Alan F. Beardon

The Geometry
of Discrete Groups

With 93 Illustrations

-
€Y Springer



Alan F. Beardon

University of Cambridge

Department of Pure Mathematics
and Mathematical Statistics

16 Mill Lane

Cambridge CB2 1SB

England

Editorial Board

S. Axler F.W. Gehring P.R. Halmos

Department of Department of Department of
Mathematics Mathematics Mathematics

Michigan State University University of Michigan Santa Clara University

East Lansing, M1 48824 Ann Arbor, MI 48109 Santa Clara, CA 95053

USA USA USA

Mathematics Subject Classifications (1991): 30-01, 30 CXX, 20F32, 30 FXX, 51 M10,
20 HXX

Library of Congress Cataloging in Publication Data
Beardon, Alan F.
The geometry of discrete groups.

(Graduate texts in mathematics; 91)

Includes bibliographical references and index.

1. Discrete groups. 2. Isometries (Mathematics)
3. Mobius transformations. 4. Geometry, Hyperbolic.
I. Title. II. Series.
QAI71.B364 1983 512'.2 82-19268

© 1983 by Springer-Verlag New York Inc.

All rights reserved. No part of this book may be translated or reproduced in any form
without written permission from Springer-Verlag, 175 Fifth Avenue, New York,
New York 10010, U.S.A.

Typeset by Composition House Ltd., Salisbury, England.
Printed and bound by R. R. Donnelley & Sons, Harrisonburg, VA.
Printed in the United States of America.

987654 32 (Corrected second printing, 1995)

ISBN 0-387-90788-2 Springer-Verlag New York Heidelberg Berlin
ISBN 3-540-90788-2 Springer-Verlag Berlin Heidelberg New York



To Toni






Preface

This text is intended to serve as an introduction to the geometry of the action
of discrete groups of Mébius transformations. The subject matter has now
been studied with changing points of emphasis for over a hundred years, the
most recent developments being connected with the theory of 3-manifolds:
see, for example, the papers of Poincaré [77] and Thurston [101]. About
1940, the now well-known (but virtually unobtainable) Fenchel-Nielsen
manuscript appeared. Sadly, the manuscript never appeared in print, and this
more modest text attempts to display at least some of the beautiful geo-
metrical ideas to be found in that manuscript, as well as some more recent
material.

The text has been written with the conviction that geometrical explana-
tions are essential for a full understanding of the material and that however
simple a matrix proof might seem, a geometric proof is almost certainly more
profitable. Further, wherever possible, results should be stated in a form that
is invariant under conjugation, thus making the intrinsic nature of the result
more apparent. Despite the fact that the subject matter is concerned with
groups of isometries of hyperbolic geometry, many publications rely on
Euclidean estimates and geometry. However, the recent developments have
again emphasized the need for hyperbolic geometry, and I have included a
comprehensive chapter on analytical (not axiomatic) hyperbolic geometry.
It is hoped that this chapter will serve as a *‘dictionary ” of formulae in plane
hyperbolic geometry and as such will be of interest and use in its own right.
Because of this, the format is different from the other chapters: here, there is
a larger number of shorter sections, each devoted to a particular result or
theme.

The text is intended to be of an introductory nature, and I make no
apologies for giving detailed (and sometimes elementary) proofs. Indeed,
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many geometric errors occur in the literature and this is perhaps due, to
some extent, to an omission of the details. I have kept the prerequisites to a
minimum and, where it seems worthwhile, I have considered the same topic
from different points of view. In part, this is in recognition of the fact that
readers do not always read the pages sequentially. The list of references is
not comprehensive and I have not always given the original source of a
result. For ease of reference, Theorems, Definitions, etc., are numbered
collectively in each section (2.4.1, 2.4.2,...).

I owe much to many colleagues and friends with whom I have discussed
the subject matter over the years. Special mention should be made, however,
of P. J. Nicholls and P. Waterman who read an earlier version of the manu-
script, Professor F. W. Gehring who encouraged me to write the text and
conducted a series of seminars on parts of the manuscript, and the notes
and lectures of L. V. Ahlfors. The errors that remain are mine.

Cambridge, 1982 ALAN F. BEARDON
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CHAPTER 1
Preliminary Material

§1.1. Notation

We use the following notation. First, Z, Q, R and C denote the integers, the
rationals, the real and complex numbers respectively: H denotes the set of
quaternions (Section 2.4).

As usual, R" denotes Euclidean n-space, a typical point in this being
x = (Xy,..., X,) With

x| = (e} + - + xHV2

Note that if y > 0, then y'/? denotes the positive square root of y. The
standard basis of R" is e, ..., e, where, for example, e; = (1,0,...,0).
Certain subsets of R” warrant special mention, namely

B" = {xeR": |x| < 1},
H" = {xeR": x, > 0},
and

Sl = {xeR":|x| = 1}.

In the case of C (identified with R?) we shall use A and dA for the unit
disc and unit circle respectively.

The notation x s x? (for example) denotes the function mapping x to x2:
the domain will be clear from the context. Functions (maps or transforma-
tions) act on the left : for brevity, the image f(x) is often written as fx (omitting
brackets). The composition of functions is written as fg: this is the map

X f(g(x).
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Two sets A and B meet (or A meets B) if A " B # . Finally, a property
P(n) holds for almost all n (or all sufficiently large n) if it fails to hold for only
a finite set of n.

§1.2. Inequalities

All the inequalities that we need are derivable from Jensen’s inequality: for a
proof of this, see [90], Chapter 3.

Jensen’s Inequality. Let u be a positive measure on a set X with u(X) = 1,
let f: X — (a, b) be y-integrable and let ¢:(a, b) — R be any convex function.
Then

¢( [ fdﬂ) < [@an 121)

Jensen’s inequality includes Holder’s inequality

Lfg dp < (J-sz dﬂ)m (ng du)“2

as a special case: the discrete form of this is the Cauchy-Schwarz inequality

IZ a;b;| < (z iailz)m(z [b;|})1?

for real q; and b;. The complex case follows from the real case and this can, of
course, be proved by elementary means.

Taking X = {x,,..., x,} and ¢(x) = ¢*, we find that (1.2.1) yields the
general Arithmetic-Geometric mean inequality

Vi Sy o+ WYy

where u has mass y; at x; and y; = ¢f(x)).

In order to apply (1.2.1) we need a supply of convex functions: a sufficient
condition for ¢ to be convex is that ¢'® > 0 on (a, b). Thus, for example,
the functions cot, tan and cot? are all convex on (0, 7/2). This shows, for
instance, that if ,, . .., 8, are all in (0, n/2) then

(1.2.2)

Cot(Bl+~-+6,,)Scot01+---+cot0,,.
h n

As another application, we prove that if x and y are in (0, x/2) and
x + y < /2 then

tan x tan y < tanz(iy). (1.2.3)
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Writing w = (x + y)/2, we have

tan x + tan y

—————=1a
1 —tan xtany n(x + 1)

_ 2tanw
T 1 —tan?w’

As tan is convex, (1.2.1) yields
tanx + tany > 2tanw

and the desired inequality follows immediately (noting that tan? w < 1 so
both denominators are positive).

§1.3. Algebra

We shall assume familiarity with the basic ideas concerning groups and (to a
lesser extent) vector spaces. For example, we shall use elementary facts about
the group S, of permutations of {1, 2,..., n}: in particular, S, is generated
by transpositions. As another example, we mention that if 6:G —» H is a
homomorphism of the group G onto the group H, then the kernel K of 6 is a
normal subgroup of G and the quotient group G/K is isomorphic to H.

Let g be an element in the group G. The elements conjugate to g are the
elements hgh™! in G (heG) and the conjugacy classes {hgh™':he G}
partition G. In passing, we mention that the maps x — xgx~* and x — gxg ™!
(both of G onto itself) play a special role in the later work. The commutator
of g and h is

(g, h] = ghg™*h™*:

for our purposes this should be viewed as the composition of g and a
conjugate of g~ 1.

Let G be a group with subgroups G; (i belonging to some indexing set).
We assume that the union of the G; generate G and that different G; have only
the identity in common. Then G is the free product of the G; if and only if
each g in G has a unique expression as g, - - - g, where no two consecutive g;

belong to the same G;. Examples of this will occur later in the text.

§1.4. Topology

We shall assume a knowledge of topology sufficient, for example, to discuss
Hausdorff spaces, connected spaces, compact spaces, product spaces and
homeomorphisms. In particular, if fis a 1-1 continuous map of a compact
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space X onto a Hausdorff space Y, then f is a homeomorphism. As special
examples of topologies we mention the discrete topology (in which every
subset is open) and the topology derived from a metric p on a set X. An
isometry f of one metric space (X, p) onto another, say (Y, o), satisfies

o(fx, fy) = p(x, y)

and is necessarily a homeomorphism.

Briefly, we discuss the construction of the quotient topology induced by a
given function. Let X be any topological space, let Y be any non-empty set
andlet f: X — Ybe any function. A subset V of Y is open if and only if f ~!(V)
is an open subset of X : the class of open subsets of Y is indeed a topology
J; on Y and is called the quotient topology induced by f. With this topology,
f is automatically continuous. The following two results on the quotient
topology are useful.

Proposition 1.4.1. Let X be a topological space and suppose that f maps X
onto Y. Let I be any topology on Y and let J; be the quotient topology on Y
induced by f.

(1) If f: X = (Y, T) is continuous, then I < .
) If f: X —» (Y, ) is continuous and open, then I = I .

ProOOF. Suppose that f: X — (Y, J) is continuous. If Vis in 7, then f ~1(V)
is in open in X and so V is in Z;. If, in addition, f: X — (Y, ) is an open
map then V in 7; implies that f ~'(V) is open in X and so f(f~'V)isin J.
As f is surjective, f(fT'V) = Vso J; = 7. a

Proposition 1.4.2. Suppose that f maps X into Y where X and Y are topological
spaces, Y having the quotient topology J;. For each map g: Y — Z define
g1: X = Z by g, = gf. Then g is continuous if and only if g, is continuous.

PRrOOF. As f is continuous, the continuity of g implies that of g,. Now suppose
that g, is continuous. For an open subset V of Z (we assume, of course, that
Z is a topological space) we have

(g)"'V)=f"Yg™'V)

and this is open in X. By the definition of the quotient topology, g~ (V) is
open in Y so g is continuous. O

An alternative approach to the quotient topology is by equivalence rela-
tions. If X carries an equivalence relation R with equivalence classes [x],
then X/R (the space of equivalence classes) inherits the quotient topology
induced by the map x+ [x]. Equally, any surjective function f: X — Y
induces an equivalence relation R on X by xRy if and only if f(x) = f(y)
and Y can be identified with X/R. As an example, let G be a group of homeo-
morphisms of a topological space X onto itself and let f map each x in X
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to its G-orbit [x] in X/G. If X/G is given the induced quotient topology, then
f: X - X/G is continuous. In this case, f is also an open map because if V
is open in X then so is

Uy = U g

geG

Finally, the reader will benefit from an understanding of covering spaces
and Riemann surfaces although most of the material in this book can be read
independently of these ideas. Some of this is discussed briefly in Chapter 6:
for further information, the reader is referred to (for example) [4], [6],
[28], [50], [63] and [100].

§1.5. Topological Groups

A topological group G is both a group and a topological space, the two
structures being related by the requirement that the maps x+— x~* (of G
onto G) and (x, y) xy (of G x G onto G) are continuous: obviously,
G x G is given the product topology. Two topological groups are isomorphic
when there is a bijection of one onto the other which is both a group iso-
morphism and a homeomorphism: this is the natural identification of
topological groups.

For any y in G, the space G x {y} has a natural topology with open sets
A x {y} where A is open in G. The map x+ (x, y) is a homeomorphism
of Gonto G x {y} and the map (x, y)+ xy is a continuous map of G x {y}
onto G. It follows that x — xy is a continuous map of G onto itself with
continuous inverse x— xy~! and so we have the following elementary but
useful result.

Proposition 1.5.1. For each y in G, the map x +— xy is a homeomorphism of G
onto itself the same is true of the map x — yx.

A topological group G is discrete if the topology on G is the discrete
topology: thus we have the following Corollary of Proposition 1.5.1.

Corollary 1.5.2. Let G be a topological group such that for some g in G, the
set {g} is open. Then each set {y} (y € G) is open and G is discrete.

Given a topological group G, define the maps

o(x) = xax!
and

Y(x) = xax"'a”! = [x, a],
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where a is some element of G. We shall be interested in the iterates ¢” and
Y" of these maps and with this in mind, observe that ¢ has a unique fixed
point, namely a. The iterates are related by the equation

¢"(x) = ¥'(X)a,

because (by induction)

¢"" (%) = [Y'(x)alaly"(x)a] ™"
= Y (x)aly"(x)] ™"
— l//"+ l(x)a.

In certain circumstances, the iterated commutator ¥"(x) converges to the
identity (equivalently, the iterates ¢"(x) converge to the unique fixed point
a of ¢) and if the group in question is discrete, then we must have ¢"(x) = a
for some n. For examples of this, see [106], [111: Lemma 3.2.5] and Chapter 5
of this text.

Finally, let G be a topological group and H a normal subgroup of G.
Then G/H carries both the usual structures of a quotient group and the
quotient topology.

Theorem 1.5.3. If H is a normal subgroup of a topological group G, then G/H
with the usual structures is a topological group.

For a proof and for further information, see [20], [23], [39], [67], [69]
and [%94].

§1.6. Analysis

We assume a basic knowledge of analytic functions between subsets of the

complex plane and, in particular, the fact that these functions map open

sets of open sets. As specific examples, we mention Mobius transformations

and hyperbolic functions (both of which form a major theme in this book).
A map f from an open subset of R" to R" is differentiable at x if

fO) =fx)+ @ = x4+ |y — x|&(y),

where A is an n x n matrix and where &y) - 0 as y — x. We say that a
differentiable f is conformal at x if A is a positive scalar multiple u(x) of an
orthogonal matrix B. More generally, f is directly or indirectly conformal
according as det B is positive or negative. If f is an analytic map between
plane domains, then the Cauchy-Riemann equations show that f is directly
conformal except at those z where f*)(z) = 0.
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If D is a subdomain of R" and if 1 is a density (that is, a positive continuous
function) on D we define

p(x, y) = inf f @) 9] dr,

the infimum being over all (smooth) curves y (with derivative §) joining x
to yin D. It is easy to see that p is a metric on D; indeed, p is obviously sym-
metric, non-negative and satisfies the Triangle inequality. As p(x, x) = 0,
we need only prove that p(x, y) > 0 when x and y are distinct. Choosing a
suitably small open ball N with centre x and radius r, we may assume (by
continuity) that A has a positive lower bound A, on N and that y ¢ N. Thus
A is at least Ay on a section of y of length at least r so p(x, y) > 0.

More generally, let y = (y4, ..., 7,) be any differentiable curve in D and
suppose that

q(t) = 2 a3y )

is positive on D (except when $ = 0). Then we can define a metric as above
by integrating [q(¢)]*/* and the metric topology is the Euclidean topology.
If f is a conformal bijection of D onto the domain D,, then

o 110) = S

= p(x).
y>x Iy - xl

and D, inherits the density o where
o(fx) = Mx)/u(x)

and hence a metric p;. In fact, f is then a isometry of (D, p) onto (D4, p,).
If, in addition, D = D, and

Mfx)u(x) = Ax),

then f is an isometry of (D, p) onto itself: in terms of differentials, this con-
dition can be expressed as

Ay)ldy| = Ax)ldx], y= f(x).
As an example, let D = H?, X(z) = 1/Im[z] and

az + b

f@@= -cm,

where a, b, ¢ and d are real and ad — bc > 0. Then f maps H? onto itself
and as

Im[ fz] = Im[2]| f'*V(2)],
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we see that f is an isometry of (H?, p) onto itself: this is the hyperbolic metric
on H2.
We shall need the Poisson kernel for the unit disc A and the upper half-plane
H?. For each z in A and each { in dA, the Poisson kernel is
1 —|z)?

Py(z,{) = m

Obviously, P, is positive on A and zero on §A except at the point {. Because

m@o=mF+1

(=2
we see immediately that P, is (for each {) a harmonic function of z with a
pole at {.
The map
_{+z
&=

maps A onto {z: x > 0} and { to co with

Re[f(2)] = Py(z, {)-

It follows immediately that the level curves of P,(z, {) (for a fixed {) are the
images under f ~* of the vertical lines in H? and these are circles in A which
are tangent to 0A at (.

The most general Mgbius transformation preserving A is of the form

az + ¢

—,  lalf =P =1,
cz+a

9(z) =

and a computation shows that
1-19@)1* = 1@ — |2]?).
As g is a Mobius transformation, we also have

l92) ~ gOF = |z = {PlgV @) g™ ()]

and so we obtain the relation

Pu(gz, g0)1g V)| = Pu(z, 0)-
The Poisson kernel for the half-plane H? is

yllz = (1P i # oo,

and the reader is invited to explore its properties.

PGO) = {y if¢ = oo,



CHAPTER 2
Matrices

§2.1. Non-singular Matrices

If ad — bc # 0, the 2 x 2 complex matrix

a b
A= (c d) (2.1.1)

induces the Mdbius transformation

_az+b

92) cz+d

of the extended complex plane onto itself. As these transformations are our
primary concern, it is worthwhile to study the class of 2 x 2 complex matrices.
Given A4 as in (2.1.1), the determinant det(A) of A4 is given by

det(A) = ad — bc

and A is non-singular if and only if det(4) # 0. If 4 is non-singular then the

inverse
M —=1b
-1 _ — — -1
Al = (_ ), A= (ad — bc)

exists and is also non-singular.
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For any matrices A and B we have

det(AB) = det(A) det(B) (2.1.2)
= det(BA4),

and so

det(BAB™') = det(AB™'B)
= det(A). 2.13)

The class of non-singular 2 x 2 complex matrices is a group with respect
to the usual matrix multiplication: it is the General Linear Group and is
denoted by GL(2, C). We shall be more concerned with the subgroup
SL(2, C), the Special Linear Group, which consists of those matrices with
det(4) = 1. We denote the identity matrix (of any size) by I although
sometimes, for emphasis, we use I, for the n x n identity matrix.

Much of the material in this chapter can be written in terms of n x n
complex matrices. The determinant can be defined (by induction on n) and a
matrix A is non-singular with inverse A~ ! if and only if det(4) # 0. The
identities (2.1.2) and (2.1.3) remain valid.

The n x nreal matrix A4 is orthogonal if and only if

[x| = |xA|

for every x in R": this is equivalent to the condition A~! = A4’ where A4’
denotes the transpose of A. Observe that if 4 is orthogonal then, because
det(A) = det(A4’), we have det(A4) is 1 or — 1. The class of orthogonal n x n
matrices is denoted by O(n).

Forzy,...,z,in C", we write

|zl = [lz: [ + - + [z, ]2
A complex n X n matrix is unitary if and only if
lz| = |zA]

for every z in C": this is equivalent to the condition A~ ! = A" where 4 is
obtained in the obvious way by taking the complex conjugate of each element
of A.

From a geometric point of view, the following result is of interest.

Selberg’s Lemma. Let G be a finitely generated group of n x n complex
matrices. Then G contains a normal subgroup of finite index which contains no
non-trivial element of finite order.

This result is used only once in this text and we omit the proof which can
be found in [92] and [17],[18]: see also [16], [27], [31], [35], [85] and [104]
where it is discussed in the context of discrete groups.
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ExErcisk 2.1

1. Show that the matrices

o ) 67

are conjugate in SL(2, C) but not in SL(2, R) (the real matrices in SL(2, C)).

2. Show that A+ det(A) is a homomorphism of GL(2, C) onto the multiplicative
group of non-zero complex numbers and identify the kernel.

3. The centre of a group is the set of elements that commute with every element of the
group. Show that the centres of GL(2, C) and SL(2, C) are

H={tl:t#0}, K={,-1I}
respectively. Prove that the groups
GL(2, C)/H, SL@2,C)/K
are isomorphic.
4. Find the centres H, and K, of GL(2, R) and SL(2, R) respectively. Are
GL(2,R)/H,, SL(2,R)/K,

isomorphic?

§2.2. The Metric Structure

The trace tr(A) of the matrix 4 in (2.1.1) is defined by
tr(4) = a + d.
A simple computation shows that

tr(AB) = tr(BA)

and we deduce that
tr(BAB™!) = tr(AB™'B) = tr(A4):
thus tr is invariant under conjugation. Other obvious facts are

tr(AA4) = A tr(A) (Le®)
and

tr(A") = tr(A),

where A’ denotes the transpose of A.
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The trace function also acts in an important way on pairs of matrices.
First, we recall that the class of 2 x 2 matrices is a vector space over the
complex numbers and the Hermitian transpose 4* of A is defined by

e _ay_ (3 €
A* = (4) (5 3)' (2.2.1)
Given any matrices

_fa b _fa B
A—(c d)’ B—(w 5)’

[A4, B] = tr(4B¥)
= ai + bf + ¢j + dé.

we define [4, B] by

This is a scalar product on the vector space of all 2 x 2 matrices: explicitly

(i) [A4, A] = 0 with equality if and only if 4 = 0;
(ll) [llAl + A-zAz, B] = ll[Al’ B] + lz[Az, B],

and
(iii) [B, A] = [A4, B].

Any scalar product, say [x, y], induces a norm [x, x]*/? and hence a
metric [x — y, x — y]*/%. In our case the norm || 4| is given explicitly by

4l = [4, A]Y?
=(lal* + |b* + [c]* + |d|H)"?

and for completeness, we shall show that this satisfies the defining properties
of a norm, namely

(iv) ||4|| = 0 with equality if and only if 4 = 0;
) 144] = [A]. 14]  (Ae©)

and
(vi) |4 + Bl < [|4]] + |IB]-

Of these, (iv) and (v) are trivial: (vi) will be proved shortly.
We also have the additional relations

(vii) |det(4)]. [A7*] = |4];
(viii) |[4, B]| < || 4] . [IB];
(ix) |4B| < |l4]l. | Bl

and

(x) 2|det(4)| < [ 4]%
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Of these, (vii) is immediate. To prove (viii) let
C = AA — uB,

where 1 = [B, A] and u = ||A]|%. By (iv), |C||* = 0 and this simplifies to
give (viii). As
|A + B|* = |A||* + [4, B] + [B, 4] + |B| %,

(vi) follows directly from (viii) and (iii).

4B = (p q>,
r S

IpI* = laa + by|*
< (lal + 16D + 171
(the last line by the Cauchy-Schwarz inequality). A similar inequality holds
for ¢, r and s and (ix) follows.
Finally, (x) holds as
|41* = 2|det(A)| = |al? + [bI* + [¢|* + |d|* — 2(|ad| + |bc|)
= (lal = [d])* + (Ib] = |¢])?
>0

To prove (ix), note that if

then, for example,

Next, the norm || 4| induces a metric |4 — B for
|[A—B|| =0 ifandonlyif A = B;
IB— Al = Il(—=1)(A4 - B)|| = |4 — Bl
and
[4—B| =|(4A-C)+(C-B)|
<[4 -Cll+IC- B
The metric is given explicitly by

|4 =Bl =[la—af+-+|d- 51"

a,,b,,_)ab
c, d, c d

in this metric if and only if a, — a, b, = b, ¢, = c and d, - d. Note that this
is a metric on the vector space of all 2 x 2 matrices.

Observe that the norm, the determinant and the trace function are all
continuous functions. The map A+ A~ ! is also continuous (on GL(2, C))
andif 4, - Aand B, — Bthen 4, B, —» AB. These facts show that GL(2, C)is
a topological group with respect to the metric |4 — B.

and we see that
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EXERCISE 2.2
1. Show that if A and B are in SL(2, C) then

(i) tr(AB) + tr(4™'B) = tr(A) tr(B);
(ii) tr(BAB) + tr(A) = tr(B) tr(AB);
(iii) tr}(4) + tr¥(B) + tr}(4B) = tr(A) tr(B) tr(AB) + 2 + tr(ABA™'B~1).
Replace B by A"B in (i) and hence obtain tr(4"B) as a function of tr(4), tr(B), tr(4B)
and n.

2. Find subgroups G, and G, of GL(2, C) and a map f of G, onto G, which is an iso-
morphism but not a homeomorphism.

3. Let V be the metric space of all 2 x 2 complex matrices with metric |4 — B||. Prove
that as subsets of V,

(i) GL(2, C) is open but not closed;

(ii) SL(2, C) is closed but not open;
(iii) GL(2, R) is disconnected;
(iv) GL(2, C) is connected;

(v) {A:tr(A4) = 1} is closed but not compact.

[In (iv), show that every matrix in GL(2, C) is conjugate to an upper triangular
matrix T and that T can be joined to / by a curve in GL(2, C).]

4. Forann x n complex matrix 4 = (g;;), define
tr(A) =a;; + - + apy-
Prove that
tr(BAB™ ') = tr(4)

and that tr(4AB*) is a metric on the space of all such matrices.

§2.3. Discrete Groups

In this section we shall confine our attention to subgroups of the topological
group GL(2, C). We recall that a subgroup G of GL(2, C) is discrete if and
only if the subspace topology on G is the discrete topology. It follows that
if G is discrete and if X, 4, 4,,...are in G with 4, — X then 4, = X for all
sufficiently large n. It is not necessary to assume that X € G here but only that
X is in GL(2, C). Indeed, in this case,

An(An-l»l)_l - XX t=1

and so for almost all n, we have 4, = 4,., and hence 4, = X.
In order to prove that G is discrete, it is only necessary to prove that one
point of G is isolated: for example, it is sufficient to prove that

inf{| X —I|: XeG, X #1I}>0,
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so that {I} is open in G (Corollary 1.5.2). In terms of sequences, G is discrete
if and only if 4, — I and A4, € G implies that 4, = I for almost all n.

We shall mainly be concerned with SL(2, C) and in this case an alternative
formulation of discreteness can be given directly in terms of the norm. The
subgroup G of SL(2, C) is discrete if and only if for each positive k, the set

{AeG: |4l <k} (23.1)

is finite. If this set is finite for each k, then G clearly cannot have any limit
points (the norm function is continuous) and so G is discrete. On the other
hand, if this set is infinite then there are distinct elements A, in G with
|4, € k,n=1,2,....1If A, has coefficients a,, b,, ¢, and d, then |a,| < k
and so the sequence a, has a convergent subsequence. The same is true of
the other coefficients and using the familiar “diagonal process” we see that
there is a subsequence on which each of the coefficients converge. On this
subsequence, 4, — B say, for some B and as det is continuous, B € SL(2, C):
thus G is not discrete.

The criterion (2.3.1) shows that a discrete subgroup G of SL(2, C) is
countable. In fact,

G=JG,,
n=1

where G, is the finite set of A in G with || 4|| < n. Any subgroup of a discrete
group is also discrete: this is obvious. Finally, if G is discrete then so is any
conjugate group BGB™', because X — BXB~! is a homeomorphism of
GL(2, C) onto itself.

There are other more delicate consequences of and criteria for discrete-
ness but these are best considered in conjunction with M&bius transforma-
tions (which we shall consider in later chapters). For a stronger version of
discreteness, see [11]. We end with an important example.

Example 2.3.1. The Modular group is the subgroup of SL(2, R) consisting
of all matrices A with a, b, ¢ and d integers. This group is obviously discrete.
More generally, Picard’s group consisting of all matrices 4 in SL(2, C) with
a, b, c and d Gaussian integers (that is, m + in where m and n are integers) is
discrete.

EXERCISE 2.3

1. Show that {2"I: ne Z} is a discrete subgroup of GL(2, C) and that in this case,
(2.3.1) is infinite.

2. Find all discrete subgroups of GL(2, C) which contain only diagonal matrices.
3. Prove that a discrete subgroup of GL(2, C) is countable.

4. Suppbse that a subgroup G of GL(2, R) contains a discrete subgroup of finite index.
Show that G is also discrete.
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§2.4. Quaternions

A quaternionis a 2 x 2 complex matrix of the form

zZ w
q=<—w 2): (2.4.1)

the set of quaternions is denoted by H (after Hamilton). The addition and
multiplication of quaternions is as for matrices and the following facts are
easily verified:

(i) H is an abelian group with respect to addition;
(ii) the non-zero quaternions form a non-abelian group with respect to
multiplication;
(iii) H is a four-dimensional real vector space with basis

<! 0 (i 0
0 1) 0 =i/
. 0 1 0 i
=2 o =(0 o)

(note that 1 is not the same as 1, likewise i # i).

As multiplication of matrices is distributive, the multiplication of
quaternions is determined by the products of the four elements 1, i, j and k.
In fact, these elements generate a multiplicative group of order 8 and

iP=pP=k*= -1,
ij=k jk=1i, ki=j;
ji= -k kj=-i ik= -}
The quaternions contain a copy of C for the map
x + iy x1 + yi

of C into H clearly preserves both addition and multiplication. Returning
to (2.4.1) we write x + iy = zand u + iv = wso that

q = (x1 + yi) + (uj + vk)
= (x1 + yi) + (ul + vi)j. (24.2)

In view of this, it is convenient to change our notation and rewrite (2.4.2)
in the form

g=z+wj
where such expressions are to be multiplied by the rule

(21 + wiid(zz + wi)) = (212, — WiW,) + (2,w; + W;Z,)).
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In particular, if z and w are in C, then
jz =72
and
(z +w)E — wj) = |z]* + [w]’.
This last identity gives the form of the multiplicative inverse, namely
(+w)™t = - w/lz]* + |w]?)
where, of course,

det(z + wj) = |z]* + |w]>.

EXERCISE 2.4

1. Show that the non-zero quaternions form a multiplicative group with centre
{tI:t real and non-zero}.

2. Show that SL(2, C) is not compact whereas
{geH:det(g) = 1}
is compact.

3. Let S be the set of quaternions of the form z + tj where ¢ is real. Show that S is in-
variant under the map g+~ jgj~!. By identifying z + tj with (x, y,t) in R®, give a
geometric description of this map.

4. As in Question 3, show that the map g+ kgk ™! also leaves S invariant and give a
geometric description of this map.

§2.5. Unitary Matrices

The matrix A is said to be unitary if and only if
AA* =1,

where A* is given by (2.2.1). Any unitary matrix satisfies

= det(A) det(4*) = |det(A)]?
and we shall focus our attention on the class SU(2, C) of unitary matrices
with determinant one.
Theorem 2.5.1. Let A be in SL(2, C). The following statements are equivalent
and characterize elements of SU(2, C).

(i) A isunitary;
(i) 141* = 2;
(iii) A is a quaternion.
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In particular
SU(2,C) = SL(2,C) n H.

PROOF. Suppose that

A=<a b), ad — be = 1,

c d
then
lal* + |b|* ac + bd
AA* = 5.1
4 ( ac +bd |c* +|d)? 251
and
la—dP?> +|b+¢]*>=[4]* -2 (25.2)
First, (2.5.1) shows that if 4 is unitary then [|4|> = 2. Next, if |4|* = 2 we
deduce from (2.5.2) thata = d and b = —¢ so A is a quaternion. Finally, if
A is a quaternion, then a = d, b = —¢ and recalling that ad — bc = 1, we
find from (2.5.1) that A4 is unitary. Od

A simple computation shows that each 4 in SU(2, C) preserves the quad-
ratic form |z|? + |w|?: explicitly, if

(z, w)A = (z, W),
then
1212+ 1w =|z]* + [w]”
A similar result holds for column vectors and so for any matrix X,
IAX] = | XAl = [ X].
This shows that
|AXA™! — AYA™!| = |JAX = A7 = |X - Y|
and so we have the following result.

Theorem 2.5.2. Suppose that A is in SU(2, C). Then the map X — AXA™!
is an isometry of the space of matrices onto itself.

Remark. Theorems 2.5.1 and 2.5.2 will appear later in a geometric form.

EXERCISE 2.5

1. Show that SU(2, C) is compact and deduce that any discrete subgroup of SU(2, C)
is finite.

2. Is SU(2, C) connected?
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3. The group of real orthogonal matrices 4(AA4" = I)in SL(2, R) is denoted by SO(2).
Show that there is a map of SO(2) onto the unit circle in the complex plane which is
both an isomorphism and a homeomorphism.

4. Show that every matrix in SU(2, C) can be expressed in the form

(e‘“ 0 ) (cos ¢ —sin d)) (e“” 0
0 e ®)\sinp cos¢/\0 e"w)

for some real 0, ¢ and .



CHAPTER 3
Mobius Transformations on R”

§3.1. The Mobius Group on R”

The sphere S(a, r) in R" is given by
S(a,r) = {xeR" |x —a| =r}

where a e R" and r > 0. The reflection (or inversion) in S(a, r) is the function
¢ defined by

d(x) = a + ( ! )z(x —a). G.L1)

|x — al
In the special case of S(0, 1) (=S"""!), this reduces to
¢(x) = x/|x|?

and it is convenient to denote this by x — x* where x* = x/|x|* The general
reflection (3.1.1) may now be rewritten as

d(x) = a + r’(x — a)*.

The reflection in S(a, r) is not defined when x = a and this is overcome by
adjoining an extra point to R". We select any point not in R" (for any n),
label it o0 and form the union

R =R"U {0}

As |¢(x)| » + oo when x — a it is natural to define ¢(a) = co: likewise, we
define ¢(c0) = a. The reflection ¢ now acts on R" and, as is easily verified,
@*(x) = x for all x in R". Clearly ¢ is a 1-1 map of R” onto itself: also,
¢(x) = x if and only if x € S(a, r).
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We shall call a set P(a, t) a plane in R" if it is of the form
Pla,t) = {xeR": (x.a) =t} U {0},

where ae R", a # 0, (x . a) is the usual scalar product Z x;a; and t is real.
Note that by definition, oc lies in every plane. The reflection ¢ in P(a, t) (or,
as we sometimes say, in (x . a) = t) is defined in the usual way; that is

d(x) = x + Aa,

where the real parameter A is chosen so that 3(x + @(x)) is on P(a, t). This
gives the explicit formula

¢(x) = x — 2[(x.a) — t]a*, (3.1.2)

when x € R" and, of course, ¢(cv) = oc. Again, ¢ acts on R”, ¢p%(x) = x for
all xin R"and so ¢ isa 1-1 map of R" onto itself. Also, ¢(x) = x if and only if
x € P(a, t).

It is clear that any reflection ¢ (in a sphere or a plane) is continuous in R"
except at the points oo and ¢ ~!(o0) where continuity is not yet defined. We
shall now construct a metric on R and shall show that ¢ is actually con-
tinuous (with respect to this metric) throughout R".

We first embed R" in R"*! in the natural way by making the points

(Xyy ..., %y and (xy,..., x,,0) correspond. Specifically, we let x+— X be
the map defined by
X = (xy, ..., X,,0), X = (XpyeeesXnh

and, of course, & = oo. Thus x+> X is a 1-1 map of R" onto the plane
X,+, =0 in R"*!. The plane x,,, = 0 in R"*! can be mapped in a 1-1
manner onto the sphere

S"={yeR" |yl =1}

by projecting X towards (or away from) e, until it meets the sphere S"
in the unique point n(%X) other than e,,,. This map = is known as the
stereographic projection of R" onto S".

It is easy to describe = analytically. Given x in R", then

(%) = X + t(eg+, — X),

where ¢ is chosen so that |n(%)| = 1. The condition |n(X)|> = 1 gives rise
to a quadratic equation in t which has the two solutions t = 1 and (as
1%l =1x])
_xP -1
TR
We conclude that

2x, 2x x| —1
X) = .o - s > Rn,
(%) <[x|2+1’ P+ UxF+1 x€

and, by definition, 7(c0) = e, ;.
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As x— 7(X) is a 1-1 map o{ R" onto $” we can transfer the Fuclidean
metric from S” to a metric d on R™. This is the chordal metric d and is defined
on R" by

d(X, y) = ITL'()E) - n(f)l, X, Y& Rn.
A tedious (but elementary) computation now yields an explicit expression
for d, namely
2]x — y| .
— if x, ;
T+ <P + P 1Y

dix,y) = 5 (3.1.3)

(1 + IXIZ)HZ

if y = oo,

A shorter proof of this will be given in Section 3.4.

This formula shows that the metric d restricted to R" induces the same
topology as does the Euclidean metric; thus a function from a subset of R"
to R is continuous with respect to both or to neither of these two metrics. It
is now easy to see that each reflection ¢ is a homeomorphism (with respect
to d) of R onto itself. Indeed, as ¢ = ¢~ ' we need only show that ¢ is
continuous at each point x in R" and this is known to be so whenever x is
distinct from oo and ¢(c0) (= ¢~ *(0)). If ¢ denotes reflection in S(a, r) then,
for example,

d((x), P(@)) = d($(x), @)
2
T )T
-0

s x — a. Thus ¢ is continuous at x = a: a similar argument shows ¢ to be
ontinuous at oo also. If y is the reflection in the plane P(q, t) then (as is
asily seen)

W2 =[x + O(lx])

as |x| - oo and so |Y(x)| = + co. This shows that y is continuous at cc
and so is also a homeomorphism of R” onto itself.

Definition 3.1.1. A M¢bius transformation acting in R" is a finite composition
of reflections (in spheres or planes).

Clearly, each Mébius transformation is a homeomorphism of ®” onto
itself. The composition of two Mdobius transformations is again a Mdbius
transformation and so also is the inverse of a M&bius transformation for
if¢ = ¢, - @, (Where the ¢; are reflections) then ¢ ™' = ¢, - - ¢,. Finally,
for any reflection ¢ say, ¢*(x) = x and so the identity map is a Mdbius
transformation.
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Definition 3.1.2. The group of Mdbius transformations acting in R" is
called the General Mobius group and is denoted by GM(R™).

Let us now consider examples of Md&bius transformations. First, the
translation x > x + a, a € R", is a Mobius transformation for it is the reflec-
tion in (x.a) = 0 followed by the reflection in (x.a) = $|a|’>. Next, the
magnification x > kx, k > 0, is also a Mdbius transformation for it is the
reflection in S(0, 1) followed by the reflection in S(O, \/1;).

If ¢ and ¢* denote reflections in S(a, r) and S(0, 1) respectively and if
Y(x) = rx + a, then (by computation)

¢ = yo*y . (3.1.4)

As  is a Mobius transformation, we see that any two reflections in spheres
are conjugate in the group GM(R").

As further examples of Mdbius transformations we have the entire class
of Euclidean isometries. Note that each isometry ¢ of R" is regarded as
acting on R" with ¢(c0) = oo.

Theorem 3.1.3. Each Euclidean isometry of R" is a composition of at most
n + 1 reflections in planes. In particular each isometry is a Mobius transforma-
tion.

PROOF. As each reflection in a plane is an isometry, it is sufficient to consider
only those isometries ¢ which satisfy $(0) = 0. Such isometries preserve
the lengths of vectors because

[(x)| = [¢(x) — ¢(0)| = |x — O] = |x|

and also scalar products because

2¢(x). 6() = [9X)|* + [6(1)? = |$(x) — d()I?
=[x]* + y* =[x =y
= 2(x.y).
This means that the vectors ¢(e,), ..., ¢(e,) are mutually orthogonal and

so are linearly independent. As there are n of them, they are a basis of the
vector space R" and so for each x in R" there is some u in R” with

60 = 2. 1;0(e).

But as the ¢(e;) are mutually orthogonal,

u; = (p(x). ¢(ej))
=(x.e)

=Xj.
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Thus
¢( i xjej) = 3 x;4(e))
j=1 j=1

and this shows that ¢ is a linear transformation of R” into itself. As any
isometry is 1-1, the kernel of ¢ has dimension zero: thus ¢(R") = R".

If A is the matrix of ¢ with respect to the basis e, ..., e, then ¢(x) = x4
and A4 has rows ¢(e,), ..., ¢(e,). This shows that the (i, j)th element of the
matrix AA' is (¢(e;) . #(e;)) and as this is (e;. e), it is 1 if i = j and is zero
otherwise. We conclude that A is an orthogonal matrix.

We shall now show that ¢ is a composition of at most n reflections in
planes. First, put

a; = ¢(e;) — e;.

Ifa, # 0, welety, bethe reflection in the plane P(a,, 0) and a direct computa-
tion using (3.1.2) shows that ¥/, maps ¢(e,) to e,. If a; = 0 we let Y/, be the
identity so that in all cases, ¥, maps ¢(e,) to e;. Now put ¢, = ,¢: thus
¢, is an isometry which fixes 0 and e;.

In general, suppose that ¢, is an isometry which fixes each of 0, e;, ..., ¢,
and let

g1 = Ol€r+1) — €ty
Again, we let ¥, ., be the identity (if g, . ; = 0) or the reflection in P(g; . ;, 0)

(if @, ; # 0) and exactly as above, ¥, , ¢, fixes 0 and e, ,. In addition, if
1 <j < kthen

(ej'ak+1) = (ej-¢k(ek+1)) - (ej- €r+1)

= (¢k(ej) .P(er+1)) — 0

= (e j- €+ 1)

=0
and so by (3.1.2),

'/’k+1(ej) = ;.

As ¢, also fixes 0, e,,..., e, we deduce that y,, ¢, fixes each of 0, ey,
.-+, €41 In conclusion, then, there are maps y; (each the identity or a reflec-
tion in a plane) so that the isometry y,, - - - Y, ¢ fixes each of 0, ey, ..., e,. By
our earlier remarks, such a map is necessarily a linear transformation and so is
the identity: thus ¢ = ¢, - - - ,,. This completes the proof of Theorem 3.1.3
as any isometry composed with a suitable reflection is of the form ¢. O

There is an alternative formulation available.

Theorem 3.1.4. A function ¢ is a Euclidean isometry if and only if it is of the
form
¢(X) = XA + x09

where A is an orthogonal matrix and x, € R".
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PROOF. As an orthogonal matrix preserves lengths, it is clear that any ¢ of
the given form is an isometry. Conversely, if ¢ is an isometry, then ¢(x) ~ ¢(0)
is an isometry which fixes the origin and so is given by an orthogonal matrix
(as in the proof of Theorem 3.1.3). O

More detailed information on Euclidean isometries is available: for
example, we have the following result.

Theorem 3.1.5. Given any real orthogonal matrix A there is a real orthogonal
matrix Q such that

A

040" = T4 ,

0 -1,

where r, s, t are non-negative integers and

A = cos 8, —sin 6,
*“ \sinf, cosb,)

Any Euclidean isometry which fixes the origin can therefore be represented
(with a suitable choice of an orthonormal basis) by such a matrix and this
explicitly displays all possible types of isometries.

We now return to discuss again the general reflection ¢. It seems clear
that ¢ is orientation-reversing and we shall now prove that this is so.

Theorem 3.1.6. Every reflection is orientation-reversing and conformal.

ProOF. Let ¢ be the reflection in P(a, t). Then we can see directly from (3.1.2)
that ¢ is differentiable and that ¢'"(x) is the constant symmetric matrix
(¢;;) where
2aiaj
d)ij = Ui = Wa

(6;; is the Kronecker delta and is 1 if i = j and is zero otherwise). We prefer
to write this in the form

P'(x)=1-20,,
where Q, has elements aiaj/[alz. Now Q,, is symmetric and Q2 = Q,, so
P'(x). ¢'(x) = (I = 20,)* = I.

This shows that ¢'(x) is an orthogonal matrix and so establishes the con-
formality of ¢.
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Now let D = det ¢’(x). As ¢'(x) is orthogonal, D # 0 (in fact, D = +1).
Moreover, D is a continuous function of the vector a in R* — {0} and so is a
continuous map of R" — {0} into R' — {0}. As R" — {0} is connected (we
assume that n > 2), D is either positive for all non-zero a or is negative for
all non-zero a. If a = e,, then ¢ becomes

¢(X1,...,X,,) = (—xl + 21, X2, ---axn)

and in this case, D = — 1. We conclude that for all non-zero a, D < 0 and so
every reflection in a plane is orientation reversing.
A similar argument holds for reflections in spheres. First, let ¢ be the
reflection in S(0, 1). Then for x # O, the general element of ¢'(x) is
ﬁ _ 2x;x;
x> x[*’

so
¢'(x) = |x|72(I — 2Q,).

This shows (as above) that ¢ is conformal at each non-zero x.
Now let D(x) be det ¢'(x). As ¢(¢(x)) = x, the Chain Rule yields

D(¢(x))D(x) = 1

and so exactly as above, D is either positive throughout R” — {0} or negative
throughout R" — {0}. Taking x = e,, a simple computation yields D(e,) =
—1 and so D(x) < O for all non-zero x.

The proof for the general reflection is now a simple application of (3.1.4):
the details are omitted. O

The argument given above shows that the composition of an even number
of reflections is orientation-preserving and that the composition of an odd
number is orientation-reversing,

Definition 3.1.7. The Mdbius group M(R™ acting in R” is the subgroup of
GM(R") consisting of all orientation-preserving Mobius transformations in
GM(R").

We end this section with a simple but useful formula. If ¢ is the reflection
in the Euclidean sphere S(a, r) then
lo(y) — o(x)| = |(y — a)* — (x — a)*|
=r2[ 1 2Ax-a).(y - a) 1 ]”2
l

y—al® Ix-al’ly—al’  |x-al

r*ly = x|

= m——al, (3.1.5)
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This shows that

. e(x + h) — a(x)] r?
lim =
h-0 [h] [x — al?

and this measures the local magnification of ¢ at x.

ExErcIsE 3.1

1. Show that the reflections in the planes x .4 = 0 and x. b = 0 commute if and only
if a and b are orthogonal.

2. Show that if ¢ is the reflection in x.a = t, then

16()* = |x]* + O(x)
as x| - + .
3. Let ¢ be the reflection in S(a, r). Prove analytically that

(i) ¢(x) = x if and only if x e S(a, r);
(i) ¢*(x) = x;

(i) |x —al.|p(x) —a| = 2
Repeat (with a modified (iii)) for the reflection in P(a, t).

4. Prove (analytically and geometrically) that for all non-zero x and y in R”,
[l ly = x*] = [yl |x — p*|.
5. Show that if ¢, denotes reflection in S(ta, ¢ |a|) then

x> d(x) = lim ¢(x)

1=+

denotes reflection in the plane x.a = 0.
6. Verify the formula (3.1.3).

7. Let m be the stereographic projection of x,, , ; = 0 onto S*. Show that if y € §” then

1
-1 = —— ceey Ypy U
) (1—y,,+1)(y" Y

8. Let ¢ denote reflection in S(e, , ,, ﬁ). Show that ¢ = = on the plane x,, ; =0
and find ¢(H" * ).

9. Show that the map z+ 1 + Z in C is a composition of three (and no fewer) reflec-
tions. (Thus n + 1 in Theorem 3.1.3 can be attained.)

10. Use Theorem 3.1.5 and Definition 3.1.7 to show thatif nis odd andif g€ M (Iﬁ")
has a finite fixed point, then ¢ has an axis (a line of fixed points).
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§3.2. Properties of Mdbius Transformations

We shall show that a Mobius transformation maps each sphere and plane
onto some sphere or plane and because of this, it is convenient to modify our
earlier terminology. Henceforth we shall use “sphere” to denote either a
sphere of the form S(a, r) or a plane. A sphere S(a, r) will be called a Euclidean
sphere or will simply be said to be of the form S(a, r).

Theorem 3.2.1. Let ¢ be any Médbius transformation and X any sphere. Then
¢(X) is also a sphere.

Proor. It is easy to see that ¢(X) is a sphere whenever ¢ is a Euclidean
isometry: in particular, this holds when ¢ is the reflection in a plane. It is
equally easy to see that ¢(X) is a sphere when ¢(x) = kx, k > 0.

Each sphere X is the set of points x in R” which satisfy some equation

glx|> = 2(x.a) +t =0,

where ¢ and 7 are real, ae R" and where, by convention, oo satisfies this
equation if and only if ¢ = 0.
If x e Z, then writing y = x* we have

e—20y.a) +t|y*P=0

and this is the equation of another sphere X,. Thus if ¢* is the map x > x*
then ¢*(Z) « X,. The same argument shows that ¢*(Z,) = Z and so
o*2) =X,

By virtue of (3.1.4) and the above remarks, ¢(X) is a sphere whenever ¢ is
the reflection in any Euclidean sphere. As each Mobius transformation is a
composition of reflections the result now follows. a

Any detailed discussion of the geometry of Mobius transformations
depends essentially on Theorem 3.2.1 and the fact that M&bius transforma-
tions are conformal. A useful substitute for conformality is the elegant
concept of the inversive product (X, X') of two spheres  and X'. This is an
explicit real expression which depends only on ¥ and X' and which is in-
variant under all MGbius transformations. When X and X' intersect it is a
function of their angle of intersection: when X and X’ are disjoint it is a
function of the hyperbolic distance between them (this will be explained
later). Without doubt, it is the invariance and explicit nature of (£, Z’) which
makes it a powerful and elegant tool.

The equation defining a sphere X, say S(a, r) or P(a, t), is

[x[* = 2(x.a) + |a]* = r* = 0,
or

—2(x.a)+ 2t =0,
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respectively, and these can be written in the common form
ao|x|> = 2(x.a) + a,.; =0,

where a = (ay, ..., a,). The coefficient vector of X, namely (a,, a, ..., a,,
a, +1) is not uniquely determined by X but it is determined to within a real
non-zero multiple. Moreover if (ao, ..., a,+ ) is any coefficient vector of £
then (as is easily checked in the two cases)

lal* > aq@nsy.
Definition 3.2.2. Let £ and X' have coefficient vectors (aq, ..., a,+,) and
(bg, - .., by+ ) respectively. The inversive product (X,Z')of £ and X' is

|2(a.b) — agby+1 — ay+1bo|

X, X)= .
O ) = e ot ) P (1B = bobrs )

(3.2.1)

Note that this is uniquely determined by X and X': the bracketed terms
in the denominator are positive and we take positive square roots. If we
define a bilinear form g on R"*2 by

q(x, y) = 2(x1y; + -+ X ¥a) = (XoYns1 + Xns1V0)s

then we can write the inversive product more concisely as

lq(a’, b)]
Z, )= B
&) = (@ D a7
where @' = (aq, ay, ..., a,, a,+ ) and similarly for b'.

It is helpful to obtain explicit expressions for (£, Z') in the following
three cases.

Case . If £ = S(a,r)and ' = S(b, t) then
r* +1t*—la—b)?

N = 3.2.2
(Z,x) o (3.2.2)
Case II.If X = S(a,r) and T’ = P(b, t) then
N la.b) -1
Z.x)= Y (3.2.3)
Case I11. If £ = P(a,r)and &' = P(b, t) then
|(a.b)|
3T = . 3.2.4)
@20 = Tam) (

These formulae are easily verified. Note that in all cases, if £ and X' intersect
then (X, ') = cos 6 where 6 is one of the angles of intersection. In particular,
(%, £) = Oifand only if £ and X' are orthogonal. Observe also that in Case II,

&, X)) = o,
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where & is the distance of the centre of S(a, r) from the plane P(b, t): thus
(Z,X) =0ifand only if a € P(b, 1).
We shall now establish the invariance of (Z, Z’).

Theorem 3.2.3. For any Mobius transformation ¢ and any spheres T and X',
(#(Z), 9(X)) = (£, X).

PRrOOF. A Mébius transformation maps a sphere X to a sphere £’ and so
induces a map

(ao, ala ey apu an+l)H (ab’ alb MR | a:v a;!+1)

between the coefficient vectors (to within a scalar multiple) of £ and X'.
For example, an orthogonal transformation x+ xA = y or R" (and this
includes all reflections in planes through the origin) satisfies

[x]>=|y]%, (x.a) =(xA.ad) = (y.aA)
and so maps the sphere
aolx|* = 2(x.a) + a,., =0
to the sphere
aolyl* = 2y.ad) + a,., = 0.
The induced map between the coefficients is thus
ag > ag, ar> aA, Api1 > Apyq

anditisclear that (3.2.1) is invariant if both coefficient vectors are subjected to
thistransformation. We deduce that (X, X')isinvariant under the map x — xA.

In a similar way, the maps (i) x — kx (k > 0); (i1) x = x*; (lii) x —» x + u
induce the maps:

() (a9, ayy--+» Ay, Gnyy) > (ag, kay, . . ., ka,, k*a, . 1);
(1) (ag, Ayy > Ays Ay 1) > (@pi 15 A1y - -+ 5 Ay Ag);
(ii1) (ag, gy - -y Qys Quy 1) > (A, Ay + AgUys - .- s Ay + Aolhys Anyy

+ 2(a-u) + aglul?).

It is easy to check that (3.2.1) remains invariant under all of these trans-
formations and, as the corresponding Mobius transformations generate the
Moébius group, the proof is complete. Algebraically, one is simply observing
that a Moébius transformation induces a linear transformation with matrix
A on the coefficient vectors and that A leaves the quadratic form g invariant.

d

The proof of the next result illustrates the use of the inversive product in
place of conformality.
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Theorem 3.2.4. Let X be any sphere, o the reflection in ¥ and I the identity
map. If ¢ is any Mdbius transformation which fixes each x in X, then either
¢p=1or¢p=o0.

Proor. First, we consider the case when I is the plane x, = 0 in ®". Let
Y = S(a,r)whereaeZ andr > 0. As v € Z, ¢ fixes 00: thus ¢ maps X' to a
Euclidean sphere, say X" = S(b,t). As aeX we have (£,X) =0 The
invariance described by Theorem 3.2.3 yields (£, £”) = 0 and so b € X: thus
a, = b, = 0. Each point of £ n X' is fixed by ¢, thus

(xp—a) 4 ey — ) =17
if and only if
(1 = b))+ 4 (g g — by )P =12

We conclude that @ = b and t = r: hence ¢ maps X’ onto itself.
Next, we select any x not in X and let y = ¢(x). Now select any a in £ and
let r = |x — a|so x € S(a, r). As ¢ preserves S(a, r), y is on S(a, r) and so

x> = 2(x.a) + |al* = |y[* = 2(y.a) + |al*:

note that this holds for all a in £. Taking a = O we find that |x]| = |y|. As a
consequence of this we find that for all a in Z,

(x.a)=(y.a)

and taking a to be e;,...,e,_; we find that x;=y;, j=1,...,n— 1.
As |x| = |y| we now see that y, = +Xx,: thus ¢(x) (=) is either x or o(x).
As ¢ leaves X invariant, it permutes the components of R* — X and so

¢=1 or ¢=o0.

We can now complete the proof in the general case. First, given any
sphere X there exists a Mobius transformation y which maps X onto the
plane x, = 0: we omit the details of this. Now let ¢ be the reflection in £
and 7 the reflection in plane x, = 0. The transformation Yoy~ fixes each
point of the plane x, = 0 and is not the identity: thus by the first part of the
proof, Yoy ! = 1.

If ¢ is now any Mdobius transformation which fixes each point of £, then
Yoy~ is either I or 5: thus ¢ is either I or o. O

This proof also shows that any reflection ¢ is conjugate to the fixed
reflection #. Thus we have obtained the following generalization of (3.1.4).

Corollary. Any two reflections are conjugate in GM(R").
There is an alternative formulation of Theorem 3.2.4 in terms of inverse

points. Let o denote reflection in the sphere X: then x and y are inverse
points with respect to £ if and only if y = o(x) (and, of course, x = a(y)).
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Now let x and y be inverse points with respect to Z, let ¢ be any Mébius
transformation and let o, be the reflection in the sphere ¢(Z). According to
Theorem 3.2.4, ¢~ '0,¢ = o or equivalently, ¢,¢ = ¢o. This is the same as
saying that for all x, g, maps ¢(x) to ¢(y): thus ¢(x) and ¢(y) are inverse
points with respect to ¢(X). We state this as a second formulation of Theorem
324,

Theorem 3.2.5. Let x and y be inverse points with respect to the sphere ¥ and
let ¢ be any Mdobius transformation. Then ¢(x) and ¢(y) are inverse points
with respect to the sphere ¢(X).

Theorem 3.2.6. The points x and y are inverse points with respect to the sphere
X if and only if every sphere through x and y is orthogonal to X.
ProOF. This is clearly true when X is a plane: it is true in general by the

invariance of both inverse points and orthogonality. 0

We end this section with a brief discussion of cross-ratios. Given four
distinct points x, y, 4, v in R", the cross-ratio of these points is

d(x, u) d(y, v)
d(x, y) d(u, v)’

By virtue of (3.1.3) (the expression for the chordal distance d) we also have

[x,p,u,v] = (3.2.5)

|x —ul-]y — o]

Y 3.2.6
x =yl la =] )

[-xa »u, U] =
with appropriate interpretations (which are completely justified by (3.2.5))
when one of the variables is co.

Theorem 3.2.7. A map ¢: R" — R" is a Mébius transformation if and only if it
preserves cross-ratios.

PROOF. As each M6bius map that changes Euclidean distance by a constant
factor leaves the expression (3.2.6) invariant, it is only necessary to consider
the map x > x*. As (see (3.1.5))

x* — ,,I=lx-—yl
Ix|lyl”

cross-ratios are also invariant under x — x*. It follows that all M6bius maps
preserve cross-ratios.

Suppose now that ¢: R" — R" preserves cross-ratios. By composing ¢
with a Mébius transformation, we see that it is sufficient to consider only the
case when ¢(0) = co. Take four distinct points x, y, u, vin R": as

[OO, Vs u, U]/[X, J, &, U]
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is invariant under ¢, we obtain

[60) = oW _ 19Q) — ¢(@)|

Ix—=yl  Ju-—1]

The restriction that {x, y} n {y, v} = (J is unnecessary (compare each side
with a similar expression for two points a and b chosen to be distinct from all
of x, y, u, v) so ¢ is a Euclidean similarity and so is a Mobius map. O

EXERCISE 3.2
1. Verify (3.2.2), (3.2.3) and (3.2.4).
2. Verify the details in the proof of Theorem 3.2.3.
3. Let 4 be the chordal metric in R". Show that
d(x*, y*) = d(x, y).

§3.3. The Poincaré Extension

Poincaré observed that each Mobius transformation ¢ acting in R" has a
natural extension to a Mobius transformation ¢ acting in R"*! and that in
this way, GM(R") may be regarded as a subgroup of GM(R"*!). This exten-
sion depends on the embedding

X=X = (Xy,..., X, 0), X =(Xq, .00 Xy),

of R"into R"+1,

For each reflection ¢ acting in R”, we define a reflection ¢ acting in
R+ as follows. If ¢ is the reflection in S(a, r), a € R”, then @ is the reflection
in S(@ r): if ¢ is the reflection in P(a, t) then ¢ is the reflection in P(d,r).
If xeR"and y = ¢(x), then from (3.1.1) and (3.1.2)

&(xla-"axmo)= (yla"'yymo): (%:)’ (331)

and it is in this sense that @ is regarded as an extension of ¢. Alternatively, we
can identify R"*! with R" x R! and write (3.3.1) as

$(x, 0) = (¢(x), 0).

Note that @ leaves invariant the plane x,, ; = 0 (this is R") and each of the
half-spaces x,,,; > 0 and x,., < 0: these facts follow directly from (3.1.1)
and (3.1.2).

As each Mébius transformation ¢ acting in R” is a finite composition of
reflections ¢ ;, say ¢ = @, - @y, there is at least one M&bius transformation
&, namely $l - ¢, which extends the action of ¢ to R"*! in the sense of
(3.3.1) and which preserves

H"+l = {(X1,---7xn+1): xn+1 > 0}
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In fact, there can be at most one extension for if \, and y, are two such
extensions, then 5 ', fixes each point of the plane x,,, = 0and preserves
H"*! Thus by Theorem 3.2.4, Y/, = .

Definition 3.3.1. The Poincaré extension of ¢ in GM(R") is the transforma-
tion ¢ in GM(R"*?) as defined above.

Observe that if ¢ and  are in GM(R") with say ¢ = ¢, --- ¢,, and
Y = ¥, - - Y then the Poincaré extension of ¢y is given by

(¢‘/’)~ = (¢1 e ?mipl ot lpk)~

= ¢~’1~"'¢m‘/’1 'pk

= &y,
so the map ¢ — ¢ is an injective homomorphism of GM(R") into GM(R"* 1):
this is a trivial but nonetheless important remark.

We shall now focus our attention on the action of the Poincaré extension

@ in H"*!. First, if @ is the reflection in the sphere S(d, r), ae R", then by
(3.1.5),

13(y) — d(x)| _ r?

ly=xl ~Ix=ally~-al

For the moment, let [¢(x)]; denote the jth component of @(x). As

d(x) = a + ri(x — a)*,

we find that
r’x,
[$(X)]ne: =0+ I—x——__;l—z 33.2)

and this shows that

ly = x|?
Yn+1Xn+1

(3.3.3)

is invariant under ¢.
The reflection ¢ in the plane P(d, t), a € R", is a Euclidean isometry and
moreover,

[cﬁ(x)]n+1 = Xp+1-:

thus (3.3.3) is also invariant under this reflection. We conclude that (3.3.3)
is invariant under all Poincaré extensions. It is a direct consequence of this
invariance that the Poincaré extension of any ¢ in GM(RR") is an isometry
of the space H"*! endowed with the Riemannian metric p given by

ds = ldxl.

Xn+1
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This is our first model of hyperbolic space and p is the hyperbolic metric in
H"*1'. The rich structure of the hyperbolic geometry of (H"*!, p) is now
available as an important tool for studying any subgroup G of GM(R") for
we can form the Poincaré extension of each ¢ in G and thereby study G as a
group of isometries of H"*1.

We shall study the geometry of the hyperbolic plane H? in great detail in
Chapter 7 and some of the results (and proofs) given there extend without
difficulty to H"* . One such result is that if x = se,., and y = te,,, then

p(x, y) = [log(s/t)|,
SO
|x — yl?

cosh p(x,y) =1 + ———.
2Xp41Yn+1

(3.34)

As both sides of (3.3.4) are invariant under all @, we see that this is actually
valid for all x and y in H"**.
In particular, the hyperbolic sphere

{xeH""':p(x,y) =1}

with hyperbolic centre (yy, .. ., y,+ 1) and hyperbolic radius r is precisely the
Euclidean sphere

(x; — )2+ (x, = ¥)? + (Xpu1 — Yasq cOSh r)? = (Jps+ sinh )%
(3.3.5)

In addition to this, we mention that given two distinct points of H"* ! there
is a unique curve y joining them which minimizes the integral

|dx|

yxn+1

such a curve is an arc of a geodesic and the geodesics are the Euclidean
semi-circles orthogonal to R” together with the vertical Euclidean lines in
H"+1.

EXERCISE 3.3

1. Show that if x and y are in H"* ! then
x — y?
sinh? §p(x, y) = lx = )t

Xn+ 1 Vn+ 1

2. Show that if xe H** ! then
COSh p(x’ Ixien + 1) = |x|/xn+ 1

and interpret this geometrically.
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3. Let S be the hyperbolic sphere in H”* ! with hyperbolic centre y and hyperbolic
radius r. Let ¥ denote the reflection of y in the plane x, , ; = 0. Show that

S= {x: Ix -_1_| = tanh(%r)}.
[x = F|

4. Suppose that ¢ e GM(R"* 1) and that ¢ leaves H"* ! invariant. Prove that ¢ is the
Poincaré extension of some iy in GM(R").

§3.4. Self-mappings of the Unit Ball

We have seen that the elements of GM(R") act as hyperbolic isometries of
H"*! and we can obviously transform this situation to obtain other models of
hyperbolic space. We shall now map H"*! onto B"*! and so obtain another
(isomorphic) copy of GM(R") in which the elements leave B"*! invariant.
This new model has a greater symmetry and the point co no longer plays a
special role.

Let ¢, denote the reflection in S(e,, 4, \/i) so that

2 — Cn+
Go(x) = eysy + ])(Cx_ﬁ;—z-

If x e R", then
2(xyy ...y Xy, —1)
1+ |x/)?

o 2x 2x, |x|* =1
T x4 X x4

¢o(i) = €p+y1 T

and this is precisely the formula for the stereographic projection = of R" onto
$"in R"*! considered in Section 3.1.

This realization of stereographic projection as a reflection leads to an
easy proof of the formula for the chordal distance given in (3.1.3). If xe R"
then

Ix — epsr 2 =1+ |x[
and this with (3.1.5) yields (as before)
d(x, y) = (%) — ()|
= |@o(X) — do(I)|

_ 21x = yl
+ XD+ yP7
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Let us now return to the reflection ¢, defined above. If x € R"*! then

4 de,+y.-[x — e,
|¢0(X),2 =1 + . ( +1 [ 2+1])
[X — el [x — eyl
4x,
=1 +m: (34.1)

this shows that ¢, maps the lower half-space x,., < 0 into B"*%.

Now let ¢ = ¢,0 where ¢ is the reflection in the plane x,,, = O: this
maps the plane x,,, = 0 onto " and H"*' onto B"*!. Also, we find from
(3.1.5) that

i 180) = 901 _ | 166(60) = d(ox)]
y=x 1y = x] yox ly — x|
i 190(00) = (e
yox |U(Y) — a(x)|
2

lo(x) — e+, |2'

Now (3.4.1) with x replaced by o(x) gives

1= 16M)* =1~ |¢o(a(x)?
_ 4X,,+1
lo(x) — ey |?

and so we find that

i 190) = 60| _ 1= 16001

y=x |y - xl 2-xn+l

[t now follows from Section 1.6 that the hyperbolic metric p in H"*?! trans-
forms to the metric

_ 2]dx|
ds = = xP

in B"*! and that the isometries ¥ of H"*! transform by y— ¢yo~* to
isometries of B"* ! with this metric. This shows that GM(R") is conjugate in
GM(R"* 1) to the subgroup of GM(R"* ') consisting of those elements which
leave B"*! invariant.

We shall now undertake a study of those Mobius transformations which
leave the unit ball invariant. As there is no longer any need to consider
R"*! we revert to a consideration of the space R”: thus we shall study the
elements ¢ in GM(R") with ¢(B") = B".
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Before proceeding further, we mention that we can derive a formula for
B" analogous to (3.3.4): see Chapter 7. In fact we only need to know that if

x € B", then
_ 1+ |x|

and we leave the details of this to the reader.

Theorem 3.4.1. Let ¢ be a Mobius transformation with ¢(0) = 0 and
¢(B") = B". Then ¢(x) = xA for some orthogonal matrix A.

ProoOF. By Theorem 3.2.5, ¢ fixes oo and, as in the proof of Theorem 3.2.7,
we see that ¢ is a Euclidean similarity. Because ¢ fixes the origin and leaves
S"~! invariant, it is actually a Euclidean isometry. The result now follows
from Theorem 3.1.4. O

It is easy to see that the reflection in the plane P(a, t) leaves B" invariant
if and only if t = O. Better still, this reflection leaves B” invariant if and only
if P(a, t) is orthogonal to S"~! and in this form the statement is true for all
reflections.

Theorem 3.4.2. Let ¢ be the reflection in S(a, r). Then the following are equiva-
lent:

(i) S(a,r) and S"~! are orthogonal;

(ii) @(a*) = 0 (equivalently, ¢(0) = a*);
(iii) ¢(B") = B

PROOF. As

¢(0) = a — ria*
= (lal® = r*)a*

we see that (i) and (ii) are equivalent. The assertion that (iii) implies (ii) is
simply the fact that a and a* map to inverse points with respect to §"~*
(Theorem 3.2.5).

Finally, (i) and (ii) together with (3.1.5) imply that

[¢(x)| = |p(x) — p(a*)]
r?|x — a*|

" |x —al.|a* — al

_ la].1x = a*|

[x — al
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SO
(1 — |x|*)r?
|x — af?

1—[p(x) = (3.42)

and this proves (iii). O

As another application of (3.4.2) we observe that if ¢ preserves B" then

|6(x) — ¢O)I* _ |x — yI? ,
1= 16HA = leMPA) A = [xH(A =y

this follows immediately from (3.1.5) and (3.4.2). In addition, (3.4.3) holds
whenever ¢ is the reflection in a plane P(a, 0) and hence for all Mébius ¢
which preserve B”.

The invariance expressed by (3.4.3) also yields

Lo 190) = 9] _ 1 = ()P

x|y = x| 1~ |x|?

(3.4.3)

and this confirms once again the invariance of the hyperbolic metric in B".
In two dimensions the complex conjugate z of z is available and in our
notation this may be written as

* = 1/z.

The familiar expression |1 — zw| (where z and w are complex numbers)
satisfies

11 —zw| = |z||z* — w|

and this suggests the definition

[y, v] = |u||u* — v| (u,veR").
Observe that
[u, v]? = |ul?|v)> = 2u-v) + 1
=lu—ovP+ (u* = D(v|* - 1) (344)

and this shows that

[u,v] = [v, ul.

The identity (3.4.4) also shows that if |a| > 1 then
- atl
[x, a*]

if and only if |x| = 1. Thus

n—1 __ n.lx—a*lzl
S —{xeR. [x 2]
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and this is the n-dimensional version of the equation

=1

,:—w

1 —zw

of the unit circle in the complex plane.
Finally, we observe that (3.4.4) together with the invariance expressed by
(3.4.3) yields the invariance

[6(x), 6()]* _ [x, y1*
(1=l HA = leMH) A = [xHA = |yP)

(3.4.5)

EXERCISE 3.4

1. Show that for x in B",

(0, x) = log(l + IXI).

1 — x|
Deduce that if x and y are in B” then

Ix — yI?
(1= ]xI1 = |yp3)°

sinh? {p(x, y) =

[Use (34.3).]

2. Let ¢ and ¢ be reflections in the spheres S(q, r) and S(b, t) respectively. Show that
these spheres are orthogonal if and only if ¢(b) = Y(a).

3. Use Questions 1 and 2 to show that if S(a, r) is orthogonal to S(0, 1) and if ¢ denotes
reflection in S(a, r) then

sinh $p(0, ¢0) = 1/r
and, for all x,

[¢(x) — a|.|x — a| = 1/sinh? 3p(0, $0).

§3.5. The General Form of a M6bius Transformation

We shall establish the following characterization of Mdbius transformations.

Theorem 3.5.1. Let ¢ be a Mébius transformation.
(i) If ¢(B") = B" then
#(x) = (6x)A4,

where ¢ is a reflection in some sphere orthogonal to S"' and A is an
orthogonal matrix.
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@11) If ¢(c) = oo then
¢(x) = r(xA) + X0,
where r > 0, xo € R" and A is orthogonal.
(i) If ¢(c) # oo then
o(x) = r(ex)A + x,
Jor some r, x,, A and some reflection o.
Remark. o(x)A denotes o followed by A: the matrix A appears on the right
as we are using row vectors.

ProoF. If ¢ preserves B”, let o be the reflection in the sphere S(a, r) where
a= ¢ '(w)and|a|* = 1 + r2. By Theorem 3.4.2, o (and hence ¢o) preserves
B". By computation, ¢(0) = a* so

9(0(0)) = ¢(a*) = 0,
(because ¢ preserves inverse points): thus ¢(ox) = xA. Replacing x by ox,
we obtain (i).
If ¢ fixes oo then, for a suitable

Vix—(x — xo)/r,

the map ¢ fixes co and B" and hence also the origin. Now (ii) follows from
Theorem 3.4.1. Finally, (iii) follows by applying (ii) to ¢o for a suitable
reflection ¢ mapping o to ¢~ *(c). a

The characterization in (iii) leads to the notion of an isometric sphere.
Suppose that ¢(o0) # oo so that
d(x) = r(ex)A + xq,

where o is the reflection in some sphere S(a, t) and (necessarily) a = ¢~ (o0).
By (3.1.5),

lo(x) = ¢)| = rla(x) — a(y)]
ot lx -yl
Ix —al.ly—al
and so ¢ acts as a Euclidean isometry on the sphere with equation |x — a
=1t, wheret, = t\/;. Indeed,
i 190) = 60|
yox Iy - X'

is greater than, equal to or less than one according as x is inside, on or
outside S(a, t,). For this reason, S(a, t,) is called the isometric sphere of ¢.
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Note that if o denotes reflection in the isometric sphere of ¢ then ¢o fixes
o and also acts as a Euclidean isometry on the isometric sphere. It follows
that the expression in Theorem 3.5.1(ii) must take the form

¢o(x) = xA + xq,
so in general, we see that

d(x) = Yo(x),

where ¢ is the reflection in the isometric sphere and ¢ is a Euclidean isometry.

In the special case when ¢ preserves B", the reflection o in Theorem 3.5.1(i)
must be the reflection in the isometric sphere of ¢ as o and A act as Euclidean
isometries on this sphere. We deduce that in this case, the isometric sphere is
orthogonal to S"~".

EXERCISE 3.5

1. Show that if ¢ preserves B" then the Euclidean radius of the isometric sphere of ¢
is 1/(sinh $p(0, ¢0).

2. Show that if T is the isometric sphere of ¢, then ¢(Z) is the isometric sphere of ¢ ™.

§3.6. Distortion Theorems

We prove two sharp distortion theorems for Mobius transformations.

Theorem 3.6.1. Let ¢ be a Mobius transformation acting in R" and let p be the
hyperbolic metric in H** . Then

d(¢x, ¢y))

= exp p(ep+1, Plns 1)
el dx, y) p ple,+1, Pyt 1)

Remark. This shows that ¢ satisfies a Lipschitz condition on R” with
respect to the chordal metric d and actually exhibits the best Lipschitz
constant in terms of ¢ acting on the hyperbolic space (H"*!, p).

The second result shows that if a family of Mébius transformations omits
two values ¢ and { in a domain D, then the family is equicontinuous on
compact subsets of D: this enables one to develop, for example, the theory of
normal families for GM(R").

Theorem 3.6.2. Let D be a subdomain of R" and suppose that ¢ and { are
distinct points in R". If ¢ in GM(R") does not assume the values & and { in D,
then for all x and y in D,

ddx, ¢y) < 8d(x, y)

d(¢, Dd(x, aD)'d(y, aD)'’*

The constant 8 is best possible.
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Proor oF THEOREM 3.6.1. By reflectingin x,, ., = O and applying stereographic
projection, we may assume that ¢ preserves B *1: now we need to show that

[ox — ¢yl

x,yeSn ‘X - |

= exp p(0, ¢0).

By Theorem 3.5.1(i), the Euclidean distortion under ¢ is the same as the
distortion under the reflection ¢ in the isometric sphere S(a, r) of ¢. This is
maximal (as a limiting value) at the point of S” closest to the centre a of
S(a, r). Thus from (3.1.5),

9) - 60) _ 1
x,yeSn |X—y| (lal - 1)2
_lal +1
la] ~ 1’
because S(a, r) is orthogonal to S" (Section 3.5). Now
la| = |~ (o) = /]9~ 1(0)]
and so the supremum is

1+ 16740
1= 1670

= exp p(0, ¢~1(0))
= exp p(¢0, 0). ]

PrOOF OF THEOREM 3.6.2. Suppose that x and y are distinct points in D and that
« and B are distinct points outside of D. By Theorem 3.2.7, the product

[x, @ 3 B]. [x, B, y, o]

of cross-ratios is invariant under ¢. Thus

PWWT<[mwT[ 16 ]
deey) | = |d@o )] [dx, w)dCx. B0 )y, By

<] 9 w5 [ 9]
= d(@e, ¢B) | [d(x, ) d(x, B)f[d(y, ) d(y, B)
< 64
= d(¢a, pB)*d(x, dD)d(y, éD)’
The inequality follows by writing « = ¢~ *(¢) and B = ¢~ *({).
To show that the constant 8 cannot be improved, consider ¢(z) = z + 2m

acting on C with D = € — {c0, —m}. Clearly, ¢ omits the values oo and
min D and if x = —2m, we have

lim d(¢x, dy) 8

yox d(x,y) " d(co, myd(x, 6D)
asm— + 0. O
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As an application of Theorem 3.6.2, we mention (briefly) the concept
of a normal family. A family & of functions from one metric space (X, d)
to another, say to (X', d’), is equicontinuous on X if and only if for every
positive ¢ there is a positive J such that for all x and y in X and all fin &,

d(fx, fy) < e wheneverd(x, y) < 0.

Each function in an equicontinuous family is uniformly continuous on X
and the uniformity is with respect to f as well as to the pair (x, y).

A family & (as above) is said to be normal in X if every sequence fj, f>, ...
chosen from % has a subsequence that converges uniformly on each compact
subset of X. There is a general result (the Arzela-Ascoli Theorem) which
relates the concepts of equicontinuity and normal families. In the context
in which we are primarily interested, it is sufficient to obtain the following
special case.

Proposition 3.6.3. 4 family & of Mébius transformations of (R",d) onto
itself is normal in a subdomain D of R" if it is equicontinuous on every compact
subset of D.

PrOOF. We only sketch the proof as the interested reader can find a proof of
the Arzela-Ascoli Theorem elsewhere in the literature. Find a sequence
Xy, X3, - .. Which is dense in D. Given a sequence ¢,, ¢,, ...in # we can find
(because R" is compact) a subsequence which converges at x,, then a sub-
sequence of this which converges at x, and so on. By choosing a subsequence
of the ¢, suitably, we can obtain a subsequence which is ultimately a sub-
sequence of each of these chosen subsequences: thus we have constructed a
subsequence which converges at each point x;.

Now take any compact subset K of D and consider any positive &. We
can cover K by a finite number of open balls (in the d-metric) of radius
(corresponding to ¢ in the definition of equicontinuity). Select one point
x; in each: let the selected points be (after relabelling) x,, x,, ..., x,. If
yisin K then d(y, x;) < J for some j and hence

d(¢ny’ ¢my) < d(¢ny’ ¢nxj) + d(¢nxj: ¢mxj) + d(¢mxja ¢my)
< 28 + d(¢nx;j, X))

For n,m > n,, say, the last term is at most ¢ for all x,,..., x,: hence
d(¢ny’ ¢my) < 3¢on K. 0

We can now combine Theorem 3.6.2 and Proposition 3.6.3.

Theorem 3.6.4. Let D be a subdomain of R" and let & be a family of Mébius
transformations. Suppose that for every ¢ in %, there are two points a, Py in
R" which are not taken as values of ¢ in D and suppose that also,

inf d(e,, B;) > 0.
@

Then & is normal in D.
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Remark. We can rewrite the inequality in Theorem 3.6.4 as

inf [chordal diameter ¢(R" — D)] > 0.
¢

ProOF. We simply apply Theorem 3.6.2 with £ = «,,{ = f, and we find that
& is equicontinuous (in fact, it satisfies a uniform Lipschitz condition) on
every compact subset of D. O

Finally, this leads to the following result.

Theorem 3.6.5. Let ¢, ¢,,... be Mdbius transformations and suppose that
®.(x;) ~ y; for three distinct points x,,X,, xy and three distinct points
Y1, V2. Y3 Then ¢y, ¢,, ... contains a subsequence which converges uniformly
on R" to a Mobius transformation.

ProOF. By the deletion of a finite number of the ¢; (which clearly does not
affect the result) we may assume that for each n, i and j (i # j) we have

A(pnx;, dnx)) 2 $d(y;, y) >0.

It follows that the family {¢,, ¢,,...} is normal in each of the sets R" —
{x;, x;} (Theorem 3.6.4) and hence in their union, namely R". Thus there is a
subsequence of the ¢; converging uniformly to some ¢ in R" and by Theorem
3.2.7 (and its proof), ¢ is a Mdbius transformation. O

EXERCISE 3.6

1. Show that a family F of M&bius transformations is normal in ®” if and only if

sup pe, + 15 Py + 1) < + X
¢eF

wheree,,; =(0,...,0, )in H"* ',
2. Prove that if two Mébius transformations are equal on an open subset D of R" then
they are the same transformation on R”. Deduce that if the M&bius transformations

¢, converge uniformly to I on some open subset of ", then they converge uniformly
to I on R

§3.7. The Topological Group Structure

There are several ways to give GM(R") the structure of a topological group.
The simplest construction is to observe that the elements of GM(R") map
the compact space R” onto itself so

D(¢, ¥) = sup{d(¢x, ¥x): xe R},

(where d is the chordal metric on R") is a metric on GM(R™. Clearly, ¢, — ¢
in this metric if and only if ¢, — ¢ uniformly on R".
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Theorem 3.7.1. GM(R") is a topological group with respect to the topology
induced by the metric D.

PrROOF. From Theorem 3.6.1, we see that for each ¢ in GM(R") there is a
positive constant ¢(¢) such that for all x and y we have

d(@x, py) < c(@)d(x, y).
Clearly, for any ¢,, ¢, and  we also have

D(¢1!//s d’z‘ﬁ) = D(d’ls ¢2)a

SO

D(¢y, ¢1¥1) < D(oY, 1Y) + D(d1¥, $,¥1)
< D(, ¢1) + c(d)DW, ¥y).

This shows that the composition map (¢, ¥) — @ is continuous at (¢;, ;).
Similarly, the map ¥~ ! is continuous at ¢ as

D@~y =D~ Y, 1)
< c(¢™ DY, ¢). O

For a different construction of the same topology we proceed as follows.
The group GM(R") is conjugate in GM(R"*!) to the group GM(B"* 1) of
all Mébius transformations preserving B**!. If ¢ in GM(R") corresponds
to ¢, in GM(B"*!) then (by definition of the chordal metric)

D(¢, ¥) = sup{|$sx — ¥, x|: x e S"}.

Thus we may consider GM(B"*?) instead of GM(R") with the metric (which
we continue to denote by D) of uniform convergence in Euclidean terms on S"
and the conjugation is then an isometry between GM(R") and GM(B"*1).

For each non-zero a in B"*! let o, be the reflection in the sphere with
centre a* that is orthogonal to S”: thus ¢, preserves B"*! and ¢,(a) = 0.
Also, let 7, denote the reflection in the plane x . a = 0. Then, defining T, to
be the composition 7,0,, we find that the isometry T, of B"*! leaves the
Euclidean diameter through a invariant and T,(a) = 0. We call any isometry
T, constructed in this way a pure translation: if a = 0 we define T, to be the
identity.

Lemma 3.7.2. (i) The map ¢ — ¢(0) of GM(B"*!) onto B**! is continuous
(ii) The map a v T, is a homeomorphism of B"*! onto the set of pure transla-
tions.

Proor. To prove (i) we suppose first that D(¢,, I) < &. Each Euclidean
diameter L; of B"*! is mapped by ¢, to a circular arc ¢,(L;) (orthogonal to
S™ in B"*! whose end-points are at most a distance ¢ from those of L i We
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deduce that the Euclidean cylinder C; with axis L; and radius of cross-section
¢ contains ¢,(L;). Thus

¢,(0) = ﬂ éu(L))
c O Cj
={xeB"" ' |x| <e).

This shows that if ¢, — I uniformly on S", then ¢,(0) — 0: in fact,

16.(0)] < D(¢y, D).

Suppose now that ¢, — ¢ (as GM(B"*!') and B**! are metric spaces,
it is sufficient to consider sequential convergence). From Theorem 3.7.1
we have ¢~ '¢, — I:thus (fromabove) ¢ ~*¢,(0) — Oand hence ¢,(0) — ¢(0).
This proves (i).

To prove (ii) observe first that the map T, T ! is continuous (Theorem
3.7.1). By (i), the composite map

T—T: =T 0),

namely, T, q, is continuous.

It remains to prove that the map a+— T, is continuous: explicitly, as
b —aso T, » T, uniformly on §". We have explicit formulae for ¢, and 7,
and the continuity follows from straightforward (if tedious) estimates: we
omit the details. a

We know from Theorem 3.5.1 that every element ¢ of GM(B"*!) can be
expressed uniquely as

P(x) = (9,x)4,

where a = ¢~ !(0) and A is an orthogonal matrix (A4 acts after ¢,: it appears
on the right because we are using row vectors). It follows that we can also
write (uniquely)

O(x) = (T,x)4,,

where 4, (namely, 7, followed by A) is also an orthogonal matrix and this
description establishes a natural bijection between GM(B"**) andO(n + 1)
x B**! by the correspondence

¢ (44,0, a= ¢ 0)

Now the group O(n + 1) of orthogonal matrices is itself a metric space.
First, there is the natural metric

1/2
I(aij) - (bij)l = I:Z (aij - bij)z] s
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and second, there is the metric D induced by regarding O(n + 1) as a subset
of GM(B"*!). In fact, these metrics yield the same topology because if 4 =
(a;;),B=(b;;),C = A — Band xisonS", then

D(A, B)? = sup |x4 — xB|?

|x|=1

n
=sup D (xi¢p;+ o0+ Xu0,)°
IxI=1 j=1

o £ (14)(3,9)

Ixj=1 j=1 \i=1

= |4 - BP

< nD(A4, B)*.

The space O(n + 1) x B**! now inherits a natural product topology and
we have the following result.

Theorem 3.7.3. The bijection ¢ — (A, a) is a homeomorphism of GM(B"*1)
ontoO(n + 1) x B"" 1,

PRrOOF. The proof consists of repeated applications of Theorem 3.7.1 and
Lemma 3.7.2. First, ar T, is continuous, hence so is the map (4,, a) —
(A, T). Also the map of (4,, T,) into their composition, namely ¢, is
continuous thus so is the map (4 4, a) — ¢.

Next, ¢ a(= ¢~ '0)iscontinuous, asare themapsa — T,and T, T, ':
thus ¢+ T, ! is continuous. We deduce that the composition

¢ (6, TS ¢T. " = 4,

is continuous, hence 5o is ¢+ (4, a). O

Remark. Theorem 3.7.3 simply means that the topology on GM(B"*?)
induced by the bijection from O(n + 1) x B"*! coincides with the topology
induced by the metric D. As GM(R") has been identified isometrically with
GM(B"*), this result provides a new construction for the topology induced
on GM(R") by the metric D.

For our third and final construction of the topology we need another model
of hyperbolic space.

Definition 3.7.4. Let Q be the hyperboloid model defined by
Q= {(xp,.--» X)) ER" 12 q(x, x) = 1, xy > 0},
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where
q(x, y) = xoyo — (X 1)1 + -+ + X, V0.

Observe that Q is one sheet of a hyperboloid of two sheets and that if
x € Q then
xg=1+4 61+ +x7),

so, in fact, x4 > 1.
Now let y = (yq, - - ., 7,) be any smooth curve on Q. Thus for all r,

o) = 71(0)7 + -+ (1) + 1,
so differentiating,
Yo(t)Po(t) = y1()P1() + -+ + ya()9a(0),
(more briefly, g(y, y) = 1 s0 ¢(y, ) = 0). We deduce that

q(v,v)=(y11 . ) -G+ 49
0

< Q@D He = XD
= = i

<0,

the summations being overj = 1, ..., n. Observe also that a strict inequality
holds unless 3, = --- = 7y, = 0 in which case, 7, = 0 also. It follows that we
can construct a metric on Q in the usual way by the line element

ds? = dx} + -+ + dx? — dx3, (37.1)

the distance between two points on Q being the infimum of
[r=at. 2 ae

over all curves joining the two points. The associated metric topology is the
Euclidean topology on Q. We shall now compare Q and this metric with the
model B" and the metric

4 dx?

ds? = %
ST E

(3.72)

Theorem 3.7.5. The map

Xy Xn
Fi(xg,...,Xx,)— yeens
(*o ) (1+x0 1+xo>

is an isometry of Q with the metric (3.7.1) onto B" with the metric (3.7.2).
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PrOOF. For brevity, we write

. xl xn
D1 -0 V) (1 +Xo""’1+x0)

and denote the vectors by x and yin the obvious way. As x € Q, a computation
yields

xo— 1
Xo+ 1

Iy = (3.7.3)

kl

so0 < |y| < 1 and F maps Q into B".
By direct computation we find that the map

1+ |yP 2y
_lz(yh_”,yn)H( +1yP 2y ""1fyl"v|z> (3.74)

1=y 1=y
is indeed the inverse of F and so F is a bijection of Q onto B".
To verify that F is an isometry, we observe that

dx; x;dxo

1+ x, I+ x0)7

Thus, using this and (3.7.3) we have

4dy} + - + dy2) ) - ( dx; x; dxq )2
1+ xq) L
Tonrr =0 T T Ty
" dx} n 251 x;dx;) dxo
— d? _ #*0 Jj J Y
,; 5 T xo 2 Z (1 + xo)
. X0 — 1 dxq d(x% — 1)
=Y dx? 07 Y gx2 - 20t T
,-; X (x0+ 1) *o 1+ xo
=3y dx} — dxd. a

1]
—

J

It isnow clear that the group G(Q) of isometries of Q and the group GM(B")
of isometries of B" are isomorphic by virtue of the relation

GM(B") = F(G(Q))F .
Our aim now is to prove an alternative characterization of G(Q) and hence
of GM(B").

Theorem 3.7.6. The isometries of Q are precisely the (n+ 1) x (n + 1)
matrices which preserve both the quadratic form q(x, x) and the half-space
given by xo, > 0.

ProoF. First, let A be any matrix with the prescribed properties. As x, > 0
is preserved and as

q(xA, xA) = q(x, x) = 1,
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when x € Q we see that A preserves Q. Moreover, for any curve y on Q, let
[ =9A.Then ' = j4 so

a(I, 1) = 4(7, )

and this simply expresses the fact that y and y4 have the same length. Thus
each such 4 is an isometry of Q onto itself.

It remains to show that every ¢ in GM(B") is of the form F(A)F~! for
some such matrix A and to do this, we simply compute the action of F(4)F ~!
on B". Suppose then that 4 = (g;;) where i, j = 0, 1,..., n. With the obvious
notation, we write

1>+ ) {;l(uo,“u--w“n)
& (Vgs U1y v v s Up)
s Wy, ooy W),
Now
(Voo -y V) = (Ugs - .., U)A,
SO

Vj = Ugdgj + -+ Uy

Using (3.7.4), this yields
(1= 1yPj =1+ [yPag; + 2(vias; + -+ + yady)).
Thus

_ (1 = |y*w;
(I =1y + (1= [y,

_ (1 + |}’|2)a0j+2()’1a1j+ o Puly)
1y1P(@oo — 1) + 2(y1a50 + =+ + Yalno) + (ago + 1)

(3.7.5)

and this is the explicit expression for the map F(A)F ™.
If A, is an orthogonal » x n matrix (viewed as an isometry of B"), then

preserves g and the condition x, > 0. In this case, (3.7.5) yields w = yA,
and so every isometry of B" which fixes the origin does arise in the form
F(A)F 1. ,
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It is only necessary to show now that the reflection in the sphere S(¢, r)
orthogonal to "~ ! is of the form F(A)F ~'. Because orthogonal transforma-
tions are of this form, we need only consider the case when ( is of the form
(5,0,...,0). It is actually more convenient to introduce another positive
parameter t with

cosh t
sinh t

{ = (c(2),0,...,0), c(t) =
and

r = 1/sinh ¢,

so the orthogonality requirement || = 1 + r? is satisfied.
Consider now the matrix

cosh 2t sinh2t 0 --- O
—sinh 2t —cosh2t 0 --- 0
P= 0 0
In—l
0 0
observe that det(P) = —1 and that P preserves both the quadratic form

q(x, x) and the half-space x, > 0. The effect yr—w of F(A)F~! on B" is
given by (3.7.5) and the denominator of this expression can be simplified
as follows:

1y*(@go — 1) + 2(y1a10 + -+ + Ynno) + (ago + 1)
= 2|y|? sinh? t — 2y, sinh(2t) + 2 cosh? ¢
= 2|y — {|* sinh? ¢
=2|y— ¢}/

Now forj = 2, ..., n the formula (3.7.5) yields

— ”zyj
Vit T

Also,
_ (1 + |y[?) sinh(2t) — 2y, cosh(2t)
b 2|y — {|? sinh? ¢

_sinh@0)[|y — {2 + 1 — [ + 2(y. )] — 2y,[2 cosh? 1 — 1]
N 2|y — ¢{|?sinh? ¢

r2

=c(t) + =P 1 — (1))
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This proves that F(P)F ™! is
yel+ iy = 0%
that is, the reflection in S((, r). O
In view of Theorem 3.7.6, we examine briefly the group O(1, n) of matrices
which preserve the quadratic form g(x, x). If A € O(1, n), then
q(x, x) = q(x4, xA4),

so
AJA' = J, (3.7.6)
where
1 0 -0
J = 0 =1,
0

We deduce that det(4)? = 1: the subgroup of O(1, n) with determinant 1 is
SO(1, n).

Next, we show that the set of matrices 4 in O(1, n) with aqo > Oisalsoa
subgroup. We denote this subgroup by O*(1, n) with

SO*(1,n) = SO(1,n) ~n O*(1, n).

Suppose that the matrices A, B and C satisfy ago > 0, by > 0and C = AB:
then

Coo = ooboo + -+ + Aonbao
2 agoboo — lagibio + -+ + Goubuol
> agoboo — (@§y + -+ + ag)?(bio + - -+ + b))

Because of (3.7.6), we have
(00> — a0y -+ -» —aon) - (@005 Go1s - -+ Aon) =1,
50
ago =a3, + - +ad, + 1.
Taking the transpose of both sides of (3.7.6) after replacing A with B yields
b3o =bio+ -+ bk + 1,

S0 Cgp > 0.
Finally, the inverse of 4 (=(a;))) is (JAJ)' because

A(JAJY = AJAYJ
=J?
=1
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Thus A— A™" preserves the condition a59 > 0 and so O*(1, n) is indeed
a group. Observe that an element 4 of O(1, n) leaves the hyperboloid of two
sheets {x: g(x, x) = 1} invariant: the component Q is A-invariant if and onl Y
if agy > 0.

We have proved that the isometries of Q are precisely the elements of
O7(1.n) and that in the isomorphism 4 — F(A)F™' of O*(1, n) onto
GM(B") the subgroup SO*(1, n) corresponds exactly to the directly con-
formal elements of GM(B") (in the proof of Theorem 3.7.6, each reflection
corresponds to a matrix of determinant ~ 1). We can now induce a topology
on GM(B") by transferring the natural topology from O*(1, n) to GM(B™)
and it is not hard to see that convergence of matrices in O *(1, n) correspond s
exactly to uniform convergence on $"~': thus this topology agrees with
those previously constructed. Reverting back to GM(R"), we have proved
the following result.

Theorem 3.7.7. GM(R") with the topology of uniform convergence in the
chordal metric is isomorphic as a topological group to the group O* (1, n + 1 )
of matrices.

In particular, if we identify R? with the extended complex plane, then
M(R?) is (as we shall see) the class of complex M0bius transformations

az+b
Z

a+?o —b
cz+d’ ad ¢#0,

and this is isomorphic to the Lorentz group of matrices preserving both the
quadratic form x? + x} + x2 — t? and the inequality ¢ > .

EXERCISE 3.7

1. Show that if the M&bius transformations ¢,, preserve B"* ' and if ¢, — I uniformly
on some relatively open subset of $" then ¢,, — { uniformly on B"*' and on S”.
[Identify S with R" and consider convergence on R” first.]

2. Suppose that n = 2 50 that Q in Definition 3.7.4 lies in R3. Show that the geodesics
in B? through the origin correspond via F and F~! to the intersections of Q with
certain planes through the origin in R>.

§3.8. Notes

For recent treatments of Mébius transformations in R, see [5], [101] and
[110]: for shorter works see (for example) [3], [33] and [108]. A more
algebraic treatment based on quadratic forms is given in [19]. Theorem
3.1.5 is well documented: see, for instance, [36], p. 133.
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The inversive product (Section 3.2) is discussed in [7], [21], [22], [110]:
it can be derived from the metrical theory of the hyperboloid model (see
[110]).

It is known that the only (smooth) conformal maps in R” (or in part
of R") are the Mobius transformations: this is due originally to Liouville
(1850) and has been considerably extended since then (by diminishing the
degree of smoothness required). For further information see [105], pp. 15
and 43 and the references given there; also, see [88].



CHAPTER 4
Complex Mobius Transformations

§4.1. Representation by Quaternions

In this chapter we shall examine the action of Mobius transformations in
R? and their extensions to R, We identify R? with the complex plane C and
the algebraic structure of C then allows us to express the action of Mobius
transformations algebraically. We shall also identify (x, y, t) in R® with the
quaternion

x+ yi +tj (4.1.1)

(Section 2.4): this enables us to express the Poincaré extension of a Mobius
transformation in terms of the algebra of quaternions. The extended complex
plane Cis C U {00} and this is identified with R2. In terms of quaternions,

H3={z+1t:zeC,t > 0}

and the boundary of H? in R3is C.
Mébius transformations are usually encountered first as mappings of
the form

_az+b

Ccz+d

where a,b,c and d are given complex numbers with ad — bc # 0. This

latter condition ensures that g is not constant: it also ensures that ¢ and d

are not both zero and the algebra of C then guarantees that g is defined on

Cifc=0o0ron C — {—d/c} if ¢ # 0. Now define g(c0) = o0 if ¢ = 0 and
g(—djc) = co,  g(o0) = a/c

if ¢ # 0. With these definitions, g is a 1-1 map of C onto itself. In addition,
g~ ! is of the same form.

g(2) (4.1.2)
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Any finite composition g, --- g, of these maps can be computed alge-
braically and the resulting map, say ¢, is again of the same form. Note,
however, that the algebra is only valid on the complement of some finite
set Esog = g,--- g,on C — E. Each map of the form (4.1.2) when extended
as above, is a continuous map of C onto itself (here, continuity is with respect
to the chordal metric) and so by continuity, g = g, - -- g, on C. These facts
(which are left for the reader to check) show that the class # of maps of
the form (4.1.2) is a group under the usual composition of functions. We
must now show that .# = M([R?), the class of orientation preserving Mobius
transformations of C onto itself.

In the case of dimension two, the reflections (3.1.1) and (3.1.2) are both

of the form
— gi+—b, ad — be # 0.
cz+d

The composition of two such maps is in ./ (again, we use algebra first and
then appeal to continuity) and so M(R?) = .Z.
Now suppose that g is in . and is given by (4.1.2). If ¢ = 0 then g is
either a translation (if a = d) or a rotation and expansion, namely,
9(2) = a + (a/d)(z — @),

about some o. In both cases, g is a composition of an even number of
reflections and so is in M(R?).
Now assume that ¢ # 0. The isometric circle Q, of g is (see Section 3.5)

Q,=1{zeC:lcz + d| = |ad — be |12}
the significance of this lies in the fact that if z and w are on Q, then

(ad — be)(z — w)
(cz + d)(cw + d)

This property is also shared by the reflection ¢ in Q, and so also by ¢ where

= |z — w|.

l9(z) — g(w)| =

¢ = go.
Now
_ ~d  |ad = bc| (z + dJc)
=TT T djeP
and so
¢(2) = g(o(2))
_as(z) + b
T co(z) + d

_a[ca(z) + d] — (ad — bc)
- clco(z) + d]
= (a/c) — (u/c|u|)cz + d), 4.1.3)
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where u = ad — bc. Any map
z> oz + P, la] =1,
is a composition of an odd number of reflections so again, g € M(R?). This
shows that .# = M(R?). )
We shall use the notation .# in preference to M(R?) for the remainder
of the text. Also, there are many arguments which, strictly speaking, depend

on an algebraic computation followed by an appeal to continuity: we shall
not mention this again. The next result is well known.

Theorem 4.1.1. Let z,, 25, z5 be a triple of distinct points in C and let w,, w,,
wy be another such triple. Then there is a unique Moébius transformation
which maps z,,2,, 23 to Wy, W,, wj respectively.

We come now to the representation of g in (4.1.2) in terms of quaternions.
The quaternion (4.1.1) is z + tj where z = x + iy and the Poincaré extension

of g is given by

(az + b)(cz + d) + aét® + |ad — bl
lez + d|? + |c|*? '

Observe that this agrees with (4.1.2) if ¢t = 0. We shall verify (4.1.4) when

¢ # 0: the case ¢ = 0 is easier and the proof is omitted.

The Poincaré extension of ¢ is the reflection in the sphere in R* with
the same centre and radius as Q,: thus the action of ¢ in R? is given by

L —d lad — be| (z + (d/c) + t))
D= T 2 r @ + P

9z +t) = (4.14)

—d
=——-+!—u—|(cz+d+ ctj),
c cv

where
u=ad — b, v=lcz+d*+ |c|*t
It is convenient to write
o(z + tj) =z, + t4J,
SO

E:—l (cz + d), t

|u|t

czy+d= —_—
v

(4.1.5)

The Poincaré extension of g is found by composing the extensions of ¢
and ¢. The extension of ¢ is given above and the extension of ¢ (and of any
Euclidean isometry of C) is given by

o(w + 5j) = (w) + 3.
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Thus
9(z + 1j) = ¢(a(z + 1))
= ¢(zy + 1))
=¢(zy) + 11
and using (4.1.3) and (4.1.5) this simplifies to give (4.1.4).

If ad — bc > 0 we can describe the action of g in R? through the algebra
of quaternions. Indeed,

[a(z + tj) + b].[c(z+ tj) +d)]" ! = [(az + b) + atj]. [(cz + d) + ctj]™!
[(az + b) + atjllcz + d ~ t¢f]
lez +d* + |ct]?
(az + b)(cz + d) + aét® + (ad — be)tj
lcz + d* + |c]’t?

and this is g(z + tj) precisely when ad ~ bc > 0. R
It is possible to write each transformation in GM(R?®) in terms of
quaternions. For example, the function
fwy=w=pw+n7Y, w=z+1j (4.1.6)

is the reflection in x; = 0 followed by reflection in S(es, f ) (note that

e; = j). In fact, f maps H> onto B> and the restriction of fto C is simply the

stereographic projection discussed in Section 3.1. In general,
fe+t)=C+-10)c+0+11)7"

_ G+ [ = 1)E - [t + 11))J
[z + (t + 1)?

?

which simplifies to
2z 4+ (|z]* + 12 = 1))
[z + (t + 1)?

For t = 0 this gives the formula for stereographic projection on C: it also
shows that f(j) =

(4.1.7)

fe+1)=

Exercise 4.1
1. Let g be given by (4.1.2) with ¢ # 0. Prove

(i) di(gz, a/c) > O as d,(z, ©) - 0;
(ii) dy(gz, 0) > 0 asd,(z, — d/c) » 0

where d, is the chordal metric on €.

2. Let g be given by (4.1.2) and (4.1.4) with ad — bc = 1. Show that g(j) = j if and only if

(" b)eSU(z, o).
c d
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3. Show that the Poincaré extension of any Euclidean isometry g is given by
gz + tj) = g(z) + 4.

Describe the action on H? of a Euclidean isometry g of € which fixes j in K3,
4. Show that in terms of quaternions, the reflection in S(«, r), . € R, is given by
wi— (aw + b)(cw + d)™!
for some suitable a, b, ¢ and d where # = z ~ tj whenw = z + tj.

5. Let g be given by (4.1.2) with ¢ # 0. Show that for quaternions w and w’ of the form
x +iy + 1,
glw) — g(w') = (ad — bey(we + d)™Hw — w)(ew' + d) 1.

Deduce that if ad — bc = 1, then g acts as a Euclidean isometry on the sphere
S(—dje, 1/|c]) in R3.

§4.2. Representation by Matrices

Any 2 x 2 matrix 4 in GL(2, C) induces a mapping g in .# by the formula

A — g, where
a b az +b
4= (c d)’ 94(2) = cz+d

We denote the map 4 — g, by ® and this maps GL(2, C) onto .#: we shall
say that A projects to or represents g ,.
An elementary computation shows that

9495(2) = gusz), zeC,

where AB is the matrix product and so @ is a homomorphism. The kernel
K of ® s easily found for 4 € K if and only if

az+b
=z
cz+d

forallzin €. If 4 € K we take z = 0, o0 and 1 and find that

a 0
A—(O a)’ a# 0.

Clearly any matrix of this form is in K and so

K= Ker(D:{(a O):a ;eo}.
0 a

In particular, # is isomorphic to GL(2, C)/K: in less formal language, g _4
determines the matrix A to within a non-zero multiple.
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In general, we shall be more concerned with the restriction of ® to SL(2, C).
The kernel of this restriction is

Ko=KnSL2,C) = {I, -1}

and each g in 4 is therefore the projection of exactly two matrices, say 4
and ~ A, in SL(2, C). We deduce that .# is isomorphic to SL(2, C)/{I, —I}.
The two functions
tr¥(4) l4?
det(A4)’ |det(A)|

are invariant under the transformation 4 — A4, 1 # 0, and so they induce
corresponding functions on .#, namely

A e GL(2, C),

2 tr?(A4)
trace*(g) = det(A) 4.2.1)
and
A
lgll = —2)

|det(A)|*/?

where A is any matrix which projects to g.We often abbreviate trace?(g) to
tr’(g); also, we use |trace(g)| for the positive square root of |tr¥(g)|. These
functions are of great geometric significance: we shall consider ||g|| now and
discuss tr’(g) in Section 4.3. Observe, however, that trace(g) is invariant
under any conjugation g — hgh™!.

Theorem 4.2.1. For each g in M, we have
lgli* = 2 cosh p(j, gj)-

PRrOOF. Write
az + b
g(z) o d ad — bc
then by (4.1.4) (with z = 0 and t = 1),
o, (bd + ad) +j
90 =Terrar

According to (3.3.4),if {; = z, + t;jand {, = z, + t,J, then

lzy — 2, 1> + (t; — t,)?
2,8,

+ 1 = cosh p({;, {2).
The result now follows by substituting z; = 0,t; = 1 (so {; = j), {, = g(j)
and using the identity

|bd + azl? + 1 = |bd + a¢|* + |ad ~ bc|?
= (lal* + 61l c|* + 1dP). O
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We have already seen from (4.1.7) that
fwy=w—=pw+N7Y  w=z+1j (4.2.2)

is the reflection in C followed by the reflection in S(j, \/5) and that this
transforms the hyperbolic metric in H? to the metric

_ 2]dx|
T 1—|x]?

ds

in B3. As another illustration of the use of quaternions let us consider an
alternative proof of Theorem 4.2.1, this time the computations being carried
out in B*.

SECOND PROOE. Let w = g(j) and { = f(w) so { € B®. Now for any quater-
nions « and S,

Bl = lallBl, a7t = o]
and so
) @+ bXT + D =l
[(aj + b)cj + d)™ 1+l
_l@j+b) —jcj + Dliej + )|
[(aj + b) + jlej + d)|I(cj + d) !
_ b +8) + (a—d)jl
TG -+ @+ DI
Thus
P = b+e&)b+c¢)+(a—d)a—d)

T b=80B—c)+ (a+d)a+d)
_lgl* + (be — ad) + (bc — ad)
Igl* + (ad — bc) + (ad — be)
_lgl? -2
lgl* + 2
Using p for both the metric in H* and the metric in B3, we have

p(, 9()) = p(S (), f(9())

(423)

= p(0,{)
g Lt 10l
-

Writing p for p(j, g(j)) and using (4.2.3), this gives
2coshp=e’ +e” "
2L+ LB

R

= |igl>. O
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We can now review Theorems 2.5.1 and 2.5.2 in the light of the geometric
action of Mobius transformations. Suppose that

a b az+b
(0 et

where A is in SL(2, C) and suppose also that fis given by (4.2.2).

Theorem 4.2.2. The following statements are equivalent.

(1) AeSU(2, C);
(i) g() = j;
(ii)) fgl* = 2;
(iv) fgf ~! is a linear orthogonal transformation;
(v) g is an isometry of the chordal metric space (@, d).

PrOOF. The equivalence of (ii) and (iii) is a direct corollary of Theorem 4.2.1.
As A € SL(2,C) we have |4]* = ||lg||*> and the equivalence of (i) and (iii)
is a direct consequence of Theorem 2.5.1.

Next, (ii) is equivalent to

f9s70) =0

and by Theorem 3.4.1, this is equivalent to (iv).
Finally, the equivalence of (i) and (v) is established by observing that g
is an isometry if and only if for all z,

l9'"()] 1

L+ 197 1+ 12>
Thus (v) holds if and only if for all z,
1+ |z)?> =|az + b]® + |cz + d|?,

or, equivalently,
1+ 1z]2 = (Jal* + |c®)|z]* + (161> + |d]*) + 2 Re(ab + cd)z.
This is equivalent to
lal> + |c]* = b + ]d]2 =1
and
ab+cd =0,

which, in turn, is equivalent to 4’4 = I and this is (i). O

Of course, Theorem 4.2.2 shows that the classical symmetry groups of
the regular solids (embedded in B®) correspond to the finite subgroups of
SU(2, C): indeed, each rotation of B is represented by a Mébius g derived
from a matrix in SU(2, C) and the symmetry groups can be realized as finite
Moébius groups.
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EXERCISE 4.2
1. Show that if g(j) = w + sj then
lgl? = (Iw]* + s + 1)/s.

2. Let a subgroup I of SL(2, C) project to a subgroup G of .#. Show that if I' is discrete
then for any compact subset K of H?, g(j) € K for only a finite number of g in G.

3. Show that if a matrix 4 in SL(2, C) is of order two then 4 = | or —I. Deduce that
if B is a matrix in SL(2, C) representing a M&bius transformation of order two, then
B is of order four.

4. Show that g: z+— —z is not the projection of any matrix in SL(2, R). Verify that the
projection of SL(2, R) consists of those Mébius transformations which preserve the
extended real axis and the upper half-plane in C.

5. Show that the transformations

3z~1 2z~ 1
; 2 ]
7z ~ 2 7z -3

Iz, Zb=

2z — 1 z 3z-1
= —— Z s Z+
3z-2

52 —17 T8z —3

form a group. Show that there is a unique point w + tj in H? fixed by every element
of this group and describe the corresponding group of rotations in R>.

§4.3. Fixed Points and Conjugacy Classes

We begin with a brief discussion of the relationship between certain alge-
braic concepts and some geometric ideas concerning fixed points. Initially,
the discussion will be quite general and there is no advantage to be gained
by restricting ourselves to Mobius transformations (indeed, such a restriction
may even deflect the reader from the central ideas).

Let X be any non-empty set. A permutation of X is a 1-1 mapping of X
onto itself: for example, a reflection in a sphere is a permutation of R". The
fixed points of a permutation g are those x in E which satisfy g(x) = x: if
this is so we say that g fixes x.

If G is any group of permutations of X then the stabilizer G, (in G) of x
is the subgroup of G defined by

G, ={geG:g(x) = x}.
Finally, the orbit (or G-orbit) G(x) of x is the subset of X defined by
G(x) = {g(x)e X:g € G}.

Observe that there is a natural one-to-one correspondence between the set
G/G, of cosets and the orbit G(x). If g and h are in G, then h(x) = g(x) if and
only if hG, = gG, and this shows that the map hG +— h(x) is both properly
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defined and one-to-one. It clearly maps G/G, onto G(x) and this is the
required correspondence. The same facts show that the coset hG, is the
complete set of g in G which map x to h(x).

Two subgroups G, and G, of G are conjugate if for some h in G,
Gy = hG h™'. As g fixes x if and only if hgh ™! fixes h(x), we see that

Gh(x) = thh— l:

thus if x and y are in the same orbit then G, and G, are conjugate.

Conjugate subgroups are, of course, isomorphic; however, they are also
the same from a geometric point of view. This is not necessarily true of
isomorphic subgroups, for example, the groups generated by z+ z + 1 and
z+> 3z are isomorphic but have quite different geometric actions. We are
primarily interested in the geometric action of subgroups of .# and we shall,
in general, state our results in a form which remains invariant under conjugation.

Now let F, be the set of fixed points of g. If gh = hg then

g(Fy) =F,, h(F,) =F, 4.3.1)
This is clear for if x € F), then

h(g(x)) = g(h(x)) = g(x)

and so g(x) € F,: thus, g(F,) < F,. Replacing g by g~ ! we obtain g(F,) = F,
and (similarly) h(F,) = F,. We shall see later (Theorem 4.3.6) that the
converse is also true when G is a group of Mobius transformations. R

We return now to study the transformations in .#. In its action on C,
a Mobius transformation g has exactly one fixed point, exactly two fixed
points or is the identity. This provides a rather primitive classification and
we can obtain a finer classification based on the fixed points in R2. This new
classification is invariant under conjugation and so there is a still finer
classification, namely the classification into conjugacy classes. One of our
main results is that the function tr? defined by (4.2.1) actually parametrizes
the conjugacy classes.

It is convenient to introduce certain normalized M&bius transformations.
For each non-zero k in C we define m, by

m z) =kz (@(fk #1)
and
my(z) =z + 1:

we call these the standard forms. For future use, note that for all k (including
k=1),

tr’(m) = k + ;{- + 2. 4.32)

If g(#£1) is any Mobius transformation then either g has exactly two

fixed points o and B in C or g has a unique fixed point « in C (in this case,
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we choose f to be some point other than a). Now let h be any M&bius trans-
formation with

h(@)=c0,  h(B) =0, hg(P) =1 ifg(p)+p,

and observe that

o) — —1m _ 10 ifg(B) =B,
hgh™'(o0) = o, hgh~1(0) {1 if 4(B) % p.
If g fixes « and B, then hgh™! fixes 0 and oo and so for some k (k # 1), we
havehgh™! = m,.1f g fixes o only then hgh ™! fixes co only and hgh~'(0) = 1:
thus hgh™! = m,. This shows that any Mébius transformation g (#1) is
conjugate to one of the standard forms m, and this leads to a simple proof of
of the next result.

Theorem 4.3.1. Let f and g be Mdbius transformations, neither the identity.
Then f and g are conjugate if and only if tr®(f) = tr?(g).

For brevity, we use ~ to denote conjugacy in ..

Proor. We have already noted (following (4.2.1)) that if f ~ g then
tr(f) = tr’(g).
Now assume that tr?(f) = tr’(g). We know that f and g are each con-

jugate to some standard form, say f ~ m, and g ~ m,. Thus

tr’(m,) = tr’(f) = tr’(g) = tr’(m,)
and using (4.3.2), this shows that p=gq or p=1/g. Now note that
m, ~ my,,: this is trivial if p = 1 while if p # 1, we have

hm,h™! =my,,,  h(z) = —1/z

We now have f ~m,, g ~m, and (as p =g or p = 1/q) m, ~ m,. As
conjugacy is an equivalence relation, this shows that f ~ g and the proof
is complete. O

We shall now classify Mobius transformations in terms of fixed points
in R® and it is natural to begin by studying the fixed points of the standard
forms. The action of m, in R® as given by (4.1.4) is

m(z + 4) = kz + |kl (k#1);
m(z+t)=z+1+tj
and this enables one to find the fixed points of each m,. Clearly:

(i) m;, fixes co but no other point in R3; )
(ii) if |k| # 1, then m, fixes 0 and oo but no other points in R3;
(iii) if |k] = 1, k # 1, then the set of fixed points of m, is

{tji:te R} L {o0}.
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Definition 4.3.2. Let g (1) be any Mobius transformation. We say

(i) g is parabolic if and only if g has a unique fixed point in € (equivalently,
g ~my);
(ii) g is loxodromic if and only if g has exactly two fixed points in R®
(equivalently, g ~ m, for some k satisfying |k| # 1); R
(iii) g is elliptic if and only if g has infinitely many fixed points in R>
(equivalently, g ~ m, for some k satisfying |k| = 1, k # 1).

It is convenient to subdivide the loxodromic class by reference to in-
variant discs rather than invariant (fixed) points. Note, however, that the
following usage is not universal: some authors use “loxodromic” for our
“strictly loxodromic™ and have no name for our loxodromic transformations.

Definition 4.3.3. Let g be a loxodromic transformation. We say that g is
hyperbolic if g(D) = D for some open disc (or half-plane) D in C: otherwise
g is said to be strictly loxodromic.

The classification described in these definitions is invariant under con-
jugation and by virtue of Theorem 4.3.1, we must be able to classify g
according to the value of tr?(g). This is our next result.

Theorem 4.3.4. Let g (#1) be any Mdbius transformation. Then

(i) g is parabolic if and only if tr’(g) = 4;
(i) g is elliptic if and only if tr’(g) € [0, 4);
(iii) g is hyperbolic if and only if tr*(g) € (4, + 00);
(iv) g is strictly loxodromic if and only if tr®(g) ¢ [0, + 00).

Proor. We shall verify (i), (ii) and (iii): then (iv) will automatically be satis-
fied. Throughout the proof, we suppose that g is conjugate to the standard
form m, so by (4.3.2),

1
tr’(g) = p + 5 + 2 (4.3.3)

Recall that g is conjugate to m, and to m,, but to no other m,.

If g is parabolic, then g is conjugate to m, only: so p = 1 and tr’(g) = 4.
Conversely, if tr’(g) = 4, then p = 1 and g is parabolic. This proves (i).

If g is elliptic, then p = €™, say, with 6 real and cos 6 # 1. Then

tr2(g) =2 + 2cos 6 (4.3.4)

and so tr¥(g) € [0, 4). Conversely, suppose that tr?(g) € [0, 4). Then we may
write tr’(g) in the form (4.3.4) with cos 8 # 1 and then (4.3.3) has solutions
p=2¢e%e® Thus |p|=1,p+# 1 and we deduce that g is elliptic. This
proves (ii).
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Finally, we prove (iii). Suppose first that tr(g) € (4, + c0). Then (4.3.3)
has solutions p = k, 1/k say, where k > 0. As both solutions are positive,
m, necessarily preserves the upper half-plane and so is hyperbolic. This
means that g is hyperbolic. Now suppose that g, and hence m,, is hyperbolic
and let D be a disc which is invariant under m,,. For any z in D, the images
of z under the iterates of m, are in D and so

{p"z:ne 2} < D.

Because |p| # 1, this shows that 0 and oo are in the closure of D. The same
argument, but with z chosen in the exterior of D, leads to the conclusion
that 0 and oc lie on the boundary of D. Thus D is a half-plane and in order
to preserve D, it is necessary that m, leaves invariant each of the half-lines
from 0 to oo on the boundary of D. Thus p > 0 and so tr(g) > 4. g

We now prove three useful results concerning fixed points. Recall that
in any group the commutator of g and h is

[9.h] = ghg™'h™' = g(hg~*'h™").

If A and B are matrices in SL(2, C) representing Mobius transformations
g and h then they are determined to within a factor of —1 and so

tr[g, h] = tr(ABA~'B™ ")

is uniquely determined, independently of the choice of 4 and B.

Theorem 4.3.5.(i) Two Mébius transformations g and h have a common fixed
point in C if and only if tr[g, h] = 2. R
(ii) If g and h (neither the identity) have a common fixed point in C then either:

(a) [g,h] = I (sogh = hg) and F, = F,; or
(b) [g, h] is parabolic (and gh # hg) and F, # F,.

Proor. The assertions in (i) remain invariant under conjugation so we may
assume that in terms of matrices in SL(2, C),

a b o B
97 (0 ) e (? 5) ’
A computation shows that

trlg,h] = 2 + b%*y? + b(a — d)y(e — 8) ~ (a — d)*yp.

If g and h have a common fixed point, we may assume thatitiscosoy =0
and tr [g, h] = 2.

Now suppose that tr[g, h] = 2. If g is parabolic we can take a =d = 1
and b # 0:theny = 0so both g and h fix 0. If g is not parabolic we can take
b=0s0ad=1and a+# d: then yf = 0 so h fixes one of 0 and co. This
proves (i).
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To prove (i) we may assume that g and h are as above with y = 0. Then
g, h] = I if and only if
Bla — d) = bloe — 9)

and this is equivalent to F, = F, (consider the cases a = d, a # d).

For an alternative approach to (ii), suppose that the common fixed point
is co and so g and also his of the form z + az + b. The map g — a is a homo-
morphism of {g, h) to the group C ~ {0}: as this group is abelian, every
commutator is in the kernel of the homomorphism and so is a translation

(or I). O

A Euclidean similarity is a map x — ré(x) + x, where ¢ is a Euclidean
isometry and the above proof is concerned with such similarities. In fact,
Theorem 4.3.5 is a theorem on Euclidean similarities but stated in a form
that is invariant under conjugation.

Theorem 4.3.6. Let g and h be Mdbius transformations other than 1. The
following statements are equivalent:

() hg = gh;
(i) h(Fy) = Fy,g(Fy) = Fy;
(iii) either F, = F, or g and h have a common fixed point in H? with g* =
h*=(gh)*=1land F,n F, = .

PROOF. First, (4.3.1) shows that (i) implies (ii).

The proof that (iii) implies (i) is easy. If F, = F), then g and h have a
common fixed point and so by Theorem 4.3.5, [g, h] = I: thus in this case,
gh = hg. The other alternative offered by (iii) also leads to gh = hg as

hg = hg(ghgh) = gh
and so (iii) implies (i).

It remains to prove that (ii) implies (iii). We assume that (ii) holds and
also that F, # F, (else (iii) certainly holds). This means that there is some
w in exactly one of the sets F,, F, and we may assume that we F, — Fj:
thus g(w) = w and h(w) # w. By (ii), F, contains the points w, h(w), h*(w)
and as these cannot be distinct (else g = I) we must have h*(w) = w. This
shows that F, has exactly two points and that these are interchanged by h.
It also shows that Fy,n F,, = .

By conjugation, we may assume that F, = {0, co}: thus for some a and b,

g9(z) = az, h(z) = b/z.

It is now clear that h* = (gh)*> = I. Moreover, as g(F,) = F,, we must have
9(/b) = —~/bsoa= —1and ¢g* = I Finally g and h have a common
fixed point, namely |b|'/?j, in H*: this follows directly from (4.1.4). O

Theorem 4.3.5 is concerned with two transformations with a common
fixed point in C: the next result concerns a common fixed point in H>.
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Theorem 4.3.7. A subgroup G of .# contains only elliptic elements (and 1) if
and only if the elements of G have a common fixed point in H>.

It follows from Definition 4.3.2 that if g(s ) is of finite order then g is
necessarily elliptic. As every element in a finite group has finite order we
have the following corollary.

Corollary. The elements in a finite subgroup of M have a common fixed point
in H3.

To understand the geometric nature of the proof it is convenient to
introduce the notion of the axis of an elliptic element g. If the fixed points
of gin Careaand B, then (by considering a conjugation to one of the standard
forms), the fixed points of g in R* are precisely the points on the circle I’
which is orthogonal to C and which passes through « and f. The axis A4,
of g is the Euclidean semi-circle I n H? (in fact, this is a geodesic in the
hyperbolic geometry of H?). The condition that two elliptic elements g and
h have a common fixed point in H? is simply that the two axes A, and A,
are concurrent in H3. Note that a necessary and sufficient condition for this
is that the fixed points of g and 4 in € lie on a circle Q and separate each
other on Q.

Parts of the proof of Theorem 4.3.7 are algebraic (the geometry is compli-
cated) but even so, we shall stress the geometric interpretation. First, we
prove a preliminary result.

Lemma 4.3.8. Suppose that g, h and gh are elliptic. Then the fixed points of
g and h in C are concyclic. If, in addition, [g, h] is elliptic or I, then the axes
A, and A, are concurrent in H>.

PRrOOF. If g and h have a common fixed point in €, then F 4 U F, has at most
three points and so lies in some circle. If, in addition, [g, 4] is elliptic or I,
then from Theorem 4.3.5, F, = F,, and so 4, = A4,: thus g and h have
infinitely many common fixed points in H?3.

We may now assume that g and h have no common fixed points in C.
By conjugation we may assume that

az + b

— 2 -
g(z) = a’z, h(z) =i d

where «® # 1, |a| = 1 and ad — bc = 1. Now
tr’(h) = (a + d)?,  tr¥(gh) = (aa + ad)?
and so by Theorem 4.3.4, the numbers

A=a+d, u=oaa+ ad
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are in the interval (—2,2). Solving for a and 4 in terms of o, A and p, we
obtain

a=d=u+iv,
say.
The fixed points of & are (using ad — bc = 1)
a—d+i[4— (a+ d)?]"?
2c

and these are the points
&C= (/oo £ (1 = u?)''?].

As |a + d| < 2, we find that u?> < 1 and so ¢ and { lie on a straight line L
through the origin: thus the fixed points of g and h are concyclic.
A computation (after writing « = €' and using ad — bc = 1) gives

tr¥([g, K1) = 4[1 + (Ja|* — 1)sin? 6]?

and so the additional hypothesis that [g, h] is elliptic or I implies that
la] < 1 because we must have

0 < tr’([g, h]) < 4.

Now |a| = 1 implies that u* + v®> = 1 and so one of the points &, { is zero.
This is excluded as g and 4 are assumed to have no common fixed points:
thus |a| < 1 and so (taking the positive root)

1 = u?)H2 >
This means that
¢E=isfe, (=it

where s and ¢ are real with st < 0. Thus the origin (fixed by g) lies between
¢ and { and so 4, and 4, are concurrent in H>. ]

We now use Lemma 4.3.8 to obtain information about subgroups of .#
of the form (g, h) which contain only elliptic elements and I. First, by
Lemma 4.3.8, g and h have a common fixed point , say, in H* and, of course,
every element of {g, h) fixes {. By considering a conjugate group, we may
assume that g and h preserve B® and that { = 0.

Lemma 4.3.9. Let g and h be Mébius transformations (#1) which preserve
B? and fix the origin. Then
(i) the elements of {g, h) have the same axis and same fixea points or

(ii) thereis somefin<g, h) suchthat the three axes A,, Ay, Ay are not coplanar.

Assuming the validity of Lemma 4.3.9 for the moment, we complete the
proof of Theorem 4.3.7.
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Proor oF THEOREM 4.3.7. The conclusion is obviously true if all elliptic
elements of G have the same axis so we may assume that G contains elements
g and h with distinct axes. By Lemma 4.3.8, g and h have a common fixed
point in H? and by considering a conjugate group we may assume that G
acts on B* and that Lemma 4.3.9 is applicable. By assumption, (i) fails so
(ii) of Lemma 4.3.9 holds.

Every element of (g,h) fixes the origin so the axes A,, 4,,A4, are
Euclidean diameters of B3: moreover, by (ii), they are not coplanar. Now
take any g in G, g # 1. We shall show that g(0) = 0 and this will complete
the proof. By Lemma 4.3.8, the fixed points of g and g lie on some circle
on ¢B*and so also lie on a Euclidean plane IT,. As I1, contains the end-points
of the diameter A,, we see that 0 e I[1,: also A, < I1,. A similar definition
and argument holds for IT, and IT, : so

Oell,nII,nII,
and

A, cIlynIl,nII,. (4.3.5)

The planes I1,, IT,, I1, cannot be the same plane (else A4, 4,, A, would be
coplanar) thus the intersection

M, I, TI,

is either {0} or is a diameter D of B>. Because this intersection contains the
fixed points of g on 0B it is a diameter D and we conclude from (4.3.5) that
A, = D.In particular, 0 € A, and so ¢(0) = 0. 0O

PrOOF OF LEMMA 4.3.9. Every element of {g, h) fixes the origin and so is
elliptic or I. For each such elliptic f, let A, denote the axis (of fixed points)
of fin B3. Note that by assumption, A, and A, are Euclidean diameters of B>.
We shall assume that (i) fails so 4, and A, are distinct diameters and
hence determine a Euclidean plane I1. Let the normal to IT through the
origin be the diameter D of B3. If h(4,) does not lie in I1, then takef = hgh™*
and this satisfies (ii) as then A, = h(A,). A similar construction of fis possible
if g(A,) does not lie in I1. These attempts to construct f can only fail if g and
h preserve IT in which case, they are both rotations of order two. Then both
g and h interchange the end-points of D and so (ii) is satisfied with f = gh.
O

We end this section with a discussion of the iterates of a Mobius

transformation.
If g is parabolic, then for some h we have

hgh™(z)=z+t (t#0).
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Thus
hg"h~Yz) =z + nt
and

g"(z) = h™*(hz + nt).

Observe that for each z in €, hg"h~'(z) » o as |n| - oo: thus in general,
if g is parabolic then

g'(z) >0,
where o is the fixed point of g.

If g is not parabolic, then g has two fixed points, say « and f3, and for some
h we have

hgh™(z) = tz (t#£0,1)
and hence

hg"h~(z) = 1"z.

These facts show that if g is loxodromic (equivalently, |t| # 1) and if z is not
o or B, then the images g"(z) are distinct and accumulate at « and f§ only.
If g"(z) - o, say, as n - + o0, then « is called the attractive fixed point of
g while f is called the repulsive fixed point. Then for all zother than 8, g"(z) — «
asn— +o0.

If g is elliptic (equivalently, [t| = 1), then g has invariant circles: indeed
each circle for which « and f are inverse points is a g-invariant circle and so
each orbit under iterates of g is constrained to lie on such a circle. We collect
these results together for future reference.

Theorem 4.3.10. (i) Let g be parabolic with fixed point o. Then for all z in ¢,
g"(z) = a asn — + o0, the convergence being uniform on compact subsets
of C — {a}.

(ii) Let g be loxodromic. Then the fixed points o.and B of g can be labelled so
that g"(z) » a.as n — + oo (if z # B), the convergence being uniform on
compact subsets of(f: — {B}.

(iii) Let ge be elliptic with fixed points o« and . Then g leaves invariant each
circle for which o and f are inverse points.

If a Mébius g is of finite order k (so g*, but no smaller power, is I) then g
is necessarily elliptic. In this case we have

hgh™'(z) = €z,
say, and so
0 = 2nm/k,
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where k and m are coprime. We deduce that
tr¥(g) = 4 cos*(0/2)
= 2[1 + cos(2mm/k)].

Note that this can take different values depending on the prime factors of k.
If g is elliptic of order two, then k = 2 and necessarily, tr?(g) = 0: the con-
verse is also true. Observe that among all g of order k, the largest value of
tr’(g) occurs when m = 1 or k — 1,

tr’(g) = 4 cos?®(n/k)

and 6 = +2n/k. Again we record this for future reference.

Theorem 4.3.11. Let g be an elliptic transformation of order k. Then
tr¥(g) < 4 cos?*(n/k),
with equality if and only if g is a rotation of angle +2n/k.

EXERCISE 4.3

1. Find Mébius transformations g and 4 such that

(i) tr{g, k] = —2; and R
(if) g and h have no common fixed point in C.

2. Let g be any Mobius transformation which does not fix co. Show that g = ¢, 9,93,
where g, and g5 are parabolic elements fixing oc and where g, is of order two.

3. An nthroot of a Mébius transformation g is any Mébius transformation h satisfying
k" = g. Prove

(i) if g = I then g has infinitely many nth roots;
(ii) if g is parabolic then g has a unique sth root;
(iii) in all other cases, g has exactly n nth roots.

4. Show that if 4 and B are in SL(2, C) then
det(4A — I) =2 — tr(A)
and
det(4B — BA) =2 — tr[A, B]

([A4, B] is the commutator of A and B). Deduce that if 4 and B viewed as Mobius
transformations do not have a common fixed point in C, then AB — BA is a non-
singular matrix which represents a Mébius transformation or order two.

5. Letg(z) = z/(cz + 1). Verify (i) by induction and (ii) by considering a suitable hgh ™'
that

z
A7) =
g nez + 1

Find /" where f(z) = 6z/(z + 3) and check your result by induction.
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§4.4. Cross Ratios

Given four distinct points zy, z,, z3,z, of C we define the cross-ratio of
these points as

(zy — z3)(z, — Z4)

(21 = 22)(z3 — z4)°

compare this with (3.2.5) where division is not permitted. The definition is
extended by continuity to include the case when one of the z; is co so, for
example,

[z1,22,23,24] =

zZ,—z
(21, 25,23, 00] = Zi — 22'
Note that in particular,
[0,1,z,00] = z. 44.1)
If
az+b
= - 0
g(2) o (ad — bc #0),
then
z — w)(ad — bc)
6(2) — gw) = =)

(cz + d)(cw + d)

and it is immediate that the cross-ratio is invariant under Mébius trans-
formations; that is,
[g(zl)a g(ZZ)’ g(23), 9(24)] = [zl’ 22,23, 24]' (44'2)
This is a useful property which often leads to a considerable simplification.
Moreover, the converse is also true: if
[wi, wa, wy,we] = [24,2;, 23, 24] (4.43)

holds then there is a M&bius transformation g with g(z;) = w;. To see this,
let f and h be M&bius transformations which map z,,z,,2, to 0,1, 00 and
wi, Wy, w, to 0,1, 00 respectively: these exist by Theorem 4.1.1. Then by
(4.4.1), (4.4.2) and (4.4.3),

f(z3) = [0, 1, f(z3), 0]
= [f(z21), f(z2), f(23), f(za)]
= [21,22, 23, 24]
= [wy, W, w3, wy]
= [h(w,), h(w,), h(ws), h(w,)]
= [0, 1, h(w;), 0]
= h(ws).
It is now clear that g(z;) = w; where g = h™' o f. O
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We are now going to study how the cross ratio
A= [21, Z5,23, 24] (444)

varies as we permute the z;. With this in mind we let S, denote the permu-
tation group of {1,..., n} and remark that (as with all functions) we regard
permutations as acting on the left: for example, (12) (13) maps 3 to 2.

Each o in S, induces a change in the value of the cross ratio by the formula

A= [21, Z3, 23’24] and [Zol’ 202’20'3’20'4]

and it is essential to realize that the resulting value depends on ¢ and A but
not on the individual values z;. This is so because if

[zl’ 22,23, sz = [Wlswz, Wi, W4]5

then there is some g with g(z;) = w; and so

[zal’ 24252435 Za4] = [g(zcl)s g(zqz)a g(zu3), 9(254)]
= [Wa'l, Wo2s Wo3s Wcr4]'

Because of this fact, we can introduce functions f;, (¢ € S,) by the formula

fu(A') = [zal’ 25252435 204]’

where A is given by (4.4.4). Because

fft(fd(A)) = [wala 21025 Zno3> Zr:a4]
= fao(4)

we have the important relation

fato = fro (44.5)

Now suppose that ¢ is the transposition (1,2) and let g be the Mdbius
transformation which maps z,, z,, z, to 0, 1, oo respectively. Then
A=1[z,23,23,24]
= [0,1,9(z3), 0]
= g(z3)
and so

f;t('l) = [22 521> Z3, ZAJ
= [1,0, 4, o0]
=1-A
A similar argument holds for all six transpositions in S, and we find
(i) ifo = (1,2)or 3,4) thenf (1) =1 — 4;
(ii) ifo = (1,3) or (2,4) then f (1) = A/(A — 1);
(iii) if o = (1,4) or (2, 3) then (1) = 1/A
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This information leads to a determination of all f,. As S, is generated by
transpositions, (i), (ii) and (iii) together with (4.4.5) suffice to give all f,.
Note that for each transposition ¢, the function f, is actually a Mdbius
transformation which maps {0, 1, ¢} onto itself. Thus if we denote by .#,
the subgroup of M6bius transformations which map {0, 1, o} onto itself
we find from (4.4.5) that the map

0:0 - fs
is actually a homomorphism of S, into .# (which is isomorphic to S;). In
addition to this, it is clear from (i), (ii) and (iii) and (4.4.5) that the subgroup
K = {I,(1,2)(3,4),(1, 3)(2,4),(1,4)(2, 3)}

of S, is contained within the kernel of 6. We can now describe the situation
completely.

Theorem4.4.1. The map 0: S, — M is a homomorphism of S, onto My with
kernel K.

PROOF. Theorem 4.1.1. implies that .#, has exactly six elements: these are
the functions

Al =4 AMA-=1),1/4,1/(1 = 1),(4 - 1/4
of A. There are six permutations ¢ in S, with ¢(4) = 4 and a straightforward
computation shows that the corresponding f, are precisely the six elements

of #,. This shows that § maps S, onto .#, and as this implies that the
kernel of 6 has exactly four elements, the kernel must be K. O

Four distinct points z,, z,, 23, z, in C are concyclic if and only if they lie
on some circle. Let g be the Mobius transformation which maps z,,z,, z,
to 0, 1, oo respectively. Then the z; are concyclic if and only if the g(z;) are
and this is so if and only if g(z,) is real. However,

g(Z3) = [03 11 g(Z3), @]
= [21522’23’24]:
thus z,, z,, z3, z, are concyclic if and only if [z,, z5, 23, 24] is real.

If z,,2,,25, 2, lie on a circle Q and are arranged in this order around Q,

then g(z;) > 1 and so

A=1[z1,25,23,24] > 1.

EXERCISE 4.4

1. Show that the unique Mébius transformation which maps z,, z,, z4 to 0, 1,
respectively is g where

g(Z) = [Zla zZa Z, 24]-

2. Verify that f,(1) = 4/(A — 1) when 6 = (2, 4).
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3. Let z,, z,, z3, 2, be distinct points in €. Show that the circle through z,, 25, 2, is
orthogonal to the circle through z,, z3, z, if and only if

Re[z,, z;, 23, 2,] = 0.

Generalize this to the case where the circles meet at an angle 6 (note that the z; are
concyclic if and only if § = 0).

4. Let g be any Mobius transformation. Show that if g does not fix z then [z, gz, >z, 9°2]
is independent of z and evaluate this in terms of tr(g).

§4.5. The Topology on

As described in Section 4.2, there is a homomorphism
$:SL22,C) - 4,

which associates to each g in . exactly two matrices 4 and — 4 in SL(2, C).
The group SL(2, C) is a topological group with respect to the metric |4 — B
and the map ® induces the quotient topology J on ., namely the largest
topology on .# with respect to which, ® is continuous. In addition, .# has
a topology J *, namely the topology of uniform convergence with respect
to the chordal metric on C (see Section 3.7) and it is essential to know that
these topologies are the same. One method is to compare the action of
SL(2, C) through the action of .# on H?> (and then B3) to the matrix group
O*(1, 3). However, a more direct approach is not without interest.

Theorem 4.5.1. The topology 7 induced on M by @ coincides with the
topology 7 °* of uniform convergence on C.

PRrOOF. It is sufficient to show that the map
®:SLQR,C) - (A,T*) 4.5.1)

is open and continuous: see Proposition 1.4.1.

Assuming that this has been established, observe that if X is in SL(2, C)
then

1X — (=Xl = 2[IX]|

> 2.2,

(see (x) of Section 2.2). This yields the next result.

Corollary 4.5.2. The restriction of ® to any open ball of radius \/5 inSL(2, C)
is a homeomorphism: thus SL(2, C) is a two-sheeted covering space of M.



§4.5. The Topology on . # 79

It remains to prove that the map (4.5.1) is open and continuous. Define

o(f,9) = sug d(fz, g2),

where d is the chordal metric: thus 7 * is the metric topology induced by
the metric o. We shall derive the continuity of ® from the next result.

Proposition 4.5.3. If A in SL(2, C) represents g, then
olg.1) < /6114 ~ 1.

Explicitly, if B represents f, then

o(g, f)=0olgf ™" ])
< J614B7 ~ 1]
<./614 - B .|B|

and so @ is continuous at the general element B of SL(2, C).

PROOF OF PROPOSITION 4.5.3. There is a unitary matrix B representing a
Mébius map h such that hgh™! fixes oo (h corresponds to a rotation of the
sphere moving a selected fixed point of g to o0). By Theorems 2.5.2 and
4.2.2 we have

|A — 1| = |BAB™! —I|
and
o(hgh™,1) = a(gh™ ', h™ 1)
= a(g, I).
These remarks show that we may assume, without loss of generality, that

g fixes co. In addition, if g is loxodromic we may assume that the repulsive
fixed point of g is co (we simply choose h appropriately).

Assume then that
« B
= = ].:
A (O 6)’ od

the condition on the fixed point of g in the loxodromic case means that in

all cases,
e <1 <16].

az oz az + B
d(z, gZ) S d(Z, —3—) + d(__é_’___5_>

2|z|. |1 = («/d)|
T+ 2V + Jaz/ )2
2|z|. o — 8]
18], 122|V?| 2az/5 |

Now

+ 2[B/é|

+ 2Bl
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the last line being an application of the Arithmetic-Geometric Mean
inequality. This upper bound simplifies to a value independent of z and
using %0 = 1, we have
a(g. 1) < |a = o] + 2|B|
<la—1]+]1=96|+ 2|B|
S(la =172+ 1= 317 + |BP) (1 + 1 + 417
< /6l4 - 1. O

Finally, we must show that the map (4.5.1) is an open map and this will
be derived from the next result.

Proposition 4.5.4. Let gy, g5, ... be M0bius transformations and suppose that
g.(w) = wforw = 0,1, cc. Then:

(i) there exist matrices A, representing g, which converge to I; and

(ii) g, — I uniformly on C.
a, b
A — n n

in SL(2, C) representing g, where ¢, is 1 or —1 and is to be chosen later.
In the following argument, trivial modifications are required if g,(c0) = 00:
we ignore these cases.

As

ProOOF. Choose matrices

1 1
T gu(1) = 9,00)  g(0) — g,0)

-1,

d2

we can select ¢, so that ¢,d, — 1. Next,

(enanxsndn) = andn
__ 9x)
gn() — 9,(0)
-1,
so ¢,a, — 1 also. As
Cn = ay/gn(0), by = dng,(0),
we see that ¢, and b,, tend to zero: thus A, — 1. This proves (i). Observe that

(ii) follows from (i) and Proposition 4.5.3.

Finally, we can complete the proof of Theorem 4.5.1. Let £ be an open
subset of SL(2, C) and suppose that ®(#) is not an open subset of .# (with
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respect to the metric topology 7 *). Then there is some g in ®(48) and some
g1, 92, -..not in ®(H) with

(g g) = 0.
As

(G- 9) = a(g,97 ", D),

we see from Proposition 4.5.4 that there are matrices A4, representing g,g~*
with 4, — I. If B (in %) represents g, then 4,B — B so A,B is in # for all
large n. It follows that g,(= ®(4,B)) is in D(A) for these n and this is a
contradiction. O

A subgroup G of ./ is discrete if and only if the topology described by
Theorem 4.5.1 induces the discrete topology on G. It is clear from Corollary
4.5.2 that if G is discrete, then @~ '(G) is a discrete subgroup of SL(2, C).
Conversely, if T is a discrete subgroup of SL(2, C), then ®(I") is a discrete
subgroup of .#.

Of course, if G is a discrete subgroup of ., then G is countable (see
Section 2.3), say G = {g,,9,,-..},and

lgnll = + o0

as n — 4 oo. In view of this, the next result is of interest.

Theorem 4.5.5. Suppose that K is a compact subset of a domain D in € and
that g omits the values 0 and oo in D. Then for some positive m depending only
on D and K, we have

md(z, w)
gl

d(gz, gw) <

Jorall zand win K.

PrOOF. Define m, by

2m, = inf{d(z, w): z€ K, w¢ D}
and suppose that

_az+b

d — bc = 1.
cz+d a ¢

9(2)

As g~ () ¢ D, we see that for z in K,

2m; < d(z, g™ 'o0)
< 2|cz + d|
T+ 2 + [P
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A similar inequality holds for g ™0 so
(1 + 1z[%) llgl*(m)? < laz + b|* + |cz + d|*
As
d(gz, gw) < ( 1+|z)? )”2( 1+ |w|? )”2
diz,w) ~ \laz + b|*> + |cz + d|? law + b]* + |cw + d?
the result follows. O

The implication of this is that if G is discrete, then under the assumptions
in Theorem 4.5.5, the chordal diameters of the sets g,(K) tend to zero.

EXERCISE 4.5
1. Prove that if ad — bc = 1 then for all z
(lal? + lel)(laz + b* + [cz + d[)) 2 1

with equality if and only if z = —(ab + ¢d)/(|a|® + |c|*). Show that if g(z) =
(ab + b)(cz + d)™? then for all z,
1 < laz + b2 + |cz + d?
lgh? ~ 1+ |z?
2. Let G be a group of Mébius transformations preserving H2. Show that each g in G

can be written uniquely in the form g = fh where f(z) = az + b (a > 0, beR) and
h(i) = i. Deduce that G is homeomorphic to R? x S*.

< lgll*.

3. Show that a sequence g, of loxodromic transformations can converge to an elliptic
element but if this is so, then g, is strictly loxodromic for almost all n. Show that a
sequence of elliptic elements cannot converge to a loxodromic element.

§4.6. Notes

For a discussion of quaternions and M&bius transformations see [1], [5]
and [26]. The problem of obtaining a subgroup of SL(2, C) isomorphic to
a given subgroup of .# has been considered in [2] and [74]. For general
information on Mobius transformations see [30] (especially for isometric
circles), [51] and [52]. See [53] for Theorems 4.2.2 and 4.3.7.



CHAPTER 5
Discontinuous Groups

§5.1. The Elementary Groups

In this section we shall define and describe a class of subgroups of .# which
have a particularly simple structure. This class contains all finite subgroups
of ., all abelian subgroups of ./ and the stabilizer of each point in R>.

Definition 5.1.1. A subgroup G of .# is said to be elementary if and only if
there exists a finite G-orbit in R>.

Of course, the emphasis here is on the word finite. Also, note that this
definition makes no reference to discreteness. The group .# acts as the
group of directly conformal isometries of H®> and G is elementary if there
is a finite G-orbit in the closure of hyperbolic space.

Obviously, if a single point is G-invariant then G is elementary. If G is
abelian, then either G contains only elliptic elements and I or G contains
some parabolic or loxodromic element g. In the first case (whether G is
abelian or not), G is elementary by virtue of Theorem 4.3.7: in the second
case, G is elementary by Theorem 4.3.6(iii). Thus every abelian subgroup
of [ is elementary.

Remark. Elementary groups are sometimes defined by the condition that
for every g and h in G which are of infinite order, we have trace[g, h] = 2:
equivalently, g and h have a common fixed point in € (Theorem 4.3.5).
However, with this definition, the stabilizer of a point in H? is not necessarily
elementary.
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Let us now assume that G is an elementary group and examine the
possibilities. Suppose that the finite orbit is {x,,..., x,}. If g is in G then the
points g"(x;),m = 0, 1, 2, ..., cannot all be distinct so there is an integer
m; with the property that g™ fixes x;. If m is now the product of the m;, then
g™ fixes each x;. With this available we can now classify the elementary
groups into three types.

Type 1: suppose that n > 3 or that {x,. .., x,} is not in C.

If the points x; are not in C then each g in G has some power ¢” fixing
x; and so g, and hence g itself, is elliptic (or I). If n > 3 and the x; are in C,
then g™ has at least three fixed points and so is the identity: thus again, each
non-trivial element of G is elliptic. This shows that if G is of Type 1, then G
contains only elliptic elements and I. By Theorem 4.3.7, there is some x in
H? which is fixed by every element of G and by mapping H3 onto B and x
to 0 we see that G is conjugate in GM(R?) to a subgroup of the Special
Orthogonal group SO(3) (see Theorem 3.4.1).

Type 2: suppose that n = 1 and x, is in C.

In this case, G is conjugate to a subgroup of .#, every element of which
fixes oc and so is of the form z+ az + b. Thus G is conjugate to a group of
Euclidean similarities of C.

Type 3: suppose that n = 2 and that x,, x, are in C.
In this case, G 1s conjugate to a subgroup of .#, every element of which
leaves {0, oo} invariant and is therefore of the form

zZ > az’, a+#0,s*=1.

Note that G is then conjugate to a group of isometries of the space C — {0}
with the metric derived from |dz|/|z|.

We shall now describe all discrete elementary groups. If G is a discrete
elementary group of Type 1 we may assume that every element of G fixes
the point j in H*. Thus by Theorem 4.2.1, |g||> = 2 for every g in G and
(as G is discrete) G is necessarily finite. Thus G is conjugate to a finite sub-
group of SO(3) and hence to one of the symmetry groups of the regular
solids.

We can use the fact that G is finite to obtain the possible structures of G
without reference to the regular solids. We say that v in € is a vertex if v is
fixed by some g (#1) in G and we denote the set of vertices by V. Now
consider the number | E| of elements of the finite set

E={4g,v):9geG,g#IveV, gk =}
Aseach gin G (g # I) is elliptic it fixes exactly two vertices and we have

|El = 2(|G| - ).
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The stabilizer of a vertex v is G, so we also have

lEl =} (1G,| = 1)

veV

The set V is partitioned by G into disjoint orbits V,,...,V, and as the
stabilizers of each v in ¥; have the same number, say n;, of elements we have

El= Y 2 (G,l-1
j=1veV;
= % IVjl(n; = D).

Finally, each orbit G(v) is in 1-1 correspondence with the class of cosets
G/G, so for vin V;, we have V; = G(v) and

6] |G|
lGuI h nj ’

Vil =

Eliminating | ¥;| we obtain

2( 1)) - Z( 1) GLD

We shall exclude the trivial group, so |G| > 2 and

1
1<2(l ——) <2
( IGI)
1 S( 1)
ESSZ l——]) <s.
j=1 h;

These inequalities together with (5.1.1) show that s = 2 or s = 3.

By definition, n; > 2 so

Casel:s = 2.
In this case, (5.1.1) becomes

G| |G|
___.+._
ny Ny

2=

and hence (as |n;| < G),
[Gl=ny=n,, [ViI=]|Vo]=1

In this case there are only two vertices and each is fixed by every element
of G. By conjugation, we may take the vertices to be 0 and co and G is then
a finite, cyclic group of rotations of C.
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Case2:s = 3.
In this case, (5.1.1) becomes

1 1 1 2
—+—+—=1+—
ny np; Ny |Gl
and we may assume that n; < n, < nz. Clearly n, > 3 leads to a contra-
diction: thus n, = 2 and

If n; > n, > 4 we again obtain a contradiction, so n, = 2 or 3. The case
n, = 2 leads to

(|G|7n13n27n3)=(2n’2327n) (nZz)

and this is isomorphic to the group of orientation preserving symmetries
of a regular plane n-gon (the dihedral group D,).
The remaining cases are those with s = 3, n;, = 2,n, = 3 and

2
+‘-— n323,

|G|’
and the (integer) solutions of this are

(1) (IGI’ nl, nZa n3) = (12, 29 33 3);
(H) (IGI’ nly n2a n3) = (243 2’ 3a 4);
(lll) (IG[, nl> n27 n3) = (60, 2’ 37 5)'

1
N3

A\ —

These groups are isomorphic to 4,, S, and A respectively and they corre-
spond to the symmetry groups of the tetrahedron, the octahedron and the
icosahedron respectively. For more details, see the references in Section 5.5.

We continue with our discussion of discrete, elementary groups. The
next result essentially distinguishes between groups of Types 2 and 3.

Theorem 5.1.2. Let g be loxodromic and suppose that [ and g have exactly
one fixed point in common. Then {f, g) is not discrete.

PRrooF. As discreteness is preserved under conjugation we may assume that
the common fixed point is o¢ and, say,
g@) =az (la]>1), f(d=az+b

(if necessary, we may replace g by g~ ?).
Then
g "fg"(z) = az + o™ "b.
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As fand g have only one common fixed point, we see that b s 0. As || > 1,
we find that the sequence

lg~"fg"l, n=12,...

is a convergent sequence of distinct terms: thus < f, g> is not discrete. For
a much more illuminating proof, the reader need only draw a diagram and
locate (for large n) the points z, g"z, fg"z and g~ " fg"z. |

Suppose now that G is elementary, discrete but not of Type 1. Then G
must contain parabolic or loxodromic elements. If G contains a parabolic
element g, fixing oc say, then every element of G fixes oc (because all other
orbits are infinite) and by Theorem 5.1.2, G has no loxodromic elements.
Such a group is of Type 2. If G contains a loxodromic element g, fixing 0 and
oo say, then every element of G must leave the set {0, o0} invariant. This
implies that G cannot contain parabolic elements and such a group is of
Type 2 or 3.

Let us now examine the structure of a discrete group of Type 2 with
parabolic elements. Thus G contains only I, parabolic elements and possibly
some elliptic elements.

By conjugation, we may assume that every element of G fixes o0 and so
is of the form z+> az + f. As this is either elliptic or parabolic, we see that
|| = 1:thus G is conjugate to a group of Euclidean isometries of C.

We call o the multiplier of the map z+ az + f§ and in general, we denote
the multiplier of g by a,. Note that «; = 1 if and only if g is parabolic or I.
It is a trivial matter to check that the set S of multipliers of g in G is a (multi-
plicative) subgroup of {|z| = 1} and that the map #: G —» S defined by
68(g) = «, is a homomorphism of G into S. The statement that «, = 1 if and
only if g is parabolic or I is precisely the statement that the kernel, T, of
6 is the subgroup of translations in G. As G/T is isomorphic to S (=6(G)),
we can describe G by giving explicit descriptions of S and T': this effectively
separates the parabolic and elliptic elements.

First, we show that S is a finite cyclic group. Now G contains a trans-
lation, say f(z) = z + Aand if g(z) = az + B isin G, then so is

9f97'@) =z + ol

We deduce that G contains z — z + sA for every s in S and as G is discrete,
S cannot accumulate in C. Thus S is a finite subgroup of {|z| = 1} and (as
is easily seen) it is necessarily cyclic.

We can obtain even more information about S. With fand g as above,

f7Hefg™ @) =z + (2 — DA
and so if |« — 1| < 1, then there is a translation z+» z + 4, in G with

4] = I = DA| < 4],
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The same argument yields translations z +— z + 4, in G with
[Ap] =]o = 1]"|A] -0

as n — + % and this violates the discreteness of G. It follows that for every
ain S, |o — 1| > 1. As S is a cyclic group, say,

S={l,m 0. .. 6 "1},

where

o = exp(2ni/q),
we see that ¢ < 6. In fact, g # 5. Indeed

f9fg7 @) =z + (x+ A

and for exactly the same reason as above, we must have |o + 1| > 1. This
implies that g # 5 for if ¢ = 5, then |w? + 1| < 1. The remaining possi-
bilities, namely ¢ = 1, 2, 3, 4 and 6 can all occur.

We must now describe T. Let A be the set of A, for which z—z + 4,
isin G and let A* = A — {0}. As G is discrete, A cannot accumulate in C

and so A* contains an element A of smallest (positive) modulus. If
A = {nkineZ},then

T={zmz+nl:neZ. (5.1.2)

If this is not so, there is an element u of smallest (positive) modulus in
A* — {nA: ne Z}: note that |u| = |1|. The translations

Z>Z + nA + my; nmelZ, (5.1.3)

are in G and we shall show that T consists precisely of these translations.
It is clear that u is not a real multiple of 1 (else we write u = (k + )4 where
keZ,0 <6 < 1, and consider 61). Thus A and u span the vector space C
(over RY) and if z+ z + y is in G we may write

Y= (ny + x)A + (m; + Yy,
where n;,m;eZ and x, ye [—4,4]. Now y — n;A — m,uis in A and
ly — nyd —myp| = |xA + yu| <|pl,
a strict inequality holding because A and u are linearly independent. We
deduce that
y —nmA—mpue{ni:neZ}

and so T is precisely the set of translations (5.1.3).

We can now describe G. We select g in G with multiplier « which generates
S. Then g, g%, ..., g¢*~ ! have multipliers w, w?, ..., @?" ! (w? =1, g < 6)
and so G has the coset decomposition

G=TuTgu---uTgL
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This shows that every element of G is of the form
2 o'z + nd + my,

where k, m, n are integers, 0 < k < gand g < 6,9 # 5.

Next, we suppose that G is discrete, elementary with loxodromic elements.
First we suppose that every element of G fixes both 0 and 20 and so is of the
form

g(z) = az, a # 0.

The map 0: G— {xe R':x >0} defined by 6(g) = |2,| is a homo-
morphism of G into the multiplicative group of positive numbers and this
time the kernel E of 6 consists of I and all elliptic elements of G. Because
G and hence E, is discrete we see that E is a finite cyclic group generated by,
say, z — wz where o = 1.

The image 6(G) is the set {|a,|:g e G} and this set cannot accumulate
at 1 else there are distinct elements g, in G with

lg,11*

I
=lo,l+ =522 (gal2) = 2)
| |
and this violates discreteness. It is now very easy to see that the multi-
plicative group 6(G) is of the form

6(G) = {\"neZ}
for some positive 4. We may assume that g(z) = az where || = 4: then G
has the coset decomposition
G=J Eg"

ne2

and each element of G is of the form
7> ooz, (5.1.4)

where neZ, ke Z and 0 <k < g If |a| = 1, then 6(G) is the trivial group
and G is a finite cyclic group of Type 1. Otherwise, G is infinite and contains
loxodromic elements but in any event, G has no parabolic elements.

Finally, we consider the general discrete, elementary group of this type.
We may assume that {0, oo} is the G-invariant and we denote by G, the
elements in G which fix both 0 and o so G, is of the form given by (5.1.4).
If G, is a proper subgroup of G, then G necessarily contains some element
h with

h(0) = o0, h(ec) = 0.
By a further conjugation (leaving 0 and oo fixed) we may assume that
h(1) = 1: thus h(z) = 1/z. If fin G interchanges 0 and oo, then fh € G, and
so Gy is of index two in G: this shows that all elements of G are of the form
(5.1.4) or of the form

z - who/z.
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This completes our discussion of all elementary discrete groups. In
general, we shall be more interested in the non-elementary subgroups of
4. We end with two results which give necessary conditions for a group
to be non-elementary: these results make no reference to discreteness. The
first of these results gives some insight into the complexity of such groups.

Theorem 5.1.3. Every non-elementary subgroup G of M contains infinitely
many loxodromic elements, no two of which have a common fixed point.

ProOF. We begin by showing that G has some loxodromic elements. Suppose,
then, that G has no loxodromic elements. If G contains only I and elliptic
elements then G is elementary. It follows that G contains a parabolic
element which we may take to be

f@=z+ 1
For any g in G, say
az + b

g(Z)—cz+d, ad — be = 1,

we find that
. _(a+nc)z + (b + nd)

/9@ = cz+d

and

tr’(f"g) = (a + d + nc)>.
As f"g is not loxodromic, we see that for all integers n,
0<(a+d+ncy <4

and so ¢ = 0. This implies that every element in G fixes oo and so G is
elementary, a contradiction. Thus every non-elementary group contains
loxodromic elements.

Now consider any non-elementary group G and let g be a loxodromic
element of G fixing, say, « and B. As G is non-elementary, there is some fin
G which does not leave {a, 8} invariant and two cases arise:

(1) {o, B}, {fo, fB} are disjoint;

(i1) {o, B}, {f, fB} have exactly one element in common.

In case (i), g and g, = fgf ™! are loxodromic with no common fixed
points. It is now easy to see that the elements g"g,g ™" (n € Z) contain the
desired loxodromic elements because the fixed points of g"g,g~" are g" fa,
g"f B and these are distinct from but converge towards o or B (see Theorem
4.3.10).

In case (ii), g and g, have exactly one common fixed point, say «, so by
Theorem 4.3.5, p = [g, g,] is parabolic and also fixes o. As {&} cannot be
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G-invariant, there is some h in G not fixing o so g = hph™! is parabolic and
does not fix «. Thus ¢ and g (or ¢ and g,) have no common fixed points.
Then for suitably large n, the elements g and ¢"gq ™" are loxodromic with
no common fixed points and case (i) is applicable. |

Theorem 5.1.4. Ler f(5£1) be a Mibius transformation not of order two and
define the map 0: M — M by 0(g) = gfg~ . If for some n, we have 6"(g) = f,
then {f,g> is elementary and 6*(g) = f.

PrOOF. Define g, = g and g, = 6"(g) so for m = 0,

gm+1 = gmf(gm)— 1-

Suppose first that fis parabolic; then without loss of generality, f(z) =
z+4 1. Asgy,..., g, are conjugate to f, they are each parabolic and so have
a unique fixed point. Now for r > 0, g, ., fixes g,(oc). Thus if g, , fixes oo,
then so does g,. As g,(= f) fixes o, we deduce that each g; (including g,)
fixes 20. This shows that { f, g) is elementary as both elements fix a0. Also,
g, is parabolic and fixes oo and so commutes with f': thus g, = f.

Suppose now that f has exactly two fixed points: then we may assume
that f(z) = kz. Clearly g, ..., g, each have exactly two fixed points. Now
suppose that g, , fixes 0 and oo (as does g,): then

{0, o0} = {g,(0), g,(=0)}.

Now g, cannot interchange 0 and o« (r > 1) else (g,)? fixes 0, oc and other
points too and so g,, and hence f (which is conjugate to g,), is of order two.
We deduce that if g, , fixes both points 0 and oo, then so does g, for r > 1.
It follows that g4, ..., g, each fix 0 and oo. This shows that fand g leave the
set {0, co} invariant and so <f, g) is elementary. Again, g, and f commute

s0g, = f. O

The reader may wish to relate this result to the discussion in Section 1.5.

EXERCISE 5.1

1. Let G be an elementary group containing a parabolic element which fixes oc. Show
that if the group of all such parabolic elements is cyclic then any elliptic element in G
is of order two.

2. Show that a group G is elementary if and only if for all f and g in G, {f, g)
is elementary.

3. Show that if g and h are of order two, then (g, h) is elementary. Is {g, h) necessarily
discrete?
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4. Show that the map
2 (z/|z], loglz])

is an isometry of C ~ {0} with the metric |dz|/|z| onto the cylinder S! x R! with the
Euclidean metric. Deduce that an elementary group leaving {0, >} invariant is
isomorphic to a group of isometries of the cylinder. Find the Euclidean isometry
corresponding to the group element z+— az” where p = 1 or —1.

5. Let

(I+0:—-(1+1)

J@)= =z g(2) = (I-nDz+1-0

where t = 1/\/5. Show that g is parabolic with fixed point w, say, where w # 0.
Deduce that fgf ~ ! is parabolic with fixed point —w(#w)so <, g) is non-elementary
Show however that in the notation of Theorem 5.1.4, §*(g) = f. (The assumption
that f is not of order two in Theorem 5.1.4 is necessary.)

§5.2. Groups with an Invariant Disc

Later, we shall be interested in those subgroups of .# which have an in-
variant disc: here, we characterize such groups.

Theorem 5.2.1. Let G be a non-elementary subgroup of M. Then there exists
a G-invariant disc if and only if G has no strictly loxodromic elements. If D is
a G-invariant open disc, then D and its exterior are the only G-invariant discs.

Note that we do not require G to be discrete. The restriction to non-
elementary groups is necessary: for example, if

p(z) =z + 1, 9(z) =z + i,

then <p, g) has no loxodromic elements and no invariant disc and {p) has
infinitely many invariant discs.

PRrOOF. Directly from Definition 4.3.3, if a G-invariant disc exists then G has
no strictly loxodromic elements.

To prove the converse, suppose that G is non-elementary and has no
strictly loxodromic elements. By Theorem 5.1.3, we can find loxodromic,
and therefore hyperbolic, elements g and h in G with no common fixed
points. By conjugation, we may assume that g fixes 0 and co.

Now select any fin G. In terms of matrices we can write

_(u 0 [z B
D) ()
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where each matrix is in SL(2, C). As g is hyperbolic, we find that u is real.
Next, write

ty =trace(f) =a + o
and
t, = trace(gf) = ua + d/u.
Because fand g f are not strictly loxodromic, ¢, and t, are real. Solving for

xand &, we find that o and § are real. This shows that every element of G has
real diagonal elements.

Now let
a b
h= ) - = 1,
(c d) ad — bec =1

so a and d are real. Also (a + d)® > 4 because h is hyperbolic. The fixed
points of h are the points

_(a-d) £ [(a +d) - 4]

B 2c

Wi, Wy

and as ¢ # 0, the ratio w,/w, is real. This implies that the fixed points of g
and h are collinear. In an invariant formulation, the absence of strictly
loxodromic elements implies that the fixed points of every pair g and h of
hyperbolic elements are concyclic. One can proceed by geometry but the
algebraic proof seems simpler.

We may assume that the fixed points of g and 4 lie on the real axis. Then
g and h leave H? invariant and all entries of & are real. Now

oa + fe *
fh—( * 'yb+5d>

and these diagonal elements are real. As a, b, ¢,d,« and § are real and
bc % 0, we find that 8 and y are real so fis in SL(2, R). This shows that
every element of G preserves H2.

Finally, let D be an invariant disc. For any hyperbolic h in G, the points
h"(z) accumulate at the fixed points of h (Theorem 4.3.10). By taking z in
D and then in the exterior of D we see that all hyperbolic fixed points must
lie in the boundary of D: thus there are precisely two G-invariant discs, the
common boundary containing all hyperbolic fixed points (see Theorem

5.1.3). a

The argument given in the last part of this proof shows that if g is para-
bolic or hyperbolic with an invariant disc D, then the fixed points of g lie on
dD. If g is elliptic with an invariant disc D, then the fixed points of g cannot
lie on 8D (consider g(z) = ¢°z). If wis a fixed point of g, then so is the inverse
point of w with respect to dD because inverse points and 0D are preserved
by g. Thus if g is elliptic with invariant disc D then the fixed points of g are
inverse points with respect to dD and are not on 0D.
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EXERCISE 5.2

1. Verify the statements regarding the location of the fixed points of g with invariant
disc D by taking D to be H? and regarding ¢ as a matrix in SL(2, R).

§5.3. Discontinuous Groups

We begin with a general definition.

Definition 5.3.1. Let X be any topological space and G a group of homeo-
morphisms of X onto itself. We say that G acts discontinuously on X if and
only if for every compact subset K of X,

gK)N K =,

except for a finite number of g in G.

In our applications, X will always be a subset of R* with the usual
topology. There are, however, several useful results which, even in the
general situation, follow easily from this definition. Suppose now that G
acts discontinuously on X : then the following statements are true.

Every subgroup of G acts discontinuously on X. (5.3.1)
If ¢ is a homeomorphism of X onto Y, then ¢G¢ ™!

acts discontinuously on Y. (5.32)
If Y is a G-invariant subset of X, then G acts
discontinuously on Y. (5.3.3)
If xeX and if gy, g,,... are distinct elements

of G, then the sequence g(x), g,(x),... cannot con-

verge to any y in X. (5.34)
If x € X, then the stabilizer G is finite. (5.3.5)
If (for example) X < R3, then G is countable. (5.3.6)

Proors. Clearly (5.3.1) and (5.3.2) are true. If Y < X, then any compact
subset of Y is also a compact subset of X and (5.3.3) follows. To prove
(5.3.4), observe that if the given sequence converges to y, then

K = {y,x,9:(x), g,(x), ...}

is a compact set. As g, (K) " K # & (n =1, 2,...)and as the g, are distinct,
G cannot act discontinuously on X: thus (5.3.4) follows. For each x in X,
{x} is compact; thus (5.3.5) is a direct consequence of Definition 5.3.1.
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Finally, we have seen (in Section 4.3) that there is a 1-1 correspondence
between G/G, and the orbit G(x) and so by (5.3.5), G is countable if and only
if G(x) is countable. Now any uncountable set in &> contains a limit point
of itself and so by (5.3.4), G(x) must be countable. This proves (5.3.6). O

Our aim is to study the relationship between discreteness and discon-
tinuity as applied to subgroups of .#. First, we consider the action of G in H>.

Theorem 5.3.2. A subgroup G of M is discrete if and only if it acts discon-
tinuously in H®.

PROOF. Suppose first that G is discrete. As G is the homomorphic image of
a discrete (and therefore countable) subgroup of SL(2, C), we see that G is
countable, say

G=1{91,92 -}

As G is discrete, ||g,| = + o0 and so using Theorem 4.2.1, we see that as
n— + 00, sO

PUs gul)) = + c0. (5.3.7)

It is clear from (3.3.5) that a compact subset K of H3 lies in some
hyperbolic ball

B = {xe H*: p(x, j) < k}.
If g(K) " K # &, then g(B) N B # (& and so

pU> 9()) < 2k

By (5.3.7) this can only happen for a finite number of g in G and so G acts
discontinuously in H?.

Now suppose that G acts discontinuously in H*® (or in any subdomain
of €). If G is not discrete, we can find distinct matrices Ay, Ay, ... in SL(2,C)
projecting to g, g,,...1n G with 4, = I as n — oco. Using (4.1.4), we see
that g,(x) — x as n — oo for every x in R3. Clearly this violates (5.3.4) and
so we deduce that G is necessarily discrete. O

We now turn our attention to the extended complex plane and we seek
to understand the relationship between discreteness and discontinuity in
open subsets of C. Of course, the proof of Theorem 5.3.2 shows that if G
acts discontinuously in some non-empty open subset of C, then G is discrete.
The converse is false: it is possible for G to be discrete yet not act discon-
tinuously in any open subset of C. In order to give a simple example of this,
we establish a criterion which excludes the possibility of a discontinuous
action.
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Lemma 5.3.3. Let G be any subgroup of .# and let D be an open subset of €
which contains a fixed point v of some parabolic or loxodromic element g of
G. Then G does not act discontinuously in D.

Proor. This is trivial as the stabilizer G, contains the distinct iterates of g.
If g is parabolic or loxodromic, then G, is infinite and this violates (5.3.5).

O

Example 5.3.4. Let G be Picard’s group, namely the group of transformations
of the form
az + b
=—, 3.8
9(z) e (5.3.8)

where a,b, ¢ and d are Gaussian integers (of the form m + in where m,
n e Z)and ad — bc = 1. Obviously G is discrete.

By Lemma 5.3.3 it is sufficient to show that the parabolic fixed points of
GaredenseinC. Letw = (p + ig)/r where p, g and r are integers: obviously,
the set of such w is dense in C. Now simply observe that

(1 = wrd)z + riw?
~r’z + (1 + wr?)

h(z) =
is a parabolic element of G that fixes w. O

Our aim now is to understand the situation in which a discrete group
does act discontinuously on some open subset of €. The exposition will be
clearer if we restrict our attention to the non-elementary groups: the case of
the elementary groups is rather easy and are left to the reader. Note, how-
ever, that once again we do not begin with the assumption of discreteness.

The discussion will be based on the fixed points of loxodromic elements
of G and we begin with a preliminary result which enables us to locate these
fixed points.

Lemma 5.3.5. Let = be an open disc and suppose that g € M and g(T) = Z.
Then g is loxodromic and has a fixed point in g(Z).

PROOF. We may assume that g(oo) = s0. With this assumption, JZ is a
Euclidean circle (and not a straight line) as clearly, no fixed point of g is
on the boundary of X. If g is elliptic or parabolic then (as g fixes c0) g is a
Euclidean isometry and this is not compatible with g(£) = . Thus ¢ is
loxodromic. For any w not fixed by g, the images g"(w),n=1,2,...,
accumulate at a point v fixed by g. If w € X, these images are in g(X) and so
veEg).

We now begin our study of discontinuity in subsets of C.

Definition 5.3.6. Let G be a non-elementary subgroup of .# (G need not be
discrete) and let A, denote the set of points fixed by some loxodromic
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element in G. The limit set A(G) of G is the closure of Ag in C: the ordinary
set Q(G) of G is the complement of A in C.

In general, we shall write A and Q without explicit mention of G. Note
that if G = G, then

A(G) = A(Gy), Q(G) o NG,).
We shall study A first and then Q.

Theorem 5.3.7. For any non-elementary group G, the limit set A is the smallest
non-empty G-invariant closed subset of C. In addition, A is a perfect set and is
therefore uncountable.

ProoF. As A, is G-invariant, so is A. By definition, A is closed and by
Theorem 5.1.3, A # . Now let E be any non-empty, closed G-invariant
subset of €. As G is non-elementary, every orbit is infinite, thus E is infinite.
Now take any point v fixed by a loxodromic element g in G. There is some
win E not fixed by g and the set {g"(w): n € Z} accumulates at v (and at the
other fixed point of g). As E is closed, v € E. This shows that A, = E; hence
A cE

This argument also shows that A, has no isolated points (we simply
choose w in A, but not fixed by g): hence A has no isolated points. A set is
perfect if it is closed and without isolated points and as is well known any
non-empty perfect set is uncountable. As A is perfect, the proofis complete.

a

Theorem 5.3.7 shows that the countable set A, is dense in the uncountable
set A but we can say even more than this.

Theorem 5.3.8. Let G be a non-elementary subgroup of # and let Oy and O,
be disjoint open sets both meeting A. Then there is a loxodromic g in G with
a fixed point in O, and a fixed point in O,.

Proor. Recall that if f'is loxodromic with an attractive fixed point o and a
repulsive fixed point f, then asn — + o0, f" — o uniformly on each compact
subset of C — {B} and f ~" —» B uniformly on each compact subset of c -
{a} (Theorem 4.3.10). The repulsive fixed point of fis the attractive fixed
point of f ~ 1.

Now consider G, O, and O, as in the theorem. It follows (Definition
5.3.6) that there is a loxodromic p with attractive fixed point in O, and a
loxodromic g with attractive fixed point in O,. By Theorem 5.1.3, there is
a loxodromic f with attractive fixed point « and repulsive fixed point g,
neither fixed by p. Now choose (and then fix) some sufficiently large value
of m so that

g=p"fp"
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Figure 53.1

has its attractive fixed point a, (=p™a) and repulsive fixed point f, (=p™f)
in O,. Then choose (and fix) some sufficiently large value of r so that

h=4g
maps %, into O, : put o, = h(x,). See Figure 5.3.1
Next, construct open discs E and K with the properties
p,eEcEcO,,
2,eKcKcO,.
As B, ¢ K we see that g" — «, uniformly on K as n — +o0. As h™ '(K)
is an open neighbourhood of «; we see that for all sufficiently large n,
g"(K) = h™1(K)
and so

hg"(K) < K. (5.3.9)

As h(at,) ¢ E so a, is not in h~*(E) and so g ™" — f, uniformly on h™!(E)
as n — +o0. Thus for all sufficiently large n,

g "h~Y(E) < E. (5.3.10)

Choose a value of n for which (5.3.9) and (5.3.10) hold. By Lemma 5.3.5,
hg" is loxodromic with a fixed point in K: also, g~"h™ ", which is (hg") ™!,
has a fixed point in E, hence so does hg".

Theorems 5.3.7 and 5.3.8 do not require G to be discrete. If we add the
extra condition that G is discrete, we can describe A in terms of any one orbit.
For any z in C, let A(z) be the set of w with the property that there are
distinct g, in G with g,(z) — w (the points g,(z) need not be distinct).

Theorem 53.9. Let G be a non-elementary discrete subgroup of M. Then
for all z in C, we have A = A(2).
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Remark. The group generated by z+ 2z shows that the conclusion may
fail if G is only discrete. The group of Mobius transformations preserving
the unit disc shows that the conclusion may fail if G is only non-elementary.

Proor oF THEOREM 5.3.9. Each A(z) is closed, non-empty and G-invariant
so by Theorem 5.3.7, we have

A < A(2).
If z € A, then G(z) < A and so

A@z) € G(z) < A:

in this case, then we have A = A(z).

Now suppose that z is in Q and select any w in A(z): we must show that
w e A. Suppose not, then w € Q and there is a disc Q with centre w whose
closure Q lies in Q. We may suppose that 0 and 20 are in A so taking
K = Q u {z} we deduce from Theorem 4.5.6 that for all g in G and all 2’

in Q,
d(gz, gz') < m/||g|i>.

As w € A(z), there are distinct g, with g,(z) — w: as ||g,/|* = + =0, we deduce

that g, - w uniformly on Q. This implies that for large n,

9.(0) = Q:
hence for Lemma 5.3.5 we have Q n A # ¢ and this contradicts Q = Q. [J

We now turn our attention to the open set Q.

Theorem 5.3.10. Suppose that G is a discrete non-elementary subgroup of
M. Then Q is the maximal domain of discontinuity in C of G: precisely,

(i) G acts discontinuously in Q; and R
(ii) if G acts discontinuously in an open subset D of C, then D < Q.

Remark. Traditionally, a discrete group G was called Kleinian if Q # .
More recently, Kleinian is used synonomously with discrete.

ProoF OF THEOREM 5.3.10.If G does not act discontinuously in Q, then
there is a compact subset K of Q and distinct gy, g,,... in G such that
g.(K) n K # &. Thus there are points zy, z,, ... in K with g,(z,) € K. By
taking a subsequence, we may assume that g,(z,) > w in K and so we Q.
However, exactly as in the proof of Theorem 5.3.9, we now see that g, —» w
uniformly on K and so w € A, a contradiction. This proves ().

It is easy to prove (ii). By Lemma 53.3, D n Ay = . As D is open, this
implies that D " A = @so D < Q. O
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Theorem 5.3.10 has an interesting corollary.

Corollary. Let G be discrete and non-elementary. Then Q # & if and only if
for some z, G(z) is not dense in C.

PRrOOF. By Theorem 5.3.9, Q # & if and only if A(z)(=A) is not € and this
is the assertion in the corollary. O

Lemma 5.3.3 shows that the fixed points of parabolic and loxodromic
elements of G lie in A and hence not in Q. It is not hard to see that there
can be fixed points of elliptic elements of G both in A and in Q. However,
if an elliptic fixed point lies in ), the stabilizer of that point must be cyclic.

Theorem 5.3.11. Suppose that G is non-elementary and that Q # . If ze Q
then the stabilizer G, is cyclic and finite.

ProoF. By virtue of Lemma 5.3.3, if z € Q then every element of the stabilizer
G, is either elliptic or 1. Thus by Theorem 4.3.7, there is some { in H* which
is fixed by every g in G,. Now let 4 be the unique semi-circle in H*> which
has end-point z, which passes through { and which is orthogonal to C.
Every elliptic element of G, fixes z and { and so has the axis A. This means
that every element of G, fixes both end-points of 4 and an examination of
the discrete elementary groups listed in Section 5.1 shows that G, is neces-
sarily a finite cyclic group.

For an alternative proof, suppose that g and 4 fix z in Q. As both g and h
are elliptic they each have another fixed point. If these other fixed points
are distinct, then by Theorem 4.3.5, [g, h] is parabolic and also fixes z and
this violates Lemma 5.3.3. a

We can use Theorem 5.3.11 to obtain a result concerning the local be-
haviour of a discrete group G near a point in Q or H3.

Theorem 5.3.12. Let G be a discrete non-elementary subgroup of M. Then
(considering only g in G):

(i) each x in H® is the centre of an open hyperbolic ball N such that g(N) = N
if g(x) = x and g(N) " N = & otherwise;

(i) If Q# &, each x in Q has an open neighbourhood N in Q such that
g(N) = N if g(x) = x and g(N) n N = I otherwise.

Proor. First, (i) is a direct consequence of the fact that G is a group of
isometries acting discontinuously in H>.

To prove (ii), we may assume that z = 0 and that every g in G, also
fixes oo (use Theorem 5.3.11). Now select a disc

N = {z:|z| < r}

whose closure is contained in Q. As G acts discontinuously in Q,
g(N)n N # & for only a finite set of g in G. By continuity, for a sufficiently
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small r (depending in this finite set) g(N) " N = & unless g(0) = 0 in
which case, g(N) = N. O
If G is a discrete group, then G = {g,,¢,, ...} say, and
gnll » +0 asn— +oc.

We now show this convergence cannot be too slow.

Theorem 5.3.13. Let G be a discrete subgroup of M. Then:

(i) the number n(t) of elements g in G with |g|| < t is O(t%);
(ii) for any s > 4, the series Z lgll =% converges;
(iii) if Q # &, then the series Y ||g||~* converges.

Proor. The stabilizer G; of j in H? is finite with, say, k elements. Let N be a
hyperbolic ball in H* with centre j and radius r, say, such thatg(N) " N = F
when g € G — G;. Let V(R) be the hyperbolic volume of a hyperbolic ball
of radius R.

Now ||g|| <t isequivalent to

2 cosh p(j, gj) < t%,
(Theorem 4.2.1) and so if ||g| < t, then
g(N) © {x e H?: p(x, j) < r + cosh™!(4t})}.

By adding the volumes of the disjoint images g(N) of N with [g| <t and
by taking into account the order of the stabilizer of j, we obtain

n(t)/k < V(r + cosh~2(5t%))/V(r). (5.3.11)
Now (see [5], p.61)
V(R) = n[sinh(2R) — 2R]

< ne*k)2
and
cosh™}(y) = log(y + [y* — 11'%)
< log(2y).
Thus

n(t) < (kn/2V(r)) exp[2r + 2 log(t?)]
= (kne¥ 2V (r))¢*.

To prove (ii) simply observe that n(1) = 0so

td
Y lg= [

9eG. gl <1 1 (5.3.12)
n(t) 'r n(x) dx
=— + s T sF1
t 1 X
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and so (i) implies (ii). Note that in general, this yields

Y. lgll™* = Odlog 1)

llgll <1t

and indeed, an estimate of the partial sums (5.3.12) for any positive s.

To prove (iii) we can use a similar argument but in Q and with the chordal
metric. We can find an open disc N in Q such that for all g in G, g # I, we
have g(N)n N = . Then the sum of the areas of the g(N) measured in
the chordal metric converges to at most 4n (the chordal area of C) and it is
only necessary to estimate this area of g(N). Let

az + b

et ad — bc = 1.

g(z) =

Then the chordal area of g(N) is
J‘J‘ ddxdy J‘ |g'V(2)|* dx dy
a+1z?? (1 + 1g()*)?

g(N)
_ fj‘ 4dx dy
“ M (laz + b + |z + d|P)?
N

> |lg|l ~# (chordal area of N),

the last line being an application of the Cauchy—Schwarz inequality, namely

laz + b* + |cz + d)? < (Ja* + b1 + |z]?) + (c|* + 142X + |z]?).
|

We end with two result which imply that Q % (.

Theorem 5.3.14. Let G be a discrete non-elementary subgroup of M.

(i) If D is a non-empty open G-invariant set which is not C, then G acts
discontinuously in D;

(it) if D is a non-empty open set such that g(D) N D = & for all g in G except
1, then G acts discontinuously in | ), g(D).

ProOF. Theset E = € — D is non-empty, closed and G-invariant and so by

Theorem 5.3.7, A < E. Thus G acts discontinuously in D (Theorem 5.3.10).

By definition, | Jg(D) is disconnected and so is not C: now apply (i) to
O

Ug(D).

Referring to (ii) in the previous theorem, we say that a subdomain D of
€ is a G-packing if g(D) N D = ¥ whenever g € G and g # I. This terminol-
ogy enables us to state our next result easily.
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Theorem 5.3.15. Let G|, G,, ... be subgroups of M whose union generates
the group G. Let D; be a Gpacking and suppose that D, u D; = € when
i # j. Suppose also that D*(= () D;) is nonempty. Then G is the free product
of the G;, D*is a G-packing and G acts discontinuously on U, g(D*).

Proor. Consider any element g,---g, of G where g,€G,, g, # I and

I
i # x4y for any k. First, because D, is a G, -packing, we have

g,(D*) = g:(D;) = ¢ - D,,.
In fact, it follows (by induction) that

Gu 91D =C - D,

for if this is so, then

Im+1@m - 91)(D*) < G+ 1(@ - Di,,,)
< gm+1(Di,,.H)
< € - p,

We deduce that
Gn- 9 (D)= C D, <C - D*
so D* is a G-packing. Because D* # (¥ we must haveg,,--- g, # [ so G is

the free product of the G;. The last assertion follows from Theorem
5.3.14(ii). g

As an application of Theorem 5.3.15, consider G, = {g) and G, = <{h)
where

g2)=z+6, h(2)=z/(z+1)

D, nD,

o

Figure 5.3.2
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Let
D, = {x + iy:|x| < 3}
and
D,=zi|z+ 1]|>1}n{z:|]z - 1| > 1}:
see Figure 5.3.2.

Clearly, D, is a G-packing: as h maps the domain |z + 1| > 1 onto the disc
[z-1| <1 we see that D, is a G,-packing. Obviously D*# & and
D, u D, = C: thus Theorem 5.3.15 is applicable.

EXERCISE 5.3
1. Verify the details in the Remark following Theorem 5.3.9.

2. Let g and X be as in Lemma 5.3.5. Show that for some w,

N 9"C) = {w}

n=1
and that w is the unique fixed point of g in .

3. Suppose that G is discrete and non-elementary. Show that Q is the largest domain in
€ in which G is a normal family.

4. Suppose that G is non-elementary and contains parabolic elements. Show that A is
also the closure of the set of parabolic fixed points of G.

5. Let G;, D; and D* be as in the application of Theorem 5.3.15 and let G = <g, h).
Prove that A = R! U {=¢} so G acts discontinuously in the upper and lower half-
planes. Deduce that Q is connected.

Let D be the set obtained by removing the origin from the closure of D*. Prove
that D < Q and deduce that
Uy =Q
feG

6. Let Q,,0-,,0Q,,Q_, be four mutually exterior circles in C. Forj = 1, 2, let g; map
the exterior of 0 _ ;onto the interior of Q;. Deduce that G = {g,, g, acts discontinu-
ously on

U 9(D)

geG

where D is the domain lying exterior to all four circles. This is called a Schottky group
on two generators.

§5.4. Jorgensen’s Inequality

We end our general discussion of discreteness and discontinuity with an
account of Jargensen’s inequality. Later, we shall examine the geometric
interpretation in greater detail in the special case of isometries of the
hyperbolic plane.
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Let A and B be matrices in SL(2, C) representing the M&bius trans-
formations f and g respectively. As A and B are determined by f and g to
within a factor of —1, we see that the commutator ABA™'B™ ! is uniquely
determined by fand g. Thus we may (unambiguously) write

t(fgf " 'g™1) = tr(ABA'B™ ).

Theorem 5.4.1. (Jorgensen’s Inequality). Suppose that the Mobius trans-
formations f and g generate a discrete non-elementary group. Then

Itr?(f) — 41 + |tr(fgf "'g™ ) = 2| 2 L (54.1)

The lower bound is best possible.

The inequality (5.4.1) can be interpreted in terms of the metric on SL(2, C)
for if {f, g) is non-elementary and discrete, then

|tr’(4) — 4| + tr(ABA™'B™') = 2| > 1 (54.2)

and so 4 and B cannot both be close to I. Thus (5.4.1) represents a quanti-
tative statement about the isolated nature of I within a discrete group.
It is easy to obtain an explicit numerical bound by writing

A=I1+X, A '=1I+X*
and noting that
IXI|=1X*, X+X*+XX*=0:
similar expressions hold for B = I + Y, say. The Cauchy-Schwarz inequality
yields
tr(X)| < /21X

and a computation shows that [4, B] — I reduces to a sum of six terms,
each being a product of at least two of the matrices X, X*, Y and Y*. If
| X|| <eand || Y| < ¢then (5.4.2) yields

1< /264 + /2¢) + 6,/262
=42 + 2 + 6,/2)¢

so ¢ > 0-14. Thus we have the following (presumably) crude but explicit
estimate.
Corollary. If A and B generate a non-elementary discrete group then

max{[|4 —I|, |B—1|} > 0-14.

To show that the lower bound in (5.4.1) is best possible, consider the

group generated by

f@=z+1 g@)=-1z
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In this case, G is the Modular group arising from SL(2, Z): it is obviously
non-elementary and equality holds in (5.4.1).

PRrROOF OF THEOREM 5.4.1. The idea of the proof is contained in Section 1.5
and Theorem 5.1.4. We know that {f,g) is discrete and non-elementary.
Now (5.4.1) holds if f is of order two (because then, tr’(f) = 0) so we
may assume that fis not of order two. Select matrices A and B representing
fand g respectively in SL(2, C) and define

Bo=B, B,,,=B,AB . (5.4.3)

It follows that B, represents g, as defined in the proof of Theorem 5.1.4,
hence (by that Theorem) B, # A for any n. It remains only to show that if
(5.4.2) fails, then for some n we have

B,=4 (5.44)
and we consider two cases.

Case 1: f is parabolic.
As the trace is invariant under conjugation we may assume that

1 1 a b
A"(o 1)’ B=<c d)’

where ¢ # 0 (else {4, B) is elementary). We are assuming that (5.4.2) fails
and this is the assumption that

el < 1.
The relation (5.4.3) yields

2
(an-(-l bn+1) _ (l — a,C, a )
= 5 .
Cn+1 dn+1 —Cx 1+ a,c,

From this we deduce (by induction) that
€= —=(=c)"
(which is —c?" except when n = 0) and as |c¢| < 1 we see that
¢, — 0.
As |c,| < 1, we have (by induction)
la,] < n + |aol
so a,c, — 0 and
Gy > 1
This proves that
B,y — 4,
which, by discreteness, yields (5.4.4) for all large n.
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Case 2: fis loxodromic or elliptic.
Without loss of generality,
u 0
4= ,
(o 1

where Bis as in Case 1 and bc # 0 (else {4, B) is elementary). The assump
tion that (5.4.2) fails is

U= |tr2(A4) — 4| + |tr(ABA™'B~ 1) — 2|
= (1 + |bc|)|u — 1/u|?
< 1.

The relation (5.4.3) yields

ap+1 bn+1 _ andnu - bncn/u anbn(l/u - u)
Cat1 dn+1 - Cndn(u - l/u) andn/u - bncnu
N¢

bn+ 1Cns1 = _bncn(l + bncn)(u - l/u)z‘
We now obtain (by induction)

|bpe,| < p|be| < |bel
s0O
b,c, =0
and
a,d, =1+ b,c,— 1.

Also, we obtain

Ap+1 > U, dpyy = u.
Now
1D+ 1/bal = |a,(1/u — )]
= [u(l/u — )]
< p'*ul
SO
bu+1 1+ lu'”z bn
un+1 <( 2 un

for all sufficiently large n. Thus
bu" =0
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and similarly, ¢,u” — 0. It follows that

2n
A~nB2nAn = ( aZn bZn/u )

As (A, B) is discrete, we must have
A "B,,A"=A

for all sufficiently large n so for these n, B,, = A which is (5.4.4). d

We end this chapter with several applications of Jgrgensen’s inequality.

Theorem 5.4.2. A non-elementary group G of Mobius transformations is
discrete if and only if for each f and g in G, the group {f, g) is discrete.

Proor. If G is discrete, then so is every subgroup of G. Now suppose that
every subgroup {f, g) is discrete: we suppose that G is not discrete and
our aim is to reach a contradiction.

As G is not discrete we can find distinct f}, f,, ... (1) in G represented
by matrices A, A,,... in SL(2, C) which converge to I. By considering
traces, we may assume that no f, is of order two.

For any g in G with matrix B, say, we have

[tr*(4,) ~ 4| + [tr[4,, B] — 2| >0

and so by Theorem 5.4.1, for n > n(g) say, the group {f,, g is elementary.
Now G contains two loxodromic elements g and h with no common
fixed points (Theorem 5.1.3). For n greater than n(g) and n(h), both groups

$g:f>»  <Pfid

are elementary and discrete and, according to the discussion of such groups
in Section 5.1, we deduce that f, must leave the fixed point pair of g and of h
invariant. As f, is not elliptic of order two, it cannot interchange a pair of
points so f, must fix each individual fixed point of g and of h. We deduce
that g and h have a common fixed point and this is the required
contradiction. ad

Next, we give alternative formulations of (5.4.1) in the particular case
when f'is parabolic (p is the hyperbolic metric in H?).

Theorem 5.4.3. Let f be parabolic and suppose that {f, g is discrete and
non-elementary. Then

@ If=1-lg-=11=1
and this is best possible;
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(i) if g is also parabolic, then for all x in H® we have
sinh $p(x, fx)sinh $p(x, gx) =
and this is best possible.

Remark. In (1), || f — I|| is to be interpreted as |4 — I|| for either choice
of the matrix A representing fand similarly for g.

PRrOOF. There is a M6bius h corresponding to a unitary matrix U such that
hfh~! fixes co. If A corresponds to f, then
VAU = 1| = |4 = 1|

and similarly for g: thus we may assume that f fixes co. Then

e A a b
A=(0 e)’ B=(c d) (ad — bc = 1),

where ¢2 = 1 and where B represents g. Jprgensen’s inequality (5.4.2) yields
lcAl = 1
and (i) follows as
I4 -1 2[4, B —1I| =lcl|.
To prove (ii), select matrices A and B for fand g respectively with
tr(4) = tr(B) = 2.
Then using Theorem 4.2.1, we have
l4 = 1] = |AlI* + 2 — 2 Re[tr(4)]
= [4]* - 2
= 4 sinh? 3p(j, fj),
where j = (0, 0, 1) in H3. This verifies (ii) when x = j.
The general case of (ii) follows easily. If x € H3, choose a M&bius h
mapping x to j. Now apply (ii) with f, g and x replaced by hfh™!, hgh™!

and j. The maps f:z—z + 1,g(z): z— z/(z + 1) show that both bounds
are best possible. O

Theorem 5.4.3 has an interesting geometric interpretation. A horoball Z
in H* is an open Euclidean ball in H* which is tangent to €. If the point of
tangency is w, we say that Z is based at w: the boundary 0% of T (in R?) is
a horosphere. A horoball based at oo is a set of the form

{(x1, xzax3)5H33 x3 >k},

where k > 0. Thus in this case, and hence in general, a horosphere is a
surface in H® which is orthogonal to all hyperbolic planes containing the
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point w on the sphere at o, namely €. This characterizes horoballs and
horospheres in terms of the geometry of H* alone.
If g is a parabolic element of .# fixing w, then for all positive k,

Z[g, k] = {x € H*:sinh {p(x, gx) < k}
is a horoball based at . Indeed, if g(z) = z + 1, then using (3.3.4) we obtain
sinh 3p(x, gx) = 1/2x,
and hence
2[g, k] = {x e H?: x5 > 1/2k}:
the general case follows because for all M&bius h,
h(Z[g, k1) = Z[hgh™ ", k].
Now define, for each parabolic g, the horoball
%, = {xe H*:sinh }p(x, gx) < 3}. (5.4.5)
Obviously, for any M&bius h we have
h(Z,) = Zygp-1- (5.4.6)

It is clear from Theorem 5.4.3(ii) that if £, meets Z,, then {g, h) cannot be
both discrete and non-elementary. In particular, if g and h are known to be
in a discrete group, then g and h must have a common fixed point. This
proves the next result.

Theorem 5.4.4. Let G be a discrete non-elementary subgroup of M with
parabolic elements. For each parabolic g in G, let T, be the horoball defined
by (5.4.5). Then the family

{Z,: g parabolic in G}
is permuted by G according to (5.4.6) and £, N Z, = J unless g and h have a

common fixed point.

Our last application of Jergensen’s inequality relates Theorem 5.4.3(ii)
to non-parabolic elements: for completeness, we include this in the state-
ment of the next result.

Theorem 5.4.5. Suppose that {g, h) is discrete and non-elementary.
(i) if g is parabolic, then for all x in H?,
sinh 4p(x, gx) sinh $p(x, hgh™'x) > %;
(ii) if g is hyperbolic, then for all x in H?,
sinh $p(x, gx) sinh $p(x, hgh™'x) > ;
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(iil) if g is elliptic or strictly loxodromic and if |tr3(g) — 4| < % (which defines
an open neighbourhood of I) then for all x in H?
max{sinh $p(x, gx), sinh $p(x, hgh™'x)} > &.
If
plx,gx) <&  p(x, hx) <,
then
p(x, hgh™'x) = p(h™'x, gh™'x)

< ph™'x, %) + p(x, gx) + p(gx, gh™'x)
< 3e:

thus we obtain the following corollary of Theorem 5.4.5.

Corollary 5.4.6. Let N be the open neighbourhood of I in M defined by

{f:1tr’(f) — 4| < &} If gisin N and if {g, h) is discrete and non-elementary,
then for all x in H?,

max{p(x, gx), p(x, hx)} > 0-38....

The proof of Theorem 5.4.5 requires details of the geometry of the action
of loxodromic and elliptic elements. Suppose first that

u 0 i
g= (0 l/u)’ u=|ulev, (547

is loxodromic (this includes hyperbolic) or elliptic. Observe that
lu = 1ul = (u~— 1fu)@ — 1/a)
= (lu] = 1/]u|)* + 4sin? 6. (5.4.8)
Next, for all x and y in H3, (3.3.4) yields

Ix — y|?
X3J)3

4 sinh? 3p(x, y) =

The transformation g acts on R* (viewed as C x R!) by the formula
g: (z, ) Wz, |ul*)
and so with x = (z, 1) we have

|z — u?z]® + (¢t — |u|*1)?
Iulztz

= (lul ~ —1—)2 + ('—Z—l)z(u - 1)2. (5.4.9)
[u] t u

4 sinh? 4p(x, gx) =
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The axis A of g is, by definition, the geodesic joining the fixed points of g.
In the particular case (5.4.7), the axis is given by z = 0 and it is clear from
(5.4.9) that the displacement

T, = p(x, gx)
is independent of x on A: we call T, the translation length of g. The identity
(5.4.9) shows that
4sinh’GT) = (lul — 1/]u])*: (5.4.10)
in particular, T, = 0 if g is elliptic. Note that the two terms involving u in
(5.4.8) are invariant under conjugation (they can be expressed in terms of
trace(g) and T), hence so is sin? . In particular, sin § = 0 if g is hyperbolic.

The next task is to express |z|/t geometrically. The reader is referred
forward to Section 7.9 where it is shown that

|z|/t = sinh p(x, A): x =(z1).
With this available, (5.4.9), (5.4.8) and (5.4.10) yield
sinh? 4p(x, gx) = sinh?(3T;) cosh? p(x, 4) + sinh? p(x, A) sin® 0. (5.4.11)

Thus the displacement by g arises out of a contribution corresponding to
the shift T, along the axis and a contribution arising out of the rotational
effect of # and each contribution is adjusted according to the distance of x
from the axis.

ProOF OF THEOREM 5.4.5. We need only prove (ii) and (iii) and by considering
conjugate elements we may suppose that g is given by (5.4.7). As Jergensen’s
inequality is applicable, we write

a b
h = — =
(c d)’ ad — be =1,
and so

(1 + |be])|u— 1/ul®> > 1: (5.4.12)

see the proof of Theorem 5.4.1, Case 2.

In order to interpret the term |bc|, we seek a Mobius transformation f
taking 0, oo, hO, hoc to 1, —1, w, —w respectively. Such a transformation
exists if and only if we have equality of cross-ratios, namely

[1, =1, w, —w] = [0, c0, b/d, a/c],

or, equivalently,

be = (1 — w)2/4w. (5.4.13)
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Figure 5.4.1

Now 4 is the geodesic with end-points 0 and oo; hA4 is the geodesic with
end-points K0 and hoo. As (g, h) is non-elementary, the geodesics 4 and
hA cannot have a common end-point: thus bc # 0. It follows that there are
two solutions in w of (5.4.13), each solution being the reciprocal of the
other. Let w be such a solution and we may suppose that |w| > 1: the
location of f(A4) and f(hA) is illustrated in Figure 5.4.1.

It is an easy deduction from (3.3.4) that

p(A, hA) = p(fA, fhA)

inf{p(x, y): x € fA, y € fhA}
ples, |wles)

= log |wl,

because if (x, y, t) € f(A) and (u, v, s) € fh(A) then

x—uw’ + -0+ —s)® 1+ |w]*=2xu+yv+st)
ts B ts

and the Cauchy~Schwarz inequality is applicable.
We now write

w = exp 2(¢ + iff)
SO
p(A4, hA) = 2.
Also,
bc = sinh*(« + ip),
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hence
4|bc|? = |cosh 2(x + if) — 1]?

= (cosh 20 cos 28 — 1) + (sinh 2a sin 2)?

= (cosh 2o — cos 26)?

< (1 + cosh 2x)?

= (2 cosh? a)2.
Thus for all x in H?,

|bc| < cosh? «

= cosh? 1p(A4, hA)

< cosh?i[p(4, x) + p(x, h4)].
Now (by elementary means or because log cosh is a convex function) we
have

coshz(%—g—) <coshpcoshgq, (p, qreal)

thus
|be| < cosh p(x, A) cosh p(x, hA). (5.4.14)

Finally, observe that the conjugate elements g and hgh~' have the same
trace?, the same translation length and hence the same value of sin? 6.
With this in mind, we combine (5.4.12), (5.4.14), (5.4.8), (5.4.10) and (5.4.11)
to obtain

(sinh? $p(x, gx) + sin? 6)(sinh? $p(x, hgh™'x) + sin? 6)
> [cosh p(x, A) cosh p(x, hA)|u — 1/u|?*/4]%
Because of (5.4.12) and (5.4.14) we have
2 cosh p(x, A) cosh p(x, hA)|u — 1ju|* > 1
so in all cases
(sinh? {p(x, gx) + sin? 6)(sinh? $p(x, hgh™'x) + sin? ) > &

If g is hyperbolic, then sin § = 0 and we obtain (ii). In all other cases
write

m = max{sinh $p(x, gx), sinh $p(x, hgh™'x)}.
Then
m? + sin? 0 > §.
The hypotheses of (iii) together with (5.4.8) yields
sin? 6 < 1k

and som > %. a
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§5.5. Notes

For a discussion of the elementary groups given in Section 5.1, see, for
example, [30], [51] and [107]. Discrete Euclidean groups in R" are dis-
cussed in [91] and [111].

For a selection of papers concerned with the geometric action of discon-
tinuous groups acting in plane domains or in H?, see [8], [9], [13], [14],
[15], [65], [108] and [109]. Theorem 5.3.15 and extensions of it can be
found in [30], [51], [54], [60] and [61]. As more comprehensive accounts,
we cite [5], [25], [30], [35], [50], [51], [52], [57] and [114].

Jprgensen’s inequality (Theorem 5.4.1) appears in [41]: for related
material, see [14], [40], [44], [45] and [89].



CHAPTER 6
Riemann Surfaces

§6.1. Riemann Surfaces

Briefly, a Riemann surface is a topological space which, when viewed locally,
is essentially the same as the complex plane. The formal definition is con-
structed so that the concept of an analytic function and complex analytic
function theory extend without difficulty to a Riemann surface. The function
theory will not concern us here and we shall confine our discussion to the
relationship between Riemann surfaces and the quotient by a discontinuous
group action. We shall develop these ideas only as far as is necessary to
interpret results on discontinuous groups in terms of Riemann surfaces.

A Hausdorff connected topological space X is a Riemann surface if there
exists a family

{(¢ja Uj):j eJ},
called an atlas (each (¢;, U)) is called a chart) such that
() {U;:jeJ}is an open cover of X ;
(ii) each ¢;is a homeomorphism of U; onto an open subset of the complex

plane; and
(i) f U= U;n U; # &, then

(0”1 9 {U) = ¢(U)
is an analytic map between the plane sets ¢(U) and and ¢,(U),

Clearly, (i) is saying that X is covered by a collection of “distinguished”
open sets, each of which (by (ii)) is homeomorphic to an open subset of C.
Two distinguished sets may overlap but then by (iii), the corresponding
homeomorphisms are related by an analytic homeomorphism.



§6.2. Quotient Spaces 117

It is now possible to define analytic functions between Riemann surfaces.
If X and Y are Riemann surfaces with atlases {(¢;, U;): je J} and {(y,, V}):
k € K} respectively, then a continuous map f : X — Y is analytic if each map

Ui f(@)™ 1 9(U;0 fTIW) - C (6.1.1)

is analytic. The domain of this map is a subset of C and the assumed continuity
of f guarantees that this set is open. Of course by (iii), it is only necessary to
check that the maps (6.1.1) are analytic for subatlases which still provide an
open cover of X and Y respectively.

We can also talk of the angle between (smooth) curves y and ¢ on X which
cross at some point x. If x e U;, we can measure the angle 6 between the
curves ¢4(y), ¢ (o) which cross at ¢ (x) in the complex plane. If x € U, also,
then ¢,(y) and ¢,(o) will cross at the same angle § because, being an analytic
homeomorphism, the map ¢(¢;)~ " is conformal. It follows that 0 is defined
independently of the choice of j and this is then taken to be the angle between
y and o at x.

The simplest non-planar example of a Riemann surface is X = C u {0}
with the atlas given by J = {1, 2} and

¢:(2) =z, U, =¢C;
0,(2) = 1/z, U,={w}u{zeC:z # 0}:
obviously, ¢,(¢,) ! is analytic on ¢,(U, N U,).
We say that two Riemann surfaces R, and R, are conformally equivalent if
there is an analytic bijection f of R, onto R, (then f ™! is also analytic). This

is an equivalence relation on the class of all Riemann surfaces and in general,
we do not distinguish between conformally equivalent surfaces.

EXERCISE 6.1
1. Prove that a Riemann surface is arcwise connected.

2. Show that if R is a Riemann surface containing points w;, then R — {w,, ..., w,} is
also a Riemann surface.

3. Letf: R — S be a non-constant analytic map between the Riemann surfaces R and S.
Prove that f maps open subsets of R onto open subsets of S. Deduce that if R is com-
pact, then f is surjective and so S is compact.

§6.2. Quotient Spaces

One method of constructing Riemann surfaces is by forming the quotient
space with respect to a discontinuous group action. In fact, it is known that
every Riemann surface arises in this way.
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Theorem 6.2.1. Let D be a subdomain of € and let G be a group of Mobius
transformations which leaves D invariant and which acts discontinuously in D.
Then D/G is a Riemann surface.

PrOOF. We know that D/G is a topological space with the quotient topology
and that the quotient map n: D — D/G is continuous. As D is connected and =
is continuous, it follows that D/G is connected (in fact, arcwise connected).
It is also clear that = is an open map for if A = D, then

n~(nd) = () g(A4):

geG

thus if 4 (and therefore g(A4)) is open, then so is n(A).
We now show that D/G is Hausdorff. First, choose distinct z, and z, in D
and choose a positive r so that the discs

K, ={z:|z — z,| <r}, K,={z:|z—z,] <r}
lie in D. For n > 1, define
A, ={z:]z — z;| < r/n},
B, ={z:|z — z,| < r/n}.
If for every n,
m(A,) O (B,) # &,
then there is some w, in 4, and some g, in G with g,(w,) € B,. This implies that

g(K) " K # &,

where K = K, u K, (which is compact) and it follows (from discontinuity)
that the set {g,,g,, ...} is finite. On a suitable subsequence, g, = g, say, and

g(Z1) = llm gn(wn)

= z,.

To prove that D/G is Hausdorff, consider two distinct points, say n(z, ) and
7(z,) in D/G. Thus z, and z, are in D but not equivalent under G.

It follows that for some n, the disjoint sets n(A4,) and n(B,) separate 7(z,)
and n(z,) and these sets are open as 7 is an open map.

Our last task is to construct an atlas for D/G. For each z in D, we select an
open disc N, (whose closure lies in D) with the properties

g(N,) =N, ifg(z) =z
gN)JNN, =& ifg(z) # z:

see Theorems 5.3.11 and 5.3.12.
Observe that N, — {z} contains no fixed points of G. Indeed, if h (3 I) fixes
apointin N,, then (because of the definition of N,) h fixes z. The inverse point
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of z with respect to N, is also fixed by h so there are no fixed points of 4 in
N, — {z}. Recall that if & fixes z, then k is elliptic.

For each win D, let o be a Mébius transformation which maps w to zero
and N, to the unit disc A. The stabilizer of w in G is of order n, say, and is
generated by some elliptic g where

ogo~'(z) = zexp(Qni/n),  zeA.

Now let g(z) = z": this maps A onto itself and has the property that for all k
and for all zin N,,, we have

qog(2) = [og*o™(o2)]"
= [o(z) exp(2mik/n)]"
= a(2)". (6.2.1)

Observe that this is independent of the integer k.
We shall take as charts for D/G the pairs

(qo(m,) ™", (N,

where =,, is the restriction of = to N,,: see Figure 6.2.1.

Each point in #,(N,) is mapped by (r,,)” ! into n points g*(z), say, where
k=0,1,...,n— 1lin N,,. According to (6.2.1), these map under go to the
same point in A, thus

¢, = qo(m,)" !

is a bijection of n,(N,) onto A. As the maps ¢, ¢ and 7,, are both open and
continuous, we see that each ¢,, is a homeomorphism.

Figure 6.2.1
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In order to check that the transition maps are analytic we must first study
the maps

()" 'm,, u#uw 6.2.2)
Suppose that {,e N,, {,€ N, and
n(cu) = E(Cv) = C’

say: then for some g in G, we have

G = g(C)

Suppose now that {,, and hence {,, are not elliptic fixed points. Then =, is
1-1 in some neighbourhood of {, and therefore there is a local inverse ()~}
mapping { to {,. The two maps

9, Ty

agree with 7, and hence with each other, on some neighbourhood of {, and
take values in n,(N,). Applying (7,)”! we see that

g= (nv)-lnu

near {,. We deduce that the maps (6.2.2) are analytic near points which are not
elliptic fixed points of G.
We now show that the transition maps

(PN (u#)

are analytic (where defined): writing

6, = 4,0,(t,)""

and similarly for u, the situation is illustrated in Figure 6.2.2. At points
corresponding to the non-fixed points of G, we can compute ¢,(¢,)” ' by
choosing a single valued branch of (g,)” ! and the map ¢,(¢,)” ' is a com-
position of analytic maps. At points corresponding to elliptic fixed points the
homeomorphism ¢,(¢,)”! is analytic in a deleted neighbourhood of the
point in question (by the previous remark) and hence has a removable
singularity at this point. O

There is a converse to Theorem 6.2.1 (which we shall not prove here).
Given any Riemann surface R one can construct a simply connected Riemann
surface R and a mapping n: R — R with the properties

(i) each 2 in R has a neighborhood N such that = restricted to N is a
homeomorphism onto an open subset of R;

(ii) Given any curvey:[0, 1] - R and any £ on R with 7(2) = 7(0), then there
is a unique curve §: [0, 1] — R such that 79 = y and $(0) = 2 (we say
that 9 projects to 7y or that y lifts to 9 from 2).
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O

4.0, 4.9,

TI“(Nu) nv(Nv)
Figure 6.2.2

These properties are expressed by saying that (R, ) is a smooth unlimited
covering surface of R. By the Riemann Mapping Theorem (for Riemann
surfaces) R is conformally equivalent to one of the standard Riemann surfaces

A={|z]<1l}, C , Cu{x}

(with the trivial atlases) so without loss of generality, we may assume that R
is one of these.

It can now be shown that there is a group G of M&bius transformations
preserving R such that the given surface R is conformally equivalent to R/G.
Writing the quotient map as 7, this means that ng = = for all g in G. Further,
one can show that G acts discontinuously in R and has no elliptic elements.

If R = C U {0}, these restrictions imply that G = {I} (the trivial group)
so essentially, R = C u {0} If R = C, the only possibilities for G are: (i) the
trivial group; (ii) a cyclic group generated by some z +— z + A; (iii) a group
generated by two translations z+—z + A, z+>z + u where A, u are linearly
independent over the real numbers. These cases show that R is either C,
C* = {ze C:z # 0} or atorus. In all other cases, R is of the form A/G where
G acts discontinuously in A and has no elliptic elements. If R is compact, say
with genus g, then R = € wheng = 0, R = C wheng = 1and R = A when
g=2.

In view of these remarks, we can see the importance of groups acting
discontinuously in A (or in some conformal image of A).

Definition 6.2.2. A group G of M¢bius transformations is a Fuchsian group
if and only if there is some G-invariant disc in which G acts discontinuously.
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A Riemann surface R is said to be of hyperbolic type if it is of the form A/G
where G acts in A. In this case, we can view the differential

21dz|
ds = e
asactingon R and each curve on R can be partitioned into small segments and
the length of these segments then computed (in an invariant manner) in A. In
this way we can talk of the hyperbolic metric on R and so compute lengths
and areas on R.

If we join z to g(z) in A (g € G) and project this to R (=A/G) we obtain a
closed curve on R for ng(z) = n(z). Conversely, if we select a closed curve
7:[0,1] > R and z in A with n(z) = p(0), then there is a unique curve
$: [0, 1] — A with 9 = y and 9(0) = z. Note that

(1) = (1) = 7(0) = n(2),

so for some hin G,$(1) = h(z): thus § is a curve from z to hz. If y is homotopic
to the point z on R then, by the Monodromy Theorem, § is a closed curve on
A and h = I (because h is not elliptic).

More generally, one can consider n-dimensional manifolds: in the defini-
tion of a Riemann surface, we replace C in (ii) by R" and we delete (iii) (or
replace “analytic” by some other smoothness condition). If G is any discrete
Maoébius group, then G acts discontinuously in H* and one can study H3/G:
this topic has attracted much attention in recent years.

EXERCISE 6.2

1. Let G be generated by g: z+ z + 1. Prove that H2/G is (conformally equivalent to)
A* = {z:0 < |z| < 1}. [Consider the map z > exp(2miz).]
Show how to project the metric |dz|/Im[z] from H? to a metric u(w)|dw|in A*,
Find p and show that in this metric, the area of {z: 0 < |z| < 3} is finite.

§6.3. Stable Sets

Suppose that a domain D (a subset of C) is G-invariant and that G acts
discontinuously in D. We need to consider the following type of invariance.

Definition 6.3.1. A subset D, of D is said to be stable (or precisely invariant)
with respect to G if and only if for all g in G, either

g(Do) =Dy or g(Dg) N Dy = .

The set of g with g(D,) = D, is the stabilizer of Dg.
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For examples of stable sets, see Theorem 5.3.12.

Let D, be stable with stabilizer G,: it is natural to form the quotient space
Dy/Gg and in general (for example, if G, is cyclic) this is easier to discuss than
the projection n(Dg) of Dy into D/G. Unfortunately, the two spaces

Dy/Go, (Do)
need not be homeomorphic as the next example shows.

Example 6.3.2. Take D = C, let G be generated by g(z) = z + 1 and let
Dy={x+1iy:0<x<1}. Clearly Dy/G, (=D,) is simply connected
whereas 7(D,) (= n(C) = {z: z # 0}) is not.

There are important cases when D, /G, and n(D,) are homeomorphic and
we need explicit conditions which guarantee that this is so.

Theorem 6.3.3. Suppose that G acts discontinuously in D and that Dy, is stable
with stabilizer G, . If either

(i) Dg is open in D; or
(ii) Do/Gy is compact;

then Dy/G, (with the quotient topology) and n(D,) (with the subspace topology
from D/G) are homeomorphic.

PROOF. Both quotient maps
n: D - D/G, ¢: Dy — Do/Gyq

are continuous and open as the respective groups are groups of homeo-
morphisms of the corresponding spaces. The restriction m, of @ to D is
continuous so the natural bijection

0 = o9 ': Do/Go — m(Dy)
given by
Go(x) = G(x),

(where, for example, G(x) is the G-orbit of x) is continuous: see Figure 6.3.1.

D,

Do/Go P > n(Dy)

Figure 6.3.1
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If (i) holds, then m, is an open map (because 7 is an open map) and 9! is
continuous. If (ii) holds, then 6 is a continuous bijection frorp a compact
spacetoa Hausdorffspace and soisa homeomorphism (see Section 1.4). [J

Remark.If D is a subdomain of C, then ¢ and n are analyticand D /G, and
n(D,) are then conformally equivalent.

We end this chapter with some examples illustrating the hypotheses (i)
and (ii) in Theorem 6.3.2.

Example 6.3.4. Suppose that G preserves and acts discontinuously in the
upper half-plane H? of C and let g be a hyperbolic element of G. We may
assume that g fixes 0 and oo so the positive imaginary axis, say L, is invariant
under g.

Suppose now that for all 4 in G, either h(L) = L or (L) 0 L = @ and
suppose also that G has no elliptic elements of order two (which might leave L
invariant and interchange the end-points of L). This situation will be dis-
cussed in detail later in the book. Then h(L) = L only if k lies in a cyclic
subgroup of G generated by a hyperbolic element (Which we may assume is g)
fixingOand . Nowg(z) = kz,say, wherek > 1,and L/{g)iscompact and, in
fact, is a simple closed curve. According to Theorem 6.3.3, the projection of L
into H?/G is also a simple closed curve.

Example 6.3.5. Suppose that a group G acts discontinuously in a subdomain
D of R and that there is an open disc Q which is stable with stabilizer {g)
where g is parabolic. As Q is open, Theorem 6.3.3 implies that the projection of
Q in D/G is conformally equivalent to Q/{g).

By conjugation, we may assume that g(z) = z + 1 so that for some y,,

Q={x+iy:y > yo}

_It is clear that the quotient space Q/<{g) is conformally equivalent to the
image of Q under the map z+ exp(2ziz): thus the projection of Q in D/G is
conformally equivalent to a punctured disc and hence to

{zeC:0 < |z| < 1}.

Now adjoin oo (the fixed point of g) and all of its G-images to D to form
the larger space D*. We generate a topology on D* from the open subsets of
D together with sets of the form {o0} U {x + iy: y > t} and their G-images
and the quotient space D*/G is also a Riemann surface : the adjoining of oo to
D corresponds to the addition of the origin to the punctured disc. Note,
however, that the sequence n + iy, n > 1, does not converge in the topology
of D* so o does not have a compact neighbourhood in D*. Of course, we
may adjoin different orbits of parabolic fixed points to D provided that in

each case, a corresponding disc Q exists. For more details and a converse
result, see [50], Chapter 2.
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EXERCISE 6.3
1. Let G be generated by g: z—z + 1 and h: z+—z + i and let
D={x+iy:0<y<1}

Show that D is stable under {(g). Let n be the natural projection of C onto C/G.
Show that (D) is compact whereas D/{g) is not compact.



CHAPTER 7
Hyperbolic Geometry

§7.1. The Hyperbolic Plane

From the outset we have assumed both an acceptance and understanding
of Euclidean geometry: we have not entered into a discussion of the axiom-
atic foundations of the geometry and we shall not do so. The question now
arises as to how we should treat hyperbolic geometry. We must not assume
that the reader is as familiar with this as with Euclidean geometry yet it is
necessary to have available some of the more basic and elementary results in
hyperbolic geometry for we shall be using this (rather than Euclidean
geometry) for the remainder of the text. Indeed, we have already seen the
importance of hyperbolic geometry in the earlier chapters.

We shall describe hyperbolic geometry in terms of Euclidean geometry,
thus it can be thought of here as being subordinate to Euclidean geometry.
The points, lines and other configurations will be defined as subsets of the
Euclidean plane and in this way we avoid the need to discuss the axioms for
hyperbolic geometry. Of course, appropriate sets of axioms do exist and
once we have verified that these axioms hold in our model we are entitled
to use those theorems which are derivable from these axioms: we shall not,
however, follow this path. Within the limitations of Euclidean geometry we
shall be as rigorous and complete as possible.

We have seen in Section 3.3 that we may use the upper half-plane

H? = {x +iy:y >0}

as a model for the hyperbolic plane and that this supports a metric p derived
from the differential

_ ldz]
" Im[z]

ds (7.1.1)
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We have also seen that reflections in circles of the form |z — x| = r (x, real,

r > 0) and reflections in “vertical” lines of the form x = x; (x, real) are

isometries of (H?, p). We shall return to these facts in the next few sections.
There is a parallel development in terms of the unir disc

A={zeC:|z| < 1}.

The results in Section 3.4 are applicable and the metric p in H? transfers to
a metric in A which is derived from the differential

2|dz|

Tz

ds

(7.12)

Throughout the remainder of the book we shall use p for both the metric in
H? and the metric in A: no confusion should arise, indeed the reader must
become adept at frequently changing from one model to the other as each
has its own particular advantage.

One of the principal benefits of discussing hyperbolic geometry in
Euclidean terms is that we can easily introduce the circle of points at infinity:
by this we mean R* U {co0} for H? and {z:|z| = 1} for A. These are not
points in the hyperbolic plane, nevertheless they play a vital part in any
discussion of hyperbolic geometry and Fuchsian groups. The union of the
hyperbolic plane and the circle at infinity is called the closed hyperbolic
plane.

We shall refer to the two models of hyperbolic geometry described above
as the Poincaré models. There are other models available (see Section 3.7)
and we shall discuss (briefly) one alternative, namely the Klein model. The
reader should note, however, that apart from one result (in Section 7.5)
and occasional remarks and exercises, we shall not use the Klein model.

We have seen in Section 3.4 that the reflection in the plane x; = Ofollowed
by stereographic projection maps H? isometrically onto B, the metrics being
those analogous to (7.1.1) and (7.1.2). Let this composite map be denoted by
s. It follows that the upper hemisphere

0 = {(x1, X3, x3): x} + x5 + x} = 1,x; > 0},

(which is a model of the hyperbolic plane embedded in hyperbolic space H*)
is mapped by s isometrically onto A (= B?) embedded in B. Observe that
as s is conformal, arcs of circles in Q orthogonal to H* map to arcs of
circles in A orthogonal to dB>.

We can also map Q onto A by vertical projection, namely

U1 (X, Xgy X3) > Xg + iX5.

Thus under the map F (=vs~ ') of A onto A, arcs of circles in A orthogonal
to A (the geodesics in A) map to Euclidean segments with the same end-points
on JA. The significance of this is that F is a homeomorphism of the closed
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Figure 7.1.1

unit disc A onto itself which maps each geodesic L in the Poincaré model
onto the Euclidean straight line segment L* of A with the same end-points
as L: see Figure 7.1.1.

The effect of F can easily be verified analytically and the preceding discus-
sion is equally valid in » dimensions. If x € B”, then

i

F(x) = vs™(x),
v (x)

= vn(x),

]

where 7 is stereographic projection (or, more properly, reflection in the

sphere S(e,,H,\/E)). The formula for = given in Section 3.1 now yields the
explicit formula for F, namely

2x

Given that the sphere S(a, r) is orthogonal to dB”, the orthogonality implies
that |a|?> = 1 + r? and so S has equation

[x]* + 1 =2(x.a).
Thus F maps S(a, r) onto the Euclidean hyperplane
S*={y:y.a=1}

which meets dB” at the same set of points as does S(a, 7).
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The Klein model of hyperbolic geometry (that is, the model A with
geodesics represented by the Fuclidean segments L*) is a useful model for
establishing properties of incidence and convexity in that it transfers problems
in hyperbolic geometry to corresponding problems in Euclidean geometry.

§7.2. The Hyperbolic Metric

Our first task is to give a careful description of the construction of the
metric p from the differential (7.1.1). To each piecewise continuously dif-
ferentiable curve in H?, say y: [a, b] — H?, we assign a “length” ||y|| by the
formulae

b )
, moo1 "

Il =

The function p is now defined by
p(z,w) = inflyll  (z, weH?),

where the infimum is taken over all y which join z to win H2. It is clear that p
is non-negative, symmetric and satisfies the Triangle Inequality

p(zy, 23) < p(zy, 25) + p(23, 23):

indeed, p is a metric on H? (see Section 1.6).
Now let

__az+b
Tez+d

9(z) (7.2.1)

where a, b, ¢ and d are real and ad — bc > 0: thus g maps H? onto itself. An
elementary computation yields

lg@ _ 1
Im[g(z)]  Im[z]

and so

dr = |yl

U6 0|
”M“L ImCg( ()]

Because of this invariance we immediately obtain the invariance of p,
namely

p(gz, gw) = p(z, w) (7.22)

and this proves that each such g is an isometry of (H?, p). This will now be
used to obtain an explicit expression for p(z, w).
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Theorem 7.2.1. With p as above, and with z, w in H?,
lz—Ww|+ |z —w|

() plz,w) = log =g )

) ~ |z —wP
(ii) cosh p(z, w) =1 + 21m[z] Im[w]’
(i) sinh[3p(z, w)] = 2(Im[z] Tm[w]) "2 ;
. |z — W]
(iv) cosh[%p(z, w)] = 2(Im[ 7] Im[w])IIZ >
© tanhl3p(z, w)] = |

zZ~—~Ww

ProoF OF THEOREM 7.2.1. It is easy to see that the five equations are equivalent
to each other: we shall prove that (ii) holds.

By (7.2.2), the left-hand side of (ii) is invariant under g. A straightforward
computation shows that

lg(2) =g > |z—w]?
Im[g(z)] Im[g(w)] ~ Im[z] Im[w]’
thus the right-hand side of (ii) is also invariant under g. In fact, this isno more
than the invariance of (3.3.3) established in Section 3.3.

Now select distinct z and w in H? and let L be the unique Euclidean circle
or line which contains z and w and which is orthogonal to the real axis. Now
L meets the real axis at some finite point « and by taking g(z) = —(z — )~}
+ B (for a suitable ) we may assume that g in (7.2.1) maps L onto the imagin-
ary axis. It is only necessary, therefore, to verify (i) when z and w lie on the
imaginary axis.

We now assume that z = ip, w = ig and also (as both sides of (ii) are
symmetric in zand w) that 0 < p < ¢. If

(@) = x(t) +iy(t), 0O0<t<l,

is any curve joining z to w, then

(1) (1)
Iyl = f |x (t)yJ(rt)ly 9]

" ,
= fo o &
= log(q/p)

as y(1) = g, y(0) = p. As equality holds when, for example,
W) = ilp + t(q — p)],

dt
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we find that
p(ip. iq) = log(q/p) (0 <p <g),
and it is easy to see that (i) holds when z = ip and w = ig. |

Remark. We have proved a little more than is stated in Theorem 7.2.1.
First, we have obtained

Iyl = p(ip. iq),

(that is, ||y|| is minimal) if and only if x(t) = 0 and y"*)(t) > O for all ¢ in
[0, 1]. We shall return to this in the next section. Next, for future reference
we record the formula

p(ip, iq) = |log(p/q)|: (7.23)

in this form we do not need to assume that p < g.

We now consider the model A. The map

i

f2) =

z —
z+i
is a 1-1 map of H? onto A, thus p* given by

p*(z w) = p(f 'z, fTw) (2, weD),

is a metric on A. However, as

21/ P 1
1= [f@F  Im[z]

we can also identify p* with the metric derived from the differential (7.1.2).
As we have already remarked, we prefer to use p for p* and with this con-
vention, f is an isometry of (H?, p) onto (A, p).

We can derive formulae for the model A by simply rewriting Theorem
7.2.1 by means of f. It is more instructive, though, to work directly with A:
for example, corresponding to (7.2.3) we find that if 0 < r < 1 then

1+r
1—r

(ze H?),

p0.0) = [ 12 = tog
b 1=t

(the reader should verify this).
Given distinct points z and w there is an isometry g of A onto itself with
g(z) = 0 and g(w) = r, r > 0. The invariance described by (3.4.3) yields

|z — w? o
A —=1zHA = wP) 1=+
= sinh?[5p(0, r)]

= sinh?[3p(z, w)]. (1.2.4)
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The identity (3.4.4) becomes
N —zw>=[z=wl+ (1 - [z —|w])
and this together with (7.2.4) yields

[1 — zw|? )
1— 1z = [wp)
this is actually (3.4.5). Finally, we obtain

cosh?’[3p(z, w)] = (

tanh[to(z, _|z=w
anh[3p(z, W)] = | —
and
1 —zw —
oz, w) = log L= 2P+ 12 = wl (7.2.5)
[1—2zw|— |z — w|

As simple and useful examples of these ideas, we compute the length of a
circle and the area of a disc (see (3.3.5)). Of course, length and area here are
with respect to the hyperbolic metric and both remain invariant under
isometries.

If E is contained in A, then the hyperbolic area of E is

2 2
h-area(E) = ff [I———W] dx dy:
E

if E is contained in H?, the integrand is replaced by 1/y2. For any curve C in
A, the hyperbolic length of C is

2ldz|

h-length(C =J :
O = ) T=rr

if C is in H?, the integrand is replaced by 1/y.

Theorem 7.2.2. (i) The area of a hyperbolic disc of radius r is 4n sinh?(37).
(i1) The length of a hyperbolic circle of radius r is 27 sinh r.

Proor. We use the model A and let C and D be the circle and disc with centre
0 and (hyperbolic) radius r. From (7.2.4) we see that

C={z:|z|=R}, D= {z:]z| <R},
where

R

sinh(%r) = W,

or, equivalently,
tanh(3r) = R.

The stated results now follow by direct integration. O
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gw*) = oo A
g(w) = iv 4
L
g(z) = iy
z w
9z*) = 0 e W ”
Figure 7.2.1

If we are prepared to use points on the circle at infinity we can also express
p(z, w)in terms of a cross-ratio. Werecall from Section 4.4 that the cross-ratio
is defined by

(o1 22,22, 2] = G222 = 20
1542y 435 44 (21—22)(23—24).

Let z and w be distinct points in H? and let g and L be as in the proof of
Theorem 7.2.1. Further, let L meet the real axis at z* and w¥*, these being
labelled so that z*, z, w, w* occur in this order along L (see Figure 7.2.1).
Now as g(L) is the imaginary axis, g(z*) = 0 or g(z*) = «. If g(z*) = ©
we can apply the map z —» —1/z: thus we may assume g to be chosen so that

giz*) =0, gz) =iy, gw)=iv, gWw*)= o,

where y < v. As the cross-ratio is invariant under Mobius transformations
we obtain from (7.2.3),

p(z, w) = p(gz, gw)
= log(v/y)
= log[0, iy, iv, 0]
= log[z*, z, w, z¥]. (7.2.6)

Of course, this is equally valid in A for we can simply map H? isometrically
onto A without changing the value of the cross-ratio.

We end this section with a few brief remarks about the metric topology
of the hyperbolic plane. First, the Euclidean and hyperbolic metrics on H?
(and A) induce the same topologies. In particular, the closed hyperbolic
plane is compact in the Euclidean topology and the subspace topology is the
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hyperbolic topology. It is convenient to introduce notation for the closure
relative to the hyperbolic plane as well as the closed hyperbolic plane.

Definition 7.2.3. Let E be a subset of the hyperbolic plane. Then

(i) E denotes the closure of E relative to the hyperbolic plane;
(ii) E denotes the closure of E relative to the closed hyperbolic plane.

Of course, E is also the closure of E in €.

EXERCISE 7.2
1. Let L be the set of points x + iy in H? where x = y. Find where
inf{p(z,w): ze L} (we H?)
is attained and describe this point in geometric terms.

2. Suppose that x; < x, < x5 < Xx4. Let the semi-circle in H? with diameter [x,, x3]
meet the line x = x, at the point z5. Similarly, let z, be the intersection of this line
and the semi-circle with diameter [x,, x,]. Prove that

p(z3, 25) = 3 log[x,, X3, x4, ]

3. Show that if ¢ is a metric on a set X then tanho is also a metric on X.
Deduce that

W
Polz, w) = l‘———:l
z—W

is a metric on H?. Show that

Po(u, v) = po(u, w) + po(w, v)
ifand only f w = uorw = v.

4. Show that (H?, p) is complete but not compact.

§7.3. The Geodesics

We begin by defining a hyperbolic line or, more briefly, an h-line to be the
intersection of the hyperbolic plane with a Euclidean circle or straight line
which is orthogonal to the circle at infinity. With this definition, the following
facts are easily established.

(1) There is a unique h-line through any two distinct points of the hyperbolic
plane.

(2) Two distinct h-lines intersect in at most one point in the hyperbolic plane.

(3) The reflection in an h-line is a p-isometry (see Section 3.3).

(4) Given any two h-lines L, and L,, there is a p-isometry g such that g(L,)
= L, (see the proof of Theorem 7.2.1).
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Given any w in H?, it is clear that
{zeH*:|z| = |w|}

is the unique h-line which contains w and which is orthogonal to the positive
imaginary axis (an h-line). As the isometry in (4) can be taken to be a Mdbius
transformation we obtain:

(5) given any h-line and any point w, there is a unique h-line through w and
orthogonal to L.

Without going into the details, the reader should be aware that an essential
feature of axiomatic geometry is the notion of “between” on a line. In our
case, this notion can be described in terms of the metric.

Given two distinct points z and w on an h-line L, the set L — {z, w} has
three components exactly one of which has a compact closure (relative to the
hyperbolic plane). This component is the open segment (z, w) and { is between
z and w if and only if { €(z, w). The closed segment {z, w] and segments
[z, w), (z, w] are defined in the obvious way.

The discussion preceding (7.2.3) shows that a curve y joining ip to ig
satisfies

7l = p(ip, ig)

if and only if y is a parametrization of [ip, iq] as a simple curve. Clearly, this
can be phrased in an invariant form as follows.

Theorem 7.3.1. Let z and w be any points in the hyperbolic plane. A curve y
joining z to w satisfies
Il = p(z, w)
if and only if y is a parametrization of [z, w] as a simple curve.
It is for this reason that we refer to h-lines as geodesics (that is, curves of
shortest length).

Now consider any three points z, w and {. It is clear from the special case
(7.2.3) that if { is between z and w, then

p(z, w) = p(z, {) + p(C, w).

Equally clearly, if { is not between z and w then the curve y comprising of the
segments [z, {] and [{, w] satisfies (by Theorem 7.3.1)

Il > p(z, w).
Thus we obtain the next result.
Theorem 7.3.2. Let z and w be distinct points in the hyperbolic plane. Then
p(z,w) = p(z, §) + p({, w)
if and only if { € [z, w].
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Parallel Disjoint Intersecting

Figure 7.3.1

We end this section with more terminology. First, the points z,, z,, ...
are collinear if they lie on a single geodesic. Each geodesic has two end-points,
each on the circle at infinity. It is natural to extend the notation for a segment
so as to include geodesics: thus («, f) denotes the geodesic segment with
end-points « and B even if these are on the circle at infinity. A ray from z is a
segment [z, o) where o lies on the circle at infinity: each geodesic («, f)
through z determines exactly two rays from z, namely [z, «) and [z, f).

Definition 7.3.3. Let L, and L, be distinct geodesics. We say that L, and
L, are parallel if and only if they have exactly one end-point in common. If
L, and L, have no end-points in common, then they are intersecting when
L,n L, # J and disjoint when L, n L, = (.

Warning. This terminology is not standard and the terms are illustrated in
the model A in Figure 7.3.1. Much of the geometry is based on a discussion
of these three mutually exclusive possibilities (parallel, intersecting and
disjoint) and for this reason we prefer a particularly descriptive terminology.

EXERCISE 7.3
1. Letw = u + iv, w = ivand z = ri be points in H2 Prove that
p(w, z) = p(W, 2)
with equality if and only if w = w'. Deduce Theorem 7.3.2.

§7.4. The Isometries

The objective here is to identify all isometries of the hyperbolic plane. Let
z, wand { be distinct points in H? with { between z and w. It is an immediate
consequence of Theorem 7.3.2 that for any isometry ¢, the point ¢({) is
between ¢(z) and ¢(w). Thus ¢ maps the segment [z, w] onto the segment
[#(2), p(w)]: because of this, ¢ maps h-lines to h-lines.
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Given any isometry ¢, there is an isometry

(Z)_az+b
g Tcz+d

(ad — bc > 0),

such that g¢ leaves the positive imaginary axis L invariant (simply choose g
to map ¢(L) to L). By applying the isometries z — kz (k > O)and z » —1/z
as necessary, we may assume that g¢ fixes i and leaves invariant the rays
(i, ), (0, ). It is now an immediate consequence of (7.2.3) that g¢ fixes
each point of L.
Now select any z in H? and write
z=x+ iy, go(z) = u + iv.
For all positive ¢,
p(z, it) = p(g(2), go(it))
= p(u + iv, it)
and so, by Theorem 7.2.1(iii),
[x* + (v = 0Jv = [u® + (v — 1)*1y.

As this holds for all positive t we have y = v and x? = u?: thus

go(z) = zor —Z.

A straightforward continuity argument (isometries are necessarily continu-
ous) shows that one of these equations holds for all z in H?: for example, the
set of z in the open first quadrant with g¢(z) = z is both open and closed in
that quadrant. This proves the next result.

Theorem 7.4.1. The group of isometries of (H?, p) is precisely the group of
maps of the form

Haz+b ZHa(—~Z)+b
cz+d -2+ d

where a, b, ¢ and d are real and ad — bc > 0. Further, the group of isometries
is generated by reflections in h-lines.

A similar development holds for the model A: here, the isometries are

az + ¢ az + ¢
Z> -, Z—,
cz + cz+a
where |a|* — |c|* = 1.
Note that if
az + ¢ 2 2
z) = al* = |le)f =1,
90) = ——= laf - ¢l
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then from (7.2.4) we obtain the useful expressions
|¢| = sinh $p(0, gO), (7.4.1)
la| = cosh 1p(0, g0) (74.2)
and so (see Section 4.2) we find again that
lgl> = 2 cosh p(0, 40).
Of course, if & is an isometry of (H?, p) then
|h||* = 2 cosh p(i, hi):

the proof is by an elementary computation using Theorem 7.2.1(ii) (or by
Theorem 4.2.1).

EXERCISE 7.4

1. Letz;,w;(j = 1,2, 3)be points in H2. Show that there is an isometry g with g(z) = w;
for each j if and only if for all i and j,

Pz, 2;) = p(w;, w)).

§7.5. Convex Sets

A subset E of the hyperbolic plane is said to be convex if and only if for each
zand win E, we have [z, w] < E. The following facts regarding convexity are
easily verified.

(1) If E is convex, then so is g(E) for every isometry g.

(2) IfE is convex, then so are E° (the interior of E) and E.

(3) IfE\, E,,...areconvex and E, < E, < ..., then ) E, is convex.
(4) Ifeach E, is convex, then so is (), E,.

By definition, a geodesic is convex. The mapping iy ~ log y is a homeo-
morphism of the hyperbolic geodesic {iy: y > 0} onto the Euclidean geodesic
{x + iy:y = 0} which preserves the relation “between”. We deduce that
the segments are the only convex subsets of a hyperbolic geodesic.

An open half-plane is a component of the complement of a geodesic
and any open half-plane is convex. As an illustration of the use of the Klein
model, let F: A — A be the map described in Section 7.1. This maps the
geodesics of the Poincaré model (A, p) onto Euclidean segments in A and so
a subset E of A is convex in the Poincaré model if and only if F(E) is convex
in the Euclidean sense. In particular, a half-plane in the Poincaré model maps
onto the intersection of A with a Euclidean half-plane and this is indeed convex
in the Euclidean sense. In this way, the Klein model enables us to refer
hyperbolic convexity to the more familiar context of Euclidean convexity.
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Figure 7.5.1

By (2), a closed half-plane is convex. If E, (x € A) is now any family of
half-planes (open or closed), then the complement of ) E, is the intersection
of half-planes and so is convex. For example, a hyperbolic disc D is convex
for it is the complement of a union of (shaded) half-planes as in Figure 7.5.1.

There are two other examples of a similar nature which we shall use later.
A horocyclic region is the interior of a Euclidean circle which is tangent to the
circle at infinity. By taking the model H? and oo as the point of tangency,
we may assume that the horocyclic region is {x + iy: y > t}. This region is
convex for it is complement of the union of all half-planes of the form
{ze H?*: |z — x,| < t} as x, varies over the real line. For future reference, a
horocycle is the boundary of a horocyclic region.

A hypercyclic region is any region which is isometrically congruent to a
region of the form

{ze H*: |arg(z) — /2| < 6}

for some 6 in (0, /2). The significance of this will appear later, however such
a region in convex for it is the complement of the union of half-planes of the
form

{z€ H*: |z — x,| < |x,] cos 6} (xo real).

The boundary of a hypercyclic region is called a hypercycle.

We end with a characterization of closed convex sets. A set E is locally
convex if and only if each z in E has an open neighbourhood N such that
E n N isconvex. The notions of convexity and local convexity are meaningful
in both Euclidean and hyperbolic spaces and they extend in the obvious way
to the closed hyperbolic plane.
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Theorem 7.5.1. Let P be the Euclidean plane or the closed h yperbolic plane. A
closed subset E of P is convex if and only if it is connected and locall y convex.

Proor. If the result is true when P is the Euclidean plane, the relationship
between the Poincaré and Klein models shows that the result is also true
when P is the closed hyperbolic plane. Thus it is only necessary to show that
if E is a closed, connected, locally convex subset of R? then E is convex (the
reverse implication is trivial).

We say two points in E are polygonally connected if they can be joined
by a polygonal arc lying in E. This is an equivalence relation and the local
convexity of E implies that the equivalence classes are relatively open in E.
As E is connected, there is only one equivalence class so any two points of E
can be joined by a polygonal curve in E. Because of this it is sufficient to
prove that if the Euclidean segments [u, v], [v, w] lie in E then so does the
segment [u, w]. If u, v, w are collinear then this is trivial: thus we assume that
these points are not collinear.

For each a,b, ¢ let T(a, b, c) denote the closed triangle with vertices
a, b, ¢ (by this, we mean the convex hull of the points a, b, ¢). Now let K be
the set of x in [v, u] with the property that for some y in (v, w) we have
T(v, x, y) < E.As Eis locally convex at v, K contains some interval of positive
length. Clearly, K is an interval of the form [v, Xo) or [v, xo] where x, # v
and we shall now show that K = [, u].

Choose a neighbourhood N of x, such that E A N is convex and then
choose x; in [v, Xo) " N and x, in [x,, u] N N: see Figure 7.5.2.

As x, € K, there is some y, in (v, w) with

T(v, x4, y,) © E.
Choose zin N n (xy, y,): as E N N is convex we have
T(z,x,, x,) < E.

w

Vi

Y2

N
z
v X; X X u

Figure 7.5.2




§7.6. Angles 141

With y, as in Figure 7.5.2 we also have

T(U, X2, yZ) < T(v’xh yl) o T(Xbe’Z)
c E,

so x, € K. This shows that x, € K and x, = u so K = [, u]. Note that as
ueK, there is some y in (v, w) with T(v, u, y) < E.

Now consider the set K, of y in [v, w] such that T(v, u, y) < E. Exactly
as before, K, is some segment [v, y,) or [v, yo]. As E is closed, we see that
K, = [v, yo). The argument in the preceding paragraph (with u, v, w replaced
by u, yo, w) shows that y, = wsow e K, and

T(v, u,w) < E. O

EXERCISE 7.5
1. Let z, z', w, w' be points in H2. Prove that if w € [z, z'] then
p(w, w’) < max{p(w, z), p(w', 2)}.
Deduce (analytically) that a hyperbolic disc is convex.

2. Construct a subset E of H? which is connected and locally convex but not convex
(see Theorem 7.5.1).

3. Show that exactly one of the sets
{x +iyeH*:a<x<b,y<cl,
{x +iyeH*:a<x<b,y>c}
is convex.

§7.6. Angles

Our attitude to angles in the hyperbolic plane is consistent with the policy
outlined in Section 7.1, namely we describe the angles of hyperbolic geometry
in terms of Euclidean geometry. In hyperbolic geometry, an angle at a point z
is an unordered pair of rays (L, L’) from z. Let (L, L") be an angle at z and
suppose for the moment that L and L’ are not on the same geodesic. The ray
L determines a geodesic, say L*, and L' — {z} does not meet L*. It follows
that L' — {z} lies in one of the open half-planes say X', complementary to
L*. Similarly, L — {z} lies in one of the half-planes, say X, complementary
to L’. We now define the interior of the angle (L, L) to be £ n Z'. It is easy to
see that the interior of (L, L) is one component of the complement of
L u L': the other component is called the exterior of (L, L’).

If L and L' lie on the same geodesic then either L U L’ is a geodesic (and
there is no canonical choice of interior or exterior) or L = L' in which case
we define the interior to be empty and the exterior to be the complement of L.
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Given an angle (L, L') at z with L and L’ defining different geodesics, the
interior of (L, L') is convex as it is the intersection of half-planes. To comple-
ment this, the exterior cannot be convex for otherwise a segment joining points
on L — {z} and L' — {z} would lie in both the interior and the exterior of
(L, L"). Of course, we can measure the interior and exterior angles at z in
the usual way and the measurements lie in [0, %) and (=, 2], respectively.

§7.7. Triangles

Let z,, z, and z; be three non-collinear points in the hyperbolic plane and
let L, and L, be the rays from z, through z, and z; respectively. Then
(L,, Ly) is an angle at z,: we denote its interior by A,. In a similar way, 4,
and A, are the interiors of angles at z, and z5. This notation will readily be
absorbed by a glance at Figure 7.7.1. Note that by convexity, (z,, z3) < 4,
(see Section 7.6).

Definition 7.7.1. The triangle T(z,, z,, z3)is A; N A, N A;.

The z; are the vertices, the [z;, z;] are the sides and the A, are the angles
of T(z4, z,, z3). Each angle of T(z,, z,, z5), being an interior angle, is less
than n. For brevity, we write T for T(zy, z,, z3). Observe that as each 4;
is convex, so is T. Moreover, the 4; are also the angles of T in the sense that
for any sufficiently small open disc D with centre, say, z,, we have

DNnT=Dn A,.

To see this, let H; be the half-plane containing z; and having the other two z;
on its boundary. Then (if D = H,)
DmAl = (DﬁHl)ﬁ(HzﬁH3)
=Dn(H;nH)Nn(Hs;nH)n(H,nH,)
=DnNT.

Figure 7.7.1
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Next, define 0T by

OT = [z4, z;] v [22, 23] U [23, 2]

this may be parametrized as a Jordan curve with interior, say T,. As
0T < Hy,s0 Ty = H,. The same argument holds for H, and H; so

TOCH1nHan3=T.

As T is connected (in fact, convex) and does not meet 07, it lies inside or
outside of 0T. However, T meets T, so T < Ty and hence T = Tg.

In an axiomatic treatment, it is sometimes necessary to take as an axiom
the fact that a ray L from z, through a point w in 7/(z,, z,, z3) necessarily
meets the side (z,, z3). In our case, we observe that the (connected) segment
L — {z,} meets the interior of T (at w) and cannot meet the sides [z, z,]
or[z4, z3]. As L — {z,} is unbounded, its closure meets the circle at infinity
and so must meet 07.

The next result is used frequently in deriving trigonometric formulae (and
so must be proved independently of these formulae).

Theorem 7.7.2. Let L be the geodesic containing the longest side, say [z,, 23],
of T. Then the geodesic L, through z, and orthogonal to L meets L at a point

winlz,,z5].

Proor. We may assume that L is the positive imaginary axis so w = i|z,|:
see Figure 7.7.2.
It is easy to see that

p(zy,25) = p(w, z5)

and similarly

p(z1, 23) 2 p(w, z3),

\l

Figure 7.7.2
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(see Section 7.20 which does not use trigonometry). As [z,, z5] is the longest
side we deduce that

max{p(z,, w), p(z3, w)} < p(z, z3).

The points z,, z5, w are collinear and one must lie between the other two.
Using Theorem 7.3.2, we see that w must lie between z, and z, (or be equal
to one of them). O

Most of the material in this section extends without difficulty to the case
when some (or all) of the vertices lie on the circle at infinity. The notable
exception to this is Theorem 7.7.2 (consider z, but not z, on the circle at
infinity).

EXERCISE 7.7

1. Show that in hyperbolic geometry, the vertices of a triangle may, but need not, lie
on a circle.

2. Prove that the diameter of a triangle 7, namely
sup{p(z, w): z, we T},

is the length of the longest side (see Exercise 7.5.1).

§7.8. Notation

In the next six sections we shall be concerned with hyperbolic triangles and
it is convenient to adopt a standard notation which allows us to express
trigonometric relations easily. A triangle T will have vertices labelled v, v,
and v,: the sides opposite these vertices will have lengths a, b and c respec-
tively and the interior angles at the vertices will be &, § and y. This notation
will readily be absorbed by a glance at Figure 7.8.1. As isometries preserve
length and angles, trigonometric formulae remain invariant under isometries.

b

Up
Figure 7.8.1
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We shall allow some or all of the vertices of a triangle to be on the circle
at infinity. If, for example, v, is at infinity, then

o =0, b=c= +ow.

If two vertices are on the circle at infinity, then all three sides have infinite
length.

EXERCISE 7.8

1. Let T, and T, be two triangles, each with all sides of infinite length. Show that there
is an isometry mapping T; onto T;.

§7.9. The Angle of Parallelism

The Angle of Parallelism is the classical term for the trigonometric relation
which holds for a triangle with angles a, 0, /2: in this case, there are only two
parameters, namely a and b.

Theorem 7.9.1. Let T be a triangle with angles o, O, /2 (o # 0). Then

(i) sinhbtana = 1;
(i) coshbsina = 1;
(iii) tanh b sec o = 1.

ProOF. We work in H? and we may assume that
v, = 1, Uy = 00, v, = X + iy,

where x? + y* = 1: see Figure 7.9.1. As y = sin «, Theorem 7.2.1(ii) yields
(ii). The remaining formulae are equivalent to (ii). O

T
i b
xl .
i x + iy
! 7
| -
/
| / |
| / I
b !
I/ :
L% L

Figure 7.9.1
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§7.10. Triangles with a Vertex at Infinity

Consider a triangle with angles a, B, 0 where a and B are non-zero: then
a=b= 4+, O<c< +

and we shall determine the relationship between «, § and c.

Theorem 7.10.1. For any triangle with angles o, B, 0 we have

1+ cosacosf

i cosh ¢ = — -
@ sin o sin f

cos o + cos f

ii sinh ¢ = —; - .
() sin o sin

ProoE. We work in H? with v, = cc. We may assume that v, and v, lie on the
circle |z| = 1, say with
v, = exp(if), v, = exp(ig),

where0 < § < ¢ < n. Thusz = 6, f = = — ¢ and (i) follows from Theorem
7.2.1 as

cosh ¢ = cosh p(v,, v,).

The verification of (ii) is left to the reader. O

§7.11. Right-angled Triangles

We now consider a triangle with angles o, 8, 7/2. By applying a suitable
isometry we may assume that

v, =i, v, = ki, v, =S+ it,
where k > 1 and s and ¢ are positive with s> + t? = 1: see Figure 7.11.1.
We begin with the relationship between the three sides: this is the hyper-

bolic form of Pythagoras’ Theorem.
Theorem 7.11.1. For any triangle with angles o, B, n/2 we have

cosh ¢ = cosh a cosh b. (7.11.1)
Proor. Using Theorem 7.2.1(ii) we have

cosh ¢ = (1 + k?)/2kt;

cosh b = 1/t;

cosh a = (1 + k?)/2k. O (7.112)
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/
/
/ -
b
X
Figure 7.11.1

Note that we also obtain
tanh b = s. (7.11.3)

Next, we seek relations between two sides and one angle.

Theorem 7.11.2. For any triangle with angles o, B, n/2 we have

(i) tanh b = sinh a tan §;
(ii) sinh b = sinh ¢ sin §;
(iii) tanh a = tanh ¢ cos §.

PROOF. Let the geodesic through v, and v, have Euclidean centre x,. Then by
equating the distances from v, and v, to x, we see that

k* =1~ 2xgs.
This shows that x, < 0. The Euclidean triangle with vertices x,, O and ki
has angle 8 at x,. Thus
tan B = k/| x|
= 2sk/(k* — 1)

and this gives (i) because of (7.11.2) and (7.11.3).
Elimination of a from (i) and (7.11.1) yields (ii): elimination of b from (i)
and (ii) yields (iii). O

We end with the relations between one side and two angles.

Theorem 7.11.3. For any triangle with angles a, B, 7/2:
1) cosh a sin B = cos «;

(i1) cosh ¢ = cot a cot f8.
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Proor. Theorem 7.11.2(i) gives

sinh a tan f§ = tanh b,
sinh b tan « = tanh a
and elimination of b gives (i).
To prove (ii), simply eliminate cosh a and cosh b from (7.11.1), Theorem

7.11.3(i) and the corresponding identity with a and « interchanged with b
and B. O

§7.12. The Sine and Cosine Rules

We now consider the general hyperbolic triangle with sides a, b and ¢ and
opposite angles o, f and y. We assume that «, § and y are positive (so a, b
and c are finite) and we prove the following results,

The Sine Rule:
sinha sinhb sinhc
sine  sinf  siny’

The Cosine Rule I:
cosh ¢ = cosh a cosh b — sinh a sinh b cos ¥.

The Cosine Rule II:

cos o cos B + cos
cosh ¢ = : B. y.
sin a sin

Note the existence of the second Cosine Rule. This has no analogue in
Euclidean geometry: in hyperbolic geometry it implies that if two triangles
have the same angles, then there is an isometry mapping one triangle onto the
other.

PrOOF OF THE COSINE RULE I. We shall use the model A and we may assume
that v, = 0 and v, > 0: See Figure 7.12.1.
Note that

v, = tanh 3p(0, v,)
= tanh(}b) (7.12.1)
and similarly,
v, = € tanh(}a). (7.12.2)
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Figure 7.12.1

From (7.2.4) we have
cosh ¢ = 2 sinh?[$p(v,, v,)] + 1

2|Ua - vb|2
= +1.
(1 = [0/ = [0,

The Euclidean Cosine Rule gives |v, — v,|* in terms of |v,|, |v,| and cos y
and using (7.12.1) and (7.12.2), the required result follows by straightforward
simplification. a

Proor oF THE SINE RULE. Using the Cosine Rule I we obtain

sinh ¢\? sinh? ¢
siny ] ) cosh a cosh b — cosh c\?’
sinh a sinh b

The Sine Rule will be valid provided that this is symmetric in a, b and ¢ and

this will be so if

(sinh a sinh b)?> — (cosh a cosh b — cosh ¢)?

is symmetric. After writing sinh? in terms of cosh?, we find that this is so.

O

Proor oF THE COSINE RULE II. For brevity, we shall write A4 for cosh a and
similarly for B and C. The Cosine Rule I yields

(AB - C)
(AZ _ 1)1/2(32 — 1)1/2

cosy =
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and so

D

o
ST AT DB -1)

where
D=1+ 2A4BC — (A* + B* + C?

is symmetric in 4, B and C. The expression for sin? y shows that D > 0.
Now observe that if we multiply both numerator and denominator of

cos o cos  + cos y
sin o sin f

by the positive value of

(AZ _ 1)1/2(32 _ 1)1/2(C2 _ 1)’
we obtain
cosacos B+ cosy  [(BC — A)(CA — B) + (4B — CO)(C* - 1)]
sin o sin f - D

=C. O

EXERCISE 7.12

1. For a general triangle, prove that a < b < ¢ if and only if « < 8 < 7. [Use the Sine
Rule and the Corollary of Theorem 7.13.1.]

2. Show that a triangle is an equilateral triangle if and only if « = f = y and that in
this case,

2 cosh(4a) sin(3a) = 1.

3. Show that for a general triangle, the angle bisector at v, contains the mid-point of
[v, t.) if and only if b = ¢ (Isosceles triangles).

4. Prove that there exists an isometry mapping a triangle T; onto a triangle T, if and
only if T; and T, have the same angles (or sides of the same lengths).

§7.13. The Area of a Triangle

Theorem 7.13.1. For any triangle T with angles o, B and v,
h-area(T) =z — (@ + S + 7).

Corollary. The angle sum of a hyperbolic triangle is less than m.
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/\ﬂ

Figure 7.13.1

1
|

PRrROOF. Assume first that y = 0. We may assume that v, = oo and that v,
and v, lie on |z| = 1. Referring to Figure 7.13.1 we find that

cos ©
h-area(T) = f [ f id—‘;] dx
cos(z—a) LJ(1-x21/2 Y

=TE'~(d+ﬁ),

which s the desired result wheny = 0. In general, any triangle is the difference
of two such triangles (continue the ray from v, through », to w on the circle
at infinity and consider T(v,, v,, w)) and the general case follows easily. [J

§7.14. The Inscribed Circle

This is the last section on hyperbolic trigonometry and we leave the reader
to provide most of the details.

Theorem 7.14.1. The three angle bisectors of a triangle T meet at a point { in T.

Proor. We may assume that vy is the smallest angle so y < 7/2. Now construct
angle bisectors at v, and v, : these must meet at a point { in T (see Section 7.7).
Next, define y, and y, as in Figure 7.14.1. As /2, /2, y, and y, are each less
than n/2, we can construct points w,, w, and w, as in Figure 7.14.1 (and these
points must lie on the open sides of T).

The Sine Rule applied to the two triangles with side [{, v,] gives

(G, we) = p(C, wa)-

The same result holds with w, instead of w, so the points w,, w, and w, lie
on a circle with centre {. Moreover, elementary trigonometry now shows that

Y1 = Y2- a
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Figure 7.14.1

The circle centre { passing through w,, w, and w, is called the inscribed
circle of T.

Theorem 7.14.2. The radius R of the inscribed circle of T is given by

cos? a + cos? B + cos? y + 2 cos a cos Bcosy — 1

t 2R =
anh” R 2(1 + cos a)(1 + cos B)(1 + cos y)

PROOF. Let x = p(v,, w,) and y = p(w,, v,). Then

cos o cos f + cos y

- - = cosh x cosh sinh x sinh
sin « sin 8 x y + sinh x sinh y

SO

[(cos a cos B + cos y) — (sin « sinh x) (sin B sinh y)]?
= [(1 — cos? a) + sin? a sinh? x][(1 — cos? B) + sin? B sinh? y].

The identity
sin 8 = (1 + cos 6) tan(6/2)
together with the relation

tanh R = sinh x tan(«/2)
yields

sin o sinh x = (1 + cos «) tanh R.

A similar expression holds for 8, y and R and substitution yields (after some
simplification) the desired result. a

The next example is of interest.
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Example 7.14.3. For each « in (0, ) we can construct a triangle T with
angles o, 0, 0. Then

4 tanh®? R = 4(1 + cos a)
= cos*(0,/2)
= sin?[$h-area(T)].

In Euclidean geometry, a triangle may have a large area but a small
inscribed circle. The next result shows that the situation in hyperbolic
geometry is quite different: for a proof of this, see [10].

Theorem 7.14.4. The radius R of the inscribed circle of T satisfies
tanh R > 1 sin[$h-area(T)]
and this lower bound is best possible for each value of h-area(T).

Example 7.14.3 shows that this lower bound is best possible.

§7.15. The Area of a Polygon

A polygon P is the interior of a closed Jordan curve
[Zla zZ] Y [22’ 23] U [zn— 1> Z,,] o [zm Zl]'

The interior angle 8; of the polygon at z; is the angle determined by D n P
for all sufficiently small discs D centered at z;. Note that this is not neces-
sarily the interior of the angle determined by the two sides of P leaving z;;
it is this interior angle if and only if 0 < 6; < n. We allow the vertices to lie
on the circle at infinity: if z; is such an infinite vertex, then §; = 0.

Theorem 7.15.1. If P is any polygon with interior angles 0,, ..., 0,, then
h-area(P)=(n — 2)yn — (6, + -+ + 6,).

Proor. This has been proved for the case n = 3 (Section 7.13) and from this
it follows for convex polygons by subdivision of P into n — 2 triangles (the
details are omitted). It is worth noting explicitly that Theorem 15.1 applies
to all polygons whether convex or not.

The proof for non-convex polygons is also by subdivision into triangles:
the subdivision is less tractable but we can compensate for this by using
Euler’s formula. We begin by extending each side of P to a complete geodesic.
This provides a subdivision of the entire hyperbolic plane into a finite
number of non-overlapping convex polygons (convex as each is the inter-
section of half-planes).
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We now consider only those polygons P; of the subdivision which lie in
the original polygon P. By convexity, each P; can be subdivided into triangles.
We have now subdivided P into non-overlapping triangles T; such that each
vertex of P is a vertex of some 7} and each side of a T} is either a side of some
other T; or is part of a side of P (and not of any other T)).

Let this triangulation of P have N triangles, E edges, V vertices and let
there be E, edges which lie in the sides of P. Euler’s formula for the sphere
yields

WN+1D)—-E+ V=2

As each of the N triangles has three sides we count sides in different ways
and obtain

3N = Eq + 2(E — E,).
Elimination of E now gives
N—-2V+Ey= -2 (7.15.1)
We can now compute areas. Of the V vertices in the subdivision, n occur

as vertices of P, E, — noccur at points lying interior to asideof Pand V — E,
occur inside P. Thus

N
area(P) = ) area(T)
i=1

=Nn—@O,+-+8,)— (Eo —mn — (V- Ep)2n
=mn—2r—O, ++6,)

by virtue of (7.15.1). d
Remark. For a Euclidean polygon, of course, we have

m—2r=0,+---+0,.

§7.16. Convex Polygons

We establish two results concerning convex polygons. The first is a necessary
and sufficient condition for a polygon to be convex: the second establishes
the existence of convex polygons with prescribed angles.

Theorem 7.16.1. Let P be a polygon with interior angles 6, ...,0,. Then P
is convex if and only if each 0; satisfies 0 < 6; < m.
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This is an immediate consequence of Theorem 7.5.1. Observe that Theorem
7.15.1 shows that a necessary condition for the existence of a polygon with
interior angles 6, ..., 6, is

0+ + 0, <(n—-2m

In fact, for convex polygons (and possibly for all polygons) this is also
sufficient.

Theorem 7.16.2. Let 0,,...,0, be any ordered n-tuple with 0 <0; < =,
j=1,...,n. Then there exists a polygon P with interior angles 6, ...,0,,
occurring in this order around 0P, if and only if

6, + - +0,<(n—2n (7.16.1)

In fact, we shall construct a polygon P with these angles and with an
inscribed disc touching all sides of P.

ProoF. Given 6, .. ., 8, satisfying (7.16.1) and each lying in [0, =), construct
quadrilaterals Q;, ..., Q, each with one vertex at the origin in A as in
Figure 7.16.1. The length d can take any positive value and is to be determined
later: note that Q; is determined (to within a rotation about the origin) by d
and 6. It is clear that we can construct the desired polygon P as the union of
non-overlapping Q; provided that

Yoaj=m (7.16.2)
i=1

Figure 7.16.1
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Now (Theorem 7.11.3)

cos(6,/2)
f=— .16.3
n o cosh d (7.16.3)

and so it is appropriate to examine the function

g([) = i sin‘](&(ej/g_))’

cosht

j=1
where t > 0 and where sin™ ! takes values in [0, 7/2].
Clearly, g is continuous and decreasing and g(t) —» O as t — + o0. Also,

-5 (57)

j=1

= 3[nn — (6; + --- +6,)]
>T

because of (7.16.1). The Intermediate Value Theorem guarantees the existence
of a positived with g(d) = nand with o; defined by (7.16.3), we see that (7.16.2)
holds. O

As an application of Theorem 7.16.2, observe that there exists a polygon
with n sides and all interior angles equal to /2 if and only if n > 5.

§7.17. Quadrilaterals

It is a direct consequence of Theorem 7.16.2 that there exist quadrilaterals
with angles /2, /2, n/2, ¢ if and only if 0 < ¢ < n/2: such a quadrilateral
is illustrated in Figure 7.17.1. This quadrilateral is known as a Lambert
quadrilateral (after J. H. Lambert, 1728-1777). If we reflect across one side
we obtain a quadrilateral with angles #/2, n/2, ¢, ¢: this quadrilateral
(illustrated in Figure 7.17.2) was used by G. Saccheri (1667-1733) in his
study of the parallel postulate and is known as the Saccheri quadrilateral.
The next theorem refers to Figure 7.17.1.

b,

az

a,
Figure 7.17.1
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Figure 7.17.2

Theorem 7.17.1. (i) sinh a, sinh a, = cos ¢;
(ii) cosh a, = cosh b, sin ¢.

The proof depends on two useful preliminary results.

Lemma 7.17.2. Let L be a hyperbolic geodesic in A with Euclidean centre ¢
and radius r and let w be the point on L which is nearest to the origin. Then

sinh p(0, w) = 1/r, cosh p(0, w) = |&|/r.

ProoF. Clearly, |£| = |w| + r and orthogonality gives |£|> = 1 + r2. Using
(7.2.4) we obtain sinh $p(0, w) and hence
2lw| l
L= wlr
The value for cosh follows immediately. O

sinh p(0, w) =

Lemma 7.17.3. Let L and L' be geodesics in the hyperbolic plane. Then the
inversive product (L, L") is

cosh p(L, L"), 1, cos¢

according as L and L’ are disjoint, parallel or intersecting at an angle ¢ where
0< ¢ <m2

Proor. It is not difficult to see that disjoint geodesics have a common orthog-
onal geodesic (see Section 7.22) and (for the moment) p(L, L) is defined to
be the length of this orthogonal segment between L and L'. By the usual
invariance arguments we need only consider the cases

() L, L' arein H? and are given by |z| = r, |z| = R;

(ii) L, L' arein H? and are givenby x = 0, x = x,;
(i) L, L' are Euclidean diameters of A.
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In all these cases, the formula for (L, L') given in Section 3.2 yields the
desired result. O

PRrROOF OF THEOREM 7.17.1. We may suppose that the quadrilateral in Figure
7.17.1 has the sides a, and a, lying on the positive real and imaginary axes.
Suppose that the sides labelled b, and b, lie on the circles

|z —iv] =R, |z—ul=r,
respectively, where u, v, r and R are positive. Then by Lemma 7.17.2,
sinh a; sinh a, = 1/rR.
Lemma 7.17.3 implies that
(L, L") =cos ¢
and from Section 3.2 we have
r? + R* — |u — iv|?
2rR
_lr2+R2—u2—vZI
2rR

(L, L) =

= 1/rR

because, for example, u? = 1 + r.

To prove (ii) we relocate the polygon so that the vertex with angle ¢
is at the origin and the side labelled b, is on the positive real axis: see Figure
7.17.3.

Now reflect the quadrilateral in the real axis: let L be the geodesic con-
taining the side labelled a, and let L' be its reflection in the real axis. By
Lemma 7.17.3 we have

(L, L") = cosh(2a,). (7.17.1)
7
a;
b, L
(3 b, @
0 \¢
LI

Figure 7.17.3
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If L (viewed) as a Euclidean circle) has centre de' and radius r, then L’
has centre de” ¢ and radius r and clearly,

|de'® — de™*¢| > 2r.

Thus
|de'® — de” |2 — 2¢?
(L. L) = | 2r? I
_ 2d%sin* ¢ ~ r?
=
= 2cosh? b, sin? ¢ — 1
by virtue of Lemma 7.17.2. This with (7.17.1) yields (ii). O

ExEeRrcISE 7.17

1. Derive Lemma 7.17.2 directly from Theorem 7.9.1 (Lemma 7.17.2 is simply a re-
statement of the Angle of Parallelism formula).

§7.18. Pentagons

We shall examine the metric relationships which exist for the pentagon
illustrated in Figure 7.18.1 where 0 < ¢ < 7.

Theorem 7.18.1. (i) cosh a cosh ¢ + cos ¢ = sinh a cosh b sinh c.
(i) If ¢ = 7/2 then
tanh acosh btanh ¢ = 1, (7.18.1)
sinh a sinh b = cosh d. (7.18.2)

PRrOOF. It is easy to see that there is a geodesic through the vertex with angle
¢ which meets and is orthogonal to the side of length b. Let b, and b, be the

Figure 7.18.1
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lengths as illustrated and let ¢,, ¢, be the subdivision of ¢; ¢, being on the
same side of this geodesic as the side of length b,. By Theorem 7.17.1, we have

cosh a = cosh A sin ¢,;
cosh ¢ = cosh 4 sin ¢,;
sinh a sinh b; = cos ¢,;

sinh ¢ sinh b, = cos ¢,.
It follows that
(cosh a cosh ¢ ~ sin ¢, sin ¢,)?
= (cosh a cosh ¢ — sin ¢, sin ¢,)?> — (cosh a sin ¢, — cosh c sin ¢,)?
= (cosh? a — sin? ¢,)(cosh? ¢ — sin? ¢,)
= (sinh? a + cos? ¢,)(sinh? ¢ + cos? ¢,)
= (sinh? a cosh? b,)(sinh? ¢ cosh? b,)

and so, taking positive square roots,
cosh a cosh ¢ — sin ¢, sin ¢, = sinh a sinh ¢ cosh b; cosh b,.
This leads directly to (i) as

cosh a cosh ¢ + cos ¢ = cosh a cosh ¢ — sin ¢, sin ¢, + cos @; cos ¢,
= sinh a sinh ¢ (cosh b, cosh b, + sinh b, sinh b,)
= sinh g sinh ¢ cosh b.

Putting ¢ = n/2 in (i), we obtain (7.18.1). To prove (7.18.2), we apply
(7.18.1) to the triple b, ¢, d and eliminate ¢ from the resulting expression and

(7.18.1). O

§7.19. Hexagons

We shall only consider the right-angled hexagon illustrated in Figure 7.19.1.
If we join the end-points of the sides labelled a, and b, to form a quadrilateral
Q, we find that each interior angle of Q is less than =/2. This implies that the
sides labelled a; and b, have a common orthogonal of length, say ¢, as
illustrated.

Theorem 7.19.1.
sinha; sinha, sinha,

sinhb, sinhb, sinhb;

ProoF. From Theorem 7.18.1 we obtain

sinh b, sinh a; = cosh t = sinh a, sinh b,

and the result follows by symmetry considerations. d
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a,
by &
a, as
b,
Figure 7.19.1
Theorem 7.19.2.

cosh b, sinh a, sinh a; = cosh a, + cosh a, cosh a;
PrOOF. From Theorem 7.18.1 we obtain the identities
sinh x sinh a, = cosh u;
sinh y sinh a3 = cosh v;
sinh u sinh ¢ = cosh a,;
sinh v sinh ¢t = cosh a;.
Next, we obtain the identity

(cosh? a, + sinh? u)(cosh? a; + sinh? v)
= (cosh a, cosh a; + sinh u sinh v)?

by expressing both sides as functions of u, v and ¢. Thus

cosh b, sinh a, sinh a,
= (cosh x cosh y + sinh x sinh y)sinh a, sinh a;
= cosh x cosh y sinh a, sinh a; + cosh u cosh v
= (cosh x sinh a,)(cosh y sinh a3) + cosh u cosh v
= (sinh? a, + cosh? u)!/?(sinh? a5 + cosh? v)!/? + cosh u cosh v
= (cosh? a, + sinh? u)!/?(cosh? a3 + sinh? v)'/2 + cosh u cosh v
= cosh a, cosh a3 + sinh u sinh v + cosh u cosh v. O

Remark. Theorem 7.19.2 shows that the lengths of all sides of the hexagon
are determined by the lengths a,, a, and aj;.
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§7.20. The Distance of a Point from a Line

For each point z and each geodesic L, define
p(z, L) = inf{p(z, w): we L}.
There is a unique geodesic L, through z and orthogonal to L and p(z, L)

is the distance from z to L measured along L,.

We work in H? and we may assume that L is the positive imaginary axis.
Then
L, = {{eH*:|{| = |zI}

and we are asserting that
p(z, L) = p(z,i|z]). (7.20.1)

Each point on L is of the form it (¢t > 0) and from Theorem 7.2.1,

x2+ yr+t2

cosh p(z, it) = 2t (z=x+1iy)
_lzlflzl |t
AW + |z]
|z]
> 21 7.20.2
; ( )

As equality holds here if and only if t = |z|, this verifies (7.20.1).
With 8 as in Figure 7.20.1, we can use (7.20.2) and

cosh p(z, L) = 1/cos 6;
sinh p(z, L) = tan 6; (7.20.3)
tanh p(z, L) = sin 6.

ilzl g~ 720

Figure 7.20.1
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Figure 7.20.2

As an application of these formulae, note that the regions
{ze H?*: p(z, L) < k} (k> 0)

are precisely the hypercyclic regions described in Section 7.5.

We can also obtain a formula for p(z, L) when L is the Euclidean semi-
circle {w: |w| = r} in H?: see Figure 7.20.2.

Suppose first that |z| < r. With 0 as in Figure 7.20.2, the Euclidean circle
through z, r and —r has centre —ir(tan 6) and radius r/cos 6. Thus

|z + ir(tan 8)|? = r?/cos? @
and so
rt—|z)?

tan 0 =
an 2yr

(z =x+ iy).

A similar formula holds for z, when |z,| > r with |z,|* — r? replacing
r? — |z|%. Thus if L is given by |w| = r we obtain from (7.20.3),

IZIZ _ r2

sinh p(z, L) = o

(7.20.4)

We shall also need a formula for the model A when L is the real diameter
(=1, 1) of A. In this case we show that for all w in A,

2|Im(w)|
1 —|w)*’

sinh p(w, L) = (120.5)

First, there is a unique geodesic L' through w and orthogonal to L. Let L
and L' meet at {: then there is an isometry g of A which fixes — 1 and 1, which

maps { to 0 and which leaves L invariant. Now g maps L' to the segment
(—1, i) and so g(w) = it for some real . The relationship between w and t is
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best found by noting that as g preserves both differentials |dz|/y and
2]dz]/(1 — |z|*) we have

t  Imw)
1=2 1 —|w)?
On the other hand,
p(w, L) = p(w, {)

= p(it,0)

_ 1+ ¢t}

- toe( 117
and this gives (7.20.5).

EXERCISE 7.20

1. Let L be the geodesic (—e', ?) in A. Find an explicit formula for sinh p(z, L), z € A.

§7.21. The Perpendicular Bisector of a Segment

Let z, and z, be distinct points and let w be the mid-point of [z,, z,]. We
shall prove that

{z: p(z, z;) = p(z, z,)}

is the unique geodesic through w and orthogonal to [z, z,]: this is the perpen-
dicular bisector of [z4, z,].

We work in H? and assume that z, = i and z, = r%i where r > 1: thus
w = ri. From Theorem 7.2.1,

cosh p(z, z;) = cosh p(z, z,)

if and only if

|z =z |? _ |z = z,]°

y ry

and this simplifies to |z| = r.
In the model A, the direct isometries are of the form

az + ¢

——,  JaP—[cP=1
cz+a

g(z) =
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Using (7.2.4) we find that z is on the perpendicular bisector of [0, g0] if
and only if
|z|? _ |z — ¢0?
(1 =1z =101 (A~ |z ~ 90"

or, equivalently,
laz — ¢|* = |z~
As

laz —¢* — ez —al? = |z]* - 1,

we see that the perpendicular bisector of [0, O] is the isometric circle of g~ *.

EXERCISE 7.21

1. Show that the perpendicular bisector of thetwo points z; = x; + iy; (j = 1, 2)in His
L={ziy|lz = 25 = yalz — z, ]}

Deduce that for any z, and any compact subset K of R?, L n K = @ when |z,] is
sufficiently large.

§7.22. The Common Orthogonal of Disjoint
Geodesics

If L, and L, are disjoint geodesics then there exists a unique geodesic which is
orthogonal to both L, and L,.

The assertion remains invariant under isometries so we may assume that
L, and L, are in H? with equations

x=0, (x—a?+)y’=r?

respectively, where a > r > 0. The only geodesics orthogonal to L, are
those with equations |z| = t and such a geodesic is orthogonal to L, if and
only if a®> = r? + t*. As a > r there is a unique positive ¢ satisfying this
equation.

EXERCISE 7.22

1. Prove that if two distinct geodesics have a common orthogonal then they are disjoint.
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§7.23. The Distance Between Disjoint Geodesics

For disjoint geodesics L, and L, define
p(L,, L,) =inf{p(z, w): ze L, we L,}.

The distance p(L,, L,) between L, and L, is the distance measured along their
common orthogonal.

We work in H? and assume that the common orthogonal is the positive
imaginary axis. Then L, and L, are given by |z| = r, |z| = R, say and the
result follows from (7.20.4) (see also Section 5.4).

There are other convenient expressions for p(L,, L,), for example Lemma
7.17.2. Also, p(L,, L,) can be expressed as a cross-ratio: if L, has end-points
z, and z, and if L, has end-points w, and w,, these occurring in the order
Zy, Wy, W,, z, around the circle at infinity, then

[z1, Wi, Wy, zo] . tanh?[3p(L,, L,)] = 1. (7.23.1)

EXERCISE 7.23

1. Verify (7.23.1) by working in H? and taking z; = 0,w, = land z, = .

§7.24. The Angle Between Intersecting Geodesics

The angle 6, 0 < 8 < &, between intersecting geodesics can be expressed
both in terms of the inversive product (Lemma 7.17.2) and the cross-ratio.
If L, =(z4,2,) and L, = (w;, w,) with the end-points occurring in the
order z,, wy, z,, W, around the circle at infinity, then

[z1, Wy, 22, W, ] sin?(6/2) = 1.

For the proof,use Aand L, = (=1, 1), L, = (¢®®, —¢).

§7.25. The Bisector of Two Geodesics

Let L, and L, be distinct geodesics: the bisector of Ly and L, is
L ={z:p(z, Ly) = p(z, L,)}.
We show that L is one or two geodesics.

Case 1: L, and L, are parallel.
In this case, take L, and L, to be x = a and x = —a in H2. From (7.20.3)
we see that zis on L if and only if |x — a| = |x + al, equivalently, x = 0.
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Case 2: L, and L, are disjoint.
Take L, and L, to be |z| = | and |z| = r* in H?. By (7.20.4), z is on L if
and only if

(2> = )2 = r¥(|z? = 1)?
and this reduces to |z| = r.

Case 3: L, and L, are intersecting.
Take

Ll - (e~i0, _e—iO)’ L2 = (ei()’ _ei0)
in A where0 < 6 < 7/2. Let L' = (—1, 1): then z is on L if and only if

p(e“z, L) = p(z, Ly)
= P(Z, Lz)
= ple” "z, L.

Using (7.20.5) with z = re™* this becomes
[sin(8 + 1)]? = [sin(0 — 1)]?,

which gives L as the union of the two geodesics (—1, 1) and (—1i, i).

§7.26. Transversals

Let L, and L, be disjoint geodesics. A geodesic L is a 6-transversal
(0 <0 < n/2)of L, and L, if and only if L meets both L, and L, at an angle
0. As an example of how O-transversals arise naturally consider the isometry
g(z) = kz(k > 0)of H? and the geodesic L given by x = 0.If L, is any geodesic
meeting L, the L is a -transversal of L, and g(L). We need to investigate
the metric relations which exist for §-transversals.

The common orthogonal of L, and L, is h the unique r/2-transversal of
L, and L,. We shall see that for all other values of 8 there are exactly four
f-transversals. Let L, be the common orthogonal of L, and L, and let L*
be the bisector of L, and L,. We shall work in A and we assume that

Ly=(-1,1), L* = (—i,1i).

The situation is then as illustrated in Figure 7.26.1 where the four transversals
are shown, two in each case. We omit the proofs (which are not difficult)
that any 0 in (0, 7/2) can be attained in this way and that there are no other
O-transversals.

With an obvious reference to Euclidean geometry, wecall the O-transversals
in Case (i) the alternate transversals: those in Case (ii) are the complementary
transversals. Let t, denote the length of the segment of a §-transversal which
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Case (i) Figure 7.26.1 Case (i)

lies between L, and L,. For alternate transversals we have from Theorem
7.11.2,

sinh 4p(L,, L;) = sinh(3t,) sin 0:
for complementary transversals, Theorem 7.17.1 yields

cosh 3p(L,, L,) = cosh(3t,)sin 6.

EXERCISE 7.26

1. For a given 0, are the alternate O-transversals longer or shorter than the comple-
mentary §-transversals?

2. Let the two alternate 6-transversals meet L, at z, and z,: let the complementary
O-transversals meet L, at w, and w,. Which of p(z,, z,) and p(w,, w,) is the greater?

§7.277. The General Theory of Pencils

Much of the hyperbolic geometry required for a detailed discussion of
Fuchsian groups is best described in terms of pencils of geodesics. For
example, we see that circles, horocycles and hypercycles are simply varia-
tions of the same idea and this brings a greater unity into the subject. We shall
also see that the classification of pencils leads naturally to the classification
of isometries which is more illuminating than that given in Section 4.3. In
this section we merely describe the notion of a pencil and list its main prop-
erties: the details occur in the next three sections.

Each pair of geodesics, say L and L/, lie in a geometrically defined one-
parameter family & of geodesics called the pencil determined by L and L'.
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Associated with each pencil # there is an orthogonal family € of curves:
thecurves in ¢ are not in general geodesics and 4 is called the complementary
family of 2. The interest centres on the following joint properties of 2 and %.

P1: each point in the hyperbolic plane lies on exactly one curve in €.

P2: with possibly one exception, each point in the plane lies on exactly one
geodesic in .

P3: every geodesic in & is orthogonal to every curve in .

P4: Every curve in € is invariant under the reflection in any geodesic in 2.

P5: any two curves C and C, in € are equidistant: that is, for each z, on C,
there is some z, on C, such that

p(zl’ ZZ) = p(cb CZ),

moreover, z, and z, lie on the same geodesic in 2.

P6: two points z and w lie on the same curve in € if and only if the perpendicular
bisector of [z, w] is in 2.

P7: the set P is precisely the set of geodesics of the form

{z: a sinh p(z, L) = b sinh p(z, L')}
for some positive constants a and b.
The pencil determined by L and L' is

(i) parabolic if L and L' are parallel;
(ii) elliptic if L and L’ are intersecting;
(iii) hyperbolic if L and L' are disjoint.

We shall examine these pencils in detail in the next three sections.

§7.28. Parabolic Pencils

Let L and L' be parallel geodesics with common end-point w. We define 2
to be the family of all geodesics with end-point w and % to be the family of all
horocycles tangent to the circle at infinity at w (see Section 7.5). We use the
model H? with w = o0: in this case the geodesics in 2 are the lines x =
constant, the curves in 4 are given by y = constant and P1, P2, P3 and P4
are obvious.

Now consider two horocycles, say y = k and y = K. From Theorem
7.2.1 we obtain

(x—s)* + (k— K)*
* 2K

> cosh p(x + ik, x + iK)

cosh p(x + ik, s + iK) =1

and this established P5.
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The bisector of [z,, z,] (z; = x; + iy;) is given by
2= 21 _ |z — 2P
V1 - Y2
and this geodesic ends at o if and only if y; = y,: this proves P6.

EXERCISE 7.28

1. Verify P7 by showing that if L and L’ are given by x = a and x = « then
sinh p(u +iv, L) |u—a

sinh p(u + iv, L)

u—a

§7.29. Elliptic Pencils

Let L and L’ be geodesics which intersect at the point w in the hyperbolic
plane. We define # to be the family of all geodesics through w and 4 to be
the family of all circles

C, = {z:p(z,w) = r}.

If we use the model A with w = 0, the geodesics in £ are the Euclidean diam-
eters of A and the circles in € are the Euclidean circles with centre at the
origin. It is now clear that P1, P2, P3 and P4 hold, the exceptional point in
P2 being w.

To prove that P5 holds, we assume that z is on C, and that z’ is on C,.
Using (7.2.4) we see that the minimum of p(z, ') is attained precisely when
|z — Z'| attains its minimum: this establishes P5 for this occurs precisely
when z and 2’ lie on a geodesic in 2. The proof of P6 is trivial as

p(z, w) = p(Z', w)

expresses both the fact that z and 2’ lie on the same C, as well as the fact that
w lies on the perpendicular bisector of [z, z'].

EXERCISE 7.29
1. Verify P7 (but see Section 7.25, Case 3).

§7.30. Hyperbolic Pencils

Let L and L' be disjoint geodesics with L, as the common orthogonal
geodesic. We define 2 to be the family of all geodesics which are orthogonal
to L, and % to be the family of all hypercycles (defined in Section 7.5) which
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have the same end-points as L. As a standard model of this situation, we use

the half-plane H? and take L, to be the positive imaginary axis. Then &

consists of all geodesics given by |z| = constant and ¥ consists of all curves

given by arg(z) = constant. It is immediate that P1, P2, P3 and P4 hold.
To verify PS5, consider the two curves

C,=f{zargz) = 6}, C,={z:arg(z) = ¢}
in 4. From Theorem 7.2.1 we obtain

i o |te® — rei®|?
sinh?[$p(te”, re')] = ————
[2e( ] 4tr sin 6 sin ¢

1 [f + 5 - 20056 - ¢)]

=4sin85in¢ r

and this is minimal precisely when ¢ = r. This proves P5.
Now consider two points w; = u; + iv;: the perpendicular bisector of
[wy, w,] has equation

lz=wi? |z —w,|

’

Uy v,

or, equivalently,
(v, — vy)|z]® — 2x(u;v, — u,v,) = constant.

This geodesic is in £ if and only if u;v, = u,v,, that is, if and only if w, and
w;, lie on the same curve in € : this proves P6.

ExERCISE 7.30
1. Verify P7.

2. Let 2 be any pencil (not necessarily hyperbolic). Show that no three distinct points
on any curve in % are collinear.

3. Prove that the three perpendicular bisectors of the sides of a hyperbolic triangle lie
in one pencil.

§7.31. The Classification of Isometries

If we recall the classification of Mobius transformations given in Definition
4.3.2 and take account of Theorem 5.2.1, we see that every conformal isom-
etry of the hyperbolic plane is either parabolic, elliptic or hyperbolic. These
can be recognized by the location of their fixed points or by the function
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trace?. In fact, each such isometry can be expressed as a product of two
involutions and the geometric action of the isometry is intimately connected
with the theory of pencils. We explore this idea in the next three sections.

§7.32. Parabolic Isometries

An isometry g is parabolic if and only if it can be represented as g = 0,0,
where g; is a reflection in the geodesic L; and where L, and L, determine a
parabolic pencil (and so are parallel geodesics). This is clear when g(z)
= z + 1 acting on H? and so is true in general by invariance.

Given a parabolic isometry g, the associated parabolic pencil is the pencil
containing all geodesics which end at the fixed point of g and (and this is
most important) either L, or L, may be chosen arbitrarily from this pencil.
Also, L, is the bisector of L, and g(L,).

EXERCISE 7.32

1. Let g be parabolic with fixed point w, let L be a geodesic ending at w. For any z, let
z' be the point on L where [z, z'] is orthogonal to L. Prove that

p(z, gz) = p(2, g2').

2. Let g be a parabolic isometry acting on H2. Show that there is a conformal isometry h
of H? such that hgh™' is z+z + 1 for some real non-zero t. Let T, be the set of ¢
obtainable in this way (for varying 4 but fixed g). Prove that T, is either (—oc, 0) or
(0, +oc) and call g negative or positive respectively. Find a necessary and sufficient
condition for

az+ b
cz+d

g(z) = (ad — be = 1)

to be positive in terms of a, b, ¢ and 4.

§7.33. Elliptic Isometries

An isometry g is elliptic if and only if it can be represented as g = 0,0,
where g; is the reflection in L; and L, and L, lie in an elliptic pencil. This is
true when g(z) = "z and hence in general by invariance.

Given an elliptic isometry g, the associated elliptic pencil is the pencil
containing all geodesics passing through the fixed point v of g in the hyper-
bolic plane. Moreover, L, (or L,) can be chosen arbitrarily from this pencil
and the other L; is then uniquely determined by g.

An elliptic isometry g is completely determined by and completely

determines its fixed point v in the hyperbolic plane and a real number
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6in [0, 27). Indeed, g also fixes v, (the reflection of v in the circle at infinity)
and we can write

9@ v _ e( z-v ):

g9(z) — v, Z— Uy
this shows that g'"(v) = €". We call 6 the angle of rotation of g. As g is

conjugate (in ) to z+ €'z, we have

trace’(g) = 4 cos%(6/2).

EXERCISE 7.33

1. Show that the elliptic elements g and h with angles of rotation ¢ and ¢ in (0, 2r) are
conjugate in the group of conformal hyperbolic isometries if and only if 6 = ¢.

§7.34. Hyperbolic Isometries

An isometry g is hyperbolic if and only if it can be represented asg = 7,0,
where ¢ is the reflection in L; and where L, and L, determine a hyperbolic
pencil. The axis of g (in the hyperbolic plane) is the axis of the pencil, that is
the unique geodesic orthogonal to all lines in the pencil and ending at the
fixed points of g. Of course, the axis of g is the unique g-invariant geodesic.
We can choose L, (or L,) arbitrarily and the other L; is determined by g.
These facts are easily verified when g(z) = kz, k > 0, and they are true in
general by invariance.
Observe that if g(z) = kz, then by Theorem 7.2.1,

|z| |1 — k|
Zyﬁ

and this attains its minimum (over all z in H?) at and only at each z on the
axisof g (the line x = 0). As inf, p(z, gz) remains invariant under conjugation
we can define, for a general hyperbolic g, the translation length T of g by

sinh 3p(z, gz) =

T = inf p(z, gz).

Observe that T is positive and (again by invariance)

(1—k)?
T

= trace*(g)/4

cosh?(3T) =1

SO

1|trace(g)| = coshG T).
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There is another representation of a hyperbolic g as two involutions. An
isometry g is hyperbolic if and only if it can be represented as g = ¢,¢,
where ¢;1s a rotation of order two about some point v; lying on the axis of g.
Here, v, (or v,) can be chosen arbitrarily and the other v; is determined by g.
The proof is only needed in the special case g(z) = kz and this is straight-
forward. Observe that

T= 2P(U1, v2)

and that ¢,(v;) = g(v,) (so the ray from v, through v, ends at the attractive
fixed point of g).

§7.35. The Displacement Function

Let g be an isometry of the hyperbolic plane. It is easy to see that the dis-
placement function

2+ p(z,9z) = p(z, 9" '2)
determines and is determined by the pair {g, g~ '}. This is a particularly

attractive way of discussing isometries; however, for technical reasons, it is
preferable to use the function

z > sinh $p(z, gz).
We shall evaluate this function in purely geometric terms.
Theorem 7.35.1. (i) If g is hyperbolic with axis A and translation length T then
sinh 1p(z, gz) = cosh p(z, A) sinh(3T).
(i) If g is elliptic with fixed point v and angle of rotation 8, then
sinh 1p(z, gz) = sinh p(z, v)|sin(6/2)],

where here we take 0 in the range [ —, ).
(iii) If g is parabolic with fixed point v then

P(z, v) sinh 3p(z, gz)

is constant (which depends on g) where P(z, v) is the Poisson kernel of the
hyperbolic plane.

Remark. The Poisson kernel is discussed in Section 1.6.
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ProoF. By conjugation, we may assume in (i) that g acts on H? and that
g(z) = kz, k > 1. By Theorem 7.2.1 we have

|z — kz|

sinh $p(z, gz) = \/,

- ()54 7)
(L) sinh(}T)

as p(z,gz) = T when |z| = y (i.e. x =0): see Section 7.34. Finally, as 4 is
the positive imaginary axis, we can use Section 7.20 and obtain

cosh p(z, 4) = |z|/y.
To prove (ii), we may assume that g acts on A and that g(z) = €'’z. As

p(Z, eiﬁz) = p(z, eZni—i()z)
and
Isin(6/2)| = |sin(z — 6/2)1,

we may assume that 0 < 6 < 7 (the cases § = 0 and § = r are trivial).

Now construct the triangle with vertices 0, z, gz and corresponding
angles 0, @, ¢, say. Bisecting the angle at the origin yields a right-angled tri-
angle with angles 6/2, ¢, n/2 and opposite sides of lengths 3p(z, g2), s (ir-
relevant), p(z, 0). From Section 7.11 we obtain

sinh 4p(z, gz) = sinh p(z, 0) sin(6/2).

To prove (iii), we need only consider the case when g(z) = z + 1 acting
on H?: the general case follows by the usual invariance argument and the
discussion of the Poisson kernel given in Chapter 1. The significance of the
Poisson kernel here is that its level curves coincide with the level curves of
the displacement function: indeed, this is all that (iii) says.

Ifg(z) = z + 1, then v = oo and

a

NI.—

P(z, v) sinh 3p(z, gz) = y<21y> =

In conclusion, note that in all cases, the level curves of the displacement
function are precisely the curves in the family € orthogonal to the pencil P
associated with g.
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EXERCISE 7.35

1. For any isometry g let m be the infimum of p(z, gz). Show that g is hyperbolic if and
onlyif m > 0.If m = Q, show that g is elliptic when m is attained and parabolic when
m is not attained.

Let w be any point such that p(w, gw) > m. Show that the value of p(w, gw)

together with the set {z: p(z, gz) = m} determines the pair {g, g~ '}.

§7.36. Isometric Circles

Recall from Section 4.1 that for any M6bius transformation g, the isometric
circle I, of g is the set of points on which g acts as a Euclidean isometry.
If g is an isometry of the hyperbolic plane A, then (see Section 7.21)

I, = {z: p(z,0) = p(z, g~ '0)}

and it is instructive to give an alternative proof of this.

PROOF. According to Sections 7.32-7.34 we can write g = g,0; where ¢;
denotes reflection in L;. Choose L, to pass through the origin so o, is a
Euclidean isometry. We deduce that z is on I, if and only if the Euclidean
distortion of ¢, at z is unity: hence I, = L,. With this available, we see that

7,(0) = ,06,(0) = g~ '(0)
so I, (=L,) is the bisector of 0 and g~ 1(0). a

It is this geometric proof which reveals the true nature of the isometric
circle in plane hyperbolic geometry. Given any point w in the hyperbolic
plane or on the circle at infinity, we suppose that g(w) # w and we write
g = 6,0, where L, is chosen to pass through w. We call L, the w-isometric
circle of g and write it as I, (w). In this form, there is a useful invariance
property, namely,

Lygu-1(hw) = h(I,(w))

and, of course, the isometric circle is the case w = 0. Now note that g acts
symmetrically about dA so we can allow w to be any point in the extended
plane and then

I,(w) = 1,(1/w).
In particular,
1,(0) = I,(o0)

and this is simply the dependence of the classical isometric circle I, on the
special point co. For more details, see Section 9.5.
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EXERCISE 7.36

1. Prove that g is elliptic, parabolic or hyperbolic according as I, and [ -1 are inter-
secting, parallel or disjoint respectively.

§7.37. Canonical Regions

To each conformal isometry g of the hyperbolic plane we shall associate a
“canonical” region Z, which is intimately connected with the geometric
action of g and which uniquely determines the pair {g, g~ '}.

Definition 7.37.1. Let g be a conformal isometry which is not the identity
nor elliptic of order two. The canonical region L., of g is defined by
Z, = {z:sinh 3p(z, gz) < %|trace(g)|}.

If g is of order two with fixed point v, then T is {v}.
The properties of canonical regions are described in the next theorem.

Theorem 7.37.2. (i) Z, is conjugation invariant: explicitly
zhgh—l = h(zg).
(ii) Z, determines the pair {g, g~ '}: explicitly, £, = Z, ifand only if h = g or
h=g"%

Before proving this we give a geometric construction of Z,.

The geometric construction of Z,. If g is not of order two, then Z, may be
constructed as follows. For each z on the circle at infinity let L, be the geo-
desic joining z to gz. Then if P denotes the hyperbolic plane, we have

I, =P—-JL..
z
Suppose first that g is parabolic: it is only necessary to consider the case
when g acts on H? and is given by g(z) = z + 1. In this case,

P—JL,={x+iy:y>3k

On the other hand,
|trace(g)| = 2
so by Theorem 7.2.1, z is in Z if and only if

1 > sinh $p(z, g2)
= 1/2y.
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LN
gz
Figure 7.37.1

Next, suppose that g is elliptic. We may suppose that g acts on A and is
given by g(z) = €'z, 0 < |0| < =. In this case the family of lines L, contains
the geodesics that subtend an angle 6 at the origin: see Figure 7.37.1.

From Section 7.9 we obtain

sinh p(0, w) tan(6/2) = 1,
thus

P — | J L, = {z: sinh p(z, 0) tan(6/2) < 1}.

However, by Theorem 7.35.1,

sinh 4p(z, gz) = sinh p(z, 0)|sin(6/2)|
= sinh p(z, 0)|tan(6/2)|(3|trace(g)|)

and this is the desired result.

Finally, we suppose that g is hyperbolic: without loss of generality,
9(z) = kz,k > 1,and g acts on H?. In this case, P — ( J, L, is the hypercyclic
region shaded in Figure 7.37.2

Figure 7.37.2
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However, from Section 7.20, z lies in this region if and only if

cosh p(z, A) < 1/cos 0

Ck+ 12
T (k=12
el 41
Tl -1
_cosh(3T)
" sinh(37)

Using Theorem 7.35.1, we see that X, is indeed this shaded region.

Proor OoF THEOREM 7.37.2. First, (i) is trivially true. Next, observe from the
geometric construction of X, that X, determines the fixed points of ¢ and
also the pairs {z, gz} on the circle at infinity. It follows that Z, determines the

pair {g, g™ '}. O

Observe that £, can be constructed from the fixed points of g and one
pair {z, gz} on the circle at infinity. Also, the boundary of Z, consists of one
or two curves from the family € of curves orthogonal to the pencil 2 associated
with g.

§7.38. The Geometry of Products of Isometries

We know that any conformal isometry of the hyperbolic plane can be
expressed as a product f = a,0, of reflections ¢ in geodesics L ;. The relative
geometric positions of L, and L, determine the nature of f for example, if
L, and L, cross, then f is elliptic. The relative metric positions of L; and
L, determine the geometric parameters of f (for example, the angle of

rotation of f) in a particularly simple way.

Theorem 7.38.1. Let L, and L, be distinct geodesics, let o; denote reflection
inL;and let f = 0,0,. Then the inversive product (L,, L,) satisfies

(Ly, Ly) = 3|trace(f)].
ProoF. If L, and L, are disjoint, then their common orthogonal geodesic L
is invariant under o, and o, . It follows that f is hyperbolic, that L is the axis

of f and consequently, the translation length T of f satisfies

%T = p(Ll’ LZ)
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We also know that the inversive product (L, L,) is given by
(L, L,) = cosh p(L, L,)

(Lemma 7.17.2) and the result follows in this case for (see Section 7.34)
|trace(f)| = 2 cosh(3T).

If L, amd L, are parallel, then the inversive product equals one and, as f
is then parabolic, {trace(f)| = 2.
Finally, suppose that L, and L, intersect in an angle 6, 0 < 6 < 7/2, then

(Ly, L;) = cos 6.

However, in this case, f'is a rotation of angle 26 about the point of intersection
of L, and L, and

[trace(f)| = 2 cos 6. O

Given two isometries g and s we can write
g = 0,103, h = 0304,

where ¢; represent reflections in the geodesics L; chosen from certain pencils
%, and %,. Suppose now that & and % have a common geodesic L: then
we cantake L, = L = L5 s0 0, = 63 and

gh = (0,0,)(0304) = 0,0,.

Thus we have obtained a simple representation of the product gh from which
we can study the geometric action of gh. In particular,

[trace(gh)| = 2(Ly, L4),

thus the geometry of the relative positions of L, and L, enables us to predict the
nature of gh. The results in this section are examples of this technique: other
results are available and the choice of the material given here has been
dictated by later use.

Theorem 7.38.2. Let g and h be elliptic isometries with g a rotation of 20
about u and h a rotation of 2¢ about v. We suppose that g and h are rotations
in the same sense with u % v and 6, ¢ in (0, n). Then

1|trace(gh)| = cosh p(u, v) sin 6 sin ¢ — cos 6 cos ¢.

PrOOF. We may assume that g and hact on H?, that u and v lie on the positive
imaginary axis L and that

g = 0103, h =030,

where L, = L = L. This is illustrated in Figure 7.38.1 and by Theorem
7.38.1, it is simply a matter of computing (L,, L,).
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L“—'ﬂ

¥

d

L,

Figure 7.38.1

Now L, has Euclidean equation
x% 4+ y? — 2x|u|cot 8 — |u]® = 0,
while L, has equation
x? + y? + 2x|v|cot ¢ — |v|? = 0.
The definition of the inversive product gives

(L, Ly) = %(m + %) sin 6 sin ¢ — cos 0 cos ¢

ul

and this is the required result as

cosh p(u, v) = cosh(log ||_U_:)
u

_ (el
‘2(iu|+|vl>' B

Remark. As an explicit example of Theorem 7.38.2, observe that gh is
parabolic if and only if

1+ cosfcos¢

cosh p(u, v) = sin 0 sin ¢

Of course, gh is parabolic if and only if L, and L, are parallel and this
formula is seen to be in agreement with that given in Section 7.10.

Next, we examine gh when both g and h are hyperbolic.
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Ah Ah
h N
4, - 4

= —1 e =

Figure 7.38.2

+1

Theorem 7.38.3. Let g and h be hyperbolic with translation lengths T,, T, and

disjoint axes A, Ay. Then

i|trace(gh)| = |cosh p(4,, 4,) sinh(3 T,) sinh(3T;)

+ gcosh(3T,) cosh(3T;)|,

where € is +1 or —1 according to the relative directions of g and h as given in

Figure 7.38.2.

Corollary 7.38.4. If g and h are directed so that ¢ = +1,t

ProOF OF THEOREM 7.38.3. Werefer to Figure 7.38.3 (whic
where we have assumed (as we may) that the positive i
the common orthogonal of 4, and A4,. In this case

gh = (630,)(0,0,) = 030,
SO

|trace(gh)| = (Ls, L,).

L,

3Ty L,

el

A L,

A, N

6. N
z

Figure 7.38.3

hen gh is hyperbolic.

histhecase = —1)
maginary axis L, is
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In order to compute (L3, L,) suppose that A4, is given by |z| = t. Then
L, has equation
t

Z7 — —

sin 6

ot
tan 6’

or, equivalently,
(x* + y*)sin — 2xt + t*sin § = 0.
Now from Section 7.9,
sin § = tanh(} T;)
so L, has coefficient vector (to within a scalar multiple)
(tanh(3T,), ¢, 0, t* tanh(3 T,,)).
A similar result holds for A/, given by |z| = s say, and
cosh p(4,, 4;) = % (Et + é)

The result when ¢ = — 1 now follows by a direct computation of the inversive
product. To establish the result when ¢ = +1, we simply modify Figure
7.38.3 so that L, and L5 occur on opposite sides of L,. O

Corollary 7.38.5. Suppose that g and h are hyperbolic with disjoint axes and
the same translation length T. If gh and gh™ ' are not elliptic, then

sinh 3p(A4,, Ay) sinhGGT) > 1.
Proor. With these assumptions we have
1|trace(gh)| > 1

and similarly for gh™!. By using h or h~! we may assume that e = —1 in
Theorem 7.38.3 and the result follows as
cosh p(A,, Ay) sinh(3T,) sinh(3T,) — cosh(3T,) cosh(3 T;)
= [1 + 2sinh® 3p(4,, A))] sinh®>($T) — [1 + sinh*(3T)]
= 2 sinh? $p(A4,, 4,) sinh*GT) — 1. O

Finally, we consider the case when 4, and A4, cross.

Theorem 7.38.6. Let g and h be hyperbolic and suppose that A, and A, intersect
at apoint v, inan angle 6,0 < 6 < 7, this being the angle between the half-rays
from v, to the attractive fixed points of g and h. Then gh is hyperbolic and

iltrace(gh)| = cosh(3T,) cosh(3T;) + sinh(3T,) sinh(3 T;,) cos 6.

Proor. This proof uses the alternative expression of a hyperbolic element as a
product of two rotations of order two (see Section 7.34).
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Figure 7.38.4

We refer to Figure 7.38.4: then

gh = (e382)(e281) = &3¢,
and it is immediate that gh is hyperbolic with axis L and translation length
2p(vy, v3). Thus
1|trace(gh)| = cosh p(v,, v3)
and the result follows from the Cosine Rule (Section 7.12). d

EXERCISE 7.38

1. Derive Corollary 7.38.5 by constructing the following geodesics in A. The common
orthogonal L of A, and A, may be taken as the real segment (—1, 1): we may also
take the origin to be the mid-point of the segment of L between 4,and A,. By selecting
gofg™!and h or h™! as appropriate, we may write g = 6,0, h = 60, where ¢ is
reflection in L, g is reflection in L; (L; lying in the lower half of A): in addition,

p(L, L) = p(L, L) = 3T.

Now apply the results of Sections 7.18 and 7.19 to the polygon whose sides lie on
L L,L,, Ajand A4,.

§7.39. The Geometry of Commutators

Recall that the commutator [g, h] is ghg ~*h™'. Our aim here is to discuss the
geometry of [g, h] and we shall do this by regarding [g, k] as the product of
g and the conjugate hg™ *h~ ! of g ! and then considering, in turn, the various
possibilities for g. Note that if, say, g is a rotation of angle 6 then hg~*h~* is
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also a rotation of angle § but in the opposite sense. We can restrict our
attention to the possibilities for g (rather than h) because

(h.g] =[g, k]! (7.39.1)
and we need only consider conjugates of g and h because
Lfaf =% fof 711 = flg, W17
Theorem 7.39.1. Let g be parabolic and suppose that g and h have no common
fixed point. Then [g, h] is hyperbolic.

PROOF. A matrix proof (with g(z) = z + 1) is easy enough but the geometry
is more revealing. Let g fix the point v and let L, be the geodesic from v to
h(v). For a suitable L, and L, we can write

g = 0,0,, hg_lh_1=0'20'3, [g,h]=0'10'3,

where L, and L, end at v and h(v) respectively. As g and hg~*h~! act in
opposite directions, it is clear that L, and L, lie on different sides of L, and
so are disjoint. Thus o0 is hyperbolic with translation length 2p(L,, Ls).

Theorem 7.39.2. Let g be elliptic with fixed point v and angle of rotation 20,
0 < 0 < 7. Let h be any isometry not fixing v: then [g, h] is hyperbolic with
translation length T and

sinh(T/4) = sinh $p(v, Av) sin 6.

Proor. We write g = 6,0, where L, joins v to h(v). Now construct L, as in
Figure 7.39.1s0 hg " 'h™! = ¢,0; and [g, h] = 0,05.

Ly

L,

Figure 7.39.1
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As L, and L; make equal angles with L, they are disjoint so [g, h] is
hyperbolic with
T =2p(L,, Ly).

From Section 7.26, we see that

sinh $p(L,, L3) = sinh $p(v, vh) sin 6. O

Finally, we consider [g, h] when g is hyperbolic. If h is elliptic or parabolic,
the previous cases apply by virtue of (7.39.1): thus we may assume that both
g and h are hyperbolic. Note that hg™'4~' has translation length T, and
axis h(A,).

Theorem 7.39.3. Let g and h be hyperbolic and suppose that h(A,) and A,
cross at an angle 0 (between the positive directions of g and hg™'h™'). Then
[g, h] is hyperbolic with translation length T where

cosh(3T) = 1 + 2 sinh*(T;) cos?(6/2).

ProOF. Apply Theorem 7.38.6 with h in that theorem replaced by hg™'h~*:
thus
cosh(3T) = cosh*(3T;) + sinh?(3T}) cos 6. a

It is possible to consider many other situations with g and h hyperbolic
and thereby construct an “animated film” of the behaviour of [g, h] as the
three parameters T, T, and (A,, A,) (the inversive product) vary. It is
extremely instructive to do this but the reader will benefit most if he does
this for himself: we simply give three “frames” of the film in Figure 7.39.2
in which [g, h] (=05 0,) is respectively elliptic, parabolic and hyperbolic.

We end with two results concerning crossing axes.

Theorem 7.39.4. Let g and h be hyperbolic with their axes A, and Ay crossing
at anangle 6,0 < 6 < . If [g, h] is not elliptic then
sinh(3T;) sinh(3T;) sin 6 > 1.

ProoF. The situation is that described in one of the last two diagrams in
Figure 7.39.2. We may apply Theorem 7.38.3 with A in that theorem replaced

£ A
L’ "
4 h(4,) Ao h(4,)

Figure 7.39.2
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by hg™'h™! and with ¢ = —1. Thus
1 < jltrace[g, h]|

= |cosh p(A4,, hA,) sinh*(3T,) — cosh*(3T,)|

= |sinh*3T,)[1 + 2sinh? 3p(4,, hA,)] — [1 + sinh?(T))]|

= |2'sinh2(4T,) sinh? §p(4,, h4,) — 1|
SO

sinh(3T)) sinh 3p(4,, hA,) = 1.

However, from Section 7.26 we obtain

sinh 3p(A,, hA,) = sinh(3T,) sin . a

Corollary 7.39.5. Let g4, ..., g, be conjugate hyperbolic elements in a group
G with no elliptic elements, let T be the common translation length and suppose
that the axes A; of g; are concurrent. Then

sinh?(3T) sin(n/n) > 1.

Proor. Two axes A4; and A; must cross at an angle 6 where 6 < n/n: now
apply Theorem 7.39.4. O

EXERCISE 7.39

1. Derive Theorem 7.39.4 from the last two diagrams in Figure 7.39.2 by using the
results of Sections 7.18 and 7.19 on the polygons with sides lying on A4, 4,, L, L,
and L,.

2. Let L be the positive imaginary axis in H? and let

(ad — bc = 1)

preserve H?. Show that the inversive product (L,hL) and the cross-ratio
[0, o0, h0, hoo] can be expressed in terms of each other and in terms of the coefficients
a,b,candd: for example, show that (L, hL) = 2ad — 1.Show also that L and hL cross
each other if and only if ad € (0, 1). These ideas will be found useful when L is the axis
of some g so hL is the axis of hgh™!.

§7.40. Notes

For a general introduction to hyperbolic geometry we mention [21], [32],
[66], [68] and [112]: for a discussion of hyperbolic isometries, see, for
example, [55], [56], [57] and [98]. Convexity is discussed in [102]; convex
hyperbolic polygons are considered in [ 10]. The metric relations for polygons
(Sections 7.17, 7.18 and 7.19) are used in [29] for a discussion of plane
geometry (and Riemann surfaces) and in the account [101] of recent develop-
ments in the theory of 3-manifolds.



CHAPTER 8
Fuchsian Groups

§8.1. Fuchsian Groups

We recall Definition 6.2.2: a Fuchsian group G is a discrete subgroup of .#
with an invariant disc D (so G acts discontinuously in D). We may assume
that the unit disc A (or the half-plane H?) is G-invariant and so we may
regard G as a discrete group of isometries of the hyperbolic plane. We shall
see in Chapter 9 that this induces a tesselation, or “tiling,” of the plane by
hyperbolic polygons and it is the geometry of this action of G which, from
now on, is our only concern.

If G is non-elementary then (Theorem 5.3.7) the limit set A of G lies on
the unit circle A (this is also true for elementary Fuchsian groups) and it is
important to distinguish between the cases in which A is or is not the entire
circle 0A.

Definition 8.1.1. Let G be a Fuchsian group with an invariant disc D. We
say that G is of the first kind if A = 3D and of the second kind if A is a proper
subset of aD.

The elementary discrete groups are given in Section 5.1 and it is worthwhile
to describe explicitly all elementary Fuchsian groups. Note that these are
all of the second kind.

First, consider a Fuchsian group G consisting only of elliptic elements
and I. By Theorem 4.3.7 the elements of G have a common fixed point { in
H?. We may suppose that H? is G-invariant so each elliptic g in G has fixed
points, say, w and w in C (see Section 5.2). As the axis of g is a geodesic in
H? which contains { and ends at w and W, we see that w independent of g.
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Thus all elements of G have the same fixed points and it is now easy to see
that G is a finite cyclic group.
An algebraic (but less illuminating) proof can be given. We may suppose
that A is G-invariant and that
), lul =1,

_(u 0 _([a
9= 0 u e
trace[g, h] = 2 + 4|c|*(Im[u])?,

Q&

are elliptic elements in G. As

we find that ¢ = 0 or Im[u] = O (else [g, h] is hyperbolic). As |u| = 1 and
u® # 1, we see that ¢ = 0 so h also fixes 0 and 0.

In order to find all elementary Fuchsian groups we first consider an
arbitrary Fuchsian group G which leaves A invariant and which fixes a
single point w. The fixed points of elliptic elements cannot occur on dA: the
fixed points of parabolic and hyperbolic elements of G must occur on dA.
Moreover, by Theorem 5.1.2, parabolic and hyperbolic elements of G
cannot have a common fixed point. We deduce that G can only contain
elements of one type and the next result follows easily from the discreteness
of G.

Theorem 8.1.2. Let G be any Fuchsian group. Then for each w, the stabilizer

G, = {geG:gw) = w}

is cyclic.

More generally, it is easy to see that any elementary Fuchsian group is
either cyclic or is conjugate to some group {g, hy where g(z) = kz (k > 1)
and h(z) = —1/z.

Definition 8.1.3. A parabolic or hyperbolic element g of a Fuchsian group G
is said to be primitive if and only if g generates the stabilizer of each of its
fixed points. If g is elliptic, it is primitive when it generates the stabilizer
and has an angle of rotation of the form 2n/n.

Remark 8.1.4. Let G, be the stabilizer of each of the fixed points of g. Then g
is primitiveifand onlyif ¥, > Z,forall hin G, where £ denotes the canonical
region associated with g (see Section 7.37). In some, but not all, cases this
can be described in terms of the trace function.

Finally, we discuss the classification of hyperbolic elements in a Fuchsian
group into the simple and non-simple hyperbolics. This classification depends
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on the way in which the hyperbolic element lies in the entire group and it is
not an “absolute” classification of hyperbolic elements.

Definition 8.1.5. Let h be a hyperbolic element of a Fuchsian group G and
let 4 be the axis of h. We say that h is a simple element of G if and only if
for all g in G, either g(A) = A or g(A) N A = . Otherwise, we say that h
is non-simple.

This situation has been described in Section 6.3 and in the terminology
introduced there, h is simple if and only if the axis A4 is G-stable.

Let us assume that G acts on A and that G has no elliptic elements. If h
is simple, then the projection n(4) of A into A/G is the same as 4/<{g) where
g generates the cyclic stabilizer of A. Thus 7n(A4) is a simple closed curve on
A/G. If h is non-simple there is an image f(A4) crossing A at, say, w. As G
has no elliptic elements, the projection = is a homeomorphism near w and
so m(A) is a closed curve which intersects itself.

EXERCISE 8.1

1. Let G be a Fuchsian group acting on H? and suppose that g: z+ kz (k > 1) is in G.
Show that g is simple if and only if for all

h(z) = = (ad — be = 1)

in G, we have abcd > 0 (equivalently, [ad — 4| > ).

§8.2. Purely Hyperbolic Groups

In this section we study those groups which contain only hyperbolic elements
and I: in Section 8.3 we allow parabolic, but not elliptic, elements. These
are an important class of groups from the point of view of Riemann surfaces
(see Chapter 6): in particular, they represent compact surfaces of genus at
least two.

A group of Mébius transformations is a purely hyperbolic group if every
non-trivial element of G is hyperbolic. By Theorem 5.2.1, a non-elementary
purely hyperbolic group has an invariant disc: in fact, it is also necessarily
discrete and so is a Fuchsian group. A purely algebraic proof of this will be
given (together with a geometric interpretation of the proof) but a stronger
quantitative result will be established by geometry alone. It is worth noting
that this stronger result (Theorem 8.2.1) contains much information yet
requires no further development of the theory for its proof.
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Theorem 8.2.1. Let G be a purely hyperbolic group with A as its invariant disc.
Then G is either discrete or elementary. Further, if g, he G and {g, h) is
non-elementary, then for all z in A,

sinh $p(z, gz) sinh $p(z, hz) > 1. 8.2.1)

The lower bound is best possible.
We mention three corollaries.

Corollary 8.2.2. If {g, h) is non-elementary and purely hyperbolic, then for all z,
max{p(z, gz), p(z, hz)} > 2 sinh~'(1) > 1-76

and this is best possible.

Example 8.2.5 (to follow) shows that this lower bound is best possible.
As G preserves A, (7.2.4) yields

- 0)?
sinh? $p(0, g0 =—L.
#O90 = T or
For z = 0, the inequality in Theorem 8.2.1 is
19(0) - [h(0)|* = (1 = g(0)[*)(1 = |h(0)|*)

and this is equivalent to the next inequality (which is a Euclidean version of
Theorem 8.2.1).

Corollary 8.2.3. If {g, h) is non-elementary and purely hyperbolic, then
1g(0)]* + [h(0)|* > 1.

Another inequality (which relates more directly to the concept of discrete-
ness in SL(2, C)) can be obtained by observing that if

a
g=< ) la]? = el =1,
c

lg — 11> = 2|c|?
= 2sinh? 4p(0, g0)

Qo

then

Thus we also have the following result.

Corollary 8.2.4. Let {g, h)> be a purely hyperbolic non-elementary group
preserving A. If A and B are matrices in SL(2, C) representing g and h, then

IA—=1.1B— 1| = 2.
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Theorem 8.2.1 and its consequences are similar in character to
Jorgensen’s inequality (Theorem 5.4.1) in that both imply that g and h
cannot both be near to I. However, the latter inequality, namely

[trace?(g) — 4| + |trace[g, h] — 2| > 1,

gives no information unless trace*(g) lies between 3 and 5 whereas Theorem
8.2.1 (involving a product instead of a sum) and the corollaries give useful
information in all cases.

Now let R be any Riemann surface of the form A/G where G is non-
elementary and purely hyperbolic. From any point on R, construct two
closed curves &, and %, of lengths ¢/, and £, respectively. By Theorem
8.2.1 (and Section 6.2),

sinh(d £,) sinh(3 4,) > 1

unless the corresponding group <g, h) obtained by lifting ¥, and &£, to A
is elementary (this only arises when %, or %, is homotopic to its initial
point or when ¥, and %, are both homotopic to some power of a single
closed curve in which case {g, h) is cyclic).

The next example shows that the lower bound in Theorem 8.2.1 is best
possible.

Example 8.2.5. Construct four disjoint geodesics L; in A as in Figure 8.2.1.
Let g be the hyperbolic element which fixes 1, —1 and which maps L, to L,:
let h be the hyperbolic element which fixes i, —i and which maps L; to
L, and let G = (g, h). Obviously, G is non-elementary.

Figure 8.2.1
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Using Corollary 5.3.15 (with G, = {g), G, = ¢h) and D the region
bounded by the L)), we see that G acts discontinuously in A. It will be apparent
from later considerations (Chapter 9) that G is purely hyperbolic (D is a
fundamental region for G and no elliptic or parabolic fixed points occur on
D) so the hypotheses of Theorem 8.2.1 are satisfied.

In this example the origin lies on the axis of both g and h so from Theorem
7.18.1, we have

sinh 3p(0, g0) sinh 3p(0, h0) = sinh(4T;) sinh(3T;)
= sinh(d,) sinh(d,)
= cosh p(L,, Ly,).

As the construction can be achieved with p(L,, L,) arbitrarily small, the
lower bound in Theorem 8.2.1 is best possible.

PRrOOF OF THEOREM 8.2.1. We begin by showing that if <{g, h) is non-
elementary and purely hyperbolic, then (8.2.1) holds. We are not assuming
that (g, h) is discrete: indeed discreteness will be derived from (8.2.1).

Let A,and A, be the axes of g and h. As {g, h) is non-elementary, these axes
either cross or are disjoint. Recalling Definition 8.1.5, we now see that one
of the following cases must arise.

Case 1: A, and A, cross.
Case 2: Both g and h are non-simple.
Case 3: A, and A, are disjoint and (without loss of generality) g is simple.

In Case 2 we can apply Corollary 7.39.5 (with n = 2) and obtain (as an
image of 4, meets 4,)

sinh(GT) > 1.
A similar inequality holds for s and so
sinh(3T) sinh(3T;) > 1.

Observe that by Theorem 7.39.4, this also holds in Case 1. Applying Theorem
7.35.1, we find that in Cases 1 and 2,

sinh $p(z, gz) sinh 1p(z, hz)
= cosh p(z, 4,) cosh p(z, 4,) sinhGT,) sinh(3T,)
> 1.

and this is (8.2.1).

The proof of (8.2.1) in Case 3 is more difficult. As g is simple and {g, h)
is non-elementary, the geodesics A,, h(4,) are disjoint. Thus the three
geodesics A,, Ay, h(A,) are pairwise disjoint and by applying a suitable
isometry, the situation is as illustrated in Figure 8.2.2 (construct L, first,
then L so that h is the reflection in L, followed by reflection in L).
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Figure 8.2.2

Applying Theorem 7.19.2 we have
cosh T, sinh? p(A4,, A,) = cosh? p(4,, A,) + cosh p(4,, hA,).
Thus
cosh? p(4,, A,)[cosh T, — 1] > 2sinh? 3p(A4,, hA,)
= 2 sinh? p(4,, L)
and this yields
cosh p(A4,, 4,) sinh(3T;) = sinh p(A4,, L). (8.2.2)

Now construct lines L, (n€ Z) orthogonal to A4, so that if o; denotes
reflection in L;, then o,04 = g" (or g~"): thus p(Lo, L,) = nT,/2. Now no
L, can meet L as if it does, then

0,0 = (0,00)(0,0)€G

(o denotes reflection in L so g0 is h or k™ ') and this is elliptic fixing the point
of intersection of L, and L. It follows that for some value, say m, of n, the lines
L,, L, asareillustrated in Figure 8.2.3. In order to focus attention on the
relevant features, this situation is illustrated again (after applying an isometry)
in Figure 8.2.4.

We may assume (without loss of generality) that d; < d, so

d; < 3GT) = 47T,
and applying Theorem 7.18.1 we obtain
sinh(7T,/4) sinh p(4,, L) > sinh(d,) sinh p(4,, L)

COSh p(Lm+ 1 L)
L.

v
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Lm +1
Figure 8.2.3
Using this we obtain

sinh(%’l;) sinh p(4,, L) = 2 sinh(T,/4) cosh(T,/4) sinh p(A,, L)
>2

and this with (8.2.2) yields

cosh p(4,, A,) sinh(3T,) sinh(3T}) > 2. (8.23)

Figure 8.2.4
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Now observe that
2 cosh p(z, A,) cosh p(z, A,) = cosh[p(z, A,) + p(z, A})]
> cosh p(A4,, 4,)
so by (8.2.3),
cosh p(z, A,) sinh(3T;) cosh p(z, 4,) sinh(3T;) > 1

and, by virtue of Theorem 7.35.1, this is (8.2.1).

To complete the proof of Theorem 8.2.1, we must show that any purely
hyperbolic group G is either discrete or elementary. We assume, then, that
G is purely hyperbolic but not discrete so there are distinct hyperbolic
elements g, in G with g, — 1. It follows that

p(0, g,0) - 0
and, by discarding some of the g,, we may assume that for all n,
sinh (0, g,0) < 1.

From the first part of the proof we see that for all m and n, the group {g,,., ¢,>
is elementary. As G has no parabolic elements, g, and g,, cannot have a
single common fixed point (Theorem 4.3.5) so there are distinct points u
and v fixed by every g,,.

Finally, for every hin G (h # I),

sinh $p(0, h0) sinh 4 p(0, g,0) = 0

and so for large n, {g,, h) is elementary. We deduce (as above) that h fixes
uand v and as h is any element of G we see that G is elementary. a

AN ALGEBRAIC PROOF OF THEOREM 8.2.1. We prove only that G is discrete
although a more thorough investigation may also yield (8.2.1).

Assume that G is non-elementary and acts on H2. Thus from Theorem
5.1.3, G contains a hyperbolic element which we may assume is

u 0
h-(o l/u)’ u>0.

Now select any sequence

a, b, _
gn = (cn d,,), andn - bncn = 1’

in G with g, - I. In order to prove that G is discrete we must show that
g, = I for all sufficiently large n. A computation shows that

2
trace[h, g,] = 2 — b,,c,,(u - -11;)

-2
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as n — 00, because b,c, — 0 (as g, — I). Because G is purely hyperbolic, the
traces of elements in G cannot lie in the interval (— 2, 2) so for all sufficiently
large n, we have b,c, < 0.

Now write 4 B
.f;l = [ll, gn] = (Cn Dn)’

with A4,D, — B,C, = 1. Exactly the same reasoning (note that f, — I
because g, — I) shows that for all sufficiently large n,

B,C,<0.

However, a computation shows that

2
trace[h, f,] =2 — B,,C,,(u - %)

1 4
=2+ bc(l + b,,c,,)(u - ;)

so for all sufficiently large n,
b,c, = 0.

We deduce that for all sufficiently large n,
b,c, = 0.

This means that for these n, the hyperbolic elements h and g, have a common
fixed point. By Theorem 5.1.3, G contains three hyperbolic elements A, h,
and h3, no two of which have a common fixed point. It follows that for
sufficiently large n, each g, has three fixed points (one in common with each
h)sog, = I.

The Geometric Interpretation. The method of proof is simply to extract
information from the fact that a commutator is not elliptic. Now the axes 4
(of #) and g,(A) (of g,hg, ') cannot be close and disjoint else [g,, h] is
elliptic (Corollary 7.38.5): this is the condition b,c, < 0. Indeed, A4 is the
positive imaginary axis, g,(4) is the geodesic with end-points b,/d, and
a,/c, and the inversive product of 4 and g,(A4) is
3|(ba/dy) + (an/cy)
31(ba/ds) — (an/c,)!

= |1 + 2b,c,].
This shows that if |b,c,| is small, then b,c, < 0 as otherwise, 4 and g,(4)
are close and disjoint.

As b,c, - 0, we see that for large n, the axes A and g,(4) cross or are

parallel and b,c, < 0. If they cross, then they do so at a small angle (as
b,c, = 0) and Theorem 7.38.6 shows that the commutator

f=1h gn]

(4, gx(4)) =
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has a small translation length and an axis which crosses A. It follows that
the axes A (of h) and f,(A4) (of f,hf ;') are close and disjoint so the second
commutator [A, f,] is elliptic. As this cannot happen we see that the axes 4
and g,(A) have a common end-point and this is b,¢, = 0.

For an alternative interpretation, note that b,c, —» 0 and b,c, #0
implies that there is a sequence of axes g,(A4) of elements conjugate to h
which converge to (but are distinct from) the axis A of h and this clearly
violates discreteness. O

It is worth noting explicitly that the algebraic proof of Theorem 8.2.1.
actually proves that G is discrete providing only that G has no elliptic
elements. We state this as our next result: a geometric proof of this is given
in the next section.

Theorem 8.2.6. Let G be a non-elementary group of isometries of the hyperbolic
plane. If G has no elliptic elements, then G is discrete.

EXERCISE 8.2

1. Verify the details given in the geometric interpretation of the algebraic proof of
Theorem 8.2.1.

2. Show that if G is a group of isometries acting on H? without elliptic elements and if
g: 2~z + lisin G, then for all

az + b

cz+d

h(z) = (ad — bc = 1)

in G, either ¢ = 0 or {c| > 4. [Consider the trace of the matrix representing g"h.]

§8.3. Groups Without Elliptic Elements

We now obtain a direct extension of Theorem 8.2.1 to allow groups with
parabolic (but not elliptic) elements. The conclusion is the same as for
Theorem 8.2.1 and the conclusions of Corollaries 8.2.2, 8.2.3 and 8.2.4
remain valid: however, the reader will benefit from reading the proof of
Theorem 8.2.1 first. More general results (which allow elliptic elements) are
considered in Section 8.4 and Chapter 11.

Theorem 8.3.1. Let G be a group of isometries of the hyperbolic plane and
suppose that G has no elliptic elements. Then G is either elementary or discrete.
Further, if g, h € G and {g, h) is non-elementary, then for all z in A,

sinh 2p(z, gz) sinh 4p(z, hz) > 1 (8.3.1)

and this is best possible.
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ProoF. Example 8.2.5 shows that the lower bound is best possible: indeed,
as Gmay now contain parabolic elements, we can construct the four geodesics
in that example with each consecutive pair being tangent and so the lower
bound in (8.3.1) can actually be attained.

Now let G be any non-elementary group without elliptic elements.
Theorem 8.2.6 shows that G is discrete but we prefer to ignore this and keep
to the spirit of the geometric proof of Theorem 8.2.1. If G has no parabolic
elements, this result is Theorem 8.2.1, thus we may assume that G has some
parabolic elements.

We shall suppose that G acts on H? and that o is fixed by some parabolic
element, say h(z) = z + 1, in G. If G contains a hyperbolic element f fixing
oc, we may assume that f also fixes the origin, say f(z) = kz, and G then
contains translations z+ z + t for arbitrarily small t: see Figure 8.3.1.
Thus G contains z+ z + ¢t for a set T of t which is dense in R.

As G is non-elementary, it contains a hyperbolic element g which does not
fix 00. Thus there are geodesics L, (ending at co) and L (the isometric circle
of g) with g = 60 (o being the reflection in L). As T'is dense in R, there is a
vertical geodesic L* (with reflection ¢*) crossing L and with 6*o, a Euclidean
translation in G. Thus ¢*¢ is an elliptic element of G, a contradiction. We
deduce that a parabolic fixed point is not fixed by any hyperbolic element of G
(compare Theorem 5.1.2 in which discreteness is assumed).

Exactly the same argument shows that the stabilizer of any parabolic
fixed point of G is a discrete (hence cyclic) subgroup of parabolic elements
of G.

Now consider any g and h in G with (g, h) non-elementary. If g and h
are hyperbolic, then they cannot have a single common fixed point (else
[g, h] is parabolic and this has been excluded above). In all other cases, the
proof of (8.3.1), which is the same as (8.2.1), as given in the proof of Theorem

Figure 8.3.1
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8.2.1 remains valid (with weak inequalities) and so it only remains to consider
the following case:

Case 4: h is parabolic, g is parabolic or hyperbolic.

We may suppose that h(z) = z + 1 and that h generates the stabilizer of
oc because for all non-zero integers n,

sinh $p(z, hz) < sinh Lp(z, h"z).
Now take

az + b

with g(o0) # oo so ¢ # 0. With L, as above, let L, be the vertical geodesic
given (in the obvious sense) by Ly + n/2: thus g,0, = h". The reasoning
given above shows that none of the lines L, can meet the isometric circle of g
so necessarily, 2/|c| < %: thus

lc| = 4.

Now suppose that g has fixed points u and v (possibly coincident but
not oo). Then, as u and v are real, we have

|z —g(2)].|cz + d]| = |z(cz + d) — (az + b)|
=|c|.|z—ul.|z —v]
2 [cly?
> 4)>
Using Theorem 7.2.1, we have
z-g@) 1
2(yIm[gz])'"* 2y
=z = g(2)|.|cz + d|/4y*

>1

sinh $p(z, gz) sinh $p(z, hz) =

and this completes the proof in Case 4.
The discreteness of G follows as in the proof of Theorem 8.2.1. ]

§8.4. Criteria for Discreteness

The following result is the culmination of several earlier results.

Theorem 8.4.1. Let G be a non-elementary group of isometries of the hyperbolic
plane: the following statements are equivalent.
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(1) Gisdiscrete;

(2) G acts discontinuously in A;

(3) the fixed points of elliptic elements-of G do not accumulate in A;
(4) the elliptic elements of G do not accumulate at I

(5) each elliptic element of G has finite order;

(6) every cyclic subgroup of G is discrete.

The structure of the proof is illustrated below: the solid arrows (4 — B
means A implies B) denote implications which are trivial or already known;
the implications given in dotted arrows are proved below.

Remark. If G has no elliptic elements then all six conditions are known to
be true thus we assume that G has elliptic elements.

Proor THAT (2) IMPLIES (3). Select any z in A and any compact neighbour-
hood N of z. By (2), g(N) meets N for only a finite set of g in G so only finitely
many fixed points lie in N. O

Proor THAT (3) iMpLIES (5). If (5) fails, then G contains an elliptic element g
of infinite order. If g fixes v say, then the points g"(z), n € Z, are dense on the
hyperbolic circle centre v and radius p(z, v). As G is non-elementary, there
is some f with f(v) # v and so the points g"f (v) are elliptic fixed points which
accumulate in A. O

PROOF THAT (4) iMPLIES (5). If (5) fails we may assume that G contains
g(z) = exp(2nif)z where 6 is irrational. The numbers exp(2nrif), n € Z, are
dense on the unit circle so on a suitable subsequence we have g" — I. [

PROOF THAT (5) IMPLIES (1).We view G as a group of matrices and let G, be
any finitely generated subgroup of G. By a result of Selberg (see Section 2.2),
G, contains a subgroup G, of finite index which has no elements of finite
order.

Because (5) holds, we see that G, has no elliptic elements and so by
Theorem 8.3.1, G, is discrete. It is easy to see that as G, is of finite index in
G,, the subgroup G, is also discrete. Finally, by Theorem 5.4.2, G itself is

discrete. O
0
‘// ? )
]
®©° ©® |
\ I \
N )
Yokl

Figure 8.4.1
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§8.5. The Nielsen Region

Let G be a Fuchsian group acting in the hyperbolic plane A: we shall be
concerned here with non-empty G-invariant convex sets.

First, suppose that G is of the first kind. In this case, the orbit of every point
accumulates at every point of A and so any non-empty G-invariant convex
set is necessarily the entire hyperbolic plane.

Now suppose that G is of the second kind. Then dA is the disjoint union
of the limit set A of G and a countable union of mutually disjoint open arcs
o;. Let L; be the geodesic with the same end-points as a; and let H; be the
open half-plane bounded by L; and separated from ¢; by L;. As the col-
lection {o,} is G-invariant, so is the collection {H} and so

N=(H, (8.5.1)
J

is a G-invariant convex subset of A. If G is non-elementary, then A is infinite
and so N is non-empty. Also, in this case, there are infinitely many arcs ¢;
and so as j — + «, the Euclidean length of ; tends to zero. This means that
each open disc {|z| < r}, r < 1, lies in all but a finite number of the H; and
this in turn implies that N is open. To summarize: N is a non-empty G-
invariant open convex subset of A.

Definition 8.5.1. Let G be a non-elementary Fuchsian group acting in A.
Let N be defined by (8.5.1) if G is of the second kind and let N = Aif G is of
the first kind. Then N is called the Nielsen region of G.

The next result shows that N may be defined without reference to the
circle at infinity.

Theorem 8.5.2. N is the smallest non-empty G-invariant open convex subset
of A.

PRrOOF. As N has these properties except possibly of being the smallest such
set, we must show that any non-empty G-invariant open convex set E
contains N. As E is non-empty and G-invariant, it contains some G-orbit
which necessarily accumulates at each point of A. It follows that E > N.
Now for any open convex set A, we have (4)° = 4 and so E > N.

EXERCISE 8.5

1. Prove carefully that for each z, C(z) > N where C(z) is the convex hull of the G-orbit
of z.
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§8.6. Notes

For a general account of Fuchsian groups, we refer the reader to [30], [52],
[57], [103] and [114]. The geometric ideas explored in this chapter have
their origins in the work of Fenchel and Nielsen (see, for example, [29], [99]).
The algebraic proof of Theorem 8.2.1 is given in [95]: to the best of my
knowledge, Theorem 8.3.1 is new. The ideas in Section 8.4 originate in [42].



CHAPTER 9
Fundamental Domains

§9.1. Fundamental Domains

Let G be a Fuchsian group acting on the hyperbolic plane A (or H?). A
fundamental set for G is a subset F of A which contains exactly one point
from each orbit in A. Thus no two distinct points in F are G-equivalent and

U ) =A.

SfeG

The Axiom of Choice guarantees the existence (but little else) of a funda-
mental set for G. A fundamental domain is a domain which, with part of its
boundary, forms a fundamental set for G.

Definition 9.1.1. A subset D of the hyperbolic plane is a fundamental domain
for a Fuchsian group G if and only if

(1) Dis adomain,;
(2) there is some fundamental set F with D = F < D;
(3) h-area(éD) = 0.

The existence of a fundamental domain will be established in Section 9.4.
If D is a fundamental domain, then for all g in G (g # I)

gD)ynD =g, UfD)=A4A

feG

and, with a slight abuse of terminology, we say that D and its images
tesselate A.
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Remark 9.1.2. It is not sufficient (as is sometimes suggested) to replace (2)
by the requirement that each point of 0D is the image of some other point
of dD. For example, the group generated by z 2z acts discontinuously
on H? but the set {x + iy:y > 0,1 < x < 2} (which has this property) is
not a fundamental domain for G.

The properties (2) and (3) of Definition 9.1.1 imply that F is measurable
and

h-area(D) = h-area(F).

In fact, the next result shows that h-area(D) depends only on G and not on the
choice of D. Later (Section 10.4) we shall see that in all cases

h-area(D) > n/21.

Theorem 9.1.3. Let F, and F, be measurable fundamental sets for G. Then
h-area(F,) = h-area(F,).

Let Fo be a measurable fundamental set for a subgroup G, of index k in G.
Then

h-area(F,) = k. h-area(F,),

PROOF. Denote h-area by u. As u is invariant under each isometry we have

WF,) = #(Fl N I:U ng])
= Z#(Flﬁng)
=Y uF,ng 'Fy)
g

= WF).

Next, write G as a disjoint union of cosets, say
G= U GO In
n

and let
F* = | gu(F)).

Ifwe A, theng(w)e F, forsomeginGandg~! = h™!g,for some n and some
hin G,. Thus h(w) € ¢,(F,) and so F* contains at least one point from each
orbit.

Now suppose that z and f(z) are in F* where f € G, and z is not fixed by
any non-trivial element of G. For some m and n, the points g, !(z), g, }(f2)
lie in F, and so g,g,, 'f fixes z. We deduce that

gmgn ' = f€Go:
80 Gog, = Gog, and therefore n = m. This shows that f fixes z so f = L.
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These facts show that F* contains exactly one point from each orbit not
containing fixed points and at least one point from each orbit of fixed points.
If we now delete a suitable (countable) set of fixed points from F*, the resulting
set is a fundamental set for G, and by the first part,

H(EF*) = u(Fo).

Clearly, F, intersects an image of itself in at most a countable set (of fixed
points) so
WE*) = ) u(g,Fy)

= ku(F,). a

In terms of quotient spaces, Theorem 9.1.3 is to be expected. As discussed
in Section 6.2, the differential ds for the hyperbolic metric projects to a metric
on the quotient surface A/G and Theorem 9.1.3 merely states that for any
measurable fundamental set F, we have

h-area(F) = h-area(A/G).

EXERCISE 9.1

1. Let D be a fundamental domain for G. Show that if we D, then D — {w} is also a
fundamental domain (so a fundamental domain need not be simply connected).
Now let E = (D) (the interior of the closure of D relative to A). Show that E is a
simply connected fundamental domain which contains D.

2. Let D be a fundamental domain for G and suppose that D, and D, are open subsets
of D with

(51 () 52)0 = D.
Under which circumstances is
(g(ﬁ Ju 52)0

a fundamental domain for G?

§9.2. Locally Finite Fundamental Domains

There is another condition that is required before we can develop any
reasonably interesting theory of fundamental domains. We motivate this in
the next example: the fact that this is not a Fuchsian group is of no conse-
quence for we have merely selected the simplest example to illustrate the
condition.

Example 9.2.1. Let C* be the set of non-zero complex numbers and let G
be the cyclic group generated by g: z — 2z. The quotient space C*/G is a
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Figure 9.2.1

torus. Now let y be the curve illustrated in Figure 9.2.1: in the first open
quadrant, y is the curve y = e™*; elsewhere y is given by |z| = 1. The region
D lying between y and ¢g(y) is a fundamental domain for G in the sense that
each point of C* is equivalent to at least one point of D and at most one point
of D. Nevertheless, if we identify equivalent points on dD, we find that the
quotient space D/G is not compact; thus D/G and C*/G are not homeo-
morphic.

The same situation can arise for a Fuchsian group, even when D is a
convex polygon with only finitely many sides (Example 9.2.5) and we wish to
impose a condition which prevents this unpleasant possibility.

Let G be a Fuchsian group acting in A and let D be a fundamental domain
for G in A. The group G induces the natural, continuous, open projection 7:
A - A/G. We can also use G to induce an equivalence relation on D by
identifying equivalent points (necessarily on dD) and so with D/G mhermng
the quotient topology, there is another continuous projection 7: D - D/G.
The elements of A/G are the orbits G(z): the elements of D/G are the sets
D n G(z) and

n(z) = G(2), #i(z) = D n G(2).

Next, let 7: D — A denote the inclusion map (the identity restricted to D).
We now construct a map 6: D/G — A/G by the rule

9: D N G(z) = G(2).

The map 6 is properly defined because for each z, D N G(z) # & and, of
course.

of = nt: 9.2.1)

these maps are illustrated in Figure 9.2.2.
We study now the relationship between D/G and A/G.
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P — > A

el
A

B/G —————> A/G

Figure 9.2.2

Proposition 9.2.2. (i) 6 and t are injective;
(ii) =, & and 0 are surjective;

(iii) =, &, B and T are continuous;

(iv) = is an open map.

Proor. The only assertion which is not completely trivial is that 8 is con-
tinuous. If A is any open subset of A/G, we may apply (9.2.1) to obtain

#7Y0714) = D A Y(A4)

and this is open in D as = is continuous. For any B, #~'(B) is open in D if
and only if B is open in D/G: thus 6~ (4) is open in D/G and 0 is continuous
(in fact, this is Proposition 1.4.2). O

We come now to the property which, if satisfied, guarantees that 6 is a
homeomorphism and hence that A/G and D/G are topologically equivalent.

Definition 9.2.3. A fundamental domain D for G is said to be locally finite
if and only if each compact subset of A meets only finitely many G-images
of D.

In order to appreciate the implications of Definition 9.2.3, suppose that
Dis locally finite. Each z in A has a compact neighbourhood N and this meets
only finitely many G-images, say gi(D), of D. By decreasing N if necessary,
we may assume that all these images actually contain z. Finally, if h(D) meets
N, then h(D) meets the union of the g{D) and so (as 4D has measure zero)
h = g; for some i. To summarize, if D is locally finite, each z has a compact
neighbourhood N and an associated finite subset g4, ..., g, of G with

(1) zegy(D) n--- n gu(D);
(2) N=gy(D)u---vguD);
(3) (D) N = (X unless h is some g ;.

We shall use these facts consistently throughout the following discussion.

Theorem 9.2.4. D is locally finite if and only if 0 is a homeomorphism of D/G
onto A/G.
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Proor. First, we suppose that 6 is a homeomorphism and that D is not
locally finite and we seek a contradiction. As D is not locally finite there exists
some w in A, points zy, z,, ... 1n D and distinct g4, g5, . .. in G with

gn(z,) > W asn— . (9.2.2)
Now write

K = {21,22,...}.

First, K = D. Next, every neighbourhood of w meets infinitely many of the
distinct images g,(D), thus w ¢ h(D) for any 4 in G. We deduce that

n(w) ¢ n(K).
The contradiction we seek is obtained by proving that
n(w) € n(K). (9.2.3)

The points g, '(w) cannot accumulate in A as G is discrete. Because of
(9.2.2), the points z, cannot accumulate in A and this shows that X is closed
in D.As K = D, we have

7 }7iK) = K
and the definition of the quotient topology on D/G may be invoked to deduce
that #(K) is closed in D/G. By (9.2.1),
n(K) = nt(K) = 8(RK)
and as 6 is a homeomorphism, this is closed in A/G. We conclude that
n(w) = lim n(g,z,) = lim n(z,) € ©(K)

and this is (9.2.3).

To complete the proof, we must show that if D is locally finite, then 8 is a
homeomorphism. We assume, then, that D is locally finite: by Proposition
9.2.2, we need only prove that § maps open sets to open sets.

Accordingly, we select any non-empty open subset A4 of D/G. As # is
both surjective and continuous, there exists an open subset B of A with

#7Y(A)=DnB, #DNB)= A

Now put
V=) gdnB).
geG
Then
(V) = (D N B)
= n1(D n B)
= 67%(D N B)

= 6(A).
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We need to prove that 8(A) is open but as =« is an open map, it is sufficient to
prove that V is an open subset of A. This has nothing to do with quotient
spaces and depends only on the assumption that D is locally finite.

Consider any z in V: we must show that V contains an open set N which
contains z. As V is G-invariant, we may assume that

zeDnN B.

As D is locally finite there exists an open hyperbolic disc N with centre z
which meets only the images

90(5)9 g](ﬁ), LR} gm(ﬁ)

of D where g, = I: also, we may suppose that each of these sets contains z.
Then

gj—l(z)eﬁs j=0a~~"m’

and this means that 7 is defined at g; !(2). Clearly % maps this point to #(z)
in 4 so

g;i(z2)e"(4) =D nB.

It follows that z e g(B) and by decreasing the radius of N still further, we
may assume that

N < go(B) N -+ N gu(B).

It is now clear that N < V. Indeed, if w e N, then for some j, w is in both
g{D)and g(B):

wegj(ﬁmB) c V.

The proof is now complete. a

Next, we give an example to show that convexity is not sufficient to ensure
local finiteness.

Example 9.2.5. We shall exhibit a convex five-sided polygon which is a
fundamental domain for a Fuchsian group G but which is not locally finite.
The group G is the group acting on H? and generated by

3z+ 4
f@=2 )=
Our first task is to show that G is discrete and to identify a fundamental
domain for G. To do this, consider Figure 9.2.3.

A computation shows that f(y,) = y, and g(d,) = 0, and a straight-
forward application of Theorem 5.3.15 (with G, = {f), D, the region
between y, and 7y, and similarly for g) shows that G is discrete and h(D) N D
= (¥ whenever he G, h # I (D being the region bounded by y, y,, ¢, and
75).
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Figure 9.2.3

In fact, D is a (locally finite) fundamental domain for G. To see this,

take any z in H? and select an image of z which is closest to i\/i (this is
possible as G is discrete). By relabelling, we may assume that z itself has this
property. It is now easy to see that

Pz, iy/2) < plz, f(1/2) = p(f 'z, i/2)

if and only if |z| < 2. Similarly, z is closer to 1'\/5 than to f~ 1(1\/5) if and
only if | z| > 1. With a little more computation (Theorem 7.2.1) or geometry
we find that z lies outside or on ¢, and o, because

Pz, iy/2) < plgz. 1}/2) = plz, g7 (1/2))

and similarly for g~ !. We deduce that z € D and this proves that D is a funda-
mental domain for G.

We proceed by modifying D to obtain a new fundamental domain Z. The
essential feature of this process is to replace parts of D by various images of
these parts in such a way that the modified domain is still a fundamental
domain. First, we replace

D, =D n {z: Re[z] < 0}

by g(D,): the new domain is illustrated in Figure 9.2.4 and this is still a
fundamental domain for G.

Next, construct the vertical geodesics x = 1 and x = 2 and let w, { and {’
be as in Figure 9.2.5. We now replace the closed triangle T(w, 1, 2w) with
vertices w, 1, 2w by the triangle T(2w, 2, 4w) (=f(T)). Each Euclidean
segment [{, 2{], where ( lies on |z| = 1 and is strictly between w and i, is
replaced by the equivalent segment [{’, 2{']. Finally, the segment [i, 2] is
deleted: note, however, that [i, 2/] is equivalent to the hyperbolic segment
[g(i), g(2i)] on the boundary of g(D,) and, as this segment is retained, the new
domain X still contains in its closure at least one point from every orbit.
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Figure 9.2.4
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The construction given above replaces the quadrilateral D by the pentagon
% with vertices 1, g(i), g(2i), 2, co. By construction, X is a fundamental domain
for G and by Theorem 7.16.1, X is convex. Observe that the points on the
boundary segment [g(i), g(2i)] have no equivalent points on ¢X: the only
possibility, then, is that the images of X accumulate (from below) along the
segment [g(i), g(2i)]. For a more explicit proof that Z is not locally finite,
we need only observe that the points z, = 1 + 2", n = 1,2, ..., arein £ and

f"z)=i+2">i asn— w.

We conclude that X is a convex non-locally finite fundamental domain. As
the original domain D is locally finite, the quotient space H?/G is homeo-
morphic to D/G and this is a torus with one point removed. The reader
should now examine /G and also the projection of T into H%/G. a

In view of Theorem 9.2.4 and Example 9.2.5 it is of interest to record the
following criterion for a fundamental domain to be locally finite.

Theorem 9.2.6. Let D be a fundamental domain for a Fuchsian group G and
suppose that for each z in dD we have

(1) there is some g in G withg # I and g(z)€ dD;
(2) z can be joined to a point in D by a curve lying entirely in D U {z}.

Then D is locally finite.

Proor. Neither (1) nor (2) is sufficient to ensure that D is locally finite. We
shall restrict ourselves here to a brief sketch of the proofin the most interesting
case, namely when D is convex (convexity being stronger than (2)).

It is convenient to say that z in A is regular if there is a neighbourhood of z
which.meets only finitely many copies of D: if z is not regular, we say that z
is exceptional. Now D is locally finite if there are no exceptional points and
we shall show that this is so by proving:

(a) the set of exceptional points is countable; and
(b) if there is one exceptional point, then there are uncountably many such
points.

By (1), each exceptional z lies in some set g(D) N h(D),g # h. By convexity,
the interior points of the intersection

o(g, h) = g(D) n (D),

(which, by convexity, is a hyperbolic segment) are regular; thus there are at
most two exceptional points in a(g, h). As G is countable, (a) follows.

To prove (b), assume that w is exceptional so there exist points zy, z,, . ..
in D and distinct g4, g5, ... in G with g,(z,) = w. Now we may assume that
D is unbounded in the hyperbolic metric (as clearly if D is compact, then D
is locally finite) so there is some { in D with || = 1. Let L, be the ray [z,, {).
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The g,(L,) accumulate at some ray [w, {*), |{*| = 1, and by construction,
every point of [w, {*) is exceptional. O

It is clear from Theorem 9.2.4 that the concept of local finiteness is im-
portant. We end this section with some of the properties shared by all locally
finite fundamental domains: we stress that these properties are derived from
local finiteness without any additional assumptions on D.

Theorem 9.2.7. Let D be any locally finite fundamental domain for a Fuchsian
group G. Then

Go=1{9€G:9(D)n D # &}
generates G.

PrOOF. Let G* be the group generated by G,. We may suppose that G acts
in A so for any z in A there is some g in G with g(z) € D. Suppose also that
h(z) € D. Then h(z) is in both Dand hg = *(D)so hg ™ * € G,: thus we have equal-
ity of cosets, namely

G*h = G*g.
This fact means that there is a properly defined map
é:A - G/G*
given by
#(z) = G*g,

where g(z) € D: our proof is based on a discussion of this map.
Consider any z in A. As D is locally finite, there exist a finite number of
images

g1(5)7 cee gm(ﬁ)

each containing z and such that their union covers an open neighbourhood
N of z.If we N, then w € g(D) for some j and

dw) = G*g)™" = ¢(2).

We deduce that each z has an open neighbourhood N on which ¢ is constant.

Now any function ¢ with this property is constant on A (give ¢(A) the
discrete topology: ¢ is continuous and ¢(A) is connected, thus ¢(A) contains
only one point). This shows that

() = o(w)

for all zand w in A. Given any g in G we select zin D and w in g~ (D). Then
as ¢ is constant,

G* = ¢(2) = p(w) = G*yg
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and so g € G*. This proves that G = G*. Clearly G* < G so G* = G and G,
generates G. O

The next result relates local finiteness to invariant regions: for the defini-
tions of horocyclic and hypercyclic regions, see Section 7.5.

Theorem 9.2.8. Let D by any locally finite fundamental domain for a Fuchsian
group G.

(i) Let g beanelliptic element in G and let K be a compact disc withg(K) = K.
Then D meets a positive but only finite number of distinct images of K.
(ii) Let g be a parabolic element in G and let K be a horocyclic region with
g(K) = K. Then D meets a positive but only finite number of distinct
images of K.
(iii) Let g be a hyperbolic element in G and let K be a hypercyclic region with
g(K) = K. Then D meets a positive but only finite number of distinct
images of K.

PROOF. In all cases, choose w in K. For some hin G, h(w) € D so D meets some
image of K. Now (i) is trivial for K is compact since if D meets h(K), then
h~!(D) meets K and this can only happen for a finite set of h.
To prove (ii) it is convenient to suppose that G acts on H? and that g(z) =

z + 1. It follows that K must be of the form

K= {x+iy:y >k}
Now write

Ko = {x +iy1y = ko}
and

Kl = {x+lyk_<_.y_<_ko},

where k, is chosen so that

U f(Ko) # H>.

feG

This last condition implies that K, cannot contain an image of D so that if
(D) meets K then necessarily, it also meets K. Observe that this choice of
K, is made possible by Jorgensen’s inequality, namely if

az+b
cz+d

/(@) =

is in G and does not fix oo, then |¢| > 1. Thus
Im[fz] < 1/y

so with k, > 1 we find that K, does not meet the orbit G(i).
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Now suppose that D meets h(K): then h™*(D) meets K and hence it meets
K 1 . If

E={x+iy:0<x<1;k<y<ke},
then
U g"(&E) = K,

so for some n, g"h~ }(D) meets E. Now as E is compact and D is locally finite,
only a finite number of images of D, say

gl(ﬁ)) e ’gs(ﬁ)

meet E. Thus g"h~' = g, for some j and n and so h(K) = g; *(K).
The proof of (iii) is similar. We may assume that G acts on H* and that
g(z) = kz, k > 1. The hypercyclic region is necessarily of the form

K=1{ré®:r>0,0 — /2| <é}:
we write
E={zeK;l <|z| <k}
so | Jg*(E) = K. Only finitely many images of D meet the compact set E:

let these be g (D), ..., g{D). Suppose now that h(K) meets D: then for some
n,g"h~ (D) meets E and so for some j, h(K) = g; '(K). O

‘We mention just one consequence of Theorem 9.2.8.

Corollary 9.2.9. Let G be a Fuchsian group, D any locally finite fundamental
domain for G and let { be fixed by some parabolic element of G. Then for some
g in G, g({) lies in the Euclidean closure of D.

ProoF. We may suppose that G acts on H?, that { = oo and that the stabilizer
of { is generated by p: z+>z + 1.

Now let K be a horocyclic region invariant under p. Choose any sequence
of points z;, z,, ... in K with Im[z,] — + co. There are elements h;, h,, ...
in G with h,(z,) € D so D meets each image h,(K). An application of Theorem
9.2.8 (after taking a subsequence and relabelling) shows that

hi(K) = hy(K) = ---.

It follows that there are integers t,13,... such that h, = h,p™: hence
h,(w,) € D where w, = p'*(z,). As

Im[w,] = Im[z,] - + o,

we see that w, — o0 and so h,(o0) lies in the Euclidean closure of D. (]



§9.3. Convex Fundamental Polygons 217

EXERCISE 9.2
1. Modify Definition 9.2.3 to apply to Example 9.2.1 and show that D is not locally finite,

2. Construct a Fuchsian group G(= {g,,¢,....}) acting on H? and a locally finite
fundamental domain D for G with

Euclidean diameter y,(D) = + %
for every n.
3. Let G be a Fuchsian group acting on A with a fundamental domain D. Show that D
is bounded in the hyperbolic metric if and only if (i) A/G is compact and (ii) D is
locally finite.

4. Let G be generated by g: z+—z + | and h: z+> z + i. Despite the fact that C/G is
compact, construct a fundamental domain D for G which is not locally finite in C.

5. Show that the convex fundamental domain X in Example 9.2.2 contains a hyperbolic
fixed point on its (Euclidean) boundary. By contrast, show that a fixed point of a
hyperbolic g in G cannot be on the Euclidean boundary of any convex locally finite
fundamental domain.

§9.3. Convex Fundamental Polygons

It is natural to pay special attention to fundamental domains that are poly-
gons. Non-convex polygons are rarely used but on the other hand, convexity
is not enough to guarantee satisfactory results (Example 9.2.5). With these
preliminary remarks, we embark on a discussion of convex, locally finite
fundamental polygons. It is a striking fact that the polygonal nature actually
follows from the convexity and local finiteness: accordingly we begin with a
rather stark definition which does not explicitly mention the polygonal
structure.

Definition 9.3.1. Let G be a Fuchsian group. Then P is a convex fundamental
polygon for G if and only if P is a convex, locally finite fundamental domain
for G.

We emphasize that this is a definition of the phrase *convex fundamental
polygon” and it does not presuppose any particular structure of the boundary
of P. We now add a little flesh to this skeletal definition: the discussion is
elementary but, as might be guessed, it is important to derive results in the
optimal order. Throughout, P is taken to be a convex fundamental polygon
for G. It is perhaps worth mentioning now that P is a hyperbolic polygon in
a more general sense than is usually allowed. For example, P may have
vertices on the circle at infinity (possibly infinitely many) and the boundary
of P can even contain arcs of the circle at infinity. Explicitly, it will be shown
that

P= ﬂ Hl'a
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where the H; are a countable number of open half-planes with the property
that any compact subset of the hyperbolic plane is contained in all but a
finite number of the H;.

As P is locally finite, for any z in A there is an open hyperbolic disc N
centre z and distinct elements g,, ..., ¢, in G such that

zegy(P)n---ng(P),
Ncgl(f’)u-.-ug,(ﬁ),

and, if g(P) meets N, then necessarily g = g, for some j.If z€ 9P, then g, = I,
sayand t > 2 (else ze N, N c P). This proves

(1) for each z in 3P, there is some g in G with g # 1, g(z) € OP.

In fact, with convexity, (1) is equivalent to local finiteness: see Theorem 9.2.6.

Now consider any g (#1) in G. Clearly, P n g(P) is convex. Moreover,
P ~ g(P) cannot contain three non-collinear points else it contains a non-
degenerate triangle and then (because 9P has zero area) we find that P n g(P)
# . We deduce that P ng(P) is a geodesic segment, possibly empty.
We can now define the sides and vertices of P.

Definition 9.3.2. A side of P is a geodesic segment of the form P N g(P) of
positive length. A vertex of P is a single point of the form P g(P) n h(P)
for distinct I, g and h.

Warning. A side of P is not necessarily a side in the usual conventional sense.
If we call a maximal geodesic segment in 0P an edge of P, then an edge may
contain infinitely many sides of P. From a different point of view, we allow
the interior angles of P at the vertices to assume the value 7.

Now G is countable and only finitely many images of P can meet any
compact subset of A. Thus

(2) P has only countably many sides and vertices:
(3) only finitely many sides and vertices can meet any given compact subset of A.

Clearly the sides and vertices of P lie in dP. In fact,
(4) OP is the union of the sides of P.

Observe that with this definition of sides, this apparently obvious state-
ment is false for domains which are not locally finite: see Example 9.2.5.

To prove (4), consider any w on dP. Each sufficiently small circle centre w
must contain points in P and points (other than w) not in P so there are points
w, in 0P tending to w. A compact neighbourhood of w meets only finitely
many images of Pso there is some g and infinitely many n with w, € P g(P).
This implies that P ~ g(P) is a side containing w.
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It follows from (4) that every vertex of P actually lies on a side of P. Much
more is true, namely

(5) each vertex lies on exactly two sides and it is the common end-point of each.

To verify (5), let w be an interior point of the side 7 N g(P) = s. Choose a
point z in P and form the triangle with vertex z and opposite side s: the
open triangle lies in P. A similar construction yields an open triangle in g(P)
with side s: this shows that a vertex cannot be the interior point of a side
and two sides meet, if at all, in a vertex.

Now by (3), (4) and the preceding remarks, every vertex v lies on a finite,
positive number of sides and it is the common end-point of these sides. A
trivial convexity argument of the type outlined above shows that this number
cannot be one, nor can it exceed two. This proves (5): it also proves

(6) any two sides meet, if at all, in a vertex and this is then a common end-point
of each.

Note that (5) and (6) imply that the intersection of three sides is empty.
Another useful property of fundamental polygons is that if G =
{I, 44, 9,,...} acts on A then

(7) Euclidean diameter (g,D) — 0 asn — .

If this were not so, we could find z, and w,, in g,(D) with
In = Z,W, oW, Z# W, |z| = |w|=1

This would imply that the g,(D) accumulate on the geodesic [z, w] contrary
to the local finiteness of D.

We turn our attention now to the pairing of sides of P by certain elements
of G. Let G* be the set of elements g in G for which P~ g(P) is a side of P
and let S be the set of sides of P. Clearly, each g in G* produces a unique side
sin S (namely, s = P n g(P)) and every side arises in this way, thus formally
there is a surjective map

O:G*-> S
given by
®(g) = P ng(P).
In fact, @ is a bijection for if ®(g) = ®(h) then
Png(P) = Pn h(P)

and this cannot occur for sides unless g = h as (6) shows.
The existence of ®~': § — G* shows that to each side s there is associated
a unique g, in G* with

s=Pn gs(F).
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Then
9 ') =P g '(P) =5,
say,and, as this has positive length, this too is a side. Note that if s’ = (g;) ~'(s)
then
gs = (gs)—l'
We have now constructed a map s+ s’ of S onto itself and this is called a
side-pairing of P because
() = (g+) " X(s)
= g4(s)
=s.

In this way, the set S of sides of P partitions naturally into a collection of
pairs {s, s'}: we do not exclude the possibility that s = s".

The next result is a strengthened version of Theorem 9.2.7 and it is made
possible by the polygonal nature of P.

Theorem 9.3.3. The side-pairing elements G* of P generate G.

Proor. Because of Theorem 9.2.7, it is only necessary to show that if
P h(P)# &, then h lies in the group generated by the g,. Consider, then,
any w in P n h(P). First, there is an open disc N with centre w and elements
ho (=1I), hy, hy, ..., h,in G such that h = h; for some j # 0, and

weho(P)n - h(P);
N < hy(P) u--- U h(P).

One can show (alternatively one can decrease the radius of N and assume)
that N contains no vertices of any h j(P') except possibly w and no sides of
the h{P) except those that contain w (see (3)). By (4), the boundary of P
in N therefore consists of one side only or two distinct sides emanating
from w. The same is true of each of the other h{P) thus we have one of the
situations illustrated in Figure 9.3.1 (after relabelling h, ..., h,).

N

Figure 9.3.1
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Formally, we require the fact that (after relabelling) two consecutive
polygons in the list

ho(P) = P,hy(P), hy(P), ..., h(P),P = hy(P)
have a side in common. From this it follows that
P hjthiy(P)
is a geodesic segment of positive length and hence is a side. Thus
hjvy = hig,

for some side-pairing g, and we find that k is in the group generated by the g,.

O

We come now to a detailed examination of the way in which the images of
P tesselate a neighbourhood of any point in A. Clearly we may confine our
attention to points in dP and the situation for these points is completely
described in the preceding proof. We now summarize the results.

Take any w in dP: so we P h(P) for some h. There exist h, ..., h,as in
the proof of Theorem 9.3.3 and if g(w) € P, then we g™ *(P) and so h = h;
for some j. We can now introduce some terminology.

Definition 9.3.4. (i) a cycle C in P is the intersection of a G-orbit with P:
this is necessarily a finite set {z,, ..., z,} and the length |C| of C is n.

(ii) If C is a cycle, say {z, ..., z,} of points in A, then the stabilizers G; of
z; are conjugate to each other and are finite cyclic subgroups of G. The
order of the cycle C, which we denote by Ord(C), is the common order
of the G;.

(iii) Let C be the cycle in (ii) and let P subtend an angle §; at z;. The angle sum
6(C) of the cycle C is defined tobe 8, + --- + 6,.

The following result is of fundamental importance.

Theorem 9.3.5. For every Fuchsian group G, every convex fundamental
polygon P and every cycle C,

6(C) = 2n/ord(C).

PROOE. Without doubt, the most efficient description of the proof is by
means of cosets. Let C = {z,, ..., z,} so that for some g, (=1I), g5, ..., gk
we have g(z;) = z,. It follows that g(P) has z, as a vertex and the angle of
gi{P)atz,is 0,

Next, z, € h(P) if and only if h~!(z,) is some z ; and this is so if and only
if for some j, h(g;)~ ! fixes z;. Now let G, be the stabilizer of z,: thus z, € h(P)
if and only if for some j, h € G,g;. Referring now to Figure 9.3.1, we have

{ho, hyy oo s b} = Gigy UL Gigy (ho = 1),



222 9. Fundamental Domains

and these are precisely the images of P which contain z,. As the elements of
G, are rotations about z,, each f in G,g; is such that f(P) subtends an angle
f;at z,: thus

2n = [order(G,)] (6, --- + 6,)
= [ord(C)]6(C). O

Let us examine, in detail, the consequences of Theorem 9.3.5. Suppose
first that z is not fixed by any elliptic element of G: the cycle C containing z
(in P) is then said to be an accidental cycle. These cycles are characterized
by ord(C) = 1so

6C)=6,+-+0,=2n  (n=]|C|).

If n=1,then §; =2n and ze P. If n = 2 then 6, = 6, = n (by Theorem
7.16.1, each 0, satisfies 0 < 6; < 7) and z is then an interior point of a side.
The converse statements are also true so if z is an accidental vertex (a vertex
in an accidental cycle C) then |C| > 3.

Next, suppose that z is fixed by an elliptic element in G and that the
stabilizer of z has order g; thus ord(C) = g. Then

0(C)=6, +---+ 6, = 2n/q.

A special case of great interest is when |C| = 1 (so z is not equivalent to any
other point on dP): then 8, = 2n/q. If |C| = 1 and g = 2, then

8(C) =0, = .

It is easy to see that in this case, the stabilizer of zis {I, g}, 9> = I and z is an
interior point of the side

S=Pn g(ﬁ),
Note that in this case,

s=g"'s)=s

because g = g~!. Conversely, if, in general, s = s’ then it is easy to see that
g, is of order two with fixed point on s (consider the effect of g, on the geodesic
containing s and note that P n g(P) = ).

Because the elliptic fixed points of G demand special attention, it is often
convenient to regard all elliptic fix-points as vertices. This is only at variance
with the earlier definition in as far as it concerns elliptic fix-points of order
two. It is a matter of convention which definition we adopt and the matter
is completely settled by stating whether or not elliptic fix-points of order two
are vertices of P: equivalently, it is settled by stating whether or not we insist
that s # §'. A trivial example should clarify this point.
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Example 9.3.6. Let g(z) = —z and G = {I, g}. We may take P as the upper
half of A and, according to the two conventions, either:

(1) P has one side, namely (— 1, 1), and no vertices; or
(2) P has two sides, namely (—1, 0), (0, 1), and one vertex, namely {0}. [J

We now discuss (as far as we can) the Euclidean boundary of P on
{]z] = 1}: we denote this by E. Now E may have uncountably many com-
ponents but there can only be countably many components of positive
(Euclidean) length: we call these the free sides of P and these are closed non-
degenerate intervals on {|z| = 1}.

Note that if w € E, then there exist z, in P converging to w. For any z in P,
the segment [z, z,] lies in P and obviously, [z, w) = P. The same is true for
all points sufficiently close to z and as P is convex, we deduce that
[z,w) < P.

A point w of E need not lie on any side or any free side of P; for example,
there may be infinitely many sides of P accumulating at, but not containing,
the point w. We can say very little in this case and we confine the discussion
to end-points of two sides.

Definition 9.3.7. A point v in E is a proper vertex of P (at infinity) if v is the
end-point of two sides of P: v is an improper vertex of P if it is the end-point
of a side and free side of P. In both cases, we say that v is an infinite vertex
of P.

These vertices are illustrated in Figure 9.3.2.

For each z in E, the cycle of z is (as before) G(z) n E. If z is an ordinary
point, the cycle of z must be finite (otherwise infinitely many images of P
meet any neighbourhood of z and by (7), z would then be a limit point). By
the same token, z must also be a proper or improper vertex at infinity.

P
g(P) {/ h(P)

v v
Improper vertex Proper vertex

Figure 9.3.2
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Definition 9.3.4 clearly generalizes to this situation and if C is the cycle of z
we have

ord(C)=1, 6;+--+06,=m:

this is the counterpart of Theorem 9.3.5. This holds equally well if z is the
interior point of a free side where |C| = 1, 8, = n. Note that otherwise, 6;
can only take the values O or /2 so if |C| = 2, then necessarily §, = 8, = n/2
and so z is the common end-point of a free side of P and a free side of some
g(P). We shall return to this case in the next section.

There is only one other case that we can profitably discuss.

Theorem 9.3.8. Let v be any point of E that is fixed by some non-trivial
element of G. Then v is fixed by a parabolic element of G (and not by any hyper-
bolic element). Further, the cycle C of v on E is a finite cycle each point of
which is a proper vertex of P.

Proor. First, v cannot be fixed by an elliptic element in G as |[v| = 1. If v
is fixed by a hyperbolic element k of G, let A be the axis of h and construct
any [z, v) in P. Take z, on [z, v) with z, — v. Then there exist points a, on
A with

P(zn5 @) = 0.

For each n, there is some power of h, say h,,, such that h,(a,) lies on a compact
sub-arc of 4. Thus the points h,(z,) lie in a compact subset K of A: as the h,
are distinct, this contradicts the fact that P is locally finite. We deduce that v
cannot be fixed by hyperbolic elements: thus the elements fixing v must be
parabolic.

Obviously the cycle of points on E determined by v contains only para-
bolic fix-points. If the cycle is infinite, say v, v,, v,, . .. then there are distinct
g» With g,(v) = v,. If K is any horocyclic region based at v, then g,(K) is a
horocyclic region based at v, and this must meet the convex P as ve E. We
deduce that P meets infinitely many images of K and this violates Corollary
9.2.9: it follows that the cycle determined by v (or by any parabolic fix-point)
is finite.

Finally, we must show that v is a proper vertex of P: the same must then
be true (by the same argument) for all points in the cycle of v.

Choose any horocyclic region K at v. By Corollary 9.2.9, P meets only a
finite number of images of K, say

K, 9:(K), ..., g{K)

based at v, vy, ..., v, (v; = g{v)) respectively. If v; ¢ E, then P is disjoint from
some Euclidean neighbourhood of v;s0 P n g J(I’é) is a compact subset of A.
By decreasing K as necessary, we may suppose that for each j, the point v;
lies in E. This shows that cycle of v is now {v, vy, ..., v,}.
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Without loss of generality, we assume that G acts on H?, that v = ¢ and
that the stabilizer of oo is generated by p: z+>z + 1. Of course, K is now
of the form {x + iy: y > k}: we may assume that k > 1. If

a = inf{Re[z]: z€ P}, b = sup{Re[z]: z € P},

thena < b < a + 1(else b — a > 1 and P contains, by convexity, a triangle
of width exceeding one so P n p(P) # &). Now K meets h(P) if and only
if h~!(K) is K or some g(K) and this is so if any only if for some j and n,

hl=gp"  (go=1).
It follows that oo lies on the boundary of h(P) (because h(v;) = o0). Exactly
as above, h(P) lies in a vertical strip of width one and hence there are at most
three (consecutive) values of n for which p™"g; YD) (= h(F)) meets P We
deduce that only finitely many images of P can mtersect P n K. This means
that P n K meets only finitely many sides of P and so, in a sufficiently small
horocycle at oo, the boundary of P consists only of two vertical geodesics.

a

Remark. We end with a remark concerning the elliptic and parabolic
conjugacy classes in G. Let g be any parabolic element of G with fixpoint,
say v. Then Corollary 9.2.9 implies that for some h in G, the point h(v) lies
in E and, of course, is fixed by the parabolic element hgh~! which is conju-
gate to g. By Theorem 9.3.8, there are two sides of P ending at h(v). We
conclude that every parabolic element of G is conjugate to some parabolic
element which fixes a proper vertex of P: in this sense the fundamental
polygon P contains representatives of all conjugacy classes of parabolic
elements. The same is true of elliptic elements: the proof is trivial and is
omitted.

EXERCISE 9.3
1. Let
= {zeA:p(z,0) <r}

and suppose that 4,, ..., 4, are pairwise disjoint, convex, open subsets of D which
satisfy

@) D=4,u...ud,;

(i) 0ed; n...n 4,

Prove that for a suitable choice of §; (with 8, = 6, , ;),
Aj={zeD:0; < arg(z) < 0;, ,}.

2. Let sy, S-1, S5, S—3, ... be pairwise disjoint closed sub-arcs of {|z| = 1} and (for
convenience) assume that each s; subtends an angle less than = at the origin. Let L;
be the geodesic with the same end-points as s;: thus A — L; is the union of the two
half-planes H; (containing the origin) and H’; (with boundary L; U s)).
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Lety,,g,,... be conformal isometries of A with
giL)=L_, g(H)=H.,
and define
G =441 92:--7 D=ﬂH,-
Show :

(i) each g; is hyperbolic;
(ii) fgeGand g # I, theng(D)n D = .

Now suppose that there exists a positive ¢ such that for all j,
{zeH;:p(z, L;) < 6} = D.
Show that
{zeA:p(z, D) <8} = | g(D)
yeG

and deduce that
U g()=a
geG

(so D is a convex fundamental domain for G). Show also that D is locally finite.

3. Use Question 2 to show that if D is a convex fundamental polygon for a Fuchsian
group, then the Euclidean closure of D on {|z| = 1} may have uncountably many
components (arrange the s; in a manner analogous to the construction of a Cantor
set).

4. In the notation of Question 2, let s, and s_, be given by |arg(z) ~ n| < n/4 and
|arg(z)| < n/4 respectively. By constructing s;, s_ ; accumulating at the end-points of
s, butnot at s_,, show that an improper vertex of a convex fundamental polygon for
G may be a limit point of G.

§9.4. The Dirichlet Polygon

In this section we describe a particular construction of a convex fundamental
polygon and this establishes the existence of such polygons for any Fuchsian
group. Let G be a Fuchsian group acting in A and let w be any point of A
that is not fixed by any elliptic element of G. For each g in G (g # I) define

Lyw) = {ze A: p(z, w) = p(z, gw)}
and
Hy(w) = {ze A: p(z, w) < p(z, gw)}
= {zeA: p(z,w) < p(g~ 'z, w)}.
Note that L(w) is a geodesic (not containing w) and that H,(w) is the half-

plane which contains w and which is bounded by L (w). In fact, L ,(w) is the
common boundary of H,(w) and H,-:(gw): see Figure 9.4.1.
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Figure 94.1

Definition 9.4.1. The Dirichlet polygon D(w) for G with centre w is defined by

Dw)= [} Hyw).

geG,g#1

Sometimes D(w) is called the Poincaré (or normal) polygon for G.
Dirichlet used the construction in 1850 for Euclidean spaces and it was
subsequently exploited by Poincaré for hyperbolic spaces.

In view of the two descriptions for H,, we can either describe D(w) as the
set of points z which are closer to w than to any other image of w or as the
set of points z which are, among all their images, closest to w. Observe that

zeHyw) ifand onlyif we H,-.(z)
so we have a symmetry expressed by
ze D(w) if and only if w e D(2).
If h is any isometry of the hyperbolic plane, then
h(H (w)) = Hgp,-1(hw)
and, consequently (using Dg(w) for D(w)),
h(Dg(W)) = Dy~ 1(hw).

In particular, if h € G, then

h(D(w)) = D(hw).
Theorem 9.4.2. The Dirichlet polygon D(w) is a convex fundamental polygon
for G.

PROOF. As each H,(w) is convex and contains w we see that D(w) is convex
and non-empty.
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The rest of the proof depends on the crucial fact that only finitely many of
the L,(w) can meet any given compact subset of A: this is a direct consequence
of the fact that if G = {gq, g, ...} then

p(W, Lg, (W) = 2p(W, g, W)
- +®©

asn — + 0.

Now select any z in the closure of D(w). It follows that there is a compact
disc K with centre z such that for all g, either K = H,(w) or z€ L,(w) and,
moreover, the latter can only occur for a finite set of g. Of course, if z € D(w)
then the second possibility cannot occur at all so K < D(w) and this proves
that D(w) is open. More generally, we see that the boundary of D(w) is
contained in the union of the L (w), hence

h-area(éD(w)) = 0.
Next, we prove that there is a fundamental set F with
D(w) < F < D(w).
From each orbit G(z), we select exactly one point z* which satisfies

p(w, z*) < p(w, gz)

for all g in G: such a choice is possible as G(z) does not accumulate at w. The
set of selected points is F: clearly F contains D(w) for if z € D(w) then we have
no choice but to choose z* = z.

To prove that F < D(w), select any z in F and consider the segment
[w, z). As we D(w), no Ly(w) passes through w. If L ,(w) meets the segment
(w, z) then

p(z, w) > p(z, gw) = p(g ™~ 'z, w)

contrary to the fact that~z € F. Thus no L,(w) meets (w, z) and so (w,z)
D(w). It follows that ze D(w) so F < D(w).

We have now shown that D(w) is a convex fundamental domain for G: it
remains to show that D(w) is locally finite. Let K be any compact disc with
centre w and radius r and suppose that g(D(w)) meets K : thus there is some
z in D(w) with p(gz, w) < r. As z € D(w), we have

p(w, gw) < p(w, gz) + p(gz, gw)
<r+ p(z, w)
<r+ plgz,w)
<2r

and this can only be true for a finite set of g. O



§9.4. The Dirichlet Polygon 229

By virtue of Theorem 9.4.2, all of the results established in Sections 9.1,
9.2 and 9.3 are valid for Dirichlet polygons. For example, the quotient space

5(w)/G

is independent (topologically) of the choice of w, provided, of course, that w
is not an elliptic fixed-point of G: this exceptional case is discussed in Section
9.6.

In the particular case of the fundamental polygon D(w), we can say a
little more about the structure of the boundary. For example, we have the
following elementary but important result.

Theorem 9.4.3. Let {z,, ..., z,} be any cycle on the boundary of the Dirichlet
polygon D(w). Then

p(zy, w) = p(z;, W) = -+ = p(z,, W).

Proor. Consider, for example z, and z, on the boundary of D(w) with
z, = h(z,). As [w, z;) = D(w) we see that

[hw, z5) = h[w, z,)
< h(D(w))
= D(hw).

It follows that z, is equidistant from w and hw and so

p(W, ZZ) = p(hW, 22)
= p(w, h™'z,)
= p(W, Zl)~ D

Each side of D(w) is of the form

s = D(w) 0 g(D(w))
= D(w) n D(gw)

and in view of our earlier description, this must be contained in L, (w).
Thus the sides of D(w) are segments of the bisectors L,(w). For similar reasons,
the vertices are the boundary points of D(w) where two or more bisectors L(w)
meet.

Let us now illustrate some of these ideas by discussing a specific example.

Example 9.4.4. Let G be the Modular group acting in H?: we shall show
that the open polygon P illustrated in Figure 9.4.2 is the Dirichlet polygon
with centre iv for any v > 1. Accordingly, let w = iv with » > 1 and, for
brevity, write D for D(iv) and similarly for L, and H,.
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x=-1/2 x=1/2

Figure 9.4.2

First, the isometries
flzy=1z+ 1, g(z) = —1/z

are in G and (as the reader can easily verify) the three geodesic sides of P

are L, L;-., L,. This shows that D < P.
If D # P, then some side of D crosses P and so there is some z in D with
h(z) e (D) N P. It follows that z, hze P and we shall now show that this

cannot happen. Suppose that
h(z) = %, (i Z) eSL(2, 2).
Then
lez + d|?* = ¢?|z|* + 2 Re[z]ed + d?
>c? 4+ d* — |cd|
= (le| = [d])* + |cd|
as|z| > 1and|Re[z]] < 4. This lower bound is an integer: it is non-negative

and is zero if and only if ¢ = d = Oand this is excluded because ad — bc = 1.
We deduce that |cz + d{ > 1 (note that the strict inequality holds) and so

Im[z]

Ile" ] =

Exactly the same argument holds with z, h replaced by hz, h~ ! and a contra-
diction is reached: thus D = P. a
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As D is a convex fundamental polygon, the material in Section 9.3 is
available. We can either view D as having three sides, namely,

§1 = [(a CO), Sy, = [:_’E’ Cﬁ), S3 = [—5’ C]a

with the side-paring f(s;) = s;, g(s3) = S3 or we may adopt the alternative
convention regarding the fix-points of elliptic elements of order two. If this
convention is adopted, we replace s; by the two sides

Sq4 = [—f’ l]s Ss = [17 C]’

with g(s,) = ss, g(ss) = s, and we consider i to be a vertex of D.

As P is a fundamental polygon for G so is the polygon P, illustrated in
Figure 9.4.3 (we have merely replaced a vertical strip of P by the f-image
of this strip). Note that in this case, P, has (according to convention) five
or six (but never four) sides: these are (in the case of six sides)

sy = [—Ww, o), s; = f(s1) = [1 — W, 0);
s3=[-w, ], Se = g(s3) = [I, w];
ss = [w, (], 6 = fg(ss) = [{, 1 — w].
The cycles of vertices of P, are the sets
{oo}, {i {Ch {=W, w, 1 — w}.

Note that the last cycle is an accidental cycle and the angle subtended by P
at the vertex w is 7 (regardless of the convention being used).

X=X+ 1

Figure 9.4.3
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Returning now to the general situation, it must be expected that certain
properties of D(w) depend on the choice of w and, having said this, that there
must be certain optimal choices of w. The last result in this section describes
some such optimal choices.

Theorem 9.4.5. Let G be a Fuchsian group and let D(w) be the Dirichlet
polygon with centre w. Then for almost all choices of w:

(1) every elliptic cycle on dD(w) has length 1;

(2) every accidental cycle on dD(w) has length 3;

(3) every improper vertex that is an ordinary point is in a cycle of length 2
(4) every proper vertex has cycle length 1 and is a parabolic Sfix-point;

(5) every parabolic cycle has length 1 and is a proper vertex.

PROOF. The proof of each part follows the same pattern: if the condition (k)
fails, then w must lie in some exceptional set E, with area zero. If wlies outside
the set () E; of zero area, then all five conditions are satisfied. We write D
for D(w).

The verification of (1) is easy. Let E, be the union of geodesics which are
equidistant from two (distinct) elliptic fixed points. Clearly E| has zero area.
If u, v are distinct elliptic fixed points in the same cycle, then plu, w) =
p(v, w) (Theorem 9.4.3) and sowe E ;.

For the remainder of the proof we need the following simple lemma.

Lemma 9.4.6. Let R(z) be any non-constant rational function of z. Then

E = {z: R(z) is real}
has zero area.
PROOF OF LEMMA 9.4.6. At every point of the extended plane apart from a
finite set zy, ..., z,, the function R is locally a homeomorphism satisfying
some Lipschitz condition. Thus each z (3#z ;) has a neighbourhood N with
E N N having area zero and a countable number of these N cover the plane
with z,, ..., z, deleted. O

We return to the proof of Theorem 9.4.3. For all fs g, h in G, distinct
from each other and from I, we define

(= g2)(fz — h2)
RO = e =)

(for brevity, we prefer not to mention explicitly the dependence of R on
/, 9, h). Note that R may be constant (for example, if f, g and A fix 0 and o).
Let

E, = |J{z: R(2) is real}
the union being over all triples (f, g, h) for which R is not constant. By
Lemma 9.4.6, E, has area zero and we shall show now that if (2) fails, then
wekE,.
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Suppose, then that (2) fails so that there are four distinct points u, f ~'u,
g~ 'u, h~'u lying in some accidental cycle on éD. Theorem 9.4.3 implies that

pw,u) = p(fw, u) = plgw, u) = p(hw, u)

so the distinct points w, fw, gw, hw lie on a hyperbolic circle with centre u.
It follows that the cross-ratio R(w) is real so w € E, unless, of course, R is
constant.

We now show that R cannot be constant. If R is constant, say 4, then by
selecting some z not fixed by g, f, f ~'h, g~ 'h we see that 4 # 0, «c. Now let
z tend to a fixed point v of g: the numerator of R tends to zero, hence so does
the denominator and so f or h also fixes v. Suppose, then that g and f have a
common fixed point (the same argument will be valid for k). As g and [ lie
in the Fuchsian group G, we see that (g, f> is a cyclic group generated,
say, by p. Clearly p is hyperbolic, parabolic or elliptic depending on whether
the orbit of any point under <{g, /> lies on a hypercycle, or horocycle or a
hyperbolic circle respectively (these possibilities are mutually exclusive).
By assumption, then, p is elliptic and fixes the centre of the unique hyperbolic
circle through w, gw, fw. We deduce that fu = gu = uwhichisacontradiction
as u lies in an accidental cycle. This proves (2).

A similar argument establishes (3), (4) and (5). Suppose first that v is a
proper vertex of D so there are two sides

s, =DngD), s,=DnhD)

ending at v. As s, is in the geodesic bisecting the segment [w, gw] (and
similarly for s,) it follows from Section 7.28 that v, w, gw, hw lie on a horocycle
based at v.

Now consider the function

Rl(z) = [U’ z, 9z, hZ]

_ (v g2~ ha)
T (v—2)(9z — hz2)’

As a horocycle is a Euclidean circle, R,(w) is real. It follows that either R,
is not constant and w lies in the corresponding exceptional set of zero area
or R, is constant. We must show, therefore, that in the latter case each of (3),
(4) and (5) hold.

Suppose, then, that R, is constant, say A where (as before) 1 # 0, co.
Letting z tend to v we see that g or h fixes v: by symmetry, we may assume that
gv = v. Then, by Theorem 9.3.8, g is parabolic. This implies that the side
g~ (s;) of D also ends at v and so is precisely the side s,. This means that
h =g~ ! and v is a parabolic fixed point in a cycle of length one and this
establishes (4) and (5) as every parabolic fixed point on 0D is a proper vertex
(Theorem 9.3.8).

Finally, any improper vertex v that is an ordinary point belongs to a finite
cycle v; (=v), v5, ..., v, and D has angles 6, ..., 6, at these points where
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each 6, is zero or m/2 and }_ 0; = m. Using (4), we see that §; cannot be zero:
thus n = 2 and this is (3). O

EXERCISE 9.4

1. Develop the theory of Dirichlet polygons (or, strictly speaking, polyhedra) for discrete
subgroups of SL(2, C) acting in H3,

§9.5. Generalized Dirichlet Polygons

Let G be any group of Mobius transformation which acts discontinuously
in some G-invariant open subset £ of the extended complex plane. We
suppose that oo € Z and that oo is not fixed by any non-trivial element in G.
These assumptions ensure that every non-trivial g in G has an isometric
circle I,. Let H, denote the exterior of /,: then it can be shown that

Fg= ﬂ H,

geG,g#1

is essentially a fundamental domain for G (it need not be connected: it may
be necessary to remove some boundary points of Fg). This is called the
Ford fundamental region and it is apparently Euclidean (rather than hyper-
bolic) in character.

Consider now a Fuchsian group G acting on A and suppose that oo, and
therefore the origin as well, is not fixed by any non-trivial g in G. We can
construct both Fg; and also the Dirichlet polygon Dg(0) with centre 0 and
we shall see shortly that

A~ Fg = Dg(0) (9.5.1)

Note that this identifies two sets one of which is Euclidean in character and in
no sense conjugation invariant, while the second is of essentially hyperbolic
character and is conjugation invariant. The explanation of this lies in the
inversive geometry of the extended complex plane and in this geometry, the
two apparently different constructions appear as different cases of one single
construction which we shall now describe.

Let P be any model (e.g. A or H?) of the hyperbolic plane constructed
as an open disc in the extended complex plane. Let 0P be the circle at infinity.
Select any { in the extended complex plane. Each conformal isometry g of P
can be written as

g =030,

where o;: P — P denotes reflection in a geodesic L;. We extend each L;
to a circle and insist that the circle L, contains {. Provided that g does not
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Figure 9.5.1

fix { (which we assume), this determines ¢4, ¢, L;, L, uniquely and hence-
forth these special choices will be denoted by

ag, 05, Ly, Ly,

respectively.

By definition, { e L}. It follows that {¢ L, else o,, o} (and therefore g)
fixes {: thus there is a unique hyperbolic half-plane H, bounded by L, and
containing {. Let K, be the other half-plane bounded by L,: see Figure 9.5.1
where these are illustrated for a parabolic g.

Definition 9.5.1. Let G be a Fuchsian group acting on P and suppose that {
(in the extended complex plane) is not fixed by any non-trivial element of G.
Then

O = () H,

geG,g*1
is called the generalized Dirichlet polygon with centre (.

If = denotes reflection in 0P, then L} (extended) contains { if and only it
contains 7({) (because L} is orthogonal to dP): thus we have the invariance
condition

Q) = Mg(zd). (9.5.2)
In particular, if P = A, then

M(o0) = MT4(0). (9.5.3)
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Theorem 9.5.2. In addition to the assumptions made in Definition 9.5.1.
suppose that { is an ordinary point of G. Then I14(C) is a fundamental domain
Jor G in P.

If (e P, then I15({) is the Dirichlet polygon Dg({). If { = oo, then ()
is the region exterior to the isometric circles of all elements of G. F inalliz
Jor all h, we have .

h(T(0)) = Mygn- (D). (9.5.4)

Remark. We have deliberately used P for the hyperbolic plane rather than
A or H? in order to cope adequately with the point oc. For example, note that
wedPif P=H?butnotif P = A.

ProoF. If ¢ denotes reflection in a circle L in C, then hoh ™ is the reflection
in h(L). This fact leads directly to (9.5.4) and this is now available to simplify

the rest of the proof.
In the case when (€ P, we may use (9.5.4) and thereby assume that
P=Aand { =0.ThusOe Ly and so for z on L, we have

p(z,9710) = p(z, 0,6%0)
= p(0,z, 0;0)
= p(z, 0).

This identifies L, with the hyperbolic bisector of the segment [0, 710] and
so I4(¢) is the corresponding Dirichlet polygon.

If { = oo, then L} is a Euclidean straight line. Thus g acts as a Fuclidean
isometry on L, and so L, is necessarily the isometric circle of g. As oo e H ..
we see that I15({) is region exterior to all isometric circles. ?

It remains to prove that I15({) is a fundamental domain for G in P. This is
true if { € P as we have already identified I15({) as a Dirichlet polygon. It
is also true if { ¢ P U @P because of (9.5.2).

The remaining case is when { € 0P and here we may use (9.5.4) and assume
that P = H?> and { = oo. First,

g7 =g,07
= 03(0;0,07),
and the bracketed term denotes reflection in o(L,). Thus (by the uniqueness
of the decomposition of g~ ')
L,-o = o3(L,)
= g(L,).
This means that g(H,) and g(K,) are separated by L,-:. As

g7 (0) = 0,050
= 0,0)
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lies in K, we find that { e g(K,): thus

g(H,) = K-,
and hence

g(ITg(0) N Ng) = .

Clearly, this implies that the images of I15({) by distinct g and h are disjoint.

Now consider any z in H%. As co is an ordinary point of G, the orbit of z
lies in some (compact) disc in the Euclidean plane and so there is necessarily
some point z' in the orbit of z with

Im[z'] > Im[gz]
for all g in G. As the action of g on points in K, increases the imaginary part,
we see that 2’ lies on or outside each L,. This in turn implies that the ray

(z, o0) lies outside every L, and so lies in I15({). We deduce that every z is
equivalent to some point in the closure of I14({). O

Remark. The proof that [T5(c0) is a fundamental domain can be written
in Euclidean terms involving computations of derivatives: for example,

Hy = {z:]¢g"(2)] < 1}.

It seems preferable, though, to use the intrinsic method given above.

In conclusion, observe that if P = A and { = 0, then from (9.5.3) and
Theorem 9.5.2 we have

Dg(0) = Ig(0)
= A M FG’
which is (9.5.1).

EXERCISE 9.5
1. Using the notation in the text, let o, denote the reflection in L; (= g(L,)). Prove that
Ly-y=Lf, ¢ '=qlo,.

2. Prove that g is elliptic, parabolic or hyperbolic according as L,, L} are intersecting,
parallel or disjoint respectively. Show that

(i) if g is elliptic then it fixes the common point of L, and L} ;

(ii) if g is parabolic then it fixes the common point of tangency of L,, L} ;
(iii) if g is hyperbolic then its fixed points are inverse points with respect to L,, L}
and L,-:.

3. Let g be parabolic and not fixing oo and let r, be the radius of the isometric circle of
g,. Prove that r, = r,/|n|.

4. Let I and I' be the isometric circles of some hyperbolic g (not fixing oc) and g~ .

Show that g(I) = I'. Compare the images of I and I' under g" with the isometric
circles of g" and g ™"
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§9.6. Fundamental Domains for Coset
Decompositions

Let G be a Fuchsian group acting in A and let H be a subgroup of G. It is
often convenient to construct a fundamental domain for G with special
reference to H and with this in mind, we suppose that G has a coset decompo-
sition

G=1Jg.H 96.1)

The essence of the construction is to find an H-invariant set X such that the
sets g,(X) tesselate A: if the H-images of some D tesselate Z, then D is a
fundamental domain for G in A.

Suppose now that the set £ is stable under the action of H: thatis,g(X) =
when g € H and g(X) n £ = ¢J otherwise. Each coset g, H determines the
corresponding set g,(X) uniquely (and independently of the choice of
representative g,) and if m # n, then

9n(Z) N gu(Z) = & (96.2)

because (g,,) " g, ¢ H. We make one other assumption, namely

U 9.%) = A.

These last two statements are reminiscent of the definition of a fundamental
domain, however here they are with reference to the action of coset representa-
tives rather than all elements of G.

Theorem 9.6.1. Let G be a Fuchsian group acting in A and let H be a subgroup
of G with coset decomposition (9.6.1). Suppose that I1 is a convex fundamental
polygon for H and that a convex open polygon T of A satisfies

(1) Z is stable under the action of H and
@ Ua® =a

Then I1 N X is a fundamental domain for G in A.

PrOOF. First, IT n Z is open and convex and its boundary has zero area. It
1S necessary to show that

Ugdin)=A (9.6.3)

geG

and, if f and g are distinct elements of G, then

gIINZ)AfIIAZ) =& (9.6.4)
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If z € A, then by (2), there is some n with g, !(z) in £. Only finitely many
H-images of IT meet some neighbourhood of g, !(z) and so for some h, in H,
h,gr Y(z)e 1.

Also, as g, '(z) e Z, we have
hagy () eh,(E) = £

and so h,g, '(z) e [T n I this verifies (9.6.3).
Finally, suppose that (9.6.4) fails so that

S@AZ) g AT) # @
From (9.6.1) we can write

f=9hns  g=gnh, (hjeH),
and then

9u(Z) N gu(Z) = [(Z) ng(Z) # .
We deduce from (9.6.2) that g, = g,, so

h(TD) O by () > g7 1 (f (TN Z) N g(TT A E))
# .

As I1 1s a fundamental domain for H we deduce now that h, = h,, so f = 4.
O

We consider three examples: in these, H is a parabolic, elliptic and hyper-
bolic cyclic subgroup of G.

Example 9.6.2. Suppose that H = {h) where h is parabolic. By considering
a conjugate group we may suppose that G acts on H? and that h(z) = z + 1.
Every element in G — H has an isometric circle and we let X denote the set
of points having some neighbourhood not meeting any isometric circle. It
is easy to see that the hypotheses of Theorem 9.6.1 are satisfied (as a guide,
see Section 9.5 or, for full details, see [52], p. 58) and so a fundamental domain
for G is (for example) the set of z outside all isometric circles and lying in some
strip {x + iy:y > 0,xo < x < xo + 1}.

Example 9.6.3. Suppose that H = <h) where h is elliptic. We may suppose
that G acts on A and that h(z) = e*>""z. Again, we take as X the points in A
which are exterior to all isometric circles: equivalently, we follow the con-
struction of the Dirichlet polygon with centre 0 and define Z as the intersec-
tion of the half-planes

{zeA: p(z,0) < p(z, g0)}
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taken over all g with g0 # 0. A fundamental domain for H is a sector ¢
say
M={z0<argz <0+ 2n/n}

(for any 0) and IT N £ is a fundamental domain for G.

Example 9.6.4. Suppose that H = (h) where h is hyperbolic..We shall .
suppose that 4 is a simple hyperbolic element so the axis A of h is stable ur
H.1f g ¢ H then A and g(A) are disjoint and the set

Kg = {Z: ,D(Z, A) <’p(7-"’ gA)}
is a half-plane. It is easy to see that X defined by
=) K,

g¢H
satisfies the conditions of Theorem 9.6.1 and taking any suitable IT |
example, the region bounded by geodesics L and gL orthogonal to A)
obtain a fundamental domain for G.

EXERCISE 9.6
1. Verify the details of Examples 9.6.2,9.6.3 and 9.6.4.

2. Show that any cycle on the boundary of the fundamental domain D constructe
Example 9.6.2 necessarily lies on some horocycle based at .

§9.7. Side-Pairing Transformations

Let G be a Fuchsian group and P a convex fundamental polygon for G.
have seen that the side-pairing elements of P generate G (Theorem 9.3.3); t
short section is devoted to characterizing those primitive elements of
which can arise as side-pairing elements of some choice of P.

Each primitive elliptic element and each primitive parabolic element
G pair sides of some fundamental domain (indeed, of some Dirichlet polygor
this follows from Examples 9.6.2 and 9.6.3 or from Theorem 9.4.5 a
Corollary 9.2.9. The problem, then, is to characterize the primitive, sic
pairing hyperbolic elements in G.

Theorem 9.7.1. Let g be a primitive hyperbolic element of a Fuchsian gro
G and let A be the axis of g. Then g pairs sides of some convex fundameni
polygon P if and only if for all h in G, either W(A) = Aor (A) N A = &.

PROOF. Suppose first, that h(4) = A or h(A) N A = & and define
H={heG: hA) = A}.



§9.7. Side-Pairing Transformations 241

Then H contains all powers of g: the only other elements that H can contain
are elliptic elements of order two with fixed point on 4. Exactly as in Example
9.6.4, we can construct a set X satisfying the conditions of Theorem 9.6.1.
We may assume that G acts on H* and that g(z) = kz. If H is cyclic it is
generated by g and we can take

= {zeH? 1< |z] <k}:

if H is not cyclic it is generated by g and some elliptic element of order two
which we may assume fixes iﬁ and we then take

Il ={zeH* 1< |z| <k Re[z] > 0}.

In both cases, g pair sides of I1 n X that contain arcs of |z| = 1 and |z| = &,
respectively.

To prove the necessity of the condition on h and 4 we suppose that ¢
pairs two sides s and s’ of some P. Choose a point w in the relative interior
of s and not fixed by any non-trivial element of G; let y = [w, gw]. Then y
lies in P apart from its end-points w and gw. The curve

r=Ug()

is a simple g-invariant curve in A which (because y is compact) has as end-
points the fixed points u and v of g. Note that the axis A4 of g also has these
properties.

Now suppose that i(4) N A # &, thus there is some 4 in G such that the
geodesics A and h(A) cross or are equal (they cannot be parallel by Theorem
5.1.2). Suppose that A crosses h(A). This means that the curves I' and h(I')
also cross each other, say at the point { in A. It follows that for some z; and
z, iny and some m and n, we have

{=4"z; = hg"z,

zy =¢g "hg"z,.

Now the only two distinct points of y which are G-equivalent are w and gw
so either z, = z, or z; = gz, or z;, = gz,. In all cases some g'hg’ fixes some
point of y. By construction, no point of y is fixed by any non-trivial element of
G so h is some power of g. This implies that h(4) = A. d

In view of Definition 8.1.5, we have shown that the only side-pairing
elements of G are elliptic, parabolic and simple hyperbolic elements.
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§9.8. Poincaré’s Theorem

Any Fuchsian group G acting on the unit disc A has a convex fundamental
polygon P. The action of G on P tesselates A and there is a collection of side-
pairing maps g, which generate G. Moreover, the sum of the interior angles of
P at points of a cycle is a certain submultiple of 2% (Theorem 9.3.5). Poincaré’s
Theorem is concerned with reversing this process and so provides a method
of constructing Fuchsian groups. Suppose that one starts with a polygon P
and a collection of side-pairing maps. We use these maps to generate a group
G. Next, we formulate the notion of a cycle (at this stage we do not know
whether or not this cycle is the intersection of P with a G-orbit) and we impose
a suitable angle condition on each cycle. The aim is to prove that G is discrete
and that P is a fundamental domain for G.

As these ideas arise in other geometries and in other dimensions it seems
worthwhile to proceed in a fairly general manner. We shall include hypo-
theses as they are needed and only at the end shall we give a definitive
statement of the result. The argument that we shall use may be summarized
as follows. First, we construct a space X* which is tesselated by the group
action: then we attempt to identify this tesselation of X* with the G-images
of the polygon P in the original space.

We begin by constructing a tesselated space. Let X be any non-empty
set. We assume

(A1) Pis an abstract polygon in X.

By this, we mean that P is a non-empty subset of X which has associated with
it a non-empty collection of non-empty subsets s; of X called the sides of P.
The union of the sides is denoted by dP: we insist that P and P are disjoint
and we write

P =PuUoP.

We also assume
(A2) there is a side-pairing © of P.

Explicitly, this means that there is an involution (or self-inverse) map
s+ s’ of the set of sides of P onto itself and associated with each pair (s, 5),
there is a bijection g, of X onto itself with

gs(s) = ¢’
and
gs = (g5) "

Now let G be the group generated by the g, and form the Cartesian
product G x P. It is helpful to think of G x P as a collection of disjoint
copies

(9, P) = {9, x): x € P}
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of P indexed by G (like pieces of a jigsaw separated from each other) and to
think of (g, x) as the point g(x) viewed from within g(P). We now join these
copies together along common edges as dictated to us by the group G.
Observe first that the map hg,h™ ! may be viewed as a map of the side h(s) of
h(P) onto both:

(1) the side h(g,s) of h(P); and
(ii) the side (hg,)(s) of (hg) (P).

Writing g = hg,, we therefore wish to identify (g, s) with (h, g;s). This
identification is achieved by defining the relation ~ on G x P by

(9, x) ~ (h, y)
if and only if either:
(i) g=hx=y;or
(ii) xes,y = g{x), g = hy,.

This relation is symmetric and reflexive (but not necessarily transitive) and
it extends to an equivalence relation * on G x P by defining

(g, x)*(h, y)
if and only if for some (g, x;) we have
(gs X) = (gl’ X]) ~ (glv xZ) ~o (gn» Xn) = (ha y)

The equivalence class containing (g, x) is denoted by {g,x) and the
quotient space (of equivalence classes) is denoted by X*. Note that if

g, x> = <(hy yy
then
g(x) = h(y) (9.8.1)
and
fg. x> = {fh y>. (9.8.2)
In addition, if x € P, then
g=h  x=y. (9.8.3)

These facts holds for ~ and hence for =,
Each fin G induces a map f*: X* — X* by the rule

S*:4g, x> = fg, x>
and this is well defined by (9.8.2). It is clear that
S =0Um

and

(fh* = f*n*
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so the group G* of all such f* is a group of bijections of X* onto itself and
f f*is a homomorphism of G onto G*. In fact, this is an isomorphism
for if f* = h*, select x in P and observe that

{foxy = XL x>
= h*{I, x>
= (h, x).
As x € P, (9.8.3) implies that f = h.
If we now define
(P) = {{I,x): xe P}

and similarly for (P) we find that the action of G* on (P tesselates X* in
the sense that

U g*¢(Py = X* (98.4)
g

and, if g* # h*, then
g* (P> " h*{P) = &: (9.8.5)
the proof is trivial.
The relevance of this tesselation to the original problem is easily explained.
By (9.8.1) there is a natural map «: X* — X given by
(g, x> = g(x)
and we have the following result.

Proposition 9.8.1. (i) If « is surjective, then
U P =x.
geG

(i) If « is injective, then for distinct g and h in G,
g(P) " h(P) = &.

Again, the proof (which uses only (9.8.4) and (9.8.5)) is trivial and is
omitted. Note that so far, there has been no mention of topology.

We now introduce topologies: explicitly we make the following assump-
tions.

(A3) X is a metric space with metric d;
(A4) the g, are isometries of X onto itself;
(AS) P is open and connected.

In order to analyse the map « and so use Proposition 9.8.1, we introduce
the natural maps

B:G x P— X*,
p:Gx P—oX,
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given by
Blg, x) = {g, %),
(g, x) = g(x).
Note that
v =oaff (9.8.6)

so the following figure is commutative.

GxP —L—> x=

NS

Flgure 9.8.1

We give G the discrete topology, G x P the product topology and X* the
quotient topology. The quotient map f is automatically continuous. Next, y
is continuous for if 4 is open in X, then

A = {g} x g7 AN P)
9

and this is open in G x P Finally, as y is continuous, then so is o because
o~ 1(A) is open in X* if and only if B~ *a~!(4) is open in G x P.
Each f in G induces a map f: G x P —» G x P by the rule

f:(g, %)~ (fg, %).

Trivially, the f are homeomorphisms of G x P onto itself, the group of
such f'is isomorphic to G and

Bf = f*B,
o = fw
SO
of *B = »f = fy. 9.8.7)

In addition, if 4 is an open subset of X*, then
BTN A) = ()B4,

which is open in G x P. We deduce that (f*)~*(4) is open in X* so f* is
continuous. As (f*)™! = (f ~!)*, we see that the f* are homeomorphisms
of X* onto itself.

The final assumption replaces the intuitive angle condition by a formal,
dimension free condition which enables us to express the formal details of the
proof easily. We require a condition which guarantees that at each point x



246 9. Fundamental Domains

of 8P there is a (local) tesselation of some neighbourhood of x. This condition
must express the fact that the geometry of this local tesselation is consistent
with the equivalence relation * and nothing less than this can be adequate.

In order to express this condition concisely, suppose for the moment that

<1a X> = {(gl’ X]), AR (grn xn)}‘

Then some (g, x;) is (1, x) and

gl(xl) == gn(xn) = I(X) = X.
If
N;j={yeP:d(y, x)) <e},

(this is the ball in P with centre x; and radius ¢), then the sets g(N) are
subsets of g,(F) and have the point x (=g(x;)) in common. As the g; are
isometries,

giN) = {yeX:d(y, x) <e}

= B(x, ¢),

say, and we wish to impose the condition that for all sufficiently small ¢
the sets g;(N ) tesselate B(x, ¢). Formally, we assume

(A6) Each x in P has a finite equivalence class

<13 X> = {(gl’ xl), ] (gn’ X")}.
In addition, for all suffiiently small ¢,

'Ul gj(N]) = B(xs 8)
j=

and, moreover, for each w in B(x, ¢), the set of points in U (g9;, N;) which
map by y to w is an equivalence class.

Observe that the result that we are seeking can be expressed by saying
that the set of points in G x P which map by y to any w in X is an equivalence
class (so « is a bijection). Thus (A6) appears as a natural local version of the
desired global result. Also, observe that as {f, x) is the image of </, x)
under f*, each equivalence class is finite.

Let us write

W=U(gj, Nj), V=.3(W)
J

The condition (A6) implies that y(W) = B(x, ¢) and also that W is a union
of equivalence classes. In other words,

BV =pTiBW) =W

and we deduce that V' is open in X*.
To complete the details of the proof we need the following result.

Proposition 9.8.2. The sets f*(V) are a base for the topology of X*.
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Proor. We know that the sets f*(V) are open. Suppose that 4 is an open
subset of X* and that {f, x> € A. Writing </, x> as in (A6) we find that

<f’ x) = {(fgl’ Xg)sooos (fgm Xp)}-

As B is continuous,

B7H(A) = | (h A4y,
heG
where each A, is open in P. As (fg;, x;) is in B~1(A), we see that x;€ 4,
when h = fg;sofor these h, we have 4, # &. Now choose ¢ sufficiently small
so that (A6) is applicable and that N; = 4, when h = fg; (this is possible
as j takes only the values 1, ..., n and these A4, are open and non-empty in
P). Clearly, this means that

Fowy = U (fag, Nj) = B~(4)
J

and so
)= f*pw)
= Bf (W)
c A.
As (I, x) € W, so {f, x) (which is Bf(I, x)) lies in f*B(W) and this is fX(V).

O

We proceed now with the general discussion. First, by (9.8.7),

of *(V) = af *B(W)
= fy(W)
= B(Jfx, ¢).

Thus « maps each f*(V) to an open set and so a: X * — X is an open map.
Next, if u and v are in f*(V) and if «(u) = a(v), then choose points v’
and v’ in f(W) with f(’) = u, B(v') = v. Thus
W) = af(u) = «B(v) = y(v')
and so by (A6) (after referring the problem back to W), 4’ and v" are in the
same equivalence class: hence

u=pW) = i) =v.

We deduce that « is a bijection, and hence a homeomorphism, of each f*(V)

onto fy(W).
Next, X* is Hausdorff. To see this, take distinct points

<f7 X> = {(fl’xl)a ] (fna X,,)},

<g7 y> = {(gl’ yl)’ LR} (gm’ ym)}
in X*: as these are distinct points in X*, they are disjoint subsets of G x P.
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Now choose the N; corresponding to (I, x) as in (A6) and let M; be the
corresponding sets for {I, y>. We may choose the N; and M; so that the
sets

U (fi, Ny, U (95 M)) (9.8.8)
t J
are disjoint in G x P (if f; # g; then (f;, N;) and (g;, M;) are disjoint: if
/i = g; then x; # y; and we can insist that N; and M are disjoint). Because
the disjoint sets (9.8.8) are each a union of equivalence classes, it follows
that their f-images are disjoint (and open): thus X* is Hausdorff.

Finally, X* is connected. Indeed, as P is connected, so are (g, P) and its
B-image {g, P). Observe that if x € s’ then

g, x> = {995, (g5) ™ x>

SO

<g, Py n {{gg,, P) # @.
We deduce that

<g, Py U <gg,, P)

is connected: hence so is X * as each g is a product of the g,. The next result
is a summary of the results obtained so far.

Proposition 9.8.3. X* is Hausdorff and connected. Also, every x* in X* has
an open neighbourhood N* such that the restriction of o to N* is a homeo-
morphism of N* onto an open subset of X.

Let us specialize now to the case of major interest to us. We suppose
that (X, d) is the hyperbolic plane with the hyperbolic metric (the argument
will work equally well in the Euclidean plane or in the sphere S?), that P is a
hyperbolic polygon (possibly with vertices and free sides on the circle at
infinity: these are not in X) and finally, that ® is some given set of side-
pairing isometries. Our aim is to deduce that G is discrete and that P is a
fundamental polygon for G. Note that (A1)-(A5) hold and that there is no
need to check (A6) at points on the circle at infinity.

The condition (A6) is easily restated in a simpler form. If x is in P, choose &
so that the open disc N with centre x and radius ¢ lies in P. For each y in N,
the equivalence class (I, y) contains only (I, y) and (A6) holds trivially for
this choice of x. Next, suppose that x is in the interior of a side s. Then x is
on a unique side of P and this leads immediately to the fact that {I, x)
contains precisely (I, x) and (g, !, g,x). It is clear that (A6) holds in this
case too (with W being the union of two semi-discs) provided that g,(N,)
U g2(N,) is a neighbourhood of x (which we shall assume implicitly).
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We now see that (A6) may be rewritten in terms of the vertices of P alone:
indeed, (A6) is now equivalent to

(A6) for each vertex x of P, there are vertices xy (=x), X1,...,X, of P
and elements fo (=1), ..., f, of G such that the sets fy(N;) are non-
overlapping sets whose union is B(x, ¢) and such that each f;.. | is of the
form fig; for somes (j=1,....n;f,1, = I).

We also assume
(A7) the ¢ in (A6) can be chosen independently of x in P.

This last assumption ensures that each curve in X can be lifted to a
curve in X* (for each point can be referred back to P and then lifted for at
least a distance &) and so (X*, ) is a smooth unlimited covering surface of X,
o mapping X* onto X. As X is simply connected, the Monodromy Theorem
implies that « is now a homeomorphism and the desired result follows from
Proposition 9.8.1. We have proved

Theorem 9.8.4 (Poincaré’s Theorem). For a polygon P with a side-pairing ©
satisfying (A6) and (A7), G is discrete and P is a fundamental polygon for G.

Remark. If P has no vertices in X, then (A6) is automatically satisfied.
However, (A7) need not hold.

Example 9.8.5. Let P be a polygon with r sides and angles n/n; at the vertices
v;inX (j = 1,...,r). For each side s let g, be the reflection across s: denote
these maps by g4, ..., g,- Then (A6)’ holds (see Figure 9.8.2) and (A7) holds
(essentially because P is compact). Thus P is a fundamental polygon for G.

g,(P)

n/n

I n/n
’ } 7/n
7/ ’: n/n
9:(P)

Figure 9.8.2
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Later, we shall need the following result and this is closely related to
Poincaré’s Theorem. Let P be an open hyperbolic polygon in A and let ®
be a side-pairing of P. We shall always assume that if x is an interior point
of a side s with corresponding point y = g(x), then for any choice of neigh-
bourhoods N, and N, relative to P of x and y respectively, the set

N, u(g) (V)

is a neighbourhood of x (thus N, and (g,)~'N, lie on different sides of s
near x).
Finally, for each z and each g, define

9(2) = Z 99(2),
geG
where 0,(z) is the angle subtended at z by g(P). If z € g(P) then §,(z) = 2rx;
if 2¢ g(P), then 8,(z) = 0.

Theorem 9.8.6. Let P be a hyperbolic polygon with compact closure in A and
let ® be a side-pairing satisfying the assumption given above. If the group G
generated by the side-pairing elements is discrete, then 6(z) is constant, say
2nk, on A, k is an integer and

h-area(P) = k h-area(A/G).

PROOF. Let V be the set of all images of all vertices of P: by the discreteness of
G, V contains only isolated points in A. Let B be the union of all images of
OP: by discreteness, B is a closed subset of A and obviously, V < B.

The set A — B is open so is a disjoint union of domains, say A;. By
definition, each A either lies inside g(P) or is disjoint from g(P) so 6, is 2n
throughout A; or it is zero throughout A;. We deduce that 6(z) is constant
on each A, say equal to 27k; there where k; is an integer.

Next, consider w in B — V. The side-pairing assumptions ensure that
there are pairs of distinct elements (g;, g¥), say, (j = 1, ..., n) such that w
lies interior to a common side of g;(P) and g¥(P) and that for all other g,
8(z) is constant (0 or 2m) near (that is, in a neighbourhood of) w. By dis-
creteness, we can choose one such neighbourhood, say N, valid for all other
g. Each term

0,,(2) + 0,4(2)

is constant (namely 27) near w: thus 6(z) is constant near w. We conclude
that 6/2= is continuous and integer valued on the domain A — V. As V
contains only isolated points, 6 is constant on A — V. A similar argument
holds for w in V' ; however, this is of no consequence.

Finally, let Q be any open fundamental polygon for the discrete G and
for any set A, let x, be the characteristic function of A. For almost all z in
A, we have

Z Zo0(2) = 1.
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Also, for almost all z in A,
k=73 0,22
g

= Z Xg(P)(Z)‘
9

Thus (writing u for hyperbolic area and taking all integrals over A) we have
H(P) = f 1p(2) [Z xg(Q,(Z)] du(z)
g

= 3 [ 1lertuaf duta

]

5 f Yoo (W)7g) du(w)

Zl JXy‘ (W) (W) du(w)

f 7o) [Z xh(p,(»v)] du(w)
h
= ku(Q). O

In fact, Theorem 9.8.6 says that if we identify the sides of P we obtain a
branched covering of the compact space A/G: thus the covering isa k — 1
map for some k.

EXERCISE 9.8

1. The proof of Poincaré’s Theorem remains valid if (A7) is replaced by: (A7) there
exists a positive & such that for all x in P there is a single valued branch of ™! in
B(x, ¢).

Show that the application in Example 9.8.5 remains valid if some of the v; now lie
on the circle at infinity (the v; are now fixed by a parabolic elements in G and a horo-
cyclic disc at v; is suitably tesselated).

2. Generalize the ideas in Question 1 to include arbitrary polygons with some vertices
on the circle at infinity provided that these are fixed by parabolic elements in G
(but see Question 3).

3. The condition concerning parabolic elements in Question 2 is essential. Show (for
example) that g: z — 2z is a side-pairing of

P={zeH* 1 <Re[z] <2}

but that P is not a fundamental domain for G (= {g>) in H2.
Show, however, that Poincaré’s Theorem is applicable to this P and G if G is
considered to act on the first quadrant with the metric ds = (|z]|/xy)|dz|.



252 9. Fundamental Domains

4. Let X = C ~ {0} with metric ds = |dz|/|z|. For 6 in (0, 27), let
P=1{zeX:1 < |z] <3,0<argz) < 6}.

Divide 0P into four sides in the obvious way and generate G from the side-pairing
isometries

9(z) =3z,  h(z) = €’z

Examine the case 8 = 2np/q where (p, q) = 1 by reference to the covering surface X*
(which exists even if X is not simply connected). One can view this as a multiple
tesselation of X.

§9.9. Notes

There are other constructions of fundamental polygons and, in particular,
of polygons which relate to a particular defining relation (a product of
commutators) of a group with compact quotient space. For further informa-
tion see, for example, [46], [47], [52], [70], [85], [86] and [114]. For other
information on convex fundamental polygons, see [71], [72], [73] [83]:
for recent treatments of Poincaré’s Theorem (Section 9.8) see [24] [48] and
[62]. Theorem 9.8.6 occurs in [48].



CHAPTER 10
Finitely Generated Groups

§10.1. Finite Sided Fundamental Polygons

We recall that a side s of a convex fundamental polygon P is a segment of
the form P n g(P) (except that this set may be considered as two sides when
g is elliptic and of order two). By an edge of P we mean a maximal geodesic
segment in JP. We must distinguish carefully between sides and edges and
to convince the reader of the necessity of this, we begin with an example in
which one edge contains infinitely many sides.

Example 10.1.1. We work in H2. Forn =0, 1,2, ..., let C, be the geodesic
with end-points 1 + 4n and 3 + 4n and let C; be its reflection in the
imaginary axis. For each n, let g, be the hyperbolic element that preserves
H? and that maps the exterior of C, onto the interior of C, and let G be the
group generated by the g,. By Poincaré’s Theorem (Section 9.8), the region
exterior to all of the C, and C, is a fundamental domain for G.

Now let D be the region in the second quadrant exterior to all of the C,
and let

D,={x+iyx>0,y>04n<|z|<4dn+ 1), |z — @4n+ 2)| 21}:
see Figure 10.1.1. It is clear that

n

P=DU(O gn[D,.uC,,])
=0

is a convex fundamental polygon for G and that the positive imaginary
axis is a single edge e of P. However, for each n,
gy {(P) n P = [4in, 4i(n + 1)]

and so the edge e contains infinitely many sides of P.
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4i(n + 1)

D 4in

gn(D,) \r\q

Figure 10.1.1

In view of the preceding example, and as we are about to make claims
about the number of sides of a polygon, the distinction between edges and
sides must be kept clear.

Theorem 10.1.2. Let G be a non-elementary Fuchsian group with Nielsen
region N. Then the following statements are equivalent:

(1) G is finitely generated;

(2) for any convex fundamental polygon P of G, h-area (PN N) < + 0}

(3) there exists a convex fundamental polygon of G with finitely many sides;
(4) every convex fundamental polygon of G has finitely many sides.

PRrOOF. Obviously, (4) implies (3). Now assume that (3) holds and let P be
a finite sided convex fundamental polygon. Each closed free side
A;(i=1,...,m) of P lies in the interior of an interval of discontinuity g;
which determines a half-plane H, containing N (see Section 8.5). Then

Pi=PnH/ n---NnH,

is a finite sided polygon with no free sides and so has finite h-area. As P,
contains P N N, we see that (2) holds for this choice of P. However, as N
is G-invariant, it is easy to see that h-area (P n N) is independent of the
choice of P and (2) follows.

Next, we prove that (2) implies (1). First, write Q = P n N. It is clear
that N meets P and as N is G-invariant,  contains all or none of the points
in a cycle on dP. Suppose that § contains (perhaps as a proper subset)
cycles C,, ..., C, of vertices in An dP and also points wy,..., w, on 0A
and let Q, be the polygon whose set of vertices is

Ciu---uCuiwg,...,w,}
(Qg is the convex hull of a finite set of points on the boundary of a convex

set). By convexity, Q, = Q so the sum of the interior angles of Q, at its
vertices is not greater than the sum of the interior angles of Q at the same
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points. If the cycle C; has length /; and order q;, we deduce from Section
7.15 that

h-area(Q) > h-area(Q,)

1 1
2n[n+/1+---+/,——2]—2n(—+-~-+—)
1 a:

=7z(n—2)+1t2(/j——3>.
j 4;

It is convenient to adopt here the convention that an elliptic fixed point of
order two and cycle length one is not a vertex. With this convention, each
cycle C; is either accidental (and /; > 3, g; = 1) or elliptic (and ¢;q; > 3).
In all cases, then,

| ro
AN

>J>

(-2
T3

J

)
o

SO
3n + t < 6 + (3/n) h-area(Q).

It follows that only finitely many sides of P (in either convention) meet §.

Now let g, be those side-pairing maps of P for which the corresponding
sides meet (: there are only finitely many such g, and it is only necessary to
show that these generate G. We select any g in G and, by the convexity and
invariance of N, we can join two points, one in Q and the other in g(Q), by
a segment o in the convex set N. We may assume that ¢ does not meet any
image of any vertex of P; then o crosses, in turn, the images

P,gy(P), ..., g,(P)
whereg = g,. As
gi+1Png(P)n N
is a geodesic segment, so is
Pn(g;+1) 'g(P) AN,

(because N is G-invariant) and so each (g, )™ g, is some g,. This proves
that (2) implies (1).

Next, we prove that (1) implies (3): a proof that (3) implies (4) will be
given in the next section and this will then complete the proof of Theorem
10.1.2. We assume that (1) holds and let D be the Dirichlet polygon with
centre at the origin (which we may assume is not an elliptic fixed point of
G). The idea of this part of the proof is first to show that the Euclidean
boundary of D on JA has only finitely many components (so the surface
A/G has only finitely many “ends”). This allows us to express D in the form

D=KuD u---uD,,
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where K is a compact subset of A and where each D; is a subdomain of A
whose boundary on ¢A is connected. It is then only necessary to show that
only finitely many sides of D meet each D; for this is certainly true of the
compact set K. Actually, it is not essential for the proof to show that the
boundary of D; on ¢A is connected but the proof of this is very easy and it
can only increase the general understanding of the ideas involved.

The side-pairing elements of D generate G and so each element of some
finite generating set (which exists by (1)) is a finite word in the side-pairing
elements of D. It follows that a finite number of side-pairing elements
generate G: let these be gy, ..., g;.

Choose some r in (0, 1) such that the disc {|z| < r} contains arcs (of
positive length) of each of the sides of P paired by g,,...,g,. Let

K=Dn{z:]z] <r}
(it is more convenient to take this K rather than its compact closure) and let

G(K) = | g(K).

geG

Observe that for each j, the set K U g;(K) is connected (K is convex) and
hence so is each

Kug;(K)uggi(K)u--ul(g; - g;,)K).

Because the g; generate G, this implies that G(K) is connected.
We may choose r in (0, 1) so that the circle {|z| = r} does not meet any
vertex of D and so that it is not tangent to any side of D. Then

Dn{izi|z|=r} =0,uU--Ua,,

where the o; are pairwise disjoint closed arcs of {|z| = r} lying, apart from
their end-points, entirely in D. Note that by Theorem 9.4.3, the collection
of end-points of all the o; are also paired by the side-pairing maps. This
implies that each end-point of each ¢; is the end-point of some h(c;) for a
unique h and unique o;. The same is true of each h(g;) and of each sub-
sequent image of the o;, and we deduce that each o, lies in a simple arc I
comprising of images of the g;. Because there are only finitely many oy,
the arcs I'; contain images of the same o; and the uniqueness of the con-
struction of the I';implies that I'; is invariant under some non-trivial element
h; of G. Note that I'; consists of the images of a compact arc under iterates
of h;. If h; is elliptic (and hence of finite order) then I'; is a Jordan curve in
A. If h; is hyperbolic, then I'; is a cross-cut of A with the fixed points of ;
as its end-points. If h; is parabolic, then T'; is a closed Jordan curve in A
apart from its initial (and equal final) point which is the fixed point of 4;.
Note that a point of K cannot be equivalent to any point of any ¢, so G(K)
does not meet any I';.
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Figure 10.1.2

Now let D; be the union of g; (a cross-cut of D) and the component of
D—-o; that does not contain the origin: see Figure 10.1.2. Observe that T;
separates D; and G(K) in A.

It is easy to see that D; n dA is connected. Indeed, if u and v are distinct
points in this set, construct a curve by joining u to ru (on ;) radially, then
ru to rv in g; and finally, rv to v radially. This curve, which we denote by
T;, lies in D and does not meet G(K). I h (#1) is in G, then h(D) does not
meet 7; and so lies on the same side of 7; as does G(K). We deduce that the
region X; illustrated in Figure 10.1.3. does not meet any h(D), h # I, and
so lies in D. This shows that D; n dA is connected.

We now return to the classification of the h; stabilizing I'; and complete
the proof. If h; is elliptic, then I'; is a Jordan curve in A so one component
of A-T'; has a compact closure in A. If this component is D;, then only
finitely many sides of D meet ﬁj. If this component is not D, then it contains
G(K) and so G is finite: then the Dirichlet polygon for G obviously only
has a finite number of sides.

Suppose next, that h; is hyperbolic so I'; is a cross-cut of A. One compo-
nent of A-T'; contains G(K) (and hence the orbit of the origin) and so every
limit point of G lies in the closure of this component. The other component
of A-T'; contains D; and there are no limit points on the open arc of 0A that
bounds this component. However, D; lies in D and so lies between the geo-
desic bisecting the segment [0, #;0] and the geodesic bisecting [0, (h;)~ 10]
and these separate D; from the fixed points of h;. We deduce that the
Euclidean closure of D; lies in the set of ordinary points of G. As the Euclidean
diameters of images of D tend to zero (Section 9.3) we see that D; can meet
only a finite number of images of D and hence only a finite number of sides
of D.
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Figure 10.1.3

Finally, suppose that h; is parabolic. In this case, D; N 0A consists of a
single point, namely the fixed point of h;. However, we know that two sides
of D end at a parabolic fixed point (Theorem 9.3.8) so in this case too, only
finitely many sides of D meet D;.

Subject to proving that (3) implies (4) (in Section 10.2) the proof of
Theorem 10.1.2 is complete. O

§10.2. Points of Approximation

Consider a Fuchsian group G acting in A. Let { be a limit point of G so there
are distinct g, in G with g,(0) converging to {. How fast (in Euclidean terms)
can ¢,(0) converge to {? Clearly,

I£ = 9.0 21~ 1g,0)]

with equality if, for example, g, is the nth iterate of some hyperbolic g with
axis equal to the Euclidean diameter [ —{, {] of A. We conclude that the
fastest rate of convergence (to within a constant factor) occurs when

I = 9.00)] = 01 - 19,(0)])

as n — + . As the terms

194112, 2 cosh p(0, ,0), 2/(1 — |g,(O)])
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are asymptotic to each other as n — oo, this fastest rate can be described in
hyperbolic terms, namely,

[{ = g4(0)] = O(1/cosh p(0, g,0)),
or in terms of matrices, namely,

IC = g,(0) = O(ligall ).

Moreover, it is easy to see that we can replace the origin in the first two
expressions by any z in A. This is implicit in the next result which provides
yet another interpretation of this fastest rate of convergence.

Theorem 10.2.1. Let G be a Fuchsian group acting in A, let  be a limit point
of G and let gy, g,, ... be distinct elements of G. Then the following state-
ments are equivalent

(1) for each win A,
1€ = gu(wW)| = O(llgall =%);
(2) for each win A and each geodesic half-ray L ending at {,
0(ga(w), L) = O(1);

(3) for each geodesic half-ray L ending at { there is a compact subset K of A
such that for all n,

G (L) N K # .
PrOOF. In general, p(gw, L) < m if and only if g~ (L) meets the compact
disc {z: p(z, w) < m}: thus (2) and (3) are equivalent and for a given L, (2)

is true or false independently of the choice of w. Further if L, and L, are
geodesic half-rays ending at {, then for some m,,

Ly = {z:p(z, Ly) < my}

so (2)is also true or false independently of the choice of L. For the remainder
of the proof, L will denote the Euclidean radius [0, {) and L’ will denote the
Euclidean diameter (—{, (). Observe that if z is close to {, then

p(z, L) = p(z, L).
Suppose first that (1) holds. Then putting w = 0 we obtain
1{ = 9.0 = 01 — |g,(0)]).
This implies that g,(0) — { so for all sufficiently large n,

p(g.0, L) = p(g,0, L").
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If z € A then (from Section 7.20) we have

sinh p(z, L") = %“_—ml[g—z%—l
2|{z — 1
T ol—z?
L2A2=d
I -z

Putting z = g,(0) with »n large, we obtain (2) in the case w = 0. As (2) is
independent of the choice of w, we see that (1) implies (2).

Next, let z be in A and closer to { than to —( and let v be the foot of the
Euclidean perpendicular from z to L'. Then { is the point on 0A that is
nearest to v and so

lz={l<|z—=v]+|v—{]
Slz—vl+ v = (z/lz])]
<2z -l + |z = (/lz])]
<2z-v|+1-]z])
As
|z — v| = [Im[{z]],
we deduce that
lz = {| : ,
<
e 2sinh p(z, L') + 1
< 2sinh p(z, L) + 1.
Putting z = ¢,(0) and using (2), we find that (2) implies that (1) holds with
w=0.
Finally, if w € A and

az + ¢

2 2
al* - el =1
T P —lef=1,

g(2) =

we obtain (by direct computation)

2
lg(w) = g(0)| < (1 = [w[) cosh p(0, g0)
4
4 102.1
(1 = IwDlgl*’ .

because
|a| = cosh $p(0, g0), |¢] = sinh £p(0, g0).

We have seen that (2) implies that (1) holds when w = 0. Clearly this with
(10.2.1) yields (1) for a general w. O
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In view of the different characterizations of the fastest rate of convergence
it is convenient to adopt some suitable terminology.

Definition 10.2.2. A limit point { of a Fuchsian group G is a point of approxi-
mation of G if for each w in A there is a sequence of distinct g, in G with

Theorem 10.2.3. A point of approximation of a Fuchsian group G cannot lie
on the boundary of any convex fundamental polygon for G.

PROOF. Suppose that a point of approximation ¢ lies on the boundary of a
convex fundamental polygon P. By convexity, we can construct a geodesic
half-ray L lying in P and ending at {. By Theorem 10.2.1(3), the images
(g,)” (P) meet a compact set and this violates the fact that P is a locally
finite (see Definition 9.3.1). a

Example 10.2.4. Every parabolic fixed point of a Fuchsian group G lies on
the boundary of some Dirichlet region: thus a parabolic fixed point of G
cannot be a point of approximation of G.

For a finitely generated groups, Theorem 10.2.3 and Example 10.2.4
give a complete description of the limit points of G.

Theorem 10.2.5. A Fuchsian group G is finitely generated if and only if each
limit point is either a parabolic fixed point of G or a point of approximation
of G.

Remark. Let us say that the limit set A splits if it contains only parabolic
fixed points or points of approximation of G. If G is finitely generated, then
there exists a finite sided convex fundamental polygon for G (because (1)
implies (3) in Theorem 10.1.2). We shall show that the existence of such a
polygon implies that A splits. We will also prove that if A splits then every
convex fundamental polygon for G has finitely many sides and this implies
that G is finitely generated (because (4) implies (1) in Theorem 10.1.2).
Observe that this reasoning shows that Theorem 10.1.2(3) implies that A
splits and hence that Theorem 10.1.2(4) holds. Thus in proving Theorem
10.2.5 in this way, we also complete the proof of Theorem 10.1.2.

Proor oF THEOREM 10.2.5. First, suppose that A splits and let P be any
convex fundamental polygon for G. If P has infinitely many sides, then these
sides must accumulate at some point { on JA. As the Euclidean diameters
of the images of P tend to zero, { must be a limit point on 6P. By Theorem
10.2.3, { cannot be a point of approximation of G and by Theorem 9.3.8,
¢ cannot be a parabolic fixed point of G (else-two sides of P end at {). This
contradicts the fact that A splits so P can only have finitely many sides.
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Now suppose that P is a finite sided convex fundamental polygon for G:
we may assume that P is a Dirichlet polygon (as the proof of Theorem
10.1.2 shows that in this case, G is finitely generated and then any Dirichlet
polygon is finite sided) and we may assume (for simplicity) that the con-
ditions stated in Theorem 9.4.5 hold. By conjugation, we may also suppose
that the centre of P is at the origin.

If two sides of P, say s and s’, have a common end-point v on dA, then v
is a parabolic fixed point of G (Theorem 9.4.5) and the stabilizer of v is
generated by a parabolic element p of G which maps s onto s’. Now con-
struct an open horocyclic region at v bounded by a horocycle Q. Note that
there is a compact arc g of Q such that Q is the union of the images p"(g),
nelZ.

A similar construction holds for the free sides of P. Each end-point of a
free side is the end-point of some image of some free side. The interval of
discontinuity ¢ in which a given free side lies is the countable union of
images of the finite number of free sides of P: these images are non-
overlapping and accumulate only at the end-points of ¢. It follows that some
h in G maps one image of a free side in ¢ to another such image, also in g,
and so k(o) = o (because the intervals of discontinuity are permuted by the
elements of G). We deduce that h fixes both end-points of ¢ and so is hyper-
bolic. The geodesic L with the same end-points as ¢ is the axis of h and we
may assume that 4 generates the stabilizer of L. Note that there is a compact
sub-arc / of L such that L is the union of the images h"(/), n € Z.

The geodesics L and the horocycles Q are finite in number and they
separate the boundary points of P on dA from a compact subset P, of P.
Let K denote the compact set consisting of the union of P, and the finite
number of arcs ¢ and /.

Now let { be any limit point of G which is not a parabolic fixed point and
let L, be a geodesic half-ray ending at {. The initial point of L, can be mapped
to a point in P and the corresponding image of L, cannot lie entirely in one
of the horocyclic or hypercyclic regions constructed above else it ends at a
paraboilic fixed point or an ordinary point of G respectively. It follows that
either L, meets P, or, alternatively, L, meets one of these regions in which
case some image of L, meets one of the arcs g or 7. In both cases an image
of L, meets K and so there is some z, in L, with, say, go(zo) in K.

Now let L, be obtained from L, by deleting the initial segment of L, of
length n. Exactly as for L,, the ray L,, contains some z, with g,(z,) in K.
Clearly, z, — { and the set {g,, g5, ...} is infinite: thus by Theorem 10.2.1,
{ is a point of approximation and A splits. |

ExERcISE 10.2

1. Verify Example 10.2.4 by working in H? with oc the parabolic fixed point (use
Theorem 10.2.1(2)).
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§10.3. Conjugacy Classes

Any group is partitioned into the disjoint union of its conjugacy classes.
The classification of conformal Mdbius transformations is invariant under
conjugation and so we may speak unambiguously of elliptic, parabolic and
hyperbolic conjugacy classes. Within the group of all Mbius transforma-
tions, the conjugacy classes are parametrized by the common value of trace?
of their elements but, as we shall now see, this is not true of the conformal
group of isometries of the hyperbolic plane.

Theorem 10.3.1. Within the group of all isometries of the hyperbolic plane,
two non-trivial conformal isometries are conjugate if and only if they have the
same value of trace?. Within the group of conformal isometries, the value
trace® determines two parabolic or elliptic conjugacy classes or one hyperbolic
conjugacy class.

PRrOOF. We shall prove the result in detail for the parabolic case only. Using
the model H?, any two parabolic isometries are conjugate (in the group of
conformal isometries) to, say, z+z + p and z+> z + g where p and q are
real and non-zero. These are conjugate in the group of conformal isometries
if and only if for some real a, b, c and d with ad — bc = 1, we have

az+p)+b az+b
cz+p)+d cz+d 4

Putting z = —d/c, we find that cp = 0: thusc = Oand ap = dg. As ad = 1,
we have a’p = g so p and g must have the same sign. This shows that within
the conformal group, trace® determines two conjugacy classes of parabolic
elements. In the full group of isometries, however, the translations z+—z + 1
and z+> z — 1 are conjugate: indeed if « and § denote reflections in x =0
and x = § respectively, then
Bo = a(of)x
so af and Bu are conjugate.

The elliptic case is handled similarly using the model A and two
rotations fixing the origin. The hyperbolic case is best handled in H? with
two hyperbolic elements fixing 0 and co. In this case, each element is
conjugate to its inverse because there is a conformal isometry, namely
z+» —1/z, interchanging 0 and co. O

We are now going to examine in detail the conjugacy classes in a Fuchsian
group.

Theorem 10.3.2. Let G be a Fuchsian group and let vy, v,, . . . be the parabolic
and elliptic fixed points on the boundary of some convex fundamental polygon
for G. Suppose that g; generates the stabilizer of v;: then any elliptic or para-
bolic element of G is conjugate to some power of some g;.
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Proor. If g is elliptic or parabolic with fixed point v, then some 4 in G maps
v to some point on ¢P. Thus for some j, we have h(v) = v; and then
hgh™' e {g;>. ]

Corollary 10.3.3. If G is finitely generated, then G has a finite number of
maximal cyclic subgroups {g,),...,<{g,> such that any elliptic or parabolic
element in G is conjugate to exactly one element in exactly one of these sub-
groups.

We need only observe that if g is elliptic or parabolic and if two powers
of g are conjugate, say if

hgnh—l — gm’

then h has the same fixed points as g and so is itself a power of g: thus n = m.
Note that if g is parabolic and fixes v, then h also fixes » and so cannot be
hyperbolic.

Later, we shall need information on the number of such conjugacy classes
of these maximal cyclic subgroups in a subgroup G, of G and the following
simple result is sufficient for our needs.

Theorem 10.3.4. Let G be a Fuchsian group and G, a subgroup of index k in
G. Suppose that G and G, have t and t, respectively, conjugacy classes of
maximal parabolic cyclic subgroups. Then t; < kt. The same result holds for
elliptic elements.

Proor. Let D be a Dirichlet polygon for G in which parabolic and elliptic
fixed points on dD have cycle length one. Thus exactly ¢ parabolic fixed
points lie in 6D. Now express G as a coset decomposition, say

G=g,6,u- Vg0,
S0
D*=(g) ' D)v- L) D)
contains at least one point from each G,-orbit. As D* has at most kt para-

bolic fixed points on its boundary, we have t;, < kt. The same proof holds
for elliptic elements. O

We turn now to the conjugacy classes of hyperbolic elements in a Fuchsian
group.

Theorem 10.3.5. Any non-elementary Fuchsian group contains infinitely many
conjugacy classes of maximal hyperbolic cyclic subgroups.

ProOOF. Suppose not, then there are hyperbolic elements hy,...,h, in G
such that each hyperbolic element in G is conjugate to some power of some
h;. Let u and v be distinct limit points of G. By Theorem 5.3.8, there are
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hyperbolic elements f, f5, ... with distinct axes A, 4,,... such that 4,
has end-points u, and v, where u, - u and v, — v.

As each f, is conjugate to some power of one of a finite number of the
h;, we may relabel and assume that h; = h, for every n. Then

jn = gn(hl)nl(gn)‘ la

say, and so the elements

4n = guhy(g,) "

have distinct axes A, and the same translation length T as h;. As 4, con-
verges to the geodesic (u, v), this violates discreteness: explicitly, if z € (u, v),
then
sinh 4p(z, g,z) = sinh(}T) cosh p(z, 4,)
— sinh(3T)

asn — + oo yet the g, are distinct. O

Now let the conjugacy classes of hyperbolic elements in a Fuchsian
group G be C,, C,,.... The elements in C, have a common translation
length, say T,,.

Theorem 10.3.6. If G is finitely generated then T, - + 00 asn — + 0.

Proor. Theorem 10.2.5 and its proof shows that every hyperbolic fixed
point of G is a point of approximation and moreover, that there exists a
compact subset K of A such that every hyperbolic axis has an image which
meets K. This means that every hyperbolic conjugacy class C, contains an
element g, with its axis A, meeting K. For some d,

K < {zeA:p(0,z2) < d}.
From Sections 7.4 and 7.35 we obtain

1gall? = 2cosh p(0, g,0)
= 2 + 4sinh? $p(0, g,0)
= 2 + 4sinh®(3T,) cosh? p(0, 4,)
< 2 + 4cosh?(d) sinh*(3 T)

soT,—~ +o0asn— + . ]

Remark. Using known information about the convergence of series, for
example, Theorem 5.3.13, we can obtain more precise information about
the rate at which T, tends to + cc.

There are two types of hyperbolic elements in a Fuchsian group which
warrant special attention. First, there are the simple hyperbolic elements
(Definition 8.1.5). There are also the boundary hyperbolic elements h which
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are characterized by the fact that they leave some interval of discontinuity
on the circle at infinity invariant: of course, these only exist for Fuchsian
groups of the second kind.

Theorem 10.3.7. A finitely generated Fuchsian group has only a finite number
of conjugacy classes of maximal boundary hyperbolic cyclic subgroups. A
finitely generated Fuchsian group can have infinitely many conjugacy classes
of primitive simple hyperbolic elements.

PrOOF. A finitely generated group G has a convex fundamental polygon P
with only a finite number of free sides, say s, ..., s,. Each free side s; lies
in an interval of discontinuity ¢; whose stabilizer is generated by a boundary
hyperbolic element, say h;.

If h 1s any boundary hyperbolic element, it leaves some interval of dis-
continuity ¢ invariant and we can construct a half-ray L ending at some
interior point of ¢ and lying entirely in some image f (P) (because the images
of P do not accumulate at the interior points of ¢). As f~*(L) lies in P and
ends at an ordinary point of G, it must end in some s;. Thus f(¢) = o; and
so fhf ! leaves o; invariant: this proves that h is conjugate to some power
of h;.

I-{inally, we must exhibit an example of a finitely generated Fuchsian
group which contains infinitely many non-conjugate primitive simple
hyperbolic elements.

Construct a quadilateral P in A with vertices vy, v,, U3, U, lying on the
circle at infinity. Let f and g be hyperbolic elements pairing the sides of P
as illustrated in Figure 10.3.1. By Poincaré’s Theorem (see Exercise 9.8.2),
the group G generated by f and g is discrete and P is a fundamental polygon
for G. As f and g pair sides of a convex fundamental polygon, they are

U2

Uy

Vs
U3

Figure 10.3.1
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Us

Uy

Figure 10.3.2

simple hyperbolic elements of G (Theorem 9.7.1). It is clear from the
geometry of the actions that the axes of f and g cross P and this implies
that f and g are primitive.

Now let vs = f(v,): then the quadilateral with vertices v, v5, v4, 05 is
also a convex fundamental polygon for G, this time with its sides paired by
fand fg: see Figure 10.3.2. Exactly as above, f and fg are simple, primitive
hyperbolic elements.

This process can be repeated to obtain a sequence g, fg, f2g, ... of prim-
itive simple hyperbolic elements of G. By conjugation, we may assume that
G now acts on H? and that

u 0 a b
J= <o 1/u)’ 9= (c d)’
where u > 1. A trivial computation shows that trace’(f"g) - + o as

n— +o0 so the sequence (f"g) contains infinitely many non-conjugate
elements ( note that a is not zero else g and f have a common fixed point). [J

EXERcISE 10.3

1. Construct an infinitely generated Fuchsian group G containing infinitely many
conjugacy classes of simple primitive hyperbolic elements with the same translation
length (see Theorems 10.3.6 and 10.3.7).

2. Verify the details in the text relating to Figures 10.3.1 and 10.3.2 in the proof of
Theorem 10.3.7 (use Exercise 9.8.2). Give an alternative construction in which the
vertices v; are replaced by free sides and apply Poincaré’s Theorem directly.
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§10.4. The Signature of a Fuchsian Group

Let G be a finitely generated non-elementary Fuchsian group. Any Dirichlet
polygon D for G is finite sided and topologically, D/G is a compact surface
S of some genus, say g, with a certain number of holes removed. As A/G and
D/G are homeomorphic (Theorem 9.2.4), the genus g does not depend on
the choice of D.

Now consider the Nielsen region N for G and corresponding quotient
space N/G. The argument given in Section 10.3 shows that the boundary
of N in A consists of all axes of all boundary hyperbolic elements in G. Let
A be one such axis with stabilizer generated by s and let H be the component
of A—A not containing N. Obviously, H is stable with respect to (k) so the
projection of H into A/G is topologically a cylinder, namely H/<h) (Theorem
6.3.3). One end of this cylinder is the simple loop A/¢(h): indeed no image
of A can cross 4 (as the open arc of A which bounds H contains only
ordinary points of G) and there are no elliptic elements of order two stabi-
lizing A (else G would then have only two limit points).

If we denote the natural projection of A onto A/G by =, we see that n(A)
is the disjoint union of n(N) together with simple loops of the form w(A4)
and with cylinders of the form n(H). The cylinders n(H) are joined to n(N)
across the common boundary loops n(A4) and there are the same number,
say t, of these as there are conjugacy classes of maximal boundary hyper-
bolic cyclic subgroups. It is clear now that the three spaces A/G, D/G, N/G
are homeomorphic to each other.

In addition, G contains only a finite number, say s, of conjugacy classes
of maximal parabolic cyclic subgroups and each of these corresponds to a
puncture on the surface S (consider the quotient of a horocyclic region that
is stable under a cyclic parabolic subgroup). Finally, G contains only a
finite number, say r, of conjugacy classes of maximal elliptic cyclic subgroups:
let these have orders my, ..., m, respectively. We introduce terminology to
summarize these facts.

Definition 10.4.1. The symbol
(g:my,...,m,;s;t) (104.1)

is called the signature of G: each parameter is a non-negative integer and
m; > 2.
;=

If there are no elliptic elements in G, we simply write (g: 0; s;¢t). It is
possible to state precisely which signatures occur.

Theorem 10.4.2. There is a non-elementary finitely generated Fuchsian group
with signature (10.4.1) and m; > 2 if and only if

2g—2+s+z+2(1—-1—->>0. (10.4.2)

J=1 m;
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The proof that (10.4.2) is a necessary condition for the existence of a
group with signature (10.4.1) is a consequence of the following result.

Theorem 10.4.3. Let G be a non-elementary finitely generated Fuchsian group
with signature (10.4.1) and Nielsen region N. Then

h-area(N/G) = Zn{Zg 254+ Y (1 _ _1_)}
j=1 m;

If G is also of the first kind, then N = A and ¢t = 0: thus we obtain a
formula for the area of any fundamental polygon of G.

Corollary 10.4.4. Let G be a finitely generated Fuchsian group of the first
kind with signature (g:my, ..., m,;s;0). Then for any convex fundamental
polygon P of G,

! 1
h-area(P) = 27r[2g —2+s+ ) (1 - ——)]
j=1 m;
Proor oF THEOREM 10.4.3. We take D to be the Dirichlet polygon 1or G
with centre w so

h-area(D N N) = h-area(N/G).

By choosing w appropriately, we may assume that each elliptic and parabolic
cycle on éD has length one and (by taking w to avoid a countable set of
geodesics) we may assume that no cycle of vertices of D lies on the axes of
hyperbolic boundary elements.

Clearly, only finitely many distinct images of a hyperbolic axis can meet
the closure of any locally finite fundamental domain. As N is bounded by
hyperbolic axes (because G is finitely generated), this implies that only
finitely many sides of N meet D and so D n N is a finite sided polygon. The
boundary of D NN consists of, say, 2n paired sides (which are arcs of paired
sides of P) and k sides which are not paired (and consist of arcs in D of the
axes bounding N). The vertices of D n N are the r elliptic cycles of length
one, the s parabolic cycles of length one, some accidental cycles of P (say
a of these) and finally k cycles of length two corresponding to the end-points
of the k unpaired sides of D N N.

Applying Euler’s formula (after “filling in” the holes), we obtain

2—-29g=(1+t)-(n+k)+(@T+a+k+ys)
SO

n—a=29—-1+r+s+t
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Now join w to each vertex of D n N, thus dividing D n N into 2n + k
triangles. Adding the areas of these triangles, we obtain

)
h-area(D ~ N) = (2n + k)1 — 21 — 2ma — wk — ¥ =

j=1M;

“nfreaci £ 1]

j=1m

4 1
=27z[2g—-2+s+t+ Z<1—~—>]. O
j=1 m;
It is evident from the nature of the formula in Theorem 10.4.3 that
h-area(N/G) has a positive universal lower bound, valid for all groups G.
For brevity, write

A = (1/27) h-area(N/G)

and, in order to compute this lower bound, we may assume that 4 < ¢:
this is a convenient number for the following analysis and we shall soon see
that there are groups for which 4 < ¢.

Ifr = Qorif m; = 2foreach j, then A = n/2 for some integer n. As 4 > 0,
we find that A4 > } so we may assume that r > 0 and that some m; is at
least three. Then

1 > 64
r—1 2
>6[2g—2+s+1t+ —2— + 3
which yields
4g + 25+ 2t +r <4
Because
2<A+2
<2g+s+t+r
<49+ 25+ 2t +r
< 4,
we obtain
29+s+t+r=3
=49+ 25+ 2t +r
so
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We may now assert that

1 1 1
A=1—(~+~—+——)>0.
my  m; M3

If each m; is at least three, then one m; is at least four and then 4 > &. If
not, then m; = 2, say, and so

l 1
A=3-(L+1)s0
my  m;

If each of m, and m, is at least four, then one is at least five and then 4 > 5.
If not, then m, = 3, say, and

A>2

with equality when and only when G has signature (0: 2, 3,7;0;0). For
future reference we state this as our next result.

Theorem 10.4.5. For every non-elementary Fuchsian group G with Nielsen
region N

h-area(N/G) = =/21.

Equality holds precisely when G has signature (0: 2, 3, 7; 0; 0) in which case
N = A

We end this section with the remaining part of the proof of Theorem 10.4.2.

ProoF oF THEOREM 10.4.2. Sufficiency. Given the symbol (10.4.1) satisfying
(10.4.2), we must construct a Fuchsian group G which has (10.4.1) as its
signature.

For any positive d, construct the circle given by p(z, 0) = d and also a set
of 49 + r + 5 + t points z; equally spaced around this circle (and labelled
in the natural way). The arcs z;z;. , subtend an angle 26 at the origin where

2n
0= .
8 + 2r + 25 + 2t

For the first four of these arcs, we construct a configuration with mappings
h; as illustrated in Figure 10.4.1. Note that the points z,,..., z5 are all
images of each other.

This construction is repeated g — 1 more times, starting the next stage
at z; and so on: this accounts for 4g arcs z;z;, ,, an angle 8¢6 at the origin
and mappings hy, ..., hy,.

Using the next r arcs z,z;. ;, we construct configurations with mappings
e; as illustrated in Figure 10.4.2 (recall that the integers m; are available
from (10.4.1) and m; > 2). Necessarily, ¢; is an elliptic element of order m;
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- p(z,0) =d

zs = hy(z,)

z3 = hy(z;) 24 = hy(2,) = hy(z3)
Figure 10.4.1

and fixing w;. This part of the construction accounts for an additional
angular measure of 2rf at the origin. Next, we repeat the construction s
times and now on each occasion the corresponding w; are on {|z| = 1}:
the angle at w; is zero and the corresponding mappings p; (for e;) are
parabolic.

There are now ¢ remaining arcs, each subtending an angle of 26 at the
origin. On each of these arcs we construct the configurations and hyperbolic
mappings b; as illustrated in Figure 10.4.3 where

1+d
6, = [——]b.
! (1 + 2d>
We have now constructed a polygon with vertices z;, u;, v;, w; and with
side-pairings given by the h;, ¢;, p; and b;. The group G generated by these

maps may or may not be discrete but in any case, the points z,, z,, ... lie
in the same G-orbit. Moreover, the angle sum subtended at these z; is

(d) = 8ga + 2(By + - + Bristr)

PN plz,0) = d

wj

Figure 104.2
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N pa0)=d Jz=1

Figure 10.4.3

Each of the angles a and f3; depend continuously on the parameter d. We
shall show that for some choice of d we have ¢(d) = 27. Then Poincaré’s
Theorem (see Exercise 9.8.2) implies that G is discrete and that the con-
structed polygon is a fundamental domain for G. It then remains to verify
that G does indeed have the signature (10.4.1).

By elementary trigonometry, we have (using Figures 10.4.1, 10.4.2 and
10.4.3 in turn)

@) cosh d = cot 6 cot «;
Gi cosh d = cos ¢ cos B; + cos(n/m;)
sin § sin f3; ’
when j = 1,...,r, and a similar expression with cos(n/m;) replaced by

lwhenj=r+1,...,r +s;

cos 6, cos B; + 1

hd =
(i) cos sin 0, sin f;

Note that asd — 0, so « — (n/2) — 6. In (ii), we have

J

cos(d + B;) = cos(rc - ml) + sin 8 sin f(cosh d — 1)
and soasd — 0,

4
Bj—>n— ZJ -0,
with the appropriate interpretation of m; = +c0 when r <j<r +s. In
(iii), we have
0, +B—-n
so
ﬂj —> T — 9.
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It follows that as d - 0, so

. ! 1
¢(d)—»2n[2g~2+s+t+ Y (1——)}-{—271
j=1 m;
> 2.

As d — + o, the angles o and f; each tend to zero (note that 8, — 6/2) so
in this case, ¢(d) — 0. We deduce that for some choice of d, we have ¢(d) = 2n
and G is then discrete.

It is clear that G has elliptic elements of orders m,, ..., m, and also s
parabolic and ¢ boundary elements and that these do not represent the same
conjugacy classes (essentially because they pair adjacent sides of the funda-
mental polygon). If A/G has genus g* then by Euler’s formula applied to the
identified polygon,

2-2*—5s—t=1-Q2g+r+s+t)+{+7r)

so (as expected), g* = g. O

ExErcIsk 10.4

1. Let G be a non-elementary Fuchsian group and suppose that a parabolic element g
in G generates the stabilizer of its fixed point v. By considering a suitable horocyclic
region H based at v, show that n(H) is conformally equivalent to a punctured disc
in A/G.

2. Show that there is a positive constant § such that if P is any convex fundamental
polygon for some non-elementary Fuchsian group G, then P n N contains a disc of
radius at least 4. Obtain an explicit estimate of §.

3. Let P be the hyperbolic quadilateral in H? with vertices — 1, 0, 1, . Show that P
is a fundamental domain for the group G generated by

g(z) =z + 2, h(z) = z/(2z + 1).

Compute the signature of G and verify the formula for the area of H2/G explicitly in
this case. Find the index of G in the Modular group (this is a particular case of
Selberg’s Lemma).

§10.5. The Number of Sides of a Fundamental
Polygon

We restrict our discussion in this section to a finitely generated group G of
the first kind. In this case, we can omit the last parameter in the signature
(104.1) and we can consider parabolic elements as elliptic elements with
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order m; = + . Thus we can shorten the notation for the signature to
(g: my,...,m,) or, if G has no elliptic or parabolic elements, to (g: 0).

Theorem 10.5.1. Let G be a finitely generated Fuchsian group of the first
kind and let P be any convex fundamental polygon for G. Suppose that P has
N sides (where no side is paired with itself’).

(i) If G has signature (g: my, . .., m,) where possibly n = 0, then
N < 12g + 4n - 6.

This upper bound is attained by the Dirichlet region with centre w for

almost all choices of w.
(i) If G has signature (g: 0), then N > 4g and this is attained for some P.
(iii) If G has signature (g: my, ..., m,), n > 0, then

Nzd4g+2n-2

and this is attained for some P.

Proor. Suppose that P has elliptic or parabolic cycles Cy,..., C, and
accidental cycles C,,,, ..., C,. 4: either (but not both) of these sets of
cycles may be absent. In general, we let | C| denote the number of points in

the cycle C.
Now
IC;l=1 ifl <j<ng
[C;l =3 ifn<j<n+A4,
and
n+A
N =3 |C;l.
j=1
Thus

0< A< (N-n)s.
Euler’s formula yields
2—29g=1-(N2)+n+ A (105.1)
and the inequalities in (i) and (iii) follow by eliminating 4. The inequality

in (ii) follows from (10.5.1) by putting n = 0 and observing that as n = 0,
we have 4 > 1.
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The polygon P has N sides and hence N vertices. For almost all choices
of w, the Dirichlet region with centre w has |C;| =1 for 1 <j < n and
|C;| = 3forj > n. Then

34=N —n

and so equality holds in (i). The proof of Theorem 10.4.2 (sufficiency)
shows that the lower bound of 4g in (ii) may be attained. Finally, a similar
argument to that used in the same proof shows that the lower bound in
(iii) may also be obtained: briefly, one constructs the polygon as though the
signature were (g:m,,...,m,_,;) and seeks a value of d so that

o(d) = 2n/m,. g

In the next section we shall study Triangle groups: these are the groups
with signatures (0: p, ¢, r) where (necessarily)

1 1 1

—+-+-<1

p q r
Observe that for almost all choices of the centre w, the corresponding
Dirichlet region has six sides: the customary fundamental polygon for such
groups is a quadrilateral yet, in some sense, this is the exceptional case.

§10.6. Triangle Groups

This section is devoted to an important class of Fuchsian groups known as
the Triangle groups. Roughly speaking, these are the discrete groups with
the more closely packed orbits and the smallest fundamental regions. We
begin with a geometric definition that does not mention discreteness.

Definition 10.6.1. A group G of isometries of the hyperbolic plane is said to
be of type (a, B, y) if and only if G is generated by the reflections across the
sides of some triangle with angles a, f and y.

Of course, such groups exist if and only if «, f and y are non-negative
and satisfy

O<a+f+y<m

Any two such groups of the same type are conjugate in the group of all
isometries (because two triangles with the same angles are congruent) and
there is no significance to be attached to the order of «, § and y in the triple
(o, B, 7)-

The next example shows that such a group (even if discrete) may be of
more than one type.
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Figure 10.6.1

Example 10.6.2. Let T, and T, be the two triangles illustrated in Figure
10.6.1: the corresponding groups are

G, =<0y, 05,17
of type (0, m/2, 7/3) and

GZ = <0'1, 02, T>

N

of type (0, 0, 2m/3) where #, o, and t are reflections in the lines x = 0, x =
and x = 1 respectively and g, is the reflection in |z| = 1.
Clearly,

no, = 0,1

so ne G, and 1€ G,; thus G, = G,. In fact, the subgroup of conformal
isometries of this group is the Modular group and so G, is itself discrete.
Note that

h-area(T;) = 2h-area(T;)
so T, is not a fundamental domain for G, . O

Each group G of type (a, f, y) has a distinguished subgroup G, of index
two in G, namely the subgroup of conformal elements of G: we call G, a
conformal group of type (x, B, 7). If 6,, 0, and o, denote the reflections
which generate G, then the elements of G, are precisely the words of even
length in the g; and G, is generated by, say, ¢,0, and o3 0, because

gi0; = (6;0) ", 0,03 = (0,0,)(030,) "%
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Suppose that 7 is the angle of the triangle at the vertex v, opposite the
side fixed by the reflection o5. Then o0, fixes v; and it is parabolicif y = 0
and elliptic with a rotation of angle 2y if y > 0. Thus G, is generated by a
pair f. g of conformal isometries, each being elliptic or parabolic. [t is con-
venient to consider parabolic elements as elliptic elements of infinite order
and we shall frequently adopt this convention in the following discussion.

If G of type (2, f,7y) (or its corresponding conformal subgroup G) is
discrete, then every elliptic element in G, is of finite order. Thus if any of
%, ff and ; are positive, then they are necessarily of the form

kn/p,  (k,p) =1 (10.6.1)

for (coprime) integers k and p. This is a necessary condition for discreteness
but it is not sufficient. Indeed, it is easy to see that if «, 5 and y are all positive,
then the images of the triangle T under G cover the hyperbolic plane. We
deduce that if G is discrete then two disjoint copies of T must contain a
fundamental region for G, and so (from Theorem 10.4.5),

h-area(T) > =/42.
It follows that if o, § and y are of the form (10.6.1) with
T—(x+ f+7y) <n/42

(and such angles clearly exist) then G, is not discrete.
A sufficient condition for discreteness is that each of «, f and y is of the
form

n/p, 22p=< 4+ (10.6.2)

for some integer p: indeed, if this is so then a direct application of Poincaré’s
Theorem shows that G is discrete. This sufficient condition, however, is not
necessary: for example, G, of type (0, 0, 27/3) in Example 10.6.2 is discrete.

The apparent discrepancy between (10.6.1) and (10.6.2) is easily resolved.
A group of type (o, f, 7) is discrete if and only if it is also of some (possibly
different) type (n/p, n/q, n/r): for example, G, in Example 10.6.2 is also of
type (0, 7/2, 7/3). This result will be proved later in this section.

We shall confine our attention to discrete conformal groups and we
adopt the following standard terminology.

Definition 10.6.3. A group G is a (p, g, r)-Triangle group if and only if G is a
conformal group of type (n/p, n/q, n/r): we call G a Triangle group if it is a
(p, g, r)-Triangle group for some integers p, g and r.

Observe that, from the remarks relating to (10.6.2), a Triangle group is
necessarily discrete. Now we derive two results concerning Triangle groups.
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Theorem 10.6.4. 4 group G is a (p, g, r)-Triangle group if and only if it is a
discrete group of the first kind with signature (0: p, g, r).

Theorem 10.6.5. Let G be a discrete group of conformal isometries of the
hyperbolic plane. If G contains a Triangle group G, as a subgroup, then G
itself is a Triangle group.

PRrROOF OF THEOREM 10.6.4. Suppose first that G is a (p, g, r) Triangle group.
Then G is the conformal subgroup of index two of a discrete group G*
generated by reflections o,, 0, and g5 across the sides of a triangle T* with
angles n/p, n/q and n/r. Poincaré’s Theorem implies that T* is a fundamental
domain for G* and so

T=T*uo,(T*)
is a fundamental domain for G. Clearly, then, G is of the first kind.
The isometries
g =0,0,, h=0,04
generate G and
g=h=(hlg=1I

see Figure 10.6.2. The images of a neighbourhood of v, relative to T under

iterates of g tesselate a plane neighbourhood of v, so (as T is a fundamental

domain) neither v, nor v, are images of v;. This shows that g is not conjugate

to any power of h or h™'g. By symmetry, then, G has three elliptic or para-

bolic conjugacy classes of subgroups represented by <{g>, ¢h) and <h™!g).
The genus k of A/G is found from Euler’s formula, namely

2 — 2k = (faces) — (edges) + (vertices)
=1-2+3:

Figure 10.6.2
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so G has signature (0: p, g, r). Alternatively, one can show that k = 0 by
applying the Area formula to T.

Now suppose that G is a discrete group of conformal isometries with
signature (0: p, g, r). Let D be a convex fundamental polygon for G with,
say, cycles of lengths N ,, N, and N, corresponding to the conjugacy classes
associated with p, g and r. Suppose also that there are r accidental cycles
of lengths, say, M,..., M, so M; > 3. Observe that as G is of the first kind,
D has no free sides.

Select any w in D and join w to each vertex of D. Equating areas, we obtain

27z[1 - (l + ! + l)]
p 4q T
= h-area(D)

1 1 1
=[Np+Nq+N,+M1+~-~+M,]n—27t—2nt—2n<;+a+;>
and so
t
I=(N, - D+ (N, =D+ (N,—= D+ Y (M; -2).
ji=1

As each of the ¢ + 3 terms on the right is a non-negative integer, only two
cases arise, namely

Case . N,=N,=N,=1;t=1,M, =3;o0r

Case 2. N,, N,, N, are (in some order) 1, 1, 2 and there are no accidental
cycles.

In Case 2, D has four vertices and so is a quadrilateral. Supposing that
N, = N, = 1, we see that D is as illustrated in Figure 10.6.3.

Figure 10.6.3
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The cycle corresponding to N, (=1) is {v,} so the two sides ending at
v, are paired: thus

[)(Ul, 04) = P(Uh 02)
and so 8, = f,. Similarly, ¢, = «, so

w0 + B = oy + B
oy +ay + B + B,)
= 7/p.

It

The properties of isosceles triangles guarantee that the segment [, v4] is
a line of symmetry of the quadrilateral so in this case G is the conformal
Triangle group associated with group generated by reflections across the
sides of the triangle with vertices vy, v, and v5.

In Case 1, D is a hexagon with elliptic (or parabolic) vertices v,, v, v3
and a single accidental cycle {a,, a,, a;}. The side-pairing must occur as in
Figure 10.6.4. where we have sub-divided D into the regions Q, T, and T;. As

h(a,) = gf(ay),

we see that h = gf (a, is not an elliptic or parabolic fixed point). It is now
easy to see that Q U h(Ty) ug(T;) is a fundamental quadrilateral with
vertices vy, v,, U3, h(v,)(=¢g(v,;)) and this reduces Case 1 to Case 2. O

h(vy) = g(v3)
Figure 10.6.4
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Observe that this proof shows that a convex fundamental polygon for a
Triangle group is necessarily a quadrilateral or a hexagon: the reader should
now review the remark at the end of Section 10.5.

PrOOF OF THEOREM 10.6.5. In view of Theorem 10.6.4, we can work entirely
with the signatures of G and G,. As

0 < h-area(A/G) < h-area(A/G,) < 2n

we see that G is of some finite index k in G (Theorem 9.1.3). The case k = 1
is trivial so we may assume that k > 2, hence

h-area(A/G,) = k h-area(A/G) (10.6.3)
> 2 h-area(A/G).

According to Theorem 10.6.4, G, has some signature (0: p, g, r). Let G
have signature (g:t;,...,t,): then the Area formula (Corollary 10.4.4)

yields
1 1 1 " 1
l—(=+-+-)=kl2g—2+ 1 — -
(P q r) [g j;( tj)]

> 0.

The left-hand side is at most one:sog = Qor 1. If g = 1, then n > 1 (else
the area is zero) and (as t; > 2 and k > 2) we have

This cannot be so, however, as then equality holds throughout, G, contains
parabolic elements (for then p = ¢ =r = o) but G does not (t, = --- =
t, = 2).

We deduce that g = 0 and (for positive area) n > 3. This yields

kGGn —2) sk[zn: (1 - ;—) —2]

(1 1 v
L= (=+=+-
poa v

<L

I

As k > 2 we obtain n < 5. If n = 5, then k = 2 and equality again holds
throughout: this is excluded exactly as above. Thus n =3 or 4. If n = 3,
then G has a signature (0:t,,t,,t3) and so is a Triangle group. It only
remains to exclude the case g = 0,n = 4.
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Assume, then, that g = 0 and n = 4. We may assume that r < g < p and
p < t, (as G, contains an element of order p, so does G). Then

3 11 1
=221 —(-4-+-
p p 4q r

-5 0=

This is false unless p = oo in which case, equality holds throughout so
k = 2 and the signatures of G, and G are

(0: o0, 0, x0), 0:2,2,2, ),
respectively. This is excluded, however, by Theorem 10.3.4. O

Finally, we turn our attention to conformal groups of an arbitrary type
(2, B, y). We observed earlier that these groups are generated by elliptic or
parabolic elements g and h which pair the sides of a quadrilateral with a
line of symmetry as illustrated in Figure 10.6.5. Conversely, given such a
configuration, it is clear that {g, h) is a conformal group of type (e, 8, y).
Note that the reflection in (v,, v5) interchanges v, and v, so (v,, v,) is orthog-
onal to (vy, ;).

Theorem 10.6.6. A conformal group of some type (o, B, 7v) is discrete if and
only if it is a Triangle group.

)

Figure 10.6.5
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Figure 10.6.6

Proor oF THEOREM 10.6.6. By definition, a Triangle group is a discrete con-
formal group of some type (2, f3, 7). Now suppose that G is a discrete con-
formal group of some type (a, f, y): by virtue of Theorem 10.6.5, it is only
necessary to construct a Triangle group which arises as a subgroup of G.
We refer to Diagram 10.6.5 and there are three cases to consider.

Case 1: both g and h are elliptic.

As G is discrete, g is of finite order p and h is of finite order g, say. Thus there
is some g, in {g) with angle of rotation 27/p and some h, in {h) with angle
of rotation 2n/q. Now take conjugates (in G), say g, of g, and h, of h, such
that the fixed points u (of g,) and v (of h,) are distinct but otherwise are as
close together as possible: this can be achieved because the images of vy
cannot accumulate at v,.

Now construct the quadrilateral illustrated in Figure 10.6.6 by drawing
the geodesics at angles n/p and n/q from [u, v]. These geodesics must meet
at some points x and y (possibly on the circle at infinity) as otherwise (from
Section 7.10)

1 + cos(n/p) cos(n/q)

sin(n/p) sin(w/q)
1 + cosacosy
> —
sin a §in y

cosh p(u, v) >

>cosﬁ+coscxcosy
- sin o sin y

= cosh p(v,, v3)

contrary to our choice of u and v. As remarked earlier, (x, y) and (u, v) are
othogonal.
Now observe that

f= (92) " 'h,
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fixes x and is the reflection o, , in [x, v] followed by the reflection o, , in
[x, u]: indeed,
f = (Uu, vau. x)- 1(O.u,v.lolx,v)‘

If x is on the circle at infinity, then f'is parabolic and <{g,, h,> 1s a (p, ¢, )
Triangle group. If x is a finite point, then f is elliptic and of finite order so
the angle at x is of the form kx/r with (k, r) = | (and f is a rotation of 2rk/r).
There is then some anti-clockwise rotation f, about x of angle 2n/r. If k > 3
then f,(v) is nearer to but distinct from u, contrary to our choice of u and v.
Thus k = lor 2. If k = 1, then the angle at x is n/r and {g,, h, Y isa (p, g, r)-
Triangle group. If k = 2, then

f2 = Ox,wO0x,0

and so <(h,, f5) isa (2, q, r)-Triangle group in G associated with the triangle
with vertices x, v, w. This completes the proof in Case I.

Case 2: g is elliptic and h is parabolic.

We work in H? and suppose that h fixes c0. The line joining the fixed points
of g and h is necessarily a line of symmetry of the quadrilateral so the
situation is as illustrated in Figure 10.6.7.

The orbit of v, contains points of maximal height (h is parabolic fixing
oo and this is essentially Jgrgensen’s inequality) and this symmetric con-
struction can be carried out using an image of v, of maximal height instead
of v and a rotation of angle 2x/p about this point (p being the order of g)
instead of g. Because the original angle at v, is not less than 2r/p, the new
diagram provides a quadrilateral exactly as in Figure 10.6.7; however, we
may now assume that v, is of maximal height in its orbit and that the angle
at v, is 27n/p.

If§ = 0, then (g, h) is a (p, oo, c0)-Triangle group. If6 > 0, then 8 = kn/r
for some coprime k and r. If k > 2 there is an anti-clockwise rotation f of
2m/r about v, in G and f(v,) has greater imaginary part than v,. This cannot
be so: thus k = 1 and (g, h) is a (p, r, 0)-Triangle group in G.

Figure 10.6.7
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Case 3: g and h are parabolic.
We work in H? and we may assume that g fixes 0 and h fixes o0 the situation
is illustrated in Figure 10.6.8 and if 6 = 0, then {g, h) is a (o, ©, %)-
Triangle group. If @ > O, we construct the group (f, h) where /' = hg™! is
elliptic and this reduces Case 3 to Case 2. O

ExERCISE 10.6

1. Show that if G is a Fuchsian group acting on A and if h-area(A/G) < n/3 then Gis a
triangle group. Show that the bound of /3 cannot be improved.

2. Show that if G is a conformal discrete group of some type («, f, ), then it is of exactly
one type (n/p, n/q, m/r).

3. Construct a fundamental quadilateral for a Hecke group H, (¢ = 3,4,...) of signa-
ture (0: 2, ¢, %) and show that H, is generated by a parabolic g and an elliptic & of
order two.

4. Letvy,v,, v and v, be distinct points on and placed in this order around {|z| = 1}.
Let g and h be parabolic elements with

glvy) = vy, g(vs) = vy, h(r3) = vs, h(vy) = v,.

Show that é'lh is parabolic if and only if the cross-ratio [v,, v,, 3, v4] takes a
specific value. Is G = {g, h) discrete? In any event, the quadilateral is not a funda-
mental domain for G unless g~ 'h is parabolic.

§10.7. Notes

For information on finite sided polygons, see [9], [10], [34], [35], [38],
[46], [58], [76]. Points of approximation were studied by Hedlund (see
[51], p. 181): also, see [8] and [109]. For results on conjugacy classes and
subgroups, consult [49] and [97]. For a discussion of Triangle groups see
[48] (for angles of the form na/b) and [65].



CHAPTER 11

Universal Constraints On Fuchsian
Groups

§11.1. Uniformity of Discreteness

This chapter is concerned with the uniformity of discreteness exhibited by
Fuchsian groups. As there is no uniformity to be found in the class of
elementary groups, these must be regarded as exceptional. The Triangle
groups are also, in some respects, exceptional. In general, a sharp quanti-
tative expression for uniform discreteness will take a special form (depending
only on the signature) for Triangle groups, and another single form (in-
dependent of the signature) for all non-elementary non-Triangle discrete
groups. Thus it is the nature rather than the existence of the uniformity
which leads one to treat the Triangle groups as a special case.
‘We shall discuss the following aspects of uniformity.

(1) The distribution of a cycle of vertices of a fundamental polygon. What
are the geometric constraints relating to a cycle of vertices? What (if
anything) can be said about accidental cycles?

(2) The geometric constraints on the isometries. For example, how close can
two elliptic fixed points be in a discrete group? What are the constraints
on the translation lengths of hyperbolic elements?

(3) The location of canonical regions. Canonical regions were defined in
Section 7.37. The definition does not depend on discreteness: what can
be said in the presence of discreteness and what does this imply for the
quotient surface?

(4) The displacement function p(z, gz). This has been discussed earlier (see,
for example, Theorem 8.3.1): what can be said when elliptic elements
are present ?

(5) The constraints on the corresponding matrix group. A typical example of
this is Jergensen’s inequality.
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The results presented here do not form a complete and comprehensive
account of uniformity of discreteness. Nevertheless, they indicate from a
geometric point of view why such results must exist and references are given
to further results of this type.

Broadly speaking, our attitude here is to apply simple geometric ideas
to obtain universal constraints: these methods may fail for certain (and
usually, relatively few) Triangle groups and for these, the reader is invited
to supply individual computations.

§11.2. Universal Inequalities for Cycles of Vertices

We establish here some of the universal constraints which must be satisfied
by a cycle of elliptic or even accidental vertices on the boundary of a funda-
mental polygon of a Fuchsian group.

First, consider a Fuchsian group G acting on H? with g(z) =z + | in
G and generating the stabilizer of ~. In this case, we can construct a funda-
mental domain as in Section 9.6, this being the region lying exterior to all
isometric circles and inside any strip of width one. Note that in this case,
each cycle of vertices lies on some horocycle Im[z] = constant.

By choosing the vertical strip xq < x < xo + 1 suitably, we may assume
that the cycle of verticesis w; (j = 1,...,n + 1) where w; = u; + iv and

Xo=uUy < Uy <o+ <Uppy =X+ 1.

Now construct triangles T; with angles 6; as in Figure 11.2.1.

e -_

Xo v/tan 6,

Figure 11.2.1
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By noting that the T; lie in a fundamental region (by convexity) and by
considering the angle sum at the cycle (w;) we have

Y0, < n/g, a1.21)

j
where the cycle (w)) is of order ¢ (for an accidental cycle, g = 1). Clearly, by
considering the Euclidean projection of the T; onto the x-axis, we have

— 1
ZUCOtOj—f.
J

By Jensen’s inequality, (1.2.2), we have (using (11.2.1) first)

cot(n/gn) < cot(n‘l Z 9j)
<yn! cotj 6;
= ll/2vn.
This yields the following result.
Theorem 11.2.1. Suppose that g:+ z + 1 generates the stabilizer of  in a

Fuchsian group G acting on H* and let w,, ..., w, be those vertices in a cycle
of order g which lie in some strip xo < x < xo + 1. Then

Im[w;] < 1/2n tan(n/gn).

For an accidental cycle, we have ¢ = 1 and n > 3: thus we obtain the
next result.

Corollary 11.2.2. If (w;) in Theorem 11.2.1 is an accidental cycle, then
Im[w,] < &tan(n/3) = 1/2/3,

or, in an invariant form,
sinh 3p(w;, gw;) > \/_3-
Corollary 11.2.3. If (w;) in Theorem 11.2.1 is an elliptic cycle of order g
(g = 3) then
Im[w;] < jtan(z/q),
or, equivalently,
sinh $p(w;, gw;) > 1/tan(n/q).

We shall see in Section 11.3 that the bound in Corollary 11.2.3 is best

possible.
We can also obtain inequalities for accidental vertices on the boundary of

a Dirichlet polygon.
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Theorem 11.2.4. Let G be a non-elementary Fuchsian group and let v, . . . v,
be an accidental cycle on the boundary of the Dirichlet polygon with centre w.

(i) If n > 5, then cosh p(w, v;) > l/tan*(n/n) > 1-89... ;
(ii) if n = 4, then cosh p(w, v}) is not less than some absolute constant u(>1);
(iii) there is no universal lower bound in the case n = 3.

If G has no elliptic elements, a universal lower bound exists for all values
of n.

Theorem 11.2.5. Let G be a non-elementary Fuchsian group without elliptic
elements. If (v;) is an accidental cycle of vertices on the boundary of the
Dirichlet polygon with centre w, then

cosh p(w, v;) > \/5
Proor oF THEOREM 11.2.5. The cycle (v;) lies on a circle C, say {z: p(z,w) = r}
and contains at least three vertices with, say,
v, = g(vy), v = h(r,).

Let G, be the group generated by g and h. If G, is elementary, then it is
cyclic with a parabolic or hyperbolic generator f. In either case, the points
vy, v, and v3 cannot lie on a circle so G, must be non-elementary. By Theorem
8.3.1,

sinh {p(v,, gv,) sinh 3p(v,, hv;) > 1.

Now
p(vy, gvy) = p(vy, U,)
< p(vg, w) + p(w, v,)
=2r
and similarly for h. We deduce that sinh r > 1 as required. O

PROOF OF THEOREM 11.2.4. We may assume that G acts on A and thatw =0
as all terms are invariant under conjugation. Thus the points v; lie (and can
be assumed to be labelled cyclically) on some circle p(z, 0) = r. The arcs
(v;, v;4+,) (not containing any other v;) subtend an angle 2« at the origin and

Yo=m
j

As the cycle length is at least three there is at most one j for which 2a; > m.

If 20; < 7 then the triangle T; with vertices 0, v;, Vj+, and angles 20, 0;,0;

lies in the Dirichlet polygon and as the angle sum of the cycle is 27, we have
Y. 0,<m
J

Note that from Section 7.12 (by considering one half of T))

coshrtanf;tana; = 1:
see Figure 11.2.2.
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Figure 11.2.2

Now either each «; is less than n/2 and then

Y (0;+a)<2n

j=1
or exactly one a; (say a,) is at least /2, in which case

n—1

0, + o)) <21 — o, < 3m/2.
= J J
=

In both cases, some 8, + «, is at most the average value which (as n > 5) is
at most 27t/n. Thus for this k we have (see (1.2.3))

tan oy tan 6, < lanz(()—"?izf)
< tan®(n/n).
This proves (i): note that it provides no information when n is 3 or 4.
The case n = 4 is more complicated and the proof of (ii) will be given in
Section 11.6.
To prove (iii), construct the polygon P illustrated in Figure 11.2.3. The
polygon has four pairs of sides with side-pairing elements g, h (each of

Figure 11.2.3
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order two), hg (hyperbolic) and f (parabolic). By Poincaré’s Theorem, P is
a fundamental domain for the non-elementary Fuchsian group generated by
f,gandh.

This construction is possible if and only if § < n/6 and then

cosh t sin(n/3) = cos 6, 2t = p(v,, v,):

thust — 0+ as@ — n/6 from below. Observe that each v; is the same distance
from w and that
cosh p(w, v;) tan(n/3) tan 6 = 1.

Thus as § — n/6, so p(w, v,) — 0.

[t remains only to prove that P is actually the Dirichlet polygon D(w)
for {f, g, h) with centre w. Now the sides paired by f are the perpendicular
bisectors of the segments [w, fw], and [w, f ~'w]: a similar statement holds
for hg. Also the two sides making the edge [v,, v,] lie on the perpendicular
bisector of the segment [w, gw]: a similar statement holds for [v,, v;]. We
deduce that P contains the Dirichlet polygon D(w); as P is a fundamental
domain, it must be D(w). O

Example 11.2.6. Given any integer k with k > 2 we can construct a Fuchsian
group G acting on A which has as its fundamental domain a regular polygon
with 4k sides and all vertices lying in one accidental cycle (see Section 10.4).
Referring to the proof of Theorem 11.2.4(i), we find that «; = 8; = n/4k so
in this case, equality holds in (i). Thus (at least for n of the form 4k), Theorem
11.2.4(i) is best possible.

Finally, we consider unbounded fundamental polygons (although the
idea in the following proof clearly extends to other situations).

Theorem 11.2.7. Let D be a fundamental polygon for a Fuchsian group G and
suppose that D contains two points w, and w, on the circle at infinity. Let L
be the geodesic joining w, and w,. If v is an elliptic fixed point of G of ordern,
lying on the boundary of D, then

cosh p(v, L) > 1/sin(n/n) = 2/./3.

ProOOF. The triangle with vertices w,, w, and v lies in D and so the interior
angle of this triangle at v cannot exceed 2zn/n. This means that v cannot be
too close to L: the numerical details are left to the reader. O

Note that this result implies that no elliptic fixed point on dD lies in the
lens region between the two hypercycles making an angle n/6 with L.

EXERCISE 11.2

1. Derive an inequality similar to (i) in Theorem 11.2.4 which is applicable to an
elliptic cycle of order g on the boundary of the Dirichlet polygon.

2. Is the bound in Corollary 11.2.2 best possible?
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3. Let D be a convex fundamental polygon for a Fuchsian group G. Show that if there
is some w such that the sides of D lie on the bisectors {z: p(z, w) = p(z, gw)}, g€ G,
then D is the Dirichlet polygon with centre w.

4. Let D be a convex fundamental polygon for a Fuchsian group G acting in A and
suppose that D contains a geodesic L. Prove that if {v,, ..., v,} is an accidental cycle

on ¢D then .
coshp(v,, L) + ... + coshp(v,, L) > n/sin<*) > n?/z.
n

Find a corresponding inequality when the v; form an elliptic cycle of order .

5. With reference to Figure 11.2.3, show that f ~ 'hg is parabolic (write f = af, hg = ay
where «, 8 and y are reflections).

§11.3. Hecke Groups

In this section, we study the class of Hecke groups as these play an ex-
ceptional role in the following discussions.

Definition 11.3.1. A Hecke group is a Triangle group with signature (0: 2,
g, ) for some integer ¢ satisfying 3 < g < + 0.

Let
g(z) = —1/z, h(z) = z + 2 cos(n/q):

then (g, h) has signature (0: 2, g, 20) and a fundamental domain for <{g, h)
is illustrated in Figure 11.3.1. As any two Triangle groups with the same
signature are conjugate, we see that any Hecke group with signature (0: 2,
g, %) is conjugate to {g, h). Note that hg is elliptic of order g and fixes one
vertex of the triangle.

_h
g
o'
i
n/q /g
w
—cos(n/q) 6 cos (n/q)

Figure 11.3.1



294 11. Universal Constraints On Fuchsian Groups

It is sometimes convenient to normalize the parabolic generator h so that
this is the map z+ z + 1. Then g becomes

g(z) = — 1/4z cos*(n/q)
and this is elliptic of order two with fixed point i/2 cos(n/q). Note that with
this normalization, the fixed point, say w, of order ¢ satisfies
Im[w] = } tan(n/q):

this shows that Corollary 11.2.3 is best possible.
The next two results help in identifying Hecke groups.

Proposition 11.3.2. Let G be a Fuchsian group with parabolic elements. If G
has a fundamental domain with h-area less than m, then G has one of the
signatures (0: 2, g, o) where 3 < g < + 0 or (0: 3, g, ) whereq = 3,4 or 5.

PROOF. As the fundamental domain has finite area, G has signature (k: m,,
., m,, %) say, the = being present as G is known to include parabolic
elements. From Section 10.4 we deduce that

i 1
2n[2k -2+ ) (1 - w) + 1] <n (11.3.0)
j=1 r"j
and so (asm; > 2)
4k +n < 3.

Thus k = 0 and (for positive area) n = 2. With this information, (11.3.1)
now yields

1 1 1

mymy T2
and hence min{m,, m,} < 3. The result now follows easily. a
Theorem 11.3.3. Let G, be a Hecke group and let G be a Fuchsian group
containing Go. Then G = Gy.
PrOOE. We may suppose that G acts on H? so
k h-area(H?/G) = h-area(H?/G,), (11.3.2)

where G, is of index k in G. By assumption, G, has signature (0: 2, p, oC),
say, and so G has one of the signatures described in Proposition 11.3.2.
If k > 2 then

h-area(H?/G) < n/2

and so G is also a Hecke group (see the proof of Proposition 11.3.2) with
signature (0: 2, p, «o). This contradicts (11.3.2) so k = 1 and G = G,.

For an alternative proof, recall that the elliptic fixed points of order g at
the vertices of the triangle in Figure 11.3.1 have the largest possible imaginary
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part for any group containing G,. In particular, their images by elements of
G cannot have a larger imaginary part so these fixed points must lie on the
boundary of the corresponding fundamental domain D for G (constructed
as in Section 9.6). It follows from convexity that D contains the triangle and
as G o Gy, D must be the triangle. Thus G = G,. O

ExeRcise 11.3

1. With reference to Figure 11.3.1, show that hyg is the composition of reflections in the
two sides with common vertex w and hence is a rotation about w of angle 2n/g.

2. Show that if G contains parabolic elements and if h-area(H?/G) < 2n/3, then G is a
Hecke group.

§11.4. Trace Inequalities

The objective here is to obtain certain algebraic inequalities which must be
satisfied by two elements in order that they generate a non-elementary
discrete group.

Theorem 11.4.1. Suppose that the two parabolic elements g and h generate a
non-elementary Fuchsian group G. Then one of the following possibilities
must occur:

(1) trace[g, h] > 18;
(2) trace[g, h] = 2 + 16 cos*(n/r) and G has signature (0: 2, r, 0);
(3) trace[g, h] = 2 + 16 cos*(n/2r) and G has signature (0: r, 00, o).

PROOF. By conjugation, we may suppose that G acts on H? and that

h(z) =z + 1, g(z) = z/(cz + 1).
By using g~ ! if necessary, we may suppose that ¢ > 0. As

trace[g, h] = trace[h, g] = 2 + ¢2, (11.4.1)
the three possibilities are equivalent to

(1) c=4;
(2) ¢ =2 + 2 cos(2n/r);
(3) ¢ =2 + 2 cos(n/r).

Jorgensen’s inequality, namely ¢ > 1, holds so assuming that (1) fails, we
have 1 < ¢ < 4. Now construct the quadrilateral with sides formed by the
isometric circles of g and g~ ! and the lines x = { and x = ~3#: see Figure
11.4.1. Observe that 1 < ¢ < 4 implies that the point w does exist.
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/ \ez = 1] =1
! \

_% 0

N

Figure 11.4.1

By considering reflections in x = 0, x = 4 and |cz — 1| = 1, we find that
hg~! is a rotation of angle 20 about w. Thus for some k and r (which we
may assume are coprime) we have

6 = kn/r, ¢ =2+ 2 cos(km/r).

If k=1 or r = «x, then Poincaré’s Theorem is applicable, the quad-
rilateral is a fundamental polygon for G and G has signature (0: r, %0, %):
this is Case (3).

If Kk > 2 and r is finite, then there is some f in G which is a rotation of
angle 2n/r about w. In this case, construct the quadrilateral in Figure 11.4.2,
Observe that as k > 2 we have n/r = 8/k < /2 so (by elementary trigo-
nometry) ¢ = m/2.

o
[
—

Figure 11.4.2
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Now the images under (h, f*) (and hence under G) of the quadrilateral
with angles 0, ¢, ¢, 2n/r cover the hyperbolic plane (because any curve
from w can be covered by images of the quadrilateral a small, but fixed,
distance at a time) and so G has a fundamental domain of area at most
7 — (2n/r). Proposition 11.3.2 implies that G is a Triangle group with
signature, say, (0: r,, s, o0) where r divides r,. Thus

1o

2n(l———~)_<.27r—2¢—-%7—c
ry S r

2n

<n-—-—

;

2n

<7n-—.

ry

This shows that s = 2: thus equality holds throughout and so ¢ = =/2.
Because ¢ = n/2, wehave § = 2r/r:thenk = 2,r = r, and this is Case (2).
a

Theorem 11.4.2. Suppose that h is parabolic and that g and h generate a non-
elementary Fuchsian group G. Then

(1) trace[g, h] > 3;
(2) if 3 < trace[g, h] < 6 then G has signature (0: 2, g, oc) and

trace[g, h] = 4 + 2 cos(2n/q);
(3) if trace[g, h] < 18 then G contains elliptic elements.
PROOF. We may assume that G acts on H? and that

_az+b

h(z) =z + 1, g(2) ot d

where ad — bc =1 and ¢ > 0. As (11.4.1) holds, we see that (1) is simply
Jorgensen’s inequality. In order to prove (2), we assume that trace[g, h] < 6
or, equivalently, ¢ < 2. This means that G has a fundamental domain lying
outside the isometric circle of g and inside a vertical strip of width one: see
Figure 11.4.3. As the isometric circle of g has a Euclidean diameter greater
than one, we see that H?/G has area less than n and so G has one of the
signatures given in Proposition 11.3.2.

Now observe that g = 0,0, where o, is the reflection in L, given by
|cz + d| = 1 and where ¢, is the reflection in a vertical line L,. For any
choice of the integer n, let Ly be the line L, translated by a (Euclidean)
distance n/2. Then

h'g = (o30,)0,0,)
=030,

S0 030, isin G.
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{
0 0
zl zl
1/c lcz+d] =1
0
(—dfc) — % ~d/c (—djc) + 3
Figure 11.4.3

Now let L be the vertical geodesic orthogonal to L,: see Figure 11.44.
By choosing n to minimize the Euclidean distance between L and Lj, we
see that L; meets L, at a point w in an angle ¢, say. Thus k"¢ fixes w and is
a rotation about w of angle 2¢. Clearly, if ¢ is the distance between L and
Ls,thent <3 and

cos ¢ = ct
<L
thus ¢ > n/3. Also, ¢ < m/2.

Let p be the order of the fixed point w. Then ¢ = kxn/p say, with (k, p) = 1

and hence

Lokfp <t (142)
L L, L,
-1 03 Gy 1>
¢
¢
w
oy y |
C |
L ' \lez +di =1

9 |

t

Figure 11.4.4
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Also, by Corollary 11.2.3, we have
tan(n/p) = 2 Im[w]
= 2(1/c)sin ¢

> sin(n/3)

= /312 (1143)
so p = 2, 3 or 4. With these values of p, the only solutions of (11.4.2) lead to
@ =mn/2,p=2,w=2{_so G contains as elliptic element f of order two
which fixes (.

If G has one of the signatures (0: 3, g, «0) where g = 3,4 or 5, then g = 4

(as f e G). But in this case, w is a fixed point of order four so

2 Im[w] < tan(n/4)

=1

contrary to (11.4.3). Thus G must be a Hecke group with signature (0: 2, g,
o) say. The elements h and f generate G and pair the sides of the triangle
illustrated in Figure 11.4.3 (with finterchanging the sides [{, z,] and [{, z,]).
From consideration of areas, we have

n—2n/g<n-—20

and s0 8 < 7/q. On the other hand, the minimum angle of rotation in G is
2n/q so 20 = 2n/q. This gives 8 = 7n/q and

¢ = 2cos(n/q)

which is (2).
If G has no elliptic elements then ¢ > 4 (see the proof of Theorem 8.3.1) so
(3) holds. a

Similar results hold for elliptic elements in place of parabolic elements.

Theorem 11.4.3. Let g be a rotation of angle 2n/n (n = 3) about some point
in the hyperbolic plane and suppose that f and g generate a non-elementary
Fuchsian group. Then apart from certain Triangle groups (which are listed
in the proof),

(1) trace[ f, g] = 2 + 4 cos*(n/n) = 3;

(2) |trace*(g) — 4| + |trace[f,g] — 2| = 4.

Remark. If f and g lie in a non-Triangle discrete group, then either (f, g)
is elementary or (1) and (2) hold: see Theorem 10.6.5.

Remark. The inequality (2) is meaningful for all n > 3: this is not true if
the lower bound is replaced by one.

PROOF. We may suppose that f and g act on A and that in terms of matrices,

ein/u 0 a
g = < 0 e—in/n)’ f = (C )’

QI o
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Figure 11.4.5

where |a|?> — |c|* = 1. Now {f, g) has a fundamental domain lying within
the region D illustrated in Figure 11.4.5: here, D is the region outside the
isometric circle of f ~! and within a sector of angle 2n/n situated symmetri-
cally with respect to the isometric circle.

The exceptional groups are those for which D is bounded. In this case,
the signature (k: my, ..., my) satisfies

27z[2k -2+ i <1 - i)] <7 —27n/n (1144
j=1 m;

<rn-—2n/m,

say, where n divides m,. Thus k = 0 and s = 3. A more detailed investigation
of (11.4.4) now yields the exceptional cases

m =2 or (my,m)=(@3)(3 4) or3,5)

Assume now that {f, g> is not one of these exceptional groups. Then D
is unbounded and, noting that the isometric circle of £~ is the bisector of
[0, f0], we may use the Angle of Parallelism formula to obtain

cosh 1p(0, f0) sin(n/n) > 1,
or, equivalently,

sin?(zm/n) sinh? 4p(0, f0) > cos*(n/n).

As
[c| = sinh $p(0, f0)
> cot(n/n),
a computation yields first (1) and then (2). d
EXERCISE 11.4

1. Verify that (in the proof of Theorem 11.4.1) the assumption ¢ > 0 ensures that g acts
in the direction shown in Figure 11.4.1.
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2. Suppose that ¢ > 4 and let G be generated by
h(z) =z + 1, g(z) = ——~.

Show that G is discrete and find its signature.

Prove analytically and geometrically (which is much shorter) that gh ™! is hyper-
bolic with translation length T where the hyperbolic distance between x = 4 and
the isometric circle of g is 57

3. Suppose that G is a Fuchsian group acting on H? which contains

z+ b
h(z)=z+ 1, g(z) = a_z.___, (c#0,ad — bc=1)
¢

+d
Prove that h-area(H?/G) > n/3.
Show that the triangle bounded by the isometric circle of g and the two vertical
lines

x=(=djc)~3 x=(=d/c)+3
contains a fundamental domain for G and deduce that |c¢| > 1 (this is Jergensen’s
inequality).

4. Asintheproof of Theorem 11.4.2, assume that ¢ < 2. Show that G contains an element
of order two as follows.
(i) Let

az + b

cz+d

f(z) = (ad — be =1)

be in G with the smallest (positive) value of |c| possible. By considering the
matrix for £, show that either f has order two or that |trace(f)| = 1.
(ii) Show that for a suitable n, |trace(h"f)| < 1 so h"f is of order two.

§11.5. Three Elliptic Elements of Order Two

Let f, g and h be elliptic elements of order two with distinct fixed points u, v
and w respectively. If u, v and w are collinear then the group G generated by
f, g and h is elementary for it leaves the geodesic containing these points
invariant. We shall assume that u, v and w are not collinear: let o, § and y
be the angles and a, b and ¢ be the lengths of the sides of the triangle with
vertices u, v and w: see Figure 11.5.1.

The three vertices of the triangle determine a positive number A which is

defined by
A = sinh g sinh b sin y
= sinh b sinh ¢ sin « (11.5.1)
= sinh ¢ sinh a sin f,

the equality of these expressions being a consequence of the Sine Rule. If we
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b
Dg
v
c

Figure 11.5.1
view the side [u, v] as the base of the triangle lying, say, on the geodesic L,
then the height of the triangle is p(w, L,) where
sinh p(w, L,) = sinh a sin f.
Thus we may also write (in the obvious way)
A = sinh(base) x sinh(height),
regardless of the choice of which side is the base.

The quantity A is related to the elliptic elements f, g and 4 as follows.

Theorem 11.5.1. The absolute value of the trace of any of the isometries
fah, hfg, ghf, hgf, fhg, af h
is equal to 2.
Prook. First, |trace(fgh)| is invariant under cyclic permutations of f, g and
h: for example,
[trace(fgh)| = |trace h( fgh)h™*!|
= |trace(hfg)|.

|trace(fgh)| = |trace(fgh) ~'|
= |trace(hgf)|

so |trace( fgh)| is invariant under any permutation of f, g and h.
Now let L be the geodesic through u and v. Construct

Also,

(i) the geodesic L, through w and orthogonal to L;
(ii) the geodesic L, through w and orthogonal to L ;
(iil) the geodesics L, and L, orthogonal to L with
p(Ly, L) = p(u, v) = p(Ly, La):
see Figure 11.5.2.
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p(u, v)

pu, v)

L,

Figure 11.5.2
Denoting reflection in L; by ¢, we have
0,0 =h, 0,03 = fg(orgf)
as fg is a hyperbolic element with axis L and translation length 2p(u, v). It
follows from Theorem 7.38.1 that
3ltrace(hfg)| = 3|trace(o,a3)|
= (LZ s L3)
Now the inversive product (L,, L;) is cosh p(L,, L3) when L, and L,

are disjoint and it is cos ¢ when L, and L, meet at an angle ¢ (possibly
zero). In all cases (see Theorem 7.17.1, Lemma 7.17.3 and Theorem 7.18.1(iii))

we have
(LZ’ LS) = sinh p(La LZ) sinh p(Lli L3)

= sinh p(w, L) sinh p(u, v)
= A d

We shall now examine how the value of A determines the nature of the
group generated by f, g and h.

Theorem 11.5.2. Let f, g and h be elliptic elements of order two which generate
a non-elementary group G and let A be given by (11.5.1).

(1) If A > 1 then G is discrete and has signature (0: 2, 2,2;0; 1).
(2) If A =1 then G is discrete and has signature (0: 2, 2,2; 1; 0).
(3) If A < 1 then G is discrete only if A is one of the values

cos(n/q), q = 3; cos(2n/q), g = 5; cos(3n/q), q = T:
the possible signatures for G are
(0:2,2,2,4;0;0),(0:2,3,4;0;0), (0: 2,4, 4;0; 0).
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A construction of a fundamental domain for cach discrete G will arise in
the proof and it will be apparent that every value of A given in Theorem
11.5.2 does give rise to a discrete group. Thus we can derive the following
universal bound.

Corollary 11.5.3. [f f, g and h are elliptic elements of order two which generate
a non-elementary discrete group, then

|trace( fgh)| > 2 cos(3n/7)
and this is best possible.

ProOF OF THEOREM [1.5.2. We suppose first that A > 1. Then we can con-
struct the polygon illustrated in Figure 11.5.3 where #" and v" are images of
u and v respectively under some power of the hyperbolic element fg with
axis L. Note that

p(Ls, L) = 2p(u, v).
The clements fixing 4’ and v" are, say,
prfUfa™" (f9) g(fg)™"
respectively. The side-pairing maps of the polygon in Figure 11.5.3 generate
G and by Poincaré’s Theorem, the polygon is a fundamental domain for
G. In this case, G has signature (0: 2,2, 2;0; 1). This proves (1): an obvious
modification gives (2) with 4 = | precisely when L, is tangent to L, and L,

on the circle at infinity.
The case when A < 1 is more difficult: here L, meets L, and L, at an

Figure 11.5.3
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Figure 11.5.4

angle 8 say and we consider the polygon illustrated in Figure 11.5.4. Note
that as discussed earlier, we have 4 = cos 6.

Suppose now that G is discrete. Then hgf (or hfg) satisfies
hg f = (0,0,)0,03)

= 0,03

ind this is rotation of angle 26 about (. Let g be the order of the elliptic element
gf so that § = np/q for some integer p, (p, q) = 1.

If p = 1, we obtain a fundamental polygon for G and in this case G has
‘gnature (0: 2, 2, 2,q;0;0) and A = cos(n/q) where g > 3.

From now on we may assume that p > 2. The G-images of the compact
nadrilateral cover the hyperbolic plane (there is a positive r such that each
sint of the quadrilateral lies in a disc of radius r covered by G-images) so
» considering areas we have

2n[2k -2+ ) (1 - %)] < n — 2np/q,
j=1

J J.

ere G has signature (k: my, ..., m). This gives

dk —4+s5< 1.
r positive area, we also have
0<2k—-2+s

so the only possibilities are k = 0 and s = 3 or 4.
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In fact, s = 3. To see this, assume that s = 4. As G contains an element
of order ¢, we may suppose that ¢ divides m,. Then as p > 2, m; > 2 and

q < my, wWe have
1 1 Eo
2l -—|<2|2 - —
[2 mJ [ J; '"J]

<12
q

<1-2
my

This implies that m, = oo and hence that G contains parabolic elements:
however this cannot be so as the quadrilateral is compact and contains
points from every orbit. Thus s = 3 and G is a Triangle group.

Let us now write the signature of G as (0: /, m, n) where g divides n. By
Theorem 9.8.6, there is a positive integer N such that the quadrilateral
contains N images of each point in the plane. Thus by considering areas,

27'CN{1—(1+—1—+1>:I=7I—2*E.
I m n q

As 6 = mp/qand as { and (' are in the same orbit we find that N > p (consider
points close to {). Thus

oo -o2)

<1-2
q

<1-2 (11.5.2)
n

The inequality between the first and last terms yields (as p > 2)

Pl

+1 3
m 2p 4

— —

and the solutions of this are
(Lm,p)=(23,2),(23,3),(24,2).

If (I, m, p) = (2, 4, 2), then equality holds throughout (11.5.2) so g = n:
thus in this case G has signature (0: 2, 4, q) where g > 5 and A = cos(2n/g).

If (I, m, p) = (2, 3, 3), equality again holds throughout (11.5.2) so g = n,
G has signature (0: 2, 3, g) where g >7 and A = cos(37/q).

For the remaining case, namely (I, m, p) = (2, 3, 2) we need a slightly
different argument. First, the elliptic fixed points ', v', w, { and {’ lie in at
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most two orbits (none can lic in the orbit of order three). This means that
N = 3 and using the middle terms of (11.5.2) we have

11 4
6[-—-) <12
(6 n)* q

s0 g = n (because n/q is an integer). This actually completes the proof of
Theorem 11.5.2 as stated as this does not assert which signatures correspond
to which values of A. Briefly, there exist integral solutions of the above
equations which do not correspond to discrete groups and a more detailed
analysis yields all possibilities. For example, the middle terms of (11.5.2)
yield

6

N=3
+n—6

SO
(n,N) =(7,9).(8,6), (9, 5) or (12, 4).

However, N must be a multiple of three (consider the fixed points of order
three in the quadrilateral). O

As an illustration of the possible cases, consider the quadrilateral
illustrated in Figure 11.5.5 where p(u’, w) = p(u', '). Let o, f and y be
reflections as shown. The three rotations of order two (fixing w, u' and v’
respectively) are af}, (ay)* and (o) and these generate the same group as
af, By and yo, namely a Triangle group with signature (0: 2, 4, g).

Figure 11.5.5
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EXERCISE 11.5

1. Suppose that /. g and h are elliptic elements of order two with collinear fixed points
u, v and w respectively. Find a necessary and sufficient condition for {f, g, h) to be
discrete in terms of p(u, v) and p(v, w).

2. Give a proof of Theorem 11.5.1 using matrices (take f, g and h fixing i, ti and u + iv
respectively in H?).

§11.6. Universal Bounds on the Displacement
Function

Qur aim is to obtain lower bounds of

M(g, h) = inf max {sinh }p(z, gz), sinh $p(z, hz)}

and

P(g, h) = inf sinh $p(z, gz) sinh 3p(z, hz)
for various choices of g and h subject to (g, h) being discrete and non-
elementary. Observe that

M(g, h)* = P(g, h).

Obviously, a lower bound on P(g, h) is preferable for it shows that if one
of the sinh terms is small then the other term is correspondingly large: this
does not follow from a lower bound on M(g, h). If g or h is elliptic, then
P(g, h) = 0 so one must use M(g, h).

The inequality

M(g, h) = m

means that for every z, either g or h moves z at least a distance 2 sinh™!(m).
It is known that in every case,

M(g, h) > 0- 131846 .. .:

the existence of a lower bound was established by Marden: this lower bound,
which is best possible, was obtained by Yamada and is given in Theorem
11.6.14.

The evaluation of the best lower bounds for M(g, h) and P(g, h) is in-
timately connected with the geometric constraints on g and h and both the
numerical bounds and the geometric constraints appear in this section. At
this point, the reader should recall Theorem 8.3.1: if {g, h) is discrete, non-
elementary and has no elliptic elements, then P(g, h) > 1 and this lower bound
is best possible.

We shall obtain different lower bounds depending on the classification
of g and h. First, we assume that one of these is parabolic.
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Theorem 11.6.1. Let g and h be isometries and suppose that {g, h) is discrete
and non-elementary.

(1) If g and h are parabolic, then P(g, h) > %. If, in addition, {g, h) is not a
Triangle group, then P(g, h) > 1.

(2) If g is parabolic and h is hyperbolic, then P(g,h) > %. If, in addition,
g, h) is not a Triangle group, then P(g, h) > .
All four bounds are best possible.

PROOF. Let g be parabolic and let i be parabolic or hyperbolic. We may
suppose that g and h act on H? and that

az+b
cz+d

As {g,h} is non-elementary, ¢ # 0. Now h has two real, finite, possibly
coincident, fixed points u and v and

g(z) =z + 1, h(z) = ad — be = 1.

|z —h(z)|.lcz+d|=|c|.|]z~ul.|]z — 0|
> |c|y

From Theorem 7.2.1 we obtain

sinh 3p(z, gz) sinh $p(z, hz) = |z — h(z)|.|cz + d|/4y*
> [c|/4. (11.6.1)

From Jergensen’s inequality, |¢| > 1 so in both cases, P(g, h) > %.

Suppose now that {g, h) is not a Triangle group. If h is parabolic,
Theorem 114.1 yields |c| > 4 and so P(g, h) > 1. If h is hyperbolic, then
from Theorem 11.4.2 we deduce that |¢| > 2 so P(g, h) > 4. This establishes
(1) and (2); the following examples show that these lower bounds are best
possible. O

Example 11.6.2. The isometries g, h and f given by

z 2z + 3

9@y =z+1 W)=, SO =

are parabolic, parabolic and hyperbolic respectively and generate a discrete
group (a subgroup of the Modular group). A computation using (11.6.1)
with z = iy gives

sinh 3p(z, gz) sinh3p(z, hz) =
and
sinh 1p(z, g2) sinh $p(z, fz) = } + (3/4y?)

and, letting y tend to +o0, we see that the lower bounds of % are best
possible. O
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Example 11.6.3. Let g(z) = z + 1 and let h be the reflection in |z + | =t
followed by reflection in x = 0 where 0 < ¢ < . Thus A is parabolic and
fixes the origin: in fact,

zZ
o) =51

Using (11.6.1), we see that when z = iy,
sinh {p(z, gz) sinh p(z, hz) = 1/4t.

Clearly, <g,h> is a non-elementary Fuchsian group of the second kind.
Letting ¢ tend to % we find that the lower bound of one in Theorem 11.6.1(1)
is best possible. O

Example 11.6.4. Let g(z) = z + | and let h be an elliptic element of order
two fixing the point iv where 0 < v < £. Then (g, h) is discrete and non-
elementary: for example,

{ze H*:|Re[z]]| < 3, |z| > v}

is a fundamental domain for {g, h)>. Now write /' = gh: then f is hyperbolic
and is a reflection in |z| = v followed by the reflection in x = %. It follows
that

_(zf) =0
f2)= _(Z_/D)—
=1 - (¥z2)
)
sinh $p(z, gz) sinh $p(z, fz) = lZ_‘i_Zy‘z_lﬂ
122 =z + 0
=t

Letting y tend to + oo with, say, x = 0, this expression tends to 1/4v. Asv
can be arbitrarily close to %, and as {g, h> = {g, f> we see that the lower
bound of  in Theorem 11.6.1(2) is best possible. O

Next, we consider one elliptic and one parabolic generator: in this case
we must use M(g, h).

Theorem 11.6.5. Let g be parabolic, let h be elliptic of order g and suppose that
{g, h) is discrete and non-elementary.
(1) If g = 3 then
cos(n
B > (m/q) i o
[1 + 2 cos(n/q) — cos*(n/q)]

> 1//7.

M(g,
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() If g = 2, then M(g, k) > 1/,//8.
(3) If, in addition, {g, h) is not a Triangle group, then for q > 2 we have

1 + cos(n/q) ]2
Mg, h) > [?:W]

> 1//3.

All of these bounds are best possible.
PrOOF. Let

m(z) = max{sinh }p(z, gz), sinh $p(z, hz)}.

We may assume that g and h act on H?, that g(z) = z + 1 and that h is a
rotation of angle 26 (where 0 < 26 < 7) about a point w of the form iv.

For any z,, let z, be the point where the horizontal line (a horocycle at
o0) through z; meets the geodesic L from co through w. Now let z5 be the
point on the half-ray [w, co) such that z, and z, are equidistant from w (if
Im[z,] = Im[w] then z, = z5 but not otherwise). Then

Im[z,] = Im[z,] < Im[z,],
p(z1, w) = p(z;, w) = p(z3, W)
and so (see Section 7.395),
m(z;) = m(z3).
As
M(g, ) = inf m(2),

this means that we can confine out attention to m(z) for those z of the form
iy where y > v. As y increases from v to + 0, s0 p(z, gz) decreases to zero
and p(z, hz) increases from zero to + oo : hence there is a unique z, say z = it,
where

sinh 1p(z, gz) = sinh $p(z, hz)

and where this common value is M(g, h).
Now observe (from Section 7.35) that when z = it,

sinh 4p(z, gz) = 1/2t
and
sinh $p(z, hz) = |sin 0] sinh p(it, iv)

. t v
= 4|sin 6| (; - ?).
Thus

=0+

|sin 6]
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As his of order g (and h # I), we must have [sin §| > sin(r/q). By Corollary
11.2.3,if g > 3, then

v < Ltan(n/q)
and so

4t* < tan¥(n/q) + cosia)’

As
M(g, h) = 1/2t,

the lower bound involving g in (1) follows. By elementary calculus, this is
an increasing function of cos(r/q) and the lower bound of 1 /\/7 is the case
q = 3. It is clear that this lower bound is best possible for each value of g:
indeed, equality holds throughout this argument for the Hecke groups dis-
cussed in Section 11.3.

This argument fails if ¢ = 2. However, in this case, v < 1 (the fixed point
lies on the isometric circle and, by Jergensen’s inequality, [c| > 1) and
6 = m/2 and so t?> < 2:this proves (2). This is also best possible: for example,
takeg(z) =z + 1, h(z) = —~1/zand z = i\/i.

Now suppose that {g, h) is not a Triangle group. As h is of order g, some
power of h, say h", is a rotation of angle 2n/q about iv and {g, h") (=g, h))
is not a Triangle group. Exactly as above, we have

2,2 v

¥ <v* + Sna) (11.6.2)
Now consider the quadrilateral (possibly with two free sides on the real
axis) with sides lying on the lines x = }, x = —3 and the isometric circles
of h™ and h™". This quadrilateral is not bounded (Theorem 10.6.6), thus

v 1.
3;1(—7:/11_) [1 + cos(n/q)] < 3: (11.6.3)

see Figure 11.6.1.

n/q | /g

Figure 11.6.1
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Using (11.6.2) and (11.6.3) we obtain

4% < 3 — cos(m/q)
~ 1 + cos(n/q)
<3

and the lower bounds in (3) hold. These lower bounds are best possible for
we can construct groups from a quadrilateral as suggested by the proof: we
omit the details. O

Next, we consider two elliptic generators.

Theorem 11.6.6. Let g and h be elliptic elements of orders p and q respectively
and suppose that {g, h) is discrete and non-elementary. Then

4 cos¥(n/7) — 3

1/2
M(g’h)2[8cos(7r/7)+7] =0-1318....

If, in addition, {g, h) is not a Triangle group, then

[cos(n/p) + cos(n/g)]* \'* _ 1
— Tcos(n/p) COS(n/q)]Z) =5

Both bounds are best possible.

M(g, h) > <4

We shall need the following geometric result.

Theorem 11.6.7. Let g be elliptic of order p with fixed point u, let h be elliptic
of order q with fixed point v and suppose that {g, h) is discrete, non-elementary
but not a Triangle group. T hen
1 + cos(n/p) cos(n/q)

sin(r/p) sin(7/q)

cosh p(u, v) >

PRrROOF OF THEOREM 11.6.7. Some g, in {g) has angle of rotation 27/p, some
h; in <h) has angle of rotation 2x/q and (g, h) = {g,, h; ). Thus we may
assume that g and h have angles of rotation 2xn/p, 2n/q. Without loss of
generality, g and h act on A, u = 0 and v > 0. Now construct the isometric
circles of h and h~! and the segments from the origin making an angle n/p
with (0, 1): see Figure 11.6.2. The rays L and L’ are paired by g and the rays
L, and L are paired by h. If L and L, meet, then {g, h) is a Triangle group
(Theorem 10.6.6). If this is not so, then (Theorem 7.10.1) cosh p(u, v) is
bounded below by the given bound. a

PROOF OF THEOREM 11.6.6. Write
m(z) = max{sinh $p(z, gz), sinh 1p(z, hz)}.

Clearly if g or h is replaced by a rotation about the same point but with a
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Figure 11.6.2

smaller angle of rotation, then the corresponding m(z) decreases: thus we
may assume that g and h have angles of rotation 2r/p and 2n/q respectively.
We may assume that these act on A, that g fixes the origin and that 4 fixes
the point v where v > 0. Exactly as in the proof of Theorem 11.6.5, the mini-
mum value of m(z) is attained at some point x of the real segment [0, v], where
sinh 1p(x, gx) = sinh Lp(x, hx)
and where this common value is M(g, h).
Now write
p(0, x) =t, p(0,v) =d

so p(x, v) = d — t. Also, write

s, = sin(n/p), ¢, = cos(n/p)
and, similarly, for s,, c,. Then
s, sinh t = s, sinh(d — t)
(both sides are M(g, h)) so
tanh ¢ = —Sasinhd
sp + 5, cosh d
However,
M(g, h)* = (s,)* sinh? t
_ (s,)* tanh? ¢
"~ 1 —tanh?¢
_ (sps,)*[cosh? d — 1]
T (5,) + (5)* + 2s,5,cosh d’

(11.6.4)
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By elementary calculus, this is an increasing function of cosh d: thusif (g, h)
1s not a Triangle group, then Theorem 11.6.7 is applicable and

spsgcoshd > 1+ ¢pc,.
Substitution in (11.6.4) yields

2 (cp + ¢’
M(g7 h) = 4 — (Cp . Cq)Z:
which is the lower bound stated in the theorem. This lower bound is an in-
creasing symmetric function of ¢, and ¢, in the permitted ranges so taking say,
p=3and g =2 (if p = g = 2 then (g, h) is elementary) we obtain a lower
bound of M(g, h)? equal to . It is clear from this proof that one can con-
struct groups to show that these bounds are best possible.

It remains only to establish the first (and smaller) lower bound in
Theorem 11.6.6 in the case when G is a Triangle group. Let G be a Triangle
group with signature (0: m, n, r). Suppose that g and k are associated with
the cyclic subgroups of orders m and n respectively (but they need not be of
orders m or n). The estimation of M(g, k) must allow for, and cannot be
smaller than, the estimation under the assumption that g and h have angles of
rotation 2z/m and 2z/n; thus we may assume that m = p and n = q. In this
case the fixed points u and v of g and h respectively must be separated by at
least a distance along the side of a triangle with angles =n/p, n/q and =/r
(otherwise we could construct a fundamental domain with area less than
the known value): thus by the Cosine Rule:

c, t+oc,

¢
cosh p(u, v) > 24

S$p8

P-4

The identity (11.6.4) remains valid so
(cpcq + Cr‘)2 - (spsq)z
(s,)* + (s + 2[c,cy + 6]
el el 42001
2+ 2¢, — (¢, — ¢)?

M(g, h)* =

We need to obtain the infimum of this expression over all p,q and r
satisfying
1 1 1
-+-+-<L1
p q r
In fact the infimum occurs when r = 7, p = 2 and g = 3 (or when p = 3,
g = 2):in this case the lower bound is
2 —
deos (/) =3 _ 00173,
8 cos(n/7) + 7
In general, we have

242, —(c,—c)* <4
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sO
M(g, h)?* > 5 [c} + 2 + ¢} + 2c,¢5c, — 1].
Assume for the moment that one of p, ¢, r, is at least 8: another is at least
3 and then
M(g, h)* > L[cos?(n/8) + cos?(m/3) — 1]
=0025....
Thus in our search for a lower bound on M(g, h), we can assume that each
of p,q and r is at most 7: this reduces the problem to a finite number of
computations, however even most of these can be avoided.
If none of p, q and r are 2, then two are at least 3, the other being at least
4:then
M(g, h)* > 3[2 cos*(n/3) + cos?(n/4) + 2 cos?(m/3)cos(n/4) — 1]
= 0088....

Thus we may assume that one of p, g and r is 2. If none are 3, then the others
are at least 4 and 5 and then

M(g, h)? > [cos®(n/4) + cos¥(n/5) — 1/4
> 0038.

We deduce that one of p, g and r is 2, another is 3 and the third is at most
and (for positive area) at least 7. The lower bound is symmetric in p and ¢
and the numerator is symmetric in p, g and r. Thus we need only maximize

2+ 2¢,— (c, — c,)?
over the possibilities
(P,g.r)=237,273),3,72):

the details are omitted. d0

We turn our attention now to hyperbolic elements. First, we establish
geometric constraints which must be satisfied by any two hyperbolic elements
in a discrete group. The motivation for the next two results is the distinction
between simple and non-simple hyperbolic elements (Definition 8.1.5):
however, the results are more generally applicable than this, indeed, they
are concerned with whether or not the projection of the two axes cross on
the quotient surface.

Theorem 11.6.8. Let g and h be hyperbolic elements with axes and translation
lengths A,, Ay, T, and T, respectively. Suppose that {g, h) is discrete and non-
elementary and that A, and A, cross at an angle 6. Then

(1) sinh(3T,) sinh(3T}) sin 6 > cos(3n/7) = 0-2225 ...



$11.6. Universal Bounds on the Displacement Function 317

In fact
(2) sinh(3T}) sinh(3T;) sin 6 > 4,
except possibly when (g, h) has one of the signatures (0: 2, 3, q), (0: 2, 4, q)
or (0:3,3,4) and
(3) sinh(3T}) sinh(37;) sin 6 > 1
if g, h) has no elliptic elements or has an unbounded fundamental domain.

In particular, if g is a non-simple hyperbolic element in {g,h) then
SInh(3T,) > [cos(3n/7)]'*(= 047...).

PROOF. Let u be the point where 4, and 4, cross and construct points v and
won A, and 4, respectively such that p(u, v) = 3T,, p(u, w) = T, and such
that the triangle with vertices u, v, w has angle 8 at u. Let f,, f, and f,, be
elliptic elements of order two fixing u, v and w respectively. Replacing g
and(or) h by their inverses as necessary, we may assume that

g="rte  h=Lffo  ghTl=fife

We deduce that every product of an even number of f,, f, and f,, isin (g, h):
thus (g, h) is of index one or two in {f,, f,, f,,> and so this latter group is
discrete.

Recalling the results of Section 11.5, we may write

sinh(3T,) sinh(3T;) sin 6 = A
= 3[trace(f, £, /)|

and Theorem 11.6.8 follows essentially from Theorem 11.5.2 and its proof.
First, (1) is Corollary 11.5.3. If {g, h) has no elliptic elements, then (3)
follows from Theorem 7.39.4: if {g, h) has an unbounded fundamental
domain, then (3) follows from cases (1) and (2) of Theorem 11.5.2.

It remains to verify (2). According to Theorem 11.5.2(3), we see that the
lower bound of 4 in (2) holds except possibly in the cases when A is of the
form cos(2m/q) or cos(3w/q). It is now necessary to examine the proof of
Theorem 11.5.2 to see when this can arise. For brevity, we denote {f,, f,, f,,>
by G* and (g, h) by G.

Referring to the proof of Theorem 11.5.2, we need only consider the cases
p = 2 and p = 3. However, G* contains a product of three elliptic elements
of order two which is a rotation of 2np/q. Thus if p = 2, there is a rotation
r of angle 2r/q such that r? is a product of three rotations of order two. As
re G* we have r € G: hence G contains a rotation of order two. In this case,
G = G*so G has one of the signatures (0: 2, 3, g) or (0: 2, 4, g).

The remaining case is p = 3: here G* has one of the signatures (0: 2, 3, q)
where (see the proof of Theorem 11.5.2) ¢ = n = 7 or 8. A tedious arithmetic
exercise on areas shows that if G has index two in G*, then the only possible
signature for Gis (0: 3, 3, 4).

The last assertion concerning non-simple hyperbolic elements is an
application of (1) in which £ is taken to be a conjugate of g. O
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Theorem 11.6.9. Let g and h be hyperbolic with axes and translation lengths
Ag, Ay, T, and T, respectively. Suppose that {g,h) is discrete and non-
elementary and that no images of A, and A, cross. Then

sinh(3T;) sinh(3T;) cosh p(A4,, 4,) > cosh(3T;) cosh(3T;) — 1.
If {g, h) has no elliptic elements, we can replace —% by +1 (and the lower
bound by 2).

If g is a simple hyperbolic element in {g, k> this result can be applied
with h being any conjugate, say fgf ~!, of g. Thus (by elementary manipu-
lation) we obtain the next inequality.

Corollary 11.6.10. If g and h are hyperbolic elements generating a discrete
non-elementary group and if g is a simple hyperbolic element in this group,
then for all [ in {g, h), either f(A,) = A, or

sinh(3T;) sinh 3p(4,, fA4,) > 3.
This bound is best possible.

The next example shows that the lower bound of 4 is best possible.

Example 11.6.11. Construct the polygon D as in Figure 11.6.3 where f
(elliptic of order two) and g (hyperbolic) pair the sides of D. By Poincaré’s
Theorem, D is a fundamental polygon for { f,g) and as g pairs the sides of
D, g must be a simple hyperbolic element. Finally,

sinh(AT;) sinh 4p(A,, fA,) = sinh 4p(L, L') sinh p(0, 4,)
= cos(n/3). O

Figure 11.6.3
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Figure 11.6.4

ProOF OF THEOREM 11.6.9. Consider Figure 11.64. As g (or g~ 1) is 050,
and h (or h™ ') is 0,03 we see that ¢, 0, is in G. If G has no elliptic elements,
then L, and L, cannot intersect (this case is not illustrated) and from
Theorem 7.19.2 we obtain

sinh(3T;) sinh(3T;) cosh p(A4,, A,) = cosh(3T;) cosh(3T;) + cosh p(L;, L,).

This yields the second inequality.

If L, and L, intersect, say at an angle 8, then 8 = 2np/q for some coprime
integers p and g. If § > 2m/q we can rotate A, about the point of intersection
to an image of itself which is closer to (but, by assumption, not intersecting)
A,. Thus if, in the argument above, we replace h by a conjugate fh f “lof h
with the property that its axis f(A4,) is as close as possible to (but distinct

from) A,, we find that
p(Ag9 Ah) 2 p(Ag’ fAh)

and the corresponding 0 satisfies § < 2x/q < 2n/3 as obviously 8 < = Thus
from Theorem 7.18.1 we obtain the first inequality, namely

sinh(3T;) sinh(3T;) cosh p(A,, A,) = cosh(3T;) cosh(37;) + cos(2n/3). O
Theorems 11.6.8 and 11.6.9 yield the following bound on P(g, h).

Theorem 11.6.12. Let g and h be hyperbolic elements which generate a discrete
non-elementary group. Then P(g, h) > cos(3n/7).
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PrOOF. If the axes of g and h cross at w, say, then obviously (using the notation
of Theorems 11.6.8 and 11.6.9)
P(g, h) = sinh 1p(w, gw) sinh p(w, hw)
= sinh(3T,) sinh(3T,)
> cos(3n/7).
The same inequality holds if any images of A, and A, cross. If not, then
Theorem 11.6.9 is applicable and we obtain
sinh 4p(z, gz) sinh 4p(z, hz) = sinh(3T;) sinh(3T,) cosh p(z, 4,) cosh p(z, A4,)
> 4sinh(3T;) sinh(3T,) cosh[p(z, 4,) + p(z, A4)]

> 3sinh(3T) sinh(3T,) cosh p(4,, A,)

> 4[cosh(4T;) cosh(3T;) — %

>4

> cos(37n/7). 0

Finally, we consider M(g, h) for one elliptic and one hyperbolic element.

Theorem 11.6.13. Let g be hyperbolic and let h be elliptic of order q (g > 2).
If {g, h) is discrete and non-elementary, then M(g, h) > 1 /\/§_

Prook. If g is a non-simple hyperbolic element of (g, h) then (from Theorem

11.6.8)
M(g, h) > sinh(3T;)

> [cos(3n/7)]"*

> I/\/§.

We may now assume that g is a simple hyperbolic element. In this case,
the fixed point v of the elliptic h cannot lie on 4, and a rotation of A, of an
angle 2r/q about v must map A, onto a disjoint image which we may assume
is h(A,): see Figure 11.6.5.

From Section 7.17 we have

cosh p(v, A,) sin(n/q) = cosh 3p(4,, hA,)
> sinh 4p(4,, hd,)
and, from Corollary 11.6.10 (applied to <g, hgh™'}),
sinh(3T)) sinh 3p(4,, h4,) > 3.
Thus
cosh p(v, 4,) sin(n/q) sinh(3T;) > .

This expresses a geometric constraint between the parameters T, 2n/q and
the separation of g and h as measured by p(v, 4,). Writing

m = max{sinh 1p(z, gz), sinh 4p(z, hz)}
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Figure 11.6.5

we have
4 < sin(n/q) sinh(3T,) cosh[p(v, z) + p(z, 4,)]
= sin(rn/q) sinh(3T,)[cosh p(v, z) cosh p(z, A,) + sinh p(v, z) sinh p(z, 4,)]
< msin(n/g)[1 + sinh? p(v, 2)]** + m?
< m[sin*(n/q) + m*]'? + m?
< m(l + m)Y? + m?,

which certainly implies that m > 1 /\/§. |

Collecting together all the results in this section we obtain a universal
lower bound on M(g, h).

Theorem 11.6.14. If g and h generate a non-elementary discrete group, then
M(g,h) = 0-1318. .. and this lower bound is attained by two elliptic generators
of the (0:2, 3, 7)-Triangle group.

We end this section by completing an earlier proof.

PRrROOF OF THEOREM 11.2.4(2). We consider an accidental cycle of four
vertices, say

v1, f(V) =0y, g(vy) =0v3, h(v)) =0,

on the boundary of a Dirichlet polygon: thus the v; lie on a circle with, say,
centre w and radius r. If (, g) is non-elementary, then, as we have just seen,

M(f,g) = 0-1318...
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and so for some j (=2 or 3),
0-1318... < sinh 3p(vy, v))
< sinh 3[p(vy, w) + p(W, v))]

< sinh r.

The same is true of {g, h) or {(h, f) is non-elementary: thus it is sufficient
to consider the case when all three groups <g, h), <h, f> and {f, gD are
elementary.

We assume that these three two-generator groups are elementary. As
vy, 0, and v are concyclic, either { f, g) is cyclic with an elliptic generator
or it is generated by two elliptic elements of order two. The first case cannot
arise (else the elliptic generator fixes w): in the second case, one of f and g,
say, g, must be elliptic of order two. A similar argument holds for the other
two groups so without loss of generality, we may assume that both g and h
are elliptic and of order two.

If f is hyperbolic, then as {f, g) and <, h) are elementary, the axis of f
contains the fixed points of g and h and {, g, h) is elementary. If f is elliptic
of order two, either the three fixed points w,, w, and w, of f,g and h are
collinear, and again {f,g, h) is elementary, or w,, w, and w, are non-
collinear in which case {f, g, h) is non-elementary.

If {{, g, h) is non-elementary, then from Section 11.5 we have

sinh p(w;, w,) sinh p(w;, w,) > 4
> cos(3n/7).
However,
p(wfs Wg) < p(wfv vl) + P(Ul’ wg)
= 3p(vy, v;) + 3p(vy, v3)

< 3lp(vy, w) + p(w, v;) + p(vy, w) + p(w, v3)]
=2r

so in this case,
sinh? (2r) > cos(3n/7).

There remain the cases in which <f, g, h) is elementary and we shall
show that these cannot happen. We may suppose that the group acts on H?
and that {f, g, h) leaves the positive imaginary axis invariant. The orbit of
any point (not on the axis) is, say,

{21020y 20 J U {ee s, Woyg, Wo, Wy, o),
where this is illustrated in Figure 11.6.6 and where for each j,
P(zj, 254 1) = p(W;, Wiv ) = 1,

say.
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Wy z,

Wq Zp

0
Figure 11.6.6

Now recall that in order that four points v,, v,, v3, v, chosen from this
orbit lie on the boundary of the Dirichlet polygon with centre w, it is necessary
that these four points are the points in the orbit which are closest to (and
equidistant from) w. Elementary metric and geometric considerations show
that this can only happen when the centre w lies on the positive imaginary
axis and |zy| = |wo| (after relabelling) with, say

{v1, 02, 03, 04} = {20, 2}, Wo, W1 }.

(consider the bisectors of the [v;, v;]: these must meet at w). Suppose that
r; = zo and v, = w, (a similar argument holds for the other possibilities).
Then w is the mid-point of [v,, v,] and f (which maps v, to v,) must be
elliptic of order two: it follows that f must fix w, a contradiction. O

EXERCISE 11.6

1. In the case of Theorem 11.6.1(1) we have M(g, h) > . Use Example 11.6.2 to show
that this is best possible.

o

. Suppose that { f, g) is elementary. Prove that if v, fv, gv are distinct points on a circle
with centre w then either
(i) fand g are elliptic fixing w or
(ii) one of f'and g is elliptic of order two (they cannot both be hyperbolic).

3. Consider Figure 11.6.3. Using reflections in L and in the real and imaginary diameters
of A, show that f !¢ is an elliptic element of order three fixing one vertex of D.

4. Let Gbea(p, g, r)-Triangle group. Suppose that G contains g of order p fixinguand f
of order ¢ fixing v. Prove that
cos(n/p) cos(n/q) + cos(m/r)
sin(n/p) sin(n/q)

coshp(u, v) =

(this is used in the proof of Theorem 11.6.6). Hint: construct a quadilateral with
angles 27n/p (at u), 2n/g (at v), 0, 6 which contains a fundamental domain for G.
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5. Let G be the Modular group and let ¢ in G be hyperbolic with axis 4 and translation
length T,. Let N, be the number of images of A which intersect a fixed segment of
length T, on A. Show that the average gap between images, namely N,/T,, can be
arbitrarily small: more precisely, prove that

inf N,/ T, = 0.
4

6. Let g be a non-simple hyperbolic element in a Fuchsian group without elliptic
elements. Show that if g has translation length T then sinh(3T) > 1.

§11.7. Canonical Regions and Quotient Surfaces
The reader is invited to recall the geometric definition of a canonical region
Z, of an isometry g (see Section 7.37): analytically,
Z, = {z:sinh 3p(z, gz) < %|trace(g)|}.
If g is parabolic, then

Z, = {z:sinh p(z, gz) < 1}, (11.7.1)
while if g is hyperbolic with axis A and translation length T, then
Z, = {z:sinh p(z, A) sinh(3T) < 1}, (11.7.2)

because in this case Z, is given by
sinh 4p(z, gz) = sinh(3T) cosh p(z, A)
< cosh(3T). (11.7.3)

Almost any Riemann surface R is conformally equivalent to A/G for
some Fuchsian group G without elliptic elements. The hyperbolic metric
on A projects to A/G and so transfers to R. With this in mind, the following
result gives quantitative information on the metric structure of R.

Theorem 11.7.1. Let G be a Fuchsian group without elliptic elements, and
suppose that g and h are in G.

(1) If g and h are parabolic elements with district fixed points, then £, and
X, are disjoint.

(2) If g is parabolic and h is a simple hyperbolic element of G, then Z,and T,
are disjoint.

(3) If g and h are simple hyperbolic elements of G whose axes do not cross,
then Z, and Z, are disjoint.

Essentially, this means that each puncture on R lies in an open disc and
each simple closed geodesic loop on R lies in an open “collar”; the discs do
not intersect each other or the collars; two collars are disjoint if the corre-
sponding loops are disjoint. Further, we know the sizes of the discs and
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collars (by computing the size of a canonical region) and each is the quotient
of a horocyclic or hypercyclic region by a cyclic subgroup of G. Observe
that Theorem 11.7.1 applies to boundary hyperbolic elements.

ProoF. For a Fuchsian group without elliptic elements, we have (Theorem
8.3.1)
sinh 3p(z, gz) sinh $p(z, hz) > 1,

whenever (g, h) is non-elementary. In view of (11.7.1), this proves (1). For a
geometric proof of (1), we may assume that

z
cz+ 1

g2)=z+1, h(z) =

The isometric circles of hand h™ ! must lie in the strip | x| < 4 (else G contains
elliptic elements) and this implies that £, and Z, (constructed geometrically)
are disjoint.

We shall give a geometric proof of (2): an analytic proof is tricky and re-
quires the inequality

sinh(3T;) sinh 4p(4,, gA,) > 1:

see the proof of Theorem 8.2.1. We invite the reader to supply the details.

For the geometric proof, suppose that g(z) = z + 1 and construct the
axis 4 of h and geodesics L,, L,, L, and L, as in Figure 11.7.1.

Clearly 0,0, and 6,0, are each h or h™!. Now L, cannot meet the line
X = X, + 4 and L, cannot meet the line x = x, —  else G would contain
elliptic elements.

Moreover, A, cannot meet the lines x = x5 — 3, x = x, + 3 as other-
wise, A, has Euclidean radius greater than 4 and then A, meets g(4,)
(contradicting the fact that h is simple). Thus the real interval [w,, w,] lies
strictly within the real interval [xq — 4, x, + 4]. The canonical region for

1L,

|
1
|
|
|
|
|
|
|
|

Xo + %

Figure 11.7.1
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Figure 11.7.2

h is bounded by the hypercycle which is tangent to Ls and which ends at
the end-points of A4, (because h(L,) = L,): the canonical region for g is
above the geodesic with end-points x, — 3, xo + 3 s0 £, X, = . This

proves (2).
To prove (3), consider Figure 11.7.2 with the geodesics L, L, L, as

illustrated. Observe that
g™~ '(4y) = 0,0(4,)
= 0,(Ap)
As h is a simple hyperbolic element, we see that L, cannot meet A, (clse
01(A,) is an image of A, which meets 4,). Similarly, L, does not meet 4,.
We know also that L, and L, do not meet (as o, 0%c, € G). It follows that
there is a geodesic L* with L, and g(L,) one side of L* and with L, and h(L,)
on the other side of L* It is now immediate from geometric considerations

that X, n X, = &.
For an analytic proof of (3) observe that as L, and L, do not meet, we
have (Theorem 7.19.2),

cosh p(A,A,) sinh(3T,) sinh(3T;) > 1 + cosh(3T,) cosh(3T,,).
If £,n X, # ¢ then for some z in the intersection, (11.7.2) and (11.7.3)
hold (with h as well as g) so
sinh(3T;) sinh(3T,) cosh p(4,, A4,)
< sinh(3T,) sinh(3T;) cosh[p(z, A,) + p(z, A})]
= sinh(3T,) sinh(3T;)[cosh p(z, A,) cosh p(z, A,)
+ sinh p(z, A,) sinh p(z, 4,)]
< cosh(3T;) cosh(3T;) + 1
contradicting the application of Theorem 7.19.2. O
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It is possible to establish certain results for canonical regions even for
Fuchsian groups with elliptic elements. For example, we have the following
result.

Theorem 11.7.2. Let G be a non-elementary, non-Triangle Fuchsian group. If
g and h are elliptic or parabolic elements in G, then either {g, h) is cyclic or
the canonical regions X, and X, are disjoint.

PROOF. We may assume that g and h are primitive (this can only increase
thesize of 2, and %,). Construct the geodesic L through (or ending at) the
fixed point u of g and the fixed point v of h. Construct geodesics L; and L,
through u which are symmetrically placed with respect to L such that
g(L,) = L,: repeat this construction using L, and L, through v in the
obvious way. Assume the L; are labelled so that L, and L; lie on the same
side of L. If L, meets L, then (g, h) is a Triangle group and hence so is
G (Theorem 10.6.6). This is not so, thus L, and L, are disjoint. The geo-
metrical construction of canonical regions now shows that %, and I, are
disjoint. O

EXERCISE 11.7

1. (i) Let g be parabolic with canonical region Z,:show that h-area(Z,/{g)) = 2.
(ii) Let g be hyperbolic with translation length T: show that X,/{g) has area
2T/sinh(3T).
(iii) Let g be elliptic with angle of rotation 27/g: show that Z,/{g) has area

o]
q |sin(n/q)

and this tends to 2 as g — + cc.

2. Let G be a non-elementary Fuchsian group. At each fixed point w of a parabolic
element in G, let

H, = {z:sinh dp(z, gz) < }}
where g generates the stabilizer of w. Show that for all parabolic fixed points « and v,
H,=H, or H,nH, = .
Prove also that for all f in G,
S(H)=Hy,.

§11.8. Notes

Some of the results in Section 11.6 occur in [59], [113]; for a completely
algebraic approach, see [78], [79], [96]. For Section 11.7, see [12], [37],
[43], [64], [87]: for a selection of geometric results on Fuchsian groups,

consult [10], [75], [80], [81], [82], [84] and [93].
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complementary transversals 16 fundamental domain 204

oonformal 6 fundamental set 204
conjugacy 3

conjugacy classes 263

convex fundamental polygon 217

convex set 138 G-packing 102

coset decomposition 238 generalized Dirichlet polygon 235
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Hecke group 293
hexagon 160
horoball 109, 110
horocycle 139
horocyclic region 139
horosphere 109
hyperbolic circle 132
hyperbolic disc 132
hyperbolic line 134
hyperbolic metric 8, 35
hyperbolic plane 126
hyperbolic space 35
hyperbolic transformation 67
hyperboloid model 48
hypercycle 139
hypercyclic region 139

improper vertex 223
infinite vertex 223
inscribed circle 152
interior of an angle 141
intersecting geodesics 136
invariant disc 92

inverse points 31
inversion 20

inversive product 28, 29, 157
isometric circle 57,176
isometric sphere 41
isometries 136

iterates 6, 72

Jensen’s inequality 2
Jprgensen’s inequality 105

Klein model 129
Kleinian group 99

Lambert quadrilateral 156
limit set 97
locally convex set 139

locally finite fundamental domain 208

loxodromic transformation 67

meet 2

Mobius group 23, 26
Mbobius transformation 22
Modular group 15, 229
multiplier 87

Index

Nielsen region 202, 254
non-elementary subgroup 90
non-simple element 190
norm of matrix 12

norm of transformation 61
normal family 44

orbit 64

order of a cycle 221
ordinary set 97
orthogonal matrix 10

parabolic transformation 67
parallel geodesics 136
pencils 168

pentagon 159
perpendicular bisector 164
Picard’s group 15, 96
Poincaré extension 34, 58
Poincaré’s theorem 249
point of approximation 261
points at infinity 127
Poisson kernel 8, 174
polygon 153

precisely invariant subset 122
primitive elements 189
proper vertex 223

purely hyperbolic group 190
Pythagoras’ Theorem 146

quadrilaterals 156
quaternion 16, 56
quotient topology 4

ray fromz 136
reflection 20
regular solid 63
Riemann surface 116

Saccheri quadrilateral 156

side of convex fundamental polygon 218
side-pairing 220, 240

signature 268

simple element 190

Sine rule 148

sphere 28

stabilizer 64, 122
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stereographic projection 21
strictly loxodromic transformation 67

tesselation 204
topological group 5, 45
trace of matrix 11

trace of transformation 61
translation length 112, 173
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