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Preface

Difference equations are now used in modeling motion and change in all areas
of science. In particular, applications of difference equations in economics have
recently been accelerating mainly because of rapid development of nonlinear
theory and computer.

Application of difference equations to economics is a vast and vibrant area.
Concepts and theorems related to difference equations appear everywhere in
academic journals and textbooks in economics. One can hardly approach, not to
mention digest, the literature of economic analysis without "sufficient"
knowledge of difference equations. Nevertheless, the subject of applications of
difference equations to economics is not systematically studied. The subject is
often treated as a subsidiary part of (textbooks of) mathematical economics. Due
to the rapid development of difference equations and wide applications of the
theory to economics, there is a need for a systematic treatment of the subject.
This book provides a comprehensive study of applications of difference
equations to economics.

This book is a unique blend of the theory of difference equations and its
exciting applications to economics. The book provides not only a
comprehensive introduction to applications of theory of linear (and linearized)
difference equations to economic analysis, but also studies nonlinear dynamical
systems which have been widely applied to economic analysis in recent years. It
provides a comprehensive introduction to most important concepts and theorems
in difference equations theory in a way that can be understood by anyone who
has basic knowledge of calculus and linear algebra. In addition to traditional
applications of the theory to economic dynamics, it also contains many recent
developments in different fields of economics. We emphasize "skills" for
application. Except conducting mathematical analysis of the economic models
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like most standard textbooks on mathematical economics, we use computer
simulation to demonstrate motion of economic systems. A large fraction of
examples in this book are simulated with Mathematica. Today, more and more
researchers and educators are using computer tools to solve — once seemingly
impossible to calculate even three decades ago - complicated and tedious
problems.

I would like to thank Editor Andy Deelen at Elsevier for effective co-
operation. I completed this book at the Ritsumeikan Asia Pacific University,
Japan. I am grateful to the university's free academic environment. I take great
pleasure in expressing my gratitude to my wife, Gao Xiao, who has been
supportive of my efforts in writing this book in Beppu City, Japan. She also
helped me to draw some of the figures in the book.

Wei-Bin Zhang
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Chapter  1

Difference equations in economics

The necessity of knowledge about theory of difference equations is evident if one
opens almost any current journal in any subfield of theoretical as well as applied
economics. Nevertheless, there is no book which is concentrated on applications of
contemporary theory of difference equations to economics. The purpose of this
book is to introduce the theory of difference equations and its applications to
economics.

A difference equation expresses the rate of change of the current state as a
function of the current state. A simple illustration of this type of dependence is
changes of the GDP (Gross Domestic Product) over years. Consider the GDP of the
economy in year t as the state variable in period t, which is denoted by x(t). Let

us consider a case that the rate of change of the GDP is constant. Then, the motion
of the GDP is described mathematically as

x(t) ~S-

As the growth rate g is given for each year, the GDP in period t is given by

solving the difference equation

If we know a special year's GDP, x(0), then the GDP in year t is given by
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In fact, if we know any special year's GDP, then the equation predicts the
GDP in any time. We can explicitly solve the above difference function because g

is a constant. It is reasonable to consider that the growth rate is affected by many
factors, such as the current state of the economic system, the knowledge of the
economy, international environment. When the growth rate is not constant and is
considered to be affected by the current state and other exogenous factors like
global economic conditions (which are measured through the variable, t), then
economic growth is described by

In general, it is not easy to explicitly solve the above function. There are
different established methods of solving different types of difference equations.
This book introduces concepts, theorems, and methods in difference equations
theory which are widely used in contemporary economic analysis and provides
many traditional as well as contemporary applications of the theory to different
fields in economics.

1.1 Difference equations and economic analysis

This book is a unique blend of the theory of difference equations and their exciting
applications to economics. First, it provides a comprehensive introduction to most
important concepts and theorems in difference equations theory in a way that can
be understood by anyone who has basic knowledge of calculus and linear algebra.
In addition to traditional applications of the theory to economic dynamics, it also
contains many recent developments in different fields of economics. It is mainly
concerned with how difference equations can be applied to solve and provide
insights into economic dynamics. We emphasize "skills" for application. When
applying the theory to economics, we outline the economic problem to be solved
and then derive difference equation(s) for this problem. These equations are then
analyzed and/or simulated. We use computer simulation to demonstrate motion of
economic systems. A large fraction of examples in this book are simulated with
Mathematica.' Today, more and more researchers and educators are using
computer tools such as Mathematica to solve - once seemingly impossible to
calculate even three decades ago - complicated and tedious problems.

This book provides not only a comprehensive introduction to applications of
linear and linearized difference equations theory to economic analysis, but also
studies nonlinear dynamical systems which have been widely applied to economic

1 Enns and McGuire (2001), Shone (2002), and Abell and Braselton (2004).
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analysis only in recent years. Linearity means that the rule that determines what a
piece of a system is going to do next is not influenced by what it is doing now. The
mathematics of linear systems exhibits a simple geometry. The simplicity allows us
to capture the essence of the problem. Nonlinear dynamics is concerned with the
study of systems whose time evolution equations are nonlinear. If a parameter that
describes a linear system is changed, the qualitative nature of the behavior remains
the same. But for nonlinear systems, a small change in a parameter can lead to
sudden and dramatic changes in both the quantitative and qualitative behavior of
the system.

Nonlinear dynamical theory reveals how nonlinear interactions can bring about
qualitatively new structures and how the whole is related to and different from its
individual components. The study of nonlinear dynamical theory has been
enhanced with developments in computer technology. A modern computer can
explore a far wider class of phenomena than it could have been imagined even a
few decades ago. The essential ideas about complexity have found wide
applications among a wide range of scientific disciplines, including physics,
biology, ecology, psychology, cognitive science, economics and sociology. Many
complex systems constructed in those scientific areas have been found to share
many common properties. The great variety of applied fields manifests a possibly
unifying methodological factor in the sciences. Nonlinear theory is bringing
scientists closer as they explore common structures of different systems. It offers
scientists a new tool for exploring and modeling the complexity of nature and
society. The new techniques and concepts provide powerful methods for modeling
and simulating trajectories of sudden and irreversible change in social and natural
systems.

Modern nonlinear theory begins with Poincare who revolutionized the study of
nonlinear differential equations by introducing the qualitative techniques of
geometry and topology rather than strict analytic methods to discuss the global
properties of solutions of these systems. He considered it more important to have a
global understanding of the gross behavior of all solutions of the system than the
local behavior of particular, analytically precise solutions. The study of the
dynamic systems was furthered in the Soviet Union, by mathematicians such as
Liapunov, Pontryagin, Andronov, and others. Around 1960, the study by Smale in
the United States, Peixoto in Brazil and Kolmogorov, Arnold and Sinai in the
Soviet gave a significant influence on the development of nonlinear theory. Around
1975, many scientists around the world were suddenly aware that there is a new
kind of motion - now called chaos - in dynamic systems. The new motion is erratic,
but not simply "quasiperiodic" with a large number of periods.2 What is surprising
is that chaos can occur even in a very simple system. Scientists were interested in
complicated motion of dynamic systems. But only with the advent of computers,

2 In the solar system, the motion traveled around the earth in month, the earth around the
sun in about a year, and Jupiter around the sun in about 11.867 years. Such systems with
multiple incommensurable periods are known as quasiperiodic.
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with screens capable of displaying graphics, have scientists been able to see that
many nonlinear dynamic systems have chaotic solutions. As demonstrated in this
book, nonlinear dynamical theory has found wide applications in different fields of
economics.3 The range of applications includes many topics, such as catastrophes,
bifurcations, trade cycles, economic chaos, urban pattern formation, sexual division
of labor and economic development, economic growth, values and family structure,
the role of stochastic noise upon socio-economic structures, fast and slow socio-
economic processes, and relationship between microscopic and macroscopic
structures. All these topics cannot be effectively examined by traditional analytical
methods which are concerned with linearity, stability and static equilibrium points.
Nonlinear dynamical theory has changed economists' views about evolution. For
instance, the traditional view of the relations between laws and consequences -
between cause and effect - holds that simple rules imply simple behavior, therefore
complicated behavior must arise from complicated rules. This vision had been held
by professional economists for a long time. But it has been recently challenged due
to the development of nonlinear theory. Nonlinear theory shows how complicated
behavior may arise from simple rules. To illustrate this idea, we consider the
following model

x(t + l) - x(t) . i x
-^ fr—y-L=a-\-ax{t), a>0.

x{t)

The growth rate is a linear function of the state variable x{t). We may rewrite the

above equation as follows

x(t + l) = ca(t\l - x{t)), a>0.

This is the well-studied logistical map. This seemingly simple map exhibits very
complicated behavior as we will analyze later on. For instance, figure 1.1.1 depicts
chaotic behavior of the difference equation with a given parameter value and initial
condition.

The existence of chaos implies that no one can precisely know what wil l
happen in society in the future, except that it wil l be changing in some bounded
area. To illustrate why no one can precisely foresee the consequences of the
intervention policy, let us try to find out what happen to the chaotic system
when it starts from two different but very near states. In figure 1.1.2, we
simulate the case of a = 5.75. Let us consider two cases of x0 = 0.400 and

3 For applications of nonlinear theory to economics, see Dendrinos and Sonis (1990),
Rosser (1991), Zhang (1991, 2005a), Lorenz (1993), Azariadis (1993), Puu (1989),
Ferguson and Lim (1998), Flaschel et al (1997), Chiarella and Flaschel (2000), and
Shone (2002).
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x0 = 0.405 over 100 years. It can be seen that the two behaviors are varied over

time.
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20 40 60 80 100 120 140

Figure 1.1.1: Chaos when a = 5.75 and x0 = 0.4

20 40 60 80 100 t 20 40 60 80 100t

(a) x0 = 0.400 (b) x0 = 0.405

Figure 1.1.2: The dynamics with different initial conditions, a = 5.75

We calculate the difference x[t, 0.400] - x[t, 0.405] between the path

started at x0 = 0.400 and the one at x0 = 0.405 over 100 years as in figure 1.1.3.
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Figure 1.1.3: Small differences at the beginning signify much

It can be shown when the parameter a is small, the difference equation has a
unique equilibrium point. As the parameter a exceeds a certain value, the steady
state ceases being approached monotonically, and an oscillatory approach occurs. If
a is increased further, the steady state becomes unstable and repels nearby points.
As a increases, one can find a value of a where the system possesses a cycle of
period k for arbitrary k (see figure 1.1.4). Also, there exists an uncountable
number of initial conditions from which emanate trajectories that fluctuate in a
bounded and aperiodic fashion and are indistinguishable from a realization of some
stochastic (chaotic) process.

Nonlinear dynamical systems are sufficient to determine the behavior in the
sense that solutions of the equations do exist, it is frequently difficult to figure out
what behavior would be. It is often impossible to explicitly write down solutions in
algebraic expressions. Nonlinear economics based on nonlinear dynamical theory
attempts to provide a new vision of economic dynamics: a vision toward the
multiple, the temporal, the unpredictable, and the complex. There is a tendency to
replace simplicity with complexity and specialism with generality in economic
research. The concepts such as totality, nonlinearity, self-organization, structural
changes, order and chaos have found broad and new meanings by the development
of this new science. According to this new science, economic dynamics are
considered to resemble a turbulent movement of liquid in which varied and
relatively stable forms of current and whirlpools constantly change one another.
These changes consist of dynamic processes of self-organization along with the
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spontaneous formation of increasingly subtle and complicated structures. The
accidental nature and the presence of structural changes like catastrophes and
bifurcations, which are characteristic of nonlinear systems and whose further
trajectory is determined by chance, make dynamics irreversible.

0.4

0.2

2 2.5 3 3.5 4 4.5 5 5.5

Figure 1.1.4: The map of bifurcations for a e [2,5.75]

1.2 Overview

This book presents the mathematical theory in linear and nonlinear difference
equations and its applications to many fields of economics. The book is for
economists and scientists of other disciplines who are concerned to model and
understand the time evolution of economic systems. It is of potential interest to
advanced undergraduates and graduate students in economics, economic
professionals, applied mathematicians who are interested in social sciences, as
well as researchers in social sciences. The book is organized as follows.

Chapter 2 is organized as follows. Section 2.1 deals with linear first-order
difference equations. We also examine dynamics of two economic models, a price
dynamic model with adaptation and a model of amortization. In section 2.2, we
introduce some basic concepts which will be used not only for one dimensional
problems but also for higher dimensional ones. Section 2.3 introduces concepts of
stability and some basic theorems about stabilities of one-dimensional difference
equations. We apply these results to the cobweb model and a dynamic model with
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inventory. Section 2.4 is concerned with conditions for stabilities of nonhyperbolic
equilibrium points. Section 2.5 deals with dissipative maps. Section 2.6 introduces
difference equations of higher order and provides general solutions to the system.
Section 2.7 examines difference equations of higher orders with constant
coefficients. In section 2.8, we are concerned with limiting behavior of linear
difference equations. We examine limiting behavior of the Samuelson multiplier-
accelerator interaction model.

Chapter 3 applies the concepts and theorems of the previous chapters to
analyze different models in economics. Although the economic relations in these
models are complicated, we show that the dynamics of all these models are
determined by one-dimensional difference equations. Section 3.1 examines a
traditional model of interactions between inflation and unemployment. The model
is built on the expectations-augmented version of the Phillips relation and the
adaptive expectations hypothesis. We solve the model and show that the
characteristic equation may have either: (1) distinct real roots; or (2) repeated
real roots; or (3) complex roots. Section 3.2 introduces the one-sector growth
model. The model is different from most of the growth models in the literature
in that it treats saving as an endogenous variable through introducing wealth into
utility function. We demonstrate that the OSG model has a unique stable
equilibrium. Section 3.3 generalizes the OSG model proposed in section 3.2.
Section 3.4 deals with the overlapping-generation (OLG) model - one of the
most popular models among economists. The model is essential for the reader to
approach some of the models in this book as well. Different from the OSG
models in the previous two sections, in the OLG analytical framework, each
person lives for only two periods. This is the main shortcoming of the model;
nevertheless, its popularity is sustained partly because this framework often
simplifies complicated analytical issues. Section 3.5 introduces a growth model to
demonstrate persistence of inequality. In this model, the evolution of income
within each dynasty in society is governed by a dynamical system that generates
a poverty trap equilibrium point along with a high-income equilibrium. Poor
dynasties, those with the income at the threshold level, converge to a low
income steady state, whereas dynasties with income above the threshold
converge to a high income steady. Section 3.6 studies a model to provide
insights into evolutionary processes of Schumpeterian creative destruction.
Section 3.7 is concerned with interactions among human capital accumulation,
economic growth, and inequality. The model exhibits three possible equilibrium
points: a low-growth trap, a pair of equilibrium points in the intermediate and
advanced development phase. If these equilibrium points exist, it can be shown that
the poverty trap is stable, while in development phase, the first equilibrium point
wil l be unstable and the second one stable. Section 3.8 studies an urban dynamic
model to highlight how the trade-off between optimal and equilibrium city sizes
behaves when human capital externalities are introduced into urban dynamics.
Section 3.9 introduces a growth model of monetary economy. The model
addresses the Tobin effect and the existence of monetary economy. Section 3.10
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introduces endogenous time distribution between leisure and work into the OSG
model.

Chapter 4 examines periodic, aperiodic, chaotic solutions of scalar systems.
Section 4.1 defines concepts such as periodic or aperiodic solutions (orbits). This
section also introduces some techniques to find periodic solutions and provides
conditions for judging stability of periodic solutions. Section 4.2 is concerned with
period-doubling bifurcations. This section introduces concepts such as branch,
bifurcation values, period-doubling bifurcation route to chaos, Myrberg's number
and Fiegenbaum's number. Section 4.3 deals with aperiodic orbits. This section
introduces the Li-Yorke theorem and the Sharkovsky theorem, which are
important for proving existence of chaos in scalar systems. Section 4.4 studies
some typical types of bifurcations. They include supercritical fold, subcritical fold,
supercritical pitchfork, subcritical pitchfork, transcritical bifurcations. Section 4.5
introduces theory of Liapunov numbers. In this section, we also examine behavior
of a model of labor market. In section 4.6, we study chaos. We simulate a demand
and supply model to demonstrate chaotic behavior.

Chapter 5 applies concepts and theorems of the previous chapters to analyze
different models in economics. The models in this chapter exhibits periodic,
aperiodic, or chaotic behavior. Section 5.1 studies a model of endogenous business
cycles in the presence of knowledge spillovers. Many economic indicators, such as
GDP, exhibit asymmetry as if they repeatedly switch between different regimes.
For instance, it has been found that (i) positive shocks are more persistent than
negative shocks in the United States and France; (ii) negative shocks are more
persistent than negative shocks in the United Kingdom and Canada; and (iii ) there
is almost no asymmetry in persistence in Italy, Japan, and (former) Germany. The
model in this section provides some insights into well-observed asymmetric nature
of business cycles. Section 5.2 studies a nonlinear cobweb model with normal
demand and supply, naive expectations and adaptive production adjustment. The
model exhibits a horseshoe. Section 5.3 examines an inventory model with
rational expectations. In section 5.4, we discuss an economic growth model with
pollution. The model is an extension of the standard neoclassical growth model
which has a unique stable equilibrium point. Chaos exists in the model because
of the effects of pollution upon production. It is know that the neoclassical
growth theory based on the Solow growth model focuses accumulation as an
engine of growth, while the neo-Schumpeterian growth theory stresses
innovation. Section 5.5 studies a model to capture these two mechanisms within
the same framework. The model generates an unstable balanced growth path and
the economy achieves sustainable growth cycles, moving back and forth
between the two phases - one is characterized by higher output growth, higher
investment, no innovation, and a competitive market structure; the other by
lower output growth, lower investment, high innovation, and a more
monopolistic structure. Section 5.6 identifies economic fluctuations in a
monetary economy within the OLG framework. Section 5.7 shows chaos in a
model of interaction of economic and population growth.
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Chapter 6 is organized as follows. Section 6.1 studies phase space analysis of
planar linear difference equations. This section depicts dynamic behavior of the
system when the characteristic equation has two distinct eigenvalues, or repeated
eigenvalues, or complex conjugate eigenvalues. Section 6.2 studies autonomous
linear difference equations. This section provides a procedure of finding general
solutions of the system. Section 6.3 studies nonautonomous linear difference
equations. This section provides a procedure of finding general solutions of the
system. We also examine a few models of economic dynamics. They include a
dynamic input-output model with time lag in production, a cobweb model in two
interrelated markets, a duopoly model, a model of oligopoly with 3 firms, and a
model of international trade between two countries. This section also shows how
the one-dimensional difference equation of higher order can be expressed in multi-
dimensional equations of first order. Section 6.4 defines concepts of stabilities and
relations among these concepts. This section also provides conditions for stability
or instability of difference equations. Section 6.5 studies Liapunov's second
method. The theory of Liapunov fianctions is a global approach toward determining
asymptotic behavior of solutions. Section 6.6 studies the theory of linearization of
difference equations. There are two possible ways to simplify dynamical systems:
one is to transform one complex system to another one which is much easier to
analyze; and the other is to reduce higher dimensional problems to lower ones. The
center manifold theorem helps us to reduce dimensions of dynamical problems.
Section 6.7 defines the concept of conjugacy and shows how to apply the center
manifold theorem. Section 6.8 studies the Henon map, demonstrating bifurcations
and chaos of the planar difference equations. Section 6.9 studies the Neimark-
Sacker (Hopf) bifurcation. This section identifies the Hopf bifurcation in the
discrete Kaldor model. Section 6.10 introduces the Liapunov numbers and
discusses chaos for planar dynamical systems.

Chapter 7 applies the concepts and theorems of the previous chapter to
examining behavior of different economic systems. Section 7.1 studies
Dornbush's exchange rate model. We show how a monetary expansion will
result in an immediate depreciation of the currency and sustain the inflation as
the price level gradually adjusts upward. Section 7.2 studies a two-sector OLG
model with the Leontief production functions. The economy produces two,
consumption and investment, goods; it has two, consumption and investment
sectors. We provide conditions when the system is determinate or indeterminate.
Section 7.3 introduces a one-sector real business cycle model with mild increasing
returns-to-scale with government spending. Section 7.4 introduces endogenous
fertility and old age support into the OLG model. Section 7.5 examines a model to
capture the historical evolution of population, technology, and output. The
economy evolves three regimes that have characterized economic development:
from a Malthusian regime (where technological progress is slow and population
growth prevents any sustained rise in income per capita) into a post-Malthusian
regime (where technological progress rises and population growth absorbs only part
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of output growth) to a modern growth regime (where population growth is reduced
and income growth is sustained). The model is defined within the OLG framework
with a single good and it exhibits the structural patterns observed over history.
Section 7.6 examines a model of unemployment and inflation. We demonstrate that
the model which is built on the well-accepted assumptions may behave chaotically.
Section 7.7 provides a model of long-run competitive two-periodic OLG model
with money and capital. Section 7.8 introduces heterogeneous groups to the OSG
model. Section 7.9 examines interdependence between economic growth and
human capital accumulation in the OSG modeling framework.

As concluding remarks to this book, we address two important issues, which
have been rarely studied in depth in economic dynamical analysis, changeable
speeds and economic structures. The understanding of these two issues is essential
not only for appreciating validity and limitations of different economic models in
the literature, but also for developing general economic theories. We also include a
mathematical appendix. A.I introduces matrix theory. A.2 shows how to solve
linear equations, based on matrix theory. A.3 introduces metric spaces and some
basic concepts and theorems related to metric spaces. A.4 defines some basic
concepts in the study of functions and states the implicit function theorem. A.5
gives a general expression of the Taylor Expansion. A.6 is concerned with
convexity of sets and functions and concavity of functions. A.7 shows how to solve
unconstrained maximization problems. In A.8, we introduce conditions for
constrained maximization. A.9 introduces theory of dynamic optimization.





Chapter  2

Scalar  linear  difference equations

In discrete dynamics, time, denoted by /, is taken to be a discrete variable so that
the variable / is allowed to take only integer values. For example, if a certain
population has discrete generations, the size of the (t + l)st generation x(t + l) is a
function of the / th generation x(t). Different from the continuous-time dynamics
where the pattern of change of a variable x is embodied in its derivatives with
respect to the change of time t which is infinitesimal in magnitude, in the discrete
dynamics the pattern of change of variable x is described by "differences", rather
than by derivatives of x. Hence, the system in discrete time is in the form of
difference equations, rather than differential equations. As the value of variable
x(t) will change only when the variable t changes from one integer value to the
next, such as from 2004 to 2005 during which nothing is supposed to happen to
x(t), in difference equation theory the variable t is referred to as period, in the

analytical sense, not necessarily in the calendar sense. The time interval between
two successive states is usually suggested by the real process itself. For example,
x(t + l) could be separated from x(/j by one hour, one day, one week, one month,

etc.
To describe the pattern of change in x as a function of t, we introduce the

difference quotient Ax/At. As t has to take integer values, we choose At = 1.
Hence, the difference quotient Ax I At is simplified to the expression Ax; this is
called the first difference of x, and is denoted by

13



14 2. SCALAR LINEAR DIFFERENCE EQUATIONS

where x(t) is the value of x in the t th period and x(t +1) is its value in the
period immediately following the t th period. The change in x during two
consecutive time periods may be affected by many factors. We may express the
pattern of change of x by, for instance

Ax(t + l)=-axa(t).

Equations of this type are called difference equations. By the way, we use
difference equations and discrete dynamical systems exchangeable.' There are
other forms of difference, which are equivalent to the above equation, for instance

or

The evolution of the system starting from x0 is given by the sequence

*(i)=/(*„ *
,(2) = /(*(!) ) = f(f(xQ)),

We usually write f2 (x), / 3 (x),  in place of

Hence, we have

1 When mathematicians talk about difference equations, they usually refer to the
analytical theory of the subject, and when they talk about discrete dynamical systems,
they generally refer to its geometrical and topological aspects.
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f(x0) is called Hie first iterate of x0 under / ; f'(x0) is called the t th iterate of

x0 under / . The set of all (positive) iterates

where f° (x0) = x0 is called the (positive) orbit of x0 and is denoted by O(x0).

If the equation / is replaced by a function g of two variables, that is,

g:RxZ+, where Z+ is the set of nonnegative integers and R is the set of real

numbers, then we have

x(t + \)=g(x(t),t).

This equation is called nonautonomous or time-variant, whereas

x(t + l)=f(x(t)),

is called autonomous or time-invariant.
This chapter is organized as follows. Section 2.1 deals with linear first-order

difference equations. We also examine dynamics of two economic models, a price
dynamic model with adaptation and a model of amortization. In section 2.2, we
introduce some basic concepts, which will be used not only for one-dimensional
problems but also for higher dimensional ones. Section 2.3 introduces concepts of
stability and some basic theorems about stabilities of one-dimensional difference
equations. We also apply these results to the cobweb model and a dynamic model
with inventory. Section 2.4 is concerned with conditions for stabilities of
nonhyperbolic equilibrium points. Section 2.5 deals with dissipative maps. Section
2.6 introduces difference equations of higher order and provides general solutions
to the system. Section 2.7 examines difference equations of higher orders with
constant coefficients. In section 2.8, we study limiting behavior of linear difference
equations. We examine limiting behavior of the Samuelson multiplier-accelerator
interaction model.

2.1 Linear first-order difference equations

A typical linear homogenous first-order equation is given by

x(t + l ) = a{t)x{t), x(t0) = x 0 , t > t o > 0, (2.1.1)
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where a{t) * 0. One may obtain the solution of equation (2.1.1) by a simple

iteration

x{t0 +l)=a{t o)xo,

x(t0 + 2) = a{t0 + l)x{t0 + l) = a{t0 + l)a(to)xo,

x{t0 + 3) = a{t0 + 2)x{t0 + 2) = a{t0 + 2)a(t0 + l)a(to)xo.

And inductively, it is easy to see that

x{t)=x{t o+t-to) = (2.1.2)

Example There are 2n people. Find the number of ways, denoted as p(n), to

group these people into pairs.
To group 2« people into pairs, we first select a person and find that person a

partner. Since the partner can be taken to be any of the other 2n — \ persons in the
original group, there are 2« — 1 ways to form this first group. We are left with the
problem of grouping the remaining 2« - 2 persons into pairs, and the number of
ways of doing this is p(n - l). We have

p(n) = {2n-\)p{n-\).

Since two people can be paired only one way, we have p(i) = 1. To apply

formula (2.1.2), we rewrite the above formula as

According to formula (2.1.2), we have

p(n) = [f\(2i  + l)jp(l) = (2» - 1)(2» - 3)

The nonhomogeneous first-order linear equation associated with equation
(2.1.1) is given by

x(t + l ) = a{t)x{t) + g { t \ x{t0) = x 0 , t > t o > O . (2.1.3)
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The unique solution to equation (2.1.3) is found as follows

x{to+l)  = a{to)xo + g{t()),

x{t0 + 2) = a{t0 + l)x{t0 + l) + g{t0 + l)

= a(t0 + l)a{to)xo + a{t0 + l)g{to)+ g(t0 + l).

Inductively, it can be shown that the solution is

17

r=(0 \_i=r+\

Example Solve the equation

) \ , JC(0) = 1, t>0.

By formula (2.1.4), we have

i=0 I /=*+!

(2.1.4)

=2't\

A special case of equation (2.1.3) is that a(t) is independent of t

x{t + l ) = ax{t) + g{t), x(t0) = x 0 , t > t o > O .

According to equation (2.1.4), the solution to equation (2.1.5) is

(2.1.5)

where we set t0 = 0.

Example Find a solution to the equation

x(t + l) = 2x(t) + 3', x(l) = 0.5.
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The solution is given by

x{t) = f -V 1 + f;2'-i"13* = 3' - 5 -2'"1.

Example (price dynamics with adaptive expectations) There are two financial
assets available to investors; a riskless bank deposit yielding a constant rate r in
perpetuity, and a common share, that is, an equity claim on some firm, which

pays out a known stream of dividends per share, {^(s)}^ . Let p(s) be the

actual market price of a common share at the beginning of period s, before the

dividend d(s) > 0 is paid. Suppose also that the future share prices are unknown

but that all investors have the common belief at / = s that the price is going to

be pe(s + l) at the beginning of the following period.

We consider the following arbitrage condition

(l + r)p(t)=d{t)+p'(t  + l).

This equation means that if a monetary sum of p(t) dollars were invested in the

stock market at time t, it should yield at t + 1 an amount whose expected value

d(t)+p'{t + l)

equals the principal plus interest on an equal sun invested in bank deposits. The
adaptive expectation hypothesis is described by

p'(t + l)=ap(t)+(l-a)p'(t\

where the parameter, a e [0, l] , describes the speed of learning. Using the
arbitrage condition to eliminate expected prices from the adaptive expectation
equation yields

where
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K 'l + r-a l + r-a

We have X e (0, l) if r > 0 and a e (0, l). The solution of

is given by

Another special case ofequation (2.1.3) is that both a(t) and g(t) are constant.

That is

x{t + \ ) = a x { t ) + b, X ( / 0 ) = JC0> t > t o > O . (2.1.6)

Using formula (2.1.4), we solve equation (2.1.6) as

'a' -\

«(') =
xo

a'xo+b\- if a
[ I )

i f a*l,
a-I) (2.1.7)

x0 + b, if a = 1.

Example Amortization is the process by which a loan is repaid by a sequence of
periodic payments, each of which is part payment of interest and part payment to
reduce the outstanding principal. Let w(t) denote the outstanding principal after

the t th payment m{t). Suppose that interest charges compound at the rate r per

payment period. The outstanding principal w(t + l) after the (t + l)st payment is

equal to the outstanding principal w(t) after the t th payment plus the interest

rw(t) incurred during the (t + l)th period minus the t th payment m(t), that is

w(t + l) = w(t) + rw(t) - m{t).

Let w0 stand for the initial debt. Then, determination of w(t) is to solve the

following difference equation
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w(t + l) = (l + r)w(t) - m(t), w(0)=wo. (2.1.8)

Equation (2.1.8) belongs to the type of equation (2.15). Applying the solution
of equation (2.1.5) to equation (2.1.8), we get

hi particular, if the payment m{k) is constant, say M, then the above solution

becomes

If the loan is to be paid off in t payments (that is, w(t) = 0 ), the monthly

payment M is given by

Example The Lees are purchasing a new house costing $200,000 with a down
payment of $25,000 and a 30 -year mortgage. Interest on the unpaid balance of
the mortgage is to be compounded at the monthly rate of 1%, and monthly
payments will be $1800. How much will  the Lees owe after t months of
payments?

To answer this question, let x(t) denote the balance in dollars that will be
owed on the mortgage after t months payment. Then, as the previous example
shows, we have

jc(/) = 1.01jc(f-l)-1800, t >1.

The amount owed initially is the purchase price minus the down payment, so
x(0) = 175,000. We thus solve

x(t) = (l.Ol')l 75,000 - 180,000(l.01' - l)= 180,000 - 5OOo(l.Ol
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For example, the balance of the loan after 20 years (240 months) of payments
is x(240) = 125,537.

Exercise 2.1
1 Find the solutions of the following difference equations:

(a) *( / + 1) - (/+ l)x(') = 0, x(0)=x0;

(b) x{t + 1) - e2lx{t) = 0, *(0) = x0;

( c)JC( / + l ) x ( r ) 0 > *(o) xo;

(d) *(f + l) - 0.5x(f) = 2, x(o) = ;to;

(e)x(? + l ) - ^ ) = e ' , x(0)=x0.

2 A debt of $12,000 is to be amortized by equal payments of $380 at the end of
each month, plus a final partial payment one month after the last $380 is paid. If
interest is at an annual rate of 12% compounded monthly, construct an
amortization schedule to show the required payments.

2.2 Some Concepts

Let us consider the one-dimensional difference equation

x{t + l) = f{x{t)) = f M { x 0 ) , t = 0,l,-, (2.2.1)

where f :R^> R is a given nonlinear function in x(t). When studying the motion

of difference equations, we attempt to determine equilibrium points and periodic
points, to analyze their stability and asymptotic stability, and to determine aperiodic
points and chaotic behavior. We refer to equation (2.2.1) as a scalar (or one-
dimensional) dynamical system. The function / is called the map associated with

equation (2.2.1). A solution of equation (2.2.1) is a sequence {(*,}7=o t n at satisfies

the equation for all t = 0,1, . If an initial condition x(o) = x0 is given, the

problem of solving equation (2.2.1) so that the solution satisfies the initial condition
is called the initial value problem. The general solution to equation (2.2.1) is a

sequence {$ } " „  that satisfies equat ion (2.2.1) for all t = 0 , 1,  and involves a
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constant C that can be determined once an initial value is prescribed. A particular

solution is a sequence {^ r}^0 that satisfies equation (2.2.1) for all t = 0, 1, .

Definition 2.2.1. The sequence

is denoted by O(x0) and is called the orbit or trajectory of the system starting from

X s.

Definition 2.2.2. A point x* is called a stationary point of equation (2.2.1) if

x=f(x). (2.2.2)

Each x* can be regarded either as a state of the dynamical system

x{t + \)=f{x(t)\

satisfying equation (2.2.2) or as a solution to the system of equation

*  = /(*)

We also call x afixed (or stationary or equilibrium) point of f.

Example Every stationary state of the system

x{t + l)=ax{t){l-x{t))

must satisfy the equation

x = ax(l - x).

We see that x* = 0 is a stationary state regardless of the value of a. Another

stationary point is given by

a-\
x = .
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For every a we can visualize the fixed points of

f{x) = ax(l-x),

since they are given by the intersection of the graph / with the line y = x. Figure

2.2.1 depicts the case of a = 3.

By the way, we introduce how to visualize solutions to one-dimensional
difference equations. A frequently used plot is the so-called stair-step diagram or
staircase diagram, or cobweb diagram. The diagram is a plot in a rectangular
coordinate system of: (1) the graph of the function y = fix); (2) the identity line
y = x; and (3) a polygonal line that results from joining the points

(x0, *,) (x2,x2), (x2,x3), (x3, x3),

Figure 2.2.2 shows that the line segments of the polygonal line create the
impression of stairs.

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8

Figure 2.2.1: The fixed points of f(x) = ax(l - x)
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0.8
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Figure 2.2.2: Staircase diagram of O(0.4) for f(x) = 4x(l - x)

Another plot used for visualizing solutions to one-dimensional difference
equation is called time series. It consists of a representation of the variable x{t) as a
function of t. See figures 2.2.3 and 2.2.4.
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Figure 2.2.3: Time series plot of O(0A) for f(x) = 4*(l - x)
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x(t)
1
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Figure 2.2.4: Plot of points of O(0.4) for f(x) = 4x(l - x)

Definition 2.2.3. A point x' s R is said to be an eventually equilibrium (or

stationary) point for equation (2.2.1) or an eventually faed point for / if there

exists a positive integer r and a fixed point x of / such that2

Example The logistical difference equation

f = 4x{l-x)

has two fixed points, 0 and 3/4. Finding eventually fixed points is to solve

where r is a positive integer greater than 1. For instance, with x = 3/4 and

r = 2, we obtain the algebraic equation

2 A sequence {*(0|" o is said t0 have eventually some property P, if there exists an

integer N > k such that every term of {x^)} ^ has this property.
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16x(l- ;c)[ l -4j t( l -*) ] = - .

It is easy to check that the equation has the following eventually fixed points

1 1 73 1 1 72
4' 2 + 4 ' 2' 2 + 4 '

because

1
A) 4'

Exercise 2.2
1 Show:

(a) f{x) = cosx has a unique fixed point for x e [0, l] ;

(b) f(x) = x3 - 2x + 1 has three fixed points.

2 A piecewise linear version of the logistic equation is the tent equation

2x{t), ifx{t)<-

2(l-x(t)\ifx(t)>^

This map may be written in the form
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Show: (a) there are two equilibrium points; and (b) the point 1/2 is an eventually
fixed point.

3 A population of birds is modeled by the difference equation

2x(4 if 0, , J
v ; [0.5x(/)+2.7, if

where x{t) is the number of birds in year t. Find the equilibrium points and then

determine their stabilities.

2.3 Stabilities

A dynamical system might have unpredictability property, which means that
orbits starting at points very close to each other can be quite far apart at some
later time, even though the orbits remain confined in a bounded region. Since,
on experimental grounds, the initial state of an orbit is never known accurately,
we cannot "predict" where the system will be at some later time. To explain
unpredictability, we introduce the definition of stable and unstable orbits. The
presence of unstable orbits plays an important role in dynamical systems.

Let us consider the one-dimensional difference equation

x{t + \)=f{x{t)\  ? = 0 , l , - - . (2.3.1)

Definition 2.3.1. A fixed point x* of equation (2.3.1) is locally stable if for every
s > 0 there exists S > 0 such that

I < 5 implies that llx, - x* < s for all f > 1.

In this book, the norm ||jc|| denotes the Euclidean norm of x, defined by
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A fixed point that is not stable is said to be unstable. An unstable equilibrium point
is called a source, or a repeller.

Stability means that once we have chosen how close we want to remain x* in
the future, we can find how close we must start at the beginning. Figures 2.3.1 and
2.3.2 illustrate the two concepts.

x(t)

Figure 2.3.1: Stable x0

Example Consider

x{t + l) = 1 - x(t).

The point x* — 0.5 is the only fixed point of / . For every other initial state x0 we

have

X\ 1 XQ , X2 XQ .

We thus have

IK - Ml = Ik - 04
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x(t)

Figure 2.3.2: Unstable x0

for all / > 1. Hence, the fixed point is stable (by selecting S - s in the definition).

Example Let f:R-*Rbe defined as

/(*) =
0.5x, for x < 0,

2x, for x > 0.

The system has a unique equilibrium x* = 0. Every orbit starting to the left of

the origin will converge to x*, while every orbit starting to the right of the origin

wil l go to infinity. Thus, x* is an unstable fixed point.

Definition 2.3.2. The point x* is said to be attracting if there exists 7] > 0 such

that

x(o)-x* <T]  implies limx(t) = x*.
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If 7] = °°, x* is called a global attractor or globally attracting. The point x* is an

asymptotically stable point or a sM if it is stable and attracting. If rj = <», x* is
said to be globally asymptotically stable.

Let / be a function defined on some interval Q. of R with values in Q. It is

known that under certain conditions the stability type of an equilibrium point x* of
difference equation (2.3.1) is the same as the stability type of the equilibrium point
of the corresponding linearized equation

y(t + l) = f'{x')y(t). (2.3.2)

A simple but not rigorous argument is that for x close to the value of an

equilibrium point x* we have

f(x) = f(x')+ f'{x){x - x ) + HOT,

where HOT denotes the higher-order terms in x - x*. Taking into account that x*

is an equilibrium point, neglecting HOT, and replacing x = ut, we obtain the

approximate equation

u(t + l) = x+f(x )(«(/)-*').

Finally, setting

y(t) = u(t) - x,

we obtain equation (2.3.2).

Definition 2.3.3. Assume / is continuously differentiable in Q.. Let x* be a

steady state e Q. If

then x* is non-hyperbolic. If
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x is hyperbolic.

If x* is non-hyperbolic, its stability type cannot be determined by its first
derivative, as discussed later on.

Theorem 2.3.1. (linearized stability) Let x* be a hyperbolic steady state e Q.

Then

(i) If / ' ( / ) < 1, then x* is asymptotically stable.

(ii ) If  |/'(x*)| > 1, then x' is unstable.

Proof. In the case of If'yx") < 1, consider /? such that

\r(x')\</3<L

By continuity of f'{x), we have |/ '(x)| < /3 on some interval [x*  - e, x + e)

with e > 0. For any x in this interval, applying the mean value theorem for

derivatives yields

f{x)-f{x)={x-x)f{x+e(x-x\

where 0 < 0 < 1. Since x + 9\x — x j belongs [x*  — £, x* + ej, we have

\f{x)-f(x)\<p\x-x.

For any x0 e [x*  - £, x* + e\ the sequence

x(t + \) = f(x(t))

starting at x0 satisfies
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{t + 1) - x'\ = \f{x{t)) - f{x')\ - x - x

We conclude that the sequence converges to x* for all x0 e \x' - e, x* + e\

and x* is locally stable. This also implies that the whole sequence remains in the

neighborhood of x*. The same proof applies to a corner steady state with

x0 e (0, e).

The equilibrium point is asymptotically stable when / ' ( / ) < 1. As t -> °°,

we have

x[t)-.

We conclude asymptotical stability.

In the case of /'(** ) > 1, consider J3 such that

By continuity of  f'(x), we have |/ ' (x)| > P on some interval (x - £, x* + s)

with e > 0. For any x in this interval, applying the mean value theorem for

derivatives yields

f{x)- f{x')= {x - x*)f'(x' + e{x -x')), with 0 < 6 < 1.

Since x* + 8\x - xj belongs \x' - £, x* + £), we have

\f(x)-f{x)\>p\x-x.

For any x0 e [x*  - £, x + £), the sequence

x(/ + l) = /(*, )

starting at x0 satisfies
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x{t + l ) - x \ = \f(x(t)) - f{x )| > fi\x(t) - x \ > 0 ' \ xo - x ,

which holds for the terms

xt € [x*  - £, x" + e).

We conclude that the sequence does not converge to x* for all

x0 € [x*  — e, x* + e),

and x*  is locally unstable.

From theorem 2.3.1, if the equilibrium point x* of equation (2.3.1) is
hyperbolic, then it must be either asymptotically stable or unstable, and the stability
type is determined from the size of f'\x*). Figure 2.3.3 depicts different stability
types.

Example (a cobweb model of demand and supply4) Consider the market for a
single commodity. Assume that the output decision in period t is based on the then
prevailing price Pit) and that the output planned in period t will not be available

for the sale, Qs (t + l), until period t + 1. We thus have a lagged supply function

Equivalently

Q°(t) = S(p(t-l)).

When such a supply function interacts with a demand function of the form

Qd(t)=D(P(t)),

the price dynamics will be determined by the balance condition

1 This is from chapter 16 in Chiang (1984).
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! (c) !

Figure 2.3.3: Stability types of scalar difference equations
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Specify the demand and supply functions as follows

Qd(t)=ad-bdP{t),

Qs(t) =-as+ b,P(f - l) , ad, bd, a,, bs > 0.

The price dynamics is given by

= 0.
bd bd

The solution is given by

~t-
Introducing

P =

where P* is the fixed point, we may write the solution as

Because Z;s and bd are positive, the time path wil l be oscillatory. We see

* I - *

According to the values of bs and bd, we have three possibilities, (i)

explosive if bs > bd; (ii) uniform if bs = bd; and (iii ) damped if bs < bd. We

depict (i) and (iii ) as in figure 2.3.4.
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P P
a) bs > bd (the supply curve is steeper) b) bs < bd (the supply curve is flatter)

Figure 2.3.4: The cobweb model

Example (a cobweb model with the normal-price expectation5) Consider the
market for a single commodity. Assume that the output decision in period t is

based on the then expected price P' (t). The supply function is specified as

Qs{t) = -as+ bsP
e{t), a,, bs > 0.

The demand function is

Qd(t)=ad-bdP(t), ad,bd>Q.

To form price expectations, we introduce a concept of "normal price", denoted
as P, as that price which producers would think sooner or later to obtain in the
market. If the current price is different from the normal price, they think the former
wil l modify, moving toward the latter. A simple way to formalize this is to specify

Pe(t) = P(t - l) + a(¥ - P(t - l)), 0 < a < 1.

The balance condition of

' This and the following example are from Gandolfo (1996: 38-43).
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is now expressed as

- as + bsP(t -1) + ab,P - absP(t -\) = ad- bdP(t).

The solution to this equation is

We see that the solution is oscillatory and the equilibrium point P(t) = P is

stable if

Example (a cobweb model with adaptive expectations) Like in the previous
example, the supply and demand functions are specified as

Qd{t)=ad-bdP{t), ad,bd>0,

Qs(t)=-as+bsP
e(t), as,bs>0,

where Pe(t) is the expected price. We assume that expectations are adapted in

each period on the basis of the discrepancy between the observed value and the
previous expected value, that is6

P'(t)- Pe{t -1) = a(p(t - l) - P'(t -1)), 0 < a < 1.

We may also write the price expectation in the form of

Pe{t) - (l - a)Pe{t - l) = aP(t - l).

Substituting

6 The adaptive expectation was initially proposed by Nerlove (1958).
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into the above equation yields

a, + Qs{t) - (1 - a)(a, + Qs{t - l)) =

get

Qs(t)=ad-bdP(t\

Substituting

into the previous equation yields

ha

The equilibrium point is given by

The general solution of the problem is thus given by

P(t)=Al- f + l U \+P\

The stability condition is
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Example (a market model with inventory) We now extend the cobweb model to a
case that sellers can keep an inventory of the commodity. Assume that the quantity

demanded, Qd(t), and the quantity currently produced, Qs(t), are unlagged
linear functions of price P{t). The adjustment of price is effected not through
market clearance in every period, but through a process of price-setting by the
sellers: at the beginning of each period, sellers set a price for that period after taking
into consideration the inventory situation. If inventory accumulated as a result of
the preceding-period price, the current-period price is set a lower level than before,
and vice versa. Moreover, the price adjustment made from period to period is
inversely proportional to the observed change in the inventory. With these
conditions, we can write the following equations

Qs(t) = -as+ bsP{t), ad, bd, a,, bs > 0,

where a denotes the stock-induced-price-adjustment coefficient. Substituting the
first two equations into the last one yields

Pit +1) - [l - a{bs + bd )]p(t) = a{as + ad).

Let P* be the fixed point. Then, we may write the above solution

P(t) = (p(o)-P')(l-a(bs+bd))' + P',

where

p* -

We see that the stability is determined by the term 1 - o(bs + bd).

Example (the Newton-Raphson method) The Newton-Raphson method is a well-
known numerical method for finding the roots of the equation

g(x) = 0.
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Newton's algorithm for finding a zero x* of g(x) is given by the difference

equation

where JC0 is the initial guest of the root x*. To determine whether Newton's

algorithm provides a sequence \x(t)\ that converges to x* we calculate

= 0,Wl.
where we use g(x*) = 0. We conclude that

\imx(t) = JC*,

i f x0 is close enough to x' and g'(x*) *  0.

Example Consider

x(? + l) = 1 - Ax2(t),

where

xe[-l,l],  Ae(0,2].

There are two equilibrium points

, - 1 + ̂ 1+ 4/1

* l2 2 l "

It is straightforward to check that x* is unstable for all A e (o, 2J; x*2 is

asymptotically stable i fO<A<3 /4 and unstable if X > 3 / 4.
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Definition 2.3.4. Let x* be an asymptotically stable fixed point of a map / . The

basin of attraction 8[x) of x* is defined as the maximal set J that contains x"

and is such that

f'(x)-*x*  as / —» oo for every x€ J.

The basin of attraction of an attracting periodic point of period p is defined in

analogous fashion, with the map / replaced by the p -th iterate.

Example The map

/(x)=2x(l-4

has an attracting fixed point x* = 1/2 with a basin of attraction K(l/2) = (0, l).

We will see later that basins of attraction may have complicated structures
even for simple looking maps.

Definition 2.3.5. A set M is said to be invariant under a map / if f(M) a M,

that is, if for every x e M, the elements of O(x) belong to M.

Theorem 2.3.2.7 Let x* be an attracting fixed point of a map / . Then the basin of

attraction N(X*J is an invariant open interval.

Exercise 2.3
1 Given demand and supply functions for the Cobweb model as follows:

Qd(t)=l*-3P{t\

r.^Qd{t) = l9-6P{t),
(n)Q>(t) = -5 + 6P(t-l).

1 See Elaydi (2000).
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Find the intertemporal equilibrium prices, and determine whether or not the
equilibrium points are stable.

2 Let

Show that x* = 0 is stable and x* = 1 is unstable.

3 Find the equilibrium points and determine their stability for the equation

x(t + l) = 5 - «
x{t)

4 Pielou 's logistic equation is defined as

(a) Find the positive equilibrium point; and (b) demonstrate, using the stair step
diagram, that the positive equilibrium point is stable, taking a = 2 and /? = 1.

2.4 Stabilities of nonhyperbolic equilibrium points

From the information about the sign of the first derivative value of the map / at an

equilibrium point, theorem 2.3.1 determines the stability properties of the
equilibrium point when it is hyperbolic. This section addresses the nonhyperbolic

case where /'(** ) =1. Further information about derivatives is needed to

determine stability properties. We discuss f'[x*)=l  and f'[xj  = -l separately.

This section assumes that / has a continuous second derivative.

Definition 2.4.1. An equilibrium point x* of

x(t + l)=f{x{t)),  (2.4.1)
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is semistable (from the right) if given £ > 0 there exists 8 > 0 such that if

x(o) > x , x(o) - x < S, then x(/) - x* < £. Semistabiliry from the left is
defined similarly. If in addition

limx(t) = x*,

whenever x(o) - x* < T], then x is said to be semiasymptotically stable from the

right. We can similarly define semiasymptotical stability from the left.

The following two theorems are referred to Elaydi.8

Theorem 2.4.1. Suppose that for an equilibrium point x* of equation (2.4.1),

/ ' (JC* ) = 1. The following statements then follow:

(i) If / * ( / ) * 0, then x" is unstable.

(ii) If /"(**) = ° md fm{x')>  °> t h en x"  i s unstable.

(iii ) If f"\x ) = 0 and f\x*) < 0, then x* is asymptotically stable.

Theorem 2.4.1 is illustrated as in figure 2.4.1. If

/ ' ( * * ) *  0,

then the curve is either concave upward if f[x* ) > 0 or concave downward if

f"(x') < 0 as shown in figures 2.4.1 a-d. If /"(r* ) > 0, then

/ ' ( * ) > M > 1,

for all x in a small interval I = [x", x" + e). Then, we have

- 4
where £ e /. By induction we conclude

1 Section 1.4 in Elaydi (1999).
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(t)-x* >M'x(0)-x'.

We conclude that x* is unstable. We can discuss other cases similarly. It should

be noted that as proved in Sandefur,9 if / ' (**) > 0 ( / " ( / ) < 0 ), then the

equilibrium point x* is semistable from the left (right).

Example Consider

x(t + l) = x2(t)+x(t), t = 0 ,1, .

The difference equation has a unique equilibrium point x* = 0. As

, / " ( 0 ) = 2 > 0,

by theorem 2.4.1 we conclude that x* is unstable. To examine its semistability,
first assume x0 > 0. Then

By induction we get x{f) > x{t — l). The sequence {x(t)\ either converges to a

fixed point or diverges to infinity. Since the only fixed point is zero, {x(t)} diverges

to infinity. On the other hand, if xQ e (-1 / 2, 0)

) = x2(o)+x(o)>x{o),

and x(l)e (—1/2, 0). By induction, we conclude

The sequence {x(t)} converges to 0.

Example Consider

9 Sandefur (1990).
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(a) unstable, / '(**) > 0

(semistable from the left)
(b) unstable, / ' ( / ) < 0

(semistable from the right)

(c) unstable

/-(**)=o,r(**)> o
(d) asymptotically stable

Figure 2.4.1: Stability types in the case of / ' (JC* ) = 1
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JC(/ + 1) = JC3(0+*(/) , f = 0 , l , - .

The difference equation has a unique equilibrium point x* = 0. As

, r(o)=o, /»=6>o,

by theorem 2.4.1 we conclude that x* is unstable. We can determine this by
induction. Assume that x0 > 0. Then

x(l) = x3(0)+x(0)>x{0).

By induction we get x{t) > x(t — l). The sequence {x(t)} either converges to

a fixed point or diverges to infinity. Since the only fixed point is zero, {x(t)}

diverges to infinity. On the other hand, if x0 < 0, we have

By induction x(t) < x(t -1). The sequence {x(t)} diverges to -°°. Hence, the

equilibrium point is a source.

Example Consider

x{t + l)=-x'{t)+x(t),  f = 0 , l , - .

The difference equation has a unique equilibrium point x* = 0. As

1, / ' (0) = 0, / -(0) = - 6 < 0,

we conclude that x* is asymptotically stable.

In the case of / ' [x ) = - 1, the map / is not monotone but rather oscillatory,

and it flips from a point close to x* to the other side of x*. If the equilibrium point

x" becomes unstable, and orbit cannot approach x*. But if the iterates remain
bounded, it is possible that the odd iterates converge to a limit point p, and the

even iterates converge to a limit point f(p). If this happens, then
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f(f(p))=P,

with p different from f\p). Then p is a periodic point of period two. This
change in global behavior of solutions of equation (2.4.1) is called period-doubling
or flip bifurcation.

Example Consider

The unique equilibrium point is zero. Every solution of this equation, except

x* = 0, is periodic with period two.

Example Consider

x{t + l) = -x(t)+x2(t), t = 0,l,-.

The equilibrium points of this equation are x* = 0 and x*2 = 2. To examine

behavior of the sequence |x:(2&)}, we note

x(2k + 2) = -x(2k + l)+ x2(2k + \) = x(2k)-x3{2k)+x4{2k).

Setting

y{k) = x{2k),

we rewrite the above equation as

y{k + l) = y(k)-/{k) + / (*) ^ g{y{k)). (2.4.2)

Since

g'(0) = l, g'(0) = 0, g"{0)=-S,

by theorem 2.4.1 we conclude that x[ = 0 is a sink. Likewise, we conclude that

x*2 = 2 is a source.
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Similarly, we conclude that the sequence {x(2k + l)}  satisfies equation (2.4.2).

Hence it is convergent to the zero equilibrium. Consequently, both even-indexed

terms and odd-indexed terms are convergent to zero, hence x\ = 0 is a sink, while

x*2 = 2 is a source. Also applying the above method, check that the origin is a

source of the following difference equation

*(/ + !) = -*( , ) -**( , ) .

Before stating stability conditions for the case of f'[x*)=  - 1, we introduce

the notion of the Schwarzian derivative of a function /

sf(x)_r(x) 3

F o r / ' ( * * ) = - 1 , then

Theorem 2.4.2. Suppose that for an equilibrium point x* of equation (2.4.1),

/ ' [x*  j = - 1 . The following statements then follow:

(i) If Sf[x') < 0, then x* is asymptotically stable.

(ii)I f Sf(x*)> 0, then x* is unstable.

Example Consider

x{t + \) = x2{t)+3x{t).

The equilibrium points are 0 and -2. We have

f' = 2x + 3.

Since / ' (o) = 3, the equilibrium point 0 is unstable. As / ' ( - 2) = - 1 , theorem

2.4.2 applies. As
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S / ( - 2 ) = - 1 2 < 0,

the equilibrium point -2 is asymptotically stable.

Exercise 2.4
1 Find the equilibrium points and determine their stability of the following
difference equation

x(t + l) = ax2(t) + bx(t) + c, a * 0.

2 Suppose that if f(x')=l, then / " ( / ) *  0. Prove that x is (i)

semiasymptotically stable from the right if f\x*) < 0; and (ii) semiasymptotically

stable from the left if f"[x* ) > 0. Applying this result, determine whether the

equilibrium point x* = 0 of the following equations is semiasymptotically stable

from the left or from the right

(b)x(t + l)=x'(t)-x2(t)+x(t).

3 Find the equilibrium points and discuss the stability of the following difference
equations

(a) x(t + l ) = -x2{t) + x{t), t = 0,l, ;

(b) x{t + 1) - 1 - | * 2 ( 4 , / = 0 , l , - .

2.5 On dissipative maps

Consider the one-dimensional difference equation

x(t + l)=f(x{t)),  f = < U - . (2.5.1)

An interval [a, b] is called an absorbing interval, or an attracting interval if

every orbit of equation (2.5.1) eventually enters the interval. An interval is called an
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invariant interval if every orbit that enters the interval stays in it forever. A
difference equation (map) with an absorbing interval is called dissipative difference
equation {dissipative map).

Theorem 2.5.1.10 Let [a, b] be an interval of real numbers and assume that / is a

continuous, nondecreasing function such that

and equation (2.5.1) has a unique equilibrium x'. Then every solution of equation

(2.5.1) with initial point in [a, b] converges to x*. If equation (2.5.1) is dissipative

then every solution of equation (2.5.1) converges to x*.

Example Consider

*( ' + l) = T ^ 7 -y ' = 0 , 1 , -.
1 + x{t)

The map satisfies all conditions of theorem 2.5.1 on the interval [0, l] . Thus,

every solution of this equation that starts in the invariant [0, l] . In addition, every

solution that starts in [l, oo) in one step enters the invariant interval and converges

to the zero equilibrium. It should be noted that the situation for negative initial
conditions is more complicated as we face the problem of the existence of the
solution.

Theorem 2.5.2. Let [a, b\ be an interval of real numbers and let / be a

continuous, nonincreasing function such that /([a, b]) a [a, b] and equation

(2.5.1) has no prime period- 2 solution. Then every solution of equation (2.5.1) that

enters eventually [a, b] converges to x\ In addition, the subsequences {x(2t)}

and {x(2t + l)}  of every solution of equation (2.5.1) converge monotonically to x*

by oscillating about the equilibrium such that

(x(t + l)-x')(x(t)-x')<0, for M = 0 , 1 , -.

Example The difference equation

1 This theorem and the next one are referred to Kulenovic and Ladas (2001).
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x{t + \) = e - * { ' \ f = 0, 1,

has an invariant interval. The corresponding map is decreasing everywhere and it
does not possess a prime period- 2 solution. Indeed, if such a solution would exist
it would satisfy

e-" = x,

for some p  x*. In fact, it is straightforward to show that the function e~e = x

has a unique solution on the interval [0, l] . Thus, all conditions of theorem 2.5.2 on

the interval [0, l] are satisfied and every solution of the equation that starts in the

invariant interval [o, l] converges to the unique equilibrium point, hi addition,

every solution that starts in R enters the invariant interval in at most two steps and

so converges to the equilibrium point.

Example Consider the difference equation

x(t + \)=\ + ̂ r t = 0,l,- (2.5.2)

where A, p, and x{0) are positive numbers. This equation has an invariant

interval [l, 1 + A] and the corresponding map is decreasing for all positive values.

The equation has a unique positive equilibrium, x*, where x' is the unique
positive root of the equation

xp + ' -x" -A = 0.

If p < 1, x' is locally asymptotically stable. Similarly, if p > 1, x* is locally

asymptotically stable provided that

P
x

p-\

One can show that this condition is equivalent to the condition
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When condition (2.5.3) holds, the Schwarzian derivative can be used to show

that x* is locally asymptotically stable. Thus, in both cases, (a) p < 1, and (b)

p > 1 and condition (2.5.3), the unique equilibrium point x* is locally

asymptotically stable. To show that equation (2.5.2) has no prime period- 2
solution we consider the second iterate

Introduce

H{x)=f{x)-x.

Clearly, the equilibrium x' is a solution of the equation

H(x) = 0.

We now show that x* is the only solution by checking that H{X) is strictly

decreasing. As

where

Since the function H0(x) has a minimum at

x = x=((p-l)Af",
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we have

H0{x)*H 0{x)
p-\

Thus we have

if condition (2.5.3) holds, where equality holds only if JC = 3c. Hence, H(x) has a

unique zero and this is the unique positive equilibrium point. Hence, equation
(2.5.2) does not possess a prime period-2 solution and by theorem 2.5.2 every
solution of this equation that starts in the invariant interval [l, 1 + A] converges to

the unique equilibrium point, x*. In addition, every solution that starts in [0, oo) in
at most two steps enters the invariant interval, hence converges to the equilibrium.
Thus the invariant interval [l, 1 + A] is an absorbing interval, and the difference

equation is dissipative.
The remaining case of

is qualitatively different. It can be shown that equation (2.5.2) has two periodic
solutions, each if period 2, which are asymptotically stable and global attractors

with a basin of attraction (o, x) and \x\ <») respectively.11

Exercise 2.5
1 Show that for the difference equation

the interval [0, l] is an absorbing interval and zero is a global attractor.

See DeVault e*  a/. (1992).
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2.6 Linear difference equations of higher order

The normal form of a A: th-order nonhomogeneous linear difference equation is
given by

x(t + k)+P] (t)x{t + k-\)+- + pk (t)x(t) = g(t), (2.6.1)

where pt (t) and g(t) are real-valued functions defined for t > t0 and

for all t > t0. Here, the sequence g(t) is called the forcing term, the external force,

the control, or the input of the system. If g(t) is identically zero, then equation

(2.6.1) is said to be a homogeneous equation. We can evaluate x(k) with

4k) =  g(o) - p, (oM* -1) P* (oMo).

Similarly, we can evaluate x(k + l), and so on. A sequence {x(t)}™ is said to

be a solution of equation (2.6.1) if it satisfies the equation. If

x ( t o \ - - - , x ( t o + k - l )

are specified, we have the initial value problem.

Example Consider

x(t + 3) — x{t + 2)+ tx(t + l) - 3x(t) = t,

where the initial conditions are

x(l)=0, x{2) = -\, x(3) = l.

It is straightforward to evaluate

*(4)=f , * (5 )= - |, x (6 )= - |, ,(7) =20.9.
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Consider the homogenous difference equation

x(t + k) +  Pl (t)x(t + k-l)+- + p t (t)x(t) = 0. (2.6.2)

Def in i t io n 2 .6 .1. T he funct ions f x ( t \ f 2 { t \  f r { t ) are said to be linearly

dependent Sax t>t0 i f there are constants ax, a2,  ar, not all zero, such that

/ ( / ) = 0, t>t0.

Definition 2.6.2. A set of k linearly independent solutions of equation (2.6.2) is
called a fundamental set of solutions.

It is often difficult to check the linear independence of a set of functions using
the definition. We now introduce a simple method to check linear independence of
solutions using the so-called Casoratian.

Definition 2.6.3. The Casoratian w(t) of the solutions

xx(t),x2{t),-, xr(t)

is given by12

x(t) x(t)  x(t)

W{t) =

2(t

Example It is straightforward to check that the sequences

1, (-3)', 2',

are solutions of the difference equation

x(t + 3) - lx(t + l) + 6x(t) = 0.

1 This is the discrete analogue of the Wronskian in differential equations.
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The following calculation verifies the linear independence of the solutions

1 (-3)' 2'

f-3)' + 1 2' + 1

The following Abel formula gives an effective method for verifying linear
independence of solutions.

Lemma 2.6.1. (Abel's lemma)13 Let

x(t) x (t)  x (t)

be solutions of equation (2.6.2) and let W\t) be their Casoratian. Then for t > t0

V='o )

We see that if pk{f) * 0 for all t > t0, then the Casoratian w{f) ^ 0 if and

only if W(to)*0.

Theorem 2.6.1. The set of solutions

of equation (2.6.2) is a fundamental set if and only if for some t0 e Z+, the

Casoratian w(t0)*  0.

Example Solve the difference equation

x(t + 3) + 3x(t + 2) - 4x(t + l) - I2x(t) = 0.

We verify that the solutions

13 The proof is referred to Elaydi (1999).
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2', (-2)', (-3)',

form a fundamental set of solutions of the equation. This is proved by calculating

w(t) =
2< (-2)' (-3)'

2' + 1 (-2)' + I (-3)' + >w(o)=
1 1 1

2 - 2 3

4 4 9

= - 2 0 .

Theorem 2.6.2. (the fundamental theorem) If pk{t)^0 for all t > to, then

equation (2.6.2) has a fundamental set of solutions for t > t0. D

Superposition Principle. If xx(t\ x2(t),  xk{t) are solutions of equation
(2.6.2), then

is also a solution of equation (2.6.2), where a, are constant. D

Let xx(t), x2(t), , xk(t) be a fundamental set of solutions of equation

(2.6.2). Then the general solution of equation (2.6.2) is given by

Xi(t).

for arbitrary constants at. Any solution of equation (2.6.2) may be obtained from

the general solution by a suitable choice of the constants a,.
We now examine nonhomogeneous equation (2.6.1). It is customary to refer to

the general solution of the homogeneous equation (2.6.2) as the complementary
solution to nonhomogeneous equation (2.6.1). Denote the complementary solution
by xc\t). Then we have
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where x,(?), x2(t),  xk{t) is a fundamental set of solutions of equation (2.6.2)

and at are arbitrary constants. A solution of nonhomogeneous equation (2.6.1) is

called a particular solution and will be denoted by xp (/).

Theorem 2.6.3. Any solution of equation (2.6.1) may be written as

x(t) = xc(t)+xp(t).

The general solution of equation (2.6.1) is given by

x{t) = xc(t)+xp(t).

As we studied how to find xc(t), we now learn how to find xp(t). We only

introduce the method of undetermined coefficients to compute xp{t). In this

method, we first guest the form of the particular solution and then substituting this
function into the difference equation. This method is effective mainly when g(x(t))
is a linear combination or products of terms, each having one of the forms

a1, sin(bt), cos(bt\ t".

Example Solve the difference equation

x(t + 2) + x(t + l) - I2x(t) = O!. (2.6.3)

The characteristic roots are px = 3 and p2 = - 4. Hence,

xc(t)=ai3< +a2(-4)'.

We try

xp(t) =  C]2' +c2t{2).

Substituting this into equation (2.6.3) yields



2.6. LINEAR DIFFERENCE EQUATIONS OF HIGHER ORDER 59

or

(l0a2 -6^ )2' -6a2t2' =t2'.

As this is held for any /, we should have

10a2 -dax = 0, -6a2 = 1.

Hence

5 1
a, = , a, = — .

1 18 2 6

The general solution is

x(t)=a,3t + aJ-4)' -—2'--t

Exercise 2.6
1 Find the Casoratian of the following functions

(i) 5', 35'+1, e<;

(ii ) 5', t5', «25'.

2 For the following equations and their accompanied solutions, determine whether
these solutions are linearly independent and find, if possible, the general solution:

(i) x(t + 3) - 3x(t + 2) + 3x(t + l) - x(t) = 0; 1, t, t2;

(ii ) x(t + 3) + x{t + 2) - 8x(t + l) - 12JC(/) = 0; 3 ', (- 2)', (- 2)'+3.

3 Find the general solutions of the following difference equations
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(i) x(t + 2) + 4x(t) = 8(2)'cos(?;z72);

(ii ) x(t + 2} + 8x{t + l) + lx{t) = t(2)'.

2.7 Equations with constant coefficients

We consider equation (2.6.2) when pi are constant

x(t + k) + p,x(t + k - l ) +  + pkx(t) = 0, (2.7.1)

where pk * 0. Suppose that solutions of equation (2.7.1) are in the form p'.

Substituting p' into equation (2.7.1) yields

/? + ^yO +  + pk =0. {Z.I.2)

This is called the characteristic equation of equation (2.1.7) and its roots p are

called the characteristic roots.

Case a: If the characteristics roots {px, p2,  pk) are distinct, then it can be

shown that the set

is a fundamental set of solutions. Hence, the general solution of equation (2.7.1) is

Example (the Fibonacci sequence and the rabbit problem) The problem appeared
in 1202 in a book about the abacus, written by the famous Italian mathematician
Leonard di Pisa, known as Fibonacci. The Fibonacci problem is as follows: how
many pairs of rabbits will there be after one year if starting with one pair of mature
rabbits, if each pair of rabbits gives birth to a new pair each month starting when it
reaches its maturity age of two months? If x(t) is the number of pairs of rabbits at
the end of t months, then the recurrence relation that represents this model is given
by the second-order linear difference equation
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x{t + 2)=x(t + l)+x(t), * (0 )= l , J C ( 2 ) = 2, 0 <f <10.

This equation is a special case of the Fibonacci sequence

x(t + 2) = x(t + i)+x(t), x (0 )= l, J C ( 2 ) = 2, t>0.

The characteristic equation is

p2 - p - 1 = 0.

The characteristic roots are

The general solution is

f i VsY f i VsY
= a, — + — + a, -!!— .

\2 2) \2 2)

Substituting the initial conditions into the general solution leads to ax 2 =  V5.

Case b: Suppose that the distinct characteristic roots are /?,, p2,---, pr with

multiplicities mx, m2,  mr. Then, the general solution of equation (2.7.1) is

given by

ai2t
2

Example Solve

x(t + 3) - 3x(t + 2) + 16x(? + l) - 12x(?) = 0,

JC(0) = 0, jc(l)=l , x ( 2 ) = l.

It is straightforward to check that the characteristic roots are
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A = Pi= 2> P-i = 3-

The general solution is

x(t)=ao2' + ajl1 + a33'.

Substituting the initial conditions into the general solution, we solve

a0 =3, a, =2, a3 = - 3 .

The solution of the initial value problem is

x(t) = 3(2)' + t2M - 3M.

Example Kobayashi and Anders have agreed to bet one dollar on each flip of a fair
coin and to continue playing until one of them wins all of the other's money. What
is the probability that Kobayashi will win all of Anders' money if Kobayashi starts
with a dollars and Anders with b dollars?

To analyze this game, we denote x(t) the probability that Kobayashi will win

all of Anders' money if Kobayashi currently has t dollars. Let A = a + b be the

total amount of money available to the players. Note that x(o) = 0 because

Kobayashi has no money left, and X(A) = 1 because Kobayashi has all the money.

Moreover, if

1 < t < A - 1,

then Kobayashi has a 0.5 probability of winning one dollar on the next flip (raising
the amount of money he has to t + 1 dollars) and 0.5 probability of losing one
dollar on the next flip (reducing the amount of money he has to t - 1 dollars.
Hence

x{t) = 0.5x(t + l) + 0.5x(t - l), 1 < t < A - 1.

Rearrange the above equation

x(t + l) - 2x{t) + x(t - l) = 0, 1 < t < A - 1.
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The characteristic equation

p2 - 2p + 1 = 0,

has a double root, p]2 = 1. Hence, the general solution is

From x(o) = 0 and X(A) = 1, we determine ax = 0 and ax =1/ A. We thus

obtain

When Kobayashi has a dollars, the probability of Kobayashi's winning the
game is

x(a) = - ,
a + b

and the probability of Anders' winning the game is

a + b a + b

Case c: Suppose that the characteristic equation has complex roots. For simplicity,
we are concerned with

x(t + 2) + pxx{t + l) + p2x{t) = 0.

The complex roots are given by

A.2 =  W-

It can be shown that the general solution is given by
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x(t) = Ar' cos(fft - a),

where v4 and a> are arbitrary constants and

We have been concerned with finding solutions of linear difference equations.
Sometimes nonlinear difference equations can be transformed to linear ones. We
discuss some types of nonlinear equations transformable to linear equations.

Example (equations of Riccati type) Consider

x(t + lM O + P(f)x{t + l) + qif)x(t) = 0. (2.7.3)

Introduce z(t)=\lx(t). Equation(2.7.3)becomes

1 = 0.

For the nonhomogeneous equation

x(t + l)x{t) + p(t)x(t + 1) + q(t)x(t) = g(t),

we introduce

The above equation becomes

z(t + 2) + {q(t) - p{t + \))z{t + l) - {g{t) + pif)q{t))z{f) = 0.

Consider the Pielou logistic equation
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Under transformation x{t) = \l z{t), this equation becomes

a z(t + l) = z(t) + p.

Example (equations of general Riccati type) Consider

{2.1 A)
a3{x)x{t)+a,{x)

where

a3{x)*0, al(x)aA{x)-a2{x)a2(x)*Q, t>0.

To solve this equation, let

Under this transformation, equation (2.7.4) becomes

y(t + l) + p,{t)y(t + l) + p2(t)y{t) = 0,

where

(,) s _ OikM + $ + PiiM + $
ait)

Consider

Using the transformation
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3x (,)+2=i^J) ,

we see that the equation becomes

Example Homogeneous difference equation of the type

Use the transformation

to convert such an equation to an equation in z(t).

Exercise 2.7
1 Introduce the symbol Ekx(t) = x(t + k). Find the general solutions of the
following difference equations

(i) *(/ + 2) - \6x{t) = 0;

(i i)(£-3)2(£2+4>(/)=0;

(iii)(£2 +2fx{t)=0.

2 Solve the following difference equations

(i) x2(t + l) - (2 + t)x(t + l)x(t) - 2tx2(t) = 0;
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2.8 Limiting behavior

For simplicity, we first examine limiting behavior of two-dimensional difference
equations. We now examine limiting behavior of solutions of the following second-
order linear difference equation

x(t + 2)+ pxx{t + l) + p2x(t) = 0. (2.8.1)

Suppose that px and p2 are the two characteristic roots of the equation.

Following the previous section, we have the following three cases.

Case a: If the characteristic roots, px and p2, are distinct, then the general solution

of equation (2.8.1) is

x{t)=a,p{ + a2p'2.

Without loss of generality, assume \px > \p2\. Then

Since p2/p1\<l,  it follows that

— I -> 0 as t -  ̂ oo.

Consequently
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limx(;) = lima,/?,'.

There are six different situations that may arise depending on the value of /?,.

(1) If/?, > 1, the sequence {a,/?,'}  diverges to °° (unstable system).

(2) If /?, - 1, the sequence {a,/?/}  is a constant sequence.

(3) If 0 < /?, < 1, the sequence {a,/?,'}  is monotonically decreasing to zero

(stable system).

(4) If -1 < /?, < 0, the sequence {a,/?,'}  is oscillating around zero (i.e., altering

in sign) and converging to zero (stable system).

(5) If /?, = - 1 , the sequence {a,/?,') is oscillating between two values ax and

a2.

(6) If /?, < - 1 , the sequence \axp[}  is oscillating but increasing in magnitude

(unstable system).

Case b: p = px = p2. The general solution of equation (2.8.1) is given by

x{t) = {ax+a2t)p'.

If  |/?| > 1, the solution x(t) diverges either monotonically if p > 1 or by

oscillating if p < - 1 . However, if |/?| < 1, then solution converges to zero.

Case c: Suppose that the characteristic equation has complex roots, denoted by

p l 2  ifi.

The general solution is given by

x{t) = Ar' cos(fft - a),

where A and a are arbitrary constants and

J§_
a"  [a
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(1) If r > 1, the solution x(t) is oscillating but increasing in magnitude (unstable

system).

(2) If r = 1, the solution x(t) is oscillating but constant in magnitude.

(3) If r < 1, the solution x(t) is oscillating but decreasing in magnitude (stable

system).

Example (gambler's ruin) A gambler plays a sequence games against an adversary
in which the probability that the gambler wins $1.00 in any given game is a known
value q, and the probability of his losing $1.00 is 1 - q, where 0 < q < 1. He
quits gambling if he either loses all his money or reaches his goal of acquiring N
dollars. If the gambler runs out of money first, we say that the gambler has been
ruined. Let p(t) denote the probability that the gambler will be ruined if he
possesses t dollars. He may be ruined in two ways. First, winning the next game;
the probability of this event is q; then his fortune will be / + 1, and the probability

of being ruined will become p(t + l). Second, losing the next game, the probability

of this event is 1 - q, and the probability of being ruined is pit — l). Applying the

theorem of total probabilities, we have

We have

p{t + 2)--p{t + l)+  X-^3-p{t) = 0 , t = 0,l,-,N
q q

with p(o) = 1 and P(N) = 0. The characteristic equation is

p2 - I p + 1 ^ 1 = 0, t = 0,l,-,N.
q q

The two characteristic roots are

\-q
A = -» Pi =1-

q

In the case of q * 1 / 2, the general solution is
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p\t) , ^ r » i

\-q q

In the case of q = 1 / 2, the two characteristic roots are equal. In this case,

p(x) = a, + a2t.

As p(o) = 1 and p(./V) = 0, we have

p{n)=l--.

For instance, if one starts with $4 dollar and the probability that one wins a
dollar is 0.3, and one will quit if one runs out of money or has a total of $10. With

n = 4, q = 0.3, N = 10,

the probability of being ruined is p(4) = 0.994.

We now examine nonhomogeneous difference equations in which input is
constant. We have

x(t + 2) +  Plx(t + l) + p2x(t) = b, (2.8.2)

where b is a non-zero constant. A particular equation (equilibrium in this case) x*
is determined by

x + pxx + p2x = b.

That is

x =

1 + A + Pi

Consequently, the general solution of equation (2.8.2) is given by
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x{t) = xc(t)+x, (2.8.3)

where xc(t) is the general solution of the corresponding homogeneous equation

(2.8.1). From formula (2.8.3), we conclude that x(t) —» x* if and only if xc{t) —>  0

as t —> °o. Furthermore, x{t) oscillates around x*  if and only if xc(t) oscillates

about zero.14 Summarizing the above discussions, we obtain the following theorem.

Theorem 2.8.1. The following statements are held.

(1) All solutions of equation (2.8.2) oscillate about x* if only if none of the
characteristic roots of equation (2.8.1) is a positive real number.

(2) All solutions of equation (2.8.2) converge to x* as t —>  °° if and only if

where px, p2 are the characteristic roots of homogeneous equation (2.8.1).

The following lemma provides criteria for stability based on the values of the
coefficients px and p2.

15

Lemma 2.8.1. The conditions

1 + pl + p2 > 0, 1 - px + p2 > 0, 1 - p2 > 0, (2.8.4)

are necessary and sufficient conditions for the solution of equations (2.8.1) and

(2.8.2) to be asymptotically stable (i.e., all solutions converge to x*).

Example (the Samuelson multiplier-accelerator interaction model) Consider the
national income model. The national income Y(t) at year t is equal to the sum of

consumer expenditure C(t), private investment, l(t), and constant government

expenditure, G. That is

14 We say x{t) oscillates about x' if x{t) — x* alternates sign, i.e., if x(i)>x', then

x(t + l) < x'.
15 The proof is referred to Elaydi (1999: 82).
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Assume that consumption expenditure is proportional to the national income
Y(t -1) in the preceding year, that is

C(t) = aY(t - l),

where a ( 0 < a < l ) is the marginal propensity to consume. Private investment is

proportional to the increase in consumption, that is

C{t-1)],

Substituting this equation and

C(t) = aY{t - l)

into

yields

Y(t + 2) - «(l + 0)Y(t + l) + a/3Y(t) = 1.

The equation has a unique equilibrium state Y* given by

\-a

Applying lemma 2.8.1 to the problem, we conclude that if a < 1 and afi < 1, the

equilibrium point is asymptotically stable. The national income Y(t) fluctuates

around the equilibrium state Y* ifandonlyif

Ap

As we can explicitly solve the problem, we can examine its stability properties.
Figure 2.8.1 shows the stability properties of the Samuelson multiplier-
accelerator interaction model.
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unstable; no cycle

73

explosive
stepped fluctuation

damped stepped fluctuation

1 2 3

Figure 2.8.1: Stability of the multiplier-accelerator interaction model

We now consider the k th-order scalar equation

x(t + k) + plx(t + k - l) + p2x(t + k - 2) +  + pkx(t) = 0, (2.8.5)

where pt 's are real numbers and pk * 0. The characteristic equation of equation

(2.8.5) is

Pk = 0. (2.8.6)

As discussed in section 2.7, if the distinct characteristic roots are

/?,, p2,  pr with multiplicities mu m2,  mr, then, the general solution of

equation (2.7.1) is given by

a,2t
2  ai

It can be shown that the zero solution of equation (2.8.5) is asymptotically
stable if and only if \p\ < 1 for every characteristic root p. Furthermore, the zero

solution of equation (2.8.5) is stable if and only if |/?| < 1 and those characteristic

roots p with |p| = 1 are simple (i.e., not repeated, mi =1). On the other hand, if
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there is a multiple characteristic root with |/?| = 1, then the zero solution of

equation (2.8.5) is unstable. We see that it is important to judge whether the
characteristic roots fall inside the unit cycle. The Schur-Cohn criterion gives an
answer.

Before introducing the criterion, we define the inners of a matrix A = [a,j \.

The inners of a matrix are the matrix itself and all the matrices obtained by omitting
successively the first and last rows and the first and last columns. For instance, the
inners of [a,-, ]3x3 consists of [a;> j 3 x 3 and the scalar a22. For l«^J , they are

-*31 a32 a:33

"4 1 "4 2 "4 3

a,, a,, a,, a.'54

A matrix A is said to be positive innerwise if the determinants of all of its
inners are positive.

Theorem 2.8.2. (the Schur-Cohn criterion16) The zeros of characteristic equation
(2.8.6) lie inside the unit cycle if and only if we have: (i) p(\) > 0; (ii)

(- i f p(-1) > 0; and (iii ) the (k -l)x(k-l) matrices

4-i =

1 0

A 1

Pk-,

Pk-2 Pk-3

are positive innerwise.

Example For the equation

x(t + 2) + pYx(t + l) +

0

0

A 1_

p2x(t) =

0

0

0

_A

0

0

Pk

Pk-X

... o
 Pk

 A

Pk

Pk-i

A

A

16 See Jury (1964).
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the Schur-Cohn criterion is given by

p(\) = \ +  P]+p2>0,

(-lfp(-l) = l-Pl+p2>0,

A? = 1  p2 > 0.

We thus conclude that the zero solution is asymptotically stable if and only if

| A | < ! + Pi < 2-

Okuguchi and Irie show that the necessary and sufficient conditions for a third
order difference equation

x(t + 3) + pxx{t + 2) + p2x(t + l) + p3x(t) = 0,

are given by17

1 + A + Pi + Pi > 0,

l-Pi+P2-Pi>0, (2-8-7)

1 - Pi + PiPi ~ p] > 0.

Example (inventory cycles) The economy has a single commodity which can be
used either for consumption and investment. The basic equation of Metzler
equation is18

where Y(t) is the output in period t, u{i) is output to be currently sold according

to producers' expectations on sales, Q(t) is the desired level of inventories,

Q(t - l) is the inventory level of the previous period, and /0 is exogenous output

of investment goods. Assume that producers wish to maintain a constant ratio
between inventories and sales (the inventory accelerator). Producers apply this ratio
in forming the desired level of inventories as follows

17 See Okuguchi and Irie (1990).
18 Metzler (1941) proposed one of seminal models for explaining inventory cycles. The
model here is referred to Gandolfo (1996: 95-98).
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= W{t-\),

where & is a constant. In any period t, the actual inventory level Q{t) is equal to

the level that producers had planned for that period Q(t), minus the unintended
variation in inventories occurring because of the difference between realized and
expected sales, C(t) - U(t), i.e.

Q(t)=Q{t)-(c(t)-U{t)).

Producers form their expectations on sales as follows

U(t) = C(t - \) + a(c{t-1)-C{t-2%

where C(t) is the current consumption level. No lag is assumed to exist between
current consumption and current income. The consumption function is thus given
by

C{t)=bY(t), Q<b<\,

where b is constant. We have established the model. After simple substitutions, the
motion of the system is given by

Y(t) - b[(\ + k)(\ + a) + \}Y(t -1) + b{l + k){l + 2a)Y(t - 2)

A particular solution is given by

\-b

Applying conditions (3.8.7) to this problem, we see that the stability conditions are
given by

3 - b{2k + 3) > 0,

(l + Jfc)(2 + k)ab2 - (l + jfc)(l + 2a)b + 1 > 0.
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Exercise 2.8
1 Determine the equilibrium points, their stability, and oscillatory behavior of the
solutions of the following equations

(a) x(t + 2) - 2x{t + l) + 2x(t) = 1;

(b) x{t + 2) + x(t + l) + Q.Sx{t) = - 5.

2 Determine the limiting behavior of solutions of the following equation

x{t + 2) - aj3x{t + l) + a/3x{t) = ad, a, 0, 6 > 0,

if (i) a/3 = 1; (ii) a/3 = 2; and (i) or/3 = 0.5.

3 Show that the zero solution of

x(t + 3) + pxx{t + 2) + p2x(t + l) + p3x(t) = 0,

is asymptotically stable if and only if

|/7, +pi\<l  + p2, \p2 - \ 1 ]





Chapter  3

One-dimensional dynamical
economic systems

This chapter applies the concepts and theorems of the previous chapters to analyze
different models in economics. Although the economic relations in these models
are complicated, we show that the dynamics of all these models are determined by
one-dimensional difference equations. Section 3.1 examines a traditional model of
interactions between inflation and unemployment. The model is built on the
expectations-augmented version of the Phillips relation and the adaptive
expectations hypothesis. We solve the model and show that the characteristic
equation may have either: (1) distinct real roots; or (2) repeated real roots; or (3)
complex roots. Section 3.2 introduces the one-sector growth model. The model
is different from most of the growth models in the literature in that it treats
saving as an endogenous variable through introducing wealth into utility
function. We demonstrate that the OSG model has a unique stable equilibrium.
Section 3.3 generalizes the OSG model proposed in section 3.2. Section 3.4
deals with the overlapping-generation (OLG) model - one of the most popular
dynamic models among economists. The model is essential for the reader to
approach some of the models in this book as well. Different from the OSG
models in the previous two sections, in the OLG analytical framework, each
person lives for only two periods. This is the main shortcoming of the model;
nevertheless, its popularity is sustained partly because this framework often
simplifies complicated analytical issues. Section 3.5 introduces a growth model to
demonstrate persistence of inequality. In this model, the evolution of income
within each dynasty in society is governed by a dynamical system that generates
a poverty trap equilibrium point along with a high-income equilibrium point.
Poor dynasties, those with the income at the threshold level, converge to a low
income steady state, whereas dynasties with income above the threshold
converge to a high income level. Section 3.6 studies a model to provide insights

79
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into processes of Schumpeterian creative destruction. Section 3.7 is concerned
with interactions between human capital accumulation, economic growth, and
inequality. The model exhibits three possible equilibrium points: a low-growth trap,
a pair of equilibrium points in the intermediate and advanced development phase. If
these equilibrium points exist, it can be shown that the poverty trap is stable, while
in development phase, the first equilibrium point will be unstable and the second
one stable. Section 3.8 studies an urban dynamic model to highlight how the
trade-off between optimal and equilibrium city sizes behaves when human
capital externalities are introduced into urban dynamics. Section 3.9 introduces a
growth model of monetary economy. The model addresses the Tobin effect and
the existence of monetary economy. Section 3.10 introduces endogenous time
distribution between leisure and work into the OSG model.

3.1 A model of inflatio n and unemployment

We now consider an interaction of inflation and unemployment.1 Denote the rate of
inflation p(t), which is defined by

P(t) '

where P(t) is the price. The expectations-augmented version of the Phillips
relation assumes the following relationship between the rate of inflation, the
unemployment rate, u(t), and the expected rate of inflation, m{t)

p{t)=a-bU(t)+h7r(t), (0 < h < 1), (3.1.1)

where a, b, and h are positive parameters. The adaptive expectations hypothesis
establishes a rule of the expected rate of inflation as follows

n{t + \)-7t{t)=j{p{t)-7z(t)), 0 < ; < l , (3.1.2)

which j is a parameter. The equation states that if the actual rate of inflation

exceeds the expected rate of inflation, then the expected rate of inflation tends to
rise.

Denote the nominal money balance by M\t) and its rate of growth by

1 The model is based on Chiang (1984: 591-596).
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/ iX M(t + \)-M(t)
m(t + 1) = i '-pr )J-.

Assume that m is constant over time. The model contains a feedback from
inflation to unemployment

U(t + l)-u(t) = -k(m-p(t + l)), k>0. (3.1.3)

The model consists of three equations, (3.1.1), (3.1.2), and (3.1.3), with three
variables, p, U, and n. We now show that the dynamics can be described by a

second-order linear difference equation.
From equation (3.1.1), we get

P{t + I ) - P{t) = - b{u(t +1) -1/(/)) + h{4 +1) - 4)) {

= kb(m - p{t + l)) + hj{p(t) - 4%

where we use equations (3.1.2) and (3.1.3). To eliminate 7r(t) from equation

(3.1.4), we observe from equation (3.1.1)

hx(t) = pif) ~ a + bU{t).

Substituting this into equation (3.1.4) yields

(l + kb)p{t + l) - (l - j(\ - h))p(t) + bjUit) = kbm + aj. (3.1.5)

From equation (3.1.5), we get

- (1 + kb)P(t + 2) + (2 - Xl -h) + kb)p{t + l) - (l - j(\ - h))p(t).

Inserting equation (3.1.3) into this equation finally yields the equation involving
only p

p{t + 2) + alP(t + l) + a2p{t) = c, (3.1.6)

where
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2 l + kb

_ kbjm
C = l + kb'

The fixed point of equation (3.1.6) is given by

p = = m.
1 + ax + a2

The equilibrium rate of inflation is exactly equal to the rate of monetary expansion.
The characteristic equation is

p2 + axp + a2 = 0.

We have

a\ > (<) Aa2

if and only if

(2 - j(l  -h)+{\- j)kbf > (<) 4(1 - j{\  - h)\\ + kb).

It is straightforward to check that there may arise either: (1) distinct real
roots (e.g., h = 0.2, j = 1/3 and bk = 5 => a, = 31/5 and a2 = 5 ); or (2)

repeated real roots (e.g., h = \, j = 1/3, and kb = 3 => a\ = 4a2) ; or (3)
complex roots (e.g., h = 1, j = 1 => ax = 2 and a2 = 1 + bk > 1). Figures
3.1.1 and 3.1.2 depict respectively case (1) and case (3) with the following
specified values of the parameters

m = 0.06, b = 0.3, a = 0.05,

on the p-U-plane. The reader is encouraged to carry our stability analysis of
the model in detail.
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Figure 3.1.1: Different real eigenvalues
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Figure 3.1.2: Complex eigenvalues

3.2 The one-sector growth (OSG) model

We now represent a one-sector growth (OSG) model in discrete time. The economy
has an infinite future. We represent the passage of time in a sequence of periods,
numbered from zero and indexed by t = 0, 1, 2, . . .. Time 0, being referred to the
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beginning of period 0, represents the initial situation from which economy starts to
grow. The end of period t - 1 coincides with the beginning of period t; it can also
be called time t. We assume that transactions are made in each period.

The model assumes that each individual lives forever. The population grows at
rate n; thus

N(t) = (1 + ri)N(t - l).

Each individual supplies one unit of labor at each time t. Production in period t

uses inputs amount K(t) of capital and amount N(t) of labor services. It supplies
amount Y{f) of goods. Here, production is assumed to be continuous during the

period, but then use the same capital that existed at the beginning of the period.
The production function is

F(K(t),N(t))= AKa{t)Nfi(t), a + p = \, a,j3>0.

The production function has constant returns to scale. Markets are competitive; thus
labor and capital earn their marginal products, and firms earn zero profits. Let us
assume that depreciation is proportional to capital and denote the rate of
depreciation by Sk. The total amount of depreciation is equal to SkK\t). The real
interest rate and the wage of labor are given by

aF(t)

There is some initial capital stock Ko that is owned equally by all individuals

at the initial period. We write the marginal conditions in capital intensity

r(f)+Sk=aAk->(t),

)

where k(t) = K.{f)lN(t).

We now model behavior of consumers. Consumers obtain income in period t
from the interest payment, r(t)K{t), and the wage payment, w\t)N{t)
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Y(t)=r(t)K(t)+w(t)N(t).

We call Y(t) the current income. The total value of wealth that consumers can sell

to purchase goods and to save is equal to K(t). The gross disposable income is

equal to

Y{t)=Y{t)+K{t).

The gross disposable income is used for saving and consumption. In period t,

consumers would distribute the total available budget among savings, S{t), and

consumption of goods, C\t). The budget constraint is given by

C(t)+s(t)=Y(t).

We assume that utility level, ll(t), that the consumers obtain is dependent on

the consumption level of commodity, C(t), and the net saving, S(t), in period /.

We use the Cobb-Douglas utility function to describe consumers' preference

in which £ and X are respectively the propensities to consume goods and to own

wealth. Households maximize utility subject to the budget constraint. We solve the
optimal choice of the consumers as

C(t)=t;Y(t), s(t)

Amount K.(t + l) in period t is equal to the savings made in period t, i.e.

K(t + l)=S(t).

Since the initial value Ko and the labor force N(t) are exogenously given, the

above equation allow us to calculate recursively all the K(t). Capital K{\) is

obtained from Ko and No; K(2) is obtained from K(l) and JV(l),..., etc. Then

we directly calculate r{t), w(t), s(t), and, c(t) from the related equations.
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We now rewrite the dynamics in per capita terms. With S(t) = AY(t) and

Y{t)=AKa{f)Nl)(t)+SK(t),

where S = 1 - 5k, the capital accumulation,

K{t + l)=S(t),

is given by

K(t + l) = AAKa{t)NP + ASK{t).

Dividing the above equation by N yields

Substituting

\ + n

into the above equation, we have

(l + n)k(t + l) = XAka if) + XSkit). (3.2.2)

This is a nonlinear difference equation in k(t). We may rewrite this equation

as

*( / + l) = V{k(t)) s (Aka{t) + <Sfc(f))-
'\ + n

For this difference equation to be in steady state, we have

k(t + l) = k(t) = k'.
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Substituting this condition into equation (3.2.2) yields

(l + n - AS)k* = AAk'a.

The equation has a unique positive solution

\\ + n-XSy

It is straightforward to show

- a + — < a + p = 1.

We conclude that the unique equilibrium point is stable. Figure 3.2.1 shows
the relation between kit + l) and k{t), which we express by

The slope of ^{kifj) is infinite at k(t) = 0 and diminishes toward a constant

18 < 1 + n.

The function ^(k^)) crosses the 45 -degree line at the steady-state value, k*. The
capital stock monotonically approaches its unique equilibrium point as time passes.
The equilibrium point is stable because the curve ¥(&(?)) is always upward
sloping, and it crosses the 45 -degree line from above.

Summarizing the discussions in this section, we obtain the following theorem.

Theorem 3.2.1. Given the Cobb-Douglas production and utility functions, and a
constant rate of population growth, the capital-labor ratio converges monotonically
to a unique positive equilibrium point. The unique equilibrium point is stable.
Moreover, the aggregate capital stock and real aggregate output converge to the
balanced exponential growth paths proportional to the population growth.
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k{t +

Figure 3.2.1: Dynamics in the OSG model

3.3 The general OSG model

We now generalize the OSG model in discrete time proposed in section 3.2 by
replacing the Cobb-Douglas production and utility fiinctions with more general
production and utility functions.

As in section 3.2, population grows at rate n; thus

Each individual supplies one unit of labor at each time t. Production in period t
uses inputs amount K[t)  of capital and amount N\t) of labor services. The
production function is

The marginal conditions can be expressed by
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At)=f{k(t))-k(t)f'(k,),
(3.3.1)

where

The consumer is to choose his most preferred bundle (c(t), s(t)) of

consumption and saving under his budget constraint. The utility maximizing
problem at any time is defined by

We require U a C2 function, and satisfy Uc > 0 and Us > 0 for any

(c(4 s(t)) > 0. Construct the Lagrangian

L(c(t), s(t), 1(0) = U(c(t), ,(,)) + 1(0(^(0 - c{t) - s(t)).

The first-order condition for maximization is

Uc=Us=A(t),

j>(0-c(0-*(0=o.

The bordered Hessian for the problem is

0 1

1 Ucc

1 £/„

= 2£/ - [/„  - Ucs cc

(3.3.2)

The second-order condition tells that given a stationary value of the first-order

condition, a positive \H\ is sufficient to establish it as a relative maximum of U.

Taking derivatives of equations (3.3.2) with respect to y, yields
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dc ds

dy dy

We solve these functions

ds _ Usc - Ucc

dy 2UCS - Uss - Ucc'

dc _ Usc - Uss

dy 2UCS - Uss - Ucc"

We see that

. ds . . dc ,
0< — < 1, 0< — <1,

dy dy

in the case of Usc > 0 under the second-order condition of maximization. We

denote an optimal solution as function of the disposable income

(c(t],s(t)h(c(y(t)\s(y(t)))-

The capital accumulation equation is given by

K(t + l)=s{y{t))N{t).

Dividing the two sides of this equation by ./V(f + l) yields

This mapping controls the motion of the system. A stationary state for the

growth progress is a capital-labor ratio, k', that satisfies

k = «?L. (3.3.3)
1 + n
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Define

S(y\ - 1, k>0. (3.3.4)
+ n)k

When k is approaching zero, y (= / (£) + <5ifc) is also approaching zero, and

hence s(y) is coming near zero. As 0 < s'(y) < 1 and f'(k) ->  oo as k —> 0

When ^ is approaching positive infinity, y is coming to positive infinity. As

0 < s\y) < 1, f(k) -  0 as k -* + oo,

we have

lim «» = ̂ « y ( + » ) ^) < L (3.3.6)
k^^(\ +  n)k (l + n)

Taking derivatives of equation (3.3.4) with respect to k yields

s(y)

We now show that dQ>l dk < 0 for k > 0. To prove this, we use ds I dy < 1

and the inequality

which also guarantees w > 0. By equation (3.3.3) and the definition of y, we
have

8k) _ s'(y)y ; t

( > ( )
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where we use s'(y) < 1 and yl s(y) < 1 to guarantee the right inequality. We thus

conclude d&ldk < 0 for k > 0. The equation,

for k > 0 has a unique solution because of equations (3.3.5), (3.3.6), and

d®l' dk < 0. We now demonstrate that the unique stationary state is stable.

For the steady state to be stable, the following conditions must prevail

As the steady-state values, k* and y* are positive, s'(y') and f'(k') are positive.
The left inequality always holds. To prove the right inequality, we use
dsldy <1 and the inequality

>

(which also guarantees w, > 0). By equation (3.3.3) and the definition of y, we

have

s'(y )(f{k')lk' +S)_ s\y )y Ik' = s\y)y

1 + n 1 + n 1 + n s{y*)

Since s'(y) < 1 and j)/s( j))<l , we see that the right inequality of the

inequalities is satisfied. We thus conclude that the conclusions for the Cobb-
Douglas production and utility functions are also held for the general production
and utility functions. Summarizing the discussions, we obtain the following
theorem.

Theorem 3.3.1. Given a production function that is 'neoclassical' and a utility
function that is a C2 function, and satisfies Uc > 0 and Us > 0 for any
(c,, s,)> 0. Let the bordered Hessian be positive for any nonnegative. Then the
capital-labor ratio converges monotonically to a unique positive steady state. The
unique stationary state is stable.
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3.4 The overlapping-generations (OLG) model

This section introduces the model of finite-horizon households.2 It is common to
assume, in the OLG modeling framework, that each person lives for only two
periods. People work in the first period and retire in the second. If one thinks of
reality, one period perhaps last over 30 years. As we neglect any possibility of
transfers from government or from members of other generations, people consume
in both periods; they pay for consumption in the second period by saving in the first
period. The cohort that is born at time t is referred to as generation t. Members of
this generation are young in period t and old in period t + 1. At each point in time,

members of only two generations are alive. Each person maximizes lifetime utility,
which depends on consumption in the two periods of life. It is assumed that people
are born with no assets and don't care about events after their death; they are not
altruistic toward their children, and therefore, do not provide bequests or other
transfers to members of the next generations. Their lifetime utility is specified as

where 6 > 0, p > 0, and c^t) is consumption of generation /', i = 1, 2. Each
individual supplies one unit of labor inelastically while young and receives the
wage income w(t); he does not work when old. Let s, stand for the amount saved
in period t. The budget constraint for period t is

cXt)+s{t)=w(t). (3.4.2)

Let r(t +1) denote the interest rate on one-period loans between periods t

and f + 1. In period t + 1, the individual consumes the savings plus the accrued

interest

4 + l )=( l + r(( + l ) ) 4 (3.4.3)

2 The model was initially examined by Samuelson (1958) and Diamond (1965). The
model here is based on Blanchard (1985) and Barro and Sala-i-Martin (2004) in section
3.8. Some extensions of the model are referred to de la Croix and Michel (2002).
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For each individual, w(f) and r(t +1) are exogenous; he chooses c^t) and

s(t) (and c2M) subject to equations (3.4.2) and (3.4.3). Substitute equations (3.4.2)

and (3.4.3) into the utility to delete cx(t) and c2(t + l)

1-0

The first-order condition with respect to s(t) yields

s~e(tXl + r(t + l)J'0 = (l + p){w(t) - s{t))~e, (3.4.4)

which also implies, under equations (3.4.2) and (3.4.3)

c,(t) { 1 + p

Solve equation (3.4.4)

s(t) = - r ^ j y (3-4-6)

where

We see

8s(t) _(\-0

1

s. =

<p{

We have
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f>o if e <i,
sr | = 0 i / (9 = 1,

[
Firms' behavior is the same as in the OSG model in the previous section. They

have the neoclassical production function

where

M Y(t) , M Kit)
(t) =  jfc(f) = — U

where N{t) is the number of young people, Y(t) is the total output, K(t) is the

total capital. The marginal conditions are

r( t) = f'(k(t))-Sk,

w(t) = f(k(t))-k(t)fik(t)),
 ( 3 A 8 )

where Sk is the depreciation rate of capital.

In the closed economy, households' assets equal the capital stock. Aggregate
net investment equals total income minus total consumption

K(t + l) - Kit) = w(t)N{t) + r(t)K(t) - c,{t)N{t) - c2{t)N{t - l). (3.4.9)

Substituting equation (3.4.8) into equation (3.4.9), we get

K(t + l) - Kit) = F(Kit\ Nit)) - Cit), (3.4.10)

where

C(t) = cl{t)N(t)+c2{t)N(t-\).

From equations (3.4.9), (3.4.2), and (3.4.3), we obtain
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K{t + 1) = s(t)N{t) + (1 + r{t))(K(t)  - s^N^t)).

Assume that the economy starts with the condition

which is equivalent to K(2) = S(I)N(I) with equations (3.4.9) and (3.4.2). Hence,

the above equation becomes

K{t + l)=s{t)N{t),

which means that the savings of the young equal the next period's capital stock. We
can write this equation in per capita terms

1 + n

Substituting s(t) in equation (3.4.6) into the above equation yields

in which we use the definition of <p(t + l). hi the case that the utility function is

logarithmic ( 6 = 1), it can be shown that equation (3.4.11) becomes

The analysis of equation (3.4.12) can be similarly conducted as for equation
(3.2.2). The system has a unique equilibrium point and it is stable (check!).

Exercise 3.4.1
1 Discuss the existence of equilibrium point and find stability conditions when
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3.5 Persistence of inequality and development

This section introduces a growth model proposed by Moav to demonstrate
persistence of inequality.3 In this model, the evolution of income within each
dynasty in society is governed by a dynamical system that generates a poverty
trap equilibrium point along with a high-income equilibrium point. Poor
dynasties, those with income at the threshold level, converge to a low income
steady state, whereas dynasties with income above the threshold converge to a
high income steady state.

Consider a small open overlapping-generations economy that operates in a
one-good world. In each period the economy produces a single homogeneous
product that can be used either for consumption or for investment. Production
occurs within a period according to a concave, constant-returns-to-scale
technology. The output produced at time t uses capital K(t), and human capital
efficiency units, H[t), as follows

Y{t) = F{K{t),H(t)),

where investment in physical and human capital is made one period in advance.
Assume that the world capital rate of return remains constant, denoted by R.
Unrestricted international capital movement yields

FK{K{t),H(t))  = R. (3.5.1)

From the properties of the production function, we know that the wage per unit
of human capital, w, is uniquely determined given the rate of return to capital,
R, and is therefore, constant over time.4 Like in the previous section, individuals
live in two periods. Individuals, within as well as across generations, are
identical in their preferences and their technology of human capital formation.
They may differ in their initial wealth, inherited from their parents. Individuals
cannot borrow in order to finance investment in human capital. Individual born
in period t allocates her second life period income, /,(? + !), between

3 This section is based on Moav (2002). See also other approaches by, for instance, Galor
and Zeira (1993), Abe (1995), Benabou (1996), Durlauf (1996), Piketty (1997), to issues
related to development and distribution. Aghion and Bolton (1997), Aghion and Howitt
(1998) and Matsuyama (2000) also provided some interesting insights into evolution of
inequality due to "institutional frictions".
4 As R = f'{k), where k = KlH, f = F{k,\), we have k = g{R). Hence, k is

constant. As w = f - Rk, w is constant.
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household consumption, c,(f + l), and a bequest to the offspring, bt(t + l). The

budget constraint is given by

7,(f + l) = c,(/ + l)+*,( f + l). (3.5.2)

Preferences are defined by the utility function

U,{t) = (1 - P)\ogCi{t + 1) + /Hogfc + b,{t + 1)},

where /? e (0, l) and 6 > 0. The optimal transfer of individual /' born in

period t is given by

/ \ / / „ [0 if/,( f + l )<0,
b.(t + l) = bll.lt+  l)) = \ , , v v I (3-5.3)A ; V A " \ p { i { t + \ ) e ) \ s i { t + \ ) > e '

where 0 = 0(l

We now discuss formation of human capital. In the first period of their lives
in period t, individuals devote their entire time for the acquisition of human
capital. Individuals acquire one efficiency unit of labor-basic skills. The level of
human capital of an individual /, ht{t + l), is an increasing concave function of

real resources invested in education, et(t)

It is assumed that the marginal return to human capital, for et (?) < e, is
larger than the marginal return to physical capital, wy > R. We also require that
the income level below which individuals choose a zero bequest, 0, is larger
than the wage rate, w, 6 > w. We also assume that the return to physical capital,
R, is sufficiently low, i.e., fiR < 1. In summary, we assume

0>w>—, PR<\. (3.5.5)
r



3.5. PERSISTENCE OF INEQUALITY AND DEVELOPMENT 99

Under the above constraint, the second life period income, It(t + l), is

uniquely determined by first life period bequest bt(t)

if

From equations (3.5.3) and (3.5.6), the evolution of income within a
dynasty is uniquely determined by

(w if £(/,(*)-<?)<<),
/,(/ + 1) = faif)) = M l + tf(l,(t)- 0)) if J3{lt(t)- 0)e [0, e\

[w{\  +je)+ R{fi{l,{t)-9)-e) if p{lfc)-9)>e,
(3.5.7)

where /((o) is given. We have /,(?) > w for all t. Under equation (3.5.5), from

equation (3.5.7) we conclude that there exists a low income, locally stable,

poverty trap steady state 1 = w because

I,{t + 1) = ?(/,(')) = w, for all /,(*) e [w, e\

It is assumed that the return to human capital, yw, and its potential
magnitude, e, are sufficiently large, such that an individual who receives a
bequest bt (t) = e wil l transfer her offspring a higher bequest

b,{t + l)>b l(t)=e.

This assumption is expressed as

P[w{\ +je)-e]>e. (3.5.8)

This assumption assures a range of income, above the poverty trap range of
income, in which
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From equation (3.5.5), we see that there is a higher income steady state /
(higher than poverty trap) which is determined by

1 -

This steady state is locally stable.

In the dynamic economy, there exists an income threshold, I, I < I < I.

From equation (3.5.7), the threshold is given by

This steady is locally unstable. It can be seen that dynasties with income below

the threshold ( I0(t)< I ) converge to the poverty trap income level, and

dynasties with income above the threshold (I0(t)>I)  converge to the high

income steady state.
In summary, the dynamical system, It(t + l) = ^(//(?)), depicted in figure

3.5.1, generates three steady states, a poverty trap, a high income steady state,
and a threshold income. Dynasties with initial income below the threshold level
converge to a low income steady state; dynasties with income above the
threshold level converge to a high income steady state.

3.6 Growth with creative destruction

The year 1883 is special for the history of the world economy and the history of
economic analysis. The year saw the death of Karl Marx (1918-1883), the birth of
John Maynard Keynes (1883-1946), and the birth of Josephy Alois Schumpeter
(1883-1950). In the Theory of Economic Development published in 1911,
Schumpeter argued that development should be understood as only such changes
in economic life as are not forced upon it from without but arise by its own
initiative, from within. Schumpeter held that successful carrying out of new
combinations of productive services is the essence of this process. Schumpeter's
ideas about development and creative destruction have recently been modeled.
This section represents such a model by Aghion and Howitt.5

'' Aghion and Howitt (1992).
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I = w e i e+eip 7

Figure 3.5.1: Multiple steady states and persistent income inequality

Each innovation consists of a new intermediate good that can be used to
produce final output more efficiently than before. Research firms are motivated
by the process by the prospect of monopoly rents that can be captured when a
successful innovation is patented. But those rents in turn wil l be destroyed by
the next innovation, which will render obsolete the existing intermediate good.
Equilibrium is determined by a forward difference equation, according to which
the amount of research in any period depends upon the expected amount of
research next period. Here, we represent a simplified version of the model by
Solow.6 A period is the time between two successive innovations. The length of
each period is random because of the stochastic nature of the innovation process,
but the relationship between the amount of research in two successive periods
can be modeled as deterministic. The amount of research this period depends
negatively upon the expected amount next period, through two effects. The first
is that of creative destruction. The payoff from research in this period is the
prospect of monopoly rents in the next period. Those rents will  last only until
the next innovation occurs. The expectation of more research next period wil l
discourage research this period. The second effect is that of a general
equilibrium in the labor market. Workers can be used either in research or in
manufacturing. To maintain labor market equilibrium, the expectation of more
research next period must correspond to an expectation of higher demand for
labor in research next period, which implies the expectation of a higher wage

6 Solow (2000).
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rate. Higher wages next period wil l reduce the monopoly rents that can be
gained by exclusive knowledge of how to produce the best products. Thus the
expectation of more research will  discourage research this period.

The model assumes a constant employment. There are three classes of
tradable objects: labor, a consumption good, and an intermediate good. There is
a continuum of infinitely-lived individuals, with identical intertemporally
additive preferences defined over lifetime consumption, and the constant rate of
time preference. The marginal utility of consumption is equal to the rate of
interest. There are three categories of labor: unskilled labor, which can be used
only in producing the consumption good; (skilled) labor, which can be used
either in research or in the intermediate sector; and specialized labor, which can
be used only in research. Each individual is endowed with a unit flow of labor.
Only one final good is produced by the fixed quantity of unskilled labor and
skilled labor x. The production function is

F(t) = Af(x),

where we omit expressing unskilled labor and f{x) is increasing

(/'(* ) > 0) and concave (/"(* ) < 0). The variable A is a technological

variable. Final good is used as numeraire.
Some skilled labor is devoted to R&D. When successful, the innovation is a

new intermediate good that allows a higher value of A and thus makes the old
intermediate good obsolete. Let t stand for the t th innovation (not time). For
convenience of description, we consider that each successful innovation
increases the final output producible with any x by a multiplicative factor y,

i.e.

At) ~7'

Suppose n units of labor are devoted to R&D and innovations arrive
according to a Poisson process with arrival rate An. It should be noted that in
the original model the specialized labor affects the arrival rate. Since the number
of specialized labor is prefixed, we omit mentioning this type of labor. The
probability of an innovation in a given short unit of time equals An, and the
probability of no innovation is equal to 1 - An, and the probability of two or
more innovations is equal to zero. The assumption of the Poisson process says
that the probability of making an innovation of given size depends only on n,
independent of past history of innovation. In fact, innovation is hard to model
even in probability sense.
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The innovating firm acquires a monopoly on the final production that is
useful until the next innovation. Thus the t th innovation brings a negative
externality through killin g the rents of the firm that produced the {t -1) st
innovation and a positive externality through making the (t + 1) st innovation

possible. A successful innovator is a monopoly of the intermediate good and is
faced with a demand curve from the final-goods industry

Af'(x{t))=P{t),

where P(t) is the price of the intermediate good.

We introduce V(t) and n(/) to respectively stand for the expected
discounted rents associated with the t th successful innovation and the constant
flow of rent expected by the / th innovator during the profitable life of the
innovation. Let p stand for the discount rate of the rent expected by the t th

innovator. Then the Fisher equation tells that the interest on the value of
innovation equals the current income plus the expected capital gain, which
equals

An(t)(-V(t))+(l-Mt)H

That is

PV{t) = n{t)-An{t)v{t).

The above equation is solved as

(3.6.1)

The equation says that a large value of n(t) reduces V{t). hi other words,

research, like capital investment, is discouraged by the prospect of future R&D.
Free entry and risk neutrality in R&D guarantees that entry will occur until the
cost of conducting R&D is equal to the expected value of the innovation

w(t)n(t) = An{t)v{t + l) + (l-An{t))O =>  w(t) = XV(t + l). (3.6.2)

Labor market is cleared for every t
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n(t)+x(t) = N, (3.6.3)

where N is the constant volume of employment. Solow holds that equation
(3.6.3) contains a major limitation of this model: "one of the true risks of R&D
is that economic conditions should be cyclically weak during the effective life of
an innovation, so that it turns out to be unprofitable because sales of final
product are poor".

The intermediate good is produced using skilled labor alone. The
production function is specified in such a way that the intermediate product is
equal to the flow of skilled labor used in the intermediate sector. With the one-
to-one technology for producing intermediate good, the monopolist maximizes

P{()x{t) - w{t)x{t) = A{t)f{x{t))x(t) - w{t)x(t). (3.6.4)

Provided that marginal revenue falls with x(t), the optimal x(t) is a

decreasing function of w(t)l A(t), and the best achievable value of Tl(t)/ A(t)

falls as w{t)l A{t) rises. Denote this function by

From equation (3.6.3), nif) is an increasing function of w{t)l A{t). We have

Solving the above equation with w(t)/A(t) as the variable yields

Mt% (3-6.5)

where <p{n(t)) rises in n(t). Now equations (3.6.1) and (3.6.2) imply

p
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Inserting equation (3.6.5) and A(t +1) = yA{t) into the above equation

yields

VA{t)

As Tl(t + \)l A{t + l) is a decreasing function of w(t + l)/ A(t + l) and

w(f + l)/^(? + l) is an increasing function of n(t + l), n(; + \)l A{t + l) falls as

n(t +1) rises. Consequently, the right-hand side of equation (3.6.6) is a

decreasing function of n{t + l), denoted by y/{n(t + l)). Equations (3.6.5) and

(3.6.6) imply

This dynamic equation closes the model. As y/(n(t + l)) falls in the variable,

n(t + l) and 0{n(t)) rises in the variable n{t), we rewrite the above map in the

following form

n{t + l) = h{n{t)\ h'<0. (3.6.7)

An equilibrium point is a solution of

n = h(n).

In general, as shown in figure 3.6.1, there will  be a unique steady state. We

know that n(t) tends to n if \h'(n)\ < 1 for all n and will converge locally if

the following inequality holds

h(n)\<\.

Once we determine the value of n(t), we determine all the other variables in the
system.

We may conduct usual comparative statics analysis with respect different
parameters in the system.
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h(n)

n n
Figure3.6.1: A steady state in the Aghion-Howitt model

3.7 Economic evolution with human capital

This section is concerned with interactions between human capital accumulation,
economic growth, and inequality.7 hi the economy, a competitive final goods sector
produces one homogenous output using human capital and a variety of intermediate
inputs with the following production function

where 5 ( 0 < £ < l ) i sa parameter, D(t) is the number of different intermediate

goods used in production, «(/', t) is the quantity of the ith intermediate good

employed, and H is the skilled adjusted stock of labor in the economy. The
intermediate goods sector is competitive, and each intermediate good requires one
unit of capital, k, to transform a new technology into a new intermediate good.
The symmetric use of inputs implies

n(i,t) = n(t).

7 The model of this section is based on Either and Garcia-Penalosa (2001).
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Hence, the production function becomes

Y(t)=D(t)nl-s{t)Hs{t).

There are two, skilled and unskilled, types of workers. The skilled-adjusted stock of
labor is given by

Hit) = ^fU~a + S-p°(t)\ , 0 > a > - 1, (3.7.1)

where Sp(t) denotes skilled labor employed in production and u{t) unskilled

labor. The elasticity of substitution, l/(l + a), falls in the interval (l, oo). Here, the

rate of technological change is measured by D{t)l  D(t - l). The above information

takes account of the hypothesis that the greater the speed of technological change,
the relatively more productive skilled labor becomes, compared to unskilled labor.
Let w(t\ ws(t), and wu(t) stand for, respectively, the relative wage of skilled to
unskilled labor, the wage of the skilled and unskilled labor. Perfect competition in
labor markets yields

( 3. 7 . 2 )

Agents live two periods; work when young and consume only when old. Let
s(t) be the total number of skilled labor. We normalize the total population of each
generation

S(t)+U{t) = l.

Skilled workers can be employed either in production, Sp(t), or in research

Sr (t). When net technologies are introduced, agents must learn to work with these

technologies to become skilled labor. Hence, at the start of their working lives,
agents have to decide whether to invest in education or to remain unskilled. We
assume that agents differ in their abilities to learn, //, and that their abilities are

distributed uniformly, ju e [0, l] . Education is instantaneous and the cost of

education is equal to c(t)wu (t)/ ju. It is further assumed that the direct cost of
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education c(t)wu{t) is a decreasing function of the number of agents being

educated, i.e.

\ c'<0.

We specify

c(t)=pS-°(t).

Assume that an income tax r is imposed only on skilled wages. The income
of a skilled worker born at t is

(3.7.3)
M

Agents choose to invest in skills if the income in equation (3.7.3) exceeds that
of remaining unskilled

Yu(t)=wu(t).

Equality between these two expressions gives the level of ability of the agent
that is indifferent between investing in education and working as unskilled

Substituting the uniform ability distribution, i.e.

S(t)=l-fi(t)

into the above condition yields the following inverse labor supply equation

(3.7.4)
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From equation (3.7.4), we conclude that externalities in education, a,
generate a U -shaped relationship between the relative wage and the supply of
skilled labor. The greater the externality, the more prolonged the initial decline of
the relative wage. Increases in the direct cost of education, p, or in the differential

tax on skilled labor, T, require higher wage for each level of skilled labor supply.
We take account of two ways of technological change, learning-by-doing and

costly investment in research and development (R&D). Learning-by-doing takes
place as skilled workers serendipitously discover new types of intermediate goods
during production process. This source of technological change is given by

Research which is undertaken only by the government is financed by a public
entity that raises revenues through tax collection, r. When Sr(t) researchers are
employed, the economy produces technological blueprints according to

As skilled workers are fully employed, we have

Sp(t) + S,(t) = S{t).

The budget constraint of the government is

zws{t)s{t)=ws{t)Sr(t)-

The above two conditions yield

Sr{t)=rS{t),

We assume that technological change takes place either via LBD or R&D, but
not both in one period. It is not difficult to show that utilizing the equations above,
we can express the inverse relative labor demands under the "LBD regime" and
"R&D regime" as follows (check!)
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(3-7-5>

- l»S(f - l / 2 _ gp j , (3.7.6)

where

T =

The general equilibrium in the goods and factor markets is attained by equating
the labor supply, expressed in equation (3.7.4), to the labor demand conditions
(3.7.5) and (3.7.6). That is

l + yS(t - l), for LBD,W
where

The evolution of the economy is governed by equation (3.7.7). It is
straightforward to see that for any given level of s(t\ all the other variables are
uniquely determined. In steady state

S{t-l)=S{t)=S',

the steady growth rate is given by

Y(t)-Y(t-l) _ D(t)-D(t-\) _ \yS', for LBD,

Y(t) ~ D(t) ~ \pT (l + fi*  )s' - 1, for R&D.

We now analyze behavior of equation (3.7.7). To simplify the analysis, in the
remainder of this section we impose
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1 + a > a,

which means that the education externality is not strong given the elasticity of
substitution between the two types of labor. Under this requirement, we have

d<t>

dS{t)
> 0

for S(t)e [0, l] . This also leads to 8S(t)/dS(t - l) > 0. It can be shown that

<t(S'(?)) is first concave and then convex, o(o)= 0 and ®(l) = QO. Figure 3.7.1

depicts the functions of equation (3.7.7). We see that there are three possible
equilibrium points: a low-growth trap in the LBD phase and a pair of equilibrium
points in the intermediate and advanced development phase. If these equilibrium
points exist, it can be shown that the LBD equilibrium will be stable, while in the
R&D phase, the first equilibrium point will be unstable and the second one stable.
Checking these properties is left to the reader as exercises. Economic
interpretations are referred to the original article.

S = 1

Figure 3.7.1: Three possible equilibrium points
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3.8 Urbanization with human capital externalities

This section introduces an urban dynamic model to highlight how the trade-off
between optimal and equilibrium city sizes behaves when human capital
externalities are introduced into urban dynamics.8 The economy consists of N
ex ante identical workers. Al l workers are members of single-worker firms who
live for one period, supply labor inelastically, and consume what they produce.
In the beginning of the period workers make a joint location and human capital
investment decision. In the middle of the period they work, and at the end of the
period they consume. Workers may choose to reside either in urban areas or in
rural areas. Workers in rural location have no incentive to invest in human
capital. Workers in the rural areas receive the earning levels

where A(t) describes the economy's level of technology at time t and Gr is an
exogenous productivity factor, representing, for instance, the quality of rural
infrastructure.

Gross earnings received by a worker in urban location are

w{t) = GA{t)ha{t\ a<\,

where G is the quality of public infrastructure in urban areas and h{t) is the

amount of human capital possessed by the urban worker, which can be obtained
through a per unit level of effort //. Assume that the utility levels of workers in the

urban location are negatively affected by the size of the local population, due to
urban external diseconomies. The urban residents' earnings net of educational
effort and congestion are

I(t) = GA(t)ha(t) - jMt) - b{z{t)N)ys, 8>\,

where z (0 < z < 1) is the proportion of the population that locates in urban

areas, and b is a constant. Urban workers maximize l(t) by choosing h(t). The

optimal solution is

! This section is based on Bertinelli and Black (2004).
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where /? = l/(l - a). With costless migration, the proportion of the population

that chooses to locate in the urban areas, z(f), adjusts until the point where

= Ir(t), i.e.

: / =
GA{t)h'(t)-juh'(t)-GrA(t)

bN us
(3.8.1)

or until z(t) -1 of full urbanization. It is straightforward to prove that the

following city size S0~z(t)N, where

maximizes per capita net output / (t).9 When choosing to locate in the city,

individual workers do not take account of the impact of their location on the
costs of living for all other workers. The optimal city size is different from the
city size given by equation (3.8.1). If  the size of the city is restricted to <50z(?)iV,
earning in the city will  be larger than that in the rural area, making city dwellers
better off.

Substituting

into equation (3.8.1) gives the optimal level of net earnings for urban workers

9 A planner chooses z(t) to maximize z(t)l(t) + (l - z(t))lr(t). The solution of the

optimal problem is given by Soz;(t)N.
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where

a"G

M

The motion of the overall level of technology A(t) is specified as

A(t + l) = max[^), WWif J. (3.8.2)

There is no depreciation in A. Provided that

A(t)<(z(t)h(t)T,

we see

^ ) = | -
M

can be rewritten as

(3.8.3)

Urbanization acts through two channels on technological change: directly
via z(t) in expression (3.8.2) and indirectly through the impact of z(t - l ) on

h(t) as expressed in equation (3.8.3).

For the dynamic path of technology {v4(?)}jl 0, three cases may be

considered, no-urbanization z(t) = 0, partial urbanization 0 < z(t) < 1, and full

urbanization

When z(t) = 0 and l(t) < Ir(t), there is no incentive for urbanization to occur.

This will be the case whenever the initial level of technology Ao satisfies
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The economy remains in a development trap, experiencing no growth. It can be

seen that leaving aside the case of z(t) = 0, the dynamic path of {̂ (f)]f= o ^s

given by

l)=G(A(t)) =

M0<l> G,WO)>0, (z(t)h(t)Y > A(t),

G2(A(t)) Xz{t) = h G2(A{t))>0, (z{t)h(t)f > A(t\
A(t) otherwise,

where

The function G^A) governs the dynamic evolution of A(t) in the case of

partial urbanization. The full urbanization dynamics is characterized by G2(A).

It is easy to prove that at the point

z(t) = 0, G1(A(t))=G2(A(t)\

the slope of G2(A) is strictly less than that of G^A). We now illustrate different

cases. The technical parts are not difficult and left the reader to check.

Case 1: The economy always remains at its initial levels of urbanization and
aggregate output, for all initial levels of technology. This case occurs whenever

the GX(A) function is concave and remains below the 45° line. This happens

when AQ is too low and/or when the incentives to invest in human capital are

too low. The situation is illustrated in figure 3.8.1.10

' The plot is for concave Gt (A). When G is convex, similar conclusions are held.
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Case 2: This refers to the case when G^Aty)) intersects the 45° line. If the

G,(/4(?)) is concave, there are two equilibrium points: a lower unstable one and

an upper stable equilibrium. For all levels of technology above the lower

intersection of the Gx{A(t)) function and the 45° line, the economy experiences

growth of technology and urbanization. If Gx{A{t)) is concave, the upper

equilibrium point is stable and partly urbanized, as illustrated in figure 3.8.2.

A{t + \

-A(t)

Figure 3.8.1: No urbanization

If G,(^(?)) is convex, the economy experiences full urbanization. After full
urbanization, the economy is characterized by G2(A(t)). If G2(A(t)) is concave,
the economy will grow up to a steady state level of technology as depicted in
figure 3.8.3a. If G2(A(t)) is convex, the economy experiences unbounded
growth with full urbanization as illustrated in figure 3.8.3b.
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Figure3.8.2: Partial urbanization with two equilibrium points

A(t + \ A{t + \)

GX{A)

A(t) A{t)

a) with concave G2 (A) b) convex G2 (A)

Figure3.8.3: Full urbanization with a stable low equilibrium
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3.9 The OSG model with money11

Modern analysis of the long-term interaction of inflation and capital formation
begins with Tobin's seminal contribution in 1965. Tobin deals with an isolated
economy in which "outside money" competes with real capital in the portfolios of
agents within the framework of the Solow model.I2 Since then, many growth
models of monetary economies are built within the OLG framework.13 This section
introduces money within the OSG framework proposed in section 3.2. We present
the model in discrete time, numbered from zero and indexed by t = 0,1, 2, .
Time 0, being referred to the beginning of period 0, represents the initial situation
from which economy starts to grow. The end of period t - 1 coincides with the
beginning of period t; it can also be called time t. We assume that transactions are
made in each period. The model assumes that each individual lives forever. The
population, N, is constant. Each individual supplies one unit of labor at each time
t. Production in period t uses amount K(t) of capital and amount N of labor
services as inputs. It supplies amount Y(t) of goods. Here, production is assumed

to be continuous during the period, but then use the same capital that existed at the
beginning of the period.

Production is made through a neoclassical constant return to scale technology.
The real interest rate and the wage of labor are given as before by

r(t)+St=f{k{t)\  w{t) = f{k{t))-k{t)fik{t)).  (3.9.1)

For simplicity of expression, we normalize N = 1. There is some initial

capital stock k0 that is owned equally by all individuals at the initial period.

We assume that agents have perfect foresight with respect to all future events
and capital markets operate frictionless. The government levies no taxes. Money is
introduced by assuming that a central bank distributes at no cost to the population a
per capita amount of fiat money, M(t) > 0. The scheme according to which the
money stock evolves over time is deterministic and known to all agents. With ju
being its constant net growth rate, the money stock, M(t\ evolves over time
according to

M{t) = (l + [i)M(t  - l), / / > 0.

11 This model is referred to Zhang (2005b: chapter 3).
12 See Tobin (1965). Outside money is the part of money stock which is issued by the
government. See also Burmeister and Dobell (1970) and Zhang (1999).
13 See Tobin (1969).
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At the beginning of period / the government brings M(t) — M(t — l)
additional units of money per capita into circulation in order to finance all
government expenditures via seigniorage. For the seigniorage mechanism to work,
injections of the additional units of money take place before the other markets open.
Let m(t) stand for the real value of money per capita measured in units of the
output good. Then, we can rewrite the above equation as

( 3 9 2 )

In this model, money acts as a pure store of value. The demand for money
relies exclusively on the speculative conjecture that the future exchange value of
money in terms of goods will be positive because people will express a positive
demand for money in the future. In the absence of uncertainty and with money not
being explicitly required for transaction purposes, this "bubbly view" implies that
in a monetary equilibrium point the return on money needs to be equal to the return
on competing assets such as claims on productive investment projects. In period /,
each consumer receiving the per capita nominal money stock M believes that
money will be exchanged at the expected future price pm(t + l) > 0. The price of

money pm(t) is in terms of goods or it expresses the amount of goods that can be
purchased by one unity of money in each period t. According to the definitions, we
have

A necessary condition for a monetary economy to exist is that the price of money
must be positive. If money has a positive value, people have an opportunity to save
in money. According to the definition of the price of money, the deflation rate
P{t)l P(t + l) coincides with the real return on money. In a competitive economy
the absence of arbitrage opportunities entails equality of return on assets

-4
p(t

As
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P(t) _ P(t) M(t +1) _ m{t +1)

P(t + l) ~ P{t + l) (l + n)M{t) ~ (l

the above condition becomes

The consumer obtains income in period t from the interest payment
r(t)k(t) and the wage payment w(t)

y{t)=r{t)k{t)+w{t),  (3.9.4)

where y(t) is called the current income. We define the disposable income as the

sum of k(t) + m\i) and the current income, i.e.

m{t). (3.9.5)

The budget constraint is given by

c{t)+s{t) = y{t).

For simplicity, we take the Cobb-Douglas utility function to describe
consumers' preference

in which £ and A are respectively the propensities to consume goods and to own

wealth. A typical household maximizes the utility subject to the budget constraint.
We solve the optimal choice of the consumers as

*(/) = # ( / ), *(') = #( ' )  (3-9-6)

According to the definitions, the per capita capital in period t + 1, k(t + l), is

equal to the saving made in period t minus the real value of money in period t, i.e.
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k(t + \)=s(t)-m(t). (3.9.7)

The economy starts to operate in / = 0. Each member in period 0 is endowed

with M{-\) units of money and owns k0 (= K(0)/N(O)) units of physical

capital. The labor force N is exogenously given. We will show that the above

equations allow us to calculate recursively all the k(f) and m{t).

The government spending is given by equation (3.9.2). From equations (3.9.5)
and (3.9.6), we obtain

s(t) = A(y(t)+k(t)+m{tj).

Substituting equations (3.9.1) and (3.9.4) into the above equation yields

s{t) = A(f(k(t)) + Sk{t) + m{t)\ (3.9.8)

where 8 = 1 - 8k. Substituting equation (3.9.8) into equation (3.9.7), we obtain

*( / + l) = JL{f(k{t)) + Sk{t) + m{t)) - m(t). (3.9.9)

From equation (3.9.3), we obtain

m{t + 1) = (1 + n)[S + f'(k(t + l))]m(t). (3.9.10)

Definition 3.9.1. Given the initial capital stock k0 and the initial money stock

M(— l), a competitive equilibrium is given by a sequence of quantities

{m(t), c(t), s(t), g(t), k(t + 1)}

and a sequence of prices {r(t), w(t), P(t)} such that for all periods t = 0 ,1, 2, :

(i) competition ensures that factors get paid their marginal products according to
equations (3.9.1); (ii ) given

the budget constraint (3.9.2) of the government is satisfied; (iii ) given the price
consequence, agents solve optimally the decision problem; (iv) the evolution of
money balances satisfies equation (3.9.10); (v) investments and savings are
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matched by equation (3.9.7); and (vi) all the markets clear with the equilibrium
conditions being as following:

Labor market:

Money market:

m(t) = M(t)/P(t);

Goods market:

/(*(/) ) + k(t) = g(t) + Skk{t) + c(t) + k(t + 1).

Equilibrium can be further classified as inside and outside money equilibrium:
an inside money equilibrium is associated with a situation in which outside
balances are zero; an outside money equilibrium is associated with positive outside
money balances.

We now examine dynamic properties of equations (3.9.9) and (3.9.10). At
inside money equilibrium with m{t) = 0, we have

k{t + \) = l{f{k(t))+Sk{t)). (3.9.11)

Government spending is reduced to zero. As shown before, this system has a
unique stable equilibrium point given by

(3.9.12)
X

We are mainly interested in monetary economy which is characterized by the
three difference equations (3.9.2), (3.9.9) and (3.9.10). Equations (3.9.9) and
(3.9.10) do not contain g(t). In fact, once m(t) is determined, we determine g(t)
by (3.9.2).14 The dynamics of the monetary economy are described by equations
(3.9.9) and (3.9.10). We may rewrite the system as follows

14 Here, we consider that the conduct of monetary policy takes precedence over all fiscal
matters. Gale (1983: chapter 2) provides a discussion of how to resolve the coordination
problem between monetary and fiscal measures in a similar context.



3.9. THE OSG MODEL WITH MONEY 123

k(t + l) = A(f(k(t))

m(t + 1) = (1 + ftp + /"(*( ' + l))]w(/)- (3.9.13)

A steady state of the monetary economy needs to satisfy

1 = (1 +//X<5+ /"(*)) . (3.9.14)

From 1 = (l + ju%S + /'(&)) , we get

From the properties of / , we see that if Sk > ///(l + //), equation (3.9.15)

has a unique solution, denoted by k*. From the first equation in (3.9.14), we solve

k-. (3.9.16)
K A,

For m > 0, we should require

k" '~A+  k'

Comparing equations (3.9.12) and (3.9.16), we see that the monetary
economy has a unique equilibrium point if

M>M.  (3.9.17)
k k

As

d{flk) = f-
dk
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because of strict concavity of / , f Ik strictly decreases in k. Hence, equation

(3.9.17) implies k > k* if both k and k* exist. As / ' decreases in k, we see that
if

then k > k*. In summary, we have the following proposition.

Proposition 3.9.1. Suppose that the inside competitive equilibrium has a unique

non-trivial steady state k > 0. Then, the monetary economy has a unique steady

state k* if the following inequality holds:

The steady state is a saddle point.

Proof. We only need to examine the stability of the steady state. The Jacobian at
steady state for equation (3.9.13) is given by

an a2

in which

a21 = Amf",

a2 2= l - ( l + //)m/"£

The characteristic equation is given by

H(p) = p2 - Trace{j)p + Det(j\
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where

Trace{j) = au + a22 = X{f + S)+l-(l + / / ) » / "£ > 0,

Det(j) = ana22 - al2a21 = X{f + S) > 0.

We have

H{\) = 1 - Trace{j) + Det(j) = -1 + (l + //)«/"£ < 0.

We thus conclude that the two eigenvalues are real and satisfy

0 < A < 1 < A-

The unique monetary equilibrium point is a saddle point.

From equation (3.9.15), we get

0

If the rate of monetary expansion ji  is permanently raised, then the per capita

capital stock in the new monetary steady state is higher than before. That is, the
Tobin effect prevails.15 This is illustrated as in figure 3.9.1. As ju is shifted, the
accumulation equation

is not affected; the arbitrage relation

is shifted by lowering the return on real balances via increased inflation taxation.
To rebalance the arbitrage relation, the composition of the portfolios of agents
needs to readjust in favor of capital, hi the new steady state, the capital stock will be
higher than before.

15 The substitution of capital for fiat money in reaction to an increase in anticipated
inflation is called the Tobin effect, as described in Tobin (1965). See also Champ and
Freeman (2001).
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m

as n mcreases

k* k*

Figure 3.9.1: The Tobin effect

3.10 The OSG model with labor  supply16

This section extends the OSG model to treat time distribution among various
activities as endogenous variable. Most of the assumptions and variables are the
same as in section 3.2. Let N(t) stand for the flow of labor services used at time t

for production. The total labor force N{t) is given by N(t) - T(t)N0, where T(t)

is the work time of a representative household and No is the population. Let

k(t) = K{f)l  N(t). The marginal conditions are given by

r(t) + 8k = fik(t)\ (3.10.1)

Let k*(t)(=  K(t)/N0) stand for per capita wealth. According to the definition

of k(t) and k*(t), we have k'(t)= k(t)r(t). Per capita current income from the

interest payment r{t)k'{t)  and the wage payment w(t)T(t) is given by

y{t) = r(t)k'{t)+w(t)T(t).

16 This section is based on Zhang (2005c).



3.10. THE OSG MODEL WITH LABOR SUPPLY 127

The per capita disposable income is given by

y{t)=y(t)+k'{t).

The disposable income is used for saving and consumption. At each point of time, a
consumer would distribute the total available budget among saving, s(t),

consumption of goods, c{t). The budget constraint is given by

c(t) + s(t) = KO =  (0 + Mt)r(t) + k'{t). (3.10.2)

Denote Th(t) the leisure time at time t and the (fixed) available time for work

and leisure by To. The time constraint is expressed by

Substituting this function into the budget constraint yields

M{t)Th{t) + c(t) + s(t) = y{t) = r{t)k'{t)  + w{t)T0 + k'{t). (3.10.3)

In our model, at each point of time, consumers have three variables to decide.
We assume that utility level U{t) that the consumers obtain is dependent on the

leisure time, Th, the consumption level of commodity, c(t), and the saving, s(t),

as follows

where o is called the propensity to use leisure time, £, the propensity to consume,

and X, the propensity to own wealth. For any individual, the wage rate, w(t), and

the rate of interest, r(t), are given in markets and the level of wealth, k(t), is

predetermined before decision.
Maximizing U(t) subject to the budget constraint (3.10.3) yields

w{t)Th{t)=dy{t), c(t) = &(t), s(t) = Xy{t). (3.10.4)
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According to the definitions, the household's wealth in period t + 1 is equal to the

savings made in period t

k'(t + l) = s(t) = Ay(t). (3.10.5)

We have thus completed the model. We now analyze dynamic properties of the
system.

We now examine the existence of equilibrium and stability. First, from the
definition of y(t) and equations (3.10.1), we obtain

y = (f(k)- 8k)k' + (f{k)-kf{k))T0 + k\ (3.10.6)

Substituting this equation into w(t)Th(t) = dy(t) yields

{S + Xif{k) - kf(k))T0 = (f(k) + s)ok* + (/(*) - kf'{k))r,

where we use equation (3.10.1) and T(t) + Th(t) = To. Inserting k"{t) = T(t)k(t)

into the above equation, we solve

where

S = \-Sk, f-kf>0

for any positive k. We see that for any positive k

0<T(t)<To.

This also guarantees

o<rA(0(=ro-7'(/))<7'o.



3.10. THE OSG MODEL WITH LABOR SUPPLY 129

We see that T(t) is uniquely determined as a function of k(t). From

k*(t) - T(t)k{t) and equation (3.10.5), we obtain

T(t + l)k(t + 1) = AyQ).

Inserting k*(t) = T(t)k(t) and equation (3.10.6) into this equation, we obtain

A0((f + l))k(t + 1) = A(*(f ))(/(*(/) ) - k(t)f(k(t))), (3.10.8)

where

A0(*( f + l)) =

(f(k(t + 1)) - k(t + l)f(k(t + 1))X£ + X)
(f'(k(t + 1)) + S)ok(t + 1) + / + 1)) - k{t + l)f(k(t + 1)))'

We calculate

l)A 0(*( / + 1))]
S)ok + {/{k) - kf'(k))

f(k) - kfjk)))
(f(k) - kfik))[{f{k)  +8)ak + (f(k) - kf'(k))}

ok2f"A0(k)(if'(k) + S)k + (f(k) - kfjk)))

As d{hok)l dk > 0 for any positive k, according to the implicit function theorem,

from equation (3.10.8) we can express k(t + l) as a function of k(t) as follows

k(t + l) = A'(k(t)), (3.10.9)

where A*(& ) has the same degree of smoothness of f"(k). The difference

equation involves a single variable k(t). With a positive initial condition, the one-

dimensional difference equation determines k{t) in any period of time.
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Lemma 3.10.1. For any positive solution k(t) of equation (3.10.9), all the other

variables are uniquely determined by the following procedure: T(t) by equation

(3.10.7) -> Th(t)=T0 - T(t) -> k'(t)= T(t)k(t) -> r(t) and w(t) by equations

(3.10.1) -> y(t) by equation (3.10.2) -> y(t) by equation (3.10.3) -» c(t) and

s(t) by equations (3.10.4) -  ̂ f(k(t)) -> F(t)= N(t)f(k(t)).

Lemma 3.10.1 guarantees that once we determine the dynamic properties of
equation (3.10.9), we can determine the behavior of all the other variables in the
system. Hence, it is sufficient for us to be concerned with equation (3.10.9).

By equation (3.10.8), an equilibrium point is given by

A0(k)k=A(kXf(k)-kf'(k)).

Inserting A0(A;) and \(k) into the above equation yields

(3.10.10)

The equation has a unique positive solution if

With lemma 3.10.1, we see that the system has a unique positive solution. We

denote the equilibrium value of k by k*. To check stability of the unique

equilibrium, we calculate dA}/dk at k'. Taking derivatives of the two sides of

equation (3.10.8), we have

d[A0((t + l))k\

dk(t +1

Substituting

d(kA0)

> + l)]<ft( / + l)
) dk(t)

(f-kf')K

d[A(k(t))(f(k(t))-k(t)fik(t)))] ,.
dk(t)

(3

ok2f" Ao((/' + £)fc + (/ - kf))

.10.11)

dk (f + S)ok + (f-kf) (f-kf')[(f'
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dk (f-kf') (f-kf)
A,

into equation (3.10.11), we have

u ' dk

in which

/-¥'

at k'. Using / ' > 0, / " < 0 and / - kf > 0, we see that Fl > 0 and F2 > 0.

It is straightforward to check F  ̂> F2. Hence, we conclude

dk / ;

This implies that the equilibrium point is stable.

Theorem 3.10.1. The dynamic system has a unique stable equilibrium.

We showed that the dynamic system has a unique stable equilibrium. We now
examine impact of change in some parameters. First, we introduce technological
change by specifying

f{k)=Ah(k),

where A describes the level of technology. Taking derivatives of equation
(3.10.10) with respect to A yields
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dk _ kf

dA~{f-kf')A> '

where f/k - f > 0. As technology is improved, the capital intensity, k, is

increased. From equation (3.10.7), we obtain

dT = ((/ - kf')f + kff"){f + Sk)kTa
dA

The sign of dT I dA is the same as that of

As ( / - kf')f > 0 and kff" < 0, the impact is ambiguous. If / takes on the

Cobb-Douglas form, i.e.

f = Aka,

then dT I dA = 0. If the production function takes on the CES form

/ = A(akp + \)vp,

where p < 1, a and A are positive, we calculate

( / - ¥')f + W" = apA2kp-\akp + l)2/p"2.

We see that if p > 0, then dT/dA>0; if p = 0, then dT/dA = 0; and if

p < 0, then dTldA< 0. By k" = kT, we have

If the improvement in technology increases work time, then per capita wealth
definitely increases; otherwise the impact is ambiguous. From equation (3.10.1), we
obtain
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dA A dA'

dA A dA

The wage rate is increased due to technological improvement; but the impact on the
rate of interest is ambiguous. The impact on the output level is given by

dA A dA

We now examine the impact of change in preference. As

a change in the propensity to consume leisure has to be associated with some
changes in other propensities. For simplicity, we specify the preference change as
follows

Taking derivatives of equation (3.10.10) with respect to a yields

dk _ %k2

~da~~~{f-kf')A2<

As the propensity to use leisure increases and the propensity to save declines, the
capital intensity declines in the long term. It is important to note that if da = - di;

and dX = 0, then we have dk/da > 0. That is, if the propensity to use leisure
time increases and the propensity to consume declines, then the capital intensity
increases. Another possible pattern of preference change is given by

In this case, we have dk/ da = 0. As preference may change in different ways, its

impact on k is dependent on the specified pattern. In what follows, we limit our
discussion to the case of
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da = - dA, dg = 0.

From equation (3.10.7), we obtain

~ dk 1]_dT_ _

Tda~ IT/ ' + S)ak + (/ - */')]( / - ~kT)da (£ + X)

We conclude that as the propensity to stay at home is increased, the time of staying
at home increases. It should be remarked that this conclusion may not hold if we

specify different patterns of preference change. By k* - kT, we have

= k + T < 0 .
dp dp dp

As the propensity to use leisure increases, per capita wealth declines in the long
term. From equation (3.10.1), we obtain

f > ^ k r < 0

da da da da

The wage rate is increased and the rate of interest is increased. The impact on the
output level is given by

da da



Chapter  4

Time-dependent solutions of scalar
systems

This chapter examines periodic, aperiodic, chaotic solutions of scalar systems.
Section 4.1 defines concepts such as periodic or aperiodic solutions (orbits).
This section also introduces some techniques to find periodic solutions and
provides conditions for judging stability of periodic solutions. Section 4.2 is
concerned with period-doubling bifurcations. This section introduces concepts
such as branch, bifurcation values, period-doubling bifurcation route to chaos,
Myrberg's number and Fiegenbaum's number. Section 4.3 deals with aperiodic
orbits. This section introduces the Li-Yorke theorem and the Sharkovsky
theorem, which are important for proving existence of chaos in scalar systems.
Section 4.4 studies some typical types of bifurcations. They include supercritical
fold, subcritical fold, supercritical pitchfork, subcritical pitchfork, transcritical
bifurcations. Section 4.5 introduces theory of Liapunov numbers. In this section,
we also examine behavior of a model of chaotic labor market. In section 4.6, we
study chaos. We simulate a demand and supply model to demonstrate economic
chaos.

4.1 Periodic orbits

Definition 4.1.1. A sequence {x(t)} is said to oscillate about zero or simply to

oscillate if the terms x{t) are neither eventually all positive nor eventually all

negative. Otherwise the sequence is called nonoscillatory. A sequence {x(t)} is

called strictly oscillatory if for every tQ > 0, there exist /,, t2 > t0 such that

135
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A sequence {x(t)} is said to oscillate about x* if the sequence x(t) — x* oscillates.

The sequence {x(t)} is called strictly oscillatory about x* if the sequence x{t) — x*

is strictly oscillatory.

Theorem 4.1.1. (linearized oscillation theorem) Let / : R -> R be a continuous

function such that

«/(«)> 0,

for u  0, and / ' (o) = 1. If there exists /  > 0 such that either

for r e [0, r]  or / (M ) > w for r e [-r,  0], then every solution of

Jc(/ + l) = x(f)-/7/(x(0),

oscillates if and only if every solution of the corresponding linearized equation

y{t + l) = y{t)-py{t),

oscillates, that is, if and only if p > 1.

Definition 4.1.2. A point p e R is called a periodic point of period k if

fk{p)~ P- The point p is called a periodic point of minimal period k ox prime

period k point if

fk(p)=P,

and k is the smallest positive number for which this holds. If p is a periodic point,

then O(p) is called the periodic orbit. Orbits that are not periodic are sad to be

aperiodic.
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The choice of "minimal" is motivated by the fact that the orbit cannot be
decomposed into smaller loops. A fixed point can be regarded as a periodic point of
period 1. Since

whenever p is the period of O(x0) we also have fm(x0)  x0 for every m < p.

Every point

x(t), t = 0,l,-,p-l,

of the period orbit O(x0) of period pis periodic of the same period. Thus, O(x0)

contains exactly p distinct periodic points of period p. Sometimes, we use

to denote a periodic orbit of period p.

The periodic orbits of period 2 of / are given by those intersections of the

graph of / ( / (x)) with the line

which are not on the graph of f{x). Plotting all three functions f(x), f(f(x)),

and x solves this problem. Suppose

fix) = 3.2x(\-x).

Figure 4.1.1 shows that / has two fixed points, which are also fixed for its second

iterate. The two points where only the graph of the second iterate crosses the line
y = x are periodic points of period 2.

The function

/ (x) = 3.82x(l-x),

has a stable periodic orbit of period 3. Figure 4.1.2a describes the orbit with the
initial condition x0 = 0.3. The orbit appears chaotic, but this impression is
incorrect. The orbit is asymptotically periodic of period 3, as shown in figure
4.1.2b.
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Figure 4.1.1: The solution of period 2 to f(x) = 3.2x(l - x)
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b) asymptotically periodic of period 3

Figure 4.1.2: The orbit of /(* ) = 3.82*(1 - x) with x0 = 0.3

Definition 4.1.3. A point p* e R is called an eventually periodic point of minimal
period k for difference equation (2.2.1) or an eventually periodic point for the map
/ if there exists a positive integer r and a periodic point p of minimal period k

such that

r{p')=p, rl{p
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Example The logistical difference equation

/ = 4x(l - x),

has two period-two solutions, , which are the solutions, except the

solutions of

x = 4x(l - x),

of the following equation

x = / ( / (* ) ) = 16x(l - x)[l - 4x(l - x)].

Finding eventually periodic points leads to the equation fr (x) = p, where r is a

positive integer greater than 1. For / = 4x(l - x) with

we obtain the algebraic equation

Example Consider the difference equation

\3x(t) + 1, if x(t) is an odd positive number, t = 0, 1, ,

I i\ J ~x W' ^ *(* ) is an e v en positive number
v "*" v = | 2

where x0 is a positive integer. The difference equation has no equilibrium points.

The equation has a period-three solution {l , 4, 2}  and many eventually period-three

solutions. For example, the solution that starts at 8 has the corresponding orbit

{8 ,4 ,2 ,1 ,4 ,2 ,1 , - }.
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Calculate O(l), etc. It is know that there are infinitely many eventually periodic
solutions.1 The Collatz conjecture, one of the most open difficult problems in the
theory of difference equations, establishes that every solution of the above equation
is eventually periodic to the period-three solution {l , 4, 2}.

Since a periodic point p of minimal period k is an equilibrium point of the

map / * , the notion of the stability of p follows from the definition of an

equilibrium point, and the linearized stability result can be applied to / *  to

determine the stability type of p.

Definition 4.1.4. A periodic point p of

x{t + l)=f(x(t))

of minimal period k is said to be stable, asymptotically stable, unstable, or a
global attractor if p is, respectively, stable, asymptotically stable, an unstable

equilibrium point, or a global attractor of / * .

Applying the chain rule and theorem 2.3.1 to map f2, we obtain that a two-

periodic solution p is stable if

\/ip)fif(p))\<i

and unstable if

The number

is called a multiplier of the orbit. Likewise, the multiplier of a periodic orbit of any
period k can be defined by

1 See Bernstein and Lagarias (1996) and Lagarias (1985).
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Example Consider

f-x f o r - l < x < l ,

x(t + \)=\-2x + l forx>l,

[-2x-l forx<-l.

Notice that / ( l ) = -1 and / ( - l ) = 1. The period orbit {l , - l }  is unstable. In

fact, for x > 1, we have

/(/{*) ) = 4 ( * - l ) + l .

It is easy to show that the obit O(x(o)) with x(o) > 1 is going to + °°. Thus, the

state 1 is an unstable fixed point for the second iterate of / . Hence, the periodic

orbit {l , - l }  is unstable.

Theorem 4.1.2. If

is the orbit of the k -periodic point p, where / is a continuously differentiable

function at p, then we have: (i) p is asymptotically stable if the multiplier of the

orbit is less than unit, that is, X < 1; and (ii) p is unstable if X > 1.

Example (a genotype selection model) Consider a locust with two alleles: allele
A with frequency p and allele a with frequency

<? = 1 - P,

in a diploid population.2 The change in gene frequency between one generation /
and the next generation (/ + l) is given by

2 See Section 1.9 in Elaydi (2000)
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where g{p(t)) is the frequency-dependent fitness that the genotype AA has. The

difference equation has three equilibrium points:

p\ = 0, p*2 = 1, p\ determined by g[p*3)=l.

Now

We have / ' (o) = g(o) and

The two equilibrium points, p*  = 0 and p\ = 1, are unstable if g(o) > 1, which

is true when

with P > 0. We assume

henceforth. Under this assumption / becomes

Hence
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Hence, for 0 < / ? < 4, />*  is an asymptotically stable gene frequency.3 If

P = 4, then / ' ( l /2) = —1. A direct calculation shows that the Schwarzian

derivative

sf\\\<o.

By theorem 2.4.2, the equilibrium point p\ is asymptotically stable when /? = 4.

At P = 4, p\ loses its stability and a new 2 -cycle is born. To simplify the

analysis, introduce

which transforms equation (4.1.1) under g(p) = e^1 2p' into

x(t + l) = x(/)exp P1 ~ Xy, = F(x(t)). (4.1.4)

Let {x,, x2}  be a 2 -cycle of equation (4.1.4). Then

x2 = x, exp P-—^ ,
V L

 + x\ J

Xj = x2 exp P "-

Multiplying the two equations yields

3 It is proved that for 0 < /?  ̂ 4, the equilibrium point p*  = l / 2 is globally

asymptotically stable on the interval (0, l). See Kocic and Ladas (1993).
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f o l - X , | ( /> 1
xxx2 = x,x2 exp p——- exp p-1 + x J ' ^ 1 + x2

Hence

e*p|2/?A . yf2 J = l-

We obtain

XX =1

From equation (4.1.3), the corresponding 2 -cycle of equation (4.1.2) is
{p, 1 — p}. To check the stability of this cycle, we first calculate

F'(x) =

We have

1 -
2x/3

(1 + xf exp
, 1 -x

1 + x

By theorem 4.1.2, it follows that the cycle is asymptotically stable.

Example Consider the map

defined on the interval [-2, 2J. Find the 2 cycles and determine their stability.

The 2 -periodic points are obtained by solving

i.e.
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x4 -1.7x2 - x - 0 . 1 2 75 =0. (4.1.5)

This equation has four roots, two of which are fixed points of / . These two fixed

points are the roots of the equation

x2 - x - 0.85 = 0.

To eliminate these fixed points of / from equation (4.1.5), we divide the left-
hand side of equation (4.1.5) by the left-hand side of the above equation to obtain
the second-degree equation

x2 + x + 0.15 = 0.

The equation has two solutions

x12 =
12

which are the 2 -periodic points. To check the stability of the cycle {x,, x2} , we

calculate

\f(x1)\\f(x2)\ = 0.6<l.

The cycle is asymptotically stable.

We now introduce a method to find periodic points of a given function. This
method is based on the following lemma.

Lemma 4.1. (Carvalho's lemma4) If x(t) is k -periodic, then either

c, cos
(2j'a\ , . (2fa

s -!— + d, sin -^—

if k > 1 is odd and m = (k - ])/ 2, or

4SeeCarvalho(1998).

(4.1.6)
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2?nx(t) = c0 + (-

if k = 2m and f > 1.

Example Consider a population dynamics

n (4.1.7)

(4.1.8)

The population tends to grow at low densities and to decrease at high densities. The

nontrivial fixed point of the equation is x = 1. As

x* = 1 is asymptotically stable if 0 < r < 2 (check r - 2 ). At r = 2, x* = 1
loses its stability and gives rise to an asymptotically stable 2 -cycle. Carvalho's
lemma implies

x(t)=a+(-l)'b.

Plugging this into equation (4.18) yields

- a - (-

The shift / h-> t + 1 gives

~ a + \

We have

a2-b2={a2-b2)exP{r(l-a)).

Thus either a = b, which gives the trivial solution zero, or a = 1. A 2

periodic solution has the form
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Plugging this equation again into equation (4.1.8) yields

Introduce

Then

y \y-y

The function g{y) has its minimum at 0, where g(o) = 2. For r < 2,

g(y) = r has no solution, and we have no periodic points. However, each r > 2

determines + yr.

Exercise 4.1

1 Find a periodic orbit of period 2 of

x{t + \)=-2x2{t) + \.

2 Let

x(t + l) = -ax2(/) + l.

For what values of the parameter a does a function / have none or one periodic
orbit of period 2 ? Are there any values of a for which there is more than one
periodic orbit of period 2 ?
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3 Assume that x0 is a periodic point of point 2 for a dynamical system governed

by a differentiable function /:/?—> R. Prove that the derivatives of the second

iterate of / at x0 and at x(l) = f(x0) are the same.

4 Assume that x0 is a periodic point of point 3 for a dynamical system governed

by a differentiable function / ': R —> R. Prove that the derivatives of the third

iterate of / at x0, x(l) = f(x0), x(2) = /(x(l)) are the same.

5 Show the Schwarzian derivative <Sy(l/2) < 0 for the map

/ to -

6 Let

4, xe(0,oo).

Let {x,, x2}  be a 2 -cycle of / . Show that this 2 -cycle is asymptotically stable.

4.2 Period-doubling bifurcations

Let / be an interval, a E /, and f(x, a) be a one-parameter family of scalar

maps. Assume that / is differentiable with continuous derivatives with respect to

x and a. Let J c / be an interval with more than one point and x: J -* R be a

continuous function such that for every a e J and x(a) has the property

/(x(a), a) = x{a),

i.e., x(a) is a stationary state of f(x, a) for every o e /. Then the graph of the

map x(a), i.e., the curve (a, x(a)), as J is called a branch of fixed points of the

one-parameter family f(x, a). For simplicity, x(a) is sometimes called a branch,

hi a similar manner, we define branches of periodic points of period p.
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Example Let

f(x, a) = ax(\ -x), xe [0, l] , a > 0.

From f(x, a) - x, we have

x,(a) = 0, x2(a) = - .
a

The branch of fixed point x^a) = 0 is independent of a; while that of

a-\
x a

is dependent on a. As

we conclude that: (i) 0 is an asymptotically stable fixed point for 0 < a < 1; and

(ii) 0 is an unstable fixed point for a > 1. When a = 1, we have

/ ' (0 )= l, /"(0) = - 2.

We may conclude that 0 is unstable if we consider negative as well as positive
initial points in the neighborhood of 0. Since negative initial points are not in the
domain of / , and 0 is semiasymptotically stable from the right, we conclude that
0 is asymptotically stable in the domain [o, l] .

For x2 (a) e (0, l] , we require a > 1. Applying

f{x,a)=a{l-2x)

to

i \ a -IxAa) = ,
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we conclude that: (i) x2 is an asymptotically stable fixed point for 1 < o < 3; and

(i) x2 is an unstable fixed point for a > 3.
We now show that the map does not have any period point of period 2 for

ae (-1, 3). A point x0 is periodic of period 2 if x(2) = x(o) and x(l) * x(o).
We have

x(l)=ax(o)-ax2(o),

x(o)=ax(l)-ax2(l) .

Subtracting the second equation of equation (4.2.1) from the first yields

x(l) - x(o) - - fl(x(l) -  x(0)) + a{x{\) - x(0)Xx(l) + x(o)).

Since x(l) * x(o), from the above equation we obtain

(4.2.2)

Adding the two equations of equation (4.2.1) gives

x(l) + x(0) = a(x(l) + x(0)) - a(x(l) + x(o))2 + 2ax(l)x(o).

Substituting equation (4.2.2) into the above equation yields

x(l)x(0) = . (4.2.3)

We can determine x(l) and x(o) by solving the quadratic equation

z2 - — z +  ̂ = 0. (4.2.4)

a a

Hence
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a + l + yja2-2a-3
= *-

2a

n fn\ a + 1 - 7«2 - 2a - 3
x4 (a) = x(0) = *— .

2a

Both x(l) and x(o) are fixed points of / . We see that no periodic orbit of

period 2 exists for a < 3, and exactly exists for a > 3. That is, we have two

branches of periodic points of f(x, a) when a > 3. At a = 3, we obtain

x2{a) = x3{a) = x4(a).

It should be noted that we may directly get solution (4.2.4) by dividing the

equation x = f2(x) with x - f(x).

The 2 -cycle is asymptotically stable if

or

- I < a2 ( l - 2 x 3 ) ( l - 2 x 4 ) < l .

Substituting the solutions into the above inequalities, we have

3 < a <l + V6 =3.44949-.

Hence, the 2 -cycle is attracting if 3 < a < .

At a = 1 + V6, we have

We conclude that the 2 -cycle is attracting. If a > 1 + V6, the 2 -cycle becomes

unstable.
As the parameter a changes its values, the qualitative behavior of the

solutions also changes. Let us denote the value of the parameter a at the k -th
point where the changes occurs as ak. We have the following table.
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Table 4.2.1: The behavior of / = ax(l — x) as a changes

parameter interval
0< a<\

\<a<3

\<a<\ + S

type of behavior
zero equilibrium point is
asymptotically stable
positive equilibrium point
is asymptotically stable

period- 2 solution is
asymptotically stable

critical value of a
ao=l

a, =3

a2 = 1 + A/6

Definition 4.2.1. A value a0 e / is a bifurcation point of the one-parameter

family / if there are intervals

Jt , <z I, a0 e Jj, i = 1, 2 or i = 1, 2, 3,

and continuous functions xt: Jt —» R, whose graphs are branches of fixed

points or periodic points of / such that

*,-(0o) = Xj(ao\ xXa) * Xj{a), a * a0, i * j .

The value a0 is called the bifurcation value or critical value of the parameter.

We require J; to have nonzero length, and allow a0 to be one of its

endpoints. Hence, J, may have the form

{b, c), [a0, b), or (b, a0].

When / = 1, 2, then J, = J2 and all points x,(a), / = 1, 2, have the same period.
When / = 1, 2, 3, then

Jl = {b, c), J2=J3= [a0, b) or (b, a0]

and the points of xt(a), i - 2, 3, may have period equal or double the period of

^(a). We depict (a, x(aj) on the plane, representing the parameter a along the

horizontal axis. The pictorial display obtained by plotting all branches of stationary
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states and periodic points is called the bifurcation diagram of / on /. At a
bifurcation point a0 there is frequently an exchange of stability between the
different branches. In particular, the bifurcation taking place at a value of a is
called period-doubling if the period of the points of one of the branches is double
the period of the points of another.

With regard to the logistical map, if we continue to increase the value of a,

we will  find the next critical value a, which corresponds to the appearance of a

prime period- 4 solution, as shown in figure 4.2.1.

0.5

2 .2 2 .4 2 .6 2 .8 3 3 .2 3 .4

Figure 4.2.1: The bifurcation diagram for 2 < a < 3.5

The next bifurcation value aA corresponds to a prime period- 8 solution. In

addition, it can be proved that for

ae{a2,a2),

the prime period- 4 solution is stable while the period- 2 solution becomes
unstable. Similarly, for

ae

the prime period- 8 solution is stable while the prime period- 4 solution
becomes unstable. As this process continues, there is a sequence of bifurcation
values of parameter {at}^ =0 with the following property: for
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the prime period- 2k is stable, while the periodic solutions of all periods

2,---,2k'1

become unstable. This phenomenon is known as the period-doubling bifurcation

route to the chaos. The entire sequence {a,t}7=0 is called a cascade of

bifurcations.
The sequence of period-doubling bifurcations ends at the value which is

approximately a = , where the map has the periodic solutions of all
periods as well as some aperiodic solutions. The last situation is often described
as chaotic behavior or chaos. The last period that can arise in this bifurcation
process is period 3. There are three important features of this route to chaos.
The periods finishes with 3; the order is known as Sharkovsky's order, which
wil l be described below. There is only one periodic solution which is stable in
each of the interval (ak, ak+l). The third is that the sequence {ak\=0 has the
remarkable property

lim bk ~ bk'x = 8 = 4.66920.
i->°° bk+1 - bk

The constant 8 is called Myrberg's number or Feigenbaum's number. It
was first discovered by Myrberg and rediscovered by Feigenbaum.5 Figure 4.2.2
is the bifurcation diagram of

f(x, a) = ax{\ - x).

Exercise 4.2
1 Determine the period-doubling bifurcation of the following maps f(x, /J.) and

investigate the stability of the periodic orbits of period 2 :

(0 M - *2;
(ii ) -ju + x2;

5 Myrberg (1958, 1959,1963) and Feigenbaum (1978).
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l

0.8

0.6

0.4

0.2

2.5 3 3.5 4

Figure 4.2.2: The bifurcation diagram of / = <xc(l - x)

(Hi) /£c + x3;

(iv) jux3 + (l - //)* .

4.3 Aperiodic orbits

The orbit o(x0) of the dynamical system

x(f + l) = /(*(*) )

has infinitely many states. These states may not be all distinct. For instance, they
are all equal when x0 is a fixed point and there are only p distinct points when
the orbit O(x0) is periodic of period p.

Definition 4.3.1. A point x is said to be a limit point of O(x0) if there exists a

subsequence

MO:* = 0,1,-}

ofO(x0) such that
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jx(tk) - x I -> 0 as k -» °°.

The ///K/Y se? i(x0) of the orbit O(x0) is the set of all limit points of the orbit.

Definition 4.3.2. An orbit O(x0) is said to be asymptotically stationary if its
limit set is a stationary state, and asymptotically periodic if its limit set is a
periodic orbit. An orbit O(x0) such that

x{t + p) = x{t)

for some t > 1 and some p > 1 is said to be eventually stationary if p = 1 and

eventually periodic if p > 1.

Every eventually stationary (eventually periodic orbit) is asymptotically
stationary (asymptotically periodic). The converse is not true. For instance, for
the difference equation

x{t + \) = x{t){\-x{t)\

the orbit

x(0) = l , jc(l) = I , x{2) = - , -w 2> w 4 ' w lfi »

is asymptotically stationary (with the limit point 0 ), but not eventually
stationary.

Example Let

x(t + \) = 4x{t){l-x{t)).

The orbit o(l/2)

x(0) = i , x( l )=l , x(2) = x{3)=- = 0,

is eventually stationary (t = 2, p = 1).
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It can be proved that whenever l(x0) has only finitely many points p, they

actually constitute a periodic orbit with period p of the system.

Definition 4.3.3. The orbit O(x0) is aperiodic if its set L(x0) is not finite.

Example Figure 4.3.1 provides numerical evidence that the orbit of the dynamical
system

f{x)=4x(l-x),

starting at x0 =0.3 is aperiodic. We will analyze aperiodic behavior later on.

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1

Figure 4.3.1: The orbit of f(x) = 4x(l - x) with x0 = 0.3

<*)

It is difficult to establish theoretically the aperiodic character of an orbit. The
following result ensures the existence of aperiodic orbits for dynamical systems in
the real line.

Theorem 4.3.1. (Li-Yorke6) Let / be an interval and / : / - > / be continuous.

Assume that / has a periodic orbit of period 3. Then / has a periodic orbit of

1 The proof is referred to Li and Yorke (1975), or Block and Coppel (1992).
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every period and there is an infinite set S contained in S such that every orbit
starting from a point of S is aperiodic.

Example Consider / : [0, l] -» [0, l] defined by

3x for 0 < x < - ,

17 8x 1 2
for - < x < —,

9 3 3 3
1/9 for — < x < 1.

3

The map is continuous and

Hence, x = 1/9 is periodic of period 3. According to theorem 4.3.1, there is an

infinite set S that the orbit of every point of S is aperiodic. Determining S is not
easy.

Example Consider the difference equation generated by the tent function

2x for 0 < x < - ,
2

2(l -x) f o r - < x < l .
2

This may also be written in the compact form

= 1 - 2 JC -

We first observe that the periodic points of period 2 are the fixed points of T2

which is given by
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4x for 0 < x < —,
4

2(l -2x) f o r - < * < - ,

4 he for — < x < —,

I 2J 2 4'
4(1 -x) for - < x < - .K J 4 2

There are four fixed points, 0, 0.4, 2/3^ and 0.8, two of which, 0 and 2/3

are fixed points of T. Hence, {0.4, 0.8}  is the only cycle of T. As shown in figure

4.3.2, {2/7, 4/7, 6/7}, is a 3-cycle.

x{t + 3)

Figure 4.3.2: Fixed points of T3
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The Li-Yorke theorem is a special case of a theorem published in 1964 by the
Ukranian mathematician A.N. Sharkovsky. Sharkovsky introduced a new ordering
of the positive integers > in which number 3 appears first. He proved that if
k > m and / has a k -periodic point, then it must have an m -periodic point.
Here, the notation k > m means that k appears before m in Sharkovsky's
ordering. Sharkovsky's ordering is defined as follows

3 > 5 > 7 >  > 2x3 > 2x5 > 2x7 >  > 2"x3 > 2"x5 > 2"x7

>2" 2 > 2 >1

We first list all the odd integers except 1 and 2, then 2 times the old integers,

22 times the old integers, etc. This is followed by powers of 2 in descending order
ending in 1.

Theorem 4.3.2. (Sharkovsky's theorem7) Let / be an interval in R (finite or
infinite). Let

be a continuous map. Let / has a periodic point of period k, then it must possess

a periodic point of period m for all m with k > m.

This theorem gives a simply method for checking complicated behavior of the
dynamical system. If we plot the bisector y = x with the graph of the map f(x)

and graph of the third iterate / 3 (x), and if the graphs of the bisector and / 3 (x)

intersect in some points that are not the equilibrium points, then there is at least one
periodic point of period 3 and consequently there are periodic points of all other
periods. Similarly, one can check virtually the existence of other periodic points of
reasonably small periods. Figure 4.3.3 illustrates this method. The function / 3 is
shown as a thick line; / in a thin line; and the identity function in a dashed line.
Two intersections correspond to fixed points of / . The remaining six intersections
indicate that there are two prime period- 3 solutions.

It should be remarked that Sharkovsky's theorem does not extend to two or
higher dimensions. It is known that one can construct a continuous map with a
periodic point of 5 but not with periodic point 3, or with a periodic point of period
11 but not with period 5, etc.

7 The proof is referred to Block and Coppel (1992).
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0.2

0.2 0.4 0.6 0.8 1

Figure 4.3.3: Plot of f{x) for / = 4.91x(l - x)

Consider a dynamical system: / : / — > / , where / is continuous and / is a
bounded interval. We shall say that / is chaotic in / in the Li-Yorke sense if /
has a periodic point in / of period 3. Notice that as a consequence of
Sharkovsky's theorem / has a periodic orbit of period p for every integer p.
Moreover, Li and Yorke proved that there is an infinite (actually, uncountable) set
S cz I such that for every x e S is aperiodic and unstable.

Example Let

/ = 2\x\ - 1

and [-1, l] . Then / has a periodic point of period 3,

I I I
9 ' 9 '9

Hence / is chaotic in the Li-Yorke sense.
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Theorem 4.3.2. (a converse of Sharkovsky's theorem8) For any positive integer r,
there exists a continuous map / . : / — >/ on the closed interval / such that fr
has a point of minimal period r but no points of minimal periods s, for all
positive integers s that precede r in the Sharkovsky's ordering, i.e., s > r.

The following theorem by Singer tries to solve the problem of how many
attracting periodic points a differentiable map can possess.

Theorem 4.3.3. (Singer's theorem9) Let / : / — » / be a map defined on the closed

interval / such that the Schwarizian derivative of /

Sf{x)<0,

for all x e /. If / has n critical points in /, then for every positive integer, k,

the map / has at most n + 2 attracting period- k solutions.

Exercise 4.3
1 Show that for the map

f{x)=2x-[2x],

where [x]  is the greatest integer less than or equal to x, the orbit 0(3/8) is

eventually stationary and the orbit O(l/24) is eventually periodic.

2 Let

, \{2x forO<x<0.5,

^X'~[2-2x for0.5<jc<l.

Find a periodic orbit of period 3 for / . Can the result of Li-Yorke be applied to

3 Let

8SeeElaydi(1996).
9 Singer (1978).
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Show that / has aperiodic orbits in [-1, l] .

4.4 Some types of bifurcations

This section provides some typical examples of bifurcations.

Example Consider

f(x,ju) = jux-x\

Fixed points of / are the solutions of

x = /a - x3.

Hence, x,(//) = 0 is always a fixed point. No other fixed point exists for

fi < 1. When JJ. crosses 1, two more stationary states appear, namely

From

fx=M~ 3x2,

we see that 0 is a repeller for \[i\  > 1 and a sink for |//| < 1. At fj. = 1, we have

/x(0, l) = l. Substituting x2(ju) and x3(ju) respectively into fx, we conclude

that for fi e (l, 2), the points of the two branches are sinks for ji  e (l, 2) and

source for ju > 2. At ju = 1, we have an exchange of stability between *,(//) and

x2(ju), x3{/i). At (i =-\, a periodic orbit of period 2 arises. Since the

derivative of the second iterate of / is (2a + 3)2, which is larger than 1 for

fi > -1, the periodic orbit is always a source. There is no exchange of stability at

// = - ! . Figure 4.4.1 is the bifurcation diagram for the map.
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~M

Figure 4.4.1: Part of the bifurcation diagram of / = fjx — x2

Example Let

f(x, fi) = x2 - ju-

Fixed points of / are given by

The fixed points exist for // > -0.25. At ju0 = -0.25,

x, (- 0.25) = x2(- 0.25).

Hence, //0 is a bifurcation point. The type of bifurcation taking place at /ia is

called supercritical fold, as illustrated in figure 4.4.2. Along the branch (x, (//), /i),

fx > l.That is, xx(/i) are sources for all /u > - 0.25. Along (x2{/i),  //)

fx = 1 - (1 + 4a)2,
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x2(ju) are sinks for

-K'-
and sources for // > 3/4.

Figure 4.4.2: Supercritical fold bifurcation for / = x2 — ju

Example Let

/ ( * , ju) = x2 + M-

Fixed points of / are given by

The fixed points exist for // < 0.25. At fi0 = 0.25,
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JC, (0.25) = x2 (0.25).

Hence, ju0 is a bifurcation point. The type of bifurcation taking place at ju0 is

called subcritical fold, as illustrated in figure 4.4.3. The fixed points of the upper
branch are always sources. The fixed points of the lower branch are sinks for

and sources for ju < - 3 / 4.

Figure 4.4.3: Subcritical fold bifurcation for / = x2 +

Example Let

f{x, ju) = jux -x\

*[(// ) = 0 is a fixed point independent of ju. No other fixed point exists for

H < 1. When ju crosses 1, two more fixed points appear for ju > 1,
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Hence, ju = 1 is a bifurcation point. The type of bifurcation taking place at fi = 1

is called supercritical pitchfork. The subcritical pitchfork case is when ju < 1.

Figure 4.4.4: Supercritical pitchfork bifurcation for / = jux -

Example Consider the logistic map again

f(x, ju) = /*( l - 4

We know that the two branches of fixed points

*,(// ) = 0,

x2(//) = l - - ,

meet at // = 1. Hence, // = 1 is a bifurcation point. This type of bifurcation is

called transcriticctl (see figure 4.4.5).
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Figure 4.4.5: Transcritical bifurcation for / = jux(l - x)

In summary, we see that transcritical bifurcation takes place at // = //0
when two branches of fixed points (or periodic points of the same period) exist
in an open interval J, ju0 e J, and they meet at ju = juo. Fold bifurcation is
observed when two branches of fixed points (or periodic points of the same
period) exist only in an interval | / /0, / /J (supercritical case) or (//,,//„]

(subcritical case) and they equal at ju = juo. Pitchfork bifurcation requires three
branches of fixed points (or periodic points of the same period). Two of them
exist only in an interval [*/<,,//,) (supercritical case) or (^,/ /0] (subcritical

case). The third exists in an open interval J, ju0 G J. The three branches meet

at /i = //0. It can be shown that

is necessary for //0 to be a fold, transcritical, or pitchfork bifurcation. The

condition is not sufficient. This is verified by

At jU = 0, there is a unique fixed point x] (o) = 0. We have
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But ju = 0 is not a bifurcation point.

The above examples are typical cases of bifurcation types. We provide the
necessary conditions for the four types of bifurcations. We require the function
fix, n\ its first and second partial derivatives, and f  ̂ to be continuous.

Table 4.4.1: The conditions for the four types of bifurcations1'

fold

transcritical

pitchfork

period-
doubling

L
l

l

l

- l

0

0

/ »

* 0

0

other at (x0, ju0)

fxcf/i < 0 supercritical

U * < > , / „ *  o, fXMfxxx < o
supercritical

r = /»/„+2  ft/l*O,s = 2fxa

+  3 /^ 5*  0, rs < 0, supercritical

Exercise 4.4
1 Study the bifurcation diagram of

f{x,ju) = ju-x2.

In particular, determine the fold bifurcation and investigate the stability of the
two branches of the fixed point.

2 Study the bifurcation diagram of

f{x, ju) = px-x2.

In particular, determine the transcritical bifurcation and investigate the stability
of the branches of the fixed point.

10 The table is referred to Martelli (1999: 92). The examples of this section are also cited
from the same source.
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3 Study the bifurcation diagram of

f(x, /i) = -jux + x\

In particular, determine the pitchfork bifurcation and investigate the stability of
branches of the fixed point.

4 Study the bifurcation diagram of

f(x, M)={X + M2 ~ l)(* 2 -2x-/i)+x.

Determine type of bifurcation point when fi = — 1.

4.5 Liapunov numbers

The Liapunov number is important for measuring the complexity of solutions
behavior of difference equations. It is known that chaotic dynamics is characterized
by an exponential divergence of initial close points, hi the case of the one-
dimensional discrete map of an interval (a, b) into itself

x(t + \)=f{x{t)),

the Liapunov exponent is a measure of the divergence of two orbits starting with
slightly different initial conditions x0 and x0  So. If JC0 is a point of a period- k

orbit and if we start the orbit from a nearby point x0  <50, then after one iteration

the distance between the two is approximated by

< ? H / ' ( * o K= N o -

where Mo is the magnification factor for the first step. At the second step,

Continuing in this manner, we conclude that the total magnification factor over one
cycle of the period- k orbit is the product, M0Ml  Mk_v We are concerned with
the geometric average of the factor
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{M0Mr-MkJ
lk,

which by taking logarithms leads to the arithmetic average

The condition for stability of a periodic orbit is that the average magnification
factor is less than 1, which is equivalent to say that the orbit is stable (unstable) if
X < (>) 0. An interpretation of the Liapunov exponent is the measure of
information loss during the process of iteration.

Definition 4.5.1. Let / be a smooth map on R and x0 be a given initial point.

The Liapunov exponent A,(x0) of a map / is given by

provided the limit exists. In the case when any of the derivatives is zero, set

The Liapunov number L(x0) is defined as the exponent of the Liapunov exponent,

whenever the latter exists

L{xo)=exp(A(xo)).

In fact, we may consider two orbits {x(t)} and {x(t)} originating from two

nearby points x0 and x0. At the n th iteration they are separated by an amount

\x(t)-x(t)\ = \f'(xo)-f'(xo)\.

Taking x0 as a constant, expanding f'(x0) in a Taylor series around x0 and

retaining only the first-order term, we have

x{t) - x(t) « ) - f'{x(t - l)))fo - JC0),
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and, providing that the derivative is different from zero, the approximation can be
made very accurate by taking |x0 - xQ\ sufficiently small. Asymptotically, we have

\rm\x{t)-x{t)\~e"xM(x0-x0).

We thus can interpret that A(x0) is the (local) average, asymptotic,

exponential rate of divergence of nearby orbits. Usually, it is difficult to exactly
calculate Liapunov exponents. But there are exceptions.

Example Consider the tent map

px if x < - ,
2

- * ) i f * > !
' 2

We have

P if x < - ,

-P

and 7^(l/2) is undefined. For any orbit of the tent map that does not contain the

point 1/2, we have

This holds for all x0 that are not eventually equal to 1/2.

Definition 4.5.2. An orbit

is called asymptotically periodic if there exists a periodic orbit



λ

2.8 3.2 3.4 3.6 3.8 4

-1.5

-1

-0.5

0.5

µ

4.5. LIAPUNOV NUMBERS 173

Ml) , y(2),y(3\-

such that

\im\x(t)-y(t)\ = 0.

Definition 4.5.3. Let / be a map of R and let

O(x0)={x(0),x(l),x{2),-}

be a bounded orbit of / . The orbit is chaotic in the sense ofYorke" if: (i) O(x0)

is not asymptotically periodic; (ii) no Liapunov exponent is 0; and (iii ) A(x0) > 0.

In general, there are very few examples where the Liapunov exponents can be
computed exactly, hi most cases one can just compute them numerically. Figure
4.5.1 depicts the Liapunov exponents of the logistic map f = jux(\-x), for

ju e [2.8, 4j. It can be seen that as [i  is approaching 3.6, the exponents become

positive. The system becomes chaotic as shown in figure 4.5.1.

0.5

-0.5

-1

-1.5

3 .6 3 .8 4
jU

Figure 4.5.1: The Liapunov exponents of the logistic map

HSeeAlligoode/a/. (1997).
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Example (a model of chaotic labor market) We now introduce another economic
mechanism of economic chaos in labor market. The model is proposed by
Bhaduri to demonstrate the existence of chaos when wage bargain takes place
according to the usual specification of the Phillips curve while firms maximize
profit.12 The lack of coordination between profit-maximizing firms and wage-
bargaining workers may result in an irregular dynamic path. In this model, the
wage settlement takes place according to the usual specification of the Phillips
curve. All agents are endowed with perfect foresight in the sense that they
correctly anticipate the short-term rate of inflation. Neutrality of money is thus
built into the model by assumption. There is no misperception of the real wage
rate on the part of the concerned agent.

Consider the following linear Phillips curve13

wit +1) - wit) Lit) , , . . . . . .
- i ; w =  - b, a,b>0, (4.5.1)

w[t) N

where Lit) is the level of employment, and N is the level of full employment.

Perfect foresight resulting in consistently correct short-term anticipation of the
inflation rate by the workers implies that workers bargain for real wages. The
variable w in equation (4.5.1) is interpreted as the real wage. The unique rate of

unemployment u that keeps the real wage rate at a stationary level is given by

. L' b
u =1 = —.

N a

Perfect foresight on the part of the firms ensures that they also anticipate
correctly the real wage rate and maximizes profit by equating the real wage rate
to the marginal product of labor which is assumed to be diminishing linearly.
That is

wit) = a - PL{t), a,/3>0. (4.5.2)

Inserting equation (4.5.2) into equation (4.5.1) yields

w(t +1) = {i + £!L _ bU) - ^-w\t).
K M pN ) PN W

12 See Bhaduri (2002).
13 See Phillips (1954). There are various forms of the so-called Phillips curve, see, for
instance, Goodwin (1967), Friedman (1968), and Hahn and Solow (1985).
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Introduce the following linear transformation

x(t)=  ̂ , JfcB-2-,w l + ak-b PN

then the difference equation for the wage rate is transformed into

x(t + l) = Ax{t)(l ~ *('))> 1 > x{t) > 0.

This is the much studied logistic map. The reader is encouraged to interpret
economic implications of the model.

Example (rational choice and erratic behavior) We now introduce a behavioral
model of chaos by Benhabib and Day.14 It is assumed that preference is
changeable as people experience more. Let us begin describing optimal behavior
of the consumer in t by maximizing the Cobb-Douglas utility function

subject to the budget constraint

Pxx + Pyy =  m,

where x and y denote the consumption of two goods, px and py their prices,

and m is the income. The demand functions from the optimal problem are given
by

x{t) = a—,
Px

Assume that the parameter a in the utility function depends on past choices in
the following way

a{t + l) = bx(t)y{t).

Substituting the preference change equation into the demand functions yields

14 This example is based on Benhabib and Day (1981).
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We now concentrate on x. For simplicity, we normalize the prices

Px =Py=l-  F r om

x{t)+y{t)=m

and the demand equation for x, we get

x{t + l)=bmx{t)(m-x{t))=f{x{t)).

The unique nontrivial fixed point is

, bm2 - 1
x =

bm

We require bm2 > 1 so that x* is positive. It is straightforward to show that

the map / has its maximum at x = m 12; the maximum consumption is

m] bm

2) 4

On the other hand, as x < m, we have bm% /4 < m, i.e., bm2 < 4. In

summary, we should require

1 < bm2 < 4.

to have meaningful solutions. Introduce

m

we have
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z{t + \) = az{t)(\-x{t)\ 1<«<4,

where a = bm2. This is the logistical map. Hence, the model exhibits chaos.

4.6 Chaos

This section gives another definition of chaos.

Definition 4.6.1. The map / on a metric space X is said to possess sensitive

dependence on initial conditions, if there exists £ > 0 such that for any x0 e X

and any open set U containing x0 there exists yoe U and k e Z+ such that

d{fk{x0),f
k{y0))>e.

Example Consider

x(t + l ) = cx(t), c>\.

Let y0 = x0 + S. Then

Hence

wil l increase to °° as t goes to «>, regardless of how small 8 is.

Definition 4.6.2. Let / be a map on a metric space (jf, d).15 Then / is said to
be (topologically) transitive if for any pair of nonempty open sets U and V, there
exists a positive integer & such that

' The concepts related to metric space are referred to appendix A.3.
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fk(u)nV*0.

Under a transitive map a point wanders all over the space X where its orbit
gets as close as we wish from every point in x.

Theorem 4.6.1. Let / : X —> X, where X is a metric space. Then the map / is

transitive if it has a dense orbit. Furthermore, if X is closed interval in R, then /

is transitive if and only if it has a dense orbit.

The following definition of chaos is due to Devaney.16

Definition 4.6.3. A map f:X^>X, where X is a metric space, is said to be

chaotic if (i) / is transitive; (ii) the set of periodic points P is dense in X; and

(iii ) / has sensitive dependence on initial conditions.

It should be noted that it has been proved now that conditions (i) and (ii) in
definition 4.6.3 imply condition (iii ) of sensitive dependence on initial conditions;
but no other two conditions imply the third. The proof of the following theorem is
referred to Elaydi.17

Theorem 4.6.2. Let / : X -» X be a continuous map on a metric space (X, d).

If / is transitive and its set of periodic points is dense, then / possesses sensitive

dependence on initial conditions, i.e., / is chaotic.

The following theorem demonstrates that for continuous maps on intervals in
R, transitivity implies that the set of periodic points is dense.

Theorem 4.6.3. Let f:J->J be a continuous map on an interval J (not

necessarily finite) in R. If / is transitive, the set of periodic points is dense, that is,

/ is chaotic.

Example (chaos in a demand and supply model) We now demonstrate chaos in
a simple demand-supply model.18 We consider that supply involves a time lag.

16 Devaney (1989). See also Peitgene/a/. (1992)
17 Section 3.5 in Elaydi (2000).
18 This example draws heavily on Homines (1991: section 5.1). See also Shone (2002:
section 8.1).
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At low prices supply increases slowly, partly because of start-up costs and fixed
costs of production. Supply might also increase only slowly at high prices, say,
because of capacity constraints. This suggests a 5 -supply curve. The arctan

function exhibits such a S -shape. Let us express supply qs(t) as function of

expected price pe(t) by

qs(t) = arctan(jupe{t)).

The origin is an inflection point. As shown in figure 4.6.1, the parameter ju

determines the steepness of the S -shape. The higher the value of ju the steeper

the curve.

Figure 4.6.1: Specified relations between expected price and supply

For simplicity, assume that demand is a linear function of actual prices, i.e.

qd{t)=a-bp{t), b>0.

We assume that price expectation is formed as follows
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It can be shown that under these specifications, the market condition that the
demand equals supply is expressed by the following difference equation

(4.6.1)

We will  demonstrate dynamic behavior of the model by simulation. In the
remainder of this section, we fix: X = 0.3, b = 0.25 and consider a as a
bifurcation parameter for different values of ju. In the case of ju = 0.5, figure
4.6.2 depicts the bifurcation diagram for

ae [-1.25,1.25].

We see that there is a unique fixed point for the map / .

-1 -0.5

-1

0.5

Figure 4.6.2: Bifurcation diagram for fi = 0.5, a e [-1.25,1.25]

Let us rise the value of fi to 3 and depict the bifurcation diagram with a

as the bifurcation parameter as in figure 4.6.3. For low values of a, there is a
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unique fixed point. Around a = -0.9 a period-doubling bifurcation occurs. The
stable orbit remains until a reaches 0.9 and then a period-halving occurs.
Thereafter the system settles down again to a unique stable equilibrium. The
diagram is symmetrical about the origin because of the characteristic of the
arctan function.

In figures 4.6.5 to 4.6.6, we depict respectively the bifurcation diagrams
when

H = 4, // = 4.5.

We see that within the period-four orbit chaos occurs.
Figure 4.6.4 depicts the bifurcation diagram when fi = 3.5. The figure

shows a doubling bifurcation into a period-four orbit, which then turns into a
period-two orbit and finally a stable equilibrium.

Figure 4.6.3: Bifurcation diagram for// = 3, ae [-1.25,1.25]
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1

r.s

-0.5
- 0 . 5

Figure 4.6.4: Bifurcation diagram for// = 3.5, ae [-1.25,1.25]

Figure 4.6.5: Bifurcation diagram for// = 4, a e [-1.25,1.25]
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Figure 4.6.6: Bifurcation diagram for ju = 4.5, ae [-1.25,1.25]





Chapter  5

Economic bifurcations and chaos

This chapter applies the concepts and theorems of the previous chapters to analyze
different models in economics. The models in this chapter exhibit periodic,
aperiodic, or chaotic behavior. Section 5.1 studies a model of endogenous business
cycles in the presence of knowledge spillovers. Many economic indicators, such as
GDP, exhibit asymmetry as if they repeatedly switch between different regimes.
For instance, it has been found that (i) positive shocks are more persistent than
negative shocks in the United States and France; (ii) negative shocks are more
persistent than negative shocks in the United Kingdom and Canada; and (iii ) there
is almost no asymmetry in persistence in Italy, Japan, and (former) Germany. The
model in this section provides some insights into the well-observed asymmetric
nature of business cycles. Section 5.2 studies a nonlinear cobweb model with
normal demand and supply, naive expectations and adaptive production
adjustment. The model exhibits horseshoes. Section 5.3 examines an inventory
model with rational expectations. In section 5.4, we discuss an economic growth
model with pollution. The model is an extension of the standard neoclassical
growth model which has a unique stable equilibrium point. Chaos exists in the
model because of the effects of pollution upon production. It is know that the
neoclassical growth theory based on the Solow growth model focuses
accumulation as an engine of growth, while the neo-Schumpeterian growth
theory stresses innovation. Section 5.5 studies a model to capture these two
mechanisms within the same framework. The model generates an unstable
balanced growth path and the economy achieves sustainable growth cycles,
moving back and forth between the two phases - one is characterized by higher
output growth, higher investment, no innovation, and a competitive market
structure; the other by lower output growth, lower investment, high innovation,
and a more monopolistic structure. Section 5.6 identifies economic fluctuations
in a monetary economy within the OLG framework. Section 5.7 shows chaos in
a model of interaction of economic and population growth.

185
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5.1 Business cycles with knowledge spillovers

We now introduce a model of endogenous business cycles in the presence of
knowledge spillovers. ' Many economic indicators, such as GDP, exhibit
asymmetry as if they repeatedly switch between different regimes. For instance, in
their study of changes in GDP, Hess and Iwata find that (i) positive shocks are
more persistent than negative shocks in the United States and France; (ii) negative
shocks are more persistent than negative shocks in the United Kingdom and
Canada; and (iii ) there is almost no asymmetry in persistence in Italy, Japan, and
(former) Germany.2 The model is supposed to provide some insights into well-
observed asymmetric nature of business cycles.

Time discretely extends from zero to infinity. There is a continuum of firms,
each indexed by / and the total population is normalized to 1. At the end of
each period, a constant fraction 1 - S, where S e (0, l), of randomly chosen
firms disappear and are replaced by new ones. Each firm is risk neutral and
attempts to maximize the discounted sum of expected profits with y e (0, l)
being the subjective discount factor. Define

as the effective discount factor. In any period, each firm is either active or
inactive and engages in at most one project at a time. Each project is
characterized by its quality, either high or low, that determines the cost of
production. The cost of production is k if the project is of low quality and zero if
it is of high quality. Upon entering the market, each new firm has a low-quality
project at hand and must decide either to adopt the project as it is or to innovate it.
If a firm decides to adopt, it immediately becomes active and produces until it
disappears; if a firm decides to innovate (and each firm can innovate only once), it
can upgrade the project to high quality in the next period while it must stay inactive
for that period. Let

n(t)e[0,l-S],

denote the fraction of firms that decide to innovate in period t, and

x{t)e [0, l] ,

1 This section is based on Ishida and Yokoo (2004).
2 Hess and Iwata (1997).
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the fraction of firms with a high-quality project at the beginning of period t. The
law of motion of x(t) is

x(t + l)=S(x(t)+n(t)).

Assume that the productivity of each firm depends on the fraction of firms with a
high-quality (innovated) project at the beginning of each period.3

Each firm is equally productive in any given period. Let y^t) denote the

output level of firm i in period / and

y,{t)=h{x{t)),

where

is continuous and strictly increasing in x and

Firm i 's profit is

xi{t) = h{x{t))-k,

if its project is of low quality and the profit is

*,(<)=  h(x(t)),

if it is of high quality. If a firm chooses to adopt, the expected gain is

*,( / + s)= E,YFh{x{t + s)) - *
~ P

If  a firm chooses to innovate, the expected gain is

3 This assumption is accepted by, for instance, Durlauf (1991, 1993), and Gale (1996).
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The firm chooses not to innovate if and only if

(x(t + ,)) >
l~ P 5=1

which can be rewritten as

To examine h(x(t)) > k/(\ - 0) under

e < h(x{t)) < i

for any x(t) e [o, l] , we may consider three cases.

Casel 6>kl{\- P)

It is never profitable to innovate, n(t) = 0. Hence,

for x0 e [O, l ] , which implies x(t) —> 0 as t —> oo. The project of every firm is of

low quality in the end.

Case2 kl{\- P)>\
Each firm always chooses to innovate

n(t) = \-5,

for any t. Hence
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for x0 e [O, lj . The system has a globally asymptotically stable steady state.

Case3 6<kl{\- 0)<\

This is a dynamically interesting case. First, we note that there exists a real number
c, called the threshold, such that

h(c)= k

\-P

Consider c as a function of k. It can be seen that c(k) continuously increases

with k for

0 l .\-p

From the definition of c and strictly increasing h, we see that each new firm in

period t chooses to innovate if x(t) < c (i.e., n(t) = 1 - S ) and chooses not to

innovate if x(f) > c (i.e., n(t) = 0). The economy is said to be in the contraction

phase if x(f) < c; in the expansion phase if x{t) > c. In summary, the law of

motion of x(f) is characterized by the following piecewise linear difference

equation

Equation (5.1.1) can lead to an asymmetric periodic cycle in which the
expansion and the contradiction phase alternate with each other asymmetrically.4

Let us first examine a type of periodic cycle

such that

()<p{m-l)<c<p(m), (5.1.2)

4 This section is only concerned with some simple cases. Methods for a comprehensive
examination of this type of equations is referred to, for instance, Nagumo and Sato (1972).
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for some natural number m. Such a cycle may be generally illustrated as in
figure 5.1.2.

Fig. 5.1.1: A periodic cycle

To compute p(l), we need to calculate

/"(/>(!)) = A .

under equation (5.1.2). As

we see that = px becomes
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We thus solve

(5.1.3)

For this to be consistent, we should require px in equation (5.1.3) to satisfy

From

we have

+ 8 - ST* = S - \ - J +S - Lm. (5.1.4)

From

we have

.A 8-8"
= Rm- (5-1.5)

8 \-8"

The two conditions

/T2(/>(i))<c, fR(c)<Pl,

are thus represented by conditions (5.1.4) and (5.1.5). That is

Lm<c< Rm.

As Rm — Lm > 0, (Lm, R^] is well-defined. Conversely, suppose Lm < c <

be satisfied. Further, define c such that
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Solving this equation, we have

, _ c - 5 + 5m-x

We can show that the mapping fm restricted to the interval

T = [&,  c],

is well-defined (that is, fm maps T into itself) where fm\T is linear with a

constant slope Sm and a unique fixed point p, E T. We see that

is a necessary and sufficient condition for the trajectory of any initial value to
converge to a period- m cycle of formula (5.1.2). For instance, a period-2 cycle
appears when

S2  ̂ S

l + S \ + S

Exercise 5.1
1 Similar to the procedures for examining formula (5.1.2), examine a type of
periodic cycle

such that

p{\) > p(2)  > p(m - 1) > c> p{m).
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5.2 A cobweb model with adaptive adjustment

A nonlinear cobweb model with normal demand and supply, naive expectations
and adaptive production adjustment is recently proposed by Onozaki et al.5 Let
us consider a market of a single commodity. In period t, a supplier decides his
production x(t +1). Nevertheless, this level may not be equal to the profit
maximum x(t +1) which he calculates and uses as a target of adjustment.
Suppose that the calculation is made under the quadratic cost function
bx2/2,b>0 with the naive price expectation (which means that his price
expectation for the next period is equal to the current price p(t)). The profit
maximum level of output is given by

It is assumed that the producer will adjust his production according to the
following hedging rule in the uncertain economy

x(t + l) = x(t) + a(x(t + l) - x(t)),

where a e (0, l) is the speed of adjustment. Suppose that there are n identical

suppliers in the market. The aggregate supply is thus given by

X{t)=nx{t).

Assume a monotonic demand function with constant price elasticity of

Price clears the market in each period, i.e.

X{t)=Y{t).

5 This section is based on Onozaki et al. (2000). See also Hommes (1994), Gallas and
Nusse (1996), Goeree and Hommes (2000), for this type of nonlinear models. An
extension of the model to two types of producers, cautious adapters and naive optimizers
is carried out by Onozaki et al. (2003).
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It is straightforward to show that under the above specifications, the motion of
the aggregate supply is given by

Introduce a linear transformation

\cn

Then, the above equation is transformed into

z(t + 1) = (l - a)z(t) + -j^r = f(z(t\ a, p), (a, p)e (0, l)x(o, - ) .

(5.2.1)

The map / has a unique fixed point, z* = 1. The first and second derivates are

z z

which implies that / is a strictly convex and unimodal function on R++  with

its minimum at the critical point

The fixed point is a repeller if

f(z)=\-a-ap<-\,

or equivalently

^ ^ < p. (5.2.2)
a
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For this map, it can be demonstrated that for sufficiently large ji, the map

/ exhibits a horseshore. By a horseshoe it means here a compact invariant set

on which some iterate of / is topologically conjugate to the one-sided full-shift

on two symbols. The existence of a horseshoe is assured by that of a transverse
homoclinic point. A map is said to exhibit topological chaos if it has a
horseshoe or, alternatively, if the topological entropy of the map is positive. It
should be remarked that a map restricted on horseshoes behaves in a
complicated way, the existence of horseshoes itself does not assume complex
dynamics in the long run; the system may eventually settle down to a periodic
motion even if horseshoes are present.6 In the following theorem proved by
Onozaki et al, an attractor is said to be strange if it contains a dense orbit with
positive Liapunov exponent.

Theorem 5.2.1. For any a e (0, l), there is generically a positive measure set of

parameter values of /?, E c R+, such that for every /? e E, the map / exhibits

a strange attractor.

The results can be demonstrated numerically. For instance, for a = 0.7,

figure 5.2.1 depicts the Liapunov exponent for different values of /?. Figure

5.2.2 depicts the bifurcation diagram of the map with regard to /?

(1,5 < /?< 4.7) with a = 0.7.

5.3 Inventory model with rational expectations7

This section introduces a disequilibrium inventory model. The actual labor
employed, L(t), is given by the short side of the labor market

L{t)=mm{Ld(t\Ls{t)l

where Ld(t) and If(t) are respectively demand and supply of labor. Assume

L'{t)=c,

6 See Block and Coppel (1992) and de Melo and van Strien (1993) for issues related to
horseshoes and topological chaos.
7 This example is given in Hommes (1991: chapter 28). See also Shone (2002: section
7.9).
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2 2.5 3 3.5 4 4.5

Figure 5.2.1: The Liapunov exponent for 1,5 < /? < 4.7 with a = 0.7

j& 2 2.5 3 3.5 4 4.5

Figure 5.2.2: The bifurcation diagram for 1,5 < ji  < 4.7 with a = 0.7
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where c is constant. Let yd{t) and ys{t) denote respectively aggregate demand

and aggregate supply. The level of inventories l(t) is positive when there is

excess demand, otherwise it is zero

We denote expected aggregate demand by E[yd(t)) and the desired level of

inventories by Id (t). We assume perfect foresight, i.e.

Suppose

where J3 is a parameter. Production is proportional to labor employed, SL(t).

We thus have

Setting these two equations to equal each other yields

A^l>.  ,5.3,,
8

Hence labor demand is given by

Aggregate demand is assumed to be a linear function of labor employed

yd{t)=a + bL(t).
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We assume that the labor productivity is greater than the marginal
propensity to consume, 8 > b. We have completed the model. We now show
that the evolution of the system can be described by a difference equation for /.

First, we are concerned with L(t) = Ld(t), which implies L(t)s (0, c).

From equation (5.3.2), we have

S

Solve the above equation for L

Assume

8 - b{\ + p) > 0.

As L(t)e (0, c), then l(t)<  c is guaranteed by

Similarly, the condition l(t) > 0 is guaranteed if

72>l{t-\),

where

y2 = a{l + p).

Hence, L(t)e (0, c) is guaranteed if

y2>l{t-l)>y ].

We need to consider the following three situations
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(ii ) y2 >l{t-l)>y l; and

(iii ) l{t  -\)>y2.

(x)l{t-\)<y x

In this case, L(t) = c. Then

(ii ) y2 > l{t  - l) > yx

In this case

i{t)=/(t)  - yd{t)=i(t  -1)+SL{t) - a -

— a.

From the above equation, we obtain

()_ -bpl(t-\)
{) 8b{\ + p)

(5.3.3)

(5.3.4)

(m)l{t-\)>y2

Under these circumstances, we have

We thus have

Combining all these three cases, then

is a piecewise function

(5.3.5)
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l{t  - l) + 8c - a - c,

-bpi{t-\) ( aSp
8-b{\ + p) 8-b(l + p)'

(5.3.6)

I(t-l)>y 2.

The equilibrium investment is defined only for y2 > l(t -1) > yx, which is

given by the following condition

+ y ,=>/-= *#
<J - 6(1 + yff) ^ - 6(1 8-b

Since 8 > b, we have /*  > 0.

We now provide two numerical examples. First, we specify

a = 0.2, 6 = 0.75, c = 1, £ = 1, P = 0.2.

Under these specifications, equation (5.3.6) becomes

f/(r -1) + 0.05, / ( f - l )<0.14,

/(/) = | -1.5l{t -1) + 0.4, 0.24 <l(t-l)<  0.24,

/(f-l)-a, /(/ -1) > 0.24.

(5.3.7)

We illustrate the behavior of map (5.3.7) as in figure 5.3.1. Although the
equilibrium level exists (/*  =0.1.6), from the figure it is not clear whether this
fixed point will be approached. In fact, as shown in figure 5.3.2, the system is
chaotic in the present case.

We still assume

a = 0.2, 6 = 0.75, c = 1, 8 = 1,

but leave >9 unspecified. We consider P as a bifurcation parameter. We allow

/? to range over the interval (0,1/3), the value of 1/3 is determined from the

condition

8 - 6(1 + P) = 0.
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Figure 5.3.1: The dynamics with P = 0.2

In constructing the bifurcation diagram, we notice that with unspecified /?,

equation (5.3.6) becomes

l(t-\)+  0.05, - 1) < 0.2 0̂ - A ,

where

l(t-l)-  0.2, /(/-l)>0.2y50.

= 1 - 0 . 7 5 .̂

Figure 5.3.2 depicts the bifurcation diagram. Although the system exhibits
chaos over certain range for /?, there are regular alternating behavior.
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Figure 5.3.2: The bifurcation diagram with fi as bifurcation parameter

5.4 Economic growth with pollution

The following model is due to Day.8 First, we have the following relations

S(t) = Y{t) - C(t) = sY{t\ 1 > s > 0,

where Y(t) is output, C(t) is consumption, l(t) is investment, S(t) is savings,

N(t) is the total labor force, and s and n are respectively the fixed rate of savings

and the population growth rate. The production function F(K(t), N(t)) (= Y(t)) is

linear-homogeneous. Introduce

N(ty

See Day (1982).
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Hence, we have

( )
1 + n

where f(k) = F(k, l). The production function is taken on the following form

f{k)=Bk/){t){m-k(t)Y, k{t)<m,

where B, ft, y, and m are constant. Here, the term (m - k(t))r reflects the

influence of pollution on per-capita output. As the capita intensity increases,
pollution increases as well. Suppose that resources have to be sacrificed in order to
avoid this pollution. Substituting / into the equation for capital accumulation
yields

k{t + \) = nkfi{t)(m-k{t)Y,

where

sB
n = .

\ + n

If we choose

fi = y = m = \,

then the equation becomes

k{t + l) = nk{t){m - k(t)).

This is formally identical with the logistic equation. Hence, all the properties of the
logistical map can be identified in Day's growth model.

We now consider the general equation

k(t + l) = nkfi(t){m-k{t)y.
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To apply the Li-Yorke theorem to this equation, we consider the following
three different values of k. Let kc be the critical point of the map, i.e., the value of
k(t) that implies the highest possible capital intensity in the next period. We

determine kc by solving the first-order condition

- k(t)Y - jk'(t)(m -

We have

k

As shown in figure 5.4.1, if we make B sufficiently large, it is always
possible to make kc lower than the fixed point k\ Next let kb be the result of the
backward iteration

When kb <k\ kh will be smaller than kc. Finally, let km denote the

maximum attainable capital intensity, i.e., the intersection of the graph of the map
with the abscissa. Variations in B eventually imply that the graph of

nkp{m — k)r is stretched upward such that km is the forward iteration of kc

As km is mapped to the origin, the following relations between these values of
k hold

0 < k" < kc < km => /(*") < k" < f(kb)< f(kc)

Hence, the requirements of the Li-Yorke theorem are satisfied. The model is
chaotic in the Lie-Yorke sense for appropriate values of the parameters.
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k" kc km

Figure 5.4.1: Day's growth model with pollution

5.5 The Solow-Schumpeter growth oscillations

As shown in chapter 3, the neoclassical growth theory based on the Solow
growth model focuses accumulation as an engine of growth, while the neo-
Schumpeterian growth theory stresses innovation. Recently, Matsuyama
proposes a model to capture these two mechanisms within the same framework.9

The model generates an unstable balanced growth path and the economy
achieves sustainable growth cycles, moving back and forth between the two
phases - one is characterized by higher output growth, higher investment, no

9 This section is based on Matsuyama (1999). The model is based on the lab equipment
model of Rivera-Batiz and Romer (1991) and the search-based model of technology
evolution by Jovanovic and Rob (1990). It should be noted that innovations cycles are
also generated by many other models, for instance, by Deneckere and Judd (1992) and
Gale (1996). Matsuyama (2001) proposed another model to endogenously determine
behavior of consumers within the framework of an infinitely lived agent economy. See
also Mitra (2001) for discussing conditions for topological chaos with regard to the model
by Matsuyama.
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innovation, and a competitive market structure; the other by lower output
growth, lower investment, high innovation, and a more monopolistic structure.

There is a single final good, taken as a numeraire; it is competitively
produced and can either be consumed or invested. Let K(t - l ) be the final good
left unconsumed in period t - 1 and made available for use in production in /.
Labor is supplied inelastically in amount N. Labor goes directly into final
goods production. Capital K(t - l ) must be first converted into a variety of
differentiated intermediate products; these intermediates are aggregated into the
composite by a symmetric CES. The final goods production function is

z(t)

Y{t) = A0N
Va jxa(z,t)dz, (5.5.1)

0

where x(z, t) is the input of variety z in period t

a = \ , <7e(l,°°),
o

and [0, Z(t)\ is the range of intermediates available at t.
The market structure of the intermediate sector is described as follows.

Prior to t, the economy developed all the intermediates in the range,
[0, z(t -1)], with z(o) > 0. These old intermediates are manufactured by
converting a units of capital into one unit of an intermediate, and sold
competitively in t. In addition, the intermediates of variety

z e [z(t -1), z(t)l

may be introduced and sold exclusively by their innovators in t. Innovating
new intermediates require F units of capital per variety. The process of
manufacturing new intermediates requires a units of capital per output. Let r(t)
denote the price of capital. The marginal cost of manufacturing intermediates in
t is equal to ar(t). The old products are supplied at the marginal costs

p{z,t)=pc(t)=ar{t),  ze[0,Z(f-l)].

All the new products are sold at
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l ze[z(t-l\z(f)l

Since all the intermediates enter symmetrically in the final goods production, we
have

£
*"(' )

= a (5.5.2)

where

x{z,t)=pc(t), zs[0,Z(t-l)],

p(z,t)=pm(t), ze[z(t-l),Z(t)].

The one-period monopoly enjoyed by the innovator yields the monopoly
profit

n = pmxm - r(axm + F),

at t. The profit is negative if and only if

The free entry conditions ensure

axm{t)<{a-\)F,
z{t)>z{t-\), (5.5.3)

The resource constraint on capital in t is given by

K{t - 1) = ax°{t)z{t - 1) + (ax-it) + F ) ( Z ( / )- Z(t - l)).

Under equations (5.5.2) and (5.5.3), the above constraint becomes
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axc {t) = aa^xm{t) = m i n j | | - | , 6OF\, (5.5.4)

Z(t) = Z(t - l) + max-fo, K  ̂ ~ l' - 6Z{t - l)l , (5.5.5)
oF

where 6 = a a. Under equations (5.5.3)-(5.7.5), the total output is given by

y / v = \A\9oFZit - l)faKa(t - 1) if K{t - 1) < 0oFZ(t - l), 5

[AK(t-l)  if A:(/ -1) >0oFZ(t - l),

where we use

(/-l)+(r-(/)f(z(/)-Z(/-l)).

Equations (5.5.5) and (5.5.6) tell that if

the resource base of the economy, K, is too small relative to the number of the
existing products, Z, and there is no innovation. The economy in this situation
is called the Solow regime. If

some new products are introduced; the economy is said to be in the Romer
regime.

To close the model, it is assumed that the economy carries over a constant
fraction of its output to the next period, i.e.

K(t) = sY{t),
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where s is a constant. The system has a unique solution for any positive initial
condition, Ko and Zo. Set

- K{t)

6oFZ{t)'

Then the system can be expressed as the one-dimensional difference equation

\sAka(t-\), if/fc(f-l)<l ,

1)

The critical value of k, denoted by k (= 1), which separates the Solow and

Romer regimes is equal to one. If

sA < 1,

the system has a unique steady state

k* = (sAf < k.

Without innovation, all goods are competitively supplied and the economy
does not grow: the steady is a neoclassical stationary path. If

sA > 1,

the steady state, given by

... , &4 - 1 7-
k =1 + >k,

0

is in the Romer regime. New products are introduced steadily, and K and Z
grow at the same rate. It is a balanced growth path, characterized by

K(t + \) = sAK(t).

Figures 5.5.1-3 depict the dynamics of
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Figure 5.5.1 depicts the case of sA < 1. For any initial condition, after at most
one period, innovation stops and the economy is trapped into the Solow regime.

The Solow Regime The Romer Regime

Figure 5.5.1: The growth by the Solow mechanism with sA < 1

Figures 5.5.2 and 5.5.3 both depict the case of sA > 1, for which

«\ \-e
sA

They differ in the local stability of the steady state. Figure 5.5.2 illustrates the

case of 1 < sA < 9 - 1. The equilibrium point A:**  is locally unstable because

of

The interval |/2(£**) , /(^**) J represents the trapping region, i.e., the region that
the economy enters eventually and once entered will never leave. The trapping
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region covers both the Solow and Romer regimes. If the economy starts with a
small k0, the economy may stay in the Solow regime for some periods, but

eventually accumulates enough capital to enter the Romer regime, and
innovation begins. The economy begins cycling between the two regimes.
Formally, it can be proved that if

\<sA<0 -\,

there are period 2 - cycles, k{f) fluctuates forever between the Solow and Romer

regimes for almost all initial conditions.

The Solow Regime The Romer Regime

Figure 5.5.2: The Solow-Schumpeter mechanisms with 1 < sA < 9 - 1

Figure 5.5.3 depicts the case of sA > 8 - 1 . We have

-1 < / ' (£ " )< 0.

The steady state is globally stable. In the long term, the economy will
forever stay in the Romer regime.
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The Solow Regime The Romer Regime

Figure 5.5.3: The Schumpeterian growth with sA > 6 - 1

Exercise 5.5
1 Consider the Matsuyama model presented in this section. Prove: (i) If

sA<\,

then for any k0 e R+, k(t)< kc for all t, and l im,^ k(t)= k*; (ii)I f

1 < sA < 9 - 1,

there are period- 2 cycles, fluctuates forever between the Solow and Romer
regimes for almost all initial conditions; and (iii ) If

sA>6-\,

then, for any k0 e R+, there exists a f such that

{k{t);t>t'}^[k c,f{kc)\ \\mk{t)=k".
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5.6 Money, growth and fluctuations

This section is to identify endogenous fluctuations in a monetary economy.10

The economy is inhabited by an infinitely lived representative agent with perfect
foresight, who maximizes

YiJ m(t)\

subject to the flow budget constraint

M{t) = P(t)(y - c(t)) + H{t) + M(t- l), M(-1) given

where U: R+2 —> R is the one period utility function, which is strictly concave,

increasing in both arguments, /? e (0, l) is the discount factor; y is the constant

endowment of perishable consumption good; c(t) is consumption level

is real balance, M(t) is nominal money holdings, and P(t) is the price level. The

agent considers {P(t)}~ independent of his own money holdings. At the beginning

of period /, the agent receives Hit) units of paper money from the government

though a "helicopter drop", also considered to be independent of his money
holdings. The money supply grows at the rate / / > / ?, which implies

Thus the markets clear when

M{t) = n'M0, c{t) = y,

for all t. An equilibrium point of the economy is given by a nonnegative sequence
of real balances satisfying

/3UC {y, m{t + \))m{t + l) = fJm{t)[Uc (y, m(t)) - Um (y, m{t)) ], (5.6.1

}  This section is based on Matsuyama (1991).
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as well as the transversality condition

\\mP'Uc{y,m{t))m{t) = O.
t—>oo

The steady state is m(t) - m or

m

for all t where m > 0 satisfies

exists uniquely.11

For simplicity, assume that the utility function is taken on the following form

U(c, m) =
[g(c)m]-

1 + 7]

log g(c)+ log m,

-, i f 77 * - l ,
(5.6.2)

where g > 0, g' > 0, and

and ^ is a parameter satisfying

2)

The elasticity of intertemporal substitution of real balances is equal to

11 Strictly speaking, m(t)=0 or P(t) = °° is another candidate for the steady state.

Nevertheless, for the utility function used below, this case is ruled out.
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cr = (n + 2)-\

Substituting equation (5.6.2) into equation (5.6.1) yields

p(t + l) = (1 + SrP(t)(l - p(t)r - F(p(t)\ p(t)e (0,1), (5.6.3)

for all t and

p gl

For the new variable p, the transversality condition becomes

l im/?y( ;) = 0.

The unique steady state is

S
P =-,

We also rule out the case of 7] - 0. hi the remaining of this section, we

require: 77 > 0.12 If 77 = 1, then

F = (l + S)p(t)(l-p(t)\ p(th (0,1).

This is again the well-studied logistic map. There are periodic, aperiodic and
chaotic solutions to this system.

It is straightforward to check the following properties of F: (1)

(2) F has a single peak at

12 Under this requirement, the transversality condition lim,_̂  fS'pn(i) = 0 is automatically
satisfied for p e (0, l).



216 5. ECONOMIC BIFURCATIONS AND CHAOS

1 + 7/

F is strictly increasing on [o, p), and strictly decreasing on (p, l] ; (3)

(4)

7]

and (5) Let

If 8 < (>) A{rj),

F maps [0, l] into itself if 8 < A(TJ); F maps (0, l) into itself if 8 < A(TJ). The

function A(TJ) defined on (0, °°) is strictly increasing

= 0, A(^) > 0

for all TJ.

Proposition 5.6.1. (i) If 0 < 8 < 2TJ, then for all p0 e (0, l),

(ii ) If 0 < 2TJ < 8, then a period- 2 cycle exists, and the set p0 G (0, l) such that

F'(p0) converges, N, is at most countable. Furthermore, if

2r]  < 8
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the set of initial prices that lead to equilibrium points along which the price level

fluctuates forever, TV , is offiillLebesgue measure.

Proof: (i) Introduce

Clearly, G( /?* )= 1. If G{j>)=\  for some

pe{0,l)\{p},

then there exists a period- 2 cycle of F. From the definitions of F and G, we
have

Let

We see that G' is strictly increasing in (0, p), strictly decreasing (p, l] , and

G'{p) < 0. Thus G'(p)< 0 in (0, l)|\{p} , or G is strictly decreasing in (0, l).

Therefore, p* is the only solution of G(p) = l. This implies that F has no

period- 2 cycle. From the theorem of Coppel,n which states that if / is a

continuous map of a compact interval to itself that has no period- 2, the

sequence {/'(*) }  converges to a fixed point of / for every x in the interval.

As no p € (0, l) can approach 0 asymptotically, we have

13 See Coppel (1955).



218 5. ECONOMIC BIFURCATIONS AND CHAOS

lim F'(p)= p*
t—>«>

for every p in (0, l).

(ii ) For the existence of period- 2 cycles, it is sufficient to show that G(p) = 1

has a solution in (0, l) \ [p*\.  As

G(O+)>O, G(I) = O,

the intermediate value theorem implies that there exists pc e (o, p*) such that

For the proof of countability of N, let p be a point in N and p°° be the limit

point of the sequence starting at p. From the continuity of F

we see

p°° = 0 or p°° - p .

Since 0 < 2T] < S implies that both 0 and p* are locally unstable,

l im, ^ F'(p) cannot approach them asymptotically. Therefore

N = {q e (0, l)| FT{q) = 0 or p* for a finite T\

which is at most countable, since property (2) of F implies that, for any z,

there are at most two x 's that solve z = F(x). The second half follows from the

fact that if
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S<A{TJ), N* = (O, l)\N.

Proposition 5.6.2. For any r]  > 0, there exists a value A*  (77) satisfying

2TJ<A'{TJ)<A(TJ),

such that a period- 3 cycle of F exists if 8 > A*  (77).

Proof: Introduce

Then G ( O+ ) > 1 and G[p)=l.  From the intermediate value theorem, it is

sufficient to show that there is pc e (o, p) such that G(pc) < 1. If 8 > A(TJ),

then there exists pc e (o, p'j such that F(pc) -1 so that

or G(/?C) < 1. From the continuity of G on 8, there exists a A*(rj)<  A(TJ) such

that G(pc) < 1. That 277 < A*(̂ ) follows from proposition 5.6.1.

The proposition guarantees the existence of chaos.

5.7 Population and economic growth

The model in this section is based on section 6.2 in Zhang.14 The model is
constructed by Haavelmo in continuous form. Its discrete form was examined by
Stutzer,15 by applying modern mathematics for one-dimensional mappings. First,
consider a macroeconomic growth model proposed by Haavelmo16

14 Section 6.2 in Zhang (1991).
15 Stutzer (1980).
16 Haavelmo (1954).
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= N\a-^-\, a,P>Q, Y = ANa, A > 0, 0 < a < 1, (5.7.1)

where N is the population, Y is the real output, and a, /?, a and A are

constant parameters. Substituting

Y = ANa

into the differential equation yields

( BN1'"
N = N\a- — I. (5.7.2)

We see that the growth law is a generalization of the familiar logistic form widely
used in biological population and economic analysis. It is not difficult to see that
the dynamics of this system are simple. If the initial condition satisfies

aA

then both N and Y will decrease (increase) monotonically until approaching their
unique equilibrium point, respectively. If we replace time derivatives by first
differences and accept discrete time, then equation (5.7.2) becomes

which can be further simplified as

x(t +1) = (1 + a)x(t)(l - xm (0) = F(x(t}, a, 0.5), (5.7.3)

in which the new variable x(t) is defined by the transformation

1/(1 - a)

x{t),
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with a = 1/2. It can be shown that none of the qualitative properties of the system
are affected by the particular choice of 0 < a < 1. The term chaotic dynamics
refers to the dynamic behavior of certain equations F which possess: (a) a non-
degenerate n -period point for each n > 1, and (b) an uncountable set

5 e J = [0,1]

containing no periodic points and no asymptotically periodic points. The
trajectories of such points wander around in J "randomly".

For each value of a, equilibrium points are given by the intersection of the

graph of F(x(t); a) with the 45 -degree line. For each value of a, there are two

equilibrium points

x0 = 0, xo =

The point x0 = 0 is unstable and repels nearby points. The local stability of the

other one can be determined by linearization at the equilibrium point. We have

(5.7.4)

The eigenvalue 0(a) determines the local stability of JC0. When 0 < 8 < 1,

x0 attracts nearby points in an exponential, monotonic fashion. When

0 > 9 > - 1, xQ attracts nearby points in a damped oscillatory manner. When

6 = 1, x0 is neither stable nor unstable. Finally, if |#| > 1, x0 is unstable. These

behaviors occur when

0 < a < 2, 2 < a < 4, a = 4, 4 < a< 5.57,

respectively. When the equilibrium point is stable, i.e., a < 4, the trajectory
starting at any point always approaches it. In this region a traditional comparative
statics analysis shows that an increase in the parameter a will increase x(t) for
sufficiently large t. If 4 < a < 5.57, trajectories don't approach the equilibrium
point, but bounded by 0 and 1. In fact, as the parameter a exceeds 4, the
unstable equilibrium point bifurcates into two stable points of period two, i.e., into a
stable periodic orbit of length 2. The 2 -period cycle becomes unstable for values
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of a in excess of about 4.8, and each 2 -period point bifurcates into two 4 -period
points, producing an stable cycle of length four denoted by

x4 x4 x4

*01> A02> A03>

Figure 5.7.1 illustrates the phenomenon.

x()t + 1

l

0.8

0.6

0.4

0.2

A 0.2 0.4 0.6 0.8 1

Figure 5.7.1: The 4-period orbit for a - 4.9

x()

This pitchfork bifurcation process continues as the parameter a increases,
producing non-degenerate orbits of length 2k (k = 2,...). These orbits are called

harmonics of the 2 -period orbit. It can be shown that all the harmonics occur prior
to the parameter a reaching 5.54, although how much prior to this value is not

known. Thus, the range of a, within which a stable orbit of length k first appears
and later becomes unstable and bifurcates to a 2k k -period orbit, decreases in
length as the parameter a increases to a limiting value ac < 5.54. The range of
ac < a < 5.75 is termed the chaotic region. As the parameter a enters this region,
even stranger behavior can occur. For example, a 3 -period orbit exists at values of
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a near 5.540. This, then gives rise to orbits of periods 3k (k = 2, ...) via the
pitchfork process just described. In fact, if we can locate the 3 -period orbit, the Li-
Yorke theorem demonstrates that for any F(x(t); a) in which a non-degenerate 3 -

period orbit arises, there must also exist non-degenerate points of all periods, as
well as an uncountable set of periodic (not asymptotically periodic) points whose
trajectories wander randomly throughout the domain of F. 17 Our dynamic
economic system satisfies the requirements in the Li-Yorke theorem for some
values of a. This guarantees the existence of chaotic behavior as illustrated in
figure 5.7.2.

20 40 60 80 100 120 140

Figure 5.7.2: The existence of chaos for a = 5.75 with x0 = 0.4

The existence of chaos implies that no one can precisely know what wil l
happen in society in the future, except that it wil l be changing. To illustrate why
no one can precisely foresee the consequences of the intervention policy, let us
try to find out what happen to the system when it starts from two different but
very near states. In figure 5.7.3, we consider the case of a = 5.75. Let us

consider two cases of x0 = 0.400 and x0 = 0.405 over 100 years. It can be

seen that the two behaviors are varied over time.

' Li and Yorke (1975).
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20 40 60 80 100 2 0 4 0 6 0 80 100
(a) x0 = 0.400 (b) x0 = 0.405

Figure 5.7.3: The dynamics with different initial conditions

We calculate the difference x[t, 0.400] - x[t, 0.405] between the two paths

started at x0 = 0.400 and x0 = 0.405 over 100 years.

[t, 0.400] Af, 0.405]

1

0.5

-0.5

Figure 5.7.4: Small differences at the beginning signify much
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hi summary, as the autonomous growth rate a exceeds a certain value, the
steady state ceases being approached monotonically, and an oscillatory approach
occurs. If a is increased further, the steady state becomes unstable and repels
nearby points. As a increases, one can find a value of a where the system
possesses a cycle of period k for arbitrary k (see figure 5.7.5). Also, there exists
an uncountable number of initial conditions from which emanate trajectories that
fluctuate in a bounded and aperiodic fashion and are indistinguishable from a
realization of some stochastic (chaotic) process.

0.8

0.6

0.4

0.2

2.5 3.5 4.5 5.5

Figure 5.7.5: The map of bifurcations for a e [2,5.75]





Chapter  6

Higher  dimensional difference
equations

In this chapter, we study the dynamics of difference equations of the form

*,(*  +  ]) = / W 4 xi(t\ - , *„(')) » i = 1, 2,..., n.

The system can be expressed in the vector form

x(/ + l) = /(*(/)) .

We organize the chapter as follows. Section 6.1 studies phase space analysis of
planar linear difference equations. This section depicts dynamic behavior of the
system when the characteristic equation has two distinct eigenvalues, or repeated
eigenvalues, or complex conjugate eigenvalues. Section 6.2 studies autonomous
linear difference equations. This section provides a procedure of finding general
solutions of the system. Section 6.3 studies nonautonomous linear difference
equations. This section provides a procedure of finding general solutions of the
system. We also examine a few models of economic dynamics. They include a
dynamic input-output model with time lag in production, a cobweb model in two
interrelated markets, duopoly model, a model oligopoly with 3 firms, and a model
of international trade between two countries. This section also shows how the one-
dimensional difference equation of higher order can be expressed in multi-
dimensional equations of first order. Section 6.4 defines concepts of stabilities and
relations among these concepts. This section also provides conditions for stability
or instability of difference equations. Section 6.5 studies Liapunov's second
method or direct method. The theory of Liapunov functions is a global approach

227
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toward determining asymptotic behavior of solutions. Section 6.6 studies the theory
of linearization of difference equations. There are two possible ways to simplify
dynamical systems: one is to transform one complex system to another one which
is much easier to analyze; and the other approach is to reduce higher dimensional
problems to lower ones. The center manifold theorem helps us to reduce
dimensions of dynamical problems. Section 6.7 defines the concept of conjugacy
and shows how to apply the center manifold theorem. Section 6.8 studies the
Henon map, demonstrating bifurcations and chaos of planar difference equations.
Section 6.9 studies the Neimark-Sacker (Hopf) bifurcation. This section identifies
the Hopf bifurcation in the discrete Kaldor model. Section 6.10 introduces the
Liapunov numbers and discusses chaos for planar dynamical systems.

6.1 Phase space analysis of planar linear systems

This section examines stability properties of second-order linear autonomous
systems

xl(t + l) = anxl(t)+al2x2(t),

x2(t + l) = a2lxl(t)+a22x2(t),

or

x(t + l)=Ax(t), (6.1.1)

If Ax* - x* or

{A-l)x'=0,

x* is an equilibrium point. If (A -1) is nonsingular, then x* = 0 is the only

equilibrium point of system (6.1.1). On the other hand, if (A — i) is singular, then

there is a family of equilibrium points. In the latter case, let

y{t) = x{t)-x,

we obtain
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y{t + l)=Ay{t).

Thus the stability properties of an equilibrium point x 5*  0 are the same as

those of the equilibrium point x* = 0. We can thus assume that x* = 0 is the only

equilibrium point of system (6.1.1). Let

J = P-'AP

be the Jordan form of A. Introduce

Then system (6.1.1) is transformed into

y(t + l) = Jy(t), yo(=p-]xo). (6.1.2)

As the qualitative properties of systems (6.1.1) and (6.1.2) are identical, it is
sufficient for us to be concerned only with equation (6.1.2). It can be seen that J
has only three canonical forms. We examine these cases separately.

Casel

When A has two distinct eigenvalues, pl ^ p2

J = diag[p,, p2].

The solution of system (6.1.2) is given by

Thus

_ I f 2 ^ 2 0 1 = 1 2

. A j îo

We conclude
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if

Figures 6.1.1 to 7.6.5 illustrate different combinations of px and p2.

Figure 6.1.1: px < p2 < 1, asymptotically stable node

Figure 6.1.2: px > p2 > 1, unstable node
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Figure 6.1.3: 0 < p{ < 1, p2 > 1, saddle (unstable)

Figure 6.1.4: 0 < pl = p2 < 1, asymptotically stable node
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I

1

\

Figure 6.1.5: p1 = 1, p2 < p,, degenerate node

Case 2
When A has repeated eigenvalues

P = Pi= Pi^

we have

J =
P
0 p

The solution of system (6.1.2) is given by

Thus

lim^f f = 0.
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We have two cases as illustrated in figures 6.1.6 and 7.1.7.

Figure 6.1.6: px = p2 < 1, asymptotically stable node

— \

/

*

m —
- >

\ m
/ *

Figure 6.1.7: pl = p2 = 1, degenerate case (unstable)
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Case 3
When A has complex conjugate eigenvalues

p]2  p*Q,

we have

a p
-B a

Suppose £ = [l / ] T is the eigenvector of A corresponding to

pl = a + tp.

In this case, a solution of system (6.1.2) may then be given by

Introduce

\ (9 = tan"1 £ .

Then this solution can now be written as

y{t)=\  \[r{cosd + isind)]' =\ \r'(cost8 + isintd)

U Tin 1 ( 6- L 4 )

= r'\C0St + ir\  &mt \ = u(t) + iv(t),
\_—sint9J [_cosf#J

where

u(t)=rW , v(t) = r'\
W [cos Ĵ
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One can show that u(t) and v(t) are two linearly independent solutions of

system (6.1.2). Hence we do not need to consider the solution generated by p and

£,. A general solution may then be given by

\y^y\ = a u/t\ + a V/A = J a\cosW + a2si

L^2(?)J ' 2 [-a^sintd + a2cost0j'

Given initial values yl0, we obtain

yM

If we introduce

yl0 cost9 + y20 sintd

~yw smtd + y20 cost6

where

then we have

yl{t) = r'rocos(t0-y),

y2{t) = -r'rosin{t0-y).

Using polar coordinates we can now write the solution as

If r < 1, we have an asymptotically stable focus, as illustrated in figure 6.1.8.

If  r > 1, we have an unstable focus as shown in figure 6.1.9. When r = \, we

obtain a center where orbits are circles with radii r0. This case is depicted in figure

6.1.10.
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Figure 6.1.8: \p\ < 1, asymptotically stable focus

Figure 6.1.9: |/?| > 1, unstable focus
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Figure 6.1.10: \p\ = 1, center (stable)

Example Sketch the phase space portrait of

x(t + l) = Ax(t),

where

A =
1 1

0.25 1

The eigenvalues of A are pl =1.5 and p2 = 0.5; the corresponding eigenvectors

are

£=(2 If,  £=(2 -If .

Hence
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0.5

Let x{t) = Py(f). We obtain

The phase space portrait of y(t + l) = >/y(/) is depicted as in figure 6.1.11. We may

also describe the phase space portrait of the original system with

x{t)=Py(t),

as in figure 6.1.12.

Figure 6.1.11: Saddle of the canonical form, y(t + l) = Jy(t)
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Figure 6.1.12: Saddle of the original system, x(t + l) = Ax(t)

Exercise 6.1
1 Depict the phase space diagram and determine the stability of the equation

x(t + l) = Ax{t),

where A is given by

(i)

(ii )

(iii )

0.5 0

0 0.5J'
-0.5 1

0 -0.5

1 0.5

-0.5 1
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6.2 Autonomous linear difference equations

We now study the following linear homogenous difference equations

x(t + l)=Ax(t), (6.2.1)

where

and A is a nxn real nonsingular matrix. A solution of system (6.2.1) is an
expression that satisfies this system for all / > 0. A general solution is a solution
that contains all solutions of the system. A particular solution is one that satisfies
an initial condition x0 = x(t0). The problem of finding a particular solution with

specified initial conditions is called an initial value problem. It can be seen that the
solution of system (6.2.1) has the form

x{t) = A'-'°x0.

Theorem 6.2.1. There exists a fundamental set, denoted by

{xx(t),x2(t),-,xn{t)l

of solutions for system (6.2.1). A general solution is given by

( o ! > , , ( ) , c J e R > / = 1 '

Along with the homogeneous system (6.2.1), we consider the
nonhomogeneous system

x{t + \)=Ax{t)+B{t), x(0) = x0, f = 0 , l , - . (6.2.2)

The initial value problem (6.2.2) has a unique solution given by
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We see that the main problem is to calculate A'. There are some algorithms

for computing A'. Here, we introduce the Putzer algorithm.1 Let the characteristic
equation of A be

where a0 = 1. Let

A . As. ' " . A. .

be the eigenvalues of A (some of them may be repeated). The following formula

determines A'

where

M{0) = l,

Example

X(t-

where

A =

H

"4

0

0

Solve

) = A

1

2

1

X(t)

2

- 4

6

1 The algorithm is referred to section 3.1 in Elaydi (1999).
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The three eigenvalues of A are

A = Pi = Pi = 4-

Hence, we have

M(0)=/,

M(\)=A-4I =

M(2) = (A- 4l)h

"o
0

0

1

1

) =

I

"0

0

0

2"

- 4

2

0

0

0

3

0"

0

0

«,(') = 4',

Applying the above calculation results to

J(t)M{j-\),

we get

A' =

4' t4' 2t4'

0 4'-2t4'~l -t4'

0 t4'~l 4'

Consequently

x{t)=A'x0

is the solution.
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We now apply the Jordan to solve system (6.2.1). First, we consider the case
that A is similar to the diagonal matrix

D = diag\p\

where p, are the eigenvalues of A.2 That is, there exists a non-singular matrix P

such that

P^AP = D.

From AP = PD, we have

where £ is the ith column of P. We see that £ is the eigenvector of A

corresponding to the eigenvalue pi. From

P~XAP = D

and P being non-singular, we have

A = PDP~\

Consequently, we have

A' = PD'P-' = Pdiaglp'^-'. (6.2.3)

Substituting equation (6.2.3) into

x{t)=A'-'°x0,

with t0 - 0 yields the general solution

0. (6.2.4)

2 Refer to appendix A.I for an introduction to matrix theory. It is known that a nxn
matrix is diagonalizable if and only if it has n linearly independent eigenvectors.
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As

Pdiag\p',]= [ /?,£, p 2 % 2 , , pjn],

the general solution (6.2.4) can also be expressed by

x{t) = a . p ft + a2p&  + anp'Jn, (6.2.5)

where

a = P~lx0.

After having calculated the eigenvalues and eigenvectors, we may directly
determine a by equation (6.2.5) through the initial conditions without calculating

Example Find the general solution and the initial value problem of
x{t + l) = Ax(t)

A =

The three eigenvalues of matrix A are

A =5, A = p3 =1.

Correspondingly, we can find three linearly independent vectors3

2

1

1

2

3

2

1

1

2

, *(o) =
0

1

0

1

1

1
, £ =

1

0

- 1

0

1

- 2

3 It should be noted that if the matrix has repeated roots, then it is diagonalizable if it is
normal, that is to say, if ATA = AAT.
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It should be noted that there are infinite choices for £2 and £, because of
multiplicity of the corresponding eigenvalues. The general solution is

al 5' - a2 — 2a3

The solution of the initial value problem is solved by substituting the initial
condition x0 into the above equation and then solving a,. We calculate

1 1 1

Hence

~

5'

5'

5'

- 1

+ 1

- 1

We may also use x(t) = A'x0 and equation (6.2.3) to solve the initial value
problem. We get the same solution by calculating

1

1

1

1

0

- 1

0"

1

2

=>P~ ] =

1
4
3
4

4

1
~2

1
~2"
1

2

1

1

~4
1
4

The reader is asked to check the result.

The matrix A may not be diagonalizable when A has repeated eigenvalues.
There is something close to diagonal form called the Jordan canonical form of a
square matrix. A basic Jordan block associated with a value p is expressed
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J =

p
0

0

0

1

p

0

0

0
1

0

0

... o

... o

... p

... o

0
0

1

p

The Jordan canonical form of a square matrix is compromised of such Jordan
blocks.

Theorem 6.2.2. (the Jordan canonical form) Any nxn matrix A is similar to a
Jordan form given by

J = diag[j^, J2,  Jk],  \ < k < n ,

where each J, is an stxs, basic Jordan block and

> s = n.
L-H=\  i

Assume that A is similar to J under P, i.e., P~lAP = J. We have

A = PJP~l.

Hence,

A' = PJ'P~\

It can be seen that

J' =diag[j{,J t
2,--,J[\ \<k<n.

We can write J, as

where Nt is an s, x st nilpotent matrix. Using N* — 0 for all k > s,,, we have
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= (A '

« ,V %r .

0 p\

\p'r- +l

t c 4."?

0 0 A;

The general solution of equation (6.2.1) (for t0 = 0) is now given by

x(t) = A'x0 = PJ'P~]x0 = PJ'a, a = P'lx0.

Corollar y 6.2.1. Assume that A is any «x« matrix. Then

' =0,

if and only if p\ < 1 for all eigenvalues p of A.

Exercise 6.2
1 Use the Putzer algorithm to evaluate A'

' 1
(i)

(ii ) A =

- 2

0

4

4J ;

2

1

- 4

-1

0

5

2 Solve the following systems with the Putzer algorithm

xl{t + l) = -xl(t)+x2{t),
W x2(t + 1) = 2x2(t), xx(0) = 1, x2(0) = 2;

(ii ) x(t + l) = V4JC(*) where
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1

0

0

- 2

0

2

-2
_ j

3

"r
i

0

3 Use formula (6.1.5) to find the solution of x(t + l) =

(ii )

=

1

1

0

2 3

4 3

0 0

o r
2 3

0 3

0"

0

6

(o) =
'0"

0

1

"o"
1

0

6.3 Nonautonomous linear difference equations

This section first examines the nonautonomous homogenous difference equations

x(t + l)=A(t)x{t), (6.3.1)

where

x(t) = (Xl{t),x2{t),-,xn{t))
T

and A(t) is a nxn nonsingular matrix function.

Theorem 6.3.1. For each x0 s R" and t0 e Z+ there exists a unique solution

x(t, x0) of equation (6.1.1) satisfying the initial condition.

Let Xx{t), X2(t),  Xn(t) be n solutions of equation (6.3.1). They are said

to be linearly independent if they are linearly independent for all t > 0. Otherwise,

they are said to be linearly dependent. A set

{Xxif),X2{f),-,Xn{f%
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of any n linearly independent solutions is said to be a fundamental set of solutions,
and the matrix

is called a fundamental matrix. We have

as X^t), X2(t),  Xn(t) are linearly independent. As each Xt{t) satisfies

equation (6.3.1), we have

X(t + l) = A{t)x{t). (6.3.2)

In fact, the above equation has a unique solution.

Theorem 6.3.2. There is a unique solution x(t) of equation (6.3.2) with

X(to) = I.

The general solution of equation (6.3.1) is given by

x{t) = X{t)c,

where c e R". The nonhomogeneous system corresponding to equation (6.3.1) is

given by

x{t + \) = A{t)x{t)+g{t), (6.3.3)

where A(f) is a nxn nonsingular matrix function and g(t)s R".

Theorem 6.3.3. Any solution x(f) of equation (6.3.3) can be written as

x{t)=x{t)c + x(t),
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where X(t) is a fundamental matrix of the corresponding homogeneous system

(6.3.1) and xp(t) is a particular solution of equation (6.3.3) for an appropriate

choice of the constant vector c.

Example (a dynamic input-output with time lag in production) There are two
industries in the economy. Each industry produces only one homogenous
commodity; each industry uses a fixed input ratio for the production of its
output; production in every industry is subject to constant return to scale. In
order to produce each unit of the j th commodity, the input for the / th

commodity is a fixed amount, denoted by atJ. Let dt{f) indicate the final
demand for the / th commodity in t. Assume that there is a one-period lag in
production so that the amount demanded in period t determines not the current
output but the output of period (/ + l). Let xt{t) denote the output of the / th
industry. Then, the input-output model is represented by

x,{t + l)=anxl{t)+a i2x2(t)+dl{t).

In matrix form, we have

x(t + l) = Ax{t) + d{t),

where

*  = [* i x2f, A = [atJ\2><2.

Here, we specify

d{t)=k s>\

where 8 is a positive scalar. We now need to determine the particular integrals.
Following the method of undetermined coefficients, we try solutions of the form

x2{t)\ [b2S'

where bt are unknown parameters to be determined. Substituting this into the

input-output model yields
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S'.

If I - A is nonsingular, we solve the particular integral as follows

*,(')' S-a,,

- a,
-al2

8 — an.
S'.

It is straightforward to find the general solution of x{t + l) = Ax{t).

Example (A cobweb model in two interrelated markets) We now consider a
model of two - corn and hog - markets with time lags.4 Let subscripts 1 and 2
denote corn and hog, variables pj the price of goods j , variables Xj and Yj

stand for the demand and supply of goods j , respectively. The corn market is
described by

Xl{t)=a l-b,pl{t), bl>0,

r, (/) = c1 + rf,/»1(f-i), dx>o,

X]{t)=Y]{t).

From the market equilibrium condition

X,{t)=Yx{t),

we have

The hog market is described by

X2{t)=a2-b2p2(t), b2>Q,

Y2 (/) = c2 + d2p2(t - l) + ePl{t - l), d2 > 0, e < 0,

4 An early example of the corn-hog cycle was given by Ezekiel (1938) and Waugh (1964).
This version of the model comes from Shone (2002: 346-348).
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X2(t) = Y2(t).

From the market condition

X2(t)=Y2(t),

we have

The system consists of two-dimensional difference equations for px{t) and

P2(t). The fixed point is determined by

_
P\ ~

aL-cL *  _ a\
= T
_

A  =
a\ ~ c\

— c ,

+4

Introduce

Then the dynamics are given by

- A o
e d.

The two eigenvalues are
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The condition for stability in the corn market is \dx Ib  ̂< 1. The condition for

stability in the hog market is \d2I b2\ < 1.

Example (duopoly model) We consider a duopoly model. There are two firms, 1
and 2, producing a single commodity. The demand function in the market is

p{t) = 9-Q{t),

where p is the price of the commodity and Q is the total supply

Q(t)=q1{t)+qM

where q^t) is firm j 's output. Suppose that firm j 's total cost is

We assume that in time t a firm chooses its own output at time t so as to
maximize its profits at t under the assumption that the rival of the firm will
choose the same output level it chose in time / - 1. Profits (= revenue minus
cost) are given by

*2 (0 = (9 - <?! ( ' " I ) " ft (0)ft (0 - 3ft2 (')

Differentiate the profit functions

The Cournot-Nash solution is thus given by
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The unique fixed point is

Solving the difference equations for initial values \q]0, q20), we obtain

ft(0=l-|~) +^"(- ^

The system converges to the equilibrium point.

Example (oligopoly with 3 firms) We consider a oligopoly model with three
firms, 1, 2, and 3, producing a single commodity. The demand function in the
market is

= 9-Q{t),

where p is the price of the commodity and Q is the total supply

where q^t) is firm j 's output. Suppose firm j 's total cost is

TCj{gj)=3q2.

We assume that in time t a firm chooses its own output at time t so as to
maximize its profits at t under the assumption that the rivals of the firm wil l
choose the same output level it chose in time t - 1. Profits (= revenue minus
cost) are given
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* i (0 = (9 - <7i (') - 92 (' - 1) - 93 (' - 1) h (0 - 3?, (0,

* 2( ') = (9 - 9i(' " 1)" 92(0 " 93(' - !))<?2(0 - 3?2(/),

^3 (0 = (9 - 9i (' " 1) - <72 ( ' " I )

Differentiate the profit functions

W = 9_ (/_l}_2 (/)_ (r_l)_3 =
0

The Cournot-Nash solution is thus given by

= 3 - ^-^(r - 1) - -|qr2(r - 1).

The unique fixed point is

. . ,\ (3 3

Solving the difference equations for initial values [ql0, q20, q30), we obtain
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The system does not converge to the equilibrium point.
It is important to note that the duopoly dynamics with the same demand and

total cost functions is stable; if the number of firms is larger than 3, then
dynamics is unstable.

Theorem 6.3.4. (variation of constant formula) The unique solution of the initial
problem

x(t + l) = A{t)x(t) + g(t), x{to) = x0,

is given by

X(t,xo)Jf[A(i)\ Xo

) r=t\i=r+\

hi particular, when A is constant, we have

Example Apply theorem 6.3.4 to solve

x(t + l)=Ax(t)+g(t), x(0) = x0,

where

A =
2 1

0 2

Using the Putzer algorithm, we obtain

A' =
0 2'
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Hence

2' tf'-'lM  ^[2'- ^  {t-r-l)Z'- r-2Jr
' >-' JUJ  ̂ L o

(check the last step).

Example Consider the trade between two countries, i = 1, 2. For country z, we

have

Yi{t) = Ci{t)+I,+X i{t)-M,{t),  (6.3.4)

where Y^t), Ct(t\ /,-, ̂ ( f ) , M ;(/) are respectively national income (in period
t), total consumption, (fixed) net investment, exports, and imports. According
to the definitions, country / 's consumption of domestic products

/>,(*) = C,(0-A/,(r).

Assume that the domestic consumption, Dj (t), and imports, Mt (t), of each

country at period / +1 are proportional to the country's national income one

time period earlier. That is

M1{t) = a21Y1{t),
i \ i \ (6.3.5)

D2{t)=a22Y2{t),

M2(t)=anY2{t).

As the world consists of the two countries, each country's exports equals the other
country's imports, i.e., Xx = M2 and X2 = M, in t. Substituting

D, = C, - A/,, Xl = M2, X2 = M,

and equation (6.3.5) into equation (6.3.4) yields the global economic model
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a21 a22\[Y2{t)\ [I 2\

By the variation of constant formula we solve

Y(t)=A%+fdA'l\ (6.3.6)

where /*  = (/,, I2 )
T. It can be shown that if

an + a21 < 1, al2 + a22 < 1, (6.3.7)

then for all the eigenvalues p of A, \p\ < 1.5 Hence, under conditions (6.3.7)

lim^ ' =0.

On the other hand, according to the so-called Neumann's expansion, we have

Hence

We have examined one-dimensional difference equations of higher order. It
can be shown that a one-dimensional difference equation of higher order can be
expressed in multi-dimensional equations of first order.

Let us consider difference equations in forms

5 This condition implies that the sum of domestic consumption £>.(? + l) and imports

Mf(t + l) in period / + 1 is less than the national product Y^t) of period t, i.e.
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x(t + l)=f{x{t),x{t-l)).  (6.3.8)

In this equation the state of the orbit at time t + 1 depends directly from its state at
time t and t - 1. We call equation (6.3.8) a discrete dynamical system with a
delay of a one-unit unit. We can eliminate the delay by increasing the dimension of
the system. Set y(t + l) = x(t). We can rewrite equation (6.3.8) as follows

x{t + l) = f{x{t),y{t%

y(t + l) = x{t).

We might express the above system in vector form

where

z = (x,y), g = {f(x, y), x).

More complicated cases are also possible; but we can make similar transformations.
For instance, consider

x{t + l)=ax{t){\-x(t-2)).

The dynamical system contains a delay of two-time units. We can replace it with a
three-dimensional system with no delay. Set

y{t + l) = x{t), z(t + \) = y{t).

We obtain

x{t + \)=ax{t){\-z{t)),
y{t + \) = x{t),

The above example can be generalized. Assume

x(t + l) = f{x{t),x{t-l\x{t-2)).
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Set y(t + l) = x(t) and z(t + l) = >>(?). We obtain

z(t + l) = y{t).

We can also write the system in vector form

Hence, we can always assume that x(t +1) depends directly only on x{t).

Systems with delay, i.e., when x(t + l) depends directly on one or more states of

the form x(t - k), k > 1, are replaced by higher-dimensional systems with no delay.

Exercise 6.3
1 Solve the difference equations

x2(t + l) = xl{t)+4x2(t), x1(0) = 0, *2(0) = - l

2 Let

Replace this one-dimensional system with a three-dimensional system with no
delay.

3 Develop a mathematical model for a foreign trade among three countries using
an argument similar to that used in the example of trade model between two
countries in section 6.2.

4 Let

x{t + l) = 2x(t) - 0.2x(t - \)y{t -1),
y(t + l) = y{t)+OAx(t-\)y(t-l).
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Replace the two-dimensional system having a delay of a one-time unit with a four-
dimensional system with no delay.

5 Apply theorem 2.6.4 to solve the following difference equations

(i) x(t + 2) + &x(t + l) + I2x(t) = 0;

(ii ) x{t + 2) - 5x{t + l) + 4x{t) = 4'.

6.4 Stabilities

We now study the vector difference equation

x{t + l)=f(x{t),t), x{to)=xo, (6.4.1)

where

x(t)eR", f:R"xZ+-^R".

We assume / is continuous in x. Equation (6.4.1) is said to be autonomous or
time-invariant if the variable t does not appear explicitly in the right-hand side of
the equation

f(x(t),t) = f(x(t)).

It is said to be periodic if for all ne Z,

f(x,t + N)=f(x),

for some positive integer. A point x" in R" is said to be an equilibrium point of
equation (6.4.1) if

f(x*,t)=x',

for all t > t0. We can always assume x* to be the origin. If x* is not the origin, let
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y{t) = x(t)-x.

Then equation (6.4.1) becomes

y(t + 1) = f{y(t) +x',t)-xt= g(y{t\ t). (6.4.2)

Notice that ^ = 0 corresponds to x = x*. We now introduce some stability

notations of x*.6

Definition 6.4.1. (i) The equilibrium point x* of equation (6.4.1) is said to be

stable if given s > 0 and t0 > 0 there exists 8 = S(e, t0) > 0 such that

implies

jx{t,xo)-x'j<e

for all t > t0, uniformly stable if 8 may be chosen independent of t0, unstable if

it is not stable.7

(ii ) x*  is said to be attractive if there exists jU = ju(t0) such that pc0 — x* < ju

implies

?, x0) = x*,
t

uniformly attractive if the choice of fi is independent of t0.

6 It should be noted that some notations are defined in section 2.3.
7 The symbol || || means the Euclidean norm in this book. For a vector x,

IMhlS,-*. 2)'2' for a matrix A, \A\\= \P{ATA)]'\ where

P{A) = Mzr{|A|, X is an eigenvalue of A].
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(iii ) x* is said to be asymptotically stable if it is stable and attractive, and uniformly
asymptotically stable if it is uniformly stable and uniformly attractive,
(iv) JC* is said to be exponentially stable if there exists S > 0, M > 0, and
TJ e (0, l) such that

\\x{t, ?0 ) - X * | < M | X 0 -X'\]'~'\

whenever

k - x\\ < 8.

(v) A solution x(t, x0) is bounded if for some positive constant M,

\\x{t, xo)\\< M

for all f > t0, where M may depend on each solution.

If  in (ii) and (iii ) // = oo or in (iv) 5 = °°, the corresponding stability property

is said to be global. We illustrate the concept of stability in phase space as in figure
6.4.1.

Figure 6.4.1: Stable equilibrium
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Example Consider

f{xx,x2)=  (x, cos9 - x2 sin9, x, sin6 + x2cos9), 9e (0, 2K).

This is a counterclockwise rotation of the plane of an angle 9. Since 9e (0, 2K),

every point x0 of the plane is moved from its initial position except the origin 0,

which is the only fixed point of / . Setting

x0 =(*,(()), x2(o))*O,

we obtain x(l) = /(x(o)) as

x,(l) = x1(0)cos6> - x2(0)sin6>,

x2(l) = x1(o)sin9 + x2(0)cos<9.

The new state x(2) = /(x(l)) can be obtained from x(l) with a rotation of 9, or

from x0 with a rotation of 29. Hence

- x2(0)sin2<9,

x2(l) = x,(0)sin26> + x2(0)cos26>.

In general, x(f) is obtained from x0 with a rotation of t9

xl(t) = x1(0)cost9 - x2(0)sint9,

x2(t) = x,(0)sin/6' + x2(0)cos?<9.

We thus have

- x2(0)sin/6>}2 + {x1(o)sin/<9
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where x = 0 is the unique fixed point. Hence, all states x(t), t = 0,1,  of the

orbit O(x0) are at the same distance from the fixed point x*. The origin is thus

stable.

In the above definitions, some of the stability properties automatically imply
one of more of the others. Figure 6.4.2 shows the relations among these concepts.
In general, none of the arrows can be reversed. For instance, the solution of
x(t + l) = x(t) is given by x(t, x0) = x0. This solution is uniformly stable but not
asymptotically stable.

exponentially stable

asymptotically stable' uniforml y asymptotically stable

uniforml y attractive

stable.

ive

uniforml y stable

Figure 6.4.2: Relations of stabilities

Example Consider8

\x2(t). (6.4.3)

The solution of this equation is given by

1 This and the following examples are according to Elaydi (1999: 160-61).
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If |xo| is sufficiently small, then

Thus the zero solution is attractive. However, it is not uniformly attractive. For if
8 > 0 is given and t0 is so chosen that

{t0+l)S2>2,

then for \xo\ — 8

The zero solution is stable. For given e > 0 and t0 > 0, choose

If |xo| < 8, then

\x{to+l,Xa)\<£,

for all t > t0. Since 8 depends on the choice of t0, the zero solution is stable but

not uniformly stable.

Example The equilibrium point (l, 0) of

At + l) = jAt), r > 0,

e{t + l)
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is attractive but not stable. The solution of the equation is

267

We have

Limr(t) = l,

with 0O * 0. Now if r0 * 0, 0O = 0, then

r(t)=rf,

which converges to (l, 0). However, if

6  ̂= an, 0 < a < 1,

then the orbit of (r0, 0O) will spiral around the circle counterclockwise to converge

to (l, O). Hence, (l, 0) is attractive but not stable. The behavior is illustrated as in

figure 6.4.4.

Figure 6.4.4: Attractive but not stable equilibrium
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Under some additional conditions, the arrows in figure 6.4.2 may be reversed.
For instance, for linear systems, uniformly asymptotically stable <-> uniformly
stable; for autonomous systems, stable <-> uniformly stable, asymptotically stable
<-> uniformly asymptotically stable, and attractive <-> uniformly attractive.

We provide some results about stability of the following linear autonomous
system9

x{t + \)=A{t)x(t), t>to>O. (6.4.5)

We always assume A(t) to be non-singular for any t > t0 >0. It should be
remarked that for equation (6.4.5), every local stability property of the zero solution
implies the corresponding global stability property.

Theorem 6.4.1. (i) If

X t . K W ^ l , ^j^k, t>t0,

then the zero solution of system (6.4.5) is uniformly stable; and (ii) if

for some v > 0, then the zero solution of system (6.4.5) is uniformly

asymptotically stable.

Theorem 6.4.2. Consider

x{t + l ) = Ax(t), n>to>0, (6.4.6)

where A is constant. The following statements hold:
(i) The zero solution of system (6.4.6) is stable if and only if p(A) < 1 and the

eigenvalues of unit modulus are semisimple;10 and
(ii ) The zero solution of system (6.4.6) is asymptotically stable if and only if
p{A)<\.

9 The stability properties in the remainder of this section is referred to Elaydi (1999: 168-
172).
10 An eigenvalue is said to be semisimple if the corresponding Jordan block is a diagonal.
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Theorem 6.4.3. Consider

x{t + \)=A2x2x{t), n>to>O, (6.4.7)

where A is a constant 2x2 real matrix. The zero solution of system (6.4.7) is
asymptotically stable if and only if

\trA\<  1 + < 2.

Exercise 6.4
1 Find fixed points of the system

x2(t + \) = bXl{t)x2(t).

2 Show that the system

xx{t + l) = x,(/)cosl - x2(t)s\nl + 1,

x2(t + l) = x,(?)sinl + x,(/)cosl + 2.

has one and only one fixed point.

3 Find fixed points of the systems and discuss their stability

(a) / ( * 1 , X 2 ) = ( 0 . 5 J C1 + 1 , 0 . 5 *2 + 2 );

4 Discuss stability properties of the zero solution of x(t + l) = Ax(t), where

-1 5

-0.5 2

1.5 1 -1

-1.5 -0.5 1.5

0.5 1 0
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5 Using theorem 6.4.2 to determine whether or not the zero solution of
x(t + l) = A(t)x(t) is uniformly stable or uniformly asymptotically stable when:

(u)A{t) =

t

\ + t
- 1

0

1

(iii ) A{t) =

1

t + \
1 1 .

0 -

5

t + 2
t + l

0

t + l

0

0 0

1 0

0 1

sin

4*

6.5 Liapunov's direct method

Since the theory of linearization is a local theory, it does not address global issues.
In this section, we discuss another approach, known as Liapunov 's second method
or direct method}1 The method determines the stability or instability of a critical
point by constructing a suitable auxiliary function. The theory of Liapunov
functions is a global approach toward determining asymptotic behavior of solutions.
Basically, the method is a generalization of two physical principles for conservative
systems, namely, (i) a rest position is stable if the potential energy is a local
minimum, otherwise it is unstable, and (ii) the total energy is a constant during any
motion. The Liapunov function shows that initial values from a large region
converge to an equilibrium point.

Consider the autonomous difference equation

= f{x{t)), (6.5.1)

where

1' The method is referred to as a direct method because no knowledge of the solution of
the system of difference equations is required.
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/ : G - > / ? ", GczR",

is continuous. We assume that x is a fixed point of equation (6.5.1). That is

Let V: R" —> R be a real-valued function. The variation of V relative to

equation (6.5.1) is defined as

AV{x)=v{f{x))-V{x),

and

AV(x(t)) = V(f(x(t))) - V(x(t)) = V(x(t + 1)) - F(x(0).

If  AF(x) < 0, then V is nonincreasing along solutions of equation (6.5.1). The

function V is said to be a Liapunov function on a subset // of R" if
(i) F is continuous on H, and
(ii ) AV(x) < 0, whenever x and f(x) belong to H.

Let B(x, r) denote the open ball in R" of radius r and center x defined by

We denote J3(0, r) with B(r). The real-valued function V is said to be positive

definite at x if

(i) v(x*)=0, and

(ii ) F(x) > 0 for all xe B\x*', r), x^x* for some r > 0.

Theorem 6.5.1. (the Liapunov stability theorem)12 If V is a Liapunov function for

equation (6.5.1) in a neighborhood H of the equilibrium point, x*, and F is

positive definite with respect to x*, then x* is stable. If, in addition

12 The proof is referred to section 4.5 in Elaydi (1999).
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AF(x)<0

whenever x, f(x)e H and x * x', then x* is asymptotically stable. Moreover,

if G = H = R" and

V(x) -» °° as ||jcj| -» oo, (6.5.2)

then x*  is globally asymptotically stable.

For illustration, let us consider a planar system with x* = 0 as the equilibrium
point. Suppose that equation (6.5.1) has a positive definite Liapunov function V

defined on B(r). Figure 6.5.1 illustrates the graph of V in a 3 -dimensional
coordinate system. If we now let e > 0, B(e) then contains one of the level
curves of V, say

V{x) = c.

The level curve v(x) = c contains the ball B(S) for some S with 0 < 8 < e. If a

solution x(t,x0) starts at x0 e B(S), then v(xo)<c. Since AK(x)<0, V is a

monotonic nonincreasing function along solutions of equation (6.5.1). Hence

V{x(t))<V{xo)<c,

for all t > 0. Thus, the solution x(t, x0) wil l stay forever in the ball B(e).

Consequently, the zero solution is stable.

Theorem 6.5.2. If V is a Liapunov function on the set p e /?" H > o\ for some

a > 0, and if condition (6.5.2) holds, then all solutions of equation (6.5.1) are

bounded.

Example Consider

Xl{t + l) = x2(t),
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V(Xl,x2)

Figure 6.5.1: A Liapunov function

There are three equilibrium points,

(0,0),

if a > 1, where P* = J(a - \)l p. Consider the stability of the equilibrium point

(0, 0). Let

This is continuous and positive definite on R2

AK(*(,) ) = f-r— ?

If  a2 < 1, according to theorem 6.5.1, the unique equilibrium point (0, 0) is stable.

Since

V(x) as
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according to theorem 6.5.2, all solutions are bounded. Since

AV(x(t)) = 0

for all points on the x, -axis, theorem 6.5.1 fails to determine asymptotical stability

for this equation. In fact, it can be shown that in the case of a2 = 1, the zero

solution is not asymptotically stable; in the case of a2 < 1, the origin is

asymptotically stable; in the case of a2 > 1, the stability of origin is

indeterminable.13

Example Consider

Xl(t + l) = 2x2(t)-2x2{t)x
2{t),

x2{t + l)^-x](t)+xl(t)x
2
2(t).

There are three equilibrium points

(0,0), .

Let

V(x(t)) = x2(t)+4x2
2(t).

This is continuous and positive definite on R2

AV(Xl (4 x2 (/)) = Ax\ (t)x2 (t)[x2 (t) + x\ (/) -1].

If

x2(t)+x2
2{t)<\,

then AV(x) < 0. We conclude that the zero is stable.

13 The results are based on LaSalle's invariance principle. See section 4.5 in Elaydi
(1999).
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For any real a, the solution with an initial value of x0 - (a, Of is periodic

with period 2 and with orbit

{[a  07,[a/27\

and a solution with an initial value of x0 = (0, af is also periodic with period 2.

Hence, the zero solution cannot be asymptotically stable.

Theorem 6.5.3. If AV(x) is positive definite in a neighborhood of the origin and

there exists a sequence a, —> 0 with V{ai) > 0, then the zero solution of equation

(6.5.1) is unstable.14

Example Consider

xx(t + \) = 4x2{t)-2x2(t)x
1
l(t),

x2{t + \) = -x,{t)+xx{t)x
2
2{t).

Define

Then

AV(xM x2{t)) = 3x?(t)+ \6xlit)xl{t)+  4x?{t)x2
2{t) > 0, if *,(* ) * 0.

From theorem 6.5.3, we see that the zero is unstable.

In section 6.2, we mentioned that the condition for asymptotical stability of the
linear system is that p(A) < 1.

Exercise 6.5
1 For

14 The conclusion of the theorem is also true if AV(x) is negative definite and v(aj) < 0.
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x,(t + l) =  X](t)+x2
2(t) + xf{t),

x2(t + l) = x2{t),

introduce the Liapunov function

V{x{t)) = x,{t)+x2{t).

Show that the origin is unstable.

2 For

x2(t + l)=x2{t),

introduce the Liapunov function

V(x{t))=xt{t)+xl{t).

Show that the origin is stable.

3 Consider the planar system

*?(/) '

Find the equilibrium points and determine their stability.

6.6 Linearization of difference equations

We consider the nonlinear systems of difference equations

x{t + l)=A{t)x{t)+g{x{t),t),  (6.6.1)
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where A(t) is a nxn nonsingular matrix for all te Z+ and

g:Z+xG->R", GczR",

is a continuous function. Its corresponding linear system is

(6.6.2)

We may consider system (6.6.1) as a perturbation of system (6.6.2). System
(6.6.1) may arise from the linearization of nonlinear equations of the form

= f(x(t),t), (6.6.3)

where

", GcR",

is continuously differentiable at an equilibrium point x' ( - 0) in this section. We

require / (0, i) = 0 for all t e Z+. The Jacobina matrix of / is defined as

dx

a/.fc

3x,

t)

,)

dfi(x,t)
3x2

Let 3/(0, ?)/3x = A(t) and

dxn

Then equation (6.6.3) may be written in the form of system (6.6.1). In the case that
equation (6.6.3) is autonomous, x(t + l) = f(x(t)), we have
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x(t + l)=Ax(t)+g(x(t)), (6.6.4)

where A = / ' (o) and

g = f~Ax.

Since / is differentiable at 0, it follows that

g ( x ) = o ( x ) a s | y - > 0,

as

Theorem 6.6.1.15 Assume that

uniformly as ||x| —» 0. If the zero solution of the homogeneous system (6.6.2) is

uniformly asymptotically stable, the zero solution of the nonlinear system (6.6.1) is
exponentially stable.

Corollar y 6.6.1. If p{A) < 1, then the zero solution of equation (6.6.4) is

exponentially stable.

Example Examine the stability of the zero solution of the planar system

As

15 The proof of the theorem is referred to section 4.6 in Elaydi (1999).
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3/
dx (0,0) -

'ML  ML
dxx dx2

ML ML
dxl dx2

0 a

b Ol'

the system may be rewritten as

At- b 0||*2(/)J
 +

-ax2{t)xl{t)

*?(/) (6.6.5)

or

x{t + \)=Ax{t)+g{x{t)).

The eigenvalues of A are  4ab. If yfab < 1, the zero solution of the linear

part is asymptotically stable. Since g{x(t)) is continuously differentiable at the

origin, the zero solution of equation (6.6.5) is exponentially stable.

Example Introducing a delay of time 1 into the Pielou logistic equation

x(t+1)=—^
3(

yields the following difference delay equation

x{t + 1) =
ax{t)

1 + fitc(t - l)
, a > 0, J3 > 0.

Let

v{t) = x(t)- a-\

Then the above equation becomes



280 6. HIGHER DIMENSIONAL DIFFERENCE EQUATIONS

v(t , ^_ay{t)-{a-\)y{t-\)
y(t + 1)~ a + (a-l)y(t-l) "

To change the above equation into a planar system, introduce

Then

X2(t-

Xjf)
aX2{t)-(a-l)xx{t)

a + (a-\)Xx(t)
(6.6.6)

By linearizing equation (6.6.6) around (0, 0), we have

X{t + \)=AX{t)+g{x{t)),

where

0 1

a

a{a +

The eigenvalues of A are inside the unit disk if and only if

0 < < 1,
a

which is always held since a >\. Consequently, the zero solution of equation

(6.6.6) is asymptotically stable.

Theorem 6.6.2. The following statements hold
(i) If p(A) = 1, then the zero solution of equation (6.6.4) may be stable or unstable;
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(i) If P(A) > 1 and g(x) is o(x) as |x| —> °°, then the zero solution of equation

(6.6.4) is unstable.

Exercise 6.6
1 Determine the stability of the zero solution of the equation

x{t + 2) - -x(t + l) + x(t + lWf) + —x(t) = 0.v i 2 v i v y-\/ 16 \j

2 Find the equilibrium points and determine their stability of the system

x1(t + l) = -x^(t)-x2
2(t)+x3(t),

x2(t + l) = xl{t)-x2(t) + x3{t),

( ])- () () l ()

X3{t+  )-Xi(t)-X2(t) + -Xs{t).

3 Determine conditions for the asymptotical stability of the zero solution of the
system

ax,,(t)

2(y
= [bx2{t)-xl{t)][\

6.7 Conjugacy and center manifolds

There are two possible ways to simplify dynamical systems: one is to transform one
complex system to another one which is much easier to analyze; and the other is to
reduce higher dimensional problems to lower ones. The center manifold theorem
helps us to reduce dimensions of dynamical problems. A change of variable may
reduce a system to a simple one. This idea is made more precise with the concept of
conjugate maps. The concept of conjugacy arises in many subjects of mathematics,
hi linear algebra, the natural concept is linear conjugacy. Thus, if xl = Ax is a
linear map and x = Cy is a linear change of coordinates for which C has an
inverse, then the map on the y -variables is given as follows
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yx = c-1x1 = C~lAx = C'UCy.

Thus, the matrix for the map in the y -variables is C lAC. As long as the maps are

defined on the same space, a conjugacy can be considered a change of coordinates
of the variables on the space on which the function acts.

Definition 6.7.1. Let / and J be two intervals and <f> : / —> J be continuous, one-

to-one, and onto. We say that <j>  is a conjugacy between G: / —> J and

F:J -> / if

for all x e /. The maps F and G are said to be conjugate by 0.

Let T7" and G be conjugate by 0. Then x is a fixed point of G if and only if

y = <p(x')

is a fixed point of F. Similarly, xp is a fixed point of G if and only if

yP=Axp)

is a fixed point of F.

Example Let

G{x) = 4x{l-x), xe[0,l],

F{y) = 2y2-l, je[-l, l ] ,

j ; = ̂ (x) = l - 2 x .

We see that <p is continuous, one-to-one, and onto from [O, lj to [-1, lj . We have

= 8x 2 - 8 x

We also have
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) = 8JC2 - 8 X + 1.

Hence the two maps F and G are conjugate in the given intervals by the map <j>.

Since <j>  is invertible, we also have

G = (j)' 1 o p o ̂ ,

where the symbol ° stands for the composition of functions.

We now introduce a way to transforming a higher dimensional problem to a
lower one. Consider the m -parameter map fix, A)

f:R"xRm -*  R", with xe R" and Ae Rm

where / is Cr ( r > 3 ) on some sufficiently large open set in R" x Rm. Let

(x0, AQ ) be a fixed point of / , i.e.

f\xo> = xo-

We know that the stability of hyperbolic fixed points of / is determined from the

stability of the fixed points under the linear map

However, the situation is different if one of the eigenvalues p of J lies on
the unit cycle, that is, \p = 1. There are three cases in which the fixed point
(x0, AQ) is nonhyperbolic: (i) J has one real eigenvalue equal to 1 and the other
eigenvalues are off the unit circle; (ii) J has one real eigenvalue equal to —1 and
the other eigenvalues are off the unit circle; and (iii ) J has two complex conjugate
eigenvalues modulus 1 and the other eigenvalues are off the unit circle. To analyze
behavior of the system in these cases, we need to introduce a rudiment of center
manifold theory.

By a change of variables, we may assume without loss of generality that
x0 = 0. Let us temporarily suppress the parameter ju. Then the map fix, X) can
be written as
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y»Apxpy + f(y,Z),
z i-> B^z + g{y, z),

where

p + q = n, / (0, 0) = g(0, 0) = 0,

and J has the form

where all eigenvalues of A lie on the unit circle and all of the eigenvalues of B
are off the unit circle. Observe that system (6.7.1) corresponds to the system of
difference equations

y{t + l)=Ay{t)+f(y(t),z(t)),
z{t + \)=Bz{t)+g{y{t\z(t)). {

The following theorems are referred to Carr.16

Theorem 6.7.1. There is a Cr center manifold for system (6.7.1) that can be
represented locally as

Mc = {(y, Z)GRPXR": Z = h{y), \y\ < S, h(o) = 0, Dh(o) = o},

for a sufficiently small S. Furthermore, the dynamics restricted to Mc are given

locally by the map

yeR". (6.7.3)

This theorem asserts the existence of a center manifold, i.e., a curve z = h(y)

on which the dynamics of system (6.7.1) is given by system (6.7.3). The next

16 See Carr (1981).
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theorem shows that the dynamics on the center manifold determines completely the
dynamics of system (6.7.1).

Theorem 6.7.2. If the fixed point (0, 0) of system (6.7.3) is stable, asymptotically

stable, or unstable, then the fixed point (0, 0) of system (6.7.1) is correspondingly

stable, asymptotically stable, or unstable.

Theorem 6.7.3. For any solution (y(t), z(t)) of system (6.7.1) with an initial point

(y0, z0) in a small neighborhood around the origin, there exists a solution w(t) of

system (6.7.3) and positive constants L, fi > 1 such that

\y{t)-w{t)\<L/3',

\z(t) - h{w{t))\ < L/31, for all t e Z\

The question now is how to calculate the center manifold, z = h[y).

Substituting z = h(y) into system (6.7.1) yields

y(t + \)=Ay{t) + f(y(t),h(y(t))),

z(t + l)=Bh(y(t))+g(y(t),h(y(t))).

We also have

z(t + 1) = h(y{t + 1)) = h(Ay(t) + f(y(t), h(y{t))%

where we use the first equation in system (6.7.4). Equating this equation and the
second in system (6.7.4) we have

®(h{y)) = h[Ay + f{y, h(y))]- Bh{y) - g{y, h(y)) = 0. (6.7.5)

We may approximate this solution via power series. It can be shown that
although the choice of h is not unique, any two center manifolds of a given fixed
point may differ only in transcendentally small terms. The Taylor series expansion
of any two center manifolds must agree in all orders. The following theorem
justifies the approach.17

17 See Carr 1981).
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Theorem 6.7.3. Let ¥ : Rp -> Rq be a C1 map with

Suppose that

as x -> 0

for some r > 1. Then

as j ,

where

if there is a positive number AT such that

in a small neighborhood of zero.

Example Consider

-1 0

o - 1

2.

The center manifold is

Mc = {(x,, x2)e RxR: x2 = h{xx\ \x\ < 8, h(o)= h'{o)=o}.

The function h satisfies

(6.7.6)

x,) - g(x1, A(x,)) = 0
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where

f =  X]{t)x2{t), g = xf{t).

With equation (6.7.5), the above equation becomes

h[- x, + *,*(*,) ] + i Afo) - xf = 0. (6.7.7)

Let us assume that h{xx) takes the form

h{xl)=c1xf + c2x\ +o(x*).

Substituting this equation into equation (6.7.7) yields

cxx\ - c2x\ + -c,x,2 + -c2x\ - x\ + 0{x\) = 0.

Hence

c , = |, c2=0.

We thus obtain

The map on the center manifold is given by

X](t + 1) = -*,(/ ) + |x1
3(?) + O(x,5). (6.7.8)

The Schwarzian derivative at zero is given by

L/'(0) J
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Hence the origin is asymptotically stable under equation (6.7.8). This implies that
the origin is asymptotically stable under equation (6.7.5). We illustrate the local
dynamics as in figure 6.7.1.

Figure 6.7.1: An asymptotically stable center manifold

We now illustrate the case that the system depends on a vector of parameters

Ae Rm. Then system (6.7.2) takes the form

(6.7.9)
y{t + \)=Ay{t)+f(y{t\z{t\X),

z{t + l)=Bz{t)+g{y{t),z{t),X),

where / and g are C functions (r > 3), in some neighborhood of

(0,0,0), /(0,0,0) = g(0)0)0)=0, D/(0,0,0)=Dg(0,0,0) = 0.

To find the center manifold of system (6.7.9), we consider A as a function of
time and rewrite system (6.7.9) as

y{t + \)= Ay{t)+ f{y(t),z{t),A{t)),

A(t + l) = A(t),

z{t + \) = Bz{t)+g{y(t\z{t\A{t)\

The center manifold now takes the form of

(6.7.10)
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Mc = {{y, A,z):z = h[y, A), \y\ < Sx, \X\ < S2, h(0, 0) = 0, Dh{0, 0) = o}.

(6.7.11)

Substituting for z = h(y, X) into system (6.7.10) yields

y(t + 1) = Ay(t) + f{y{t\ h{y{t\ A(t)\ A(t%

z{t + 1) = h[Ay{t) + f(y(t), h(y(t), X{t)\ Mf)\ ti$)\ (6.7.12)

= Bh{y(t), A{t)) + g{y(t), h(y{t\ Mf% A(t)).

The latter equations lead to the function

®(h(y, A)) = h[Ay + f(y, h(y, X), X), A] - Bh{y, A)

+ g{y,h{y,X),X) = Q.

For instance, if y and A are one-dimensional, we may take

h(y, A) = cxy
2 + c2Ay + c3X +

to approach h.

Exercise 6.7
1 Calculate center manifolds near the origin and describe the bifurcations of the
origin:

*i (' + !) = ~T*i (0 - xi (t) ~ xl [t)xl  it),
(i) \

*2 {t +1) = - - * i W + ^ 2 (t) + xf (/);

*2 (' + l)=* 2 (')+* ! (0*2 (')

6.8 The Henon map and bifurcations

Consider a two-dimensional map
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f:R2 ^R2, / ( x , , x2 ) e Cf , r>5.

Let x*  = (x*, x*2j be a fixed point and the Jacobian matrix

Using the center manifold theorem we deduce the following:

(i) If J has an eigenvalue equal to 1, then we have a saddle node bifurcation;
(ii ) If J has an eigenvalue equal to - 1, then we have period-doubling bifurcation;
and
(iii ) If J has two complex conjugate eigenvalues of modulus 1, then we have a
new type of bifurcation, called Neimark-Sacker (Hopf) bifurcation.

We use the Henon map to illustrate the saddle node and the period bifurcation.
In 1976, the French Astronomer Michael Henon suggested a simplified model for
the dynamics of the Lorenz system.18 The Henon map is given by

x(t + l) = \-ax2(t)+y(t),
( 6 8 1 }

We explain a few properties of the Henon map. We also denote the Henon map by

X(t + l) = HX(t),

bx

It is known that the Henon map contracts areas for |&| < 1. If b = 0, we get the

quadratic map

'Henon (1976).
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To see this, we find the determinant of the Jacobian matrix of H. If

|det£>#j < 1 for all (x, y), the map is area contracting. From vector calculus we

know that H maps an infinitesimal rectangle at (x, y) with area dxdy into an

infinitesimal parallelogram with area

\det DH(x,y)dxdy\.

Thus, if

\detDH(x,y)\<l,

then H is area contracting. As

\-2ax 1"

0
DH{x,y) =

we have

det DH(x, y) = -b.

Hence, if \b\ < 1, the Henon map is area contracting.

We show that the Henon map is invertible. To see this, one may decompose
H into three simple maps Tj as follows

1 - ax2 + y

bx

y.

y
X

As shown in figure 6.8.1, 7j is an area-preserving bending map, T2 contracts

in the x direction, and T3 rotates by 90". The composite transformation
Ti ° T2 ° T\

m e Henon map.
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Figure 6.8.1: The decomposition of the Henon map, H = T3 ° T2 ° 7J

It is straightforward to show that all T, are invertible.19 Hence

i.e.

X

y - 1 + ax' m L y J
L and T3

y \ lx
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As all Tj are one-to-one, H is also one-to-one.

If a ^ 0, H has a fixed point X * if

A fixed point is determined by

1 - ax + y = x,

bx — y.

We see that x is given by

ax

If

\-b

we see that H has two fixed points

b-\

2a
b-l + bn

2a

X" -
, A. 2 -

b-\-h
2a

b-\-bn

2a

where

b0 = ^(l - bf + 4a.
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It can be shown that if a t- 0 and

ere -

then X* is asymptotically stable and X*2 is a saddle. At

we have

* ; =

b-

2a
b-\

2a

1

b

Moreover, the Jacobian matrix at this equilibrium point has an eigenvalue equal to

1. By the center manifold theorem, there is a saddle node bifurcation at X*x.

For a fixed value of the parameter b e (0, l), X*x loses its stability and

becomes a saddle point at

a = 3
\-b

and a new stable 2 -cycle appears. The reason is that one of the eigenvalues of

DH\X\) will decrease and pass —1. In the case of b = 0.3, a period-doubling

cascade starts at a = 0.3675 (see figure 6.8.2) and ends at a ~ 1.06.

Beyond a ~ 1.06, a strange attractor appears. Figure 6.8.3 shows a strange

attractor of the Henon map when a = 1.4 and b = 0.3. Zooming into the strange

attractor, we can see that there are six parallel curves. If we zoom further on the top
three curves, we can see that they are really six curves grouped the same way as the
first batch. This "self-similarity" continues to arbitrarily small scales.20

20 Benedick and Carleson (1991) demonstrate that this strange attractor is the closure of a
branch of the unstable manifold.
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Figure 6.8.2: A 2 -cycle for a = 0.3675 and b = 0.3

0.4

-0.4

Figure 6.8.3: The Henon attractor for a = 1.4 and b = 0.3
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6.9 The Neimark-Sacker (Hopf) bifurcations

For illustration of the Hopf bifurcation, let us consider an example.
Consider the family of maps

cos/9 -sin/9

sin/? cos/9 x2(t) X,

(6.9.1)

where /? = fi{£) is a smooth function of the parameter X and 0 < J3(o) < n. The

origin is a fixed point of the map Fx for all X with the Jacobian matrix

J = (l + X)
cos/? — sin/?

sin/? cos/?

The matrix has eigenvalues

with

4
Hence, at X = 0, the eigenvalues cross the unit circle. Clearly, the origin is

asymptotically stable for X > 0. To analyze the bifurcation when X = 0, we may

write the map fk in polar coordinates (r, d) by introducing

x1(t)= r(t)cose(t), x2(t) = r(t)smd{t).

Under this transformation, equations (6.9.1) become

p.
(6.9.2)

The form of equations (6.9.2) enables us to detect the presence of an invariant
circle by solving
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r = (\ + X)r-r\

The invariant circle is of radius

r*  = VI .

The circle appears when A crosses the value 0 as shown in figure 7.9.1. For
A < 0 the origin is asymptotically stable. The instance that A becomes positive,
the origin loses its stability to give rise to an attracting (asymptotically stable) circle
with radius r = -JA. The dynamics on this circle are determined by the map
6 i—» 0 + P, which is a rotation by an angle /? in the counterclockwise direction.
This phenomenon is called a Neimark-Sacker bifurcation (or a Hopf bifurcation).

The above analysis is actually valid for a certain class of two-dimensional
maps with one parameter. Consider a two-dimensional map

f:R2xR->R2, f(x,,x2,A)eC, r>5.

Suppose that

(i) the origin x* = (0, 0) be a fixed point; and

(ii ) the Jacobian matrix

J = Dj(x',X)

have two complex conjugate eigenvalues

and p{A), where

r(0) = l, , 0{O)=0O,

(which imply \p(o)\ = 1); and

(iii ) eM°  0 for k = 1, 2, 3, 4, 5, i.e., p(o) is not a low root of unity.
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a) A < 0: approaching the origin b) A = 0

-0.4

c) A > 0: an attracting circle

Figure 6.9.1: Supercritical Neimark-Sacker bifurcation21

If the system satisfies these three conditions, then (1) by a change of basis in

R2, we may assume, without loss of generality, that

= Df(0,Q,0)=(l
cos/7 -sin/?

sin/? cos/?

(2) from (iii) , by a change of coordinates we may assume that the map / takes the

form

21 The simulation is for /? = 0.3, a) X = -0 .1, b) X = 0, and c) X = 0.06.
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A>^ (6.9.3)

where

,6.9.4,

with F(o) * 0. Moreover, the radius of the invariant circle is given by -JA/ F(A).

Theorem 6.9.1. (Neimark-Sacker22) Suppose that / satisfies assumptions (i)-(iii) .

Then, for sufficiently small A, f has an invariant closed curve enclosing the

origin if AI F(A) > 0. Moreover, this curve is attracting if F(o) > 0; it is

repelling if F(o) < 0.

Example (Hopf bifurcation in the Kaldor model23) The Kaldor model is describe
by

Y(t + 1 )- K(t))-S(Y(t), K(t))} = a
= l(Y(t),K(tj)-SK(t),

in which variables and parameters are define as

Y(t) and K(t) = output level and capital stock in period t, respectively;

l(Y, K) = investment function (IY > 0, IK < 0);

S(Y, K) = savings function (0 < Sr < 1, SK > 0);24

SeeRasband(1990).22

23 The original model was proposed by Kaldor (1940). Kaldor's contribution was in
conjunction with the work of Kalecki (1937, 1939), who investigated similar models but
concentrated on different aspects of stability. The analysis below is based on section 3.3
in Lorenz (1993). For the analysis and behavioral interpretations of the model for
continuous case, see also Chang and Smyth (1971) and Gabisch and Lorenz (1989).
24 The assumpt ion of SK > 0 is not convincing. In Chang and Smyth (1971), it is

assumed SK < 0. A s we require IK - SK < 0, the different signs do not affect our

analytical conclusion.
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a and 8 = a positive adjustment parameter and capital depreciation rate,
respectively.

Suppose that the system has at least one equilibrium point. The determinant

and trace of the Jacobian at a fixed point \Y*, K*) are

det J = {aFy + l\lK +1-S)- aFKIy,

trJ = aFy + IK - 5 + 2.

The eigenvalues are complex conjugate if

Assume that the inequality holds. A Hopf bifurcation occurs at a value a = a0

if

where

8-IK
an =0 Fy{l K+\-S)-FKIr'

The modulus crosses the unit circle with nonzero speed when the parameter a is
changed25

S-IK
da da 2a0

25 The modulus of the complex eigenvalues, if they exist, of the characteristic equation,

p2 + ap + b = 0

is given by -Jb.
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We may apply the preceding procedure to describe the Hopf bifurcation in the
discrete Kaldor model.

Exercise 6.9
1 Analyze the bifurcation structure of the map

cos/? -sin/7

sin/? cos/?

2 Consider the discrete predator-prey system

I ( ) ) I

-x,[t)x2{t)

where xx{t) denotes the prey population at generation t and x2(t) denotes the
predator population at generation t. Show that a nontrivial fixed point of the
map undergoes a Neimark-Sacker bifurcation.

6.10 The Liapunov numbers and chaos

It is well known that chaotic dynamics is characterized by an exponential
divergence of initially chose points. In the case of one-dimensional maps, the
Liapunov exponent is a measure of the divergence of two orbits starting with

slightly different initial conditions. For a map on R2, each orbit has two Liapunov
numbers that measure the rates of separation from the current orbit point along two
orthogonal directions. These directions are determined by the dynamics of the map.
The first direction is the direction along which the separation between nearby
points is the greatest. The second is the direction of greatest separation, chosen
perpendicular to the first. The stretching factors in each of these two directions are
the Liapunov numbers of the orbit. To formally define Liapunov numbers, we
introduce

D{l)=D f(x0),
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to denote the Jacobian matrix of the / -th iterate of / . Let U be the unit circle

centered on the first point of the orbit. Then D^(ll) is an ellipse. This is a

consequence of the fact that the linear transformation of a circle is an ellipse. The
axis is longer than 1 in the expanding direction and shorter than 1 in the
contracting direction.

Definition 6.10.1. Let / be a smooth map on R2, and let D, = D ,(x0). For

k = 1, 2, , let rk  ̂ be the length of the k -th longest orthogonal axis of the

ellipse Dt(u) for an orbit with initial point x0. Then rk^'' measures the

contraction or expansion near the orbit that at x0 during the first t iterations. The

k -th Liapunov number of this trajectory is

L(k)x0 = JimV/^,

if the limit exists. The k -th Liapunov exponent of the trajectory that starts at x0 is

h(k)(x0) = \n(L(k)(x0)), k = \,2.

Clearly, l( l ) > L{2) and h{l) > h{2).

Definition 6.10.2. Let / be a smooth map on R2. An orbit

is asymptotically periodic if it converges to a periodic orbit as t -» °°; that is, there

exists a periodic orbit \y0, yl, y2, }  such that

l im||x(/)- y(t)\\ =0, as t -» °°.

Definition 6.10.3. Let / be a map of R2, and let {x0, xx, x2,  be a bounded

orbit of / . The orbit is said to be chaotic if: (i)

\XQ, X j , X 2 ,  J
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is not asymptotically periodic; (ii) no Liapunov number is exact, and (iii ) the
Liapunov exponent satisfies h(\) > 0.

Definitions 6.10.1 and 6.10.3 extend to m -dimensional case Rm, with the
word "circle" replaced by the word "sphere", and the word "ellipse" replaced by
the word "ellipsoid".





Chapter  7

Higher  dimensional economic
dynamics

This chapter applies the concepts and theorems of the previous chapter to
examining behavior of different economic systems. Section 7.1 studies
Dornbush's exchange rate model. We show how a monetary expansion will
result in an immediate depreciation of the currency and sustain the inflation as
the price level gradually adjusts upward. Section 7.2 studies a two-sector OLG
model with the Leontief production functions. The economy produces two,
consumption and investment, goods; it has two, consumption and investment,
sectors. We provide conditions when the system is determinate or indeterminate.
Section 7.3 introduces a one-sector real business cycle model with mild increasing
returns-to-scale with government spending. Section 7.4 introduces endogenous
fertility and old age support into the OLG model. Section 7.5 examines a model to
capture the historical evolution of population, technology, and output. The
economy evolves three regimes that have characterized economic development:
from a Malthusian regime (where technological progress is slow and population
growth prevents any sustained rise in income per capita) into a post-Malthusian
regime (where technological progress rises and population growth absorbs only part
of output growth) to a modern growth regime (where population growth is reduced
and income growth is sustained). The model is defined within the OLG framework
with a single good and it exhibits the structural patterns observed over history.
Section 7.6 examines a model of unemployment and inflation. We demonstrate that
the model which is built on the well-accepted assumptions behaves chaotically.
Section 7.7 provides a model of long-run competitive two-periodic OLG model
with money and capital. Section 7.8 introduces heterogeneous groups to the OSG
model. Section 7.9 examines interdependence between economic growth and
human capital accumulation within the OSG modeling framework.

305
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7.1 An exchange rate model

We now consider the following Dornbush exchange-rate model1

/ ( f ) = S{e(t) +p- p(t)) - a(r(t) - p(t + l) + p(t)), (7.1.1)

(7.1.2)

(7-1-3)

r{t)  = 7 + e(t + l)-e(t), (7.1.4)

where S, p, a, a, y, m, <j>,  X, r are positive parameters, yd(t) and p(t) are
logarithms of domestic aggregate demand and the domestic price level at time
t; r is the domestic nominal interest rate; and e(t) is the logarithm of the
exchange rate, that is, the price in home currency of one unit of foreign money.
A rise in e implies that domestic money depreciates. Here, y and p are the

logarithms of the domestic commodity supply and foreign price level; and 7 is
the foreign nominal rate of interest and m is the logarithm of the nominal stock
of money. Equation (7.1.1) implies that home aggregate demand is a decreasing
function of the home-to-foreign price ratio and of the expected real rate of
interest. Equation (7.1.2) tells that excess demand for goods and services drives
price inflation. Equation (7.1.3) is a standard Keynesian LM schedule that
relates the demand for money to real money and the nominal interest rate.
Equation (7.1.4) is an arbitrage condition in asset markets which says that the
home interest rate will  exceed the foreign mterest rate by an amount exactly
equal to the expected rate of depreciation in the home country. The model
consists of four equations with four endogenous variables, describing the
evolution of a small open economy with perfect foresight. Here, by perfect
foresight it means that the rate of inflation individuals expect equals the actual
rate

for small changes in the actual level of prices P(t).

To analyze the behavior of the model, we first eliminate two variables and

reduce the dynamics to a two-dimensional problem. We can eliminate yd(t) and

1 The model is proposed by Dornbusch (1976), for an open economy adaptation of the IS-
LM structure. The example is from Azariadis (1993: 46-51).
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r(t) by substituting respectively equation (7.1.1) into equation (7.1.2) and
equation (7.1.4) into equation (7.1.3). We thus have

(l - aa)p{t + l) - (l - aa + aS)p(t) =

(S + cr)ae(t) + a5p - aar* - aae(t +1),

le(t + l) - Ae{t) =p{t)+ -Xr -m. (7.1.5)

The system has a unique equilibrium point

e =p -
y + or

(7.1.6)

m -p =

At equilibrium, we also have

r{t)  = r, yd{t)=y.

At equilibrium the domestic price level is an increasing function of the
exogenous variables m and F, a decreasing function of y; the exchange rate is
an increasing function of m and 7, a decreasing function of p. We may
transform dynamical system (7.1.5) into a homogeneous one by introducing

x,{t)=e{t)-e, x2{t)=p{t)-p.

Under the transformation, system (7.1.5) becomes

1

ad
1 - aa

1-

X
ad + ao/A

1 - aa
M (7.1.7)

or in matrix form

x(t + l) = Ax{t).

The characteristic equation is
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z[p) = (p-pl){p - p2) = p2 - [TraecA)p + DetA,

where

TraecA = />, + p2 - 2
1 - ao

f ^ ad
DetA = = p,p2 - 1 5 + — \

yir2 laa{ X)
5 + — \ T r.

l-aa{ X) X{\-aS)

We calculate

A = {TraecA)2 - ADetA = \-^—{s + -Yl + 4 ,V 7 [ l a o -l AjJ A(l

If  1 - ao > 0, i.e.

J_

the eigenvalues are real (because of A > 0 ), and lie on opposites of 1 (because

z(l) < 0 ). The sum of the two eigenvalues is less than 2 (because of

TraceA < 2 ). If the equilibrium point is a saddle, we need the eigenvalues to lie

on different sides of - 1 , that is

z(-l)>0 » a>-r——i——r.

We conclude that if the coefficient a is small enough (price adjustment is
sufficiently low), the steady state of the system is a saddle point. In the
remaining of this section, we require a to be sufficiently small so that the two
eigenvalues satisfy: px > 1 and \p2\ < 1.

The general solution can be written as
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P\t) = P +c,A +c2p2,

where (hH, \f is the eigenvector associated with the eigenvalues, p/ ; for

/ = 1, 2. We are interested in a special path which is not explosive and a

situation in which for the given level of price the exchange rate adjusts as
needed to keep the system on the unique convergent path. To exclude explosive
paths, we take cx = 0. Then c2 can be determined by

It is straightforward to show that equations (7.1.7) can be written as

e(t)=e +h2]{p(t)-p').

It is direct to check  ̂ < 0 by

Ah, =p2h2,

and \p2\ < 1. The equation thus describes the negatively sloped straight line

through the equilibrium point S = \e , p").

We may apply this equation to examine impact of changes in some
parameters, say, m on the dynamics of the system. An increase in m will  shift
the equilibrium point. Equations (7.1.5) show that the equilibrium values of the

two variables will  rise by an equal amount, from S - \e , p j to S = (e, p) in

the long term. As price is assumed to be sticky, the adjustment process is
depicted as in figure 7.1.1. A monetary expansion results in an immediate
depreciation of the currency. In initial stage, the exchange rate overshoots its
long-run equilibrium value, so that inflation is actually accompanied by a
gradual depreciation of the currency during the transition. This happens as the
presumed stickiness of output prices puts the full burden of the immediate
adjustment on the exchange rate. The instantaneous depreciation produces a
disequilibrium in the goods market which adjusts over time as the output price
adjusts. Following the sudden depreciation, and with output prices being
constant, domestic goods become cheaper relative to foreign goods. This leads
to an excess demand for domestic output and to a gradual increase in domestic
prices.
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p

p

p

.the convergent path

V e{t + \)=e{t)

e(t +1):
>

P e(t) Nr

e e
Figure 7.1.1: The overshooting adjustment process

7.2 A two-sector OLG model

This section deals with a two-sector overlapping generations model with fixed
coefficients proposed by Ralf.2 The economy produces two, consumption and
investment, goods; it has two, consumption and investment sectors. The
investment goods is taken as the numeraire. Individuals live two periods - in
each period, there are old and young people. People work only in the first period
of their lives supplying one unit of labor inelastically. There are N(t) young

individuals at t; the representative young individual splits his income w(t)

between consumption, c(t), and saving, s(t). The young agent's problem is

defined as

Max[cx{t)+  cr(t + l))"'', ye (-°°, 0)

s(t)=w(t)-p(t)c(t)
s.t: / ,x r(r + lW/)

See Ralf (2001). For two sector growth models, see also Galor (1992) and section 15.5
inAzariadis(1993).
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where r(t +1) are interest payments on saving, and p(f) is the price of the
consumption goods in terms of the investment goods. Suppose the elasticity of
substitution between consumption of different periods

1
a --r-Y

is restricted to be less than 1 in absolute value. The optimal saving function is
given by

where

Once p(t), p(t + l), w(t), and r(t + l) are determined, we uniquely determine

s(t), as well as c(f) and c(t + l).

Using subscripts c and / respectively to denote the consumption and
investment sectors, we have the production functions of the two sectors

C(t) = Fc(Kc(t), Nc(t)) = min{Kc{t), acNc{t)},

,(t)) - fimm{K,(t), a.N^t)}, // > 1,

where Kc, Kt, Nc and Nc denote capital and labor inputs of sector j ,

j = i, c, C(t) is the aggregated consumption, and l(t) is the total investment.

Introduce

We have

nc(t)kc(t)+nl(t)k,(t) =
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Efficient production in the two sectors requires

KJ(t) = aJNJ(t).

That is

k]{t) = aj.

Production in the consumption goods sector takes place with the capital intensity
higher than in the investment goods sector, if ac > «,. Perfect competition in
the markets yields

ccc (7.2.3)

w(t) = a,/! - a,r(t).

Investment is given as output of the investment goods sector, i.e.

where i = 11N. Capital stock is assumed to depreciate fully after one period.

The output of the investment goods sector can be used in the following period.
Hence

On the other hand, the saving in period t equals the investment in period t, i.e.

s{t)=i{t).

We have thus built the two-sector model. From

*(/+! ) = a,fm,{f),
kj(t) = atj,

and equations (7.2.2), we have
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ae), (7-2-4)

where

1
a =

a, -ac

By equation (7.2.1), we solve

s{t)

From the equation for r in equations (7.2.6)

PJt + l) _ Pit + l)
—7 7 —7 7 \\-

r(/ + 1) cApc,n - acP{t + 1))

Substituting equations (7.2.7) and (7.2.8) into equation (7.2.5) yields

1 This relation is obtained from equation (7.2.2) and kj = ap j = c, i.

On the other hand from equations (7.2.3), we solve

w(t) = aaiac{p{t)-ju),
r{t)  = a{aiJu-acp{t)).

From the equation for w in equations (7.2.6) and

s{t) = a,nnt(t), «,(/) = a{k{t)-ac),
3

we obtain

w(f) _ ac p{t)-ju
.^-.  i)

(/.Z.o)
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(7.2.9)

cM J

The dynamics of the economy is now described by the motion of equations
(7.2.4) and (7.2.9). Suppose ac > at. Then, for the variables to be positive, we
should add the following constraints on the solution

ac > k{t)>ai,

( 7 '2- 1 0)

If ac < «,, we should require

tLk(t) (7-2-U)
P{)

or, ac

From equation (7.2.4), we see that k(t) is independent of p(t). The

equation has a unique steady state

* ' =

- \l /iaat

From equation (7.2.9), a steady state of price is determined by

1 sy *%  //If

Q\p) = ajp -\— —^—-— -/ia.=0. (7.2.12)
a[juk -acJu]

Under constraints (7.2.10) or (7.2.11), the equation
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has a unique solution.4 It is straightforward to calculate the two eigenvalues,
Pj, at the steady state

/?, = ajua, > 0,

Jacp
acP -juk ) jua,

In economics, a concept called indeterminancy is currently often used. This
concept is related to stability of steady state. If a steady state is asymptotically
stable, for any given initial capital stock the economy will  eventually approach
the steady state. Hence, the agent is not able to distinguish rationally between
the different perfect foresight paths. This property is called indeterminancy.
Determinacy of the perfect foresight dynamics requires that the steady state is a
saddle or a source. If a > 0, i.e., at > ac, the system is always determinate,

since /?, is greater than 1; the steady state is a source if p2 < - 1 and it is a

saddle point if p2 > - 1. If a < 0, i.e.

a, <ac,

the steady state may be either indeterminate or determinate, depending on the
parameters.5

7.3 Growth with government spending

This section introduces a one-sector real business cycle model with mild increasing
returns-to-scale with government spending.6 The economy has a continuum of
identical competitive firms in the economy, with the total number normalized to

4 This can be proved by calculating the value of Q(p) at the boundaries of the range of
definition and then applying the mean value theorem.
5 When the parameters are specified, we may have /?, = - 1 . Period-2 solutions appear.

It should be noted that in a two-sector model of optimal growth with infinite horizon by
Nishimura and Yano (1995), the optimal time path of capital accumulation may be
chaotic for any rate of time preference, if the production function in the consumption
goods sector takes place with a higher capital intensity than in the investment sector.
6 This section is based on a model developed by Guo (2004), which is influenced by
Devereux et al. (1996, 2000).
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one. Each firm produces output y(t) according to a constant return-to-scale
technology

y{t) = x{t)ka{t)ti- a{t), 0<«<l,

where k(t) and h(f) are capital and labor inputs, and x(t) represents productive

externalities. For each firm x(t) is given. Factor markets are perfectly competitive;

we thus have

Assume that x(t) changes according to

x(t)=ka*(t)h{l-a)*(t),

where x is m e degree of productive externalities. Under the externalities, the
production function becomes

(t), (7.3.2)

where

Zt =  a(l + Z\ Xh = ̂ ~ «)(l + Z\

The economy is populated by a unit measure of identical infinitely lived
household, each endowed with one unit of time. The representative household
maximizes a discounted stream of expected utilities7

7 It should be noted that we are only concerned with the case of perfect foresight
dynamics with full capital utilization. Guo (2004) examines other cases, for instance,
when capital may not be fully utilized.
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, 0 < 6> < 1, (7>0, 77 > 0,
: + a

where 6 is the discount factor, c(t) is consumption, and o denotes the inverse of

the intertemporal elasticity of substitution for labor supply. The budget constraint is

cl+ i{t)+tif)=w{t)h{t)  + r{t)k{t),

where i(t) is investment and t(t) is a lump-sum tax. We may rewrite the budget

constraint as

c,+i{t)+T{t)=y(t),

where we use

y{t) = ^t)h{t)+r{t)k(t).

The motion of capital is given by

k0 being given, where 8 (0< <J< 1) is the capital depreciation rate. The first-
order conditions for the optimization problem are given by8

7jc(t)h°(t)=w{t),

H (7-33)
linALo.
'-*  c{t)

Assume that government spending, g(t), is constant. The period government
budget constraint is

g = f(t).

1 See appendix A.9 for dynamical optimization.



318 7. HIGHER DIMENSIONAL ECONOMIC DYNAMICS

The aggregate resource constraint for the economy is given by

c{t)+k{t + \)-(\-S)k{t)+g =

It can be shown that this equation is redundant in the sense that we can obtain it
through the household budget, the motion of capital and marginal conditions (7.3.1).

We now show that the dynamics is expressed by a two-dimensional dynamical
system. First, from equations (7.3.1) and (7.3.2), and

in equations (7.3.3), we solve h(t) as a function of kit) and c(t) as follows

- 2 — ^ 1  (7-3.4)

From equations (7.3.3), we directly have

c(t + l) = [(l - S + akXt~x(t + \)hx- (t + l))]ft<f) , (7.3.5)

where we use

and equation (7.3.2). From the household budget and g = t(t), we solve

'(0 = y(t) - c(t) - g-

Substituting this equation into the equation of motion of capital yields

k{t + 1) = (1 - 5)k{t) + k*>  [t)h*>  (t) - c{t) - g, (7.3.6)

where we use equation (7.3.2). Substituting equation (7.3.4) into equations (7.3.5)
and (7.3.6), we obtain the two equations which contain only k and c
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*( / + 1) = (1 " S)k{t) + 7]0C*°

c{t + l) = [(l - S + a7]oc
z'{t

yi{t) - C{t) - g,

°u{t + \%6c{t), (7.3.7)

where

do — _
' '/o — \-a

It should be noted that the right-hand side of the first equation in equations
(7.3.7) contains c(t + l) and k(t + l) . It is straightforward to show that the system

has a unique non-trivial steady state [k*,  c). The Jacobian matrix at [k*,  cj is

given by

J =

where

Pi
+ P2P3

Pl=l-S-

P2=S + ^ -

where 60 = 1 / 6 - 1. Local indeterminacy requires that both eigenvalues of J

are less than 1 in modulus. It can be shown that a necessary condition for the
equilibrium point to display indeterminacy is

Xh > 1 +
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7.4 Growth with fertility and old Age support

This section introduces endogenous fertility and old age support into the OLG
model introduced in section 3.3.9 In the literature, two assumptions about
population growth and economic conditions are made; the first is to assume that
children are consumption goods and appear in the utility function of the parents; the
second is to assume that children are valued as a source of old age support.10 This
assumption is made based on the observation that countries with more developed
financial markets or better social security programs tend to have lower population
growth rates than those that do not. For instance, in developing countries, children
often start contributing to family income while living at home and prior to
adulthood. Here, we assume that individuals give a constant fraction of their
income to their parents in the form of old age support, and that parents incur a time
cost of raising children which is increasing in the number of children.

The number of young agents at time t is denoted by N(t) and there are

N(-1) agents in the initial old generation. The initial old generation is endowed

with an aggregate initial capital stock of A (̂o) > 0. All young agents are identical

and they are endowed with one unit of labor when young, and have no other
endowments of goods or assets at any date. There is a single good in the economy,
which is produced using capital and labor as inputs. For simplicity, it is assumed
that individuals care only about old age consumption, denoted by c; their lifetime
consumption utility is given by u(c), which is assumed to be increasing in c, and

concave. Agents work and raise children when young, and are retired when old.
Young agents remit a fraction, //, of their income to their parents as old age

support, and save the rest which is equal to (l - jii)  of the income. Each young

agent decides to have n{t) children. A time cost of raising children, y(n(t)),

satisfies

j/(0) = 0, f> 0, y" > 0.

Al l agents take the wage rate, wit), at period t as given. The saving s(t) is

given by

s(t)=(l-a)w(t)(l-r{n(t)))- (7A1)

9 The model is proposed by Chakrabarti (1999).
10 The first approach is accepted by, for instance, Barro and Becker (1989), Becker et al.
(1990), Galor and Weil (1996); the second approach by, for instance, Raut and Srinivasan
(1994). Chakrabarti tried to combine the two ideas within the same framework.
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Old age consumption is thus given by

c{t + l) = r{t  + l)s(t) + an(t)w{t + l)(l - y{n(t + l))),

where r is the rate of interest. The production is carried out according to the
constant returns to scale production function

where K is the capital stock. The intensive production function is given by f[k),

where

K

Assume that the production function is of the CES form

f{k) = (akp + p)'p, a,p>Q, -°°</?<l.

Each unit of the consumption goods saved at time t becomes one unit of
capital at time t + 1. The capital is used in production and it depreciates
completely in the production process. Hence

K{t + l) = s{t)N{t).

The labor and capital markets are perfectly competitive. The marginal
conditions are

r(t) = fikit)) = ak  ̂ (/)[«*" (t) + p\»-\
w(t) = /(*(,)) - k{t)f'(k{t)) = /3[ak»(t) + / t ' " , ^ 0.

The young agent's problem is to maximize u(c(t +1)) by choosing n(f)

subject to

c(t + ! )=( ! - a)r{t
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With w and r as given, the problem of optimization has an interior optimum
determined by

- (l - a)r{t + l)w(t)f{n(t)) + aw{t + l)(l - y(n(t + l))) = 0. (7.4.3)

Substituting equations (7.4.2) into equation (7.4.3) yields

JKK {\-a)w(k(t))f{n(t))

which states that the rate of return on capital is equal to the rate of return on
children.11 By the definition, we have

K(t + l) = N{t + l)[ l - y{n{t + l))]k(t + l).

With this equation and equation (7.4.1), we can rewrite

K(t + \) = s(t)N{t)

as

(7.4.5)

In the remainder of this section, we specify the cost function as follows

We also introduce a new variable

11 The rate of return on children f{n(t)) is given by equation (7.4.3), which equals the
right-hand side of equation (7.4.4).
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Multiplying both sides of equations (7.4.4) and (7.4.5) by k(t +1) and
utilizing equation (7.4.5), we obtain

/ ,\ 1 — cn2(t) ._ . ..
z { t + x ) = a - ( 7 A 6 )

Applying equation (7.4.6) to equation (7.4.5) yields

- cn\t + 1) = a0

where

Difference equations (7.4.6) and (7.4.7) describe the sequence of {z(t), n(t)}.

A fixed point of the system is determined by

(7.4.8)

(7.4.9)

Proposition 7.4.1. If p > 0, then equations (7.4.8) and (7.4.9) have a unique

solution.

The proof is left to the reader. When p > 0, both equations (7.4.8) and (7.4.9)

define downward sloping loci, as depicted in figure 7.4.1.
The linearized system of equations (7.4.8) and (7.4.9) at a fixed point is given

by

o - ^
cn

nzl-p z \-p
ap 1 + z a pen1
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.,-1/2 W(z)=0

Figure 7.4.1: The unique fixed point for p > 0

We have

T 1 Z

TraceJ = a pen

pen 1 + z

In the case of p > 0, TraceJ < 0 and DetJ < 0, J has one positive and one

negative eigenvalues. In addition, we have

T < D < 1 + D.

We conclude that the positive eigenvalue is strictly less than one. It can be proved
that if 0 < p < 0.5, then

TraceJ + DetJ < - 1.

The steady state is a saddle. When p > 0.5, the fixed point can be either a sink or a

saddle point.
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Proposition 7.4.2.n If p > 0 and sufficiently large (with fixed a, a), then, (i)

there is a critical value of c, denoted by c , such that for c > (<) c , the fixed

point is a saddle (sink); (ii) At c = c , a flip bifurcation occurs. Thus, for c in a

neighborhood of c , periodic solutions of period 2 can be observed.

In the case of p < 0, the configuration of equation (7.4.8) is the same as in the

case of p > 0; the locus defined by equation (7.4.9) has the bell-shape, and attains

a unique (local) maximum at the value

1
z = .

P

As demonstrated in figure 7.4.2, there are four possible cases.
These cases can be identified as follows.
For figure 7.4.2a

a c a p (z*, «,*) \Z2,n2)

0.1 0.25 0.5 -0.5 (0.965,0.443) (58.592,0.058)'

For figure 7.4.2b

a c a p (z*, «;) (z'2, «*)

0.1 0.25 0.5 - 2 (0.884,0.463) (4.469,0.210)'

For figure 7.4.2c

a c a p (z*, «*)

0.1 0.25 0.6062 - 4 (1.418, 0.369)'

For figure 7.4.2d

a c a p

0.1 0.1 0.4 - 4 '

1 The proof of this proposition is referred to Chakrabarti (1999).
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z\ -\lp z\

(a) z\ <-!//? <z* (b) -1/p < z*  < z\

1=0

(c) z*>-\lp (d) no fixed point

Figure 7.4.2: Fixed points for p < 0

It is straightforward to check the eigenvalues for the above examples. Further
examination of the model is referred to Chakrabarti.

Exercise 7.4
1 Prove proposition 7.4.1.
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7.5 Growth with different types of economies

This section introduces a growth model, proposed by Galor and Weil, that captures
the historical evolution of population, technology, and output.13 The economy
evolves three regimes that have characterized economic development: from a
Malthusian regime (where technological progress is slow and population growth
prevents any sustained rise in income per capita) into a post-Malthusian regime
(where technological progress rises and population growth absorbs only part of
output growth) to a modern growth regime (where population growth is reduced
and income growth is sustained). The model is defined within the OLG framework
with a single good. The production uses land and efficiency unit of labor as inputs.
The supply of land is exogenously fixed. The number of efficiency units is
endogenous.

The output produced at time t is

where X and H(t) are the quantities of land and efficiency units of labor

employed in production at t, 0 < a < 1, and A(t) > 0 is endogenously

determined technological level at t. The output per worker at t is

where yh > 0, yx > 0 for any (h, x)» 0

, H AX
h = —, x = ,

TV N

where N(t) is the total labor force at t. Suppose that there are no property rights
over land and the return to land is thus zero. The wage per efficiency unit of labor is
therefore equal to its average product

M>)= iri  =w(x(t),h(t)). (7.5.1)

13 See Galor and Weil (2000). Rather than analyzing behavior of the difference equations,
this section shows how to construct a discrete dynamical system which explains very
complicated economic phenomena.
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Each individual born at period t - 1 lives two periods. In the first period, they

consume a fraction of their parents' time. In the second period, they allocate their
endowed one unit of time between child-rearing and labor force participation, hi
each period t a generation that consists of A^) identical individuals joins the
labor force. The utility is represented by

u(t) = c}-y{t)[w(t  + \)n{t)h{t + l)] r, c(t) > c > 0,

where c is a subsistence level, n{t) is the number of children of individual t,

h{t + l) is the level of human capital of each child, and w(t + l) is the wage per

efficiency unit of labor at time t + 1. The utility function is monotonically

increasing and strictly quasi-concave. Let

to+te(t + \)

be the total time for a member of generation t of raising a child with a level of
education quality e(t + l). Define potential income as the amount that generation t
would earn if they devoted their entire time endowment to labor force participation.
That is, potential income is given by w(t)h(t). This income is divided between

child-rearing and working. Hence, in the second period of life, the individual daces
the budget constraint

w\(t)h(t)n(t)[T0 + re{t + l)} + c{t) < w(t)h(t).

It is assumed that the level of human capital of members of generation /, h(t + l),

is an increasing function of their education e(t + l) and a decreasing function of

the rate of progress in the state of technology from period / to t + 1

8{t + l)= 4)

That is

h{t + l) = h{e(t + \),g{t + l)),

h,he,hg,he>0, hg,hee<0, y{e,g)>0.
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The erosion effect is assumed to become higher as a result of technological
progress, i.e.

dy(h(t\x(tj)

It is further assumed that

rA(0,0) - * (0 ,0)<0.

It is straightforward to show that under this assumption, there exists a value of g
such that

Denote z(t) and z the level of potential income and the level of potential
income at which the subsistence constraint is just binding; that is

z(t)=h(t)w(t), z =

By equation (7.5.1), we have

z{t) = h'(t»-*{t) = h"(e(t), g(ty-"(t) = z(e(t), g(t), (7.5.2)

Members of generation / choose n{t) and h(t +1) to maximize their
intertemporal utility function subject to the budget constraints. It can be proved that
the optimal solution is characterized by the following solution

r
t0 + te(g(t + l))

\-clz{t)

, if

To +te(g(t

ifg(t
), e'>0 if g(/

(7.5.3)

(7.5.4)
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where e(g) is an implicit function between e and g, i.e.

(to+ve)h<!(e,g) = ih(e,g).

It is assumed that e" < 0 for any g(t) > g.

We have described the behavior of the producers and consumers. We now
describe technological change by the following equation14

g(t + 1 ). A(f + l}~)
A{f) = g(e(t)), g(0\ g' > 0, g"  < 0. (7.5.5)

The size of working population at time t + 1 is determined by

N(t + l) = n{t)N(t), (7.5.6)

where No is historically given. Utilizing

X(t) =
{>  N(t) '

and equations (7.5.5) and (7.5.6), we have

/ ,\ 1 + git +l) / N

n{t)

Substituting equations (7.5.3) and (7.5.5) into the above equation yields

7 (7.5.7)

l-c/z(t)

The construction of the model is thus completed. The system consists of equations
(5.5.2)-(7.5.7). hi the dynamical analysis, the economy is divided into two regimes:

14 It should be noted that Galor and Weil also discussed implications of introducing
into the technological progress function g.
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the subsistence regime characterized by z(t)<'z and modern regime characterized
by z(t) > z. Although the analysis is not complicated, it will take a long space to
examine. The reader is encouraged to analyze the behavior of model, and then to
read the analysis by Galor and Weil.

7.6 Unemployment, inflation and chaos

This section introduces a worker flow model with a nonlinear outflow rate from
unemployment. The model is proposed by Neugart.15 The unemployment U(t) at
period t follows the following identity

U(t + l)-U(t)=  i(L - U(t)) - o(t)u(t), (7.6.1)

where / > 0 denotes the (exogenous) inflow rate, L = 1 the labor force, and o(f)

is the outflow rate from unemployment. Here, the outflow rate is defined as the
fraction of jobs that come to the market at time t to jobs searchers, i.e.

- J{t)

where the parameter 0 < d < 1 gives the on-the-job searchers as a constant fraction

of employed workers and j{f)  denotes job creations.16 We specify

where Js is the job creation due to the structural characteristics of the economy

and y{m - #(/)) describes the cyclical component of job creations, where y is a

positive parameter, m the exogenous money growth rate, and 7t{t) the inflation

rate at /. Hence, the outflow rate from the unemployment can be expressed

15 See Neugart (2004).
16 It should be remarked that in Neugart (2000), the parameter is treated as an endogenous
variable; in the appendix to Neugart (2004), the parameter i is treated as an endogenous
variable.
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Substituting the above equation into equation (7.6.1) yields

Assume that firms cannot raise prices to the same extent as nominal wages
increase at t. This assumption is reflected in the requirement of 5 > 1 in the

following formation of inflation rate dynamics

(7.63)
WP

where 7t(t) is the inflation rate at t, 7te(t) is the expected inflation rate at t, wb{t)

is the bargained wage rate at t, and wp is the price determined real wage (which

equals (l — ju)y, where 0 < // < 1 is the fixed mark-up and y = 1 is the constant

marginal productivity).
The bargained real wage wb (t) is given by

where 0 < b < 1 is the "reservation wage". The inflation expectation is formed by

7te{t) = an{t - l) + (l - a)ne(t - l),

where 0 < a < 1 is the weighted average rate. Under these assumptions, we may

rewrite equation (7.6.3) as

/ * ( i » M * + i n (7.6.4))

From this equation and
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7te(t + l) = an(t) + (l - a)n'{t),

we have

c / i\ / \ /, \ ei\ U-(\-b\j(t + \)
Sn\t + 1) = a;r(/) + (1 - a)n (t) + —— — '-.

Substituting this equation into equation (7.6.4) for /, we solve

n{t + + f + (1 a)U)
jUod {0 J JU0

(7.6.5)

where

bQ=\-b, juo=l-ju.

The dynamical system consists of equations (7.6.2) and (7.6.5), that is

(7.6.6)

We may analyze its behavior in the same way as we did for the Henon map in the
previous chapter.

A fixed point is given by

U = k(U,n), 7t = <&{U,n).

It is imposed that at a steady state, n = m, the inflation equals the money growth

rate. It can be shown that the system has a unique steady state

provided that
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The Jacobian matrix J is given by

J =

where

a,, ay

a,, a.

= dA(u, n)
du

_ dAJU, 7t) yU'

Q-y] ^

dU

dU

It is straightforward to calculate the two eigenvalues. We now provide some
numerical examples carried out by Neugart. As discussed by Neugart, it is
reasonable to choose the following parameters

a = 0.5, 8 = 2, b = 0.5, 7 = 0.5. (7.6.7)

Under (7.6.7), if we further specify

d = 0.01, w = 0.03, J = 0.13199,

then one eigenvalue is equal to - 1; a period-doubling bifurcation occurs. It can be
shown that under (7.6.7), the eigenvalue with a positive root never crosses 1.
Figure 7.6.1 depicts bifurcation diagram of U over / under (7.6.7) and

d = 0.01, m = 0.03 ."

The plot and the following one are from Neugart (2004). Neugart provides more charts
for different values of the parameters.
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Increases from / = 0.13199 will lead to further bifurcations. Mathematically, the

dynamic mechanism is similar to bifurcations observed for the Henon map.

0 . 13 0 . 14 0 . 15 0 . 16 0 . 17 0 . 18

Figure 7.6.1: Bifurcation diagram of unemployment over the inflow rate

Figure 7.6.2 demonstrates the existence of an attractor with the inflation rate
over the unemployment rate when the parameters are specified as in (7.6.7) and

d = 0.0l, m = 0.03, / = 0.18.

The attractor looks like a Phillips curve. Nevertheless, in this model, there is not a
stable trade-off between the inflation rate and unemployment rate. The system
shifts up and down a negatively sloped "curve" erratically. A pair of inflation-
unemployment rates today cannot tell where the economy will be in the long term.

7.7 Business cycles with money and capital

This section provides a model of the OLG model with money and capital.18

18 The model and analysis in this section are based on Jullien (1988). A model in the same
spirit is proposed by Grandmont (1985), even though Grandmont's model does not take
account of capital accumulation. See also Tirole (1985), Farmer (1986), and von Thadden
(1999). As far as technical issues related to existence of chaos are concerned, the reader is
also referred to Yokoo (2000).



" . * .

336 7. HIGHER DIMENSIONAL ECONOMIC DYNAMICS
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Figure 7.6.2: An attractor

A single good is produced and each agent lives two periods. The young

generation sells one unit of labor at a real wage, w(t), consumes quantity, cx(t),

saves the real quantity, s{t), by holding money and capital. Let r(t + l) denote the

real rate of interest between / and t + 1. The old generation spends all its savings

from the previous period on consumption, c2(t). A typical consumer maximizes

his utility subject to the budget constraint as follows

Max U(c,(t), c2{t))

S'"  c2{t)<r(t  + l)s{t), Ci{t)>0, 1 = 1,2.

Under standard assumptions, the consumer's decision problem has a unique
solution characterized by the saving function s(w[t), r(t + lj) , which satisfies

0 < s(w, r) < w.

Production is made through a neoclassical constant return to scale technology.
Output per capita, y(t), is a function of capital intensity, k(t), i.e.

where / is increasing, strictly concave on R+ and C2 on R++ , and satisfies
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[0, l[ , li

kf{k) is non-decreasing, and

lim f(k)-kf'(k)= +00,

l im/(*) -* / ' ( * ) = 0.

Obviously, if

/ = Aka, 0 < a < 1,

the above properties of / are satisfied. The CES production functions with an

elasticity of substitution larger than 1 also have these properties. We also have

r{t)=  f(kit)),
w(t) = f(k(t))-k(t)fik(t))=W((k(t))).

It is known that W is C1 on R++ , increasing, and maps R+ into itself.

At date 0, the economy is endowed with a fixed quantity of capital k0 and a

quantity of money M. Let pit) and mit) (MI p(t)) denote respectively the price

of goods and the real money. A perfect foresight equilibrium is a sequence of

{/ML. . {*(')L. . M')L. . M')L- ,

which achieves a competitive temporary equilibrium with perfect foresight at each
date. A perfect foresight equilibrium is described by a sequence of {&(?)},>„ , and

M')L ~ such that

m(t) + k(t + 1) = S{w(k(t)), f'(k(k + 1))), (7.7.1)

m{t + l) = f'(k(t + l))m(t), k(t)>0, m(t)>0, kM, given. (7.7.2)

Equation (7.7.1) equalizes the demand and supply of assets; equation (7.7.2)
equalizes the interest rate on money p{t)l p(t +1) and interest rate on capital
f'(k(t +1)). We call an equilibrium non-monetary or monetary according to
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m0 = 0 or m0 > 0. By equations (7.7.1) and (7.7.2), we can replace equation

(7.7.1) with

m(t + 1) + *(/ + l)f'{k{k + 1)) = S{w(k(t)\ f(k(k + l)))f'(k(k + 1)).

It can be shown that the above equation determines a backward dynamics as

k(t) = A(k(t + l), m(t + l)). (7.7.3)

According to the properties of the saving and production functions, it can be
proved that A is C1, increasing in each of its arguments, and A tends to 0 (resp.
infinity) when k goes to 0 (resp. infinity) with the fixed m. A perfect foresight
equilibrium can be described by a two-dimensional (backward) mapping

m(t)) = [A(*( , +1), m(t + 1)), y ^ y - O(kif + 1), m{t + l)).

(7.7.4)

We may express the system in vector form as

where x = (k, m). Here, we are interested in a monetary economy. A steady state

\k\ rn) is determined by f'[k*)=  1 and

m

We assume s\f¥{k j , l)> k*. Then the conditions for the existence of a unique

monetary steady state are satisfied. Under this assumption, there exists at least one

inefficient non-monetary steady state (k > k* )19 and we denote the lowest capital

intensive one by ks, i.e.

19 A non-monetary steady state k verifies s(w(k),f'(k)) = k. It is inefficient if k > k*,

where s(ff(&*) , l) > k . For sufficiently large k, W{k) < k. Hence, for sufficiently large

k, we have s{W(k),f'{k))< W\k) < k. As s is continuous and it maps itself, it has at

least one fixed point.
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ks=inf{k>k'\A(k, 0)=k}.

Here, we are interested in periodic perfect foresight equilibrium. To analyze
global behavior of the system, it can be proved that all the periodic orbits must

belong to a C1 invariant curve. This will enable us to focus the dynamical analysis
on the curve in one-dimension.

Theorem 7.7.1. There exists a compact set K e R +̂ and a function h, decreasing

and C\ from R++  to R++  such that if we define the sets

T+={{k,m)eR2
+\k>h{m)\

T_={(k, m)s Rl\k<h{m)\

then {r , r+, T_}  is an invariant partition of /?++ and

i e r t « limm(t, x) = °°,

jer_<=> limm(t, x) = 0,

xeT <^> m(t, x)e K for t being sufficiently large.

The proof is referred to Jullien. We depict the contents of the theorem as in
figure 7.7.1. The real quantity of money increases infinitely along the orbit of a

point greater than x and decreases to 0 along the orbit of a smaller point.
Between these two behaviors it is possible to exhibit a set of points with an orbit
bounded away from 0 and infinity. It can be shown that all cycles must belong to
the curve T.

Introduce a one-dimensional map

m
—> Rj., m —> —7—7-

The map, <j>,  is C1. The cycles of <f>  are equivalent to the cycles of Q in the

senses of
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m

k* ks k

Figure 7.7.1: The partition of R++

The following theorem is referred to Jullien.

Theorem 7.7.2. A sufficient condition for the existence of a cycle of order 2 is
that

s{w{k'), l)-k'+ 2SR{w(k'\ l)+ 2k'Sw(w(k'\ l)-JTjf

The proof is to verify the existence of solutions of

<p2{m) = m.

It should be noted that Jullien also discusses the conditions for the existence of
periodic points of period 3, which guarantees economic chaos.
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7.8 The OSG model with heterogeneous households

This section explores the interdependence between income distribution, wealth
distribution, and economic growth within the OSG modeling framework.20 The key
feature of this theory is that it groups the population into different groups, whose
consumption and saving behavior are homogenous within each group and are
different among the groups.

The production side of our model is the same as in the OSG model in section
3.2. The population is classified into two groups, indexed by j = 1, 2. Each type

of consumers has a fixed number, denoted by Nj. The aggregated labor force,

N, is given by

N = h1N}+ h,N2,

where hj are the level of human capital of group j , j = 1,2. Production in

period t uses inputs amount of capital, K(t), and amount of labor services, N. It

supplies amount of goods, F(t). The production process is described by a

neoclassical production function

F(t)=F{K(t),N).

The real interest rate and the wage of labor are given as before by

r(t)+St=f'{k(t)),
( 7 8 1 }

where k(t) = K{i)l  N. Let kj{t) denote per capita wealth of group j in period t.

According to the definitions, we have

= kl{t)N,+k2{t)N1.

Dividing the two sides of the above equation by N yields

20 The post-Keynesian approach is represented, for instance, by Kaldor (1940), Pasinetti
(1960, 1974), Sato (1966), Samuelson and Modigliani (1966), Salvadori (1991), and
Panico and Salvadori (1993). The recent literature on growth and distribution is referred
to, for instance, Becker (1980), Sorger (2002), Nishimura and Shimomura (2002), Ghiglino
and Sorger (2002), and Sorger (2000), and Zhang (2005c).
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k{t)=k l(t)nl+k2(t)n2,

where nj = NjIN. As rij  are constant, we see that k{i) is a function of kjyt)

and k2(t). With equations (7.8.1), we see that r(t) and Wj(t) are functions of

*,(/) and k2(t).

Group j 's per capita current income, yj{t), from the interest payment,

r(t)kj(t), and the wage payment, Wj(t), is defined by

yJ(t)=r{t)k J(t)+wj(t).

The per capita disposable income of consumer j is defined as the sum of the

current income and the wealth available for purchasing consumption goods and
saving

yj(t) = yjif) + kj(t) = (I + r(t))kj(t) + wjit), j = l, 2.

The disposable income is used for saving and consumption. At each point of time, a
consumer would distribute the total available budget among saving, Sj(t), and

consumption of goods, Cj (t). The budget constraint is given by

cj(t) + sJ(t) = yJ(t). (7.8.2)

In each period, consumers decide the two variables subject to the disposable
income. We assume that utility level, Uj(t), is dependent on the consumption

level of commodity, Cj{t), and the level of saving, Sj(t), as follows

Uj(t) = cf (t)Sj' (0, £j, *j  > 0, £, + Zj =1, j = 1, 2, (7.8.3)

where ^ and Aj are respectively group j's propensities to consume and to hold

wealth. Maximizing U} subject to budget constraints (7.8.2) yields

cJ(t) = Zjyj(t), sJ(t) = AJyj(t). (7.8.4)
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Per capita wealth of group j in period t + 1 is equal to the saving made in period

t. That is

kj(t + l)= Sj{yj(t)), 7 = 1 , 2. (7.8.5)

These mappings control the motion of the system. By equations (7.8.2) and (7.8.1),
we have

yj(t) = *,/(*(') ) + [kj(t) - hjk(t)\f{k{t)) + Skj{t), j = 1, 2, (7.8.6)

where S = 1 - Sk. We see that y>j(t) are functions of k^t) and k2{t).

As output is either consumed or saved, the sum of net saving and consumption
equals output. That is

C{t) + S(t) - K(t) + SkK(t) = F(t), (7.8.7)

where C(t) is the sum of consumption and

S(t) - K(t) + StK(t)

is the sum of net saving of the two groups

It can be shown that equation (7.8.7) is redundant in the sense that it can be
derived from the other equations in the system. We thus omit equation (7.8.7) in
later discussions.

As yj(t) are functions of £,(?) and k2(t), we see that difference equations

(7.8.5) determine the evolution of kx(f) and k2(f). It is straightforward to show
that any other variable in the system is uniquely determined as a function of kx{f)

and k2 (f). It is sufficient for us to examine behavior of difference equations (7.8.5).
We are now concerned with dynamic properties of equations (7.8.5).

Substituting Sjit) = Ajpjit) and equations (7.8.6) into equations (7.8.5) yields
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kj{t + 1) = Ajhjf{k{t)) + [kj(t) - hjkit^f'ikit)) + A^t), j = 1, 2.

(7.8.8)

A steady state is defined by

We rewrite the above equations as

where

From the above equations, we exclude the possibility of kj = 0 for any j for

k > 0. Rearrange the above equations as follows

As / is strictly concave, f(k) - kf'(k) > 0 for k > 0. To guarantee

> 0, we should require

Sj-f{k)>0, j = l,2.

Define

k=max{k:f'(k)=Sj}.

Because

f"{k)<0, lim/'(0) = oo, lim/'(0) = 0,
* > o * > +
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we see that k is uniquely defined. Obviously

Sj ~ /'(* ) > 0, for k > k, j = \, 2,

and 8j - f'(k)<0 for some j if k < k. We should require k > k.

Multiplying the two sides of each equation by n} and then adding the two

equations in equations (7.8.9) yields

(7.8.10)

where we use w,jfc, + n2k2 = k and neglect the trivial solution k = 0. We now

show that this equation has a unique solution for k > k. Introduce

*(*) = + (7.8.11)

As <t>(k) —> + oo as k —> k from the right and <&(+°°) —> — 1, we conclude that

<!>(&) = 0 has at least one solution for k e [k, + °oj. Here, we use

M
k

lim

—> 0 as k —> °°,

We calculate

(s2-f(k)f

 +

8,-fikV S2-f'(k) k2

(7.8.12)

We see that if
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then <£>'(k) < 0 for k e \k, +»). It should be noted that even if the term

f-kf'+k2f"

is negative, O'(k) < 0 may hold. If

A(k)>0, ke(k,+oo), (7.8.13)

the equation <£>(k) = 0 has a unique solution. It is straightforward to check that if

F takes on the Cobb-Douglas form, then (7.8.13) holds. If the production function
takes on the CES form

f = A(ak'+iy,

where a < 1, and a and A are positive, we calculate

I aka +1 I

We see that when the production function takes on the Cobb-Douglass form or the
CES form, the system has a unique equilibrium. For any positive solution

k* (> k), we solve kx and k2 by equations (7.8.9). We get r and Wj by

equations (7.8.1), j y by equations (7.8.6), and c} and Sj by equations (7.8.4).

Proposition 7.8.1. The dynamic system has at least one equilibrium point. If

A(&)>0 , ke(k, +°°),

the system has a unique equilibrium point, denoted by k'. If

n2n2

(7.8.14)
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then the unique equilibrium point is stable.

The proof of the stability condition is provided in Appendix A.7.1.
If the difference between /i, - A? is small, then the system is stable. For

instance, as / ' > 0, we see that if

A,A2S>A1-A1,

condition (7.8.14) always holds. It should be noted that even if condition (7.8.14) is
not held, it is possible that the unique equilibrium point is stable.

From equations (7.8.9), we get

As / - kf and Sj - / ' are positive at the equilibrium point, we see that the

sign of £, l \ - k2fh2 is the same as that of \ - A?. This relation tells that if one

group's propensity to save is higher than the other group, then wealth per qualified
capita of the former is greater than that of the latter. Hence, in the long term,
differences in wealth per qualified capita are determined by differences in
propensities to save among different groups. It should be noted that the sign of
&, — k2 is not determined solely by A  ̂— A^. For instance, if A, — A  ̂> 0 and
h2 - \ > 0, &, - k2 < 0 is possible. In fact, from equations (7.8.9), we have

k k

At equilibrium, we have j ; = kj I Aj. From equations (7.8.9), we have

£-V)'

We can obtain explicit conclusions about the signs of differences in the key
variables only when one group does not have lower level of the propensity to save
and lower level of human capital than the other group. That is A\ > A  ̂ and
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hx > h^. Otherwise, the comparative economic conditions of the two groups are

ambiguous.
We now examine impact of changes in one group's propensity to save and

level of human capital upon the income and wealth distribution and national
economic product. Taking derivatives of equation (7.8.12) with respect }\ yields

dk

where 4>' < 0. It can be shown that if /I, > (<) /^, we have

J--s2<(>)o, L-sl>{<)o,
k k

and if J  ̂=^, we have f/k-Sj =0. Since

j-f>0, Sj-f>0,

from equation (7.8.15) we conclude that dkl d\ > (=, <) 0 if \ > (<)/l2. As
group 1 's level of human capital is increased, if group 1 's propensity to save is
higher (lower) than group 2 's, then k increases (decreases). We see that
improvement in one group's human capital does not necessarily lead to
increases in the wealth per qualified capita in the economy. The difference in the
preferences affects change directions in k. From equations (7.8.9), we obtain

^L  = k + [L _ §\ ef"^  dk

The following lemma summarizes our analytical conclusions.

Lemma 7.8.1. As group 1 's human capital is increased, (i) if group 1 's propensity
to save is higher than group 2 's (i.e., \ > A^), group 1 's wealth per capita may
increase or decrease and group 2 's wealth per capita increases; (ii) if A, = ^,

then group 1 's wealth per capita increases but group 2 's wealth per capita is not
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affected; and (iii ) if X, < X^, group 1 's wealth per capita may be increased or

decreased and group 2 's wealth per capita increases.

We see that as group 1 becomes more effective, group 2 's wealth per capita
increases, at least does not decrease, in the long term. This conclusion does not hold
when the economy has more than 2 groups.

From

K = kN, F = JN, r + 5k=  / ' , w, = * , ( / - kf'\

„  _

XJ '

we get

1 dK _ 1 dk N,
K dh,~ k dh, N'
}_dF__f_dk_ Nj_
~F~dh,~rf~dh,+~N'
dr _ dk

Hh,~ ~d\'

dh, 2 dh,

1 dy} _ 1 dcj _ l dkj

yj dh, Cj dh, kj dh,

From lemma 7.8.1, we can judge the signs of these variables. We note that the rate
of interest may be either increased or decreased when group 1 's human capital is
improved. This will be confirmed by simulation results later on. We obtain the
following results.

Lemma 7.8.2. As group 1 's propensity to save increases, (i) if group 1 's
propensity to save is higher than group 2 's (i.e., X, > X )̂, group 1 's wealth per
capita may be either increased or decreased and group 2 's wealth per capita
increases; (ii) if X, = A^, group 1 's wealth per capita increases and group 2 's
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wealth per capita is not affected; and (iii ) if k  ̂< k^, group 1 's wealth per capita

increases and group 2 's wealth per capita decreases.

Lemma 7.8.3. As group 1 's population increases, (i) if \ * k^, group 1 's wealth

per capita decreases and group 2 's wealth per capita increases; (ii) if ^ = k^,

wealth per capita is not affected.

We now extend the two-group model to multiple groups of consumers. We

may generally assume that the population is No and the population can be

classified into M groups, indexed by j , according to their preferences, wealth,

human capital, and social status. We have No > M. Two extreme cases are

M = No and M = 1. Let the number of group j beNj. The aggregated labor

force ./V is given by

M

where hj are the level of human capital. We may also interpret the parameter

hj as the work time of group j .

The neoclassical production function is F(t) = F(K(t), N). Let K, r, wJt

and Sk (0 < 5k < 1) be defined as before. The marginal conditions are then given

by

r(t)+Sk=fik(t)),
Wj(t)=hjw{t),

where k = KIN. The per capita, disposable income of group j is

yj(t) = yj(t)+kj(t), j = l,2,-,M,

where

yJ(t) = r(t)kj(t)+wJ(t).
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The budget constraint is given by

C]{f) + S}{t) = yj{t).

Consumer j maximizes the utility level

Uj (0 = cf (t)s} (/), £,, Aj > 0, j = l,2,-,M,

subject to the budget constraints. The optimal solutions are

cj(t) = £jyj(t), Sj(t) = Ajyj(t).

As equations (7.8.8), we describe the wealth accumulation by

kj (t + l) = Ajhjf{k(t)) + [kj (t) - hjk(t%fik(t)) + AjSkj (t),

j=\,2,....M.

A steady state is defined by

kj = Xfrfik) + {k; - hjk^f

We rewrite the above equations as

where 8j = 1 / Aj - 5 > 0. Rearrange the above equations as follows

(f(k)-kf'(k)\_

{ Sj-f(k)
\hj~kj. (7.8.16)

Define



352 7. HIGHER DIMENSIONAL ECONOMIC DYNAMICS

As before, we can show that k is uniquely defined. We require k > k.

Multiplying the two sides of each equation by rij  and then adding the two

equations in equations (7.8.16) yields

J Sj - f(k)

where we use

V nJk. = ki—ij  j J

and neglect the trivial solution k = 0. Like equation (7.8.11), we introduce

"A

( 7.8.1 7)

If

the equation <£>(k) = 0 has a unique solution.

Proposition 7.8.2. The dynamic system has at least one equilibrium point. If

A(k) > 0, k e [k,+ °°\ the system has a unique equilibrium.

We omit analyzing stability properties of the equilibrium because it is difficult
to find explicit conclusions. The model of three groups is simulated with a wide
range of the parameters and the unique equilibrium is stable. Nevertheless, I did not
succeed in constructing a Liapunov function to confirm the stability. For illustration,
we simulate the model when M - 3. The aggregated labor force N is
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where hj is the level of human capital of group j , j = 1, 2, 3. Suppose that the

production function takes the Cobb-Douglas form. The production function and
marginal conditions are

K N

where A is the total productivity. Let Kj(t) and Yj(t) be respectively the

capital stocks owned by group j and the current income level of group j . The

total capital K(t) and total current income Y(t) are

where

Kj(t) = kJ(t)Nj, YJ(t) = yj{t)NJ.

The consumers' behavior are described by

To simulate the model, we specify the groups' human capital, preference
parameters and the other parameters as follows

a = 0.34, A = 1.3, Sk = 0.05,

h
K =

3 1
1

0-3, u =^0.8

0.65

> 0 . 3,

N2 =
'r
5

v y

(7.8.18)

Group 1 is the rich class - with the highest level of human capital and highest
propensity to own wealth. The population share of the rich in the total
population is only 1/16 percent. Group 2 is the middle class - with the middle
level of human capital and middle-level propensity to own wealth. The
population of this group is 5/16 percent. Group 3 has the lowest level of
human capital and the lowest propensity to own wealth. Under (7.8.18), we
calculate the equilibrium values of the variables
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F =
(k \

k2

k3

18.

=

424, k =

^31.334"

3.373

> 1.941 ,

= 4558,

w2

r

=

= 0.1249,

^3.317N

1.105

:0.333

c2

c3

=

'7.713"

1.175

0.385

We see that in the long term the differences in living conditions are great
among the groups. Table 7.8.1 gives the distribution of wealth, the levels of
current income and levels of consumption among the three groups. Group 1 's
share of the population is only 6.25 percent of the total population, but its
shares of wealth, current income and consumption are respectively 62.49, 9.25,
and 38.30 percent; group 3 's share of population is 62.5 percent, its shares of
wealth, current income and consumption are respectively 3.87, 19.11, and
19.12.

Table 7.8.1: Distribution of wealth, income, and consumption

group 1
group 2
group 3

population
6.25 %
31.25%
62.5 %

wealth
62.49 %
33.64 %
3.87%

income
9.25 %
41.44%
19.11%

consumption
38.30 %
42.58 %
19.12%

The three eigenvalues are given by

p, = 0.857, p2 = 0.734, p3 = 0.342.

The steady state is stable. Figure 7.8.1 illustrates the motion of per capita
wealth of the three groups. We see that the growth process is characterized of
convergence under perfect competition. We can illustrate dynamics of the other
variables in the system. As the dynamic system has a unique equilibrium, we may
examine impact of changes in the parameters. First, we examine impact of change
in human capital. We fix the parameter values as in (7.8.18) except \ . We increase

/z, from /z, = 3 to \\ = 3.5. We calculate the new equilibrium values as

3.5:

AF =

'M, N

M2

1.130, AK

=

'4.557N

0.014

0.003,

= 23.458,

Aw,

Aw2

, A W 3 ,

=

Ar = -

'0.61 T
0.017

0.005

3.004,

Ac2 =

'1.122"

0.007

0.005,

(7.8.19)
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Figure 7.8.1: Dynamics of per capita wealth of the three groups

In (7.8.19), we denote the difference between the equilibrium values of the
variables at the new equilibrium and old one state by A. From (7.8.19), we see
that as group 1 's human capital is increased, the total output, the total wealth
and per capita wealth of the three groups, the wage rates, and the levels of
consumption are all increased. Hence, every group and the society as a whole
benefit from human capital improvement of group 1. This property does not
hold for the other two groups which have lower propensities to save and lower
levels of human capital than group 1. As demonstrated in (7.8.20) which hold
under (7.8.18) except for hj, as group 2 's human capital is improved, group 3

which has the lowest level of human capital and lowest propensity to save will
not benefit at all in terms of wage rate, per capita wealth and consumption level.
As h2 increases, group 1 and group 2 benefit but group 3 loses.

^ : 1 => 1.5 =>

AF = 3.874, AA: = 27.73, Ar = 0.004,

Ak^

Ak2 =

( 0.600 ^

1.167

v -0 .002,

,

'Aw i

Aw2

vAw 3,

=

f -0.046

0.530

-0 .005

A<V
Ac2

,A csy

=

' 0.148

0.848

v-0.005,

^ : 0 . 3 ^ 0 . 8̂
AF = 6.305, AA: = 26.250, Ar = 0.021,
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'Ak:

Ak, =

' 4.776 N

-0.046

^ 0.289

Aw,

Aw,

Aw,
=

'-0.256"

-0.085

0.484

(Ac:

Ac,

[Ac,)
=

1.176

-0.024

, 0.574 ,

(7.8.20)

This describes a situation that as the middle class gets more educated, the
middle class becomes richer and the rich class becomes richer, the poor class
becomes poorer. Similarly, as group 3 improves its human capital, group 2 's
living conditions tend to deteriorate; but the other two groups' living conditions
tend to be improved.

The effects of change in the technological parameter A are calculated as
follows

A: 1.3 => 1.4:

AF =

'A^

Ak,

0.717, AR

=

'3.724N

0.401

0.023

24.765,

(AW:

Aw,

Aw3/

-

Ar = -

'0.129"

0.043

0.013̂

0.009,

(AC:

Ac,

, A C 3 ,

=

^0.801̂

0.161

v0.026y

As A increases, the total output, the total wealth and per capita wealth of the
three groups, the wage rates, and the levels of consumption are all increased.
Every group and the society as a whole benefit from the technological change.

The effects of changes in the propensities to save of the three groups are
illustrated as in (7.8.21):

0.8 => 0.82 =>
= 0.780, A£ = 25.308, Ar = -0.010,

Akt

Ak,

Ak,
=

'6.220N

0.042

0.007̂

'"Aw,"

Aw,

Aw,
=

'0A40"
0.047
0.014

(Ac,
Ac,

iAc 3/

=

0.448̂

0.021

X,: 0.65 => 0.68 =>
AF = 0.322, AK = 21.430, Ar = -0.004,

(M:
Ak,

[Ak3/

=
'-0.65f

0.649

1 0.003 j

'AW:

Aw,

Aw,
=

'0.058"

0.019

0.006;

(AcA
Ac,

Ac,
=

'-0.160̂

0.088

^ 0.006 J

: 0.3^0.4:



7.8. THE OSG MODEL WITH HETEOGENEOUS HOUSEHOLDS 357

AF =

'AkA
Ak2

0.1

=

19, AK--

'- 0.253"

0.006

I  0.118 J

= 19.764,

(Aw^

Aw2

, A W 3 ,

Ar = -0.

=

i"o.o2r
0.007

0.002,

002,

'Ac,"

Ac2

< A C 3,

=

' -0 .062N

0.003

^ 0.026 ,

(7.8.21)

As group 1 's propensity to save increases, the total output, the total wealth and
per capita wealth of the three groups, the wage rates, and the levels of
consumption are all increased. As group 2 's propensity to save increases, group
3 wil l benefit in terms of per capita wealth, wage rate, and consumption level
but group 1 's consumption level and per capita wealth wil l be reduced.
Similarly, an increase in group 3 's propensity wil l not benefit the rich group.

As each group's labor force is changed, the total output, wealth and
distribution of wealth and income wil l be changed. We illustrates the effects of
change in each group's labor force as in (7.8.22)

AF -

'AkA
M2

M 3,

1.354, AK =

=

' - 0.667"

0.017

v 0.003 ,

= 24.386,

'Aw,"

Aw2

Aw3

Ar = -0.

^0.060"

0.020

0.006,

004,

f Ac0
Ac2

vAc3

=

' - 0.164"

0.010

0.006

N2: 5=>5.5=>

AF = 0.777, AA: = 20.602, Ar = 0.001,

AA2

, M 3^

=

<  0.129"

-0 .03

v -0.001y

,

'Aw,"

Aw2

, A w 3 .

=

' -0 .010"

-0 .004

- 0 . 0 0 1,

,

'AcA
Ac2

{Ac,)
=

( 0.032 N

-0 .001

- 0 . 0 0 1,

AF =

Akl

Ak2

0.383, AA: =

=

<  0.263 "

-0 .005

ro.ooiy

= 19.225,

'Aw,'

Aw2

Ar = 0.002

=

' - 0 .021"

-0 .007

^-0.002̂

(AcA
Ac2

Uc3J
=

' 0.065 ^

-0.003

- 0.003,

(7.8.22)

We see that if the rich group has more labor force, the living conditions of all the
groups wil l be improved. If group 2 or group 3 has more labor force, only group
1 benefits and both group 2 and group 3 lose in per capital terms. In our model,
growth in the population reduces per capita output of the national economy; but this
does not mean that every group's wealth and/or consumption level are reduced
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from the population growth. Some group(s) may benefit from the population
growth.

7.9 Path-dependent evolution with education

This section builds a model of economic growth with endogenous physical capital
and human capital accumulation.21 Our model is built upon the three main models -
Solow's one-sector growth model, Arrow's learning by doing model, and the
Uzawa-Lucas's growth model with education - in the growth literature.22 We will
show that when the main mechanisms of economic growth in these three models
are integrated into a single framework, they will produce certain economic
phenomena that none of these models can produce.

Many aspects of the model are the same as the OSG model in section 3.3. The
economy has an infinite future. We represent the passage of time in a sequence of
periods, numbered from zero and indexed by t = 0,1, 2,.... There is one education

sector in the system. We assume a homogenous and fixed national labor force N.
The labor force is distributed between economic activities, teaching and study. We
assume perfect competition in all markets and select commodity to serve as
numeraire, with all the other prices being measured relative to its price. We
introduce

F(t) = output level of the production sector at time t;

H(t) = level of the human capital of the population;

Nj(t) and Kt(t) = labor force and capital stocks employed by the production

sector;
Ne(t) and Ke(t) = number of teachers and capital stocks employed by the

education sector;
w(t) and r(t) = wage rate and rate of interest.

The production process is described by

F{t)=  AK?(t)(Hm{t)TNl(t)J', A,a,/3>0, a+P = \,

where A, a and /? are positive parameters and T is the work time. The marginal

conditions are given by

21 The model is a discrete version of the continuous model proposed by Zhang (2005d).
22 See Arrow (1962) and Uzawa (1965). See also Zhang (2005a).
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r(t) = (1 - T^K^t), w(t) = (1 - r)pAHm{t)kr, (7.9.1)

where k, = Kt I H
mTNj, Sk is depreciation rate of capital, and r is the tax rate on

the producers.

We denote per capita wealth by k(t), i.e., k(t) = K.{i)lN. Per capita current

income from the interest payment, r(t)k(t), and the wage payment, w(t), is

defined by

y{t) = r{t)k(t)+w(t).

We call y{f) the current income in the sense that it comes from consumers' wages

and current earnings from ownership of wealth. The per capita disposable income is
defined as the sum of the current income and the wealth available for purchasing
consumption goods and saving by

y{t) = y{t)+k(t).

The disposable income is used for saving and consumption. In each period, a
consumer would distribute the total available budget among saving, s(t),

consumption of goods, c(t). The budget constraint is given by

c(t) + s(t) = y{t).

At each point of time, households decide the two variables subject to the
disposable income. We assume that households' utility, U(t), is dependent on the

consumption level of commodity, c(t), and the saving, s(t), as follows

The consumer is to choose his most preferred bundle of consumption and
saving, (c(t), s(t)), under his budget constraint. The optimal solution is given by

(7.9.2)

According to the definitions, the household's wealth in period t + 1 is equal to

the saving made in period t
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k(t + l) = s(t) = Ay(t). (7.9.3)

As the disposable income is a function of the rate of interest, wage rate, and the
wealth in period t, we see that the value of the right-hand side of equation (7.9.3)
is determined in period t.

We now model the education sector and accumulation of human capital. It is
assumed that there are two sources of improving human capital, through education
and learning by producing. We will combine the two forces in a single equation.
We propose that human capital dynamics is given by

1)-H(t)= ^MH(t)TNef(H(t)TeNf
' W NN NH*(t)

(7.9.4)

where Te is the time used for education, 8h (> 0) is the depreciation rate of human

capital, ve, vt, ae, fiv, and fie are non-negative parameters. Equation (7.9.4) is a

synthesis and generalization of Arrow's and Uzawa's ideas about human capital

accumulation. The term veK"' (HmTNef" (HmTeNf' describes the contribution to

human capital improvement through education. We take account of learning by

doing effects in human capital accumulation by the term vtF IH".

We assume that education is free for students. The total tax income is used for
paying the teachers and the capital stocks employed by the education sector. The
education sector's budget is given by

w(t)TNv(t) + (r(t) + Sk )Ke(t) = tF{t). (7.9.5)

The education sector distributes its total resource tF(t) to decide the number of

teachers, Ne(t), and the level of capital stocks, Ke(t), to maximize the output

of the education sector

VeK
a
e-(H

mTNe

The education sector's problem is formed as follows

Max v.K:-{t)(H-{t)lN.f (H'{t)TtNf,

subject to constraint (7.9.5). The optimal solution is given by
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K(t) = £*£]  ( ) _ fivtF(t) ( 7 9 6)

We see that Ke is negatively related to the rate of interest and positively to the

education sector's total budget, and the number of teachers is negatively related to
the wage rate and positively related to the total budget. Labor force and capital
stocks are fully employed

N,(t)+N.(t)=N, K,(t) + Ke(t) = K(t).

We have thus built the model. We now examine properties of the dynamic system.
From equations (7.9.1) and (7.9.6), we obtain

K(t)- «M™,HmV j V - A ^ *  ( 7 9 7)

where we use

F = TN,Hmf,

in which

ro=(a.+A)(l-r).

From equations (7.9.7) and Nt + Ne = N, we solve

- rj+py e top+pvt

From

r + Sk = (l - t)aAk;0

and equations (7.9.7), we have
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K.(t)=a'iK'(t\ (7.9.9)

where we use the definition of kr From Kt + Ke = K and equation (7.9.9), we

solve

Ki{t)=a ik{t), K,(t)=a.k(t), (7-9.10)

where

_O^N_

The capital distribution between the two sectors is linear functions of the total

capital. As ki = KiITHmNi, we obtain

where «,=<?,./77V,. We see that *,.(') is a function of k(t) and H{$).

Summarizing the above discussions, we have the following lemma.

Lemma 7.9.1. For any given levels of wealth and human capital, kit) and H(t), in

period t, all the other variables in the system are uniquely determined in this

period. The values of the variables are given as functions of k(t) and H(t) by the

following procedure: N, and Ne by equations (7.9.8) —> K,(t) and Ke(t) by

equations (7.9.10) -> kt{f) by equation (7.9.11) -> / = Ak" and F = TN<Hmf

—» r(t) and w(?) by equations (7.9.1) -  ̂y = rk + w and j) = y + A: —> c and 5

by equations (7.9.2) -> [/ = c^i1.

We now show how to determine k(t) and //(?) in any period. From the

definitions of y, we have

y = rk + w + k.
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Substituting equations (7.9.1) and (7.9.11) into the above equation yields

(t)ka(t) + (l - 8k)k(f\ (7-9.12)

From equations (7.9.3), (7.9.4), (7.9.10), (7.9.12), and lemma 7.9.1, it is
straightforward to show that the motion of k(t) and H(t) is explicitly given by the
following two difference equations

k(t + 1) = XHPm{t)ka{t) + <*(/),

H(t + l) = vek
a- (?)i/^+A)m(?) + v'H^-"ka(t) + S*H(t), (7.9.13)

where S = A(l - Sk), 8* = 1 - Sh and

._
N

. _ vtAmrf
' N

Lemma 7.9.1 guarantees that if we know values of k(t) and H(t), then we
can explicitly solve all the other variables as functions of k(t) and H(t). Hence, to
examine dynamic properties of the whole system, it is sufficient to examine the
dynamic properties of equations (7.9.13).

A steady state of equations (7.9.13) is given by

k = XH^k" + Sk,

H = y>a-77(A+A>" + v'H^-'k" + 8*H. (7.9.14)

From the first equation in equations (7.9.14), we solve

(7-9.15)

Substituting equation (7.9.15) into the second equation in equations (7.9.14)
yields
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0(H)^ ê(H) + ̂ (H)-Sh=O, (7.9.16)

where

xe = (ae + fiv + pe)m - 1, x, = m - K - 1 .

We see that the number of economic equilibrium points is equal to the number
of solutions of the equation, <&(//) = 0 for 0 < H < °°. As shown in figure 7.9.1,
the equation may have one or two equilibrium points. As shown in figure 7.9.1a, if
xe < 0 and JC,. < 0, the equation monotonically decreases in H and it passes the

horizontal axis only once. Figure 7.9.1b depicts the case of xe > 0 and xt > 0, the
function monotonically increases in H and it passes the horizontal axis only once.
Figure 7.9.1 c depicts the case of xe > 0 and xt < 0 ( xe < 0 and xt > 0).

hi appendix 7.1, we check the conditions in figure 7.9.1. The following
proposition shows that the properties of the dynamic system are determined by the
two returns to scale parameters, xe and xr

Proposition 7.9.1. (1) If xe < 0 and xi < 0, the system has a unique stable

equilibrium; (2) If xe > 0 and xt > 0, the system has a unique unstable

equilibrium; and (3) If xe > 0 and xt < 0 (xe < 0 and x, > 0), the system has

either no equilibrium, one equilibrium point, or two equilibrium points. If it has two
equilibrium points, the equilibrium point with low (high) level of H is stable
(unstable).

We only interpret the stability condition xe < 0 and x, < 0. From the
definitions of xe and xt, we may interpret xe and xt respectively as
measurements of return to scales of the education sector and the industrial sector
in the dynamic system. When xe (< (>) 0, we say that the education sector

displays decreasing (increasing) returns to scale in the dynamic economy.
Proposition 7.9.1 shows that if the education and the production sectors display
decreasing returns, then the dynamic system has a unique stable equilibrium.

If  the two sectors exhibit decreasing returns to scale, the system wil l
approach to its equilibrium in the long term. In a traditional society like the one
constructed by Adam Smith where increases in human capital mainly come from
division of labor and traditional education, the economic system tends to be
dominated by stability. In a newly industrializing economy, education may
exhibit increasing returns to scale and learning by doing may not be very
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effective in improving human capital. The economy may have multiple
equilibrium points. We wil l demonstrate that if the society fails to explore
increasing returns from education when the system is characterized by multiple
equilibrium points, its development is not sustainable. When the system has a
unique equilibrium, its behavior is easy to determine. When it has multiple
equilibrium points, its behavior is path-dependent. We now demonstrate
dynamics of the nonlinear system with multiple equilibrium points.

unique equilibrium

H H
a) the both exhibit decreasing returns b) the both exhibit increasing returns

two equilibrium points

c) the one sector exhibits decreasing returns and the other increasing returns
Figure 7.9.1: The two sectors exhibit different returns to scale effects
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We specify the parameters as follows

a = 0.3, N = l, A = 2, T0=l,  Te =0.15, r = 0.08, A = 0.75,

ae =0.35, Pe =0.55, #, =0.55, ve =0.06, vt =0.01,

Sk=0.05, Sh=0.03, 71 = 03, m = \.

(7.9.17)

The population devotes 15 percent of the total time to education and the tax rate
is 8 percent. For illustration, we specify the parameter values related to
productivity of the education sector by ae = 0.35, Pe = 0.55 and /?„  = 0.55. An

increase in qualified teachers or diligent students would improve the total output
of the education sector. It should be remarked that the education sector exhibits
diminishing returns in teaching, student's effort, or material input. Under
(7.9.17), we have

xe = 0.45, xt = -0.3, Ne = 0.07, N, = 0.93.

The economy exhibits increasing returns to scale in the education sector but
decreasing returns in the production sector. About 92 percent of the labor force
is engaged in production and 8 percent in education. The system has two
equilibrium points

{k1,H1) = (31.782, 3.372), (k2, H2) = (181.469,19.255).

At the equilibrium point (k2, H2) the economy has higher levels of per

capita capital and human capital than at the equilibrium point (kx, Hx). We can

also calculate the equilibrium values of the other variables at the two
equilibrium points. The simulation results are provided in Table 7.9.1.

Table 7.9.1: The values of the key variables at the two equilibrium points

(*„  Hx)

(*2, H2)

F

10.85

61.98

r

0.11

0.11

w

23.44

764.03

y

27.05

784.72

y
58.84

966.19

c

14.71

241.54

U

33.53

550.61

We see that except the interest rate, the difference between the two values
of any variable at the two equilibrium points is great. Our model demonstrates
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possibility of two equilibrium points for the same type of economy. Our
analytical results show that two seemingly identical regions may follow
radically different development paths, one leading to prosperity, the other to
stagnation. Taiwan and Mainland China may provide a proper case for this
result. Although they had similar backgrounds in terms of cultural heritages,
values (except level of education), Taiwan and Mainland China had experienced
totally different paths of industrialization during the period of 1950-1980 - the
former had rapidly moved to the high equilibrium point, while the latter had
remained near the low equilibrium. See Zhang for analyzing these dynamical
processes.23

We now show how the system evolves when it starts from a state far away
from equilibrium. We simulate the model with five different initial states as
illustrated in figure 7.9.2. The five initial states are marked as 1, , 5. The

figure shows that the processes starting from states 1, , approach the
equilibrium point (kit //,) with low levels of consumption and human capital.
The process starting from state 5 will  go infinite in the long term. It passes
above the equilibrium point (k2, H2). We may interpret this case as sustainable
development as it will  not end up at the "poverty trap" (kx, / / , ). It is important
to note that the process started at state 1 will  end up at the poverty trap, though
the initial level of wealth is high. In contrast, the process started at state 5 is
sustainable, even though the initial level of wealth is low. As human capital is
the key factor for increasing returns, the economy with low level of human
capital cannot escape poverty traps in the long term even if it has a plenty of
material wealth.

An implication of the above results is that even big donations from
international organizations to poor countries may matter little in helping them from
avoiding poverty in the long term. For instance, let us consider a case that a poor
country receives donation of a discrete quantity of capital from the World Bank. If
the economy is near its low equilibrium and the donation raises A: to a high level
near to 175 without much improving the level of human capital, the economy
would enjoy temporary high levels of income and consumption, but it will return
back to its poverty state in the long term.

We now study the impact of change in the tax rate. In our system, the tax
income is totally spent on education. We may thus interpret increases in the tax rate
as encouraging education by the government. Intuitively, an increase in tax rate
may either increase or decrease output because education costs resources and may
have littl e impact on human capital improvement. We now show under what
conditions an increase in the tax rate may promote the economy. Taking derivatives
of equations (7.9.8) with respect to T, we get the impact on the number of teachers

23 Zhang (2003a).
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Figure 7.9.2: Path-dependent dynamic processes

200

dt

dNe

dt \ - t

As t is increased, the number of teachers is increased and the number of workers
is reduced. An increase in the share of educational expenditure in the total output
tends to make some people to shift from the production sector to the education
sector. Taking derivatives of equation (7.9.16) with respect to t yields

d®_dH_ = (ae{pv+ae) + Pv dNe

dH dt \ (at0 + aet) Ne dt

1 dN,

where

b =
 l dX" -

1 \ dt

(7.9.18)

b - l dn> - k + A)(^gy
2 n, dt {at0 + aet){tofi +
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We notice that the sign of the right-hand side of equation (7.9.18) is ambiguous. It
should be remarked that (1) if xe < 0 and xt < 0, dO/dH < 0; (2) If xe > 0 and

x, > 0, d&l dH > 0; and (3) If xe > 0 and x,  < 0 ( xe < 0 and x, > 0 ),

d<$>/dH<(>)0  at the equilibrium point with low (high) level of H. By

k = A.hH
m, we get

— = hk.
dr H dx

If dH I dr is negative and bx positive, then per capita wealth will definitely be

reduced as the society spends more resources on education. By equations (7.9.10),
we obtain

— = 1 Ks >
Jr { k dr \-r ar0 + aer
dK, ( 1 dk aid, + a

We see that if k is increased, the capital used by the education sector will be
increased, even though the level of capital employed by the production sector
may be reduced.

As the conclusions from the comparative statics analysis are ambiguous, we
illustrate impact of changes in the tax rate by simulation. Here, we are interested
in the path-dependent case. We still specify the parameter values as in equations
(7.9.17) except the tax rate t. Let us consider the case that the expenditure on
education is increased from 8 percent of the GDP to 8.5 percent, that is,
r:  0.08 => 0.085. We calculate

Ne = 0.075, N, = 0.925.

We see that the number of teachers is increased. The system has two equilibrium
points given by

(ku Hl)=  (34.172, 3.654), (k2, H2) = (143.511,15.346).

As the government further encourages education, the equilibrium point with
low level of human capital is upgraded; while the other one is downgraded. The
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distance between the two equilibrium points is shortened. We can also calculate
the equilibrium values of the other variables at the two equilibrium points. The
simulation results are provided in table 7.9.2. The symbol + (-) in the table
means the difference between the variable values in table 7.9.2 and table 7.9.1 is
positive (negative). We see that the output at the equilibrium point with lower
level of human capital is increased as the tax rate is increased; but the output at
the other equilibrium point is reduced.

Table 7.9.2: The values of the key variables at the two equilibrium points

{k2, H2)

F

11.7(+)

49.0(-)

r

0.12(+)

0.12(+)

w

27.4(+)

484.0(-)

y

31.4(+)

500.4(-)

y
65.5(+)

644.0(-)

c

16.4(+)

160.9(-)

Figure 7.9.3 shows how the equilibrium points are shifted - the points with
larger sizes is the new steady states and the other two points with smaller sizes
are the old steady states. The initial states in figure 7.9.3 are correspondingly the
same as in figure 7.9.2. It is important to note that the path started at initial state
4 will  not end up poverty trap; instead the economic development is sustainable
as a consequence of strengthened education policy.

The identification of poverty traps in theoretical models has important
implications for policy making. When an economy is trapped into stable poverty,
it cannot escape traps by small policy intervention or foreign aids. The economy
needs either large short-term policy interventions or large amount of foreign aids
to sustain economic progress. Moreover, even large interventions may fail if the
society does not learn, for instance, about how to improve skills, how to live
with inequality caused by rapid economic growth, and how to handle with class
mobility due to differences in human capital. In an evolutional economy, as
demonstrated in our example, it is possible that national growth is affected by
government education policy. If the other parameters remain fixed and the
government encourages education, our example indicates that it is relatively
easier for the economy to escape poverty trap with the encouraging policy. We
see that initial conditions matter.

We now study the impact of change in the propensity to save. From equations
(7.9.8), we see that change in the preference has no impact on the labor distribution,
i.e., dNvl dX = 0 and dNJdX = 0. Taking derivatives of equation (7.9.16) with
respect to X yields
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Figure 7.9.3: The impact of change in the education policy
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JO dH

dH dX

As the propensity to save increases, (1) if xe < 0 and x, < 0, the equilibrium

level of human capital increase; (2) if xe > 0 and xt > 0, the equilibrium level of

human capital will decrease; and (3) If xe > 0 and xt < 0 (xe < 0 and x, > 0),

the equilibrium level of human capital may either increase or decrease, hi a
traditional society where no sector exhibits increasing returns to scale, an increase
in the propensity to save will increase human capital. On the other hand, in an
economy where its current equilibrium is located at the higher equilibrium level of
H, an increase in the propensity to save may reduce the level of human capital.

By k = AhH
m, we get

dk mk dH kdX H dX Xp{\-S)'
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If dH I dA> 0, an increase in the propensity to save will increase the level of per

capita wealth. It should be remarked that if no sector exhibits increasing sector,
Adam Smith's argument that saving benefits the nation as well as the individuals
hold. But if dH I dA < 0, we see that increases in the propensity to save may

reduce the equilibrium wealth if kl At; is small. Malthus argued that higher

propensity to save may not benefit the economic growth due to decreasing returns
to scale in population growth; Keynes argued that a high propensity to save will not
benefit economic growth because of loss of the total output due to unemployment.
Our model shows that a high propensity to save may harm national economic
growth even if we assume that the population is constant and labor force is fully
employed.

By equations (7.9.10), we obtain

1 dKt _ J_dK  ̂ _ }_dk_
K, dt ~ Kv dt ~ k dr'

The capital stocks employed by the two sectors are changed in the same direction

as that of k. By k,(t) - ntk I Hm, we have

dA Ap{\ - 5)

From equations (7.9.1) and F = AK"{HmN^f, we get

dr . dk, n— = -Br—'-<0,
dA H dA
]_dw__ m_dH_ dkj_

:w~d~A~~H~dA+a~dA'
}_dF__fim_dH_ a_dk_ fi dNt

F dA~ H dA k dA N, dA

We see that the rate of interest will definitely decrease as the propensity to save is
increased. If dH /dA>0, the wage rate also increases. The impact on the output is

ambiguous even when dH I dA > 0 because the number of workers is reduced.

For illustration, we simulate the model. We still specify the parameter
values as in (7.9.17) except the propensity to save A. Let us consider the case
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that the propensity to save is increased from 0.75 to 0.76, that is,
k: 0.75 => 0.76. The two equilibrium points are given now by

(*„  H1) = (42.217, 4.189), (k2, H2)=  (157.315,15.611).

We can also calculate the equilibrium values of the other variables at the
two equilibrium points. The simulation results are provided in table 7.9.3.

Table 7.9.3: The values of the key variables at the two equilibrium points

# 1

# 2 )

F

13.7(+)

51.3(-)

r

0.1l(-)

0.1l(-)

w

36.9(+)

512.4(-)

41.5(+)

529.6(-)

y
83.7(+)

686.7(-)

c

20.

164 )

Figure 7.9.4 shows the simulation results - the points with larger sizes is the
new steady states and the other two points with smaller sizes are the old steady
states.
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Figure 7.9.4: The impact of change in the propensity to save
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We see that like the encouraging education policy in the previous discussion, a
higher propensity to save makes it easier for a poor society to escape poverty trap.
Our model suggests a way to escape poverty traps. The way is to strengthen the
propensity to own wealth and encourage education. These policies would make
economic growth sustainable. Foreign aids are important for rapid industrialization
as the aids may help the economy to move to a necessary state for sustainable
economic development. The economic miracles of Japan, Taiwan, Korea, and
Singapore after the Second World War are all characterized by high saving rates,
encouraging education policy, and proper international environment in the form of
foreign aids or/and foreign investment. Mainland China is currently repeating
similar processes by heavily investing in education, saving as much as possible, and
attracting aids and foreign investment as much as possible.

Appendix

A.7.1: Proving proposition 7.8.1

The Jacobian matrix at equilibrium is

where

l 2 ( ) ^
n2 A, n2

an = fo -

a22 = f + S + ̂ a21 = 1 - (/ - kffe + ̂ a2V
nx k2 r\

According to the definitions of k and rij,  we have

x + (k2 - h,k)n2 = 0.
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From this equation, we have: aua2] < 0. We see that (&, - l\k) and

(k2 - h2k) have the opposite signs if

k^-hfi* 0.

From equations (7.8.9) we have

where Sj - / ' > 0. We see that if S2 > Su k2 - hjc (and f - kS2) must be

negative. If

82 = <?!, k2 - hji

(and / - kS2) will equal zero. As

S
Aj

82 > Sj means A\ > X\. In the remainder of the proof, we require X\ > A \. We

can similarly prove the case of X\ < A \.

Under k\ > A \, we have

\ - \ < 0, ^f - S2 < 0, -^  - A > 0, L - S, > 0, an < 0, o21 > 0.
A; A: k k

The characteristic equation is given by

M(p) = p2 - Trace(j)p + Det{j) (A.7.1.2)

where

Trace(j) = X\au + k\a22,

Det{j)=A\A2{aua22 - a12a21).



376 7. HIGHER DIMENSIONAL ECONOMIC DYNAMICS

From equations (A.7.1.1) and (A.7.1.2) we calculate

Det{j) = A1X2 \f + 5 + ̂ -au II / ' + 8 + ̂ a2l I - ana.

where we also use

n1a12 | n2a2l _ Q

n2 «!

From Sj - / ' > 0, we obtain

1 > Xj{\ + / ' ) > 0.

From equation (A.7.1.3), we have

0 < DetJ < 1.

It is straightforward to calculate

= 1 - Trace(j) + Det(j) =

where we use Sj — f > 0 and

- f)(S2 - /') - {^ka12 + ?£-a2]  > 0,

-a21 -
n, n2

(A.7.1.3)

(A.7.1.4)
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From

\ + Det{j)>Trace{j), 0<DetJ<\, (A.7.1.5)

we see 2 > Trace(j). We now try to find conditions for Trace(j) > 0. First we

have

Trace(j) = {\ + A,)(/' +S)-(\-A2){k2 - h2k)n2f",

where we use equations (A.7.1.3) and (A.7.1.4). As A(k) > 0 implies

from the above inequality we have

As

- ^ - ^k.nj" > 0,

Trace(j) > 0 is guaranteed if

+ ̂ )(/' + S)- U -X^VHU- - A > 0. (A.7.1.6)

From

/ _J_

we have
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((1 + V 2

where we use

nx + h2n2 = 1.

If

h2n2

then (A.7.1.6) holds. We see that if the difference \ - X  ̂ is not large, (A.7.1.7)

holds. In summary, under A(k) > 0 and (A.7.1.7) we have

0 < DetJ (= pxp2) < 1,

2 > Trace{j) (= px + /?2) > 0. (A.7.1.8)

We also have

M(-1) = 1 + Det{J) + Trace{j) > 0, M(l ) > 0.

We calculate

Traced1 - ADetJ = {Ai + Atf{f + Sf + \ ̂ a n + ^^a2l

nn n.
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The sign of TraceJ2 - ADetJ is ambiguous. In the case of

TraceJ1 - ADetJ > 0,

the two eigenvalues are real and distinct. The two eigenvalues have the same
sign. From (A.7.1.8), we have

0 < />„  p2 < 1.

The equilibrium point is a sink and the adjustment is monotone. If

TraceJ2 - ADetJ < 0,

the two eigenvalues are imaginary and the eigenvalues have modulus less than 1.
The equilibrium point is a steady focus. We thus conclude that under (A.7.1.7)
the unique equilibrium point is stable.

A.7.2: Proving proposition 7.9.1

First, we find conditions such that

* ( / / ) = 0,

has positive solutions. We exclude the case of

xe = x, = 0.

It is easy to check that if xe > 0 and x, > 0 (which guarantees O(o) < 0,

O(°o) > 0 and <!>'(//) > 0 for H > 0 ) or xe < 0 and xt < 0 (which guarantees

<&(0)>0, O(OO)<0 and <D'(//)< 0 for H > 0 ), the system has a unique

positive equilibrium point. We now show that in the cases of xe > 0 and xt < 0

(or xe < 0 and x, > 0), the system has two equilibrium points, or one equilibrium

point, or no one.

We just prove one case, xe > 0 and x, < 0. The other case can be similarly

checked. Since xe > 0 and x, < 0, <&(o) > 0 and O(°°) > 0. This implies that

<&(/f) = 0 has either no solution or multiple solutions. Since
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where <£>e and <X>, are positive, we see that <&'(//) may be either positive or
negative, depending upon the values of xe and xt. If <&(//) = 0 has more than
two positive solutions, there are at least two positive values of H such that
<&'(//) = 0. Since

>0,
dH

strictly holds for H > 0, it is impossible for

) =0,

to have more than one solution. Accordingly, <&{H)  = 0 has either no solution or

one solution, or two solutions. A necessary and sufficient condition for the

existence of two equilibrium points is that there exists a value of H* such that

<&(//')< 0.

The Jacobian matrix is given by

J =

The characteristic equation is given by

M(p) = p2 - Trace{j)p + Det(j),

where

Trace(j) = a + p8 + (j3v + fie)m®e + [fim-n^, + S\

Det{j) = ({J3r + pe K + (pm - *r)O, + S' ){a

-(\-S)pm{ae<& e+o®,).

We see that Trace(j) > 0. We calculate
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Trace{jf - ADet{j) = ((a + fiS) - ((/?„  + fi. )mOe + [fim - * )* , + <f f

+  (l - S\a<b, + c&^Pm > 0.

As

Trace(jf - 4Det(j) > 0,

we conclude that the eigenvalues are real and distinct. We calculate

M(l) = 1 - Trace{j) + Det{j) = - {xe®e + xiOi )(l - S)fi, (A.7.2.1)

in which we use

H = <& eH + 0>,// + S*H, \-3>Q.

We rewrite Det(j) as follows

Det(j) = {/3v+l3e )m<be +{j3m- / r ) ^ - 0(l - 5)(xe®e + xpt)

, . (A.7.2.2)
+ ?-p(\-S\

where we use

* . + * , = Sh

at the steady state. As

we can always assume this term to be positive if the depreciation rate of human
capital is assumed less than a.

We now examine the case of xe < 0 and xi < 0. From equations (A.7.2.1)

and (A.7.2.2), evidently

0, M(0) = Det(j) > 0.

As the eigenvalues are real and distinct and
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px+ p2 = TraceJ > 0, pxp2 = DetJ > 0,

we conclude that they are both positive. As M(l ) > 0, the two eigenvalues are

on the same side of +1. Since

Trace{j) = l + a + p8 + (A + A>»*. + tfm-x)*, - Sk, s, (A.7.2.3)
= 1 + a + PS + xeQ>e + x,4>, - m\a<be + ofl>,) < 2,

where we use

we conclude that 0 < px, p2 < 1. We thus proved that if xe < 0 and xt < 0, the

unique equilibrium is stable.

We now consider the case of xe > 0 and JC, > 0. From equations (A.7.2.1),

M(l) < 0. This implies that the two distinct eigenvalues are on the two sides of

+1, i.e., /?] < 1 and p2 > 1. The unique equilibrium is unstable. Furthermore, it

is straightforward to confirm the following relation

M(-1) = 1 + Trace{j) + Det(j) = A/(l) + 2Trace(j).

Substituting equations (A.7.2.1) and (A.7.2.3) into the above equation yields

M(-1) = {xe0e + xpi ){\ + a + 50) +2(1 + a +

[(l + ae + pv + fi,)(l + a + dp)m - 2ae\n<S>e

[(l  + m-n)(l + a + 80) -

where we use 0 ^ + 0 ;= 8h and the definitions of xe and xr As it is reasonable

to assume the following three terms to be positive

2-8h-m8h>  0,

{\ + at+fl v+ fl,)(l + a + S0)m - 2ae > 0,
(\ + m- x){\ + a + 8p)- 2ma > 0, (A.7.2.4)
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we see that M(—\) > 0. Since

we have px e (-1, l). Hence, the equilibrium point under (A.7.2.4) is a saddle

point.
We now check the case of xe > 0 and xt < 0, when there are two

equilibrium points. The other case, xe > 0 and xt < 0, can be similarly proved.

First, we note that

at the equilibrium point with the lower (higher) level of H*. Let H, and Hh

{H, < Hh) stand for the two equilibrium points of H. At H,

xe<t> e + x;4>, < 0.

It can be seen that the stability conditions are the same as in the case of xe < 0 and

xi < 0. We thus have 0 < ply p2 < 1. At Hh

r  d) + v (f) > 0

The stability conditions are the same as in the case of xe > 0 and xt > 0. We thus

conclude that the equilibrium point with the higher value of H is unstable.





Chapter  8

Epilogue

To conclude this study, we mention two important issues, time scales and economic
structures, for understanding economic evolution.

As time passes, economic issues with which economists are concerned have
shifted. Even since the time of Adam Smith, the economic variables that
economists have dealt with appear to have been invariant. But the ways in which
these variables are combined and the speeds at which they change have constantly
varied and the dominant economic doctrines have shifted over time and space. The
complexity of economic reality is constantly increasing in modern time. This is
partially because of the expanded capital and knowledge stocks of mankind.
Knowledge, in fields of philosophy, arts, literature, music, technology and sciences,
expands man's imagination and extends possibilities of human action, not to
mention that the knowledge reservoir can directly satisfy the desires of an unlimited
number of people at the same time. Knowledge is not only power and sources of
money, but also the most durable capital goods for human mind. Increases in
machines, housing and infrastructures has enriched human environment, increased
accessibility to various locations, and enlarged variety of human behavior. The
explosion of knowledge and capital in modern times has resulted in very
complicated human action fields.

Time is at the center of the chief difficulty of almost every economic problem.
The role of time in decision-makings and action is becoming increasingly
complicated as variety of action and social networks are expanding. It is a difficult
issue to decide the length of time which affects a special decision making since
each kind of human decisions are made with different time scales and two persons
may have different time scales with regard to the same kind of decision making.
Because of the high variety of human behavior and time scales, in order to analyze
a single person's economic behavior as a whole we have to conduct the analysis
within a framework with varied time scales. Human behavior is connected in direct

385

Chapter  8

Epilogue

To conclude this study, we mention two important issues, time scales and economic
structures, for understanding economic evolution.

As time passes, economic issues with which economists are concerned have
shifted. Even since the time of Adam Smith, the economic variables that
economists have dealt with appear to have been invariant. But the ways in which
these variables are combined and the speeds at which they change have constantly
varied and the dominant economic doctrines have shifted over time and space. The
complexity of economic reality is constantly increasing in modern time. This is
partially because of the expanded capital and knowledge stocks of mankind.
Knowledge, in fields of philosophy, arts, literature, music, technology and sciences,
expands man's imagination and extends possibilities of human action, not to
mention that the knowledge reservoir can directly satisfy the desires of an unlimited
number of people at the same time. Knowledge is not only power and sources of
money, but also the most durable capital goods for human mind. Increases in
machines, housing and infrastructures has enriched human environment, increased
accessibility to various locations, and enlarged variety of human behavior. The
explosion of knowledge and capital in modern times has resulted in very
complicated human action fields.

Time is at the center of the chief difficulty of almost every economic problem.
The role of time in decision-makings and action is becoming increasingly
complicated as variety of action and social networks are expanding. It is a difficult
issue to decide the length of time which affects a special decision making since
each kind of human decisions are made with different time scales and two persons
may have different time scales with regard to the same kind of decision making.
Because of the high variety of human behavior and time scales, in order to analyze
a single person's economic behavior as a whole we have to conduct the analysis
within a framework with varied time scales. Human behavior is connected in direct

385



386 8. EPILOGUE

or indirect ways in human action fields; but we may miss interdependence between
some elements if we do not properly recognize the role of time.

Another dimension in analysis is space. Man, action, capital, knowledge and
time can become culturally and socially meaningful only if we locate them over
space. Each human being is born into a unique existence and each piece of land has
its unique attributes in affecting human action. Space means individual
characteristics and accordingly requires refined classification. This is particularly
important in analyzing modern economies. Fast technological changes, richness of
material living conditions, complicated international interactions, and many other
modern phenomena have increased complexity of spatial economies. The
subsystems such as ecological, economical and social subsystems, which could be
once decomposable as separate elements in analyzing the social system at least in
short terms over a homogenous space, have to be treated as a part of the whole
system. Some economic relations cannot be recognized if we don't explicitly
introduce spatial and temporal dimensions. It will take some time for what is
happening in a scientific lab to affect economic reality. Without spatial dimension,
we can hardly analyze actual processes of, for instance, how Japanese economy
may actually affect the world economy. In fact, the choice of spatiotemporal scale
is a delicate and obligatory process and must be made before actual study of any
special economic problem. The explicit awareness of this necessity is important for
understanding both economic reality and structure of economics. For instance, for
human life what is good to one's taste (assessment on a short timescale) may be
harmful to one's health (assessment on a longer timescale). One can hardly explain
differences between Keynes and Schumpeter's economic visions without
differentiating their temporary scales. Temporal scales in the economist's vision
have complicated interdependent relationships with actual analyses and abstraction
of reality.

We are in an era of high economic complexity. This implies that economic
decisions have to be made within a large context in which internal structures of
each subsystem and connections of different subsystems have to be taken into
account within a genuinely dynamic framework. The bringing-up of children, lower
and higher education, family structure, and family values are all connected in a
subtle and complicated way in economic networks. We have to consider reciprocal
relations of different aspects of social and economic factors rather than considering
these facts in isolation. Simple one-sector growth models without economic
structures will hardly provide any useful information about the complexity of
modern economies. We need to enlarge analytical frameworks to handle multiple
hierarchical levels, multiple space degrees and multiple time scales.

An economic system is composed of many people, and the psychology of
people and the relations (which are reflected in values, institutions and customs)
among people are constantly changing. The difficult task is to find out whether or
not there are durable (if not permanent) patterns or orders in human behavior and in
human societies and to explicitly construct descriptions (usually, models) for these
orders if they exist. In order to construct a comprehensive theory it is necessary to
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understand general patterns of people's behavior in a society over time and space.
The difficult task is how to construct such a comprehensive economic theory.

It is significant to examine economic systems with a spatiotemporal structural
vision. The key words are space, time, and structure. It is hard to give a precise
concept of structure. Here, a structure means a sum of elements and relationships
between those elements. In other words, structure stands for the way the elements
and constituent parts of a whole are arranged with respect to each other. Structure
represents a whole in which each element depends on the others by virtue of its
relation with them. According to Thorn,1 structure is defined as a spatiotemporal
morphology described by significant spatial discontinuities and by the syntax that
determines how these sets of discontinuities form into relatively stable systems. In
evolving structures relations depend on time. The structure includes properties,
which are properties of the whole rather than only properties of its component
parts. Any change in one element or one relationship will cause a modification in
other elements or relationships. By means of the cooperation of the individual parts
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Hierarchy is not only the character of human societies; even sciences exhibit
hierarchical structures. Dawkins sees scientific theories and areas as a hierarchical
structure, on different levels, corresponding to levels of description of phenomena.3

Philosophers and some scientists have sought ultimate reality in the structure of
matter at increasingly finer scales in order to provide the most elementary
explanation, while astronomers have sought the structure of the universe in
increasingly wider domains. In natural science, the complexities of ecosystems are
explained by examining those of organisms, organisms are explained by referring
them back to the growth of spatially organized proteins and other macromolecule,
the complex organization of organisms is explained back to the linear complexity
of their DNA code, the complexity of DNA is referred back to combinations of
simpler atoms, and so on. We should have national macroeconomics based on
regional economics; regional economics should be referred back to urban and rural
economics; spatial economics referred back to family-level and company-level
economics. In a broader perspective, psychology and behavior sciences should be
the starting point of microeconomics. Chemists will to explain psychological
processes in terms of natural laws. The processes can be further going on. Darwin's
remarks that it is not necessary to refer every phenomenon back down this chain of
reductions in order to understand it. hi natural sciences, chemistry can be
considered as a 'fixed parameter' for the purpose of understanding DNA. In
economics, macroeconomics can be considered as 'given' for labor economics and
family economics. It is obviously important to construct a grand theory, which
connects all the levels within a compact framework.4

Connections between levels in a social hierarchy are usually not simple. An
economic hierarchical system may operate on different scales. Its variables and
substructures may operate or change in different process rates. Since higher levels
usually strongly and quickly affect low levels in the hierarchical structure, higher
levels usually tend to be changed in lower frequencies. But this asymmetry in
change speeds is not always held. To study the hierarchical nature of complex
systems, we have to accept a different perspective - a different spatiotemporal scale
used. There are gaps between any two levels of social hierarchy. For instance, we
may have a reasonable understanding of single male or female behavior and we
know how men and women get married and form families. But the functioning of
families is far more complicated. Micro level phenomena such as family ties have
significant implications for macro economies. An economic theory without
endogenous family structure can hardly explain modern economic reality since on
one hand family structures have been affected by economic development, on the

3 Dawkins (1986).
4 The foundation for a grand economic theory has been laid through my efforts over years.
I have first applied nonlinear science to economics (Zhang, 1991) to 'modernize' the
vision and methodology of economic analysis and then have developed the analytical
framework with time and space for analyzing various economic issues with the vision of
nonlinear science (Zhang, 1996, 2000, 2001, 2002, 2003b, 2005b).
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other hand economic development is the consequences of cooperative (and
competitive) behavior among family members.

Al l these intrinsic difficulties related to economic structures heavily affect the
efficiency of modeling economic systems. Multiple levels have to be described in
long-term studies. This requires economic theory to have internal structures to
represent the complexity of subsystems and connections of the subsystems. Such
structural models will eventually turn out to be complicated. Indeed, we may find
out some special characteristics of the system under consideration and thus are able
to simplify the analysis. For instance, some hierarchical systems are decomposable,
at least in short timescales. This means that it is possible to effectively isolate and
describe a part of the system for a given timescale. We may analyze behavior of the
independent subsystem in isolation from the rest of the hierarchy to which it
belongs. A study of dynamics of a particular process on a particular level can thus
be conducted by taking behavior of higher levels as fixed and 'enslaving' behavior
of the low levels as structurally determined flows. In other words, for the chosen
time scale the behavior of higher levels are so slow that they can be effectively
negligible and the behavior of lower levels are so fast that perturbations generated
by the behavior of lower levels can also be effectively neglected. For instance, an
economic analysis may be conducted in a time scale short enough to assume
changes in ecological processes negligible and long enough to average out noise
from processes occurring at individual levels. It should be remarked that this
method might be invalid especially in 'revolutionary' periods. At such critical
points, neither the dynamics of higher levels nor the perturbations generated by the
behavior of lower levels are negligible. The model used to describe the dynamic
interaction of the chosen subsystem is no longer able to provide reliable
information about possible behavior of the subsystem.5

An important feature of economic structures is that they are intrinsically
complicated at each level. Individuals, groups or clubs, regions and nations, even as
they develop under practically similar conditions, are never exactly the same.
Detailed studies of their evolution have provided many examples of an intrinsic
complexity. For instance, random fluctuations in tastes may affect microeconomic
evolutionary processes on a large scale. The economic structure represents the
values and principles of the economic organization. The system may be analyzed
by dividing the whole system into different levels, each representing a subsystem,
which consists of relatively uniform elements that interact with each other either in
simple or complicated ways. To find and describe these interactions are the key
elements for analyzing order and disorder at any given level. Economists have
sought structural invariants on macro, meso and micro levels. The construction of a
theory with structure is not arbitrary and gratuitous. We first have to determine
issues under examination, scales (both of variables, time and space) and domains,
and analytical methods. Here, when assuming the habitual three-dimensional

5 Synergetic economics by Zhang (1991) deals with nonlinear economic dynamics with
different time scales and speeds of changes.
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representation of space, with time as a fourth dimension, scale is defined as the
smallest volume within the interior of which it is agreed not to try to distinguish the
nonuniformity of a property being measured and as the shortest interval of time
during which it is agreed not to try to distinguish variations of a given property. The
domain is defined as the greatest volume and the longest time interval over which
the study will be extended. For instance, the whole economy can be studied by
employing several scales. The variables used at one scale may be treated as a
coarser scale, macroscopic in comparison with the first by taking averages of larger
volumes and longer intervals of time. In building a sophisticated economic theory,
one has to construct, without making any mistakes, a long chains of assertions, has
to be aware of what one is doing at each step of the construction process, and has to
speculate about where one is going. The constructor has be to able to guess what is
true and what is false at each level and be able to judge what is useful and what is
not in the whole framework.

390 8. EPILOGUE

representation of space, with time as a fourth dimension, scale is defined as the
smallest volume within the interior of which it is agreed not to try to distinguish the
nonuniformity of a property being measured and as the shortest interval of time
during which it is agreed not to try to distinguish variations of a given property. The
domain is defined as the greatest volume and the longest time interval over which
the study will be extended. For instance, the whole economy can be studied by
employing several scales. The variables used at one scale may be treated as a
coarser scale, macroscopic in comparison with the first by taking averages of larger
volumes and longer intervals of time. In building a sophisticated economic theory,
one has to construct, without making any mistakes, a long chains of assertions, has
to be aware of what one is doing at each step of the construction process, and has to
speculate about where one is going. The constructor has be to able to guess what is
true and what is false at each level and be able to judge what is useful and what is
not in the whole framework.



Appendix

The appendix is arranged as follows. A.I introduces matrix theory. A.2 shows how
to solve linear equations, based on matrix theory. A.3 introduces metric spaces and
some basic concepts and theorems related to metric spaces. A.4 defines some basic
concepts in study of functions and states the implicit function theorem. A.5 gives a
general expression of the Taylor Expansion. A.6 is concerned with convexity of
sets and functions and concavity of functions. A.7 shows how to solve
unconstrained maximization problems. In A.8, we introduce conditions for
constrained maximization. A.9 introduces theory of dynamic optimization.

A.1 Matrix theory

We present some important concepts and theorems from linear algebra and matrix
theory. Some elementary concepts, such as identity matrices and null matrices,
matrix operations, and proofs of theorems are omitted.1

Let vectors A be a nonempty set of vectors in R". A vector x in R" is
linearly dependent on the set A. if there exist vectors yx, y2,..., ym and scalars
a,, a2,..., am such that

For any nonempty set A of vectors in R", (A} is the set of all vectors in R"

that are dependent on A. {A} is a subspace of R". A vector of the form
a linear combination. A set A of vectors is a basis of the

1 This part on matrix theory is based on Gilbert and Gilbert (1970). See also Chiang
(1984), Berman and Plemons (1979), Zhang (1999fz), and Peterson and Sochachi (2002).
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subspace U if (i) A "spans" U and (ii) A is linearly independent. If U is any

subspace of R", the number of vectors in a basis of U is called the dimension of

U and is abbreviated as dim(u). The dimension of R" is n.

Let

u = {uvu2,...,ur}

be a set of vectors in R" and

r  = ft, K2, ...,*;}

be a set of vectors in (t/j , a wa/rix: of transition from C/ to F is a matrix

such that

r, = £ > / /„  y = 1,2, ...,*.

Definition A.1.1. A square matrix ^ = [as|^ is nonsingular if and only if A is a

matrix of transition from one basis of R" to another basis of R". A square matrix
that is not nonsingular is called singular.

We denote the identity matrix by /„  (= [^Jnxn where Sy is the Kronecker

delta).
For any mxn rectangular matrix, if the maximum of linearly independent

rows that can be found in such a matrix is r, the matrix is said to be of rank r,
denoted by Rank(A) or Rank A. The rank also tells us the maximim number of
linearly independent columns in the same matrix. As a square matrix has n linearly
independent rows (or columns), it must be of rank of n. If A is mx n matrix over
R and P is any invertible nxn, then we have

Rank{A) = Rank(AP).
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Definition A. 1.2. An nxn matrix B is an inverse of the nxn matrix A = [aiJ\nm

if

AB = In= B A.

Also a square matrix is called invertible if it has an inverse.

Theorem A.1.1. An nxn matrix A is invertible if only if A is nonsingular. The
inverse of an invertible matrix is unique.

If A = [ay I is invertible, its unique inverse is denoted by A~\ If

A' A' '  An

are square invert ib le matr ices of order n over R " , then AXA2 m is invert ible
and

[ A 1 A 2 A m ) = A m  A 2 Ax .

For any mxn matrix A, the transpose of A is denoted by AT. If a square matrix

A is invertible, then AT is also invertible and

The following concept is only referred to square matrices.

Definition A.1.3. The determinant of the square matrix A = Lx is the scalar

defined by

where ^ denotes the sum of all terms of the form
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as y',, j 2 ..., j n assumes all possible permutations of the numbers of the numbers

1, 2, . .. n, and the exponent t is the number of interchanges used to carry

y'j, j 2 ..., j n into the natural order 1, 2, . .. n.

The notations detA and \A\ are used interchangeably with det(^4). When

n = 2 and n = 3, we have

4., =

^3x3 =

au

«21

au

«21

fl31

fl12

a22

fl12

«22

G32

= «11«22 -

a13

«23

a33

= an

a2]al2,

a22a22 - a13a32a21 (A.1.1)

Definition A.1.4. The minor of the element a;, in A = \an I is the determinant
'J  L 'J -hixn

My of the (n — l)x(« — l) submatrix of A obtained by deleting row i and

column j of A. The cofactor, denoted by Aij, of afJ in .4 = [ay \mn is the product

of(-lf+j)  and M^, that is,

Ay=(-lf+j)Mr

The adjoint of 4̂, denoted by adj(A\ is given by

Theorem A.1.2. If A = [aJ , then
L 'J  Jiixn

anAx + 0/2̂ *2  + amAn = 5ik det(^), /, k = 1, 2,..., »,
a u A + «2^2*  + «n;4* = 8jk det{A), j , k = \,2,..., n.

By the above formula and equations (A.1.1) with Sit = 1, we can calculate the

value of det(^4) of any dimensional matrix, in principle. For instance, when n = 4,

we have
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det(A4x4)= auAu + a^A2X + a3lA2l + a^A^,

where Ail are calculated from the corresponding 3x3 matrices.

It can be shown that if A = la,, | is invertible, then

A'1 =—\-radj{A).
det( )̂ V '

Definition A. 1.5. If A is nxn matrix, an eigenvector of A is a nonzero column

vector v in R" such that

Av = pv

for some scalar p; the scalar p is called an eigenvalue of A.

Theorem A. 1.3. If A is an nxn matrix, a number p is an eigenvalue of A if
and only if

- A) = 0.

The equation

is called the characteristic equation of the matrix A Upon expanding the
determinant, det(p/nxn - A), we will have a polynomial of degree n in p. The
polynomial is called the characteristic polynomial of the matrix A.

An «x« matrix 5 is said to be similar to the nxn matrix A if there is an
invertible nxn matrix P such that

B = P'XAP.

A square matrix is said to be diagonalizable if it is similar to a diagonal matrix. It
can be proved that a square matrix A is diagonalizable if only if there is a basis for

R" consisting of eigenvectors of A. Not square matrix is not diagonalizable. There
is something close to diagonal form called the Jordan canonical form of a square
matrix. A basic Jordan block associated with a value p is expressed
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p 1 0  0 0

0 p 1  0 0

0 0 0  p 1

0 0 0  0 p

The Jordan canonical form of a square matrix is compromised of such Jordan
blocks.

Theorem A.1.4. Suppose that A is an nxn matrix and suppose that

detO?/ -A)={p- p.

where

are distinct roots of the characteristic polynomial of A. Then A is similar to a
matrix of the form

Bl 0 ... 0

0 B 2  0

0 0  BL

where each B, is an m, x TM, matrix of the form

^  0 ... 0

o' j k ... o

0 0  J,

and each Jt is a basic Jordan block associated with pt.
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A.2 Systems of linear equations

A system of linear equations is

aaxx + ai2x2  + ainxn = bj, j = 1, 2, ... m,

or in the matrix form

A™*,* , = *W- (A.2.1)

A solution of the system is a set of values of x that satisfies

Ax = b.

In this system, A is called the coefficient matrix, x the matrix of unknowns, and b
the matrix of constants. The matrix [̂ 4, Z>] is called the augmented matrix of the
system.

Theorem A.2.1. The system Ax = b has a solution if and only if

Rank{[A,b]) = Rank(A).

Theorem A.2.2. If

then the solution to

can be expressed in terms of n — r parameters.

Theorem A.2.3. Consider a system of linear equations AnxnxlM = bnxl. If

det( )̂ * 0,

then the unique solution is given by
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x = A~lb.

Theorem A.2.4. Consider a system of linear equations

If Asx{A)  0, then the unique solution of the system is given by

Xj=- det( )̂

where ^ are cofactors of A.

The above formula is called Cramer's Rule. We note that

is the determinant of the matrix obtained by replacing the j ' h column of A by

the column of constants b.

A.3 Metric spaces

Metric spaces are used to represent states of economic systems. A metric measures
the "distance" between two states.

Definition A.3.1. A metric space is a pair (X, d) consisting of a set X and a
function

called a metric such that

(i) d(x, y)=0 if and only if x = y;

(ii) d(x, y) = d(y, x);
(in) d{x,y)+d{y,z)<d{x,z).
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A sequence s is a function from the set of nonnegative integers to X. The
nth point of the sequence is the point sn. A subsequence of a sequence s is any
sequence p of the form pj = pa where a is a strictly increasing function from

Z+ to Z+. A Cauchy sequence is a sequence {xn} such that given e > 0 there

exists a positive integer k such that

whenever n and m are greater than k.

Definition A.3.2. A metric space X is complete if every Cauchy sequence in X
converges to a point in X.

A point p is a limit point of a subset Y of X provided that there is a

sequence of points in Y which converges to p. A subset Y of X is closed if it

contains all its limit points. The closure of 7 denoted by cl(Y) is the set of all

limit points of Y. The ball of radius r centered at x is the set

B{x,r)={y,yeX,d(x,y)<r}.

A subset of X is open if for each point x belonging to U there exists r > 0 such
that the ball B(x, r) is contained in U. The radius r may depend on x. A subset
A of a metric space X is said to be dense in X if  CI(A) = X. Another way of
saying this is that A is dense in X if every ball centered at a point of X contains
a point of A, no matter how small the radius of the ball.

Theorem A.3.1.
(1) If 7 is a closed set then X - Y is an open set.

(2) If U is an open set then X - U is a closed set.

Suppose that X and Y are metric spaces. A function / from X to Y is

continuous if for every open subset V of Y the set / ~ ' ( K ) is an open subset of

X. / is a homeomorphism if / is continuous and invertible, and the inverse of

/ is continuous.
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Theorem A.3.2. A function / from X to Y is continuous if and only if given

any point x in X and any sequence {*„ }  converging to x then the sequence

{/(*„) }  converges to f(x).

Theorem A.3.3. If / is continuous and A is a subset of X, then

f(cl{A))<zcl{f{A)).

The interior of a subset S of a metric space X is the set defined by

iat{s) = X-cl(X-S).

A neighborhood of a point x in a metric space X is a subset N such that x
belongs to the interior of X. The exterior of a subset S of a metric space X is the
set

ext{s) = X-

The boundary of a subset S of a metric space X is the set

dS = cl{s)r\cl{X-S).

A subset S of a metric space X is disconnected if there exists disjoint open sets
U and F each having nonempty intersection with S such that 5 is contained in
the union of U and V. A subset S of a metric space X is connected if it is not
disconnected.

Theorem A.3.4. If JV is a subset of a metric space X and S is a connected subset
of X whose intersection with both the interior and the exterior of N is nonempty,
then the intersection of S with the boundary of N is nonempty.

A subset K of a metric space X is compact if every sequence of points in K
has a convergent subsequence. A metric space X is locally compact if each point
x in X has a neighborhood which is compact. A subset K of a metric space X
is bicompact if given any collection of open sets whose union contains K there
exists a finite number of these sets whose union also contains K.
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Theorem A.3.5. A subset K of a metric space X is compact if and only if it is
bicompact.

Theorem A.3.6. Suppose that / is a continuous function from a metric space X
to a metric space Y. Suppose that C is a connected subset of X and K is a
compact subset of X. Then(l) f(c) is connected; and (2) f{K) is compact.

Theorem A.3.7. Suppose that g is a continuous real-valued function defined on a

compact subset K of a metric space. Then there exist points x and y in K such

that g(K) is contained in the interval [g(x), g(y)]. Thus g achieves its maximum

and its minimum.

A function / from a metric space (X, d) to a metric space (X, D) is

uniformly continuous ifgiven e > 0 there exists S > 0 such that

implies that

Theorem A.3.8. Suppose that / is a continuous function from a compact metric

space X to a metric space Y. Hence / is uniformly continuous.

Theorem A.3.9. Suppose that X and Y are compact metric spaces. Let

be continuous, one-to-one, and onto. Then the inverse of / is continuous and

hence / is a homeomorphism.

A.4 The implicit function theorem

First we state a few theorems from analysis.
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Definition A.4.1. Suppose that Vx and V2 are two normed linear spaces with

respective norms || j| and || ||2. Then

is continuous at x0 e Vx if for all e > 0 there exits a S > 0 such that x e Vx and

\x - Xo\[  6 S

implies that

\\F(X)-F(Xo]\ 2<£.

And F is said to be continuous on the set U e Vx if it is continuous at each point

x e U, and we write F e c(u).

Theorem A.4.1. (the intermediate-value theorem) If the function

f:[a,b]->R

is continuous and

f(a)<0<f(b),

then there exists a point c e (a, b) so that

Definition A.4.2. The function f:R"->R"is differentiable at x0 e /?" if there is

a linear transformation Df(x0) that satisfies

0̂ +h)-f{xo)-Df(xo)h\_
_Q
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The linear transformation v is called the derivative of / at x0.

The following theorem gives us a method for computing the derivative in
coordinates.

Theorem A.4.2. If the function / : / ? " -» R" is differentiable at x0 e R", then

the partial derivatives df/dxj all exist at x0 and for all xe R"

Thus if / is a differentiable function, the derivative Df is given by the nxn

Jacobian matrix

Df =
aXj

For U an open subset of R", the higher order derivatives Dkf(x0) are defined in

a similar way.

Definition A.4.3. Suppose that

is differentiable on U. Then fe C](u) if the derivative Df is continuous on U.

We can define

/ e Ck(u\ k = 2,3,-

in a similar manner.

Theorem A.4.3. Suppose that U is an open subset of R" and that / : ( / - > / ? ".

Then / e C}(u) if and only if the partial derivatives df/dxj all exist and are

continuous on U.

A.4. THE IMPLICIT FUNCTION THEOREM 403

The linear transformation v is called the derivative of / at x0.

The following theorem gives us a method for computing the derivative in
coordinates.

Theorem A.4.2. If the function / : / ? " -» R" is differentiable at x0 e R", then

the partial derivatives df/dxj all exist at x0 and for all xe R"

Thus if / is a differentiable function, the derivative Df is given by the nxn

Jacobian matrix

Df =
aXj

For U an open subset of R", the higher order derivatives Dkf(x0) are defined in

a similar way.

Definition A.4.3. Suppose that

is differentiable on U. Then fe C](u) if the derivative Df is continuous on U.

We can define

/ e Ck(u\ k = 2,3,-

in a similar manner.

Theorem A.4.3. Suppose that U is an open subset of R" and that / : ( / - > / ? ".

Then / e C}(u) if and only if the partial derivatives df/dxj all exist and are

continuous on U.



404 APPENDIX

It can be shown that / e Ck (if) if and only if the partial derivatives

dx. ,

with i, Ji,---, j k =1,  k exist and are continuous on U.

Theorem A.4.4. (the inverse function theorem) Let U be an open set in R" and

be a Ck function with k > 1. If a point x e U is such that the nxn matrix

Df(x) is invertible, then there is an open neighborhood V of x in U such that

is invertible with a C* inverse.

The inverse function theorem implies that if the matrix /^(o) is nonsingular,

then there is a locally defined smooth function

x = g(y), g:R"^R"

such that

for all y in some neighborhood of the origin of R". The function g is called the

inverse function for / and is denoted by

g = / " '

If
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y = g(x), g:R"^Rm

and

z = /(y),/:*"->* *

are two maps, then their superposition

h = fog

is a map

z = h{x), R" -^Rk,

defined by the formula

Let fy (y) denote the Jacobian matrix / evaluated at a point ysRm

We similarly define hx(x) as

We consider a map

{x, y)n> F(x,y),

where

F:R"xR" v, D"l  - D«
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is a smooth map defined in a neighborhood of (x, y) = (0, 0) and F(0,0) = 0. Let

Fx(0,0) denote the matrix of first partial derivatives of F with respect to x

evaluated at (0, 0)

V  MJ A.j-Ho.0)

Theorem A.4.4. (the implicit function theorem) If the matrix Fx(0,0) is

nonsingular, then there is a smooth locally defined function y = f(x),

f:R"^>Rm such that

F{x,f{x))=0,

for all x in some neighborhood of the origin of R". Moreover

The degree of smoothness of the function / is the same as that of F.

Theorem A.4.5. (the submanifold theorem) Let U be an open set in R" and let

f:U^>R"

be a differentiable function such that Df(x) has rank p whenever

f(x) = 0.

Then / - 1(o) is an (n - p)- dimensional manifold in R".

Morse Lemma. Let

/ : R"  -> R
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be a sufficiently differentiable function. If x* is a nondegenerate critical point
of / , that is

D/(x ')=0,

and the Hessian matrix

is nonsingular, then there is a local coordinate system (yu  in a

neighborhood £/ of x*  with

y,(x')=o,

for all z", such that

for all y eU. The integer A: is the number of negative eigenvalues of the Hessian

matrix.

Sard's Theorem. Let U be an open set in R" and let

f : U -  ̂ Rp

be a differentiable function. Let C be the set of critical points of / , that is, the set

of all xe U with

rankDf{x) < p.

Then f(c) has measure zero in Rp.
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A.5 The Taylor expansion and linearization

Given a successively differentiable one-variable function f(x), the Taylor

expansion around a point x* gives the series

2!

where a polynomial involving higher powers (than n) of (JC — JC0 ) appears on the

right. For a two-variables function, f(x, y), the Taylor expansion around a point

[x*,  y*j is given by

f{x, y) = f{x\ y)+ fx{x', y){x - x*)+  fy{x', y'){y - / ) +

^ k ( * \ yfc - x'l + 2 / v ( r \ / ) ( * - / ) ( y - / ) + / ^ f r ' , / ) ( y - yj]
+ ... + R{x, y).

The linearization of a function is obtained by simply dropping all terms of
order higher than one from the Taylor series of the function. For instance, the linear
approximation of a one-variable function f(x) gives

In the case of two variables

/ ( * > y) = f(x*, / ) + / * ( * * , / ) ( * - x')+ fy{x', y*){y - y ) .

We now give the Taylor expansion for any dimension around the origin. Let

U be a region in R" containing the origin x = 0. We denote the set of all

continuous functions

/ : U -» Rm
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by C°(u, Rm) and the set of all differentiable functions with continuous first

derivatives by C'(u, Rm). Analogously, we will use Ck(u, Rm) to indicate the

functions with continuous derivatives up through order k. If f G Ck(u, Rm) with a

sufficiently large k, the function / is called smooth. A C°° function has

continuous partial derivatives of any order. Any function f e Ck(u, Rm) can be

represented near x = 0 in the Taylor expansion

/(*)=
k 1

where

|i| ^ /, + i2 + ... + /„, R(x) = o\\xf+1) = o\\x(),

namely

H4
lf

as \\x\\ -> 0,

in which |x| = -JxTx. Here, we give precise definitions of O and o. Let / and

g be two given functions. We say that

f(x)=O{g(x)), asx-^0,

if there are constants a > 0 and A > 0 such that

for |JC| < a. We say that

f{x) = o(g{x)), asx^O,

if for any e > 0 there is a 8 > 0 such that
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represented near x = 0 in the Taylor expansion

/(*)=
k 1

where

|i| ^ /, + i2 + ... + /„, R(x) = o\\xf+1) = o\\x(),

namely

H4
lf

as \\x\\ -> 0,

in which |x| = -JxTx. Here, we give precise definitions of O and o. Let / and

g be two given functions. We say that

f(x)=O{g(x)), asx-^0,

if there are constants a > 0 and A > 0 such that

for |JC| < a. We say that

f{x) = o(g{x)), asx^O,

if for any e > 0 there is a 8 > 0 such that
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for |JC| < S.

A C°° -function / is called analytical near the origin if the corresponding

Taylor series

1 U MA , i < i
At Jt"i . . . AM «

converges to f(x) at any point x sufficiently close to x = 0.

A.6 Concave and quasiconcave functions

Consider / : Q -» 7? where Q is a domain that is a convex subset of /?" (such as

Q. = R" or

Definition A.6.1. The function

defined on the convex set Q c R" is cowcove if

/ ( « ' + (l - «)x) > qf{x<) + (1 - a)/(x), (A.6.1)

for all x and x'e i l and all a e [0, lj . If the inequality is strict for all x' * x and

all a e (0, l), then we say that the function is strictly concave.

Figure A.6. la illustrates a strictly concave function of variable. Figure A.6.1b
depicts a concave but not strictly concave function.
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/M fix)

qf{x')+(l-a)f(x) a) = cf(x')+(\-a)f{x)

a) strictly concave function b) concave but not strictly concave function
Figure A.6.1: Concave functions

Condition (A.6.1) is equivalent to the following property

(A.6.2)

for any collection of vectors x' e A and numbers

such that

The properties of convexity and strict convexity for a function / are defined

analogously but with the inequality in equation (A.6.1) reversed. Note that / is

concave if and only if - / is convex. For a strictly convex function, a straight line

connecting any two points in its graph should lie entirely above its graph, as shown
in figure A.6.2.
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Figure A.6.2: Strictly convex functions

Theorem A.6.1. Assume f e C\ The function / : Q -> R is concave if only if

f{x + z)<f{x)+Vf{x)-z, (A.6.3)

for all

XGQ, ze R", x + z e Q.

The function / is strictly concave if inequality (A.6.3) holds strictly for all x e Q.

and all z  0.

Condition (A.6.3) says that any tangent to the graph of a concave function /

must lie weakly above the graph of / . The corresponding characterization of

convex and strictly convex functions simply entails reversing the direction of the
inequality in (A.6.3).

Definition A.6.2. The NxN matrix A is negative semidefinite if

z'Az<0 (A.6.4)
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for all z e R". If  the inequality is strict for all z^ f l , then the matrix A is

negative definite. Reversing the inequalities in condition (A.6.4), we get the
concepts of positive semidefinite andpositive definite matrices.

Theorem A.6.2. Assume feC2. The function

f:Q.->R

is concave if and only if D2f(x) is negative semidefinite for every xe Q. If

D2f(x) is negative definite for every x e Q, the function is strictly concave.

Definition A.6.3. The function / : Q —> R, defined on the convex set, Q c R",2

is quasiconcave if its upper contour sets

{xeQ:f{x)>t}

are convex sets; that is, if f(x) > t and f(x') > t imply that

f(ax + (l - a)x') > t, (A.6.5)

for any t e R, x, x' e Q., and a e [0, l] . If the concluding inequality in (A.6.5) is

strict whenever x * x and a e [0, l] , then we say that / is strictly quasiconcave.

From the above definition, we see that the function is quasiconcave iff

f(ca + (l - «> ') > M i n { / ( 4 , (A.6.6)

for all x, x' e Q, and a e [o, l] . We see that a concave function is quasiconcave.

But the converse is not true. Concavity is a stronger property than quasiconcavity.
Note that / is qiiasiconvex if its lower contour sets are convex; that is if

2 The set D c S" is convex if

ax + (l - a)x' e £2

whenever x, x' e Q, and a e [0, lj .
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f{x) < t and /(*' ) < t implies that f(oa + (l - a)x') < t,

for any t e R, x, x' e Q, and a e [0, l] . If the above concluding inequality is

strict whenever x ^ x and a e [O, l] , then we say that / is strictly quasiconvex.

Theorem A.6.3. Assume f & C2. The function / : Q -» R is quasiconcave iff

V/(X)(JC' - x) > 0, (A.6.7)

whenever

for all A;,x'eQ. If

(^' - x) > 0,

whenever /(x') > / (x) and x  ̂ x, then / is strictly quasiconcave. In the other

direction, if / is strictly quasiconcave and if V/(x) * 0 for all J E Q, then

Vf(x)(x' -x)>0

whenever f(x') > f(x) and x * x.

Theorem A.6.4. Assume feC2. The function / :Q—> R is quasiconcave iff

for every xe Cl, D2f(x) is negative semedefinite in the subspace

[z e R" : Vf{x)z = o},

that is, if and only if

zTD2f(x)z < 0 (A.6.8)

whenever
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V/(*) z = 0,

for every xeQ.. If the Hessian matrix D2f(x) is negative definite in the subspace

{z e R" : Vf{x)z = 0 }

for every x e Q, then / is strictly quasiconcave.

A.7 Unconstrained maximization

Definition A.7.1. Consider the function / ' : R" -» R. The vector x* is a local

maximizer of / if there is an open neighborhood of x*, Q. c R", such that

for every x e Q . If /(**) > / ( * ) for every xe R" (i.e., if we can take Q = R"),

then we say that x* is a global maximizer (or simply a maximizer). The concepts
of local and global minimizers are defined analogously.

Theorem A.7.1. Suppose that / is differentiable and that x* e R" is a local

maximizer or local minimizer of / . Then

at x*  for every /', / = 1, 2, .

The condition df/dx, =0 for every / can be expressed in more concise

notation
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A vector x e R" such that V/(JC*  ) = 0 is called a critical point. The above

theorem tells that every maximizer or minimizer is a critical point. The converse
does not hold. For instance, consider

f{xl,x2)=xf -x\.

At the origin we have V/ = 0. Thus the origin is a critical point, but it is neither a
local maximizer nor minimizer. The following second-order conditions provide the
sufficient condition for maximization.

Theorem A.7.2. Suppose that the function

f:R"->R

is C2 and that

V/(x ' )=0.

(i) If x* e R" is a local maximizer, then the nxn matrix, the Hessian D2f\x\ is

negative semidefinite. (ii) If the Hessian D2f[x) is negative definite, then

JC* e R" is a local maximizer.

It should be noted that in the borderline case in which D2f[x ) is negative

semidefinite but not negative definite, we cannot assert that x* is a local maximizer.
Consider, for instance

We have D2f(o) is negative demidefinite; but x* = 0 is neither a local maximizer
nor a local minimizer of this function.

If we replace "negative" by "positive" in the above theorem, the same is true

for local minimizers. A critical point x* of / for which the Hessian D2f[x* ) is

indefinite is called a saddle point of / . A saddle point x* is a minimizer of / in

some directions and maximizer of / in other directions. For instance, the origin is

a saddle point of
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J \Xl , X2)
= Xt — X2

as the Hessian is

2 0

0 - 2

A saddle point is neither a local maximizer nor a local minimizer.

Theorem A.7.3. Let

417

be a C2 function whose domain is an open set Q. in R". Suppose that

— ( x ' )=  0 at x*  forevery j , / = 1, 2,  .
dxj

(i) If the « leading principal minors of the Hessian D2f[x') alternate in sign

/„  fn
Jl\ J22

/l l /l2 /l3

/21 J22 J23

/31 732 /33

at x*, then x*  is a strict maximizer of / .

(ii ) If the n leading principal minors of the Hessian D2f[xJ are all positive

> 0,
/„  fn

21 722
Jl 1 ^22 /23

731 ^32 /33

at x*, then x*  is a strict minimizer of / .

(iii ) If some of the n leading principal minors of the Hessian D2f[x') violate the

sign patterns in (i) and (ii) at x*, then x* is a saddle point of / .
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Theorem A.7.4. Any critical point x* e R" of a concave function / is a global

maximizer.

Similarly, any critical point of a convex function / is a global minimizer of

A.8 Constrained maximization

Consider the problem of maximizing / under m equality constraints

Max f(x)
xsR"

s.t: gj(x) = bJt j = \,2,-,m, (A.8.1)

where the functions

/ i S\ > '"' » 8m

are defined on R". We generally assume n> m. Let us introduce the constraint

set

The feasible point x* e Q is a /oca/ constrained maximizer in problem (A.8.1) if

there exists an open neighborhood of x*, say M c Q , such that

/(** ) > f(x) for all x e M n Q.

The point x*  is a global constrained maximizer if it solves problem (A.8.1). The
first-order condition is stated as follows.

Theorem A.8.1. Suppose that the objective and constraint functions of problem

(A.8.1) are differentiable and that x* e Q is a local maximizer. Assume also that

the mxn matrix
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a*,

has rank m.3 Then there are numbers Pj e R, one for each constraint, such that

£Pl*M  ,.12...,* (A.8.2,
xi J=l

or, in more concise notation

The numbers pj, are referred to as Lagrange multipliers.

Often the first-order conditions (A.8.2) are presented in a different way. Given

variables xe R" and

we can define the Lagrangian function

L(x,p)=f{x)-YJpjgj{x). (A.8.3)
j

The above theorem says that if x* is a local constrained maximizer (and if the
constrain qualification is satisfied), then for some values

A> A . >

all of the partial derivatives of the Lagrangian function are null; that is

This is called the constraint qualification. It says that the constraints are independent at
x'.
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dx,

There is also a second-order theory for problem (A.8.3). Suppose that at x*
the constraint qualification is satisfied and that there are Langrange multiplies
satisfying (A.8.2). If x* is a local maximizer, then

is negative semidefinite on the subspace

{z e R": Vgj (x*  )z = 0, for all j }.

In the other direction, if x* e Q and satisfies the first-order condition, and if

D;L[x*,  p) is negative definite on the subspace

[ze R": Vgj (x' )z = 0, for all j},

then x* is a local maximizer.
As a local constrained minimizer of / is a local constrained maximizer of

- / , theorem A.8.1 and the discussion of second-order conditions above are also

applicable to the characterization of local constrained minimizers.
We now generalize our analysis to problems that may have inequality

constraints. Consider the problem of maximizing / under m equality constraints
and q inequalities

Max f(x)
R"xeR"

s.t, *> ) = W = 1.2. ,», ( A g 4 )

hk(x)<ct, k=l,2,---,q,

where the functions
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are defined on R". We generally assume n> m + q. We say that the constraint

qualification is satisfied at x* e Q, if the constraints that hold at x* with equality

are independent, that if, if the vectors in

{Vgj [x ), for all j } u {Vhk (x"), for all *} ,

are linearly independent.

Theorem A.8.2. (the Kuhn-Tucker conditions) Suppose that the objective and
constraint functions of problem (A.8.4) are differentiable and that x* e Cl is a local
maximizer of the problem. Assume also that the constraint qualification is satisfied.
Then there are multipliers Pj e R, one for each equality constraint, and pk e R+,

one for each inequality constraint, such that
(i) for every / = 1, , m

(A.8.5)

or in more concise notation

V/(**)=j>,Vg,(* *
j=\ k=\

(ii ) for every k = 1, , q

i.e., pk = 0 for every constraint & that does not hold with equality.

The above theorem is also applicable to local minimizers, with the only change
being that the sign restriction on all of the multipliers is now pk < 0,
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Theorem A.8.3. Suppose that there are no equality constraints (i.e., m = 0) and

that every inequality constraint k is given by a quasiconvex function hk. Suppose

also that the objective function satisfies

V/(*X* ' -x)>0 for any x and x' with f{x') > f(x),

then if x* e Q. satisfies the Kuhn-Tucker conditions (conditions (i) and (ii) in

theorem A.8.2), and if the constraint qualification holds at x , it follows that x is
a global maximizer.

If we have

Vf(x)(x'-x)<0,

for any x and x' with f(x') < f(x) and the multipliers have the nonpositive sign

that corresponds to a minimization problem, then x* is a global minimizer.

A.9 Dynamical optimization4

Consider a state variable x(t) which belongs to an interval / of R; its motion

through time is governed by

x(t + l)=f{x(t),C{t)),  (A.9.1)

where

is the vector of control variables. Assume that the initial stock x0 is given and that

the set of feasible decisions in t, denoted by *¥(x(t)), depends on the level of the

stock x(t), C(t)e *F(*(/))  A sequence

, f = 0 , l , - ,

4 Appendix A.9 is mainly referred to appendix A.5 in de la Croix and Michel (2002).
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which satisfies (A.9.1), the initial condition, and C(t)e *?(*(*) ) is called a feasible

trajectory starting from x0.

Consider a payoff function, depending on the stock variable and the decisions
at each date as

U(x(t), C(t)) = U{x{t), C](t), c2{t), - , cn{t)\

Given a positive discount 8, the objective is to maximize the discounted flow of
payoff

xit), C{t)\ (A.9.2)
1=0

on the set of feasible trajectories starting from x0.

Assumption A.9.1. For all elements, x, of /, *?(*) is non-empty, and for all

vectors C in the subset *¥(x) of R", f(x, C) is defined and belongs to /, i.e.,

the dynamics are defined on /.

Assumption A.9.2. For C given, the functions f(x, C) and U{x, C) are non-

decreasing with respect to x. The upper bound of f(x, C) with respect to C in

»P(JC) is finite

0(x)= sup f{x, C)e /.
CE¥(X)

The upper bound of U(x, C) with respect to C in *F(x) is finite

u{x) = sup U(x, C) e /.
()

For any initial condition x0, there exists a constant b0 and a scalar So > S such

that the sequence x{t) defined by
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satisfies

8'Ax(t))<b0, Vf>0.

Proposition A.9.1. (the convergence of the infinite sum) Under assumptions A.9.1
and A.9.2, every discounted sum of feasible payoff is defined and has values in

{}

T

= l i m ^ <
~> +™ 1=0

Assumption A.9.3. For all x0 e I, there exists a feasible path

starting at x0 such that the sequence

 C(t))
1=0

is bounded below when T —> + °°.

Proposition A.9.2. (the value function) Under assumptions A.9.1 - A.9.3, the
function

V{xo) = sup | V t / ( x (4 C(0); (*(/), C(0) feasible from ̂ 0 ,

is defined on / and satisfies V*  e I

V{x) = sup{g(x, C) + SV{f(x, C)); C e V{x)}.

Proposition A.9.3. (the characteristics of optimal trajectories) Under assumptions

A.9.1 - A.9.3, a feasible path (**(?), C*(t)) starting from x'o - x0 is optimal if and

only if we have for all t
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V{x {t))=u{x'(t),C' (t)) + Sv{x (t + l)). (A.9.3)

We now examine the same problem in this section in a different way. We
maximize (A.9.2) such that (A.9.1) and the initial condition are satisfied and

C(t)s Wlxlt))

by introducing the Lagrangian.

Definition A.9.4.1. The Lagrangian Lt(x(t), C(t)) of period t is obtained as the

sum of the payoff U(x, C) with the increase in the value of the stock

L, (x(t\ C{t)) = U(x(t), C(t)) + Sq{t + l)f(x(t), C(t)) - a(t)x(t).

A feasible trajectory \x'(t), C'(t)) is supported by a sequence of shadow

prices (q(t)) if, for every integer t > 0, the Lagrangian L, (x(t), C(t)) attains its

maximum at \x*(t), C'(t)) on the set of vectors {x(t), C(t)) which verify

x(t)e I,

We then have

for all t>0.

Assumption A.9.4. The set A of the feasible triplets of payoff, current stock, and
resulting stock is convex. Formally, A is the set of elements (a, x, y) of

R x / x / for which there exists C e ^(x) such that

a<U(x,C), y = f(x,C).
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Proposition A.9.4 (the characteristics of optimal trajectories)5

Let us consider a feasible trajectory \x'(t), C*(t)j  starting from x0 for which x'(t)

is interior to / for all t > 0. Under assumptions A.9.1 - A.9.4, the trajectory

[x*(t),  C*(t)) is optimal if and only if there exists a sequence of shadow prices

(q(t)) such that: (i) the trajectory \x*(t\ C'(t)) is supported by the sequence of

shadow prices (9^)); and (ii) for any other feasible trajectory (x(t), C(t)) starting

from x0 such that

is finite, we have

limS'q(t)(x(t) - x (t)) > 0. (A.9.4)

The condition (A.9.4) is the transversality condition. It means that the
discounted value of the optimal capital is exhausted in the long run and that the
value of any of other feasible stock should be greater than or equal to that of the
optimal stock.

5 The necessary condition is given by Michel (1990) and the sufficient condition is
standard.
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Hopf bifurcation
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