69AB 78AB 149B Aut =48
4. 6-29 + (first fifteen 4-blocks from covering 3.) + 3568 38AB 4567
47AB 69AB Aut=8§
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Table 2
F b Aut Q| Ng gl ] Spg
61 44 1 15 106 106 66 1%
6-2 42 1 15 5 5 6 I°
6-3 2 1 15 11 1 6 1"
6-4 43 1 15 25 25 66 1P
65 42 2 16 5 3 63 12!
6-6 40 4 15 2 r 66 1!
6-7 42 24 18 2 1 57 12
6-8 49 1 18 12 12 57 12
6-9 48 1 14 207 207 6 127
6-10 47 4 15 576 1712 66 11856
6-11 49 1 16 2 22 6 1%
612 49 1 16 3 3063 1°
613 48 1 15 30 30 66 1
6-14 48 2 16 5 3 63 1?
6-15 48 116 13 13 63 1V
616 49 1 15 7 72 6 17
617 50 117 4 4 60 1*
618 47 2 15 87 47 66 1%
6-19 5§ 116 24 24 63 1
620 54 216 24 23 6 1%
621 56 1 16 60 60 63 ™
622 56 4 20 1 1 51 1!
623 60 1 16 5 1 6 1!
624 6l 12 15 51 7 66 122%!
625 62 2 18 66 357 1
626 65 60 17 395 760 1°3
627 43 3 15 94 35 66 173}
628 42 4 16 138 45 63 1721842
629 40 48 20 10 3 51 8'16'48
630 45 316 12 4 63 1
6-31 46 16 16 120 98 63 192948
632 48 384 20 128 6 51 8%48
5. 6-29 + (first twelve 4-blocks from covering 3.) + 29AB 3469 3478
3568 38AB 4567 47AB 56AB Aut =16
6. 6-32+ 126B 128A 137B 139A 146A 148B 157A 159B 2468 2479 24AB
2569 2578 3469 3478 3468 3579 35AB 68AB 79AB Aut =48
7. 6-32 + (first 19 quadruples from the previous covering) + 78AB
Aut=2§
8. 6-32 + (first 10 quadruples from covering 6.) + 2569 2578 25AB
3469 3478 3568 69AB 78AB Aut=48
9. 6-32 + (first 13 quadruples from covering 6.) + 3468 3478 3569
3578 35AB 68AB 79AB Aut =48
10. 6-32 + (first 8 quadruples from covering 6.) + 2469 2478 24AB
2568 2579 3479 3569 3578 35AB 69AB 78AB Aut=8§
11. 6-32 + (first 10 quadruples from the previous design) + 2568 2579

25AB 3468 3479 34AB 3569 3578 69AB 78AB Aut =48
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7. Bounds for possible values of g(1, 3, 11)

Let IT be a minimal exact (1,3, 11)-covering with maximal block cardinality
k=35, |II| = g. We are taking into account the fact that g <46 is possibly only for
coverings with blocks whose cardinalities do not exceed five. Denote by f, ¢, and
t, respectively, the cardinalities of F-, Q-, and T-components of this covering.
Then we have [6]

{ f+ q+t=g
10f +4q + t = 165,
whence
9f +3g=165—g, orq=(165-g—9f)/3.

It is not difficult to show [6] that g e {30, 33, 36, 39, 42, 45, 46}. Taking into
account the obvious inequality g <g — f we get (165 —g —9f)/3<g — f whence
f=(165 —4g)/6. Assuming g =30 gives f = 8. But it was shown earlier that for
f = 8 there exist no exact coverings with 30 blocks. Therefore g(1, 3, 11) # 30.

Assuming now g = 33, we get similarly that f = 6. But Table 2 excludes the
existence of such a covering, thus g(1, 3, 11) #33.

Theorem. g(1, 3, 11) € {36, 39, 42, 45, 46}.

Note that in [4] a stronger inclusion g(1, 3, 11) € {45, 46} is proved.

8. Some properties of N,(\, [, k, v)
Let us note some general properties of the numbers N4, [, k, v). Clearly for
k <v we have N|(1, [, k, v) = 1. Also, it is not difficult to establish directly that

0 forv<2k—-1+1
N1, Lk,vy=4qi+1 forv=2k—-I+i+1, 0=<i<I-1, (8.1)
l for v > 2k.
Null-property:
N Lk, v)=0 forv<uy(t, A, [ k)andt>1.

It follows from (8.1) that vy(2, 1, /, k) = 2k — [ + 1. It is not difficult to see that
vo(3, L, LK)=3(k -1+ 1)+1-1
Monotonicity:

N Lk v)  N(A Lk v+1), (8.2)

and the inequality is strict for v <tk if at least one of its sides is not equal to zero.
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Stabilization by v:
N1, 1, k, wy=const = N,(1, [, k, th) (8.3)

for all w = tk.

Stabilization by k:

For fixed ¢ and [/, under the conditions kK > ko= (—1)(/ — 1) and v =1(k + 1),
the following equality holds:

N, Lk v)=N(1, 1 k+1,0). (8.4)

9. Another approach to the packing problem

Let B={B,,...,B,} be a (1,1 k, v)-packing. Denote by E; the set of
elements which are contained only in the blocks numbered by indices from J,
J € 1(¢). Clearly, E,’s are just the same as components of inseparability in Section
2. Put n; = |E,|. It follows from the definition of packing that

Y n;=k forevery mel(t); “.1)
Jam

S ony<l foralli,jel(t), i#j; 9.2)
J3i,j

> ny=uv. 9.3)
J

Conversely, given a collection {n,:J < I(t)} which satisfies (9.1)-(9.3), it is not
difficult to obtain the corresponding packing. Thus the conditions (9.1)-(9.3) are
necessary and sufficient for the existence of a packing corresponding to the
collection of numbers {n,}.

Packings corresponding to the same collection {n,} are clearly isomorphic. But
it is possible for different collections to yield isomorphic packings. In order for
{n,} to be a complete invariant for packings, it is necessary to have, in addition to
(9.1)-(9.3), conditions for selecting from among all collections yielding the same
packing one (canonical) collection {n,}.

Consider the case ¢ = 3. In this case conditions (9.1)-(9.3) become

(ny+n,+ns+nn=k

Ryt nptantnn=k

ny+ns+np+nn=k

{ Pt <l 9.4)
nyt+ns<l

Nz + Ny <l

n0+n1+n2+n3+n12+n|3+n23+n|23=U.
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Py
()
N

By
Fig. 4.

The structure of a packing with ¢ =3 is schematically drawn in Fig. 4.

To reach our goal it suffices to require that the preference conditions given in
Fig. 5 be satisfied. Here + means that the collection n, is being made canonical,
i.e. included in the list, and — means that it is being rejected.

Table 3 contains author’s program in Fortran-4 which implements, for given /,
k and v, the construction of all collections

Ry, Ny, Ny, N3, Ny, Ny, Na3, B3

that satisfy conditions (9.1)—(9.3), and the selection from them of canonical ones.

Table 4 contains an example of the final output of the program: for given /, k
and v it outputs the value of Ni(1,/ k,v) and the list of vectors
(R123, B4z, M3, Ra3) which determine all nonisomorphic packings.

Table 5 contains several values of N;(1,/, k, v) obtained by means of this
program. This table may be considerably expanded.

In the case ¢ = 4 it is not difficult to implement a generation of collections {n,}
and a ‘“sieve” through conditions (9.1)-(9.3). More complicated but quite
feasible task is to form a preference scheme.

Note that for arbitrary ¢ there are exactly 2’n,’s, thus the size of the system
(9.1)-(9.3) grows fast. This complicates the practical implementation of the
method, described in Section 9, for the large values of ¢.
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Table 3. Program for computing Ny(1, [, k, v).

C FIND VALUE N3(1,L.K,V)
DIMENSION MT (500, 4)
117 READ 1, NV, NK, NL
1 FORMAT (313)
IF (NV) 119,119, 118
118 NS=0
M=0
IF (NV - 3xNK + 3#(NL — 1))115, 111, 111
111 PO2I=1,NL
DO2J=1,NL
PO2K=1 NL
n=I-1
J=1-1
Ki=K+1
IF (I1 + J1 + NS — NK)3, 3,2

3 IF (11 + K1 + NS - NK)4, 4,2
4 IF (J1+KI1+NS-NK)5,5,2
5 IF (I1-NL+ NS+ 1)6,6,2
6 IF(J1-NL+NS+1)7,7,2
7 IF (K1 -NL+NS+1)8,8,2
8 IF(I1+J1+KIl—3*NK+2%NS+NV)2 9,9
9 IF (I1 +J1+ K1+ NS—NV)19, 19,2
19 M=M+1
MT(M, 1) = NS
MT(M, 2) =11
MT(M, 3) = J1
MT(M, 4) =K1
2 CONTINUE

IF (NS — NL + 1)121, 115, 115
121 NS=NS+1
GO TO 111
115 PRINT 10, NL,, NK, NV, M
10  FORMAT (5X,’N3(1,’,13,",",13,”,,13,") = ", 13)
IF (M) 117,117, 125
125 CONTINUE
PRINT 11, (MT(I,J),) =1,4),I=1,M)
11 FORMAT (3X, 413, 2X, 413, 2X, 413, 2X, 413)
GO TO 117
119 PRINT 120
120 FORMAT (3X, ‘WORK IS FINISHED”)
STOP
END

Table 4. Final output of the program N3LKV.

N3(1,3,4,13) =15
000

Lol I & =]
(=3
<

N - O

[ =R ]

[N

SO =N

-c o
S -
S — -

0 01
012
1 01

—_ N =




Table 5. Some values of Ny(1, [, &, v).

I Kk v N, k v Ny I k& v N Lk v Ny
23 =50 4 11 14 4 5 8 4 4 8 20 20
6 1 =12 15 9 10 21 30
7 3 5 =8 0 10 16 22 33
B 4 9 1 11 22 23 34
=9 5 10 3 12 26 <24 35
2 4 =80 1n 7 13 29 5 6 7 0
9 1 12 10 14 30 8 1
10 3 13 13 =15 31 9 5
11 4 14 14 4 6 =8 0 10 13
=12 5 =15 15 9 1 11 22
2 5 <11 0 6 <11 0 10 3 12 33
12 1 12 1 1 7 13 41
13 3 13 3 12 14 14 48
14 4 14 7 13 20 15 52
=15 § 15 10 14 26 16 55
2 6 <14 0 16 13 15 30 17 56
15 1 17 14 16 33 =18 57
16 3 =18 15 17 34 57 =9 0
17 4 7 <14 0 =18 35 10 1
18 5 15 1 4 7 <11 0 11 4
2 7 =17 0O 16 3 12 1 12 10
<18 1 17 7 13 3 13 20
19 3 18 10 14 7 14 30
20 4 19 13 15 14 15 41
=21 5 20 14 16 20 16 49
2 8 =20 0 =21 15 17 26 17 56
=21 1 8 =17 0 18 30 18 60
22 3 18 1 19 33 19 63
23 4 19 3 20 34 20 64
=224 5 20 7 =21 35 =21 65
3 4 5 0 21 10 4 8 <14 0 5 8 =11 0
6 1 22 13 15 1 12 1
7 3 23 14 16 3 13 3
8 7 =24 15 17 7 14 7
9 10 5 6 0O 18 14 15 14
10 13 7 1 19 20 16 25
17 35
5 8 18 46 7 18 88 6 8 23 109 7 8 =24 144
19 54 19 91 =24 110 4 11 <23 0
20 61 20 92 7 8 9 0 24 1
21 65 =21 93 10 1 25 3
22 68 8 <10 0 1 5 26 17
23 69 1 1 12 15 27 14
=24 70 12 5 13 29 28 20
6 7 8 0 13 13 14 48 29 26
9 1 14 26 15 68 30 30
100 5 15 41 16 89 31 33
11 14 16 58 17 105 32 34
12 26 17 72 18 119 =33 35
13 4 18 85 19 128 315 4 3
14 55 19 94 20 135 315 41 7
15 68 20 101 21 139 4 15 40 20
16 77 21 105 22 142 6 10 25 110
17 84 22 108 23 143
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10. Conclusion

We conclude with two particular problems:

1. What is the number N,(4, [, k, v) of maximal (4, /, k, v)-packings containing
exactly ¢ blocks?

2. What is the minimal size T'(A, [, k, v) of a minimal (4, [, k, v)-packing?
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It has been known for some time that an $;(3, 4, v) exists iff v is even. The constructions
which prove this result, in general, give designs having repeated blocks. Recently, it was shown
that a simple S5,(3, 4, v) exists if v is even and v#4 (mod 12). In this paper we give an
elementary proof of the existence of simple $;(3, 4, v)s for all even v, v >4,

1. Introduction

This paper deals with the construction of simple 5:(3, 4, v)s (for undefined
terms and notation the reader is referred to Beth et al. [1]). It was previously
shown by Hanani [2] that an S,(3, 4, v) exists iff v is even but the construction
establishing this result gives, in general, designs with repeated blocks. Kohler [4]
has constructed simple cyclic S3(3, 4, v) forallu=2 (mod 4) and Jungnickel and
Vanstone [3] recently proved the existence of simple S3(3, 4, v) for all even
v, v#4 (mod 12). The purpose of this paper is to prove the following theorem.

Theorem 1.1. A simple S5(3, 4, v) exists iff v is even and v # 4.

It is obvious that v even and v # 4 is necessary. We proceed to establish the
sufficiency in the next sections.

2. Designs from 1-factorization

For completeness we will describe a general construction method for designs
$3(3, 4, v) due to Lonz and Vanstone [5].

Let H be any 1-factorization of K,,,, where K,,, is the complete graph on a
2m-set V. For each factor F € H and for each pair of distinct edges e, e’ € F, form
the set of four endpoints of e and e’. Denote the collection of all such 4-sets by B.
It is easily checked that Dy, = (V, B) is an $5(3, 4, 2m). As in [3] we call Dy the
$:(3, 4, 2m) associated with H. In order to construct simple designs we make use
of the following.

0012-365X/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)
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Theorem 2.1. Let H be a 1-factorization of K,,. Dy is simple iff the union of any
two distinct 1-factors of H does not contain a 4-cycle.

The proof of this result is straightforward and so is omitted. In order to
establish Theorem 1.1 we need only construct for each positive integer m =3 a
1-factorization H of K,,, having the property that the union of any two distinct
1-factors of H does not contain a 4-cycle. This we will do in the next section.

3. Main result

In this section we consider the following 1-factorizations of K,,, for various
values of m.

H,: label the vertices of K,,, with the elements of Z,,, _, U {0} where « is an
indeterminate. Let E,={(i,)}U{(i+j,i—j) I<sjsm-1)}, 0<i<2m -2
Then H, ={E;: 0<i<2m —2} is a 1-factorization of K,,, for any positive integer
m

H,: Label the vertices of K,,, for m odd with the elements of Z,, X I,. For
convenience we denote (i, k) by i,. Let

FE=AG, &)U+, (=) 1sjs(m—1)/2}
U{((+7)2 (=) lsjs(m=1)/2}, 0<ism-—1
and
E={(,,{+D):0=<j=m-1}, m+1<i<2m-—1.

H,={F:0<i<2m -2} is a 1-factorization of K,,, when m is odd.

H,: Suppose 2m =3t + 1 and we label the vertices of K,,, with the elements of
(Z, x L) U {=} where = is an indeterminate. We define the following 1-factors
of K.

Fi={(, i)} UL+, (=) 1= -1)/2)
U{(jo, = 0)a):0<j=r-1}, O<ist-1
Gi= (%, )} UL + /)2, (1 =) 1=<j< (1= 1)/2}
U{(js, i —j—1)):0sj<sr—1}, Osist—1
and

H; = {(, i)} U{((i + /)5, (i —J)a): 1 sSj< (£ = 1)/2}
U{(j,, i+j—1)):0sj<¢t—-1}, O0=sisr—1.
It is easily checked that Hy={F, G, H;:0<i=<t -1} is a l-factorization of
Ky,

It was shown in [3] that Dy, is simple provided m #£2 (mod 3). We require the
following results.
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Theorem 3.1. Dy, is simple for all positive integers m =5 (mod 6).

Proof. We first consider the 1-factors F, and F; where i #j, 0<i, j<(m —1)/2. If
a 4-cycle is created in the union of these then it must involve pairs in F; of the
form ((j + i), (=j +i),) and ((h — i), (—h +i),) where k is either 1 or 2. But in
F; we have the pairs
((G+De (h+i0)) and (= + i), (h+i))
or
((j+ D, (h+i)) and ((—j+ i), (h+ D))
Since the sum of elements in a pair is constant we have in the first case
Jth+2i=—j—h+2i or 2(j+h)=0
implying j = —h which is impossible. In the second case we have
j—h+2i=—j+h+2i or 2(j~h)=0

implying j = h which is impossible. Hence, no 4-cycle is possible in this case.
Suppose we now consider F, F where i#j and m=<i, j<s2m-2 1If
(hy, (j +1i);) and (/,, (I +i),) are pairs in F; forming a 4-cycle with F; then

l—h+i=h—-I+i or 2(I—-h)=0
which implies [ = h.

Finally, we consider F,, F; where i #j, and 0<i<(m—1)/2, m<j<2m-2.
Suppose the pairs ((i +k),, (i —k),) and (i + h),, (i — h),) form a 4-cycle with
edges from F;. Since differences in pairs of F, are constant we must have

((+h)—(+k)y=G—-h)—(i—k)
or
i+h)—(—-k)y=@Gl—-h)y—(+k).

In the first case 2(h ~ k) = 0 implies & = k and in the second h = —k which is
also impossible since both h and k are distinct, nonnegative and at most
(m —1)/2. This completes the proof of the theorem. O

Theorem 3.2. Dy, is simple for all positive integers m =2 (mod 6).

Proof. Since m =2 (mod 6) v =12/ +4 for some integer /. Construct H, with
t=41+ 1.

It is easily seen that if two pairs from a 1-factor of F; form a 4-cycle with some
other 1-factor then the subscripts occurring in these pairs must occur an equal
number of times. We also note that the pairs in F; with subscript 1 form a 1-factor
of K, ., and since 2/ + 1+ 2 (mod 6) no two pairs of this type can form a 4-cycle.
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The only remaining possibility is a pair of the form (e, i\), (k,, (k —i)3). If these
form a 4-cycle with a pair (%, j,), (h3, (j —h —1),) then k =j and j =k + 1 which
is impossible. Hence no F, can give a 4-cycle. It remains to show that no G, or H;
can give a 4-cycle. Most of the arguments for F, carry over to G; and H,. Suppose
the pair (%, i), (k3, (i —k—1),) in G; forms a 4-cycle with the pair (%, j;),
(hy, j+h—1)) in H. Then j=k, i—k—1=hand i=j+h—1 or j=k and
j =k + 2 which is impossible. This completes the proof. [

Proof of Theorem 1.1. As mentioned earlier the necessity that v is even and
v # 4 is easily established.

If v=2m and m=#2 (mod3) the result was established in [3]. Now if
m=2 (mod3) we consider two cases. First if m =5 (mod 6) then the result
follows directly from Theorem 3.1. If m =2 (mod 6) then 2m = 12/ + 4 for some
integer /. The result follows from Theorem 3.2 and the proof is complete. O

4. Conclusion

In this paper we have established the existence of simple $:(3, 4, v)s using an
elementary direct construction. It also follows from this paper and [3] that simple
resolvable S5(3, 4, v)s exist for all v =0 (mod 4), v >4.
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We develop some powerful techniques by which (certain classes of) combinatorial designs
with pre-specified subdesigns can be constructed. We use our method to give nearly complete
solutions (i.e. to within a finite number of cases) to several problems, including the existence of
Kirkman Triple Systems with Subsystems, the existence of (v, 4, 1)-BIBDs with subdesigns and
the existence of (certain) complementary decompositions with sub-decompositions.

1. Introduction

In this paper we are concerned with methods for constructing combinatorial
designs having (or missing) subdesigns of some prespecified size. In applying our
methods we will be considering several open problems regarding the existence of
pairwise balanced designs with subdesigns. Such problems are not new to the
literature. For example, a Steiner Triple System (STS) is a pair (X, B) where X is
a (finite) set of points and B is a collection of 3-subsets (triples) of X such that
any pair of distinct points is contained in exactly one triple. A subsystem (X', B')
of a Steiner Triple System (X, B) is an STS with X' € X and B' c B. The general
problem of constructing Steiner Triple Systems containing subsystems of arbitrary
size was considered and solved by Doyen and Wilson [7] (see also [31]): given any
integers v and w with v, w=1 or 3 modulo6 and v=2w + 1 there exists an
STS(v) containing a sub-STS(w).

A pairwise balanced design is called resolvable if its block set admits a partition
into parallel classes, i.e. each parallel class forms a partition of the point set. Thus
a resolvable pairwise balanced design can be thought of as a triple (X, B, P)
where X is the set of points, B the set of blocks and where P is a partition of B
into parallel classes. Then a subdesign of (X, B, P) is a triple (X', B', P') where
X' c X, B’ =B, and P’ is a partition of B’ into parallel classes on X' such that
for each p’ € P’ there is a p € P with p’ < p. This latter condition says that each
parallel class on X’ must be ‘inherited’ from a paraliel class on X. The simplest
example of this is a one-factorization of K,, containing a sub-one-factorization of
some K, < K,,. From the foregoing definition it is clear that one must have
n=2s, and indeed it is well known that the condition n = 2s is sufficient to
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guarantee the existence of such a design (for a short proof of this fact the reader
is referred to [26, Lemma 2.2]; for a very good general survey on one-
factorizations see [14]).

In this paper we will develop a simple but powerful technique by which, in
essentially two steps, one may construct certain classes of combinatorial designs
having subdesigns of any desired size. We will of course be restricting ourselves to
a few specific problems, but the techniques here employed can be generalized in
an obvious manner. In the first step, which is really the main step in the
constructions, we will develop a class of group-divisible designs with block size 4
having group sizes from the set {3, 6,9} together with a ‘special’ group of size r
where (subject to obvious necessary conditions) ¥ can be chosen as large or as
small as one likes (see Section 3). Then in the second step one applies weights to
the points in the group-divisible design (the weights chosen according to the
specific problem under consideration) and then uses standard “‘filling in”
constructions to obtain the desired combinatorial design. In this construction the
group of size r ‘becomes’ the sub-design. (The group-divisible design is really just
acting as a weak form of a Mandatory Representation design (see {13]).)

We will apply our group-divisible designs to solve several important open
problems.

The first problem that we will consider involves the study of Kirkman Triple
Systems with Subsystems (see Section 4). A Kirkman Triple System KTS(v) is a
resolvable STS(v); it is well known that such a system exists if and only if v =3
modulo 6 (see [24] or [9]). Recalling the definition of a subsystem in a resolvable
design it is easy to see that if a KTS(v) contains a (proper) sub-KTS(w), we must
have v = 3w. The following two results encompass what is known on this problem
to date.

Theorem 1.1 [Stinson, [34]]. If v=w =3 modulo 6 and v=4w — 9 then there
exists a KTS(v) containing a sub-KTS(w), except possibly when (v, w) = (81, 15)
or (87, 21).

Theorem 1.2 [Rees and Stinson, [28]]. Let w=3 modulo 6. Then there exist
KTS(3w), KTS(3w +6) and KTS(3w + 12) containing a sub-KTS(w), except
possibly for KTS(3w + 12) when w = 45, 51, 63 or 87.

We will herein prove the following result.
Theorem (4.4). Let v=w =3 modulo 6 and v =3w. Then there exists a KTS(v)
containing a sub-KTS(w) whenever v —w = 822, with eighty-six unsettled values

of v — w below this order.

A second problem that we will consider (in Section 5) is one that has attracted
a considerable amount of interest in recent years, namely that of determining for
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which v, w =1 or 4 modulo 12 with v = 3w + 1 does there exist a (v, 4, 1)-BIBD
containing a sub-(w, 4, 1)-BIBD (i.e. the ‘block size four’ analogue to the
Doyen—-Wilson Theorem). We can (roughly) summarize the results known to date
on this problem as follows.

Theorem 1.3 [Brouwer and Lenz, [4]]. If w=1 modulo 12 then there exists a
(v, 4, 1)-BIBD containing a sub-(w, 4, 1)-BIBD whenever v=1 or 4 modulo 12
and v = 13w + 36h — 12, where h is the least residue of (w —1)/12 modulo 4. If
w =4 modulo 12 then such a design exists whenever v=1 or 4 modulo 12 and
v = 13w + 36h — 39, where h is the least residue of (w — 4)/12 modulo 4.

Theorem 1.4 [Wei and Zhu, [35]]. (i) If w=1 or 4 modulo 12 and w = 85 then
there exists a (v, 4, 1)-BIBD containing a sub-(w, 4, 1) whenever v=1 or 4
modulo 12 and v =4w — 12. (ii) If w=4 modulo 12 or w=1 or 13 modulo 48,
and if further w > 85, then such a design exists whenever v =1 or 4 modulo 12 and
v=3w + L

We will prove the following results.

Theorem (Lemma 5.1). Let.v=w=1o0or 4 modulo12, v=3w+4and v—w=
1644. Then there exists a (v, 4, 1)-BIBD containing a sub-(w, 4, 1)-BIBD.

Theorem (Lemmas 5.3 and 5.4). Let v, w=1 or 4 modulo 12 where v — w is an
odd integer =1611. If w=373 then there exists a (v, 4, 1)-BIBD containing a
sub-(w, 4, 1)-BIBD whenever v=3w + 1. If w <373 then there exists a (v, 4, 1)-
BIBD containing a sub-(w, 4, 1)-BIBD whenever 3w + 1< v < 15w + 28.

Together with Theorem 1.3 our results will reduce the further study of this
problem to a finite number of cases (see Theorem 5.5).

Finally, in Section 6 we will turn our attention to constructing sub-designs in
(certain) ‘complementary decompositions’. Let n >0 and let 4= {G,, ..., G,}
be a decomposition of K,. Then a complementary decomposition AK,— 4 is a
decomposition & of the complete multigraph AK, into K,’s (i.e. a (v, n, A)-
BIBD) with the property that foreachj=1, ..., Atheset {G,cK,:K,e P} isa
decomposition of K, (we will refer to & as the root); note that this necessarily
means that each G; e 9 contains the same number (namely (n(n —1))/24) of
edges. Note that the case A =1 corresponds to constructing (v, n, 1)-BIBDs.

Where A > 1 the best-known examples of these designs are the so-called Nested
Steiner Triple Systems. A Steiner Triple System STS(v) is said to be nested if one
can add a point to each triple in the system and so obtain a (v, 4, 2)-BIBD. The
spectrum of these designs was determined by Stinson [32]:
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Theorem 1.5. There exists a nested STS(v) if and only if v =1 modulo 6.

It is easy to see that a nested STS(v) is equivalent to a complementary
decomposition 2K, — {K, 3, Ki3}. There is one other possible complementary
decomposition 2K, — {G, G} where G has four vertices, namely where G =
G° = P; (the path with three edges); the spectrum of these designs was given by
Granville, Moisiadis and Rees [8].

Theorem 1.6. There exists a complementary decomposition 2K, — {P,, P;} if and
only if v =1 modulo 3.

A second interesting problem was considered in [8]. Let us call two decomposi-
tions 4 ={G},...,G}} and %={G3 ..., G3} of K, distinct if for no
permutation o on {1, ..., A} isit true that G} = G5, foralli=1,..., A Then a
(v, n, A)-BIBD (viewed as a decomposition % of AK,—K,) is called
pandecomposable if for any set 4, . . ., %, of distinct decompositions of K,, (each
with A graphs) there exists, for each i=1, ..., k, a complementary decomposi-
tion AK,— ¢ with & as its root. For example the following design is a
pandecomposable (7, 4,2)-BIBD (to each block a,b,c,d associate the graphs
K, 5 and K7 ; where the K, ; has a on one side and b, c, d on the other, and also
the graphs P; and P35 where P, is the path abcd).

0,4,2,1 4,1,6,5
1,5,3,2 5,2,0,6
2,6,4,3 6,3,1,0
3,0,5,4

The following result was obtained in [8].

Theorem 1.7 [Granville, Moisiadis and Rees]. There exists a pandecomposable
(v, 4, 2)-BIBD if and only if v =1 modulo 6.

A subsystem in a complementary decomposition AK, — 4 is just a complemen-
tary decomposition AK,,— % for some complete multisubgraph AK, c AK,. In
particular, the root of the subsystem (a (w, n, A)-BIBD) is a sub-BIBD of the
root of the ‘mother’ system (a (v, n, A)-BIBD). We will be interested in
determining the spectrum of subsystems in complementary decompositions of the
type given by Theorems 1.6 and 1.7. Note that, since in each case the roots are
BIBDs with k=4, a necessary condition for a system of order v to have a
subsystem of order w is that v = 3w + 1. We will prove the following two results:

Theorem (6.2). Let v and w be given with v=w =1 modulo 6, v=3w + 4 and
v—w=822. Then there exists a pandecomposable (v, 4, 2)-BIBD containing a
sub-pandecomposable (w, 4, 2)-BIBD.
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Theorem (6.4). Let v and w be given with v=w=1 modulo3, v=3w +1 and
v—w=411. Then there exists a complementary decomposition 2K, — {P;, Ps}
containing a subsystem 2K, — {P;, P;}.

Remark. Note that as a corollary to the first result we have a solution (to within a
finite number of cases) for the spectrum of subsystems in nested Steiner Triple
Systems; as a corollary to the second result we have a similar solution for the
spectrum of subsystems in (v, 4, 2)-BIBDs. (See Corollaries 6.3 and 6.5 in
Section 6.)

2, Definitions and preliminary results

Of central importance to our work here will be the notions of a group-divisible
design (GDD) and an incomplete group-divisible design (IGDD). A group-
divisible design is a triple (X, G, B) where X is a set of points, G is a partition of
X into groups and B is a collection of subsets of X (blocks) such that

(i) [B;NG;|<1forall B;e B and G, € G, and

(ii) any pair of points from distinct groups occurs in exactly one block.

An incomplete group-divisible design is a quadruple (X, Y, G, B) where X is a set
of points, Y is a (possibly empty) subset of X, G is a partition of X into groups
and B is a collection of blocks such that

(i) [B;NG;|<1forall B;e B and G, € G, and

(ii) any pair of points x and y from distinct groups occurs in exactly one block
unless both x and y are in Y, in which case x and y do not occur together in any
block. Note that when Y =@ an IGDD is just a GDD.

We will usually describe GDDs and IGDDs by means of an exponential
notation: a K-GDD of type gig%- - - g is a GDD in which there are ¢; groups of
size g;,, i =1, ..., r, and in which each block has size from the set K; a K-IGDD
of type (g1, h1)"(g2, h2)?- - (g, h,)" is an IGDD (X, Y, G, B) in which there are
t; groups of size g;, each with the property that its intersection with Y has
cardinality h;, i=1,...,r, and in which each block has size from the set K.
When some h; =0 we will suppress it; thus a 4-IGDD of type (9, 3)'6' means a
4-1IGDD of type (9,3)*(6,0)'. We will also use other (standard) notations from
time to time, as it appears convenient. For example we can replace the foregoing
notation with K-GDD of type S, where § is the multiset consisting of ¢, copies of
g, or K-IGDD of type S, where S is the multiset consisting of ¢; copies of the
(ordered) pair (g, h;), i=1,...,r. Finally, we will use the notation
GD[K, M;v] to mean a group-divisible design on v points in which each block
has size from the set K and each group has size from the set M. A PBD(K; v) will
denote a pairwise balanced design (of index unity) on v points in which each
block has size from the set K. Where there is exactly one block (resp. group) of
some size k € K (resp. m € M) we will indicate this by writing k* (resp. m*).
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We shall need some preliminary results before proceeding to Section 3. A
group-divisible design is called resolvable if its block set can be partitioned into
parallel classes. In [27] the authors considered the problem of constructing
resolvable 3-GDDs and obtained a result which implies the following.

Theorem 2.1 [Rees and Stinson|. Let g and u be given where gu =0 modulo 3
and g(u—1)=0 modulo2, (g, u)#(2,3), (2,6) or (6,3). Then there exists a
resolvable 3-GDD of type g*, except possibly when

(i) g =6 modulo 12 and u =11 or 14;

(ii) g =2 or 10 modulo 12 and u = 6.

Assaf and Hartman [1] have constructed resolvable 3-GDDs of types 6'' and 6",
which easily gives

Theorem 2.2 [Assaf and Hartman]. There exist resolvable 3-GDDs of type g"'
and g, where g =6 modulo 12.

A frame is a group-divisible design (X, G, B) whose block set can be
partitioned into holey parallel classes, i.e. each holey parallel class is a partition of
X — G, for some group G, € GG. The groups in a frame are usually referred to as
holes. A Kirkman frame is a frame in which each block has size 3; the spectrum of
Kirkman Frames with uniform hole size was determined in [34].

Theorem 2.3 [Stinson]. There exists a Kirkman Frame of type g if and only if g
is even, u =4 and g(u — 1) =0 modulo 3.

Remark. It is noted in [34] that in a Kirkman frame (X, G, B) there are 3 |G|
holey parallel classes of triples that partition X — G;, for each G, € GG. It follows
immediately that a Kirkman frame of type g“ is equivalent to a 4-IGDD of type
3g, 3g)* (for a fuller discussion of this equivalence the reader is referred to [33]).

We will be relying heavily on results that are known concerning resolvable
BIBDs with block size 5. Our principal source of these designs is the work of W.
H. Mills (see references) who has shown that for all r>36 with r=1 or
6 modulo 15 there exists an (r, 6, 1)-BIBD, with 165 possible exceptions. More
recently, Mullin, Hoffman and Lindner [22] and Mullin [21] have reduced the size
of the list of doubtful values to 96. We are of course using the fact that for each k
the set of replication numbers for resolvable (v, k, 1)-BIBDs is PBD-closed (see
e.g. [25]) and that there is a resolvable (25,5, 1)-BIBD, so that whenever an
(r, 6, 1)-BIBD exists then so does a resolvable (4r 4+ 1, 5, 1)-BIBD. That is, by
using Table 1 in [21] together with Lemma 1.3 in [22], it follows that the set of
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replication numbers for resolvable BIBDs with block size 5 contains the set of
integers congruent to 1 or 6 modulo 15, with the following possible exceptions:

Table 1.

36 46 61 141 166 171 196 201 226 231
246 256 261 276 286 291 316 321 336 346
351 376 406 411 436 441 466 471 486 496
501 526 561 591 616 621 646 651 676 706
711 736 741 766 771 796 801 831 886 891
916 946 1011 1066 1071 1096 1101 1131 1141 1156

1161 1176 1186 1191 1221 1246 1251 1276 1396 1401
1456 1461 1486 1491 1516 1521 1546 1611 1641 1671
1816 1821 1851 1881 1971 2031 2241 2601 3201 3471
3501 4191 4221 5391 5901

Remark. It will be of use to us later on to notice that there are never more than
three ‘consecutive’ (i.e. consecutive in the set {neZ":n=1 or 6 modulo 15})
integers among the entries in Table 1.

Finally, we will use the usual notation TD(k, n) to mean a transversal design
with & groups of size n, that is, a k-GDD of type n*. Unless indicated otherwise,
our source for these designs will be [2].

3. A new class of group-divisible designs with block size 4

In this section we will construct our group-divisible designs, using as our
primary tool the following construction.

Construction 3.1. Let (X, Y, G, B) be an incomplete group-divisible design and
let w:X—2Z"U{0} and d: X— 7" U {0} be nonnegative integer functions on X,
where d(x) =w(x) for all x € X. Let a be a fixed nonnegative integer. Suppose
that

(i) for each block b € B there is a K-IGDD of type {(w(x), d(x)):xeb},

(ii) there is a K-IGDD of type

{( > owx), d(x)):G,eG},

xeGiNY xeGNY

and

(iii) for each G, € G there is a K-GDD on a + X, w(x) points having a group
of size a and a group of size Y., d(x).

Then there is a K-GDD on a + ), .x w(x) points having a group of size @ and a
group of size ¥,y d(x).

Remark. By setting Y =9 and =0 in the above construction we obtain an
equivalent version of construction 4.4 in [23].
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Lemma 3.2. Let a, j and h be integers where a=3 or 6, j>1 and h=0, and
suppose that there exists a {5, 6}-IGDD (X, Y, G, B) (G ={G,, ..., G;}) having
the following properties:

(i) |G| =3 and foreach i=2,...,j|G]|€ {3,4,5};

(ii) GiNY =80 and for each i=2,...,j|G,NY|e€{0, h}; also, if for some
i, G;N'Y #0 then the same is true for at least four values of i.

Then for each u=0modulo3 with 3|Y|<su=<3|X| there is a
GDI[4, {3,6,9,u*}; 6 | X| +u +a].

Proof. We use Construction 3.1. Let d:X— {0, 3} be an assignment of the
points such that d(y)=3 for all yeY, d(x)=d(x") for all x,x' € G, and
Yiexd(x)=u. Such an assignment exists since |X — Y — G,| = |G| (this follows
easily from the hypothesis). Let w(x) = 6 + d(x) for all x € X. Replace each block
b in the incomplete group-divisible design by the relevant 4-IGDD, i.e. of type
{(w(x), d(x)):x € b} (the type will be (9, 3)'6"'* for some i, see appendix), and
if & # 0 replace the ‘missing’ subdesign (i.e. on the points of Y) by a 4-1GDD of
type (9k, 3h)'*"* (see Theorem 2.3 and the remark following it). The groups in
the incomplete group-divisible design are to be replaced by the relevant 4-GDDs,
according to Table 2. This completes the proof. O

Corollary 3.3. Suppose that there is a GD[{5, 6}, {3,4,5, r*}; s] with more than
one group, where r=3. Then for each u =0 modulo 3 with 0<u <3s and each
a€{3,6) there is a GD[4, {3,6,9,u*}; 6s + u +a].

Proof. Use Lemma 3.2 with A=0 (so that Y=0 and condition (ii) is
vacuous). O

We are ready now to prove the main result of this section.

Theorem 3.4. Let & = {20, 24, 25, 28, 29, 30, 31, 36, 40, 44, 45, 52, 59, 60, 63,
64, 65} U{neZ:n=68} and let a € {3, 6}. Then for each s € ¥ and each u=0
modulo 3 with 0 < u < 3s there exists a GD[4, {3, 6,9, u*}; 6s + u +aj.

Proof. We use Corollary 3.3, exhibiting for each s € ¥ a {5, 6}-GDD satisfying
the hypothesis of that corollary.

s =20 remove a point from a (21, 5, 1)-BIBD.

s =24,25 remove either one point or no points from a (25, 5, 1)-BIBD.
5=128,29,30 remove either three, two or one collinear point(s) from a
(31, 6, 1)-BIBD.

s =31 there is a resolvable 4-GDD of type 3® (see e.g. [11, Section 3]);

Add a group ‘at infinity’ of size 7 to this design.

s =36 add a group ‘at infinity’ of size 8 to a resolvable (28, 4, 1)-BIBD.

s =40 remove a point from a (41, 5, 1)-BIBD.
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Table 2.
a |G| EZG d(x) 4-GDD of type Source
3 3 0 36! add six infinite points to a KTS(15)
3 3 3 3® remove a point from a (25, 4, 1)-BIBD
3 3 6 3'6* {28, appendix]
3 3 9 379! add nine infinite points to a KTS(21)
3 4 0 kid remove a point from a (28, 4, 1)-BIBD
3 4 3 3%’ remove a point from a
PBD({4, 7*}; 31)([3})
3 4 6 3% remove a point from a
PBD({4, 7*}; 34)(I3])
3 4 9 3592 [28, appendix]
3 4 12 FP12! add twelve infinite points to a KTS(27)
5 0 3%’ remove a point from a
PBD({4, 7*}; 39)([3])
3 5 3 32 remove a point from a (37, 4, 1)-BIBD
3 5 6 3'6° appendix
3 5 9 3''g! appendix
3 5 12 3F6'12! [28, appendix)
3 5 15 3ts! add fifteen infinite points to a KTS(33)
3 =6 ] 3G+ remove a point from a
and (61G,| + 4, 4, 1)-BIBD
even
3 =7 0 3G el remove a point from a
and PBD({4, 7*); 6 |G| + 4)([3))
odd
3 =6 UG5 )G, add 3 |G,| infinite points to a
KTS(61G,| +3)
6 3 0 36° appendix
6 3 3 3'6* (28, appendix]
6 3 6 6° [6]
6 3 9 69! add nine infinite points to a
resolvable 3-GDD of type 6*
(Theorem 2.1)
6 6° 6]
3%' remove a point from a
PBD({4, 7*}; 34)([3])
6 [6]
6 4 6°9' (27, appendix]
6 4 6°12' add twelve infinite points to a
resolvable 3-GDD of type 6°
(Theorem 2.1)
6 5 0 6° (6]
6 S 3 3'6° appendix
6 5 6 6 (6]
6 S 9 6%9' appendix
6 S 12 6°12! appendix
6 5 15 6°15" add fifteen infinite points to a
resolvable 3-GDD of type 6°
(Theorem 2.1)
6|G‘I +1 [6]
691 31G,) add 3 |G,| infinite points to a

resolvable 3-GDD of type 6!¢1*!
(Theorems 2.1 and 2.2)
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s =44, 45 there is a (45,5, 1)-BIBD with a parallel class of blocks (see e.g.
[12]); remove either one point or no points from this design.

s =52 add a group ‘at infinity’ of size 12 to a resolvable (40, 4, 1)-BIBD.

s =59 remove a block and a point from a (66, 6, 1)-BIBD (the resulting GDD
has type 4°57).

s =60, 63, 64, 65 remove either six, three, two or one collinear point(s) from a
(66, 6, 1)-BIBD.

68 <s5 <80 add a group ‘at infinity’ of size s-65 to a resolvable (65, 5, 1)-BIBD.
80=s=<94 Start with a resolvable TD(5, 15) and construct on each group the
design obtained by removing a point from the affine plane of order 4. We can do
this in such a way that the resulting design is a resolvable {4, 5}-GDD of type 3%,
having five parallel classes of quadruples and quintuples and fourteen classes of
quintuples. Now add a group ‘at infinity’ of size s-75 to this design (the first five
infinite points must complete the ‘mixed’ parallel classes).

88=<s5=<105 add a group ‘at infinity’ of size s-85 to a resolvable (85, 5, 1)-BIBD.
98 <s <114 Start with a resolvable TD(5, 19) and on each group construct a
copy of the design obtained by adding three points ‘at infinity’ to the affine plane
of order 4. This can give us a {4, 5}-GDD of type 3°4* in which there is a parallel
class containing 20 quadruples and 3 quintuples and in which there are a further
eighteen parallel classes of quintuples. Add a group ‘at infinity’ of size s-95 (the
first infinite point completing the parallel class containing the quadruples).

108 =<s <125 Start with a resolvable TD(5, 21) and on each group construct a
(21, 5, 1)-BIBD. Now add a group ‘at infinity’ of size s-105 to this design (the
group-type will be 5°'(s-105)").

123 <5 <149 Start with a resolvable TD(5, 24) (4 MOLS of order 24 have been
constructed by Roth and Peters [30]) and on each group construct a copy of the
design obtained by removing a point from the affine plane of order 5. This can be
done so that the resulting design is a resolvable 5-GDD of type 4*; now add a
group ‘at infinity’ of size s-120 to this design.

148 <5y =174 Take a resolvable TD(5, 29) and construct on each group a copy
of the design obtained by adding four ‘infinite’ points to the affine plane of order
5. Adding a group ‘at infinity’ of size s-145 yields a GDD with group-type 4°5%
(s-145)".

158 =5 <185 Take a resolvable TD(S, 31) and construct a (31, 6, 1)-BIBD on
each group; then add a group ‘at infinity’ of size 5-155 (the group-type will be
5*'(s-155)").

180 =<s <214 Start with a resolvable TD(5, 35) and on each group construct a
copy of the design obtained by removing a block and a point from a
(41,5, 1)-BIBD. This we can do so that the resulting design is a {4, 5}-GDD of
type 3*°4% in which there are five parallel classes of quadruples and quintuples
and thirty-four parallel classes of quintuples. Add a group ‘at infinity’ of size
$-175 to this design (the first five infinite points completing the ‘mixed’ parallel
classes).
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208 =<s =255 add a group ‘at infinity’ of size s-205 to a resolvable (205, 5, 1)-
BIBD. : ‘

228 =<s5=<269 take a resolvable TD(5, 45), constructing a (45,5, 1)-BIBD on
each group, and then adding a group ‘at infinity’ of size s-225 (the group-type will
be 5%(s-225)").

s =268 From here on we use resolvable (4r+1, 5, 1)-BIBDs, starting with
r = 66. The reader is now referred to Table 1. Recalling that there are never more
than three ‘consecutive’ entries in this table we can always write s =4r + 1 +1¢
where r is the replication number of a resolvable BIBD and 3 <t¢<min{r —
1, 122}. Now add a group ‘at infinity’ of size ¢ to a resolvable (4r + 1, 5, 1)-BIBD.

This completes the proof of Theorem 3.4. O

Remark. Regarding the values in the set Z* — & in Theorem 3.4 it is tedious but
straightforward to check that if s=<19 or s =21, 22, 23, 26 or 27 then no
{5, 6}-GDD satisfying the desired properties can exist.

4. Kirkman triple systems with subsystems
In this section we will prove the following result.

Theorem 4.1. Suppose that v=w =3 modulo6, v=3w and v —w =125 + 6 or
125 + 12, where se $U{0, 1, 2, 3, 4, 5, 6, 7} (& is the set defined in Theorem
3.4). Then there exists a KTS(v) containing a sub-KTS(w).

We will use the following special case of Construction 3.1 to provide Theorem
4.1:

Construction 4.2. Let (X, G, B) be a group divisible design with block sizes from
the set {n € Z*:n =1 modulo 3}, and let m be a positive even integer. Then there
exists a KTS(m |X| + 3) containing subsystems of size m |G| + 3, G, € G.

Proof. Apply Construction 3.1 with Y =0, a =3, w(x) =3m and d(x) = im for
all x e X. The required input designs exist by Theorem 2.3 and the remark
following it. [

Before proceeding to the proof of Theorem 4.1 we obtain the following designs.

Lemma 4.3. There exist KTS(81) with a sub-KTS(15), KTS(87) with a sub-
KTS(21), KTS(117) with a sub-KTS(33) and a KTS(135) with a sub-KTS(39).
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Proof. The first two designs are obtained by applying Construction 4.2 (with
m =2) to a 4-GDD of type 6°9' (see appendix of [27]) or a 4-GGD of type 3''9'
(appendix). The fourth design is obtained by applying Construction 4.2 (with
m=4) to a 4-GDD of type 3*9' (this GDD can be obtained by adding nine
infinite points to a resolvable 3-GDD of type 4° (Theorem 2.1)). To get a
KTS(117) with a sub-KTS(33) proceed as follows. We first construct the following
PBD({4, 10*, 16*}, 58):

Points: (Z;6 % {1,2,3})U ({a} X Z;) U {=;:1<i=<8}.

Blocks: The block of size 10 is ({a} X Z,) U {*;: 1 =i <8} and the block of size
16 is Z,, % {3}. The blocks of size 4 are obtained by developing the following
modulo 16 (the subscripts on a are to be evaluated modulo 2):

402,5:0; 0510,5,0;  9,15,13,0,
@,9,12,0,  @,11,0,0;  4,11,14,0,
0,0,3,0, ©;12,8,0,  0,1,0,2,
0,3,10,0, 413,60,  0,4,8,12,
0,4,14,0;,  1,6,8,0 0,4,8,12,
©, 7,150,  1,2,7,0,

Now remove a point to obtain a {4,10}-GDD of type 3'15' and apply
Construction 4.2 (with m =2) to this GDD. [

Proof of Theorem 4.1. Ifs=0,1,2,3,4,5, 6 or 7 use Theorems 1.1 and 1.2 and
Lemma 4.3. Now let s € &. If v — w =125 + 6 apply Theorem 3.4 with a =3 and
u=(w-3)/2 (note that since v=3w we have 0<u<3s) to construct a
GD[4, {3,6,9, (w —3)2*}; (v —3)/2]. Then use Construction 4.2 (with m =2)
to obtain a KTS(v) with a sub-KTS(w), as desired. If v —w = 125 + 12 proceed as
above using instead a=6. O

As an immediate corollary to Theorem 4.1 we have:
Theorem 4.4. Let v=w =3 modulo 6, v=3w and v — w = 822. Then there exists
a KTS(v) containing a sub-KTS(w).
5. Balanced incomplete block designs (block size 4 and A =1) with subdesigns
Here we will prove our result on embeddings of (w, 4, 1)-BIBDs.

Lemma S5.1. Let v=w=1 or 4 modulo12, v=3w+4 and v -w = 1644. Then
there is a (v, 4, 1)-BIBD containing a sub-(w, 4, 1)-BIBD.
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Proof. Let h=34(v—w) and u=|(w—1)/4|, and let s=|(h—3)/6|. Since
v — w = 1644 we have s = 68, and furthermore
(i) if v =w =4 modulo 12 and & is odd then

Is=(h-3)/2=02w—-8)/8=u=0,
(ii) if v =w =4 modulo 12 and 4 is even then

h—6 (2w+16)—24 2w—8
= = = = =
3s 2 3 3 u=0,

(iii) if v=w =1 modulo 12 and # is odd then

h—-3 2w-2
=—23=z id =u=0, and

3
T 8

(iv) if v=w =1 modulo 12 and 4 is even then

_h-6_(w+22)-24_2w-2_

== 8 8

u=0.

Thus we can use Theorem 3.4 (with @ = 3 when h is odd, or a = 6 when h is even)
to construct a GD[4, {3,6,9, u*}; h + u]. Now use Wilson’s Fundamental Con-
struction [36] (this is really just a special case of Construction 3.1, i.e. with a =0
and w(x) = d(x) for all x € X) on this group-divisible design, replacing each point
by four new ones, to obtain a GD[4, {12, 24, 36, 4u*}; 4(h + u)]; add one or four
‘ideal’ points (depending on whether w =1 or 4 modulo 12) and fill in the relevant
BIBDs. O

Before proceeding we will need the following simple lemma.

Lemma 5.2. Let s =268. Then there is an integer t with 4<t<min{3s, 123} for
which a {5, 6}-IGDD of type 4545, 1) exists. (Note that this IGDD has s
points.)

Proof. We proceed essentially in the same way as the case s = 268 in the proof of
Theorem 3.4. Again referring the reader to Table 1 we can write s = 4r + ¢ where
r is the replication number of a resolvable BIBD with block size 5 (r = 66) and
4<t<min{3s, 123}. (Certainly ¢ need never be greater than 123 since Table 1
does not contain more than three ‘consecutive’ entries; on the other hand it can
be checked that the largest value that ¢/s need take occurs when s = 307, when we
must write 307 = 4 - 66 + 43, so that t/s = 43/307 <4.) Add ¢ points ‘at infinity’ to
a resolvable (4r + 1, 5, 1)-BIBD and then remove a point other than one of the
ones just added. A {5,6}-IGDD of type 47(5, 1)’ is obtained (the ‘missing’
subdesign occurs on the ¢ new points). O
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Lemma 5.3. Let v, w=1 or 4 modulo 12 where v=3w + 1 and v —w is an odd
integer =1611. If w = 373 then there is a (v, 4, 1)-BIBD containing a sub-(w, 4, 1)-
BIBD.

Proof. Let s = {(v —w — 3); since v —w = 1611 we have s =268. From Lemma
5.2 there is a {5,6)-IGDD (X, Y, G, B) of type 4“5, 1) for some
4=<t=<123. Now we apply Lemma 3.2 with h=1, |Y| =t and a=3, and with
u =w — 1. Note that u = 3¢ since w = 373; moreover, since s and ¢ have the same
parity it is easily deduced that ¥ — 3¢ =0 modulo 6. This means (see the proof of
Lemma 3.2) that we can assign the function d to X in such a way that for each
group G; € G an even number of points in G, — Y are assigned a value of 3; in
turn (see Table 2) the only triples (a, |G|, 3d(x)) that will arise are (3, 4,0),
(3,4,6), (3,4,12), (3,5,3), (3,5,9) or (3,5,15). In this way we obtain a
GD[4, {3, u*}; 6s +u +3], i.e. a GD[4, {3, (w — 1)*}; v —1]. Now just add a
point to ‘complete’ the groups, and construct a (w, 4, 1)-BIBD on the block of
sizew. (O

Lemma 5.4. Let v, w=1 or 4 modulo 12 where 3w + I <v < 15w +28 and v —w
is an odd integer =1611. Then there exists a (v, 4, 1)-BIBD containing a
sub-(w, 4, 1)-BIBD.

Proof. Proceed as in the proof of Lemma 5.3, using instead the inequality
4<t<4s (from Lemma 5.2). We will again use Lemma 3.2 with A =1, |Y| =1,
a =3 and u =w — 1. We must therefore only show that u = 3¢.

By hypothesis, v < 15w + 28. Since v =6s + w + 3 it follows that s <Jw + 2.
On the other hand s =7, so that w =3¢ — 2. But w =1 modulo 3 so that in fact
w=3t+1, i.e. u=3t, as desired. O

Together with Theorem 1.3, Lemmas 5.1, 5.3 and 5.4 yield the following block
size 4 analogue to the Doyen—Wilson Theorem (missing a finite number of cases).

Theorem 5.5. Let v, w=1 or 4 modulo 12, v 23w + 1 and v — w = 1635. Then
there exists a (v, 4, 1)-BIBD containing a sub-(w, 4, 1)-BIBD.

Proof. If v —w is even, or v — w is odd and w = 373 then we use Lemmas 5.1 or
5.3 respectively. If v —w is odd and w is ‘small’, i.e. w < 124, then use Theorem
1.3 (which asserts that a (w, 4, 1)-BIBD can always be embedded in some
(v, 4, 1)-BIBD whenever v = 13w + 96). For values of w between 133 and 364 use
Lemma 5.4 in conjunction with Theorem 1.3. 0O
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6. Subdesigns in complementary decompositions

In this section we obtain some results on subdesigns in complementary
decompositions. We will need the following design, which appears in Lemma 2.4
of (8]:

Lemma 6.1. There is a pandecomposable covering of the complete multipartite
graph K, 55, by K,'s.

Proof. Take the following design, whose blocks are to be interpreted as in the
example preceding Theorem 1.7:

Groups: 0,1 2,3 4,5 6,7

Blocks: 0,2,7,4 4,2,6,1
1,3,6,5 53,7,0
2,1,5,7 6,0,5,2
3,0,4,6 7,1,4,3 a

Theorem 6.2. Let v=w=1 modulo6, v=3w +4 and v— w =822. Then there

exists a pandecomposable (v, 4, 2)-BIBD containing a sub-pandecomposable
(w, 4, 2)-BIBD.

Proof. Use Theorem 3.4 to construct a GD[4, {3,6,9, (w —1)/2*}; (v —1)/2]
(i.e. let s=|(v—w—6)/12|). Now apply Wilson’s Fundamental Construction
[36], replacing each point by two new ones and each block by the design in
Lemma 6.1; add one ‘ideal’ point and fill in pandecomposable (7,4, ?2)-,
(13, 4, 2)-, (19,4, 2)- and (w, 4, 2)-BIBDs. [

As an immediate consequence of Theorem 6.2 we have

Corollary 6.3. Let v=w=1 modulo6, v=3w+4 and v —w=822. Then there
exists a nested STS(v) containing a sub-nested STS(w).

Theorem 64. Let v=w=1 modulo3, v=3w+1 and v —w=411. Then there
exists a complementary decomposition 2K,— {P;, P;} containing a sub-
complementary decomposition 2K, — {P;, P;}.

Proof. Use Theorem 3.4 (with s=|[(v—w—3)/6]) to construct a
GD[4, {3,6,9,(w —1)*}; v —1]. Add a point to ‘complete’ the groups and so
obtain a PBD({4,7,10,w*};v) and then construct a complementary path
decomposition on each block. O
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Since the root of a complementary decomposition 2K, — {P;, P} is a (v, 4, 2)-
BIBD Theorem 6.4 now yields the following version of Theorem 5.5 for
embeddings of (v, 4, 2)-BIBDs:

Corollary 6.5. Let v=w=1 modulo3, v=3w+1 and v—w =411. Then there
exists a (v, 4, 2)-BIBD containing a sub-(w, 4, 2)-BIBD.

Remark. The embeddings given by Corollary 6.5 will, in general, contain
repeated blocks.

7. Conclusion

We expect that the techniques employed in Section 3 of this paper will be very
useful in considering a wide variety of problems concerning subdesigns in
combinatorial designs. This is because Construction 3.1 can of course be used to
construct group-divisible designs, analogous to those in Lemma 3.2, for larger
block sizes.

Concerning the present material, we can already use Lemma 3.2 to go a long
way towards solving the spectrum for partially resolvable partitions PRP
2-(3,4,v; m) (i.e. a PBD({3, 4}; v) whose triples can be arranged into m parallel
classes, see [10]); a few difficulties remain, however, and we hope to report on
this in a future paper.

We will also report on some recent progress made concerning the unsettled
cases in Sections 4 and 5. For example, at the time of writing, there are just fifty
pairs (v, w) remaining for which the existence of a KTS(v) containing a
sub-KTS(w) has not yet been established.

Note added in proof. Since the time of writing we have become aware that R.
Wei and L. Zhu, in a follow-up paper to [35] entitled ‘Embeddings of S(2, 4, v)’,
have come very close to a complete solution for subdesigns in BIBDs with block
size 4 and 1 =1.
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Appendix

Incomplete group-divisible designs with block size 4:
A 4IGDD of type (9, 3)°

See Theorem 2.3 and the remark following it.
A 4-1GDD of type (9, 3)*6

See the appendix in [28].
A 4-IGDD of type (9, 3)°6°
Points: (Ze % {1,2,3,4,5})U({a, b, c} x Z5).
Groups: {ZsX {j}:j=1,2} U{(Z¢ X {3})U ({a} X Z5)}

U {(Ze x {4}) U ({b} X Z3)} U {(Z X {SH U ({c} x Z3)}.

Subgroups: {{a} X Zs} U {{b} X Z:} U {{c} X Z5}.
Blocks: develop the following modulo 6 (the subscripts on a, b and ¢ are to be
evaluated modulo 3):

00,060 0,5,05b,
011335b2 025345bl
0,2,3,a, 0,1,4sa,
0,440sa, 0,0415a,
0,4,55¢¢ 0,3,24¢,
0,3;14¢, 0,3:04¢q
0125425 0435455
0243325 0,252,455
A 4-1GDD of type (9, 3)6°
Points: (73 % {1,2,3,4,5,6})U({a} X Z;) U({b} X Z) VU ({c} X Z,)
U {o;:1=<i=<9},
Groups: {{j} x{1,2,3,4,5,6}:j=0,1,2}U{({a} X Z;) U({b} X Z3)
U({c} X Zy)} U {{=:1=<i<9}}.
Subgroups: {{a} X Z;} U {{o;, %, 03} }.
Blocks: develop the following modulo 3:

ay0,1325 an°42,04 bos2,0q Co®32,13
ag0,2,414 4042306 by®62514 €0%°40,15
ag241,0; by2,415 by20;2,05 €520,
a®51,05 b®,0,24 byeg1505 €621,
4061524 boos1,25 by*o0;1, €025l
ag®72,1, b240416 €o®10:2¢ co%31,0,
®,0,1,2, ©,041523 co 0414 €®92405
©,0,1,2, 00051525 003041424 003061626
A 4-IGDD of type (9, 3)'6*
This is just a 4-GDD of type 6'9', obtainable by adding nine infinite points to a
resolvable 3-GDD of type 6* (Theorem 2.1).
A 4-1GDD of type (9,3)°
See Theorem 2.3 and the remark following it.
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A 4-1GDD of type (9, 3)°6'
See the appendix in [28].

A 4-IGDD of type (9, 3)*6>

Points: Z,,x{1,2,3,4}.

Groups: {{0+i, 444, 8+i}x{1,2,4}:i=0, 1,2, 3}
U{{0+i,2+i,4+i,6+i,8+i,10+i} x {3}:i=0, 1}.

Subgroups: {{0+i, 4+, 8+i}x{4}:i=0,1,2,3}.

Blocks: develop the following modulo 12:

0,1,2,0,
1,3,10,0,
6,11,0:0,
71125304
91 134304
526,60,
0,3,6,9,

0:355,2,

2,10;1150,

5,3,8:0,
10,9,3:0,
2,7,9:0,
11,2,7:0,
0,3,6,9,

A 4-IGDD of type (9, 3)°6°
Points: Z,x {1,2,3,4,5}.

Groups: {{0+i,3+i,6+i}x{1,2,5}:i=0,
U{{0+i,3+i,6+i}x{3,4):i=0,1,2).
Subgroups: {{0+i,3+i,6+i} x {5}:i=0,1,2}.

Blocks: develop the following modulo 9:

0,1,2:05
0,2,453,
0,7,3374
71344405
21057505

2,1,8,05
557,605
4,8,6,05
0,4,5,0,
02426324

A 4-1GDD of type (9, 3)**

Points: Z¢ % {1,2,3,

Groups: {Zyx {j}:j=S5,6yU{{0+i,2+i,4+i}x{3,4}:i=0, 1}
U{{0+i,2+i4+i}x{1,2,7}:i=0,1}.

Subgroups: {{0+i,2+i,4+i} x{7}:i=0,1}.

4,5,6,7).

1,0,5405
4,8,5505
514,705
8,233305
1,152,405

Blocks: develop the following modulo 6:

0,1,0:0¢
0,5,0,14
0,1,4,1,
0,5:241,
0,314
0,0,355,
0,2:353,

0,0,251,
0,45562,
0,5542,
0,3,155
0,1,5455
0,3:254
0,055,05

0425241,
0,343637
0,533657
0,1,354,
041,364,
0,3,0:34
0,3,0,43,4
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A 4-1GDD of type (9, 3)'6°
This is just a 4-GDD of type 6°9', and can be found in the appendix of [27].

Remark. The 4-IGDDs with no groups of size 9 are of course just 4-GDDs of
types 6°, 6°, and so exist by [6].

Group-divisible designs with block size 4:
A 4-GDD of type 3'6°
Points: Z3,U ({a} X Z,).
Groups: {{0+i, 6+, 12+, 18+i,24+i,30+i}:i=0,1,2,3,4,5}
U {{a} x Z5}.
Blocks: develop the following modulo 36 (the subscript on a is to be evaluated
modulo 3):
0,1,3,11 0,5,14,21 0,4,17,4,
A 4-GDD of type 3''9!
Points: (Z¢ % {1,2,3,4,5,6})U({a, b} X Z,).
Groups: {{0+i,2+i,4+i}yx{j}:i=0,1;j=1,2,3,4,5}U{{a} xXZ5)}
U {(Ze x {6}) U ({b} X Z5)}.
Blocks: develop the following modulo 6 (the subscripts on a and b are to be
evaluated modulo 3):

0,0,0,0s  03150sbg  0,0,1,b,
0]32143(, 02530414 0'15455b()
0,4350a0 0,2,331¢ 0,1,5,25
0,553¢a, 0,533446 0,4,0515
0223354(, 0]0526(12 0|31 1.545
03544534 02,4451, 0,3,a0bq
0,033,a, 0,542526 0:3;a0b,
0,4,25b, 0,2,3sa, 0434a0b>
A 4-GDD of type 36
Points: Z,,U({a} X Z)U({b} X Z) U {=;: 1 <i=<4}.
Groups: {{0+i,4+i,84i}:i=0,1,2,3}U{{a} x Zs}
U{({b} X Zo) U {=;:1<i<4}).

Blocks: the following, for i=0,1,2,3,4,5 (the subscripts on b are to be
evaluated modulo 2):

a,(0+2)(1+2i)0,  a;b(2+2i)(4 + 2)
a,3+20)(8+2i)2, @b (S +20)(7 + 2i)
a,(6+20)(11 +2i), (0 +20)(3 + 2i)(6 + 2i)(9 + 2i)
a,(9 + 2i)(10 + 2i)o0,
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A 4-GDD of type 6°9'
Points: Zy, U ({a} X Zy).

Groups: {{0+i, 6+, 12+i, 18+, 24+i,30+i}:i=0,1,2,3,4,5)

U {{a} x Z}.

Blocks: develop the following modulo 36 (the subscripts on a are to be evaluated

modulo 9):
0,1,5,27 1,17,34,a, 0,2,13,a, 5,12,33, 4,

A 4-GDD of type 6°12!
Points: (Z1; % {1,2,3})U {eo,: 1 =i <12},

Groups: {{0+i,6+i}x{1,2,3}:i=0,1,2,3,4, 5} U{{=:1<i=<12}}.

Blocks: develop the following modulo 12:
©,0,5:4; ®,0,4,2,
030,855, ©,0,3,115
50,1,8; 0,0,2,75
0g0,11,3; 050,10,15
000,795 ©,,0,9,10,

then, for each j=1,2,3 construct a 4-GDD of type 2’ on the groups
{({0+i,6+i} x{j}:i=0,1,2,3,4,5}U{{g, ®,}} (a 4-GDD of type 2’ is

obtained by developing the block 0, 1, 4, 6 modulo 14).
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A Steiner Triple System (STS) consists of a set X together with a collection B
of 3-subsets of X such that every pair of elements of X occurs in exactly one
member of B. (X, B,) and (X, B,) are said to be orthogonal if B, B,=9 and
for (x,y,z)eB,, (u, v, z) e B, there exists no we X such that (x,y, w) and
(u, v, w) € B,.

It should be noted that this terminology is not unique. Mullin and Vanstone [1]
and Rosa [2, p. 125] prefer to call such pairs of STSs perpendicular. However,
Mendelsohn [3] reserves this term for a 4-column array of elements of X, any 3 of
which form a STS; here we shall retain the older term, orthogonal.

Mullin and Nemeth [4], (as quoted in [2]), have shown that for X = a finite field
of order 6q + 1, with generator g, one may obtain a pair of orthogonal STS’s on
X by including g sets of the form {h+g", h+g %, h+g"**} in B,, for all
heX, while B, will consist of the triple {h—g" h—g** h—g ™"} for
appropriate values of r between 0 and g — 1. This partially solves the existence
problem for orthogonal pairs, and ample literature is quoted in [2].

In what follows, we present something of a natural extension of this result.

Let X be a set of order 6g + 1, closed under addition. Thus X might be Z, .|,
or the set of all ordered pairs, triples, k-tuples of some Z,, with m?, m® or
m*=6q +1 (in which case, addition is to be understood componentwise). By
some abuse of language, we shall call the STS (X, B) cyclical if (a,b,c)eB
implies (@ + h, b+ h, c + h) € B for every h € X. A counting argument will show
that in this case, B consists of g sequence each containing {.X| triples.

Lemma 1. If (X, B) is a cyclical STS, and (a, b, c) € B, then (—b, —a, d) ¢ B for
any d € X.

Proof. Taking h=a+b, (=b+h, —a+h,d+h)=(a,b,a+b+d); thus the
pair (a, b) would appear twice. [

Definition. For a STS (X, B), call (X, —B) the opposite STS, where —B is the set
of triples (—a, —b, —c) for (a, b, ¢) € B. By Lemma 1, it (X, B) is a cyclic STS,
(X, —B) is disjoint from it.

0012-365X/89/33.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)
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Let again X be a set of order 6g + 1, closed under addition. If the elements of
X are the k-tuples of Z,,, with m* =6q + 1, then obviously (m, 3) = 1. Then for
any triple (a, b, ¢) of elements of X, there exists a & € X, such that (a + h) +
(b+ h)+(c+h) sum to zero modulo m, since for the rth component of h we
may always solve a, + b, + ¢, + 3k, =0 (mod m). Moreover, this 4 is unique, for
adding any h' e X will add a multiple of 3 to each nonzero component. Call
(a+h, b+ h, c+h) the zero-sum triple of the sequence containing (a, b, ¢), and
we obtain

Lemma 2. In a cyclical STS (X, B), with |X|=6q +1, each sequence of B
contains a unique zero-sum triple.

Proposition 1. Let |X|=6q + 1, (X, B,) a cyclical STS and (X, B,)=(X, —B))
the opposite cyclical STS; if no element of X appears more than once in the 3q
elements of the zero-sum triples of B,, then (X, B,) is orthogonal to (X, B,).

Preliminary remark. The conditions imposed by Mullin and Nemeth are some-
what more restrictive: none of the g zero-sum triples of B, can have an element in
common with a zero-sum triple of B,.

Proof. Note first that by Lemma 1, B, and B, can have no triple in common.

For the orthogonality condition to fail, there should be two triples
(x,v,2), (u,v,z)e B, and (x,y, w), (4, v, w)€ B,; since we are dealing with
cyclical STSs, this is equivalent to (x ~z,y—2,0) and (u —z,v—2,0) e B, as
against (x—z,y—2z,w—2z) and (u—z,v—2,w—2)€B,. It is therefore
sufficient to consider in B, the companions of pairs of elements of X, having zero
as third element in triples of B,.

To check the circumstances more explicitly, suppose sequences 1, 2, 3 of B,
contain the zero-sum triples

(ay, by, —a, = b)); (az, by, —a,—by); (as, by, —as—b3)
(all g entries distinct by hypothesis), from which we may derive, respectively

0, b, ~a,, —2a,-b,), (a,—b,,0, ~a,—2b,), 2ay+ b4, az+2b,,0)e B,
and consequently

0,a,—b,,2a,+b)),(b;—a,,0,a,+2b,); (—2a3— by, —a;—2b,,0) e B..

To restore the nonzero entries of the first 3 triples, we have to add —3a, to the
first, —3b, to the second, and 3a; + 3b; to the third, giving

(=3a,, —2a,—b,, by —a,), (—a, — 2b;, —3b,, a,— b,),
(ay +2bs, 2a; + by, 3a3+ 3b3) € B,.
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But since (|X|, 3) =1 and a,, b,, a;s+ bj are distinct by hypothesis, the factor —3
does not affect the inequality and this completes the proof. O

Example. X =Z,,. The Mullin—-Nemeth solution, in one version, gives
(1,7,11),(2,3,14),(4,6,9) € B|; (5, 16,17), (10,13, 15),(8,12,18) e B,,
and Proposition 1 offers an additional solution
(1,6,12),(4,7,8), (9,11, 18) e B,; (1, 8, 10), (7, 13, 18), (11, 12, 15) € B,,

which, as one may easily verify, is not equivalent to the one above.

Proposition 2. Let (X, B)), (X, B,) be a pair of cyclical STSs satisfying the
conditions of Proposition 1, and let (Y, B;), (Y, B,) be another such pair. Then
for Z=:X XY, a choice of zero-sum triples Bs and B, may be found such that the
cyclical STSs on Z generated by Bs and B, be again orthogonal.

Proof. One such choice whose verification, while somewhat tedious, is straight-
forward would be:
(a) for every zero-sum triple (x,, x5, x3) € By, put ((x;, 0)(x,, 0), (x5, 0) € Bs;
(B) choose a cyclic order in the zero-sum triples (y,, v,, y3) € B;, and for every
(xy, x,, x3) as above include in Bs,

((x1, 1), (x2, ¥2), (x5, ¥3)); (x4, 32), (X2, y3), (X3, ¥1))s
((x1, y9), (X2, 1) (3, y2))s ((x0, =y1)s (X2, =y2), (x3,—¥3));
((xy, =y2), (x2, =y3), (x3, =31)); (1, =y3), (x2, =), (X3, —¥2));

(y) add all the triples of the form ((0, y,), (0, y,), (0, y3)). O

The reader might wish to check the following example, with X =7,;,
B 3(1,3,9),(2,6,5); Y=2, B;3(1,2,4)>Z=17,, comparing the residues
modulo 13 and modulo 7 of the following 15 triples

(a) (14, 42, 35), (28, 84, 70)
(B) (1,16,74) (15, 58, 18)
(79, 81, 22) (2, 32,57)
(53.29,9) (67,71, 44)
(27, 68. 87y (41,19, 31)
(66, 53, 61) (R0, 6, 5)
140, 3, 48) (54, 45, 83)
(y) (78, 65, 39).

[t is very probable that Lindner and Mendelsohn [5], (as quoted in 2], loc. cit.),
alreadv had a similar construction for product orders, based on the results of
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Mullin and Nemeth. They conclude that the existence problem for orthogonal
STSs of order 6k +1 would be solved if 6k +1 were a product of two
primes = (—1) (mod 6).

Following this, 1 invited Ron Chernin of Tel-Aviv University to do an
exhaustive computer search for a cyclical STS of the smallest possible order, 55,
but he found no solutions satisfying the condition of Proposition 1.
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Quasigroups of yet another type turn out to be related to Steiner Triple Systems, though the
connection is rather loose and not as precise as in the various coordinatizing bijections
described in [3]. However, familics of pairs formed by abelian groups of odd order and
quasigroups defined on the same set of elements have repeatedly been used in the literature to
construct Large Sets [8] of Steiner Triple Systems. In Section 1, these quasigroups and their
association with abelian groups are described, while Section 2 is devoted to applications to
STSs.

1. Definitions and basic properties

1.1. Quasigroups and squodds

A quasigroup on a set X is a mapping (-) from X - X onto X such that of three
elements of X satisfying a - b = ¢, any two determine the third uniquely; that is,
for any x e X, the mapping y—x-y of X into X is one-to-one onto, a
permutation. The operation (and the quasigroup) is said to be totally symmetric if
a-b=cimplies b -a=c and c - a = b. We shall often write x> for x - x, although
this is only customary in the associative case, and call it the square of x. An
element x of a quasigroup is called idempotent if it equals its own square,
X=x-X

Suppose the totally symmetric quasigroup ((-) on the set X contains an
idempotent w, and no other x for which x - x = @, which also excludes w - x =x.
Then the multiplication by @ permutes the elements of X\w in pairs, since
w + x = w for x # w would imply @ - @ = x, contrary to the assumption w - w = w.
Thus the order v of X, if finite, must be odd. If in addition, one requires w to be
the only idempotent, this order has to be prime to 3, as can be seen by counting
the v? entries in the standard multiplication table of Q; indeed, an equality such
as a-b=c, with all threes values distinct, requires six entries, one for each
ordered pair of factors, while one of the form a - a = b requires 3 entries. Adding
one for w+ w = o, we find v> =1(mod 3). Write X* for X\ w. The quasigroups
to be discussed will satisty some more restrictions.

Definition 1.1.1. A SQUODD (short for Symmetric Quasigroups of Odd Order)

0012-365X/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)
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Q(') on a set X of order v is
(i) a totally symmetric quasigroup with a unique idempotent w € X, for which
(i) the mapping x —x - x is a permutation n of the set X* = X\ w and
(iii) every cycle of =& is of even length.

Example 1.1.2.

w a b ¢ d

w|lw ¢ d a b
alc b a w d
bld a ¢ b owe(woo), (wac), (wbd), (aab), (bbe), (ccd), (dda).
cla o b d c
dlb d o c a

It is often convenient to list the squodd by enumerating its (v + 1)(v +2)/6
triples, instead of the full multiplication table.

Remark 1.1.3. No cycle in the permutation & can be of length less than 4, since
a cycle of length 2, x -x =y, y - y =x would require x -y =x and x -y =y at the
same time.

1.2. Graph notation and direct sums

Given a squodd Q(-) on a set of order v, form a graph of v vertices, labelled by
the (unordered) pairs (x, x%), x € X, two vertices being connected by an edge if
their labels have an entry in common; then the graph will consist of a single loop
on the vertex (w, w) and of one or more cycles of even order. It is well known
that a graph containing no cycles of odd order is bipartite, that is, its vertices may
be partitioned (eventually in more than one way) into two classes, with no edge
connecting two vertices of the same class. The whole graph so obtained, which will
be termed the diagonal graph of the squodd Q(-), will thus consist of one odd
component, the loop on (w, w), and a bipartite graph with vertices labelled by
certain pairs of elements of X™*, which we will call the main part of the diagonal
graph.

Definition 1.2.1. Given two graphs, G, with vertex set X, and G, with vertex set
X,, the direct sum G, ® G, will be a graph whose vertices are the ordered pairs
(x, x3), x; € X;, in which ((x,, x2), (), y2)) form an edge if and only if (x,, v,) is
an edge of G, and (x,, v,) one of G-.
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The following lemma will also find application later on:

Lemma 1.2.2. The direct sum of two graphs is bipartite if and only if at least one
of the summands is bipartite.

Proof. Since the only graphs that are not bipartite are the ones containing cycles
of odd order, it is sufficient to verify the easily checked claim that a cycle of order
a in the sum can only be generated by a cycle of order b in one summand, and
one of order c in the other, where a is the least common multiple of b and c¢. [

Definition 1.2.3. Let Q,(-) be a squodd on the set X;, with idempotent w,, and
Q,(7) a squodd on the set X,, with idempotent w,; then the direct sum of Q, and
Q,, denoted by Q,® Q,, is a quasigroup Q(*) on X, X X,, with (x,, x,)*
(31, y2) = (21, z) if and only if x, -y, =z, and x, 7y, = 25, (x;, y1, 2 € X;).

Proposition 1.2.4. The direct sum of two squodds is a squodd. Moreover, if the
direct sum of two quasigroups satisfying conditions (i) and (ii) of Definition 1.1.1
satisfies condition (iii} as well, so does each summand.

Proof. It is obviously enough to verify the second statement.

The diagonal graph of the sum consists of 4 parts:

(1) the loop with single vertex (@,, w,),

(2) the part derived from elements of the form (x,, w,), with x; € X¥, which is
isomorphic to the main part of the diagonal graph of Q(-),

(3) the part derived from elements of the form (w,, x,) with x,e X3,
isomorphic to the main part of the diagonal graph of Q,(7),

(4) the part derived from elements of the form (x,, x,) with x, e X{ and
X, € X3 isomorphic to the direct sum (in the sense of Definition 1.2.1) of the main
parts of the diagonal graphs of the summands, and thus to the direct sum of
parts (2) and (3).

By Lemma 1.2.2, the graph consisting of parts (2), (3) and (4) — which is the
main part of the diagonal graph of Q(*) — will be bipartite if, and only if, parts (2)
and (3) are bipartite, too. O

1.3. Squodds and abelian groups; The main example

For some of the constructions in the sequel, the multiplicative order of —2
modulo an odd prime p is relevant.

Lemma 1.3.1.
(a) If p=3 (mod8), the multiplicative order of ~2 is an odd integer;
(B) If p=5 (mod 8), the multiplicative order of -2 is a multiple of 4,
(y) If p=7 (mod8), the multiplicative order of —2 is twice an odd number;
(8) If p=1 (mod 8), the multiplicative order of —2 may be either odd, or a
multiple of 4, or twice an odd number.
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(In fact, a heuristic consideration, which can be made precise by a zeta-function
argument, will show that for 6N primes selected at random from the sequence
8k + 1, with N large, about N will satistfy condition («), another N condition (),
and 4N condition (B).)

Proof. All four statements follow from the fact (see any elementary text on the

Theory of Numbers) that —2 s a quadratic residue for primes =1 or 3 (mod 8)
and a non-residue for primes =5or7 (mod8). [

Definition 1.3.1.1 An odd prime p will be designated as an a-prime, a -prime,
or a y-prime, according to the condition in Lemma 1.3.1 satisfied by the
multiplicative order of -2 (mod p).

Definition 1.3.1.2 Let A be an abelian group, written additively, on a set X of
order v, (v,6)=1, let he A and Q(-) a Totally Symmetric quasigroup on X.
Then the quasigroup Q(*), defined by

(x+h)x(y+h)y=(x-y)+h

(which is obviously isomorphic to Q(:)) will be called an h-shift of Q(-) with
respect to A.

Definition 1.3.1.3 Let A be an abelian group, written additively, on a set X of
order v, (v,6)=1, and h e A. Then we shall designate the quasigroup Q(*),
defined by

xX*y=zx+y+z=3hinA

as Der, A, and we shall write Der(A) for Dery(A).

Proposition 1.3.2. For A and h as above, Der,(A) will be a squodd if, and only
if, no a-prime divides the order v of A.

Proof. The quasigroup will obviously be totally symmetric, with the unique
idempotent A; for, with k # h and 3k = 3h we have 3(k — h) =0 and thus, by the
hypothesis on v, k=h, a contradiction. Similarly, no diagonal element is
repeated, for a; +a, + b =a, +a, + b =3h implies 2a, = 2a,, thus again a, = a,,
v being odd. It only remains to check whether all cycles in the diagonal
permutation of A\(h) are of even length, and for this we may obviously assume
h=0.

Given any a #0 in A, its order will be some w, dividing v. The diagonal cycle
generated by a in Dery(A) will then be

(a, (=2)'a, (=2)%a, . . ., (=2)*'a), with (=2)*=1 (modw).
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For w a B-prime or a y-prime, k will be even, by Lemma 1.3.1. If w is some
power p” of a B-prime or a y-prime p, k will be the exponent of —2 for p,
multiplied by some power <r of p, thus again even. If w is a product of such
prime powers, k will again be even, being the l.c.m. of the exponents for the
single prime powers. Recall finally that if v is divisible by any a-prime p, A will
necessarily contain some element b of order p, which, again by Lemma 1.3.1, will
generate a cycle of odd length. [

As an example we may translate Example 1.1.2 above into Der,(Cs), setting
w=2,a=0,b=1, c=4, d=3; or consider Der,(C,), which gives the triples:

(005), (014), (023), (066), (113), (122), (156), (246), (255), (336), (345), (444).

However, if we attempt the same operation on C,, with, say, 0 as idempotent, we
shall find the two odd diagonal cycles (1,9,4,3,5) and (2,7, 8,6, 10). We shall,
however, see in a later section that squodds exist of any finite order, prime to 6.

Whether or not the order v of A, (v, 6)=1, satisfies the restriction of
Proposition 1.3.2, we have:

Proposition 1.3.2.1 For h, k€ A, k #h, Der,(A) and Der,(A) have no triple in
common.

Proof. If x +y + z =3h =3k, then 3(k —h)=0. Thus kK — h =0 by the hypothe-
sisonv. O

This is equivalent to saying that no two triples in Der,(A) are shifts of each
other, or belong to the same additive A-orbit. It is easy to check that there are
(v + 1)(v + 2)/6 such orbits of triples: one for triples with three equal entries,
v — 1 for triples with one entry repeated and (v — 1)(v — 2)/6 for triples with 3
distinct entries.

Definition 1.3.2.2 Given an abelian group A, and a squodd Q(-), on a set X of
order v, (v, 6) =1, the pair (4, Q) will be called an [-pair if all triples of Q(-)
belong to different A-orbits (or: if no two triples of Q(-) are A-congruent).

If we consider the diagonal entries of Q(:), (x, x -x) as (unordered) pairs
rather than as triples with one entry repeated, we certainly cannot require all
v — 1 of these to fall into different A-orbits, since there are only (v — 1)/2 such
orbits. We may, however, require:

Definition 1.3.3. Given an abelian group A, and a squodd Q(-) on a set X of
order v, (v,6)=1; if no two triples of Q(-) with 3 distinct entries are
A-congruent, and if, in addition, the main part of the diagonal graph of Q(-)
remains bipartite when one connects by an edge any two vertices representing
pairs of elements in the same A-orbit, we shall call the pair (A, Q) a D-pair.
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This condition, incidentally, ensures the appearance of exactly two pairs from
each A-orbit, covering the v — 1 diagonal entries (x, x*) with x> # x; for if three
congruent pairs were to appear, the added edges would form a triangle.

Example 1.3.3.1 Der(Cs) does not form a D-pair with Cs: the diagonal sequence
is (1,3), (3,4), (4,2), (2,1), the vertices of a quadrangle. But since 4 —2=3—1
and 2 — 1 =4 -3, the two additional edges turn this into the Complete Graph on
4 vertices, K,, which is certainly not bipartite.

Example 1.3.3.2 Der,(C;), considered above, forms a D-pair with C;. The
vertices (0,5), (5,2), (2,1), (1,3), (3,6), (6,0) form a hexagon, in which the
additional edges ((0, 5), (1, 3)), ((5, 2), (3, 6)) and ((2, 1), (6, 0)) close even cycles.
We shall see that this is due to 7 being a y-prime.

Examples 1.3.3.3 and 1.3.3.4. The reader is invited to check in detail that the
following two squodds form D-pairs with C,;:

() [1]: (000), (016), (023), (048), (057), (0910), (145), (179),
(1810), (267), (289), (2410), (347), (3510), (369), (568); (112), (225),
(559), (994), (446), (6610), (10107), (778), (883), 331).

(B) [4]: (000), (0110), (026), (035), (047), (089), (134), (156), (179),
(249), (2510), (278), (367), (3910), (458), (6810); (112), (233), (338),
(881), (446),(669), (995), (557), (7710), (10104).

Note that these two squodds do not form [-pairs with C,;: thus in the first (77 8)
and (112) are C,-congruent, and so are (6610) and (559), (883) and (994);
while in the second, we find (223) and (112), (10104) and (338), (557) and
(446), (669) and (77 10).

Proposition 1.3.3.5 Let A be an abelian group of order v, (v, 6)=1, he A, and
let Der,(A) be a squodd. Then (A, Der,(A)) form a D-pair if, and only if, all the
prime factors of v are y-primes.

Proof. Note that two pairs of elements of A, (a,, a,) and (b,, b,), are congruent if
b, — b, = t(a, —a,), and that the differences between successive elements in the
diagonal cycle generated by x # h,

(x,3h —2x, =3h + 4x, 9h — 8, —15h + 16x, ..., h+(=2)(x —h), ...)

equal 3(h — x) multiplied by successive powers of —2 modulow, if w is the
order of x — h in A. Since Der,(A) is a squodd, the multiplicative order of —2 in
C.., by Proposition 1.3.2, will be even, say 2k. If w happens to be a B-prime or a
y-prime p, then (—2)* will equal —1 modulo p, and after k steps along the cycle
we shall encounter a pair whose difference is —3(4# — x), congruent to the first,
and from then onwards, pairs k steps apart will remain congruent to the end of
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the cycle. If p is a B-prime, k is even and (compare Example 1.3.3.1) the added
edges will close odd cycles, while if p is a y-prime, & is odd (compare Example
1.3.3.2) and the added edges will close even cycles, and thus the bipartite
character of the main part of the diagonal graph will be preserved.

The rest of the proof follows exactly the same lines as that of Proposition
1.32. O

The D-pairs so obtained are automatically /-pairs, by Proposition 1.3.2.1 and
Definition 1.3.2.2.
Following this, and in view of several applications further on, we may introduce

Definition 1.3.4. The pairs (A, Q) will be called an /-D-pair if it is both an
I-pair and a D-pair.

By Proposition 1.3.3.5, (C,3, Der,(C,3)) cannot form an [-D-pair. However,
not all such pairs are formed by derivation. The reader is invited to examine the
following example of a squodd forming an [-D-pair with C;:

Example 1.3.4.1 [2]. (000),(019), (027), (0311), (046), (058), (01012),
(123), (145), (1712), (1811), (2412), (2611), (2910), (348), (359),
(3710), (4711), (5612), (51011), (679), (6810), (8912); (116), (663),
(3312), (121211), (11119), (994), (4410), (10101), (225), (557), (778),
(882).

1.3.5. Fairs and direct sum operations
As both abelian groups and squodds are closed under direct sum operations,

we may look at what happens to pairs in this context.

Proposition 1.3.5.1. [-pairs are closed under Direct Sum operations. If both
(A, Q1) and (A,, Q) are I-pairs, so is (A, D Az, 0, D Q).

Proof omitted.

A similar statement for D-pairs does not hold. In fact:
Proposition 1.3.5.2. [-D-pairs are closed under Direct Sum operations.
Moreover, if A;, (J; are defined on a set X;, i=1,2, and if (A, D A,, O, D Q,) is
a D-pair, then each of (A;, Q;) is already an I-D-pair, and so is the sum.
Proof. Since Lemma 1.2.2 ensures that the bipartite character of the main part of

the diagonal graph containing the added edges in each summand will not be
violated by the Direct Sum operation, it is enough to prove the second statement.



292 S. Schreiber

Let 0; be the zero of A;, and w; the idempotent of Q;; then Q, D Q, will
contain elements of the form (w,, a,) forming a squodd isomorphic to Q,, whose
pairs and triples are acted on by the shift-operations of the subgroup ((0,, h,)) of
A, B A,, so (A,, Q) should be at least a D-pair; and similarly for (A4, Q).

Suppose one summand, say (A,, Q,), is not an I-D-pair; then its diagonal
(compare Examples 1.3.3.3, 1.3.3.4) contains A,-congruent triples, (a5, a,, b,)
and (a, + hy, ay + hy, by + hy). Hfx, -y, =2z, in @, and all 3 entries of (x,, y,, ;)
are distinct, Q,® O, contains the two triples ((x,, a.), (y;, a2), (z,, b)) and
((x, ar + hy), (v, ax + hy), (21, by, + h3)), the second being a shift of the first by
(0,, h,) e A, D A,, contrary to the first condition in Definition 1.3.3, and so
(A, DA, Q, D Q) cannot be a D-pair. [l

We conclude the first section with the following statement, whose proof will
be omitted.

Proposition 1.3.5.3. [-pairs, D-pairs and 1-D-pairs are closed under shifting. If
(A, Q) is an I-pair (D-pair, 1-D-pair) and, for some h € A, Q* is an h-shift of Q
(cf. Definition 1.3.1.2) then (A, Q%) is again an I-pair (D-pair, I-D-pair).

2. Applications

2.1. Squodds, coloured graphs and Steiner Triple Systems

Since this account is intended to appear in the present Volume, Steiner Triple
Systems are bound to crop up. We shall indeed find that squodds lead to STSs,
and vice versa, although in nowhere the precise manner is which Ganter and
Werner use the various algebras in their paper [3] to coordinate these com-
binatorial structures. We shall therefore not present the reader with any of those
bijections between definitions, by which these authors illustrate their elegant
results —in the present case, it would smack of pretence. Anyway. . .

Proposition 2.1.1. (1) Given a squodd Q(-) on a set X of order v, there is at least
one way to derive from it a Steiner Triple System B on the v+2 marks
(X U (o0, %)), where ®,, ®, ¢ X are two additional marks.

(2) Given a Steiner Triple System (B) on a set Y, and a Flag — that is, a triple
(by; by, by) € B in which b, is marked — there is at least one way to obtain from it a
squodd Q(-) on Y\(b,, b,), whose idempotent is by,

Proof. (&) Use the elements (w, x, y, .. .) of X to label, firstly, the vertices of the
complete graph G ~ K,, of order v, and secondly a Store of v colours. For each
vy, z€ X, y#z, we now colour the edge (v, z) of G with the colour x if y - z = x
in Q, and if x is different from both y and z. Note that no two edges of the same
colour can have a vertex in common, since if both (p, ¢) and (g, r) were to be
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coloured s, this would mean g - s =p and g - s =r. This leaves uncoloured only
the edges (x, x%), x # w, and constitutes the first coloration, or F-coloration, of
the edges of G. It is readily seen that the uncoloured edges form a two-factor of
G\w; that is, every vertex of G\w is the endpoint of 2 such edges. This
two-factor, forming the main part of the diagonal graph of Q(-) — except that this
time its vertices arc labelled by single elements of X* instead of pairs asin 1.2 —is
made up of one or more cycles — closed simple polygons — each of some even
order, by condition (iii) in Definition 1.1.1.

(B) The edges of even cycles being 2-colourable, that is, one may colour them
in 2 different colours without edges of a given colour having a vertex in common,
we now take two more colours, %, and «,, and colour the edges in each cycle
alternately », and «,. In doing this, it should be noted, we have one arbitrary
choice when two-colouring the edges of each cycle. Call this the second
coloration, or S-coloration, of the edges of G. Now we adjoin two vertices, o,
and «,. If (x, y) has been coloured o;, we then connect x to the vertex =; by an
edge coloured y, and y by one coloured x. Finally, we connect w and =, by an
edge coloured «,, and to %, by an edge coloured %«,, and %, and %, by an edge
coloured w. Thus we have obtained a partition of the edges of the complete graph
on X U (w®,, ®,) into triangles, each edge being coloured with the label of the
opposite vertex, which partition is obviously a Steiner Triple System on
X U (%, ®,), and this concludes the proof of (1).

(y) Conversely, if B is a Steiner Triple System on a set Y of order w, we label
the vertices of a graph H = K,, by the elements of Y, and for each (x, y, z) € B we
colour each edge of the triangle (x, y, z) by a colour bearing the label of the
opposite vertex. If by, b,eY, let (b, by, b;) € B, that is, let b, be the third
vertex of the corresponding triangle. Removing vertices b, b, and deleting all
the edges through them from H, we are left with a complete graph ¢ ~ K, _,, in
which the edges coloured b, form a 1-factor of G\b,, and so do the edges
coloured b,. This is an S-coloration of the edges of G. We note that these two
1-factors (which we might as well uncolour, obtaining an F-coloration of &) form
together a two-factor of G\b,, consisting of one or more cycles of even length.

(6) We now construct a squodd Q(:) on Y — (b, by). If (x,y,2)eB\
(by, by, by), set x -y =z; set b, - by= b,. Next, orient each cycle in the two-factor
in one of the two possible ways, and note that this again gives us one arbitrary
choice per cycle. If an edge in this orientation has been directed from x to y, set
x-x=y. Now the totally symmetric mapping from (Y — (b, b)) x (Y —
(by, b,)) onto Y — (b,, b,) has been defined for the whole domain, and we have
asquodd. O

Remark 2.1.2. Apart from the fact that the resulting G-graph depends on the
choice Flag in B - or pair of elements b, b, in Y —the arbitrary choices in ()
and (&) above are enough indication that there cannot be much connection
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between the structures of STSs and those of squodds obtained from them as
described.

There are, up to isomorphism, two STSs of order 13; one, the cyclical one, has
a larger group of automorphisms, of order 39. The other one has only a group of
order 6, isomorphic to S;. Its 78 possible flags give rise to no less than 17 classes
of s-coloured G-graphs, and thus to a larger number of non-isomorphic squodds
(from some of which one may obtain the first, cyclical STS of order 13). It is
reasonable to assume that as the order increases, squodds proliferate still more
quickly than STSs, which gives us some excuse not to go further into the question
of their structure. So far, the only claim to the title of Variety in the algebraic
sense that squodds have, is closure under Direct Sum operations (Proposition
1.2.4), but they certainly form a *‘variety” in the colloquial sense.

Corollary 2.1.3. Squodds exist of any finite order prime to 6.

Remark 2.1.4. The converse contribution of directly constructed squodds, say
from Proposition 1.3.2 (Derivation) and 1.2.4 (Direct Sum) is rather modest,
because of the absence of a direct construction for prime orders p = 3(mod 8).

2.2. D-pairs and packings (or: Denniston Large Systems)

For (v, 6) =1, let us imagine v + 2 points in space, no 4 in the same plane,
forming v(v + 1)(v + 2)/6 triangles, v through each edge. If we can use v colours
to colour all these triangles so that no two triangles of the same colour have an
edge in common, then on labelling the v + 2 points, or vertices with different
marks, each pair of marks will appear just once as an edge of a triangle of a
given colour, and the triads of vertices of this family of triangles will form an STS.
Thus such a colouring achieves a partition of all the triads of marks into v
disjoint STSs, or a Large Triple System on the v + 2 marks.

In particular, the set of labels may consist of the v elements of an abelian group
A and of two more marks, «,, ©, ¢ A. If, in this case, the set of triangles of a
given colour is derived from any other such set by adding a fixed h € A* to each
vertex label other than =, or «,, we speak of a Denniston Large System, or a
Packing (with the aid of A) or an A-Packing.

Proposition 2.2.1. Given an abelian group A on a set X of order v, (v, 6) =1, and
an A-Packing By, B,,..., B, , on Y=:XU (»,, ®,), the squodd Q; derived
from the flag (h;, ©,, ®,) € B; as described in Proposition 2.1.1 above forms a
D-pair (A, Q;) with A. Conversely, the STSs on X U (®,, ®,) constructed from
the squodd Q; in a D-pair (A, Q,) as described in Proposition 2.1.1, and from all
A-shifts of Q;, form an A-Packing on X U (®,, ®,).
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Proof. The first condition of Definition 1.3.3, on triples with 3 distinct entries, is
satisfied by hypothesis. Also by hypothesis, no pair (x, y) with (=,, x, y) € B; can
be A-congruent to another pair (x’, y') with (e, x’, y') € B;, and similarly for c,.
Thus, after the ““orienting” step of stage 8) in the proof of 2.1.1, we may relabel
each vertex in the diagonal graph, this time by a pair of marks, the original mark
and the following one, and be assured that if (x, y) is congruent in A to (z, u)
then (x,, x, y) € B, implies (=, z, u) € B;; thus adding an edge between (x, y)
and (z, u) will not contravene the bipartite character of this graph.

This completes the proof of the direct claim. The proof of the converse is easy
and will be omitted. [

The first Large Steiner System, found in 1850 by Kirkman and rediscovered by
Cayley, is actually of this type, derived from the (unique) STS on 9 marks by
fixing two entries and permuting the other 7 cyclically, one step at a time. The
subject began to develop around 1973, with Teirlinck [10] showing how to derive
a Large System of order 3w from one of order w, by a simple construction
(“Triplicating™). Rosa [7], using Latin Squares with no subsquare of order 2,
derived Large Systems of order 2w+1 from given ones of order w
(“Duplicating”). Denniston [1], concentrating on prime orders, constructed
D-pairs with the cyclical group C, for p =11, 13, 17, 19, 23, 29, 31, 41, 47, 59,
67, exploiting for the larger values of p either the full multiplicative groups of Z,
or large subgroups M, in the sense that if AeM and x-y=2 in Q(),
(Ax) - (Ay) = Az as well. Except for p =11, 13 and 29, all of these actually form
I-D-pairs. Therefore, with the hindsight of Proposition 1.3.5.2, we now know
that just as there exists a Packing of order 31 +2 and one of order 67 + 2 there
exists one of order 31 - 67 + 2 =2079 as well. (A Large System of this order may
be obtained in yet another way: start with Kirkman’s result of order 9, and
proceed as indicated:

92,195, 572,1152 2315 693 5 2079,

where D denotes Rosa’s “duplication”, and T, Teirlinck’s “triplication”.) The
I-D-pair of Example 1.3.4.1, used in [2] to form a sequence of 13 resolvable
STSs thus obtaining a Packing of order 15, may of course serve in such Direct
Sum operations too. Around the same time, Wilson [11] and others became
aware of the results of Proposition 1.3.3.5 above and derived Denniston Large
Systems from the /-D-pairs so obtained. Denniston had been unaware of this,
and his constructions for C,;, C5, and C4; show again that Derivation is not the
unique source of I-D-pairs. The excellent summary of the state of the art up to
around 1980 in [8] already mentions the general belief prevailing at the time that
Large Systems exist for every feasible order >7; and in a series of papers in 1984,
Lu [5, 6] covered nearly all the ground, so at the time of his premature death only
six values were left in doubt (which, I am told, have also been settled since then).
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2.3. 1-D-pairs and Teirlinck’s Second Construction

Since a computer search has shown that the only two D-pairs with C;, are
those of Examples 1.3.3.3 and 1.3.3.4, we know from Proposition 1.3.5.2 that the
Direct Sum of one of those with an /-D-pair of order v will not lead even to a
D-pair of order 11v; thus a Large System of order 11v + 2 cannot be obtained in
this way. However, we owe to Teirlinck [10] the following remarkable result
taken from [8], which seems a fitting note on which to close this account:

Theorem 2.3.1 (Teirlinck). Given any Large System of order u + 2, and an [-D-
pair (A, Qu(-)) of order v, there exists a Large System of order u - v + 2.

Proof. Not matter what its structure, we may rename the entries in the triples of
the given Large System to be the elements of Z,U (e, ©,) numbering the
respective STSs B,, B,, ..., B,. For simplicity, let 0e A be the idempotent of
Qu(*), and a; that of its ith A-shift. Also, let F;, F, be a bi-partition of the
diagonal pairs of Q.(-). We now construct u -v STSs C; on V=:1(AX Z )U
(o0y, ©,) as follows:

For each a,€ A and je Z,, C; = C{PUCP UCS, consisting of the following
triples on V:

C:(';l)= (01, %3, (a3, 2)) }((mh ®,, 2;) € B;) U (%, (a;, x), (a;, ¥)))
| (1, x, y) € BY U (((a;, x), (@i, ), (@, 2))) | ((x, y, 2) € B)), k=1, 2
CP = (o, (a;+b,x),(@+b-bx))|(beA* xeZ, (bb-b)eF, k=1,2))
U(({a;+b,x), (ai+b,y), (a; +b-b, (x +y)/2+))))
|(beA*, x,yeZ,, y#x);
CP=((a;+b,x), (ai+cy)(a+b-c (x+y+)))
[(x,yeZ, b#c#b -c#beA"),

where in C§, each triple of Qy(:) is taken on one fixed order with every pair x, y
of Z,. Notation might perhaps have been shorter if in C{ and C{” we had
omitted a; and taken the dot operation in Q(-) to be read as taking place in Q,,
the ith A-shift of Q.(-), but with the present one it seems easier to verify that any
triple of V actually appears in some C;. O

It should also be noted that, apart from Proposition 1.3.5.2, this is, so to say,
the first instance of /-D-pairs finding “full employment”. With /-pairs alone, we
could not have the first term in C{?, since the partition into two one-factors F,
would not work and (oo, (a;+ b, x), (a; +b - b, x)) would reappear as some
(=, (¢ * ¢, x), (¢, x)); while with D-pairs alone, for a given x and y, we should
be meeting again triples from the second term of C as (c, x), (¢, y), (¢ - ¢,
(x +y)/2+j). The reader might wish to verify this with the /-pair (Cs, Der(Cs)),
and with the two D-pairs of Examples 1.3.3.3 and 1.3.3.4.
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All of the non-isomorphic ways of partitioning the collection of all the quadruples chosen
from a set of eight elements into five disjoint 2-(8, 4, 3) designs are determined.

1. Introduction

Many versions of the following question have been considered in com-
binatorics: how may a specified family of subsets, chosen from a given set, be
partitioned in some “‘nice”” way? Recent work on this topic includes, for instance,
that of Harms et al. [1], Hartman [2], Kramer et al. [3], Teirlinck [8] and the
authors [7].

A t-design based on a set, X, of v elements is a collection of k-subsets (blocks)
chosen from X in such a way that each unordered ¢-subset of X occurs in precisely
A of the blocks. Such a design has parameters -(v, k, A). Two t-(v, k, A) designs
based on the same set X are said to be disjoint if and only if they have no block in
common. If the set of all the () k-subsets chosen from X can be partitioned into
mutually disjoint ¢-(v, k, 1) designs, then these designs are said to form a large
set. Here we partition the set of all (§) 4-subsets (quadruples) of the set
X=1{1,2,..., 8} and prove the following result.

Theorem. The set of all the quadruples chosen from an 8-set can be partitioned
into a large set of 2-(8, 4, 3) designs in precisely 26 non-isomorphic ways.

The large sets are given in Table 3. An automorphism of a large set is a
permutation of the elements of the underlying v-set which preserves the partition
of the collection of blocks into designs. The full automorphism groups of the large
sets, and the types of the designs occurring in each, are given in Table 4.

2. The designs

There are four isomorphism classes of 2-(8,4,3) designs, as determined by
Nandi [6]. We refer to them as Q, R, S, T, according to whether they contain 7,

0012-365X/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)
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Table 1. 2-(8, 4, 3) designs of types O, R, §, T.
(Note: Type Q is also a 3-(8, 4, 1) design.)

g : 1234 1256 1278 13567 1368 1458 1467 2358 2367 2457 2468 3456 3478 5678
r . 1234 1235 1267 1368 1456 1478 1578 2378 2457 2468 2568 3458 3467 3567
51 1234 1235 1267 1368 1456 1478 1578 2378 2458 2467 2568 3457 3468 3567

{1234 1235 1267 1368 1457 1468 1578 2378 2458 2467 2568 3456 3478 3567

Table 2. Automorphism groups, and their orbits, for the designs given in Table 1.

Design | Group order Group gf‘nc‘ra(ors Orbits
q 1344 (56)(78 (78), (12)(78), [1,2,3,4,5,6,7,8
(5T)(6 (za)uu) (34)(56)
r 48 (23)(78), (12)( 7), (45), (27)(38)1,2,3,6,7,8;4
s 12 (23)(78), (28)(37), (156)(38 ) 1,6,6:2,3,7,8,4
t 21 (1273685) , (123)(678) 1,2,3,5,6,7,8;4

3, 1, 0 paris of complementary blocks respectively. Q is a 3-(8, 4, 1) design. Table
1 lists designs of each type; Table 2 gives the full automorphism groups of designs
q,r, s, t, of types Q, R, S, T respectively.

If we take the seven blocks of g which contain ¢, and delete i from each of
them, the remaining seven triples form a 2-(7,3,1) design for each =
1,2,...,8 This is the derived design with respect to i. The same procedure
applied to r gives 2-(7, 3, 1) designs for two values of i, namely i =4 and i = 5.
Applied to s, or to ¢, it gives a 2-(7, 3, 1) design only for i = 4.

3. The partitions

Suppose that the (§) quadruples chosen from X = {1, 2, ..., 8} are partitioned
into a large set of 2-(8, 4, 3) designs. If two of these 2-(8, 4, 3) designs are of type
@, then, for at least one value of i, the derived designs include three disjoint
2-(7,3,1) designs on the same 7-set. This is impossible (see {4]) so at most one
design of type Q can occur in a large set.

Suppose that a large set does contain one design of type Q. Backtrack search
shows that the remaining four designs in the large set must all be of type S, and
that these large sets have automorphism groups of orders 3, 4, or 12. Further, if
we fix the design of type Q to be ¢, as given in Table I, then we find 896 such
large sets, of which 112 have a group of order 12, 336 have a group of order 4,
and 448 have a group of order 3. On the other hand, if we fix one of the designs
of type S to be s, as given in Table I, then we find 32 such large sets, of which 4
have a group of order 12, 12 have a group of order 4, and 16 have group of order
3. These numbers provide a cross-check in the following way.

Using an isomorphism testing program of McKay [5], and direct computation



Table 3. The 26 non-isomorphic partitions of (}) quadruples into 5 x 2-(8, 4, 3) designs.
phic p q P 4

1:

[

-1

1234 1256
1235 1236
1237 1245
1238 1248
1246 1257

1 1234 1256

1235 1236
1237 1245
1238 1258
1246 1248

1 1234 1256

1235 1236
1237 1246
1238 12438
1245 1257

: 1234 1235

1236 1245
1237 1246
1238 1256
1247 1257

: 1234 1235

1236 1245
1237 1246
1238 1257
1247 12506

1 1234 1235

1236 1245
1237 1257
1238 1246
1247 1256

0 1234 1235

1236 1245
1237 1257
1238 1247
1246 1258

1 1234 1235

1236 1245
1237 12507
1238 12h6
1246 1247

1 1234 1235

1236 1245
1237 1256
1238 1216
1247 1257

0 1234 1235

1236 1245
1237 1256
1238 1246
1247 12568
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1278 1357 1368 1458 1467 2358 2367 2457 2468 3456 3478 5678
1247 1348 1456 1578 1678 2378 2458 2467 2568 3457 3468 3567
1268 1346 1358 1478 1567 2345 2368 2478 2567 3467 3578 4568
1267 1347 1356 1457 1508 2346 2357 2456 2578 3458 3678 4678
1258 1345 1367 1378 1408 2347 2348 2356 2678 3568 4567 4578

1278 1357 1368 1458 1467 2358 2367 2457 2468 3456 3478 5678
1247 1348 1456 1578 1678 2378 2458 2467 2568 3457 3468 3567
1268 1346 1358 1478 1567 2348 2357 2456 2678 3467 3568 4578
1267 1347 1356 1457 1468 2345 2346 2478 2567 3578 3678 4568
1257 1345 1367 1378 1568 2347 2356 2368 2578 3458 4567 4678

1278 1357 1368 1458 1467 2358 2367 2457 2468 34506 3478 5678
1247 1348 1456 1578 1678 2378 2458 2467 2568 3457 3468 3567
1258 1345 1378 1468 1567 2345 2368 2478 2567 3467 3568 4578
1267 1347 1356 1457 1568 2346 2357 2456 2578 3458 3678 4678
1268 1346 1358 1367 1478 2347 2348 2356 2678 3578 4567 4568

1267 1368 1456 1478 1578 2378 2457 2468 2568 3458 3467 3567
1248 1347 1358 1567 1678 2357 2368 2467 2578 3456 3478 4568
1258 1348 1367 1457 1568 2345 2356 2478 2678 3468 3578 4567
1278 1345 1357 1467 1468 2346 2347 2458 2567 3568 3678 4578
1268 1346 1356 1378 1458 2348 2358 2367 2456 3457 4678 5678

1267 1368 1456 1478 1578 2378 2457 2468 2568 3458 3467 3567
1248 1347 1358 1567 1678 2357 2368 2467 2578 3456 3478 4568
1278 1348 1356 1457 1568 2346 2358 2458 2567 3457 3678 4673
1268 1345 1367 1458 1467 2347 2356 2456 2478 3468 3578 5678
1258 1346 1357 1378 1468 2345 2348 2367 2678 3568 4567 4578

1267 1368 1456 1478 1578 2378 2457 2468 2568 3458 3467 3567
1248 1347 1358 1567 1678 2357 2368 2467 2578 3456 3478 4568
1268 1348 1356 1458 1167 2346 2358 2456 2478 3457 3678 5678
1278 1345 1367 1457 1068 2347 2356 2468 2567 3468 3578 4678
1258 1346 1357 1378 1468 2345 2348 2367 2678 3568 4567 4578
1267 1368 1456 1478 1578 2378 2457 2468 2568 3458 3467 3067
1248 1347 1378 1567 1568 2357 2358 2467 2678 3456 3468 457X
1268 1346 1358 1458 1467 2348 2356 2456 2478 3457 3678 H6TR
1256 1345 1357 1468 1678 2346 2367 2458 2578 3478 3568 4567
1278 1348 1356 1367 1457 2345 2347 2368 2567 3578 4568 4078
1267 1368 1456 1478 1578 2378 2457 2468 2568 3458 3467 3667
1248 1347 1378 1567 10h68 2357 2358 2467 2678 3456 3468 4578
1268 1346 1358 1458 1467 2348 2356 2456 2478 3457 3678 5678
1278 1345 1367 1457 1468 2346 2347 2458 2567 3568 3578 4678
1258 1348 1356 1357 1678 2345 2367 2368 2578 3478 4567 4568
1267 1368 1456 1478 1578 2378 2457 2468 2568 3458 3467 3567
1248 1357 1358 1467 1678 2347 2368 2567 2578 3456 3478 4568
1258 1348 1367 1457 1468 2345 2346 2478 2678 3568 3578 45667
1278 1345 1347 1567 1568 2356 2357 2458 2467 3468 3678 4578
1268 1346 1356 1378 1458 2348 2358 2367 2456 34hH7T 4678 5678
1267 1368 1456 1478 1678 2378 2457 2468 2568 3458 3467 3567
1248 1357 1358 1467 1678 2347 2368 2567 2578 3456 3478 4568
1278 1348 1356 1457 1468 2346 2358 2458 2467 3457 3678 H678
1257 1347 1367 1458 1568 2345 2356 2478 2678 3468 3578 4567
1268 1345 1346 1378 1567 2348 2357 2367 2456 3568 4578 4678

[=>
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11

12:

13:

14 :

19 :

: 1234 1235 1267

1236 1245 1248
1237 1256 1278
1238 1257 1268
1246 1247 1258
1234 1235 1267
1236 1245 1248
1237 1246 1258
1238 12567 1268
1247 1256 1278
1234 1235 1267
1236 1245 1248

M.J. Sharry and A. Penfold Street

Table 3 (continued).

1368 1456 1478 1578 2378 2457 2468 2568 3458 3467 3567
1357 1358 1467 1678 2347 2368 2567 2578 3456 3478 4568
1348 1356 1457 1468 2346 2358 2458 2467 3457 3678 5678
1346 1347 1458 1567 2345 2367 2456 2478 3568 3578 4678
1345 1367 1378 15068 2348 2356 2357 2678 3468 4567 4578
1368 1456 1478 1578 2378 2457 2468 2568 3458 3467 3567
1357 1378 1467 1568 2347 2358 2567 2678 3456 3468 4578
1348 1356 1457 1678 2348 2356 2467 2578 3457 3678 4568
1346 1347 1458 1567 2345 2367 2456 2478 3568 3578 4678
1345 1358 1367 1468 2346 2357 2368 2458 3478 4567 5678

1368 1456 1478 1578 2378 2457 2468 2568 3458 3467 3567
1357 1378 1467 1568 2347 2358 2567 2678 3456 3468 4578

1237 1247
1238 12566
1246 12567

1234 1235
1236 1245
1237 1246
1238 1247
1248 1256

1 1234 1235

1236 1237
1238 1247
1246 1257
1248 1256

: 1234 1235

1236 1237
1238 1247
1246 1257
1248 1256

1 1234 1235

1236 1237
1238 1246
1245 1268
1247 1256

1 1234 1235

1236 1237
1238 1247
1245 1257
1246 1258
1234 1235
1236 1237
1238 1247
1245 1268
1246 1257

0 1234 1235

1236 1237
1238 1247
1245 1268
1246 1257

1268 1346 13568 1458 1H6T 2348 2356 2456 2578 3457 3678 4678
1278 1345 1367 1457 1468 2346 2357 2458 2467 3478 3568 5678
1258 1347 1348 1356 1678 2345 2367 2368 2478 3578 4567 4568

1267 1368 1456 1478 1578 2378 2457 2468 2568 3458 3467 3667
1278 1347 1348 1567 1568 2357 2368 2458 2467 3456 3578 4678
12568 1346 1358 1457 1678 2348 2356 2478 2567 3457 3678 4568
1268 1356 1357 1458 1467 2345 2367 2456 2578 3468 3478 5678
1257 1345 1367 1378 1468 2346 2347 2358 2678 3568 4567 4578

1267 1368 1456 1478 1578 2378 2458 2467 2568 3457 3468 3567
1245 1348 1457 1568 1678 2358 2468 2478 2567 3456 3467 3578
1258 1346 1357 1468 1567 2347 2356 2456 2678 3458 3678 4578
1268 1347 1356 1378 1458 2345 2348 2367 2578 3568 4567 4678
1278 1345 1358 1367 1467 2346 2357 2368 2457 3478 4568 5678

1267 1368 1456 1478 1578 2378 2458 2467 2568 3457 3468 3567
1245 1348 1457 1568 1078 23568 2468 2478 2567 3456 3467 3578
1268 1347 1356 1468 1567 2346 2357 2456 2678 3458 3678 4578
1268 1345 1367 1378 1458 2347 2348 2356 2578 3568 4567 4678
1278 1346 1357 1358 1467 2345 2367 2368 2457 3478 4568 5678

1267 1368 1456 1478 1578 2378 2458 2467 2568 3457 3468 3567
1248 1358 1457 1467 1568 2345 2468 2567 2578 3456 3478 3678
1257 1347 1356 1458 1678 2348 2356 2457 2678 3467 3578 4568
1278 1346 1348 1357 1567 2347 2358 2367 2456 3568 4578 4678
1258 1345 1367 1378 1468 2346 2357 2368 2478 3458 4567 H678

1267 1368 1456 1478 1578 2378 2458 2467 2568 3457 3468 3567
1248 1368 1457 1467 1568 2345 2468 2567 2578 3456 3478 3678
1256 1346 1357 1458 1678 2348 23566 2457 2678 3467 3578 4568
1268 1347 1356 1378 1468 2346 2358 2367 2478 3458 4567 5678
1278 1345 1348 1367 1567 2347 2357 2368 2456 3568 4578 4678

1267 1368 1456 1478 1578 2378 2458 2467 2568 3457 3468 3567
1248 1358 1457 1467 1568 2345 2468 2567 2578 3456 3478 3678
1256 1346 1357 1458 1678 2348 2357 2456 2678 3467 3568 4578
1278 1347 1348 1356 1567 2346 2358 2367 2457 3578 4568 4678
12568 1345 1367 1378 1468 2347 2356 2368 2478 3458 4567 5678

1267 1368 1456 1478 1578 2378 2458 2467 2568 3457 3468 3567
1248 13568 1457 1467 1568 2345 2468 2567 2578 3456 3478 3678
1256 1346 1357 1458 1678 2357 2368 2456 2478 3458 3467 5678
1278 1347 1348 1356 1567 2346 2358 2367 2457 3578 4568 4678
1258 1345 1367 1378 1408 2347 2348 2356 2678 3568 4567 4578
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Table 3 (continued).

21 : 1234 1235 1267 1368 1456 1478 1578 2378 2458 2467 2568 3457 3468 3567
1236 1237 1248 1358 1457 1468 1567 2345 2456 2578 2678 3467 3478 3568
1238 1245 1278 1347 1356 1467 1568 2346 2357 2468 2567 3458 3678 4578
1246 1257 1258 1345 1348 1367 1678 2347 2356 2368 2478 3578 4567 4568
1247 1256 1268 1346 1357 1378 1458 2348 2358 2367 2457 3456 4678 5678

22 : 1234 1235 1267 1368 1456 1478 1578 2378 2458 2467 2568 3457 3468 3567
1236 1237 1248 1358 1457 1468 1567 2345 2456 2578 2678 3467 3478 3568
1238 1256 1278 1346 1357 1458 1467 2347 2356 2457 2468 3458 3678 5678
1245 1257 1268 1347 1348 1356 16878 2346 2358 2367 2478 3578 4567 4568
1246 1247 1258 1345 1367 1378 1568 2348 2357 2368 2567 3456 4578 4678

23 : 1234 1235 1267 1368 1456 1478 1578 2378 2458 2467 2568 3457 3468 3567
1236 1245 1247 1357 1378 1468 1568 2348 2356 2578 2678 3458 3467 4567
1237 1258 1268 1346 1348 1457 1067 2345 2367 2456 2478 3568 3578 4678
1238 1246 1257 1347 1356 1458 1678 2347 2358 2468 2567 3456 3678 4578
1248 1256 1278 1345 13568 1367 1467 2346 2357 2368 2457 3478 4568 5678

24 : 1234 1235 1267 1368 1456 1478 1578 2378 2458 2467 2568 3457 3468 3567
1236 1245 1248 1357 1358 1467 1678 2347 2368 2567 2578 3456 3478 4568
1237 1246 1278 1345 1348 1567 1568 2356 2358 2457 2468 3467 3678 4578
1238 1256 1257 1347 1367 1458 1468 2345 2346 2478 2678 3568 3578 4567
1247 1258 1268 1346 1356 1378 1457 2348 2357 2367 2456 3458 4678 5678

25 : 1234 1235 1267 1368 1456 1478 1578 2378 2458 2467 2568 3457 3468 3567
1236 1245 1257 1347 1348 1568 1678 2358 2367 2468 2478 3456 3578 4567
1237 1246 1258 1356 1378 1457 1468 2348 2356 2457 2678 3458 3467 5678
1238 1247 1268 1345 1367 1458 1567 2346 2357 2456 2578 3478 3568 4678
1248 1256 1278 1346 1367 1358 1467 2345 2347 2368 2567 3678 4568 4578

26 : 1234 1235 1267 1368 1457 1468 1778 2378 2458 2467 2568 3456 3478 3567
1236 1245 1248 1358 1378 1467 1567 2347 2356 2578 2678 3457 3468 4568
1237 1258 1268 1345 1367 1456 1478 2346 2348 2457 2567 3568 3578 4678
1238 1247 1256 1346 1357 1458 1078 2357 2368 2456 2478 3458 3467 5678
1246 1257 1278 1347 1348 1356 1568 2345 2358 2367 2468 3678 4567 4578

of permutations acting on large sets, we find that any two large sets containing a
type O design and four designs of type S are isomorphic if they have
automorphism groups of the same order.

Using the information on automorphism groups of design given in Table 2, we
see that there are 8!/1344 = 30 distinct designs of type Q, 8!/48 = 840 of type R,
81/12 = 3360 of type S and 8!/21 = 1920 of type T. Similarly there are 8!/12, 8!/4
and 8!/3 distinct large sets, with groups of orders 12, 4 3 respectively.

Consider a large set, with group of order 3. A particular design of type Q must
occur in (8!/3)/(8!/1344) = 448 large sets of this type, and a particular design of
type S in ((8!/3) x 4)/(8!/12) = 16 large sets of this type. This agrees with the
results of the backtrack search.

The remaining results have been cross-checked by similar arguments.

The 26 classes of large sets are listed in Table 3, and further information on
their properties in Table 4. In several cases, large sets with the same groups are
not isomorphic to each other; for instance, there are nine non-isomorphic large
sets with trivial automorphism group, seven with group of order three, four with
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Table 4. Automaorphism groups, and design types, of the partitions listed in Table 3.

M.J. Sharry and A. Penfold Street

Partition Group Group Design
Number Order Generators Types
1 4 (1683)(2475) Q,4s
2 3 (156)(347) Q, 18
3 12 (14)(23){5B)(67), (276)(458) Q,45
4 1 (1) 2R, 25, T
5 2 (16)(38)(45) R, 48
6 2 (16)(35)(47) 3R, 28
i 6 (12)(38)(47) , {162)(457) 3R, 28
8 2 (16)(38)(45) R, 48
9 3 (123)(678) 2R, 3T
10 3 (127)(456) 3R, 2T
11 1 (1) R, 28, 2T
12 6 (273)(485), (16)(23)(58) 3R, 28
13 10 (37854), (16)(34)(57) SR
14 2 (27)(38)(45) R, 48
I3 t (1) 45, T
16 L (1) 45,7
17 ! (1) 35, 21
18 3 (165)(287) 25,37
19 1 (n 25, 37
20 i (1 25, 3T
21 1 (1) 45, 7T
22 L (1) 35, 2T
23 3 (165)(378) 25,37
24 3 (127)(456) 38, 2T
25 3 (186)(234) 35, 2T
2 5 (18564) 5T

group of order two, and two with (non-abelian) group of order six. There are two
large sets with all designs of the same type, one with all type R, the other with all
type T. The remaining large sets contain either three different types (two R, two
$, one 7, or one R, two S, two T'), or a mixture of types R and S (in six different
ways), types R and T (in two different ways) or types S and T (in eleven different
ways).
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INFINITE FAMILIES OF STRICTLY CYCLIC STEINER
QUADRUPLE SYSTEMS*

Helmut SIEMON
Sonnenrain 17, D-8701 Reichenberg, FRG

Dedicated to Haim Hanani on the occasion of his 75th birthday.

1. Introduction

A Steiner Quadruple System SQS(v) of order v is a pair (V, B) where V is a
set with v e N* elements, B a subset of (}) the elements of which are called
blocks so that every 3-subset of V is contained in a unique block. H. Hanani [1]
proved that the necessary condition v =2, 4(6) for the existence of a SQS(v) is
also sufficient. In papers by A. Hartman [2, 3] and Lenz [5] Hanani’s proof was
simplified. If, however, we rcquire a SQS(v) to allow a given automorphism
group the problem of the existence of SQS(v) is not yet solved completely, even
if the automorphism group is cyclic of order v. A SQS(v) with a cyclic
automorphism group C, of order v is called cyclic, denoted CSQS(v). If the
stabilizer of any quadruple of a CSQS(v) equals the identity (the orbits of C,
have all length v) we speak of a strictly cyclic SQS(v), denoting them sSQS(v).
In [7] we constructed among other things sSQS(2:5%). In this paper we will
extend our construction to sSQS(2p®), p=5(12) provided sSQS(2p) exists
containing the base quadruples {0, 4, 2i, 3 +1i}, i=1, 2,...,(v—2)/4 and all
orbits invariant under the mapping i — —i (mod v).

To the list of recent papers which deal with cyclic Steiner Quadruple Systems
(cf. [7]) we have to add the dissertation by Piotrowski [6], who proved, in the
main part of his work, the following theorems:

(i) A SQS(v) with dihedral group D, of order 2v as automorphism group
exists iff v=0(2), v #0(3), v#0(8), v=4 and if for any prime divisor p of v
there exists a SQS(2p) with D,, as automorphism group.

(1) For all prime numbers p =1(4) and p <229, or p=1(4) and p # 1,49(60)
and p << 15000 there exists SOS(2p) with the automorphism group A, = {(x —
ax +bla, beZ, and ged(a, v)=1}. In case p # 1(3) this SQS(2p) has D, as an

automorphism group.

The systems constructed in (i), (ii) are, according to a private communication
from W. Piotrowski, all strictly cyclic for v # 0 (4). However, the construction we
offer in case v = 2p ", p prime number and p = 5(12) is a direct continuation of our

* This investigation was presented at the Sth International Conference on Geometry, Haifa 1987.

0012-365X/89/$3.50 € 1989, Elsevier Science Publishers B.V. (North-Holland)
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previous paper [7] and can be achieved, relatively easy, by using orbits graphs
rather than the relevant graphs themselves as in Piotrowski’s dissertation.
Furthermore a modification of our construction might prove helpful in settling the
existence problem for sSQS(2p).

We use the definitions and results of [7]' and observe that in order to
determine a 1-factor of the graph OGS,(2p®) we have only to consider vertices
which are neither admissible nor co-admissible’> and which we call residual
vertices (residual orbits), Let RO(2p®) be the set of all residual orbits and
ROGS,(2p™) the corresponding subgraph of OGS,(2p®). We map ROGS,(2p®)
by means of a natural homomorphism y* onto OGS,(2p). The fibres of y* have
all cardinality p®~'. Now if {B,, B,} is an edge of OGS,(2p) and F(B)), ¥(B,)
are fibres of y*, the elements of which are mapped onto B, resp. B,, we can
construct a bijection @: X(B,)— {§(B,) so that for any D e §(B;) the set
{D, &(D)} is an edge of ROGS,(2p®). In case OGS,(2p) has a 1-factor and if
{B,, B,} is an edge of a one factor, then {D, (D)} is an edge of a 1-factor of
ROGS,(2p®).

2. Definitions and preliminary results

Let V=4{u,1,...,v—1} be a set of cardinality v, v=2, 10(24), v>4. A set
{x,y,2}, x, y, ze V* (=V\{0}) with x + y + z = v is called a difference triple.
We conceive of x, y, z as smallest remainders modulov. If x<y =2z, we use
[x, y, z] instead of {x, y, z}. The difference triples of the form [x, x, z] or [x, y, y]
or [x, y, /2] are uniquely completed as difference quadruples

{ v v } {v v }
y Xy T — X, T ) N Yy ST Y W ’ s Ay Yo
X, x5 5T S Th STy {x, x,y, y}

respectively, which give rise to the base quadruples {0, 2i, v/2+i}, i=
1,2,...,(v=-2)/4

Next we consider difference triples [x, y, z] with x <y <x and z #v/2. Let §
be the set of all these difference triples. We define derivatives of |x, y, z] as
follows:

First derivative [x, y, z]":={y, x +y,z —y}
Second derivative |x, y, z|":={x, x +y, z — x} 2.1
Third derivative [x, y, z]":={y —x, x, z + x}.

For the geometric meaning of (2.1) see [7}.
We define the following relation on S:
(R) For all difference triples A, A;: A/ RA, & A, = Aj or A, = A or A, = A"},

' For definitions and preliminary results sce also Section 2.
*See Section 3.1.
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Using the relation R we define the following graph GS(v):
Vertices: elements of S

Edges: {A,. A,} is an edge iff A;RA,. (2:2)

Proposition 2.1 ([4], [7]). If GS(v) has a 1-factor then there exists a sSQS(v).

GS(v) can be decomposed into two subgraphs GS,(v), GS,(v), which are not
connected:
GS,(v): vertices: [x, y, z]. if2fx or 2fy or 2fz

edges defined as in GS(v)

(2.3)
vertices: [x,y, z] if2|x,y, 2z
edges defined as in GS(v).

Let S, resp. S, be the sets of vertices of GS (v) resp. GS,(v).

GS,(v):

Proposition 2.2 ([4]. [7]). GS(v) has a 1-factor iff GS,(v) and GS,(v) both have a
1-factor.

Proposition 2.3 ([7]). GS,(v) has a 1-factor.

We investigate GS,(v). If U is a subgroup of the automorphism group of
GS,(v) so that all orbits of U have equal length we define an orbit graph
OGS, (v):

Vertices: the orbits of U
Edges : orbits O, O, form an edge {O,, O,} iff (0OG)
there exists A, € O,, A, € O, with A|RA,.

Proposition 2.4 ([7]). If OGS,(v) has a 1-factor, so has GS,(v).

If meN* is relatively prime to v we define the following operation on the
elements of S,:

{mx,my, mz}, fmx+my+mz=v

mlx, y, z]={ (2.4)

{fv—mx,v—my,v—mz}, fmx+my+mz=2v

The mapping 6: [x, y, z] = m[x, y, z] is an automorphism of GS,(v).
Let v=2p® p prime number =1 or Smod 12. We decompose the graph
GS,(2p©) into subgraphs, which are not connected:

vertices: [x.y,z], ifpfx or pfy or pfz

GS,(2p%): {
2(2P") edges defined as in GS,(2p ™)

_ vertices: [x, y, z}, ifp|x, y, 2
GS,(2p*7Y): {
35:2p77) edges defined as in GS,(2p“)
The graph GS,(2p®™") is isomorphic to GS,(2p*~") (cf. [7]).
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Proposition 2.5 ([7]). GS2(2p®) = GS,(2p* "YU GS,(2p*).

When we know that GS,(2p®) has a I-factor for all aeN* we can use
mathematical induction by means of Proposition 2.5 to prove that GS,(2p“) has a
I-factor.

3. 1-factor of GS,(2p*)

We let the unit group E(2p®), p =5(12), operate on the vertices of GS,(2p ™).
There are t = (p® + p*~' — 6)/6 orbits of length (p* '(p — 1))/2 (ct. [7], Lemma
4.4). Let Oy, O,, ..., 0O, be the 1 orbits. If O, contains [x, y, z] with

2plx or 2ply or 2plz (2.5)

(observe that only one component is divisible by 2p) then all triples in O; have
property (2.5). We call O, admissible if all [x, y, z] € O, have property (2.5). Let
A,, ..., A, be the admissible orbits and B, B, ..., B, the not admissible ones.
When we replace 2-5" by 2p® in Theorem 1, [7] we obtain r=13p* ' —1),
s=3p*=2p*'—-3)/2 and r<s with equality only for p=35.Let now
0OGS,(2p“) be the orbit graph as defined in (OG) (with E(2p“) generating the
orbits). In the following we will construct a 1-factor of OGS,(2p®).

3.1. Admissible and co-admissible orbits®

Let A, be an admissible orbit. In A, there exist vertices A, =[x, v, z,],
A= x5 ya, 22], As=|x3, y3, 23] of GSy(2p®) with x,=0(2p), y,=0(2p),
23=0(2p). A; cannot be contained in an admissible orbit because none of its
components y,, y, +x,, 2p% — (2y, + x,) are divisible by 2p. So A} must be
contained in an orbit B; which is not admissible. Then for all A, A={x, y, z]€ A,
with x =0(2p) one of the vertices A', A", A" must lie in B, because of the
automorphism  property. Now A"={x,x+y,2p"~ 2x +y)}, A" ={y—-
x, x,2p" =y} are in admissible orbits and A’={y, x +v, 2p - 2y +x)} is not,
so A’ € B;. By the same arguments one gets A5, A€ B,

Let Y be the set of all admissible orbits. So the relation & given by

(k) [x, v, z) € k(A), if[x,v,z]JeAe, x=02p)
is a well-defined mapping from ¥ into the set of all not admissible orbits. We
define V:={k(A)| A e N}. When A is admissible let us call k(A) co-admissible.
So W is the set of all co-admissible orbits. We show next:
k is an injective mapping from Yl into 3. (3.1
(a) f AeM, Be, |x, v, z]€e A, x =0(2p), |x. y. z]' € B then no vertex other
than [x, y, z], connected with [x, y, z|', is contained in an admissible orbit.

"For the convenience of the reader we repeat here the argument of the proof of Theorem | in |7
with 2p® instead of 2+ 5"



Cyclic Steiner quadruple systems 311

The vertices connected with [x, y, z]' are [x, y, z] and at the most two of the
following;:

{x+y,x+2y,2p—(2x+3y)}, {2p—(x+y), 2p— (x +2y), 2x + 3y — 2p)}
{y,x+2y,2p—(x+3y)}, {2p -y, 2p — (x +2y), x + 3y — 2p}.

None of these have components divisible by 2p.

(b) Assume now A, A, €N, k(A,)=k(A,). In A, there exists [x,, y;, z;] with
x,=02p), y, #0(2p) and [x,, y,, z,]' € k(A,). Since k(A,)=k(A,) there exists
[x2, ¥2, 2] in A, so that [x,, y,, z;]' is connected with [x,, y,, z,]. From (a) we
know that [x,, ¥,, z,} = [x;, y1, z;] and hence A, = A,.

The edges {A, k(A)} of OGS,(2p“) will be candidates for the elements of a
1-factor.

3.2. The residual orbits

If p>5, p=5(12), there are (p* '(p —5))/6 (=(p*+p*~'—6)/6 —23(p*~' -
1)) orbits which are neither admissible nor co-admissible. We call these orbits of
OGS, (2p®) residual orbits. Let RO(2p“) be the set of all residual orbits. The
vertices of OGS,(2p®) are then given by % U B U RO(2p *) where the sets ¥, B,
RO(2p®) are mutually disjoint. We now define the residual orbit graph
ROGS,(2p ) as follows:

vertices: elements of RO(2p %)

ROGS,(2p®): { - .
2p%) edges defined as in OGS,(2p %)

In this section we will show that ROGS,(2p®) has a 1-factor, provided OGS,(2p)
has one.

In order to prepare the proof of this assertion we will first give a representation
of the orbits of GS,(2p®) (note: GS,(2p) = GS,(2p)).

3.2.1. The representation of orbits

In any orbit of GS,(2p ) there are exactly three vertices of GS,(2p ) with the first
component x =2. To prove this, we have only to repeat the argument (i),
Theorem 1, [7]. In the following it will be shown that the edges of OGS,(2p ),
which are incident with a vertex O, can be obtained by using the second and third
derivatives of the three elements [2, y;, 1], [2, ¥2, 23], [2, y3, 23] € O. These triples
we therefore call representing triples of the orbit.

It is convenient to consider the components x/2, y/2, z/2 with x/2+y/2+
z/2=p“ instead of x, y, z with x +y +2z=2p® because x/2, y/2, z/2 are
relatively prime to p and thus there are inverse elements &§;, &, &; with
x/2- E,=1(p“)etc’. Forthisreasonwedefine|a, b, ¢, :=[2a, 2b, 2c], {a, b, ¢}, :=
{2a, 2b, 2c}. The index r shall remind of “‘reduced form™.

* This device was first introduced in [4]. We will however adopt it to our needs.
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Now
mla, b, ¢], = m|[2a, 2b, 2¢]
_ [{m2a, m2b, m2c}, it m2a +m2b+mlc=2p*
- {{2[)“ —m2a,2p®—m2b,2p* ~m2c}, ifm2a+m2b+ m2c=4p~
_[{ma, mb, mc},, if ma+mb+mc=p*
B {{p"—ma, p¥—mb,p*—mc},, ifma+mb+mc=2p"~
Especially we remark: If ma=1or mb=1 or mc =1 then ma + mb +mc #2p°.
Now if the triple A= {1,w, —(1+w)}, is an element of the orbit O, then we
obtain the two other representing triples in reduced form as

t 1+w 1
_[1) w, _(1+W)],={1, _—‘v’—} ’
w r

w w
(3.2)

1 w 1
- . 1) y 1+ r'__{l) = _—} .
o CL A G 1+w  1+wl,

Let us call {1,y+1,z—1},, {1,y —1, z+1}, the neighbours of [1, y, z|,. The
neighbours of [1, y, z], can be obtained by taking the second and third derivatives
of [1,y,z], in case y<z: [l,y, z])=(2,2y,22]"={2,2y +2,2z -2} = {1,y +
1,z=1},, [Ly z]"={t,y—1,z+1},. We obtain the same neighbours (in
reverse order) in case z<y: [1,z,y]/={1,z+1,y~1},, [I,z,y]7={1,z~
1, y+1},.

We prove:
1+w 1
The orbit O containing {1, w, — (1 + w)},, {1, —J, —} ,
w wl,
w 1 .
{1, - —————} can at most be connected by an edge with
1+w 1+wl),
the following orbits C,, C,, C;:
1+w 1 24+w 1
1v1+ 1_2+ rn{]x-__)—_}y{lx _—r—~}
{ W 2 +w)} 24+w 2+ wl, 1+w1+w,ECl
-1 1 1
{1, w—1, —w},,{l, —L, ——-},{1, —L,———} eC,
w wi, w—1w-1),
{ w _l+2w}{ W _1+w}{ _1+2w1+w} C
T+w 14wl U 142w 142wl LT w ow ,E 3
(3.3)

Proof. The set of neighbours of {1, y, z}, will be denoted by n(1, y, z).
@ n(Lw, —(1+w)={{LLw+1l, —Q2+w)},, {l,w-1, —w},}

1+w 1 1 w+1 142w 14+ w
=
wow w w J, w w J,

TS B D £ DA U
ol4+w 14w T+w 1+wl, L7 1+w 4wl )
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We can state that all neighbours of the representing triples of O are contained
in either C, or C, or C;. A neighbour may not be a vertex of the graph: {1,7,9],
is a vertex of GS,(2 - 17), but the neighbour [1, 8, 8], is not. Here no orbit exists
which contains [1, 7, 9]7. In this case [1, 7, 9]" exists.

(ii) Let [x, y, z], € O. We will show now that [x, y, z},, [x, y, z]/, [x, y, z] are
contained in C, or C, or C,, if at all.

We obtain

1 y x+y]
- y ) r= 11—) - .
x[Jt y 2] [ X x J,

Take w:=y/x. It follows that —(1+w)=—(x +y)/x. Now [x, v, z],, {1, w,

—(1+w)}, belong to O. Consider [x,y, —(x+y)],={y, x+y, —Qy+ 1)},
We have

1 , 1+w 142w

—[x,y, -(x+y)]r={1’—: - }

y w w o J,

and know that [x, y, — (x +y)], is contained in the same orbit as

{ 1+w l+2w}

1) s T

w
hence follows [x, y, — (x +y)],; € C5. All other cases, namely

1+ 1 1

X=—(1+W), ___w, -, _L’ —
X w w 1+w 1+w

can be treated accordingly. Considering [x, y, z];, [x, y, z]/", we proceed likewise.

Now (3.3) shows that the edges of the graph ROGS,(2p®) are determined by

neighbours of the representing triples (reduced form).

Corollary. If {B,, B,} is an edge of OGS,(2p®), there are two of the representing
triples of B, which have neighbours in B,.

3.2.2 The fibres of p*

Let [X, Y, Z] be a vertex of GS,(2p®) and x = X(2p), y =Y(2p), z=Z(2p)
with 0 <x, y, z <2p. We define

(X, Y, Z]wz{{x,y, z}, ifx+y +z=21?
{2p ~x,2p—y,2p—z}, ifx+y+z=4p.
Only if [X, Y, Z] is contained in an admissible (co-admissible) orbit, then
[X,Y,Z]Y=[a, b,c]yieldsa=00orb=00orc=0(a=bora=corb=c). Soit
follows that the union of all residual orbits is equal to the set of all pre-images of
the set of vertices of GS,(2p). Next we observe with O a vertex of ROGS,(2p *):
If [X,, Y, Z1], [X5, Y2, Z,]€ O then
[X,, Y1, Z,]¥ and [X,, Y,, Z,]" belong to the same orbit when (3.4)
the unit group E(2p) is operating on GS,(2p).

The remark (3.4) is obvious.
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Let [x, y, z] be the orbit [x, y, z] is contained in. Now y induces by (3.4) a
mapping ¥* from ROGS,(2p®) onto OGS,(2p) in a natural way:

(W [X, Y, Z]"=We[X, Y, Z|YeW.

And we remark that ¥* is a homomorphism from ROGS,(2p ) onto OGS,(2p),
which is readily seen.

Next we wish to prove that the fibres F(B) = {C | C e RO(2p“) and C*" = B}
for all vertices B of OSG,(2p) have cardinality p*~'.

For this reason we need the following

Lemma. With [s]:=[s]+ 1, s real, we obtain:
(1) If x is a natural number which satisfies the condition 1 <x < p — 3 then

l[p"—(x+3)]l__p“_' +1
2p 2

(2) If x is a natural number with p <x +3<2p —3 then

g

The proof of this Lemma is straightforward.

Proposition 3.1. Let B be any vertex of OGS,(2p), &(B) a fibre of y*, then
[Z(B)=p*~".

Proof. Let (2, y,, 2,], [2, ¥2, 2], [2, y3, 23] be the representing triples of the orbit
B. We determine now the pre-images of the triples under the mapping .
For y, z, i=1, 2, 3 the following inequalities hold;

4<y =p -3, p+1=<z<2(p-3). 3.5)

When [2, Y, Z] is mapped onto [2,y;, z;] by ¥ the component Y has the form
Y=y +k2por Y=2z,+12p; k;, t;eN*, i=1, 2, 3. Because of 4<Y<p*—3
we have to find maximal numbers k,, k,, k3, f,, #,, I; with

yi+(ki—1)2p=<p"-3, 4<y=<p-3 (3.6)
and i=1273
Z+(E—-1D2p=sp®-3, p+l=sz<2p-3) (3.7)

Applying the Lemma we obtain

i __l[P“_ (yi +3)I|_Plh] +1
' 2p 2

i_[[p"’—(z,-+3)ﬂ_p"‘"' -1
' 2p 2
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so that k, + k, + ks + %+ +%5=3-p>". Since any orbit contains three triples
[x, ¥, z] with x =2 we have p®~' orbits being mapped by ¥* onto B. O

Theorem 3.1. If the orbits B,, B, consisting of vertices of GS,(2p) form an edge
of OGS,(2p) then there is a bijective function ®: F(B,)— ¥(B.) so that for all
D € h(B,) the set {D, ®(D)} is an edge of ROGS,(2p ).

Proof. (i) Let B, be represented by {1, y,, z;}, and B, by {1, u;, w;},, i=1, 2, 3.
Since we have assumed B,, B, to be connected there are, according to the
corollary of (3.3), two neighbours of elements of B, contained in B,. Without loss
of generality we can choose u, =y, + 1, u, =y, + 1 otherwise we would only alter
the notation. Now u;, w, can be expressed by y; and z;. Since the representing
triples of B, resp. B, can be written as

1 1+ 1
{l)yly_(l+yl)}rr {ly - yl > }’ {11 _—y"y_}
I+ 1+y), bgl Yilr
resp. as
1 2+ 1+ 1
{1’ yl+1' _(2+yl)}r! {1)—1 - yl} ’ {lv ———ylr _—}
nw+l  y+1), 24y, 24y,
with
y =J— y c= —-'—1+yl Uu =-———l 7 ‘=—1‘*_yl
2. 1+yl) 3- yl y 2. yl-{—l, 3 2+yl

and by eliminating the parameter y, we obtain

SR £ and wy= — i
? 142y, ? 1422,
So B, can be represented by
Y3 23
Lynw+l,zy-1},, {Ly+1,2-1}, {1,— , - }
{1y 2 } {1, » z, -1} 1+ 2y, 1+ 22,

(ii) If {1, Y, Z}, is a vertex of ROGS,(2p®) with {1, Y, Z}*" = {1, y,, z;}, and
(1,y, z}, € {1, y1, 21},, L =1, 2, 3 then the following six possibilities Y = yi(p),
Y=z(p), I=1, 2, 3 have to be considered. Accordingly we define
@: %(B,) + §(By) by

{1,Y+1,Z2-1},, if Y=y (p) or Y=y,(p)

—_ 1,Y-1,2Z2+1},, if Y=z orY=z
- - if Y= Y=1z(p).
{1’ 1+2Y 1+2z},’ Y =ys(p) or Y=2(p)

From (i) it follows immediately that (®({1, Y, Z},))¥" = B, and that {{1, Y, Z},,
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®({1,Y, Z},)} is an edge. Next we observe that @ is surjective and hence,
because of Propositions 3.1, bijective. [

Theorem 3.2. If the graph OGS,(2p) has a 1-factor then OGS,(2p*) has one.

Proof. Let OGS,(2p) have a 1-factor. In the beginning of this section we have
mentioned that the set of vertices of OGS,(2p®) can be decomposed by
A UBURO(R2p“). From Section 3.1 we know that {A, k(A)} for all A€ are
candidates for the elements of a 1-factor of OGS,(2p®). Let now {B,, B,} be an
edge of a l-factor of OGS,(2p), then for all D € F(B,) the set {D, ®(D)} is an
edge of a 1-factor of ROGS,(2p“) and so ROGS,(2p®) and hence OGS,(2p~)
have a 1-factor. We deduce GS,(2p“) has a 1-factor (Proposition 2.4). [

Theorem 3.3. If the graph OGS,(2p) — (p —5)/6 vertices — has a 1-factor then
sSQS(2p *) exists for all & € N*.

Proof. The theorem follows directly from Theorem 3.2, Proposition 2.4, Propo-
sition 2.5. 0O
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MINIMAL PAIRWISE BALANCED DESIGNS

R. G. STANTON
Department of Computer Science, University of Manitoba, Winnipeg, Canada, R3T 2N2

An expression involving a “remainder term” is given for the number of blocks in a minimal
pairwise balanced design in which the length of the longest block is specified. The allows a
simple presentation and unification of a number of earlier results derived by various authors.

1. Introduction

Suppose that we are given a set V made up of v elements 1,2,3,...,v. A
pairwise balanced design is a collection F of blocks with the property that every
pair of elements from V occurs exactly A times among the blocks of F. In the rest
of this paper, we shall restrict attention to the particular case A = 1. We shall also
introduce the parameter k to designate the length of the longest block in the
family F (this block may not be unique; usually, there will be several blocks of
length k).

As a simple example, let us look at the case v=7, k =4. There are six
non-isomorphic pairwise blanced designs with these parameters, and it is
instructive to list them.

(a) Blocks 1234, 1567, 9 pairs; total of 11 blocks.

(b) Blocks 1234, 567, 12 pairs; total of 14 blocks.

(c) Blocks 1234, 156, 257, 367, 6 pairs; total of 10 blocks.

(d) Blocks 1234, 156, 257, 9 pairs; total of 12 blocks.

(e) Blocks 1234, 156, 12 pairs; total of 14 blocks.

(f) Blocks 1234, 15 pairs; total of 16 blocks.

It is clear that the minimal pairwise balance design with v =7, k =4, is the design
labelled (c).

In general, we use the symbol g*(1,2;v) to designate the minimum
cardinality of any pairwise balanced design on a set of v elements with longest
block having length k. Thus, we have shown, by exhaustive search, that
g1, 2; v) = 10. Of course, the minimal design may not be unique; it is perfectly
possible for two non-isomorphic designs to possess the same minimal cardinality.

We shall frequently abbreviate g*(1, 2;v) to g¥)(v) or simply, in this paper,
to g.

0012-365X/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)
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2. Elementary relations

In the minimal design, we let b; represent the number of blocks of length i,
where i < k. If i =k, we designate one particular block of length k to be the
“longest block™, and we use b, to designate the number of other blocks of length
k. Thus, the total number of blocks of length & is b, + 1. We often refer to the
designated “longest block’ as the base block; it plays a very specialized role in
the theory.

By counting blocks, and then by counting appearances of pairs within blocks,
we immediately obtain two relations.

b2+b1+b4+b5+‘+bk=g_l (1)
2b,+6by+ 12b,+210bs+ - - -+ k(k — Db, =v(v — 1) —k(k - 1)
=(v-kv+k-1). @)

To obtain a third relation, we define b;; to be the number of blocks of length / that

pass through point j on the base block (j=1,2,3,..., k). Since every pair

containing j must appear in the set of blocks, we immediately have
S(—-Db,=v—k, (R))]

and this result holds for every point j. Hence we may sum over j and obtain
22— 1)b;=k(v—k). “@)

This summation is over all blocks of length i that meet the base block. However,
there may be some blocks of length i that are disjoint from the base block;
suppose that the number of these is b;,. Then we may form the sum

Z(i—1)by=E, (5)
where the quantity E (for excess) is certainly nonnegative. Since we know that

b,=byy+b,+b+b;+ - +by, (6)
we can add equations (4) and (5) to end up with

b, +2bs+3b,+4bs+ -+ (k~1)b=k(v—k)+ E. N

We now combine equations (1), (2), and (7) in such a way as to eliminate
adjacent columns in the equations. For instance, using multipliers 2, 1, —4, would
eliminate the terms in b, and b, to leave

2(bs+3bs+6by+ - - - ).

We shall multiply the three equations by s(s + 1), 1, —2(s + 1), respectively, in
order to eliminate those terms involving b,,, and b,,,. The resulting expression
involves the quantity

P by+b,3) +3(byo1+b,ia) +6(by 5+ byis) + 10(b, 3+ byye) +- -

®)

It is clear that P is nonnegative.
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The result of combining
ss+ DA+ @) -2(s + D)D)
is the relation
sc+DE-D)+@w-k)v+k~1)-2(s+ 1)k(v—k)=2E(s + 1) + 2P.
)

If we solve for g from Eq. (9), the result is
g=1+@Ww—-k)2sk—v+k+1)/s(s+1)+2E/s +2P/s(s + 1), 10)

where the quantities £ and P are non-negative. If we drop the terms in E and P,
we obtain a lower bound that was established by Stinson [5] in 1982, using
generalized variance techniques.

Theorem 1 (Stinson). g =1+ (v —k)(2sk —v+k+1)/s(s +1).

This result is true for all values of s; we can easily determine the most effective
value for s by writing F(s) =1+ (v —k)(2sk —v + k + 1)/s(s + 1); then we find

F(s)—F(s—1)=2(v—k)(v—1-sk)/s(s — 1)(s + 1).

This equation shows that F(s) is increasing so long as sk lies below (v —1).
Hence, to obtain the strongest result from (10), we should assign to s the value
[(v = 1)/k|; of course, if the quantity (v — 1)/k should happen to be an integer,
then both F(s) and F(s — 1) are equal.

Now, let us consider the case of a very long block whose length k lies between
v/2 and v. For k in this region, we select s =1, and thus obtain a result due to
Woodall [6].

Theorem 2 (Woodall). If k lies between v/2 and v, then g =1+ (v —k)(3k —v +
1)/2.

We note that the Woodall bound is always an integer. Consequently, Eq. (9) can
be applied to give

Corollary 2.1. The Woodall bound can only be achieved if E =P =0, that is, all
blocks meet the long base block, and their lengths are either 2 or 3.

This bound can actually be met by using an easy construction based on 1-factors
of the (v — k) points not in the long block; see [4] for details.

However, Eq. (9) gives us more information than simply the Woodall bound
and its converse. Suppose that we now let k lie between v/3 and v/2; then we
take s =2. (We should remark that special techniques may have to be applied
when one is at the exact boundary of this region, that is, where s is changing from
1to 2 or from 2 to 3.) In this case, the term 2E/s in (9) becomes E; because E is
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a non-negative integer, we see that £ must be zero if the Stinson bound is met. If
we write S for the Stinson bound, and require that it be “met” (that is, g = [S]),
then we have

g=8+2P/s(s+1)=58+ (b, + bs)/3,

where the second term is less than unity. Consequently, we have

Theorem 3. If k lies between v/3 and v/(2, and the Stinson bound is met (in the
nearest-integer sense), then E =0, that is, all blocks meet the base block.
Furthermore, all of the blocks have lengths 3 or 4, except that there may possibly
be one or two rogue blocks (this corresponds to the case P =1 or P =2), and the
number of these is given by the relation

[S]—8=(by+ bs)/3.

There is curently a great deal of work being done for & lying in this region; see,
for example [3], the very important work of Rees in [1] and [2], and the various
works cited in [1] and [2]. The use of “frames” (cf. [1]) has been of particular
significance in discussing the question.

Actually, Theorem 3 is only a special case of a more general result. Suppose
that the Stinson bound is actually met, that is, g = [S]. Then we prove, without
any restriction on k, that is, for all values of s =2,

Theorem 4. The Stinson bound can only be met, that is, g =[S|, if all of the
blocks meet the long block.

Proof. We suppose that, if possible, the Stinson bound is met, but that there is a
block of length (s + 1) — z that does not meet the base block. This block will
contribute an amount (s —z) to £; however, it also contributes an amount
z(z +1)/2 to P. There is a certain balancing effect in action here, since small z
values make E large and P small, whereas large z values make P large and E
small. More precisely, we may write

g=S+2E/s +2P/s(s + 1),
where the contribution of the disjoint block to the ‘“‘remainder terms” is given by
25 ~2)s+z(z+ D)/s(s + 1) ={z*— z(2s + 1) + 2s(s + 1)}/s(s + 1).
an

Now the discrete variable z may range from the value 1, if there is a disjoint
block of length s, to the value (s — 1), if there is a disjoint block of length 2. The
expression (11) is decreasing and reaches its minimum value (in the permissible
range for z) at s — 1; this minimum value is

(s*+ s +2)/(s* +5),
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and it is greater than unity. Consequently, it is not possible to have g = [S] unless
there is no disjoint block, that is, E = 0, as stated in Theorem 4.

It is an obvious corollary that, if the Stinson bound is met (that is, g = [S]),
then

g=8+2P/s(s +1).

All blocks have lengths s + 1 and s + 2, with the exception of a small number that
can be determined from the relation

[S] =8 =2P/s(s + 1),

where P is given by (8). This relation guarantees that the number of rogue blocks
is very small, and that their lengths are close to those of blocks of lengths s + 1
and s +2. O
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COMBINATORIAL PROBLEMS IN REPEATED
MEASUREMENTS DESIGNS

Deborah J. STREET
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A number of papers in the statistical literature in recent years have considered the structure
of designs with certain desirable statistical properties. Some constructions for these designs
have been presented but a number of open problems remains. In this paper a survey of the
designs required, and a summary of the known results, is presented.

1. Introduction

In a repeated measurements design there are f treatments, n experimental units
and the experiment lasts for p periods. Each experimental unit receives one
treatment during each period. Thus the design may be represented as a p X n

array containing entries from {1,2, .. .,t}. Some examples are given in Table 1.
Table 1.

(a) (b) (c)

t=3,n=9,p=6 t=6,n=6,p=6 t=5n=10,p=5
000111222 1 23 456 123 45123435
012012012 2 345 61 2345151234
111222000 6 1 2 3 4 5 51 23 423451
120120120 345 612 34512 45123
222000111 S 61 2 3 4 4 S 1 233 4512
201201201 4 561 23

The term “repeated measurements design” is also used to describe experiments
in which at most one treatment is applied to an experimental unit and successive
readings are taken over time. The interest then is in modelling the growth, or
change, over time. We will not consider this area further.

As it stands, any p X n array containing entries from {1,2,...,¢} can be used
as a design. However, some arrays are better than others and the arrays that are
‘best’ depend on the model that is being proposed to analyse the results of the
experiment and the terms in that model that one is interested in estimating.

We will consider two linear models which have been proposed for analysing
results from a repeated measurements experiment. We use d(k, u) to represent
the treatment applied, in design d, to unit u during period k.

The first linear model assumes that the observation, Y,,, made on unit 4 during

0012-365X/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)
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period k is the sum of a period effect (a;), a unit effect (3,), a direct treatment
effect (Ty4..)), a (first-order) residual treatment effect (py—1.)) (for any period
other than the first) and an error term (E,;,). The observations are assumed to be
independent of each other, so Corr(Ey,, E,.) =0 for all pairs (k, u) # (g, w). The
variance of the error terms is assumed to be constant, so var(E;,) = ¢°. Thus we
may write this model as

qu = ak + ﬁu + Trl(k,u) + pd(kfl.u) + Ekuv
k=1,...,p; u=1,...,n; Var(E,) =0 Puoum="0.

This model may be varied by assuming that the last period precedes the first
(so-called circular repeated measurements designs) or by deleting the period
effect, or the unit effect, or both.

The second linear model assumes that the observation, Y,,, made on unit u
during period k is the sum of a period effect (a&,), a unit effect (f,), a direct
treatment effect (74 ,)) and an error term (£,,). Observations on different units
are assumed to be independent but observations on the same unit are assumed to
be correlated with the correlation depending on how ‘close together’ the
observations are. We write Var(E)=0%/(1-2% and Corr(E,,, E,, )=
A%8l§ . where 8, is the Kronecker 8. We may write this model as

Yk,,=ark+ﬁ,,+t,1(k',,)+Ek,,, k=],,p, u=l,...,n.

To facilitate further discussion of ways of comparing designs, we will express
the linear models above in matrix notation.
For the first model, following Cheng and Wu [7], we let

O=(T, ..., TP, PGy, By, B
Y=(Ylh Y2|, ] )/plr ce Ylnv YZn: ] )//m)vl‘s
EZ(E”, EZI' LRI Epl: et Elnv et Epn)T

and write ¥ = X,0 + E. X, is a (0, 1) matrix and is called the design matrix.

We can write ¥ = X,0 + E =n + E, say. Our eventual aim is to estimate the
elements in 6, but we begin by estimating the elements in . To do this we have
available the data vector ¥ which differs from 7 by E. Note that Y, 7 and E are all
vectors in R™, E has no preferred direction in R™ since its elements are
independent of each other and have constant variance. Hence the most natural
estimate of 7 is that vector in the range of X, which is closest to Y in the usual
Euclidean sense. Thus our estimate of %, # say, minimises (¥ — )" (Y — n).

Suppose we choose b such that XJ(Y —X,b)=0, that is X X,b=XY.
Clearly X,b is in the range of X,, ¥ —X,b is in the orthogonal complement of
the range of X, and Y = X,b+ Y — X,b. These facts, together with the fact that
n is in the range of X, give

(Y- 71)'1.(Y -n)=(Y-X,b+X,b— n)’ly(y —Xb+X,b—n)
=(Y = X,b)' (Y — X;b) + (X,b — )" (X.b — n).
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Since (Y — X,;b)'(Y — X,b) is constant we see that (Y — 1)"(Y — ) is minimised
if # = X,b. Any vector 8 such that

Py

X(IB == f] = de
produces the same vector # and is a least squares estimator of 6. Thus we have

X3X.0=X1X.b=X}Y,
and

b =(XiXs) XiY
where (X}X,)” is the Moore-Penrose generalised inverse of X1X, (see Searle
[23]). XX, is called the information matrix (of the design d) for estimating 6.

Sometimes not all elements in € are of equal interest to us. The terms are

included in the model for correctness, but we are not interested in estimating,
say, the period effect. In a RMD the interest usually centres on estimating the
direct treatment cffects and/or the residual treatment effects. Hence we want the
information matrices for estimating the direct treatment effects and the residual
treatment effects. To do this we again consider the equation X}X,0 = X'Y. Let

y=(t,, ..., TP, 0 0=(ay, ..., ., B, ..., B,)" and write
) %1 1S TI[¥ Z
saxaeseff]-[3 1)) =
dXa atd| & v vils Y z,) say
This gives

S9+Té=2Z, and Uy+VE=2Z,.
From the second equation we get that 6 = V™ (Z, — U¥). Substituting we get
S-Tv U)yy=2,-TV" Z,

and S— TV U is the information matrix for estimating direct and residual
treatment effects simultaneously. Similar results hold for the calculation of the
information matrices for estimating either direct or residual treatment effects.

We now define various matrices associated with a RMD so that we can give an
explicit expression for the information matrices for estimating direct, and
residual, treatment effects. As we are interested in the layout of both the direct
and residual effects, the constants are defined in pairs, the first referring to the
layout of the t’s, the second to the layout of the p’s.

Let

h,, be the number of times that treatment i occurs in period s,
,;“ = 0,

hy=h, s=2,...,p,
n;, be the number of times treatment i occurs on unit u,

fi,, be the number of times that treatment i occurs on unit u in the first p — 1
periods,
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m;; be the number of times that treatment i is preceded by treatment j,

r= u My

and

Fi = Zu ﬁill'

We now collect these constants into matrices and let D =diag(r,, ..., 1),

D = diag(fl’ L ] FI)) M = (mij)r Np = (his)) Np = (hi,\')y Nu = ("iu)r Nu = (ﬁiu)-
Hence for the first model above

D M N, N,
M™ D N, N,
Ny Ny nl, 1.0

N'III N'I‘ "n,p pln

szfl =

where [, is the identity matrix of order p and J, , is the p x n matrix of 1s. Then
the information matrix for estimating direct and residual treatment effects (7’s
and p’s) jointly is

|: D M] - [N,) Nu:H:nlp jp,n]—[Np Nu:lT__ l:ClI CIZ]
MT lj N-p Nu jn,p Pln N,, Nu CZI C22 '
Thus we see that
C“ =D-n" ]]V,;N,T - pAl}VuNI + (np)— lNan,nNIJ
CIZ = C:’g[] = M - n_. IN[)N':)‘ - p‘lNuNI + (np)—lNu']n,nNIr
and
Cp=D-n"'N,N,—p 'NNI+(np)'NJ, N
Then the information matrix for estimating direct treatment effects (7’s) is
Cp=C —CpCrCy
and the information matrix for estimating residual treatment effects (p’s) is
Cr=Cp— CyCCha.

Cheng and Wu [7] show that the row and column sums of C,;, and Cg are 0.

Example 1. Let t=p =2, n =10 and let the design be

|

112 2 2 2 2
12211122

o b

2
2
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Then
7 0 - I3 0 1 3 3 4
D‘[o 13]’ D*[o 7]’ M_[z 4]’ N”_[7 6]
,_[03] N_[2111110000
s~ lo 7/ “_0111112222]’
~_[1110000000
“—0001111111]
and
7 013 3 4211111000 0]
01324 7 601111122722
1 230 0 311100000GO00
3 407 0 70001111111
370010 01111111111
4 637 0101111111111
2 010 1 12000000000
X;X,=1 110 1 10200000000
1 110 1 10020000000
1 101 1 10002000000
1 101 1t 10000200000
1 101 1 10000020000
0 201 1 1000O0DO0O0Z2000
0 201 1 10000O0O0O0200
0 201 1 10000O0O0O0O020
L0 201 1 1000000000 2

Suppose we say there are w = 1 units of the form (1, 1)", x =2 units of the form
(1,2)", y = 3 units of the form (2, 1)" and z = 4 units of the form (2,2)". Then

s e M ST R

i i T |
cortm2ee ]} e | )

Thus

1/ wx yz 1 -1 1/2 12 1 -1
e I
2\wH+x y+2z/1-1 1 2\3 7/1L-1 1
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and

c _((w+x)(y+z)_(y(w+x)+x(y+z))2>[ 1 ~l]
R 2n 2n(n(x+y)—(x—y)*)/L-1 1

~ (105 529 _[ 1 =1
_( ' —98())_ -1 1J'
The discussion is slightly different for the second model since the I, ’s are no
longer independent and so do have preferred positions in R"”. The usual solution
is to apply a transformation to the E,’s to make them independent and then
proceed as before. Let W be a p X p matrix where W = (W) = (A"™'/(1 — 4%)).
Then the entries in W are, except for a factor of o°, the covariances of the error
terms of the readings on any unit. Since the errors on different units are assumed
to be independent, the covariance matrix of E is given by V = 0’1, ® W. There is
a matrix Z such that ZWZ" =[,. Then (I, ® Z)V (I, ® Z") = 0’1, ® I, and so we
can write

(ln ® Z)Y = (ln ® Z)th() + (ln ® Z)E,

where the new error terms are now independent. We can then proceed as in the
first model. The estimate % is called a weighted least squares estimator of 7.

For either model one further question we might ask is how accurate are the
estimates we have obtained. This is measured by the variance of the estimate and
for the first model the variance of ¥; is proportional to the ith diagonal entry of
the matrix

S—-TV Uy (S-TV UNS—-TV Uy =(S-TV U) .

The smaller the variance the more accurate is the corresponding estimate. Clearly
we would like the estimates to be as accurate as possible, hence we consider
designs which minimise some function of the variances of the parameters we are
interested in.

An optimality criterion is a function @ from a set of square, nonnegative
definite matrices with zero row and column sums to the real numbers. A design is
said to be @®-optimal if it minimises @(Cp,) (if we are estimating direct treatment
effects, or ®(Cp), if we are estimating residual treatment effects) over a class of
designs. This class of designs is often referred to as the class of competing
designs. Sometimes a design has been shown to be “best” only when competing
against a subset of the class of all RMDs.

We will refer to four optimality criteria in this paper. A design in a class of
designs is said to be A-optimal if the trace of Cj, (or Cg) is a minimum, to be
E-optimal if C}, (or Cg) has minimum eigenvalue and to be E-optimal if it has
the minimum value of the maximum variance of %, — #; for all i and .

Kiefer [11] introduced the concept of universal optimality. A design is said to
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be universally optimal if it is ®-optimal for all ¢ satisfying:

(1) @ is convex;

(2) @(bC) is non-increasing in the scalar b, b =0;

(3) @ is invariant under any simultaneous permutation of the rows and
columns of C. If a design is universally optimal it is A- and E-optimal.

Kiefer [11] showed that a design is universally optimal provided that the
information matrix is of the form al + bJ (that is, completely symmetric), the
information matrix has maximum trace (over the class of competing designs) and
that the information matrix of every design in the class has zero row and column
sums.

Several classes of designs have been considered and it is convenient to have a
notation for them. Let &, , , be the set of all repeated measurements designs
(RMDs) with ¢ treatments, n experimental units and p periods and let €7, , be
the set of all circular RMDs with ¢ treatments, n experimental units and p
periods. A preperiod is a period applied prior to the commencement of the
experiment so that all observations have a residual treatment effect. Let Q,,,,,,, be
the set of RMDs with preperiod. Let A,,, , be the set of all RMDs in which each
treatment appears equally often in each period, at most once in each column and
any pair of distinct treatments appear in np(p — 1)/t(t — 1) columns. Thus A, ,, , is
a subset of the set of generalised Youden designs (see Ash [3] for a definition).
Let QF,, be the cqui-replicate RMDs and let Q% , be the RMDs which are
equi-replicate in the first (p — 1) periods. Let I;, , be the RMDs in which no
treatment is applied, in successive periods, to any unit; that is, m,; = 0.

A design is said to be uniform on the units if n;,, =p/tforall 1<i=<t 1<su=<n,
uniform on the periods if h,=n/t for all 1<i<t, 1ss<p, uniform if it is
uniform on both units and periods, balanced if m; = (1 — 6;)n(p — 1)/t(t — 1) for
all 1=<i, j<t and strongly balanced if m;= (p — 1)n/t* for all 1<i, j<t. Thus,
for example, a uniform RMD with t=#n =p is a Latin square and a balanced,
uniform RMD with f =n = p is a column-complete Latin square (such as design
(b) in Table 1).

In the remainder of this paper we summarise results about the structure of
optimal RMDs, over classes of competing designs, for the two linear models given
above, and the construction methods available for these designs. We do not
consider the structure of optimal designs when the treatments to be applied have
a factorial structure. The interested reader is referred to the papers by Fletcher
and John [9] and Fletcher [8]. For a general survey of RMDs and related designs
see Bishop and Jones [5]. Tables of generalised Youden designs with r <25,
p,n < 50 have been published (Ash [3]).

2. Optimal designs for RMDs with independent errors

The first class of designs we consider are strongly balanced, uniform RMDs.
These designs have been shown to be optimal for the estimation of direct, and of
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residual, treatment effects over £,, , and to minimise the variance of the best
linear unbiased estimator of any contrast among direct effects (in £, ,) and
among residual effects (in ;) (Theorems 3.1, 3.4 and 3.5, Cheng and Wu [7]).

The necessary conditions for the existence of a strongly balanced, uniform
RMD are that t | p, t|n, t*|(p — )n and p = 2t (since pairs of the form (i, i) can
only occur if a treatment can occur at least twice on a unit). Hence

p=An, A, =2, n=2A0% A, =1, A, 4, eN.

Construction 2 (Cheng and Wu [7]). There is a strongly balanced, uniform RMD
with n =1¢" and p = 2t.

Proof. Denote the ¢ treatments by the numbers 0, 1,2,...,¢t— 1. Form a 2 x ¢*
array, A say, containing all the ordered pairs (i, j), 0<i, j<t— 1, arranged so
that the array is uniform on the rows. Let A; = A +i (mod t). The required RMD
is

(AT’ Ally ) AIT~|)T'

Design (a) in Table 1 was constructed in this way. The designs in construction 2
can be extended both vertically and horizontally so there is a strongly balanced,
uniform RMD for n=A4,%, p=2A1, A4,, Ae N. Other designs with these para-
meters have been constructed by Berenblut [4] and Patterson (20, 21]. Subsets of
these designs with additional desirable properties for treatments with a factorial
structure are described in Kok and Patterson [12]. The next construction gives a
strongly balanced, uniform RMD for 3¢ periods.

Construction 3 (Sen and Mukerjee [22]). Let L and N be two mutually
orthogonal Latin squares (MOLS) of order t. Let the ith column of L be I;; the ith
column of N be n;, j=(1---1)", G,=[l,n,hj], 1<h<t Let G=
[Gi, Ga, ..., G and H;= G + i (modt). The required design is

[HY,HY,... H]]

Example 4. Let =4 and

123 4 1 3 4 2
21 4 3 2 4 3 1
L= , =
341 2 N3124
4 3 2 1 4 21 3
Then
1 112 3 2 3 43 42 4
G::
Hi 221142 433314
331412123244
4 41322213134
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Arrays from Constructions 2 and 3 can be juxtaposed to give designs with n = ¢
and p=A,, A,=2, A, eN.

An RMD with n=4,t, p=4,t+1, 4,, A, €N which is strongly balanced,
uniform on the periods, and uniform on the units in the first (p — 1) periods, is
universally optimal for the estimation of direct, and of residual, effects over &, , ,
(Theorem 3.3, Cheng and Wu [7]). They point out that one way of obtaining such
a design is to repeat the last period in a balanced, uniform RMD with n = At and
p =t. These designs exist for smaller values of n and p than do strongly balanced,
uniform RMDs.

Another useful subset of RMDs are the balanced, uniform designs. These
designs are universally optimal for the estimation of residual effects over I, ,
for the estimation of residual effects over the designs in I 343, With treatments
equi-replicated in the first (p — 1) periods, for the estimation of direct effects over
the designs in I, , , , uniform on units and the last period (Theorems 4.2, 4.1 and
4.3, Cheng and Wu [7]) and for the estimation of direct effects over Q,,, (1 =3)
and Q,,,, (t =6) (Theorems 2.1 and 2.2, Kunert [14]).

Construction 5 (E.J. Williams [29]). There is a balanced, uniform RMD with
t=n=p=2m.

Proof. Let the first column be (122m32m—14---mm+2m+1)". Obtain
subsequent columns by adding, in turn, each of the non-zero numbers modulo ¢ to
the first column. We say that the first column has been developed mod¢. The
design is obviously uniform. To see that the design is balanced we note that each
non-zero number modulo¢ appears as a difference between adjacent positions
precisely once.

Design (b) in Table 1 is an example of this construction with m =3 (and so
t=6).

For odd values of ¢ a general construction for balanced, uniform RMDs with
t=n=p (that is, column-complete Latin squares) has not been found. Such
designs do not exist for ¢t =3, 5 or 7. Designs for t =9 and 15 have been given by
Mertz and Sonnemann, quoted in Hedayat and Afsarinejad [10]. Archdeacon et
al. [2] give a method of construction for squares of order pq.

Construction 6 (Williams [29]). There is a balanced, uniform RMD with
t=2m+1,t=p, n=21

Proof. Obtain the first set of ¢ columns by developing the column
(122m+132m - - - m+1 m+2) modtand the second set of ¢ columns by
developing the column (1 2m+1 2 2m 3---m+2 m+1)" modt. The verifica-
tion of balance and uniformity is straightforward.
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Design (c) in Table 1 is an example of this construction with m =2 (and so
t=235).

By juxtaposing the arrays given in constructions 2 and 3 we get balanced
uniform RMDs with t=p=2m, n=A,t, 4,21 and t=p=2m+1, n=24,
Azl

The proofs of the next two constructions are straight-forward.

Construction 7 (Street [26]). Let C be the array obtained by developing the
column (12m22m—1---mm+ 1) mod 2m and let

C_{C+j i=2j+1,

lCcHm-j, i=2j

where the addition is mod 2m. Then the array
(C1,C3,...,Co)"

is a balanced, uniform RMD withn=t=2mand p =t +1t(t - 1).

Construction 8  (Street [26]). Let r.=(1,2m~+1,2,2m,3,..., m+3, m,
m+2m+1), rn=01,2,2m+1,3,2m,-- - m,m+3, m+1,m+2) and let
“r.(+i)ry" mean “write down r,, add i to the final element of r, and use this as the first
element of r,". Then the array obtained by developing the first column

(r.(+Dr(+3)r.(+5) - - - (F2m — Dr(+ Dro(+3)r.(+5) - - - (+2m — Dr),
2m +1=1(mod 4),
(r.(+ Dro(+3)r,(+5) - - - (+2m ~ Dry(+ Dr.(+3)r(+5) - - - (+2m — D),
2m + 1 =3 (mod 4),
is a balanced, uniform RMD with n=t=2m+ 1, p=¢+t{t—1).

Example 9. Let m =2. Thenr. =(15243), r,=(12534) and the first column is
r(+Dry(+3)r.(+ D)r(+3)r, which is (1524345312541323425143521).

Clearly the number of units can be extended to any multiple of t, and the
number of periods can be any number of the form ¢t +¢(t — 1)a, a = 1.
The next result shows that if r =n = p then balanced, uniform RMDs are not

universally optimal for the estimation of residual effects over €, ,.

Theorem 10 (Proposition 3.1, Kunert [14]). Assume t =n =p and there exists
f €&, such that
(i) by exchanging the last period we can transform f to be uniform;
(ii) the last and second last periods are the same;
(iii) for every treatment i there exists a unique treatment j; such that treatment i is
never preceded by treatment j; (thus i is preceded exactly once by every other
treatment including i);
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(iv) in the unit in which treatment i appears in each of the last two periods,
treatment j; does not appear at all.

Then no balanced uniform design in £2,,, can be universally optimal for the
estimation of residual effects over Q,, .

Street [27] gives initial columns for designs satisfying the conditions of the
theorem for all £ =5.

Let n =t(t — 1) and suppose there is a balanced, uniform design d in Q, ),
with the property that every ordered pair of distinct treatments appears exactly
once between the last two periods of d. Construct the design f from d by replacing
the rth period in d with the (+ — 1)th period. Then f is called an orthogonal
residual effects design and has the property that C, = 0. Kunert ([14], Proposition
3.3) has shown that orthogonal residual effects designs are universally optimal for
the estimation of residual effects over €2, ,,_).,.

Construction 11 (Sonnemann, quoted in Kunert [16]). Let L be a balanced,
uniform RMD with t=n=p =2m. Adjoin to L a first row containing the
treatment 2m + 1. Use each column of this augmented square to construct a cyclic
square of order 2m + 1. Juxtaposing these squares gives a balanced, uniform RMD
witht =p=2m+ 1, n =t(t — 1) and with every ordered pair of distinct treatments
appearing exactly once between the last two periods.

Proof. Since L is a balanced, uniform design, the augmented square is uniform
on units, and the final array is obtained by juxtaposing cyclic squares obtained
one from each unit, we see that the final array is uniform. Since L is uniform,
treatment 2m + 1 is adjacent to each treatment equally often and, since L is
balanced, so is every other treatment. The ordered pairs in the last two rows of
the array are the pairs of treatments adjacent in L together with 2m + 1, ), i in
the first row of L and (j, 2m + 1), j in the final row of L. Since L is uniform and
balanced, the result follows.

Example 12. Let m =2, t =4. Then

S 555
1 2 3 4 L2 34
L% 34! L (adjoined)=[2 3 4 1
4 123 4123
3412 3 41 2
and the RMD is
S 342 1S5 4132512435231 4
1 S 34225413351 244523.1
2153 43254143512 14523
4 2153132542 435131452
342154132512 43523145
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There do not appear to be any construction methods for orthogonal residual
effects designs for even ¢.

Suppose that =p >2 and that n=Ar, where A>¢(t—1)*/2 and Ae Z. Let
g€, , be such that the first #(t — 1) units of g form an orthogonal residual
effects design and the remaining n — t(t — 1) units of g form a balanced uniform
design. Then g is universally better than any balanced uniform design in €, , for
the estimation of direct effects (Proposition 2.4, Kunert {14]).

Suppose that the class of designs is &2, ,, ,U Q,',,,,, and that the direct effects are
to be estimated. Then the universally optimal designs are generalised Youden
designs with m;=rj/t if t|n and ¢|p, m; =13, h,—kﬁ,-k/n if t/n and ¢|p and
m; =Y, n,f,/p if t|n and tfp (Theorems 4.1, 4.4, 4.8 Kunert [13]). General
construction methods for these designs do not seem to be available. Indeed
generalised Youden designs have mainly been constructed by complete search
techniques and tables for generalised Youden designs with ¢ <25, n, p <50 have
been given by Ash [3]. These tables do not give the values of m;.

The final results we shall mention in this section concern nearly strongly
balanced generalised Youden designs. A design is said to be nearly strongly
balanced if MM" is completely symmetric and if, for all 1<i, j<t, m;e
{[n(p— 172, [n(p—1)t7?]+1}. Whenn=ar’ + bt, I<b<t—1, p=Atthenrthe
nearly strongly balanced generalised Youden designs are universally optimal for the
estimation of direct effects over the class of designs in &, ,, , which are uniform on
units and in the last period, for the estimation of residual effects over the class of
designs in £, , , which are uniform on the units and on each of the first and last
periods and for the estimation of direct effects over Q,, , ifa=b(¢t —b — 1)/t and
Az=max{2,b(t—b)/4+2/t} (Theorems 5.3, 5.4 and 5.8, Kunert [13]). Again
there do not appear to be any construction methods available for these designs.

3. Optimal designs for circular RMDs with independent errors

The results of this section are similar to those of the previous section.

The universally optimal designs for the estimation of direct, as well as of
residual, effects over £, , are the strongly balanced, uniform designs (Theorem
3.1, Magda [19]). If ¢ = p then the universally optimal designs for the estimation
of direct, as well as of residual, effects are the uniform, balanced designs
(Theorem 2.2, Kunert [15]). If we restrict the class of designs to the equi-
replicated £, , then the strongly balanced, uniform designs minimise the
variance of the best linear unbiased estimator of any contrast of direct effects, and
of any contrast of residual effects (Theorem 3.3, Magda [19]). The universally
optimal designs for the estimation of direct, as well as residual, effects over I
are the balanced, uniform designs (Theorem 3.4, Magda [19]).

Magda [19] also establishes that if the term for the period effect is removed
from the model then so is the requirement of uniformity on periods. Similar

np
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results are true for removing the unit effect and both the period and unit effects.

The necessary conditions for the existence of a strongly balanced, uniform
circular RMD are that t|p, t|n and | pn. Thus p = At and n = A,t, say, A,,
A, € N. Note that the designs obtained from construction 2 are also circular,
strongly balanced, uniform designs with p =2¢ and n = ¢>.

Another family of circular, strongly balanced, uniform designs can be obtained
from the type 1 serially balanced sequences of R.M. Williams [30].

A type 1 serially balanced sequence of order ¢ and index A is a sequence of
length Ar* + 1, which has the following properties:

(i) the first and last elements are the same;

(ii) the first element appears At + 1 times;

(iii) the remaining ¢ — 1 elements appear At times each;

(iv) each of the ¢* ordered pairs of elements appears A times among the Af®
pairs of consecutive elements;

(v) aside from the first element, each element appears precisely once in each
of the Ar successive sets of ¢ elements.

We denote such a sequence by SBS1(t, 4).

Clearly instead of repeating the last element we just view the sequence as being
circular so the sequence is uniform. We develop the sequence mod ¢ to obtain a
circular, strongly balanced, uniform RMD with p = A¢* and n =1.

Construction 13 (R.M. Williams [30]; see also Street and Street [25]). An
SBS1(¢, 2) exists for all t = 4.

Proof. If t =2m let L = (I;) be the Latin square with first row and column given
by (122m32m—-14---mm+2m+1) and with [;=/,+1,;—1(mod2m),
i>1, j>1. Let N be the Latin square obtained from L by applying the permu-
tation = (123 -+ - m) to the elements of L. The sequence is obtained by writing
down the first row of L, then the row of N beginning with the elementm + 1, followed
by the row of L beginning with the element at the end of the row of N, and so on,
until m rows of both L and N have been used. The (2m + 1)st row to be used is
taken from N and then the alternation continues until all the rows of both squares
have been used. Since both L and N are balanced in rows, all ordered pairs of
distinct elements appear twice. If we can show that each row of L and N is used
precisely once, then pairs of the form (i, /) will appear twice in the final sequence.
Let us index the rows in L and N by their first elements. In L, if the first element
in a row is i, then the last element is { + m (mod 2m) whereas in N, it is

a'(iy+m (mod2m), ifl<ism,
or
x(i+m), ifm+1<i<2m.
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Hence the rows used from L and N are
L1 2 3 cem 2m 2m —1 e o m+1
N: m+1 m+2 m+3.-- 2m 1 m m—1-..2

and we see that each row is used once, as required.

If t=2m+1, let L be the Latin square with first row and column
(122m +132m4---mm +3m + 1m+2) and with [; =1, +1;; ~ 1(mod2m + 1),
i>1, j>1. Let N be the Latin square obtained from L by adding m to each
element (mod 2m + 1) and reversing each row. The construction is similar to that
for ¢ even, except that now all the rows in L are used and then all the rows in N.
Verification is straightforward.

Example 14. Let m =2, t =4. Then

1 2 4 3 21 43

2 31 4 1 3 2 4
L= N =

4 1 3 2|’ 4 2 31

3 4 2 1 3 4 1 2

and the first column is
1243 3412 2314 4231 1324 4132 2143 3421.

The proof of the next result is also straightforward.

Construction 15 (Sharma [24]). Develop the first column
(br—=11¢t—=22¢=3--¢=21t=-10"

modulo t. This gives a circular, strongly balanced, uniform RMD with n =t and
p = 2t. The first column can be extended in multiples of 2t as required.

There are two known families of circular, balanced, uniform RMDs.

Construction 16 (Sonnemann, quoted in Kunert [16]). Let t = 2m and obtain the
first set of t columns by developing the column

Cml12m—122m~23---m+1m)

and call thisset L. Let 1 =(12-- - m—12m —1---myandlet L,= a'L so L = L,,.
The required RMD is (Ly, Ly, ..., L,_;) and has p =t=2m, n=1(t — 1).

Proof. Each L; is a balanced, uniform RMD. Hence we need only consider the
pairs formed by viewing the array as circular. The set of pairs so obtained from L
are {(m,2m), im+1,1), (m+2,2),...,(m-1,2m—1)} =S, say. The pairs
obtained from L; are found by applying 7’ to the elements of the pairs in S. The
result follows.
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Example 17. Let m =3, t =6. Then 7 =(12543) and

6 1 2 3 4 5 6 2 5 1 3 4]
123 456 251346
5612 3 4 4 6 2513
L=Li=1, 3 4 5 6 1 Li=al=15 | 3 4 6 2
4 56123 346 2 5 1
3 4 5 6 1 2] (1 3 46 2 5]
(6 5 4 2 1 3] 6 4 3 5 2 1]
542136 4 35216
|3 6542 |t 64352
274 21 3 6 5 3713521 6 4
1 365 42 216 435
2 1 3 6 5 4] 521 6 4 3]
(6 3 1 4 5 2]
3145726
Lo]2 63 1L 45
‘711 45 2 6 3
52631 4
(4 5 2 6 3 1]

The other family is obtained from the type 2 sequences of R.M. Williams [30].

A type 2 serially balanced sequence of order ¢ and index A is a sequence of
length At(r — 1) + 1, which has the following properties:

(1) the first and last elements are the same;

(ii) the first element appears A(f — 1) + 1 times;

(iii) the remaining ¢ — 1 elements appear A(t — 1) times each;

(iv) each of the ((r — 1) ordered pairs of elements appears A times among the
At(t — 1) pairs of consecutive elements;

(v) aside from the first element, each element appears precisely once in each
of the A(t — 1) successive sets of t elements.

We denote such a sequence by SBS2(¢, A).

Again rather than repeat the last element we view the sequence as circular, so
it is uniform. We develop the sequence modulo ¢ to obtain a circular, balanced,
uniform RMD with p = At(t — 1) and n =¢. The verification of the next result is
straightforward.

Construction 18 (R.M. Williams [30]; see also Street and Street [25]). An
SBS2(t, 1) exists for all t=4 and is obtained by developing a column of size
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t and concatenating the columns in the natural order. The initial columns are:

,2,2m,3,2m—1,..., mm+2, m+1,o, ift—1=2m,
1,o,2,4m+1,3,4m,4,.. m,3m+3, m+1,m+2,3m+2,
m+3,3m+1,...,2m+1,2m+3,2m+2,

ift—1=4m+1,
1,0,2,4m+3,3,4m+2,4,... m+1,3m+4, m+2, m+3,

3m+3, m+4,3m+2,...,2m+2,2m+4,2m+3,
ift—1=4m+3;

where the blocks are developed modulo t — 1 and co+i =« for all i.

Example 19. Let m=1, ¢—1=5 =6 The required column is
10235422034153045214051325x1243.

4. Optimal designs for RMDs with correlated errors

In this situation the optimal designs usually prove to be variants of the designs
constructed by E.J. Williams [29] and called Williams designs by Kunert {16].
Let w; = m;; + m;; and let d be a uniform RMD with ¢ = p and in which the w;; (i # )
are equal. Then d is said to be a Williams design. Let d =(d;) be a Williams
design and let B be the block design with blocks (dy;, d,;), j=1,2,...,n. Bis
called the end-pair design. A design is said to be connected if, given any two
treatments, it is possible to form a list of treatments, starting with one and ending
with the other, such that any two adjacent treatments in the list appear in some
block of the design. If t=n and if the end-pair design is connected then the
original design is said to be a Williams design with circular structure. 1If the
end-pair design is a balanced incomplete block design then the original design is
said to be a Williams design with balanced end-pairs. We will let A, ,, be the set
of all Williams designs on n units and using ¢ treatments.

Recall that Corr(E,,, E,)=A*"#'§,,.. The optimal designs depend on the
value of A. For example, a Williams design with balanced end-pairs is universally
optimal for the estimation of treatment effects over the class of uniform RMDs
with ¢ = p and is universally optimal over £, , ; whenever

A= {r—2 - VE=8}/{2(r - 3)}

and ¢ =4 and for all A when t =3 (Theorem 1, Kunert [16]).

Suppose that n < (3). Then a Williams design is E-optimal over the class of
uniform RMDs which are not Williams designs and this is true for all A
(-1<A<1). If n=t=4 and —1/(t—1)<Ai<} then a Williams design is
E-optimal over the class of RMDs which are not Williams designs. If n=¢=5
and —1/(t — 1) < A <1, then a Williams design with circular structure is E-optimal
over Q,,, (Theorems 2 and 3 and comments on p. 384, Kunert [16]). If A>3 or
A<—1/(t —1) the optimality, or otherwise, of Williams designs has not been
established.
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The designs given in Construction S are Williams designs and the first ¢ columns
of the designs given in Construction 6 are Williams designs with circular structure.
The designs given in Constructions 11 and 16 are Williams designs with balanced
end-pairs. Indeed one needs only juxtapose the first m squares in Construction 11
to get a Williams design with balanced end-pairs. The next result is straight-
forward to prove and gives Williams designs with circular structure for t = 4m + 2.
The existence of Williams designs with circular structure for r=4m is still
unresolved.

Construction 20 (Street [27]). Developing the column

(12m22m—-1---mm+13m+13m +23m3m+3---2m+24m+12m + 14m +2)
modulo t = 4m + 2 gives a Williams design with circular structure.

Example 21. Let m =1 and ¢ = 6. Then the Williams design is
1 23 456
23 45 61
4 561 23
56 12 34
345612
6 1 2 3 45

and the end-pair design is (1, 6), (2, 1), (3, 2), (4, 3), (5, 4), (6, 5).

Any design in A, ,, , performs equally well under the A-optimality criterion but
not under the E-optimality criterion. For d € A, ,, ,, let M, (k) be the number of
columns in which treatments | and j appear with exactly k —1 rows between
them, let [,,(j) be the number of columns where treatment i appears in row k and
treatment j does not appear at all and let h;(k) = L (j) + 1, (i).

Theorem 22 (Result 2, Kunert [17]). Assume that t|n and (3)|n and that
de A, , exists with

(i) Mik)=2(p—Kk)n/(t(t—1)), k=1,2,...,p—1,

(ii) hy(k")=2n(t=p)/t(t-1)), k'=1,2,...,p,
forall 1<i,j<t Then d is E-optimal over A, , , for all —1<A<1.

A perpendicular array is a p X (5) array, ¢t odd, containing the symbols
1,2,...,t arranged so that, considering the set of pairs coming from any two
rows of the array, each unordered pair appears precisely once in the set. Any
perpendicular array satisfies the conditions of the theorem (Street [28]). The
proof of the next result is straightforward.

Construction 23 (Street [28]). Assume that a set of m idempotent MOLS of order
t exists. Construct an array A = [a;] of size (m + 2) X 1* as follows. Let a; be the ith
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row of A. Then a,,=[1.2,...,t]®j, and a,,.,=j ®[1.2,...,t]. Then,
fori#m+1, m+2, theentry in rowiand column j is the entry in the (a,,., j, 4 +>;)
position of square i. Now remove from A the t columns containing only one
symbol. The resulting array is a design with n=1(t — 1) and p = m + 2 satisfying
the conditions of Theorem 22.

Example 24. Let m =2 and ¢ = 4. Let the two idempotent MOLS be

1 3 4 2 1 4 2 3
4213’d3241
2431 ™ 4132
312 4 2 31 4
The required design is
111222333 444
234134124123
3424132 41312
4 233 41 412231

5. Miscellaneous designs

Some other families of RMDs have been constructed. We mention some
below.

Construction 25 (Afsarinejad [1]). If t is even, t=Ap—1)+1 and n =i,
A€ N, then a balanced RMD can be obtained by developing, in turn, mod t, each
of the A columns

(ciyCaee o € (€ Cputy oo Cop)s o - o (Camiypiam2y « - -5 C1),
where
(cr,caovnne)=(1, 62,0 =1,3,¢=2,...,t/2,(t+2)/2).

Proof. The set U{_, {c,—¢;,_,} contains each non-zero number mod¢ and so
each ordered pair of distinct treatments will appear precisely once in the final
array.

Example 26. Let p =4, A=3so t=10. Then

(¢y, €2, €3, ..., C10) =(1,10,2,9,3,8,4,7,5, 6) and the design is

1 2345678 910910 1234 5 678456 7 8 910123
100 1234567 8 93 4 5678 9101278910 1 2 3456
2 345678910 18 910123 4 567567 8 910 1234
910123456 7 8B4 5 678910 123678 910 1 2345

If A(p — 1) =t and n = At then a strongly balanced RMD can be obtained in the
same way using the sequence (¢, ¢,, ..., ¢, ¢,).
A similar construction works for odd ¢.
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Construction 27 (Afsarinejad [1]). Iftisodd, t=A(p— 1)+ landn=At, AeN,
then a balanced RMD can be obtained by developing, in turn, each of the A
columns

(Clv Cory o vy C,,), (C,,, CI’+|’ ey CZ/)—I)) ey (C(A—l)p—(/\—2)1 ce ey C,)

where

(crocay ey e)=0,63,6-2,51t—4,...,0—-3)/2,+5)/2, (t+1)/2,
(t+5)/2(t—-3)/2,...,41).

Again if A(p — 1) =t and n = At then a strongly balanced RMD can be obtained
in the same way using the sequence (c,, ¢2, - . ., Cur1y2s Cisryr Casapar « - -0 Cr)-

Chakravarti [6] gives some sequences, based on polynomials, which give rise to
RMDs which are uniform on the periods, have p = ¢ and in which every ordered
triple of distinct treatments appears equally often.

Example 28. Let =8 and let ¥ be a primitive element of GF(8), with primitive
polynomial x*+x+1. Let GF(8)={ay=0,a,=1,a,=9,..., a;=19°} and
define the polynomial f(.) by

X Iaf(, o a &y Oy Qs O O

f(X)lozn o @ @y & As A

Let P(x)=w'"'f(x), i=1,2,...,7 and let L,=(a; + P(x)), j, x=0,1,...,7;
i=1,2,...,6. Then AT=(LT, L}, ..., L7})is the required design.

6. Conclusion

We conclude with a summary of some of the open problems.

Strongly balanced, uniform RMDs can only exist if p = 4,¢, 4, =2, n = 4,¢* and
Ay, A, € N. Constructions 2 and 3 give such designs but non-isomorphic designs
with these parameters are of interest; see, for example, Kok and Patterson [12].

Balanced, uniform RMDs can only exist if p=24, n=4,
and t(t—1)|n(p—1). The known families have t=p=2m, n=2A,;
t=2m, p=t+t(t—Va, a=1, n=At; t=p=2m+1, n=2A,¢; t=2m+1,
p=t+tit—Na,a=1, n=Agandt=p=2m+1, n=1(t—-1).

Generalised Youden designs with M =:7"J,,D, if t|n and ¢|p, with
M=n""'n,N}, if t{n and ¢|p and with M =p~'N,N_, if t | n and t{p, as well as
nearly strongly balanced, generalised Youden designs are required.

Circular, strongly balanced, uniform RMDs can only exist if p=A4,t, n= At
and A,, A, € N. The smallest combination of p and n known is p =2t and n =1.
Do such designs exist for p =3¢ and n =(?

Circular, balanced, uniform RMDs can only exist if p=4,, n=A4, and
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t(t — 1) | np. Known designs have either p=t=2m, n=t(t—1) or p=A(t - 1),
Azl n=1

No general construction methods for Williams designs with circular structure
with ¢ = 4m are known. Such a design cannot exist for ¢ = 4. Examples are known
for ¢t =8, but have only been found by exhaustive search. It is also easy to show
that a single column, to be developed mod 4m, cannot exist.

Designs satisfying the conditions of Theorem 22 are known for p =3, 4 and 5
for all odd ¢ (except possibly p =5 and ¢ = 39) (Lindner [18]) but results for larger
p are much sparser.
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We simplify our construction [12] ol non-trivial ¢-designs without repeated blocks for
arbitrary +. We survey known results on partitions of the set of all (r + 1)-subsets of a v-set into
S(A:t, t+ 1, v) for the smallest A allowed by the obvious necessary conditions. We also obtain
some new results on this problem. In particular, we construct such partitions for 1 =4 and
A = 60 whenever v =60u + 4, u a positive integer with ged(u, 60) =1 or 2. Sixty is the smallest
possible A for such v.

1. Introduction

It has been known for a long time that there are a lot of t-designs for all 1.
However, it was not until relatively recently that the first examples of non-trivial
6-designs without repeated blocks were found [7]. In [12], we constructed
non-trivial r-designs without repeated blocks for all t. More precisely, we showed
that if v =1t (mod (¢t + I)!**"), v=r+1, then the set of all (1 + 1)-subsets of a
v-set can be partitioned into S((r + 1)!®*Y; £, 1 + 1, v).

In Section 2, we give a simpler proof of the main result, mentioned above, of
[12]. Actually, we will prove a somewhat stronger theorem, but this is only due to
the fact that we did not try to minimize the A= (¢t + 1)!**" in [12]. The main
construction of Section 2 (Proposition 6) is actually a special case of the
constructions of [12].

In Section 3, we survey known results on partitions of the set of all
(¢t + 1)-subsets of a v-set into S(A;¢, ¢t + 1, v) for the smallest value of A allowed
by the obvious necessary conditions. We also obtain some new results on this
problem. For instance, we prove that the set of all 5-subsets of a (60u + 4)-set can
be partitioned into S(60;4, 5, 60u +4) for all positive integers u such that
ged(u, 60) =1 or 2. (Sixty is the smallest value of A for which an S(A;4, 5,
60u + 4) can exist.) '

The new results in Section 3 use a theorem, which is implicit in [12]. However,
unless one has a very good understanding of the techniques of [12], this is by no
means obvious. Therefore, we give, in Section 4, a completely self-contained
proof of this theorem.

* Research supported in part by NSA grant MD A904-88-H-2005.

0012-365X/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)
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2. The existence of locally trivial z-designs without repeated blocks for
arbitrary ¢

In this paper, we will assume all sets that are not obviously infinite, to be finite.
If X is a set, then P(X) is the set of all subsets of X, P,(X) the set of all k-subsets
and P, ,,(X) the set of all B € P(X) with k, <|B|<k,. A t-X-multiset will be a
function u: X — N such that {u| = ¥, u(x) =t. We call p(x) the multiplicity of
x. We call x an element of p if u(x)#0 and a repeated element if u(x)=2. By
the number of elements of u having a given property, we will always mean the
sum of the multiplicities of the elements having that property. A multiset without
repeated elements will be identified with its set of elements. For instance, if X is a
set and A is a nonnegative integer, A - X will denote the X-multiset defined by
(A-X)x)=AforallxeX. If Y © X and p is an X-multiset, with p | (X — Y) =0,
we identify p and p | Y. If pis a P(X)-multiset, we will often call the elements of
X points and the elements of u blocks. An isomorphism between a P(X)-multiset
u, and a P(X,)-multiset u, will be a bijection 0:X,— X, such that u, = u,°0.
(We identify o with its canonical extension to P(X,).) If p is a P(X)-multiset, we
will denote the automorphism group of p by Aut(u). If YcX, we call a
P(X)-multiset u Y-trivial if &y < Aut(u). We call p r-trivial if p is Y-trivial for
some Y € P(X).

A t-design S(A;t, k, v), where A, ¢, k and v are nonnegative integers with ¢ <k,
is a P.(S)-multiset yu, |S| = v, such that every f-subset of § is contained in exactly
A elements of u. For ¢-designs and related notions, we use the convention that if A
is not specified, we have A=1. Thus, we often write S(t, k, v) instead of
S(1;¢ k,v). A well known necessary condition for the existence of an
S(A;t, k, v), v=k, t >0, is that

(20620
t—1 t—1
should be an integer for all i =0, 1,...,¢—1. If k=¢+ 1, this simplifies to the
condition that A should be divisible by A(t, t + 1, v)=ged(v —t, lcm{l, ... t+
1}). The function A(¢, ¢ + 1, v) will play an important role in the sequel.
At=SAtt+1,v), A, t, veN, v=r+1, will be a P, (X)-multiset u,
|X|=v —1¢ such that, for every Ae Py, (X), we have (t+1—[A)u(A)+
Yeex—a(AU{xP)=2-(4) (We put u(@=0.) If X is a set, if p is a
P(X)-multiset and if X, < X, then p || X, will be the P(X,)-multiset obtained by
intersecting all elements of u with X,. If uis an S(A;¢,r+1,v),v=r+1, 0na
set S and if XeP, (5), then u|| X is a t—S(A;r,t+ 1, v). (Indeed, let
A€ P, (X). Let v be the submultiset of u consisting of all B such that either
BNX=AorBNX=AU{x}, xeX—A. Let € be the P,_ 4 (S — X)-multiset
obtained by replacing each B in v by the elements of P,_, (B - X). If
BNX=A, we have |P_,(B—X)|=t+1—]A] and if BNX=AU{x}, xe€
X—~A, we have |P_, (B-X)|=1. Thus |e|=(+1-]AN(u ]| X)(A))+
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Yicex—a (1 || X)(A U {x}). On the other hand, as u is an S(&;¢, t + 1, v), we have
e=A-P_ 4 (S—X) Thus le|=4-(,"a)=2"(4))

An & =S\, t+1,v), A, t, veN, v=r+1, will be a P, (X)-multiset v,
|X|=wv —1t, such that, for every A € P, (X), we have |[A| v(A)+ X, .x_ V(AU
{x})=A. (Again, we put v(#)=0.) If u is a Y-trivial S(A;¢, t+ 1, v), v=1+1,
onasetS, |Y|=t then p||(S—Y)is a r—S(A;t, ¢+ 1, v) such that, for all
BeP , (S-Y) (u|l(S—Y))B) is divisible by

<t+1t—|B|)=(|B|t—l)'

If £is at—S(A;¢,t+1,v) on a set X such that, for all Be P, ,,,(X), &(B) is
divisible by (5 ). then the P, . ,(X)-multiset y defined by y(B) = £(B)/(;5/_ 1),
isan &, —S(A; ¢, ¢+ 1, v). Finally, if visan &, — S(A;¢, ¢+ 1, v) on a set X and if
YNX=@, |Y|=t then the P, (XU Y)-multiset u defined by u(B) = v(B N X)
is a Y-trivial S(A;¢, ¢t +1,v). Thus, ¢-trivial S(A;¢, 1+ 1,v) and &, —S(A; ¢, t +
1, v) are just two different ways of looking at the same structure and we will use
the two completely interchangeably throughout this paper.

If ¢ is positive integer, put A(t)=Ilcm{(}); i=1,...,1}. The following
proposition is an immediate consequence of the above remarks.

Proposition 1. If u is a t—-S(A;,t+1,v), t=1, on a set X, then the
Py, 1(X)-multiset u* defined by

_u(B) - M)

(|B|t—1>

isan &, —S(A-A(t); ¢, t + 1, v).

u*(B)

If S and J are sets, S’ denotes the set of all functions from J to S. A (J, §)-array
is an $’-multiset. The elements of the array are called rows and the elements of J
are called columns. The elements of § are called entries. A (J, S)-array is called
totally symmetric if it is invariant under all permutations of J. An RA(A;¢, ¢t +
L,v), A, t,veN, will be a (J, S)-array u, [J| =t +1, |S| =v, such that, for every
JiePy(J) and BeS”, there are exactly A rows R of u with R|J,=B and
IR —=J)|=1. In |11,12] an RA(A;t,t+ 1, v) is called a regular OA(A;¢, t +
1, v). A totally symmetric RA(A;¢, 1+ 1, v) will be denoted by Fpa(A;t, t+
1, v). The following proposition is straightforward (A proof can be found in [11],
where a slightly different notation and terminology are used.)

Proposition 2. Let J be a set, [J|=t+1=2. Let u be a positive integer. Put
A=At t+ L u+y=ged(u, lem{l, ..., t+1}). Put y,={CeZ;%,.,C(j)e
{Aa, Aa+1,..., Aa+A—=1}}, a€{0,1,...,(u/A)—1}. Then, for all ae
(0, 1,...,(w/A)—1}, vois an Fea(Ast, t+1,u) and LDy, =72,
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If ReS§’, we can define a |J| — S-multiset R’ by putting, for each x €S,
R'(x)=|R™'(x)|. Let M/(S) be the set of all +— S-multisets. If u is a totally
symmetric (J, S)-array, then we can define an M,;(S)-multiset u’' by putting
1'(B) = u(R), where R € $/ and R’ = B. (As p is totally symmetric, u(R) does not
depend on the choice of R.) We can then go on and replace each multiset in u' by
its underlying set. This yields a P, ,(S)-multiset p”.

Proposition 3. If p is an Fpa(Ast,t+ 1, u),u=1, then p" is a t —S(A; 1, t+
1, u+1).

Proof. Let A€ P, ,(X), where X is the set of entries of u. Let b ¢ X. Intuitively,
we think of b as a symbol meaning {blank ) It is well known that the number of
(t - |Al) — (AU {b})-multisets equals (,4,). For every (1—|A|)—(AU{b})-
multiset C there are exactly A multisets in y’ that can be obtained by adding
together A, all elements of C distinct from b and C(b)+ 1 copies of some
element x of X. Every element of u' having A U {x}, x ¢ A, as its underlying set
can be obtained in this way from exactly one (¢ — |A]) — (A U {b})-multiset. On
the other hand, an element of u' having A as its underlying set is obtained from
t+1—|A| different (r — |A|) — (A U {b})-multisets. It follows that

(t+1—|ADp"(A) + ;_A p AU {x})=2- <|/:I) :

Thus, p"isat—SA; e+ 1, u+e). O

Proposition 4. For all positive integers u and t, there is a collection (u,),cx of
F=SAt t+ 1L, u+1t)-At);t,t+ 1, u+t) on a u-set X such that %, pxu, =
At) Py, (X)) and such that, for every Be P, (X), u.B) is divisible by
A@)/(ip'-1)-

Proof. Let J be a (¢ + 1)-set. By Proposition 2, there is a collection (¥,),cr,
R={0,1,...,(w/AMt,t+1,u+1t))y—1} of Fea(At, t+ 1, u+1);t,t+1, u) such
that ¥, .r v, = Z.. Put X =7, and u, = y.*, where * is defined as in Proposition 1.
Then (u,),.r satisfies all required properties. We only prove Y, .pu, =
A(t) - Py ,.1(X), all other properties being easy consequences of Propositions |
and 3. Let Be P, ,,(X). We have

> w(B)= 2 yi*(B) =, Y’(B) M) __ A0 > YUB).

reR reR ( ) ( t )reR
1B -1 |Bl -1

As 8,cryr=X’, we have ¥, v, = M, (X). Thus ¥, 7/(B) equals the number
of (¢t + 1)-B-multisets containing every element of B at least once, which equals
the number of (¢t+1—|B|)— B-multisets, i.e. (,3"-,;). Thus Y, .zu(B)=
Aln). O
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Putting &, = Ay - u,, where (u,),r satisfies the conditions of Proposition 4,
yields

Propeosition 5. For all positive integers u, t and A, there is a collection (g,),.y of
I =S At t+ 1L, u+0)-At);t,t+1, u+1t) on a u-set X such that ¥,., €, =

Ao A1) - Py o1(X) and such that, for every Be P, ,,.(X), €(B) is divisible by
Ao A(t)/(|B|‘— l)-

If vis a P(X)-multiset and A € P(X), then |[A| v(A)+ X, cx_a V(AU {x}) =
Yeex V(A U {x}). We will often use this simple, but useful, observation implicitly
when dealing with &, — S(A;¢, t + 1, v).

Proposition 6. Let (€,),.x be a collection of &, —S(A,;t,t+ 1, u+1t) on a u-set X
such that Y., g€ =wP (X), w=1. Assume that, for each Be P, ,.,(X) a
positive integer M(B) is given such that A(B) divides €.(B) for all r € R. Assume
moreover that, for each Be€ P, (X), there is a family (v[Bl)cz,,., of
Fror-p—S(A(B);t+1—|B|,t+2—|Bl,w+t+1—|B|) on Z, such that
E/ezwm, vi[B}= P 12— 5 (Z.,).

Then there is a collection (W,),er of ,—S(A,;t,t+ 1, uw+1t) on X X Z,, such
that ¥, cx pt, = Py 11 (X X Z,). Consequently, if Y is a t-set with YN (X x Z,,) =8,
then there is a collection (v,),.g of Y-trivial S(A,;t, t+ 1, uw+tyon (X X Z,)UY
whose blocks partition P, (X XZ,)UY).

Proof. Choose, for each Be P ,,,(X), a family (3,[B]),.r of pairwise disjoint
(¢,(B)/A(B))-subsets of Z,,,,(gy Whose union is Z,,, ). If Ce P(X X Z,,), let B(C)
be the set of all x € X such that there is an element i of Z,, with (x, i) e C. For
every x € X, let C, be the set of all ieZ, with (x,i)eC. If Ce P, (X xZ,)
and xeB(C), then, as Yz, e, YIBO)=Pi 2 pcy(Z,) and C.e
P\ 12— 18(cy (Z,,), there is a unique element I(C, x) of Z,;s(c) such that
C, € VieolB(C)]. Let u, be the set of all CeP,, (XXZ,) such that
Yxeny l(C, x) € 6,[B(C)).

For each CefP,. (X XZ,), there is exactly one reR such that
Yieny I(C, x) € 6,|[B(C)] and thus, exactly one r € R such that C e u,. Thus
Lrer Uy = Py (X X Z,).

It remains to be proved that each p, is an &, —S(A,; ¢, t+1, uw+1t). Let
AeP, (X xZ,). Obviously, B(A) € P, (X) and we have ¥, x £(B(A)U {x}) =
A,. Let x € X. We want to count the number of i € Z,, such that AU {(x, i)} € y,.
IfieZ,, then B(AU {(x, i)}) =B(A)U {x}, (AU{(x, )}),=A,U{i} and (AU
{(x,0)}),=A, for all y e B(A)—{x}. The first and third equalities show that
Byenay-1x (AU {(x, D)}, y) is independent of i. Put ¥, cpeay-ix) (A U{(x, 1)},
y) =ly(x). We have A U {(x, i)} € p, iff (AU {(x, i)}, x) + lo(x) € 6,[B(A) U {x}].
There are |6,[B(A)U {x}]| =& (B(A)U {x})/AM(B(A)U{x}) elements ! of
Z,aayoixy Such that [+1ly(x) € 8,[B(A)U {x}]. For each such /, we have
Toez. (N[B(A) U {x (A, N {i}) = A(B(a) U {x}).
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Remember that y[B(A)U{x}] is a set. (This follows from
Yiezumaniy YIBAYU {x}] = P21y (£4).) Thus, for each of the ob-
tained I, there are exactly A(B(A)U {x}) elements i of Z, such that A U
{i} e v[B(A)U {x}], i.e. such that /(A U {(x, i)}, x) =1 It follows that, for each
x € X, there are exactly ¢, (B(A)U {x}) elements [ of Z,, such that AU {(x, i)} €
iy Thus L pyexsr, t(AU{(, D)}) = Eiex e(B(A)U{x})=4,. O

A large set of disjoint S(A; ¢, k, v), briefly LS(A; ¢, k, v), is a collection ().,
of S(4;¢t, k, v) on a v-set S, v =k, such that ¥,,., u, = P.(S). An LS(A; ¢, k, v) is
called Y-trivial if all its members are Y-trivial. Because of the remarks preceding
Proposition 1, it is obvious that ¢-trivial LS(A; ¢, ¢ + 1, v) and collections (#,), . of
S, —S(A;t, t+1,v) on a (v —t)-set X satisfying ¥,.. 4, = P, ., 1(X), are just two
different ways of looking at the same structure.

Put A*(¢e)=lem{l, ..., t+1} and, for t=1, l{t)=1lc1 . A() - A*(i). By
convention, we put /(0) = 1.

Proposition 7. If v=t(mod(t)), v=t+1, then there is a t-trivial LS((1);1,
t+1,v).

Proof. For every v-set §, v =1, there is exactly one LS(0, I, v) on §, namely
{{s};s € S}. Thus, the proposition is true for t = 0. Assume that ¢ = 1 and that the
proposition is true for all ¢, 0=t <t Put u=@—-0)/(I(t -1)-A(r)). As
u=0(mod A*(t)), we have A(t, t + 1, u +t)= A*(t). Applying Proposition 5 with
Ay =1(t — 1) yields a collection (g,),.x of & —SU(t);t,t+ 1, u+1) on a u-set X
such that ¥, g &, =1(r — 1) - A(t) - P, ,+,(X) and such that for every B € P, , (X),
&,(B) is divisible by I(t—1)-A(t)/(,"-1)- Applying Proposition 6 with w =
[(t — 1) - A(¢) yields Proposition 7. (If B e P, ,,(X), put A(B)=1(t + 1 —|B|). The
existence of the y/[B] follows by induction. If B € P,(X), put A(B)=w and put
voBl =Py ,1(Z,).) O

Obviously, A(t) divides ¢! and A*(¢) divides (¢ + 1)!. As ¢! divides ¢! for all
t=1,, as [(0)=1, I(1)=2 and, for r=1, I(t) = A(t) - A*(¢) - It — 1), it i easy to
see that /() divides (# + 1)!"" for all «. Thus Proposition 7 implies Proposition
4.3 of [12].

3. Smaller values of A and (¢, ¢ + 1, v)-decompositions

If we want to find smaller values of A, the following is a better tool than
Proposition 6.

Proposition 8. Let (¢,),.r be a collection of &, ~ S(A;t,t+ 1, u +1t) on a u-set X
such that Y,cpe,=w- P, (X), w=1. Assume that, for each BeP,,,(X), a
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positive integer A(B) is given such that A(B) divides €,(B) for all r € R. Assume
that, for each B € P, ,,1(X), there is an LS(A(B);t+1—|B|,t+2—|B|, w+1t+
1 —|B|). Then there is an LS(A;t, t + 1, uw +1).

Proposition 8 is implicit in [12]. However, unless one has a very good
understanding of the techniques of [12], this is by no means obvious. Therefore
we will give, in Section 4, a completely self-contained proof of Proposition 8.
Actually, we will prove a slightly more general result. The difference between
Proposition 6 and Proposition 8 is that, in Proposition 8, the LS(A(B);r+1—
|Bl, t +2—|B|, w + t +1—|B]) do not have to be (¢ + 1 — | B{)-trivial. We pay for
this by the fact that the obtained LS(A;¢, ¢+ 1, uw + ) will not necessarily be
t-trivial. We are, however, more interested in getting reasonably small A than in
t-triviality. Although we defer the proof of Proposition 8 to Section 4, we will
give some examples of its usefulness in the present section.

If pis a P(X)-multiset and A = X, we will denote by u, the P(X — A)-multiset
whose blocks are the intersections with X — A of the blocks of u containing A.
We say that u, is derived from pu. Let A € P, (X). If uis an S(&;¢, k, v) on X,
then u, is an S(A;¢t—|A|, k—|A|,v—JA]) on X—A. If (u,),cx is an
LS(A; ¢, k, v) on X, then (i,.),cr is an LS(X; ¢t — |A|, k — |A|, v — |A]) on X — A.

Proposition 8 has the following corollary.

Proposition 9. If an LS(A;t, t+1, w+1t) exists, then an LS(Au;t, t+ 1, uw +1¢)
exists for all positive integers u.

Proof. Let X be a u-set. Let R be a (w/A)-set. Put g, =4 - P, ,(X) for all r e R.
Then (g,),ex is a collection of & —SAu;t,t+1,u+t) and X, .pé =
w - P+ (X). For each BeP,, . (X), choose A(B)=A. The existence of an
LS(A;¢, t+ 1, w +¢) implies, as noted above, the existence of an LS(A(B);¢+
1-1{B|, t+2—|B|, w+1t+1-—|B]). Thus, Proposition 9 follows from Proposition
8 0O

A (1, 1+ 1, v)-decomposition, v=1t+ 1, will be an LS(A(t, t + 1, v); ¢, ¢t + 1, v).
Trivial (¢, t + 1, v)-decompositions consisting of a single S(v —#;¢, ¢t + 1, v) exist
for all v=r+ Ay, where A, divides A*(¢+) =Ilecm{l,...,t+1}. It is well known
that (1,2, v)-decompositions exist for all v. Indeed, if v is even (odd, respec-
tively), a (1,2, v)-decomposition is the same thing as a l-factorization (2-
factorization, respectively), of the complete graph on v vertices. In [9, 10, 11]
(2, 3, v)-decompositions are constructed for all v=0, 2, 4 or 5(mod6). A
(2, 3, 7)-decomposition does not exist [1]. For v = 141, 283, 501, 789, 1501 and
2365, the existence of a (2, 3, v)-decomposition is still open. For all other v =1 or
3 (mod 6), (2,3, v)-decompositions are known [5, 6, 8]. There are no (3, 4, v)-
decompositions for v =8 or 10 [3]. On the other hand, (3, 4, v)-decompositions
exist for all v=0(mod3), v >3 [11]. To the author’s best knowledge, the only
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v=1 or 2(mod3) for which a (3,4, v)-decomposition is known are v =4, 5, 7
(these are all trivial decompositions) and 11 (see below).

With the aid of a computer, Kreher and Radziszowski [4] constructed a
(6,7, 14)-decomposition. By Proposition 9, this yields (6, 7, v)-decompositions
for v =30, 46, 62, 126, 174, 286 and 846. The derived designs yield (5, 6, v)-
decompositions for v = 13, 29, 45 and 125. They give (4, 5, v)-decompositions for
v =12, 28, 44 and 124. (A (4, 5, 12)-decomposition was also constructed earlier,
in a simpler way, without use of a computer, by Denniston [2]. The values v =28,
44 and 124 can also be obtained by applying Proposition 9 to Denniston’s
decomposition.) Further derivation yields (3, 4, v)-decompositions for v = 11 and
27. (Note that 27 can also be obtained from [11], but 11 cannot.)

Using the above mentioned results about (1,2,v)-, (2,3, v)- and (3, 4, v)-
decompositions, it is easy to check that applying Proposition 8 to Proposition 5
with A, =12 and r = 4, yields, for all positive integers u, an LS(144A(4, 5, u + 4);
4, 5, 144u +4). As A*(4) =60, this never gives a (4,5, v)-decomposition. Using
this result, we can now see that applying Proposition 8 to Proposition 5 with
Ay=360 and ¢ =5 gives, for all positive integers u, an LS(3600A(S, 6, u + 5);
5, 6, 3600u +5). As A*(5) = 60, this again never yields a (5, 6, v)-decomposition.
Of course, we can continue this indefinitely. This will yield smaller values of 4
than Proposition 7, but nevertheless, the smallest value of A we obtain in this
way, grows extremely quickly as a function of «.

For ¢t =4, we can do better. Applying Proposition 5 with ¢ =5 yields, for all
positive integers A, and u, a collection (g,),.x of %5 —S(Ay- A(S, 6, u +5)-10; 5,
6, u + 5) such that ¥,.. £, = A, 10 - P, (X) and such that, for every B € P, (X),
£,(B) is divisible by A,-10/(;s-1). Then (& | P, s(X)),er is a collection of
F—S(Ao- A5, 6,u+5)-10; 4, 5, u+4) such that Y, & =24, 10 P (X).
Notice that, as A*(5)=A*(4)=60, we have A(5, 6,u+5)=4A(4,5, u+4).
Choosing A,—6 and applying Proposition 8 to (& | P s(X)),r yields an
LS(60 - A(4, 5, u +4);4, 5, 60u + 4) for all positive integers u. This shows that a
(4, 5, 60u + 4)-decomposition exists for all positive integers u such that
AM4,5 u+4)=1, ic. such that ged(u, 30)=1. (Note that if, as is likely, a
(3, 4, 23)-decomposition exists, then we can choose, in the above, 4,=2 and
obtain an LS(20-A(4,5, u+4);4,5,20u +4) for all positive integers u. This
would vyield (4,5, 20u + 4)-decompositions for all positive integers u such that
M4, 5, u+4)=1. The existence of a (3,4, 23)-decomposition is, however, still
open.) Using the previous result, we can now see that applying Proposition 8 to
Proposition S with A,=300 and r=35 yields for all positive integers u, an
LS(3000A(S, 6, u +5); 5, 6, 3000u +5). This again never gives a (5,6, v)-
decomposition.

We can, in the above, take two copies of &, | P 5(X) for each r € R. This yields
a collection of ¥, —S(10A,A(4,5, u+4); 4,5 u+4) such that ¥, ,¢ =
204, P, 5(X) and such that, for every B e P, 5(X), &,(B) is divisible by 104/, ).
Choosing 4, =6 and applying Proposition &, yields, using the existence, deduced
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above, of a (4,5, 124)-decomposition, an LS(60A(4, 5, u +4); 4, 5, 120u + 4) for
all ueN—{0}. Combined with the above, this shows that a (4,5, 60u + 4)-
decomposition cxists for all positive integers # such that ged(u, 60) =1 or 2.
(Again, if a (3, 4, 43)-decomposition exists, we can choose A,=2 and get, using
the existence of a (4, 5, 44)-decomposition, LS(204(4, 5, u + 4); 4, 5, 40u + 4) for
all u e N— {0}. These would yield (4, 5, 40u + 4)-decompositions for all positive
integers u such that ged(u, 30) = 1. The existence of a (3, 4, 43)-decomposition is
still in doubt.)

To our best knowledge, the only known infinite family of non-trivial (¢, r +
1, v)-decompositions with ¢ == 4 are the (4, 5, 60u + 4)-decompositions constructed
above for all positive integers u with ged(u, 60) =1 or 2. A finite amount of
further non-trivial (¢, £ + 1, v)-decompositions with 4 <t =6 can be obtained, as
explained above, by combining [4] with Proposition 9. We do not know any other
non-trivial (¢, t + 1, v)-decompositions for ¢t =4. In particular, we do not know
any single non-trivial (¢, t + 1, v)-decomposition for ¢ = 7.

4. A proof of Proposition 8

If p is a multiset, then s(u) will denote the underlying set of pu, i.e.
s(u)={x;xeu}.

Let S be a set and let & be a kK — P(S)-multiset such that s(d) is a partition of §.
An S(A;t, k, 8), t =<k, will be a P(5)-multiset u such that, for every B € y and
Aed, we have |[ANB|=0d8(A) and such that, for every T € P(S) satisfying
|[ANT)< 6(A) for all A € 8, there are exactly A blocks of u containing T. A large
set of disjoint S(A;t, k, &), briefly LS(4;¢t, k, 8), is a collection (u,),.x of
S(A;t, k, 8) such that Y.,..u, equals the set of all k-subsets B of § with
[BNA|=68(A) for all Aed. If 6 consists of k copies of §, then the
(L)S(A; 1, k, 6) are exactly the (L)S(A;5¢, k, |S]) on S.

If $ is a set, then a (w, ¢, S)-partition, or more briefly (w, ¢)-partition, w =1,
will be a (1 + 1) — P(S)-multiset d such that s(8) is a partition of S and such that,
for every A € 6, we have |A|=w + 6(A) — 1. For instance, if 6 consists of ¢ +1
copies of S, |S}=¢+1, then 8 is a (|S| —¢, t, S)-partition. (For readers familiar
with [12], note that what we call here a (w, ¢, §)-partition is equivalent with what
is called a (w, J, S)-partition in [12], where J is a (t + 1)-set. An LS(4;¢, 1+ 1, 8),
6 a (w,t, §)-partition, is equivalent with a Z(A;J, F)(i)ier, F a (w,J, S)-
partition, |J| =t + 1, satisfying H(w,) = H(F) for all / € L. When we say that two
types of structures are equivalent, we mean that they are formally different, but
that there is an obvious way to identify a structure of one type with a structure of
the other type.)

Much more can be proved about S(A;¢, k, 6) than we will do here. We will
study S(A;¢, k, &) and LS(A;¢, k, 8) in more detail in a subsequent publication.
In this paper, we will essentially only prove those results about S(4;¢, k, 6) that
we will actually use.
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First, note that if (u,),cx is an LS(A;¢, 141, 8), & a (w, t, S)-partition, then
IR| = w/A. (Indeed, let T be a r-subset of S with |A,N T|= 6(A,) — 1 for a given
Apes(d) and |[ANT|=3(A) for all Aes(d)— {Ay}. There are exactly |A4,| —
(6(Ag) — 1) =w + 3(Ay) —1—(8(Ay) —1)=w(t + 1)-subsets B of S with Tc B
and |A N B| = 8(A) for all A € é. Each of the u, contains A of these (¢ + 1)-sets
and each of these (¢ + 1)-sets is contained in exactly one u,, giving |R| = w/A.)

Proposition 10. Let 6 be a (w, t, S)-partition and put m = max{6(A); Aed}. If
an LS(A;m — 1, m, w + m — 1) exists, then an LS(A; ¢, t + 1, 8) exists.

Proof. For every A €6, put an LS(4; 6(A)—1,6(A), w+ 6(A) — D(Ki a))ics.,
on A. (As noticed in Section 3, the existence of an LS(A;m— 1, m,w +m—1)
implies the existence of an LS(A;8(A)—1, 6(A), w+6(A)—1).) Let y,, re
7., be the set of all (1 + 1)-subsets B of S such that [AN B|=38(A) forall Aed
and such that Y 4.5, 04,5 =r, where i, , is the uniquely determined element of
2, with AN B ey, , 4 It is immediately clear from the definition of y, that
Yrez., Ve is the set of all (1 + 1)-subsets B of § such that |[A N B| = 6(A) for all
A€ 4. It remains to be proved that each vy, is an S(A;¢, ¢+ 1, 8). Let T be a
t-subset of § such that [T N Ayl = 8(A,) — 1 for some given Aye é and |[T N A=
8(A) for all Aes(d)— {A,}). For each A es(8)— {A,}, let i, be the uniquely
determined element of Z,,,, with AN T € py;, 4, The blocks of y, containing T are
the (¢ + 1)-sets B containing T and a further point of A, such that BN Ay € g, 4,
where iy=r — X acs0)-(a, - The number of such blocks equals the number
of blocks of p, 4, containing the (8(A,)—1)-set TNA, As pg; 4, 18 an
S(A; 6(An) — 1, 6(Ap), w + 6(Ay) — 1), this number equals A. Thus, (v,),c,., is an
LS(A;¢,t+1,68). O

In the following, we will often describe a multiset by a collection of elements
between square brackets. For instance, [x, x, x, y, z, z] denotes the {x, y, z}-
multiset u defined by u(x) =3, u(y)=1 and u(z)=2. The square brackets are
used to avoid confusion with ordered or unordered sets.

If X is a set, then, as in Section 2, M, (X) will denote the set of all
k — X-multisets. Let (X, <) be a totally ordered set, XN {1,...,t}=¢. lfuisa
(¢ + 1) — X-multiset, then pu* will denote the set of all (#+ 1) —(XU{1,...,t})-
multisets obtained by listing all elements of u in increasing order and then
replacing some elements in w by the position in which they occur, where we never
replace the last (i.e. most to the right) occurrence of an element. For instance, if
t=5, if X={a,b,c,d}, a<b<c<d and if p=|a,qa,a,c d d], then u*=
{la, a,a,c, d, d], [1,4a,4a,cd,d] [a,2,a,c d d] [1,2,a,¢, 4. d]
la,a,a,¢,5,d], [1,a,a,¢c,5,d] |a 2, a,5¢,5,d] [1,2,a,c,S5, d]}. Note that, as
we must keep the last occurrence of all x € u, we have s(v) N X =s(u) for all
veu*. We will denote by N, (x) the set of all positions occupied by x in u except
the last position, where we again assume that the elements of u are listed in
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increasing order. In our example, N,(a)={1,2}, N,(b)=¢, N, (c)=¢ and
N.(d)={5}.

Proposition 11. Let (X, <) be a totally ordered set, XN {1, ..., t} = ¢. Then for
every (t+1)—(XU{1,..., t})-multiset v with v(i)=<1 for all ie{1,... 1},
there is exactly one element u of M, (X) such that v € u*.

Proof. Put all ie {1, ..., ¢} Ns(v) in position i. Fill out the remaining positions
of v by listing the remaining e¢lements of v in increasing order. It is easy to see
that there is one and only one element u of M, (X) with v e u*, namely the u
obtained by replacing each i € {1, ..., t} by the first element of X occurring to
the right of i inv. O

To illustrate the procedure described in the proof of Proposition 11, let 1 =7,
let X={a,b,c,d e}, a<b<c<d<e and let v=[a,a,b,d,1,3,6,7]. We
write v=[1,4,3,a,b,6,7,d] and put p={a,a,a,a,b,d, d, d].

Proposition 12. Let (4,),.x be a collection of &, —S(A,;6,t+1, u+1t) on a u-set
X, XN{l,...,t})=¢, suchthat ., .g €, =w- P, (X), w=1. Assume that, for
each B e P, ,.(X), a positive integer A(B) is given such that A(B) divides €,(B)
for all reR. Assume moreover that, for each BeP,,. (X), there is an
LS(A(B);t+1—|B|, t+2—|B|, w+t+1—|B|). Then there is a collection

(V,)rer Of S(A; 1, t + 1, uw + t) without repeated blocks on (X X Z,,)U{1, ..., t}
such that ZVER Yr= P1+l((X X Zw) U {1’ c t})
Proof. Put a total order (X, <) on X. Let S=(XxZ,)U{l,...,t}. For each

p €M, (X), let &, be the (w, t)-partition obtained by replacing each occurrence
of xin u by ({x} xZ,)UN,(x). Put By=s(u). Put m =max{5,(A); Aed,} We
have m = max{u(x);x € By} <t+2—|By. As an LS(A(By); t+1— By, t +2 -
|Bol, w+1t+1—|By|) exists, this means that an LS(A(By);m -1, m, w + m — 1)
exists. By Proposition 10, this implies the existence of an LS(A(B,);¢, ¢+
1, 8, )(®u.ip)ictt.... wiisyy Choose a family (IL[By]),cr of pairwise disjoint
(%,(Bo)/M(By))-subsets of {1,...,w/A(B,)} whose union is {1,...,w/A(B,)}.
Put B, = Licriny iy Obviously, (B...)rer is a collection of S(&,(By); ¢, t +
1, 6,) such that ¥, B, equals the set of all (#+ 1)-subsets D of S with
|AND|=06,(A) forall Aed,. Put v, =Y cum.,cx) Bury

We first prove that Y, .z v, =P, ,(S). Let De P, (S). Let v(D) be the
(t+1)-(XU{1,...,t})-multiset obtained from D by replacing each (x, y)e DN
(X x Z,) by x. We have seen that, if u € M,,,(X), then ¥,z B.. is a set and it
is easy to check that D is in this set iff v(D) e u*. By Proposition 11, there is
exactly one u € M,, (X) with v(D) € u*. Thus, (X,.z v, )(D)=1.

It only remains to be proved that each y, is an S(A,;¢, ¢t + 1, uw +¢). (The fact
that the y, have no repeated blocks is an immediate consequence of Y, x v, =

P1(8).)
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Let r € R and let E € P(S). Let v be the r — (X U {1, ..., r})-multiset obtained
from E by replacing every element (x,y) of EN(XXZ,) by x. For any
u €M, (X) such that B, ,, contains a block D with E c D, the set u* contains
some v, with v < v,. (For instance, choose v, = v(D), where v(D) is defined as
above.) For every u € M,,,(X) such that u* contains some v, with v=<v,, we
have |[ANE|=<6,(A) for all Aed, and there are exactly €, (s(u)) elements of
B.r, containing E. If xe X, Then, by Proposition 11, there is a unique
(t+ 1) — X-multiset p[x]| with v + {x} € u[x]*. On the other hand, if g € M, ,(X)
and if there is a v, € u* with v<v, then there is one and only one x € X such
that u = p[x], i.e. such that v+ {x}eu* (If vi=v+{i}, ie{l,... ¢}, thenx
is the unique element of u with i € N,(x).) It follows that the clements of y,
containing E are the elements of ), .y B, containing E. There are
Vieex &(s(u[x])) = Erex €. (B U {x}) such elements, where B =S(v)NX. As ¢,
isan &, —S(A,;t,t+ 1, u+1), we have 3, x €(BU {x})=4,. O

Proposition 8 can be obtained from Proposition 12 by putting A, = A for all
reR.

Note added in proof. A (3,4, 23)-decomposition was recently constructed by
Chee, Colbourn and Kreker.
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A NEW FAMILY OF BIBDs AND NON-EMBEDDABLE
(16, 24, 9, 6, 3)-DESIGNS

G.H.J. van REES*

Department of Computer Science, University of Manitoba, Winnipeg, Mannitoba,
Canada R3T 2N2

We construct a new family of balanced incomplete block designs with parameters (2n% + 3n + 2,
((n+1)/2)2n" +3n+2), (n+2)% 2n+2, n+1) where n and n + 1 are prime powers. Also
we construct 251 non-embeddable (16, 24, 9, 6, 3) designs and thereby increasing the lower
bound on the number of pairwise non-isomorphic balanced incomplete block designs
(16,24,9,6,3) to 1542.

1. Introduction

A balanced incomplete block design (BIBD) is a pair (V, B) where V is a v-set
and B is a collection of b k-subsets of V called blocks such that each element of V
is contained in exactly r blocks and any 2-subset of V is contained in exactly A
blocks. The numbers v, b, r, k, A are parameters of the BIBD. Trivial necessary
conditions for the existence of a BIBD (v, b, r, k, A) are

(1) vr = bk,
2)rtk—-1)=Av-1).

A parameter set that satisfies (1) and (2) is said to be admissible.

Two BIBDs (V,, B,) and (V;, B,) are isomorphic if there exists a bijection
a: Vy— V; such that B,o = B,. Given a symmetric BIBD (one with v = b, r = k),
one obtains from it the residual design by deleting all elements of one block, and
the derived design by deleting all elements of the complement of one block. The
parameters of a derived design are (k,v—1,k—1, 4, A—1), whereas the
parameters of a residual design are (v —k, v—1, k, k-4, A).

Any BIBD that has parameters (k,v—1,k~1,4 A—1) or (v—k, v—1,
k, k— A, A) is called a quasi-derived or quasi-residual, respectively. A quasi-
residual design which is residual is said to be embeddable in the corresponding
symmetric design.

A resolvable BIBD (v, b, r, k, A), denoted by RBIBD is a balanced incomplete
block design in which the blocks of the design may be partitioned into r sets of
v/k blocks such that every element of the design occurs in a block exactly once in
each partition. The partitions are called resolution classes.

In the following section we describe a construction for a new family of BIBDs.

* Supported by NSERC grant OGP0003558.
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In later sections this construction for n = 2 is used to produce 278 non-isomorphic
(16, 24, 9, 6, 3) BIBDs of which 251 are non-embeddable.

2. General construction

Theorem 1. If a SBIBD (n’+n+1,n+1,n) and a RBIBD ((n+1)%,
(n+1)(n+2), n+2, n+1, 1) both exist, then a BIBD (2n>+3n+2,
(n+ D2n*+3n+2)/2, (n+1)% 2n +2, n+1), exists.

Proof. Let the SBIBD elements be the set {1,2,3,...,n°+n+1} =1 Let the
RBIBD elements be the set {n?+n+2,n+n+3,...,2n°+3n+2}=J. Then
to construct the new design, duplicate each block of the SBIBD n + 1 times and
duplicate each block of the RBIBD n times. The new blocks of the design consist
of two types. The first type is formed by adjoining to every set of n duplicated
blocks a resolution class of the RBIBD. For example, if n =2 then the block
{1,2,3} of the SBIBD is duplicated 3 times and the resolution class {8,9, 10},
{11,12,13} and {14, 15,16} of the RBIBD is adjoined to it to produce the
following three blocks of the new design {1,2,3,8,9,10}, {1,2,3,11, 12,13}
and {1, 2,3, 14, 15, 16}. The choice of which resolution class is adjoined to which
set of n duplicated blocks is completely arbitrary except that the n — 1 resolution
classes left over must be identical. Let the blocks of this resolution class be
denoted by B,, B,, ..., B,. Then the second type of blocks for the new design
are B; N B, for all i #j. This is the design.

It is quite easy to check if the new design has 2n°+ 3n +2 elements and
(n*+n+1)(n+1)+({(n+1)/2)=(n+1)(2n* + 3n +2)/2 blocks of size 2n + 2.
An element iel occurs (n+1)(n+1) times and an element jeJ occurs
(n+2)n—(n—1)+n=(n+1)" times also. A pair of elements i, i, €l occurs
1xX(n+1)y=n+1times. A pair i, j where i e ] and j € J occurs n + 1 (the r of the
SBIBD) times. A pair j,, j, €J, where j;, j, are both elements in some B, of the
left over resolution class, occurs once in the first type of blocks and 7 times in the
second type of block whereas if j,, j, do not occur in some B;, then they occur n
times in the first type of block and 1 time in the second type of block. Hence all
pairs occur n + 1 times. [

An SBIBD (n*+ n +1,n+1, 1) is equivalent to a projective plane of order n.
An RBIBD ((n +1)%, (n+1)(n+2), n+2, n+1,1) is equivalent to an affine
plane of order n + 1. Therefore, the construction works if both n and n + 1 are
prime. Another way to state the condition is to specify that either n is a Fermat
prime or n + 1 is a Mersenne prime. Since there are 35 such numbers known {2],
the construction works at least 35 times. We record this in the following corollary.

Corollary. If n is a Fermat prime or n + 1 is a Mersenne prime then there exists a
BIBD (2n*+3n+2, (n+ 1)2n*+3n+2)/2, (n+1)%, 2n +2, n + 1).
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The construction can be slightly generalized if one uses a RBIBD ((n + 1)?,
n(n+1)(n+2), n(n+2), n+1, n) which has n—1 identical copies of one
resolution class instead of n copies of a RBIBD ((n +2)?, (n+ 1)(n +2), n+2,
n + 1, n). Thus, we can state the following theorem:

Theorem 2. If « SBIBD (n*+n+1,n+1,1) exists and a RBIBD ((n + 1)?,
nin+ 1)(n+2), n(n+2), n+1, n) which has n—1 identical copies of one
resolution class exists then a BIBD (2n*+3n+2, (n+1)2n*+3n+2)/2,
(n+1)% 2n+2, (n +1)) exists.

Proof. Same as Theorem 1 but ensure that the n — 1 identical copies are used for
the blocks of type 2. O

In order to tell if the construction produces any new designs, we consult the
helpful list of BIBD parameters and known lower bounds of Mathon and Rosa
[7]). For n =3, the construction produces a (29, 58, 16, 8, 4) BIBD which is
non-isomorphic to the only other known such design produced by Sprott [10].
They are non-isomorphic because they have different block intersection numbers.
For n =4, the construction produces the first known (46, 115, 25, 10, 5) BIBD.

3. Non-isomorphic (16, 24, 9, 6, 3) BIBDs

For n =2, the construction produces a design with the same parameters (16,
24,9, 6, 3), as Bhattacharaya’s [1] famous counterexample. The counterexample
was non-embeddable as two blocks intersected in four varieties. Brown [3]
produced such a design which was non-embeddable but had no block intersection
of size 4. Lawless (6] produced 8 non-isomorphic non-embeddable designs with
various intersection patterns. All three used ad hoc procedures to produce these
results. Just recently Van Trung [12] produced one of these non-embeddable
designs with a complicated construction.

For n =2, we can use Theorem 2 as any RBIBD (9, 24, 8, 3, 2) trivially has
one copy of a resolution class. Hence, by using the list of BIBD (9, 24, 8, 3, 2) of
Morgan [9] with the correction of Mathon and Rosa [8], we can generate many
non-isomorphic designs with many different intersection patterns. Most of the
designs produced this way are obviously non-embeddable as they have block
intersection size 4.

Indeed, for any specific RBIBD we can assign resolution classes to the
duplicated blocks of the SBIBD in every possible way. This creates 8! designs
which can be reduced to 6! or 5! by using the automorphism groups of the smaller
designs. Then, using Kocay’s very fast graph algorithm program (described in
[5]), we can get a canonical form for each design in about one and a half seconds
on an Amdahl 580. These are then sorted and duplicates eliminated. These can
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then be compared to the known non-embeddable (16, 24, 9, 6, 3) BIBDs.
Furthermore, designs can be compared to Van Rees’ [11] list of all residual
(16,24,9,6,3) BIBDs to see if they are residual or not. The results are
summarized in the following theorems.

Theorem 3. There are 278 pairwise non-isomorphic (16, 24, 9, 6, 3} BIBDs which
contain three identical disjoint copies of the SBIBD (7,3, 1).

Proof. Any (16,24,9,6,3) BIBD which contains three identical copies of the
SBIBD (7, 3, 1) must have a structure as described in the beginning of Section 3.
To prove this, consider an element of the (16, 24, 9, 6, 3) design which is not one
of the seven elements of the SBIBD. If it occurs more than once with the same
triplicated block of the SBIBD then it can occur at most 5 times with triplicated
blocks and thus at most 8 times in the design. This is a contradiction. It must
appear once with each triplet of identical blocks to get the pair count correct.
This means every element not in the SBIBD, must occur with a triplet of identical
blocks exactly once.

In other words, a resolution class of “other” elements must be attached to each
triplet of identical blocks. This determines 7 resolution class which clearly
determine the RBIBD (9,24,8,3,2). Since the construction produces 278
designs, the theorem is true. [

Theorem 4. There are 251 pairwise non-isomorphic, non-embeddable
BIBD (16, 24,9, 6,3) BIBDs which contain three identical disjoint copies of the
SBIBD (7,3, 1).

Theorem 5. The number of pairwise non-isormorphic, non-embeddable BIBD
(16, 24, 9, 6, 3) is 261.

Proof. The designs of Bhattacharya, Brown and Lawless were non-isomorphic to
each other and to any of the 251 produced by our construction. Van Trung’s
design, which was produced independently and by an entirely different construc-
tion, was isomorphic to one of the designs produced by the construction.

In order to produce a listing of all the designs in a minimum of space, we list all
resolvable BIBDs (9, 24, &, 3, 2) using Morgan’s numbering. The basic (9, 12, 4,
3, 1) BIBD is as follow:

{8,9, 16}
{10,12, 14} R,
{11,13,15}

{8, 13, 14}
{9, 12, 15} R,
{10, 11, 16}
{8, 10, 15}
{9,11, 14} R,
{12, 13, 16}
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(8, 11, 12}
(9,10, 13} } R,
(14, 15, 16}

All the resolvable (9, 24, 8. 3, 2) BIBD’s have these as their first four resolution
classes. The second four resolution classes are these again but with a permutation
applied as follows:

Design  Permutation

11
2 (8,9

3 (8,9)(10, 11)
6 (8,9 10)

7 (8,910, 11)

14 (8, 9)(11, 13)(12, 14)
15 (8,910, 13)

23 (8,9, 10, 13, 16)

29 (8,9, 11, 12, 16)

Therefore, the seventh resolution class, R6, in design 29 is (8,9, 11, 12, 16) R2.
Now the blocks of the SBIBD are specified as follows:

{1,2,4} = B,
{2,3,5) =B,
(3,4,6) = B,
{4,5,7) = B,
{5,6,1} = Bs
{6,7,2) = B,
{7,1,3} = B,

Now to specify a particular design constructed by Theorem 2, we need only
indicate which resolution classes get attached to which tripled blocks of the
SBIBD, e.g. 7D02514367 is the design produced from the design number 7 where
RO is left over, R2 is attached to the tripled block 1 of the SBIBD, RS5 is attached
to tripled block 2, R1 is attached to tripled block 3, etc. (Table 1).

Table 2 lists those designs which are isomorphic to a (16,24,9,6,3)
BIBD from the Van Rees list and hence these designs are residual and previously
known. The left-hand side gives the design number as in the previous list and the
middle gives the design number as in Van Rees’ list and the right-hand side gives
the order of the automorphism group of the design.

The first three designs were produced from Morgan’s Design #14, the next 18
were produced from Design #15 and the last 6 were produced from Design #23.

Table 3 shows how many non-isomorphic (16, 24, 9, 6, 3) designs
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Table 1. Non-isomorphic (16, 24, 9, 6, 3) BIBDs containing threc identical disjoint
SBIBDs (7,3, 1)

#  Design |G| #  Design |G #  Design |G|

1 1D04126357 432 2 1D04152637 654 3 1D04652317 72

4 2p01423567 6 5 2D02453617 2 6 2D03124567 4

7 2D05423617 4 8 2p05432617 12 9 2D10235467 2

10 2D10524367 2 11 2D13024567 4 12 2D14023567 2
13 2D14203567 2 14 2D14250367 [ 15 2D14305267 4
16 2D15342067 2 17 2D15420367 2 18 3D01245367 4
19 3p01345267 4 20 3D01352467 2 21 3D01423567 2
22 3D01452367 2 23 3D01534267 2 24 3D02413567 2
25 3D03124567 4 26 3D03145267 2 27 3D03452167 2
28 3D03514267 2 29 3D03524167 4 30 3D04135267 2
31 3p04321567 2 32 3D05241367 4 33 3D05321467 2
34 3D05341267 4 35 3D05432167 2 36 6D01235467 1
37 6D01243567 1 38 6D01254367 1 39 6D02154367 1
40 6D02314567 1 41 6D02315467 1 42 6D02351467 1
43 6D02354167 1 44 6D02413567 1 45 6D02435167 1
46 6D02453167 1 47 6D02513467 1 48 6D02514367 1
49 6D02534167 1 50 6D02543167 1 51 6D03152467 1
52 6D03215467 1 53 6D03421567 1 54 6D03425167 1
55 6D03541267 1 56 6D03542167 1 57 6D04235167 1
58 6D04251367 1 59 6D04321567 1 60 6D04523167 1
61 6D04532167 1 62 6D05132467 1 63 6D05142367 1
64 6D05342167 1 65 6D05431267 1 66 6D12035467 1
67 6D12043567 1 68 6D12304567 3 69 6D12345067 1
70 6D12534067 3 71 6D13204567 1 72 6D13502467 3
73 6D14023567 1 74 6D15043267 3 75 6D15240367 3
76 6D15243067 1 77 6D15324067 3 78 6D15423067 1
79 6D15430267 1 80 7D01243567 1 81 7D01245367 1
82 7D01254367 1 B3 7D01342567 1 84 7D01345267 1
85 7Dp01354267 1 86 7D01432567 1 87 7D01435267 1
88 7D01453267 1 89 7D01534267 1 90 7D02314567 1
91 7D0D2315467 1 32 7D02453167 1 93 7D02514367 1
94 7D03142567 1 95 7D03412567 1 96 7D03452167 1
97 7D04235167 1 98 7D04251367 1 99 7D04325167 1
100 7D04521367 1 101 7D04531267 1 102 7D05143267 1
103 7D05231467 1 104 7D05241367 1 105 7D05243167 1
106 7D05312467 1 107 7D05321467 1 108 7D05324167 1
109 7D05413267 1 110 7D20143567 2 111 7D20314567 1
112 7D21034567 1 113 7D21043567 2 114 7D21304567 1
115 7D21354067 1 116 7D21403567 2 117 7D23014567 1
118 7D23401567 1 119 7D23415067 1 120 7D23451067 1
121  7D24013567 2 122 7D24103567 2 123 7D24310567 1
124 7D24531067 1 125 7D25143067 2 126 7D25341067 1
127 7D25431067 1 128 7D30214567 1 129 7D30254167 1
130 7D30412567 2 131 7D30512467 2 132 7D31024567 1
133 7Dp31052467 2 134 7D31054267 1 135 7D31405267 1
136 7D31420567 1 137 7D31542067 2 138 7D32041567 1
139  7D32051467 1 140 7D32501467 1 141 7D34210567 1
142 7D34512067 2 143 7D35012467 2 144 7D35014267 1
145 7D35021467 1 146 14D01453267 6 147 14D02413567 18
148 14D03245167 18 149 14D12034567 6 150 14D12534067 6
151 14D14035267 6 152 14D15432067 3 153 15001235467 1
154 15D01523467 1 155 15D02345167 1 156 15D02351467 2
157 15D02354167 2 158 15D02431567 1 159 15D02531467 2
160 15D03124567 2 161 15D03142567 2 162 15D03412567 2
163 15D03425167 1 164 15D03514267 1 165 15D04123567 1
166 15D04132567 1 167 15D04513267 1 168 15D04523167 1
169 15D05234167 1 170 15D05321467 1 171 15D10342567 1
172 15D10352467 1 173 15D10423567 1 174 15D10524367 1
175 15D12034567 1 176 15D12035467 1 177 15D12054367 1
178 15D12305467 1 179 15D12430567 1 180 15D13205467 1
181 15D13402567 1 182 15D13450267 1 183 15D14052367 1
184 15D14203567 1 185 15D14205367 1 186 15D14302567 1
187 15D14503267 1 188 15D15024367 1 189 15D15043267 1
190 15D15240367 1 191 15015302467 1 192 15D15320467 1
193 15D15403267 1 194 15D15420367 1 195 15D20153467 1
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Table 1. Continued

#  Design |Gl #  Design |G| #  Design |G
196 15D20435167 1 197 15D20534167 1 198 15D23504167 1
199 15D25130467 1 200 15D25310467 1 201 15D30142567 2
202 15D30154267 1 203 15D30254167 1 204 15D30412567 2
205 15D30421567 2 206 15D31054267 2 207 15D31540267 1
208 15D32051467 2 209 15D32150467 1 210 15D32410567 1
211 15D34012567 1 212 15D34021567 1 213 15D34102567 1
214 15D34120567 1 215 15D34150267 1 216 15D34201567 1
217 15D35124067 2 218 15D35410267 1 219 23D01425367 1
220 23D03124567 1 221 23p03421567 3 222 23D04153267 3
223 23D04513267 3 224 23D05432167 3 225 23D10235467 1
226 23D10342567 1 227 23D10354267 1 228 23D12304567 1
229 23D12405367 1 230 23D12430567 1 231 23D13420567 1
232 23D14023567 1 233 23D14035267 1 234 23D15430267 1
235 29D01432567 3 236 29D02314567 1 237 29p02435167 1
238 29D03142567 1 239 29p03145267 3 240 29D03214567 1
241 29D03215467 3 242 29D03412567 1 243 29003421567 3
244 29D03425167 3 245 29D04132567 1 246 29D04312567 1
247 29D04321567 1 248 29D05143267 3 249 29D10234567 1
250 29D10245367 1 251 29D10253467 1 252 29010325467 1
253 29D10435267 1 254 29D10452367 1 255 29D12304567 1
256 29D12305467 1 257 29D12340567 1 258 29D12403567 1
259 29D12435067 1 260 29D12504367 1 261 29D13024567 1
262 29D13042567 1 263 29D13052467 1 264 29D13402567 1
265 29D13405267 1 266 29D13452067 1 267 29D13502467 1
268 29D13524067 1 269 29D14203567 1 270 29D14250367 1
271 29D14320567 1 272 29D14530267 1 273 29D15024367 1
274 29D15203467 1 275 29D15240567 1 276 29D15243067 1
277 29D15320467 1 278 29D15423067 1

Table 2. Non-isomorphic, residual (16, 24, 9, 6, 3)

identical, disjoint SBIBDs (7,3, 1)

BIBDs containing three

Design Isomorphic |G| Design Isomorphic |G|
number to number to

146 1128 6 212 632 1
147 1246 18 213 934 1
148 1247 18 214 630 1
201 1067 2 215 631 1
202 1064 1 216 935 1
203 1065 1 217 1073 2
204 629 2 218 1078 1
205 633 2 219 716 1
206 1069 2 220 718 1
207 626 1 221 719 3
208 1068 2 222 717 3
209 1079 1 223 1066 3
210 627 1 224 1074 3
211 628 1

363
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Table 3
(9,24,8,3,2) # of
Design Designs
1 3
2 14
3 18
6 44
7 66
14 7
15 66
23 16
29 14
Table 4
Order of # of
automorphism group  Non-isomorphic
1 196
2 43
3 17
4 i1
6 S
12 1
18 2
54 1
72 1
432 1

containing 3 identical disjoint SBIBDs (7, 3, 1) were produced from each RBIBD
(9,24,8,3,2).

Table 4 shows the number of non-embeddable (16,24,9,6,3) BIBDs
containing 3 identical disjoint SBIBDs (7, 3, 1) produced with each automorphism
group order.

Finally, we state the following theorem.

Theorem 6. The number of pairwise non-isomorphic BIBD (16,24,9,6,3) is at
least 1542.

Proof. There are 1281 residual ones listed by Van Rees and 261 non-isomorphic,
non-embeddable ones by Theorem 6. [
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0. Introduction

0.1. Steiner triple systems

Let V with [V] = v be a finite set and B a set of 3-subsets of V. The elements of
V are called points, those of B lines. If any 2-subset of V is contained in exactly
one line, then the pair (V, B) is called a Steiner triple system of order v, in short
STS(v). Each point lies on exactly r =4(v — 1) lines and we have |B|=b=
¢v(v — 1). The condition v =7, 9+ 6n, n e N,, is necessary and sufficient for the
existence of STS(v) (the trivial cases v =1, v =3 are excluded). The set of these
‘“admissible” numbers, of these *‘Steiner numbers” is denoted by STS.

0.2. Owals in STS(v)

A non-empty subset O < V in a STS(v) is called an oval if each point of O lies
on exactly one tangent and each other line of the STS(v) has at most two points
in common with (). A line is called a tangent if it meets O in exactly one point. If
there are exactly two intersection points or if there is no intersection point then
we have a secant or a passant respectively. The points of O are called on-points,
the points of the tangents which are not on-points are called ex-points and the
remaining points in-points. With respect to an oval O there are exactly r tangents,
ir(r — 1) secants, ,r(r — 1) passants and we have |O| = r. The number of tangents
through an ex-point is even iff r is even.

0.3. Special ovals in STS(v)

An oval Oy is called a knot oval if all tangents have exactly one point Z in
common. Z is called the knot of the oval. Each ex-point different from Z lies on
exactly one tangent and there are no in-points. It is known that there exist
systems STS(v) with a knot oval if and only if v € HSTS:= {7, 15+ 12n, n e N;}.
[2]. Sometimes the set H = Ox U {Z} is called a hyperoval. The complement of H
together with the passants of Oy forms a subsystem STS(r). It is possible to prove

0012-365X/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)
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the converse of this theorem. If we delete one point from a hyperoval we get an
oval.

An oval O is called regular if any ex-point lies on exactly two tangents. There
is exactly one in-point. It is known that there exist systems STS(v) with a regular
oval if and only if v € RSTS:={9, 13+ 12n, n e N,,} [5].

With all these notations we have HSTS N RSTS =§ and STS = HSTS U RSTS.
In this way the sets HSTS and RSTS are characterized geometrically by using
special ovals.

Now it is quite natural to ask, whether there exist other types of ovals besides
knot ovals and regular ovals. This means ovals with other configurations of the
tangents.

0.4. The aim

In this paper systems STS(v) with other kinds of ovals — neither Ok nor
Oy, — are constructed. This is done by modifying the so-called ‘‘central-method”
in different ways. This central-method is due to T. Skolem (1927). Finally we
obtain a geometrical classification of further subsets of HSTS.

1. The central-method |2]

Starting with a given system STS(r) a system STS(v = 1 + 2r) with a knot oval
is constructed recursively.

Ex-points: the points of STS(r): 1,2, ..., r,
passants (exterior lines): the lines of STS(r),

knot: Z,

tangents: {Z,i, i} withie{l,2,...,r},
on-points: 1,2, ..,

In order to visualize the procedure, let Z be the top of a pyramid whose base is
the system STS(r). Then—as Fig. I shows —all ex-points i are pulled up in a
special way to i’. It is also possible to think of a central projection with center Z.
Additionally any line {a, b, ¢} of STS(r) together with Z determines a projective
plane PG(2, 2) =STS(7). Then the lines {a, b', ¢'}, {a', b, '}, {a', b', ¢} are
secants of the knot oval.

In this way a system STS(v) with a knot oval can be developed — as proved in
[2]). This construction is possible exactly in the case v e HSTS\{7}.

2. The perturbation trick

In the system STS(v) constructed with the central-method we now consider a
passant {a,, b,, ¢} together with the projective plane belonging to it (Fig. ).



Modifications of the *‘central method” to construct STSs 369

Fig. 1.

The lines {Z, a,, a1}, {Z, b\, b}, {c,a,, b}, {c, a|, b} may be deleted and
replaced by the lines {c¢, a,, a\}, {c, b,, b1}, {Z, a\, b,}, {Z, a}, b}}. We call this
slight modification the perturbation trick. What has happened by doing so? The
point set {1',2',...,r'} is still an oval. But through the ex-point Z there are
now only r —2 tangents (as well as one secant and one passant) and through c¢
there are 3 tangents (as well as 3(r —3) secants and just as many passants).
Nothing else has changed. Using the perturbation trick we therefore obtain a
STS(v) with an oval of a completely new type. Now we perform the perturbation
trick several times. Doing so we distinguish different cases.

3. A first multiple method (with pencils)

3.1. The procedure

We now perform the perturbation trick a second time, using a further passant
through ¢, namely {c, a,, b,}. The lines {Z, a;, a3}, {Z. b,, b3}, {c, as, b},
{c, a3, b3} are deleted and replaced by {c, a,, a3}, {c, by, b3}, {Z, a5, b},
{Z, a3, b;}. Now the point Z still has »r — 4 tangents, but the point ¢ is on exactly
S tangents. A new type of oval has been found. Continuing in this way with
further passants through ¢ we always obtain new Steiner triple systems with new
types of ovals.

3.2. Result

The Table in Fig. 2 shows the result of our procedure. The letter x; means the
number of ex-points with exactly j tangents. Any column represents one special
type of oval. In total there are z = }(r + 1) rows.
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3.3. The number of oval types

Now we ask for the number of different oval types developed by using our
procedure. When does the continued execution of the perturbation trick come to
an end? To answer this question we distinguish two cases.

3.3.1. zisodd

Now it is possible that in one row the number 1 appears twice. This occurs if
r—2p=1+2p, hence for p =4(r — 1). It follows that 1 +2p =r —2p =3(r + 1).
So we have two ex-points with j(r + 1) tangents each and r — 1 ex-points with
exactly one tangent each. This oval type is denoted by O,. Performing the
perturbation trick once more yields oval types we have already had. Thus-
besides the knot oval — we obtain p = §(r — 1) further oval types in total.

3.3.2. zis even

Now it is possible that in one column two numbers 1 are one above the other.
This occurs for the first time when (r —2p) —2 =1+ 2p, hence for p ={(r - 3). It
follows that r —2p = 4(r + 3) and 1 + 2p = 4(r — 1). So we have one ex-point with
exactly 3(r + 3) tangents, one ex-point with exactly 3(r — 1) tangents and r — 1
ex-points with exactly one tangent each. This oval type is denoted by 0.
Performing the perturbation trick once more does not yield new oval types.
Thus - besides the knot oval — we obtain p = {(r — 3) further oval types in total.
Fig. 3 illustrates 3.3.1 and 3.3.2 for the cases r = 13 and r = 15, therefore z =7
and z = 8.

3.3.3. What about the corresponding Steiner numbers?
We now investigate the orders v e HSTS (by using the central-method only
numbers of this kind may occur) where the oval types O, and O, respectively are
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Fig. 3.

obtained. This depends on the parity of z, and the various cases are tabulated in
Fig. 4. Now we formulate all the results in 3.3 as a theorem.

3.3.4 Theorem. Exactly for all v e H,STS there exist systems STS(v) with an oval
O, and exactly for all the remaining Steiner numbers of HSTS, namely for all
v € H,STS, there exist systems STS(v) with an oval O,.

H,STS: v=19, 27 +24n; H,STS: v =15, 31 +24n; n € N,. We have HSTS =
H,STSUH,STSU {7}. Now the disjoint sets H,STS and H,STS are also
geometrically characterized when special ovals are used.

3.3.5. Visualization

In Fig. 5 the configurations of the tangents belonging to the ovals O, and O, are
visualized. Doing so we choose v=19 (r=9, z=5)andv=15(r=7, z =4). All
the ex-points with more than one tangent are represented as quadrangles, all the
ex-points with exactly one tangent as “empty” circles and all the on-points as
“full” circles. Corresponding pictures may also be drawn in all the other cases
v € H,STS and v € H,STS respectively.

v=19+12n v=15+12n

r= 9+4+6n r= 7+6n
z=54+3n z= 4+3n

n= 2m n= 2m

z= 5+6n, odd ; O, 0,y z= 4+ 6m, even
v=19+24m v=15+24m
n=2m+1 n=2m+1

z= 8+6m, even O, 04 z= 7+ 6m, odd
v=31+24m v=27+24m

Fig. 4.
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Fig. 5.

Remarks.

(1) Systems STS(v) with the oval types constructed here have been constructed
in [6] (by using the polygon-method). It may be shown that

(a) all systems given in [6],

(b) all systems constructed in Section 3.1,

(c) but also all systems of the same order — corresponding to each other — in {6]
and Section 3.1 are pairwise non-isomorphic.

(2) The set H,STS may also be found in [1]. It is proved there, that v € H,STS
is a necessary condition for the existence of STS(v) with two hyperovals (and
therefore also two subsystems of order i(v — 1)).

4. An intermediate chapter: r-chain in STS(v)

4.1. r-chains — what are they?

In Steiner triple systems STS(v) we are looking for r = 3(v — 1) lines, which are
connected in the form of an r-polygon without any overlapping. A polygon of this
kind - also representable as a regular polygon—is called an r-chain. More
formally an r-chain in an STS(2r + 1) is a set of r lines by, b,, . . ., b,_;, such that

r—1
U b;| =2r, |b;Nb;il=1 and |b,_ Nb;Nb,y|=0,

i=0

for all i=0,1,...,r—1 (subscripts reduced modulor). If the third point of
every polygon edge is put on the circumcircle of this polygon, then we obtain a
regular 2r-gon. The lines may be interpreted as areas (“curved” triangles) and so
they form a “‘garland”. In the Figs. 6 and 7 r-chains of this kind are drawn in the
casesv=7and v=09.

By using trial and error it is possible to discover 6-chains in both Steiner triple
systems of order 13 as well. With the notations of [7] we obtain Fig. 8 Now we
are confronted with the following question: Do there exist systems STS(v) with
r-chains for all v € STS.
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5 5 5
4
ﬁ |
2

Fig. 6. 3-chains in STS(7).

9

Fig. 7. 4-chains in STS(9).
4.2 Theorem. For all v € STS there exist STS(v) with an r-chain.
The proof of this theorem is in two cases.

v € HSTS

Starting with a system STS(r) systems STS(v = 1 + 2r) with v € HSTS and v #7
(this case has already been done by means of Fig. 6) may be constructed not only

Fig. 8. 6-chains in STS,(13) (left) and STS,(13) (right).
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Fig. 9. 7-chains in an STS(15).

by the central- but also by the polygon-method [2]. In any case a knot oval is
used.

Ex-points: the points of STS(r): 1,2,..., 1,
passants:  the lines of STS(r),

knot: Z,

tangents: {Z, i i'}withie{l,2,...,r},
on-points: 1',2',...,r

(up to now all elements are the same as when using the central-method).

The on-points now are put on a circle one after the other such that they form a
regular r-gon. Then the oval secant determined by two neighbouring on-points i,
(i + 1) is {i', (i + 1), 4(2i + 1)}. We have always to calculate modulo r. If i runs
from 1 to r then the desired r-chain is already found. Putting all the
corresponding ex-points on the circle as well, we obtain a 2r-gon, a “garland”.
Fig. 9 shows such a “‘garland” in the case v = 15, hence r =7.

v e RSTS

Systems STS(v) with v e RSTS and v #9, 13 (these two cases have already
been done with the Figs 7 and 8) may be constructed with a direct method using
regular ovals [5]. Again the ex-points are denoted by 1, 2, ..., r, the on-points
by 1',2,...,r" and the only in-point by the letter M. The ex-points as well as
the on-points are put on two circles one after the other with the same center M
but different radius. They build two regular r-gons turned around about m/r.
Then the oval secant determined by two neighbouring on-points i', (i +r — 1) is
{i', i +r—1),i}. If i runs from 1 to r then we have already an r-chain (again we
calculate modulor). Putting all the corresponding ex-points on the circle
containing the on-points, we have a 2r-gon with “garland”. In Fig. 10 we see such
a “‘garland” for the case v = 33, hence r = 16.
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Fig. 10. 16-chain in STS(33).

5. A second multiple method (with chains)

5.1. The procedure

Using our central-method we now start with a system STS(r) in which a
3(r — 1)-chain is marked. Fig. 11 shows some lines of this chain. Now we perform
the perturbation trick for the first time and start with the passant {a,, b,, a,} in
Fig. 11. The lines {K, a,, a\}, {K, b,, b1}, {az, a;, b,}, {a, a}, by} are deleted
and replaced in the usual way by the lines {a,, a,, a1}, {a,, b;, b1}, {K, a,, b}},
{K, a}, b1}. In this procedure the points a,, b, are called border points and a,
central point.

Now we perform the perturbation trick a second time — but not in the way we
did in 3.1. Choosing a suitable new passant we have to ensure that with our

32 b]
b2 aq

ag bt (r-1)

a(r-1)

Fig. 11.
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Fig. 12.

construction every ex-point can be at most once a border point, but several times
(at most 3(r — 1) times) a central point. It is quite possible that an ex-point is both
a border and a central point. Especially favourable for using our trick are the
lines of the i(r — 1)-chain.

So we now choose the passant {a,, b,, a3} in Fig. 11, delete the lines
{K, a,, a3}, {K, by, b3}, {as, ay, by}, {as, a3 by} and replace these lines by
{as, a5, a3}, {as, by, b3}, {K, ay, by}, {K, as, by}. The point set {1',2',...,r"}
remains an oval. The point Z is still on r — 4 tangents, the points a, and a, are on
three tangents each. The point a, is both a border and a central point. A new
type of ovals is found. One of the new tangents contains a, and also as.
Continuing in this way with the connected passants {a;, by, a4}, {a4, by, as}, . ..
in Fig. 11 we always obtain new Steiner triple systems with new types of ovals.

5.2. Result

The table in Fig. 12 shows the result of our procedure. The notations are the
same as in Fig. 2.

5.3. Number of ovals types

When does the continued execution of the perturbation trick come to an end?

If the number 1 appears on the last but one line, we have r — 2p = 3, therefore
p =3(r —3). Now we obtain p + 1 = 3(r — 1) ex-points with exactly 3 tangents and
r —p =4(r + 3) ex-points with exactly one tangent respectively (Fig. 13 for v =19
(r=9)).

Our trick may be performed one more time. That is using the last edge of the
3(r — 1)-chain. Doing so the number of ex-points with exactly 3 tangents and with
exactly one tangent respectively is not changed. But we obtain quite another
configuration of the tangents. The tangent in K seems to be in a certain sense
isolated. Our system is produced with a 1(r — 1)-chain. Therefore in this case a
particularly symmetrical representation is possible (Fig. 14 for v =19 (r =9)).
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Fig. 13.

Fig. 14.

Besides the knot oval we obtain p +1=13(r — 1) further types of ovals. The
considerations of this chapter hold for all v € HSTS. Therefore a partitioning of
HSTS as in Section 3 does not result.

6. A further intermediate chapter: parallel classes in STS(v)

6.1. Parallel classes — what are they?
Here two lines are called parallel if they have no point in common. A set of

lines forms a parallel class if these lines are pairwise parallel.

6.2 Theorem (Ray-Chauduri, Wilson [3]). Forall v=9+6n, n e Ny, there exist
STS(v) with a parallelism.

Systems of this kind are called resolvable. In a resolvable STS(v) there are
exactly 3(v — 1) parallel classes each containing exactly 1v parallet lines.
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6.3 Theorem. For the remaining Steiner number different from T ~ this means for
all v=13+6n, n e N, there exist STS(v) with a parallel class containing exactly
(v — 1) parallel lines.

The projective plane STS(7) must be excepted, because in this system there are
no two parallel lines. Using the notation of 7] there exists the parallel class
{1,3,5}, {4,7,12}, {2,9,11}, {0,8,10} in STS\(13) and the parallel class
{1,2,5}, {6,7,10}, {4,9,11}, {0,3,12} in STS,(13). The theorem has been
known for a long time [4]. We give here a new proof. In order to do so, write
v=13+12n € RSTS and v = 19+ 12n € HSTS with n € N, respectively instcad of
v =13 + 6n. We have to distinguish two cases.

v=19+12n

As pointed out in Section 4.2 all these systems may be constructed recursively
with the polygon-method using STS(r). By 6.2, for r =9 + 6n, n € N, we can start
with a resolvable system STS(r). Once more we have to distinguish two cases.

r=9+12n

Secants

The secants {i', (i + 1), (2i +1)/2} with ie{1,3,...,r—2} have neither
on-points nor ex-points in common. Since (2i + 1)/2 = (2j + 1)/2 we immediately
have a contradiction to i # j. Therefore there are 3(r — 1) secants of this kind.

Tangents

Up to now the on-point O'(=r’) and the ex-point O(=r) have not been
needed. This fact yields immediately a further line, parallel 1o the lines already
mentioned, namely the tangent {Z, O, O'}.

Passants

If there exist further parallels then these parallels can be neither secants nor
tangents, because all on-points and the point Z are already used. There still
remain exactly r — 4(r + 1) = 3(r — 1) ex-points available. We can write 3(r — 1) =
1 +3(1+2n). So 3(r—1)—1 is divisible by 3. Now the enumeration of the
ex-points is to be done such that all these remaining ex-points form i(3(r — 1) —
1) = {(r — 3) passants.

Summary
We have found

r=1+ 1 +i(-3)=r=iw-1)

secants tangent passants

mutuaily parallel lines in total.
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Fig. 15.

Example
In the case v =19 (r =9) we take from Fig. 15 the parallel class found in this
way.

Secants:  {1’, 2,6}, {3',4', 8}, {§',6', 1}, {7, 8, 3};
Tangent: {Z, O, O'}; Passant: {4,5,7}.

r=15+12n

The construction of parallel secants we used in the last case does not work
here. The reason is that 3(r — 1) =7 + 6n now is odd. Therefore we modify the
construction a little bit.

Secants

The secants {i', (i + 1), (2i +1)/2} with ie{2,4,...,r—5}, {1, (-2),
(r—1)/2}, {(r—1), (r —3)', r — 2} have no on-points in common. The on-point
O’ does not occur. It has to be shown that all the ex-points we used are different
to one another and to O. This can be shown by contradiction. So for instance
with (2i +1)/2=(r —1)/2 we immediately obtain i=34(r —2)=3(13+12n)=
1(28 + 24n) = 14 + 12n. This is already a contradiction because 14+ 12n>r — 5,
therefore there are 1(r — 1) secants of this kind.

Now all the missing parallel lines may be found as in the last case.

Example
In the case v =31 (r = 15) we take from Fig. 16 the parallel class found in this
way.

Secants: {2',3',10}, {4',5',12}, {6',7',14}, {8,9',1}, {10',11",3},
{12',14',13}, {1',13’,7}; Tangent: {Z, O, O'}; Passants: {2,4,5}, {6,8,9}.

v=13+12n
Now we work again with the construction given in [5] using a regular oval. It is
useful to write r = 12+ 12n and r = 6 + 12n with n € N, instead of r =6 + 6n.
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Fig. 16.

r=12+12n

Secants

The secants {i’, (i + 1), i — 1} with ie {1,3,...,r— 1} are mutually parallel.
Now already ir ex-points are used, namely 2,4,...,0. The ex-points
1,3,...,r—1 as well as the in-point M still remain available. If there exist
further parallels then these parallels can be neither secants nor tangents. Because
all on-points have already been used.

Passants

Following [5] there exist ir passants of the form {x, x + ir, x + %r}. These three
numbers are either even or they are all odd. We take off all the passants with odd
numbers:

{1, L+4r, 1+ %), {3,3+3r,3+%r), ...

So we obtain ¢r lines parallel to one another and to the lines already chosen. The
point M is left over.

Summary
We have found

o+ ar =ir=i(v-1)

secants passants

mutually parallel lines in total.

Example
In the case v =25 (r = 12) we take from Fig. 17 the parallel class found in this
way.

Secants: {1',2',2}, {3',4',4}, {5',6',6}, {7',8,8}, {9,10',10}, {11',0",0};
Passants: {1, 5,9}, {3,7, 11}.

r=6+12n
Following [5] the proof in this case works completely analogously to the last



Modifications of the ‘“‘central method” to construct STSs 381

Fig. 17.

one. Here once more a survey of all the cases dealt with in the Theorem 6.2
and 6.3.

= v=13+6n
v=9+6n -
v=13+12n v=19+12n
r= 6+ 6n r=,9+ 6n
o ~ e ~
r=6+12n r=12+12n r=9+12n r=154+12n

7. A third multiple method (with parallels)
7.1. The procedure

In the central construction we now choose a starting system STS(r) with a
parallel class {a,, b\, ¢}, {a,, bs, ¢3}, ..., {a;, b;, ¢;} as in 6.2 and in 6.3. Then
we perform the perturbation to these lines one after the other so that the points
Ci, €ay ..., ¢ lie on exactly 3 tangents and Z lies on exactly r —2i tangents.
Continuing we always obtain new systems and new ovals.

7.2. Result

The table in Fig. 12 shows the result of our construction not only using chains
but also using parallel lines. It is possible to suppose that nothing has changed.
Indeed the number of points with a certain number of tangents is the same. But
the configurations of tangents are totally different.

7.3. Number of ovals types

When does the continued performing of the perturbation trick come to an end?

v =19 + 12n, therefore r =9 + 6n (v #7).

The parallel class we use contains exactly ir lines, therefore after p = ir steps
the procedure comes to an end. Now we have p = {r ex-points with exactly 3
tangents, r — p = 5r ex-points with exactly one tangent and one ex-point with
exactly r —2p =1r tangents (Fig. 18 for v=19 (r=9)). This type of oval is
denoted by O,. Besides the knot oval we obtain p = 3r further types of ovals.
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Fig. 18.

v =27+ 12n, therefore r = 13 + 16n (v # 15).

The parallel class we use contains exactly i(r —1) lines, therefore after
p =34(r—1) steps the procedure comes to an end. Now we have p=4(r—1)
ex-points with exactly 3 tangents, r — p = 3(2r + 1) ex-points with exactly one
tangent and one ex-point with exactly i(r +2) tangents (Fig. 19 for v =27
(r =13)). This type of oval is denoted by O,. Besides the knot oval we obtain
p = 3(r — 1) further types of ovals.

7.4 Theorem.
Exactly as in 3.3.4 we summarize the results of this section in a theorem.
Exactly for all v e HiSTS there exist systems STS(v) with an oval O;. Exactly
for all the remaining Steiner number of HSTS different from 7 and 15, namely for
all v e H,STS there exist systems STS(v) with an oval O,.

We have

H,STS: v=19+12nor v =19, 31 + 24n;
H,STS: v=27+12n or v =27, 39 + 24n;
n eNy; HSTS = H,STSU H,STS U {7, 15}.

Z

Fig. 19.
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So the disjoint sets H,STS and H,STS are also characterized in a geometrical way
when ovals are used.

8. Theorem.

The Theorems 3.3.4 and 7.4 now are combined in one theorem.

Exactly for all Steiner numbers v € H,, there exist a system STS(v) with an oval
O, as well as a system STS(v) with an oval O,.

We have

Hi:v=19+24n; Hyyv=27+24n; Hoy: v =39 +24n;
H23: v = 31 + 24”, n e N(); HSTS = H]}U H|4U H23U H24U {7, 15}.

Now even the four sets H,, are characterized in a geometrical way when ovals are
used.

Remarks. (1) Isomorphism
It remains to be shown that the systems of the same order v constructed in the
Section 3, 5 and 7 are mutually non-isomorphic (except the systems with knot
ovals).

(2) Polygon-construction
Using the polygon-construction — instead of the central-construction —in [6] the
perturbation trick with pencils was already performed. In an analogous way this
may also be done with chains and parallels. All the systems of the same order
then obtained have to be compared with one another as well as with the systems
produced by the central-method and then investigated with respect to
isomorphism.

(3) Combination
The three treated multiplying methods may be combined in various ways. Thus
we obtain an immense number of further Steiner triple systems with new oval
types.

(4) Diophantine equations
With our constructions we obtain solutions of the system of two linear
diophantine equations given in [S]. It should be noticed that one solution may
yield quite different kinds of ovals.
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