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Preface

This text is intended to serve as an introduction to the geometry of the action
of discrete groups of Möbius transformations. The subject matter has now
been studied with changing points of emphasis for over a hundred years, the
most recent developments being connected with the theory of 3-manifolds:
see, for example, the papers of Poiricaré [77] and Thurston [101]. About
1940, the now well-known (but virtually unobtainable) Fenchel—Nielsen
manuscript appeared. Sadly, the manuscript never appeared in print, and this
more modest text attempts to display at least some of the beautiful geo-
metrical ideas to be found in that manuscript, as well as some more recent
material.

The text has been written with the conviction that geometrical explana-
tions are essential for a full understanding of the material and that however
simple a matrix proof might seem, a geometric proof is almost certainly more
profitable. Further, wherever possible, results should be stated in a form that
is invariant under conjugation, thus making the intrinsic nature of the result
more apparent. Despite the fact that the subject matter is concerned with
groups of isometries of hyperbolic geometry, many publications rely on
Euclidean estimates and geometry. However, the recent developments have
again emphasized the need for hyperbolic geometry, and I have included a
comprehensive chapter on analytical (not axiomatic) hyperbolic geometry.
It is hoped that this chapter will serve as a "dictionary" of formulae in plane
hyperbolic geometry and as such will be of interest and use in its own right.
Because of this, the format is different from the other chapters: here, there is
a larger number of shorter sections, each devoted to a particular result or
theme.

The text is intended to be of an introductory nature, and I make no
apologies for giving detailed (and sometimes elementary) proofs. Indeed,
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many geometric errors occur in the literature and this is perhaps due, to
some extent, to an omission of the details. I have kept the prerequisites to a
minimum and, where it seems worthwhile, I have considered the same topic
from different points of view. In part, this is in recognition of the fact that
readers do not always read the pages sequentially. The list of references is
not comprehensive and I have not always given the original source of a
result. For ease of reference, Theorems, Definitions, etc., are numbered
collectively in each section (2.4.1, 2.4.2,...).

I owe much to many colleagues and friends with whom I have discussed
the subject matter over the years. Special mention should be made, however,
of P. J. Nicholls and P. Waterman who read an earlier version of the manu-
script, Professor F. W. Gehring who encouraged me to write the text and
conducted a series of seminars on parts of the manuscript, and the notes
and lectures of L. V. Ahifors. The errors that remain are mine.

Cambridge, 1982 ALAN F. BEARDON
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CHAPTER 1

Preliminary Material

§1.1. Notation

We use the following notation. First, Z, t1, and C denote the integers, the
rationals, the real and complex numbers respectively: I-Il denotes the set of
quaternions (Section 2.4).

As usual, denotes Euclidean n-space, a typical point in this being
x = (x1, . . . , with

lxi = + ... +

Note that if y > 0, then y112 denotes the positive square root of y. The
standard basis of is e1 where, for example, e1 = (1, 0, . .., 0).
Certain subsets of Di" warrant special mention, namely

xi < 1},

H" = 0},

and

S"' = {xeIW': xi = 1}.

In the case of C (identified with we shall use and for the unit
disc and unit circle respectively.

The notation x x2 (for example) denotes the function mapping x to x2:
the domain will be clear from the context. Functions (maps or transforma-
tions) act on the left: for brevity, the image f(x) is often written as fx (omitting
brackets). The composition of functions is written as fg: this is the map
x
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Two sets A and B meet (or A meets B) if A n B 0. Finally, a property
P(n) holds for almost all n (or all sufficiently large n) if it fails to hold for only
a finite set of n.

§1.2. Inequalities

All the inequalities that we need are derivable from Jensen's inequality: for a
proof of this, see [90], Chapter 3.

Jensen's Inequality. Let p be a positive measure on a set X with p(X) = 1,

let f: X —+ (a, b) be p-integrable and let b) —+ be any convex function.
Then

� dp.

Jensen's inequality includes Holder's inequality

r Ir \1/2

J
fgdp�(J f2dpj

x \x / \x
as a special case: the discrete form of this is the Cauchy—Schwarz inequality

a1 and b.. The complex case follows from the real case and this can, of
course, be proved by elementary means.

Taking X = {x1, . .. , and çb(x) = e', we find that (1.2.1) yields the
general Arithmetic—Geometric mean inequality

where p has mass at xj and =
In order to apply (1.2.1) we need a supply of convex functions:a sufficient

condition for 4 to be convex is that � 0 on (a, b). Thus, for example,
the functions cot, tan and cot2 are all convex on (0, n/2). This shows, for
instance, that if . .., 0,, are all in (0, then

cot(91 + ... + 6n) cot 01 + + cot on.
(1.2.2)

As another application, we prove that if x and y are in (0, and
x + y < it/2 then

tan x tan y � tan2()' Y). (1.2.3)
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Writing w = (x + y)/2, we have

tan x + tan y
= tan(x + y)

1 — tan x tan y

2 tan w
= I — tan2 w

As tan is convex, (1.2.1) yields

tan x + tan y � 2 tan w

and the desired inequality follows immediately (noting that tan2 w < 1 so
both denominators are positive).

§1.3. Algebra

We shall assume familiarity with the basic ideas concerning groups and (to a
lesser extent) vector spaces. For example, we shall use elementary facts about
the group of permutations of {1, 2 n}: in particular, is generated
by transpositions. As another example, we mention that if 0: G —* H is a
homomorphism of the group G onto the group H, then the kernel K of B is a
normal subgroup of G and the quotient group G/K is isomorphic to H.

Let g be an element in the group G. The elements conjugate to g are the
elements hgh 1 in G (h G) and the conjugacy classes {hgh h e G}
partition G. In passing, we mention that the maps x xgx' and x
(both of G onto itself) play a special role in the later work. The commutator
of g and h is

[g,h] =

for our purposes this should be viewed as the composition of g and a
conjugate of g'.

Let G be a group with subgroups G, (i belonging to some indexing set).
We assume that the union of the generate G and that different G, have only
the identity in common. Then G is the free product of the G. if and only if
each g in G has a unique expression as g1 where no two consecutive g1
belong to the same Examples of this will occur later in the text.

§1.4. Topology

We shall assume a knowledge of topology sufficient, for example, to discuss
Hausdorif spaces, connected spaces, compact spaces, product spaces and
homeomorphisms. In particular, is a 1—i continuous map of a compact
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space X onto a Hausdorff space Y, then f is a homeomorphisrn. As special
examples of topologies we mention the discrete topology (in which every
subset is open) and the topology derived from a metric p on a set X. An
isometry f of one metric space (X, p) onto another, say (Y, a), satisfies

a(fx, fy) = p(x, y)

and is necessarily a homeomorphism.
Briefly, we discuss the construction of the quotient topology induced by a

given function. Let X be any topological space, let Y be any non-empty set
and let f: X -+ Ybe any function. A subset V of Y is open if and only iff - 1(V)
is an open subset of X: the class of open subsets of Y is indeed a topology

on Y and is called the quotient topology induced by f. With this topology,
f is automatically continuous. The following two results on the quotient
topology are useful.

Proposition 1.4.1. Let X be a topological space and suppose that f maps X
onto Y. Let be any topology on Y and let be the quotient topology on Y
induced byf.

(1) 1ff: X (Y, .9) is continuous, then .9
(2) 1ff: X (Y, is continuous and open, then 3 =

PROOF. Suppose that f: X -+ (Y, 5) is continuous. If V is in 5, then f - '(V)
is in open in X and so V is in 3}, If, in addition, f: X (Y, 5) is an open
map then V in implies thatf'( V) is open in X and so is in .9
Asfissurjective,f(f'V) = E

Proposition 1.4.2. Suppose that f maps X into Y where X and Y are topological
spaces, Y having the quotient topology For each map g: Y —* Z define
g1: X -+ Z by g1 =gf Then g is continuous and only is continuous.

PROOF. Asfis continuous, the continuity of g implies that ofg1. Now suppose
that g1 is continuous. For an open subset V of Z (we assume, of course, that
Z is a topological space) we have

=f'(g'V)
and this is open in X. By the definition of the quotient topology, g - '(V) is
open in Y so g is continuous.

An alternative approach to the quotient topology is by equivalence rela-
tions. If X carries an equivalence relation R with equivalence classes [x],
then X/R (the space of equivalence classes) inherits the quotient topology
induced by the map x i-4 [x]. Equally, any surjective function f: X Y
induces an equivalence relation R on X by xRy if and only if f(x) = f(y)
and Y can be identified with X/R. As an example, let G be a group of homeo-
morphisms of a topological space X onto itself and let f map each x in X
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to its G-orbit [x] in X/G. If X/G is given the induced quotient topology, then
f: X X/G is continuous. In this case, f is also an open map because if V
is open in X then so is

= g(V).
geG

Finally, the reader will benefit from an understanding of covering spaces
and Riemann surfaces although most of the material in this book can be read
independently of these ideas. Some of this is discussed briefly in Chapter 6:
for further information, the reader is referred to (for example) [4], [6],
[28], [50], [63] and [100].

§1.5. Topological Groups

A topological group G is both a group and a topological space, the two
structures being related by the requirement that the maps x i—p x 1 (of G

onto G) and (x, y) i—* xy (of G x G onto G) are continuous: obviously,
G x G is given the product topology. Two topological groups are isomorphic
when there is a bijection of one onto the other which is both a group iso-
morphism and a homeomorphism: this is the natural identification of
topological groups.

For any y in G, the space G x (y} has a natural topology with open sets
A x {y} where A is open in G. The map x (x, y) is a homeomorphism
of G onto G x {y} and the map (x, y) i—* xy is a continuous map of G x {y}
onto G. It follows that x F—* xy is a continuous map of G onto itself with
continuous inverse x —+ and so we have the following elementary but
useful result.

Proposition 1.5.1. For each y in G, the map x i—* xy is a homeomorphism of G
onto itself: the same is true of the map x i—* yx.

A topological group G is discrete if the topology on G is the discrete
topology: thus we have the following Corollary of Proposition 1.5.1.

Corollary 1.5.2. Let G be a topological group such that for some g in G, the
set {g} is open. Then each set {y} (y E G) is open and G is discrete.

Given a topological group G, define the maps

= xax1

and

= = [x,a],
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where a is some element of G. We shall be interested in the iterates j" and
of these maps and with this in mind, observe that has a unique fixed

point, namely a. The iterates are related by the equation

=

because (by induction)

1(x) = 1

=
=

In certain circumstances, the iterated commutator converges to the
identity (equivalently, the iterates converge to the unique fixed point
a of q5) and if the group in question is discrete, then we must have = a

for some n. For examples of this, see [106], [111: Lemma 3.2.5] and Chapter 5
of this text.

Finally, let G be a topological group and H a normal subgroup of G.
Then G/H carries both the usual structures of a quotient group and the
quotient topology.

Theorem 1.5.3. If H is a normal subgroup of a topological group G, then G/H
with the usual structures is a topological group.

For a proof and for further information, see [20], [23], [39], [67], [69]
and [94].

§1.6. Analysis

We assume a basic knowledge of analytic functions between subsets of the
complex plane and, in particular, the fact that these functions map open
sets of open sets. As specific examples, we mention Möbius transformations
and hyperbolic functions (both of which form a major theme in this book).

A map f from an open subset of to is at x if

f(y) = f(x) + (y x)A + I y — x

where A is an n x n matrix and where —* 0 as y x. We say that a
differentiable f is conformal at x if A is a positive scalar multiple of an
orthogonal matrix B. More generally, f is directly or indirectly conformal
according as det B is positive or negative. 1ff is an analytic map between
plane domains, then the Cauchy—Riemann equations show that f is directly
conformal except at those z where f" t(z) = 0.
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If D is a subdomain of and if). is a density (that is, a positive continuous
function) on D we define

p(x, y) = inf A(y(t))
I
dt,

the infimum being over all (smooth) curves y (with derivative joining x
to yin D. It is easy to see that p is a metric on D; indeed, p is obviously sym-
metric, non-negative and satisfies the Triangle inequality. As p(x, x) = 0,
we need only prove that p(x,y) > 0 when x and y are distinct. Choosing a
suitably small open ball N with centre x and radius r, we may assume (by
continuity) that A has a positive lower bound on N and that y $ N. Thus

is at least on a section of y of length at least r so p(x, y) > 0.

More generally, let y = (yi, . . . , be any differentiable curve in D and
suppose that

q@) =

is positive on D (except when = 0). Then we can define a metric as above
by integrating [q(t)] if 2 and the metric topology is the Euclidean topology.

1ff is a conformal bijection of D onto the domain D1, then

lim 1(Y) — f(x)
=

and D1 inherits the density a where

a(fx) =

and hence a metric In fact, f is then a isometry of (D, p) onto (D1, pi).
If, in addition, D = D1 and

A(fx)1i(x) =

then f is an isometry of (D, p) onto itself: in terms of differentials, this con-
dition can be expressed as

)L(y)IdyI = A(x)IdxI, y = f(x).

As an example, let D = H2, )L(Z) = l/Im[z] and

az + b

cz + d

where a, b, c and d are real and ad — bc > 0. Then f maps H2 onto itself
and as

Im[fz] = Im[zJ f(i)(z)I,



1. Preliminary Material

we see that f is an isometry of (H2, p) onto itself: this is the hyperbolic metric
on H2.

We shall need the Poisson kernel for the unit disc A and the upper half-plane
H2. For each z in A and each in the Poisson kernel is

1 — Izj2
PA(z,

= Iz —

Obviously, PA is positive on A and zero on 3A except at the point Because

+ zl
PA(z, =

we see immediately that PA is (for each a harmonic function of z with a
pole at

The map

C+zf(z) =

maps A onto (z: x > O} and to cc with

Re[f(z)] = PA(z,

It follows immediately that the level curves of PA(z, (for a fixed are the
images underft of the vertical lines in H2 and these are circles in A which
are tangent to ÔA at 4.

The most general Möbius transformation preserving A is of the form

az+ë 2 2
IaI — cl = 1,

cz + a

and a computation shows that

1 — jg(z)12 =

g is a Möbius transformation, we also have

g(z) — g(C)12 = lz —

and so we obtain the relation

=

The Poisson kernel for the half-plane H2 is

2
— cc,

and the reader is invited to explore its properties.



CHAPTER 2

Matrices

§2.1. Non-singular Matrices

If ad — bc 0, the 2 x 2 complex matrix

b

d

induces the Möbius transformation

az + b
g(z)

= + d

of the extended complex plane onto itself. As these transformations are our
primary concern, it is worthwhile to study the class of 2 x 2 complex matrices.

Given A as in (2.1.1), the determinant det(A) of A is given by

det(A) = ad bc

and A is non-singular if and only if det(A) 0. If A is non-singular then the
inverse

=

yd _2b)
= (ad — bcY'

exists and is also non-singular.
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For any matrices A and B we have

det(AB) = det(A) det(B) (2.1.2)

= det(BA),

and so

det(BAB1) = det(AB1B)
= det(A). (2.1.3)

The class of non-singular 2 x 2 complex matrices is a group with respect
to the usual matrix multiplication: it is the General Linear Group and is
denoted by GL(2, C). We shall be more concerned with the subgroup
SL(2, C), the Special Linear Group, which consists of those matrices with
det(A) = 1. We denote the identity matrix (of any size) by I although
sometimes, for emphasis, we use I,, for the n x n identity matrix.

Much of the material in this chapter can be written in terms of n x n
complex matrices. The determinant can be defined (by induction on n) and a
matrix A is non-singular with inverse A 1 if and only if det(A) 0. The
identities (2.1.2) and (2.1.3) remain valid.

The n x n real matrix A is orthogonal if and only if

xj = xAj

for every x in this is equivalent to the condition = At where
denotes the transpose of A. Observe that if A is orthogonal then, because
det(A) det(At), we have det(A) is 1 or 1. The class of orthogonal n x n
matrices is denoted by 0(n).

For z1,. . . in we write

zJ = [!z112 + +

A complex n x n matrix is unitary if and only if

ri =

for every z in this is equivalent to the condition A — 1 = At where A is
obtained in the obvious way by taking the complex conjugate of each element
of A.

From a geometric point of view, the following result is of interest.

Selberg's Lemma. Let G be a finitely generated group of n x n complex
matrices. Then G contains a normal subgroup offinite index which contains no
non-trivial element offinite order.

This result is used only once in this text and we omit the proof which can
be found in [92] and [17], [18]: see also [16], [27], [31], [35], [85] and [104]
where it is discussed in the context of discrete groups.
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EXERCISE 2.1

1. Show that the matrices

(1 l\ (1 —l

i,1' i

are conjugate in SL(2, C) but not in SL(2, Il) (the real matrices in SL(2, C)).

2. Show that A det(A) is a homomorphism of GL(2, C) onto the multiplicative
group of non-zero complex numbers and identify the kernel.

3. The centre of a group is the set of elements that commute with every element of the
group. Show that the centres of GL(2, C) and SL(2, C) are

H = {tI:t 0), K = (1, ..J}

respectively. Prove that the groups

GL(2, C)/H, SL(2, C)/K

are isomorphic.

4. Find the centres H1 and K1 of GL(2, and SL(2, Eli) respectively. Are

GL(2, R)/H1, SL(2,

isomorphic?

§2.2. The Metric Structure

The trace tr(A) of the matrix A in (2.1.1) is defined by

tr(A) = a + d.

A simple computation shows that

tr(AB) = tr(BA)

and we deduce that

tr(BAB 1) =

tr is invariant undei- conjugation. Other obvious facts are

tr(A.A) = )L tr(A) E C)

and

tr(At) = tr(A),

where At denotes the transpose of A.
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The trace function also acts in an important way on pairs of matrices.
First, we recall that the class of 2 x 2 matrices is a vector space over the
complex numbers and the Hermitian transpose A* of A is defined by

A* =
=

(2.2.1)

Given any matrices

A_(a b\ fi

d)'

we define [A, B] by

[A, B] = tr(AB*)

=

a scalar product on the vector space of all 2 x 2 matrices: explicitly

(i) [A, A] � 0 with equality if and only if A = 0;
(ii) [A,A, + = + A2[A2,B];

and

(iii) [B, A] = [A, B].

Any scalar product, say [x, y], induces a norm [x, x]"2 and hence a
metric [x — y, x — y]"2. In our case the norm is given explicitly by

= [A, A]"2
= (1a12 + + + id!2)112

and for completeness, we shall show that this satisfies the defining properties
of a norm, namely

(iv) !!A!t � 0 with equality if and only if A = 0;
(v) = Al. hAll (AeC)

and

(vi) IA + Bh! � jAil + IIBJI

Of these, (iv) and (v) are trivial: (vi) will be proved shortly.
We also have the additional relations

(vii) I det(A) I . 'll = hi;
(viii) [A, B]! � IA!! . IIBI!

(ix) IIABII � hI . hiBhl

and

(x) 2ldet(A)I � hAIl2.
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Of these, (vii) is immediate. To prove (viii) let

C = AA — pB,

where = [B,A] and p = By (iv), 1CM2 � 0 and this simplifies to
give (viii). As

IA + BM2 = lAM2 + [A, B] + [B, A] +

(vi) follows directly from (viii) and (iii).

To prove (ix), note that if

AB=(" q
S

then, for example,

p12 = + byI2� + + 1y12),

(the last line by the Cauchy—Schwarz inequality). A similar inequality holds
for q, r and s and (ix) follows.

Finally, (x) holds as

11A2-2ldet(A)I�1a12+1b12+1c12+1d12-2(IadI+IbcJ)
= (IaJ - IdD2 + (lb — Ic 1)2

� 0.

Next, the norm lAM induces a metric IA — BII for

IA — BII = 0 if and only if A = B;

lB — All = Il(—1)(A — B)II = IA — BIj

and

IIA—BIf = M(A—C)+(C--B)II
� IA - CII + IC - BII.

The metric is given explicitly by

and we see that
(a b

d

in this metric if and only if —p a, —* b, c, —÷ c and d. Note that this
is a metric on the vector space of all 2 x 2 matrices.

Observe that the norm, the determinant and the trace function are all
continuous functions. The map A A1 is also continuous (on GL(2, C))
and if A and B then AB. These facts show that GL(2, C)is
a topological group with respect to the metric IA — BII
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EXERCISE 2.2

1. Show that if A and B are in SL(2, C) then

(i) tr(AB) + tr(A — 'B) = tr(A) tr(B);
(ii) tr(BAB) + tr(A) = tr(B) tr(AB);
(iii) tr2(A) + tr2(B) + tr2(.4B) tr(A) tr(B) tr(AB) + 2 + tr(ABA — 'B ').

Replace B by in (i) and hence obtain tr(A'B) as a function of tr(A), tr(B), tr(AB)
and n.

2. Find subgroups G, and G2 of GL(2, C) and a map f of G, onto G2 which is an iso-
morphism but not a homeomorphism.

3. Let V be the metric space of all 2 x 2 complex matrices with metric — Prove
that as subsets of V.

(i) GL(2, C) is open but not closed;
(ii) SL(2, C) is closed but not open;
(iii) GL(2, is disconnected:
(iv) GL(2, C) is connected:
(v) {A:tr(A) = l} is closed but not compact.

[In (iv), show that every matrix in GL(2, C) is conjugate to an upper triangular
matrix T and that T can be joined to I by a curve in GL(2, C).]

4. For an n x n complex matrix A = define

tr(A) = a,1 + + a,,,.

Prove that

tr(BAB') = tr(A)

and that tr(AB*) is a metric on the space of all such matrices.

§2.3. Discrete Groups

In this section we shall confine our attention to subgroups of the topological
group GL(2, C). We recall that a subgroup G of GL(2, C) is discrete if and
only if the subspace topology on G is the discrete topology. It follows that
if G is discrete and if X, A1, A2,. . . are in G with X then = X for all
sufficiently large n. It is not necessary to assume that X e G here but only that
X is in GL(2, C). Indeed, in this case,

-* XX' = I
and so for almost all n, we have = and hence = X.

In order to prove that G is discrete, it is only necessary to prove that one
point of G is isolated: for example, it is sufficient to prove that

inf{flX — III:XeG,X I) >0,
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so that {I} is open in G (Corollary 1.5.2). In terms of sequences, G is discrete
if and only if A, —+ land A, e G implies that A, = I for almost all n.

We shall mainly be concerned with SL(2, C) and in this case an alternative
formulation of discreteness can be given directly in terms of the norm. The
subgroup G of SL(2, C) is discrete (f and only for each positive k, the set

{A E G: � k} (2.3.1)

is finite. If this set is finite for each k, then G clearly cannot have any limit
points (the norm function is continuous) and so G is discrete. On the other
hand, if this set is infinite then there are distinct elements A, in G with

� k, n = 1, 2 If A, has coefficients a,,, b,,, c,, and d, then a, I � k

and so the sequence a, has a convergent subsequence. The same is true of
the other coefficients and using the familiar "diagonal process" we see that
there is a subsequence on which each of the coefficients converge. On this
subsequence, A, B say, for some B and as det is continuous, B e SL(2, C):
thus G is not discrete.

The criterion (2.3.1) shows that a discrete subgroup G of SL(2, C) is
countable. In fact,

G = U

where G, is the finite set of A in G with � n. Any subgroup of a discrete
group is also discrete: this is obvious. Finally, if G is discrete then so is any
conjugate group BGB 1, because X t—+ BXB is a homeomorphism of
GL(2, C) onto itself.

There are other more delicate consequences of and criteria for discrete-
ness but these are best considered in conjunction with Möbius transforma-
tions (which we shall consider in later chapters). For a stronger version of
discreteness, see [11]. We end with an important example.

Example 2.3.1. The Modular group is the subgroup of SL(2, R) consisting
of all matrices A with a, b, c and d integers. This group is obviously discrete.
More generally, Picard's group consisting of all matrices A in SL(2, C) with
a, b, c and d Gaussian integers (that is, m + in where m and n are integers) is
discrete.

EXERCISE 2.3

1. Show that (2'I: tie is a discrete subgroup of GL(2, C) and that in this case,
(2.3.1) is infinite.

2. Find all discrete subgroups of GL(2, C) which contain only diagonal matrices.

3. Prove that a discrete subgroup of GL(2, C) is countable.

4. Suppose that a subgroup G of GL(2, IR) contains a discrete subgroup of finite index.
Show that G is also discrete.
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§2.4. Quaternions

A quaternion is a 2 x 2 complex matrix of the form

/ z
q=i — _): (2.4.1)

\—W ZJ

the set of quaternions is denoted by I-fl (after Hamilton). The addition and
multiplication of quaternions is as for matrices and the following facts are
easily verified:

(i) 9-I is an abelian group with respect to addition;
(ii) the non-zero quaternions form a non-abelian group with respect to

multiplication;
(iii) I-I is a four-dimensional real vector space with basis

/1 0\ 0

i)' —i'

/0 1\ /0
o)'

(note that 1 is not the same as 1, likewise i i).

As multiplication of matrices is distributive, the multiplication of
quaternions is determined by the products of the four elements 1, i, j and k.

In fact, these elements generate a multiplicative group of order 8 and

= j2 = k2 = —1;

ij=k, jk=i, ki=j;
ii = —k, kj = —i, ik = —j.

The quaternions contain a copy of C for the map

x + iy i—p xl + yi

of C into 0-fl clearly preserves both addition and multiplication. Returning
to(2.4.1)wewritex + iy = zandu + iv = wsothat

q = (xl + yi) + (uj + vk)
= (xl + yi) + (ul + vi)j. (2.4.2)

In view of this, it is convenient to change our notation and rewrite (2.4.2)
in the form

q = z + wj,

where such expressions are to be multiplied by the rule

(z1 + w1j)(z2 + w2j) = (z1z2 — + (z1w2 + w122)j.
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In particular, if z and w are in C, then

jz =
and

(z + - wj) = 1z12 + 1w12.

This last identity gives the form of the multiplicative inverse, namely

(z + wj)' = + 1w12)

where, of course,

det(z + wj) = 1z12 + 1w12.

EXERCISE 2.4

1. Show that the non-zero quaternions form a multiplicative group with centre
{tI: t real and non-zero}.

2. Show that SL(2, C) is not compact whereas

{qel-IJ:det(q)= 1}

is compact.

3. Let S be the set of quaternions of the form z + tj where t is real. Show that S is in-
variant under the map q '. By identifying z + tj with (x, y, t) in give a
geometric description of this map.

4. As in Question 3, show that the map q H+ kqk also leaves S invariant and give a
geometric description of this map.

§2.5. Unitary Matrices

The matrix A is said to be unitary if and only if
AA* = J

where A* is given by (2.2.1). Any unitary matrix satisfies

1 = det(A) det(A*) = det(A)12

and we shall focus our attention on the class SU(2, C) of unitary matrices
with determinant one.

Theorem 2.5.1. Let A be in SL(2, C). The following statements are equivalent
and characterize elements of SU(2, C).

(i) A is unitary;
(ii)

A is a quaternion.
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In particular

SU(2, C) = SL(2, C) n 1-fl.

PROOF. Suppose that

A=(a ad—bc=1,
\c d;

then

AA* = + hi2 aF + bd
(251)

äc+bd cj2+1d12)

and

(2.5.2)

First, (2.5.1) shows that if A is unitary then IA 12 = 2. Next, if lAM2 = 2 we

deduce from (2.5.2) that a = a and b = —ë so A is a quaternion. Finally, if
A is a quaternion, then a = d, b = — ë and recalling that ad — bc = 1, we

find from (2.5.1) that A is unitary.

A simple computation shows that each A in SU(2, C) preserves the quad-
ratic form jzl2 + wi2: explicitly, if

(z, w)A = (z', w'),

then

iz'!2 + Iw'12 = Iz12 + 1w12.

A similar result holds for column vectors and so for any matrix X,

IIAXII = IIXAII = IIXII.

This shows that

IIAXA' — AYA1II = IIA(X — Y)A1!i = IIX —

and so we have the following result.

Theorem 2.5.2. Suppose that A is in SU(2, C). Then the map X AXA1
is an isometry of the space of matrices onto itself.

Remark. Theorems 2.5.1 and 2.5.2 will appear later in a geometric form.

EXERCISE 2.5

1. Show that SU(2, C) is compact and deduce that any discrete subgroup of SU(2, C)
is finite.

2. Is SU(2, C) connected?
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3. The group of real orthogonal matrices = 1) in SL(2, is denoted by SO(2).
Show that there is a map of SO(2) onto the unit circle in the complex plane which is
both an isomorphism and a homeomorphism.

4. Show that every matrix in SU(2, C) can be expressed in the form

(e° 0 '\ (cos 4' —sin 0

\O \sin cos

for some real 0, 4' and



CHAPTER 3

Möbius Transformations on

§3.1. The Möbius Group on

The sphere S(a, r) in 11" is given by

S(a, r) = {xe R": Ix — aI = r}

where a E I?' and r > 0. The reflection (or inversion) in S(a, r) is the function
defined by

r
(3.1.1)

\Ix —

In the special case of S(0, 1) (= Sn—i), this reduces to

= x/1x12

and it is convenient to denote this by x where = The general
reflection (3.1.1) may now be rewritten as

= a + r2(x — a)*.

The reflection in S(a, r) is not defined when x = a and this is overcome by
adjoining an extra point to We select any point not in 11" (for any n),
label it cc and form the union

= u
As

I
çb(x) —* + cc when x —+ a it is natural to define 4(a) = cc: likewise, we

define 4(co) = a. The reflection 4' now acts on and, as is easily verified,
= x for all x in Clearly 4 is a 1—1 map of onto itself: also,

4(x) = x if and only if x e S(a, r).
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We shall call a set P(a, t) a plane in if it is of the form

P(a, t) = {x E (x. a) = t} u

where a e a 0, (x. a) is the usual scalar product and t is real.
Note that by definition, lies in every plane. The reflection 4) in P(a, t) (or,
as we sometimes say, in (x . a) = t) is defined in the usual way; that is

4)(x) = x + Aa,

where the real parameter A is chosen so that + 4)(x)) is on P(a, t). This
gives the explicit formula

4)(x) = x — 2[(x.a) — t]cf", (3.1.2)

when x E and, of course, 4) acts on 4)2(x) = x for
all x in and so 4) is a 1—1 map of li" onto itself. Also, 4)(x) = x if and only if
x e P(a, t).

It is clear that any reflection 4) (in a sphere or a plane) is continuous in
except at the points and 4) '(cio) where continuity is not yet defined. We
shall now construct a metric on and shall show that 4) is actually con-
tinuous (with respect to this metric) throughout

We first embed in in the natural way by making the points
(x1 and (x1 x,,, 0) correspond. Specifically, we let be

the map defined by

= (x1, . .. , x = (x1, .. .

and, of course, = cc. Thus x is a 1—1 map of onto the plane
= 0 in The plane = 0 in can be mapped in a 1—1

manner onto the sphere

1)

by projecting towards (or away from) e, + 1
until it meets the sphere

in the unique point other than This map it is known as the
stereographic projection of onto

It is easy to describe it analytically. Given x in I?', then

= +

t is chosen so that ir(i) = 1. The condition 2 = 1 gives rise
to a quadratic equation in t which has the two solutions t = 1 and (as

= IxD
— 1

= + 1
We conclude that

/ 2x1 2x —
= I , . . , 2

'C E [W,
+ 1 + 1 xl + 1/

and, by definition, it(cc) =
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As is a 1-1 map of onto we can transfer the Euclidean
metric from to a metric d on This is the chordal metric d and is defined
on by

d(x,y) = — x, ye

A tedious (but elementary) computation now yields an explicit expression
for d, namely

2Jx—yI
+ y12)U2 ifx,y cc;

d(x,y)
= 2

(3.1.3)

(1 +
ify = cc.

A shorter proof of this will be given in Section 3.4.
This formula shows that the metric d restricted to R" induces the same

topology as does the Euclidean metric; thus a function from a subset of
to is continuous with respect to both or to neither of these two metrics. It
is now easy to see that each reflection 4) is a homeomorphism (with respect
to d) of onto itself. Indeed, as 4) = we need only show that 4) is

continuous at each point x in and this is known to be so whenever x is
distinct from cc and 4)(co)(=qY 1(cc)). If 4) denotes reflection in S(a, r)then,
for example,

d(4)(x), 4)(a)) = d(4)(x), cc)

2

= (1 + 4)(x)12)h/2'

s x —* a. Thus 4) is continuous at x = a: a similar argument shows 4) to be
ontinuous at cc also. If is the reflection in the plane P(a, t) then (as is
asily seen)

4)(x)12 = 1x12 + O(IxI)

as xl —÷ cc and so I4)(x)l —* + cc. This shows that is continuous at cc
and so is also a homeomorphism of onto itself.

Definition 3.1.1. A Möbius transformation acting in is a finite composition
of reflections (in spheres or planes).

Clearly, each Möbius transformation is a homeomorphism of onto
itself. The composition of two Möbius transformations is again a Möbius
transformation and so also is the inverse of a Mäbius transformation for
if 4) = (where the are reflections) then q5 ' = Finally,
for any reflection 4) say, 4)2(x) = x and so the identity map is a Möbius
transformation.
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Definition 3.1.2. The group of Möbius transformations acting in is

called the General Möbius group and is denoted by

Let us now consider examples of Möbius transformations. First, the
translation x x + a, a E I?', is a MObius transformation for it is the reflec-
tion in (x.a) = 0 followed by the reflection in (x.a) = Next, the
magnification x kx, 1< > 0, is also a Möbius transformation for it is the
reflection in S(O, 1) followed by the reflection in S(0,

If 4) and 4)* denote reflections in S(a, r) and S(0, 1) respectively and if
= rx + a, then (by computation)

4) = (3.1.4)

As cli is a Möbius transformation, we see that any two reflections in spheres
are conjugate in the group GM(R").

As further examples of Möbius transformations we have the entire class
of Euclidean isometries. Note that each isometry 4) of Di" is regarded as
acting on with 4)(cc) = Co.

Theorem 3.1.3. Each Euclidean isometry of R" is a composition of at most
n + 1 reflections in planes. In particular each isometry is a Möbius transforma-
tion.

PROOF. As each reflection in a plane is an isometry, it is sufficient to consider
only those isometries 4) which satisfy 4)(0) = 0. Such isometries preserve
the lengths of vectors because

= 4)(x) 4)(O)I = Ix — = xI

and also scalar products because

2(4)(x).çb(y)) = 4)(x)12 + 4)(y)2 — 4)(x) —
= x12 + — Ix

= 2(x . y).

This means that the vectors 4)(e1), ..., are mutually orthogonal and
so are linearly independent. As there are n of them, they are a basis of the
vector space 11" and so for each x in there is some in with

4)(x)

But as the are mutually orthogonal,

= (4)(x).

= (x. e1)

= xi.



24 3. Möbius Transformations on

Thus

=

and this shows that is a linear transformation of li" into itself. As any
isometry is 1—I, the kernel of has dimension zero: thus =

If A is the matrix of with respect to the basis e1, ..., then = xA
and A has rows .. . , This shows that the (i,j)th element of the
matrix AAt is and as this is . es), it is I if i = j and is zero
otherwise. We conclude that A is an orthogonal matrix.

We shall now show that 4 is a composition of at most n reflections in
planes. First, put

a1 = — e1.

Ifa1 0, we let be the reflection in the plane P(a1, 0) and a direct computa-
tion using (3.1.2) shows that maps to e1. Ifa1 = 0 we let be the
identity so that in all cases, maps to e1. Now put = thus

is an isometry which fixes 0 and e1.
In general, suppose that is an isometry which fixes each of 0, e1, . . . ,

and let

= &(ek+1) ek+1.

Again, we let
1

be the identity (if ak÷ 1 = 0) or the reflection in P(ak+ 0)

(if ak+j 0) and exactly as above, fixes 0 and ek+j. In addition, if
1 � j � k then

(e3. a*÷ i) = . 1)) — . 1)

= . &(ek+ 1)) — 0

= (eJ.ek+l)
=0

and so by (3.1.2),
= e,.

As also fixes 0, e1, ..., we deduce that fixes each of 0, e1,
ek + In conclusion, then, there are maps (each the identity or a reflec-

tion in a plane) so that the isometry fixes each of 0, e1, . .., By
our earlier remarks, such a map is necessarily a linear transformation and so is
the identity: thus q5 = . . . This completes the proof of Theorem 3.1.3
as any isometry composed with a suitable reflection is of the form E

There is an alternative formulation available.

Theorem 3.1.4. A function is a Euclidean isometry and only it is of the
form

41(x) = xA + x0,

where A is an orthogonal matrix and x0 e
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PRooF. As an orthogonal matrix preserves lengths, it is clear that any of
the given form is an isometry. Conversely, if c1 is an isometry, then —

is an isometry which fixes the origin and so is given by an orthogonal matrix
(as in the proof of Theorem 3.1.3). E

More detailed information on Euclidean isometries is available: for
example, we have the following result.

Theorem 3.13. Given any real orthogonal matrix A there is a real orthogonal
matrix Q such that

A1

0

QAQ'= Ar

Is
0 —It

where r, s, t are non-negative integers and

I/cos OJ(
A,,—1

\sln 6,, cos 6,,

Any Euclidean isometry which fixes the origin can therefore be represented
(with a suitable choice of an orthonormal basis) by such a matrix and this
explicitly displays all possible types of isometries.

We now return to discuss again the general reflection It seems clear
that 4 is orientation-reversing and we shall now prove that this is so.

Theorem 3.1.6. Every reflection is orientation-reversing and conformal.

PROOF. Let be the reflection in P(a, t). Then we can see directly from (3.1.2)
that is differentiable and that is the constant symmetric matrix

where

—

is the Kronecker delta and is 1 if i = j and is zero otherwise). We prefer
to write this in the form

= 1 — 2Q0,

where has elements Now Qa is symmetric and = Qa' SO

4'(x). j/(x)t = (I — 2Qa)2 = I.

This shows that is an orthogonal matrix and so establishes the con-
formality of 4.
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Now let D = det As çb'(x) is orthogonal, D 0 (in fact, D = ± I).
Moreover, D is a continuous function of the vector a in — {0} and so is a
Continuous map of 11" — {0} into — {O}. As — {0} is connected (we
assume that n � 2), D is either positive for all non-zero a or is negative for
all non-zero a. If a = e1, then becomes

= (—x1 + 2t, x2, . . . ,

and in this case, D = — 1. We conclude that for all non-zero a, D < 0 and so
every reflection in a plane is orientation reversing.

A similar argument holds for reflections in spheres. First, let be the
reflection in S(0, 1). Then for x 0, the general element of 4'(x) is

1x12

so

qY(x) = xl. 2(1 —

This shows (as above) that 4 is conformal at each non-zero x.
Now let D(x) be det As = x, the Chain Rule yields

= 1

and so exactly as above, D is either positive throughout — {0} or negative
throughout 0? — {O}. Taking x = e1, a simple computation yields D(e1) =
— 1 and so D(x) <0 for all non-zero x.

The proof for the general reflection is now a simple application of (3.1.4):
the details are omitted. E

The argument given above shows that the composition of an even number
of reflections is orientation-preserving and that the composition of an odd
number is orientation-reversing.

Definition 3.1.7. The Möbius group acting in is the subgroup of
GM(0?) consisting of all orientation-preserving Möbius transformations in

We end this section with a simple but useful formula. If a is the reflection
in the Euclidean sphere S(a, r) then

Ia(y) — a(x)I = — a)* — (x — a)*j

[ 1 2(x — a).(y — a) 1 11/2
=r21 2 2 2+ 2

LIy—aI Ix—al ly—al Ix—al

r2Iy — xl= . (3.1.5)
x—ally—al
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This shows that

cr(x + h) — r2
urn =

ix aJ2

and this measures the local magnification of c at x.

EXERCISE 3.1

1. Show that the reflections in the planes x a 0 and x . b = 0 commute if and only
if a and h are orthogonal.

2. Show that if 4) is the reflection in x . a t, then

= + 0(x)

+

3. Let 4) be the reflection in S(a, r). Prove analytically that

(i) 4)(x) = x if and only if xc S(a, r);
(ii) 4)2(x) =
(iii) Ix — j4)(x) —

a modified (iii)) for the reflection in P(a, t).

4. Prove (analytically and geometrically) that for all non-zero x and y in

IxHy- .x*I = IyI.Ix_y*I.

5. Show that if 4), denotes reflection in S(ta, t then

X 4)(x) = lim 4),(x)
i-. +

denotes reflection in the plane x. a = 0.

6. Verify the formula (3.1.3).

7. Let it be the stereographic projection of + = 0 onto S". Show that if ye then

= (yi
(1— 1)

8. Let 4) denote reflection in S(e, + 1' Show that 4) = it on the plane x,, + = 0
and find

9. Show that the map z 1 + in C is a composition of three (and no fewer) reflec-
tions. (Thus n + 1 in Theorem 3.1.3 can be attained.)

10. Use Theorem 3.1.5 and Definition 3.1.7 to show that if n is odd and if e
has a finite fixed point, then has an axis (a line of fixed points).
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§3.2. Properties of Möbius Transformations

We shall show that a Möbius transformation maps each sphere and plane
onto some sphere or plane and because of this, it is convenient to modify our
earlier terminology. Henceforth we shall use "sphere" to denote either a
sphere oftheform S(a, r) or a plane. A sphere S(a, r) will be called a Euclidean
sphere or will simply be said to be of the form S(a, r).

Theorem 3.2.1. Let 4) be any Möbius transformation and any sphere. Then
4)(Z) is also a sphere.

PROOF. It is easy to see that 4) is a Euclidean
isometry: in particular, this holds when 4) is the reflection in a plane. It is
equally easy to see that 4)(E) is a sphere when 4)(x) = kx, k > 0.

Each sphere is the set of points x in which satisfy some equation

— 2(x.a) + t = 0,

where a and t are real, a E and where, by convention, satisfies this
equation if and only if a = 0.

If x E then writing y = we have

a — 2(y.a) + = 0

and this is the equation of another sphere Thus if is the map x i—p x"
then The same argument shows that E and so

=
By virtue of (3.1.4) and the above remarks, 4)(Z) is a sphere whenever 4) is

the reflection in any Euclidean sphere. As each Möbius transformation is a
composition of reflections the result now follows. E

Any detailed discussion of the geometry of Möbius transformations
depends essentially on Theorem 3.2.1 and the fact that MObius transforma-
tions are conformal. A useful substitute for conformality is the elegant
concept of the inversive product E') of two spheres and E'. This is an
explicit real expression which depends only on and and which is in-
variant under all Möbius transformations. When and intersect it is a
function of their angle of intersection: when and are disjoint it is a
function of the hyperbolic distance between them (this will be explained
later). Without doubt, it is the invariance and explicit nature which
makes it a powerful and elegant tool.

The equation defining a sphere say S(a, r) or P(a, t), is

Jx12 — 2(x.a) + a!2 — r2 0,

or

—2(x.a) + 2t = 0,
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respectively, and these can be written in the common form
2a0 x — +

a = (a1, ..., an). The coeffictent vector of E, namely (a0, a1, ...,
is not uniquely determined by E but it is determined to within a real

non-zero multiple. Moreover if (a0, .. ., 1) is any coefficient vector of E
then (as is easily checked in the two cases)

a12 >

Definition 3.2.2. Let Z and have coefficient vectors (a0, . . . , 1) and
respectively. The inversive product (E, E' is

12(a.b) — —
( ) — 2 — j, 2 j_ j, ( )

a — 0 n+1)

Note that this is uniquely determined by E and Z': the bracketed terms
in the denominator are positive and we take positive square roots. If we
define a bilinear form q on ÷ 2 by

q(x, y) = 2(x1y1 + ... + +

then we can write the inversive product more concisely as

q(a', a') 1/21 q(b', b')

where a' = (a0, a1, .. , ;, and similarly for b'.
It is helpful to obtain explicit expressions for (E, in the following

three cases.

Case I. If E = S(a, r) and = S(b, t) then

r2 + t2 — a b 2
(Z, E') = . (3.2.2)

2rt

Case II. If = S(a, r) and I' = P(b, t) then

= - tI
(3.2.3)

ribi

Case III. If = P(a, r) and = P(b, t) then

(a. )l (3.2.4)

These formulae are easily verified. Note that in all cases, if and E' intersect
then = cos U where 0 is one of the angles of intersection. In particular,

= 0 if and only and E' are orthogonal. Observe also that in Case II,

=



30 3. Möbius Transformations on

where ö is the distance of the centre of S(a, r) from the plane P(b, t): thus
(E, = 0 if and only if a E P(b, t).

We shall now establish the invariance s').

Theorem 3.2.3. For any Möbius transformation and any spheres Z and

4(E')) = (E,

PROOF. A Möbius transformation maps a sphere to a sphere and so
induces a map

(a0, ar,..., (a'0, a'1,...,

a scalar multiple) of and
For example, an orthogonal transformation x '—* xA = y or (and this
includes all reflections in planes through the origin) satisfies

= 1y12, (x.a) =(xA.aA) = (y.aA)

and so maps the sphere

aolxI2 — 2(x.a) + = 0

to the sphere

aoIyI2 — 2(y.aA) + = 0.

The induced map between the coefficients is thus

a0E—*a0,

and it is clear that (3.2.1) is invariant if both coefficient vectors are subjected to
this transformation. We deduce that (L, is invariant under the map x E—* xA.

Inasimilarway,themaps(i)xt—+kx(k > + U
induce the maps:

(i) (a0, . . . , (a0, ka1
(ii) (a0, a1, ..., a1, ..., a0);

(iii) a1, ..., i—-* (a0, a1 + a0u1, . . . , + 1

+ + aoIuj2).

It is easy to check that (3.2.1) remains invariant under all of these trans-
formations and, as the corresponding Möbius transformations generate the
Möbius group, the proof is complete. Algebraically, one is simply observing
that a Möbius transformation induces a linear transformation with matrix
A on the coefficient vectors and that A leaves the quadratic form q invariant.

E

The proof of the next result illustrates the use of the inversive product in
place of conformality.
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Theorem 3.2.4. Let E be any sphere, a the reflection in and I the identity
map. If 4) is any Möhius transformation which fixes each x in then either
4) = I or 4) = a.

PROOF. First, we consider the case when E is the plane = 0 in Let
= S(a, r) where a E E and r > 0. As a 4) fixes cxc: thus 4) maps Z' to a

Euclidean sphere, say = S(b, r). As a a we have (E, E') = 0. The
invariance described by Theorem 3.2.3 yields E") = 0 and so b a thus

= = 0. Each point of E n E' is fixed by 4), thus

(x1 — a1)2 + . + — = r2,

if and only if

(x1 — b1)2 + ... + — = t2.

We conclude that a = b and t = r: hence 4) maps onto itself.
Next, we select any x not in E and let y = 4)(x). Now select any a in E and

let r = x — a so x E S(a, r). As 4) preserves S(a, r), y is on S(a, r) and so

xl2 — 2(x.a) + al2 = yl2 — 2(y.a) + al2:

note that this holds for all a in L Taking a = Owe find that lxi = yl. As a
consequence of this we find that for all a in E,

(x.a) = (y.a)

and taking a to bee1 we find that
As lxi = we now see that = thus 4)(x) (=y) is either x or a(x).
As 4) leaves invariant, it permutes the components of — Z and so

or q5=a.

We can now complete the proof in the general case. First, given any
sphere E there exists a Möbius transformation t,Ii which maps E onto the
plane = 0: we omit the details of this. Now let a be the reflection in E
and the reflection in plane x, = 0. The transformation fixes each
point of the plane x, = 0 and is not the identity: thus by the first part of the
proof, =

If 4) is now any Möbius transformation which fixes each point of then
is either I or thus 4) is either I or a. E

This proof also shows that any reflection a is conjugate to the fixed
reflection Thus we have obtained the following generalization of (3.1.4).

Corollary. Any two reflections are conjugate in

There is an alternative formulation of Theorem 3.2.4 in terms of inverse
points. Let a denote reflection in the sphere then x and y are inverse
points with respect to if and only if y = a(x) (and, of course, x =
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Now let x and y be inverse points with respect to E, let 1 be any Möbius
transformation and let be the reflection in the sphere According to
Theorem 3.2.4, = o or equivalently, = This is the same as
saying that for all x, maps to thus and are inverse
points with respect to We state this as a second formulation of Theorem
3,2.4.

Theorem 3.2.5. Let x and y be inverse points with respect to the sphere and
let be any Möbius transformation. Then and q5(y) are inverse points
with respect to the sphere

Theorem 3.2.6. The points x and y are inverse points with respect to the sphere
and only jf every sphere through x and y is orthogonal to I.

PROOF. This is clearly true when Z is a plane: it is true in general by the
invariance of both inverse points and orthogonality. E

We end this section with a brief discussion of cross-ratios. Given four
distinct points x, y, u, r in li", the cross-ratio of these points is

d(x, u) d(y, v)
[x, y, u, a] = . (3.2.5)

d(x, y) d(u, v)

By virtue of (3.1.3) (the expression for the chordal distanced) we also have

[x, y, u, v] =
Jx uj — vi

(3.2.6)- — vJ

with appropriate interpretations (which are completely justified by (3.2.5))
when one of the variables is cc.

Theorem 3.2.7. A map 4: —÷ is a Möbius transformation jf and only it
preserves cross-ratios.

PROOF. As each Möbius map that changes Euclidean distance by a constant
factor leaves the expression (3.2.6) invariant, it is only necessary to consider
the map As (see (3.1.5))

—
= —

xHyl

cross-ratios are also invariant under x It follows that all Möbius maps
preserve cross-ratios.

Suppose now that fr preserves cross-ratios. By composing
with a Möbius transformation, we see that it is sufficient to consider only the
case when 4(cc) = cc. Take four distinct points x, y, u, V in as

[cc, y, u, v]/[x, y, cc, v]
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is invariant under we obtain

— c1(u)_—

The restriction that {x, y} n {u, v} = 0 is unnecessary (compare each side
with a similar expression for two points a and b chosen to be distinct from all
of x, y, u, v) so 4 is a Euclidean similarity and so is a Möbius map. E

EXERCISE 3.2

I. Verify (3.2.2), (3.2.3) and (3.2.4).

2. Verify the details in the proof of Theorem 3.2.3.

3. Let d be the chordal metric in Show that

d(x*, y*) = d(x, y).

§3.3. The Poincaré Extension

Poincaré observed that each Möbius transformation acting in has a
natural extension to a Möbius transformation acting in and that in
this way, may be regarded as a subgroup of This exten-
sion depends on the embedding

x = (x1

For each reflection 4 acting in we define a reflection acting in
as follows. If is the reflection in S(a, r), a E then is the reflection

in S(ã, r): if is the reflection in P(a, t) then is the reflection in P(à,t).
If x E Lii" and y = then from (3.1,1) and (3.1.2)

.., 0) = (yi, . .. , 0) = (3.3.1)

and it is in this sense that is regarded as an extension of çb. Alternatively, we
can identify with li" x W and write (3.3.1) as

0) = 0).

Note that leaves invariant the plane + = 0 (this is and each of the
half-spaces > 0 and + 1 < 0: these facts follow directly from (3.1.1)
and (3.1.2).

As each Möbius transformation acting in is a finite composition of
reflections say = there is at least one Möbius transformation

namely ... which extends the action of to 1 in the sense of
(3.3.1) and which preserves

•, Xn+1). >
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In fact, there can be at most one extension for if
1

and are two such
extensions, then fixes each point of the plane = 0 and preserves

Thus by Theorem 3.2.4, =

Definition 3.3.1. The Poincaré extension of in is the transforma-
tion in 1) as defined above.

Observe that if and are in with say = and
then the Poincaré extension of is given by

(h') =

=

so the map i—÷ is an injective homomorphism of into 1):

this is a trivial but nonetheless important remark.
We shall now focus our attention on the action of the Poincaré extension
in First, if is the reflection in the sphere S(ä, r), a e then by

(3.1.5),

— — r2

x—aI!y—ar

For the moment, let denote the jth component of As

= a + r2(x —

we find that

= 0 (3.3.2)
— aj

and this shows that

y (3.3.3)
i

is invariant under
The reflection 4 in the plane P(ã, t), a e is a Euclidean isometry and

moreover,

=

thus (3.3.3) is also invariant under this reflection. We conclude that (3.3.3)
is invariant under all Poincaré extensions. It is a direct consequence of this
invariance that the Poincaré extension of any in is an isometry
of the space endowed with the Riemannian metric p given by

ds =
xn + 1
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This is our first model of hyperbolic space and p is the hyperbolic metric in
The rich structure of the hyperbolic geometry of 1, p) is now

available as an important tool for studying any subgroup G of for
we can form the Poincaré extension of each in G and thereby study G as a
group of isometries of 1•

We shall study the geometry of the hyperbolic plane H2 in great detail in
Chapter 7 and some of the results (and proofs) given there extend without
difficulty to One such result is that if x =

1
and y = then

p(x, y) = log(s/t) ,

so

— y(2
cosh p(x, y) = 1 + . (3.3.4)

iyn+ 1

As both sides of (3.3.4) are invariant under all we see that this is actually
valid for all x andy in

In particular, the hyperbolic sphere

= r}

with hyperbolic centre and hyperbolic radius r is precisely the
Euclidean sphere

(x1 — Yi)2 + + ),)2 + 1 — cosh r)2 =
1

sinh r)2.

(3.3.5)

In addition to this, we mention that given two distinct points of 1 there
is a unique curve y joining them which minimizes the integral

r Idxl.
J + 1

such a curve is an arc of a geodesic and the geodesics are the Euclidean
semi-circles orthogonal to together with the vertical Euclidean lines in

+

EXERCISE 3.3

1. Show that ifx and yare in then

• 21sinh 2p(x, v) =
+ + 1

2. Show that 'then

and interpret this geometrically.
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3. Let S be the hyperbolic sphere in + ' with hyperbolic centre v and hyperbolic
radius r. Let denote the reflection of y in the plane + = 0. Show that

s {x: =
—

4. Suppose that + ') and that leaves 'invariant. Prove that is the
Poincaré extension of some in

§3.4. Self-mappings of the Unit Ball

We have seen that the elements of act as hyperbolic isometries of
and we can obviously transform this situation to obtain other models of

hyperbolic space. We shall now map onto and so obtain another
(isomorphic) copy of in which the elements leave 1 invariant.
This new model has a greater symmetry and the point co no longer plays a
special role.

Let denote the reflection in .J2) so that

2(x —
= + Vx —

—I)
= +

+

_( 2x1 x12—1
+ 1 + x12 + 1

and this is precisely the formula for the stereographic projection it of onto
in considered in Section 3.1.
This realization of stereographic projection as a reflection leads to an

easy proof of the formula for the chordal distance given in (3.1.3). If x
then

— = 1 +

and this with (3.1.5) yields (as before)

d(x,y) = —

—

21x—yf
— (1 + x12)112(1 + !y12)112
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Let us now return to the reflection defined above. If x e then

= 1 +
2

+
. [x

x — Jx —

= + (3.4.1)
Ix —

this shows that maps the lower half-space < 0 into
Now let = where is the reflection in the plane = 0: this

maps the plane x,,÷, = 0 onto and onto Also, we find from
(3.1.5) that

lim
—

I = urn
— 4o(c(x))

y-.x IY—xI y—xI

— urn
—

-
2

= 0(x) —

Now (3.4.1) with x replaced by a(x) gives

1 — Icb(x)I2 1 —

÷,
— o(x) —

and so we find that

lim
— 4(x) 1 4(x) 12

2xn+1

It now follows from Section 1.6 that the hyperbolic metric p in
forms to the metric

2 dx I
ds

= 1 — IXI2

in and that the isometries 1' of transform by to
isometries of with this metric. This shows that is conjugate in

1) to the subgroup of 1) consisting of those elements which
leave 'invariant.

We shall now undertake a study of those Möbius transformations which
leave the unit ball invariant. As there is no longer any need to consider

we revert to a consideration of the space thus we shall study the
elements çô in with = Br'.
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Before proceeding further, we mention that we can derive a formula for
analogous to (3.34): see Chapter 7. In fact we only need to know that if

x e then

11 +
p(O, x) =

and we leave the details of this to the reader.

Theorem 3.4.1. Let 4 be a Möbius transformation with = 0 and
= Then = xA for some orthogonal matrix A.

PROOF. By Theorem 3.2.5, fixes and, as in the proof of Theorem 3.2.7,
we see that is a Euclidean similarity. Because fixes the origin and leaves
Sn- 1 invariant, it is actually a Euclidean isometry. The result now follows
from Theorem 3.1.4.

It is easy to see that the reflection in the plane P(a, t) leaves B" invariant
if and only if t = 0. Better still, this reflection leaves B" invariant if and only
if P(a, t) is orthogonal to S"' and in this form the statement is true for all
reflections.

Theorem 3.4.2. Let be the reflection in S(a, r). Then the following are equiva-
lent:

(i) S(a, r) and S" 1 are orthogonal;
(ii) = 0 (equivalently, = a*);

(iii) çb(B") = B".

PROOF. As

= a — r2a*

= (jaJ2 —

we see that (i) and (ii) are equivalent. The assertion that (iii) implies (ii) is
simply the fact that a and a* map to inverse points with respect to 1

(Theorem 3.2.5).
Finally, (i) and (ii) together with (3.1.5) imply that

q5(x)I = 4(x) —

—

— Jx — aI.Ia*

— x—aJ
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1 - I4)(x)12
= (1 - 1x12)r2

(3.4.2)
—

and this proves (iii). E

As another application of (3.4.2) we observe that if 4) preserves then

— — yi2
. 343

(1
(.•)

this follows immediately from (3.1.5) and (3.4.2). In addition, (3.4.3) holds
whenever 4) is the reflection in a plane P(a, 0) and hence for all Möbius 4)
which preserve

The invariance expressed by (3.4.3) also yields

j4)(y) — — 1 — I4)(x)12

and this confirms once again the invariance of the hyperbolic metric in
In two dimensions the complex conjugate 2 of z is available and in our

notation this may be written as

= 1/2.

The familiar expression Ii — 2w
I

(where z and w are complex numbers)
satisfies

Ii — = IziHz* — w(

and this suggests the definition

[u,v] = IuIIu* —vi

Observe that

[u, v]2 = 1u121v12 —2(uv) + 1

= lu — v12 + (1u12 - 1)(1v12 - 1) (3.4.4)

and this shows that

[u, v] = [v, u].

The identity (3.4.4) also shows that if I a
I

> 1 then

Ix — a*I
1[x, a*] —

if and only if xl = 1. Thus

= lx — a*I
1

I.
[x,a*]
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and this is the n-dimensional version of the equation

of the unit circle in the complex plane.
Finally, we observe that (3.4.4) together with the invariance expressed by

(3.4.3) yields the invariance

— [x,y]2
3

(1 - — - (1 1x12(1 - 1y12)

EXERCISE 3.4

I. Show that for x in

p(0, x) =
±

H)

Deduce that if x and y are in then

!x — y12
sinh2 4p(x, y)

= — X12)(l —

[Use (3.4.3).]

2. Let 4i and be reflections in the spheres S(a, r) arid S(b, t) respectively. Show that
these spheres are orthogonal if and only if 4(b) =

3. Use Questions I and 2 to show that if S(a, r) is orthogonal to S(O, 1) and if 4 denotes
reflection in S(ci, r) then

sinh 4p(0, = hr

and, for all x,

— al jx — = l/sinh2

§3.5. The General Form of a Möbius Transformation

We shall establish the following characterization of Möbius transformations.

Theorem 3.5.1. Let be a Möbius transformation.

(i) If = then

= (cx)A,

where is a reflection in some sphere orthogonal to and A is an
orthogonal matrix.



§3.5. The General Form of a Mhhius 41

(ii) If çb(oc) = then

= r(xA) + x0,

where r > 0, x0 e and A is orthogonal.
(iii) then

4(x) = r(ax)A + xo

for some r, x0, A and some reflection a.

Remark. a(x)A denotes a followed by A: the matrix A appears on the right
as we are using row vectors.

PROOF. If preserves let a be the reflection in the sphere S(a, r) where
a = = 1 +

By computation, a(0) = a* so

4(a(0)) = 4(a*) = 0,

(because 4 preserves inverse points): thus = xA. Replacing x by ax,
we obtain (i).

If fixes then, for a suitable

x E—3.(x x0)/r,

the map fixes and and hence also the origin. Now (ii) follows from
Theorem 3.4.1. Finally, (iii) follows by applying (ii) to 4a for a suitable
reflection a mapping to

The characterization in (iii) leads to the notion of an isometric sphere.
Suppose that so that

= r(ax)A + x0,

where a is the reflection in some sphere S(a, t) and (necessarily) a = 1(cx).
By (3.1.5),

14(x) — = rlo(x) —

—

- x

a Euclidean isometry on the sphere with equation I x — a
I

= t1 where t1 = Indeed,

lim
—

y-.x Iy—xI

is greater than, equal to or less than one according as x is inside, on or
outside S(a, t1). For this reason, S(a, t1) is called the isometric sphere of
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Note that if a denotes reflection in the isometric sphere of 4) then 4)a fixes
and also acts as a Euclidean isometry on the isometric sphere. It follows

that the expression in Theorem 3.5.1(u) must take the form

4)a(x) = xA + x0,
so in general, we see that

4)(x) =

where a is the reflection in the isometric sphere and is a Euclidean isometry.
In the special case when 4) preserves the reflection a in Theorem 3.5.1(i)

must be the reflection in the isometric sphere of 4) as a and A act as Euclidean
isometries on this sphere. We deduce that in this case, the isometric sphere is
orthogonal to

EXERCISE 3.5

1. Show that if 4 preserves then the Euclidean radius of the isometric sphere of
is I /(Slflh 4i0).

2. Show that if is the isometric sphere of then is the isometric sphere of 4 -

§3.6. Distortion Theorems

We prove two sharp distortion theorems for Möbius transformations.

Theorem 3.6.1. Let 4) be a Möbius transformation acting in and let p be the
hyperbolic metric in + Then

d(4)x, çby))
sup

.11
= exp + 1'

4) satisfies a Lipschitz condition on with
respect to the chordal metric d and actually exhibits the best Lipschitz
constant in terms of 4) acting on the hyperbolic space +

The second result shows that if a family of Möbius transformations omits
two values and in a domain D, then the family is equicontinuous on
compact subsets of D: this enables one to develop, for example, the theory of
normal families for

Theorem 3.6.2. Let D be a subdomain of fr and suppose that and are
distinct points in If 4) in does nor assume the values and in D,
then for all x andy in D,

8d(x, y)
d(q5x, �

aD)"2d(y,

The constant 8 is best possible.
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PROOF OF THEOREM 3.6.1. By reflecting in + = 0 and applying stereographic
projection, we may assume that 4) preserves B" + now we need to show that

—
sup = exp p(O, 4)0).

x,YGS" Ix —

By Theorem 3.5.1(i), the Euclidean distortion under 4) is the same as the
distortion under the reflection a in the isometric sphere S(a, r) of 4). This is

maximal (as a limiting value) at the point of S" closest to the centre a of
S(a, r). Thus from (3.1.5),

—
r2

sup 2
x,yeS" — — 1)

- lal + 1

- - 1'

because S(a, r) is orthogonal to S" (Section 3.5). Now

= =

and so the supremum is

1
— exp p(u, 4) ( ))

= exp p(4)O, 0). E

PROOF OF THEOREM 3.6.2. Suppose that x andy are distinct points in D and that
and flare distinct points outside of D. By Theorem 3.2.7, the product

[x, cz, y, 13]. [x, /3, y,

of cross-ratios is invariant under 4). Thus

[d(4)x,cby)12 [ d(a,f3) 12[ 16

[ d(x, y) ] — 4)13)] [d(x, n)d(x, f3)d(y, /3)

[ 4 ]2[
1 1 1[ 1 1

� 4)13)] [d(x, + d(x, /3)] [d(y, + d(y, /3)

64

4)/3)2d(x, öD)

The inequality follows by writing = and /3 = 4)
1(c)

To show that the constant 8 cannot be improved, consider 4)(z) = z + 2m
acting on C with D = — {co, —m}. Clearly, 4) omits the values X and

minDandifx = —2m,we have

lim
d(4)x, 4)y) 8

d(x, y) d(cc, m)d(x, 3D)'

+cc.
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As an application of Theorem 3.6.2, we mention (briefly) the concept
of a normal family. A family F of functions from one metric space (X, d)
to another, say to (X', d'), is equicontinuous on X if and only if for every
positive e there is a positive 6 such that for all x and y in X and all f in F,

d'(fx, fy) < e whenever d(x, y) < 6.

Each function in an equicontinuous family is uniformly continuous on X
and the uniformity is with respect to f as well as to the pair (x, y).

A family F (as above) is said to be normal in X if every sequencef1, f2,
chosen from F has a subsequence that converges uniformly on each compact
subset of X. There is a general result (the Arzela—Ascoli Theorem) which
relates the concepts of equicontinuity and normal families. In the context
in which we are primarily interested, it is sufficient to obtain the following
special case.

Proposition 3.6.3. A family F of Möbius transformations of d) onto
itself is normal in a subdomain D of it is equicontinuous on every compact
subset ofD.

PROOF. We only sketch the proof as the interested reader can find a proof of
the Arzela—Ascoli Theorem elsewhere in the literature. Find a sequence
x1, x2, . . . which is dense in D. Given a sequence .. . in F we can find
(because is compact) a subsequence which converges at x1, then a sub-
sequence of this which converges at x2 and so on. By choosing a subsequence
of the suitably, we can obtain a subsequence which is ultimately a sub-
sequence of each of these chosen subsequences: thus we have constructed a
subsequence which converges at each point

Now take any compact subset K of D and consider any positive c. We
can cover K by a finite number of open balls (in the d-metric) of radius 6
(corresponding to a in the definition of equicontinuity). Select one point

in each: let the selected points be (after relabelling) x1, x2 If
y is in K then d(y, for some j and hence

� d(&y, + + d(cbmxj,� 2a + cbmxj).

For n, m � n0, say, the last term is at most a for all x1, . .. , hence
� 3e on K.

We can now combine Theorem 3.6.2 and Proposition 3.6.3.

Theorem 3.6.4. Let D be a subdomain of W' and let F be a family of Möbius
transformations. Suppose that for every 4 in F, there are two points in

which are not taken as values of 4) in D and suppose that also,

in D.
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Remark. We can rewrite the inequality in Theorem 3.6.4 as

inf [chordal diameter — D)] > 0.

PROOF. We simply apply Theorem 3.6.2 with = = and we find that
F is equicontinuous (in fact, it satisfies a uniform Lipschitz condition) on
every compact subset of D. LII

Finally, this leads to the following result.

Theorem 3.6.5. Let be Möbius transformations and suppose that
—* for three distinct points x1, x2, x3 and three distinct points

Y2' ji3. Then ,...contains a subsequence which converges
on li" to a Möbius transformation.

PROOF. By the deletion of a finite number of the (which clearly does not
affect the result) we may assume that for each n, i and j (i j) we have

� > 0.

It follows that the family {çb1, .} is normal in each of the sets —

(Theorem 3.6.4) and hence in their union, namely Thus there is a
subsequence of the converging uniformly to some in 11" and by Theorem
3.2.7 (and its proof), is a Möbius transformation. LI

EXERCISE 3.6

1. Show that a family F of Möbius transformations is normal in if and only if

+

where (0 0, 1) in If +

2. Prove that if two Möbius transformations are equal on an open subset D of then
they are the same transformation on Deduce that if the Möbius transformations

converge uniformly to I on some open subset of then they converge uniformly
to I on

§3.7. The Topological Group Structure

There are several ways to give the structure of a topological group.
The simplest construction is to observe that the elements of map
the compact space onto itself so

D(çb, i/i) = qix): xc

(where d is the chordal metric on W') is a metric on Clearly, 4.
in this metric if and only if -+ 4 uniformly on
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Theorem 3.7.1. is a topological group with respect to the topology
induced by the metric D.

PROOF. From Theorem 3.6.1, we see that for each in there is a
positive constant such that for all x and y we have

d(4x, çby) � c(q5)d(x, y).

Clearly, for any and i,l, we also have

= D(q51,

so

� +� D(çb, +

This shows that the composition map p4') is continuous at
Similarly, the map cli t—+ -1 is continuous at 4 as

= I)
� c(cb

For a different construction of the same topology we proceed as follows.
The group is conjugate in 1) to the group of
all Möbius transformations preserving If tj in corresponds
to in 1) then (by definition of the chordal metric)

= sup{!41x —

Thus we may consider instead of GM(W') with the metric (which
we continue to denote by D) of uniform convergence in Euclidean terms on S"
and the conjugation is then an isometry between and 1).

For each non-zero a in 1 let be the reflection in the sphere with
centre a* that is orthogonal to thus preserves 1 and aa(a) = 0.
Also, let Ta denote the reflection in the plane x . a = 0. Then, defining Ta to
be the composition ;aa, we find that the isometry Ta of leaves the
Euclidean diameter through a invariant and T0(a) = 0. We call any isometry
Ta constructed in this way a pure translation: if a = 0 we define Ta to be the
identity.

Lemma 3.7.2. (i) The map 4' '—p 4(0) of 1) onto is continuous

(ii) The map a Ta is a homeomorphism of onto the set of pure transla-
tions.

PROOF. To prove (i) we suppose first that I) <a. Each Euclidean
diameter of 1 is mapped by & to a circular arc (orthogonal to

in whose end-points are at most a distance a from those of We
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deduce that the Euclidean cylinder with axis L3 and radius of cross-section
r contains Thus

&(O) = fl

c fl

= < e}.

This shows that if 4.,, —+ I uniformly on Sn, then -+ 0: in fact,

I).

Suppose now that tb,, (as 1) and are metric spaces,
it is sufficient to consider sequential convergence). From Theorem 3.7.1
we have - -# I: thus (from above) -+ 0 and hence
This proves (i).

To prove (ii) observe first that the map F—*
1 is continuous (Theorem

3.7.1). By (i), the composite map

TQ1

namely, a, is continuous.
It remains to prove that the map a 7, is continuous: explicitly, as

b -+ a so Tb uniformly on Sn. We have explicit formulae for and;
and the continuity follows from straightforward (if tedious) estimates: we
omit the details. E

We know from Theorem 3.5.1 that every element of I) can be
expressed uniquely as

=

where a = '(0) and A is an orthogonal matrix (A acts after it appears
on the right because we are using row vectors). It follows that we can also
write (uniquely)

=

where A4, (namely, ; followed by A) is also an orthogonal matrix and this
description establishes a natural bijection between 1) andO(n + 1)
x by the correspondence

a =

Now the group O(n + 1) of orthogonal matrices is itself a metric space.
First, there is the natural metric

1/2

-
=

-
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and second, there is the metric D induced by regarding O(n + 1) as a subset
of In fact, these metrics yield the same topology because if A =

B = C = A — B and x is on S", then

D(A,B)2 = sup xA —

= SUp + +
1x11 j1

�sup
x11 j1 i1 i1

= A —

i=1 j=1

=
— e1Bl2

� nD(A, B)2.

The space O(n + 1) x now inherits a natural product topology and
we have the following result.

Theorem 3.7.3. The bijection çb t—' (Ag,, a) is a homeomorphism of
ontoO(n + 1) x

PROOF. The proof consists of repeated applications of Theorem 3.7.1 and
Lemma 3.7.2. First, a t—÷ is continuous, hence so is the map (Ag,, a) t—+

Ta). Also the map of Ti,) into their composition, namely 4), is

continuous thus so is the map (A a) 4).

Next,

4 T' is continuous. We deduce that the composition

4) (A a).

Remark. Theorem 3.7.3 simply means that the topology on 1)

induced by the bijection from O(n + 1) x coincides with the topology
induced by the metric D. As has been identified isometrically with

1), this result provides a new construction for the topology induced
on by the metric D.

For our third and final construction of the topology we need another model
of hyperbolic space.

Definition 3.7.4. Let Q be the hyperboloid model defined by

Q = 1,x0 >O},
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where

q(x, y) = XoYo — (x1y1 + +

Observe that Q is one sheet of a hyperboloid of two sheets and that if
xe Q then

so, in fact, x0 � 1.
Now let y = (Yo y,,) be any smooth curve on Q. Thus for all t,

y0(t)2 = y1(t)2 + + + 1,

so differentiating,

= + +

(more briefly, q(y, y) = 1 so q(y, = 0). We deduce that

= + +
+ +

� - (L

=

� 0,

the summations being overj = 1, ..., n. Observe also that a strict inequality
holds unless = = = 0 in which case, = 0 also. It follows that we
can construct a metric on Q in the usual way by the line element

ds2 = + ... + — (3.7.1)

the distance between two points on Q being the infimum of

dt

over all curves joining the two points. The associated metric topology is the
Euclidean topology on Q. We shall now compare Q and this metric with the
model and the metric

4 dx2
ds2

(1 — 12)2
(3.7.2)

Theorem 3.7.5. The map

( x1

1+x0

is an isometry of Q with the metric (3.7.1) onto with the metric (3.7.2).
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PROOF. For brevity, we write

I xi xn
(Ys,..., = ( , . l+x0

and denote the vectors by x and yin the obvious way. As x e Q, a computation
yields

2 = —_1, (33)
x0 + 1

so 0 � < 1 and F maps Q into
By direct computation we find that the map

±
1 1y12

(3.7.4)

is indeed the inverse of F and so F is a bijection of Q onto
To verify that F is an isometry, we observe that

d
— —

1 + x0 (1 +

Thus, using this and (3.7.3) we have

+ ... +
— 1

2 ( xj dx0 \
2

—( +x0) +x0(1+x0)2)

— V d 2 V 2— + /1 Xf
r X0) j1 m X0

= +
(xo — 1) d4 — dx0 — 1)

j=1 (o+ 1 1+x0

—

It is now clear that the group G(Q) of isometries of Q and the group
of isometries of are isomorphic by virtue of the relation

= F(G(Q))F1

Our aim now is to prove an alternative characterization of G(Q) and hence
of

Theorem 3.7.6. The isometries of Q are precisely the (n + 1) x (n + 1)
matrices which preserve both the quadratic form q(x, x) and the half-space
given by x0 > 0.

PROOF. First, let A be any matrix with the prescribed properties. As x0 > 0
is preserved and as

q(xA, xA) = q(x, x) = 1,
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when x e Q we see that A preserves Q. Moreover, for any curve on Q, let
r = yA. Then F = so

q(t, t) =

and this simply expresses the fact that y and yA have the same length. Thus
each such A is an isometry of Q onto itself.

It remains to show that every 4) in is of the form for
some such matrix A and to do this, we simply compute the action of F(A)F - 1

on Suppose then that A = where i,j = 0, 1 ii. With the obvious
notation, we write

(Yi (u0, u1,..,
(vs, i.'1

F- (w1 wa).

Now

(v0 = (u0

V3 = 4- +

Using (3.7.4), this yields

(1 — = (1 + y12)a01 + 2(y1a13 + ... +

Thus

V.w.=
' 1+v0

- (1 —

- (1 — + (1 —

— (1 + y12)a03 + 2(y1a13 + -• +
(375

— 1y12(aoo — 1) + 2(y1a10 + ... + + 1)

and this is the explicit expression for the map F(A)F '.

If A0 is an orthogonal ii x it matrix (viewed as an isometry of B"), then

A=(0
0 0)

preserves q and the condition x0 > 0. In this case, (3.7.5) yields w = yA0
and so every isometry of B" which fixes the origin does arise in the form

-
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It is only necessary to show now that the reflection in the sphere r)

orthogonal to 1 is of the form F(A)F'. Because orthogonal transforma-
tions are of this form, we need only consider the case when is of the form
(s, 0 0). It is actually more convenient to introduce another positive
parameter t with

cosh t
= (c(t), 0 0), c(t)

= sinh t

and

r = 1/sinh t,

so the orthogonality requirement = 1 + r2 is satisfied.
Consider now the matrix

/ cosh 2t sinh 2t 0 ...
/ —sinh 2t —cosh 2t 0 ... 0

0 0

In—I\o 0

observe that det(P) = — 1 and that P preserves both the quadratic form
q(x, x) and the half-space x0 > 0. The effect y w of F(A)F1 on is

given by (3.7.5) and the denominator of this expression can be simplified
as follows:

1y12(aoo — l)+ 2(y1a10 + ... +(a00 + 1)

= 2Jy12 sinh2 t — 2Yi sinh(2t) + 2 cosh2 t

= 2jy — sinh2 t
=

Now for] = 2, ..., n the formula (3.7.5) yields

2
— ryj

WJ

—

Also,

(1 + 1y12) sinh(2t) — 2Yi cosh(2t)
1 21y—Cl2sinh2t

— sinh(2t)[fy — + 1— + 2(y.ç)] — 2y1[2cosh2t —1]

= c(t)
+

r2
— c(t)).
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This proves that F(P)F 1 is

+ r2(y —

that is, the reflection in r). U

In view of Theorem 3.7.6, we examine briefly the group 0(1, n) of matrices
which preserve the quadratic form q(x, x). If A n 0(1, n), then

q(x, x) = q(xA, xA),

so

I4JA = J, (3.7.6)

where

(10. 0).

We deduce that det(A)2 = 1: the subgroup of 0(1, 11) with determinant 1 is
S0(l, ii).

Next, we show that the set of matrices A in 0(1, n) with a00 > 0 is also a
subgroup. We denote this subgroup by n) with

n) = S0(1, n) n 01(1,

Suppose that the matrices A, B and C satisfy a00 > 0, b00 > 0 and C = AB:
then

c00 = a00b00 + ... +
� a00boo Iao1b1o + ... +
� ao0b00 — + ... + + +

Because of (3.7.6), we have

(a00, —a01,..., a01,..., = 1,

so

Taking the transpose of both sides of (3.7.6) after replacing A with B yields

so C00 > 0.
Finally, the inverse of A (= is (JAJ)t because

A(JAJ)' = AJAtJ
j2

= I.
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Thus A preserves the condition a00 >0 and so n) IS indeed
a group. Observe that an element A of 0(1, n) leaves the hyperbolojd of two
sheets {x: q(x, x) = 1} invariant:the component Q is A-invariant if and only
if a00 > 0.

We have proved that the isometries of Q are precisely the elements of
Ot(1,n) and that in the isomorphism A of n) onto

the subgroup n) corresponds exactly to the directly con-
formal elements of (in the proof of Theorem 3.7.6, each reflection
corresponds to a matrix of determinant — 1). We can now induce a topology
on by transferring the natural topology from n) to
and it is not hard to see that convergence of matrices in 0 ÷ (1, n) corresponds
exactly to uniform convergence on thus this topology agrees with
those previously constructed. Reverting back to we have proved
the following result.

Theorem 3.7.7. with the topology of convergence in the
chordal metric is isomorphic as a topological group to the group (1, n ± 1)
of matrices.

In particular, if we identify with the extended complex plane, then
is (as we shall see) the class of complex Möbius transformations

cz + d

and this is isomorphic to the Lorentz group of matrices preserving both the
quadratic form + + — t2 and the inequality t > 0.

EXERCISE 3.7

1. Show that if the Möbius transformations preserve + and if —. 1 uniformly
on some relatively open subset of then —* I uniformly on and on S's..
[Identify with and consider convergence on first.]

2. Suppose that n = 2 so that Q in Definition 37.4 lies in Show that the geodesics
in B2 through the origin correspond via F and F to the intersections of Q with
certain planes through the origin in

§3.8. Notes

For recent treatments of Möbius transformations in see [5], [101] and
[1101: for shorter works see (for example) [3], [33] and [108]. A more
algebraic treatment based on quadratic forms is given in [19]. Theorem
3.1.5 is well documented: see, for instance, [36], p. 133.
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The inversive product (Section 3.2) is discussed in [7], [21], [22], [110]:
it can be derived from the metrical theory of the hyperboloid model (see
[110]).

It is known that the only (smooth) conformal maps in (or in part
of W') are the Möbius transformations: this is due originally to Liouville
(1850) and has been considerably extended since then (by diminishing the
degree of smoothness required). For further information see [105], pp. 15
and 43 and the references given there; also, see [88].



CHAPTER 4

Complex Möbius Transformations

§4.1. Representation by Quaternions

In this chapter we shall examine the action of Möbius transformations in
and their extensions to We identify with the complex plane C and

the algebraic structure of C then allows us to express the action of Möbius
transformations algebraically. We shall also identify (x, y, t) in with the
quaternion

x + yi + tj

(Section 2.4): this enables us to express the Poincaré extension of a Möbius
transformation in terms of the algebra of quaternions. The extended complex
plane C is C u and this is identified with LR2. In terms of quaternions,

H3 = {z + tj:zeC,t > O}

and the boundary of H3 in is C.
Möbius transformations are usually encountered first as mappings of

the form

g(z) = ÷ (4.1.2)

where a, b, c and d are given complex numbers with ad — bc 0. This
latter condition ensures that g is not constant: it also ensures that c and d
are not both zero and the algebra of C then guarantees that g is defined on
C if c = 0 or on C — { — d/c} if c 0. Now define g(co) = cc if c = 0 and

g(—d/c) = cc, g(oo) = a/c

if c 0. With these definitions, g is a 1—1 map of C onto itself In addition,
g1 is of the same form.
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Any finite composition g1 of these maps can be computed alge-
braically and the resulting map, say q, is again of the same form. Note,
however, that the algebra is only valid on the complement of some finite
set E so g = g1.. on C — E. Each map of the form (4.1.2) when extended
as above, is a continuous map of C onto itself (here, continuity is with respect
to the chordal metric) and so by continuity, g = g1 on C. These facts
(which are left for the reader to check) show that the class of maps of
the form (4.1.2) is a group under the usual composition of functions. We
must now show = the class of orientation preserving Möbius
transformations of C onto itself.

In the case of dimension two, the reflections (3.1.1) and (3.1.2) are both
of the form

a5 + b
z-+ - ,

cz -f- d

The composition of two such maps is in (again, we use algebra first and
then appeal to continuity) and so

Now suppose that is in and is given by (4.1.2). If c = 0 then g is
either a translation (if a = d) or a rotation and expansion, namely,

g(z) = a + (a/d)(z — a),

about some a. In both cases, g is a composition of an even number of
reflections and so is in

Now assume that c 0. The isometric circle Qg of g is (see Section 3.5)

= {z e C: lcz + dl = lad — bc1112}:

the significance of this lies in the fact that if z and w are on Q9 then

(ad — bc)(z — w)
=jz—wl.

(cz + d)(cw + d)

This property is also shared by the reflection in and so also by where

Ct.' = ga.
Now

—d lad — bcl (z + d/c)
c!2 lz+d/c12

and so

= g(aiz))

— + b
— + d
— + d] — (ad — bc)

c[ca(z) -- d]

= (a/c) — (u/clul)(cz + ci), (4.1.3)
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where u = ad — bc. Any map

Ixl=1,
is a composition of an odd number of reflections so again, g e This
shows that .11 =

We shall use the notation ...# in preference to for the remainder
of the text. Also, there are many arguments which, strictly speaking, depend
on an algebraic computation followed by an appeal to continuity: we shall
not mention this again. The next result is well known.

Theorem 4.1.1. Let z1, z2, z3 be a triple of distinct points in and let w1, w2,
w3 be another such triple. Then there is a unique Möbius transjbrmation
which maps z1, z2, z3 to w1, w2, w3 respectively.

We come now to the representation of g in (4.1.2) in terms of quaternions.
The quaternion (4.1.1) is z + tj where z = x + iy and the Poincaré extension
of g is given by

(az + b)(cz + d) + aët2 + lad— bcltj
g(z + tj)

= cz + d12 + c12t2
. (4.1.4)

Observe that this agrees with (4.1.2) if t = 0. We shall verify (4.1.4) when
c 0: the case c = 0 is easier and the proof is omitted.

The Poincaré extension of ci is the reflection in the sphere in with
the same centre and radius as Qg: thus the action of ci in is given by

—d lad — bcl (z + (d/c) + tj)
cl2 lz+(d/c)+tjl2

= + (cz + d + ctj),

where

u = ad — bc, V = lcz + d12 + 1c12t2.

It is convenient to write

ci(z + tj) = z1 + t1j,

so

ui lultcz1+d=—(cz+d), t1=—.
V V

The Poincaré extension of g is found by composing the extensions of
and ci. The extension of ci is given above and the extension of 4 (and of any
Euclidean isometry of C) is given by

+ sj) = + Si.
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Thus
g(z + tj) = + if))

= + t1j)
= + t1j

and using (4.1.3) and (4.1.5) this simplifies to give (4.1.4).
If ad — bc > 0 we can describe the action of g in through the algebra

of quaternions. Indeed,

=[(az+b)+atj].[(cz+d)+ctj]'
— [(az + b) + atj][cz + d — tcj]

— Icz + d12 +
— (az + b)(cz + d) + aët2 + (ad — bc)tj

Icz + +

and this is g(z + if) precisely when ad — bc > 0.
It is possible to write each transformation in in terms of

quaternions. For example, the function

f(w) = (w — j)(w + f) 1j, w = z + tj, (4.1.6)

is the reflection in x3 = 0 followed by reflection in S(e3, (note that
e3 = j). In fact,f maps H3 onto B3 and the restriction off to C is simply the
stereographic projection discussed in Section 3.1. In general,

f(z + tj) = (z + [t — l]j)(z + [t +

(z + [t — 1]j)(2 — [t + 1]j)j
+ (t + 1)2

which simplifies to

f(z + 2z + (jzI2 + t2 — 1)1
(4.1.7)

zj + (t + 1)

For t = 0 this gives the formula for stereographic projection on C: it also
shows thatf(j) = 0.

EXERCISE 4.1

1. Let g be given by (4.1.2) with c 0. Prove

(i) d1(gz, a/c) —÷ 0 as d1(z, cc) — 0;
(ii) d1(gz, cc) 0 as d1(z, — d/c) -+ 0

where d1 is the chordal metric on C.

2. Let g be given by (4.1.2) and (4.1.4) with ad — bc = 1. Show that g(j) = j if and only if

SU(2, C).
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3. Show that the Poincarë extension of any Euclidean isometry q is given by
.q(z + tj) g(z) + if.

Describe the action on H3 of a Euclidean isometry y of C which fixes fin H3.

4. Show that in terms of quaternions, the reflection in S(a, r), is given by

w + + d)

for some suitable a, b, c and d where z — tj when w = z -F if.

5. Let g be given by (4.1.2) with c 0. Show that for quaternions w and w' of the form
x + iy + fj,

g(w) — g(w') = (ad — bc)(wc + d)'(w — w')(cw' + d)'.
Deduce that if ad — bc = 1, then g acts as a Euclidean isometry on the sphere
S(—d/c,

§4.2. Representation by Matrices

Any 2 x 2 matrix A in GL(2, C) induces a mapping g in 4 by the formula
A -+ 8A where

'a b\ az+bA=(
),c d cz+d

We denote the map A —* by and this maps GL(2, C) onto 4: we shall
say that A projects to or represents

An elementary computation shows that

= z e

where AB is the matrix product and so 1 is a homomorphism. The kernel
K of 'b is easily found for A e K if and only if

az + b
cz + d

=

for all z in IfA E K we take z = 0, and 1 and find that

°),
Clearly any matrix of this form is in K and so

K = Ker cb

=
0): a o}.

In particular, 4 is isomorphic to GL(2, C)/K: in less formal language,
determines the matrix A to within a multiple.
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In general, we shall be more concerned with the restriction of (V to SL(2, C).
The kernel of this restriction is

K0 = K n SL(2, C) = {I, —I)

and each g in A? is therefore the projection of exactly two matrices, say A
and —A, in SL(2, C). We deduce that A? is isomorphic to SL(2, C)/{I, —I}.

The two functions

tr2(A) A 2

det(A)' det(A)!'
A E GL(2, C),

are invariant under the transformation A 2 0, and so they induce
corresponding functions on 4', namely

trace2(g) = (42.1)

and

=

where A is any matrix which projects to g.We often abbreviate trace2(g) to
tr2(g); also, we use Itrace(g)I for the positive square root of Itr2(g)I. These
functions are of great geometric significance: we shall consider fg now and
discuss tr2(g) in Section 4.3. Observe, however, that trace2(g) is invariant
under any conjugation g '—p hgh

Theorem 4.2.1. For each g in A?, we have

= 2 cash p(j, gj).

PROOF. Write

az + b ad—bc=l;
cz + d

then by (4.1.4) (with z = 0 and t = 1),

(bd+aã)+j
g(j)

= id2 + d12

According to (3.3.4), = z1 + t1j and = Z2 + t2j, then

Izi — z2 2 + (t1 — t2)2
+ 1 = cosh

2t1 t2

The result now follows by substituting = 0, t1 = 1 (so = = a(J)
and using the identity

Ibd+aei2+1=Iba+aei2 +Iad—bcl2
= (iai2 + b12)(1c12 + 1dJ2).
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We have already seen from (4.1.7) that

f(w) = (w — j)(w + j) 'J' w = z + tj, (4.2.2)

is the reflection in followed by the reflection in S(j, and that this
transforms the hyperbolic metric in H3 to the metric

2 dx I
ds

= 1 —

in B3. As another illustration of the use of quaternions let us consider an
alternative proof of Theorem 4.2.1, this time the computations being carried
out in B3.

SECOND PRooF. Let w = g(j) and = f(w) so e B3. Now for any quater-
nions and fi,

= =
and so

- (al + b)(cj + d)'-jI . jJ
RI - (aj+ b)(cj +

- (al + b) —j(cj + d)jftcj + dYtI
- (aj+b)+j(cj+d)jI(cj+d)11
- (b + ë) + (a —

- (b — ë) + (a + a)jr
Thus

— II g 112 + (bc — ad) + (bc — ad)

— 11gI12 + (ad — bc) + (ad — bc)

= 11g112 —2
(4.2.3)

IgII2 + 2

Using p for both the metric in H3 and the metric in B3, we have

p(j, g(j)) = p(f(j), f(g(j))
= p(o,

I + KI= log1
— K1

Writing p for p(j, gU)) and using (4.2.3), this gives

2 cosh p = +

— 2(1 -k

—

= 11g112.
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We can now review Theorems 2.5.1 and 2.5.2 in the light of the geometric
action of Möbius transformations. Suppose that

(a az+bA=i I, g(z)=
\c dJ cz+d

where A is in SL(2, C) and suppose also thatf is given by (4.2.2).

Theorem 4.2.2. The following statements are equivalent.

(i) A n SU(2, C);
(ii) g(j) =1;

(iii) = 2;
(iv) fgf - is a linear orthogonal transforniation;
(v) g is an isometry of the chordal metric space (C, d).

PROOF. The equivalence of (ii) and (iii) is a direct corollary of Theorem 4.2.1.
As A a SL(2, C) we have JAIl2 = and the equivalence of (i) and (iii)
is a direct consequence of Theorem 2.5.1.

Next, (ii) is equivalent to

fgf'(O) = 0

and by Theorem 3.4.1, this is equivalent to (iv).
Finally, the equivalence of (i) and (v) is established by observing that g

is an isometry if and only if for all z,

1

1 + - 1 +

Thus (v) holds if and only if for all z,

1+lz12=laz+b12+Icz+d12,
or, equivalently,

1 + zJ2 = (lal2 + 1c12)1z12 + (1b12 + ldl2) + 2 Re(tth + cd)z.

This is equivalent to

al2 + cl2 = hI2 + d12 = 1

and

ab + cd = 0,

which, in turn, is equivalent to AtA = I and this is (i).

Of course, Theorem 4.2.2 shows that the classical symmetry groups of
the regular solids (embedded in B3) correspond to the finite subgroups of
SU(2, C): indeed, each rotation of B3 is represented by a Möbius g derived
from a matrix in SU(2, C) and the symmetry groups can be realized as finite
Mãbius groups.
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EXERCISE 4.2

1. Show that if g(j) = w + aj then

(JwV + s2 + 1)/s.

2. Let a subgroup F of SL(2, C) project to a subgroup G of.#. Show that if I is discrete
then for any compact subset K of H3, g(j) e K for only a finite number of g in G.

3. Show that if a matrix A in SL(2, C) is of order two then A = I or — I. Deduce that
if B is a matrix in SL(2, C) representing a Möbius transformation of order two, then
B is of order four.

4. Show that g: —z is not the projection of any matrix in SL(2, Verify that the
projection of SL(2, R) consists of those Möbius transformations which preserve the
extended real axis and the upper half-plane in C.

5. Show that the transformations

3z—l 2z—l
ZI—*Z'

7z—2' 7z—3'

2z—1 z 3z—1
3z—2 5z— I Sz—3

form a group. Show that there is a unique point w + rj in H3 fixed by every element
of this group and describe the corresponding group of rotations in

§4.3. Fixed Points and Conjugacy Classes

We begin with a brief discussion of the relationship between certain alge-
braic concepts and some geometric ideas concerning fixed points. Initially,
the discussion will be quite general and there is no advantage to be gained
by restricting ourselves to Möbius transformations (indeed, such a restriction
may even deflect the reader from the central ideas).

Let X be any non-empty set. A permutation of X is a 1—i mapping of X
onto itself: for example, a reflection in a sphere is a permutation of The
fixed points of a permutation g are those x in E which satisfy g(x) = x: if
this is so we say that gfixes x.

If G is any group of permutations of X then the stabilizer (in G) of x
is the subgroup of G defined by

Finally, the orbit (or G-orbit) G(x) of x is the subset of X defined by

G(x)= {g(x)eX:geG}.

Observe that there is a natural one-to-one correspondence between the set
G/GX ofcosets and the orbit G(x). If g and h are in G, then h(x) = g(x) if and
only if = and this shows that the map hG i—# h(x) is both properly
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defined and one-to-one. It clearly maps G/GX Onto G(x) and this is the
required correspondence. The same facts show that the coset is the
complete set of g in G which map x to h(x).

Two subgroups G0 and G, of G are conjugate if for some h in G,
G0 hG1h1. As g fixes x if and only if hgh1 fixes h(x), we see that

Gh(X) =

thus and y are in the same orbit then and are conjugate.
Conjugate subgroups are, of course, isomorphic; however, they are also

the same from a geometric point of view. This is not necessarily true of
isomorphic subgroups, for example, the groups generated by z '—* z + 1 and
z 3z are isomorphic but have quite different geometric actions. We are
primarily interested in the geometric action of subgroups of and we shall,
in general, state our results in aform which remains invariant under conjugation.

Now let F9 be the set of fixed points of g. If gh = hg then

= F,,, h(F9) = F9, (4.3.1)

This is clear for if x e F,, then

h(g(x)) = g(h(x)) = g(x)

and so g(x) a Fh: thus, g(F,,) F,,. Replacing g by g -' we obtain g(F,,) = F,,
and (similarly) h(Fg) = F9. We shall see later (Theorem 4.3.6) that the
converse is also true when G is a group of Möbius transfrrmations.

We return now to study the transformations in A'. In its action on C,
a Möbius transformation g has exactly one fixed point, exactly two fixed
points or is the identity. This provides a rather primitive classification and
we can obtain a finer classification based on the fixed points in lIz. This new
classification is invariant under conjugation and so there is a still finer
classification, namely the classification into conjugacy classes. One of our
main results is that the function tr2 defined by (4.2.1) actually parametrizes
the conjugacy classes.

It is convenient to introduce certain normalized Möbius transformations.
For each non-zero k in C we define mk by

m,,(z) = kz (if k 1)

and

m1(z) = z + 1:

we call these the standard forms. For future use, note that for all k (including
k = 1),

tr2(m,,) = k + + 2. (4.3.2)

If g is any Möbius transformation then either g has exactly two
fixed points and fi in C or g has a unique fixed point cx in C (in this case,
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we choose $ to be some point other than cc). Now let h be any Möbius trans-
formation with

h(cc) = cc, h($) = 0, h(g(fl)) = 1 if g(/3) fi,

and observe that

hgh '(cc) = cc, hgh '(0)
=

g

Ifg fixes cc and fi, then hgh' fixes 0 and cc and so for some k(k 1), we

have hgh' = mk. If g fixes cc only then hgh' fixes cc only and hgh '(0) = 1:

thus hgh1 = in,. This shows that any Möbius transformation g is

conjugate to one of the standard forms mk and this leads to a simple proof of
of the next result.

Theorem 4.3.1. Let f and g be Möbius transformations, neither the identity.
Then f and g are conjugate (f and only =

For brevity, we use to denote conjugacy in .1/'.

PROOF. We have already noted (following (4.2.1)) that if f g then
tr2(f) = tr2(g).

Now assume that tr2(f) = tr2(g). We know that f and g are each con-
jugate to some standard form, sayf lnp and g lnq. Thus

= tr2(f) = tr2(g) = tr2(mq)

and using (4.3.2), this shows that p = q or p 1/q. Now note that
m,/p: this is trivial if p = 1 while if p 1, we have

= h(z) = —1/z.

We now havef g mq and (asp = q or p = 1/q) mp mq. As
conjugacy is an equivalence relation, this shows that f g and the proof
is complete.

We shall now classify Möbius transformations in terms of fixed points
in and it is natural to begin by studying the fixed points of the standard
forms. The action of mk in as given by (4.1.4) is

mk(z+t))=kz+Ikltj
m,(z + tj) = z + 1 + tj,

and this enables one to find the fixed points of each Clearly:

(i) m1 fixes cc but no other point in
(ii) iflkl 1, then mk fixes 0 and cc but no other points in

(iii) if IkI = 1, k 1, then the set of fixed points ofmk is
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Definition 4.3.2. Let g be any Mhbius transformation. We say

(i) g is parabolic if and only if g has a unique fixed point in (equivalently,
g mt);

(ii) g is loxodromic if and only if g has exactly two fixed points in
(equivalently, g mk for some k satisfying 1);

(iii) g is elliptic if and only if g has infinitely many fixed points in
(equivalently, 8 for some k satisfying kJ = 1, k 1).

It is convenient to subdivide the loxodromic class by reference to in-
variant discs rather than invariant (fixed) points. Note, however, that the
following usage is not universal: some authors use "loxodromic" for our
"strictly loxodromic" and have no name for our loxodromic transformations.

Definition 4.3.3. Let g be a loxodromic transformation. We say that g is
hyperbolic if g(D) = D for some open disc (or half-plane) D in C: otherwise
g is said to be strictly loxodrornic.

The classification described in these definitions is invariant under con-
jugation and by virtue of Theorem 4.3.1, we must be able to classify g
according to the value of tr2(g). This is our next result.

Theorem 4.3.4. Let g be any Möbius transformation. Then

(i) g is parabolic ?fand only if tr2(g) = 4;
(ii) g is elliptic and only e [0, 4);

(iii) g is hyperbolic and only e (4, + co);
(iv) g is strictly loxodromic and only [0, + co).

PROOF. We shall verify (i), (ii) and (iii): then (iv) will automatically be satis-
fied. Throughout the proof, we suppose that g is conjugate to the standard
form so by (4.3.2),

tr2(g) = p + + 2. (4.3.3)

Recall that g is conjugate to and to in1jp but to no other mq.
If g is parabolic, then g is conjugate to m1 only: so p = 1 and tr2(g) = 4.

Conversely, if tr2(g) = 4, then p = 1 and g is parabolic. This proves (i).
If g is elliptic, then p = say, with 0 real and cos 0 1. Then

tr2(g)= 2 + 2cosO (4.3.4)

and so tr2(g) a [0, 4). Conversely, suppose that tr2(g) a [0, 4). Then we may
write tr2(g) in the form (4.3.4) with cos 0 1 and then (4.3.3) has solutions
p = Thus = l,p 1 and we deduce that g is elliptic. This
proves (ii).
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Finally, we prove (iii). Suppose first that tr2(g) e (4, + cc). Then (4.3.3)
has solutions p = k, 1/k say, where k > 0. As both solutions are positive,
mp necessarily preserves the upper half-plane and so is hyperbolic. This
means that g is hyperbolic. Now suppose that g, and hence mp, is hyperbolic
and let D be a disc which is invariant under For any z in D, the images
of z under the iterates of mp are in D and so

n e D.

Because p1 # 1, this shows that 0 and cc are in the closure of D. The same
argument, but with z chosen in the exterior of D, leads to the conclusion
that 0 and cc lie on the boundary of D. Thus D is a half-plane and in order
to preserve D, it is necessary that leaves invariant each of the half-lines
from 0 to cc on the boundary of D. Thus p > 0 and so tr2(g) > 4. El

We now prove three useful results concerning fixed points. Recall that
in any group the commutator of g and h is

[g,h] = =

If A and B are matrices in SL(2, C) representing Möbius transformations
g and h then they are determined to within a factor of — 1 and so

tr[g,h] = tr(ABA1B1)

is uniquely determined, independently of the choice of A and B.

Theorem 4.3.5.(i) Two Möbius transformations g and h have a common fixed
point in C and only h] = 2.

(ii) If g and h (neither the identity) have a common fixed point in C then either:

(a) [g,h] = I(sogh = hg) and F9 = Fh;or
(b) [g, h] is parabolic (and gh hg) and F9 Fh.

PROOF. The assertions in (i) remain invariant under conjugation so we may
assume that in terms of matrices in SL(2, C),

fa b\ /3

d)'

A computation shows that

tr[g,h] = 2 + b2y2 + b(a — — — (a —

If g and h have a common fixed point, we may assume that it is cc so y = 0

and tr [g, h] = 2.

Now suppose that tr[g, h] = 2. If g is parabolic we can take a = d = 1

and b 0: then y = 0 so both g and h fix cc. Ifg is not parabolic we can take
b = 0 so ad = 1 and a d: then yfi = 0 so h fixes one of 0 and cc. This
proves (i).
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To prove (ii) we may assume that g and h are as above with y = 0. Then
[g,h] = I if and only if

/3(a — d) = —

and this is equivalent to F9 = F,, (consider the cases a = d, a d).

For an alternative approach to (ii), suppose that the common fixed point
is and so g and also his of the form z az + b. The map g a is a homo-
morphism of <g, h> to the group C — {O}: as this group is abelian, every
commutator is in the kernel of the homomorphism and so is a translation
(or I).

A Euclidean similarity is a map x -+ x0 where is a Euclidean
isometry and the above proof is concerned with such similarities. In fact,
Theorem 4.3.5 is a theorem on Euclidean similarities but stated in a form
that is invariant under conjugation.

Theorem 4.3.6. Let g and h be Möbius transJbrmations other than I. The
following statements are equivalent:

(i) Jig = gh;
(ii) h(Fg) = F9, = F,,;

(iii) either F9 = Fh or g and h have a common fixed point in H3 with g2 =
h2 = (gh)2 = I and F9 m F,, = 0.

PROOF. First, (4.3.1) shows that (i) implies (ii).
The proof that (iii) implies (i) is easy. If F9 F,, then g and h have a

common fixed point and so by Theorem 4.3.5, [g,h] = I: thus in this case,
gh = hg. The other alternative offered by (iii) also leads to gh = hg as

hg = hg(ghgh) = gh

and so (iii) implies (i).
It remains to prove that (ii) implies (iii). We assume that (ii) holds and

also that F9 F,, (else (iii) certainly holds). This means that there is some
w in exactly one of the sets F9, F,, and we may assume that w E F9 — F,,:
thus g(w) = w and h(w) w. By (ii), F9 contains the points w, h(w), h2(w)
and as these cannot be distinct (else g = I) we must have h2(w) = w. This
shows that F9 has exactly two points and that these are interchanged by h.
It also shows that F9 rs F,, = 0.

By conjugation, we may assume that F9 = {O, co}: thus for some a and b,

g(z) = az, h(z) = b/z.

It is now clear that h2 = (gh)2 = 1. Moreover, as g(F,,) = F,,, we must have
= — so a = — 1 and g2 = I. Finally g and h have a common

fixed point, namely Jb 1/21, in H3: this follows directly from (4.1.4).

Theorem 4.3.5 is concerned with two transformations with a common
fixed point in C: the next result concerns a common fixed point in H3.
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Theorem 4.3.7. A subgroup G oJ JI contains only elliptic elements (and I) if
and only elements of G have a common fixed point in H3.

It follows from Definition 4.3.2 that if g( I) is of finite order then g is
necessarily elliptic. As every element in a finite group has finite order we
have the following corollary.

Corollary. The elements in a finite subgroup of .Af have a common fixed point
in H3.

To understand the geometric nature of the proof it is convenient to
introduce the notion of the axis of an elliptic element g. If the fixed points
of g in Care and JJ, then (by considering a conjugation to one of the standard
forms), the fixed points of g in are precisely the points on the circle I
which is orthogonal to C and which passes through and fi. The axis Ag
of g is the Euclidean semi-circle F n H3 (in fact, this is a geodesic in the
hyperbolic geometry of H3). The condition that two elliptic elements g and
h have a common fixed point in H3 is simply that the two axes Ag and A,,
are concurrent in H3. Note that a necessary and sufficient condition for this
is that the fixed points of g and h in C lie on a circle Q and separate each
other on Q.

Parts of the proof of Theorem 4.3.7 are algebraic (the geometry is compli-
cated) but even so, we shall stress the geometric interpretation. First, we
prove a preliminary result.

Lemma 4.3.8. Suppose that g, h and gh are elliptic. Then the fixed points of
g and h in C are concyclic. If, in addition, [g, h] is elliptic or I, then the axes
A9 and A,, are concurrent in H3.

PROOF. If g and h have a common fixed point in C, then Fg u F,, has at most
three points and so lies in some circle. If, in addition, [g, h] is elliptic or I,
then from Theorem 4.3.5, F9 = F,, and so A9 = A,,: thus g and h have
infinitely many common fixed points in H3.

We may now assume that g and h have no common fixed points in C.
By conjugation we may assume that

2 az+b
h(z)=

cz + d

where 1, = I and ad — bc = 1. Now

tr2(h) = (a + d)2, tr2(gh) = +

and so by Theorem 4.3.4, the numbers
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are in the interval (—2, 2). Solving for a and d in terms of c, 2 and p, we
obtain

a = d = u + iv,

say.
The fixed points of h are (using ad — bc = 1)

a — d ± i[4 — (a + d)2]"2
2c

and these are the points

(i/c)[v ± (1_

As a + < 2, we find that u2 < 1 and so and lie on a straight line L
through the origin: thus the fixed points of g and h are

A computation (after writing = e1° and using ad — bc = 1) gives

tr2([g,hJ) = 4[1 + — 1)sin2O]2

and so the additional hypothesis that [g, h] is elliptic or I implies that
a 1 because we must have

0 � tr2([g, h]) <4.

Now I a = 1 implies that u2 + v2 = I and so one of the points is zero.
This is excluded as g and h are assumed to have no common fixed points:
thus a I < I and so (taking the positive root)

(1 — u2)112 > v.

This means that

= is/c, = it/c,

where s and t are real with St < 0. Thus the origin (fixed by g) lies between
and and so A9 and Ah are concurrent in H3.

We now use Lemma 4.3.8 to obtain information about subgroups of
of the form <g, h> which contain only elliptic elements and I. First, by
Lemma 4.3.8, g and h have a common fixed point say, in H3 and, of course,
every element of <g, h> fixes By considering a conjugate group, we may
assume that g and h preserve B3 and that ( = 0.

Lemma 4.3.9. Let g and h be Möbius transformations which preserve
B3 and fix the origin. Then

(i) the elements of<g, h> have the same axis and sarnefixea points or
(ii) there is somef in <g, h> such that the three axes A9, Ah, Af are not coplanar.

Assuming the validity of Lemma 4.3.9 for the moment, we complete the
proof of Theorem 4.3.7.
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PROOF OF THEOREM 4.3.7. The conclusion is obviously true if all elliptic
elements of G have the same axis so we may assume that G contains elements
g and h with distinct axes. By Lemma 4.3.8, g and h have a common fixed
point in H3 and by considering a conjugate group we may assume that G
acts on B3 and that Lemma 4.3.9 is applicable. By assumption, (i) fails so
(ii) of Lemma 4,3.9 holds.

Every element of <g, h> fixes the origin so the axes A9, A,,, Af are
Euclidean diameters of B3: moreover, by (ii), they are not coplanar. Now
take any q in G, q I. We shall show that q(O) = 0 and this will complete
the proof. By Lemma 4.3.8, the fixed points of q and g lie on some circle
on 3B3 and so also lie on a Euclidean plane As contains the end-points
of the diameter A9, we see that 0 e Hg: also Aq c H9. A similar definition
and argument holds for 11h and H1: so

o r19 n,, Hf

and

Aq 119 fl llj'. (4.3.5)

The planes H,,, Hf cannot be the same plane (else A9, A,,, A1 would be
coplanar) thus the intersection

fig ("i fl

is either {0} or is a diameter D of B3. Because this intersection contains the
fixed points of q on it is a diameter D and we conclude from (4.3.5) that
A9 = D. In particular, 0 E A9 and so q(O) = 0.

PROOF OF LEMMA 4.3.9. Every element of <g, h> fixes the origin and so is
elliptic or I. For each such elliptic f, let A1 denote the axis (of fixed points)
off in B3. Note that by assumption, and A,, are Euclidean diameters of B3.

We shall assume that (i) fails so A9 and A,, are distinct diameters and
hence determine a Euclidean plane H. Let the normal to H through the
origin be the diameter D of B3. If h(A9) does not lie in H, then takef = hgh'
and this satisfies (ii) as then A1 = h(A9). A similar construction off is possible
if g(A,,) does not lie in H. These attempts to constructf can only fail if g and
h preserve H in which case, they are both rotations of order two. Then both
g and h interchange the end-points of D and so (ii) is satisfied withf = gh.

E

We end this section with a discussion of the iterates of a Möbius
transformation.

If g is parabolic, then for some h we have

hgh'1(z) = z + t (t 0).



t4.3. Fixed and Conjugacy Classes 73

Thus

= z + nt

and

= h1(hz + nt).

Observe that for each z in —÷ as thus in general,
if g is parabolic then

—+

where a is the fixed point of g.
If g is not parabolic, then g has two fixed points, say a and /1, and for some

h we have

hgh'(z)_—tz

and hence

=

These facts show that if g is loxodromic (equivalently, jt 1) and if z is not
a or /3, then the images gfl(2) are distinct and accumulate at a and /3 only.
If —* a, say, as n + 00, then a is called the attractive fixed point of
g while is called the repulsivefixed point. Then for all z other than /3,

g g has invariant circles: indeed
each circle for which a and /3 are inverse points is a g-invariant circle and so
each orbit under iterates of g is constrained to lie on such a circle. We collect
these results together for future reference.

Theorem 4.3.10. (i) Let g be parabolic with fixed point a. Then for all z in C,
—+ a as n —+ + 00, the convergence being uniform on compact subsets

ofC—{a}.
(ii) Let g be loxodromic. Then the fixed points a and /3 of g can be labelled so

that a as +00 (jfz /3), the convergence being uniform on
compact subsets of C — {/3}.

(iii) Let ge be elliptic with fixed points a and /3. Then g leaves invariant each
circle for which a and /3 are inverse points.

If a Möbius g is of finite order k (so gk, but no smaller power, is I) then g
is necessarily elliptic. In this case we have

hgh '(z) =

say, and so

0 = 2itm/k,
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where k and m are coprime. We deduce that

tr2(g) = 4 cos2(9/2)

= 2[1 + cos(2itm/k)].

Note that this can take different values depending on the prime factors of k.
If g is elliptic of order two, then k = 2 and necessarily, tr2(g) = 0: the con-
verse is also true. Observe that among all g of order k, the largest value of
tr2(g) occurs when m = 1 or k 1,

tr2(g) = 4 cos2(ir/k)

and 9 = ± 2ir/k. Again we record this for future reference.

Theorem 4.3.1l.Ler g be an elliptic transformation of order k. Then

tr2(g) � 4 cos2(ic/k),

with equality and only jfg is a rotation of angle

EXERCISE 4.3

1. Find Möbius transformations g and h such that

(i) tr[g, h] = —2; and —

(ii) g and h have no common fixed point in C.

2. Let g be any Möbius transformation which does not fix cia. Show that g = qjg2g3,
where g1 and g3 are parabolic elements fixing and where g2 is of order two,

3. An nth root of a Möbius transformation g is any Möbius transformation h satisfying
h" = g. Prove

(i) if g = I then g has infinitely many nth roots;
(ii) if g is parabolic then g has a unique nth root;
(iii) in all other cases, g has exactly n nth roots.

4. Show that if A and B are in SL(2, C) then

det(A — I) = 2 — tr(A)

and

det(AB — BA) = 2 — tr[A, B]

([A, B] is the commutator of A and B). Deduce that if A and B viewed as Möbius
transformations do not have a common fixed point in then AB — BA is a non-
singular matrix which represents a Möbius transformation or order two.

5. Let g(z) = z/(cz + 1). Verify (i) by induction and (ii) by considering a suitable hgh''
that

z
g"(z) =

ncz + 1

Findf wheref(z) = 6z/(z + 3) and check your result by induction.
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§4.4. Cross Ratios

Given four distinct points z2, z3, z4 of C we define the cross-ratio of
these points as

(z1 — z3)(z2 — z4)
[z1,z2,z3,z4] =

(Zj — z2)(z3 — z4)

compare this with (3.2.5) where division is not permitted. The definition is
extended by continuity to include the case when one of the is cc so, for
example,

z1 — z3
[z1,z2,z3,cxD] =

z1 —

Note that in particular,

[0, 1, z, cc] = z. (4.4.1)

If
az + b

g(z) = (ad — bc 0),
cz + d

then
(z — w)(ad — bc)

g(z) — g(w) =
(cz + d)(cw + d)

and it is immediate that the cross-ratio is invariant under Möbius trans-
formations; that is,

[g(z1), g(z2), g(z3), g(z4)] = [z1, z2, z3, z4]. (4.4.2)

This is a useful property which often leads to a considerable simplification.
Moreover, the converse is also true: if

[w1,w2,w3,w4] = [z1,z2,z3,z4] (4.4.3)

holds then there is a Möbius transformation g with = To see this,
letf and h be Möbius transformations which map z1, z2, z4 to 0, 1, cc and
w1,w2,w4 to 0,1, cc respectively: these exist by Theorem 4.1.1. Then by
(4.4.1), (4.4.2) and (4.4.3),

f(z3) = [0, 1, f(z3), cc]

= [f(zt), f(z2), f(z3), f(z4)]
= [z1,z2,z3,z4]

= [w1,w2,w3,w4]

= [h(w1), h(w2), h(w3), h(w4)]

= [0, 1, h(w3), co]

= h(w3).

It is now clear that g(z1) = where g = h' o f.
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We are now going to study how the cross ratio

= [zj, z2, 23, 24] (4.4.4)

varies as we permute the With this in mind we let denote the permu-
tation group of {1,.. ., n} and remark that (as with all functions) we regard
permutations as acting on the left: for example, (12) (13) maps 3 to 2.

Each a inS4 induces a change in the value of the cross ratio by the formula

and it is essential to realize that the resulting value depends on a arid but

not on the individual values This is so because if

[zj,z2,z3, z4] = [w1,w2, w3,w4],

then there is some g with = and so

2c3' =

= Wç3,

Because of this fact, we can introduce (a eS4) by the formula

=

where A is given by (4.4.4). Because

= [2 i,

=

we have the important relation

(44.5)

Now suppose that a is the transposition (1, 2) and let g be the Möbius
transformation which maps z1, z2, z4 to 0, 1, respectively. Then

= [z3,z2,z3,z4]
= [0,1,g(z3),cx]
= g(z3)

and so

= [z3,z1,z3,z4]
=
= I —

A similar argument holds for all six transpositions in S4 and we find

(i) U = (1,2) or (3,4) then = 1 — A;

(ii) = (1,3)or(2,4) = — 1);
(iii) a = (1,4) or (2, 3) then = 1/2.



§4.4. Cross Ratios 77

This information leads to a determination of As S4 is generated by
transpositions, (i), (ii) and (iii) together with (4.4.5) suffice to give all
Note that for each transposition the function is actually a Möbius
transformation which maps {O, 1, onto itself. Thus if we denote by
the subgroup of Möbius transformations which map {O, 1, onto itself
we find from (4.4.5) that the map

fe.,

is actually a homomorphism of 34 into A'0 (which is isomorphic to S3). In
addition to this, it is clear from (i), (ii) and (iii) and (4.4.5) that the subgroup

K = {1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}

of S4 is contained within the kernel of 8. We can now describe the situation
completely.

Theorem4.4.1. The map 0: S4 A'0 is a homomorphism of 34 onto with
kernel K.

PROOF. Theorem 4.1.1. implies that has exactly six elements: these are
the functions

2, 1 A, 2/(1 — 1), 1/(1 — A), (2 — 1)/A

of 2. There are six permutations in S4 with i(4) = 4 and a straightforward
computation shows that the are precisely the six elements
of This shows that 0 maps S4 onto A'0 and as this implies that the
kernel of 0 has exactly four elements, the kernel must be K.

Four distinct points z1, z2, 23, z4 in are concyclic if and only if they lie
on some circle. Let g be the Möbius transformation which maps z1, z2, z4
to 0, 1, respectively. Then the z1 are concyclic if and only if the are
and this is so if and only if g(z3) is real. However,

g(z3) = [0, 1, g(z3), co]

= [z1,z2,z3,z4]:

thus z1, z2, z3, 24 are concyclic and only jf[zt, Z2, 23, z4] is real.
If z1, z2, z3, 24 lie on a circle Q and are arranged in this order around Q,

then g(z3)> 1 and so

A = [z1,z2,z3,z4] > 1.

EXERCISE 4.4

1. Show that the unique Möbius transformation which maps 22, 24 tO 0, 1, co
respectively is g where

g(z) = 22, Z, 2411.

2. Verify = 27(2 — 1) when = (2, 4).
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3. Let z2, z3, z4 be distinct points in Show that the circle through z1, z2, z4 is

orthogonal to the circle through z z3, z4 if and only if

Re[z1, 22, 23, 24] = 0.

Generalize this to the case where the circles meet at an angle U (note that the are

concyclic if and only if U = 0).

4. Let g be any Mobius transformation. Show that if g does not fix z then [z, gz, g2z, g3z]

is independent of z and evaluate this in terms of tr2(g).

§4.5. The Topology on

As described in Section 4.2, there is a homomorphism

SL(2, C) dl,

which associates to each g in dl exactly two matrices A and — A in SL(2, C).
The group SL(2, C) is a topological group with respect to the metric — BM

and the map induces the quotient topology on .11, namely the largest
topology on dl with respect to which, is continuous. In addition, dl has
a topology namely the topology of uniform convergence with respect
to the chordal metric on C (see Section 3.7) and it is essential to know that
these topologies are the same. One method is to compare the action of
SL(2, C) through the action of dl on H3 (and then B3) to the matrix group

3). However, a more direct approach is not without interest.

Theorem 4.5.1. The topology .9 induced on dl by coincides with the
topology of uniform convergence on C.

PROOF. It is sufficient to show that the map

SL(2, C) (dl, 37.*) (4.5.1)

is open and continuous: see Proposition 1.4.1.

Assuming that this has been established, observe that if X is in SL(2, C)
then

— =

�
(see (x) of Section 2.2). This yields the next result.

Corollary 4.5.2. The restriction of radius in SL(2, C)
is a homeomorphism: thus SL(2, C) is a two-sheeted covering space of if.



§4.5. The Topology on 1/ 79

It remains to prove that the map (4.5.1) is open and continuous. Define

a(f, g) = sup gz),

where d is the chordal metric: thus is the metric topology induced by
the metric a. We shall derive the continuity of 'l from the next result.

Proposition 4.5.3. If A in SL(2, C) represents g, then

a(g,I) � - 1(1.

Explicitly, if B representsf, then

a(g,f) = a(gf1,I)

and so D is continuous at the general element B of SL(2, C).

PROOF OF PROPOSiTION 4.5.3. There is a unitary matrix B representing a
Möbius map h such that hgh' fixes cc (h corresponds to a rotation of the
sphere moving a selected fixed point of g to cc). By Theorems 2.5.2 and
4.2.2 we have

—
1 —

and

c(hgh',I) =
= a(g, I).

These remarks show that we may assume, without loss of generality, that
g fixes cc. In addition, if g is loxodromic we may assume that the repulsive
fixed point of g is cc (we simply choose h appropriately).

Assume then that

czö=l:

the condition on the fixed point of g in the loxodromic case means that in
all cases, � 1 �
Now

d(z,gz) � +

2!zIjl
(1 + 1z12)112(1 +

+

�
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the last line being an application of the Arithmetic—Geometric Mean
inequality. This upper bound simplifies to a value independent of z and
using = 1, we have

cr(g,I) � — + 21131

� (Ia — 112 ÷ II — + 1312)112(1 + 1 + 4)112

Finally, we must show that the map (4.5.1) is an open map and this will
be derived from the next result.

Proposition 4.5.4. Let g1, g2,... be Möbius transformations and suppose that
-+ wfor w = 0, 1, Then:

(i) there exist matrices representing which converge to I; and
(ii) -÷ I on C.

PROOF. Choose matrices

=
in SL(2, C) representing where is 1 or — 1 and is to be chosen later.
In the following argument, trivial modifications are required if =
we ignore these cases.

As

— 1

— —

—*1,

we can select so that —+ 1. Next,

=
cc)

—

so I also. As

c,, = =

we see that and tend to zero: thus —+ I. This proves (i). Observe that
(ii) follows from (i) and Proposition 4.5.3. D

Finally, we can complete the proof of Theorem 4.5.1. Let be an open
subset of SL(2, C) and suppose that is not an open subset of .A' (with
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respect to the metric topology 3*)• Then there is some g in and some
g2,... not in with

g) —* 0.

As

g) = I),

we see from Proposition 4.5.4 that there are matrices representing
with -+ I. If B (in represents g, then B so is in for all
large n. It follows that is in for these n and this is a
contradiction.

A subgroup G of is discrete if and only if the topology described by
Theorem 4.5.1 induces the discrete topology on G. It is clear from Corollary
4.5.2 that if G is discrete, then '(G) is a discrete subgroup of SL(2, C).
Conversely, if F is a discrete subgroup of SL(2, C), then cb(F) is a discrete
subgroup of .4'.

Of course, if G is a discrete subgroup of .11, then G is countable (see
Section 2.3), say G = {g1,g2,.. .}, and

as n —* + In view of this, the next result is of interest.

Theorem 4.5.5. Suppose that K is a compact subset of a domain D in C and
that g omits the values 0 and in D. Then for some positive m depending only
on D and K, we have

md(z, w)
d(gz,gw) �

for all z and w in K.

PROOF. Define m1 by

2m1 = inf{d(z, w): z e K, D}

and suppose that

az + b ad—bc=1.
cz + d

As g '(cc) D, we see that for z in K,

2m, �d(z,g'co)
2Icz + dl

(1 + 1z12)"2(1c12 + !d12)"2
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A similar inequality holds for g 10 so

(I + 1z12) � az + hi2 + jcz + dj2.

As

d(gz,gw) ( 1 + 1z12 \i/2f 1 + \1/2

d(z, w) + b12 + icz +d12) bj2 + icw +dV)

the result follows.

The implication of this is that if G is discrete, then under the assumptions
in Theorem 4.5.5, the chordal diameters of the sets tend to zero.

EXERCISE 4.5

1, Prove that if ad — bc = 1 then for all z

(1a12 + c12)(iaz + hi2 + icz + di2) � 1

with equality if and only if z = —(lIb + icV). Show that if g(z) =
(ab + b)(cz + d) 'then for all z,

1 Iaz+b12+icz+d12
< <ugh2.

hIglh2 — I +

2. Let G be a group of Möbius transformations preserving H2. Show that each g in G
can be written uniquely in the form g =fh wheref(z) = az + b (a > 0, be and
h(i) = i. Deduce that G is homeomorphic to R2 x S'.

3. Show that a sequence of loxodromic transformations can converge to an elliptic
element but if this is so, then is strictly loxodromic for almost all n. Show that a
sequence of elliptic elements cannot converge to a loxodromic element.

§4.6. Notes

For a discussion of quaternions and Möbius transformations see [1], [5]
and [26]. The problem of obtaining a subgroup of SL(2, C) isomorphic to
a given subgroup of .A' has been considered in [2] and [74]. For general
information on Möbius transformations see [30] (especially for isometric
circles), [51] and [52]. See [53] for Theorems 4.2.2 and 4.3.7.



CHAPTER 5

Discontinuous Groups

§5.1. The Elementary Groups

In this section we shall define and describe a class of subgroups of which
have a particularly simple structure. This class contains all finite subgroups

of each point in

Definition 5.1.1. A subgroup G of is said to be elementary if and only if
there exists a finite G-orbit in

Of course, the emphasis here is on the word finite. Also, note that this
definition makes no reference to discreteness. The group acts as the
group of directly conformal isometries of H3 and G is elementary if there
is a finite G-orbit in the closure of hyperbolic space.

Obviously, if a single point is G-invariant then G is elementary. If G is
abelian, then either G contains only elliptic elements and I or G contains
some parabolic or loxodromic element g. In the first case (whether G is
abelian or not), G is elementary by virtue of Theorem 4.3.7: in the second
case, G is elementary by Theorem 4.3.6(iii). Thus every abelian subgroup
of is elementary.

Remark. Elementary groups are sometimes defined by the condition that
for every g and h in G which are of infinite order, we have trace[q, h] = 2:

equivalently, g and h have a common fixed point in C (Theorem 4.3.5).
However, with this definition, the stabilizer of a point in H3 is not necessarily
elementary.
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Let us now assume that G is an elementary group and examine the
possibilities. Suppose that the finite orbit is {x1 If g is in G then the
points m = 0, 1, 2 cannot all be distinct so there is an integer

with the property that gm fixes x3. If rn is now the product of the then
gm fixes each xj. With this available we can now classify the elementary
groups into three types.

Type 1: suppose that n � 3or that {x1,. . . , x,,} is not in
If the points are not in C then each g in G has some power gm fixing
and so gm, and hence g itself, is elliptic (or 1). If n � 3 and the are in C,

then gtm has at least three fixed points and so is the identity: thus again, each
non-trivial element of G is elliptic. This shows that if G is of Type 1, then G
contains only elliptic elements and I. By Theorem 4.3.7, there is some x in
H3 which is fixed by every element of G arid by mapping H3 onto B3 and x
to 0 we see that G is conjugate in to a subgroup of the Special
Orthogonal group SO(3) (see Theorem 3.4.1).

Type 2: suppose that n = I and x1 is in C.
In this case, G is conjugate to a subgroup of .A, every element of which

fixes and so is of the form z az + b. Thus G is conjugate to a group of
Euclidean similarities of C.

Type 3: suppose that n = 2 and that x1, x2 are in
In this case, G is conjugate to a subgroup of .A1, every element of which

leaves {0, invariant and is therefore of the form

a 0,s2 = 1.

Note that G is then conjugate to a group of isometries of the space C — {0}
with the metric derived from dz I / z

We shall now describe all discrete elementary groups. If G is a discrete
elementary group of Type I we may assume that every element of G fixes
the point] in H3. Thus by Theorem 4.2.1, = 2 for every gin G and
(as G is discrete) G is necessarily finite. Thus G is conjugate to a finite sub-
group of SO(3) and hence to one of the symmetry groups of the regular
solids.

We can use the fact that G is finite to obtain the possible structures of G
without reference to the regular solids. We say that v in C is a vertex if v is
fixed by some g I) in G and we denote the set of vertices by V. Now
consider the number I E of elements of the finite set

E = {(g,v):geG,g V,g(v)= v}.

As each g in G (g I) is elliptic it fixes exactly two vertices and we have

El = 2(IGI — 1).
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The stabilizer of a vertex v is so we also have

= - 1).

The set V is partitioned by G into disjoint orbits V1,. ., and as the
stabilizers of each v in have the same number, say of elements we have

j=1

= -1).
j= I

Finally, each orbit G(v) is in 1—1 correspondence with the class of cosets
G/GV so for v in we have = G(v) and

Eliminating we obtain

2(1
—k).

We shall exclude the trivial group, so I G
I � 2 and

I � 2(1
—

<2.

By definition, � 2 so

—

These inequalities together with (5.1.1) show that s = 2 or s = 3.

Case 1: s = 2.

In this case, (5.1.1) becomes

nl n2

and hence (as � G),

IGI=n1=n2, V11=1V21=1.

In this case there are only two vertices and each is fixed by every element
of G. By conjugation, we may take the vertices to be 0 and and G is then
a finite, cyclic group of rotations of C.
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Case 2: s = 3.

In this case, (5.1.1) becomes

1 1 1 2—+—+—= 1

and we may assume that n1 � n3. Clearly n1 � 3 leads to a contra-
diction:thusn1 = 2and

1 1 1 2

n2 n3 2

If n3 � n2 � 4 we again obtain a contradiction, so n2 = 2 or 3. The case
= 2 leads to

(IGI,ni,n2,n3) = (2n,2,2,n) (n � 2)

and this is isomorphic to the group of orientation preserving symmetries
of a regular plane n-gon (the dihedral group Dr).

The remaining cases are those with s = 3, n1 = 2, n2 = 3 and

1 1 2 n3�3,

and the (integer) solutions of this are

(i) "i, n2, n3) = (12,2,3,3);
(ii) G n1, n3) = (24, 2, 3, 4);

(iii) (IGI, n1, n2, n3) = (60, 2, 3, 5).

These groups are isomorphic to A4, S4 and A5 respectively and they corre-
spond to the symmetry groups of the tetrahedron, the octahedron and the
icosahedron respectively. For more details, see the references in Section 5.5.

We continue with our discussion of discrete, elementary groups. The
next result essentially distinguishes between groups of Types 2 and 3.

Theorem 5.1.2. Let g be loxodromic and suppose that f and g have exactly
one fixed point in common. Then g> is not discrete.

PROOF. As discreteness is preserved under conjugation we may assume that
the common fixed point is co and, say,

g(z) = > 1), f(z) = az b

(if necessary, we may replace g by g').
Then

= az +
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Asf and g have only one common fixed point, we see that b 0. As > 1,
we find that the sequence

n = 1,2,...

is a convergent sequence of distinct terms: thus g> is not discrete. For
a much more illuminating proof, the reader need only draw a diagram and
locate (for large n) the points 2, g'z, and

Suppose now that G is elementary, discrete but not of Type 1. Then G
must contain parabolic or loxodromic elements. If G contains a parabolic
element g, fixing say, then every element of G fixes (because all other
orbits are infinite) and by Theorem 5.1.2, G has no loxodromic elements.
Such a group is of Type 2. If G contains a loxodromic element g, fixing 0 and

say, then every element of G must leave the set {0, invariant. This
implies that G cannot contain parabolic elements and such a group is of
Type 2 or 3.

Let us now examine the structure of a discrete group of Type 2 with
parabolic elements. Thus G contains only I, parabolic elements and possibly
some elliptic elements.

By conjugation, we may assume that every element of G fixes oo and so
is of the form z H+ + /3. As this is either elliptic or parabolic, we see that

= 1: thus G is conjugate to a group of Euclidean isometries of C.
We call the multiplier of the map z —÷ + /3 and in general, we denote

the multiplier of g by;. Note that ; = 1 if and only if g is parabolic or I.
It is a trivial matter to check that the set S of multipliers of g in G is a (multi-
plicative) subgroup of = 1} and that the map 6: G —+ S defined by
0(g) = ; is a homomorphism of G into S. The statement that; 1 if and
only if g is parabolic or I is precisely the statement that the kernel, T, of
o is the subgroup of translations in G. As G/T is isomorphic to S (=0(G)),
we can describe G by giving explicit descriptions of S and T: this effectively
separates the parabolic and elliptic elements.

First, we show that S is a finite cyclic group. Now G contains a trans-
lation, say f(z) = z + and if g(z) = cz + /3 is in G, then so is

gfg'(z) = z +

We deduce that G contains z i—+ z + st for every s in S and as G is discrete,
S cannot accumulate in C. Thus S is a finite subgroup of = 1} and (as
is easily seen) it is necessarily cyclic.

We can obtain even more information about S. With f and g as above,

f1(gfg')(z) = z + — 1)A

and so if — fl < 1, then there is a translation + in G with

= — < L21.
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The same argument yields translations z z + in G with

as n —s + cc and this violates the discreteness of G. It follows that for every
in S. — 1 � 1. As S is a cyclic group, say,

S = {l, 0), . .
.,

where

co =

we see that q � 6. In fact, q 5, Indeed

fgfg1(z) = z + + 1)2

and for exactly the same reason as above, we must have + 1 � 1. This
implies that q 5 for if q = 5, then 1w2 + 1 < 1. The remaining possi-
bilities, namely q = 1, 2, 3, 4 and 6 can all occur.

We must now describe T. Let A be the set of for which z z +
is in G and let A* = A — {O}. As G is discrete, A cannot accumulate in C
and so A* contains an element 2 of smallest (positive) modulus. If
A= {nA:nel},then

T = {zi—*z + n2: n E Z}. (5.1.2)

If this is not so, there is an element /1 of smallest (positive) modulus in
— {n2: n e Z}: note that /11 � 121. The translations

zF—*z+n2+ mu; n,mel, (5.1.3)

are in G and we shall show that T consists precisely of these translations.
It is clear that JL is not a real multiple of 2 (else we write p = (k + 5)2 where
k E 1, 0 � < 1, and consider Thus 2 and span the vector space C
(over and if z z + y is in G we may write

y = (n1 + x)2 + (m1 ÷ y)p,

where n1, m1 e land x, [—i, Now y — n12 — is in A and

— n11 — m1p1 = J.xA + Y!AI <IILI,

a strict inequality holding because 2 and p are linearly independent. We
deduce that

y — n12 — m1p e n E 1)

and so T is precisely the set of translations (5.1.3).
We can now describe G. We select gin G with multiplier w which generates

S. Then g, g2, ..., g4'l have multipliers co, w2, ..., = 1, q � 6)
and so G has the coset decomposition
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This shows that every element of G is of the form

Z F—s
(1)k_ +

n k � q and q � 6, q 5.

Next, we suppose that G is discrete, elementary with loxodromic elements.
First we suppose that every element of G fixes both 0 and and so is of the
form

The map 0: G -+ {x e R': x > 0) defined by 0(g) = I ;l is a homo-
morphism of G into the multiplicative group of positive numbers and this
time the kernel E of 6 Consists of I and all elliptic elements of G. Because
G and hence E, is discrete we see that E is a finite cyclic group generated by,
say, z —÷ wz where = 1.

The image 8(G) is the set :g G} and this set cannot accumulate
at 1 else there are distinct elements in G with

= al2 + 2 =

and this violates discreteness. It is now very easy to see that the multi-
plicative group 8(G) is of the form

0(G) = {A": n

for some positive We may assume that g(z) = az where al = A.: then G
has the coset decomposition

= U Eg"

and each element of G is of the form

(5.1.4)

where neZ, k e Z and 0 � k < q. If = 1, then 0(G) is the trivial group
and G is a finite cyclic group of Type 1. Otherwise, G is infinite and contains
loxodromic elements but in any event, G has no parabolic elements.

Finally, we consider the general discrete, elementary group of this type.
We may assume that {0, } is the G-invariant and we denote by G0 the
elements in G which fix both 0 and so G0 is of the form given by (5.1.4).
If G0 is a proper subgroup of G, then G necessarily contains some element
h with

h(0) = h(cc) = 0.

By a further conjugation (leaving 0 and x fixed) we may assume that
h(1) = 1: thus h(z) = 1/z. 1ff in G interchanges 0 and thenfh e G0 and
so G0 is of index two in G: this shows that all elements of G are of the form
(5.1.4) or of the form

Z
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This completes our discussion of all elementary discrete groups. In
general, we shall be more interested in the non-elementary subgroups of

We end with two results which give necessary conditions for a group
to be non-elementary: these results make no reference to discreteness. The
first of these results gives some insight into the complexity of such groups.

Theorem 5.1.3. Every non-elementary subgroup G of contains infinitely
many loxodromic elements, no two of which have a common fixed point.

PROOF. We begin by showing that G has some loxodromic elements. Suppose,
then, that G has no loxodromic elements. If G contains only I and elliptic
elements then G is elementary. It follows that G contains a parabolic
element which we may take to be

f(z) = z + 1.

For any g in G, say

az + b ad—bc=1,

we find that

(a + nc)z + (b + nd)Jg(z)= cz+d
and

= (a + d + nc)2.

is not loxodromic, we see that for all integers n,

0 � (a + d + nc)2 � 4
and so c = 0. This implies that every element in G fixes cc and so G is
elementary, a contradiction. Thus every non-elementary group contains
loxodromic elements.

Now consider any non-elementary group G and let g be a loxodromic
element of G fixing, say, and fi. As G is non-elementary, there is some fin
G which does not leave {a, J3} invariant and two cases arise:

(i) fl}, ffl} are disjoint;
(ii) $}, f/3} have exactly one element in common.

In case (i), g and = fgf are loxodromic with no common fixed
points. It is now easy to see that the elements (n e Z) contain the
desired loxodromic elements because the fixed points of are
gflf[.3 and these are distinct from but converge towards or /3 (see Theorem
4.3.10).

In case (ii), g and g1 have exactly one common fixed point, say so by
Theorem 4.3.5, p = [g, 9i] is parabolic and also fixes As cannot be



§5.1. The Elementary Groups 91

G-invariant, there is some h in G not fixing so q = hph 'is parabolic and
does not fix Thus q and g (or q and g,) have no common fixed points.
Then for suitably large n, the elements g and are loxodromic with
no common fixed points and case (i) is applicable.

Theorem 5.1.4. Let be a MObius transformation not of order two and
define the map 0: —* by 0(g) = some n, we have
then g> is elementary and 02(0) f.
PRooF. Define g0 = g and = so for in � 0,

f is parabolic; then without loss of generality, f(z) =
z + I. As g, are conjugate tof, they are each parabolic and so have
a unique fixed point. Now for r � 0, Or+ fixes Thus if fixes cc,
then so does g,.. As = f) fixes cc, we deduce that each (including Oo)
fixes cc. This shows that (f, g> is elementary as both elements fix cc. Also,
g, is parabolic and fixes cc and so commutes withf: thus g2 = f.

Suppose now thatf has exactly two fixed points: then we may assume
that f(z) = kz. Clearly g,,.. ., each have exactly two fixed points. Now
suppose that g,.+, fixes 0 and cc (as does gb): then

{0, cc} = {g,.(0), gr(cc)}

Now cannot interchange 0 and cc (r � 1) else fixes 0, cc and other
points too and so and hence f(which is conjugate to g.), is of order two.
We deduce that fixes both points 0 and cc, then so does for r � 1.
It follows that g,, ..., each fix 0 and cc. This shows that f and g leave the
set {0, cc} invariant and so g) is elementary. Again, g, andf commute
sog2=f. D

The reader may wish to relate this result to the discussion in Section 1.5.

EXERCISE 5.1

1. Let G be an elementary group containing a parabolic element which fixes cc. Show
that if the group of all such parabolic elements is cyclic then any elliptic element in G
is of order two.

2. Show that a group G is elementary if and only if for all f and g in G, <f, g>
is elementary.

3. Show that if g and h are of order two, then <g, h> is elementary. Is <g, h> necessarily
discrete?
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4. Show that the map

:i—.(:!I:I,

is an isometry ofC — {O} with the metric onto the cylinder S' x with the
Euclidean metric. Deduce that an elementary group leaving {O, x. } invariant is
isomorphic to a group of isometries of the cylinder. Find the Euclidean isometry
corresponding to the group element z where p = I or — 1.

5. Let

(1 -i-. t)z — (I -I-. t)
f(z) = —z, g(z) = (I — +(1—t)

where t = Show that g is parabolic with fixed point w, say, where a 0.

Deduce that fgf is parabolic with fixed point — iv( w) so <f, g> is non-elementary
Show however that in the notation of Theorem 514, O2(g) (The assumption
thatf is not of order two in Theorem 5.1.4 is necessary.)

§5.2. Groups with an Invariant Disc

Later, we shall be interested in those subgroups of which have an in-
variant disc: here, we characterize such groups.

Theorem 5.2.1. Let G be a non-elementary subgroup of .1!. Then there exists
a G-invariant disc and only (fG has no strictly loxodromic elements. If D is
a G-invarianr open disc, then D and its exterior are the only G-invariant discs.

Note that we do not require G to be discrete. The restriction to non-
elementary groups is necessary: for example, if

p(z)=z+1, q(z)=z+i,

then <p, q> has no loxodromic elements and no invariant disc and has
infinitely many invariant discs.

PROOF. Directly from Definition 4.3.3, if a G-invariant disc exists then G has
no strictly loxodromic elements.

To prove the converse, suppose that G is non-elementary and has no
strictly loxodromic elements. By Theorem 5.1.3, we can find loxodromic,
and therefore hyperbolic, elements g and Ii in G with no common fixed
points. By conjugation, we may assume that g fixes 0 and cc.

Now select anyf in G. In terms of matrices we can write

fu O\

iIU)'
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where each matrix is in SL(2, C). As g is hyperbolic, we find that u is real.
Next, write

= trace(f) = +
and

= trace(gf) = wx -I-- t3/u.

Becausef and gf are not strictly loxodromic, t1 and t2 are real. Solving for
and ó, we find that and are real. This shows that every element of G has

real diagonal elements.
Now let

h=(° ad—bc=l,

so a and d are real. Also (a + d)2 > 4 because h is hyperbolic. The fixed
points of h are the points

(a — d) ± [(a + d)2 — 4]1/2

2c

and as c 0, the ratio w1/w2 is real. This implies that the fixed points of g
arid h are collinear. In an invariant formulation, the absence of strictly
loxodromic elements implies that the fixed points of every pair g and h of
hyperbolic elements are concyclic. One can proceed by geometry but the
algebraic proof seems simpler.

We may assume that the fixed points of g and h lie on the real axis. Then
g and h leave H2 invariant and all entries of h are real. Now

*

* yb+&i
and these diagonal elements are real. As a, b, c, d, and 5 are real and
bc 0, we find that /3 and y are real so f is in SL(2, This shows that
every element of G preserves H2.

Finally, let D be an invariant disc. For any hyperbolic h in G, the points
accumulate at the fixed points of h (Theorem 4.3.10). By taking z in

D and then in the exterior of D we see that all hyperbolic fixed points must
lie in the boundary of D: thus there are precisely two G-invariant discs, the
common boundary containing all hyperbolic fixed points (see Theorem
5.1.3).

The argument given in the last part of this proof shows that is para-
bolic or hyperbolic with an invariant disc D, then the fixed points of g lie on
ÔD. If g is elliptic with an invariant disc D, then the fixed points of g cannot
lie on öD (consider g(z) = If w is a fixed point of g, then so is the inverse
point of w with respect to 3D because inverse points and are preserved
by g. Thus (f g is elliptic with invariant disc D then the fixed points of g are
inverse points with respect to and are not on 8D.
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EXERCISE 5.2

I. Verify the statements regarding the location of the fixed points of g with invariant
disc D by taking D to be H2 and regarding g as a matrix in SL(2,

§5.3. Discontinuous Groups

We begin with a general definition.

Definition 5.3.1. Let X be any topological space and G a group of homeo-
morphisms of X onto itself. We say that G acts discontinuously on X if and
only if for every compact subset K of X,

g(K) n K =

except for a finite number of g in G.

In our applications, X will always be a subset of with the usual
topology. There are, however, several useful results which, even in the
general situation, follow easily from this definition. Suppose now that G
acts discontinuously on X: then the following statements are true.

Every subgroup of G acts discontinuously on X. (5.3.1)

if is a horneomorphism of X onto Y, then
acts discontinuously on Y. (5.3.2)

if Y is a G-invariant subset of X, then G acts
discontinuously on Y. (5.3.3)

if x e X and g1, g2, ... are distinct elements
of G, then the sequence g1(x), g2(x), ... cannot con-
verge to any y in X. (5.3.4)

if x EX, then the stabilizer is finite. (5.3.5)

if (for example) X c then G is countable. (5.3.6)

PROOFS. Clearly (5.3.1) and (5.3.2) are true. If Y X, then any compact
subset of Y is also a compact subset of X and (5.3.3) follows. To prove
(5.3.4), observe that if the given sequence converges to y, then

K = {y, x, g1(x), g2(x), .
.

is a compact set. As n K 0 (n = 1, 2,.. .) and as the are distinct,
G cannot act discontinuously on X: thus (5.3.4) follows. For each x in X,
{x} is compact; thus (5.3.5) is a direct consequence of Definition 5.3.1.
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Finally, we have seen (in Section 4.3) that there is a 1—1 correspondence
between G/GX and the orbit G(x) and so by (5.3.5), G is countable if and only
if G(x) is countable. Now any uncountable set in contains a limit point
of itself and so by (5.3.4), G(x) must be countable. This proves (5.3.6). E

Our aim is to study the relationship between discreteness and discon-
tinuity as applied to subgroups First, we consider the action of G in H3.

Theorem 5.3.2. A subgroup G of is discrete if and oniy if it acts discon-
tinuously in H3.

PROOF. Suppose first that G is discrete. As G is the homomorphic image of
a discrete (and therefore countable) subgroup of SL(2, C), we see that G is
countable, say

G= {gl,g2'...},

As G is discrete, —* +cc and so using Theorem 4.2.1, we see that as
n—÷ +co,SO

p(j, —+ + cc. (5.3.7)

It is clear from (3.3.5) that a compact subset K of H3 lies in some
hyperbolic ball

B {XEH3:p(x,j)<k}.

If g(K) n K then g(B) n B 0 and so

p(j, a(J)) < 2k

By (5.3.7) this can only happen for a finite number of g in G and so G acts
discontinuously in H3.

Now suppose that G acts discontinuously in H3 (or in any subdomain
of C). If G is not discrete, we can find distinct matrices A1, A2, ... in SL(2, C)
projecting to in G with —*1 as n cc. Using (4.1.4), we see
that —* x as n cc for every x in Clearly this violates (5.3.4) and
so we deduce that G is necessarily discrete. E

We now turn our attention to the extended complex plane and we seek
to understand the relationship between discreteness and discontinuity in
open subsets of C. Of course, the proof of Theorem 5.3.2 shows that if G
acts discontinuously in some non-empty open subset of C, then G is discrete.
The converse is false: it is possible for G to be discrete yet not act discon-
tinuously in any open subset of C. In order to give a simple example of this,
we establish a criterion which excludes the possibility of a discontinuous
action.
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Lemma 5.3.3. Let G be anj' subgroup of dl and let D he an open subset of C
which contains a fixed point r of some parabolic or Ioxodro,nic element g of
G. Then G does not act discontinuouslj' in D.

PROOF. This is trivial as the stabilizer contains the distinct iterates of g.
If g is parabolic or loxodromic, then is infinite and this violates (5.3.5).

Example 5.3.4. Let G be Picard's group, namely the group of transformations
of the form

g(z) =
+

(5,3.8)

where a, b, c and d are Gaussian integers (of the form m + in where m,
n e Z) and ad — bc = 1. Obviously G is discrete.

By Lemma 5.3.3 it is sufficient to show that the parabolic fixed points of
G are dense in C. Let w = (p± iq)/r where p, q and r are integers: obviously,
the set of such w is dense in C. Now simply observe that

(1 — wr2)z + r2w2
h(z)

= —r2z + (1 + wr2)

is a parabolic element of G that fixes w.

Our aim now is to understand the situation in which a discrete group
does act discontinuously on some open subset of C. The exposition will be
clearer if we restrict our attention to the non-elementary groups: the case of
the elementary groups is rather easy and are left to the reader. Note, how-
ever, that once again we do not begin with the assumption of discreteness.

The discussion will be based on the fixed points of loxodromic elements
of G and we begin with a preliminary result which enables us to locate these
fixed points.

Lemma 5.3.5. Let E be an open disc and suppose that g e dl and
g is loxodromic and has a fixed point in

PROOF. We may assume that = x. With this assumption, OE is a
Euclidean circle (and not a straight line) as clearly, no fixed point of g is
on the boundary of L If g is elliptic or parabolic then (as g fixes co) g is a
Euclidean isometry and this is not compatible with g is
loxodromic. For any w not fixed by g, the images n = 1, 2,...,
accumulate at a point v fixed by g. If w e these images are in g(Z) and so
vEg(E). LI

We now begin our study of discontinuity in subsets of

Definition 5.3.6. Let G be a non-elementary subgroup of dl (G need not be
discrete) and let A0 denote the set of points fixed by some loxodromic
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element in G. The limit set A(G) of G is the closure of A0 in the ordinary
set of G is the complement of A in C.

In general, we shall write A and without explicit mention of G. Note
that if G G1 then

A(G) c A(G1),

We shall study A first and then Q.

Theorem 5.3.7. For any non-elementary group G, the limit set A is the smallest
non-empty G-invariant closed subset of C. In addition, A is a perfect set and is
therefore uncountable.

PROOF. As A0 is G-invariant, so is A. By definition, A is closed and by
Theorem 5.1.3, A 0. Now let E be any non-empty, closed G-invariant
subset of C. As G is non-elementary, every orbit is infinite, thus E is infinite.
Now take any point v fixed by a loxodromic element g in G. There is some
w in E not fixed by g and the set n e 1) accumulates at v (and at the
other fixed point of g). As E is closed, v c E. This shows that A0 c E; hence
A c E.

This argument also shows that A0 has no isolated points (we simply
choose win A0 but not fixed by g): hence A has no isolated points. A set is
perfect if it is closed and without isolated points and as is well known any
non-empty perfect set is uncountable. As A is perfect, the proof is complete.

Theorem 5.3.7 shows that the countable set A0 is dense in the uncountable
set A but we can say even more than this.

Theorem 5.3.8. Let G be a non-elementary subgroup of.iH and let and 02
be disjoint open sets both meeting A. Then there is a loxodromic g in G with
a fixed point in and a fixed point in 02.

PROOF. Recall that if f is loxodromic with an attractive fixed point a and a
repulsive fixed point fi, then as n + ffl

cc uniformly on each compact
subset of C — {fJ} —+ uniformly on each compact subset of C —
{cc} (Theorem 4.3.10). The repulsive fixed point off is the attractive fixed
point off '.

Now consider G, and 02 as in the theorem. It follows (Definition
5.3.6) that there is a loxodromic p with attractive fixed point in 01 and a
loxodromic q with attractive fixed point in By Theorem 5.1.3, there is
a loxodromic f with attractive fixed point cc and repulsive fixed point /3,
neither fixed by p. Now choose (and then fix) some sufficiently large value
ofmso that

g = ptm
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h

Figure 5.3.1

has its attractive fixed point ; and repulsive fixed point (=ptm[3)

in Then choose (and fix) some sufficiently large value of r so that

h = qr

maps into 02: put; = See Figure 5.3.1
Next, construct open discs E and K with the properties

fi, eE c C 0,,
c K K C

As fl1 K we see that g" —+ ; uniformly on K as n —+ + cc. As h '(K)
is an open neighbourhood of; we see that for all sufficiently large n,

and so

c h'(K)

K. (5.3.9)

As h(;) E so; is not in h '(s) and so -+ uniformly on h '(E)
as n -+ + cc. Thus for all sufficiently large n,

E. (5.3.10)

Choose a value of n for which (5.3.9) and (5.3.10) hold. By Lemma 5.3.5,
hg" is loxodromic with a fixed point in K: also, g"h', which is
has a fixed point in E, hence so does

Theorems 5.3.7 and 5.3.8 do not require G to be discrete. If we add the
extra condition that G is discrete, we can describe A in terms of any one orbit.
For any z in C, let A(z) be the set of w with the property that there are
distinct in G with w (the points need not be distinct).

Theorem 53.9. Let G be a non-elementary discrete subgroup of A1. Then
for all z in C, we have A = A(z).
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Remark. The group generated by z 2z shows that the conclusion may
fail if G is only discrete. The group of Möbius transformations preserving
the unit disc shows that the conclusion may fail if G is only non-elementary.

PROOF OF THEOREM 5.3.9. Each A(z) is closed, non-empty and G-invariant
so by Theorem 5.3.7, we have

A A(z).

If z E A, then G(z) A and so

A(z) c A:

in this case, then we have A = A(z).
Now suppose that z is in and select any w in A(z): we must show that

w e A. Suppose not, then w n and there is a disc Q with centre w whose
closure lies in We may suppose that 0 and are in A so taking
K = {z} we deduce from Theorem 4.5.6 that for all g in G and all z'
in Q,

d(gz,gz') �
As W E A(z), there are distinct with w: as + x, we deduce
that —* w uniformly on This implies that for large n,

hence for Lemma 5.3.5 we have Q n A 0 and this contradicts Q o E

We now turn our attention to the open set Q.

Theorem 5.3.10. Suppose that G is a discrete non-elementary subgroup of
4'. Then is the maximal domain of discontinuity in C of G: precisely,

(i) G acts discontinuously in and
(ii) if G acts discontinuously in an open subset D of C, then D

Remark. Traditionally, a discrete group G was called Kielnian if Q # 0.
More recently, Kleinian is used synonomously with discrete.

PROOF OF THEOREM 5.3.l0.If G does not act discontinuously in then
there is a compact subset K of and distinct g1, g2, ... in G such that

n K 0. Thus there are points z1, z2,... in K with E K. By
taking a subsequence, we may assume that —* w in K and so w
However, exactly as in the proof of Theorem 5.3.9, we now see that —* w

uniformly on K and so w e A, a contradiction. This proves (i).
It is easy to prove (ii). By Lemma 5.3.3, D n A0 = 0. As D is open, this

impliesthatDnA= E
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Theorem 5.3.10 has an interesting corollary.

Corollary. Let G be discrete and non-elementary. Then c� 0 sf and only
for some z, G(z) is not dense in C.

PROOF. By Theorem 5.3.9, Q 0 if and only if A(z)( = A) is not and this
is the assertion in the corollary.

Lemma 5.3.3 shows that the fixed points of parabolic and loxodromic
elements of G lie in A and hence not in It is not hard to see that there
can be fixed points of elliptic elements of G both in A and in Q. However,
if an elliptic fixed point lies in Q, the stabilizer of that point must be cyclic.

Theorem 5.3.11. Suppose that G is non-elementary and that Q 0. If rEQ
then the stabilizer is cyclic and finite.

PROOF. By virtue of Lemma 5.3.3, if z e then every element of the stabilizer
is either elliptic or I. Thus by Theorem 4.3.7, there is some in H3 which

is fixed by every g in Now let A be the unique semi-circle in H3 which
has end-point z, which passes through and which is orthogonal to C.
Every elliptic element of fixes z and and so has the axis A. This means
that every element of fixes both end-points of A and an examination of
the discrete elementary groups listed in Section 5.1 shows that is neces-
sarily a finite cyclic group.

For an alternative proof, suppose that g and h fix z in Q. As both g and h
are elliptic they each have another fixed point. If these other fixed points
are distinct, then by Theorem 4.3.5, [g, h] is parabolic and also fixes z and
this violates Lemma 5.3.3.

We can use Theorem 5.3.11 to obtain a result concerning the local be-
haviour of a discrete group 6 near a point in Q or H3.

Theorem 5.3.12. Let G be a discrete non-elementary subgroup of .A'. Then
(considering only g in G):

(i) each x in H3 is the centre of an open hyperbolic ball N such that g(N) = N
= x and g(N) m N = 0 otherwise;

(ii) If Q 0, each x in has an open neighbourhood N in Q such that
g(N) = N = x and g(N) n N = 0 otherwise.

PRooF. First, (i) is a direct consequence of the fact that G is a group of
isometries acting discontinuously in H3.

To prove (ii), we may assume that z = 0 and that every g in also
fixes co (use Theorem 5.3.11). Now select a disc

N = {z: < r}

whose closure is contained in Q. As G acts discontinuously in Q,

g(N) n N 0 for only a finite set of g in G. By continuity, for a sufficiently
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small r (depending in this finite set) g(N) n N = 0 unless g(0) = 0 in
which case, g(N) = N.

If G is a discrete group, then G = .. .} say, and

We now show this convergence cannot be too slow.

Theorem 53.13. Let G be a discrete subgroup of dl. Then:

(i) the number n(t) of elements g in G with � t is 0(t4);
(ii) for any s > 4, the series converges;

(iii) 0, then the series converges.

PROOF. The stabilizer off in H3 is finite with, say, k elements. Let N be a
hyperbolic ball in H3 with centrej and radius r, say, such that g(N) N = 0
when g e G — Let V(R) be the hyperbolic volume of a hyperbolic ball
of radius R.

Now � t is equivalent to

2 cosh p(j, gj) � t2,

(Theorem 4.2.1) and so if � t, then

g(N) {xEH3:p(x,j) � r +
By adding the volumes of the disjoint images g(N) of N with t and
by taking into account the order of the stabilizer of j, we obtain

n(t)/k � V(r + (5.3.11)

Now (see [5], p.61)

V(R) = ir[sinh(2R) — 2R]

<

and

cosh'(y) = log(y + [y2 — l]h/2)

<log(2y).

Thus

n(t) � (kir/2V(r)) exp[2r + 2 log(t2)]
= (kne2T/2 V(r)) t4.

To prove (ii) simply observe that n(1) = 0 so

g€G, � t 1
X

(5.3.12)
n(t) n(x) dx

xs+1
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and so (i) implies (ii). Note that in general, this yields

= O(log t)

and indeed, an estimate of the partial sums (5.3.12) for any positives.
To prove (iii) we can use a similar argument but in Q and with the chordal

metric. We can find an open disc N in 1) such that for all g in G, g I, we
have g(N) n N = 0. Then the sum of the areas of the g(N) measured in
the chordal metric converges to at most 471 (the chordal area of C) and it is
only necessary to estimate this area of g(N). Let

az + b ad—bc=l.
cz + d

Then the chordal area of g(N) is

rf 4dxdy ççjgW(z)j2dxdy

JJ (1 + z12)2 - JJ (I + g(z)12)2
g(N) N

—
4dxdy

— + cz+d12)2

� IgIl (chordal area of N),

the last line being an application of the Cauchy—Schwarz inequality, namely

Iaz + b12 + lcz + d12 � (la2 + b12)(1 + z12) + (c2 + d2)(l + z12).

We end with two result which imply that 0.

Theorem 53.14. Let G be a discrete non-elementary subgroup of it.

(i) If D is a non-empty open G-in variant set which is not then G acts
discontinuously in D;

(ii) is a non-empty open set such that g(D) n D = Øfor all g in G except
I, then G acts discontinuously in g(D).

PROOF. The set E = — D is non-empty, closed and G-invariant and so by
Theorem 5.3.7, A c E. Thus G acts discontinuously in D (Theorem 5.3.10).

By definition, is disconnected and so is not C: now apply (i) to

Referring to (ii) in the previous theorem, we say that a subdomain D of
C is a G-packing if g(D) n D = 0 whenever g e G and g I. This terminol-
ogy enables us to state our next result easily.
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Theorem 5.3.15. Let G1, G2,... be subgroups of whose union generates
the group G. Let be a Ga-packing and suppose that D1 u = C when
i j. Suppose also that D*( = fl D) is nonenipty. Then G is the free product
of the D*is a G-packing and G acts discontinuously on U9 g(D*).

PROOF. Consider any element . g1 of G where a Gk, gk I and
1k+1 for any k. First, because is a G1-packing, we have

g1(D*) c —

In fact, it follows (by induction) that

for if this is so, then

c C —

We deduce that

—D1)

—

so D* is a G-packing. Because D* 0 we must have ge,,. g1 I so G is
the free product of the The last assertion follows from Theorem
5.3.14(u).

As an application of Theorem 5.3.15, consider G1 = and G2 = <h>
where

g(z) = z + 6,

Figure 5,3.2

3

h(z) = z/(z + 1).
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Let
D1 = {x + iy: < 3}

and
D2 = z:jz + 1} n {z:lz — II> l}:

see Figure 5.3.2.
Clearly, D1 is a G-packing: as h maps the domain jz + 1 > I onto the disc
z — I we see that D2 is a G2 -packing. Obviously D* 0 and

D1 u D2 = C: thus Theorem 5.3.15 is applicable.

EXERCISE 5.3

1. Verify the details in the Remark following Theorem 5.3.9.

2. Let g and E be as in Lemma 5.3.5. Show that for some w,

fl = {w}

and that w is the unique fixed point of g in L

3. Suppose that G is discrete and non-elementary. Show that �) is the largest domain in
in which G is a normal family.

4. Suppose that G is non-elementary and contains parabolic elements. Show that A is
also the closure of the set of parabolic fixed points of G.

5. Let G1, D1 and D* be as in the application of Theorem 5.3.15 and let G = <g, h).
Prove that A u so G acts discontinuously in the upper and lower half-
planes. Deduce that �) is connected.

Let D be the set obtained by removing the origin from the closure of D*. Prove
that D c c� and deduce that

UJ(D)
f€G

6. Let Q1' Q Q2, Q2 be four mutually exterior circles in C. Forj = 1, 2, let map
the exterior of Q —j onto the interior of Deduce that 0 = <g1, g2> acts discontinu-
ously on

U g(D)

where D is the domain lying exterior to all four circles. This is called a Schottky group
on two generators.

§5.4. Jorgensen's Inequality

We end our general discussion of discreteness and discontinuity with an
account of Jørgensen's inequality. Later, we shall examine the geometric
interpretation in greater detail in the special case of isometries of the
hyperbolic plane.
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Let A and B be matrices in SL(2, C) representing the Möbius trans-
formations f and g respectively. As A and B are determined by f and g to
within a factor of —1, we see that the commutator is uniquely
determined byf and g. Thus we may (unambiguously) write

=

Theorem 5.4.1. (JØrgensen's Inequality). Suppose that the Möbius trans-
formations f and g generate a discrete non-elementary group. Then

tr2(f) — 4 + Itr(fgf - 1g
1) — 2 � 1. (5.4.1)

The lower bound is best possible.

The inequality (5.4.1) can be interpreted in terms of the metric on SL(2, C)
for if g> is non-elementary and discrete, then

tr2(A) — + tr(ABA 1 (5.4.2)

and so A and B cannot both be close to I. Thus (5.4.1) represents a quanti-
tative statement about the isolated nature of I within a discrete group.

It is easy to obtain an explicit numerical bound by writing

A=I+X,
and noting that

= X + + = 0:

similar expressions hold for B I + Y, say. The Cauchy-Schwarz inequality
yields

Itr(X)I �
and a computation shows that [A, B] — I reduces to a sum of six terms,
each being a product of at least two of the matrices X, XK, Y and If

< e and YM < c then (5.4.2) yields

1 � + +
= + (2 +

so e > Thus we have the following (presumably) crude but explicit
estimate.

Corollary. If A and B generate a non-elementary discrete group then

— lB — 'll} >

To show that the lower bound in (5.4.1) is best possible, consider the
group generated by

f(z) = z + 1, g(z) = — l/z.
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In this case, G is the Modular group arising from SL(2, 1): it is obviously
non-elementary and equality holds in (5.4.1).

PRooF OF THEOREM 5.4.1. The idea of the proof is contained in Section 1.5
and Theorem 5.1.4. We know that g> is discrete and non-elementary.
Now (5.4.1) holds if f is of order two (because then, tr2(f) = 0) so we
may assume that f is not of order two. Select matrices A and B representing
f and g respectively in SL(2, C) and define

B0 = B, = (5.4.3)

It follows that represents as defined in the proof of Theorem 5.1.4,
hence (by that Theorem) A for any n. It remains only to show that if
(5.4.2) fails, then for some n we have

= A (5.4.4)

and we consider two cases.

Case l:f is parabolic.
As the trace is invariant under conjugation we may assume that

B=(a b)

where c 0 (else <A, B> is elementary). We are assuming that (5.4.2) fails
and this is the assumption that

Ici < 1.

The relation (5.4.3) yields

— (1 —

— 1 +

From this we deduce (by induction) that

=

(which is —c2' except when n = 0) and as ci < 1 we see that

C,1 0.

As c,j < 1, we have (by induction)

� n + aol

so —*0 and

.-+ 1.

This proves that

1 —* A,

which, by discreteness, yields (5.4.4) for all large n.
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Case 2:f is loxodroniic or elliptic.
Without loss of generality,

/14 0

1/u'

where B is as in Case 1 and be 0 (else <A, B> is elementary). The assump
tion that (5.4.2) fails is

= tr2(A) — 4( + tr(ABA1B') —
= (1 + IbcI)Iu -
<1.

The relation (5.4.3) yields

— — — u)

— — 1/u) —

so

= + — 1/u)2.

We now obtain (by induction)

$1 ,flbct �

so

—+ 0

and

= 1 + —* 1.

Also, we obtain

Now

= — u)I

�
so

b

2 Ju"

for all sufficiently large n. Thus

0
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and similarly, 0. It follows that

(uc2n

As KA, B> is discrete, we must have

A

for all sufficiently large n so for these n, = A which is (5.4.4).

We end this chapter with several applications of Jørgensen's inequality.

Theorem 5.4.2. A non-elementary group G of MObius transformations is
discrete and only eachf and g in G, the group <f, g> is discrete.

PROOF. If G is discrete, then so is every subgroup of G. Now suppose that
every subgroup g> is discrete; we suppose that G is not discrete and
our aim is to reach a contradiction.

As G is not discrete we can find distinctf1,f2, . . in G represented
by matrices A1, A2,... in SL(2, C) which converge to I. By considering
traces, we may assume that is of order two.

For any g in G with matrix B, say, we have

— 41 + B] — 2J —÷0

and so by Theorem 5.4.1, for n � n(g) say, the group g> is elementary.
Now G contains two loxodromic elements g and h with no common

fixed points (Theorem 5.1.3). For n greater than n(g) and n(h), both groups

are elementary and discrete and, according to the discussion of such groups
in Section 5.1, we deduce must leave the fixed point pair of g and of h
invariant. is not elliptic of order two, it cannot interchange a pair of
points sofa must fix each individual fixed point of g and of h. We deduce
that g and h have a common fixed point and this is the required
contradiction.

Next, we give alternative formulations of (5.4.1) in the particular case
when f is parabolic (p is the hyperbolic metric in H3).

Theorem 5.43. Let f be parabolic and suppose that g> is discrete and
Then

(i) I

and this is best possible;
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(ii) is also parabolic, then for all x in H3 we have

sinh fx)sinh gx) �
and this is best possible.

Remark. In (i), — Ill is to be interpreted as IA — Ill for either choice
of the matrix A representingf and similarly for g.

PROOF. There is a Mobius h corresponding to a unitary matrix U such that
hfh 1 fixes cc. If A corresponds tof, then

- = MA -
and similarly for g: thus we may assume that f fixes cc. Then

(e ).\ (a b\A=I i, B=( (ad—bc=1),
\O c,/ \\c dj

where c2 = 1 and where B represents g. inequality (5.4.2) yields

c)LI � 1

and (i) follows as

IA IM � lB - � cl.
To prove (ii), select matrices A and B forf and g respectively with

tr(A) = tr(B) = 2.

Then using Theorem 4.2.1, we have

MA — 1112 = MAIl2 + 2 — 2 Re[tr(A)]

= lAM2 — 2

= 4 sinh2

where] = (0, 0, 1) in H3. This verifies (ii) when x = j.
The general case of (ii) follows easily. If x e jj3, choose a Möbius h

mapping x to]. Now apply (ii) with f, g and x replaced by hfh 1, hgh1
and j. The maps f: z z + 1, g(z): z F-4 z/(z + 1) show that both bounds
are best possible.

Theorem 5.4.3 has an interesting geometric interpretation. A horoball
in H3 is an open Euclidean ball in H3 which is tangent to C. If the point of
tangency is w, we say that is based at w: the boundary of E (in 1R3) is
a horosphere. A horoball based at cc is a set of the form

{(x1, x2, x3) e H3: x3 > k},

where k > 0. Thus in this case, and hence in general, a horosphere is a
surface in H3 which is orthogonal to all hyperbolic planes containing the
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point w on the sphere at x, namely This characterizes horoballs and
horospheres in terms of the geometry of H3 alone.

Ifg is a parabolic element of fixing w, then for all positive k,

k] = {x H3: sinh gx) < k}

is a horoball based at c. Indeed, if g(z) = z + 1, then using (3.3.4) we obtain

sinh gx) = 1/2x3

and hence

E[g,k] = (xeH3:x3 > l/2k}:

the general case follows because for all Möbius h,

k]) = k].

Now define, for each parabolic g, the horoball

= {x sinh gx) (5.4.5)

Obviously, for any Möbius h we have

= EhSh-1. (5.4.6)

It is clear from Theorem 5.4.3(u) that if E9 meets then <g, Ii> cannot be
both discrete and non-elementary. In particular, if g and h are known to be
in a discrete group, then g and h must have a common fixed point. This
proves the next result.

Theorem 5.4.4. Let G be a discrete non-elementary subgroup of .11 with
parabolic elements. For each parabolic g in G, let be the horoball defined
by (5.4.5). Then the family

{Eg: g parabolic in G}

is permuted by G according to (5.4.6) and n = 0 unless g and h have a
common fixed point.

Our last application of Jørgensen's inequality relates Theorem 5.4.3(u)
to non-parabolic elements: for completeness, we include this in the state-
ment of the next result.

Theorem 5.4.5. Suppose that Kg, h> is discrete and non-elementary.

(i) g is parabolic, then for all x in H3,

sinh +p(x, gx) sinh hgh 'x) �
(ii) g is hyperbolic, then for all x in H3,

sinh 4p(x, gx) sinh hgh - 'x) �
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(iii) is elliptic or strictly loxodromic and — < defines
an open neighbourhood oil) then all x in H3

max{sinh 4p(x, gx), sinh hgh 'x)} �

If

p(x, gx) < c, p(x, h.x) < c,

then

p(x,hgh'x) =
� + p(x,gx) + p(gx,gh1x)
<

thus we obtain the following corollary of Theorem 5.4.5.

Corollary 5.4.6. Let N be the open neighbourhood of! in .1! defined by
1: tr2(f) — 4 < If g is in N and if <a, h> is discrete and non-elementary,

then for all x in H3,

max{p(x, gx), p(x, hx)} �

The proof of Theorem 5.4.5 requires details of the geometry of the action
of loxodromic and elliptic elements. Suppose first that

(u O\
g = I, u = u e1 , (5.4.7)

l/u/

is loxodromic (this includes hyperbolic) or elliptic. Observe that

— 1/u 12 = (u — 1/u)(ü — 1/u)

= (IuI — 1/luD2 + 4 sin2 6. (5.4.8)

Next, for all x and y in H3, (3.3.4) yields

2

4 sinh2 y) =
X3

The transformation g acts on (viewed as C x W) by the formula

g: (z, luI2t)

and so with x = (z, t) we have

2 1
— u2z12 + (t — IuI2t)2

4 sinh gx)
= I u 12t2

= (luI — 1)2
+

— 1)2
(5.4.9)
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The axis A of g is, by definition, the geodesic joining the fixed points of g.
In the particular case (5.4.7), the axis is given by z = 0 and it is clear from
(5.4.9) that the displacement

= p(x, gx)

is independent of x on A: we call 7 the translation length of g. The identity
(5.4.9) shows that

4 = — (5.4.10)

in particular, 1 = 0 if g is elliptic. Note that the two terms involving u in
(5.4.8) are invariant under conjugation (they can be expressed in terms of
trace(g) and 7), hence so is sin2 0. In particular, sin 0 = 0 if g is hyperbolic.

The next task is to express
I
z /t geometrically. The reader is referred

forward to Section 7.9 where it is shown that

IzI/t = sinh p(x, A): x = (z, t).

With this available, (5.4.9), (5.4.8) and (5.4.10) yield

sinh2 p(x, sinh2 p(x, A) sin2 0. (5.4.11)

Thus the displacement by g arises out of a contribution corresponding to
the shift i along the axis and a contribution arising out of the rotational
effect of 0 and each contribution is adjusted according to the distance of x
from the axis.

PROOF OF THEOREM 5.4.5. We need only prove (ii) and (iii) and by considering
conjugate elements we may suppose that g is given by (5.4.7). As Jorgensen's
inequality is applicable, we write

ad—bc=1,

and so

(1 + IbcI)Iu — 1/ui2 � 1: (5.4.12)

see the proof of Theorem 5.4.1, Case 2.
In order to interpret the term bc!, we seek a Möbius transformationf

taking 0, ho, hoic. to 1, —1, w, —w respectively. Such a transformation
exists if and only if we have equality of cross-ratios, namely

[1, —1, w, —w] = [0, bId, a/c],

or, equivalently,

bc = (1 — w)2/4w. (5.4.13)
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Now A is the geodesic with end-points 0 and cc; hA is the geodesic with
end-points hO and hcc. As <g, h) is non-elementary, the geodesics A and
hA cannot have a common end-point: thus bc 0. It follows that there are
two solutions in w of (5.4.13), each solution being the reciprocal of the
other. Let w be such a solution and we may suppose that � 1: the
location of f(A) and f(hA) is illustrated in Figure 5.4.1.

it is an easy deduction from (3.3.4) that

p(A, hA) p(JA,fhA)

= inf{p(x, y): x e fA, ye fhA}
= p(e3, lwIe3)

= log wi,

because if (x, y, t) a f(A) and (u, v, s) a fh(A) then

ts

and the Cauchy—Schwarz inequality is applicable.
We now write

so

Also,

w = exp + if3)

p(A, hA) =

bc = + if3),

ts

—1

w1/

—w 7//r

Figure 5.4.1



5. Discontinuous Groups

hence

41bc12 = cosh + 1/3) — 112

= (cosh cos 2/3 — 1)2 + (sinh 2a sin 2/3)2

= (cosh — cos 2/3)2

� (1 + cosh
= (2 cosh2

Thus for all x in H3,

� cosh2

= cosh2 hA)

� x) + p(x, hA)].

Now (by elementary means or because log cosh is a convex function) we
have

cosh2(P + q) cosh p cosh q, (p, q real)

thus

bcl � cosh p(x, A) cosh p(x, hA). (5.4.14)

Finally, observe that the conjugate elements g and hgh 1 have the same
trace2, the same translation length and hence the same value of sin2
With this in mind, we combine (5.4.12), (5.4.14), (5.4.8), (5.4.10) and (5.4.11)
to obtain

(sinh2 gx) + sin2 U)(sinh2 4p(x, hgh 1x) + sin2 U)
� [cosh p(x, A) cosh p(x, hA)Iu — 1/u12/4]2.

Because of (5.4.12) and (5.4.14) we have

— 1/ui2 � 1
so in all cases

(sinh2 4p(x, gx) + sin2 9)(sinh2 hgh 'x) + sin2 0) �

If g is hyperbolic, then sin 0 = 0 and we obtain (ii). In all other cases
write

m = max{sinh gx), sinh 4p(x, hgh 'x)}.

Then
m2 sin2 0 �

The hypotheses of (iii) together with (5.4.8) yields

sin2 0 �

and so m �
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§5.5. Notes

For a discussion of the elementary groups given in Section 5.1, see, for
example, [30], [51] and [107]. Discrete Euclidean groups in are dis-
cussed in [91] and [111].

For a selection of papers concerned with the geometric action of discoii-
tinuous groups acting in plane domains or in H3, see [8], [9], [13], [14],
[15], [65], [108] and [109]. Theorem 5.3.15 and extensions of it can be
found in [30], [51], [54], [60] and [61]. As more comprehensive accounts,
we cite [5], [25], [30], [35], [50], [51], [52], [57] and [114].

JØrgensen's inequality (Theorem 5.4.1) appears in [41]: for related
material, see [14], [40], [44], [45] and [89].



CHAPTER 6

Riemann Surfaces

§6.1. Riemann Surfaces

Briefly, a Riemann surface is a topological space which, when viewed locally,
is essentially the same as the complex plane. The formal definition is con-
structed so that the concept of an analytic function and complex analytic
function theory extend without difficulty to a Riemann surface. The function
theory will not concern us here and we shall confine our discussion to the
relationship between Riemann surfaces and the quotient by a discontinuous
group action. We shall develop these ideas only as far as is necessary to
interpret results on discontinuous groups in terms of Riemann surfaces.

A Hausdorif connected topological space X is a Riemann surface if there
exists a family

U3):jeJ},

called an atlas (each is called a chart) such that

(i) is an open cover of X;
(ii) each is a homeomorphism of onto an open subset of the complex

plane; and
(iii) jf U = U1 0' then

1: çb3(U)

is an analytic map between the plane sets and and U),

Clearly, (i) is saying that X is covered by a collection of "distinguished"
open sets, each of which (by (ii)) is homeomorphic to an open subset of C.
Two distinguished sets may overlap but then by (iii), the corresponding
homeomorphisms are related by an analytic homeomorphism.
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It is now possible to define analytic functions between Riemann surfaces.
If X and Y are Riemann surfaces with atlases {(çb1, e J} and
k E K } respectively, then a continuous map f: X Y is analytic if each map

C (6.1.1)

is analytic. The domain of this map is a subset of C and the assumed continuity
of f guarantees that this set is open. Of course by (iii), it is only necessary to
check that the maps (6.1.1) are analytic for subatlases which still provide an
open cover of X and Y respectively.

We can also talk of the angle between (smooth) curves y and on X which
cross at some point x. If x E U between the
curves 4!cr) which cross at 4/x) in the complex plane. If x e U1, also,
then and will cross at the same angIe 0 because, being an analytic
homeomorphism, the map 'is conformal. It follows that 9 is defined
independently of the choice off and this is then taken to be the angle between
y and at x.

The simplest non-planar example of a Riemann surface is X = C u { }

with the atlas given by J = {1, 2} and

= z, U, = C;

= liz, U2 = {cc} u {zeC:z

obviously, is analytic on n U2).
We say that two Riemann surfaces R, and R2 are conformally equivalent if

there is an analytic bijection f of R, onto R2 (then f is also analytic). This
is an equivalence relation on the class of all Riemann surfaces and in general,
we do not distinguish between conformally equivalent surfaces.

EXERCISE 6.1

1. Prove that a Riemann surface is arcwise connected.

2. Show that if R is a Riemann surface containing points w, then R — {w, is

also a Riemann surface.

3. Letf: R —s S be a non-constant analytic map between the Riemann surfaces R and S.
Prove thatf maps open subsets of R onto open subsets of S. Deduce that if R is com-
pact, thenf is surjective and so S is compact.

§6.2. Quotient Spaces

One method of constructing Riemann surfaces is by forming the quotient
space with respect to a discontinuous group action. In fact, it is known that
every Riemann surface arises in this way.
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Theorem 6.2.1. Let D be a subdomain of and let G be a group of Mobius
transformations which leaves D invariant and which acts discontinuously in D.
Then D/G is a Riemann surface.

PRooF. We know that DIG is a topological space with the quotient topology
and that the quotient map it: D —* DIG is continuous. As Disconnected and it
is continuous, it follows that D/G is connected (in fact, arcwise connected).
It is also clear that it is an open map for if A c: D, then

i(1(itA) =
gEG

thus if A (and therefore g(A)) is open, then so is it(A).
We now show that DIG is Hausdorif. First, choose distinct z1 and z2 in D

and choose a positive r so that the discs

K1 = {z:Iz — zil � r}, K2 = — � r}

lie in D. For n � 1, define

= {z: Iz — < r/n},

= {z: Iz — < r/n}.

If for every n,

n

then there is some in and some g,, in G with a This implies that

n K #

where K = K1 K2 (which is compact) and it follows (from discontinuity)
that the set {g1, g2, . . .} is finite. On a suitable subsequence, = g, say, and

g(z1) = urn
n

= z2.

To prove that DIG is Hausdorif, consider two distinct points, say it(z1) and
2t(z2) in DIG. Thus z1 and z2 are in D but not equivalent under G.

It follows that for some n, the disjoint sets and separate it(z1)
and it(z2) and these sets are open as it is an open map.

Our last task is to construct an atlas for DIG. For each z in D, we select an
open disc N2 (whose closure lies in D) with the properties

g(N2) = N2 if g(z) =

g(N2) n N2 = 0 if g(z) z:

see Theorems 5.3.11 and 5.3.12.
Observe that N2 — {z}contains no fixed points of G. Indeed, if h I) fixes

a point in N2, then (because of the definition of N2) h fixes z. The inverse point
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of z with respect to N2 is also fixed by h so there are no fixed points of h in
N2 — {z}. Recall that if h fixes z, then h is elliptic.

For each w in D, let o be a MObius transformation which maps w to zero
and to the unit disc A. The stabilizer of w in G is of order n, say, and is
generated by some elliptic g where

'(z) = z exp(2ttijn), Z E A.

Now let q(z) = z": this maps A onto itself and has the property that for all k
and for all z in we have

qig"(z) =

= exp(2itik/n)]"

=

Observe that this is independent of the integer k.
We shall take as charts for D/G the pairs

(6.2.1)

where is the restriction of it to see Figure 6.2.1.
Each point in is mapped by n points say, where

k = 0, 1, ..., n — 1 in According to (6.2.1), these map under to the
same point in A, thus

= 1

is a bijection of onto A. As the maps q, o and are both open and
Continuous, we see that each is a homeomorphism.

Figure 6.2.1
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In order to check that the transition maps are analytic we must first study
the maps

(ity v v. (6.2.2)

Suppose that e e and

= =

say: then for some g in G, we have

=

Suppose now that and hence are not elliptic fixed points. Then is

1—tin some neighbourhood and therefore there is a local inverse (no) 1

mapping to The two maps

agree with it, and hence with each other, on some neighbourhood of and
take values in Applying ' we see that

g

near We deduce that the maps (6.2.2) are analytic near points which are not
elliptic fixed points of G.

We now show that the transition maps

1 (u v)

are analytic (where defined): writing

and similarly for u, the situation is illustrated in Figure 6.2.2. At points
corresponding to the non-fixed points of G, we can compute by
choosing a single valued branch of and the map 1 is a com-
position of analytic maps. At points corresponding to elliptic fixed points the
homeomorphism 1 is analytic in a deleted neighbourhood of the
point in question (by the previous remark) and hence has a removable
singularity at this point.

There is a converse to Theorem 6.2.1 (which we shall not prove here).
Given any Riemann surfaceR one can construct a simply connected Riemann
surface R and a mapping it: —* R with the properties

(i) each 2 in E has a neighborhood such that it restricted to is a
homeomorphism onto an open subset of R;

(ii) Given any curve y: [0, 1J —+ Rand any 2 on .kwith ir(2) = y(0), then there
is a unique curve [0, 1] k such that = y and = 2 (we say
that projects to y or that y lifts to from 2).
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These properties are expressed by saying that m) is a smooth unlimited
covering surface of R. By the Riemann Mapping Theorem (for Riemann
surfaces) is conformally equivalent to one of the standard Riemann surfaces

C ,

(with the trivial atlases) so without loss of generality, we may assume that k
is one of these.

It can now be shown that there is a group G of Möbius transformations
preserving such that the given surface R is conforrnally equivalent to RIG.
Writing the quotient map as 7t, this means that icg = it for all g in G. Further,
one can show that G acts discontinuously in and has no elliptic elements.

If E = C u {cc}, these restrictions imply that G = (the trivial group)
so essentially, R = C u {0D }. If = C, the only possibilities for G are: (i) the
trivial group; (ii) a cyclic group generated by some z z + A; (iii) a group
generated by two translations z s—f z + A, z z + p where A, p are linearly
independent over the real numbers. These cases show that B is either C,

= {z E C: z O} or a torus. In all other cases, R is of the form A/G where
G acts discontinuously in A and has no elliptic elements. If R is compact, say
with genus g, then E C when g = 0, .k = C when g = 1 and R = A when
g � 2.

In view of these remarks, we can see the importance of groups acting
discontinuously in A (or in some conformal image of A).

Definition 6.2.2. A group G of Möbius transformations is a Fuchsian group
if and only if there is some G-invariant disc in which G acts discontinuously.

Figure 6.2.2
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A Riemann surfaceR is said to be of hyperbolic type if it is of the form A/G
where G acts in A. In this case, we can view the differential

2 dz I
ds

=

as acting on R and each curve on R can be partitioned into small segments and
the length of these segments then computed (in an invariant manner) in A. In
this way we can talk of the hyperbolic metric on R and so compute lengths
and areas on R.

If we join z to g(z) in A (g e G) and project this to R (=A/G) we obtain a
closed curve on R for irg(z) = ic(z). Conversely, if we select a closed curve
y: [0, 1] —+ R and z in A with = y(O), then there is a unique curve

[0, 1] A with = y and = z. Note that

ir9(l) = y(l) = y(O) =

so for some h in G, = h(z): thus is a curve from z to hz. is homotopic
to the point z on R then, by the Monodromy Theorem, is a closed curve on
A and h = I (because h is not elliptic).

More generally, one can consider n-dimensional manifolds: in the defini-
tion of a Riemann surface, we replace C in (ii) by and we delete (iii) (or
replace "analytic" by some other smoothness condition). If G is any discrete
MObius group, then G acts discontinuously in H3 and one can study H3/G:
this topic has attracted much attention in recent years.

EXERCISE 6.2

I. Let G be generated by g: z p—' + 1. Prove that H2/G is (conformally equivalent to)
= {z: 0 < I z < I }. [Consider the map z exp(2itiz).]
Show how to project the metric JdzI/lm[z] from 112 to a metric p(w)Idst'I in A*.

Find p and show that in this metric, the area of (2: 0 < zI < is finite.

§6.3. Stable Sets

Suppose that a domain D (a subset of is G-invariant and that G acts
discontinuously in D. We need to consider the following type of invariance.

Definition 6.3.1. A subset D0 of D is said to be stable (or precisely invariant)
with respect to G if and only if for all g in G, either

g(D0) = D0 or g(D0) D0 = 0.
The set of g with g(D0) = D0 is the stabilizer of D0.
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For examples of stable sets, see Theorem 5.3.12.
Let D0 be stable with stabilizer G0: it is natural to form the quotient space

D0/G0 and in general (for example, if G0 is cyclic) this is easier to discuss than
the projection it(D0) of D0 into D/G. Unfortunately, the two spaces

DO/GO, it(D0)

need not be homeomorphic as the next example shows.

Example 6.3.2. Take D = C, let G be generated by g(z) = z + 1 and let
= {x + iy: 0 � x < 1}. Clearly D0/G0 (=D0) is simply connected

whereas it(D0) (= it(C) = {z: z 0}) is not.

There are important cases when D0/G0 and it(D0) are homeomorphic and
we need explicit conditions which guarantee that this is so.

Theorem 6.3.3. Suppose that G acts discontinuously in D and that D0 is stable
with stabilizer G0. If either

(i) D0 is open in D; or
(ii) D0/G0 is compact;

then DØ/GØ (with the quotient topology) and ic(D0) (with the subspace topology
from D/G) are homeomorphic.

PROOF. Both quotient maps

it: D -* DIG, D0 —f D0/G0

are continuous and open as the respective groups are groups of homeo-
morphisms of the corresponding spaces. The restriction of it to D0 is
continuous so the natural bijection

0 = DO/GO -+

given by

G0(x) —p G(x),

(where, for example, G(x) is the G-orbit of x) is continuous: see Figure 6.3.1.

DO/GO

Figure 6.3.1



124 6. Riemanii Surfaces

If(i) holds, then is an open map (because it is an open map) and is

continuous. If (ii) holds, then 0 is a continuous bijection from a compact
space to a Hausdorif space and so is a homeomorphism (see Section 1.4).

Remark. If D is a subdomain of C, then and it are analytic and DO/G0 and

ir(D0) are then conformally equivalent.
We end this chapter with some examples illustrating the hypotheses (i)

and (ii) in Theorem 6.3.2.

Example 6.3.4. Suppose that G preserves and acts discontinuously in the
upper half-plane H2 of C and let g be a hyperbolic element of G. We may
assume that g fixes 0 and cc so the positive imaginary axis, say L, is invariant
under g.

Suppose now that for all h in G, either h(L) = L or h(L) n L = 0 and
suppose also that 6 has no elliptic elements of order two (which might leave L
invariant and interchange the end-points of L), This situation will be dis-
cussed in detail later in the book. Then h(L) = L only if h lies in a cyclic
subgroup of G generated by a hyperbolic element (which we may assume is g)
fixing 0 and x. Now g(z) = kz, say, where k > l,and L/<g> is compact and, in
fact, is a simple closed curve. According to Theorem 6.3.3, the projection of L
into H2/G is also a simple closed curve.

Example 6.3.5. Suppose that a group G acts discontinuously in a subdomain
D of and that there is an open disc Q which is stable with stabilizer (g>
where g is parabolic. As Q is open, Theorem 6.3.3 implies that the projection of
Q in DIG is conformally equivalent to Q/<g>.

By conjugation, we may assume that g(z) = z + 1 so that for some Ye'

Q = {x + iy: y > Yo}.

It is clear that the quotient space is conformally equivalent to the
image of Q under the map z exp(2iriz): thus the projection of Q in DIG is
conformally equivalent to a punctured disc and hence to

{zeC:0 < !zI < 1}.

Now adjoin cc (the fixed point of g) and all of its 6-imagesto D to form
the larger space D*. We generate a topology on D* from the open subsets of
D together with sets of the form {cc} u {x + iy: y> t} and their G-images
and the quotient space D*/G is also a Riemann surface: the adjoining of cc to
D corresponds to the addition of the origin to the punctured disc. Note,
however, that the sequence n + iy, n � 1, does not converge in the topology
of so does not have a compact neighbourhood in D*. Of course, we
may adjoin different orbits of parabolic fixed points to D provided that in
each case, a corresponding disc Q exists. For more details and a converse
result, see [50], Chapter 2.
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EXERCISE 6.3

1. Let G be generated by g: + land h: + land let

D={x+iy:O�y< l}.

Show that Dis stable under <g). Let it be the natural projection of C onto C/G.
Show that ir(D) is compact whereas D/(g) is not compact.



CHAPTER 7

Hyperbolic Geometry

§7.1. The Hyperbolic Plane

From the outset we have assumed both an acceptance and understanding
of Euclidean geometry: we have not entered into a discussion of the axiom-
atic foundations of the geometry and we shall not do so. The question now
arises as to how we should treat hyperbolic geometry. We must not assume
that the reader is as familiar with this as with Euclidean geometry yet it is
necessary to have available some of the more basic and elementary results in
hyperbolic geometry for we shall be using this (rather than Euclidean
geometry) for the remainder of the text. Indeed, we have already seen the
importance of hyperbolic geometry in the earlier chapters.

We shall describe hyperbolic geometry in terms of Euclidean geometry,
thus it can be thought of here as being subordinate to Euclidean geometry.
The points, lines and other configurations will be defined as subsets of the
Euclidean plane and in this way we avoid the need to discuss the axioms for
hyperbolic geometry. Of course, appropriate sets of axioms do exist and
once we have verified that these axioms hold in our model we are entitled
to use those theorems which are derivable from these axioms: we shall not,
however, follow this path. Within the limitations of Euclidean geometry we
shall be as rigorous and complete as possible.

We have seen in Section 3.3 that we may use the upper half-plane

H2 = {x + iy: y > 0)

as a model for the hyperbolic plane and that this supports a metric p derived
from the differential

dz
ds =

Im[z]
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We have also seen that reflections in circles of the form z — = r (x0 real,
r > 0) and reflections in "vertical" lines of the form x = x1 (x1 real) are
isometries of (H2, p). We shall return to these facts in the next few sections.

There is a parallel development in terms of the unit disc

A = {zeC: < l}.

The results in Section 3.4 are applicable and the metric p in H2 transfers to
a metric in A which is derived from the differential

ds= 2ldzI
(7.1.2)-

Throughout the remainder of the book shall use p for both the metric in
H2 and the metric in A: no confusion should arise, indeed the reader must
become adept at frequently changing from one model to the other as each
has its own particular advantage.

One of the principal benefits of discussing hyperbolic geometry in
Euclidean terms is that we can easily introduce the circle of points at infinity:
by this we mean u for H2 and {z: Izi = 1} for A. These are not
points in the hyperbolic plane, nevertheless they play a vital part in any
discussion of hyperbolic geometry and Fuchsian groups. The union of the
hyperbolic plane and the circle at infinity is called the closed hyperbolic
plane.

We shall refer to the two models of hyperbolic geometry described above
as the Poincaré models. There are other models available (see Section 3.7)
and we shall discuss (briefly) one alternative, namely the Klein model. The
reader should note, however, that apart from one result (in Section 7.5)
and occasional remarks and exercises, we shall not use the Klein model.

We have seen in Section 3.4 that the reflection in the plane x3 = 0 followed
by stereographic projection maps H3 isometrically onto B3, the metrics being
those analogous to (7.1.1) and (7.1.2). Let this composite map be denoted by
s. It follows that the upper hemisphere

Q = {(x1, x2, x3): + + = 1, x3 > 0},

(which is a model of the hyperbolic plane embedded in hyperbolic space H3)
is mapped by s isometrically onto A (= B2) embedded in B3. Observe that
as s is conformal, arcs of circles in Q orthogonal to 8H3 map to arcs of
circles in A orthogonal to ÔB3.

We can also map Q onto A by vertical projection, namely

v:(x1,x2,x3)i—+x1 + ix2.

Thus under the map F (= 1) of A onto A, arcs of circles in orthogonal
to (the geodesics in A) map to Euclidean segments with the same end-points
on The significance of this is that F is a homeomorphism of the closed
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+ 1

unit disc onto itself which maps each geodesic L in the Poincaré model
onto the Euclidean straight line segment L* of with the same end-points
as L: see Figure 7.1.1.

The effect ofF can easily be verified analytically and the preceding discus-
sion is equally valid in n dimensions. If x E then

F(x) =
= vir'(x)
= v7r(x),

where is stereographic projection (or, more properly, reflection in the
sphere The formula for it given in Section 3.1 now yields the
explicit formula for F, namely

2x
F(x)

= I +

Given that the sphere S(a, r) is orthogonal to the orthogonality implies
that 1a12 = 1 + r2 and so S has equation

x12 + 1 = 2(x.a).

Thus F maps S(a, r) onto the Euclidean hyperplane

= {y:y.a= I},

which meets at the same set of points as does S(a, r).

Figure 7.1.1
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The Klein model of hyperbolic geometry (that is, the model with
geodesics represented by the Euclidean segments L*) is a useful model for
establishing properties of incidence and convexity in that it transfers problems
in hyperbolic geometry to corresponding problems in Euclidean geometry.

§7.2. The Hyperbolic Metric

Our first task is to give a careful description of the construction of the
metric p from the differential (7.1.1). To each piecewise continuously dif-
ferentiable curve in H2, say y: [a, b] —÷ H2, we assign a "length" by the
formulae

lb

= Ja Im[y(t)]

The function p is now defined by

p(z, w) = (z, w EH2),

where the infimum is taken over all y which join z to win H2. It is clear that p
is non-negative, symmetric and satisfies the Triangle Inequality

p(z1, z3) � p(z1, z2) + p(z2, z3):

indeed, p is a metric on H2 (see Section 1.6).
Now let

g(z)
= az + b,

(7.2.1)
cz + d

where a, b, c and d are real and ad — bc > 0: thus g maps H2 onto itself. An
elementary computation yields

_________

— 1

Im[g(z)] — Im[z]

and so
çb Jg111(y(t))l .

dt —
.Ja Im[g(y(t))] —

Because of this invariance we immediately obtain the invariance of p,
namely

p(gz, gw) = p(z, w) (7.2.2)

and this proves that each such g is an isometry of (H2, p). This will now be
used to obtain an explicit expression for p(z, w).
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Theorem 7.2.1. With p as above, and with z, w in H2,

Iz —

Iz
1 +

2 Im[z] Im[w]

w)]
= 2(Im[z] Im[w])112'

w)]
= 2(Im[z] Im[w])"2'

(v) w)] = 2

1

PROOF OF THEOREM 7.2.1. It is easy to see that the five equations are equivalent
to each other: we shall prove that (ii) holds.

By (7.2.2), the left-hand side of (ii) is invariant under g. A straightforward
computation shows that

jg(z) — Iz — w12

Im[g(z)] Im[g(w)] — Im[z] Im[w]'

thus the right-hand side of(ii) is also invariant under g. In fact, this is no more
than the invariance of (3.3.3) established in Section 3.3.

Now select distinct z and w in H2 and let L be the unique Euclidean circle
or line which contains z and w and which is orthogonal to the real axis. Now
L meets the real axis at some finite point and by taking g(z) = — (z — 1

+ /3 (for a suitable f3)we may assume that g in (7.2.1) maps L onto the imagin-
ary axis. It is only necessary, therefore, to verify (ii) when z and w lie on the
imaginary axis.

We now assume that z ip, w = iq and also (as both sides of (ii) are
symmetric in z and w) that 0 <p < q. If

y(t) = x(t) + iy(t), 0 � t � 1,
is any curve joining z to w, then

— (' .x"(t) +
— j

dt
y(t)

dt
J0 y(t)

= Iog(q/p)

as y(l) = q, y(O) = p. As equality holds when, for example,

y(t) = i[p + t(q — p)],
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we find that

p(ip, iq) = log(q/p) (0 <p <q),
and it is easy to see that (ii) holds when z = ip and w iq.

Remark. We have proved a little more than is stated in Theorem 7.2.1.
First, we have obtained

= p(ip. iq),

(that is, is minimal) if and only if x(t) = 0 and > 0 for all tin
[0, 1]. We shall return to this in the next section. Next, for future reference
we record the formula

p(ip, iq) = log(p/q)l: (7.2.3)

in this form we do not need to assume that p < q.

We now consider the model A. The map

f(z) =

is a 1—1 map of H2 onto A, thus given by

p*(z w) = p(ftz,f1w) (z, weA),

is a metric on A. However, as

2Ift1t(z)j 1
2

1 — f(z)12 Im[z]

we can also identify with the metric derived from the differential (7.1.2).
As we have already remarked, we prefer to use p for and with this con-
vention, f is an isometry of (H2, p) onto (A, p).

We can derive formulae for the model A by simply rewriting Theorem
7.2.1 by means of f. It is more instructive, though, to work directly with A:
for example, corresponding to (7.2.3) we find that if 0 < r < 1 then

C' 2dt
p(O, r)

= Jo 1 —
= log

(the reader should verify this).
Given distinct points z and w there is an isometry g of A onto itself with

g(z) = 0 and g(w) = r, r > 0. The invariance described by (3.4.3) yields

Jz—w12 r2

(1 — 1z12)(1 - 1w12) 1 - r2

= r)]

= w)]. (7.2.4)
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The identity (3.4.4) becomes

1 — = Iz - w12 + (1 — z12)(1 - 1w12)

and this together with (7.2.4) yields

w)]
= (1

—
w12)

this is actually (3.4.5). Finally, we obtain

1 w)] —

1 — zw

and

Ii + Iz — WI
p(z, w) = log — . (7.2.5)

1 — zwl — — WI

As simple and useful examples of these ideas, we compute the length of a
circle and the area of a disc (see (3.3.5)). Of course, length and area here are
with respect to the hyperbolic metric and both remain invariant under
isometries.

If E is contained in A, then the hyperbolic area of E is

h-area(E)
= Jj[1

2]2

ifE is contained in H2, the integrand is replaced by 1//. For any curve C in
A, the hyperbolic length of C is

C
h-length(C) = I

.Jc — z

if C is in H2, the integrand is replaced by l/y.

Theorem 7.2.2. (i) The area of a hyperbolic disc of radius r is 4ir
(ii) The length of a hyperbolic circle of radius r is sinh r.

PROOF. We use the model A and let C and D be the circle and disc with centre
O and (hyperbolic) radius r. From (7.2.4) we see that

C={z:JzI=R}, D={z:IzJ�R},
where

sinh(4r)
= (1 — R2)112'

or, equivalently,

= R.

The stated results now follow by direct integration.
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g(z*) =

If we are prepared to use points on the circle at infinity we can also express
p(z, w) in terms of a cross-ratio. We recall from Section 4.4 that the cross-ratio
is defined by

(z1 — z3)(z2 — z4)
[z1,z2,z3,z4] =

(z1 — z2)(z3 — z4)

Let z and w be distinct points in H2 and let g and L be as in the proof of
Theorem 7.2.1. Further, let L meet the real axis at z" and wa', these being
labelled so that z, w, occur in this order along L (see Figure 7.2.1).
Now as g(L) is the imaginary axis, g(z*) = 0 or g(z*) = cc. If g(z*) =
we can apply the map z —* — 1/z: thus we may assume g to be chosen so that

g(z*) = 0, g(z) = iy, g(w) = iv, g(w*) = cc,

where y < v. As the cross-ratio is invariant under Möbius transformations
we obtain from (7.2.3),

p(z, w) = p(gz, gw)

= log(v/y)
= log[0, iy, iv, cO]
= log[z*, z, w, (7.2.6)

Of course, this is equally valid in A for we can simply map H2 isometrically
onto A without changing the value of the cross-ratio.

We end this section with a few brief remarks about the metric topology
of the hyperbolic plane. First, the Euclidean and hyperbolic metrics on H2
(and A) induce the same topologies. In particular, the closed hyperbolic
plane is compact in the Euclidean topology and the subspace topology is the

g(w*) = cc

g(w) = iv

g(z) = iy

Figure 7.2.1

w*
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hyperbolic topology. It is convenient to introduce notation for the closure
relative to the hyperbolic plane as well as the closed hyperbolic plane.

Definition 7.2.3. Let E be a subset of the hyperbolic plane. Then

(i) .E denotes the closure of E relative to the hyperbolic plane;
(ii) denotes the closure of E relative to the closed hyperbolic plane.

Of course, is also the closure of E in

EXERCISE 7.2

1. Let L be the set of points x + iv in H2 where x y. Find where

inf{p(z, w): ze L} (wE H2)

is attained and describe this point in geometric terms.

2. Suppose that x1 < x2 < x3 < x4. Let the semi-circle in H2 with diameter [xi. x3]
meet the line x = x2 at the point z3. Similarly, let z4 be the intersection of this line
and the semi-circle with diameter [x1, x4]. Prove that

p(z3, z4) = log[x2, x3, x4,

3. Show that if a is a metric on a set X then tanh a is also a metric on X.
Deduce that

Z — W
p0(z, w) =

— W

is a metric on H2. Show that

p0(u, v) = p0(u, w) + p0(w, v)

if and only if w = u or w = v.

4. Show that (H2, p) is complete but not compact.

§7.3. The Geodesics

We begin by defining a hyperbolic line or, more briefly, an h-line to be the
intersection of the hyperbolic plane with a Euclidean circle or straight line
which is orthogonal to the circle at infinity. With this definition, the following
facts are easily established.

(1) There is a unique h-line through any two distinct points of the hyperbolic
plane.

(2) Two distinct h-lines intersect in at most one point in the hyperbolic plane.
(3) The reflection in an h-line is a p-isometry (see Section 3.3).
(4) Given any two h-lines L1 and L2, there is a p-isometry g such that g(L1)

= L2 (see the proof of Theorem 7.2.1).
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Given any w in H2, it is clear that

{zeH2: =

w is orthogonal to the positive
imaginary axis (an h-line). As the isometry in (4) can be taken to be a Mbbius
transformation we obtain:

(5) given any h-line and any point w, there is a unique h-line through w and
orthogonal to L.

Without going into the details, the reader should be aware that an essential
feature of axiomatic geometry is the notion of "between" on a line. In our
case, this notion can be described in terms of the metric.

Given two distinct points z and w on an h-line L, the set L — {z, w} has
three components exactly one of which has a compact closure (relative to the
hyperbolic plane). This component is the open segment (z, w) and is between
z and w if and only if e (z, w). The closed segment [z, w] and segments
[z, w), (z, w] are defined in the obvious way.

The discussion preceding (7.2.3) shows that a curve y joining ip to iq
satisfies

= p(ip, iq)

if and only if is a parametrization of [ip, iq] as a simple curve. Clearly, this
can be phrased in an invariant form as follows.

Theorem 7.3.1. Let z and w be any points in the hyperbolic plane. A curve y
joining z to w satisfies

= p(z, w)

and only (fy is a parametrization of [z, w] as a simple curve.

It is for this reason that we refer to h-lines as geodesics (that is, curves of
shortest length).

Now consider any three points z, w and It is clear from the special case
(7.2.3) that if is between z and w, then

p(z, w) = p(z, + w).

Equally clearly, if is not between z and w then the curve y comprising of the
segments [z, and w] satisfies (by Theorem 7.3.1)

> p(z, w).

Thus we obtain the next result.

Theorem 7.3.2. Let z and w be distinct points in the hyperbolic plane. Then

p(z, w) = p(z, + w)

and only E [z, w].
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Parallel Disjoint Intersecting

Figure 7.3.1

We end this section with more terminology. First, the points z1, z2,
are collirzear if they lie on a single geodesic. Each geodesic has two end-points,
each on the circle at infinity. It is natural to extend the notation for a segment
so as to include geodesics: thus /3) denotes the geodesic segment with
end-points a and /3 even if these are on the circle at infinity. A ray from z is a
segment [z, a) where a lies on the circle at infinity: each geodesic (a, /3)
through z determines exactly two rays from z, namely [z, a) and [z, /3).

Definition 7.3.3. Let L1 and L2 be distinct geodesics. We say that L1 and
L2 are parallel if and only if they have exactly one end-point in common. If
L1 and L2 have no end-points in common, then they are intersecting when
L1 n L2 0 and disjoint when L1 n L2 = 0.

Warning. This terminology is not standard and the terms are illustrated in
the model A in Figure 7.3.1. Much of the geometry is based on a discussion
of these three mutually exclusive possibilities (parallel, intersecting and
disjoint) and for this reason we prefer a particularly descriptive terminology.

EXERCISE 7.3

1. Let w u + iv, w' = iv and z = ri be points in H2. Prove that

p(w, z) � p(w', z)

with equality if and only if w = w'. Deduce Theorem 7.3.2.

§7.4. The Isometries

The objective here is to identify all isometries of the hyperbolic plane. Let
z, w and be distinct points in H2 with between z and w. It is an immediate
consequence of Theorem 7.3.2 that for any isometry the point

4 maps the segment [z, w] onto the segment
çb(w)3: because of this, q5 maps h-lines to h-lines.
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Given any isometry there is an isometry

az + b
g(z) = (ad — bc > 0),

cz + d

such that leaves the positive imaginary axis L invariant (simply choose g
to map çb(L) to L). By applying the isometries z kz (k > 0) and z 1/z
as necessary, we may assume that gq5 fixes i and leaves invariant the rays
(i, (0, i). It is now an immediate consequence of (7.2.3) that fixes
each point of L.

Now select any z in H2 and write

z=x+iy, g4(z)=u+iv.
For all positive t,

p(z, it) =
= p(u + iv, it)

and so, by Theorem 7.2.1(iii),

[x2 + (y — t)2]v = [u2 + (v — t)2]y.

As this holds for all positive t we have y = v and x2 = u2: thus

= z or

A straightforward continuity argument (isomeiries are necessarily continu-
ous) shows that one of these equations holds for all z in H2: for example, the
set of z in the open first quadrant with = z is both open and closed in
that quadrant. This proves the next result.

Theorem 7.4.1. The group of isometries of (H2, p) is precisely the group of
maps of the form

az+b
, —cz+d c(—z)+d

where a, b, c and d are real and ad — bc > 0. Further, the group of isometries
is generated by reflections in h-lines.

A similar development holds for the model here, the isometries are

ZF—* _, ZF—*
cz+a cz+a

where al2 — cl2 = 1.
Note that if

az+ë
2 2g(z) = — al — cj = 1,

cz + a
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then from (7.2.4) we obtain the useful expressions

ci = sinh 4p(O, gO), (7.4.1)

a = cosh gO) (7.4.2)

and so (see Section 4.2) we find again that

ugh2 = 2 cosh p(O, gO).

Of course, if h is an isometry of (JJ2, p) then

2 cosh p(i, hi):

the proof is by an elementary computation using Theorem 7.2.1(u) (or by
Theorem 4.2.1).

EXERCISE 7.4

1. 1,2, =
for each j if and only if for all i and j,

= p(w1, wi).

§7.5. Convex Sets

A subset E of the hyperbolic plane is said to be convex if and only if for each
z and w in E, we have [z, w] E. The following facts regarding convexity are
easily verified.

(1) If E is convex, then so is g(E) for every isometry g.
(2) If E is convex, then so are E° (the interior of E) and E.
(3) If E1, E2, . . . are convex andE1 c E2 ...,then U is convex.
(4) If each is convex, then so is fl

By definition, a geodesic is convex. The mapping iy —* log y is a borneo-
morphism of the hyperbolic geodesic {iy: y > O} onto the Euclidean geodesic
{x + iy: y = O} which preserves the relation "between". We deduce that
the segments are the only convex subsets of a hyperbolic geodesic.

An open half-plane is a component of the complement of a geodesic
and any open half-plane is convex. As an illustration of the use of the Klein
model, let F: A -+ A be the map described in Section 7.1. This maps the
geodesics of the Poincaré model (A, p) onto Euclidean segments in A and so
a subset E of A is convex in the Poincaré model if and only if F(E) is convex
in the Euclidean sense. In particular, a half-plane in the Poincaré model maps
onto the intersection of A with a Euclidean half-plane and this is indeed convex
in the Euclidean sense. In this way, the Klein model enables us to refer
hyperbolic convexity to the more familiar context of Euclidean convexity.
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By (2), a closed half-plane is convex. If e A) is now any family of
half-planes (open or closed), then the complement of U is the intersection
of half-planes and so is convex. For example, a hyperbolic disc D is convex
for it is the complement of a union of (shaded) half-planes as in Figure 7.5.1.

There are two other examples of a similar nature which we shall use later.
A horocyclic region is the interior of a Euclidean circle which is tangent to the
circle at infinity. By taking the model H2 and as the point of tangency,
we may assume that the horocyclic region is + iy: y > t}. This region is
convex for it is complement of the union of all half-planes of the form

E 112: I z — x0 � t} as x0 varies over the real line. For future reference, a
horocycle is the boundary of a horocyclic region.

A hypercyclic region is any region which is isometrically congruent to a
region of the form

{zEH2: arg(z) — it/21 <O}

for some 0 in (0, ir/2). The significance of this will appear later, however such
a region in convex for it is the complement of the union of half-planes of the
form

{z E 112: Iz — xoI � x01 cos 0} (x0 real).

The boundary of a hypercyclic region is called a hypercycle.
We end with a characterization of closed convex sets. A set E is locally

convex if and only if each z in E has an open neighbourhood N such that
E N is convex. The notions of convexity and local convexity are meaningful
in both Euclidean and hyperbolic spaces and they extend in the obvious way
to the closed hyperbolic plane.

Figure 7.5.1
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Theorem 7.5.1. Let P be the Euclidean plane or the closed hyperbolic plane. A
closed subset E ofF is convex and only it is connected and locally convex.

PROOF. If the result is true when P is the Euclidean plane, the relationship
between the Poincaré and Klein models shows that the result is also true
when P is the closed hyperbolic plane. Thus it is only necessary to show that
if E is a closed, connected, locally convex subset of then E is convex (the
reverse implication is trivial).

We say two points in E are polygonally connected if they can be joined
by a polygonal arc lying in E. This is an equivalence relation and the local
convexity of E implies that the equivalence classes are relatively open in E.
As E is connected, there is only one equivalence class so any two points of E
can be joined by a polygonal curve in E. Because of this it is sufficient to
prove that if the Euclidean segments [u, v], [v, w] lie in E then so does the
segment [u, w]. If u, v, w are collinear then this is trivial: thus we assume that
these points are not collinear.

For each a, b, c let T(a, b, c) denote the closed triangle with vertices
a, b, c (by this, we mean the convex hull of the points a, b, c). Now let K be
the set of x in [v, u] with the property that for some y in (v, w) we have
T(v, x, y) c E. As E is locally convex at v, K contains some interval of positive
length. Clearly, K is an interval of the form [v, x0) or [v, x0] where x0 v
and we shall now show that K = [v, u].

Choose a neighbourhood N of x0 such that E n N is convex and then
choose x1 in [v, x0) tTh N and x2 in [x0, uJ N: see Figure 7.5.2.

As x1 e K, there is some Yi in (v, w) with

T(v, Xi, Yi) C E.

Choose z in N (x1, yi): as E N is convex we have

Figure 7.5.2

U

T(z, x1, x2) C E.

w

Y2

V
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With Y2 as in Figure 7.5.2 we also have

T(v, x2, Yz) c T(v, x1, Yi) T(x1, x2, z)

E,

so x2 E K. This shows that x0 E K and = u so K = [v, u], Note that as
e K, there is some y in (v, w) with T(v, u, y) c E.
Now consider the set K1 of y in [v, w] such that T(v, u, y) c E. Exactly

as before, K1 is some segment [v, Ye) or [v, ye]. As E is closed, we see that
K1 = [V, Ye]. The argument in the preceding paragraph (with u, a, w replaced
by u, Ye' w) shows that = w sow E K1 and

T(v, u, w) E.

EXERCISE 7.5

1. Let z, z', w, w' be points in H2. Prove that if we [z, z] then

p(w, w') � max{p(w, :), p(w', z)}.

Deduce (analytically) that a hyperbolic disc is convex.

2. Construct a subset E of H2 which is connected and locally convex but not convex
(see Theorem 7.5.1).

3. Show that exactly one of the sets

{x + iy a H2: o < x <b, y < c},

{x + iyeH2:a <x > c}

is convex.

§7.6. Angles

Our attitude to angles in the hyperbolic plane is consistent with the policy
outlined in Section 7.1, namely we describe the angles of hyperbolic geometry
in terms of Euclidean geometry. In hyperbolic geometry, an angle at a point z
is an unordered pair of rays (L, L') from z. Let (L, L') be an angle at z and
suppose for the moment that L and L' are not on the same geodesic. The ray
L determines a geodesic, say L*, and L' — {z} does not meet L*. It follows
that L' — {z} lies in one of the open half-planes say Z', complementary to
L*. Similarly, L {z} lies in one of the half-planes, say complementary
to L'. We now define the interior of the angle (L, L') to be E'. It is easy to
see that the interior of (L, L') is one component of the complement of
L u L': the other component is called the exterior of (L, L').

If L and L' lie on the same geodesic then either L u L' is a geodesic (and
there is no canonical choice of interior or exterior) or L = L' in which case
we define the interior to be empty and the exterior to be the complement of L.
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Given an angle (L, L') at z with L and L' defining different geodesics, the
interior of(L, L') is convex as it is the intersection of half-planes. To comple-
ment this, the exterior cannot be convex for otherwise a segment joining points
on L — {z} and L' — {z} would lie in both the interior and the exterior of
(L, L'). Of course, we can measure the interior and exterior angles at z in

the usual way and the measurements lie in [0, it) and (it, 2irJ, respectively.

§7.7. Triangles

Let z1, 22 and z3 be three non-collinear points in the hyperbolic plane and
let L2 and L3 be the rays from z1 through z2 and z3 respectively. Then
(L2, L3) is an angle at z1: we denote its interior by A1. In a similar way, A2
and A3 are the interiors of angles at z2 and z3. This notation will readily be
absorbed by a glance at Figure 7.7.1. Note that by convexity, (z2, z3) A1

(see Section 7.6).

Definition 7.7.1. The triangle T(z1, z2, z3) is A1 n A2 n A3.

The are the vertices, the [z1, are the sides and the A1 are the angles
of T(z1, z2, z3). Each angle of T(z1, z2, z3), being an interior angle, is less
than it. For brevity, we write T for T(z1, z2, z3). Observe that as each
is convex, so is T. Moreover, the are also the angles of Tin the sense that
for any sufficiently small open disc D with centre, say, z1, we have

D n T = D C\ A1.

To see this, let be the half-plane containing and having the other two z1
on its boundary. Then (if D H1)

DnA1 =(DnH1)n(H2nH3)
= Dn(H2nH3)n(H3nH1)n(H1nH2)

Figure 7.7.1

= Dn T.

L3

L2
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Next, define 3T by

= [z1, z2] [z2, 23] U [23, zr]:

this may be parametrized as a Jordan curve with interior, say T0. As
c H1, so T0 H1. The same argument holds for H2 and H3 so

T0 H1 n H2 H3 = T.

As T is connected (in fact, convex) and does not meet it lies inside or
outside However, Tmeets T0 so T c T0 and hence T = T0.

In an axiomatic treatment, it is sometimes necessary to take as an axiom
the fact that a ray L from Zi through a point w in T(z1, 22, 23) necessarily
meets the side (22, 23). In our case, we observe that the (connected) segment
L — meets the interior of äT(at w) and cannot meet the sides [21,22]
or [z1, 23]. As L — {z1} is unbounded, its closure meets the circle at infinity
and so must meet ÔT.

The next result is used frequently in deriving trigonometric formulae (and
so must be proved independently of these formulae).

Theorem 7.7.2. Let L be the geodesic containing the longest side, say [z2, z3],
of T Then the geodesic L1 through z1 and orthogonal to L meets L at a point
win [z2, z3].

PROOF. We may assume that L is the positive imaginary axis sow = iIz1I:
see Figure 7.7.2.

It is easy to see that

22) � p(w, 22)

and similarly

p(z1, z3) � p(w, z3),

zi

Figure 7.7.2
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(see Section 7.20 which does not use trigonometry). As [z2, z3] is the longest
side we deduce that

w), p(z3, w)} � p(z2, z3).

The points z2, z3, w are collinear and one must lie between the other two.
Using Theorem 7.3.2, we see that w must lie between z2 and z3 (or be equal
to one of them).

Most of the material in this section extends without difficulty to the case
when some (or all) of the vertices lie on the circle at infinity. The notable
exception to this is Theorem 7.7.2 (consider z2 but not z3 on the circle at
infinity).

EXERCISE 7.7

1. Show that in hyperbolic geometry, the vertices of a triangle may, but need not, lie

on a circle.

2. Prove that the diameter of a triangle 7 namely

sup(p(z, n'): z, we T},

is the length of the longest side (see Exercise 7.5.1).

§7.8. Notation

In the next six sections we shall be concerned with hyperbolic triangles and
it is convenient to adopt a standard notation which allows us to express
trigonometric relations easily. A triangle T will have vertices labelled v0,
and the sides opposite these vertices will have lengths a, b and c respec-
tively and the interior angles at the vertices will be /3 and y. This notation
will readily be absorbed by a glance at Figure 7.8.1. As isometries preserve
length and angles, trigonometric formulae remain invariant under isometries.

Vg

b

a
uc

Figure 7.8.1
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We shall allow some or all of the vertices of a triangle to be on the circle
at infinity. If, for example, is at infinity, then

b=c=+co.
If two vertices are on the circle at infinity, then all three sides have infinite
length.

ExERcIsE 7.8

1. Let T1 and T2 be two triangles, each with all sides of infinite length. Show that there
is an isometry mapping T1 onto T2.

§7.9. The Angle of Parallelism

The Angle of Parallelism is the classical term for the trigonometric relation
which holds for a triangle with angles 0, it/2: in this case, there are only two
parameters, namely and b.

Theorem 7.9.1. Let The a triangle with angles 0, ir/2 0). Then

(i)

sin = 1;

b sec = 1.

PROOF. We work in H2 and we may assume that

VC=j, Va = X + jy,

where x2 + y2 = 1: see Figure 7.9.1. As y = sin Theorem 7.2.1(u) yields
(ii). The remaining formulae are equivalent to (ii). E

"I/
/

I / I

I / I

I
/

/I, I

I I

Figure 7.9.1

x + jy
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§7. 10. Triangles with a Vertex at Infinity

Consider a triangle with angles /3, 0 where and /3 are non-zero: then

O<c<+cc
and we shall determine the relationship between /3 and c.

Theorem 7.10.1. For any triangle with angles /3, 0 we have

1 + cos cos /3
(i) coshc=—-

sin sin /3

c
sin sin /3

PRoof. We work in H2 with = We may assume that v0 and Ub lie on the

circle 121 = 1, say with

Va = exp(iO), Vb =

where0 <0< <n.Thusz = O,f3 = —

7.2.1 as

cosh c = cosh Vb).

The verification of (ii) is left to the reader. 0

§7.11. Right-angled Triangles

We now consider a triangle with angles /3, 2t/2. By applying a suitable
isometry we may assume that

Vbki,
where k > I and sand tare positive with s2 + t2 = 1: see Figure 7.11.1.

We begin with the relationship between the three sides: this is the hyper-
bolic form of Pythagoras' Theorem.

Theorem 7.11.1. For any triangle with angles /3, it/2 we have

cosh c = cosh a cosh b. (7.11.1)

PROOF. Using Theorem 7.2.1(u) we have

cosh c = (1 + k2)/2kt;

cosh b = l/t;

cosha = (1 + k2)/2k. 0 (7.11.2)
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Note that we also obtain

Vb = ki I

0

Figure 7.11.1

tanh b = s.

+ it = V0

Next, we seek relations between two sides and one angle.

Theorem 7.11.2. For any triangle with angles /3, it/2 we have

(i) tanh b = sinh a tan /3;
(ii) sinh b = sinh c sin /3;

(iii) tanh a = tanh c cos /3.

(7.11.3)

Paoor. Let the geodesic through va and Vb have Euclidean centre x0. Then by
equating the distances from Va and Vb to x0 we see that

k2 = 1 — 2x0s.

This shows that x0 < 0. The Euclidean triangle with vertices x0, 0 and ki
has angle /3 at x0. Thus

tan/3 =
= 2sk/(k2 — 1)

and this gives (i) because of (7.11.2) and (7.11.3).
Elimination of a from (i) and (7.11.1) yields (ii): elimination of b from (i)

and (ii) yields (iii).

We end with the relations between one side and two angles.

Theorem 7.11.3. For any triangle with angles /3, it/2:

Ci) cosh a sin /3 = cos

c = cot cot /3.

/

/
=

/
/

xo
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PROOF. Theorem 7.11.2(i) gives

sinh a tan [3 = tanh b,

sinh b tan = tanh a

and elimination of b gives (i).
To prove (ii), simply eliminate cosh a and cosh b from (7.11.1), Theorem

7.11.3(i) and the corresponding identity with a and interchanged with b
andfl.

§7.12. The Sine and Cosine Rules

We now consider the general hyperbolic triangle with sides a, b and c and
opposite angles cc [3 and y. We assume that cc, /3 and y are positive (so a, b
and c are finite) and we prove the following results,

The Sine Rule:

sinh a — sinh b — sinh c

sincc — sin/I

The Cosine Rule I:

cosh c = cosh a cosh b — sinh a sinh b cos y.

The Cosine Rule H:

cos cc cos /3 + cos ycoshc=
sin cc sin 13

Note the existence of the second Cosine Rule. This has no analogue in
Euclidean geometry: in hyperbolic geometry it implies that two triangles
have the same angles, then there is an isometry mapping one triangle onto the
other.

PROOF OF THE COSINE RULE I. We shall use the model A and we may assume
that = 0 and v0 > 0: See Figure 7.12.1.

Note that

= tanh Va)

= tanh(+b) (7.12.1)

and similarly,

Vb = tanh(4a). (7.12.2)
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From (7.2.4) we have

cosh c = 2 Vb)] + 1

— 2IVa — Vb!2
1

- (1 - — IVbI) +

The Euclidean Cosine Rule gives Va — VbI in terms of IVbI and cos y
and using (7.12.1) and (7.12.2), the required result follows by straightforward
simplification. E

PROOF OF THE SINE RULE. Using the Cosine Rule I we obtain

(sinh c\2 sinh2 c

sin y) = (Gosh a cosh b — cosh

sinhasinhb )
The Sine Rule will be valid provided that this is symmetric in a, b and c and
this will be so if

(sinh a sinh b)2 — (cosh a cosh b — cosh c)2

is symmetric. After writing sinh2 in terms of cash2, we find that this is so.
U

PROOF OF THE COSINE RULE II. For brevity, we shall write A for cosh a and
similarly for B and C. The Cosine Rule I yields

(AB — C)

= (A2 — — 1)1/2

A

Vb

A\

a

Ov Lv
b

Figure 7.12.1
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and so

D
sin

— (A2 — 1)(B2 1)'

where

D= 1 +2ABC—(A2+B2+C2)

is symmetric in A, B and C. The expression for sin2 y shows that D � 0.
Now observe that if we multiply both numerator and denominator of

cos a cos fi + cos -y

sin a sin fi

by the positive value of

(A2 — 1)"2(B2 — 1)"2(C2 — 1),

we obtain

cos a cos J3 -4-- cos y [(BC — A)(CA — B) + (AB — C)(C2 — 1)]

sinasinf3 D

= C.

EXERCISE 7.12

1. For a general triangle, prove that a � b � c if and only if a � /3 � y. [Use the Sine
Rule and the Corollary of Theorem 7.13.1.]

2. Show that a triangle is an equilateral triangle if and only if a = /3 = y and that in
this case,

2 = 1.

3. Show that for a general triangle, the angle bisector at contains the mid-point of
[vb, if and only if b c (Isosceles triangles).

4. Prove that there exists an isometry mapping a triangle T1 onto a triangle T2 if and
only if T1 and T2 have the same angles (or sides of the same lengths).

§7.13. The Area of a Triangle

Theorem 7.13.1. For any triangle Twith angles cz, f3 andy,

h-area(T) = it — (a + /3 + y).

Corollary. The angle sum of a hyperbolic triangle is less than it.
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H
Figure 7.13.1

PROOF. Assume first that y = 0. We may assume that = and that Va
andvblieon Izi = 1. ReferringtoFigure7.13.1 wefindthat

(.COSP d 1
h-area(T)

f
dx

LJu_x2)h/2 J

= iv — + /3),

which is the desired result when = 0. In general, any triangle is the difference
of two such triangles (continue the ray from Va through to w on the circle
at infinity and consider T(Va, Vb, w)) and the general case follows easily. E

§7.14. The Inscribed Circle

This is the last section on hyperbolic trigonometry and we leave the reader
to provide most of the details.

Theorem 7.14.1. The three angle bisectors of a triangle Tmeet at a point C in T.

PROOF. We may assume that y is the smallest angle so y < iv/2. Now construct
angle bisectors at Va and Vb: these must meet at a point C in T(see Section 7.7).
Next, define and Y2 as in Figure 7.14.1. As /3/2, and Y2 are each less
than it/2, we can construct points Wa, Wb and as in Figure 7.14.1 (and these
points must lie on the open sides of T).

The Sine Rule applied to the two triangles with side Vb] gives

= p(C, we).

The same result holds with Wb instead of wa so the points Wa, and lie

on a circle with centre C. Moreover, elementary trigonometry now shows that

=
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Va

The circle centre passing through wa, Wb and is called the inscribed
circle of T.

Theorem 7.14.2. The radius R of the inscribed circle of T is given by

2 cos2cc+cos2fl+cos2y+2coscccosficosy-- 1

tanh R=
2(1 + cos cc)(1 + cos fl)(1 + cos y)

PROOF. Let x = p(Va, and y = Vb). Then

coscccosfl+cosy
= cosh x cosh y + sinh x sinh y

sin cc sin /3

so

[(cos cc cos $ + cos y) — (sin cc sinh x)(Sin /3 sinh y)]2

= [(1 — cos2 cc) + sin2 cc sinh2 x] [(1 — cos2 /3) + sin2 /3 sinh2 y].

The identity

together with the relation

sin 0 = (1 + cos 8) tan(0/2)

yields

tanh R = sinh x tan(cc/2)

sin a sinh x = (1 + cos cc) tanh R.

A similar expression holds for /3, y and R and substitution yields (after some
simplification) the desired result. El

The next example is of interest.

Vb

Wg

Vc

Figure 7.14.1
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Example 7.14.3. For each in (0, it) we can construct a triangle T with
angles 0, 0. Then

4 R = + cos
=
=

In Euclidean geometry, a triangle may have a large area but a small
inscribed circle. The next result shows that the situation in hyperbolic
geometry is quite different: for a proof of this, see [10].

Theorem 7.14.4. The radius R of the inscribed circle of T satisfies

tanh R �

and this lower bound is best possible for each value of h-area(T).

Example 7.14.3 shows that this lower bound is best possible.

§7.15. The Area of a Polygon

A polygon P is the interior of a closed Jordan curve

[z1, z2] u [z2, z3] u u [zn, z1].

The interior angle of the polygon at is the angle determined by D n P
for all sufficiently small discs D centered at Note that this is not neces-
sarily the interior of the angle determined by the two sides of P leaving
it is this interior angle if and only if 0 < < it. We allow the vertices to lie
on the circle at infinity: if is such an infinite vertex, then = 0.

Theorem 7.15.1. If P is any polygon with interior angles . .. , then

h-area(P) = (n — 2)rr — -I- + On).

PROOF. This has been proved for the case n = 3 (Section 7.13) and from this
it follows for convex polygons by subdivision of P into n — 2 triangles (the
details are omitted). It is worth noting explicitly that Theorem 15.1 applies
to all polygons whether convex or not.

The proof for non-convex polygons is also by subdivision into triangles:
the subdivision is less tractable but we can compensate for this by using
Euler's formula. We begin by extending each side of P to a complete geodesic.
This provides a subdivision of the entire hyperbolic plane into a finite
number of non-overlapping convex polygons (convex as each is the inter-
section of half-planes).
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We now consider only those polygons P1 of the subdivision which lie in
the original polygon P. By convexity, each P1 can be subdivided into triangles.
We have now subdivided P into non-overlapping triangles such that each
vertex of P is a vertex of some i and each side of a is either a side of some
other or is part of a side of P (and not of any other

Let this triangulation of P have N triangles, E edges, V vertices and let
there be E0 edges which lie in the sides of P. Euler's formula for the sphere
yields

(N + 1) — E + V = 2.

As each of the N triangles has three sides we count sides in different ways
and obtain

3N = E0 + 2(E — E0).

Elimination of E now gives

N — 2V + E0 = —2. (7.15.1)

We can now compute areas. Of the V vertices in the subdivision, n occur
as vertices of P, E0 — n occur at points lying interior to a side ofF and V — E0

occur inside P. Thus

area(P)
=

= (n — — + ... +

by virtue of (7.15.1).

Remark. For a Euclidean polygon, of course, we have

§7.16. Convex Polygons

We establish two results concerning convex polygons. The first is a necessary
and sufficient condition for a polygon to be convex: the second establishes
the existence of convex polygons with prescribed angles.

Theorem 7.16.1. Let P be a polygon with interior angles 01, ..., Then P
is convex and only each satisfies 0 � � it.
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This is an immediate consequence of Theorem 7.5.1 Observe that Theorem
7.15.1 shows that a necessary condition for the existence of a polygon with
interior angles . . . , 8,, is

01+..+B,,<(n—2)ir.

In fact, for convex polygons (and possibly for all polygons) this is also
sufficient.

Theorem 7.16.2. Let 0,, be any ordered n-tu pie with 0 � < it,
j = 1, .. ., ii. Then there exists a polygon P with interior angles 0k,. 0,,,

occurring in this order around ÔP, and only if

(7.16.1)

In fact, we shall construct a polygon P with these angles and with an
inscribed disc touching all sides of P.

PROOF. Given . . ., 0,, satisfying (7.16.1) and each lying in [0, it), construct
quadrilaterals Q1,..., Q,, each with one vertex at the origin in as in

Figure 7.16.1. The length d can take any positive value and is to be determined
later: note that Q3 is determined (to within a rotation about the origin) by d
and It is clear that we can construct the desired polygon P as the union of
non-overlapping Q1 provided that

0

Figure 7.16.1

(7.16.2)= it.

d
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Now (Theorem 7.11.3)

cos(U./2)

coshd
(7.16.3)

and so it is appropriate to examine the function

g(t)
=

sin- 1
(cos(&i12))

where t � 0 and where sin 1 takes values in [0, iz/2].
Clearly, g is continuous and decreasing and g(t) -+ 0 as t —+ + Also,

g(0)
=

= — (01 + ... + Or)]

>Tt

because of (7.16.1). The Intermediate Value Theorem guarantees the existence
of a positive d with g(d) = it and with defined by (7.16.3), we see that (7.16.2)
holds.

As an application of Theorem 7.16.2, observe that there exists a polygon
with n sides and all interior angles equal to ir/2 and only � 5.

§7.17. Quadrilaterals

It is a direct consequence of Theorem 7.16.2 that there exist quadrilaterals
with angles it/2, it/2, ir/2, 4) if and only if 0 � 4> < ,t/2: such a quadrilateral
is illustrated in Figure 7.17.1. This quadrilateral is known as a Lainbert
quadrilateral (after J. H. Lambert, 1728-1777). If we reflect across one side
we obtain a quadrilateral with angles 11/2, it/2, 4>, 4>: this quadrilateral
(illustrated in Figure 7.17.2) was used by G. Saccheri (1667—1733) in his
study of the parallel postulate and is known as the Saccheri quadrilateral.

The next theorem refers to Figure 7.17.1.

a1

Figure 7.17.1

a2
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Theorem 7.17.1. (i) sinh a1 sinh a2 = cos
(ii) cosh a1 = cosh b1 sin

The proof depends on two useful preliminary results.

Lenuna 7.17.2. Let L be a hyperbolic geodesic in A with Euclidean centre
and radius r and let w be the point on L which is nearest to the origin. Then

sinh p(O, w) 1/r, coshp(O,w) =

PROOF. Clearly, I = w + r and orthogonality gives 1 + r2. Using
(7.2.4) we obtain sinh

p(O, w)
1 — 1w12 r

The value for cosh follows immediately.

Lemma 7.17.3. Let L and L' be geodesics in the hyperbolic plane. Then the
inversive product (L, L') is

cosh p(L, L'), 1, cos

according as L and are disjoint, parallel or intersecting at an angle where
o � q5 � ir/2.

PROOF. It is not difficult to see that disjoint geodesics have a common orthog-
onal geodesic (see Section 7.22) and (for the moment) p(L, L') is defined to
be the length of this orthogonal segment between L and L'. By the usual
invariance arguments we need only consider the cases

(i) L, L' are in H2 and are given by Izi = r, Izl = R;
(ii) L, L' are in H2 and are given by x = 0, x =

(iii) L, L' are Euclidean diameters of A.

b1

Figure 7.17.2
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In all these cases, the formula for (L, L') given in Section 3.2 yields the
desired result.

PROOF OF THEOREM 7.17.1. We may suppose that the quadrilateral in Figure
7.17.1 has the sides a1 and a2 lying on the positive real and imaginary axes.
Suppose that the sides labelled b1 and b2 lie on the circles

z—ivl=R, z—uI=r,

respectively, where u, v, r and R are positive. Then by Lemma 7.17.2,

sinh a1 sinh a2 = l/rR.

Lemma 7.17.3 implies that

(L, L') =cos

and from Section 3.2 we have

(L,L') = + R2—ju —

— r2 + R2 — u2 —

2rR

= 1/rR

because, for example, u2 = 1 + r2.
To prove (ii) we relocate the polygon so that the vertex with angle

is at the origin and the side labelled b2 is on the positive real axis: see Figure
7.17.3.

Now reflect the quadrilateral in the real axis: let L be the geodesic con-
taining the side labelled a2 and let L' be its reflection in the real axis. By
Lemma 7.17.3 we have

(L, L') = cosh(2a1). (7.17.1)

Figure 7.17.3
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If L (viewed) as a Euclidean circle) has centre det" and radius r, then L'
has centre de and radius r and clearly,

Thus

— > 2r.

— — 2r2I
(L, L')

= 2r2

— 2d2 sin2 — r2

r2

= 2 cosh2 b1 sin2 c/ — 1

by virtue of Lemma 7.17.2. This with (7.17.1) yields (ii).

EXERaSE 7.17

I. Derive Lemma 7.17.2 directly from Theorem 7.9.1 (Lemma 7.17.2 is simply a re-
statement of the Angle of Parallelism formula).

§7.18. Pentagons

We shall examine the metric relationships which exist for the pentagon
illustrated in Figure 7.18.1 where 0 � < it.

Theorem 7.18.1. (i) cosh a cosh c + cos 4, =sinh a cosh b sinh c.
(ii) If 4, = n/2 then

tanh a cosh b tanh c = 1,

sinh a sinh b = cosh d.

(7.18.1)

(7.18.2)

PROOF. It is easy to see that there is a geodesic through the vertex with angle
4, which meets and is orthogonal to the side of length b. Let b1 and b2 be the

Figure 7.18.1

b
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lengths as illustrated and let 4)2 be the subdivision of 4); being on the
same side of this geodesic as the side of length b1. By Theorem 7.17.1, we have

cosh a = cosh h sin

cosh c = cosh h sin 4)2,

sinh asinh b1 = cos

sinh c sinh b2 = cos 4)2.
It follows that

(cosh a cosh c — sin sin 4)2)2

= (cosh a cosh c — sin sin 4)2)2 — (cosh a sin 4)2 — cosh c sin 4)i)2

= (cosh2 a — sin2 4)1)(cosh2 c — sin2 4)2)

(sinh2 a + cos2 4)1)(sinh2 c + cos2 4)2)
= (sinh2 a cosh2 b1)(sinh2 c cosh2 b2)

and so, taking positive square roots,

cosh a cosh c — sin sin 4)2 = sinh a sinh c cosh b1 cosh b2.

This leads directly to (i) as

cosh a cosh c + cos 4) = cosh a cosh C — sin + COS

= sinh a sinh c (cosh b1 cosh b2 + sinh b1 sinh b2)
sinh a sinh c cosh b.

Putting 4) = it/2 in (i), we obtain (7.18.1). To prove (7.18.2), we apply
(7.18.1) to the triple b, c, d and eliminate c from the resulting expression and
(7.18.1).

§7.19. Hexagons

We shall only consider the right-angled hexagon illustrated in Figure 7.19.1.
If we join the end-points of the sides labelled a1 and b1 to form a quadrilateral

Q, we find that each interior angle of Q is less than ir/2. This implies that the
sides labelled a1 and b1 have a common orthogonal of length, say t, as
illustrated.

Theorem 7.19.1.
sinh a1 — sinh a2 — sinh a3

sinh b1 — sinh b2 — sinh b3

PROOF. From Theorem 7.18.1 we obtain

sinh b2 sinh a3 = cosh t = sinh a2 sinh b3

and the result follows by symmetry considerations.
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Theorem 7.19.2.

cosh b1 sinh a2 sinh a3 = cosh a1 + cosh a2 cosh a3

PROOF. From Theorem 7.18.1 we obtain the identities

sinh x sinh a2 = cosh u;

sinh y sinh a3 = cosh v;

sinh u sinh t = cosh a2;

sinh v sinh t = cosh a3.

Next, we obtain the identity

(cosh2 a2 + sinh2 u)(cosh2 a3 + sinh2 v)
= (cosh a2 cosh a3 + sinh u sinh v)2

by expressing both sides as functions of u, a and t. Thus

cosh b1 sinh a2 sinh a3

= (cosh x cosh y + sinh x sinh y)sinh a2 sinh a3
= cosh x cosh y sinh a2 sinh a3 + cosh u cosh v
= (cosh x sinh a2)(cosh y sinh a3) + cosh u cosh v
= (sinh2 a2 + cosh2 u)112(sinh2 a3 + cosh2 v

= (cosh2 a2 + sinh2 u)112(cosh2 a3 + sinh2 v)'12 + cosh u cosh v
= cosh a2 cosh a3 + sinh u sinh v + cosh u cosh v. EJ

Remark. Theorem 7.19.2 shows that the lengths of all sides of the hexagon
are determined by the lengths a,, a2 and a3.

Figure 7.19.1
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§7.20. The Distance of a Point from a Line

For each point z and each geodesic L, define

p(z, L) = inf{p(z, w): we L}.

There is a unique geodesic L1 through z and orthogonal to L and p(z, L)
is the distance from z to L measured along L1.

We work in H2 and we may assume that L is the positive imaginary axis.
Then

L1 = = zI}

and we are asserting that
p(z, L) = p(z, iIzI). (7.20.1)

Each point on L is of the form it (t > 0) and from Theorem 7.2.1,

x2 + y2 + t2
cosh p(z, it)

= 2
(z = x + iy)

t
= —I— + —2y\t Izi

� (7.20.2)
y

As equality holds here if and only if t = IzL this verifies (7.20.1).
With 8 as in Figure 7,20.1, we can use (7.20.2) and

cosh p(z, L) = 1/cos 0;

sinh p(z, L) = tan 0; (7.20.3)

tanh p(z, L) = sin 8.

L

iIzI

0 x
Figure 7.20.1
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As an application of these formulae, note that the regions

{zEH2: p(z,L) <k} (k > 0)

are precisely the hypercyclic regions described in Section 7.5.

We can also obtain a formula for p(z, L) when L is the Euclidean semi-
circle {w: wi = r} in H2: see Figure 7.20.2.

Suppose first that I z < r. With 0 as in Figure 7.20.2, the Euclidean circle
through z, r and — r has centre — ir(tan and radius r/cos 0. Thus

and so

Jz + ir(tan 8)12 = r2/cos2 U

r2 — 1z12
tan 0 =

2yr
(z = x + iy).

1z12 —
sinh p(z, L) =

2yr

Figure 7.20.2

A similar formula holds for z1 when Izi I > r with izi 2 — r2 replacing
r2 — Thus if L is given by wi = r we obtain from (7.20.3),

(7.20.4)

We shall also need a formula for the model when L is the real diameter
(—1, 1) of In this case we show that for all w in

sinh p(w, L) = (7.20.5)

First, there is a unique geodesic L' through w and orthogonal to L. Let L
and L' meet at then there is an isometry g of A which fixes — 1 and 1, which
maps to 0 and which leaves L invariant. Now g maps V to the segment
(— i, i) and so g(w) = it for some real t. The relationship between w and t is
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best found by noting that as g preserves both differentials IdzI/y and

— 1z12) we have

— Im(w)
1 — I —

On the other hand,

p(w, L) = p(w,

= p(it,0)

/1 +
=

—

and this gives (7,20.5).

EXERCISE 7.20

1 Let L be the geodesic (— e°, in Find an explicit formula for sinh p(z, L), z E ii

§7.21. The Perpendicular Bisector of a Segment

Let z1 and z2 be distinct points and let w be the mid-point of Izj, z2]. We
shall prove that

{z: p(z, z1) = p(z, z2)}

is the unique geodesic through w and orthogonal to [z1, z2]: this is the perpen-
dicular bisector of [z1, z2].

We work in H2 and assume that z1 = I and z2 = r2i where r> 1: thus
w = ri. From Theorem 7.2.1,

cosh p(z, z1) = cosh p(z, z2)

if and only if

I
z — z112 — — z2j2

y — r2y

and this simplifies to z = r.

In the model the direct isometries are of the form

az+ë 2 2g(z) = —, aj — cl = 1.
cz + a
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Using (7.2.4) we find that z is on the perpendicular bisector of [0, gO] if
and only if

1z12 — gOi2

(1 — z12)(1 — 012) (1— —

or, equivalently,

— =

As

Iãz — — Icz = — 1,

we see that the perpendicular bisector of [0, go] is the isometric circle of g

EXERCISE 7.21

1. Showthattheperpendicularbisectorofthetwopointsz, = xj + (j = 1, 2)in H2 is

L = — = — z1j2}.

Deduce that for any z1 and any compact subset K of R2, L n K = 0 when 221 is
sufficiently large.

§7.22. The Common Orthogonal of Disjoint
Geodesics

If L1 and L2 are disjoint geodesics then there exists a unique geodesic which is
orthogonal to both L1 and L2.

The assertion remains invariant under isometries so we may assume that
L1 and L2 are in H2 with equations

x=0, (x—a)2+y2r=r2,

respectively, where a > r > 0. The only geodesics orthogonal to L1 are
those with equations I z = t and such a geodesic is orthogonal to L2 if and
only if a2 = r2 + t2. As a > r there is a unique positive t satisfying this
equation.

EXERCISE 7.22

1. Prove that if two distinct geodesics have a common orthogonal then they are disjoint.
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§7.23. The Distance Between Disjoint Geodesics

For disjoint geodesics L1 and L2 define

p(L1, L2) = inf{p(z, w): z eL1, we L2}.

The distance p(L1, L2) between L1 and L2 is the distance measured along their
common orthogonal.

We work in H2 and assume that the common orthogonal is the positive
imaginary axis. Then L1 and L2 are given by zi = r, z = R, say and the
result follows from (7.20.4) (see also Section 5.4).

There are other convenient expressions for p(L1, L2), for example Lemma
7.17.2. Also, p(L1, L2) can be expressed as a cross-ratio: if L1 has end-points
z1 and 22 and if L2 has end-points w1 and w2, these occurring in the order
Zi, w1, z2 around the circle at infinity, then

[z1, W1, 22] . L2)] = 1. (7.23.1)

EXERCISE 7.23

1. Verify (7.23.1) by working in H2 and taking = 0, = I and :2 =

§7.24. The Angle Between Intersecting Geodesics

The angle 0, 0 < 6 < it, between intersecting geodesics can be expressed
both in terms of the inversive product (Lemma 7.17.2) and the cross-ratio.
If L1 (Zi, z2) and L2 = (w1, w2) with the end-points occurring in the
order z1, w1, z2, w2 around the circle at infinity, then

[z1, w1, z2, w2] sin2(0/2) = 1.

For the proof, use and L1 = (—1, 1), L2 = (e10,

§7.25. The Bisector of Two Geodesics

Let L1 and L2 be distinct geodesics: the bisector of L1 and L2 is

L = {z: p(z, L1) = p(z, L2)}.

We show that L is one or two geodesics.

Case 1: L1 and L2 are parallel.
In this case, take L1 and L2 to be x = a and x = —a in H2. From (7.20.3)
we see thatzis onLifand only if — = x + a,equivalently,x =0.
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Case 2: L1 and L2 are disjoint.
Take L1 and L2 to be = 1 and z is on L if
and only if

(1z12 r4)2 = — 1)2

and this reduces to z = r.

Case 3: L1 and L2 are intersecting.
Take

L1 = (e — j0,
— e

_iO), L2 = — e10)

in A where 0 < U < it/2. Let L' = (—1, 1): then z is on L if and only if

L') = p(z, L1)

= p(z, L2)

= p(e °z, L').

Using (7.20.5) with z = re" this becomes

[sin(U + t)]2 [sin(U —

which gives L as the union of the two geodesics (—1, 1) and (— i, i).

§7.26. Transversals

Let L1 and L2 be disjoint geodesics. A geodesic L is a O-transrersal
(0<0< it/2)ofL1 andL2 ifandonlyifLmeetsbothL1 andL2atanangle
0. As an example of how O-transversals arise naturally consider the isometry
g(z) = kz (k > 0) of H2 and the geodesic L given by x = 0. If L1 is any geodesic
meeting L, the L is a 6-transversal of L1 and g(L1). We need to investigate
the metric relations which exist for O-transversals.

The common orthogonal of L1 and L2 is h the unique ir/2-transversal of
L1 and L2. We shall see that for all other values of 6 there are exactly four
6-transversals. Let L0 be the common orthogonal of L1 and L2 and let L*
be the bisector of L1 and L2. We shall work in A and we assume that

L0 = (— 1, 1), L* = (— i, i).

The situation is then as illustrated in Figure 7.26.1 where the four transversals
are shown, two in each case. We omit the proofs (which are not difficult)
that any 0 in (0, can be attained in this way and that there are no other
O-transversals.

With an obvious reference to Euclidean geometry, we call the 6-transversals
in Case (i) the alternate transversals: those in Case (ii) are the complementary
transversals. Let t0 denote the length of the segment of a 0-transversal which
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7.11.2,

sinh L2) = sin 0:

for complementary transversals, Theorem 7.17.1 yields

EXERCISE 7.26

cosh L2) = 0.

1. For a given 0, are the alternate 0-transversals longer or shorter than the comple-
mentary O-transversals?

2. Let the two alternate £l-transversals meet L1 at z1 and z2: let the complementary
O-transversals meet L1 at w1 and w2. Which of p(z1, z2) and p(w1, w2) is the greater?

§7.27. The General Theory of Pencils

Much of the hyperbolic geometry required for a detailed discussion of
Fuchsian groups is best described in terms of pencils of geodesics. For
example, we see that circles, horocycles and hypercycles are simply varia-
tions of the same idea and this brings a greater unity into the subject. We shall
also see that the classification of pencils leads naturally to the classification
of isometries which is more illuminating than that given in Section 4.3. In
this section we merely describe the notion of a pencil and list its main prop-
erties: the details occur in the next three sections.

Each pair of geodesics, say L and L', lie in a geometrically defined one-
parameter family of geodesics called the pencil determined by L and L'.

Case (i) Figure 7.26.1 Case (ii)

lies between L1 and L2. For alternate transversals we have from Theorem
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Associated with each pencil there is an orthogonal family of curves:
the curves in are not in general geodesics and is called the complementary
family The interest centres on the following joint properties and

P1: each point in the hyperbolic plane lies on exactly one curve in
P2: with possibly one exception, each point in the plane lies on exactly one

geodesic in
P3: every geodesic in is orthogonal to every curve in
P4: Every curve in is invariant under the reflection in any geodesic in
P5: any two curves C1 and C2 in are equidistant: that is, for each z1 on C1

there is some z2 on C2 such that

p(z1, z2) = p(C1, C2),

moreover, z1 and z2 lie on the same geodesic in
P6: two points z and w lie on the same curve in Uand only the perpendicular

bisector of[z, w] is in
P7: the set is precisely the set of geodesics ofeheform

a sinh p(z, L) = b sinh p(z, L')}

for some positive constants a and b.

The pencil determined by L and L' is

(i) parabolic if L and L' are parallel;
(ii) elliptic if L and L' are intersecting;

(iii) hyperbolic if L and L' are disjoint.

We shall examine these pencils in detail in the next three sections.

§7.28. Parabolic Pencils

Let L and L' be parallel geodesics with common end-point w. We define
to be the family of all geodesics with end-point w and to be the family of all
horocycles tangent to the circle at infinity at w (see Section 7.5). We use the
model H2 with w = cc: in this case the geodesics in are the lines x =
constant, the curves in are given by y = constant and P1, P2, P3 and P4
are obvious.

Now consider two horocycles, say y = k and y = K. From Theorem
7.2.1 we obtain

(x—s)2 +(k—K)2
cosh p(x + ik, s + iK) = 1 +

2kK

� cosh p(x + ik, x + iK)

and this established P5.
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The bisector of[z1, z2] = xj + iy3) is given by

= Iz — z212

Yi Y2

and this geodesic ends at if and only if Yi = Y2: this proves P6.

EXERCISE 7.28

1. Verify P7 by showing that ilL and L' are given by x = a and x = a' then

sinhp(u+iv,L) u—a
sirihp(u+iv,L') u—a'•

§7.29. Elliptic Pencils

Let L and L' be geodesics which intersect at the point w in the hyperbolic
plane. We define .9 to be the family of all geodesics through w and to be
the family of all circles

Cr = {z: p(z, w) = r}.

If we use the model A with w = 0, the geodesics in .9 are the Euclidean diam-
eters of A and the circles in are the Euclidean circles with centre at the
origin. It is now clear that P1, P2, P3 and P4 hold, the exceptional point in
P2 being w.

To prove that P5 holds, we assume that z is on and that z' is on
Using (7.2.4) we see that the minimum of p(z, z') is attained precisely when
z — z'

j
attains its minimum: this establishes P5 for this occurs precisely

when z and z' lie on a geodesic in .9. The proof of P6 is trivial as

p(z, w) = p(z', w)

expresses both the fact that z and z' lie on the same as well as the fact that
w lies on the perpendicular bisector of [z, z'].

EXERCISE 7.29

1. Verify P7 (but see Section 7.25, Case 3).

§7.30. Hyperbolic Pencils

Let L and L' be disjoint geodesics with L0 as the common orthogonal
geodesic. We define .9 to be the family of all geodesics which are orthogonal
to L0 and to be the family of all hypercycles (defined in Section 7.5) which
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have the same end-points as L0. As a standard model of this situation, we use
the half-plane H2 and take L0 to be the positive imaginary axis. Then
consists of all geodesics given by I z = constant and consists of all curves
given by arg(z) = constant. It is immediate that P1, P2, P3 P4 hold.

To verify P5, consider the two curves

C1 = {z: arg(z) = 9}, C2 = {z: arg(z) = c6}

in From Theorem 7.2.1 we obtain

—

sin sin

= 1

4sinOsIn4[r t

and this is minimal precisely when t = r. This proves PS.
Now consider two points = + ivj: the perpendicular bisector of

[w1, w2] has equation

I
z — w112 = Iz — w212

Vj V2

or, equivalently,

(v2 — v1)Iz12 — 2x(u1v2 — u2v1) = constant.

This geodesic is in if and only if u1v2 = u2v1, that is, if and only if w1 and
w2 lie on the same curve in this proves P6.

EXERCISE 7.30

1. Verify P7.

2. Let be any pencil (not necessarily hyperbolic). Show that no three distinct points
on any curve in are collinear.

3. Prove that the three perpendicular bisectors of the sides of a hyperbolic triangle lie
in one pencil.

§7.31. The Classification of Isometries

If we recall the classification of Möbius transformations given in Definition
4.3.2 and take account of Theorem 5.2.1, we see that every conformal isom-
etry of the hyperbolic plane is either parabolic, elliptic or hyperbolic. These
can be recognized by the location of their fixed points or by the function
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trace2. In fact, each such isometry can be expressed as a product of two
involutions and the geometric action of the isometry is intimately connected
with the theory of pencils. We explore this idea in the next three sections.

§7.32. Parabolic Isometries

An isometry g is parabolic if and only if it can be represented as g = a2

where aj is a reflection in the geodesic L1 and where L1 and L2 determine a
parabolic pencil (and so are parallel geodesics). This is clear when g(z)
= z + 1 acting on H2 and so is true in general by invariance.

Given a parabolic isometry g, the associated parabolic pencil is the pencil
containing all geodesics which end at the fixed point of q and (and this is
most important) either L1 or L2 may be chosen arbitrarily from this pencil.
Also, L2 is the bisector of L1 and g(L1).

EXERCISE 7.32

1. Let g be parabolic with fixed point w, let L be a geodesic ending at w. For any z, let

z' be the point on L where [z, z'] is orthogonal to L. Prove that

p(z, gz) � p(z', gz').

2. Let g be a parabolic isometry acting on H2. Show that there is a conformal isometry h
of H2 such that is z z + r for some real non-zero t. Let be the set of
obtainable in this way (for varying h but fixed g). Prove that 1 is either (— 0) or
(0, + and call negative or positive respectively. Find a necessary and sufficient
condition for

(ad—bc=1)
cz -i- d

to be positive in terms of a, b, c and d.

§7.33. Elliptic Isometries

An isometry g is elliptic if and only if it can be represented as g = a2 a5

where is the reflection in and L1 and L2 lie in an elliptic pencil. This is
true when g(z) = and hence in general by invariance.

Given an elliptic isometry g, the associated elliptic pencil is the pencil
containing all geodesics passing through the fixed point v of g in the hyper-
bolic plane. Moreover, L1 (or L2) can be chosen arbitrarily from this pencil
and the other is then uniquely determined by g.

An elliptic isometry g is completely determined by and completely
determines its fixed point v in the hyperbolic plane and a real number
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U in [0, 2it). Indeed, g also fixes v1 (the reflection of v in the circle at infinity)
and we can write

g(z)—v
g(z)—v1

this shows that = e'°. We call U the angle of rotation of g. As g is
conjugate (in ...#1) to z we have

trace2(g) = 4 cos2(O/2).

EXERCISE 7.33

1. Show that the elliptic elements g and h with angles of rotation Oand in (0, 271) are
conjugate in the group of conformal hyperbolic isometries if and only if 0 =

§7.34. Hyperbolic Isometries

An isometry g is hyperbolic if and only if it can be represented as g = cr2

where is the reflection in and where L1 and L2 determine a hyperbolic
pencil. The axis of g (in the hyperbolic plane) is the axis of the pencil, that is
the unique geodesic orthogonal to all lines in the pencil and ending at the
fixed points of g. Of course, the axis of g is the unique g-invariant geodesic.
We can choose L1 (or L2) arbitrarily and the other is determined by g.
These facts are easily verified when g(z) = kz, k > 0, and they are true in
general by invariance.

Observe that if g(z) = kz, then by Theorem 7.2.1,

sinh gz)
=

arid this attains its minimum (over all z in H2) at and only at each z on the
axis of g (the line x = 0). As p(z, gz) remains invariant under conjugation
we can define, for a general hyperbolic g, the translation length T of g by

T = inf p(z, gz).
z

Observe that T is positive and (again by invariance)

(1 — k)2
cosh2(iT) = 1 -+

4k

= trace2(g)/4

=
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There is another representation of a hyperbolic g as two involutions. An
isometry g is hyperbolic if and only if it can be represented as g =
where is a rotation of order two about some point lying on the axis of g.
Here, V1 (or v2) can be chosen arbitrarily and the other is determined by g.
The proof is only needed in the special case g(z) = kz and this is straight-
forward. Observe that

T = 2p(v1, v2)

and that = g(v1) (so the ray from v1 through v2 ends at the attractive
fixed point of g).

§7.35. The Displacement Function

Let g be an isometry of the hyperbolic plane. It is easy to see that the dis-
placement function

z p(z, gz) = p(z, g 1z)

determines and is determined by the pair {g, g1}. This is a particularly
attractive way of discussing isometries; however, for technical reasons, it is
preferable to use the function

z i—i sinh gz).

We shall evaluate this function in purely geometric terms.

Theorem 7.35.1. (i) If g is hyperbolic with axis A and translation length T then

sinh p(z,

g is elliptic with fixed point v and angle of rotation 0, then

sinh p(z, v) sin(0/2) I,

where here we take 9 in the range [—ir, it].
(iii) If g is parabolic with fixed point v then

P(z, v) sinh gz)

is constant (which depends on g) where P(z, v) is the Poisson kernel of the
hyperbolic plane.

Remark. The Poisson kernel is discussed in Section 1.6.
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PROOF. By conjugation, we may assume in (i) that g acts on H2 and that
g(z) = kz, k > 1. By Theorem 7.2.1 we have

1
z—kzl

sinh

p(z, gz) = T when Izi = y (i.e. x = 0): see Section 7.34. Finally, as A is
the positive imaginary axis, we can use Section 7.20 and obtain

cosh p(z, A) = z /y.

To prove (ii), we may assume that g acts on and that g(z) = et0z. As

p(z, = p(z, e2"t 15z)

and

Isin(U/2)l = Isin(ir —

we may assume that 0 < 0 < ir (the cases 0 = 0 and 0 = ir are trivial).
Now construct the triangle with vertices 0, z, gz and corresponding

angles 0, say. Bisecting the angle at the origin yields a right-angled tri-
angle with angles 0/2, it/2 and opposite sides of lengths gz), s (ir-
relevant), p(z, 0). From Section 7.11 we obtain

sinh 4p(z, gz) = sinh p(z, 0) sin(0/2).

To prove (iii), we need only consider the case when g(z) = z + 1 acting
on H2: the general case follows by the usual invariance argument and the
discussion of the Poisson kernel given in Chapter 1. The significance of the
Poisson kernel here is that its level curves coincide with the level curves of
the displacement function: indeed, this is all that (iii) says.

Ifg(z) = z + 1, then v = and

P(z, v) sinh gz) = =

In conclusion, note that in all cases, the level curves of the displacement
function are precisely the curves in the family orthogonal to the pencil
associated with g.
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EXERCISE 7.35

1. For any isometry g let ni be the infimum of p(z, gz). Show that g is hyperbolic if and
only if m > 0. If m 0. show that g is elliptic when mis attained and parabolic when
m is not attained.

Let w be any point such that p(w, gw) > in. Show that the value of p(w, gw)
together with the set {z: p(;, gz) = m} determines the pair {g,

§7.36. Isometric Circles

Recall from Section 4.1 that for any Möbius transformation g, the isometric
circle 19 of g is the set of points on which g acts as a Euclidean isometry.

If g is an isometry of the hyperbolic plane then (see Section 7.21)

= {z:p(z,O) = p(z,g10)}

and it is instructive to give an alternative proof of this.

PROOF. According to Sections 7.32—7.34 we can write g = a2 where
denotes reflection in Choose L2 to pass through the origin so is a

Euclidean isometry. We deduce that z is on if and only if the Euclidean
distortion of a1 at z is unity: hence 19 = L1. With this available, we see that

= a1a2(0) = g'(O)

so 19 (=L1) is the bisector of 0 and g '(0). E

It is this geometric proof which reveals the true nature of the isometric
circle in plane hyperbolic geometry. Given any point w in the hyperbolic
plane or on the circle at infinity, we suppose that g(w) w and we write

g = a2 a1 where L2 is chosen to pass through w. We call L, the w-isometric
circle of g and write it as Ig(w). In this form, there is a useful invariance
property, namely,

'hgh (hw) = h(19(w))

and, of course, the isometric circle is the case w = 0. Now note that g acts

symmetrically about 5A so we can allow w to be any point in the extended
plane and then

19(w) = 19(1/w).

In particular,

= 19(cc)

and this is simply the dependence of the classical isometric circle 19 on the
special point For more details, see Section 9.5.
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EXERCISE 7.36

1. Prove that g is elliptic, parabolic or hyperbolic according as 'g and are inter-
secting, parallel or disjoint respectively.

§7.37. Canonical Regions

To each conformal isometry g of the hyperbolic plane we shall associate a
"canonical" region which is intimately connected with the geometric
action of g and which uniquely determines the pair {g,

g be a conformal isometry which is not the identity
nor elliptic of order two. The canonical region of g is defined by

= {z: sinh gz) <
I

trace(g)

hg is of order two with fixed point v, then is {v}.

The properties of canonical regions are described in the next theorem.

Theorem 7.37.2. (i) Eg is conjugation invariant: explicitly

=

(ii) determines the pair {g, g — }: explicitly, g or
h

Before proving this we give a geometric construction of

The geometric construction of Ifg is not of order two, then may be
constructed as follows. For each z on the circle at infinity let be the geo-
desic joining z to gz. Then if P denotes the hyperbolic plane, we have

= — U

Suppose first that g is parabolic: it is only necessary to consider the case
when g acts on H2 and is given by g(z) = z + 1. In this case,

P—

On the other hand,

trace(g)I = 2

so by Theorem 7.2.1, z is in if and oniy if

1 > sinh gz)

= 1/2y.
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Next, suppose that g is elliptic. We may suppose that g acts on and is
given by g(z) = etOz, 0 < 0 < it. In this case the family of lines contains
the geodesics that subtend an angle 8 at the origin: see Figure 7.37.1.

From Section 7.9 we obtain

thus
sinh p(O, w) tan(0/2) = 1,

P
—

= {z: sinh p(z, 0) tan(0/2) < 1}.

However, by Theorem 7.35.1,

sinh p(z,

sinh p(z,

and this is the desired result.
Finally, we suppose that g is hyperbolic: without loss of generality,

g(z) = kz, k> 1, and g acts on H2. In this case, P — is the hypercyclic
region shaded in Figure 7.37.2

A

Figure 7.37.2

/

kz

Figure 7.37.1
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However, from Section 7.20, z lies in this region if and only if

cosh p(z, A) < 1/cos 0

(k + 1)/2
— (k l)/2

eT + 1
= eT — 1

—

Using Theorem 7.35.1, we see that is indeed this shaded region.

PROoF OF THEOREM 7.37.2. First, (1) is trivially true. Next, observe from the
geometric construction of Eg that Z9 determines the fixed points of g and
also the pairs {z, gz} on the circle at infinity. It follows that determines the
pair {g,g1}. D

Observe that Z9 can be constructed from the fixed points of g and one
pair {z, gz} on the circle at infinity. Also, the boundary consists of one
or two curves from the family of curves orthogonal to the pencil associated
with g.

§7.38. The Geometry of Products of Isometries

We know that any conformal isometry of the hyperbolic plane can be
expressed as a product f = a2 of reflections (Ti in geodesics L1. The relative
geometric positions of L1 and L2 determine the nature of f: for example, if
L1 and L2 cross, then f is elliptic. The relative metric positions of L1 and
L2 determine the geometric parameters of f (for example, the angle of
rotation of f) in a particularly simple way.

Theorem 7.38.1. Let L1 and L2 be distinct geodesics, let denote reflection
in and letf = ala2. Then the inversive product (L1, L2) satisfies

(L1, L2) =

PROOF. If and L2 are disjoint, then their common orthogonal geodesic L
is invariant under and a2. It follows that f is hyperbolic, that L is the axis
of f and consequently, the translation length T of f satisfies

= p(L1, L2).
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We also know that the inversive product (L1, L2) is given by

(L1, L2) = cosh p(L1, L2)

(Lemma 717.2) and the result follows in this case for (see Section 7.34)

jtrace(f)I = 2

If L1 amd L2 are parallel, then the inversive product equals one and, asf
is then parabolic, trace(f) 2.

Finally, suppose that L1 and L2 intersect in an angle 6, 0 < 0 � it/2, then

(L1, L2) = cos 0.

However, in this case,f is a rotation of angle 20 about the point of intersection
of L1 and L2 and

trace(f) I = 2 cos 0.

Given two isometries g and h we can write

where represent reflections in the geodesics chosen from certain pencils
and Suppose now that 91j and have a common geodesic L: then

we can take L2 = L = L3 SO = and

gh = = o1a4.

Thus we have obtained a simple representation of the product gh from which
we can study the geometric action of gh. In particular,

trace(gh)i = 2(L1, L4),

thus the geometry of the relative positions of L1 and L4 enables us to predict the
nature of gh. The results in this section are examples of this technique: other
results are available and the choice of the material given here has been
dictated by later use.

Theorem 7.38.2. Let g and h be elliptic isometries with g a rotation of 21)
about u and h a rotation of 24) about v. We suppose that g and h are rotations
in the same sense with u v and 9, 4) in (0, ii). Then

= cosh p(u, v) sin 0 sin 4) — cos 0 cos 4).

PROOF. We may assume that g and h act on H2, that u and v lie on the positive
imaginary axis L and that

g=a1o-2,

where L2 = L = L3. This is illustrated in Figure 7.38.1 and by Theorem
7.38.1, it is simply a matter of computing (L1, L4).
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L

L4

/
L1

Figure 7.38.1

Now L1 has Euclidean equation

x2 + y2 — 2xlui cot B — ui2 = 0,

while L4 has equation

x2 + y2 + 2xivl cot 4 — ivi2 = 0.

The definition of the inversive product gives

1 lvi Iui
(L1, L4) = — + — sin B sin çb — cos 0 cos

2 ui lvi

and this is the required result as

cosh p(u, v) = cosh(log
lul

I /ivi lui\=-(—+---I. D
2\Jul vu

Remark. As an explicit example of Theorem 7.38.2, observe that gh is
parabolic if and only if

1 + cos 0 cos
cosh p(u, v) =

sin 0 sin

Of course, gh is parabolic if and only if and L4 are parallel and this
formula is seen to be in agreement with that given in Section 7.10.

Next, we examine gh when both g and h are hyperbolic.
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Figure 738.2

Theorem 7.38.3. Let g and h be hyperbolic with translation lengths 7, and

disjoint axes Ag, Ab. Then

= cosh p(A9, Ah)

+

c is + 1 or — 1 according to the relative directions of g and h as given in
Figure 7.38.2.

Corollary 7.38.4. If g and h are directed so that E = + 1, then gh is hyperbolic.

PROOF OF THEOREM 7.38.3. We refer to Figure 7.38.3 (which is the case = —1)
where we have assumed (as we may) that the positive imaginary axis L2 is
the common orthogonal of A9 and Ah. In this case

so

gh = (a3a-2)(a2a-1) = a3 a-,

= (L3, L,).

A,,

a= —1 c= +1

Figure 7.38.3
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In order to compute (L3, L1) suppose that A5 is given by Izi = t. Then
L1 has equation

t t
Z

sinU tanG'

or, equivalently,

(x2 + y2) sin U — 2xt + t2 sin U = 0.

Now from Section 7.9,

sin U =

so L1 has coefficient vector (to within a scalar multiple)

t, 0, t2

A similar result holds for A9, given by = s say, and

cosh p(A9, Ah) = +

The result when e = — 1 now follows by a direct computation of the inversive
product. To establish the result when c + 1, we simply modify Figure
7.38.3 so that L1 and L3 occur on opposite sides of L2. E

Corollary 7.38.5. Suppose that g and h are hyperbolic with disjoint axes and
the same translation length T. If gh and gh 1 are not elliptic, then

sinh A5) � 1.
PROOF. With these assumptions we have

� 1

and similarly for gh '. By using h or h1 we may assume that e = — 1 in
Theorem 7.38.3 and the result follows as

cosh p(A9, A5) sinh(47) —

= [1 + 2 sinh2 A5)] — [1 +
sinh2 4p(A9, Ah) — 1.

Finally, we consider the case when A9 and A,, cross.

Theorem 7.38.6. Let g and h be hyperbolic and suppose that A9 and A,, intersect
at a point v2 in an angle 0, 0 < 0 < ir, this being the angle between the half-rays
from v2 to the attractive fixed points of g and h. Then gh is hyperbolic and

I
trace(gh) = cosh(47) T,,) + 7) T,,) cos 6.

PROOF. This proof uses the alternative expression of a hyperbolic element as a
product of two rotations of order two (see Section 7.34).
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We refer to Figure 7.38.4: then

gh = (a3a2)(a2a,) =

and it is immediate that gh is hyperbolic with axis L and translation length
2p(v,, v3). Thus

= cosh p(v1, v3)

and the result follows from the Cosine Rule (Section 7.12).

EXERCISE 7.38

D

1. Derive Corollary 7.38.5 by constructing the following geodesics in A. The common
orthogonal L of A9 and may be taken as the real segment (—1, 1): we may also
take the origin to be the mid-point of the segment of L between A9 and Ah. By selecting
g of g and h or h '

as appropriate, we may write g = o, h = ac2 where a is
reflection in L, a,, is reflection in L, lying in the lower half of A): in addition,

p(L, L,) = p(L, L2) =

Now apply the results of Sections 7.18 and 7.19 to the polygon whose sides lie on
L, L,, L2, A9 and Ah.

§7.39. The Geometry of Commutators

Recall that the commutator [g, h] is ghg 'h"'. Our aim here is to discuss the
geometry of [g, h] and we shall do this by regarding [g, h] as the product of
g and the conjugate hg 1/r' of and then considering, in turn, the various
possibilities for g. Note that if, say, g is a rotation of angle 0 then hg 'h" 'is

h
L/

g
/V3

//
I.7'

4 1,

/
Figure 7.38.4
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also a rotation of angle U but in the opposite sense. We can restrict our
attention to the possibilities for g (rather than h) because

[h,g] =

and we need only consider conjugates of g and h because

[fgf',fhf'] =f[g,h]f'.

(7.39.1)

Theorem 7.39.1. Let g be parabolic and suppose that g and h have no common
fixed point. Then [g, h] is hyperbolic.

PROOF, A matrix proof (with g(z) = z + 1) is easy enough but the geometry
is more revealing. Let g fix the point v and let L2 be the geodesic from v to
h(v). For a suitable L1 and L3 we can write

g = o'1t72, hg1h' = [g, h] =

where L1 and L3 end at v and h(v) respectively. As g and hgth' act in
opposite directions, it is clear that L1 and L3 lie on different sides of L2 and
so are disjoint. Thus is hyperbolic with translation length L3).

Theorem 7.39.2. Let g be elliptic with fixed point v and angle of rotation 20,
o < 0 � it. Let h be any isometry not fixing v: then [g, h] is hyperbolic with
translation length T and

sinh(T/4) = sinh hi') sin 0.

PRoor. We write g = o1a2 where L2 joins v to h(v). Now construct L3 as in
Figure 7.39.1 so hgtht = a2a3 and [g, h] =

L

Figure 7.39.1

L2

L3
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As L1 and L3 make equal angles with L2 they are disjoint so [g, h] is
hyperbolic with

From Section 7.26, we see that

T = 2p(L1, L3).

sinh L3) = sinh vh) sin 0. E

Finally, we consider [g, h] when g is hyperbolic. If h is elliptic or parabolic,
the previous cases apply by virtue of (7.39.1): thus we may assume that both
g and h are hyperbolic. Note that hg - - has translation length 7; and

axis h(A9).

Theorem 7.39.3. Let g and h be hyperbolic and suppose that h(A9) and A9
cross at an angle 8 (between the positive directions of g and hg - 1h — 1) Then

h] is hyperbolic with translation length T where

= 1 + 2 cos2(0/2).

PROOF. Apply Theorem 7.38.6 with h in that theorem replaced by hg th_ 1:
thus

cos 0.

It is possible to consider many other situations with g and h hyperbolic
and thereby construct an "animated film" of the behaviour of [g, h] as the
three parameters 7;, and (A9, Ab) (the inversive product) vary. It is

extremely instructive to do this but the reader will benefit most if he does
this for himself: we simply give three "frames" of the film in Figure 7.39.2
in which [g, h] (= is respectively elliptic, parabolic and hyperbolic.

We end with two results concerning crossing axes.

Theorem 7.39.4. Let g and h be hyperbolic with their axes A9 and Ab crossing
at an angle 0, 0 < 0 < ir. If [g, h] is not elliptic then

sin 0 � 1.

PROOF. The situation is that described in one of the last two diagrams in
Figure 7.39.2. We may apply Theorem 7.38.3 with h in that theorem replaced

Figure 7.39.2

L2

h(A9)
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byhg1h'andwithr = —1.Thus

1

= cosh p(A9, hA9)

sinh2 hA9)] — [1 +
sinh2 hA9) — 1

so
sinh(47) sinh hA9) � 1.

However, from Section 7.26 we obtain

sinh hA9) = sin 0. LII

Corollary 7.39.5. Let g1,..., g. be conjugate hyperbolic elements in a group
G with no elliptic elements, let The the common translation length and suppose
that the axes of are concurrent. Then

sin(ir/n) � 1.

PROOF. Two axes A and must cross at an angle 6 where 0 � it/n: now
apply Theorem 7.39.4. El

EXERCISE 7.39

1. Derive Theorem 7.39.4 from the last two diagrams in Figure 7.39.2 by using the
results of Sections 7.18 and 7.19 on the polygons with sides lying on A9, Ah, L1, L2
and L3.

2. Let L be the positive imaginary axis in H2 and let

= (ad — he I)
CZ + Ci

preserve H2. Show that the inversive product (L, hL) and the cross-ratio
[0, hO, can be expressed in terms of each other and in terms of the

c and d: for example, show that (L, hL) = 2w! — 1. Show also that L and hL cross
each other if and only if ada (0, 1). These ideas will be found useful when L is the axis
of some g so hL is the axis of itgh -

§7.40. Notes

For a general introduction to hyperbolic geometry we mention [21], [32],
[66], [68] and [112]: for a discussion of hyperbolic isometries, see, for
example, [55], [56], [57] and [98]. Convexity is discussed in [102]; convex
hyperbolic polygons are considered in [10]. The metric relations for polygons
(Sections 7.17, 7.18 and 7.19) are used in [29] for a discussion of plane
geometry (and Riemann surfaces) and in the account [101] of recent develop-
ments in the theory of 3-manifolds.



CHAPTER 8

Fuchsian Groups

§8.1. Fuchsian Groups

We recall Definition 6.2.2: a Fuchsian group G is a discrete subgroup of
with an invariant disc D (so G acts discontinuously in D). We may assume
that the unit disc A (or the half-plane H2) is G-invariant and so we may
regard G as a discrete group of isometries of the hyperbolic plane. We shall
see in Chapter 9 that this induces a tesselation, or "tiling," of the plane by
hyperbolic polygons and it is the geometry of this action of G which, from
now on, is our only concern.

If G is non-elementary then (Theorem 5.3.7) the limit set A of G lies on
the unit circle (this is also true for elementary Fuchsian groups) and it is
important to distinguish between the cases in which A is or is not the entire
circle

Definition 8.1.1. Let G be a Fuchsian group with an invariant disc D. We
say that G is of the first kind if A = ÔD and of the second kind if A is a proper
subset of

The elementary discrete groups are given in Section 5.1 and it is worthwhile
to describe explicitly all elefrientary Fuchsian groups. Note that these are
all of the second kind.

First, consider a Fuchsian group G consisting only of elliptic elements
and I. By Theorem 4.3.7 the elements of G have a common fixed point in

H3. We may suppose that H2 is G-invariant so each elliptic g in G has fixed
points, say, w and in (see Section 5.2). As the axis of g is a geodesic in
H3 which contains ( and ends at w and we see that w independent of g.
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Thus all elements of G have the same fixed points and it is now easy to see
that G is a finite cyclic group.

An algebraic (but less illuminating) proof can be given. We may suppose
that A is G-invariant and that

fu O\ Ia
_1, h=i —i, k4t=l,

\O u/ \C aj

are elliptic elements in G. As

trace[g, h] = 2 + 41c12(Irn[u])2,

we find that c = 0 or Im[u] = 0 (else [g, h] is hyperbolic). As ut = 1 and
u2 1, we see that c = 0 so h also fixes 0 and cx.

In order to find all elementary Fuchsian groups we first consider an
arbitrary Fuchsian group G which leaves A invariant and which fixes a
single point w. The fixed points of elliptic elements cannot occur on aA: the
fixed points of parabolic and hyperbolic elements of G must occur on
Moreover, by Theorem 5.1.2, parabolic and hyperbolic elements of G
cannot have a common fixed point. We deduce that G can only contain
elements of one type and the next result follows easily from the discreteness
of G.

Theorem 8.1.2. Let G be any Fuchsian group. Then for each w, the stabilizer

= {geG:g(w) = w}

is cyclic.

More generally, it is easy to see that any elementary Fuchsian group is
either cyclic or is conjugate to some group Kg, h> where g(z) = kz (k > 1)
and h(z)= —1/z.

DefInition 8.1.3. A parabolic or hyperbolic element g of a Fuchsian group G
is said to be primitive if and only if g generates the stabilizer of each of its
fixed points. If g is elliptic, it is primitive when it generates the stabilizer
and has an angle of rotation of the form 2 it/n.

Remark 8.1.4. Let G0 be the stabilizer of each of the fixed points of g. Then g
is primitive if and only for all h in G0 where denotes the canonical
region associated with g (see Section 7.37). In some, but not all, cases this
can be describçd in terms of the trace function.

Finally, we discuss the classification of hyperbolic elements in a Fuchsian
group into the simple and non-simple hyperbolics. This classification depends
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on the way in which the hyperbolic element lies in the entire group and it is
not an "absolute" classification of hyperbolic elements.

Definition 8.1.5. Let h be a hyperbolic element of a Fuchsian group G and
let A be the axis of h. We say that h is a simple element of G if and only if
for all g in G, either g(A) = A or g(A) n A = 0. Otherwise, we say that h
is non-simple.

This situation has been described in Section 6.3 and in the terminology
introduced there, h is simple if and only if the axis A is G-stable.

Let us assume that G acts on and that G has no elliptic elements. If h
is simple, then the projection it(A) of A into is the same as A/<g> where
g generates the cyclic stabilizer of A. Thus m(A) is a simple closed curve on
A/G. If h is non-simple there is an image f(A) crossing A at, say, w. As G
has no elliptic elements, the projection ir is a homeomorphism near w and
so is a closed curve which intersects itself.

EXERCISE 8.1

1. Let G be a Fuchsian group acting on 112 and suppose that g: k: (k > I) is in G.

Show that g is simple if and only if for all

az + b
h(z) = (ad — bc 1)

cz + d

in 6, we have cibcd � 0 (equivalently, ad — �

§8.2. Purely Hyperbolic Groups

In this section we study those groups which contain only hyperbolic elements
and 1: in Section 8.3 we allow parabolic, but not elliptic, elements. These
are an important class of groups from the point of view of Riemann surfaces
(see Chapter 6): in particular, they represent compact surfaces of genus at
least two.

A group of Möbius transformations is a purely hyperbolic group if every
non-trivial element of G is hyperbolic. By Theorem 5.2.1, a non-elementary
purely hyperbolic group has an invariant disc: in fact, it is also necessarily
discrete and so is a Fuchsian group. A purely algebraic proof of this will be
given (together with a geometric interpretation of the proof) but a stronger
quantitative result will be established by geometry alone. It is worth noting
that this stronger result (Theorem 8.2.1) contains much information yet
requires no further development of the theory for its proof.
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Theorem 8.2.1. Let G be a purely hyperbolic group with A as its invariant disc.
Then G is either discrete or elementary. Further, g, h E G and <g, h> is
non-elementary, then for all z in A,

sinh gz) sinh hz) � 1. (8.2.1)

The lower bound is best possible.

We mention three corollaries.

Corollary 8.2.2. If <g, h> is non-e lernentary and purely hyperbolic, then for all z,

max{p(z, gz), p(z, hz)} � 2 sinh'(l) > 1.76

and this is best possible.

Example 8.2.5 (to follow) shows that this lower bound is best possible.
As G preserves A, (7.2.4) yields

sinh2 gO) =
g(O) 12

2
1 —

For z = 0, the inequality in Theorem 8.2.1 is

g(O)12 . h(O)12 � (1 — g(O)12)(l Ih(O)12)

and this is equivalent to the next inequality (which is a Euclidean version of
Theorem 8.2.1).

Corollary 8.2.3. If <g, h> is non-elementary and purely hyperbolic, then

lg(O)12 + lh(O)12 � 1.

Another inequality (which relates more directly to the concept of discrete-
ness in SL(2, C)) can be obtained by observing that if

g=(° a12_1c12=1,

then

_1112 �2(c12
= 2 sinh2 gO)

Thus we also have the following result.

Corollary 8.2.4. Let <g, h> be a purely hyperbolic non-elementary group
preserving A. If A and B are matrices in SL(2, C) representing g and h, then

IA—Ill.IIB—Ill �2.
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Theorem 8.2.1 and its consequences are similar in character to
Jørgensen's inequality (Theorem 5.4.1) in that both imply that g and h
cannot both be near to I. However, the latter inequality, namely

Jtrace2(g) — + jtrace[g, h] — 2j � 1,

gives no information unless trace2(g) lies between 3 and 5 whereas Theorem
8.2.1 (involving a product instead of a sum) and the corollaries give useful
information in all cases.

Now let R be any Riemann surface of the form where G is non-
elementary and purely hyperbolic. From any point on R, construct two
closed curves 2I and 2'2 of lengths and é2 respectively. By Theorem
8.2.1 (and Section 6.2),

sinh(4 � 1

unless the corresponding group (g, h> obtained by lifting and 22 to i\
is elementary (this only arises when 2I or 22 is homotopic to its initial
point or when and 22 are both homotopic to some power of a single
closed curve in which case <g, h) is cyclic).

The next example shows that the lower bound in Theorem 8.2.1 is best
possible.

Example 8.2.5. Construct four disjoint geodesics in as in Figure 8.2.1.
Let g be the hyperbolic element which fixes 1, — 1 and which maps L1 to L2:
let h be the hyperbolic element which fixes 1, — i and which maps L3 to
L4 and let G = (g, h>. Obviously, G is non-elementary.

Figure 8.2.1
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Using Corollary 5.3.15 (with G1 = <g>, G2 = (h> and D the region
bounded by the Li), we see that G acts discontinuously in It will be apparent
from later considerations (Chapter 9) that G is purely hyperbolic (D is a
fundamental region for G and no elliptic or parabolic fixed points occur on

so the hypotheses of Theorem 8.2.1 are satisfied.
In this example the origin lies on the axis of both g and h so from Theorem

7.18.1, we have

sinh gO) sinh hO) =

= sinh(d1) sinh(d2)

= cosh p(L2, L4).

As the construction can be achieved with p(L2, L4) arbitrarily small, the
lower bound in Theorem 8.2.1 is best possible.

PROOF OF THEOREM 8.2.1. We begin by showing that if <g, h> is non-
elementary and purely hyperbolic, then (8.2.1) holds. We are not assuming
that <g, h> is discrete: indeed discreteness will be derived from (8.2.1).

Let A9 and A,, be the axes of g and h. As <g, h> is non-elementary, these axes
either cross or are disjoint. Recalling Definition 8.1.5, we now see that one
of the following cases must arise.

Case 1: A9 and A,, cross.
Case 2: Both g and h are non-simple.
Case 3: A9 and A,, are disjoint and (without loss of generality) g is simple.

In Case 2 we can apply Corollary 7.39.5 (with n = 2) and obtain (as an
image of A9 meets Ag)

� 1.

A similar inequality holds for h and so

� 1.

Observe that by Theorem 7.39.4, this also holds in Case 1. Applying Theorem
7.35.1, we find that in Cases 1 and 2,

sinh 4p(z, gz) sinh
p(z, cosh p(z, A,,)

� 1.

and this is (8.2.1).
The proof of (8.2.1) in Case 3 is more difficult. As g is simple and <g, h>

is non-elementary, the geodesics A9, h(A9) are disjoint. Thus the three
geodesics A9, A,,, h(A9) are pairwise disjoint and by applying a suitable
isometry, the situation is as illustrated in Figure 8.2.2 (construct L0 first,
then L so that h is the reflection in L0 followed by reflection in L).
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h(A9)

cosh sinh2 p(Ag, Ah) = cosh2 p(A9, Ah) + cosh p(A9, hA9).

Thus

cosh2 P(Ag, Ah)[cosh Th — 1] � 2 sinh2 hA9)

= 2 sinh2 p(A9, L)

and this yields

cosh p(A9, Ah) sinh P(Ag, L), (8.2.2)

Now construct lines (n 1) orthogonal to A9 so that if denotes
reflection in L1, then = gfl (or thus p(L0,

L as if it does, then

=

(a denotes reflection in L so a is h or h - 1) and this is elliptic fixing the point
of intersection of and L. It follows that for some value, say m, of n, the lines
Lm, Lm+i as are illustrated in Figure 8.2.3. In order to focus attention on the
relevant features, this situation is illustrated again (after applying an isometry)
in Figure 8.2.4.

We may assume (without loss of generality) that d1 � d2 so

d1

and applying Theorem 7.18.1 we obtain

sinh(7J4) sinh p(A9, L) � sinh(d1) sinh p(A9, L)
=
� 1.

Applying Theorem 7.19.2 we have
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Ah

Using this we obtain

sinh p(Ag, L) = 2 cosh(7/4) sinh p(A9, L)

and this with (8.2.2) yields

cosh p(A9, Ah) � 2. (8.2.3)

Figure 8.2.3

L

Figure 8.2.4



196 8. Fuchsian Groups

Now observe that

2 cosh p(z, A9) cosh p(z, � cosh[p(z, A9) + p(z, Ah)]
� cosh p(A9, A5)

so by (8.2.3),

cosh p(z, A9) cosh p(z, Ah) � 1
and, by virtue of Theorem 7.35.1, this is (8.2.1).

To complete the proof of Theorem 8.2.1, we must show that any purely
hyperbolic group G is either discrete or elementary. We assume, then, that
G is purely hyperbolic but not discrete so there are distinct hyperbolic
elements g, in G with —* I. It follows that

p(O, gAO) 0

and, by discarding some of the we may assume that for all n,

sinh < 1.

From the first part of the proof we see that for all in and n, the group <gm,
is elementary. As G has no parabolic elements, g,, and 8m cannot have a
single common fixed point (Theorem 4.3.5) so there are distinct points u
and v fixed by every

Finally, for every h in G (h I),

sinh hO) sinh 0

and so for large n, h> is elementary. We deduce (as above) that h fixes
u and v and as h is any element of G we see that G is elementary.

AN ALGEBRAIC PROOF OF THEOREM 8.2.1. We prove only that G is discrete
although a more thorough investigation may also yield (8.2.1).

Assume that G is non-elementary and acts on H2. Thus from Theorem
5.1.3, G contains a hyperbolic element which we may assume is

lu 0\
1/u)'

u>0.

Now select any sequence

an = , j, — = 1,

in G with I. In order to prove that G is discrete we must show that
= I for all sufficiently large n. A computation shows that

/ 1\2
= 2— bnCniU —

U

-+2
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as n because 0 (as —b I). Because G is purely hyperbolic, the
traces of elements in G cannotlie in the interval (—2, 2) so for all sufficiently
large n, we have � 0.

Now write

= [h,gj
=

with — = 1. Exactly the same reasoning (note that f, I
because I) shows that for all sufficiently large n,

� 0.
However, a computation shows that

/
= 2 — —

14

/
= 2 + + — -

U

so for all sufficiently large n,

� 0.
We deduce that for all sufficiently large n,

= 0.

This means that for these n, the hyperbolic elements h and have a common
fixed point. By Theorem 5.1.3, G contains three hyperbolic elements h1, h2
and h3, no two of which have a common fixed point. It follows that for
sufficiently large n, each has three fixed points (one in common with each

so = I.

The Geometric Interpretation. The method of proof is simply to extract
information from the fact that a commutator is not elliptic. Now the axes A
(of h) and (of cannot be close and disjoint else h] is
elliptic (Corollary 7.38.5): this is the condition � 0. Indeed, A is the
positive imaginary axis, is the geodesic with end-points and

and the inversive product of A and is

— +
))—

—

= Ii +
This shows that if is small, then � 0 as otherwise, A and
are close and disjoint.

As 0, we see that for large n, the axes A and cross or are
parallel and � 0. If they cross, then they do so at a small angle (as

-+ 0) and Theorem 7.38.6 shows that the commutator

= [h,
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has a small translation length and an axis which crosses A. It follows that
the axes A (of h) and (of are close and disjoint so the second
commutator [h, is elliptic. As this cannot happen we see that the axes A
and have a common end-point and this is = 0.

For an alternative interpretation, note that —* 0 and 0

implies that there is a sequence of axes of elements conjugate to h
which converge to (but are distinct from) the axis A of h and this clearly
violates discreteness.

It is worth noting explicitly that the algebraic proof of Theorem 8.2.1.
actually proves that G is discrete providing only that G has no elliptic
elements. We state this as our next result: a geometric proof of this is given
in the next section.

Theorem 8.2.6. Let G be a non-elementary group of isometries of the hyperbolic
plane. If G has no elliptic elements, then G is discrete.

EXERCISE 8.2

1. Verify the details given in the geometric interpretation of the algebraic proof of
Theorem 8.2.1.

2. Show that if G is a group of isometries acting on H2 without elliptic elements and if
+ I is in G.then for all

h(z) = (ad — hc = 1)

in G, either c = 0 or ci � 4. [Consider the trace of the matrix representing g'h.]

§8.3. Groups Without Elliptic Elements

We now obtain a direct extension of Theorem 8.2.1 to allow groups with
parabolic (but not elliptic) elements. The conclusion is the same as for
Theorem 8.2.1 and the conclusions of Corollaries 8.2.2, 8.2.3 and 8.2.4
remain valid: however, the reader will benefit from reading the proof of
Theorem 8.2.1 first. More general results (which allow elliptic elements) are
considered in Section 8.4 and Chapter 11.

Theorem 8.3.1. Let G be a group of isometries of the hyperbolic plane and
suppose that G has no elliptic elements. Then G is either elementary or discrete.
Further, h e G and <g, h> is non-elementary, then for all z in

sinh gz) sinh hz) � 1 (8.3.1)

and this is best possible.
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PROOF. Example 8.2.5 shows that the lower bound is best possible: indeed,
as G may now contain parabolic elements, we can construct the four geodesics
in that example with each consecutive pair being tangent and so the lower
bound in (8.3.1) can actually be attained.

Now let G be any non-elementary group without elliptic elements.
Theorem 8.2.6 shows that G is discrete but we prefer to ignore this and keep
to the spirit of the geometric proof of Theorem 8.2.1. If G has no parabolic
elements, this result is Theorem 8.2.1, thus we may assume that G has some
parabolic elements.

We shall suppose that G acts on and that cc is fixed by some parabolic
element, say h(z) = z + 1, in G. If G contains a hyperbolic element f fixing
cc, we may assume that f also fixes the origin, say f(z) = kz, and G then
contains translations z i—p z + t for arbitrarily small t: see Figure 8.3.1.
Thus G contains z i—÷ z + t for a set T oft which is dense in 11.

As G is non-elementary, it contains a hyperbolic element g which does not
thc Thus there are geodesics L0 (ending at cc) and L (the isometric circle
of g) with g = being the reflection in L). As T is dense in there is a
vertical geodesic L* (with reflection cr*) crossing Land with a Euclidean
translation in G. Thus a*o. is an elliptic element of G, a contradiction. We
deduce that a parabolic fixed point is not fixed by any hyperbolic element of G
(compare Theorem 5.1.2 in which discreteness is assumed).

Exactly the same argument shows that the stabilizer of any parabolic
fixed point of G is a discrete (hence cyclic) subgroup of parabolic elements
of G.

Now consider any g and h in G with (g, h> non-elementary. If g and h
are hyperbolic, then they cannot have a single common fixed point (else
[g, h] is parabolic and this has been excluded above). In all other cases, the
proof of (8.3.1), which is the same as (8.2.1), as given in the proof of Theorem

Figure 8.3.1

h

F

0
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8.2.1 remains valid (with weak inequalities) and so it only remains to consider
the following case:

Case 4: h is parabolic, g is parabolic or hyperbolic.

We may suppose that h(z) = z -1- 1 and that h generates the stabilizer of
x because for all non-zero integers n,

sinh hz) � sinh

Now take

az + b
ad—bc=1,

cz + d

with g(cc) so c 0. With L0 as above, let L, be the vertical geodesic
given (in the obvious sense) by L0 + n/2: thus = The reasoning
given above shows that none of the lines can meet the isometric circle of g
so necessarily, � thus

� 4.

Now suppose that g has fixed points u and v (possibly coincident but
not x). Then, as u and v are real, we have

z + dl = z(cz + d) — (az + b)!
= IcI.Iz — uj.Iz—
� IcIy2�

Using Theorem 7.2.1, we have

1
I

smh gz) sinh hz)
= J[])l/2
= — . Icz +

�1
and this completes the proof in Case 4.

The discreteness of G follows as in the proof of Theorem 8.2.1. E

§8.4. Criteria for Discreteness

The following result is the culmination of several earlier results.

Theorem 8.4.1. Let G be a non-elementary group of isometries of the hyperbolic
plane: the following statements are equivalent.
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(1) G is discrete;
(2) G acts discontinuously in A;
(3) the fixed points of elliptic do not accumulate in A;
(4) the elliptic elements of G do not accumulate at I;
(5) each elliptic element of G has finite order;
(6) every cyclic subgroup of G is discrete.

The structure of the proof is illustrated below: the solid arrows (A —* B
means A implies B) denote implications which are trivial or already known;
the implications given in dotted arrows are proved below.

Remark. If G has no elliptic elements then all six conditions are known to
be true thus we assume that G has elliptic elements.

PROOF THAT (2) IMPLIES (3). Select any z in A and any compact neighbour-
hood N of z. By (2), g(N) meets N for only a finite set of g in G so only finitely
many fixed points lie in N. 0
PROOF ThAT (3) IMPLIES (5). If(S) fails, then G contains an elliptic element g
of infinite order. If g fixes v say, then the points n e Z, are dense on the
hyperbolic circle centre v and radius p(z, v). As G is non-elementary, there
is some f with f(v) v and so the points are elliptic fixed points which
accumulate in A. 0
PROOF THAT (4) IMPUES (5). If (5) fails we may assume that G contains
g(z) = exp(2rriO)z where U is irrational. The numbers exp(2nrriO), n e 7L, are
dense on the unit circle so on a suitable subsequence we have gfl —, 1. 0
PROOF THAT (5) IMPLIES (l).We view G as a group of matrices and let G0 be
any finitely generated subgroup of G. By a result of Selberg (see Section 2.2),
G0 contains a subgroup G1 of finite index which has no elements of finite
order.

Because (5) holds, we see that G1 has no elliptic elements and so by
Theorem 8.3.1, G1 is discrete. It is easy to see that as G1 is of finite index in
G0, the subgroup G0 is also discrete. Finally, by Theorem 5.4.2, G itself is
discrete. 0

(1)

(6) I

Figure 8.4.1
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§8.5. The Nielsen Region

Let G be a Fuchsian group acting in the hyperbolic plane A: we shall be
concerned here with non-empty G-invariant convex sets.

First, suppose that G is ofthefirst kind. In this case, the orbit of every point
accumulates at every point of and so any non-empty G-invariant convex
set is necessarily the entire hyperbolic plane.

Now suppose that G is of the second kind. Then is the disjoint union
of the limit set A of G and a countable union of mutually disjoint open arcs

Let L3 be the geodesic with the same end-points as a3 and let H3 be the
open half-plane bounded by L3 and separated from by L3. As the col-
lection (a,} is G-invariant, so is the collection and so

N = fl (8.5.1)

is a G-invariant convex subset of A. If G is non-elementary, then A is infinite
and so N is non-empty. Also, in this case, there are infinitely many arcs
and so asj —* + the Euclidean length of a3 tends to zero. This means that
each open disc { z < r}, r < 1, lies in all but a finite number of the and
this in turn implies that N is open. To summarize: N is a non-empty G-
invariant open convex subset of A.

Definition 8.5.1. Let G be a non-elementary Fuchsian group acting in A.
Let N be defined by (8.5.1) if G is of the second kind and let N A if G is of
the first kind. Then N is called the Nielsen region of G.

The next result shows that N may be defined without reference to the
circle at infinity.

Theorem 8.5.2. N is the smallest non-empty G-invariant open convex subset
of A.

PROOF. As N has these properties except possibly of being the smallest such
set, we must show that any non-empty G-invariant open convex set E
contains N. As E is non-empty and G-invariant, it contains some G-orbit
which necessarily accumulates at each point of A. It follows that E N.

Now for any open convex set A, we have (A)° = A and so E N.

EXERCISE 8.5

1. Prove carefully that for each z, C(z) N where C(z) is the convex hull of the G-orbit
of z.
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§8.6. Notes

For a general account of Fuchsian groups, we refer the reader to [30], [52],
[57], [103] and [114]. The geometric ideas explored in this chapter have
their origins in the work of Fenchel and Nielsen (see, for example, [29], [99]).
The algebraic proof of Theorem 8.2.1 is given in [95]: to the best of my
knowledge, Theorem 8.3.1 is new. The ideas in Section 8.4 originate in [42].



CHAPTER 9

Fundamental Domains

§9.1. Fundamental Domains

Let G be a Fuchsian group acting on the hyperbolic plane A (or H2). A
fundamental set for G is a subset F of A which contains exactly one point
from each orbit in A. Thus no two distinct points in F are G-equivalent and

U f(F) = A.
fE 6

The Axiom of Choice guarantees the existence (but little else) of a funda-
mental set for G. A fundamental domain is a domain which, with part of its
boundary, forms a fundamental set for G.

Definitfon 9.1.1. A subset D of the hyperbolic plane is a fundamental domain
for a Fuchsian group G if and only if

(1) Disadomain;
(2) there is some fundamental set F with D c F D;
(3) h-area(aD) = 0.

The existence of a fundamental domain will be established in Section 9.4.
If D is a fundamental domain, then for all g in G (g I)

g(D)nD=Ø, Uf(Th=A
feG

and, with a slight abuse of terminology, we say that D and its images
tesselate A.
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Remark 9.1.2. It is not sufficient (as is sometimes suggested) to replace (2)
by the requirement that each point of 8D is the image of some other point
of ÔD. For example, the group generated by z F—*2z acts discontinuously
on H2 but the set {x + iy: y > 0, 1 <x < 2} (which has this property) is
not a fundamental domain for G.

The properties (2) and (3) of Definition 9.1.1 imply that F is measurable
and

h-area(D) = h-area(F).

In fact, the next result shows that h-area(D) depends only on G and not on the
choice of D. Later (Section 10.4) we shall see that in all cases

h-area(D) � ir/21.

Theorem 9.1.3. Let F1 and F2 be fundamental sets for G. Then

h-area(F1) = h-area(F2).

Let F0 be a measurable fundamental set for a subgroup G0 of index k in G.
Then

h-area(F0) = k . h-area(F1),

PROOF. Denote h-area by p. As p is invariant under each isometry we have

p(F1) = n [u

=

= p(F2).

Next, write G as a disjoint union of cosets, say

G = G0g,,

and let
F*

=
y

for someg in Gandg' =
h and so F* contains at least one point from each
orbit.

Now suppose that z and f(z) are in F* where f e and z is not fixed by
any non-trivial element of G. For some m and n, the points 1(z), g, 1(fz)
lie in F1 and so 1f fixes z. We deduce that

=feG0:
so = and therefore n m. This shows that f fixes z so f = I.
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These facts show that F* contains exactly one point from each orbit not
containing fixed points and at least one point from each orbit of fixed points.
If we now delete a suitable (countable) set of fixed points from F*, the resulting
set is a fundamental set for G0 and by the first part,

=

Clearly, F1 intersects an image of itself in at most a countable set (of fixed
points) so

=

= k,u(F1). E

In terms of quotient spaces, Theorem 9.1.3 is to be expected. As discussed
in Section 6.2, the differential ds for the hyperbolic metric projects to a metric
on the quotient surface and Theorem 9.1.3 merely states that for any
measurable fundamental set F, we have

h-area(F) =

EXERCISE 9.1

1. Let D be a fundamental domain for G. Show that if we D, then D {w} is also a
fundamental domain (so a fundamental domain need not be simply connected).
Now let E = (D)° (the interior of the closure of D relative to Show that E is a

simply connected fundamental domain which contains D.

2. Let D be a fundamental domain for G and suppose that D1 and D2 are open subsets
of D with

(& u = D.

Under which circumstances is

(g(b1) u D2)

a fundamental domain for G?

§9.2. Locally Finite Fundamental Domains

There is another condition that is required before we can develop any
reasonably interesting theory of fundamental domains. We motivate this in
the next example: the fact that this is not a Fuchsian group is of no conse-
quence for we have merely selected the simplest example to illustrate the
condition.

Example 9.2.1. Let C* be the set of non-zero complex numbers and let G
be the cyclic group generated by g: z 2z. The quotient space C*/G is a
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torus. Now let y be the curve illustrated in Figure 9.2.1: in the first open
quadrant, y is the curve y = elsewhere y is given by zI = 1. The region
D lying between y and g(y) is a fundamental domain for G in the sense that
each point of C* is equivalent to at least one point of and at most one point
of D. Nevertheless, if we identify equivalent points on 3D, we find that the
quotient space is not compact; thus Th/G and C*/G are not homeo-
morphic.

The same situation can arise for a Fuchsian group, even when D is a
convex polygon with only finitely many sides (Example 9.2.5) and we wish to
impose a condition which prevents this unpleasant possibility.

Let G be a Fuchsian group acting in A and let D be a fundamental domain
for G in A. The group G induces the natural, continuous, open projection it:
A -+ A/G. We can also use G to induce an equivalence relation on by
identifying equivalent points (necessarily on 3D) and so with inheriting
the quotient topology, there is another continuous projection ñ: fl/G.
The elements of A/G are the orbits G(z): the elements of are the sets
.15 n G(z) and

= G(z), = 15 n G(z).

Next, let r: —' A denote the inclusion map (the identity restricted to
We now construct a map 6: A/G by the rule

0: n G(z) —+ G(z).

The map 6 is properly defined because for each z, n G(z) 0 and, of

course.

= itt: (9.2.1)

these maps are illustrated in Figure 9.2.2.
We study now the relationship between and A/G.

2w

Figure 9.2.1
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S It

Figure 9.2.2

9.2.2. (i) 9 and tare injective;
(ii) and 6 are surf ective;
(iii) it, 0 and t are continuous;
(iv) it is an open map.

PROOF. The only assertion which is not completely trivial is that 0 is con-
tinuous. If A is any open subset of A/G, we may apply (9.2.1) to obtain

= Dni(1(A)

and this is open in as it is continuous. For any B, 1 '(B) is open in D if
and only if B is open in thus 0 '(A) is open in and 0 is continuous
(in fact, this is Proposition 1.4.2).

We come now to the property which, if satisfied, guarantees that B is a
homeomorphism and hence that A/G and are topologically equivalent.

Definition 9.2.3. A fundamental domain D for G is said to be locally finite
if and only if each compact subset of A meets only finitely many G-images
of D.

In order to appreciate the implications of Definition 9.2.3, suppose that
D is locally finite. Each z in A has a compact neighbourhood N and this meets
only finitely many G-images, say of By decreasing N if necessary,
we may assume that all these images actually contain z. Finally, if h(D) meets
N, then h(D) meets the union of the and so (as ÔD has measure zero)
h = g. for some 1. To summarize, if D is locally finite, each z has a compact
neighbourhood N and an associated finite subset g,,

. . ., g, of G with

(1)
(2) N c g1(D) .

(3) h(D) rs N = 0 unless h is some

We shall use these facts consistently throughout the following discussion.

Theorem 9.2.4. D is locally finite and only 0 is a homeomorphism of D/G
onto A/G.
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PROOF. First, we suppose that U is a homeomorphism and that D is not
locally finite and we seek a contradiction. As D is not locally finite there exists
some win A, points z1, z2,... in D and distinct g1, g2,... in G with

—* w as n (9.2.2)

Now write

K = {z1,z2,...}.

First, K D. Next, every neighbourhood of w meets infinitely many of the
distinct images thus w h(D) for any h in G. We deduce that

it(K).

The contradiction we seek is obtained by proving that

E 7r(K). (9.2.3)

The points g 1(w) cannot accumulate in as G is discrete. Because of
(9.2.2), the points z,, cannot accumulate in A and this shows that K is closed
in D. AsK D,we have

ñ'(ñK)= K
and the definition of the quotient topology on may be invoked to deduce
that fr(K) is closed in b/G. By (9,2.1),

rc(K) = iz'r(K) = 0(11K)

and as U is a homeomorphism, this is closed in A/G. We conclude that

= urn = lim e it(K)

and this is (9.2.3).
To complete the proof, we must show that if D is locally finite, then 0 is a

horneomorphism. We assume, then, that D is locally finite: by Proposition
9.2.2, we need only prove that U maps open sets to open sets.

Accordingly, we select any non-empty open subset A of D/G. As is

both surjective and continuous, there exists an open subset B of with

Now put

V=
gnG

Then

7t(V)= ir(DnB)

= n B)

= n B)

= 0(A).
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We need to prove that 9(A) is open but as it is an open map, it is sufficient to
prove that V is an open subset of This has nothing to do with quotient
spaces and depends only on the assumption that D is locally finite.

Consider any z in V: we must show that V contains an open set N which
contains z. As V is G-invariant, we may assume that

z E n B.

As D is locally finite there exists an open hyperbolic disc N with centre z
which meets only the images

g0 = I: also, we may suppose that each of these sets contains z.
Then

j=0,...,m,
and this means that is defined at 1(z). Clearly maps this point to
in A so

=

It follows that z and by decreasing the radius of N still further, we
may assume that

N c V. Indeed, if w E N, then for some j, w is in both
and

V

The proof is now complete.

Next, we give an example to show that convexity is not sufficient to ensure
local finiteness.

Example 9.2.5. We shall exhibit a convex five-sided polygon which is a
fundamental domain for a Fuchsian group G but which is not locally finite.
The group G is the group acting on H2 and generated by

3z + 4
f(z) = 2z, g(z)

= 2z +

Our first task is to show that G is discrete and to identify a fundamental
domain for G. To do this, consider Figure 9.2.3.

A computation shows that = 72 and g(c1) = a straight-
forward application of Theorem 5.3.15 (with G1 = D1 the region
between and Y2 and similarly for g) shows that G is discrete and h(D) n D
= 0 whenever he G, h I (D being the region bounded by and

a2).
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In fact, D is a (locally finite) fundamental domain for G. To see this,
take any z in H2 and select an image of z which is closest to (this is

possible as G is discrete). By relabelling, we may assume that z itself has this
property. It is now easy to see that

p(z, � = p(f'z,
if and only if Izi � 2. Similarly, z is closer to than to if and
only if � 1. With a little more computation (Theorem 7.2.1) or geometry
we find that z lies outside or on Ti and because

p(z, � p(gz, = p(z,

g '.We deduce that z C and this proves that D is a funda-
mental domain for G.

We proceed by modifying D to obtain a new fundamental domain L The
essential feature of this process is to replace parts of D by various images of
these parts in such a way that the modified domain is still a fundamental
domain. First, we replace

D1 = D {z: Re[z] <O}

by g(D1): the new domain is illustrated in Figure 9.2.4 and this is still a
fundamental domain for G.

Next, construct the vertical geodesics x = 1 and x = 2 and let w, and
be as in Figure 9.2.5. We now replace the closed triangle T(w, 1, 2w) with
vertices w, 1, 2w by the triangle T(2w, 2,4w) (=f(T)). Each Euclidean
segment where lies on I z = 1 and is strictly between w and i, is

replaced by the equivalent segment [c', Finally, the segment [1, 2i] is
deleted: note, however, that [1, 21] is equivalent to the hyperbolic segment
[g(i),g(2i)] on the boundary ofg(D1) and, as this segment is retained, the new
domain still contains in its closure at least one point from every orbit.

Y2

—2 —I 1 2

Figure 9.2.3
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The construction given above replaces the quadrilateral D by the pentagon
with vertices 1, g(i), g(2i), 2, co. By construction, E is a fundamental domain

for G and by Theorem 7,16.1, is convex. Observe that the points on the
boundary segment [g(i), g(2i)] have no equivalent points on the only
possibility, then, is that the images of accumulate (from below) along the
segment [g(i), g(2i)]. For a more explicit proof that E is not locally finite,
we need only observe that the points z,, = 1 + 2"i, n = 1, 2, . . . , are in! and

asn—+co.

We conclude that E is a convex non-locally finite fundamental domain. As
the original domain D is locally finite, the quotient space H2/G is homeo-
morphic to and this is a torus with one point removed. The reader
should now examine and also the projection of into H2/G.

In view of Theorem 9.2.4 and Example 9.2.5 it is of interest to record the
following criterion for a fundamental domain to be locally finite.

Theorem 9.2.6. Let D be a fundamental domain for a Fuchsian group G and
suppose that for each z in aD we have

(1) there is some g in G with g land g(z)E ÔD;

(2) z can be joined to a point in D by a curve lying entirely in D u {z}.

Then D is locally finite.

PROOF. Neither (1) nor (2) is sufficient to ensure that D is locally finite. We
shall restrict ourselves here to a brief sketch of the proof in the most interesting
case, namely when D is convex (convexity being stronger than (2)).

It is convenient to say that z in is regular if there is a neighbourhood of z
which. meets only finitely many copies of if z is not regular, we say that z
is exceptional. Now D is locally finite if there are no exceptional points and
we shall show that this is so by proving:

(a) the set of exceptional points is countable; and
(b) if there is one exceptional point, then there are uncountably many such

points.

By (1), each exceptional z lies in some set g h. By convexity,
the interior points of the intersection

c7(g, h) = n

(which, by convexity, is a hyperbolic segment) are regular; thus there are at
most two exceptional points in r(g, h). As G is countable, (a) follows.

To prove (b), assume that w is exceptional so there exist points 21, 22,...
in D and distinct g1, g2,... in G with -+ w. Now we may assume that
D is unbounded in the hyperbolic metric (as clearly if is compact, then D
is locally finite) so there is some in D with I = 1. Let be the ray [Zn,
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The accumulate at some ray [w, = 1, and by construction,
every point of [w, is exceptional. 0

It is clear from Theorem 9.2.4 that the concept of local finiteness is im-
portant. We end this section with some of the properties shared by all locally
finite fundamental domains: we stress that these properties are derived from
local finiteness without any additional assumptions on D.

Theorem 9.2.7. Let D be any locally finite fundamental domain for a Fuchsian
group G. Then

G0 ={geG:g(O)

generates G.

PROOF. Let G* be the group generated by G0. We may suppose that G acts
in so for any z in there is some g in G with g(z) eD. Suppose also that
h(z) D. Then h(z) is in both and hg '(a) so hg -' e G0: thus we have equal-
ity of cosets, namely

G*h = G*g.

This fact means that there is a properly defined map

G/G*

given by

=

where g(z) e our proof is based on a discussion of this map.
Consider any z in ii As D is locally finite, there exist a finite number of

images

each containing z and such that their union covers an open neighbourhood
N of z. If w eN, then we for somej and

= = çb(z).

We deduce that each z has an open neighbourhood N on which 4 is constant.
Now any function 4 with this property is constant on (give 4(A) the

discrete topology: 4 is continuous and is connected, thus contains
only one point). This shows that

=

for all z and w in A. Given any g in G we select z in D and w in g '(D). Then
as 4 is constant,

= = = G*g
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and SO g a G*. This proves that G G*. Clearly G* c G so G* = G and G0
generates G.

The next result relates local finiteness to invariant regions: for the defini-
tions of horocyclic and hypercyclic regions, see Section 7.5.

Theorem 9.2.8. Let D by any locally finite fundamental domain for a Fuchsian
group G.

(i) Let g be an elliptic element in G and let K be a compact disc withg(K) = K.
Then D meets a positive but only finite number of distinct images of K.

(ii) Let g be a parabolic element in G and let K be a horocyclic region with
g(K) = K. Then meets a positive but only finite number of distinct
images of K.

(iii) Let g be a hyperbolic element in G and let K be a hypercyclic region with
g(K) = K. Then D meets a positive but only finite number of distinct
images of K.

PROOF. In all cases, choose w in K. For some h in G, h(w) a so meets some
image of K. Now (i) is trivial for K is compact since if D meets h(K), then
h - 1(a) meets K and this can only happen for a finite set of h.

To prove (ii) it is convenient to suppose that G acts on H2 and that g(z) =
z + 1. It follows that K must be of the form

K = + iy: y > k}.

Now write

K0 = {x + iy: y � k0}

and

K1

where k0 is chosen so that

u f(K0) H2.
leG

This last condition implies that K0 cannot contain an image of so that if
f(D) meets K then necessarily, it also meets K1. Observe that this choice of
K0 is made possible by Jc&gensen's inequality, namely if

az + b
f(z)

= + d

is in G and does not fix co, then � 1. Thus

Im[fz] � l/y

so with k0> 1 we find that K0 does not meet the orbit G(i).
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Now suppose that meets h(K): then h '(fl) meets K and hence it meets
K,. If

E = {x + iy: 0 � x � 1;k � y � k0},
then

u g"(E) = K1

so for some n, '(fl) meets E. Now as E is compact and D is locally finite,
only a finite number of images of D, say

meet E. Thus = g1 for somej and n and so h(K) = g7 '(K).
The proof of (iii) is similar. We may assume that G acts on H2 and that

g(z) = kz, k > 1. The hypercyclic region is necessarily of the form

K = r > 0,10 ir/21 <c}:

we write

E = {zuK; 1 � !z! � k}

U = K. Only finitely many images of D meet the compact set E:
let these be g1(b), .. ., Suppose now that h(K) meets then for some
n, '(D) meets E and so for some j, h(K) = '(K).

We mention just one consequence of Theorem 9.2.8.

Corollary 9.2.9. Let G be a Fuchsian group, D any locally finite fundamental
domain for G and let be fixed by some parabolic element of G. Then for some
g in G, lies in the Euclidean closure of D.

PROOF. We may suppose that G acts on H2, that = cc and that the stabilizer
of is generated by p: z'r—+z + 1.

Now let K be a horocyclic region invariant under p. Choose any sequence
of points z,, z2,. .. in K with —+ + cc. There are elements h,, h2,
in G with E so meets each image An application of Theorem
9.2.8 (after taking a subsequence and relabelling) shows that

h,(K) = h2(K) =

It follows that there are integers t2, t3,.. . such that = hence
e ñ where w,, = As

= + cc,

we see that cc and so h,(cc) lies in the Euclidean closure of D.
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EXERCISE 9.2

Modify Definition 9.2.3 to apply to Example 9.2.1 and show that D is not locally finite.

2. Construct a Fuchsian group G( '92' . . . }) acting on H2 and a locally finite
fundamental domain D for G with

Euclidean diameter q,(D) = + x.
for every n.

3. Let G be a Fuchsian group acting on with a fundamental domain D. Show that D
is bounded in the hyperbolic metric if and only if (i) is compact and (ii) D is
locally finite.

4. Let G be generated by q: z z + I and h: .z z + i. Despite the fact that C/G is
compact, construct a fundamental domain D for G which is not locally finite in C.

5. Show that the convex fundamental domain Z in Example 9.2.2 contains a hyperbolic
fixed point on its (Euclidean) boundary. By contrast, show that a fixed point of a
hyperbolic g in G cannot be on the Euclidean boundary of any convex locally finite
fundamental domain.

§9.3. Convex Fundamental Polygons

It is natural to pay special attention to fundamental domains that are poly-
gons. Non-convex polygons are rarely used but on the other hand, convexity
is not enough to guarantee satisfactory results (Example 9.2.5). With these
preliminary remarks, we embark on a discussion of convex, locally finite
fundamental polygons. It is a striking fact that the polygonal nature actually
follows from the convexity and local finiteness: accordingly we begin with a
rather stark definition which does not explicitly mention the polygonal
structure.

Definition 9.3.1. Let G be a Fuchsian group. Then P is a convex fundamental
polygon for G if and only if P is a convex, locally finite fundamental domain
for G.

We emphasize that this is a definition of the phrase "convex fundamental
polygon" and it does not presuppose any particular structure of the boundary
of P. We now add a little flesh to this skeletal definition: the discussion is
elementary but, as might be guessed, it is important to derive results in the
optimal order. Throughout, P is taken to be a convex fundamental polygon
for G. It is perhaps worth mentioning now that P is a hyperbolic polygon in
a more general sense than is usually allowed. For example, P may have
vertices on the circle at infinity (possibly infinitely many) and the boundary
of P can even contain arcs of the circle at infinity. Explicitly, it will be shown
that

P = fl H1,
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where the H, are a countable number of open half-planes with the property
that any compact subset of the hyperbolic plane is contained in all but a
finite number of the H1.

As P is locally finite, for any z in L\ there is an open hyperbolic disc N
centre z and distinct elements g1, . . ., g, in G such that

z Eg1(P) n n

and, if g(P) meets N, then necessarily g = for some]. If z e then =
say and t � 2 (else z e N, N P). This proves

(1) for each z in there is some g in G with g I, g(z) E äP.

In fact, with convexity, (1) is equivalent to local finiteness: see Theorem 9.2.6.

Now consider any g in G. Clearly, n g(P) is convex. Moreover,
P g(P) cannot contain three non-collinear points else it contains a non-
degenerate triangle and then (because has zero area) we find that P n g(P)

0. We deduce that P g(P) is a geodesic segment, possibly empty.
We can now define the sides and vertices of P.

Definition 9.3.2. A side of P is a geodesic segment of the form P n g(F) of
positive length. A vertex of P is a single point of the form P rt g(P) n h(P)
for distinct 1, g and h.

Warning. A side of P is not necessarily a side in the usual conventional sense.
If we call a maximal geodesic segment in oP an edge of P, then an edge may
contain infinitely many sides of P. From a different point of view, we allow
the interior angles of P at the vertices to assume the value

Now G is countable and only finitely many images of P can meet any
compact subset of A. Thus

(2) P has only countably many sides and vertices:
(3) only finitely many sides and vertices can meet any given compact subset of A.

Clearly the sides and vertices of P lie in OP. In fact,

(4) OP is the union of the sides of P.

Observe that with this definition of sides, this apparently obvious state-
ment is false for domains which are not locally finite: see Example 9.2.5.

To prove (4), consider any w on OP. Each sufficiently small circle centre w
must contain points in P and points (other than w) not in P so there are points

in OP tending to w. A compact neighbourhood of w meets only finitely
many images of Pso there is some g and infinitely many n with a Pn g(P).
This implies that P g(P) is a side containing w.
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It follows from (4) that every vertex of P actually lies on a side of P. Much
more is true, namely

(5) each vertex lies on exactly two sides and it is the common end-point of each.

To verify (5), let w be an interior point of the side P n g(P) = s. Choose a
point z in P and form the triangle with vertex z and opposite side s: the
open triangle lies in P. A similar construction yields an open triangle in g(P)
with side s: this shows that a vertex cannot be the interior point of a side
and two sides meet, if at all, in a vertex.

Now by (3), (4) and the preceding remarks, every vertex v lies on a finite,
positive number of sides and it is the common end-point of these sides. A
trivial convexity argument of the type outlined above shows that this number
cannot be one, nor can it exceed two. This proves (5): it also proves

(6) any two sides meet, at all, in a vertex and this is then a common end-point
of each.

Note that (5) and (6) imply that the intersection of three sides is empty.
Another useful property of fundamental polygons is that if G =

{I,g1,g2,...} acts onAthen

(7) Euclidean diameter —+ 0 as n 00.

If this were not so, we could find z, and in with

—* z, w,, —+ w, z w, Izi = = 1.

This would imply that the accumulate on the geodesic [z, w] contrary
to the local finiteness of D.

We turn our attention now to the pairing of sides of P by certain elements
of G. Let G* be the set of elements g in G for which P g(P) is a side of P
and let S be the set of sides of P. Clearly, each g in G* produces a unique side
s in S (namely, s = P n g(P)) and every side arises in this way, thus formally
there is a surjective map

G*
.. 5

given by

'1(g)= Png(P).

In fact, 't is a bijection for if D(g) = 1(h) then

Pnh(P)

and this cannot occur for sides unless g = h as (6) shows.
The existence of'b S G* shows that to each sides there is associated

a unique in G* with

s = P n g5(P).
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Then

g; I(s) = P n g 1(r) = s',

say, and, as this has positive length, this too is a side. Note that ifs' = - '(s)
then

= (gY'.
We have now constructed a map s s' of S onto itself and this is called a
side-pairing of P because

(s')' =
= g5(s')

= S.

In this way, the set S of sides of P partitions naturally into a collection of
pairs {s, s'}: we do not exclude the possibility that s = Sr.

The next result is a strengthened version of Theorem 9.2.7 and it is made
possible by the polygonal nature of P.

Theorem 9.3.3. The side-pairing elements G* of P generate G.

PROOF. Because of Theorem 9.2.7, it is only necessary to show that if
P n h(P) 0, then h lies in the group generated by the Consider, then,
any w in F h(P). First, there is an open disc N with centre w and elements
h0 (=1), h1, h2,. . ., h, in G such that h = for somej 0, and

weh0(P)n...r'th1(P);

N h0(P) u
One can show (alternatively one can decrease the radius of N and assume)
that N contains no vertices of any except possibly w and no sides of
the except those that contain w (see (3)). By (4), the boundary of P
in N therefore consists of one side only or two distinct sides emanating
from w. The same is true of each of the other hfP) thus we have one of the
situations illustrated in Figure 9.3.1 (after relabelling h1, .. ., he).

Figure 9.3.1
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Formally, we require the fact that (after relabelling) two consecutive
polygons in the list

h0(P) = P,h1(P), h2(P) = h0(P)

have a side in common. From this it follows that

is a geodesic segment of positive length and hence is a side. Thus

=

for some side-pairing g, and we find that h is in the group generated by the

We come now to a detailed examination of the way in which the images of
P tesselate a neighbourhood of any point in A. Clearly we may confine our
attention to points in 8P and the situation for these points is completely
described in the preceding proof. We now summarize the results.

Take any win aP: so we h(P) for some h. There exist h1, .. . , h1 as in
the proof of Theorem 9.3.3 and if g(w) e ÔP, then we g '(P) and so h =
for somej. We can now introduce some terminology.

Definition 9.3.4. (i) a cycle C in P is the intersection of a G-orbit with P:
this is necessarily a finite set .. ., ;} and the length ICI of C is n.

(ii) If C is a cycle, say {z1 of points in A, then the stabilizers of
are conjugate to each other and are finite cyclic subgroups of G. The

order of the cycle C, which we denote by Ord(C), is the common order
of the

(iii) Let C be the cycle in (ii) and let P subtend an angle at The angle sum
0(C) of the cycle C is defined to be + ... +

The following result is of fundamental importance.

Theorem 9.3.5. For every Fuchsian group G, every convex fundamental
polygon P and every cycle C,

0(C) = 27z/ord(C).

PROOF. Without doubt, the most efficient description of the proof is by
means of cosets. Let C = {z1 so that for some (=1), .. .

we have = z1. It follows that has Zi as a vertex and the angle of
at z1 is

Next, z1 e h(P) if and only if h '(z1) is some and this is so if and only
if for somej, 1 fixes z1. Now let G1 be the stabilizer of z1: thus z1 e h(P)
if and only if for somej, hE Referring now to Figure 9.3.1, we have

(h0=1),
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and these are precisely the images of P which contain z1. As the elements of
G1 are rotations about z1, each fin G1g1 is such that f(P) subtends an angle

at z1: thus

2it = [order(G1)](91 +
= [ord(C)]0(C). El

Let us examine, in detail, the consequences of Theorem 9.3.5. Suppose
first that z is not fixed by any elliptic element of G: the cycle C containing z
(in F) is then said to be an accidental cycle. These cycles are characterized
by ord(C) = I so

(n=ICI).

If n = 1, then = 2ir and z E P. If n = 2 then = 02 = it (by Theorem
7.16.1, each satisfies 0 � � iv) and z is then an interior point of a side.
The converse statements are also true so if z is an accidental vertex (a vertex
in an accidental cycle C) then I Cl � 3.

Next, suppose that z is fixed by an elliptic element in G and that the
stabilizer of z has order q; thus ord(C) = q. Then

0(C) = 01 + ... + 0,, = 2n/q.

A special case of great interest is when IC I = 1 (so z is not equivalent to any
other point on aP): then = 2iv/q. If IC I = 1 and q = 2, then

0(C) = 01 = iv.

It is easy to see that in this case, the stabilizer of z is {I, g}, g2 = I and z is an
interior point of the side

S— Png(P).

Note that in this case,

s' =

g = s = s' then it is easy to see that
g,, is of order two with fixed point on s (consider the effect of on the geodesic
containing s and note that P m g,,(P) = 0).

Because the elliptic fixed points of G demand special attention, it is often
convenient to regard all elliptic fix-points as vertices. This is only at variance
with the earlier definition in as far as it concerns elliptic fix-points of order
two. It is a matter of convention which definition we adopt and the matter
is completely settled by stating whether or not elliptic fix-points of order two
are vertices of P: equivalently, it is settled by stating whether or not we insist
that s $ s'. A trivial example should clarify this point.
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Example 9.3.6. Let g(z) = —z and G = {J, g}. We may take P as the upper
half and, according to the two conventions, either:

(1) P has one side, namely (—1, 1), and no vertices; or
(2) P has two sides, namely (—1, 0), (0, 1), and one vertex, namely {0}.

We now discuss (as far as we can) the Euclidean boundary of P on
flzl = 1}: we denote this byE. Now E may have uncountably many com-
ponents but there can only be countably many components of positive
(Euclidean) length: we call these the free sides of P and these are closed non-
degenerate intervals on = l}.

Note that if w a E, then there exist z,, in P converging to w. For any z in P,
the segment {z, lies in P and obviously, [z, w) P. The same is true for

points sufficiently close to z and as P is convex, we deduce that
[z, w) c P.

A point w of E need not lie on any side or any free side of F; for example,
there may be infinitely many sides of P accumulating at, but not containing,
the point w. We can say very little in this case and we confine the discussion
to end-points of two sides.

Definition 9.3.7. A point v in E is a proper vertex of P (at infinity) if v is the
end-point of two sides of P: v is an improper vertex of P if it is the end-point
of a side and free side of P. In both cases, we say that v is an infinite vertex
of P.

These vertices are illustrated in Figure 9.3.2.
For each z in E, the cycle of z is (as before) G(z) n E. If z is an ordinary

point, the cycle of z must be finite (otherwise infinitely many images of P
meet any neighbourhood of z and by (7), z would then be a limit point). By
the same token, z must also be a proper or improper vertex at infinity.

Figure 9.3.2

V

Improper vertex Proper vertex
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Definition 9.3.4 clearly generalizes to this situation and if C is the cycle of z
we have

ord(C) = 1,

this is the counterpart of Theorem 9.3.5. This holds equally well if z is the
interior point of a free side where = 1, = Note that otherwise,
can only take the values 0 or ir/2 so if I Cl = 2, then necessarily 01 = 02 =
and so z is the common end-point of a free side of P and a free side of some
g(P). We shall return to this case in the next section.

There is only one other case that we can profitably discuss.

Theorem 938. Let v be any point of E that is fixed by some non-trivial
element of G. Then v is fixed by a parabolic element of G (and not by any hyper-
bolic element). Further, the cycle C of v on E is a finite cycle each point of
which is a proper vertex ofF.

PROOF. First, v cannot be fixed by an elliptic element in G as v = 1. If v
is fixed by a hyperbolic element h of G, let A be the axis of h and construct
any [z, v) in P. Take 2,, Ofl [z, v) with z,, — v. Then there exist points a, on
A with

p(z,, an) * 0.

For each n, there is some power of h, say hn, such that h,(a,) lies on a compact
sub-arc of A. Thus the points h,(z,) lie in a compact subset K of as the
are distinct, this contradicts the fact that P is locally finite. We deduce that v
cannot be fixed by hyperbolic elements: thus the elements fixing v must be
parabolic.

Obviously the cycle of points on E determined by v contains only para-
bolic fix-points. If the cycle is infinite, say v, v1, v2, ... then there are distinct
g, with g,,(v) = v,,. If K is any horocyclic region based at v, then g,(K) is a
horocyclic region based at v, and this must meet the convex P as v e E. We
deduce that P meets infinitely many images of K and this violates Corollary
9.2.9: it follows that the cycle determined by v (or by any parabolic fix-point)
is finite.

Finally, we must show that v is a proper vertex of P: the same must then
be true (by the same argument) for all points in the cycle of v.

Choose any horocyclic region K at v. By Corollary 9.2.9, P meets only a
finite number of images of K, say

K, g1(K), . . .,

based at v, v1, ..., respectively. If v . E, then P is disjoint from
some Euclidean neighbourhood of so P is a compact subset of
By decreasing K as necessary, we may suppose that for each], the point
lies in E. This shows that cycle of v is now {v, v1, ..., v5}.
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Without loss of generality, we assume that G acts on H2, that v = and
that the stabilizer of is generated by p: z H-+ z + 1. Of course, K is now
of the form {x + iy: y > k}: we may assume that k > 1. If

a = inf{Re[zJ: z e P}, b = sup{Re[z]: z E P},

then a � b � a + 1 (else b — a > 1 and P contains, by convexity, a triangle
of width exceeding one so P n p(P) 0). Now K meets h(P) if and only
if h '(K) is K or some and this is so if any only if for somej and n,

= (g0 = I).

It follows that lies on the boundary of h(P) (because = cx). Exactly
as above, h(P) lies in a vertical strip of width one and hence there are at most
three (consecutive) values of n for which '(F) (=h(P)) meets P. We
deduce that only finitely many images of P can intersect P K. This means
that P n K meets only finitely many sides of P and so, in a sufficiently small
horocycle at the boundary of P consists only of two vertical geodesics.

Remark. We end with a remark concerning the elliptic and parabolic
conjugacy classes in G. Let g be any parabolic element of G with fixpoint,
say v. Then Corollary 9.2.9 implies that for some h in G, the point h(v) lies
in E and, of course, is fixed by the parabolic element ugh which is conju-
gate to g. By Theorem 9.3.8, there are two sides of P ending at h(v). We
conclude that every parabolic element of G is conjugate to some parabolic
element which fixes a proper vertex of F: in this sense the fundamental
polygon P contains representatives of all conjugacy classes of parabolic
elements. The same is true of elliptic elements: the proof is trivial and is
omitted.

EXERCISE 9.3

1.Let

D = {zet\:p(z,O) <r}

and suppose that A, A,, are pairwise disjoint, convex, open subsets of D which
satisfy

(ii) A, n ... n A,,.

Prove that for a suitable choice of (with 0, = 0,, +

2. Let s,, s_,, s2, s —2' ... be pairwise disjoint closed sub-arcs of {IzI = 1 } and (for
convenience) assume that each subtends an angle less than it at the origin. Let
be the geodesic with the same end-points as sj: thus — is the union of the two
half-planes (containing the origin) and H (with boundary si).
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Let g1, be conformal isometries of with

and define

G=<g1,g2,...>, D=flH1
Show

(i) each
q I, then g(D)nD = 0.

Now suppose that there exists a positive such that for allj,

{zeH1:p(z, < c: D.

Show that

c U g(D)

and deduce that
U =

ge G

(so D is a convex fundamental domain for G). Show also that D is locally finite.

3. Use Question 2 to show that if D is a convex fundamental polygon for a Fuchsian
group, then the Euclidean closure of D on = 1} may have uncountably many
components (arrange thein a manner analogous to the construction of a Cantor
set).

4. In the notation of Question 2, let s1 and s_1 be given by arg(z) — � m/4 and
arg(z)I � respectively. By constructing accumulating at the end-points of

but not at s. show that an improper vertex of a convex fundamental polygon for
G may be a limit point of G.

§9.4. The Dirichiet Polygon

In this section we describe a particular construction of a convex fundamental
polygon and this establishes the existence of such polygons for any Fuchsian
group. Let G be a Fuchsian group acting in and let w be any point of
that is not fixed by any elliptic element of G. For each g in G (g I) define

L9(w) = {z E p(z, w) = p(z, gw)}
and

Hq(w) = p(z,w) < p(z,gw)}
= {zeA: p(z, w) < p(g'z, w)}.

Note that Lg(W) is a geodesic (not containing w) and that Hg(W) is the half-
plane which contains w and which is bounded by Lg(w). In fact, L9(w) is the
common boundary of H9(w) and Hg-i(gw): see Figure 9.4.1.
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Definition 9.4.1. The Dirichiet polygon D(w) for G with centre w is defined by

D(w) = fl H9(w).

Sometimes D(w) is called the Poincaré (or normal) polygon for G.
Dirichiet used the construction in 1850 for Euclidean spaces and it was
subsequently exploited by Poincaré for hyperbolic spaces.

In view of the two descriptions for Hg, we can either describe D(w) as the
set of points z which are closer to w than to any other image of w or as the
set of points z which are, among all their images, closest to w. Observe that

Z E Hg(w) if and only if we Hg-

so we have a symmetry expressed by

z E D(w) and only E D(z).

If h is any isometry of the hyperbolic plane, then

h(Hg(W)) = Hhgh (hw)

and, consequently (using D0(w) for D(w)),

In particular, if h e G, then

h(DG(w)) = DhGh- i(hw).

h(D(w)) = D(hw).

Theorem 9.4.2. The Dirichiet polygon D(w) is a convex fundamental polygon
for G.

PROOF. As each Hg(w) is convex and contains w we see that D(w) is convex
and non-empty.

Figure 9.4.1
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The rest of the proof depends on the crucial fact that only finitely many of
the L9(w) can meet any given compact subset of A: this is a direct consequence
of the fact that if G = {g0, g1, . . .} then

p(w, = w)

-*

asn—÷ +cO.
Now select any z in the closure of D(w). It follows that there is a compact

disc K with centre z such that for all g, either K H9(w) or z e L9(w) and,
moreover, the latter can only occur for a finite set of g. Of course, if z e D(w)
then the second possibility cannot occur at all so K = D(w) and this proves
that D(w) is open. More generally, we see that the boundary of D(w) is
contained in the union of the L9(w), hence

= 0.

Next, we prove that there is a fundamental set F with

D(w) c F

From each orbit G(z), we select exactly one point which satisfies

p(w, z*) � p(w, gz)

for all g in G: such a choice is possible as G(z) does not accumulate at w. The
set of selected points is F: clearly F contains D(w) for if z E D(w) then we have
no choice but to choosez* = z.

To prove that F c D(w), select any z in F and consider the segment
[w, z). As w a D(w), no L9(w) passes through w. If Lg(W) meets the segment
(w, z) then

p(z, w)> p(z, gw) = p(g1z, w)

contrary to the fact that z E F. Thus no L9(w) meets (w, z) and so (w, z) c
D(w). It follows that z a D(w) so F c D(w).

We have now shown that D(w) is a convex fundamental domain for G: it
remains to show that D(w) is locally finite. Let K be any compact disc with
centre w and radius r and suppose that meets K: thus there is some
z in with p(gz, w) � r. As z a D(w), we have

p(w, gw) � p(w, gz) + p(gz, gw)
� r + p(z, w)
� r + p(gz, w)
�2r

and this can only be true for a finite set of g. 0
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By virtue of Theorem 9.4.2, all of the results established in Sections 9.1,
9.2 and 9.3 are valid for Dirich let polygons. For example, the quotient space

is independent (topologically) of the choice of w, provided, of course, that w
is not an elliptic fixed-point of G: this exceptional case is discussed in Section
9.6.

In the particular case of the fundamental polygon D(w), we can say a
little more about the structure of the boundary. For example, we have the
following elementary but important result.

Theorem 9.4.3. Let {z1 be any cycle on the boundary of the Dirichlet
polygon D(w). Then

p(z1, w) = p(z2, w) = . .. = w).

PROOF. Consider, for example z1 and z2 on the boundary of D(w) with
= h(z1). As [w, z1) D(w) we see that

[hw, z2) = h[w, z1)

h(D(w))

= D(hw).

It follows that z2 is equidistant from w and hw and so

p(w, z2) = p(hw, z2)

= p(w, h1z2)
=p(w,z1).

Each side of D(w) is of the form

s = n g(D(w))

= D(w) n

and in view of our earlier description, this must be contained in L9(w).
Thus the sides of D(w) are segments of the bisectors L9(w). For similar reasons,
the vertices are the boundary points of D(w) where two or more bisectors
meet.

Let us now illustrate some of these ideas by discussing a specific example.

Example 9.4.4. Let G be the Modular group acting in H2: we shall show
that the open polygon P illustrated in Figure 9.4.2 is the Dirichlet polygon
with centre iv for any v > 1. Accordingly, let w = iv with v > 1 and, for
brevity, write D for D(iv) and similarly for Lg and Hg.
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Figure 9.4.2

First, the isometries

f(z) = z + 1, g(z) = —liz

are in G and (as the reader can easily verify) the three geodesic sides of P
are Lf, Lf-1, Lg. This shows that D 0 P.

If D P, then some side of D crosses P and so there is some z in D with

h(z) e h(D) n P. It follows that z, hz E P and we shall now show that this
cannot happen. Suppose that

az+b 'a
h(z) =

)
e SL(2, 1).cz+d c d

Then

cz + d12 = c2Jzt2 + 2 Re[z]cd + d2

> c2 + d2 — cdt

=(tct - dD2 + Icdt

as Izi > I and IRe[z]I This lower bound is an integer: it is non-negative

and is zero if and only if c = d = 0 and this is excluded because ad — bc = 1.

We deduce that J cz + d > 1 (note that the strict inequality holds) and so

Im[z]
ImLh 1 = 2 < Im[z].

- tcz+dt

Exactly the same argument holds with z, h replaced by hz, h' and a contra-
diction is reached: thus D = P. E
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As D is a convex fundamental polygon, the material in Section 9.3 is
available. We can either view D as having three sides, namely,

Si = cc), s2 = [—c, cc), s3 = [—c,

with the side-paring f(s2) = s1, g(s3) = s3 or we may adopt the alternative
convention regarding the fix-points of elliptic elements of order two. If this
convention is adopted, we replace s3 by the two sides

S4 = [—c, i], s5 = [i,

with g(s4) = s5, g(s5) = s4 and we consider i to be a vertex of D.
As P is a fundamental polygon for G so is the polygon P1 illustrated in

Figure 9.4.3 (we have merely replaced a vertical strip of P by the f-image
of this strip). Note that in this case, P1 has (according to convention) five
or six (but never four) sides: these are (in the case of six sides)

= cc), = f(s1) = [1 cc);

s3 = [— i], s4 = q(s3) = [I, w];

S5 = [w, = fg(s5) = 1 —

The cycles of vertices of P1 are the sets

{cc}, {i}, { - w, 1 —

Note that the last cycle is an accidental cycle and the angle subtended by P
at the vertex w is it (regardless of the convention being used).

±h1//'

/

Figure 9.4.3
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Returning now to the genera! situation, it must be expected that certain
properties of D(w)depend on the choice of w and, having said this, that there
must be certain optima! choices of w. The last resu!t in this section describes
some such optimal choices.

Theorem 9.4.5. Let G be a Fuchsian group and let D(w) be the Dine/i/el
polygon with centre w. Then for almost all choices ofw:

(1) every elliptic cycle on öD(w) has length 1;
(2) every accidental cycle on has length 3;
(3) every improper vertex that is an ordinary point is in a cycle of length 2:
(4) every proper vertex has cycle length 1 and is a parabolic fix-point;
(5) every parabolic cycle has length 1 and is a proper vertex.

PROOF. The proof of each part follows the same pattern: if the condition (k)
fails, then w must lie in some exceptional set Ek with area zero. If w lies outside
the set U of zero area, then all five conditions are satisfied. We write D
for D(w).

The verification of (1) is easy. Let E1 be the union of geodesics which are
equidistant from two (distinct) elliptic fixed points. Clearly has zero area.
If u, v are distinct elliptic fixed points in the same cycle, then p(u, w) =
p(v, w) (Theorem 9.4.3) and so WEE1.

For the remainder of the proof we need the following simple lemma.

Lemma 9.4.6. Let R(z) be any non-constant rationalfunction of z. Then

E = {z: R(z) is real}
has zero area.

PROOF OF LEMMA 9.4.6. At every point of the extended plane apart from a
finite set z1, . ..,;, the function R is locally a homeomorphism satisfying
some Lipschitz condition. Thus each z has a neighbourhood N with
E m N having area zero and a countable number of these N cover the plane
with z1, . . ., ; deleted. E

We return to the proof of Theorem 9.4.3. For all f, g, h in G, distinct
from each other and from I, we define

R(z)
(z — gz)(fz — hz)

- (z-fz)(gz - hz)

(for brevity, we prefer not to mention explicitly the dependence of R on
f, g, h). Note that R may be constant (for example, if f, g and h fix 0 and cx),
Let

E2 = U {z: R(z) is real}

the union being over all triples (f, g, h) for which R is not constant. By
Lemma 9.4.6, E2 has area zero and we shall show now that if (2) fails, then
WE E2.
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Suppose, then that (2) fails so that there are four distinct points u,f'u,
tu, h 'u lying in some accidental cycle on 0D. Theorem 9.4.3 implies that

p(w, u) = u) = p(gw, u) = p(hw, u)

so the distinct points w, fw, gw, hw lie on a hyperbolic circle with centre u.
It follows that the cross-ratio R(w) is real so w n E2 unless, of course, R is
constant.

We now show that R cannot be constant. II R is constant, say A, then by
selecting some z not fixed by g, J'f - th, g 1h we see that A 0, Now let
ztend to a fixed point v of g: the numerator of R tends to zero, hence so does
the denominator and so for h also fixes v. Suppose, then that g and f have a
common fixed point (the same argument will be valid for h). As g and f lie
in the Fuchsian group G, we see that <g, f> is a cyclic group generated,
say, by p. Clearly p is hyperbolic, parabolic or elliptic depending on whether
the orbit of any point under <g, f> lies on a hypercycle, or horocycle or a
hyperbolic circle respectively (these possibilities are mutually exclusive).
By assumption, then, p is elliptic and fixes the centre of the unique hyperbolic
circle through w, gw,fw. We deduce thatfu = gu = u which is a contradiction
as u lies in an accidental cycle. This proves (2).

A similar argument establishes (3), (4) and (5). Suppose first that v is a
proper vertex of D so there are two sides

= n S2 = D n

ending at v. As s1 is in the geodesic bisecting the segment [w, gw] (and
similarly for s2) it follows from Section 7.28 that v, w, gw, hw lie on a horocycle
based at v.

Now consider the function

R1(z) = Er, z, gz, hz]

— (v — gz)(z — hz)

(v — z)(gz — hz)

As a horocycle is a Euclidean circle, R1(w) is real. It follows that either R1
is not constant and w lies in the corresponding exceptional set of zero area
or R1 is constant. We must show, therefore, that in the latter case each of(3),
(4) and (5) hold.

Suppose, then, that R1 is constant, say A where (as before) A 0,
Letting z tend to v we see that g or h fixes v: by symmetry, we may assume that
gv = v. Then, by Theorem 9.3.8, g is parabolic. This implies that the side
g'(s1) of D also ends at v and so is precisely the side s2. This means that
h = ' and v is a parabolic fixed point in a cycle of length one and this
establishes (4) and (5) as every parabolic fixed point on 3D is a proper vertex
(Theorem 9.3.8).

Finally, any improper vertex v that is an ordinary point belongs to a finite
cycle v1 (=v), v2, ..., and D has angles at these points where
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each is zero or it/2 and = Using (4), we see that cannot be zero:
thus n = 2 and this is (3).

EXERCISE 9.4

I. Develop the theory of Dirichiet polygons (or, strictly speaking, polyhedra) for discrete
subgroups of SL(2. C) acting in H3.

§9.5. Generalized Dirichiet Polygons

Let 6 be any group of Möbius transformation which acts discontinuously
in some G-invariant open subset E of the extended complex plane. We
suppose that x. E I and that is not fixed by any non-trivial element in 6.
These assumptions ensure that every non-trivial g in G has an isometric
circle Let H9 denote the exterior of then it can be shown that

FG= fl H9
g G, g I

is essentially a fundamental domain for G (it need not be connected: it may
be necessary to remove some boundary points of FG). This is called the
Ford fundamental region and it is apparently Euclidean (rather than hyper-
bolic) in character.

Consider now a Fuchsian group G acting on A and suppose that c', and
therefore the origin as well, is not fixed by any non-trivial g in G. We can
construct both FG and also the Dirichlet polygon D6(O) with centre 0 and
we shall see shortly that

A FG = DG(O) (9.5.1)

Note that this identifies two sets one of which is Euclidean in character and in
no sense conjugation invariant, while the second is of essentially hyperbolic
character and is conjugation invariant. The explanation of this lies in the
inversive geometry of the extended complex plane and in this geometry, the
two apparently different constructions appear as different cases of one single
construction which we shall now describe.

Let P be any model (e.g. A or H2) of the hyperbolic plane constructed
as an open disc in the extended complex plane. Let ÔP be the circle at infinity.
Select any in the extended complex plane. Each conformal isometry g of P
can be written as

g =

where a geodesic We extend each L3
to a circle and insist that the circle L2 contains Provided that g does not
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fix (which we assume), this determines a2, L1, L2 uniquely and hence-
forth these special choices will be denoted by

o, L9, Li',

respectively.
By definition, (e It follows that L9 else a9, (and therefore g)

fixes (:thus there is a unique hyperbolic half-plane H9 bounded by Lg and
containing (. Let K9 be the other half-plane bounded by L9: see Figure 9.5.1
where these are illustrated for a parabolic g.

Definition 9.5.1. Let G be a Fuchsian group acting on P and suppose that (
(in the extended complex plane) is not fixed by any non-trivial element of G.
Then

fl0(() = fl H9
geGg*I

is called the generalized Dirichiet polygon with centre (.

If t denotes reflection in äP, then L (extended) contains (if and only it
contains t(4') (because L is orthogonal to thus we have the invariance
condition

In particular, if P = A, then

= (9.5.2)

fl0(cc) = "G(0) (9.5.3)

Figure 9.5.1



236 9. Fundamental Domains

Theorem 9.5.2. In addition to the assumptions made in Definition 9.5.1.
suppose that is an ordinary point of G. Then is a firndamenral domain
for G in P.

If a P. then is the Dirichiet polygon If =
is the region exterior to the isometric circles of all elements of G. Finallt,
for all h, we have

= (9.5.4)

Remark. We have deliberately used P for the hyperbolic plane rather than
or H2 in order to cope adequately with the point cc. For example, note that

cc a OP if P = H2 but not if p =

PRooF. If o• denotes reflection in a circle L in C, then lw-h - 1

is the reflection
in h(L). This fact leads directly to (9.5.4) and this is now available to simplify
the rest of the proof.

In the case when we may use (9.5.4) and thereby assume that
P = and = 0. Thus 0 E L and so for z on L9 we have

p(z, 10) = p(z, o-ga;0)

= p(a9z,

= p(:, 0).

This identifies Lg with the hyperbolic bisector of the segment [0, g'O] and
so is the corresponding Dirichiet polygon.

if = cc, then L is a Euclidean straight line. Thus g acts as a Euclidean
isometry on L9 and so is necessarily the isometric circle of g. As cc
we see that fl0(Q is region exterior to all isometric circles.

It remains to prove that is a fundamental domain for G in P. This is
true if a P as we have already identified as a Dirichiet polygon. It
is also true if P u OP because of (9.5.2).

The remaining case is when a OP and here we may use (9.5.4) and assume
that P = H2 and = cc. First,

=

=

and the bracketed term denotes reflection in Thus (by the uniqueness
of the decomposition of g 1)

Lg I = o(L9)
= g(L9).

This means that g(H9) and g(K9) are separated by Lgi. As

=
=
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lies in K9, we find that thus

g(H9) = K91
and hence

=

Clearly, this implies that the images of by distinct g and h are disjoint.
Now consider any z in H2. As is an ordinary point of G, the orbit of z

lies in some (compact) disc in the Euclidean plane and so there is necessarily
some point z' in the orbit of z with

lm[z'] � Im[gz]

for all gin G. As the action of g on points in K9 increases the imaginary part,
we see that z' lies on or outside each L9. This in turn implies that the ray
(z', lies outside every L9 and so lies in We deduce that every z is
equivalent to some point in the closure of LI

Remark. The proof that IlG(cc) is a fundamental domain can be written
in Euclidean terms involving computations of derivatives: for example,

H9 = {z: < 1}.

It seems preferable, though, to use the intrinsic method given above.

In conclusion, observe that if P = and = 0, then from (9.5.3) and
Theorem 9.5.2 we have

=
=

which is (9.5.1).

EXERCISE 9.5

1. Using the notation in the text, let denote the reflection in g(L9)). Prove that

2. Prove that g is elliptic, parabolic or hyperbolic according as L9, L are intersecting,
parallel or disjoint respectively. Show that

(i) if g is elliptic then it fixes the common point of L9 and L;
(ii) ifg is parabolic then it fixes the common point of tangency of L9, Lg*
(iii) if g is hyperbolic then its fixed points are inverse points with respect to L9, L
and

3. Let g be parabolic and not fixing c and let be the radius of the isometric circle of
Prove that r, =

4. Let I and I' be the isometric circles of some hyperbolic g (not fixing and g

Show that g(I) = I'. Compare the images of I and I' under with the isometric
circles of and g_fl•
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§9.6. Fundamental Domains for Coset
Decompositions

Let G be a Fuchsian group acting in A and let H be a subgroup of G. It is
often convenient to construct a fundamental domain for G with special
reference to H and with this in mind, we suppose that G has a coset decompo-
sition

G = (J (9.6.1)

The essence of the construction is to find an H-invariant set E such that the
sets tesselate A: if the H-images of some D tesselate then D is a
fundamental domain for G in A.

Suppose now that the set Xis stable under the action of H: that is, g(X) = X
when g e H and n = 0 otherwise. Each coset g5 H determines the
corresponding set g,,(E) uniquely (and independently of the choice of
representative and if m n, then

= 0 (9.6.2)

because H. We make one other assumption, namely

(J = A.

These last two statements are reminiscent of the definition of a fundamental
domain, however here they are with reference to the action of coset representa-
tives rather than all elements of G.

Theorem 9.6.1. Let 0 be a Fuchsian group acting in A and let H be a subgroup
of G with coset decomposition (9.6.1). Suppose that fl is a convex fundamental
polygon for H and that a convex open polygon E of A satisfies

(1) X is stable under the action of H and

(2) (J gfE) = A.

Then H n Z is afundamental domain for G in A.

PROOF. First, fl n X is open and convex and its boundary has zero area. It
is necessary to show that

U g(tt n = A (9.6.3)
gsG

and, if f and g are distinct elements of G, then

g(I1 n f(fl n E) = 0. (9.6.4)
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If z A, then by (2), there is some n with '(z) in Only finitely many
H-images of 11 meet some neighbourhood of 1(z)and so for some in H,

Also, as 1(z) E we have

=

and so a n this verifies (9.6.3).
Finally, suppose that (9.6.4) fails so that

f(fl n E) n g(fI n 0.
From (9.6.1) we can write

and then

n = 0.
We deduce from (9.6.2) that = SO

n hm(fl) D 1(f(F1 n g(ll n E))

As fl is a fundamental domain for H we deduce now that = hm so f = g.

E

We consider three examples: in these, H is a parabolic, elliptic and hyper-
bolic cyclic subgroup of G.

Example 9.6.2. Suppose that H = <h> where h is parabolic. By considering
a conjugate group we may suppose that G acts on H2 and that h(z) = z + 1.
Every element in G — H has an isometric circle and we let denote the set
of points having some neighbourhood not meeting any isometric circle. It
is easy to see that the hypotheses of Theorem 9.6.1 are satisfied (as a guide,
see Section 9.5 or, for full details, see [52], p. 58) and so a fundamental domain
for G is (for example) the set of z outside all isometric circles and lying in some
strip {x + iy:y > 0, <x + 1}.

Example 9.6.3. Suppose that H = <h> where h is elliptic. We may suppose
that G acts on A and that h(z) = Again, we take as I the points in A
which are exterior to all isometric circles: equivalently, we follow the con-
struction of the Dirichlet polygon with centre 0 and define I as the intersec-
tion of the half-planes

{z a A: p(z, 0) < p(z, gO)}
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taken over all g with gO 0. A fundamental domain for H is a sector

say

11 = {z: 0 < arg z <0 + 2m/n}

(for any 0) and 11 n I is a fundamental domain for G.

Example 9.6.4. Suppose that H = <h> where h is hyperbolic. We shall
suppose that h is a simple hyperbolic element so the axis A of h is stable us

H. If g H then A and g(A) are disjoint and the set

Kg = {z: p(z, A) <p(z, gA)}

is a half-plane. It is easy to see that I deüned by

I = fl Kg

satisfies the conditions of Theorem 9.6.1 and taking any suitable 11 I

example, the region bounded by geodesics L and gL orthogonal to A)
obtain a fundamental domain for G.

EXERCISE 9.6

I. Verify the details of Examples 9.6.2, 9.6.3 and 9.6.4.

2. Show that any cycle on the boundary of the fundamental domain Dconstructe
Example 9.6.2 necessarily lies on some horocycle based at x.

§9.7. Side-Pairing Transformations

Let G be a Fuchsian group and P a convex fundamental polygon for G. I
have seen that the side-pairing elements of P generate G (Theorem 9.3,3);
short section is devoted to characterizing those primitive elements of
which can arise as side-pairing elements of some choice of P.

Each primitive elliptic element and each primitive parabolic element
G pair sides of some fundamental domain (indeed, of some Dirichlet polygot
this follows from Examples 9.6.2 and 9.6.3 or from Theorem 9.4.5 a
Corollary 9.2.9. The problem, then, is to characterize the primitive, sic
pairing hyperbolic elements in G.

Theorem 9.7.1. Let g be a primitive hyperbolic element of a Fuchsian gro
G and let A be the axis of g. Then g pairs sides of some convex fundameni
polygon P (fand only all h in G, either h(A) = A or h(A) n A = 0.
PRooF. Suppose first, that h(A) = A or h(A) n A = 0 and define

H={heG:h(A)=A}.
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Then H contains all powers of q: the only other elements that H can contain
are elliptic elements of order two with fixed point on A. Exactly as in Example
9.6.4, we can construct a set satisfying the conditions of Theorem 9.6.1.
We may assume that G acts on H2 and that g(z) = kz. If H is cyclic it is

generated by g and we can take

fl = 1 < < k}:

if H is not cyclic it is generated by g and some elliptic element of order two
which we may assume fixes and we then take

LI = {zEH2: 1 < < k, Re[z] > O}.

In both cases, g pair sides of U n E that contain arcs of = 1 and = k,
respectively.

To prove the necessity of the condition on h and A we suppose that g
pairs two sides s and s' of some P. Choose a point w in the relative interior
of s and not fixed by any non-trivial element of G; let y = [w, gw]. Then y
lies in P apart from its end-points w and gw. The curve

I = U gn(y)

is a simple g-invariant curve in which (because y is compact) has as end-
points the fixed points a and v of g. Note that the axis A of g also has these
properties.

Now suppose that h(A) A 0, thus there is some h in G such that the
geodesics A and h(A) cross or are equal (they cannot be parallel by Theorem
5.1.2). Suppose that A crosses h(A). This means that the curves I and h(F)
also cross each other, say at the point in i\. It follows that for some z1 and
z2 in y and some m and n, we have

= =

21 =

Now the only two distinct points of y which are G-equivalent are w and gw
so either z1 = z2 or = gz2 or z2 = gz1. In all cases some fixes some
point of y. By construction, no point of y is fixed by any non-trivial element of
G so h is some power of g. This implies that h(A) = A. E

In view of Definition 8.1.5, we have shown that the only side-pairing
elements of G are elliptic, parabolic and simple hyperbolic elements.
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§9.8. Poincaré's Theorem

Any Fuchsian group G acting on the unit disc has a convex fundamental
polygon P. The action of G on P tesselates and there is a collection of side-
pairing maps which generate G. Moreover, the sum of the interior angles of
Pat points of a cycle is a certain submultiple of 27t (Theorem 9.3.5). Poincaré's
Theorem is concerned with reversing this process and so provides a method
of constructing Fuchsian groups. Suppose that one starts with a polygon P
and a collection of side-pairing maps. We use these maps to generate a group
G. Next, we formulate the notion of a cycle (at this stage we do not know
whether or not this cycle is the intersection of P with a G-orbit) and we impose
a suitable angle condition on each cycle. The aim is to prove that G is discrete
and that P is a fundamental domain for G.

As these ideas arise in other geometries and in other dimensions it seems
worthwhile to proceed in a fairly general manner. We shall include hypo-
theses as they are needed and only at the end shall we give a definitive
statement of the result. The argument that we shall use may be summarized
as follows. First, we construct a space X* which is tesselated by the group
action: then we attempt to identify this tesselation of X" with the G-images
of the polygon P in the original space.

We begin by constructing a tesselated space. Let X be any non-empty
set. We assume

(Al) P is an abstract polygon in X.

By this, we mean that P is a non-empty subset of X which has associated with
it a non-empty collection of non-empty subsets of X called the sides of P.
The union of the sides is denoted by äP: we insist that P and 3P are disjoint
and we write

P = P u 3P.
We also assume

(A2) there is a side-pairing of P.

Explicitly, this means that there is an involution (or self-inverse) map
s s' of the set of sides of P onto itself and associated with each pair (s, s'),
there is a bijection of X onto itself with

= s'

and

= (g5)'.

Now let Gbe the group generated by the g3 and form the Cartesian
product G x P. It is helpful to think of G x P as a collection of disjoint
copies

(g,P) = {(g,x):xeP}
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of P indexed by G (like pieces of a jigsaw separated from each other) and to
think of (g, x) as the point g(x) viewed from within g(P). We now join these
copies together along common edges as dictated to us by the group G.
Observe first that the map may be viewed as a map of the side h(s) of
h(P) onto both:

(i) the side h(g5s) of h(P); and
(ii) the side (s) of (P).

Writing g = we therefore wish to identify (g, s) with (/i, g5s). This
identification is achieved by defining the relation on G < P by

(g, x) (h, y)

if and only if either:

(i) g = h, x = y; or
(ii) xEs,y = g3(x), g = hg5.

This relation is symmetric and reflexive (but not necessarily transitive) and
it extends to an equivalence relation * on G x P by defining

(g,x)*(h,y)

if and only if for some (gd,

x) = (g1, x1) (g2, x2) (ga, = (h, Y).

The equivalence class containing (g, x) is denoted by (g, x> and the
quotient space (of equivalence classes) is denoted by X*. Note that if

(g, x> = <h, y>

then

g(x) = h(y) (9.8.1)

and

<Jg, x> = <fh, y>. (9.8.2)

In addition, if x e P, then

g = h, .x = y. (9.8.3)

These facts holds for and hence for *.
Each fin G induces a map f*: X* by the rule

f*: <g, x> (fg, x>

and this is well defined by (9.8.2). It is clear that
1)* = (f*)l

and

(fh)* = f*h*
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so the group G* of all such f* is a group of bijections of X* onto itself and
is a homomorphism of G onto G*. In fact, this is an isomorphism

for if f* = h*, select x in P and observe that

<f' x> = f*<J x>
= h*<I, x>

= <h, x>.

As x E P. (9.8.3) implies that f = h.

If we now define

<F> = {<J,x>:xeP}

and similarly for <P> we find that the action of G* on <F> tesselates X* in
the sense that

U = (9,8.4)

and, if h*, then

n = (9.8.5)

the proof is trivial.
The relevance of this tesselation to the original problem is easily explained.

By (9.8.1) there is a natural map cc X given by

x> = g(x)

and we have the following result.

Proposition 9.8.1. (i) If rx is surjective, then

U g(P) = X.
gaG

(ii) If ci is infective, then for distinct g and h in G,

0.
Again, the proof (which uses only (9.8.4) and (9.8.5)) is trivial and is

omitted. Note that so far, there has been no mention of topology.
We now introduce topologies: explicitly we make the following assump-

tions.

(A3) X is a metric space with metric d;
(A4) the are isometries of X onto itself;
(AS) P is open and connected.

In order to analyse the map and so use Proposition 9.8.1, we introduce
the natural maps

/3: G x P -*

y: G x P -+
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given by

/3(g, x) = <g, x>,

y(g, x) = g(x).

Note that

= (9.8.6)

so the following figure is commutative.

GxP

Figure

We give G the discrete topology, G x P the product topology and X* the
quotient topology. The quotient map fJ is automatically Continuous. Next, y
is continuous for if A is open in X, then

x(g'(A)nP)

and this is open in G x P. Finally, as y is Continuous, then so is a because
is open in X* if and only if is open in G x P.

Eachf in G induces a mapj: G x P —* G x P by the rule

J: (g, x) (fg, x).

Trivially, the 7 are homeomorphisms of G x P onto itself, the group of
such 7 is isomorphic to G and

= fy,

so

= vi = fy. (9.8.7)

In addition, if A is an open subset of X", then

fl1(f*)1(A) =

which is open in G x P. We deduce that
(f *) (f we see that the f* are homeomorphisms

of X" onto itself.
The final assumption replaces the intuitive angle condition by a formal,

dimension free condition which enables us to express the formal details of the
proof easily. We require a condition which guarantees that at each point x
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of äP there is a (local) tesselation of some neighbourhood of x. This condition
must express the fact that the geometry of this local tesselation is consistent
with the equivalence relation * and nothing less than this can be adequate.

In order to express this condition concisely, suppose for the moment that

<1, x> = x1) (gn,

x) and

g1(x1) = ... = = 1(x) = x.
If

= {ye P: d(y, <a},

(this is the ball in P with centre and radius a), then the sets are

subsets of and have the point x in common. As the are

isornetries,
{y u X: d(y, x) <a}

= B(x, a),

say, and we wish to impose the condition that for all sufficiently small a
the sets tesselate B(x, a). Formally, we assume

(A6) Each x in P has afiriite equivalence class

(I, x> = {(g1, x1) (ga,

In addition,Jbr all suffliently small a,

U g3(N1) = B(x, a)

and, moreover, for each w in B(x, a), the set of points in U (gd, which

map by y to w is an equivalence class.

Observe that the result that we are seeking can be expressed by saying
that the set of points in G x P which map by y to any win X is an equivalence
class (so is a bijection). Thus (A6) appears as a natural local version of the
desired global result. Also, observe that as x> is the image of <I, x>
under f*, each equivalence class is finite.

Let us write

W= V_—13(W).

The condition (A6) implies that y(W) = B(x, a) and also that W is a union
of equivalence classes. In other words,

= J31(j3W) = W

and we deduce that V is open in X".
To complete the details of the proof we need the following result.

Proposition 9.8.2. The sets f*(V) are a base for the topology of X*.
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PROOF. We know that the sets f*(V) are open. Suppose that A is an open
subset of X* and that x> e A. Writing <I, x> as in (A6) we find that

x> = {(fg1, xi), .. .,

As is continuous,

= U (h, Ah),

where each A,, is open u1 P. As is in $ 1(A), we see that E A,,

when h = fg1 so for these h, we have A,, 0. Now choose sufficiently small
so that (A6) is applicable and that c A,, when h = (this is possible
as j takes only the values 1, . . . , n and these A,, are open and non-empty in
F). Clearly, this means that

J(W)
=

c /31(A)

and so
f*(J/) = f*/3(W)

= 16J(W)

c A.

As (I, x) E W, so <f, x> (which is /37(1, x)) lies in f*$(W) and this is f*(V).
E

We proceed now with the general discussion. First, by (9.8.7),

=

= fy(W)
= B(fx, c).

Thus maps each f*(V) to an open set and so c: —÷ X is an open map.
Next, if u and v are in f*(V) and if = then choose points u'

and v' in 7(W) with fl(u') = u, /3(v') = v. Thus

y(u') = = c43(v') = y(v')

and so by (A6) (after referring the problem back to W), u' and v' are in the
same equivalence class: hence

u = fl(u') = /3(v') = v.

We deduce that is a bijection, and hence a homeomorphism, of each f*(V)
onto fy(W).

Next, X* is Hausdorif. To see this, take distinct points

=

= {(gl,yl),,..,(gm,ym)}
in X*: as these are distinct points in X", they are disjoint subsets of G x P.
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Now choose the corresponding to <I, x> as in (A6) and let be the
corresponding sets for <I, y>. We may choose the N1 and so that the
sets

NJ, (gd, (9.8.8)

are disjoint in G x .P (if J then (J. N1) and (ga, are disjoint: if
= g, then x, and we can insist that N1 and are disjoint). Because

the disjoint sets (9.8.8) are each a union of equivalence classes, it follows
that their fl-images are disjoint (and open): thus X* is Hausdorff.

Finally, is connected. Indeed, as P is connected, so are (g, .P) and its

fl-image <g, P>. Observe that if x s' then

<g, x> = (gY 1x>

so

<g, F> n <<gg5, P> 0.

We deduce that

<g, F> Li <gg5, P>

is connected: hence so is as each g is a product of the g,. The next result
is a summary of the results obtained so far.

Proposition 9.8.3. is Hausdorff and connected. Also, every in X* has
an open neighbourhood N* such that the restriction of to N* is a homeo-
morphism of N* onto an open subset of X.

Let us specialize now to the case of major interest to us. We suppose
that (X, d) is the hyperbolic plane with the hyperbolic metric (the argument
will work equally well in the Euclidean plane or in the sphere S2), that P is a
hyperbolic polygon (possibly with vertices and free sides on the circle at
infinity: these are not in X) and finally, that 't is some given set of side-
pairing isometrics. Our aim is to deduce that G is discrete and that P is a
fundamental polygon for G. Note that (A1)—(A5) hold and that there is no
need to check (A6) at points on the circle at infinity.

The condition (A6) is easily restated in a simpler form. If x is in P, choose a
so that the open disc N with centre x and radius a lies in P. For each y in N,
the equivalence class <I, y> contains only (I, y) and (A6) holds trivially for
this choice of x. Next, suppose that x is in the interior of a side s. Then x is
on a unique side of P and this leads immediately to the fact that <I, x>
contains precisely (I, x) and 1, It is clear that (A6) holds in this
case too (with W being the union of two semi-discs) provided that g1(N1)
u g2(N2) is a neighbourhood of x (which we shall assume implicitly).
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We now see that (A6) may be rewritten in terms of the vertices of P alone:
indeed, (A6) is now equivalent to

for each vertex x of P, there are vertices x0 (=x), x1, .. , of P
and elements f0 (= I), .. . , of G such that the sets are non-
overlapping sets whose union is B(x, e) and such that each is of the
form some s (j = 1 = I).

We also assume

(A7) the c in (A6) can be chosen independently of x in P.

This last assumption ensures that each curve in X can be lifted to a
curve in X* (for each point can be referred back to P and then lifted for at
least a distance and so (X*, is a smooth unlimited covering surface of X,

mapping X" onto X. As X is simply connected, the Monodromy Theorem
implies that is now a homeomorphism and the desired result follows from
Proposition 9.8.1. We have proved

Theorem 9.8.4 (Poincaré's Theorem). For a polygon P with a side-pairing V
satisfying (A6)' and (A7), G is discrete and P is afundamental polygon for G.

Remark. If P has no vertices in X, then (A6)' is automatically satisfied.
However, (A7) need not hold.

Example 9.8.5. Let P be a polygon with r sides and angles it/ni at the vertices
in X (j = 1, . .., r). For each side s let g5 be the reflection across s: denote

these maps by g1,. .., Then (A6)' holds (see Figure 9.8.2) and (A7) holds
(essentially because P is compact). Thus P is a fundamental polygon for G.

Figure 9.8.2
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Later, we shall need the following result and this is closely related to
Poincaré's Theorem. Let P be an open hyperbolic polygon in A and let
be a side-pairing of P. We shall always assume that if x is an interior point
of a side s with corresponding point y = then for any choice of neigh-
bourhoods and relat ice to P of x and y respectively, the set

u '(Np)

is a neighbourhood of x (thus N,, and (g5) lie on different sides of s
near x).

Finally, for each z and each g, define

0(2) =
9€G

where Og(z) is the angle subtended at .z by g(P). If z e g(P) then 09(z) = 2ir;

if z g(P), then Og(Z) = 0.

Theorem 9.8.6. Let P be a hyperbolic polygon with corn pact closure in A and
let 1 be a side-pairing sat isfving the assumption given above, If the group G
generated by the side-pairing elements is discrete, then 0(z) is constant, say
2nk, on A, k is an integer and

h-area(P) = k h-area(A/G).

PROOF. Let V be the set of all images of all vertices of P: by the discreteness of
G, V contains only isolated points in A. Let B be the union of all images of
aP: by discreteness, B is a closed subset of A and obviously, V c B.

The set A — B is open so is a disjoint union of domains, say By

definition, each either lies inside g(P) or is disjoint from g(P) so is 2it

throughout or it is zero throughout We deduce that 0(z) is constant
on each say equal to there where is an integer.

Next, consider w in B — V. The side-pairing assumptions ensure that
there are pairs of distinct elements (ga, say, (j = .. ., n) such that w
lies interior to a common side of and and that for all other g,
Og(z) is constant (0 or 2m) near (that is, in a neighbourhood of) w. By dis-
creteness, we can choose one such neighbourhood, say N, valid for all other
g. Each term

09jz) +

is constant (namely 271) near w: thus 0(z) is constant near w. We conclude
that 0/22z is continuous and integer valued on the domain A — V. As V
contains only isolated points, B is constant on A — V. A similar argument
holds for w in V; however, this is of no consequence.

Finally, let Q be any open fundamental polygon for the discrete G and
for any set A, let XA be the characteristic function of A. For almost all z in
A, we have

= 1.
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Also, for almost all z in

k =

=
>

Thus (writing p for hyperbolic area and taking all integrals over we have

p(P) = x9(Q)(z)] dp(z)

= dR(z)

= dp(w)

= dp(w)

= JXQ(W) Xh(P)(W)] dp(w)

= kp(Q). E

In fact, Theorem 9.8.6 says that if we identify the sides of P we obtain a
branched covering of the compact space thus the covering is a k — 1

map for some k.

EXERCISE 9.8

1. The proof of Poincaré's Theorem remains valid if (A7) is replaced by: (A7) there
exists a positive a such that for all x in P there is a single valued branch I in

B(x, a).
Show that the application in Example 9.8.5 remains valid if some of the v1 now lie

on the circle at infinity (the are now fixed by a parabolic elements in G and a horo-
cyclic disc at is suitably tesselated).

2. Generalize the ideas in Question I to include arbitrary polygons with some vertices
on the circle at infinity provided that these are fixed by parabolic elements in G
(but see Question 3).

3. The condition concerning parabolic elements in Question 2 is essential. Show (for
example) that g: 2 2z is a side-pairing of

P = {:eH2: 1 < Re[:] < 2}

but that P is not a fundamental domain for G (== (g>) in H2.
Show, however, that Poincaré's Theorem is applicable to this P and G if G is

considered to act on the first quadrant with the metric ds = z /xy) dz (.
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4. Let X = C — with metric ds = For 0 in (0, let

P = {zeX: I < < 3,0< arg(z) < 0}.

Divide into four sides in the obvious way and generate G from the side-pairing
isometries

g(z) = 3z, h(z) = e°z.

Examine the case 0 = where (p. q) = 1 by reference to the covering surface X*
(which exists even if X is not simply connected). One can view this as a multiple
tesselatiort of X.

§9.9. Notes

There are other constructions of fundamental polygons and, in particular,
of polygons which relate to a particular defining relation (a product of
commutators) of a group with compact quotient space. For further informa-
tion see, for example, [46], [47], [52], [70], [85], [86] and [114]. For other
information on convex fundamental polygons, see [71], [72], [73] [83]:
for recent treatments of Poincaré's Theorem (Section 9.8) see [24] [48] and
[62]. Theorem 9.8.6 occurs in [48].



CHAPTER 10

Finitely Generated Groups

§10.1. Finite Sided Fundamental Polygons

We recall that a side s of a convex fundamental polygon P is a segment of
the form P n g(P) (except that this set may be considered as two sides when
g is elliptic and of order two). By an edge of P we mean a maximal geodesic
segment in We must distinguish carefully between sides and edges and
to convince the reader of the necessity of this, we begin with an example in
which one edge contains infinitely many sides.

Example 10.1.1. We work in H2. For n = 0, 1, 2, . . . , let be the geodesic
with end-points 1 + 4n and 3 + 4n and let be its reflection in the
imaginary axis. For each n, let be the hyperbolic element that preserves
H2 and that maps the exterior of onto the interior of and let G be the
group generated by the By Poincaré's Theorem (Section 9.8), the region
exterior to all of the C, and is a fundamental domain for G.

Now let D be the region in the second quadrant exterior to all of the C,
and let

= {x + iy:x > O,y > 0,4n < <4(n + —(4n + �1}:
see Figure 10.1.1. It is clear that

P = D U cu])

is a convex fundamental polygon for G and that the positive imaginary
axis is a single edge e of P. However, for each n,

P = [4in, 41(n + 1)]

and so the edge e contains infinitely many sides ofF.
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In view of the preceding example, and as we are about to make claims
about the number of sides of a polygon, the distinction between edges and
sides must be kept clear.

Theorem 10.1.2. Let G be a non-elementary Fuchsian group with Nielsen
region N. Then the following statements are equivalent:

(1) G is finitely generated;
(2) for any convex fundamental polygon P of G, h-area (P n N) < + rio;
(3) there exists a convex fundamental polygon of G with finitely many sides;
(4) every convex fundamental polygon of G has finitely many sides.

PRooF. Obviously, (4) implies (3). Now assume that (3) holds and let P be
a finite sided convex fundamental polygon. Each closed free side

(i = 1, .. ., in) of P lies in the interior of an interval of discontinuity
which determines a half-plane H, containing N (see Section 8.5). Then

P1

is a finite sided polygon with no free sides and so has finite h-area. As P1
contains P n N, we see that (2) holds for this choice of P. However, as N
is G-invariant, it is easy to see that h-area (P n N) is independent of the
choice of P and (2) follows.

Next, we prove that (2) implies (1). First, write Q = P n N. It is clear
that N meets äP and as N is G-invariant, contains all or none of the points
in a cycle on aP. Suppose that contains (perhaps as a proper subset)
cycles C1 of vertices in and also points . .., on
and let Q0 be the polygon whose set of vertices is

C1 u u {w1, .. .,

(Q0 is the convex hull of a finite set of points on the boundary of a convex
set). By convexity, Q0 Q so the sum of the interior angles of Q0 at its
vertices is not greater than the sum of the interior angles of Q at the same

41(n + 1)

D 4in

Figure 10.1.1
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points. If the cycle has length and order we deduce from Section
715 that

h-area(Q) � h-area(Q0)

It is convenient to adopt here the convention that an elliptic fixed point of
order two and cycle length one is not a vertex. With this convention, each
cycle is either accidental (and � 3, = 1) or elliptic (and � 3).
In all cases, then,

2- — L

so

3n + I < 6 + (3/vt) h-area(Q).

It follows that only finitely many sides of P (in either convention) meet
Now let be those side-pairing maps of P for which the corresponding

sides meet there are only finitely many such g, and it is only necessary to
show that these generate G. We select any g in G and, by the convexity and
invariance of N, we can join two points, one in Q and the other in g(Q), by
a segment a in the convex set N. We may assume that a does not meet any
image of any vertex of P; then a crosses, in turn, the images

P, g1(P), . ..,

whereg = As

1(P) n n N

is a geodesic segment, so is

n N,

(because N is G-invariant) and so each is some This proves
that (2) implies (1).

Next, we prove that (1) implies (3): a proof that (3) implies (4) will be
given in the next section and this will then complete the proof of Theorem
10.1.2. We assume that (1) holds and let D be the Dirichlet polygon with
centre at the origin (which we may assume is not an elliptic fixed point of
G). The idea of this part of the proof is first to show that the Euclidean
boundary of D on has only finitely many components (so the surface
A/G has only finitely many "ends"). This allows us to express D in the form
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where K is a compact subset of and where each is a subdomain of
whose boundary on is connected. It is then only necessary to show that
only finitely many sides of D meet each for this is certainly true of the
compact set K. Actually, it is not essential for the proof to show that the
boundary of on is connected but the proof of this is very easy and it
can only increase the general understanding of the ideas involved.

The side-pairing elements of D generate G and so each element of some
finite generating set (which exists by (1)) is a finite word in the side-pairing
elements of D. It follows that a finite number of side-pairing elements
generate G: let these be g1, . . .,

Choose some r in (0, 1) such that the disc � r} contains arcs (of
positive length) of each of the sides of P paired by g1 g,. Let

K = n {z: zi <r}

(it is more convenient to take this K rather than its compact closure) and let

G(K) = U g(K).
9EG

Observe that for each j, the set K u is connected (K is convex) and
hence so is each

K u g1(K) ...
.
.. gjq)(K).

Because the generate G, this implies that G(K) is connected.
We may chooser in (0, 1) so that the circle = r} does not meet any

vertex of D and so that it is not tangent to any side of D. Then

= r} = u•• u

where the are pairwise disjoint closed arcs of {IzI = r} lying, apart from
their end-points, entirely in D. Note that by Theorem 9.4.3, the collection
of end-points of all the are also paired by the side-pairing maps. This
implies that each end-point of each is the end-point of some

h unique and of each sub-
sequent image of the and we deduce that each lies in a simple arc
comprising of images of the Because there are only finitely many
the arcs contain images of the same and the uniqueness of the con-
struction of the implies that is invariant under some non-trivial element

of G. Note that consists of the images of a compact arc under iterates
of If is elliptic (and hence of finite order) then F1 is a Jordan curve in

If is hyperbolic, then is a cross-cut of with the fixed points of
as its end-points. If h1 is parabolic, then is a closed Jordan curve in
apart from its initial (and equal final) point which is the fixed point of h1.
Note that a point of K cannot be equivalent to any point of any so G(K)
does not meet any
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Now let be the union of (a cross-cut of D) and the component of
that does not contain the origin: see Figure 10.1.2. Observe that F

separates and G(K) in A.
It is easy to see that is connected. Indeed, if u and v are distinct

points in this set, construct a curve by joining u to ru (on radially, then
ru to rv in and finally, rv to v radially. This curve, which we denote by

lies in D and does not meet G(K). If h I) is in G, then h(D) does not
meet and so lies on the same side of as does G(K). We deduce that the
region illustrated in Figure 10.1.3. does not meet any h(D), h I, and
so lies in D. This shows that n is connected.

We now return to the classification of the stabilizing and complete
the proof. If is elliptic, then is a Jordan curve in A so one component
of has a compact closure in A. If this component is then only
finitely many sides of D meet If this component is not D3, then it contains
G(K) and so G is finite: then the Dirichiet polygon for G obviously only
has a finite number of sides.

Suppose next, that h3 is hyperbolic so F3 is a cross-cut of A. One compo-
nent of A—Fi contains G(K) (and hence the orbit of the origin) and so every
limit point of G lies in the closure of this component. The other component
of contains D3 and there are no limit points on the open arc of that
bounds this component. However, lies in D and so lies between the geo-
desic bisecting the segment [0, and the geodesic bisecting [0, (hi) '0]
and these separate from the fixed points of We deduce that the
Euclidean closure of D3 lies in the set of ordinary points of G. As the Euclidean
diameters of images of D tend to zero (Section 9.3) we see that can meet
only a finite number of images of D and hence only a finite number of sides
of D.

Figure 10.1.2
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Figure 10.1.3

Finally, suppose that is parabolic. In this case, ÔA consists of a
single point, namely the fixed point of However, we know that two sides
of D end at a parabolic fixed point (Theorem 9.3.8) so in this case too, only
finitely many sides of D meet

Subject to proving that (3) implies (4) (in Section 10.2) the proof of
Theorem 10.1.2 is complete. 0

§ 10.2. Points of Approximation

Consider a Fuchsian group G acting in Let be a limit point of G so there
are distinct in G with converging to How fast (in Euclidean terms)
can converge to Clearly,

— � 1 —

with equality if, for example, is the nth iterate of some hyperbolic g with
axis equal to the Euclidean diameter [— of We conclude that the
fastest rate of convergence (to within a constant factor) occurs when

as n —÷ + cc. As the terms

K — = 0(1 —

2 p(0, 2/(1 —

U V
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are asymptotic to each other as n —* this fastest rate can be described in
hyperbolic terms, namely,

— = O(1/cosh p(O,

or in terms of matrices, namely,

K — =

Moreover, it is easy to see that we can replace the origin in the first two
expressions by any z in A. This is implicit in the next result which provides
yet another interpretation of this fastest rate of convergence.

Theorem 19.2.1. Let G be a Fuchsian acting in A, let be a limit point
of G and let gj, g2, be distinct elements of G. Then the following state-
ments are equivalent:

(1) JbreachwinA,

K — =

(2) for each w in A and each geodesic half-ray L ending at

L) = 0(1);

(3) for each geodesic half-ray L ending at there is a compact subset K of A
such that for all n,

0.

PRooF. In general, p(gw, L) � m if and only if g - 1(L) meets the compact
disc {z: p(z, w) � m}: thus (2) and (3) are equivalent and for a given L, (2)
is true or false independently of the choice of w. Further if L1 and L2 are
geodesic half-rays ending at then for some m1,

L2 {z:p(z,L1) �

so (2) is also true or false independently of the choice of L. For the remainder
of the proof, L will denote the Euclidean radius [0, and L' will denote the
Euclidean diameter (— Observe that if z is close to then

p(z, L) = p(z, L').
Suppose first that (1) holds. Then putting w = 0 we obtain

K — = 0(1 —

This implies that —* so for all sufficiently large n,

L) = L').
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If z e A then (from Section 7.20) we have

sinhp(z, L) = —____
— Iczi

-
— I —

2jz - Cl

- I — lzI

Putting z = with n large, we obtain (2) in the case w = 0. As (2) is
independent of the choice of w, we see that (1) implies (2).

Next, let z be in A and closer to C than to — C and let v be the foot of the
Euclidean perpendicular from z to L'. Then C is the point on ÔA that is
nearest to v and so

lz - Cl � lz - vj + lv - Cl
� z - vi + lv - (z/lzl)j
� 212 vi + Jz - (z/lzDl
�2lz-vl+(1 -lzD.

As

lz — vj = Im[Cz]j,

we deduce that

IZCI
� 2 sinh p(z, L') + 1

� 2 sinh p(z, L) + 1.

Putting z = and using (2), we find that (2) implies that (1) holds with
w = 0.

Finally, if w E A and

az+ë 2 2g(z) = —, al — ci = 1,
cz + a

we obtain (by direct computation)

g(w) - g(O)j
(1 - wj)coshp(0,gO)

(1 - (10.2.1)

because

al = cosh gO), Ad = sinh gO).

We have seen that (2) implies that (1) holds when w = 0. Clearly this with
(10.2.1) yields (1) for a general w.
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In view of the different characterizations of the fastest rate of convergence
it is convenient to adopt some suitable terminology.

Definition 10.2.2. A limit point of a Fuchsian group G is a point ofapproxi-
mation of G if for each win A there is a sequence of distinct g, in G with

I
— = 11—2).

Theorem 10.2.3. A point of approximation of a Fuchsian group G cannot lie
on the boundary of any convex fundamental polygon for G.

PROOF. Suppose that a point of approximation lies on the boundary of a
convex fundamental polygon P. By convexity, we can construct a geodesic
half-ray L lying in P and ending at By Theorem 10.2.1(3), the images

'(P) meet a compact set and this violates the fact that P is a locally
finite (see Definition 9.3.1).

Example 10.2.4. Every parabolic fixed point of a Fuchsian group G lies on
the boundary of some Dirichiet region: thus a parabolic fixed point of G
cannot be a point of approximation of G.

For a finitely generated groups, Theorem 10.2.3 and Example 10.2.4
give a complete description of the limit points of G.

Theorem 10.2.5. A Fuchsian group G is finitely generated and only jf each
limit point is either a parabolic fixed point of G or a point of approximation
of G.

Remark. Let us say that the limit set A splits if it contains only parabolic
fixed points or points of approximation of G. If G is finitely generated, then
there exists a finite sided convex fundamental polygon for G (because (1)
implies (3) in Theorem 10.1.2). We shall show that the existence of such a
polygon implies that A splits. We will also prove that if A splits then every
convex fundamental polygon for G has finitely many sides and this implies
that G is finitely generated (because (4) implies (1) in Theorem 10.1.2).
Observe that this reasoning shows that Theorem 10.1.2(3) implies that A
splits and hence that Theorem 10.1.2(4) holds. Thus in proving Theorem
10.2.5 in this way, we also complete the proof of Theorem 10.1.2.

PROOF OF THEOREM 10.2.5. First, suppose that A splits and let P be any
convex fundamental polygon for G. If P has infinitely many sides, then these
sides must accumulate at some point C on As the Euclidean diameters
of the images of P tend to zero, must be a limit point on 3P. By Theorem
10.2.3, cannot be a point of approximation of G and by Theorem 9.3.8,
C cannot be a parabolic fixed point of G (else.two sides of P end at C), This
contradicts the fact that A splits so P can only have finitely many sides.
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Now suppose that P is a finite sided convex fundamental polygon for G:
we may assume that P is a Dirichiet polygon (as the proof of Theorem
10.1.2 shows that in this case, G is finitely generated and then any Dirichiet
polygon is finite sided) and we may assume (for simplicity) that the con-
ditions stated in Theorem 9.4.5 hold. By conjugation, we may also suppose
that the centre of P is at the origin.

If two sides of P, say s and s', have a common end-point v on 8A, then v
is a parabolic fixed point of G (Theorem 9.4.5) and the stabilizer of v is
generated by a parabolic element p of G which maps s onto s'. Now con-
struct an open horocyclic region at v bounded by a horocycle Q. Note that
there is a compact arc q of Q such that Q is the union of the images pfl(q),
n a 1.

A similar construction holds for the free sides of P. Each end-point of a
free side is the end-point of some image of some free side. The interval of
discontinuity a in which a given free side lies is the countable union of
images of the finite number of free sides of P: these images are non-
overlapping and accumulate only at the end-points of a. It follows that some
h in G maps one image of a free side in a to another such image, also in a,
and so h(a) = a (because the intervals of discontinuity are permuted by the
elements of G). We deduce that h fixes both end-points of a and so is hyper-
bolic. The geodesic L with the same end-points as a is the axis of h and we
may assume that h generates the stabilizer of L. Note that there is a compact
sub-arc I of L such that L is the union of the images n E 1

The geodesics L and the horocycles Q are finite in number and they
separate the boundary points of P on from a compact subset P0 of P.
Let K denote the compact set consisting of the union of P0 and the finite
number of arcs q and I.

Now let be any limit point of G which is not a parabolic fixed point and
let L0 be a geodesic half-ray ending at The initial point of L0 can be mapped
to a point in P and the corresponding image of L0 cannot lie entirely in one
of the horocyclic or hypercyclic regions constructed above else it ends at a
parabolic fixed point or an ordinary point of G respectively. It follows that
either L0 meets P0 or, alternatively, L0 meets one of these regions in which
case some image of L0 meets one of the arcs q or I. In both cases an image
of L0 meets K and so there is some in L0 with, say, g0(z0) in K.

Now let be obtained from L0 by deleting the initial segment of L0 of
length n. Exactly as for L0, the ray contains some Zn with in K.
Clearly, -+ and the set {g1, g2, . . .} is infinite: thus by Theorem 10.2.1,

is a point of approximation and A splits.

EXERCISE 10.2

1. Verify Example 10.2.4 by working in H2 with the parabolic fixed point (use
Theorem 10.2.1(2)).
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§10.3. Conjugacy Classes

Any group is partitioned into the disjoint union of its conjugacy classes.
The classification of conformal Möbius transformations is invariant under
conjugation and so we may speak unambiguously of elliptic, parabolic and
hyperbolic conjugacy classes. Within the group of all Möbius transforma-
tions, the conjugacy classes are parametrized by the common value of trace2
of their elements but, as we shall now see, this is not true of the conformal
group of isometries of the hyperbolic plane.

Theorem 10.3.1. Within the group of all isometries of the hyperbolic plane,
two non-trivial conformal isometries are conjugate and only they have the
same value of trace2. Within the group of conformal isometries, the value
trace2 determines two parabolic or elliptic conjugacy classes or one hyperbolic
conjugacy class.

PRooF. We shall prove the result in detail for the parabolic case only. Using
the model H2, any two parabolic isometries are conjugate (in the group of
conformal isometries) to, say, z z + p and z z + q where p and q are
real and non-zero. These are conjugate in the group of conformal isometries
if and only if for some real a, b, c and d with ad — bc = 1, we have

a(z+ p) + b az + b
+c(z+p)+dcz+d q.

Putting z = —d/c, we find that cp = 0: thus c = 0 and op = dq. As ad = 1,

we have a2p q so p and q must have the same sign. This shows that within
the conformal group, trace2 determines two conjugacy classes of parabolic
elements. In the full group of isometries, however, the translations z z + 1
and z z — 1 are conjugate: indeed if a and /3 denote reflections in x 0
and x = respectively, then

fia =

so and are conjugate.
The elliptic case is handled similarly using the model A and two

rotations fixing the origin. The hyperbolic case is best handled in H2 with
two hyperbolic elements fixing 0 and In this case, each element is
conjugate to its inverse because there is a conformal isometry, namely
z i—+ — 1/z, interchanging 0 and co. E

We are now going to examine in detail the conjugacy classes in a Fuchsian
group.

Theorem 10.3.2. Let G be a Fuchsian group and let v1, v2,. . . be the parabolic
and elliptic fixed points on the boundary of some convex fundamental polygon
for G. Suppose that generates the stabilizer of vj: then any elliptic or para-
bolic element of G is conjugate to some power of some g3.
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PROOF. If g is elliptic or parabolic with fixed point v, then some h in G maps
v to some point on tiP. Thus for some j, we have h(v) = and then
hgh e <ga>. D

Corollary 10.3.3. If G is finitely generated, then G has a finite number of
maximal cyclic subgroups (g1 > <ar> such that any elliptic or parabolic
element in G is conjugate to exactly one element in exactly one of these sub-
groups.

We need only observe that if g is elliptic or parabolic and if two powers
of g are conjugate, say if

=gm,

then h has the same fixed points as g and so is itself a power of g: thus n = m.

Note that if g is parabolic and fixes v, then h also fixes v and so cannot be
hyperbolic.

Later, we shall need information on the number of such conjugacy classes
of these maximal cyclic subgroups in a subgroup G5 of G and the following
simple result is sufficient for our needs.

Theorem 103.4. Let G be a Fuchsian group and G1 a subgroup of index k in

G. Suppose that G and G1 have t and t1 respectively, conjugacy classes of
maximal parabolic cyclic subgroups. Then t1 � kt. The same result holds Jbr
elliptic elements.

PROOF. Let D be a Dirichlet polygon for G in which parabolic and elliptic
fixed points on have cycle length one. Thus exactly t parabolic fixed
points lie in ÔD. Now express G as a coset decomposition, say

D*=

contains at least one point from each G1-orbit. As D* has at most kt para-
bolic fixed points on its boundary, we have t1 � kt. The same proof holds
for elliptic elements.

We turn now to the conjugacy classes of hyperbolic elements in a Fuchsian
group.

Theorem 103.5. Any non-elementary Fuchsian group contains infinitely many
conjugacy classes of maximal hyperbolic cyclic subgroups.

PROOF. Suppose not, then there are hyperbolic elements h1,..., h7 in G
such that each hyperbolic element in G is conjugate to some power of some

Let u and v be distinct limit points of G. By Theorem 5.3.8, there are
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hyperbolic elements
. .

. with distinct axes A1, A2,... such that
has end-points u and v.

As each f,, is conjugate to some power of one of a finite number of the
we may relabel and assume that = h1 for every n. Then

=

say, and so the elements

have distinct axes and the same translation length T as h1. As con-
verges to the geodesic (u, v), this violates discreteness: explicitly, if z e (u, v),
then

sinh p(z,

-+

as ii —* + yet the are distinct.

Now let the conjugacy classes of hyperbolic elements in a Fuchsian
group G be C1, C2 The elements in have a common translation
length, say

Theorem 103.6. If G isfinitely generated then + asn —+ + cr0.

PROOF. Theorem 10.2.5 and its proof shows that every hyperbolic fixed
point of G is a point of approximation and moreover, that there exists a
compact subset K of A such that every hyperbolic axis has an image which
meets K. This means that every hyperbolic conjugacy class contains an
element with its axis meeting K. For some d,

K {z A: p(O, z) � d}.

From Sections 7.4 and 7.35 we obtain

= 2cosh p(O,

= 2 + 4sinh2

p(O,

2 + 4cosh2(d)

sol,—+ +ccasn-÷+oro.

Remark. Using known information about the convergence of series, for
example, Theorem 5.3.13, we can obtain more precise information about
the rate at which tends to + cc.

There are two types of hyperbolic elements in a Fuchsian group which
warrant special attention. First, there are the simple hyperbolic elements
(Definition 8.1.5). There are also the boundary hyperbolic elements h which
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are characterized by the fact that they leave some interval of discontinuity
on the circle at infinity invariant: of course, these only exist for Fuchsian
groups of the second kind.

Theorem 10.3.7. A finitely generated Fuchsian group has only afinite number
oJ conjugacy classes of maximal boundary hyperbolic cyclic subgroups. A
finitely generated Fuchsian group can have infinitely many conjugacy classes
of primitive simple hyperbolic elements.

PROOF. A finitely generated group G has a convex fundamental polygon P
with only a finite number of free sides, say s1 Each free side lies

in an interval of discontinuity whose stabilizer is generated by a boundary
hyperbolic element, say h1.

If h is any boundary hyperbolic element, it leaves some interval of dis-
continuity a invariant and we can construct a half-ray L ending at some
interior point of a and lying entirely in some image f(P) (because the images
of P do not accumulate at the interior points of a). As 1(L) lies in P and
ends at an ordinary point of G, it must end in some Thus f(a) = and
so fhf' leaves invariant: this proves that h is conjugate to some power
of

Finally, we must exhibit an example of a finitely generated Fuchsian
group which contains infinitely many non-conjugate primitive simple
hyperbolic elements.

Construct a quadilateral P in with vertices v1, v2, v3, v4 lying on the
circle at infinity. Let f and g be hyperbolic elements pairing the sides of P
as illustrated in Figure 10.3.1. By Poincaré's Theorem (see Exercise 9.8.2),
the group G generated by f and g is discrete and P is a fundamental polygon
for G. As J and g pair sides of a convex fundamental polygon, they are

Figure 10.3.1
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vs

simple hyperbolic elements of G (Theorem 9.7.1). It is clear from the
geometry of the actions that the axes of f and g cross P and this implies
that f and g are primitive.

Now let v5 = f(v1): then the quadilateral with vertices v1, v3, v4, v5 is
also a convex fundamental polygon for G, this time with its sides paired by
f and fg: see Figure 10.3.2. Exactly as above, f and fg are simple, primitive
hyperbolic elements.

This process can be repeated to obtain a sequence g, fg, f2g, .. . of prim-
itive simple hyperbolic elements of G. By conjugation, we may assume that
G now acts on H2 and that

ç
(u 0

1/u'
ía b\

d)'

where u > 1. A trivial computation shows that -+ + as

n —+ + cc so the sequence (fflg) contains infinitely many non-conjugate
elements (note that a is not zero else g and f have a common fixed point). 0

EXERCISE 10.3

1. Construct an infinitely generated Fuchsian group G containing infinitely many
conjugacy classes of simple primitive hyperbolic elements with the same translation
length (see Theorems 10.3.6 and 10.3.7).

2. Verify the details in the text relating to Figures 10.3.1 and 10.3.2 in the proof of
Theorem 10.3.7 (use Exercise 9.8.2). Give an alternative construction in which the
vertices are replaced by free sides and apply Poincaré's Theorem directly.

Figure 10.3.2
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§10.4. The Signature of a Fuchsian Group

Let G be a finitely generated non-elementary Fuchsian group. Any Dirichiet
polygon D for G is finite sided and topologically, is a compact surface
S of some genus, say g, with a certain number of holes removed. As and

are homeomorphic (Theorem 9.2.4), the genus g does not depend on
the choice of D.

Now consider the Nielsen region N for G and corresponding quotient
space The argument given in Section 10.3 shows that the boundary
of N in consists of all axes of all boundary hyperbolic elements in G. Let
A be one such axis with stabilizer generated by h and let H be the component
of is—A not containing N. Obviously, H is stable with respect to <h> so the
projection of H into is topologically a cylinder, namely H/<h> (Theorem
6.3.3). One end of this cylinder is the simple ioop A/<h>: indeed no image
of A can cross A (as the open arc of ÔA which bounds H contains only
ordinary points of G) and there are no elliptic elements of order two stabi-
lizing A (else G would then have only two limit points).

If we denote the natural projection of onto A/G by it, we see that
is the disjoint union of n(N) together with simple ioops of the form it(A)
and with cylinders of the form ir(H). The cylinders ir(H) are joined to rr(N)
across the common boundary loops ir(A) and there are the same number,
say t, of these as there are conjugacy classes of maximal boundary hyper-
bolic cyclic subgroups. It is clear now that the three spaces A/G, DIG, N/G
are homeomorphic to each other.

In addition, G contains only a finite number, say s, of conjugacy classes
of maximal parabolic cyclic subgroups and each of these corresponds to a
puncture on the surface S (consider the quotient of a horocyclic region that
is stable under a cyclic parabolic subgroup). Finally, G contains only a
finite number, say r, of conjugacy classes of maximal elliptic cyclic subgroups:
let these have orders m1, ..., respectively. We introduce terminology to
summarize these facts.

Definition 10.4.1. The symbol

(g:mj,...,mr;s;t) (10.4.1)

is called the signature of G: each parameter is a non-negative integer and
� 2.

If there are no elliptic elements in G, we simply write (g: 0; s; t). It is
possible to state precisely which signatures occur.

Theorem 10.4.2. There is a non-elementary finitely generated Fuchsian group
with signature (10.4.1) and � 2 and only (f'

2g—2+s+t+ (10.4.2)
\ mj/
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The proof that (10.4.2) is a necessary condition for the existence of a
group with signature (10.4.1) is a consequence of the following result.

Theorem 10.4.3. Let G be a non-elementary finitely generated Fuchsian group
with signature (10.4.1) and Nielsen region N. Then

h-area(N/G) = 2 + s + t + (i
—j=1

If G is also of the first kind, then N = A arid t = 0: thus we obtain a
formula for the area of any fundamental polygon of G.

Corollary 10.4.4. Let G be a finitely generated Fuchsian group of the first
kind with signature (g: in1 mr; s; 0). Then for any convex fundamental
polygon P of G,

= 22t[2g — 2 + s +

PROOF OF THEOREM 10.4.3. We take D to be the Dirichiet polygon ior G
with centre w so

h-area(D n N) = h-area(N/G).

By choosing w appropriately, we may assume that each elliptic and parabolic
cycle on has length one and (by taking w to avoid a countable set of
geodesics) we may assume that no cycle of vertices of D lies on the axes of
hyperbolic boundary elements.

Clearly, only finitely many distinct images of a hyperbolic axis can meet
the closure of any locally finite fundamental domain. As N is bounded by
hyperbolic axes (because G is finitely generated), this implies that only
finitely many sides of N meet D and so D n N is a finite sided polygon. The
boundary of D consists of, say, 2n paired sides (which are arcs of paired
sides of P) and k sides which are not paired (and consist of arcs in D of the
axes bounding N). The vertices of .D n N are the r elliptic cycles of length
one, the s parabolic cycles of length one, some accidental cycles of P (say
a of these) and finally k cycles of length two corresponding to the end-points
of the k unpaired sides of D n N.

Applying Euler's formula (after "filling in" the holes), we obtain

2—2g=(1+t)—(n+k)+(r+a+k+s)

so

n — a = 2g — 1 + r + S + t.
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Now join w to each vertex of D N, thus dividing D N into 2n + k
triangles. Adding the areas of these triangles, we obtain

h-area(D N) = (2n + k)ir — 2x — 2iw — —

j=1

= 27r[n — a — i — 1]

= —2 + s + t +
—

It is evident from the nature of the formula in Theorem 10.4.3 that
h-area(N/G) has a positive universal lower bound, valid for all groups G.
For brevity, write

A = (1/2ir) h-area(N/G)

and, in order to compute this lower bound, we may assume that A
this is a convenient number for the following analysis and we shall soon see
that there are groups for which A

Ifr = = 2foreachj,then A = n/2forsomeintegern.AsA >0,
we find that A � so we may assume that r > 0 and that some is at
least three. Then

1 > 6A

which yields

4g + 2s + 2t + r <4.

Because

2<A+2
� 2g + S + t + r
� 4g + 2s + 2t + r
<4,

we obtain

2g + S + t + r = 3

= 4g + 2s + 2t ± r

so

g=s=t=0, r=3.



§10.4. The Signature of a Fuchsian Group 271

We may now assert that

/1 1 1\
A = I — I— + — + I >0.

Vlli in2 m3j

If each is at least three, then one is at least four and then A � If
not, then m3 = 2, say, and so

>0.
\tn1 in2j

If each of m1 and in2 is at least four, then one is at least five and then A �
If not, then in2 = 3, say, and

with equality when and only when G has signature (0: 2, 3, 7; 0; 0). For
future reference we state this as our next result.

Theorem 10.4.5. For every non-elementary Fuchsian group G with Nielsen
region N

h-area(N7G) �

Equality holds precisely when G has signature (0: 2, 3, 7; 0; 0) in which case
N =

We end this section with the remaining part of the proof of Theorem 10.4.2.

PROOF OF THEOREM 10.4.2. Sufficiency. Given the symbol (10.4.1) satisfying
(10.4.2), we must construct a Fuchsian group G which has (10.4.1) as its
signature.

For any positive d, construct the circle given by p(z, 0) = d and also a set
of 4g + r + s + t points equally spaced around this circle (and labelled
in the natural way). The arcs subtend an angle 20 at the origin where

2it

— 8g + 2r + 2s + 2t

For the first four of these arcs, we construct a configuration with mappings
as illustrated in Figure 10.4.1. Note that the points z1, .. ., z5 are all

images of each other.
This construction is repeated g — 1 more times, starting the next stage

at 25 and so on: this accounts for 4g arcs an angle 8g6 at the origin
and mappings h1 h2q.

Using the next r arcs we construct configurations with mappings
e, as illustrated in Figure 10.4.2 (recall that the integers are available

(10.4.1) and in1 � 2). Necessarily, e1 is an elliptic element of order in1
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0

p(z,0)=d

= h5(z1) = h2(z3)

Figure 10.4.1

and fixing w1. This part of the construction accounts for an additional
angular measure of 2r0 at the origin. Next, we repeat the construction s
times and now on each occasion the corresponding are on =
the angle at w1 is zero and the corresponding mappings (for e1) are
parabolic.

There are now t remaining arcs, each subtending an angle of 28 at the
origin. On each of these arcs we construct the configurations and hyperbolic
mappings b1 as illustrated in Figure 10.4.3 where

(1 +d
= + 2d

We have now constructed a polygon with vertices v1, and with
side-pairings given by the h1, e1, and b1. The group G generated by these
maps may or may not be discrete but in any case, the points 21, zn,... lie
in the same G-orbit. Moreover, the angle sum subtended at these is

= + + ... + 13r+s+t)

p(z, 0) = d

0

///////

Wi

Figure 10.4.2
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p(z,O) = d zl = 1

Figure 10.4.3

Each of the angles and depend continuously on the parameter d. We
shall show that for some choice of d we have = 27r. Then Poincaré's
Theorem (see Exercise 9.8.2) implies that G is discrete and that the con-
structed polygon is a fundamental domain for G. It then remains to verify
that G does indeed have the signature (10,4.1).

By elementary trigonometry, we have (using Figures 10.4.1, and
10.4.3 in turn)

(i) cosh d = cot U cot

cos U cos +
(ii) coshd= .

sin 0 sin

when j = 1, ..., r, and a similar expression with cos(lt/m3) replaced by
lwhenj=r+l r+s;

cos cos + 1coshd= ,

sin sin

Note that as d 0, so -+ (1E/2) — U. In (ii), we have

cos(0 + = cos(lr
—

+ sin 0 sin d — 1)

and so as d 0,

'If iv — — 0,

with the appropriate interpretation of = + when r <j � r + s. In
(iii), we have

01 + it

so

'Ii it — 0.
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It follows that as d —+ 0, so

2 + s + t + (i — 1)] + 2x

>

As d + the angles and each tend to zero (note that 01 —* 0/2) so

in this case, 0. We deduce that for some choice of d, we have = 2ir

and G is then discrete.
It is clear that G has elliptic elements of orders m,. and also s

parabolic and t boundary elements and that these do not represent the same
conjugacy classes (essentially because they pair adjacent sides of the funda-
mental polygon). If has genus g*, then by Euler's formula applied to the
identified polygon,

2_2g*_s_t =l—(2g+r+s+t)+(l+r)
so (as expected), g* =

EXERCISE 10.4

1. Let G be a non-elementary Fuchsian group and suppose that a parabolic element g
in G generates the stabilizer of its fixed point v. By considering a suitable horocyclic
region H based at v, show that it(H) is conformally equivalent to a punctured disc
in

2. Show that there is a positive constant ö such that if P is any convex fundamental
polygon for some non-elementary Fuchsian group G, then P n N contains a disc of
radius at least ö. Obtain an explicit estimate of 5.

3. Let P be the hyperbolic quadilateral in H2 with vertices — 1, 0, 1, cii. Show that P
is a fundamental domain for the group G generated by

g(z) = z + 2, h(z) = z/(2z + 1).

Compute the signature of G and verify the formula for the area of H2/G explicitly in
this case. Find the index of G in the Modular group (this is a particular case of
Selberg's Lemma).

§10.5. The Number of Sides of a Fundamental
Polygon

We restrict our discussion in this section to a finitely generated group G of
the first kind. In this case, we can omit the last parameter in the signature
(10.4.1) and we can consider parabolic elements as elliptic elements with
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order = + Thus we can shorten the notation for the signature to
(g: ni1,. . . , m,,) or, if G has no elliptic or parabolic elements, to (g: 0).

Theorem 10.5.1. Let G he a finitely generated Fuchsian group of the first
kind and let P be any convex polygon G. Suppose that P has
N sides (where no side is paired with itself).

(i) If G has signature (g: m1 inn) where possibly n = 0, then

N � 12g + 4n — 6.

This upper bound is attained by the Dirichier region with centre w for
almost all choices of w.

(ii) If G has signature (g: 0), then N � 4g and this is attained for some P.
(iii) If G has signature (g: rn1,.., inn), n > 0, then

N � 4g + 2n — 2

and this is attained Jbr some P.

PROOF. Suppose that P has elliptic or parabolic cycles C1,..., C,, and
accidental cycles Cfl+A: either (but not both) of these sets of
cycles may be absent. In general, we let

I
C denote the number of points in

the cycle C.
Now

1C11 � 1 if 1 � n;

and

n+A

N=
j= 1

Thus

0 � A � (N — n)/3.

Euler's formula yields

2—2g=1—(N/2)+n+A (10.5.1)

and the inequalities in (i) and (iii) follow by eliminating A. The inequality
in (ii) follows from (10.5.1) by putting n = 0 and observing that as n = 0,
we have A � 1.
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The polygon P has N sides and hence N vertices. For almost all choices
of w, the Dirichiet region with centre w has = 1 for 1 �j � n and
C31 = 3forj > n. Then

3A = N — n

and so equality holds in (i). The proof of Theorem 10.4.2 (sufficiency)
shows that the lower bound of 4g in (ii) may be attained. Finally, a similar
argument to that used in the same proof shows that the lower bound in
(iii) may also be obtained: briefly, one constructs the polygon as though the
signature were (g: m1, .. ., and seeks a value of d so that
ç/(d) =

In the next section we shall study Triangle groups: these are the groups
with signatures (0: p, q, r) where (necessarily)

111- + - + -<1.
p q r

Observe that for almost all choices of the centre w, the corresponding
Dirichlet region has six sides: the customary fundamental polygon for such
groups is a quadrilateral yet, in some sense, this is the exceptional case.

§10.6. Triangle Groups

This section is devoted to an important class of Fuchsian groups known as
the Triangle groups. Roughly speaking, these are the discrete groups with
the more closely packed orbits and the smallest fundamental regions. We
begin with a geometric definition that does not mention discreteness.

Definition 10.6.1. A group G of isometries of the hyperbolic plane is said to
be of type f3, y) if and only if G is generated by the reflections across the
sides of some triangle with angles and y.

Of course, such groups exist if and only if fi and y are non-negative
and satisfy

0 � + fi + <ir.

Any two such groups of the same type are conjugate in the group of all
isometries (because two triangles with the same are congruent) and
there is no significance to be attached to the order of /1 and y in the triple
(ce, y).

The next example shows that such a group (even if discrete) may be of
more than one type.
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Example 10.6.2. Let T1 and T2 be the two triangles illustrated in Figure
10.6.1: the corresponding groups are

of type (0, ir/2, ir/3) and

=

G2 = <a1, a2' t>

of type (0, 0, 2it/3) where and r are reflections in the lines x = 0, x =
and x = 1 respectively and a2 is the reflection in z = 1.

Clearly,

= alt

so e G2 and t e G1; thus G1 = G2. In fact, the subgroup of conformal
isometries of this group is the Modular group and so G1 is itself discrete.

Note that

h-area(T2) = 2h-area(T1)

so T'2 is not a fundamental domain for G2.

Each group G of type /3, y) has a distinguished subgroup G0 of index
two in G, namely the subgroup of conformal elements of G: we call G0 a
conformal group of type (z /3, y). If a1, cr2 and cr3 denote the reflections
which generate G, then the elements of G0 are precisely the words of even
length in the a1 and G0 is generated by, say, a1a2 and a3 a2 because

= (a1c1)', a1a3 = (a1a2)(a3a2)'.

Figure 10.6.1
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Suppose that ;' is the angle of the triangle at the vertex v3 opposite the
side fixed by the reflection Then a1c2 fixes v3 and it is parabolic if? = 0

and elliptic with a rotation of angle 2? if y > 0. Thus G0 is generated by a
pair f. g of conformal isometries, each being elliptic or parabolic. It is con-
venient to consider parabolic elements as elliptic elements of infinite order
and we shall frequently adopt this convention in the following discussion.

If G of type /3,)) (or its corresponding conformal subgroup G0) is
discrete, then every elliptic element in G0 is of finite order. Thus if any of

/3 and ;' are positive, then they are necessarily of the form

(k, p) = 1 (10.6.1)

for (coprime) integers k and p. This is a necessary condition for discreteness
but it is not sujjic lent. Indeed, it is easy to see that if /3 and y are all positive,
then the images of the triangle T under G cover the hyperbolic plane. We
deduce that if G is discrete then two disjoint copies of T must contain a
fundamental region for G0 and so (from Theorem 10.4.5),

h-area(T) � m/42.

It follows that /3 and y are of the form (10.6.1) with

— + /3 +y) <ir/42

(and such angles clearly exist) then G0 is not discrete.
A sufficient condition for discreteness is that each of /3 and y is of the

form

pt/p, 2 � p � + (10.6.2)

for some integer p: indeed, if this is so then a direct application of Poincaré's
Theorem shows that G is discrete, This sufficient condition, however, is not
necessary: for example, G2 of type (0, 0, 2it/3) in Example 10.6.2 is discrete.

The apparent discrepancy between (10.6.1) and (10.6.2) is easily resolved.
A group of type (z /3, y) is discrete if and only if it is also of some (possibly
different) type (7r/p, rt/q, it/r): for example, G2 in Example 10.6.2 is also of
type (0, ir/2, 7r/3). This result will be proved later in this Section.

We shall confine our attention to discrete conformal groups and we
adopt the following standard terminology.

Definition 10.6.3. A group G is a (p, q, r)-Triangle group if and only if G is a
conformal group of type (ir/p, it/q, ir/r): we call G a Triangle group if it is a
(p. q, r)-Triangle group for some integers p, q and r.

Observe that, from the remarks relating to (10.6.2), a Triangle group is
necessarily discrete. Now we derive two results concerning Triangle groups.
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Theorem 10.6.4. A group G is a (p, q, r)-Triangle group and only it is a
discrete group of the first kind with signature (0: p, q, r).

Theorem 10.6.5. Let G be a discrete group of conformal isometries of the
hyperbolic plane. If G contains a Triangle group G0 as a subgroup, then G
itself is a Triangle group.

PROOF OF THEOREM 10.6.4. Suppose first that G is a (p, q, r) Triangle group.
Then C is the conformal subgroup of index two of a discrete group G*
generated by reflections and across the sides of a triangle T* with
angles pt/p, and it/r. Poincaré's Theorem implies that T* is a fundamental
domain for G* and so

T = T* u cr1(T*)

is a fundamental domain for G. Clearly, then, G is of the first kind.
The isometries

g = h = o-1a3

generate G and
gr = = = I:

see Figure 10.6.2. The images of a neighbourhood of v3 relative to T under
iterates of g tesselate a plane neighbourhood of v3 so (as T is a fundamental
domain) neither v1 nor v2 are images of v3. This shows that g is not conjugate
to any power of h or h 'g. By symmetry, then, C has three elliptic or para-
bolic conjugacy classes of subgroups represented by <g>, <h> and <h 'g>.

The genus k of is found from Euler's formula, namely

2 — 2k = (faces) — (edges) + (vertices)

= 1 —2 + 3:

V3 V2

03

1v1

Figure 10.6.2
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so G has signature (0: p, q, r). Alternatively, one can show that k = 0 by
applying the Area formula to T.

Now suppose that G is a discrete group of conformal isometries with
signature (0: p, q. r). Let D be a convex fundamental polygon for G with,
say, cycles of lengths Nq and Nr corresponding to the conjugacy classes
associated with p, q and r. Suppose also that there are t accidental cycles
of lengths, say, M1,..., M, so M1 � 3. Observe that as G is of the first kind,
D has no free sides.

Select any w in D and join w to each vertex of D. Equating areas, we obtain

L q

As each of the t + 3 terms on the right is a non-negative integer, only two
cases arise, namely

Case l.Np=Nq=Nr= 1;r= 1,M1 =3;or
Case 2. N, are (in some order) 1, 1, 2 and there are no accidental

cycles.

In Case 2, D has four vertices and so is a quadrilateral. Supposing that
Nq = Nr = 1, we see that D is as illustrated in Figure 10.6.3.

= h-area(D)

and so

j= 1

V2

V3 V1

V4

Figure 10.6.3
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The cycle corresponding to N5 (= I) is {v1} so the two sides ending at
t'1 are paired: thus

p(u1, v4) = P(V1, v2)

and so fi1 = 132. Similarly, = C2 SO

+ fit e2 + 132

= + + 131 + 132)

=

The properties of isosceles triangles guarantee that the segment v3] is

a line of symmetry of the quadrilateral so in this case G is the conformal
Triangle group associated with group generated by reflections across the
sides of the triangle with vertices v2 and v3.

In Case 1, D is a hexagon with elliptic (or parabolic) vertices v1, v3

and a single accidental cycle 02, 03}. The side-pairing must occur as in
Figure 10.6.4. where we have sub-divided D into the regions Q, T1 and T2. As

h(a2) = gf(a2),

we see that h = gJ (a2 is not an elliptic or parabolic fixed point). It is now
easy to see that Q u h(T1) u g(T2) is a fundamental quadrilateral with
vertices v1, v2, v3, h(v2)(=g(v2)) and this reduces Case 1 to Case 2. E

Figure 10.6.4

a1

V2
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Observe that this proof shows that a convex fundamental polygon Jbr a
Triangle group is necessarily a quadrilateral or a hexagon: the reader should
now review the remark at the end of Section 10.5.

PROOF OF THEOREM 10.6.5. In view of Theorem 10.6.4, we can work entirely
with the signatures of G and G0. As

0 < � � 2ir

we see that G0 is of some finite index kin G (Theorem 9.1.3). The case k = 1

is trivial so we may assume that k � 2, hence

= k (10.6.3)

� 2
According to Theorem 10.6.4, G0 has some signature (0: p, q, r). Let G

have signature (g: t1 ta): then the Area formula (Corollary 10.4.4)
yields

The left-hand side is at most one: so g = 0 or 1. If g = 1, then n � I (else
the area is zero) and (as � 2 and k � 2) we have

1 �kl

This cannot be so, however, as then equality holds throughout, G0 contains
parabolic elements (for then p = q = r = but G does not (t1 = ... =

= 2).
We deduce that g = 0 and (for positive area) n � 3. This yields

k 2 we obtain n � 5. If n = 5, then k = 2 and equality again holds
throughout: this is excluded exactly as above. Thus n = 3 or 4. If n = 3,

then G has a signature (0: t1, t2, t3) and so is a Triangle group. It only
remains to exclude the case g = 0, n = 4.
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Assume, then, that g = 0 and n = 4. We may assume that r � q � p and
p � t4 (as G0 contains an element of order p, so does G). Then

3 (1 1 11—--�1—

I)2]

p

This is false unless p = in which case, equality holds throughout so
k = 2 and the signatures of G0 and G are

(0: x), (0: 2, 2, 2,

respectively. This is excluded, however, by Theorem 10.3.4. 0

Finally, we turn our attention to conformal groups of an arbitrary type
/3, y). We observed earlier that these groups are generated by elliptic or

parabolic elements g and h which pair the sides of a quadrilateral with a
line of symmetry as illustrated in Figure 10.6.5. Conversely, given such a
configuration, it is clear that <a, h> is a conformal group of type /3, y).
Note that the reflection in (v1, 1)3) interchanges v2 and v4 so (v2, 1)4) is orthog-
onal to (vi, v3).

Theorem 10.6.6. A conformal group of some type /3, y) is discrete and

only if it is a Triangle group.

V3

1)4

V2

Figure 10.6.5
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y

U

Figure 10.6.6

PROOF OF THEOREM 10.6.6. By definition, a Triangle group is a discrete con-
formal group of some type /3, y). Now suppose that G is a discrete con-
formal group of some type /3, y): by virtue of Theorem 10.6.5, it is only
necessary to construct a Triangle group which arises as a subgroup of G.
We refer to Diagram 10.6.5 and there are three cases to consider.

Case 1: both g and h are elliptic.
As G is discrete, g is of finite order p and h is of finite order q, say. Thus there
is some in with angle of rotation 27r/p and some h1 in <h> with angle
of rotation 2ir/q. Now take conjugates (in G), say 82 of 8i and h2 of h1 such
that the fixed points u (of 82) and v (of h2) are distinct but otherwise are as
close together as possible: this can be achieved because the images of v3
cannot accumulate at v1.

Now construct the quadrilateral illustrated in Figure 10.6.6 by drawing
the geodesics at angles it/p and ir/q from [u, v]. These geodesics must meet
at some points x and y (possibly on the circle at infinity) as otherwise (from
Section 7.10)

1 + cos(it/p) cos(it/q)
cosh p(u, v) >

sin(ir/p) sin(it/q)

I + cos cos y>
sin sin y

cos /3 cos cos y

—

= cosh p(v1, v3)

contrary to our choice of u and v. As remarked earlier, (x, y) and (u, v) are
othogonal.

Now observe that
f =

x
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fixes x and is the reflection in [x, v] followed by the reflection in
[x, u]: indeed,

f =
If x is on the circle at infinity, thenJis parabolic and <g2, h2> is a (p, q, cc)
Triangle group. If x is a finite point, then f is elliptic and of finite order so
the angle at x is of the form kir/r with (k, r) = 1 (and f is a rotation of 22tk/r).
There is then some anti-clockwise rotation J'2 about x of angle 2ir/r. If k � 3
then f2(v) is nearer to but distinct from u, contrary to our choice of u and p.
Thus k = 1 or 2. Jfk = 1, then the angle at xis m/r and <g2, h2> is a (p, q, r)-
Triangle group. If k = 2, then

=

and so <h2, f2> is a (2, q, r)-Triangle group in G associated with the triangle
with vertices x, v, w. This completes the proof in Case 1.

Case 2: g is elliptic and h is parabolic.
We work in H2 and suppose that h fixes The line joining the fixed points
of g and h is necessarily a line of symmetry of the quadrilateral so the
situation is as illustrated in Figure 10.6.7.

The orbit of v1 contains points of maximal height (h is parabolic fixing
and this is essentially Jørgensen's inequality) and this symmetric con-

struction can be carried out using an image of v1 of maximal height instead
of v and a rotation of angle 2ir/p about this point (p being the order of g)
instead of g. Because the original angle at v1 is not less than 2it/p, the new
diagram provides a quadrilateral exactly as in Figure 10.6.7; however, we
may now assume that v1 is of maximal height in its orbit and that the angle
at v1 is 2ir/p.

If B = 0, then <g, h> is a (p, cc, co)-Triangle group. If 0> 0, then 0 = kit/r
for some coprime k and r. If k � 2 there is an anti-clockwise rotation f of
22z/r about v2 in G and f(v1) has greater imaginary part than v1. This cannot
be so: thus k = 1 and <g, h> is a (p, r, cc)-Triangle group in G.

Figure 10.6.7
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Case 3: g and h are parabolic.
We work in H2 and we may assume that g fixes 0 and h fixes co: the situation
is illustrated in Figure 10.6.8 and if 9 = 0, then <g, h> is a (co, co, cc)-
Triangle group. If 0 > 0, we construct the group h> where f = h01 is

elliptic and this reduces Case 3 to Case 2.

10.6

1. Show that if G is a Fuchsian group acting on and if h-area(A/G) < then G is a
triangle group. Show that the bound of 2t/3 cannot be improved.

2. Show that if G is a conformal discrete group of some type (a, [3, y), then it is of exactly
one type (lz/p, ir/q, ir/r).

3. Construct a fundamental quadilateral for a Hecke group H5 (q 3, 4,...) of signa-
ture (0: 2, q, and show that H5 is generated by a parabolic g and an elliptic h of
order two.

4. Let 03,03 and v4 be distinct points on and placed in this order around = 1}.
Let p and h be parabolic elements with

= tj, 04, h(i.'3) 03, h(c4) = u2.

Show that 'h is parabolic if and only if the cross-ratio [vi, 02, 03, 04] takes a

specific value. Is G = <p. Ii) discrete? In any event, the quadilateral is not a funda-
mental domain for G unless g 'h is parabolic.

§10.7. Notes
For information on finite sided polygons, see [9], [10], [34], [35], [38],
[46], [58], [76]. Points of approximation were studied by Hedlund (see
[51], p. 181): also, see [8] and [109]. For results on conjugacy classes and
subgroups, consult [49] and [97]. For a discussion of Triangle groups see
[48] (for angles of the form ita/b) and [65].

h

h

N \ I

Figure 10.6.8



CHAPTER 11

Universal Constraints On Fuchsian
Groups

§ 11.1. Uniformity of Discreteness

This chapter is concerned with the uniformity of discreteness exhibited by
Fuchsian groups. As there is no uniformity to be found in the class of
elementary groups, these must be regarded as exceptional. The Triangle
groups are also, in some respects, exceptional. In general, a sharp quanti-
tative expression for uniform discreteness will take a special form (depending
only on the signature) for Triangle groups, and another single form (in-
dependent of the signature) for all non-elementary non-Triangle discrete
groups. Thus it is the nature rather than the existence of the uniformity
which leads one to treat the Triangle groups as a special case.

We shall discuss the following aspects of uniformity.

(1) The distribution of a cycle of vertices of a fundamental polygon. What
are the geometric constraints relating to a cycle of vertices? What (if
anything) can be said about accidental cycles?

(2) The geometric constraints on the isometries. For example, how close can
two elliptic fixed points be in a discrete group? What are the constraints
on the translation lengths of hyperbolic elements?

(3) The location of canonical regions. Canonical regions were defined in
Section 7.37. The definition does not depend on discreteness: what can
be said in the presence of discreteness and what does this imply for the
quotient surface?

(4) The displacement p(z, gz). This has been discussed earlier (see,
for example, Theorem 8.3.1): what can be said when elliptic elements
are present?

(5) The constraints on the corresponding matrix group. A typical example of
this is Jørgensen's inequality.
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The results presented here do not form a complete and comprehensive
account of uniformity of discreteness. Nevertheless, they indicate from a
geometric point of view why such results must exist and references are given
to further results of this type.

Broadly speaking, our attitude here is to apply simple geometric ideas
to obtain universal constraints: these methods may fail for certain (and
usually, relatively few) Triangle groups and for these, the reader is invited
to supply individual computations.

§11 .2. Universal Inequalities for Cycles of Vertices

We establish here some of the universal constraints which must be satisfied
by a cycle of elliptic or even accidental vertices on the boundary of a funda-
mental polygon of a Fuchsian group.

First, consider a Fuchsian group G acting on H2 with g(z) = z + 1 in

G and generating the stabilizer of o. In this case, we can construct a funda-
mental domain as in Section 9.6, this being the region lying exterior to all
isometric circles and inside any strip of width one. Note that in this case,
each cycle of vertices lies on some horocycle lm[z] = constant.

By choosing the vertical strip x0 < x < x0 + 1 suitably, we may assume
that the cycle of vertices is (j = 1,..., n + 1) where = + iv and

xo=u1<u2<...<un+1=xo+l.
Now construct triangles 1T with angles as in Figure 11.2.1.

Wj

xo

Figure 11.2.1

T1 T2

w2/
' 1)

/
01

v/tan
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By noting that the lie in a fundamental region (by convexity) and by
considering the angle sum at the cycle (wi) we have

� (11.2.1)

where the cycle (wi) is of order q (for an accidental cycle, q = 1). Clearly, by
considering the Euclidean projection of the onto the x-axis, we have

V cot =

By Jensen's inequality, (1.2.2), we have (using (11.2.1) first)

cot

= 1/2vn.

This yields the following result.

Theorem 11.2.1. Suppose that g: '—p z + 1 generates the stabilizer of in a
Fuchsian group G acting on H2 and let w1, ..., be those vertices in a cycle
of order q which lie in some strip x0 � x < x0 + 1. Then

� l/2n tan(ir/qn).

For an accidental cycle, we have q = 1 and n � 3: thus we obtain the
next result.

Corollary 11.2.2. If(w1) in Theorem 11.2.1 is an accidental cycle, then

� * tan(ir/3) =

or, in an invariant form,

sinh �
Corollary 11.2.3. If (w1) in Theorem 11.2.1 is an elliptic cycle of order q
(q � 3) then

�
or, equivalently,

sinh � l/tan(it/q).

We shall see in Section 11.3 that the bound in Corollary 11.2.3 is best
possible.

We can also obtain inequalities for accidental vertices on the boundary of
a Dirichiet polygon.
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Theorem 11.2.4. Let G be a non-elementary Fuchsian group and let v1
be an accidental cycle on the boundary of the Dirich let polygon with centre w.

(I) if n � 5, then cosh p(w, � 1/tan2(it/n) � 189
(ii) if n = 4, then cosh p(w, v) is not less than some absolute constant I);

(iii) there is no universal lower bound in the case n = 3.

If G has no elliptic elements, a universal lower bound exists for all values
of n.

Theorem 11.2.5. Let G be a non-elementary Fuchsian group without elliptic
elements. If (vi) is an accidental cycle 01 vertices on the boundary of the
Dirichlet polygon with cenire w, then

cosh p(w, � \/2.
PROOF OF THEOREM 11.2.5. The cycle (vi) lies on a circle C, say p(z,w) = r}
and contains at least three vertices with, say,

v2 = g(v1), v3 =

Let G0 be the group generated by g and h. If G0 is elementary, then it is

cyclic with a parabolic or hyperbolic generator [ In either case, the points
v1, v2 and v3 cannot lie on a circle so G0 must be non-elementary. By Theorem
8.3.1,

sinh gv1) sinh hv1) � 1.
Now

p(v1, gv1) = p(v1, v2)

� p(v1, w) + p(w, v2)

= 2r

and similarly for Ii. We deduce that sinh r � I as required.

PROOF OF THEOREM 11.2.4. We may assume that G acts on and that w = 0

as all terms are invariant under conjugation. Thus the points v1 lie (and can
be assumed to be labelled cyclically) on some circle p(z, 0) = r. The arcs
(vi, (not containing any other v1) subtend an angle at the origin and

= it.

As the cycle length is at least three there is at most onej for which � it.
If < it then the triangle with vertices and angles
lies in the Dirichlet polygon and as the angle sum of the cycle is 2ir, we have

ej � it.

Note that from Section 7.12 (by considering one half of 7)

cosh r tan tan = 1:

see Figure 11.2.2.
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Figure 11.2.2

Now either each is less than 71/2 and then

(0. .4 � 2m

or exactly one (say is at least ir/2, in which case

+ � — ; �

p(z, 0) = r

In both cases, some 6k + is at most the average value which (as n � 5) is
at most 2ir/n. Thus for this k we have (see (1.2.3))

0k + ;\tan ; tan � tan2(
2

� tan2(ir/u).
This proves (i): note that it provides no information when n is 3 or 4.

The case n = 4 is more complicated and the proof of (ii) will be given in
Section 11.6.

To prove (iii), construct the polygon P illustrated in Figure 11.2.3. The
polygon has four pairs of sides with side-pairing elements g, h (each of

Figure 11.2.3

0
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order two), hg (hyperbolic) and f (parabolic). By Poincaré's Theorem, P is
a fundamental domain for the non-elementary Fuchsian group generated by
f, g and h.

This construction is possible if and only if 0 < ir/6 and then

cosh t sin(ir/3) = cos 0, 2t = p(v1, v2):

thus t 0 + as 0 —* iz/6 from below. Observe that each is the same distance
from w and that

cosh p(w, v1)tan(Tr/3) tan 0 = 1.

Thus as 0 iv/6, so p(w, v1) -+0.
It remains only to prove that P is actually the Dirichlet polygon D(w)

for g, h> with centre w. Now the sides paired by fare the perpendicular
bisectors of the segments [w, fn'], and [w, f — 'w]: a similar statement holds
for hg. Also the two sides making the edge [v1, v2] lie on the perpendicular
bisector of the segment [w, gw]: a similar statement holds for [v1, v3]. We
deduce that P contains the Dirichlet polygon D(w); as P is a fundamental
domain, it must be D(w).

Example 11.2.6. Given any integer k with k � 2 we can construct a Fuchsian
group G acting on which has as its fundamental domain a regular polygon
with 4k sides and all vertices lying in one accidental cycle (see Section 10.4).
Referring to the proof of Theorem 11.2.4(i), we find that = = it/4k so

in this case, equality holds in (i). Thus (at least for n of the form 4k), Theorem
11.2.4(i) is best possible.

Finally, we consider unbounded fundamental polygons (although the
idea in the following proof clearly extends to other situations).

Theorem 11.2.7. Let D be afundamental polygon for a Fuchsia.n group G and
suppose that D contains two points w1 and w2 on the circle at infinity. Let L
be the geod esic joining w1 and w2. If v is an elliptic fixed point of G of order n,
lying on the boundary of D, then

cosh p(v, L) � 1/sin(n/n) �

PROOF, The triangle with vertices w2 and v lies in D and so the interior
angle of this triangle at v cannot exceed 2it/n. This means that v cannot be
too close to L: the numerical details are left to the reader. E

Note that this result implies that no elliptic fixed point on lies in the
lens region between the two hypercycles making an angle ir/6 with L.

EXERCISE 11.2

1. Derive an inequality similar to (i) in Theorem 11.2.4 which is applicable to an
elliptic cycle of order q on the boundary of the Dirichlet polygon.

2. Is the bound in Corollary 11.2.2 best possible?
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3. Let D be a convex fundamental polygon for a Fuchsian group G. Show that if there
is some w such that the sides of D lie on the bisectors {z: p(:, w) = p(z, gw)}, gaG,
then D is the Dirichlet polygon with centre w.

4. Let D be a convex fundamental polygon for a Fuchsian group G acting in and
suppose that D contains a geodesic L. Prove that if {v1 is an accidental cycle
on aD then

coshp(r1, L) + ... + coshp(v,,, L) � �
Find a corresponding inequality when the form an elliptic cycle of order q.

5. With reference to Figure 11.2.3, show thatf - 'hg is parabolic (writef = 43, hg =
where a, /3 and y are reflections).

§11.3. Hecke Groups
In this section, we study the class of Hecke groups as these play an ex-
ceptional role in the following discussions.

Definition 11.3.1. A Hecke group is a Triangle group with signature (0: 2,
q, for some integer q satisfying 3 � q � + x.

Let
g(z) = — 1/z, h(z) = z + 2 cos(m/q):

then <g, h> has signature (0: 2, q, and a fundamental domain for <g, h>
is illustrated in Figure 11.3.1. As any two Triangle groups with the same
signature are conjugate, we see that any Hecke group with signature (0: 2,
q, is conjugate to <g, h>. Note that hg is elliptic of order q and fixes one
vertex of the triangle.

Figure 11.3.1

h

g

— cos(iz/q)

w

cos
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It is sometimes convenient to normalize the parabolic generator h so that
this is the map z + 1. Then g becomes

g(z) = 1/4z cos2(lr/q)

and this is elliptic of order two with fixed point i/2 cos(ir/q). Note that with
this normalization, the fixed point, say w, of order q satisfies

Im[w] = 4 tan(it/q):

this shows that Corollary 11.2.3 is best possible.
The next two results help in identifying Hecke groups.

Proposition 11.3.2. Let G be a Fuchsian group with parabolic elements. If G
has a fi4ndamental domain with h-area less than it, then G has one of the
signatures (0:2, q, oc) where 3 � q � + or(0: 3, q, where q = 3, 4or 5.

PROOF. As the fundamental domain has finite area, G has signature (k: m1,
say, the being present as G is known to include parabolic

elements. From Section 10.4 we deduce that

2it[2k —2 + — I) + i] (11.3.1)

and so (as mj � 2)

4k + n < 3.

Thus k = 0 and (for positive area) n = 2. With this information, (11.3.1)
now yields

I I I
+—

tn1 in2 2

and hence min{m1, m2} � 3. The result now follows easily.

Theorem 11.3.3. Let G0 be a Hecke group and let G be a Fuchsian group
containing G0. Then G = G0.

PRooF. We may suppose that G acts on H2 so

k h-area(H2/G) = h-area(H2/G0), (11.3.2)

where G0 is of index k in G. By assumption, G0 has signature (0: 2, p,
say, and so G has one of the signatures described in Proposition 11.3.2.

If k � 2 then

h-area(H2/G) � ir/2

and so G is also a 1-lecke group (see the proof of Proposition 11.3.2) with
signature (0:2, p, x). This contradicts (11.3.2)sok = 1 and G = G0.

For an alternative proof, recall that the elliptic fixed points of order q at
the vertices of the triangle in Figure 11.3.1 have the largest possible imaginary
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part for any group containing G0. In particular, their images by elements of
G cannot have a larger imaginary part so these fixed points must lie on the
boundary of the corresponding fundamental domain D for G (constructed
as in Section 9.6). It follows from convexity that D contains the triangle and
as G G0, D must be the triangle. Thus G = G0.

EXERCISE 11.3

1. With reference to Figure 11.3.1, show that hg is the composition of reflections in the
two sides with common vertex w and hence is a rotation about w of angle 2it/q.

2. Show that if G contains parabolic elements and if h-area(H2/G) < 2ir/3, then G is a
Hecke group.

§11.4. Trace Inequalities

The objective here is to obtain certain algebraic inequalities which must be
satisfied by two elements in order that they generate a non-elementary
discrete group.

Theorem 11.4.1. Suppose that the two parabolic elements g and h generate a
non-elementary Fuchsian group G. Then one of the following possibilities
must occur:

(1) trace[g,h] � 18;
(2) trace[g, h] = 2 + 16 cos4(m/r) and G has signature (0: 2, r, cc);
(3) trace[g, hi = 2 -i- 16 cos4(ir/2r) and G has signature (0: r, cc, cc).

PROOF. By conjugation, we may suppose that G acts on H2 and that

h(z) = z + 1, g(z) = z/(cz + 1).

By using g' if necessary, we may suppose that c > 0. As

trace[g, h] = trace[h, g] = 2 + c2, (11.4.1)

the three possibilities are equivalent to

(1) c � 4;
(2) c = 2 + 2 cos(27t/r);
(3) c = 2 + 2

c � 1, holds so assuming that (1) fails, we
have 1 � c < 4. Now construct the quadrilateral with sides formed by the
isometric circles of g and g' and the lines x = and x = see Figure
11.4.1. Observe that 1 � c < 4 implies that the point w does exist.



296 II. Universal Constraints On Fuchsian Groups

Figure 11.4.1

By considering reflections in x = 0, x = and Icz — I
I
= 1, we find that

hg 1 is a rotation of angle 20 about w. Thus for some k and r (which we
may assume are coprime) we have

0 = kir/r, c = 2 + 2 cos(kir/r).

If k = 1 or r = 1, then Poincaré's Theorem is applicable, the quad-
rilateral is a fundamental polygon for G and G has signature (0: r, cso):

this is Case (3).
If k � 2 and r is finite, then there is some f in G which is a rotation of

angle 27t/r about w. In this case, construct the quadrilateral in Figure 11.4.2.
Observe that as k � 2 we have lr/r = 0/k � 0/2 so (by elementary trigo-
nometry) �

Figure 11.4.2

h

0

cz — 1 = I

h

0
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Now the images under (h, .1> (and hence under G) of the quadrilateral
with angles 0, 2n/r cover the hyperbolic plane (because any curve
from w can be covered by images of the quadrilateral a small, but fixed,
distance at a time) and so G has a fundamental domain of area at most
it — (2ir/r). Proposition 11.3.2 implies that G is a Triangle group with
signature, say, (0: r1, s, x) where r divides r1. Thus

This shows that s = 2: thus equality holds throughout and so = it/2.
Because = it/2, we have 0 = 2it/r: then k = 2, r = r1 and this is Case (2).

Theorem 11.4.2. Suppose that h is parabolic and that g and h generate a non-
elementary Fuchs ian group G. Then

(1) hi � 3;
(2) 3 � trace[g, h] < 6 then G has signature (0:2, q, and

trace[g, h] = 4 + 2 cos(2it/q);

(3) if trace[g, h] < 18 then G contains elliptic elements.

PROOF. We may assume that G acts on H2 and that

az -F b
h(z) = 2 + 1, g(z)

= + d'

where ad — bc = 1 and c > 0. As (11.4.1) holds, we see that (1) is simply
Jørgensen's inequality. In order to prove (2), we assume that trace[g, h] <6
or, equivalently, c <2. This means that G has a fundamental domain lying
outside the isometric circle of g and inside a vertical strip of width one: see
Figure 11.4.3. As the isometric circle of g has a Euclidean diameter greater
than one, we see that H2/G has area less than it and so G has one of the
signatures given in Proposition 11.3.2.

Now observe that g = where is the reflection in L1 given by
Jcz dj = 1 and where 02 is the reflection in a vertical line L2. For any
choice of the integer n, let L3 be the line L2 translated by a (Euclidean)
distance n/2. Then

=

=

SO 030i is in G.
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Figure 11.4.3

Now let L be the vertical geodesic orthogonal to L1: see Figure 11.4.4.
By choosing n to minimize the Euclidean distance between L and L3, we
see that L3 meets L1 at a point w in an angle say. Thus fixes w and is
a rotation about w of angle Clearly, if t is the distance between L and
L3, then t � and

cos = ct

thus it/3. Also, 4 � ir/2.
Let p be the order of the fixed point w. Then = kir/p say, with (k, p) =

and hence

Figure 11.4.4

z1

+ dI = 1

(—d/c) — —d/c (—dic) +

L

(11.4.2)

L3

03

w

Icz + 1

t
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Also, by Corollary 11.2.3, we have

tan(ir/p) � 2 Im[wJ

= 2(1/c) sin

� sin(ir/3)

= (11.4.3)

so p = 2, 3 or 4. With these values of p, the only solutions of (11.4.2) lead to
= m/2, p = 2, w = so G contains as elliptic element f of order two

which fixes
If G has one of the signatures (0: 3, q, co) where q = 3,4 or 5, then q = 4

(as fE G). But in this case, w is a fixed point of order four so

2 Im[w] � tan(n/4)

contrary to (11.4.3). Thus G must be a Hecke group with signature (0:2, q,
cx) say. The elements h and f generate G and pair the sides of the triangle
illustrated in Figure 11.4.3 (withf interchanging the sides z1] and z2]).
From consideration of areas, we have

it — 2rt/q � it — 20

and so 0 � ir/q. On the other hand, the minimum angle of rotation in G is
2ir/q so 20 � 2it/q. This gives 0 = lt/q and

c = 2 cos(it/q)
which is (2).

If G has no elliptic elements then c � 4 (see the proof of Theorem 8.3.1) so
(3) holds. E

Similar results hold for elliptic elements in place of parabolic elements.

Theorem 11.4.3. Let g be a rotation of angle 2ir/n (n � 3) about some point
in the hyperbolic plane and suppose that f and g generate a non-elementary
Fuchsian group. Then apart from certain Triangle groups (which are listed
in the proof),

(1) trace[f, g] � 2 + 4 cos2(lr/n) � 3;
(2) — 41 + Itrace[f, g] — 2j � 4.

Remark. 1ff and g lie in a non-Triangle discrete group, then either g>
is elementary or (1) and (2) hold: see Theorem 10.6.5.

Remark. The inequality (2) is meaningful for all n � 3: this is not true if
the lower bound is replaced by one.

PROOF. We may suppose that f and g act on and that in terms of matrices,

0 '\ Ia
g

0 = (\c a
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Jzj = 1

where IaV — CV = 1. Now g> has a fundamental domain lying within
the region D illustrated in Figure 11.4.5: here, D is the region outside the
isometric circle of and within a sector of angle 2it/n situated symmetri-
cally with respect to the isometric circle.

The exceptional groups are those for which D is bounded. In this case,
the signature (k: m1, . . . , m5) satisfies

21z[2k — 2 + (1
— —i--)]

— 2ir/n (11.4.4)

� it —

say, where n divides ,n5. Thus k = 0 and s = 3. A more detailed investigation
of (11.4.4) now yields the exceptional cases

pn1 = 2 or (ni1, m2) = (3, 3), (3, 4) or (3, 5).

Assume now that <f. g> is not one of these exceptional groups. Then D
is unbounded and, noting that the isometric circle of f — is the bisector of
[0, JO], we may use the Angle of Parallelism formula to obtain

cosh JO) sin(lr/n) � 1,

or, equivalently,

sin2 (it/n) sinh2 JO) � cos2(it/n).

As

ci =

� cot(it/n),

a computation yields first (1) and then (2). 0

EXERCISE 11.4

1. Verify that (in the proof of Theorem 11.4.1) the assumption c > 0 ensures thatg acts
in the direction shown in Figure 11.4.1.

0

Figure 11.4.5
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2. Suppose that c > 4 and let G be generated by

h(z)=z+ I,

Show that G is discrete and find its signature.
Prove analytically and geometrically (which is much shorter) that 'is hyper-

bolic with translation length T where the hyperbolic distance between x = and
the isometric circle of g is

3. Suppose that G is a Fuchsian group acting on H2 which contains

h(z)=z+1,
cz + d

Prove that h-area(H2/G) � it/3.
Show that the triangle bounded by the isometric circle of g and the two vertical

lines

contains a fundamental domain for G and deduce that id � 1 (this is Jørgensen's
inequality).

4. As in the proof of Theorem 11.4.2, assume that c <2. Show that G contains an element
of order two as follows.
(i) Let

az+h (ad—bc=l)

be in G with the smallest (positive) value of possible. By considering the
matrix forf2, show that eitherf has order two or that � 1.
(ii) Show that for a suitable n, trace(h'f) < 1 so is of order two.

§11.5. Three Elliptic Elements of Order Two

Let f, g and h be elliptic elements of order two with distinct fixed points u, v
and w respectively. If u, v and w are collinear then the group G generated by
f, g and h is elementary for it leaves the geodesic containing these points
invariant. We shall assume that u, v and w are not collinear: let fi and y
be the angles and a, b and c be the lengths of the sides of the triangle with
vertices u, v and w: see Figure 11.5.1.

The three vertices of the triangle determine a positive number 2 which is
defined by

2 = sinh a sinh b sin y

= sinh b sinh c sin (11.5.1)

= sinh c sinh a sin fi,

the equality of these expressions being a consequence of the Sine Rule. If we
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view the side [u, v] as the base of the triangle lying, say, on the geodesic
then the height of the triangle is where

sinh p(w, = sinh a sin

Thus we may also write (in the obvious way)

A = sinh(base) x sinh(height),

regardless of the choice of which side is the base.
The quantity A is related to the elliptic elements f, g and h as follows.

Theorem 11.5.1. The absolute value of the trace of any of the isometries

is equal to 2A.
fgh, hfg, ghf, hgf, fhg, gfh

PROOF. First, is invariant under cyclic permutations of f, g and
h: for example,

Also,

I trace(fgh) = I
trace h(fgh)h -

= trace(hfg)I.

trace(fgh) I = I trace(fgh)
- 1

= Itrace(hgf)I

so itrace(fgh)i is invariant under any permutation of f, g and h.
Now let L be the geodesic through u and v. Construct

(i) the geodesic L1 through w and orthogonal to L;
(ii) the geodesic L2 through w and orthogonal to L1;

(iii) the geodesics L3 and L4 orthogonal to L with

see Figure 11.5.2.

p(L1, L3) = p(u, v) = p(L1, L4):

C

I
Figure 11.5.1
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L

p(u, v)

____

1

p(u, v)

L4

Figure 11.5.2

Denoting reflection in by we have

= h, = fg (or gf)
as fg is a hyperbolic element with axis L and translation length 2p(u, v). It
follows from Theorem 7.38.1 that

=

= (L2,L3).

Now the inversive product (L2, L3) is cosh p(L2, L3) when L2 and L3
are disjoint and it is cos when L2 and L3 meet at an angle (possibly
zero). In all cases (see Theorem 7.17.1, Lemma 7.17.3 and Theorem 7.18. l(iii))
we have

(L2, L3) = sinh p(L, L2) sinh p(L1, L3)

= sinh p(w, L) sinh p(u, v)

= A.

We shall now examine how the value of 2 determines the nature of the
group generated by f, g and h.

Theorem 11.5.2. Letf, g and h be elliptic elements of order two which generate
a non-elementary group G and let 2 be given by (11.5.1).

(1) If 2> 1 then G is discrete and has signature (0: 2, 2,2; 0; 1).
(2) If 2 = 1 then G is discrete and has signature (0: 2, 2, 2; 1; 0).
(3) If 2 < 1 then G is discrete only if A is one of the values

q q � q � 7:
the possible signatures for G are

(0:2,2,2,q;0;0),(0:2,3,q;0;0),(0:2,4,q;0;0).
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A construction of a fundamental domain for each discrete G will arise in
the proof and it will be apparent that every value of given in Theorem
11.5.2 does give rise to a discrete group. Thus we can derive the following
universal bound.

Corollary 11.5.3. 1ff g and h are elliptic elements of order two which generate
a non-elementar,y discrete group, then

and this is best possible.

Itrace(fgh)I � 2 cos(37r/7)

PROOF OF' THEOREM 11.5.2. We suppose first that > 1. Then we can con-
struct the polygon illustrated in Figure 11.5.3 where u' and v' are images of
u and L' respectively under some power of the hyperbolic element fg with
axis L. Note that

p(L3, L4) = 2p(u, v).

The elements fixing and v' are, say,
(Jgyflf(J'g) - m (fg)flg(fg) - fl,

respectively. The side-pairing maps of the polygon in Figure 11.5.3 generate
G and by Poincaré's Theorem, the polygon is a fundamental domain for
G. In this case, G has signature (0: 2, 2, 2; 0; 1). This proves (1): an obvious
modification gives (2) with = I precisely when L2 is tangent to L3 and L4
on the circle at infinity.

The case when < 1 is more difficult: here L2 meets L3 and L4 at an

Figure 11.5.3



Three Elliptic Elements of Order Two 305

Figure 11.5.4

angle 0 say and we consider the polygon illustrated in Figure 11.5.4. Note
that as discussed earlier, we have A = cos 0.

Suppose now that G is discrete. Then hgf (or hfg) satisfies

hgf = (a2a1)(a1c3)

=

nd this is rotation of angle 20 about Let q be the order of the elliptic element
gf so that 0 = for some integer p, (p, q) = 1.

If p = 1, we obtain a fundamental polygon for G and in this case G has
gnature (0: 2, 2, 2, q; 0; 0) and A = cos(it/q) where q � 3.

From now on we may assume that p � 2. The G-irriages of the compact
nadrilateral cover the hyperbolic plane (there is a positive r such that each
Dint of the quadrilateral lies in a disc of radius r covered by G-images) so

considering areas we have

2 + —
—

L \ iflJ/J

.ere G has signature (k: m1,.. ., ms). This gives

r positive area, we also have

4k —4 + s < 1.

0 < 2k —2 + s

so the only possibilities are k = 0 and s = 3 or 4.

L C,
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In fact. s = 3. To see this, assume that s = 4. As 6 contains an element
of order q, we may suppose that q divides in4. Then as p � 2, � 2 and
q � in4, we have

-
[2 L i=in1i

q

4<1——.
in4

This implies that m4 = and hence that 6 contains parabolic elements:
however this cannot be so as the quadrilateral is compact and contains
points from every orbit. Thus s = 3 and G is a Triangle group.

Let us now write the signature of G as (0: 1, m, n) where q divides n. By
Theorem 9.8.6, there is a positive integer N such that the quadrilateral
contains N images of each point in the plane. Thus by considering areas,

[ /1 1 l\1 27rp
2nNIl — i—+--+—ji = it—-——-.

L in nJJ q

As 0 = ?rp/q and as and are in the same orbit we find that N � p (consider
points close to Thus

m njj [ \1 in n

q

� i — (11.5.2)

The inequality between the first and last terms yields (as p � 2)

1 1 2p—l 3-+—�
I m 2p 4

and the solutions of this are

(I, in, p) = (2, 3, 2), (2, 3, 3), (2, 4, 2).

If (l,ni, p) = (2,4,2), then equality holds throughout (11.5.2) so q =
thus in this case G has signature (0: 2, 4, q) where q � 5 and A = cos(2ir/q).

If (I, m, p) = (2, 3, 3), equality again holds throughout (11.5.2) so q = n,

G has signature (0: 2, 3, q) where q � 7 and A = cos(3it/q).
For the remaining case, namely (1, in, p) = (2, 3, 2) we need a slightly

different argument. First, the elliptic fixed points u', v', w, and lie in at
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most two orbits (none can lie in the orbit of order three). This means that
N � 3 and using the middle terms of(l 1.5.2) we have

/1 l\ 46)-—-) � I —-
\ô n/ q

so q = n (because n/q is an integer). This actually completes the proof of
Theorem 11.5.2 as stated as this does not assert which signatures correspond
to which values of 2. Briefly, there exist integral solutions of the above
equations which do not correspond to discrete groups and a more detailed
analysis yields all possibilities. For example, the middle terms of (11.5.2)
yield

so

6N =3+—
n—6

(n, N) = (7, 9), (8, 6), (9, 5) or (12, 4).

However, N must be a multiple of three (consider the fixed points of order
three in the quadrilateral).

As an illustration of the possible cases, consider the quadrilateral
illustrated in Figure 11.5.5 where p(u', vv) = p(u, v'). Let fi and y be
reflections as shown. The three rotations of order two (fixing w, u' and v'
respectively) are a/I, (ay)2 and and these generate the same group as
a/3, fly and ya, namely a Triangle group with signature (0: 2, 4, q).

U

Figure 11.5.5

U,
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EXERCISE 11.5

1. Suppose that 1. g and/i are elliptic elements of order two with collinear fixed points
v, r and w respectively. Find a necessary and sufficient condition for <J, q, h) to be
discrete in terms of p(u, and p(v, w).

2. Give a proof of Theorem 11.5.1 using matrices (take g and h fixing i. ii and a + iv
respectively in H2).

§11.6. Universal Bounds on the Displacement
Function

Our aim is to obtain lower bounds of

M(g, h) = inf max {sinh gz), sinh 9p(z, hz)}

and

P(g, h) = inf sinh gz) sinh hz)

for various choices of g and h subject to <g, h> being discrete and non-
elementary. Observe that

M(g, h)2 � P(g, h).

Obviously, a lower bound on P(g, h) is preferable for it shows that if one
of the sinh terms is small then the other term is correspondingly large: this
does not follow from a lower bound on M(g, h). If g or h is elliptic, then
P(g, h) = 0 so one must use M(g, h).

The inequality

M(g, h) � m

means that for every z, either g or h moves z at least a distance 2 sinh'(rn).
It is known that in every case,

M(g,h) � 0131846...:

the existence of a lower bound was established by Marden: this lower bound,
which is best possible, was obtained by Yamada and is given in Theorem
11.6. 14.

The evaluation of the best lower bounds for M(g, h) and P(g, h) is in-
timately connected with the geometric constraints on g and h and both the
numerical bounds and the geometric constraints appear in this section. At
this point, the reader should recall Theorem 8.3.1: <g, h> is discrete, non-
elementary and has no elliptic elements, then P(g, h) � 1 and this lower bound
is best possible.

We shall obtain different lower bounds depending on the classification
of g and h. First, we assume that one of these is parabolic.
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Theorem 11.6.1. Letg andh be isometrics and suppose that <g, h> is discrete
and non-elementary.

(1) If g and h are parabolic, then P(g, h) � If, in addition, <g, h> is not a
Triangle group, then P(g, Ji) � 1.

(2) If g is parabolic and h is hyperbolic, then P(g, h) � If, in addition,
<g, Ii> is not a Triangle group, then P(g, h) � 4.
All four bounds are best possible.

PROOF. Let g be parabolic and let h be parabolic or hyperbolic. We may
suppose that g and h act on H2 and that

az + b
g(z) = z + 1, h(z) = , ad — bc = I.

cz + d

As <g, h> is non-elementary, c 0. Now h has two real, finite, possibly
coincident, fixed points a and v and

jz - h(z)Hcz + dl = cHz - uHz vi

� cJy2.

From Theorem 7.2.1 we obtain

sinh 4p(z, gz) sinh 4p(z, hz) = z — h(z) I. cz + d I /4y2

� Ici/4. (11.6.1)

From Jørgensen's inequality, cl � I so in both cases, P(g, h) �
Suppose now that <g, h> is not a Triangle group. If h is parabolic,

Theorem 11.4.1 yields id � 4 and so P(g, h) � 1. If h is hyperbolic, then
from Theorem 11.4.2 we deduce that Cl � 2 so P(g, h) � 4. This establishes
(1) and (2); the following examples show that these lower bounds are best
possible.

Example 11.6.2. The isometries g, h and f given by

z 2z+3
g(z) = z + 1, h(z) = , f(z) =z+1 z+2

are parabolic, parabolic and hyperbolic respectively and generate a discrete
group (a subgroup of the Modular group). A computation using (11.6.1)
with z = ly gives

sinh 41o(z, gz) sinh4p(z, hz) =

and

sinh 4p(z, gz) sinh 4p(z, fz) = + (3/4y2)

and, letting y tend to + cc, we see that the lower bounds of are best
possible.
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Example 11.6.3. Let g(z) = z + 1 and let h be the reflection in z + =
followed by reflection in x = 0 where 0 < t Thus h is parabolic and
fixes the origin: in fact,

h(z)
= (z/t)+ 1

Using (11.6.1), we see that when z = iy,

sinh 4p(z, gz) sinh 4p(z, hz) = 1/4t.

Clearly, <g, It> is a non-elementary Fuchsian group of the second kind.
Letting t tend to we find that the lower bound of one in Theorem 11.61(1)
is best possible. E

Example 11.6.4. Let g(z) = z + I and let h be an elliptic element of order
two fixing the point iv where 0 < v < 4. Then Kg, h> is discrete and non-
elementary: for example,

{zaH2: IRe[z]I <4, > v}

is a fundamental domain for <g, h>. Now write J = gh: then f is hyperbolic
and is a reflection in Jzl = v followed by the reflection in x = 4. It follows
that

(z/v) — v
f(z)

= (z/v)

= I — (v2/z)

sinh 4p(z, gz) sinh 4p(z, fz) =
— JZL

— 1z2 — z +
4vy2

Letting y tend to + with, say, x = 0, this expression tends to 1/4v. As v
can be arbitrarily close to 4, and as (g, h> = <g' f> we see that the lower
bound of 4 in Theorem 116.1(2) is best possible.

Next, we consider one elliptic and one parabolic generator: in this case
we must use M(g, h).

Theorem 11.6.5. Let g be parabolic, let h be elliptic of order q and suppose that
Kg, h> is discrete and non-elementary.

(1) If q � 3 then
cos(7r/q)

M(g, h)
[1 + 2 —

�
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(2) If q = 2, then M(g, h) �
(3) If, in addition, <g, h> is not a Triangle group, then for q � 2 we have

M(g, h) �
[1 +

— cos(z/q)J

�
All of these bounds are best possible.

PROOF. Let

m(z) = max{sinh gz), sinh hz)}.

We may assume that g and h act on H2, that g(z) = z + 1 and that h is a
rotation of angle 20 (where 0 < 20 < about a point w of the form iv.

For any z1, let z2 be the point where the horizontal line (a horocycle at
cc) through z1 meets the geodesic L from cc through w. Now let 23 be the
point on the half-ray [w, cc) such that z2 and 23 are equidistant from w (if
Im[z1] � Im[w] then z2 = z3 but not otherwise). Then

Im[z1] = Im[z2] � Im[z3],
p(z1, w) � p(z2, w) = p(z3, w)

arid so (see Section 7.35),

m(z1) � m(z3).

M(g, h) = inf m(z),

this means that we can confine out attention to ni(z) for those z of the form
iy where y � v. As y increases from v to + cc, so p(z, gz) decreases to zero
and p(z, hz) increases from zero to + cc: hence there is a unique z, say z = it,

where

sinh gz) = sinh 4p(z, hz)

and where this common value is M(g, h).
Now observe (from Section 7.35) that when z = it,

sinh gz) = 1/2t

sinh hz)
I
sin 0 sinh p(it, iv)

Thus

t2=v2+ •v

I

sin 6
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Ash is of order q (and h I), we must have Isin UI � sin(ir/q). By Corollary
11.2.3, ifq � 3, then

v � tan(21/q)

and so
2

4t2 � +
cos(ir/q)

As

M(g, h) = 1/2t,

the lower bound involving q in (1) follows. By elementary calculus, this is
an increasing function of cos(ir/q) and the lower bound of is the case
q = 3. It is clear that this lower bound is best possible for each value of q:
indeed, equality holds throughout this argument for the Hecke groups dis-
cussed in Section 11.3.

This argument fails if q = 2. However, in this case, v � 1 (the fixed point
lies on the isometric circle and, by Jørgensen's inequality,

I
Cl � 1) and

0 = it/2 and so t2 � 2: this proves (2). This is also best possible: for example,
take g(z) = z + 1, h(z) = — l/z and z =

Now suppose that <g, h) is not a Triangle group. As h is of order q, some
power of h, say is a rotation of angle 2ir/q about iv and <g, (= <g, h>)
is not a Triangle group. Exactly as above, we have

t2 � v2 + . (11.6.2)
sin(ir/q)

Now consider the quadrilateral (possibly with two free sides on the real
axis) with sides lying on the lines x = x = and the isometric circles
of h This quadrilateral is not bounded (Theorem 10.6.6), thus

V

[1 + (11.6.3)
sln(7r/q)

see Figure 11.6.1.

ir/q ir/q

Figure 11.6.1
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Using (11.6.2) and (11.6.3) we obtain

4t2 < cos(ir/q)

— 1 + cos(ic/q)

and the lower bounds in (3) hold. These lower bounds are best possible for
we can construct groups from a quadrilateral as suggested by the proof: we
omit the details. E

Next, we consider two elliptic generators.

Theorem 11.6.6. Letg andh be elliptic elements of orders p andq respectively
and suppose that <g, h> is discrete and non-elementary. Then

M(g, h) � —_31t12 =+ 7]

If, in addition, <g, h> is not a Triangle group, then

( [cos(lt/p) -I- cos(ir/q)]2 \1/2
1

M(g, h) � — [cos(it/p) - cos(it/q)]2) �
Both bounds are best possible.

We shall need the following geometric result.

Theorem 11.6.7. Letg be elliptic of order p with fixed point u, let h be elliptic
of order q with fixed point v and suppose that <g, h> is discrete, non-elementary
but not a Triangle group. Then

1 + cos(irjp) cos(ir/q)
cosh p(u, v)>

sin(it/p) stn(n/q)

PROOF OF TI-LEOREM 11.6.7. Some g1 in has angle of rotation some
h1 in <h> has angle of rotation and <g, h> = <g1, h1>. Thus we may
assume that g and h have angles of rotation 2it/p, 27r/q. Without loss of
generality, g and h act on u = 0 and a> 0. Now construct the isometric
circles of h and h' and the segments from the origin making an angle 7r/p
with (0, 1): see Figure 11.6.2. The rays L and L' are paired by g and the rays
L1 and L'1 are paired by h. If L and meet, then <g, h> is a Triangle group
(Theorem 10.6.6). If this is not so, then (Theorem 7.10.1) cosh p(u, v) is

bounded below by the given bound.

PROOF OF THEOREM 11.6.6. Write

m(z) = max{sinh gz), sinh hz)}.

Clearly if g or h is replaced by a rotation about the same point but with a
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smaller angle of rotation, then the corresponding m(z) decreases: thus we
may assume that g and h have angles of rotation 2ir/p and 2iv/q respectively.
We may assume that these act on that g fixes the origin and that h fixes
the point v where v > 0. Exactly as in the proof of Theorem 11.6.5, the mini-
mum value of ni(z) is attained at some point x of the real segment [0, v], where

sinh gx) = sinh 4p(x, lix)

and where this common value is M(g, h).
Now write

so p(x, v) = d — t. Also, write

p(O,x)= t, p(O,v) = d

= sin(ir/p), = cos(7r/p)

and, similarly, for sq. cq. Then

sinh t = sq sinh(d — t)

(both sides are M(g, h)) so

However,

Sq sinh d
tanh t =

Sp + Sq cosh d

= tanh2 t

I — tanh2 t

— (spsq)2[cOSh2 d — 1]

— + (sq)2 + 2spsq cosh d

Figure 11.6.2

M(g, h)2 = sinh2

(11.6.4)
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By elementary calculus, this is an increasing function of cosh d: thus if(g, h>
is not a Triangle group, then Theorem 11.6.7 is applicable and

spsq cash d � 1 + CpCq.

Substitution in (11.6.4) yields

M(g, h)2 �
+ cq)2

4 — — Cq)

which is the lower bound stated in the theorem. This lower bound is an in-
creasing symmetric function of and cq in the permitted ranges so taking say,
p = 3 and q = 2 (if p = q = 2 then <g, h> is elementary) we obtain a lower
bound of M(g, h)2 equal to It is clear from this proof that one can con-
struct groups to show that these bounds are best possible.

It remains only to establish the first (and smaller) lower bound in
Theorem 11.6.6 in the case when G is a Triangle group. Let G be a Triangle
group with signature (0: m, n, r). Suppose that g and h are associated with
the cyclic subgroups of orders in and n respectively (but they need not be of
orders m or n). The estimation of M(g, h) must allow for, and cannot be
smaller than, the estimation under the assumption that g and h have angles of
rotation 2it/m and 2it/n; thus we may assume that m = p and n = q. In this
case the fixed points u and v of g and h respectively must be separated by at
least a distance along the side of a triangle with angles m/p, and 2t/r
(otherwise we could construct a fundamental domain with area less than
the known value): thus by the Cosine Rule:

CpCq + C1.
cash p(u, v) �

Sp Sq

The identity (11.6.4) remains valid so

M h 2 > (CpCq + Cr)2 — (Spsq)2
(g, )

— + (Sq)2 + 2[CpCq + Cr]

— Cp —i-- Cq Cr CpCqCr

— 2 + 2Cr — — Cq)2

We need to obtain the infimum of this expression over all p, q and r
satisfying

11 1- + - + - < 1.
p q r

In fact the infimum occurs when r = 7, p = 2 and q = 3 (or when p = 3,
q = 2): in this case the lower bound is

4 cos2(ir/7) —
— 0.01 73

8 cos(m/7) + 7

In general, we have

2 + 2Cr — — Cq)2 � 4
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so

M(g, h)2 � + + + 2CpCqCr 1].

Assume for the moment that one ofp, q, r, is at least 8: another is at least
3 and then

M(g, h)2 � + cos2(n/3) — 1]

= 0025....

Thus in our search for a lower bound on M(g, h), we can assume that each
of p, q and r is at most 7: this reduces the problem to a finite number of
computations, however even most of these can be avoided.

If none of p, q and r are 2, then two are at least 3, the other being at least
4: then

M(g, h)2 � cos2(ir/3) + cos2(ir/4) + 2 cos2(ir/3)cos(it/4) — 1]

= 0.088....

Thus we may assume that one of p, q and r is 2. If none are 3, then the others
are at least 4 and 5 and then

M(g, h)2 � + cos2(7r/5) — 1]/4

> 0.038.

We deduce that one of p, q and r is 2, another is 3 and the third is at most
and (for positive area) at least 7. The lower bound is symmetric in p and q
and the numerator is symmetric in p, q and r. Thus we need only maximize

2 + 2Cr — Cq)2

over the possibilities

(p, q, r) = (2, 3, 7), (2, 7, 3), (3, 7, 2):

the details are omitted.

We turn our attention now to hyperbolic elements. First, we establish
geometric constraints which must be satisfied by any two hyperbolic elements
in a discrete group. The motivation for the next two results is the distinction
between simple and non-simple hyperbolic elements (Definition 8.1.5):

however, the results are more generally applicable than this, indeed, they
are concerned with whether or not the projection of the two axes cross on
the quotient surface.

Theorem 11.6.8. Let g and h be hyperbolic elements with axes and translation
lengths A9, Ah, 7 and Th respectively. Suppose that <g, h> is discrete and non-
elementary and that A9 and Ah cross at an angle 0. Then

(1) sin U � cos(3it/7) = 0.2225....
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In fact
(2) sin h(4'I) sin 9 �

except possibly when <g, h> has one of the signatures (0: 2, 3, q), (0: 2, 4, q)
or (0: 3, 3,4) and

(3 sinh(47) sinh(4T9) sin B � 1

<g, h> has no elliptic elements or has an unbound ed fundamental domain.

In particular, (1 g is a non-simple hyperbolic element in (g, h> then
� [cos(3it/7)]"2(= 047..

PROOF. Let u be the point where A9 and Ah cross and construct points v and
W on A9 and Ak respectively such that p(u, v) = 4T9, p(u, w) = and such
that the triangle with vertices u, v, w has angle 0 at u. Let f,, and be
elliptic elements of order two fixing u, v and w respectively. Replacing g
and(or) h by their inverses as necessary, we may assume that

We deduce that every product of an even number of and f,., is in <g, h>:
thus <g, h> is of index one or two in and so this latter group is
discrete.

Recalling the results of Section 11.5, we may write

sin 0 = A

=

and Theorem 11.6.8 follows essentially from Theorem 11.5.2 and its proof.
First, (1) is Corollary 11.5.3. If <g, h> has no elliptic elements, then (3)
follows from Theorem 7.39.4: if <g, h> has an unbounded fundamental
domain, then (3) follows from cases (1) and (2) of Theorem 11.5.2.

It remains to verify (2). According to Theorem 11.5.2(3), we see that the
lower bound of in (2) holds except possibly in the cases when A is of the
form cos(2ir/q) or cos(3it/q). It is now necessary to examine the proof of
Theorem 11.5.2 to see when this can arise. For brevity, we denote
by G* and <g, h> by G.

Referring to the proof of Theorem 11.5.2, we need only consider the cases
p = 2 and p = 3. However, G* contains a product of three elliptic elements
of order two which is a rotation of 2itp/q. Thus if p = 2, there is a rotation
r of angle 2ir/q such that r2 is a product of three rotations of order two. As
r e G* we have r e G: hence G contains a rotation of order two. In this case,
G = G* so G has one of the signatures (0: 2,3, q) or (0: 2,4, q).

The remaining case is p = 3: here G* has one of the signatures (0: 2, 3, q)
where (see the proof of Theorem 11.5.2) q = n = 7 or 8. A tedious arithmetic
exercise on areas shows that if G has index two in G*, then the only possible
signature for G is (0: 3, 3, 4).

The last assertion concerning non-simple hyperbolic elements is an
application of(1) in which h is taken to be a conjugate of g. IIJ



318 II. Universal Constraints On Fuchsian Groups

Theorem 11.6.9. Let g and h be hyperbolic with axes and translation lengths
Ag, Ah, i; and respectively. Suppose that <g, h> is discrete and non-
elementary and that no images of Ag and A,, cross. Then

sinh(47) cosh p(Ag, A,,) � cosh(4T,,) — 4.

If <g, h> has no elliptic elements, we can replace —4 by + 1 (and the lower
bound by 2).

If g is a simple hyperbolic element in <g, h> this result can be applied
with h being any conjugate, say fgf -1, of g. Thus (by elementary manipu-
lation) we obtain the next inequality.

Corollary 11.6.10. If g and h are hyperbolic elements generating a discrete
non-elementary group and g is a simple hyperbolic element in this group,
then for all f in <g, h>, either f(A9) = or

This bound is best possible.

sinh(47) sinh 4p(Ag, fA5) � 4.

The next example shows that the lower bound of 4 is best possible.

Example 11.6.11. Construct the polygon D as in Figure 11.6.3 where f
(elliptic of order two) and g (hyperbolic) pair the sides of D. By Poincaré's
Theorem, D is a fundamental polygon for <fe> and as g pairs the sides of
D, g must be a simple hyperbolic element. Finally,

Figure 11.6.3

sinh 4p(A9, fAg) = sinh 4p(L, L') sinh p(O, A9)

= cos(ir/3).



§11.6. Universal Bounds on the Displacement Function 319

PROOF OF THEOREM 11.6.9. Consider Figure 11.6.4. As g (or g ') is
and h (or h — 1) is 02Cr3 we see that 02 is in G. If G has no elliptic elements,
then L1 and L2 cannot intersect (this case is not illustrated) and from
Theorem 7.19.2 we obtain

cosh p(A9, Ab) = cosh p(L1, L2).

This yields the second inequality.
If L1 and L2 intersect, say at an angle 8, then 8 = 2irp/q for some coprime

integers p and q. If 0 > we can rotate Ah about the point of intersection
to an image of itself which is closer to (but, by assumption, not intersecting)
A9. Thus if, in the argument above, we replace h by a conjugate fhf1 of It
with the property that its axis f(Ah) is as close as possible to (but distinct
from) A9, we find that

p(A9, A,,) � p(A9, fA,,)

and the corresponding 0 satisfies 8 � 2it/q � 2ir/3 as obviously 0 < it. Thus
from Theorem 7.18.1 we obtain the first inequality, namely

cosh p(A9, A,,) � cosh(47) + cos(2it/3).

Theorems 1 1.6.8 and 11.6.9 yield the following bound on P(g, It).

Theorem 11.6.12. Let g and h be hyperbolic elements which generate a discrete
non-elementary group. Then P(g, h) � cos(3ir/7).

Figure 11.6.4
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PROOF. If the axes of g and h cross at w, say, then obviously (using the notation
of Theorems 11.6.8 and 11.6.9)

P(g, h) = sinh gw) sinh hw)

=

� cos(3ir/7).

The same inequality holds if any images of Ag and A,, cross, If not, then
Theorem 11.6.9 is applicable and we obtain

sinh gz) sinh p(z, cosh p(z,

Ag)

cosh A,,)

� 4[cosh(47) cosh(4T,,) — 4]

> cos(3i/7). E

Finally, we consider M(g, h) for one elliptic and one hyperbolic element.

Theorem 11.6.13. Let g be hyperbolic and let h be elliptic of order q (q � 2).
if <g, h> is discrete and non-elementary, then M(g, h) �

PROOF. If g is a non-simple hyperbolic element of <g, h) then (from Theorem
11.6.8)

M(g, h) � sinh(47)
�
>

We may now assume that g is a simple hyperbolic element. In this case,
the fixed point v of the elliptic h cannot lie on A9 and a rotation of Ag of an
angle 2ir/q about v must map A9 onto a disjoint image which we may assume
is h(A9): see Figure 11.6.5.

From Section 7.17 we have

cosh p(v, Ag) sin(ir/q) = cosh 4p(A9, hAg)

� sinh 4p(A9, hA9)

and, from Corollary 11.6.10 (applied to <g, hgh —

sinh(47) sinh 4p(A9, hA9) � 4.

Thus

cosh p(v, A9) sin(ir/q) � 4.
This expresses a geometric constraint between the parameters 1, 2it/q and
the separation of g and h as measured by p(v, Ag). Writing

m = max{sinh 4p(z, gz), sinh 4p(z, hz)}
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we have

4. � sin(ir/q) sinh(4-7) cosh[p(v, z) -i- p(z, Ag)]

= sinh(4-T9)[cosh p(v, z) cosh p(z, A9) + sinh p(v, z) sinh p(z, A9)]

� m sin(ir/q)[1 + sinh2 p(v, z)]112 + m2

� m[sin2(iv/q) + rn2]112 + m2

� m(1 + rn2)'t2 + m2,

which certainly implies that m �

Collecting together all the results in this section we obtain a universal
lower bound on M(g, h).

Theorem 11.6.14. Ifg and h generate a non-elementary discrete group, then
M(q, h) � 0.1318 . . . and this lower bound is attained by two elliptic generators
of the (0:2, 3,7)-Triangle group.

We end this section by completing an earlier proof.

PROOF OF THEOREM 11.2.4(2). We consider an accidental cycle of four
vertices, say

v1, f(v1) = v2, g(v,) = v3, h(v,) = v4

on the boundary of a Dirichiet polygon: thus the lie on a circle with, say,
centre w and radius r. If g> is non-elementary, then, as we have just seen,

M(f,g) � 01318...

Figure 11.6.5
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and so for somej (=2 or 3),

0.1318... � sinh

� sinh w) + p(w, vi)]

� sinh r.

The same is true of <g, h> or <h, f> is non-elementary: thus it is sufficient
to consider the case when all three groups <g, h>, <h, f> and g> are
elementary.

We assume that these three two-generator groups are elementary. As
v1, v2 and v3 are concyclic, either g> is cyclic with an elliptic generator
or it is generated by two elliptic elements of order two. The first case cannot
arise (else the elliptic generator fixes w): in the second case, one off and g,
say, g, must be elliptic of order two. A similar argument holds for the other
two groups so without loss of generality, we may assume that both g and Ii
are elliptic and of order two.

1ff is hyperbolic, then as g> and h> are elementary, the axis of f
contains the fixed points of g and h and g, h> is elementary. 1ff is elliptic
of order two, either the three fixed points wj, w9 and Wh off, g and h are
collinear, and again <f, g, h> is elementary, or w1, w9 and w,, are non-
collinear in which case g, h> is non-elementary.

If g, h> is non-elementary, then from Section 11.5 we have

sinh p(Wf, Wg) sinh p(wj, wh) �
� cos(3ir/7).

However,

p(Wf, w9) � v1) + p(v1, wg)

= j-p(v1, v2) + 4p(v1, v3)

� w) + p(w, v2) + p(v1, w) + p(w, v3)]

= 2r

so in this case,

sinh2 (2r) � cos(3ir/7).

There remain the cases in which K!. g, h> is elementary and we shall
show that these cannot happen. We may suppose that the group acts on H2
and that <f. g, h> leaves the positive imaginary axis invariant. The orbit of
any point (not on the axis) is, say,

{. .., 1' z0, z1, .. .} u {. .
., w_ w0, w1, ..

where this is illustrated in Figure 11.6.6 and where for each],

p(z1, z1+1) = = t,

say.
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Figure 11.6.6

Now recall that in order that four points v1, v2, v3, v4 chosen from this
orbit lie on the boundary ofthe Dirichiet polygon with centre w, it is necessary
that these four points are the points in the orbit which are closest to (and
equidistant from) w. Elementary metric and geometric considerations show
that this can only happen when the centre w lies on the positive imaginary
axis and I = w0 (after relabelling) with, say

02, 03, 04} = {z0, z1, w0, w1}.

(consider the bisectors of the [vi, vi]: these must meet at w). Suppose that
= z0 and 02 = w1 (a similar argument holds for the other possibilities).

Then w is the mid-point of [vi, v2] and f (which maps v1 to must be

elliptic of order two: it follows that f must fix w, a contradiction. fl

EXERCISE 11.6

1. in the case of Theorem 11.6.1(1) we have M(g, h) � Use Example 11.6.2 to show
that this is best possible.

2. Suppose that (f, g> is elementary. Prove that if gv are distinct points on a circle
with centre w then either

(i) fand g are elliptic fixing w or
(ii) one off and g is elliptic of order two (they cannot both be hyperbolic).

3. Consider Figure 11.6.3. Using reflections in Land in the real and imaginary diameters
of show thatf - 'g is an elliptic element of order three fixing one vertex of D.

4. Let G be a (p, q, r)-Triangle group. Suppose that G contains g of order p fixing u and f
of order q fixing v. Prove that

cos(7t/p) cos(it/q) + cos(r/r)
coshp(u, �

sin(ir/p) sin(rlq)

(this is used in the proof of Theorem 11.6.6). Hint: construct a quadilateral with
angles 2n/p (at u), 2m/q (at t'), 0, 0 which contains a fundamental domain for G.

Wi z1

0
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5. Let G be the Modular group and let g in 6 be hyperbolic with axis A and translation
length 1. Let N9 be the number of images of A which intersect a fIxed segment of
length on A. Show that the average gap between images, namely N9/7, can be
arbitrarily small: more precisely, prove that

lflfNg/Tg = 0.

6. Let g be a non-simple hyperbolic element in a Fuchsian group without elliptic
elements. Show that if g has translation length T then � 1.

§11.7. Canonical Regions and Quotient Surfaces

The reader is invited to recall the geometric definition of a canonical region
g (see Section 7.37): analytically,

= {z: sinh gz) < 4jtrace(g)J }.

If g is parabolic, then

= {z: sinh gz) < l},

while if g is hyperbolic with axis A and translation length T, then

= {z: sinh p(z, A) < 1}, (11.7.2)

because in this case E9 is given by

sinh p(z, A)

(11.7.3)

Almost any Riemann surface R is conformally equivalent to A/G for
some Fuchsian group G without elliptic elements. The hyperbolic metric
on A projects to A/G and so transfers to R. With this in mind, the following
result gives quantitative information on the metric structure of R.

Theorem 11.7.1. Let G be a Fuchsian group without elliptic elements, and
suppose that g and h are in G.

(1) If g and h are parabolic elements with district fixed points, then and
are disjoint.

(2) If g is parabolic and h is a simple hyperbolic element of G, then and Eh
are disjoint.

(3) If g and h are simple hyperbolic elements of G whose axes do not cross,
then and Eh are disjoint.

Essentially, this means that each puncture on R lies in an open disc and
each simple closed geodesic loop on R lies in an open "collar": the discs do
not intersect each other or the collars; two collars are disjoint if the corre-
sponding loops are disjoint. Further, we know the sizes of the discs and
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collars (by computing the size of a canonical region) and each is the quotient
of a horocyclic or hypercyclic region by a cyclic subgroup of G. Observe
that Theorem 11.7.1 applies to boundary hyperbolic elements.

PROOF. For a Fuchsian group without elliptic elements, we have (Theorem
8.3.1)

sinh 4p(z, gz) sinh 4p(z, hz) � 1,

whenever <g, h> is non-elementary. In view of (11.7.1), this proves (1). For a
geometric proof of (1), we may assume that

g(z) = z + 1,
z

cz + 1

The isometric circles of h and h 1 must lie in the strip xl < 4(else G contains
elliptic elements) and this implies that and (constructed geometrically)
are disjoint.

We shall give a geometric proof of (2): an analytic proof is tricky and re-
quires the inequality

sinh 4p(Ah, gAb) � 1:

see the proof of Theorem 8.2.1. We invite the reader to supply the details.
For the geometric proof, suppose that g(z) = z + 1 and construct the

axis A ofh and geodesics L1, L2, L3 and L4 as in Figure 11.7.1.
Clearly and a2a4 are each h or h'. Now L1 cannot meet the line

x = x0 + 4 and L2 cannot meet the line x = — 4 else G would contain
elliptic elements.

Moreover, A,, cannot meet the lines x = x0 — 4, x = x0 + 4 as other-
wise, Ah has Euclidean radius greater than 4 and then A,, meets g(A,,)
(contradicting the fact that h is simple). Thus the real interval [w1, w2] lies
strictly within the real interval [x0 — 4, x0 + 4]. The canonical region for

L4

Figure 11.7.1

L3

xo w2
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h is bounded by the hypercycle which is tangent to L3 and which ends at
the end-points of 4h (because Ii(L2) = L1): the canonical region for g is
above the geodesic with end-points x0 — x0 + k so n = 0. This
proves (2).

To prove (3), consider Figure 11.7.2 with the geodesics L, L1, L2 as
illustrated. Observe that

g'(A5) =
=

As h is a simple hyperbolic element, we see that L1 cannot meet Ah (else
cl(Ah) is an image of which meets Ah). Similarly, L2 does not meet A5.
We know also that and L2 do not meet (as a2o2a1 e G). It follows that
there is a geodesic L* with L1 and g(L1) one side of L* and with L2 and h(L2)
on the other side of L*. It is now immediate from geometric considerations
that Z5 n = 0.

For an analytic proof of (3) observe that as L1 and L, do not meet, we
have (Theorem 7.19.2),

cosh p(A5Ah) � 1 + cosh(4T5).

If n Eh 0 then for some z in the intersection, (11.7.2) and (11.7.3)
hold (with h as well as g) so

sinh(47,) cosh p(A5, Ah)

< sinh(47,) cosh[p(z, A5) + p(z, A5)]

= sinh(+T5) p(z, A5) cosh p(z, A5)

+ sinh p(z, A5) sinh p(z, A5)]

cosh(4T5) + I

contradicting the application of Theorem 7.19.2.

Figure 11.7.2
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It is possible to establish certain results for canonical regions even for
Fuchsian groups with elliptic elements. For example, we have the following
result.

Theorem 11.7.2. Let G be a non-elementary, non-Triangle Fuchsian group. If
g and h are elliptic or parabolic elements in G, then either <g, h> is cyclic or
the canonical regions and Eh are disjoint.

PROOF. We may assume that g and h are primitive (this can only increase
the'size of and En). Construct the geodesic L through (or ending at) the
fixed point u of g and the fixed point v of h. Construct geodesics L1 and L2
through u which are symmetrically placed with respect to L such that
g(L1) = L2: repeat this construction using L3 and L4 through v in the
obvious way. Assume the are labelled so that L1 and L3 lie on the same
side of L. If L1 meets L3, then <g, h> is a Triangle group and hence so is
G (Theorem 10.6.6). This is not so, thus L1 and L3 are disjoint. The geo-
metrical construction of canonical regions now shows that and are
disjoint.

EXERCISE 11.7

1. (i) Let g be parabolic with canonical region show that h-area(E9/<g>) 2.

(ii) Let g be hyperbolic with translation length T: show that has area
2

(iii) Let g be elliptic with angle of rotation 2ir/q: show that E9/<g> has area

21r[ I -l
q

and this tends to 2 as q + co.

2. Let G be a non-elementary Fuchsian group. At each fixed point w of a parabolic
element in G, let

= (2: sinh gz)

where g generates the stabilizer of w. Show that for all parabolic fixed points u and v,

or

Prove also that for allJ in G,

f(H,) = H1,.

§11.8. Notes

Some of the results in Section 11.6 occur in [59], [113]; for a completely
algebraic approach, see [78], [79], [96]. For Section 11.7, see [12], [37],
[43], [64], [87]: for a selection of geometric results on Fuchsian groups,
consult [10], [75], [80], [81], [82], [84] and [93].
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