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COMBINATORIAL DESIGNS - A TRIBUTE TO HAIM HANANI 

PREFACE 

This volume is dedicated to a mathematician who laid the ground work for the 
modern study of combinatorial design theory. Haim Hanani pioneered the 
techniques for constructing designs and the theory of pairwise balanced designs, 
leading directly to Wilson’s Existence Theorems. He also has lead the way in the 
study of resolvable designs, covering and packing problems, latin squares, 
3-designs, and other combinatorial configurations. All this is made more 
remarkable by the fact that Haim’s first paper in design theory (the existence 
theorem for Steiner quadruple systems) appeared only in 1960. His encylopaedic 
papers are widely referenced, and his genius for construction is known and 
respected throughout the design theory community. 

Haim Hanani was born in Poland in 1912; he studied mathematics in Vienna 
and Warsaw from 1929-34, graduating with an M.A. from the University of 
Warsaw. In 1935 he emigrated to Israel and was awarded the Hebrew 
University’s first Ph.D. in Mathematics in 1938. His dissertation was on the four 
colour problem. While a student he joined the National Military Organization 
(IZL), an underground force fighting for the establishment of a Jewish state in 
the land of Israel. He was imprisoned by the British authorities in 1944 and exiled 
to Eritrea, and then to Kenya, returning to Israel only in 1949 after Israel’s 
independence. I n  1955 he was appointed to the faculty of the Technion in Haifa. 
During the period from 1969-73 he served as the first rector of Ben Gurion 
University in Beersheba, and in 1979 he was awarded an honorary doctorate for 
his work in founding the university. In 1980 he was appointed Professor Emeritus 
at the Technion. Throughout his career he has held numerous administrative 
posts in the Technion and in professional and government agencies. He is on the 
editorial board of Discrete Mathematics, Journal of Comhinatorial Theory and the 
European Journul of Combinatorics. 

I would like to take this opportunity to express my gratitude to Professor 
Hanani for his contributions to mathematics, and to wish him a long, fruitful and 
healthy life on his seventy-tifth birthday. This volume of research and survey 
papers is a fitting tribute to a founding father, from his mathematical sons and 
daughters. 

Alan Hartman 
Toronto, Ontario 
July, 1988 

0012-36SX/XY/$3.S0 1989, Elsevier Science Publishers B.V.  (North-Holland) 
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It is with great sadness that we note the passing of Shmuel Schreiber. Shmuel’s 
last two papers appear in this volume, and were completed only days before his 
death. He was born in Romania, arriving in (then) Palestine in 1940. He received 
his Master’s degree from the Hebrew University in 1947. His career was not in 
academia, so his time for research was limited; nevertheless his papers on Steiner 
triple systems and finite algebras remain as important works. His presence at 
combinatorial meetings in Israel was inspiring, his questions and problems always 
challenging, and his infectious enthusiasm for mathematics was remarkable. H e  
will be greatly missed by the Israeli mathematical community and the com- 
binatorial theorists of the world who had the privilege to know him. 

Alan Hartman 
Toronto, Ontario 
July, 1988 
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RESOLVABLE GROUP DIVISIBLE DESIGNS WITH 
BLOCK SIZE 3 

Ahmed M. ASSAF* and Alan HARTMAN 
IBM Israel - tluifu Research Group, Technion City, Haifu 32Mk3, Isrud 

Dedicated to Professor Haim Hanani on the occasion of his 75th birthday. 

Let v be a lion negative integer, let A he a positive integer, and let K and M bc scts of 
positive integers. A group diuisible design, denoted by GD[K, A, M, v ] ,  is a triple (X, f, / 3 )  
where X is a sct of points, r = { G I ,  G,, . . . )  is a partition of X ,  and jj is a class of subsets of X 
with the following properties. (Members of r arc called groups and members of B arc  called 
blocks. ) 

1. The cardinality of X is v.  
2. The cardinality of each group is a member of M. 
3. The cardinality of each block is a member of K .  
4. Every 2-suhset { x , y )  of X such that x and y belong to distinct groups is contained in 
precisely A blocks. 
5. Every 2-subset { x ,  y )  of X such that x and y belong to the same group is contained in no 
block. 

A group divisible design is resolvable if there exists a partition n= { P , .  Pr, . . . )  o f  13 such 
that each part P, is itself a partition of X .  In this paper we investigate the existence of 
resolvable group divisible designs with K = ( 3 ) ,  M a singleton set, and all A. The case where 
M = { I )  has been solved by Ray-Chaudhuri and Wilson for A = 1, and by Hanani for all A > 1. 
The case where M is a singleton set, and A = I has recently been investigated by Rees and 
Stinson. We give some small improvements to Rees and Stinson’s results, and give new results 
for the cases where A >  1. We also investigate a class of designs, introduced by Hanani. which 
we call frame resolvable group divisible designs and prove necessary and sufficient conditions 
for their existence. 

1. Introduction 

Let Y be a non negative integer, let A be a positive integer, and let K and M be 
sets of positive integers. A group divisible design, denoted by GD[ K, A ,  M, Y], is 
a triple (X, r, p )  where X is a set of points, r = {GI ,  G2, . . . }  is a partition of X ,  
and p is a class of subsets of X with the following properties. (Members of r are 
called groups and members of p are called blocks.) 

1. The cardinality of X is Y. 
2. The cardinality of each group is a member of M. 
3. The cardinality of each block is a member of K. 

* Department of Algebra, Combinatorics and Analysis, Auburn University, Auburn, Ala. 36849, 
U.S.A. 

0012-365X/89/$3.50 0 1989, Elsevier Science Publishers B.V. (North-Holland) 



6 A .  M .  A.vsaf, A .  tlurrmun 

4. Every 2-subset { x , y }  of X such that x and y belong to distinct groups is 

5 .  Every 2-subset { x ,  y }  of X such that x and y belong to the  same group is 
contained in precisely A blocks. 

contained in no block. 

When M = { m }  o r  K = { k }  are singleton sets we shorten the notation f o r  
GD[K, A ,  M. VJ to G D [ k ,  A, m ,  v]. 

A group divisible design is resolvable if there exists a partition n = 

{ P , ,  P2, . . . , P,} of @ such that each part P, is itself a partition of X. The parts P, 
are called parallel classes, and the partition R is called a resolution. The number r 
of parallel classes in  a resolvable G D [ k ,  A, m ,  v )  is given by r = A(v - r n ) / ( k  - 
I )  = Am(u - l ) / (k  - I ) ,  where u is the number of groups. 

Group divisible designs are generalizations of many combinatorial design 

A puirwise balanced design B ( K ,  A ,  v) is equivalent to a GD[K, A ,  1,  v]. 
A balanced incomplete block design B(k,  A ,  v) is equivalent to a 

A transversal design T(k, A ,  m )  is equivalent to a G D [ k ,  A ,  m, k m ] .  
The main purpose of this paper is t o  investigate the existence of resolvable 

group divisible designs with parameters GD[3, A ,  m ,  v]. Note that the existence 
of group divisible designs with block size 3 has been settled by Hanani 171 who 
proved the following. 

structures, we give a short list below. 

GD[k, A, 1, v]. 

Theorem 1.1. A group riizksible design GD[3, A, m,  v ]  exists if and only if’ 

v = 0 (mod rn), v # 2m, 

A(v - rn) = 0 (mod 2), and 

AV(V - m )  1 0  (mod 6 ) .  

For such a design to be resolvable an obvious additional necessary condition on 
the parameters is that 

v 5 0 (mod 3). 

We shall show that in the majority of cases the above conditions arc a l s o  
sufficient for the existence o f  resolvable designs GD[3, A ,  rn, v]. However, wc do 
leave some cases where the necessary conditions are satisfied but the existence o f  
the designs is undecided. 

We begin by surveying the known existence theorems for resolvable group 
divisible designs with block size 3. ‘The most celebrated existence problcm for  
resolvable designs was first posed by Kirkman [Y ]  in 1847, and is k n o w n  ;is 

Kirkman’s schoolgirl problem. This was solved by Ray-Chaudhuri and Wilson 
1111 in 1974 when they proved the following. 
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Theorem 1.2. A resolvable group divisible design GD[3, 1, 1, v] exists if and only 
i f v - 3  (mod6). 

Another well studied problem for resolvable group divisible designs is the 
existence of resolvable transversal designs. A resolvable transversal design 
T(3, 1, m )  or resolvable GD[3, 1, m, 3m] is equivalent to a pair of mutually 
orthogonal Latin squares of side m, and the following existence theorem was 
proved by Bose, Parker and Shrikhande [2, 31 in 1960. 

Theorem 1.3. A resolvable group divisible design GD[3, 1, m ,  3m]  exists if and 
only i f m  $ { 2 , 6 } .  

Further progress was made on the case m = 1 by Hanani [6] when he proved. 

Theorem 1.4. A resolvable group divisible design GD[3, 2, 1, v ]  exists if and only 
$ v = O  (mod3), and v f 6 .  

An easy consequence of Theorems 1.2 and 1.4 is: 

Theorem 1.5. A resolvable group divisible design GD[3, A ,  1, v] exists if and 
only if 

A = 1 (mod 2), and v - 3 

A = 0 (mod 2), and Y = 0 
A = 0 (mod 4), and Y = 6. 

(mod 6 ) ,  or 

(mod 3), and v # 6 ,  or 

Proof. Theorems 1.2 and 1.4 cover the cases A = 1 and A = 2. For A > 2 and v # 6 
the designs are constructed by taking copies of the blocks and resolution classes 
of the designs with A < 2. For v = 6 and A = 4j take j copies of all 3-subsets of a 
6-set as blocks, and the resolution classes consist of a block and its complement. 

Now let us assume that there exists a resolvable GD[3, 4j + 2, 1 ,  61. We can 
assume that X = (0,  1, 2, 3, 4, 5}. Every resolution class contains two blocks, and 
these two blocks contain either 0 or 4 pairs { x ,  y }  such that x y (mod 2) 
(according to whether the resolution class is { {0,2,4},  { 1,3,5}} or not). There 
are a total of 9 such pairs, and thus 9(4j +2 )  is a multiple of 4, a 
contradiction. C I  

A resolvable group divisible design GD[3, 1 ,2 ,  Y ]  with m = 2 and A = 1 has 
been referred to in the literature as a nearly Kirkman triple system, and the 
following existence theorem is mainly due to Baker and Wilson [ 1 1  with some 
final small cases solved in the papers of Brouwer [4] and Rees and Stinson [ l o ] .  
(Note that a resolvable GD[3, 1,  2 ,6]  is equivalent to a pair of orthogonal Latin 
squares of side 2, which do not exist by Theorem 1.3.)  
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Theorem 1.6. A resolvable group divisible design GD[3, 1 ,  2, Y] exists if and only 
if  Y = 0 (mod 6), and Y 2 18. 

Rees and Stinson also proved the following theorem, which is the state of the 
art for resolvable group divisible designs with k = 3, A = 1, and arbitrary m. 

Theorem 1.7. A resolvable group divisible design GD[3, 1, m ,  Y] exists if  and 
only if 

v = 0 (mod m),  v #2m, 

v-rn=O (mod2), 

v = 0 (mod 3) and, 

( m ,  v) @ {(2,6), (2, 1% (6, 18)) 

with the possible exceptions of 

( m ,  v) E {(6, 661, (18, 198)) 

m = 6 or 30 (mod 36), and v = 14m 

m = 2 or 10 (mod 12), and Y = 6m. 

In this paper we improve on Rees and Stinson’s result by removing the first two 
classes of exceptions, and some of the third class. We also prove a result similar 
to Theorem 1.7 with A > 1. We denote the set of primes less than or equal t o  p by 
D,,. Our main result is the following. 

Theorem 1.8. A resolvable group divisible design CD[3, A ,  m, u m ]  exists $ und 
only if 

u # 2 ,  

Am(u - 1) = 0 

um = 0 (mod 3) und, 

(A ,  m, u )  @ { ( 2 j  + 1, 2, 3 ) ,  ( I ,  2,6), ( I ,  6, 3), (4j + 2, 1,6) : j  = 0, 1, 2, . . . } 

(mod 2 ) ,  

with the possible exceptions of the cases where u = 6 and A S 0 (mod 4). 
Moreover, there exist resolvable GD[3, A ,  m, bm] for  ull odd A und even m such 
fhut nil2 is divisible by a member of D,; and there exist resolvable 
GD[3, A ,  m, 6m] for ull A _= 2 (mod 4 )  and ull m divisible by u member of’ D,‘,, 
except possibly m E 122, 26, 34, 38). 

A further configuration investigated in this paper has appeared in Hanani’s 
paper [6] in a disguised form, and explicitly in Stinson’s paper [12]. We have 
chosen to use the terminology frame resolvable group divisible design as ii 

compromise between the terms currently in use. A group divisible design 
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( X ,  r, p )  is said to be frame resolvable if there exists a partition IZ = 

{ P I ,  P 2 , .  . . , Q }  of such that each P, is itself a partition of X\Ci for some 
G, E r. The parts P, are called frame parallel classes, and the partition IZ is called 
a frame resolution. 

Two obvious necessary conditions for the existence of a frame resolvable 
G D [ k ,  A, m, v ]  are that v f km, and v - m = 0 (mod k ) .  The number of frame 
parallel classes, f, is given by 

A v ( v - m ) .  v - m  Av - 
f =  k ( k - 1 )  ’ k k - 1 ’  

and hence an additional necessary condition is that Av = 0 (mod k - 1). Note 
that the number of frame parallel classes which partition X\G, for some fixed 
group C, is given by f - r = Am/(k - 1) and we shall sometimes use this fact to 
index the frame resolution as IZ = {c,:i = 1 ,  2, . . . , u;  j = 1, 2, . . . , Am/(k - 1)) 
where u is the number of groups and P,, is a partition of X \ GI for all j .  

In the case k = 3 Stinson [12] has shown that the necessary conditions stated 
above are also sufficient when A = 1, and his result is stated below. 

Theorem 1.9. A frame resolvable group divisible design GD[3, 1, m,  v ]  exists if 
and only if 

Y = 0  (modm), v Z2m,  3m 

v - m = 0 (mod 3), and 

m = O  (mod2).  

Hanani [6] has also shown that the necessary conditions are sufficient when 
A = 2 and m = 1. His result is: 

Theorem 1.10. A frume resolwble group divisible design GD[3, 2 ,  1, v ]  c.xists if 
und only if v = 1 (mod 3). 

In the same pilper Hanani also constructs frame resolvable GD[3,2,  m, v ]  
designs with m E (3 ,  12, 24} and infinitely many values of v. In  this papcr we 
extend the above results to prove: 

Theorem 1.11. A frume resoh~ubfe group divisible design GD[3 ,  A, m ,  v ]  exists if 
und only if 

v = 0 

A(v - m )  = 0 

v - m = 0 

Av=O (rnod2). 

(mod m ) ,  v Z 2m, 3m, 

(mod 2 ) ,  

(mod 3 ) ,  und 
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In Section 2 we describe the major constructions necessary to prove Theorems 
1.8 and 1.11. In Section 3 we prove these results, and the appendix contains the 
constructions of resolvable and frame resolvable designs with small parameters 
needed in the  proofs. 

2. Recursive constructions 

In this section we show how to construct both resolvable and frame resolvable 
group divisible designs using the existence of designs with smaller values of the 
various parameters. Throughout the sequel we shall denote the set 
(0, 1 ,  . . . , n - l }  by /',. The first lemma shows how to increase A without altering 
any of the other parameters. 

Lemma 2.1 (Addition Lemma). If there exist u (frame) resolvuble 
GD[K, A, m, Y ]  and a (frame) resolvable GD[K, p,  rn, Y ]  then there exisrs u 
(frame) resolvable GD[K, A + p, rn, v ] .  

Proof. Take the union of  the two postulated designs. 0 

I n  most cases this lemma reduces our problem to consideration of only two 
cases namely A = 1 or 2. The next theorem is multiplicative on the number of 
points and the index A. In general we will be using the theorem with k ,  = k thus 
keeping the block size constant, but we shall also have occasion to set k ,  # k .  

Theorem 2.2 (Multiplication Theorem). /f there exist (I (frame) resolvable 
GD[k,,  A, rn, Y ]  and a resolvable GD[k, p, g,  k , g ]  then there exists a (Jiurne) 
resolvable GD[k, Ap,  rng, vg] .  

Proof. Let ( X ,  r, p )  be a (frame) resolvable GD[k, ,  A, rn, v ]  with (frame) 
resolution n = {n , ,  n2, . . . } .  We construct a (frame) resolvable 
GD[k, ,$A, mg, vg] as follows. Let X '  = X X In.. Let r' = { C  x In. : G E r}. For 
each block B E ,!3 we construct a resolvable GD[k, p, g ,  k , g ]  with point set I3 x /n., 
groups { x }  x I,. for each x E B ,  block set P ( B ) ,  and resolution n(B) = 
{ P ( B ,  j ) : j =  1, 2, . . .). Now let P' = UAEaP(/3), and construct (frame) parallel 
classes P ' ( i ,  j )  = Uncn, P ( B ,  j ) .  0 

To apply this theorem we generally use Theorem 1.3 which guarantees the 
existence of resolvable GD[3, 1, g, 3g] for all g #2,  6. Thus our problem usually 
reduces to consideration of the cases where rn = 1 ,  2, 3 ,  and 6. The next theorem 
shows that the set U = { u  :there exists a frame resolvable GD[k, A, rn, m u ] }  is 
PBD-closed. 
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Theorem 2.3 (PBD-closure Theorem). I f  there exist a pairwise balanced design 
B[K, 1, v] andf iw each u E K there exists a frame resolvable GD[k, A, m, mu] then 
there exisls a frame resolvable GD[k, A, m, mv]. 

Proof. Let ( X ,  p )  be a B[K, 1, v], We construct a frame resolvable 
GD[k, A, m, mvl as follows. Let X '  = X X I,. Let r' = { { x }  x f,, : x  E X } .  For 
each block B E p of cardinality u we construct a frame resolvable 
GD[k, A, m, mu] with point set B X f,,,, groups { x }  X I,,, for each x E B ,  and block 
set /3 (B) .  Its frame resolution n(B) = { P ( B ,  x ,  j ) : x  E B ,  j = 1, 2, . . . , Am/(k - 
l)}, is indexed so that P ( B ,  x ,  j )  is a partition of ( B \ { x } )  X I,, for all j .  Now 
let /j' = UBEa / I ( B ) ,  and construct frame parallel classes P ' ( x ,  j )  = 
UISRcP P ( B ,  x ,  j ) ,  for all x E X and all j = 1, 2, . . . , Am/(k - 1). 0 

With k, A ,  and m fixed, this theorem reduces our existence problem for frame 
resolvable GD[k, A ,  m, mu] to finitely many values of u ,  using the known finite 
generating sets tor U .  An example of the kind of result we shall use is the 
following theorem of Drake and Larson [S]. 

Theorem 2.4. For all v d 4 there exists a B(K, 1, v) where K = 

(4, 5 ,  6, 7, 8,  9, 10, 11, 12, 14, 15, 18, 19, 23). 

The next theorem is similar to the PBD-closure theorem and it illustrates the 
interplay between frame resolvable and resolvable group divisible designs. 

Theorem 2.5 (FK + 1-closure Theorem). I f  there exist a group divisible design 
GD[K, I ,  M ,  v] und for  each g E M there exists a resolvable GD[k, A, m, m ( g  + 
l)] and for  each 11 E K there exists a frame resolvable GD[k, A ,  m, mu] then there 
exists u resolvahlo GD[k, A, m, m(v + l)]. 
Proof. Let (X, f, p )  be a GD[K, 1, M, v]. We construct a resolvable 
GD[k, A ,  m, m(v + l)] as follows. Let X '  = (XU {a}) x I,,,. Let r' = { { x }  x 
f, : x  E X U {a}}. For each group G E r of cardinality g we construct a resolvable 
GD[k, A, m, m(g + 1)] with point set (G U {a}) x I,,, groups { x }  X I ,  for each 
x E G U {a}, and block set /3(G). Its resolution n ( G )  = {n (C ,  x ,  j ) : x  E G, j = 
1, 2 ,  . . . , Am/(k -- I)}, is indexed arbitrarily by the ordered pairs ( x ,  j ) .  This is 
possible since the number of parallel classes is Arng/(k - 1). For each block B E p 
of cardinality u we construct a frame resolvable GD[k, A, m, mu] with point set 
B x I,. groups { x }  x I ,  for each x E B, and block set P ( B ) .  Its frame resolution 
n ( B )  = { P ( B ,  x ,  J ) : X  E B,  j = 1, 2, . . . , Am/(k - l)}, is indexed so that 
P ( B , x , j )  is a partition of ( R \ { x } )  XI,,, for all j .  Now let p' =Uc;Er/3(G)U 
UOSp p ( B ) ,  and construct the following parallel classes. Let x be a member of X 
and let G be the unique group in r which contains x ,  now for each 
j = 1,2 ,  . . . , Am/(k - 1) define 
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This theorem, together with our results on the existence of frame resolvable 
designs and standard results on group divisible designs, reduces the existence 
problem for resolvable group divisible designs to a finite number of values of Y. 

Note that none of the results in this section are completely new, since variants 
of these results have appeared in the papers of Hanani, Wilson and others. We 
have restated and proved the results to make the paper self contained and to have 
the results in the most convenient form for our purposes. 

3. Proofs of the main theorems 

We begin this section with a proof that the necessary conditions for existence of 
frame resolvable group divisible designs with block size 3 are sufficient. We 
restate the theorem here for the reader’s convenience. 

Theorem 1.11. A frame resolvable group divisible design GD[3, A ,  rn, Y] exists if 
and only $ 

v = 0 (mod rn),  Y # 2rn, 3rn, 

A(v - rn )  = 0 

v - rn = 0 

Av=O (mod2). 

(mod 2), 
(mod 3 ) ,  and 

Proof. Let Y = urn. We consider three cases. 
Case 1 .  A = 1 (mod 2). 

In this case the necessary conditions reduce to u f 2 ,  3 ,  rn = 0 (mod 2), and 
rn(u - 1) = 0 (mod 3 ) .  The existence of these designs follows from Stinson’s 
theorem [12] (Theorem 1.0) and the Addition Lemma. 

Case 2. A = 0 (mod 2) and rn 0 (mod 3 ) .  
In this case the necessary conditions reduce to u = I (mod 3 ) .  The existence 

of these designs follows from Stinson’s theorem [I21 (Theorem 1.9) and the 
Addition Lemma when rn is even. When rn is odd existence follows from 
Hanani’s theorem [6] (Theorem I .  LO), the Addition Lemma and the Multiplica- 
tion Theorem, since, by Theorem 1.3, there exist resolvable GD[3, I ,  rn, 3rn]  for 
all odd rn. 

Case 3. A = 0 (mod 2) and rn = 0 
In this case the necessary conditions reduce to u f 2 ,  3. When rn is even the 

result follows from Stinson’s theorem and the Addition Lemma. When rn is odd, 
by the Addition Lemma and the Multiplication Theorem, it is sufficient to 
establish the result in the case where A = 2 and rn = 3.  When u = 1 (mod 3 )  and 
in particular when u E (4, 7, 10, 19) the result follows from Hanani’s theorem and 
the Multiplication Theorem. When u E ( 5 ,  8, 9, 11, 12, 15, 23) Hanani [6] has 
constructed frame resolvable GD[3,2 ,3 ,3u]  designs. In Hanani’s paper the 

(mod 3 ) .  
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designs are givcn by developing the frame parallel classes denoted 
M,,,(O; 0) modulo ( u ,  3). When u E (6, 14, 18) we construct frame resolvable 
GD[3, 2, 3, 3u] designs in the Appendix. For all other values of u the result then 
follows from Drake and Larson’s theorem [5 ]  (Theorem 2.4) and the PBD- 
closure theorem. 0 

We turn now to resolvable group divisible designs, and we begin by giving a 
small improvement to Rees and Stinson’s theorem [ 101 (Theorem 1.7). 

Theorem 3.1. There exist resolzJable GD[3, 1, m ,  l lm]  and resolvable 
GD[3, 1 ,  m ,  14m] for all m = 0 (mod 6 ) .  Furthermore, there exist resolvable 
GD[3, 1, m ,  6 m ]  for all m 3 0 (mod lo), and for all m = 0 (mod 14). 

Proof. In the Appendix we construct resolvable designs GD[3, 1,  6, 661, 
GD[3, 1,6,84], GD[3, 1,  10,601, and GD[3, 1 ,  14,841. Rees and Stinson have 
constructed resolvable designs GD[3, 1, 12, 1321, GD[3, 1, 12, 1681, 
GD[3,1,20, 1201, and GD[3, 1,28, 1681. The result then follows from the 
Multiplication Theorem and the existence of a pair of orthogonal Latin squares of 
side n # 2, 6 (Theorem 1.3). 0 

This result, together with Rees and Stinson’s theorem proves our main result, 
Theorem 1.8, for the case A = 1. We now concentrate on A = 2. In order to 
establish our result in this case we use the following theorem due to Hanani, 
Ray-Chaudhuri and Wilson [ 8 ]  concerning the existence of resolvable balanced 
incomplete block designs with block size 4. 

Theorem 3.2. A rcsolvable GD[4, 1, 1, v] exists if and only if Y = 4 (mod 12). 

We also use the following result concerning the existence of three mutually 
orthogonal Latin squares of side g .  This result is due to a combination of authors, 
see [14] and [13] for a proof. 

Theorem 3.3. A GD[5, 1 ,  g, S g ]  exists for all g 3 4, g # 6, with the possible 
exception of g = 10. 

We are now able to state and prove the following. 

Theorem 3.4. A resolvable GD[3, 2, m, mu] exists if and only if 
mu = 0 (mod 3), 11 f 2 ,  and ( m ,  u )  # (1, 6), with the possible exception of the 
cases where u = 6. Moreover, there exists a resolvable GD[3, 2, m ,  6 m ]  for all m 
divisible by a member of D,9,  except possibly m E (22, 26, 34, 38). 
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Proof. Necessity o f  these conditions was established in the introductlon. To 
prove sufficiency we consider four cases. 

Case 1. u = 0 (mod 3), and u # 6. 
When m = 1 this is Hanani’s theorem (Theorem 1.4). When rn = 2 and u = 3 

we give a direct construction in the Appendix. When rn = 2 and u 3 9  the result 
follows from the existence of nearly Kirkman triple systems (Theorem 1.6) and 
the Addition Lemma. All other values of m then follow from the Multiplication 
Theorem and the existence of mutually orthogonal Latin squares (Theorem 1.3). 

Case 2. rn = 3 and u # 2. 
When u is odd, we can construct a resolvable GD(3, 1, 3,3u] from a Kirkman 

triple system (which exists by Theorem 1.2) simply by considering one of the 
parallel classes as the set of groups. Using the Addition Lemma gives a resolvable 
GDI3, 2, 3, 3ul. When u = 0 (mod 3), and u # 6, then the construction is given 
in Case 1 .  When u E (4, 6 ,  8 ,  10, 14, 22} we give constructions in the Appendix. 
When u = 4 (mod 12), we can use the Multiplication Theorem with k ,  = 4 aiid 
k =3,  since resolvable GD[4, 1,  1, u ]  exist by Theorem 3.2 and we have 
constructed a resolvable GD[3, 2, 3, 121 in the Appendix. 

From the above construction, we have the existence of resolvable 
GD[3,2,3, 3u] for all u S 30 with the exceptions of u = 2, 20, 26. For u > 30 and 
u = 20, or 26 we use induction. Write u = 4g + ti + 1 where g 3 4, g r$ { fj, lo}, 
O s n  s g  and IZ # 1.  By Theorem 3.3 there exists a GD[S, l ,g ,  Sg], and deleting 
g - n  points from a singlc group, and all the blocks containing then1 yields a 
GD[{4, S}, 1,  {g ,  a } ,  4g + n ] .  By Theorem 1.1 1 there exists a frame resolvable 
GD[3,2,3, 121, and a frame resolvable GD[3,2, 3, 151. Since u > g  + I 3 5 aiid 
g + 1 a n  + 1 # 2  the induction hypothesis gives us the existence of a resolvable 
GD[3, 2, 3, 3(g + I ) ] ,  iind a resolvable GD[3, 2, 3, 3(n + I)]. We now apply the  
FR + I Closure Thcorcm to construct a GD[3, 2, 3, 3uj. 

(mod 3). and u # 2. Case 3. rn = 0 
Case 2 handles the case rn = 3. The cases m = 6, 18 are covered by Rees and 

Stinson’s theorem (‘Theorem 1.7), ‘Theorem 3.1, and the Addition Lemma. All 
other cases arc covered by applying the Multiplication ‘Theorem to the designs 
constructed in Case 2 and the existence theorem for mutually orthogonal Latin 
squares (Theorem 1.3). 

Case 4. u = 6, m IS divisible by a member of I!),,~, and m 6 (22, 26. 34, 3 8 ) .  
In the Appendix we construct resolvable GD[3, 2, m,  6m]  for  all m E D,cJ. ‘Thc 

existence of a resolvnble GD[3, 2, 6m, 36rn1 follows from Rees and Stinson’s 
theorem. For m E D7 the existence o f  a resolvable GD[3, 2, 2m, 12~11 tollows 
from Rees and Stinson’s theorem and Theorem 3.1. ‘The remaining cases tollow 
from the Multiplication ‘I’heorem. U 

We are now ready to prove our main result which is restated below for  the 
reader’s convenience. 

Theorem 1.8. A resolvuble group divisible design GD[3, A ,  rn, urn] exists if’ and 
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only i f  

u z 2  

Am(u - 1 )  = 0 

u m  = 0 

(mod 2 ) ,  

(mod 3 )  and, 

( A ,  m, u )  $ ( (2 j  + 1 , 2 , 3 ) ,  (1 ,2 ,6) ,  ( 1 , 6 , 3 ) ,  (4j + 2 ,  1 , 6 ) : j  = 0, 1 ,2 ,  . . . }  

with the possible exceptions of the cases where u = 6 and A f 0 (mod 4) .  
Moreover there exist resolvable G D [ 3 ,  A ,  m, 6 m ]  for  all odd A and all even m such 
that m / 2  is divisible by a member of D,, and there exist resolvable 
GD[3,  A ,  m, 6 m ]  for all A = 2 (mod 4 )  and all m divisible by a member of D,,,, 
except possibly m t (22,  26, 34, 38).  

Proof. The theorem is true for A G 2 by Rees and Stinson’s theorem, Theorem 
3.1 and Theorem 3.4. For even values of A we use the Addition Lemma. For odd 
values of A, using the Addition Lemma, it is sufficient to construct a resolvable 
G D [ 3 , 3 , 2 ,  121 and a resolvable G D [ 3 , 3 , 6 ,  181. This is done in the Appendix. 

It remains to show the non-existence oa a resolvable GD[3,2 j  + 1,  2 ,  61 f o r  any 
j .  Assume that such a design exists with groups (0, I } ,  ( 2 , 3 } ,  ( 4 , 5 } .  There 
are four possible resolution classes PI = ((0, 2, 4 } ,  ( 1 ,  3 ,  S } } ,  P2= 
((0, 2, 51, (1, 3, 4 } ) ,  P3= ((0, 3, 41, ( 1 ,  2,  S } } ,  P4= ((0, 3,  5 } ,  (1, 2 ,  4 ) ) .  Let P, 
occur p ,  times in the design. Counting occurrences of the pair { 0 , 2 }  yields 
p ,  + p 2  = 2; + 1,  and hence p 1  f p , .  Similarly considering the pairs (0, 4 )  and 
( 3 , 4 }  yields p , + p 3 = 2 j +  L, and p 2 + p R = 2 j + 1 ,  hence p , = p 2 ,  a 
contradiction. 0 

Note added in proof 

The proper reference for Theorem 2.4 is A.E. Brouwer, H. Hanani and A. 
Schrijver, Group divisible designs with block size four, Discrete Math. 30 (1977) 
1-10. 
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Appendix 

A frume resoluahle GD[3. 2, 3 ,  IR] 

x = 2,s u {mil, 
" = ( ( ~ , I + S , I + I O ) ,  ( y 1 , m , , m 2 ) : i = 0 ,  I , . _ . )  4 )  

* m2).  

Frume purullel clusses 

(14, 7, 81 [ h ,  12, 31 19, 11, mil] 114, I ,  m , ]  113, 2, lo.,]) (mod IS), 
( [ 3 j + k , 3 j + k + 7 , 3 j + k + 1 4 ]  j = O , l , . . _ ,  4) k = O , l , 2 .  

A frame resolvable GD[3, 2, 3 ,  421. 

X = Z , , U  (WII, 'XI, a2) .  

f = { ( i ,  i + 13, i + 2 6 ) ,  (a,,, m l  , m2)  : i = 0 ,  I ,  , . , , 12) 

Frame parallel classes 

(12, 8, 141 14, 11. IS] 19, 17, 191 116, 2.5, 30)  129, 7, 121 [ l o .  2X. 311 [3X. 23. 271 
134, 20, 22) 13, 32, 351 (6, 36, 371 [ I X ,  33, mil] IS,  21, m , ]  [ I ,  24, a,]) (mod 3 9 ) .  

( [ 3 j + k , 3 j + k + 1 9 , 3 j i - k + 3 X I  j = O . l , . _ . ,  12) k = O , 1 , 2 .  

A frame resoluuhle CD[ 3 ,  2, 3, 541. 

x = z,, u (m,,, %,' 5). 

I ~ = ( ( I , i + 1 7 . i + 3 4 ) , { ~ , , , ~ , , ~ , ] : i = O ,  I , . . . ,  16) 

Frame puralli~l CIASXY 

(12, 10, 1x1 14, 13, 191 [ I ,  I I ,  IS] [3, 14. Ih] [ X ,  20,  261 [22, 41, 421 127. 40, 51 
17, 30, 351 148, 21, 241 [SO, 29, 321 112. 43, 471 16, 38, 451 137, 23, 281 144, 31, 331 
139, 9, . X I , ~ I  (40, 25,  m , ]  146, 36. m21} (mod 51). { [ 3 j  + k ,  3j + k + 25,  3j + k + SO] 1 -. 
0 ,  I ,  . . , Ih) k = ( I ,  I ,  2. 

A resoluuhle GD[3, I ,  6,  Oh]. 

x = z,,,, u (=,,, m , ,  , . . 1 %TI. 

I '= { ( I t  lOj:j=O, I . .  . , , S), (y,,,,, . . . , m , ) : i = O .  I . .  , . , O )  
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Parallel classes are  formed from the orbit of the following base parallel class under the action of the 
permutation which fixes mg, ml, . . . , m5 and sends j+ j + 2 (mod 60) for all j in Z(,,l. 

( [ O ,  2, 161 [4. 10, 321 [ I ,  3, 29) [5, 9, 271 [7, 13, 56) [ I t ,  19, 141 [23, 35, 281 
125, 39, 521 137, 53, 441 [57, 21, 81 [42,46, 451 [12, 48, 311 [SO, 38, 151 122, 30, 51) 

A resolvable GD[3, 1, 6, 841. 

X = ~ 7 , U ( m ~ , , m ~ , . . . , m s ) .  
f = { ( i + 1 3 j : j = 0 , 1  , . . . .  5),{mo,m1 , . . . ,  m5}: i=0 ,1  , . . . ,  12). 

Parallel classes are  formed from the orbit of the following base parallel class under the action of the 
permutation which fixes all ,  m l ,  . . . , ms and sends j-, j + 2 (mod 78) for all j in Z,M. 

{ [ O ,  19, 381 [2, 23, 441 [4,5,6] [ l ,  3, 391 [8, 32, 361 [7, 31, 351 [12, 34, 421 [ I I ,  33, 411 
[20, 40, 521 [67, 9, 211 [70, 26,291 [25, 59, 621 [48, 58,631 [61,71,76] [54,68, 771 
[51,65, 74) 130, 46, 571 [75, 13, 241 [lo, 28, 451 [37, 55, 721 [18, 43, 491 169, 16, 221 
[64, 15, m,J 127, 56, m,] [14, 47, m21 (17, 50, m31 (66, 73, m413 153, 60, msI} 

A resolvable GD[3, 1, 10, 601. 

x = 25,) u (ml,, ml, . . . , m d .  

r= ((i  + 5j:j  = 0, 1, . . . , 9). (a,,, ml, . . . , m,,) : i  = 0, 1, . . . , 4). 

Parallel classes are formed from the orbit of the following base parallel class under the action of the 
permutation which fixes mil, ml, . . . , m,, and sends j - ,  j + 2 (mod 50) for all j in Z,,,. 

( [ O ,  4, 16) [ l ,  5, 171 [6, 8, 301 (7, 9, 311 [12, 18, 261 [19, 22, 251 [13, 14, 211 

134, 3, m4] [2B, 42, ms] (24, 45, m,] [39, 10, m7] 120, 43, ma] 115, 38, 9 1 )  
[27, 40, 411 (29, 36,471 [28, 37, 461 [33. 44, mol [48, 11, a l l  [32, 49, m21 [35, 2, mi] 

A resolvable GD[3,1, 14,841. 

x = 2 7 0  u {m,,, m ,  , . . . , ml 1). 

f = ( { i + S j : j = O ,  1 , . . . ,  13),{m,,,ml , . . . ,  m13}:i=0, 1 , . . . ,  4). 

Parallel classes are  formed from the orbit of the following base parallel class under the action of the 
permutation which fixes m,,, ml, . , . , wl3 and sends j +  j + 2 (mod 70) for all j in 2711. 

( [ O ,  2, 14) [ I ,  3, 151 14, 8, 301 [5, 9, 311 110. 18, 42) [ I t ,  19, 431 16, 22, 401 (13, 16, 291 
[17, 26, 351 [7, 24, 411 [28, 34, 571 [21, 27, 501 132, 33, 601 [67, 68,251 [48,51, mol 
[49, 62, ml]  154, 61, m2] (39, 46, mi] [52, 63, m4] [53, 64, a,] [36. 55, mJ 147, 6 6 s  m71 

(44, 65, m,] [37, 58, mv] 138, 69, mlo] (59, 20, "ill] [12. 45, m ~ 2 1  123, 56, m ~ 3 1 )  

A resolvable GD[3,2,2,6]. 

x = 2 4  u 1. 
f = { {i, i + 2) ,  {mI,, m , )  : i = 0, I } .  

Parallel classes 

A resolvable GD(3,2,3, 121 

x= 2, x 2, 

r= { Z ,  x (i} : i E Z4) 
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Parallel classes 

A resolvublr GD[3,2,3,  18) 

Parallel rlmse.7 

( ( 0 ,  1, 4) [ S ,  7, 14) 19, 12, 131 (2, I t .  m,,] 13, 10, m , ]  16, 8 ,  m2]) (mod 15) 

A resohJabk GD[3,2,3.24) 

x= z,, u {m,1, m,, " 2 ) .  

r = ( { i ,  i + 7, i t 1 4 ) ,  (ml, ,  m , ,  m2} : i  = 0 .  I ,  . . . , 6 )  

Parallel clusses 

{[O, 4, 51 12, 12. 15) (6, 8, 17) (7, 10, 16) (13, I X ,  191 ( I ,  14, y,] (3, 20, m,l 
[9, l l , m z ) )  (mod21). 

A resolvable GD[3, 2, 3, 3 0 ) .  

x = z,, u (ml,, m , ,  'XI). 

r = ( ( i , i + 9 , i + l X ) ,  ( ~ l l , ~ l , ~ z } : i = O ,  I , . . . ,  8). 

Purullel clusses 

(10, 4,h l  11, X, 121 [3, 1 1 ,  13) [26, I X ,  21) [23, 16, 171 (5, 19, 221 19, 24, 25) 
110, 15, 12. 14, m , )  (7. 20, m,]) (mod27). 

A resolvuble GDI3, 2, 3, 42). 

X=%,,U ( m 0 . m , , m 2 ) .  

r = ( {i, i + 13, i + 26}, ( mll, a, , m2} : i = 0 ,  I ,  . . . , 12) 

Parullel classes 

{ [ I ,  2, 71 14, 8, 28) [Ih, 32, 341 [ I t ,  19, 25) IS, 22, 371 ( 1 0 ,  20, 31) (21, 24, 351 
[6, 18, 231 (27, 36, 171 [ I S ,  12, 14) 13, 30, 38) 19, 0, m,,) [26, 33, m , )  

[13, 29, m2)) (mod 39). 

A resolvuhlr GD(3,2, 3,661. 

x = z,, u {m", m , ,  mz). 

~ = ( ( i , i + 2 1 , i + 4 2 ) , ( m l , , m l , m ~ ) : i = 0 , 1  , . . . ,  20). 

Purullel clusses 

{[0, 10, 20) [2, 13, 211 [4, 16, 221 [ I ,  14, 181 [3, 17, 191 (8, 23, 301 [S, 28, 371 
17, 31, 381 19, 34, 391 [33, 59,621 [24, 51, 521 [46, 27, 351 (54, 36, 42) [57. 40, 441 
[61,45, 471 [26, 60, 61 (12, 48, 53) 155, 29, 321 [ I  I ,  49, SO] [ 2 5 ,  58, m,,] [43, IS, m , ]  
156, 41, m2]} (mod63). 
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A resolvable GD[3,2,2, 121. 
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A resolvable GD[3, 2, 5 ,  30). 

X = z,, u (ml), ml, . , , , m4). 

f = { ( i  + 5j:j  =0, I ,  . . . , 4), {m,,, m l ,  . . . , m4} : i  = O ,  1 , .  . . , 4). 

Parallel classes 

A resolvable GD[3,2,7,42]. 

x = z,s u {a,,, m1, . , . > mJ. 

f = ( { i + S j : j = O , l ,  . . . ,  6 ) , { m o , m l  , . . . ,  m6): i=0 ,1  , . . . ,  4). 

Parallel classes 

([o, 4,6] 11, 9, 131 [3, 12, 141 [2, 18, 211 [5, 22, 231 [7, 28, 311 [lo, 32, 331 [17, 24, m,,] 
[30, 8, m,] [15, 29, mz] [25, 16, m3] [19, 11, m4] [34,27, 126, 20, m61) (mod 35). 

A resolvable GD[3,2, 11,661. 

X=Z, ,U{m, , ,m, , .~~ ,ml") .  

f = ( ( i + 5 j : j : = O , l ,  . . . ,  10),{mll,ml , . . . ,  m , ~ , ) : i = 0 , 1  , . . . ,  4) 

Parallel classes 

A resolvable GD[3,2, 13,781. 

Parallel classes 

([O, 11, 191 [2, 14, 201 [4, 17, 211 [8, 22, 241 [I, 23, 291 [3, 26, 301 [7, 31, 331 

[16, 25, m,] (18, 39, mz] [13, 50, m,] [59, 32, m4] [46, 28, m5] [61, 4, m6] [54, 38, m-71 
[63, 49, ma] [a), 47, my] [64, 52, m,,] [62, 51, mill [45, 36, (mod65). 

[ S ,  34, 411 [6, 07, 401 [lo, 42, 431 [9, 48, 551 [12, 53, 561 [15, 57, 581 [27, 35, 

A resolvable GD[3,2, 17, 1021. 
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Parallel classes 

([o, 11,  I Y ~  12, 14, 201 (4, 17, 211 (8, 22,241 15, 26,341 [ I ,  23, 291 [9, 32, 36) 
[7, 31, 331 [3, 35, 461 16, 39,481 [lo, 44, 511 [13, 49, 521 (16, 53. 541 (12, 60, 69) 
115, 64, 711 125, 76, 79) 128, 80, 81) [27, 58, m,,] [IS, 62, (37, 83, mzI (68, 30, 
(70, 43, mq] [73, 47, ~ 5 )  [74, 50, mh] (61, 38, m7) [67, 45, m,] [63,42, m c , I  175, 56, mlo) 

~ 7 7 ,  50, 00111 p7 ,40 ,  m , ~  182.66, - 1 3 ~  [55 ,4 i ,  m ~ 4 1  ( 7 ~ ~ 6 5 ,  mI5i  

184, 72, m l h ) )  (mod 85). 

A resolvable GDIS, 2, 19, 1141. 

x = z,, u (mil, mi 1 , . . 8 W,"}. 

r = ( ( i + 5 j : j = 0 ,  1 , .  . . , 18). (m, , ,m, , .  . . , m l , } : i = O ,  I , .  . . , 4 ) .  

Parallel classes 

([O, 12, 23) [2, 15, 241 [4. 18, 251 [ I ,  17, 20) (9, 26, 271 [ 3 ,  30, 411 [ S ,  33, 42) 
17, 36, 431 [6, 37, 40) ( 13, 45, 461 18, 47, 591 (11, 52, 601 [14, 56, 621 [LO, 53, 57) 
[19, 63, 651 (16, 72, 801 [21, 78, 841 128, 86, 901 (22, 81, 831 131, 55, m,,] (32, 58, m l )  

135, 87, m,] [2O, 82, m3] [34, 88, m4] 167, 38, ms) [76, 48, (66, 39, m7) [7O, 44, m ~ 1  

(8.5, 61, m,] 191, 68, m,,,l 171, 49, m11] 175, 54, m ~ 2 ]  169, 50, ml, l  192, 74. m ~ 4 1  

(94, 77, m,,] [89, 73, (93, 79, W17] (64, 51, ml,]} (mod 95). 

A resolvable GD[3, 3 ,  2, 121. 

x = z,,, u (m,,, m , ) .  

r={{i, i+5},  {m, , ,ml) : i=O. l  , . . . ,  4).  

Parallel classes 

([0, 4, 61 [ S ,  7. 81 11, 3 ,  m,,l [2, 9, ml]} (mod 10) 

{[O, 3, 41 [5, 8, 91 [ I .  2, m,,l [6, 7, mil) + i ,  i = 0, 1, . . . , 4 

A resolvable GD[3,3,6, 181 

x = z,, u (m,,, m, 9 4. 
r = ( { m , , i + 3 j : j = O ,  1 , . . .  , 4 ) : i = 0 ,  1 , 2 ) .  

Parallel classes are formed from the orbits of the following base parallel classes under the action of the 
permutation of which sends mi-+ m,., , (reducing subscripts modulo 3), and sends i -+ i + 1 (mod 15) 
for all i in Zls.  Note that the first base parallel class has an orbit of length 3 ,  and the second has an 
orbit of length 15. 

([m,,,m,,m2] [ 3 ; , 3 ; + 1 0 , 3 i + 5 1 : i = O ,  I , . . . ,  4) 

{[mo, 13, 111 [3, m i ,  21 [9, 10, [0, 7, 14) (6, 4, 81 (12, I ,  51). 
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MINIMALLY PROJECTIVELY EMBEDDABLE STEINER 
SYSTEMS* 

Lynn Margaret BATTEN 
Unrversiry of Winnipeg, 51.5 Portage Avenue, Cunudu R3B 2EY 

Dedicated to Haim Hanani on his seventy-fifth birthday. 

We study Steiner systems which embed “in a minimal way” in projective planes, and 
consider connections between the automorphism group of the Steiner systems and correspond- 
ing planes. Under certain conditions we are able to show (see Theorem 2) that such Steiner 
systems are  eithcr blocking sets or  maximal arcs. 

1. Introduction 

A Steiner system S = S(2, k ,  v )  is an ordered pair (P, B) where P is a finite set 
of v elements called points, B is a set of subsets of size k 2 2, of P, called blocks, 
such that two points are on a unique block. S is trivial if IB1 d 1. 

Let b = IBI and let r be the number of blocks per point. It follows that 
v - 1 = r (k  - 1) and vr = bk. Thus a necessary condition for the existence of 
Steiner systems S ( 2 ,  k ,  v )  is that v - 1 = 0 (mod k - 1) and v (v  - 
1) = 0 (mod k ( k  - 1) )  [9]. Hanani proved that these congruences are together 
sufficient in case k = 3, 4 or 5 [ 10, 111. 

A projective plane is a Steiner system S(2, q + 1, q2 + q + 1) for q 2 2. Here q 
is called the order of the projective plane. If S is a projective plane, we normally 
refer to its blocks as lines. 

It appears to be the case that the majority of Steiner systems embed in 
projective planes [2]. In this article, we are interested in those Steiner systems 
which embed in a ‘minimal’ way, as defined in the next section, and in the 
resulting relationships between the automorphism groups acting on the two 
structures. Clearly, if a Steiner system S embeds in a projective plane 17 which in 
turn embeds in a second projective plane n’, there need be no connection 
whatsoever between the automorphism groups of S and 17’. Thus some notion of 
IZ ‘lying minimally’ in S is crucial if we expect to be able to say anything at all 
about the connections between the two structures. 

We shall need the following definitions. 
A subset of the points of a projective plane 17 which is met by every line of n 

but which itself contains no line of II, is called a blocking set. 

* Research supported by NSERC grant A3485. 

0012-365X/89/$3.50 0 1989, Elsevier Science Publishers B.V. (North-Holland) 
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A subset of the points of a projective plane I7 which is met by every line o f  I7 
in either 0 or a constant k points, but which contains more than k points of I7, is 
called a maximal arc. It is obvious that a maximal arc forms a non-trivial Steiner 
system S(2, k ,  v )  and that a Steiner system in I7 is a maximal arc if and only if 
r = 4 + 1, where 4 is the order of IZ. 

For more information on blocking sets and maximal arcs, we refer the reader to 
the book [14] by Hirschfeld. 

Our main results are presented in Theorems I ,  2 and 3. 

2. The setting 

We wish to consider the situation of a Steiner system embedded in a ‘smallest 
possible’ projective plane. The definition we give below assumes conditions on a 
Steiner system S which allow us to construct such a projective plane on S. 

A Steiner system S = S(2, k ,  v )  is minimally projectively embeddable (an 
mpe-system) if for some integer 4, 

(i) S is equipped with a non-empty family 9 of sets of blocks, each containing 
a set of a 2  mutually non-intersecting blocks such that any two non- 
intersecting blocks of S occur in precisely one element of 9. If L E F E 9, 
we write F E L and say that F “belongs to”, “is in”, or “is on”, L; 

(ii) 191 + u = q 2 + q  + 1; 
(iii) for any distinct elements x and y of 4 U P, there is a unique set X of 9 + 1 

elements of 9 U P including x and y ,  with the property that for each block 
L of S, precisely one of the following holds: L c X ;  there is a unique 
element of X on L. 

If S is an mpe-system, we shall often refer to it more precisely as the pair 
(S, 9), where 9 is the family described in (i). 

We say ( S ,  9) embeds minimally in the projective plane I7 if S is an 
mpe-system which is a restriction of I7 to some subset of its point set, and if for 
all points x E n\S, there is a unique element F E 9 such that the blocks of F are 
precisely the restrictions of the lines of I7 on x to the points of S. 

The following facts are immediate from the above definitions: S contains 
non-intersecting blocks and so if S embeds minimally in n, S is non-trivial and S 
cannot equal I7; every point of I7\S is on at least two lines of I7 which have 
restrictions to blocks of S. 

Proposition 1. Let Il be a projective plane of order 4 and S = (P, B )  a Steiner 
system which is a restriction of IZ to a point-set P of n. Suppose that each point of 
n\S is on at least two lines which restricted to S are blocks of S .  Then S is an 
mpe-system provided with the family 9 corresponding to the points of n\S, and 
( S ,  9) embeds minimally in I7. 
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Theorem 1. Let (S, 9) be an mpe-system for  some integer q. Then there is up to 
isomorphism a unique projective plane 17 of order q such that S embeds minimally 
in 17. 

Proof. Consider the system n = (9 U P, X), where X is the set of all (q  + l)-sets 
defined in (iii). Clearly 17 is a Steiner system S(2, q + 1, q2 + q + 1) and so a 
projective plane of order q. We need to check that the restriction to P of a line of 
n which contains at least two points of P is a block of S. Let x and y be points of 
the line t in 17 which are also in P. Then there is a block L of S on x and y .  By 
(iii), L c t. Conversely, using (iii), any block L of S is a subset of a unique line e 

To show that n is unique, suppose ( S ,  9) embeds minimally in both n, and 
I Z 2 .  Define a map @ from IZ, to 17, as follows. We may identify S in both planes, 
so that @(x) = x for all x E S. This induces a map on blocks of S and so on lines of 
IZ, which have restrictions to blocks of S. So for x E 17,\S, since by (i), x is on at 
least two elements of some E.' E 9, we may define @ ( x )  to be the intersection in 
17, of the image of the elements of F. Thus @ is well-defined on all points of 17,. 
It remains only to check that for an arbitrary line e of n,, the set { @(x), x E f?} is 
a line of 17,. But this follows easily from the definition given in (iii). Thus @ is an 
isomorphism between 17, and n2. 

of n. 

0 

We call the plane 17 of Theorem 1 the minimal projective extension of ( S ,  9). 
If (S, 9) embeds minimally in n, and t! is a line of IT, we call e respectively a 

secant, tangent, or exterior line, if it has k ,  1 or 0 points in common with S .  

Examples 
1. Any maximal arc different from 17 embeds minimally in 17. In particular, if 

S is an affinc plane this is well known. If n has order q and S is a ( q  + 1)-arc 
(oval) in I7 if q is odd, or a (q  + 2)-arc (hyperoval) in IZ if q is even [14], 
then S embeds minimally in 17 by Proposition 1. 

2. S = AG(2,3) embeds minimally in 17 = PG(2,4) in such a way that each 
point of 17\S is the intersection of precisely two secants of 17 [17]. 

In each of the above examples, the elements of 9 have the same size. When 
this is the case, it is possible to compute this constant as a function of q. r and k ,  
as we show in the next proposition. 

Proposition 2. Let (S, 9) embed minimally in 17 such that each point of n\S is 
on the same number c of secants of 17. Then c = ( r ( q  + 1 - k) ( rk  - r + 1))/ 
( k ( q 2  + q - rk + r ) ) .  In particular, S is a maximal arc if and only if c = v / k  = 

q + 1 - q / k ;  thus, in this cast', k 1 4 .  

Proof. Counting in two ways flags ( p ,  t), p a point of n\S and e a secant, gives 
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b(q + 1 - k )  = c(q2 + q + 1 - v). Then using vr  = bk and v - 1 = r (k  - 1) gives 
the value for c. Since S is a maximal arc precisely when r = q + 1, substituting this 
value in the equation for c yields c = v / k  = q + 1 - q / k .  0 

3. Automorphisms 

In this section, we shall concentrate on the connections between the groups of 
automorphisms acting on S and those acting on J7, where S embeds minimally in 
J7. It is clear that interesting results will be obtained only when we consider 
automorphisms of S which can be extended to automorphisms of J7. In order to 
ensure that this is the case, we shall subject (S, 9) to the following condition. 
(E) Let (S, 9) be an mpe-system, and let C be a subgroup of Aut(S). Then for 

all F E 9 and g E C we have g ( F )  E 9. 

Proposition 3. Let (S, 9) be an mpe-system satisfying ( E )  for some subgroup C 
of Aut(S). Then C extends to a subgroup C* of Aut (n ) ,  where 17 is the minimal 
projective extension of ( S ,  9), such that each element of G* restricted to S is an 
element of G. 

Proof. Let g E G .  Define g*  = g  on points of S. For X E J ~ \ S  such that x 
corresponds to F E 9, define g * ( x )  to be the point of J7\S corresponding to 
g ( F )  E 9. By (E), g *  is well-defined. Let e be an arbitrary line of n, and consider 
g*(t?) = { g * ( x )  I x E 8 ) .  To show that g*(t?)  is a line of J7, it suffices by the proof 
of Theorem 1 and by (iii) to show that for any secant R of 17, either R = g * ( 8 )  or 
IR ng*(f ) l=  1. But { g ( L )  I L a block of S} = { L  1 L a block of S},  and since for 
any secant R of n, either R = e or IR r l  el = 1, the result follows. 

It is now trivial to show that C* = {g* I g E C} forms a group. 
0 

A number of results exist in the literature classifying Steiner systems with 
automorphism groups satisfying certain kinds of transitivity conditions. We 
mention two of the important ones here, commenting on minimal embeddability 
and whether or not (E) holds for some subgroups of Aut(S). The reader is 
referred to [I, 2,7] for more results on transitivity of Steiner systems, as well as 
the pertinent definitions. 

Kantor [15]. If S is a Steiner system with automorphism group 2-transitive on 
points, then S is one of 

(a) a Desarguesian affine or projective space (in the latter case, two points per 
line are allowed), 

(b) an Hermitian or Ree unital, 
(c) the Hering affine plane of order 27 [12] or the near-field affine plane of 

(d) one of two Steiner systems S(2, 9, 9') due to Hering [13]. 
order 9, 
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For a discussion of and examples of projective and therefore also affine spaces 
embedded (not necessarily minimally) in projective planes, we refer the reader 
to [3]. 

Any Hermitian unital H = S(2 ,  q + 1, q3 + 1) embeds minimally in PG(2, 4 2 )  
and forms a blocking set there. The number of secants of each point of II\H is 
q2 - q [4]. It is known that the Ree unitals S ( 2 ,  4 + 1, q 7 +  1) cannot be 
embedded in any projective plane of order q2 [16]. 

The affine planes of (c) are of course, minimally projectively embeddable. We 
know nothing about minimal embeddability of the systems in (d). 

Delandisheer [8]. I f  S is a Steiner system with automorphism group transitive on 
pairs of intersecting lines and transitive on pairs of non-intersecting lines, then S 
is a Desarguesian affine plane, a Desarguesian projective space, or a complete 
graph. 

We shall see in Theorem 2 of the next section that if S is an mpe-system 
satisfying (E) and the conditions of Delandtsheer’s theorem, then S is either a 
maximal arc or a blocking set. If S is an affine or Desarguesian subspace of 17, 
we again refer to [ 3 ] .  If  S is a complete graph and r = q + 1, then S is a hyperoval 
as in Example 2. S cannot be hoth a complete graph and a blocking set in n. 

It is clear that there is a connection between the way an automorphism of S acts 
on non-intersecting blocks of S and the way an extension of this automorphism to 
a projective plane II on S would act on the point of intersection of these two 
blocks in n. In fact, we have easily the following result. 

Proposition 4. Let G he a subgroup of Aut(S), ( S ,  ,“5;) an mpe-system embedding 
minimally in n, arid satisfying ( E ) .  Then vci. = v(; + I{orbits of G on unordered 
pairs of non-intersecting blocks of S}l, where v,; denotes the number of point 
orbits of G in S, arid vc;* denotes the number of point orbits of G* in IT. 

Corollary. Let G vatisfy the c.ondition.7 of Proposition 4, and in addition, he 
homogeneous on ptrirs of non-intersecting blocks of S. Then v,;. = u,; + 1. 

For the proof of the  next theorem we use the following result Block (51. Let C 
be a subgroup of Aut(S), S a Steiner system. Let vc; and h,, be respectively the 
number of point and of line orbits of S under G. Then I ) ( ; <  bc,. Moreover, 
Brauer [6], if I J  = b then vc; = b(;. For proofs of these results see 141. 

Theorem 2. Let G be a subgroup of Aut(S), ( S ,  9) minimally embeddable in I2 
and satisfying ( E ) .  Suppose also that G is transitive on blocks of S and 
homogeneous on puirs of non-intersecting blocks of S .  Then v,,. = bc;*  = 2 arid S is 
either a maximal arc or a blocking set. 
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Proof. C line transitive implies G point transitive by Block's result. So 
vG = bc; = 1. By the corollary to Proposition 4 and again using Brauer, 
vci. = bG. = 2. 

Thus the lines of l7 fall into two orbits under G*. Clearly secants form a single 
orbit. The other orbit therefore consists either entirely of tangents or entirely of 
exterior lines. In the former case, S is a blocking set; in the latter, r = q + 1 and S 
is a maximal arc. 0 

Delandtsheer [8] proved as a preliminary step in her result mentioned above, 
that if G is a subgroup of Aut(S) for a Steiner system S which is transitive on 
pairs of intersecting blocks and on pairs of non-intersecting blocks, then G is 
2-transitive on points of S. A major question is what can be said with only the 
assumption of transitivity on pairs of (non-) intersecting blocks. 

If in addition to the assumptions of Theorem 2, the numbers of points of S and 
n a r e  coprime, we are able to say more, as we show in the final result. 

Theorem 3. Let S und G satisfy the conditions of Theorem 2. Suppose in addition 
that (v, q2 + 4 + 1) = 1, q the order of Il. Then G is flag-transitive on S ,  and S is 
not a blocking set. 

Proof. Let p E S and consider the stabilizer G,* of p in n. For x r$ S, we have 
IC*l= I {g (p)  I g E G*}l * [G,*l= v IC,*l= v 1521 IG,*,J, where D is the orbit under 
C; of x in n. 

Similarly, (G*l= ( q 2  + 4 + 1 - v) IC:l = (q2  + q + 1 - v )  lA( IG~,J, where A is 
the orbit of p under C: in n. 

So v ID[ = (q2  + 4 + 1 - v )  [ A ( .  But (v, q2 + q + 1) = 1 implies ID[ = q2 + 9 + 
1 - v, and so Q = n\S. Thus G,* is transitive on n\S. 

Now consider flags (p ,  L )  and ( p f ,  L ' )  of S .  Since k = 4 + 1 would contradict 
S Z U ,  we know that each block of S has at least one point in n\S. I t  follows 
from the above that for any p E S, G; is transitive on lines through p. Hence 
there exist maps g ,  E C,T taking ( p ,  L )  to (p ,  pp') ,  pp' the line on p and p ' .  
g 2 €  G* taking ( p , p p ' )  to ( p f ,  g2(pp') ) ,  where g2(pp')  is a line on p ' ,  and 
g 3  E G,*, taking ( p ' ,  g2(pp ' ) )  to ( p f ,  L f ) .  The composition of these three maps 
gives the desired result. 

Suppose now that S is a blocking set. Then, since there are no exterior lines, 
counting lines of n in two different ways yield q2 + q + 1 = b + v(q + 1 - r )  = 

v ( r / k  + q + 1 - r ) .  So (v, q2 + (I + 1) = 1 implies q2 + q + 1 I r + qk + k - rk. If 
r = q + 1, then S is a maximal arc and hence not a blocking set. So r s q.  If 
k = q, then also r = q and we get q2 + 4 + 1 I 2q, a contradiction. So k d 4 - 1, 
implying q 2  + q + 1 C q2 + q - 1 - rk, again a contradiction. 0 
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A quasigroup is an ordered pair (Q, .), where Q is a set and (.) is a binary operation on Q 
such that the equations ax = b and ya = b are uniquely solvable for every pair of elements a,  b 
in Q. It is well-known that the multiplication table of a quasigroup defines a Latin square, and 
to each quasigroup are associated six (not necessarily distinct) conjugate quasigroups. The 
spectrum of thc two-variable quasigroup identity u(x, y )  = u(x,  y )  is the set of all integers n 
such that there exists a quasigroup of order n satisfying the identity u ( x ,  y )  = u ( x ,  y). Trevor 
Evans has provided a collection of two-variable quasigroup identities, which imply that two 
conjugates are orthogonal and which are conjugate-equivalent to “short conjugate-orthogonal 
identities”. These identities include the familiar Stein identity, x ( x y )  = y x ,  which has been 
given a considcrable amount of attention. Apart from being associated with conjugate 
orthogonal Latin squares, some of the identities have been used in the description of other 
types of combinatorial designs, such as BIBDs, Mendelsohn designs, certain classes of graphs, 
and orthogonal arrays with interesting conjugacy properties. We shall briefly survey the known 
results and in some cases we present new results concerning the spectra of the short 
conjugate-orthogonal identities, which have not been previously investigated. The emphasis 
will be on the constructions and uses of pairwise balanced designs (PBDs) and related 
combinatorial structures. 

1. Introduction 

A quasigroup is an ordered pair (Q, a ) ,  where Q is a set and (.) is a binary 
operation on Q such that the equations ax = b and ya  = b are uniquely solvable 
for every pair of elements a ,  b in Q. It is fairly well-known (see, for example, 
[24]) that the multiplication table of a quasigroup defines a Latin square, that is, a 
Latin square can be considered as the multiplication table of a quasigroup with 
the headline and sideline removed. We shall be concerned mainly with finite 
quasigroups (Latin squares). A quasigroup (Q, a )  is called idempotent if the 
identity x 2  = x holds for all x in Q. 

The spectrum of the two-variable quasigroup identity u ( x ,  y )  = v(x ,  y )  is the set 
of all integers n such that there exists a quasigroup of order n satisfying the 
identity u(x ,  y)  = v(x,  y ) .  It is particularly useful to study the spectrum of certain 
two-variable quasigroup identities, since such identities are quite often in- 
strumental in the construction or algebraic description of combinatorial designs. 
For example, it is well-known (see [22]) that an idempotent totally symmetric 
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quasigroup ( Q ,  .) (commonly called a Steiner quasigroup), {x ’  = x ,  x ( x y )  = y ,  
(xy )y  = x } ,  corresponds to a Steiner triple system, where { x ,  y ,  z }  is a triple if and 
only if x . y = z ,  where x ,  y ,  z are distinct and x’ = x for all x. Similarly, an 
idempotent semisymmetric quasigroup ( Q ,  .), { x 2  = x ,  (xy )x  = y ,  x ( y x )  = y } ,  
corresponds to a Mendelsohn triple system (see [52]), with ( x ,  y ,  z )  as a cyclically 
ordered triple if and only if x * y = z ,  where x ,  y ,  z are distinct and x 2  = x for all 
x .  A quasigroup (Q, .) satisfying both the Stein identify, x ( x y )  = y x ,  und the 
Schriider identity, ( x y ) ( y x )  = x ,  corresponds to a (2, 4)-Steiner system, the  
blocks of size 4 being the 2-generator subquasigroups (see [MI). Indeed, most of 
the two-variable identities, which we shall investigate in this paper, have been 
used in the description and construction of combinatorial structures, such a s  
(2, k)-Steiner systems, Mendelsohn designs, certain classes of graphs, Latin 
squares, and orthogonal arrays with interesting conjugacy properties. For more 
details, the interested reader may wish to consult the references. 

If (Q, 8) is a quasigroup, we may define o n  the set Q six binary operations 
@(1,2,3) ,  @(1,3 ,2) ,  @(2, 1 ,3) ,  @(2,3 ,  l ) ,  @ ( 3 ,  1,2) and @(3,2 ,  1) as 
follows: a @ b = c if and only if 

a @ ( 1 , 2 , 3 ) h = c ,  a @ ( 1 , 3 , 2 ) c = h ,  h @ ( 2 ,  1 , 3 ) u = c  

b @ ( 2 , 3 ,  l ) c = a ,  c @ ( 3 ,  1 , 2 ) a = b ,  c @ ( 3 , 2 ,  l ) b = a .  

These six (not necessarily distinct) quasigroups (Q, @Pi,  j .  k)),  where {i, J ,  k }  = 

{ 1, 2, 3}, are called the conjugates of (0, @) (see Stein [65]). If the multiplication 
table of a quasigroup ( Q ,  63) defines a Latin square L, then the six Latin squares 
defined by the multiplication tables of its conjugates (Q, €9 ( i ,  J ,  k ) )  are called the 
conjugates o f  L. It is well-known (see, for example, [ 4 9 ] )  that the number of 
distinct conjugates of a quasigroup (Latin square) is always I ,  2, 3 or 6. The 
interested reader may wish to refer to the book of Denes and Keedwell I241 for 
more details pertaining to Latin squares. 

Two quasigroup identities u, (x ,  y )  = u,(x, y )  and v , ( x ,  y )  = v , ( x ,  y )  are said to 
be conjugate-equivulent if when ( Q ,  a )  is a quasigroup satisfying one of them, then 
at least one conjugate of (Q, .) satisfies the other. For example, the Stein identity 
x ( x y )  = yx is conjugate-equivalent to the identity ( y x ) x  = x y ,  since the latter can 
be obtained by taking the (2, 1,3)-conjugate (usually called transpose) of the 
Stein quasigroup. 

Two quasigroups (Q, - )  and (Q, *) defined on the same set Q are said to be 
orthogonal if the pair of equations x . y = a and x * y  = b,  where a and h are Lrny 
two given elements of Q ,  are satisfied simultaneously by a unique pair of 
elements from Q. Equivalently, we say that (Q, .) and ((2, *) are orthogonal if 
x y = z - t and x * y = z * t together imply x = z and y = t .  We remark that when 
the two quasigroups ( Q ,  .) and (Q, *) are orthogonal then their corresponding 
Latin squares are also orthogonal in the usual sense. 

It is perhaps worth mentioning that the above definition of orthogonality 
between quasigroups can be extended to more general algebraic systems, such as 
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groupoids, as was done by Trevor Evans in [27]. If we adapt the notation of [27], 
where the functional notation a(x, y )  is conveniently used in place of the infix 
notation x * y for the operation, then we say that the two binary operations 
a(x, y )  and b(x, y )  defined on the same set Q are orthogonal operations, briefly 
written a 1 b, if I{(x, y ) : a ( x ,  y )  = i, b(x ,  y )  =;}I = 1 for every ordered pair i ,  j 
in Q. 

A quasigroup (Latin square) which is orthogonal to its (i ,  j ,  k)-conjugate is 
called (i ,  j ,  k)-conjugate orthogonal. A (2, 1,3)-conjugate orthogonal quasigroup 
(Latin square) is more commonly called self -orthogonal. Orthogonality relations 
between pairs of conjugates of quasigroups (Latin squares) have been studied 
quite extensively (see, for example, [2, 4, 5, 7, 12, 17, 27, 37, 46, 61, 651). 

In [27] Trevor Evans introduced the concept of “short conjugate-orthogonal 
identity”, which is perhaps best described in light of the following result. 

Theorem 1.1 (Trevor Evans [27]). Let a ( x ,  y )  and b(x,  y )  be conjugate opera- 
tions on Q. Then a I b if and only if there is a quasigroup word w(x, y )  such that 
w(a(x, y ) ,  b(x ,  y ) )  = x holds identically. 

As Trevor Evans subsequently remarked, Theorem 1.1 provides a method of 
producing many quasigroup identities which imply that two conjugates are 
orthogonal. He called an identity of the type described in Theorem 1.1 where 
w(x, y )  is a word of length two a short conjugate-orthogonal identity. A simplified 
description of all such identities to within conjugacy-equivalence was given by 
Trevor Evans in [27, Theorem 6.21 which we state below. Note that, through 
private communication [30] with Trevor Evans, the identities ( y  . yx)y = x and 
( y  .xy)y = x  have replaced the identities ( y  . yx )x  = x  and ( y  * x y ) x  = x  
respectively, which, for example, are satisfied by Steiner quasigroups and 
inadvertently appeared as a result of a typographical error. 

Theorem 1.2 (Trevor Evans [27, 301). Any non-trivial short conjugate-orthogonal 
identity is conjugute-equivalent to one of the following: 

(i) xy ‘ y x  = x  ( i i )  yx .xy = x  

(iii) (x . yx)y = x (iv) (x . xy)y = x 
(v) (xy . x ) y  = x (vi) ( y  * yx)y = x 

(vii) ( y  ‘ xy)y = x (viii) ( y x  . x)y  = x 

(ix) ( Y X  . Y )Y = x ( X I  ( X Y  . Y )Y = x 
(xi) x . xy = yx (xii) xy . y = x . xy 

(xiii) (xy . y)x  = xy (xiv) yx * y = x . yx 

Before proceeding, we wish to point out that, to within conjugacy-equivalence, 
the list of identitics in Theorem 1.2 can further be reduced. For convenience and 
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future reference, we formally state the following: 

Proposition 1.3. A n y  identity listed in Theorem 1.2 is conjugure-equivalent to one 
of the fol lowing: 

(1) x y * y x = x  (2) yx . x y  = x  
(3) (XY . Y )Y = x (4) x * x y  = y x  
( 5 )  (Yx * Y ) Y  = x  (6) (XY * x)Y = x 
(7) ( 8 )  xy . y = x * xy yx . y = x * yx 

Proof. First of all, it should be mentioned that the identities (vii) and (ix) of 
Theorem 1.2 are actually equivalent. By replacing x by xy in ( y x  . y ) y  = x ,  we get 
( ( y  . xy)y )y  = xy,  and by cancellation, we have ( ( y  . xy)y  = x .  Conversely, the 
identity ( y  . xy)y  = x implies yx . y = ( y ( ( y  * x y ) y ) ) y  = y . x y ,  that is, the identity 
( y  . xy)y = x implies ( y x  . y ) y  = x .  Secondly, the identities (vi) and (ix) of 
Theorem 1.2 are conjugate equivalent. For if a quasigroup satisfies the identity 
( y  . yx)y  = x ,  then its transpose will satisfy y ( x y  . y )  = x which, by replacing x by 
yx,  implies y ( ( y x  + y ) y )  = yx and, by cancellation, ( y x  1 y ) y  = x .  In a similar 
manner, one can verify the additional conjugacy-equivalence among the following 
pairs of identities in Theorem 1.2: 

(a) The ( I ,  3,2)-conjugate of a quasigroup satisfying the identity (ii) yx . xy = 

(b) The (1,3,2)-conjugate of a quasigroup satisfying (xi) x * xy = yx will satisfy 

(c) The (2,3,  1)-conjugate of a quasigroup satisfying the identity (xi)  x . xy = 

(d) The (3,2, I)-conjugate of a quasigroup satisfying the identity (ix) 

x will satisfy the identity (iii) ( x  * y x ) y  = x .  

(iv) ( x  . xy)y  = x .  

yx will satisfy (xiii) (xy  . y ) x  = xy.  

( y x  . y ) y  = x will satisfy (viii) ( y x  * x ) y  = x. 
This essentially completes the proof of the proposition. 0 

C.C. Lindner and E. Mendelsohn [45] extended the concept of a conjugate of  a 
quasigroup to that of a conjugate of an n' X k orthogonal array, which is obtained 
by permuting the columns of the array. We define an  17' x k orthogonal urruy 
based on an n-set, say S = { 1, 2 ,  . . . , n } ,  to be a rectangular array o f  n2 rows and 
k columns where, for any two distinct columns, the set of ordered pairs occurring 
in these two columns and the t i 2  rows is precisely the set of all n' distinct ordered 
pairs from S. Evidently, a quasigroup ( Q ,  a) of order II is equivalent to an n2 x 3 
orthogonal array, where ( x .  y ,  2) is a row of the array if and only if x . y = z .  
Lindner and Mendclsohn also defined the conjugate invuriunf subgroup f o r  an 
n2  x k orthogonal array to be the group o f  all permutations on { 1, 2, . . . , k }  
which yield conjugates equal to the original array. For the cases k = 3 and 4,  the 
interested reader may refer to the survey paper of Lindner [3Q]. For more 
detailed results, refer t o  [45, 47, 48, 491, where a complete characterization of the 
groups which can he conjugate invariant subgroups f o r  n' x 3 arid 11' x 4 
orthogonal arrays IS  given. 
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Example 1.4. Below we give an example of a quasigroup of order 4 and its 
associated 42 x 3 orthogonal array which has the cyclic group C3 = ( (1  2 3)) as 
conjugate invariant subgroup. Note that the quasigroup is idempotent and 
semisymmetric, and it corresponds to a Mendelsohn triple system of order 4. 

Quasigroup ( Q ,  .) Orthogonal Array 
0 

- 
1 

2 

3 

4 

It is fairly evident that, disregarding the level at which the rows occur, the above 
orthogonal array remains invariant under cyclic permutation of its columns. 

The main purpose of this paper is to focus attention on the spectrum of each of 
the identities listed in Proposition 1.3. Some of these identities have been given a 
considerable amount of attention by various authors, while others remain to be 
investigated. We shall very briefly survey the known results and, in particular, 
give some improvements on the spectrum of a variety of the familiar Stein 
quasigroups. We shall also present some new results on the spectra of some of the 
other identities which have not been previously investigated. We shall employ 
both direct and recursive methods for constructing quasigroups, where the 
emphasis will be on the constructions and uses of pairwise balanced designs 
(PBDs) and other related combinatorial designs. In view of Proposition 1.3, this 
paper presents fairly conclusive results regarding the spectra of most of the 
identities listed by Trevor Evans in Theorem 1.2. 

2. Finite models and recursive constructions of quasigroups 

In what follows, we shall be concerned mainly with finite quasigroups. We shall 
describe some of the techniques for constructing quasigroups which satisfy some 
particular two-variiible identity u(x ,  y )  = v (x ,  y ) .  
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The most direct method of constructing finite models o f  a quasigroup ( Q ,  .) 
satisfying u ( x ,  y )  = v(x,  y )  is to look for a model of the identity o f  the form 
x . y = Ax + p y ,  where the elements lie in a finite field (or finite near field). This 
technique is fairly well-known and has been used quite extensively (see, for 
example, [29, 47, 51, 54, 651). In particular, for idempotent models, we shall look 
for models of the identity of the form x . y  = Ax + (1 - A)y in GF(q), where 4 is a 
prime power and AZO or 1. This will require finding a solution to some 
polynomial equation f ( A )  = 0 in GF(q), depending on the  identity being 
investigated. We present the following useful example. 

Example 2.1. Consider the identity ( y x  . y ) y  = x (identity (5) of Proposition 1.3). 
This identity does not imply the idempotent law x 2 = x .  I f ,  however, we are 
interested in idempotent models of ( y x  . y ) y  = x ,  we may look for models of  the 
identity of the form x 1 y = Ax + ( 1  - A ) y ,  where h # 0 or 1 and the polynomial 
equation f ( A )  = A3 - A’ + 1 = 0 is satisfied in GF(p).  If f ( A )  has a root in GF(p), 
then this value of A yields a solution in GF(p), arid hence an idempotent model 
of the identity in GF(p). For example, A = 2  yields an idempotent model in 
GF(S), while A = 4 yields an idempotent model in GF(7). If f ( A )  does not have ii 

root in GF(p),  then there is an extension field GF(p’) in which f(A) has a root, 
and this root yields an idempotent model in GF(p3).  For example, there ;ire 
idempotent models in  GF(2-3) and GF(3’). I n  other words, there is an idernpotent 
quasigroup satisfying ( y x  . y ) y  = x  f o r  orders 5, 7, ti and 27. In  actual fact, for  all 
primes p < 300, it can readily be verified that f ( A )  has a root in GF(p) (and hence 
produces an idempotent model in GF(p)) except for 11 E {2, 3, 13, 29, 31, 47, 71, 
73, 127, 131, 151, 163, 179, 193, 197, 233, 239, 257, 269, 277). Our investigation 
will continue in subsequent sections. 

Having found models of the two-variable quasigroup identity u ( x ,  y )  = t ~ ( x ,  y )  
using finite fields (or finite near fields), one may recursively construct other 
models by various techniques. In  what follows, we shall describe some o f  these 
techniques. 

Let (P, .) and ((2, *) be two quasigroup. On the set I ’ x  Q we can delinc a 
binary operation 60 a s  follows: 

( p ,  x )  60 ( (1,  y )  = ( [ I  . q,  x * y ) ,  i f  p ,  4 E 1’ and x, y E Q. 

Then it is easy to see that (P X Q ,  8) is a quasigroup, called the direct product of 
( P ,  .) and (Q, *). The following result is fairly well-known and can be readily 
verified. 

Theorem 2.2. Let ( P ,  .) und (Q,  *) he two yuusigroup.~ suti.~jyirzg the irllvitriy 
u ( x ,  y )  = v ( x ,  y ) ,  where [PI = m und IQI = n. Then their dircct product ( P  x 0, 63) 
i s  u quasigroup of’ order mn sutisfying u ( x ,  y )  = u ( x ,  y ) .  Moreouer, i f  ( P ,  .) untl 
( Q ,  *) ure idempotent, so is ( I ’  x Q, 60). 
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Example 2.3. Using the fact that there are idempotent quasigroups of orders 5 ,  7 
and 8 satisfying the  identity (yx .y)y = x  (see Example 2.1), we can apply 
Theorem 2.2 to get idempotent models of (yx * y)y = x of orders 5‘ - 7’ . 8‘, where 
r, s, t are non-negative integers. 

Our next construction is ii generalized form of the above direct product 
construction for quasigroups, and it is originally due to Sade [63] who called it 
“produit direct-singulier”. This construction was subsequently generalized and 
used extensively in various ways by C.C. Lindner (see, for example, [40-431). We 
shall adapt the detinition of Lindner in the description which follows. 

Let (V,  .) be an idempotent quasigroup and (Q, *) a quasigroup containing a 
subquasigroup (P, *). Let P = Q - P and let ( P ,  8) be a quasigroup, where 8 is 
not necessarily related to *. On the set S = P U (P  x V) define a binary operation 
63 as follows: 

( 1 )  p % q  = p  * q ,  ifp,  q E f‘, 
(2) p 63 (q ,  v )  = ( p  * q ,  v), i f  p E P,  q E p, 
(3) (q ,  v )  % p  = (q  * p ,  v), if p E P,  q E P,  
(4) ( p ,  v )  % (9 ,  u )  = p  * q ,  i f  p “ 4  E P 

( 5 )  ( p ,  v )  @ (q ,  w )  = ( p  8 q ,  21 . w), if u f w.  

= ( p  *q, v), ifp * q  E P 

The quasigroup ( S ,  @) SO constructed is called the singular direct product of V 
and Q. 

Unlike the direct product construction, two-variable quasigroup identities are 
not necessarily preserved by the singular direct product construction. However, 
C.C. Lindner [41] has obtained some fairly general results on identities which are 
preserved by the singular direct product for quasigroups. Before stating the 
result, we need to adapt some of the terminology used in [41]. Let F ( x ,  y)  be the 
free groupoid on two generators x and y. The components of a word w ( x ,  y)  of 
F(x, y)  are defined as follows: 

(1) if the length of w ( x ,  y)  is 1, the only component of w ( x ,  y) is w ( x ,  y),  and 
(2) if the length of w ( x ,  y)  is greater than 1, the components of w ( x ,  y)  are 

w ( x ,  y) itself and the components of u(x ,  y)  and v(x ,  y), where w ( x ,  y)  = 

Let (Q, .) be any quasigroup (written multiplicatively) such that if t ( x ,  y)  = 
t , ( x ,  y ) t , (x ,  y)  is any component of w ( x ,  y)  of length at least 2 and a # b are any 
two elements of Q ,  then t,(a, b)  # t,(a, b). Such a quasigroup is called a discrete 
w ( x ,  y)-quasigroup. If (Q, .) is a discrete w ( x ,  y)  and v(x,  y)-quasigroup and 
satisfies the identity w ( x ,  y)  = v(x ,  y), we call (Q, -) a discrete w ( x ,  y)  = v ( x ,  y)- 
quasigroup. We now state: 

Theorem 2.4 (C.<’. Lindner [41]). Let (V, .) be a discrete w ( x ,  y)  = v (x ,  y)- 
idempotent quasigroup. Further let (Q, *) be a quasigroup satisfying w ( x ,  y)  = 
v ( x ,  y)  and containing a subquasigroup (P, *). Let P = Q - P and suppose it is 
possible to define on P a binary operation 8 (not necessarily related to *) so that 

4 x 9  Y)2+, Y ) .  



( P ,  8) is u quasigroup satisfying w ( x ,  y)  = v(x,  y). 7hen the singufur direct 
product ( S ,  @) of V and Q defined above satisfies the identify w(x ,  y)  = u ( x ,  y). 
Moreover, if IVI = v ,  I Q I  = 9 ,  1P1 = p  and IP( = 9 - p ,  then IS1 = "(9 - p )  + p .  

1 3 4 2  

3 1 2 4  

4 . 2  1 3 

2 4 3 1  

We wish to remark, as Lindner himself has pointed out, that in the statement 
of Theorem 2.4 only the quasigroup (V, .) need be idempotent and also (V,  .) is 
the only quasigroup that is required to be a discrete w ( x ,  y)  = v(x, y)-quasigroup. 
Of course, if (Q, *) is an idempotent quasigroup, then the singular direct product 
(S, 63) of V and Q will also be an idempotent quasigroup. 

Example 2.5. Let (V, .) be an idempotent quasigroup of order 7 satisfying the 
identity (yx y)y =x .  Let (Q, *) be an idempotent quasigroup of order 5 
satisfying the identity (yx . y)y = x  based on the set Q = (1, 2, 3, 4, 5). Let 
P = ( 5 )  and on P = Q - P = { 1, 2, 3, 4) define the binary operation 63 using the 
multiplication table given below. 

8 

1 
- 

2 

3 

4 

Now it is readily checked that ( P ,  8) is a quasigroup of order 4 satisfying the 
identity (yx . y)y = x. It is also easy to verify that (V, .) is an idempotent discrete 
(yx . y)y = x  quasigroup and the singular direct product (S ,  @) of V and Q is an 
idempotent quasigroup of order 29 = 7(5 - 1) + 1 satisfying (yx . y)y = x. Note 
that this is an addition to the list given in Example 2.1, where constructions using 
finite fields were used. 

While the direct product and singular direct product constructions are useful 
tools in the construction of quasigroups satisfying two-variable identities, it is 
fairly obvious that there are limitations with respect to their ability to determine 
the spectrum. In general, the most effective recursive method of construction in 
investigating the spectra of two-variable quasigroup identities makes use of the 
concept of pairwise balanced designs (PBDs) and related combinatorial designs. 
In what follows, we shall describe the techniques involved. However, the 
interested reader may wish to refer to [16, 33, 711 for more detailed results on 
PBDs and related designs. 
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Definition 2.6. Let K be a set of positive integers. A pairwise balanced design 
( P B D )  of index unity B ( K ,  1; v )  is a pair (X, B) where X is a v-set (of points) 
and B is a collection of subsets of X (called blocks) with sizes from K such that 
every pair of distinct points of X is contained in exactly one block of B. The 
number 1x1 = v is called the order of the PBD. 

Now let (Q, B) be a PBD B ( K ,  1 ;  v)  and for each block B E 5 let o(B) be a 
binary operation on B so that ( B ,  o(B))  is an idempotent quasigroup. Define a 
binary operation (.) on Q by x * x = x for all x E Q, and x . y = x o(B) y ,  where 
x f y  and B is the unique block in B containing x and y.  It is well-known and easy 
to see that (Q, .) is an idempotent quasigroup of order v (see [71]). More 
important is the fact that PBDs can be used to investigate the spectrum of certain 
collections of two-variable quasigroup identities. The following theorem is now 
well-known (see, for example, [28, 31, 661) and has been used quite extensively. 

Theorem 2.7. Let V be a variety (more generally universal class) of algebras 
which is idempotent and which is based on two-variable identities. Suppose that 
there is a PBD B ( K ,  1 ;  v )  such that for  each block of size k E K there is a model of 
V of order k ,  then there is a model of V of order v. 

We shall denote by B ( K )  the set of all integers v for which there exists a PBD 
B ( K ,  1; v). We briefly denote by B ( k , ,  k Z ,  . . . , k,) the set of all integers v for 
which there is a PBD B ( { k , ,  k Z ,  . . . , k r } ,  1;  v). A set K is said to be PBD-closed 
if B ( K )  = K. R.M. Wilson’s remarkable theory concerning the structure of 
PBD-closed sets (see [72-741) often provides us with some form of asymptotic 
results in the following theorem. 

Theorem 2.8 (R.M. Wilson [72-741). Let K be a set of positive integers and 
define the two parumeters : 

m ( K )  = g . c * d { k  - 1 : k E K } ,  

P ( K ) = g .  c * d { k ( k  - 1 ) : k  E K } .  

Then there exists a constant C (depending on K )  such that, f o r  all integers v > C,  
E B ( K )  if and only if v - 1 = 0 (mod m ( K ) )  and v(v - 1 )  = 0 (mod P ( K ) ) .  

Example 2.9. Using finite fields in Example 2.1, we constructed idempotent 
quasigroups of orders 5 ,  7 and 8 satisfying the identity ( y x  . y ) y  =x. If we let 
K = ( 5 ,  7, 8) in Theorem 2.8, then a ( K )  = 1 and P ( K )  = 2, and consequently the 
theorem guarantees v E B(5,  7, 8) for all sufficiently large values of v. Theorem 
2.7 then further guarantees the existence of idempotent quasigroups satisfying 
( y x  . y ) y  = x for all sufficiently large orders, where the term “sufficiently large” is 
unspecified. 
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As already mentioned, the identity ( y x  . y ) y  = x does not imply the idempotent 
identity x 2  = x .  Consequently, while Theorem 2.7 usually has a dramatic effect in 
investigating the spectrum of certain collections of two-variable identities, the 
requirement that the variety V be idempotent is a definite drawback in some 
cases. To get around this, we sometimes use the notion of a group divisible design 
(GDD). 

Definition 2.10. Let K and M be sets of positive integers. A group diuisibfe 
design (GDD) GD(K, I ,  M ;  v)  is a triple ( X ,  G, B), where 

(i) X is a 1,-set (of points),  
(ii) G is a collection of non-empty subsets of X (called groups) with sizcs in M 

(iii) B is a collection of subsets of X (called blocks),  each with size at least two 

(iv) no block meets a group in more than one point, and 
(v) each pairset {x, y }  of points not contained in a group is contained in 

and which partition X ,  

in K ,  

exactly one block. 

The group-type (or t ype)  of the GDD ( X ,  6, B) is the multiset {[GI : G E S} 
and we usually use the “exponential” notation for its description: a group-type 
1’2’3k . . . denotes i occurrences of groups of size 1, j occurrences of groups of size 
2, and so on. 

Now let (Q, G, B) be a GDD GD(K, 1, M ;  v )  and for each group C E Q let 
o(G) be a binary operation on C so that (C, o ( C ) )  is a quasigroup (not necessarily 
idernpotent). Further, for each block B E B, let o(B)  be a binary operation on B 
so that ( R ,  .(,!I)) is an idempotent quasigroup. Define on Q the binary operation 
(*) by x * y  = x o ( G ) y  if x and y belong to the group C E G (in particular, 
x * x  = x o ( G ) x  for all x E Q, where C is the group in G containing x ) ,  and 
x * y  = x o ( E ) y ,  if x f y  and the pairset { x ,  y }  belongs to the block B E B. I t  is 
readily checked that (Q,*) is a quasigroup of order v (cf. [71]). Unfortunately, 
this construction o f  quasigroups using GDDs does not necessarily preserve 
two-variable identities as C.C. Lindner has pointed out in 1441. However, Lindner 
[44] (see also Canter [31]) for a generalization) was able to use the concept of a 
discrete model of a two-variable identity to obtain the following result. 

Theorem 2.11. Let ( Q ,  G ,  B) be a G D D  and (Q ,  *) a quasigroup constructed 
from ( Q ,  G, [tB) such thut the quasigroup (C, o(C)) constructed on  each group C; in 
G satisfies the identity u ( x ,  y )  = v (x ,  y )  and the quasigroup ( B ,  o( B ) )  constructed 
for each block B in 1EB is an idempotent discrete model of u ( x ,  y )  = v(x,  y ) .  Then 
the quasigroup ( Q ,  *) satisfies the identity u(x,  y )  = v(x ,  y ) .  

We wish to remark that in the statement of Theorem 2.11 only the quasigroups 
( R ,  o(B))  defined on the blocks of B need be discrete models of the identity 
u ( x ,  y )  = v(x ,  y ) ,  and that the quasigroups (C, o(G)) defined on the groups of G 
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need only satisfy the identity u(x, y)  = v(x, y ) .  We  also have the following easy 
generalization of Theorem 2.11, which is a GDD analog of the singular direct 
product construction result in Theorem 2.4. 

Theorem 2.12. Let ( X ,  6, B) be a G D D  G D ( K ,  1, M ;  u )  and let P be a set of 
order p disjoint f rom X .  Suppose fo r  each block B in B it is possible to define a 
binary operation o( B )  on B so that ( B ,  o (B) )  is an idempotent discrete model of the 
identity u(x,  y )  = u ( x ,  y ) .  Also suppose that f o r  each group G in G, there is a 
binary operation o(G,) on the set G U P which converts it into a u ( x ,  y )  = v(x,  y ) -  
quasigroup containing P as a common subquasigroup. Then there exists a 
quasigroup ( X  U f', *) of order v + p satisfying the identity u(x, y )  = v ( x ,  y ) .  

Proof. We define the operation (*) on X U  P as follows: 
( 1 )  x * y  = x o ( B ) y ,  if x # y  and the pairset {x, y }  is contained in the block 

(2) x * y  =xo(G, )y ,  if x ,  y E G, or x E G and y E P, or x E P and y E G, where 

(3) x * y  = x  . y ,  if x, y E P and (P ,  .) is a quasigroup satisfying the identity 

The verification that ( X U  P,  *) is a quasigroup satisfying u ( x ,  y )  = u(x ,  y )  is fairly 
straightforward. 

B E D ;  

C € G ;  

4 x 9  Y )  = u ( x ,  Y ) .  

The following theorem is a slight modification of Theorem 2.12 and its proof is 
very similar. 

Theorem 2.13. Let ( X ,  6, B) be a G D D  G D ( K ,  1 ,  M ; u )  and let P be a set of 
order p disjoint f rom X .  Suppose that for  each block B in B it is possible to define 
a binary operation o( B )  on B so that ( B ,  o( B ) )  is an idempotent discrete model of 
the identity u(x,  y )  = u ( x ,  y ) .  Suppose that G = {G,,  G2, . . . , G,,,} and for  euch 
group G,, i = 1, 2, . . . , m - 1 ,  there is a binary operation o(GIp) on the set C, U P 
which converts it into a u ( x ,  y )  = v(x, y)-quasigroup containing P as a common 
subquasigroup. Further suppose that there is a binary operation (.) on the set 
G,,, U P which converts it into u u(x, y )  = u(x ,  y)-quasigroup. Then there exists a 
quasigroup ( X  U P ,  *) of order u + p satisfying the identity u(x,  y )  = u ( x ,  y ) .  

Proof. We define the operation (*) on X U P as follows: 
( 1 )  x * y  = x o ( B ) y ,  if x # y  and the pairset { x , y }  is contained in the block 

(2) x * y = x o ( C , , ~ ) y ,  if x , y ~ C , ,  or XEG,  and Y E P ,  or X E P  and Y E G , ,  

(3) x * y = x - y ,  if x ,  y E G,,, U P. 

B E @ ;  

where i = 1, 2, . . . , m - 1. 

Then (XU P, *) is a quasigroup satisfying u(x, y )  = u(x ,  y ) .  0 
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3. Quasigroup identities and orthogonal arrays 

As we have already mentioned, some of the identities listed in Proposition 1.3 
have been used in the construction and description of orthogonal arrays with 
interesting conjugacy properties. Indeed, the most conclusive results we have to 
date regarding the spectra of short conjugate orthogonal identities pertain to 
those identities associated with certain classes of n2 X 4 orthogonal arrays. In this 
section, we shall give only a brief summary of the known results concerning the 
identities ( l ) ,  (2) and (3) of Proposition 1.3, and the reader may consult the 
references for more details. Henceforth, we let J(u(x ,  y )  = v ( x ,  y ) )  denote the 
spectrum of the identity u(x ,  y )  = v ( x ,  y ) .  

Quasigroups satisfying the identity xy * yx  = x ,  called the Schriider identity, are 
known to be self-orthogonal and a necessary condition for n E J(xy . yx = x )  is 
n = 0 or 1 (mod 4). Several authors investigated J(xy yx  = x )  including D.A.  
Norton and S.K.  Stein [%I, S.K. Stein [66], R.D. Baker [ l ] ,  C.C. Lindner, N.S.  
Mendelsohn and S . R .  Sun [47]. The most conclusive result was obtained by 
Lindner, Mendelsohn and Sun in the following theorem. 

Theorem 3.1 (Lindner, Mendelsohn and Sun [47]). J(xy . yx = x )  contains pre- 
cisely the set of all positive integers n = 0 or 1 (mod 4) except n = 5 ,  and possibly 
excepting n = 12 and 21. 

More recently, C.J. Colbourn and D.R. Stinson [23] have proved the 
following: 

Theorem 3.2. There exists an idempotent Schroder quasigroup of order n for all 
positiue integers n = 0 or  1 (mod 4) except n = 5 and 9, and possibly excepting 
n = 12, 24, 33, 45, 69, 105, 117. 

Combining Theorems 3.1 and 3.2, we now have 

Theorem 3.3. J(xy . yx = x )  contuins precisely the set of all positive integers n = 0 
or 1 (mod 4) except n = 5 ,  and possibly excepting n = 12. 

From the results of [47], we are able to use Theorem 3.3 to determine that the 
spectrum of n 2  x 4 orthogonal arrays having K4 (the Klein 4-group) as conjugate 
invariant subgroup contains precisely the same set of values of n given in 
Theorem 3.3. This result also applies to the spectrum of Latin squares which have 
simultaneously the properties of being orthogonal to their transposes and have 
the Weisner property (see [47] for more details). 

A quasigroup satisfying the identity yx  . x y  = x ,  called Stein’s third f u w ,  is 
known to be self-orthogonal. Moreover, a necessary condition for n E J ( y x  . xy = 

x)  is n -0  or 1 (mod 4). In  (481, Lindner, Mullin and Hoffman established a 
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correspondence between quasigroups satisfying the identity yx . xy = x and n2 x 4 
orthogonal arrays having C4 (the cyclic group of order 4) as conjugate invariant 
subgroup (briefly denoted by COA in [48]). They essentially proved: 

Theorem 3.4 (Lindner, Mullin and Hoffman [48]). J ( y x  . xy = x )  contains pre- 
cisely the set of all positive integers n = 0 o r  1 (mod 4) except possibly n = 12 
and 48. 

However, the possible exception n = 48 can now be removed and we can obtain 
the following theorem. 

Theorem 3.5. J(yx  xy = x )  contains precisely the set of all positive integers n = 0 
or 1 (mod 4) except possibly n = 12. 

Proof. We need only remove the possible exception n = 48 from Theorem 3.4. 
First of all, the result of Brouwer [20] can be used to establish the existence of a 
(5)-GDD of group-type 8' (see, for example, [67, Example 3.41). If v is a prime 
power and u = 1 (mod4), then [48, Lemma 6.61 guarantees the existence of an 
idempotent quasigroup of order v satisfying the identity yx . xy = x .  Thus in 
particular, we can define an idempotent discrete model of the identity yx . xy = x 
on the blocks of size S of the above mentioned GDD, and on each group of order 
8, we define a model of yx . xy = x .  We then apply Theorem 2.11 to get 
48 E J(yx  * xy = x ) .  Alternatively, we may use the (5)-GDD of group-type 8' and 
apply the result contained in [48, Lemma 6.51. 0 

We wish to remark that, apart from COAs, there are some correspondences 
between idempotent models of yx * xy = x and other types of combinatorial 
structures (see, for example, [ l ,  511). Note that the identity (x  . y x ) y  = x  ((iii) of 
Theorem 1.2), which was studied by N.S. Mendelsohn in [51]), is conjugate 
equivalent to the identity yx xy = x .  Obviously, J( (x  . y x ) y  = x )  = J ( y x  . xy  = x ) .  
In this connection, it is worth mentioning that the combined result of Bennett [5] 
and the more recent result of Zhang [7S] on ( v ,  4, 1)-perfect Mendelsohn designs 
establishes the following: 

Theorem 3.6. There exists an idempotent quasigroup of order n satisfying Stein's 
third law for all positive integers n = 0 or  1 (mod 4) except n = 4, and possibly 
excepting n = 8, 12, 33. 

Remark. K.  Heinrich [private communication] has informed the author that an 
exhaustive computer search established the non-existence of a (8 ,4 ,  1)-perfect 
Mendelsohn design. Hence, n = 8 is a definite exception in Theorem 3.6. 

In [3], the author established a correspondence between quasigroups satisfying 
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the identity ( x y  y ) y  = x and n2  x 4 orthogonal arrays having C3 (the cyclic group 
of order 3) as conjugate invariant subgroup. As a corollary to the results 
contained in 148, Theorem 5.11, the following result was obtained. 

Theorem 3.7 (Bennett [ 3 ] ) .  J ( ( x y  * y ) y  = x )  contains precisely the set of all 
positive integers n = 0 or 1 (mod 3) except n = 6. 

A quasigroup satisfying the identity (xy . y ) y  = x  is known to be ( 3 , 2 ,  1)- 
conjugate orthogonal. Also, idempotent models of ( x y  y ) y  = x correspond to a 
class of resolvable Mendelsohn triple systems (see, for example, [lo]). It was also 
shown [3] that idempotent models of ( x y  . y ) y  = x  exist only for orders 
n = l  (mod3). 

4. Stein quasigroups 

A quasigroup satisfying the identity x . x y  = y x  is called a Stein quasigroup. 
Stein quasigroups are necessarily idempotent and self-orthogonal. The Stein 
identity x . x y  = y x  ((4) of Proposition 1.3) is perhaps the most extensively studied 
of the two-variable identities listed in Proposition 1.3. Following S.K. Stein's 
original interest in the identity in 1957 (see [65 ] ) ,  several authors have given it a 
considerable amount o f  attention (see, for example, ( 1 1 ,  27, 40, 51, 59, 60,  65,  
661). Stein had hoped to use quasigroups satisfying the constraint x .xz = y  ' y z  

implies x = y to construct counter-examples to the  Euler conjecture concerning 
orthogonal Latin squares. Obviously, a quasigroup satisfying the identity x . xy = 

y x  became a suitable candidate for his investigation. However, most of the 
current results we have relating to the spectrum J ( x  . x y  = y x )  came long after the 
disproof of the Euler conjecture and, in fact, after the spectrum for self- 
orthogonal Latin squares was determined to contain all positive integers I I  # 2, 3 
or 6 (see [17]). Undoubtedly, Stein quasigroups are of special interest in their 
own right. Stein [GSl and Mendelsohn [S l l  used Galois fields to show that 
J ( x  . x y  = y x )  contained all positive integers of the form 4'm, where the 
square-free part of m does not contain any prime p = 2 or 3 (mod 5 ) .  Later o n ,  
Stein [66] used BlBDs to show that the spectrum contained all numbers of the 
form 12k + 1, 12k + 4, 20k + I ,  and 20k + 5. Lindner (401 further enlarged the 
spectrum by using the singular direct product construction. In two subsequent 
papers [59, 601, Pelling and Rogers showed that if n E (2, 3 ,  6 ,  7, 8, 10, 12, 14), 
then n @ J ( x  . xy = y x )  and they used PBDs in conjunction with the singular direct 
product to show that I I  E J ( X  x y  = y x )  for all n > 1042. This bound was later 
improved by Bennett and Mendelsohn in [ 1 I ] .  The main result was established o n  
the basis of the following two lemmas. 

Lemma 4.1. B(4, 5 ,  9, 1 I ,  19, 31) E J ( ~  ' x y  = y x ) .  
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Lemma 4.2 (see [ 11, Theorems 4.3-4.6, 4.8-4.101). Zf u 2 4 and u $ (6, 7, 8, 10, 
12, 14, 15, 18, 22, 23, 20, 27, 30, 34, 35, 38, 39, 42, 43, 46, 50, 54, 62, 66, 70, 
74, 78, 82, 90, 98, 102, 106, 110, 114, 126, 130, 142, 158, 162, 174, 178, 190), 
then u E B(4, 5, 9, 11, 19, 31). 

Theorem 4.3 (Bennett and Mendelsohn [ 111). u E J(x . xy = y x )  holds for  all 
positive integers u exccpt u E (2, 3, 6, 7, 8, 10, 12, 14) and possibly excepting 
u E { 15, 18, 22, 23, 26, 27, 30, 34, 35, 38, 39, 42, 43, 46, 50, 54, 62, 66, 70, 74, 
78, 82, 90, 98, 102, 106. 110, 114, 126, 130, 142, 158, 162, 174, 178, 190). 

In [8] the author improved the result of Lemma 4.2 and obtained the following 
theorem: 

Theorem 4.4. For all integers u 3 4 ,  u E B(4, 5, 9, 11, 19, 31) holds with the 
exception of u E (6, 7, 8, 10, 12, 14, 15, 18, 22, 23, 26, 27, 30, 34) and with the 
possible exception of u E (38, 42, 43, 46, 50, 54, 62, 66, 70, 74, 78, 82, 90, 98, 
102, 114, 126). 

As a consequence of Lemma 4.1 and Theorem 4.4, we readily obtain the 
following improvement of Theorem 4.3. 

Theorem 4.5. u E J ( x  . xy = y x )  holds for  all positive integers u except u E 

(2, 3, 6, 7, 8,  10, 12, 14) and possibly excepting u E (15, 18, 22, 23, 26, 27, 30, 
34, 38, 42, 43, 46, 50, 54, 62, 66, 70, 74, 78, 82, 90, 98, 102, 114, 126). 

The result of Theorem 4.4 also allows us to enlarge the spectrum of certain 
classes of Stein systems (see [ l l ,  59, 601). If  a Stein system S contains a proper 
subsystem T,  then it  is known that IS1 2 3  (TI + 1 (see, for example, [60]). The 
case where equality holds is of special interest. If, as in [ l l ,  591, we write Q ( n )  
whenever there is a Stein system of order n which is a subsystem of one of order 
3n + 1, then we have the following improvement of results contained in [ l l ,  591. 

Theorem 4.6. I f  n = 1 
and possibly excepting n E (22, 34, 43, 46, 70, 82). 

(mod 3), then Q ( n )  holds for  all n 2 4 except n = 7, 10 

Proof. We need only remove the possible exceptions n = 106, 130, 142, 178, 190 
from [ l l ,  Theorem 5.11. We now use the fact that, if k > 1, then 9k + 4 ~  
B(4, (3k + 1)*) holds from (18, Lemma 71. Combining this with the fact that we 
have (106, 130, 142, 178, 190) G J ( X  - x y  = y x ) ,  we get the desired result with 
k E (35, 43, 47, 59, 63) and an application of Theorem 2.7. 

An extended medial Stein system is a Stein system with the property that every 
2-element generated subsystem satisfies the medial law ( x y ) ( z t )  = ( x z ) (  y t ) .  
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Extended medial Stein systems were originally investigated by Pelling and Rogers 
[59,60] and later studied in 1111. Since it is known that a medial Stein system of 
order n exists for n E (4, 5, 9, 11, 19, 31}, we can use the result of Theorem 4.4 
to further improve that contained in [ l l ,  Theorem 5.21. We essentially have the 
following theorem. 

Theorem 4.7. A n  extended medial Stein system of order n exists fo r  all integers 
n 3 4  except n E {6, 7, 8, 10, 12, 14) and possibly excepting n E (15, 18, 22, 23, 26, 
27, 30, 34, 38, 42, 43, 46, 50, 54, 62, 66, 70, 74, 78, 82, 90, 98, 102, 1 14, 126). 

Remark. D.G. Rogers [private communication] has recently shown that there is 
no Stein quasigroup of order 18. Hence, 18 is an exception in both Theorems 4.5 
and 4.7. 

5. The spectrum of (yx  * y ) y  =x and Mendelsohn designs 

We have already seen in the proof of Proposition 1.3 that the identity 
( y x  . y ) y  = x is equivalent to (y  . x y ) y  = x, and it is also conjugate equivalent to 
the identities ( y  y x ) y  = x and ( y x  . x ) y  = x. Consequently, the spectrum of each 
of these identities ((vi), (vii), (viii), and (ix) of Theorem 1.2) is the same. A 
quasigroup satisfying the identity ( y x  - y ) y  = x has the interesting property of 
being orthogonal to its (2,3, 1)-, (3, 1,2)-, and (3,2, I)-conjugate. In particular, 
idempotent models of ( y x  . y ) y  = x can be associated with a class of resolvable 
Mendelsohn designs which we briefly describe below. For more details, the 
reader is referred to [5, 6, 10, 36, 37, 51-53]. 

A (v, K ,  1)-Mendelsohn design (briefly (v, K ,  1)-MD) is a pair (X, B), where X 
is a v-set (of points) and B is a collection of cyclically ordered subsets of X (called 
blocks) with sizes in the set K such that every ordered pair of points of X are 
consecutive in exactly one block of B. 

If (X, B) is a (v, K, 1)-MD with X =  ( 1 ,  2, . . . , v }  and K = { k , ,  k , ,  . . . , k , } ,  
where C l s , ~ r  k,  = v - 1,  then (X, B) is called loosely resolvable if its blocks can 
be separated into v parallel classes such that the set theoretic union of the 
elements in the blocks of the jth parallel class is X - { j } .  If each parallel class 
contains one block of each of the sizes k l ,  k 2 ,  . . . , k , ,  then ( X ,  B) is called 
precisely resolvable. The (v, K ,  1)-MD is called r-fold perfect if each ordered pair 
of points of X appears t-apart in exactly one block of B for all r = 1, 2, . . . , r .  If 
K = {k} and r = k - 1, the design is called perfect. 

Let l Q l  = v and suppose (Q, .) is an idempotent quasigroup satisfying 
(yx  . y ) y  = x .  Then (Q, .) will be orthogonal to its (3,2, I)-conjugate, say (Q, *). 
We can then define the blocks of a 2-fold perfect loosely resolvable (v, K, 1)-MD 
as follows. For the block containing a of the xth parallel class, the right-hand 
neighbour of a is a . x and the left-hand neighbour of a is a * x .  This construction 
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produces well-defined blocks of size k 2 3 in K and it can be verified that the 
resulting design is a 2-fold perfect loosely resolvable (v ,  K, I)-MD (see, for 
example, [5, 371). 

In Example 2.9, we are essentially guaranteed the existence of a constant C 
such that for all n > C, there exists an idempotent quasigroup of order n satisfying 
the identity ( y x  . y ) y  = x .  In [9], the author carried out an investigation of 
J ( ( y x  . y ) y  = x )  with some emphasis on finding a concrete upper bound for the 
constant C. Example 2.1 was employed in conjunction with the recursive 
constructions of Section 2 and the notion of a quasigroup with “holes” (see, for 
example, [13, 14, 251). The main result of [9] pertaining to the spectrum of the 
identity ( y x  . y ) y  = x  can be summarized in the following theorems: 

Theorem 5.1. For every integer n 2 1 with the exception of n = 2, 3, 4, 6, and the 
possible exception of n E (9, 10,  12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 34, 
38, 39, 42, 44, 46, 51, 52, 58, 60, 62, 66, 68, 70, 72, 74, 75, 76, 86, 87, 90, 94, 
96, 98, 99, 100, 102, 106, 108, 110, 114, 116, 118, 122, 132, 142, 146, 154, 158, 
164, 170, 174}, there exists un idempotent quasigroup of order n satisfying the 
identity ( yx - y ) y  = x.  

Theorem 5.2. J ( ( y x  y ) y  = x )  contains every integer n 2 1 with the exception of 
n = 2, 6, and possibly excepting n = 10, 14, 18, 26, 30, 38, 42, 158. 

6. Miscellaneous results and summary 

In the preceding sections of this paper, we have been able to present fairly 
conclusive results regarding the spectrum of most of the identities listed by Trevor 
Evans in Theorem 1.2. However, the last three identities of Proposition 1.3 
remain to be investigated, namely, (6) (xy  . x ) y  = x  ((v) of Theorem 1.2), (7) 
xy . y  = x  . x y  ((xii) of Theorem 1.2), and (8) yx * y = x  - yx  ((xiv) of Theorem 
1.2). For the most part, the current results on the spectrum of each of these 
identities are still somewhat inconclusive, and we shall provide only a brief 
summary in this section. 

Lemma 6.1. Each of the identities in { ( x y  . x ) y  = x ,  xy  . y = x - xy ,  yx  y = x . y x }  
implies the idempotent law. 

Proof. We first consider the identity (xy  - x ) y  = x .  If (xy x ) y  = x  holds, then, 
replacing x by x y ,  we obtain ( ( ( x y ) y ) ( x y ) ) y  = xy  which implies ( ( x y ) y ) ( x y )  = x .  
On the other hand, ( ( x ( x y ) ) x ) ( x y )  = x also holds. Hence we have ( ( x ( x y ) ) x ) ( x y )  = 
( (xy )y ) (xy )  and, by cancellation, (x (xy ) )x  = ( x y ) y  holds. In particular, we must 
have ( x ( x 2 ) ) x  = (x2 )x  which implies x . x2  = x 2 ,  which further implies x2  = x .  
Next, we consider the identity xy  . y = x . xy.  If xy  . y = x . xy holds, then ay = a 
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implies that a 2  = a . ay = ay . y = ay = a. Finally, we consider the identity yx  . y = 
x . yx .  If yx . y = x . yx holds, then ax = a implies that u 2  = ax . a = x * ax = x u  
which, by cancellation, implies a = x, that is, a* = a. This completes the proof of  
the lemma. 0 

In what follows, we shall make use of a result due to Mullin et al. [MI. 

Lemma 6.2. A B ( ( 5 ,  9, 13, 17, 29, 49}, 1; v )  exists for  all positive integers 
v = 1 (mod 4) with the possible exception of v = 33, 57, 93, 133. 

A quasigroup satisfying the identity (xy  . x ) y  = x is (3,2, 1)-conjugate or- 
thogonal and, moreover, the identity itself is (3,2,  1)-conjugate invariant. 
Consequently, any quasigroup of order v satisfying the identity ( x y  . x ) y  = x can 
always be associated with some 2-fold perfect loosely resolvable (21, K, I)-MD as 
described in the previous section. There are models of the identity (xy  . x ) y  = x in 
GF(4) for all prime powers 4 3 1 (mod 4). In particular, there are models of  the 
identity of order n ,  where n E ( 5 ,  9, 13, 17, 29, 49). By using the result of 
Lemma 6.2 and applying Theorem 2.7, we readily obtain the following result. 

Theorem 6.3. J((xy  * x ) y  = x) contuins all positive integers v = 1 
possibly v = 33, 57, 93, und 133. 

(mod 4), except 

I t  is still an open problem to determine more precisely J( (xy  . x ) y  = x). I t  is not 
difficult to check that 2, 3, 4, and 6 do not belong to J( (xy  x ) y  = x). 

The identity xy y = x xy  is conjugate invariant, and a quasigroup satisfying 
this identity is (3,2,  1)- and (1,3,2)-conjugate orthogonal. Hence these quasi- 
groups can be associated with 2-fold perfect loosely resolvable Mendelsohn 
designs. There are models of the identity x y  . y = x . xy in GF(2k) for all k 2 2. In 
particular, there arc models of the identity of  orders 4 and 8. If we utilize a result 
of Hanani [33], we readily obtain models of the identity of all orders IJ = 1 or 
4 (mod 12), and, more generally, if we appeal to Wilson’s result in Theorem 2.8 
with K = (4, 8}, we easily obtain 

Theorem 6.4. J(xy . y = x . x y )  contains all suficiently large integers v ,  where 
v = 0 or 1 (mod 4). 

I t  can be shown that J(xy  . y = x . x y )  does not contain 2, 3, 5, 6 or 7, and it 
is possible to be more specific about the term “sufficiently large” in Theorem 6,4. 
However, more conclusive results are being sought by the  author. 

Quasigroups satisfying the identity yx  . y = x  - yx  are (3, 1 ,2)  (and (2,3,  1))- 
conjugate orthogonal, and there are models of the identity in GF(4) for all prime 
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powers q = 1 
that of Theorem 6.3, that is, we have 

(mod 4). Consequently, it is possible to obtain a result similar to 

Theorem 6.5. J (  y.r y = x . y x )  contains all positive integers u = 1 (mod 4), 
except possibly v = 33, 57, 93 und 133. 

In summary, the author has attempted to provide an up to date account of what 
is known regarding the spectrum of each of the identities in Theorem 1.2. I would 
like to reiterate that only a brief survey of the known results is given in this 
paper. However, 1 have made a concerted effort to include many references to 
the earlier investigations in the bibliography, and the interested reader should 
find plenty of details therein. 

Note added in proof. Since this paper was accepted for publication, the author 
has discovered the following: 

(1) The quasigroup identities (xy  - x ) y  = x and yx . y = x . yx ,  namely, (6) and 
(8), respectively, cf. Proposition 1.3, are conjugate-equivalent. Conse- 
quently, the spectrum is the same for each of these identities and the list of 
identities in Proposition 1.3 can further be reduced to seven. 

(2) There exists a (33,4, 1)-perfect Mendelsohn design and the possible 
exception n = 33 can be eliminated from Theorem 3.6. 

(3) W.H. Mills has recently shown that {70,82} G B(4, 19*). Consequently, 
the numbers 70 and 82 can be removed from the list of possible exceptions 
in Theorems 4.4, 4.5, 4.6 and 4.7. 
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NOTE 

NEW CYCLIC (61,244,40,10,6) BIBDs 

Elizabeth J. BILLINGTON 
Department of Mathematics, University of Queenrland, St. Lucia 4067, Australia 

Dedicated to Haim Hanani on the occasion of his 75th birthday. 

Design number 11 15 in the list of BIBD parameters given by Mathon and Rosa 
[2] is listed as unknown; the parameters are (61,244,40,10,6). Using techniques 
of cyclotomy (see [4] for instance) the following four initial blocks were found, by 
hand, to generate such a design. The cyclotomic classes C j ,  0 s i s 11, are with 
respect to e = 12; the primitive root used in GF[61] was 2. (The classes C j  were 
quickly obtained from Jacobi’s tables [ 11.) 

Initial blocks: 

CoU C1 = (1, 9, 20, 58, 34, 2, 18, 40, 55, 7}, 
C3 U C4 = (8, 11, 38, 37, 28, 16, 22, 15, 13, 56}, 
C, U C3 = (2, 18, 40, 55, 7, 8, 11, 38, 37, 28}, 
C4 U C6 = { 16, 22, 15, 13, 56, 3, 27, 60, 52, 41). 

Cyclotomic numbers of order 12 are known in general (Whiteman [ 5 ] ) .  A check 
of Whiteman’s Table 5 [5, page 721 shows that for any odd prime p = 12f + 1, 
f odd, where p = A’+ 38’ = x2  + 4y2, with m’ = 2 (mod 4), c = 1 and 
m = 1 (mod 6) (see [S]), provided 

and 
2A - B - 4y = 0 

3A + 2-x - 6y = O ,  

(1) 

(2) 
the four sets Co U C1, C4 U C6,  C1 U C3 and C3 U C4 form a supplementary 
difference set. 

Since A’ + 3B’ = x’ + 4y2, we have from (1) and (2) that 

(x$ + s)’ + 3(& - 2))’ = x 2  + 4y2, 

which becomes x’ + x(3y - 13) + (13 - 6y) = 0. Hence 
13 - 3y f v(3y - 9)’ + 36 

2 
, and so X =  

(3y - 9)’ + 36 = n’, say 
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ABCD’ 
ABCE 
BCDF 
BCEF 
ADGH 
DFGH 
AEGH 
CDEJ 
EFGH 
CEEJ , 

Clearly n is divisible by 3; letting n = 3M reduces (3) to 

M2 - (y - 3)2 = 4. (4) 
The only solution to (4) in integers is M = f 2  and y = 3; thus n = f 6  and y = 3, 
so that x = 5 or -1. Since x = 1 (mod 4), we have x = 5. Therefore p = x2 + 4y2 = 
25 + 4.9 = 61, and so the prime 61 is an isolated case here. 

Calling the four initial blocks (respectively) A, B, C and D, three of these at a 
time were taken, and a fourth initial block was generated by computer, using a 
program originally written by Peter Robinson [3]. The resulting designs were not 
always isomorphic, as was easy to check by investigating block intersection 
numbers. In this way 10 non-isomorphic cyclic designs were found with 
parameters (61,244,40,10,6). (See table.) There are probably many more than 
10 cyclic designs with these parameters; the search was by no means exhaustive. 
Note that design number 10 contains 61 repeated blocks. 

The existence of a design with parameters (61,122,20,10,3) (number 255 in 
[2]) remains open. 

’ 

Initial block 
A: 0 1 6 8 17 19 
B: 0 10 12 13 19 24 
C: 0 5 6 9 16 26 
D : O  3 5 7 8 1 4  
E : O  1 3  5 8 2 1  
F: 0 1 5 8 23 29 
G: 0 5 8 24 25 34 
H: 0 1 3 21 26 33 
J: 0 2 6 14 25 30 

33 39 54 5 7 = ( c ( ) u c , ) - 1  
38 49 53 57=(C4UC6)-3 
35 36 38 53=(CIUC3)-2 
20 29 30 48=(C3UC4)-8 
39 40 49 55 D = ( - E ) + 8  
43 45 54 56 A = ( - F ) + l  
35 38 49 57=(C3UC6)-3 
45 47 51 55 
38 42 49 53 

Design number 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Note added in proof. All ten of the designs listed above appear to be irreducible, 
thanks to a program written by Peter J. Robinson. 
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NOTE 

A UNITAL IN THE HUGHES PLANE OF ORDER NINE 

A.E. BROUWER 
Dept. of Marh., Techn. Univ. Eindhoven, Eindhoven, The Nerherlandr 

Eight years ago I found four nonisomorphic 2-(28,4, 1) designs embedded in the Hughes 
plane of order nine, using a computer. This note gives an algebraic description of one of them. 

1. Rosati’s unital 

In [l] and [2] I described the construction of 138 nonisomorphic Steiner systems 
S(2, 4, 28), 11 of which could be embedded in a projective plane of order 9 (of 
which 4 in the Hughes plane). 

Recently, Rosati [4] constructed a unital (2-(q3 + 1, q + 1, 1) design, i.e. 
Steiner system S(2, q + 1, q3 + 1)) in each Hughes plane of order q2, and raised 
the question whether his unital coincided in case q = 3 with one of the four I had 
found earlier. This turns out not to be the case. Statistics for Rosati’s unital are: 

s[3:7] = (0, 1152, 552, 72, 15), not resolvable, uniquely embeddable in a proj- 
ective plane of order nine, self-dual, automorphism group of order 48, point 
orbits of sizes 4 + 12 + 12, block orbits of sizes 3 + 6 + 6 + 24 + 24, the binary 
code spanned by the blocks has dimension 23 and the weight enumerator of its 
dual has coefficients a,, = 8, a12 = 7, a14 = 0. 

(Here si is the number of‘maximal (partial) spreads of size i ;  see also [ l ,  21.) 
Applying the process described in [1] to Rosati’s unital one finds 15 more 

unitals, so that as far as I know 154 nonisomorphic Steiner systems S(2, 4, 28) are 
known today, 12 of which embed in a projective plane. 

2. My unital E.8 

Seeing Rosati’s unital made me wonder whether one of my unitals has a 
reasonable algebraic description. In this note I shall describe the one with the 
largest group. 

= (P, L) of order 9 defined over the “mini- 
quaternion” nearfield of order 9 (cf. [3]). Its group of automorphisms is 
isomorphic to PGL(3,3) X Sym(3) where the first factor is the group of 
projectivities, and the second factor the automorphism group of the nearfield. 
This group stabilizes a unique Baer subplane no = (el, Lo) of n. 

Choose a nonincident point-line pair x ,  L in no. The subgroup G of Aut I7 
fixing both x and L is isomorphic to GL(2,3) x Sym(3) and has orbits of sizes 
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1 + 4 + 8 + 6 + 24 + 48 on points and lines. (Namely: the point x ,  the 4 points of 
L n PO, the 8 remaining points of Po, the 6 remaining points of L, the 24 points of 
P\Pn that are on a line M E L ( )  containing x and meeting L n P , ,  and the 
remaining 48 points. Dually for the lines.) 

Let S be a Sylow 2-subgroup (of order 16) of GL(2,3) and let T be the unique 
cyclic group of order 8 contained in S. Put H = (T x Alt(3)) U ( (S\  T) x (Sym(3)\ 
Alt(3))) < C. Then H = ZZ4.2 has order 48 and orbits of sizes 1 + 4 + 8 + 6 + 
24, + 24b on points and lines. Our unital has as points those in orbits 4 + 24,, and 
then its lines are those in orbits 1 + 6 + 8 + 24 + 24b. This unital is self-dual, but 
not the set of fixed points of a polarity. 

An explicit description of the unital independent of the plane can be given as 
follows: Let X =  { a }  x 2 2 4  f l  (6) X Z4 and take as blocks the five blocks 
{an, as, aiz, six>, {ao, a39 0 4 ,  a i i> ,  ~ 3 ,  ax9 bn}, {ao, as, a169 621, {bn, hi, b2, b?}, 
and their cyclic shifts (mod 24). 

Note that also 

(a2,r a2r+lI b , ,  b2,-1)-(a-zr9 4 , - 2 1 ,  b , ?  & , + I )  

is an automorphism. 

planes of order q2 for arbitrary odd q. 
Remains the question whether this construction can be generalized to Hughes 
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PERCENTAGES IN PAIRWISE BALANCED DESIGNS 

Charles J. COLBOURN and Vojtech RODL 
Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, 
N2L 3G1, Canadu 

To Professor Haim Hanani on the occasion of his seventy-fifth birthday. 

Let K = { k , ,  . . . , k,,,} be a set of block sizes, and let (p,, . . . , p , }  be nonnegative numbers 
with C z , p p ,  = 1. We prove the following theorem: for any E > O ,  if a (v ,  K, 1) pairwise 
balanced design exists and v is sufficiently large, then a ( v ,  K, 1) pairwise balanced design exists 
in which the fraction of pairs appearing in blocks of size ki is p ,  f E for every i .  We also show 
that the necessary conditions for a pairwise balanced design having precisely the fraction p,  of 
its pairs in blocks of size k, for each i are asymptotically sufficient. 

1. Preliminaries 

Let K = { k , ,  . . . , k,} be a (finite) set of positive integers greater than one. A 
pairwise balanced design (V, 53) is a set V of v elements, and a collection 53 of 
subsets of V with the properties that the size of each set of 3 is an integer in K, 
and every 2-subset of V appears in precisely one set of 53. Such a pairwise 
balanced design has order v, index one, and blocksizes K, and is termed a 
(v, K, 1) PBD. When K = { k } ,  the PBD is a (v, k, 1) block design. When c I$ K, 
a PBD with exactly one block of size c and all other block sizes from K is termed 
a (v, K U {c*},  1) PBD. See Hanani [5] for further definitions and background. 

For a (v, K, 1) PBD to exist, two congruence conditions are necessary. Define 

a ( K )  = gcd{kl - 1, k2 - 1, . . . , k ,  - 1}, and 

P ( K )  =gcd{ki(ki - I), k*(kz - I), . . . , k,(k, - 1)). 

Then we must have v - 1 = 0 (mod a ( K ) ) ,  and v(v - 1) = 0 (mod P ( K ) ) .  Wilson 
[6] proved that these conditions are asymptotically sufficient: 

Theorem A [6]. For K a set of positive integers, there is a constant NK so that if 
v > N K ,  v - 1 = 0 (mod a ( K ) )  and v(v - 1) = 0 (mod P ( K ) ) ,  then a (v, K ,  1) 
pairwise balanced design exists. 

Wilson’s theorem guarantees the existence of some PBD with the required 
block-sizes, but does not control the number of blocks of each size in any way. In 
certain applications, however, it  is important to ensure that “most” blocks are of 
one size. In this context, one can view the Erdos-Hanani theorem [4] as 
establishing the existence of (v, {k, 2}, 1) PBDs with almost all blocks of size k. 
Another context in which a majority of blocks of one size is required appears in 
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[3]; there, (v, (6, 7}, 1) PBDs are constructed in which almost all blocks have size 
6, for all orders which are sufficiently large and for which a (v, (6, 7}, 1) PBD 
exists at all. 

In this paper, we use Wilson’s theorem extensively to prove a general theorem 
in this direction. Informally, we show that one can prescribe the fraction of blocks 
of each size, and provided that the order is sufficiently large and the necessary 
conditions are met, there is a PBD with the required fraction of blocks of each 
size. More formally, we prove two theorems along these lines: 

Theorem 1. Let E > 0. Let K = {k, ,  . . . , k,} be a set of block sizes. Then there is 
a constant CK,F SO that if v 3 CK,E, v - 1 0 (mod m ( K ) ) ,  and V(V - 

1)  = 0 (mod P ( K ) ) ,  there is a (v, K,  1 )  PBD in which the fraction of the blocks 
having size k ,  exceeds 1 - E. 

Theorem 2. Let E > 0. Let K = { k l ,  . . . , k,} be a set of block sizes. Let 
{ p l ,  . . . , p m }  be nonnegative numbers with C:, pi = 1. Then there is a constant 
PK,E so that if v 2 PK,o v - 1 3 0  (mod m ( K ) )  and V(V - 1 )  3 0  (mod P ( K ) ) ,  there 
is a (v, K,  1) PBD in which, for each 1 S i S m, the fraction of pairs appearing in 
blocks having size ki is in the range [pi - E ,  p i  + €1. 

The proof of these theorems relies on constructing a large (but finite) collection 
of PBDs in which blocks of one size predominate. In addition to Wilson’s 
theorem, we require a theorem due to Chowla, Erdos and Straus [2] (see also 
Wilson [7] and Beth [l]): 

Theorem B. For every k 2 1, there is a constant Lk so that a transversal design 
TD(k, V )  exists for all 21 3 Lk. 

A question related to that settled in Theorem 2 is to settle the existence of 
pairwise balanced designs having exactly the fraction p i  of its pairs covered by 
blocks of size k;. In addition to the basic necessary conditions for the PBD to 
exist, we then have the additional necessary condition for each 1 G i s m: 

piv(v - 1 )  = 0 (mod k j (k f  - 1)). (*) 

We prove the following: 

Theorem 3. Let K be a set of block sizes, and let { p i ,  . . . , p,} be nonnegative 
fractions with Cy=, p, = 1. Then there is a constant C so that for every v > C 
satisfying v - 1 = 0 (mod a ( K ) ) ,  v(v - 1) = 0 (mod P ( K ) ) ,  and (*), there is a 
(v, K ,  1 )  PBD in which, for every i ,  blocks of size k ,  contain the fraction p f  of all 
pairs. 

To prove this theorem, we employ a generalization of Theorem A to graph 
designs established by Wilson [8]: 
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Theorem C. Let % be a graph with e edges. Let a(%) be the greatest common 
divisor of all vertex degrees in 3, and let /3( %) = 2e. Then there exists a constant 
C:Bsuch t h a t f o r a l l v > C 3 ,  if v - l = O ( m o d a ( % ) ) a n d v ( u - l ) = O ( m o d / 3 ( 3 ) ) ,  
the complete graph K,, can be decomposed into edge-disjoint subgraphs, each 
isomorphic to %. 

In the remainder of the paper, we use Theorems A, B and C to prove theorems 
1 ,  2 and 3 .  

2. Proof of Theorem 1 

The strategy of the proof is to construct PBDs 9, of orders z + k,  (where z is an 
appropriately chosen positive integer), and a PBD 9,,, of order z + 1, each of 
which has all but E fraction of its pairs in blocks of size k , .  To do this, we first 
construct PBDs 9, of orders c + k , ;  we then construct PBDs %, of orders 
y + c + k, and y + c + 1, and many apply a product construction (see Fig. 1 )  to 
form PBDs 9, of orders xy + c + k, and xy + c + 1 with the required fraction of 
blocks of size k , .  Appropriate choices for the integers x ,  y and c are given. 

Finally applying Theorem A to PBDs with block sizes I9,l for O S i S m ,  we 
will infer Theorem 1. 

Now we give a more detailed description of the proof. Choose c sufficiently 
large so that we can form a collection %[,, B,, . . . , %,?, of PBDs with block sizes 
from K ,  with having order c0 = c + 1 and %,, i > 0, having order c, = c + k,  ( c  
can be chosen to be an appropriate multiple of TI:"=, k,(k,  - l)(k, - 2 ) ) .  Let y be a 
multiple of IT:"=,, c,(c, - l ) ,  large enough so that a ( y  + c , ,  c , ,  I )  block design exists 

Y 

Fig. 1 .  9,. 
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for each i, and a TD(kI, y )  exists. Theorems A and B ensure that such a selection 
is possible. Replace all but one blocks in a (y  + c,, c,, 1) block design to form a 
(y + c,, K U {c:}, 1) PBD %', (i.e. %', contains exactly one blocks of size c,). 

Now choose a value x = 1 (mod P ( K ) )  for which an ( x ,  k , ,  1) block design 
exists, and 

for every i, which exists by Theorem A. Let d be an ( x ,  k l ,  1) block design. 
From d and %,, we form a (v, K, 1) PBD 9, on d, = xy + c, elements as 

follows. Let V be the element set of d. The element set of 9, is then 
V x {I ,  . . . , y }  U {m,, . . . , mL,} .  First, for j = 1, . . . , x ,  we place a copy of %, on 
the elements V X { j }  U {m,,  . . . , wc,}, so that the (unique) block of size c, is on 
the elements { m I ,  . . . , m,,}. Next, whenever A E d, place a copy of a TD(k,, y )  
on the elements A X { 1, . . . , y }, with groups of the transversal design on classes 
of elements having the same second coordinate. Finally, replace the block of size 
c, on { m , , ,  . . , mc,} by the blocks of 93,. The result, 9,, is a (v, K, 1) PBD in 
which the fraction of pairs in blocks of size k l  exceeds 1 - E .  

Let D = { d o ,  . . . , d,,,}. We want to apply Theorem A again to produce PBDs 
with block sizes from D for all sufficiently large orders satisfying the necessary 
condition for a PBD with block sizes from K to exist. To this end, we must verify 
that a ( D )  = a ( K )  and P ( D )  = P ( K ) .  Since n:l=, k, (k ,  - l)(k, - 2) divides both c 
and y ,  and d, = xy + c + k, holds, we infer that a ( D )  3 a ( K )  and P ( D )  b P ( K ) .  
Now we verify the opposite inequalities. 

Since a ( D )  divides both do - 1 = xy + c and d, - 1 x xy + c + k, - 1 for i = 
1, . . . , rn, a ( D )  must divide their difference. That is, a ( D )  divides k, - 1 for all 
i = 1, . . . , m, and hence a ( D )  S a ( K ) .  

Now we show that p(D) S P ( K ) .  Let y be a prime power dividing P(D). Set 
z = xy + c. Then we have d,, = z +- 1 and d, = z + k,  for i = 1, . . . , rn. For every 
i = 0, . . . , rn, y divides d,(d,  - 1) and hence y divides the difference 

d,(d,  - 1)  - d(,(d(, - 1) = 2(k, - 1)z + kf - k,. (2.1) 

either y I z or y 1 (z + 1). (2.2) 

On the other hand, y divides d,,(d,, - l),  and hence 

We show that the latter case is impossible. Suppose to the contrary that y divides 
z + 1. Note that z = xy + c is a multiple of II:, k,(k,  - l ) ( k ,  - 2) and hence y 
does not divide k, - I or k, - 2 for any i. Rewriting (2.1), we obtain 

y 1 2(k, - + 1) + (k ,  - l ) (k ,  - 2), 
which implies that y I (k, - l ) ( k ,  - 2), a contradiction. 

Thus y cannot divide z + 1, and hence by (2.2) must divide z. Together with 
(2.1), this implies that y I k,(k,  - l ) ,  proving that y I P ( K )  and hence also 
P ( D ) a P ( K ) .  0 
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Let u meet the necessary conditions for a (v, K, 1) PBD, and u > N n .  Then a 
(u ,  D, 1) PBD exists. Replacing each block of size d j  by a copy of 9; yields a 
(u ,  K, 1) PBD in which the fraction of pairs in blocks of size k l  exceeds 1 - E .  

3. Proof of Theorem 2 

Let 6 be small enough that 

(p ,  + 6)(1+ 6) + 6 c p ,  + E ( 3 4  
holds for every i = I ,  . . . , m. 

Using Theroem 1, produce a collection of PBDs with block sizes from K, 
{B,, : 0 S i S rn, 1 c m}, so that for each j ,  1 ~j =s m, Bl, has all but (1 - 6) of 
its pairs in blocks of size k,; the orders of Bo,, . . . , Bm, are bo, . . . , b,, which are 
chosen as follows. Let z be a (sufficiently large) multiple of n:, k,(k,  - l)(k,  - 
2), so that we can produce all of the designs required above with orders 
b o = z  + 1, and for 1 S i G m ,  6,  = z - k,. Moreover, we require that z is large 
enough that b,(b, - 1) S (1 + 6)b,(b, - 1) for all 1 S i, r 6 n. 

Let S = { b , ,  . . . , b m } .  We have a ( K )  = a ( S )  and P ( K )  = P(S) ,  as in the proof 
of Theorem 1. For u sufficiently large with v - 1 = O  (mod a ( K ) )  and u(v - 
1) = O  (mod P ( K ) ) ,  Theorem A ensures that a (v, S, 1) PBD 9 exists. In 
addition, for u sufficiently large, we can ensure that the blocks of 9 can be 
partitioned into m classes so that l9,I/l91 is in the range [p, - 6, p ,  + 61. For 
j = 1, . . . , m, replace each block in 9, of size b, by a copy of Bl,. The PBD (e 

which results is a (v, K, 1) PBD. If A, is the number of pairs in (e which are in 
blocks of size k , ,  then we have for each i = 1, . . . , rn that 

and 
- < - - ( 1 + 6 ) + 6 = s ( p , + 6 ) ( 1 + 6 ) + 6 .  Ai 19.1 

(3 19' 
Therefore by (3.1) and (3.2), % satisfies the requirements of the theroem. 0 

4. Proof of Theorem 3 

Write the fraction pi  of pairs in blocks of size ki in the form 5 / 6 ,  so that gcd 
{fi, . . . ,fm} = 1. The necessary condition (*) states then that for all i, 

u(v - 1)f; = 0 (mod bki(ki - 1)). 
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We construct a PBD with the prescribed fraction of pairs in blocks of each size 
whenever these necessary conditions are met. To do this, form a graph C 
consisting of disjoint complete subgraphs; G has ri components isomorphic to K k , ,  
so that 

for each i. Moreover, we ensure that gcd{r,, . . . , r,,,} = 1. Letting e be the 
number of edges of G, we can simplify to 

r,hk,(k, - 1) = 2ef;. 

Hence the necessary condition becomes 

v(u - l)r, = 0 (mod 2e). 

Since the ( 5 )  are relatively prime, we have 

v(v - 1) = 0 (mod 2e). 

By Theorem C, the necessary conditions are asymptotically sufficient for the 
existence of a decomposition of K,, into graphs isomorphic to C ;  such a 
decomposition trivially gives a PBD with the required fraction of pairs in each 
block size. 

5. Closing remarks 

The theorems proved here are to a large extent straightforward consequences 
of Wilson’s theorems. Nevertheless, they allow finer control of the distribution of 
block sizes, and hence are useful for extremal questions in design theory, such as 
that studied in [3]. 
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ON COMPLETE ARCS IN STEINER SYSTEMS S(2,3, u )  
AND S(2,4, v )  

Marialuisa J.  de RESMINI 
Dipartimento di Matematica, UniversitG di Roma ‘La Sapienza ’, W185 Rome, Italy 

To Professor Haim Hanani on his seventy-fifth birthday. 

A lower bound is provided for the size of complete arcs in an S(2, k ,  v )  and examples are 
exhibited for k = 3 and 4 which show that the lower bound can be attained. Partitions are 
examined of S ( 2 ,  4, 21)’s into complete arcs. 

1. Introduction 

The well established facts that both S(2, 3, v)’s and S(2, 4, v)’s exist for all v’s 
in their spectra and that the number of non-isomorphic systems increases with v 
raise several questions. One is the classification of such Steiner systems. 
However, in such general terms this problem seems hopeless. Hence, additional 
conditions and more information are needed on the inner structure of STS’s and 
S(2, 4, v)’s. Basically, there are two possible approaches to the investigation of 
such inner structures. One of them appeals to possible automorphism groups 
admitted by the Steiner system. This method recently produced many new Steiner 
systems and enabled the classification of some of them, see e.g. [2, 4, 14, 21, 27, 
28, 35, 36, 371. The other approach looks at possible nice subsets of the point set 
and/or at configurations formed by the blocks. Also from this standpoint our 
knowledge is constantly increased by new results, see e.g. [9, 17, 181. The inner 
structure of a certain design is the design itself. This was the case in the very first 
constructions [20] and since then it has been investigated focusing on different 
objects. In particular, it is worth recalling that looking at possible generating 
triangles enabled the classification of STS’s as planes, degenerate planes and 
spaces [ 11, 341. 

Here we shall present some results concerning the smallest possible size for a 
complete arc in an S(2, k, v )  and give some examples of S(2, 3, v)’s and 
S(2,4, v)’s containing complete arcs whose sizes attain the lower bounds. 
Furthermore, we examine the inner structure of some S(2, 4, v)’s by looking for 
possible partitions of the point set into complete arcs. Twenty-seven years ago 
Hanani’s famous paper [15] appeared in which the existence was proved, by 
construction, of an S(2, 4, v )  for any v = 1 or 4 (mod 12). Since then many other 
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S(2,4, u)’s were constructed so that it seems interesting to devise properties 
which might enable one to  determine when two systems of the same order are 
inequivalent. 

We assume that the reader is familiar with the Steiner system terminology and 
we refer him to [l, 191 for background and to [12, 131 for literature on the 
subject, our references being far from exhaustive. 

2. Complete arcs in Steiner systems S(2, k ,  u )  

An s-arc in an S(2, k, v )  is a set of s points of the system no three of which are 
on a block. Thus an arc is met by any block in 0, 1 ,  or 2 points. Moreover, an arc 
is complete if any point of the S(2, k, IJ) lies on at least one secant block. A 
tangent (secant) block is briefly called a tangent (secant). 

If there are no tangents, then the arc takes its maximum possible size, i.e. 
r + 1 = (IJ - l)/(k - 1) + 1, and is referred to as a hyperoval. Hyperovals have 
been thoroughly investigated in STS’s and results are known for any k [9, 221. 
Furthermore, their use in the construction of S(2, 3, v)’s goes back to Kirkman 
[20] and Reiss [32]. 

Since the spectrum of S(2, k, v)’s containing hyperovals is not the whole 
spectrum of these systems [9], it makes sense to consider the next possible size for 
a complete arc. More precisely, we require that there is a unique tangent to the 
arc at each of its points. Such a complete arc is called an oval and clearly has r 
points. Again, results are known on STS’s containing ovals of some particular 
types, not necessarily complete [23, 381. 

By an oval in an S(2, k, v) we always mean a complete r-arc with a unique 
tangent at each point. This definition is suggested by the behaviour of ovals in any 
odd order projective plane and is motivated by the fact that we are interested in 
complete arcs. 

An easy counting argument shows that the number of secants to an oval 
through each exterior point equals the number of exterior blocks on that point. 
Moreover, the number of tangents on an exterior point has the same parity as r. 
Therefore, a necessary condition for an oval to admit interior points, i.e. points 
on no tangent, is r = 0 (mod 2). 

It is well known [16] that in a projective plane Il of odd order q the q + 1 
tangents to an oval B, i.e. a complete (q  + 1)-arc, form an oval in the dual plane. 
This means that each point in II\ 52 lies on either two or zero tangents to 9. This 
is a consequence of the fact that any two lines in II always meet. On the other 
hand, such a result is not true in a Steiner system S(2, k,  v )  with b > v ,  since 
there exist parallel blocks. 

The next example shows an oval in an S(2, 3, 13), that is a complete 6-arc with 
a unique tangent at each point. Notice that we started with the points on the oval 
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to construct the STS(13). The points of the oval are 1 ,2 ,  . . . , 6 .  Then the secants 
are: 

1 2  7 1 5 1 2  2 4 1 2  3 4  9 4 5 1 0  
1 3 1 1  1 6  9 2 5  9 3 5 1 3  4 6  7 
1 4  8 2 3  8 2 6 1 3  3 6 1 0  5 6  8. 

Moreover, the tangents are 1 10 13, 2 10 11, 3 7 12, 4 11 13, 5 7 11, 6 11 12 and the 
exterior blocks are 7 9 13, 8 12 13, 9 10 12, 7 8 10, 8 9 11. This oval has two interior 
points, namely 8 and 9,  and 11 is a point on four tangents. The remaining points 
off the arc all are on two tangents. (Ovals in the two nonisomorphic STS(13)’s are 
thoroughly investigated in [39].) 

Therefore, in looking for ovals in an S(2, k, v) one can add some conditions on 
the oval, for instance the existence of a prescribed number of interior points 
and/or a certain behaviour of the tangents. For STS’s this approach is used in 
[23, 381. 

We observe that the existence of an oval in an S(2, k, v) does not yield any 
arithmetic condition on v. It depends on the structure of the Steiner system under 
consideration only. 

As we already remarked, the existence of hyperovals gives arithmetic condi- 
tions on v [9] which are v = 3 or 7 (mod 12) for an STS and v = 4 (mod 12) for an 
S(2, 4, v )  (for any k ,  see Propositions 3 and 4 in [9]). If we delete one point from 
a hyperoval in an S(2, k, v), we obtain an r-arc all of whose tangents pass 
through the deleted point. Such an arc is not complete, so we do not consider it 
as an oval as is done in [38]. Therefore, when an S(2, k, v )  contains hyperovals it 
can contain ovals too and none of these ovals is contained in a hyperoval. 

Again, the situation is different from that occurring in projective planes. In 
fact, any projective plane of even order q can contain hyperovals, but no oval as 
the q + 1 tangents to a (q + 1)-arc all pass through a point which completes the 
arc to a hyperoval. This is an easy consequence of two facts; namely, the number 
of tangents to the (q + 1)-arc on a point off it must be odd, as q is even, and any 
two lines meet [16]. 

Next, we turn to the problem of the minimum possible size for a complete arc 
in an S(2, k, v). We observe that such a lower bound is an open question for 
projective planes which is settled only for small orders [6, 161. On the other hand, 
the following result shows that for S(2, k, v)’s with b > v the solution is easier. 

Proposition 2.1. The minimum possible size s for a complete arc in an S(2, k, v), 
say S, satisfies 

s2(k - 2) - s (k  - 4) - 2v = 0. (2.2) 

Proof. If y is a complete s-arc in S, then any point of S \ y  lies on one secant at 
least. Therefore, the minimum possible size for y is attained when each point of 
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S \ y  lies on exactly one secant block. This condition yields 
s(s - 1) 

~ ( k - 2 ) + s = v  
L 

from which (2.2) follows. 

Notice that Proposition 2.1 provides necessary conditions on v,  since equation 
(2.2) must have an integral solution. 

Corollary 2.3. The minimum possible size f o r  a complete arc in an S (2 ,  3 ,  v )  is 
s = (- 1 + v m ) / 2 .  Furthermore, a necessary condition f o r  an STS to contain 
a complete arc of the minimum possible size is that v takes one of the following 
forms: 

v = 72y2 f 18y + 1 ,  y a 1, (2.4) 

b y a l = 1 1 , a , + , = a , + 2 ( 2 j - l ) ,  j = 1 , 2  , . . .  (2 .5)  
v = 6 m  + 3 ,  where m = (a: - 25)/48 and a, is recursively defined 

Proof, The first part of the statement immediately follows from Proposition 2.1. 
Thus a necessary existence condition is provided by 1 + 8v being a square. 

Suppose v = 1 (mod 6), i.e. v = 6 m  + 1. Then 1 + 8v = 48m + 9. For this to be 
a square, rn = 3w. So 16w + 1 must be a square. Thus 16w + 1 = (8y f 1)’  which 
implies that w = y ( 4 y  f 1 )  and gives (2.4).  Furthermore, s = 12y + 1 for the 
former value of v and s = 12y - 2 for the latter. 

Next, assume v = 3 (mod 6 ) ,  i.e. v = 6 m  + 3. Thus, 8v + 1 = 48m + 25 = a’. 
Therefore, m = (a’ - 25)/48 must be an integer. The smallest value of u f o r  which 
this occurs is u I  = 11. We claim that m is an integer for a = a), where a, is 
recursively defined as in the statement. By induction, we show that 48 I a: - 25 
implies 48 I a,”+, - 25. This means that we have to prove that 12 1 (2j  - l ) (a ,  + 
2j - 1). On the other hand, this easily follows from the observations below which 
can all be proved by induction. 

j = 1 (mod 3 )  +a, = 2 (mod 3 ) ,  j 5 0 or 2 (mod 3 )  +a) = 1 (mod 3 ) ,  
j 5 0 (mod 2 )  +a, = 1 (mod 4 ) ,  j = 1 (mod 2 )  + a/ = 3 (mod 4 ) .  
To prove the necessity of the above form for m, we begin by observing that 

a2 - 25 = 0 (mod 48)  implies u2  = 1 (mod 6). Therefore, a = 1 or 5 (mod 6 ) .  If 
a = 6z  + 1, then (a’ - 25)/48 = ( 3 z 2  + z - 2) /4 .  For this to be an integer, z = 2 or 
3 (mod4). Consequently, a = 13 or 19 (mod24). If u = 62 + 5 ,  then ( u Z -  
25)/48 = z (3z  + 5 ) / 4  which is an integer for z = 0 or 1 (mod 4 )  only. Thus u = 5 or 
1 1  (mod 24). Therefore, necessary conditions for (a’ - 25)/48 to be an integer are 
a = 5 ,  11, 13 or 19 (mod 24) and a > 5 to avoid a trival case. The solutions of 
these congruences are precisely the above defined a,’s. 0 

By Corollary 2.3, v = 15 is an admissible order for complete arcs to exist of the 
smallest possible size. In this case the size is 5 .  The next example shows an 
S(2 ,  3 ,  15) containing a complete 5-arc. 
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Take the STS( 15) no. 21 in [26] whose blocks are given below: 

1 2  3 1 4  5 1 6  7 1 8  9 1 1 0 1 1  1 1 2 1 3  1 1 4 1 5  
2 4 6 2 5 7 2 8 1 0  2 9 1 2  2 1 1 1 4  2 1 3 1 5  3 4 7 
3 5 6 3 8 1 1  3 9 1 3  3 1 0 1 5  3 1 2 1 4  4 8 1 2  4 9 1 4  
4 10 13 4 11 15 5 8 13 5 9 15 5 10 14 5 11 12 6 8 14 
6 9 10 6 11 13 6 12 13 7 8 15 7 9 11 7 10 12 7 13 14. 

Then it is easy to check that the points 1 9  10 12 14 form a complete 5-arc. Notice 
that this STS(15) contains a subsystem (on the points 1,2, . . ,7); hence, it 
contains a hyperoval on 8,9,  . . . , 15. Moreover, the points 1 3 7 9 10 14 yield a 
complete 6-arc. Two other complete 6-arcs are 1 5 7 8 12 14 and 1 3 5 7 9 14. 

Take now the STS(15) no. 19 [26] .  Its blocks are: 
1 2  3 1 4  5 1 6  7 1 8  9 1 1 0 1 1  1 1 2 1 3  1 1 4 1 5  
2 4 6 2 5 7 2 8 1 0  2 9 1 1  2 1 2 1 4  2 1 3 1 5  3 4 7 
3 5 6 3 8 1 2  3 9 1 4  3 1 0 1 3  3 1 1 1 5  4 8 1 5  4 9 1 2  
4 10 14 4 11 13 5 8 13 5 9 10 5 11 14 5 12 15 6 8 11 
6 9 15 6 10 12 6 13 14 7 8 14 7 9 13 7 10 15 7 11 12. 

This S(2, 3, 15) contains a unique subsystem, that on the points 1, . . . , 7 .  thus it 
contains a hyperoval on 8,9,  . . . , 15 [9, 201. It also contains an oval whose points 
are 1 3 4 6 11 12 14. This oval admits no interior point. The points 8, 9 and 15 are 
on three tangents whereas the remaining ones are on one tangent only. Also this 
STS(15) contains a complete 5-arc, namely the one on the points 7 9 12 14 15. 

We observe that the STS(15) given by PG(3,2), no. 1 in [26], obviously 
contains a complete 5-arc. It is provided by an ovoid in the projective 3-space 
[16]. Moreover, PG(3,2) has a partition into three ovoids. 

The next admissible order is v = 2 1  (Corollary 2.3) and the corresponding 
smallest possible size for a complete arc is 6. So there might exist an STS(21) 
containing a complete 6-arc. There are many known STS(2l)’s [4, 26, 27, 281 and 
no exhaustive search has been carried out to find those containing complete 
6-arcs. The author picked at  random a couple of S(2, 3, 21)’s in each of the 
quoted papers and tried to uncover, by hand, some complete 6-arc. These very 
few trials turned out to be unsuccessful. 

The proof to Proposition 2.1 suggests a construction of Steiner systems 
S(2, k ,  v) containing a complete arc of minimum possible size provided that the 
necessary conditions on 21 are satisfied. The construction requires one to start with 
the arc together with its secants (pairs of points) and complete the pairs to blocks 
by taking into account that no two secant blocks meet outside the arc. A general 
procedure has not been devised yet. It is quite obvious that the solution is not 
going to be easy when k 3 4. However, a general construction is presently under 
investigation of STS’s admitting a complete arc of minimum possible size. 

Corollary 2.6. The minimum possible size for a complete arc in an S(2, 4, v) is 
fi. A necessary condition for such an arc to exist is that v has one of the following 
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Proof. The size of the arc comes from Proposition 2.1. The expressions for v 
follow from the fact that v must be a square. Recall that v = 1 or 4 (mod 12). 0 

In [9] it was shown that an STS can be embedded in an S(2,4, v )  with two 
intersection numbers 1 and 3, i.e. with no exterior block, provided that v = 4 
(mod 24) and v is a square. Under these assumptions, the order of the embedded 
STS is (v f f i ) /2 .  We observe that in case v = 4(3w + 1)2, the above conditions 
are satisfied. Moreover, the possible complete (6w + 2)-arc in the S(2, 4, v) might 
also be a complete (6w + 2)-arc in the embedded STS of order 18w2 + 15w + 3 
(Corollary 2.3). Such a complete arc is of minimum possible size both in the 
S(2,4, v )  and in the embedded STS. The smallest value of v for which such a 
situation can occur is v = 100 in which case the STS has order 55 and the 
complete arc is a 10-arc. 

Notice that Corollary 2.6 suggests the existence of S(2, 4, v)’s, v a square, 
admitting a partition into fi complete (fi)-arcs. Steiner systems with this 
property do exist as the next examples show. 

The unique S(2, 4, 16) admits such a partition. To show this, we write its 
blocks as follows, the points being A l ,  A2, A3, A4, B1, . . . , B4, C1, . . . , C4, 
D l , .  . . ,D4 .  
A1 A2 B1 B2 A1 A3 C1 C3 A1 A4 D l  0 4  A1 83 C4 0 2  A1 8 4  C2 0 3  
A3 A4 8 3  B4 A2 A4 C2 C4 A2 A3 0 2  0 3  A2 B4 C3 Dl  A2 8 3  Cl  0 4  
C1 C2 D l  0 2  B1 B3 D l  0 3  B1 B4 C1 C4 A3 B1 C2 0 4  A3 B2 C4 D l  
C3 C4 0 3  0 4  8 2  84 0 2  0 4  82 8 3  C2 C3 A4 B2 C1 0 3  A4 BI C3 0 2 .  

Then it is easy to verify that A l ,  . . . , A4; B1, . . . , B4; C1, . . . , C4; 
D1, . . . , 0 4  are complete 4-arcs and it is clear that such 4-arcs partition the point 
set. In this case a block is either secant to two arcs of the partition or tangent to 
all four of them. Of course, such a situation cannot occur when v is odd. 

The next possible value for v is 25. The S(2, 4, 25) no. 1 in [21] contains a 
complete 5-arc. The points of the arc are 1 3  14 1725. For the reader’s 
convenience, we list the blocks of this Steiner system. 

1 2 3 19 2 9 10 24 4 7 13 14 6 11 18 21 11 14 17 24 
1 4 10 11 2 13 21 22 4 9 17 22 6 17 19 23 12 15 18 22 
1 6 14 22 2 14 16 20 4 12 16 21 7 8 9 21 1 5 9 25 
1 7 16 17 3 5 13 24 4 18 19 24 7 10 15 19 2 6 7 25 
1 8 12 23 3 6 10 12 5 7 18 23 7 12 20 24 3 4 8 25 
1 13 18 20 3 7 11 22 5 8 14 15 8 10 20 22 10 14 18 25 
1 15 21 24 3 9 16 18 5 10 17 21 8 11 13 19 11 15 16 25 
2 4 15 23 3 14 21 23 5 16 19 22 9 11 20 23 12 13 17 25 
2 5 11 12 3 15 17 20 6 8 16 24 9 12 14 19 19 20 21 25 
2 8 17 18 4 5 6 20 6 9 13 15 10 13 16 23 22 23 24 25. 
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We observe that this S(2, 4, 25) has a special point, namely 25, in the sense of B. 
Rokowska [33]. She defines an S(2, 4, v )  with a special points 0 as follows. For 
any two blocks O x ,  x 2  x 3  and O y ,  y2 y ,  there exist two blocks 0 z1 z2 z, and 
0 wI w2 w3 such that xl y, 2, w,, j = 1, 2, 3, is a block. The triples of points other 
than 0 on the blocks through 0 are to be considered as ordered triples. For 
instance, take the blocks 25 1 5 9 and 25 2 6 7. They uniquely determine the blocks 
25 3 4 8 and 25 19 20 21 so that 1 2 3 19 ,5  6 4 20 and 9 7 8 21 are blocks. Next, take 
25 1 5  9 and 25 6 7 2. These blocks pick out the pair 25 14 18 10, 25 22 23 24 and 
the resulting blocks are 1 6 14 22, 5 7 18 23 and 9 2 10 24. In a similar manner one 
obtains all the blocks of the S(2, 4, 25). The S(2, 4, 25) no. 1 in [21] and the 
system in [33] might be isomorphic but this was not checked. 

Also the S(2, 4, 25) no. 6 in [21] contains complete 5-arcs. Furthermore, it 
admits a partition into five such arcs. The blocks of the system are the following 
ones. 

1 2 6 25 4 5 9 23 11 17 18 22 2 5 15 18 6 8 16 24 
1 5 10 24 4 6 10 15 12 18 19 23 2 10 17 19 6 9 19 22 
1 7 8 12 4 18 24 25 13 19 20 24 2 11 14 24 6 14 21 23 
1 20 21 22 5 6 7 11 14 16 20 25 3 5 13 16 7 9 17 25 
2 3 7 21 5 19 21 25 15 16 17 21 3 6 18 20 7 10 20 23 
2 8 9 13 6 12 13 17 1 3 11 19 3 12 15 25 7 15 22 24 
2 16 22 23 7 13 14 18 1 4 14 17 4 7 16 19 8 10 18 21 
3 4 8 22 8 14 15 19 1 9 16 18 4 11 13 21 8 11 23 25 
3 9 10 14 9 11 15 20 1 13 15 23 5 8 17 20 9 12 21 24 
3 17 23 24 10 11 12 16 2 4 12 20 5 12 14 22 10 13 22 25. 

The partition is provided by the five 5-arcs 5 + j, 10 + j, 15 + j, 20 + j, 25 + j, 
j = 0, 1, . . . , 4, addition mod 25. 

We remark that the S(2, 4, 25)’s n o s  2 and 3 in [21] seem to contain no 
complete 5-arc. However, they contain complete 6-arcs. Furthermore, no. 2 has a 
special point, namely 25, in the sense of [33] and might be isomorphic to the 
Steiner system there. Again, this was not checked. 

Some of the cyclic [4] and elementary abelian [14] S(2, 4, 49)’s were examined 
for complete 7-arcs. No exhaustive search was carried out but the performed 
random search was unsuccessful. However, in each of the investigated cases the 
orbit under Z7 of a point yielded an incomplete 7-arc. 

This raises two questions. First, the existence, for any square v 2 49, v = 1 or 4 
(mod 12), of an S(2,4, v )  containing a complete (fi)-arc. Secondly, the 
existence, for any v as above, of an S(2, 4, v) whose point set admits a partition 
into fi complete (fi)-arcs. We conjecture that such systems exist and, most 
likely, are neither cyclic nor elementary abelian. 

Of course, arcs in Steiner systems are independent sets, since no three points 
are on a block. Some results on the largest cardinality of an independent set in an 
STS can be focnd in [5, 311 but arcs are not considered there. 
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Finally, we observe that in an S(2, k, v) maximal {s; n}-arcs can be considered, 
i.e. s-sets of points met by any block in either 0 or n points. Necessary conditions 
for such maximal arcs to exist were given in [9] and other results on them can be 
found in [7, 301. 
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1. Introduction 

Let F be a set of f points in a finite projective geometry PG(t, q )  of t 
dimensions where t 3 2, f 3 1 and q is a prime power. If (a) IF n HI 3 m for any 
hyperplane H in PG(t, q )  and (b) IF fl HI = m for some hyperplane H in 
PG(r, q) ,  then F is said to be an {f, m; t, q}-min hyper (or an {f, m ;  t, 4)- 
minihyper) where m 3 0  and IAl denotes the number of points in the set A. The 
concept of a min * hyper (called a minihyper) has been introduced by Hamada 
and Tamari [22]. In the special case t = 2, an {f, m;  2, q}-min 0 hyper F is called 
an rn-blocking set if F contains no 1-flat in PG(2,q). 

Let E( t ,  q )  be the set of all ordered sets ( E ~ ,  E ~ ,  . . . , &f-l) of integers E, such 
that 0 6 & , 6 q - l  ( ( Y = O ,  l , . .  . , t - l )  and (cl, e2 , . . .  , E , - ~ ) # ( O , O , .  . . , O ) .  
Let U(t, q )  be the set of all ordered sets ( E ,  pl, p2, . . . , ph) of integers E ,  h and 
pi such that 0 s  E d q  - 1, 1 s h  S ( t -  l)(q - l), 1 6 p 1  6 p 2 6 -  - . s p h  6 t  - 1 
and 0 6 n l ( p )  Q q - 1 for 1 = 1, 2, . . . , t - 1 where n l ( p )  denotes the number of 
integers pi in p (pl,  p2, . . . , ph)  such that pi = I for the given integer 1. Note 
that there is a one-to-one correspondence between the set E( t ,  q )  and the set 
U(t, q )  as follows: 

E = EO, n,(p) = E l ,  nz(p) = EZ,  - * 9 4-&) = &,-I (1.1) 

where p = (pl ,  p2, . . . , p h )  and EL-i1 E, = h. For example, (2,4,0,2) in E(4, 5 )  
corresponds to (2, 1 , 1 , 1 , 1 , 3 , 3 )  in U(4, 5). In what follows, we shall use an 
orderd set in either E(t ,  q )  or U(t ,  q )  as occasion demands. 

Let V ( n ;  q )  be an n-dimensional vector space consisting of row vectors over a 
Galois field GF(q) of order q where n is a positive integer. A k-dimensional 
subspace C of V ( n ;  q )  is said to be an (n, k, d ;  q)-code (or a q-ary linear code 
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with length n, dimension k, and minimum distance d) if the minimum 
(Hamming) distance of the code C is equal to d where n > k 3 3 and d 1 (cf. 
Blake and Mullin [3] and MacWilliams and Sloane [29]). 

It is well known (cf. Griesmer [ l l ]  and Solomon and Stiffler [30]) that if there 
exists an (n, k, d; q)-code for given integers k, d and q, then 

where [X I  denotes the smallest integer a x .  In what follows, we shall confine 
ourself to the case k L 3 and 1 s d 6 qk-' - q. In this case, d can be expressed as 
follows: 

using some ordered set ( E ~ ,  . . . , Ek-2)  in E(k - 1, q )  (or some ordered set 
(E, pl,  p2, . . . , p h )  in U(k - 1, q) ,  resp.) and the Griesmer bound (1.2) can be 
expressed as follows: 

where u, = (4' - l)/(q - 1) for any integer 1 
Recently, Hamada [12, 161 showed that in the case k 3 3 and d = qk-' - 

C::; Enq" (or d = q (E + C;==, qpi)) ,  there is a one-to-one correspondence 
between the set of all (n, k, d; q)-codes meeting the Griesmer bound (1.4) and 
the set of all {I",; E , V , + ~ .  C::: E,ZI,; k - 1, q}-min - hypers (or the set of all 
{C;==, + E, C;==, up,; t ,  q}-min - hypers, resp.) if we introduce an equivalence 
relation between two (n, k, d; q)-codes as Definition 2.1 in Hamada (161 (cf. 
Theorem 3.11, Remark 3.3 and Example 3.1 in Section 3). Hence in order to 
obtain a necessary and sufficient condition for integers k, d and q that there exists 
an (n, k, d; q)-code meeting the Griesmer bound (1.2) in the case 1 d d d 
qk-' - q and to characterize all (n, k, d; q)-codes meeting the Griesmer bound 
(1.2) in the case 1 s d 6 qk-' - q,  it is sufficient to solve the following problem 
with respect to a min hyper. The purpose of this paper is to survey recent works 
with respect to the following problem. 

0. 

k-1 - 

Problem A. (1) Find a necessary and sufficient condition €or an ordered set 
( E O ,  E ~ , .  . . , in E( t ,  q )  (or an ordered set (E, pl, pz, . . . , ph)  in U(t ,  9)) 
that there exists a 

I I -  1 {g E ~ V ~ + ~ ,  Enurn; t, q -min. hyper 
CY=O n=O 

h h 

v , + ~  + E, 2 v,,; t ,  q 
i = l  
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(2) Characterize all 
t-1 r-1 

a=o 
h h 

i = l  

in the case where there exist such min * hypers. 

Example 1.1. Let F be a p-flat in PG(t, q )  where 1 d p < t. Then IF( = (@'+I - 

l)/(q - 1) = v, ,+~ and IF n HI = v,, or for any hyperplane H in PG(t, q )  
according as F q! H or  F c H. Hence F is a v,,; t ,  q}-min hyper if F is a 
,u-flat in PG(t, q) .  Tamari [31, 331 showed that the converse holds, i.e. if F is a 
{up+,,  v , ; t ,  q}-min * hyper, then F is a p-flat in PG(t, q ) .  Hence in the special 
case & o = E 1 = . . . = E p - l = O ,  ~ , , = 1 ,  E , , + ~ = ~ - ~ = E ~ - ~ = O  (or E = O ,  h = l  and 
p, = p) ,  F is a { v , ,+~ ,  up; t, q}-min . hyper if and only if F is a p-flat in PG(t, q ) .  

Example 1.2. In the case t 2 2, q 2 3, E = 0 and h = 2, it is shown by Hamada 
[12, 131 that (1) in the case pI + p z 2  t ,  there is no {v,,,,+I + up,, + up*; t, 4)- 
min. hyper and (2) in the case pl + p z s t  - 1, F is a + v p 2 + l ,  v,,, + 
vMZ; I ,  q}-min - hyper if and only if F is a union of a pl-flat and a pz-flat in 
PG(t, q )  which are mutually disjoint where 1 d p1 6 p2 < t .  

2. Construction of several min - hypers 

Let F be a set of E" O-flats, l-flats, . . . , (t - 1)-flats in PG(t, q )  which are 
mutually disjoint where (El), c l ,  . . . , E E( t ,  q).  Then IF1 = Cb;='ll E , V , + ~ ,  

IF n HI 3 EL-=', ~ , v ,  for any hyperplane H in PG(t, q )  and the equality holds for 
some hyperplane H in PG(t, q) .  Hence F is a E , V , + ~ ,  EL-='l E,v,; t, 4)- 
min * hyper (cf. Hamada [16]). 

Let F be a set of E points, a pl-flats, a pz-flat, . . . , a ph-flat in PG(t, q )  which 
are mutually disjoint where ( E ,  p l ,  p2, . . . , ph) E U(r ,  q).  Then F is a 
{C:=(=, + E ,  C:=l v,,; t, q}-min - hyper. Hence we have the following 

Theorem2.1. Let&(Eo,EI , . . . ,  E , - l ; t , q ) Z O a n d  2 S U ( ~ , p l , p 2 ,  . . . ,  p h ; t r q ) f O  
for given ordered sets in E( t ,  4) and ( E ,  p l I  p2,  . . . , ph) in 
U( t ,  q ) ,  respectively, where & ( E ( , ,  . . . , t ,  q )  denotes a family of alf 
unions of 0-flats, 1-flats, . . . , ( t  - 1)-flats in PG(t, q )  which are mutually 
disjoint and S"(E,  p l ,  p2, . . . , ph; t ,  q )  denotes a family of all unions of E points, 
a pl-flat, a ,u2-flat, . . . , a p,,-flat in PG(t, q )  which are mutually disjoint. 

E,v,; t ,  

. . . , 

(1) If F E & ( E , , ,  E ~ ,  . . . , ~ , - ~ ; t ,  q) ,  then F is a { E ' , & E , ~ , + ~ ,  
q}-min hyper. 

min * hyper. 

h (2) IfF€21u(E,pl,pz,...,ph;t,q), t h e n f i s a  { C ~ = i v , + i + E , C , = ~ v , ; t , q ) -  
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Remark 2.1. If there exists a relation between a set ( E " ,  in E(t ,  q )  
and a set ( E ,  pI ,  pz ,  . . . , p h )  in U(t ,  q )  as (l.l), then 3:E(~0 ,  E ~ ,  . . . , E , . - ~ ;  t ,  q )  = 

. . . , 

3 U ( E ,  p1, p2, * * * p h ;  t ,  4)- 

Remark 2.2. It is known (cf. Hamada and Tamari [24] for example) that (1) in 
the case h = 1, &(E,  p l ; t ,  q ) # 0  for any ( E ,  pl)  in U(t ,  q )  and (2) in the case 
h 3 2, &(E,  p l ,  p2, . . . , p h ;  t ,  q )  # 0  if and only if ph-1 + s t - 1. 

Problem B. Find a necessary and sufficient condition for an ordered set 
( E ~ ,  E ~ ,  . . . , in E(t,  q )  (or an ordered set ( E ,  pl ,  pz,  . . . , p h )  in U(t ,  q )  that 
the converse of (1) (or (2)) in Theorem 2.1 holds, i.e. F E & ( E ,  e l , .  . . , 
t ,  q )  for any {EL-& E,V,+~,  Cb;='l E,v,; t ,  q)-min hyper F (or F E 

&(E,  pl,  p2, . . . , p h ;  t ,  q )  for any { C L  v, , ,+~ + E, E L l  q,,; t ,  q}-min hyper F, 
resp.). 

Let V be a &flat in PG(t, q )  where 2 d 8 d t. A set S of rn points in V is said to 
be an m-arc in V if no 8 + 1 points in S are linearly dependent where rn 2 8 + 1. 
In the special case 8 = t ,  S is said to be an rn-arc in PG(t, q ) .  For convenience 
sake, a set S of 8 points in the &flat V is said to be a &arc in V if 8 points in S 
are linearly independent. Let U(8, E ;  t ,  q )  denote a family of all sets V\S of a 
&flat V in PG(t, q )  and a (q + 8 - &)-arc S in V where 2 s 8 d t and 0 6 E < q. 

Let n(8, 5;; f ,  nl, nz, . . . , n,; t ,  q )  denote a family of all sets (V\S) U A  U B 
of a set V\S in U(8, f;; t ,  q) ,  a set A of E points in PG(t, q )  and a set B in 
~ u ( O , ~ l , ~ z , . . . , n ~ ; t , q )  such that V n A = 0 ,  ( V \ S ) n B = 0  and A f l B = 0  
where either (a) 1 =0,  2 6  8 d t  - 1, 5'30, 6 2 0  and 5;+ E<q or (b) l s l d  
(t-2)(q-l) ,  2 s 8 s n l ,  I;*O, 5 3 0 ,  5 ; + f < q  and (O,nl,nz , . . . ,  n ' ) ~  
U(t ,  q ) .  Note that &(O, nl, nz, . . . , n'; t ,  q )  = 0 in the case 1 = 0 and A = 0 in 
the case f = 0. The following theorem due to Hamada [16] gives another method 
of construction of a min * hyper. 

Theorem 2.2. Let U(8, E ;  t ,  q )  # 0  and YJl(8, 5;; f ,  nl, nz, . . . , nl; t ,  q )  # 0 for 
given integers. 

(1) Zf F E U(0, E ;  t ,  q ) ,  then F is a {Ez:: (q - l)u,+, + E ,  Cz:: (q - 1 ) ~ ~ ;  

(2) Zf Fern(@ I;; f ,  nl, nz, . . . , n/; t ,  q ) ,  then F i,~ a {CzZt (q - l)t~,+~ + 
t ,  q}-min hyper. 

Cf=1 vn,+l + 5 + 5, Eft:: (q - l)v, + E!=l vn,; t ,  q}-rnin hyper. 

Helleseth [25] characterized all ( n ,  k ,  d ;  q)-codes meeting the Griesmer bound 
for the case k 2 3, q = 2 and 1 d d < 2k-'. In terms of a min . hyper, the result of 
Helleseth can be expressed as follows. 

Theorem 2.3. Let ( E ,  pl, p 2 , .  . . , pn) be an ordered set in U( t ,  2) and let 
f = Ef=l u , , ~ + ~  + E and rn = C?=, v,,, where vI = 2' - 1 for any integer 13 0. 
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( 1 )  In the case h = 1, F is a {vri+, + E, up,; t, 2}-min -hyper if and only if 

(2) In the case h k 2 ,  p h - I + p h S t -  1 and (pl, p 2 ) # ( 1 ,  2), F is an 
{ f ,  m ;  t, 2}-min * hyper if and only if F E & ( E ,  p l ,  p2, . . . , p h ;  t ,  2). 

(3) In the case h 2 2 ,  p h - 1  + p h  > t -  1 and (pl, ,u2)#(1, 2), there is no 
{ f ,  m; t, 2}-min * hyper. 

(4) In the case 1 3 3 ,  ( p l , p 2 , .  . . , ph)=(1,2, .  . . , h )  and t / 2 < h ~ t - 1  (i.e. 
p h - 1 +  ph > t - l ) ,  F is an { f ,  m;  t, 2}-min * hyper i f  and only if F E B(h + 
1, E ;  t, 2)  where B(h + 1 , O ;  t, 2)  = U(h + 1 , O ;  t, 2) and B(h + 1,  1 ;  I ,  2) = 

U(h + 1,  1; t, 2 )  U %R(h + 1 , O ;  1;  t ,  2). 
(5 )  In the case t k 4, ( p , ,  p2, . . . , p h )  = (1,  2, . . . , h )  and 2 s  h S t /2  (i.e. 

p&1+ p h  G t - l ) ,  F is an { f ,  m;  I ,  2}-min * hyper if and only if either 
F E &,(E, 1,2,  . . . , h ;  t, 2) or F E B(h + 1, E ;  t, 2) or F E n(1, 5;; 5, I ,  1 + 
1, . . . , h ;  t, 2) for some integer 1 in {2,3,  . . . , h }  and some nonnegative 
integers 5; and 5 such that t + 5 = E. 

(6)  In the case h 3 8, (pl, p2, . . . , pe-,) = (1 ,2 , .  . . , 8 - l ) ,  > 8 and 
p h - 1 +  p h  S t - 1 for some integer 8 3 3, F is an { f ,  m ; t, 2)-min - hyper i f  
and only i f  either F E I S L I ( & ,  pl, p2, . . . , p h ;  t ,  2) or F E W ( ~ ,  5;; 5, pr ,  
p1+,, .  . . , p h ;  t ,  2) for some integer 1 in (2,  3, . . . , 8} and some 
nonnegative integers 5; and lj such that 5; + lj = E.  

8 and 
p h - l +  p h  > t - 1 for some integer 8 3 3, there is no { f ,  m;  t, 2)-min . hyper. 

Remark 2.3. Theorem 2.3 shows that in the case q = 2, there is no { f ,  m ;  t ,  2)- 
min hyper except for { f ,  m ;  t, 2)-min hypers given by Theorems 2.1 and 2.2 
where f and m are integers given in Theorem 2.3. 

F E p1; t ,  2). 

(7) In the case h k  8, ( p l ,  p z , .  . . , Pe-1)=(1, 2, .  . . , 8 - 1 ) ,  

3. Characterization of certain min - hypers 

In what follows, we shall survey recent works with respect to a characterisation 
of a { Cf==, up,+ + E, I;==, up,; t, q}-min - hyper where t 3 2, q k 3 and 

Theorem 3.1 (Tamari [33]). Let E and p be any integers such that E E (0, I }  and 
1 G p < t. Then F is a + E,  up; t, q}-min - hyper if and only if F E 

Theorem 3.2 (Hamada and Deza [21]). Let E and p be any integers such that 
O s E d q - 1  and l ~ p < t .  

( 1 )  In the case 0 S E < 6, F is a + E ,  up;  t, q}-min * hyper if and only if 

(2) In the case E 2 6 and q =p2r for a prime p and a positive integer r, 
there exists at least one {v2 + E, v,;  t ,  q}-min ' hyper F such that F c$ 

( E ,  pl, p29 * * * 9 p h )  E u(t, 4) .  

P ;  t ,q) .  

F E W E ,  p ;  t , q ) .  

&I(&, 1; t ,  4) .  
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Remark 3.1. Let F be a square-root subplane (called a Baer subplane) in 
PG(2, q )  where q =pZr (cf. p. 81 in Hughes and Piper [28]). Then IF1 = 

q +fi+ 1, 1 s  IF n H I  S f i +  1 for any l-flat H in PG(2, q )  and IF n HI = 1 for 
some l-flat H in PG(2,q). Hence F is a {v2 + 6, 1; 2, q}-min - hyper which 
contains no l-flat in PG(2, q).  

Theorem 3.3 (Hamada [12]). Let (E, pl, p 2 , .  . . , p h )  be any ordered set in 
U(t,  q )  such that E E (0, l } ,  2 s h  <t and 1 6 p 1 <  p 2 < .  * ' < p h  < t .  

(1) In the case p h - I +  ph t - 1,  F is a {C;==, vP,+l + E, Ci=1 v,,,; t ,  4)- 
min - hyper if and only if F E ~ u ( E ,  pl,  p2, . . . , p h i  t, 4). 

(2) In the case p h - 1 +  p h  at, there is no {EL=, + E, C i Z 1  up,; t, 4)- 
min 9 hyper F. 

h 

h 

In what follows, 3 U ( ~ ,  pl, p 2 , .  . . , p h ; f ,  q )  will be denoted by 3 ( A l ,  A2, . . . , 
A , ; t , q ) w h e r e q = h + ~ ,  Ai=O ( i = 1 , 2  , . . . ,  E)andAE+j=pj ( j = l ,  2 , . . . ,  
h). 

Corollary 3.1. Let a and p be any integers such that 0 6 a < p < t. 
(1)  In the case t v, + u p ;  t, q}-min - hyper if 

(2)  In the case t 6 a +/I, there is no {v,+=, + v8+=,, v, + u p ;  t ,  q}-min * hyper F. 

a + /3 + 1, F is a + 
and only i f  F E 3(&, p;  1, q ) .  

Corollary 3.2. Let a, /3 and y be any integers such that 0 s a < p < y < t. 
(1) In the case t 

(2) In the case t 6 p + y, there is no 

/3 + y + 1, F is a {urn+=, + 

+ 

+ v , , + ~ ,  v, + up + v,,; t ,  4)- 

+ v , , + ~ ,  v, + up + v,,; t ,  q } -  
min * hyper if and only if F E 3(a, /3, y ;  t, q ) .  

min - hyper. 

The following proposition due to Hamada [16] plays an important role in 
solving Problems A and B. 

Proposition 3.1 (Hamada [16]). Let (0, A1, A2, . . . , A h )  be an ordered set in 
U(t,  q )  such that h 5 2 and Ah-1 + Ah s t - 1 and let 1 be a positive integer such that 

min . hyper F*,  then ( 1 )  in the case 1 s 1 C (t  - & - I -  F E 3 ( A l  + 1, A2 + 
1, . . . , jlh + I ;  t, q )  for any {C:, vA,+I+l, C;==, vA,+l; t, q}-min -hyper F and (2)  in 
the case 13 (t - A h - 1 -  A,)/2, there is no {C!==, vA,+/+1, Cj=, v ~ , + ~ ;  t, 4)- 
min . hyper F. 

A, + 1 6 t - 1. If F* E ~ ( A I ,  * * * 9 A h ;  t ,  4 )  for any {Cf=1 vA,+1, C!=1 VA,; t ,  4 ) -  

Corollary 3.3. If F* E 3 ( l ,  1; t ,  q )  for any {2v2, 2v1; t, q}-min * hyper F*,  then 
(1) in the case t Z 2 p  + 1 3 5 ,  F E 3 ( p ,  p ;  t, q )  for any { 2 ~ , , + ~ ,  2v,; t, 4)- 
min - hyper F and (2)  in the case 3 S p + 1 s t s 2p, there is no {2~,,+~, 2v, ; t ,  4)- 
min - hyper F. 
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Corollary 3.4. If F* E 3(1, 1, 1; t, q )  for any {3v2, 3v1; t, q}-min - hyper F*,  then 
(1) in the case t 3 2p + 1 3  5 ,  F E 3 ( p ,  p, p ;  t ,  q )  for any { 3 ~ , + ~ ,  3v,; t, 4)- 
min hyper F and (2) in the case 3 d p + 1 G t G 2p, there is no { 3 ~ , + ~ ,  3v,; t ,  4)- 
min - hyper F where q 3 4. 

Corollary 3.5. Let y be an integer such that 2 d y < t. If F* E 3(1, 1, y ;  t ,  q )  for 
any {v , ,+~ + 2v2, v y  + 2v1; t, q}-min hyper F*,  then (1) in the case 1 G 1 < (t - 

min -hyper F and (2) in the case 1 3 ( t  - 1 - y) /2 ,  there is no { v ~ + / + ~  + 
2 ~ / + ~ ,  vY+/ + 2vl+!; t,  q}-min - hyper F. 

1 - Y)/2, F E 30 + 1 9 1  + 1 , 1 +  Y; t, 4 )  for any {vy+l+l + 2v1+2, v y + /  + 2v1+1; t, 4 ) -  

Theroem 3.4 (Hamada [13]). 

F E 3(1, 1; t, 4) .  
(1) In the case t 3 3 ,  F is a {2v2, 2v1; t, q}-min *hyper if and only if 

(2) In the case t = 2, there is no {2v2, 2v1; t, q}-min - hyper F. 

Theorem 3.5 (Hamada [13]). 
(1) In the cuse t 3 2p + 1 3 3, F is a { 2 ~ , + ~ ,  2v,; t, q}-min - hyper i f  and only if 

(2) In the case t d 2p, there is no {2v,+,, 2v,; t, q}-min hyper F. 
F E 3(p, p ;  t ,  4) .  

Theorem 3.6 (Harnada [13]). 
(1) In the cuse t = 2 and q = 3, F is a {2v2 + v l ,  2vl + vo; 2,3}-min - hyper i f  

(2) In the case t 3 3 and q = 3, F is a {2v2 + vl, 2v1 + vo; t, 3}-min hyper if 

(3) In the case t = 2 and q 2 4, there is no {2v2 + vl, 2vl + v,; 2, q}-min - hyper 

(4) In the case t 3 3 and q 3 4, F is a {2v2 + vl, 2v1 + vo; t, q}-min - hyper if 

and only if F E U(2, 1; 2, 3). 

and only if either F E 3(0, 1, 1; t ,  3) or F E U(2, 1; t, 3). 

F. 

and only if F E 3(0, 1, 1; t, q) .  

Theorem 3.7 (Hamada [14]). 
(1) In the case t 3 2 and q = 3, F is a {v2 + 2v1, v, + 2v0; t, 3)-min - hyper if 

and only if either F E 3(0,0, 1; t, 3) or F = {(vI), ( y o  + vl),  (2v, + 
vl), (14, (v1+ Y Z ) ,  (cvo + 2vl + v2)} for some integer c in { 1, 2)  and some 
noncollinear points (yo), (vl)  and (v2) in PG(t, 3). 

(2) In the cuse t 3 2 and q = 4, F is a {v2 + 2vl ,  vl  + 2v0; t, 4}-min - hyper if 
and only if either F E ;5(0,0, 1; t, 4) or F = { ( y o  + vl),  (avo + vl), (a'v, + 
vl), (v2), (cvo + v1 + v2), (ca2vo + avl + v2), (cav, + d v ,  + v2)} for some 
element c in { 1, a, a'} and some noncohear points ( y o ) ,  (vl)  and (v2) in 
PG(t, 4) where a is a primitive element in GF(22). 

(3) In the cuse t 3 2 and q 3 5 ,  F is a {v2 + 2v,, v1 + 2v0; t,  q}-min - hyper if 
and only if F E 3(0,0, 1; t, q).  
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Theorem 3.8 (Hamada [14,15] and Hamada and Deza [20]). Let a, /3 and y be 
any integers such that either 0 s  a = f i  < y < t or O <  LY < f i  = y < t where t 3 2  and 

+ v , ,+~,  v, + vB + v,,; t, 4)- 

+ vy+l, v, + vp + v y ;  t, 4)- 

q 2 5 .  
( 1 )  In the case t a /3 + y + 1, F is a {v,+~ + 

(2) In the case t =s /3 + y ,  there is no {v,+~ + 
min - hyper if and only if F E 3(a, /3, y ;  t, q ) .  

min - hyper F. 

Theorem 3.9 (Hamada [14, 171). 
( 1 )  In the cuse q 3 5 ,  there is no {2v2 + 2vl ,  2v1 + 2v0; 2, q}-min - hyper. 
(2) In the case q = 3, F is a {2v2 + 2v1, 2v1 + 2v0; 2, 3}-min - hyper if and only 

if F E U(2,2; 2, 3) where vo = 0, v1 = 1 and v2 = 4. 
(3) In the cave q = 4, F is a {2v2 + 2v1, 2v1 + 2vo; 2,4}-min-hyper if and only if 

there exist some noncollinear points ( y o ) ,  ( v l )  and (v2)  in PG(2, 4) such that 
either (a), (b) or (c) as follows: 
(a) F = Lo U L l  U {(COVO + v1 + v2), (clvo + avl + v2), (CZVO + a2v1 + 15)) 

for some elements co, c, and c2 in (0, 1, a, a’}). 
(b) F = Lo U { ( ~ 2 ) ,  (VI  + v2), (cvo + vi + V Z ) ,  (CVO + avi  + v2), (cave + 

avl + v2), (cvo + a2v1 + v2), (ca2vo + a2vl + v2)} for some element c 
in { I ,  a, a2}. 

(c) F =  (Lo\ {(VI))) u (Ll\ { ( v z ) )  u (M2\ {(CVl + v2) ) )  u {(cavl + v2), 

(ca2vl + v2) }  for some element c in { I ,  a, a’}. 
Where vo = 0, v1 = 1, v2 = 5,  Lo = (YO)  @ (vl), L I  = ( Y O )  @ (v2),  M2 = 
( y o ) @  (cv1 + v2) and ( w l ) @  (to2) denotes a 1gat in PG(2,4) passing 
through two points ( w , )  and (w2)  in PG(2, 4)  and a is a primitive element in 
GF(22) such that a2 = a + 1 and d = 1. 

Theorem 3.10 (Hamada and Deza [18,19]). Let a and /3 be any integers such that 
O C  a</3<t where t 2 2  and q 3 5 .  

(1)  In the case t a 2 8  + 1, F is a { 2 ~ , + ~  + 2vp+,, 2v, + 2 9 ;  t, q}-min - hyper if 

(2) In the case t <2/3, there is no {2v,+, + 2va+l, 2v, + 2 9 ;  t,  q}-min * hyper 
and only if F E 3(a, a, /3, B; t, q).  

F. 

Remark 3.2. It is conjectured by Hamada (cf. Remark 4.1 in [16]) that in the 
caset’a3, q a 3 ,  E = O ,  h 3 2 a n d p l z - 2 ,  there is no {Cf==, v,,,+,, Cf=, vr,;t,  4)- 
min - hyper” or “F is a {Cf==, v ~ , + ~ ,  Cf=, vp,; t ,  q}-min - hyper if and only if 

L L  

F E 3(p1, /&, , p h ;  t ,  q)” according as Ph-1  + p h  3 t Or p h - 1  + p h  t - 1. 

Let W ( k ;  q )  be a k-dimensional vector space over GF(q) consisting of column 
vectors. Then every point in a finite projective geometry PG(k - 1, q )  may be 
represented by (c) using some nonzero vector -c in W ( k ; q )  where (E,) = ( c 2 )  
when and only when there exists some nonzero element (I of GF(q) such that 
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c2 = ucl. Hamada [16] showed that there is the following connection between a 
mine hyper and an anticode. 

Theorem 3.11. Let k and q be any integer b3 and any prime power, respectively, 
and let f and rn be some integers such that 0 G rn < f s v k .  Let gi ( I  = 1,2, . . . , f) 
be f nonzero vectors in W(k; q )  such that any two vectors in (gl, gz, . . . , gf) are 
linearly independent. Then {(gl), (_e2), . . . , (_ef)} is an {f, rn; k - 1, 4)- 
rnin hyper in PG(k - 1, q )  if and only if [ _ e l ,  g2 . . . g,] is a k X f generator matrix 
of a q-ary anticode with length f and*rnaxirnurn distance f - rn. 

Remark 3.3. It is well known (cf. Ch. 17 Section 6 in MacWilliams and Sloane 
[29]) that in the case k b 3  and d=qk-l-Ck&-)E,v,+l  (or d = q k - ' - ( E +  
C:==, q"')), there is a one-to-one correspence between the set of all (n,  k, d ;  4)- 
codes meeting the Griesmer bound (1.4) and the set of all q-ary anticodes, 
generated by a k x f matrix whose any two column vectors are linearly 
independent over GF(q), with length f and maximum distance f -rn if we 
introduce some equivalence relation between two codes where f = C",=', E,V,+~ 

and rn = C",=', E,V, (or f = E + C:==, and m = C:==, up,). Hence Theorem 3.11 
shows that in the case k b 3  and d = q k - ' -  C i Z ? j ~ , q ~  ( o r d = q k - ' - ( E +  
I:==, @ ' I ) ) ,  there is a one-to-one corresondence between the set of all (n,  k, d ;  4)- 
codes meeting the Griesmer bound (1.4) and the set of all 
{I::: ~ , v , + ~ ,  C",?j E,v,; k - 1, q}-min - hypers (or the set of all { E  + 

up,+=,, C:==, up,; k - 1, q}-min - hypers, resp.) if we introduce some equiv- 
alence relation between two (n ,  k, d ;  q)-codes. 

Finally, we shall give the following example in order to show a connection 
between a {C:==, + E, C:==, up,; k - 1, q}-min. hyper and an (n ,  k, d ;  q)-code 
meeting the Griesmer bound in the case d = qk-' - ( E  + C:==, qpi)  where 
( E ,  pl, p2, . . . , ph)  E U(k - 1, q )  and n = v k  - ( E  + Z:==, v" ,+~)  (cf. Theorem 5.2 
and Example 5.1 in Hamada [16] in detail). 

Example 3.1. Consider the case k = 3, d = 4 and q = 3. In this case, h = 1, E = 2, 
pI = 1 and v3 = (33 - 1)/(3 - 1) = 13. Let C; (i = 1, 2, . . . , 13) be 13 vectors given 
by 

C l  C 2  C3 C4 CS C6 C7 C X  C9 GI0  C l i  c12 GI3 

0 0 0 0 1 1 1 1 1 1  1 1  1 
0 1 1 1 0 0 0 1 1 1 2 2 2  
1 0 1 2 0 1 2 0 1 2 0  1 2 .  

Then any two vectors in (c,, -c2, . . . , cI3) are linearly independent over GF(3). 
Hence 13 points in PG(2,3) can be expressed by (c1), ( _ c 2 ) ,  . . . ( ~ ~ 3 ) .  Let 
F = {(GI) ,  (Cz), (Cg), (C4)r (CS), (C6))r G* = [Ci C2 . * * C6] and G = [C7 C X  * * * CI3I. 
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Let C* be a subspace in V(6; 3) generated by 3 row vectors of G* and let C be a 
subspace in V(7;3) generated by 3 row vectors of G where V(n;3) denotes an 
n-dimensional vector space consisting of row vectors over GF(3). Then it is easy 
to see that F is a (6 , l ;  2,3}-min - hyper such that F E 3(0, 0, 1; 2, 3) (i.e. F is a 
set of a l-flat {(c,), (&), (_cj), (c4)} and two 0-flats (eS) and (€6) in PG(2,3) which 
are mutually disjoint) and C* is a 3-ary anticode with length 6 and maximum 
distance 5 and C is a (7,3,4; 3)-code meeting the Griesmer bound. In this case, C 
is said to be a (7,3,4; 3)-code constructed by using l-flat {(E~), (c2), (_c3), (_c4)} 

and two 0-flats (c5) and (€6) in PG(2,3). 

4. A connection between a min . hyper and a linear programming derived from 
a BIB design 

It is well known that there are v , + ~  points and v , , ~  hyperplanes in PG(t, q) 
where v , + ~  = (q'+' - l)/(q - 1). After numbering v , + ~  hyperplanes and v , + ~  
points in PG(t, q )  respectively in some way, let us denote v , + ~  hyperplanes and 
vt+l points in PG(t, q) by (i = 1, 2, . . . , vr+l) and Qj ( j=  1, 2 , .  . . , v , + ~ ) ,  
respectively, and let N = (nij) where nij = 1 or 0 according to whether or not the 
jth point Qj in PG(t, q) is contained in the ith hyperplane l7, in PG(t, q). Then N 
is the incidence matrix of a BIB design (denoted by PG(t, q):t - 1) with 
parameters (u,+~, v,+~, v,, 2rr ,  Consider the following integral linear pro- 
gramming derived from the BIB design PG(t, q) : f - 1. 

Problem C. Find a vector (yl ,  y2 ,  . . . , y,,,,,) of integers y j  ( j  = 1, 2, . . . , v , + ~ )  
that minimize the summation C$+; yj  subject to the following inequalities: 

0 s y j a w  ( j = 1 , 2  , . . . ,  v,+,) 
U f + l  

C n,yj 2 m (i = I, 2, . . . , V,+J 
j =  I 

for given integers t ,  w ,  m and q where t 2 2 ,  w 3 1, m 3 0 and v , , ~  = (q'+' - 
1)/(4 - 1). 

It is 
satisfy 
then 

where 

known that if there exist nonnegative integes yj  ( j  = 1, 2, . . . , u , + ~ )  which 
conditions (4.1) and (4.2) for given integers t, w ,  q and m = EL-='l ~ , v , ,  

u.r, 1-1 

(4.3) 

0 s E, d q - 1 for (Y = 1,2,  . . . , t - 1. Hence we shall consider the 
following 

Problem D. (1) Find a necessary and sufficient condition for an integer w and an 
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ordered set ( F , , ,  . . . , in E ( t ,  q )  that there exists a vector 
( y , ,  y2,  . . . , y l , , , , )  o f  integers y, which satisfy the following conditions: 

O s y , ~  w ( j =  1, 2 , .  . . , u ~ + ~ ) ,  (4.4) 

I>,+ I I -  I 

, = I  11: I 
C ni ,y ja  c E,U, ( i  = I ,  2 , .  . . , u , , ~ ) .  

(4.5) 

(2) Find all vectors ( y , ,  y2 ,  . . . , yl, , , , )  which satisfy conditions (4.4), (4.5) and 
(4.6) in the case where there exists such a vector for given integers 

Definition 4.1. Let F be a set of points in PG(t, q )  and let w be a mapping of F 
into z +  where t 2 2 and Z +  denotes the set of all positive integers. Let @ be the 
set of all hyperplancs in PG(t, q ) .  If F and w satisfy the following condition: 

for given integers 13 1 and m > O ,  then ( F ,  w )  is said to be an { f ,  m ; f ,  q } -  
min - hyper. In the special case w(P) = 1 for any point P in F', a min . hyper 
( F ,  w) is denoted simply by F. 

Remark 4.1. In  the special case w(P) = 1 for any point P in F, condition (4.7) 
can be expressed as follows: 

IF1 = f  and min{(F n HI I H E .@} = m. (4.8) 

Hence a rnin. hyper F in Sections 1-3 is a min . hyper (F, w )  such that w ( P )  = 1 
for any point P in I .  

Theorem 4.1 (Haniada [12]). Let %)Y(t, w ,  6, q )  he the set of all vecfors 
( y l ,  y2 ,  . . . , y ,,,,,) of' integers y, which satisfy conditions (4.4), (4.5) and (4.6) and 
let %p(t, w ,  6, 4 )  hc, the set of all {Er& F , , . U ~ + , ,  EL-=', E,u,; t ,  q} -min  . hypers 
( F ,  w )  such that 1 C w ( P )  d (0 for  any point P in F where t 2 2, (0 3 1 ,  
0 s  E, s q  - 1 (a= 0, 1 ,  . . . , t - 1)  and 6 = ( E ( ~ ,  Then there is a 
one-to-one corre.yxmience b e t w e n  the set %"( t ,  o, 6, q )  and the set %jp( t ,  w ,  s, q )  
in the case 6 # 0. 

. . . , 
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BIBD'S WITH BLOCK-SIZE SEVEN 

H. HANANI 
Technion, Israel Institute of Technology, Haifu, Israel 

I t  is proved that the obvious necessary conditions for the existence of a BIBD with k = 7 and 
A = 3 and 21 are sufficient except, perhaps, for the values A = 3 and u = 323, 351, 407, 519, 525, 
575, 665. 

This paper is an addition to Section 5.5 of the paper [O]. All the theorems and 
lemmas referred to as well as all the relevant definitions may be found in [O]. The 
lemmas and tables in the sequel of this paper will be numbered from 101 up, We 
start with a list of group divisible designs v E GD(7, 1,7). 

Table 101 

GD[7, i , 7 ;  v ]  

Form 7"7, 1; 71 on X .  

X = Z(7, 3)  X Z(13, 2).  
P = ((0; 0), (2a; 4 a  + 6p + 3 y )  : a = 0, 1,  2; p = 0, l)mod(7; 13),  y = 0, 1. 

X = Z(7, 3 )  X Z(31,  3). 
P = ( ( 0 ;  0), (2a; lOa + 15p + 3 y )  : a = 0, 1, 2; p = 0, l)mod(7,31), 

49 x = /(7) x 1(7). 

91 

217 

y = 0 ,  1, 2, 3,  4. 

X = Z(7, 3 )  X Z(43, 3).  
f = ( ( 0 ;  0), (2a;  7 a  + 218 + 3 y )  : a = 0, 1 ,2 ;  6 = 0, I)mod(7; 43), 
y = o ,  1 ) . . .  , h .  

x = 1(7) x l(40). 

301 

343 
Form B[7, 1;49] on 1(49) by Theorem 2.2 and for every block B of this 
design form T[7, 1; 71 on 1(7) x B. 

X = Z(7, 3 )  x Z(61, 2). 
P = ((0; 0), (2a; 28a + 308 + 3 y ) :  a = 0, 1, 2;  p = 0, l)mod(7; 61), 

427 

y = o ,  1 , .  . . , < I .  

469 X = Z(7, 3 )  x Z(67, 2). 
P = ((0; 0), (2a; 26a + 33p + 3 y ) :  a = 0, 1, 2; p = 0, l)mod(7; 67), 
y = 0 ,  1 , .  . .  , 10. 

(3012-365X/89/$3.50 0 1989, Elsevier Scicnce Publishers B V. (North-Holland) 
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511 X = Z(7, 3) x Z(73, 5 ) .  
P = ( (0 ;  e), ( 2 a ;  25a  + 36p + 37): a = 0, 1, 2; p = 0, I)mod(7; 73), 
y = 0 ,  1, I . .  , 11. 

x = Z(7, 3) x Z(79, 3). 

y = o ,  1 , .  . .  , 12. 

553 
P = ( ( 0 ;  0), ( 2 a ;  13a + 3y): LY = 0, 1, 2,  3, 4, 5)mod(7, 79), 

X = f(7) x f(91). 
As above 91 ~ G D ( 7 , 1 , 7 ) .  By Lemma 2.10 form B[7, 1;91] on /(91) and 
for every block B of this design form 7"7, 1; 71 on f(7) X B. 

X = Z(7, 3) x Z(97, 5).  
P = ((0; 0), (2a; 16a + 3y): a = 0, 1, 2,  3, 4, 5)mod(7, 97), 
y = O ,  1 , .  . . , 15. 

637 

679 

By Lemma 2.10 for every IJ in Table 101 IJ E B(7, 1) c B(7, 3) holds. Further we 
have 

Table 102 

II B[7, l ; v ]  

169 X = Z( 13, 2 )  x Z (  13, 2).  
B = ( 0 ,  0), (0, 4 a  + 3), (4a, 0): a = 0, 1, 2)mod(13, 13), 
(0, 0), ( 4 a +  1, 4 a + 4 p ) ,  ( 4 a + 7 ,  4 a + 4 p +  l ) : a = 0 ,  1, 2)mod(13, 13), 

X = f(6) x /(64) U {a}. 

Form, by Theorem 2.2, B(8,  l;64] on f(64) and for every block B of this 
design form 8[7, 1; 491 on f ( 6 )  x B U {a} in such way that it includes as 
blocks the sets f ( 6 )  X {i} U {a}, i E B; 
delete these blocks, but leave each of them once. 

p = o ,  1,2.  

385 

We shall now prove an auxiliary lemma which will be used later. 

Lemma 101. 32 E GD(7,3,4). 

X = GF(4, X *  = x + 1) x (Z(7, 3) U { m ) ) .  

P = ((0; 0), (0; a) : a = 0 ,  1, . . . , 5 ) ,  

( (0;  @)(a; 2 a  - [j) : (Y = 0, 1 ,  2; p = 0, l)mod( -, 7), 
( ( 0 ; a ) , ( 0 ; 2 a ) ( a ; 2 ( ~ -  1):a=O, I ,  2;)mod(-,7), 
((0; a), (a;  2 a  + 3 8 ) :  a = 0, 1, 2; p = 0, l , )mod(-,  7), 
( ( y ,  m), (0;2[j + 2 y +  I ) ,  ( y ; 2 y -  I ) ,  ( y  + 2 ; 2 a ) :  N =  0,  I ,  2 ;p  = 0, I)mod( -, 7 ) ,  

( ( y ; O 0 ) ,  (0;0), ( y ; 2 8 + 2 y + 3 ) ,  ( y + 1 ; 2 a ) : a = o ,  1 , 2 : p = 0 ,  l)mod(-,7),  
y = 0, 1, 2, 

y = o ,  I ,  2. 
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Lemma 102. If u = 0 or 3 (mod 7), and u r$ { 161, 175,203,259, 262, 287, 332) = 

E then u E GD( { 7, X}, 1, M,) holds, where 

M7= (3, 7, 10, 14, 17, 21, 24, 28, 31, 35, 38, 42, 45, 59, 63, 66, 70, 73, 77, 

80, 84, 87, 91, 94, 98, 101, 10.5, 108, 112, 115, 140, 143, 147, 150, 

154, 157, 164, 168, 171, 178, 182, 185, 189, 192, 196, 199, 206, 

210, 213, 252, 255, 266, 269, 273, 276, 280, 283, 290, 294, 297, 301, 

304, 308, 311, 315, 318, 322, 325, 329, 336, 339, 507). 

Proof. According to Lemma 2.13 with t = 1, s = 7, r = 0 o r  3 (mod 7) it may be 
checked that if u 2 539, then there exists (use Theorem 3.7 and  Remark) a 
transversal design T[7+ 1, l ; r ]  such that by truncating one  of its groups 
7r  + rl = u is obtained. Clearly r ,  = 0 o r  3 (mod 7) and there is n o  difficulty in 
avoiding the situations where either r E E o r  rl E E. For u < 539 use the truncated 
transversal design T[7 + 1, 1; rl with values of r as in Table 103. 0 

Table 103 

U r U r 
49-56 7 395-448 56 

119-136 17 451-504 63 
217-248 31 511-539 73 
343-392 49 

Theorem 103. If I I  - 1 or 7 (mod 14), und v 6 (323, 351, 407, 519, 525, 575, 
665) = 2E + 1 ,  theri v E B(7, 3) holds. 

Proof. Let tr = 21( + 1,  where u -0  o r  3 (mod 7). By Lemma 101, u E 

GD( { 7, 8}1, M7). f3y Lemmas 2.26 and  4.29 it suffices to show that u = 2p + 1 E 

R(7, 3) for every p E M7. The  case v = 7 is trivial. 
(49, 91, 169, 217, 301, 343, 385, 427, 511, 553, 631, 637, 679) c B(7, 1 )  as 

shown in Tables 101 and  102, {29, 43, 71, 127, 197, 211, 281, 337, 379, 421, 547, 
617, 659, 673) c B(7, 3) by Lemma 4.3. (63, 77, 119, 133, 161, 175, 189, 203, 
287, 329, 371, 413, 567, 581, 623}cB(7 ,  3) by Lemmas 4.26 and 2.10. 
{IS ,  21,57, 141, 147, 183) c B(7, 3) is shown in Table 5.21. It remains to prove 
that {35, 85,  155, 225, 231, 295, 309, 315, 323, 351, 357. 365, 393, 399, 407, 505 ,  
519, 525, 533, 539, 561, 575, 589, 595, 603, 609, 645, 651, 665, 1015}cB(7,  3) 
which is shown in ' rable 104 with the  possible exception of (323, 351, 407, 519, 
525, 575, 665) for which we d o  not know whether B[7, 3; v ]  exists. 

We go over now to the case A. = 21 
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Table 104 

H[7, 3 ;  u )  

x = Z(5, 2) x Z(7,  3).  
Form T[7, 2 ;  51 on Z(S) x Z(7) and the blocks 
((0, 2a), ( / 3 ,  0) : N = 0 ,  I ,  2; 13 = 0, 1 ,  2, 3)mod(5 ,7) .  

X = Z(5, 2) x Z (  17, 3 ) .  
B = ( ( 8 , 8 ) ,  ( y , 8 a + 4 y + I ) ,  ( y + l , 8 a + 4 ~ + 3 ) ,  ( y + 3 , 8 a + 4 ~ + 7 ) :  
a = 0, l )mod(S,  17), y = 0,  I ,  
((0;0), ( y , X a + 4 y + 7 ) ,  ( y +  1 , 8 a + 4 ~ + 2 ) ,  ( y + 3 ,  8 a + 4 y + 4 ) :  
a=O, l )mod(5 ,  171, y=O,  I ,  

a = 0 ,  I)mod(S, 17), y = 0,  I .  

X = Z ( S ,  2) x Z(31, 3 )  
B = ((0, O), (26, 1Oa + 3y), (26 + 2, 10a + 3y + 4) : N = 0, 1,2)mod(S, 3 I ), 
y = 0 ,  1 ;  h = O ,  1,  
((0, l0a + I ) ,  (13, 0): a = 0 ,  1 ,  2; /3 = 0 ,  I ,  2 ,  3)mod(S, 31), 

mod(5, 31), y = 0 ,  1 ,  2, 

mod(5,31), y = 0, I ,  2. 

((0,0j, (2a  + y, 4y + I ) ,  ( 2a  + Y, 4y + 21, (2a + Y, 4~ + 5 ) :  

((0, g), (0, 1 5 ~  + Sy), (1 ,  l 5 a  + 5y + I ) ,  ( 3 ,  IS& + 5y - 1 ) :  = O ,  I )  

((0,0), (0 ,  1 5 a + S y + 2 ) ,  ( I ,  I S a + 5 y - 2 ) ,  ( 3 ,  1 5 n + S y ) : a = 0 ,  I )  

X = f(4) x f(S6) u {m} 

Form GD(8, 1 ,7;  561 o n  f(56) by Lemma 2.12 and Theorem 2.1. 
For every group G of this design form B[7, 3;  291 on f(4) X G U {m} ,  and 
for every block R form GD[7,3 ,4 ;  321 on I(4) X U by Lemma 101. 

We prove 231 E GD(7,3,21). X = (Z(3)  x Z(7, 3)) x Z(l1, 2). 
I' = ((Id, 0; 2/3) ,  (0, 0; 2/3 + 3 ) ,  (0. 2a + 4; 2 8  + 4), (0, 2a + 5 ;  2p  + 6 ) ,  
(1, 0; 2 8  + 2), 
a=0,  1 ,  2; p = o ,  1 ,  2, 3 .4 .  
Further form B[7,  3 ;  211 on ( Z ( 3 )  X Z(7)) X { i } ,  i E Z(l  I ) .  

X = f(42) x f(7) U {m} 

Form 717, 3; 42) on f(42) X f(7) and  R[7, 3;  431 on  f(42) x { i }  U {m} ,  

i E f(7). 

X = f(7) x (f(6) x Z(7, 3 )  U { ( i ,  m): i = 0, 1)) U { ( m ,  m)} 

Form GD[7,3, { 6 , 2 * } ;  441 on f(6) x Z(7) U { ( I ,  m) : i  = 0 ,  I}  as follows 
form T[7, 2; 01 o n  f(6) x Z(7) and the blocks ((13, (u): N E Z(7)}, 13 E f (6)  
and { ( y , m ) , ( a ,  a ( ~ 3 + 3 y + I ) : a € f ( 6 ) } m o d ( - , 7 ) ,  B = O ,  1 , 2 ;  y = o ,  1 .  
Now for every group G of this design form B[7, 3;43] and  U[7, 3 ;  151 
respectively on  f(7) X G U { (m, m)} and for every block R form T [ 7 ,  1 ;  7) 
on f(7) x B. 

(0 ,  2 a ;  213 + I ) ,  ( I ,  2a + 2 ;  213 + 5 )  > niod(3, 7; 1 I ) ,  

I'hc asterisk I I I C ~ I I S  Ihat there IS exactly oiic group o f  sizc 2, ;ill other groups hcing of size 0 * (  



RIBD’s with block-size seven 93 

31.5 

357 

365 

393 

399 

505 

533 

539 

56 1 

589 

59s 

x = f ( 7 )  x Z ( 3 )  x Z ( 3 )  x Z ( 5 ) )  
Form GI>[7,3 ,3;  451 on ( Z ( 3 )  X Z ( 3 )  X Z ( 5 ) )  with blocks 
((0;0,0), (O;a,O), ( I ;&,  a + 2 P ) : m = O ,  I ;  P = O ,  1 ) m o d ( 3 ; 3 , ~ )  
((0;0,0), ( 0 ; y , 0 ) ,  ( 0 ; l - y , 0 ) ,  ( I ; &  a + 2 p ) : a = 0 0 ,  1; p = o ,  1) 
mod(3; 3,  S ) ,  y = 0, I ;  For every group G of this design form B [ 7 ,  3; 211 on 
f ( 7 )  x G, and for every block B form G D [ 7 , 1 , 7 ;  491 on f ( 7 )  x B. 

X = Z ( 2 )  x (jF(25, x 2  = 2r + 2 )  x Z ( 7 ,  3 )  U {(m, i) : i  E Z ( 7 ) ) .  

((my 0), (0, 8a + 2, 0 )  : a = 0, 1, 2)mod( -, 25,7) ,  
( (w,  P ) ,  (0, Xa+p, O), (0 ,  8a-p+ 1, ld):a=O, 1 ,  2 ) m o d ( - , 2 5 , 7 ) , P = 0 ,  1, 
( ( x ,  P + 2 ) ,  (0, 8 a + P + 2 ,  O), (0, 8 a - P + 3 ,  O):a=O, 1, 2 ) m o d ( - ,  2 S , 7 ) ,  
p = 0 ,  1, 
((0, 0, 0), (0, 8a, 0), (0, Xa + 1, 0) : a = 0,  1, 2)mod(2 ,25 ,7) ,  
( ( m , 0 ) ,  (m, cu):a=O, I ,  . . , 5 ) 3  times. 
x = f(4) x I ( Y 1 )  u {w} .  

Form G D [ 7 ,  1, 7 ; 9 1 ]  on f(91) as in Table 101. For every group G of this 
design form B[7,  3; 291 on f ( 4 )  x G U {m}, and for every block B form 
T [ 7 ,  3;  41 on f ( 4 )  x B. 

X = f (S6)  X f ( 7 )  U {a}. 
Form T [ 7 ,  3,561 on 1(%) x f ( 7 )  and B [ 7 ,  3 ;  571 on f ( 5 6 )  x {i} U { m } ,  

i E f ( 7 ) .  

Form T [ 7 ,  3; 571 on f ( 5 7 )  X f ( 7 )  and B [ 7 ,  3;  571 on f ( 5 7 )  x (i}, i E f ( 7 ) .  

Form T [ 9 ,  1; 81 on f ( 8 )  x f(9). for every group G of this design. 
Form B [ 7 ,  3; 571 on f ( 7 )  x G U {m}, and for every block B form 
G D [ 7 , 3 , 7 ;  631 on f ( 7 )  x 13 by Lemma 4.26. 

X = f ( 7 6 )  x f ( 7 )  U {a}. 

Form T ( 7 ,  3,  761 on f ( 7 6 )  x f ( 7 )  and B[7,  3;  771 on f ( 7 6 )  x { i }  U (m},  

i E f ( 7 ) .  

Form T [ 7 ,  3, 771 on f ( 7 7 )  x f ( 7 )  and B [ 7 ,  3 ;  771 on f ( 7 7 )  x {i}, i E f ( 7 ) .  

Form GD[9, 1 ,  8; 801 on f(X0) by Lemma 2.12 and Theorem 2.2. 
For every group G of this design form B [ 7 ,  3; 571 on f ( 7 )  X G U ( m } ,  and 
for every block B form G1>[7, 3 , 7 ;  631 on f ( 7 )  x B by Lemma 4.26. 

Form T [ 7 ,  3, 841 on f(84) x f ( 7 )  and B[7,  3; 851 on f (X4)  x { i }  U { x } .  

I E f ( 7 ) .  

Form T [ 7 ,  3, 851 on f ( 8 5 )  X f ( 7 )  and B [ 7 ,  3 ;  851 on f(85) x ( i } ,  I E f ( 7 ) .  

B = Blocks of T [ 7 ,  3;  501 on ( Z ( 2 )  x GF(25))  x Z ( 7 ) ,  
(0, 8a + 2, O), 

x = f (S7 )  x f ( 7 ) .  

x = f ( 7 )  x ( f ( 8 )  x f(9)) u {a}. 

x= f ( 7 7 )  x 1(7) ,  

x = f ( 7 )  x f(X0) u {=}. 

x= f(84) x f ( 7 )  u { m } .  

x = f(8S) x f ( 7 ) .  
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603 

609 

645 

65 1 

x = f(84) x /(7) u f(15). 
The  construction of B[7, 3 ;  991 shows that it contains H[7, 3 ;  IS]. 
Form B[7, 3 ;  991 on I(84) x ( 1 )  U I( IS), i E /(7) in such way that it contains 
5[7,  3, IS] on f(15) and take this B[7, 3 ;  151 once only. Further form 
T[7, 3 ,  841 on I(84) x f(7). 
X = /(29) x f(21). 
Form T[21, 1; 291. O n  every group C o f  this design form 517, 3 ;  291, and on 
every block H form U[7, 3 ;  211. 

The  construction o f  B[7, 3 ;  1051 shows that it contains B17, 3; IS]. 
Form H[7, 3 ;  1051 on f(90) X { i }  U /(IS), i E /(7) in such way that i t  contains 
B[7, 3 ,  IS] on /(IS) and take this B[7, 3; 151 once o n l y .  Further form 
T[7, 3; 901 on I(90) x /(7). 
We prove 651 E GD(7,3,21) .  X = ( Z ( 3 )  x Z(7, 3)) x Z(31, 3 ) .  /' = 

(8, 2 n  + 5 ;  2g + 61, 
( I ,  0; 2p + 21, ( I ,  2 a  + 2; 2[j + 5))mod(3,7;  31), 
a=O, 1 ,2 ; /3=0 ,  I , .  . . , 1 4 ; F u r t h e r f o r m R [ 7 , 3 ; 2 1 ~ o n ( % ( 3 ) ~ 2 ( 7 ) ) ~  { i } ,  
i E Z(31). 

x = I(90) x /(7) u I( 15). 

((0, B; 2p), (8,8; 2 8  + 3 ) ,  (8, 2 a  + 4; 2p  + 4), 
(0 ,  2N; 2 8  + l ) ,  

101s x = f(29) x f(35). 
Form 5[7 ,  3 ,  351 o n  1 ( 3 5 )  and for cvcry block H o f  this design form 
T[7, I ;  291 o n  /(29) x H .  Further form B[7, 3; 291 o n  /(29) x { i } ,  i E / ( 3 5 ) .  

Lemma 104. I f  u 2 3.  then u E GI)( {7, X } ,  1 ,  M;) holds, wherr M; = 

107, 108, 109, 110,  I I  I ,  113, 114, 153, 154, 155, 156, 157, ISX, 159, 160, 162, 
163, 257, 258, 260, 261}. 

Proof. According to Lemma 3.13 with f = I ,  .s = 7,  r 3 7 ,  r ,  2 3, it may be 
checked that if  u 3 542, then there exists (use 'I'hcorcm 3.7 and Remark) ii 

transversal design T[7 + I ,  I ;  r ]  such that by trunciiting one  o f  its groups 
7r + r ,  = u is obtained. for 14 < 542 use 7'17 + I ,  I ;  rl with v;ilucs o f  r as i n  Tahlc 
105. 0 

( 3 ,  4, . . , , 48, S O ,  51, 57, 58, 65, 73, 74, 75, 76, 7x. 79, x9, YO, 92, 97, 105, 106, 

Table 105 

U r u  r U r 
49 7 115-12x I6 259 37 
52-56 7 129-136 17 262-296 37 
59-64 8 137-152 I9 297-32X 41 
66-72 9 161 23 320-344 43 
77 I 1  1(>4-184 23 345-376 46 
xo-X8 I 1  185-200 25 377-424 53 
0 I 13 201-216 27 425-472 59 
94-104 13 217-232 29 473-530 67 
112 I0 233-256 32 537-542 73 
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Lemma 105. tf v = 3q, where 9 = 1 (mod 6) is a prime-power, then v E B(7, 21). 

Proof. Consider Lemma 4.2. By this lemma q E B(7, 7). Form B[7, 21; v ]  as 
follows. Let X = Z(3) x I(9) .  On Z(q) form B[7, 7; q ]  as in Lemma 4.2. For 
blocks B obtained for a = 0 form B[7, 3; 211 on 1(3) X B. For other blocks B' 
form T[7, 3; 31 on 1(3) x B'. 0 

Lemma 106. 1f v = 5q,  where q = 1 (mod 6) is a prime-power, then v E B(7, 21). 

Proof. As in Lemma 105, q E B(7, 7). Form B[7, 21; v] as follows. Let X = 

Z(5) x Z(q). On I ( 4 )  form B[7, 7; q] .  For blocks B obtained for a = 0 form 
B[7, 3; 351 on Z(5) x B. For other blocks B' form T[7, 3; 51 on Z(5) x B'. 

Theorem 107. If v = 1 (mod 2), v * 7, then u E B(7, 21) holds. 

Proof. Let v = 2u + 1, where (4 2 3. By Lemma 104, u E GD((7, 8}, 1, M;). By 
Lemmas 2.26 and 4.29 it suffices to show that v = 2p + 1 E B(7, 21) for every 
p E M;.  (7, 13, 19, 25, 31, 37, 43, 49, 55,  61, 67, 73, 79, 85, 91, 97, 103, 115, 
151, 157, 181, 187, 211, 217, 223, 229, 307, 313, 319, 325, 517, 523) c B ( 7 ,  7) by 
Lemma 5.38; { 15, 21, 29, 35, 57, 63, 71, 77, 147, 309, 315) c B(7, 3) by Lemma 
103; (9, 11, 17, 23, 27, 41, 47, 53, 59, 81, 83, 89, 101, 131, 149, 179, 227, 311, 
317, 521, 523) c H(7,  21) by Lemma 4.2; for (33,39,45} c B(7, 21) see Table 
5.22, (65, 75, 93, 05, 185, 215, 219, 327, 515} c B(7, 21) by Lemmas 105 and 106. 
It remains to prove that (51, 69, 87, 117, 153, 159, 213, 221, 321) c B(7, 21), 
which is shown in Table 106. 

0 

0 

V 

51 

69 

Table 106 
B[79 21, vl  

X = Z(3) x Z( 17, 3). 
B = ((0, O), (0, 8 a +  y + 4 ) ,  (0, 8 a + p  + y ) : a = O ,  1; 0 =0,  l)mod(3, 17), 
y = O ,  l , . .  . , 15, 
((0, 0), (0, IY + 4y), (0, (Y + 4y + lo), (a, 0): a = 0, l)mod(3,17), y = 0, 1, 
((0, O), (0, 3a + 4y - l ) ,  (0, a + 4y + 8), (a, 0): a = 0, l)mod(3,17), y = 

0, 1,  
((0,0), (cu ,4a+y) ,  ( P , 0 ) : a = O o , l , 2 , 3 ; P = 0 ,  l)mod(3,17), y=O, 1 , 2  
((0, 0), (0, 4 a  + 3 ) ,  (0, 8/J + 4y): a = 0, 1, 2, 3; 0 = 0, l)mod(3,17), y = 0, 1. 
X = GF(9, .I' = 2x + 1) >( Z(7, 3) U 1(4) U Z(2). 
Form B[7, 3 ;  631 on GF(9) x Z(7) and T[7,  1; 91 on GF(9) X Z(7) 8 times. 
Further form B[7, 3; 151 on GF(9) x ( i }  U 1(4) U 1(2), i E Z(7) and blocks 
( ( j ) ,  ( a + 4 / J + j , 0 ) : a = O ,  1, 2 ;P=O,  l ) m o d ( 9 , 7 ) , j ~ 1 ( 4 ) .  
Now form RT[7, 1; 91 on GF(9) x 2(7), twice and obtain 18, parallel classes 
of blocks. €:or every j E Z(4) chose two such parallel classes and for every 
j E 1(2)-three classes. For every j E 1(4) U Z(2) and for every block B = 

(0, 1, 2, 3 ,  4, 5 ,  6) of the chosen classes form blocks ( j }  U (0, 1, 2, 3 ,  4, 5 }  
mod 7, and the blocks of the remaining 4 classes take 5 times each. 
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87 

117 

1.53 

1.59 

21 3 

22 1 

32 I 

X = f ( 3 )  x f(29). 
Form R[7, 3;29] on f(29) as in Lemma 4.3. For blocks B obtained with 
(y = 0 form B[7, 3 ;  211 and 7"7, 4; 31 on f(3) x R. For other blocks B' form 
T[7, 7; 31 on f(3) x f3'. 

X=1(13)xI (9) .  
Form T(9, 1; 131 on 1(13) x 1(9). On every block 8 of this design form 
B[7, 21; 91 and on every group G form R[7, 21; 131. 

X = I (  17) x 1(9). 
Form T[9,  1; 171 on f(17) X I(9). On every block B of this design form 
B[7, 21; 91 and on every group G form H[7, 21; 171. 

Form RT[6, 1; 2-51 on f(2.5) X 1(6),  7 times and obtain 17.5 parallel classes of 
blocks of size 6. For every i E f(8) chose 21 such parallel classes and for 
{m}, chose the remaining 7 classes. Now for every block R of the respective 
chosen classes form B U { i } ,  i E 1(8) and B U {a} respectively. Further form 
8 [7 ,7 ;  1511 on f(25) x f(6) U {m} twice by Lemma 5.38 and B[7, 7; 251 on 
f(2.5) x { j ) ,  j E /(6), by Lemma 5.38. Also form B[7, 21; 91 on /(8) U {m}. 

X = f(3) x f(71). 
Form B[7, 3 ;  711 on f(71) as in Lemma 4.3. For blocks B obtained with 
LY = 0. Form 817, 3 ;  211 and T[7, 4; 31 on 1(3)  x B. For other blocks R' 
form T[7, 7; 31 on f(3) x R' .  

X = I (  17) x I (  13). 
Form T[13, 1; 17) on f(17) x f(13). On every block B of this design form 
B[7, 21; 131 and o n  every group G form B17, 21; 171. 

X = Z(43, 3 )  X Z(7, 3) U f(19) U {m}. 

Form B[7, 3 ;  3011 on Z(43) X Z(7) and T[7, 1; 431, 13 times on Z(43) x 
Z(7). Further form B[7, 3;  631 on Z(43) x { i }  U 1(19) U {a}, i E Z(7) and 
blocks ( ( j ) ,  ( ( ~ + 2 1 / 3 + j , 8 ) : a = 0 ,  1 ,2 ;  p = O ,  l)mod(43,7), j E f ( 1 9 )  and 
((m), (n+21[3+ j ,O) : a=o ,  1 ,2;  p = O ,  l)mod(43,7), jE{19,20}. Now 
form RT[7, 1; 431 on Z(43) x Z(7) and obtain 43 parallel classes of blocks. 
For every j E I (  19) chose two such parallel classes and for M one class. For 
every j E f(19) U {a} and every block R = (0, I ,  2, 3 ,  4, 5 ,  6) of the chosen 
classes form blocks { j }  U (0, 1, 2, 3, 4, 5 )  mod 7, and the blocks of the 
remaining 4 classes take .5 times each. 

X = f(2.5) x f(6) u f ( 8 )  u {m}. 

Reference 

[O] H .  Hanani, Balanced incompletc block designs and rclated designs, Discr. Math. 1 I (1975) 
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1. Introduction 

Several years ago B. Alspach asked the following question. If n is odd and 
a ,  + a, + . . . + an, := n(n  - 1)/2 (if n is even and u,u2 + . . . + a,,, = n(n - 2)/2), 
3 s u j  s n ,  can the edges of the complete graph K,, (the edges of K,, - F ,  the 
complete graph from which a 1-factor has been removed) be partitioned into m 
cycles C, , ,  C , ? ,  . . . , Ccl,,, where Cu, has length a; [ l ]?  

When all cycles are required to have the same length, we have the well known 
uniform cycle decomposition problem on which considerable work has been 
done, although the problem is still far from solved. For details on this problem, 
the reader is referred to the forthcoming survey paper by Alspach, Bermond, 
Heinrich, Rosa anti Sotteau [2]. 

The third author has shown that when n S 10, all possible edge-partitions into 
cycles exist [8]. Sun [ I l l  has shown that if m and n are odd, then there exist 
positive integers u ,  b and c so that K,,,, = uC, + bC,,, + cC,,. In this paper we 
consider the following three situations: 

(i) u, E {n  -2 ,  n - 1, n } ,  
(ii) a, E (3,  4, 6 } ,  

(iii) u, E {2k, 2 k i 1 } ,  

1 < i s m ,  
1 < i s m  and 

k 2 2 .  
We will show in each case that if a ,  + a ,  + - . . + a,,, = n(n  - 1)/2 or n(n  - 2)/2, 
then an edge partition of the relevant graph ( K ,  or K ,  - F )  exists. 

We first need some notation. Let G be a graph of even degree with IV(C)l = n. 
Let S = { b , ,  b2,  . . . , b i } ,  3 d bj C n,  and suppose that m , b ,  + m2b2 + . * . + 
mrbi = JE(G)I. If the edge-set of G can be partitioned into rn,  cycles of length b , ,  
m2 cycles of length b,, . . . , and mi cycles of length b,, we will write 
G = m l C h ,  + m2Ch2 + . . . + m,Ch,. If mi = 1 ,  mjCh, will be written as Ch,. (We 
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may also refer to this edge partition of G as a decomposition of G into m ,  cycles 
of length b , ,  m2 of length b2, . . . , and m, cycles of length b,.) More generally we 
will write G = m , H ,  + m2H2 + .  . . + m,H, if G has an edge decomposition into 
m ,  subgraphs H I ,  m2 subgraphs H 2 ,  . . . , m, subgraphs H,.  Our first theorem 
resolves the case when all cycles are long. 

Theorem 1.1. Lel S = { n - 2 , n - l , n } .  l f n  is odd und u ( n - 2 ) + b ( n - l ) +  
cn = n(n  - 1)/2, then K ,  = uCI,-, + bC,,_, + cC,,. If n is even und u(n  - 2) + 
b(n - I )  + cn = n(n  - 2)/2, then K ,  - F = U C , , - ~  + bC,-, + cC,,. 

Proof. Let n be odd. It  is not difficult to verify that the only  solutions to 
u(n - 2) + b(n - I )  + cn = n(n  - 1)/2 are u = b = 0, c = (n  - 1)/2, and u = ( n  - 
1)/2, b = I ,  c = 0. Since K,, has a hamilton cycle decomposition we know that 
K ,  = ( ( n  - 1)/2)C11. Using the cycles in Fig. 1 we can see that K , ,  = 6Ci i  + CI2. 
The cycles of length 11 are A ,  and A , + , ,  1 d i d 5 ,  where if ( x ,  y )  E E(A,) ,  
( x  + i, y + i )  E E ( A I  + i )  with addition modulo 12 and m + i = 00, and B is the 
cycle of length 12. This construction is easily generalized to obtain K,, = ( ( n  - 

For even n the only solutions to a(n  - 2) + b(n - 1) + cn = n(n  - 2)/2 are 
u = b = 0, c = ( n  - 2)/2, and u = n/2 ,  b = c = 0. B.  Alspach has provided us with 
simple decompositions in these two cases. Let DI be the cycle shown in Fig. 2 and 
D,+,, 1 cis5 be cycles of length 12 defined by ( x  + i , y  + i ) e E ( D , , , )  if 

1)/2)Cn-2 + C,,-l. 

0 
11 0 

0, 

0 
11 - 0  
,/ 0 

Fig. 3 
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( x ,  y )  E E ( D , )  where addition is modulo 12 and m1 + i = m2 + i = i. These cycles 
yield K14 - F = 6Cl4. Clearly this generalizes to produce K ,  - F = ((n - 2)/2)C,. 

To obtain K,, - F = (t1/2)C,,-~ we again generalize the situation for n = 14. 
Here six cycles of length 12 are obtained from El as shown in Fig. 3 .  These are 
E l + , ,  1 s i Q 5 ,  defined as were D , + l .  The seventh cycle is the cycle F of 
Fig. 3. 0 

2. Small cycle lengths 

In this section we will show that if all cycles are of length 3 ,  4 or 6, and if n is 
odd and 3a + 46 + 6c = n(n - 1)/2, or if n is even and 3a + 4b + 6c = n(n - 2)/2, 
then G = aC3 + bC., + cC, where G = K ,  if n is odd and G = K ,  - F if n is even. 

To begin we need some decompositions for small graphs. Let HI and H2 be as 
shown in Fig. 4. 

Lemma 2.1. If C is K4, , ,  K4,,, K, , ,  or HI,  and 4b + 6 c =  IE(G)I, then 
G = bC4 + cC,. 

Proof. (a) C = K 4  *. We have 4b +6c = 16 so we need to show that K,, = 
4C4 = C, + 2C,. Since K 2  = C4 the first of these is immediate and the second is 
given by the cycles ( X I ,  YI, xq, Y,, ~ 2 ,  yd,  ( x , ,  y,, x4, y 2 ,  x , ,  y,) and (xz, y , ,  x , ,  y,), 
where V ( K 4  = { x , ,  x 2 ,  x3. x4, y , ,  y 2 ,  y,, y4}. 

(b) G =  K4,,. Here 4b + 6 c = 2 4  and we want to show that K 4 , = 6 C 4 =  
3 C 4 +  2C6=4C6. Again (as in (a)) the first is easy, and the second follows on 
adding two vertices and two 4-cycles to K 4 , =  C4+2C,. For the third let 
V ( K 4 6 )  = { x l ,  x 2 ,  x 3 ,  x4, YI, YZ, Y , ,  y4, y,, y h }  and take the 6-cycles (x l ,  y , ,  x, ,  

Y Z ,  ~ 3 ,  Y& ( ~ 2 ,  Y,, x 3 ,  Y,, x.4, Y,), (x l ,  y,, x4, y , ,  x , ,  y,) and (x l ,  y,, x 2 ,  y,, x , ,  y2).  
(c) C = K ,  ,. Counting edges 4b + 6c = 36. Except for K ,  , = 6C, all follow by 

adding two vertices and three 4-cycles to each of the decompositions of K 4  h. For 
this remaining case let V ( K , , , )  = { x , ,  x 2 ,  xq, x4, x 5 ,  x,,  y l ,  y,, y, ,  y,, y,, y,}. The 
6-cycles are given by ( x l ,  y , ,  x2 ,  y4, x4, y 2 ) ,  ( x2 ,  y 2 ,  x , ,  y, ,  x , ,  y,), ( x ? ,  y,, x4, 
y,, x,,  y,), ( x l ,  y,, A , ,  y I ,  x4, y 5 ) ,  (x2,  y,, xh, Y,, x 5 ,  y,) and (G, y,, xI, y 3 ,  x, ,  yl ) .  

Fig. 4 
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(d) C = HI. We sce that HI is Kh,h  to which two 6-cycles have been added. 
From the decompositions of K6,6 and 4b + 6c = 48, all cases except HI = 12C4 are 
resolved. With vertices as for K, , ,  (above) the twelve 4-cycles are (xI, y,, x 2 ,  y,), 

(XI, y,, xi?, Yh), ( X h  Y, I X4P Y2)1 (x3 ,  yz, x47 Yh), (X5, Y,! X,, Y 2 L  (x5, y3, Xf>9 Y4), 

( X I ,  Y,, Y,, ~ d ,  ( ~ 2 ,  y2, Y,, y2, yl, x2) ,  ( x 3 ,  y,, y3, x , )  and 
(xs, y,, Y,, X h ) .  0 

( ~ 4 ,  y4, Y,, ~ 4 ,  

Lemma 2.2. If 3a + 4h + hc = 18, lhen H2 = aC, + 6C4 + cC,. 

We will first show that i f  n is even and 3a +4h + 6c = n ( n  - 2)/2, then 
K,, - F = aC, + hC, + cC,. Because of the nature of the proof it is necessary to 
begin by constructing all such decompositions of K,,  - F for small even values 
of n. 

Lemma 2.3. If n E {4, 6 ,  K, 10, 12, 14) and 3a + 4h + 6c = n(n  - 2)/2, then K , ,  - 
F = aC3 + hC, + cC,. 

Proof. We will, in turn, do each value of 11. When n = 4, there is the one obvious 
decomposition K ,  - F = C4. Now let V(K, ,  - F )  = { 1, 2, . . . , n } .  

Fig. 5 
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Fig. 6 

(a) n = 6. We find 3a + 4b + 6c = 12 and there are four decompositions. We 
have done K, - I; = 2C6 = 3C4 in Theorem 1.1. This leaves K,  - F = 4C, for 
which we take the  3-cycles (1 ,2 ,6) ,  (2 ,3 ,4) ,  (4 ,5 ,6)  and (1,3,5), and 
K,- F = 2 C , +  C, for which we use the cycles (1 ,3 ,5) ,  (2 ,4 ,6)  and 
(1 ,2 ,3 ,4 ,5 ,6) .  

(b) n = 8. We view K, - F as shown in Fig. 5 .  Since K,  - F = 2C3 + C ,  = 
3C4 = 2C,, Hz = 6C', = 4C, + C, = 2C, + 2C, = 3C,= 2C, + 3C, = 3C, + Cf, (Lemma 
2.1) and K2,, = 3C4, we easily obtain all the decompositions. 

(c) n = 10. Viewing K, , , -  F as in Fig. 6(a), knowing the decompositions for 
K, - F and the fact that K 2 , x  = 4C4, it is not difficult to see that if 3a + 4b + 6c = 
40 and b 2 4 ,  then all such decompositions can be constructed. (To do this note 
that .?a + 4(b - 4) + 6c = 24.) From 3a + 4b + 6c = 40 it follows that 
b = 1 (mod 3) so only the cases with b = 1 remain; that is 3a + 4 + 6c = 40. 

Using K, - F = 2C,, and K ,  - F = C,, we can think of Klo - F as the union ot 
two copies of H2 and one 4-cycle (as in Fig. 6(b)). Now using the decompositions 
of H2 (with h = 0) as given in Lemma 2.2, we obtain all remaining decompositions 

(d) n = 12. Let 3a +4b  + 6c =60. We find the decompositions of  K I 2  - F in 
much the same way as we did for K l o  - F. Consider the view of K I 2  - F as given 
in Figs 7(a) and 7(b). 

Using Fig. 7(a), K2.,(, = 5C,, the decompositions of K l o  - F and the fact that 
3a + 4(b - 5) + 6c = 40 we obtain all decompositions of K , ,  - F with b 3 5 .  Since 
b = 0 (mod 31, this leaves the cases b = 3 and b = 0. The view of K 1 2  - F shown in 
Fig. 7(b) allows us to think of KI2  - F as one copy of K ,  - F, two copies 

of K,, , -  F. 

Fig. 7 
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of H2 and three 4-cycles. Thus we get all decompositions with h = 3. For h = 0 
the constructions are a little more complicated. Let V ( K 1 2  - F) = 

{x l ,  x2 ,  x3, x,, y l ,  y 2 ,  y,, y 4 ,  zl, z2 ,  z3 ,  z,} and let the one-factor deleted from K l z  
be F = { (x , ,  4, (x2 ,  xd,  ( Y , ,  y 3 ) ,  (Y,, y 4 ) ,  G I ,  z 3 ) ,  (z,, 2,)). N o w  K I 2 -  F 
consists of three copies of K h  - F,  on vertex sets { x l ,  x,, x3, x , ,  y , ,  y . { } ,  
{ y , ,  y,, y,, y,, z I ,  z 3 } ,  { z , ,  z2, z 3 ,  2 4 ,  x , ,  x 3 } ,  and the four 6-cycles ( y , ,  2 4 ,  y,, 
2 1 ,  y2, 2 2 ) )  (x3, y4, x 4 ~  2-39 x ~ t  yz) ,  (21,  x27 2 2 ,  y.3, 2 4 ,  XJ) and ( x ? ,  24,  y?_, x4, 2 2 ,  y4). 
Using our decompositions of K ,  - F we obtain all decompositions of K 1 2  - F with 
b = 0 and c 3 4. This leaves K12  - F = 20C3 = 18C3 + C ,  = 16C3 + 2C,, = 14C3 + 
3C, to be constructed. For the first of these, see e.g. 161 and the rest are as 
follows. 

Let V ( K 1 2  - F) = { x l ,  x2, x 3 ,  x4, xs ,  x( , ,  y l ,  y 2 ,  y,, y,, y,, yf,} and we view K 1 2  - 
F as in Fig. 7(b). In  K I 2 -  F we have the 3-cycles ( x l ,  x 2 ,  y,), (xz, x 3 ,  y s ) ,  

(XS, XI,  Y S ) ,  ( x ~ , ,  x ? ,  y d ,  (XI,  x3,  y , )  and (xz, x . ~ ,  y ? ) ,  the 6-cycles 
( x l ,  y,, x3,  y,, xs,  yh) and ( x ? ,  y,, x , ,  y, ,  xf,, y l )  and a K ,  - E' on the vertex-set 
{ y , ,  y,, y,, y,, y , ,  y<,}. Thus we have K , ?  - F = 16C, + 2C,, = 14C, + 3C,. From 
the 16C3 + 2 C h ,  delete the 6-cycles and t w o  of the C., i n  K,,  - I.' = 4C3 and replace 
them by the 3-cycles ( y 2 ,  x I 1  Yh),  (Y2,  x 3 ,  Y4) ,  ( Y J ,  xzp . Y d $  ( Y I  X L ,  Y d ,  ( Y T .  XJ,  Y5) 
and ( y , ,  xh ,  y l ) .  This yields K 1 2  - F = 18C, + C<,.  

(x3, x4, yh)! (x4, xS, y l ) ,  ( x S *  xh,  y2)t (xh! y3)* (x3t x 5 *  y 3 ) ~  (x4, x h *  y4)! 

(e) n = 14. As in the other cases, first view K14 - F as in Fig. 8(a). 
We immediately have all decompositions in which h 3 6. Since 3u + 4h i -  6c = 

84, b = 0 (mod 3) and again the decompositions with h = 3 and h = 0 remain to be 
constructed. For h = 3 ,  take any decomposition of K I z  - F which has no 4-cycle 
and at least one 6-cycle. Then K , ,  - F as in Fig. 8(a) can be viewed as the  cycles 

b 

Fig. X 
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Fig. 9 

of (K12 - F)  - C,,  one copy of H2 and three 4-cycles (from the remaining K2 ,). 
We now easily construct all decompositions with b = 3. This leaves the decom- 
positions with b = O  and, as in the case of K 1 2 -  F, these take some work to 
construct. Viewing K14 - F as in Fig. 8(b) and using the decompositions of K,  - F 
and K, , ,  we obtain all the desired decompositions with c 2 6 .  This leaves six 
cases: KI4  - F = 18C, + 5C, = 20C, + 4C, = 22C, + 3C, = 24C, + 2C, = 26C, + 
C ,  = 28C,. The last four of these can be constructed by viewing K , ,  - F as in Fig. 
8(c). Take a near 1-factorization of the K7 with vertex set {x i ,  x2, . . . , x,}. Let 
the vertices of the other K7 be { y , ,  y 2 ,  . . . , y,}. Pairing the near 1-factors and the 
vertices {y l ,  y,, . . . , y,} yields 21 3-cycles. What remains is a copy of K,. Adding 
a vertex and the edges of F to K h  - F yields all decompositions of K, with a 2 3. 
Hence we have constructions showing KI4 - F = 28C, = 26C, + C ,  = 24C, + 2C,. 
Since K ,  = C ,  + 3('6 (the cycles are (x,, x2, x?), (x , ,  x4,  x,, x,, x,, x5), 
(x,, x,, x,, x5 ,  x4, x7) and (x2, x4, x3, x,, x5,  x,)) we also obtain Kl4 - F = 

22C, + 3C,. Two cases remain. Return now to Fig. 8(b). On each K, - F use 
KH - F = 8C,,  and on the K , , ,  use Kh,h  = 6C,. Choose two of the 6-cycles in K,,( ,  
and in positioning the Kx - F = XC, place them so that in each a triangle can be 
placed with one of the chosen 6-cycles so that we obtain two copies of the graph 
H, in Fig. 9. Since t / ,  = C ,  + C ,  = 3C, we can, in turn, eliminate the two 6-cycles 
and obtain the last two decompositions. 0 

We are now ready to give all decompositions for even n. 

Theorem 2.4. When n is even and 3a + 4b + 6c = n(n  - 2 ) / 2 ,  then K ,  - F = 

aC, + bC4 + cC,. 

Proof. Let n = 2t and consider the residue classes of n modulo 12. 
(a) n = 2 or 6 (mod 12). In this case t = 1 or 3 (mod 6) and there is an STS(t) 

[3 ] .Le tV(K2 , -F )={a , , a2  , . . . ,  a , , b , , b ,  , . . . ,  b,} w h e r e F = { ( a , , b , ) : l s i c  
t } .  Take an STS(t) on the point-set { a , ,  a2, . . . , a,}. Then each 3-cycle (a,, a,, a k )  

in the STS(t) corresponds 1 0  a copy of K,- F on the vertex set 
{a,, a,, ak, b , ,  b,, b k }  (The copies of K,- F a r e  all edge-disjoint and partition the 
edges of K,, - F . )  

If n = 12m + 2, m 2 1, then 3a + 4b + 6c = 12m(6m + 1 )  and so a = 0 (mod 2)  
and b = 0 (mod 3). There are two cases: (i) a = 4a', b = 3b', c = 2c' ,  and (ii) 



104 K .  tleinrirli ef al. 

a = 4a’ + 2, h = 3h’, c = 2c’ + 1 .  In the first a’ + h’ + c’  = m(6m + I ) ,  the num- 
ber of 3-cycles in the STS(t). To see that K ,  - F = UC, + bC4 + cC,,  in a’ of the 
K ,  - F use the decomposition K ,  - F = 4C,, in h’ of them use K ,  - F = 3C, and 
in the remaining c ’  use K,- F =2C,. In the second case we find that 
a’  + b’ + c’ + 1 = m(6m + 1)  so here in a‘ of the K ,  - F use K ,  - F = 4C,, in b’  
of them use K ,  - F = 3C4, in c’ use K ,  - F = 2C, and in the one remaining put 
K ,  - F = 2C, + C, to yield K ,  - F = aC, + hC4 + cC,. 

If n = 1 2 m + 6 ,  m 2 1 ,  then 3a + 4b + 6c = 12(3m + 1)(2m + 1) and again 
a z 0 (mod 2) and h = 0 (mod 3 ) .  We now repeat the argument given in the case 
n = 12m + 2. Finally, when n = 6 the result follows from Lemma 2.3. 

(b) n = 10(mod 12). Then t = 5  (mod6) and there is ([6]) a near-STS(t) in 
which one block has size five and all other size 3 .  Let V ( K 2 , -  F )  = 

{ a , ,  a 2 , .  . . ,a,, h , ,  b,, . . . , b,} and, as before, to the 3-cycles (blocks of size 3 )  
in the near-STS(r) correspond copies of K6 - F and to the block of size 5 
corresponds a K l o  - F. Letting n = 12m + 10, m 2 1, we get 3a + 4h + 6c = 

36(2m + l)(m + 1) + 4 and hence b = 1 (mod 3 )  and a = 0 (mod 2). Two cases 
need be considered: (i) a =4a’ ,  h = 3 b ‘ +  1, c = 2 c ‘  and (ii) a = 4 a ‘ + 2 ,  
0 = 36‘ + 1, c = 2c‘ + 1 .  In case (i) a’ + b‘ + c‘ = 3(2m + l)(m + 1). Now as 
m 3 1,  one of a ‘ ,  h ’ ,  and c’ is at least three. Depending on which write either 
(a’ - 3 )  + h‘ + c’  = 3m(2m + 3), a ‘  + (b ’  - 3 )  + c’ = 3m(2m + 3 )  or a’ + h’ + 
(c‘ - 3 )  = 3m(2m + 3 ) .  Note that 3m(2m + 3 )  is the number of edge-disjoint 
K ,  - F we have in K,, - F. We are now ready to describe the decomposition. 
Given a* + h* + c *  = 3m(2m + 3 ) ,  in a* of the K ,  - F use K ,  - F = 4C,, in h* 
use K,- F = 3C4 and in c *  of them use K,- F = 2C,. All that remains is to 
choose the appropriate decomposition of KI, ,  - F. Choose respectively, K l o  - 
F = 12C, + C4, K,,, - F = IOC4 or K , , ,  - F = C,  + 6C,. 

Case (ii) follows in a similar fashion and the case n = 10 was resolved in 
Lemma 2.3. 

( c )  n = 0, 13 (mod 12). Unfortunately we must work modulo 24, and consider 
the two cases: ( c ’ )  n = 0, 8 (mod 24), and (c”) n = 12, 20 (mod 24). 
(c’) n = 0, 8 (mod 24). 

Thus t = 0, 4 (mod 12) and it is known ((51) that there is a group divisible 
design on  t symbols in which the groups have size 4 and the blocks size 3 .  As in 
(a) this yields a partition of the edges of K,, - F into copies of K ,  - F and K ,  - F. 

If n = 24m, m 3 1, 3a + 4b + 6c = 24m(12m - 1) and so h = 0 (mod 3 )  and 
a = 0 (mod 2). Thus b = 3b’ and either (i) a = 4a’, c = 2c’ or (ii) a = 4a’ + 2, 
c = 2c‘ + 1. We will discuss (i) as (ii) is done similarly. First list all K ,  - F and 
then all K x  - F in K,, - F and from them choose a copies of C, as follows. In the 
first K,- F put K,- F =4C,. Continuing until we have a 3-cycles our last 
decomposition will be either K ,  - F = 4C,, K ,  - F = 4C, + xC, + yC, or K ,  - 
F = 8C3. Now we find the c 6-cycles. The first decomposition containing C ,  will 
be either K ,  - F = 2C6, K 8  - F = 4C, + 2C6, K ,  - F = 4C, or K ,  - F = 3C4 + 
2C,. When we have reached cC,, the remainder of the K ,  - F and K ,  - F are to 
be decomposed into C,. 
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An almost identical construction works when n = 24m + 8. 
(c”) I I  = 12, 20 (mod24). In this case t -6, 10 (mod 12) and it is known ([9]) 

that if t - 2 = 4, 8 (mod 12), there is a group divisible design on t points with one 
group of size 6, the rest of size 4 and all blocks of size 3. As in (c’) this gives us a 
partition of the edges of K ,  - F into copies of K ,  - F,  K ,  - F and one K12 - F. 
To construct the required decomposition of K,, - F we list the K ,  - F, then the 
K ,  - F and last the one K I 2  - F and decompose them in turn (using Lemma 2.3) 
as was done in (c’) .  

(d) n - 4 (mod 12). Let n = 12m + 4 so t = 6m + 2. We know ([7]) that Khnr - 
F, m 

Adding to Khrn - F one new vertex and the edges of F yields a decomposition 
of Kh,,,, I into 3-cycles (an STS(6rn + 1)) which has a set of 2m vertex-disjoint 
3-cycles (from one of the resolutions). Now, duplicate as in (a) to get a partition 
of the edges of K 1 2 m + 2  - F into copies of K6 - F. In  particular this partition 
has 2m vertex-disjoint copies of K6 - F and a copy of K 2  - F (as shown in 
Fig. 10). Now add two more vertices (non-adjacent) to get K12,,,+,- F which 
is edge-partitioned into 2m copies of K ,  - F,  one C, and m(6m - 1) copies of 

Since 3a + 46 + 6c = 12m(6m + 3) + 4, b = 1 (mod 3). Thus b 3 1 and we have 
an obvious C4 as shown in Fig. 10. The remainder of K12,,1+4 - F is decomposed 
into K6 - F and K ,  - F. We now fill these as we did in (c). 

Two cases remain: K 1 6  - F and K2, - F. First we do K , ,  - F viewing the graph 
in the four different ways as shown in Fig. 11. 

Here 3a + 4b + hc = 112. From Fig. l l ( a )  we can construct all decompositions 
K , ,  - F = aC3 + bc’, + cC, with b 2 7. This leaves b = 1 and b = 4. From Fig. 
l l (b)  we get all decompositions with c 2 6 .  From Fig. l l (c)  we get all 

3, has a resolvable decomposition into cycles of length 3. 

K ,  - F. 

+ 2  - F  

Fig. 10 
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decompositions with h = 4 and a 3 16 (observe that K2,4,4 - K4,4 = K 2 , X  = 4C4, 
and recall the well-known fact that K4,4 ,4= 16C,). This leaves the case h = 1 and 
a 2 2 6  (as c s . 5 ) .  Here we use Fig l l (d) ,  noting that the unmarked edges are 
those of K2,4,4,4. All that remains to be shown is that K2,4,4,4 can be partitioned 
into 24 triangles, or, equivalently, that K4,+,, with two suitably chosen 1-factors 
deleted, can be partitioned into 12 triangles. The latter is an easy exercise. 
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Note that in Fig. 1 l(b) we require that in each decomposition of K,,, - F one of 
the C ,  (there is always at least one) has on its diagonals two of the edges of F. 
From Figs 6(a) and 6(b) it is easy to see that this can always be arranged. 

The last case is K 2 X  - F. Since there is a group divisible design on 12 points 
with groups of size 3 and blocks of size 4, we can view K2H - F as in Fig. 12. 

Noting the earlier comment regarding K l o  - F we can now decompose the 
KH - F and (K,,, - F) - C4 as in (c) to obtain all decompositions. 0 

The previous theorem immediately gives us many of the decompositions 
K ,  = aC3 + hC, + cC, when n is odd. 

Corollary 2.5. When n is odd, a 2 (n  - l)/2, and 3a + 46 + 6c = n(n - 1)/2, then 

K ,  = aC, + hC, + cC,. 

Proof. From 3a + 4b + 6c = n(n - 1)/2 we obtain 3a‘ + 4h + 6c = ( n  - l)(n - 
3)/2 where a’ = a - (n  - 1)/2 and by Theorem 2.5 K,-, - F = a‘C, + hC4 + cC,. 
Now, adding a new vertex and the edges of F to K,l-, - F, we obtain 
K ,  = aC1 + bC4 + cC,. 0 

Hence, when n is odd we need only consider the cases a s ( n  - 3)/2. As when 
n was even we begin with a lemma which takes care of the small odd values of n. 

Lemma 2.6. If n E (3, 5 ,  7, 9, 11, 13, 17) and 3a + 46 + 6c = n(n - 1)/2, then 

K,l = aC3 + bC4 + d,. 

Proof. Thanks to Corollary 2.5 we consider only the cases a s ( n  - 3)/2. When 
n = 3 and n = 5 there is only one decomposition and it is easily constructed. 

(a) n = 7, a d 2. Since 3a + 46 + 6c = 21, a is odd and the only decompositions 
are K7=C,+3C,+  C, and K7=C,+3C, .  These are given by the cycles 
(1,2,3), (1 ,6 ,3 ,7) ,  (2 ,4 ,3 ,5) ,  (4 ,6 ,7 ,5) ,  (1 ,4 ,7 ,2 ,6 ,5 ) ,  and (1,2,3) ,  
(1 ,4 ,6 ,7 ,3 ,5) ,  (1 ,6 ,2 ,5 ,4 ,7 )  and (2 ,4 ,3 ,6 ,5 ,7) ,  respectively, where V ( K , )  = 

(b) n = 9 ,  a a 3 .  Since 3 a + 4 b + 6 c = 3 6 ,  a is even and we must consider 
a = 0 and a = 2. To K7 = C, + 3C, = C, + 3C4 + C ,  add two new vertices, replace 
the C, by a K ,  and add two more C,. This yields K ,  = 2C, + 3C4 + 3C, = 2C3 + 
6C, + C6. For K, = 2C, + 5C, let V(K,) = { 1,2 ,  3, 4, 5 ,6 ,  7, 8, 9)  and take the 
cycles (1 ,2 ,3) ,  (2 ,6 ,7) ,  ( I , 4 , 2 , 5 , 3 , 6 ) ,  (4 ,7 ,5 ,8 ,6 ,9 ) ,  (7, 1 ,8 ,2 ,9 ,3) ,  
(1 ,5 ,4 ,8 ,7 ,9)  and (3 ,4 ,6 ,5 ,9 ,8) .  We now have the four cases with a = 0: 
K ,  = 9C4 = 6C4 + 2C, = 3C4 + 4C6 = 6C,. These are given respectively by the 
following sets of cycles: {(1,2,9,6) ,  (2 ,3 ,1 ,7) ,  (3 ,4 ,2 ,8) ,  (4 ,5 ,3 ,9) ,  
(5,6,4, l ) ,  (6 ,7 ,5 ,2) ,  (7,&6,3), (8 ,9 ,7 ,4) ,  (9,1.8,5)}, { ( 1 7 K 3 , 9 ) ,  (2,7,9,5), 
(4,7,6,8), (1,5,4,2), (2,6,5,3), (1,6,4,3), (1,4,% 8,5,7) ,  (2 ,8 ,7 ,3 ,  6,9)}, 
{(1,8,3,9), (2,7,9,5), (4,7,6,8), (1 ,4 ,9 ,8 ,5 ,7) ,  (2 ,8 ,7 ,3 ,6 ,9) ,  (1 ,5 ,4 ,6 ,2 .3) ,  . 

{ 1, 2, 3, 4, 5 ,  6, 7). 
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Fig. 13 Fig. 14 

(1,6,5,3,4,2)) and { ( I ,  5,4,6,2,3),(1,6,5,3,4,2>,(1,4,9,8,2,7),(3,7,4,8,6,9), 
(I, 8,7,5,2,9), (3,8, 5,9,7,6) 1. 

(c) n = 11, u S 4. I t  is easy to see that u is odd, so u = 1 or u = 3 ,  and 
b = 1 (mod 3). 

Using Fig. 13 and known decompositions of K4,(,, K 5 ,  and K 7  we get all 
decompositions of K , ,  with a = 3. Note that using Fig. 13 we must always have 
two 3-cycles as K ,  does. However, since H4=2C6 (H4 is shown in Fig. 14(a)), 
K4,, = 3C4 + 2ch = 4C, and we have decompositions of K , ,  we easily obtain 
K ,  I = C ,  t C4 + 8ch = c, + 4C4 + 6C, = C ,  + 7C4 + 4C,. Next, H ,  (shown in Fig. 
14(b)) easily decomposes as H5 = C4 + C ,  and since K4,, = 6C4 and K ,  = C ,  + 
3C4 + C 6 ,  we obtain K , ,  = C ,  + 10C4 + 2C,. This leaves K , ,  = C, + 13C4 which is 
given by the cycles ( I ,  6,9), (6 ,8 ,  1, lo), (9, 11, 1,7), ( I ] , &  10,7), (2,4,3, S), 
(2,8,3, 111, (4,8,5, II), (1,2, 10,3), (2,6,7,3), (2,7,8,9), (1,4,7,5), 
(3,6,5,9), (4,9. 10,s) and (4,6, 11, lo), where V ( K , , )  = { 1 ,  2, 3, . . . , 11). 

(d,) n = 13, a S 5.  Counting we find that u is even, so we must consider u = 0, 2 
and 4. Consider K 1 3  as in Fig. 15. When a = 4 decompose one K7 as either 
K7 = C ,  + 3C4 + C ,  or K ,  = C, + 3C,, and the other as K7 = 3C, + 2C,. 
Removing a 6-cycle from each of these and attaching them to K , , ,  yields a copy of 
HI.  On now decomposing HI all possible decompositions of K I T  with u = 4 are 
achieved. When u = 2 decompose each K ,  as either K ,  = C ,  + 3C4 + C, or as 

0 

Fig. IS 
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Fig. 16 

K7 = C3 + 3C6. Using the above argument yields all decompositions of K I 3  with 
a = 2. When a = 0 we first construct K I 3  = 13C6. Let V ( K 1 3 )  = (0, 1,  2, . . . , 12) 
and GI = (1, 4, 10, 2, 3, 5). The remaining 6-cycles are C,,, = G + i where 
(x + i, y + i )  E E(C,+, )  if (x, y )  E E(G, ) ,  1 S i S 12, and addition is modulo 13. 
Since G, U G,,, = 3C4, 1 < i  =Z 12, all decompositions of K I 3  with a = O  are 
constructed. 

(e) n = 17, a 6 7. Clearly a is even so a E (0, 2, 4, 6). View KI7 as in Fig. 16. 
We see that the edges of K I 7  can be partitioned into one K 5 ,  one K,3  and two 
copies of K 4 , h .  By appropriately decomposing each of these we obtain all 
decompositions of K I 7  with 2 s u < 6. This leaves a = 0. Again we use Fig. 16. 
First, in the decomposition of one of the K4,h  make sure a 4-cycle (respectively a 
6-cycle) from it and the two 3-cycles from K s  = 2C3 + C, are as in Hs = C', + C(, 
(respectively, H4 = 2C6). Choosing appropriate decompositions of K4,h and K,.,  
yields all decompositions of Kl7 with a = 0 except for KI7 = 34C4. If V ( K l 7 )  = 

(0, 1, 2, . . . , 16) the 4-cycles for this decomposition are J ,  = (1, 3, 2, 9), K ,  = 

(4, 10, 13, 9) and J , + ,  =Il + i, K,,, = K ,  + i, 1 S i =Z 16, where all addition is 
modulo 17. 0 

We are now ready to prove the main result for odd n. 

Theorem 2.7. tf ri is odd and 3a + 4h + 6c = n(n  - 1)/2, then K,, = uC, + hC4 + 
C C h  . 

Proof. We know by Corollary 2.5 that we may assume a < ( n  - 3)/2. The proof 
will look at the residue classes of n modulo 12 and all cases will be based o n  Fig. 
17 where s + t + 1 = n. 

(a) n = 12m + 1 ,  m b 2. Since 3a + 46 + 6c = 6m( 12m + l ) ,  then a is even and 
a s 6m - 2. The construction of the decompositions is by induction on r n ;  all 
decompositions 01 K,, (the case m = 1)  are given in Lemma 2.6. In  Fig. 17 let 
s = 12 and t = 12(m - 1). We assume that all decompositions of K I 2 ~ , , , - , ~ + ,  are 
possible. Since 3(hm - 2) S 6(rn - 1)(12(m - 1) + 1) for  m B 2, we know that for 
a < 6m - 2, and h' and c '  satisfying 3a + 4b' + 6c' = 6(m - 1)( 12(m - 1)  + I ) ,  
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then K 1 2 ~ , l l ~ l ~ + l  = a C ,  + b’C4 + c’ch.  As well as the K I 7  and K 1 2 ~ l l l - l ~ + l ,  Klr,,,+ 
also contains 4(m - I )  disjoint copies of Kc,,h. Since K(,,(, = 9C, = 6C4 + 2C’, = 

3C, + 4C, = 6C,, (by Lemma 2.1) and K I 3  = 18C4 + C h -  - . ’ . = 13C, ,  it appears 
that we can, by appropriate choice of the decompositions of “the pieces”, 
obtain the required decompositions of K12,,1+I. However, this is not quite correct 
as if u = O  (mod4) and m is even, or if Q = 2 (mod 4) and nx is odd, then w e  
require decompositions of the form K,,,,, + I = uC, + hCI,. But decompositions of 
K I 3  always contain a 6-cycle. Fortunately in these cases the decompositions of 
KI2(, , ,~, ,+,  also all contain a 6-cycle and we simply locate these (,-cycles so that 
one of the K 6 , h  becomes the graph HI, and HI = 12C4. 

(b) n = 12m + 7, m 3 1. In  this case 3u + 4h + 6c = 6(( 12m + 1 )(m + I )  + 2) t- 
3 so u is odd and a s 6m + 1. Choose s = 6 and t = 12m in  Fig. 17. From (a) we 
have all decompositions of K12,,1+ I and from Lemma 2.6 all decompositions of’ 
K7 = C, + h’C, + c’C,,. Note that each decomposition of K7 has both :I 3-cycle 
and a 6-cycle. Our decompositions of K12r , l+7  must have an odd numher of 
3-cycles. Since 18m S 6m( 12m + 1 )  when ni a I ,  we can choose decompositions 
of K12,,,+l with (u  - I )  3-cycles which, with the one in K 7 ,  gives us a 3-cycles. We 
now proceed as in (a) and again must pay particular attention to the case c = 0. In 
this case the difficulties occur when u = 1 (mod 4) iind m is odd, or when 
u = 3 (mod 4) and m is even, but we use the same technique a s  before t o  obtain 
the decompositions. 

(c) n = 12m + 5 ,  m 2 2. Counting edges we have 3u + 4h + 6c = 6( 12m‘ + 
9m + 1 )  + 4 s o  u is even and u S 6m. In  this case we put s = 16 and f = 12(m - I) ,  
and note that K17 has a 4-cycle in  each decomposition, all decompositions of 
KIZ(m-l)+ I have an even number of 3-cycles and a s  3u s 1Xm s O(m - 1)(  12(ni - 
1)  + 1) f o r  m 2 2, there are decompositions with exactly u 3-cycles. When viewed 
as in Fig. 17, K12,,,+5 has also X ( m  - 1 )  disjoint copies of  K4,f, and by Lemma 2.1 
K4,6 = 6C4 = 3C4 + 2C, = 4C,. By suitably choosing decompositions of the K 
K4,f, and Klz(,,- all required decompositions of K12 , , r .+s  can be constructed. 

(d) n = 12m + 9, m 3 1 .  This case is also easily dealt with. In  Fig. 17 choose 
s = 8 and t = 12n. From 3u + 4h + 6c = 6(4m + 3)(3m + 2) R is even and N G 
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6m + 2. Since 3(6m + 2) S 6m(12m + l),  for rn 2 1, all 3-cycles will be found in 
the decomposition of K,, ,+, .  Now we just choose appropriate decompositions of 
Ky, KI2,,,+, and the 4m disjoint copies of K4,6. 

(e) n = 12m +3 ,  m 2 1. In Fig. 17 choose s = 6  and f =  12(m - 1) +8. 
Counting edges 3a + 46 + 6c = 6m(12m + 5 )  + 3, and so a is odd and a d 6rn - 1, 
Now 3(a - 1) d 3(6m - 2) S6(4rn - 1)(3m - l),  for rn 3 1, and so we take a 
decomposition of K7 with exactly one 3-cycle, and of K12(m-1)+y with (a - 1) 
3-cycles. The rest of K12m+3 consists of two copies of K4,h and 2(m - 1) copies of 
Kh,6.  As in (a) we have to pay special attention to the case c = O  as each 
decomposition of K7 has a 6-cycle. When a = 1 (mod 4) and rn is even, or 
a = 3 (mod 4) and m odd both K7 and KIZ(m--l)+9 have a 6-cycle. These can be 
chosen so that one of the K6,6 becomes a copy of H I  and now we proceed as 
before. 

(f) n = 12rn + 11, rn 2 1. This last case follows as the others. In Fig. 17 choose 
s = 10 and r = 12rn. From 3a + 4b + 6c = 6(12m2 + 21rn + 8) + 4 + 3 we know that 
a is odd and so a d 6rn + 3. Each decomposition of K I I  has a 3-cycle and a 
4-cycle. Since 3(6m + 2) d 6m( L2rn + l), rn 1, we choose decompositions of 
KI2,+,  with (a - 1)  3-cycles. The remainder of K12m+l l  consists of 2rn disjoint 
K4,h and 2rn disjoint Kh,h. Decomposing all these graphs appropriately yields 
the desired decompositions of K12m+lI .  0 

3. Cycles of length 2k and Zk+’ 

We need to introduce the notion of switching on cycles. Suppose G contains 
the three edge disjoint cycles of lengths s, t and r as shown in Fig. 18(a). We can, 
by switching on the cycle (v,,, IJ , ,  v,, IJJ, obtain the two cycles of lengths s + t and 
r as shown in Fig. 18(b). 

This switching procedure can be applied many times as illustrated in Fig. 19. 
The next result, due to D. Sotteau [lo], will be used often in the proofs. 

- - - \ q o  
i 

Fig. 18 
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Theorem 3.1. Suppose k n, k < m ,  m and n are even and mn = 2kt. Then 
Kin,n = tCLk. 

We now state and prove several lemmas. 

Lemma 3.3. If y and n are even and 0 y s n, then K2,,,2,r = (2n - 2y)C,,, + yC4,,. 

Proof. From Theorem 3.1 we know that K , , n  = (n/2)C2, , .  Applying Lemma 3.2 
to this decomposition yields the result. 

Although Theorem 3.1 yields KZ,,,2n = nC41, we need a very particular de- 
composition in order to prove the main result. This decomposition is given in 
Lemma 3.4. 
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Lemma 3.4. Let A =(a,)  be a latin square of order n based on the set 
(1, 2, . . . , n } .  Let X =  ( x l ,  x2 ,  . . . , x Z n }  and Y = { y , ,  y2,  . . . , Y ~ , ~ } .  Then the 
n cycles of length 4n given by Dl = (xl, ~ 2 ~ , , ~ - , ,  x2 ,  Y ~ , , ~ ,  . . . , x2 , - , ,  
Y~u,,- I ,  x z I ,  YL,,, . . , ~ 2 "  - 1 ,  yza, ,,- I ,  x z n ,  yZu, ,,) where subscript calculations are 
modulo 2n on the residues 1, 2, . . . , 2n, constitute a decomposition K2,,,,, = nC4rl 
wifh V(K211 ,2n)  = X U Y .  

Proof. Since the ith row of A contains each of the entries 1, 2, . . . , n ,  D, is a 
4n-cycle. Since thc j th column of A contains each of the entries 1, 2, . . . , n,  then 
K21,,2n = D1 + 0, + * . . + D, = nC4,,. 0 

Let G be either K2tm,2n7 or K2rn+2,2tn, m 2 2. Let V ( G )  = X U  Y where X = 

{ x , ,  . . . , x , } ,  t = 2" or t = 2" + 2, and Y = { y , ,  y,, . . . , yzrr3}. The decomposition 
G = aC,.,+ bC2n,+~ is basic if a = 0  and it contains the cycle 
( x l ,  y , ,  x , ,  y,, . . . , x2,.y2,,,), or if b = 0 and it contains both the cycle 
(xl, y , ,  x , ,  y,, . . . , X,,?,-I, y2,--1) and the cycle (x,,~~-I+,, y2r , t -~+l ,  . . . , x2,,,, Y, ,~~) .  
These are the basic cycles. Since by Theorem 3.1 G = bC2,,,+l, then after suitably 
labelling the vertices of G we can always obtain a basic decomposition. For a 
basic decomposition G = aCz,r8 we use the fact that both K2,,,,2t,t I and K2,,8+,.2,. I 

have decompositions into cycles of length 2'" (again use Theorem 3.1). 

Lemma 3.5. There is a decomposition Kzlr - F = (n  - 1)C2,, n 3 2, with the 
property that there is a set of edges E = { e l ,  . . . , el, - , }, one from each cycle, so 
that F U E i s  a path with edges alternating between E and F. 

Proof. We use the decomposition given in Theorem 1.1. Let E = ((2i, 2i + 
1): 0 d i d n - 3) U { (2n  - 4, m,)}  when n is even, and let E = {(2i, 2i + 1) : 0 d 
i d (n - 3)/2} U { (2 + 1 ,  2i + 2 )  : (n  - 1)/2 d i d n - 3)  U {(2n - 3, a~)} when n is 
odd. Since F = {( i ,  n - 1 + i )  : 0 d i S n - 2) U { (w, ,  M,)} it is not difficult to check 
that E U F is as required. 0 

Note that the edges E form an independent set of edges. 

Lemma 3.6. There is a decomposition K2,,-, - F = ( n  + l ) C Z n ,  n 2 2, with the 
property that there is a set E = {el ,  . . . , e,,} of independent edges, each f r o m  a 

diferent cycle. r 

Proof. We again use the decomposition given in Theorem 1.1. Let E = { ( ( n / 2 )  + 
i, (3n/2) - 1 + i ) :  0 5 i d n  - 2) U {((n/2) - 2, (n/2) - 1)) if n is even, and let 
E = {((n + 1)/2 + i ,  (3n - 1)/2 + i ) :  0 i d n - 2) U ( ( ( n  - 3)/2, (n  - 1)/2)} if n 
is odd. 0 
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Fig. 20 

We now have the tools necessary to prove the main theorem when n is even. 
First note that in this case if K, - F = aCzk + bC2k+i, then n = 0, 2 (mod 2 k )  and if 
b ZO, n 3 2k+1. We begin with the cases n = 2k+1 and n = 2k+1 + 2 as if n = 2k 
or n = 2k + 2,  then b = 0 and the situation has been dealt with in Theorem 1.1. 

Theorem 3.7. If ~2~ + b2k+1 = 2k.t1(2k - l), then K2keI - F = U C , ~  + bCzAi I. 

Proof. We view K2k+1 - F as in Fig. 20. 
Let GI and G2 denote the two copies of K2h - F with V(Cl) = { x l ,  x2, . . . , x2k} 

and V(G2)  = l y l ,  YZ, . . . , Y P ) .  
We use the decomposition GI = G2 = (2k-1 - 1)C2k of Lemma 3.5.  Permute 

labels of the vertices in GI and G2 so that the independent edges are given by 

Suppose b <2k-1.  By Theorem 3.1 and the comments following Lemma 3.4 
there is a basic decomposition of K 2 ~ , 2 ~  into cycles of length 2k. Now switching on 
the cycles ( ~ ~ ~ ~ ~ , y ~ ~ - ~ , y ~ ~ , ~ ~ ~ ) ,  l S i i b h ,  we obtain K ~ A + I - F = U C ~ A + ~ C ~ A ~ I ,  

Consider the case b 3 2 k - 1 .  Here we use the fact that there is a basic 
decomposition of this type K 2 k , 2 ~  = 2 k - 1 C 2 ~ + ~ .  Since b - 2k-1 d 2 k - 1  - 1 we now 
switch on b - 2k-1 of the cycles ( Q - ~ ,  y2,-,,  y21, x2,), 1 si s 2 k - 1 ,  and obtain 

E l  = { ( x ~ ~ - ~ ,  x Z I ) :  1 s i 6 2k- '  - 1) and E2 = { ( y 2 1 - 1 ,  y 2 1 ) :  1 d i s 2k-1  - 1). 

1 s b 6 zk-' - 1 .  

K z k ~ i - F = ~ C p + b C 2 n t ~ ,  2 h - 1 s b d 2 X  -1. 0 

Theorem 3.8. If ~2~ + b2k + I  = 2k+1(2k + l ) ,  k 3 2,  then K2h4 I +?  - F = aCp + 
hCp41. 

Proof. The proof is much like that of Theorem 3.7. We first view K , A + ~ + ~  - F as 
in Fig. 21. 

Let I / ( K ~ A + ~ - F ) = { X ~ , X ~ ,  . . . , X 2 ~ , 2 }  and b ' (K ,~-F)=(y l ,y , ,  . . . ,yLh}. By 
Lemmas 3.5 and 3.6 there are deconipositions K2k+, - F = (2'- ' + 1)CI2': with 
edges E l  = { ( x ~ ~ - ~ ,  x Z I ) :  1 S i S 2 ' - ' }  cach from a different cycle, and K2r - F = 

( 2 h - 1 -  1 ) C 2 k  with cdgcs E ,  = {y21-I ,  y Z l } :  1 2h - I  - l }  each from il different 
cycle. 

i 
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Fig. 21 

If b S 2 k - 1  - 1 wc Simply take a basic decomposition K2k++2,2k = (2k + 2)CzA and 
switch on the cycles ( x Z l -  I y 2 i - 1 ,  y2r ,  x ~ ~ ) ,  1 d i s 6. 

If 2 k - 1  + 1 S b G Z k  we take a basic decomposition K2~+2 ,2k  = (2"' + 1 ) C 2 k +  I and 
switch on the cycles ( x ~ , ~ ~ ,  y 2 1 - I y 2 1 ,  x Z l ) ,  1 d i G b - ( 2 k - 1  + 1). 

This leaves the two cases b = 2k-1  and b = 2k + 1. The case 6 = 2k + 1 is 
covered in Lemma 3.6. When b = 2 k - 1  the construction is somewhat complicated. 
Consider K2k+t+2 - I;  as in Fig. 22. 

In Theorem 3.11 we will prove that K p + ,  =C2' I+2k-1C2~ so that there is 
a set of edges E = {e l ,  . . . , ~ - 1 ,  e} so that el, . . . , e2k I are independent and 
each lies in a different cycle of length 2 k ,  e lies in the C2A I and e is incident 
with both el  and e2. We now show that K4r, l+1.4, ,1+I - F =(4m + 1)C4,,l. Let 
V ( K 4 m , + 1 . 4 n l + ~  - F )  = {XI,  ~ 2 ,  . . . , X ~ , , ~ + I ,  y I ,  Y Z ,  . . . , Y ~ , ~ ~ + ~ } .  Then C ,  the first 
cycle , is given by C ' = (x,  + I , Y , , ~ ,  x, + 2 ,  Y,, - I , . . . I ~ 2 , ~ ~  - I , ~ 2 ,  xzn1 Y I X2m + 2 Y4,71+ I 

X2,,,+3, Y 4 m ,  . . . , Xn, ,  Y3, , l+31 x3nl . ,I ,  y3,,,+2) and the remainder by C + i, 1 s i s 
4m, where (x,+;, Y , ~ ~ ,  ;) E E(C + i) if and only if (x , ,  y S )  E E(C) .  (Subscript addition 
is modulo 4m + 1). 

In GI = K2k+1 with vertex set X ,  the decomposition can be arranged so that the 
set E l  of independent edges is E l  = {(xZIpI, x Z l ) :  1 d i G 2 k - 1 }  and e = 

(x@Z+l, X ~ A  I + ~ ) ,  whereas in G2 = K * L + ~  with vertex set Y ,  the decomposition is 
arranged so that Ed'? = { ( y 2 1 p I ,  y2)): 1 Gi s 2 k - 1 }  and e = ( y l ,  y3.2A L + ~ ) .  Now, for 
the cycles containing edges (x2;- I ,  x z 1 )  and (y2,- I, y 2 r )  switch these with the edges 
( x ~ , - ~ ,  y z r - , )  and ( I ~ ~ ,  yZ,) of the 1-factor, 1 s i S 2 k - 1 .  For the cycles of length 

- F  
2 k+1.2k+1 

K 

Fig. 22 
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2k ~ 1 switch the edges (Xzk z + ~ ,  X ~ A  I + ~ )  and ( y l ,  yl 2~ L+,) with the edges 
(xZA y 3  2k ?+?) and (X?k I + 2 ,  yl).  This yields the desired decomposition. 0 

Theorem 3.9. Let n = 3.2k or 3.2' + 2, k 3 2, und suppose that a2/' + h2'+' = 

n(n - 2)  12. Then K,, - F = UC,A + hC,A + I. 

Proof. View K,, - F as in Fig. 23, where K,,  - F = GI + G, + C, + C, + C, + G,. 
By Lemmas 3.5 and 3.6 K p  - F = (2k--' - 1)Cp and K2h+2 - F = (2"' + ~)C,A 

so that with each such decomposition of C,, 1 s i s 3 ,  we have a set E, of 
independent edges, each from a different cycle. Let us consider the two cases 
separately. 

(a) n=3.2k.  H e r e O ~ h s 2 " + ' + 2 ' " - 2 a n d  IE ,1=2k - ' -  I .  
I f  0 s b 2k - 1, let G5 = Ch = 2kC2x, G3 = (2"l - ~)C,A and GI + Gz + G, = 

K p t l -  F=U'Czk+hC,~t l .  
If 2 k - 1 s b s 2 h  + 2 k - '  - 1 ,  C;,=2kp1C2A+l, G , = ~ ' C ~ A ,  G 3 = ( 2 & - ' -  1)c:,x and 

GI + G? + G4 = K ~ A  4 I - F = u ' C p  + (6  - 2k--  ')C,A I .  

If 2h + 2 k - ' ~ b ~ 2 2 " ' 1 -  I ,  let G5=G(,=2h-1CzAtl, ~ ~ = ( 2 ~ - ' -  I)c '?A and 

Finally if 2 ! ' + ' ~  b < zh.+l + 2k-2 - 2, let GI = G2= C 3 =  (2 1)Cp and let 
the independent edges be El = E,! U Eywhere IE,'I = 2h-2 and IEYl = 2k-' - 1. Let 
(3, = (3, = (;h have a basic decomposition K p 2 k  = 2k-'C2A+ I .  Now switch on 
b - 3.2h+l of the cycles determined by E;  and E;,  and Gf,; E; ,  E;  and (3,; and 
E ; \  { c , } ,  E'; and G5. Care must be taken in positioning the basic cycles so that the 
switching operation is possible. Notice that one cycle of length 2k must remain. 

(b) n = 3 . 2 ' + 2 .  In this case O G b a 2 h - + ' + 2 " - ' +  I and I E l l = 2 " ' ,  lE21= 

( ; , + C , + C ~ = K , A ~ ~ - F = U ' C ~ ~ + ( ~ - ~ ~ ) C ~ A ~ I .  
h -  I - 

(E31 = 2h-l - 1 .  
I f O a b a 2 " + 1 ,  let (;5=(2k+2)Cp, Gf,=2'cCk, <i3=(2k-'-1)c,x and ( i l +  

G 4 + G 2 =  K~A,I+?- I ;=u'C: ,A+~C,A, I .  
1 f 2 ~ + 2 ~ / ) ~ 2 ~  + 2 " ' + 1 ,  let ~ ? = ( 2 ~ + 2 ) c , A .  G ~ , = ~ ~ ~ ' C ~ A ~ ~ ,  ~ , = ( 2 ' ! - ' +  

Finally, if 2+' + P+'+ I ,  let G, = (2"l + 1)czA, C, = I ; ,  = 

1)c2A and ( ; , + ( ; , + ~ ; , = K , A ~ ~ + L - F = a ' C 7 A + ( b - 2 / 1 ~ ' ) ~ L X , I .  
+ z h - '  + 2 s h 
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(2k- '  - I)Cp and let the independent edges be, respectively E l  = E ;  U E;' where 
[Ell = IE'J = 2k-2, and E, = E,' U E;, i = 2, 3, where IEl'I = 2k-2 and IEYI = 2k-2 - 
1. Let G, = G5 have basic decomposition K2k++2,2k = (2k-L + l ) c 2 k e l  and G, have 
basic decomposition K2k,2k = 2k -IC2ktl. Now switch on b - (zk + 2k-1  + 2) of the 
cycles determined hy E ; ,  E; and C,, E;,  E;  and G5, and E;,  EY and Gh. Again 
care must be taken when positioning the basic cycles. Note that there remains a 
C2k in GI .  0 

Theorem 3.10. K,, - F = aC2k + bCzmtl, k B 2 ,  if and only if ~2~ + b2"" = 
n(n - 2)/2. 

Proof. I t  is clear that if K, - F = aCp + bc2k+l, k 2 2, then ~2~ + b2k+"  = 

n(n - 2) /2  and from this it follows that n = 0, 2 (mod 2k).  
0, 2 (mod 2 k )  and ~2~ + b2k+' = n(n  - 2) /2 .  Let n = t2k or 

t2k + 2. If t = 1, 2, or 3 the decompositions K,, - F = aC2k + bC2r+l have all been 
determined in Lemmas 3.5 and 3.6, and Theorem 3.7, 3.8 and 3.9. We may 
therefore assume that t 2 4. 

If t is even, t = 2r ,  then we view K,, - F as in Fig. 24 where GI = K2kiI - F if 
n = 0 (mod 2h), G, = K2k+~+2 - F if n 3 2 (mod 2 k )  and G2 = G, = . . . = G, = 

Suppose that n 

Ky.1 - F. 
NOW G ~ = U I C ~ ~ + ~ I C ~ + I ,  G2=a2C21+b2C2~ti,. . . , G,=a,Cp+b,Cp+i and 

Kp+i+2 2 k + 1  = (2k+' + 2)Czk.l = (2k+2 + 4)Cp, 

that K 2 ~ + 1 , 2 ~ + i  =4K,k 21) and K?x+1+2,2k+i =2hf2Cp + ~ C ~ A + I  (from Theorem 3.1, 

KZk+tl,2kii = 2k+1Cyi I = 2k+2C2k, 
K2k+l,2A+l = (2h+2 - 4)C2k + 2C21iI (from Theorem 3.1, Lemma 3.3 and the fact 

Lemma 3.3 and the fact that K2k+~+2,2k+l = 2K2k,2~ + 2K2~+2,2k). Since each decom- 
position of G,, K 2 ~ t ~ 1 . 2 k 1 ~  and K2k+~+2,2k+~ can be chosen independently it is not 
difficult to see that all the required decompositions can be attained. 

If t is odd, t = 2r + 1, we again view K,, - F as in Fig. 24 except that in this case 
GI = K3 - F if n 5- 0 (mod 2'), and G, = K 3  2k+2 - F if n 3 2 (mod 2k) .  The proof 
now proceeds as in  the case when t is even except that we use K,2A,.2A+l = 

3.1, Lemma 3.3 and the fact that K, 2 k , 2 k t l  = 2K2r,,k + 2K2k 2141) and K, 21+2 I = 

(zk+' + 2k)C21+~ = (2k+2 + 2 k + " ) c 2 k ,  K3 2 k  ? x i 1  =2h+'c-p + 2cp1 (from Theorem 

(2k+' + 2k + 2)CzA t I = (2k+2 + zh-  I + 4)CzA. 

K - F =  
n 

Fig. 24 
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Note that there are many other decompositions of "the pieces" that can be 
used to obtain the final decompositions of K, - F. 

We have now completely solved the case when n is even and next we look at 
the case n odd. If K,, = C2A+ bC2r+1, then n = 1 (mod2kt1) .  I t  remains to 
construct the decompositions in these cases. We begin with the case n = 2h ' I + 1. 
This is the critical case as from it all other decompositions are easily constructed. 

Theorem 3.11. If u2' + h2'+' = 2h(2h+1 + I ) ,  then K2k4~+I  = uC2h + hC2rb1. 

In addition there is a decomposition K2h I = C 2 ~  + 2'C2h' I with a set of edges 
E = { e l ,  . , . , e2h, e }  s o  that each el is from a different cycle of length 2h 'I, e lies 
in C2k, E - { e }  is an independent set of edges and e is incident with exactly t w o  of 
the e,. Moreover, the cycle C,A contains at most one vertex from each e l ,  
1 s i s 2'. 

Proof. When k = 2, ~2~ + h23 = 4u + Xh = 36 implies u + 2b = 9 and the only 
possible decompositions are K,) = C ,  + 4C, = 3C4 + 3Cx = 5C4 + 2C, = 7C', + 
C, = 9C4. Letting V(K,)) = ( {  1 ,  2, . . . , 9)  the cycles are given by 

(a) Kc,=C4+4Cx:  ( 1 , 2 , 6 ,  S ) ,  ( 2 , 7 , 3 , 9 , 4 , 6 , 8 , 5 ) ,  ( l , 4 ,  7 , 9 ,  X,2, 3 , 6 ) ,  
( 1 , 7 , 5 , 3 , 8 , 4 , 2 , 9 ) a n d ( 1 , 3 , 4 , 5 , 9 , 7 , 8 ) .  Choosing E = { ( 4 , 6 ) ,  (2,X), ( l , 7 ) ,  
( 5 ,  9), e = ( 5 ,  6)} we see that this decomposition satisfies the requirements of the 
theorem. 

(b) K<,=3C4+3Cx:  (2, 3 , 4 , 5 ) ,  ( l , 7 , 9 , 8 ) ,  (1.9,  3 , 6 ) ,  (2 ,7 ,  3 , 8 , 4 , 9 ,  5 , 6 ) ,  
( I ,  2, 4, 7, 6 ,  8, 5 ,  3) and (1 ,4 ,6 ,9 ,2 ,X,7 ,5) .  

(2, 7, 3, 8, 4, 9, 5 ,  6) and (1 ,9 ,8 ,7 ,4 ,3 ,2 ,5 ) .  
(c) KY= 5C4 + 2Cx: ( I , 4 , 6 ,  X), (1, 2, 9 ,  3), ( I ,  6 , 9 , 7 ) ,  (3, 6, 7, S ) ,  (2, 8, 5 ,  4) ,  

(d) K,=7C,+ Cx: (1 ,6 ,7 ,  s), ( 1 ,  4, 6 ,  9), (1, 2, 9, 3) ,  (1, 7, 9, X), (2, 4. 3 ,  S), 
(2, 3, 6 ,  X), (4, 5 ,  8 ,  71, (2, 7, 3 ,  8, 4, 9, 5 ,  6). 

(6, 7, 4, X), (7, 8, 5 ,  91, (8 ,  9, 6, I )  and (9, I ,  7 ,  2). 
Suppose k b 3 ,  ~2~ + /?2h'1 = 2k(2h+1 + I )  and that a'2' + h'2"' = 2'(2'.'' + I ) ,  

t <  k ,  implies K2"1 = u'C7, + h 'Cz l i I  with the edges E and the cycle C'?, ;IS 
described above when u '  = 1 .  Consider Kzh4 I + ~  ;IS in Fig. 25. 

Let GI and G, denote the Kp,I with V(C; , )  = { x l , x L ,  . . . , xIA, m }  and 
L'(c&) = { y l ,  ~ 2 ,  . . . , Y ~ A ,  m } .  By the induction hypothesis thcrc is ;I decomposi- 
tion K 2 k  t l  = Czk I + 2h ~.I<.'p with a set of edges E and 1 as described. Denote 
this decomposition by 9. 

Suppose 0s h -S2h-1. Decompose GI as in 9 so that the cycle C,A I does not 
contain m ,  e = (XI ,  xz),  and e l  = ( x ? ,  x4). Decompose G2 as in 91 s o  that 
e = ( y I ,  y?) ,  el = ( y ~ ,  Y,) and the cycle represented here by e l  does not contain m. 

Clearly the cycles represented by "e" are vertex disjoint as are those represented 
by "el". 

(e) KI)=  9C4: ( 1 ,  2, 8 ,  3 ) ,  (2, 3 ,  9, 41, ( 3 ,  4, I ,  5 ) .  (4, 5 ,  2 ,  6 ) ,  ( 5 ,  6, 3, 7), 
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Z k + 1  
K 

Z k + 1  
K 

0- 

Fig. 25 

According to Lemma 3.3,  K2~.2k = sc2k + tc2k+1 where t = 2 [b/21.  Position this 
decomposition so that one cycle contains the edges (xI, y l ) ,  ( y , ,  x 2 ) ,  ( x 2 ,  y2), 

(y2, +), ( ~ 3 ,  YJ) ,  (y3, x4) and ( ~ 4 ,  y4). We now switch on the cycle ( x , ,  x 2 ,  y,, y,).  
If b is odd we also switch on the cycle ( x ? ,  x4 ,  y4, y3). This yields the required 
decompositions. 

Suppose now that 2k-1 S b 5 2k. Again using the induction hypothesis we 
position a decomposition 9 In C with cycles B , ,  B 2 ,  . . . , B2*- , ,  B so that 
( x 2 , - , ,  x2 , )  E E ( B , ) ,  1 d i d 2k-'  and (x2A-3, x2* - , )  E E ( B )  where B has length 2 k - 1  
and, moreover, V ( B )  c {x,, xJ, x 5 ,  . . . , x z k - , } .  

Let A = (a,) be a latin square of order 2k-1  with at least three pairwise disjoint 
transversals and T2 = 

{u Im( , ) :  1 S i S 2 k - ' ) .  Since 2k-' 3 4, these exist by [4]. Use Lemma 3.4 and A to 
construct a decomposition K ~ A  2~ = 2k-'C2*+~ with cycles H I ,  H2, . . . , H2k I .  Then 

(xZm(,) ,  Y ~ , , ~ , , )  are edges of H,, 1 S i S 2 k - ' -  1, and H 2 k  I contains the edges 

(Y;?,,,,,(,, - x2,,,(,)) and ( X * m ( r ) ,  Y2, ,,,, (,)), where d = 2U2k I , ~ *  I-, - 1 and i = 2k- l .  

7;) = {a,, = i : 1 S I S 2 k - L } ,  TI = {u,,(,) : 1 s i =s 2 k - 1 }  

(~21-1, ~ 2 r - I ) j  (YZI- I~ ~ 2 1 1 ,  ( ~ 2 1 9  ~ 2 0 ,  ( x , ( , ) ,  y*u,,(,J, (~2u,,~,~,)- l j  ~ 2 m ( r ) )  and 

(X2k-3 ,  Yd)t (Yd? X Z k - 2 1 7  (%-2 .  Yd+l), (Yd+l, -%-I),  (XZ",, Y*A-,), (X,,,) Y24,,,J, 

Note that: 
(1) the edges (x,,(,,, y,, ,,(,) ), 1 d i d 2k-1 are independent, 

(3) the edge (x,,,,), Y~,,,~,,) is disjoint from the vertices x2 , - ' ,  y2,-, ,  x2,  and y2,, 
for each i ,  1 S i d 2k+1 .  

Finally, in G2 - {w}, place the decomposition of K2' - F as described in 
Lemma 3.5 so that the cycles E l ,  E Z ,  . . . , E p  I-, of length 2k are represented by 
the edges (y2 , - , ,  y2,) E E l ,  1 si S 2 k - '  - 1, and the edges of F are ( y l ,  yd+, ) ,  

( Y ~ + ~ ,  yd+& . . . , (y2"4, y2k-4 and (y2kP2, y ,~)  where d =%A I 

(2) { Y k  ,,,, ( , ) - I ,  Y?,,,,,,(,,: 1 si  =s2k-I) = { Y l ?  Y 2 ,  . . . t Y2k) and 

(Y2, Y l ) ,  (Y4, Y5)1 . . . P (Yd-3, Y d - 2 ) ,  (Y&I> Y d + A  (Yd? Y2"--I)? (Ydf3, Yd+4)1 
- 1. 

We must now bring together all the cycles described and the edges (m ,y l ) ,  
1 d i < 2&, for the desired decompositions. 

edges (y2u,,,tl,l-l, w) and (m, Y~~, , ( , ) ) .  The new cycles H,' have length 2 k c l .  
In H,, 1 s i s 2 k - '  replace the edges (Y2u,,"(,)-1 7 x2m(l , )  and ( X Z n l ( , ) ,  Y2u,,,,,,)> by the 
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The edges { ( ~ 2 ( , , , , , ( , ) - ~ ~  ~2,,ldt ( ~ 2 , , , ( , ) ,  Y ~ ~ ~ , , , , , , ) ) :  1 i s 2 ' - ' )  together with the 
edges of F form a cycle S of length 3.2k-'. (To see this consider the union of F 
and the edges representing the E l ,  1 d i <2k-1  - 1 . )  This cycle contains the 
vertices { y l ,  y2, . . . , Y p ,  x2, x4, . . . , X z k }  and so is disjoint from the cycle B (of 
length 2 h - 1 ) .  Using B and S and the cycle H$ I ,  and switching on the cycle 
( X 2 k -  I, X 2 k - 3 ,  y,, Y,XL I )  we replace B and S by a cycle W of length 2k+'  and obtain 
&k I .  We currently have a decomposition K,k+,+, = ( P  - 1 ) c 2 k +  ( P - '  + l ) c z k +  I 

and now wish to switch on B , ,  El and H,', 1 4  i - 1, using the cycle 
(x , , - , ,  x,,, y,,, Y , , - ~ ) .  Doing these switchings one at a time enables us to get all 
decompositions K2kB I + '  = d 2 h  + h C 2 k + l ,  2h- I + 1 4 b 4 2k. (Note that the 2k-cycle 
B 2 k  I remains unchanged.) 

However, we still need to show that the decomposition K , ~ + I + ~  = C,X + 
(2k - 1)Cp I obtained in this way satisfies the induction hypothesis. 

Represent the cycles obtained by switching on B, and El by the edge 
(x , , - , ,  y, ,_,) ,  1 d i s 2h-1 - 1 .  Represent the cycles HIf, but with H ' ; k  I instead of 
Hi.4 I ,  by the edge (x,,,,, Y,~,,,,), 1 4 i 4 2 k - ' .  Represent W by the edge 
( X 2 k - 1 ,  y , k - , ) .  These edges are clearly all independent. The cycle of length 2/' is 
the cycle Bp I which can be represented by the edge ( x z k - l ,  x p )  and the vertices 
of which occur in two of the independent edges already chosen, as required. 
Finally, since B2h I has all of its vertices in the set {m, xI, x , ,  . . . , x p }  it clearly 
ha5 at most one vertex in common with each of the edges representing the cycles 
of length 2 k + 1 .  This completes the proof. 0 

Theorem 3.12. K,, = aC2h + bC2kt I, k 2 2 ,  if and only if ~2~ + b2h'1 = 

n(n - 1)/2. 

Proof. Clearly, if K,, = UC2k -t h C , k + I ,  k 2 2, then ~2~ + b2k+1 = n(n - 1)/2 and 
hence n = I (mod 2 k + ' ) .  

1 (mod 2k+')  and ~2~ + t12~+' = n ( n  - 1)/2. Let n = t2' ' I  + 1 
and note that a = I (mod 2). When t = 1 the decompositions are constructed in 
Theorem 3.11. Assuming t > 1 view K,, as in Fig. 26 where GI = C, = . . . = G, = 

Suppose that n 

K2k4 ' + I .  

Fig. 26 
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Since K 2 ~ + 1 , 2 ~ i ~  = 2k+'C2k+~ = 2k+2C2x and each G, can be decomposed independ- 
ently, then, using Theorem 3.11, it follows that we have decompositions 
K, = aC2k + hC2k4 I provided a b t (each GI decomposition has a cycle C2k). When 
a < t let G, = C2k + 2kG2k++, and in each, position the cycle of length 2k so that it 
does not contain vertex m, and so that when basic decompositions K 2 k + ~ , 2 ~ + ~  = 

2k+'C2k, I are chosen between G2,-,  and GZl, 1 =s i S [t/2], a switch is possible so 
that the two cycles of length 2k become one of length 2k+'. 0 

Acknowledgements 

The research of the first and the third author were supported by the Natural 
Sciences and Engineering Research Council of Canada under grants No. A7829 
(K.H.) and A7268 (A.R.). This research was done while the second author was 
visiting McMaster University; he would like to thank the Department of 
Mathematics and Statistics for its hospitality. 

References 

[I] B. Alspach, Research problems, Problem 3, Discrete Math. 36 (1981) 333. 
[2] B. Alspach, J.-C. Bermond, K. Heinrich, A. Rosa and D.  Sotteau, A survey of cycle 

[3] T. Beth, D. Jungnickel and H. Lenz, Design Theory (Bibl. Inst., Zurich 1985). 
[4] R. C. Bose, S. S .  Shrikhande and E.T. Parker, Further results on the construction of mutually 

orthogonal latin squares and the falsity of Euler's conjecture, Canadian J. Math. 12 (1960) 

[5] H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975) 

[6] E. Mendelsohn and A.  Rosa, Embedding maximal packings of triples, Congr. Numer. 40 (1983) 

[7] R. Rees and D.R. Stinson, On resolvable group-divisible designs with block size 3, Ars 

[8] A. Rosa, Alspach's conjecture is true for n 10, Math. Reports, McMaster University (to 

(91 A. Rosa and D. Hoffman, The number of repeated blocks in twofold triple systems, J. Combin. 

[lo] D. Sotteau, Decomposition of K,,,,  ( K z , , )  into cycles (circuits) of length 2k, J .  Combin. Theory 

[ l l ]  H.C. Sun. On the cycle decomposition of complete graphs (Chinese), Nanjing Daxue Xuebao 

decompositions (to appear). 

189-203. 

255- 369. 

235-247. 

Combinatoria 23 (1987) 107-120. 

appear). 

Theory (A) 41 (1986) 61-88, 

(B) 30 (1981) 75-81. 

Ziran Kexue Ban 21 (1985) 421-426. 



This Page Intentionally Left Blank



Discrete Mathematics 77 (1989) 123-135 
North-Holland 

123 

SOME SELF-BLOCKING BLOCK DESIGNS 

Dieter JUNGNICKEL 
Mathernalirchr.~ Insritut, Jus t ro  -Licbig-Universiiui Giessen, A rtrdtstr. 2, D-6300 Giessen. 
F: R. Germany 

To Haim Hanani on the occasion of his 75th birthday. 

Let D be a block design which has a blocking set. We call D self-blocking if the following 
two conditions hold: (i) The committees of D (i.e. the blocking sets of minimum cardinality of 
D) form a block design, which we denote by Dc' and (ii) The committees of D' are precisely 
the blocks of I). (We also say that D and DC' are a pair of mutually blocking block designs, 
then.) We show that the classical projective planes PG(2, 4') are self-blocking; thc same holds 
for PG(2,3) and PG(2.S) as  well as for thc classical affne planes AG(2,4) with 4 3 4. 

1. Introduction 

Let D be a finite incidence structure. A subset S of the point set P of D is 
called a hitting se/ for D ,  if S meets every block of D. If moreover S does not 
contain any block of D, S is called a blocking set for D .  There are incidence 
structures not containing any blocking set; for instance, this holds for every 
Steiner triple system (see Drake [15]). We shall only consider structures D 
admitting a blocking set in this paper. Then the blocking sets of smallest 
cardinality will be called the commiftees of D (following Hirschfeld [16]). 

Blocking sets arose in the theory of games, cf. Richardson [19], and have been 
studied extensively. The systematic investigation of blocking sets begins with 
Bruen's papers [6, 71 on blocking sets in projective planes. Later blocking sets in 
more general incidence structures were studied, in particular in affine planes (see 
Bruen and Silvernian [lo]), in general block designs (see de Resmini [14] and 
Drake [15]) and in ( r ,  A)-designs (see Jungnickel and Leclerc [18]). 

In the present paper, we shall consider blocking sets in  block designs and 
introduce a new type of question about these structures. Let D be a block design 
admitting blocking sets. We denote by Dc' the incidence structure formed by all 
committees of D (on the point set P of D). Our first condition will be as follows: 

(1) The incidence structure Dc formed by the committees of D is a block 
design. 
Note that this situation will arise quite often. (1) is certainly satisfied whenever D 
admits a 2-transitive automorphism group. We shall call D a self-blocking block 
design if it satisfies (1) and also the following condition (2). 

(2) D' admits blocking sets, and one has ( D O c =  D; in other words, the 
committees of Dc are precisely the blocks of D (and vice versa). 

0012-365X/89/$3.50 0 1989, Elsevier Science Publishers B.V. (North-Holland) 
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In this case, we shall also say that D and D” form a pair of mutually blocking 
block designs. The characterisation of all self-blocking block design seems to be a 
very hard problem, as we shall see. Our main result will be as follows. 

Main Theorem. The Desarguesiun projective plunes PG(2, q‘) und the Desar- 
guesian ufine planes AG(2, 9) (with q 4) are self -blocking block designs ( for  
every prime power 4 ) .  

By a famous result of Bruen 171, the committees of PG(2, 4‘) are exactly the 
Baer subplanes. Thus the first half of our Main Theorem will be an immediate 
consequence of the following slightly stronger assertion: Every subset of 
PG(2,q’) which meets every Baer subplane has at least q 2 +  1 points; equality 
holds if and only if the subset is a line. We shall also use this result to study, more 
generally, the Baer subplanes of PG(n, 9’). Finally, we shall also show that the 
designs PG(2,3) and PG(2,5) are self-blocking. 

I t  should be mentioned that a related question is studied by Cameron and 
Mazzocca [12]. These authors prove that the smallest hitting sets of the incidence 
structure D” formed by all blocking sets of D are the lines, whenever D is a 
projective or affine plane containing blocking sets. Since most blocking sets do 
not contain a committee, this result is - though of a similar flavour - not related 
to our results. (Our Main Theorem is stronger, but it only applies for the planes 
PG(2, q2) , )  I n  a sequel to [12], Cameron et al. [I31 study those sets hitting every 
blocking set of D which do not contain a line of D (the so-called dual blocking 
sets of D ) .  

We refer the reader to Beth et al. [I] for background from Design Theory and 
to Beutelspacher [ 3 ]  and Hirschfeld [16] for background on blockings sets in 
projective planes and spaces. 

2. Preliminaries 

In this section we shall collect some well-known preliminary results on hitting 
sets and blocking sets of projective planes. The following simple lemma 
characterizes the smallest hitting sets: 

Lemma 2.1. Let D be u projective p l u m  of order ri ,  and let S be N hitting .set for 
D .  Then IS1 2 n + 1 ; equality holds if and only if S is u line of D. 

We next state a fundamental result of Bruen [7] which gives a lower bound for  
the size o f  a blocking set in a projective plane of order I I  and which implies a 
characterisation of thc committees of PG(2, 4’). Bruen’s original proof was 
somewhat involved; a simpler proof was given by Bruen and Thas [ 111. An even 
simpler version is a special case of a proof given in Jungnickel and Leclerc [ 1x1 
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where Bruen's result was generalized to (r ,  A)-designs following a previous 
generalization to symmetric designs, due to de Resmini [14] and Drake [15]. A 
similar proof is also contained in Bruen and Silverman [lo]. 

Theorem 2.2 (Bruen). Let D be a projective plane of order n ,  and let S be a 
blocking set for D. Then IS1 3 n + fi + 1 ; equality holds if and only i f  S is a Baer 
subplane of D. 

Corollary 2.3 (Bruen). The committees of the Desarguesian projective plane 
PG(2, q2) (q  a prime power) are precisely the Baer subplanes. 

Writing D = PG(2, q2) ,  we thus have that the blocks of D" are just the Baer 
subplanes of D. Since D has a 2-transitive group, it is clear that Dc is a design 
(and thus D satisfies condition ( 1 ) ) .  We compute the parameters of Dc: 

Proposition 2.4. L.et D = PG(2, q2) ,  q a prime power. Then the incidence 
structure Dc (the blocks of which are the Baer subplanes of D )  is a block design 
with parameters 

v = q4 + q' + 1 ,  

r = ( q 2  + l)q'(q + 1) 

k = q2 + q + 1, b = q3(q2 + l)(q'+ l ) ,  
iind A = q2(q + 1)2. 

Proof. The number b of Baer subplanes of PG(2, q2) is well-known, see e.g. 
Hirschfeld [16, p. 881. (Since each quadrangle of D determines a unique Baer 
subplane this can be easily checked by the reader.) Then r is determined from 
vr = b k ,  and A is obtained from A(v - 1) = r ( k  - 1 ) .  0 

It is our aim to show that Dc' also satisfies condition (2), i.e. that the blocking 
sets of Dc are the lines of D. We remark that the bounds of Drake [15] and of 
Jungnickel and Leclerc [18] yield only weak results here. The best result which 
can be obtained by standard inequalities seems to be the following: It is known 
that the minimum size of a blocking set S satisfies s 3 r / A  (see Jungnickel and 
Leclerc [IS]), which here results in the bound s 2 q2 - q + 1. Thus we require 
special arguments. 

3. Sets meeting all Baer subplanes of PG(2, q2)  

In this section wc shall prove that a hitting set S for the design Dc' of 
Proposition 2.4 has at least q2 + 1 points (with equality if and only if S is a line of 
PG(2, 4')). We will proceed by first proving the following result complementing 
Lemma 2.1: 

Proposition 3.1. Let D be a projective plane of order n ,  and let S be a set of at 
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most n + 1 points of D .  Then one has one of the following alternatives: 

There are three non-concurrent lines L,  L ' ,  L" which are disjoint from S .  

S contains n collinear points. 

(3) 

(4) 

Proof. Assume that both (3) and (4) fail. Let C be a line that meets S in at least 
two points. Since (4) fails, there are two points x ,  x '  in G\S. Then x and x '  are 
on lines L and L' disjoint from S, as (SI d n + 1. Since ( 3 )  fails, every line must 
contain a point of S U { p }  where p = L fl L'. Considering the lines through x one 
sees that IS1 = n + 1. Thus some l ine H through p meets S in two points. Choose a 
point 4 in H\(S U { p } ) .  Then 4 lines on a line L" disjoint from S U { p } ,  a 
contradiction to the assumption that (3) fails. 

Theorem 3.2. Let S he a set of points of PG(2, 4*) which meets every h e r  
subplane. Then IS1 2 y 2  + 1, and equality holds if and only if S is a line. 

Proof. We may assume that IS1 6 4* + 1; the assertion is that S is a line, then. 
Assume otherwise. By Proposition 3.1, there are two cases to be considered. 

Case 1. There are three non-concurrent lines L, L ' ,  L" which are disjoint from S .  
Let p ,  4 ,  r be the  three points of intersection of these lines, and write 
T = L U L ' U  L". Then each point not in T forms together with p ,  q,  r a 
quadrangle and thus determines a unique Baer subplane of PG(2,q')). Each such 
Baer subplane contains exactly (4  - 1)' points not in T ;  thus there arc (4 + I )*  
Baer subplanes containing p ,  4 ,  r ,  and these subplanes split the points off T into 
(4  + 1)' sets of (4 - I ) *  each. Since S n T = B and since I S (  s 4* + 1, S cannot 
meet all these Baer subplanes, a contradiction. 

Case 2 .  S consists of n points of a line L and, possibly, of one further point p not 
on L. Denote the unique point of L not in S by r ,  and note that Aut PG(2, q 2 )  is 
transitive on triples ( L ,  p ,  r )  with r E L and p @ L ,  sincc it is transitive on 
triangles. Choose any Baer subplane B ,  and let L' be a line meeting R only once, 
say in r ' .  Moreover, choose a point p '  not in B' U L' .  Mapping ( L ' ,  p ' ,  r ' )  onto 
( L ,  p ,  r ) ,  we obtain a Baer subplane disjoint from S ,  a contradiction. 0 

Theorem 3.2 shows that the smallest hitting sets f o r  the design D' defined in 
Proposition 2.4 are the lines of the original design D = PG(2, y 2 )  Since no line 
contains a Baer subplane, we see that these hitting sets are in fact the corninittees 
of D"; thus D' satisfies condition ( 2 )  and we have proved the first half of our 
principal result: 

Theorem 3.3. The Desurguesiun projective plane PG(2, q') ( 4  a prime power)  is a 
self-blocking block design. 
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We shall consider some other designs in the following sections. But first we 
mention the following consequence of Theorem 3.3. 

Corollary 3.4. Let D = PG(2, y2) and Dc as in Proposition 2.4. Then Aut D = 

Aut Dc. In other words: Any bijection of the point set of PG(2, q2 )  which maps 
every Baer subplane onto a Baer subplane is a collineation of PG(2, q2 ) ,  i.e. a 
member of PTL(3, 4’). 

Cameron and Mazzocca [12] have shown that any bijection of a projective 
plane of order 2 2  which preserves blockings sets is in fact a collineation. Corollary 
3.4 strengthens this result for the planes PG(2, 9’). As already mentioned, the 
main interest in the sequel [13] is in sets meeting each blocking set of a projective 
plane and not containing any line. This leads us to the following problem. 

Problem 3.5. Let S be a set of‘ points of PG(2, q2)  meeting every Baer subplane 
and not containing any line. What is the minimum size of S? (Note that such sets 
exist: The simplest example is the complement of a line.) 

4. Committees of PG(n, 4’) 

In this section we shall briefly consider the symmetric design PG,,_,(n,  q )  with 
n 2 3, the blocks of which are the hyperplanes of PG(n, 4). By the theorem of 
Bose and Burton [ 4 ] ,  the committees of this design are the lines (if we use the 
standard definitions for arbitrary incidence structures given above). Thus we 
would have Dc = PG, (n ,  q )  for D = PG, - , (n ,  q). Clearly Dc is a design, and the 
hitting sets of minimal size of Dc are the hyperplanes, i.e. the blocks of D (again 
using the theorem of Bose and Burton (41). However, D is not self-blocking, 
since the hyperplanes are not blocking sets of Dc (they contain lines). 

Since the correspondence between lines and hyperplanes sketched above is 
somewhat trivial, Bruen [8 ]  and Beutelspacher [2 ]  have suggested to impose the 
stronger condition 

(*) S meets every hyperplane, but S contains no line 

to define blocking sets in PG(n, 4). To avoid confusion, we shall call such a set S 
a strong blocking set. Using Corollary 2.3 as the starting point for an induction 
argument, one can prove the following result. 

Theorem 4.1 (Bcutelspacher (21, Bruen (81). Let S be a strong blocking set of 
PG,- , (n,  4). Thtw one has IS1 S q  + G+ 1; equality holds if and only if S is a 
Baer subplane of some plane of PG(n, 4). 
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Thus the strong committees of PG,- , (n,  q2) are the Baer subplanes of the 
planes of PG(n, 4'). Clearly all these Baer subplanes form a block design; we will 
not bother determining its parameters. We shall now show that Theorem 3.2 may 
be used to obtain a lower bound on the cardinality of hitting sets for this design. 

Theorem 4.2. Let S be a subset of PG(n, q) ,  q a square, which meets every Baer 
subplane. Then IS( b q'l-' + . . + q + 1. 

Proof. We use induction on n ;  the case n = 2 is true by Theorem 3.2. Now 
assume that the assertion holds for n - 1, where n b 3. Let H be any hyperplane 
of PG(n, q ) ,  and put S,, = S  n H .  Clearly S ,  meets every Baer subplane of 
PG(n, q )  contained in H. Since H is isomorphic to PG(n - 1, q ) ,  we obtain 
lSf,l 2 q"-* + . . + q + 1. Now count flags ( p ,  H) where p is a point in S and H a 
hyperplane to obtain 

(4" + - * + q + l)(q"-Z+ . . * + q + 1) s IS( (q"- '  + . . . + q + l), 

IS1 b q ' 1 - Z  + . . * + q + 1 + q'l(q'I-2 + * . * + q + I)/(q"- '  + * . + q + 1) 

hence 

which gives the assertion. 0 

We have not been able to characterize the case of equality in Theorem 4.2.  
Note that the hyperplanes do give examples, but there might be other ones. Of 
course, the hyperplanes are not blocking sets of the design formed by the Raer 
subplanes of PG(n, q ) ,  q a square, and thus PG,,- , (n,  q )  is not self-blocking for 
n b 3, no matter whether one considers ordinary or strong blockings sets. We 
conclude this section with the following conjecture. 

Conjecture 4.3. Let S be u subset of PG(n, q) ,  q a square, which meets every Boer 
subplane. Then IS1 = q'l-' + . . . + q + 1 if and only if S is u hyperplane. 

5. Committees of P G ( 2 , 3 )  and PG(2,S)  

In this section we shall show that P G ( 2 , 3 )  and PG(2,S)  are self-blocking. First 
let D = PG(2,3) .  It is known that the committees of D are precisely the projective 
triangles, see Hirschfeld [ 16, Th. 33.4.41. This means the following (cf. Fig. 1 ) .  A 
committee consits of a triangle p I ,  p 2 ,  p 7  and of three collinear points q l ,  qZ ,  q,, 
where qf is on p,pk ( i ,  j ,  k a permutation of 1, 2,  3). Note that the line q l q 2 q 3  
contains a unique fourth point q4 (which forms a quadrangle together with the 
pf's) and that the line joining the 4,'s is the unique line through q4 not containing 
any p,. So in fact the committees of D are determined by the quadrangles with a 
distinguished point q4. This shows that any triangle p I p z p 3  is contained in 
precisely four committees as the complement of a collinear triple. But since the 
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Fig. 1 

triangle p,q,qk together with the fourth point on p,pkq, determines the same 
committee as pIp2p1 and q4, each committee contains four triangles as the 
complement of a collinear triple. Thus the number of committees agrees with the 
number of triangles. Hence D'' is a block design with parameters 

v =  13, b = 2 3 4 ,  k = 6 ,  r = 1 0 8  and A=45. 

Note that PGL(3,3) acts transitively on committees. 
We now claim that the blocking sets of Dc have size at least 4, and that 

equality occurs only for the lines of D. (Clearly the lines of D are blocking sets 
for D'.) Thus let S be a blocking set of D' and assume ISI. < 4. We have to show 
that S is a line. This is accomplished by proving that any other configuration of at 
most 4 points will be disjoint from a suitable committee. Because of the 
transitivity properties of PGL(3, 3) it is clearly sufficient to consider a committee 
and to show that every type of configuration of at most 4 points is contained in its 
complement, excepting lines. This can be seen by elaborating Fig. 1 (see Fig. 2). 

p 1 p 3 ,  f = ae n p l c .  This gives most of PG(2,3),  and the complement of our 
committee contains both the quadrangle abeq, and the three collinear points bde 
together with the point a not on bde. This proves the assertion. We collect our 
results: 

Let a = p l q 4 n p 2 p 1 ,  b = p , p , n a q , ,  c = a b n p , q , ,  d = b q , n p , a ,  e = b q l n  

Theorem 5.1. Let D = PG(2, 3). Then Dc is a design S,,(2, 6 ,  13), and the hitting 
sets of minimal size of D c  are lhe lines of D .  Thus D is self-blocking. 

Fig. 2. 
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Fig. 3 

We now turn our attention to the case D = PG(2,5). Here the committees are 
determined by a conic C together with two points p and q on C as follows (cf. 
Hirschfeld [ 16, Th. 13.4.71). Let r be the point of intersection of the tangents at C 
in p and q,  and let L = p q .  

Then S = (C U L U { r } ) \  { p ,  q }  is a committee. Note that PGL(2,5) is transi- 
tive on committees. Cf. Fig. 3. Clearly the committees form a design D'.; the 
determination of its parameters will be omitted. One can then use arguments 
similar to those for PG(2,3) to show that the smallest hitting sets of D" are the 
lines of D. The case analysis is, however, more involved. We omit all details and 
just state the following result. 

Theorem 5.2. PG(2, 5)  is a self-blocking block design. 

In the light of Theorems 5.1 and 5.2, the following problem is natural: 

Problem 5.3. Is PG(2, q )  self-blocking for all prime powers q? 

Since at present not even the committees of PG(2,4) are known (unless q is a 
square or very small), there seems to be no hope of solving this problem with the 
present methods. David A. Drake has shown that PG(2,7) is also self-blocking 
(private communication). 

6. Committees of AG(2, q )  

In  this section we discuss the committees of the Desagruesian affine plane 
AG(2, q ) ,  where q 3 4. (It is well known that AG(2,2) and AG(2,3) do not 
contains any blocking sets.) We first recall the following fundamental result of 
Jamison [ 171. 

Theorem 6.1 (Jamison). Let S be u hitting set of AG(2, q ) .  Then 1st 3 2q - 1. 

A somewhat simpler proof of 6.1 is given in Brouwer and Schrijver [ 5 ] .  It 
should be noted that 6.1 does not hold for non-Desarguesian affine planes, see 
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Fig. 4. 

Bruen and de Resmini [9]. For example, the Hughes plane of order 9 gives rise to 
an affine plane of order 9 containing a blocking set with 16 points only. 

Unfortunately, the case of equality in Theorem 6.1 has not been characterised. 
In fact it seems that the committees of AG(2, q )  have not been discussed in the 
literature up to now (except for q =4). As we shall see, the case q = 4 is 
exceptional. We thus start by exhibiting three classes of committees of AG(2, q) ,  
where q 2 5. 

Example 6.2. Let q 2 5  be a prime power, and let D =AG(2,q).  Choose a 
triangle p,  q, r and put L = p q ,  L' = qr .  Let s be the intersection point of the 
lines parallel to L (resp. L ' )  passing through r (resp. p) ,  and let t be any point 
fp ,  r on pr. Then S = ( L  U L' U {s, t } ) \  { p ,  r }  is a blocking set of cardinality 
2q - 1 and thus (by 6.1) a committee of AG(2, q). Cf. Fig. 4. 

Example 6.3. Let q b 5 be a prime power, and let D = AG(2, q). Choose a q-arc 
C meeting each line in the parallel class of some line L. (C  is a parabola obtained 
from a conic in PG(2, q ) ,  where we take a tangent as line at infinity.) Let 
p = C II L,  and choose a point r # p on the tangent at C through p .  Then 
S = (C U L U { r } ) \ {  p }  is a blocking set of cardinality 2q - 1 and thus a 
committee of AG(2, 4 ) .  Cf. Fig. 5. 

Example 6.4. Let 9 be any prime power 2 3  and consider a Baer subplane B of 
PG(2, q2) .  Choose a tangent line L ,  of B and use this line in defining the affine 

Fig. 5. 



132 D. Jungnickel 

Fig. 6 

plane AG(2, 4'). Denote the point of intersection of B and L, by p and write 
B' = B\{p} .  Then the subset B' of AG(2, 4*) meets every linc of AG(2, 4*) 
excepting the 4* - 4 - 1 further tangents of B through p .  Select one point on each 
of these tangents (arbitrarily, but not using 4' - 4 - 1 collinear points). Adjoining 
these points to B' then results in a committee S of AG(2, 4'). Cf. Fig. 6. 

Problem 6.5. Determine all committees of AG(2, 4), where q 2 5.  

Since we do not know whether there are any committees of AG(2, 4 )  different 
from those described in 6.2, 6.3 and 6.4. we cannot compute the parameters of 
the design D" formed by the committees of D = AG(2, 4 ) .  However, D" clearly 
is a design, since Aut AG(2, 4) is 2-transitive. 

We now consider the case 4 = 4. Note that the constructions of  6.2, 6.3  and 6.4  
do not necessarily result in blocking sets here but only in hitting sets: In 6.2, S 
may contain the line st, in 6.3, the point r may be on a line contained in S. We 
first exhibit a class of blocking sets of size 8 (which is a special case of blocking 
sets used by Cameron and Mazzocca [ 121). 

Example 6.6. Let L and L' be two parallel lines of AG(2,4),  and choose points p 
and p '  on L and L ' ,  respectively. Let r ,  s be the remaining two points on the line 
p p ' .  Then S = ( L  U L' U { r ,  s } ) \ { p ,  p ' )  is a blocking set of size 8. Cf. Fig. 7. 

There is some confusion in the literature regarding the size of the committees 
of AG(2,4). By Theorem 6.1,  each hitting set has at least 7 points. Now Bruen 
and Thas [ 1 I ]  claim that it is easy to construct a blocking set of size 7 in AG(2,4)  
by using a Baer subplane of PG(2,4). On the other hand, Bruen and Silverman 

Fig. I 
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prove the following result in [ 101: 

If S is a blocking set in  an affine plane of square order n,  

then IS1 2 n + I& + 2. ( 5 )  

(Note that this result has been misquoted in [9] where the condition that n is a 
square was omitted.) We shall provide a proof at the end of this section. Note 
that (5) implies that any blocking set of AG(2,4) has at least 8 points, We shall 
now give a proof of  this fact and also determine the structure of these sets. More 
precisely, we show the following: 

Proposition 6.7. All blocking sets of AG(2, 4) have 8 points and arise as described 
in Example 6.6. 

Proof. Let S be a blocking set of AG(2,4); as already noted, 6.1 implies IS( 2 7. 
Assume that IS[ = 7. Embed AG(2,4) into the projective plane PG(2,4) and add 
any point p on the line at infinity to S. This results in a blocking set S ’  of size 8 of 
PG(2,4). Now Theorem 3 of Bruen and Thas [ 111 yields two possible cases: 

Case 1. S’  is a Baer subplane B of PG(2,4) together with a further point 4. 
Clearly 4 is one of the points of S ,  since B has to meet the line at infinity (in p ) .  
Thus the point 4 has to be on the second line of PG(2,4) which meets B exactly 
in p .  But this line is met by each of the four lines of B not containing p ,  and so q 
is on one of these lines. Thus S contains a line of AG(2,4) passing through 4, a 
contradiction. 

Cuse 2. There is a triangle p ,  y, r and a point s on 4r, such that S’ = ( p 4  U p r  U 

{s})\ (4 ,  r}, see Fig. 8. Note that p is indeed on the line at infinity. Thus the lines 
p q  and pr are parallel in AG(2,4), and S does not meet one of the parallels of 
these two lines, a contradiction. 

This shows that each blocking set of AG(2,4) contains at least 8 points. Since 
the complement of a blocking set is also a blocking set, we see that all blocking 
sets of AG(2,4) have size 8. Standard counting arguments show that b7 = b ,  = 8 
and b 2 = 4  where bl is the number of i-secants of a blocking set S (i.e., of lines 
that meet S in exactly i points). Thus some parallel class of AG(2,4) contains two 
3-secants of S. It now follows easily that S is of the type of Example 6.6. 0 

A Fig. 8 .  
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Corollary 6.8. Let D = AG(2, 4). Then the committees of D form a resolvable 
design D c  with parameters 

v = 16, b = 120, k = 8, r = 60 and h = 28. 

Proof. Left to the reader. 0 

We conclude this section by proving ( 5 ) ;  our proof will be different from the 
one in [lo]. Let A be an affine plane of order n, where n is a square, and let S be 
a blocking set of A.  Bruen and ThaS [ 111 show that (SI 3 n + fi + 1. (It is in fact 
easy to deduce this from Theorem 2.2: Adding a point on the line at infinity to S 
results in a blocking set of the projective extension P of A . )  Assume now 
IS1 = n + fi + 1. Arguing as in the proof of 6.7, we get a blocking set S' of P 
with IS'[ = n + fi + 2. We may assume n > 4; then only Case 1 above can occur 
(see [ l l ,  Th. 3 ] ) ,  and we obtain a contradiction as above. Thus we have: 

Theorem 6.9 (Bruen and Silverman). Let S be a blocking set in an afine plane of 
order n ,  where n is a square. Then J S I  3 ti + fi + 2. 

7. Sets meeting all committees of AG(2, 4 )  

In this section we prove our second principal result: 

Theorem 7.1. Let D = AG(2, 4 ) ,  4 3 4, and let S be a set o f  points o f  D which 
meets every committee. Then IS1 2 4 ,  and equality holds if and only if S i s  u line 
of D. 

Proof, We first assume 4 2.5. Assume that S meets all committees of I), where 
IS1 6 4 ,  We have to show that S is a line, then. In fact we will prove that this 
assertion already follows from the assumption that S meets all committees of the 
type described in Example 6.2. To this end, we consider S as a subset of the 
projective extension PG(2, 4 )  of D. By Proposition 3.1, we see that either S is a 
line of AG(2, 4 )  o r  that there are three non-concurrent lines of PG(2, y )  which 
are disjoint form S. We have to show that the second alternative is impossible. 
Assume otherwise; then there are two intersecting lines L and L' of D which are 
disjoint from S. We can choose any one of the 4 ' -  24 + 1 points outside o f  
L U L' as the point .s described in Example 6.2 by suitably selecting the points p 
and r on L and L ' ,  respectively. Thus there are at least 42 - 34 + 1 choices of s f o r  
which s 4 S. A computation shows that we may then select s in such a way that 
there is a point f on pr which is not contained in s. But this means that S misses 
the committee just constructed, a contradiction. 

It remains to consider the case 4 = 4. The committees of AG(2,4) have been 
determined in Proposition 6.7 (see Fig. 7). Clearly the complement o f  thc 
committee given in Fig. 7 contains all types of configurations of at most 4 points, 
excepting the lines. Using the transitivity properties of Aut AG(2,4)  this will 
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yield the assertion (cf. the analysis for PG(2,3)). The details are left to the 
reader. 0 

Corollary 7.2. The Desarguesian afine plane AG(2, 9 ) ,  9 2 4, is a self-blocking 
block design. 
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There are exactly 16 non-isomorphic Steiner systems S(2, 4, 25) with nontrivial autoniorph- 
ism group. It is interesting to  note that each of these designs has an automorphism of order 3. 
These 16 designs are presented along with their groups and other invariants. In particular, we 
determine and tabulate substructures for each of the sixteen designs including Fano subplanes, 
ovals, complete 5-arcs, parallel classes and near-rcsolutions. One  design has three mutually 
orthogonal neai-resolutions and this leads to an (already known) elliptic semiplane. The 
sixteen designs are discriminated by means o f  the substructures mentioned above. Although 
not tabulated in this paper, we did compute the block-graph invariants which also discriminate 
the sixteen designs. 

1. Introduction 

A Steiner system S(t, k, v )  is an ordered pair (X, B) where X is a v-set of 
points and B a collection of k-subsets of X ,  called blocks, such that any t-subset 
of X appears exactly once among the blocks in B. For details and basic facts on 
Steiner systems and t-designs see [2, 91, or [15]. 

If H is a group of automorphisms of a t-design (X, B) let XI ,  X 2 ,  . . . , X,, be 
the point-orbits and 01, O,, . . . , 0, be the block-orbits of H .  We define the 
tactical decomposition of (X, B) with respect to H to be the m x n matrix 
TH = ( t l , )  where t,, = ] X I  n BI with B E 0,. When u is an automorphism of the 
design (X, B) we let 7;, be the tactical decomposition of the design with respect to 
the cyclic group generated by u. For a more general and detailed treatment of 
tactical decompositions see [2]. 

Let r be the number of blocks passing through any given point of X and A = A2 
the number of blocks passing through any pair of points of X. If A = (a,) denotes 
any point-block incidence matrix of (X, B), then easily 

AAT = AJ + ( r  - A)], AJ = rJ 

0032-365)3/89/$3.50 0 1989, Elsevier Science Publishers B.V. (North-Holland) 
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where I, J are the identity and all ones matrices. We immediately get: 

tiys,, = rr;, tjytjc,sy = Ariq, 
y = l  y = l  

wherer,=IX,J,.s,=10,1 and l s i ,  j s m ,  i # j .  
The block-intersection graph of the design (X, B) is the graph whose vertices 

are the blocks of E ,  where two blocks B ,  and B2 are adjacent whenever 
B,  n B2 # 0. For a given vertex v ,  let n, be the number of pairs of it, ii different 
from v such that exactly j other vertices are simultaneously adjacent to v ,  13, ii. 
The matrix of row vectors ( a  , n,, . . .) one for each representative v of a block 
orbit under the full automorphism group G of (X, B )  is the block-graph invariant 
of ( X ,  E ) .  The block-graph invariant of a design is also related to the so called 
4-vertex condition (see [ I l l ) .  When (X, B )  is a Steiner 2-design, the block- 
intersection graph is strongly regular (see [4]). The block-graph invariant 
provided a discriminant during early stages of our study of S(2, 4, 25)’s. 
Subsequently, we investigated substructures which had more interpretive value 
than block-graph invariants, and these substructure properties also discriminate 
the 16 known S(2, 4, 25)’s. Thus for each design we tabulate substructure data 
but we do not present the block-invariants. 

2. Structure of automorphisms and other facts 

In this section we develop some of the structural properties of automorphisms 
of S(2,4, 25)’s. We denote by G the full automorphism group of an S ( 2 ,  4, 25). 
The following theorem was proved in [12]. 

Theorem 2.1. Let p be a prime dividing the order of the full automorphism group 
G of an S ( 2 ,  4, 25). Then, p = 2, 3, 5 or 7 .  Further, if a E G has order p and 

(i)  p = 3 ,  then afixes 1 or 4 points; 
(ii) p = 5, then afixes no points; 

(iii) p = 7, then afixes 4 points. 

We presently establish the following: 

Theorem 2.2. Let a be an automorphism of an S ( 2 ,  4, 25) where a has order 2.  
Then, afixes 1 or 5 points. 

Proof. Let B be the SO blocks of an S(2, 4, 25) on the set X = F U Y, with 
Y f l F = 0 ,  where Fisthesetoffixedpointsof a. Let B , = { B E E : ( B n F ( = i } ,  
0 s i d 4, and set b, = IB,l. Let f = IF1 and t = b4. Clearly f is odd and b3 = 0. Let 
b(, be the number of fixed blocks in B,, and set bz = b,, - b;. We will argue that 
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the possible values for our parameters are given in the following table: 

b ,  

I39 

f bo' 6," 

t f  f 3 t  - 61 
( (%5-f2)/4) ( (3 f2 - 34f + 175)/4) 

b ,  f bo' 6," 

t f  f 3 t  - 61 
( (%5-f2)/4) ( (3 f2 - 34f + 175)/4) 

36 

20 

14 

+8t I -6t I 0 

I :  20 I 10 

0 

Now, any block in B2 is uniquely determined by a pair of points of F which are 
not covered by a block in B,, so we easily get the formula for b2. We call a pair 
of points of X appearing in a 2-cycle of (Y a pure pair. Note that each block of B2 
uses a unique pure pair. The blocks in B,, that are fixed by (Y are formed by 
pairing-off the  pure pairs which are not covered by B2. An easy count yields the 
formula for b;,. Observe that the number of fixed blocks b, + b2 + b;, = (f - 
1)'/4 + 2(3 - t )  must be even and hence f = 1 (mod 4). To cover pairs of points in 
Y we have that b, + 3bl + 6bh + 66: = ( 2 s y f )  and since b, + b2 + b ,  + b;, + bj; = 

50, we easily get the formulas for b ,  and b;;. Now 0 S bl, and 0 S b;; easily gives 
2 ( f 2  - 25) s 24t < 3 f 2  - 34f + 175, and then 0 < ( f  - 25)(f - 9). But (Y has order 
2 so f # 25 and i f f '  = 9 then b66: < 0. Hence, f = 1, or 5 and the possible values 
for t complete our table. 0 

An S ( 2 ,  4, 25) with automorphism group of order 150 was constructed by R.C. 
Bose in 1939. In 1980 three S(2, 4, 25)'s with automorphism groups of orders 504, 
63 and 21 respectively were constructed by A.E. Brouwer (unpublished) and 
independently by V.D. Tonchev (also unpublished). The four designs just 
mentioned appear listed in [4]. Brouwer and Tonchev show the following: 

Theorem 2.3. There are exactly 3 non-isomorphic Steiner systems S ( 2 ,  4, 25) 
having an automorphism of order 7 and exactly one with an automorphism of 
order 5. The orders of G are 504, 63, 21 and 150 respectively. 

It was shown in [9] that 33 cannot divide the order of the automorphism group 
C of an S ( 2 ,  4, 25) and that there are exactly five S ( 2 ,  4, 25)'s with 9 dividing the 
order of G. It was also shown that when 9 divides the order of G, a 3-Sylow 
subgroup of G is elementary abelian. An S(2, 4, 25) with IC( = 9 was announced 
by H. Gropp [5] but all eight of the designs mentioned above were constructed by 
L.P. and A.Y. Petrenyuk [16, 171, by means of transformations on an initial 
S(2 ,  4, 25). We briefly discuss these methods in Section 6. 

In what follows we obtain 8 new S(2, 4, 25)'s each admitting a full automorph- 
ism group of order 3, and we establish that there are no new S ( 2 ,  4, 25)'s in case 
2 divides [GI. Thus, there are altogether sixteen nonisomorphic S ( 2 ,  4, 25)'s with 
nontrivial automorphism group. 
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3. Automorphism of order 3 and tactical decompositions 

From Theorem 2.1 we see that an automorphism of order 3 fixes either 1 or 4 
points. In what follows, when the automorphism fixes 1 point we denote it by a, 
when it fixes 4 points by p. Unfortunately these elements a and p are not the a, 
p used in [12]. We have chosen to present Designs 1 to 8 in exactly the same form 
and order as in [12]. To alleviate notational problcms in this paper we denote by 
CU, the automorphisms a, /3 in [ I l l .  Thus Design 1 has automorphism 

@ = ( 1  59)(267)(348)(101418)(11 15 16)(1213 17)(192021)(222324)(25) 

which is conjugate to a in our present work. An isomorphic copy of Design 1 
arises from Case A and has the fixed blocks { 1, 5,  9, 25), 
(2, 6 ,  7, 25}, . . . , {22, 23, 24, 25) in  our presentation. 

First we consider the automorphism 

a = (1 2 3)(4 5 6)(7 8 9)( 10 11 12)( 13 14 15)(16 17 18)( 19 20 21)(22 23 24)(25). 

Let X ,  = { 1, 2, 3 } ,  X 2  = (4, 5, 6}, . . . , X, = (22, 23, 24) be the point-orbits of X 
determined by the 3-cycles in a. Let 0, be an orbit of blocks in B. Then, lO,( = 1, 
or 3. Note that 10,l = 1 if and only if 0, = { X I  U (25)) for some i E { 1,  2, . . . , 8). 
Our basic strategy is to construct all possible tactical decompositions correspond- 
ing to a and then determine whether any of these tactical decompositions leads to 
an S(2, 4, 25). In general, when we display T, we will omit the rows and columns 
corresponding to fixed points and fixed blocks. 

Now, any element of X appears exactly 8 times amongst the blocks B so that a 
must fix 8, 5, or 2 blocks. This yields three cases to be considered. 

Case A. a fixes 8 blocks. 
Clearly a tactical decomposition T, has 8 columns with entries a single 3 and 

seven 0’s. The remaining portion o f  T, is an 8 by 14 matrix of 0’s and 1’s with row 
sums of 7, column sums of 4 and since each pair from X appears exactly once 
among the blocks of B, the inner products of distinct rows of T, are all 3 .  Hence, 
the tactical decompositions in this case correspond to 2 - (8 ,4 ,3)  designs. There 
are exactly 4 such nonisomorphic designs which we label A , ,  A2,  A 3 ,  A4. In  
Table I we list A3 and A4 since S(2, 4, 25)’s arise only from these cases. 

Case B. a fixes 5 blocks. 
We can assume that the 5 fixed blocks are X I  U {25}, 4 i i s 8 and that the 

remaining orbit of blocks containing the point 25 is generated by the block 
{ 1,4,7,25}. The remaining 14 columns of our tactical decomposition consists of 3 
columns with one 2 in rows 1, 2, 3 respectively and 11 columns with exactly four 
1’s. In Table 1 we present the 8 by 15 portion of some tactical decompositions 
corresponding to the orbits of length 3. Note that inner products between distinct 
rows must again all be equal to 3. There are 8 nonisomorphic tactical 
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Table 1 
Some Tactical Decompositions for Automorphisms (r and p of Order 3 

A3 
00ooooo1111111 
0001111oooo111 
11100010001011 
01101100110001 
10110101010010 
11010100101100 
10101011100100 
01011011011000 

A4 
ooooooo1111111 
0001111oooo111 
01100110011001 
011110011oooo1 
10101010101010 
10110101010010 
11001101001100 
110100101 10100 

Bl  
100000000111112 
1oooo1112000110 
100120110011000 
001101010101010 
010101100110100 
011010001101100 
0110111OOOOOO11 
011100011010001 

B* 
100000000111112 
1oooo1112000110 
100120110011000 
001101010101010 
O l O l l l O O l l o o o o l  
011000101111000 
011011oooo10110 
01110011oooo101 

BG 
100000000111112 
1oooo1112000110 
101120010001010 
001101 1001 100 10 

c7 
ooo(m1111111 
000001111OOOO111 
1ooo100120111000 
1001101102000001 
101L011000002010 
0101111oooo20100 
01110101002oooo1 
0120100011000110 

e m  
OOOOOOOOO1111111 
m1111oooo111 
1000100120111000 
1001102001001001 
1010120001010010 
0102010100110001 
0111100011000200 
0120001100101010 

0 3 1  
OOOOOOOOO1111111 
oo(xx)1111oooo111 
1000100120111000 
1001102001001001 
1020011000110010 
0101020101011000 
0110200101000110 
0112oooo10100101 

c4fJ 
o o ( X W X X W W ) l l l l l l l  
oo()olll1oooo111 
1000100120111000 
1002001101001001 
1011110000010020 
010011200111oooo 
01 11100100100200 
0120010011001001 

CfA 
OOOOOOOOO1111111 
000001111ooo0111 
1000100120111000 
1002001101001001 

c57 
MXMOOOOOlll l l l l  
m1111OOOO111 
1000100120111000 
1002001101001001 
1020011oooo11010 
0101210000010011 
0110101012000100 
0111010100200100 

C81 
000000000 1 1 1 1 1 1 1 
m 1 1 1  10000 11 1 
10002001 1001 1001 
1002001010101010 
1020001101001100 
0101 110102oooo10 
0110111000200001 
011 1010010020100 

c84 
0000000001111111 
000001111OOOO111 
100020011001 1001 
1002001010101010 
1020010011001100 
0101 110102oooo10 
01 1011 10002ooool 
0111001100020100 

c, 
OOOOOOOOO1111111 
m1111OOOO111 
10002001 1001 1001 
1002001010101010 
1020010011010010 
0101120001001100 
01101020011oooo1 
01 110002001 10100 

C,, 
OOOOOOOOO1111111 
m 1 1 1  loo001 11 
1001 10002001 1001 
1010100200101010 

010010110110100 1020010101010010 1011002001001100 
010101110001001 010112oooo110001 0101110102000001 
011011001010001 0110102000101010 0110111oooo20010 

Dl E7 
00000001111111 000101010001111 
0001111m111 1oooo1100110011 
01100110011001 100110001010101 
10001111101000 101010010201100 
10110010110010 011001011021000 
11011000011100 011010101000120 
11100101000110 010100101101001 

D ,  
m o l l 1  11 11 
00011110000111 
11100010001011 
00101110111000 
01110011010100 
10110101100010 
11011000101100 

E3 
OoO101010001111 
10010010011001 1 
1o0o10011010101 
101001101012000 
011001010210100 
011010101000120 
01011o0O1101001 

E4 
000101010001111 
1oooo1100110011 
100110001010101 
101010010112000 
011010100100210 
011001012 loo001 
010100101011010 

EG 
000101010001111 
100100100110011 
100010011010101 
101001011201000 
010110101012000 
011010100100210 
011001001010011 

O l l l O O O O l l O l l O O  Ollll00011000200 0111010010200100 

decompositions but we list only B,, B 2 ,  and B ,  because only these give rise to 
designs. 

Case C. (Y fixes 2 blocks. 
Here we can assume that the fixed blocks are { 1 ,2 ,3 .  2 5 } ,  {4,5 ,6 ,25}  and 

that the desigii contains the orbits generated by (7,  10, 13,25} and 
{ 16, 19,22,25}. I t  easily follows that the tactical decompositions have a single 2 
in each of rows 3 ,  4, 6, 7 ,  8. In Tuhfe I we list 10 out of  a total number of 91 
tactical decompositions again presenting only the 8 by 16 portion related to the 
orbits of length 3 .  
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We now consider the automorphism 

p = (1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 2021)(22)(23)(24)(25), 

fixing 4 points of X .  Let X I  = { 1, 2, 3} ,  . . . , X7 = { 19, 20, 21). Since each point 
appears in exactly 8 blocks it is clear that the number of fixed blocks through each 
of 22, 23, 24, or 25 must be congruent to 2modulo3. It is easily seen that we 
must consider exactly two cases. 

Case D. p fixes 8 blocks. 
Since the blocks fixed by p are unions of point-orbits of the group ( p ) ,  it is 

clear that the fixed blocks are {22,23,24,25}, { 19,20,21,25}, { 16, 17, 18,25}, 
{13,14,15,25}, {10,11,12,25}, {7,8,9,24}, {4,5,6,23},  and {1,2,3,22}. 
Exactly two tactical decompositions D ,  , D2 arise here and are given in Table 1. 

Case E .  /3 fixes 5 blocks. 
Without loss of generality the five fixed blocks can be chosen to be 

{22,23,24,25}, {19,20,21,25}, {7,8,9,24}, {4,5.6,23}, {1,2,3,22}. Exactly 
9 tactical decompositions arise in this case. In Tuble I we list the four tactical 
decompositions E x ,  E 4 ,  E(,, and E7 which produce S(2, 4, 25)’s. 

Table 2 
Some Tactical Decompositions for Autornorphisrns 7 and 6 of Order 2 

D 10 

00-1 11 11 11 
oOOOOOOO11111OOOOO11 
oom111ooo11m1100 
oooo1011011ooo11oooo 
1001m11ooo1101oooo 
100111oooolOOOOOOlOl 
1010011001m1oooo10 
0101010011oooo101ooo 
01 1010011OOOOOOOO110 
olll00loooolmloool 

Bl 
1-1 11111 
1-1 111 1000001 
1OOOOOO1111OOOO1OOOOlO 
0 lOOOOOOO11001 lo001 100 
oloooololmlllloooo 
01oooo11m11OOOOOO110 
001rn110101011~ 
00lolollol~llm 
m1110000001010010100 
001011OOOOO1m11OOO10 
m101010011OOOOOO1rn1 
o0011m11OoO1001~1 

D2, 
OOOOOOOOOOOOO1111111 
OOOOOOOOlllllOOOOOll 
00000111OOO11m11rn 
m1011011o0o11oooo 
1001m11m1101ooOo 
100111oooo1OOOOOO101 
1010011001m1oooo10 
01011oooo10101001m 
011010011OOOOOOOO110 
0111001OOOOO101OOOO1 

Cl 
1OOOOOOOOO~OOOO111111 
1OOOOOOOOOO11111OOOOO1 
1000000 1 1 1 10000 10000 10 
01OOOOOOO1100110001100 
001OOOOO10101010110000 
oO01ooo110010100010100 
01m11011011000000000 
0010101101000000100100 
oO0111o000010010101ooo 
oO01101000001001010010 
0100110100000100000011 
0010011000100001001001 

El 
OOOOOOO10010010001111 
oooo10000100100110011 
mlool~loolololol 
001001001OOOOO1101001 
1001oO0100101011m 
1m11m1m11o00100 
loloooololol~llm 
010010101~10011oO0 
011oO01m11oO01m10 
010101001OOO100000110 

Dl, 
00000000000001111111 
o0o00000111110000011 
00000111000110001100 
00001011011000110000 
10010001100011010000 
10011100001000000101 
10100100010101 100000 
010101 101000001000 10 
01101010000011000001 
01110000001100011000 
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4. Solutions to tactical decompositions 

Consider the tactical decomposition A4. In  order for A4 to actually give rise to 
an S ( 2 ,  4, 25) for each column j of A4 we need to select elements of a block B so 
that JB fl X,l = t,,, 1 s i Q 8. Each such choice for 1 Q j Q 14 will generate orbits 
0,, 1 S j d 14. Furthermore, for the S(2, 4, 25) to exist each pair from X must be 
covered exactly once. A fairly fast algorithm run on a Mac+ microcomputer took 
about 1 minute to find all solutions for a given tactical decomposition. 

A fast graph-isomorphism program, written by Brendan McKay was used to sift 
isomorphic designs. The public domain program, written in C ,  computes, among 
other invariants, generators for the automorphism group of the graph, a canonical 
form for the graph, and a hush code for this canonical form. Given a design 
D = (X, B) we construct a graph with vertex set XU B where v l ,  v 2  E X U  B 
are adjacent if v 1  E X ,  v 2 e  B and v 1  is incident with v2. Clearly two designs 
DI,  D2 are isomorphic if and only if their graphs are isomorphic and this can 
be checked by means of the hash codes computed for the graphs. A similar 
algorithm is used to sift out isomorphic tactical decompositions. In  many 
cases there are no solutions and in some cases more than one nonisomorphic 
design arises from a single tactical decomposition. For the S(2,4,25)’s with an 
automorphism group of order 9. since conjugates of both a and p are present in 
the elementary abelian G, the S(2, 4, 25)’s naturally arise from more than one 
tactical decomposition. 

Occurrences of solutions are listed in Table 3 .  Note that all eight previously 
known S ( 2 ,  4, 25)’s were rediscovered along with the 8 new S ( 2 ,  4, 25)’s with 
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Table 4 

Design 1 
1 2  319 
141011 
1 5  925 

1 6 14 22 
1 7 1 6 1 7 
1 8 1223 
1 13 18 20 
1 15 21 24 
2 4 15 23 
2 51112 
2 6 725 
2 8 17 18 

2 9 10 24 
2 13 21 22 
2 14 16 20 
3 4 825 
3 5 13 24 
3 6 10 12 
3 7 11 22 
3 9 16 18 
3 14 21 23 
3 15 17 20 
4 5 620 
4 7 13 14 
4 9 17 22 
4 12 16 21 
4 18 19 24 
5 7 18 23 
5 8 14 15 
5 10 17 21 
5 16 19 22 
6 8 16 24 
6 9 13 15 
6 11 18 21 
6 17 19 23 
7 8 921 
7 10 15 19 
7 12 20 24 
8 10 20 22 
8 11 13 19 
9112023 
9 12 14 19 

10 13 16 23 
10 14 18 25 
11 14 17 24 
I 1  16 1625 

12 13 17 25 
12 15 18 22 

19 20 21 25 
22 23 24 25 

Design 2 
1 2  319 
1 4  722 
1 6  926 

161011 
1 8 1718 
1 12 14 24 
1 13 16 20 
1 15 21 23 
2 41112 
2 6 823 
2 6 725 
2 9 1618 

2 10 16 22 
2 13 21 24 
2 14 17 20 
3 4 825 
3 5 10 12 
3 6 924 
3 7 16 17 
3 11 13 23 
3 14 21 22 
3 16 18 20 
4 5 620 
4 9 13 14 
4 10 16 21 
4 15 17 24 

4 18 19 23 
5 7 14 15 
6 11 17 21 
5 13 18 22 
6 16 19 24 
6 8 13 15 
6 12 18 21 
6 14 16 23 
6 17 19 22 
7 8 921 
7 10 13 16 
7 11 18 24 
7 12 20 23 
8 10 20 24 

8 11 14 1E 
8 12 16 21 

9 10 17 2? 
9 11 20 21 
9 12 15 1E 

10 14 18 2E 

11 15 16 2t 
12 13 17 2E 
19 20 21 2E 
22 23 24 2t 

T 
Design 3 
1 2  319 
1 4  722 
1 5  926 

161011 
1 8 17 18 
1 12 13 23 
1 14 16 20 
1 15 21 24 
2 4 11 12 
2 5 823 
2 6 725 
2 9 16 18 

2 10 14 24 
2 13 21 22 
2 15 17 20 
3 4 826 

3 5 1012 
3 6 924 
3 7 16 17 
3 11 15 22 
3 13 18 20 
3 14 21 23 
4 5 620 
4 9 13 14 
4 10 17 21 
4 15 16 23 
4 18 19 24 
5 7 14 15 
5 I1 18 21 
5 13 17 24 
5 16 19 22 
6 8 13 15 
6 12 16 21 
6 14 18 22 
6 17 19 23 
7 8 921 
7 10 18 23 
7 11 13 19 
7 12 20 24 
8 10 20 22 

8 11 16 24 
8 12 14 19 
9 10 15 19 
9112023 
9 12 17 22 
10 13 16 25 

11 14 17 25 
12 15 18 25 
19 20 21 25 
22 23 24 26 

5(2,4,25)' 

Design 4 
1 2  319 

1 4  722 
1 6  925 

1 6 10 14 
1 8 12 17 
1 11 13 21 
1 15 20 24 
1 16 18 23 
2 41116 
2 6 823 
2 6 726 

2 9 10 18 
2 12 14 21 
2 13 20 22 
2 16 17 24 
3 4 826 
3 6 12 13 
3 6 924 
3 71116 
3 10 15 21 
3 14 20 23 
3 17 18 22 
4 5 620 
4 9 13 17 
4 10 12 23 
4 14 16 19 

4 18 21 24 
6 7 14 18 

5 10 11 24 
5 15 17 19 
5 16 21 22 
6 8 15 16 
6 11 12 22 
6 13 18 18 
6 17 21 23 
7 8 921 
7 10 17 2C 
7 12 19 24 
7 13 15 22 
8 10 19 21 

8 11 18 2c 
8 13 14 24 
9 11 19 2: 
9 12 16 2C 
9 14 15 22 
10 13 16 2E 
11 14 17 2E 
12 15 18 2': 
19 20 21 2! 
22 23 24 2t 

,ith I G  I > 3 
I 9  

Design 5 
1 2  319 
141016 

1 6  925 

1 6 1122 
171216 
1 8 18 23 
1 13 17 20 
1 14 21 24 
2 4 1223 

2 5 11 13 
2 6 725 
2 8 10 17 
2 9 16 24 

2 14 18 20 
2 15 21 22 
3 4 825 
3 5 10 24 
3 B 12 14 
3 7 17 22 

3 91118 
3 13 21 23 
3 16 16 20 
4 5 620 
4 7 13 18 
4 9 14 22 
4 11 16 21 
4 17 19 24 
5 7 15 23 
5 8 14 16 
5 12 17 21 
5 18 19 22 
6 8 13 24 
6 9 15 17 

6 10 18 21 
6 16 19 23 
7 8 921 
7 10 14 19 
7 11 20 24 
8 11 15 19 
8 12 20 22 

9 10 20 23 
9 12 13 19 
10 11 12 25 
10 13 16 22 
11 14 17 23 
12 15 18 24 
13 14 15 25 
16 17 16 25 
19 20 21 25 
22 23 24 25 

Design 6 
1 2  625 
131119 

1 4 14 17 
1 6 10 24 
1 7  812 

191618 
1 13 15 23 
1 20 21 22 
2 3 721 

2 41220 
2 5 15 18 
2 8 913 
2 10 17 19 

2 11 14 24 
2 16 22 23 
3 4 822 

3 5 13 16 
3 6 18 20 
3 9 10 14 
3 12 15 25 
3 17 23 24 
4 5 923 
4 61015 
4 7 16 19 
4 11 13 21 
4 18 24 25 

5 6 711 
5 81720 
5 12 14 22 
5 19 21 25 
6 8 16 24 
6 9 19 22 
6 12 13 17 
6 14 21 23 
7 9 17 25 
7 10 20 23 
7 13 14 18 
7 15 22 24 
8 10 18 21 

8 11 23 25 
8 14 15 19 
9 11 15 20 
9 12 21 24 

10 11 12 16 
10 13 22 25 
1 1  17 18 22 

12 18 19 23 
13 19 20 24 
14 16 20 25 
15 16 17 21 

Design 7 
1 2  414 
1 3  713 

1 5  611 
1 8 15 25 
1 9 17 22 
1 10 19 23 
1 12 16 24 
1 18 20 21 
2 3 5 8  

2 6 712 
2 9 16 26 
2 10 18 22 
2 11 20 23 
2 13 17 24 
2 15 19 21 
3 4 6 9  
3 10 17 25 
3 11 19 22 
3 12 21 23 
3 14 18 24 
3 15 16 20 
4 5 710 
4 8 19 24 
4 11 18 25 
4 12 20 22 
4 13 15 23 

4 16 17 21 
5 9 2024 
5 12 19 25 
5 13 21 22 
5 14 16 23 
5 15 17 18 
6 8 1723 
6 10 21 24 
6 13 20 25 
6 14 15 22 
6 16 18 19 
7 8 1622 
7 9 18 23 
7 I1 15 24 
7 14 21 25 

7 17 19 20 

8 9 11 21 
8 10 14 20 
8 12 13 18 
9 10 12 15 
9 13 14 19 
10 11 13 16 
11 12 14 17 
22 23 24 25 

automorphism group of order exactly 3. All 16 designs are listed 
and 5 .  

Design 8 

1 2  425 

1 3  811 
1 5  924 

1 6 715 
1 10 13 17 
1 12 19 2 1  
1 14 18 22 
1 16 20 23 
2 3 14 19 

2 5 8 1 6  

2 6 912 

2 7 18 23 
2 10 I1 22 
2 13 15 20 
2 1721 24 
3 41015 
3 5 713 
3 62125 
3 9 16 22 
3 12 17 23 
3 I8 20 24 
4 51120 
4 6 814 
4 71621 
4 9 17 IE 
4 12 13 21 
4 19 22 2: 
5 6 17 21 
5 10 21 2: 
5 12 14 I! 
5 18 19 2: 
6 10 19 2( 
6 11 23 24 
6 13 16 l I  
7 8 19 2 d  

7 9 10 2: 

7 11 14 1: 
7 I2 20 2: 
8 If I 5  2: 
8 10 12 II 
8 13 21 2: 
8 I7 20 2! 

9 11 13 I!) 

9 I4202 
10 14 16 2. 

1 1  12 16 2! 

1 1  15 18 2 

13 14 23 2! 
15 IG 17 I !  
15 22 24 2! 

1 Tuhles 4 

5. Automorphisms of order 2 and their tactical decompositions 

consider the automorphism fixing a single point: 
From Theorem 2.2 an automorphisrn of order 2 fixes 1 or 5 points. First 

y = (1 2 ) ( 3  4)(5 6)(7 8)(9 lo)( 1 1  12)( 13 14)( 15 16)( 17 18)(19 20)(21 22)(23 24)(25). 
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Table 5 

Design 9 
1 2  3 2 5  
1 4 16 24 
1 5 1 2 2 1  
1 6 1322  
1 7 1 4  15 
1 8 17 18 
1 9 19  20 
1 10 11 23 
2 4 14 23 
2 5 17 22 
2 6 10 19 
2 7 2 0 2 1  
2 8 1 3 1 5  
2 9 16 18 
2 11 12 24 
3 4 1 1 2 0  
3 5 15 24 
3 6 18 23 
3 7 16 17 
3 8 1 9 2 1  
3 9 13 14 
3 10 12 22 
4 5 6 2 5  
4 7 12 19 
4 8 9 2 2  

4 10 15 18 
4 13 17 21 
5 7 9 2 3  
5 8 1 0 2 0  
5 11 13 16 
5 14 18 19 
6 7 8 2 4  
6 9 1 1 2 1  
6 12 14 17 
6 15 16 20 
7 10 13  25 
7 11 18 22 
8 11 14 25 
8 12 16 23 
9 10 17 24 
9 12 15 25 

LO 14 16 21 
I1 15 17  19 
I2  13 18 20 
13 19 23 24 
I4 20 22 24 
15 21 22 23 
16 19 22 25 
I7  20 23 25 
18 21 24 25 

Design 10 
1 2  3 2 5  
1 4 2 0 2 4  
1 5 1 1 2 3  
1 6 1 4 2 1  
1 7 1 5  17 
1 8 12 16 
1 9 13 22 
1 10 18 19 
2 4 1 5 1 9  
2 5 21 22 
2 6 1224 
2 7 14 23 
2 8 13 18 
2 9 1 0 1 7  
2 11 16 20 
3 4 10 22 
3 5 1 3 2 0  
3 6 19 23 
3 7 11 18 
3 8 15 24 
3 9 14 16 
3 12 17 21 
4 5 6 2 5  
4 7 16 21 
4 8 9 2 3  

4 11 12 13 
4 14 17 18 
5 7 9 2 4  
5 8 1719  
5 10 12 14 
5 15 16 18 
6 7 8 2 2  
6 9 18 20 
6 10 11 15 
6 13 16 17 
7 10 13 25 
7 12 19 20 
8 10 20 21 
8 11 14 25 
9 11 19 21 
9 12 15 25 

10 16 23 24 
11 17 22 24 
12 18 22 23 
13 14 19 24 
13 15 21 23 
14 15 20 22 
16 19 22 25 
17 20 23 25 
18 21  24 25 

Design 11 
1 2  3 2 5  
1 4 19 20 
1 5 1 1 2 3  
1 6 1314  
1 7 15 18 
1 8 10 24 
1 9 16 21  
1 12 17 22 
2 4 14 15 
2 5 2 0 2 1  
2 6 1 2 2 4  
2 7 17 19 
2 8 1316  
2 9 1 1 2 2  
2 10 18 23 
3 4 1 0 2 2  
3 5 1315  
3 6 1 9 2 1  
3 7 1223  
3 8 18 20 
3 9 14 17 
3 11 16 24 
4 5 6 2 5  
4 7 11 21 
4 8 9 2 3  

4 12 16 18 
4 13 17 24 
5 7 9 2 4  
5 8 1 2 1 9  
5 10 16 17 
5 14 18 22 
6 7 8 2 2  
6 9 10 20 
6 11 17 18 
6 15 16 23 
7 10 13 25 
7 14 16 20 
8 11 14 25 
8 15 17 21 
9 12 15 25 
9 13 18 19 

10 11 15 19 
10 12 14 21 
11 12 13 20 
13 21 22 23 
14 19 23 24 
15 20 22 24 
16 19 22 25 
17 20 23 25 
18 21 24 25 

: S(2,4,25)’ 

Design 12 
1 2  3 2 5  
1 4 20 22 
1 5 10 18 
1 6 15 17 
1 7 12 14 
1 8 1316  
1 9 2 3 2 4  
1 11 19 21 
2 4 13 18 
2 5 2 1 2 3  
2 6 1 1 1 6  
2 7 2 2 2 4  
2 8 1015  
2 9 14 17 
2 12 19 20 
3 4 12 17 
3 5 14 16 
3 6 19 24 
3 7 1 5 1 8  
3 8 2 2 2 3  
3 9 1 1 1 3  
3 10 20 21 
4 5 6 2 5  
4 7 1 1 2 3  
4 8 9 2 1  

4 10 14 19 
4 15 16 24 
5 7 9 1 9  
5 8 1 2 2 4  
5 11 15 20 
5 13 17 22 
6 7 8 2 0  
6 9 10 22 
6 12 13 21 
6 14 18 23 
7 10 13 25 
7 16 17 21 
8 11 14 25 
8 17 18 19 
9 12 15 25 
9 16 18 20 

10 11 17 24 
10 12 16 23 
11 12 18 22 
13 14 20 24 
13 15 19 23 
14 15 21 22 
16 19 22 25 
17 20 23 25 
18 21 24 25 

rith I G 1 2 

Design 13 
1 2  3 2 5  
1 4 16 23 
1 5  7 2 1  
1 6 1 2 1 4  
1 8 10 18 
1 9 13 22 
1 11 20 24 
1 15 17 19 
2 4 1 0 1 5  
2 5 17 24 
2 6 8 1 9  
2 7 14 23 
2 9 1 1 1 6  
2 12 21  22 
2 13 18 20 
3 4 9 2 0  
3 5 11 13 
3 6 18 22 
3 7 1 2  17 
3 8 1524 
3 10 19 23 
3 14 16 21 
4 5 6 2 5  
4 7 22 24 
4 8 12 13 
4 11 19 21  
4 14 17 18 
5 8 2 2 2 3  
5 9 10 14 
5 12 19 20 
5 15 16 18 
6 7 1 1 1 5  
6 9 23 24 
6 10 20 21 
6 13 16 17 
7 8 16 20 
7 9 18 19 
7 10 13 25 
8 9 1 7 2 1  
8 11 14 25 
9 12 15 25 

10 11 17 22 
10 12 16 24 
11 12 18 23 
13 14 19 24 
13 15 21 23 
14 15 20 22 
16 19 22 25 
17 20 23 25 
18 21  24 25 

3 

Design 14 
1 2  3 2 5  
1 4 18 23 
1 5  7 1 9  
1 6 12 14 
1 8 1 5 2 4  
1 9 11 16 
1 10 20 22 
1 13 17 21 
2 4 10 15 
2 5 16 24 
2 6 8 2 0  
2 7 12 17 
2 9 13 22 
2 11 21 23 
2 14 18 19 
3 4 9 2 1  
3 5 1 1 1 3  
3 6 17 22 
3 7 14 23 
3 8 10 18 
3 12 19 24 
3 15 16 20 
4 5 6 2 5  
4 7 2 2 2 4  
4 8 1 2 1 3  
4 11 19 20 
4 14 16 17 
5 8 22 23 
5 9 10 14 
5 12 20 21 
5 15 17 18 
6 7 1 1 1 5  
6 9 2 3 2 4  
6 10 19 21 
6 13 16 18 
7 8 1 6 2 1  
7 9 18 20 
7 10 13 25 
8 9 17 19 
8 11 14 25 
9 12 15 25 

10 11 17 24 
10 12 16 23 
11 12 18 22 
13 14 20 24 
13 15 19 23 
14 15 21 22 
16  19 22 25 
17  20 23 25 
18 21 24 25 

Design 15 
1 2  3 2 2  
1 4 13 24 
1 5 1 7 2 1  
1 6  8 2 0  
1 7 1125 
1 9 1618  
1 10 14 15 
1 12 19 23 
2 4 9 2 1  
2 5 14 24 
2 6 18 19 
2 7 1 6 1 7  
2 8 1225  
2 10 20 23 
2 11 13 15 
3 4 16 20 
3 5 7 1 9  
3 6 15 24 
3 8 17  18 
3 9 10 25 
3 11 21  23 
3 12 13 14 
4 5 6 2 3  
4 7 1022  
4 8 15 19 
4 11 12 17 
4 14 18 25 
5 8 1 1 2 2  
5 9 13 20 
5 10 12 18 
5 15 16 25 
6 7 14 21 
6 9 12 22 
6 10 11 16 
6 13 17 25 
7 8 9 2 4  

7 12 15 20 
7 13 18 23 
8 10 13 21 
8 14 16 23 
9 11 14 19 
9 15 17 23 

10 17 19 24 
11 18 20 24 
12 16 21 24 
13 16 19 22 
14 17 20 22 
15 18 21 22 
19 20 21 25 
22 23 24 25 

Design 16 
1 2  3 2 2  
1 4 13 24 
1 5 1620 
1 6  8 1 9  
1 7 17 18 
1 9 1025 
1 11 14 15 
1 12 21 23 
2 4 9 2 0  
2 5 14 24 
2 6 17 21 
2 7 1 1 2 5  
2 8 16 18 
2 10 19 23 
2 12 13 15 
3 4 18 19 
3 5 7 2 1  
3 6 1524 
3 8 12 25 
3 9 1 6 1 7  
3 10 13 14 
3 11 20 23 
4 5 6 2 3  
4 7 10 22 
4 8 1 4 2 1  
4 11 12 16 
4 15 17 25 
5 8 11 22 
5 9 15 19 
5 10 12 17 
5 13 18 25 
6 7 13 20 
6 9 12 22 
6 10 11 18 
6 14 16 25 
7 8 9 2 4  

7 12 14 19 
7 15 16 23 

8 10 15 20 
8 13 17 23 
9 11 13 2 1  
9 14 18 23 

10 16 21 24 
11 17 19 24 
12 18 20 24 
13 16 19 22 
14 17 20 22 
15 18 21 22 
19 20 21 25 
22 23 24 25 

Up to relabeling we can assume that the fixed blocks are: {1 ,2 ,  13, 14}, 
{3,4,15,16},  {5 ,6 ,17 ,  18}, {7 ,8 ,19 ,20} ,  {9,10,21,22},  ( 1 1 ,  12,23,24}.  We 
distinguish three cases regarding the way y relates to the blocks containing the 
point 25. 

Case A. 
Our design has the blocks (1 ,3 ,5 ,25} ,  {7 ,9 ,11 ,25} ,  (13, 15, 17,25},  and 

{19,21,23,25}.  In this case there arise 21 tactical decompositions but only A2, 
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produces a design, namely the S(2 ,4 ,25)  with automorphism group of order 504 
(see Table 2). 

Case B.  
HereBcontains {1 ,3 ,5 ,25} ,  {7 ,9 ,11 ,25} ,  {13,15,19,25},and {17,21,23,25}.  

There are 19 tactical decompositions here but none leads to an S(2, 4, 25) with 
automorphism y. Even though no designs arise here Table 2 lists tactical 
decomposition B1 as an example of this case. 

Case C .  
In this case B contains {1 ,3 ,5 ,25} ,  {7,13,21,25},  (9 ,15,23,25},  and 

{11,17,19,25}.  There are 25 tactical decompositions here but none of these gives 
rise to an S(2, 4, 25) with automorphism y. Table 2 lists C ,  as an example of a 
tactical decomposition for Case C. 

Now consider the automorphism: 

6 =  
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21)(22)(23)(24)(25). 

There are two cases for 6 related to the way the fixed points {21,22,23,24,25} 
are distributed among the fixed blocks as follows: 

Case D. 
In this case our design has the fixed blocks {21 ,22 ,1 ,2} ,  {21 ,23 ,3 ,4} ,  

{21,24,5,6} ,  {21,25,7,8} ,  {22,23,9,  lo} ,  {22,24,11,12},  {22,25, 13, 14}, 
{23,24,15,16},  {23,25,17,18},  and {24,25,19,20}.  In other words, the fixed 
points of 6 form an arc (see Section 7). There are 45 tactical decompositons here 
with designs arising from DIu, and DZl with groups of orders 150 and 6 
respectively. 

Interestingly enough, in cases D1,,  D32, D4,, and D45 there are partial solutions 
to the tactical decompositions which yield each time 20 blocks of size 3 and 20 of 
size 4. We have checked however that there is no  way of completing these partial 
designs to S(2, 4, 25)’s by adding 5 points and 10 blocks. 

Case E .  
In this case our design has as fixed blocks {21,22,23,24},  {21 ,25 ,1 ,2} ,  

{22,25,3,4} ,  {23,25,5,6}  and {24 ,25 ,7 ,8} ,  i.e. four out of the five fixed points 
lie on a block. There arise 3 tactical decompositions here, but none leads to an 
S(2, 4, 25). We list E l  in Table 2 as an example of this case. 
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6. Transformation of designs 

Given an S(2, 4, 25) it is sometimes possible to obtain a non-isomorphic system 
with the same paranieters by transforming a selected subset of blocks. In order to 
describe such a transformation we require some definitions. 

Let B E B be a Mock of an S(2, 4, 25) system (X, B) and denote by S, all 
blocks in B which have no point in common with B. Note that S, is a symmetric 
configuration (1-design) with v = b = 21 and k = r = 4. We associate with S, a 
graph C ,  as follows. The vertices of GB are the points of S,, two vertices are 
adjacent if the corresponding points are not collinear in S, (do not appear in the 
same block). Clearly C, has 21 vertices and is regular of valency 8. We say that 
GB has a triungulation T if the 84 edges of C ,  can be partitioned into 28 triangles. 
T is called resolvable if its triangles can be partitioned into 4 parallel classes each 
of 7 disjoint triangles. A resolution of Twill be denoted by TR. Suppose that for 
some S, we know B resolution TR of G,. Then adding a new point x, to every 
triangle in the ith parallel class, i = 1, . . . , 4, we obtain 28 blocks of size 4 on 25 
points. Adding a new block { x , ,  x2, x3, x4} and the blocks in S, we obtain an 
S(2,4,25). Since S, is symmetric we can consider its dual Sdg and the 
corresponding C$ and repeat the procedure. 

We are now in a position to describe the transformations T, and Tg of a design 
(X, B) with respect to a block B E B. 

TB: Find all resolutions TR of CR and complete each to a system. 
Tdg: Find all resolutions TR of Gdg and complete each to a system. 
We note that Ts and Tdg, B E B, generate sets ZB, Zdg of system S(2 ,  4, 25). 

From the construction it follows that IZ,l 2 1, since ZB always contains the 
original system (X, B). 

We have applied the transformations q3, 

I I 
I I 
I 

0 

Tdg to all 16 systems with non-trivial 

I 
I 

C Z D  

Fig. 1 
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automorphism groups. For each design we consider a representative from every 
orbit of blocks. The results are summarized in the transformation graph of Fig. I .  
Two designs are connected by a line (broken line) if one can be obtained from the 
other by Td, (TR) for some B E R. The graph has 9 connected components, each 
representing an equivalence class of designs under the transformations T,, TC. 

has been used by Petrenyuk [ 16, 171 to obtain from the 
previously known designs 1, 2, 6 and 7, in our numbering, the designs 3, 4, 5 and 
8. The same approach in a different setting has been applied by Gropp 181 t o  
obtain Design No. 3 ,  with a group of order 9. He also traces the origins of 
transformations based on symmetric configurations to the nineteenth century 
Italian geometers. 

The transformation 

7. Subdesigns, parallel classes and near-resolutions 

In this section we investigate the possible embedding of subdesigns in our 
S(2, 4, 25) systems. A subdesign is understood to be a substructure in the usual 
sense. Thus, an S(2, I, w )  system ( Y ,  D) is a subdesign of an S(2, k ,  u )  system 
(X, H), if Y c  X, and each D E D is contained in a block B E B. Points of Y are 
called interior, while those of X - Y exterior. We let b = 1131, r = h k / u  and denote 
by B, the collection of all blocks of (X, B )  which intersect Y in exactly i points. 
Easy counting yields the following 

Lemma 7.1. Suppose that ( Y ,  D )  is an S(2, 1 ,  w )  subdesign of an S(2, k ,  1 1 )  design 
( X ,  B ) .  Let u, be the number of blocks on an exterior point which inter&sect Y in i 
points, v, the number of blocks on un interior point which intersect Y in i points, 

and let t,  = I B,I, then 

to + t l  + t ,  = b ,  

u0 + u l  + u, = r ,  

t ,  + 1 * t, = rw, l ( 1 -  1) . t ,  = w (  w - I ) ,  
u I  + 1 * uI = w ,  u ,  + u, = r ,  and (I  - I)u,  = w - 1 

Proposition 7.2. If ( Y ,  D )  is an S(2, 1 ,  w )  subdesign of an S(2, 4, 25) and if 12 3 
then ( Y ,  D) i s  a Funo plane S(2, 3 ,  7). 

Proof, Suppose that ( Y ,  D) is an S(2, I ,  w )  subsystem occurring in an S(2, 4, 25) 
system (X, B ) .  In the case where 1 = k = 4 an inequality of Wilson’s requires that 
w d r = 8. This rules out the possibility of non-trivial subsystems S ( 2 ,  4, w )  in an 
S(2, 4, 25). When 1 = 3 we have that to + t l  + t ,  = 50, t ,  + 31, = 8 w ,  and 61, = 

w ( w  - 1). Thus, I ,  3 0  implies that w S 17 and since w E (7, 9, 13, 15, 21}, we 
have that w s 15. On the other hand, t l )  2 0 implies w S 9 or w 2 15. Case w = 15 
is ruled out by de Resmini [6], Proposition 4. Alternatively, the existence of a 
subsystem S ( 2 ,  3, 15) would imply uo = 0, u I  + u, = 8, and u ,  + 3u, = 15. Hence, 
2u, = 7, a contradiction. If w = 9, then t,, = 2, t ,  = 36, and 1 ,  = 12. From Lemma 
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7.1 we get (u ,  + 3 4 )  - (u(,  + u l  + u3) = 1, that is 2u3 = 1 + ug. Therefore, since 
u,, d to = 2, we have that uo = uj  = 1, that is, through each exterior point there is 
one block of Bo. This is a contradiction since there are altogether t ( ,  = 2 exterior 
blocks covering 7 or 8 points of X - Y ,  while IX - Y1 = 25 - 9 = 16. 0 

There remains to investigate whether S(2, 3, 7) systems occur in our 16 
S(2, 4, 25) designs. A complete search through each of the 16 designs establishes 
that embedded Fano planes are found in eleven out of the sixteen. We 
acknowledge J .  DiPaola for bringing to our attention the existence of some 
embedded Fano pliines. The number of Fano planes in each of the 16 designs is 
given in Table 7, together with other structural information. These Fano planes 
break up into orbits under the action of the automorphism group of each design. 
The number of orbits, orbit representatives and orbit lengths is presented in 
Section 8. 

It is of interest to investigate further the existence of certain subdesigns with 
1 = 2. By an s-arc, or simply an urc, we mean a collection Y of s points of X no 
three of which are collinear in ( X ,  B) .  An arc can then be viewed as a subdesign 
(Y ,  0 )  of ( X ,  B )  where D is the collection of all pairs of Y .  An arc Y is called 
complete if no point of X - Y can be adjoined to Y to obtain a larger arc. A block 
B of ( X ,  B )  is a secant (tangenr) of arc Y if it intersects Y in two (one) points. 
Clearly, Y is a complete arc in ( X ,  B )  if and only if each point of X lies on at least 
one secant of Y. An arc of maximum possible size is called an oval if there is 
exactly one tangent to the arc at each of its points; it is called a hyperoval if it has 
no tangents. Any arc of maximum possible size is of course complete. Using 
Lemma 7.1, it is easy to verify that the size of a complete arc cannot exceed 8, 
moreover, the same equations imply that any &arc might be an oval. Ovals occur 
in each of our sixteen S(2, 4, 2.5) designs except for Design 7, and their number is 
presented in Table 7. We present orbit representatives and orbit lengths of ovals 
in Section 8. 

Complete 5-arcs occur in all of our S(2, 4,  25) designs with the exception of 
Design 10. The number of complete 5-arcs appear in Table 7. The number of 
orbit representatives, orbit lengths and the maximum number of mutually disjoint 
complete 5-arcs is given in Section 8. It is noteworthy that in the case of Design 6, 
there are two orbits of complete 5-arcs, one of size 15 and the other of size 75. 
The 15 arcs in the first orbit are partitioned into three sets of five mutually 
disjoint complete arcs. These three sets are carried into one another by an 
automorphism of order 3. One of these sets consists of the arcs { 1 , 2 , 3 , 4 , 5 } ,  
{6,7 ,8 ,9 ,  lo}, . . . , {21,22,23,24,25}.  We wish to thank Marialuisa de Resmini 
for bringing this interesting fact to our attention, as well as for other helpful 
discussions and comments related to this section. I n  her paper [7] she is interested 
in the existence of complete 5-arcs embedded in S(2, 4, 25) designs, and this 
question has been answered here. 

Two distinct blocks of a design ( X ,  B )  arc said to be parullel if they are 



150 E . S .  Kraniiv el (11. 

12 15 18 22 
8 11 19 13 

18 16 9 3 
19 15 7 10 
9 11 23 20 
7 16 17 1 

23 15 4 2 
12 15 18 22 
8 11 19 13 

18 16 9 3 
9 12 14 19 
9 11 23 20 
6 9 13 15 
7 10 15 19 

12 15 18 22 
7 12 20 24 

10 13 16 23 
11 14 17 24 
6 17 19 23 
9 12 14 19 
8 11 13 19 

10 13 16 23 
8 10 20 22 

11 14 17 24 
12 15 18 22 
4 18 19 24 
7 10 15 19 
9 12 14 19 

11 14 17 24 
9 11 20 23 

12 15 18 22 
10 13 16 23 
5 16 19 22 
8 11 13 19 
7 10 15 19 - 

disjoint. The maximal number of mutually parallel blocks in an S(2, 4, 25) is six 
and such a set of blocks is called a parallel class. In Table 7 we give the number of  
parallel classes in each of our 16 designs and in Section 8 we display the orbit 
representatives and orbit lengths for all parallel classes in each of our designs. If 
we remove a point x together with the eight blocks through x ,  we say that we 
have a neur-resolution if the remaining 42 blocks partition into seven parallel 
classes. We thank Frank Bennett for suggesting that we look for possible 
near-resolutions in our designs. Near-resolutions exist only for Design 1 ,  where 
there are exactly 1 1  such near-solutions occurring only with the special point 25. 
These 11 fall into orbits of lengths 1, 7 and 3 under the full automorphism group 
of the design. In Table 6 the near-resolution No. 1 constitutes the orbit of length 
1 ;  the near-resolution No. 2 is a representative o f  the orbit of size 7; and the 
near-resolutions 3,  4, 5 constitute the orbit of size 3.  

Two near-resolutions n ,  = { P, , . . . , P,) , N2 = { Q , , . . . , Q , } ,  where each P, 
and Q, is a parallel class, are said to be orthogonal if lc n Q,l s 1 for all i ,  J. 

Near-resolutions 3 ,  4, and 5 are in fact mutually orthogonal. From these three 
orthogonal near-resolutions one can construct the unique elliptic semiplane on 45 

20 3 15 17 
1 10 11 4 
2 20 16 14 

24 1 15 21 
12 2 11 5 

Table 6 

16 21 4 12 
15 5 14 8 
11 6 21 18 
16 22 5 19 
15 13 6 9 

1 2 3  
2 24 10 

24 12 20 
12 8 1 
8 18 2 

18 19 24 
19 9 12 
1 2 3  
2 24 10 

24 12 20 
1 7 16 
8 18 2 
1 8 12 

20 3 15 17 
1 10 11 4 
6 11 18 21 

24 1 15 21 
4 18 19 24 
4 9 17 22 
6 8 16 24 
5 16 19 22 
4 18 19 24 
4 5 6 20 
4 12 16 21 
6 11 18 21 

s o  
5 6 20 
6 22 1 

22 13 2 
13 3 24 
3 10 12 

10 20 8 
20 1 18 

5 6 20 
6 22 1 

22 13 2 
4 15 23 
3 10 12 

14 16 20 

16 21 4 12 
15 5 14 8 
8 10 20 22 

16 22 5 19 
5 10 17 21 
6 8 16 24 
9 11 20 23 
6 9 13 15 
7 8 9 21 
7 10 15 19 
5 8 14 15 
8 10 20 22 

1 13 18 20 2 5 11 12 
1 2  3 1 9  4 7 1 3 1 4  
1 4 10 11 2 8 17 18 

6 17 19 23 
5 16 19 22 
5 6 4 20 
5 10 17 21 
4 12 16 21 

1 6 14 22 2 5 11 12 
1 8 12 23 2 13 21 22 
1 13 18 20 2 9 10 24 
1 7 16 17 2 4 15 23 

4 7 14 13 
8 9 7 2 1  
8 11 13 19 
6 9 15 13 
9 11 20 23 

1 15 21 24 2 14 16 20 --t 2 3 1 1 9  5 8 1 4 1 5  
2 5 11 12 3 9 18 16 
2 4 15 23 3 6 12 10 
2 9 10 24 3 14 21 23 
2 14 16 20 3 7 11 22 
2 8 17 18 3 5 13 24 
2 13 21 22 I 3 15 17 20 
3 1 2 191 6 9 15 13 

e Near-Resolus 
7 8 9 2 1  

!3 18 7 5 
L7 19 23 6 
4 9 17 22 

14 7 4 13 
21 23 14 3 
5 17 21 10 
7 8 9 2 1  

13 18 7 5 
17 19 23 6 
3 5 13 24 

14 7 4 13 
3 7 11 22 
3 14 21 23 
5 10 17 21 
3 14 21 23 
3 15 17 20 
3 9 16 18 
3 7 11 22 
3 5 13 24 
3 6 10 12 
6 11 18 21 
1 15 21 24 
1 13 18 20 
1 7 17 16 
1 8 12 23 
1 6 14 22 
1 4 11 10 
4 12 16 21 
2 13 21 22 
2 14 16 20 
2 8 18 17 
2 9 10 24 
2 4 15 23 
2 5 12 11 

Ins for Design 1 
10 13 16 231 11 14 17 24 

4 9 17 221 5 7 18 23 
4 9 17 221 7 12 20 24 

5 7 18 231 6 8 16 24 
5 7 18 231 8 10 20 22 
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points with block size 7 first discovered by Baker [l]. This provides an interesting 
connection between the S(2, 4, 25) Design 1 and an elliptic semiplane. We refer 
the reader to the paper by Lamken and Vanstone [13] for details of the 
construction. 

8. Designs, their groups, and other invariants 

We presently display the 16 designs and various invariants. For each of the 
sixteen S(2, 4, 25) designs, we present generators of the corresponding auto- 
morphism group C,  representatives of the block orbits under the action of G, and 
orbit lengths. A block orbit is presented in the form [12  3 1914* where {1,2,3,  19) 
is a design block representative of an orbit of length 42. In a similar fashion we 
exhibit the orbits of Fano subdesigns by exhibiting the point sets of orbit 
representative Fano planes and corresponding orbit lengths. We also display 
orbits of ovals, complete 5-arcs and orbits of parallel classes of blocks. Here, 
{1,23,36,43,45, 48}7 indicates that blocks with indices 1,23, . . . ,48  form a 
parallel class which is moved into a G-orbit of 7 parallel classes. 

Although we have computed the block-graph invariants for each of the 16 
designs, because of the bulk of  the data involved we are not displaying this 
information here. It is worth noticing however that the sixteen designs are 
discriminated by means of their block-graph invariants. We begin by listing the 
union of generators of the automorphism groups. 

a = (1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21) (22 23 24)(25) 

= (1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21) (22)(23)(24)(25) 

15 = (1 2 3)(4 5 6) (7 8 9)(10 11 12) (13 14 15)(16 17 18) (19)(20)(21)(22 23 24)(25) 

b = (1 4 7)(2 5 8) (3 6 9)(10 13 16) (11 14 17)(12 15 18) (19 20 21)(22)(23)(24)(25) 

y, = (1 2 24 12 8 18 19 9 7 23 17 4 14 21 5 6 22 13 3 10 20)(ll 16 15)(25) 

yz = (1 21 13 18 4 15 2 5 19 17 10 8 16 6 9 20 12 14 3 11 7)(22 23 24)(25) 

ys = (1 23)(2 24)(3 25)(4 21)(5 22)(6 17)(7 18)(8 19)(9 20)(10 16)(11)(12)(13)(14)(15) 

(1 25 5)(2 19 10)(3 13 15)(4 7 20)(6 21 24)(8 14 9)(11 22 18)(12 16 23)(17) y,, 

ys := (1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22)(23)(24)(25) 

y6 = (1 2 4)(3 6 5)(7)(8 9 11)(10 13 12)(14)(15 16 18)(17 20 19)(21)(22 23 24)(25) 

y, = (1 20 16)(2 10 3)(5 17 18)(4 19 22)(6 9 25)(11 15 14)(7 21 12)(8 13 24)(23) 

ys = (1)(2 18)(3 5)(4 22)(6 15)(7)(8 21)fQ 11)(10 17)(12 21)(13)(14 25)(16 20)(19)(23) 
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Block Orbits 
Fano Planes 

Ovals 
Complete 5-arcs 
Parallel Classes 

11 2 3 19]42 ; [I 5 9 251' 
11 2 3 16 17 18 ZO]" 
[l 2 4 5 7 8 22 251" 
11 2 15 18 25j" 
{1,23,36,43,45,48}' ; {1,24,30,32,41,48}21 

Design 2. H = <&,B:> 5 G = <&,yz>, I G I = 7.9 = 63. 

Block Orbits 
Fano Planes 

Ovals 
Complete &arcs 
Parallel Classes 

11 2 3 191" ; [I 4 7 221" ; [19 20 21 251' ; (22 23 24 251' ; 
(1 2 3 16 17 18 20)' ; [I 2 6 7 10 19 221" 
11 2 5 6 12 15 16 171" ; I1 2 6 9 12 13  22 231" 
[l 2 15 17 25Iz1 ; 11 6 13 22 24Iz1 
None 

Block Orbits 

Fano Planes 
Ovals 

PnrnllPl Clnsscs 

Complete &arcs 

Design 4. G = <&,B>, I G 1 = 9. 

11 6 10 ill' ; [l 12 13 231' ; [l 14 16 201' ; [l 15 21 2419 ; 
[l 2 3 191' ; [l 4 7 221' ; [1 5 9 251' ; [lo 13 16 251' ; 
119 20 21 251' ; 122 23 24 251' 
[I 2 3 16 17 18 20)' 
[l 2 4 5 10 13 15 1819 ; 110 11 12 13 14 15 20 2Il3 
110 11 12 20 2513 
(2.10.21 33.43.47)s 

Block Orbits I 

Dlock Orbits 

Fano Planes 
Ovals 

Complete 5-arcs 

[l 4 10 151' ; [l 6 11 221O ; [ I  13 17 201' ; [ l  14 21 24f ; 
11 2 3 1913 ; ( 1  5 9 251' ; 110 11 12 251' ; 110 13 16 221' ; 
[ 19 20 21 251' ; 122 23 24 251' 
[l  4 7 12 15 18 231' 
11 2 4 5 7 8 22 241' 

[l  6 10 141' ; [l 11 13 211' ; [l 15 20 241' ; [l 16 18 2319 
11 2 3 191' ; 11 4 7 221' ; 11 5 9 251' ; 110 13 16 251' 
119 20 2 i  251' ; 122 23 24  251' 
11 6 11 12 14 17 211' : 110 11 12 19 22 23 2413 

[ I  2 4 8 10 16 20 211' ; [I 2 5 7 10 12 15 1GI9 
110 11 12 13 1 4  15 19 2OI3 

Complete 5-arcs 1 [l 4 7 24 2513 
Parallel Classes I {1,23,36,44,45,46}' 
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Block Orbits 
Fano Planes 

Ovals 
Complete Spares  
Parallel (:lasses 

I53 

[l 2 6 25Iz5;[1 3 11 19]25 

(1 2 3 8 10 15 16 2OI7‘ 

{ 1,17,36,4 1,43,46}*’ 

None 

[i 2 3 4 51’‘ ; [I 2 9 10 201~‘ 

Design 6. G = <y3,yl>, I G I = 2.3.25 = 150, 

Block Orbits 

Fano Planes 

(1 9 17 22]”;(1 2 4 141’ ; (1 8 15 2517 ; [1 18 20 21j7 ; 
[8 9 11 211’ ; [22 23 24 251’ 
11 2 3 4 5 6 71’ 

Ovals 
Complete 5-arcs 

Parallel Classes 

None 

None 
11 2 6 10 251’ 

Block Orbits 11 2 4 2516 ; ( I  3 8 lllG ; [2 3 14 1916 ; [2 6 9 1216 ; 
[l 6 7 151’ ; [ I  10 13 171’ ; [l 12 19 211’ ; (2 7 18 231’ ; 
(2 17 21 241’ ; [4 6 8 141’ ; 14 12 13 241’ ; [8 9 15 2313 ; 
[l 16 20 231’ ; (4 19 22 231’ 

Fano Planes 
Ovals 

Design9, G = <a>, ( G I  = 3 

Fano Planes 

None 
(1 2 5 6 11 13 14 2116 ; [l 4 9 10 11 12 14 231‘ ; [I 7 8 9 12 13 14 1613 ; 
12 3 4 5 12 18 21 221’ ; 12 3 5 9 11 15 17 251’ ; [2 5 7 9 15 19 21 2213 ; 

Complete 5-arcs 
Parallel Classes { 2,13,22,31,33,49}’ 

[l 2 4 17 191’ ; [13 16 19 20 211’ 

Complete 5-arcs 
Parallel Classes 

i2 8 9 11 14  18 24 25i3 
[1 7 13 19 2313 ; [2 3 4 5 1713 ; 12 4 5 12 2313 ; [2 6 13 14 1716 
(1.17.33.40.44.49)’ : (2.15.27.30.34.36)’ : (8.9.26.28.36.47)3 

Block Orbits 

Fano Planes 
Ovals 

Complete 5-arcs 
Parallel Classes 

[l 4 20 241’ ; [ I  5 11 231’ ; [l 6 14 211’ ; [i 7 15 171’ ; 
[l 8 12 19’ ; [ I  9 13 2213 ; [l 10 18 191’ ; [4 7 16 211’ ; 
[4 8 9 231 ; [4 11 12 131’ ; [4 14 17 181’ ; [7 10 13 251’ ; 
[7 12 19 201’ ; [ lo  16 23 241’ ; [13 15 21 231’ ; [16 19 22 251’ ; 
(1 2 3 251’ ; (4 5 6 251’ 
(1 5 10 12 16 18 231’ 
11 2 9 11 14 15 18 241’ ; [l 4 8 11 15 18 21 221’ ; [l 6 8 13 15 19 20 2513 ; 
[4 5 9 12 16 17 20 221’ ; [lo 11 13 14 16 18 21 221’ 

None 
None 
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Block Orbits 

Fano Planes 

Design 11, G = <a>, I G I = 3 

11 4 19 201’ ; (1 5 11 231’ ; (1 6 13 141’ ; (1 7 15 181’ ; 

[4 8 9 231’ ; [4 12 16 181’ ; [4 13 17 241’ ; [7 10 13 251’ ; 
[7 14 16 201’ ; [I0 12 14 211’ ; [ I3  21 22 231’ ; [16 19 22 251’ ; 
[l 2 3 251’ ; [4 5 6 251’ 

[I 8 10 241’ ; 11 9 16 211’ ; [I  12 17 221’ ; [4 7 11 211’ ; 

None 
Ovals [l 2 4 5 9 10 12 131’ ; 11 2 4 7 16 22 23 241’ ; [ l  5 8 9 13 20 22 251’ ; 

[7 12 13 15 16 19 21 241’ 
11 6 12 15 191’ Complete 5-arcs 

Parallel Classes {3,11,16,37,39,41}’ 

Block Orbits 

Fano Planes 
Ovals 

Complete 5-arcs 
Parallel Classes 

[l 4 20 22]’ ; [l 5 10 181’ ; [l 6 15 171’ ; (1 7 12 141’ ; 
11 8 13 161’ ; [l 9 23 241’ ; [ I  11 19 211’ ; [4 7 11 231’ ; 
[4 8 9 211’ ; [4 10 14 191’ ; [4 15 16 241’ ; [7 10 13 251’ ; 
(7 16 17 211’ ; [lo 12 16 231’ ; (13 15 19 231’ ; (16 19 22 251’ ; 
[l 2 3 251’ ; [4 5 6 25)’ 

[l 2 5 6 8 14 19 221’ ; [I 2 7 9 13 15 20 211’ ; [1 2 10 11 13 14 22 2313 
[l 8 10 12 17 21 22 251’ ; [l 8 12 15 18 20 21 231’ 
[7 15 20 22 251’ 

None 

None 

Design 15, G = <a>, 1 G I = 3. 

Block Orbits 

Fano Planes 
Ovals 

[l  4 16 231’ ; [l 5 7 211’ ; [I 6 12 141’ ; [l 8 10 181’ ; 
[l 9 13 2213 ; (1 11 20 241’ ; [l 15 17 191’ ; [4 7 22 241’ ; 
[4 8 12 131’ ; [4 11 19 211’ ; [4 14 17 18)’ ; [7 8 16 201’ ; 
[7 10 13 251’ ; [lo 11 17 221’ ; (13 14 19 241’ ; [ lS  19 22 251’ ; 
(1 2 3 25)’ ; (4 5 6 25)’ 
[l 2 3 7 12 14 211’ 
[I 2 5 11 14 18 19 221’ ; [l 7 8 12 19 23 24 251’ ; [ I  7 9 14 16 17 24 2513 ; 

I7 8 10 12 14 15 19 211’ 

Block Orbits 

Fano Planes 
Ovals 

Complete 5-arcs 
Parallel Classes 

[l  4 18 231’ ; [ I  5 7 191’ ; [ I  6 12 141’ ; [ I  8 15 241’ ; 
[l 9 11 161’ ; (1 10 20 221’ ; [l 13 17 211’ ; [4 7 22 241’ ; 
14 8 12 1.71’ ; [4 11 19 201’ ; [4 14 16 1713 ; (7 8 16 211’ ; 
(7 10 13 251’ ; [lo 11 17 241’ ; [13 14 20 241’ ; [16 19 22 251’ ; 
(1 2 3 251’ ; [4 5 6 251’ 
[l 2 3 7 12 14 191’ 
[4 5 11 12 14 15 23 241’ ; (4 8 9 10 16 20 24 251’ ; 17 8 10 12 14 15 1‘3 201~  
[l 12 13 19 221’ ; [4 15 20 24 251’ 

None 
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Fano Planes 
Ovals 

Complete 5-arcs 
Parallel Classes 
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[l 4 13 241’ ; [l 5 17 211’ ; [l 6 8 2OI3 ; [l 7 11 2513 ; 
[l 9 16 181’ ; [l 10 14 151’ ; [l 12 19 2313 ; [4 7 10 221’ ; 
(4 8 15 l!)]’ ; (4 11 12 171’ ; (4 14 18 251’ ; [7 12 15 201’ ; 
[7 13 18 231’ ; [ lo  17 19 241’ ; [13 16 19 221’ ; [I 2 3 221’ ; 
[4 5 6 231’ ; [7 8 9 241’ ; [19 20 21 251’ ; [22 23 24 251’ 
[l 2 3 13 14 15 241’ ; (4 5 6 10 11 12 221’ ; [7 8 9 16 17 18 231’ 

[7 10 13 14 16 20 24 251’ 
[4 5 8 9 181’ ; [16 17 18 24 251’ 

None 

Block Orbits 

Fano Planes 
Ovals 

Complete 5-arcs 
Parallel Classes 

Design 16, G <p>, I C I = 3. 

[l 4 13 24J3,; [I 5 16 201’ ; [l 6 8 191’ ; j l  7 17 181’ ; 
[l 9 10 251 , [I 11 14 151’ ; [l 12 21 231 ; [4 7 10 221’ ; 
[4 8 14 211’ ; [4 11 12 161’ ; [4 15 17 251’ ; [7 12 14 191’ ; 
[7 15 16 231’ ; [lo 16 21 241’ ; [13 16 19 221’ ; [l 2 3 221’ ; 
[4 5 6 231’ ; [7 8 9 241’ ; [19 20 21 251’ ; [22 23 24 251’ 

[l 2 6 9 11 16 23 241’ ; [l 2 6 15 18 20 23 251’ ; [l 8 12 15 16 17 22 241’ 
[l 2 3 13 14 15 241’ ; [4 5 6 10 11 12 221’ ; [7 8 9 16 17 18 231’ 

[l 2 4 6 ills ; [4 5 18 20 221’ ; [16 17 18 24 251’ 
None 

9. Concluding remarks 

The above analysis establishes that there are precisely 16 pairwise non- 
isomorphic Steiner systems S ( 2 ,  4, 25)’s with a nontrivial automorphism group, 
and provides us with a number of invariant substructures which discriminate the 
16 designs. For convenience we present in Table 7 a summary of properties o f  the 
16 S ( 2 ,  4, 25)’s with non-trivial automorphism group. 
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For emphasis we state: 

Theorem 9.1. There ure exxuctly 16 non-isomorphic Steiner systems S(2, 4, 2.5) 
with non-trivial automorphism group. Euch such desigii hus un uutomorphism o f  
order 3. These designs are distinguished from one another either by the 
substructures summurized in Table 7, or by their block-gruph invariants. 

An immediate problem is suggested: 

Problem 1. Determine if there are any, or  find all, S(2 ,  4, 25)’s with identity 
automorphism group. 

Another natural question concerns the extendability of each of o u r  16 
S ( 2 ,  4, 25)’s. A single extension would yield an S ( 3 ,  5 ,  26) and such a design \vas 
first given by Hanani [ 101. The group of this S ( 3 ,  5 ,  26) is transitive on the  26 
points so a quick check establishes that all derived S(2, 4, 25)’s of Hanani’s design 
are isomorphic to Design 1 .  Also, Denniston [S] has constructed an S ( 5 .  7, 28) 
which would be a triple extension of some S(2, 4, 25). Since Ilenniston’s design 
has PSL,(27) as its automorphism group, acting as a 3-homogeneous group on 
the 28 points, all doubly derived S ( 3 ,  5 ,  26) designs are isomorphic. In fact these 
designs are isomorphic to Hanani’s S ( 3 ,  5 ,  26). Thus, the triply derived 
S(2, 4, 25)’s from Denniston’s design are all isomorphic to Design 1 .  

The necessary arithmetic conditions for an S(8 ,  10, 31) are satisfied so it is 
theoretically possible that some S ( 2 ,  4, 2.5) could extend 6 times. We state: 

Problem 2. How far does any given S ( 2 ,  4, 25) extend? 

Note added in proof. The chromatic index of a design is the smallest number of 
colors needed to color the points so that no blocks are monochromatic. Kevin 
Phelps has determined that Design 9 and Design 10 have chromatic index 2. The 
other fourteen designs in our list have chromatic index 3. 
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BALANCED TOURNAMENT DESIGNS AND RELATED 
TOPICS 

E.R. LAMKEN and S.A. VANSTONE 
Department of C’ombinatorics and Optimization, University of Waterloo, Waterloo, Ontario, 
Canada N2L 3C I 

A balanced tournament design of order n,  BTD(n), is an n x (2n - 1) array defined o n  a set 
of 2n elements V such that (1) each cell of the array contains a pair of distinct elements from V, 
(2) every pair of distinct elements from V is contained in some cell, (3) each element is 
contained in each column, and (4) no element is contained in more than 2 cells of each row. 
BTD(n)s are very useful for scheduling certain types of round robin tournaments such as tennis 
and curling. Their existence has been completely settled. In this paper we survey the known 
results and discuss various extensions and generalizations. 

1. Introduction 

A round robin tournament is played among 2n players in 2n - 1 rounds. There 
are n courts of unequal attractiveness available for the matches and each round is 
played at one time using all the courts. To balance the effect of the different 
courts it is desired to arrange the tournament so that no player competes more 
than twice on any one court. 

Haselgrove and Leech [ 10) established the existence of such designs for ti = 0 
or 1 (mod 3 ) .  Schellenberg, van Rees and Vanstone [33]  completed the spectrum 
of existence. In the sequel we consider this problem and related topics. We begin 
by giving a formal definition oi the problem. 

A tournament design, TD(n), defined on a 2n-set, V ,  is an arrangement of the 
(’2”) distinct unordered pairs of the elements of V into an n x (2n - 1) array such 
that 

The paramcter n is called the side of the TD(n). Clearly a TD(n) is equivalent to 
a 1-factorization of the complete graph on 2n vertices. Such 1-factorizations have 
been extensively studied ( [ 2 8 ] ) .  

Gelling and Odch [8] introduced the problem of constructing TD(n)s with the 
following property: 

(2) no element o f  V is contained in more than 2 cells of any row. 
A TD(n) with property (2) is called a balanced tournament design and is denoted 
BTD(n). If  we let the elements of V correspond to the players in a round robin 
tournament, the columns correspond to the rounds and the rows correspond to 

(1) every element of V is contained in precisely one cell of each column. 

0012-365X/89/$3.50 0 1989, Elsevier Science Publishers B.V. (North-Holland) 
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the court assignments, then a B T D ( n )  represents a round robin tournament as 
described at the beginning of this section. 

A simple but very important observation is stated in the next lemma. 

Lemma 1.1. Every element of a B T D ( n )  is contained twice in ( n  - 1) rows and 
once in the remaining row. 

An element which is contained only once in row i is called a deficient element of 
row i. The two deficient elements of row i are referred to as the deficient pair of 
row i. We note that the deficient pair of row i need not occur in a common cell of 
that row. 

Lemma 1.2. The deficient pairs of u B T D ( n )  on V partition the elements of V into 
pairs. 

As previously mentioned, the existence of B T D ( n ) s  was established in [ 3 3 ] .  
The proof uses a particular class of B T D ( n ) s  called factored BTD(n)s .  A factored 
B T D ( n )  is a B T D ( n )  with the property that in  each row there exists n cells, called 
a factor, which contain all 2n elements o f  V.  Note that the pairs in a factor 
correspond to a 1-factor of the complete graph on 2n vertices. An example o f  a 
FBTD(4) is given in Fig. 1 .  

The following results are established in [33]. 

Theorem 1.3. There exists u F T B D ( n )  for each odd positizw integer n .  

The proof of this result is by a direct construction for the  stated designs. 

Theorem 1.4. I f  there exists u F B T D ( n )  and if there exists u pair of mutually 
orthogonal Latin sqitures o f  order 2n,  then there exists a FBTD(2rr). 

Since a pair of orthogonal Latin squares of order n is k n o w n  to exist ([2]) for  all 
positive integers n ,  11 # 2 or 6, the existence of a FBTD(4) ,  and a FBTD(6)  along 
with Theorems 1.3 and 1.4 is enough to prove that a F B T D ( n )  cxists tor all 
positive integers n ,  n #2.  A FBTD(6)  was recently found ([17]) and is displayed 
in Fig. 2. We summarize this in the following statement. 

Fig. 1. A FBTD(4) 
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Fig. 2. A FRTD(6). 

Theorem 1.5 (Lamken and Vanstone [17]). A FBTD(n) exists if and only i f n  is a 
positive integer and n # 2. 

An alternate proof of the existence of FBTD(n)s can be given which requires 
the direct construction of only a small number of designs. We state the result in 
two theorems and give an outline of the proofs. 

Theorem 1.6. There exists a FBTD(n) for n = 1 (mod 2). 

Proof. I f  II = 1 (mod4) and n > 13, we apply Theorem 3.1 of [ 181 and if n = 3 
(mod 4) and n > 7 we apply Theorem 3.1 of [19]. The cases n = 3 ,  5 ,  7, 9 and 13 
must be done direcdy. 0 

Theorem 1.7. There exists a FBTD(n) for  n = 0 (mod 2) 

Proof. Use the doubling construction stated in Theorem 1.4. As before, a 
FBTD(4) and a FBTD(6) must be constructed directly. 0 

In  Section 2 we will consider BTD(n)s with additional properties. Section 3 
looks at some graph theoretic properties of these designs and Section 4 discusses 
an application of B'TD(n)s to the construction o f  resolvable balanced incomplete 
block designs. Finally, a generalization of the problem is considered in Section 5 .  

2. Factor balanced tournament designs and partitioned balanced tournament 
designs 

When designing a balanced tournament for 2n players it may be desirable to 
have the property that each player plays exactly once on each court during the 
first n rounds. Hence, we say that a BTD(n) is factor balanced, denoted 
FBBTD(n), if it satisfies 

( 3 )  each row of the BTD(n) has a factor in the first n columns of the array. 
In addition to property ( 3 ) ,  if thc BTD(n) also satisfies 

(4) each row of the BTD(n) has a factor in the last n columns of the array, 
then the BTD(n) is called a partitioned balanced tournament design and is 
denoted by PBTD(n ). 
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T o  show that property ( 3 )  does not imply property (4), we construct 
FBBTD(n)s which are not PBTD(n)s  for all n ,  n # 2,  3 ,  or 4. We require several 
definitions to do this. 

A Howell design, H ( s ,  2 n ) ,  is an s X s array A defined o n  a 2n-set V of 
elements such that 

(i) every cell of A is either empty or contains a 2-subset of V ,  
(ii) every element of V is contained in precisely one cell of each row and 

column of A ; 
(iii) every pair of distinct elements from V is contained in at most one cell of 

the array. 
It is not difficult to see that n d s  6 2n - 1. A number of papers on Howell 
designs culminated in the following result. 

Theorem 2.1 (Stinson ( 3 5 ) ) .  An H ( s ,  2 n )  exists if und onfy  if (2n ,  s )  satisfies 
n s s < 2n - 1 and (2n, s )  $ { (4 ,  3 ) ,  ( 4 ,  2 ) ,  (6, S) ,  (8 ,  5 ) ) .  

An H(2n - 1 ,  2 n )  is called a Room square of side 2n - 1. A Room square is 
said to be in standard form if some element of V is contained in each cell of the 
main diagonal. Any Room square can be put into standard form by an 
appropriate permutation o f  rows and columns. A standardized Room square is 
said to be skew if i t  has the property that cell (i, j )  of A contains a pair implies 
cell ( j ,  i )  is empty lor i Zj. The spectrum for the existence o f  skew Room squares 
is known. 

Theorem 2.2 (Stinson [35]).  A skew Room square of side n exists if and only iJ n 
is un odd positive integer und n # 3 or 5 .  

We also require the following two theorems which are stated in modified form 
[33 ] .  In a PBTD(n) ,  the deficient pairs must form a column of the array. A 
careful inspection of the next two constructions [33]  shows that the deficient pairs 
of the resulting FB'T'Ds will never form a column of the array. In addition, both 
constructions use a pair of orthogonal Latin squares which insures that the BTDs 
are factor balanced. 

Theorem 2.3 (Schellenberg, van Rees, Vanstone [ 3 3 ] ) .  If there exists a skew 
Room square of side r ,  and if there exists u pair of orthogonul Latin squares of side 
r ,  then there exists a FBBTD(r)  which is not u PBTD(r).  

Theorem 2.4 (Schellenberg, van Rees, Vanstone [33)). ff there exists u F B T D ( n )  
and if there exists a pair of orthogonal Lutin squures of side 2n, then there exists u 
FBBTD(2n)  which is nof  a PBTD(2n).  

We can now state and prove our existence result. 
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25 46 14 13 36 
34 12 56 26 15 

Fig. 3. A BTD(3) 

Theorem 2.5. (i) There is no FBBTD(n) for n = 2,  3 ,  or 4. (ii) There exists a 
FBBTD(n) which is not a PB'TD(n) if and only i f  n 3 5. 

Proof. (i) It is easily checked that no BTD(2) exists. Up to isomorphism there is 
precisely one BTD(3) (Fig. 3). It is easily checked that this design is not a 
FBBTD(3). Suppose A is a FBBTD(4). Let B be the subarray of A consisting of 
the first 4 columns. B must be an H(4,  8). Rosa and Stinson [31] have proven that 
any H(4, 8) is equivalent to a pair of orthogonal Latin squares of order 4. I t  is a 
simple matter to check that a pair of orthogonal Latin squares cannot be 
extended to a FBBTD(4). 

(ii) The proof of this part follows from Theorems 2.2, 2.3, the existence of 
orthogonal Latin squares and the existence of FBBTD(n)s for n = 5, 6 and 8 
which are displayed in Figs 4, 5 and 6, respectively. 0 

000 2 3  1 3  0 2  0 3  1 2  ( Y O  m i  
2 3  m l  ( ~ 3  0 2  i o  0 3  i 2  m 3  ( ~ 2  
i 3  (YO m 2  0 1  2 3  ( ~ i  m(5 2 2  3 3  
a2 0 2  ( 5 1  m 3  31  m 2  ( ~ 3  i i  0 0  
1 0  i 3  Z o  3 2  ( Y W  i 2  0 5  3 0  1 2  

Fig. 4. A FBBTD(5). 

Oi a4 34  2 3  m2 0 1  l i  m 4  2 4  0 2  a 3  
033 1 2  ( ~ 6  4 0  5 4  i 2  ( ~ 4  2 2  m 0  30 i 3  
41, m4 25  a i  0 1  2 3  2 4  ( Y O  3 3  m i  4 1  
12  I,i m O  3 4  a2 3 4  0 2  30  ( Y I  44  m Z  

2 3  iZ 0 0 1  4 0  4 0  - 3  1 3  4 i  a 2  0 0  
2 4  5 0  4 1  0 2  i 3  a m  6 3  i 4  2 0  3 1  4 2  

Fig. 5. A FBBTD(6). 
- 

- -  
0 6  m 3  1 6  2 5  2 5  1 6  a 4  3 4  5 2  m l  3 i  6 0  ( ~ 4  4 6  2 3  
a 5  i i  m 4  26  3 6  ? 6  2 0  4 5  34 6 3  m2 4 2  0 1  ( ~ 5  so 
3 1  ( ~ 6  2 2  m.5 5 i  4 0  40 5 6  h i  45 0 4  m 3  5 3  1 2  ( ~ 7 )  
J i  4 2  ( Y O  3 3  m 6  4 2  5 1  6 0  (YO 0 2  5 6  i s  m4 6 4  2 3  
6 2  6 2  5 3  ( ~ l  4 4  m 0  5 5  0i 3 4  m i  13  6 0  2 6  m5 0 5  
64  0 3  0 3  6 4  ( ~ 2  5 5  m i  1 2  16 4 5  ( ~ 2  2 4  6 i  3 0  m 6  
m 2  (5.3 14 i 4  0 5  ( ~ 3  66  2 j  m 0  2 6  5 6  a3 3 5  i ?  4 1  
3 4  4 5  5 6  6 0  0 1  i 2  2 3  ( Y W  2 5  3 6  4 0  5 1  6 2  0 3  i 4  

Fig. 6. A FBBTD(8). 



The existence of I'BTD(ri)s is a much more difficult question and its spectrum 
has not yet been completely determined; however, significant progress has k e n  
made and only seven possible values o f  11 are now in question. We state this result 
in the next theorem. Since the constructions needed for the proof are quite 
complicated and different from those used for BTD(n)s and FBBTD(ri)s, we omit 
even an outline of it .  

Theorem 2.6 (Lamken and Vanstone [ 18, 19,201, Lamken [21]). Therc ex ;m (J 

PBTD(n) for all n 2 5 except possibly n E {9, 11, IS, 26, 28, 34, 44). 

The PBTD(n) problem was first considered by Stinson 1301 in a different form. 
We note that in a PBTD(n) the columns of the array can be partitioned to give 
subarrays C,, Cz, and C ' 3  where C ,  consists of the first n - 1 columns, C'? is 
simply the nth column and C3 is the last t7 - 1 columns. Clearly, C, and C'? form 
an H ( n ,  2n) as do (I, and C,. These two designs are referred to as an almost 
disjoint pair of Howell designs. Stinson 1361 found the first example of a PB'lD(S) 
while investigating Howell designs on 1 0  points. 

Recall that a Room square is an H(2n - 1 ,  2n). Each row of such an array 
contains precisely n - 1 empty cells. Hence, the largest possible empty suharray 
in a Room square of side 2n - 1 is ( n  - 1) X ( n  - I). A Room square which 
contains such a subarray is called a maximum empty subarray Room squarc of 
side 2n - 1 and is denoted MESKS(2n - 1). Since all Room squares of side 7 
have been enumerated ([%I) it is a simple matter to see than n o  MESRS(7) 
exists. Since a MESRS(2n - 1) is equivalent to a PBTD(rz), the non-existence of 
a MESRS(7) also follows from Theorem 2.5. We should point out that the 
constructions used to prove the existence of  Room squares, in general, c l o  not 
apply to the more restrictive class of MESRS. Constructions which could exploit 
the very powerful PBD-closure technique do not appear to apply to this class of 
designs. Stinson [36] conjectured that MESRS(r) exist for all odd values of r 
greater than 7. Theorem 2.6 confirms this conjecture in all but 7 possible cases. 
We conclude this section with an example of a PBTD(5) ( [36 ] )  and its associated 
MESRS(9). These are displayed in Figs 7 and 8 respectively. We note that the 
existence of PBTD(n)s provides an alternate proof of the existence of Room 
squares. 

cr4 m 2  13  5 7  0 6  2 3  4 5  m 7  a1 
a 3  a5 4 6  0 2  1 7  m 4  a 2  05 6 3  
5 6  0 3  a 7  m l  4 2  6 7  0 1  a 3  m S  
1 2  4 7  mi) a 6  5 3  a 0  006 1 4  7 2  
0 7  I 6  2 5  4 3  a" 1 s  3 7  2 6  0 4  

c', cz c, 
Fig. 7 .  PHTD(S). 
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0 6 2 3  4 s  m7 ( u l  
1 7  m 4  (u2 0 5  3 6  

2 1  6 7  0 1  (u3 = s  
3.5 cu0  a 6  1 4  2 7  

a m  1 5  3 7  2 6  (14 
a 4  ~3 2 6  1 2  0 7  
m 2  as 0 3  4 7  I 6  
1 3  4 6  t u 7  mO 2s 
5 7  0 2  X I  a 6  3 4  

Fig 8.  MESRS(9) 

3. Graph theoretic aspects 

We begin this section by defining a class of designs which is closely related to a 
class of BTD(n)s An odd balanced tournament design, OBTD(n), is an 
n x (2n + 1) array of pairs defined on a (2n + 1)-set V such that 

(i) each pair of distinct elements from V is contained in precisely one cell of 
the array, 

(ii) each column of the array is a near resolution class, 
(iii) each element of V is in at most 2 cells of each row. 
We note that (iii) implies that each element occurs exactly twice in each row. 

Unlike BTD(n)s, i t  is a relatively simple task to construct OBTD(n)s for every 
positive integer n hy using a patterned starter [38]. The method is illustrated in 
Fig. 9 where an OBTD(3) is displayed. The design is formed by developing 
column 1 through the  integers modulo 7. 

A near 1-factor of K2,,+, is a set o f  disjoint edges spanning 2n vertices of the 
complete graph. A near 1-factorization is a partition of K2,,+, into near 1-factors. 
Clearly, an OBTD(n) induces :I near 1-factorization of K2,,+, with each column of 
the array giving a near 1-factor. The rows of the array determine 2-factors in the 
complete graph. If each row gives a 2-factor which is Hamiltonian cycle, then the 
OBTD(n) is called a Kotzig factorization of order 2n + 1 ([4]). The existence 
question for Kotzig factorizations has been completely settled. 

Theorem 3.1 (Colbourn and Mendelsohn [4], Horton [ 111). For each positive 
integer n, there exists a Kotzig factorization of order 2n + 1. 

We now consider the analogue of Kotzig factorizations for BTD(n)s. Clearly, a 
row of a BTD(n) cannot give a Hamiltonian cycle in KZn since there are precisely 2 

1 6  2 7  3 1  4 2  5 3  6 4  7 5  
2 5  3 6  4 7  5 1  6 2  7 3  14  
3 4  45 5 6  6 7  7 1  1 2  2 3  

Fig. 9. An OBTD(3). 
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1 2  1 3  5 8  3 7  4 7  2 8  4 6  
3 4  5 7  1 4  2 6  2 5  3 6  1 8  
5 6  2 4  6 7  4 8  3 8  1 7  3 5  
7 8  6 8  2 3  1 5  16 4 5  2 7  

Fig. 10. An HB’TD(4). 

vertices with degree one in the induced subgraph. It is possible that this subgraph 
could be a Hamiltonian path. If each row of a BTD(n) gives a Hamiltonian path 
in KzlIr then we call the design a Hamiltonian balanced tournament design and 
denote it by HBTD(n). The existence of HBTD(n)s is far from settled. An 
HBTD(1) trivially exists but an HBTD(2) and an HBTD(3) do not. The first 
non-trivial case is an HBTD(4). Recently, Corriveau [ 5 ]  has done an exhaustive 
search and found that there are precisely 47 non-isomorphic BTD(4)s and, of 
these, exactly 18 are HBTD(4)s. It is interesting to note that of the 6 
non-isomorphic 1-factorizations ([38]) of K, only 4 give rise t o  balanced 
tournament designs. Corriveau [5] has also shown that each of the 396 
non-isomorphic 1-factorizations of K,,, ([7]) gives rise to at least one BTD(S). At 
present there is no HBTD(n) known for n 3 5. We display in Fig. 10 an example 
of an HBTD(4) from Corriveau’s list. 

We note that an HBTD(n) is a FBTD(n). The converse is false as the example 
in Fig. 11 illustrates. The deficient pair of row 4 is 78 which actually occurs as a 
pair in that row. Hence, the  graph of this row must contain a component which is 
a path of length one. 

The graph theoretic questions posed above can be generalized. 
Let C be a spanning subgraph o f  Kz, (or K2,,+,). Is it possible to construct a 

BTD(n) (or an OBTD(n)) such that the graph associated with each row o f  the 
array is isomorphic to C? The question, o f  course, is open since even the case 
where G is a Hamiltonian path is not yet solved. For OBTD(n)s some interesting 
results do exist. 

Theorem 3.2 (Colbourn and Mendelsohn [4]). Let G he u spunning subgruph oJ 

Kzn+ , which consists of disjoint triangles. There exists un OBTD(n) in which the 
graph of euch row is isoniorphic to G i f  and only if there exists u Kirkmun triple 
system of order 2n + 1 .  

The analogous result for BTD(n)s would have a spanning subgraph G of Kz , l  

3 4  6 8  5 8  2 7  4 5  1 7  2 6  
S 6  1 3  6 7  4 8  3 7  2 5  1 8  
7 8  2 4  2 3  1 5  16 4 6  3 5  

Fig. I I .  A FRTD(4) 
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which consists of (2n - 1)/3 disjoint triangles and an edge. No general result is 
known. In fact, no example has been constructed yet. It is known ( [ 5 ] )  that such a 
design does not exist for n = 4. Of course, n must be congruent to 1 modulo 3 for 
this to be possible. 

4. Balanced tournament designs and resolvable designs 

Balanced tournament designs can be used to construct various types of 
resolvable and ncar resolvable balanced incomplete block designs (BIBDs). A 
(v, k ,  A)-BIBD D is said to be resolvable (and denoted by (v, k ,  A)-RBIBD if 
the blocks of D can be partitioned into classes R ,  , R 2 ,  . . . , R, (resolution classes) 
where t = (A(u - I ) ) / k  - 1 such that each element of D is contained in precisely 
one block of each class. A necessary condition for the existence of a ( u ,  k ,  A)- 
RBIBD is u = 0 (mod k ) .  A (v, k ,  A)-BIBD D is said to be near resolvable (and 
denoted by NR(u, k ,  A)-BIBD) if the blocks of D can be partitioned into classes 
R , ,  R 2 ,  . . . , R,, (resolution classes) such that for each element of D there is 
precisely one class which does not contain x in any of its blocks and each class 
contains precisely u - 1 distinct elements of the design. Necessary conditions for 
the existence of NR(u, k ,  A)-BIBDs are u = 1 (mod k )  and A = k - 1. 

In this section, we describe several constructions which use balanced tourna- 
ment designs to produce (11, 3, 2)-BIBDs. We will use several well known 
existence results for designs with block size k = 3. 

Theorem 4.1 (Hanani [9]). (i) There exists a ( u ,  3 ,  2)-RBIBD if and only if  u = 0 
(mod 3) and u Z6. (ii) There exists a N R ( u ,  3 ,  2)-BIBD if and only if u = 1 
(mod 3), v 3 4. 

A resolvable ( u ,  3, l)-BIBD is also known as a Kirkman triple system of order 
u and is denoted by KTS(u). 

Theorem 4.2 (Ray-Chaudhuri and Wilson [30]). There exists a KTS(u) if and only 
if u = 3 (mod 6). 

We will also use nearly Kirkman triple systems in one of our constructions. A 
nearly Kirkman triple system of order u (NKTS(u)) is a resolvable group divisible 
design with block size 3, group size 2 and index A =  1 for pairs meeting distinct 
groups. Except foi a few isolated cases the following result was proven by Baker 
and Wilson 111. (See also [3, 121.) 

Theorem 4.3 (Baker and Wilson [ 11). There exists u NKTS(v) if und only if ir = 0 
(mod 6) and u # 6 or 12. 
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Balanced tournament designs and the designs described above can be used to 
construct (v, 3, 2)-RBIBDs containing various subconfigurations. These con- 
structions are described in detail in [22]; for completeness, we include the proof 
of the first construction. 

Theorem 4.4 (Lamken and Vanstone [22]). If there exists a BTD(3n + l ) ,  a 
KTS(6n + 3) and a NR(3n + 1,  3, 2)-BIBD, then there exists u (9n + 3, 3, 2)- 
RBIBD. 

Proof. Let 
{z,, 2 2 9 . .  . 1 Z 3 , I + l } .  

V, = { x , ,  x2, . . . , x,,,+~, y , ,  y 2 ,  . . . , y7,,+,} and let V2 = 

Let B' be the 3n + 1 x 6n + 1 array constructed from a B'TD(3n + 1)  defined on 
V,. Suppose the deficient pair of elements for row i of B' is { x , ,  y , )  for 
i = 1, 2, , . . , 3n + 1. Let D' be a resolvable (6n + 3, 3, 1)-BIBD defined on 
V, U {m} so that the blocks containing are { m , x , ,  y , }  f o r  i = 1,  2, . . . , 3n + 1. 
Let 0,' be the resolution class of D which contains the triple {w, x , ,  y , }  tor 
i = 1 ,2 ,  . . . , 3n + 1. N will denote a NR(3n + 1, 3, 2)-BIBD defined o n  V, and N ,  
will denote the resolution class of N which does not contain the element z,. 

We construct a resolvable (9n + 2, 3, 2)-BIBD on V, U V2 as follows. To each 
pair in row i of B'  add the element z, (L = 1, 2, . . . , 3n + 1). Denote the resulting 
array of triples by 13. Let C , ,  C2, . . . , C(,,,+, be the  columns o f  B .  Replace each 
triple {w, x , ,  y , }  in D' with the triple {z,, x , ,  y , }  for i = 1,  2, . . . , 3n + 1 .  1) will 
denote the resulting configuration. Let D, be the corresponding resolution class of 
D which contains the triple {z, ,  x,, y , }  ( i  = 1,  2, . . . , 3n + 1 ) .  

The triples of H U D U N form a (9n + 3, 3, 2)-BIBD. Every pair in V,  occurs 
once in H and once in L). Every pair {z,, v,} where u, E V,  and z, E V, occurs twice 
in B U D .  Every pair in V, occurs twice in  N .  I t  is easy to verity that 
{ C ,  , C,, . . . , C,,, + ,, D,  U N , ,  D2 U N2,  . . . , D,,, + I U N,,,, I } is a resolution f o r  
this (9n + 3, 3, 2)-BIBD defined on V,  U V,. 0 

Theorem 4.5 (Lamken and Vanstone [22]). If there exists u HTD(3n), u 

NKTS(6n) and a (3n,  3 ,  2)-RBIBD, then there exists a (9n ,  3 ,  2)-RBIBD. 

A5 noted above, the complete spectrum of (v, 3, 2)-RBIBDs was determined 
by Hanani [9]. The constructions used in the proofs of 'Theorems 4.4 and 4.5 
provide several classes of these designs which contain various subconfigurations. 
In Section 5, we will show how these results can be generalized to construct 
resolvable ( I J ,  k ,  k - 1)-BIBDs. 

Before we generalize these results to use OBTDs and to construct doubly 
resolvable designs, we illustrate Theorem 4.4 with an example. A KTS(9) defined 
on the elements V = { 1 ,  2, . . . , m }  is displayed in Fig. 12. A BTD(4) defined on 
V - {a} where the deficient pairs are the pairs which occur with CCI in  the KTS(0) 
is displayed in Fig. 12, and a NK(4,3,2)-BIBD defined on W = { u ,  h ,  c', d }  is 
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m12 0035 a 4 6  m78  
3 4 7  1 4 8  1 5 7  2 4 5  
5 8 6  2 6 7  2 3 8  1 3 6  

Fig. 12. A KTS(9). 

displayed in Fig. 13. The design which is constructed from these designs is a 
(12,3,2)-RBIBD defined on V U W and it appears in Fig. 14. 

Similar constructions for NR(v, 3, 2)-BIBDs can be obtained from OBTD(n)s. 

Theorem 4.6 (Lamken and Vanstone [22]). If there exists an OBTD(3n + l ) ,  u 
KTS(6n + 3) and u NR(3n + 1 ,  3, 2)-BIBD, then rhere is a NR(9n + 4, 3, 2)- 
BIBD. 

We note than an analogous result to Theorem 4.5 using OBTD(n)s would 
require a NR(6n 4. 1 ,  3, 1)-BIBD which cannot exist. As with (v, 3, 2)-RBIBDs, 
the spectrum of NR(v, 3, 2)-BIBDs was settled by Hanani [9]. Theorem 4.6 can 
also be generalized to provide near resolvable ( v ,  k, k - 1)-BIBDs (251. 

Two interesting and useful applications of balanced tournament designs are 
found in constructions of doubly resolvable ( v ,  3, 2)-BIBDs o r  Kirkman squares 
and doubly near resolvable (v,  3, 2)-BIBDs [ 161. 

A (v, k, A)-BIBD is said to  he doubly (near) resolvable if there exist two (near) 
resolutions R and R '  of the blocks such that IR, n RII s 1 for all R, E R ,  R,' E I?'. 
(It should be noted that the blocks of the design are considered as being labeled 
so that if a subset of the elements occurs as a block morc than once the blocks arc 
treated as distinct.) The (near) resolutions R and R' are called orthogonal 
resolutions of thc design. A doubly resolvable ( v ,  k, A)-BIBD is denoted 
by DR(v, k, A)-BIBD and a doubly near resolvable (11, k ,  A)-BIBD by 

and index A ,  KSA(u;  1 ,  A ) ,  is an 
DNR(v, k ,  A)-BIBD. 

A Kirkman square with block size k, order 
r x r array K ( r  = (A(v - l ) ) / k  - 1 )  defined o n  a v-set V such that 

(i) cach cell of' K is either cmpty o r  contains a k-subset of V ,  

a h c  a h d  a c d  b c d  
Fig. 13. A NR(4,3,2)-BIBD 

a 3 4  a 5 6  a 1 2  a 7 8  a 4 5  a 6 7  a 8 3  
h 1 6  h 2 4  h 3 5  h 4 6  b 2 8  b 1 3  h S 1  
c 2 1  L . 1 8  c 4 1  C I S  c 3 6  r 4 8  c 2 6  
d S 8  6 3 7  d 6 8  d 2 3  d 1 1  d 2 S  d 1 4  

a 1 2  b l 8  c 3 5  d 4 h  
3 4 1  2 4 5  1 4 8  I S 7  
5 8 6  1 3 6  2 6 1  2 3 X  
h r d  a c d  a h d  a h c  

Fig. 14. A resolvable (12,3,2)-BIHD 
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(ii) each element of V is contained in precisely one cell of each row and 

(iii) the non-empty cells of K are the blocks of a ( u ,  k ,  A)-BIBD. 
We can use a pair of orthogonal resolutions of a DR(u, k ,  A)-BlBD to 

construct a KS,(u; 1,  A).  The rows of  the array form one resolution of the 
DR(v, k ,  A)-BIBD and the columns form an orthogonal resolution. Similarly, we 
can use a pair of orthogonal resolutions of a DNR(u, k ,  A)-BIBD t o  construct a 
u - 1 x 21 - 1 array. The rows of the array will form one resolution of the design 
and the columns will form an orthogonal resolution. If  the DNR(v, k ,  A)-BIBD 
has the additional property that under an appropriate ordering of the resolution 
classes of the orthogonal resolutions R and R ' ,  R,  U R,' contains precisely u - 1 
distinct elements of the design for all i ,  then the array is called a (1, A; k ,  I ! ,  1)- 
frame [16]. Note that the diagonal of a (1, A; k ,  u,  1)-frame is empty and a unique 
element of the design can be associated with each cell (i ,  i ) .  This distinction 
between (1, A; k ,  u ,  1)-frames and DNR(u, k ,  A)-BIBDs is important in recursive 
constructions.) 

In general, the spectrum of doubly resolvable and doubly near resolvable 
(u ,  k ,  A)-BIBDs remains open. Although several infinite classes of DR(v, k ,  A)-  
BIBDS are known for  k 3 3 [15], [37], the existence of DR(u, k ,  A)-BIBDs has 
been settled only f o r  k = 2 and A = 1, [29]. (DR(v, 2, l)-BIBDs are also called 
Room squares.) We should also note that the generalization of the Kirkman 
square defined above has been studied and we refer to [13]. [ 141 for some ot these 
results. We will use balanced tournament designs with additional properties to 
construct DR and DNR(u, 3, 2)-BIBDs. Progress has been made in the past few 
years in determining the spectrums of these designs. Surveys of these results can 
be found in [lS]. In this paper, we are only interested in the constructions which 
use balanced tournament designs. We proceed to describe the additional 
properties of BTDs and OBTDs that we require. 

Let B be an OBTD(n). Let R I ,  R 2 , .  . . , R ,  be the rows of B and let 
C , ,  C2, . . . , CZ,,+, be the columns of B. C =  { C , ,  C 2 , .  . . , C2,,+l} is a near 
resolution of the underlying (2n + 1 ,  2, 1)-BIBD. A resolution D ,  I) = 

{ U , ,  D2, . . . , D2,,+,} is called an orthogonal resolution to C if 

column of K ,  

( i )  l C , n D , l s l  for l s i ,  ~ a 2 n + 1 ;  
(ii) ID,nR, I=l  for 1 s j s 2 n + 1 ,  l s i s n .  

If D exists, then we say that the OBTD(n) has a pair of orthogonal resolutions 
(ORs). With respect to these objects, the following existence result is known. 

Theorem 4.7 (Lamken and Vanstone (231). Let n be a positive integer, n 2 3 and 
2n + 1 # 3m where (m, p )  = 1 for p a prime less than 333. Then there is an 
OBTD(n) with a pair of orthogonaf resofutions. 

A similar definition for a BTD(n) with a pair of orthogonal resolutions can be 
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made but no non-trivial examples of these objects have been found to date. For 
BTD(n)s we make the following definition. 

Let B be a B‘rD(n + 1). Let R , ,  R 2 ,  . . . , R,+I  be the rows of B and let 
C1, C2, . . . , C2,r+I be the columns of B. C = {C,, C2, . . . , C2,+,) is the resolu- 
tion of B. A resolution D = { D l ,  D2, . . . , will be called almost orthogonal 
to C if 

(i) C 2 n + l  = D*,l+l, 

(ii) IC, n D,ld 1 for 1 s i ,  j s 2n; 
(iii) ID’ f l  R,I = I for 1 d j s 2n, 1 d i s n + 1 .  

If D exists, we say that B has a pair of almost orthogonal resolutions (denoted by 
AORs). If B is a BTD(n + 1) with a pair of almost orthogonal resolutions with 
the property that the deficient pairs of B are contained in the shared resolution 
class C2,,+,, then we say that B has property C‘. Fig. 15 displays the smallest 
example of such an array. 

Balanced tournament designs with AORs are more difficult to construct than 
OBTDs with ORs. Several infinite classes of these designs are known to exist and 
we refer to [27] for the descriptions of these classes. We include just one example 
of these results for BTDs with AORs. 

Theorem 4.8 (Lamken and Vanstone [27]). Let n be a positive integer, n f 8  or 
33. There exists a HTD(rn) with AORs for m = 8n + 3 and rn = 16n + 5. 

Our constructions will also require the existence of KS,(v;  1, 1)s with com- 
plementary (1,2;  3 ,  (v - 1)/2, 1)-frames. We give a brief description of these 
designs and refer the interested reader to [24] for details. 

Let K be a KS,(hn + 3;  1, 1) defined on V U {m) where 0 ~ )  occurs in each cell of 
the main diagonal (IV( = 6 n  + 2). We say K has a complementary (1, 2; 3, 3n + 
1, 1)-frame (or a complementary DNR(3n + 1, 3, 2)-BIBD) if there exists a 
(1,2; 3,3n + 1, 1)-frame (or a DNR(3n + 1, 3, 2)-BIBD) which can be written in 
the empty cells of K .  Although the spectrum has not been determined for either 
KS,(v; 1, 1)s or (1, 2; 3 ,  v ,  1)-frames, we can construct infinite classes of 
KS3(6n + 3; 1, 1)s with complementary (1, 2; 3 ,  3n + 1, 1)-frames [24]. 

Theorem 4.9 (Lamken [24]). Let i and j be nonnegative integers. There exists a 
KS3(2n + 1; 1, 1) with a complementary (1, 2; 3, n, l)-frarnefor n = 19’31’. 

3 5  2 0  2 3  0 5  1 4  
0 4  3 4  0 1  1 3  2 5  

1 2  1 5  4 5  2 4  0 3  
0 5  2 3  2 0  5 3  1 4  
3 4  0 4  1 3  01  2 5  

Fig. 15. A BTD(3) with AORs. 
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We can now state our constructions which use BTDs with AORs and OIJTDs 
with ORs to produce DR(v, 3, 2)-BIBDs and DNR(u, 3, 2)-BIBDs respectively. 
These constructions are applied and the resulting classes of designs described i n  
detail in [24]. 

Theorem 4.10 (Lamken and Vanstone [22]). I f  there is a BTD(3n + 1) with (1 pair 
of almost orthogonal resolutions and Property C' arid if  there is a KS3(6n + 3; 1 ,  1) 
with a complementary ( I ,  2; 3, 3n + I ,  1)-frume, then there is u KS,(9n + 3; I ,  2) 
or a DR(9n + 3 ,  3, 2)-BIBD. 

Theorem 4.11 (Lamken and Vanstone [22]). ff there is an OBTD(3n + I )  with a 
pair of orthogonal resolutions arid a KS,(6n + 3; 1, 1) with a complementary 
(1, 2; 3, 3n + 1,  1)-frame, then there is a DNR(9n + 4, 3, 2)-BIRD. 

We conclude this section by noting that the two smallest cases where these 
theorems can be applied are n = 6 and n = 10. Using Theorems 4.10 and 4.11, we 
can construct DR(u, 3, 2)-BIBDs for u = 57 and u = 93 and DNR(u, 3, 2)-BIBDs 
for 21 = 58 and = 93 and DNR(v, 3, 2)-BIBDs for '11 = 58 and II = 94. These 
designs were not previously known to exist. 

5. A generalization 

In this section we consider a generalization of balanced tournament designs 
from pairs to k-subsets. We begin with a definition. 

Definition 5.1. A gcncralized balanced tournament design, GBTD(n, k) ,  defined 
on a kn-set V, is an arrangement of the blocks of a (kn, k ,  k - 1)-BIBD defined 
on V into an II x (kn - 1) array such that 

(1) every element of V is contained in precisely one cell of each column, 
(2) every element of V is contained in at most k cells of each row. 

Let G be a GBTD(r1, k). An element which is contained in only k - 1 cells of row 
R, of G is called a deficient element of R,. I t  is easily seen that each row of C 
contains exactly k deficient elements. These elements are called the deficient 
k-tuple of row i .  These deficient elements of row i need not occur in a common 
block of this row. The deficient k-tuples of C partition the points of this design. 
We illustrate the definition by displaying a GBTD(3,3) in Fig. 16. The deficient 
triples of rows 1, 2 and 3 are respectively { 4 , 6 , 8 } ,  { I ,  2 ,9} ,  and {3,5,7}. 

i d n,  is the deficient k-tuple of row 
R, of G. If  C occurs as a column in G k - 1 times, C is said to have property C .  
The GBTD(3,3) displayed above does not have property C .  A GBTD(4,3) with 
a property C is illustrated in Fig. 17. Suppose the blocks in row R, can be 

Let C = ( C , ,  C7, . . . , C,,)'  where C, ,  1 
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1 2 9  3 4 9  5 6 9  1 4 5  3 5 7  1 7 8  2 3 8  2 6 7  

3 6 8  2 5 8  2 3 7  7 8 9  1 2 9  3 6 9  1 6 5  1 3 4  
3 5 7  1 6 7  1 3 8  2 3 6  4 6 8  2 4 5  7 4 9  5 8 9  

Fig. 16. A GBTD(3,3) 

partitioned into k sets of n blocks each, e l ,  &, . . . , Ek so that every element in 
V occurs precisely once in e,, 1 S j S k - 1, and every element o f  V occurs 
precisely once in F;, U C, for 1 i d k .  A GBTD(n, k )  with this property is called 
a factored generalized balanced tournament design and is denoted FGBTD(n, k )  
and each of e,, &, . . . , e k - , ,  CIA U C, is called a factor of row R , .  The 
GBTD(4,3) given above is factored with factors shown in Fig. 18. 

We can now state a generalization of Theorem 1.4. 

Theorem 5.1 (Lamken [25]) .  !/'there exists an FGBTD(n, k )  and if there exists k 
mutually orthogonal Lutin squares of order k n ,  then there exists an 
FGBTD(nk, k ) .  

A number of other recursive constructions for GTBD(n, k ) s  exist (see 1251). 
These and existence results for GBTD(n, k ) s  can be found in [25] .  

We conclude this section by showing how the results of Section 4 can be 
generalized. Only two generalizations will be given to illustrate the ideas 
involved. For a complete description the reader is referred to [26]. 

Theorem 5.2 (Lamken [25]). If there exists a GBTD(n, k ) ,  u ( k n  + 1, k + I ,  1)- 
RBIBD und u near resolvable (n ,  k + 1,  k)-BIBD then there is u ( ( k  + I )n ,  
k + 1, k)-RBIBD. 

This result generalizes Theorem 4.4. The next example (Fig. 19) shows how 
Theorem 5.2 can be used to construct a resolvable (20,4,3)-BIBD. Since a 
GBTD(5, 3) exists, a (16,4, 1)-RBIBD exists and a near resolvable (5,4,3)-BIBD 
exists, then a resolvable (20,4, 3)-BIBD exists. 

We conclude this section with a generalization of Theorem 4.5. The theorem 
requires the existence of a KGDD,,-,(nk; k + 1; k ;  0, 1) which is a resolvable 

Fig 17 A GBTD(4.3) with property C 
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p h ( l  

7 x 0  

y 1 4  

a 1 1 2  

5 1 0 3  
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nO3 y 3 6  1 0 1 1 0  f J 1 0 4  

8 7 1  n 1 4  y 4 7  I I O I  

X 9 1 0  13x2 n2S y 5 X  

y 2 s  Y I O l l  [I03 n 3 h  

6114  70.5 X I 6  9 2 7  

K o w I :  A B C  F C J  E I L  
A B C  F H L  E C K  
A B C  F I K  D C L  

R o w 2 :  D E F  B I K  A H J  
D E F  A I L  C H K  
D E F  C I J  B H L  

K o w 3 :  CHI BEK A D /  
CHI BFJ A E L  
CHI BDL CEJ 

Kow 4: JKL CDH BFC 
JKL AFH CEG 
JKL BEH CFI 

D H K  
D I J  
E H J  

C C L  
B C L  
A G K  

CFL 
CDK 
AFK 

AEI 
BDI 
A D G  

Fig. 18. Factors of a GBTD(4,O). 

group divisible design having nk elements, group size k, block size k + 1 ,  
replication number n - 1 and pair balance 1 for pairs formed from elements in 
distinct groups and pair balance 0 otherwise. 

Theorem 5.3 (Lamken [26] ) .  If there exists u GBTD(n, k ) ,  u RGDD,, -I (nk;  
k + 1; k;O, 1) und u (n, k + I ,  k)-RBIBD, then there exists u (kn + n, k + 1 ,  k ) -  
RBIBD. 

Proof. Let D, = { x , ,  , x j 2 ,  . . . , x l k } ,  1 .I i n ,  V ,  = Ui'-, D, and V, = 

Let G' be a GBTD(n, k )  defined on V,  such that the deficient k-tuple o f  row i 
is 0,. Let D be a RGDD,,-,(nk; k + 1 ;  k ;  0, 1 )  defined on  V ,  so that the groups of 
D are D,, 1 < i  Q n .  Let R , ,  R 2 ,  . . . , R,,-, be the resolution classes of I).  Let N 
be a (n, k + 1 ,  k)-RBIBD defined on V,. We let NI,  N 2 ,  . . . , N , l - l  denote the 
resolution classes of N. 

A (kn + n,  k + 1 ,  k)-RBIBD can be constructed as follows. To each block in 
row i of C' add the element y,, 1 6 i .I n. Denote the resulting array of blocks of  
size k + 1 by G. Let C , ,  Cz, . . . , C,ll-I be the columns of G .  Let C,,h = {Dl  U 

{ y , } :  1 si d n } .  The blocks in C U D U N U C,, form a (kn + n, k + 1 ,  k)-BIBD. 
Every distinct pair in Vl occurs k - 1 times in G and once in D U C ' , , A .  Every pair 

{ Y I P  Y 2 ,  . ' . , Y n } .  

0 s  10 

- 
h 7 X  

y 0 3 

4 I 0  I 

p s  I I  

' 4 9 2  - 

__ 
a 4 7  

p I I  5 

0 I 2 

y h 9 
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{ y , ,  x,,} occurs k times in C U c n k .  Every pair in V, occurs k times in N. It is easy 
to verify that {C, , C2, . . . , c,,k, D1 U N ,  , 0, U N2, . . . , U N n P l }  is a resolu- 
tion for this (kn + n ,  k + 1, k)-BIBD defined on V, U V,. This completes the 
proof. 0 

The following is an example of this construction. Since a GBTD(8,3) exists 
1251, a RGDD7(24; 4; 3; 0, 1) exists [34] and a (8,4,3)-RBIBD is easily con- 
structed, then Theorem 5.3 establishes the existence of a (32,4,3)-RBIBD. 
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AUTOMORPHISMS OF 2-(22,8,4) DESIGNS 
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Dedicated to Professor Haim Hanani on the occasion of his 75th 
birthday. 

It is shown that a 2-(22,8.4) design cannot possess any nontrivial automorphisms o f  an odd 
order. 

1. Introduction 

The smallest, with respect to the number of points or blocks, parameter set for 
a balanced incomplete block design, i.e. a 2-(v, k ,  A )  design, for which the 
existence question is still unsolved, is 2-(22,8,4), i.e. u = 22, b = 33, r = 12, 
k = 8, A = 4. This is the smallest case left open in Table 5.23 of the remarkable 
Hanani's article [7]. Many of the open problems from that table have been 
resolved during the last decadc, some of then by Professor Hanani himself (cf. 
Mathon and Rosa [ l l ] ) .  However, the existence of the smallest and most 
challenging 2-(22, X, 4) design is still in doubt. 

In this paper wt' investigate possible automorphism groups of a design with 
such parameters and show that if one exists, its full automorphism group must be 
either a 2-group. or trivial. Our method is based on examination of possible orbit 
structures of cyclic automorphism groups of a prime order by use of tactical 
decom posi tions. 

An essential case o f  automorphisms of order 3 fixing exactly one point has been 
recently investigatcd by Kapralov [9], who found all (exactly 53)  possible orbit 
structures and showed (partially by computer) that none of those yields a design. 
We show in this paper that for an odd prime order automorphism of any other 
type, there is no possible orbit structure at all. Our proof does not involve any 
computer computations. 

2. Preliminaries 

We assume that the reader is familiar with the basic notions and facts from 
design theory (cf. e.g.  [3, 4, 5 ,  8, 131). 

* On leave from thc llniversity of Solia, Bulgaria. 

0012-365X/89/$3.50 0 I"W, Elsevier Science Publishers B . V .  (North-Holland) 
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As usual, the total number of blocks in a 2-(v, k ,  A) design is denoted by b,  and 

The following easily checked statement is a variation of a similar but stronger 
the number of blocks containing a given point - by r. 

result for symmetric 2-designs (cf. [l]). 

Lemma 2.1. If p is a prime being an order of an automorphism of a 2-(v, k ,  A )  
design with v > k ,  then either p divides v or p < r.  

Applied for the parameters 2-(22,8,4), this gives as a corollary the following 

Lemma 2.2. The only primes which might be orders of automorphisms of a 
2422, 8,  4) design, are 2, 3,  5 ,  7 or 11. 

The next result is a special case of Theorem 1.46 from [8] (see also [3, Th. 4, 
171). 

Lemma 2.3. I f  v f  (resp. b’) is the number of point (resp. block) orbits of a 
nontrivial 2-(v, k ,  A )  design with respect to a given automorphism group, then 

O G b ’  - V‘ S b - V .  

In the sequal we shall use frequently the following result due to Hamada and 
Kobayashi [6]: 

Lemma 2.4. Any two blocks in a 2-(22, 8 ,  4) design can have at most 4 common 
points. More precisely, if n, denotes the number of blocks intersecting a given 
block in exactly i points, then there are 4 possible types of blocks according to their 
block intersection numbers (Table 1). 

Given a design D with an automorphism group G, the orbit matrix M = ( m , )  o f  
D with respect to C is defined as a matrix whose rows and columns are indexed 
by the point and block orbits of D under C respectively, where m ,  is the number 
of points from the ith point orbit contained in a block from the j th block orbit. In 
other words, M is a matrix corresponding to the tactical decomposition of D 
defined by the action of G. 

Let r, (resp. k,) denote the length of the j th  block (resp. ith point) orbit, and let 
Table 1. Block intersection numbers of a 
2-(22,8,4) design. 

I 0 0 12 I 6  4 
2 0 1 9 I 0  3 
3 0 2 6 22 2 
4 I 0 6 24 I 
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b’ (resp. u ‘ )  be the total number of block orbits. In this notation, the orbit matrix 
M satisfies the following equations: 

h’ 

qm, = kir,  1 G i s v ’ ,  
I =  I 

h ‘  

If G is a cyclic group of a prime order p then any orbit length is either p or 1. 
In particular, considering a nontrivial (i.e. of length p )  point orbit and denoting 
by s = s, the number of blocks fixed by G and containing all points from that (ith) 
orbit, equations (2.1)-(2.3) reduce to the following: 

where s , . ~  denotes the number of fixed blocks containing the cth and dth point 
orbit. Combined with (2.4), (2.5) gives also 

An evident necessary condition for the existence of a design with a given 
automorphism group is the existence of an integral matrix M = (m,,) satisfying the 
above system of equations. 

3. Automorphisms of order 11 

According to Lemma 2.2, the largest prime which can possibly be an order of 
an automorphism of a 2-(22,8,4) design, is 11. 

The impossibility of an automorphism without fixed points has been mentioned 
by Baartmans and Danhof [2]: the system of Equations (2.4)-(2.6) then has no 
solution. 

Suppose f is an automorphism of order 1 1 fixing 11 points. Then by Lemma 2.3 
f must fix at least 11 blocks. Any two blocks fixed by f must consist entirely of 
points fixed by f and hence they have at least 5 common points, a contradiction to 
Lemma 2.4. 
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4. Automorphisms of order 7 

Since b = 33 = 5 (mod 7), an automorphism of order 7 must fix at least S blocks. 
Since a point orbit o f  length 7 can be contained in at most one fixed block (by 
Lemma 2.4), this rules out immediately an automorphism fixing I o r  8 points. I f  
there are IS fixed points then by Lemma 2.3 there have t o  be at most 2 blocks 
orbits of length 7. However, the corresponding system (2.4)-(2.7) has no solution 
for p = 7 and s,  < 2. 

5. Automorphisms of order 5 

Since b = 33 = 3 (mod S ) ,  there must be at least 3 fixed blocks. According to 
Lemma 2.4, a point orbit of length 5 can he contained in at most one fixed block. 
The only (up to permutation) solutions of (2.4)-(2.7) for p = S  and s, < 2  are 
(1, 1 ,2 ,2 ,3 ,3 )  (s, = 0) and ( I ,  1 , 2 , 2 , 2 , 3 )  (s, = 1). Therefore, there are 3 fixed 
blocks, whence by Lemma 2 . 3  there are only 2 fixed points. However, a tixed 
block must contain at least 3 fixed points, a contradiction. 

6. Automorphisms of order 3 

The following lemma gives an upper bound for the number of  blocks fixed by 
an automorphism of order 3 .  

Lemma 6.1. A n  autornorphisrn of order 3 of a 2-(v, k,  A) design can f i x  at m o s t  
b - 3r + 3 A  blocks. 

Proof. Let S be a point orbit of length 3 and let n, be the number of blocks 
containing exactly i points from S. Evidently 

n , , + n , +  n 2 +  n 7 = b ,  

n ,  + 2n2 + 3n3 = 3r,  

n2 + 3n, = 3A. 

Since each fixed block contains either 3 or none points from S,  the total 
number of fixed blocks does not exceed 

n,, + n3 = b - 3(r - A). 0 

Corollary 6.2. A n  autornorphisrn of order 3 of a 2-(22, 8 ,  4) design fixes ut mosl 9 
blocks. 

Lemma 6.3. Given a 2-(22, 8 ,  4) design D with an automorphism f of order 3 ,  and 
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a block B not fixed by f, there are at least 4 point orbits o f  length 3 intersecting B in 
either 1 or 2 point.\. 

Proof. Let B be a block not  fixed by f .  Denote by t the number of points fixed by 
f and contained in B ,  and let rn, ( i  = 1 ,  2,  3) denote the number of point orbits of 
length 3 intcrsectiiig B in exactly i points. Evidently 

t + m , + 2m2 + 3m,  = 8. (6.1) 
On the other hand, 

IB n Bfl == t + m2 + 3 1 ~ ~  4 4, 

m ,  + mL 2- 4. 
whence 

In particular, thcre are at least 4 point orbits of length 3. 0 

Corollary 6.4. An uutomorphism of order 3 o f  a 2-(22, 8 ,  4) design fixes at most 
10 points. 

As we have already mentioned, the nonexistence of a 2-(22,8,4) design with 
an automorphism o f  order 3 fixed exactly 1 point has been proved by Kapralov 
[ O ] .  Thus we have to consider automorphisms fixing 4, 7 or 10 points. 

Lemma 6.5. I f  an uutomorphism of order 3 of a 2-(22, 8 ,  4) design fixes more than 
1 point then each fixed point is contained in at least 3 fixed blocks. 

Proof. Since r = 12 = 0 (mod 3 ) ,  the number of fixed blocks through a fixed point 
is a multiple of 3. Any pair of fixed points is contained in 4 = 1 (mod 3 )  blocks, 
hence one or all of these 4 blocks must be fixed. Thus each fixed point occurs in a 
fixed block, and consequently, in at least 3 fixed blocks. 0 

Suppose that D is a 2-(22,8,4) design with an automorphism f of order 3. The 
orbit matrix M with respect to the cyclic group generated byfcan be presented in 
the following form 

T I1 

M ' l V  W I '  
where T = ( I , , )  has rows and columns indexed by the fixed points and blocks; 
0 = (u,,) has rows indexed by fixed points and columns indexed by nontrivial 
block orbits; V = (u,,) has rows indexed by nontrivial point orbits and columns by 
fixed blocks; and W = (w,) has rows and columns indexed by nontrivial point and 
block orbits. 

7. Automorphisms of order 3 fixing 10 points 

In this case there are exactly 4 point orbits of length 3 ,  i.e. the matrix ( V ,  W )  
from (6.3) has exactly 4 rows. By Lemma 6.3 each entry of W is either 1 o r  2. 
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Suppose that there are x fixed blocks, and hence y = (33 - x)/3 blocks orbits of 
length 3. Let ( v , ~ ,  . . . , u,,, w f l ,  . . . , wfy)  be a row of ( V ,  W),  and denote by q, 
(resp. p,) the number of entries among ufl ,  . . . , u,, (resp. w,,, . . . , w , ~ )  equal to j 
(0 s j =s 3). Clearly 

q 3  + 2p2 + p ,  = 12, 

q 3 +  p2 = 4 ,  

p2+p1 = y ,  

whence y = 8, and x = 9, i.e. there are exactly 9 fixed blocks. 

(V, W)  (Table 2): 
Equations (2.4)-(2.7) now give the following possibilities for the rows of 

Table 2. Rows of ( V ,  W )  

Type V W 

I 0 0 0 0 0 0 0 0 0 2 2 2 2 1  I I 1  
I1 3 0 0 0 0 0 0 0 0 2 2 2 1  1 1  1 I 

3 3 0 0 0 0 0 0 0 2 2 1  1 I 1  1 I 
iv 3 3 3 0 0 0 0 0 0 2 1  I I 1  I I 1  
V 3 3 3 3 0 0 0 0 0 1 1 1 1 1 1 1 1  

... 
111 

By equation (2.6) and Lemma 2.4 the scalar product of pair of rows of W must 
be either 9 or 12. This is possible only for pairs of rows of the following types: 
(i. v) ,  (ii, iv), (iii, iii), (iii, iv), (iv, v). This excludes rows of type i or v.  
Furthermore, there is at most one row of type iv,  and such a row can be 
combined with at most 2 rows of type iii; hence a row of type iv is also excluded. 
Eventually, up to permutation of rows and columns, (V, W )  looks as follows: 

13 3 0 0 0 0 0 0 0 2 2 1 I 1 1 1 11 

I .  0 0 3 3 0 0 0 0 0 1 1 2 2 1 1 1 1  
0 0 0 0 3 3 0 0 0 1  1 1  1 2 2 1  1 ( V ,  W)= 

~ 0 0 0 0 0 0 3 3 0  1 1  1 1  1 1  2 2 1  

Hence there are 8 fixed blocks each containing 5 fixed points, one fixed block 
(say B )  consisting entirely of fixed points, and each nonfixed block contains 3 
fixed points. Let P be a fixed point belonging to n. Denote by R ,  the number of  
fixed blocks other than B and containing PI and let R2 be the number of nonfixed 
blocks containing P. Counting in two ways the number of blocks containing P and 
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another fixed point, one gets: 

7 + 4 R , + 2 N , = 9 * 4 ,  

a contradiction. 
Therefore, there is no design with an automorphism of order 3 fixing 10 points. 

8. Automorphisms of order 3 fixing 7 points 

The number of point orbits is now 12, hence by Lemma 2.3 and Corollary 6.2 
there are 3, 6 or 9 fixed blocks. 

Each fixed block contains 2 or 5 fixed points. By Lemma 6.5 each fixed point is 
contained in at least 3 fixed blocks. If there are only 3 fixed blocks then each of 
the 7 fixed points must belong to each of the 3 fixed blocks, which contradicts to 
Lemma 2.4. Hence there are 6 or 9 fixed blocks. 

Assume that there are exactly 6 fixed blocks. Denote by n2 (resp. n5) the 
number of blocks containing exactly 2 (resp. 5) fixed points. Evidently 

n2 + n5 = 6,  

and since each fixed point is contained in at least 3 fixed blocks (Lemma 6.5),  we 
have also 

2n2 + 5n5 b 7.3, 

whence n,  b 3. 
Two fixed blocks, each containing 5 fixed points, must intersect in at least 3 

fixed points. Each pair of such a triple of points is contained in at least 2 ,  and 
hence in exactly 4 fixed blocks. Therefore, each point of such a triple occurs in at 
least 4 fixed blocks, hence by the proof of Lemma 6.5 in at least 6 fixed blocks, 
i.e. in all fixed blocks, which leads to a contradiction with A = 4. 

Therefore, there must be exactly 9 fixed blocks. 
Proceeding as in the case of LO fixed points (Section 7), it can be seen that the 

matrix ( V ,  W )  must consist of 5 rows of type iii (cf. Table 2). However, it is 
readily seen that the matrix (7.1) cannot be extended with a 5th row of type i i i  so 
that the scalar product of each pair of rows to be either 9 or 12. 

9. Automorphisms of order 3 fixing 4 points 

In this case a fixed block must consist of 2 fixed points and 2 point orbits of 
length 3. Each pair of fixed points is contained in 4 blocks, either one or all o f  
them bcing fixed. However, if there is ii pair of fixed points contained in 4 fixed 
blocks then some pair of these 4 blocks must have at least 5 common points. in 
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1 1  1 0 0 0 0 0 0  
1 0  0 1 1  0 0 0 0 
1 0 0 0 0 1  1 0 0 '  
1 0 0 0 0 0 0  1 1  
1 1 1 0 0 0 0 0 0  
1 0 0  1 1  0 0 0 0  
1 0 0 0 0 1 1 0 0 '  
0 1 0 1 0 1 0 0 0 

1 1  1 0 0 0 0 0 0  
1 0 0 1 1 0 0 0 0 

0 1 0  1 0  1 0  0 0 .  
0 0 1 0 1 1 0 0 0 

U =  

U =  

U =  

conflict with Lemma 2.4. Thus each pair of fixed points is contained in precisely 
one fixed block, and hence there are exactly 6 fixed blocks. 

In the notation of (6.3), the matrix T now is an incidence matrix of the trivial 
2-(4,2, 1) design, e.g. 

(9.2) 

(9.4) 

1 1 1 0 0 0  
1 0 0 1 1 0  
0 1 0  1 0  I 
0 0  1 0  1 1  

T =  

(9.3) 

Equations (2.4)-(2.7) give the following possibilities for rows of ( V ,  W )  
(Table 3 ) :  

Lemma 9.1. There is r z o  design with u rnatrix U o f  the form (9.2). 

Proof. Assume that U has the form (Y.2). Then by Lemma 6.3 each block from 
the only block orbit of length 3 containing 4 fixed points must contain at most one 
point from a point orbit of length 3. Thus the orbit matrix M has the following 
Table 3 .  Rows o f  ( V ,  W ) .  

Type V W 

I 0 0 0 0 0 0 2 2 2 2 I I 1 I 0 
II 3 0 0 0 0 0 2 2 2 1  I 1  1 1 0  
111 3 3 0 0 0 0 2 2 1  1 1  I 1  I 0  
i v  0 0 0 0 0 0 2  I I I I 1  1 1  3 
V 3 3 3 0 0 0 2 1  1 I 1  I I 1 0  
vi 3 0 0 0 0 0 1  I I 1  I 1  I 1 3  
vii  3 3 3 3 0 0 1 I I 1  I 1  1 I 0  

... 
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form: 

M =  

1 I 1 0 0 * 0  1 1 1 0 0 0 0 0 0  
1 0 0 1 1 0  1 0 0 1 1 0 0 0 0  
0 1 0 1 0 1 1 0 0 0 0 1 1 0 0  
0 0 1 0 1 1  1 0 0 0 0 0 0 1 1  

0 
0 

* 1 * 
1 
1 
1 

Hence the first two rows of the submatrix W of (9.5) contain 
coordinate, and thcrefore, such a row cannot be of type iv o r  vi. 

(9 .5 )  

a common zero 
Since the scalar 

product of two rows of W must be either 9 or 12, the first two rows can be of the 
following types; (i, vii), (ii, v), (iii, iii), (iii, v), (v, vii). The scalar product of a 
row of (V ,  W )  after replacing each entry 3 in V by 1 with each row of ( T ,  U )  must 
be equal to 4. This is not possible if one of the first two rows of W is of type i ,  i i ,  
iii, iv, or v. This completes the proof. 

In general, if ( t , l ,  . . . , fib,  u I I ,  . . . , ulp) ,  1 si 5 4  are the rows of ( T ,  U ) ,  then 
any row ( u l ,  . . . , l i b ,  w I ,  . . . , wo) of ( V ,  W )  must satisfy the following equations 
(cf. (2.6)): 

2 ujtll + 3 C wp,,  = 12, i = 1, 2, 3,  4. 
I =  I / = 1  

Any solution of ( 9 . 6 )  must be of type i-vii (Table 3). 

Lemma 9.2. If U is of the form (9.3)  or (9 .4 ) ,  then there is no row of ( V ,  W )  of 
type iv, vi, or vii. 

Proof. Assume that U has the form (9 .3 ) .  Then the system of Equations (9 .6 )  
looks as follows: 

u ,  + u, + 113 + 3Wl + 3Wz + 3W3 = 12, 
211 + V 4 + 2 1 5 +  3Wl + 3w4 + 3w, = 12, 

V , +  V 4 +  V,j+3Wl + 3W6 + 3w, = 12, 
l J 3 +  v , + u , +  3w,+ 3w4+ 3W6 = 12. 

If some w, = 3 then there should be some wj = 0. Hence a solution of type iv or 
vi is not possible. 
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Assume now that there is a solution of type vii. Up to permutation, there are 
only two possibilities: u1 = - . . = v4 = 3, us = v6 = 0; or u 1  = u6 = 0, u2 = * = 

us = 3 (cf. (9.1)). In the first case two of w I ,  w2, w, must be zero, a contradiction 
(see Table 3). In the second case, if w 1  = 1 then one of w, or w,, as well as one of 
w4 or w, must be zero, a contradiction; if wI = 0, then the first 3 equations imply 
w2 = . . . = w7 = 1, whence the 4th equation is violated. 

The case when U has the form (9.4) is treated similarly; the system of 
Equations (9.6) again does not admit any solution of type iv, vi or vii. 0 

Using the fact that the matrix V contains 12 entries equal to 3 and 24 zeros, 
Lemmas 9.1, 9.2 and Eq. (2.4-2.7) imply the following 

Lemma 9.3. There are 6 possibilities for the types of the rows of the matrix 
(V ,  W ) :  

l(i) + l(ii) + l(iii) + 3(v), (9.7) 
3(ii) + 3(v), (9.8) 
l(i) + 3(iii) + 2(v), 
2(ii) + 2(iii) + 2(v), 
l(ii) + 4(iii) + l(v), 
6(iii). 

(9.9) 
(9.10) 

(9.11) 
(9.12) 

Here a(b )  means a rows of type b. 
Let us now consider the incidence structure F with “points” the 6 nontrivial 

point orbits and “blocks” the 6 fixed blocks. Each block of F consists of a pair of 
points and (by Lemma 2.4) there are no repeated blocks. Hence F is a collection 
of 6 distinct 2-subsets of a given 6-set, or equivalently, F is a 6-subset of the set of 
all 15 2-subsets of the point set. The set of all such (T) 6-subsets is divided into 21 
orbits under the action of the symmetric group of degree 6 on the point set (cf. 
e.g. Kramer and Mesner [lo]). Thus there are at most 21 possible configurations 
for F. By Lemmas 9.1 and 9.2 each point of F occurs in at most 3 blocks, which 
reduces the possibilities from 21 to 14. 

Let us define a graph G with vertices the points of F and edges the blocks of F. 
By definition G has 6 vertices and 6 edges. Using Equations (2.4)-(2.7), the 
possible types of rows of (V, W) (Table 3), and Lemmas 6.3, 9.1, 9.2, 9.3, it can 
be seen that the graph C must possess the following properties: 

9.4. Each vertex is of degree at most 3. 
9.5. A vertex of degree 0, 1, 2 or 3 corresponds to a row of (V, W )  of type i, ii, 

9.6. Two vertices of degree 3 are necessarily adjacent. 
9.7. Any vertex of degree 1 is adjacent to a vertex of degree 3. 
9.8. A vertex of degree 3 is adjacent to at most one vertex of degree 1. 

iii, or v respectively. 



Aurornorphisms of2-(22, 8, 4) designs 187 

9.9. A triple of vertices of degree 2 cannot form a complete graph of size 3. 
9.10. Given a vertex P of degree 3, there is at most one vertex of degree 2 

9.11. If C contains a pair of adjacent vertices of degree 1 and 3 respectively, 

9.12. The scalar product of two rows of W corresponding to a pair of adjacent 

The properties 9.4-9.12 reduce the possible configurations for F to the 

nonadjacent to 1’. 

then there is no vertex of degree 0 in G. 

(resp. nonadjacent) vertices of G is 9 (resp. 12). 

following 4 ones: 

F, = (12. 13, 14, 23, 25, 45}, 

F2 = { 12, 16, 23, 34, 45, 56}, 

F; = { 12, 14, 15, 23, 26, 34}, 

F4 = { 12, 13, 14, 23, 25, 36). 

Using 9.12, it is straightforward to check that (up to permutation of rows and 
columns) a triple of rows of (V ,  W )  of type iii corresponding to 3 vertices of C of 
degree 2, two adjacent and the third nonadjacent to any of them, looks as 
follows: 

3 3 0 0 0 0 2 2 1 1 1 1 1 1 0  

3 0 3 0 0 0 0 1 1  1 1  1 1 2 2  (9.13) 

0 0 0 3 3 0 1 2 0 1 1 1 1 2 1  

The matrix (9.13) cannot be extended by a row of type i .  This eliminates F,.  
Similarly, the matrix (9.13) cannot be extended by a row of type iii, having 

scalar product 12 with the first two rows and 9 with the third row. Thus F2 is also 
impossible. 

Up to permutation, there is only one possibility for a triple of rows of ( V ,  W )  
of type v, iii, ii respectively, corresponding to a triple of pairwise nonadjacent 
vertices of G: 

3 3 3 0 0 0 2 1 1 1 1 1 1 1 0  
0 0 0 3 3 0 2 2 1 1 1 1 1 1 0  (9.14) 

0 0 0 0 0 3 2 0 2 2 1 1 1 1 1 .  

The matrix (9.14) cannot be extended by a row of type ii having scalar product 
9 with the first row, and 12 with each of the remaining two rows of (9.14). This 
eliminates F3. 

Finally, there is exactly one (up to permutation) matrix ( V ,  W )  corresponding 
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to 4: 
3 3 3 0 0 0 2 1 1  1 1  1 1  1 0  
3 0 0 3 3 0  1 2  1 1  1 1  1 0  1 
0 3 0 3 0 3 1 1 2 1 1 1 0 1 1  
0 0 3 0 0 0 0 2 2 1 1 1 1 1 2  
0 0 0 0 3 0 2 0 2 1 1 1 1 2 1  
0 0 0 0 0 3 2 2 0 1 1  1 2  1 1  

(9.15) 

The corresponding matrix U has to be of the form (9.4). However, the system 
(9.6) has only two solutions for a row of (T, U ) :  110100000000111 and 
001011000111000. Hence, the matrix (9.15) is not extendable to an orbit matrix. 

Consequently, there is no 2-(22,8,4) design with an automorphism of order 3 
fixing exactly 4 points. 

Combined with the Kapralov result 191, the above results can be summarized in 
the following. 

Theorem 9.13. The full automorphism group of a 2-(22, 8, 4) design must be 
either a 2-group, or trivial. 
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Final remark 
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Canada 

1. Introduction 

Denote by K,  the complete undirected graph on n vertices. An m-cycle of K, is 
a collection of m edges {x,, x2}, {x2, x,}, . . . , { x m - , ,  xm}, {xm, xl} such that the 
vertices xl ,  x2, . . . , x, are distinct. In what follows we will denote the m-cycle 
{xi, x2}, {x2tx3}, . . * 1 {xm-l, x m } ,  {xm, xi} by any cyclic shift of 
(xl, x2, . . . , xm). An m-cycle system is a pair ( K , ,  C), where C is a collection of 
edge disjoint m-cycles which partition K,. The number n is called the order 
of the m-cycle system ( K , ,  C) and, of course, the number of m-cycles (CI is 
n(n - 1)/2m. A 3-cycle system is, of course, a Steiner triple system (everybody’s 
favorite) and a 5-cycle system is a pentagon system (well liked by those who know 
what a pentagon system is). 

A nesting of the m-cycle system ( K n ,  C) is a mapping 

a: c- { 1 , 2 , 3 , .  . . , n }  

such that C(a) is an edge disjoint decomposition of K,l where 

C(m)  = 

X I  
t 
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Research supported by NSA grant MDA-904-88-H-2005. 
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In what follows we will denote the 

A simple counting argument shows that a necessary condition for an m-cycle 
system (K , , ,  C) to be nested is n = 1 (mod 2m). Whether or not an arbitrary 
m-cycle system can be nested is undoubtedly an extremely difficult problem. A 
much more reasonable problem is the following: For a given cycle length m, 
determine the spectrum of m-cycle systems which can be nested (= the set of all 
n = 1 (mod 2m) for which there exists an m-cycle system of order n which can 
be nested). This problem has been completely settled for m = 3 [2, 6, 91 (the 
spectrum for Steiner triple systems which can be nested is precisely the set of all 
n = 1 (mod 6)) and with 11 possible exceptions for m = 5 [5] (the spectrum for 
pentagon systems which can be nested is the set of all n = 1 (mod lo), except 
possibly 111, 201, 221, 231, 261, 301, 381, 511, 581, 591, and 621). 

The purpose of this paper is to prove that for any odd cycle length m the 
spectrum of m-cycle systems which can be nested is the set of all 
n = 1 (mod2m) with at most 13 possible exceptions for each m. In addition we 
remove some of these 13 possible exceptions for small values of m. In particular 
we remove the possible exceptions for pentagon systems, showing that the 
spectrum for pentagons systems which can be nested is precisely the set of all 
n = l  (mod10). 

Finally, we remark that the nesting of an m-cycle system ( K n ,  C) is equivalent 
to an edge disjoint decomposition of 2Kn into wheels, each with m spokes with 
the property that for each pair of vertices x and y ,  one of the edges {x, y }  occurs 
on the rim of wheel and one of the edges {x, y }  is the spoke of a wheel. 

In the following, m will always denote a positive ODD integer. Also, when we 
write d = i (mod m) we assume that d E Z,. 

2. Preliminaries 

The main ingredients in our construction of m-cycle systems which can be 
nested are a skew Room frame and an m-nesting sequence. We begin with the 
definition of a skew Room frame. 

Let X =  ( 1 ,  2, 3, . . . , 2s) and let H = { h i ,  h2,  . . . , h,} be a partition of X with 
the property that each h, has size 2 or 4. The sets h E H are called holes. Using 
this jargon, we can say that H is a partition of X into holes of size 2 or  4. Denote 
by T ( X )  the set of all 2-element subsets of X and by T ( H )  the set of all 
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2-elements subsets belonging to a hole of H. Let F be a 2s x 2s array and fill in (a 
subset of) the cells of F as follows: 

(1) For each hole hi E H ,  fill in the cells of hi x hi with 

if h, = {x l ,  x2} 

(in what follows the cells h, x h,, hi E H, will be called a square hole); 
(2) distribute the 2-element subsets in T(X)\T(H) among the cells not 

belonging to a square hole (each 2-element subset used exactly once) so that each 
row and column of F is a l-factor of K,;  and 

(3) if {a ,  b} E: T(X)\T(H), exactly one of the cells (a ,  b) and (b, a )  of F is 
occupied. 

The resulting array is called a skew Room frame of order 2s with holes of size 2 
or 4. 
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Previous page: Skew Room frame of order 10 with holes of size 2 or  4. (In this 
example all holes happen to be of size 2.) 

We state the following existence theorem for skew Room frames with holes and 
delay the proof until Section 5 .  

Theorem 2.2. There exists a skew Room frame in which all holes have size 2 fo r  
every even order n f# { 2 ,  4, 6, 8,  12, 44, 46, 48, 52, 54, 56, 60, 68, 76). There 
exists a skew Room frame with holes of size 2 or 4 f o r  every even n f# ( 2 ,  4 ,  6, 8 ,  
12). 

Let [ X I  denote the greatest integer less than or equal to x and define 
D(i ,  j) = min{i - j (mod m ) ,  j - i (mod m)}. An m-nesting sequence is a 
sequence (d, , ,  d , ,  d 2 ,  . . . , d,m,21), i E Z,,, such that 

( 1 )  { D ( d , ,  d , - , )  I i = 1 ,  2 ,  . , . , [ m / 2 ] )  = { 1 , 2 ,  . . . , [m/2]}, and 
( 2 )  {D(dLm/21, d , )  I i = 0 ,  1, . . . , [ m / 2 ]  - 1) = { 1 , 2 ,  . . . , [ m / 2 ] } .  

Example 2.3 

(0, 1 )  is a 3-nesting sequence, 
(0, 1,4) is a 5-nesting sequence, 
(0, 1 ,6 ,2)  is a 7-nesting sequence, and 
(0 ,1 ,8 ,2 ,7)  is a 9-nesting sequence. 

Lemma 2.4. There exists an m-nesting sequence for  every odd m 3. 

Proof. Define d, = ( - l ) ' + ' [ ( i  + 1)/2] 
an m-nesting sequence. 0 

(mod m ) .  Then ( d , , ,  d , ,  d 2 ,  . . . , d,r, l ,2,)  is 

We close this section with a construction of an m-cycle system of order 2rn + 1 
which, as we shall see in Section 3 ,  is a principal ingredient in the skew Room 
frame construction. 

Lemma 2.5. There exists an m-cycle system o f  order 2m + 1 which can be nested 
for every odd m 2 3. 

Proof. Let m = 2 n +  1 and define c = ( ( - l ) ' l ,  ( -1) ' .2 , .  . . , ( - l )" .n ,  
(-1)".(n + l ) ,  (-1)"".(n + 2) ,  . . . , (-1)'".(2n + l ) ) ,  where each coordinate is 
reduced modulo 2m + 1. Let c + i, i = 0 ,  1,  2, . . . , 2 m ,  be formed by replacing 
each coordinate x of c by x + i (mod 2m + 1).  Let K2nj+l  be based o n  ZZ,rl+I  and 
define C = {c + i 1 i = 0 ,  1, 2, . . . , 2 m ) .  Then ( K 2 1 r , + l ,  C )  is an m-cycle system of 
order 2m + 1 and the mapping a defined by (c + i)a = i is a nesting. 0 

Example 2.6. For m = 3, c = (6, 5 ,  3), and C = ((6 + i ,  5 + i ,  3 + i )  1 i E Z,} .  For 
m = S , c = ( 1 0 , 2 ,  3,  7, 5 ) a n d C = { ( l O + i ,  2 + i ,  3 + i ,  7 + i , S + i ) I i ~ Z ~ ~ } .  
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3. The skew Room frame construction 

We begin with some notation. Let (do, d , ,  d2,  . . . , dl,,l/21) be an m-nesting 
sequence and X = (1, 2, 3, . . . , 2k}. Further let x ,  y, and r be any 3 distinct 
elements belonging to X and i any element belonging to Z,,,. In what follows we 
will denote the cycle 

by ( x ,  y ,  r ;  do + i, d, + i, . . . , dl,n+21 + i), where d, + i is reduced modulo m. 
The skew Room frame construction. Let m 2 3 be odd, X = { 1, 2, 3, . . . , 2 k } ,  

and let KZkm+, be based on (00) U ( X  X Z,,J. Further, let S be a skew Room 
frame (based on X )  with holes H of size 2 or 4 and let (d,,, d , ,  d 2 ,  . . . , dl,,21) be 
an m-nesting sequence. Now define a collection of m-cycles C of K2k,,l+, as 
follows: 

(1) For each hole h E H ,  define an m-cycle system (which can be nested) on 
{ w }  U (h x 2,) and place these cycles in C. (Important: If the hole h E H has size 
2, then Lemma 2.5 guarantees the existence of an m-cycle system of order 2m + 1 
which can be ncsted. It goes without saying that if h E H  has size 4, this 
construction is used only if it is known that an m-cycle system of order 4m + 1 
which can be nested exists!); and 

(2) for each x and y belonging to different holes and each i E Z,,  place the 
m-cycle ( x ,  y, r ;  d o +  i ,  d ,  + i, . . . , dl,,l/21 + i) in C ,  where r is the row of S 
containing the pair { x ,  y}. 

It is straightforward to see that (KZkm+,, C )  is an m-cycle system, and so it 
remains to show that (KZkm+,,  C )  can be nested. 

Theorem 3.1. The m-cycle system ( K Z k m + , ,  C )  constructed using the skew Room 
frame construction can be nested. 

Proof. For each hole h E H denote by h a  a nesting of the m-cycle system defined 
on {m} U ( h  X 2,) and define a mapping 

( I )  g(ha) ,  if g E (03) U (h x 2,) for some h E H ;  and 

where c is the column of S containing { x ,  y}. 
(2) (c, dlmnl + i), if g = ( x ,  y, r ;  do + i, d, + i ,  . . . , dlmi21 + i), 
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Claim: cy is a nesting of ( K Z k m f I ,  C). We must show that the collection of stars 
C ( a )  obtained from C is an edge disjoint decomposition of KZkm+,. Trivially the 
m-cycle systems defined on { w }  U ( h  x Z, , ) ,  h E H ,  are partitioned by stars 
belonging to C ( a )  and so it  suffices to show that each edge of the form { ( x ,  i ) ,  
( y ,  j ) } ,  x and y in different holes, belongs to some star of C(a). There are two 
cases to consider: i = j and i # j. 

i = j .  Let dlmlzl + t = i = j (mod m). Since S is a skew Room frame and x and 
y belong to different holes, exactly one of the cells (x, y )  and ( y ,  x )  is occupied. If 
cell ( x , y )  is occupied by { a ,  b } ,  then the m-cycle c = ( a ,  6, x, 
d ,  + t ,  . . . , d,,n/zl + t = i = j )  E C. Hence the star ( (a ,  do + t ) ,  ( b ,  d ,  + r ) ,  (a ,  d ,  + t ) ,  
( b ,  d ,  + t ) ,  . . . , (x, dl,,llzl + t = i = j ) ;  ( y ,  dlmlzl + t = i = j ) )  E C(cy). The same 
argument is valid if (y ,  x )  is occupied. 

i # j .  Let d = m i n { i - j  (modm), j - i  (modm)}. Then d~ 
(1, 2, 3, . . . , [m/2]} and so there exists a t such that D(dIm,,,, d,) = d. We 
assume d = j - i = dl,,/21 - d, (mod m), the other three cases having similar 
proofs. Then there exists a 9 such that j =dlmlzl + q  (modm) and i =d, + 
q (mod m). Since x and y belong to different holes, column y contains a pair of 
the form {x, z } .  Denote by ( r ,  y )  the cell containing { x ,  t}. Then the m-cycle ( x ,  
z, r ;  do + 9 ,  d l  + q,  . . . , dlm/21+ q )  E C and so the star ( ( x ,  d o ,  + q ) ,  (2, do + 9 ) ,  
(x, d ,  + 9), (2, dl + q ) ,  . . . I (x, d, + q = i ) ,  (2, d, + 9 = i ) ,  . . . , ( r ,  dlm121 + q = j ) ;  
( Y ,  dlntl~l + = i ) )  E C(4. 

Combining the above two cases shows that the collection of stars C(a) is an 
edge disjoint decomposition of K,,,,, which completes the proof. 0 

Theorem 3.2. For any odd m 2 3, the spectrum of m-cycle systems which can he 
nested is the set of all n = 1 (mod2m), with the 13 possible exceptions 
n = km + 1, k E (4, 6, 8, 12, 44, 46, 48, 52, 54, 56, 60, 68, 76) .  

Proof. A skew Room frame in which all holes have size 2 exists for every even 
order k C$ (2, 4, 6, 8, 12, 44, 46, 48, 52, 54, 56, 60, 68, 76)  (Theorem 2.2). Since 
there exists an m-cycle system of order 2m + 1 which can be nested for every odd 
m 2 3 (Lemma 2.5), the statement of the theorem follows from the skew Room 
frame construction (Theorem 3.1). 0 

Corollary 3.3. If m is odd and there exists an m-cycle system of order 4m + 1 
which can be nested, then the spectrum of m-cycle systems which can be nested is 
the set of all n = 1 (mod 2m), with the 3 possible exceptions 6m + 1, 8m + 1, and 
12m + 1. 

Proof. In the proof of Theorem 3.2 replace skew Room frames with holes of size 
2 with skew Room frames with holes of size 2 or 4. 0 
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4. The spectrum for some small value of m 

It should come as no surprise that for a given cycle length m we can improve on 
the results guaranteed by Theorem 3.2 and Corollary 3.3. We list improvements 
here for m < 15. There is, of course, nothing special about the number 15. We 
could just as well use 50 or 100. However, m S 15 is sufficient for illustration. 

The principle tool used to improve on the results in Theorem 3.2 and Corollary 
3.3 is the finite field construction. 

The finite field construction. Let n = 2km + 1 be a prime power, x a primitive 

) 1 i = 0, 1, 2, . . . , k - l}. If b = (u,, u2 ,  . . . , am)  E B and y E F denote 
b y b + y  them-cycle(a ,+y ,  a 2 + y ,  . . . ,  a , + y ) ,  andset  C = { b + y l b E B a n d  
y E F}. If KZkm+, is based on F, then (KZkm+,,  C) is an m-cycle system and the 
mapping a given by (b + y ) a  = y is a nesting. 

Finally, we will need the following two rn-cycle systems (which can be nested). 
(1) Let Kzl be based on Zzl and define B = ((1, 6, 19, 18,7), (4, 16, 13, 9, 11)). 

Let CzI = {b + i I b E B and i E ZZ1}, where b + i is obtained from b by adding 
i (mod 21) to each coordinate of 6. Then ( K Z 1 ,  Cz,) is a pentagon system and 
a: CzI+ Zzl defined by (6 + i)a = i is a nesting. 

(2) Let K45 be based on ZjS and define B = ((1, 2, 4, 7, 3, 8, 14, 5, 12, 28, 
20), (6, 23, 34, 16, 26, 13, 36, 21, 35, 15, 27)). Set C4s = (6  + i I b E B and 
i E Z,,}, where b + i is obtained from b by adding i (mod 45) to each coordinate 
of b. Then (&, C44  is an 11-cycle system and a: C,,+ Z4, defined by 
(b + i ) a  = i is a nesting. 

The finite field construction plus (Kzl ,  Czl) and (K4s, C4s) guarantees the 
existence of an m-cycle system of order 4m + 1 which can be nested for every 
m E (3, 5, 7, 9, 11, 13, 15}. Hence Corollary 3.3 further guarantees form E (3, 5, 
7, 9, 11, 13, IS} that 6m + 1, 8m + 1, and 12m + 1 are the only possible 
exceptions in the spectrum of m-cycle systems which can be nested. In the 
following table we have eliminated some of these possible exceptions using the 
finite field construction. 

X ~ + 2 k  X l t 4 k  element in F = GF(2krn + l),  and define: B = { ( x ’ ,  I . . . ,  

Xi+2(m - 1)k 

-~ 1 m 1 spectrum of m-cycle systems which can be nested 1 
I -3 1 all n = 1 (mod 6) Steiner triple systems [9] I 

I I 5 I all n = 1 (mod 10) pentagon systems [5] 

1 7 I all n = 1 (mod 14) except possibly 57 and 85 I 

15 all n = 1 (mod 30) except possibly 91 
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Comments. The spectrum for Steiner triple systems which can be nested was 
first determined by Stinson [9]. The spectrum for pentagon systems was 
determined with the 1 1  possible exceptions 111, 210, 221, 231, 261, 301, 381, 5 1 1 ,  
581, 591, and 621 by Lindner and Rodger [ 5 ] .  Denote by S ( m )  the spectrum of 
m-cycle systems which can be nested. If 4 m  + 1 E S ( m ) ,  then S ( m )  consists of all 
n = 1 (mod 2 m )  with the three possible exceptions 6 m  + 1, 8m + 1 ,  and 12m + 1 
(Corollary 3.3). If 6 m  + 1,  8m + 1, and 12m + 1 E S ( m )  as well, then S(m)  = 

{ n  I n = 1 (mod 2 m ) ) .  The important problem of finding a general construction 
to show that ( 4 m  + 1, 6 m  + 1 ,  8m + 1 ,  12m + l }  E S(m)  remains open. Since 
it is “surely true” that ( 4 m  + 1, 6 m  + 1, 8m + 1 ,  12m + 1) E S ( m )  for every 
odd m ,  we do not hestitate to make the following conjecture: S ( m )  = 

{ n  I n = 1 (mod 2 m ) j  for  euery odd m. 

5. Proof of Theorem 2.2 

We begin with some notation. If S is a skew Room frame with holes H, the 
type of S is defined to be the multiset T ( S )  = { Ih( I h E H ) ,  where Ihl is the size of 
the hole h E H. In what follows we will abbreviate the type T ( S )  by 
I f ( ’ )  . 2 f ( 2 ) * .  . . . k f ( k ) ,  where t ( i )  denotes the number of holes h E H of  size i, with 
the proviso that i f ( ‘ )  occurs in this product if and only if t ( i )  # 0. So, for example, 
a skew Room frame of order 54 with 5 holes of size 2 and 1 1  holes of size 4 is of 
type T5. 4“. 

The following result was proved in [ l o ] .  

Theorem 5.1. There exists a skew Room frame of type 2” for all n k 5 ,  except 
possibly for n E ( 6 ,  11, 15, 19, 20, 22, 23, 24, 26, 27, 28, 30, 31, 34, 36, 38, 43, 
46, 51, 58, 59, 62, 67) .  

We prove here the following two results. 

Theorem 5.2. There exists a skew Room frame of type 2” for  all n k 5 ,  except 
possibly for n E (6, 22, 23, 24, 26, 27, 28, 30, 34, 38).  

Theorem 5.3. For all n 2 5 ,  n # 6 ,  there exists a skew Room frame of order 2n, 
having holes of size 2 and 4. 

In what follows we will shorten skew Room frame to skew frame. Now, let us 
recall several constructions from [ l o ] .  Let G be an abelian group, written 
additively, and let H be a subgroup of G. Denote g = [GI, h = JHI and suppose 
that g - h is even. A frame starter in G\H is a set of unordered pairs 
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S = { {s,, t , }  I 1 d i d (g - h ) / 2 }  satisfying (1) { s , }  U { t , }  = G \ H ,  and (2) { *(s, - 

t , ) }  = G \ H. An adder for S is an injection A: S-, G \ H, such that 
{s, + a , }  U { t ,  + a, }  = G \ H, 

A is skew if, in addition, { a , }  U { - a , }  = G\H. 
where a, =A($, ,  f , ) ,  1 d i d (g - h ) / 2 .  

Construction 1. Suppose there exists a frame starter S in G \ H ,  and a skew 
adder A for S. Then there is a skew frame of type hRIh, where g =  IGI and 
h = (HI. 

We also use a modified starter-adder construction, which we now describe. As 
before, let G be an abelian group and let H be a subgroup of G, where g = (GI, 
h = (HI, and suppose that g - h is even. A 2k-intransitive starter in G \H is 
defined to be a triple ( S ,  R, C ) ,  where 

S = {{s,, ti} I 1 Sic (g - h - 2k)/2} U { { u i }  I 1 si ~ 2 k } ,  
C = {{ I ) , ,  q, }  I 1 d i d k } ,  and 
R={{p,’ ,q , ’}  I l d i c k } ,  

(1) {Si) u ( 4 1  u (4 )  u { P I }  u (41) = G \ H ,  

‘{ 
satisfying 

(2) { ~ ( s j - t j ) } U { * ( p j - q j ) } U { ~ ( p l ‘ - q l ~ ) } = G \ H ,  and { (3) all p i  - q, and p,! - q,! have even order in C. 

An adder for ( S ,  R ,  C )  is an injection A:  S - t  C \ H ,  such that {s, + a , }  U 

{ t ,  + a , }  U {u ,  + A ( u , ) }  U {p,!, 4,’) = G\H, where a, =A(sj,  t i ) ,  1 d i d ( g  - h  - 
2k)/2. A is skew if, further, 

(1) 
(2) 

{ a ; }  U { - u , }  U {A(u,) ,  -A(u,)}  = G \ H ,  and 
for each i .  1 S i d k, there exists a j 3 1 such that pi - 4, has order 2’m, 
and p,! - 4,: has order 2jm2, where m, and m2 are odd. 

Construction 2. If there is a 2k-intransitive frame starter and a skew adder in 
G \ H ,  where g = JGI and h = IHI, then there is a skew frame of type h”Ih(2k)’. 

We next describe recursive constructions for skew frames. All required design 
theoretic terminology can be found in [l]. 

Construction 3. Let ( X ,  G, B) be a group divisible design (GDD), and let 
w :  X - t  2’ U {0} (we say that w is a weighting). For every b E B suppose there is 
a skew frame of type { w ( x )  I x E b}. Then there is a skew frame of type 
{ C x e g  4 x 1  I g E c;}. 

Construction 4. Suppose ( X ,  B) is a pairwise balanced design (PBD), and there 
exists a skew frame of type 2Ih’, for every b E B. Then there is a skew frame of 
type 2Ix1. 
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Construction 5. Suppose m 3 4, m # 6 or 10, and suppose 0 =s t =s 3m. Suppose 
also that there exist skew frames of types 22m and 2'. Then there exists a skew 
frame of type 2""+'. 

Construction 6. Suppose s = u(v - 1) + 1, and let t be a rational number such 
that 2r and (v - l ) / t  are both integers. Suppose there exist skew frames of type 
(2r)" and 2': and suppose that (v - l ) / r  # 2 or 6. Then there exists a skew Room 
frame of type 2". 

construction 7. Suppose there is a skew Room frame of type t ~ l t ~ * .  .t?, and 
suppose also that t # 2 or 6. Then there exists a skew Room frame of type 
(t t ,)"'(t t2)"*. . . ( t  . r,)"!. 

Lemma 5.4. There is a skew frume of type 259. 

Proof. This is a special application of Construction 3. We start with a group 
divisible design (GDD) of type 3' having blocks of size 4, in which the blocks can 
be partitioned into 7 parallel classes (see [4] for a construction of this design). 
Adding a new infinite point to each of 5 of the parallel classes, we obtain a GDD 
of group-type 3'5' having blocks of size 4 and 5. Give every point weight 4, and 
apply Construction 3,  using input frames of type 44 and 4' (these are constructed 
in [7]). A skew Room frame of type 12'20' is produced. Now, add on two new 
rows and columns, and fill in the holes with skew frames of types Z7 and 2". A 
skew frame of type 2'' results. 0 

Lemma 5.5. There exist skew frames of type 4"2', 412, and 4"2'. 

Proof. The constructions are obtained by the methods of "projecting sets" as 
described in [8]. The frames are all constructed by means of intransitive starters 
and skew adders, by altering slightly the following starter and skew adder in 
C\H, where G = Z l ,  X Z 2  x Z 2  and H = (0) X Z 2  X Z 2 .  Suppose S = { { ( x ,  0, O), 

(h, 0, 1)) 1 x = 1, 3, 4, 5, 9}, and A((x ,  i, j ) ,  (a, k, I ) )  = ( x ,  i + k ,  j + I ) .  Then S 
and A generate a skew frame of type 4". Now consider the two pairs (in S) 
{(l ,  0, l ) ,  (2, I ,  0)) and { ( 3 , 0 ,  l), (6, 1,O)). Suppose we delete these two pairs 
from S, and adjoin the two singletons {(1,0, I)} and ((6, 1,0)), obtaining S'. 
Then, define C = ((2, 1, O), (3 ,  0, l)} ,  and R = { ( 3 , 0 ,  l) ,  (6 ,  1, 0)). This prod- 
uces a 2-intransitive starter and skew adder ( S ' ,  R,  C ) ,  and hence there is a skew 
frame of type 4"2'. Now, repeat the above procedure, starting with S',  using the 
pairs ( ( I ,  l,O), (2, 1, 1 ) )  and ((3, 1,0), (6, 1, I)) .  This gives a 4-intransitive 
starter and skew adder, producing a skew frame of type 4"4' = 4". We can do 
this trick three times more, using pairs ( ( I ,  1 ,  l),  (2,O, 1)) and ( ( 3 ,  1, I ) ,  
(6,0,1));  {(9,0, I), (7, 1, 0)) and { ( 5 , 0 ,  I ) ,  (10, 1,O)); and ((9, 1, O), (7, 1, 1)) 

(2% 0, O ) ) ,  { ( x ,  0,  I), (a, 1, O) ) ,  { ( x ,  1,0) ,  (2x, 1 ,  I ) ) ,  { ( x ,  1 ,  I), 
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and {(5,1,0), (10,1, l)}. Thus we obtain a 10-intransitive starter skew 
adder, and a skew frame of type 4l'lO'. Filling in the hole of size 10 with a 
skew frame of type 2', we obtain the skew frame of type 4''25. This completes the 
constructions. El 

In a similar fashion, we can prove the following lemma. 

Lemma 5.6. There is a skew frame of type 414. 

Proof. The procedure is similar to that used in Lemma 5.5. We begin with the 
following starter and skew adder in G\H, where G = Z, ,  x Z ,  x Z 2  and 

Table 1. Constructions for skew frames of type 2". 

n Construction Remark 

11 
15 
19 
20 
31 = 5(7 - 1) + 1(t = 3/2) 

36 = 5(8 - 1) + l(t = 1) 
43 = 8.4 + 11 
4 6 = 5 ( 1 0 - l ) + l ( t = l )  
51 = 5(11 - 1 )  + I ( t  = 1) 
5 8 = 7 . 8 + 1 + 1  

59 
62 = 7.8 + 5 + 1 

6 7 = 8 . 7 +  11 

2 
2 
2 
1 
6 

6 
5 
6 
6 
4 

Lemma 5.4 
4 

5 

Table 3 
Table 3 
Table 3 

A skew frame of type 35 
is constructed in [3] 

Table 3 

There is a PBD on 58 
points having blocks of 
size 7, 8, and 9, 
constructed by deleting 
points from a TD(9.8) 

There is a PBD on 62 
points having blocks of 
size 5, 7, 8, and 9, 
constructed by deleting 
points from a TD(9,8) 

Table 2. Constructions for skew frames with holes of size 2 and 4 

n Frame Construction Remark 

44 4" 
4"2' 
4 1 ?  

46 
48 
52 
54 41125 

M 

76 

417 

56 4'4 
41s 

68 417 
4 19 

7 (t = 4)  
Lemma 5.5 
Lemma 5.5 
7 (t = 4)  
Lemma 5.5 
Lemma 5.6 
7 ( I  = 4 )  
7 ( r  = 4) 
7 ( I  = 4) 

a skew frame of type 1" exists [7] 

a skew frame of type 1" exists [7] 

a skew frame of type 1 l5  exists [7] 
a skew frame of type 1" exists (71 
a skew frame of type 1'" exists [7] 
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Table 3. Starter-adder constructions for skew frames of type 2" 

n = 8  5 6 1 2  1 2  
10 12 3 13 15 
1 4 1 6 4 7  
15 3 7 6 I 0  
4 9  5 9 1 4  
7 13 I4 5 11 

I I  2 1 12 3 
n =  11 1 2 17 1R 19 

7 9 5 12 14 
14 17 9 3 6 
11 15 14 5 9 
18 3 13 11 16 
6 12 16 2 8 
8 16 I9 7 15 
5 x 13 

19 2 1  
C =  4 13 
R =  4 17 
n = 1 5  I 27 S 6 4 

2 26 19 21 27 
3 25 2 5 27 
4 24 20 24 Ih 
5 23 15 20 10 
6 22 25 3 19 

13 16 27 12 15 
12 17 6 18 23 
I I  18 11 22 I 
10 19 16 26 7 
9 20 21 2 13 
7 4 I I  

15 1 0  25 
c= 8 21 
R =  8 9  
n = 1 9  19 20 31 14 15 

IS 22 2s 4 I I  

n =  19 14 23 19 33 6 
13 24 15 28 3 
12 25 13 25 2 
11 26 9 20 35 
10 27 35 9 26 

1 3 5  6 7 S 
2 34 14 16 12 
3 33 26 29 23 
4 32 28 32 24 
5 31 3 8 34 

7 29 24 31 17 
9 4 13 

17 2 I9 

6 30 16 22 in 

C =  16 21 
R =  27 30 
n =20 14 15 39 13 14 

1 1  13 33 4 6 
5 8 23 2X 

33 37 12 5 
31 36 27 1X 
10 16 11 21 
27 34 3R 25 
21 29 18 39 
23 32 10 33 
12 22 4 Ih 
38 9 21 I9 
35 7 3 3x 
17 30 5 22 
2x 2 6 34 
4 19 32 36 

25 1 Ih I 
26 3 26 12 
6 24 31 37 

39 18 25 24 

31 
9 

23 
27 
32 
7 
2 

26 
30 
I 0 
35 
8 

I 1  
17 
29 
IS 
3 

H =  (0) x 2 2  x z2. suppose s = { { ( x ,  0, O ) ,  (4x, 0, O ) } ,  { ( x ,  0, I ) ,  (4x, I ,  O ) } ,  
{ ( x ,  1, O), (4x, 1, 1)), { ( x ,  1, l ) ,  (4x, 0, 1)) I x  = I ,  2, 3 ,  5 ,  6, 9}, 

A((x ,  i, j ) ,  (4x, k ,  I)) = ( 3 x ,  I + k ,  j + I ) ,  if  x = I ,  3, or 9, and 
{ A(@,  i ,  /), (4x, k ,  I)) = ( l o x ,  i + k, j + l ) ,  if x = 2, 6, o r  5 .  

Then S and A generate a skew frame of type 4". Now, consider the pairs (in S) 

{ ( 5 , 0 ,  I ) ,  (7, 1 ,O))  and { ( 1 , 0 ,  l) ,  (4, 1 , O ) ) .  Delete these two pairs from S,  and 
adjoin the two singletons { ( 5 , 0 ,  I }  and ((4, I ,  O ) } ,  obtaining S'.  Then, define 
c= ((1, 1, O), (7, 0, I ) ) ,  and R = ((4, 0 ,  I ) ,  (5, 1 ,  0)). Then, repeat this process, 
using instead { ( 5 ,  I , ( ) ) ,  (7, I ,  1)) and {( l ,  l , O ) ,  (4, I ,  I ) } .  This gives a 4- 
intransitive starter and skew adder, giving rise to a skew frame o f  type 4IJ. 0 

We present in Table 1 a list of skew frames of type 2" obtained using the above 
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constructions. As an immediate consequence of Theorem 5.1 and Table 1 ,  we 
obtain Theorem 5.2. As well, we present in Table 2 a list of skew frames with 
holes of size 2 and 4. As an immediate consequence of Theorem 5.2 and Table 2, 
we obtain Theorem 5.3. Theorem 2.2 is, of course, the combination of Theorems 
5.2 and 5.3. 
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Dedicated to Haim Hanani on his 75th birthday. 

1. Introduction 

Haim Hanani was the first to determine necessary and sufficient conditions for 
the existence of BIBDs with k = 3, 4, and 5 [5,6,7]. With a single exception, 
these designs exist whenever obvious arithmetic conditions are satisfied. The 
single exception occurs when u = 15, k = 5, A. = 2: the (15,5,2)-design does not 
exist as it would be a residual of a nonexistent symmetric (22,7,2)-design. Thus 
in order to show that a (15,S,A)-BIBD exists for all even A 3 4  (A even is 
necessary), Hanani had to construct a (15,5,4)- and a (15,5,6)-BIBD. 

Not many (15,5,4)-BIBDs are known. In our tables [lo], where this design is 
listed under No. 102, a lower bound of 1 is given. In Hall’s book [4], a 
1-rotational solution is given. Hanani gives a solution in [5], and another one in 
[6,7] (see also [l]). Another highly symmetric solution is given in [2,9, 121, and 
as shown in [12], this solution, Hall’s solution and the second of Hanani’s 
solutions are mutually nonisomorphic. Another 1-rotational (15,5,4)-design is 
obtained from the twofold pentagon system of order 15 given in [8]. 

As for (15,5,6)-BIBDs (No. 280 in [lo]), the only ones known appear to be 
that given by Hanani in [6] (and again in [7]) and by Dinitz and Stinson in [3]. No 
resolvable (15,5,4)- or (15,5, @-design appears to be known. 

In this paper, we take a somewhat closer look at the (15,5,A)-family. In 
particular, we investigate the existence of cyclic and 1-rotational, as well as the 
existence of resolvable (15,5, A)-designs. We enumerate completely the 1- 
rotational (15,5,4)-BIBDs (there exists no cyclic (15,5,4)-BIBD), and two 
subclasses of cyclic, and 1-rotational (15,5,6)-designs, respectively. In the 
process, we substantially improve the lower bounds for the number of non- 
isomorphic designs. We also obtain what we believe are first examples of 
resolvable (15,5,6)-BIBDs, and enumerate completely the resolvable (15,5,6)- 
BIBDs with an automorphism of order 5. 

0012-365X/89/$3.50 0 1089, Elsevier Science Publishers B.V. (North-Holland) 
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2. 1-rotational (15,5,4)-BIBDs 

A design with I.I elements is 1-rotational if it has an automorphism consisting of 
one fixed point and a single (v - 1)-cycle. We performed a complete enumeration 
of 1-rotational (15,5,4)-designs. These designs were generated and analyzed by a 
computer (they were generated by an IBMPC, and analyzed on a Mac 11). 
Applying multipliers resulted in a reduced set of 85 distinct designs which 
ultimately proved pairwise nonisomorphic. Our first attempt to distinguish 
nonisomorphic designs involved employing intersection numbers: for each base 
block, the number of blocks in each orbit intersecting the given base block in i 
elements, i = 0, 1, . . . , 5, was calculated. In spite of its simplicity, this invariant 
is fairly sensitive. It partitioned the set of 85 distinct designs into 50 nonisomor- 
phic classes, 19 of which still contained more than one design (13 consisted of two 
designs each but one of the classes still contained 8 nondistiguished designs). 
Another invariant, the element counts in blocks containing a particular pair of 
elements, proved even more sensitive. Here, one counts in the 4 blocks, 
containing a given pair of elements x,  y, the number of occurrences of the 
remaining 13 elements. For each such pair x ,  y, one obtains an ordered triple 
(a,, a*, u3)  where a, is the number of elements occurring i times in the 4 blocks in 
question. Because the designs are 1-rotational, it clearly suffices to consider pairs 
( 0 , i )  for i = 1, 2 , .  . . , 13, and ( 0 , ~ ) .  A sorted list of obtained triples is an 
invariant of the design. 

This invariant partitioned the set of first 82 designs into 60 nonisomorphic 
classes (the last three designs with 2 short orbits each were already distinguished 
as nonisomorphic by the previous invariant), 16 of which still contained more 
than one design (10 contained two, 6 contained three). The two invariants 
combined failed to distinguish only 7 pairs of designs. 

In the end, for each design D its element versus block incidence graph G ( D )  
was formed. As there are 15 elements and 42 blocks, C ( D )  has 57 vertices, 
Canonical ordering of vertices of this graph is a complete invariant. All 85 distinct 
designs are nonisomorphic, thus there exist exactly 85 nonisomorphic 1-rotational 
(15,5,4)-BIBDs. These designs are listed in Table 1. First 82 designs have three 
full-length-orbits, while the last 3 have two full-length orbits and two half-length 
orbits (the last 3 designs have also a common half-orbit 0178e not shown in Table 
1; all designs have an automorphism (0123456789abcd)(e)). The 1-rotational 
design occurring in [4], p. 410 (under No. 82) is isomorphic to our No. 40 in 
Table 1, while the design obtained from [8] is isomorphic to our No. 76. 

The order of the automorphism group of each design is 14. None of the designs 
contains a single parallel class. 

The two Hanani’s (15,5,4)-designs appearing in [ 5 ] ,  and in [6,7], respectively, 
contain an automorphism of order 5. The automorphism group of the design in 
[2,9, 121 has order 2520. These designs are mutually nonisomorphic, and also not 
isomorphic to any of the 85 1-rotational designs. Thus, in the notation of [lo], 
Nd(15, 42, 14, 5, 4) 3 88. 



The (15,5, A)-family of BIRDS 207 

Table 1. 1-rotational 24 15, 5,4)-designs 

No 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

Base blocks 

01256 0247a 0138e 
01256 0247a 0578e 
01256 0368a 0138e 
01256 0368a 0578e 
01237 0148a 0358e 
01237 0348a 0358e 
01237 0247a 0149e 
01237 0247a 0349e 
01237 0368a 0149e 
01237 0368a 0349e 
01246 01479 0158e 
01246 02589 0158e 
01246 01479 0378e 
01246 02589 0378e 
01246 0137a 0169e 
01246 0237a 0169e 
01356 01468 0158e 
01356 01468 0378e 
01356 01579 0147e 
01356 01579 0367e 
01356 0148a 0138e 
01356 0148a 0578e 
01247 01468 0149e 
01247 01468 0349e 
01247 02478 0149e 
01247 02478 0349e 
01247 01359 0158e 
01247 01359 0378e 
01247 04689 0158e 
01247 04689 0378e 
01247 0247a 0156e 
01247 0368a 0156e 
01257 02458 0158e 
01257 02458 0378e 
01257 03468 0158e 
01257 03468 0378e 
01257 01359 0147e 
01257 01359 0367e 
01257 04689 0147e 
01257 04689 0367e 
01257 0148a 0136e 
01257 0148a 0356e 
01257 0348a 0136e 

No 

44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 

83 
84 
85 

Base blocks  

01257 0348a 0356e 
01457 01357 0169e 
01457 02467 0169e 
01457 01359 0138e 
01457 01359 0578e 
01457 04689 0138e 
01457 04689 0578e 
01457 01579 0136e 
01457 01579 0356e 
01457 02489 0136e 
01457 02489 0356e 
02347 01468 0169e 
02347 02478 0169e 
02347 01379 0149e 
02347 01379 0349e 
02347 02689 0149e 
02347 02689 0349e 
01248 01358 0149e 
01248 01358 0349e 
01248 03578 0149e 
01248 03578 0349e 
01568 02458 0237e 
01568 02458 0457e 
01568 03468 0237e 
01568 03468 0457e 
01568 0148a 0235e 
01568 0348a 0235e 
02348 01258 0259e 
02348 01258 0479e 
02348 03678 0259e 
02348 03678 0479e 
02348 0136a 0138e 
02348 0136a 0578e 
02348 0356a 0138e 
02348 0356a 0578e 
01249 0148a 0136e 
01249 0148a 0356e 
01249 0348a 0136e 
01249 0348a 0356e 

03458 02458 0279e 
01246 01469 037ae 
01246 03589 037ae 

The number of 2-rotational (15,5,4)-designs (those with an automorphism 
consisting of a fixed element and two cycles of length 7) is apparently very 
large-huge amounts of these were generated on Mac 11. 

On the other hand, an exhaustive search has shown that there exists no 
resolvable (15,5,4)-design with an automorphism of order 7 or one of order 5, or 
one of order 3. For more on this, see beginning of Section 5. 

3. 1-rotational (15,5,6)-BIBDs 

Since the number of blocks in a (15,5,6)-BIBD is 63, a 1-rotational 
(15,5,6)-design could a priori have 4 full-length orbits and one half-length orbit 
of blocks, or 3 full-length orbits and 3 half-length orbits. We expected the number 
of 1-rotational (15,5,6)-designs to be quite large-an expectation that eventually 
proved to be true-and since the latter possibility seemed to be more restrictive, 
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we expected a smaller, more manageable subclass to emerge. To our surprise, 
this class turned out to be empty. In other words, there exists no 1-rotational 
(15,5,6)-design containing three half-length orbits of blocks, whether repeated or 
not. 

As for the former class, since the shorter orbits are multiplier-isomorphic, one 
may assume one arbitrary (but fixed) half-length orbit to be present in the design. 
With this assumption, we generated a set of 5268 distinct such designs, 
conceivably all pairwise nonisomorphic. Since this is too large a number of 
designs to analyze, we decide to focus on certain “reasonable” subclasses. One 
such subclass contains 1-rotational (15,5,6)-designs with repeated blocks (and 
therefore necessarily repeated block orbits). The number of such distinct designs 
is 29. The “intersection numbers” invariant partitioned these into 22 pairwise 
nonisomorphic classes, and the “canonical ordering of the incidence graph” 
invariant proved all 29 designs to be pairwise nonisomorphic. These are listed in 
Table 2. 

The second subclass of 1-rotational (15,5,6)-designs that we investigated was 
the class of designs having at least three S-orbits of blocks. Here, an orbit is 
called an S-orbit if it is invariant under the mapping i+ -i(i E 2,J. This class 
contained 79 distinct designs, of which 78 have exactly 3 S-orbits and 1 has 
exactly 4 S-orbits (there is no design having all 5 orbits S-orbits). Again, the 
intersection numbers partitioned the 79 distinct designs into 64 pairwise non- 
isomorphic classes, and the “canonical ordering of the incidence graph” invariant 
proved all 79 designs to be pairwise nonisomorphic. These are listed in Table 3 
(all designs in Tables 2 and 3 have also common half-orbit 0178e not shown, and 
an automorphism (0123456789abcd)(e)). 

None of the designs is resolvable, but some of them contain several parallel 
classes. Of the 79 designs with at least 3 S-orbits, 20 have no parallel class, 52 
have 7 parallel classes, 4 have 14 parallel classes and one (No. 37 in Table 3) has 
35 parallel classes. The automorphism group of each design given in Tables 2 and 
3 has order 14. 

Table 2. I-rotational 2 4  15,5,6)-designs with repeated orhits 

NO Base  blocks No B a s e  blocks 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
11 
12 
1 3  
1 4  
1 5  

01246 
01246 
02456 
02456 
01246 
01246 
02456 
02456 
01356 
01356 
01356 
01247 
01247 
01247 
01247 

02569 
02569 
02569 
02569 
0136a  
0136a 
0136a 
0136a 
01356 
01356 
01356 
01247 
01247 
01247 
01247 

02569 
02569 
02569 
02569 
0136a  
0136a  
0136a  
0 1 3 6 a  
01579 
0148a  
0148a  
0146a  
0146a  
0256a  
0256a  

0238e  
0568e  
0238e  
0568e  
0238e  
0568e  
0 2 3 8 e  
0 5 6 8 e  
0 3 6 a e  
0269e  
0379e  
0359e  
0 4 6 9 e  
0 3 5 9 e  
0 4 6 9 e  

1 6  
17  
1 8  
1 9  
2 0  
2 1  
22  
2 3  
24  
2 5  
2 6  
27 
28 
29  

02348 
02348 
04568 
04568 
02348 
02348 
04568 
04568 
03458 
03458 
01358 
01358 
02359 
02359 

01358 
01358 
01358 
01358 
02359 
02359 
02359 
02359 
03458 
03458 
01358 
01358 
02359 
02359 

01358 
01358 
0 1 3 5 8  
0 1 3 5 8  
02359 
02359 
02359 
02359 
01379 
01379 
0 1 2 6 a  
0 1 2 6 a  
0 1 2 6 a  
0 1 2 6 a  

0 3 4 8 e  
0 4 5 8 e  
0 3 4 8 e  
0 4 5 8 e  
0 3 4 8 e  
0 4 5 8 e  
0 3 4 8 e  
0 4 5 8 e  
0 2 4 7 e  
0 3 5 7 e  
0 2 3 6 e  
0 3 4 6 e  
0 2 3 6 e  
0346e  
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Table 3. 1-rotational 2-(15,5,6)-designs with 3 or 4 S-orbits 
No 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
11 
1 2  
1 3  
14 
1 5  
1 6  
1 7  
18  
1 9  
20 
2 1  
22 
2 3  
24  
2 5  
26  
27  
28 
29 
30 
3 1  
32 
3 3  
34 
35 
3 6  
37 
38  
3 9  
40 

01236 
01236 
01236 
01236 
01256 
01256 
01246 
01246 
01346 
01346 
01346 
01346 
01346 
01346 
01356 
01356 
01356 
01356 
01356 
01356 
01356 
01356 
01356 
01356 
01356 
01356 
01356 
01356 
01356 
01356 
01356 
01356 
02346 
02346 
02346 
02346 
02346 
02346 
02346 
02346 

B a s e  b 

0 1458 
03478 
0126a  
0126a  
01347 
03467 
01349 
01349 
01349 
01349 
0126a  
0 1 2 6 a  
0126a 
0126a  
01257 
01257 
02348 
02348 
01249 
01249 
01349 
01349 
01349 
01349 
01458 
01458 
0 3 4 5 8  
02458 
0 3 4 5 8  
0 3 4 5 8  
0 1 2 6 a  
0 1 2 6 a  
0 1 3 4 9  
0 1 3 4 9  
01569 
01569 
0 1 5 6 9  
0 1 5 6 9  
01489 
01489 

locks 

0 2 5 8 a  
0 2 5 8 a  
0 3 5 7 a  
0 3 5 7 a  
0 2 5 8 a  
0 2 5 8 a  
0 1 4 7 a  
0369a  
0 1 4 8 a  
0 2 6 9 a  
02369 
03679 
0 3 5 7 a  
0 3 5 7 a  
01359 
04689 
0 1 4 7 a  
0 3 6 9 a  
0 1 3 5 9  
0 4 6 8 9  
0 1 4 8 a  
0 1 4 8 a  
0 2 4 6 9  
0 2 4 6 9  
0 2 3 6 8  
0 2 5 6 8  
0 1 4 6 8  
01468 
0 2 4 7 a  
0 2 4 7 a  
0 2 3 6 9  
0 2 3 6 9  
02 5 9 a  
0 2 5 9 a  
02369 
03679 
0 3 5 7 a  
0 3 5 7 a  
03469 
03569 

0 2 4 9 e  
0 2 4 9 e  
0 2 5 8 e  
0 3 6 8 e  
0 2 4 9 e  
0 2 4 9 e  
0 2 4 9 e  
0 2 4 9 e  
0 2 4 9 e  
0 2 4 9 e  
0 2 4 9 e  
0 2 4 9 e  
0 2 3 8 e  
0 5 6 8 e  
0 3 6 a e  
0 3 6 a e  
0 2 4 9 e  
0 2 4 9 e  
0 3 6 a e  
0 3 6 a e  
0 2 4 7 e  
0 3 5 7 e  
0 1 4 8 e  
0 4 7 8 e  
0 2 4 9 e  
0 2 4 9 e  
0 2 6 9 e  
0 3 7 9 e  
0157e  
0267e  
0 2 4 7 e  
0 3 5 7 e  
0 2 6 9 e  
0 3 7 9 e  
0 2 4 9 e  
0 2 4 9 e  
0 2 3 8 e  
0 5 6 8 e  
0 2 4 9 e  
0 2 4 9 e  

No 

41 
42 
43  
44 
4 5  
4 6  
47 
48  
49 
5 0  
51 
5 2  
5 3  
5 4  
5 5  
5 6  
57  
5 8  
5 9  
6 0  
6 1  
6 2  
6 3  
64 
6 5  
6 6  
6 7  
68 
69 
70 
7 1  
72 
7 3  
74  
1 5  
7 6  
77 
78  
7 9  

01347 
01347 
01347 
01347 
01457 
01457 
01457 
01457 
01367 
01367 
02347 
02347 
01248 
01248 
01348 
01348 
01348 
0 1 3 4 8  
02348 
02348 
02348 
02348 
02348 
02348 
01349 
01349 
0 1 3 4 9  
01349 
01349 
01349 
01349 
01349 
01258 
0 1 2 5 8  
03458 
03458 
01369 
01369 
01356 

B a s e  blocks 

01349 01359 
01349 04689 
0 1 2 6 a  02358 
0 1 2 6 a  03568 
01349 02458 
01349 03468 
03458 02368 
0 3 4 5 8  02568 
0 3 4 5 8  02458 
0 3 4 5 8  03468 
0 3 4 5 8  0 2 5 8 a  
0 3 4 5 8  0 2 5 8 a  
03458 03469 
03458 03569 
01349 02458 
01349 03468 
0 3 4 5 8  02368 
0 3 4 5 8  02568 
0 1 3 4 9  0357a  
0 1 3 4 9  0357a  
03458 02369 
03458 03679 
03458 0 3 5 7 a  
03458 0357a  
03458 01357 
03458 01357 
0 3 4 5 8  01468 
03458 01468 
03458 02469 
03458 02469 
02458 0 3 5 7 a  
02458 0 3 5 7 a  
03458 02458 
03458 03468 
02368 0 3 5 7 a  
02368 0357a  
0 1 2 6 a  0 3 5 7 a  
0 1 2 6 a  0357a  
01349 0236a  

209 

0249e  
0249e  
0249e  
0 2 4 9 e  
0 2 4 9 e  
0249e  
0249e  
02 4 9 e  
0249e  
0249e  
0 1 5 7 e  
0267e  
0249e  
0249e  
0249e  
0249e  
0 2 4 9 e  
0 2 4 9 e  
0 1 4 6 e  
0 2 5 6 e  
0249e  
0249e  
0238e  
0 5 6 8 e  
0 2 6 9 e  
0 3 7 9 e  
0 2 4 7 e  
0357e  
0 1 3 7 e  
0 4 6 7 e  
0 1 2 6 e  
0 4 5 6 e  
0249e  
0 2 4 9 e  
0 1 2 6 e  
0456e  
0124e  
0 2 3 4 e  
0 2 4 9 e  

If the results concerning these two subclasses are any indication, most, if not 

As a consequence of our computational results of this and the preceding 
all, of the 5268 distinct 1-rotational designs are likely to be nonisomorphic. 

section, we have the following. 

Theorem 1. A 1-rotational (15, 5 ,  A)-BIBD exists if and only if A = 0 (mod 2), 
A a 4. 

Proof. Necessity is obvious. There exists a 1-rotational (15,5,4)- and a 1- 
rotational (15,5,6)-design. Noting that every even number A b 4 can be written 
as A = 4m + 6n, where m, n are nonnegative integers, completes the proof. 0 

4. Cyclic (15,5,6)-BIBDs 

In a sense, this section parallels the previous one. A design with v elements is 
cyclic if it has an automorphism consisting of a single cycle of length v. Any cyclic 
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Table 4. Cyclic 2-(15,5,6)-designs with repeated orbits 

No Base blocks NO Base blocks 

1 
2 
3 
4 
5 
6 
I 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

01235 
01235 
02345 
02345 
01245 
01245 
01236 
01236 
03456 
03456 
01237 
01237 
04567 
04567 
01237 
01237 
04567 
04567 
01239 

0148a 
0148a 
0148a 
0148a 
0249a 
0249a 
02379 
02679 
02379 
02679 
02368 
02568 
02368 
02568 
02359 
04679 
02359 
04679 
02459 

0148a 
0148a 
0148a 
0148a 
0249a 
0249a 
0267a 
0267a 
0267a 
0267a 
0267a 
0267a 
0267a 
0267a 
0267a 
0267a 
0267a 
0267a 
02459 

0158a 
0259a 
0158a 
0259a 
0347a 
0367a 
0267a 
0267a 
0267a 
0267a 
0267a 
0267a 
0267a 
0267a 
0267a 
0267a 
0267a 
0267a 
036ab 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
3 3  
34 
35 
36 
37 
38 

01346 
01346 
02356 
02356 
01247 
01247 
03567 
03567 
01347 
01367 
01367 
01467 
01467 
01248 
01248 
02348 
02348 
02348 
02348 

01268 
02678 
01268 
02678 
02349 
05679 
02349 
05679 
03458 
0125a 
0345a 
0125a 
0345a 
01248 
01248 
02348 
02348 
02348 
02348 

0267a 
0267a 
0267a 
0267a 
0267a 
0267a 
0267a 
0267a 
0249a 
01468 
01468 
01468 
01468 
0145a 
0157a 
01479 
01479 
02589 
02589 

0267a 
0267a 
0267a 
0267a 
0267a 
0267a 
0267a 
0267a 
0249a 
01468 
01468 
01468 
01468 
0258a 
0356a 
0158a 
0259a 
0158a 
0259a 

(15,5,6)-design must have 4 full-length block orbits and one short orbit. After 
generating all distinct cyclic designs and applying all possible multiplier iso- 
morphisms, we arrived at a reduced set of 1953 distinct cyclic (15,5,6)-designs, 
which are multiplier nonisomorphic, and therefore, according to [ 111, all pairwise 
nonisomorphic. Although this number is somewhat smaller than the correspond- 
ing number for 1-rotational (15,5,6)-designs, it is still too large for a complete 
analysis. We have again restricted ourselves to the same subclasses as in the case 
of 1-rotational designs: the cyclic (15,5,6)-designs with repeated blocks, and the 
cyclic (15,5,6)-designs with at least three S-orbits of blocks. The number of 
distinct designs in these 2 classes are 38, and 57, respectively. Of the 57 designs in 
the latter class, 55 have exactly 3 S-orbits, and 2 have exactly 4 S-orbits (there is 
no cyclic design with all 5 orbits S-orbits). The “canonical ordering of the 
incidence graph” invariant shows that all of the 38 cyclic (15,5,6)-designs with 
repeated blocks are pairwise nonisomorphic (these designs are listed in Table 4) 
as are the 57 cyclic (15,5,6)-designs with at least 3 S-orbits (these designs are 
listed in Table 5; all designs in Tables 4 and 5 contain also the short orbit with 
base block (0369c), and have an automorphism (01 . Oabcde)). This follows 
also from [ll]: note that (15, ~ ( 1 5 ) )  = 1. 

All designs in Table 4 have automorphism group of order 15, except for No. 26 
(order 30) and No. 33 (order 60). All designs in Table 5 have automorphism 
group of order 15, except for Nos. 39, 48, 52, 53, 57 (order 30) and No .  51 (order 
120). We have the following analogue of Theorem 1. 

Theorem 2. A cyclic (15, 5, A)-BIBD exists if  and only if A = 0 (mod 2), A 3 6. 

Proof. It is easy to see that there exists no cyclic (15,5,4)-BIBD (such a design 
would necessarily contain the short orbit repeated 4 times, therefore any 
full-length orbit of blocks in the design cannot contain pairs of elements covered 
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Table 5 .  Cyclic 2-(15,5,6)-designs with 3 or 4 S-orbits 

No 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
11 
1 2  
1 3  
1 4  
1 5  
1 6  
17  
1 8  
1 9  
20  
2 1  
22  
2 3  
24  
2 5  
26  
27 
28 
29  

0 1 2 3 5  
0 2 3 4 5  
0 1 2 4 5  
0 1 2 4 5  
0 1 2 4 5  
0 1 2 4 5  
0 1 2 4 5  
0 1 2 4 5  
0 1 2 3 6  
01236 
01256 
01256 
01256 
01256 
01237 
01237 
01237 
01237 
0 1 2 3 7  
01237 
01237 
0 1 2 3 7  
0 1 2  67 
01267 
0 1 2 6 7  
0 1 2 6 7  
01267 
01267 
0 1 2 3 8  

B a s e  b 

0 2 4 9 a  
0 2 4 9 a  
0 1 2 7 9  
0 2 7 8 9  
0 1 2 7 a  
0 1 2 7 a  
0 2 3 7 9  
0 2 6 7 9  
0 1 4 6 8  
0 2 4 7 8  
0 1 2 6 9  
0 3 7 8 9  
0 1 2 7 a  
0 1 2 7 a  
0 1 2 4 9  
0 5 7 8 9  
0 1 4 7 8  
0 1 4 7 8  
0 1 5 6 9  
0 3 4 8 9  
0 2 4 5 8  
0 3 4 6 8  
0 1 3 5 6  
0 1 3 5 6  
0 1 4 5 7  
0 2 3 6 7  
0 3 4 5 8  
0 3 4 5 8  
0 2 3 4 8  

# l o c k s  

0 1 4 8 a  
0 1 4 8 a  
0 2 5 7 b  
0 2 5 7 b  
0 1 5 8 a  
0 2 5 9 a  
0 2 4 9 a  
0 2 4 9 a  
0 2 4 9 a  
0 2 4 9 a  
0 2 3 5 a  
0 2 3 5 a  
01358 
03578 
025733 
0 2 5 7 b  
0 2 5 7 b  
0 2 5 7 b  
0 2 3 5 a  
0 2 3 5 a  
0 2 4 9 a  
0 2 4 9 a  
0 2 3 7 a  
0 3 7 8 a  
0 2 3 5 a  
0 2 3 5 a  
0 1 3 6 8  
0 2 5 7 8  
0 2 5 7 b  

0 3 6 a b  
0 3 6 a b  
0 3 6 a b  
0 3 6 a b  
0 2 4 8 b  
0 2 4 8 b  
0 3 6 a b  
0 3 6 a b  
0 3 6 a b  
0 3 6 a b  
0 2 4 8 b  
0 2 4 8 b  
0 2 4 8 b  
0 2 4 8 b  
0 3 6 a b  
0 3 6 a b  
0 1 3 5 a  
0 2 4 5 a  
0248b 
0 2 4 8 b  
0 3 6 a b  
0 3 6 a b  
0 2 4 8 b  
0 2 4 8 b  
0 2 4 8 b  
0248b 
0 2 4 8 b  
0 2 4 8 b  
0 3 6 a b  

No 

30 
3 1  
32 
3 3  
34 
35  
36 
37 
38  
3 9  
40 
4 1  
42 
43  
44 
4 5  
4 6  
47 
48 
49  
5 0  
51 
5 2  
5 3  
5 4  
5 5  
56 
5 7  

0 1 2 3 8  
0 1 2 3 8  
0 1 2 3 8  
0 1 2 3 8  
0 1 2 3 8  
0 1 2 3 8  
0 1 2 3 8  
0 1 2 3 9  
0 1 2 3 9  
0 1 2 3 9  
0 1 3 5 6  
0 1 3 5 6  
0 1 3 5 6  
0 1 3 5 6  
0 1 3 5 6  
0 1 3 5 6  
01247 
01247 
01457 
0 1 3 6 7  
0 1 3 6 7  
0 1 2 4 8  
0 1 2 4 8  
0 1 2 4 8  
0 2 3 4 8  
0 2 3 4 8  
0 1 2 3 9  
0 1 3 5 6  

B a s e  b l o c k s  

0 4 5 6 8  0 2 5 7 b  
0 3 4 5 8  0 1 4 8 a  
0 3 4 5 8  0 2 6 9 a  
0 3 4 5 8  0 1 5 7 a  
0 3 4 5 8  0 3 5 9 a  
0 1 4 5 a  0 1 3 5 8  
0 1 4 5 a  03578 
0 1 3 4 8  0 2 5 6 a  
0 1 3 4 8  0 4 5 8 a  
0 2 4 5 9  04579 
0 1 2 6 8  01468 
0 1 2 6 8  0 2 4 7 8  
0 1 3 4 8  0 2 4 9 a  
0 1 3 4 8  0 2 4 9 a  
0 1 2 5 9  0 2 4 9 a  
0 1 2 5 9  0 2 4 9 a  
0 3 4 5 8  0 1 4 8 a  
0 3 4 5 8  0 2 6 9 a  
0 3 4 5 8  02379 
0 3 4 5 8  01468 
0 3 4 5 8  0 2 4 7 8  
0 4 6 7 8  0 1 4 5 a  
0 3 4 5 8  0 2 4 9 a  
0 3 4 5 8  0 2 4 9 a  
0 3 4 5 8  0 2 4 9 a  
0 3 4 5 8  0 2 4 9 a  
0 3 4 5 8  0 2 6 7 a  
0 1 2 4 8  0 2 4 9 a  

211 

0 3 6 a b  
0257b 
0257b 
0248b 
0248b 
0248b 
0248b 
0257b 
0257b 
0 3 6 a b  
0 3 6 a b  
0 3 6 a b  
0148a  
0269a  
0236a  
0478a  
0249a  
0249a  
0249a  
0249a  
0249a  
0258a  
01469 
03589 
01479 
02589 
0257b 
0 3 6 a b  

by short orbits; but all possible full-length orbits do), hence necessity. For 
sufficiency, we note that every even integer A a 6 can be written as A = 6m + 8n + 
lop. Thus, in addition to the cyclic (15,5,6)-designs of this section, we need to 
provide a cyclic (15,5,8)- and a cyclic (15,5, lO)-design. These are given below: 

(a) base blocks of a cyclic (15,5,8)-design: 

01256,  01257 ,  0 1 2 6 8 ,  0 2 3 7 a ,  0 2 4 7 b ,  0369c ,  0369c ,  0 3 6 9 ~ .  

(b) base blocks of a cyclic (15,5, 10)-design: 

0 1 2 5 6 ,  0 1 2 6 8 ,  0 1 2 6 9 ,  0 2 4 5 8 ,  0 2 3 6 8 ,  0 2 6 7 a ,  O 3 5 8 b .  0 

5. Resolvable (15,5 6)-BIBDs 

A resolvable (15,5,6)-design will contain 21 disjoint parallel classes of 3 blocks 
each. It appears natural to investigate the existence of resolvable (15,5,6)- 
designs with an automorphism of order 7, and of order 5 ,  respectively. In the 
former case, the set of elements is taken to be Z7 x { 1, 2 )  U { w } ,  and there would 
be three base parallel classes (i.e. three orbits of 7 parallel classes each). In the 
latter case, the set of elements is taken to be Z s  x { 1, 2, 3 } ,  and there would be 
five base parallel classes (i.e. 4 orbits of 5 parallel classes each, and one parallel 
class fixed under 2,). 

In the case of an automorphism of order 7, there are following two tactical 
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Base resolutions 

1st 2nd 3rd 1st 2nd 3rd 
1)  L33 322 214 2) 142 313 223 

322 133 241 313 142 232 
100 loo 100 100 100 100 

Table 6. Resolvable 2-( IS,  S , 6 )  designs with automorphism of order S 

Tactical decomoosition: 3 1 1 3 1 1 1 2 2 1 2 2 

1 21 
2 21 
3 21 
4 21 
5 21 
6 21 
7 21 
8 21 
9 21 
10 21 
11 21 
12 21 
13 21 
14 21 
15 21 
16 21 
17 21 
18 21 
19 21 
20 21 
21 21 
22 21 
23 21 
24 21 
25 31 
2 6  21 
27 21 
2 8  21 
29 21 
30 21 
31 21 
32 21 
33 31 
34 31 
35 21 
36 21 
37 21 
38 21 
39 21 
40 21 
41 21 
42 31 
43 21 

0125a 36898 47bce 
0125a 3689e 47bcd 
0125a 3689e 47bcd 
0125a 3689e 47bcd 
0125a 3689e 47bcd 
0125a 3689e 47bcd 
0125a 3689b 47cde 
0125a 3689b 47cde 
0125a 3689e 47bcd 
0125a 3689c 47bde 
0125a 3689c 47bde 
0125a 3689e 47bcd 
0125a 3689d 47bce 
0125a 3689c 47bde 
0125a 3689e 47bcd 
0125a 3689b 47cde 
0125a 3689c 47bde 
0125a 3689d 47bce 
0125a 3689b 47cde 
0125a 3689c 47bde 
0125a 3689e 47bcd 
0125a 3689c 47bde 
0125a 3689d 47bce 
0125a 3689b 47cde 
0125a 3689e 47bcd 
0125a 3689c 47bde 
0125a 3689e 47bcd 
0125a 3689d 47bce 
0125a 3689c 47bde 
0125a 3689c 47bde 
0125a 3689e 47bcd 
0125a 378913 46cde 
0125a 3689c 47bde 
0125a 3689c 47bde 
0125a 3789e 46bcd 
0125a 3689e 47bcd 
0125a 3789d 46bce 
0125a 3789e 46bcd 
0125a 3689c 47bde 
0125a 3789c 46bde 
0125a 3789b 46cde 
0125a 3789b 46cde 
0125a 3789b 46cde 

Tactical decomposition: 

1 21 0125a 34894 67bce 
2 21 0125a 3489e 67bcd 
3 21 0125a 3468e 79bcd 
4 21 0125a 3489b 67cde 
5 21 0125a 3478e 69bcd 
6 21 0125a 3478b 69cde 
7 21 0125a 3478e 69bcd 

1 3 1  1 3 1  2 1 2  2 1 2  
1 1 3  1 1 3  2 2 1  2 2 1  

0135e 4689a 27bcd 056cd 239ae 1478b 
0135a 2789d 46bce 068ae 125cd 3479b 
0135b 2789e 46acd 068ae 125cd 3479b 
0135c 2789a 46bde 068ae 125cd 3479b 
0135d 2789b 46ace 068ae 125cd 3479b 
0135e 2789c 46abd 068ae 125cd 3479b 
0125d 3789e 46abc 078ab 239ce 1456d 
0135c 4689e 27abd 056ac 239de 1478b 
0135a 26784 49bce 068ae 129cd 3457b 
0125d 3789b 46ace 078ac 239de 1456b 
0135a 2678e 49bcd 068bd 129ac 3457e 
0135c 4789b 26ade 058ae 239bd 1467c 
0126c 3589b 47ade 057bd 239ce 1468a 
0135b 4679c 28ade 069cd 345ae 127813 
0126c 3589d 47abe 057be 239ac 14684 
0126c 3589e 47abd 079bc 236ad 1458e 
0126c 35894 47abe 079cd 236be 1458a 
0135c 2679a 48bde 079ab 128de 3456c 
0137d 4568b 29ace 058ce 239bd 1467a 
0137a 4568b 29cde 058ae 239bd 1467c 
0135d 4789a 26bce 068cd 345ae 1279b 
0126c 4789d 35abe 078ab 239ce 1456d 
0126e 4789a 35bcd 078be 239ad 1456c 
0137e 2568c 49abd 067ac 235de 1489b 
0135d 4678a 29bce 068cd 349ae 1257b 
0135a 4678e 29bcd O68bd 349ac 1257s 
0127e 4589c 36abd 057bd 239ce 1468a 
0127b 3568e 49acd 056cd 239ae 1478b 
0127c 4568d 39abe 069ab 235ce 1478d 
0136b 4589c 27ade 079ce 346ad 1258b 
0136a 2589d 47bce 079ae 126cd 3458b 
0135b 46894 27ace 068bc 239de 1457a 
0137c 4569d 28abe 058ad 347be 1269c 
0137c 4569d 28abe 067bc 348ae 1259d 
0125d 4789b 36ace 068ae 239bd 1457c 
0137d 2689b 45ace 059bd 128ce 3467a 
0127e 3689c 45abd 079bc 235de 1468a 
0127a 3689c 45bde 079be 235ad 1468c 
0138d 4569c 27abe 069be 347ad 1258c 
0128d 4679a 35bce 057ab 236ce 1489d 
0135a 2689c 47bde 068bd 125ce 3479a 
0137c 46898 25bde 067bc 349ad 1258e 
0138d 4679a 25bce 067bc 349ad 1258e 

069ce 235bd 1478a 
067ad 135ce 2489b 
067be 135ad 2489c 
067ac 135be 24994 
067bd 135ac 2489e 
067ce 135bd 2489a 
057be 139ad 2468c 
069cd 235be 1478a 
067ad 135ce 2489b 
068de 249ab 1357c 
067bc 135de 2489a 
067ad 239ce 1458b 
089cd 137ae 245613 
089bd 135ac 2467e 
089bd 137ae 2456c 
067ce 138ab 2459d 
067bd 138ae 2459c 
056be 139cd 2478a 
O89bc 237de 1456a 
089bd 237ae 1456c 
067ad 135ce 2489b 
057cd 139be 2468a 
068bc 249de 1357a 
079cd 238be 1456a 
067ad 135ce 2489b 
067bc 135de 2489a 
089ab 137cd 2456e 
089be 246cd 1357a 
059cd 138be 2467a 
067bc 135de 2489a 
067ad 135ce 2489b 
089ac 235be 1467d 
067bc 135de 2489a 
058ad 137be 2469c 
067ac 249de 1358b 
057ae 136cd 2489b 
089ad 245bc 1367e 
089bc 245ae 1367d 
067bc 135de 2489a 
056cd 248ae 1379b 
067bc 138ae 2459d 
O58ad 139bc 2467e 
069be 135cd 2478a 

3 2 0  2 2 1  2 2 1  2 2 1  
1 2 2  2 2 1 1 1 3  1 1 3  
1 1 3  1 1 3  2 2 1  2 2 1  

0168d 2359c 47abe 026de 139ac 4578b 027cd 135be 4689a 
0157d 2468a 39bce Ol8ad 247be 3569c 028bc 135de 4679a 
0256e 1478d 39abc 016bd 247ac 3589e 018ac 246de 3579b 
0269d 1478a 35bce 017bc 235ad 4689e 025ae 147bd 3689c 
0157e 2489c 36abd 017ac 245bd 3689e 027de 148bc 3569a 
0157b 2489e 36acd 017ac 245de 3689b 027de 148ac 3569b 
0257e 1369a 48bcd 017bc 248ad 3569e 017ad 246ce 3589b 
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Table 6 (( 

8 21 
9 21 
10 21 
11 21 
12 21 
13 2 6  
14 21 
15 21 
16 21 
17 21 
18 21 
19 21 
20 21 
21 21 
22 21 
23 26 

Ta 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

:ontinued) 

0125a 3478e 69bcd 
0125a 3469c 78bde 
0125a 34694 78bce 
0125a 34694 78bce 
0125a 3469e 78bcd 
0125a 3469d 78bce 
0125a 34694 78bce 
0125a 3478d 69bce 
0125a 3478e 69bcd 
0125a 3468e 79bcd 
0125a 3469d 78bce 
0125a 3469d 78bce 
0125a 3478e 69bcd 
0125a 3478e 69bcd 
0125a 3469d 78bce 
0125a 34694 78bce 

ctical decomposition: 

21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 
21 

012ab 34589 67cde 
012ac 34589 67bde 
012ac 34589 67bde 
012ac 34589 67bde 
012ab 34589 67cde 
012ac 34589 67bde 
012ac 34589 67bde 
012ac 34589 67bde 
012ac 34589 67bde 
012ab 34589 67cde 
012ac 34589 67bde 
012ab 34589 67cde 
012ac 34589 67bde 

0267e 1359a 48bcd 
0257c 1389b 46ade 
0267c 1458a 39bde 
02674 1458e 39abc 
0168c 2459a 37bde 
0267a 1359c 48bde 
0269a 1357c 48bde 
02564 1478e 39abc 
0256d 1478b 39ace 
0156c 2379a 48bde 
0267a 1389e 45bcd 
0268b 1357c 49ade 
0157a 2369e 48bcd 
0167a 2359e 48bcd 
0158d 3479a 26bce 
0167c 2359a 48bde 

017bc 249ad 3568e 
016ac 248bd 3579e 
017ad 249bc 3568e 
017bc 249ae 3568d 
015ce 248ab 3679d 
016cd 249ab 3578e 
016cd 247ab 3589e 
017bc 239ad 4568e 
017bd 345ac 2689e 
027be 148cd 3569a 
015bd 347ae 2689c 
016cd 235ae 478913 
027bd 138ae 4569c 
026bd 138ae 4579c 
026ad 147bc 3589e 
025cd 137be 4689a 

3 2 0  1 2 2  1 2 2  1 2 2  
0 3 2  2 1 2  2 1 2  2 1 2  
2 0 3  2 2 1  2 2 1  2 2 1  

056ce 129ad 347833 
057bc 348de 1269a 
057ae 129cd 3468b 
058bc 346ad 1279e 
058cd 129be 3467a 
058ad 347be 1269c 
058ab 347cd 1269e 
067bd 348ce 1259a 
067ce 348bd 1259a 
068ae 129cd 3457b 
069ae 128bd 3457c 
078ac 125de 34691, 
057ce 239ad 1468b 

068ab 139de 2457c 
078ac 139be 2456d 
078de 245ab 1369c 
058de 137ab 2469c 
O58be 137ad 2469c 
067de 248bc 1359a 
079bd 245ae 1368c 
068ab 135cd 2479e 
068bc 135ae 2479d 
058bd 246ac 1379e 
068cd 135be 2479a 
069ac 138be 24574 
058de 236bc 1479a 

Tactical decomposition: 3 0 2 1 2 2 1 2 2 1 2 2 

1 21 
2 21 
3 21 
4 21 
5 21 
6 21 
7 21 
8 21 
9 21 
10 21 
11 21 
12 21 
13 21 
14 21 
15 2 6  
16 21 

012ab 567cd 3489e 
012ab 567ce 3489d 
012ab 679de 3458c 
012ac 679bd 3458e 
012ab 679ce 3458d 
012ac 679de 345813 
012ab 679ce 3458d 
012ac 679de 3458b 
012ab 567cd 3489e 
012ab 567ce 34894 
012ac 567bd 3489e 
012ac 567bd 3489e 
012ac 567bd 3489e 
012ab 679de 3458c 
012ac 679be 3458d 
012ab 679ce 34584 

0 3 2  2 2 1 1 2 2  1 2 2  
2 2 1  2 1 2  3 1 1  3 1 1  

078bd 1469a 235ce O5cde 2369a 1478b 
078bc 1469e 235ad O5bcd 2369a 1478e 
059ac 1478d 236be 06ace 23584 1479b 
059bc 1478d 236ae 06ade 2358b 1479c 
058cd 3469a 127be O8abc 2467d 1359e 
058ab 3469d 127ce O8bce 2467d 1359a 
057be 2368a 149cd 06bcd 2359e 1478a 
057ae 2368c 149bd 06bde 2359a 1478c 
068ad 2479c 135be 05bce 1289d 3467a 
068ab 2479d 135ce 05acd 1289e 3467b 
068ab 2479c 135de O5cde 1289a 3467b 
068cd 2479e 135ab 05cde 128913 3467a 
068ab 2479c 135de O5bce 2369a 1478d 
056ce 2478a 139bd O8bde 1269c 3457a 
056cd 2478b 139ae O8bcd 1269a 3457e 
059bc 2467a 138de O8ace 1279d 3456b 

Tactical decomposition: 3 1 1 3 1 1 1 2 2 1 2 2 
0 3 2  2 1 2  2 1 2  2 1 2  
2 1 2  0 3 2  2 2 1  2 2 1  

017ad 245ce 3689b 
019cd 248ae 3567b 
019cd 245ab 3678e 
019ce 245bd 3678a 
027ae 148bd 3569c 
018bd 245ae 3679c 
018bd 247ae 3569c 
025de 138ac 467913 
025ae 138bc 4679d 
028ab 147ce 3569d 
028de 135ac 4679b 
027ad 148be 3569c 
028ac 147bd 3569e 
028ce 135bd 4679a 
027de 148ab 3569c 
025de 148ab 3679c 

079ac 246bd 1358e 
079cd 136ae 2458b 
059ce 137bd 2468a 
089be 137cd 2456a 
069bd 245ae 1378c 
068bc 135ae 2479d 
067ce 248ab 1359d 
079cd 136ae 2458b 
079ab 136de 2458c 
059ce 138ad 246723 
089bc 247de 1356a 
079be 248cd 1356a 
O89bc 137de 2456a 

05acd 1379e 2468b 
O5bce 1379a 2468d 
07bcd 1356e 2489a 
07ace 1356b 2489d 
09acd 1378e 2456b 
09cde 137813 2456a 
09acd 2478e 1356b 
09abc 2478d 1356e 
OScde 1379a 2468b 
OSbcd 1379a 2468e 
05bce 1379a 2468d 
O5bde 1379c 2468a 
O5cde 2369b 1478a 
07bcd 1356a 2489e 
07abd 1356c 2489e 
09bde 1367a 2458c 

1 21 012ac 4569b 378de 01257 46ade 389bc 068ad 235be 1479c 089ce 246ab 1357d 
2 21 012ac 4569b 378de 01257 46bde 389ac 068ae 235bd 1479c 089cd 246ab 1357e 
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Table 6 (Continued) 

3 21 
4 21 
5 21 
6 21 
7 21 
8 21 
9 21 
10 21 
11 21 
12 21 
13 21 
14 21 
15 21 
1 6  21 
17 21 
18 21 
19 21 
20 21 
21 21 
22 21 
23 21 
24 21 
25 21 
26 21 
27 21 
28 21 
29 21 
30 21 
31 21 
32 21 
33 21 
34 21 
35 21 
36 21 
37 21 
38 21 
39 21 
40 21 
41 21 
42 21 
43 21 
44 21 
45 21 
46 21 
47 21 
48 21 
49 21 
50  21 
51 21 
52 21 
53 21 
54 21 

012ac 4569b 37.8de 
012ac 4569e 378bd 
012ac 4569e 378bd 
012ac 4569d 378be 
012ac 45694 378be 
012ac 4569d 378be 
012ac 45694 378be 
012ab 3589c 467de 
012ac 3589d 467be 
012ab 4579c 368de 
012ac 45794 368be 
012ac 4579e 368bd 
012ac 4579e 368bd 
012ac 3689b 457de 
012ab 3689c 457de 
012ac 368913 457de 
012ac 3689b 457de 
012ac 3689b 457de 
012ab 3689c 457de 
012ac 4569e 378bd 
012ac 45694 378be 
012ac 4569b 378de 
012ac 4569d 378be 
012ac 4569b 378de 
012ac 4569b 378de 
012ac 4569d 378be 
012ac 4569e 378bd 
012ac 4569b 378de 
012ac 456913 378de 
012ac 456913 378de 
012ab 3589d 467ce 
012ac 3589e 467bd 
012ac 4579d 368be 
012ac 4579b 368de 
012ac 4579b 368de 
012ab 4579c 368de 
012ac 4579e 368bd 
012ac 4579d 368be 
012ab 4579c 368de 
012ac 3689b 457de 
012ac 36891, 457de 
012ab 4569d 378ce 
012ac 4569e 378bd 
012ac 3589d 467be 
012ac 3589b 467de 
012ab 35894 467ce 
012ac 4569b 378de 
012ac 4579d 368be 
012ac 4569b 378de 
012ab 4579e 368cd 
012ac 4579b 368de 
012ab 3689s 457cd 

R. Mathon, A. Rosa 

01257 46ade 389bc 
01259 38abc 467de 
01259 47abc 368de 
01259 47bcd 368ae 
01268 49bcd 357ae 
01269 38abd 457ce 
01279 45cde 368ab 
01268 37acd 459be 
01279 36bcd 458ae 
01267 39acd 458be 
01268 47bcd 359ae 
01269 37abc 458de 
01279 48abc 356de 
01257 39ade 468bc 
01257 36bde 489ac 
01257 48abc 369de 
01259 46ace 378bd 
01267 35abe 489cd 
01269 35bde 478ac 
01359 47abc 268de 
01359 47abe 268cd 
01368 29bce 457ad 
01369 28ade 457bc 
01379 46ade 258bc 
01379 46bde 258ac 
01379 46bcd 258ae 
01379 48abe 256cd 
01379 48acd 256be 
01379 48bcd 256ae 
01389 26ade 457bc 
01368 45abc 279de 
01378 45bcd 269ae 
01357 29cde 468ab 
01367 29abe 458cd 
01367 29abc 458de 
01378 49bcd 256ae 
01378 49bcd 256ae 
01378 45cde 269ab 
01378 25abe 469cd 
01378 45bcd 269ae 
01378 26bcd 459ae 
01368 29bde 457ac 
01357 49abc 268de 
01358 26cde 479ab 
01368 45abe 279cd 
01379 26cde 458ab 
01389 45bde 267ac 
01357 48ade 269bc 
01389 26acd 457be 
01378 45abc 269de 
01378 45bce 269ad 
01378 25cde 469ab 

079cd 236be 1458a 
068cd 239ae 1457b 
067ce 239bd 1458a 
067be 239ac 1458d 
089be 235ad 1467c 
067bc 235de 1489a 
078ce 236bd 1459a 
057bc 236ae 1489d 
056bd 237ae 1489c 
078be 236ad 1459c 
079be 238ac 1456d 
056cd 239ae 1478b 
068ce 237bd 1459a 
089be 235ac 1467d 
079cd 238ae 1456b 
067cd 235be 1489a 
067cd 239be 14583 
079ce 236ad 1458b 
058cd 239ae 1467b 
057be 129ac 3468d 
068be 129ad 3457c 
078bc 125ae 3469d 
057ad 348ce 1269b 
056ce 129ad 3478b 
056de 129ac 3478b 
089ac 346be 1257d 
057be 128ad 3469c 
068bc 129ad 3457e 
068bd 129ac 3457e 
057ae 129bd 3468c 
089be 126ad 3457c 
069bd 348ce 1257a 
078ce 126ad 3459b 
059bd 127ac 3468e 
078ce 125ad 34691, 
067ce 129bd 3458a 
069bc 127ad 3458e 
056bc 128ad 3479e 
056ac 347be 1289d 
056ab 348ce 1279d 
079bd 345ac 1268e 
069ac 237de 1458b 
069de 147bc 2358a 
068de 239ab 1457c 
069be 237ad 1458c 
057be 238ad 1469c 
057de 148ac 2369b 
067bd 238ac 1459e 
067ae 149cd 2358b 
078ac 236be 14594 
078cd 236be 1459a 
059ac 236be 1478d 

078bd 245ce 1369a 
069be 247ad 1358c 
069cd 138ae 2457b 
069ab 138de 2457c 
058ae 246bc 1379d 
058de 246bc 1379a 
068bc 249ae 1357d 
058bd 246ac 1379e 
079de 136ac 245813 
078cd 135ae 2469b 
089ab 135de 2467c 
078be 249ad 1356c 
067cd 135ae 2489b 
059bd 246ae 1378c 
078ac 246bd 1359e 
059ad 246be 1378c 
058bc 249de 1367a 
078be 136cd 2459a 
059ac 246bd 1378e 
068cd 137ae 245913 
057cd 136ab 2489e 
059bd 137ae 2468c 
078bc 246de 1359a 
068bd 135ae 2479c 
068bc 135ae 2479d 
057ae 136bc 2489d 
058cd 139ae 2467b 
056de 138ab 2479c 
056ce 138ab 24794 
069ce 245ad 137813 
069ac 135de 2478b 
058ab 139cd 2467e 
089ae 245cd 1367b 
O78ce 246ab 1359d 
059bd 246ae 1378c 
069ac 135be 2478d 
078be 246cd 1359a 
089ac 135de 2467b 
059bd 137ac 2468e 
089bd 135ac 2467e 
089ce 247ab 1356d 
089cd 235ab 1467e 
078be 149ad 2356c 
O89ce 237bd 1456a 
078ce 236ab 1459d 
078ce 236ab 1459d 
058cd 147ab 2369e 
089bc 235ae 14674 
069be 148cd 2357a 
079ad 238be 1456c 
056de 148ab 2379c 
079bd 238ac 1456e 

Above, the first row corresponds to the (element) orbit Z7 x { l}, second row 
to the orbit 2, x {2}, and the third row to the fixed element m. The columns 
correspond to blocks in a base parallel class. Thus in (u i j ) ,  i = 1, 2, 3, j = 1, 2, 3, 
nij is the number of elements from ith orbit in the jth block of the base parallel 
class in question. 

An exhaustive search has shown that no resolvable (15,5,6)-design with an 
automorphism of order 7 exists. This, together with a similar negative result for 
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A = 4 (as a result of an exhaustive search, there exists no resolvable (15,5,4)- 
design with an automorphism of order 7, and there is not even an admissible 
tactical configuration for a resolvable (15,5,4)-design with an automorphism of 
order 5 or order 3) was quite disappointing. 

However, the situation proved to be quite different in the case of resolvable 
(15,5,6)-BIBDs with an automorphism of order 5. In this case, there are 5 
tactical decompositions. There exist resolvable (15,5,6)-designs corresponding to 
each one of them. These are listed in Table 6, together with their tactical 
decompositions. Only the base blocks for the 4 full-length orbits of the parallel 
classes are shown. The fixed parallel class 0123456789 ubcde is common to all 
designs; all designs have an automorphism (01234)(56789)(ubcde). 

The number of nonisomorphic resolvable (15,5,6)-designs obtained is 43 + 
23 + 13 + 16 + 54 = 149. Each of these 149 designs has an automorphism group of 
order 5. The underlying designs are also pairwise nonisomorphic as in each case 
the resolution is unique. The number of parallel classes, which each design 
admits, is not constant, however. While most designs admit exactly 21 parallel 
classes, i.e. exactly those that appear in the unique resolution, three designs 
admit 26 parallel classes, and four designs admit 31 parallel classes. 

6. Conclusion 

As a result of Section 2, we have in the notation of [lo] for k = 4 :  
Nd(15, 42, 14, 5, 4) 3 88. 

For A = 6, we see easily that the designs of Section 3, Section 4 and Section 5 
are mutually nonisomorphic. The (15,5,6)-design given by Hanani in [6,7] is 
isomorphic to our No. 51 in Table 5, but in Dinitz-Stinson design in [3] is not 
isomorphic to either of them, thus Nd(15, 63, 21, 5, 6) 2 108 + 1953 + 149 + 1 = 
2211. We also have Nr(15, 63, 14, 5, 6) 2 149. 

One question that remains open is that about the existence of a resolvable 
(15,5,4)-BIBD. 
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FINITE BASES FOR SOME PBD-CLOSED SETS 

R.C.  MULLIN 
Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, 
N2L 3Gl Canada 

Let H" = { u : v  s u  + 1, v 3 1 (moda)}. It is well known that such sets are PBD-closed. 
Finite bases are found for these sets for a = 5 ,  6 and 7. 

1. Introduction 

The theory of PBD closure was developed by R.M. Wilson in a remarkable 
series of papers (see 9, 10 and 111). Amongst other results, he proved that every 
PBD closed set contains a finite basis, and illustrated this fact by presenting finite 
bases for certain instances. The following definitions allow these concepts to be 
made more precise. 

A pairwise balanced design (PBD) of index unity is a pair (V, A )  where V is a 
finite set (of points) and A is a class of subsets of V (called blocks) such that any 
pair of distinct points of V occurs in exactly one of the blocks of A. 

A PBD[K, v] is defined to be a PBD(V, A )  where (VI = v and IBI E K for every 
B E A .  Here K is a (finite or infinite) set of positive integers. 

If K consists of a single positive integer k, the resulting configuration is called a 
(v, k, 1) balanced incomplete block design (BIBD). 

If K is a (finite or infinite) set of positive integers, let B ( K )  denote the set of 
positive integers v for which there exists a PBD[K, v]. A set K is PBD-closed (or 
simply closed) if B ( K )  = K. Wilson has shown that every closed set K contains all 
sufficiently large integers v with v = 1 (mod m(K)) and v(v - 1) = 0 (mod P ( K ) ) ,  
where a ( K )  is the greatest common divisor of the integers {k - 1 : k E K} and 
P ( K )  is the greatest common divisor of the integers { k ( k  - 1):k E K}. As a 
consequence of this, as Wilson has pointed out, if K is a closed set, then there 
exists a finite subset J E K such that K = B ( J ) .  Such a set J is called a finite basis 
for the closed set K. Using the notation of Wilson [ l l ] ,  let a be a positive integer. 
Then H" = { v : v > u ,  v = 1  (moda)} is closed. In fact, Wilson points out the 
following results. 

H 2  = B((3, 5 ) ) ,  

H 3  = B((4, 7, 10, 19}), 
H 4 =  B((5,  9, 13, 17, 29, 33, 49, 57, 89, 93, 129, 137)). 

0012-365X/89/$3.50 @ 1089, Elsevier Science Publishers B.V. (North-Holland) 
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It is clear that each closed set K has a unique minimal finite basis. An element 
x E K is said to be essential in K iff x $ B ( K \ { x ) ) ,  or equivalently x I$ B ( { y  E 
K : y  < x } ) .  Thus in the unique minimal basis, every element is essential. In the 
basis for H4 above, not all listed elements are essential. Indeed, it was later 
shown that 89, 129, and 137 are not essential. Therefore it is also true that 

H4 = B ( ( 5 ,  9, 13, 17, 29, 33, 49, 57, 93)). 

It is improbable that this is minimal. It is the purpose here to provide the 
following bases: 

H5=B({6, 11, 16, 21, 26, 36, 41, 46, 51, 56, 61, 71, 86, 101, 116, 131, 141, 
146, 161, 166, 191, 196, 201, 206, 221, 226, 231, 236, 251, 261, 266, 281, 286, 
291, 296, 311, 316, 321, 326, 351, 356, 376, 386, 401, 416, 436, 441, 446, 476, 
491, 591, 596)). 

H6=B({7, 13, 19, 25, 31, 37, 43, 55, 61, 67, 73, 79, 97, 103, 109, 115, 121, 
127, 139, 145, 157, 163, 181, 193, 199, 205, 211, 223, 229, 235, 241, 253, 265, 
271, 277, 283, 289, 295, 307, 313, 319, 331, 349, 355, 361, 367, 373, 379, 391, 
397, 409, 415, 421, 439, 445, 451, 457, 487, 493, 499, 643, 649, 655, 661, 667, 
685, 691, 697, 709, 727, 733, 739, 745, 751, 781, 787, 811, 1063, 1069, 1231, 
1237, 1243, 1249, 1255, 1315, 1321, 1327, 1543, 1549, 1567, 1579, 1585, 1783, 
1789, 1795, 1801, 1819, 1831)). 

H7=B({8, 15, 22, 29, 36, 43, 50, 71, 78, 85, 92, 99, 106, 113, 127, 134, 141, 
148, 155, 162, 169, 176, 183, 190, 197, 204, 211, 218, 225, 239, 246, 253, 260, 
267, 274, 281, 295, 302, 309, 316, 323, 330, 337, 351, 358, 365, 372, 379, 386, 
414, 421, 428, 442, 575, 582, 589, 596, 603, 610, 701, 708, 715, 722, 827, 834, 
1205, 1212, 1219, 1226, 1261, 1268, 1275, 1282, 2031, 2038, 2045, 2066)). 

2. Constructions for pairwise balanced designs 

For the definition of group divisible design (GDD), transversal design (TD), 
resolvable balanced incomplete block design (RBIBD), and for a discussion of 
Wilson’s fundamental construction for group divisible designs, and relevant 
notation, see section 3 of [ l l] .  For the definition of incomplete transversal design, 
incomplete pairwise balanced design (IPBD), and a discussion of the singular 
indirect product, and relevant notation, see section 2 of [6]. 

Let P be a finite set of positive prime integers. Define U ( P )  to be the smallest 
integer S such that, for any positive n, there exists an integer s such that 
n ds d n + 6 and (s, p) = 1 for every p E P,  where as usual, (s, p) denotes the 
greatest common divisor of s and p. The function U ( P )  is investigated in [8], with 
particular reference to U ( P k )  where Pk = { q  S k, q prime}. The main result of 
interest here is the following lemma, taken from [8]. 
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Lemma 2.1. Let k be a positive integer. Then given any positive integer n ,  there 
exists an integer s such that n S s < n + U(Pk)  and there exists a TD(k + 2, s). 

The following lemmas are useful in establishing finite bases for the sets H" 

Lemma 2.2. Let a be a positive integer. Suppose that there exists a positive integer 
u such that u = 1 (mod a )  and that there exist both a TD(a + 1, u - 1) and a 
TD(a + 1, u).  I f  there exists a TD(u + 1, m),  then m(u - l)(a + 1) +at + 1 is 
inessential in H" for 0 s t d m. 

Proof. By adjoining an ideal point m to a TD(a + 1, u - l), and deleting any 
other point a GI>D[{a + 1, u}] of type aU- ' (u  - 1)' is formed. Similarly by 
deleting a point from a TD(a + 1, u) ,  a GDD[{a + 1, u)]  of type a'(u - 1)' is 
formed. 

Let GI, G2, . . . , G,,, denote the groups of a TD(u + 1, m ) .  Truncate GI to 
obtain a group G; of size t ,  and assign a weight a to each point of 
C ; ,  C,, . . . , G,,, and assign weight (u - 1) to each point of G,,,. Apply Wilson's 
fundamental theorem [ l l ]  to obtain a GDD[{a + 1, u}] with group type 
(am)"-'(at)'((u - 1)m)'. Adjoin a point to each group to obtain a PBD[{at + 
1, (u - 1)m + 1, am + 1, a + 1, u } ,  m(u - l)(a + 1) +at + 11. Since {at + 1, ( u  - 
1)m + 1, am + 1) c H", the result follows. 0 

Let V ( a ,  b )  = { v : v = 1 (mod a ) ,  a + 1 4 v d b ) .  

Theorem 2.3. Let a be a positive integer, and u be an integer such that u = 1 
(mod a )  and there exists a TD(a + 1, u - 1) and a TD(a + 1, u) .  Let 6 = I ! . I ( ~ , - ~ )  
and let w be an integer such that 

( i )  there exists a TD(u + 1,  w )  and 
(ii) w 3 6(u  - l)(a + l ) / a  

Then the set V ( a ,  w ( u  - l)(a + 1) - a + 1) is a finite basis for H". 

Proof. For any integer s 6(u - l)(a + l)/a, the inequality 

(s + 6)(u - l)(a + 1) + 1 s s ( u  - l)(a + 1) +as + 1 

holds. By the definition of w ,  all of the values congruent to 1 (moda)  in the 
interval [ w ( u  - l)(a + 1) + 1, w(u  - l)(a + 1) + aw + 11 are (by Lemma 2.2) in- 
essential in H". By the definition of 6, there exists an integer w I ,  satisfying 
w + 1s w, Q w + 6 such that there exists a TD(u + 1, w , )  and trivially w, 3 
6(u - l)(a + l) /a.  w,(u - l)(a + 1) - a + 1 s w(u - l)(a + 1) + 
wa + 1, all values congruent to 1 (moda)  in the interval [w(u  - l(a + 1) + 
1, w,(u - l)(a + 1) - a + 11 are inessential in H". A simple induction completes 
the proof. 0 

Hence, since 
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The following values of u(ph) are required here and are cited from [8]. 

u ( p h )  

5 6 
7 10 

11 14 
13 22 

(Note that this function increases only when k is prime.) 
The following well known result is included for the sake of completeness. 

Lemma 2.4. Let D be a pairwise balanced design on v points, whose smallest 
blocks contain s elements and which contains a block L of length 1. Then 
v 2 f(s - 1) + 1, with equality only if  there is a resolvable balanced complete block 
design ( l (s  - 1) + 1, s - 1, 1).  

Proof. Let denote any point not on L in D. Since 03 is contained in a block with 
each of the points on L, there are at least f blocks containing m, each containing 
(s - 1) points other than m. Therefore v 3 f(s - 1) + 1.  

In the case of equality, all blocks other than L must contain precisely s points, 
and the configuration determined by removing the points of 1 is a RBIBD(l(s - 
1) + 1, s - 1, 1) .  Clearly any RBIBD(l(a - 1) + 1, s - 1 ,  1) can be extended to 
such a pairwise balanced design. 0 

3. A basis for H'. 

In Section 1 ,  bases for H 2 ,  H 3 ,  and H4 were given. Unfortunately, the size of 
bases for H" which can be formed tends to increase rapidly with a,  so that the 
basis given for H 5  is considerably larger. We begin by pointing out that 
{6,11,16,21,26,36,41} is a set of essential elements in any basis for H S .  Indeed, 
by Lemma 2.4, any PBD with block sizes from the above list which contains 
blocks of more than one size must contain at least 46 points, so any inessential 
elements in the above set must correspond to PBDs which contain blocks of only 
one size. If any of these are non-trivial (that is, do not consist of a single block) 
then there must be balanced incomplete block designs. But any balanced 
incomplete block design of index one with a block size 11 or more must contain at 
least 11 1 blocks, which reduces the problem to considering BIBDs of block size 6. 
By a Lemma 2.4 in the case 1 = s, such a design must contain at least 31 points, 
and the number v of such points must satisfy v = 1 or v = 6 (mod 15). The 
projective plane of order 5 provides an example for v = 31, and it is well known 
that there is no affine plane of order 6, so that the integer 36 is essential. Since 
41 = 1 1  (mod 15), 41 is also essential. 

Since there exist both a TD(6, 15) and TD(6, 16), by Lemma 2.3, taking 
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w = 397, the set V(5,  35726) is a finite basis for Hs. This result can be greatly 
improved after the following lemmas. 

Lemma 3.1. Let m be an integer such that there exists a TD(14, m). Then 
65m + 1% + 1 is inessential in H S  for 0 S t S m. See Zhu [14]. 

Lemma 3.2. Let 21 be an integer such that v = 1 or v = 6 (mod 15) and v 2 6. Then 
v E B(6) with the possible exception of v E S ,  where S is the set of 99 values listed 
in Table 1 below. 

Table 1. 

16 
196 
316 
466 
646 
80 1 

1101 
1251 
1546 
2241 

21 
20 1 
321 
471 
65 1 
83 1 

1131 
1276 
1611 
2601 

36 46 
226 231 
336 346 
486 496 
616 706 
886 891 

1141 1156 
1396 1401 
1641 1671 
3201 3471 

51 61 81 
246 256 261 
351 376 406 
501 526 561 
711 706 741 
916 946 1011" 

1161 1176 1186 
1456 1461 1486 
1816 1821 1851 
3501 4101 4221 

141 
276 
41 1 
591 
766 

1066 
1191 
1491 

5391 
1881 

166 
286 
436 
616 
77 1 

1071 
1221 
1516 
1971 
5901 

171 
29 1 
441 
62 1 
796 

1096 
1246 
1521 
2031 

a See Corollary 3.13 1 

Proof see [14]. The values 1551, 1636, 3621, 3771, 4346, 4251 have been obtained 
by W.H. Mills (private communcation). 0 

Lemma 3.3. Let m be an integer such that there exists a TD(16, m). Then 
75m + 5t + 1 is inessential in Hi for 0 < t < m. 

Proof. Since 766 B(6), there exists a GDD[{6}] with group type 5". By 
extending the resolvable BIBD(65,5,1) to a PBD[{6,16}, 811 and deleting a 
point not on the block of size 16, a GDD [{6,16}] with group type 516 is created. 
Applying Wilson's fundamental theorem establishes the result. 0 

Lemma 3.4. If there exists a TD(19, rn), then 90m + 5t + 1 is inessential in H 5  for t 
satisfying 0 =s t s m. 

Proof. Apply Lemma 2.2 with a = 5, u = 16. 0 

Lemma 3.5. Let v be an integer such that v 5 1 (mod5) and v satisfies 
1876 S v =s 35721. I f  v does not lie in the interval 2571 S v < 2606, then v is 
inessential in H'. 
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Proof. First consider the interval 2666 6 v < 35721. By Lemma 3.2, it is sufficient 
to establish the result in this range for v = 11 (mod 15) together with v E X  = 
(3201, 3471, 3501, 4191, 4221, 5391, 5901). We first take care of values such that 
v = 11 (mod 15) using Lemma 3.1 in conjunction with appropriate m which satisfy 
m = 2 (mod 3). The results are given below. 

m 

41 
47 
53 
59 
71 
83 
89 

101 
113 
131 
149 
167 
197 
227 
269 
323 
383 
443 
449 

65m + 1 

2666 
3056 
3446 
3836 
4616 
5396 
5786 
6566 
7346 
8516 
9686 

10856 
12866 
14756 
17486 
20996 
24896 
28796 
29186 

80m + 1 

3281 
3761 
4241 
4721 
5681 
664 1 
7121 
808 1 
904 1 

10481 
11921 
13361 
15761 
18161 
21521 
25841 
3064 1 
35441 
35921 

Now if m = 1 (mod 3) in Lemma 3.1, then 65m + 15t + 1 1 6  (mod 15), so that 
the values of LJ in X are treated as follows. 

m 65m+1 80m+1 

49 3186 3921 
61 3966 4880 
79 5136 6321 

The remaining values, apart from Y satisfying 2006 6 v 6 2021, are dealt with by 
Lemmas 3.3 and 3.4 as below. 

Lemma 3.3 Lemma 3.4 

m 75m+1 80m+1 m 90m+1 95m+1 

25 1876 2001 23 2071 2186 
27 2026 2161 27 2431 2566 
29 2176 2321 29 2611 2756 
31 2326 2481 



223 Finite bases for some PBD-closed sets 

In the interval 2006 S u S 2021, we need only consider 2006 and 2021 in view of 
Lemma 3.2. but 2006 = 29.65 + 8.15 + 1 and 2021 = 29.65 + 9.15 + 1. This com- 
pletes the lemma. 0 

Lemma 3.6. Suppose that there exists a PBD[H5, v] which contains a pat of order 
f and a TD(6, u - f + a )  - TD(6, a), where 0 s a G f .  Then w = 6v - 5f + 5a is 
inessential in H5, and there exists a PBD[H5, w] which contains a flat of order 
f +5a. 

Proof. The proof is analogous to that of construction 4.1 in [5]. 0 

For convenience, we record the well-known observation below. 

Lemma 3.7. Zf there is a resolvable BIBD with block size 5 and r resolution 
classes, then there exists a PBD[{6, r } ,  5r + 11. 

Lemma 3.8. Suppose that a ,  t, and m are integers satisfying O G t s m  and 
O S a  S m .  Zf there exist a TD(8, m) and a TD(6, t ) ,  then there exists a 
TD(6, 7m + t + a )  - TD(6, a). 

Proof. See Wilson [12]. 0 

For the existence of RBIBD(v, 5,  l),  see [4]. As authority for the existence of 
a TD(k, m), we use [2] unless otherwise indicated. 

Lemma 3.9. Zf u is any integer such that u = 1 (mod 5) and u satisfies 2571 s u 6 

2606, then v is inessential in H’. 

Proof. Since there exists a TD(6,76), then there exists a PBD[{6,76}, 4561 with 
a flat of order 76. Also, since 380 + a = 7.53 + 9 + a, there exists a TD(6,380 + 
a )  - TD(6, a )  for 0 S a S 53. Hence the values of u such that u = 1 (mod 5) which 
satisfy 2356 S u S 2621 are inessential in H5 by Lemma 3.6. 0 

As the result of the above lemmas, note that if v 3 1876, then u is inessential 
in H5. 

Lemma 3.10. Suppose that there exists a TD(26, m). 
(i) If m = 0 (mod 5), then 26m + 5t + 1 is inessential in H5, for 0 s t s m. 

(ii) Zf  m = 1 (mod 5) ,  then 26m + 5t is inessential in H5 for 0 6 t s m. 

Proof. There exists a trivial GDD[{26}] with group type 126. Also, since 
31 E B ( ~ ) ,  there exists a GDD[{6}], with group type 25’6l. If there exists a 
TD(26, m), then by Wilson’s fundamental construction [l l] ,  there exists a 
GDD[{6,26}] with group type m”(m +5t)’. To obtain the result, if m = 1 
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(mod 5), use the GDD as a PBD. If v = 0  (mod 5), then adjoin a new point to 
each group to obtain the rkquired PBD. 0 

Lemma 3.11. Let v be any integer such that v = 1 (mod 5) and v satisfies v a 1001. 
Then v is inessential in H'. 

Proof. First use Lemma 3.6 to cover the following intervals. 

PBD with flat flat incomplete TD maxa 

176( = 11 x 17) 11 165 + a  = 11.15 + a  11 
181( E B(6)) 6 175 + a = 7.25 + a 6 

Now apply Lemma 3.10 
m 26m 31m 

41 1066 1271 
Again apply Lemma 3.6 

interval 

1001-1056 
1056- 1086 

PBD with flat flat incomplete TD maxa interval 

241( = 6.40 + 1) 41 200 + a = 7.27 + 11 + u 27 1241-1376 
246( = 6.41) 41 205 + u =7.27 + 16 + u 27 1271-1406 
271( = 6.45 + 1) 46 225 + u = 7.32 + 1 + u 32 1396-1556 
276( = 6.46) 46 230 + u = 7.31 + 13 + u 31 1426-1581 

Now apply Lemma 3.10 again 

m 26m 31m 

61 1586 1891 

These cover all required values in the interval 1 0 0 1 S v ~ 1 8 9 1 .  This, together 
with the fact that the result is true for v 2 1876, establishes the lemma. 0 

Lemma 3.12. Let v be any integer such that v = 1 (mod 5) and v satisfies 
516 s v 4 996 and v does not lie in the intervals 591 6 v c 596 or 966 v s 996. 
Then v is inessential in H'. 

Proof. Note that there exists a BIBD(601,6,1). Now apply Lemma 3.6 as below. 

PBD with flat flat incomplete TD max a interval 

91 ( E B ( 6 ) )  6 8 5 + a = 7 . 1 1 + 8 + a  6 516-546 
106 (RBIBD(85,5,1)) 21 85 + u = 7.11 + 8 + u 11 531-586 
106 ( E B ( 6 ) )  6 100 + u = 7.13 + 9 + u 6 606-636 
111 ( E B(6)) 6 105+a=7.15+a  6 636-666 
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Now use Lemma 3.10 
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m 26m+1 31m+1 

25 651 776 

Now again use Lemma 3.6. 

PBD with flat flat incomplete TD max a interval 

156(RBIBD( 125,5,1)) 31 125 + a = 7.16 + 13 + a 16 781-861 

Now again apply Lemma 3.10. 

m 26m 31m 

31 806 961 

This completes the Lemma. 0 

Lemma 3.13. There exists a TD(6,28) - TD(6,3) and a TD(6,29) - TD(6,4). 

Proof. These are constructed by the matrix-minus diagonal method of Wilson 
[13]. The following arrays lie in GF(25) as generated by x2 + 3 = 0. 0 

TD(6,28) - TD(6,3) 

- 0 1 2 3 x + 2  4 x + 4  
0 - 1 x + 3  3 x + 4  2 x + 4  
0 1 -. 2 x + 3  4 x + 1  
0 2 4 - 4 x + 3  x + 4  

4 3 2 3 x + 3  - 0 
4 X 3 3 x + 2  - 0 

0 x 3x+1 2x 2 4 x + 3  
0 x + 2  4x+1 3 x + 2  2 x + 1  2 x + 2  
0 2x x + 2  3 x + 1  4 x + 3  
0 3 x + 1  4 x + 3  2x+1  4 x + 1  3 x + 4  

TD(6,29) - TD(6,4) 

- 0 1 2 3 4 
0 -  1 3 x + l  2 x + l  
0 1 - x + 3  3 x + 4  2x 
0 2 X - 2 x + 3  x + l  
0 x x + 2  3 x + 2  - 2 x + 2  
0 x + 2  2 3 x + 1  2x - 
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Corollary 3.13.1. There exists a PBD[{6,21}, 1711 and a PBD[{6,26}, 1761 which 
contains a unique block of size 26. Therefore 171 and 176 are inessential in H5. 
Further there exists a BIBD(1011,5,1). 

Proof. To obtain the pairwise balanced designs in the enunication, apply Lemma 
3.6 to the BIBD(31,6,1) using a block of size 6 used as a flat. 

Note that one can apply Lemma 3.6 to the PBD[{6,26}, 1761 above, using the 
block of size 26 as a flat. Using the value a = 17, noting that 167 = 7.19 + 17 + 17, 
yields a PBD [{6, l l l } ,  10111 which contains a unique block of size 111, which 
can be “replaced” by a BIBD(111,6,1) to yield a BIBD(1011,6,1). 0 

Lemma 3.14. Suppose that v is any integer such that v = 1 (mod 5) and v satisfies 
v 3 516. I f  v $ (591, 596}, then v is inessential in H 5 .  

Proof. In view of Lemmas 3.11 and 3.12, it is sufficient to treat the interval 
9666 v 6 996. This is dealt with using Lemma 3.6 and Corollary 3.13.1 and the 
following table. 

PBD with flat flat incomplete TD maxa interval 

176 26 150 + a = 17.19 + 17 + a 19 926-1021 

This establishes the result. 

We are now in a position to prove the main result of this section. 

Table 2. A basis for H5. 

6 11 16 21 26 36 41 46 51 56 
61 71 86 101 116 131 141 146 161 166 

191 196 201 206 221 226 231 236 251 261 
266 281 286 291 296 311 316 321 326 351 
356 316 386 401 416 436 441 446 476 491 
591 596 

Theorem 3.15. The 52 values in Table 2 above are a basis for H S .  

Proof. In view of the above, we need only consider v 6 511. After eliminating 
those values in B(6), the set of values (81, 171, 176, 246, 256, 276, 336, 341, 346, 
371, 406, 411, 431, 461, 466, 471, 486, 496, 501, 506) remain. These are treated 
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below. (In all applications of Lemma 3.6, the 
Incomplete Transversal Design is immediate.) 

81 = 65 + 16 RBIBD(65,51) 
171 Corollary 3.13.1 
176 Corollary 3.13.1 
246 = 6.41 
256 = 16* 
276 = 11.25 + 1 
336 = 6.56 
341 = 6.55 + 11 
346 = 6.55 + 16 
371 = 6.60 + 11 
406 = 325 + 81 
411 = 6.65 + 21 
431 = 6.70 + 11 
461 = 6.75 + 11 
466 = 6.75 + 16 
471 = 6.75 + 21 
486 = 6.81 
496 = 16.31 
501 = 6.80 + 21 
506 = 405 + 101 

(Lemma 3.6, f = 11) 
(Lemma 3.6, f = 11) 
(Lemma 3.6, f = 6) 

(Lemma 3.6, f = 16) 
(Lemma 3.6, f = 6) 
(Lemma 3.6, f = 6) 
(Lemma 3.6, f = 16) 
(Lemma 3.6, f = 16) 

(Lemma 3.6, f = 16) 

Thus all required cases are covered. 0 

existence of the required 

(66=6.11) 
(66 = 6.11) 
66 E B(6) 
3 RBIBD(325,5,1) 
81 = 65 + 16(RBIBD) 

81 = 65 + 16(RBIBD) 
91 = 6.15 + 1 
91 = 6.15 + 1 

96 = 6.16 
3 RBIBD(405,5,1) 

4. A basis for H6 

Since there exist both a TD(7, 12) and TD(7,13), and since U(P, , )  = 14, the 
following lemma is immediate from Lemma 2.3 (using w = 197). 

Lemma 4.1. The set V(7, 16543) is u basis for Hh.  

To improve upon this result, we note the following. 

Lemma 4.2. I f  m safisfies 
(i) m = 1 (mod 6), and 

(ii) there exists u TD(43, m),  
then 43m + 6t is inessential in H h  for 0 =s t S m. 

Proof. There exists a BIBD (49,7, 1). Considering this, the proof is analogous to 
that of Lemma 3.10. 0 
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Lemma 4.3. Suppose that there exists a PBD[Hh, v ]  which contains a flat of order 
f ,  and there exists a TD(6, v - f + a )  - TD(6, a ) ,  where 0s a s f .  Then w = 

7v - 6f + 6a is inessential in H6. 

Proof. The proof is that of Theorem 3.6, mutatis mutandis. 0 

The following theorems are direct analogues of Lemmas 3.7 and 3.8 
respectively. 

Lemma 4.4. If there exists a resolvable BIBD with block size 6 and r resolution 
classes, then there exists a PBD[{7, r } ,  6r + 11 which contains a unique flat of 
order r. 

Lemma 4.5. Suppose that a,  1, and m are integers satisfying 0 ~ t  ~m and 
0 s  a s m .  I f  there exists a TD(8, m )  and a TD(7, t ) ,  then there exists a 
TD(7, 7m + t + a )  - TD(7, a ) .  

Lemma 4.6. Suppose there exists a TD(k, s), a TD(k, s + l), a TD(k, s + 2), a 
TD(k + t  + 1, m) and a TD(k, s + t + u )  where u E (0, I}. Then there exists a 
TD(k, ms + t + a )  - TD(k, a )  for 0 s a S m - 1 + u. (cf. Zhu [14]). 

Proof. This follows from Wilson's constructions [12]. 0 

Corollary 4.6.1. If there exists a TD(8+t, m) and a TD(7, 7 + t  + u )  where 
u E (0, l}, then there exists a TD(7, 7m + t + a )  - TD(7, a ) ,  for 0 S a s m - 1 + 
U.  

Lemma 4.1. Let m be an integer such that there exists a TD(14, m), Then 
84m + 6t + 1 is inessential in H6. 

Proof. Take a = 6 and u = 13 in Lemma 2.2. 0 

Lemma 4.8. lf v satisfies v = 1 (mod 6) and v 2 1849, then v is inessential in H6. 

Proof. Consider the following intervals. 

m 43m 49m Lemma 4.2 

43 1849 2107 
49 2107 2401 
m 84m+1 90m+1 Lemma4.7 

27 2269 243 1 
29 2437 2611 
31 2605 2791 
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m 43m 49m Lemma 4.2 

61 2623 2989 
67 2881 3283 
73 3139 3577 
79 3397 3871 

Now apply Lemma 4.3. 

PBD with flat flat incomplete TD 

85 595 = 7.85 

Now return to Lemmas 4.2 and 4.7. 

510 = 7.71 + 13 + a 

maxa interval 

71 3655-4081 

m 

47 

m 

97 
109 
121 
127 
139 
151 
163 
181 
199 
223 
24 1 
27 1 
307 
343 

84+ 1 

3949 

43m 

4171 
4687 
5203 
5461 
5977 
6493 
7009 
7783 
8557 
9589 

10363 
11653 
13201 
14749 

90m + 1 Lemma 4.7 

423 1 

49m Lemma 4.2 

4753 
5341 
5929 
6223 
6811 
7399 
7987 
8869 
9751 

10927 
11809 
13279 
15043 
16807 

This establishes the lemma. u r l  

Lemma 4.9. If there exists a TD(8, m), then 48m + 1 E B((7,  6m + l}]. 

Proof. Since 4 9 ~ B ( 7 ) ,  there exists a GDD[{7}] of group type 6*. Apply 
Wilson’s fundamental theorem [ll].  

Lemma 4.10. Suppose that u satisfies v = 1 (mod 6) and u 3 1075. Then v is 
inessential in H6  with the possible exception of u E { 1231, 1237, 1243, 1249, 1255, 
1315, 1321, 1327, 1543,1549, 1567,1579,1585, 1783, 1789, 1795,1801,1819,1831}. 
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Proof. We begin with Lemma 4.3. 

PBD with flat 

175 = 7.25 
175 = 7.25 
187(RBIBD(156,6,1)) 

217 = 7.31 

Use Lemma 4.7. 

m 84m+1 

17 1429 

Again, use Lemma 4.3. 

PBD with flat 

259 = 7.37 

flat incomplete TD 

25 1 5 0 + a = 7 . 1 9 + 1 7 + ~  
7 
7 

31 

168 + a  = 7.23 + 7 + a 
180+a = 7.25 + 5 + a  
(Corollary 4.6.1, u = 1) 
186 + a  = 7.25 + 11 + a  

90m + 1 

1531 

flat incomplete TD 

37 222 + a = 7.31 + 5 + a 
(Corollary 4.6.1, u = 1) 

max a 

19 
7 
7 

25 

interval 

1075-1 189 
1 183- 1225 
1267-1309 

1333-1483 

max a interval 

31 1591-1777 

The above intervals cover all cases except for the appropriate v in the intervals 
listed below. 

1231 s v s 1261 
1315 s v 6 1327 
1537 s u 6 1585 
1783 s v =s 1843 

All but one of the remaining cases, namely 1837, are covered in the following. 

List of equations 

1261 = 13.97 
1537 = 48.32 + 1 
1555 = 7.222 + 1 
1561 = 7.223 
1573 = 13.121 
1807 = 13.139 
1813 = 7.259 
1825 = 25.73 
1843 = 19.97 

(Lemma 4.9) 

The remaining case, v = 1837, can be disposed of as follows. We apply a more 
general form of the indirect product (see [5 ] ) .  Note that since there exists a 
TD(7,12), there exists a PBD[{7,13}, 851 with a flat of order 13. Also there 
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exists a TD(25,73) - TD(25.1). Since 1837 = 25(85 - 12) + 12, it is inessential 
in H6. 0 

Lemma 4.11. Let v be any integer such that v = l  (mod6) which sathfies 
505 S v =S 1069. Then v is inessential in H6  with the possible exception of v in the 
intervals 643 =S v d 667, 727 S v S 751, or v E (685, 691, 697, 709, 781, 787, 811, 
1063, 1069). 

Proof. We begin by using Lemma 4.3. 

PBD with flat flat incomplete TD max a interval 

85=7.12+ 1 13 7 2 + a = 7 . 9 + 9 + ~  9 517-571 
91 = 7.13 13 78 + a = 7.11 + 1 + a 11 559-625 
91 = 7.13 7 8 4 + a = 7 . l l + l l + a  7 595-637 

133 = 7.19 19 1 1 4 + a = 7 . 1 6 + 2 + ~  15 817-907 
(Corollary 4.6.1, u = 0) 

151 = 126 + 25(RBIBD) 25 126 + a = 7.17 + 7 + a 17 907-1009 
151 = 126 + 25(RBIBD) 7 144 + Q = 7.19 + 11 + u 17 1015-1057 

This covers all possibilities except those in the intervals listed below. 

505 S v 6 511 
643 6 v d 811 

1063 c v s 1069 

The remaining cases are treated below. 

505 = 7.72 + 1 
511 = 7.73 
673 = 7.96 + 1 
679 = 7.97 
703 = 19.37 
715 = 7.102 + 1 
721 = 7.103 

757 = 7.108 + 1 
763 = 7.109 
769 = 48.16 + 1 
775 = 25.31 
793 = 13.61 
799 = 7.114 + 1 
805 = 7.115 

(Lemma 4.9) 

These equations establish the lemma. 0 

Lemma 4.12. The values of v E (49, 85, 91, 133, 151, 169, 175, 187, 217, 247, 
259, 301, 325, 337, 343, 385, 403, 427, 433, 463, 469, 475, 481) are inessential 
in H6.  



232 R.C. Mullin 

Proof, Consider the following. 

49 E B(7) (AG(2,7)) 
85=7.12+1 
91 = 7.13 

133 = 7.19 
151 = 126 + 25 (RBIBD) 
169 = 13' 
175 = 7.25 
187 = 156 + 31 (RBIBD) 
217 = 7.31 
247 = 13.19 
259 = 7.37 
301 = 7.43 

325 = 13.25 
337 = 48.7 + 1 (Lemma 4.9) 
343 = 7.49 
385 = 48.8 + 1 (Lemma 4.9) 
403 = 13.31 
427 = 7.61 
433 = 48.9 + 1 (Lemma 4.9) 
463 = 7.66 + 1 
469 = 7.67 
475 = 19.25 
481 = 13.37 

These conditions establish the lemma. 0 

The foregoing can be summarized as follows. 

Theorem 4.13. The 98 values given in Table 3 are a basis Hh.  

Table 3. 

7 13 19 
73 79 97 

157 163 181 
241 253 265 
319 331 349 
409 41.5 421 
643 649 655 
733 739 745 

1237 1243 1249 
1579 1585 1783 

__ 

25 
103 
193 
271 
355 
439 
661 
75 1 

1255 
I789 

31 
109 
199 
277 
361 
445 
667 
781 

1315 
1795 

37 
1 I5 
205 
283 
367 
45 1 
685 
787 

1321 
1801 

- 
43 

121 
21 1 
289 
373 
457 
69 1 
81 I 

1327 
1819 

55 
127 
223 
295 
379 
487 
697 

1063 
1543 
183 I 

- 
61 

139 
229 
307 
39 I 
493 
709 

1069 
1549 

67 
145 
235 
313 
397 
499 
727 

1231 
IS67 

5. A basis for H' 

In this section, we find a basis for H7 which has fewer elements than that found 
for H6. This is because both 7 and 8 are prime powers. The importance of this 
fact becomes apparent in Lemma 5.1. 

Lemma 5.1. The set V(7, 4530) is a basis for H 7 .  

Proof. Apply Lemma 2.3 with a = 7, u = 8, w = 81. 0 

The following lemmas are useful in improving this result. 
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Lemma 5.2. Suppose that there exists a PBD[H7, v] which contains a flat of size f .  
Zf there exists a TD(8, v - f + a )  where a E (0, l}, then 8v - 7f + 7a is inessential 
in H’. 

Proof. Again this is a special case of the indirect product (see [5 ] ) .  

Lemma 5.3. Zf there exists a TD(8, m) where m = 0 or 1 (mod 7), m > 1, then 
8m + 1 or 8m respectively is inessential in H 7 .  

Proof. Immediate. Cl 

Lemma 5.4. Z f  there exists a resolvable BIBD(v, 8,  1 )  with r resolution classes, 
then 7v + 7t + 1 is inessential in H’ for 0 6 t s r. 

Proof. Since (57, 64) c B ( 8 ) ,  there exist group divisible designs GDD[{8}] of 
group types 7’ and 79 respectively. 

Adjoin t new points to obtain a PBD[{8,9, t } ,  v + t ] ,  and form a group 
divisible design GDD[{8,9}] of type 1 2 ’  by taking as groups the block of size t 
and the remaining points as groups of size 1. Apply Wilson’s fundamental 
construction [ 111. 0 

Lemma 5.5. I f  there exists a TD(9, m), then 56m + 7t + 1 is inessential in H7 for 
O s t s m .  

Prrof. Apply Lemma 2.2 with a = 7 and u = 8. 

Lemma 5.6. Let m be an integer satisfying 1 s m s 43, where m = 1 (mod 7). 
Then 57m is inessential in H 7 .  

Proof. See [3], Theorem 3.8. 0 

Lemma 5.7. Suppose that v is any integer satisfying v = 1 (mod 7) and v 2 449. 
Then v is inessential in H7 with the possible exception of v in the intervals 
575 < v s 610, 701 s v s 722, 827 s v d 834, 1205 v s 1226, 1261 s v s 1282, 
2031 s v s 2045 or v = 2066. 

Proof. Begin by applying Lemma 5.5 

m 56m+1 63m+1 

8 449 505 
9 SO5 568 

11 617 694 
13 729 820 
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Now use Lemma 5.4 and the fact that there exists an RBIBD(120,8,1) to cover 
the following interval. 

841 s v s 960. 

Continue with Lemma 5.5. 

m 56m+1 63m+1 

17 
19 
23 
25 
27 
29 
32 
37 
41 
43 
47 
53 
59 
61 
67 
73 

953 
1065 
1289 
1401 
1513 
1625 
1793 
2073 
2297 
2409 
2633 
2969 
3305 
3417 
3753 
4089 

1072 
1198 
1450 
1576 
1702 
1828 
2017 
2332 
2584 
2710 
2962 
3340 
3718 
3844 
4222 
4600 

These cover all required v except for v in the intervals below. 

575 6 u e 610 
701 c v s 722 
827 s v c 834 

1205 6 v s 1282 
2024 S v 6 2066 

For the remaining cases, note the following equations. 

1233 = 8.154 + 1 
1240 = 8.155 
1247 = 29.43 
1254 = 22.57 (Lemma 5.6) 
2024 = 8.253 
2052 = 36.57 (Lemma 5.6) 
2059 = 29.71 

This completes the proof. 0 

Lemma 5.8. The elements (57, 64, 120, 232, 288, 344, 393, 400, 407, 435, 449} 
are inessential in H’. 
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Proof. Consider the following. 

57 E B(8) PG(2,7) 
64 E B(X) AG(2, 8) 

120 E B(8)  

288 E B(8) (See [I]) 
232 = 8.29 

344 E B(8) 
393 = 8.49 + 1 
400 E B(8)  
407 = 8.50 + 7 
435 = 15.29 
449 = 8.56 + 1 

73 + 1 (See [7])  

Lines in PG(3,7) 
(Lemma 5.2) 

This completes the lemma. 0 

As a result of the above, we have the following. 

Theorem 5.9. The 77 values given in Table 4 are a basis for H7.  

Table 4. A basis for H7 

8 
92 

169 
246 
323 
42 1 
708 

1268 

15 
99 

176 
253 
330 
428 
715 

1275 
- 

22 
106 
183 
260 
337 
442 
722 

1282 
- 

29 
113 
190 
267 
351 
575 
827 

2031 

36 
127 
197 
274 
358 
582 
834 

2038 

43 
134 
204 
2x 1 
365 
5x9 

1205 
2045 
__ 

50 71 78 
141 148 155 
211 218 225 
295 302 309 
372 379 386 
596 603 610 

1212 1219 1226 
2066 

85 
162 
239 
316 
414 
70 1 

1261 
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ON THE CONSTRUCTIVE ENUMERATION OF PACKINGS 
AND COVERINGS OF INDEX ONE 

A.J. PETRENJUK 
Department of Higher Mathemutkr, Kirovograd College of Civil Aviation, Kirovograd, 
U. S .  S .  R.  

0. Introduction 

We discuss two methods of constructive enumeration of packings. Their 
common feature is that they both use certain systems of linear equations and 
inequalities whose integer solutions are interpreted as packings. The paper also 
describes results obtained by applying these methods. 

Denote by Z +  the set of nonnegative integers. Put I ( n )  = { 1, 2, . . . , n } .  

1. Main definitions and the formulation of the problem 

Let E be a finite set, IEl = v, and let A, 1, k be integers, 1 < l < k <  v. A 
collection 3 of k-subsets (k-blocks) of E is called a (A, 1, k, v)-packing [ l ,  31 if 
every 1-subset of E is contained in at most A blocks of 3. The number of 
nonisomorphic (A, 1, k, v)-packings consisting of 1 blocks is denoted by 
N,(A, I, k, v). When A = 1, we have a packing of index one. 

Denote by P,(A, I, k, v )  the set of all (A, I, k, v)-packings consisting o f t  blocks, 
by c ( A ,  1, k, v) the set of representatives of isomorphism classes in Pf(A, 1, k,  v), 
one representative from each class. Clearly, N,(A, 1, k, v )  = IFf(& 1, k, v)l. 

A (A, 1, k, v)-packing consisting of m blocks is maximum if there exists no 
(A, I ,  k, v)-packing consisting of m + 1 blocks. In such a case, we define 
D(A, I, k, v )  = m. 

We are interested in the following: (1) values of D(A, 1, k, v), (2) values of 
Nt(A, 1, k, v), and (3) construction of the lists c(A, 1, k, v). 

It was shown in [3] that 

and 

. [ v - l + 2 [ v - l + 1 ] ] . . . ] ] ]  
k - 1 + 2  k - 1 + 1  

where [ x ]  denotes the greatest integer not exceeding x .  

0012-365X/89/$3.50 @ 1989, Elsevier Science Publishers B.V. (North-Holland) 
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t 

In [5] (see also [12]) the following formula was obtained: 

1 2 3  4 5 6 7 8 9 1 0 1 1 1 2  

N,(l, 3, 5, 11) 1 3 7 15 29 32 15 3 1 1 1 0 

2. Adding a block 

Consider a (1, 1, k, v)-packing 9 = { B,, . . . , B,,,}. Define an equivalence - 
on E as follows: x - y  ( x ,  y E E) if and only if for every block Bi, i E Z(m), either 
{ x ,  y }  E B,, or both x # Bi, y B,. This equivalence is called inseparability, and its 
classes are components of inseparability. 

12345 12678 34679 

For example, it is easily seen that the (1,3,5,11)-packing 

induces inseparability of elements with components XI = { 1, 2}, X, = (3, 4}, 

For convenience, let X,, always denote that (possibly empty) component of 
inseparability whose elements are not used in the packing. 

Further, let a (1, I ,  k, v)-packing 9 induce on E the inseparability of elements 
with components X , ,  X,, . . . , X,,, and let a new block, B, contain exactly 
ti = t ( X j )  elements of Xi ,  j E Z(n). 

X,= { 5 } ,  Xq= {6,7}, Xg= (8))  X,= {9}, X,= {lo, 11). 
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Necessary and sufficient conditions for the collection 9 = {B, B , ,  . . . , B,} to 
be a (1, 1, k, v)-packing are 

n 2 t ( X j )  = k 
j =  1 

In what follows we assume E = I(v) .  
A solution ( t f “ ,  ti‘’), . . . , tio)) of the system (2.1), (2.2), for which ti(())€ Z +  for 

all j E I (n) ,  will be called a Z+-solution. To every Z+-solution (ti’), . . . , t!?) of 
(2.1), (2.2) assign a k-block Bo, Bo E E, containing exactly f)(” elements of X, for all 
j E I(n), and moreover, these elements are the smallest in the linear order on E. 
It is easy to see that a packing {B, B 1 ,  . . . , B,} constructed without this order 
condition is isomorphic to the packing { B o ,  B,, . . . , Bm}. The latter will be 
called canonical. 

Clearly, the system (2.1)) (2.2) will have no Z+-solution if and only if the initial 
packing 9 is maximal. 

Consider the set pm(l,  I, k, v). For every packing in F,(l, I, k, v), let us write 
down the system (2.1), (2.2), find all its Z+-solutions, and construct, for every 
Z+-solution, the canonical packing. As a result we obtain a list of packings of size 
m + 1 in which clearly every isomorphism class of Pm+,(l ,  1, k, v) is represented 
by at least one representative. Thus if we perform isomorph rejection and delete 
from this list all duplicates, we obtain the set pm+l( l ,  I, k, v). 

Starting with the trivially obtained list P,(l, I, k, v), we can construct recur- 
sively all lists &(l, I, k, v) for every m E ( D ) ,  D = D(1,  1, k, v). 

The advantage of this method is in that elimination of all packings correspond- 
ing to the 2+-solution of the system (2.1), (2.2), except for the canonical one, 
makes it possible to obtain lists that are not too extensive, especially during initial 
stages, i.e. for small m. In subsequent stages, when the initial packing contains 
many blocks, the same effect is achieved due to “tightness”. We believe that 
these circumstances justify calling our construction method economical. 

Note that the system (2.1), (2.2) does not take into account at all the fact that 
B , ,  . . , , Bn are k-blocks. Therefore out method is applicable to more general 
packings, when the block size is allowed to vary. 

3. Description of invariants 

Below we describe invariants which are used to distinguish and identify 

The element repetition (ER) count in the packing 9 = { B , ,  . . . , B,} is the 
packings. 
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where pi is the number of elements in E which belong to exactly i blocks of 93. 
Evidently, C pi = 21. 

The IZ-index of a block B, in the packing 9 is the vector 

n ( B , )  = (40. 4 1 ,  . . 

where qo( is the number of elements in B, belonging to exactly N blocks of 93. ITlis 
a local characteristic of a block, invariant under any isomorphism of packings. 
Clearly, C qa = k. 

The element repetition count by blocks (ERB) in 3 is given by the table 

where n,(u E I (Y ) )  is the number of those blocks B in 93 for which IZ (B)  = 
(qjr"), 4 p ) ,  . . .). Evidently, C nu = m. 

The index of intersections of a block B in 3 is the vector 

II(B) =(no, n , ,  . . .) 

where n, is the number of blocks in 3 which have exactly s common elements 
with B. The table of block intersections in 93 is of the form 

TI( 3) = 

nb' ) 

np' 
. . .  

where h, denotes the number of blocks B in 3 for which II(B) = (n[:), n(,'), . . .). 
It follows from the definition that C h, = m. 

It is easy to see that ER,  ERB and TI are isomorphism invariants not only of 
packings but of arbitrary block collections. 

The triple block intersection count (TBI) of a packing 93 is the vector 

where gi is the number of those triples of blocks in 9 which have exactly i 
common elements. By analogy we may define quadruple, quintuple etc. block 
intersection counts. 
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For example, the (1,3,5,11)-packing 
12345 12678 34679 136AB 279AB 

has ER = (0 ,2 ,4 ,5 ,0 ,0 ,0) ,  

( 0 0 2 3 0  2 
0 0 3 2 0  1 
0 1 0 4 0  1 

ERB = 

1 0 1 1 3 0  1 

, T I =  

24 1 

(3.1) 

TBI = ( 5 , 5 , 0 ) .  0”:; :I. 
The described invariants are used mainly to distinguish nonisomorphic pack- 

ings. But the information obtained in the process of their construction, namely 
the correspondences “blocks - I-I-indices” and “blocks - indices of intersections” 
are used to construct some invariants for identification of isomorphic packings. 

For identification we use Venn-like diagrams or their collections. For example, 
the packing (3.1) yields a diagram presented in Fig. 1. Represent the two blocks 
with IZ-index (O,O,  2 ,3 ,0)  in the form of a Greek letter A, then “hang on them” 
the block with IZ-index (0 ,1 ,1 ,3 ,0) .  Elements of the block with IZ= 
(0, 1, 0, 4, 0) are circled, the elements of the last block are printed in bold type. 

The values of the invariants EK, ERB and TI for the (1,3,5,11)-packing 

12345 12678 34679 136AB 478AB (3.2) 
coincide with the respective values for the packing (3.1)- Are these two packings 
isomorphic? 

Let us construct f o r  the packing (3.2) a diagram (Fig. 2) similar to Fig. 1. It is 
easy to see that there exist only two permutations on Z(ll), namely a, = 

(13)(24)(89) and a2 = (13)(24)(89)(AB) which superimpose Fig. 1 on  Fig. 2. A 
direct verification shows that they both realize an isomorphism between (3.1) and 
(3.2). This illustrates how we identify packings. 

@ 8 
Fig. 1. Fig. 2 .  

The diagrams described above are subinvariants, i.e. invariants which make 
sense for designs with equal values of other (basic) invariants, in this case of the 
invariant ERB. One often needs to use subinvariants which are collections of 
similar diagrams. 
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2 

Fig. 3. 

Note that similar invariants were used for distinguishing and identification of 
1-factorizations [8,9]. 

We give an example of finding automorphism groups (which, incidentally, were 
used with success to identify completions of packings) with the help of such 
diagrams. To the packing 6-5 (see the list below) corresponds the value 

One of possible subinvariants for this packing has the value given in Fig. 3. Only 
two permutations, the identity and (lB)(2A)(37)(59) map this collection of 
diagrams into itself. It is verified directly that they constitute the automorphism 
group of the packing 6-5. 

4. Results on the enumeration of (1,3,5,1l)-packings 

A computer program implementation of the method presented in Section 2 
enabled us to carry out a complete enumeration of the (1,3,5,1l)-packings. The 
results are presented below. 

The list P, (1,3,5,11) 
1-1. 

2-1. 
2-2. 
2-3. 

3-1. 
3-2. 
3-3. 
3-4. 
3-5. 
3-6. 
3-7. 

12345 

12345 
12345 
12345 

12345 
12345 
12345 
12345 
12345 
12345 
12345 

The list (1,3,5,11) 
6789A 
16789 
12678 

16789 12678 
16789 126AB 
16789 2367A 
16789 236AB 
12678 1369A 
12678 34679 
12678 129AB 

The list P3 (1,3,5,  11) 
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4-1. 
4-2. 
4-3. 
4-4. 
4-5. 
4-6. 
4-7. 
4-8. 
4-9. 

4-10. 
4-11. 
4-12. 
4-13. 
4-14. 
4-15. 

5-1. 
5-2. 
5-3. 
5-4. 
5-5 * 
5-6. 
5-7. 
5-8. 
5-9. 

5-10. 
5-11. 
5-12. 
5-13. 
5-14. 
5-15. 
5-16. 
5-17. 
5-18. 
5-19. 
5-20. 
5-21. 
5-22. 
5-23. 
5-24. 
5-25. 
5-26. 

12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 

12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 

6789A 
6789A 
16789 
12678 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
12678 
12678 

16789 
16789 
16789 
6789A 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
1678') 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
6789A 
12678 
12678 
1267 8 

The list p4 (1,3,5,11) 
1267B 3489B 
1267B 3468B 
126AB 378AB 
1369A 3467B 
2367A 468AB 
2367A 4568A 
2367A 45678 
2367A 24688 
126AB 3467A 
2367A 489AB 
236AB 457AB 
126AB 3478A 
2367A 4589A 
34679 1569A 
1369A 1479B 

The list P5 (1,3,5, 11) 
126AB 347AB 589AB 
126AB 347AB 2589A 
2367A 248AB 569AB 
1267B 3489B 356AB 
236AB 457AB 2489A 
2367A 2489A 45678 
2367A 4567B 4589A 
126AB 3478A 3569A 
2367A 2489A 4.5688 
2367A 4589A 146AB 
2367A 24688 4589A 
2367A 248AB 4567B 
2367A 248AB 2569B 
126AB 347AB 2389A 
2367A 2489A 568AB 
126AB 347AB 3568A 
126AB 347AB 2578A 
2367A 2468B 156AB 
2367A 2489A 2568B 
2367A 2468B 4578A 
2367A 2489A 146AB 
2367A 2468B 147AB 
1267B 1389B 45688 
1369A 1479B 158AB 
34679 136AB 4568A 
34679 136AB 247AB 
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5-27. 12345 12678 
5-27. 12345 12678 
5-28. 12345 16789 
5-29. 12345 16789 

6-1. 
6-2. 
6-3. 
6-4. 
6-5. 
6-6. 
6-7. 
6-8. 
6-9. 

6- 10. 
6-11. 
6-12. 
6-13. 
6-14. 
6-15. 
6-16. 
6-17. 
6-18. 
6-19. 
6-20. 
6-21. 
6-22. 
6-23. 
6-24. 
6-25. 
6-26. 
6-27. 
6-28. 
6-29. 
6-30. 
6-31. 
6-32. 

12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 

16789 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
16789 
6789A 
12678 
12678 
12678 
12678 
16789 
16789 
16789 
16789 
16789 
16789 

7-1. 12345 16789 
7-2. 12345 16789 
7-3. 12345 16789 
7-4. 12345 16789 
7-5. 12345 16789 
7-6. 12345 16789 

34679 1389A 4568A 
34679 1389A 4568A 
126AB 3478A 35798 
126AB 347AB 3589A 

The list P6 (1,3,5, 11) 
2367A 148AB 259AB 4567B 
2367A 2489A 34688 159AB 
126AB 3478A 25798 3568B 
126AB 2378A 34798 458AB 
126AB 2378A 479AB 3568B 
2367A 2489A 568AB 3479B 
2367A 248AB 4567B 359AB 
126AB 2378A 24798 4569A 
126AB 3478A 2379B 3568B 
2367A 4589B 3578B 24688 
2367A 2468B 147AB 3569B 
126AB 3478A 2379B 2589A 
2367A 2489A 2568B 457AB 
2367A 24688 578AB 129AB 
2367A 24688 147AB 569AB 
2367A 2489A 138AB 456AB 
126AB 347AB 2578A 3568B 
2367A 2468B 578AB 3489B 
2367A 2489A 25688 146AB 
2367A 2489A 3468B 2578B 
2367A 2489A 138AB 34698 
1267B 1389B 346AB 4579B 
34679 1389A 236AB 3578B 
34679 1389A 236AB 1569B 
34679 1389A 236AB 4568A 
34679 1389A 45688 2579A 
126AB 2378A 45673 3489B 
2367A 2468B 4589A 157AB 
2367A 2468B 4589A 3579A 
126AB 3478A 2579A 3469B 
2367A 2489A 4567B 3589B 
2367A 45678 4589A 2389B 

The list P, (1,3,5,11) 
126AB 3478A 2379B 2589A 4567B 
126AB 2378A 2479B 4569A 3589B 
2367A 2468B 4589A 3579B 156AB 
2367A 24688 147AB 3569B 2589A 
126AB 3478A 2379B 3568B 459AB 
2367A 2489A 2568B 146AB 45798 



Constructive enumeration of packings and coverings of index I 

U 
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Maximum packing 
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7 8 9 10 
1 2 3 5 

1-1 2-3 3-6 5-27 

7-7. 
7-8. 
7-9. 

7-10. 
7-1 1. 
7-12. 
7-13. 
7-14. 
7-15. 

8-1. 
8-2. 
8-3. 

12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 
12345 

12345 
12345 
12345 

16789 
16789 
16789 
16789 
16789 
6789A 
12678 
12678 
12678 

16789 
12678 
12678 

2367A 2489A 138AB 3469B 2578B 
2367A 2468A 578AB 129AB 4569A 
2367A 2469A 2568B 457AB 3469B 
2367A 2468B 147AB 569AB 3578B 
2367A 2489A 25688 146AB 3478B 
1267B 1389B 346AB 4.5798 258AB 
34679 1389A 236AB 4568A 2579A 
34679 1389A 236AB 4568A 1569B 
34679 1389A 236AB 4568A 147AB 

The list P, (1,3,5,11) 
2367A 2468B 578AB 129AB 4569A 3479B 
34679 1389A 236AB 4568A 147AB 1569B 
34679 1389A 236AB 4568A 3579A 3578B 

The list P9 (1,3,5,11) 

The list P,,, (1,3, 5, 11) 

The list P, ,  (1,3, 5, 11) 

9-1. 12345 12678 34679 1389A 236AB 4568A 147AB 1569B 2489B 

10-1. (9-1) + 3578B 

11-1. (9-1) + 3578B 2579A 

The last packing is maximal, hence 0(1,,3, 5, 11) = 11. From the lists given 
above one can obtain the values D(1, 3, 5, v )  for u < 11. These values are given 
in the following table. 

Consider the case k = 6. The list Pl(l,  3, 6, 11) consists of a unique packing 
123456, the list P2(1, 3, 6, 11) consists of two packings 

2-1. 123456 1789AB 
2-2. 123456 12789A, 

hence N,(l, 3, 6, 11) = 1, N2(1, 3, 6, 11) = 2. The packings from p2(1, 3, 6, 11) are 
both maximal therefore e(1,  3, 6, 11) = 0 for t 2 3. Thus D(1, 3, 6, 11) = 2. 

An obvious reasoning yields D(1, 3, k ,  11) = 1 for 6 < k < 11. 

5. Enumeration of minimal exact (1,3,11)-coverings 

An interesting application of the above results is associated with the question 
about the minimal number g(1, 3, 11) of blocks in an exact (1,3,11)-covering [6]. 
Just as was done in [6] for the case u = 12, one can show (see [lo], Theorem 7.2) 
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that if g(1, 3, 11) < 46 then a minimal (1,3,  11)-covering contains only quintuples, 
quadruples and triples. 

Denote by F the set of 5-blocks (F-component) of a covering, by Q the set of 
4-blocks (Q-component), and by T the set of triples (T-component). Then, up to 
an isomorphism, it is either one of the (1,3,5,11)-packings in Section 4, or the 
empty set of blocks, that can be the F-component. 

Taking for the F-component one of these packings, F, examine all possible 
Q-components with a maximum number of blocks of an exact (1,3,1l)-covering. 
Define an equivalence - in the set of such Q-components by: Q - Q, if and only 
if there exists a E Aut(F) such that Q, = Q,.  

Construct a list q ( F )  of representatives of equivalence classes under - . Every 
Q E q ( F )  uniquely determines the T-component. Call the exact (1,3,11)- 
coverings so obtained F-minimal. Construct, for every F from Section 4, a list of 
all F-minimal (1,3,  11)-coverings. Evidently, the union of these lists contains all 
minimal (1,3,11)-coverings with maximum block size k = 5. 

After completing the described procedure, we obtain a complete list of minimal 
exact (1,3,1l)-coverings, and, consequently, we may determine g(1, 3, 11). 

The author has written a program that implements the above algorithm. The 
work is at present incomplete. We state below the results obtained up to the time 
this paper was written. 

For the F-comljonent 11-1 the maximal Q-component is empty. Consequently, 
there exists a unique exact (1,3,  11)-covering with this F-component. Its size is 
66. 

For the F-component 10-1 there exists, up to an isomorphism, a unique 
F-maximal Q-component which consists of the unique block 2579. Hence for 10-1 
there exists a unique F-minimal covering of size 72. 

257B 259A 357A 358B 5789, 
For the F-component 9-1 there exists a unique maximal Q-component 

and the size of the corresponding F-minimal covering is 69. 

blocks 
For the F-component 8-1 the unique maximal Q-component consists of seven 

1388 147A 156B 2389 2579 348A 3568, 
and the unique F-minimal (1,3,ll)-covering consists of 72 blocks. For 8-2 two 
maximal Q-components exist: 

2389 257A 258B 279B 348B 357B 5789, 
2489 258B 259A 279B 348B 357A 5789. 

The corresponding nonisomorphic coverings have 72 blocks each. Finally, for 8-3 
there exist two maximal Q-components, 

129B 146B 147A 1569 15AB 247B 2489 459B 689B 
and 

129B 146B 147A 1569 15AB 247B 2489 49AB 689B, 
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Table 1 

7- 1 3 10 1 1 72 3' 
7-2 2 12 2 2 6 6 2 2  
7-3 12 17 1 1 51 12' 
7-4 2 11 1 1 69 2' 
7-5 1 11 1 1 69 1' 
7-6 1 11 16 16 69 116 

7-8 1 1 2  1 1 6 6 1 '  
7-7 2 12 34 17 66 1'7 

7-9 1 1 2  3 3 6 6 1 3  
7-10 2 11 9 5 66 i42' 
7-11 I 12 33 33 66 133 
7-12 20 15 1 1 57 20' 
7-13 12 16 1 1 54 12' 
7-14 4 12 16 6 66 1"24 
7-15 6 11 588 100 69 lW2' 

and the corresponding two F-minimal (1,3,11)-coverings have size 65. 
The results for the F-components having 7 blocks are presented in Table 1. 

Column F contains the numbers of the F-components, column Aut the order of 
the automorphism group of F, column lQl the size of the maximal Q-component, 
N q  the number of distinct maximal Q-components, 141 the cardinality of q ( F ) ,  
1171 the size of F-minimal (1,3, 11)-covering, and Spg contains a specification of 
the set of F-minimal coverings by automorphism group orders. 

Most of the above results are contained in [ l l] .  
Table 2 (next page) contains similar information about F-maximal Q- 

components of (1,3,1l)-coverings with IF1 = 6. The additional column b 
contains, for every F, the cardinality of the set of those 4-blocks which have at 
most two common elements with every block of F. 

The enumeration of minimal (1,3, 11)-coverings for JFI s 5 is being continued. 

6. List of coverings of size 51 

The smallest known size (see [lo]) of an exact (1,3, 11)-covering with block 
cardinality k S 5 is 51. There exist exactly 11 nonisomorphic coverings with 
IF1 > 5. They are as follows: 

1. 7-3 + 127B 128A 138B 139A 147A 149B 2389 2479 2569 
2578 29AB 3469 3478 34AB 3568 4567 78AB 

2. 6-22 + 158A 137A 1468 149A 1569 1578 15AB 2368 2379 2469 
247A 248B 256A 2589 29AB 3478 3467 359A 458A 568B 

25AB 3469 3478 34AB 3568 4567 69AB 78AB 149B Aut = 48 
3. 6-29 + 127B 128A 136B 139A 146A 157A 158B 2389 2479 2569 2578 

4. 6-29 + (first fifteen 4-blocks from covering 3.) + 3568 38AB 4567 
47AB 69AB A u t = 8  
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Table 2 

~ 

6-1 44 1 15 106 106 66 
6-2 42 1 15 5 5 66 l 5  
6-3 42 1 15 11 11 66 1” 
6-4 43 1 15 25 25 66 125 
6-5 42 2 16 5 3 63 1*2’ 
6-6 40 4 15 2 1 66 1’ 
6-7 42 24 18 2 1 57 12’ 
6-8 49 1 18 12 12 57 1” 
6-9 48 1 14 207 207 69 12”’ 
6-10 47 4 I5 576 172 66 1“6256 
6-11 49 1 16 22 22 63 1’’ 
6-12 49 1 16 3 3 63 1’ 
6-13 48 1 15 30 30 66 1”’ 
6-14 48 2 16 5 3 63 1’ 
6-15 48 1 16 13 13 63 1” 
6-16 49 1 15 72 72 66 1’’ 
6-17 50 1 17 4 4 60 l4  
6-18 47 2 15 87 47 66 1&2’ 
6-19 55 1 16 24 24 63 I z 4  

6-21 56 1 16 60 60 63 I@’ 

6-23 60 1 16 5 1 63 1’ 
6-24 61 12 15 51 7 66 12244‘ 
6-25 62 2 18 66 3 57 l 3  

6-20 54 2 16 24 23 63 1’’ 

6-22 56 4 20 I 1 51 1’ 

6-26 65 60 17 395 7 60 153’ 
6-27 43 3 15 94 35 66 1’*3’ 
6-28 42 4 16 138 45 63 1252’x42 
6-29 40 48 20 10 3 51 8’16’48’ 
6-30 45 3 16 12 4 63 l 4  
6-31 46 16 16 120 98 63 15x2’24x 
6-32 48 384 20 128 6 51 X24g4 

5. 6-29 + (first twelve 4-blocks from covering 3.) + 29AB 3469 3478 
3568 38AB 4567 47AB 56AB Aut = 16 

2569 2578 3469 3478 3468 3579 35AB 68AB 79AB 
7. 6-32 + (first 19 quadruples from the previous covering) + 78AB 

Aut = 8 
8. 6-32 + (first 10 quadruples from covering 6.) + 2569 2578 25AB 

3469 3478 3568 69AB 78AB 
9. 6-32 + (first 13 quadruples from covering 6.) + 3468 3478 3569 

3578 35AB 68AB 79AB Aut = 48 
10. 6-32 + (first 8 quadruples from covering 6.) + 2469 2478 24AB 

2568 2.579 3479 3569 3578 35AB 69AB 78AB 
11. 6-32 + (first 10 quadruples from the previous design) + 2568 2579 

25AB 3468 3479 34AB 3569 3578 69AB 78AB 

6. 6-32 + 126B 128A 137B 139A 146A 148B 157A 159B 2468 2479 24AB 
Aut=48 

Aut=48 

A u t = 8  

Aut=48  
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7. Bounds for possible values of g(l,3,11) 

Let n be a minimal exact (1,3,1l)-covering with maximal block cardinality 
k = 5, 1171 = g. We are taking into account the fact that g < 46 is possibly only for 
coverings with blocks whose cardinalities do not exceed five. Denote by f, q, and 
t ,  respectively, the cardinalities of F-, Q-, and T-components of this covering. 
Then we have [6] 

f +  q + t = g  

lOf + 4q + t = 165, 

whence 

9f + 3 q =  165-g, orq=(165-g-9f ) /3 .  

It is not difficult to show [6] that g E (30, 33, 36, 39, 42, 45, 46). Taking into 
account the obvious inequality q G g - f we get (165 - g - 9f)/3 G g - f whence 
f a (165 - 4g)/6. Assuming g = 30 gives f 3 8. But it was shown earlier that for 
f a 8 there exist no exact coverings with 30 blocks. Therefore g(1, 3, 11) f 30. 

Assuming now g = 33, we get similarly that f 3 6. But Table 2 excludes the 
existence of such a covering, thus g(1, 3, 11) # 33. 

Theorem. g(1, 3, 1 1 )  E (36, 39,42, 45,46}. 

Note that in [4] a stronger inclusion g(1, 3, 11) E (45, 46) is proved. 

8. Some properties of N,@, 1, k, u )  

Let us note some general properties of the numbers N,(A, I, k, v). Clearly for 
k < v we have N,( l ,  I, k, v )  = 1. Also, it is not difficult to establish directly that 

0 f o r v < 2 k - l + 1  
i + 1 for v = 2k - 1 + i + 1, 0 =s i < I  - 1, N2(l, I, k, v) = (8.1) 

{ l  for v > 2k. 

Null-property : 

Nt(A, I ,  k, v) = 0 for u < v,,(t, A, 1, k )  and t > 1. 

It follows from (8.1) that v0(2, 1, I, k)  = 2k - 1 + 1. It is not difficult to see that 

Monotonicity : 
V"(3 ,  1, I, k )  = 3(k - 1 + 1) + I - 1. 

N,(A, I, k, v) N,(A, 1, k, u + I), (8.2) 

and the inequality is strict for v < tk if at least one of its sides is not equal to zero. 



250 A.J. Petrenjuk 

Stabilization by u: 

N,(l, 1)  k, w )  = const = N,(l, 1, k,  th )  

for all w 3 tk. 
Stabilization by k: 
For fixed t and 1, under the conditions k > ko = ( t  - 1)(1- 1) and u 2 t(k + l ) ,  

the following equality holds: 

N,(l, 1, k ,  u )  = N((1, 1, k + 1, u) .  (8.4) 

9. Another approach to the packing problem 

Let 93 = { B , ,  . . . , B,} be a (1,1, k, v)-packing. Denote by Ej the set of 
elements which are contained only in the blocks numbered by indices from J ,  
J E l ( t ) .  Clearly, Ej's are just the same as components of inseparability in Section 
2. Put nJ = IEjl. It follows from the definition of packing that 

c nJ = k for every m E Z(t) ;  

n, = u. 
J 

Conversely, given a collection {nJ:  J c l ( t ) }  which satisfies (9.1)-(9.3)) it is not 
difficult to obtain the corresponding packing. Thus the conditions (9.1)-(9.3) are 
necessary and sufficient for the existence of a packing corresponding to the 
collection of numbers { n J } .  

Packings corresponding to the same collection { n J }  are clearly isomorphic. But 
it is possible for different collections to yield isomorphic packings. In order for 
{nJ}  to be a complete invariant for packings, it is necessary to have, in addition to 
(9.1)-(9.3), conditions for selecting from among all collections yielding the same 
packing one (canonical) collection { n , } .  

Consider the case t = 3. In this case conditions (9.1)-(9.3) become 

(9.4) 



Constructive enumeration of puckings and coverings of index 1 25 1 

4 
Fig. 4. 

The structure of a packing with t = 3 is schematically drawn in Fig. 4. 
To reach our goal it suffices to require that the preference conditions given in 

Fig. 5 be satisfied. Here + means that the collection n, is being made canonical, 
i.e. included in the list, and - means that it is being rejected. 

Table 3 contains author’s program in Fortran-4 which implements, for given I, 
k and v. the construction of all collections 

that satisfy conditions (9.1)-(9.3), and the selection from them of canonical ones. 
Table 4 contains an example of the final output of the program: for given I, k 

and v it outputs the value of N3(1, I ,  k, v )  and the list of vectors 
(n123, n12, n13, n23) which determine all nonisomorphic packings. 

Table 5 contains several values of N3(l, I, k, v )  obtained by means of this 
program. This table may be considerably expanded. 

In the case t = 4 it is not difficult to implement a generation of collections {a,} 
and a “sieve” through conditions (9.1)-(9.3). More complicated but quite 
feasible task is to form a preference scheme. 

Note that for arbitrary t there are exactly 2‘n,’s, thus the size of the system 
(9.1)-(9.3) grows fast. This complicates the practical implementation of the 
method, described in Section 9, for the large values of t .  

Fig. 5 
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Table 3. Program for computing N3(l, I ,  k, u). 
~~ 

C FIND VALUE N3(1,L,K,V) 

117 
1 

118 

111 

3 
4 
5 
6 
7 

9 
19 

n 

2 

121 

115 
10 

125 

11 

119 
120 

DIMENSION MT (500,4) 
READ 1, NV, N K ,  NL 
FORMAT (313) 
IF (NV) 119,119, 118 
NS = 0 
M = O  
IF (NV - 3*NK + 3*(NL- 1))115, 111, I I I 
DO 2 I = 1, NL 
D O 2 J = I , N L  
D O 2 K = J , N L  
11=1-1 
J 1 4 -  1 
K l = K + l  
IF (I1 + J1 + NS - NK)3,3,2 
IF (I1 + KI + NS - NK)4,4,2 
IF (J1 + K1 + NS - NK)S, 5 ,2  
IF (11 - NL + NS + 1)6,6,2 
IF (.I1 - NL + NS + 1)7,7,2 
IF (K1 - NL + NS + 1)8,8,2 
IF (I1 + J1+ K 1 -  3*NK+ 2*NS + NV)2,9,9 
IF (I1 + J1 + K1 + NS - NV)19, 19,2 
M = M + I  
MT(M, 1) = NS 
MT(M, 2) = I1 
M T ( M , 3 ) = J l  
MT(M, 4) = K1 
CONTINUE 
IF(NS-NL+1)121, 115,115 
NS=NS+ 1 
G O T 0  111 
PRINT 10, NL, N K ,  NV, M 
FORMAT (SX,‘N3( I ,’,13,’,’,13,’,’,13,’) = ’,13) 
IF (M) 117, 117, 125 
CONTINUE 
PRINT 11, ((MT(1, J ) ,  J = I ,  4), I = 1, M) 
FORMAT (3X, 413,2X, 413,2X, 413,2X, 413) 
GO TO 117 
PRINT 120 
FORMAT (3X, ‘WORK IS FINISHED’) 
STOP 
END 

Table 4. Final output of the program N3LKV. 

N3(1,3,4,13)= 15 
0 0 0 0  0 0 0 1  0 0 0 2  0 0 1 1  
0 0 1 2  0 0 2 2  0 1 1 1  0 1 1 2  
0 1 2 2  0 2 2 2  1 0 0 0  1 0 0 1  
1 0 1 1  1 1 1 1  2 0 0 0  



Table 5.  Some values of N,( I ,  I ,  k ,  v ) .  

I k v N ,  I k v N ,  I k v N ,  I k v N ,  

2 3  S 5 0  3 4  1 1 1 4  4 5  8 4  4 8  2 0 2 6  
6 1  212 15 9 10 21 30 
7 3  3 5  s 8  0 10 16 22 33 
x 4  9 1  11 22 23 34 

%9 5 10 3 12 26 s24 35 
2 4  - c 8 0  11 7 1 3 2 9  5 6  7 0 

9 1  12 10 14 30 8 1  
10 3 13 13 215 31 9 5  
I 1  4 14 14 4 6 <8 0 10 13 

2 1 2  5 3 1 s  15 9 1  I1 22 
2 5 S11 0 3 6 s11 0 10 3 12 33 

12 1 12 1 11 7 13 41 
13 3 13 3 12 14 14 48 
14 4 14 7 13 20 15 52 

2 1 5  5 15 10 14 26 16 55 
2 6 GI4  0 16 13 15 30 17 56 

15 1 17 14 16 33 218 57 
I 6  3 218 15 17 34 5 7 s 9  0 
17 4 3 7 <I4 0 218 35 10 1 
18 5 15 I 4 7 S11 0 11 4 

2 7 217 0 16 3 12 1 12 10 
S I X  1 17 7 13 3 13 20 

19 3 18 10 14 7 14 30 
20 4 19 13 IS 14 15 41 

221 5 20 14 16 20 16 49 
2 8 220 0 221 15 17 26 17 56 

s21 1 3 X G17 0 18 30 18 60 
22 3 18 1 19 33 19 63 
23 4 19 3 20 34 20 64 

224 5 20 7 3 2 1  35 221  65 
3 4  5 0  21 10 4 8 <14 0 5 8 S11 0 

6 1  22 13 15 1 12 1 
7 3  23 14 16 3 13 3 
x 7  224 15 17 7 14 7 
9 1 0  4 5  6 0 18 14 15 14 

10 13 7 1  19 20 16 25 
17 35 

5 8 I X  46 6 7 18 88 6 8 23 109 7 8 224 144 
19 54 19 91 224 110 4 11 G23 0 
20 61 2 0 9 2  7 8  9 0  24 1 
21 65 321  93 10 I 25 3 
22 68 6 X s10  0 11 5 26 7 
23 69 11 I 12 15 27 14 

224 70 12 5 13 29 28 20 
6 7  x 0 13 13 14 48 29 26 

9 1  14 26 15 68 30 30 
10 5 15 41 16 89 31 33 
11 14 16 58 17 105 32 34 
12 26 17 72 18 119 233 35 
13 41 18 85 19 128 3 15 40 3 
14 55 19 94 20 135 3 15 41 7 
15 68 20 101 21 139 4 15 40 20 
16 77 21 105 22 142 6 10 25 110 
17 84 22 108 23 143 
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10. Conclusion 

We conclude with two particular problems: 
1. What is the number N,(A, I ,  k, v) of maximal (A,  1, k ,  v)-packings containing 

2. What is the minimal size T(A,  1, k ,  v )  of a minimal (A,  1, k ,  v)-packing? 
exactly t blocks? 
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THE EXISTENCE OF SIMPLE S3(3,4, v )  

K .  PHELPS, D.R. STINSON and S.A. VANSTONE 
Department of Mathematics, Georgia Institute of Technology, Atlanta, Georgia, U .S .  A .  
Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, 
R3T 2N2 Canada 
Department of Cornbinatories & Optimization, University of Waterloo, Waterloo, Ontario, 
N2L 3Gl Canada 

It has been known for some time that an S 4 3 ,  4, u )  exists iff u is even. The constructions 
which prove this result, in general, give designs having repeated blocks. Recently, it was shown 
that a simple S 4 3 ,  4, u )  exists if u is even and u S 4  (mod 12). In this paper we give an 
elementary proof of the existence of simple S3(3, 4, u)s for all even v, u > 4. 

1. Introduction 

This paper deals with the construction of simple S3(3, 4, v)s (for undefined 
terms and notation the reader is referred to Beth et al. [l]). It was previously 
shown by Hanani [2] that an S 4 3 ,  4, v) exists iff v is even but the construction 
establishing this result gives, in general, designs with repeated blocks. Kohler [4] 
has constructed simple cyclic S-43, 4, v) for all v = 2 (mod 4) and Jungnickel and 
Vanstone [3] recently proved the existence of simple S3(3, 4, v) for all even 
v, v f 4 (mod 12). The purpose of this paper is to prove the following theorem. 

Theorem 1.1. A simple S3(3, 4, v )  exists iff v is even and v f 4 .  

It is obvious that v even and v # 4 is necessary. We proceed to establish the 
sufficiency in the next sections. 

2. Designs from 1-factorization 

For completeness we will describe a general construction method for designs 
S3(3, 4, v) due to Lonz and Vanstone [5]. 

Let H be any 1-factorization of K k ,  where KZm is the complete graph on a 
2m-set V. For each factor F E H and for each pair of distinct edges e, e’ E F, form 
the set of four endpoints of e and e’ .  Denote the collection of all such 4-sets by B. 
It is easily checked that DH = (V, B) is an S3(3, 4, 2m). As in [3] we call D H  the 
S3(3, 4, 2m) associated with H. In order to construct simple designs we make use 
of the following. 
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Theorem 2.1. Let H be a 1-factorizafion of K2,,,. Dn is simple iff the union of any 
two distinct 1-factors of H does not contain a 4-cycle. 

The proof of this result is straightforward and so is omitted. In order to 
establish Theorem 1.1 we need only construct for each positive integer m 2 3 a 
1-factorization H of K 2 ,  having the property that the union of any two distinct 
1-factors of H does not contain a 4-cycle. This we will do in the next section. 

3. Main result 

In this section we consider the following 1-factorizations of K 2 ,  for various 
values of m. 

H,:  label the vertices of KZm with the elements of Z2m-1 U {m} where m is an 
indeterminate. Let El = { (i, a)} U {(i + j ,  i - j ) :  1 i j S m - l},  0 < i s 2m - 2. 
Then HI = { E l :  0 G i S 2m - 2) is a 1-factorization of KZm for any positive integer 
m. 

H,: Label the vertices of K, ,  for m odd with the elements of Z, x 1,. For 
convenience we denote ( i ,  k) by ik. Let 

F; = {(il, i 2 ) }  U { ( ( i  + j ) l ,  ( i  - j ) l ) :  1 6  j s  (m - 1)/2} 
U { ( ( i + j ) 2 ,  ( i  - j ) 2 ) :  l i j c ( m  - l) /2},  O S i < m  - 1 

and 

F; = { ( j , ,  (i +j )2 ) :  O c j i m  - l}, m + 1 i i  s 2 m  - 1. 

H2 = { F ; :  0 S i < 2m - 2) is a 1-factorization of K2, when m is odd. 
H?: Suppose 2m = 3/ + 1 and we label the vertices of K2,,, with the elements of 

(2, X f3) U {m} where m is an indeterminate. We define the following 1-factors 
of K2m, 

F; = ((00, i,)} U { ( ( i  + j ) l ,  (i - j ) l ) :  1 6 j i ( f  - 1)/2} 
U { ( j 2 ,  ( j  - i ) 3 ) :  0 <  j cr - l}, 0 s  i < t  - 1 

GI = {(m, i2)} U {((i + j ) 2 r  ( i  - j ) 2 ) :  1 s j s ( t  - 1)/2} 
U { ( j l ,  ( i - j - l ) l ) : O s j c t - l } ,  O i i s t -  1 

and 

H, = ((00, i ? ) }  U {((i + j ) ? ,  (i - j ) 3 ) :  1 s j i (t - 1)/2} 
u{(j l , ( i+j -1)2) :Oijct -1} ,  0 i i s l - 1 .  

It is easily checked that H7 = { E ,  C,, H , :  0 ~ i  i t - l} is a 1-factorization of 

It was shown in [ 3 ]  that DH, is simple provided m f 2 (mod 3). We require the 
K2m. 

following results. 



Existence of simple S 4 3 ,  4, v) 257 

Theorem 3.1. DH2 is simple for all positive integers m = 5 (mod 6). 

Proof. We first consider the 1-factors I;; and 4 where i # j ,  0 G i ,  j s ( m  - 1)/2. If 
a 4-cycle is created in the union of these then it must involve pairs in F; of the 
form ( ( j  + i ) k ,  ( - j  + i ) k )  and ((h - i ) k ,  ( - h  + where k is either 1 or 2 .  But in 
4 we have the pairs 

( ( j  + i ) k ?  ( h  + i ) k )  and ( ( - j  + i ) k ,  (-h + i ) k )  

or 

( ( j  + i ) k ,  ( - h  + i ) k )  and ( ( - j  + i)kr ( h  + i ) k ) .  

Since the sum of elements in a pair is constant we have in the first case 

j + h + 2i = - j  - h + 2i or 2( j  + h )  = 0  

implying j = -h  which is impossible. In the second case we have 

j - h + 2 i = - j + h + 2 i  or 2 ( j - h ) = O  

implying j = h which is impossible. Hence, no 4-cycle is possible in this case. 

( h , ,  ( j  + i ) 2 )  and ( l , ,  ( 1  + i ) 2 )  are pairs in F; forming a 4-cycle with 5 then 
Suppose we now consider F; ,  8 where i # j  and m s i ,  j s 2 m  - 2. If 

I - h + i = h - f + i  or 2 ( 1 - h ) = O  

which implies I = h. 
Finally, we consider F ; ,  6 where i # j ,  and 0 G i =S ( m  - 1)/2, m s j s 2m - 2.  

Suppose the pairs ( ( i  + k ) , ,  (i - k ) , )  and ( i  + h ) 2 ,  ( i  - h ) 2 )  form a 4-cycle with 
edges from 4. Since differences in pairs of F; are constant we must have 

( i  + h )  - ( i  + k )  = ( i  - h )  - ( i  - k )  

or 

( i  + h )  - ( I  - k )  = ( i  - h )  - ( i  + k ) .  

In the first case 2(h - k )  = 0 implies h = k and in the second h = - k  which is 
also impossible hince both h and k are distinct, nonnegative and at most 
(m - 1)/2.  This completes the proof of the theorem. 0 

Theorem 3.2. Dn, is simple for all positive integers m = 2 (mod 6). 

Proof. Since m = 2 (mod 6 )  71 = 121 + 4 for some integer 1. Construct H3 with 
t = 4 1 + 1 .  

It is easily seen that if two pairs from a 1-factor of F; form a 4-cycle with some 
other 1-factor then the subscripts occurring in these pairs must occur an equal 
number of times. We also note that the pairs in F; with subscript 1 form a 1-factor 
of K , , ,  and since 21 + 1 # 2 (mod 6 )  no two pairs of this type can form a 4-cycle. 
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The only remaining possibility is a pair of the form (00, il),  ( k 2 ,  (k - i)& If these 
form a 4-cycle with a pair (m, j 2 ) ,  (h3,  ( j  - h - 1)1) then k = j and j = k + 1 which 
is impossible. Hence no E can give a 4-cycle. It remains to show that no GI or HI 
can give a 4-cycle. Most of the arguments for 6 carry over to GI and H I .  Suppose 
the pair (w, iz), (k3, (i - k - 1)1) in GI forms a 4-cycle with the pair (00, j 3 ) ,  
(hl ,  ( j  + h - 1)2) in H,. Then j = k, i - k - 1 = h and i = j + h - 1 or j = k and 
j = k + 2 which is impossible. This completes the proof. 

Proof of Theorem 1.1. As mentioned earlier the necessity that v is even and 
# 4 is easily established. 

If v =2m and m $ 2  (mod3) the result was established in [3]. Now if 
m = 2 (mod 3) we consider two cases. First if m = 5 (mod 6) then the result 
follows directly from Theorem 3.1. If m = 2 (mod 6) then 2m = 121 + 4 for some 
integer 1. The result follows from Theorem 3.2 and the proof is complete. 0 

4. Conclusion 

In this paper we have established the existence of simple S 4 3 ,  4, 11)s using an 
elementary direct construction. It also follows from this paper and [3] that simple 
resolvable S43, 4, v)s exist for all v = 0 (mod 4), Y > 4. 
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ON COMBINATORIAL DESIGNS WITH SUBDESIGNS 
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We develop some powerful techniques by which (certain classes of) combinatorial designs 
with pre-specified subdesigns can be constructed. We use our method to give nearly complete 
solutions (i.e. to within a finite number of cases) to several problems, including the existence of 
Kirkman Triple Systems with Subsystems, the existence of ( v ,  4, I)-BIBDs with subdesigns and 
the existence of (certain) complementary decompositions with sub-decompositions. 

1. Introduction 

In this paper we are concerned with methods for constructing combinatorial 
designs having (or missing) subdesigns of some prespecified size. In applying our 
methods we will be considering several open problems regarding the existence of 
pairwise balanced designs with subdesigns. Such problems are not new to the 
literature. For example, a Steiner Triple System (STS) is a pair (X, B )  where X is 
a (finite) set of points and B is a collection of 3-subsets (triples) of X such that 
any pair of distinct points is contained in exactly one triple. A subsystem (X', B ' )  
of a Steiner Triple System (X, B )  is an STS with X' G X and B' c B. The general 
problem of constructing Steiner Triple Systems containing subsystems of arbitrary 
size was considered and solved by Doyen and Wilson [7] (see also [31]): given any 
integers v and w with v, w = 1 or 3 modulo 6 and v 3 2w + 1 there exists an 
STS(V) containing a sub-STS(w). 

A pairwise balanced design is called resolvable if its block set admits a partition 
into parallel classes, i.e. each parallel class forms a partition of the point set. Thus 
a resolvable pairwise balanced design can be thought of as a triple (X, B, P) 
where X is the set of points, B the set of blocks and where P is a partition of B 
into parallel classes. Then a subdesign of (X, B ,  P) is a triple (X', B ' ,  P') where 
X '  X ,  B' c B, and P' is a partition of B' into parallel classes on X' such that 
for each p '  E P' there is a p E P with p '  c p .  This latter condition says that each 
parallel class on X' must be 'inherited' from a parallel class on X. The simplest 
example of this is a one-factorization of Kz ,  containing a sub-one-factorization of 
some KZs c K2,,. From the foregoing definition it is clear that one must have 
n >2s, and indeed it is well known that the condition n 2 2s is sufficient to 
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guarantee the existence of such a design (for a short proof of this fact the reader 
is referred to [26, Lemma 2.21; for a very good general survey o n  one- 
factorizations see [14]). 

In this paper we will develop a simple but powerful technique by which, in 
essentially two steps, one may construct certain classes of combinatorial designs 
having subdesigns of any desired size. We will of course be restricting ourselves to 
a few specific problems, but the techniques here employed can be generalized in 
an obvious manner. In the first step, which is really the main step in the 
constructions, we will develop a class of group-divisible designs with block size 4 
having group sizes from the  set {3,6,9} together with a ‘special’ group of size r 
where (subject to obvious necessary conditions) r can be chosen as large or as 
small as one likes (see Section 3). Then in the second step one applies weights to 
the points in the group-divisible design (the weights chosen according to the 
specific problem under consideration) and then uses standard “filling in” 
constructions to obtain the desired combinatorial design. In this construction the 
group of size r ‘becomes’ the sub-design. (The group-divisible design is really just 
acting as a weak form of a Mandatory Representation design (see [13]).) 

We will apply our group-divisible designs to solve several important open 
problems. 

The first problem that we will consider involves the study of Kirkman Triple 
Systems with Subsystems (see Section 4). A Kirkman Triple System KTS(v) is a 
resolvable STS(v); it is well known that such a system exists if and only if v = 3 
modulo6 (see [24] or [YJ). Recalling the definition of a subsystem in a resolvable 
design it is easy to see that if a KTS(v) contains a (proper) sub-KTS(w), we must 
have v 3 3w. The following two results encompass what is known on this problem 
to date. 

Theorem 1.1 [Stinson, 13411. ff v = w = 3 modulo6 and v 3 4w - 9 then there 
exists a KTS(v) containing a sub-KTS(w), except possibly when (v, w) = (81, 15) 
or (87, 21). 

Theorem 1.2 [Rees and Stinson, [28]]. Let w = 3 modulo 6. Then there exist 
KTS(3w), KTS(3w + 6) and KTS(3w + 12) containing a sub-KTS(w 
possibly for KTS(3w + 12) when w = 45, 51, 63 or 87. 

We will herein prove the following result. 

Theorem (4.4). Let v = w = 3 modulo 6 and v 3 3w. Then there exists 1 

, except 

KTS(v) 
containing a sub-KTS( w) whenever v - w 2 822, with eighty-si.x unsettled values 
of v - w below this order. 

A second problem that we will consider (in Section 5) is one that has attracted 
a considerable amount of interest in recent years, namely that of determining for 
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which v, w = 1 or 4 modulo 12 with v 2 3w + 1 does there exist a (v, 4, 1)-BIBD 
containing a sub-(w, 4, 1)-BIBD (i.e. the ‘block size four’ analogue to the 
Doyen-Wilson Theorem). We can (roughly) summarize the results known to date 
on this problem as follows. 

Theorem 1.3 [Brouwer and Lenz, [4]]. If w = 1 modulo 12 then there exists a 
(v, 4, 1)-BIBD containing a sub-(w, 4, 1)-BIBD whenever 21 = 1 or 4 modulo 12 
and v 2 13w + 36h - 12, where h is the feast residue of ( w  - 1)/12 modulo 4. Zf 
w = 4 modulo 12 then such a design exists whenever v = 1 or 4 modulo 12 and 
v a 13w + 36h - 30, where h is the feast residue of ( w  - 4)/12 modulo 4. 

Theorem 1.4 [Wei and Zhu, [35]]. (i) Zf w = 1 or 4 modulo 12 and w 2 85 then 
there exists a (v, 4, 1)-BIBD containing a sub-(w, 4, 1) whenever v = 1 or 4 
modulo 12 and v 2 4w - 12. (ii) Zf w = 4 modulo 12 or w 3 1 or 13 modulo 48, 
and if further w > 85, then such a design exists whenever v = 1 or 4 modulo 12 and 
v a 3 w + 1 .  

We will prove the following results. 

Theorem (Lemma 5.1). Let.v = w = 1 or 4 modulo 12, v 2 3w + 4 and v - w 2 

1644. Then there exists a (v, 4, l)-BIBD containing a sub-(w, 4, 1)-BIBD. 

Theorem (Lemmas 5.3 and 5.4). Let v, w = 1 or 4 modulo 12 where v - w is an 
odd integer 21611. Zf w 2 3 7 3  then there exists a (v, 4, 1)-BIBD containing a 
sub-( w ,  4, l)-BIBD whenever 11 2 3w + 1. Zf w < 373 then there exists a (v, 4, 1)- 
BIBD containing rr sub-(w, 4, 1)-BIBD whenever 3w + 1 < v 15w + 28. 

Together with Theorem 1.3 our results will reduce the further study of this 
problem to a finite number of cases (see Theorem 5.5). 

Finally, in Section 6 we will turn our attention to constructing sub-designs in 
(certain) ‘complementary decompositions’. Let n > 0 and let 3 = {GI,  . . . , GA} 
be a decomposition of K,,. Then a complementary decomposition AK,, + 3 is a 
decomposition 9 of the complete multigraph AK, into K,’s (i.e. a (v, n,  A)- 
BIBD) with the property that for each j = 1, . . . , A the set (GI E K,, : K,, E 9} is a 
decomposition of K ,  (we will refer to 9 as the root);  note that this necessarily 
means that each GI E 92 contains the same number (namely ( n ( n  - 1))/2A) of 
edges. Note that the case A = 1 corresponds to constructing (v, n, 1)-BIBDs. 

Where A > 1 the best-known examples of these designs are the so-called Nested 
Steiner Triple Systems. A Steiner Triple System STS(v) is said to be nested if one 
can add a point to each triple in the system and so obtain a (v, 4, 2)-BIBD. The 
spectrum of these designs was determined by Stinson [32]: 
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Theorem 1.5. There exists a nested STS(v) if  and only if v = 1 modulo 6. 

It is easy to see that a nested STS(v) is equivalent to a complementary 
decomposition 2K,, + {K1.3r Kq,,}. There is one other possible complementary 
decomposition 2K,, + { G ,  G'} where G has four vertices, namely where C = 

C' = P3 (the path with three edges); the spectrum of these designs was given by 
Granville, Moisiadis and Rees [8]. 

Theorem 1.6. There exists a complementary decomposition 2K, -+ { P?, P?} if and 
only if v = 1 modulo 3. 

A second interesting problem was considered in [8]. Let us call two decomposi- 
tions %l = { G ; ,  . . . , C : }  and %& = {G:,  . . . , Gz}  of K, distinct if for no 
permutation u on { 1, . . . , A} is it true that G,' = G&, for all i = 1, . . . , A. Then a 
(v, n,  A)-BIBD (viewed as a decomposition 9 of AK,,+ K,) is called 
pandecomposable if for any set %,, . . . , 9, of distinct decompositions of K ,  (each 
with A graphs) there exists, for each i = 1, . . . , k ,  a complementary decomposi- 
tion AK,,-, 3 with 9 as its root. For example the following design is a 
pandecomposable (7,4,2)-BIBD (to each block a ,  b, c, d associate the graphs 
K , , 3  and KC,3 where the K,,3 has a on one side and b, c, d on the other, and also 
the graphs P3 and PS where P3 is the path abcd). 

0 ,4 ,2 ,  1 4, 1,6,5 

1 , 5 , 3 , 2  5 , 2 , 0 , 6  
2 ,6 ,4 ,3  6 ,3 ,  1 ,0  
3707 574 

The following result was obtained in [8]. 

Theorem 1.7 [Granville, Moisiadis and Rees]. There exists a pandecomposable 
(v, 4, 2)-BIBD if and only if v = 1 modulo 6. 

A subsystem in a complementary decomposition AK,, -+ 93 is just a complemen- 
tary decomposition AK,- % for some complete multisubgraph AK,,, E AK,,. In 
particular, the root of the subsystem (a ( w ,  n, A)-BIBD) is a sub-BIBD of the 
root of the 'mother' system (a (u,  n, A)-BIBD). We will be interested in 
determining the spectrum of subsystems in complementary decompositions of the 
type given by Theorems 1.6 and 1.7. Note that, since in each case the roots are 
BIBDs with k = 4 ,  a necessary condition for a system of order v to have a 
subsystem of order w is that 21 s 3w + 1. We will prove the following two results: 

Theorem (6.2). Let v and w be given with v = w = 1 modulo 6, v 2 3w + 4 and 
v - w b 822. Then there exists a pandecomposable (v, 4, 2)-BIBD containing a 
sub-pandecomposable ( w ,  4, 2)-BIBD. 
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Theorem (6.4). Let v and w be given with v = w = 1 modulo 3, v 2 3w + 1 and 
v - w a 411. Then there exists a complementary decomposition 2K, +. (4, P,} 
containing a subsystem 2K,+ {P,, P3}. 

Remark. Note that as a corollary to the first result we have a solution (to within a 
finite number of cases) for the spectrum of subsystems in nested Steiner Triple 
Systems; as a corollary to the second result we have a similar solution for the 
spectrum of subsystems in (v, 4, 2)-BIBDs. (See Corollaries 6.3 and 6.5 in 
Section 6.) 

2. Definitions and preliminary results 

Of central importance to our work here will be the notions of a group-divisible 
design (GDD) and an incomplete group-divisible design (IGDD). A group- 
divisible design is a triple (X, G, B) where X is a set of points, G is a partition of 
X into groups and B is a collection of subsets of X (blocks) such that 

(i) IB, f l  G,I s 1 for all B, E B and GI E G, and 
(ii) any pair of points from distinct groups occurs in exactly one block. 

An incomplete group-divisible design is a quadruple (X, Y, G, B) where X is a set 
of points, Y is a (possibly empty) subset of X, G is a partition of X into groups 
and B is a collection of blocks such that 

(i) IB, n G,l 6 1 for all B, E B and GI E G, and 
(ii) any pair of points x and y from distinct groups occurs in exactly one block 

unless both x and y are in Y ,  in which case x and y do not occur together in any 
block. Note that when Y = 0 an IGDD is just a GDD. 

We will usually describe GDDs and IGDDs by means of an exponential 
notation: a K-GDD of type g:'g:'- * .g: is a GDD in which there are t, groups of 
size g, ,  i = 1, . . . , r ,  and in which each block has size from the set K; a K-IGDD 
of type ( g l ,  h1)"(g2, h2)'*. ( g r ,  h,)Ir is an IGDD (X, Y, G, B) in which there are 
t, groups of size g,, each with the property that its intersection with Y has 
cardinality h,,  i = I ,  . . . , r, and in which each block has size from the set K. 
When some h, = 0 we will suppress it; thus a 4-IGDD of type (9, 3)461 means a 
4-IGDD of type (9, 3)4(6, 0)'. We will also use other (standard) notations from 
time to time, as it appears convenient. For example we can replace the foregoing 
notation with K-GDD of type S, where S is the multiset consisting of t, copies of 
g,, or K-IGDD 01 type S, where S is the multiset consisting of t, copies of the 
(ordered) pair (g,, h,) ,  i = I ,  . . . , r. Finally, we will use the notation 
GD[K, M; v] to mean a group-divisible design on v points in which each block 
has size from the set K and each group has size from the set M. A PBD(K; v )  will 
denote a pairwise balanced design (of index unity) on v points in which each 
block has size from the set K. Where there is exactly one block (resp. group) of 
some size k E K (resp. m E M) we will indicate this by writing k* (resp. m * ) .  
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We shall need some preliminary results before proceeding to Section 3. A 
group-divisible design is called resolvable if its block set can be partitioned into 
parallel classes. In [27] the authors considered the problem of constructing 
resolvable 3-GDDs and obtained a result which implies the following. 

Theorem 2.1 [Rees and Stinson]. Let g and u be given where gu = 0 modulo 3 
and g ( u  - 1) = 0 modulo 2, (g, u )  f (2, 3), (2, 6) or (6, 3). Then there exists a 
resolvable 3-GDD of type g", except possibly when 

( i )  g = 6 modulo 12 and u = 11 or 14; 
(ii) g = 2 or 10 modulo 12 and u = 6. 

Assaf and Hartman [ 11 have constructed resolvable 3-GDDs of types 6" and 614, 
which easily gives 

Theorem 2.2 [Assaf and Hartman]. There exist resolvable 3-GDDs of type g" 
and g14, where g = 6 modulo 12. 

A frame is a group-divisible design (X, G, B) whose block set can be 
partitioned into holey parallel classes, i.e. each holey parallel class is a partition of 
X -  G, for some group Gj E G. The groups in a frame are usually referred to as 
holes. A Kirkman frume is a frame in which each block has size 3; the spectrum of 
Kirkman Frames with uniform hole size was determined in [34]. 

Theorem 2.3 [Stinson]. There exists a Kirkman Frame of type g" if and orily i f g  
is even, u 3 4 and g(u - 1) = 0 modulo 3. 

Remark. It is noted in 1341 that in a Kirkman frame (X, G, B )  there are 4 lG,l 
holey parallel classes of triples that partition X- G,, for each G, E G. I t  follows 
immediately that a Kirkman frame of type g" is equivalent to a 4-IGDD of type 
(;g, $g)" (for a fuller discussion of this equivalence the reader is referred to [33]). 

We will be relying heavily on results that are known concerning resolvable 
BIBDs with block size 5. Our principal source of these designs is the work of W. 
H. Mills (see references) who has shown that for all r >36 with r = I or 
6 modulo 15 there exists an ( r ,  6, 1)-BIBD, with 165 possible exceptions. More 
recently, Mullin, Hoffman and Lindner [22] and Mullin [21 J have reduced the size 
of the list of doubtful values to 06. We are of course using the  fact that for each k 
the set of replication numbers for resolvable ( v ,  k ,  1)-BIBDs is PBD-closed (see 
e.g. [25]) and that there is a resolvable ( 2 5 , 5 ,  1)-BIBD, so that whenever an 
( r ,  6, I)-BIBD exists then so does a resolvable (4r + 1, 5, 1)-BIBD. That is, by 
using Table 1 in [21] together with Lemma 1.3 in [22], it follows that the set of 
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replication numbers for resolvable BIBDs with block size 5 contains the set of 
integers congruent to 1 or 6 modulo 15, with the following possible exceptions: 

Table 1. 

36 
246 
351 
50 1 
71 1 
916 

1161 
1456 
1816 
3.501 

~~~ 

46 61 141 
256 261 276 
376 406 411 
526 561 591 
736 741 766 
946 1011 1066 

1176 1186 1191 
1461 1486 1491 
1821 1851 1x81 
4191 4221 5391 

166 
286 
436 
616 
77 1 

1071 
1221 
1516 
1971 
5901 

171 196 
291 316 
441 466 
621 646 
796 801 

1096 1101 
1246 1251 
1521 1546 
2031 2241 

201 
32 1 
47 I 
65 1 
83 1 

1131 
1276 
1611 
2601 

226 
336 
486 
676 
886 

1141 
1396 
1641 
3201 

231 
346 
496 
706 
89 1 

1156 
1401 
1671 
347 1 

Remark. It will be of use to us later on to notice that there are never more than 
three ‘consecutive’ (i.e. consecutive in the set {n E Z+: n = 1 or 6 modulo 15)) 
integers among the entries in Table 1. 

Finally, we will use the usual notation TD(k, n)  to mean a transversal design 
with k groups of size n, that is, a k-GDD of type nk. Unless indicated otherwise, 
our source for these designs will be [2]. 

3. A new class of group-divisible designs with block size 4 

In this section w e  will construct our group-divisible designs, using as our 
primary tool the following construction. 

Construction 3.1. Let (X, Y, G ,  B )  be an incomplete group-divisible design and 
let w : X -  Z+ U (0) and d : X-+ Z+ U (0) be nonnegative integer functions on X, 
where d ( x )  s w ( x )  for all x E X .  Let a be a fixed nonnegative integer. Suppose 
that 

(i) for each block b E B there is a K-IGDD of type { ( ~ ( x ) ,  d ( x ) ) : x  E b}, 
(ii) there is a K-IGDD of type 

and 

of size a and a group of size 

group of size C,, d ( x ) .  

(iii) for each G, E G there is a K-GDD on a + EXEC;, w ( x )  points having a group 

Then there is a K-GDD o n  (I + C x c x  w ( x )  points having a group of size a and a 
d ( x ) .  

Remark. By setting Y = 0 and a = 0 in the above construction we obtain an 
equivalent version of construction 4.4 in [23]. 
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Lemma 3.2. Let a ,  j and h be integers where a = 3  or 6, j >  1 and h 3 0 ,  and 
suppose that there exists a ( 5 ,  6)-IGDD ( X ,  Y, G, B )  (G = {GI,  . . . , G j } )  having 
the following properties: 

(i) l C , l ~ = 3  and for each i = 2 , .  . . , j lCjl E (3, 4, 5); 
(ii) G, n Y = 0 and for each i = 2, . . . , j IGi n Y (  E (0, h ) ;  also, if  for some 

Then for each u =Omodulo3 with 3 IYI C u  C 3  1x1 there is a 
i, G, fl Y # 0 then the same is true for at least four values of i. 

GD[4, {3,6,9, u * } ;  6 1x1 + u + a ] .  

Proof. We use Construction 3.1. Let d : X +  (0, 3) be an assignment of the 
points such that d ( y ) = 3  for all y E Y, d ( x ) = d ( x ’ )  for all x , x ‘  E GI and 
EXExd(x)  = u. Such an assignment exists since IX - Y - G,1 3 lCll (this follows 
easily from the hypothesis). Let w(x)  = 6 + d(x)  for all x E X. Replace each block 
b in the incomplete group-divisible design by the relevant 4-IGDD, i.e. of type 
{ ( ~ ( x ) ,  d ( x ) ) : x  E 6 )  (the type will be (9, 3)‘61b1-’ for some i ,  see appendix), and 
if h # 0 replace the ‘missing’ subdesign (i.e. on the points of Y) by a 4-IGDD of 
type (9h, 3h)lY1”’ (see Theorem 2.3 and the remark following it). The groups in 
the incomplete group-divisible design are to be replaced by the relevant 4-GDDs, 
according to Table 2. This completes the proof. 0 

Corollary 3.3. Suppose that there is a GD[ {5,6), {3,4,5, r * } ;  s] with more than 
one group, where r 3 3. Then for each u = 0 modulo 3 with 0 s u s 3s and each 
a E ( 3 ,  6) there is a GD[4, {3,6,9, u * ) ;  6s + u + a ] .  

Proof. Use Lemma 3.2 with h = O  (so that Y = 0  and condition (ii) is 
vacuous). 0 

We are ready now to prove the main result of this section. 

Theorem 3.4. Let Y = { 20, 24, 25, 28, 29, 30, 31, 36, 40, 44, 45, 52, 59, 60, 63, 
64, 65) U { n  E Z : n 3 68) and let a E {3,6). Then for each s E Y and each u = 0 
modulo 3 wirh 0 s  u d 3s there exists a GD[4, (3, 6, 9, u * ) ;  6s + u + a ] .  

Proof. We use Corollary 3.3, exhibiting for each s E Y a {5,6}-GDD satisfying 
the hypothesis of that corollary. 
s = 20 remove a point from a (21,5,1)-BIBD. 
s = 24, 25 
s =28,29, 30 remove either three, two or one collinear point(s) from a 

s = 31 there is a resolvable 4-GDD of type 3’ (see e.g. [ 11, Section 31); 
Add a group ‘at infinity’ of size 7 to this design. 
s = 36 add a group ‘at infinity’ of size 8 to a resolvable (28,4, 1)-BIBD. 
s = 40 remove a point from a (41,5, 1)-BIBD. 

remove either one point or no points from a (25,5,1)-BIBD. 

(31,6, 1)-BIBD. 
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Table 2. 

267 

C d ( x )  4-GDD of type Source 
a ICA X E C ,  

3 3  
3 3  
3 3  
3 3  
3 4  
3 4  

3 4  

3 4  
3 4  
3 5  

3 5  
3 5  
3 5  
3 5  
3 5  
3 36 

and 
even 

3 2 7  
and 
odd 

3 26 

6 3  
6 3  
6 3  
6 3  

6 4  
6 4  

6 4  
6 4  
6 4  

6 5  
6 5  
6 5  
6 5  
6 5  
6 5  

6 26  
6 2 6  

0 
3 
6 
9 
0 
3 

6 

9 
12 
0 

3 
6 
9 

12 
15 
0 

0 

3 IGl 

0 
3 
6 
9 

0 
3 

6 
9 

12 

0 
3 
6 
9 

12 
15 

0 
3 IG,l 

3561 
3" 
3164 
379' 
3' 
3'6' 

3'6' 

3692 
3'12' 
3'6' 

3'2 
3166 
31'91 
3'6'12' 
3"15' 
321G,l+' 

321~;,~- i,,i 

34CJ + 1(3 IC, I) I 

3462 
3'64 
6' 
649 

6' 
3'6' 

6' 
6'9 ' 
6'12' 

6" 
3'6' 
6' 
669' 
692'  
6'15' 

6lGl + I  

61"~1"(3 lG,[)' 

add six infinite points to a KTS(15) 
remove a point from a (25.4, I)-BIBD 
(28, appendix] 
add nine infinite points to a KTS(2I) 
remove a point from a (28,4, 1)-BIBD 
remove a point from a 
PBD({4,7*1; 31)([31) 
remove a point from a 
PBD({4,7*1; 34)((31) 
(28, appendix] 
add twelve infinite points to a KTS(27) 
remove a point from a 
PBD((4,7*1; 34)([31) 
remove a point from a (37,4, I)-BIBD 
appendix 
appendix 
(28, appendix] 
add fifteen infinite points to a KTS(33) 
remove a point from a 
(6 IG,l + 4, 4, 1)-BIBD 

remove a poin t  from a 
PBD((4,7*); 6 El+ 4)(131) 

add 3 IG,! infinite points to a 
KTS(6 IC,( + 3) 
appendix 
128, appendix] 

add nine infinite points to a 
resolvable 3-GDD of type 64 
(Theorem 2.1) 
I61 
remove a point from a 
PBD({4,7*); 34)([31) 
161 
(27, appendix] 
add twelve infinite points to a 
resolvable 3-GDD of type 6' 
(Theorem 2.1) 

appendix 

appendix 
appendix 
add fifteen infinite points to a 
resolvable 3-GDD of type 6' 
(Theorem 2.1) 

add 3 lG,l infinite points to a 
resolvable 3-GDD of type 6"'81+' 
(Theorems 2.1 and 2.2) 

161 

161 

[hl 

161 
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s = 44, 45 
[12]); remove either one point or no points from this design. 
s = 52 add a group ‘at infinity’ of size 12 to a resolvable (40,4, 1)-BIBD. 
s = 59 remove a block and a point from a (66,6,1)-BIBD (the resulting GDD 
has type 4‘5’). 
s = 60, 63, 64, 65 remove either six, three, two or one collinear point(s) from a 

68 G s d 80 add a group ‘at infinity’ of size s-65 to a resolvable (65, 5, 1)-BIBD. 
8 0 ~ s  d 9 4  Start with a resolvable TD(5,15) and construct o n  each group the 
design obtained by removing a point from the affine plane of order 4. We can do 
this in such a way that the resulting design is a resolvable {4,5}-GDD of type 325, 
having five parallel classes of quadruples and quintuples and fourteen classes of 
quintuples. Now add a group ‘at infinity’ of size s-75 to this design (the first five 
infinite points must complete the ‘mixed’ parallel classes). 
88 s s  d 105 add a group ‘at infinity’ of size s-85 to a resolvable (85 ,5 ,  1)-BIBD. 
98 ds < 114 Start with a resolvable TD(5,19) and on each group construct a 
copy of the design obtained by adding three points ‘at infinity’ to the affine plane 
of order 4. This can give us a {4,5}-GDD of type 3542‘1 in which there is a parallel 
class containing 20 quadruples and 3 quintuples and in which there are a further 
eighteen parallel classes of quintuples. Add a group ‘at infinity’ of size s-95 (the 
first infinite point completing the parallel class containing the quadruples). 
108 s s s 125 Start with a resolvable TD(5,21) and on each group construct a 
(21,5, 1)-BIBD. Now add a group ‘at infinity’ of size s-105 to this design (the 
group-type will be 521(s-105)’). 
123 d s  d 149 Start with a resolvable TD(5,24) (4 MOLS of order 24 have been 
constructed by Roth and Peters [30]) and on each group construct a copy of the 
design obtained by removing a point from the affine plane of order 5. This can be 
done so that the resulting design is a resolvable 5-GDD of type 4’”; now add a 
group ‘at infinity’ of size s-120 to this design. 
148 d s d 174 Take a resolvable TD(5,29) and construct on each group a copy 
of the design obtained by adding four ‘infinite’ points to the affine plane of order 
5. Adding a group ‘at infinity’ of size 3-145 yields a GDD with group-type 45525 

158 d s  d 185 Take a resolvable TD(5,31) and construct a (31,6,1)-BIBD on 
each group; then add a group ‘at infinity’ of size s-155 (the group-type will be 
5’ ’ (s- 155) I ) .  

180 6 s  d 214 Start with a resolvable TD(5,35) and on each group construct a 
copy of the design obtained by removing a block and a point from a 
(41,5,1)-BIBD. This we can do so that the resulting design is a {4,5}-GDD of 
type 325425 in which there are five parallel classes of quadruples and quintuples 
and thirty-four parallel classes of quintuples. Add a group ‘at infinity’ of size 
s-175 to this design (the first five infinite points completing the ‘mixed’ parallel 
classes). 

there is a (45, 5,1)-BIBD with a parallel class of blocks (see e.g. 

(66,6, 1)-BIBD. 

(s- 145) 1. 
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208 s s  S 255 add a group ‘at infinity’ of size s-205 to a resolvable (205,5,1)- 
BIBD. 
228 s s s 269 take a resolvable TD(5,45), constructing a (45,5,1)-BIBD on 
each group, and then adding a group ‘at infinity’ of size s-225 (the group-type will 
be 54s(s-225)’). 
s 2268  From here on we use resolvable (4r + 1, 5, 1)-BIBDs, starting with 
r = 66. The reader is now referred to Table 1. Recalling that there are never more 
than three ‘consecutive’ entries in this table we can always write s = 4r + 1 + t 
where r is the replication number of a resolvable BIBD and 3 < t s m i n { r  - 
1, 122). Now add a group ‘at infinity’ of size t to a resolvable (4r + 1, 5, 1)-BIBD. 

This completes the proof of Theorem 3.4. 0 

Remark. Regarding the values in the set Z+ - Y in Theorem 3.4 i t  is tedious but 
straightforward to check that if s d 19 or s = 21, 22, 23, 26 or 27 then no 
{5,6}-GDD satisfying the desired properties can exist. 

4. Kirkman triple systems with subsystems 

In this section we will prove the following result. 

Theorem 4.1. Suppose that v = w = 3 modulo 6, v 3 3w and v - w = 12s + 6 or 
12,s + 12, where s E YU (0, 1, 2, 3, 4, 5, 6, 7) (9 is the set defined in Theorem 
3.4). Then there exists a KTS(v) containing a sub-KTS(w). 

We will use the following special case of Construction 3.1 to provide Theorem 
4.1: 

Construction 4.2. Let (X, G, B) be a group divisible design with block sizes from 
the set {n E Z+ : n = 1 modulo 3}, and let rn be a positive even integer. Then there 
exists a KTS(rn 1x1 + 3) containing subsystems of size rn IGjl + 3, Gj E G. 

Proof. Apply Construction 3.1 with Y = 0,  a = 3, w(x) = a m  and d(x) = irn for 
all x EX. The reyuired input designs exist by Theorem 2.3 and the remark 
following it. 0 

Before proceeding to the proof of Theorem 4.1 we obtain the following designs. 

Lemma 4.3. There exist KTS(81) with a sub-KTS(lS), KTS(87) with a sub- 
KTS(21), KTS(117) with a sub-KTS(33) and a KTS(135) with a sub-KTS(39). 
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Proof. The first two designs are obtained by applying Construction 4.2 (with 
m = 2) to a 4-GDD of type 659' (see appendix of [27]) or a 4-GGD of type 3119' 
(appendix). The fourth design is obtained by applying Construction 4.2 (with 
m = 4) to a 4-GDD of type 3'9' (this GDD can be obtained by adding nine 
infinite points to a resolvable 3-GDD of type 46 (Theorem 2.1)). To get a 
KTS( 117) with a sub-KTS(33) proceed as follows. We first construct the following 
PBD({4,10*, 16*}, 58): 
Points: (ZI6x (1,2,3})U({a} xZ,)U { m , : l ~ i ~ 8 } .  
Blocks: The block of size 10 is ( ( a )  X Z,) U (03, : 1 S i S 8) and the block of size 
16 is ZI6 x (3). The blocks of size 4 are obtained by developing the following 
modulo 16 (the subscripts on a are to be evaluated modulo 2): 

aJ15103 005 101 5203 91 15 1 13203 

a19212201 w61110203 4211214103 

m~o~320? O3712i8z03 01110222 
03~3,10203 m81316203 014 I8 1 12 I 

m34i14zo, 11618103 024282122 

O047i 15203 12227203 

Now remove a point to obtain a (4, 10)-GDD of type 3I415l and apply 
Construction 4.2 (with m = 2) to this GDD. 0 

Proof of Theorem 4.1. If s = 0, 1, 2, 3, 4, 5, 6 or 7 use Theorems 1.1 and 1.2 and 
Lemma 4.3. Now let s E 3'. If v - w = 12s + 6 apply Theorem 3.4 with a = 3 and 
u = (w - 3)/2 (note that since ZJ 2 3w we have 0 S u S 3s) to construct a 
GD[4, (3,6,9,  (w - 3)2*}; (v - 3)/2]. Then use Construction 4.2 (with m = 2) 
to obtain a KTS(v) with a sub-KTS(w), as desired. If v - w = 12s + 12 proceed as 
above using instead a = 6. 0 

As an immediate corollary to Theorem 4.1 we have: 

Theorem 4.4. Let v = w = 3 modulo 6, v a 3w and v - w b 822. Then there exists 
a KTS(v) containing a sub-KTS(w). 

5. Balanced incomplete block designs (block size 4 and 3, = 1) with subdesigns 

Here we will prove our result on embeddings of (w, 4, 1)-BIBDs. 

Lemma 5.1. Let v = w = 1 or 4 modulo 12, v 2 3w + 4 and v - w 2 1644. Then 
there is a (v, 4, 1)-BIBD containing a sub-(w, 4, 1)-BIBD. 
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Proof. Let h = a(u - w) and u = [(w - 1)/41, and let s = [(h - 3)/61. Since 
u - w 1644 we have s 3 68, and furthermore 

(i) if u = w = 4 modulo 12 and h is odd then 

3s = (h - 3)/2 2 ( 2 ~  - 8)/8 = u 3 0, 

(ii) if u w = 4 modulo 12 and h is even then 

h - 6  ( 2 ~ + 1 6 ) - 2 4  2 ~ - 8  
- u 3 0 ,  - 2 

8 8 
3s = - 

2 

(iii) if u = w = 1 modulo 12 and h is odd then 

h - 3  2 ~ - 2  
3s=->-- -use, and 

2 8 

(iv) if u = w = 1 modulo 12 and h is even then 

h - 6  ( 2 ~ + 2 2 ) - 2 4  2 ~ - 2  -- -use. -- 3 - 
8 8 

3s =- 
2 

Thus we can use Theorem 3.4 (with a = 3 when h is odd, or a = 6 when h is even) 
to construct a GD[4, {3,6,9, u * } ;  h + u] .  Now use Wilson’s Fundamental Con- 
struction [36] (this is really just a special case of Construction 3.1, i.e. with a = 0 
and w ( x )  = d ( x )  for all x E X) on this group-divisible design, replacing each point 
by four new ones, to obtain a GD[4, {12,24,36,4u*}; 4(h + u)]; add one or four 
‘ideal’ points (depending on whether w = 1 or 4 modulo 12) and fill in the relevant 
BIBDs. 0 

Before proceeding we will need the following simple lemma. 

Lemma 5.2. Let s 2268. Then there is an integer t with 4==t< min{js, 123) for 
which a ( 5 ,  6)-IGDD of type 4(s-5r)’4(5, 1)‘ exists. (Note that this IGDD has s 
points.) 

Proof. We proceed essentially in the same way as the case s 2 268 in the proof of 
Theorem 3.4. Again referring the reader to Table 1 we can write s = 4r + t where 
r is the replication number of a resolvable BIBD with block size 5 ( r  2 66) and 
4 s t < min{js, 123). (Certainly t need never be greater than 123 since Table 1 
does not contain more than three ‘consecutive’ entries; on the other hand it can 
be checked that the largest value that tls need take occurs when s = 307, when we 
must write 307 = 4 66 + 43, so that t / s  = 43/307 < 4.) Add t points ‘at infinity’ to 
a resolvable (4r + 1, 5, 1)-BIBD and then remove a point other than one of the 
ones just added. A {5,6}-IGDD of type 4‘-‘(5, 1)‘ is obtained (the ‘missing’ 
subdesign occurs on the t new points). 0 
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Lemma 5.3, Let v, w = 1 or 4 modulo 12 where v 2 3w + 1 and v - w is an odd 
integer 21611. lf w b 373 then there is a (v, 4, 1)-BIBD containing a sub-(w,  4, 1)- 
BIBD. 

Proof. Let s = i (v  - w - 3); since v - w 2 1611 we have s 3 268. From Lemma 
5.2 there is a {5,6}-IGDD (X, Y, G, B) of type 4(’-s‘)’4(5, 1)‘ for some 
4 C t G 123. Now we apply Lemma 3.2 with h = 1, lYl= t and a = 3, and with 
u = w - 1. Note that u b 3t since w b 373; moreover, since s and t have the same 
parity it is easily deduced that u - 3t = 0 modulo 6. This means (see the proof of 
Lemma 3.2) that we can assign the function d to X in such a way that for each 
group GI E G an even number of points in G, - Y are assigned a value of 3; in 
turn (see Table 2) the only triples (a ,  lGll, Z d ( x ) )  that will arise are ( 3 , 4 , 0 ) ,  
(3,4,6),  (3,4,  12), (3 ,5 ,3) ,  (3 ,5 ,9)  or  (3,5,15).  In this way we obtain a 
GD[4, (3, u * } ;  6s + u + 31, i.e. a GD[4, (3, ( w  - l)*}; u - I]. Now just add a 
point to ‘complete’ the groups, and construct a (w, 4, I)-BIBD on the block of 
size w. 0 

Lemma 5.4. Let u, w = 1 or 4 modulo 12 where 3w + 1 d v s 15w + 28 and u - w 
is an odd integer 21611. Then there exists a (v, 4, 1)-BIBD containing a 
sub-(w, 4, I)-BIBD. 

Proof. Proceed as in the proof of Lemma 5.3, using instead the inequality 
4 G t c 4s (from Lemma 5.2). We will again use Lemma 3.2 with h = 1, IYI = t ,  
a = 3 and u = w - 1. We must therefore only show that u b 3t. 

=s 15w -b 28. Since u = 6s + w + 3 it follows that s S $ w  + 2. 
On the other hand s 2 7t, so that w b 3t - E. But w = 1 modulo 3 so that in fact 
w b 3t + 1, i.e. u 2 3t, as desired. 

By hypothesis, 

0 

Together with Theorem 1.3, Lemmas 5.1, 5.3 and 5.4 yield the following block 
size 4 analogue to the Doyen-Wilson Theorem (missing a finite number of cases). 

Theorem 5.5. Let v ,  w = I or 4 modulo 12, v b 3w + 1 and v - w b 1635. Then 
there exists a (v, 4, 1)-BIBD containing a sub-(w, 4, 1)-BIBD. 

Proof. If v - w is even, or v - w is odd and w b 373 then we use Lemmas 5.1 or 
5.3 respectively. If u - w is odd and w is ‘small’, i.e. w S 124, then use Theorem 
1.3 (which asserts that a ( w ,  4, I)-BIBD can always be embedded in some 
(v, 4, 1)-BIBD whenever v 2 13w + 96). For values of w between 133 and 364 use 
Lemma 5.4 in conjunction with Theorem 1.3. 0 
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6. Subdesigns in complementary decompositions 

In this section we obtain some results on subdesigns in complementary 
decompositions. We will need the following design, which appears in Lemma 2.4 
of [8]: 

Lemma 6.1. There is a pandecomposable covering of the complete multipartite 

graph K2.2.2.2 by K4.s. 

Proof. Take the following design, whose blocks are to be interpreted as in the 
example preceding Theorem 1.7: 

Groups: 0 , l  2 , 3  4 ,5  6 , 7  

Blocks: 0 ,2 ,7 ,4  4 , 2 , 6 , 1  
1 ,3 ,6 ,5  5 ,3 ,7 ,0  
2 ,1 ,5 ,7  6 , 0 , 5 , 2  
3 , 0 , 4 , 6  7, 1 , 4 , 3  0 

Theorem 6.2. Let 71 w = 1 modulo 6, v 3 3w + 4 and v - w 2 822. Then there 
exists a pandecomposable (v, 4, 2)-BIBD containing a sub-pandecomposable 
(w, 4, 2)-BIBD. 

Proof. Use Theorem 3.4 to construct a GD[4, {3,6,9,  (w - 1)/2*}; (v - 1)/2] 
(i.e. let s = [(v - w - 6)/121). Now apply Wilson’s Fundamental Construction 
[36], replacing each point by two new ones and each block by the design in 
Lemma 6.1; add one ‘ideal’ point and fill in pandecomposable (7,4,2)-, 
(13,4,2)-, (19,4,2)- and (w, 4, 2)-BIBDs. 0 

As an immediate consequence of Theorem 6.2 we have 

Corollary 6.3. Let u = w = 1 modulo 6, v 
exists a nested STS(u) containing a sub-nested STS(w). 

3 w  + 4 and v - w 3 822. Then there 

Theorem 6.4. Let u = w = 1 modulo 3, v 3 3w + 1 and v - w 3 411. Then there 
exists a complementary decomposition 2K, -+ { P3, P3} containing a sub- 
complementary decomposition 2 K ,  -+ { P3, P3} .  

Proof. Use Theorem 3.4 (with s = [(v - w - 3)/61) to construct a 
GD[4, {3,6,9, (w - l)*}; v - 11. Add a point to ‘complete’ the groups and so 
obtain a PBD({4,7, 10, w*}; 11) and then construct a complementary path 
decomposition on each block. 0 
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Since the root of a complementary decomposition 2K,, --* {P3,  P3} is a (v, 4, 2)- 
BIBD Theorem 6.4 now yields the following version of Theorem 5.5 for 
embeddings of (v ,  4, 2)-BIBDs: 

Corollary 6.5. Let v = w = 1 modulo 3, u 3 3w + 1 and v - w 
exists a (v, 4, 2)-BIBD containing a sub-( w, 4, 2)-BIBD. 

411. Then there 

Remark. The embeddings given by Corollary 6.5 will, in general, contain 
repeated blocks. 

7. Conclusion 

We expect that the techniques employed in Section 3 of this paper will be very 
useful in considering a wide variety of problems concerning subdesigns in 
combinatorial designs. This is because Construction 3.1 can of course be used to 
construct group-divisible designs, analogous to those in Lemma 3.2, for larger 
block sizes. 

Concerning the present material, we can already use Lemma 3.2 to go a long 
way towards solving the spectrum for partially resolvable partitions PRP 
2-(3,4, v ;  rn) (i.e. a PBD({3,4}; v) whose triples can be arranged into rn parallel 
classes, see [lo]); a few difficulties remain, however, and we hope to report on 
this in a future paper. 

We will also report on some recent progress made concerning the unsettled 
cases in Sections 4 and 5. For example, at the time of writing, there are just fifty 
pairs (21, w) remaining for which the existence of a KTS(u) containing a 
sub-KTS(w) has not yet been established. 

Note added in proof. Since the time of writing we have become aware that R. 
Wei and L. Zhu, in a follow-up paper to [35] entitled 'Embeddings of S(2, 4, v)', 
have come very close to a complete solution for subdesigns in BIBDs with block 
size 4 and A = 1. 
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Appendix 

Incomplete group-divisible designs with block size 4: 
A 4-IGDD of type (9, 3)5 

See Theorem 2.3 and the remark following it. 
A 4-IGDD o f t y p e  (9, 3)46' 

See the appendix in [28]. 
A 4-IGDD of type (9, 3)362 
Points: (Z, x {1,2,3,4,5}) U ( { a ,  b, c} X Z3). 
Groups: {Z, x { j }  : j = 1, 2) U { (Z, x (3)) U ( { a }  x Z,)} 

Subgroups: { { a }  x Z,} U { { b )  X 

Blocks: develop the following modulo 6 (the subscripts on a ,  h and c are to be 
evaluated modulo 3): 

u {(Z, x (4)) u ({b} x Z3)} u {(G x ( 5 ) )  u ( { c }  x Z3)). 
U { { c )  X Z,>. 

A 4-IGDD of type (9, 3)263 
Points: (H3 x {1,2,3,4,5,6}) U ( { a }  X Z,) U ( { b }  X Z3) U ( { c }  X Z3) 

Groups: { { j }  x {I, 2, 3, 4, 5 ,6} : j  =0,  1, 2) U { ( { a }  X Z,) U ( { b }  X Z,) 

Subgroups: { { a }  x Z,) U {{ml,m2,m3}). 
Blocks: develop the following modulo 3: 

U {a, : 1 d i d 9}. 

U ( { c }  x Z,)} U { {m, : 1 d i d 9}}. 

A 4-IGDD of type (9, 3)164 

resolvable 3-GDD of type 64 (Theorem 2.1). 
A 4-IGDD of type (9,3)' 

This is just a 4-GDD of type 649L, obtainable by adding nine infinite points to a 

See Theorem 2.3 and the remark following it. 
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A 4-IGDD of type (9, 3)’6l 
See the appendix in [28]. 

A 4-IGDD o f t y p e  (9, 3)462 
Points: Z I 2 x  {1,2,3,4).  
Groups: { { O + i ,  4 + i ,  8 + i }  x (1, 2, 4}:i=O, 1, 2, 3) 

Subgroups: { (0 + i, 4 + i, 8 + i} x (4): i = 0, 1, 2, 3). 
Blocks: develop the following modulo 12: 

U { { O + i , 2 + i , 4 + i , 6 + i , S + i ,  l O + i ) x  {3}:i=O, 1). 

01112203 01325223 
113110204 2110311304 

I03O4 51328304 
71125304 101923304 
91134304 22729304 
52626304 112237304 
01316191 02326292 

A 4-IGDD of type (9, 3)363 
Points: B9 x { 1,2,3,4,  S } .  
Groups: { (0 + i, 3 + i, 6 + i} x { 1, 2, 5): i = 0, 1, 2) 

U { (0 + i, 3 + i, 6 + i} x {3,4}: i = 0, 1, 2). 
Subgroups: { (0 + i, 3 + i, 6 + i} x ( 5 ) :  i = 0, 1, 2). 
Blocks: develop the following modulo 9: 

01 132203 221484OS 1°4540S 

01214334 5272630s 41815305 
01723374 43836405 5142740s 
7134440s 01425204 82233305 
2103730s 02426324 12132405 

A 4-IGDD ofrype  (9, 3)264 
Points: B6 x { 1,2,3,4,5,6,7) .  
Groups: { H h ~ { j ) : j = 5 , 6 ) U { { O + i , 2 + i , 4 + i ) X { 3 , 4 ) : i = 0 ,  1) 

Subgroups: { (0 + i, 2 + i, 4 + i} x (7): i = 0, 1). 
Blocks: develop the following modulo 6: 

U { (0 + i, 2 + i ,  4 + i) x { 1, 2, 7): i = 0, 1). 

01120506 02042517 O1232617 
01520314 034.55627 013,3637 
02124316 045~4627 02533657 
0 I 5 &1t, 0 I 32 1556 03 133547 
02341~46 01 115455 04143647 
01043~57 0,332546, 01310333 
02233537 0203540s 02320434 
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A 4-IGDD of type (9, 3)'65 
This is just a 4-GDD of type 6'9', and can be found in the appendix of [27]. 

Remark. The 4-IGDDs with no groups of size 9 are of course just 4-GDDs of 
types 6', 6', and so exist by [6]. 

Group-divisible designs with block size 4: 
A 4-GDD of type 3'6' 
Points: H j 6  U ( { a }  x Z3). 
Groups: { { O + i , 6 + i ,  12+i ,  18+i ,24+i ,  30+i}:i=O, 1,2,  3, 4,5} 

Blocks: develop the following modulo36 (the subscript on a is to be evaluated 
modulo 3): 

u { { a }  x 

0,1,3,11 0,5,14,21 0,4,17,ao 

A 4-GDD oftype 3"9' 
Points: (h6 x {1,2,3,4,5,6}) U ( {a ,  b} X Z3). 
Groups: { { O + i , 2 + i , 4 + i } X { j } : i = O , l ; j = 1 , 2 , 3 , 4 , 5 } U { { a } x Z , )  

u ((a6 x (6)) u ( { b }  x h3)}. 

Blocks: develop the following modulo6 (the subscripts on a and 6 are to be 
evaluated modulo 3): 

01 0304% OR 1Abo  0102 lzbz 
01321436 02530414 01545sbo 
01435640 01223316 01115223 
025536a2 01533446 02430515 
Oz2ds46 O , O S ~ & Z  01311~4s 
03544536 022.14~16 Oz3zaobo 
02033441 02542526 0333aob I 

01442sbi 01243sai 0434aob2 
A 4-GDD oftype 3462 
Points: ZI2 U ( { a }  x Z,) U ( { b }  x Z,) U { m i :  1 si s 4 } .  
Groups: {{0 + i, 4 + i, 8 + i}: i =0, 1, 2, 3) U { { a }  x Z,} 

U { ({ 6)  X Z2) U {mi  : 1 < i s 4)). 
Blocks: the following, for i = 0, 1, 2, 3, 4, 5 (the subscripts on b are to be 
evaluated modulo 2): 

ai(O + 2i)(l + 2i)wI 
ai(3 + 2i)(8 + 2 i ) 9  
aj(6 + 2i)(ll + 2 9 9  
4 9  + 2i)(10 + 2i)w4 

aibj(2 + 2i)(4 + 2i) 
a,bi+,(5 + 2i)(7 + 2i) 
(0 + 2i)(3 + 2i)(6 + 2i)(9 + 2i) 
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A 4-GDD of fype 669' 
Points: E36 U ( { a }  x Z9). 
Groups: { { O + i ,  6 +  i, 12+i,  18+i,  24+i,  30+i}: i = O ,  1, 2, 3, 4, 5) 

Blocks: develop the following modulo 36 (the subscripts on a are to be evaluated 
modulo 9): 

u { { a )  X G ) .  

0,1,5,27 1,17,34, a, 0, 2, 13, 5, 12, 33, a, 

A 4-GDD of fype @12' 
Points: (Z12 x {1,2,3}) u { m i :  1 4  i s 12). 
Groups: {{O+i,6+i} ~ { 1 , 2 , 3 } : i = O ,  1 , 2 , 3 , 4 , 5 } U { { ~ i : l ~ i i 1 2 } ) .  
Blocks: develop the following modulo 12: 

00~o~5z43 Oo2014223 
0030,8253 m40 ,321 13 

mS011283 Oo7012273 
md)~11z33  m90110213 
O31o0~7z93 m1~019~10~ 

then, for each j =  1, 2, 3 construct a 4-GDD of type Z7 on the groups 
{{0 + i, 6 + i} X { j }  : i  = 0, 1, 2, 3, 4, 5 )  U { {036, m12}} (a 4-GDD of type 27 is 
obtained by developing the block 0, 1,4 ,6  modulo 14). 
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A Steiner Triple System (STS) consists of a set X together with a collection B 
of 3-subsets of X such that every pair of elements of X occurs in exactly one 
member of B.  ( X ,  B,) and (X, B,) are said to be orthogonal if B ,  n B ,  = 0 and 
for ( x ,  y ,  2) E B , ,  (u,  11, z )  E B ,  there exists no w E X such that ( x ,  y ,  w )  and 

It should be noted that this terminology is not unique. Mullin and Vanstone [ l ]  
and Rosa [2, p. 1251 prefer to call such pairs of STSs perpendicular. However, 
Mendelsohn [3] reserves this term for a 4-column array of elements of X ,  any 3 of 
which form a STS; here we shall retain the older term, orthogonal. 

Mullin and Nemeth [4], (as quoted in [2]), have shown that for X = a finite field 
of order 6q + 1, with generator g, one may obtain a pair of orthogonal STS's on 
X by including q sets of the form { h  +g', h +gr+2y, h + g'+4y} in B , ,  for all 
h E X ,  while B ,  will consist of the triple { h  - g', h - g r + 2 y ,  h - g'+4q} for 
appropriate values of r between 0 and q - 1. This partially solves the existence 
problem for orthogonal pairs, and ample literature is quoted in [2]. 

(u, u,  w )  E B2. 

In what follows, we present something of a natural extension of this result. 
Let X be a set of order 6q + 1, closed under addition. Thus X might be Z h q + , ,  

or the set of all ordered pairs, triples, k-tuples of some Z,, with m2, m 3  or 
m k  = 64 + 1 (in which case, addition is to be understood componentwise). By 
some abuse of language, we shall call the  STS (X, B )  cyclical if ( a ,  b, c )  E B 
implies (a  + h ,  b +- h ,  c + h )  E B for every h E X .  A counting argument will show 
that in this case, B consists of q sequence each containing 1x1 triples. 

Lemma 1. I f  ( X ,  11) is a cyclical STS, and ( a ,  b, c )  E B ,  then ( -b ,  - a ,  d )  4 B for 
any d E X. 

Proof. Taking h = a + b, (-0 + h,  -a  + h,  d + h )  = ( a ,  b, a + b + d ) ;  thus the 
pair ( a ,  b)  would appear twice. 0 

Definition. For a STS (X, B ) ,  call ( X ,  - B )  the opposite STS, where - B  is the set 
of triples ( - a ,  -b, -c) for ( a ,  b, c) E B. By Lemma 1, if (X, B )  is a cyclic STS, 
(X, - B )  is disjoint from it. 

0012-.365X/89/%3.50 0 1989, Elsevier Science Publishers B.V.  (North-Holland) 
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Let again X be a set of order 69 + 1, closed under addition. If the elements of 
X are the k-tuples of Z,,, with m k  = 69 + 1, then obviously ( m ,  3 )  = 1. Then for 
any triple (a, b, c )  of elements of X, there exists a h E X ,  such that (a + h )  + 
(6 + h )  + (c + h )  sum to zero modulo m, since for the rth component of h we 
may always solve a, + b, + c, + 3h, = 0 (mod m). Moreover, this h is unique, for 
adding any h'E X will add a multiple of 3 to each nonzero component. Call 
(a + h, b + h, c + h )  the zero-sum triple of the sequence containing (a, 6, c ) ,  and 
we obtain 

Lemma 2. In a cyclical STS ( X ,  B ) ,  with 1x1 = 69 + 1 ,  each sequence of B 
contains a unique zero-sum triple. 

Proposition 1. Let 1x1 = 69 + 1, ( X ,  B , )  a cyclical STS and ( X ,  B 2 )  = ( X ,  - B l )  
the opposite cyclical STS; if no element of X appears more than once in the 39 
elements of the zero-sum triples of B , ,  then ( X ,  B , )  is orthogonal to ( X ,  B2) .  

Preliminary remark. The conditions imposed by Mullin and Nemeth are some- 
what more restrictive: none of the q zero-sum triples of B2 can have an element in 
common with a zero-sum triple of B I . 

Proof. Note first that by Lemma 1, B ,  and B2 can have no triple in common. 
For the orthogonality condition to fail, there should be two triples 

( x ,  y, z), (u,  v, z)  E B I  and ( x ,  y ,  w), (u,  v, w )  E B,; since we are dealing with 
cyclical STSs, this is equivalent to ( x  - z ,  y - z ,  0) and (u - z, v - z, 0) E B, as 
against ( x  - z ,  y - z ,  w - z )  and ( u  - t, - z ,  w - z)  E B2.  It is therefore 
sufficient to consider in B2 the companions of pairs of elements of XI having zero 
as third element in triples of B , .  

To check the circumstances more explicitly, suppose sequences 1 ,  2 ,  3 of R ,  
contain the zero-sum triples 

(at, bi ,  - a ,  - h i ) ;  ( a z ,  bl ,  - ~ 2 - - 2 ) ;  ( 0 3 ,  b3, -a , -b , )  

(all g entries distinct by hypothesis), from which we may derive, respectively 

(0, hi - 0 1 ,  -201 - hi ) ,  ( ~ 2 - h 2 , 0 ,  - a 2 - 2 b J ,  ( 2 ~ 3  + h i ,  ~ 3 + 2 b 3 , 0 )  E Bl 

and consequently 

(0, - 6 1 , 2 ~ ,  + h i ) ,  (bz -a? ,  0, +2h,); ( - 2 ~ 3 - h 3 ,  - ~ 3 - 2 6 3 ,  0) E Hz. 

To restore the nonzero entries of the first 3 triples, we have to add -3a, to the 
first, -3h, to the second, and 3u, + 3b3 to the third, giving 

( - 3 ~ 1 ,  - 2 ~ , - b l ,  h l - ~ l ) ,  ( - a z - 2 h , ,  - 3 h , , a 2 - h , ) ,  

(a3 + 2h3, 2U3 + b3, 3 ~ 3  + 3b3) E Bz.  
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But since (1x1, 3) = 1 and a l ,  b 2 ,  a3 + b3 are distinct by hypothesis, the factor -3 
does not affect the inequality and this completes the proof. 0 

Example. X = B19. The Mullin-Nemeth solution, in one version, gives 

(1,7,11),(2,3,14),(4,6,9) E B l ; ( 5 ,  16,17),(10,13,15),(8,12, W E B , ,  

and Proposition 1 offers an additional solution 

(1,6,  12), (4,7,8), (9, 1 1 ,  18) E B i ; ( l ,  8, lo), (7, 13, 18), ( 1 1 ,  12, 15) E B2, 

which, as one may easily verify, is not equivalent to the one above. 

Proposition 2. Let ( X ,  B , ) ,  ( X ,  B 2 )  be a pair of cyclical STSs satisfying the 
conditions of Proposition 1, and let ( Y ,  B 3 ) ,  ( Y ,  B4) be another such pair. Then 
for Z = :  X X Y ,  a choice of zero-sum triples Bs  and B ,  may be found such that the 
cyclical STSs on Z generated by BS and B, be again orthogonal. 

Proof. One such choice whose verification, while somewhat tedious, is straight- 
forward would be 
(a) for every zcro-sum triple (x, ,  x 2 ,  x,) E B , ,  put ((x,, 0)(x2, O), (x?, 0) E B,; 
( p )  choose a cyclic order in the zero-sum triples ( y , ,  y2 ,  y3) E B , ,  and for every 

(x i ,  x 2 ,  x , )  as above include in B 5 ,  

((XI9 Y l ) ,  (x2, Y 2 L  ( - h 9  Y 4 ) ;  ((XI7 Y Z ) ,  ( X ? ,  Y 7 ) ,  ( X 3 7  Y l ) ) ;  

((x,, y , ) ,  (x2, Y l ) ,  ( X ? ,  y2)); ( (XI P -Y,)r ( X Z ?  - Y 2 ) ,  (x7,-y7)); 

( (XI ,  -Y2)9 (x2, -Y7h ( x 3 ,  - . h J ) ;  ( ( X I !  -Y& (x29 - Y A  ( X 3 7  - Y 2 ) ) ;  

( y )  add all the triples of the form ((0, y l ) ,  (0, y2),  (0 ,  y 7 ) ) .  0 

The reader might wish to check the following example, with X = Z 1 3 ,  
B ,  3 (1. 3, 9), (2, 6 ,  5); Y = Z,, B ,  3 (1, 2, 4) 3 2  = &,, comparing the r ewhes  
modulo 13 and modulo 7 of the following 15 triples 

(a) (14, 42, 3 5 ) ,  (28, 84, 70) 
(6) (1. 16,74) (15, 58, 18) 

(79, 81, 22) (2, 32, 57) 
(51 39, 9) (67, 71. 44) 
(27, 6d.  871 (41, lY, 31) 
(60, 5 5 ,  61) (80, 6 5 )  
(40, 3, 48) (54,45, 83) 

( y )  (78,65,39) 

It  is very probable that Lindner and Mendelsohn 151, (as quoted in (21, loc cit ), 
alreadl had a similar construction tor product order?, bawd on the rewlts o t  
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Mullin and Nemeth. They conclude that the existence problem for orthogonal 
STSs of order 6k + 1 would be solved if 6k + 1 were a product o f  two 
primes = (- 1) (mod 6). 

Following this, I invited Ron Chernin of Tel-Aviv University to do an 
exhaustive computer search for a cyclical STS of the smallest possible order, 5 5 ,  
but he found no solutions satisfying the condition of Proposition 1 .  
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Quasigroups ol yet another type turn out to be related to Steiner Triple Systems, though the 
connection is rather loose and not as precise as in the various coordinatizing bijections 
described in 131. However, families of pairs formed by abelian groups of odd order and 
quasigroups defined on the same set of elements have repeatedly been used in the literature to 
construct Large Sets [X] of Steiner Triple Systems. In Section 1 ,  these quasigroups and their 
association with iibelian groups are described, while Section 2 is devoted to applications to 
STSs. 

1. Definitions and basic properties 

1.1. Quasigroups and squodds 

A quasigroup on a set X is a mapping (.) from X . X onto X such that of three 
elements of X satisfying a * b = c, any two determine the third uniquely; that is, 
for any x EX,  the mapping y - x  * y  of X into X is one-to-one onto, a 
permutation. The operation (and the quasigroup) is said to be totally symmetric if 
a + h = c implies b . a = c and c . u = b. We shall often write x 2  for x . x ,  although 
this is only customary in the associative case, and call it the square of x .  An 
element x of a quasigroup is called idempotent if it equals its own square, 

Suppose the totally symmetric quasigroup Q ( - )  on the set X contains an 
idempotent w ,  and no other x for which x . x = w ,  which also excludes w . x = x .  
Then the multiplication by w permutes the elements of X\w in pairs, since 
w . x = o for x # w would imply w * w = x ,  contrary to the assumption w . w = w.  
Thus the order 1) of X ,  if finite, must be odd. If in addition, one requires w to be 
the onfy  idempotent, this order has to be prime to 3, as can be seen by counting 
the v 2  entries in the standard multiplication table of Q; indeed, an equality such 
as a 1 b = c ,  with all threes values distinct, requires six entries, one for each 
ordered pair of factors, while one of the form a . a = b requires 3 entries. Adding 
one for w (1) = w ,  we find v 2  = l(mod 3 ) .  Write X *  for X\w. The quasigroups 
to be discussed will satisfy some more restrictions. 

x = x  ox. 

Definition 1.1.1. A SQUODD (short for Symmetric Quasigroups of Odd Order) 

0012-365X/X9/$3.50 0 1989, Elsevier Science Publishers B.V. (North-Holland) 
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w 

a 

b 

d 

Q ( . )  on a set X of order 21 is 
(i) a totally symmetric quasigroup with a unique idempotent w E X ,  for which 
(ii) the mapping x + x - x is a permutation 3t of the set X *  = X\ w and 

(iii) every cycle of n is of even length. 

(0 c d a b 

c h a  ( o d  

d a c b o - ( w o w ) ,  ( (om),  (ohd ) ,  (aah), (bbc) ,  (ccd) ,  (ddu) .  

c a c o h d c  

h d ( o c  u 

Example 1.1.2. 

w u  b c  d 

It is often convenient to list the squodd by enumerating its (v + l ) (v  + 2)/6 
triples, instead of the full multiplication table. 

Remark 1.1.3. No cycle in the permutation JC can be of length less than 4, since 
a cycle of length 2, x . x = y ,  y . y = x would require x . y = x and x . y = y at the 
same time. 

1.2. Graph notation and direct sums 

Given a squodd Q ( . )  on a set of order v,  form a graph of v vertices, labelled by 
the (unordered) pairs ( x ,  x ’ ) ,  x E X ,  two vertices being connected by an edge if 
their labels have an entry in common; then the graph will consist o f  a single loop 
on the vertex ( w ,  (0) and of one or more cycles of even order. I t  is well known 
that a graph containing no cycles of odd order is bipartite, that is, its vertices may 
be partitioned (eventually in more than one way) into two classes, with no edge 
connecting two vertices of the same class. The whole graph so obtained, which will 
he termed the diagonal qruph of the squodd Q ( . ) ,  will thus consist of one odd 
canponent, the loop on (8,  w ) ,  and a bipartite graph with vertices labelled by 
ccrtain pairs of elements of X * ,  which we will call the main purl o f  the diagonal 
graph. 

Definition 1.2.1. Given two graphs, GI with vertex set X I  and G2 with vertex set 
X , ,  the direct sum GI (3 C;? will be a graph whose vertices are the  ordered pairs 
( x , ,  x , ) ,  x ,  E X,, in which ( ( x i ,  x 2 ) ,  ( y l ,  y 2 ) )  form an edge if  and only if (xI, v , )  is 
an edge of GI und ( x 2 ,  h) one of G2. 
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The following lemma will also find application later on: 

Lemma 1.2.2. The direct sum of two graphs is bipartite if and only if at least one 
of the summands is bipartite. 

Proof. Since the only graphs that are not bipartite are the ones containing cycles 
of odd order, it is sufficient to verify the easily checked claim that a cycle of order 
a in the sum can only be generated by a cycle of order b in one summand, and 
one of order c in the other, where a is the least common multiple of b and c. 0 

Definition 1.2.3. Let Q,(L) be a squodd on the set X I ,  with idempotent ol, and 
Q2(i) a squodd on the set X, ,  with idempotent w,; then the direct sum of Q ,  and 
Q,, denoted by Ql @3 Q,, is a quasigroup Q(*)  on X1 x Xz, with ( x , ,  xz) * 
( y l ,  y z )  = ( z , ,  zz) if and only if x1 L y ,  = z1 and x z i  yz = z2, (x , ,  y,, z, E X , ) .  

Proposition 1.2.4. The direct sum of two squodds is a squodd. Moreover, if the 
direct sum of two quasigroups satisfying conditions ( i )  and (ii) of De$nition 1.1.1 
satisfies condition (iii) as well, so does each summand. 

Proof. It is obviously enough to verify the second statement. 
The diagonal graph of the sum consists of 4 parts: 
(1) the loop with single vertex ( w , ,  w z ) ,  
(2) the part derived from elements of the form (xl ,  wz) ,  with x ,  E X:, which is 

isomorphic to the main part of the diagonal graph of Q,(L), 
(3) the part derived from elements of the form ( I N , ,  x,)  with x ~ E X ; ,  

isomorphic to the main part of the diagonal graph of Qz(i), 

(4) the part derived from elements of the form ( x , ,  x,)  with x ,  E X :  and 
x ,  E X ;  isomorphic to the direct sum (in the sense of Definition 1.2.1) of the main 
parts of the diagonal graphs of the summands, and thus to the direct sum of 
parts (2) and (3). 

By Lemma 1.2.2, the graph consisting of parts (2), (3) and (4) -which is the 
main part of the diagonal graph of Q(*) -will be bipartite if, and only if, parts (2) 
and (3) are bipartite, too. 0 

1.3. Squodds and abelian groups; The main example 

For some of the constructions in the sequel, the multiplicative order of -2 
modulo an odd prime p is relevant. 

Lemma 1.3.1. 
(a) I f  p = 3 
( B )  I f  p = 5 
( y )  I f  p = 7 
( 6 )  I f  p = 1 

(mod 8), the multiplicative order of -2 is an odd integer; 
(mod 8 ) ,  the multiplicative order of -2 is a multiple of 4; 
(mod 8 ) ,  the multiplicative order of -2 is twice an odd number; 
(mod 8 ) ,  the multiplicative order of -2 may be either odd,  or a 

multiple of 4, or twice an odd number. 



288 S. Schreiher 

(In fact, a heuristic consideration, which can be made precise by a zeta-function 
argument, will show that for 6 N  primes selected at random from the sequence 
8k + 1, with N large, about N will satisfy condition (a), another N condition ( y ) ,  
and 4N condition (p ) . )  

Proof. All four statements follow from the fact (see any elementary text on the 
Theory of Numbers) that -2 is a quadratic residue for primes =1 or 3 (mod 8) 
and a non-residue for primes =5 or 7 (mod 8). 

Definition 1.3.1.1 An odd prime p will be designated as an a-prime, a 0-prime, 
or a y-prime, according to the condition in Lemma 1.3.1 satisfied by the 
multiplicative order of -2 (modp).  

Definition 1.3.1.2 Let A be an abelian group, written additively, on a set X of 
order v ,  (v ,  6) = 1, let h E A and Q ( . )  a Totally Symmetric quasigroup on X .  
Then the quasigroup Q(*) ,  defined by 

(X + h ) *  ( y  + h)  = (X . y )  + h 

(which is obviously isomorphic to Q ( . ) )  will be called an h-shift of Q ( - )  with 
respect to A. 

Definition 1.3.1.3 Let A be an abelian group, written additively, on a set X of 
order v ,  ( v ,  6 )  = 1, and h E A .  Then we shall designate the quasigroup Q(*) ,  
defined by 

x * y  = z @ x  + y  + z =3h in A 

as Der, A, and we shall write Der(A) for Der0(A). 

Proposition 1.3.2. For A and h as above, Der,(A) will be a squodd i f ,  und only 
if, no a-prime divides the order v of A.  

Proof. The quasigroup will obviously be totally symmetric, with the unique 
idempotent h ;  for, with k f h and 3k = 3h we have 3(k - h)  = 0 and thus, by the 
hypothesis on v ,  k = h, a contradiction. Similarly, no diagonal element is 
repeated, for a ,  + a ,  + b = a2 + u2 + b = 3h implies 2a2 = 2a, ,  thus again a2 = a , ,  
v being odd. It only remains to check whether all cycles in the diagonal 
permutation of A \ (h )  are of even length, and for this we may obviously assume 
h = O .  

Given any a ZO in A, its order will be some w, dividing v .  The diagonal cycle 
generated by a in Der,,(A) will then be 

( a ,  ( -2 ) 'a ,  ( -2)2a,  . . . , ( - 2 ) k - ' a ) ,  with ( - 2 ) k  zz 1 (mod w). 
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For w a P-prime or a y-prime, k will be even, by Lemma 1.3.1. If w is some 
power pr of a P-prime or a y-prime p,  k will be the exponent of -2 for p, 
multiplied by some power S r  of p,  thus again even. If w is a product of such 
prime powers, k will again be even, being the 1.c.m. of the exponents for the 
single prime powers. Recall finally that if v is divisible by any a-prime p,  A will 
necessarily contain some element b of order p ,  which, again by Lemma 1.3.1, will 
generate a cycle of odd length. 

As an example we may translate Example 1.1.2 above into Der2(Cs), setting 
w = 2, a = 0, b = I ,  c = 4, d = 3; or consider Der,(C,), which gives the triples: 

(005), (014), (023), (066), (113), (122), (156), (246), (255), (336), (345), (444). 

However, if we attempt the same operation on C, ,  with, say, 0 as idempotent, we 
shall find the two odd diagonal cycles (1 ,9 ,4 ,3 ,5 )  and (2 ,7 ,8 ,6 ,  lo ) .  We shall, 
however, see in a later section that squodds exist of any finite order, prime to 6. 

Whether or not the order v of A ,  (v, 6) = 1, satisfies the restriction of 
Proposition 1.3.2, we have: 

Proposition 1.3.2.1 For h, k E A ,  k # h, Der,(A) and Der,,(A) have no triple in 
common. 

Proof. If x + y + z = 3h = 3k, then 3(k - h)  = 0. Thus k - h = 0 by the hypothe- 
sis on I ! .  

This is equivalent to saying that no two triples in Der,(A) are shifts of each 
other, or belong to the same additive A-orbit. It is easy to check that there are 
(v + l)(v + 2)/6 such orbits of triples: one for triples with three equal entries, 
v - 1 for triples with one entry repeated and (v - l)(v - 2)/6 for triples with 3 
distinct entries. 

Definition 1.3.2.2 Given an abelian group A ,  and a squodd Q( . ) ,  on a set X of 
order 11, (11, 6) = I ,  t he  pair (A, Q) will be called an I-pair if all triples of Q ( . )  
belong to different A-orbits (or: if no two triples of Q ( . )  are A-congruent). 

If we consider the diagonal entries of Q ( . ) ,  (x, x . x )  as (unordered) pairs 
rather than as triples with one entry repeated, we certainly cannot require all 
v - 1 of these to fall into different A-orbits, since there are only (v - 1)/2 such 
orbits. We may, however, require: 

Definition 1.3.3. Given an abelian group A,  and a squodd Q ( . )  on a set X of 
order v, (v ,  6) = 1; if no two triples of Q( . )  with 3 distinct entries are 
A-congruent, and if, in addition, the main part of the diagonal graph of Q ( . )  
remains bipartite when one connects by an edge any two vertices representing 
pairs of elements in the same A-orbit, we shall call the pair (A ,  Q) a D-pair. 
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This condition, incidentally, ensures the appearance of exactly two pairs from 
each A-orbit, covering the v - 1 diagonal entries (x, x2) with x2 Z x ;  for if three 
congruent pairs were to appear, the added edges would form a triangle. 

Example 1.3.3.1 Der(C,) does not form a D-pair with Cs:  the diagonal sequence 
is (1,3), (3,4), (4,2), (2, l), the vertices of a quadrangle. But since 4 - 2 = 3 - 1 
and 2 - 1 = 4 - 3, the two additional edges turn this into the Complete Graph on 
4 vertices, K4, which is certainly not bipartite. 

Example 1.3.3.2 Der4(C7), considered above, forms a D-pair with C7. The 
vertices (0 ,5 ) ,  (5,2), (2, l), (1,3), (3,6), (6,O) form a hexagon, in which the 
additional edges ( (0 ,5) ,  (1, 3)), ((5,2), (3,6)) and ((2, l), (6,O)) close even cycles. 
We shall see that this is due to 7 being a y-prime. 

Examples 1.3.3.3 and 1.3.3.4. The reader is invited to check in detail that the 
following two squodds form D-pairs with C ,  I :  

(a) [I]: (000), (0 1 6), (023), (048), (05 7), (09 lo), (1 45), ( 1  79), 
(1810), (267), (289), (2410), (347), (3510), (369), (568); (112), (225), 
(559), (994), (446), (6610), (10107), (778), (883), (331). 

(2 4 9), (2 5 lo), (2 7 8 ) ,  (3 67), (3 9 lo), (4 5 8), (6 8 10); (1 1 2), (2 3 3), (3 3 8), 
(88 l), (446), (669), (99 S ) ,  (5  5 7), (77 lo), (10 104). 

( B )  [4]: ( O O O ) ,  (0110), (026)- (035), (0471, (0891, (13% (156), (17% 

Note that these two squodds do not form I-pairs with CI1: thus in the first (7 7 8) 
and (1 1 2) are C,,-congruent, and so are (66 10) and (5 5 9), (8 8 3) and (9 9 4); 
while in the second, we find (2 2 3) and (1 12), (10 10 4) and (3 3 8), (5 5 7) and 
(446), (669) and (77 10). 

Proposition 1.3.3.5 Let A be an abelian group of order v, (v, 6) = 1, h E A, and 
let Der,,(A) be a squodd. Then (A, Derll(A)) f o rm a D-pair i f ,  and only if ,  all the 
prime factors of v are y-primes. 

Proof. Note that two pairs o f  elements of A ,  ( a l ,  a2 )  and ( b  I ,  6 2 ) .  are congruent if 
b2 - b l  = &(a, - u I ) ,  and that the differences between successive elements in the 
diagonal cycle generated by x # h, 

(x, 3h - 2, -3h + 4x, 9h - &c, -15h + 16~, . . . , h + (-2)'(x - h ) ,  . . . )  

equal 3(h - x) multiplied by successive powers of -2 modulo w ,  if w is the  
order of x - h in A. Since Der,,(A) is a squodd, the multiplicative order of -2 in 
C,,,, by Proposition 1.3.2, will be even, say 2k. If w happens t o  be a p-prime or a 
y-prime p ,  then (-2)& will equal - 1 modulop, and after k steps along the cycle 
we shall encounter a pair whose difference is -3(h - x ) ,  congruent to the first, 
and from then onwards, pairs k steps apart will remain congruent to the end of 
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the cycle. If p is a P-prime, k is even and (compare Example 1.3.3.1) the added 
edges will close odd cycles, while if p is a y-prime, k is odd (compare Example 
1.3.3.2) and the added edges will close even cycles, and thus the bipartite 
character of the main part of the diagonal graph will be preserved. 

The rest of the proof follows exactly the same lines as that of Proposition 
1.3.2. 0 

The D-pairs so obtained are automatically I-pairs, by Proposition 1.3.2.1 and 

Following this, and in view of several applications further on, we may introduce 
Definition 1.3.2.2. 

Definition 1.3.4. The pairs ( A ,  Q) will be called an I-D-pair if it is both an 
I-pair and a D-pair. 

By Proposition 1.3.3.5, (CI3, Derh(C,,)) cannot form an I-D-pair. However, 
not all such pairs are formed by derivation. The reader is invited to examine the 
following example of a squodd forming an I-D-pair with C,,: 

Example 1.3.4.1 [2]. (000) , (019) ,  (027) ,  (03  l l ) ,  (046) ,  ( 0 5 8 ) ,  (010 12), 
(123), (145) ,  (1712), (1811), (2412), (2611), (29lO), (348) ,  (359) ,  
(3710), (4711), (5612), (51011), (679) ,  (6810), (8912); (1 16), (663) ,  
(3312), (121211), (11 119), (994) ,  (4410), (10101), (225) ,  ( 5 5 7 ) ,  (778) ,  
(8 8 2). 

1.3.5. Pairs and direct sum operations 

As both abelian groups and squodds are closed under direct sum operations, 
we may look at what happens to pairs in this context. 

Proposition 1.3.5.1. I-pairs are closed under Direct Sum operations. If both 
( A , ,  Q , )  and ( A 2 ,  Q2)  are I-pairs, so is ( A ,  @ A 2 ,  Q ,  @ Q,). 

Proof omitted. 

A similar statement for D-pairs does nof hold. In fact: 

Proposition 1.3.5.2. I -  D-pairr are closed under Direct Sum operations, 
Moreover, if A,, Q, are defined on a set X I ,  i = 1, 2, and if ( A ,  @ A , ,  Q ,  G3 Q2) is 
a D-pair, then each of ( A , ,  Q,) is already an I-D-pair, and so is the sum. 

Proof. Since Lemma 1.2.2 ensures that the bipartite character of the main part of 
the diagonal graph containing the added edges in each summand will not be 
violated by the Direct Sum operation, it is enough to prove the second statement. 
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Let 0, be the zero of A,, and w,  the idempotent of Q,; then Q ,  @ Q2 will 
contain elements of the form ( w , ,  a,) forming a squodd isomorphic to Q 2 ,  whose 
pairs and triples are acted on by the shift-operations of the subgroup ((0, , h , ) )  of 
Al  $ A 2 ,  so (A2, Q,) should be at least a D-pair; and similarly for ( A , ,  Q , ) .  

Suppose one summand, say (A,, Q,) ,  is not an I-D-pair; then its diagonal 
(compare Examples 1.3.3.3, 1.3.3.4) contains A,-congruent triples, ( u 2 ,  u,, h,) 
and (a, + h, ,  u2 + h,, b2 + h,) .  I f  x, . y ,  = z1 in Q , ,  and all 3 entries of ( x , ,  y l ,  z , )  
are distinct, Q ,  63 Q,  contains the two triples ( ( x , ,  N , ) ,  ( y , ,  a,), ( z , ,  b l ) )  and 
( ( x , ,  u2 + h2) ,  ( y , ,  a ,  + h,) ,  (z,, h, + h,) ) ,  the second being a shift o f  the first by 
(01, h,) E A ,  $ A 2 ,  contrary to the first condition in Definition 1.3.3, and so 
(A, $A2, Q,  $ Q,) cannot be a D-pair. 0 

We conclude the first section with the following statement, whose proof will 
be omitted. 

Proposition 1.3.5.3. I-puirs, D-pairs and I-D-pairs ure closed under shifting. If' 
(A, Q) i s  un I-puir (D-puir, I-D-puir) and, for  some h E A ,  Q" is an h-shift of Q 
(cf. Definition 1.3.1.2) then ( A ,  Q*) is uguin an I-pair (D-pair,  I-D-puir).  

2. Applications 

2. I .  Squodds, coloured graphs und Steiner Triple Systems 

Since this account is intended to appear in the present Volume, Steiner Triple 
Systems are bound to crop up. We shall indeed find that squodds lead t o  STSs, 
and vice versa, although in nowhere the precise manner is which Gantcr and 
Werner use the various algebras i n  their paper [3] to coordinate thcse com- 
binatorial structures. We shall therefore not present the reader with any o f  those 
bijections between definitions, by which these authors illustratc their elegant 
results - in the present case, i t  would smack of pretence. Anyway. . . 

Proposition 2.1.1. (1) Giuen a squodd Q(. )  on u set X of order V ,  there its ut leust 
one wuy to der iw from it u Steiner Triple System B on the II + 2 rnrrrks 
( X  U ( m,, m 2 )  ) ,  where ml, r*i2 @ X ure two udditiotzul murks. 

( 2 )  Given (I Steiner Triple System ( B )  on a set Y ,  und u Flug - (hut is. u triple 
(ho; h ,  , b2)  E B in which h,, is murked - there is ut leust one wuy to obtain f rom it  (I  

squodd Q ( . )  on Y\(h , ,  h2) ,  whose idempotent is h,,. 

Proof. (a) Use the elements (Q, x ,  y ,  . . .) of X to label, firstly. the vertices of the 
complete graph G - K,, of order u,  and secondly a Store of II colours. For each 
y ,  z E X ,  y # z ,  we now colour the edge ( y ,  z )  of C with the colour x if y . z = x 
in Q ,  und if  x is different from both y and z .  Note that no two edges of the same 
colour can have a vertex in common, since if both ( p ,  4 )  and ( 4 ,  r )  were to be 
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coloured s, this would mean q . s = p and q . s = r. This leaves uncoloured only 
the edges (x, x ' ) ,  .Y # w ,  and constitutes the first coloration, or F-coloration, of 
the edges of G. It is readily seen that the uncoloured edges form a two-factor of 
G \ w ;  that is, every vertex of G \ o  is the endpoint of 2 such edges. This 
two-factor, forming the main part of the diagonal graph of Q ( . )  - except that this 
time its vertices are labelled by single elements of X* instead of pairs as in 1.2 - is 
made up of one o r  more cycles-closed simple polygons-each of some even 
order, by condition (iii) in Definition 1.1.1. 

( p )  The edges of even cycles being 2-colourable, that is, one may colour them 
in 2 different coloiirs without edges of a given colour having a vertex in common, 
we now take two more colours, m l  and m,, and colour the edges in each cycle 
alternately m, and 00,. In doing this, it should be noted, we have one arbitrary 
choice when two-colouring the edges of each cycle. Call this the second 
coloration, or S-coloration, of the edges of G. Now we adjoin two vertices, m, 

and m2. If (x, y )  has been coloured mi,  we then connect x to the vertex mi by an 
edge coloured y ,  itnd y by one coloured x .  Finally, we connect w and m, by an 
edge coloured mz, and to XJ, by an edge coloured m,, and m, and m2 by an edge 
coloured w. Thus we have obtained a partition of the edges of the complete graph 
on X U  (m,, m2) into triangles, each edge being coloured with the label of the 
opposite vertex, which partition is obviously a Steiner Triple System on 
X U  ( m I ,  m,), and this concludes the proof of ( 1 ) .  

( y )  Conversely. if B is a Steiner Triple System on a set Y of order w, we label 
the vertices of a graph H = K,. by the elements of Y ,  and for each ( x ,  y ,  z )  E B we 
colour each edge of the triangle (x, y ,  z )  by a colour bearing the label of the 
opposite vertex. If  b , ,  b2 E Y ,  let (b,,, b , ,  b2) E B, that is, let b,, be the third 
vertex of the corresponding triangle. Removing vertices b , ,  b2 and deleting all 
the edges through them from H ,  we are left with a complete graph G - K w - * ,  in 
which the edges coloured b ,  form a l-factor of G\bo, and so do the edges 
coloured b,. This is an S-coloration of the edges of C. We note that these two 
1-factors (which we might as well uncolour, obtaining an F-coloration of G)  form 
together a two-factor of G\b,,, consisting of one or more cycles of even length. 

(6) We now construct a squodd Q ( . )  on Y -  ( b l ,  b , ) .  If ( x , y ,  Z ) E  B\ 
(b , , ,  b l ,  b,), set x . y = z ;  set b,, . b,, = b,,. Next, orient each cycle in the two-factor 
in one of the two possible ways, and note that this again gives us one arbitrary 
choice per cycle. I f  an edge in this orientation has been directed from x to y ,  set 
x . x = y .  Now the totally symmetric mapping from ( Y  - ( b  ,, b,)) X ( Y  - 
( b , ,  b,))  onto Y - ( b ,  , b z )  has been defined for the whole domain, and we have 
asquodd. 0 

Remark 2.1.2. Apart from the fact that the resulting G-graph depends on the 
choice Flag in B - or pair of elements b l ,  b2 in Y - the arbitrary choices in ( p )  
and ( b )  above are enough indication that there cannot be much connection 
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between the structures of STSs and those of squodds obtained from them as 
described. 

There are, up to isomorphism, two STSs of order 13; one, the cyclical one, has 
a larger group of automorphisms, of order 39. The other one has only a group of 
order 6, isomorphic to S,. Its 78 possible flags give rise to no less than 17 classes 
of s-coloured G-graphs, and thus to a larger number of non-isomorphic squodds 
(from some of which one may obtain the first, cyclical STS of order 13). I t  is 
reasonable to assume that as the order increases, squodds proliferate still more 
quickly than STSs, which gives us some excuse not to go further into the question 
of their structure. So far, the only claim to the title of Variety in the algebraic 
sense that squodds have, is closure under Direct Sum operations (Proposition 
1.2.4), but they certainly form a “variety” in the colloquial sense. 

Corollary 2.1.3. Squodds exist of any finite order prime to 6 .  

Remark 2.1.4. The converse contribution of directly constructed squodds, say 
from Proposition 1.3.2 (Derivation) and 1.2.4 (Direct Sum) is rather modest, 
because of the absence of a direct construction for prime orders p =_ 3(mod 8). 

2.2. D-pairs and packings ( o r :  Denn’iston Large Systems) 

For (v ,  6) = 1,  let us imagine v + 2 points in space, no 4 in the same plane, 
forming v(v  + 1)(v + 2)/6 triangles, v through each edge. If we can use v colours 
to colour all these triangles so that no two triangles of the same colour have an 
edge in common, then on labelling the v + 2 points, or vertices with different 
marks, each pair of marks will appear just once as an edge of a triangle of a 
given colour, and the triads of vertices of this family of triangles will form an STS. 
Thus such a colouring achieves a partition of all the triads of marks into v 
disjoint STSs, or a Large Triple System on the v + 2 marks. 

In particular, the set of labels may consist of the v elements of an abelian group 
A and of two more marks, m,, m2 $ A .  If ,  in this case, the set of triangles of a 
given colour is derived from any other such set by adding a fixed h E A* to each 
vertex label other than m,  or m2, we speak of a Denniston Large System, or a 
Packing (with the aid of A )  or an A-Packing. 

Proposition 2.2.1. Given an abeliun group A on a set X of order v ,  (v, 6 )  = 1, and 
an A-Packing B,,, B , ,  . . . , R, , - l  on Y = :  X U ( m i ,  m2) ,  the squodd Q, derived 
from the flag (h, ,  M,, mz) E B, us described in Proposition 2.1.1 above forms a 
D-pair ( A ,  Q,) with A .  Conversely, the STSs on X U ( m i ,  m2) constructed from 
the sguodd Q, in a D -pair ( A ,  Q , )  as described in Proposition 2.1.1, und from all 
A-shifts of Q , ,  form an A-Packing on XU ( m , ,  0 3 ~ ) .  
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Proof. The first condition of Definition 1.3.3, on triples with 3 distinct entries, is 
satisfied by hypothesis. Also by hypothesis, no pair ( x ,  y )  with (q, x, y )  E B, can 
be A-congruent to another pair (x’, y’) with (m,, x ’ ,  y’)  E B,, and similarly for m2. 

Thus, after the “orienting” step of stage 6) in the proof of 2.1.1, we may relabel 
each vertex in the diagonal graph, this time by a pair of marks, the original mark 
and the following one, and be assured that if (x, y)  is congruent in A to (z, u )  
then (m,, x ,  y )  E B, implies (w2, z ,  u )  E B,; thus adding an edge between (x, y )  
and (2, u )  will not contravene the bipartite character of this graph. 

This completes the proof of the direct claim. The proof of the converse is easy 
and will be omitted. 0 

The first Large Steiner System, found in 1850 by Kirkman and rediscovered by 
Cayley, is actually of this type, derived from the (unique) STS on 9 marks by 
fixing two entries and permuting the other 7 cyclically, one step at a time. The 
subject began to develop around 1973, with Teirlinck [lo] showing how to derive 
a Large System of order 3w from one of order w ,  by a simple construction 
(“Triplicating”). Rosa [7], using Latin Squares with no  subsquare of order 2, 
derived Large Systems of order 2w+ 1 from given ones of order w 
(“Duplicating”). Denniston [ 11, concentrating on prime orders, constructed 
D-pairs with the cyclical group C, for p = 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 
67, exploiting for the larger values of p either the full multiplicative groups of Z i  
or large subgroups M, in the sense that if A E M and x . y  = z in Q(.) ,  
(Ax) . (Ay) = Az as well. Except for p = 11, 13 and 29, all of these actually form 
I-D-pairs. Therefore, with the hindsight of Proposition 1.3.5.2, we now know 
that just as there exists a Packing of order 31 + 2 and one of order 67 + 2 there 
exists one of order 31 .67  + 2 = 2079 as well. (A Large System of this order may 
be obtained in yet another way: start with Kirkman’s result of order 9, and 
proceed as indicated: 

9 3 19 57 % 11 5 3 231 5 693 2079, 

where D denotes Rosa’s “duplication”, and T, Teirlinck’s “triplication”.) The 
I-D-pair of Example 1.3.4.1, used in [2] to form a sequence of 13 resolvable 
STSs thus obtaining a Packing of order 15, may of course serve in such Direct 
Sum operations too. Around the same time, Wilson [ l l ]  and others became 
aware of the results of Proposition 1.3.3.5 above and derived Denniston Large 
Systems from the I-D-pairs so obtained. Denniston had been unaware o f  this, 
and his constructions for CZ3, C3, and C,, show again that Derivation is not the 
unique source of I-D-pairs. The excellent summary of the state of the art up to 
around 1980 in [8] already mentions the general belief prevailing at  the time that 
Large Systems exist for every feasible order >7; and in a series of papers in 1984, 
Lu [ S ,  61 covered nearly all the ground, so at the time of his premature death only 
six values were left in doubt (which, I am told, have also been settled since then). 
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2.3. I-D-pairs and Teirlinck ’s Second Construction 

Since a computer search has shown that the only two D-pairs with C i I  are 
those of Examples 1.3.3.3 and 1.3.3.4,  we know from Proposition 1.3.5.2 that the 
Direct Sum of one of those with an I-D-pair of order v will not lead even to a 
D-pair of order l l v ;  thus a Large System of order l l v  + 2 cannot be obtained in 
this way. However, we owe to Teirlinck [ l o ]  the following remarkable result 
taken from [ 8 ] ,  which seems a fitting note on which to close this account: 

Theorem 2.3.1 (Teirlinck). Given any Large System of order u + 2 ,  and un I-D- 
pair (A, Qo(- ) )  of order u ,  there exists a Large System of order u . v + 2. 

Proof. Not matter what its structure, we may rename the entries in the triples of 
the given Large System to be the elements of Z,, U (ml ,  m2) numbering the 
respective STSs B1, B 2 ,  . . . , B,. For simplicity, let 0 E A be the idempotent of 
Qo(.), and a, that of its ith A-shift. Also, let F , ,  I$ be a hi-partition o f  the 
diagonal pairs of Q,,(.). We now construct u . I J  STSs C,  on V = :  (A X Z,,) U 

(a1, a2) as follows: 
For each a, E A and J E Z,, C,  = C!;) U C!;) U C‘!;), consisting of the following 

triples on V: 

cl;”= (9, m2, (4,  2,)) I ((a,, 032? 2,) E B / )  u ((%, (a,, x ) ,  (4 ,  Y ) ) )  

I ((%, x ,  Y )  E B / )  u (((a,, x ) ,  (4, Y ) ,  (a,, 2))) 1 ( ( x ,  Y ,  2) E B / ) ?  k = 1, 2; 
Cf)= (mk, (a, + b, x ) ,  (a, + b * b ,  x ) )  I ( b  € A * ,  x E Z,,, ( b ,  b - h )  E F k ,  k = 1 ,  2 ) )  

U ( ( ( a ,  + b ,  x ) ,  (a, + b, Y ) ,  (a, + b * b,  ( x  + y ) / 2  +i))) 
I ( b  € A * ,  x ,  y E Z,, ,  y 

(2:;) = ( (a ,  + b,  x ) ,  (a, + c, y ) ,  (a, + b . c, ( x  + y + i)) 
1 ( x ,  y E Z,, ,  b # c # b * c # b E A*), 

where in C g ) ,  each triple of Q,,(.)  is taken on one fixed order with every pair x ,  y 
of Z, .  Notation might perhaps have been shorter if in C:;) and C!;) we had 
omitted a, and taken the dot operation in Q ( . )  to be read as taking place in Q,, 
the ith A-shift of Qo( . ) ,  but with the present one i t  seems easier to verify that any 
triple of V actually appears in some C,. 0 

It should also be noted that, apart from Proposition 1.3.5.2,  this is, so to say, 
the first instance of I-D-pairs finding “full employment”. With /-pairs alone, we 
could not have the first term in Cf’, since the partition into two one-factors 4 
would not work and ( tok ,  (a, + b,  x ) ,  (a, + b * b ,  x ) )  would reappear as some 
(mk ,  (c c,  x ) ,  (c ,  x ) ) ;  while with D-pairs alone, for a given x and y ,  we should 
be meeting again triples from the second term of C!;) as (c, x ) ,  ( c ,  y ) ,  (c  . c ,  
( x  + y ) / 2  + j ) .  The reader might wish to verify this with the I-pair (C5,  Der(C,)), 
and with the two D-pairs of Examples 1.3.3.3 and 1.3.3.4. 
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PARTITIONING SETS OF QUADRUPLES INTO 
DESIGNS I 
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Dept of Matherriafirs, Universziy of Canterbury, Chrlstchurch I ,  New Zealand 

To Professor Haim Hanani on his seventy-fifth birthday. 

All o f  the non-isomorphic ways of partitioning the collection of all the quadruples chosen 
from a set of eight elements into five disjoint 2-(8,4,3) designs are determined. 

1. Introduction 

Many versions of the following question have been considered in com- 
binatorics: how may a specified family of subsets, chosen from a given set, be 
partitioned in some “nice” way? Recent work on this topic includes, for instance, 
that of Harms et al. [l], Hartman [2], Kramer et al. [3], Teirlinck [8] and the 
authors [7]. 

A t-design based on a set, X ,  of v elements is a collection of k-subsets (blocks) 
chosen from X in such a way that each unordered t-subset of X occurs in precisely 
A of the blocks. Such a design has parameters t - ( v ,  k, A).  Two t-(v, k, A )  designs 
based on the same set X are said to be disjoint if and only if they have no block in 
common. If the set of all the (L) k-subsets chosen from X can be partitioned into 
mutually disjoint t-(u, k, A )  designs, then these designs are said to form a large 
set. Here we partition the set of all ( t )  4-subsets (quadruples) of the set 
X =  (1, 2, . . . , 8) and prove the following result. 

Theorem. The set of all the quadruples chosen from an 8-set can be partitioned 
into a large set of 2-(8, 4, 3 )  designs in precisely 26 non-isomorphic ways. 

The large sets ;ire given in Table 3. An automorphism of a large set is a 
permutation of the elements of the underlying v-set which preserves the partition 
of the collection of blocks into designs. The full automorphism groups of the large 
sets, and the types of the designs occurring in each, are given in Table 4. 

2. The designs 

There are four isomorphism classes of 2-(8,4,3) designs, as determined by 
Nandi [6]. We refer to them as Q, R ,  S ,  7 ,  according to whether they  contain 7, 
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Tahle I 2 - (8 ,4 ,3)  deugns ol type5 Q, I?, S ,  T 
(Nore Type Q IS also a 3-(8,4,  1) design ) 

q . 1234 1266 1278 1357 1368 1458 1467 2358 2367 2457 2468 3456 3478 5678 

T 1234 1235 1267 1368 1456 1478 1578 2378 2457 24FX 2668 3458 34637 3567 

9 1234 1235 1267 1368 1456 1478 1578 2378 2458 2467 2568 3457 3468 3567 

1 . 1234 1235 1267 1368 1457 1468 1578 2378 2458 2467 2568 3456 3478 3567 

Tahle 2. Automorphism groups, and their orbits, for the designs given in ‘Pahle I 

Desigii G r o l l p  ordcr  

1 344 

48 

12 

21 

C: roup Kriierat ors 
(56)(7X) ,  ( 3 4 ) (  a), (12)(  7 X ) ,  
( 5 7 ) ( 6 8 ) ,  ( 2 3 ) ( 6 7 ) ,  ( 3 4 ) ( 5 6 )  

( 2 3 ) ( 7 8 ) ,  (12 ) (67 ) ,  ( 4 5 ) ,  ( 2 7 ) ( 3 8 )  

( 2 3 ) (  7H) , ( 2 8 ) (  3 7 ) ,  ( 156)( 387)  

( 1273685) ,  ( I  23 ) (  678) 

3,  1, 0 paris of complementary blocks respectively. Q is a 3-(X, 4, 1) design. 7uble 
1 lists designs of each type; Table 2 gives the full automorphism groups o f  designs 
4, r ,  s, t ,  of types 0, H, S, T respectively. 

If we take the seven blocks of 4 which contain i ,  and delete i from each of 
them, the remaining seven triples form a 2-(7,3, 1) design for each i = 

I ,  2, . . . , 8. This is the derived design with respect to i .  The same procedure 
applied to r gives 2-(7,3, 1) designs for two values of i, namely i = 4 and i = 5. 
Applied to s, or to t ,  it gives a 2-(7,3, 1 )  design only for i = 4. 

3. The partitions 

Suppose that the ( z )  quadruples chosen from X = { 1 ,  2, . . . , 8) are partitioned 
into a large set of 2-(8,4,3) designs. If two of these 2-(8, 4 , 3 )  designs are o f  type 
Q ,  then, for at least one value of i, the derived designs include three disjoint 
2-(7,3, 1) designs on the same 7-set. This is impossible (see (4)) so at most one 
design of type Q can occur in a large set. 

Suppose that a large set does contain one design of type (2. Backtrack search 
shows that the remaining four designs in the large set must all be of type S, and 
that these large sets have automorphism groups of orders 3 ,  4, or 12. Further, if 
we fix the design of type Q to be 4,  as given in Table I ,  then we find 896 such 
large sets, of which 112 have a group of order 12, 336 have a group of order 4 ,  
and 448 have a group of order 3 .  On the other hand, if we fix one of  t he  designs 
of type S to be s ,  as given in ‘Table I ,  then we find 32 such large sets, o f  which 4 
have a group of order 12, 12 have a group of order 4, and 16 have group of order 
3 .  These numbers provide a cross-check in the following way. 

Using an isomorphism testing program of McKay [ 5 ] ,  and direct computation 
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Table 3 The 26 non-isomorphic partitions of (:) quadruples into 5 X 2-(8,4,3) designs 

I , 1234 1256 1278 1357 1368 1458 1467 2358 2367 2457 2468 3456 3478 5678 
1235 1236 1247 1348 1456 1578 1678 2378 2458 2467 2568 3457 3468 3567 
1237 1245 1268 1346 1358 1478 1567 2345 2368 2478 2567 3467 3578 4568 
1238 1248 1267 1347 1356 1457 I568 2346 2357 2456 2578 3458 3678 4678 
I246 1257 1258 1345 1367 1378 1468 2347 2348 2356 2678 3568 4567 4578 

2 : 1234 125(i 1278 1357 1368 1458 1467 2358 2367 2457 2468 3456 3478 5678 
1235 123(i 1247 1348 1456 1578 1678 2378 2458 2467 2568 3457 3468 3567 
1237 124ri 1268 13461358 14781567 2348 2357 2456 2678 3467 3568 4578 
1238 125X 1267 1347 1356 1457 14G8 2345 2346 2478 2567 3578 3678 4568 
1246 124X 1257 1345 1367 1378 1568 2347 2356 2368 2578 3458 4567 4678 

3 : 1234 1256 1278 1357 1368 1458 1467 2358 2367 2457 2468 3456 3478 X i 7 X  
1235 123fi 1247 1348 1466 1578 1678 2378 2458 2467 2568 3457 3468 3567 
1237 1246 1258 1345 1378 1468 1567 2345 2368 2478 2565 3467 3568 4578 
1238 124X 1267 1347 1356 1457 1568 2346 2357 2456 2578 3458 3678 4K7X 
1245 1257 1268 1346 1358 1367 1478 2347 2348 2356 2678 3578 4567 1568 

4 . 1234 1235 1267 1368 1456 1478 1578 2378 2457 2468 2568 345X 3467 3567 
1236 1245 1248 1347 1358 1567 1678 2357 2368 2467 2578 3456 3478 4568 
1237 1241; 1258 1348 13li7 1457 156X 2345 2356 2478 2678 3468 3578 4rdi7 
1238 1256 1278 1345 1357 1467 1468 2346 2347 2458 2 5 G  3568 3G58 1578 
1247 1257 1268 1346 1356 1378 1458 2348 2358 2367 2456 3457 4678 5678 

5 : 1234 123') 1267 1368 1456 1478 1578 2378 2457 2468 2568 3458 3,167 3567 
1236 1245 1248 1347 1358 1567 1678 2357 2368 2467 2578 3156 3478 4568 
1237 1246 1278 1348 1356 1457 1568 2346 2358 2458 2567 3457 3ti78 467X 
1238 1267 I268 1345 1367 1458 I4C7 2347 2356 2456 2478 3468 3ri78 5678 
1247 1250 1258 1346 1 :~57  1378 im 2345 2348 2367 21378 356x 4567 4578 

6 : 1234 1235 1267 1368 1456 1478 1578 237X 2457 2468 2568 3458 3467 3565 
1236 1245 1248 1347 1358 1567 1678 2357 2368 2467 2578 3456 3478 456X 
1237 12b7 1268 134X l350 I458 1,167 2346 2358 2456 2478 3457 3fi7X 567X 
1238 12413 1278 1345 1367 1457 lri8H 2347 2356 245X 2567 346X 3578 I 6 7 X  
1247 121,6 1258 1346 1357 1378 1468 2345 2348 23137 267X 3568 45fi7 'I55X 

1234 1235 1267 1368 1456 1478 I578 2378 2457 2468 256X 345X 3167 3567 
1236 1215 1248 1347 1378 I ~ J R S  15 f iX  2357 2358 24ti7 21i7X 345ti 3 1 G X  I578 
I237 12'~7 1268 1346 l:<58 1458 14(i7 234X 2356 2456 247X 3457 3fi7H hfi7\( 
1238 1217 1256 1345 I357 1468 l 6 7 X  2346 2367 2458 %57X 3478 :jr)ljS 4567 
I246 12S8 1278 1348 1256 1367 1457 2345 8347 236X 2567 3578 I568 +ti78 

8 1234 1235 1267 1368 1456 1478 1578 2378 2457 2468 2568 3458 34ti7 3567 
1236 1245 1248 1347 1378 15G7 15CX 2357 2358 2467 2678 3456 3468 457X 
1237 12')7 1268 1346 1358 1458 1467 2348 2356 24%; 2478 3457 3678 5678 
1238 12'~6 1278 1345 I367 1457 1468 2346 2347 2458 2567 3568 3578 4678 
1246 1247 1258 1348 1356 1357 I678 2345 2367 2368 2578 347X 4567 45638 

1234 1235 1267 1368 1156 1478 1578 2378 2457 2408 2568 3458 3467 3567 
1236 1215 1248 1357 1358 1467 lti78 2347 2368 2567 2578 3456 3478 456X 
1237 1256 1258 1348 1367 1457 1468 2345 2346 2478 2678 3568 3578 4567 
1238 1216 1278 1345 1J47 1567 1568 2356 2357 2458 2467 3468 367X 4578 
1247 12r)7 1268 1346 1156 I378 145X 2348 2358 2367 2456 3457 4li7X 5678 

I0 1234 1235 1267 1368 1456 I478 I 578  2378 2457 2468 2568 3458 3467 3567 
1236 1245 1248 3357 I 3 5 X  1467 l(i78 2347 2368 2567 2578 3456 347X 4RHX 
1237 1256 127X 1348 1356 1457 I4Ci8 2346 2358 2458 24fi7 3457 3678 5678 
1238 1216 1257 1347 1367 1458 15ti8 2345 2356 2478 2678 3468 3578 4565 
1247 1258 1268 1345 1346 1378 1567 2348 2357 2367 2456 3568 4h7X 4678 

7 

9 
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Table 3 (continued). 

11 : 1234 1235 1267 1368 1456 1478 1578 2378 2457 2468 2568 3458 3467 3567 
1236 1245 1248 1357 1358 1467 1678 2347 2368 2567 2578 3456 3478 4568 
1237 1256 1278 1348 1356 1457 1468 2346 2358 2458 2467 3457 367X 5678 
1238 1257 1268 1346 1347 1458 I567 2345 2367 2456 2478 3568 3578 4678 
1246 1247 1258 1345 1367 1378 1668 2348 2356 2357 2678 3468 4567 4578 

12 . 1234 1235 1267 1368 1456 1478 1578 2378 2457 2468 2568 3458 3467 3567 
1236 1245 1248 1357 1378 1467 1568 2347 2358 2567 2678 3456 3468 4578 
1237 1246 1258 1348 1356 1457 1678 2348 2356 2467 2578 3457 3678 4568 
1238 1257 1268 1346 1347 1458 1567 2345 2367 2456 2478 3568 3578 4678 
1247 1256 1278 1345 1358 1367 1468 2346 2357 2368 2458 3478 4 5 ~  5678 

13 : 1234 1235 1267 1368 1456 1478 1578 2378 2457 2468 2568 3458 3467 3567 
1236 1245 1248 1357 1378 1467 1568 2347 2358 2567 2678 3456 3468 4578 
1237 1247 1268 1346 1358 1458 I567 2348 2356 2456 2578 3457 3678 4678 
1238 1256 1278 1345 1367 1457 1468 2346 2357 2458 2487 3478 3568 5678 
1246 1257 1258 13247 1348 1356 1678 2345 2367 2368 2478 3578 4667 4508 

14 : 1234 1235 1267 1368 I456 1478 1578 2378 2457 2468 2568 3458 3467 35(i7 
1236 1245 1278 1347 1348 1567 1568 2357 23G8 2458 2467 3456 3578 4678 

1238 1247 1268 1356 1357 1458 1467 2345 23ti7 24tti 2578 3468 3478 5678 
1248 12561257 1345 13G7 1378 1468 2346 2347 235X 2678 35684567 4578 

I5 : 1234 1235 1267 1368 1456 1478 1578 2378 2458 2467 2568 3457 3468 3567 
1236 1237 1245 1348 1457 1568 I078 2358 2468 2478 2567 3456 3467 3578 
1238 1247 1258 1346 1357 1468 1567 2347 2356 2456 2678 3458 3678 4578 
1246 1257 1268 1347 1356 1378 1458 2345 2348 2367 2578 3568 4667 4678 
1248 1256 1278 1345 1358 1367 1467 2346 2357 2368 2457 3478 4868 5678 

16 : 1234 1235 1267 1368 1456 1478 1.578 2378 2458 2467 2568 3457 3468 3567 
1236 1237 1245 1348 1457 1568 l(178 2358 2468 2478 2567 3456 3467 3578 
1238 1247 1258 1317 1356 1468 1567 2346 2357 24.56 2678 3458 3678 4578 
1246 1257 1268 1345 1367 1378 1458 2347 2348 2356 2578 3568 4567 4678 
1248 1256 1278 1346 1357 1358 1467 2345 2367 2368 2457 3478 4568 5678 

17 : 1234 1235 1267 1368 1456 1478 1578 2378 2458 2467 2568 3457 3468 3567 
1236 1237 1248 1358 1457 1467 I568 2346 2468 2567 2578 3456 3478 3678 
1238 1246 1257 1347 I356 1458 1678 2348 2356 2457 2678 3467 3578 4568 
I245 1268 1278 1346 1348 1357 1567 2347 2358 2367 2456 3568 4578 4678 
1247 1256 1258 1345 1367 1378 1468 2346 2357 2368 2478 3458 4567 5678 

18 : 1234 1235 1267 1368 1456 1478 1578 2378 2458 2467 2568 3457 3468 3567 
1236 1237 1248 1358 1457 1467 1568 2345 2468 2567 2578 3456 3478 3678 
1238 1247 125G 1346 1357 1458 It178 2348 2356 2457 2678 3467 3578 4568 
1245 1257 12ti8 1347 1356 1378 1468 2346 2358 2367 2478 3458 4567 5078 
1246 1258 1278 1345 1348 1367 1567 2347 2357 2368 2456 3868 4578 4678 

IS : 1234 1235 1267 1368 1456 1478 I578 2378 2458 2467 2568 3457 3468 3567 
1236 1237 1248 1358 1457 1467 1%i8 2345 2468 2567 2578 3456 3478 3678 
1238 1247 1256 1346 1357 1458 1078 2348 2357 2456 2678 3467 3568 4578 
1245 1268 1278 1347 1348 1356 1567 2346 2358 2367 2457 3578 4568 4678 
1246 1257 1258 1345 1367 1378 1468 2347 2356 2368 2478 3458 4567 5678 

20 ,1234 1235 1267 1368 1456 1478 1578 23782458 2467 2568 3457 3468 3567 
1236 1237 1248 1358 1457 1467 1568 2345 2468 2567 2578 3456 3478 3678 
1238 1247 1256 1346 1357 1458 1678 2357 2368 2456 2478 3458 3467 5678 
1245 1268 1278 1347 1348 1356 1567 2346 2358 2367 2457 3578 4668 4678 
1246 1257 1258 1345 1367 1378 1468 2347 2348 2356 2678 3568 4567 4578 

1237 1246 1258 1346 1358 1457 1678 2348 2356 2478 2567 3457 3678 4568 
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Table 3 (continued). 

21 : 1234 1235 1267 1368 1456 1478 1578 2378 2458 2467 2568 3457 3468 3567 
1236 1237 1248 1358 1457 1468 1567 2345 2456 2578 2678 3467 3478 3568 
1238 1245 1278 1347 1356 1467 1568 2346 2357 2468 2567 3458 3678 4578 
1246 1257 1258 1345 1348 1367 1878 2347 2356 2368 2478 3578 4567 4568 
1247 12%; 1268 1346 1357 1378 1458 2348 2358 2367 2457 3456 4678 5678 

22 : 1234 123ri 1267 1368 1456 1478 1578 2378 2458 2467 2668 3457 3468 3567 
1236 1237 1248 1358 1457 1468 1567 2345 2456 2578 2678 3467 3478 3568 
1238 125fi 1278 1346 1357 1458 1467 2347 2356 2457 2468 3458 3678 5678 
1245 1257 1268 1347 1348 1356 1678 2346 2358 2367 2478 3578 4867 4568 
1246 1247 1258 1345 1367 1378 1568 2348 2357 2368 2567 3456 4578 4678 

23 . 1234 1235 1267 1368 1456 1478 1578 2378 2458 2467 2568 3457 3468 3567 
1236 1245 1247 1357 1378 1468 1568 2348 2356 2578 2678 3458 3467 4567 
1237 125X 12ti8 134ti 1348 1457 1567 2345 2367 2456 2478 3568 3578 4678 
1238 1241) 1257 1347 1356 1458 lti78 2347 2358 2468 2567 3456 3678 4578 
1248 1256 1278 1345 1358 1367 1467 2346 2357 2368 2457 3478 4568 5678 

24 : 1234 1235 1267 1368 1456 1478 1578 2378 2458 2467 2568 3457 3468 3567 
1236 1245 1248 1357 1358 1467 It178 2347 2368 2567 2578 3456 3478 4568 
1237 124(i 1278 1345 1348 1567 1668 2356 2358 2457 2468 3467 3678 4578 
1238 125ti 1257 1347 1367 1458 1468 2345 2346 2478 2678 3568 3578 4567 
1247 125X 1268 1346 1366 1378 1457 2348 2357 2367 2456 3458 4678 5678 

25 . 1234 1235 1267 1368 1456 1478 1578 2378 2458 2467 2568 3457 3468 3567 
1236 1245 1257 1347 1318 1568 lti78 2358 23ti7 2468 2478 3456 3578 4567 
1237 124G 1258 1356 1378 1457 1468 2348 2356 2457 2678 3458 3467 5678 
1238 1247 1268 1345 1367 1458 l5G7 2346 2357 2456 2578 3478 3568 4678 
124X 126ti 125X 1346 1957 1358 14137 2345 2347 2368 2567 3678 4568 4578 

26 : 1234 1235 1267 1368 1457 1468 1578 2378 2458 2467 2568 3456 3478 3567 
1236 1245 1248 1358 1378 1467 1567 2347 2356 2578 2678 3457 3468 4568 
1237 1258 1288 1345 1367 1456 1478 2346 2348 2457 2567 3568 3578 4678 
1238 1247 1256 1346 1357 1458 1678 2357 2368 2456 2478 3458 3467 5678 
1246 1257 1278 1347 1348 1356 1568 2345 2388 2367 2468 3678 4567 4578 

of permutations acting on large sets, we find that any two large sets containing a 
type Q design and four designs of type S are isomorphic if they have 
automorphism groups of the same order. 

Using the information on automorphism groups of design given in Table 2, we 
see that there are 8!/1344 = 30 distinct designs of type Q, 8!/48 = 840 of type R ,  
8!/12 = 3360 of type S and 8!/21 = 1920 of type T. Similarly there are 8!/12, 8!/4 
and 8!/3 distinct large sets, with groups of orders 12, 4 3 respectively. 

Consider a large set, with group of order 3. A particular design of type Q must 
occur in (8!/3)/(8!/1344) = 448 large sets of this type, and a particular design of 
type S in ((8!/3) X 4)/(8!/12) = 16 large sets of this type. This agrees with the 
results of the backtrack search. 

The remaining results have been cross-checked by similar arguments. 
The 26 classes of large sets are listed in Table 3, and further information on 

their properties in Table 4. In several cases, large sets with the same groups are 
not isomorphic to each other; for instance, there are nine non-isomorphic large 
sets with trivial automorphism group, seven with group of order three, four with 
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Table 4. Automorphism groups, and design types, of the partitions listed in Trrhle .?. 

1 
2 
3 

4 
5 
(i 

8 
9 

10 
I1 
12 
13 
14 

15 
I ti 
I 7  
18 
I9  
20 
21 
22 
2 :I 
24 
25 

2(i 

I 
1 

-___ 

4 
3 

12 

I 
2 
2 
ti 

2 
3 
3 
I 
6 
I (1 
2 

I 
1 
I 
3 
1 
1 
1 
I 
3 
3 
3 

5 
__ 

c: l"JUp 
Geiieiators 

( 1 683)( 2475) 
(156)( 347)  

( 1 4 ) ( 2 3 ) ( m ) ( 6 7 ) ,  (276)(458)  

(1) 

( 16)(35)(47)  
(16)(38)(45)  

(12)(3X)( I T ) ,  (162)(457)  
(l( i)(38)(45) 
( 1  28)(67H) 
( 1 %7)( 456) 

(1) 
(273)(-1853, (16)(23)(58) 
(37854), ( l 6 ) ( 8 4 ) ( $ i )  

(27) (38) (45)  

( 1 )  
(1 )  
( 1 )  

( 165)( 287) 
( 1 )  
( 1 )  
(1) 
(1 )  

( 1 (is)( 37X) 
(127)(466)  
( I H6)( 234) 

( 1  8564) 

Design 
Types 
4 ,  4,s 

4 ,  4s 

2 R ,  2s, ?' 

Q, 4s  

R ,  4s 
3 R , 2.S 
3 R ,  2 5  
R ,  4S 

2 R ,  37' 

R,2S,2T 
3 R ,  2.7 

5R 
H I 4,s 

4 s ,  7' 
4s, 7' 
3s, 27' 
2.7, 8'1' 
2s, 37' 
2 5 ,  31' 
4.?, ?' 
3.9, 2 T  
2 $ ,  31' 
3s, 27' 
3s, 21' 

5" 

3 R ,  27' 

group of order two, and two with (non-abelian) group of order six. There are two 
large sets with all designs of the same type, one with all type R ,  the other with all 
type T. The remaining large sets contain either three different types (two R, two 
S, one T, or one R, two S, two T), or a mixture of types R and S (in six different 
ways), types R and T (in two different ways) or types S and T (in eleven different 
ways). 
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INFINITE FAMILIES OF STRICTLY CYCLIC STEINER 
QUADRUPLE SYSTEMS* 

Helmut SIEMON 
Sonnenrain 17, D-8701 Reichenherg. FRG 

Dedicated to Haim Hanani on the occasion of his 75th birthday. 

1. Introduction 

A Steiner Quadruple System SQS(v) of order v is a pair ( V ,  B )  where V is a 
set with t~ E N* elements, B a subset of ( y )  the elements of which are called 
blocks so that every 3-subset of V is contained in a unique block. H.  Hanani [ l ]  
proved that the necessary condition u = 2, 4(6) for the existence of a S Q S ( u )  is 
also sufficient. In papers by A. Hartman [2,3] and Lenz [5] Hanani's proof was 
simplified. If, however, we require a SQS(v) to allow a given automorphism 
group the problem of the existence of SQS(u) is not yet solved completely, even 
if the automorphism group is cyclic of order v. A S Q S ( v )  with a cyclic 
automorphism group C,, of order v is called cyclic, denoted CSQS(u).  If the 
stabilizer of any quadruple of a CSQS(v)  equals the identity (the orbits of C,, 
have all length v )  we speak of a strictly cyclic SQS(v), denoting them s S Q S ( v ) .  
In [7] we constructed among other things sSQS(2.S"). I n  this paper we will 
extend our construction to sSQS(2p "), p = S( 12) provided sSQS(2p)  exists 
containing the base quadruples (0, i, 2i, f + i } ,  i = 1, 2, . . . , (v  - 2)/4 and all 
orbits invariant under the mapping i - ,  - i  (mod v). 

To the list of recent papers which deal with cyclic Steiner Quadruple Systems 
(cf. [7]) we have to add the dissertation by Piotrowski [6], w h o  proved, in the 
main part of his work, the following theorems: 

(i) A SQS(v) with dihedral group I] , ,  of order 2v as uutomorphism group 
exists if I I  = O(2), u I 0 ( 3 ) ,  v f 0(8), v 3 4 and if'for any prime divisor p of u 
there exists a SQS(  2p) with D2[, as automorphism group. 

( 1 1 )  Fbr all prinie numbers p = l(4) and p c 229, or p = l(4) and p & 1,49(60) 
0n.d p <: 15000 thPre rxists SQS(2p) with the automorphisni group A , ,  = { ( x  -, 
ax + h I l l ,  h E Z,, trnd gcd(a, v )  = I } .  In case p f l(3) this SQS(2p) has LA,, rrs an 
uutoniorphum group. 

The systems constructed in ( i ) ,  (ii) are, according to a private communication 
fram W .  Piotrowski. all strictly cyclic for 21 Z 0 (4). However, the construction we 
offer in case I I  = 21)",1) prime number and p = 5(  12) is a direct continuation of our 

* This investigation wii \  prehentcd i l l  the 5th 1ntcrn;:t~on;~l ChCeicnce c ) n  (;romctry, Hail's 10x7. 

(~'~l?-3hSX/Xs/$~.SO CI IYX9 .  Elsevier Science l 'utdI!~hcr~ H.V.  (North-I lo l l~ ind)  
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previous paper [7] and can be achieved, relatively easy, by using orbits graphs 
rather than the relevant graphs themselves as in Piotrowski's dissertation. 
Furthermore a modification of our construction might prove helpful in settling the 
existence problem for sSQS(2p). 

We use the definitions and results of [7]' and observe that in order to 
determine a 1-factor of the graph 0GS2(2p") we have only to consider vertices 
which are neither admissible nor co-admissible' and which we call residual 
vertices (residual orbits). Let R0(2pn)  be the set of all residual orbits and 
ROGS2(2p ") the corresponding subgraph of 0&&(2p "). We map ROGS'(2p ") 
by means of a natural homomorphism t#* onto OGS2(2p). The fibres of v*  have 
all cardinality p a - ' .  Now if { B , ,  B2} is an edge of OGS2(2p) and R ( B l ) ,  f i (B2)  
are fibres of q*, the elements of which are mapped onto B ,  resp. B 2 ,  we can 
construct a bijection @: ;F(B,)+;F(B,) so that for any D E ;F(B, )  the set 
{D, @(D)} is an edge of ROGS2(2p"). In case OGS2(2p) has a 1-factor and if 
{ B , ,  B 2 }  is an edge of a one factor, then { D ,  @(D)} is an edge of a 1-factor of 
ROGS2(2p"). 

2. Definitions and preliminary results 

Let V = (U, 1, . . . , u - 1)  be a set of cardi ality u ,  u = 2, 10(24), u > 4. A set 
{ x , y ,  z } ,  x ,  y ,  z E V *  (=V\{O}) with x + y  + z  = u is called a difference triple. 
We conceive of x ,  y ,  z as smallest remainders modulo u. If x 6 y S z ,  we use 
[ x ,  y ,  z ]  instead of { x ,  y,  z } .  The difference triples of the form [ x ,  x ,  z ]  or [ x ,  y ,  y ]  
or [ x ,  y ,  v/2] are uniquely completed as difference quadruples 

respectively, which give rise to the base quadruples { O ,  i, 2i, u/2 + i } ,  i = 

Next we consider difference triples [ x ,  y ,  21 with x < y  < x and z # u/2. Let S 
be the set of all these difference triples. We define derivatives of [ x ,  y ,  21 as 
follows: 

1, 2, . . . , (V -2)/4. 

First derivative [ x ,  y ,  21' := { y ,  x + y ,  z - y }  

Second derivative [ x ,  y ,  z ] " : =  { x ,  x + y ,  z - x }  

Third derivative [ x ,  y ,  ,I"':= { y - x ,  x ,  z + x } .  

For the geometric meaning o f  (2.1) see [7]. 
We deline the following relation on S :  

( H )  For all difference triples A , ,  A , :  A , R A , ( $ A ,  = A; o r  A2 = A; or Az = A"; 

' For definitions and prclirninary rcsults scc also Section 2 
'See Section 3 .  I .  
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Using the relation R we define the following graph GS(v):  
Vertices: elements of S 

Edges: { A , ,  A,} is an edge iff A , R A 2 .  

Proposition 2.1 ( [ 4 ] ,  [7]). l f  GS(u) has a 1-factor then there exisfs a sSQS(v ) .  

GS(u)  can be decomposed into two subgraphs GS,(v) ,  GS,(u),  which are not 
connected: 

vertices: [ x , y ,  z ]  if 21. or 2j 'y or 2 j ' z  

edges defined as in GS(u) 
GS,(v):  

vertices: [ x ,  y ,  z ]  if 2 I x ,  y ,  z 
GS2(v):  edges defined as in GS(v). 

Let S, resp. S2 be the sets of vertices of GS, (u)  resp. GS,(u). 

Proposition 2.2 ([4], [7]). GS(u) has a 1-factor ifSGS,(v) and GS,(v) both have a 
1-factor. 

Proposition 2.3 ([7]). GS,(u) has a 1-factor. 

We investigate GS,(v). If U is a subgroup of the automorphism group of 
GS,(v) so that all orbits of U have equal length we define an orbit graph 
OGS2( v): 

Vertices: the orbits of U 
Edges : orbits 0,, 0, form an edge {O,, O,} iff (OG) 

there exists A ,  E O,,  A ,  E 0, with A , R A , .  

Proposition 2.4 ([7]). If OGS,(u) has a 1-factor, so has GS,(u). 

If m E N* is relatively prime to  u we define the following operation on the 
elements of S,: 

{mx, m y ,  m z } ,  
{ u - m x ,  u - m y ,  v-mz}, if m x + m y + m z = 2 v  

if mu + my + mr = v 
(2 .4 )  m[x,  y ,  z l =  

The mapping b :  [ x ,  y, 21- m [ x ,  y ,  z]  is an automorphism of GS,(u).  

GS2(2p") into subgraphs, which are not connected: 
Let u = 2p", p prime number = 1 or 5 mod 12. We decompose the graph 

vertices: [ x .  y ,  z], if p j ' x  or p j ' y  or p ( z  

edges defined as in GS2(2p") 
GS2(2p"): [ 
G S 2 ( 2 p " 4 ) :  [ vertices: [ x ,  y ,  21, 

edges defined as in GS2(2p" )  
if  p I x ,  y ,  z 

The graph GS2(2p" I) is isomorphic to GS2(2p"-')  (cf. [7]). 
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Proposition 2.5 ([7]). GS,(2pn) = GS2(2p"-') U GS,(2pn). 

When we know that G S 4 2 p " )  has a I-factor for all a e N *  we can use 
mathematical induction by means of Proposition 2.5 to prove that GS2(2p") has a 
1-factor. 

3. I-factor of Gs2(2p") 

We let the unit group E(2p"), p -5(12), operate on the vertices of GS,(2p"). 
There are t = ( p "  + p a - '  - 6)/6 orbits o f  length ( p " -  ' ( p  - 1) ) /2  (cf. [7], Lemma 
4.4). Let 0,, O,, . . . , 0, be the t orbits. I f  0, contains [ x ,  y ,  z ]  with 

2 p ( x  or 21, l y  or 2p12 (2.5) 

(observe that only one component is divisible by 2p) then all triples in 0, have 
property (2.5). We call 0, admissible if all [ x ,  y ,  z ]  E 0, have property (2.5). Let 
A , ,  . . . , A ,  be the admissible orbits and Hi,  R 2 ,  . . . , R ,  the not admissible ones. 
When we replace 2 .  5" by 2,'' in Theorem 1, 171 we obtain r = ! (p" I - l ) ,  
s = t ( p " -2p " - '  - 3 ) / 2  and r s s  with equality only t o r  p = 5 .  Let now 
OGS2(2p") be the orhit graph as defined in (OG) (with E(2p" )  generating the 
orbits). In  the following w e  will construct a I-factor of OGS2(2p"). 

3 .  1 . Admissible und co-udmissible orbits-' 

Let A, be an admissible orbit. In  A,  there exist vertices A ,  = [ x , ,  y , ,  z , ] .  
A2 = [ x , ,  y,, z,], A, = [ x , ,  y,, z3]  of GS,(2p") with x ,  = 0(2p), yz = O(2p) .  
z3 =0(2p). A; cannot be containcd in an admissible orbit because none of  its 
components y , ,  y ,  + x , ,  2pn - (2y ,  + x , )  are divisible by 211. So A ;  must be 
contained i n  an orbit 11, which is not admissible. Then for all A ,  A = [x,  y ,  z ]  t A ,  
with x -0(2p) one o f  thc vertices A ' ,  A", A"' must lie in B, bec~tuse o f  t h e  
automorphism property. Now A" = {x,  x + y .  21)'' - (2x + y ) } ,  A"' = { y - 
x ,  x ,  2p" - y )  are in admissible orbits and A' = { y ,  x + v ,  2p - (2y  + x ) }  is not. 
so A' E B,.  By the same arguments one gets A;, A"( E R,.  

Let ?)I be the set of all admissible orbits. So the relation k given by  

( k  1 if  [ x ,  y .  z ]  E A E ? I ,  
is a well-defined mapping from "1 into the set of all not admissible orbits. We 
define $ A : =  { k ( A )  I A E '3;. When A is admissible let us cull k ( A )  co-xlmissible. 
So %+ is the set 0 1  all co-admissible orbits. We show next: 

[ x ,  v ,  z ] '  E k ( A ) ,  .u = O(2p) 

k is an injective mapping f r o m  \'I into 'LA. ( 3 . 1  i 

( a )  I f  A €!'I, fl E ?+, [ . x ,  y,  Z ]  E A .  x = 0 ( 2 / ~ ) ,  [x ,  y .  z ] '  E H then no vcrtex other 
than ( x ,  v ,  z ] ,  connected with [ x ,  y ,  z ] ' ,  is containccl in an admissible orbit. 

' For the convcnicncc 0 1  thc reader we repeat hcrc the ;irgumeiii ol itic p o o l  DI 'l'hcorcm I 111 ( 7 )  
with 2p" instex1 o l  2 5". 



Cyclic Steiner quadruple system 311 

The vertices connected with [ x ,  y ,  21' are [ x ,  y ,  z ]  and at the most two of the 
following: 

{X + Y t  X + 2y,  2p - (b + 3 ~ ) ) )  { 2p - (X + y ), 2p - (X + 2 y ) ,  2u + 3y - 2 p ) )  

{ y , x + 2 y , 2 p - ( x + 3 y ) ) ,  { 2 p - y , 2 p - ( x + 2 y ) , x + 3 y - 2 p } .  

None of these have components divisible by 2p. 
(b) Assume now A , ,  A2 E '?I, k ( A , )  = k(A2).  In A ,  there exists [ x , ,  y , ,  z , ]  with 

x l  = 0(2p) ,  yl f O(2p) and [xI , y , ,  z ,] '  E k ( A  ,). Since k ( A , )  = k(A2)  there exists 
[ x 2 ,  y2,  z2] in A2 so that [xi, y , ,  z,]' is connected with [ x 2 ,  y2,  z2]. From (a) we 
know that [ x 2 ,  y, ,  z2] = [ x , ,  y , ,  zl] and hence A ,  = A 2 .  

The edges {A, k ( A ) )  of 0 G S 2 ( 2 p " )  will be candidates for the elements of a 
1-factor. 

3.2. The residual orbits 

If p > 5, p = 5(12), there are ( p " - ' ( p  - 5))/6 ( = ( p "  +p"-'  - 6)/6 - 2i(p"- '  - 
1)) orbits which are neither admissible nor co-admissible. We call these orbits of 
0GS2(2p" )  residual orbits. Let RO(2p")  be the set of all residual orbits. The 
vertices of 0 G S 2 ( 2 p " )  are then given by \)I U 'x3 U RO(2p  ") where the sets 91, 23, 
RO(2p")  are mutually disjoint. We now define the residual orbit graph 
ROGS2(2p ") as follows: 

ROGS2(2p "): [ vertices: elements of RO(2p")  
edges defined as in 0GS2(2p") '  

In this section we will show that ROGS2(2p")  has a 1-factor, provided OGS2(2p)  
has one. 

In order to prepare the proof of this assertion we will first give a representation 
of the orbits of GS42p" )  (note: GS2(2p)  = GS2(2p)).  

3.2.1. The representation of orbits 
In any orbit of GS2(2p ") there are exactly three vertices of GS2(2p ") with the first 
component x = 2. To prove this, we have only to repeat the argument (i), 
Theorem 1, [7]. In the following it will be shown that the edges of 0 G S 2 ( 2 p " ) ,  
which are incident with a vertex 0, can be obtained by using the second and third 
derivatives of the three elements [2,  y , ,  z , ] ,  [2 ,  y2 ,  z2],  [2,  y,, z3] E 0. These triples 
we therefore call representing triples of the orbit. 

It is convenient to consider the components x / 2 ,  y / 2 ,  z / 2  with x / 2 + y / 2 +  
212 = p a  instead of  x ,  y ,  z with x + y  + z = 2p", because x / 2 ,  y / 2 ,  z / 2  are 
relatively prime to p and thus there are inverse elements E l ,  lj2, E 3  with 
x / 2 .  5, = 1(p")etc4.Forthisreasonwedefine[a, b, c ] , : =  [2a, 2b, 2c ) ,  {a ,  b ,  c } , : =  
{2a, 2b, 2c) .  The index r shall remind of  "reduced form". 

4This device was first introduced in [4]. We will however adopt it to our needs 
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Now 
m [ u ,  b, c ] ,  = m[2u,  26, 2c] 

- { m 2 a ,  m2b ,  m 2 c } ,  

- { m u ,  m b ,  mc}, ,  

if m2u + m 2 b  + m2c = 21)" 
- [ (2p" - m2u,  2p" - m 2 b , 2 p "  - m 2 c } ,  if m2u + m 2 b  + m 2 c  = 4p" 

L P " -  mu ,  p a  - mb, p" - mc} , ,  if m u  + mb + m c  = 2 p 4  
if mu + mb + m c  = p a  

- 

Especially we remark: I f  m u  = 1 or mb = 1 or m c  = 1 then m u  + mb + m c  # 2p". 
Now if the triple A = (1, w ,  - ( 1  + w ) } ,  is an element of the orbit 0, then we 
obtain the two other representing triples in reduced form as 

Let uscall { l , y + l , z - l } , ,  { l , y - l , z + l } ,  the neighboursof  [ l , y , z ] , .  The 
neighbours of [ I ,  y ,  z ] ,  can be obtained by taking the second and third derivatives 
of [ l , y , z l r  in case y < z :  [ 1 , y , z ] : ' = [ 2 , 2 y , 2 ~ ] ' ' = ( 2 , 2 y + 2 , 2 z - 2 } = { 1 , y +  
1, z - [ I ,  y ,  z]':'= { 1 ,  y - 1 ,  z + l},.  We obtain the same neighbours (in 
reverse order) in case z < y :  [ I ,  z , y ] : ' =  ( 1 ,  z + 1 , y  - l},, [ l ,  z,y] ': '= { 1 ,  z - 
1, Y + 1 > r .  

We prove: 

The orbit 0 containing { 1 ,  w, - (1 + w)} , ,  { 1 ,  - If, i} , 
W W r  

W 1 
can at most be connected by an edge with (1, -G' -GI, 

the following orbits C , ,  C 2 ,  C 3 :  

[l,I+,, W --I; 1 + 2 w  [ l ,  -~ W --I, l + w  { l ,  - %,l+W} EC3.  
l + w  1+2w'  1 + 2 w  W w r  

( 3 . 3 )  

Proof. The set of neighbours of { 1, y ,  z } ,  will be denoted by n ( l ,  y ,  z ) .  
(i) n(1, w, - ( 1  + w ) )  = ( ( 1 ,  w + 1, - (2 - t  w ) } ~ ,  (1, w - 1, - w } , }  

w w  W W W 

l + w  1 

n ( 1 ,  -- W --)={{l,=, 1 1 --+, 2 + w  -- 1 + 2 w  - w 
l + w '  I + w  l + w  
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We can state that all neighbours of the representing triples of 0 are contained 
in either C ,  or C2 or C3.  A neighbour may not be a vertex of the graph: [ I ,  7 ,  91, 
is a vertex of G S 2 ( 2 .  1 7 ) ,  but the neighbour [l, 8, 8Ir is not. Here no orbit exists 
which contains [ 1,7,9]:' .  In this case [ 1,7 ,9] ' : '  exists. 

(ii) Let [x ,  y ,  zIr E 0. We will show 

We obtain 
contained in CI or Cz or C3,  if at all. 

now that [ x ,  y ,  z]:, [x ,  y ,  z]:', [x ,  y ,  21':' are 

- 1 [x ,  y ,  z],. = [ 1, ;, - "'1 
X x r  

Take w : = y / x .  It follows that - ( 1  + w )  = - ( x  + y ) / x .  Now [ x ,  y ,  z ] , ,  (1, w ,  
- (1  + w ) } :  belong to 0.  Consider [ x ,  y ,  - ( x  + y ) ] :  = { y ,  x + y ,  - (2y  + l ) } , .  
We have 

- [ x , y ,  1 - ( x + y ) ] : = { l , - ,  l + w  -'"") 
Y W W I  

and know that [ x ,  y, - ( x  + y ) ] :  is contained in the same orbit as 

hence follows [x ,  y ,  - ( x  + y ) ] :  E C3.  All other cases, namely 
1 -- W -- 

1 - l + w  
X W W' 1 + w '  l + w  
I= - ( l + w ) ,  --, 

can be treated accordingly. Considering [ x ,  y ,  z]:', [ x ,  y ,  z]:", we proceed likewise. 
Now (3.3) shows that the edges of the graph ROGS2(2p")  are determined by 

neighbours of the representing triples (reduced form). 

Corollary. Zf { B, , B 2 }  is an edge of 0GSz(2p "), there are two of the representing 
triples of B ,  which have neighhours in B2 .  

3.2.2 The fibres o j  q* 

with 0 < x ,  y ,  z < 2p. We define 

{ x ,  y ,  z } ,  

Let [ X ,  Y,  Z ]  be a vertex of  GS2(2p") and x = X(2p) ,  y = Y(2p) ,  z = Z ( 2 p )  

if x + y  + z  = 2 p  
[x* ' 9  z l V = { { 2 p  - x ,  2p - y ,  2p - z}, i f x  + y  + z =4p. 

Only if [X, Y, Z] is contained in an admissible (co-admissible) orbit, then 
[ X ,  Y, ZIV = [a ,  6 ,  c ]  yields a = 0 or b = 0 or c = 0 (a  = 6 or a = c or 6 = c ) .  So it 
follows that the union of all residual orbits is equal to the set of all pre-images of 
the set of vertices of GS2(2p).  Next we observe with 0 a vertex of R 0 G S 2 ( 2 p " ) :  

If [XI, Y,,  Z , ] ,  [ X Z ,  Y2, Z , ]  E 0 then 
[XI, Y, ,  Z , ] "  and [X,, Y2, Z2Iw belong to the same orbit when (3.4) 
the unit group E ( 2 p )  is operating on GS2(2p) .  

The remark (3.4) is obvious. 
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Let [x,  y ,  21 be the orbit [ x ,  y ,  21 is contained in. Now q induces by (3.4) a 
mapping I)* from ROGS2(2p") onto OGS2(2p)  in a natural way: 

( v * )  [X, Y ,  Z ] V ' =  w e"x, Y ,  Z]W E w. 
And we remark that q* is a homomorphism from ROGS2(2p") onto OGS2(2p) ,  
which is readily seen. 

Next we wish to prove that the fibres % ( B )  = {C I C E RO(2p" )  and CY" = B} 
for all vertices B of OSG2(2p)  have cardinality pa- ' .  

For this reason we need the following 

Lemma. With [[sD:= [ s ]  + 1, s real, we obtain: 
(1 )  If x is a natural number which satisfies the condition 1 G x s p - 3 then 

I[p"-;; + 3'1 L - pa-' + 1 
2 

(2 )  If x is a natural number with p s x  + 3 6 2p - 3 then aP"-i; + 3 )  pa-' - 1 n =  
The proof of this Lemma is straightforward. 

Proposition 3.1. Let B be any vertex of OGS2(2p) ,  %(B) a fibre of q* ,  then 
I%B)I = P"- ' .  

Proof. Let [2, y , ,  z,], [2,  y2,  z2],  [2 ,  y3 ,  z3]  be the representing triples of the orbit 
B.  We determine now the pre-images of the triples under the mapping q. 

For y,, z,, i = 1 ,  2 ,  3 the following inequalities hold; 

4 s y l  s p  - 3, p + 1 2, s 2 ( p  - 3) .  (3.5) 

When [2,  Y, Z ]  is mapped onto [2,y, ,  2,] by the component Y has the form 
Y = y , + k , 2 p  or Y = z I + t , 2 p ;  k, ,  t l E N * ,  i = l ,  2,  3. Because of 4 s Y c p a - 3  
we have to find maximal numbers R , ,  i2, R 3 ,  Z 1 ,  Z2, r3 with 

y, + (1, - 1)2p s p a - 3,  4 S y, 6 p - 3 (3.6) 

2, + (Z, - 1)2p s p - 3,  p + 1 s 2, G 2 ( p  - 3). 

Applying the Lemma we obtain 

and i = 1,2,3 

(3.7) 
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so that El + k2 + /5, + i1 + S2 + 5, = 3 * p a - ' .  Since any orbit contains three triples 
[ x ,  y, 21 with x = 2 we have pa-'  orbits being mapped by tp* onto B. 0 

Theorem 3.1. I f  the orbits B I ,  B2 consisting of vertices of GS2(2p) form an edge 
of OGS2(2p) then there is a bijective function @: %(Bl)+ 3(B2) so that for  all 
D E Q ( B , )  the set { D, @(D)} is an edge of ROGS2(2p"). 

Proof. (i) Let BI  be represented by (1, y,, z , } ~  and B2 by (1, u, ,  w,},, i = I ,  2, 3. 
Since we have assumed B1, B2 to be connected there are, according to the 
corollary of (3.3), two neighbours of elements of BI  contained in Bz.  Without loss 
of generality we can choose u I = yl + 1 ,  u2 = y2 + 1 otherwise we would only alter 
the notation. Now u,, w, can be expressed by y, and z3.  Since the representing 
triples of Bl  resp. B2 can be written as 

Yl 

resp. as 

1 
- --}, ( 1 ,  --, --} 1 2 + Y l  1 + Y l  

b y 1 +  1' y, + 1 ~ + Y I  2 + y I  r 
{ 1 I Y l  + 1 1 - (2 + Yl)),? 

with 

1 + Y l  

1 + . Y I  Yl YI + 1' 2+Yl 
u , : = -  

1 
, u2:=-  , y,:= -~ yz:=-- 1 + Y l  Yl 

and by eliminating the parameter y, we obtain 

Y.3 23 and w,= -- 
1 + 223 u3= --__ 1 + 2Y3 

So B2 can be represented by 
Y.3 z.7 { l , y l + l , z l - l } r ,  ( l , y 2 + l , 2 2 - l } r ,  1,  -~ --1 

1 +2y,' 1 +2z3 

(ii) If (1, -__ Y, Z j r  is a vertex of ROGS2(2p") with { 1, Y, Z}y*=  (1, y , ,  z ~ } ~  and 
(1, y,, z , } ~  E (1, y , ,  z ~ } ~ ,  1 = 1, 2, 3 then the following six possibilities Y -y,(p), 
Y=z,(p) ,  1 = 1, 2, 3 have to be considered. Accordingly we define 
@: %BI) a(B2) by 

((I,+ 1, 2 - 1 > r  f if Y =y l (p )  or Y - y 2 ( p )  

From (i) it follows immediately that ( @ ( { 1 ,  Y, Z},))'"' = B2 and that ( ( 1 ,  Y, Z},, 



@({l, Y, Z),)} is an edge. Next we observe that @ is surjective and hence, 
because of Propositions 3.1, bijective. 0 

Theorem 3.2. I f  the graph 0GS2(2p) has a 1-factor then OGS2(2p") has one. 

Proof. Let OGS2(2p) have a I-factor. In the beginning of this section we have 
mentioned that the set of vertices of 0GS2(2p") can be decomposed by 
91 U !B U RO(2p"). From Section 3.1 we know that { A ,  /?(A)}  for all A E 91 are 
candidates for the elements of a 1 -factor of OGS42p "1. Let now { B, , 13,) be an 
edge of a 1-factor of OGS2(2p), then for all D E %(B,) the set {D, @(D)}  is an 
edge of a I-factor of ROGS2(2p") and so ROGS2(2p") and hence OGS2(2p'7 
have a 1-factor. We deduce GS2(2p") has a 1-factor (Proposition 2.4). 0 

Theorem 3.3. If the graph OGS2(2p) - ( p  - 5 ) / 6  vertices - has a 1-factor then 
sSQS(2p") exists for all (Y E N*. 

Proof. The theorem follows directly from Theorem 3.2, Proposition 2.4, Propo- 
sition 2.5. 0 
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MINIMAL PAIRWISE BALANCED DESIGNS 

R. G. STANTON 
Department of Computer Science. University of Manitoba, Winnipeg, Cunada, R3T 2N2 

An expression involving a “remainder term” is given for thc number of blocks in a minimal 
pairwise balanced design in which the length of the longest block is specified. The allows a 
simple presentation and unification of a number of earlier results derived by various authors. 

1. Introduction 

Suppose that we are given a set V made up of v elements 1 ,2 ,  3, . . . , v. A 
pairwise balanced design is a collection F of blocks with the property that every 
pair of elements from V occurs exactly A times among the blocks of F. In the rest 
of this paper, we shall restrict attention to the particular case A = 1. We shall also 
introduce the parameter k to designate the length of the longest block in the 
family F (this block may not be unique; usually, there will be several blocks of 
length k ) .  

As a simple example, let us look at the case v = 7 ,  k = 4. There are six 
non-isomorphic pairwise blanced designs with these parameters, and it is 
instructive to list them. 
(a) Blocks 1234, 1567, 9 pairs; total of I1 blocks. 
(b) Blocks 1234, 567, 12 pairs; total of 14 blocks. 
(c) Blocks 1234, 156, 257, 367, 6 pairs; total of 10 blocks. 
(d) Blocks 1234, 1.56, 257, 9 pairs; total of 12 blocks. 
(e) Blocks 1234, 1.56, 12 pairs; total of 14 blocks. 
( f )  Blocks 1234, 15 pairs; total of 16 blocks. 
It is clear that the minimal pairwise balance design with v = 7, k = 4, is the design 
labelled (c). 

In general, we use the symbol g‘k’(l, 2; v )  to designate the minimum 
cardinality of any pairwise balanced design on a set of u elements with longest 
block having length k .  Thus, we have shown, by exhaustive search, that 
~ ( ~ ’ ( 1 ,  2; v )  = 10. Of course, the minimal design may not be unique; it is perfectly 
possible for two non-isomorphic designs to possess the same minimal cardinality. 

We shall frequently abbreviate g‘k’( 1, 2; v )  to g‘k’(v) o r  simply, i n  this paper, 
to g. 

0012-36SX/X9/$3 SO 0 1989, Elsevier Science Publishers B V (North-Holland) 
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2. Elementary relations 

In the minimal design, we let hi represent the number of blocks of length i, 
where i < k .  If i = k ,  we designate one particular block of length k to be the  
“longest block”, and we use bk to designate the number of other blocks of length 
k. Thus, the total number o f  blocks of length k is bk + 1. We often refer to the  
designated “longest block” as the huse block; it plays a very specialized role in 
the theory. 

By counting blocks, and then by counting appearances of pairs within blocks, 
we immediately obtain two relations. 

(1) b2 + h3 + h4 + hs + * . . + b k  = R  - 1 

2b2 + 66, + 12b4 + 210hs + . . . + k ( k  - l)bk = V ( ~ J  - 1) - k ( k  - 1 )  

= ( V  - k ) ( l J  + k - 1). ( 2 )  

To obtain a third relation, we define b, to be the number of blocks of length i that 
pass through point j on the base block ( j  = I ,  2, 3 ,  . . . , k). Since every pair 
containing j must appear in the set of blocks, we immediately have 

(3) Z,(i - l)b,) = v - k ,  

Z;Cj(i - l)b,, = k ( t ~  - k ) .  

and this result holds for every point j. Hence we may sum over j and obtain 

(4) 

This summation is over all blocks of length i that meet the base block. However, 
there may be some blocks of length i that are disjoint from the  base block; 
suppose that the number of these is hjll. Then we may form the sum 

(5 )  Z,(i - l)h,,, = E,  

h, = h,o + h, I + biz + hi ,  + . . + b , k ,  

b2 + 2h, + 3b4 + 4h5 + * * . + ( k  - l)bk = ~ ( I J  - k )  + E. 

where the quantity E (for excess) is certainly nonnegative. Since we know that 

(6 )  

we can add equations (4) and (5) to end up with 

(7) 

We now combine equations ( I ) ,  ( 2 ) ,  and (7) in such a way as to eliminate 
adjacent columns in the equations. For instance, using multipliers 2, I ,  -4, would 
eliminate the terms in h2 and h ,  to leave 

2(h4 + 3hT + 6h6 + . . . ). 
We shall multiply the three equations by s ( s  + l) ,  1, - 2 ( s  + I), respectively, in  
order to eliminate those terms involving h, + I and h,, + L .  The resulting expression 
involves the quantity 

P :  ,h, +b,+,)+3(b,-l  +6,+4)+0(h,-2+b\+5)+ IO(h, -,+ h , + , ) + . . .  

(8) 
It is clear that P is nonnegative. 
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The result of combining 

S(S + 1)(1) + (2) - 2(s + 1)(7) 

is the relation 

S(S + l)(g - 1)  + (V - k ) ( v  + k - 1) - 2 ( ~  + l ) k ( v  - k )  = 2E(s + 1) + 2P. 

(9) 

(10) 

If we solve for g from Eq. (9), the result is 

g = 1 + ( I !  - k)(2sk - + k + ~ ) / s ( s  + 1) + 2 E / s  + ~ P / s ( s  + l), 

where the quantities E and P are non-negative. If we drop the terms in E and P ,  
we obtain a lower bound that was established by Stinson [5] in 1982, using 
generalized variance techniques. 

Theorem 1 (Stinson). g 3 1 + (v - k)(2sk - v + k + l)/s(s + 1) .  

This result is true for all values of s; we can easily determine the most effective 
value for s by writing F ( s )  = 1 + (v - k)(2sk - v + k + l)/s(s + 1); then we find 

F ( s )  - F(s  - 1) = 2(2! - k ) ( v  - 1 - sk) / s (s  - l)(s + 1). 

This equation shows that F ( s )  is increasing so long as sk lies below (v - 1). 
Hence, to obtain the strongest result from (lo), we should assign to s the value 
((v - l ) / k l ;  of course, if the quantity (v - l ) / k  should happen to be an integer, 
then both F ( s )  and F ( s  - 1) are equal. 

Now, let us consider the case of a very long block whose length k lies between 
v / 2  and v. For k in this region, we select s = 1, and thus obtain a result due to 
Woodall [6]. 

Theorem 2 (Woodall). If k lies between v / 2  and v, then g 3 1 + (v - k)(3k - u + 
1)D. 

We note that the Woodall bound is always an integer. Consequently, Eq. (9) can 
be applied to give 

Corollary 2.1. The Woodall hound can only be achieved if E = P = 0, that is, all 
blocks meet the long base block, and their lengths are either 2 or 3. 

This bound can actually be met by using an easy construction based on 1-factors 
of the (v - k )  points not in the long block; see [4] for details. 

However, Eq. (9) gives us more information than simply the Woodall bound 
and its converse. Suppose that we now let k lie between v / 3  and v / 2 ;  then we 
take s = 2. (We should remark that special techniques may have to be applied 
when one is at the exact boundary of this region, that is, where s is changing from 
1 to 2 or from 2 to 3. )  In this case, the term 2 E / s  in (9) becomes E ;  because E is 
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a non-negative integer, we see that E must be zero if the Stinson bound is met. If 
we write S for the Stinson bound, and require that it be “met” (that is, g = [Sl), 
then we have 

g = S  + ~ P / s ( s  + 1) = S  + (b2 + b5)/3,  

where the second term is less than unity. Consequently, we have 

Theorem 3. tf k lies between v / 3  and v/2, and the Stinson bound is met (in the 
nearest-integer sense), then E = 0, that is, all blocks meet the base block. 
Furthermore, all of the blocks have lengths 3 or 4, except that there may possibly 
be one or two rogue blocks (this corresponds to the case P = I or P = 2), and the 
number of these is given by the relation 

There is curently a great deal of work being done for k lying in this region; see, 
for example [3], the very important work of Rees in [l] and [ 2 ] ,  and the various 
works cited in [l] and 121. The use of “frames” (cf. [l]) has been of particular 
significance in discussing the question. 

Actually, Theorem 3 is only a special case of a more general result. Suppose 
that the Stinson bound is actually met, that is, g = IS]. Then we prove, without 
any restriction on k ,  that is, for all values of s 2 2, 

Theorem 4. The Stinson bound can only be met, that is, g = [Sl , if all of the 
blocks meet the long block. 

Proof. We suppose that, if possible, the Stinson bound is met, but that there is a 
block of length ( s  + 1) - z that does not meet the base block. This block will 
contribute an amount ( s - z )  to E ;  however, i t  also contributes an amount 
z ( z  + 1)/2 to P .  There is a certain balancing effect in action here, since small z 
values make E large and P small, whereas large z values make P large and E 
small. More precisely, we may write 

g = S + 2 E / s  + 2P/s(s + l ) ,  

where the contribution of the disjoint block to the “remainder terms” is given by 

2(s - z)/s + z ( z  + l)/s(s + 1) = (2 - z(2s + 1 )  + 2s(s + l)}/s(s + 1) .  

(11) 

Now the discrete variable z may range from the value 1, if there is a disjoint 
block of length s, to the value (s - l ) ,  if there is a disjoint block of length 2. The 
expression (11) is decreasing and reaches its minimum value (in the permissible 
range for z )  at s - 1; this minimum value is 

(s2 + s + 2)/(s2 + s), 
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and it is greater than unity. Consequently, it is not possible to have g = IS1 unless 
there is no disjoint block, that is, E = 0, as stated in Theorem 4. 

It is an obvious corollary that, if the Stinson bound is met (that is, g = IS]), 
then 

g = s + 2 P / s ( s  + 1). 

All blocks have lengths s + 1 and s + 2, with the exception of a small number that 
can be determined from the relation 

[sl - s = 2 P / s ( s  + l) ,  

where P is given by (8). This relation guarantees that the number of rogue blocks 
is very small, and that their lengths are close to those of blocks of lengths s + 1 
a n d s + 2 .  0 
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COMBINATORIAL PROBLEMS IN REPEATED 
MEASUREMENTS DESIGNS 

Deborah J .  STREET 
Wuite Agricultural Research Institute, The Univer.sity of Adelaide, Adelaide, SA , Australiu 

A number of papers in the statistical literature in recent years have considered the structure 
of designs with certain desirable statistical properties. Some constructions for these designs 
have been presented but a number of open problems remains. In  this paper a survey o f  the 
designs required, and a summary of the known results, is presented. 

1. Introduction 

In a repeated measurements design there are t treatments, n experimental units 
and the experiment lasts for p periods. Each experimental unit receives one 
treatment during each period. Thus the design may be represented as a p x n 
array containing entries from { 1 , 2 ,  . . . , t } .  Some examples are given in Table 1. 

Table I .  

(a) (b) (c) 
t = 3 ,  n = 9 , p = 6  1 = 6 , n = 6 , p = 6  t = S , n = I O , p = S  

0 0 0 1 1 1 2 2 2  1 2 3 4 5 6  1 2 3 4 5 1 2 3 4 5  
0 1 2 0 1 2 0 1 2  2 3 4 5 6 1  2 3 4 5 1 5 1 2 3 4  
1 1 1 2 2 2 0 0 0  6 1 2 3 4 5  5 1 2 3 4 2 3 4 5 1  
1 2 0 1 2 0 1 2 0  3 4 5 6 1 2  3 4 5 1 2 4 5 1 2 3  
2 2 2 0 0 0 1 1 1  5 6 1 2 3 4  4 5 1 2 3 3 4 5 1 2  
2 0 1 2 0 1 2 0 1  4 5 6 1 2 3  

The term “repeated measurements design” is also used to describe experiments 
in which at most one treatment is applied to an experimental unit and successive 
readings are taken over time. The interest then is in modelling the growth, or 
change, over time. We will not consider this area further. 

As it stands, any p x n array containing entries from { 1 ,2 ,  . . . , t }  can be used 
as a design. However, some arrays are better than others and the arrays that are 
‘best’ depend on the model that is being proposed to analyse the results of the 
experiment and the terms in that model that one is interested in estimating. 

We will consider two linear models which have been proposed for analysing 
results from a repeated measurements experiment. We use d ( k ,  u )  to represent 
the treatment applied, in design d ,  to unit u during period k.  

The first linear model assumes that the observation, Yk,,, made on unit u during 
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period k is the sum of a period effect (aL) ,  a unit effect ( P I , ) ,  a direct treatment 
effect a (first-order) residual treatment effect ( P < / ( ~ -  I . l , ) )  (for any period 
other than the first) and an error term (ELI,).  The observations are assumed to be 
independent of each other, so Corr(E,,, EKw,) = 0 for all pairs ( k ,  u )  # (g,  w). The 
variance of the error terms is assumed to be constant, so var(Ek,,) = u2. Thus we 
may write this model as 

Yk,, = a;, + P I ,  + t ( / ( k . . t , )  + P , / ( L - I . , , )  + E k r r l  

k = 1, . . . , p ;  u = 1, . . . , n ;  Var(E,,,) = a'; P,~(,,,,,) = 0. 
This model may be varied by assuming that the last period precedes the first 

(so-called circular repeated measurements designs) or by deleting the period 
effect, or the unit effect, o r  both. 

The second linear model assumes that the observation, Ykl,, made on unit  u 
during period k is the sum of a period effect (ak ) ,  a unit effect ( P I , ) ,  a direct 
treatment effect ( T ~ ( ~ , , , ) )  and an error term (Eku).  Observations on different units 
are assumed to be independent but observations on the same unit  are assumed to 
be correlated with the correlation depending o n  how 'close together' the 
observations are. We write Var(E,,,) = a2/(1 - A2) and Corr(Ek,,, ERl , , )  = 

Alk-h'l6 I,uI where b,,,,. is the Kronecker 6. We may write this model as 

Yk,, = a k  + PI,  + t , / (k ,u )  + EL,,, k = 1, . . . , p ;  u = 1, . . . , I I .  
To facilitate further discussion of ways of comparing designs, we will express 

For the first model, following Cheng and Wu [7], we let 
the linear models above in matrix notation. 

O = ( t , ,  . . . , T,, P I , .  . . , P I ?  a , , . .  ' ,  a,,, PI , .  . . , P,,ji, 
Y = ( Y , , ,  Y,, , . . .  , y,,,  . . . , Yl,,,  Ya,, . .  . I y,,,j", 
E = ( E i i ,  E21,. . . , EI,i , .  . . , El,,, . . . 9 EIJr1)'1 

and write Y =X,/N + E .  X,/ is a (0, 1) matrix and is called the design matrix. 
We can write Y = X,/H + E = rl + E ,  say. Our eventual aim is t o  estimate the 

elements in N, but we begin by estimating the elements in q. To do this we have 
available the data vector Y which differs from q by E .  Note that Y , q  and E are all 
vectors in K'IP, E has no preferred direction in K"" since its elements are 
independent of each other and have constant variance. Hence the most natural 
estimate of q is that vector in the range of X ,  which is closest to Y in the  usual 
Euclidean sense. Thus our estimate of q ,  4 say, minimises ( Y  - q)"'(Y - T I ) .  

Suppose we choose b such that X6(  Y - X,&) = 0, that is X;:'X,h = X b  Y. 
Clearly X,b is in the range of X, ,  Y - X d b  is in the orthogonal complement of 
the range of X ,  and Y = X , / b  + Y - X,b. These facts, together with the fact that 
rl is in the range of X,!, give 

( Y  - rl)'''(Y - 11) = ( Y  - X,h + X,b  - q)"'(Y - X,,b + X,/b - 11) 

= ( Y  -XC/6)"'(Y - X,/h) + (X,$ - q)"'(X(/b - 11). 
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Since ( Y  - X , b ) l ( Y  - X,b)  is constant we see that ( Y  - q)~I‘(Y - q )  is minimised 
if i j  = X,b. Any vector 8 such that 

X , e  = 4 = X d b  

produces the same vector fj and is a least squares estimator of 8. Thus we have 

X l X d 6  = X i X d b  = XZY, 
and 

e = (x’ ,x , ) -x:Y 

where (Xt,X,)-  i s  the Moore-Penrose generalised inverse of X:X, (see Searle 
[23]). XZX, is called the information matrix (of the design d )  for estimating 8. 

Sometimes not all elements in 8 are of equal interest to us. The terms are 
included in the model for correctness, but we are not interested in estimating, 
say, the period effect. In a RMD the interest usually centres on estimating the 
direct treatment effects and/or the residual treatment effects. Hence we want the 
information matrices for estimating the direct treatment effects and the residual 
treatment effects To do this we again consider the equation X;X, / e  = X;yY. Let 
y = (tl, . . . , t,, pl, . . . , P,)~, 6 = (a,, . . . , a,,, PI, . . . , and write 

S T P  
x:xde = x:x, [ 

= [ v ] [  8] = X : Y =  [3, say. 

This gives 

Sp + T8 = 2, and Up + V8 = Z 2 .  

From the second equation we get that 8 = V - ( Z z  - Up). Substituting we get 

( S  - TV -V)p  = 2, - TV-22 

and S - TV-U IS the information matrix for estimating direct and residual 
treatment effects simultaneously. Similar results hold for the calculation of the 
information matrices for estimating either direct or residual treatment effects. 

We now define various matrices associated with a RMD so that we can give an 
explicit expression for the information matrices for estimating direct, and 
residual, treatment effects. As we are interested in the layout of both the direct 
and residual effects, the constants are defined in pairs, the first referring to the 
layout of the t ’ s ,  the second to the layout of the p’s. 

h,, be the numbei of times that treatment i occurs in period s, 

h , , = h , , - , ,  . s = 2 , .  . . , p ,  

n,,, be the number of times treatment i occurs on unit u ,  

51u be the number of times that treatment i occurs on unit u in the first p - 1 
periods, 

Let 

h,, = 0, 
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mii be the number of times that treatment i is preceded by treatment j ,  

r, = c I1 nlll 

f# = C" f i l f l .  

fi = diag(fl, . . . , F,), M = (m,,), Ni, = (k), Ni, = (h,), N,, = (riff,),  NCd = ( f i l f l ) .  

and 

We now collect these constants into matrices and let D = diag(rl, . . . , r,), 

Hence for the first model above 

where fp is the identity matrix of order p and J,, , ,  is the p X n matrix of 1s. Then 
the information matrix for estimating direct and residual treatment effects ( t ' s  
and p's) jointly is 

C2I c22 

Thus we see that 

CfI = D - n -'Ni,NT - p - ' N , , N ;  + ( n p ) - ' N l , J t 7 , , l N ~ ,  

C I 2 =  C:, = M - n ~ ' N , , N ~ - p ~ ' N f , N ~ + ( n p ) ~ ~ N f , J , f , l f N ~ ~  

C 22 - - D - n-'N,,NT - p - ' N l l N :  + (np)-'N,,J,, , , ,N~~. 
and 

Then the information matrix for estimating direct treatment effects ( t 's)  is 

and the information matrix for estimating residual treatment effects (p's) is 

Cheng and Wu [7] show that the row and column sums of C,, and CH are 0. 

Example 1. Let t = p = 2, n = 10 and let the design be 

I 1 1 2 2 2 2 2 2 2  
1 2 2 1 1 1 2 2 2 2  
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7 0  3 0  1 3  3 4  . = L o  13]' 'i=[ 0 7  1, M = [  2 4 1 ' 4 = [ 7  61 

0 1 1  1 1  1 2  2 2 2 '  1 % = [ ( )  7]j N u = [  
0 3 2 1 1 1 1 1 0 0 0 0  

1 1 1 1 0 0 0 0 0 0 0  
0 0 0 1 1 1  1 1  1 1  

Nu = [ 
and 

XTX', = 

- 
7 0 1 3  3 4 2 1 1 1 1 1 0 0 0 0  
0 1 3 2 4  7 6 0 1 1 1 1 1 2 2 2 2  
1 2 3 0  0 3 1 1 1 0 0 0 0 0 0 0  
3 4 0 7  0 7 0 0 0 1 1 1 1 1 1 1  
3 7 0 0 1 0  0 1 1 1 1 1 1 1 1 1 1  
4 6 3 7  0 1 0 1 1 1 1 1 1 1 1 1 1  
2 0 1 0  1 1 2 0 0 0 0 0 0 0 0 0  
1 1 1 0  1 1 0 2 0 0 0 0 0 0 0 u  
1 1 1 0  1 1 0 0 2 0 0 0 0 0 0 0  
1 1 0 1  1 1 0 0 0 2 0 0 0 0 0 0  
1 1 0 1  1 1 0 0 0 0 2 0 0 0 0 0  
1 1 0 1  1 1 0 0 0 0 0 2 0 0 0 0  
0 2 0 1  1 1 0 0 0 0 0 0 2 0 0 0  
0 2 0 1  1 1 0 0 0 0 0 0 0 2 0 0  
0 2 0 1  1 1 0 0 0 0 0 0 0 0 2 0  

-0 2 0 1  1 1 0 0 0 0 0 0 0 0 0 2  

Suppose we say there are w = 1 units of the form (1, l )" ,  x = 2 units of  the form 
(1,2)-1, y = 3 units of the form (2, l)-1 and z = 4 units of the form (2,2)1. Then 

n ( r + y ) - ( x - y ) 2  1 - 1 -  
C,I =- 2n :]=2& 

- ( y ( w + x ) + x ( y + z ) )  1 -1 c,, = - 2n 

(w+x)(y + z )  1 - 1 -1 
Czz = - 2n [ -1 i ]  = 1 4  -1 1 ]  

Thus 

r r l  (=+q-, 1 - J = & + &  1 2  12 1 - 3 -5 w + x  y + z  
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and 

The discussion is slightly different for the second model since the Ek,’s are no 
longer independent and so do have preferred positions in R“”. The usual solution 
is to apply a transformation to the EA,,’s to make them independent and then 
proceed as before. Let W be a p x p matrix where W = (W,) = (W’I/( 1 - A’)). 
Then the entries in  W are, except for a factor of a’, the covariances of the error 
terms of the readings on any unit. Since the errors on different units are assumed 
to be independent, the covariance matrix of E is given by V = n’f, 8 W. There is 
a matrix Z such that ZWZ” = f,,. Then (f,# €3 Z ) V ( f ,  8 Z’ )  = u2f,, €3 I,, and s o  we 
can write 

(f” €3 Z ) Y  = (f,, €3 Z)X,,H + (L 8 Z ) E ,  

where the new error terms are now independent. We can then proceed as in the 
first model. The estimate f is called a weighted least squares estimator of t. 

For either model one further question we might ask is how accurate are the 
estimates we have obtained. This is measured by the variance of the estimate and 
for the first model the variance of is proportional to the ith diagonal entry of 
the matrix 

( S  - T v - U ) - ( S  - T V - U ) ( S  - T V - U ) -  = ( S  - W-u)- .  
The smaller the variance the more accurate is the corresponding estimate. Clearly 
we would like the estimates to be as accurate as possible, hence we consider 
designs which minimise some function of the variances o f  the parameters we are 
interested in. 

An optimality criterion is a function 4 from a set of square, nonnegative 
definite matrices with zero row and column sums to the real numbers. A design is 
said to be @-optimal if it minimises @(C,)  (if we are estimating direct treatment 
effects, or @(CR), if we are estimating residual treatment effects) over a class o f  
designs. This class of designs is often referred to as the class of competing 
designs. Sometimes a design has been shown to be “best” only when competing 
against a subset of the class of all RMDs. 

We will refer to four optimality criteria in this paper. A design in a class of 
designs is said to be A-oprimal if the trace of C ,  (or C , )  is a minimum, to be 
E-optimal if C‘; (or C, )  has minimum eigenvalue and to be E-optimal if it has 
the minimum value of the maximum variance of f ,  - f, for all i and j .  

Kiefer [ 111 introduced the concept of universal optimality. A design is said to 
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be universally optimal if it is @-optimal for all @ satisfying: 
(1) @ is convex; 
(2) @(bC) is non-increasing in the scalar b,  b 2 0; 
( 3 )  @ is invariant under any simultaneous permutation of the rows and 

columns of C. If a design is universally optimal it is A- and E-optimal. 
Kiefer [ l l]  showed that a design is universally optimal provided that the 

information matrix is of the form a1 + bJ (that is, completely symmetric), the 
information matrix has maximum trace (over the class of competing designs) and 
that the information matrix of every design in the class has zero row and column 
sums. 

Several classes of designs have been considered and it is convenient to have a 
notation for them. Let i21,n,p be the set of all repeated measurements designs 
(RMDs) with t treatments, n experimental units and p periods and let Q;,r,p be 
the set of all circular RMDs with t treatments, n experimental units and p 
periods. A preperiod is a period applied prior to the commencement of the 
experiment so that all observations have a residual treatment effect. Let ,, be 
the set of RMDs with preperiod. Let A,,,,!, be the set of all RMDs in which each 
treatment appears cqually often in each period, at most once in each column and 
any pair of distinct treatments appear in np(p  - l ) / f ( t  - 1) columns. Thus Al,,l,p is 
a subset of the set of generalised Youden designs (see Ash [3] for a definition). 
Let at,,,, be the equi-replicate RMDs and let fi,?;,p be the RMDs which are 
equi-replicate in the first ( p  - 1) periods. Let c,,,,p be the RMDs in which no 
treatment is applied, in successive periods, to any unit; that is, m,, = 0. 

A design is said lo be uniform on the units if n,,, = p / t  for all 1 d i d t ,  1 d u d n, 
uniform on the periods if h,, = n/ t  for all 1 s i d t ,  1 =S s < p ,  uniform if it is 
uniform on both units and periods, balanced if m, = (1 - S,/)n(p - l ) / t ( t  - 1) for 
all 1 S i, j d t and vtrongly balanced if m,, = ( p  - l ) n / t 2  for all 1 d i, j S t. Thus, 
for example, a uniform RMD with t = n = p  is a Latin square and a balanced, 
uniform RMD with f = n = p is a column-complete Latin square (such as design 
(b) in Table 1 ) .  

In the remainder of this paper we summarise results about the structure of 
optimal RMDs, over classes of competing designs, for the two linear models given 
above, and the construction methods available for these designs. We do  not 
consider the structure of optimal designs when the treatments to be applied have 
a factorial structure. The interested reader is referred to the papers by Fletcher 
and John [9] and Fletcher [8]. For a general survey of RMDs and related designs 
see Bishop and Jones [5]. Tables of generalised Youden designs with t d 25, 
p,n  d 50 have been published (Ash [ 3 ] ) .  

2. Optimal designs for RMDs with independent errors 

The first class of designs we consider are strongly balanced, uniform RMDs. 
These designs have been shown to be optimal for the estimation of direct, and of 
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residual, treatment effects over SZt,n,p and to minimise the variance of the best 
linear unbiased estimator of any contrast among direct effects (in LR:,,,,,) and 
among residual effects (in SZt,*,J (Theorems 3.1, 3.4 and 3.5, Cheng and Wu 171). 

The necessary conditions for the existence of a strongly balanced, uniform 
RMD are that t I p, t I n ,  t 2  1 ( p  - l ) n  and p 2 2t (since pairs of the form ( i ,  i) can 
only occur if a treatment can occur at least twice on a unit). Hence 

p=A,t, 5 3 2 ,  n=A, , t2 ,  A n a l ,  & , & , E N .  

Construction 2 (Cheng and Wu [7]). There is a strongly balanced, uniform RMD 
with n = t2 and p = 21. 

Proof. Denote the f treatments by the numbers 0, 1, 2, . . . , t - 1. Form a 2 x t2 
array, A say, containing all the ordered pairs ( i ,  j ) ,  0 G i ,  j S t - 1, arranged so 
that the array is uniform on the rows. Let Ai = A + i (mod t ) .  The required RMD 
is 

(A'r, AT, . . . , AT-,).r. 

Design (a) in Table 2 was constructed in this way. The designs in construction 2 
can be extended both vertically and horizontally so there is a strongly balanced, 
uniform RMD for n = A,,t2, p = 2At, A,, A E N .  Other designs with these para- 
meters have been constructed by Berenblut [4] and Patterson [20,21]. Subsets of 
these designs with additional desirable properties for treatments with a factorial 
structure are described in Kok and Patterson [12]. The next construction gives a 
strongly balanced, uniform RMD for 31 periods. 

Construction 3 (Sen and Mukerjee [22]). Let L and N be two mutually 
orthogonal Latin squares (MOLS) of order t .  Let the ith column of L be 1,; the ith 
column of N be n,, j = ( l l  - .  * l r ,  G,, = [ l h n h  h j ] ,  1 s h s t .  Let G = 

[ G , ,  G2, . , . , G,] and Hi = C + i (mod t ) .  The required design is 

[H:', HT,  . . . , H:]. 

Example 4. Let t = 4 and 

1 2 3 4  1 3 4 2  

L = [ 2  3 4 1 2  1 4 .I. N = [ 2  3 1 2 4 '  4 3 1 1  

4 3 2 1  4 2 1 3  
Then 

1 1 1 1 2 3 2 3 4 3 4 2 4  
2 2 1 1 4 2 4 3 3 3 1 4  r G=H,=  

1 -1 4 4 1 3 2 2 2 1 3 1 3 4  
3 3 1 4 1 2 1 2 3 2 4 4  
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Arrays from Constructions 2 and 3 can be juxtaposed to give designs with n = t 2  
and p = Al,t, A, 3 2, A,, E N. 

An RMD with n = A n t ,  p = A, t  + 1, A,,, A,, E N which is strongly balanced, 
uniform on the periods, and uniform on the units in the first ( p  - 1 )  periods, is 
universally optimal for the estimation of direct, and of residual, effects over Qf,n,p 

(Theorem 3.3, Cheng and Wu [7]) .  They point out that one way of obtaining such 
a design is to repeat the last period in a balanced, uniform RMD with n = Ant and 
p = t .  These designs exist for smaller values of n and p than do strongly balanced, 
uniform RMDs. 

Another useful subset of RMDs are the balanced, uniform designs. These 
designs are universally optimal for the estimation of residual effects over c,A,,f,f, 
for the estimation of residual effects over the designs in c,A,,f,Apf with treatments 
equi-replicated in the first (p - 1 )  periods, for the estimation of direct effects over 
the designs in uniform on units and the last period (Theorems 4.2, 4.1 and 
4.3, Cheng and Wu [ 7 ] )  and for the estimation of direct effects over SZ,,,,, ( t  2 3) 
and Qf,2,,f (t 2 6 )  (Theorems 2.1 and 2.2, Kunert [14]) .  

Construction 5 ( E . J .  Williams [29]).  There is a balanced, uniform RMD with 
t = n = p  = 2m. 

Proof. Let the first column be (1 2 2 m  3 2 m  - 1 4 . . m m + 2 m + 1)”. Obtain 
subsequent columns by adding, in turn, each of the non-zero numbers modulo t to 
the first column. We say that the first column has been developed modr. The 
design is obviously uniform. To see that the design is balanced we note that each 
non-zero number modulo t appears as a difference between adjacent positions 
precisely once. 

Design (b) in Tuble 1 is an example of this construction with m = 3 (and so 
t = 6). 

For odd values of t a general construction for balanced, uniform RMDs with 
t = n = p  (that is, column-complete Latin squares) has not been found. Such 
designs do not exist for t = 3, 5 or 7 .  Designs for t = 9 and 15 have been given by 
Mertz and Sonnemann, quoted in Hedayat and Afsarinejad [lo] .  Archdeacon et 
al. [2] give a method of construction for squares of order pq. 

Construction 6 (Williams [29]).  There is a balanced, uniform RMD with 
t = 2 m + 1 ,  t = p ,  n = 2 t .  

Proof. Obtain the first set of t columns by developing the column 
(1 2 2m + 1 3 2m . . . m + 1 m + 2)”mod t and the second set of t columns by 
developing the column ( 1  2rn + 1 2 2 m  3 . . * rn + 2 m + l)T mod t. The verifica- 
tion of balance and uniformity is straightforward. 
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Design (c) in Table I is an example of this construction with m = 2 (and so 

By juxtaposing the arrays given in constructions 2 and 3 we get balanced 
uniform KMDs with t = p = 2m, n = A,,t, A,, 3 I and t = p  = 2m + 1 ,  n = 2At, 
A 3  1 .  

t = 5) .  

The  proofs of the next two constructions a re  straight-forward. 

Construction 7 
column ( 1  2m 2 2m - 1 . . 9 m m + 1)’ mod 2m and let 

(Street [26]).  Let C be the urruy obtuined by developing the 

c r = { C + j  
i = 2j + 1 ,  

C + m - j ,  i = 2 j ,  

where the addition is mod 2m. Then the array 

(c:, c;, . . . , c y  
is a balanced, uniform K M D  with n = t = 2m and p = t + t ( t  - 1 ) .  

Construction 8 r, = (1, 2m + 1 ,  2,  2m, 3 ,  . . . , m + 3 ,  m ,  
m + 2 ,  m + l ) ,  r,,= ( 1 ,  2, 2m + 1, 3 ,  2m, . * ‘ m ,  m + 3 ,  m + 1 ,  m + 2) and let 
‘‘rc,( +i)r,,” mean “write down rt,, add i to the final element of re and use this us the first 

element of 5,”. Then the array obtained by developing the first column 

(Street [26]). Let 

( r p ( + l ) r o ( + 3 ) r , , ( + 5 ) ~ ~ ~  (+2m - l)rc(+1)r,,(+3)r,.(+5). . * (+2m - I ) r , , ) ,  

2m + 1 = 1 (mod 4). 

(rc,(+1)r,,(+3)r,(+.5) * . (+2m - 1)ro(+1)rr.(+3)r,l(+5)~ . . (+2m - I)r,,), 
2m + 1 = 3 (mod 4), 

is a balanced, uniform KMD with i i  = t = 2m + 1,  p = t + t ( t  - I ) .  

Example 9. Let m = 2. Then r,. = ( 1  5 2 4 3 ) ,  r,, = ( 1  2 5 3 4) and the first column is 
re( + l)r,,( +3)r,( + l)q)( +3)r, which is ( 1  5 2 4 3 4 5 3 1 2 5 4 1 3 2 3 4 2 5 1 4 3 5 2 I ) .  

Clearly the number o f  units can be extended to any multiple of I ,  and the 

The  next result shows that if f = n = p  then balanced, uniform RMDs arc not 
number of periods can be a n y  number o f  the form I + t ( t  - l)a, u 2 I .  

universally optimal f o r  the estimation o f  rcsidual effects over Q,,,,,. 

Theorem 10 (Proposition 3.1,  Kunert [ 141). Assume t = n = p and therc exi,sts 
f E Q,,,,, such that 

(i) by exchunging the lust period we can transform f to be uniform; 
(ii) the last und second last periods are the same; 

(iii) for every treatment i there exists a unique freutment j ,  such that trcwtmrnt i is 
never preceded by treutment j ,  (thus i is preceded exactly once by etlery odipr 
treatment including i ) ;  
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(iv) in the unit in which treatment i appears in each of the last two periods, 
treatment J, does not appear at rill. 

Then no balanced uniform design in  Q,,,,, can be universally optimal for the 
estimation of residual effects over Q l , l , l .  

Street [27] gives initial columns for designs satisfying the conditions of the 
theorem for all t 2 5. 

Let n = t ( t  - 1) and suppose there is a balanced, uniform design d in Q , , , ( l - , ) , l  

with the property that every ordered pair of distinct treatments appears exactly 
once between the last two periods of d. Construct the design f from d by replacing 
the tth period in d with the ( t  - 1)th period. Then f is called an orthogonal 
residual effects design and has the property that C12 = 0. Kunert ([14], Proposition 
3.3) has shown that orthogonal residual effects designs are universally optimal for 
the estimation of residual effects over Q , , l + l ) , l .  

Construction 11 (Sonnemann, quoted in Kunert [16]). Let L be a balanced, 
uniform R M D  with t = n = p  = 2m. Adjoin to L a first row containing the 
treatment 2m + I .  Use each column o f  this augmented square to construct a cyclic 
square of order 2m + 1. Juxtaposing these squares gives a balanced, uniform R M D  
with t = p = 2m + I ,  n = t( t  - 1) and with every ordered pair of distincr treatments 
appearing exactly once between the last two periods. 

Proof. Since L is il balanced, uniform design, the augmented square is uniform 
on units, and the final array is obtained by juxtaposing cyclic squares obtained 
one from each unit, we see that the final array is uniform. Since L is uniform, 
treatment 2m + 1 is adjacent to each treatment equally often and, since L is 
balanced, so is every other treatment. The ordered pairs in the last two rows of 
the array are the pairs of treatments adjacent in L together with (2m + 1, i), i in 
the first row of L and ( j ,  2m t I) ,  J in the final row of L .  Since L is uniform and 
balanced, the result follows. 

Example 12. Let m =2,  t =4. Then 

5 3 4  5 1  

L3  3 1 2 1  

and the RMD is 

L3 4 1 2 1  

5 3 4 2 1 5 4 1 3 2 5 1 2 4 3 5 2 3 1 4  
1 5 3 4 2 2 5 4 1 3 3 5 1 2 4 4 5 2 3 1  
2 1 5 3 4 3 2 5 4 1 4 3 5 1 2 1 4 5 2 3  
4 2 1 5 3 1 3 2 5 4 2 4 3 5 1 3 1 4 5 2  
3 4 2 1 5 4 1 3 2 5 1 2 4 3 5 2 3 1 4 5  
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There do not appear to be any construction methods for orthogonal residual 
effects designs for even t .  

Suppose that t = p  > 2 and that n = At,  where A > t(t - 1)2/2 and A E Z. Let 
g E Q,,,,, be such that the first t ( t  - 1) units of g form an orthogonal residual 
effects design and the remaining n - t ( t  - 1) units of g form a balanced uniform 
design. Then g is universally better than any balanced uniform design in GI,,,, ,  for 
the estimation of direct effects (Proposition 2.4, Kunert [14]). 

and that the direct effects are 
to be estimated. Then the universally optimal designs are generalised Youden 
designs with m,l = r,/t if t I n and t I p,  m,) = C k  h,khlkIn if t [ n  and t I p and 
m,, = C,, n,uijlu/p i f  t In and t [ p  (Theorems 4.1, 4.4, 4.8 Kunert [13]). General 
construction methods for these designs do not seem to be available. lndeed 
generalised Youden designs have mainly been constructed by complete search 
techniques and tables for generalised Youden designs with t 4 25, n ,  p s 50 have 
been given by Ash [3]. These tables do not give the values of m,). 

The final results we shall mention in this section concern nearly strongly 
balanced generalised Youden designs. A design is said to be nearly strongly 
balanced if M M ’  is completely symmetric and if, for all 1 s i ,  j s t ,  m, E 
{ [ n ( p  - l)t-’], [ n ( p  - l)t-’] + 1).  When n = at2 + ht, 1 4 b 6 t - 1, p = At then the 
nearly strongly balanced generalised Youden designs are universally optimal for the 
estimation o f  direct effects over the class of designs in Ql,,,,/, which are uniform on 
units and in the last period, for the estimation of residual effects over the class of 
designs in which are uniform on the units and on each of the first and last 
periods and for the estimation of direct effects over Q,,,,,), if a 2 b(t - b - l ) / r  and 
A 2  max(2, b(t - b)/4 + 2 / t }  (Theorems 5.3, 5.4 and 5.8, Kunert [13]). Again 
there do not appear to be any construction methods available fur these designs. 

Suppose that the class of designs is Q,,,,,p U 

3. Optimal designs for circular RMDs with independent errors 

The results of this section are similar to  those of the previous section. 
The universally optimal designs for the estimation of direct, as well as of 

residual, effects over G;,l,l, are the strongly balanced, uniform designs (Theorem 
3.1, Magda 1191). If f = p  then the universally optimal designs for the estimation 
of direct, as well as of residual, effects are the uniform, balanced designs 
(Theorem 2.2, Kunert [IS]). I f  we restrict the class of designs to the equi- 
replicated Q:;,,/, then the strongly balanced, uniform designs minimise the 
variance of the best linear unbiased estimator of any contrast of direct effects, and 
of any contrast of residual effects (Theorem 3.3, Magda [19]). The universally 
optimal designs for the estimation of direct, as well as residual, effects over c,,,,/, 
are the balanced, uniform designs (Theorem 3.4, Magda [ 191). 

Magda [19] also establishes that if the term for the period effect is removed 
from the model then so is the requirement of uniformity on periods. Similar 
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results are true for removing the unit effect and both the period and unit effects. 
The necessary conditions for the existence of a strongly balanced, uniform 

circular RMD are that t I p, t 1 n and t2  I pn. Thus p = Apt and n = Ant,  say, A,, 
A, E N .  Note that the designs obtained from construction 2 are also circular, 
strongly balanced, uniform designs with p = 2t and n = t2 .  

Another family of circular, strongly balanced, uniform designs can be obtained 
from the type 1 serially balanced sequences of R.M. Williams [30]. 

A type 1 serially balanced sequence of order t and index A is a sequence of 
length At2 + 1, which has the following properties: 

(i) the first and last elements are the same; 
(ii) the first element appears At  + 1 times; 

(iii) the remaining t - 1 elements appear At times each; 
(iv) each of the t2  ordered pairs of elements appears A times among the At2 

(v) aside from the first element, each element appears precisely once in each 

We denote such a sequence by SBSl(t, A). 
Clearly instead of repeating the last element we just view the sequence as being 

circular so the sequence is uniform. We develop the sequence modt  to obtain a 
circular, strongly balanced, uniform RMD with p = At2 and n = t .  

pairs of consecutivc elements; 

of the At successive sets of t elements. 

Construction 13 
SBSl(t, 2)  exists for all t 2 4. 

(R.M. Williams [30]; see also Street and Street [25]) .  An 

Proof. If  t = 2m let L = (1,)) be the Latin square with first row and column given 
by (1 2 2m 3 2m - 1 4 - * * m m + 2 m + 1) and with 1, = I , ,  + I,, - 1 (mod 2m), 
i > 1, j > 1. Let N be the Latin square obtained from L by applying the permu- 
tation n = (1 2 3 . . . rn) to the elements of L. The sequence is obtained by writing 
down the first row of L, then the row of N beginning with the element m + 1, followed 
by the row of L beginning with the element at the end of the row of N ,  and so on, 
until m rows of both L and N have been used. The (2m + 1)st row to be used is 
taken from N and then  the alternation continues until  all the rows of both squares 
have been used. Since both L and N are balanced in rows, all ordered pairs of 
distinct elements appear twice. If we can show that each row of L and N is used 
precisely once, then pairs of the form (i, i) will appear twice in the final sequence. 
Let us index the rows in L and N by their first elements. In L,  if the first element 
in a row is i, then the last element is i + m (mod 2m) whereas in N, it is 

n-’(i) + m (mod 2m), if 1 s i 4 m, 

or 
n(i + m), if m + 1 < i <2m. 
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Hence the rows used from L and N are 
L: 1 2 3 . . .  m 2m 2 m - 1  . . .  

N :  m + l  m + 2  m + 3 . . .  2 m 1  m m - 1  . . .  2 

and we see that each row is used once, as required. 
I f  t = 2 m  + 1,  let L be the Latin square with first row and column 

( 1 2 2 m + 1 3 2 m 4 ~ ~ ~ m m + 3 r n + l m + 2 )  and with l , , = 1 , , + l l , -  l ( m o d 2 m + 1 ) ,  
i > 1 ,  j > I .  Let N be the Latin square obtained from L by adding m to each 
element (mod 2m + 1) and reversing each row. The construction is similar to that 
for t even, except that now all the rows in L are used and then all the rows in N. 
Verification is straightforward. 

m + 1 

Example 14. Let m = 2 ,  t = 4. Then 

1 2 4 3  2 1 4 3  

4 1 3 2  4 2 3 1  
3 4 2 1  3 4 1 2  

.=[ 2 3 1 4  1, .[' 
and the first column is 

1 2 4 3  3 4 1 2  2 3 1 4  4 2 3 1  1 3 2 4  4 1 3 2  2 1 4 3  3 4 2 1 .  

The proof of the next result is also straightforward. 

Construction 15 (Sharma [24]).  Develop the first column 

( I t  - I 1 t - 2 2 t  - 3 . .  * ( - 2  1 1 -  1 t ) '  

modulo t. This gives u circular, strongly balanced, uniform RMD with n = t and 
p = 2t. The first column cut1 he extended in multiples of 2t us required. 

There are two known families of circular, balanced, uniform RMDs. 

Construction 16 (Sonnemann, quoted in Kunert [ 161). Let t = 2 m  and ohtuin the 
first set o f t  columns by developing the column 

( 2 m l 2 m - 1 2 2 r r r - 2 3 ~ . . m + I m )  

and call this set L. Let JT = ( 1  2 ' . . m - 1 2 m  - 1 . . m )  and let L,  = n'L so L = L,,, 
The required RMD is ( L O ,  L , ,  . . . , L,-2) und has p = t = 2 m ,  n = t ( t  - 1 ) .  

Proof. Each L,  is a balanced, uniform RMD. Hence we need only consider the 
pairs formed by viewing the array as circular. The set of pairs so obtained from L 
are { (m ,  2 m ) ,  ( m  + I ,  I ) ,  (m  + 2 ,  2 ) ,  . . . , (m  - 1 ,  2m - I ) }  = S ,  say. The pairs 
obtained from L, are found by applying d to the elements of the pairs in S. The 
result follows. 
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Example 17. Let m = 3, t = 6. Then n = (1 2 5 4 3) and 

L = L,, = 

Lz = 

L, = 

- 1 6 1 2 3 4 5  
1 2 3 4 5 6  

L , = n L =  
5 6 1 2 3 4  
2 3 4 5 6 1  

- 
4 5 6 1 2 3  
3 4 5 6 1 2  

L3 = 

- 

6 5 4 2 1 3  

3 6 5 4 2 1  
4 2 1 3 6 5  

- 
6 3 1 4 5 2  
3 1 4 5 2 6  

1 4 5 2 6 3  
5 2 6 3 1 4  

2 6 3 1 4 5  

4 5 2 6 3 1  I 

6 2 5 1 3 4  
2 5 1 3 4 6  
4 6 2 5 1 3  
5 1 3 4 6 2  
3 4 6 2 5 1  
1 3 4 6 2 5  

- 

- 1 6 4 3 5 2 1  
4 3 5 2 1 6  
1 6 4 3 5 2  
3 5 2 1 6 4  
2 1 6 4 3 5  
5 2 1 6 4 3  

The other family is obtained from the type 2 sequences of R.M. Williams [30]. 
A type 2 serially balanced sequence of order t and index A is a sequence of 

length At(t - 1) + 1,  which has the following properties: 
(i) the first and last elements are the same; 

(ii) the first element appears A(t - 1) + 1 times; 
(iii) the remaining t - 1 elements appear A(t  - 1) times each; 
(iv) each of the f(t - 1) ordered pairs of elements appears A times among the 

(v) aside from the first element, each element appears precisely once in each 

We denote such a sequence by SBS2(t, A). 
Again rather than repeat the last element we view the sequence as circular, so 

it is uniform. We develop the sequence modulo t to obtain a circular, balanced, 
uniform RMD with p = At ( f  - 1) and n = t. The verification of the next result is 
straightforward. 

Ar(t - 1) pairs of consecutive elements; 

of the A(t  - 1) successive sets of t elements. 

Construction 18 (R.M. Williams [30]; see also Street and Street [25]). An 
SBS2(t, 1) exists for all t S 4  and is obtuined by developing a column of size 
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t and concatenating the columns in the natural order. The initial columns are: 

1 , 2 , 2 m ,  3 , 2 m  - 1, , , . , m, m + 2, m + 1,  m, 

l , m , 2 , 4 m + 1 , 3 , 4 m , 4  , . . .  m , 3 m + 3 , m + l , m + 2 , 3 m + 2 ,  

if t - 1 = 4 m  + 1 ;  
l , m , 2 , 4 m + 3 , 3 , 4 r n + 2 , 4  , . . .  , m + 1 , 3 m + 4 , m + 2 , m + 3 ,  

i f  t - 1 = 4m + 3 ;  

if t - 1 = 2 m ,  

m + 3 , 3 m  + 1,  . . . , 2 m  + 1 , 2 m  + 3 , 2 m  + 2 ,  

3 m + 3 , m + 4 , 3 m + 2 , . .  . , 2 m + 2 , 2 m + 4 , 2 m + 3 ,  

where the blocks are developed modulo t - 1 and m+i = m for  all i. 

Example 19. Let m = 1, t - 1 = 5 ,  t = 6 .  The required column is 
10023s  4 2 0 0 3 4  1s 3004s  2 1 4 m  s 1 3 2 s  m 1 2 4 3 .  

4. Optimal designs for RMDs with correlated errors 

In this situation the optimal designs usually prove to be variants of the designs 
constructed by E.J. Williams [29] and called Williams designs by Kunert [16]. 
Let w,, = m, + m,l and let d be a uniform RMD with t = p and in which the wl, ( i  # j )  
are equal. Then d is said to be a Williams design. Let d = (d,,) be a Williams 
design and let B be the block design with blocks (d , ] ,  d,,), j = 1, 2,  . . . , n. €3 is 
called the end-pair design. A design is said to be connected if, given any two 
treatments, it is possible to form a list of treatments, starting with one and ending 
with the other, such that any two adjacent treatments in the list appear in some 
block of the design. If t = n  and if the end-pair design is connected then the 
original design is said to be a Williams design with circular structure. If the 
end-pair design is a balanced incomplete block design then the original design is 
said to be a Williams design with balanced end-pairs. We will let A,,n,, be the set 
of all Williams designs on n units and using t treatments. 

Recall that Corr(Ek,, Egli) = Alk-gldNU.. The optimal designs depend on the 
value of A. For example, a Williams design with balanced end-pairs is universally 
optimal for the estimation of treatment effects over the class of uniform RMDs 
with t = p and is universally optimal over !21,n,, whenever 

A 2 { t  - 2 - J K 3 } / { 2 ( t  - 3 ) }  

and t b 4 and for all A when t = 3 (Theorem 1 ,  Kunert [ 161). 
Suppose that n < (;). Then a Williams design is E-optimal over the class of 

uniform RMDs which are not Williams designs and this is true for all A 
(-1 < A <  1). If n = t * 4  and - l / ( t  - 1)SAS 4 then a Williams design is 
E-optimal over the class of RMDs which are not Williams designs. If n = t 3 S 
and - l / ( t  - 1) S A i, then a Williams design with circular structure is E-optimal 
over !2,,l,l (Theorems 2 and 3 and comments on p. 384, Kunert [16]). I f  A > 4 or 
A < - l / ( t  - 1 )  the optimality, or otherwise, of Williams designs has not been 
established. 
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The designs given in Construction 5 are Williams designs and the first t columns 
of the designs given in Construction 6 are Williams designs with circular structure. 
The designs given in Constructions 11 and 16 are Williams designs with balanced 
end-pairs. Indeed one needs only juxtapose the first m squares in Construction 11 
to get a Williams design with balanced end-pairs. The next result is straight- 
forward to prove and gives Williams designs with circular structure for t = 4m + 2. 
The existence of Williams designs with circular structure for t = 4m is still 
unresolved. 

Construction 20 (Street [27]). Developing the column 

( 1  2m 22m - 1 . .  . m  m + 13m -t 13m -t 23m 3m + 3 . . .  2m + 2 4 m  -I- 12m -t 14m + 2 )  

modulo t = 4m + 2 gives a Will iam design with circular structure. 

Example 21. Let m = 1 and t = 6. Then the Williams design is 
1 2 3 4 5 6  
2 3 4 5 6 1  
4 5 6 1 2 3  
5 6 1 2 3 4  
3 4 5 6 1 2  
6 1 2 3 4 5  

and the end-pair design is (1,6), (2, l) ,  (3,2), (4,3), (5,4), (6,5). 

Any design in Ar,n,p performs equally well under the A-optimality criterion but 
not under the E-optimality criterion. For d E ~l,,~,~, let M J k )  be the number of 
columns in which treatments i and j appear with exactly k - 1 rows between 
them, let l l k ( j )  be the number of columns where treatment i appears in row k and 
treatment j does not appear at all and let h,(k)  = l r k ( j )  + l l k ( i ) .  

Theorem 22 
d E A ,,,,,/, exists with 

(Result 2, Kunert [17]). Assume that t 1 n and ($) 1 n and that 

(i) M J k )  = 2(p  - k ) n / ( t ( t  - l)), k = 1, 2, . . , , p - 1, 
(ii) h,(k')  = 2n(r - p ) / ( t ( t  - l)), k' = 1, 2, . . . , p ,  

for all 1 s i , j  s t.  Then d is .!?-optimal over Al,n,p for all - 1 < A. < 1. 

A perpendicular array is a p X (1) array, t odd, containing the symbols 
1,2, . . . , t ,  arranged so that, considering the set of pairs coming from any two 
rows of the array, each unordered pair appears precisely once in the set. Any 
perpendicular array satisfies the conditions of the theorem (Street [28]). The 
proof of the next result is straightforward. 

Construction 23 (Street [28]). Assume that a set of m idempotent MOLS of order 
t exists. Construct un array A = [ajj] of size (m + 2) X t 2  as follows. Let a, be the ith 
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row of A.  Then a,,,,, = [ 1 ,  2, . . . , t ]  @ j ,  und = j ,  €3 [ I .  2, , . . , t ] .  Then, 
for i # m + 1, m + 2, the entry in row i and column j is the entry in the (u,,,+ ,,,, U,,,+~,,) 

position of square i. Now remove from A the t columns containing only one 
symbol. The resulting urray is a design with n = t(t - 1) und p = rn + 2 satisfying 
the conditions of Theorem 22. 

Example 24. Let m = 2 and t = 4. Let the two idempotent MOLS be 
1 3 4 2  1 4 2 3  

3 2 4 1  
4 1 3 2  

and 
4 2 1 3  
2 4 3 1  
3 1 2 4  2 3 1 4  

The required design is 
1 1 1 2 2 2 3 3 3 4 4 4  
2 3 4 1 3 4 1 2 4 1 2 3  
3 4 2 4 1 3 2 4 1 3 1 2  
4 2 3 3 4 1 4 1 2 2 3 1  

5. Miscellaneous designs 

Some other families of RMDs have been constructed. We mention some 
below. 

Construction 25 (Afsarinejad [I]). f f  t is even, t = A(p - 1) + 1 und n = A t ,  
A E N ,  then a balanced RMD can be obtuined by developing, in turn, mod t ,  euch 
of the A colimns 

(el, cz, . . . 9 c,,), (c,,* cpi  I, . . . ? cz,,-,), . . . I (c(*-l),>-(A-z), . . . , c,), 

( e l ,  cz, . . . , c,) = ( 1 ,  I ,  2, t - 1, 3, 1 - 2, . . . , t / 2 ,  (t + 2)/2). 
where 

Proof. The set U i Y 2  {c, - c,- I }  contains each non-zero number mod t and so 
each ordered pair of distinct treatments will appear precisely once in the final 
array. 

Example 26. Let p = 4, A = 3 so t = 10. Then 
( c , ,  c2, c3,  . . . , cl0) = ( I ,  1 0 ,  2, 9, 3, 8, 4, 7, 5, 6) and the  design is 

I 2 3 4 5 6 7 8  9 l 0 9 l O  1 2 3 4  5 6 7 x 4 5 6  7 8 0 1 0 1 2 3  
10 1 2 3 4 5 6 7  x 9 3  4 5 6 7 8  9 1 0 1 2 7 8 ' ) I O  1 2  3 4 5 6  
2 3 4 S 6 7 X 9 1 0  1 8  0 1 0 1 2 3  4 5 6 7 5 6 7  x 9 1 0  1 2 3 4  
0 1 0 1 2 3 4 5 h  7 8 4  5 6 7 8 9 1 0  1 2 3 6 7 X  '110 1 2 3 4 s  

If  A ( p  - 1) = t and n = At  then a strongly balanced RMD can be obtained in the 

A similar construction works for odd t. 
same way using the sequence (el, c 2 , .  . . , c,, c,) .  
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Construction 27 (Afsarinejad [ l ] ) .  I f t  is odd ,  t = A(p  - 1 )  + 1 and n = At,  A E N ,  
then a balanced RMD can be obtained by developing, in turn, each of the A 
columns 

(el, c2, . . ' I c,,), (C/,, C/ ,+ l ,  * . . 9 C2, , - J j  . . . 9 @(A-I),>-(*-*) ' . . 1 c,) 

where 

(c,, c2 ,  . . . , c,) = (1, t ,  3 ,  t - 2, 5 ,  t - 4, . . . , ( t  - 3)/2, ( t  + 5)/2, ( t  + 1)/2, 
(t + 5)/2(t - 3)/2, , . . , t ,  1). 

Again if A(p  - 1) = f and n = A t  then a strongly balanced RMD can be obtained 
in the same way using the sequence (c l ,  c2, . . . , c ( , + ~ ) / ~ ,  c(,+,)/*, c( ,+~ ) ,~ ,  . . . , c,). 

Chakravarti [6] gives some sequences, based on polynomials, which give rise to 
RMDs which are uniform on the periods, have p = t and in which every ordered 
triple of distinct treatments appears equally often. 

Example 28. Let t = 8 and let 0 be a primitive element of GF(8), with primitive 
polynomial x' + x + 1. Let GF(8) = {ao = 0, aI = 1, a2 = I?, . . . , a7 = and 
define the polynomial f(.) by 

a1 ff2 a? ff4 f f y s  ff6 ff7 

f f I  f f2 f f 7  ff4 ffs ff6 ff7 f x+ ( x )  

Let c ( x )  = w ' - ' f ( x ) ,  i = 1, 2, . . . , 7 and let L, = (a; + C(x) ) ,  j ,  x = 0, 1, . . . , 7; 
i = 1, 2, . . . , 6. Then AT = (LT, L:, . . . , L:)  is the required design. 

6. Conclusion 

We conclude with a summary of some of the open problems. 
Strongly balanced, uniform RMDs can only exist if p = A/,(, A,, 2 2, n = A,,t2 and 

A,,, An E N .  Constructions 2 and 3 give such designs but non-isomorphic designs 
with these parameters are of interest; see, for example, Kok and Patterson [12]. 

Balanced, uniform RMDs can only exist if p =A,,(, n = A n t  
and t ( t  - 1) I n ( p  - 1). The known families have t = p  = 2m, n = A n t ;  
t = 2 m ,  p = l + f ( t - l ) a ,  a a l ,  n=A,, t ;  t = p = 2 m + 1 ,  n=2Ant;  t = 2 m + 1 ,  
p = t + t ( t -  l)a, a &  1 ,  n =A,,( and t = p  =2m + 1, n = t ( t -  1). 

Generalised Youden designs with M =t - lJ , , ,D ,  if f I n and t Ip ,  with 
M = n - l n , N ; ,  if t [ i i  and t ( p  and with M = p p l N , , N Z ,  if t I n and t y p ,  as well as 
nearly strongly balanced, generalised Youden designs are required. 

Circular, strongly balanced, uniform RMDs can only exist if p = A,,(, n = Ant 
and A , ,  A, E N. The smallest combination of p and n known is p = 2t and n = t. 
Do such designs exist for p = 3t and n = t?  

Circular, balanced, uniform RMDs can only exist if p = A,,(, n = A,,( and 
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t ( t  - 1) I np. Known designs have either p = t = 2m, n = t(f - 1) or p = A ( t  - l ) ,  
A31 ,  n = t .  

No general construction methods for Williams designs with circular structure 
with t = 4m are known. Such a design cannot exist for t = 4. Examples are known 
for t = 8, but have only been found by exhaustive search. I t  is also easy to show 
that a single column, to be developed mod 4m, cannot exist. 

Designs satisfying the conditions of Theorem 22 are known for p = 3, 4 and 5 
for all odd t (except possibly p = 5 and t = 39) (Lindner [ 181) but results f o r  larger 
p are much sparser. 
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We simplify our  construction [ 121 0 1  non-trivial [-designs without repeated blocks for 
arbitrary 1. We survey known results on partitions of the set of all ( I  + 1)-subsets of a ti-set into 
S ( I ;  I ,  I + I ,  U )  for the smallest I allowed by the obvious necessary conditions. We also ohtain 
somc new result\ on this problem. In particular, we construct such partitions for 1 = 4 and 
A = 60 whenever I J  = 6Ou f 4, u ii positive intcger with gcd(u, 60) = I or 2. Sixty is the smallest 
possible I for such u. 

1. Introduction 

It has been known for a long time that there are a lot of t-designs for all t .  
However, it was not until relatively recently that the first examples of non-trivial 
6-designs without repeated blocks were found [7]. In [12], we constructed 
non-trivial t-designs without repeated blocks for all t. More precisely, we showed 
that if 11 = t (mod ( t  + v 2 t + 1, then the set of all ( t  + 1)-subsets of a 
v-set can be partitioned into S ( ( t  + I)!("+'); t ,  t + 1, v). 

In Section 2, we give a simpler proof of the main result, mentioned above, of 
[12]. Actually, we will prove a somewhat stronger theorem, but this is only due to 
the fact that we did not try to minimize the A = ( t  + l)!(2'+') in [12]. The main 
construction of Section 2 (Proposition 6) is actually a special case o f  the 
constructions of [12]. 

In Section 3 ,  we survey known results on partitions of the set of all 
( t  + 1)-subsets of a v-set in to  S ( A ;  t ,  t + 1, v )  for the  smallest value of A allowed 
by the obvious necessary conditions. We also obtain some new results o n  this 
problem. For instance, we prove that the set of all 5-subsets of a (6Ou + 4)-set can 
be partitioned into S(60; 4, 5 ,  6 0 ~  + 4) for all positive integers K such that 
gcd(u, 60) = 1 or 2. (Sixty is the smallest value of A for which an S ( A ;  4, 5, 
60u + 4) can exist.) 

The new results in Section 3 use a theorem, which is implicit in [12]. However, 
unless one has a very good understanding of the techniques of [12], this is by no 
means obvious. Therefore, we give, in Section 4, a completely self-contained 
proof of this theorem. 
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2. The existence of locally trivial t-designs without repeated blocks for 
arbitrary t 

In this paper, we will assume all sets that are not obviously infinite, to be finite. 
If X is a set, then P ( X )  is the set of all subsets of X, P k ( X )  the set of all k-subsets 
and Phl,h2(X) the set of all B E P ( X )  with k l  6 (B( d k2. A t-X-multiset will be a 
function p: X-+ N such that (pI = C x e X  p ( x )  = t. We call p ( x )  the multiplicity of 
x .  We call x an element of p if p ( x )  # 0 and a repeated element if p ( x )  2 2. By 
the number of elements of p having a given property, we will always mean the 
sum of the multiplicities of the elements having that property. A multiset without 
repeated elements will be identified with its set of elements. For instance, if X is a 
set and A is a nonnegative integer, A .  X will denote the X-multiset defined by 
(A . X ) ( x )  = A for all x E X .  If Y c X and p is an X-multiset, with p I (X - Y) = 0, 
we identify p and p I Y. If p is a P(X)-multiset, we will often call the elements of 
Xpoints and the elements of p blocks. An isomorphism between a P(X,)-multiset 
p1 and a P(X,)-multiset p 2  will be a bijection u :Xl+ X 2  such that pI = p 2 0 0 .  
(We identify u with its canonical extension to P ( X , ) . )  If p is a P(X)-multiset, we 
will denote the automorphism group of 1.1 by Aut(p). If  Y c X ,  we call a 
P(X)-multiset p Y-trivial if 9, c Aut(p). We call p r-trivial if p is Y-trivial for 
some Y E  Pr (X) .  

A t-design S(A; t ,  k, v), where A, t ,  k and v are nonnegative integers with t 6 k, 
is a P,(S)-multiset p, IS1 = v ,  such that every t-subset of S is contained in exactly 
A elements of p. For t-designs and related notions, we use the convention that if A 
is not specified, we have A = 1. Thus, we often write S(t ,  k, v )  instead of 
S(1; t ,  k, v). A well known necessary condition for the existence of  an 
$(A; t ,  k, v), v 2 k,  t > 0, is that 

A . ( - f) /( - i )  
t - 1  t - i  

should be an integer for all i = 0, 1,  . . . , f - 1. If k = t + 1, this simplifies to the 
condition that A should be divisible by A ( t ,  t + 1,  v) = gcd(v - t ,  l c  m {  1 ,  . . . , f + 
1)). The function A ( f ,  t + 1 ,  v )  will play an important role in the sequel. 

A t - S ( A ; t ,  t + 1 ,  v), A ,  1, v E N ,  v b t + 1, will be a P,,,+,(X)-rnultiset p, 
1x1 = 21 - t, such that, for every A E P,, , ,(X),  we have (t + 1 - IAI )p(A)  + 
CxaX-,, p(A U { x } )  = A * ( ,A, ) .  (We put p(0)  = O . )  I f  X is a set, if p is a 
P(X)-multiset and if XI c X ,  then p 1 1  XI will be the P(X,)-multiset obtained by 
intersecting all elements of p with XI.  If 1.1 is an S(A; t ,  t + 1 ,  v), v 2 t + I ,  on a 
set S and if X E  P ,,-, ( S ) ,  then p 1 1  X is a t - S ( A ; t ,  f + I ,  v). (Indeed, let 
A E &,,t(X).  Let Y be the submultiset of p consisting of all B such that either 
B n X = A  or B f l  X = A  U { x } ,  x E X - A .  Let E be the P , +  (S - X)-multiset 
obtained by replacing each B in Y by the elements of P,-IAI (B - X). If 
B n X = A ,  we have I P , : I A , ( B - X ) I = t + l - I A (  and if B n X = A U { x } ,  X E  

X - A ,  we have IPf+,AI (B - X ) l  = 1. Thus I E ~  = (t + 1 - lA[ ) ( (p  11 X ) ( A ) )  + 
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C x c X - A  (p 1 1  X ) ( A  U { x } ) .  On the other hand, as p is an S ( A ;  t ,  t + 1, v), we have 

An 9, - S ( A ;  t ,  t + 1, v), A, t ,  v E N, v a t  + 1, will be a P,,,+,(X)-multiset Y ,  

(XI = v - t ,  such that, for every A E PO,,(X), we have IAl v(A)  + C A E X - A  Y ( A  U 

{ x } )  = A .  (Again. we put ~(0) = 0.) If p is a Y-trivial S(A; t ,  t + 1, v), v 2 t + I ,  
on a set S, IYI = I ,  then p 11 ( S  - Y) is a 1 - S ( A ;  t ,  t + 1, v )  such that, for all 
B E P,,,+,(S - Y), ( p  1 )  (S - Y ) ) ( B )  is divisible by 

E = A . P f - , A l  (S - X ) .  Thus J E ~  = A . (, -'l,q) = A * (IAI).) 

If E is a t - S(A;  t ,  t + 1, v )  on a set X such that, for all B E Pl, f+l(X),  E ( B )  is 
divisible by (Inl'- ,), then the P,,,+,(X)-multiset y defined by y ( B )  = E ( B ) / ( ~ ~ ~ ' -  ,), 
is an Sg - S(A;  t ,  t + 1 ,  v). Finally, if Y is an Yl - S ( A ;  t ,  t + 1, v )  on a set X and if 
Y rl X = 0, IY( = t, then the P,+,(X U Y)-multiset p defined by p(B) = Y ( H  n X )  
is a Y-trivial S ( A ;  I ,  t + 1, v). Thus, t-trivial S(A;  t ,  t + 1, v )  and 9, - S ( A ;  t ,  t + 
1, v )  are just two different ways of looking at the same structure and we will use 
the two completely interchangeably throughout this paper. 

If t is positive integer, put A(t) = l c m { ( : ) ;  i = 1, . . . , t } .  The following 
proposition is an immediate consequence of the above remarks. 

Proposition 1. 1f p is a t -- S ( A ;  t ,  t + 1, v), t 3  1, on a set X ,  then the 
P,,,+,(X)-multiset p* defined by 

P(B) . p * ( B )  = - 
t 

( lB l -  1) 

is an Y, - S ( A  * A(t); t ,  t + 1, 11). 

If S and J are sets, SJ denotes the set of all functions from J to S. A ( J ,  S)-array 
is an S'multiset. The elements of the array are called rows and the elements of J 
are called columns. The elements of S are called entries. A ( J ,  S)-array is called 
totally symmetric if it is invariant under all permutations of J .  An RA(A; t ,  t + 
1, v), A, t ,  v E N, will be a ( J ,  S)-array p,  IJI = t + 1, IS1 = v, such that, for every 
J ,  E PO,,(J) and B E S f 1 ,  there are exactly A rows R of p with R I J ,  = B and 
JR(J  - Jl)l = 1. In [ 11, 121 an RA(A; t ,  t + 1, v) is called a regular OA(A; t ,  t + 
1, v). A totally symmetric RA(A; t, t + 1, v) will be denoted by .YRA(A; r ,  t + 
1, v). The following proposition is straightforward (A proof can be found in [ 111, 
where a slightly different notation and terminology are used.) 

Proposition 2. Let J be a set, IJI = t + 1 3 2. Let u be a positive integer. Put 
A = A ( t , t + l , u + t ) = g c d ( u , l c m { l , .  . .  , t + l } ) .  Put ycJ= { C E Z L ; ~ , ~ ~ C ( ~ ) E  
{Aa,  Aa + 1, . . . , Au + A - l}}, a E (0, 1, . . . , (u /A)  - l}. Then, for  all u E 

(0, 1, . . . , (u/A) - I } ,  yN is an YRA(A; t ,  t + 1, u )  and Ca=(, ( 1 d A ) -  I 
ya = Z:. 
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If R E S ~ ,  we can define a IJI -S-multiset R'  by putting, for each x ES, 
R ' ( x )  = lR- ' (x ) l .  Let M , ( S )  be the set of all t - S-multisets. If p is a totally 
symmetric (J, $)-array, then we can define an M,,,(S)-multiset p' by putting 
p ' ( B )  = p ( R ) ,  where R E SJ and R '  = B. (As p is totally symmetric, p ( R )  does not 
depend on the choice of R. )  We can then go on and replace each multiset in p' by 
its underlying set. This yields a Pl,,,I(S)-multiset p". 

Proposition 3. I f  p is an YRA(A; t ,  t + 1 ,  u ) ,  u b 1, then p" is u t - S ( A ;  t ,  t + 
1, u + t ) .  

Proof. Let A E P,) , , (X) ,  where X is the set of entries of p. Let b $ X .  Intuitively, 
we think of b as a symbol meaning (blank)) It is well known that the number of 
(t - IAI) - ( A  U {b})-multisets equals (,A,). For every (t - IAI) - ( A  U { h } ) -  
multiset C there are exactly A multisets in p' that can be obtained by adding 
together A ,  all elements of C distinct from b and C ( b )  + 1 copies of some 
element x of X. Every element of p' having A U {x } ,  x c$ A ,  as its underlying set 
can be obtained in this way from exactly one ( t  - IAI) - ( A  U (6))-multiset. On 
the other hand, an element of p' having A as its underlying set is obtained from 
t + 1 - IAl different (t - IA I) - ( A  U { b})-multisets. I t  follows that 

( t  + 1 - IAI)p"(A) + p"(A U {x} )  = A. ( . 
x t X - A  

Thus, p" is a t - S ( A ;  t ,  t + 1, u + t ) .  

Proposition 4. For all positive integers u and t ,  there is u collection ( p r ) r E R  of 
Y: - S(A(t,  t + 1, u + t )  . A([); t ,  t + 1, u + t )  on a u-set X such that C r b R  p, = 

A ( t ) .  Pl,,+l(X) and such that, for  every B E P l , , + , ( X ) ,  p r ( B )  is divisible by 
w)/(l",f- 1 ). 

Proof. Let J be a (t + 1)-set. By Proposition 2, there is a collection ( y r ) r t R ,  

that C r s R  yr = Zi. Put X = Z,, and pr = y:*, where * is defined as in Proposition 1.  
Then (pr ) rEH satisfies all required properties. We only prove C r e R  pr = 

A ( t ) .  P , , f + l ( X ) ,  all other properties being easy consequences of Propositions 1 
and 3. Let B E Pl, ,+,(X) .  We have 

R = (0, I ,  . . . , (u/A(t ,  t + 1, u + 1 ) )  - l }  Of Y R A ( A ( t ,  t + 1,  u + t ) ;  t ,  t + 1, U )  such 

YXB)  * W ) -  - A ( [ )  C y:'(B)* C pr(B)  = C Y:*(B) = C 
r c R  r t R  

r f R  (101 - 1) (,,I' I )  r a H  

As CrcR yr  = X J ,  we have C r e R  y: = M,+'(X). Thus CraH y:'(B) equals the number 
of (t + 1)-B-rnultisets containing every element of B at least once, which equals 
the number of ( t  + 1 - 1B1) - B-multisets, i.e. (Inlf- '). Thus C r t R  p , ( B )  = 
A(t ) .  0 
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Putting E, = A o .  p,, where (P,),~~ satisfies the conditions of Proposition 4, 
yields 

Proposition 5. For all positive integers u, t and Ao,  there is a collection of 
SP, - S(Ao .  A( t ,  t + 1 ,  u + t )  . A ( t ) ;  t ,  t + 1, u + t )  on a u-set X such that C r t H  E, = 

A(, . A ( t )  . P l , f + l ( X )  cind such that, for every B E P l , , + , ( X ) ,  E,(B)  is divisible by 

A0 * w/(ls,f-  I ) .  

If Y is a P(X)-multiset and A E P ( X ) ,  then IAl v ( A )  + C x e X - A  Y ( A  U { x } )  = 
C x a X  Y ( A  U { x } ) .  We will often use this simple, but useful, observation implicitly 
when dealing with Y, - S(A; t ,  t + 1 ,  v ) .  

Proposition 6. Let ( E , ) , ~ ~  be a collection of Y, - S(A,; t ,  t + 1, u + t )  on a u-set X 
such thar C r e R  E, = W P ~ , ~ + ~ ( X ) ,  w 3 1. Assume that, for each B E P l , f + l ( X )  a 
positive integer A(B) is given such that A(B) divides &,(B) for  all r E R. Assume 
moreover that, for each B E PI,,+I(X), there is a family ( Y ~ [ B ] ) ~ ~ ~ , , ~ ( ~ ,  of 
Y,+l-,B, - S(A(B);  t + 1 - JBI,  t + 2 - IBI, w + t + 1 - 1B1) that 

Then there is a collection ( P , ) , ~ ~  of 9, - S(A,; t ,  t + 1 ,  uw + t )  on X X Z, such 
that CreR pr = P l , , + , ( X  x Z,). Consequently, if Y is a t-set with Y f l  ( X  x Z,) = 0, 
then there is a collection ( Y , ) , , ~  of Y-trivial S(A,; t ,  t + 1,  uw + t )  on ( X  x Z,) U Y 
whose blocks partition P,+,((X X Z,) U Y ) .  

Proof. Choose, for each B E PI.,+,(X), a family (S , [B] ) , , ,  of pairwise disjoint 
(&,(B)/A(B))-subsets of whose union is Zw,h(B).  If C E P ( X  x Z,), let B ( C )  
be the set of all x E X such that there is an element i of Z, with ( x ,  i )  E C. For 
every x EX,  let C, be the set of all i E Z, with ( x ,  i) E C. If C E P , , f + l ( X  x Z,) 
and x E B ( C ) ,  then, as C I ~ Z , , ~ ~ ~ ~ ~ , ,  n [ B ( c ) l =  Pl.r+2-I~(~)I  (z,) and C, E 

Pl,,+2+(c)l (Zw) ,  there is a unique element l(C, x )  of ZwlA(B(c)) such that 
C,E y , ( , , , [ B ( C ) ] .  Let p, be the set of all C E P , , , + ~ ( X X Z , )  such that 

For each C E  f'l,r+l(XX Z,,,), there is exactly one r E R such that 
l(C, x )  E S,[ B ( C ) ]  and thus, exactly one r E R such that C E p,. Thus 

It remains to be proved that each p, is an Yr - S(A,; t ,  t + 1, uw + t ) .  Let 
A E P,,,(X x Z,). Obviously, B ( A )  E PO,,(X) and we have C x e X  &,(B(A) U { x } )  = 
A,. Let x E X .  We want to count the number of i E Z, such that A U { ( x ,  i ) }  E p r .  
If i E Z,, then B(A U { ( x ,  i ) } )  = B ( A )  U { x } ,  ( A  U { ( x ,  i ) } )x  = A ,  U { i }  and ( A  U 
{ ( x ,  i)}), = A ,  for all y E B ( A )  - { x } .  The first and third equalities show that 
C y e n ( A ) - ( x )  l ( A  U { ( x ,  i ) } ,  y )  is independent of i. Put C y e B ( A ) - ( x )  l ( A  U { ( x ,  i)}, 
y )  = 10(x). We have A U { ( x ,  i ) )  E p, i f f  l (A  U { ( x ,  i)}, x )  + lo(x)  E 6,[B(A) U { x } ] .  
There are IS,[B(A) U { x } ] l  = &,(B(A)  U { x } ) / A ( B ( A )  U { x } )  elements 1 of 
Z,lA(B(A)u(x)) such that 1 + lo(x) E 6 , [ B ( A )  U { x } ] .  For each such 1, we have 

on Z, such 

C/€z,,A(R, YdBI = Plrrt2-lB, (zv>* 

C x e B ( C ' )  6 r [ B ( c ) 1 *  

C r c R  Pr = Pl,,+l(X x Z W ) .  

Crcz ,  ( y , [ B ( A )  U { x ) ] ) ( A x  n = A(B(a) U {XI). 
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Remember that y / [ B ( A ) U  { x } ]  is a set. (This follows from 

tained I ,  there are exactly A(B(A) U { x } )  elements i of Z, such that A ,  U 
{i} E y , [ B ( A )  U { x } ] ,  i.e. such that [ ( A  U { ( x ,  i)}, x )  = 1. It follows that, for each 
x E X ,  there are exactly E , ( B ( A )  U { x } )  elements i of Z, such that A U { ( x ,  i ) }  E 

C/e7,i*,rr,4)",r,,  Y/[B(A) u {x>l = Pl,f+2-lB(A)"(t)l ( Z W , ) . )  Thus, for each of the ob- 

Thus C ( x . r ) E ~ x f , ,  pr(A U { ( x ,  i)}) = Cxsx &r(B(A) U { x } )  = A,. 0 

A large set o f  disjoint S(A;  I, k ,  v), briefly LS(A; 1, k ,  v), is a collection 
of S(A; t ,  k ,  v )  on a v-set S,  v 2 k ,  such that E l e l ,  p/ = P A ( S ) .  An LS(A; t ,  k ,  u )  is 
called Y-trivial if all its members are Y-trivial. Because of the remarks preceding 
Proposition 1, it is obvious that t-trivial LS(A; t ,  t + 1, 2 ) )  and collections (,u,)~€,< of  
Yl - S(A; t, t + 1, v )  on a (v - t)-set X satisfying C r E R  p, = P , , , + , ( X ) ,  are just two 
different ways of looking at the same structure. 

Put A * ( r )  = lcm{ 1, . . . , t + I }  and, for t 3 1, I([) = n,,,,, A ( i )  . A*( i ) .  By 
convention, we put l (0)  = 1. 

Proposition 7. ff v = t (mod I([)), II 2 t + 1, then there is u t-trivial LS(l( t ) ;  t ,  
t +  1 ,  v). 

Proof. For every n-set S. v 2 I ,  there is exactly one LS(0, I ,  v )  on S, namely 
{ {s}; s E S} .  Thus, the proposition is true for t = 0. Assume that t 2 1 and that the 
proposition is true for all t , ,  0 S t ,  < t .  Put u = (v - t ) / ( l ( t  - 1) . A ( t ) ) .  As 
u = 0 (mod A*([)), we have A(t ,  t + 1, u + t )  = A*([). Applying Proposition 5 with 
A. = l ( t  - 1) yields a collection ( E , ) , ~ ~ <  of $ - S ( l ( t ) ;  t ,  t + 1, u + t )  on a u-set X 
such that C r E R  E, = l ( t  - 1) * A ( t )  f'l,l+l(X) and such that for every B E P , , , + , ( X ) ,  
E , ( B )  is divisible by 1(t - I )  . A(t)/(,",'L ,). Applying Proposition 6 with w = 
l ( t  - 1). A ( t )  yields Proposition 7. (If B E P2,1+ l (X) ,  put A ( B )  = I ( [  + 1 - \el). The 
existence of the y ,[B]  follows by induction. If B E P , ( X ) ,  put A(B) = w and put 
yo[Bl = f ' l , t + l ( & V ) . )  0 

Obviously, A([) divides t !  and A * ( t )  divides ( t +  l)!. As I , !  divides t !  for all 
t 2 t , ,  as I(0) = 1, l(1) = 2 and, for t 2 1, 1( t )  = A ( t )  A*([) . l ( t  - l ) ,  it is easy t o  
see that l ( t )  divides ( t  + l)!(*'-') for all t .  Thus Proposition 7 implies Proposition 
4.3 of [12]. 

3. Smaller values of 3, and (1 ,  I + 1, u)-decompositions 

If we  want to find smaller values of A ,  the following is a better tool than 
Proposition 6. 

Proposition 8. Let ( E , ) , , , ~  be a collection of Y, - S ( A ;  t ,  t + 1, u + t )  on u u-set X 
such that C r e R  E, = w . P 1 . , + , ( X ) ,  w 3 1. Assume that, for  each B E P I , , + I ( X ) ,  u 
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positive integer A(B) is given such that A(B) divides E , (B)  for all r E R. Assume 
that, for each B E P , , , + l ( X ) ,  there is an LS(A(B); t + 1 - IBI, t + 2 - IBI, w + t + 
1 - 1B1). Then there is an LS(A; t ,  t + 1, uw + t ) .  

Proposition 8 is implicit in [12]. However, unless one has a very good 
understanding of the techniques of [12], this is by no means obvious. Therefore 
we will give, in Section 4, a completely self-contained proof of Proposition 8. 
Actually, we will prove a slightly more general result. The difference between 
Proposition 6 and Proposition 8 is that, in Proposition 8, the LS(A(B);  t + 1 - 
IBI, t + 2 - (BI, w + t + 1 - 1B1) do not have to be ( t  + 1 - (B()-trivial. We pay for 
this by the fact that the obtained LS(A; t ,  t + 1, uw + t )  will not necessarily be 
t-trivial. We are. however, more interested in getting reasonably small A than in 
t-triviality. Although we defer the proof of Proposition 8 to Section 4, we will 
give some examples of its usefulness in the present section. 

If p is a P(X)-multiset and A c X ,  we will denote by pA the P ( X  - A)-rnultiset 
whose blocks arc the intersections with X - A  of the blocks of p containing A. 
We say that pA is derived from p. Let A E PO,,(X).  If ,u is an S ( A ;  t ,  k ,  v )  on X ,  
then pA is an S ( A ; t -  IAI, k -  IAI, v -  [ A [ )  on X - A .  If (p r ) ,EK is an 
LS(A; t ,  k,  v )  on X, then (pr, ,) , tK is an LS(A; t - IAI, k - IA(, v - IAI) on X - A. 

Proposition 8 has the following corollary. 

Proposition 9. fj’ an LS(A; t ,  t + 1, w + t )  exists, then an LS(Au; t ,  t + 1, uw + l )  

exists for all posirive integers i i .  

Proof. Let X be a u-set. Let R be a (w/A)-set. Put E, = A .  P l , , + , ( X )  for all r E R. 
Then ( E , ) , ~ ~  is a collection of SP, - S(Au; t ,  t + 1, i i  + t )  and C r t R  E, = 

w . Pl,,+l(X). For each B E PL,,+I(X), choose A(B)  = A. The existence of an 
LS(A; t ,  t + 1, w + t )  implies, as noted above, the existence of an LS(A(B); t + 
1 - IBl, t + 2 - ( B I ,  w + t + 1 - 1B1). Thus, Proposition 9 follows from Proposition 
8. 0 

A ( t ,  t + 1, v)-decomposition, v 3 t + 1, will be an LS(A(t, t + 1, v);  t ,  t + 1,  v). 
Trivial ( t ,  t + 1, 11)-decompositions consisting of a single S(v - t ;  t ,  t + 1 ,  v )  exist 
for all v = t + A,,, where A,, divides A*(t) = lcm(1, . . . , t + l}.  I t  is well known 
that (1,2,tt)-decompositions exist for all v. Indeed, if v is even (odd, respec- 
tively), a (1,2,  1))-decomposition is the same thing as a 1-factorization (2- 
factorization, respectively), of the complete graph on v vertices. In 19. 10, 111 
(2,3,u)-decompositions are constructed for all u ‘0, 2, 4 o r  5 (mod 6) .  A 
(2,3,  7)-decomposition does not exist [l]. For v = 141, 283, 501, 789, 1501 and 
2365, the existence of a (2 ,3 ,  v)-decomposition is still open. For all other u = 1 or 
3 (mod 6), (2,3,  If)-decompositions are known [ 5 ,  6,8] .  There are no ( 3 ,  4, i t ) -  

decompositions for v = 8 or 10 [3]. On the other hand, (3 ,4 ,  v)-decompositions 
exist for all u = 0 (mod 3), v > 3 [ l l ] .  To the author’s best knowledge, the only 
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u = 1 or 2 (mod 3) for which a (3,4,  v)-decomposition is known are v = 4, 5 ,  7 
(these are all trivial decompositions) and 11 (see below). 

With the aid o f  a computer, Kreher and Radziszowski [41 constructed a 

(6,7,  14)-decomposition. By Proposition 9, this yields (6, 7 ,  v)-decompositions 
for II = 30, 46, 62, 126, 174, 286 and 846. The derived designs yield ( 5 ,  6, u ) -  
decompositions f o r  v = 13, 29, 4.5 and 125. They give (4,5,  u)-decompositions for 
v = 12, 28, 44 and 124. (A  (4,5, 12)-decomposition was also constructed earlier, 
in a simpler way, without use of a computer, by Denniston 121. The values u = 28, 
44 and 124 can also be obtained by applying Proposition 9 t o  Denniston's 
decomposition.) Further derivation yields (3, 4, v)-decompositions for II = 11 and 
27. (Note that 27 can also be obtained from [ 1 I ] ,  but 11 cannot.) 

Using the above mentioned results about (1 ,2 ,  u)- ,  (2, 3,  1 1 ) -  and ( 3 ,  4, v ) -  

decompositions, it is easy to check that applying Proposition 8 to Proposition 5 
with A,) = 12 and t = 4, yields, for all  positive integers u ,  an LS( 144A(4, 5 ,  u + 4); 
4, 5 ,  144u + 4). As A*(4) = 60, this never gives a (4 ,5 ,  v)-decomposition. llsing 
this result, we can now see that applying Proposition 8 to Proposition 5 with 
A,, = 360 and f = 5 gives, f o r  all positive integers u ,  an LS(360OA(S, 6, u + 5 ) ;  
5 ,  6, 36OOu + 5 ) .  As A*(S) = 60, this again never yields a ( 5 ,  6,  v)-decomposition. 
Of course, we can continue this indefinitely. This will yield smaller values of A 
than Proposition 7, but nevertheless, the smallest value of A we obtain in this 
way, grows extremely quickly as a function of t. 

F o r  f = 4, we can do  better. Applying Proposition 5 with r = 5 yields, for all 
positive integers A,, and u ,  a collection ( E ~ ) ~ ~ / ~  of 9 s  - S(A,, A ( 5 ,  6, u + 5 )  10; 5 ,  
6, u + 5 )  such that C r t H  E, = A,, 3 10 * PI,',(X) and such that, for every R E Pl,h(X), 
E, (B)  is divisible by A l l .  lO/(,,,?- I ) .  Then ( E ,  I P l , S ( X ) ) r c N  is a collection of 

Notice that, as A * ( S )  = A:*(4) = 60, we have A ( 5 ,  6, 11 + 5 )  = 4 4 ,  5 ,  11 + 4). 
Choosing All - 6 and applying Proposition 8 to (E , .  I P , , s ( X ) ) r e f <  yields an 
LS(60. A(4, 5 ,  u + 4); 4, 5 ,  6Ou + 4) for all positive integers 14. This shows that a 
(4, 5 ,  6Ou + 4)-decomposition exists for all positive integers u such that 
A(4, 5 ,  u + 4 )  = 1 ,  i.e. such that gcd(u, 3 0 )  = 1. (Note that i f ,  as is likely, a 
(3,4,23)-decomposition exists, then we can choose, in the above, A,, = 2 and 
obtain an LS(20. A(4, 5 ,  u + 4); 4, 5 ,  2011 + 4) f o r  all positive integers u. This 
would yield (4, 5 ,  2014 + 4)-decompositions f o r  dl positive integers u such that 
A(4, 5 ,  u + 4) = 1. The existence of a (3 ,4 ,  23)-decomposition is, however, still 
open.) Using the previous result, we  can now see that applying Proposition 8 t o  
Proposition 5 with All  = 300 and I = 5 yields f o r  all positive integers u ,  an 
LS(3000A(S, 6, u + 5 ) ;  5 ,  6, 3 0 0 0 ~  + 5 ) .  This again nevcr gives a (5, 6, 0)- 

decomposition. 
We can, in the above, take two copies of c', 1 PI,s(X) for each I' E K. This yields 

a collection of Y4 - S (  10Al,A(4, 5,  u + 4); 4, 5 ,  u + 4) such that Crtlt F,  = 

20AlIPl,5(X) and such that, for every H E Pl,5(X), E , ( H )  is divisible by 10A, l / ( , ,g f  I ) .  

Choosing A,, = 6 and applying Proposition 8, yields, using the existence, deduced 

Y d  - S(& * A(5, 6, u + 5) 3 10; 4, 5 ,  u + 4) such that E r r / <  t:, = A,, . 10. PI.<(X). 
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above, of a (4,5,124)-deconiposition, an LS(60A(4, 5, u + 4); 4, 5, 120u + 4) for 
all u E N  - ( 0 ) .  Combined with the above, this shows that a (4,5,60u +4)-  
decomposition exists for all positive integers u such that gcd(u, 60) = 1 or 2. 
(Again, if a (3,4,43)-deconiposition exists, we can choose A,, = 2 and get, using 
the existence of a (4,5,44)-decomposition, LS(20A(4, 5 , u  + 4); 4, 5 ,  4014 + 4) for 
all u E N - {O}. 'These would yield (4,5,40u + 4)-decompositions for all positive 
integers u such that gcd(u, 30) = 1. The existence of a (3,4,43)-decomposition is 
still in doubt.) 

To our best knowledge, the only known infinite family of non-trivial ( t ,  t + 
1, v)-decompositions with t 2 4 are the (4, 5,60u + 4)-decompositions constructed 
above for all positive integers u with gcd(u, 60) = I or 2. A finite amount of 
further non-trivial ( t ,  t + 1, 1))-decompositions with 4 6 can be obtained, as 
explained above, by combining [4] with Proposition 9. We do not know any other 
non-trivial ( t ,  t +- 1, v)-decompositions for t 2 4. In particular, we do not know 
any single non-trivial ( t ,  t + 1, v)-decomposition for t 3 7. 

t 

4. A proof of Proposition 8 

If p is a multiset, then  s ( p )  will denote the underlying set of p, i.e. 

Let S be a set and let b be a k - P(S)-multiset such that s (6)  is a partition of S. 
An S(A;  1 ,  k ,  6), t S k, will be a P,(S)-multiset p such that, for every B E p and 
A E 6, we have ( A  fl B( = O(A) and such that, for every T E c(S) satisfying 
IA fl TI G 6 ( A )  for all A E 6, there are exactly A blocks of p containing T. A large 
set of disjoint S ( A ;  t ,  k, 6). briefly LS(A; I ,  k, b ) ,  is a collection (pcL,),,R of 
S ( A ; t ,  k, b )  such that C r e R p ,  equals the set of all k-subsets B of S with 
IB f l A (  = S ( A )  for all A E 6. If b consists of k copies of S ,  then the 
(L)S(A;  t ,  k ,  6) are exactly the (L)S(A;  t ,  k, ISl) on S. 

If S is a set, then a (w, t ,  S)-partition, or more briefly (w, t)-partition, w 2 1, 
will be a ( t  + 1) .- P(S)-multiset 6 such that s(6 )  is a partition of S and such that, 
for every A E b, we have JAl = w + 6 ( A )  - 1. For instance, if 6 consists of t + 1 
copies of S ,  IS( a t  + 1, then 6 is a (IS1 - t ,  t ,  S)-partition. (For readers familiar 
with [ 121, note that what we call here a (w, t ,  S)-partition is equivalent with what 
is called a (w, J ,  ,S)-partition in [12], where J is a ( t  + 1)-set. An LS(A; t ,  f + 1, 6), 
6 a (w, t ,  S)-partition, is equivalent with a Z(A;J ,  F ) ( , U , ) , ~ , > ,  F a (w, J ,  S)- 
partition, IJI = t t 1, satisfying H ( p , )  = H ( F )  for all 1 E L. When we say that two 
types of structures are equivalent, we mean that they are formally different, but 
that there is an obvious way to identify a structure of one type with a structure of 
the other type.) 

Much more can be proved about S ( A ; t ,  k, b )  than we will do here. We will 
study S(A;  t ,  k,  b )  and LS(A; t ,  k ,  6) in more detail in a subsequent publication. 
In this paper, we will essentially only prove those results about S(A; t ,  k ,  6) that 
we will actually use. 

s ( p ) =  { x ; x E p ) .  
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First, note that if (P , ) ,~~  is an LS(h; t ,  t + 1, 6), 6 a (w, t, S)-partition, then 
JRI = w / h .  (Indeed, let T be a t-subset of S with IA0n TI = 6(Ao) - 1 for ii given 
A,, E S ( ~ )  and [A fl TI = b(A) for all A E S ( ~ )  - {Al,}. There are exactly lAIll - 
(6(A,,) - 1) = w + b(A,,) - I - (S(A,,) - 1) = w( t  + 1)-subsets B of S with T c B 
and [ A  fl BI = b(A) for all A E S. Each of the p r  contains A of these (t + I)-sets 
and each of these (I + I)-sets is contained in exactly one p r ,  giving IRI = w / A . )  

Proposition 10. Let b be u (w, t ,  S)-partition and put m = max{G(A); A E b } .  If 
an LS(h; m - 1, m, w + m - 1) exists, then an LS(A; t ,  t + I ,  6) exists. 

Proof. For every A E b,  put an LS(A; 6(A) - 1,6(A),  w + S(A) - l ) (p( i , . ,J ,e l ,* ,A 
on A. (As noticed in Section 3, the existence of an LS(h; m - 1, m, w + m - 1) 
implies the existence of an LS(A; 6(A) - 1 ,  6(A), w + 6 ( A )  - I ) . )  Let y r ,  r E 

Bwlh, be the set of all ( I  + 1)-subsets B of S such that (A fl BI = &(A) for all A E 6 
and such that C, , t v (h )  in, , ,  = r ,  where i A , n  is the uniquely determined element of 
Zwll with A f l  B E p(,,, ,,, ,,). It is immediately clear from the definition of yr that 
CrcLWii yr is the set of all ( f  + 1)-subsets B of S such that (A n 131 = S(A) for all 
A E 6. It  remains to be proved that each yr is an S ( h ;  t, t + 1, 6). Let T be a 
t-subset of S such that IT f l  A,,\ = 6(A,,) - 1 for some given A,, E 6 and IT f l  A1 = 

S(A) for all A ~ s ( 6 )  - {Ao}. For each A ES(S) - {A,l}, let i,, be the uniquely 
determined element o f  ZWlh with A f l  T E The blocks of yr containing Tare  
the (1  + ])-sets B containing T and a further point of A,, such that B f l  A,, E P(,,~,~,,), 
where i , ,  = r - CAt,s(h)-(nll) in. The number of such blocks equals the number 
of blocks of p(,,],,,,)) containing the (6(Al,) - 1)-set T n All. As p(i,l,A,l) is an 
S(A;  6(A,,) - 1, 6(Al,), w + 6(Al,) - I ) ,  this number equals h. Thus, (yr)rclw,A is an 
LS(A;t, t + 1, 6). 0 

In the following, we will often describe a multiset by a collection of elements 
between square brackets. For instance, [x, x, x, y ,  z ,  21 denotes the {x, y, 2)- 
multiset p defined by p ( x )  = 3, p(y) = 1 and p ( z )  = 2. The square brackets are 
used to avoid confusion with ordered or unordered sets. 

If X is a set, then, as in Section 2, M k ( X )  will denote the set of all 
k - X-multisets. Let (X, s )  be a totally ordered set, X fl { 1 ,  . . . , t }  = $. If p is a 
(t + 1) - X-multiset, then p" will denote the set of all (t + I )  - ( X U  { I ,  . . . , t } ) -  
multisets obtained by listing all elements of p in increasing order and then 
replacing some elements in p by the position in which they occur, where we never 
replace the last (i.e. most to the right) occurrence of an element. For instance, if 
t = 5 ,  if X = { u , b , r , d } ,  a < b < c < d  and if p = [ a , a , a , c , d , d ] ,  then p * =  

{ [ a ,  a, a,  c, d ,  d ] ,  [ l ,  2, a, c ,  d ,  d ] ,  
[a,  a,  a ,  c, 5 ,  d ] ,  [ I ,  a, a, c ,  5 ,  d ] ,  [a, 2, a, c, 5 ,  d ] ,  [ l ,  2, a, c, 5, d]}. Note that, as 
we must keep the last occurrence of all x E p, we have S ( Y )  f l  X = s(p) for all 
Y E p*. We will denote by IV,~(X) the set of all positions occupied by x in p except 
the last position, where we again assume that the elements of p are listed in 

[ I ,  a, a, c, d ,  d ] ,  [a,  2, a, c, d ,  d ]  
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increasing order. In our example, N,(a) = { 1,  2 )  , N,(b) = 4, Yl(c) = 4 and 
N ” ( 4  = (5). 

Proposition 11. Let ( X ,  S )  be a totally ordered set, X f l  { 1, . . . , t }  = +. Then for 
every ( t  + 1 )  - ( X  U { 1, . . . , t})-multiset Y with v ( i )  6 1 for  all i E (1, . . . , t } ,  
there is exactly one element p of M,+,(X) such that Y E p*. 

Proof, Put all i E { 1 ,  . . . , t }  n s ( v )  in position i. Fill out the remaining positions 
of Y by listing the remaining elements of Y in increasing order. It is easy to see 
that there is one and only one element p of M , + , ( X )  with Y E P * ,  namely the p 
obtained by replacing each i E { I ,  . . . , t }  by the first element of X occurring to 
the right of i in Y.  0 

To illustrate the procedure described in the proof of Proposition 11, let t = 7, 
let X = { a ,  b , c , d , e } ,  a < b < c < d < e  and let v = [ a , a ,  b , d ,  1 ,3 ,6 ,7 ] .  We 
write Y = [ l ,  Q, 3, (1, 6 ,  6, 7, d ]  and put p = [a, a,  a, a ,  b,  d ,  d ,  d ] .  

Proposition 12. Let (8r)reR be a collection of Y, - S(A,; t, t + 1 ,  u + t )  on a u-set 
X ,  X n { 1, . . . , t )  = 4, such that C r e R  %Yr = w . P,,,, , ( X ) ,  w a 1. Assume that, for 
each B E P , , l + l ( X ) ,  a positive integer A(B) is given such that A(B)  divides %,(B) 
for all r E R. Assume moreover that, for each B E  P , , l + l ( X ) ,  there is an 
LS(A(B); t + 1 - [ H I ,  t + 2 - 1131, w + t + 1 - IB1). Then there is a collection 
( y r ) r s R  of S(A,; t ,  + 1 ,  uw + t )  without repeated blocks on ( X  x Z,) U { I ,  . . . , t }  
such that C r c R  yr = P,+,((X X a,,,) U { 1 ,  . . . , t } ) .  

Proof. Put a total order (X, S )  on X. Let S = (X x Z,,,) U { 1, . . . , t } .  For each 
p E L V , + ~ ( X ) ,  let b,, be the ( w ,  t)-partition obtained by replacing each occurrence 
o f x  in p by ( { x }  X Z,)UN,,(x). Put B , , = s ( p ) .  Put m =max{b , , (A) ;A E b I l } .  We 
have m = max{p(x); x E Bo}  zs t + 2 - IBol. As an LS(A(B,,); t + 1 - IBol, t + 2 - 
IBol, w + t + 1 - /Hal) exists, this means that an LS(A(B,,); m - 1, m ,  w + m - 1) 
exists. By Proposition 10, this implies the existence of an LS(A(B,,); t ,  t + 
1,  b , ) ( q , , l J , e ~ l  , , , /A(~,,)) .  Choose a family ( IIr [B, , ] ) , , ,  of pairwise disjoint 
(~r(Bo)/A(B,,))-subsets of { I ,  . . . , w/A(B,,))  whose union is (1 , .  . . , w/A(B, , )} .  
Put B ( g , , )  = Clsn,[a,,l a(,,,). Obviously, ( P ( p . r ) ) r c K  is a collection of S(gr(B0); t, t + 
1 ,  such that ErERP( , , r ,  equals the set of all ( t  + 1)-subsets D of S with 
IA n DI = b,(A) for all A E a!,. Put Y, = C P c t ~ , + , ( x )  P ( p , r ) .  

We first prove that C, , ,y ,= f ,+ , (S ) .  Let D E P , + ~ ( S ) .  Let Y ( D )  be the 
( t  + 1)-(X U { 1, . . . , t})-multiset obtained from D by replacing each (x ,  y )  E D f l  
(X x Z,) by x .  Wc have seen that, if p E M r + , ( X ) ,  then C r c R  &,,,) is a set and it 
is easy to check that D is in this set iff v ( D )  E p*. By Proposition 11, there is 
exactly one p E M , + , ( X )  with Y ( D )  E p*. Thus, ( C r E R  y , ) (D)  = 1. 

It only remains to be proved that each y, is an S ( A r ;  t ,  t + 1 ,  uw + t) .  (The fact 
that the yr have no repeated blocks is an immediate consequence of C r F H  y, = 

C + I W )  
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Let r E R and let E E P,(S) .  Let v be the t - (XU {I ,  . . . , t})-multiset obtained 
from E by replacing every element (x, y)  of E fl (X x Z,.) by x. For any 
p E M,+,(X) such that /3(v,,) contains a block D with E c D, the set p* contains 
Some v1 with V=S v I .  (For instance, choose v ,  = v ( D ) ,  where v ( D )  is defined as 
above.) For every p E M , + , ( X )  such that p* contains some v ,  with v v I ,  we 
have [A  n El s d,,(A) for all A E h,, and there are exactly kYr(s(p)) elements of 
&,,, containing E. If  x E X ,  Then, by Proposition 1 1 ,  there is a unique 
( t  + 1) - X-multiset p [ x ]  with v + {x}  E p ( x ] * .  On the other hand, if p E M , + , ( X )  
and if there is a v I  E p* with v d v I ,  then there is one and only one x E X such 
that p = p [ x ] ,  i.e. such that v + {x }  E p*. (If v I  = v + {i}, i E { 1, . . . , f } ,  then x 
is the unique element of p with i E N , i ( x ) . )  I t  follows that the elements of yr 
containing E are the elements of CrtX/3(l,lxl,,) containing E. There are 
CxeX 'i$',(s(p[x])) = ClcX 8,(B U { x } )  such elements, where H = S ( v )  n X. As X, 
is an 9, - S(A,; 1, t + 1, u + f), we have C r f X  'E,(B U {x } )  = A,. 0 

Proposition 8 can be obtained from Proposition 12 by putting A, = A for all 
r E R.  

Note added in proof. A (3,4,23)-decomposition was recently constructed by 
Chee, Colbourn and Kreker. 
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A NEW FAMILY OF BIBDs AND NON-EMBEDDABLE 
(16, 24, 9, 6, 3)-DESIGNS 

G.H.J. van REES* 
Department of’ Computer Science, University of Manitoba, Winnipeg, Mannitoba, 
Canada R3T 2N2 

We construct a new family of balanced incomplete block designs with parameters (2nZ + 3n + 2, 
( ( n  + 1)/2)(2n’ + 3n + 2 ) ,  ( n  + 2)’. 2n + 2, n + 1) where n and n + 1 are prime powers. Also 
we construct 251 non-embeddable (16, 24, 9, 6 ,  3) designs and thereby increasing the lower 
bound on the number of painvise non-isomorphic balanced incomplete block designs 
( 1 6 , 2 4 , 9 , 6 , 3 )  to 1542. 

1. Introduction 

A balanced incomplete block design (BIBD) is a pair (V, B) where V is a v-set 
and B is a collection of b k-subsets of V called blocks such that each element of V 
is contained in exactly r blocks and any 2-subset of V is contained in exactly A 
blocks. The numbers v, 6, r ,  k, A are parameters of the BIBD. Trivial necessary 
conditions for the existence of a BIBD (v, 6 ,  r, k, A) are 

(1) vr = bk, 
(2) r(k - 1) = A(u - 1 ) .  

A parameter set that satisfies (1) and (2) is said to be admissible. 
Two BIBDs ( V , ,  B , )  and (V,, B 2 )  are isomorphic if there exists a bijection 

a: V,+ V, such that B,a = BZ. Given a symmetric BIBD (one with II = b, r = k), 
one obtains from it the residual design by deleting all elements of one block, and 
the derived design by deleting all elements of the complement of one block. The 
parameters of a derived design are (k, II - 1, k - 1, A, A - 1), whereas the 
parameters of a residual design are (v - k, u - 1, k, k - A ,  A). 

Any BIBD that has parameters (k, II - 1, k - 1, A, A - 1) or (v - k, 21 - 1, 
k, k - A, A) is called a quasi-derived or quasi-residual, respectively. A quasi- 
residual design which is residual is said to be embeddable in the corresponding 
symmetric design. 

A resolvable BIBD (v, 6, r, k, A), denoted by RBIBD is a balanced incomplete 
block design in which the blocks of the design may be partitioned into r sets of 
v/k blocks such that every element of the design occurs in a block exactly once in 
each partition. The partitions are called resolution classes. 

In the following section we describe a construction for a new family of BIBDs. 

* Supported by NSEKC grant OGPoOO355X. 

0012-365X/89/$3.50 0 1989, Elsevier Science Publishers B.V. (North-Holland) 
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In later sections this construction for n = 2 is used to produce 278 non-isomorphic 
(16, 24, 9, 6, 3) BIBDs of which 251 are non-embeddable. 

2. General construction 

Theorem 1. If a SBIBD ( n 2 + n  + 1, n + 1 ,  n )  and a RBIBD ((n + l)’, 
( n  + l)(n +2) ,  n + 2 ,  n + 1, 1) both exist, then a BIBD (2n2+3n +2 ,  
(n + 1)(2n2 + 3n + 2)/2, ( n  + I)’, 2n + 2, n + I), exists. 

Proof. Let the SBIBD elements be the set { 1 ,2 ,3 ,  . . . , n2 + n + 1)  = I. Let the 
RBIBD elements be the set {n’ + n + 2, n’ + n + 3, . . . , 2n’ + 3n + 2) = J. Then 
to construct the new design, duplicate each block of the SBIBD n + 1 times and 
duplicate each block of the RBIBD n times. The new blocks of the design consist 
of two types. The first type is formed by adjoining to every set of n duplicated 
blocks a resolution class of the RBIBD. For example, if n = 2 then the block 
{ 1,2,3} of the SBIBD is duplicated 3 times and the resolution class {8,Y, lo}, 
{11,12,13} and {14,15,16} of the RBIBD is adjoined to it to produce the 
following three blocks of the new design { 1 ,2 ,3 ,8 ,9 ,  lo}, { 1,2,3,11,12,13} 
and { 1,2 ,3 ,  14,15,16}. The choice of which resolution class is adjoined to which 
set of n duplicated blocks is completely arbitrary except that the n - 1 resolution 
classes left over must be identical. Let the blocks of this resolution class be 
denoted by B I ,  B 2 ,  . . . , B,. Then the second type of blocks for the new design 
are B, n B, for all i # j .  This is the design. 

It is quite easy to check if the new design has 2n’ + 3n + 2 elements and 
(n’ + n + l)(n + 1) + ( (n  + 1)/2) = ( n  + 1)(2n2 + 3n + 2)/2 blocks of size 2n + 2. 
An element i E I occurs (n + l)(n + 1) times and an element j E J  occurs 
(n + 2)n - ( n  - 1) + n = (n + 1)’ times also. A pair of elements i , ,  i2 E I occurs 
l x ( n + l ) = n + l  t imes.Apair i ,  j w h e r e i E I a n d j E J o c c u r s n + l  ( t h e r o f t h e  
SBIBD) times. A pair j , ,  j 2  E J ,  where j l ,  j 2  are both elements in some B, of the 
left over resolution class, occurs once in the first type of blocks and n times in the 
second type of block whereas if jl,  j 2  do not occur in some B,, then they occur n 
times in the first type of block and 1 time in the second type of block. Hence all 
pairs occur n + 1 times. 0 

An SBIBD (n’ + n + 1, n + 1, 1) is equivalent to a projective plane of order n. 
An RBIBD ((n + l)’, (n  + l)(n + 2), n + 2, n + 1, 1) is equivalent to an afine 
plane of order n + 1. Therefore, the construction works if both n and n + 1 are 
prime. Another way to state the condition is to specify that either n is a Fermat 
prime or n + 1 is a Mersenne prime. Since there are 35 such numbers known [2], 
the construction works at least 35 times. We record this in the following corollary. 

Corollary. If n is a Fermat prime or n + 1 is a Mersenne prime then there exists a 
BIBD (2n2 + 3n + 2, (n + 1)(2n2 + 3n + 2)/2, (n  + 1)l, 2n + 2, n + 1). 
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The construction can be slightly generalized if one uses a RBIBD ( ( n  + l)’, 
n(n + l)(n + 2), n(n + 2), n + 1, n )  which has n - 1 identical copies of one 
resolution class instead of n copies of a RBIBD ( (n  + 2)’, (n  + l)(n + 2), n + 2, 
n + 1, n).  Thus, we can state the following theorem: 

Theorem 2. If (1 SBIBD ( n 2  + n + 1, n + 1, 1) exists and a RBIBD ( (n  + 1)2, 
n(n + l)(n +2),  n(n + 2), n + 1, n )  which has n - 1 identical copies of one 
resolution class exists theri a BIBD (2n2 + 3n + 2, (n  + 1)(2n2 + 3n + 2)/2, 
( n  + I)’, 2n + 2, ( n  + 1)) exists. 

Proof. Same as Theorem 1 but ensure that the n - 1 identical copies are used for 
the blocks of type 2. 0 

In order to tell if the construction produces any new designs, we consult the 
helpful list of BIBD parameters and known lower bounds of Mathon and Rosa 
[7]. For n = 3, the construction produces a (29, 58, 16, 8, 4) BIBD which is 
non-isomorphic to the only other known such design produced by Sprott [lo]. 
They are non-isomorphic because they have different block intersection numbers. 
For n = 4, the construction produces the first known (46, 115, 25, 10, 5 )  BIBD. 

3. Non-isomorphic (16, 24, 9, 6,  3) BIBDs 

For n = 2, the construction produces a design with the same parameters (16, 
24, 9, 6, 3), as Bhattacharaya’s [ l ]  famous counterexample. The counterexample 
was non-embeddable as two blocks intersected in four varieties. Brown [3] 
produced such a design which was non-embeddable but had no block intersection 
of size 4. Lawless (61 produced 8 non-isomorphic non-embeddable designs with 
various intersection patterns. All three used ad hoc procedures to produce these 
results. Just recently Van Trung [12] produced one of these non-embeddable 
designs with a complicated construction. 

For n =2 ,  we can use Theorem 2 as any RBIBD (9, 24, 8, 3,  2) trivially has 
one copy of a resolution class. Hence, by using the list of BIBD (9, 24, 8, 3 ,  2 )  of 
Morgan [9] with the correction of Mathon and Rosa [8], we can generate many 
non-isomorphic designs with many different intersection patterns. Most of the 
designs produced this way are obviously non-embeddable as they have block 
intersection size 4. 

Indeed, for any specific RBIBD we can assign resolution classes to the 
duplicated blocks of the SBIBD in every possible way. This creates 8! designs 
which can be reduced to 6! or S !  by using the automorphism groups of the smaller 
designs. Then, using Kocay’s very fast graph algorithm program (described in 
[ 5 ] ) ,  we can get a canonical form for each design in about one and a half seconds 
on an Amdahl 580. These are then sorted and duplicates eliminated. These can 
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then be compared to the known non-embeddable (16, 24, 9, 6, 3) BIBDs. 
Furthermore, designs can be compared to Van Rees’ [ l l ]  list of all residual 
(16,24,9,6,3) BIBDs to see if they are residual or not. The results are 
summarized in the following theorems. 

Theorem 3. There are 278 puirwise non-isomorphic (16, 24, 9, 6, 3) BIBDs which 
contain three identical disjoint copies of the SBIBD (7 ,3 ,  1). 

Proof. Any (16 ,24 ,9 ,6 ,3)  BIBD which contains three identical copies of the 
SBIBD (7,3,  1) must have a structure as described in the beginning of Section 3. 
To prove this, consider an element o f  the (16, 24, 9, 6, 3) design which is not one 
of the seven elements of the  SBIBD. If it occurs more than once with the same 
triplicated block of the SBIBD then it can occur at most 5 times with triplicated 
blocks and thus at most 8 times in the design. This is a contradiction. It must 
appear once with each triplet of identical blocks to get the pair count correct. 
This means every element not in the SBIBD, must occur with a triplet o f  identical 
blocks exactly once. 

In other words, a resolution class of “other” elements must be attached to each 
triplet of identical blocks. This determines 7 resolution class which clearly 
determine the RBIBD (9,24, 8 ,3 ,2) .  Since the construction produces 278 
designs, the theorem is true. 0 

Theorem 4. There ure 25 1 puirwise non-isomorphic, non-embeddahlt~ 
BIBD (16,24,9,6,  3) BIBDs which contuin lhree identicul disjoint copies o/  the 
SBIBD (7,3,  1). 

Theorem 5. The number of puirwise non-isormorphic, non-emhedduble BIRD 
(16, 24, 9, 6, 3) is 261. 

Proof. The designs of Bhattacharya, Brown and Lawless were non-isomorphic t o  
each other and to any of the 251 produced by our construction. Van Trung’s 
design, which was produced independently and by an entirely different construc- 
tion, was isomorphic to one o f  the designs produced by the construction. 

In order to produce a listing of all the designs in a minimum o f  space, we list all 
resolvable BIBDs (9, 24, 8, 3, 2) using Morgan’s numbering. The basic (9, 12, 4, 
3, 1 )  BIBD is as follow: 

I 
I 
1 

{8,9,16) 

{ l l , l 3 , l s )  

{9, 12, IS} K ,  

{9, 11, 14) R l  
(8 ,  10, 15) 

{ 10, 12, 14) R,, 

(8, 13, 14) 

(10, 1 1 ,  16) 

{ 12, 13, 16) 
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All the resolvable (9 ,24 ,8 ,3 ,2)  BIBD’s have these as their first four resolution 
classes. The second four resolution classes are these again but with a permutation 
applied as follows: 

Design 
1 
2 
3 
6 
7 

14 
15 
23 
29 

Perm u ratio ri 

I 

(8 ,  9) 
(8, 9)(10, 11) 
(8, 9, 10) 
(8, 9, 10, 11) 

(8, 9, 10, 13) 
(8, 9)(11, 13)(12, 14) 

(8, 9, 10, 13, 16) 
(8 ,  9, 11, 12, 16) 

Therefore, the seventh resolution class, R6, in design 29 is (8 ,9 ,  11,  12, 16) R2. 
Now the blocks of the SBIBD are specified as follows: 

{ 1 , 2 , 4 )  = B, 

(2, 3, 5 )  = BL 

( 3 ,  4,6)  = B, 

(4,  5 ,  7) = B4 

(5, 6, 1) = B, 

16,792) = B, 

(7, 1, 3) = B7 

Now to specify a particular design constructed by Theorem 2, we need only 
indicate which resolution classes get attached to which tripled blocks o f  the 
SBIBD, e.g. 7DO2.514367 is the design produced from the design number 7 where 
RO is left over, R2 is attached to the tripled block 1 of the SBIBD, R.5 is attached 
to tripled block 2, R1 is attached to tripled block 3, etc. (Tuble 1 ) .  

Table 2 lists those designs which are isomorphic to a (16,24,9,6,3)  
BIBD from the Van Rees list and hence these designs are residual and previously 
known. The left-hand side gives the design number as in the previous list and the 
middle gives the design number as in Van Rees’ list and the right-hand side gives 
the order of the automorphism group of the design. 

The first three designs were produced from Morgan’s Design #14, the next 18 
were produced from Design #15 and the last 6 were produced from Design #23.  

Tuble 3 shows how many non-isomorphic (16, 24, 9, 6, 3) designs 
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Table 1 .  Non-isomorphic (16, 24. 9, 6, 3) BIBDs containing threc identical disjoint 
SBIBDs (7, 3 ,  I )  

# Design ICl # Design )GI # Design IGI 

1 
4 
7 
10 
13 
16 
19 
22 
25 
28 
31 
34 
37 
40 
43 
46 
49 
52 
55 
58 
61 
64 
67 
70 
73 
76 
79 
82 
85 
88 
91 
94 
97 
100 
103 
106 
109 
112 
115 
118 
121 
124 
127 
130 
133 
136 
139 
142 
145 
148 
151 
154 
157 
160 
163 
166 
169 

lDO4126357 432 
2D0 1423567 
2D05423617 
21310524367 
2D14203567 
2D15342067 
3D01345267 
3D01452367 
3D03 124567 
3D03514267 
3D04321567 
3D0534 1267 
61301243567 
6D023 14 567 
6D02354167 
6D02453167 
6D02534167 
61303215467 
6D03541267 
6004251367 
6D04532167 
6D05342167 
6D12043567 
6D12534067 
6D14023567 
6D15243067 
6D15430267 
7D01254367 
7D01354267 
7001453267 
7D02315467 
7D03142567 
7D04235167 
7D04521367 
7D05231467 
7D05312467 
7D05413267 
7D21034567 
7D21354067 
7D23401567 
7D24013567 
7D24531067 
7D25431067 
7030412567 
71331052467 
7D31420567 
7032051467 
7D34512067 
7D35021467 
4D03245167 
4D14035267 
5D01523467 
5D02354167 
5D03124567 
5DO3425167 
5D04132567 
5D05234167 

172 15D10352467 
175 15D12034567 
178 15D12305467 
181 15D13402567 
184 15D14203567 
187 15D14503267 
190 15D15240367 . 
193 15D15403267 1 

6 
4 
2 
2 
2 
4 
2 
4 
2 
2 
4 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
3 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
1 
1 
2 
2 
1 
1 
2 
1 
18 
6 
1 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

2 lD04152637 

8 2D05432617 
1 1  2D13024567 
14 2D14250367 
17 2D15420367 
20 3D01352467 
23 3D01534267 
26 3D03145267 
29 3D03524167 
32 3005241367 
35 3D05432167 
38 6D01254367 
41 6D02315467 
44 6D02413567 
47 6D02513467 
50 6D02543167 
53 6D03421567 
56 6D03542167 
59 6D04321567 
62 6D05132467 
65 6D05431267 
68 6D12304567 
71 6D13204567 
74 6D15043267 
77 6D15324067 
80 7D01243567 
83 7D01342567 
06 7D01432567 
89 ?DO1534267 
92 7D02453167 
95 713034 12567 
98 7D04251367 
101 7D04531267 
104 7005241367 
107 7D05321467 
110 7D20143567 
113 7D21043567 
116 7D21403567 
119 7D23415067 
122 7D24103567 
125 7025143067 
128 7D30214567 
131 7D30512467 
134 7D31054267 
137 7D31542067 
140 7032501467 
143 7D35012467 
146 14D01453267 
149 14D12034567 
152 14D15432067 
155 15D02345167 
158 15D02431567 
161 15D03142567 
164 15D03514267 
167 15D04513267 
170 15D05321467 
173 15D10423567 
176 15D12035467 
179 15D12430567 
182 15D13450267 
185 15D14205367 
188 15D15024367 
191 15D15302467 
194 15D15420367 

5 2~02453617 
54 
2 
12 
4 
4 
2 
2 
2 
2 
4 
4 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
3 
1 
3 
3 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
6 
6 
3 
1 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

3 
6 
9 
12 
15 
18 
21 
24 
27 
30 
33 
36 
39 
42 
45 
48 
51 
54 
57 
60 
63 
66 
69 
72 
75 
70 
81 
84 
87 
90 
93 
96 
99 
102 
105 
108 
1 1 1  
114 
117 
120 
123 
126 
129 
132 
135 
138 
141 
144 
147 
150 
153 
156 
159 
162 
165 

1D04652317 
2D03124567 
2D10235467 
2D14023567 
2D14305267 
3D01245367 
3D01423567 
3D02413567 
3D03452167 
3D04135267 
3D05321467 
6D01235467 
6D02154367 
6D02351467 
6D02435167 
6D02514367 
6D03152467 
6D03425167 
6D04235167 
6D04523167 
6D05142367 
6D12035467 
6D12345067 
6D13502467 
6D15240367 
6D15423067 
7D01245367 
7D01345267 
7D01435267 
7D02314567 
7D02514367 
7D03452167 
7D04325167 
7D05143267 
7D05243167 
7D05324167 
7D20314567 
7D21304567 
7D23014567 
7823451067 
7D24310567 
7D25341067 
7D30254167 
7D31024567 
7D31405267 
7D32041567 
7D34210567 
7D35014267 
CD02413567 
4012534061 
5D01235467 
5D02351467 
5D02531467 
5D03412567 
5D04123567 

168 15D04523167 
171 15D10342567 
174 15D10524367 
177 15D12054367 
180 15D13205467 
183 15D14052367 
186 15D14302567 
189 15D15043267 
192 15D15320467 
195 15D20153467 

72 
4 
2 
2 
4 
4 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
3 
3 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

18 
6 
1 
2 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
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# Design # Design ICl # Design ICl 

196 15D20435167 
199 15D25130467 
202 15D30154267 
205 15D30421567 
208 15D32051467 
211 15D34012567 
214 15D34120567 
217 15D35124067 
220 23D03124567 
223 23D04513267 
226 23D10342567 
229 23D12405367 
232 23D14023567 
235 29D01432567 
238 29D03142567 
241 29D03215467 
244 29D03425167 
247 29D04321567 
250 29D10245367 
253 29D10435267 
256 29D12305467 
259 29D12435067 
262 29D13042567 
265 29D13405267 
268 29D13524067 
271 29D14320567 
274 29D15203467 
277 29D15320467 

1 
1 
1 
2 
2 
1 
1 
2 
1 
3 
1 
1 
1 
3 
1 
3 
3 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

197 15D20534167 
200 15D25310467 
203 15D30254167 
206 15D31054267 
209 15D32150467 
212 15D34021567 
215 15D34150267 
218 15D35410267 
221 23D03421567 
224 23D05432167 
227 23D10354267 
230 23D12430567 
233 23D14035267 
236 29D02314567 
239 29D03145267 
242 29D03412567 
245 29D04132567 
248 29D05143267 
251 29D10253467 
254 29D10452367 
257 29D12340567 
260 29D12504367 
263 29D13052467 
266 291313452067 
269 29D14203567 
272 29D14530267 
275 29D15240567 
278 29D15423067 

1 
1 
1 
2 
1 
1 
1 
1 
3 
3 
1 
1 
1 
1 
3 
1 
1 
3 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

198 15D23504167 
201 15D30142567 
204 15D30412567 
207 15D31540267 
210 15D32410567 
213 15D34102567 
216 15D34201567 
219 23D01425367 
222 23D04153267 
225 23D10235467 
228 23D12304567 
231 23D13420567 
234 23D15430267 
237 29D02435167 
240 29D03214567 
243 29D03421567 
246 29D04312567 
249 29D10234567 
252 29D10325467 
255 29D12304567 
258 29D12403567 
261 29D13024567 
264 29D13402567 
267 29D13502467 
270 29D14250367 
273 29015024367 
276 29D15243067 

1 
2 
2 
1 
1 
1 
1 
1 
3 
1 
1 
1 
1 
1 
1 
3 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Table 2. Non-isomorphic, residual (16, 24, 9, 6, 3) BIBDs containing three 
identical, disjoint SBIBDs (7,3, 1) 

Design Isomorphic [GI Design Isomorphic lCl 
number to number to 

146 
147 
148 
20 1 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 

1128 
1246 
1247 
1067 
1064 
1065 
629 
633 

1069 
626 

1068 
1079 
627 
628 

6 
18 
18 
2 
1 
1 
2 
2 
2 
1 
2 
1 
1 
1 

212 
213 
214 
215 
216 
217 
218 
219 
220 
22 1 
222 
223 
224 

632 
934 
630 
63 1 
935 

1073 
1078 
716 
718 
719 
717 

1066 
1074 

1 
1 
1 
1 
1 
2 
1 
1 
1 
3 
3 
3 
3 
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Table 3 

(9 .24 ,s .  3 .2)  # of 
Design Designs 

1 
2 
3 
6 
7 

14 
15 
23 
29 

3 
14 
18 
44 
M, 
7 

66 
I6 
14 

Table 4 

Order of # of 
automorphism group Non-isomorphic 

1 
2 
3 
4 
6 

12 
18 
54 
72 

432 

196 
43 
17 
11 
S 
1 
2 
1 
1 
1 

containing 3 identical disjoint SBIBDs ( 7 , 3 ,  1)  were produced from each RBlBD 
( 9 , 2 4 , 8 , 3 , 2 ) .  

Table 4 shows the number of non-embeddable ( 1 6 , 2 4 , 9 , 6 , 3 )  BIBDs 
containing 3 identical disjoint SBIBDs (7,3, 1 )  produced with each automorphism 
group order. 

Finally, we state the following theorem. 

Theorem 6. The number of pairwise non-isomorphic BlBD (16,24,4,6,3)  is ut 
least 1542. 

Proof. There are 1281 residual ones listed by Van Rees and 261 non-isomorphic, 
non-embeddable ones by Theorem 6. 
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MODIFICATIONS OF THE “CENTRAL-METHOD” TO 
CONSTRUCT STEINER TRIPLE SYSTEMS 

H .  ZEITL€R 
Muihemutischrc Instilut. Univmitut Buyreuth, D-8580 Buyreuih, Postfuch 1012S1, 
I .  K Germnny 

0. Introduction 

0.1. Steiner triple systems 

Let V with IVI = u be a finite set and B a set of 3-subsets of V.  The elements of 
V are called points, those of B lines. If any 2-subset of V is contained in exactly 
one line, then the pair ( V ,  B) is called a Steiner triple system of order v ,  in short 
STS(v). Each point lies on exactly r = $(v - 1) lines and we have IBI = b = 

iv(v - 1). The condition v = 7, 9 + 6n, n E No, is necessary and sufficient for the 
existence of STS(u) (the trivial cases v = 1, v = 3 are excluded). The set of these 
“admissible” numbers, of these “Steiner numbers” is denoted by STS. 

0.2. Ovals in STS(v)  

A non-empty subset 0 c V in a STS(v) is called an oval if each point of 0 lies 
on exactly one tangent and each other line of the STS(v) has at most two points 
in common with 0. A line is called a tangent if it meets 0 in exactly one point. If 
there are exactly two intersection points or  if there is no  intersection point then 
we have a secant o r  a passant respectively. The points of 0 are called on-points, 
the points of the tangents which are not on-points are called ex-points and the 
remaining points in-points. With respect to an oval 0 there are exactly r tangents, 
$r(r  - 1 )  secants, br(r - 1) passants and we have 101 = r .  The number of tangents 
through an ex-point is even iff r is even. 

0.3. Special ovals in STS(v) 

An oval OK is called a knot oval if all tangents have exactly one point Z in 
common. Z is called the knot of the oval. Each ex-point different from Z lies on 
exactly one tangent and there are no in-points. It is known that there exist 
systems STS(U) with a knot oval if and only if u E HSTS:= {7, 15 -?- 12n, n E N,,}. 
121. Sometimes thc set H = 01, U { Z }  is called a hyperoval. The complement of H 
together with the passants of OK forms a subsystem STS(r). I t  is possible to prove 
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the converse of this theorem. If we delete one point from a hyperoval we get an 
oval. 

An oval OR is called regular if any ex-point lies on exactly two tangents. ‘There 
is exactly one in-point. It is known that there exist systems STS(v) with a regular 
oval if and only if u E RSTS:= (9, 13 + 12n, n E N,)} [S]. 

With all these notations we have HSTS n RSTS = B and STS = HSTS U RSTS. 
In this way the sets HSTS and RSTS are characterized geometrically by using 
special ovals. 

Now it is quite natural to ask, whether there exist other types of ovals besides 
knot ovals and regular ovals. This means ovals with other configurations of the  
tangents. 

0.4. The aim 

In this paper systems STS(u) with other kinds o f  ovals - neither OK nor 
OK - are constructed. This is done by modifying the so-called “central-method” 
in different ways. This central-method is due to T. Skolem (1927). Finally we 
obtain a geometrical classification of further subsets of HSTS. 

1. The central-method 121 

Starting with a given system STS(r) a system STS(u = 1 + 2r) with a knot oval 
is constructed recursively. 

Ex-points: 
passants (exterior lines): 
knot: z, 
tangents: 
on- points : 

In order to visualize the procedure, let Z be the top of a pyramid whose base is 
the system STS(r). Then - as Fig. I shows- all ex-points i are pulled up in ;I 

special way to if. I t  is also possible to think of a central projection with center %. 
Additionally any line { u ,  h ,  c )  of STS(r) together with Z determines a projective 
plane PG(2, 2) = STS(7). Then the lines { u ,  h ’ ,  c’}, { a ‘ ,  h ,  c ’ } ,  { u ’ ,  h ‘ ,  c )  are 
secants of the knot oval. 

In  this way a system STS(ZJ) with a knot oval can be developed - as proved in 
[2]. This construction is possible exactly in the case 21 E tlSTS\ ( 7 ) .  

the points of STS(r): 1 ,  2, . . . , r ,  
the lines of STS(r), 

{Z, i, i ’ }  with i E (1,  2, . . . , r } ,  
l ’ ,  2’,  . . . , r’. 

2. The perturbation trick 

In the system STS(u) constructed with the central-method we now consider a 
passant { a , ,  h , ,  c} together with the projective plane belonging to i t  (Fig. I). 
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7 

Fig. I 

The lines { Z ,  a , ,  a ; } ,  { Z ,  h , ,  h i } ,  { c ,  a , ,  b , } ,  { c ,  u i ,  hi}  may be deleted and 
replaced by the lines { c ,  u , ,  a ; } ,  {c ,  h , ,  h ; } ,  { Z ,  a , ,  b , } ,  { Z ,  u l ,  h i } .  We call this 
slight modification the perturbation trick. What has happened by doing so'? The 
point set { 1' ,  2 ' ,  . . . , r ' }  is still an oval. But through the ex-point Z there are 
now only r - 2 tangents (as well as one secant and one passant) and through c 
there are 3 tangents (as well as i ( r  -3) secants and just as many passants). 
Nothing else has changed. Using the perturbation trick we therefore obtain ;I 
STS(V) with an oval of a completely new type. Now we perform the perturbation 
trick several times. Doing so we distinguish different cases. 

3. A first multiple method (with pencils) 

3.1. The procedure, 

We now perform the perturbation trick a second time, using a further passant 
through c,  namely {c,  u 2 ,  h,). The lines { Z ,  u 7 ,  u i } ,  { Z .  b?,  h i } ,  { c ,  u7 .  b 2 } ,  
{c ,  u;,  h i }  are deleted and replaced by {c,  u 2 ,  a ; } ,  {c, b2,  b ; } ,  { Z ,  u l ,  b ? } ,  
{ Z ,  a;, h i } .  Now the point Z still has r - 4 tangents, but the  point c is o n  exactly 
5 tangents. A new type of oval has been found. Continuing in this way with 
further passants through c we always obtain new Steiner triple systems with new 
types of ovals. 

3.2. Result 

The Table in Fig. 2 shows the  result of our procedure. The lctter x, means the 
number of ex-points with exactly j tangents. Any column represents one special 
type of oval. In  total there are z = A(r + 1 )  rows. 
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0 

0 

1' 
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Fig. 2 

3.3. The number of ovul types 

Now we ask for the number of different oval types developed by using our 
procedure. When does the continued execution of the perturbation trick come to 
an end? To answer this question we distinguish two cases. 

3.3.1. z is odd 
Now i t  is possible that in one row the number 1 appears twice. This occurs if 

r - 2p = 1 + 2p, hence for p = i ( r  - 1). I t  follows that 1 + 21, = r - 21, = i ( r  + 1). 
So we have two ex-points with i ( r  + 1 )  tangents each and r - 1 ex-points with 
exactly one tangent each. This oval type is denoted by 0,. Performing the 
perturbation trick once more yields oval types we have already had. Thus- 
besides the knot oval - we obtain p = : ( r  - 1)  further oval types in total. 

3.3.2. z is even 
Now it  is possible that in one column two numbers I are one above the other. 

This occurs for the first time when ( r  - 2p) - 2 = 1 + 2p, hence for p = i ( r  - 3) .  I t  
follows that r - 211 = i ( r  + 3 )  and 1 + 2p = i ( r  - I ) .  So we have one ex-point with 
exactly i ( r  + 3) tangents, one ex-point with exactly i ( r  - 1 )  tangents and r - 1 
ex-points with exactly one tangent each. This oval type is denoted by 02. 
Performing the perturbation trick once more does not yield new oval types. 
Thus - besides the knot oval - we obtain p = i ( r  - 3 )  further oval types in  total. 
Fig. 3 illustrates 3.3.1 and 3.3.2 for the cases r = 13 and r = IS, therefore z = 7 
and z = 8. 

3.3.3. Whut about the corresponding Steirier numbers? 
We now investigate the orders 11 E HSTS (by using the central-method only 

numbers of this kind may occur) where the oval types 0, and O2 respectively are 
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Fig. 3 .  

obtained. This depends on the parity of z ,  and the various cases are tabulated in 
Fig. 4 .  Now we formulate all the results in 3.3 as a theorem. 

3.3.4 Theorem. Exactly for all v E H,STS there exist systems STS(v) with an oval 
0, and exactly for all the remaining Steiner numbers of HSTS, namely for  all 
v E H,STS, there exist systems STS(v) with an oval 0,. 

HISTS: v = 19, 27 + 24n; H,STS: v = 15, 31 + 24n; n E &,. We have HSTS = 

HISTS U H,STSU (7). Now the disjoint sets H,STS and H2STS are also 
geometrically characterized when special ovals are used. 

3.3.5.  Visualization 
In Fig. 5 the configurations of the tangents belonging to the ovals 0, and 0, are 

visualized. Doing so we choose v = 19 ( r  = 9, z = 5) and v = 15 ( r  = 7 ,  z = 4). All 
the ex-points with more than one tangent are represented as quadrangles, all the 
ex-points with exactly one tangent as “empty” circles and all the on-points as 
“full” circles. Corresponding pictures may also be drawn in all the other cases 
u E H,STS and v E H2STS respectively. 

u = 19 + 12n 
r =  9 + 6 n  
z .= 5 + 3n 

u = 15 + 12n 
r =  7 + 6 n  
z =  4 + 3 n  

n =  2m 

u = 15 + 24m v = 19 + 24m 

n = 2 m + 1  

u = 27 + 24m 

n z 2 m + 1  

v = 31 + 24m 

Fig. 4. 
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Fig. 5. 

Remarks. 

in [6] (by using the polygon-method). It may be shown that 
(1) Systems STS(u) with the oval types constructed here have been constructed 

(a) all systems given in [6], 
(b) all systems constructed in Section 3. I ,  
(c) but also all systems of the same order - corresponding to each other - in 161 

and Section 3.1 are pairwise non-isomorphic. 
(2) The set H,STS may also be found in [l] .  It is proved there, that u E H2STS 

is a necessary condition for the existence of STS(u) with two hyperovals (and 
therefore also two subsystems of order :(v - 1)). 

4. An intermediate chapter: r-chain in STS(u) 

4.1. r-chains - what are they? 

In Steiner triple systems STS(u) we are looking for r = i (v  - I )  lines, which are 
connected in the form of an r-polygon without any overlapping. A polygon o f  this 
kind - also representable as a regular polygon - is called an r-chain. More 
formally an r-chain in an STS(2r + 1)  is a set of r lines bo, b , ,  . . . , h r P l ,  such that 

for all i = 0, 1, . . . , r - 1 (subscripts reduced modulo r). If the third point of 
every polygon edge is put on the circumcircle of this polygon, then we obtain a 
regular 2r-gon. The lines may be interpreted as areas (“curved” triangles) and so 
they form a “garland”. In the Figs. 6 and 7r-chains of this kind are drawn in thc 
cases u = 7 and u = 9. 

By using trial and error it is possible to discover 6-chains in both Steiner triple 
systems of order 13 as well. With the notations of [7] we obtain Fig. X. Now we 
are confronted with the following question: Do there exist systems STS(z1) with 
r-chains for all u E STS. 
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L 

Fig. 6. 3-chains in STS(7). 

7 Q3 4 7Q3 

4 
1 1 

Fig. 7. 4-chains in STS(0). 

4.2 Theorem. For all v E STS there exist STS(v) with an r-chain. 

The proof of this theorem is in  two cases. 

E HSTS 

Starting with a system STS(r) systems STS(v = 1 + 2r) with v E HSTS and v # 7 
(this case has already been done by means of Fig. 6) may be constructed not only 

4 

Fig. 8. 6-chainx in STS,(13) (left) and STS,(13) (right). 
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by the centra 
used. 

3‘ 

6 

Fig. 9. 7-chains in an STS( 15) 

but also by the polygon-method [2]. In any case a knot oval is 

Ex-points: 
passants: the lines of STS(r), 
knot: z, 
tangents: 
on-points: 

(up to now all elements are the same as when using the central-method). 
The on-points now are put on a circle one after the other such that they form a 

regular r-gon. Then the oval secant determined by two neighbouring on-points i’, 
(i + 1)‘ is { i f ,  (i + 1)’, i(2i + 1)). We have always to calculate modulo r. If i runs 
from 1 to r then the desired r-chain is already found. Putting all the 
corresponding ex-points on the circle as well, we obtain a 2r-gon, a “garland”. 
Fig. 9 shows such a “garland” in the case IJ = 15, hence r = 7. 

the points of STS(r): 1 ,  2, . . . , r, 

{Z, i, i’} with i E (1, 2, . . . , r},  
l ’ ,  2’, . . . , r’  

v E RSTS 

Systems STS(v) with u E RSTS and v # 9, 13 (these two cases have already 
been done with the Figs 7and 8 )  may be constructed with a direct method using 
regular ovals IS]. Again the ex-points are denoted by 1, 2, . . . , r, the on-points 
by 1’,2’,  . . . , r ‘  and the only in-point by the letter M. The ex-points as well as 

the on-points are put on two circles one after the other with the same center M 
but different radius. They build two regular r-gons turned around about n/r .  
Then the oval secant determined by two neighbouring on-points i ‘ ,  (i + r - I ) ‘  IS 
{ i ‘ ,  (i + r - 1)’, i). If i runs from 1 to r then we have already an r-chain (again we 
calculate modulo r). Putting all the corresponding ex-points on the circle 
containing the on-points, we have a 2r-gon with “garland”. In Fig. 10 we see such 
a “garland” for the case v = 33, hence r = 16. 
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Fig. 10. 16-chain in STS(33) 

5. A second multiple method (with chains) 

5.1. The procedure 

Using our central-method we now start with a system STS(r) in which a 
i ( r  - 1)-chain is marked. Fig. I 1  shows some lines of this chain. Now we perform 
the perturbation trick for the first time and start with the passant { a , ,  b , ,  a 2 }  in 
Fig. 11. The lines { K ,  a , ,  a ; } ,  { K ,  h , ,  b i } ,  { a 2 ,  a , ,  b , } ,  {a2 ,  a ; ,  h i }  are deleted 
and replaced in the usual way by the lines {a,, a , ,  a ; } ,  { a 2 ,  b , ,  b ; } ,  { K ,  a , ,  b , } ,  
{ K ,  a ; ,  b ; } .  In this procedure the points a , ,  b ,  are called border points and a, 

central point. 
Now we perform the perturbation trick a second time - but not in the way we 

did in 3.1. Choosing a suitable new passant we have to ensure that with our 

Fig. I 1  



X 

' r - 2  

Xr-4 

Xr-2p 

x 3  

X .  

- 
0 

0 

0 

0 

r - 

0 

'1 

0 

0 

1 

r-1 - 

- 
0 

0 

A 1  

0 

2 

r - 2  - 

... 

9 

Fig. 12. 

construction every ex-point can be at most once a border point, but several times 
(at most i ( r  - 1) times) a central point. I t  is quite possible that an ex-point is both 
a border and a central point. Especially favourable for using our trick are the 
lines of the $ ( r  - ])-chain. 

So we now choose the passant { a 2 ,  b2, a,} in Fig. 11, delete the lines 
{ K ,  u 2 ,  ui}, { K ,  h,, h i } ,  { u ? ,  u,, h,}, { u 7 ,  a;, h i }  and replace these lines by 
{ u ? ,  u2 ,  u ; } ,  { a 3 ,  b2,  b ; } ,  { K ,  u2 ,  b 2 } ,  { K ,  u;, h i } .  The point set { l ' ,  2', . . . , r ' }  
remains an oval. The point Z is still on r - 4 tangents, the points u2 and a, are on 
three tangents each. The point u2 is both a border and a central point. A new 
type of ovals is found. One of the new tangents contains u2 and also ul. 
Continuing in this way with the connected passants { u 3 ,  b 3 ,  u 4 } ,  { u 4 ,  h 4 ,  u i } .  . . . 
in Fig. I 1  we always obtain new Steiner triple systems with new types of ovals. 

5.2. Result 

The table in Fig. 12 shows the result of our procedure. The notations are the 
same as in Fig. 2. 

5.3. Number of ovals types 

When does the continued execution of the perturbation trick come to an end? 
If the number 1 appears o n  the last but one line, we have r - 21, = 3, therefore 

p = $ ( r  - 3). Now we obtain p + 1 = i ( r  - 1) ex-points with exactly 3 tangents and 
r - p = i ( r  + 3) ex-points with exactly one tangent respectively (Fig. I3 f o r  u = 19 
( r  = 9)). 

Our trick may be performed one more time. That is using the last edge of the 
z(r  - 1)-chain. Doing so the number of ex-points with exactly 3 tangents and  with 
exactly one tangent respectively is not changed. But we obtain quite another 
configuration of the tangents. The tangent in K seems to be in a certain sense 
isolated. Our system is produced with a $ ( r  - 1)-chain. Therefore in this case a 
particularly symmetrical representation is possible (Fig. 14 for u = 19 ( r  = 9)). 

I 
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Fig. 13 

Fig. 14. 

Besides the knot oval we obtain p + 1 = ; ( r  - 1) further types of ovals. The 
considerations of this chapter hold for all ‘u E HSTS. Therefore a partitioning of 
HSTS as in Section 3 does not result. 

6. A further intermediate chapter: parallel classes in STS(V) 

6. I .  Parullel clu.s.~c~s - whut are they? 

Here two lines are called p(ira1lef i f  they have n o  point in common. A set of 
lines forms a parallel class if  these lines are pairwise parallel. 

6.2 Theorem (Ray-Chauduri, Wilson [ 3 ] ) .  For all ti = 9 + 6n, n E N,,, there exist 
STS(u) with u parmllelism. 

Sy\tems of this kind are called resoltiable. In  a resolvable S T S ( t i )  thcre are 
exactly :(u - I )  p‘irallel classes each containing exactly { u  parallel lines. 



6.3 Theorem. For the remuining Steiner number different f rom 7 - this meuns for  
u11 v = 13 + 6n, n E N(, - there exist STS(v) with u purullel class containing exuclly 
f ( v  - 1) purullel lines. 

The projective plane STS(7) must be excepted, because in this system there are 
no two parallel lines. Using the notation of 171 there exists the parallel class 
{ 1 , 3 , 5 ) ,  {4,7, 12}, { 2 , 9 ,  I l ) ,  {0 ,8 ,  10) in STS,(l3) and the parallel class 
{ I ,  2 , 5 } ,  {6,7,  lo}, {4,9,  ] I} ,  {0,3, 12) in STS2(13). The theorem has been 
known for a long time [4]. We give here a new proof. In order to do so,  write 
v = 13 + 12n E RSTS and u = 19 + 12n E HSTS with n E N,, respectively instead of 
I J  = 13 + 6n. We  have to distinguish two cases. 

IJ = 19 + 12n 

As pointed out in Section 4.2 all these systems may be constructed recursively 
with the polygon-method using STS(r). By 6.2, for r = 9 + 6n, n E N,, we can start 
with a resolvable system STS(r). Once more we have to distinguish two cases. 

r = 9 +  12n 

Secants 
The secants { i ’ ,  ( i  + l)’ ,  (2i + 1)/2} with i E { I ,  3, . . . , r - 2) have neither 

on-points nor ex-points in common. Since (2i + 1)/2 = (2j  + 1 ) / 2  we immediately 
have a contradiction to i Zj. Therefore there are j ( r  - 1) secants of this kind. 

Tangents 
Up to now the on-point O ’ ( = r ’ )  and the ex-point O ( = r )  have not been 

needed. This fact yields immediately a further line, parallel to the lines already 
mentioned, namely the tangent {Z, 0, 0’) .  

Pussunts 
If there exist further parallels then these parallels can be neither secants nor 

tangents, because all on-points and the point Z are already used. There still 
remain exactly r - i ( r  + 1) = : ( r  - 1) ex-points available. We can write i ( r  - 1) = 
1 + 3(1 + 2n) .  So i ( r  - I )  - 1 is divisible by 3. Now the enumeration of the 
ex-points is to be done such that all these remaining ex-points form i ( i ( r  - 1 )  - 
1 )  = i ( r  - 3) passants. 

Summary 
We have found 

mutually parallel lines in total. 
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Fig. 15. 

Example 

way. 
In the case u = 19 (r = 9) we take from Fig. 15 the parallel class found in this 

Secants: 
Tangent: (2, 0, O'}; Passant: {4,5,7}. 

{ l r ,  2', 6}, {3', 4', S}, { 5 ' ,  6', l}, {7', 8', 3); 

r = 15 + 12n 
The construction of parallel secants we used in the last case does not work 

here. The reason is that $ ( r  -. 1) = 7 + 6n now is odd. Therefore we modify the 
construction a little bit. 

Secants 
The secants {i', (i + 1)', (2i + 1)/2} with i E (2, 4, . . . , r - 5 } ,  { l ' ,  (r - 2)', 

(r - 1)/2}, {(r - l) ' ,  (r - 3)', r - 2) have no on-points in common. The on-point 
0' does not occur. It has to be shown that all the ex-points we used are different 
to one another and to 0. This can be shown by contradiction. So for instance 
with (2i + 1)/2 = (r - 1)/2 we immediately obtain i = $(r  - 2) = i(13 + 12n) = 
i(28 + 24n) = 14 + 12n. This is already a contradiction because 14 + 12n > r - 5, 
therefore there are $(r - 1) secants of this kind. 

Now all the missing parallel lines may be found as in the last case. 

Example 

way. 
In the case u = 31 (r = 15) we take from Fig. 16 the parallel class found in this 

Secants: {2',3',  lo}, {4', 5 ' ,  12}, {6',7',  14}, {Sr ,9 ' ,  l}, {lo', 11',3}, 
{12', 14', 13}, { l r ,  13',7}; Tangent: (2, 0, O r } ;  Passants: {2,4,5},  {6,8,9}. 

u = 13 + 12n 

useful to write r = 12 + 12n and r = 6 + 12n with n E No, instead of r = 6 + 6n. 
Now we work again with the construction given in [ S ]  using a regular oval. It is 
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6‘ 

7‘ 13’ 

8’ 12’ 

0 
Z 

2 4 5  

8 9  
- 
6- : 0 9 1 1  
1 3 13 - 
10 12 14 - 

Fig. 16. 

r = 12 + 12n 

Secants 
The secants { i f ,  (i + l)’, i - 1) with i E { 1, 3, . . . , r - 1 )  are mutually parallel. 

Now already i r  ex-points are used, namely 2, 4, . . . , 0. The ex-points 
1,3,  . . . , r - 1 as well as the in-point M still remain available. If  there exist 
further parallels then these parallels can be neither secants nor tangents. Because 
all on-points have already been used. 

Pussants 
Following [5]  there exist { r  passants of the form {x, x + f r ,  x + f r ) .  These three 

numbers are either even or they are all odd. We take off all the passants with odd 
numbers: 

{I, I + f r ,  1 + { r ) ,  (3, 3 + j r ,  3 + t r } ,  . . . 

So we obtain i r  lines parallel to one another and to the lines already chosen. The 
point M is left over. 

Summary 
We have found 

t r  + = 2  - 1  v - .4u - 1) 
5ecants pasasnt5 

mutually parallel lines in total. 

Example 
In  the case u = 25 ( r  = 12) we take from Fig. 17 the parallel class found in this 

way. 

Secants: {1’,2’,2), {3‘ ,4‘ ,  41, { 5 ’ , 6 ’ , 6 ) ,  {7’,8’, 8}, {9’, lo’, lo) ,  { l l ‘ , O ’ , o } ;  
Passants: {1,5,9}, {3,7, ll}. 

r = 6 +  12n 
Following [5]  the proof in this case works completely analogously to the last 
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3 

2 
8 

11’  
Fig. 17. 

one. Here once more a survey of all the cases dealt with in the  Theorem 6.2 
and 6.3. 

v =  9 + 6 n  v = 13 + 6n 
/ \ 

v = 13 + 12n v = 19 + 12n 
r =  6 +  6rt r =. 9 +  6n 

Y / \ J \ 
r = 6 + 1 2 n  r = 12 + 12n r = 9 +12n r = 15 + 12n 

7. A third multiple method (with parallels) 

7.1. The procedure 

In the central construction we now choose a starting system STS(r) with a 
parallel class { a , ,  h , ,  c , } ,  {u2 ,  b 2 ,  cz},  . . . , {u, ,  h,, c , }  as in 6.2 and in 6.3. Then 
we perform the perturbation to these lines one after the other so that the points 
c , ,  c 2 ,  . . . , c, lie on exactly 3 tangents and Z lies on exactly r - 2i tangents. 
Continuing w e  always obtain new systems and new ovals. 

7.2. Result 

The table in Fig. 12 shows the result of our construction not only using chains 
but also using parallel lines. I t  is possible to suppose that nothing has changed. 
Indeed the number of points with a certain number of tangents is the same. But 
the configurations of tangents are totally different. 

7.3. Number of ovuls types 

When does the continued performing of the perturbation trick come to an end? 

v = 19 + 12n, therefore r = 9 + 6n (v # 7). 
The parallel class we use contains exactly { r  lines, therefore after p = 4r steps 

the procedure comes to an end. Now we have p = f r  ex-points with exactly 3 
tangents, r - p  = f r  ex-points with exactly one tangent and one ex-point with 
exactly r - 2p = +r tangents (Fig. 18 for v = 19 ( r  = 9)). This type of oval is 
denoted by 03. Besides the knot oval we obtain p = { r  further types of ovals. 
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Fig. 18 

v = 27 + 12n, therefore r = 13 + 16n (v # 15). 
The parallel class we use contains exactly t ( r  - 1 )  lines, therefore after 

p = f(r  - 1) steps the procedure comes to an end. Now we have p = f ( r  - 1) 
ex-points with exactly 3 tangents, r - p = f(2r + 1) ex-points with exactly one 
tangent and one ex-point with exactly t ( r  + 2) tangents (Fig. 19 for v = 27 
( r  = 13)). This type of oval is denoted by 0,. Besides the knot oval we obtain 
p = f ( r  - 1) further types of ovals. 

7.4 Theorem. 
Exactly as in 3.3.4 we summarize the results of this section in a theorem. 
Exactly for all v E H3STS there exist systems STS(v) with an oval 03. Exactly 

for  all the remaining Steiner number of HSTS different f rom 7 and 15, namely for 
all v E H4STS there exist systems STS(v) with an oval 0,. 

We have 

H3STS: v = 19 + 12n or 'u = 19, 31 + 24n 
H,STS: v = 27 + 12n or v = 27, 39 + 24n 
n E N(,; HSTS = H3STS U H4STS U (7, 15 

Fig. 19. 
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So the disjoint sets H3STS and H4STS are also characterized in a geometrical way 
when ovals are used. 

8. Theorem. 
The Theorems 3.3.4 and 7.4 now are combined in one theorem. 
Exactly for  all Steiner numbers v E H, ,  there exist a system STS(v) with an oval 

0, as well as a system STS(v) with an oval 0,. 

We have 

H,3: 
H23: v = 31 + 24n; n E No; HSTS = H t 3  U Hi4 U HZ3 U H24 U (7, 15). 

Now even the four sets H,, are characterized in a geometrical way when ovals are 
used. 

= 19 + 24n; Hi4: v = 27 + 24n; H24: v = 39 + 24n; 

Remarks. ( 1 )  Isomorphism 
It remains to be shown that the systems of the same order v constructed in the 
Section 3, 5 and 7 are mutually non-isomorphic (except the systems with knot 
ovals). 

Using the polygon-construction - instead of the central-construction - in [6] the 
perturbation trick with pencils was already performed. In an analogous way this 
may also be done with chains and parallels. All the systems of the same order 
then obtained have to be compared with one another as well as with the systems 
produced by the central-method and then investigated with respect to 
isomorphism. 

The three treated multiplying methods may be combined in various ways. Thus 
we obtain an immense number of further Steiner triple systems with new oval 
types. 

With our constructions we obtain solutions of the system of two linear 
diophantine equations given in [ S ] .  I t  should be noticed that one solution may 
yield quite different kinds of ovals. 

(2) Polygon -construction 

(3) Combinatiorr 

(4) Diophantine equations 
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