

Representations for Genetic and Evolutionary Algorithms

Franz Rothlauf

Representations for Genetic
and Evolutionary Algorithms

ABC

Dr. Franz Rothlauf
Universität Mannheim
68131 Mannheim
Germany
E-mail: rothlauf@uni-mannheim.de

Library of Congress Control Number: 2005936356

ISBN-10 3-540-25059-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25059-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2006

Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

A E

Cover design: Erich Kirchner, Heidelberg

Printed on acid-free paper SPIN: 11370550 89/TechBooks 5 4 3 2 1 0

Typesetting: by the author and TechBooks using a Springer LT X macro package

Für meine Eltern Elisabeth und Alfons Rothlauf.

Preface

Preface to the Second Edition

I have been very pleased to see how well the first edition of this book has been
accepted and used by its readers. I have received fantastic feedback telling me
that people use it as an inspiration for their own work, give it to colleagues
or students, or use it for preparing lectures and classes about representations.
I want to thank you all for using the material presented in this book and for
developing more efficient and powerful heuristic optimization methods.

You will find this second edition of the book completely revised and ex-
tended. The goal of the revisions and extensions was to make it easier for the
reader to understand the main points and to get a more thorough knowledge
of the design of high-quality representations. For example, I want to draw your
attention to Chap. 3 where you find the core of the book. I have extended
and improved the sections about redundancy and locality of representations
adding new material and experiments and trying to draw a more compre-
hensive picture. In particular, the introduction of synonymity for redundant
encodings in Sect. 3.1 and the integration of locality and redundancy issues in
Sect. 3.3 are worth having a closer look at it. These new concepts have been
used throughout the work and have made it possible to better understand a
variety of different representation issues.

The chapters about tree representations have been reorganized such that
they explicitly distinguish between direct and indirect representations. This
distinction – including a new analysis of the edge-sets, which is a direct en-
coding for trees – emphasizes that the developed representation framework
is not only helpful for analysis and design of representations, but also for
operators. The design of proper search operators is at the core of direct rep-
resentations and the new sections demonstrate how to analyze the influence
of such encodings on the performance of genetic and evolutionary algorithms
(GEAs). Finally, the experiments presented in Chap. 8 have been completely
revised considering new representations and giving a better understanding of
the influence of tree representations on the performance of GEAs.

VIII Preface

I would like to take this opportunity to thank everyone who took the time
to share their thoughts on the text with me – all these comments were helpful
in improving the book. Special thanks to Kati for her support in preparing
this work.

As with the first edition, my purpose will be fulfilled if you find this book
helpful for building more efficient heuristic optimization methods, if you find
it inspiring for your research, or if it is a help for you teaching students about
the importance and influence of representations.

Mannheim
August 2005 Franz Rothlauf

Preface to the First Edition

This book is about representations for genetic and evolutionary algorithms
(GEAs). In writing it, I have tried to demonstrate the important role of
representations for an efficient use of genetics and evolutionary optimization
methods. Although, experience often shows that the choice of a proper repre-
sentation is crucial for GEA’s success, there are few theoretical models that
describe how representations influence GEAs behavior. This book aims to re-
solve this unsettled situation. It presents theoretical models describing the
effect of different types of representations and applies them to binary repre-
sentations of integers and tree representations.

The book is designed for people who want to learn some theory about how
representations influence GEA performance and for those who want to see how
this theory can be applied to representations in the real world. The book is
based on my dissertation with the title “Towards a Theory of Representations
for Genetic and Evolutionary Algorithms: Development of Basic Concepts and
their Application to Binary and Tree Representations”. To make the book
easier to read for a larger audience some chapters are extended and many
explanations are more detailed. During the writing of the book many people
from various backgrounds (economics, computer science and engineering) had
a look at the work and pushed me to present it in a way that is accessible to a
diverse audience. Therefore, also people that are not familiar to GEAs should
be able to get the basic ideas of the book.

To understand the theoretical models describing the influence of represen-
tations on GEA performance I expect college-level mathematics like elemen-
tary notions of counting, probability theory and algebra. I tried to minimize
the mathematical background required for understanding the core lessons of
the book and to give detailed explanations on complex theoretical subjects.
Furthermore, I expect the reader to have no particular knowledge of genetics
and define all genetic terminology and concepts in the text. The influence of

Preface IX

integer and tree representations on GEA performance does not necessarily re-
quire a complete understanding of the elements of representation theory but
is also accessible for people who do not want to bother too much with theory.

The book is split up into two large parts. The first presents theoretical
models describing the effects of representations on GEA performance. The
second part uses the theory for the analysis and design of representations.
After the first two introductory chapters, theoretical models are presented on
how redundant representations, exponentially scaled representations and the
locality/distance distortion of a representation influence GEA performance.
In Chap. 4 the theory is used for formulating a time-quality framework. Con-
sequently, in Chap. 5, the theoretical models are used for analyzing the per-
formance differences between binary representations of integers. Finally, the
framework is used in Chap. 6, Chap. 7, and Chap. 8 for the analysis of exist-
ing tree representations as well as the design of new tree representations. In
the appendix common test instances for the optimal communication spanning
tree problems are summarized.

Acknowledgments

First of all, I would like to thank my parents for always providing me with
a comfortable home environment. I have learned to love the wonders of the
world and what the important things in life are.

Furthermore, I would like to say many thanks to my two advisors, Dr.
Armin Heinzl and Dr. David E. Goldberg. They did not only help me a lot
with my work, but also had a large impact on my private life. Dr. Armin
Heinzl helped me to manage my life in Bayreuth and always guided me in
the right direction in my research. He was a great teacher and I was able to
learn many important things from him. I am grateful to him for creating an
environment that allowed me to write this book. Dr. David E. Goldberg had a
large influence on my research life. He taught me many things which I needed
in my research and I would never have been able to write this thesis without
his help and guidance.

During my time here in Bayreuth, my colleagues in the department
have always been a great help to overcome the troubles of daily university
life. I especially want to thank Michael Zapf, Lars Brehm, Jens Dibbern,
Monika Fortmühler, Torsten O. Paulussen, Jürgen Gerstacker, Axel Pürck-
hauer, Thomas Schoberth, Stefan Hocke, and Frederik Loos. During my time
here, Wolfgang Güttler and Tobias Grosche were not only work colleagues,
but also good friends. I want to thank them for the good time I had and the
interesting discussions.

During the last three years during which I spent time at IlliGAL I met
many people who have had a great impact on my life. First of all, I would like
to thank David E. Goldberg and the Department of General Engineering for
giving me the opportunity to stay there so often. Then, I want to say thank you

X Preface

to the folks at IlliGAL I was able to work together with. It was always a really
great pleasure. I especially want to thank Erick Cantú-Paz, Fernando Lobo,
Dimitri Knjazew, Clarissa van Hoyweghen, Martin Butz, Martin Pelikan, and
Kumara Sastry. It was not only a pleasure working together with them but
over time they have become really good friends. My stays at IlliGAL would
not have been possible without their help.

Finally, I want to thank the people who were involved in the writing of this
book. First of all I want to thank Kumara Sastry and Martin Pelikan again.
They helped me a lot and had a large impact on my work. The discussions
with Martin were great and Kumara often impressed me with his expansive
knowledge about GEAs. Then, I want to say thanks to Fernando Lobo and
Torsten O. Paulussen. They gave me great feedback and helped me to clarify
my thoughts. Furthermore, Katrin Appel and Kati Sternberg were a great
help in writing this dissertation. Last but not least I want to thank Anna
Wolf. Anna is a great proofreader and I would not have been able to write a
book in readable English without her help.

Finally, I want to say “thank you” to Kati. Now I will hopefully have more
time for you.

Bayreuth
January 2002 Franz Rothlauf

Foreword to the First Edition

It is both personally and intellectually pleasing for me to write a foreword
to this work. In January 1999 I received a brief e-mail from a PhD student
at the University of Bayreuth asking if he might visit the Illinois Genetic Al-
gorithms Laboratory (IlliGAL). I did not know this student, Franz Rothlauf,
but something about the tone of his note suggested a sharp, eager mind con-
nected to a cheerful, positive nature. I checked out Franz’s references, invited
him to Illinois for a first visit, and my early feelings were soon proven correct.
Franz’s various visits to the lab brought both smiles to the faces of IlliGAL
labbies and important progress to a critical area of genetic algorithm inquiry.
It was great fun to work with Franz and it was exciting to watch this work
take shape. In the remainder, I briefly highlight the contributions of this work
to our state of knowledge.

In the field of genetic and evolutionary algorithms (GEAs), much theory
and empirical study has been heaped upon operators and test problems, but
problem representation has often been taken as a given. In this book, Franz
breaks with this tradition and seriously studies a number of critical elements
of a theory of GEA representation and applies them to the careful empirical
study of (a) a number of important idealized test functions and (b) problems
of commercial import. Not only is Franz creative in what he has chosen to
study, he also has been innovative in how he performs his work.

In GEAs – as elsewhere – there appears sometimes to be a firewall sepa-
rating theory and practice. This is not new, and even Bacon commented on
this phenomenon with his famous metaphor of the spiders (men of dogmas),
the ants (men of practice), and the bees (transformers of theory to practice).
In this work, Franz is one of Bacon’s bees, taking applicable theory of rep-
resentation and carrying it to practice in a manner that (1) illuminates the
theory and (2) answers the questions of importance to a practitioner.

This book is original in many respects, so it is difficult to single out any
one of its many accomplishments. I do believe five items deserve particular
comment:

1. Decomposition of the representation problem
2. Analysis of redundancy

XII Foreword to the First Edition

3. Analysis of scaling
4. Time-quality framework for representation
5. Demonstration of the framework in well-chosen test problems and prob-

lems of commercial import.

Franz’s decomposition of the problem of representation into issues of re-
dundancy, scaling, and correlation is itself a contribution. Individuals have
isolated each of these areas previously, but this book is the first to suggest
they are core elements of an integrated theory and to show the way toward
that integration.

The analyses of redundancy and scaling are examples of applicable or
facetwise modeling at its best. Franz gets at key issues in run duration and
population size through bounding analyses, and these permit him to draw def-
inite conclusions in fields where so many other researchers have simply waived
their arms.

By themselves, these analyses would be sufficient, but Franz then takes the
extra and unprecedented step toward an integrated quality-time framework
for representations. The importance of quality and time has been recognized
previously from the standpoint of operator design, but this work is the first
to understand that codings can and should be examined from an efficiency-
quality standpoint as well. In my view, this recognition will be understood
in the future as a key turning point away from the current voodoo and black
magic of GEA representation toward a scientific discussion of the appropri-
ateness of particular representations for different problems.

Finally, Franz has carefully demonstrated his ideas in (1) carefully chosen
test functions and (2) problems of commercial import. Too often in the GEA
field, researchers perform an exercise in pristine theory without relating it to
practice. On the other hand, practitioners too often study the latest wrinkle
in problem representation or coding without theoretical backing or support.
This dissertation asserts the applicability of its theory by demonstrating its
utility in understanding tree representations, both test functions and real-
world communications networks. Going from theory to practice in such a
sweeping manner is a rare event, and the accomplishment must be regarded
as both a difficult and an important one.

All this would be enough for me to recommend this book to GEA aficiona-
dos around the globe, but I hasten to add that the book is also remarkably
well written and well organized. No doubt this rhetorical craftsmanship will
help broaden the appeal of the book beyond the ken of genetic algorithmists
and computational evolutionaries. In short, I recommend this important book
to anyone interested in a better quantitative and qualitative understanding
of the representation problem. Buy this book, read it, and use its important
methodological, theoretical, and practical lessons on a daily basis.

University of Illinois at Urbana-Champaign David E. Goldberg

Contents

1 Introduction . 1
1.1 Purpose . 2
1.2 Organization . 4

2 Representations for Genetic and Evolutionary Algorithms . 9
2.1 Genetic Representations . 10

2.1.1 Genotypes and Phenotypes . 10
2.1.2 Decomposition of the Fitness Function 11
2.1.3 Types of Representations . 13

2.2 Genetic and Evolutionary Algorithms . 15
2.2.1 Principles . 15
2.2.2 Functionality . 16
2.2.3 Schema Theorem and Building Block Hypothesis 18

2.3 Problem Difficulty . 22
2.3.1 Reasons for Problem Difficulty . 22
2.3.2 Measurements of Problem Difficulty 25

2.4 Existing Recommendations for the Design of Efficient
Representations . 28
2.4.1 Goldberg’s Meaningful Building Blocks

and Minimal Alphabets . 28
2.4.2 Radcliffe’s Formae and Equivalence Classes 29
2.4.3 Palmer’s Tree Encoding Issues . 31
2.4.4 Ronald’s Representational Redundancy 31

3 Three Elements of a Theory of Representations 33
3.1 Redundancy . 35

3.1.1 Redundant Representations and Neutral Networks 35
3.1.2 Synonymously and Non-Synonymously

Redundant Representations . 38
3.1.3 Complexity Model for Redundant Representations 45

XIV Contents

3.1.4 Population Sizing for Synonymously
Redundant Representations . 47

3.1.5 Run Duration and Overall Problem Complexity
for Synonymously Redundant Representations 49

3.1.6 Analyzing the Redundant Trivial Voting Mapping 50
3.1.7 Conclusions and Further Research 57

3.2 Scaling . 59
3.2.1 Definitions and Background . 59
3.2.2 Population Sizing Model for Exponentially Scaled

Representations Neglecting the Effect of Genetic Drift . 61
3.2.3 Population Sizing Model for Exponentially Scaled

Representations Considering the Effect of Genetic Drift 65
3.2.4 Empirical Results for BinInt Problems 68
3.2.5 Conclusions . 72

3.3 Locality . 73
3.3.1 Influence of Representations on Problem Difficulty 74
3.3.2 Metrics, Locality, and Mutation Operators 76
3.3.3 Phenotype-Fitness Mappings and Problem Difficulty . . . 78
3.3.4 Influence of Locality on Problem Difficulty 81
3.3.5 Distance Distortion and Crossover Operators 84
3.3.6 Modifying BB-Complexity for the One-Max Problem . . 86
3.3.7 Empirical Results . 89
3.3.8 Conclusions . 93

3.4 Summary and Conclusions . 95

4 Time-Quality Framework for a Theory-Based Analysis
and Design of Representations . 97
4.1 Solution Quality and Time to Convergence 98
4.2 Elements of the Framework . 99

4.2.1 Redundancy . 99
4.2.2 Scaling . 100
4.2.3 Locality . 101

4.3 The Framework . 102
4.3.1 Uniformly Scaled Representations 104
4.3.2 Exponentially Scaled Representations 105

4.4 Implications for the Design of Representations 108
4.4.1 Uniformly Redundant Representations Are Robust 108
4.4.2 Exponentially Scaled Representations Are Fast,

but Inaccurate . 111
4.4.3 Low-locality Representations Are Difficult to Predict,

and No Good Choice . 112
4.5 Summary and Conclusions . 114

Contents XV

5 Analysis of Binary Representations of Integers 117
5.1 Integer Optimization Problems . 118
5.2 Binary String Representations . 120
5.3 A Theoretical Comparison . 123

5.3.1 Redundancy and the Unary Encoding 123
5.3.2 Scaling, Modification of Problem Difficulty,

and the Binary Encoding . 126
5.3.3 Modification of Problem Difficulty and the Gray

Encoding . 127
5.4 Experimental Results . 129

5.4.1 Integer One-Max Problem and Deceptive Integer
One-Max Problem . 129

5.4.2 Modifications of the Integer One-Max Problem 134
5.5 Summary and Conclusions . 139

6 Analysis and Design of Representations for Trees 141
6.1 The Tree Design Problem . 142

6.1.1 Definitions . 142
6.1.2 Metrics and Distances . 144
6.1.3 Tree Structures . 145
6.1.4 Schema Analysis for Graphs . 146
6.1.5 Scalable Test Problems for Graphs 147
6.1.6 Tree Encoding Issues . 150

6.2 Prüfer Numbers . 151
6.2.1 Historical Review. 152
6.2.2 Construction . 154
6.2.3 Properties . 156
6.2.4 The Low Locality of the Prüfer Number Encoding 157
6.2.5 Summary and Conclusions . 169

6.3 The Characteristic Vector Encoding . 171
6.3.1 Encoding Trees with Characteristic Vectors 171
6.3.2 Repairing Invalid Solutions . 172
6.3.3 Bias and Non-Synonymous Redundancy 173
6.3.4 Summary. 177

6.4 The Link and Node Biased Encoding . 178
6.4.1 Motivation and Functionality . 179
6.4.2 Bias and Non-Uniformly Redundant Representations . . . 183
6.4.3 The Node-Biased Encoding . 184
6.4.4 A Concept for the Analysis of Redundant

Representations . 187
6.4.5 Population Sizing for the Link-Biased Encoding 191
6.4.6 The Link-and-Node-Biased Encoding 195
6.4.7 Experimental Results . 197
6.4.8 Conclusions . 200

6.5 Network Random Keys (NetKeys) . 201

XVI Contents

6.5.1 Motivation . 202
6.5.2 Functionality . 202
6.5.3 Properties . 207
6.5.4 Uniform Redundancy . 208
6.5.5 Population Sizing and Run Duration for the

One-Max Tree Problem . 210
6.5.6 Conclusions . 212

6.6 Conclusions . 213

7 Analysis and Design of Search Operators for Trees 217
7.1 NetDir: A Direct Representation for Trees 218

7.1.1 Historical Review. 218
7.1.2 Properties of Direct Representations 219
7.1.3 Operators for NetDir . 220
7.1.4 Summary. 223

7.2 The Edge-Set Encoding . 224
7.2.1 Functionality . 225
7.2.2 Bias . 227
7.2.3 Performance for the OCST Problem 230
7.2.4 Summary and Conclusions . 237

8 Performance of Genetic and Evolutionary Algorithms on
Tree Problems . 241
8.1 GEA Performance on Scalable Test Tree Problems 242

8.1.1 Analysis of Representations . 242
8.1.2 One-Max Tree Problem . 246
8.1.3 Deceptive Trap Problem for Trees 251

8.2 GEA Performance on the OCST Problem 256
8.2.1 The Optimal Communication Spanning Tree Problem . . 257
8.2.2 Optimization Methods for the Optimal

Communication Spanning Tree Problem 258
8.2.3 Description of Test Problems . 260
8.2.4 Analysis of Representations . 262
8.2.5 Theoretical Predictions on the Performance

of Representations . 264
8.2.6 Experimental Results . 266

8.3 Summary . 272

9 Summary and Conclusions . 275
9.1 Summary . 275
9.2 Conclusions . 277

Contents XVII

A Optimal Communication Spanning Tree Test Instances 281
A.1 Palmer’s Test Instances . 281
A.2 Raidl’s Test Instances . 285
A.3 Berry’s Test Instances . 289
A.4 Real World Problems . 291

List of Symbols . 315

List of Acronyms . 319

Index . 321

1

Introduction

One of the major challenges for researchers in the field of management science,
information systems, business informatics, and computer science is to develop
methods and tools that help organizations, such as companies or public in-
stitutions, to fulfill their tasks efficiently. However, during the last decade,
the dynamics and size of tasks organizations are faced with has changed.
Firstly, production and service processes must be reorganized in shorter time
intervals and adapted dynamically to the varying demands of markets and
customers. Although there is continuous change, organizations must ensure
that the efficiency of their processes remains high. Therefore, optimization
techniques are necessary that help organizations to reorganize themselves, to
increase the performance of their processes, and to stay efficient. Secondly,
with increasing organization size the complexity of problems in the context
of production or service processes also increases. As a result, standard, tra-
ditional, optimization techniques are often not able to solve these problems
of increased complexity with justifiable effort in an acceptable time period.
Therefore, to overcome these problems, and to develop systems that solve
these complex problems, researchers proposed using genetic and evolutionary
algorithms (GEAs). Using these nature-inspired search methods it is possible
to overcome some limitations of traditional optimization methods, and to in-
crease the number of solvable problems. The application of GEAs to many
optimization problems in organizations often results in good performance and
high quality solutions.

For successful and efficient use of GEAs, it is not enough to simply apply
standard GEAs. In addition, it is necessary to find a proper representation for
the problem and to develop appropriate search operators that fit well to the
properties of the representation. The representation must at least be able to
encode all possible solutions of an optimization problem, and genetic operators
such as crossover and mutation should be applicable to it.

Many optimization problems can be encoded by a variety of different rep-
resentations. In addition to traditional binary and continuous string encod-
ings, a large number of other, often problem-specific representations have been

2 1 Introduction

proposed over the last few years. Unfortunately, practitioners often report a
significantly different performance of GEAs by simply changing the used rep-
resentation. These observations were confirmed by empirical and theoretical
investigations. The difficulty of a specific problem, and with it the performance
of GEAs, can be changed dramatically by using different types of representa-
tions. Although it is well known that representations affect the performance of
GEAs, no theoretical models exist which describe the effect of representations
on the performance of GEAs. Therefore, the design of proper representations
for a specific problem mainly depends on the intuition of the GEA designer
and developing new representations is often a result of repeated trial and
error. As no theory of representations exists, the current design of proper
representations is not based on theory, but more a result of black art.

The lack of existing theory not only hinders a theory-guided design of
new representations, but also results in problems when deciding which of the
different representations should be used for a specific optimization problem.
Currently, comparisons between representations are based mainly on limited
empirical evidence, and random or problem-specific test function selection.
However, empirical investigations only allow us to judge the performance of
representations for the specific test problem, but do not help us in under-
standing the basic principles behind it. A representation can perform well for
many different test functions, but fails for the one problem which one really
wants to solve. If it is possible to develop theoretical models which describe
the influence of representations on measurements of GEA performance – like
time to convergence and solution quality – then representations can be used
efficiently and in a theory-guided manner. Choosing and designing proper rep-
resentations will not remain the black art of GEA research but become a well
predictable engineering task.

1.1 Purpose

The purpose of this work is to bring some order into the unsettled situation
which exists and to investigate how representations influence the performance
of genetic and evolutionary algorithms. This work develops elements of rep-
resentation theory and applies them to designing, selecting, using, choosing
among, and comparing representations. It is not the purpose of this work
to substitute the current black art of choosing representations by developing
barely applicable, abstract, theoretical models, but to formulate an applicable
representation theory that can help researchers and practitioners to find or
design the proper representation for their problem. By providing an applica-
ble theory of representations this work should bring us to a point where the
influence of representations on the performance of GEAs can be judged easily
and quickly in a theory-guided manner.

The first step in the development of an applicable theory is to identify
which properties of representations influence the performance of GEAs and

1.1 Purpose 3

how. Therefore, this work models for different properties of representations
how solution quality and time to convergence is changed. Using this theory, it
is possible to formulate a framework for efficient design of representations. The
framework describes how the performance of GEAs, measured by run duration
and solution quality, is affected by the properties of a representation. By using
this framework, the influence of different representations on the performance of
GEAs can be explained. Furthermore, it allows us to compare representations
in a theory-based manner, to predict the performance of GEAs using different
representations, and to analyze and design representations guided by theory.
One does not have to rely on empirical studies to judge the performance of a
representation for a specific problem, but can use existing theory for predicting
GEA performance. By using this theory, the situation exists where empirical
results are only needed to validate theoretical predictions.

However, developing a general theory of how representations affect GEA
performance is a demanding and difficult task. To simplify the problem, it
must be decomposed, and the different properties of encodings must be inves-
tigated separately. Three different properties of representations are considered
in this work: Redundancy, scaling, and locality, respectively distance distor-
tion. For these three properties of representations models are developed that
describe their influence on the performance of GEAs. Additionally, popula-
tion sizing and time to convergence models are presented for redundant and
non-uniformly scaled encodings. Furthermore, it is shown that low-locality
representations can change the difficulty of the problem. For low-locality en-
codings, it can not exactly be predicted how GEA performance is changed,
without having complete knowledge regarding the structure of the problem.
Although the investigation is limited only to three important properties of
representations, the understanding of the influence of these three properties
of encodings on the performance of GEAs brings us a large step forward to-
wards a general theory of representations.

To illustrate the significance and importance of the presented represen-
tation framework on the performance of GEAs, the framework is used for
analyzing the performance of binary representations of integers and tree rep-
resentations. The investigations show that the current framework considering
only three representation properties gives us a good understanding of the
influence of representations on GEA performance as it allows us to predict
the performance of GEAs using different types of representations. The re-
sults confirm that choosing a proper representation has a large impact on the
performance of GEAs, and therefore, a better theoretical understanding of
representations is necessary for an efficient use of genetic search.

Finally, it is illustrated how the presented theory of representations can
help us in designing new representations more reasonably. It is shown by
example for tree representations, that the presented framework allows theory-
guided design. Not black art, but a deeper understanding of representations
allows us to develop representations which result in a high performance of
genetic and evolutionary algorithms.

4 1 Introduction

1.2 Organization

The organization of this work follows its purpose. It is divided into two large
parts: After the first two introductory chapters, the first part (Chaps. 3 and
4) provides the theory regarding representations. The second part (Chaps. 5,
6, 7, and 8) applies the theory to the analysis and design of representations.
Chapter 3 presents theory on how different properties of representations af-
fect GEA performance. Consequently, Chap. 4 uses the theory for formulating
the time-quality framework. Then, in Chap. 5, the presented theory of rep-
resentations is used for analyzing the performance differences between binary
representations of integers. Finally, the framework is used in Chap. 6, Chap. 7,
and Chap. 8 for the analysis and design of tree representations and search op-
erators. The following paragraphs give a more detailed overview about the
contents of each chapter.

Chapter 1 is the current chapter. It sets the stage for the work and de-
scribes the benefits that can be gained from a deeper understanding of repre-
sentations for GEAs.

Chapter 2 provides the background necessary for understanding the main
issues of this work about representations for GEAs. Section 2.1 introduces rep-
resentations which can be described as a mapping that assigns one or more
genotypes to every phenotype. The genetic operators selection, crossover, and
mutation are applied on the level of alleles to the genotypes, whereas the fit-
ness of individuals is calculated from the corresponding phenotypes. Section
2.2 illustrates that selectorecombinative GEAs, where only crossover and se-
lection operators are used, are based on the notion of schemata and building
blocks. Using schemata and building blocks is an approach to explain why
and how GEAs work. This is followed in Sect. 2.3 by a brief review of reasons
and measurements for problem difficulty. Measurements of problem difficulty
are necessary to be able to compare the influence of different types of repre-
sentations on the performance of GEAs. The chapter ends with some earlier,
mostly qualitative recommendations for the design of efficient representations.

Chapter 3 presents three aspects of a theory of representations for GEAs.
It investigates how redundant encodings, encodings with exponentially scaled
alleles, and representations that modify the distances between the correspond-
ing genotypes and phenotypes, influence GEA performance. Population siz-
ing models and time to convergence models are presented for redundant and
exponentially scaled representations. Section 3.1 illustrates that redundant
encodings influence the supply of building blocks in the initial population of
GEAs. Based on this observation the population sizing model from Harik et al.
(1997) and the time to convergence model from Thierens and Goldberg (1993)
can be extended from non-redundant to redundant representations. Because
redundancy mainly affects the number of copies in the initial population that
are given to the optimal solution, redundant representations increase solu-
tion quality and reduce time to convergence if individuals that are similar
to the optimal solution are overrepresented. Section 3.2 focuses on exponen-

1.2 Organization 5

tially scaled representations. The investigation into the effects of exponentially
scaled encodings shows that, in contrast to uniformly scaled representations,
the dynamics of genetic search are changed. By combining the results from
Harik et al. (1997) and Thierens (1995) a population sizing model for expo-
nentially scaled building blocks with and without considering genetic drift can
be presented. Furthermore, the time to convergence when using exponentially
scaled representations is calculated. The results show that when using non-
uniformly scaled representations, the time to convergence increases. Finally,
Sect. 3.3 investigates the influence of representations that modify the dis-
tances between corresponding genotypes and phenotypes on the performance
of GEAs. When assigning the genotypes to the phenotypes, representations
can change the distances between the individuals. This effect is denoted as lo-
cality or distance distortion. Investigating its influence shows that the size and
length of the building blocks, and therefore the complexity of the problem are
changed if the distances between the individuals are not preserved. Therefore,
to ensure that an easy problem remains easy, high-locality representations
which preserve the distances between the individuals are necessary.

Chapter 4 presents the framework for theory-guided analysis and design
of representations. The chapter combines the three elements of representation
theory from Chap. 3 – redundancy, scaling, and locality – to a time-quality
framework. It formally describes how the time to convergence and the solution
quality of GEAs depend on these three aspects of representations. The chapter
ends with implications for the design of representations which can be derived
from the framework. In particular, the framework tells us that uniformly scaled
representations are robust, that exponentially scaled representations are fast
but inaccurate, and that low-locality representations change the difficulty of
the underlying optimization problem.

Chapter 5 uses the framework for a theory-guided analysis of binary rep-
resentations of integers. Because the potential number of schemata is higher
when using binary instead of integer representations, users often favor the use
of binary instead of integer representations, when applying GEAs to integer
problems. By using the framework it can be shown that the redundant unary
encoding results in low GEA performance if the optimal solution is underrep-
resented. Both, Gray and binary encoding are low-locality representations as
they change the distances between the individuals. Therefore, both represen-
tations change the complexity of optimization problems. It can be seen that
the easy integer one-max problem is easier to solve when using the binary
representation, and the difficult integer deceptive trap is easier to solve when
using the Gray encoding.

Chapter 6 uses the framework for the analysis and design of tree represen-
tations. For tree representations, standard crossover and mutation operators
are applied to tree-specific genotypes. However, finding or defining tree-specific
genotypes and genotype-phenotype mappings is a difficult task because there
are no intuitive genotypes for trees. Therefore, researchers have proposed a
variety of different, more or less tricky representations which can be used in

6 1 Introduction

combination with standard crossover and mutation operators. A closer look
at the Prüfer number representation in Sect. 6.2 reveals that the encoding
in general is a low-locality representation and modifies the distances between
corresponding genotypes and phenotypes. As a result, problem complexity
is modified, and many easy problems become too difficult to be properly
solved using GEAs. Section 6.3 presents an investigation into the character-
istic vector representation. Because invalid solutions are possible when us-
ing characteristic vectors, an additional repair mechanism is necessary which
makes the representation redundant. Characteristic vectors are uniformly re-
dundant and GEA performance is independent of the structure of the optimal
solution. However, the repair mechanism results in non-synonymous redun-
dancy. Therefore, GEA performance is reduced and the time to convergence
increases. With increasing problem size, the repair process generates more and
more links randomly and offspring trees have not much in common with their
parents. Therefore, for larger problems guided search is no longer possible
and GEAs behave like random search. In Sect. 6.4, the investigation into the
redundant link and node biased representation reveals that the representation
overrepresents trees that are either star-like or minimum spanning tree-like.
Therefore, GEAs using this type of representation perform very well if the
optimal solution is similar to stars or to the minimum spanning tree, whereas
they fail when searching for optimal solutions that do not have much in com-
mon with stars or the minimum spanning tree. Finally, Sect. 6.5 presents
network random keys (NetKeys) as an example for the theory-guided design
of a tree representation. To construct a robust and predictable tree repre-
sentation, it should be non- or uniformly redundant, uniformly scaled, and
have high-locality. When combining the concepts of the characteristic vector
representation with weighted representations like the link and node biased rep-
resentation, the NetKey representation can be created. In analogy to random
keys, the links of a tree are represented as floating numbers, and a construc-
tion algorithm constructs the corresponding tree from the keys. The NetKey
representation allows us to distinguish between important and unimportant
links, is uniformly redundant, uniformly scaled, and has high locality.

Chapter 7 uses the insights into representation theory for the analysis
and design of search operators for trees. In contrast to Chap. 6 where stan-
dard search operators are applied to tree-specific genotypes, now tree-specific
search operators are directly applied to tree structures. Such types of repre-
sentations are also known as direct representations as there is no additional
genotype-phenotype mapping. Section 7.1 presents a direct representation for
trees (NetDir) as an example for the design of direct tree representations.
Search operators are directly applied to trees and problem-specific crossover
and mutation operators are developed. The search operators for the Net-
Dir representation are developed based on the notion of schemata. Section
7.2 analyzes the edge-set encoding which encodes trees directly by listing
their edges. Search operators for edge-sets may be heuristic, considering the
weights of edges they include in offspring, or naive, including edges without

1.2 Organization 7

regard to their weights. Analyzing the properties of the heuristic variants of
the search operators shows that solutions similar to the minimum spanning
tree are favored. In contrast, the naive variants are unbiased which means
that genetic search is independent of the structure of the optimal solution.
Although no explicit genotype-phenotype mapping exists for edge-sets and
the framework for the design of representations cannot be directly applied,
the framework is useful for structuring the analysis of edge-sets. Similarly to
non-uniformly redundant representations, edge-sets overrepresent some spe-
cific types of tree and GEA performance increases if optimal solutions are
similar to the MST. Analyzing and developing direct representations nicely
illustrates the trade-off between designing either problem-specific representa-
tions or problem-specific operators. For efficient GEAs, it is necessary either
to design problem-specific representations and to use standard operators like
one-point or uniform crossover, or to develop problem-specific operators and
to use direct representations.

Chapter 8 verifies theoretical predictions concerning GEA performance
by empirical verification. It compares the performance of GEAs using dif-
ferent types of representations for the one-max tree problem, the deceptive
tree problem, and various instances of the optimal communication spanning
tree problem. The instances of the optimal communication spanning trees
are presented in the literature (Palmer 1994; Berry et al. 1997; Raidl 2001;
Rothlauf et al. 2002). The results show that with the help of the framework
the performance of GEAs using different types of representations can be well
predicted.

Chapter 9 summarizes the major contributions of this work, describes how
the knowledge about representations has changed, and gives some suggestions
for future research.

2

Representations for Genetic
and Evolutionary Algorithms

In this second chapter, we present an introduction into the field of representa-
tions for genetic and evolutionary algorithms. The chapter provides the basis
and definitions which are essential for understanding the content of this work.

Genetic and evolutionary algorithms (GEAs) are nature-inspired optimiza-
tion methods that can be advantageously used for many optimization prob-
lems. GEAs imitate basic principles of life and apply genetic operators like
mutation, crossover, or selection to a sequence of alleles. The sequence of al-
leles is the equivalent of a chromosome in nature and is constructed by a
representation which assigns a string of symbols to every possible solution of
the optimization problem. Earlier work (Goldberg 1989c; Liepins and Vose
1990) has shown that the behavior and performance of GEAs is strongly in-
fluenced by the representation used. As a result, many recommendations for a
proper design of representations were made over the last few years (Goldberg
1989c; Radcliffe 1991a; Radcliffe 1991b; Palmer 1994; Ronald 1997). However,
most of these design rules are of a qualitative nature and are not particularly
helpful for estimating exactly how different types of representations influence
problem difficulty. Consequently, we are in need of a theory of representations
which allows us to theoretically predict how different types of representations
influence GEA performance. This chapter provides some of the utilities that
are necessary for reaching this goal.

The chapter starts with an introduction into genetic representations. We
describe the notion of genotypes and phenotypes and illustrate how the fitness
function can be decomposed into a genotype-phenotype, and a phenotype-
fitness mapping. The section ends with a brief characterization of widely used
representations. In Sect. 2.2, we provide the basis for genetic and evolutionary
algorithms. After a brief description of the principles of a simple genetic al-
gorithm (GA), we present the underlying theory which explains why and how
selectorecombinative GAs using crossover as a main search operator work.
The schema theorem tells us that GAs process schemata and the building
block hypothesis assumes that many real-world problems are decomposable
(or at least quasi-decomposable). Therefore, GAs perform well for these types

10 2 Representations for Genetic and Evolutionary Algorithms

of problems. Section 2.3 addresses the difficulty of problems. After illustrat-
ing that the reasons for problem difficulty depend on the used optimization
method, we describe some common measurements of problem complexity. Fi-
nally, in Sect. 2.4 we review some former recommendations for the design of
efficient representations.

2.1 Genetic Representations

This section introduces representations for genetic and evolutionary algo-
rithms. When using GEAs for optimization purposes, representations are re-
quired for encoding potential solutions. Without representations, no use of
GEAs is possible.

In Sect 2.1.1, we introduce the notion of genotype and phenotype. We
briefly describe how nature creates a phenotype from the corresponding geno-
type by the use of representations. This more biology-based approach to rep-
resentations is followed in Sect. 2.1.2 by a more formal description of represen-
tations. Every fitness function f which assigns a fitness value to a genotype
xg can be decomposed into the genotype-phenotype mapping fg, and the
phenotype-fitness mapping fp. Finally, in Sect. 2.1.3 we briefly review the
most important types of representations.

2.1.1 Genotypes and Phenotypes

In 1866, Mendel recognized that nature stores the complete genetic informa-
tion for an individual in pairwise alleles (Mendel 1866). The genetic informa-
tion that determines the properties, appearance, and shape of an individual
is stored by a number of strings. Later, it was discovered that the genetic
information is formed by a double string of four nucleotides, called DNA.

Mendel realized that nature distinguishes between the genetic code of an
individual and its outward appearance. The genotype represents all the in-
formation stored in the chromosomes and allows us to describe an individual
on the level of genes. The phenotype describes the outward appearance of
an individual. A transformation exists – a genotype-phenotype mapping or
a representation – that uses the genotypic information to construct the phe-
notype. To represent the large number of possible phenotypes with only four
nucleotides, the genotypic information is not stored in the alleles itself, but
in the sequence of alleles. By interpreting the sequence of alleles, nature can
encode a large number of different phenotypic expressions using only a few
different types of alleles.

In Fig. 2.1, we illustrate the differences between chromosome, gene, and
allele. A chromosome describes a string of certain length where all the genetic
information of an individual is stored. Although nature often uses more than
one chromosome, most GEA applications only use one chromosome for en-
coding the genotypic information. Each chromosome consist of many alleles.

2.1 Genetic Representations 11

1 0 1 1 0 1 0 1 1 1 1 1

chromosomeallele gene

Figure 2.1. Alleles, genes, and chromosomes

Alleles are the smallest information units in a chromosome. In nature, alleles
exist pairwise, whereas in most GEA implementations an allele is represented
by only one symbol. If for example, we use a binary representation, an allele
can have either the value 0 or 1. If a phenotypic property of an individual,
like its hair color or eye size is determined by one or more alleles, then these
alleles together are denoted to be a gene. A gene is a region on a chromo-
some that must be interpreted together and which is responsible for a specific
phenotypic property.

When talking about individuals in a population, we must carefully dis-
tinguish between genotypes and phenotypes. The phenotypic appearance of
an individual determines its success in life. Therefore, when comparing the
abilities of different individuals we must judge them on the level of the phe-
notype. However, when it comes to reproduction we must view individuals on
the level of the genotype. During sexual reproduction, the offspring does not
inherit the phenotypic properties of its parents, but only the genotypic in-
formation regarding the phenotypic properties. The offspring inherits genetic
material from both parents. Therefore, genetic operators work on the level of
the genotype, whereas the evaluation of the individuals is performed on the
level of the phenotype.

2.1.2 Decomposition of the Fitness Function

The following subsection provides some basic definitions for our discussion of
representations for genetic and evolutionary algorithms. We show how every
optimization problem that should be solved by using GEAs can be decom-
posed into a genotype-phenotype fg, and a phenotype-fitness mapping fp.

We define Φg as the genotypic search space where the genetic operators
such as recombination or mutation are applied to. An optimization problem
on Φg could be formulated as follows: The search space Φg is either discrete
or continuous, and the function

f(x) : Φg → R

assigns an element in R to every element in the genotype space Φg. The
optimization problem is defined by finding the optimal solution

x̂ = max
x∈Φg

f(x),

where x is a vector of decision variables (or alleles), and f(x) is the objective
or fitness function. The vector x̂ is the global maximum. We have chosen to

12 2 Representations for Genetic and Evolutionary Algorithms

illustrate a maximization problem, but without loss of generality, we could
also model a minimization problem. To be able to apply GEAs to a problem,
the inverse function f−1 does not need to exist.

In general, the cardinality of Φg can be greater than two, but we want
to focus for the most part in our investigation on binary search spaces with
cardinality two. Thus, GEAs search in the binary space

Φg = {0, 1}l,

with the length of the string x equal to l and the size of the search space
|Φg| = 2l.

The introduction of an explicit representation is necessary if the pheno-
type of a problem can not be depicted as a string or in another way that is
accessible for GEAs. Furthermore, the introduction of a representation could
be useful if there are constraints or restrictions on the search space that can be
advantageously modeled by a specific encoding. Finally, using the same geno-
types for different types of problems, and only interpreting them differently
by using a different genotype-phenotype mapping, allows us to use standard
genetic operators with known properties. Once we have gained some knowl-
edge about specific kinds of genotypes, we can easily reuse that knowledge,
and it is not necessary to develop any new operators.

When using a representation for genetic and evolutionary algorithms we
have to introduce – in analogy to nature – phenotypes and genotypes (Lewon-
tin 1974; Liepins and Vose 1990). The fitness function f is decomposed into
two parts. The first maps the genotypic space Φg to the phenotypic space Φp,
and the second maps Φp to the fitness space R. Using the phenotypic space
Φp we get:

fg(xg) : Φg → Φp,

fp(xp) : Φp → R,

where f = fp ◦ fg = fp(fg(xg)). The genotype-phenotype mapping fg is de-
termined by the type of representation used. fp represents the fitness function
and assigns a fitness value fp(xp) to every individual xp ∈ Φp. The genetic
operators are applied to the individuals in Φg (Bagley 1967; Vose 1993).

If the genetic operators are applied directly to the phenotype it is not
necessary to specify a representation and the phenotype is the same as the
genotype:

fg(xg) : Φg → Φg,

fp(xp) : Φg → R.

In this case, fg is the identity function fg(xg) = xg. All genotypic properties
are transformed to the phenotypic space. The genotypic space is the same as
the phenotypic space and we have a direct representation. Because there is
no longer an additional mapping between Φg and Φp, a direct representation

2.1 Genetic Representations 13

does not change any aspect of the phenotypic problem such as complexity,
distances between the individuals, or location of the optimal solution. How-
ever, when using direct representations, we could not in general use standard
genetic operators, but have to define problem-specific operators (see Sect. 7
regarding the analysis of direct representations for trees). Therefore, the key
factor for the success of a GEA using a direct representation is not in finding a
“good” representation for a specific problem, but in developing proper search
operators.

We have seen how every optimization problem we want to solve with GEAs
can be decomposed into a genotype-phenotype fg, and a phenotype-fitness
mapping fp. The genetic operators are applied to the genotypes xg ∈ Φg, and
the fitness of the individuals is calculated from the phenotypes xp ∈ Φp.

2.1.3 Types of Representations

In this subsection, we describe some of the most important and widely used
representations, and summarize some of their major characteristics. In this
work, we do not provide an overview of all representations which appear in
the literature because every time a GEA is used, some kind of representation
is necessary. This means within the scope of this research it is not possible
to review all representations which have once been presented. For a more
detailed overview about different types of representations see Bäck et al. (1997,
Sect. C1).

Binary Representations

Binary representations are the most common representations for selectore-
combinative GEAs. Selectorecombinative GEAs process schemata and use
crossover as the main search operator. Using these types of GEAs, muta-
tion only serves as background noise. The search space Φg is denoted by
Φg = {0, 1}l, where l is the length of a binary vector xg = (xg

1, . . . x
g
l) ∈ {0, 1}l

(Goldberg 1989c).
When using binary representations the genotype-phenotype mapping fg

depends on the specific optimization problem that should be solved. For many
combinatorial optimization problems the binary representation allows a direct
and very natural encoding.

When encoding integer problems by using binary representations, specific
genotype-phenotype mappings are necessary. Different types of binary repre-
sentations for integers assign the integers xp ∈ Φp (phenotypes) in a different
way to the binary vectors xg ∈ Φg (genotypes). The most common repre-
sentations are the binary, Gray, and unary encoding. For a more detailed
description of these three types of encodings see Sect. 5.2.

When encoding continuous variables by using binary vectors the accuracy
of the representation depends on the number of bits that represent a pheno-
typic continuous variable. By increasing the number of bits that are used for

14 2 Representations for Genetic and Evolutionary Algorithms

representing one continuous variable the accuracy of the representation can
be increased. When encoding a continuous phenotypic variable xp ∈ [0, 1] by
using a binary vector of length l the maximal accuracy is 1/2l+1.

Integer Representations

Instead of using binary strings with cardinality χ = 2, where χ ∈ {N+\{0, 1}},
higher χ-ary alphabets can also be used for the genotypes. Then, instead of
a binary alphabet a χ-ary alphabet is used for the string of length l. Instead
of encoding 2l different individuals with a binary alphabet, we are able to
encode χl different possibilities. The size of the search space increases from
|Φg| = 2l to |Φg| = χl.

For many integer problems, users often prefer to use binary instead of
integer representations because schema processing is maximum with binary
alphabets when using standard recombination operators (Goldberg 1990b).

Real-valued Representations

When using real-valued representations, the search space Φg is defined as
Φg = R

l, where l is the length of the real-valued chromosome. When using
real-valued representations, researchers often favor mutation-based GEAs like
evolution strategies or evolutionary programming. These types of optimiza-
tion methods mainly use mutation and search through the search space by
adding a multivariate zero-mean Gaussian random variable to each variable.
In contrast, when using crossover-based GEAs real-valued problems are often
represented by using binary representations (see previous paragraph about
binary representations).

Real-valued representations can not exclusively be used for encoding real-
valued problems, but also for other permutation and combinatorial problems.
Trees, schedules, tours, or other combinatorial problems can easily be repre-
sented by using real-valued vectors and special genotype-phenotype mappings
(see also Sect. 6.4 (LNB encoding) and Sect. 6.5 (NetKeys)).

Messy Representations

In all the previously presented representations, the position of each allele is
fixed along the chromosome and only the corresponding value is specified.
The first gene-independent representation was proposed by Holland (1975).
He proposed the inversion operator which changes the relative order of the
alleles in the string. The position of an allele and the corresponding value are
coded together as a tuple in a string. This type of representation can be used
for binary, integer, and real-valued representations and allows an encoding
which is independent of the position of the alleles in the chromosome. Later,
Goldberg et al. (1989) used this position-independent representation for the
messy genetic algorithm.

2.2 Genetic and Evolutionary Algorithms 15

Direct Representations

In Sect. 2.1.2, we have seen that a representation is direct if fg(xg) = xg. Then,
a phenotype is the same as the corresponding genotype and the problem-
specific genetic operators are applied directly to the phenotype.

As long as xp = xg is either a binary, an integer, or a real-valued string,
standard recombination and mutation operators can be used. Then, it is of-
ten easy to predict GEA performance by using existing theory. The situation
is different if direct representations are used for problems whose phenotypes
are not binary, integer, or real-valued. Then, standard recombination and
mutation operators can not be used any more. Specialized operators are nec-
essary that allow offspring to inherit important properties from their parents
(Radcliffe 1991a; Radcliffe 1991b; Kargupta et al. 1992; Radcliffe 1993a). In
general, these operators depend on the specific structure of the phenotypes xp

and must be developed for every optimization problem separately. For more
information about direct representations we refer to Chap. 7.

2.2 Genetic and Evolutionary Algorithms

In this section, we introduce genetic and evolutionary algorithms. We illus-
trate basic principles and outline the basic functionality of GEAs. The schema
theorem stated by Holland (1975) explains the performance of selectorecom-
binative GAs and leads us to the building block hypothesis. The building
block hypothesis tells us that short, low-order and highly fit schemata can
be recombined to form higher-order schemata and complete strings with high
fitness.

2.2.1 Principles

Genetic and evolutionary algorithms were introduced by Holland (1975) and
Rechenberg (1973). By imitating basic principles of nature they created op-
timization algorithms which have successfully been applied to a wide variety
of problems. The basic principles of GEAs are derived from the principles of
life which were first described by Darwin (1859):

“Owing to this struggle for life, variations, however slight and from
whatever cause proceeding, if they be in any degree profitable to the
individuals of a species, in their infinitely complex relations to other
organic beings and to their physical conditions of life, will tend to
the preservation of such individuals, and will generally be inherited
by the offspring. The offspring, also, will thus have a better chance
of surviving, for, of the many individuals of any species which are
periodically born, but a small number can survive. I have called this
principle, by which each slight variation, if useful, is preserved, by the
term Natural Selection.”

16 2 Representations for Genetic and Evolutionary Algorithms

Darwin’s ideas about the principles of life can be summarized by the fol-
lowing three basic principles:

• There is a population of individuals with different properties and abilities.
An upper limit for the number of individuals in a population exists.

• Nature creates new individuals with similar properties to the existing in-
dividuals.

• Promising individuals are selected more often for reproduction by natural
selection.

In the following section, we briefly illustrate these three principles. We have
seen in Sect. 2.1 that the properties and abilities of an individual which are
characterized by its’ phenotype are encoded in the genotype. Therefore, based
on different genotypes, individuals with different properties exist (Mendel
1866). Because resources are finite, the number of individuals that form a
population is limited. If the number of individuals exceeds the existing upper
limit, some of the individuals are removed from the population.

The individuals in the population do not remain the same, but change over
the generations. New offspring are created which inherit some properties of
their parents. These new offspring are not chosen randomly but are somehow
similar to their parents. To create the offspring, genetic operators like muta-
tion and recombination are used. Mutation operators change the genotype of
an individual slightly, whereas recombination operators combine the genetic
information of the parents to create new offspring.

When creating offspring, natural selection more often selects promising
individuals for reproduction than low-quality solutions. Highly fit individuals
are allowed to create more offspring than inferior individuals. Therefore, infe-
rior individuals are removed from the population after a few generations and
have no chance of creating offspring with similar properties. As a result, the
average fitness of a population increases over the generations.

In the following paragraphs, we want to describe how the principles of
nature were used for the design of genetic and evolutionary algorithms.

2.2.2 Functionality

Genetic and evolutionary algorithms imitate the principles of life outlined in
the previous subsection and use it for optimization purposes.

Researchers have proposed many different variants of GEAs in the liter-
ature. For illustrating the basic functionality of GEAs we want to use the
traditional standard simple genetic algorithm (GA) illustrated by Goldberg
(1989c). This type of GEAs uses crossover as the main operator and muta-
tion serves only as background noise. GAs are widely known and well under-
stood. GAs use a constant population of size N , the individuals consist of
binary strings with length l, and genetic operators like uniform or n-point
crossover are directly applied to the genotypes. The basic functionality of a
traditional simple GA is very simple. After randomly creating and evaluating

2.2 Genetic and Evolutionary Algorithms 17

an initial population, the algorithm iteratively creates new generations. New
generations are created by recombining the selected highly fit individuals and
applying mutation to the offspring.

• initialize population
– create initial population
– evaluate individuals in initial population

• create new populations
– select fit individuals for reproduction
– generate offspring with genetic operator crossover
– mutate offspring
– evaluate offspring

One specific type of genetic algorithms are selectorecombinative GAs. These
types of GAs use only selection and recombination (crossover). No mutation
is used. Using selectorecombinative GAs gives us the advantage of being able
to investigate the effects of different representations on crossover alone and
to eliminate the effects on mutation. This is useful if we use GAs in a way
such that they propagate schemata (compare Sect. 2.2.3), and where mutation
is only used as additional background noise. When focusing on GEAs where
mutation functions as the main search operator, the reader is referred to
other work (Rechenberg 1973; Schwefel 1975; Schwefel 1981; Schwefel 1995;
Bäck and Schwefel 1995).

In the following paragraphs, we briefly explain the basic elements of a GA.
For selecting highly fit individuals for reproduction a large number of different
selection schemes have been developed. The most popular are proportionate
(Holland 1975) and tournament selection (Goldberg et al. 1989). When using
proportionate selection, the expected number of copies an individual has in
the next population is proportional to its fitness. The chance of an individual
xi of being selected for recombination is calculated as

f(xi)∑N
j=1 f(xj)

,

where N denotes the number of individuals in a population. With increasing
fitness an individual is chosen more often for reproduction.

When using tournament selection, a tournament between s randomly cho-
sen different individuals is held and the one with the highest fitness is chosen
for recombination and added to the mating pool. After N tournaments of size
s the mating pool is filled. We have to distinguish between tournament selec-
tion with and without replacement. If we perform tournament selection with
replacement we choose for every tournament s individuals from all individuals
in the population. Then, the mating pool is filled after N tournaments. If we
perform a tournament without replacement there are s rounds. In each round
we have N/s tournaments and we choose the individuals for a tournament

18 2 Representations for Genetic and Evolutionary Algorithms

from those who have not already taken part in a tournament in this round.
After all individuals have performed a tournament in one round (after N/s
tournaments) the round is over and all individuals are considered again for
the next round. Therefore, to completely fill the mating pool s rounds are
necessary.

The mating pool consists of all individuals who are chosen for recombi-
nation. When using tournament selection, there are no copies of the worst
individual, and either an average of s copies (with replacement), or exactly s
copies (without replacement) of the best individual in the mating pool. For
more information concerning different tournament selection schemes see Bäck
et al. (1997, C2) and Sastry and Goldberg (2001).

Crossover operators imitate the principle of sexual reproduction and are
applied to the individuals in the mating pool. In many GA implementa-
tions, crossover produces two new offspring from two parents by exchang-
ing substrings. The most common crossover operators are one-point (Hol-
land 1975), and uniform crossover (Syswerda 1989). When using one-point
crossover, a crossover point c = {1, . . . , l − 1} is initially chosen randomly.
Two children are then created from the two parents by swapping the sub-
strings. As a result, we get for the parents xp1 = xp1

1 , xp1
2 , . . . , xp1

l and
xp2 = xp2

1 , xp2
2 , . . . , xp2

l the offspring xo1 = xp1
1 , xp1

2 , . . . , xp1
c , xp2

c+1 . . . xp2
l and

xo2 = xp2
1 , xp2

2 , . . . , xp2
c , xp1

c+1 . . . xp1
l . When using uniform crossover it is de-

cided independently for every single allele of the offspring from which parent
it inherits the value of the allele. In most implementations no parent is pre-
ferred and the probability of an offspring to inherit the value of an allele from
a specific parent is p = 1/x, where x denotes the number of parents that
are considered for recombination. For example, when two possible offspring
are considered with same probability (p = 1/2), we could get as offspring
xo1 = xp1

1 , xp1
2 , xp2

3 , . . . , xp1
l−1, x

p2
l and xo2 = xp2

1 , xp2
2 , xp1

3 , . . . , xp2
l−1, x

p1
l . We

see that uniform crossover can also be interpreted as (l − 1)-point crossover.
Mutation operators should slightly change the genotype of an individual.

Mutation operators are important for local search, or if some alleles are lost
during a GEA run. By randomly modifying some alleles in the population
already lost alleles can be reanimated. The probability of mutation pm must
be selected to be at a low level because otherwise mutation would randomly
change too many alleles and the new individual would have nothing in common
with its parent. Offspring would be generated almost randomly and genetic
search would degrade to random search. In contrast to crossover operators,
mutation operators focus more on local search because they can only mod-
ify properties of individuals but can not recombine properties from different
parents.

2.2.3 Schema Theorem and Building Block Hypothesis

We review explanations for the performance of selectorecombinative genetic
algorithms. We start by illustrating the notion of schemata. This is followed

2.2 Genetic and Evolutionary Algorithms 19

by a brief summary of the schema theorem and a description of the building
block hypothesis.

Schemata

Schemata were first proposed by Holland (1975) to model the ability of GEAs
to process similarities between bitstrings. A schema h = (h1, h2, . . . , hl) is
defined as a ternary string of length l, where hi ∈ {0, 1, ∗}. ∗ denotes the
“don’t care” symbol and tells us that the allele at this position is not fixed.
The size or order o(h) of a schema h is defined as the number of fixed positions
(0s or 1s) in the string. A position in a schema is fixed if there is either a 0
or a 1 at this position. The defining length δ(h) of a schema h is defined as
the distance between the two outermost fixed bits. The fitness of a schema
is defined as the average fitness of all instances of this schema and can be
calculated as

f(h) =
1

||h||
∑
x∈h

f(x),

where ||h|| is the number of individuals x ∈ Φg that are an instance of the
schema h. The instances of a schema h are all genotypes where xg ∈ h. For
example, xg = 01101 and xg = 01100 are instances of h = 0 ∗ 1 ∗ ∗. The
number of individuals that are an instance of a schema h can be calculated
as 2l−o(h).

For a more detailed explanation of schemata in the context of GEAs the
reader is referred to Holland (1975), Goldberg (1989c), or Radcliffe (1997).

Schema Theorem

Based on the notion of schemata, Holland (1975) and De Jong (1975) formu-
lated the schema theorem which describes how the number of instances of a
schema h changes over the number of generations t:

m(h, t + 1) ≥ m(h, t)
f(h, t)
f̄(t)

(1 − pc
δ(h)
l − 1

− pmo(h)),

where

• m(h, t) is the number of instances of schema h at generation t,
• f(h, t) is the fitness of the schema h at generation t,
• f̄(t) is the average fitness of the population at generation t,
• δ(h) is the defining length of schema h,
• pc is the probability of crossover,
• pm is the probability of mutation,
• l is the string length,
• o(h) is the order of schema h.

20 2 Representations for Genetic and Evolutionary Algorithms

The schema theorem describes how the number of copies that are given to a
schema h depends on selection, crossover and mutation, when using a stan-
dard GA with proportionate selection, one-point crossover, and bit-flipping
mutation. Selection favors a schema if the fitness of the schema is above the
average fitness of the population (f(h, t) > f̄(t)). When using crossover the
defining length δ(h) of a schema must be small because otherwise one-point
crossover frequently disrupts long schemata. The bit-flipping mutation oper-
ator favors low order schemata because with increasing o(h) the number of
schemata which are destroyed increases.

The main contribution of the schema theorem is that schemata, which
fitness is above average (f(h) > f̄), which have a short defining length δ(h),
and which are of low order o(h), receive exponentially increasing trials in
subsequent generations. The theorem describes the hurdle between selection,
which preserves highly fit schemata, and crossover and mutation which both
destroy schemata of large order or defining-length.

This observation brings us to the concept of building blocks (BBs). Gold-
berg (1989c, p. 20 and p. 41) defined buildings blocks as “highly fit, short-
defining-length schemata” that “are propagated generation to generation by
giving exponentially increasing samples to the observed best”. The notion of
building blocks is frequently used in the literature but rarely defined. In gen-
eral, a building block can be described as a solution to a sub-problem that
can be expressed as a schema. A thus-like schema has high fitness and its size
is smaller than the length of the string. By combining BBs of lower order,
a GA can form high-quality over-all solutions. Using the notion of genes we
can interpret BBs as genes. A gene consists of one or more alleles and can be
described as a schema with high fitness. The alleles in a chromosome can be
separated (decomposed) into genes which do not interact with each other and
which determine one specific phenotypic property of an individual like hair
or eye color. We see that by using building blocks we can describe – with the
help of the schema theorem – how GAs can solve an optimization problem.
If the sub-solutions to a problem (the BBs) are short (low δ(h)) and of low
order (low o(h)), then the number of correct sub-solutions increases over the
generations and the problem can easily be solved by a GA.

The schema theorem and the concept of building blocks have attracted a
lot of critical comments from various researchers (Radcliffe 1991b; Vose 1991;
Vose 1999). The comments are mainly based on the observation that the
schema theorem does not always explain the observed behavior of GEAs as
it neglects the stochastic and dynamic nature of the genetic search. Different
approaches have been presented to develop and extend the schema theorem.
Altenberg (1994) related the schema theorem to Price’s theorem (Price 1970),
which can be viewed as a more general formulation of the schema theorem.
Radcliffe introduced the concept of forma (compare Sect. 2.4.2) which allows
us to introduce schemata not only for binary strings, but also for general
genotypes. Poli et al. developed exact schema theorems in the context of
genetic programming which could also be applied to general GEAs (Stephens

2.2 Genetic and Evolutionary Algorithms 21

and Waelbroeck 1999; Poli 2001a; Poli 2001b). An in depth survey of the
critical comments on the schema theorem including appropriate extensions
and later developments can be found in Reeves and Rowe (2003, Sect. 3).

Building Block Hypothesis

Using the definition of building blocks as being highly fit solutions to sub-
problems, the building block hypothesis can be formulated. It describes the
processing of building blocks and is based on the quasi-decomposability of a
problem (Goldberg 1989c, page 41):

“Short, low order, and highly fit schemata are sampled, recombined,
and resampled to form strings of potentially higher fitness.”

The building block hypothesis basically states that GEAs mainly work due
to their ability to propagate building blocks. By combining schemata of lower
order which are highly fit, a GEA can construct overall good solutions.

The building block hypothesis can be used for explaining the high per-
formance of GEAs in many real-world applications. It basically says that a
schemata processing GEA performs well, if the problem it is applied to is
quasi-decomposable, that means the overall problem can be separated into
smaller sub-problems. If the juxtaposition of smaller, highly fit, partial so-
lutions (building blocks) does not result in good solutions, GEAs would fail
in many real-world problems. Only by decomposing the overall problem into
many smaller sub-problems, solving these sub-problems separately, and com-
bining the good solutions, can a GEA find good solutions to the overall opti-
mization problem (Goldberg 2002).

This observation raises the question of why the approach of separating
complex problems into smaller ones and solving the smaller problems to op-
timality is so successful. The answer can be found in the structure of the
problems themselves. Many of the problems in the real world are somehow
decomposable, because otherwise all our design and optimization methods
which try to decompose complex problems could not work properly. A look in
the past reveals that approaching real-world problems in the outlined way has
resulted in quite interesting results. Not only do human designers or engineers
use the property of many complex real-world problems to be decomposable,
but nature itself. Most living organisms are not just one complex system
where each part interacts with all others, but they consist of various sep-
arable subsystems for sensing, movement, reproduction, or communication.
By optimizing the subsystems separately, and combining efficient subsystems,
nature is able to create complex organisms with surprising abilities.

Therefore, if we assume that many of the problems in the real world can
be solved by decomposing them into smaller sub-problems, we can explain
the good results obtained by using GEAs for real-world problems. GEAs per-
form well because they try, in analogy to human intuition, to decompose
the overall problem into smaller parts (the building blocks), solve the smaller

22 2 Representations for Genetic and Evolutionary Algorithms

sub-problems, and combine the good solutions. A problem can be properly de-
composed by identifying the interdependencies between the different alleles.
The purpose of the genetic operators is to decompose the problem by detect-
ing which alleles in the chromosome influence each other, to solve the smaller
problems efficiently, and to combine the sub-solutions (Harik and Goldberg
1996; Harik and Goldberg 1996).

2.3 Problem Difficulty

Previous work has shown that representations influence the behavior and per-
formance of GEAs (Goldberg 1989c; Liepins and Vose 1990). The results re-
vealed that when using specific representations some problems become easier,
whereas other problems become more difficult to solve for GEAs. To be able
to systematically investigate how representations influence GEA performance,
a measurement of problem difficulty is necessary. With the help of a difficulty
measurement, it can be determined how representations change the complex-
ity and difficulty of a problem. However, a problem does not have the same
difficulty for all types of optimization algorithms, but difficulty always depends
on the optimization method used. Therefore, focusing on selectorecombinative
GEAs also determines the reasons of problem difficulty: building blocks.

Consequently, in Sect. 2.3.1 we discuss reasons of problem difficulty and
illustrate for different types of optimization methods that different reasons for
problem difficulty exist. As we focus on selectorecombinative GEAs and as-
sume that these types of GEAs process building blocks, we decompose problem
difficulty with respect to BBs. This is followed in Sect. 2.3.2 by an illustration
of different measurements of problem difficulty. The measurements of prob-
lem difficulty are based on the used optimization method. Because we focus
in this work on schemata and BBs, we later use the schemata analysis as a
measurement of problem difficulty.

2.3.1 Reasons for Problem Difficulty

One of the first approaches to the question of what makes problems difficult for
GEAs, was the study of deceptive problems by Goldberg (1987). His studies
were mainly based on the work of Bethke (1981). These early statements
about deceptive problems were the origin of a discussion about the reasons
of problem difficulty in the context of genetic and evolutionary algorithms.
Searching for reasons of problem difficulty means investigating what makes
problems difficult for GEAs.

Researchers recognized that there are other possible reasons of problem
difficulty besides deception. Based on the structure of the fitness landscape
(Weinberger 1990; Manderick et al. 1991), the correlation between the fitness
of individuals describes how difficult a specific problem is to solve for GEAs.
By the modality of a problem, which is more popular for mutation-based

2.3 Problem Difficulty 23

search methods, problems can be classified into easy unimodal problems (there
is only one local optimum), and difficult multi-modal problems (there are
many local optima). Another reason for difficulty is found to be epistasis,
which is also known as the linear separability of a problem. This describes the
interference between the alleles in a string and measures how well a problem
can be decomposed into smaller sub-problems (Holland 1975; Davidor 1989;
Davidor 1991; Naudts et al. 1997). A final reason for problem difficulty is
additional noise which makes most problems more difficult to solve for GEAs.

Many of these approaches are not focused on schemata-processing selec-
torecombinative GEAs. Goldberg (2002) presented an approach of under-
standing problem difficulty based on the schema theorem and the building
block hypothesis. He viewed problem difficulty for selectorecombinative GEAs
as a matter of building blocks and decomposed it into

• difficulty within a building block (intra-BB difficulty),
• difficulty between building blocks (inter-BB difficulty), and
• difficulty outside of building blocks (extra-BB difficulty).

This decomposition of problem difficulty assumes that difficult problems
are building block challenging. In the following paragraphs, we briefly discuss
these three aspects of BB-complexity.

If we count the number of schemata of order o(h) = k that have the same
fixed positions, there are 2k different competing schemata. Based on their
fitness, the different schemata compete against each other and GEAs should
increase the number of the high-quality schemata. Identifying the high quality
schemata and propagating them properly is the main difficulty of intra-BB
difficulty. Goldberg measures intra-BB difficulty with the deceptiveness of a
problem. Deceptive problems (Goldberg 1987) are most difficult to solve for
GEAs because GEAs are led by the fitness landscape to a deceptive attractor
which has maximum distance to the optimum. To reliably solve difficult, for
example deceptive problems, GEAs must increase the number of copies of the
best BB by giving enough copies to them.

One basic assumption of the schema theorem is that a problem can be de-
composed into smaller sub-problems. GEAs solve these smaller sub-problems
in parallel and try to identify the correct BBs. In general, the contributions
of different BBs to the fitness function are not uniform and there can be in-
terdependencies between the different BBs. Because different BBs can have
different contributions to the fitness of an individual, the loss of low salient
BBs during a GEA run is one of the major problems of inter-BB difficulty
(compare Sect. 3.2.3). Furthermore, a problem can often not be decomposed
into completely separate and independent sub-problems, but there are still
interdependencies between the different BBs which are an additional source
of inter-BB difficulty.

Even for selectorecombinative GEAs there is a world outside the world of
schemata and BBs. Sources of extra-BB difficulty like noise have an additional
influence on the performance of GEAs because selection is based on the fitness

24 2 Representations for Genetic and Evolutionary Algorithms

of the individuals. Additional, non-deterministic noise randomly modifies the
fitness values of the individuals. Therefore, selection decisions are no longer
based on the quality of the solutions (and of course the BBs) but on stochastic
variance. A similar problem occurs if the evaluation of the individuals is non-
stationary. Evaluating fitness in a non-stationary way means that individuals
have a different fitness at different moments in time.

In the remainder of the subsection, we discuss that reasons of problem
difficulty must be seen in the context of a specific optimization method. If
different optimization methods are used for the same problem then there are
different reasons of problem difficulty. As a result, there is no general problem
difficulty for all types of optimization methods but we must independently
identify for each optimization method the reasons of problem difficulty. We
illustrate how problem difficulty depends on the used optimization method
with two small examples.

When using random search, the discussion of problem complexity is ob-
solete. During random search new individuals are chosen randomly and no
prior information about the structure of the problem or previous search steps
is used. As a result, all possible types of problems have the same difficulty.
Although measurements of problem complexity, like correlation analysis or
the analysis of intra-, inter-, or extra-BB difficulty, lead us to believe that
some problems are easier to solve than others, there are no easy or difficult
problems. Independently of the complexity of a problem, random search al-
ways needs on average the same number x of fitness evaluations for finding
the optimal solution. All problems have the same difficulty regarding random
search, and to search for reasons of problem difficulty makes no sense.

When comparing crossover- and mutation-based evolutionary search meth-
ods, different reasons of problem complexity exist. From the schema theo-
rem we know that selectorecombinative GEAs propagate schemata and BBs.
Therefore, BBs are the main source of complexity for these types of GEAs.
Problems are easy for selectorecombinative GEAs if the problem can be prop-
erly decomposed into smaller sub-solutions (the building blocks) and the
intra-, and inter-BB difficulty is low. However, when using mutation-based
approaches like evolution strategies (Rechenberg 1973; Schwefel 1975), these
reasons for problem difficulty are not relevant any more. Evolution strategies
perform well if the structure of the solution space guides the population to
the optimum (compare the good performance of evolution strategies on uni-
modal optimization problems). Problem complexity is not based on BBs, but
more on the structure of the fitness landscape. To use the notion of BBs for
mutation-based optimization methods makes no sense because they propagate
no schemata.

We have illustrated how the difficulty of a problem for selectorecombinative
GEAs can be decomposed into intra-BB, inter-BB, and extra BB-difficulty.
The decomposition is based on the assumption that GEAs decompose prob-
lems and work with schemata and BBs. The proposed BB-based reasons of
problem difficulty can be used for selectorecombinative GEAs but can not

2.3 Problem Difficulty 25

be applied to other optimization methods like evolution strategies or random
search.

2.3.2 Measurements of Problem Difficulty

In the previous section, we discussed the reasons for problem difficulty. In the
following paragraphs, we describe some measurements of problem difficulty.

To investigate how different representations influence the performance of
GEAs, a measurement of problem difficulty is necessary. Based on the different
reasons for problem difficulty which exist for different types of optimization
methods, we discuss some common measurements of problem difficulty:

• Correlation analysis,
• polynomial decomposition,
• Walsh coefficients, and
• schemata analysis.

These four measurements of problem difficulty are widely used in the GEA
literature for measuring different types of problem difficulty (Goldberg 1989b;
Goldberg 1992; Radcliffe 1993a; Horn 1995; Jones and Forrest 1995). For an
overview see Bäck et al. (1997, Chap. B2.7) or Reeves and Rowe (2003).
The specific properties of the four measurements are briefly discussed in the
following paragraphs.

Correlation analysis is based on the assumption that the high and low
quality solutions are grouped together and that GEAs can use information
about individuals whose genotypes are very similar for generating new off-
spring. Therefore, problems are easy if the structure of the search space guides
the search to the high quality solutions. Consequently, correlation analysis is
a proper measurement for the difficulty of a problem when using mutation-
based search approaches. Correlation analysis exploits the fitness between
neighboring individuals of the search space as well as the correlation of the
fitness between parents and their offspring (For a summary see Deb et al.
(1997)). The most common measurements for distance correlation are the au-
tocorrelation function of the fitness landscape (Weinberger 1990), the fitness
correlation coefficients of genetic operators (Manderick et al. 1991), and the
fitness-distance correlation (Jones 1995; Jones and Forrest 1995; Altenberg
1997).

The linearity of an optimization problem can be measured by the polyno-
mial decomposition of the problem. Each function f defined on Φg = {0, 1}l

can be decomposed in the form

f(x) =
∑

N⊂{1,...,l}
αN

∏
n∈N

eT
nx,

where the vector en contains 1 in the nth column and 0 elsewhere, T denotes
transpose, and the αN are the coefficients (Liepins and Vose 1991). Regarding

26 2 Representations for Genetic and Evolutionary Algorithms

the vector x having components x1, . . . , xl, we may view f as a polynomial in
the variables x1, . . . , xl. The coefficients αi describe the non-linearity of the
problem. If there are high order αN in the decomposition of the problem, the
function is highly nonlinear. If the decomposition of a problem only has order
1 coefficients, then the problem is linear and easy for GEAs. It is possible
to determine the maximum non-linearity of f(x) by its highest polynomial
coefficients. The higher the order of the αi, the more nonlinear the problem
is.

There is some correlation between the non-linearity of a problem and the
difficulty of a problem for selectorecombinative GEAs (Mason 1995), but the
order of non-linearity can only give an upper limit of the problem difficulty.
As illustrated in the following example there could be high order αi although
the problem still remains easy for a GA. The function

f(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x = 00,
2 if x = 01,
4 if x = 10,
10 if x = 11,

(2.1)

could be decomposed in f(x) = α0 + α1x0 + α2x1 + α3x0x1 = 1 + x0 + 3x1 +
5x0x1. The problem is easy for selectorecombinative GEAs (all BBs are of
order k = 1), but nonlinear.

Instead of decomposing a problem into its polynomial coefficients, it can
also be decomposed into the corresponding Walsh coefficients. The Walsh
transformation is analogous to the discrete Fourier transformation but for
functions whose domain is a bitstring. Every real-valued function f : Φg → R

over an bitstring of length l, can be expressed as a weighted sum of a set of
2l orthogonal functions called Walsh functions:

f(x) =
2l−1∑
j=0

wj ψj(x),

where the Walsh functions are denoted ψj : Φg → {−1, 1}. The weights wj ∈ R

are called Walsh coefficients. The indices of both Walsh functions and coef-
ficients are the numerical equivalent of the binary string j. The jth Walsh
function is defined as:

ψj(x) = (−1)bc(j∧x),

with x, j are binary strings and elements of Φg, ∧ denotes the bitwise logical
and, and bc(x) is the number of one bits in x. For a more detailed explana-
tion the reader is referred elsewhere (Goldberg 1989a; Goldberg 1989b; Vose
and Wright 1998a; Vose and Wright 1998b). The Walsh coefficients can be
computed by the Walsh transformation:

wj =
1
2l

2l−1∑
i=0

f(i)ψj(i).

2.3 Problem Difficulty 27

The coefficients wj measure the contribution to the fitness function by the
interaction of the bits indicated by the positions of the 1’s in j. The larger
the value of j, the higher the order of the interactions between the bits in j
is. For example, w001 measures the linear contribution to f associated with
bit position 2. w111 measures the nonlinear interaction between all three bits.
Any function f over an l bit space can be represented as a weighted sum of
all possible 2l bit interaction functions ψj .

Walsh coefficients are an important feature in measuring the problem diffi-
culty for GEAs (Goldberg 1989a; Oei 1992; Goldberg 1992; Reeves and Wright
1994). It was shown that problems are easy for GEAs if the Walsh coefficients
are of order 1. Furthermore, difficult problems tend to have high order Walsh
coefficients, but nevertheless the Walsh coefficients do not give us an exact
measurement of problem complexity. The highest order of the coefficient wi

can only give an upper limit of the problem complexity. Therefore, Walsh co-
efficients show the same behavior as polynomials. This behavior is expected
as it has already been shown that Walsh functions are polynomials (Goldberg
1989a; Goldberg 1989b; Liepins and Vose 1991). The insufficient measurement
of problem difficulty for selectorecombinative GEAs can be illustrated with
the earlier example (2.1). The Walsh coefficients for the former example are
w = {4.25,−1.75,−2.75, 1.25}. Although the problem is quite simple, there
are high order Walsh terms.

If we assume that selectorecombinative GEAs process schemata and BBs,
then the most natural and direct way to measure problem complexity is to
analyze the size and length of the building blocks in the problem. If we assume
that GEAs process building blocks, the intra-BB difficulty of a problem can
be measured by the maximum length δ(h) and size k = o(h) of the BBs h
(Goldberg 1989c).

A problem is denoted to be deceptive of order kmax if for k < kmax all
schemata that contain parts of the best solution have lower fitness than their
competitors (Deb and Goldberg 1994). Schemata are competitors if they have
the same fixed positions. An example for competing schemata of size k = 2
for a bitstring of length l = 4 are h = 0 ∗ 0∗, h = 0 ∗ 1∗, h = 1 ∗ 0∗, and
h = 1 ∗ 1∗. Therefore, the highest order kmax of the schemata that are not
misleading determines the complexity of a problem for selectorecombinative
GEAs. The higher the maximum order kmax of the schemata, the more difficult
the problem is to solve for GEAs.

The average fitness of the schemata for the brief example illustrated in
(2.1) is shown in Table 2.1. All schemata that contain a part of the optimal

order 2 1 0

schema 11 1* *1 **
fitness 10 7 6 4.25

schema 01 10 00 0* *0
fitness 2 4 1 1.5 2.5

Table 2.1. Average schema fitness for example
described by (2.1)

28 2 Representations for Genetic and Evolutionary Algorithms

solution are above average and better than their competitors. Calculating the
deceptiveness of the problem based on the fitness of the schemata correctly
classifies this problem to be very easy. Since we analyze the influence of repre-
sentations on selectorecombinative GEAs, and we assume that these types of
GEAs process schemata, schema fitness averages are used to measure problem
difficulty in the remainder of this work. Problems of length l are defined to be
fully easy if kmax = 1, and to be fully difficult (compare Goldberg (1992)) if
kmax = l. Therefore, when using selectorecombinative GEAs fully easy prob-
lems are the most easy problems, whereas fully difficult problems are the most
difficult problems.

2.4 Existing Recommendations for the Design
of Efficient Representations

Although the application of GEAs to optimization problems is not possible
without using representations, mainly intuitive knowledge exists about how to
choose proper representations. Up till now, there is no proven theory regarding
the influence of representations on the performance of GEAs. To help users
with the difficult task of finding good representations, some researchers have
made recommendations for the design of efficient representations over the
last few years. In this section, we review some recommendations which are
important from the authors point of view. For a more detailed overview, the
reader is referred to Ronald (1997) and Radcliffe (1991b).

We start in Sect. 2.4.1 with the principle of meaningful building blocks
and minimal alphabets which were proposed by Goldberg (1989c). About the
same time, Radcliffe developed the concept of forma which is presented in
Sect. 2.4.2. Some years later, Palmer (1994) presented more specific guide-
lines about proper design of representations (compare Sect. 2.4.3). Finally, we
illustrate in Sect. 2.4.4 the recommendations made by Ronald (1997).

2.4.1 Goldberg’s Meaningful Building Blocks
and Minimal Alphabets

Some of the first recommendations for the construction of representations were
made by Goldberg (1989c). He proposed the principle of minimal alphabets
and of meaningful building blocks.

It is known that the design of an encoding has a strong impact on the
performance of a genetic algorithm and should be chosen carefully (compare
Coli and Palazzari (1995a), Ronald (1997), and Albuquerque et al. (2000)).
Goldberg (1989c, p. 80) proposed two basic design principles for encodings:

• Principle of meaningful building blocks: The schemata should be short, of
low order, and relatively unrelated to schemata over other fixed positions.

2.4. Existing Recommendations for the Design of Efficient Representations 29

• Principle of minimal alphabets: The alphabet of the encoding should be as
small as possible while still allowing a natural representation of solutions.

The principle of meaningful building blocks is directly motivated by the
schema theorem (see Sect. 2.2.3). If schemata are highly fit, short, and of
low order, then their numbers exponentially increase over the generations. If
the high-quality schemata are long or of high order, they are disrupted by
crossover and mutation and they can not be propagated properly by GEAs.
Consequently, representations should modify the complexity of a problem in
such a way that phenotypically long or high order BBs become genotypically
short, and of low order. Then, the problem becomes easier for selectorecom-
binative GEAs.

The principle of minimal alphabets tells us to increase the potential num-
ber of schemata by reducing the cardinality of the alphabet. When using
minimal alphabets the number of possible schemata is maximal. This is the
reason why Goldberg advises us to use bitstring representations, because high
quality schemata are more difficult to find when using alphabets of higher car-
dinality (Goldberg 1989c, pp. 80ff). But of course we have a trade-off between
the low cardinality of an alphabet and the natural expression of the problem.
Therefore, sometimes a higher cardinality of the alphabet could be helpful for
GEAs (Goldberg 1991b).

Goldberg’s two design principles of representations are based on the as-
sumption that GEAs process schemata and BBs, but both principles are very
abstract and general, and do not provide the user with exact and applicable
guidelines.

2.4.2 Radcliffe’s Formae and Equivalence Classes

The principles from Goldberg, which are based on schemata, are made for bi-
nary representations and selectorecombinative GAs. Therefore, they are not
useful in the design of proper representations when using non-binary geno-
types, or other types of search paradigms like evolution strategies or evolu-
tionary programming as these search methods do not process schemata. Con-
sequently, Radcliffe extended the notion of schemata and introduced the more
general principle of forma, which describes general subsets of the search space
(Radcliffe 1991b; Radcliffe 1991a; Radcliffe 1992; Radcliffe 1993b; Radcliffe
and Surry 1994; Radcliffe 1994). Formae are defined as equivalence classes
that are induced by a set of equivalence relations. Any possible solution of
an optimization problem can be identified by specifying the equivalence class
to which it belongs for each of the equivalence relations. For example, if we
have a search space of faces (Surry and Radcliffe 1996), basic equivalence re-
lations might be “same hair color” or “same eye color”, which would induce
the formae “red hair”, “dark hair”, “green eyes”, etc. Formae of higher order
like “red hair and green eyes” are then constructed by composing simple for-
mae. The search space, which includes all possible faces, can be constructed

30 2 Representations for Genetic and Evolutionary Algorithms

with strings of alleles that represent the different formae. For the definition of
formae the structure of the phenotypes is important. For example, for binary
problems possible formae would be “bit i is equal to one/zero”. When encod-
ing tree structures, possible basic formae would be “contains link from node
i to node j”. Based on these basic formae, we develop in Sect. 7.1 a direct
representation for trees with appropriate search operators.

An unsolved problem is to find appropriate equivalences for the different
instances of a given problem. From the equivalences the genotypic search space
Φg and the genotype-phenotype mapping fg can be constructed. Usually, a
solution is encoded as a string of alleles, each of which indicates that the
solution satisfies a particular equivalence. Radcliffe (1991a) proposed several
design principles for creating appropriate equivalences for a given problem.
The most important design principle is that the generated formae should
group together solutions of related fitness (Radcliffe and Surry 1994), in order
to create a fitness landscape or structure of the search space that can be
exploited by search operators. Search operators are constructed based on the
defined formae.

Radcliffe recognized that the genotypic search space, the genotype-pheno-
type mapping, and the search operators belong together and their design can
not be separated from each other (Radcliffe 1992). For the development of ap-
propriate search operators that are based on pre-defined formae he formulated
the following four design principles (Radcliffe 1991a; Radcliffe 1994):

• Respect: Offspring produced by recombination should be members of
all formae to which both their parents belong. This means for the “face
example” that offspring should have red hair and green eyes if both parents
have red hair and green eyes.

• Transmission: An offspring should be equivalent to one of its parents
under each of the basic equivalence relations. This means that every gene
should be set to an allele which is taken from one of the parents. If one
parent has dark hair and the other red hair, then the offspring has either
dark or red hair.

• Assortment: An offspring can be formed with any compatible characteris-
tics taken from the parents. Assortment is necessary as some combinations
of equivalence relations may be infeasible. This means for example, that
the offspring inherits the dark hair from the first parent and the blue eyes
from the second parent only if dark hair and blue eyes are compatible.
Otherwise, one of the alleles is set randomly to a feasible value.

• Ergodicity: The iterative use of search operators allows us to reach any
point in the search space from all possible starting solutions.

The recommendations from Radcliffe illustrate nicely that representations
and search operators depend on each other and cannot be designed indepen-
dently. He developed a consistent concept on how to design efficient GEAs once
appropriate equivalence classes (formae) are defined. However, the finding of
appropriate equivalence classes, which is equivalent to defining the genotypic

2.4. Existing Recommendations for the Design of Efficient Representations 31

search space and the genotype-phenotype mapping, is often difficult and re-
mains an unsolved problem.

2.4.3 Palmer’s Tree Encoding Issues

Palmer analyzed properties of tree representations (Palmer 1994). The recom-
mendations he gave for the design of tree representations can also be applied to
other types of representations. Palmer proposed the following representation
issues:

• An encoding should be able to represent all possible phenotypes.
• An encoding should be unbiased in the sense that all possible individuals

are equally represented in the set of all possible genotypic individuals.
• An encoding should encode no infeasible solutions.
• The decoding of the phenotype from the genotype should be easy.
• An encoding should possess locality. Small changes in the genotype should

result in small changes in the phenotype.

Although Palmer formulated the design issues based mainly on intuition
rather than on theoretical investigation, the guidelines can advantageously be
used for the design of proper representations. For a more detailed description
and discussion of these representation issues in the context of tree network
representations, the reader is referred to Sect. 6.1.6. We will also see later in
this work that the encoding of infeasible solutions (Sect. 6.3.2), a bias of the
individuals (Sect. 6.4.2), or low locality of an encoding (Sect. 8.1.3) is not
always necessarily disadvantageous for the performance of GEAs.

2.4.4 Ronald’s Representational Redundancy

A few years ago, Ronald presented a survey of encoding issues (Ronald 1997;
Ronald 1995). Representations should be chosen according to the following
guidelines:

• Encodings should be adjusted to a set of genetic operators in a way that
the building blocks are preserved from the parents to the offspring (Fox
and McMahon 1991).

• Encodings should minimize epistasis (Beasley et al. 1993).
• Feasible solutions should be preferred.
• The problem should be represented at the correct level of abstraction.
• Encodings should exploit an appropriate genotype-phenotype mapping

process if a simple mapping to the phenotype is not possible.
• Isomorphic forms, where the phenotype of an individual is encoded with

more than one genotype, should not be used.

32 2 Representations for Genetic and Evolutionary Algorithms

Many of the representation issues can be put down to the principles of rep-
resentations illustrated in Sect. 2.4.1. The design issue concerning isomorphic
forms will be discussed in Sect. 3.1. The results will show that by using iso-
morphic or redundant representations the performance of GEAs can easily be
increased.

3

Three Elements of a Theory of Representations

In this chapter, we study an often ignored aspect of heuristic optimization,
namely the theory of representations for genetic and evolutionary algorithms.
Although the importance of choosing proper representations for the perfor-
mance of genetic and evolutionary algorithms is already recognized (Caruana
and Schaffer 1988; Goldberg 1989c; Liepins and Vose 1990; Ronald et al. 1995;
Radcliffe 1991a; Coli and Palazzari 1995b; Ronald 1997; Albuquerque et al.
2000; Kargupta 2000a; Schnier and Yao 2000; Hinterding 2000), we are still
far from a complete theory of representations.

Due to the fact that developing a general theory of representations is a
formidable challenge, we decompose this task into smaller parts. We start
by presenting three elements of representation theory which are the basis of
the time-quality framework of representations which we present in Chap. 4.
Namely, we focus on redundancy, scaling of alleles, and locality which de-
scribes the modification of distances between corresponding genotypes and
phenotypes. We present theoretical models for these three aspects of repre-
sentation theory and show how these properties of representations affect the
performance of GEAs.

The following paragraphs discuss these three aspects of representation the-
ory. A representation is denoted to be redundant if the number of genotypes
is higher than the number of phenotypes. Therefore, for a redundant repre-
sentation, a phenotype is represented on average by more than one genotype.
Investigating redundancy more closely, we have to distinguish between synony-
mously and non-synonymously redundant representations. Non-synonymously
redundant representations do not allow genetic operators to work properly
and therefore reduce the efficiency of evolutionary search. When using syn-
onymously redundant representations, GEA performance mainly depends on
the change of the initial supply. Based on this observation models can be
developed that allow us to determine the necessary population size and the
number of generations for solving a problem. Redundant representations are
uniformly redundant if each phenotype is on average represented by the same
number of genotypes. Theoretical and empirical results show that represen-

34 3 Elements of a Theory of Representations

tations that are synonymously and uniformly redundant do not change the
behavior of GEAs. Furthermore, the results show that representations that are
synonymously and non-uniformly redundant can only be used advantageously
if there exists some a-priori information about the optimal solution.

When assigning phenotypes to genotypes, a representation fg can change
the importance of the alleles. For example, if a phenotype is a list of integers,
all alleles (integers) are equally relevant for calculating the fitness of a pheno-
type. However, when encoding the phenotypic integers using binary strings,
the contributions of the genotypic bits to the construction of the phenotypes
and to the calculation of the corresponding fitness values are no longer equal
as some genotypic bits are more relevant than others. By substituting alleles
with building blocks (BBs), the order of scaling of a representation describes
how different the contributions of the genotypic BBs are to the construc-
tion of the phenotypes. It is well known that if the BBs are uniformly scaled,
GEAs solve all BBs implicitly in parallel. In contrast, for non-uniformly scaled
BBs, domino convergence occurs and the BBs are solved sequentially start-
ing with the most salient BB (Thierens 1995). As a result, the convergence
time increases and the search is affected more strongly by genetic drift. Lower
salient alleles are not opposed to selection pressure unless they are affected
by the solving process. Therefore, some of the lower salient alleles could loose
their diversity and are randomly fixed. To model more exactly the effects
of non-uniformly scaled representations on GEA performance, we extend the
work of Thierens and Goldberg (1993) and present a more general theory of
non-uniformly scaled encodings. It allows us to more accurately predict the
performance of GEAs using non-uniformly scaled representations under the
influence of genetic drift.

In general, the used representation fg should have no influence on the
ability of GEAs to solve easy problems. However, previous work (Liepins and
Vose 1990) has shown that representations can easily change the difficulty
of an optimization problem. The difficulty of an optimization problem is de-
termined by the mapping fp that assigns a fitness value to each phenotype.
Therefore, by the use of representations, fully easy (compare Sect. 2.3) prob-
lems can become fully difficult, and vice versa. Section 3.3 reveals that the
locality of a representation determines whether the difficulty of a problem is
changed by the representation. The locality of a representation describes how
well the distances between individuals are preserved when mapping the geno-
types on the phenotypes by the representation fg. The genotypic distances
depend on the type of the used search operator and the phenotypic distances
are determined by the character of the optimization problem. We illustrate
that high-locality representations, where neighboring phenotypes correspond
to neighboring genotypes, preserve problem difficulty and allow GEAs to solve
easy problems more reliably. Furthermore, we are able to show both theoret-
ically and empirically, that by using representations where the locality is not
preserved, fully easy problems become more difficult, whereas fully difficult
problems become easier. Therefore, if our aim is to reliably solve problems

3.1 Redundancy 35

of bounded difficulty, we demand high-quality representations to have low lo-
cality as only this guarantees that the difficulty of the problem fp remains
unchanged. Finally, we discuss why, in general, it is not possible to create
representations that both, preserve complexity for easy problems, and reduce
complexity for difficult problems.

Section 3.1 shows how the usage of redundant encodings affects genetic
search. Based on the Gambler’s ruin model (Harik et al. 1997), we develop
a quantitative model of redundancy and verify it empirically for the trivial
voting mapping, which is a synonymously redundant encoding. In Sect. 3.2,
we show how the behavior of GEAs changes for exponentially scaled encod-
ings by using the existing models of genetic drift and population sizing. We
use two different drift models and develop models for the necessary popu-
lation size and the convergence time that allows us to predict the solution
quality more accurately than the previous models. To verify the theoretical
models, we present an empirical investigation into the performance of GEAs
using exponentially scaled representations. Section 3.3 shows that only repre-
sentations with perfect locality guarantee that phenotypically easy problems
remain genotypically easy and can still be solved using GEAs. If the locality
of a representation is not perfect, the size and length of the BBs can be dif-
ferent for the genotypes and phenotypes and the complexity of the problem
is changed. Fully easy problems can only become more difficult, and fully dif-
ficult problems can only become easier to solve for GEAs. The chapter ends
with concluding remarks.

3.1 Redundancy

This section provides the first of three elements of a theory of representations.
It identifies redundancy to be important for the design of representations, dis-
tinguishes between synonymously and non-synonymously representations, and
uses existing complexity models to characterize the effect of redundancy on
encodings. Furthermore, it presents theoretical models on how the population
size, run duration and overall problem difficulty is influenced by synonymously
redundant encodings. The model is used for the analysis of the trivial voting
mapping, which is a synonymously redundant encoding.

3.1.1 Redundant Representations and Neutral Networks

Information theory provides us with a measurement of information. The in-
formation content1 (measured in Bits) of a sequence is defined as the number
of bits required to represent a given number of s possibilities using an opti-
mal encoding (Shannon 1948; Shannon and Weaver 1949). It is calculated as
log2(s). Redundant encodings are less efficient codings that require more bits

1other notations are information, self-information, entropy, or Shannon entropy.

36 3 Elements of a Theory of Representations

to represent the information but do not increase the amount of information
represented.

For encoding one Bit of information content (for example the two possi-
bilities 0 and 1) a binary string of at least length one is necessary (one bit).
However, it is also possible to encode one Bit of information content using a
bitstring of length l > 1. Then, more than one bit of the bitstring encodes
one Bit of information, and the representation becomes redundant. We want
to emphasize that it is important to distinguish between the amount of infor-
mation (Bit) that should be represented and the number of bits in a string
that are used to represent the information. Redundant representations are
encodings where the amount of encoded information (in Bit) is lower than the
used number of bits. This means, that such encodings use a higher number
of alleles for encoding phenotypic information in the genotype than is neces-
sary for constructing the phenotype. Although the practice of redundancy has
steadily increased over the last few years, there is little theory regarding the
influence of redundant representations on the performance of GEAs.

Natural Selection and Neutral Theory: Different Concepts
for Explaining Evolution

Examining the use of redundant representations reveals that redundant repre-
sentations are not solely an invention of evolutionary computation researchers,
but are commonly used in nature for the encoding of genetic information. Cur-
rently, in biology different opinions exist regarding the basic concepts that
underly the process of evolution in nature and the role of representations
therein. Darwinism goes back to Darwin (1859) and assumes that natural
selection is the driving force of evolution (compare Mayr (1991)) and that
random genetic drift is unimportant. Randomly advantageous mutations are
fixed due to natural selection and can then be propagated from generation
to generation. Genetic changes are a result of selection combined with varia-
tion operators such as crossover and random mutations. During the process of
evolution the variation operators sometimes result in fitter individuals, which
gradually replace less-fit individuals in the population.

The theory of natural selection has been extended and modified by the
neutral theory which was proposed by Kimura (1983). It assumes that the
driving force of molecular evolution is the random fixation of neutral muta-
tions rather than the fixation of advantageous mutations by natural selection.
Kimura observed that in nature the number of different genotypes which store
the genetic material of an individual greatly exceeds the number of different
phenotypes which determine the outward appearance. Therefore, the repre-
sentation which describes how the genotypes are assigned to the phenotypes
must be redundant, and neutral mutations become possible. A mutation is
neutral if its application to a genotype does not result in a change of the
corresponding phenotype. Because large parts of the genotype have no ac-
tual effect on the phenotype, evolution can use them as a store for genetic

3.1 Redundancy 37

information that was necessary for survival in the past, and as a playground
for developing new properties of the individual that could be advantageous
in the future. Neutral mutations are the tool for designing these new prop-
erties without interfering with the current phenotype. Although most of the
mutations are neutral, some sometimes have an effect on the phenotype and
bring new genetic material which was developed by neutral mutations into
life. The neutral theory was highly disputed shortly after its formulation and
the relative importance of neutral mutation and selection is still unclear. How-
ever, the importance of random genetic changes has generally been accepted
in population genetics during the last few years.

Redundant Representations in Evolutionary
Computation Research

Following the work of Kimura, some biological studies (Huynen et al. 1996;
Huynen 1996; Schuster 1997; Reidys and Stadler 1998) focused on the neutral
theory. These studies showed that the connectivity between fitness landscapes
can be increased by the introduction of redundant representations and neu-
tral mutations. Different genotypes which are assigned to the same phenotype
(neutral sets) allow a population to move through the search space more
easily and to find new advantageous areas of the search space that would
not have been accessible without neutral mutations. Surprisingly, the neutral
theory became even more popular in the field of genetic and evolutionary
computation (Banzhaf 1994; Dasgupta 1995). There is great interest in how
redundant representations and neutral search spaces influence the behavior,
and especially the evolvability of GEAs (Barnett 1997; Barnett 1998; Ship-
man 1999; Shipman et al. 2000; Shackleton et al. 2000; Shipman et al. 2000;
Ebner et al. 2001; Smith et al. 2001; Smith et al. 2001a; Smith et al. 2001b;
Barnett 2001; Yu and Miller 2001; Yu and Miller 2002; Toussaint and Igel
2002). The general idea behind most of this work is that the evolvability of a
population, which is defined as the ability of random variations to sometimes
produce improvements, is increased by the use of redundant representations.
Furthermore, because redundant representations allow a population to change
the genotype without changing the phenotype, the ability of a population to
adapt after changes and the performance of GEAs should increase.

However, in most of this work the focus has not been on the performance
of GEAs, but on characteristics of the search like reachability of phenotypes,
evolvability of populations, or connectivity of search spaces. No results have
been presented up till now that clearly indicate the superiority of redundant
representations and neutral search on practical test problems or real-world in-
stances. Recently, Knowles and Watson (2002) presented an investigation into
the performance of neutral search for NK landscapes, H-IFF, and MAX-SAT
problems. The results showed that using arbitrary redundant representations
(random boolean network mapping) does not increase the performance of

38 3 Elements of a Theory of Representations

mutation-based search for the considered test problems. In most of the prob-
lems used, adding redundancy appeared to reduce performance.

Although, at the moment, the focus in investigating the role of redundant
representations is mainly on neutral mutations and their effects on search char-
acteristics, there is other work which tries to address the effects of redundancy
on the performance of evolutionary search. Researchers used different types
of redundant representations and sometimes observed either an increase or a
decrease in the performance of GEAs. Over time, different opinions regarding
the effects of redundancy on the performance of GEAs have been developed.
Some work noticed that redundant representations lead to a reduction in GEA
performance (Davis 1989; Eshelman and Schaffer 1991; Ronald et al. 1995).
The low performance was argued to be either due to a loss of diversity in the
population, or because different genotypes that represent the same phenotype
compete against each other. Also, the larger size of the search space was listed
as a reason for lower GEA performance.

In contrast, other mostly application-oriented work reports higher perfor-
mance with additional redundancy (Cohoon et al. 1988; Gerrits and Hogeweg
1991; Julstrom 1999), which some researchers ascribe to an increase in diver-
sity that hinders premature convergence. Further work considered the com-
putational implications of genetic code-like representations in gene expression
(Kargupta 2000b; Kargupta 2001). Kargupta investigated how redundant rep-
resentations influence the energy of the Fourier spectrum. The results show
that using redundant representations and encoding phenotypes with higher fit-
ness by a larger number of genotypes results in a higher energy of the Fourier
spectrum, reduces the difficulty of the optimization problem, and therefore
allows a more effective evolutionary search.

This short literature review has shown that the influence of redundant
representations on the performance of GEAs is a strongly disputed topic. It
can be expected that there is no easy and general answer, and not all types
of redundant representations will be useful (Harvey and Thompson 1997). To
find answers, it is necessary to characterize the different types of redundant
representations regarding their specific properties, and to develop quantita-
tive models describing how solution quality and run duration of GEAs is
influenced. This approach can help to clear up some of the disputed questions
and to find out under which circumstances which type of redundant represen-
tation can be beneficial for GEAs. Consequently, in the following section we
develop a classification for different types of redundant representations and in
Sects. 3.1.4 and 3.1.5 we develop quantitative models.

3.1.2 Synonymously and Non-Synonymously
Redundant Representations

We give some basic definitions and develop a classification for different types
of redundant representations which is based on their synonymity.

3.1 Redundancy 39

As we have discussed in Sect. 2.1.2 we have to distinguish between geno-
types and phenotypes. Φg is defined as the genotypic search space, where the
operators crossover and mutation are applied. Φp is the phenotypic search
space. The fitness of an individual depends on the properties of the pheno-
type xp ∈ Φp. A representation fg : Φg → Φp determines which phenotypes
xp ∈ Φp are represented by which genotypes xg ∈ Φg. We want to assume
that every phenotype xp is assigned to at least one genotype xg. Otherwise,
if a phenotype xp is not represented by some genotype xg this solution can
never be found by the used optimization algorithm.

A representation fg is redundant if the size of the genotypic search space
is larger than the size of the phenotypic search space, |Φg| > |Φp|. This means,
there are more different genotypes than phenotypes. When using search spaces
where not all possible phenotypes or genotypes are accessible by the used
search method, a representation is redundant if the number of accessible phe-
notypes is smaller than the number of accessible genotypes. Therefore, in
general a representation fg is redundant if on average one accessible pheno-
type is represented by more than one genotype. Redundant representations are
less efficient encodings, which use an additional number of genes, but do not
increase the encoded information content. Therefore, a representation is re-
dundant if l different phenotypes are assigned to m different genotypes where
m > l. Although the larger number of possible genotypes would allow us to
encode more individuals than there are phenotypes, some of the information
that exists in the genotypes is not considered.

Distinguishing between Synonymously and Non-Synonymously
Redundant Representations

To classify different types of redundant representations we want to measure
how similar the genotypes are that are assigned to the same phenotype. A
representation is defined to be synonymously redundant if the genotypes that
are assigned to the same phenotype are similar to each other. Consequently,
we denote a representation to be non-synonymously redundant if the geno-
types that are assigned to the same phenotype are not similar to each other.
Therefore, the synonymity of a representation depends on the metric that is
defined on Φg and Φp. The metric defined on Φp depends on the properties
of the considered problem and the metric defined on Φg depends on the used
search operator. Depending on different operators and metrics used on Φg we
get different synonymity of the representation fg. In Fig. 3.1, we illustrate the
differences between synonymous and non-synonymous redundancy. For this
illustrative example we use the Euclidean distance between the individuals
for indicating how similar different individuals are.

We want to formalize the classification into synonymously and non-
synonymously redundant representations. In general, a redundant representa-
tion fg assigns a phenotype xp to a set of different genotypes xg ∈ Φxp

g , where
∀xg ∈ Φxp

g : fg(xg) = xp. All genotypes xg in the genotypic set Φxp

g represent

40 3 Elements of a Theory of Representations

x
x
x

xx

x

x

o
o
o
o o

oo

oo

Φg Φg

Φp

x
o

fg

synonymous non−synonymous

xxx

o
o o

o

oo

oxx
x

x

o
o

Figure 3.1. Synonymous versus non-synonymous redundancy. The different sym-
bols indicate different genotypes and their corresponding phenotypes. When using
synonymously redundant representations (left), genotypes that represent the same
phenotype are similar to each other. When using non-synonymously redundant rep-
resentations (right), genotypes that represent the same phenotype are not similar
to each other but distributed over the whole search space

the same phenotype xp. A representation is synonymously redundant if the
genotypic distances between all xg ∈ Φxp

g are small for all different xp. There-
fore, if for all phenotypes the sum over the distances between all genotypes
that correspond to the same phenotype⎛

⎝∑
xp

1
2

⎛
⎝ ∑

xg∈Φxp
g

∑
yg∈Φxp

g

d(xg, yg)

⎞
⎠

⎞
⎠ , (3.1)

where xg �= yg, is reasonably small a representation is denoted to be syn-
onymously redundant. d(xg, yg) depends on the mutation operator used and
measures the distance between two genotypes xg ∈ Φxp

g and yg ∈ Φxp

g which
both represent the same phenotype xp. The distance between two genotypes
depends on their genotypic similarity and is small if the two genotypes are
similar.

A different but equivalent approach of defining the synonymity of redun-
dant representations is to use equivalence classes (compare the approach from
Radcliffe outlined in Sect. 2.4.2). All genotypes xg in the genotypic set Φxp

g

belong to the same equivalence class. If the sum of the genotypic distances
between the individuals that belong to the same equivalence class is small,
then the representation is synonymously redundant.

Synonymity and Locality of Redundant Representations

The synonymity of redundant representations is related to the locality of non-
redundant representations (compare Sect. 3.3). A genotype xg is a neighbor

3.1 Redundancy 41

to some other genotype yg if the distance d(xg, yg) = dmin, where dmin �= 0 is
the minimal distance between two individuals in the genotypic search space.
When using binary representations, dmin = 1 and two genotypes are neighbors
if they differ in one allele. As discussed in Sect. 3.3, the locality of a represen-
tation describes how well neighboring genotypes correspond to neighboring
phenotypes. If neighboring genotypes correspond to neighboring phenotypes,
a representation has high locality and small changes in the genotype result
in small changes in the corresponding phenotype. In contrast, representations
have low locality if neighboring genotypes do not correspond to neighboring
phenotypes. There is evidence, both analytical (for example Whitley (1999)
for mutation-based search or Sect. 3.3.6 for crossover-based search), and em-
pirical (for example Gottlieb et al. (2001) or Rothlauf and Goldberg (2000)),
which shows for easy problems that low-locality representations result in low
GEA performance. The genetic operators mutation and crossover no longer
work properly as they create new offspring that are not similar to their par-
ent(s).

Low-locality representations result in low GEA performance as guided
search methods like GEAs, that use knowledge gained during search for deter-
mining future search steps, can only perform better than random search if on
average similar solutions have similar fitness (individuals are similar if there
are only a few search steps between them). In general, guided search methods
assume that in the neighborhood of high-quality solutions other high-quality
solutions can be found (Manderick et al. 1991; Horn 1995; Deb et al. 1997;
Christensen and Oppacher 2001). High-quality solutions are grouped together
and are not scattered over the whole search space (Radcliffe 1991a; Whitley
2002). Therefore, to perform well, guided search methods have to search more
often in the neighborhood of already found promising high-quality solutions
than around low-quality solutions (compare the optimal allocation of trials for
the two-armed bandit problem as discussed in Holland (1975)). This behavior
guarantees high performance of the search method if on average neighboring
solutions have similar properties, which means the fitness values of neighbor-
ing solutions are correlated.

However, search heuristics could not use any information learned during
the search for determining future search steps, and consequently show low per-
formance if the fitness values of neighboring, or similar, genotypes are not cor-
related (Weinberger 1990; Manderick et al. 1991; Jones and Forrest 1995). On
the one hand, the fitness values of neighboring genotypes can be uncorrelated
if the problem itself is difficult, which means the fitness values of neighboring
phenotypes are uncorrelated. Then, guided search methods will behave as a
random search even in the presence of high-locality representations. On the
other hand, the fitness values of neighboring genotypes are also uncorrelated
if low-locality representations are used and neighboring genotypes do not cor-
respond to neighboring phenotypes. The low-locality representations destroy
existing correlations between phenotypes and their corresponding fitness val-
ues, and genotypic neighbors no longer have similar properties and fitnesses.

42 3 Elements of a Theory of Representations

In this case, search heuristics can not use any information learned during the
search for determining future search steps. As a result, it makes no sense for
guided search approaches to search around already found high-quality geno-
types and guided mutation-based search algorithms become random search.
A mutation does not result in a solution with similar properties but in a ran-
dom solution. Analogously, crossover is not able to create new solutions with
similar properties to their parents, but creates new, random solutions. There-
fore, high locality representations are a necessity for efficient evolutionary
search. When using low-locality representations, no guided search is possible
and guided search methods become random search.

These concepts can also be applied to redundant representations. When us-
ing non-synonymously redundant representations, genetic operators like mu-
tation or crossover can result in an offspring that is phenotypically completely
different from its parent(s). Therefore, non-synonymously redundant represen-
tations have the same effect on GEAs as when using low-locality representa-
tions. Using neutral search spaces where the connectivity between the pheno-
types is strongly increased by the use of a redundant representation allows us
to reach many different phenotypes in one single search step. However, increas-
ing the connectivity between the phenotypes by using non-synonymously re-
dundant representations results in random search and decreases the efficiency
of GEAs. As for low-locality representations, a search step does not result in a
similar phenotype but creates a randomly chosen individual. Therefore, guided
search is no longer possible and guided search methods become random search.
As a result, we get reduced GEA performance on problems that are easy for
guided search methods (that means the fitness values of similar phenotypes
are correlated) when using non-synonymously redundant representations. Ex-
amples for non-synonymously redundant representations are the direct binary
mapping, the cellular automaton mapping, or the random boolean network
mapping, which have been proposed by Shackleton et al. (2000). Although
the use of these types of representations strongly increases the connectivity
between phenotypes, we get low GEA performance as neighboring genotypes
do not correspond to neighboring phenotypes. Initial evidence of the low per-
formance of mutation-based search when using such non-synonymously re-
dundant representations was shown by Knowles and Watson (2002) for the
random boolean network mapping.

In contrast, when using synonymously redundant representations, the con-
nectivity between the phenotypes is not increased. Therefore, small genotypic
variations can not result in large phenotypic changes but either in the same,
or a similar, phenotype. Figure 3.2 illustrates this behavior and compares it
to non-synonymously redundant representations. Examples for synonymously
redundant representations are the trivial voting mapping (Shackleton et al.
2000) which is investigated more closely in Sect. 3.1.6.

3.1 Redundancy 43

Φg
o o

o

o

o

l ll
l

l x

x
x

x
x

xlc
c c

c c
c

o

synonymous

Φg

c

pΦ

x

o
l

c

pΦ

x

o
l

fg fg

o o

o

o

o
l

l

l x
xl

non−synonymous

c

x c
x

l

x

l

x

o

c

c

c

c

Figure 3.2. The effects of small mutation steps for synonymously versus non-
synonymously redundant representations. The different symbols indicate different
genotypes and their corresponding phenotypes. The arrows indicate search steps
which result in neighboring individuals. When using synonymously redundant rep-
resentations, a mutation results in either the same or a similar phenotype. In con-
trast, when using non-synonymously redundant representations the mutation of a
genotype results in completely different phenotypes.

Formalizing Synonymously Redundant Representations

In this subsection, we introduce some quantities that can be used for char-
acterizing the properties of synonymously redundant representations. We use
the definitions from Sects. 2.1.2 and 3.1.2.

To describe a redundant representation, we introduce kr, the order of
redundancy. kr is defined as log(|Φg|)/ log(|Φp|) and measures the amount of
redundant information in the encoding. There are kr bits and 2kr different
possibilities (individuals) to encode 1 Bit of information. When using binary
genotypes and binary phenotypes, the order of redundancy can be calculated
as

kr =
log(2lg)
log(2lp)

,

where lg is the length of the binary genotype and lp is the length of the
binary phenotype. When using a non-redundant representation, the number
of genotypes equals the number of phenotypes and kr = 1.

Furthermore, we want to characterize not only to what degree a represen-
tation is redundant, but also in what way it is redundant. We are especially
interested in the overrepresentation and underrepresentation of specific solu-
tions. Therefore, we introduce r as the number of genotypes that represent the
one phenotype that has the highest fitness. When using non-redundant rep-
resentations, every phenotype is assigned to exactly one genotype and r = 1.
However, in general, 1 ≤ r ≤ |Φg| − |Φp| + 1.

44 3 Elements of a Theory of Representations

In the following discussion, we want to focus on how redundant repre-
sentations influence the behavior of selectorecombinative GAs. Selectorecom-
binative GAs use crossover as the main search operator and mutation only
serves as a background operator. When focusing on selectorecombinative GAs
we implicitly assume that there are building blocks (BBs) and that the GA
process schemata. Consequently, we must define how kr and r depends on the
properties of the BBs.

In general, when looking at BBs of size k there are 2k different phenotypic
BBs which are represented by 2kkr different genotypic BBs. Therefore,

kr =
kg

kp
,

where kg denotes the genotypic size of a BB and kp the size of the correspond-
ing phenotypic BB. As before, a representation is redundant if kr > 1. The
size of the genotypic BBs is kr times larger than the size of the phenotypic
BB. Furthermore, r is defined as the number of genotypic BBs of length kkr

that represent the best phenotypic BB of size k. Therefore, in general,

r ∈ {1, 2, . . . , 2kkr − 2k + 1}. (3.2)

In contrast to kr, which is determined by the representation used, r depends
not only on the representation used, but also on the specific problem that
should be solved. Different instances of a problem result in different values of
r. If we assume that kr is an integer (each phenotypic allele is represented by
kr genotypic alleles) the possible values of the number of genotypic BBs that
represent the optimal phenotypic BB can be calculated as

r = ik, with i ∈ {1, 2, . . . , 2kr − 1}. (3.3)

A representation is uniformly redundant if all phenotypes are represented by
the same number of different genotypes. Therefore, when using a uniformly
redundant representation every phenotypic BB of size k = kp is represented
by

r = 2k(kr−1) (3.4)

different genotypic BBs. Table 3.1 gives an example for a uniformly redundant
encoding. Two bits in a phenotype xp are represented by four bits in the
genotype xg. Therefore, kr = 2 and r = 4. With |Φp| = 2k = 22 the size of
the genotypic space is |Φg| = 2kkr = 24 = 16.

xg xp

00 00, 00 01, 01 00, 01 01 0 0
10 00, 10 01, 11 00, 11 01 1 0
00 10, 01 11, 00 11, 01 11 0 1
10 10, 10 11, 11 10, 11 11 1 1

Table 3.1. An example of a uniformly redun-
dant representation, where kr = 2 and r = 4

3.1 Redundancy 45

By introducing redundancy the search space for a GA using binary phe-
notypes of string length l = lp is increased from |Φp| = 2l to |Φg| = 2lkr .
The length of the individuals increases from l = lp in the phenotypic space
to lg = kr × l in the genotypic space. To represent all phenotypes, each in-
dividual xp ∈ Φp must be represented by at least one genotype xg ∈ Φg. If
|Φg| = |Φp|, and each phenotype is represented by at least one genotype, we
have a non-redundant, one-to-one mapping.

3.1.3 Complexity Model for Redundant Representations

For modeling the effects of redundant representations on the performance of
GEAs, we can use the complexity model from Goldberg (1991a) and Gold-
berg et al. (1992). If we want to understand the effects of redundancy, we
must decompose the problem into smaller sub-problems and try to solve these
separately. We could decompose the problem step by step and subsequently
collate all the sub-problems. The decomposition (Goldberg 1998) takes place
as follows:

• GAs process building blocks.
• Problems are tractable by BBs.
• GAs must ensure proper supply of BBs in the initial generation.
• GAs must grow the high quality BBs.
• GAs must mix the BBs well.
• GAs must decide well among competing BBs.

This decomposition gives us a framework for investigating the effects of
redundancy on the performance of GAs. We want to examine how redundancy
affects the problem decomposition point by point:

Using redundant encodings does not change the principal behavior of GAs.
After adding redundancy, GAs still process building blocks.

A problem is still tractable by building blocks when using a redundant
encoding. However, the question arises as to whether the size of building blocks
is changed by redundant encodings. On one hand, redundant representations
increase the number of bits that are part of a building block in the genotype
from k to kkr. On the other hand, the number of building blocks in the
genotype that represent the same BB in the phenotype increases from 1 to
on average 2k(kr−1). Furthermore, the number of different fitness values that
can be assigned to the genotypes remains constant. Taking these effects into
account, we assume that problems are still tractable by BBs and the larger
size of the genotypic BBs is compensated by the higher number of genotypic
BBs.

How do redundant encodings change the initial supply of BBs in the ini-
tial population? For uniform redundancy (every phenotype xp ∈ Φp is rep-
resented by the same number of genotypes xg ∈ Φg), the initial supply of
BBs x0/N = 1/2k is the same as for non-redundant representations. If the
number of genotypes xg that represent a phenotype xp is above average, then

46 3 Elements of a Theory of Representations

the phenotype xp, and the containing schemata hp, are overrepresented in the
initial population. GEAs are pushed more towards solutions that are similar
to these xp. Analogously, the performance of GEAs decreases if the proportion
of less fit phenotypes in the initial population is increased by redundancy. As
a result, the supply of BBs could be modified by redundant encodings.

For a proper growth and mixing of BBs, above average BBs must be pre-
ferred by selection, and BBs should not be disrupted by the crossover operator.
As the genotypic defining length of a BB δ(hg) increases when using redun-
dant representations, GEA operators that do not obey the linkage disrupt
BBs more frequently. To overcome this problem, competent GAs (Mühlen-
bein and Paaß 1996; Goldberg 1999; Larranaga et al. 1999; Mühlenbein and
Mahnig 1999; Pelikan 2002) could be used. These kind of GEAs obey the
linkage, and genotypic building blocks hg are not disrupted by recombination.
Thus, no reduction of performance should occur, and redundancy should have
no negative effect on the proper mixing of BBs. However, when using redun-
dant representations there are different genotypes xg and yg that represent
the same phenotype xp. Recombining xg and yg could result in offspring that
do not represent xp. This effect is also known as cross-competition among
isomorphic identical BBs. As an example for a one-bit problem, the genotype
{00} represents the phenotype xp = 0, and the genotypes {01, 10, 11} repre-
sent the phenotype yp = 1. If the genotypes 01 and 10 are recombined, the
possibilities for the offspring are 00 and 11. Although both parental geno-
types represent the same phenotype yp, one of the offspring represents xp.
Cross-competition among isomorphic identical BBs is a result of using non-
synonymously redundant representations, which were discussed in the previ-
ous subsection. Non-synonymously redundancy randomizes genetic search as
new BBs are introduced into the search that did not exist in the parents.
When using such representations, the recombination of genotypes that rep-
resent the same phenotype can result in completely different new genotypes
and phenotypes (compare also Fig. 3.2). When using synonymously redundant
representations, cross-competition can not occur.

Finally, the decision making between competing BBs is not affected by
using redundant representations. With redundancy there are different geno-
typic BBs hg that represent the same phenotypic BB hp, but the selection
process does not decide between the different hg because they all have the
same fitness. The fitness evaluation is based on the fitness of the phenotypic
BBs hp, and not their genotypic representation.

After recognizing that redundancy could have a major effect on the supply,
and a minor effect on the proper mixing of building blocks, we want to quantify
its effect on BBs supply in the following subsection.

3.1 Redundancy 47

3.1.4 Population Sizing for Synonymously
Redundant Representations

In Sect. 3.1.2, we described how non-synonymously redundant representations
result in randomized search as they increase the connectivity of the search
space. Therefore, in this section we want to focus on synonymously redundant
representations and develop a population sizing model that describes their
influence on the performance of selectorecombinative GAs.

As we focus in our investigation on selectorecombinative GAs we can use
the existing theory describing the behavior of selectorecombinative GAs from
Harik et al. (1997) and Thierens and Goldberg (1994). They describe for
non-redundant representations how the population size and the time to con-
vergence that is necessary to solve a specific problem depend on the charac-
teristics of the problem.

Following Harik et al. (1997) the probability that a GA with a population
size N converges after tconv generations to the correct solution is

Pn =
1 − (q/p)x0

1 − (q/p)N
,

where x0 is the expected number of copies of the best BB in the randomly
initialized population, q = 1 − p, and p is the probability of making the right
choice between a single sample of each BB

p = N

(
d√

2m′σBB

)
· (3.5)

N is the cumulative distribution function for a normal distribution, d is the
signal difference between the best BB and its strongest competitor, m′ =
m − 1 with m is the number of BBs in the problem, σ2

BB is the variance
of a BB, and q = 1 − p is the probability of making the wrong decision
between two competing BBs. It has been shown in Harik et al. (1997) that
this random walk or Gambler’s ruin model can be used for describing the
behavior of selectorecombinative GAs propagating schemata and BBs. In the
following paragraphs, this model is the basis for describing the influence of
synonymously redundant representations on the behavior of GAs.

For a randomly initialized population with no redundancy, x0 = N/2k.
The situation changes when using redundant representations. Then, the initial
supply depends on the characteristics of the representation, namely r and kr.
With r the number of genotypic BBs of length kkr that represent the best
phenotypic BB of length k, we get

x0 = N
r

2kkr
, (3.6)

where kr is the order of redundancy. The assumption that redundant repre-
sentations affect the initial supply of BBs is the core idea behind the proposed

48 3 Elements of a Theory of Representations

model describing the influence of synonymously redundant representations on
GA performance. We assume that other effects of synonymously redundant
representations on GA performance can be neglected. Consequently, when us-
ing uniformly redundant representations, r = 2k(kr−1) and x0 = N/2k. These
are the same values as when using non-redundant representations. Therefore,
GA performance does not change when using uniformly redundant represen-
tations.

As the variance σ2
BB and the number m of BBs is not affected by the use

of a redundant representation, the probability of GA failure α = 1 − Pn can
be calculated as

α = 1 − 1 − (q/p)x0

1 − (q/p)N
· (3.7)

If we assume that x0 is small and q < p we can assume that 1 − (q/p)N

converges to 1 faster than 1 − (q/p)x0 . Using these approximations (see also
Harik et al. (1997)) the equation can be simplified to

α ≈
(

1 − p

p

)x0

·

Therefore, for the population size we get

N ≈ 2kkr

r

⎛
⎝ ln(α)

ln
(

1−p
p

)
⎞
⎠ · (3.8)

The normal distribution in (3.5) can be approximated using the first two
terms of the power series expansion (see Abramowitz and Stegun (1972)) as
N(x) ≈ 1/2 + x/2, where x = d/

√
πm′σBB . Substituting p from (3.5) into

(3.8) we get:

N ≈ 2kkr

r
ln(α)/ ln

(
1 − x

1 + x

)
,

Since x is a small number, ln(1−x) can be approximated with −x and ln(1+x)
with x. Using these approximations we finally get for the population size N :

N ≈ −2krk−1

r
ln(α)

σBB

√
πm′

d
· (3.9)

The population size N goes with O
(

2kr

r

)
when using synonymously redun-

dant representations. With increasing r the number of individuals that are
necessary to solve a problem decreases. Using a uniformly redundant rep-
resentation, where r = 2k(kr−1), does not change the population size N in
comparison to non-redundant representations.

3.1 Redundancy 49

3.1.5 Run Duration and Overall Problem Complexity
for Synonymously Redundant Representations

To describe the performance of GAs, we must calculate not only the number
of individuals that are necessary for solving a problem, but also the expected
number of generations until convergence.

Based on Mühlenbein and Schlierkamp-Voosen (1993) and Thierens and
Goldberg (1994), Miller and Goldberg developed a convergence model for
selectorecombinative GAs (Miller and Goldberg 1996b; Miller and Goldberg
1996a). The convergence time tconv depends on the length of the phenotypes
l = lp and the used selection scheme. Using the selection intensity I the
convergence model is

p(t) = 0.5
(

1 + sin
(

It√
l
+ arcsin(2p(0) − 1)

))
,

where p(0) = x0/N is the proportion of best building blocks in the initial
population. I depends only on the used selection scheme. The number of
generations tconv it takes to fully converge the population can be calculated
by putting p(tconv) = 1:

tconv =

√
l

I

(π

2
− arcsin (2p(0) − 1)

)
· (3.10)

If we assume k = 1 and uniform redundancy (equal proportion of 1s and 0s
in the initial population) we get p(0) = 0.5. Then, the number of generations
until convergence simplifies to

tconv =
π

2

√
l

I
·

With redundancy the initial proportion of building blocks is p(0) = r
2kkr

(see (3.6)). Using arcsin(x) = x + o(x3) the time until convergence could be
approximated by

tconv ≈
√

l

I

(
1 +

π

2
− r

2krk−1

)
· (3.11)

With increasing r/2kr the time to convergence tconv is reduced. Therefore,
the optimal solution is found after a lower number of generations if it is
overrepresented by the synonymously redundant representation. For uniform
redundancy r = 2k(kr−1), we get

tconv ≈
√

l

I

(
1 +

π

2
− 1

2k−1

)
·

The time until convergence when using uniformly redundant representations
is the same as without redundancy.

50 3 Elements of a Theory of Representations

After we have calculated the number of individuals that are necessary for
solving a problem (see (3.9)), and the number of generations that GAs using
only crossover need to converge (see (3.11)), we can calculate the absolute
number of fitness calls that are necessary for solving a problem:

N × tconv ≈ −2krk−1

r
ln(α)

σBB

√
πm′

d
×

√
l

I

(
1 +

π

2
− r

2krk−1

)

=

√
πlm′

I
ln(α)

σBB

d

(
1 − 2kkr

4r
(2 + π)

)

The overall number of fitness calls goes with O(2kr/r). In comparison to
non-redundant representations, the number of fitness calls stays constant for
synonymously redundant representations if r = 2k(kr−1). Then x0/N = 1/2k

and the representation is uniformly redundant.

3.1.6 Analyzing the Redundant Trivial Voting Mapping

In the previous subsection, we developed theoretical models describing how
synonymously redundant representations influence the quality of the solution
and the time that is necessary to find the good solutions. In this subsection,
we investigate whether or not the proposed models allow a good prediction
of GA performance for the trivial voting (TV) mapping. The TV mapping
is a synonymously redundant representation and we use it for one-max and
concatenated deceptive trap problems. During our investigation we are par-
ticularly interested in whether the developed models allow us to accurately
predict the expected solution quality and running time of a selectorecombi-
native GA.

The Trivial Voting Mapping

We give a short introduction into the trivial voting mapping.
When using the TV mapping, a set of mostly consecutive, genotypic al-

leles is relevant for the value of one allele in the phenotype. Each allele in
the genotype can only influence the value of one allele in the phenotype. The
value of the phenotypic allele is determined by the majority of the values in
the genotypic alleles. In general, the different sets of alleles in the genotype
defining one phenotypic allele have the same size. The TV mapping is a syn-
onymously redundant representation as all genotypes that represent the same
phenotype are similar to each other. A mutation in a genotype results either
in the same corresponding phenotype, or in one of its neighbors.

The TV mapping can be easily characterized using the representation pa-
rameters defined in Sect. 3.1.2. The order of redundancy kr is simply the
number of genotypic alleles that determine the value of one phenotypic allele.
Figure 3.3 gives an example for the TV mapping.

3.1 Redundancy 51

genotype:

phenotype:

Figure 3.3. The trivial voting mapping

Shackleton et al. (2000) applied the TV mapping to binary strings in the
context of the neutral theory. When used for binary strings, binary genotypes
xg ∈ B

lg are assigned to binary phenotypes xp ∈ B
lp . The length of a genotype

is larger than the length of a phenotype, lg > lp. The value of one phenotypic
bit is determined by the majority of the values in the corresponding genotypic
bits (majority vote). However, if kr is even then the number of ones could
equal the number of zeros. Therefore, half the cases that result in a tie should
encode a one in the corresponding phenotypic allele, and half the cases should
represent a zero. For example, for kr = 4 the genotypic BBs 1100, 1010, and
1001 represent a 1 and the genotypic BBs 0011, 0101, 0110 represent a zero.

Because the majority of the votes determines the values of the correspond-
ing phenotypic allele, the TV mapping is a uniformly redundant representa-
tion. Each phenotypic BB is represented by the same number of genotypic
BBs which is 2k(kr−1), where k is the size of the phenotypic BB.

As we are not only interested in uniformly redundant representations, but
also want to know how non-uniformly redundant representations influence GA
performance, we extend the TV mapping to allow the encoding to overrepre-
sent some individuals. Therefore, we want to assume that if the number of ones
in the genotypic alleles xg

kri+j , where i ∈ {0, . . . , lp−1} and j ∈ {0, . . . , kr−1},
is larger or equal than a constant u then the value of the phenotypic allele xp

i

is set to one. Vice versa, the phenotypic allele xp
i is set to zero if less than u

of the corresponding genotypic alleles are set to one. Therefore,

xp
i =

{
0 if

∑kr−1
j=0 xg

kri+j < u

1 if
∑kr−1

j=0 xg
kri+j ≥ u,

where u ∈ {1, . . . , kr}. xg
i (respectively xp

i) denotes the ith allele of the geno-
type (respectively phenotype). u can be interpreted as the number of genotypic
alleles that must be set to one to encode a one in the corresponding pheno-
typic allele. This representation is denoted as extended trivial voting (eTV)
mapping. For u = (kr + 1)/2 (kr must be odd) we get the original TV map-
ping. Extending the TV mapping in the proposed way allows us to investigate
how non-uniform redundancy influences the performance of GAs.

When using the eTV mapping, the number r of genotypic BBs that can
represent the optimal phenotypic BB depends on the number of ones in the
genotypic alleles that determine the value of the corresponding phenotypic
allele. Considering (3.3) we get

52 3 Elements of a Theory of Representations

r =

⎛
⎝ kr∑

j=u

(
kr

j

)⎞
⎠

k

, (3.12)

where u ∈ {1, . . . , kr}. We assume that a BB is optimal if all phenotypic bits
are set to xp

i = 1. k denotes the size of the phenotypic BB. To give a short
illustration, we use a redundant representation with kr = 3, k = 1 (compare
Fig. 3.3). The optimal BB is xp

i = 1. Because u ∈ {1, . . . , kr} there are three
different values possible for r. For u = 1 the phenotypic allele xp

i is set to
one if at least one of the three corresponding genotypic alleles xg

ikr
, xg

ikr+1,
or xg

ikr+2 is set to one. Therefore, a one in the phenotype is represented by
r =

∑3
j=1

(
kr

j

)
= 7 different genotypic BBs (111, 110, 101, 011, 100, 010,

and 001). For u = 2, the optimal genotypic BB xp
i = 1 is represented by

r =
∑3

j=2

(
kr

j

)
= 4 different genotypic BBs (111, 110, 101, and 011) and

the representation is uniformly redundant. For u = 2 we get the original TV
mapping. For u = 3, the optimal phenotypic BB is represented only by one
genotypic BB (111).

Experiments and Empirical Results

Here we present empirical results when using the binary trivial voting mapping
for the one-max problem and the concatenated deceptive trap problem.

One-Max Problem

The first test example for our empirical investigation is the one-max problem.
This problem is very easy to solve for GEAs as the fitness of an individual is
simply the number of ones in the binary phenotype. To ensure that recom-
bination results in a proper mixing of the BBs, we use uniform crossover for
all experiments with the one-max problem. Furthermore, in all runs we use
tournament selection without replacement and a tournament size of 2. For the
one-max function the signal difference d equals 1, the size k of the building
blocks is 1, and the variance of a building block σ2

BB = 0.25.

xp
i

xg
2ix

g
2i+1 (with kr = 2)

extended TV original TV
r = 1 r = 3 r = 2

0 00, 01, 10 00 00, 01
1 11 01, 10, 11 10, 11

Table 3.2. The trivial voting mapping for
kr = 2

When using the binary TV mapping for the one-max problem each bit of a
phenotype xp ∈ Φp is represented by kr bits of the genotype xg ∈ Φg. The
string length of a genotype xg is lg = kr×lp and the size of the genotypic search
space is |Φg| = 2krlp . Table 3.2 illustrates for kr = 2 the two possibilities (r = 1

3.1 Redundancy 53

and r = 3) of assigning genotypic BBs {00, 01, 10, 11} to one of the phenotypic
BBs {0, 1} when using the extended TV mapping described in the previous
paragraphs. With denoting xp

i the value of the ith bit in the phenotype, the
2ith and (2i+1)th bit of a genotype determine xp

i . Because the size of the BBs
k = 1, the number of genotypic BBs that represent the optimal phenotypic
BB is either r = 1 or r = 3 (compare (3.12)). Furthermore, Table 3.2 also
lists the case where r = 2. This case is the original uniformly redundant TV
mapping. The second bit of each genotypic BB does not contribute to the
construction of the phenotype.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70

pr
op

or
tio

n
of

 c
or

re
ct

 B
B

s

population size N

pred. kr=1 (no redund.)
kr=1 (no redund.)

TVM (r=2, unif. redund.)
pred. eTVM with u=2 (r=1)

eTVM with u=2 (r=1)
pred. eTVM with u=1 (r=3)

eTVM with u=1 (r=3)

(a) kr = 2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70

pr
op

or
tio

n
of

 c
or

re
ct

 B
B

s

population size N

pred. kr=1 (no redund.)
kr=1 (no redund.)

TVM (u=2, r=4, unif. redund.)
pred. eTVM with u=3 (r=1)

eTVM with u=3 (r=1)
pred. eTVM with u=1 (r=7)

eTVM with u=1 (r=7)

(b) kr = 3

Figure 3.4. Experimental and theoretical results of the proportion of correct BBs
on a 150-bit one-max problem using the trivial voting mapping for kr = 2 (left) and
kr = 3 (right). The lines without line points show the theoretical predictions. When
using non-uniformly redundant representations, GA performance is changed with
respect to the overrepresentation or underrepresentation of the high-quality BBs.

extended TV mapping original TV
mappingu = 1 u = 2 u = 3

kr = 2
r 3 1 - 2

x0/N 3/4 1/4 - 2/4 = 1/2

kr = 3
r 7 4 1 4

x0/N 7/8 4/8 = 1/2 1/8 2/4 = 1/2

Table 3.3. Properties of the
different TV mappings for
the one-max problem (k = 1)

In Fig. 3.4(a) (kr = 2) and Fig. 3.4(b) (kr = 3), the proportion of correct
BBs at the end of a run for a 150 bit one-max problem using the TV mapping
is shown. For this problem 2150 different phenotypes are represented by either

54 3 Elements of a Theory of Representations

2300 (kr = 2) or 2450 (kr = 3) different genotypes. If we use the eTV mapping
(indicated in the plots as eTVM) we can set u either to 1 or 2 (kr = 2)
or to 1, 2, or 3 (kr = 3). The corresponding values for r, which can be
calculated according to (3.12), as well as x0/N are shown in Table 3.3. x0

is the expected number of copies of the best BB in the initial population
and N is the population size. Furthermore, the figures show the results when
using the original, uniformly redundant TV mapping, and when using the
non-redundant representation with kr = 1. The lines without line points show
the theoretical predictions from (3.7), and the lines with line points show the
empirical results which are averaged over 250 runs. The error bars indicate
the standard deviation.

The results show that for the uniformly redundant TV mapping, r = 2
(kr = 2) or r = 4 (kr = 3), we get the same performance as for using the
non-redundant representation (kr = 1). As in the original model proposed
by Harik et al. (1997) the theoretical model slightly underestimates GA per-
formance. As predicted by our model which we proposed in Sect. 3.1.4, GA
performance does not change when using a uniformly redundant represen-
tation. Furthermore, we can see that if the optimal BB is underrepresented
(u = 2 for kr = 2 and u = 3 for kr = 3) GA performance decreases. Equation
3.7 gives us a good prediction for the expected solution quality if we consider
that the non-uniform redundancy of the representation changes the initial BB
supply according to (3.6). If the optimal solution is overrepresented (u = 1
for both cases, kr = 2 and kr = 3) GA performance increases. Again the the-
oretical models give a good prediction for the expected proportion of correct
BBs.

Summarizing the results, we can see that using the uniformly redundant
TV mapping does not change GA performance as compared to using the non-
redundant representation. Only if we overrepresent the optimal phenotypic
BB, does GA performance increase; likewise, if we underrepresent the optimal
BB, GA performance drops. As our derived model is able to make accurate
predictions for the expected solution quality, our assumption that synony-
mously redundant representations influence GA performance by changing the
initial supply seems to be valid.

In the remaining paragraphs, we perform an empirical investigation into
the effect of the TV mapping on the number of generations until the pop-
ulation of a selectorecombinative GA converges. Again we use the one-max
problem and the TV mapping from above with the same parameters except
the population size is set to N = 2lp to allow reliable decision making for
the one-max problem (Goldberg et al. 1992). As we use tournament selection
without replacement of size two the selection intensity I = 1/

√
π.

Figures 3.5(a) (kr = 2) and 3.5(b) (kr = 3) show the number of generations
that are necessary until 90% of all phenotypic BBs are found over the problem
size which is equal to l = lp. The lines without line points show the predictions
from (3.10) and the lines with line points plot the empirical results. We can
see that the run duration of a GA when using the non-redundant representa-

3.1 Redundancy 55

 0

 10

 20

 30

 40

 50

 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 g

en
er

at
io

ns
 t c

on
v

problem size l

pred. kr=1 (no redund.)
kr=1 (no redund.)

TVM (r=2, unif. redund.)
pred. eTVM with u=2 (r=1)

eTVM with u=2 (r=1)
pred. eTVM with u=1 (r=3)

eTVM with u=1 (r=3)

(a) kr = 2

 0

 10

 20

 30

 40

 50

 20 30 40 50 60 70 80 90 100
nu

m
be

r
of

 g
en

er
at

io
ns

 t c
on

v

problem size l

pred. kr=1 (no redund.)
kr=1 (no redund.)

TVM u=2 (r=4. unif. redund.)
pred. eTVM with u=3 (r=1)

eTVM with u=3 (r=1)
pred. eTVM with u=1 (r=7)

eTVM with u=1 (r=7)

(b) kr = 3

Figure 3.5. Theoretical predictions and experimental results for the number of gen-
erations that are necessary until 90% of all phenotypic BBs are correctly identified.
The plots are for one-max problems and trivial voting mapping with kr = 2 (left)
and kr = 3 (right).

tion (kr = 1) is exactly the same as when using the uniformly redundant TV
mapping with kr = 2. For kr = 3 and u = 2 (uniform redundancy) the run
duration is slightly increased in comparison to the non-redundant encoding.
We expect that this difference increases with larger kr. In agreement with the
results from Thierens (1995), we report a small underestimation of the ex-
pected number of generations when using either non-redundant, or uniformly
redundant, representations.

When using non-uniformly redundant variants of the eTV mapping the
underestimation is larger, but nevertheless the model gives a good approxi-
mation for the expected number of generations. We can see that increasing r
increases the run duration. For example, if each phenotypic bit is represented
by three genotypic bits (kr = 3) and a one is represented if at least one out of
three genotypic bits is set to one (u = 1) then a GA finds the good solutions
after very short time (compare eTVM with u = 1). The expected number of
generations shows the predicted behavior. The necessary number of genera-
tions increases by about O(

√
l). We see that the proposed model allows us to

make good predictions for the expected run duration.

Concatenated Deceptive Trap Problem

Our second test example uses deceptive trap functions. Traps were first used
by Ackley (1987) and investigations into the deceptive character of these func-

56 3 Elements of a Theory of Representations

tions were provided by Deb and Goldberg (1993). Figure 3.6 depicts a 3-bit
deceptive trap problem where the size of a BB is k = 3. The fitness value of a
phenotype xp depends on the number of ones u in the string of length l. The
best BB is a string of l ones which has fitness l. Standard GEAs are misled
to the deceptive attractor which has fitness l− 1. For the 3-bit deceptive trap
the signal difference d is 1, and the fitness variance equals σ2

BB = 0.75. We
construct a test problem for our investigation by concatenating m = 10 of
the 3-bit traps so we get a 30-bit problem. The fitness of an individual x is
calculated as f(x) =

∑m−1
i=0 fi(u), where fi(u) is the fitness of the ith 3-bit

trap function from Fig. 3.6. Although this function is difficult for GEAs it can
be solved with proper population size N .

1

1 2 3
u

f(u)

3

2

Figure 3.6. A 3-bit deceptive trap problem

For deceptive traps of size k = 3 we can calculate the number r of genotypic
BBs that represent the optimal phenotypic BB according to (3.12). Table 3.4
summarizes, for the binary TV mapping, how r and x0/N depends on u,
which describes how many of the genotypic alleles must be set to 1 to encode
a 1 in the phenotype. x0 is the expected number of copies of the best BB in
the initial population and N is the population size. We have also included the
properties of the original uniformly redundant TV mapping.

extended TV mapping original TV
mappingu = 1 u = 2 u = 3

kr=2
r 33 = 27 13 = 1 - 23 = 8

x0/N 27/64 1/64 - 8/64 = 1/8

kr=3
r 73 = 343 43 = 64 13 = 1 43 = 64

x0/N 343/512 64/512 = 1/8 1/512 64/512 = 1/8

Table 3.4. Properties
of the different TV
mappings for the trap
of size k = 3

By analogy to the previous paragraphs, Figs. 3.7(a) (kr = 2) and 3.7(b)
(kr = 3) show the proportion of correct BBs at the end of a run over different
population sizes for ten concatenated 3-bit deceptive trap problems. In this
problem, 230 different phenotypes are represented by either 260 (kr = 2) or 290

(kr = 3) different genotypes. As before, we use tournament selection without
replacement of size 2. In contrast to the one-max problem, two-point crossover
was chosen for recombination. Uniform crossover would result in an improper

3.1 Redundancy 57

mixing of the BBs because the genotypic BBs are either of length lg = krlp = 6
(kr = 2), or of length lg = 9 (kr = 3). Again, the lines without line points show
the predictions of the proposed model for different r. Furthermore, empirical
results, which are averaged over 250 runs, are shown for various values of r.
The results show that for the uniformly redundant TV mapping we get the
same performance as when using the non-redundant representation (kr = 1).
As in the experiments for the one-max problem the proposed model predicts
the experimental results well if the eTV mapping is used and some BBs are
underrepresented or overrepresented.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

pr
op

or
tio

n
of

 c
or

re
ct

 B
B

s

population size N

pred. kr=1 (no redund.)
kr=1 (no redund.)

TVM (r=8, unif. redund.)
pred. eTVM with u=2 (r=1)

eTVM with u=2 (r=1)
pred. eTVM with u=1 (r=27)

eTVM with u=1 (r=27)

(a) kr = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

pr
op

or
tio

n
of

 c
or

re
ct

 B
B

s

population size N

pred. kr=1 (no redund.)
kr=1 (no redund.)

TVM (u=2, r=64, unif. redund.)
pred. eTVM with u=3 (r=1)

eTVM with u=3 (r=1)
pred. eTVM with u=1 (r=343)

eTVM with u=1 (r=343)

(b) kr = 3

Figure 3.7. Experimental and theoretical results of the proportion of correct BBs
for ten concatenated 3-bit deceptive traps. We show results for different variants of
the TV mapping and kr = 2 (left) and kr = 3 (right). The lines without line points
show the theoretical predictions. As predicted, GA performance sharply decreases
if the eTV mapping underrepresents the optimal BB.

The presented results show that the effects of synonymously redundant
representations like the TV mapping on the performance of GEAs can be ex-
plained well by a change of the initial supply of high-quality BBs. If the eTV
mapping favors high-quality BBs then the performance of GAs is increased.
If good BBs are underrepresented the performance is reduced. If the repre-
sentation is uniformly redundant, GAs show the same performance as when
using the non-redundant encoding.

3.1.7 Conclusions and Further Research

This section investigated how redundant representations influence the perfor-
mance of GEAs. It distinguished between synonymously and non-synonymous-

58 3 Elements of a Theory of Representations

ly redundant representations and illustrated that non-synonymous redun-
dancy does not allow genetic operators to work properly and therefore re-
duces the efficiency of evolutionary search. When using synonymously redun-
dant representations, GEA performance depends on the change of the initial
supply. Based on this observation, models were developed that give the neces-
sary population size for solving a problem, and the number of generations as
O(2kr/r), where kr is the order of redundancy and r is the number of genotypic
BBs that represent the optimal phenotypic BB. As a result, uniformly redun-
dant representations do not change the behavior of GAs. Only by increasing
r, which means overrepresenting the optimal solution, does GA performance
increase. In contrast, GA performance decreases if the optimal solution is un-
derrepresented. Therefore, non-uniformly redundant representations can only
be used advantageously if information exists a-priori regarding the optimal
solution. The validity of the proposed theoretical concepts is illustrated for
different variants of the redundant trivial voting mapping. The results show
that the developed population sizing and time to convergence models allow
an accurate prediction of the expected solution quality and solution time.

The proposed classification, population sizing, and time to convergence
models allow us to evaluate redundant representations in a systematic and
theory-guided matter. This approach will help users and researchers to an-
swer some of the disputed questions regarding the benefits of redundant rep-
resentations and to use redundant representations such that they increase the
performance, reliability and efficiency of evolutionary computation methods.

In this study, we only considered crossover-based search and neglected the
influence of redundant representations on mutation-based search. However,
we believe that many of the discussed topics are also relevant when using
mutation. According to Sect. 3.1.2, we believe that in analogy to the results
from Knowles and Watson (2002), using non-synonymously redundant repre-
sentations reduces the performance of mutation-based search. As these repre-
sentations have low locality, mutation will not work properly and the search
becomes random. Furthermore, there is some theoretical evidence (Radcliffe
1991a; Whitley et al. 1997; Rana and Whitley 1997; Whitley 1999; Whit-
ley 2000a; Christensen and Oppacher 2001) that mutation-based search only
performs well if the connectivity of the phenotypic search space is preserved
by the used representation. If the connectivity is either not preserved, such
as for low locality representations, or greatly increased (which results in a
reduction of the relevant connectivity) like in many non-synonymously redun-
dant representations, the performance of mutation-based search decreases. In
contrast, we expect when using synonymously redundant representations that
mutation-based search will show similar behavior and performance as when
using crossover-based search. Using synonymously redundant representations
introduces many plateaus in the fitness landscape but does not change the
structure of the search space. Mutation can still easily find neighboring phe-
notypes. When using non-uniformly redundant representations, some plateaus
in the fitness landscape have a larger size which increases the probability

3.2 Scaling 59

that mutation finds the solution represented by the genotypes forming this
plateau. As a result, the performance of mutation-based search increases if a
synonymously redundant representation overrepresents the optimal solution,
and decreases otherwise.

3.2 Scaling

This section provides the second of three elements of a theory of represen-
tations and addresses representations which change the importance of alleles
when mapping genotypes on phenotypes. Common representations for GEAs
often encode the phenotypes by using a sequence of alleles. When assigning
phenotypes to genotypes, a representation can change the importance of the
alleles. For example, a phenotype is a list of integers and all alleles (integers)
are equally relevant for calculating the fitness of a phenotype. We know from
previous work that the BBs (alleles) are solved in parallel if all alleles are
equally relevant (Goldberg 1989c). The situation that all alleles are equally
relevant is equivalent to the situation that the BBs are uniformly scaled.
However, when encoding the phenotypic integers using binary strings, the
contributions of the genotypic bits to the fitness function are no longer equal
and some bits are more relevant than others. When using such non-uniformly
scaled representations, the BBs are solved sequentially and domino conver-
gence occurs. Therefore, the time to convergence increases and the genetic
search is affected by genetic drift. This means that lower salient BBs are fixed
before they can be reached by the search process.

Based on previous work (Rudnick 1992; Thierens 1995; Thierens et al.
1998; Harik et al. 1997), we describe how the performance of GEAs is influ-
enced by the use of representations with non-uniformly scaled BBs. We de-
velop a population-sizing model with, and without, considering genetic drift.
The theoretical models are verified with empirical results.

In the following subsection, we review the effects of domino convergence
and genetic drift. In Sects. 3.2.2 and 3.2.3 we develop population sizing mod-
els for domino convergence with, and without, considering drift. We present
empirical verification of the proposed models in Sect. 3.2.4 and end with con-
cluding remarks.

3.2.1 Definitions and Background

Representations assign phenotypes xp consisting of different alleles xp
i , where

i ∈ {0, . . . , lp}, to genotypes, which also consist of different alleles xg
i , where

i ∈ {0, . . . , lg}. Furthermore, the function fp assigns to each phenotype xp a
corresponding fitness value. Usually, the fitness of a phenotype depends on
the values of xp

i . Therefore, different phenotypic alleles can have a different
contribution to the fitness of an individual xp. Representations are defined to
be uniformly scaled if the genotype-phenotype mapping fg does not change

60 3 Elements of a Theory of Representations

the contribution of the alleles to the calculation of the fitness function. For ex-
ample, when all phenotypic alleles xp

i have an equal contribution to the fitness
of an individual, representations are uniformly scaled if the importance of the
alleles does not change by the genotype-phenotype mapping, and all genotypic
alleles xg

i also have an equal fitness contribution. Representations can also be
uniformly scaled if different phenotypic alleles have a different contribution
to the fitness function as the scaling of a representation only considers the
genotype-phenotype mapping and not the phenotype-fitness mapping.

Representations are defined to be non-uniformly scaled if the contribu-
tions of the alleles to the fitness are different for the genotypes than the
phenotypes. The most frequently used non-uniformly scaled representations
are exponentially scaled representations where the genotypic alleles have an
exponentially scaled contribution to the values of the phenotypic alleles. A
common example for exponentially scaled representations is the binary en-
coding, which encodes integer phenotypic alleles using binary genotypes. The
contributions of the genotypic alleles to the construction of the phenotypic
alleles are exponentially different.

We want to emphasize that the scaling of a representation only considers
the genotype-phenotype mapping and is independent of the phenotype-fitness
mapping. For the discussion in this section, we assume that the phenotypic
alleles are uniformly scaled. This means that all phenotypic alleles have the
same contribution to the fitness of an individual.

The term “domino convergence” was introduced by Rudnick (1992). He
defined domino convergence as the sequential convergence of the alleles in a
bitstring. Domino convergence occurs if the alleles are non-uniformly scaled
and solved sequentially. Rudnick showed that there is a convergence window
of size λc. The convergence window is a set of λc contiguous alleles that have
started to converge but are not yet fully converged. More salient alleles have
already converged completely, whereas lower salient alleles are not yet touched
by convergence. The existence of the convergence window means that not all
parts of a problem are solved at the same speed. The higher the contribution
of one allele to the overall fitness of an individual, the earlier this allele is
solved by GEAs.

1

string
position

already converged not yet converged

λ l

low salience alleleshigh salience alleles

s
Figure 3.8. Domino conver-
gence

The λ model is a formal approach for modeling domino convergence in
GEAs (Thierens et al. 1998). λ ∈ {1, . . . , ls} defines the dividing line between
the genotypic alleles that have already converged and those that are still not

3.2 Scaling 61

touched by the selection pressure of GEAs. ls is the genotypic length of an
exponentially scaled BB. We want to assume that each phenotypic BB of size
lp is encoded using an (exponentially scaled) genotypic BB of size ls. λ moves
on from λ = 1, where all alleles are assumed to be in the initial random state,
to λ = ls where all alleles (of the genotypic BB) are converged (see Fig. 3.8).
At the beginning of the genetic search process (low λ) alleles are solved that
have a high contribution to the fitness of an individual, whereas at the end of
the GEA search (λ ≈ ls) alleles with a low influence on the fitness are solved.
For intermediate states, all lower salient alleles have never been exposed to
direct selection pressure and remain in their initial state as long as there is no
genetic drift. In the approach used by Thierens et al. (1998), the convergence
window has size λc = 1.

If the population size N is not large enough, some of the lower salient
genotypic alleles are randomly fixed due to genetic drift. This results in a
degradation of GEAs. The existence of genetic drift is widely known and has
been addressed in the field of population genetics (Kimura 1962; Kimura 1964;
Gale 1990; Nagylaki 1992; Hartl and Clark 1997), and also in the field of ge-
netic algorithms (Goldberg and Segrest 1987; Asoh and Mühlenbein 1994;
Thierens et al. 1998; Lobo et al. 2000). More information regarding the influ-
ence of genetic drift on the performance of GEAs can be found in Sect. 3.1.1.
Lower salient bits drift randomly because selection does not take these bits
into account when deciding between solutions. As two absorbing states exist
for binary alleles (all individuals have at their ith position either a zero or a
one), lower salient bits could be fixed because of random genetic drift before
they are directly exposed to selection pressure and solved by GEAs.

Thierens (1995) developed a convergence time model for non-uniformly
scaled problems. This work modeled the domino convergence for tournament
selection by a wave equation, and showed that the overall convergence time
complexity for an exponentially scaled fitness function is approximately of
order O(l). This is much slower than for uniformly scaled problems where
ranked based selection mechanisms have a convergence time of order O(

√
l)

where l is the length of the bitstring.
In the following paragraphs, we want to use some existing models for

developing a population sizing model for exponentially scaled representations,
with, and without considering the effects of genetic drift.

3.2.2 Population Sizing Model for Exponentially Scaled
Representations Neglecting the Effect of Genetic Drift

Representations are exponentially scaled if different genotypic alleles have a
different, exponentially scaled, contribution to the construction of the pheno-
typic alleles. The binary representation is the most common representative of
exponentially scaled representations.

We use a genetic algorithm for solving a problem and assume domino con-
vergence due to the exponentially scaled representation. Furthermore, there

62 3 Elements of a Theory of Representations

should be no overlapping between the solving process of the current and the
next allele (λc = 1). The next lower salient bit is only solved after the cur-
rent allele is completely converged. Thus, we expect the developed models to
only give us a lower bound on the solution quality and run duration of GAs.
Although this is a very conservative assumption, this model (Thierens et al.
1998) predicts the behavior of a GA well (Lobo et al. 2000). If we want to
overcome the limitation of strict sequential solving, a convergence window of
larger size λc > 1 can be introduced. This would result in an overlapping
solving process for the different alleles in the convergence window. The con-
vergence window would move through the string from the most salient to
the least salient alleles and would allow us to create a more exact model for
domino convergence.

Assuming strictly sequential solving of alleles (λc = 1), the fitness variance
of an exponentially scaled string when λ bits are converged during a GA run
was calculated in Thierens et al. (1998) as

σ2
N (λ) =

x0

N
(1 − x0

N
)
22(ls−λ) − 1

3
≈ x0

N
(1 − x0

N
)
22(ls−λ)

3
,

where ls is the length of the exponentially scaled string, x0 is the average
number of best solutions in the initial population, and N is the population
size. For x0 = N/2 (we assume that ls genotypic bits encode a phenotypic
BB of size k = 1) the variance simplifies to σ2

N (λ) ≈ 1
1222(ls−λ). This means

that the fitness variance is determined only by the non-converged region. The
more alleles that are solved during the run, the less noise we get. The fitness
variance of the genotypic allele that is currently solved is

σ2
BB(λ) =

x0

N
(1 − x0

N
)22(ls−λ).

For x0 = N/2 we get σ2
BB = 22(ls−λ−1). As the contribution of the alleles to

the fitness of an individual becomes less with lower salience, σ2
BB becomes

smaller with increasing time. The fitness distance d between the best individ-
ual and its strongest competitor could be calculated as

d(λ) = 2ls−λ.

If we concatenate m exponentially scaled genotypic BBs of size ls, we get
competing BBs and an overall genotypic string length of lg = l = lsm. This
means, we increase the number of phenotypic BBs from one to m and each
phenotypic BB of size lp is encoded by ls genotypic alleles. When solving the
λth bit of a genotypic BB there is noise σ2

BB from the λth bit of the competing
m′ = m−1, other BBs, and noise σ2

N from the yet unfixed bits in each BB. We
know from past work that the probability of making the right choice between
a single sample of each bit (compare also (3.5)) is (Miller 1997):

p = N

(
d√

2(m′σ2
BB + mσ2

N)

)
·

3.2 Scaling 63

Using the equations from above results in

p = N

⎛
⎝ 1√

2x0
N

(
1 − x0

N

)
(4
3m − 1)

⎞
⎠ (3.13)

For x0 = N/2 (we assume that each phenotypic BB has size k = lp = 1 and
each phenotypic BB is encoded using ls genotypic alleles) we finally get:

p = N

(√
2

4
3m − 1

)
· (3.14)

The probability of deciding well is independent of the position λ in the string
as long as there is no genetic drift, and the proportion of zeros and ones
remains constant for the yet unfixed bits. This means for m exponentially
scaled BBs that the probability p of deciding well is independent of the length
ls of the exponentially scaled BB and that it stays constant over all alleles.
Thus, the proportion of correct bits in the string at the end of a run depends
only on the number of BBs m. For m = 1 (there is only one exponentially
scaled BB) there is no noise from competing BBs and we get p = N

(√
6
)
.

Using p we can calculate the proportion of incorrect bits at the end of the run
according to the Gambler’s ruin model (compare also (3.15)) as (Feller 1957;
Harik et al. 1997)

α = 1 − 1 − (1/p − 1)x0

1 − (1/p − 1)N
· (3.15)

For x0 = N/2 and z =
√

2
4
3 m−1

we get:

α = 1 −
1 −

(
1

N(z) − 1
)N/2

1 −
(

1
N(z) − 1

)N
=

(
1

N(z) − 1
)N/2

1 +
(

1
N(z) − 1

)N/2
=

1

1 +
(

1
N(z) − 1

)−N/2
·

(3.16)
The probability α of GA failure for exponentially scaled problems only de-
pends on the population size N and the number of competing BBs m as long
as the population size is large enough, and no genetic drift occurs. Notice that
in contrast to the proportion of correct bits 1 − α, the number of correctly
found exponentially scaled BBs is (1 − α)ls (each of the m genotypic BB has
ls alleles). When using the first two terms of the power series expansion as
an approximation for the normal distribution (Abramowitz and Stegun 1972)
from (3.14) we get

p =
1
2

+
1√
2π

z,

where z =
√

2
4
3 m−1

. Substituting this approximation in (3.15) results in

64 3 Elements of a Theory of Representations

N = 2 ln
(

α

1 − α

)
/ ln

⎛
⎝1 −

√
2
π z

1 +
√

2
π z

⎞
⎠ ·

Since z tends to be a small number, ln(1 ± z
√

2
π) may be approximated as

±z
√

2
π . Using these approximations and substituting the value z into the

equation finally gives

N ≈ −1
2

ln
(

α

1 − α

)√
π

(
4
3
m − 1

)
· (3.17)

This rough approximation determines more clearly the variables the popula-
tion size N depends on. We see that for exponentially scaled representations,
the necessary population size N grows with the square root of the size m of
the problem. In contrast to the more general population sizing equation from
Harik et al. (1999), N does not depend on the distance d and the variance of
an allele σBB if genetic drift is neglected. As already mentioned, we want to
emphasize that we consider an exponentially scaled representation (genotype-
phenotype) mapping and do not address the phenotype-fitness mapping. For
the developed model we assume that the size of the phenotypic BB, kp = 1,
and that the phenotypic alleles are uniformly scaled this means that all phe-
notypic alleles have the same contribution to the fitness of an individual.

Finally, we give an estimation for the convergence time tconv for expo-
nentially scaled BBs of length ls. The time until a uniformly scaled string of
length m is converged can be calculated (Thierens and Goldberg 1994) as

t =
π

2

√
m

I
,

where I denotes the selection intensity. For tournament selection without
replacement of size 2, I = 1/

√
π. As there are m exponentially scaled BBs,

and therefore m alleles of the same salience, the GEAs solve m bits in parallel.
The next m lower salient bits are solved when all m currently solved bits are
fully converged (λc = 1). Thus, the solving process for exponentially scaled
problems is strictly serial and goes with O(ls) (Thierens 1995, pp. 66ff). The
overall time to convergence can be calculated as:

tconv = ls
π

2

√
m

I
=

l√
m

π

2I
, (3.18)

where l = lg = lsm. In contrast to an uniformly scaled representation
(tconv = O(

√
lsm)), the time to convergence goes with O(ls

√
m) when using

a representation, that assigns to each of the m phenotypic BBs ls exponen-
tially scaled alleles. We see clearly that GEAs need more time to converge if
non-uniformly scaled representations are used.

3.2 Scaling 65

3.2.3 Population Sizing Model for Exponentially Scaled
Representations Considering the Effect of Genetic Drift

In the previous subsection, we have developed a population sizing and con-
vergence time model for exponentially scaled representations. However, the
model does not consider the effects of genetic drift. This subsection lifts this
restriction and investigates the modifications necessary for considering genetic
drift.

Drift affects genetic search if the drift time is lower than the time to
convergence, tdrift < tconv. Low salient bits are fixed due to drift before they
can be reached by the solution process. The drift time has been studied in the
context of GEAs (Goldberg and Segrest 1987; Asoh and Mühlenbein 1994).
These studies show that the expected time for an allele to converge due to
genetic drift is proportional to the population size N . For an equal proportion
of ones and zeros in the start population, using tournament selection of size
s = 2 , the size of BBs k = 1 (Lobo et al. 2000), and random sampling with
replacement, we get for the drift time

tdrift ≈ 1.4N. (3.19)

For tconv > tdrift genetic drift fixes some low salient bits before they can be
solved by the search process. Using (3.18), we can calculate the population
size Ndrift for which GEAs using tournament selection of size 2 (selection
intensity I = 1/

√
π) are affected by genetic drift as

Ndrift <
5π

14

√
π

m
l· (3.20)

If the population size N of GEAs using an exponentially scaled representation
is lower than Ndrift then domino convergence does not reach the lowest salient
alleles and these alleles are randomly fixed at one of the two absorbing states
0 or 1 (we assume a binary encoding with χ = 2).

In the following paragraphs, we want to propose two approaches modeling
the influence of drift on the performance of GEAs using exponentially scaled
representations. At first, we need a model that describes the drift process itself.
An approximation for the probability s(t) that an allele is fully converged due
to genetic drift at time (generation) t was given by Kimura (1964):

s(t) ≈ 1 − 6
x0

N
(1 − x0

N
) exp(−t/N)·

Using this approximation we can calculate how the probability of randomly
fixing an allele depends on the population size N and the number of genera-
tions t. When x0 = N/2 is the expected number of 1s in the randomly initial-
ized population (we still assume that all phenotypic BBs have size k = 1 and
each phenotypic BB is represented by ls genotypic bits) we get

s(t) = 1 − 3
2

exp(−t/N)·

66 3 Elements of a Theory of Representations

As s(t) is only an approximation (s(t) < 0 for small t) we define the conver-
gence probability

s′(t) =

{
0 for t < −N ln(2/3),
1 − 3

2 exp(−t/N) for t > −N ln(2/3).

For t < −N ln(2/3) the probability that an allele converges due to genetic drift
is zero. In Fig. 3.9, we plot the probability that an allele is fully converged at
generation t for N = 10.

-0.2

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

pr
ob

ab
ili

ty
 o

f f
ix

at
io

n
du

e
to

 d
rif

t

generation t

s(t)
s’(t)

s (t)sc

1.4 N
Figure 3.9. Genetic
drift models

We know from (3.18) that GEAs need t = π
2

√
m
I generations for solving one

allele in the bitstring. When considering genetic drift, the bits in the string are
either solved correctly with probability 1 − α or they are randomly fixed due
to genetic drift. If domino convergence reaches after t = λπ

2

√
m
I generations an

allele, this allele is not converged due to genetic drift with probability 1−s′(t).
Therefore, we want to assume that with probability 1−s′(t), this allele remains
in its initial state and is solved correctly with probability 1 − α. In contrast,
with probability s′(t), this allele is converged due to genetic drift. If the allele
is converged due to genetic drift, it converges to the correct solution with
probability 1/2. Therefore, using the probability of GA failure α from (3.16)
we can calculate the probability of GA failure when considering genetic drift
as

αdrift(λ) =
(
1 − s′(λ

π

2
√

πm)
)

α +
1
2
s′(λ

π

2
√

πm),

when using tournament selection of size 2 (I = 1/
√

π). 1− s′(λπ
2

√
πm) is the

probability that the allele at the λth position is not converged due to genetic
drift at time t = λπ

2

√
πm. The probability of error for this allele is α. Fur-

thermore, the alleles are affected by genetic drift with probability s′(λπ
2

√
πm),

and converge to the wrong solution with probability 1/2. Consequently, the
overall average percentage ᾱdrift of incorrect alleles in one genotypic BB of
length ls can be calculated as

ᾱdrift =
1
ls

ls∑
λ=1

αdrift(λ) (3.21)

3.2 Scaling 67

and is simply the sum over all ls bits of one BB. We refer to this model as
the approximated drift model.

We assume in this model that the proportion of ones and zeros for for
the unconverged alleles xg

i , where i > λ, is still 0.5, and therefore α does
not depend on λ. We also assume that the solving time for one allele stays
constant over the whole solving process, and that it is independent of λ.

In the remaining paragraphs, we want to develop a second population
sizing model for exponentially scaled alleles considering the effects of genetic
drift. Instead of using the approximation from Kimura (1964), we use a simple
drift/no-drift approach. We assume that all instances of an allele are either
fixed due to genetic drift, or remain in the initial state. Thus, we get a linear,
stair-case model for the estimation of αdrift, if we assume that for tdrift >
λπ

2

√
πm all bits can be solved with probability 1−α, and for tdrift < λπ

2

√
πm

the remaining low salient ls − λ bits of each BB are fixed randomly at the
correct solution with probability 0.5. As previously, the drift time can be
calculated for GAs using tournament selection of size s = 2 as tdrift ≈ 1.4N .
Therefore, the probability ssc that an allele is fully converged due to genetic
drift at time t is

ssc(t) =

{
0 for t < tdrift,

1 for t > tdrift.

We illustrate this in Fig. 3.9. For t < tdrift we assume no genetic drift, and for
t > tdrift all the remaining bits are randomly fixed. Therefore, the probability
of GA failure can be calculated as:

α′
drift(λ) =

{
α for λ < 2.8N

π
√

πm
,

0.5 for λ ≥ 2.8N
π
√

πm
.

By using (3.19) and (3.20) the average percentage of incorrect alleles is:

ᾱ′
drift(λ) =

⎧⎨
⎩

1
ls

(∑� 2.8N
π
√

πm
�

λ=0 α +
∑ls−1

λ=	 2.8N
π
√

πm

1
2

)
for N < 5π

14

√
πmls,

α for N ≥ 5π
14

√
πmls.

(3.22)
For large N , no genetic drift occurs and we get the same failure probability
as for the non-drift case (3.16). For small N the most salient � 2.8N

π
√

πm
 bits are

solved correctly with probability 1 − α and the rest of the alleles are fixed
randomly due to genetic drift.

As the drift time has a standard deviation of approximately the same or-
der (Gale 1990, pp. 82ff.) as its mean (≈ 1.4N), the model underestimates the
solution quality for t < 1.4N , and overestimates it for t > 1.4N . The proba-
bility of converging to the correct solution has a stair-cased slope regarding
N as long as tdrift < tconv. Thus, we refer to this model as the stair-case drift
model.

68 3 Elements of a Theory of Representations

3.2.4 Empirical Results for BinInt Problems

In this subsection, we illustrate that the proposed models considering genetic
drift predict the behavior of GEAs well for exponentially scaled representa-
tions and small populations. We show that with decreasing number of com-
peting exponentially scaled BBs, and increasing length of the BBs, genetic
drift leads to a stronger decline of GEAs.

For our empirical investigation we use the integer one-max problem from
Sect. 5.1. Furthermore, we encode the phenotypes (integers) as binary strings
using the binary encoding (compare Sect. 5.2). As a result we get the BinInt
problem (Rudnick 1992). There are ls genotypic bits that encode the pheno-
type and the contribution of an allele to the construction of the phenotype
xp is exponentially scaled. The fitness of a phenotype is its integer value.
Therefore, the overall fitness of an individual can be calculated as:

f(xg) =
ls−1∑
i=0

xg
i 2

i

Thus, the optimal solution is a string with only ones. If the population size is
large enough, the BinInt problem is easily solved by GEAs in a step-wise way
according to the domino convergence model.

According to Sect. 2.1.2, the BinInt problem can be separated into a rep-
resentation fg, and a phenotype-fitness mapping fp. Therefore, the genotype
is a binary string of length ls and the phenotype is an integer. We assume that
the phenotype-fitness mapping is the identity function and assigns an integer
value to each phenotype,

fp(xp) = xp.

The representation fg is exponentially scaled and assigns ls genotypic alleles
to the phenotype. The value of a phenotype is calculated as

xp =
ls−1∑
i=0

xg
i 2

i.

We present no results for exponentially scaled representations and deceptive
problems because the population size N that is necessary to solve these types
of problems is in general large enough to ensure that no genetic drift occurs,
and therefore, the available population sizing models from Sect. 3.2.2 can be
used.

For all experiments we use uniform crossover, no mutation, and tourna-
ment selection of size two without replacement. The initial population is gen-
erated randomly (the initial state of the population has an equal proportion
of zeros and ones, x0 = N/2) and a GA run is stopped after the population is
fully converged. To gain statistical evidence we performed 250 runs for each
problem. We present results for three test cases:

3.2 Scaling 69

• one BinInt problem (m = 1),
• 10 concatenated BinInt problems (m = 10),
• 50 concatenated BinInt problems (m = 50).

We want to denote the correct solution (a sequence of ls ones) for one BinInt
problem as a BB. For the BinInt problem, the size of the phenotypic BBs is
k = 1 and the size of the genotypic BBs is ls. The fitness of an individual is
the sum over all m BinInt problems and can be calculated as

f(xp) =
m−1∑
i=0

xp
i =

m−1∑
i=0

ls−1∑
j=0

xg
lsi+j .

For each of these three test cases we present results for ls = 5 and ls = 10.
Therefore, the maximum fitness of a BinInt problem is f(xp) = 25 = 32
(ls = 5) or f(xp) = 210 = 1, 024 (ls = 10). In Table 3.5, we present the overall
string length lg, the probability p of making the right choice between a single
sample of each BB, and the overall convergence time tconv when assuming no
genetic drift. If drift occurs some lower salient genotypic alleles are randomly
fixed at 0 or 1 before they can be reached by the search process and tconv is
an upper bound for the overall convergence time.

Table 3.5. Some properties of the three test cases

m = 1 m = 10 m = 50
ls 5 10 5 10 5 10

lg 5 10 50 100 250 500

p N(
√

6) N(
√

6/37) N(
√

6/197)

tconv 5π
2

√
π 10π

2

√
π 5π

2

√
10π 10π

2

√
10π 5π

2

√
50π 10π

2

√
50π

In Figs. 3.10 (m = 1), 3.11 (m = 10), and 3.12 (m = 50), we present
results for the different test cases. One phenotypic integer is represented by
either ls = 5 (left) or ls = 10 (right) bits. The solid lines with line points show
the empirical results. We show predictions for considering no drift (dotted
line), for the stair-case drift model (dashed line with line points), and for
the approximated drift model (dashed line). All predictions consider domino
convergence.

For all three cases, genetic drift has a large impact on the GA perfor-
mance especially with increasing ls, and decreasing number of competing BBs
m. The number of competing BBs is equivalent to the number of concatenated
BinInt problems. In contrast to the no-drift model which could not predict
the behavior of the GA well, both the stair-case drift model, as well as the ap-
proximated drift model, are able to accurately describe the behavior of GEAs
using exponentially scaled representations. Both models consider genetic drift
and predict the behavior of GEAs better than the domino-convergence model
alone.

70 3 Elements of a Theory of Representations

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 5 10 15 20 25 30 35

pr
op

or
tio

n
of

 c
or

re
ct

 a
lle

le
s

number of indidividuals N

exp. results
approx. drift model

stair-case drift model
no drift model

(a) m = 1, ls = 5

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 5 10 15 20 25 30 35

pr
op

or
tio

n
of

 c
or

re
ct

 a
lle

le
s

number of indidividuals N

exp. results
approx. drift model

stair-case drift model
no drift model

(b) m = 1, ls = 10

Figure 3.10. Experimental and theoretical results of the proportion of correct
alleles for one BinInt problem of length ls = 5 (left) and ls = 10 (right). The solid
lines with line points show the empirical results. All shown predictions consider
domino convergence. We show predictions for considering no drift (dotted line), for
the stair-case drift model (dashed line with line points), and for the approximated
drift model (dashed line). With increasing length ls of the genotype, genetic drift
has a major impact on the GA, and the GA performance declines.

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 5 10 15 20 25 30 35 40 45 50

pr
op

or
tio

n
of

 c
or

re
ct

 a
lle

le
s

number of indidividuals N

exp. results
approx. drift model

stair-case drift model
no drift model

(a) m = 10, ls = 5

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 5 10 15 20 25 30 35 40 45 50

pr
op

or
tio

n
of

 c
or

re
ct

 a
lle

le
s

number of indidividuals N

exp. results
approx. drfit model

stair-case drift model
no drift model

(b) m = 10, ls = 10

Figure 3.11. Experimental and theoretical results of the proportion of correct
alleles for m = 10 concatenated BinInt problems of length ls = 5 (left) and ls = 10
(right). The overall string length is l = 50 (left) and l = 100 (right). The solid lines
with line points show the empirical results. We show predictions for considering no
drift (dotted line), for the stair-case drift model (dashed line with line points), and
for the approximated drift model (dashed line). Although the GA is affected by noise
from the competing m−1 problems, which superimposes the effects of drift, genetic
drift has a major impact on the GA performance with increasing ls.

3.2 Scaling 71

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 10 20 30 40 50 60 70 80 90 100

pr
op

or
tio

n
of

 c
or

re
ct

 a
lle

le
s

number of indidividuals N

exp. results
approx. drift model

stair-case drift model
no drift model

(a) m = 50, ls = 5

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 10 20 30 40 50 60 70 80 90 100

pr
op

or
tio

n
of

 c
or

re
ct

 a
lle

le
s

number of indidividuals N

exp. results
approx. drift model

stair-case drift model
no drift model

(b) m = 50, ls = 10

Figure 3.12. Experimental and theoretical results of the proportion of correct
alleles for m = 50 BinInt problems of length ls = 5 (left) and ls = 10 (right).
The overall string length is l = 250 (left) and l = 500 (right). The solid lines with
line points show the empirical results. We show predictions for considering no drift
(dotted line), for the stair-case drift model (dashed line with line points), and for
the approximated drift model (dashed line). With increasing ls, genetic drift has a
larger impact on the GA, and the GA performance declines.

We see that with increasing ls, the performance of GEAs declines. This
behavior is expected as we know from our theoretical investigations that tconv

increases linearly with ls (see (3.18)), whereas the drift time tdrift stays con-
stant (see (3.19)). Therefore, with increasing ls more and more lower salient
alleles are fixed due to genetic drift and GEA performance declines.

Our results show that the influence of genetic drift is reduced for an in-
creasing number m of BBs (BinInt problems). We know from (3.14) that
with increasing m the probability of making the right choice between a single
sample of each bit is reduced. Therefore, larger populations N are necessary
which reduce the influence of genetic drift with increasing m. This relation-
ship can be seen nicely in the presented plots. For m = 1 (see Fig. 3.10) we
have no competing BBs, the necessary populations are very small, and the
GA is strongly affected by genetic drift. Therefore, the no-drift model fails
completely. For m = 50, however, there is a lot of noise from the competing
BBs (BinInt problems), and therefore larger populations are necessary. The
influence of genetic drift is smaller, and the no-drift model when only con-
sidering domino convergence gives an acceptable prediction of the solution
quality (see. Fig. 3.12).

As predicted, the stair-case model underestimates the proportion of correct
alleles for small N (N < 5

7 tdrift), and overestimates it for large populations
(N > 5

7 tdrift). The approximated drift model predicts the slope of the empiri-
cal results well, but due to the used domino convergence with strict sequential
solving of the bits, it always underestimates the proportion of correct alleles.
We believe that by introducing a convergence window, and assuming some

72 3 Elements of a Theory of Representations

parallel solving of the alleles, that the approximated drift model should more
accurately predict the behavior of GAs.

We have seen that the lower the number m of competing BBs (BinInt
problems) is, and the more bits ls each BinInt problem has, the stronger
is the impact of genetic drift on the solution quality. Although we only use
a strictly serial solution process and no convergence window, the developed
models considering genetic drift give us a good prediction of the expected
proportion of correct alleles when using exponentially scaled representations.
Population sizing models that neglect the effect of genetic drift are not able
to accurately predict the expected proportion of correct alleles for a given
population size.

3.2.5 Conclusions

We have illustrated the effect of non-uniformly scaled representations on the
performance of genetic algorithms. When using small populations and easy
problems, GAs are affected by genetic drift. To be able to model the effects of
genetic drift more accurately, we used the population sizing model from Harik
et al. (1999), the domino convergence model from Rudnick (1992), and the
time complexity model from Thierens (1995) and Thierens et al. (1998) and
developed two population sizing models for exponentially scaled representa-
tions considering genetic drift. The approximated genetic drift model uses an
approximation (Kimura 1964) for the probability that an allele is completely
converged due to genetic drift after t generations, and gives us a lower bound
for the solution quality. The stair-case drift model assumes that genetic drift
occurs as long as the convergence time is larger than the expected drift time,
and that the lower salient genes are fixed at the correct solution due to genetic
drift with probability x0/N .

The theoretical results reveal that genetic drift has a large impact on the
probability of error and convergence time when using exponentially scaled
representations. Because the alleles are solved strictly in serial, exponentially
scaled representations change the dynamics of genetic search. As a result
the solution quality is reduced by genetic drift, and the convergence time
is increased by domino convergence. The empirical investigations show that
despite the assumption that the size of the convergence window λc = 1, the
proposed models considering genetic drift give us, in contrast to the no-drift
model, accurate predictions for the solution quality. Except for a very large
number m of competing BBs, or a very low number ls of exponentially scaled
genotypic alleles, the no-drift population sizing model is not able to predict
the expected solution quality.

When using exponentially scaled representations, researchers should be
aware of the effects of genetic drift as some of the alleles are fixed randomly and
of the effects of domino convergence which increases the time to convergence.

3.3 Locality 73

3.3 Locality

During the last decades, starting with work by Bagley (1967), Rosenberg
(1967) and Cavicchio (1970), researchers recognized that the concept of build-
ing blocks is helpful for understanding the principles of selectorecombinative
GAs, and is a key factor in determining successful use. A well designed GA
should be able to preserve high quality building blocks, and increase their
number over the generations (Goldberg 1989c).

When using the notion of building blocks in the context of representations,
we must be aware that building blocks not only exist in the genotype, but also
in the phenotype. A representation transforms the structure and complexity
of the building blocks from the phenotype to the genotype, and therefore
the structure and complexity of the building blocks can be different in the
genotype and phenotype. This section provides the third, and final element,
of a theory of representations for GEAs and investigates how the locality
of a representation modifies the complexity of building blocks and changes
the difficulty of an optimization problem. The locality of a representation
describes how well genotypic neighbors correspond to phenotypic neighbors.
The locality of a representation is high if genotypic neighbors correspond to
phenotypic neighbors.

Previous work has indicated that high locality of a representation is nec-
essary for efficient evolutionary search (Rothlauf and Goldberg 1999; Gottlieb
and Raidl 1999; Gottlieb and Raidl 2000; Gottlieb et al. 2001; Rothlauf and
Goldberg 2000). However, it remains unclear as to how the locality of a rep-
resentation influences problem difficulty, and if high-locality representations
always aid evolutionary search. The results show that high-locality represen-
tations do not modify the complexity of the problems they are used for. In
contrast, when using low-locality representations the genotypic BBs can be
different from the phenotypic BBs, and the complexity of the problem can
be changed. Therefore, only high-locality representations can guarantee to
reliably and predictably solve problems of bounded complexity.

We focus our investigation on how the locality of a representation influ-
ences problem difficulty and do not develop models for problem difficulty but
use selected models presented in Sect. 2.3. In the context of evolution strategies
(Bäck and Schwefel 1995), previous work developed the concept of causality
(Igel 1998; Sendhoff et al. 1997b; Sendhoff et al. 1997a) as a measurement
of problem difficulty. Basically, both concepts, causality and locality, address
similar aspects as they describe how well the distances between individuals
are preserved when mapping the phenotypes on the genotypes. However, in
this study we do not classify the difficulty of problems but only describe how
the difficulty of a problem is changed by the encoding.

In the following subsection, the influence of representations on problem
difficulty is discussed. We illustrate why it is helpful to use encodings that do
not modify problem difficulty for solving problems of bounded difficulty. Sec-
tion 3.3.2 introduces the concept of locality and shows how locality depends on

74 3 Elements of a Theory of Representations

the metrics that are defined for the genotypes and phenotypes. In Sects. 3.3.3
and 3.3.4, we review the concept of problem difficulty introduced by Jones and
Forrest (1995), and show how the locality of a representation influences prob-
lem difficulty. Sect. 3.3.5 introduces the distance distortion of a representation
and illustrates that high locality is necessary for an encoding to have low dis-
tance distortion. In Sect. 3.3.6, we show for the fully easy one-max problem
that low-locality representations make the problem more difficult. The re-
sults of the theoretical investigation are verified and illustrated in Sect. 3.3.7
by an empirical investigation for the one-max and deceptive trap problem.
The results show that for high-locality representations the one-max problem
remains fully easy, and the fully deceptive trap remains fully difficult. In con-
trast, when using low-locality representations the fully easy one-max problem
becomes more difficult to solve for GEAs, whereas the deceptive trap becomes
easier. The section ends with concluding remarks.

3.3.1 Influence of Representations on Problem Difficulty

We discuss the influence of representations on problem difficulty and why
representations should preserve the complexity of a problem when assigning
the genotypes to the phenotypes.

It was already recognized by Liepins and Vose (1990) that by using differ-
ent representations the complexity of a problem can be completely changed.
Changing the complexity of a problem means that the difficulty of the problem
and therefore the structure of the BBs is changed (see Sect. 2.3). However, rep-
resentations that modify BB-complexity are problematic as they do not allow
us to reliably solve problems of bounded difficulty. If the complexity of BBs
is changed by the encoding, some problems become easier to solve, whereas
others become more difficult. To predict which problems become easier and
which do not is only possible if detailed knowledge about the optimization
problem exists (compare also Sects. 3.3.4 and 4.4.3). To ensure that problems
of bounded complexity, that means easy problems, can be reliably solved by
GEAs, representations that preserve the complexity of the building blocks
should be used.

Liepins and Vose (1990) showed that for a fully deceptive problem f(x) =
fp(fg(x)) there is a transformation T such that the function g(x) = f [T (x)]
becomes fully easy. This means that every fully deceptive problem could be
transformed into a fully easy problem by introducing a linear transformation
T . In general, the difficulty of a problem could easily be modified by using
different linear transformations T . Liepins and Vose concluded that their re-
sults underscore the importance of selecting good representations, and that
good representations are problem-specific. Therefore, in order to find the best
representation for a problem, it is necessary to know how to optimize the
problem and what the optimal solution for the problem is.

To find the best representation for a specific problem, Liepins and Vose
proposed using adaptive representations that “simultanously search for rep-

3.3 Locality 75

resentations at a metalevel” (Liepins and Vose 1990, p. 110). These represen-
tations should autonomously adapt to the problem and encode it in a proper
way (compare Rothlauf et al. (2000)). Initial steps in this direction were made
by Goldberg et al. (1989) with the development of the messy GA. These kinds
of GAs use an adaptive encoding that adapts the structure of the represen-
tation to the properties of the problem. This approach, however, burdens the
GA not only with the search for promising solutions, but also the search for
a good representation.

Therefore, we go back one step and ask the question, what kind of encoding
should be used if there is no a priori knowledge about the problem, and
no adaptive encoding should be used. Users who simply want to solve their
problems by using a GEA are confronted with this kind of problem. They have
no knowledge about the problem, and they do not want to do experiments
to find out what structure the problem has, what the promising areas in the
search space are, and what kind of representations make the problem most
easy. They just want to be sure that the GEA can solve their problem as
long as the complexity of their problem is bounded and the used GEA is able
to solve it. One solution for their problems are representations that preserve
BB-complexity. Using these types of representations means that the problem
has the same difficulty in the genotypic as in the phenotypic space. Then users
can be sure that the representation does not increase the complexity of the
problem, and that the GEA reliably solves their problem.

Wanting representations to preserve BB-complexity raises the question of,
why are we especially interested in encodings that preserve complexity? Is it
not more desirable to construct encodings that reduce problem complexity,
as Liepins and Vose propose? The answer is yes and no. Of course, we are
interested in encodings that reduce problem difficulty. However, in general it
is not possible to construct a representation that reduces the complexity for all
possible problem instances. One result of the no-free-lunch theorem (Wolpert
and Macready 1995) is that if some problem instances become easier by the use
of a representation, there are other types of problem instances that necessarily
become more difficult.

Therefore, we want to at least ensure that the representation does not
make problems of bounded difficulty – these are the class of problems we
are interested in – more difficult to solve. However, as shown in Sects. 3.3.6
and 3.3.7, encodings that do not preserve problem complexity always make
fully easy problems more difficult. Therefore, a phenotypically easy problem
could even become so difficult by using a “bad” encoding that it can not be
solved efficiently any more. Of course, representations that do not preserve
problem complexity make fully difficult problems more easy, but as we are
interested in solving only problems of bounded difficulty, and not all types of
problems, this is not important to us. For difficult problems, like the needle
in the haystack problem, or the fully deceptive trap problem, the complexity
of the problem is not bounded, and therefore, we are in general not interested
in solving these kinds of problems with GEAs.

76 3 Elements of a Theory of Representations

The solution for all our problems would be an “optimal” representation
that preserves problem complexity for problems of bounded difficulty and
reduces the complexity for all other problems. But reaching this aim is far
beyond the scope of this work. Furthermore, we believe that the no no-free-
lunch theorem does not allow us to get such a free lunch for every problem.

Finally, we want to come back to the results of Liepins and Vose (1990)
and illustrate the problems with representations that change the difficulty
of problems. The transformation T , which can be interpreted as a genotype-
phenotype mapping, can modify the complexity of a problem in such a way
that a fully difficult deceptive trap problem becomes a fully easy one-max
problem. But, using the same transformation T for a fully easy one-max prob-
lem can result in a fully deceptive trap (compare Fig. 4.1(a)). Therefore, by
using this representation, we are able to solve a deceptive trap, but not the
one-max problem any more. If we want to solve both types of problems we
must know a priori what the problem is and adjust the representation accord-
ing to the problem. However, if we do not know the problem a priori, and if we
want to make sure that we can solve at least problems of bounded difficulty
reliably, we must use representations that do not modify problem difficulty.

In the following subsection, we define the locality of a representation for-
mally and show in Sect. 3.3.4 that low locality is necessary for a representation
to not modify problem difficulty.

3.3.2 Metrics, Locality, and Mutation Operators

In Sects. 2.1.1 and 2.1.2, we introduced the concept of a representation which
assigns genotypes xg ∈ Φg to corresponding phenotypes xp ∈ Φp. In the
following paragraphs, we introduce the concept of locality and describe how
the locality of a representation is based on the metric used for Φg and Φp.

When using search algorithms, a metric has to be defined on the search
space Φ. Based on the metric, the distance dxa,xb

between two individuals xa ∈
Φ and xb ∈ Φ describes how similar the two individuals are. The larger the
distance, the more different two individuals are. In general, different metrics
can be defined for the same search space. Different metrics result in different
distances and different measurements of the similarity of solutions.

Two individuals are neighbors if the distance between two individuals is
minimal. For example, when using the Hamming metric (Hamming 1980)
for binary strings the minimal distance between two different individuals is
dmin = 1. Therefore, two individuals xa and xb are neighbors if the distance
dxa,xb

= 1.
If we use a representation fg there are two different search spaces, Φg

and Φp. Therefore, different metrics can be used for the phenotypic and the
genotypic search space. In general, the metric used on the phenotypic search
space Φp is determined by the specific problem that should be solved and
describes which problem solutions are similar to each other. In contrast, the
metric defined on Φg is not given a priori but depends on the used genotypes.

3.3 Locality 77

As different genotypes can be used to represent the same phenotypes, different
metrics can be defined on Φg. Therefore, in general, different metrics are used
for Φp and Φg which imply a different neighborhood structure in Φg and
Φp. For example, when encoding integers using binary strings the phenotype
xp = 5 has two neighbors, yp = 6 and zp = 4. When using the Hamming
metric, the corresponding binary string xg = 101 has three different neighbors,
ag = 001, bg = 111, and zg = 100 (Caruana and Schaffer 1988).

The locality of a representation describes how well neighboring genotypes
correspond to neighboring phenotypes. The locality of a representation is high
if all neighboring genotypes correspond to neighboring phenotypes. In con-
trast, the locality of a representation is low if some neighboring genotypes
do not correspond to neighboring phenotypes. Therefore, the locality dm of a
representation can be defined as

dm =
∑

dg
x,y=dg

min

|dp
x,y − dp

min|, (3.23)

where dp
x,y is the phenotypic distance between the phenotypes xp and yp, dg

x,y

is the genotypic distance between the corresponding genotypes, and dp
min,

resp. dg
min is the minimum distance between two (neighboring) phenotypes,

resp. genotypes. Without loss of generality we want to assume that dg
min =

dp
min. For dm = 0 all genotypic neighbors correspond to phenotypic neighbors

and the encoding has perfect (high) locality.
We want to emphasize that the locality of a representation does not only

depend on the representation fg, but also on the metric that is defined on Φg

and the metric that is defined on Φp. fg only determines which phenotypes are
represented by which genotypes and says nothing about the similarity between
solutions. Before we are able to describe the locality of a representation a
metric must be defined on Φg and Φp.

In the remaining paragraphs, we briefly discuss how the mutation opera-
tor used for genetic search determines the metric and the distances that are
used for the genotypic space Φg. Based on the metric defined on the genotypic
search space Φg, search operators like mutation or crossover can be defined.
In EAs, and most of the individual-based search heuristics, like simulated an-
nealing, tabu search, and others, the search operator mutation is designed to
create new solutions (offspring) with similar properties as its/their parent(s)
(Doran and Michie 1966). In most local search methods, mutation creates off-
spring that have a small or sometimes even minimal distance to their parents
(for example the bit-flipping operator for binary representations). Therefore,
mutation operators and metrics can not be developed independently of each
other but determine each other. A metric defines the mutation operator and
the used mutation operator determines the metric. As the search operators
are applied to the genotypes, the metric that is used on Φg is relevant for the
definition of mutation operators.

78 3 Elements of a Theory of Representations

The basic idea behind using mutation-based search approaches is that the
structure of the fitness landscape should guide the search heuristic to the high-
quality solutions (Manderick et al. 1991), and that the optimal solution can
be found by performing small iterated changes. It is assumed that the high-
quality solutions are not isolated in the search space but grouped together
(Christensen and Oppacher 2001; Whitley 2002). Therefore, better solutions
can easily be found by searching around already found good solutions. The
search steps must be small because too large search steps would result in a
randomization of the search, and guided search around good solutions would
become impossible. In contrast, when using search operators that perform
large steps in the search space it would not be possible to find better solutions
by searching around already found good solutions but the search algorithm
would jump randomly around the search space (compare also Sect. 3.1.2).

3.3.3 Phenotype-Fitness Mappings and Problem Difficulty

As described in Sect. 2.1.2 the difficulty of a problem depends on the
phenotype-fitness mapping fp. Furthermore (compare Sect. 2.3), the difficulty
of a problem depends on the used search method and the metric that is de-
fined on the phenotypic search space Φp. The metric defined on Φp deter-
mines which individuals are similar to each other and depends on the used
main search operator. Both determinants of problem difficulty, the phenotype-
fitness mapping fp and the metric defined on Φp, are given a priori by the
character of the optimization problem that should be solved and by the used
search method.

In Sect. 3.3.2, we described that the mutation operator and the used metric
determine each other. Different mutation operators imply different metrics.
As problem difficulty depends not only on fp but also on the metric defined
on Φp the difficulty of a problem is not absolute but depends on the used
metric respectively search operator. The use of different metrics and search
operators result in a different problem difficulty. Consequently, the difficulty
of a problem can only be defined with respect to a search operator. It makes
no sense to say a problem is either easy or difficult if the used search operator
is not taken into account.

In Sect. 2.3.2, we gave a short review of some measurements for prob-
lem difficulty in the context of GEAs. In the following subsections, we want
to use the classification of problem difficulty from Jones and Forrest (1995),
which is based on the correlation analysis, for describing how the locality of a
representation influences GEA performance. The difficulty of an optimization
problem is determined by how the fitness values are assigned to the pheno-
types and what metric is defined on the phenotypes. Combining both aspects
we can measure problem difficulty by the fitness-distance correlation coeffi-
cient ρFDC ∈ [−1, 1] of a problem (Jones 1995; Jones and Forrest 1995). ρFDC

measures the correlation between the fitnesses of search points and their dis-

3.3 Locality 79

tances to the global optimum. We want to distinguish between three different
classes of problem difficulty:

1. The fitness difference to the optimal solution is positively correlated with
the distance to the optimal solution. With lower distance the fitness dif-
ference to the optimal solution decreases. As the structure of the search
space guides local search methods to the optimal solution such problems
are easy for mutation-based search.

2. There is no correlation between the fitness difference and the distance
to the optimal solution. The fitness values of neighboring individuals are
uncorrelated and the structure of the search space provides no information
about which solutions should be sampled next by the search method.

3. The fitness difference is negatively correlated to the distance to the opti-
mal solution. Therefore, the structure of the search space misleads a local
search method to sub-optimal solutions.

The three different classes of problem difficulty are illustrated in Fig. 3.13.
We show how the fitness difference |fopt −f | depends on the distance d to the
optimal solution. In the following paragraphs, we want to discuss these three
classes in some more detail.

neg. corelation

op
t

|f

 −
f|

op
t

|f

 −
f|

op
t

d d d
uncorrelatedpos. correlation

|f

 −
f|

Figure 3.13. Different
classes of problem difficulty

Problems are easy for mutation-based search if there is a positive correla-
tion between an individuals’ distance to the optimal solution and the difference
between its fitness and the fitness of the optimal solution. Many test prob-
lems that are commonly used for EAs like the sphere and corridor models
for evolution strategies or the one-max problem for genetic algorithms show
this behavior. Such problems are easy for local and crossover-based search
methods as the search is guided to the optimal solution by the structure of
the fitness landscape.

Problems become much more difficult if there is no correlation between
the fitness difference and the distance to the optimal solution. Then, the fit-
ness landscape does not guide a mutation-based search method to the optimal
solution. No search heuristics can use information about a problem which was
collected in prior search steps to determine the next search step. Therefore, all
reasonable search algorithms show the same performance as no useful infor-
mation (information that indicates where the optimal solution can be found)

80 3 Elements of a Theory of Representations

is available in the problem. Because all search strategies are equivalent, also
random search is an an appropriate search method for such problems. Random
search uses no information and performs well on these types of problems.

Problem difficulty is maximal for mutation-based search methods if the
fitness landscape leads the search method away from the optimal solution.
Then, the distance to the optimal solution is negatively correlated to the
fitness difference between an individual and the optimal solution. Because
mutation-based search finds the optimal solution by performing iterated small
steps in the direction of better solutions, all mutation-based search approaches
must fail as they are mislead. All other search methods that use information
about the fitness landscape also fail. The most effective search methods for
such problems are those that do not use information about the structure of the
search space but search randomly like random search. The most prominent
example for such types of problems are deceptive traps. Such problems are
commonly used to perform a worst-case analysis for EAs.

Although we use this problem classification for investigating the influ-
ence of locality on problem difficulty, we want to emphasize that in general
this problem classification is not relevant for most of the real-world prob-
lem instances. Only problems of class one can be solved efficiently using EAs
or local search as this problem class guides the local search methods (like
mutation-based EAs) to the good solutions. In contrast, for problems of class
two, mutation-based search methods perform the same as random search, and
for problems of class three random search performs even better. This situa-
tion is not in contrast to the observed good performance of EAs on many
real-world problem instances. EAs show a good performance as most of the
real-world problems are easy problems and belong to class one (compare also
Sect. 3.3.1). In general, for real-world problems the fitness values of neigh-
boring solutions are correlated, and high-quality and low-quality solutions are
grouped together. Therefore, fitness landscapes that are uncorrelated, or even
deceptive, are uncommon in real world.

mutation− based search

difficultypos. correlation
(class 1)

no correlation
(class 2)

neg. correlation
(class 3)

random search

performance

problem Figure 3.14. Performance
of mutation-based EA search
versus random search

This situation is illustrated in Fig. 3.14. We know from the no-free-lunch
theorem that all search methods show on average the same performance over
all possible problem instances (Wolpert and Macready 1995; Whitley 2000a).

3.3 Locality 81

Furthermore, we know that the performance of random search remains con-
stant over all problem instances and that mutation-based evolutionary search
performs well on problems of class one. Consequently, it must show low perfor-
mance on other problem instances (class 3). As the performance of mutation-
based search is “biased” towards problems of class one, many real-world in-
stances can efficiently be solved using mutation-based EAs.

3.3.4 Influence of Locality on Problem Difficulty

In Sect. 3.3.1, we described how representations can change the character and
difficulty of optimization problems. In the following paragraphs, we discuss
high versus low-locality representations and examine how the locality of a
representation influences problem difficulty.

Low versus High-Locality Representations

We have seen in Sect. 3.3.2 that the metric defined on Φp can be different from
the metric defined on Φg. As the locality of a representation measures how
well the phenotypic metric corresponds to the genotypic metric, it is possible
to distinguish between high and low-locality representations. Representations
have high locality if neighboring genotypes correspond to neighboring pheno-
types. In contrast, representations have low locality if neighboring genotypes
do not correspond to neighboring phenotypes. Figure 3.15 illustrates the dif-
ference between high and low-locality representations. In this example, we
assume that there are 12 different phenotypes (a-l) and that there is a met-
ric defined on Φp (in this example the Euclidean distance). Each phenotype
(lower case symbol) corresponds to one genotype (upper case symbol). The
representation fg has perfect (high) locality if neighboring phenotypes corre-
spond to neighboring genotypes. Then a mutation step has the same effect in
the phenotypic and genotypic search space.

high locality

g

C D

F

J

G

K

H

L

low locality

f

L

D F

J

K

C

H

B G

e

i

ba c d

gf h

j k lse
ar

ch
 s

pa
ce

ph
en

ot
yp

ic

B

E

AA

Ege
no

ty
pi

c

se
ar

ch
 s

pa
ce

I

I

Figure 3.15. High versus low-locality repre-
sentations

As we assume in our considerations that fg is a one-to-one mapping every
phenotype is represented by exactly one genotype and there are |Φg|! = |Φp|!

82 3 Elements of a Theory of Representations

different representations. |Φg| is the size of the genotypic search space. Each
of these many different representations assigns the genotypes to the pheno-
types in a different way. A common example are different representations for
representing integer phenotypes using binary strings. Both, binary and Gray
encoding, represent integers using binary strings of the same length but they
differ in which phenotype is represented by which genotype.

Investigating the relationship between different representations (how the
genotypes are assigned to the phenotypes) and the used mutation operator
(which is based on the genotypic metric) reveals that a different assignment
of genotypes to phenotypes can be equivalent to the use of a different metric
for Φg. This effect is known as the isomorphism of fitness landscapes (Reeves
1999). For example, it can be shown that the use of a simple bit-flipping opera-
tor (which induces the Hamming metric) for Gray encoded problems is equiv-
alent to the use of the complementary crossover operator (which induces a
different “non-Hamming” metric) for binary encoded problems (Reeves 2000).
Both metric-representation combinations result in the same fitness landscape
and therefore in the same performance of mutation-based search.

Influence on Problem Difficulty

In the following paragraphs, we examine how the locality of a representations
influences the performance of GEAs. A representation transforms the pheno-
typic problem fp with a given phenotypic problem difficulty into a genotypic
problem f = fp ◦ fg with a resulting genotypic problem difficulty that can be
different from the phenotypic problem difficulty. We use the problem classifi-
cation described in Sect. 3.3.3.

We have seen that the phenotypic difficulty of an optimization problem
depends on the metric that is defined on the phenotypes and the function fp

which assigns a fitness value to every phenotype. Based on the phenotypic
metric a local or crossover-based search operator can be defined (for the phe-
notypes). By the use of a representation, which assigns a genotype to every
phenotype, a new genotypic metric is introduced which can differ from the
phenotypic metric. Therefore, the character of the search operator can also
be different for genotypes and phenotypes. If the locality of a representation
is high, then the search operator has the same effect on the phenotypes as on
the genotypes. As a result, genotypic and phenotypic problem difficulty is the
same and the difficulty of a problem remains unchanged by the use of an addi-
tional representation fg. Easy phenotypic problems remain genotypically easy
(compare the results presented in Fig. 3.21) and difficult phenotypic problems
remain genotypically difficult (compare Fig. 3.22). Figure 3.16 (left) illustrates
the effect of mutation for high-locality representations. The search operator
(mutation) has the same effect on the phenotypes as on the genotypes.

The situation is different when focusing on low-locality representations.
Here, the influence of the representation on the difficulty of a problem de-
pends on the considered optimization problem. If the considered problem fp

3.3 Locality 83

low locality

g

G H

J K L

high locality

f

α b c d

e

i

f g h

j k l

α k c d

i f

e

h

lgj

b

se
ar

ch
 s

pa
ce

ph
en

ot
yp

ic

B C D

F

I

A

se
ar

ch
 s

pa
ce

ge
no

ty
pi

c

E
Figure 3.16. The effect of mutation for high
versus low-locality representations

is easy (class 1) and the structure of the search space guides the search method
to the optimal solution, a low-locality representation fg randomizes the prob-
lem and makes the overall problem f more difficult. When using low-locality
representations a small change in a genotype does not correspond to a small
change in the phenotype, but larger changes in the phenotype are possible
(compare Fig. 3.16 (right)). Therefore, when using low-locality representa-
tions, phenotypic easy problems of class one become on average genotypic
problems of class two. Low-locality representations lead to a more uncorre-
lated fitness landscape and heuristics can no longer extract information about
the structure of the problem. Guided search becomes more difficult as many
genotypic search steps do not result in a similar individual but in a random
one.

If the problem fp is of class two, on average a low-locality representation
does not change the problem class. Although the mutation-based search be-
comes more random search, the performance stays constant as random search
and mutation-based search show the same performance for problems of class
two. Of course, representations exist that can make a problem easier and re-
sult in an overall genotypic problem f of class one; however, there are only few
of these and most of the low-locality representations simply modify the prob-
lem and do not create a fitness landscape of class one which leads the search
method to the good solutions. On the other hand, there are also represen-
tations fg that construct a problem f which misleads mutation-based search
and transforms a problem of class two into class three. But as for low-locality
representations that transform a problem from class two into class one, there
are only few such representations.

Finally, we have to consider problems of class three. On average, the use of
low-locality representations transforms such problems into problems of class
two as the problems become more randomized. Then, mutation-based search
is less misled by the fitness landscape and the problem difficulty for mutation-
based search is reduced. On average, low-locality representations “destroy” the
deceptiveness of class three problems and turn them into problems of class
two.

84 3 Elements of a Theory of Representations

Summarizing the results, we recognize that low-locality representations
have the same effect as when using random search. Therefore, on average
problems of class one become more difficult, and problems of class three more
easy to solve. As most real-world problems belong to class one, the use of low-
locality representations makes these problems more difficult. Therefore, we
strongly encourage researchers to use high-locality representations for prob-
lems of practical relevance. Of course, low-locality representations make de-
ceptive problems easier; however, these are problems which we do not expect
to meet in reality and are only of theoretical interest.

3.3.5 Distance Distortion and Crossover Operators

We extend the notion of locality and introduce the distance distortion of an
encoding. The concept of distance distortion is related to the concept of heri-
tability which describes that a crossover operator should create new offspring
that have similar properties to their parents. Appropriate measurements for
heritability describe how well offspring take over advantageous features of
their parents (Gottlieb and Raidl 1999).

When using recombination-based search, the locality concerning small
changes dm can be extended towards locality concerning small and large
changes. The distance distortion dc describes how well the phenotypic dis-
tance structure is preserved when mapping Φp on Φg:

dc =
2

np(np − 1)

np∑
i=1

np∑
j=i+1

|dp
x,y − dg

x,y|,

where np is the number of different individuals, np = |Φg| = |Φp|, and dg
min =

dp
min. For dc = 0 all phenotypic distances are preserved by the representation.

We see that for Φg = Φp high locality (dm = 0) results in low distance
distortion (dc = 0). If, for example, our genotypic and phenotypic search space
is binary, and the locality of the genotype-phenotype mapping is perfect, then
all distances between the individuals are preserved. However, if we assume
that Φg �= Φp, then high locality is a necessary, but not sufficient condition
for the genotype-phenotype mapping to have low distance distortion.

Figure 3.17 illustrates the difference between representations with high
versus low distance distortion. The distance distortion dc of a representation
is low if the genotypic distances correspond to the phenotypic distances. If
the distances between the genotypes and the corresponding phenotypes are
different, then the distance distortion dc of the representation is high.

It is of interest that the locality dm and distance distortion dc do not
require the definition of genetic operators a priori. It is sufficient to define
both based on the distance metrics used for Φg and Φp. The application of
mutation to an individual should result in an offspring that is similar to its
parent. Therefore, in many implementations, mutation creates offspring who
have the lowest possible distance to the parent (for example the bit-flipping

3.3 Locality 85

c

d =1

a,cd =3

b,cd =3

a,bd =1

a,cd =3

b,cd =3

a,bd =1

a,cd =3

b,cd =3

genotypesgenotypes

b,c

a,cd =3
a,bd =3

d =1

c ca) low distance distortion (d =0)

b

a

c

a

b

c
g

g

g

g

g

g

b) high distance distortion (d >0)

g

g

g

g

g

g

p

p

p p

p

p

phenotypes

a

c

p

b
p

p
phenotypes

ap

b
p

p

a,b

Figure 3.17. The figures illustrate the difference between representations with
low versus high distance distortion. If the distance distortion dc = 0 then the dis-
tances between the corresponding genotypes and phenotypes are the same. If dc > 0
genotypic distances between individuals do not correspond to phenotypic distances
between individuals.

operator for binary representations). High locality of a representation is a
necessary condition for successful use of mutation-based search algorithms.
Otherwise, low-locality encodings do not allow a guided search and GEAs
using low-locality representations behave like random search.

The situation is similar when using crossover operators. The application of
crossover operators should result in offspring where the distances between the
offspring and its two parents are smaller than the distance between both par-
ents. Common standard crossover operators, like n-point or uniform crossover
show this behavior. The distances between genotypic offspring and parents
are always lower, or equal to, the distances between both parents. However,
if a representation has high distance distortion, the genotypic distances do
not correspond to the phenotypic distances. Then, the phenotypic distances
between offspring and parents are not necessarily smaller than the phenotypic
distances between both parents. The application of crossover to genotypes
does not result in offspring phenotypes that mainly consist of substructures of
their parents’ phenotypes. Therefore, the offspring is not similar to its parents
and the use of crossover results in random search. We see that low distance
distortion of a representation is a necessary condition for good performance
of crossover-based GAs.

Examining the interdependencies between locality and distance distortion
shows that high locality is a necessary condition for an encoding to have low
distance distortion. When using standard crossover operators such as uni-
form or n-point crossover, the offspring could not inherit the properties of
the parents if similar genotypes result in completely different phenotypes. If
the encoding has low locality, the crossover operators would create offspring

86 3 Elements of a Theory of Representations

genotypes which are similar to the genotypes of the parents, but the resulting
phenotypes would not be similar to the phenotypes of the parents. Thus, low
locality of a representation would also result in high distance distortion.

In the following subsection, we show for the fully easy one-max problem
that the problem only stays fully easy if a high-locality representation is used
and dm = dc = 0. All other types of representations increase the difficulty of
the problem.

3.3.6 Modifying BB-Complexity for the One-Max Problem

In this subsection, we investigate the influence of locality on GA performance.
We show for the fully easy one-max problem (3.24) that the use of a high-
locality representation does preserve problem difficulty whereas other types
of representations reduce GA performance.

111

100

010

000

111

100

010

000
0

3

2

1

fg fp

110

101

011

001

110

101

011

001

genotypes phenotypes fitness

Figure 3.18. A representation for the bit-
counting function with perfect locality and no
distance distortion

For the one-max, or bit-counting problem, the function fp : {0, 1}l → R

assigns to every individual xp ∈ Φp the fitness value
∑l−1

i=0 xp
i . As there are

only l fitness values that are assigned to 2l phenotypes the fitness function fp

is affected by redundancy (see Sect. 3.1.6). The genotype-phenotype mapping
fg is a non-redundant one-to-one mapping, and the genotypic space Φg, and
the phenotypic space Φp, have the same size |Φg| = |Φp| = 2l and the same
properties Φg = Φp. To simplify the investigation we want to assume, without
loss of generality, that the phenotype with only ones is always represented by
the genotype with only ones, and therefore is always the global optimum. In
Fig. 3.18, a 3-bit one-max problem is illustrated. The encoding used, which
can be described by the genotype-phenotype mapping fg, has high locality
(dm = 0) and preserves the distances between the individuals when mapping
the phenotypes to the genotypes (dc = 0) as the genotype-phenotype mapping
is the identity mapping xp = fg(xg) = xg. As a result, the phenotypic and
genotypic problem complexity is the same.

We investigate how problem difficulty changes if we use a representation
where dc �= 0. For measuring problem difficulty we use the fitness of the

3.3 Locality 87

schemata (compare Sect. 2.3.2). The fitness of a schema h of size λ is defined
as f(h) = f(u, λ, l). It has length l, u ones, λ− u zeros in the fixed positions,
and l−λ don’t care positions. For the one-max problem the schema fitness in
terms of the function values f(u) = u can be calculated as follows:

f(u, λ, l) =
1

2l−λ

l−λ∑
i=0

(
l − λ

i

)
(i + u).

For all schemata of size λ the difference between the fitness f(λ, λ, l) of the best
schemata with λ ones, and the fitness f(λ−1, λ, l) of its strongest competitor
with λ − 1 ones is

d =
1

2l−λ

l−λ∑
i=0

(
l − λ

i

)
> 0.

Thus, all schemata h that contain the global optimum xopt (a string of only
ones) are superior to their competitors, and the one-max problem is pheno-
typically fully easy.

111

100

010

000

111

100

010

000
0

3

2

1

fg fp

110

101

011

001

110

101

011

001

genotypes phenotypes fitness

Figure 3.19. A low-locality representation for
the one-max problem which does not preserve
the distances between the individuals (dc �= 0),
and therefore modifies BB-complexity. The dis-
tance distortion dc = 2

7∗8 ∗ 12 = 3/7 �= 0.

We investigate how the problem complexity changes if the distances be-
tween the individuals are changed by using a low-locality representation. For
example, the genotype-phenotype mapping of two genotypes xg and yg which
correspond to the phenotypes xp and yp, is changed such that afterwords
xg = 000 represents yp = 001, and yg = 001 represents xp = 000 (see
Fig. 3.19). Beginning with the high-locality encoding illustrated in Fig. 3.18,
there are three different possibilities when changing the mapping of two indi-
viduals:

• Both individuals xg and yg have the same number of ones (uxg = uyg)
• Both individuals have a different number of ones, and the number of dif-

ferent positions dxg,yg in the two individuals xg and yg is the same as the
number of different ones (dxg,yg = uxg − uyg)

• Both individuals have a different number of ones, and the number of dif-
ferent positions is higher than the number of different ones (dxg,yg >
uxg − uyg)

88 3 Elements of a Theory of Representations

In the following paragraphs, we investigate how the difficulty (measured using
the notion of schemata) of the problem is changed for these three situations.

If fg is modified for two genotypes xg and yg that have the same number
of ones in the string, then the corresponding fitness values remain unchanged
(f(xg) = f(yg)). Therefore, the fitness of the schemata, and the difficulty of
the problem both remain constant. For example, we can change the mapping
of the genotypes 1001 and 0101 for a 4 bit one-max problem. Both individuals
have two ones in the string and their fitness is two. The difficulty of the
problem remains unchanged.

fg could be modified for two individuals xg and yg that have a different
number of ones, and therefore different fitness values. We assume that the
number of different positions in the two individuals is the same as the num-
ber of different ones (dxg,yg = uxg − uyg). Before the change, the individual
xg has l ones and therefore fitness l; yg has h ones and fitness h. We want
to assume h > l. After the change, xg has fitness h although it has only l
ones, whereas yg has only a fitness of l but h ones. Before the modification,
all schemata that lead to the global solution are superior to their competi-
tors. Subsequently, after the modification of the mapping the fitness of all
schemata h that contain yg but not xg, is reduced by (h− l)/(2l−λ), whereas
the fitness of all misleading schemata containing only xg is increased by this
amount. Schemata that contain xg as well as yg are not changed. As a result,
the average fitness of high quality schemata is reduced, whereas the fitness
of misleading schemata is increased. Let us illustrate this with a small 3-bit
example. fg from Fig. 3.18 should be modified for the genotypes 001 and 101.
Therefore, xg = 001 corresponds to xp = 101 and yg = 101 corresponds to
yp = 001 Then, individual xg = 001 has fitness 2, and individual yg = 101
has fitness 1. The fitness of the schema 1** is reduced, whereas the fitness of
schema 0** increases. For size two schemata, the fitness of 10* and 1*1 de-
creases, whereas the fitness of 00* and 0*1 increases. As a result, the problem
becomes more difficult to solve for a GA.

pg

g1

g1

p

y

x

y

x

y

xg

g1 fg2f Figure 3.20. A decomposition of fg

Finally, we could decompose fg into two mappings fg1 and fg2 if the
number of different positions in the two genotypes xg and yg is higher than
the number of different ones dxg,yg > uxg −uyg (see Fig. 3.20). fg1 maps xg to
xg1, and yg to yg1. xg1 (resp. yg1) should have the same number of ones as xg

(resp. yg) (uxg1 = uxg , uyg1 = uyg), but some positions are different in the two
individuals xg1 and yg1 (dxg1,yg1 = uxp − uyp). Therefore, as the number of
ones stays constant, fg1 does not change the fitness of the schemata (compare
item 1). For xg1 and xp (resp. yg1 and yp), the number of different ones is the

3.3 Locality 89

same as the number of different positions. Thus, fg2 has the same properties as
discussed in the previous item and increases the fitness of misleading schemata,
as well as reduces the fitness of the high-quality schemata.

We see that most modifications of a high-locality genotype-phenotype
mapping fg make the one-max problem more difficult to solve. Only when the
mapping between genotypes and phenotypes is changed that have the same
number of ones in the string, is the structure of the BBs preserved, and we get
the same performance as for the high-locality representation from Fig. 3.18.
The above proof can be applied in the same way to a fully deceptive trap
problem. Then, most of the low-locality encodings reduce the fitness of the
misleading schemata, and increase the fitness of the high-quality schemata,
which makes the problem easier. In the following subsection, we present an
empirical verification of the results.

3.3.7 Empirical Results

In this subsection, we present an empirical investigation into how the prob-
lem complexity is changed for the one-max problem and the deceptive trap
problem if low-locality representations are used. We experimentally show that
for high-locality representations the fully easy one-max problem remains fully
easy. In contrast, most of the low-locality representations make the one-max
problem more difficult to solve for GAs. The situation is vice versa for the
fully difficult deceptive trap where low-locality representations always makes
the problem easier to solve.

For a non-redundant genotype-phenotype mapping fg that is defined on
binary genotypes of length l, there are 2l! different possibilities to assign the
2l genotypes to the 2l phenotypes (Assigning the genotypes to the phenotypes
can be interpreted as a permutation of 2l numbers). Any of these possibilities
represents a specific mapping like for example the binary encoding or the Gray
encoding.

Table 3.6. 24 possibilities to assign four genotypes {ag, bg, cg, dg} to four pheno-
types {ap, bp, cp, dp}
xp 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

ap ag ag ag ag ag ag bg bg bg bg bg bg cg cg cg cg cg cg dg dg dg dg dg dg

bp bg bg cg cg dg dg ag ag cg cg dg dg ag ag bg bg dg dg ag ag bg bg cg cg

cp cg dg bg dg bg cg cg dg ag dg ag cg bg dg ag dg ag bg bg cg ag cg ag bg

dp dg cg dg bg cg bg dg cg dg ag cg ag dg bg dg ag bg ag cg bg cg ag bg ag

In Table 3.6, we illustrate for l = 2 that there are 22! = 24 possibilities
to assign the four genotypes {ag = 00, bg = 01, cg = 10, dg = 11} to the four
phenotypes {ap = 00, bp = 01, cp = 10, dp = 11}. Each of the 24 genotype-

90 3 Elements of a Theory of Representations

phenotype mappings represents a specific representation that assigns the fit-
ness values to the genotypes in a different way and that results in a different
difficulty of the problem.

In the following paragraphs, we investigate how problem difficulty changes
for the one-max and deceptive trap problem if we use low-locality represen-
tations. The fitness function fp for the fully easy l-bit one-max problem is
defined as

fp(xp) =
l−1∑
i=0

xp
i , (3.24)

and the l-bit deceptive trap function is defined as:

fp(xp) =

{
l − 1 − ∑l−1

i=0 xp
i for

∑l−1
i=0 xp

i < l,

l for
∑l−1

i=0 xp
i = l.

(3.25)

If we use genotypes and phenotypes of length l the number of possible repre-
sentations is 2l!. To reduce this number, we assume without loss of generality
that the phenotype xp with only ones, which has fitness fp = l, is always
assigned to the individual xg with only ones. Then, the number of different
representations is reduced to (2l − 1)!. For example, in Figs. 3.18 and 3.19 we
have 2l = 8 genotypes and 2l = 8 phenotypes. Therefore, we have 8! = 40, 340
different representations. If we assign xg = 111 always to xp = 111 then there
are only 7! = 5, 040 different representations. Every representation represents
a different genotype-phenotype mapping.

Furthermore, we have seen in the previous subsection that for the used
phenotype-fitness mapping fp (one-max and deceptive trap problem) there
are some genotype-phenotype mappings that do not modify the BBs and
therefore do not change problem difficulty (both individuals have the same
number of ones from item 1). These mappings have the same properties and
the different fg differ only for individuals that phenotypically have the same
number of ones. There are

∏l
i=1

(
l
i

)
! representations of that kind which we

want to denote as “high-locality equivalent”. For example, in Fig. 3.18 we
can change fg and assign xg = 001 to xp = 010 and xg = 010 to xp = 001.
Although we use a different representation, the assignment of the fitness values
to the genotypes has not changed. This effect is a result of the redundancy of
the used one-max and deceptive trap problem which both only consider the
number of ones in the phenotype.

If we use these results we can calculate how many groups of different
genotype-phenotype mappings exist that result in a different structure of the
BBs. If we have (2l − 1)! different genotype-phenotype mappings and use a
l-bit one-max or deceptive problem, then there are

∏l
i=1

(
l
i

)
! mappings that

do not change the structure of the BBs and are equivalent to each other.
Therefore, we have

(2l − 1)!∏l
i=1

(
l
i

)
!

3.3 Locality 91

groups of different genotype-fitness mappings. Each group consists of
∏l

i=1

(
l
i

)
!

different genotype-phenotype mappings which do not affect the structure of
the BBs and where only the mapping is changed between genotypes and phe-
notypes that have the same number of ones.

When using a 3-bit one-max or deceptive trap problem then there are
(23−1)!

3!3! = 5040/36 = 140 groups of different genotype-fitness mappings with
different properties. Each of these 140 different groups result in a different
structure of the genotypic and phenotypic BBs. We use for our investigation
10 concatenated one-max or deceptive trap problems of size 3. Therefore, the
overall string length l = 30, and the fitness of an individual is calculated as
the sum over the fitness of the ten one-max or deceptive trap sub-problems.

To illustrate how genotype-phenotype mappings change the complexity of
a problem we measure how many of the ten BBs (a BB is a correctly solved
sub-problem and consists of a sequence of l = 3 ones) a GA finds depen-
dent on the used representation. As we use a 3 bit problem there are 5,040
different representations and 5,040/36=140 different representations that are
equivalent to each other. Only these representations that are contained in
exactly one out of the 140 equivalence groups are “high-locality equivalent”
(dm = 0). An example is shown in Fig. 3.18. Due to the structure of the one-
max and deceptive trap problem, there are 35 other representations which,
although they have low locality, do not change the structure of the BBs and
are “high-locality equivalent”. These types of encodings assign genotypes and
phenotypes with the same number of ones in a different way.

Figure 3.21 presents the results of our experiments for the one-max prob-
lem. We show the distribution of the number of correctly solved sub-problems
at the end of a GA run when using different representations. The plot shows
results for all 5,040 different representations. The ordinate counts the num-
ber of representations that allow a GA to correctly solve a certain number of
sub-problems. We used a generational GA with tournament selection without
replacement of size 2, uniform crossover, no mutation and a population size
of N = 15. We performed 200 runs for each representation, and each run was
stopped after the population was fully converged. The average number of cor-
rectly solved sub-problems measures the problem difficulty for the GA using
one specific representation. The more sub-problems which could be correctly
solved, the easier the problem is for GAs.

How can we interpret the data in Fig. 3.21? Every bar indicates the num-
ber of different representations that allow a GA to correctly identify a specific
number of sub-problems. For example, the bar of height 95 at position 7.0
means that a GA correctly solves on average between 6.975 and 7.025 sub-
problems for 95 different representations. The bar at position 4.85 means that
there are 4 different representations that allow a GA to correctly solve on
average between 4.825 and 4.875 sub-problems. The plot shows that by using
a GA with only 15 individuals we solve independently of the used represen-
tation at least 4.2 sub-problems, and we are not able to correctly solve more

92 3 Elements of a Theory of Representations

 0

 20

 40

 60

 80

 100

 120

 140

 160

 5 6 7 8 9

fr
eq

ue
nc

y
(n

um
be

r
of

 r
ep

re
se

nt
at

io
ns

)

number of correct sub-problems

 0

 5

 10

 15

 20

 8.6 8.7 8.8 8.9 9 9.1 9.2

fr
e

q
u

e
n

cy
 (

n
u

m
b

e
r

o
f

re
p

re
se

n
ta

tio
n

s)

number of correct sub-problems

all possible genotype-phenotype mappings
32 high-locality representations

Figure 3.21. Experimental results of the frequency of the number of correct sub-
problems at the end of a run for all possible encodings of a 3-bit one-max problem.
We present results for 10 concatenated 3-bit problems. The optimal solution is always
111 so there are (23 − 1)! = 5, 040 different representations. We use a GA with
tournament selection without replacement, uniform crossover and a population size
of N = 15. We perform 200 runs for every possible encoding. Only for these 36
representations that are equivalent to the high-locality representation, the fully easy
one-max problem remains fully easy. All other encodings have low locality and make
the problem more difficult to solve for GAs.

than 9 out of ten sub-problems. Furthermore, it is surprising that we have no
normal distribution over the number of correct sub-problems but that there
are clusters. For example, there are many representations that allow a GA
to solve on average between 5.8 and 6.3 sub-problems but there are only a
few representations that allow a GA to correctly solve on average between 6.5
and 6.8 sub-problems. The reason is, that there are only 140 different equiv-
alence groups of representations. Although we have 5,040 different genotype-
phenotype mappings, there are only 140 different levels of problem complexity
possible. The observed clusters are probably a result of these small number
of different levels of problem complexity.

It is more interesting to ask how the high-locality representation from
Fig. 3.18 performs? And how the performance is of the other 35 genotype-

3.3 Locality 93

phenotype mappings that, although they have low locality and do not preserve
the distances, are equivalent to the high-locality representation and result
in the same genotype-fitness mapping? The small plot in Fig. 3.21 answers
these questions. The bold line shows the performance of a GA using these
36 different “high-locality-equivalent” representations. The use of these rep-
resentations results in the highest GA performance. For example, there are
7 different representations that allow a GA to correctly solve between 8.825
and 8.875 sub-problems. All 7 encodings belong to the group of 36 “high-
locality-equivalent” encodings. Furthermore, we see that all representations
that allow a GA to correctly solve on average more than 8.75 sub-problems
belong to this group. These 36 encodings result in the highest proportion of
correct sub-problems. For these encodings the one-max problem remains fully
easy and the size of the genotypic and phenotypic BBs stays kg = kp = 1.

Changing the representation, that means assigning the elements of Φg in
a different way to the elements in Φp, always results in a low-locality rep-
resentation. If the genotype-fitness mapping is not “high-locality equivalent”
then the BB-complexity increases and the problem becomes more difficult to
solve. A GA has more difficulties in solving the problem, and the proportion
of correctly solved sub-problems is lower. The plot illustrates nicely that the
used representation can change the complexity of the one-max problem dra-
matically. However, only encodings that are equivalent to the high-locality
encoding allow a GA to efficiently solve the fully easy one-max problem.

In Fig. 3.22, we present results for 10 concatenated instances of a 3-bit
deceptive trap. The GA parameters chosen are the same as for the one-max
problem. The plots show that, as expected, the GA performs worst for “high-
locality equivalent” representations. All other representations make the prob-
lem easier to solve for GAs.

We have empirically shown that only high-locality representations guaran-
tee that fully easy problems remain fully easy. High-locality representations
preserve BB-complexity and are a good choice if we want GAs to reliably solve
problems of bounded complexity. As soon as a representation has low locality
and does not preserve BB-complexity, some of the easy problems become more
difficult and therefore can no longer be solved by the GA. Indeed, some of the
difficult problems could become solvable by using low-locality representations,
but in general we are not interested in solving these types of problems.

3.3.8 Conclusions

This section presented the third and final element of a theory of represen-
tations. We investigated how the locality of a representation influences the
performance of GEAs. The locality of a representation describes how well
genotypic neighbors correspond to phenotypic neighbors. It is high if geno-
typic neighbors correspond to phenotypic neighbors. The results show that
high-locality representations preserve the difficulty of a problem and phe-
notypically easy problems also remain genotypically easy. Using low-locality

94 3 Elements of a Theory of Representations

 0

 20

 40

 60

 80

 100

 120

 140

 160

 4.5 5 5.5 6 6.5 7 7.5 8 8.5

fr
eq

ue
nc

y
(n

um
be

r
of

 r
ep

re
se

nt
at

io
ns

)

number of correct sub-problems

 0

 5

 10

 15

 20

 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2

fr
eq

ue
nc

y
(n

um
be

r
of

 r
ep

re
se

nt
at

io
ns

)

number of correct sub-problems

all possible genotpye-phenotype mappings
32 high-locality representations

Figure 3.22. Experimental results of the frequency of the number of correctly solved
sub-problems at the end of the run for all possible encodings of a 3-bit deceptive-
max problem. We present results for 10 concatenated 3-bit problems. The optimal
solution is always 111 so there are (23 − 1)! = 5, 040 different possible encodings.
The GA uses tournament selection without replacement, uniform crossover and a
population size of N = 15. We perform 200 runs for every possible encoding. Only
for these 36 representations that are equivalent to the high-locality encoding does
the fully difficult deceptive trap remain fully difficult. For all other representations,
the BB-complexity is reduced and the problem becomes easier to solve for GAs.

representations is equivalent to randomizing the search process. Therefore,
low-locality representations change problem difficulty and make easy prob-
lems more difficult and deceptive problems more easy to solve.

In general, we want GEAs to be able to solve a class of problems of bounded
complexity fast and reliably. However, the results have shown that the use of
low-locality representations in general changes problem difficulty and can only
increase problem difficulty for fully easy problems. Therefore, easy problems
that are solvable using a high-locality representation could become unsolv-
able when using a low-locality representation that modifies BB-complexity.
To guarantee that a GA can reliably solve problems of bounded complexity
it is designed for, we recommend the use of high-locality representations.

3.4 Summary and Conclusions 95

This section nicely illustrated that representations can dramatically change
the complexity of a problem. The presented work has shown that even fully
difficult problems can be solved easily if a proper, low-locality, representation
is used. However, using the same representation for a fully easy one-max
problem can make the problem fully difficult and unsolvable. Therefore, the
use of low-locality representations could be advantageous if we know that the
problem is deceptive. But in general, users do not have this information and
therefore, they should not use these types of representations.

3.4 Summary and Conclusions

In Sect. 3.1 we described, analyzed, and modeled the effect of redundant rep-
resentations on the performance of GEAs. We distinguished between synony-
mously and non-synonymously redundant representations and illustrated that
non-synonymous redundancy does not allow genetic operators to work prop-
erly and therefore reduces the efficiency of evolutionary search. For synony-
mously redundant representations, GEA performance depends on the change
of the initial supply. Based on this observation models were developed that
give the necessary population size for solving a problem, and the number of
generations as O(2kr/r), where kr is the order of redundancy and r is the
number of genotypic BBs that represent the optimal phenotypic BB. As a
result, uniformly redundant representations do not change the performance
of GAs. Only by increasing r, which means overrepresenting the optimal so-
lution, does GA performance increase. Therefore, non-uniformly redundant
representations can only be used advantageously if there exists a-priori some
information about the optimal solution.

This was followed in Sect. 3.2 by an investigation into how the scaling of
an encoding influences the performance of GEAs. We extended previous work
(Rudnick 1992; Thierens 1995; Thierens et al. 1998; Harik et al. 1997) and
formulated a more exact convergence model considering genetic drift for ex-
ponentially scaled representations. Representations are exponentially scaled
if the contribution of the genotypic alleles to the construction of the pheno-
typic alleles is exponentially different. Using the developed population sizing
model, we were able to more accurately predict the behavior of GEAs using
exponentially scaled representations.

Finally, we presented the third and final element of a theory of represen-
tations, namely the influence of locality on problem complexity. In Sect. 3.3,
we showed that high-locality representations, which preserve the neighbor-
hood structure when mapping genotypes to phenotypes, do not modify the
difficulty of a problem. When using low-locality representations, on average
problem difficulty changes. On average, fully easy problems become more dif-
ficult, and deceptive problems easier. We have discussed why representations
that keep easy problems easy and make deceptive problems easier are nice

96 3 Elements of a Theory of Representations

to have, but not possible without having an exact knowledge about the opti-
mization problem a priori.

In this chapter, we identified three important elements towards a gen-
eral theory of representations. We identified redundancy, scaling, and local-
ity/distance distortion as having a major influence on the performance of
GEAs. We were able to show that synonymously redundant encodings do not
modify the performance of a GEA as long as the representation is uniformly
redundant. Our investigation into non-uniformly scaled representations has
shown that these types of encodings prolong the search process and increase
the problems of GEAs with genetic drift. Finally, we have seen that low-
locality representations do not preserve BB-complexity in general and make
phenotypically easy problems more difficult. Therefore, to make sure that GAs
are able to reliably solve easy problems and problems of bounded complexity,
the use of high-locality representations is recommended.

Even by only presenting some basic elements of a general theory of repre-
sentations we are able to analyze and predict the behavior and performance of
GEAs using existing representations significantly better. The presented the-
ory gives us a deeper understanding on how existing representations influence
the performance of GEAs, as well as allows us to design new representa-
tions in a more theory-guided way. By using the presented theory, on the one
hand we can develop general and robust representations that can be applied
to problems of unknown complexity, and on the other hand problem-specific
representations which could fail for some problems, but perform well for a
specific problem.

Although the provided elements of representation theory already allow a
guided design and analysis of representations, further research is still neces-
sary to develop a general representation theory. Especially, the relationship
between the presented elements of theory of representations should be inves-
tigated more deeply. We believe that as we are able to easily separate the
effects of redundant and exponentially scaled representations that there is not
much interconnection and overlapping between these two elements of theory.
However, for locality and its influence on BB-complexity, the situation is dif-
ferent. We have seen that the modification of problem complexity is strongly
influenced by redundancy or scaling. Therefore, further research is necessary
to identify the exact relations between the presented elements of theory.

Finally, we want to encourage researchers to do more basic research to-
wards the development of a general theory of representations. We believe that
we provided some important parts, but there is still a long way to go. How-
ever, the path is worth following, as a general theory of representations would
allow us to unleash the full power of genetic and evolutionary search and help
us to solve problems fast, accurately and reliably.

4

Time-Quality Framework for a Theory-Based
Analysis and Design of Representations

Over the last decades, researchers gained more and more knowledge about
the principles of genetic and evolutionary algorithms (GEAs) and were able
to formulate a theory describing the behavior of GEAs more precisely (Bäck
et al. 1997; Vose 1999; Goldberg 2002; Reeves and Rowe 2003). The existing
elements of GEA theory explain quite accurately the influence of many impor-
tant GEA parameters, as well as selection, recombination, or mutation meth-
ods on the performance of GEAs. By using the existing GEA theory, straight
forward design and the development of new, competent GAs (Goldberg et al.
1993; Harik and Goldberg 1996; Pelikan et al. 1999; Pelikan et al. 1999) be-
came possible. However, concerning representations for GEAs, a framework
which describes the influence of representations on the performance of GEAs
is still missing, although it is well known that the used representation has
a strong influence on GEA performance. Such a framework could help us to
develop new representations in a more theory-guided manner and would be
an important step towards a general theory of representations for GEAs.

The purpose of this chapter is to develop a framework for a theory-based
analysis and design of representations for GEAs based on the elements of
theory we presented in the previous chapter. The framework should allow us
to model and predict the influence of different types of representations on
the performance of genetic and evolutionary search. It should describe how
redundancy, scaling, and locality of a representation influence the time to con-
vergence and the expected solution quality. By using the framework, we would
be able to theoretically compare the efficiency of different representations, as
well as to design new representations in a theory-guided way.

The chapter starts with a brief overview of the determinants – time and
quality – of GEA performance. In Sect. 4.2, the elements of the framework,
namely redundancy, scaling, and locality/distance distortion, are presented.
We review their influence on representations, formulate how the three prop-
erties of representations can be measured, and describe how genetic and evo-
lutionary search is affected. In Sect. 4.3, the framework itself is described.
We formulate how the probability of error α and the convergence time tconv

98 4 Time-Quality Framework

depend on the different elements of the framework. Because we are not yet
able to consider the effect of scaled representations in general, the section is
split up into two parts concerning uniformly and non-uniformly scaled rep-
resentations. For both types of scaled representations we describe how the
solution quality and the time to convergence depends on the redundancy and
locality of an encoding. This is followed in Sect. 4.4 by some implications of
the framework on the design of representations. We show how the use of rep-
resentations with different properties affects the supply of BBs, the dynamics
of genetic search, or the size of BBs. The chapter ends in Sect. 4.5 with a
summary and concluding remarks.

4.1 Solution Quality and Time to Convergence

The following section briefly reviews determinants for GEA performance. It
focuses on solution quality and time to convergence.

For comparing the efficiency of different GEAs using different types of
representations, a measurement of GEA performance is necessary. Widely used
determinants for GEA performance are the solution quality and the time to
convergence. In general, the solution quality and convergence time depend on
the used genetic operators, the GEA parameters, the used representation, and
the optimization problem itself.

The solution quality of GEAs can be measured by the probability Pn of
GEA success. GEA success means that the optimal solution is found by the
GEA. When using the more common probability of GEA failure α, GEA
success is defined as Pn = 1 − α. Earlier work by Harik et al. (1997) has
shown that when using selectorecombinative GAs, the probability of error
α = 1 − Pn goes with O(e−N). With decreasing α the population size N
increases exponentially. Therefore, instead of using α, the population size N
that is necessary for solving a problem can also be used for comparing GEA
performance. Measuring GEA performance becomes more complicated if the
best solution is not known a priori. Then, Pn cannot be calculated and the best
fitness at the end of a GEA run can be used. It corresponds to the probability
of GEA success Pn, and is determined by the used population size N .

The time to convergence tconv describes how many generations selectore-
combinative GEAs need to converge completely. A population is converged
if there is no genetic diversity in the population after tconv generations and
all individuals in the population represent the same phenotype. It was shown
(Thierens and Goldberg 1993; Miller and Goldberg 1996b; Miller and Gold-
berg 1996a) that the convergence time mainly depends on the length of the
string l and the used selection scheme. As soon as the population size N is
large enough to solve the problem reliably, the convergence time tconv does
not depend on N any more.

To compare the overall performance of different GEAs the number of fit-
ness evaluations nf can be used. For a given solution quality Pn � 0 the total

4.2 Elements of the Framework 99

number of fitness calls can be calculated as

nf = N × tconv.

4.2 Elements of the Framework

We focus in this section on the properties of representations that influence
GEA performance and describe the elements of representation theory that
are used in the framework. We review the elements, describe how we can
measure them, and illustrate their effects on GEAs. In Chap. 3, we presented
redundancy, scaling, and locality/distance distortion as relevant properties of
representations. Although we believe that these three elements are some of
the most important elements of the time-quality framework, there could still
be others. Finding and describing them is left to further research.

The section consists of three subsections which discuss the single elements,
namely redundancy, scaling, and locality. In each subsection, we briefly de-
scribe what we mean, illustrate how redundancy, scaling, or locality can be
measured, and finally describe how GEAs are affected.

4.2.1 Redundancy

Section 3.1 shows that the use of redundant encodings affects the performance
of GEAs. In the context of representations, redundancy means that on average
one phenotype is represented by more than one genotype. Therefore, |Φg| >
|Φp| when using redundant representations. Consequently, a representation is
not redundant if |Φg| = |Φp|. Then, the number of genotypes is the same as
the number of phenotypes. Because we assume that every phenotype must be
represented by at least one genotype, the size of the genotypic space can not
be smaller than the size of the phenotypic space.

To model the effects of redundancy, we distinguish between synonymous
and non-synonymous redundancy. When focusing on synonymous redundancy,
the order kr of redundancy is introduced (see Sect. 3.1.2). It measures the
amount of redundant information in the encoding (in bit). There are kr bits
and 2kr different possibilities (individuals) to encode 1 Bit of information
content (2 possibilities). Using no redundancy in an encoding results in kr = 1.
Furthermore, r is defined as the number of genotypic BBs of size kkr that
represent the optimal phenotypic BB of size k. Therefore, for non-redundant
encodings kr = 1 and r = 1. We know from (3.2) that for redundant encodings

r ∈ {1, 2, . . . , 2kkr − 2k + 1}.
We assume that we use binary strings (χ = 2). For binary genotypes, there are
2k different phenotypes and they are represented by 2kkr different genotypes.
For non-binary genotypes we refer to Sects. 6.4.4 and 6.5.5. Using uniformly
redundant representations results in

100 4 Time-Quality Framework

runiform = 2k(kr−1)

and x0/N = r/2kkr = 1/2k. x0 denotes the the initial supply of BBs.
Therefore, a representation is non-uniformly redundant if r/2kkr �= 1/2k. For
r/2kkr > 1/2k the optimal solution is overrepresented, and for r/2kkr < 1/2k

the optimum is underrepresented.
Our investigation into the effects of redundancy on GEAs in Sect. 3.1.3 has

shown that the supply of BBs in the initial population is influenced by the use
of non-uniformly redundant encodings. If the optimal solution is overrepre-
sented by the used synonymously redundant representation the performance of
GEAs is increased, that means lower run duration tconv and lower probability
of error α. The situation is reversed if the optimal solution is underrepresented
and tconv and α increases.

4.2.2 Scaling

In Sect. 3.2, we discussed the effects of exponentially scaled representations on
the performance of GEAs. Representations are uniformly scaled, if all geno-
typic alleles have the same contribution to the construction of the phenotypic
alleles. Therefore, GEAs using uniformly scaled representations solve all alle-
les implicitly in parallel. In contrast, a representation is non-uniformly scaled
if some genotypic alleles have a higher contribution to the construction of the
phenotypic alleles than others. As a result, domino convergence occurs and
the alleles are solved sequentially according to their salience. The most salient
alleles are solved first, whereas the lowest salient alleles are solved last.

To more formally describe the scaling of a representation, a measurement
of how strong a representation is scaled is necessary. Therefore, we describe by
the order of scaling s the difference in salience for the different alleles. When
using a binary genotype of length l and ordering the alleles according to their
contribution to the fitness in ascending order, we define the order of scaling
s ∈ [1,∞[as

s =
1

l − 1

l−1∑
i=1

xc
i+1

xc
i

,

where xc
i denotes the contribution of the ith most salient allele to the phe-

notype, and xc
i+1 ≥ xc

i , for i ∈ {1, . . . , l − 1}. Therefore, xc
1 denotes the

contribution of the lowest salient allele and xc
l denotes the contribution of the

most salient allele. When using uniformly redundant encodings the contribu-
tion of all alleles is the same which results in xc

i = const, for i ∈ {1, . . . , l}.
Therefore, s = 1 for uniformly scaled representations. When using exponen-
tially scaled representations the order of scaling s > 1 is constant; for binary
encoded strings, we get s = 2.

The order of scaling s influences the dynamics of genetic search. With
increasing s, the alleles are solved more and more sequentially. Rudnick (1992)
proposed the use of a convergence window for modeling the dynamic solving

4.2 Elements of the Framework 101

process when using non-uniformly scaled representations. The convergence
window is a set of contiguous alleles that are not yet fully converged but have
started to converge. The size λc ∈ {1, . . . , l} of the convergence window is
equal to l for uniformly scaled encodings and equal to one for s → ∞. λc = 1
results in strictly sequential solving of the alleles, whereas for λc = l all alleles
are solved in parallel.

With increasing order of scaling s, the size λc of the convergence window is
reduced. Earlier work (Thierens et al. 1998; Lobo et al. 2000) shows in corre-
spondence to the results of Sect. 3.2.4, that the assumption of a convergence
window of size λc = 1 results for s = 2 (exponentially scaled representa-
tions) in a good approximation of the dynamics of GEA search. However, for
a more general theory of scaled representations a more detailed analysis of
the interdependencies between λc and s is necessary.

4.2.3 Locality

In Sect. 3.3, we saw that when using a representation, the neighborhood struc-
ture can be different for the genotypes and phenotypes. In this case, the size
and length of the genotypic and phenotypic building blocks are different.

We have illustrated that high-locality representations guarantee that the
complexity of a problem is preserved and easy problems remain easy. There-
fore, high locality is necessary for efficient mutation-based search, low distance
distortion is necessary for efficient crossover-based search, and high locality
is a necessary condition for low distance distortion. If a representation has
low locality, some genotypic neighbors are not phenotypic neighbors, and the
difficulty of the optimization problem is changed. Our investigation into the
influence of locality on problem difficulty has shown that only high local-
ity guarantees that the problem difficulty remains unchanged. We defined in
(3.23) the locality dm of a representation as

dm =
∑

dg
x,y=dg

min

|dp
x,y − dp

min|,

where dp
x,y is the phenotypic distance between the phenotypes x and y, dg

x,y

is the genotypic distance between the corresponding genotypes, and dp
min, re-

spective dg
min is the minimum distance between two (neighboring) phenotypes,

and respectively genotypes. Without loss of generality we want to assume that
dg

min = dp
min. For dm = 0 the genotypic neighbors correspond to the pheno-

typic neighbors, the encoding has perfect locality, and the complexity of the
phenotypic problem is not modified.

We have seen in Sect. 3.3 that by using low-locality representations (dm �=
0), the complexity of the problem which can be measured by the size k of
the BBs, can be changed. Distinguishing between the size kp of BBs in the
phenotypic space, and the size kg of BBs in the genotypic space allows us to
model the influence of dm on the performance of GEAs more exactly. Section

102 4 Time-Quality Framework

3.3 has shown that high-locality representations preserve problem difficulty
and the problem has the same genotypic as phenotypic complexity:

kg = kp , if dm = 0.

The situation becomes more complicated if dm �= 0. As soon as neighboring
genotypes do not correspond to neighboring phenotypes, the complexity of
the BBs is changed and kg �= kp. Every phenotypic problem with complexity
kp can be transformed by the use of a low-locality representation into a geno-
typic problem with complexity kg ∈ [1, l]. For every problem there is always a
representation that results in a fully easy problem, kg = 1, as well as a repre-
sentation that results in a fully difficult, misleading trap with kg = l (Liepins
and Vose 1990). Therefore, when using low-locality representations (dm �= 0),
the genotypic size of BBs kg depends not only on the genotype-phenotype
mapping fg, but also on the specific structure of the phenotypic problem fp.
Therefore, we get

kg =

{
kp , for dm = 0,
kg(fg, fp) , with 1 ≤ kg ≤ l , for dm �= 0,

(4.1)

where l denotes the length of the binary string.
We want to illustrate with a small example why kg does not only depend

on fg and kp, but also on fp. Section 3.3.1 has discussed that every fully
deceptive trap with kp = l (3.25) can be transformed into a fully easy problem
with kg = 1 by a linear transformation. For this purpose we want to define
the genotype-phenotype mapping fg as

ug =

{
l − up − 1 if up �= l,

l if up = l,
(4.2)

where l is the length of the string, ug is the number of ones in the genotype
and up is the number of ones in the phenotype. This encoding has low locality
(dm �= 0). By the low-locality encoding fg the phenotypically fully deceptive
trap with kp = 7 becomes fully easy (see Fig. 4.1(a)). However, using the
same mapping fg for a different phenotypic problem of the same complexity
(Fig. 4.1(b)) does not significantly reduce kg. As the size kp = kg = 7 of BBs
remains unchanged, and only the position of the optimal solution is changed,
the problem is still fully deceptive (kg = l) after applying fg. We see that
for predicting kg the knowledge of kp is not enough when using low-locality
representations. It is necessary to know fp as well as fg to predict the influence
of low-locality representations on the difficulty of the problem.

4.3 The Framework

This section provides the time-quality framework modeling the influence of
representations on the performance of genetic and evolutionary algorithms.

4.3 The Framework 103

fg

u
1 2 3 4 5 6 7

1
2
3
4
5
6
7

u
1 2 3 4 5 6 7

1
2
3
4
5
6
7

f (u)p

gp

gp gp f=f (f (u))

(a) The genotype-phenotype mapping fg defined in (4.2) makes
the fully deceptive phenotypic trap (left) fully easy (right).

fg

ggf=f (f (u))p

u
1 2 3 4 5 6 7

1
2
3
4
5
6
7

f (u)

u
1 2 3 4 5 6 7

1
2
3
4
5
6
7

p

p

p

g

(b) Because the optimal solution is located at a different posi-
tion (up = 0) the genotype-phenotype mapping fg from above
does not reduce the complexity of the BBs significantly.

Figure 4.1. We show how a representation fg (4.2) modifies the complexity of
different phenotypic fully deceptive problems. If the optimal solution is located at
u = 7 the problem becomes fully easy (kg = 1). However, if the optimal solution is
located at u = 0 the complexity of the problem remains approximately unchanged.
We see that for designing a representation fg that makes difficult problems easier,
the structure of the phenotypic optimization problem fp must be known. Therefore,
theory-guided design of low-locality representations that reduce BB-complexity is
difficult and problem-specific.

The framework allows us to theoretically predict and compare the perfor-
mance of GEAs using different types of representations. Therefore, thorough
analysis and theory-guided design of representations becomes possible. Al-
though the presented framework is not yet complete and there are still some
gaps, rough approximations, unclear interdependencies, and also more as yet
unknown elements, we believe that the framework is an important step to-
wards a more general theory of representations.

The framework itself is based on the characteristics of the used encoding
we introduced in Sect. 4.2. There, we have seen that the redundancy of a rep-
resentation can be described by the order of redundancy kr and the number
of copies r which are given to the optimal solution. Furthermore, the modi-
fication of BB-complexity is determined by the locality dm, which measures
how well phenotypic neighbors correspond to the genotypic neighbors. Finally,

104 4 Time-Quality Framework

the scaling of a representation can be described by using the order of scaling
s. Currently there is no general model available for the influence of s on the
performance of GEAs. Therefore, we want to focus in this framework on uni-
formly scaled representations (s = 1) and exponentially scaled representations
with s ≥ 2.

The structure of the section follows the still missing general model of the
influence of scaling. Therefore, the section is split into two parts. In Sect. 4.3.1,
we present the part of the framework for uniformly scaled representations and
in Sect. 4.3.2 we focus on exponentially scaled representations.

4.3.1 Uniformly Scaled Representations

We present the part of the framework that describes the influence of repre-
sentations on GEA performance if the representations are uniformly scaled.
We describe how the probability of error α and the time to convergence tconv

depend on redundancy and locality.
Based on the work from Harik et al. (1997) we get for the probability of

error

α = 1 − 1 − (q/p)x0

1 − (q/p)N
,

where x0 is the expected number of copies of the best BB in the randomly
initialized population, q = 1−p is the probability of making the wrong decision
between two competing BBs, and N is the population size. From (3.6) we know
that

x0 = N
r

2kkr
,

where k is the phenotypic size of BBs, r is the number of genotypic BBs
of length kkr that represent the best phenotypic BB, and kr is the order of
redundancy. After some approximations (see Sect. 3.1.4) we finally model in
(3.9) the influence of redundant encodings on the population size N as

N = −2krk−1

r
ln(α)

σBB

√
πm′

d
, (4.3)

where m′ = m − 1 with m is the number of BBs, d is the signal difference,
and σ2

BB is the variance of the BBs. The probability α of GA failure can be
calculated as:

α = exp
(
− Ndr

2krk−1σBB

√
πm′

)
(4.4)

We have described in Sect. 4.2.3 that the problem difficulty measured by the
size of BBs k is modified by the locality dm of the representation. In (4.1),
the genotypic size kg of the BBs is calculated as

kg =

{
kp , if dm = 0,
kg(fg, fp) ,where 1 ≤ kg ≤ l , if dm �= 0,

4.3 The Framework 105

where fg is the genotype-phenotype mapping (the used representation), and
fp is the optimization problem with the size kp of the phenotypic BBs. Sub-
stituting kg into 4.4 we get for uniformly scaled representations:

α = exp
(
− Ndr

2krkg−1σBB

√
πm′

)
. (4.5)

The probability of error α goes with O
(
exp

(
−r

2krkg

))
. We see that using re-

dundant representations (kr > 1) without increasing r has the same influence
on GEA performance as increasing the size of BBs kg.

From Sect. 3.1.5 we get for the time to convergence for a uniformly scaled
representation (3.10)

tconv =

√
l

I

(π

2
− arcsin

(
2
x0

N
− 1

))
, (4.6)

where l is the length of the phenotypes, and I is the selection intensity. Sub-
stituting x0 from (3.6) into (4.6) yields

tconv =

√
l

I

(π

2
− arcsin(

r

2krk−1
− 1)

)
.

When considering the effect of locality (4.1) we finally get for the time to
convergence

tconv =

√
l

I

(π

2
− arcsin(

r

2krkg−1
− 1)

)
. (4.7)

tconv increases with larger kg and decreasing r/2kr . With 0 < r
2krkg

< 1 we
can calculate upper and lower bounds for the expected time to convergence
as

0 < tconv <

√
l

I
π

If r/2krkg ≈ 1 most of the randomly created genotypic individuals represent
the phenotypic optimum. Therefore, GEAs converge very fast and tconv → 0. If
either kg is a large number or r/2kr is small then there is only a small fraction
of optimal BB in the initial population and GEAs need many generations to
converge.

4.3.2 Exponentially Scaled Representations

We describe the influence of redundancy and locality on the performance
of GEAs if the representations are exponentially scaled. In contrast to the
previous subsection where the size of the convergence window λc is equal to
the string length and all alleles are solved in parallel, we assume that the
alleles are solved strictly in serial and λc = 1.

106 4 Time-Quality Framework

As illustrated in Sects. 3.2 and 4.2.2 we can use the domino convergence
model for estimating the performance of GEAs using exponentially scaled
representations. We assume that the alleles are solved strictly in serial and
there are no interdependencies between the ls alleles in an exponentially scaled
BB. However, it is possible to concatenate m exponentially scaled BBs of
length ls. When using exponentially scaled representations the maximum size
of BBs is k = 1. All schemata of order k = 1 that contain the best solution
have higher fitness than their competitors. Therefore, it makes no sense to
consider the effect of locality on GEA performance when using exponentially
scaled representations. Section 4.2.3 has shown that low locality modifies the
size of BBs k and results in interdependencies between the alleles. However, if
kg > 1, the domino convergence model can not be used any more, because we
can then not assume that the alleles are still solved sequentially. Therefore,
we assume in the following that k = 1 and the representation does not modify
the size of BBs when mapping the phenotypes onto the genotypes.

When using redundant representations we know from (3.6) that

x0

N
=

r

2kkr
,

where x0 is the expected number of copies of the best BBs in the initial
population, N is the population size, k is the size of BBs, m′ = m − 1 with
m is the number of BBs, kr is the order of redundancy, and r is the number
of genotypic BBs of size kkr that represent the best phenotypic BB.

As we have seen in Sect. 3.2.2, the probability p of making the right choice
between a single sample of each BB remains constant for the ls bits in the
exponentially scaled BB if we assume that all alleles which are not yet touched
by the solving process remain in their initial state. Substituting x0/N into
(3.13), we get

p = N

⎛
⎝ 1√

2 r
2kr

(
1 − r

2kr

)
(4
3m − 1)

⎞
⎠ · (4.8)

As illustrated above, k = 1 and there are m competing BBs with ls exponen-
tially scaled alleles. Furthermore, with x0 = Nr

2kr
we get from (3.15) for the

probability of error

α =
(1/p − 1)x0 − (1/p − 1)N

1 − (1/p − 1)N
=

(1/p − 1)
Nr

2kr − (1/p − 1)N

1 − (1/p − 1)N
· (4.9)

We want to approximate (4.9) in analogy to Sect. 3.1.4. If we assume that x0

is small we get from (4.9)

α ≈
(

1 − p

p

)x0

·

When using the first two terms of the power series expansion of the normal
distribution for approximating (4.8) we get

4.3 The Framework 107

α ≈ exp
(

x0 ln
(

1 − x

1 + x

))
,

where x = 1/
√

π x0
N (1 − x0

N)(4
3m − 1). Because x is a small number we can

assume that ln(1 − x) ≈ −x and ln(1 + x) ≈ x. Using these approximations
we get

α ≈ exp

⎛
⎝−x0

2√
π x0

N (1 − x0
N)(4

3m − 1)

⎞
⎠ ·

If we approximate x0
N (1 − x0/N) by x0/N we get for the probability of error

α ≈ exp

⎛
⎝− Nr

2kr−1
√

π r
2kr

(4
3m − 1)

⎞
⎠ ·

Simplifying this equation yields finally

α ≈ exp

⎛
⎝− 2n

√
r√

2krπ(4
3m − 1)

⎞
⎠ · (4.10)

Using this rough approximation we appreciate that α is reduced with increas-
ing r/2kr and N . α is also reduced with a smaller number m of competing
BBs. The reader should notice that α does not depend on the length ls of an
exponentially scaled BB, as we assumed that the alleles remain in their initial
state as long as they are not reached by the search window.

We have seen in Sect. 3.2 that genetic drift reduces the performance of
GEAs when using exponentially scaled representations. Genetic drift can be
considered by either the approximated drift model (3.21) or the stair-case
drift model (3.22). By substituting the probability of error α either from (4.9)
or from (4.10) into either (3.21) or (3.22) we get the average percentage of
incorrect alleles ᾱ. For example, we can calculate the overall percentage ᾱ of
incorrect alleles using the approximated drift model as:

ᾱ =
1
ls

ls−1∑
λ=0

((
1 − s′(λ

π

2
√

πm)
)

α +
1
2
s′(λ

π

2
√

πm)
)

, (4.11)

with

s′(t) =

{
0 for t < −N ln(2/3),
1 − 3

2 exp(−t/N) for t > −N ln(2/3).

With increasing ls, more and more of the lower salient alleles are fixed ran-
domly and ᾱ is reduced.

The time to convergence for the m alleles of the same salience can be
calculated by using (3.10) as

108 4 Time-Quality Framework

tconv =
√

m

I

(π

2
− arcsin

(r

2kr−1
− 1

))
· (4.12)

As before we assume that k = 1. After m alleles of the same salience are con-
verged the GEAs tries to solve the next m alleles with the next lower salience.
Because each of the m BBs consists of ls alleles with different salience and the
solving process is strictly serial, we get for the overall time to convergence

tconv = ls

√
m

I

(π

2
− arcsin

(r

2kr−1
− 1

))
, (4.13)

The time to convergence increases linearly with the length of an exponentially
scaled BB ls. With larger r/2kr the time to convergence is reduced.

4.4 Implications for the Design of Representations

The purpose of this section is to describe some of the important implications
of the framework on the behavior of GEAs. We show how the influence of
different types of representations on the performance of GEAs can be de-
scribed by using the presented framework. Based on the framework, we see
that representations that overrepresent a specific solution can result in high
GEA performance, but are not robust concerning the location of the optimal
solution. When using exponentially scaled representations, the framework tells
us that there is a trade-off between the accuracy of the solution quality and
convergence time. Because low-locality representations affect the size of BBs,
the behavior of GEAs using low-locality representations is difficult to predict.

The section starts by illustrating the effects of non-uniformly redundant
representations. We have seen in Sects. 3.1 and 4.2.1 that redundancy af-
fects the supply of BBs in the initial population. Therefore, representations
that overrepresent a specific solution result in high GEA performance but
are not robust. Section 4.4.2 illustrates that the scaling of a representation
influences the dynamics of genetic search. GEAs using exponentially scaled
representations deliver rough approximations of the optimal solution after a
few generations, but the overall time to convergence is increased in compar-
ison to uniformly scaled representations. Finally, we show in Sect. 4.4.3 the
effects of low-locality representations. If dm �= 0, the genotypic problem com-
plexity depends on fg and fp and easy problems fp on average become more
difficult to solve for GEAs. Therefore, when using low-locality representations
the performance of GEAs for a specific problem is difficult to predict but on
average low-locality representations make easy problems more difficult.

4.4.1 Uniformly Redundant Representations Are Robust

Section 3.1 has illustrated the effects of redundancy on the performance of
GEAs. The results have shown that the quality of the solutions and the time

4.4 Implications for the Design of Representations 109

to find them can be increased if we focus the genetic search on some specific
areas of the search space.

We described in Sect. 4.2.2 the influence of synonymous redundancy by r
denoting the number of genotypic BBs that represent the optimal phenotypic
BB and kr denoting the order of redundancy. Therefore, r/2kr can be used
for characterizing redundancy in an encoding.

Our framework in the previous section tells us how the solution quality
(α and tconv) depends on r/2kr . For uniform redundant representations (see
(4.5) and (4.7))

α = exp
(
− Ndr

2krkg−1σBB

√
πm′

)
,

and

tconv =

√
l

I

(
π

2
− arcsin(

2r

2krkg
− 1)

)
.

When neglecting the effect of genetic drift we get for exponentially scaled
representations (see (4.10) and (4.13))

α ≈ exp

⎛
⎝− 2N

√
r√

2krπ(4
3m − 1)

⎞
⎠ ,

and

tconv = ls

√
m

I

(π

2
− arcsin

(r

2kr−1
− 1

))
We see that α goes for uniformly scaled representations with O(exp(−r/2kr))
and for exponentially scaled representations with O(exp(−√

r/2kr)). The time
to convergence tconv is reduced for both types of representations with increas-
ing r/2kr . Therefore, GEA performance increases with larger r/2kr . As a result
designing efficient representations seems to be quite an easy task. Initially it
appears that we simply have to increase r/2kr and are rewarded with high
performing GEAs. Therefore, we have to investigate if there are any problems
associated with increasing r/2kr .

When using synonymously redundant representations, the order of redun-
dancy kr does not depend on the structure of the optimal solution. However,
r depends by definition on the structure of the optimal solution. r measures
how many genotypic BBs of size kkr represent the optimal phenotypic BB
of size k. On average ravg = 2k(kr−1) genotypic BBs represent one of the 2k

phenotypic BBs. Therefore, if r > ravg for some phenotypic individuals, there
must also be some individuals with r < ravg. That means if some individuals
are overrepresented by a specific representation there must be others which
are underrepresented.

We have learned from the framework that solution quality increases with
increasing r/2kr . If we have uniform redundancy (r = 2k(kr−1)), GEAs per-
form the same as without redundancy. For uniformly redundant representa-
tions, the performance of GEAs is independent of the location of the optimal

110 4 Time-Quality Framework

solution. If a specific phenotype xp
r is overrepresented with r > 2k(kr−1), GEAs

searching for optimal solutions that are similar to xr perform better. How-
ever, when using this representation and searching for solutions that have a
large distance to xp

r , GEAs perform worse. The situation is vice versa if xp
r is

underrepresented. We see that by increasing r/2kr, we reduce the robustness
of the representation. A representation is denoted to be robust if the perfor-
mance of a GA is independent of the location of the optimal solution in the
search space. We illustrate this behavior of redundant encodings in Fig. 4.2.
The Figure shows how the performance of GEAs depends on the over- or
underrepresentation of the phenotype xp

r .

p

kk r 2k
1r

=

2kk r 2k
1

2kk r 2k
1

xr

performance

r

r

>

<

p Φ

2

Figure 4.2. We show how the perfor-
mance of GEAs using redundant rep-
resentations depends on the location
of a specific individual xp

r in the search
space Φp. r determines the number
of genotypes that represent a spe-
cific phenotype xp

r . The performance
of GEAs is independent of r if all
phenotypes are uniformly represented
(r = 2k(kr−1) for all phenotypes). If
xp

r is overrepresented (r > 2k(kr−1))
GEAs perform better when search-
ing for individuals similar to xp

r , and
worse for individuals with a larger dis-
tance to xp

r . If xp
r is underrepresented

the situation is reversed.

We see that when designing representations, redundancy is helpful if the
number of copies r that are given to the optimal solution xp

r is above aver-
age. However, to systematically increase the number of copies of the optimal
solution, it is necessary to know where the optimal solution is located in the
search space Φp. Otherwise, if we do not know where the optimal solution can
be found, it is not possible to increase the number of copies of the best solution
or solutions that are similar to the best solution in a systematic way by using
redundant representations. Therefore, problem-specific knowledge is necessary
to increase the value of r. If we do not have any problem-specific knowledge
about the structure of the problem, either non-redundant, or uniformly re-
dundant representations, should be used. Both types of encodings guarantee
that GEAs perform robustly, that means independently of the structure of
the optimal solution.

4.4 Implications for the Design of Representations 111

4.4.2 Exponentially Scaled Representations Are Fast,
but Inaccurate

In Sect. 4.3, we examined the effect of uniformly and non-uniformly scaled
representations on the performance of GEAs. We saw (see also Sect. 4.2.2)
that a different scaling of representations modifies the dynamics of genetic
search. When using uniformly redundant representations all alleles are solved
in parallel, whereas for exponentially scaled BBs the alleles are solved strictly
serially. In the following paragraphs, we want to illustrate that GEAs using
exponentially scaled representations deliver fast solutions which are inaccu-
rate.

In our framework, we have presented two different models for scaled rep-
resentations. For uniformly scaled representations, we assumed that all alleles
are solved in parallel, and that the size of the convergence window is the same
as the string length. We get from (4.7) for l = lsm and kg = 1

tuniform
conv =

√
lsm

I

(
π

2
− arcsin(

r

2kr − 1
− 1)

)
·

When using exponentially scaled representations, we use the domino conver-
gence model and the size of the convergence window λc = 1. Therefore, we
get from (4.13) for the overall time to convergence

texp
conv = ls

√
m

I

(π

2
− arcsin

(r

2kr−1
− 1

))
·

In each of the m exponentially scaled BBs of size ls, the alleles are solved
strictly sequentially.

We see that when using exponentially scaled representations, the first al-
leles are converged to the correct solution after a short time and we get a
first rough approximation of the correct solution. Furthermore, the alleles are
solved from the most salient to the least salient. When using exponentially
scaled representations the most salient allele has the same contribution to the
phenotype as all lower salient alleles together. Because the low salient alleles
do not significantly change the phenotype (and the corresponding fitness), we
get an acceptable approximation after a few generations.

The situation is different when examining the number of generations that
are necessary until the whole string is converged. GEAs using uniformly scaled
representations converge faster and find the optimal solution after tuniform

conv =
texp
conv/

√
ls generations. We can compare the different times to convergence

texp < tuniform
conv < texp

conv,

where texp = texp
conv/ls denotes the time after m alleles of the same salience are

converged (moving the convergence window to the next lower salient allele).
GEAs always need more time to completely converge when using exponentially
scaled representations than when using uniformly scaled representations.

112 4 Time-Quality Framework

uniformly scaled
exponentially scaled

generations

correct alleles

ls lst 2t

2m

m

mls

exp exp
t texp exp

Figure 4.3. Number of cor-
rectly identified alleles over
the number of generations
for GEAs using uniformly
versus non-uniformly scaled
representations. The number
of correctly identified alleles
corresponds to the accuracy
of the solution. GEAs using
non-uniformly scaled represen-
tations provide an inaccurate
solution to the problem more
rapidly, but need longer to
find the exact solution.

We want to illustrate the influence of scaling on the dynamics of genetic
search in Fig. 4.3. The figure shows the number of correctly identified alleles
over the number of generations using uniformly scaled versus non-uniformly
scaled representations. The number of correctly identified alleles is a measure-
ment for the accuracy of the solution we get. The plots show that GEAs using
non-uniformly scaled representations steadily improve the solution quality.
After a few generations GEAs already provide us with a correct, but yet inac-
curate solution to the problem. GEAs using uniformly scaled representations
do not give us approximations after a few generations, but allow us to find
the exact optimum faster.

We see that non-uniformly scaled representations rapidly deliver correct,
but inaccurate solutions, whereas uniformly scaled representations do not pro-
duce early results, but give us the optimal solution faster. If we do not want to
spend much time and we are not interested in high accuracy, non-uniformly
scaled representations are a considerable choice. On the other hand, if we
need exact solutions, we should use uniformly scaled representations. GEAs
using uniformly scaled representations can find the exact optimum in a shorter
length of time.

4.4.3 Low-locality Representations Are Difficult to Predict,
and No Good Choice

Section 3.3 illustrated how the complexity of an optimization problem can be
modified by using low-locality representations. The genotypic size kg of BBs is
determined by the locality dm (see Sect. 4.2.3). If the locality is high (dm = 0)
the genotypic problem complexity is the same as the phenotypic problem
complexity. However, for dm �= 0 the genotypic size of BBs kg depends not
only on the used representation but also on the specific optimization problem.

We have already illustrated in Sect. 4.3.2 that when looking at exponen-
tially scaled representations it makes no sense to consider the effect of dm on

4.4 Implications for the Design of Representations 113

GEA performance. The performance of GEAs is modeled using the domino
convergence model, which assumes strictly serial solving of the alleles. How-
ever, if the representation modifies the size of BBs and kg �= 1, there are
interdependencies between the alleles, and the domino convergence model can
not be used any more. Therefore, we want to focus in the following on uni-
formly scaled representations.

For uniformly scaled representations, the probability of error (4.5) can be
approximated as

α = exp
(
− Ndr

2krkg−1σBB

√
πm′

)
,

and the time to convergence (4.7)

tconv =

√
l

I

(
π

2
− arcsin(

2r

2krkg
− 1)

)
,

where

kg =

{
kp , if dm = 0,
kg(fg, fp) ,where 1 ≤ kg ≤ l , if dm �= 0.

The probability of error goes with O(exp(1/2kg)), and the time to convergence
tconv increases with increasing kg. The genotypic size kg of BBs is influenced
by dm. If dm = 0, kg is the same as kp and the complexity of the problem is
preserved when mapping the phenotypes onto the genotypes. The situation
becomes different if dm �= 0. Then, kg depends on the used representation fg

and on the optimization problem fp. We have illustrated in the small example
shown in Sect. 4.2.3 (see Fig. 4.1) that predicting GEA performance using low-
locality representations is difficult. It depends on where the optimal solution
is located, on the representation fg, and the structure of the problem fp.

We illustrate the problem with low-locality representations in Fig. 4.4. In
Fig. 4.4(a), the locality is high and the size of BBs is the same in the genotypic
and the phenotypic space. If we assume that the used GEAs can solve a
problem up to kg = kmax, we can be sure that all problems with kp < kmax

can be solved reliably. The situation becomes different if dm �= 0 (Fig. 4.4(b)).
Then, kg depends not only on kp, but also on fg, and on fp. Using a low-locality
representation can result for problems with the same kp in problems with
different kg. Therefore, we can not predict which types of problems remain
solvable and which are no longer solvable. Originally easy problems could
become fully difficult and fully difficult problems could become fully easy.
To predict the performance of GEAs using low-locality representations is not
possible if we have no detailed knowledge about fp.

We summarize that we can not predict the performance of GEAs using
low-locality representations if we have no exact knowledge about the optimiza-
tion problem fp and the used representation fg. However, if we know that a
problem is too difficult to be solved by the used GEAs, a representation with
dm �= 0 can sometimes advantageously use this problem-specific information.

114 4 Time-Quality Framework

p

kg

l

l

k
kmax

kmax

1

solvable

(a) dm = 0

kp

kg

kmax

1

l

l

solvable

1

(b) dm �= 0

Figure 4.4. We illustrate how the genotypic size kg of BBs depends on the phe-
notypic size kp of BBs when using low-locality versus high-locality representations.
For high-locality representations (dm = 0), easy problems up to complexity kp can
be reliably solved (Fig. 4.4(a)). If dm �= 0 (Fig. 4.4(b)), kg does not correspond to
kp, but depends on the used representation and the optimization problem. Then, we
cannot predict kg without knowing fp.

Then, the representation modifies kp and there is a chance that the problem
becomes so easy that it can be solved (kg < kmax). When a problem is fully
difficult (kp = l), on average, low-locality representations make the problem
easier (kg ≤ l) and more likely to be solved by GEAs. If we have no informa-
tion a priori about a problem, or if we know that a problem is easy to solve
for GEAs, we strongly favor the use of high-locality representations. These
types or representations allow GEAs to reliably solve easy problems up to
some complexity bound.

4.5 Summary and Conclusions

We presented in this chapter a time-quality framework for a theory-based
analysis and design of representations for genetic and evolutionary algorithms.
The chapter started with the determinants of GEA performance. The perfor-
mance of GEAs is determined by the expected quality of the solutions and
the number of generations that are necessary to find them. This was followed
in Sect. 4.2 by a description of the three elements the framework consists of.
We presented how redundancy, scaling, and locality of a representation are
measured and how they affect GEA performance. In Sect. 4.3, we presented
the main part of the chapter: the framework. Based on the work outlined in
Chap. 3, we showed how the probability of error α and the time to conver-
gence tconv is influenced by different properties of representations. Finally, we
presented in Sect. 4.4 some implications of the framework on the design of
representations.

4.5 Summary and Conclusions 115

Based on the three elements of representation theory outlined in Chap. 3,
the presented framework theoretically describes how different types of repre-
sentations influence GEA performance. The framework provides us with some
important benefits. It gives us a theoretical model for a better understand-
ing of the influence of representations on GEA performance. Furthermore,
it allows us to model and predict the performance of GEAs using a spe-
cific representation for different types of optimization problems. Therefore, a
theory-based use, analysis, and design of representations becomes possible by
using the outlined framework.

Based on the results from Chap. 3, the framework shows that synony-
mously redundant representations increase GEA performance, if the optimal
solution is overrepresented by the representation. However, if some specific
individuals are overrepresented, others remain underrepresented, and the per-
formance depends on the structure of the optimal solution. Only uniformly
redundant representations are robust concerning the structure of the optimal
solution.

By modifying the scaling of a representation the dynamics of genetic search
are changed. If GEAs use exponentially scaled representations the domino con-
vergence model can be used because the alleles are solved serially according
to their salience. Therefore, the most salient alleles are solved after a few
generations and a rough approximation of the optimal solution is available.
However, to solve all alleles, GEAs using exponentially scaled representations
need a larger number of generations compared to using uniformly scaled rep-
resentations.

The presented framework reveals that the locality of a representation is
crucial for the performance of GEAs. The locality describes how well genotypic
neighbors correspond to phenotypic neighbors when mapping the phenotypes
on the genotypes. The analysis shows that locality influences the genotypic
size of BBs. When using high-locality representations, the complexity of the
problem is preserved and easy problems remain easy. For low-locality encod-
ings, the size of BBs is modified, and for predicting the resulting problem
complexity, exact knowledge about the optimization problem and the used
representation is necessary.

We believe that the representation framework developed in this chapter is
an important step toward a more general theory of representations for GEAs.
Although it is not yet completed and there are still many open questions
and shortcomings, it provides us with a much better understanding of the
principles of representations and allows a more theory-guided design of repre-
sentations. We want to encourage researchers to use the presented framework
as a basis for a more detailed and extensive investigation into representations.

5

Analysis of Binary Representations of Integers

In the previous chapter, we presented a framework which describes the effects
of representations on the performance of GEAs. We illustrated the elements
of the framework for problems where the phenotypes and genotypes are both
bitstrings. The question is still open as to whether the framework also holds
true for problems where the genotypes and phenotypes are different.

This question can be answered by examining problems where the geno-
types are still binary but the phenotypes are integers. Integer optimization
problems are common in many real-world applications. Although the most
natural way for representing integer problems is to use an integer representa-
tion with integer genotypes, previous work has shown that by using genotypes
that have a lower cardinality of the alphabet (for example binary genotypes)
the possible number of schemata can be increased in comparison to integer
strings (Goldberg 1990b). Consequently, researchers have developed different
types of binary representations for integers. The most common are binary,
Gray, and unary representations. Previous work has shown that these three
representations have different properties and influence GEA performance dif-
ferently (Caruana and Schaffer 1988; Whitley 1999; Whitley et al. 1997; Whit-
ley 2000a).

The purpose of this chapter is to use the framework presented in the
previous chapters to explain the performance differences of GEAs when using
different binary representations for integers. For our investigation, we use two
types of integer problems: variants of the easy integer one-max problem, and
a difficult deceptive integer trap problem. For encoding integer phenotypes,
we use binary, Gray, or unary representations.

The analysis of the unary encoding using the previously presented ele-
ments of representation theory reveals that the encoding is non-synonymously
redundant and does not represent the phenotypes uniformly. Therefore, the
performance of GEAs depends on the structure of the optimal solution. If
the good solutions are overrepresented by the encoding, GEAs perform well,
whereas, if the good solutions are underrepresented, GEAs fail.

118 5 Analysis of Binary Representations of Integers

The binary encoding uses exponentially scaled alleles to represent integer
values. Therefore, the convergence behavior is affected by domino convergence
and genetic drift. However, the analysis shows that genetic drift only results
in a reduction of GEA performance for easy problems and small populations.
An investigation into the locality of the binary encoding reveals that the
locality is low and increases the difficulty of fully easy problems and reduces
the difficulty of fully difficult problems.

Although the Gray encoding was designed to overcome the problems with
the Hamming cliff (Schaffer et al. 1989), it also has low locality and changes the
difficulty of problems. Focusing on selectorecombinative GAs, a schema analy-
sis for the integer one-max problem reveals that using Gray encoding results
in larger BBs in comparison to binary encoding. As a result, in comparison
to the binary encoding, the difficulty of the easy integer one-max problem
increases for selectorecombinative GAs. These results are not contradictory
to the Free-Lunch theorem from Whitley (1999) and Whitley (2000a) regard-
ing the Gray encoding but confirm the results therein. The difference can be
found in the used search method. We investigate the influence of Gray encod-
ing on recombination-based search approaches, whereas Whitley (1999) looks
at mutation-based search methods. The work basically counts the number of
local optima, which is lower when using Gray than binary encoding. There-
fore, the performance of mutation-based search approaches on easy problems
is higher when using Gray than when using binary encodings.

After a brief presentation of the integer problems in Sect. 5.1, Sect. 5.2
describes the Gray, binary and unary encodings and analyzes their properties.
This is followed in Sect. 5.3 by a theoretical comparison of the three encodings
using the elements of theory presented in Chap. 3. We illustrate how the unary
encoding is affected by redundancy, how the exponential scaling of BBs influ-
ences the performance of the binary encoding, and how Gray encoding does
not preserve problem difficulty well. Based on the elements of representation
theory, we are able to make theoretical predictions about GEA performance.
In Sect. 5.4, these predictions are finally confirmed by empirical results. The
chapter ends with concluding remarks.

5.1 Integer Optimization Problems

In this section, we present integer problems we want to use for a comparison
of different representations defined on binary genotypes.

To be able to make a fair comparison between different representations,
the problem must be defined on the integer phenotypes independently of the
used binary representation. The difficulty of the problem is determined by the
phenotype-fitness mapping fp. The difficulty of the problem can be changed
by using an additional genotype-phenotype mapping fg, which assigns binary
genotypes to integer phenotypes. When assuming that the fitness function fp

assigns a real number to every individual in the phenotypic space, we get for

5.1 Integer Optimization Problems 119

the phenotype-fitness mapping:

fp(xp) : N → R.

We want to use integer-specific variations of the one-max and the fully-
deceptive trap problem. Traditionally, these problems are defined on binary
strings, but we want to define them in a similar way for integers. The integer
one-max problem is defined as

fp(xp) = xp. (5.1)

A more general variant of the integer one-max problem (denoted as gen-one-
max) can be defined as:

fp(xp) = xmax − |xp − a|, (5.2)

where xp ∈ N, xmax = max(xp), and a ∈ {0, 1, . . . , xmax}. For a = xmax the
gen-one-max problem becomes the standard integer one-max problem (com-
pare (5.1) and Fig. 5.1(a)). The difficulty of different gen-one-max problems
is independent of the parameter a. a only changes the location of the opti-
mal solution in the search space and evolutionary search algorithms should
show the same performance for different values of a. Two examples for the
gen-one-max problem are given in Fig. 5.1.

p
0 1 2 3 4 5 6

1
2
3
4
5
6

f(x)

x

p

(a) a = 6

p
0 1 2 3 4 5 6

1
2
3
4
5
6

f(x)

x

p

(b) a = 4

Figure 5.1. Two examples for
the general integer one-max problem
(gen-one-max)

Furthermore, the integer deceptive trap problem can be defined as

f(xp) =

{
xp if xp = xmax,

xmax − xp − 1 else,
(5.3)

where xp ∈ N. The one-max problems for integers are fully easy problems,
whereas the integer deceptive trap should be fully difficult to solve for GEAs.

For measuring the similarity of individuals, we need to define a metric for
the genotypic search space Φg and phenotypic search space Φp (see Sect. 3.3.2).
As we use binary genotypes, we use the Hamming distance (Hamming 1980)
on Φg, and the distance between two genotypes xg and yg of length l is defined

120 5 Analysis of Binary Representations of Integers

as dxg,yg =
∑l−1

i=0 |xg
i − yg

i |. The distance measures the number of alleles that
are different in both genotypes. The more bits two genotypes have in common,
the more similar they are. The Hamming metric is chosen with respect to the
bit-flipping operator. Using this mutation operator results in an individual
that has the lowest possible genotypic distance from its parent. Following
the Hamming metric for the genotypes, we measure the distance between two
phenotypes xp and yp (xp, yp ∈ N) as dxp,yp = |xp−yp|. The distance between
two phenotypes is simply the difference between both integers.

5.2 Binary String Representations

After we have defined the optimization problems, we present possible binary
representations fg for integers. The representation fg assigns binary genotypes
xg to integer phenotypes xp.

Instead of using binary strings with cardinality χ = 2 for the genotypes,
higher χ-ary alphabets could also be used. Then, a χ-ary alphabet is used
for the string of length l instead of a binary alphabet. Therefore, instead of
encoding 2l different individuals with a binary alphabet, we are able to encode
χl different possibilities. However, Goldberg (1990b) has shown that schema
processing is maximum with binary alphabets.

Focusing on binary representations, we have a large number of different
genotype-phenotype mappings that we can use as representations. If we use
a redundancy-free encoding and want to encode 2l phenotypes with 2l pos-
sible genotypes, then there are (2l)! different possibilities for the genotype-
phenotype mapping fg (see Sect. 3.3.7). Nevertheless, for our comparison we
want to focus on the three most widely used representations defined on binary
strings:

• binary representation,
• Gray representation, and
• unary representation.

In contrast to the unary encoding, the binary and Gray encoding allows us
to encode information redundancy-free. For the encoding of s possibilities,
both encodings use log2(s) bits (compare Sect. 3.1.1). The unary encoding
uses s − 1 bits for encoding only s different possibilities and is a redundant
representation. In the following paragraphs, we want to briefly review the
important properties of the three different encodings:

When using the binary encoding, each integer phenotype xp ∈ Φp =
{1, . . . , xmax} is represented by a binary genotype xg of length l = �log2(xmax)�.
The genotype-phenotype mapping fg is defined as

xp = fg(xg) =
l−1∑
i=0

2ixg
i ,

5.2 Binary String Representations 121

with xg
i denoting the ith bit of xg. Using the binary encoding for the integer

one-max problem (5.1) results in the BinInt problem (compare Sect. 3.2.4).
Since the bits in the string are exponentially scaled, we must use the

domino convergence model and GAs are affected by genetic drift (see Sect. 3.2).
The bits are solved sequentially, and the low salient bits can be fixed randomly
before they are reached by the solving process. Furthermore, the encoding has
problems associated with the Hamming cliff (Schaffer et al. 1989). The Ham-
ming cliff describes the effect that some neighboring phenotypes (the pheno-
types have a distance of one) are represented by completely different genotypes
(the distance between the genotypes is much larger than one). Therefore, the
locality of the binary encoding is low. As a result, especially mutation-based
search approaches have problems when using this encoding because they rely
on a high locality of the encoding. We have seen in Sect. 3.3.5 that high lo-
cality is a necessary condition for a representation to preserve BB-complexity.
Therefore, the ability of the binary encoding to preserve problem complexity
is reduced in comparison to high-locality representations. However, the en-
coding also has some very interesting properties: It is linear, very compact
and redundancy-free. For an example of the binary encoding, the reader is
referred to Table 5.1

To overcome problems with the Hamming cliff and the different scaling of
the alleles in binary strings, the Gray encoding was developed (Caruana and
Schaffer 1988; Schaffer et al. 1989). When using Gray encoding, the average
contribution of the genotypic alleles to the construction of the phenotype is
the same for each allele in the binary genotype. Therefore, the Gray encoding
is uniformly scaled (compare Sect. 3.2.1).

The Gray-encoded string itself can be constructed in two steps. At first, the
phenotype is encoded using the binary encoding, and subsequently the binary-
encoded string can be converted into the corresponding Gray-encoded geno-
type. The binary string xbin ∈ {0, 1}l = {xbin

1 , xbin
2 , . . . , xbin

l } is converted to
the corresponding Gray-encoded string xGray ∈ {0, 1}l = {xGray

1 , . . . , xGray
l }

by the mapping γ : B
l → B

l:

xGray
i =

{
xbin

i if i = 1,
xbin

i−1 ⊕ xbin
i otherwise,

where ⊕ denotes addition modulo 2. The decoding of a Gray-encoded string
is as follows:

xbin
i =

i⊕
j=1

yGray
j ,

for i = {1, . . . l}. As mentioned before, a Gray-encoded string has the same
length as a binary-encoded string and the encoding is redundancy-free. Fur-
thermore, the representation overcomes the problems with the Hamming cliff.
All neighboring phenotypes are also neighboring genotypes. However, as the
number of neighbors is different for the genotypic and phenotypic search space,

122 5 Analysis of Binary Representations of Integers

not all genotypic neighbors can correspond to phenotypic neighbors. Each phe-
notype has two neighbors (except xp = 0 and max(xp)), whereas each geno-
type has l = �log2(max(xp))� neighbors. Therefore, there are more genotypic
than phenotypic neighbors and the locality of the encoding is low (dm �= 0).
However, when using the Gray encoding, for all genotypes xg ∈ Φgthere exists
a neighboring genotype yg ∈ Φg who corresponds to the neighboring pheno-
type, {yg|(dyg,yg = 1) ∧ (dyp,xp = 1)}. This property gives Gray encoding an
advantage over binary encoding when using mutation-based operators like the
bit-flipping operator (Whitley 1999) as there is always one genotypic mutation
that results in a neighboring phenotype. In contrast, for the binary encoding
there exist genotypes (for example xg = 1000 which corresponds to xp = 8)
that do not have a genotypic neighbor which corresponds to the phenotypic
neighbor (for example xg = 0111 which corresponds to xp = 7). For the binary
encoding, mutation can not directly move from xg to yg although dxp,yp = 1.
For Gray encoding, there is always one direct move from xg to yg if dxp,yp = 1.
As before, Table 5.1 shows an example for the Gray encoding.

Finally, the unary encoding can be used for encoding integers. A phenotype
xp is encoded by the number u of ones in the corresponding genotype xg. With
the length l = max(xp) of the string and xg

i as the ith bit of xg we get

xp = fg(xg) =
l−1∑
i=0

xg
i .

In contrast to the binary and Gray encoding, a string of length l = s − 1 is
necessary for representing s different phenotypes xp. Therefore, the genotype-
phenotype mapping is no longer a one-to-one mapping but redundant. When
encoding the phenotypic space Φp = {0, 1, . . . , l} using a unary string of length
l, each of the l + 1 phenotypes xp ∈ Φp is represented by

(
l

xp

)
different geno-

types xg. The number of genotypes that represent xp is illustrated for l = 7
in Fig. 5.2. Some phenotypes are represented by only one genotype (xp = 0
and xp = 7), whereas xp = 3 and xp = 4 are represented by 35 genotypes.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7nu
m

be
r

of
 g

en
ot

yp
es

 th
at

 r
ep

re
se

nt
 x

p

xp
Figure 5.2. Redundancy of the unary en-
coding for l = 7

5.3 A Theoretical Comparison 123

The unary encoding is uniformly scaled and phenotypic neighbors corre-
spond to genotypic neighbors. However, it has low locality as there are more
genotypic than phenotypic neighbors (compare the discussion of the Gray
encoding from above), and some genotypic neighbors do not correspond to
phenotypic neighbors. We can illustrate this with an example. xp = 2 and
yp = 3 are neighboring phenotypes. The corresponding genotypes xg = 0011
and yg = 0111 are also neighbors. However, other corresponding genotypes
such as xg = 0011 and yg = 1110 are not neighbors. As the locality is low,
the encoding also has low distance distortion. As not all genotypes that cor-
respond to the same phenotype are similar to each other, the unary encoding
is a non-synonymously redundant encoding (compare Sect. 3.1.2).

Finally, we want to give a brief example for the three different types of
encodings. Table 5.1 illustrates how the phenotypes xp ∈ {0, . . . , 7} can be
represented by the binary, Gray, and unary encoding.

xp xg

binary Gray unary

0 000 000 0000000

1 001 001 0000001, 0000010, . . . ,0100000, 1000000

2 010 011 0000011, 0000101, . . . ,1010000, 1100000

3 011 010 0000111, 0001011, . . . ,1101000, 1110000

4 100 110 0001111, 0010111, . . . ,1110100, 1111000

5 101 111 0011111, 0101111, . . . ,1111010, 1111100

6 110 101 0111111, 1011111, . . . ,1111101, 1111110

7 111 100 1111111

Table 5.1. An exam-
ple for using binary,
Gray, and unary en-
codings

5.3 A Theoretical Comparison

This section uses the framework of representations we presented in Chap. 4 to
theoretically compare the performance of GEAs using binary, Gray and unary
representations. The framework allows us to make predictions about the per-
formance of GEAs which will be empirically verified in Sect. 5.4. In particular,
we illustrate the effects of the non-uniform redundancy of the unary encod-
ing, how the genetic search process is prolonged by the effect of exponentially
scaled BBs for the binary encoding, and how the complexity of the problem
is not well preserved by the Gray and binary encoding.

5.3.1 Redundancy and the Unary Encoding

We know from Sect. 3.1 that redundancy reduces GEA performance if the en-
coding underrepresents good solutions. Furthermore, we know from the previ-
ous section (see Fig. 5.2) that the unary representation is a non-synonymously

124 5 Analysis of Binary Representations of Integers

redundant encoding as one phenotype is encoded on average by more than
one genotype but not all genotypes that encode one phenotype are similar
to each other. Due to its non-synonymous redundancy, the use of the unary
encoding randomizes genetic search and the genotypic problem difficulty is
different from the phenotypic problem difficulty. In general, when using non-
synonymous redundant encodings, phenotypically easy problems become more
difficult whereas phenotypically difficult problems become more easy.

However, when using the unary encoding for the integer one-max and
deceptive trap problem, the integer one-max problem remains genotypically
fully easy for recombination-based search (Goldberg 1989b; Deb and Goldberg
1993; Deb and Goldberg 1994) as all schemata containing the global optimum
are still superior to their competitors (compare also Sects. 3.3.6 and 3.3.7). It
also remains easy for mutation as it is a unimodal problem for mutation-based
search and the structure of the fitness landscape guides mutation towards the
global optimum. Analogously, the fully deceptive trap remains fully difficult.
The only real handicap of the unary encoding seems to be the non-uniform
redundancy. Therefore, we want to neglect the non-synonymous redundancy
and focus on the overrepresentation and underrepresentation of the optimal
solution.

We want to predict the performance of GEAs using the unary encoding
for the integer one-max and integer deceptive trap problem from Sect. 5.1. We
assume that |Φp| = s. Therefore, for both problems, the integer one-max and
the integer deceptive trap problem, the length of the unary encoded string is
l = s − 1. Thus, 2s−1 different genotypes only encode s different phenotypes.
log2(s) Bits of information content (see Sect. 3.1.2) are encoded by s− 1 bits.
Therefore, we get for the order of redundancy (see Sect. 3.1.2)

kr =
s − 1

log2(s)
, for s > 1.

On average, kr bits of a unary encoded bitstring are necessary for encoding
one Bit of information content. This means, on average 2kr different genotypes
represent only two different phenotypes.

When using the unary encoding for the integer one-max or deceptive trap
defined in Sect. 5.1, the optimal phenotype (xp,opt = l) is represented by only
one genotype (a string of only ones). Therefore, the number of genotypic BBs
that represent the best phenotypic BB is r = 1.

From (3.9), we get for the population size N = O
(

2kr

r

)
when using redun-

dant encodings. Therefore, the necessary population size N when using unary
encoding for the integer one-max and deceptive trap problem is increased in
comparison to an encoding with uniform or no redundancy as

Nunary = Nredundancyfree × 2
s−1

log2(s)−1
.

The equation shows that with increasing string length l = s−1, the necessary
population size when using unary encoding increases exponentially. This effect

5.3 A Theoretical Comparison 125

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30

N
un

ar
y/

N
re

du
nd

an
cy

fr
ee

s

Figure 5.3. Necessary population size
Nunary when using unary encoding

is illustrated in Fig. 5.3. For even small problems the necessary population
size Nunary is unreasonably high. Obviously the use of the unary encoding
results for the proposed integer one-max and deceptive trap problem in a low
GA performance.

However, we know from Sect. 3.1 that the performance of non-uniformly
redundant encodings depends on the specific problem they are used for. GEAs
using synonymously redundant encodings only show low performance if the
good solutions are underrepresented. Therefore, we want to investigate in the
remaining paragraphs for which problems the unary encoding performs well.

For both problems, the integer one-max and deceptive trap problem, the
optimal solution xp,opt = l is strongly underrepresented by only one genotype
and GEAs using the unary encoding show low performance. When changing
the position of the optimal solution xp,opt (like in the gen-one-max problem)
and the optimal solution is not a string with only ones (or only zeros), GEAs
can perform better when using the unary encoding. This means, if we use
a different integer fitness function fp and the optimal solution would be, for
example, xp,opt = l/2 (resulting in a gen-one-max problem with a = l/2), then
the optimal solution would be strongly overrepresented and GEAs using the
unary encoding would be able to solve this problem very effectively.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7

n
u
m

b
e
r

o
f
g
e
n
o
ty

p
e
s

th
a
t
re

p
re

se
n
t
xp

xp

average

un
de

rr
ep

re
se

nt
ed

ov
er

re
pr

es
en

te
d

un
de

rr
ep

re
se

nt
ed

Figure 5.4. Areas of over- and underrepre-
sented phenotypes when using unary encod-
ing

126 5 Analysis of Binary Representations of Integers

We want to illustrate the problem of the unary encoding with underrep-
resented solutions in Fig. 5.4 more clearly. On average

γavg =
1
s

s−1∑
xp=0

(
s − 1
xp

)

genotypes represent one phenotype. Therefore, if
(

s−1
xp,opt

)
< γavg the optimal

solution xp,opt is underrepresented and the performance of the GA is reduced.
However, if

(
s−1

xp,opt

)
> γavg the optimal solution is overrepresented and redun-

dancy helps the GA in finding the optimal solution xp,opt.
We see that the performance of GEAs using the unary encoding depends

on the structure of the optimization problem we want to solve. The unary
encoding can be a good choice for the integer one-max problem or the integer
deceptive trap problem if the optimal solution is not strongly underrepre-
sented.

5.3.2 Scaling, Modification of Problem Difficulty,
and the Binary Encoding

In Sect. 3.2, we illustrated how the search process of GEAs is prolonged by
using non-uniformly scaled encodings. If integers are encoded using the bi-
nary representation, domino convergence occurs and GEAs are affected by
genetic drift. As a result, the probability α of GEA failure increases for small
population sizes N . However, scaling only affects GEAs for the easy integer
one-max problem because the optimal solution can be found even with small
populations, but not for the more difficult deceptive trap problem. Here, the
necessary population size is large enough that no drift occurs. For further
details regarding the effects of exponentially scaled encodings, such as the bi-
nary encoding on GEA performance, we refer to Sect. 3.2 as well as to results
presented in the literature (Thierens 1995; Thierens et al. 1998; Lobo et al.
2000).

The performance of GEAs using binary encoding is not only affected by
the exponential scaling of the encoding, but also by problems associated with
locality and the Hamming cliff (Caruana and Schaffer 1988; Caruana et al.
1989; Schaffer et al. 1989). Binary encodings have low locality (dm �= 0) as
not all neighboring genotypes correspond to neighboring phenotypes. As an
example we can chose the genotypes xg = 011 and xg = 111, which are neigh-
bors and have distance dxg,yg = 1. However, the corresponding phenotypes
xp = 3 and yp = 7 have distance dxp,yp = 4. As we know from Sect. 3.3.5
that low-locality encoding change problem difficulty, we expect that the non-
redundant binary encoding changes the structure and complexity of the BBs.
How exactly the structure of the BBs is changed is exemplarily measured in
the following paragraphs (compare Table 5.3).

5.3 A Theoretical Comparison 127

5.3.3 Modification of Problem Difficulty and the Gray Encoding

The non-redundant Gray encoding has low locality (dm �= 0), as the geno-
types have a larger number of neighbors than the phenotypes. Therefore,
the complexity of BBs is modified and the problem difficulty for GEAs is
changed (compare Sect. 3.3) when mapping phenotypic integers on genotypic
bitstrings. As a result, fully easy integer problems remain not fully easy.

Mutation-based search approaches using Gray encoding perform better
than using the binary encoding, as there is always one genotypic mutation
that allows the search method to reach a neighboring phenotype in one search
step. This performance advantage of Gray encoding in comparison to binary
encoding has already been described in other work (Whitley et al. 1997; Rana
and Whitley 1997; Whitley and Rana 1997; Rana and Whitley 1998; Whitley
1999; Whitley 2000a; Whitley 2000b). This work formulated a Free-Lunch
theorem for the use of Gray encoding and mutation-based search approaches.
GEAs using mutation as the main search operator perform better on easy
problems (these are the problems which we are interested in) when using Gray
encoding than when using binary encoding. It was shown that the number of
local optima introduced by Gray encoding is smaller than by binary encoding.

We know that using Gray encoding changes the problem difficulty for
GEAs. When using crossover-based search, the schema analysis is an appro-
priate method to measure problem difficulty (compare Sect. 2.3.2). For both,
binary and Gray encoding, dc �= 0 and genotypic and phenotypic problem
difficulty is different when using crossover-based search approaches. The dis-
tance distortion dc is high, as the structure of the genotypic and phenotypic
search space is different and a phenotype has a lower number of neighbors
than a genotype. The following analysis of the schemata fitness reveals for
the integer one-max and deceptive trap problem that in comparison to the
binary encoding, Gray encoding does not preserve the complexity of BBs as
well. This leads to a lower GA performance.

To investigate how well BB-complexity is preserved, we analyze the fitness
of the schemata for a 3-bit problem (s = 23 = 8) using Gray versus binary
encoding. In Table 5.2, we present the binary and Gray-encoded genotypes,
and the resulting fitness values for the integer one-max and deceptive trap
problem. In Table 5.3, we present the average fitness of the schemata for the
two problems. Reviewing problem complexity, the problem is fully deceptive if
all schemata of lower order containing the global optimum are inferior to their
competitors (Deb and Goldberg 1994). Analogously, the problem is fully easy
if all schemata containing the global optimum are superior to their competitors
(compare Sect. 2.3.2).

The analysis shows that for the fully easy integer one-max problem with
binary encoding, all schemata containing the global optimum xg,opt = 111 are
superior to their competitors. Although the binary encoding has low locality,
the fully easy integer one-max problem remains fully easy, and the binary
encoding preserves the difficulty of the problem well. The schema analysis for

128 5 Analysis of Binary Representations of Integers

Table 5.2. Using binary and Gray encoding for an integer one-max and deceptive
trap problem (s = 8). The resulting length of the genotypes l = 3.

genotype xg binary 000 001 010 011 100 101 110 111
Gray 000 001 011 010 110 111 101 100

phenotype xp integer 0 1 2 3 4 5 6 7

fitness
fone−max(xp) 0 1 2 3 4 5 6 7
fdeceptive(x

p) 6 5 4 3 2 1 0 7

order 3 2 1 0

in
te

g
er

o
n
e-

m
a
x

p
ro

b
le

m
(s

=
8
)

b
in

a
ry

schema 111 11* 1*1 *11 **1 *1* 1** ***
fitness 7 6.5 6 5 11 4.5 5.5 3.5
schema 01* 0*1 *01 **0 *0* 0**
fitness 2.5 2 3 3 2.5 1.5
schema 10* 1*0 *10
fitness 4.5 5 4
schema 00* 0*0 *00
fitness 0.5 1 2

G
ra

y

schema 100 10* 1*0 *00 1** *0* **0 ***
fitness 7 6.5 5.5 3.5 5.5 3.5 3.5 3.5
schema 11* 1*1 *11 0** *1* **1
fitness 4.5 5.5 3.5 1.5 3.5 3.5
schema 01* 0*1 *01
fitness 2.5 1.5 3.5
schema 00* 0*0 *00
fitness 0.5 1.5 3.5

in
te

g
er

d
ec

ep
ti

v
e

tr
a
p

p
ro

b
le

m
(s

=
8
)

b
in

a
ry

schema 111 11* 1*1 *11 **1 *1* 1** ***
fitness 7 3.5 4 5 4 2.5 2.5 3.5
schema 01* 0*1 *01 **0 *0* 0**
fitness 3.5 4 3 3 3.5 4.5
schema 10* 1*0 *10
fitness 1.5 1 2
schema 00* 0*0 *00
fitness 5.5 5 4

G
ra

y

schema 100 10* 1*0 *00 1** *0* **0 ***
fitness 7 3.5 4.5 6.5 2.5 4.5 4.5 3.5
schema 11* 1*1 *11 0** *1* **1
fitness 1.5 0.5 2.5 4.5 2.5 2.5
schema 01* 0*1 *01
fitness 3.5 4.5 2.5
schema 00* 0*0 *00
fitness 5.5 4.5 2.5

Table 5.3. Schemata fitness
for the integer one-max
and deceptive trap problem
using binary versus Gray
encoding. The integer one-
max problem remains fully
easy when using the binary
representation. Using Gray
encoding makes the problem
more difficult as some of
the high quality schemata
have the same fitness as the
misleading schemata. The
situation for the deceptive
trap is the opposite one.
The fully difficult deceptive
trap becomes easier to solve
when using Gray encoding.

5.4 Experimental Results 129

the Gray encoding reveals that the schemata containing the global optimum
xg,opt = 100 are not always superior to their competitors. Therefore, the
problem is not fully easy anymore, and the Gray encoding changes problem
difficulty and does not preserve the easiness of the integer one-max problem.

The schemata analysis of the integer trap problem reveals that the problem
remains not fully deceptive when using the binary encoding. Some of the
schemata containing the global optimum xg,opt = 111 are superior to their
competitors (*11 and **1). However, when using Gray encoding even more
schemata containing the global optimum are not inferior to their competitors
(1*0, *00, *0*, **0). The phenotypically fully difficult problem is not fully
difficult anymore.

5.4 Experimental Results

In this section, we present an experimental verification of the performance
differences between the three different representations we discussed in the
previous section.

5.4.1 Integer One-Max Problem
and Deceptive Integer One-Max Problem

We compare the performance of GAs using binary, Gray, and unary encoding
for the integer one-max and deceptive trap problems as defined in Sect. 5.1.
We performed 250 runs for each problem instance and each run was stopped
after the population was fully converged (all individuals in the population
are the same). For the integer one-max problem we used uniform crossover,
and for the integer deceptive trap we used two-point crossover. As selection
method we used tournament selection without replacement of size two. We
used no mutation as we want to focus on selectorecombinative GEAs.

The Figs. 5.5, 5.6, 5.7, and 5.8 present results for the integer one-max
problem, and the Figs. 5.9 and 5.10 for the integer deceptive trap problem. The
plots show for different representations the proportion of correctly solved sub-
problems at the end of the run (left) and the run duration tconv (right) with
respect to the population size N . For the one-max problem, we concatenated
20 sub-problems of order 2 (s = 22 = 4, see Fig. 5.5), 3 (s = 8, Fig. 5.6),
4 (s = 16, Fig. 5.7), and 5 (s = 32, Fig. 5.8)1. The fitness of an individual
is calculated as the sum of the fitness of the 20 concatenated sub-problems.
Because large integer deceptive traps are not solvable by GAs in a reasonable
time, we only present results for the deceptive trap problem of order 2 (s = 4,
Fig. 5.9), and 3 (s = 8, Fig. 5.10). Using binary or Gray encoding results for
the order 2 problems in a string length l = 40, for order 3 in l = 60, for order

1The order r of a problem is defined as r = log2 s and describes the length of
the corresponding binary- or Gray-encoded string.

130 5 Analysis of Binary Representations of Integers

4 in l = 80, and for order 5 in l = 100. When using unary encoding we need
20 × 3 = 60 bits for order 2, 20 × 7 = 140 bits for order 3, 20 × 15 = 300 bits
for order 4, and 20 × 31 = 620 bits for order 5 problems.

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 20 40 60 80 100pr
op

or
tio

n
of

 c
or

re
ct

 s
ub

-p
ro

bl
em

s

population size N

binary
Gray

unary
 18

 19

 20

 21

 22

 23

 24

 25

 26

 20 40 60 80 100

av
g.

 r
un

 d
ur

at
io

n
t c

on
v

population size N

binary
Gray

unary

Figure 5.5. Integer one-max problem of order 2. We concatenated m = 20 sub-
problems and the size of the search space |Φp| = 22 = 4. We show the average
proportion of correct sub-problems at the end of run (left) and the average running
time (right). Due to the low complexity of the problems all three representations
perform about the same. However, binary encoding is much faster in finding the
good solutions.

Due to the problems of the unary encoding with redundancy, which result
in an underrepresentation of the optimal solution, GAs using unary encod-
ing show decreasing performance with increasing problem size. Therefore, for
one-max problems of order more than three the GA performance is signifi-
cantly worse than when using Gray or binary encoding. Although the one-max
problem remains fully easy, GEA performance is reduced because the optimal
solution is strongly underrepresented. Only for the almost trivial one-max
problem of order 2 or 3 has the unary encoding a comparable performance.
The plots nicely illustrate that only for small one-max problems the benefits
from the preservation of BB-complexity can compensate the performance re-
duction caused by the underrepresentation of the optimal solution. For decep-
tive traps of order more than 2, unary encoding fails completely because the
problem remains fully difficult and the optimal solution is underrepresented.
Furthermore, the plots show that due to the preservation of BB-complexity, a
GA using unary encoding performs in comparison to Gray or binary encoding
relatively better for the easy one-max problem than for the deceptive trap.
The failure of the encoding for the deceptive trap can be better understood if
we recognize that an order 3 problem results in a fully deceptive BB of length
l = 7. This problem is only solvable with much larger population sizes.

5.4 Experimental Results 131

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 20 40 60 80 100pr
op

or
tio

n
of

 c
or

re
ct

 s
ub

-p
ro

bl
em

s

population size N

binary
Gray

unary
 22

 24

 26

 28

 30

 32

 34

 36

 38

 40

 20 40 60 80 100

av
g.

 r
un

 d
ur

at
io

n
t c

on
v

population size N

binary
Gray

unary

Figure 5.6. Integer one-max problem of order 3. We concatenated m = 20 sub-
problems and the size of the search space |Φp| = 23 = 8. We show the average
proportion of correct sub-problems at the end of run (left) and the average running
time (right). Binary encoding performs the best. Because the optimal solutions are
underrepresented, GAs using the unary encodings perform worse than when using
Gray encoding for small population sizes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100pr
op

or
tio

n
of

 c
or

re
ct

 s
ub

-p
ro

bl
em

s

population size N

binary
Gray

unary 25

 30

 35

 40

 45

 50

 55

 60

 20 40 60 80 100

av
g.

 r
un

 d
ur

at
io

n
t c

on
v

population size N

binary
Gray

unary

Figure 5.7. Integer one-max problem of order 4. We concatenated m = 20 sub-
problems and the size of the search space |Φp| = 24 = 16. We show the average
proportion of correct sub-problems at the end of run (left) and the average running
time (right). Because the binary encoding preserves BB-complexity better than Gray
encoding, a GA using binary representations performs best. Because of problems
with redundancy, the unary encoding performs worst and needs the most fitness
evaluations. The error bars indicate the standard deviation of some results.

132 5 Analysis of Binary Representations of Integers

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100pr
op

or
tio

n
of

 c
or

re
ct

 s
ub

-p
ro

bl
em

s

population size N

binary
Gray

unary
 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100

av
g.

 r
un

 d
ur

at
io

n
t c

on
v

population size N

binary
Gray

unary

Figure 5.8. Integer one-max problem of order 5. We concatenated m = 20 sub-
problems and the size of the search space |Φp| = 25 = 32. We show the average
proportion of correct sub-problems at the end of run (left) and the average running
time (right). As before, binary encoding performs best. It becomes obvious that
with increasing problem size GEAs using unary encoding have increasing difficulty
in finding the good solutions. Furthermore, the performance differences between the
binary and Gray encoding become larger with increasing problem size. The error
bars indicate the standard deviation of some results.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 40 60 80 100pr
op

or
tio

n
of

 c
or

re
ct

 s
ub

-p
ro

bl
em

s

population size N

binary
Gray

unary
 20

 25

 30

 35

 20 40 60 80 100

av
g.

 r
un

 d
ur

at
io

n
t c

on
v

population size N

binary
Gray

unary

Figure 5.9. Integer deceptive trap problem of order 2. We concatenated m = 20
sub-problems and the size of the search space |Φp| = 22 = 4. We show the average
proportion of correct sub-problems at the end of run (left) and the average running
time (right). Gray encoding performs slightly better than binary encoding as it
preserves the structure of the sub-problems worse. Because unary encoding strongly
underrepresents the optimal solution, it performs the worst.

5.4 Experimental Results 133

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100pr
op

or
tio

n
of

 c
or

re
ct

 s
ub

-p
ro

bl
em

s

population size N

binary
Gray

unary

 20

 25

 30

 35

 40

 45

 50

 20 40 60 80 100

av
g.

 r
un

 d
ur

at
io

n
t c

on
v

population size N

binary
Gray

unary

Figure 5.10. Integer deceptive trap problem of order 3. We concatenated m = 20
sub-problems and the size of the search space |Φp| = 23 = 8. We show the average
proportion of correct sub-problems at the end of run (left) and the average running
time (right). Gray encoding performs significantly better than binary encoding as it
makes the fully difficult deceptive trap problem easier to solve. Unary encoding fails
as it has problems with redundancy. The error bars indicate the standard deviation
of some results.

As expected, Gray encoding performs worse than binary encoding for the
one-max problem, and better for the deceptive trap problem. Because for
the integer one-max and deceptive trap problem Gray encoding preserves
BB-complexity less than binary encoding (compare Table 5.3), the fully easy
integer one-max problem becomes more difficult to solve, whereas the fully
difficult deceptive trap is easier to solve for a GA using Gray encoding.

Finally, the influence of exponentially-scaled representations like the inte-
ger encoding on the performance of GEAs can be seen for the one-max prob-
lem. For small population sizes N , genetic drift has a larger impact on the
solution quality. Therefore, for the easy integer one-max problem and small
population sizes N , GAs using binary encoding perform only slightly better
than Gray encoding. For larger population sizes, however, the effect of ge-
netic drift is reduced and GAs using binary representation perform relatively
better.

We see that the empirical results nicely verify the theoretical predictions
from the previous section. Fig. 5.11 summarizes some of the results for the
integer one-max problem and shows the proportion of correct sub-problems at
the end of the run over the order of the problem. Due to the underrepresenta-
tion of the optimal solutions the performance of a GA using unary encoding
strongly decreases with increasing problem size. A GA using binary encoding
performs best in comparison to Gray and unary encoding, as the exponential
scaling of the representation affects a GA only for small populations, and the
encoding preserves BB-complexity better than the Gray encoding. As a result,

134 5 Analysis of Binary Representations of Integers

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 8 6 5 4 3 2

pr
op

or
tio

n
of

 c
or

re
ct

 s
ub

-p
ro

bl
em

s

order of problem

binary
Gray

unary

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 8 6 5 4 3 2

pr
op

or
tio

n
of

 c
or

re
ct

 s
ub

-p
ro

bl
em

s

order of problem

binary
Gray

unary

Figure 5.11. Proportion of correct sub-problems at the end of the run over the
order of the problem for a population size of 20 (left) and 40 (right) for binary,
Gray, and unary encoding. The figures are plotted for the integer one-max problem.
It can be seen that with increasing order of the problem the performance of the
unary representation strongly decreases. When using Gray or binary encoding the
performance of the GA declines much less.

the easy one-max problem remains easier with the binary encoding than with
the Gray encoding. Although Gray encoding preserves BB-complexity worst,
it still significantly outperforms unary encoding which fails for the one-max
and deceptive trap due to the underrepresentation of the optimal solution.

5.4.2 Modifications of the Integer One-Max Problem

This section investigates how the performance of Gray and binary encoding
depends on the properties of the optimal solution for mutation-based and
crossover-based search. For the experiments we use the gen-one-max problem
as defined in (5.2).

Mutation-Based Search Using Simulated Annealing

We investigate how the locality of an encoding influences the performance
of mutation-based search approaches. In our investigations, we assume that
the gen-one-max problem defined in (5.2) is easy for mutation-based search
independently of the position of the optimal solution a.

We want to use simulated annealing (SA) as a representative for a
mutation-based search approach because it uses only mutation, and can in
contrast to for example an (1+1) evolution strategy, solve difficult, and multi-
modal, problems more easily. Simulated annealing can be modeled as a GA
with population size N = 1 and Boltzmann selection (Mahfoud and Goldberg
1995). In each generation, a genotypic offspring xg,o is created by applying
mutation to the parent xg,p. Therefore, if we use bit-flipping-mutation, xg,o

always has genotypic distance 1 to its parent xg,p. If xg,o has higher fitness

5.4 Experimental Results 135

than xg,p, it replaces xg,p. If it has lower fitness, it replaces xg,p with prob-
ability P (T) = exp

(
− f(xg,o)−f(xg,p)

T

)
. By lowering the temperature T , the

probability of accepting worse solutions decreases. For further information
the reader is referred to van Laarhoven and Aarts (1988).

For our investigation we concatenate 10 integer gen-one-max problems
of different length l. When using Gray or binary encoding, each of the 10
phenotypic integers xp ∈ {0, . . . , 2l − 1} corresponds to l bits in the genotype.
Therefore, for l = 5, the overall length of a genotype is 50. The fitness of an
individual is calculated as the sum over the fitness of the 10 sub-problems.
The fitness of one sub-problem is calculated according to (5.2).

Figure 5.12 presents results using SA for two instances (a = 15 and a = 31)
of the gen-one-max problem with l = 5. We show the number of correctly
solved sub-problems over the number of fitness evaluations. The start tem-
perature Tstart = 50 is reduced in every step by the factor 0.995. Therefore,
Tt+1 = 0.995×Tt. Mutation is defined to randomly change one bit in the geno-
type. We performed 100 runs and each run was stopped after 2000 mutation
steps. The results show that mutation-based search approaches using Gray
encoding always solve all 10 sub-problems. In contrast, for a = 15, mutation-
based search using binary encoding gets stuck in local optima because the
optimal solution lies in areas with problems with the Hamming cliff.

 2

 4

 6

 8

 10

 0 500 1000 1500nu
m

be
r

of
 c

or
re

ct
 s

ub
-p

ro
bl

em
s

number of fitness calls

binary
Gray

 2

 4

 6

 8

 10

 0 500 1000 1500nu
m

be
r

of
 c

or
re

ct
 s

ub
-p

ro
bl

em
s

number of fitness calls

binary
Gray

Figure 5.12. We use SA and show the number of correctly solved sub-problems
over the number of fitness calls (search steps) for a = 31 (left) and a = 15 (right).

To generalize our investigation and to determine how the performance of
mutation-based search depends on the structure of the integer optimization
problem, Fig. 5.13 illustrates how SA performance depends on the value of
the optimal solution a. We show results for l = 3 (left) and l = 5 (right).
We only change a and use the same parameter settings as before. The plots
show that using Gray encoding allows SA to reliably find the optimal solution
independently of the location of the best solution. Using binary encoding often
results in lower SA performance and the SA gets stuck in local optima.

136 5 Analysis of Binary Representations of Integers

 7

 8

 9

 10

 0 1 2 3 4 5 6 7

nu
m

be
r

of
 c

or
re

ct
 s

ub
-p

ro
bl

em
s

a (value of optimal solution)

binary
Gray

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25 30

nu
m

be
r

of
 c

or
re

ct
 s

ub
-p

ro
bl

em
s

a (value of optimal solution)

binary
Gray

Figure 5.13. We use SA and show the number of correctly solved sub-problems at
the end of a run over the location of the optimal solution a for l = 3 (left) and l = 5
(right).

This performance differences between Gray and binary encoding has al-
ready been observed in other work (Schaffer et al. 1989; Whitley et al. 1997;
Whitley 1999). The binary encoding has problems associated with the Ham-
ming cliff and has low locality. Due to its low locality, small changes of the
genotype do not always result in small changes of the corresponding pheno-
type. In addition, due to the Hamming cliff, neighboring phenotypes are not
always neighboring genotypes (for example xp = 15 and xp = 16). Therefore,
mutation-based search can never move directly from xp = 15 to xp = 16.
Only if the optimal solution consists of almost only ones or zeros does binary
encoding show similar performance to Gray encoding.

We can explain the performance differences between Gray and binary en-
coding by focusing on the Hamming distances between neighboring individ-
uals. Although both encodings, Gray and binary encoding, have low locality,
and not all genotypic neighbors correspond to phenotypic neighbors, there are
some differences in the neighborhood structure. Table 5.4 presents the proper-
ties of neighboring individuals for Gray versus binary encoding for l = 3. We
show the l = 32 = 8 possible phenotypes xp and their phenotypic neighbors
yp, {yp|dxp,yp = 1}. Furthermore, we show for Gray and binary encoding the
corresponding genotypes xg, the genotypes yg that correspond to the pheno-
typic neighbors yp, and the average genotypic Hamming distances avg(dg

xg,yg)
between xg and yg, where

avg(dg
xg,yg) =

1
|np|

∑
{yg|dxp,yp=1}

dxg,yg .

|np| denotes the number of phenotypic neighbors yp.
As already discussed in Sect. 5.2, for Gray-encoded genotypes there is

always a neighboring genotype that corresponds to a phenotypic neighbor.
Therefore, only one genotypic mutation step is necessary to reach all possible
phenotypic neighbors and the average distances between xg and the geno-
types yg that represent the phenotypic neighbors yp is one (avg(dg

xg,yg) = 1).

5.4 Experimental Results 137

Table 5.4. Properties of neighboring individuals for Gray and binary encoding
xp 0 1 2 3 4 5 6 7

{yp|dxp,yp = 1} 1 0, 2 1, 3 2, 4 3, 5 4, 6 5, 7 6

Gray
xg 000 001 011 010 110 111 101 100

{yg|dxp,yp = 1} 001 000,011 001,010 011,110 010,111 110,101 111,100 101
avg(dg

xg,yg) 1 1 1 1 1 1 1 1

binary
xg 000 001 010 011 100 101 110 111

{yg|dxp,yp = 1} 001 000,010 001,011 010,100 011,101 100,110 101,111 110
avg(dg

xg,yg) 1 1.5 1.5 2 2 1.5 1.5 1

For binary encoding, avg(dg
xg,yg) ≥ 1. The average genotypic distance be-

tween the genotypes xg and the genotypes yg that represent the phenotypic
neighbors of xg increases for xp → (xp

max/2). For xp
max and xp

min it is minimal
(avg(dg

xg,yg) = 1), and for xp = xp
max/2 it is maximal (avg(dg

xg,yg) = (1+ l)/2,
where l = s − 1 is the length of the genotype). As a result, the gen-one-max
problem is, independently of the position of the optimal solution, easy for
mutation-based search using Gray encoding as there is always a neighboring
genotype which corresponds to a neighboring phenotype. In contrast, for the
binary encoding, there is not always a neighboring genotype that corresponds
to the phenotypic neighbors. As avg(dg

xg,yg) increases for a → (xp
max/2), the

difficulty of gen-one-max problems for mutation-based search increases with
a → (xp

max/2). This behavior of mutation-based search using the binary en-
coding can be nicely observed in Fig. 5.13.

Crossover-Based Search Using Genetic Algorithms

We investigate for the gen-one-max problem how Gray and binary encoding
influence the performance of crossover-based search.

We have seen discussed in Sect. 5.2 that both representations have low
locality; however, Gray encoding better preserves the phenotypic neighbor-
hood structure (compare results from the previous paragraphs). Due to the
low locality of the encodings, offspring produced by standard crossover mech-
anisms could have nothing in common with their parents. For example, if
we use binary encoding and uniform crossover we can get from the parents
xp = 4 (xg = 100) and yp = 3 (yg = 011) the offspring zp = 7 (zg = 111).
The offspring has phenotypically nothing in common with its parents and the
phenotypic distances between the offspring and its parents are much larger
than the distances between both parents (compare Sect. 3.3.5). Therefore,
both encodings change the difficulty of the easy integer problem.

As before, we concatenate 10 integer gen-one-max problems with l = 5
(xp ∈ {0, . . . 31}). For our investigation we use a selectorecombinative stan-
dard GA (Goldberg 1989c) using only uniform crossover and no mutation.
The population size is set to N = 20 and we use tournament selection with-
out replacement of size 2. We performed 100 runs, and each run was stopped
after the population was fully converged.

138 5 Analysis of Binary Representations of Integers

 0

 2

 4

 6

 8

 10

 20 40 60 80 100nu
m

be
r

of
 c

or
re

ct
 s

ub
-p

ro
bl

em
s

number of generations

binary
Gray

 0

 2

 4

 6

 8

 10

 20 40 60 80 100nu
m

be
r

of
 c

or
re

ct
 s

ub
-p

ro
bl

em
s

number of generations

binary
Gray

Figure 5.14. We use a selectorecombinative GA and show the number of correctly
solved sub-problems over the number of generations for a=31 (left) and a=15 (right).

In Fig. 5.14, we show the number of correctly solved sub-problems over the
number of generations for a = 31 (left) and a = 15 (right). For a = 31, the gen-
one-max problem is equivalent to the one-max problem and we get the same
results as presented in Sect. 5.4.1. The results show that selectorecombinative
GAs using binary encoding outperform Gray encoding for a = 31. For a = 15,
the situation changes and GAs using Gray encoding perform significantly
better than binary encoding.

As before, we want to generalize our investigation and show in Fig. 5.15
how the average number of correctly solved sub-problems at the end of the
run depends on the value of the optimal solution a. We show results for l = 3
(left) and l = 5 (right). It can be seen that GAs using binary encoding perform
better than Gray encoding if a is either small (a → xp

min) or large (a → xp
max).

Otherwise, GAs using Gray encoding perform better.

 7

 8

 9

 10

 0 1 2 3 4 5 6 7nu
m

be
r

of
 c

or
re

ct
 s

ub
-p

ro
bl

em
s

a (value of optimal solution)

binary
Gray 3

 4

 5

 6

 7

 0 5 10 15 20 25 30nu
m

be
r

of
 c

or
re

ct
 s

ub
-p

ro
bl

em
s

a (value of optimal solution)

binary
Gray

Figure 5.15. We use a selectorecombinative GA and show the number of correctly
solved sub-problems at the end of a run over the location of the optimal solution a
for l = 3 (left) and l = 5 (right).

5.5 Summary and Conclusions 139

When using crossover-based search, the difficulty of the original optimiza-
tion problem fp only remains unchanged if the genotype-phenotype mapping
fg does not change the distances between the individuals (dc = 0). How-
ever, both encodings, Gray and binary, have high distance distortion (and low
locality) and change the distances between corresponding genotypes and phe-
notypes. Therefore, both encodings change the difficulty of the optimization
problem. As a result, GA performance strongly varies for different a, although
the difficulty of fp remains constant and is independent of a. GA performance
can not accurately be predicted due to the low locality of the encodings. Gen-
eral statements regarding the performance (for example measured by using
the schemata analysis as illustrated in Sect. 5.3.3) of binary or Gray encoding
for crossover-based search are not possible as GA performance depends on the
specific problem that should be solved.

5.5 Summary and Conclusions

Section 5.1 started this chapter by presenting two types of integer problems.
Integer one-max problems are fully easy problems, whereas the integer fully
deceptive trap is an example of a fully difficult problem. In Sect. 5.2, we
presented and examined the binary, Gray and unary encoding, which are
common representations for integer phenotypes. This is followed in Sect. 5.3
by a theoretical comparison of the expected performance of GEAs using the
three different representations. We showed that using the non-synonymously
redundant unary encoding reduces GEA performance if the optimal solution
is underrepresented. Therefore, the necessary population size for solving the
integer one-max and the integer deceptive trap problem is increased. Using
binary encoding results in a more compact, redundancy-free representation,
but the alleles are exponentially scaled. Therefore, genetic drift occurs for
small and easy problems and larger population sizes are necessary. Due to the
problems of the binary encoding with the Hamming cliff and its low locality,
the performance of GEAs is reduced for fully easy problems, and increased for
fully difficult problems. Although Gray encoding was developed to overcome
the problems of the binary encoding with the Hamming cliff, an analysis of the
average fitness of the schemata for the integer one-max problem shows that
the Gray encoding also has low locality and preserves problem difficulty for
selectorecombinative GAs less than binary encoding. Thus, the performance
of selectorecombinative GAs decreases for the easy integer one-max problem
and increases for the integer deceptive trap problem. To verify the theoretical
prediction, we performed an empirical investigation into the performance of
mutation-based and crossover-based GEAs using the different encodings in
Sect. 5.4. The results confirmed the theoretical predictions.

Throughout this entire chapter, we have used the representation frame-
work from Chap. 4 for the analysis of binary representations for integers. The
analysis has shown that the pieces of representation theory can effectively be

140 5 Analysis of Binary Representations of Integers

used for predicting the performance of GEAs. We were able to explain the
differences in performance of the binary, Gray, and unary representations by
using the outlined theory about redundant, exponentially scaled, and low-
locality representations. In particular, we gained the following insights:

We have seen that the binary encoding is exponentially scaled. However,
the influence of the exponential scaling of the alleles on GEA performance
can be neglected as it only affects the performance of GEAs for easy problems
and small population sizes. Although the time to convergence is increased
from O(

√
l) to O(l), we can easily overcome the negative effects of the expo-

nential scaling on GEA performance by using larger population sizes. When
using the non-uniformly and non-synonymously redundant unary encoding,
redundancy aspects become important. GEAs using the unary encoding fail
for the integer one-max and deceptive trap as the optimal solution is strongly
underrepresented for these two types of problems. Therefore, GEAs using the
unary encoding perform significantly worse in comparison to GEAs using the
non-redundant binary or Gray encoding. Finally, the investigation of local-
ity reveals that both, Gray and binary encoding, have low locality. Not all
neighboring genotypes correspond to neighboring phenotypes. Therefore, the
influence of these representations on GEA performance is difficult to predict
and depends on the specific problem that is solved. The locality of the binary
encoding is worse than the Gray encoding, as for Gray-encoded genotypes
there is always a neighboring genotype that corresponds to a neighboring phe-
notype. When using the binary encoding, it is not possible for all genotypes
to reach a neighboring phenotype with one genotypic mutation.

To give a final recommendation for selectorecombinative GEAs is diffi-
cult. Both encodings, the binary and the Gray encoding, change the distances
between the individuals and therefore change the complexity of the optimiza-
tion problem. Thus, the resulting problem difficulty depends not only on the
used representation but also on the considered optimization problem (compare
Sect. 4.4.3). We have seen that some easy problems like the integer one-max
problem become easier when using the binary encoding than when using the
Gray encoding. However, there are other easy problems that become more
difficult when using the binary encoding than when using the Gray encoding
(compare the results presented in Sect. 5.4.2).

When using mutation-based GEAs instead of crossover-based GAs, the
Gray encoding is the best choice (Whitley 1999). For this type of search
process, Gray encoding allows a more efficient search as it better preserves the
neighborhood structure (there is always a genotypic neighbor that corresponds
to a phenotypic neighbor). Although the locality of Gray encoding also is not
perfect (the number of genotypic neighbors is higher than the number of
phenotypic neighbors), the performance of mutation-based search approaches
on easy problems, and problems of bounded complexity, is higher when using
Gray rather than binary encodings.

6

Analysis and Design of Representations
for Trees

In the previous chapter, we illustrated that our framework modeling the in-
fluence of representations on the performance of GEAs not only works for
binary phenotypes, but also for problems where the phenotypes are integers.
However, it is possible to go one step further and to look at problems where
the phenotypes and genotypes are completely different. One example for these
types of problems are tree optimization problems. Trees are special types of
graphs. Representations for trees must incorporate the additional restriction
of a graph to be a tree. Therefore, if the genotypes are strings, there is a large
semantic gap between tree structures (phenotypes) and strings (genotypes).
In contrast to general network problems, where a representation simply has to
indicate which links are used for the graph, no natural or intuitive “good” tree
representations exist which are accessible for GEAs. As a result, researchers
have proposed a variety of different tree representations with different prop-
erties. However, up till now no theory-based analysis exists about how GEA
performance is influenced by the different types of tree representations.

The purpose of this chapter is to fill this gap and to analyze, based on
the time-quality framework from Chap. 4, the influence of some of the most
widely used tree representations on GEA performance. We use the existing
theory about redundant, exponentially scaled, and low-locality representa-
tions to predict GEA behavior. Furthermore, the framework is used to de-
sign a new representation, the network random key (NetKey) representation.
The analysis and design of direct representations, where both, genotypes and
phenotypes, are trees is presented in Chap. 7. Because analyzing all known
tree representations is beyond the scope of this work, we focus on some of
the most widely used tree representations that assign trees to different types
of strings: Prüfer numbers (Prüfer 1918), the characteristic vector encoding
(Celli et al. 1995; Berry et al. 1997; Ko et al. 1997; Dengiz et al. 1997c; Dengiz
et al. 1997b; Dengiz et al. 1997a; Berry et al. 1999; Premkumar et al. 2001),
and the link and node biased encoding (Palmer 1994). Analyzing these rep-
resentations shows that Prüfer numbers have low locality, that the redundant

142 6 Analysis and Design of Representations for Trees

characteristic vector encoding is affected by stealth mutation, and that the
link and node biased encoding is not uniformly redundant.

This chapter is structured as follows. In the first section, we introduce
the tree design problem and develop some basic requisites for graph prob-
lems. This is followed in Sect. 6.2 by an investigation into the Prüfer number
encoding. It focuses on the Prüfer numbers’ missing high locality which is nec-
essary for GEAs to perform well on easy problems and problems of bounded
difficulty. Section 6.3 presents the characteristic vector encoding, which is a
redundant encoding for trees. The encoding is uniformly redundant and the
performance of GEAs is independent on the structure of the optimal solution.
However, GEA performance is reduced as the encoding is non-synonymously
redundant. In Sect. 6.4, we show that the redundant link and node biased
encoding is biased towards stars if a node-specific bias is used and biased to-
wards the minimum spanning tree if both, link bias and node bias, are small.
Finally, Sect. 6.5 presents the new network random key encoding. In analogy
to random keys, the links of a tree are represented as floating numbers, and a
construction algorithm constructs the corresponding tree from the keys. The
NetKey representation allows us to distinguish between important and unim-
portant links, is uniformly redundant, uniformly scaled, and has high locality.
Due to its uniform redundancy, the performance of GEAs is independent of the
structure of the optimal solution. The chapter ends with concluding remarks.

6.1 The Tree Design Problem

This section provides the background for analyzing how tree representations
affect GEA performance. After a brief definition of the network design prob-
lem, Sect. 6.1.2 focuses on metrics and distances for graphs. This is followed by
an illustration of different tree structures like stars or lists. To be able to mea-
sure the phenotypic difficulty of a tree problem, we introduce in Sect. 6.1.4
a schema analysis for graphs. Based on the schema analysis, we present in
Sect. 6.1.5 scalable test problems for graphs. The one-max tree problem, which
is similar to the well known one-max problem, is a fully easy problem, whereas
the deceptive trap for trees is fully difficult. Finally, the section ends with a re-
view of former design criteria for tree encodings as provided by Palmer (1994).

6.1.1 Definitions

This subsection provides the necessary definitions for analyzing tree problems.
We define a network as a graph G with n nodes and a maximum of n(n−1)

links connecting the nodes. If the network is fully connected it has at least
n − 1 links. We assume that all links are undirected (they can be used in
both directions) and that a network is always fully connected. Therefore, the
maximum number of possible links is n(n − 1)/2. The position of the nodes

6.1 The Tree Design Problem 143

in the graph is given a priori and the distances between two different nodes a
and b are defined by using the Euclidean distance metric as

da,b =
√

(xa − xb)2 + (ya − yb)2, (6.1)

where x denotes the abscissa and y the ordinate of a node in a Cartesian
coordinate system.

14

3
Figure 6.1. A 15 nodes tree with the path connect-
ing nodes 3 and 14 emphasized.

The basic purpose of the network is to transport objects, for example goods
or information, from some nodes in the network to other nodes. Therefore,
a rule is necessary for how to transport the objects through the network.
The rule for how to route the traffic through the network is based on the used
routing algorithm. If the number of links in a fully connected network is larger
than n− 1, the routing of the traffic through the network can be dynamically
changed dependent on the current traffic load, the delay, the failure of nodes or
links, or other criteria. In contrast, if the number of links in a fully connected
network is equal to n − 1 there is only one unique path from every node to
every other node and no dynamic routing is necessary.

A tree T is defined as an undirected and connected graph with no cycles.
For a tree T with n nodes there are exactly n−1 links. It was found by Cayley
(1889) that for a graph with n nodes, there are exactly nn−2 possible trees. A
tree structure has some remarkable benefits: It represents the network struc-
ture with the lowest number of possible links to still obtain a connected graph.
Furthermore, no dynamic routing is necessary as there is only one possible
path for the traffic between any two nodes (compare Fig. 6.1). Finally, the size
of the search space |Φtree| = nn−2 is much smaller than for general networks
|Φ| � 2n(n−1)/2.1 However, the use of trees also has some drawbacks: Trees
are very vulnerable to link or node failures. If one link or one node fails, the
tree divides up into two unconnected subtrees which can not communicate
with each other. However, despite this fact, trees are widely used for commu-
nication networks (Minoux 1987; Abuali et al. 1995; Elbaum and Sidi 1996;
Güls 1996; Tang et al. 1997; Brittain et al. 1997; Streng 1997; Gargano et al.
1998; Gerstacker 1999; Brittain 1999; Chu et al. 1999; Chu and Premkumar
1999; Knowles et al. 1999; Grasser 2000; Gaube 2000; Edelson and Gargano

1We assume that there is only one possible capacity for a link. For different types
of lines with k different capacities the number of possible network structure increases
to |Φ| � kn(n−1)/2.

144 6 Analysis and Design of Representations for Trees

2000; Edelson and Gargano 2001; Premkumar et al. 2001; Chou et al. 2001).
The network design problem itself is defined as follows: Based on the

• number of network nodes n,
• locations of the n nodes,
• traffic demands between all n nodes,
• available capacities for the links,
• cost of the links dependent on the capacity and length,

we determine the

• topology (structure) of the network,
• capacity of the links,
• routing of the traffic through the network.

The general aim of the design process is to minimize the overall cost of the
network with the constraint that all traffic demands between the nodes must
be satisfied.

If we focus on tree structures, the capacity of the links as well as the
routing of the traffic is determined by the topology. This means for trees that
the optimization problem simplifies down to finding the optimal structure of
the tree.

6.1.2 Metrics and Distances

As illustrated in Sect. 3.3.2, a metric is necessary for the genotypic and pheno-
typic space Φg and Φp to define genetic operators like mutation or recombina-
tion. The application of the mutation operator to a genotype should result in
the smallest possible change in the individual, and should generate an offspring
with distance 1 for the genotypes and the phenotypes. The recombination op-
erator should ensure that the offspring inherit substructures from the parents.
In terms of metric, the distance between an offspring and its parents should
be lower than the distance between the two parents (compare Sect. 3.3.5).

In accordance with Chap. 3, the Hamming metric (Hamming 1980) is used
for the genotypes. Thus, the Hamming distance between two binary genotypes
xg ∈ {0, 1}l and yg ∈ {0, 1}l of length l is defined as

dxg,yg =
l−1∑
i=0

|xg
i − yg

i |.

The distance d measures the number of alleles that are different in both in-
dividuals. Similarly, the distance between two different phenotypes (trees) is
measured by using the Hamming distance dh for trees. The Hamming dis-
tance between two trees measures the number of different links in the two
trees. Therefore, the minimum Hamming distance between two different trees
is dh = 2.

6.1 The Tree Design Problem 145

G
i

G
j

Figure 6.2. Two graphs Gi and Gj with di,j = 1.
The Hamming distance between the two graphs is
2.

As illustrated in Fig. 6.2 the minimal Hamming distance between two trees
is two, although they have n−2 links of all n−1 links in common. To simplify
the metric, we define the distance di,j ∈ {0, 1, 2, . . . n − 1} between two trees
Gi and Gj by half of the number of different links (di,j = 1

2dh
i,j). It can be

calculated as

dp
Gi,Gj

= di,j =
1
2

n−1∑
a=1

a−1∑
b=0

|liab − ljab|,

where liab is 1 if the link from node a to node b exists in tree Gi and 0 if it
does not exist in Gi. Then, the number of links that the two trees Gi and Gj

have in common can easily be calculated as n− 1− di,j . A mutation of a tree
should result in the exchange of one link, and the distance between parent
and child is dparent,child = 1.

6.1.3 Tree Structures

When focusing on trees, different basic topological structures can be identified.
In general, we can distinguish between

• stars,
• lists, and
• arbitrary trees.

Figure 6.3 illustrates the different tree types. The degree of a node is defined
as the number of links which are connected to the node.

(a) star (b) list (c) arbitrary tree

Figure 6.3. Different tree structures

A star (Fig. 6.3(a)) has one center and all other nodes are connected to
the center. Therefore, the center of the network has degree n−1 and all other
nodes have degree 1. For a network with n nodes there are n different stars.

146 6 Analysis and Design of Representations for Trees

A failure of a link or a node (except the center) disconnects only the affected
node. However, if the center node fails, no further communication over the
network is possible.

For a list (Fig. 6.3(b)) two nodes have degree one (leaf nodes), and all
other nodes have degree 2. There are many more possible lists than stars as
the number of possible lists is 1

2n!. A link or a node failure results in two
separate sub-lists.

Finally, there are arbitrary trees (Fig. 6.3(c)) which have no special struc-
ture except that they are trees. The degree of a node can vary from 1 to n−1.
As for stars and lists, the sum over the degrees deg(i) of all n nodes can be
calculated as

∑n
i=1 deg(i) = 2(n − 1).

6.1.4 Schema Analysis for Graphs

In this subsection, we define schemata for graphs in analogy to schemata
defined on bitstrings (compare Sect. 2.2.3). Schema analysis is helpful in de-
termining whether graph problems are easy or difficult to solve for selectore-
combinative GAs.

When assuming that GEAs process schemata, the analysis of schema fit-
ness is the appropriate method to measure problem difficulty (see Sect. 2.3.2).
The BB hypothesis (see Sect. 2.2.3) defines building blocks to be highly fit
schemata of short defining length and low order. Consequently, problems are
fully easy if all schemata of order one that contain the optimum have higher fit-
ness than their competitors. Problems are difficult if all lower order schemata
containing the global optimum are inferior to some of their competitors. The
one-max problem is an example of a fully easy problem, whereas the fully
deceptive trap of order k is an example for a fully difficult problem.

2

4

6
1 3

5

DA

CB

Figure 6.4. Labeling of links for n = 4

We can measure the difficulty of network problems for selectorecombinative
GEAs by introducing schema analysis for graphs. To formally define schemata,
we have to label the possible links in a graph with numbers {1, 2, . . . , n(n −
1)/2}. Figure 6.4 illustrates an example of labeling the links in a graph with
n = 4 nodes. Then, a schema is a string of length l = n(n − 1)/2 and the
symbol at the ith position describes the existence of a link. 1 indicates that
the link is established, 0 indicates no link, and * indicates don’t care (dashed
line). Don’t care means that the link is either established or not. Figure 6.5
illustrates some possible schemata for a 4 node network using the labeling
from Fig. 6.4.

6.1 The Tree Design Problem 147

1*1*1* ******11111*00110011**0011****

Figure 6.5. Some schemata for graphs

When using schemata for trees, there is the additional restriction that
each tree has exactly n − 1 links and it must be connected. Therefore, there
must be n − 1 ones in each solution string, and the string must encode a
connected tree. This means that the average fitness of a schema must be
calculated only from the trees that are represented by the schema. Other non-
trees that are represented by the schema do not affect the schema fitness. This
implies, for example, that schemata with more than n− 1 ones, or more than
1
2n(n − 1) − (n − 1) zeros, do not exist because they do not encode a valid
tree.

Using schema analysis, the difficulty of a network problem can easily be
measured by the maximum order of the building blocks k. If a problem is
fully easy then all lower order schemata that contain the global optimum are
superior to their competitors. All building blocks have order one (k = 1). A
problem is fully deceptive if all lower order schemata that contain the optimum
are inferior to their competitors. To find the optimum, GEAs must be able
to find BBs of order k = n(n − 1)/2. In general, the order of the largest
BB determines the complexity of a problem. In contrast to binary strings,
the length of the schemata has no meaning in the context of graphs as the
labeling of the nodes does not affect problem difficulty.

We have seen in Sect. 3.3 that low-locality representations modify problem
difficulty. With the analysis of graph schemata, we can compare the difficulty
of graph problems defined on the phenotypes to the difficulty of the corre-
sponding genotypic problems defined on strings. This allows us to more easily
recognize whether a tree encoding modifies the difficulty of a problem. In the
following paragraphs, we consequently define a fully easy and a fully difficult
scalable test problem based on the schema analysis for graphs.

6.1.5 Scalable Test Problems for Graphs

To examine the performance of optimization algorithms for the topological
design of trees, standard test problems should be used. Motivated by the
previous subsection, we define a fully easy and a fully difficult scalable tree
problem.

The one-max tree problem is based on the integer one-max problem (com-
pare Sect. 5.1) (Ackley 1987). An optimal solution Topt is chosen either ran-
domly or by hand. The structure of this optimal solution Topt can be deter-
mined: It can be a star, a list, or a random tree with n nodes.

148 6 Analysis and Design of Representations for Trees

For the calculation of the fitness fi of a solution Ti, the distance di,j

between two trees Ti and Tj is used (compare Sect. 6.1.2). Using this metric,
the fitness fi of a solution Ti depends on the distance di,opt between Ti and the
optimal solution Topt. We can distinguish two types of problems: maximization
and minimization problems. When defining a minimization problem the fitness
fmin

i of an individual Ti is defined as the distance di,opt to the optimal solution
Topt. Therefore, fmin

i = di,opt, where fmin
i ∈ {0, 1, . . . , n − 1}. An individual

has fitness of n−2 if it only has one link in common with the best solution. If
the two individuals do not differ (Ti = Topt), the fitness of Ti is fmin

i = 0. If
our example tree from Fig. 6.7 is chosen as the optimal solution and we have
a minimization problem, the star with center D would have fitness (cost) of
1, because the two trees differ at one edge2 (di,opt = 1).

i,optd

fi
tn

es
s

0

n 2
n 1

n 1n 2

1
2

1 2

n 3

(a) one-max tree
problem

i,optd

fi
tn

es
s

0

n 2
n 1

n 1n 2

1
2

1 2

n 3

(b) deceptive trap
tree problem

Figure 6.6. Scalable max-
imization test problems for
trees

When defining a maximization problem, the fitness fmax
i of an individual

Ti is defined as the number of edges it has in common with the best solution
Topt (compare Fig. 6.6(a)). Therefore, fmax

i = n − 1 − di,opt. If we have a
maximization problem, and our example network from Fig. 6.7 is chosen as the
optimal solution, the star with center D would have fitness fmax = 3 because
the two networks have three links in common, and the distance between the
two trees is 1.

Because both test problems (minimization and maximization problem) are
similar to the standard one-max problem, they are easy to solve for mutation-
based GEAs, but somewhat harder for recombination-based GAs (Goldberg
et al. 1993). The existing knowledge about solving the standard integer one-
max problem can be used for the one-max tree problem.

Using the schemata for trees introduced in the previous subsection shows
that all building blocks of the one-max tree problem have order 1. All schemata
that contain the global optimum Topt are superior to their competitors. There-
fore, the one-max tree problem is fully easy. For a network with 4 nodes,
the schemata are already of length l = 6, and there are 36 = 729 different
schemata. Due to the limited space, we want to leave the explicit calculation

2A-C respectively A-D

6.1 The Tree Design Problem 149

A

B

C

D E Figure 6.7. A five node tree

schema schema
fitness

represented
trees

fitness of
trees

11**0* 2.33
111000 3
110100 2
110001 2

11**1* 2 110010 2

01**0* 1.67
011100 2
011001 2
010101 1

10**0* 1.67
101100 2
101001 2
100101 1

01**1* 1.33
011010 2
010110 1
010011 1

10**1* 1.33
101010 2
100110 1
100011 1

00**0* 1 001101 1

00**1* 0.67
001110 1
001011 1
000111 0

Table 6.1. An example of calculating
the average schema fitness for a 4 node
one-max tree maximization problem
where 111000 is the optimal solution.
All schemata (in our example 11**0*)
which contain the global optimum
have higher fitness than their com-
petitors. The problem is fully easy.

of all schema fitnesses to the reader. We only illustrate in Table 6.1 the fitness
calculation for schemata where the first, second, and fifth position are fixed for
a 4 node one-max tree problem. The optimal tree is defined as xg

opt = 111000.
Obviously, the schema 11**0* which contains the global optimum is superior
to all its competitors.

In analogy to this fully easy one-max tree problem, we define a fully diffi-
cult deceptive trap problem for trees. As before, we choose an optimal solution
Topt with fitness n− 1 (assuming a maximization problem) either by hand or
randomly. Then, the fitness of all other individuals Ti �= Topt is defined as
fi = dopt,i − 1. The fitness function is illustrated in Fig. 6.6(b). This problem
is fully difficult as all schemata with k < n(n− 1)/2 containing the global op-
timum are inferior to their misleading competitors. Both, mutation-based and
crossover-based search approaches have great problems in finding the global
optimum.

Using again the example network from Fig. 6.7 as the optimal solution, a
star with center D has fitness 0 because the distance to the optimal solution
is 1. The optimal solution itself has fitness 4.

150 6 Analysis and Design of Representations for Trees

6.1.6 Tree Encoding Issues

We review the tree encoding issues as described by Palmer (1994) and Palmer
and Kershenbaum (1994b) and relate them to the insights into the basic el-
ements of representation theory we gained in Chap. 3. According to Palmer
(compare also Sect. 2.4.3), tree representations should possess the following
properties:

• A representation should be able to represent all possible trees.
• It should be unbiased in the sense that all trees are equally represented.
• A representation should be capable of representing only trees.
• The construction of the phenotype from the genotype and vice versa should

be easy.
• A representation should possess locality concerning small changes.
• The schemata should encourage short, low order schemata.

We discuss these issues and relate them to the theory of representations out-
lined in Chap. 3 and 4.

The issue that a representation should be able to represent all possible
trees is almost trivial. As long as we have no special knowledge about the
problem we want to solve, it makes no sense to use a representation that
might not represent some of the possible solutions. Otherwise, it could happen
that GEAs search for the optimal solution, but the optimal solution can never
be reached because it can not be encoded. If we have knowledge about the
optimization problem, we can weaken this issue and demand representations
to at least encode all the solutions we are interested in, and those which could
be the optimal solution.

A representation is unbiased if all tress are represented by the same number
of genotypes. Problems with biased encodings can be explained by the concept
of redundant encodings illustrated in Sect. 3.1. If some phenotypes are over-
or underrepresented, the encoding is biased, and the performance of GEAs is
changed. The influence on the performance of GEAs by biased encodings can
be modeled by using the Gambler’s ruin model (Harik et al. 1999). Section
3.1 has shown that as long as the high-quality solutions are overrepresented, a
bias increases performance. If the high-quality solutions are underrepresented,
a decline of GEA performance is unavoidable. Therefore, with respect to a
robust encoding which can be used for problems of unknown complexity, it is
desirable to use unbiased encodings.

Some tree representations can also represent non-trees. These kind of rep-
resentations are affected by two problems: Firstly, it could be difficult to gen-
erate valid initial populations. Secondly, the application of genetic operators
can result in invalid solutions. The question arises of how to handle invalid
solutions, and what to do with non-trees. In general, there are two possibili-

6.2 Prüfer Numbers 151

ties3: Invalid solutions can either be repaired, or they can be left unchanged
in the population and hopefully they will disappear by the end of the run.

Repairing invalid solutions means that some of the trees are represented
not only by valid individuals but also by some invalid solutions. Therefore,
the representation is redundant. Phenotypes are not uniformly represented
by the genotypes if the repair process is somehow shifted. Only a completely
unbiased repair process which does not favor some tree structures guarantees
an unbiased population and uniform redundancy.

To keep invalid solutions in the population could sometimes be helpful for
GEAs (Orvosh and Davis 1993). Nevertheless, it must be ensured that the
optimal solution at the end of the run is valid. Otherwise, the application of
GEAs to tree design problems is useless as it does not result in valid solutions.
To drive GEAs towards valid solutions, researchers often use penalties for
invalid solutions. However, additional penalties change the fitness function and
with it the behavior of GEAs. Therefore, they should be used very carefully.

An easy construction of the phenotype from the genotype, and vice versa,
is necessary for an efficient implementation of GEAs. However, it depends
on the complexity of the fitness function whether the computational effort
for the genotype-phenotype mapping significantly affects the run duration of
the computer experiments. In contrast to costly fitness evaluations, a slightly
more complicated genotype-phenotype mapping could often be neglected.

The problem of locality is part of the larger question of how well the
encoding preserves the complexity of a problem. As illustrated in Sect. 3.3.4,
high locality guarantees that the problem difficulty remains unchanged for
mutation-based search. If the locality of an encoding is low, it becomes more
difficult to solve easy problems and problems of bounded difficulty.

Finally, Palmer listed Goldberg’s basic design principle of meaningful
building blocks (compare Sect. 2.4.1) and demanded encodings to encour-
age short, low order schemata. Otherwise, “long schemata cause genetic al-
gorithms to drift” (Palmer 1994, p. 40). However, as illustrated in Sect. 3.2,
drift is caused by non-uniformly scaled alleles and domino convergence, and
not by the length and the size of the building blocks. The size and length of
the building blocks determine the complexity of a problem for selectorecom-
binative GAs.

We recognize that the tree design issues from Palmer can be well under-
stood by using the framework presented in Chap. 4.

6.2 Prüfer Numbers

Prüfer numbers are a widely used representation for trees. The purpose of
this section is to use the framework from Chap. 4 for an investigation into the

3Of course, there is a third possibility: To remove the individual from the popu-
lation. However, we do not consider this case.

152 6 Analysis and Design of Representations for Trees

properties of Prüfer numbers. The analysis focuses on the low locality of the
encoding and shows how GEA performance is affected.

The section starts with an historical review of the use of the Prüfer number
encoding in the context of genetic and evolutionary search. The review shows
a strong increase in interest into the encoding over the last 5 to 10 years. This
is followed by the construction and deconstruction process of Prüfer numbers.
Section 6.2.3 illustrates the benefits and drawbacks of the encoding. The use
of the Prüfer number encoding is very charming due to its advantageous prop-
erties, although the low locality of the encoding has already been identified
by Palmer (1994) to be its main drawback. Subsequently, in Sect. 6.2.4 we
present a deeper investigation into how exactly the low locality damages the
performance of GEAs. In analogy to Sect. 3.3, we illustrate why high locality
is necessary for an encoding to preserve problem difficulty and perform ran-
dom walks through the search space. After an analysis of the neighborhood
structure of Prüfer numbers, we finally present empirical results for different
tree structures using mutation and recombination-based evolutionary search
methods. The section ends with concluding remarks.

6.2.1 Historical Review

We give a brief historical review of the development and use of the Prüfer
number encoding in the context of GEAs.

Cayley (1889) identified the number of distinct spanning trees on a com-
plete graph with n nodes as nn−2 (Even 1973, pp. 103-104). Later, this the-
orem was very elegantly proven by Prüfer (1918) by the introduction of a
one-to-one correspondence between spanning trees and a string of length n−2
over an alphabet of n symbols. This string is denoted as Prüfer number, and
the genotype-phenotype mapping is the Prüfer number encoding. It is possible
to derive a unique tree with n nodes from the Prüfer number of length n − 2
and vice versa (Even 1973, pp. 104-106). Of course there are other one-to-one
mappings from strings of n − 2 labels onto spanning trees on the n labeled
links. One example is the Blob Code which was developed and proposed by
Picciotto (1999). Julstrom (2001) compared this encoding to Prüfer numbers
and found for easy problems a higher performance of GEAs using the Blob
Code than Prüfer numbers.

Later, in the context of GEAs, several researchers used the Prüfer num-
ber encoding for the representation of trees. Palmer used the encoding in his
doctoral thesis at the beginning of the nineties (Palmer 1994; Palmer and
Kershenbaum 1994a; Palmer and Kershenbaum 1994b), and compared the
performance of Prüfer numbers with some other representations for the op-
timal communication spanning tree problem. However, he noticed that the
Prüfer number encoding has low locality and therefore is not a good choice
for encoding trees. The low performance of the encoding was confirmed by
Julstrom (1993) who used Prüfer numbers for the rectilinear Steiner problem,
and also observed low GEA performance using this encoding.

6.2 Prüfer Numbers 153

About the same time, Abuali et al. (1994) used Prüfer numbers for the
optimization of probabilistic minimum spanning trees (PMST) with GEAs.
The investigation focused more on the influence of different operators than
on the performance of Prüfer numbers. However, at the end of the work,
the conclusion was drawn that in contrast to Palmer and Julstrom, Prüfer
numbers “lead to a natural GEA encoding of the PMST problem” (Abuali
et al. 1994, p. 245). Some years later, similar results were reported by Zhou and
Gen (1997) who successfully used the Prüfer encoding for a degree constraint
minimum spanning tree problem. The degree constraint was considered by
repairing invalid solutions that violate the degree constraints. Furthermore,
Prüfer numbers were used for spanning tree problems (Gen et al. 1998; Gen
et al. 1998), the time-dependent minimum spanning tree problem (Gargano
et al. 1998), the fixed-charge transportation problem (Li et al. 1998) and
a bicriteria version of it (Gen and Li 1999), and a multi-objective network
design problem (Kim and Gen 1999). Most of this work reported good results
when using Prüfer numbers, and labeled the encoding to be (very) suitable
for encoding spanning trees. As an example of positive results we want to cite
Kim and Gen (1999), who wrote:

“The Prüfer number is very suitable for encoding a spanning tree,
especially in some research fields, such as transportation problems,
minimum spanning problems, and so on.”4

However, other relevant work by Krishnamoorthy et al. (1999), who used
Prüfer numbers for the degree constraint spanning tree problem, from Jul-
strom (2000) who compared a list of edges encoding with Prüfer numbers,
or from Gottlieb and Eckert (2000) who used Prüfer numbers for the fixed
charge transportation problem showed that Prüfer numbers result in a low
GEA performance. A summarizing study by Gottlieb et al. (2001) compared
the performance of Prüfer numbers for four different network problems and
concluded that Prüfer numbers always perform worse than other encodings,
and are not suitable for encoding trees when using GEAs.

To explain the differences between the good and bad results obtained by
GEAs using Prüfer numbers, Rothlauf and Goldberg (1999) investigated the
locality of the encoding more closely. It was shown that Prüfer numbers only
have high locality if they encode stars. For all other tree types the locality is
low which leads to a degradation of GEAs (see also Rothlauf and Goldberg
(2000) and Rothlauf et al. (2001)). Therefore, the differences in performance
could be well explained if one assumes that the performance of GEAs de-
pends on the structure of the optimal solution. Obviously, researchers who
report good solutions when using Prüfer numbers used problems where the
optimal solution is more star-like and therefore easy to find for GEAs. How-
ever, when using Prüfer numbers for more general, non-star like problems, a
strong decrease in GEA performance is inescapable. The results from Roth-

4Special thanks to Bryant A. Julstrom for his help with finding this statement.

154 6 Analysis and Design of Representations for Trees

lauf and Goldberg (1999) were confirmed by Gottlieb and Raidl (2000) who
investigated the effects of locality on the dynamics of evolutionary search.

We have seen that the performance of GEAs using Prüfer numbers is a
strongly discussed topic. Some researchers report good results and favor the
use of Prüfer numbers. Other researchers, however, point to the low locality of
the encoding, report worse results and advise us not to use Prüfer numbers. A
closer investigation into how locality depends on the structure of the tree could
solve these contradictory results. As the work from Rothlauf and Goldberg
(2000) indicates that the locality of Prüfer numbers strongly depends on the
structure of the tree, GEAs show good results if the good solutions are star-
like, and worse results for all other types. In Sect. 6.2.4, we review the main
results from Rothlauf and Goldberg (1999) and Rothlauf and Goldberg (2000)
and extend it with additional work.

6.2.2 Construction

We review the construction rule for the Prüfer number encoding. We present
both sides of the story: How a Prüfer number can be constructed from a tree,
and how a tree can be constructed from a Prüfer number.

The Construction of the Prüfer Number from a Tree

The degree deg(i) of a node i denotes the number of links that are connected
to the node. Thus, as a fully connected tree has exactly n−1 links, the degree
deg(i) of a node i lies between 1 and n − 1. A node has degree one if it is a
leaf node. It has degree n − 1 if it is the center of a star. There are always at
least two nodes which have degree 1.

The Prüfer number itself encodes an n-node tree with a string of length
n − 2, and each element of the string is of base n. As the mapping is one-
to-one, a Prüfer number is a unique encoding of a tree, and there are nn−2

different possible Prüfer numbers (Cayley 1889; Prüfer 1918).
For the construction of the Prüfer number from a tree, we label all nodes

with numbers from 1 to n. Then, the Prüfer number can be constructed from
a tree by the following algorithm:

1. Let i be the lowest numbered node of degree 1 in the tree (deg(i) = 1).
2. Let j be the one node which is connected to i (there is exactly one). The

number of the jth node is the furthest right digit of the Prüfer number.
3. Remove node i and the link (i, j) from the tree and from further consid-

eration.
4. Go to 1 until only two nodes (that means one link) are left.

After termination of the construction rule, we have a Prüfer number with n−2
digits which represents the tree. An efficient implementation of this algorithm
uses a priority queue implemented in a heap to hold the nodes of degree 1.
The algorithm’s time complexity is then O(n log n).

6.2 Prüfer Numbers 155

21

54 6

3

Figure 6.8. A tree and the corresponding Prüfer number
P = 2565

Let us demonstrate the construction of the Prüfer number with a brief
example. The network in Fig. 6.8 has 6 nodes. Therefore, the Prüfer number
consists of 4 digits. The lowest numbered node with degree 1 is node 1. This
node is connected to node 2 so the Prüfer number starts with a 2. We remove
node 1 from further consideration and search for the lowest numbered node
with degree 1. We identify node 2 which is connected to node 5. The Prüfer
number becomes 25. After removing node 2, node 3 is the lowest numbered
node which is eligible (it has degree 1). Node 3 is connected to 6 so we get
256. The node 4 is the lowest eligible node and we add 5 to the Prüfer num-
ber. Finally, only two nodes remain in the tree. The algorithm stops and the
resulting Prüfer number is 2565.

The Construction of the Tree from the Prüfer Number

The construction of the tree from the Prüfer number follows the construction
of the Prüfer number from the tree. It goes as follows:

1. Let P be a Prüfer number with n− 2 digits. All node numbers which are
not in P can be used for the construction of the tree (are eligible).

2. Let i the lowest numbered eligible node. Let j be the leftmost digit of P .
3. Add the link (i, j) to the tree.
4. Designate i as no longer eligible and remove the leftmost digit j from the

Prüfer number.
5. If j does not occur anywhere else in the remaining Prüfer number, desig-

nate j as eligible.
6. Go to 2 until no digits remain in the Prüfer number. If no digits are left,

then there are exactly two numbers, r and s, which are eligible. Finally,
add the link (r, s) to the tree.

We also illustrate this construction rule with a brief example. We want to
construct the tree from the Prüfer number P = 2565. Eligible nodes are 1, 3
and 4. As 1 is the lowest eligible node, and 2 is the leftmost digit of the Prüfer
number, we add the link (1, 2) to the tree. 1 is then no longer eligible, and
2 does not occur anywhere else in the string. Therefore, the nodes 2, 3 and
4 are eligible and P becomes 565. Now, 2 is the lowest eligible node and we
add the link (2, 5) to the tree. As 5 occurs somewhere else in the string, we do
not designate 5 as eligible. Thus, we only remove 2 from our pool of eligible
numbers, and then we can add the link (3, 6) to the tree. Now, only the nodes
4 and 6 are eligible and P = 5. We continue with adding (4, 5). Finally, all

156 6 Analysis and Design of Representations for Trees

digits are removed from P and the numbers 5 and 6 remain eligible. The link
(5, 6) is added to the tree and the algorithm terminates. We have constructed
the tree illustrated in Fig. 6.8.

6.2.3 Properties

We analyze the properties of the Prüfer number encoding by using the de-
sign issues from Palmer and Kershenbaum (1994a) and Palmer (1994) (see
Sect. 6.1.6). Furthermore, we relate these properties to the more general prop-
erties of representations we developed in Chap. 3.

Benefits

The Prüfer number encoding is a very elegant and interesting encoding with
some remarkable benefits:

• Every tree can be represented by a Prüfer number.
• Only trees are represented by Prüfer numbers.
• Every Prüfer number represents exactly one tree.
• All trees are represented uniformly (unbiased).

A look at the construction rule of the Prüfer number shows that a Prüfer
number is able to represent all possible trees. Because every tree has at least
two nodes with degree 1, the construction rule can be applied to every tree.
The user should notice that the original intent of the Prüfer number was
to prove Cayley’s theorem (Cayley 1889) by introducing Prüfer numbers. It
was also shown by Prüfer (1918) that Prüfer numbers only represent trees.
Therefore, a Prüfer number can be randomly created and it always represents
a tree. In contrast to many other representations, no repairing of a randomly
chosen individual is necessary. Furthermore, it is also not necessary to repair
individuals that are generated by genetic operators in each generation. The
first three benefits of the Prüfer numbers can be summarized by denoting the
Prüfer number encoding as a one-to-one mapping. The mapping is not only
surjective, but also bijective.

One consequence of a one-to-one mapping is that all trees are uniformly
represented as each tree is represented by exactly one specific Prüfer number.
The number of different trees for a graph with n nodes is nn−2, and there
are also exactly nn−2 different Prüfer numbers for an n node tree. Therefore,
GEAs using Prüfer numbers have no problems with redundancy. GEAs using
Prüfer numbers can not be affected by the over- or underrepresentation of
some individuals.

These advantages make Prüfer numbers an interesting encoding for trees.
However, the use of Prüfer numbers is connected to some serious drawbacks.

6.2 Prüfer Numbers 157

Drawbacks

The Prüfer number has the disadvantages of

• complex calculation and
• low locality.

In comparison to some other representations, the construction of the Prüfer
number is more complex and not straightforward. But, it can be done using the
help of a heap in O(n log n). This seems to be acceptable for most problems.

The most important disadvantage of the Prüfer number is the low locality
of the representation. Small changes in the Prüfer number string can lead to
large changes in the represented network. This means, the mapping from the
phenotype to the genotype is not homogeneous. Therefore, the basic mutation
operator that searches the local solution space around an individual does not
generate offspring that are similar to their parents. A descendant does not
inherit the important properties of its parents. Thus, mutation works not as
a local search, but more as a random search over the solution space (compare
Sect. 3.3.4).

2

41 5

3

6
2 2 3 3

Prüfer number:

(a) A tree and its Prüfer number
P = 2233

2

41 5

3

6
2 2 3 1

Prüfer number:

(b) A tree and its Prüfer number
P = 2231

Figure 6.9. The low locality of the Prüfer number encoding. A change of one digit
changes three links in the corresponding tree.

A small example illustrates the low locality of the encoding. Changing the
last digit in the Prüfer number of Fig. 6.9(a) from 3 to 1 yields 2231, which
decodes to the links (2,4), (2,5), (3,2), (1,3), and (1,6) (compare Fig. 6.9(b)).
Only two of the original tree’s five links exist in the offspring.

6.2.4 The Low Locality of the Prüfer Number Encoding

As illustrated in the previous subsection, the Prüfer number encoding is af-
fected by low locality. The purpose of this subsection is to investigate the
locality of the encoding more closely. The locality of Prüfer numbers is exam-
ined by performing two different investigations: Firstly, we perform random
walks through the search space and examine the distances between parents
and offspring. Secondly, we investigate the neighborhood of the genotypes
and phenotypes. We examine the locality of the neighboring individuals, and
determine their number. Finally, we present an empirical verification of the
theoretical predictions for mutation- and crossover-based evolutionary search.

158 6 Analysis and Design of Representations for Trees

Random Walks

We present experiments for evaluating the locality of the Prüfer number en-
coding. For this purpose we perform random walks through the genotypic and
phenotypic search space and analyze the resulting changes in the correspond-
ing phenotypes/genotypes.

Figure 6.10 shows the encoding of a tree xp ∈ Φp as a Prüfer number
xg1 ∈ Φg1 and the encoding of the Prüfer number as a bitstring xg ∈ Φg. The
genetic operators are applied to the genotypes xg. The Prüfer number itself
is a sequence of integers and is represented as a bitstring using the binary
encoding (compare Sect. 5.2). Therefore, the mapping from the bitstring to
the Prüfer number fg : Φg → Φg1 is affected by scaling and has the properties
discussed in Sect. 5.3.3. The mapping from the Prüfer numbers to the trees
fg1 : Φg1 → Φp is described in Sect. 6.2.2. Notice that for a tree with n nodes,
the Prüfer number has n − 2 digits, and the bitstring (n − 2)�log2(n)� bits.

g

x

x

p

g1

x110

tree

Prüfer number

5

2

1

4 6

32

5

bitstring

5

010 101

6

101
Figure 6.10. A tree, its Prüfer number and the
corresponding bitstring

The locality of the Prüfer number encoding can be measured by perform-
ing a random walk through one of the solution spaces Φg, Φg1, or Φp, and
measuring the distances between parent xp and offspring xo in the other two
solution spaces. A random walk through a search space Φ is defined by per-
forming iteratively small changes. Therefore, the distance between parent xp

and offspring xo in the solution space we are performing our random walk in
is dxp,xo

= 1. According to Fig. 6.10 there are three different possibilities:

1. A random walk through Φg (a step changes one bit of the bitstring,
dg

xo,xp
= 1).

2. A random walk through Φg1 (a step changes one digit of the Prüfer num-
ber, dg1

xo,xp
= 1).

3. A random walk through Φp (a step changes one edge in the tree, dp
xo,xp

=1).

A random walk through Φg means randomly changing one bit of xg and
examining how many links change in the corresponding tree xp. Furthermore,
the change of one bit in the bitstring xg results in the change of exactly one
digit of the Prüfer number xg1. A random walk through Φg1 means randomly
changing one digit of the Prüfer number xg1 and measuring how many links
are different in the resulting xp. Notice that the change of one digit in xg1

results in up to log2(n) different bits in xg. A random walk through Φp means

6.2 Prüfer Numbers 159

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

dp
xp,xo

(a) n = 16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

dp
xp,xo

(b) n = 32

Figure 6.11. Distribution of phenotypic distances dp
xp,xo

for neighboring bitstrings
xp, xo ∈ Φg on 16 and 32 nodes. We perform a random walk through Φg (dg

xp,xo
= 1),

and show how many links are different if one bit of the bitstring is changed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

dp
xp,xo

(a) n = 16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

dp
xp,xo

(b) n = 32

Figure 6.12. Distribution of phenotypic distances dp
xp,xo

for neighboring Prüfer
numbers xp, xo ∈ Φg1 on 16 and 32 nodes. We perform a random walk through Φg1

(dg1
xp,xo

= 1), and show how many links are different if one digit of the Prüfer number
is changed.

that one link of the tree xp is replaced by a randomly chosen link, and the
difference of bits/digits in the bitstring/Prüfer number is examined.

Figures 6.11, 6.12, 6.13, and 6.14 present the results of the random walks.
We show the cumulative frequency over the distances dxp,xo

between the par-
ent xp and the offspring xo. The phenotypic distance between the parent xp

and offspring xo is denoted as dp
xp,xo

(for trees xp, xo ∈ Φp), as dg1
xp,xo

(for
Prüfer numbers xp, xo ∈ Φg1), or as dg

xp,xo
(for bitstrings xp, xo ∈ Φg). In all

our experiments, the start individual for the bitstring, the Prüfer number, or
the tree is chosen randomly. To gain statistically significant results indepen-
dently of the start individual, 400 steps (mutations) were carried out in each
of the 20 runs. Thus, we performed overall 8,000 steps in the search space.

160 6 Analysis and Design of Representations for Trees

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

dg
xp,xo

(a) n = 16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

dg
xp,xo

(b) n = 32

Figure 6.13. Distribution of genotypic distances dg
xp,xo

for neighboring trees
xp, xo ∈ Φp on 16 and 32 nodes. We perform a random walk through Φp (dp

xp,xo
= 1),

and show how many bits are different if one link of the tree is changed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

dg1
xp,xo

(a) n = 16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

dg1
xp,xo

(b) n = 32

Figure 6.14. Distribution of genotypic distances dg1
xp,xo

for neighboring trees
xp, xo ∈ Φp on 16 and 32 nodes. We perform a random walk through Φp (dp

xp,xo
= 1),

and show how many digits of the Prüfer number are different if one link of the tree
is changed.

The results for a random walk through Φg (Fig. 6.11) and Φg1 (Fig. 6.12)
show that only about 40% of the one bit/digit changes lead to a change
of one link in the tree (dp

xp,xo
= 1). More than 35% (16 nodes) or 50% (32

nodes) of all one bit/digit changes result in trees xp
o with at least four different

links (dp
xp,xo

≥ 4). Therefore, the locality of the mapping from the genotype
(bitstring as well as Prüfer number) to the phenotype is low. Low genotypic
distances (dg

xp,xo
= 1 or dg1

xp,xo
= 1) do not correspond to low phenotypic

distances dp
xp,xo

.
When walking through the phenotypic solution space (trees) the plots in

Fig. 6.13 show that only about 50% of all one link changes result in a change of
less than eight bits (16 nodes), respectively 20 bits (32 nodes) in the bitstring.

6.2 Prüfer Numbers 161

For the Prüfer number (Fig. 6.14) about 75% of the neighboring trees are
different in more than one digit. Therefore, the locality of the phenotype-
genotype mapping is also low.

The random walks through Φg and Φp have shown that the locality of the
Prüfer number representation is low. Most of the small steps in the phenotypic
and genotypic search space result in unacceptably high changes in the corre-
sponding genotypic and phenotypic search space. The following paragraphs
investigate whether the locality of the Prüfer numbers encoding is uniformly
low everywhere in the search space, or if there are some areas of high locality.

Analysis of the Neighborhood

Performing random walks through the different search spaces has revealed that
the locality of the Prüfer number encoding is low. Therefore, we investigate
whether the locality of the encoding is uniformly low, or if there are differences
in locality for different areas of the search space. The search space can be
separated into different areas by making assumptions about the structure of
the represented tree such as being a star or a list.

To investigate whether the locality of the Prüfer number encoding is dif-
ferent for different areas of the search space, we choose an individual x with
specific properties and examine its locality. We examine all individuals y with
distance dx,y = 1 and measure the resulting genotypic or phenotypic distance.
As an individual is defined to be a neighbor to another individual if the dis-
tance between the two individuals is 1, our examination is nothing more than
an examination of the neighborhood of specific individuals. In analogy to the
random walks, we investigate the neighborhood of individuals in all three
search spaces Φg, Φg1 and Φp:

• Neighborhood of an individual xg ∈ Φg (all neighbors yg ∈ Φg that are
different in one bit from the examined individual, dg

xg,yg = 1).
• Neighborhood of a Prüfer number xg1 ∈ Φg1 (all neighbors yg1 ∈ Φg1 that

differ in one digit, dg1
xg1,yg1 = 1).

• Neighborhood of a tree xp ∈ Φp (all neighbors yp ∈ Φp that have distance
dp

xp,yp = 1).

We examine the complete neighborhood of an individual either in Φg, Φg1, or
Φp and measure the corresponding distances in the two others. This investi-
gation can be performed for four different types of networks:

(i) Star: One node is of degree n − 1 and the rest of the nodes have degree
1.

(ii) Random list: Two nodes are of degree 1 (the first and the last node of
the list) and all other nodes have degree 2. The numbering of the nodes
is random.

162 6 Analysis and Design of Representations for Trees

(iii) Ordered list: Like random list, but the nodes in the list are connected in
ascending order. Node k is connected to k +1, node k +1 is connected to
k + 2 and so on. If the highest numbered node n is not a leaf node, then
it is connected to node 1.

(iv) Tree: An arbitrary tree.

We distinguish between ordered and random lists because the locality of the
Prüfer number encoding is slightly different for ordered and random lists.

Figures 6.15, 6.16, 6.17, and 6.18 examine the neighborhood of stars, ran-
dom and ordered lists, and arbitrary trees with 16 and 32 nodes. A bitstring
representing a tree has either length l = 56 (16 nodes) or l = 150 (32 nodes);
a Prüfer number encoding a tree has either 14 (16 nodes) or 30 (32 nodes)
digits. For every problem instance, the complete neighborhood of 1000 ran-
domly chosen individuals x is examined. Figure 6.15 shows distributions of
phenotypic distances dp

xp,yp between a randomly chosen bitstring xg and all
neighboring yg, where dg

xg,yg = 1. Figure 6.16 shows distributions of pheno-
typic distances dp

xp,yp between a randomly chosen Prüfer number xg1 and all
neighboring yg1, where dg1

xg1,yg1 = 1. Figures 6.17 and 6.18 show distributions
of genotypic distances (dg

xg,yg and dg1
xg1,yg1) between a randomly chosen tree

xp and all neighboring graphs yp, where dp
xp,yp = 1; that is, for spanning trees

that differ in one link.
Figures 6.15 and 6.16 reveal that the neighborhood of a bitstring-encoded

tree, as well as a Prüfer number representing a spanning tree, depends on the
structure of the encoded tree. If the bitstring/Prüfer number encodes a star,
all genotypic neighbors also have a phenotypic distance of one. This means
that the locality of the bitstring/Prüfer number is perfect for stars. If the
bitstring/Prüfer number encodes an ordered list, the genotypic neighbors have
a maximum phenotypic distance of 4, independently of the number of nodes.
This means, a change of one bit/digit of xg or xg1 that encode an ordered list
results in a maximum phenotypic distance dp

xp,yp = 4. In contrast, bitstrings
and Prüfer numbers that encode random lists or random trees, show low
locality, and most of the genotypic neighbors are phenotypically completely
different.

The neighborhoods of trees are examined in Figs. 6.17 and 6.18. Similarly
to the genotypic neighborhood, all neighbors of a star have a genotypic dis-
tance in the Prüfer number space of one (dg1

xg1,yg1 = 1 illustrated in Fig. 6.18).
However as a bitstring yg encodes a Prüfer number yg1 using a binary encod-
ing, up to �log2(n)� bits are changed in the bitstring yg that represents the
Prüfer number yg1 (Fig. 6.17). The change of one digit in a Prüfer number
can result in a change of up to �log2(n)� bits in the bitstring. Therefore, the
locality of the Prüfer number encoding is high for stars. For arbitrary trees
and lists, the change of one link often results in a completely different bit-
string/Prüfer number. Therefore, the locality of the Prüfer number encoding
is low for trees and lists.

6.2 Prüfer Numbers 163

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

dp
xp,yp

star
tree

ordered list
random list

(a) 16 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

dp
xp,yp

star
tree

ordered list
random list

(b) 32 nodes

Figure 6.15. Distribution of phenotypic distances dp
xp,yp , where {yg|dg

xg,yg = 1}.
The graphs illustrate how many links are different in the tree yp when examining
the complete neighborhood of a randomly chosen genotypic bitstring xg.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

dp
xp,yp

star
tree

ordered list
random list

(a) 16 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

dp
xp,yp

star
tree

ordered list
random list

(b) 32 nodes

Figure 6.16. Distribution of phenotypic distances dp
xp,yp , where {yg1|dg1

xg1,yg1 = 1}.
The graphs illustrate how many links are different in the tree yp when examining
the complete neighborhood of a randomly chosen genotypic Prüfer number xg1.

The results show that the locality of the Prüfer number encoding is highly
irregular and depends on the phenotypic structure of the encoded tree. If a
Prüfer number encodes a list or arbitrary tree, the locality of the encoding
is low. Then, most of the genotypic neighbors of a Prüfer number-encoded
genotype are phenotypically completely different. However, if Prüfer numbers
encode stars, the locality of the encoding is perfect. All genotypic neighbors
of a star are also phenotypic neighbors. These results raise two new questions:
Why do Prüfer numbers which encode stars have high locality? How large
are the areas of high locality? We answer these questions in the following
paragraphs.

164 6 Analysis and Design of Representations for Trees

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

dg
xg,yg

star
tree

ordered list
random list

(a) 16 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

dg
xg,yg

star
tree

ordered list
random list

(b) 32 nodes

Figure 6.17. Distribution of genotypic distances dg
xg,yg , where {yp|dp

xp,yp = 1}. The
graphs illustrate how many bits are different in yg when examining the complete
neighborhood of a randomly chosen tree xp.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

dg1
xg1,yg1

star
tree

ordered list
random list

(a) 16 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

dg1
xg1,yg1

star
tree

orderd list
random list

(b) 32 nodes

Figure 6.18. Distribution of genotypic distances dg1

xg1,yg1 , where {yp|dp
xp,yp = 1}.

The graphs illustrate how many digits are different in the Prüfer number yg1 when
examining the complete neighborhood of a randomly chosen tree xp.

Number of Neighbors

We have seen that Prüfer numbers only have high locality if they encode
stars. Therefore, we focus on two issues: Firstly, we want to reveal why Prüfer
numbers have high locality when encoding stars. And secondly, we want to
know how large the areas are of high locality. Finding answers for these ques-
tions helps us to more accurately predict the behavior of GEAs for different
tree optimization problems. The investigation will show that the number of
neighbors has a major impact on the answers to both questions.

The previous investigations have shown that some Prüfer numbers have
high locality. A Prüfer number representing a star has perfect locality (dm =
0) because all phenotypic neighbors of a star are also genotypic neighbors.

6.2 Prüfer Numbers 165

To shed light on the question of why exactly stars have perfect locality, we
calculate the number of neighbors for both, Prüfer numbers and trees.

A Prüfer number xg1 uses n−2 digits of base n to encode a tree xp with n
nodes. Because we can change each of the n−2 digits to n−1 different integers,
each Prüfer number has exactly (n−1)×(n−2) neighbors. Furthermore, each
Prüfer number xg1 with n − 2 digits is encoded as a bitstring xg of length
(n − 2) × �log2(n)�. So each bitstring xg has (n − 2) × �log2(n)� neighbors.
A change of one digit in the Prüfer number xg1 can result in up to �log2(n)�
different bits in xg. As we are mainly interested in the Prüfer number encoding,
we want to focus in the following paragraphs only on Prüfer strings (integers)
and neglect the encoding of Prüfer strings as bitstrings. The reader should
notice that the number of neighbors of a Prüfer number is independent of the
structure of the encoded tree.

A star on n nodes has (n − 1)(n − 2) neighbors obtained by replacing
one of its links with another feasible link. Therefore, for stars the number of
neighbors is the same for the phenotypes and for the genotypes. Furthermore,
a star’s neighbors are represented by the neighbors of its Prüfer number ob-
tained by changing one of the number’s symbols; as already mentioned, these
neighbors number also (n−1)(n−2). For stars, the genotypic and phenotypic
neighborhoods coincide, and therefore locality is maximal.

This seems auspicious, but tree localities vary with the shape of the tree.
A list is a spanning tree with two leaves and n − 2 nodes of degree 2. In a
list’s Prüfer number, all the symbols are distinct, and each Prüfer number
has, as already mentioned, (n − 1)(n − 2) neighbors. However, a list on n

nodes has
∑n−1

i=1 i(n− i)− 1 = n
∑n−1

i=1 i−∑n−1
i=1 i2 − (n− 1) = 1

2n2(n− 1)−
1
6n(n − 1)(2n − 1) − n + 1 = 1

6n(n − 1)(n + 1) − n + 1 neighbors (Gerstacker
1999). Therefore, for lists the number of phenotypic neighbors is much higher
than the number of genotypic neighbors. Stars and lists have the smallest and
largest phenotypic neighborhoods, respectively. All other spanning trees fall
between these extremes which Fig. 6.19 plots as a function of the number n
of nodes.

 0
 50

 100
 150
 200
 250
 300

 6 8 10 12 14 16 18 20nu
m

be
r

of
 n

ei
gh

bo
rs

n

star
list

tree

Figure 6.19. Pheno-
typic neighborhood
sizes for lists and
stars, as functions
of the number of
nodes. The values
for all other trees lie
between these curves.

We see that the number of neighbors of a phenotype increases when mod-
ifying a star towards a list. However, the number of neighbors of a Prüfer
number remains constant and is independent of the structure of the encoded

166 6 Analysis and Design of Representations for Trees

tree. So there is a mismatch between the number of neighbors of non-star
trees and of Prüfer numbers. Therefore, the locality of all Prüfer numbers
not encoding a star could not be perfect as phenotypes always have a higher
number of neighbors than genotypes.

The results concerning the number of neighbors are summarized and illus-
trated for some example networks in Table 6.2. The number of neighbors for
arbitrary trees is between the number for stars and lists and must be sepa-
rately calculated for each tree. It depends on the degrees of the nodes in the
tree.

Table 6.2. Number of neighbors for graphs, Prüfer numbers, and bitstrings

nodes
graph Prüfer number bitstring

xp xg1 xg

n
star (n − 1)(n − 2)

(n − 1) (n − 2) (n − 2) × �log2(n)�
list 1

6
n(n − 1)(n + 1) − n + 1

8

star 42

42 18list 77

tree 62.45 (avg.)

16

star 210

210 56list 665

tree 447.2 (avg.)

32

star 930

930 150list 5425

tree 2595 (avg.)

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 10 12 14 16 18 20 22pr
op

. o
f h

ig
h-

lo
ca

lit
y

in
di

vi
du

al
s

n

Figure 6.20. The proportion of span-
ning trees on n nodes whose Prüfer
numbers have high locality, defined as
differing from the Prüfer number of a
star in no more than imax = 5 digits.

After we have explained why Prüfer numbers can only have high local-
ity when encoding stars, we focus on the question of how large the areas of

6.2 Prüfer Numbers 167

high locality are. GEAs only search effectively in regions near stars. In these
areas, the locality is high and the encoding allows a guided search. To approx-
imate the number of individuals with high locality, we extend the definition
of neighbors to include trees whose Prüfer numbers xg1 differ in at the most
imax digits (imax � n). This means, we assume an individual xg1 to have high
locality if its distance dg1

xg1,star towards a star is equal or lower than imax.
The number of individuals xg1 which have the maximum distance imax to-
wards a star (dg1

x,star ≤ imax) can be calculated as
∑imax

i=0

(
n−2

i

)
(n − 1)i; this

value is O(n2imax). However, the number of spanning trees on n nodes, and
thus the size of the search space, is nn−2. Therefore, as Fig. 6.20 illustrates,
the proportion of these high-locality individuals is small even for moderate
n and diminishes exponentially as n grows. The areas of high locality grow
more slowly with increasing problem size n than the overall search space. As
a result, we expect GEAs using Prüfer numbers and searching for stars to
perform worse with increasing problem size n.

We were able to explain the high locality of Prüfer numbers representing
stars by calculating the number of neighbors for different tree structures. The
number of neighbors for Prüfer numbers stays constant, whereas for pheno-
types the number of neighbors is different for different tree types. For stars,
there is a one-to-one correspondence and the number of neighbors is the same
for genotypes and phenotypes. All other types of trees like lists or arbitrary
trees have a higher number of neighbors than stars (or Prüfer numbers). Fur-
thermore, the areas of high locality are very tiny as they grow with O(n2imax),
where imax � n, whereas the search space grows with O(nn−2). Thus, the lo-
cality is in general low and GEAs searching for optimal trees that are different
from stars must fail.

Performance

We verify experimentally that GEAs using the Prüfer number encoding do
not perform well when searching for good solutions in areas where the locality
is low. We present results for GEAs only using one-point crossover and for
simulated annealing using only mutation. Both search algorithms are applied
to the fully easy one-max tree problem from Sect. 6.1.5.

Simulated annealing (SA) can be modeled as a GEA with population size
N = 1 and Boltzmann selection (Goldberg 1990a; Mahfoud and Goldberg
1995). In each generation, an offspring is created by applying one mutation
step to the parent. Therefore, the new individual has distance 1 to its parent.
If the offspring has higher fitness than its parent it replaces the parent. If
it has lower fitness it replaces the parent with the metropolis probability
P (T) = exp(− foffspring−fparent

T), where f denotes the fitness of an individual.
The acceptance probability P depends on the actual temperature T which
is reduced during the run according to a cooling schedule. With lowering
T , the probability of accepting worse solutions decreases. Because SA uses
only mutation, and can in contrast to for example a (1+1) evolution strategy

168 6 Analysis and Design of Representations for Trees

solve difficult multi-modal problems, we use it as a representative of mutation-
based evolutionary search algorithms. For further information about simulated
annealing we refer to Cavicchio (1970) and Davis (1987).

In Fig. 6.21, we present results for GEAs with µ + λ selection using one-
point crossover and no mutation on 16 and 32 node one-max tree problems.
µ + λ selection means that we generate λ offspring from µ parents and that
we choose the best µ individuals from all µ + λ individuals as parents for
the next generation. This selection scheme assures that a once found best
individual is preserved during a GA run and not lost again. The structure of
the optimal solution is determined to be either a star, list, or an arbitrary
tree. For the 16 node problems, we chose µ = λ = 400, and for the 32 node
problems µ = λ = 1500. We performed 250 runs and each run was stopped
after the population was fully converged. Figure 6.22 presents results for using
simulated annealing. The start temperature Tstart = 100 is reduced in every
step by the factor 0.99. Therefore, Tt+1 = 0.99 × Tt. Mutation is defined to
randomly change one digit of the Prüfer number. We performed 250 runs and
each run was stopped after 5000 iterations.

The results in Figs. 6.21 and 6.22 show that if the optimal solution is a
randomly chosen star, both search algorithms, the recombination-based GA
and the mutation-based SA are able to find the optimal star easily. A search
near stars is really a guided search and both algorithms are able to find their
way to the optimum. However, if the optimal solution is a list or an arbitrary
tree, GEAs can never find the optimal solution and are completely misled.
Exploring the neighborhood around an individual in an area of low locality
results in a blind and random search. Individuals that are created by mutating
one individual, or by recombining two individuals, have nothing in common
with their parent(s).

The results show that good solutions can not be found if they lie in areas
of low locality. A degradation of the evolutionary search process is unavoid-
able. Evolutionary search using the Prüfer number encoding could only work
properly if the good solutions are stars. Near stars the locality is high and a
guided search is possible. Furthermore, the empirical results confirm the the-
oretical predictions from Sect. 3.3.4 that high locality is a necessary condition
for mutation- and recombination-based GEAs. If the locality of an encoding
is low, the difficulty of a problem is changed by the representation, and easy
problems like the one-max tree problem become difficult and can not be solved
any more.

The presented empirical results also shed some light on the contradicting
statements about the performance of GEAs using Prüfer numbers. Researchers
who investigate problems in which good solution are star-like see acceptable
results and favor the use of Prüfer numbers. Other researchers with non-star-
like optimal solutions, however, observe low performance and advise not to
use the encoding. Furthermore, we have seen that the Prüfer number encod-
ing has low locality. Therefore, Prüfer numbers change the difficulty of the
problem. Fully easy problems like the one-max tree problem become more

6.2 Prüfer Numbers 169

6

8

10

12

14

16

0 10 20 30 40 50

be
st

 fi
tn

es
s

generation

star
arbitrary tree

list
10

15

20

25

30

0 20 40 60 80 100

be
st

 fi
tn

es
s

generation

star
arbitrary tree

list

Figure 6.21. The performance of a GA for a 16 (left) and 32 (right) node one-max
tree problem. The plots show the fitness of the best individual over the run. The
structure of the best solutions has a large influence on the performance of GAs. If
the best solution is a star, GAs perform well. If GAs have to find a best solution
that is a list or a tree, they degrade and cannot solve the easy one-max problem.

0
2
4
6
8

10
12
14
16

0 500 1000 1500 2000

fit
ne

ss

generation

star
arbitrary tree

list
0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000

fit
ne

ss

generation

star
arbitrary tree

list

Figure 6.22. The performance of simulated annealing for a 16 (left) and 32 (right)
node one-max tree problem. The plots show the fitness of the best individual over
the run. As for recombination-based approaches, the mutation-based simulated an-
nealing fails if the best solution is not a star.

difficult, whereas fully difficult problems become more easy. Results about
the performance of Prüfer numbers on fully difficult problems are presented
later in Sect. 8.1.3.

6.2.5 Summary and Conclusions

This section presented an investigation into the locality of Prüfer numbers and
its effect on the performance of GEAs. We started with a historical review on
the use of Prüfer numbers. In Sect. 6.2.2, we presented the construction rules
for Prüfer numbers. This was followed by a brief overview over the benefits
and drawbacks of the encoding. Although the encoding has some remarkable

170 6 Analysis and Design of Representations for Trees

advantages, it is affected by low locality. Consequently, we focused in the
main part of our investigation (Sect. 6.2.4) on the low locality of the Prüfer
number encoding. We examined the locality of Prüfer numbers more closely by
performing random walks through the search space. This was followed by an
analysis of the neighborhood of the genotypes and phenotypes. The analysis
showed differences in locality. To explain the differences, we calculated the
number of neighbors for Prüfer numbers and trees dependent on the structure
of the network. Finally, we empirically verified the theoretical predictions by
using recombination-based and mutation-based search algorithms for solving
the one-max tree problem.

The historical review showed that there has been a great increase in in-
terest in the Prüfer number encoding over the last few years. However, the
suitability of Prüfer numbers for encoding trees is strongly disputed as some
researchers report good results whereas others report failure. By performing
random walks through the search space, the low locality of the encoding can
be nicely illustrated. A small modification of a genotype mostly results in a
completely different phenotype. The analysis of the neighborhood of individu-
als answers the question of whether the locality is low everywhere in the search
space, and gives an explanation for the contradicting results from different re-
searchers. The results show that the locality of Prüfer numbers representing
stars is high. However, all other types of networks like lists or arbitrary trees
lack locality and the genotypic neighbors of a Prüfer number representing a
list or an arbitrary tree have on average not much in common with each other.
Therefore, the low locality of Prüfer numbers does not reduce GEAs perfor-
mance in all areas of the solution space to the same extent. This can explain
the different results using Prüfer numbers existing in the literature.

To answer the questions of why exactly Prüfer numbers encoding stars
have high locality, and how large the areas of high locality are, we investigated
the number of neighbors a Prüfer number has. The analysis shows that for
Prüfer numbers the number of neighbors remains constant. For phenotypes,
however, the number of neighbors varies with the structure of the tree. Stars
have as many neighbors as the corresponding Prüfer numbers and therefore,
the locality around stars is high. When modifying stars towards lists, the
number of phenotypic neighbors increases, which makes it impossible to obtain
high locality for problems other than stars. Furthermore, the areas of high
locality are only of order O(nconst), whereas the whole search space grows
with O(nn−2). Thus, the regions of high locality become very small with
increasing problem size n, which reduces the performance of GEAs on larger
problems.

The results show that Prüfer numbers have low locality and change the dif-
ficulty of problems. Researchers should be careful when using Prüfer numbers
on problems of unknown complexity because easy problems become more dif-
ficult when using the Prüfer number encoding. As we assume that most of the
real-world problems are relatively easy and can be solved using GEAs, GEAs
using Prüfer numbers are likely to fail when used on real-world problems.

6.3 The Characteristic Vector Encoding 171

6.3 The Characteristic Vector Encoding

The characteristic vector (CV) encoding is a common approach for encoding
graphs (Davis et al. 1993; Berry et al. 1997; Ko et al. 1997; Dengiz et al.
1997c; Dengiz et al. 1997b; Dengiz et al. 1997a; Berry et al. 1999; Premkumar
et al. 2001). Representative examples for the use of the CV encoding for trees
can be found in Tang et al. (1997) and Sinclair (1995).

The purpose of this section is to use the framework from Sect. 4 for the
analysis of the CV encoding. The investigation shows that CVs are able to
represent invalid solutions. Therefore, the encoding is redundant and a repair
mechanism is necessary that constructs valid trees from invalid genotypes.
Examining the redundancy of CVs shows that they are uniformly redundant
but affected by non-synonymous redundancy. Non-synonymous redundancy
is a result of the repair process, which brings already extinguished schemata
back into the population. As repairing infeasible solutions works like additional
mutation and randomizes and prolongs the search process we denote the effect
of non-synonymous redundancy as stealth mutation.

In the following subsection, we describe the functionality of the CV en-
coding. This is followed in Sect. 6.3.2 by a discussion about how to deal
with representations that are able to represent invalid solutions. We illustrate
that the CV encoding can represent invalid solutions and we propose a repair
mechanism for the encoding. In Sect. 6.3.3, we investigate the effects of the
repair mechanism. We show that CVs are uniformly redundant because the
proposed repair mechanism is unbiased. However, repairing invalid solutions
results in non-synonymous redundancy which increases the run duration tconv.
The section ends with a brief summary.

6.3.1 Encoding Trees with Characteristic Vectors

We briefly describe the CV encoding and review some of its important prop-
erties. The CV encoding can be used for the encoding of trees. Further in-
formation and examples for its use can be found in Berry et al. (1994) and
Palmer (1994).

A

B

C

D E Figure 6.23. A five node tree

A CV is a binary vector that indicates if a link is used or not in a graph.
For an n-node graph there exist n(n− 1)/2 possible links, and a CV of length
l = n(n − 1)/2 is necessary for encoding an n-node graph. All possible links
must be numbered, and each link must be assigned to a position in the vector.

172 6 Analysis and Design of Representations for Trees

In Table 6.3, we give an example of a CV for a 5 node tree. The nodes are
labeled from A to E. The link from node A to B is assigned to the first position
in the string, the link from A to C is assigned to the second position, and so
on. To indicate if the ith link is established, the value at position i is set to
one. If no link is established, the value of the allele is set to zero. The tree
that is represented by Table 6.3 is shown in Fig. 6.23.

0 1 0 0 0 1 0 1 0 1

A-B A-C A-D A-E B-C B-D B-E C-D C-E D-E

Table 6.3. The CV for the
tree in Fig. 6.23

The CV encoding has interesting properties. Firstly, it is able to repre-
sent all possible trees. The encoding can also represent non-trees, and we
will discuss this problem in the next subsection. Furthermore, all alleles of a
CV-encoded genotype have the same contribution to the construction of the
phenotype. Therefore, we expect no problems due to non-uniformly scaled
alleles, domino convergence, or genetic drift. Finally, the locality dm of the
encoding is high for feasible genotypes. Feasible genotypes that are neighbors
correspond to neighboring phenotypes. Two neighboring phenotypes xp and
yp that have the phenotypic distance dp

xp,yp = 1 differ in exactly two posi-
tions in the feasible genotype, dg

xg,yg = 2. In general, we can calculate the
phenotypic distance dp between two individuals x and y as

dp
x,y = 0.5dg

x,y,

where dg denotes the genotypic Hamming distance and dp denotes the dis-
tance between trees as defined in Sect. 6.1.2. Therefore, the locality of the CV
is high if only feasible genotypes are considered. However, as already men-
tioned, the CV encoding can also represent non-trees. When considering also
infeasible solutions, the encoding has low locality and problems with non-
synonymous redundancy as the phenotypic neighbors do not correspond to
genotypic neighbors any more. We discuss this problem in Sect. 6.3.3.

6.3.2 Repairing Invalid Solutions

We describe how to deal with invalid solutions (non-trees) which can be rep-
resented by the CV encoding. The most common approach is to repair invalid
genotypes.

Every CV that represents a tree must have exactly n − 1 ones, the repre-
sented graph must be connected, and there are no cycles allowed. This makes
the construction of trees from randomly chosen CV demanding as most of the
randomly generated CVs are invalid, and not trees. For an n-node network,
there are 2n(n−1)/2 possible CVs, but only nn−2 valid trees (Prüfer 1918). The
probability of randomly getting a tree is nn−2

2n(n−1)/2 < 2 ln(n)
ln(2)n < 3 ln(n)/n. There-

fore, the chance of randomly creating a CV that represents a tree decreases
exponentially with the problem size n (Palmer 1994).

6.3 The Characteristic Vector Encoding 173

Randomly chosen CVs which should represent a tree can be invalid in two
different ways:

• There are cycles in the represented graph.
• The graph is not connected.

We get a cycle for the example in Table 6.3 if we set the first allele (A-B) to
one. Then, the genotype does not represent a tree any more because there is
a cycle of A-C-D-B-A. Furthermore, if we alter any of the ones in the CV to
zero we get two disconnected trees. For example, we could set A-C to zero
and get two disconnected subtrees. Subtree one consists of the node A and
subtree two consists of a star with center D.

If we do not want to remove invalid solutions from the population, there
are two different possibilities to handle invalid solutions: Firstly, we can ig-
nore the invalid solutions and leave them in the population, or secondly, we
repair them. Some GEA approaches report to some extent good results when
accepting invalid solutions (Orvosh and Davis 1993; Davis et al. 1993). How-
ever, when leaving invalid solutions in the population we must ensure that a
valid individual is created at the end of the run. Furthermore, we must find a
way to evaluate invalid solutions. This can be difficult as for tree problems a
fitness function exists for trees, but not for non-trees. Finally, the largest prob-
lem is that for tree problems, the probability of generating a valid individual
drops exponentially, O(exp(−n)), and therefore, only a very small fraction of
the individuals are valid at all. Due to these problems, most of the traditional
GEAs choose the second possibility and repair all infeasible solutions.

In general, the repair process for invalid solutions consists of two steps
(Berry et al. 1994):

1. Remove links from the tree that cause cycles.
2. Add links to obtain a connected tree.

When repairing a CV that should represent a tree, in a first step, the cycles
in the graph must be identified. If we randomly choose xg = 1100010100
(encodes a graph with n = 5 nodes), we have a cycle A-C-D-B-A in xp.
Consequently, we remove one randomly chosen link (A-C, C-D, D-B or B-A).
When we choose the link A-C we get yg = 1000010100. As there are no more
cycles in yg, we can stop removing links and continue checking whether the
graph is fully connected. As there are only three ones in yg and we have a tree
with 5 nodes, the tree can not be connected and we have to add one link. As
the node E is separated from the rest of the tree, a link from E to a randomly
chosen node A, B, C or D, has to be added. The link C-E is chosen and we
finally get zg = 1000010110. A closer look at the repair mechanism shows that
the order of the repair steps does not matter.

6.3.3 Bias and Non-Synonymous Redundancy

The CV encoding is redundant as there are infeasible genotypes that have
to be repaired to represent a feasible phenotype. Therefore, each phenotype

174 6 Analysis and Design of Representations for Trees

is encoded by exactly one feasible genotype and a large number of infeasible
genotypes. Consequently, we have to investigate whether the representation
is uniformly redundant. Otherwise, GEA performance depends on the struc-
ture of the optimal solution. Furthermore, we have to investigate whether the
encoding is synonymously redundant as synonymous redundancy is necessary
for guided search.

A Redundant and Unbiased Encoding

We illustrate that the CV encoding with repair mechanism is a redundant en-
coding. Furthermore, we show that when using the repair mechanism from the
previous subsection the encoding is unbiased that means uniformly redundant.

The genotype-phenotype mapping fg constructs a valid tree xp ∈ Φp with
the help of the repair mechanism from every possible feasible or infeasible
xg ∈ Φg. This means that nn−2 phenotypes are represented by 2n(n−1)/2

genotypes. Therefore, the CV encoding is a redundant encoding independently
of whether the infeasible individuals are repaired or remain un-repaired in
the population. If they remain un-repaired in the population they must be
evaluated using the fitness function defined on the phenotypes (that means on
trees). Therefore, the infeasible and un-repaired individuals must be assigned
in some way to the feasible trees and we have the same situation as when the
infeasible genotypes are repaired.

Recognizing that the CV is a redundant encoding, we can use the insights
into the effects of redundant encodings from Sect. 3.1. Therefore, we are in-
terested as to whether the CV encoding is biased that means non-uniformly
redundant. A closer look at the repair mechanism from Sect. 6.3.2 shows that
the removed, respective added links are chosen randomly. We know that an
encoding is unbiased if every phenotype is represented on average by the same
number of genotypes. The random repair process shows exactly this behavior
as it does not favor any particular genotype. Therefore, the CV encoding is
unbiased, that means uniformly redundant.

n
min(dp

rnd,star) dp
rnd,MST

unbiased CV unbiased CV
µ (σ) µ (σ) µ (σ) µ (σ)

8 3.67 (0.64) 3.66 (0.64) 5.16 (0.99) 5.19 (0.99)

16 10.91 (0.78) 10.91 (0.79) 13.08 (1.07) 13.08 (1.09)

32 26.25 (0.82) 26.23 (0.83) 29.08 (1.31) 29.05 (1.31)

Table 6.4. Minimum
distance min(dp

rnd,star)
to stars and distance
dp

rnd,MST to the MST

To examine whether the CV encoding is unbiased, we randomly create CV-
encoded solutions xg

rnd, repair them, and measure for the repaired solutions
xp

rnd the average minimum distance min(dp
rnd,star) towards a star and the av-

erage distance dp
rnd,MST to the minimum spanning tree (MST). The MST is

a spanning tree with minimum costs, where the costs of the tree are the sum

6.3 The Characteristic Vector Encoding 175

of the distance weights dij of the used edges (compare (8.3)). In Table 6.4,
we present the mean µ and the standard deviation σ of the two distances.
We show the average minimum distance to one of the n stars and the average
distance to the MST. We randomly created 10,000 CV-encoded individuals
and compare the CV encoding to an unbiased representation like the Prüfer
number encoding. The nodes are placed randomly on a two-dimensional grid
of size 1000×1000 and the distance weights dij are the Euclidean distances be-
tween the nodes i and j. The numbers indicate that the CV is about unbiased
this means uniformly redundant.

Because the CV encoding is uniformly redundant, GEA performance
should be independent of the structure of the optimal solution. We present
in Fig. 6.24 results for the performance of GEAs for a 16 node one-max tree
problem (compare Sect. 6.1.5) using only uniform crossover, no mutation,
and tournament selection of size 3. The plots show the probability of success
Psucc = 1−α (finding the optimal solution) and the fitness of the best individ-
ual at the end of the run (population is completely converged). We performed
250 runs for Topt is either a star, a list or an arbitrary tree. Before evaluat-
ing an infeasible individual in each generation, we repair it according to the
algorithm outlined in Sect. 6.3.2, and the repaired CV replaces the infeasible
solution. The plots show that GEA performance is about independent of the
structure of the optimal solution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35

P
su

cc

N

star
arbitrary tree

list

(a) probability of success

 6

 8

 10

 12

 14

 10 15 20 25 30 35

be
st

 fi
tn

es
s

at
 e

nd
 o

f t
he

 r
un

N

star
arbitrary tree

list

(b) fitness at end of the run

Figure 6.24. Performance of GEAs using the CV encoding for optimizing a 16 node
one-max tree problem, where Topt is either a star, a list, or an arbitrary tree. Invalid
solutions are repaired. GEA performance is about independent of Topt. Therefore,
the redundant CV encoding using the repair mechanism from Sect. 6.3.2 is unbiased.

Finally, we briefly discuss the possibility of using specific mutation and re-
combination operators that always create only valid solutions. Then, no repair

176 6 Analysis and Design of Representations for Trees

steps are necessary and we do not have to worry any more about a bias. Every
individual that is created during the GEA’s run would be valid. However,
one problem is the creation of the initial, feasible solutions as the fraction
of feasible solutions is tiny. Furthermore, the creation of thus-like “intelli-
gent” crossover and mutation operators leads to a direct encoding (compare
Chap. 7). Then, the genetic operators are, in contrast to the used standard
crossover or bit-flipping mutation, not based on the Hamming distance be-
tween individuals any more (compare Sect. 3.3.5). Instead, the operators are
problem-specific and there exists no explicit representation (Φg = Φp).

We have illustrated that the CV encoding is uniformly redundant as pheno-
types are represented on average by the same number of infeasible genotypes.
Therefore, GEA performance is about independent of the structure of the
optimal solution.

Non-Synonymous Redundancy and Stealth Mutation

When recombining two feasible, CV-encoded, parents, the offspring are often
underspecified. They do not represent a fully connected tree and the repair
mechanism we presented in Sect. 6.3.2 has to insert links randomly to con-
struct a valid solution. Therefore, links which do not exist in both parents
could be used for the construction of the offspring. It could also happen that
a link that does not not exist in any of the individuals in the population can
find its way back into the population by the repair mechanism. This effect
caused by the repair process results in cross-competition and should be de-
noted as stealth mutation. Stealth mutation is a result of the non-synonymous
redundancy (compare Sect. 3.1.2) of the CV encoding. The CV encoding is
non-synonymously redundant as not all infeasible genotypes that encode the
same phenotype are similar to each other. We present a brief example. We
assume a genotype consisting of only ones. This infeasible genotype is repaired
so that all possible phenotypes are constructed with the same probability. Al-
though, on average, all phenotypes are represented by about the same number
of infeasible genotypes, it is not possible to determine which infeasible solu-
tion encodes which feasible solution and the encoding is non-synonymously
redundant. This property of the CV encoding, that the genotype-phenotype
mapping of infeasible solutions is random (due to the repair process), results
in the situation that not all infeasible genotypes that are decoded to the same
phenotype are similar to each other.

When using the notion of BBs, stealth mutation results in a continuous
supply of new BBs during a run. Due to cross-competition (compare the effects
of non-synonymous redundancy described in Sect. 3.1.2), new BBs are created
randomly in the population during the GEA-run, even if they are not present
in the start population, or not properly mixed and lost. As the CV encoding is
non-synonymously redundant, the difficulty of a problem is changed and easy
problems become more difficult to solve as the search process is randomized.
GEAs show low performance and the running time of GEAs increases.

6.3 The Characteristic Vector Encoding 177

In Mühlenbein and Schlierkamp-Voosen (1993) and Thierens and Goldberg
(1994), the time until convergence was found for the one-max problem as
tconv = π

√
l/2I with the selection intensity I and the string length l. I depends

only on the used selection scheme and for tournament selection of size 2 we
get I = 1/

√
π. With l = n(n− 1)/2, we get tconv ≈ π

√
π
2 n. n denotes the size

of the problem (number of nodes).

20

40

60

80

100

120

140

160

180

200

8 10 12 14 16 18 20 22 24

ru
n

du
ra

tio
n

t c
on

v

problem size n

empirical results
prediction

Figure 6.25. Run duration tconv over
problem size n for the one-max tree prob-
lem using tournament selection of size
2 and uniform crossover. For selectore-
combinative GAs, tconv should grow lin-
early with the problem size n. However,
if GEAs use the CV encoding tconv grows
due to problems with non-synonymous
redundancy approximately exponentially
with n.

To illustrate the effects of stealth mutation and non-synonymous redun-
dancy on the performance of GEAs we compare in Fig. 6.25 for the one-max
tree problem the theoretical prediction for the run duration tconv with the
empirical results for the CV encoding. For the empirical analysis, we use a
simple GA with no mutation, tournament selection of size s = 2, and uniform
crossover. The population size N is large enough to reliably find the optimal
solution.

The results show a non-linear dependency of the run duration tconv over
the problem size n. The plots indicate that GEAs using CVs struggle be-
cause of more repair operations and stealth mutation, which are a result of
non-synonymous redundancy. The search for good solutions depends more
on the random effects of mutation than on recombination. Due to the non-
synonymous redundancy, with higher problem size the probability of randomly
finding the correct link decreases, and the run duration of GEAs using CVs
increases.

6.3.4 Summary

This section examined important properties of the CV encoding. We started
with a description of the encoding and briefly reviewed its important proper-
ties. In Sect. 6.3.2, we illustrated the problem of infeasible solutions and how
infeasible solutions can be repaired. This was followed in Sect. 6.3.3 by an
investigation into the properties of the encoding. We recognized that the CV
encoding is redundant and unbiased. Therefore, GEA performance is indepen-
dent of the structure of the optimal solution. Furthermore, it was discussed

178 6 Analysis and Design of Representations for Trees

that the repair process results in stealth mutation and non-synonymous re-
dundancy which increases run duration and reduces GEA performance.

We have seen in this section that an encoding which can represent not
only valid, but also invalid, solutions encodes a valid phenotype by more than
one genotype. Therefore, such an encoding is redundant and the results about
redundant encodings from Sect. 3.1 can be used. Redundancy is independent
of whether the invalid solutions are repaired, or if they remain untouched
in the population. In both situations, it is necessary to evaluate the invalid
genotypes and to assign a fitness value to every invalid solution. Furthermore,
we have seen that an encoding which can represent invalid solutions is unbiased
if the construction of a valid phenotype from an invalid genotype is unbiased
and does not favor some phenotypes.

Our investigation in the CV encoding has shown that the encoding is
uniformly redundant. Only nn−2 valid trees are encoded by nn−2 valid and
2n(n−1)/2 − nn−2 invalid solutions. To repair invalid solutions, we presented
a randomized and unbiased repair mechanism. The CV encoding is unbiased,
and GEAs perform independently of the structure of the optimal solution.
However, repairing invalid solutions results in non-synonymous redundancy.
We denoted this effect as stealth mutation and showed that it increases the
run duration tconv.

6.4 The Link and Node Biased Encoding

The link and node biased (LNB) encoding belongs to the class of weighted en-
codings and was developed by Palmer (1994). It encodes a tree using weights
for the nodes and links of a tree. Additional encoding parameters such as
the link-specific and the node-specific bias are necessary to control the im-
portance of link and node weights. The encoding was proposed to overcome
the problems of characteristic vectors, predecessor representations (compare
also Raidl and Drexel (2000)) and Prüfer numbers. Later, Abuali et al. (1995)
compared different representations for probabilistic minimum spanning tree
(PMST) problems and in some cases found the best solutions by using the
LNB encoding. Raidl and Julstrom (2000) observed solutions superior to those
of several other optimization methods using a representation similar to the
LNB encoding for the degree-constrained minimum spanning tree (d-MST)
problem.

This section examines the LNB encoding using the framework from
Chap. 4. It investigates whether the encoding is uniformly redundant, and
how the encoding parameters (link-specific and node-specific bias) influence
redundancy. The investigation reveals that all versions of the LNB encoding
are synonymously redundant. Furthermore, the commonly used simpler ver-
sion of the encoding, which uses only a node-specific bias, is biased towards
stars, and the initial population is dominated by only a few star-like individu-
als. Focusing on the link-biased (LB) encoding, which only uses a link-specific

6.4 The Link and Node Biased Encoding 179

bias, reveals that solutions similar to the minimum spanning tree (MST) are
overrepresented. The general LNB encoding uses both biases, a node-specific
bias and a link-specific bias. Similarly to the node-biased encoding, the LNB
encoding is biased towards stars if a node-specific bias is used. When using a
small link-bias, the encoding is, in analogy to the LB encoding, biased towards
the MST. However, by increasing the link-specific bias, the bias of the LNB en-
coding is reduced and it becomes uniformly redundant for a large link-specific
bias. The LNB encoding has great problems if the two biases are too small,
because then only MST-like phenotypes can be represented. At the extreme,
if both biases are zero, only the MST can be represented independently of the
LNB-encoded genotype.

In Sect. 3.1, we have seen that the performance of GEAs using a syn-
onymously redundant encoding increases if the good solutions are overrepre-
sented, and decreases if they are underrepresented. Therefore, the performance
of GEAs using the LNB encoding is high if the optimal solution is similar to
stars or MSTs. For all other problems, however, a reduction of GEA perfor-
mance is unavoidable unless the link-specific bias is high.

In the following subsection, we give a brief description of the LNB encod-
ing. In Sect. 6.4.2, we discuss that the bias of an encoding is equivalent to
non-uniform redundancy (compare Sect. 3.1). This is followed by an investi-
gation into whether the NB encoding is uniformly redundant. Section 6.4.4
focuses on the LB encoding and Sect. 6.4.5 presents a population sizing model
for the one-max tree problem based on the population model from Sects. 3.1.4
and 6.5.5. In Sect. 6.4.6, we investigate for the LNB encoding the effect of both
encoding parameters, the node-specific bias and the link-specific bias. Finally,
we present in Sect. 6.4.7 some empirical GEA performance results for the
one-max tree problem. The section ends with concluding remarks.

6.4.1 Motivation and Functionality

We review the motivation and the resulting properties of the LNB encoding
as described in Palmer (1994), Palmer and Kershenbaum (1994a), and Palmer
and Kershenbaum (1994b).

As the costs of a communication or transportation network strongly de-
pend on the length of the links, network structures that prefer short distance
links often tend to have higher fitness. Furthermore, it is useful to run more
traffic over the nodes near the gravity center of an area than over nodes at the
edge of this area (Kershenbaum 1993; Cahn 1998). Thus, it is desirable to be
able to characterize nodes as either interior (some traffic only transits), or leaf
nodes (all traffic terminates). As a result, the more important a link is, and
the more transit traffic that crosses the node, the higher is, on average, the
degree of the node. Nodes near the gravity center tend to have a higher de-
gree than nodes at the edge of the network. Hence, the basic idea of the LNB
encoding is to encode the importance of a node or link. The more important
the node or link is, the more traffic that should transit over it.

180 6 Analysis and Design of Representations for Trees

When applying this idea to tree encodings, the distance weight matrix,
which defines the distance weights between any two nodes, is biased according
to the importance of the nodes or links. If a node or link is not important,
the modified distance weight matrix should increase the distance weight of
all links that are connected to this node. Doing this will result with high
probability in a leaf node if the encoded phenotype is constructed from the
distance weights by the help of Prim’s algorithm.

The Node-Biased Encoding

When using the node-biased (NB) encoding, the genotype b holds weights for
each node, and has length n for an n node tree. There is a distance weight
matrix which assigns a non-negative distance weight dij to the n(n − 1)/2
different edges (ij) of a tree. The values dij of the distance weight matrix are
modified according to b using the weighting function

d′ij = dij + P2(bi + bj)dmax, (6.2)

where bi ∈ [0, 1], dmax = max(dij), and i, j ∈ {0, . . . , n − 1}. The node bias
P2 controls the influence of the node weights bi on the construction of xp.

When using the NB encoding for trees, we get the phenotype xp from the
genotype b by calculating the minimum spanning tree (MST) for the modified
distance weight matrix D′. Prim’s algorithm (Prim 1957) was used in the
original work. By running Prim’s MST algorithm, nodes i that correspond to
a low bi will probably be interior nodes of high degree in the tree. Nodes j
that correspond to high bj will probably be leaf nodes. Thus, the higher the
weights bi of a node i, the higher is the probability that node i will be a leaf
node. To get the tree’s fitness, the tree xp is evaluated by using the original
distance weight matrix D.

We illustrate the functionality of the NB encoding with a small example.
The NB-encoded genotype b = {0.7, 0.5, 0.2, 0.8, 0, 1} holds the node weights.
A distance weight matrix for the 5-node problem is defined as

D =

⎛
⎜⎜⎜⎜⎝

− 2 1 3 4
2 − 5 6 3
1 5 − 4 3
3 6 4 − 10
4 3 3 10 −

⎞
⎟⎟⎟⎟⎠ · (6.3)

For the construction of the tree xp from b, we first have to calculate all values
d′ij of the modified distance weight matrix. Using P2 = 1, we get for example
d′0,1 = 2+(0.7+0.5)×10 = 14. When calculating the remaining d′i,j according
(6.2) we get for the modified distance matrix:

6.4 The Link and Node Biased Encoding 181

D′ =

⎛
⎜⎜⎜⎜⎝

− 14 10 18 12
14 − 12 19 11
10 12 − 14 6
18 19 14 − 19
12 11 6 19 −

⎞
⎟⎟⎟⎟⎠ ·

Using Prim’s algorithm for the modified distance matrix D′, we finally get
the tree illustrated in Fig. 6.26. The represented tree is calculated as the
MST using the distance matrix D′. For example, d′0,2 = 10 < d′0,i, where
i ∈ {1, 3, 4}. Because the link between node 0 and node 2 has the lowest
distance weight d′, it is used for the construction of the represented tree.

0

1

2 4

3
Figure 6.26. An example tree for the node-biased encod-
ing

Palmer noticed in his original work that each bi modifies a whole row and
a whole column in the distance weight matrix. Thus, not all possible solution
candidates can be encoded by the NB encoding (Palmer 1994, pp. 66-67).

The Link-Biased Encoding

When using the link-biased (LB) encoding, each genotype holds weights bij

for the n(n−1)/2 different edges of a tree. As for the LB encoding, the weights
bij are floating values between zero and one. The original distance weights dij

are modified by the link weights bij as

d′ij = dij + P1bijdmax, (6.4)

where d′ij are the modified distance weights, dmax = max(dij), and P1 is the
link-specific bias. The parameter P1 controls the influence of the link-specific
weights bij and has a large impact on the structure of the tree. For P1 = 0,
the link-specific weights have no influence and only the MST calculated based
on dij can be represented.

0

1

2

3

4
5

C

A

B

D

Figure 6.27. An example tree for the LB encoding (The
numbers indicate the number of a link)

We illustrate the construction of a tree from the genotype b with a brief
example. We use the LB encoding and for representing a tree with n = 4 nodes

182 6 Analysis and Design of Representations for Trees

the genotype is of length l = n(n− 1)/2 = 6. For the example we want to use
the LB-encoded genotype bij = {0.1, 0.6, 0.2, 0.1, 0.9, 0.3}. With P1 = 1 and
using the distance weights dij = {10, 30, 20, 40, 10, 20} we can calculate the
modified distance weights according to (6.4) as d′ij = {14, 54, 28, 44, 56, 32}.
Notice that dmax = 40. The represented tree, which is calculated as the MST
tree using the modified distance weights d′, is shown in Fig. 6.27. The six
possible edges are labeled from 0 to 5 and the tree consists of the edges between
A and B (d′AB = 14), A and D (d′AD = 28), and C and D (d′CD = 32).

The Link-and-Node-Biased Encoding

As an extension of the NB encoding, Palmer (1994) introduced a second,
extended version of the LB encoding with an additional link bias. For the
link-and-node-biased (LNB) encoding, the genotype holds weights not only
for the n nodes but also for all possible n(n−1)/2 links, and has l = n(n+1)/2
elements (n node weights bi and n(n − 1)/2 link weights bij). Therefore, the
weighting function is

d′ij = dij + P1bijdmax + P2(bi + bj)dmax, (6.5)

with the node weights bi, the link weights bij , the link-specific bias P1, and
the node-specific bias P2. With proper parameter setting, the LNB encoding
can represent all possible trees. However, in comparison to the LB encoding,
the length of a genotype increases from n to n(n + 1)/2.

We present a brief example for the LNB encoding. The example genotype
holds the node weights bi = {0.7, 0.5, 0.2, 0.8, 0, 1} and the link weights

bij =

⎛
⎜⎜⎜⎜⎝

− 0.1 0.6 0.2 0.8
0.1 − 0.1 0.9 0.5
0.6 0.1 − 0.3 0.2
0.2 0.9 0.3 − 0.4
0.8 0.5 0.2 0.4 −

⎞
⎟⎟⎟⎟⎠ ·

With P1 = 1, P2 = 1, and using the distance weight matrix from (6.3) we can
calculate d′0,1 = 2 + 0.1× 10 + (0.7 + 0.5)× 10 = 15. Consequently, we get for
the modified distance weight matrix

D′ =

⎛
⎜⎜⎜⎜⎝

− 15 16 20 20
15 − 13 28 16
16 13 − 17 8
20 28 17 − 23
20 16 8 23 −

⎞
⎟⎟⎟⎟⎠ ·

Finally, we calculate the MST using the modified distance matrix D′ and get
the tree shown in Fig. 6.28.

Using the different variants of the LNB encoding makes it necessary to
determine the value of one or two additional encoding parameters, P1 and

6.4 The Link and Node Biased Encoding 183

0

1

2 4

3
Figure 6.28. An example tree for the LNB encoding

P2. In the original work from Palmer, only results for the NB encoding with
P2 = 1 are presented.

For the different variants of the LNB encoding, the construction of the
phenotype can be implemented with a Fibonacci heap and goes with O(n2).
The structure of the represented tree depends not only on the node and link
weights, but also on the given distance weights of the links. The same LB,
NB, or LNB-encoded genotype can represent different phenotypes if different
distance weights are used. Therefore, we assume in our experiments that the
distance weights remain constant and do not change during the run of a GA.

6.4.2 Bias and Non-Uniformly Redundant Representations

Representations are redundant, if they assign a discrete, non-infinite num-
ber of different phenotypes to genotypes that consist of real values. Each
phenotype can be represented by an infinite number of different genotypes.
Consequently, the different variants of the LNB encoding are redundant. Fur-
thermore, the representations are synonymously redundant. Genotypes that
represent the same phenotype are next to each other in the mutational space.
Small mutations of the node weights bi or link weights bij often do not change
the represented phenotype, or only slightly by one edge. Even large mutations
that completely change a node or link weight only result in a change of up to
two edges. As a result of the synonymous redundancy of the different variants
of the LNB encoding, the models from Sect. 3.1 can be used to predict the
influence of the redundant LNB encodings on the performance of GEAs.

In Sect. 3.1, we have seen that uniform redundancy does not change the
performance of GEAs in comparison to non-redundant representations. An en-
coding is uniformly redundant if all phenotypes are represented by the same
number of genotypes. However, if some individuals are overrepresented by the
encoding, the performance of GEAs is influenced. If the optimal solution is
similar to the overrepresented individuals, GEA performance increases. If the
optimum is similar to underrepresented individuals, a degradation of GEA
performance is unavoidable. As a result, if the encoding is not uniformly re-
dundant, GEA performance depends on the structure of the optimal solution.

We illustrate that a bias of a representation is equivalent to non-uniform
redundancy. Therefore, the results about redundant representations from
Sect. 3.1 can be also used for biased representations. Palmer defined a bi-
ased encoding in his thesis (Palmer 1994, pp. 39) as:

“It (a representation) should be unbiased in the sense that all trees
are equally represented; i.e., all trees should be represented by the

184 6 Analysis and Design of Representations for Trees

same number of encodings. This property allows us to effectively select
an unbiased starting population for the GA and gives the GA a fair
chance of reaching all parts of the solution space.”

When comparing this definition of bias to the definition of redundant en-
codings (compare Sect. 3.1.2), we see that both definitions are essentially the
same. An encoding is biased if some individuals are over-, or underrepresented.
Furthermore, Palmer correctly recognized, in agreement with the results about
redundant encodings, that a widely usable, robust encoding should be unbi-
ased. However, in contrast to Palmer’s statement that only unbiased encodings
allow an effective search, we have seen that biased (non-uniformly redundant)
encodings can be helpful if the encoding is synonymously redundant and over-
represents solutions similar to the optimal solution.

The reader should be careful not to confuse the bias of a representation
with the ability to encode all possible phenotypes. Palmer and Kershenbaum
(1994a) have already shown that the simple NB encoding is not able to repre-
sent all phenotypes. The bias of an encoding describes whether the phenotypes
that can be represented are uniformly represented but does not consider the
number of represented phenotypes.

As the different variants of the LNB encoding are redundant, the perfor-
mance of GEAs goes with O(r/2kr). The question arises regarding whether the
encodings are non-uniformly redundant, or not. Palmer developed the LNB
encoding with the intent to create a uniformly redundant encoding. Therefore,
to be able to judge the performance of GEAs using the LNB encoding, we in-
vestigate in the following subsections whether the synonymously redundant
variants of the LNB encoding are uniformly redundant.

6.4.3 The Node-Biased Encoding

The NB encoding is not capable of representing all possible trees (Palmer
1994). The purpose of this subsection is to investigate whether the LB encod-
ing uniformly encodes the phenotypes that can be encoded. The subsection
extends prior work (Gaube 2000; Gaube and Rothlauf 2001) by new results.
We start with a distance weight matrix where all dij have the same value. This
is followed by an investigation where the position of the nodes are chosen ran-
domly and the distance weights dij are the Euclidean distances between the
nodes.

All Distance Weights are Equal

We assume that all distance weights dij are equal, dij = dkl, for i, j, k, l ∈
{0, . . . , n − 1} and i �= j, k �= l. Thus, different values of d′ij are a result of
different node weights bi (6.2). We denote by bl = minn−1

i=0 bi the lowest weight
of b. It is the weight for the lth node. Then,

d′il < d′ij for bl = min{b0, . . . bn−1},

6.4 The Link and Node Biased Encoding 185

where i, j, l ∈ {0, . . . , n − 1}, i �= l, i �= j and l �= j. As Prim’s algorithm
chooses these n − 1 links with the lowest modified distance weights that do
not create a cycle, the only phenotype that could be represented by the NB
encoding is a star with center l. Therefore, the LB encoding is uniformly
redundant and encodes only stars if all distance weights dij are the same.

For a tree with n nodes, the number of possible stars is n, whereas the
number of all possible trees is nn−2. Thus, only a small fraction of trees could
be represented by the node-biased encoding.

non-star
star with center l

l = 0 l = 1 l = 2 l = 3

0% 25.01% 24.97% 24.92% 25.10%

Table 6.5. Average percentage of rep-
resented phenotypes (n = 4)

Although an empirical proof of a theoretical prediction is redundant, Ta-
ble 6.5 presents an empirical verification of these results for a small 4 node
problem. There are 16 possible trees, and 4 of them are stars with center
l, where l ∈ {0, 1, 2, 3}. For the experiments, we created 1,000 random LB-
encoded solutions for 1,000 different distance weights dij . We see that it is not
possible to create non-stars, and that the stars are represented uniformly. As
a result, for equal distance weights, the NB representation is uniformly redun-
dant (it represents the n different stars unbiased) but it can only represent a
small portion of the solution space (only stars).

Random Distance Weights

We randomly placed the nodes on a two-dimensional quadratic plane of size
1000×1000 and calculated the distance weights dij using the Euclidean dis-
tance between the nodes i and j (6.1). For the experiments, we randomly
created 500 NB-encoded genotypes xg

rnd.
Figure 6.29 shows the average minimum phenotypic distance min(dp

rnd,star)
between a randomly created node-biased individual xp

rnd and a star. The dis-
tance dp

rnd,star measures how similar the phenotype of a randomly created
NB vector is to one of the n stars. If dp

rnd,star is low, xp
rnd has many edges

in common with one of the n stars. We performed experiments for 8, 16,
and 32 node problems and positioned the nodes 250 times randomly on the
1000×1000 square.

The plots show that in comparison to an unbiased encoding (like Prüfer
numbers), where the average distance towards a star stays constant, with in-
creasing node-specific bias P2, the minimum phenotypic distance min(dp

rnd,star)
decreases. Therefore, a randomly created NB-encoded individual becomes
more and more star-like and the NB encoding is non-uniformly redundant
as it overrepresents solutions similar to stars.

This result is not surprising when we take a closer look at (6.2). The orig-
inal distance weights dij are modified by an additional bias. With increasing

186 6 Analysis and Design of Representations for Trees

 0

 1

 2

 3

 4

 0 2 4 6 8 10

m
in

(d
p rn

d,
st

ar
)

P2

node-biased
unbiased

(a) 8 node

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10

m
in

(d
p rn

d,
st

ar
)

P2

node-biased
unbiased

(b) 16 node

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

m
in

(d
p rn

d,
st

ar
)

P2

node-biased
unbiased

(c) 32 node

Figure 6.29. Average minimum phenotypic distance min(dp
rnd,star) of a randomly

generated NB-encoded genotype to a star. With increasing node bias P2, the NB
encoding is strongly biased towards stars. For large P2, only one of the n stars can
be encoded.

node bias P2, the influence of dij relatively decreases and d′ij only depends on
the node-specific weights bi and bj , and no longer on the distance weights dij .
Therefore, with large P2, dij can be completely neglected and the NB encod-
ing can only encode stars. We have the same situation as when all distance
weights are the same. Thus, the results described in the previous paragraphs
hold true. We see that with increasing P2, every randomly created NB-encoded
individual will decode to a star.

However, not only for very large, but even for reasonable values of P2, the
NB encoding is strongly biased. To investigate how often different phenotypes
are represented by a randomly created NB-encoded solution, we ordered the
represented phenotypes according to their frequency. In Fig. 6.30, we plot
how the cumulative frequencies of the ordered number of copies of a spe-
cific phenotype depend on P2 for a tree with four nodes (there are 42 = 16
different phenotypes). The frequencies are ordered in ascending order. This
means that rank 1. corresponds to the phenotype that is most often encoded
(encoded with the highest probability), and rank 16. to the phenotype that
is encoded with the lowest probability. We performed 1,000 experiments with
different node locations and randomly generated 1,000 NB-encoded genotypes
for each experiment. The presented values are averaged over these 106 different
genotypes.

If the encoding is unbiased (uniformly redundant), all individuals are cre-
ated with the same probability and the cumulative frequency linearly increases
with the rank. All 16 possible phenotypes are represented uniformly with
probability 1/16=0.0625. However, for the NB encoding, some phenotypes
(stars) are created more often. For example, when using the NB encoding
with P2 = 0.5, a randomly generated LB-encoded genotype represents with
a probability of about 0.5 the same phenotype (rank 1.). The next most fre-
quent phenotype is encoded by a randomly chosen genotype with probability
of about 0.25. The line shows that for P2 = 0.5 about 90% of all randomly

6.4 The Link and Node Biased Encoding 187

0

0.2

0.4

0.6

0.8

1

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.

cu
m

ul
at

iv
e

fr
eq

ue
nc

y

rank

P2=0
P2=0.05
P2=0.5

P2=1
P2=10
P2=∞

unbiased encoding

Figure 6.30. Dis-
tribution of different
phenotypes (n = 4)

generated NB-encoded genotypes only represent three different phenotypes.
Furthermore, we see that for P2 large enough (P2 > c), the encoding can only
represent a maximum of n = 4 different phenotypes which are stars. These 4
stars are encoded unbiased (each of the four individuals is created with 25%
probability), similarly to the situation where all distance weights are the same.

The results show that for medium values for P2 some phenotypes are
strongly overrepresented, whereas some others are not represented at all. For
lower values of P2, the node weights bi have a lower influence on d′ij and the
represented phenotypes are MST-like. Figure 6.30 shows that with decreasing
P2, fewer and fewer different phenotypes can be represented. For P2 = 0 only
one phenotype, the MST, can be encoded.

Figure 6.31 illustrates the frequency of the first, second, and fifth most
frequent phenotype over P2. The plots are based on Fig. 6.30. We see that
with increasing P2, the diversity decreases, and for P2 � 10 only the four most
frequent phenotypes (they are the four stars) are uniformly represented with
about 25% frequency. With lower P2, the phenotypes are biased towards the
MST, and for P2 → 0, only one phenotype (the MST) can be represented.

The results show, that the NB encoding is non-uniformly redundant and
overrepresents either stars or the MST. For P2 → ∞, the encoding can only
represent stars. When using medium values for P2, a few star-like individuals
dominate a randomly created population, and it is impossible to create some
phenotypes. For small values of P2, the represented phenotypes become more
and more MST-like, and for P2 → 0 only the MST can be encoded.

6.4.4 A Concept for the Analysis of Redundant Representations

In this section, we want to illustrate how the theoretical insights from Sect. 3.1
can be used for predicting the influence of the redundant LB encoding on the
performance of GEAs.

188 6 Analysis and Design of Representations for Trees

1

0.8

0.6

0.4

0.2

0
 0.001 0.01 0.1 1 10 100 1000

fr
eq

ue
nc

y

P2

1. rank
2. rank
5. rank

structure
star−like treeminimum spanning tree like

tree structures

Figure 6.31. Fre-
quency of how often
the first, second, and
5th most frequent phe-
notype is encoded by
a randomly chosen
LB-encoded genotype
(n = 4)

Section 6.4.1 illustrated for the LB encoding that the mapping from the
genotypes to the phenotypes depends on the link-specific bias P1. Therefore,
to be able to predict the expected GEA performance when using the LB
encoding, it must be investigated how P1 influences the characteristics of the
encoding. The following investigation is an example performed for the LB
encoding, but the investigation approach is general and can be transferred to
any other representation. Factors needing to be examined are:

• Size of the search space.
• Synonymy of the redundant representation.
• Order of redundancy.
• Over- and underrepresentation.

These aspects are discussed in the following paragraphs. When using a (re-
dundant) representation it is important that all possible phenotypes can be
represented. A representation should assign at least one genotype to all phe-
notypes of interest. Otherwise, if no genotype is assigned to some phenotypes,
the search space is reduced by the encoding and some possible solutions can
never be found by the used search method. The influence of this effect on
the performance of a GEA is twofold. If the number of accessible solutions
is reduced but the optimal solution is still accessible, GEA performance in-
creases. On the other hand, if the optimal solution is no longer accessible,
all search methods must fail. Therefore, a reduction of the phenotypic search
space should be avoided if no problem-specific knowledge regarding the opti-
mal solution exists. When using the LB encoding, the number of accessible
solutions depends on P1 (Gaube and Rothlauf 2001). If P1 is very large, all
possible phenotypes can be represented using this encoding. At the other ex-
treme, for P1 very small (P1 → 0), only the MST calculated from the distance
weights dij can be represented. As long as P1 � 1, every possible phenotype
can be encoded as the additional overall bias P1bijdmax (compare (6.4)) can

6.4 The Link and Node Biased Encoding 189

always be larger than dij . If P1 � 1 some of the possible trees can not be
encoded using the LB encoding.

In our proposed model (Sect. 3.1.4) describing the influence of redundant
representations on GEA performance, we assume that non-uniform redun-
dancy changes the initial supply. If we want to use this model for predicting
GEA performance we must ensure that the considered representation is syn-
onymously redundant. If a representation is not synonymously redundant, the
standard search operators no longer work properly and GEAs fail (compare
Section 3.1.2). The LB encoding is synonymously redundant independently of
the parameter P1. Even if the number of accessible solutions decreases with
lower values of P1, a mutation operator always results in the same, or a slightly
different, phenotype.

When comparing different types of redundant representations, an impor-
tant measure is the order kr of redundancy. In Section 3.1.4, we saw that the
population size N goes with O(2kr) for synonymously redundant represen-
tations. Therefore, kr has a strong influence on GEA performance. For the
real-valued LB encoding we can assume that kr remains independent of P1.

Finally, when using a redundant representation it must be investigated
whether some phenotypes are over- or underrepresented. Section 3.1.4 has
shown that the necessary population size N goes with O(1/r). In general,
the parameter r is problem-specific and depends on the specific instance of a
problem. GEA performance remains unchanged if a synonymously redundant
representation is uniformly redundant. If a representation is non-uniformly re-
dundant, some instances of a problem will become easier for the search method
(those where the optimal solution is overrepresented) and some instances will
become more difficult (those where the optimal solution is underrepresented).
For the LB encoding, solutions that are similar to the MST are increasingly
overrepresented with decreasing P1. For very small P1 only a tiny fraction of
genotypes represent a solution different from the MST. Only for large values
of P1 → ∞ is the LB encoding uniformly redundant. As a result, there is a
continuum between uniform redundancy (P1 → ∞) and complete non-uniform
redundancy (P1 = 0), which can be controlled by the parameter P1.

In the remaining paragraphs of this subsection, we investigate this con-
tinuum and examine how the overrepresentation of specific edges can be con-
trolled by the representation-specific parameter P1. We want to start with
an investigation into how similar a randomly created individual is compared
to the MST. The similarity between two trees (the MST and the randomly
created individual) is measured by calculating the distance between both
trees. The distance between two trees measures the number of different edges
(Sect. 6.1.2). In Fig. 6.32, we show the phenotypic distance of a randomly
created link-biased individual to the MST for n = 16 and n = 28. The error
bars show the standard deviations. The dotted lines indicate the distance of
a randomly created individual towards the MST when using a non-redundant
representation (for example Prüfer numbers). The results show that for large
values of P1 a randomly created LB individual has about the same distance

190 6 Analysis and Design of Representations for Trees

 0

 5

 10

 15

 20

 25

 1000 100 10 1 0.1 0.01

di
st

an
ce

 to
 M

S
T

link-specific bias P1

16 nodes
28 nodes

Figure 6.32. Phenotypic distance of
a randomly generated LB individual
to the minimum spanning tree for
trees with n = 16 and n = 26 nodes.
The distance between two individuals
indicates the number of links that are
different.

towards the MST as a non-redundant encoding. Therefore, it can be assumed
that with a large enough P1, the LB encoding is uniformly redundant. With
decreasing values of P1 the represented trees become more and more MST-like
and the LB encoding becomes more and more non-uniformly redundant.

We see that the overrepresentation of a specific solution (the MST)
strongly depends on the link-specific bias P1. To be able to calculate the
overrepresentation of specific edges (we need this for the population sizing
model we derive in Sect. 6.4.5) we want to examine how Pr, which is the
probability that an edge contained in a randomly created LB individual is
also contained in the MST, depends on P1. For non-redundant or uniformly
redundant representations the probability Pu

r can be calculated as

Pu
r =

2n

n(n − 1)
· (6.6)

n P u
r

Pr for P1=1,000,000
µ(σ)

8 0.25 0.2497 (0.013)

12 0.1667 0.1665 (0.017)

16 0.125 0.1250 (0.015)

20 0.1 0.0998 (0.010)

24 0.0834 0.0832 (0.012)

28 0.0714 0.0713 (0.012)

Table 6.6. A comparison between P u
r and Pr

for P1 = 1, 000, 000.

Table 6.6 compares for different problem sizes n, the probability Pu
r for

non-redundant representations to empirical results for Pr (mean µ and stan-
dard deviation σ) when using a large link-specific bias (P1 = 1, 000, 000). It
can be seen that for large values of P1 the probability Pr (that an edge con-
tained in a randomly created LB individual is also contained in the MST)
equals the probability Pu

r (that a randomly chosen edge is part of the MST).
Therefore, for large values of P1 the encoding becomes uniformly redundant.

6.4 The Link and Node Biased Encoding 191

0.05

0.1

0.2

0.5

1

0.01 0.1 1 10 100 1000 1e+006

P
r

link-specific bias P1

8 nodes
16 nodes
24 nodes
28 nodes

Figure 6.33. Probability that a link
of a randomly generated LB-encoded
tree is part of the MST over the link-
specific bias P1

Consequently, Fig. 6.33 plots, for the LB encoding, how Pr depends on the
link-specific bias P1. The results show the mean and the standard deviation
for 8, 16, 24, and 28 node trees. For large values of P1 (P1 > 100), Pr equals
Pu

r and we get the values shown in Table 6.6. With decreasing P1, the edges
contained in a randomly created individual are also more and more frequently
contained in the MST. For small values of P1, all edges of a randomly created
individual are with high probability Pr and also part of the MST.

After discussing how the redundancy of the LB encoding and the overrep-
resentation of specific edges depends on the link-specific bias P1, we want to
formulate a model based on the results from Sect. 3.1.4, which describes how
GEA performance depends on P1.

6.4.5 Population Sizing for the Link-Biased Encoding

The previous section has shown that with decreasing link-specific bias P1 the
LB encoding overrepresents solutions similar to the MST. This section shows
that we are able to give good predictions on how GA performance depends on
the link-specific parameter P1 by combining the population sizing model (6.9)
for the network random keys (compare Sect. 6.5.5), which only holds for the
uniformly redundant LB encoding (P1 must be large), with the population
sizing model from Sect. 3.1.4, which explains the influence of non-uniformly
redundant representations on GEA performance. We formulate the population
sizing model for the LB encoding and present experimental results.

In Sect. 6.5.5, we present a population sizing model for the one-max tree
problem which was derived for the network random key representation. The
network random key representation is almost identical to the LB encoding
using large values of P1. Both encodings are synonymously and uniformly
redundant representations defined on real-valued strings of the same length.
Only the construction of the tree from the genotypic weights is different.
Network random keys use Kruskal’s algorithm and do not consider the original
distance weights dij , whereas the LB encoding uses Prim’s algorithm for the

192 6 Analysis and Design of Representations for Trees

construction of the phenotypes and considers dij . Therefore, the population
sizing model for the network random keys is valid for the LB encoding if a
large link-specific bias P1 is used. A large value of P1 is necessary to ensure
uniform redundancy. The model is formulated as (compare (6.9))

N = −
√

π

4
ln(α)

√
n(n − 1)(n − 2) ≈ −

√
π

4
ln(α)n1.5,

where α is the probability of failure, and n is the number of nodes. It can be
seen that the necessary population size N increases with O(n1.5). For further
information regarding the model, the reader is referred to Sect. 6.5.5.

In the following experiments, the optimal solution for the one-max tree
problem is always the MST. We want to calculate for a GA using the LB
encoding the population size N that is necessary for finding the optimal solu-
tion (the MST) with some probability Popt. The optimal solution is correctly
found by a GA if all of the n − 1 links of the optimal solution are correctly
identified. Therefore, Popt = (1 − α)n−1, where α is the probability of error
for one link. We get for

α = 1 − exp
(

log(Popt)
n − 1

)
.

Substituting α into (6.9) results in

N = −
√

π

4
ln

(
1 − exp

(
log(Popt)

n − 1

)) √
n(n − 1)(n − 2). (6.7)

This population sizing model should give us good predictions for the expected
minimal population size using the LB encoding with a large link-specific bias
P1. The large link-bias ensures that the encoding is uniformly biased.

Figure 6.34 shows the theoretical prediction from (6.7) and the experi-
mental results for the LB encoding with P1 = 1, 000, 000. The plots show
the necessary population size N over the problem size n for Popt = 0.95. We
performed 500 runs for each population size and the resolution for N is 1. We
used a standard generational GA with uniform crossover and no mutation. In
all runs, we use tournament selection without replacement of size 3 and each
run is stopped after the population is fully converged. Because the encoded
phenotype depends on the distance weights dij , for every run we randomly
placed the nodes on a 1000x1000 square. dij is calculated as the Euclidean
distance between the two nodes i and j.

Although the population sizing model from (6.7) slightly overestimates
the necessary population size N , it still allows a good approximation of the
experimental results. As we are mainly interested in investigating the influence
of P1 on the solution quality, and not on the development of a highly accurate
population sizing model, we are satisfied with the accuracy of this population
sizing model. It can be seen that the necessary population size N increases
approximately with O(n1.5).

6.4 The Link and Node Biased Encoding 193

 400

 200

 100

 50

 28 24 20 16 12 8

N

n

experimental results
prediction

Figure 6.34. Necessary population size N over the problem size n for the one-
max tree problem. The optimal solution is the MST and P1 = 1, 000, 000 to ensure
uniform redundancy. The results show that the used population sizing model gives
an acceptable approximation of the expected GA performance.

In the following paragraphs, we want to consider that the LB encoding be-
comes non-uniformly redundant with decreasing P1. With lower P1, the links
that are contained in the MST are overrepresented by the encoding. There-
fore, GEA performance increases and the population size that is necessary
to find the optimal solution (the MST) decreases. We know from Sect. 3.1.4
that the necessary population size N goes with O(2kr/r). r is the number of
genotypic BBs that represent the optimal phenotypic BB. For the one-max
tree problem we can assume that the size of the BBs k equals one and that
each possible link is one phenotypic BB.

We have to determine how the different phenotypic BBs (the possible
edges in the tree) are overrepresented by the LB encoding. In Sect. 6.4.4,
we have introduced the probability Pr that a link contained in a randomly
created individual is also part of the optimal solution. We can assume that the
probability Pr is proportional to r (Pr = const× r). Doubling the probability
Pr means that a specific link of a randomly created individual is twice as
often also contained in the optimal solution (the MST). Therefore, doubling
Pr has the same effect as doubling r. Furthermore, we can assume that the
character of the LB encoding does not change for different values of P1 and
that kr remains constant. Therefore, the population size N when using the
LB encoding goes with O(1/Pr). From (6.7) we finally get

N = −Pu
r

Pr

√
π

4
ln

(
1 − exp

(
log(Popt)

n − 1

)) √
n(n − 1)(n − 2), (6.8)

where Pu
r indicates Pr for P1 → ∞ (compare (6.6)). The values of Pr depend

on the link-specific bias P1 and are shown in Fig. 6.33 for different problem
sizes n.

194 6 Analysis and Design of Representations for Trees

The theoretical predictions and the empirical results for different problem
sizes are shown in Figs. 6.35(a) (8 and 20 node one-max tree problem), 6.35(b)
(12 and 24 node one-max tree problem), 6.35(c) (16 and 28 node tree one-
max tree). The results are split into three plots due to illustrative purposes.
The plots show how the necessary population size N depends on the link-
specific bias P1. The probability of finding the optimal solution (the MST)
is Popt = 0.95. For determining the relationship between P1 and Pr, which
we discussed in Section 6.4.4, we used the results plotted in Fig. 6.33. The
lines show the theoretical predictions from (6.8) and the points show the
experimental results. In all runs, the optimal solution was the MST and we
used the same parameters as for the uniformly redundant LB encoding, whose
details are described above.

 1

 10

 100

 1e+006 100 10 1 0.1 0.01

N

P1

n=8 (exp.)
n=8 (prediction)

n=20 (exp.)
n=20 (prediction)

(a) 8 and 20 node one-max tree

 1

 10

 100

 1e+006 100 10 1 0.1 0.01

N

P1

n=12 (exp.)
n=12 (prediction)

n=24 (exp.)
n=24 (prediction)

(b) 12 and 24 node one-max tree

 10

 100

 1e+006 100 10 1 0.1 0.01

N

P1

n=16 (exp.)
n=16 (prediction)

n=28 (exp.)
n=28 (prediction)

(c) 16 and 28 node one-max tree

Figure 6.35. We show how the population size N which is necessary for finding the
optimal solution with probability Popt = 0.95 depends on the link-specific bias P1.
In all runs, the optimal solution was the MST. The results show that the proposed
population sizing model gives good predictions for the expected solution quality. For
small values of P1 the populations size N strongly decreases as the size of the search
space collapses and only the optimal solution (the MST) can be represented.

6.4 The Link and Node Biased Encoding 195

The results show that the proposed population sizing model (6.8) gives
us a good prediction on how the performance of a GA depends on the link-
specific bias P1. There is only a small difference between the predicted value
for N and the actual experimental results. As expected, the population size N
declines with decreasing P1 and the problem becomes easier to solve for a GA.
Furthermore, we can see that for small values of P1 < 1 the necessary pop-
ulation size N strongly declines and the experimental population size drops
much faster than predicted. This is because for P1 < 1 (compare Sect. 6.4.4)
the LB encoding does not allow us to encode all possible trees and the search
space collapses. Only trees that are similar to the MST can be encoded. Small
values of P1 result in high values of Pr (compare Fig. 6.33) which means that
most of the links of a randomly created individual are also part of the opti-
mal solution (the MST). In the extreme cases, for P1 → 0 (Pr → 1), the LB
encoding can only encode the optimal solution (the MST) and the necessary
population size N → 0.

This subsection has illustrated that the proposed theoretical concepts de-
scribing the influence of synonymously redundant representations on the per-
formance of GAs can be used for real-valued representations like the LB encod-
ing. The presented results have shown that the proposed theory from Sect. 3.1
predicts the expected GA behavior well.

6.4.6 The Link-and-Node-Biased Encoding

Palmer (1994) proposed the LNB encoding to overcome some of the problems
with the node-biased (NB) encoding. In this subsection, we investigate how the
non-uniform redundancy which we have noticed for the NB and LB encoding
is influenced by the interplay between the two parameters P1 and P2.

In analogy to Sect. 6.4.3, we investigate the bias of the LNB encoding by
randomly creating LNB-encoded genotypes xg

rnd and measuring their minimal
phenotypic distance min(dp

rnd,star) towards one of the n stars. The more links
an individual has in common with one of the stars, the more star-like it is and
the lower is the distance. In Fig. 6.36, we present results for randomly created
LNB-encoded genotypes xg

rnd with 8, 16, and 32 nodes. The average minimum
distance min(dp

rnd,star) towards one of the n stars is plotted over P1 and P2,
and compared to an unbiased encoding (Prüfer numbers). The parameters P1

and P2 vary between 0 and 1, and we generated 1,000 LNB-encoded genotypes
xg

rnd. The distance weights dij are the Euclidean distances between the nodes
i and j. We present results averaged for randomly positioning the nodes 250
times on a two-dimensional 1000×1000 grid.

The results show for different n that the non-uniform redundancy of the
LNB encoding depends on the node-specific bias P2. With increasing P2 the
individuals are biased towards stars. With P2 dominating P1, we notice the
same behavior as for the NB encoding. With increasing P2, the encoding can
only represent star-like structures, and for P2 large enough, the distance of
an individual towards one of the n stars would become zero.

196 6 Analysis and Design of Representations for Trees

 0
 0.5

 1

 0
 0.5

 1

 2.5

 3

 3.5

 4

min(dp
rnd,star)

link-and-node-biased
unbiased

P1P2

min(dp
rnd,star)

(a) 8 node

 0
 0.5

 1

 0
 0.5

 1

 8

 9

 10

 11

min(dp
rnd,star)

link-and-node-biased
unbiased

P1P2

min(dp
rnd,star)

(b) 16 node

 0
 0.5

 1

 0
 0.5

 1

 21

 23

 25

 27

min(dp
rnd,star)

link-and-node-biased
unbiased

P1P2

min(dp
rnd,star)

(c) 32 node

Figure 6.36. Average minimum phenotypic distance of a randomly generated LNB-
encoded individual with 8, 16, or 32 nodes to a star. By increasing the node-specific
bias P2, an individual is strongly biased towards a star. Higher values for the link-
specific bias P1 result in a lower bias. Small values of P1 and P2 result in a bias
towards the MST.

As discussed in the previous section, with increasing link-specific bias P1

the LNB encoding becomes uniformly redundant. To more closely investigate
the dependency of the bias on P1, Fig. 6.37 shows how min(dp

rnd,star) depends
on P1 for P2 = 0. In accordance with the results from Sect. 6.4.4, with in-
creasing P1, min(dp

rnd,star) stays about constant, and the encoding becomes
approximately uniformly redundant. In comparison to non-uniform represen-
tations, there is still a small bias. However, as it is very small, we can ignore
it.

Finally, we want to emphasize that small values of P1 and P2 reduce the
performance of the encoding, as the link and node weights have no influence
on the construction of the phenotype. The encoding can only represent trees
similar to the MST. The results show that with increasing P2, a randomly
created LNB-encoded tree is strongly biased towards stars. By increasing the

6.4 The Link and Node Biased Encoding 197

 3.6

 3.7

 3.8

 3.9

 4

 4.1

 4.2

 0 2 4 6 8 10

m
in

(d
p rn

d,
st

ar
)

P1

link-biased
unbiased

(a) 8 node

 10.6
 10.8

 11
 11.2
 11.4
 11.6
 11.8

 12

 0 2 4 6 8 10

m
in

(d
p rn

d,
st

ar
)

P1

link-biased
unbiased

(b) 16 node

 26

 26.5

 27

 27.5

 28

 0 2 4 6 8 10

m
in

(d
p rn

d,
st

ar
)

P1

link-biased
unbiased

(c) 32 node

Figure 6.37. Average minimum phenotypic distance of a randomly generated LNB-
encoded individual to a star over the link-specific bias P1. The node-specific bias
P2 = 0. For large P1, the encoding becomes unbiased. For P1 → 0, only the MST
can be encoded.

link-specific bias P1 the LNB encoding becomes less biased. For P1 large
enough, the encoding is approximately uniformly redundant if the node-bias
is small.

6.4.7 Experimental Results

The previous subsections have shown that the NB encoding as well as the LNB
encoding are biased towards stars. With increasing node-bias P2, star-like
structures are strongly overrepresented in a randomly generated population.
We know from Sect. 3.1 that redundancy favors genetic search if the optimal
solutions are overrepresented by the encoding, and hurts genetic search if the
optimal solutions are underrepresented. Therefore, we expect high GEA per-
formance if the optimum is a star, and low GEA performance if the optimum
is a non-star such as a random list.

Furthermore, we have seen that with a large link-bias P1, the encoding
becomes uniformly redundant. This means, the performance of GEAs should
be independent of the structure of the optimal solution with P1 large enough.
Finally, we know that the LNB encoding can not work for low values of P1 and
P2 because then the node and link weights have no influence on the structure
of the phenotypes and the encoding can only represent MST-like trees. At the
extreme, if P1 = P2 = 0, the genotype has no influence at all, and only the
MST can be represented.

To investigate how the performance of GEAs using the LNB encoding
depends on P1 and P2, we use the one-max tree problem from Sect. 6.1.5.
We define the best solution to be either a star or a random list and present
the performance of GEAs in Figs. 6.38, 6.39, 6.40, and 6.41. We use a simple
GA on a n = 16 node problem with only one-point crossover, no mutation,
tournament selection of size 3, a population size of N = 300, and terminate
the run after the population is fully converged. For each parameter setting, we

198 6 Analysis and Design of Representations for Trees

perform 100 runs with different randomly chosen positions of the 16 nodes (on
a two-dimensional 1000×1000 grid). The distance weights dij are calculated
according the Euclidean metric (compare (6.1)).

0

2

4

6

8

10

12

14

0 10 20 30 40 50

av
g.

 fi
tn

es
s

of
 b

es
t i

nd
iv

id
ua

l

generation

P2=0.0
P2=0.2
P2=0.4
P2=0.6
P2=0.8
P2=1.0
P2=2.0

(a) Topt is a random star

0

2

4

6

8

10

12

14

0 10 20 30 40 50

av
g.

 fi
tn

es
s

of
 b

es
t i

nd
iv

id
ua

l

generation

P2=0.0
P2=0.2
P2=0.4
P2=0.6
P2=0.8
P2=1.0
P2=2.0

(b) Topt is a random list

Figure 6.38. Average fitness of the best individual over the number of generations
for different values of the node-specific bias P2 (P1 = 0). The best solution Topt for
the 16 node one-max tree problem is either a star or a list. The results reveal that
GAs perform better with increasing P2 if Topt is a star. If Topt is a list, GAs fail.
We see that the performance of GAs using only the LB encoding strongly depends
on the structure of the optimal solution.

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2fit
ne

ss
 o

f b
es

t i
nd

iv
id

ua
l a

fte
r

20
 g

en
.

P2

star
list

Figure 6.39. We compare for a 16 node one-
max tree problem how the fitness of the best
individual after 20 generations depends on P2

for different optimal solutions Topt (P1 = 0). If
Topt is a star, the fitness increases with larger
P2. If Topt is a list, GAs fail and the fitness at
the end of the run is independent of P2.

6.4 The Link and Node Biased Encoding 199

0

2

4

6

8

10

12

14

0 10 20 30 40 50

av
g.

 fi
tn

es
s

of
 b

es
t i

nd
iv

id
ua

l

generation

P1=0.0
P1=0.5
P1=1.0
P1=2.0
P1=4.0
P1=8.0
P1=16

(a) Topt is a random star

0

2

4

6

8

10

12

14

0 10 20 30 40 50

av
g.

 fi
tn

es
s

of
 b

es
t i

nd
iv

id
ua

l

generation

P1=0.0
P1=0.5
P1=1.0
P1=2.0
P1=4.0
P1=8.0
P1=16

(b) Topt is a random list

Figure 6.40. Average fitness of the best individual over the number of generations
for different values of the link-specific bias P1 (P2 = 0). The best solution Topt for
the 16 node one-max tree problem is either a star or a list. The results reveal that
with P1 large enough, the LB encoding is unbiased, and the performance of GAs is
independent of the structure of Topt.

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14fit
ne

ss
 o

f b
es

t i
nd

iv
id

ua
l a

fte
r

20
 g

en
.

P1

star
list

Figure 6.41. We compare for a 16 node one-
max tree problem how the fitness of the best
individual after 20 generations depends on P1

for different optimal solutions (P2 = 0). We see
that the performance of GAs is independent of
the structure of the optimal solution. There-
fore, if the link-bias P1 is large enough, the LB
encoding is unbiased.

Figures 6.38(a) and 6.38(b) present the average fitness of the best indi-
vidual over the run dependent on different values of the node-specific bias
P2 (P1 = 0) if the optimal solution is either a star or a list. We see that
with increasing P2, GEAs find the optimal star much faster, whereas GEAs
fail completely when searching for the optimal list. The reader should also
notice that with increasing P2 the initial population becomes more and more
star-like, and the average fitness of the best individual in the initial popula-
tion becomes higher if the optimum is a star. If the node-bias is very small
(P2 → 0) only the MST can be encoded and the only individual a GA can find
is the MST. As a result, GAs fail for small values of P2. The problem with

200 6 Analysis and Design of Representations for Trees

P2 becomes more obvious when looking at how the best solution at the end
of the run depends on P2 as illustrated in Fig. 6.39. If the optimum is a star,
GEAs perform better with increasing P2. However, if the optimum solution is
a list, GEAs are not able to find the optimal solution.

The situation is different when investigating the influence of the link-
specific bias P1 (P2 = 0) on the performance of GEAs as illustrated in
Figs. 6.40 and 6.41. For both problems, GEAs work properly with P1 large
enough. GEAs searching for a star perform as well as when searching for a list.
If P1 is large enough, the encoding is (almost) unbiased and GA performance
is independent of the structure of the optimal solution. As we have seen be-
fore, the encoding is slightly biased towards lists and GAs perform slightly
better when searching for optimal lists. However, as the effect is very small
we want to neglect it.

The experimental results confirm the theoretical predictions from the pre-
vious subsections. With a large node-specific bias P2, the LNB encoding is
strongly biased towards stars, and GEAs fail if the optimal solution is not a
star. With a large link-specific bias P1, the encoding becomes uniformly re-
dundant and GEAs well perform independently of the structure of the optimal
solution. If both biases are very small, only the MST can be represented and
GEAs not searching for the MST fail.

6.4.8 Conclusions

Analyzing the notion of biased encodings as given by Palmer (1994) we recog-
nize that a bias is equivalent to non-uniform redundancy. Therefore, we can
use the results from Sect. 3.1 for analyzing the performance of GEAs using
the LNB encoding. The performance of GEAs using redundant representations
goes with O(r/2kr), where r denotes the number of copies that are given to
the best phenotypic BB and kr denotes the order of redundancy. Palmer, who
introduced the LNB encoding, drew the conclusion that the

“... new Link and Node Bias (LNB) encoding was shown to have all
the desirable properties ...” (Palmer 1994, pp. 90)

illustrated in Sect. 6.1.6 including those to be unbiased that means uniformly
redundant. However, we have seen that this claim is not true. With increas-
ing node-specific bias P2, the LNB encoding becomes more and more biased
towards stars and for P2 → ∞, the LNB encoding is only able to represent
stars. Therefore, GEAs using a large node-specific bias can not work properly.

Fortunately, the encoding becomes uniformly redundant with increasing
link-specific bias P1. For P1 → ∞, all phenotypes are about uniformly rep-
resented, and GEAs perform independently of the structure of the optimal
solution.

Finally, the LNB encoding has problems if both biases are small because
then the encoding can only represent phenotypes that are similar to the min-

6.5 Network Random Keys (NetKeys) 201

imum spanning tree. At the extreme, for P1 → 0 and P2 → 0, the genotype
has no influence on the phenotype and only the MST can be encoded.

Because optimal solutions for the optimal communication spanning tree
problem (see Sect. 8.2) often tend to be star- or MST-like, the LNB encoding
could be a good choice for this problem. In general, however, the encoding
has some serious problems, especially when using the simplified NB encoding.
Researchers should therefore be careful when using this encoding for other
problems because some trees are not encoded at all, and a randomly generated
LNB-encoded genotype can be biased towards stars or MSTs.

As a result, we strongly encourage users to use, as long as they have no idea
about the structure of the optimal solution, high values for the link-specific
bias, and to discard the node-specific bias. Otherwise, GEAs are likely to have
large problems in finding optimal non-star or non-MST trees, and a reduction
of GEA performance is unavoidable.

6.5 Network Random Keys (NetKeys)

The representation framework we developed in Chaps. 3 and 4 tells us that
high-quality representations should be robust, allow genetic operators to work
properly, and have high locality. Redundant representations should be synony-
mously and non-uniformly redundant if no knowledge regarding the optimal
solutions exists. However, Prüfer numbers, the CV encoding, and the LNB
encoding have shown to have problems with some of these issues. Prüfer num-
bers have low locality and make easy problems more difficult, the CV encoding
is non-synonymously redundant, and the LNB encoding is non-uniformly re-
dundant. Therefore, Prüfer numbers and the CV encoding are not suitable
encodings for easy problems as they make these problems more difficult. Only
the LNB encoding can result in good GEA performance if the encoding para-
meters P1 and P2 are properly set.

The purpose of this section is to design a new representation by combining
the advantageous properties of the CV and the LNB encoding. As a result, we
get the synonymously and uniformly redundant network random key encoding
(NetKeys). The NetKey encoding belongs to the class of weighted encodings.
In contrast to other representations such as the CV encoding which can only
indicate whether a link is established or not, weighted encodings use weights
for the genotype and can thus encode the importance of links. Consequently,
an additional construction algorithm is necessary which constructs a valid tree
from the genotypic weights (the random key sequence of length l = n(n−1)/2).

The section starts by illustrating how the NetKey encoding can be designed
by combining the CV encoding with some elements of the LNB encoding. This
is followed in Sect. 6.5.2 by the functionality of the NetKeys. We illustrate the
random keys which store the importance of the links as weighted vectors, and
the construction algorithm which constructs a valid tree from a random key
sequence. Section 6.5.3 summarizes the properties of the NetKey encoding.

202 6 Analysis and Design of Representations for Trees

This is followed by an investigation into whether the synonymously redun-
dant NetKey encoding is uniformly redundant, or not. For randomly created
genotypes, we measure the distance towards stars and MST, and provide em-
pirical verification that GEAs using NetKeys perform independently of the
structure of the optimal solution. Before closing the section with conclud-
ing remarks, Sect. 6.5.5 presents a model for the population sizing and run
duration of GEAs using NetKeys for the one-max tree problem.

6.5.1 Motivation

We have seen in Sect. 6.3.3 that the CV encoding is uniformly redundant. A
repair mechanism is necessary that assigns all infeasible genotypes to feasible
solutions. Because an allele only indicates if a link is established or not, the
repair mechanism must rely on random link insertion or deletion. Therefore,
the CV encoding is non-synonymously redundant, as not all infeasible geno-
types that are assigned to one phenotype are similar to each other. We want
to use the functionality of the CV encoding as the basis for NetKeys.

When trying to improve the CV encoding, we have to overcome the prob-
lem of non-synonymous redundancy. Furthermore, we must ensure that the
new encoding remains uniformly redundant. Therefore, we replace the binary
alleles, which only indicate if a link is established or not, by continuous alle-
les which encode the importance of a link by a weighted value (a randomly
chosen number). We have seen in Sect. 6.4 that the link-biased (LB) encoding
which uses genotypic weights is synonymously redundant. When combining
the link weights of the LB encoding with the principles of the CV encoding,
we get the NetKey encoding which is synonymously redundant (all genotypes
that represent one phenotype are similar to each other) and non-uniformly
redundant (no phenotypes are overrepresented).

By using a weighted instead of a binary encoding, the NetKey encoding
inherits most of the properties (for example the synonymous redundancy) from
the LB encoding. In contrast to the LB encoding, the alleles of the NetKeys
directly encode the importance of a link and not a bias of the distance matrix.
Furthermore, we do not use Prim’s algorithm (Prim 1957) which constructs
the MST from the modified distance matrix, but Kruskal’s algorithm (Kruskal
1956). The construction algorithm is unbiased and uses only the genotypic
weights and no distance weights for the construction of the phenotype.

6.5.2 Functionality

For describing the functionality of the NetKey encoding, we have to separate
the representation into two parts: Firstly, the genotype which is a sequence
of random keys. It stores the importance of the links as a weighted vector
of length l = n(n − 1)/2. Secondly, the construction algorithm (genotype-
phenotype mapping) which constructs a tree (phenotype) from a random key
sequence (genotype).

6.5 Network Random Keys (NetKeys) 203

Random Keys

By substituting the zeros and ones in the CV encoding by continuous val-
ues that can describe the importance of the links, the first part of NetKey
functionality is defined. However, the idea to use a weight for describing the
importance of an allele is not new, and has already been presented in a dif-
ferent context as the so called random key (RK) encoding. For other work
about weighted encodings in the context of tree representations the reader is
referred to Palmer (1994) or Raidl and Julstrom (2000).

The RK representation for encoding permutations was first presented by
Bean (1992). Later, the encoding was also proposed for single and multiple
machine scheduling, vehicle routing, resource allocation, quadratic assignment
the, and traveling salesperson problems (Bean 1994). Norman and Bean (1994)
refined this approach (Norman and Bean 2000) and applied it to multiple ma-
chine scheduling problems (Norman and Bean 1997). An overview of using
RKs for scheduling problems can be found in Norman (1995). In Norman and
Smith (1997) and Norman et al. (1998), RKs were used for facility layout
problems. In Knjazew (2000) and Knjazew and Goldberg (2000), a represen-
tative of the class of competent GAs (fast messy GA (Goldberg et al. 1993))
was used for solving ordering problems with RKs.

The RK representation uses random numbers for the encoding of a solu-
tion. A key sequence of length l is a sequence of l distinct real numbers (keys).
The values are initially chosen at random, are floating numbers between zero
and one, and are only subsequently modified by mutation and crossover. An
example for a key sequence is r = (0.07, 0.75, 0.56, 0.67). Of importance for
the interpretation of the key sequence is the position and value of the keys
in the sequence. If we assume that Zl = {0, . . . , l − 1} then a permutation
σ can be defined as a surjective function σ : Zl → Zl. For any key sequence
r = r0, . . . , rl−1, the permutation σr of r is defined as the sequence with el-
ements (σr)i = rσ(i). The permutation rs corresponding to a key sequence
r of length l is the permutation σ such that σr is decreasing (for example,
i < j ⇒ (σr)i > (σr)j). The ordering corresponding to a key sequence r of
length l is the sequence σ(0), . . . , σ(l− 1), where σ (also denoted as rs) is the
permutation corresponding to r.

This definitions say that the positions of the keys in the key sequence r
are ordered according to the values of the keys in descending order. In our
example, we have to identify the position of the highest value in the key
sequence r (r1 = 0.75). The next highest value is r3 = 0.67. We continue
ordering the complete sequence and get the permutation rs = 2, 4, 3, 1. In the
context of scheduling problems, this permutation can be interpreted as a list
of jobs that are executed on one machine (We start with job 2, then continue
with job 4, job 3, and job 1). From a key sequence of length l, we can always
construct a permutation of l numbers. Every number between 0 and l − 1
appears in the permutation only once as the position of each key is unique.
Here are some properties of the encoding.

204 6 Analysis and Design of Representations for Trees

• A valid permutation rs of l numbers can be created from all possible key
sequences r as long as there are no two keys ri that have the same value
(ri �= rj for i �= j and i, j ∈ {0, l − 1}). Therefore, every random key
sequence r can be interpreted as a permutation rs.

• There are many possibilities for the construction of a key sequence r from
a permutation rs. All elements ri can be scaled up by some factor and r
still represents exactly the same permutation rs. As long as the relative
ordering of the keys in r remains the same, different key sequences always
represent the same permutation. It is necessary that rs is a permutation
of l numbers, otherwise no key sequence r can be constructed from rs.

• RKs encode both, the relative position of a number in the permutation
rs (encoded by the value of the key at position i in comparison to all
other keys) and the absolute position of i in rs. The relative position of a
number i in the permutation rs is determined by the numbers that precede
and follow i. It is determined directly by the weights ri. All numbers j
in the sequence rs that follow i correspond to lower-valued keys (rj <
ri), whereas all numbers j that precede i correspond to higher-valued
keys (rj > ri). In the context of scheduling problems, all jobs where the
corresponding key has a higher value than the ith key are executed before
job i, and all jobs with a corresponding key with lower value are executed
after i. In contrast, the absolute position of a number i in the permutation
rs cannot be encoded directly, but is only indirectly determined by the
value of the ith key. The absolute position describes at which position in
the permutation rs a number i appears. A large value at the ith position
results in a position at the beginning of the permutation rs, and a low
value results in a position at the end of rs.

• The distinction between relative and absolute position of a number in the
permutation rs is important for the synonymity of RKs. The synonymity
of a redundant encoding, which is based on the locality of a non-redundant
encoding, describes how similar the genotypes are that represent the same
phenotype. A representation is synonymously redundant if mutating a
genotype changes the corresponding phenotype only slightly. A look at
RKs shows that they are synonymously redundant when used for ordering
problems. A small change in the genotype (the key sequence r) leads to a
small change in the phenotype (the permutation rs). The change of one key
changes the relative position of exactly one number. However, one must be
careful with the definition of the phenotypic neighborhood. If the absolute
position of the numbers in rs is relevant for the phenotype, a change of
one key is disastrous and the representation is non-synonymously redun-
dant. If the value of the key ri with the highest value is modified, only
the number i changes its relative position in the permutation rs, but up
to l numbers change their absolute position in the permutation. However,
as we use RKs to represent a permutation of numbers, only the relative,
and not the absolute positions of the numbers in the permutation must be

6.5 Network Random Keys (NetKeys) 205

considered. And for problems where the relative positions of numbers are
important, RKs are synonymously redundant.

• When using GEAs with RKs, standard crossover and mutation opera-
tors can be used and are expected to work well. No repair mechanism,
or problem-specific operators, are necessary when using this encoding for
ordering problems. The standard one- or multi-point crossover schemes
work well (Bean 1994) because the relative ordering of the positions in
the parents is preserved and transferred to the offspring (Fox and McMa-
hon 1991). Due to the synonymous redundancy of the encoding we expect
standard mutation operators to work well and to construct offspring that
are similar to their parents.

We have seen that RKs have interesting properties. When using them for the
encoding of trees, we still have to define exactly how a tree can be constructed
from them.

Constructing Trees from Random Keys

After we have presented RKs as the basis for the NetKey encoding, we still
have to define a construction algorithm which creates a valid tree from a
RK sequence. Both elements, the RKs and the construction algorithm are
necessary for the new NetKey encoding. To get a synonymously and uniformly
redundant encoding, we demand the construction algorithm to preserve the
synonymity of the RK encoding and not to favor some phenotypes but to
work uniformly.

We have seen that we are able to give priority to the objects in the permu-
tation when using RKs. As NetKeys use continuous variables that could be
interpreted as the importance of the link, it is possible to distinguish between
more and less important links. The higher the value of the allele, the higher
the probability that the link is used for the tree.

When constructing the tree, the positions of the keys in the key sequence
r are interpreted in the same way as for the CV. The positions are labeled and
each position represents one possible link in the tree. From a key sequence r
of length l = n(n − 1)/2, a permutation rs of l numbers can be constructed
as illustrated above. Then the tree is constructed from the permutation rs as
follows:

1. Let i = 0, T be an empty tree with n nodes, and rs the permutation of
length l = n(n − 1)/2 that can be constructed from the key sequence r.
All possible links of T are numbered from 1 to l.

2. Let j be the number at the ith position of the permutation rs.
3. If the insertion of the link with number j in T would not create a cycle,

then insert the link with number j in T .
4. Stop, if there are n − 1 links in T .
5. Increment i and continue with step 2.

206 6 Analysis and Design of Representations for Trees

The construction rule is based on Kruskal’s algorithm (Kruskal 1956) and
only considers the weights of the RK vector for building the tree. With this
rule, we can construct a unique, valid tree from every possible RK sequence.
Thus, the NetKey encoding is now completely described: The new encoding
uses RKs which allows us to give priority to some links, and the construction
rule uses this information and gradually builds a valid tree.

A

B

C

D E Figure 6.42. A five node tree

We want to illustrate the functionality of the NetKey encoding with an
example. We use the key sequence from Table 6.7. The permutation rs =
10, 8, 6, 9, 2, 7, 1, 5, 4, 3 can be constructed from the random key sequence r.
We start constructing the tree T by adding the link D-E (position 10) to the
tree. This is followed by adding C-D (position 8) and B-D (position 6). If
we add the link C-E (position 9) to the tree, the cycle C-E-D-C would be
created, so we skip C-E and continue by adding A-C (position 2). Now we
have a tree with four edges and terminate the construction algorithm. We
have constructed the tree shown in Fig. 6.42.

position 1 2 3 4 5 6 7 8 9 10

value 0.55 0.73 0.09 0.23 0.40 0.82 0.65 0.85 0.75 0.90

link A-B A-C A-D A-E B-C B-D B-E C-D C-E D-E

Table 6.7. A key
sequence r

The computational effort for constructing the phenotype from the geno-
type is similar for the NetKey and the LB representation. The calculation of
the permutation from the key sequence r can be done in O(l log(l)) (sorting
an array of l numbers). The process of constructing the graph from the per-
mutation rs is comparable to repairing an invalid graph that is constructed
from a CV and its effort depends on the specific structure of the phenotype.

In analogy to the LB encoding with a large link-specific bias P1 → ∞,
NetKeys are synonymously redundant. A mutation (changing the value of
one key) results either in no change of the corresponding phenotype if the
relative ordering is not changed, or the change of two edges if the relative
position is changed. Therefore, the maximum phenotypic distance dp

xp,yp be-
tween two neighboring genotypes xg and yg is one (compare Sect. 6.1.2 about
the definition of distance). The reader should observe that a mutation of one
key of the genotype often dramatically changes the absolute positions of the
numbers in the permutation rs. However, the construction rule we defined is

6.5 Network Random Keys (NetKeys) 207

only based on the relative ordering of rs. Therefore, we do not have to worry
about the change of the absolute positions.

6.5.3 Properties

We summarize the properties of the NetKey encoding. The use of the NetKey
encoding has some remarkable advantages:

• The encoding is synonymously redundant and standard crossover and mu-
tation operators work properly.

• The encoding allows a distinction between important and unimportant
links.

• There are no unfeasible solutions.

In this section, we briefly discuss these properties. In Sect. 3.3.2, we have
stipulated that mutation operators must create an offspring which is genotyp-
ically and phenotypically similar to its parent. Therefore, a small genotypic
distance between two individuals should correspond to a small phenotypic
distance. Then, the encoding has high locality. Based on locality, Sect. 3.1.2
introduced the synonymous redundancy of a redundant representation which
is equivalent to the high locality of a non-redundant representation. When us-
ing synonymously redundant representations, all genotypes that correspond
to a phenotype are similar to each other (have small distances). A glance at
the NetKey encoding shows that the mutation of one key results either in the
same, or in a neighboring tree, which makes it synonymously redundant. Fur-
thermore, in Sect. 3.3.5, we have determined that recombination operators
create an offspring which inherits the properties of its parents. In terms of
metric, the distance of an individual to its parents should be smaller than the
distance between both parents. In terms of links, an offspring should inherit
the links from its parents. Standard recombination operators, like n-point or
uniform crossover, show this behavior when used for NetKeys: if a link exists
in a parent, the value of the corresponding key is high in comparison to the
other keys. After recombination, the corresponding key in the offspring has
the same high value and is therefore also used with high probability for the
construction of the offspring. As a result, both types of operators, mutation
and recombination, work well when used for the NetKey encoding.

GEAs using NetKeys are able to distinguish between important and unim-
portant links. In contrast to the CV encoding, which only stores information
about whether a link is established or not, GEAs using NetKeys are able to
identify the important links in the tree. As the CV encoding can not store
information regarding the importance of a link, the repair process must delete
or insert links randomly. High quality links can be accidentally removed, or
low quality links can find their way back into the population.

Finally, NetKeys always encode valid trees. No over- or underspecification
of a tree is possible. The construction process which builds a tree from a RK

208 6 Analysis and Design of Representations for Trees

ensures that NetKeys only encode valid solutions. Thus, we do not need an
additional repair mechanism.

We see that the NetKey encoding has some remarkable benefits. However,
we have not yet investigated whether the encoding is uniformly redundant.
We want to do this in the following subsection.

6.5.4 Uniform Redundancy

The NetKey encoding is a synonymously redundant encoding. To ensure that
GEAs perform independently of the structure of the optimal solution, Net-
Keys should be uniformly redundant, i.e. unbiased. This section examines
the bias of the NetKey encoding. We measure, in analogy to Sect. 6.3.3, for
randomly created NetKey genotypes xg

rnd, the minimum phenotypic distance
min(dp

rnd,star) towards stars, and the average phenotypic distance dp
rnd,MST

towards the MST. This is followed by empirical evidence of the uniform re-
dundancy of the encoding.

NetKeys are redundant because they encode a finite number of phenotypes
using continuous genotypes. We know from Sect. 4.4.1 that GEA performance
depends on the location of the optimal solution in the search space if an encod-
ing is non-uniformly redundant. GEAs searching for the optimal solution only
perform well if the encoding is not biased towards the low-quality solutions.

Table 6.8. Mean and standard deviation of min(dp
rnd,star) and dp

rnd,MST for ran-
domly created NetKey genotypes xg

rnd

n
min(dp

rnd,star) dp
rnd,MST

unbiased NetKey unbiased NetKey
µ σ µ σ µ σ µ σ

8 3.67 0.643 3.75 0.602 5.16 0.993 5.24 0.961

16 10.91 0.783 11.00 0.759 13.08 1.072 13.13 1.041

32 26.25 0.818 26.34 0.800 29.08 1.311 29.07 1.319

In Table 6.8, we present for randomly created NetKey genotypes xg
rnd the

average minimum distance min(dp
rnd,star) to a star, and the average distance

dp
rnd,MST to the MST. The MST (compare (8.3)) is calculated based on the

distance weights dij which are the Euclidean distances between the nodes i and
j. The nodes are randomly placed on a two-dimensional 1000×1000 grid. We
randomly create 10,000 solutions for each problem instance and show the mean
µ and the standard deviation σ of the distances. The numbers indicate that
although there is a small bias, we can view the NetKey encoding as uniformly
redundant and assume that all phenotypes are represented uniformly. The
small bias is expected to be a result of the construction process.

For examining how GA performance depends on the structure of the op-
timal solution, we use the one-max tree problem from Sect. 6.1.5. Our GA

6.5 Network Random Keys (NetKeys) 209

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50

pr
ob

ab
ili

ty
 o

f s
uc

es
s

population size N

random star
arbitrary tree

random list
 4.5

 5

 5.5

 6

 6.5

 7

 10 20 30 40 50 60fit
ne

ss
 a

t e
nd

 o
f t

he
 r

un

population size N

random star
arbitrary tree

random list

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120

pr
ob

ab
ili

ty
 o

f s
uc

es
s

population size N

random star
arbitrary tree

random list 8

 10

 12

 14

 20 40 60 80 100 120fit
ne

ss
 a

t e
nd

 o
f t

he
 r

un

population size n

random star
arbitrary tree

random list

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250

pr
ob

ab
ili

ty
 o

f s
uc

es
s

population size n

star
arbitrary tree

random list

10

15

20

25

30

50 100 150 200 250fit
ne

ss
 a

t e
nd

 o
f t

he
 r

un

population size n

star
arbitrary tree

random list

Figure 6.43. Performance of GAs using NetKeys for 8 (top), 16 (middle) and 32
(bottom) one-max tree problems. The plots show either the probability of success
(left) or the fitness at the end of a run (right). The GAs search for the optimal star,
list, or arbitrary tree. The plots indicate that GA performance is independent of the
structure of the optimal solution. Therefore, NetKeys are uniformly redundant.

only uses uniform crossover, no mutation, tournament selection without re-
placement of size 3, and stops after the population is fully converged. On
the left of Fig. 6.43, we show the probability of finding the optimal solution
(a randomly chosen star, list, or arbitrary tree) over the population size N .
The right figures show the fitness of the best individual at the end of the run
over the population size N . Both plots confirm that GEAs perform almost
independently of the structure of the optimal solution. The reader should
observe that the figures indicate a slightly better performance for stars. We

210 6 Analysis and Design of Representations for Trees

believe that omitting invalid links during the construction process results in
this small influence on GA performance. We ignore this small bias and assume
that NetKeys are uniformly redundant. Our results indicate that the NetKey
encoding is approximately uniformly redundant and GEAs using NetKeys
perform nearly independently of the structure of the optimal solution.

6.5.5 Population Sizing and Run Duration
for the One-Max Tree Problem

We examine the necessary population size and run duration of GAs using Net-
Keys. We present theoretical models for the one-max tree problem (compare
Sect. 6.1.5) and provide empirical verification.

Population Sizing

When extending the population sizing equation of Harik et al. (1997) from a
binary alphabet to a χ-ary alphabet, we get:

Nmin = −χk

2
ln(α)

σf

d

√
π,

where χ is the cardinality of the alphabet, α is the probability of failure, σf

is the overall variance of the function, and d is the signal difference between
the best and second best BB. For calculating σf we have to investigate how
to decide among the competing BBs. For the one-max tree problem we have
to find these n − 1 links the optimal solution is constructed from. The key
sequence r that represents a tree with n nodes consists of l = n(n − 1)/2
different keys. For the construction of the tree, these n − 1 keys ri are used
that have the highest value. Therefore, we can split the n(n − 1)/2 different
keys ri in n/2 different groups of size (n − 1). Finding the optimal solution
means that all keys ri with the links i contained in the optimal solution can
be found in one group, which is considered for the construction of the tree
and thus contains the keys with the n−1 highest values of ri. A good decision
among competing BBs means deciding between the n/2 different groups of
size n − 1 and identifying the correct one. A key ri can belong either to the
one group that is considered for the construction of the tree (the key has a
high value), or to one of the n − 2 groups that are not considered. This is
similar to the needle in a haystack model and the standard deviation for such
a case is (Goldberg et al. 1992)

σf =

√
2l(n − 2)

n
=

√
(n − 1)(n − 2)

n
≈ √

n.

As we have n/2 different partitions, the cardinality χ of the alphabet is n/2.
Using these results and with k = 1 (the one-max tree problem is fully easy,

6.5 Network Random Keys (NetKeys) 211

and there are no interdependencies between the alleles), and d = 1, we get an
approximation for the population size Nmin:

Nmin = −
√

π

4
ln(α)

√
n(n − 1)(n − 2) ≈ −

√
π

4
ln(α)n1.5 (6.9)

The necessary population size Nmin goes with O(n1.5).

25

50

100

200

8 10 12 14 16 20 26

m
in

im
um

 p
op

ul
at

io
n

si
ze

 N
m

in

problem size n

experimental results
prediction

Figure 6.44. Minimum pop size
Nmin for NetKeys over the problem
size n for the one-max tree problem.
The probability of finding the optimal
solution is Pn = 0.95. The population
size goes with O(n1.5).

In Fig. 6.44, the minimum necessary population size Nmin that is necessary
for solving the one-max tree problem with probability Pn = 1 − α = 0.95 is
shown over the problem size n. We use a simple GA with tournament selection
without replacement of size 3, uniform crossover and the NetKey encoding.
We perform 500 runs for each population size and for N > Nmin the GA is
able to find the optimum with probability p = 0.95 (α = 0.05). Although,
we have to make some assumptions in our derivation, and the exact influence
of the construction algorithm of the phenotype from the genotypic weights is
difficult to describe theoretically, the population sizing model gives us a good
approximation of the expected population size N which goes with O(n1.5).

Run Duration

In Mühlenbein and Schlierkamp-Voosen (1993) and Thierens and Goldberg
(1994), the time until convergence is defined as tconv = π

√
l/2I with the

selection intensity I and the string length l. I depends only on the used
selection scheme and is I = 3/(2

√
π) for a tournament size of 3 (Bäck et al.

1997, C 2.3). With l = n(n − 1)/2, we get tconv ≈ const × n. Therefore, the
run duration tconv of a GA should go linearly with the problem size n of the
one-max tree problem.

In Fig. 6.45, we show the run duration tconv over the problem size n for
tournament selection without replacement of size 3 and uniform crossover.
tconv measures the number of generations until the population is completely

212 6 Analysis and Design of Representations for Trees

 20

 30

 40

 50

 60

 8 10 12 14 16 18 20 22 24 26

ru
n

du
ra

tio
n

t c
on

v

problem size n

Figure 6.45. Run duration tconv over
problem size n for the one-max tree prob-
lem using tournament selection without
replacement and uniform crossover

converged. The population size was chosen as N = 2 × Nmin and Nmin is
from Fig. 6.44. The population size N is large enough to ensure that the
optimal solution was found in all 500 runs which we performed for every
problem instance. The results show that tconv grows, as predicted, linearly
with increasing n.

6.5.6 Conclusions

This section presented the NetKey encoding. We started by illustrating how
we can combine characteristic vectors with some elements of the link-biased
encoding to get the NetKey encoding. This was followed in Sect. 6.5.2 by the
functionality of NetKeys. We explained the principles of random keys and
illustrated how we can construct a valid tree from a random key sequence.
After all components of the NetKey encoding were defined, we summarized
in Sect. 6.5.3 important properties of the new encoding. Because NetKeys are
a redundant encoding, Sect. 6.5.4 presented an investigation into the bias of
the encoding. Finally, based on existing theory, we developed in Sect. 6.5.5 a
population sizing and run duration model for GAs using NetKeys and solving
the one-max tree problem.

The section demonstrates that using the framework outlined in Chap. 4
allows theory-guided design of high-quality representations. Based on the in-
sights into the principles of representations, we were able to develop the new
NetKey encoding. NetKeys are based on the CV encoding, but use continu-
ous weights for encoding information about the represented tree. Therefore,
NetKeys are similar to the link-biased encoding with a large link-specific bias
P1 → ∞, but use a different construction rule for the phenotypes. The in-
vestigation into the properties of the NetKeys revealed that the encoding is
synonymously and uniformly redundant, that standard crossover and muta-
tion operators work properly, and that the representation does not change
problem difficulty.

Based on the presented results, we encourage further study of NetKeys
for encoding both trees and other networks. The use of existing theory for

6.6 Conclusions 213

formulating a population sizing model as well as a time to convergence model
illustrated the benefits we can get from using existing theory. We encourage
users to use existing theory for predicting GEA behavior more frequently.
Finally, even though more work is needed, we believe that the properties
presented are sufficiently compelling to immediately recommend increased
application of the NetKey encoding.

6.6 Conclusions

In this chapter, we used the framework from Chap. 4 for the analysis and
design of tree representations. By doing this, we were able to illustrate the
relevance of the basic design principles more clearly and to understand the
influence of common tree representations on the performance of GEAs.

We started in Sect. 6.1 by providing the necessities for analyzing tree rep-
resentations. We defined the network design problem and presented the used
metric for graphs. Based on the schema analysis for graphs we presented in
Sect. 6.1.5 scalable test problems for trees (one-max tree problem and decep-
tive trap tree problem). The section ended with a review of design criteria for
trees as given by Palmer (1994).

Section 6.2 presented an investigation into the properties of the Prüfer
number encoding. After an historical review, the construction rule, and known
properties of the encoding, we focused in Sect. 6.2.4 on the low locality of
the encoding. We performed random walks through the search spaces and
showed that the locality of the representation is low. This was followed by an
investigation into the locality of neighboring individuals. The section ended
with empirical evidence of the theoretical predictions of GEA performance.

Section 6.3 focused on the characteristic vector (CV) encoding as an ex-
ample for a uniformly redundant representation. We described how trees can
be represented by the CV encoding, and how invalid solutions can be han-
dled by repairing them. Examining the repair process for CVs revealed that
the encoding is non-synonymously redundant as genotypes that represent the
same phenotype are not similar to each other. Therefore, GEA performance
is reduced and the time to convergence tconv increases.

In Sect. 6.4, we examined the link and node biased (LNB) encoding. We
started by illustrating the motivation for developing the encoding and de-
scribed its different variants. This was followed by illustrating that the LNB
encoding is synonymously and non-uniformly redundant. A closer examina-
tion of the non-uniform redundancy revealed that the LNB encoding over-
represents stars if a node-specific bias P2 is used and it overrepresents the
MST if a link-specific bias P1 is used. Only for P1 → ∞ does the LNB en-
coding become uniformly redundant. As a result, GEA performance depends
on the structure of the optimal solution. Finally, we verified the theoretical
predictions concerning GEA performance by empirical results.

214 6 Analysis and Design of Representations for Trees

In the last section, we designed the NetKey representation using the in-
sights into the influence of representations on GEA performance. NetKeys are
synonymously and uniformly redundant and encode a tree using a weighted
vector. We discussed the motivation for designing the new encoding, reviewed
its functionality, and summarized important properties of NetKeys. Section
6.5.4 analyzed the bias of the encoding and showed that it is non-uniformly
redundant. Furthermore, in Sect. 6.5.5 we used the concepts from Sect. 3.1.4
and developed a population sizing model for NetKeys and the one-max tree
problem.

In this section, we used the framework about the influence of representa-
tions on GEA performance for the analysis of existing tree representations and
for the design of a new representation. The framework allowed us to predict
how the performance of GEAs, measured by run duration and solution quality,
is affected by the used representation. We were able to compare representa-
tions in a theory-based manner, to predict the performance of GEAs using
different representations, and to analyze representations guided by theory. The
analysis showed that the proposed elements of the framework – redundancy,
scaling, and locality – can be used for analyzing representations. We want to
briefly summarize the insights our analysis revealed:

Our investigation into the locality of the Prüfer number encoding has
shown that the locality is different in different areas of the search space.
For trees that are similar to stars, the encoding has high locality, and BB-
complexity is the same for the genotypes and phenotypes. However, for non-
stars, the encoding has low locality and easy phenotypic problems, where
the optimal solution is a non-star, become more difficult to solve when us-
ing Prüfer numbers. These insights explain the inconsistent statements about
Prüfer number’s performance in the literature. If the optimal solution was ac-
cidentally star-like, the encoding shows an acceptable performance; if it was
non-star-like, GEAs fail.

We presented the CV encoding as an example of a uniformly redundant
representation that is non-synonymously redundant. We recognized that an
encoding that allows the representation of invalid solutions, like the CV en-
coding, is redundant. Such an encoding is uniformly redundant if the repair
process is unbiased, that means it does not overrepresent some phenotypes.
However for the CV encoding, the repair process results in non-synonymous
redundancy which has the same effect as low locality for non-redundant rep-
resentations. Non-synonymous redundancy reduces solution quality and in-
creases the run duration tconv.

The investigation into the synonymously redundant variants of the LNB
encoding illustrated the influence of non-uniform redundancy on GEA perfor-
mance. The LNB encoding overrepresents either stars or the MST. Only for
the link-specific bias P1 → ∞ does the encoding become uniformly redundant.
In general, GEAs using the LNB encoding have large problems in finding opti-
mal solutions if these are not a star or the MST. The analysis of the redundant
link-biased encoding, which was shown in Sect. 6.4.4, can be generalized and

6.6 Conclusions 215

is helpful for the analysis of redundant representations. By examining the size
of the search space, the synonymity of the representation, the order of redun-
dancy, and the over- and underrepresentation of solutions, the influence of a
redundant representation on GEA performance can be analyzed.

The section about the NetKey encoding illustrated how the representa-
tion framework can be used for the design of high-quality representations.
The NetKey encoding is synonymously and uniformly redundant and allows
efficient GEA search.

Last but not least, in Sect. 6.1, we presented a schema analysis for graph
problems. Using it, we were able to measure the phenotypic problem com-
plexity of a graph problem and to classify problems to be easy or difficult.
Furthermore, it can help us to judge if encodings preserve problem difficulty
because we can measure if the problem complexity remains constant when
mapping the phenotypes on the genotypes. Based on the schema analysis
for graphs, we provided a fully difficult deceptive trap and a fully easy one-
max tree optimization problem. Both scalable test problems are helpful for
comparing the performance of different tree encodings. Furthermore, the test
problems allow users to easily examine if GEA performance depends on the
structure of the optimal solution. This is important for investigating effects
that can be caused by non-uniformly redundant encodings.

This chapter has applied the principles of representations from Chap. 3
to common tree encodings. By identifying Prüfer numbers to have low local-
ity, the LNB encoding to be redundant but biased, and the CV encoding to
be uniformly and non-synonymously redundant, we were able to predict the
behavior and performance of GEAs using these representations. In general,
by applying the presented theory of representations to other not mentioned,
or new representations, the behavior of GEAs using these encodings can be
much better predicted. Therefore, we want to encourage researchers to use
the presented theory for representations from Chaps. 3 and 4 for analyzing
other representations.

7

Analysis and Design of Search Operators
for Trees

When using GEAs for tree problems it is necessary to encode a solution (tree)
such that evolutionary search operators like crossover or mutation can be
applied. There are two different possibilities for doing this: indirect repre-
sentations usually encode a tree (phenotype) as a list of strings (genotypes)
and apply standard search operators to the genotypes. The phenotype is con-
structed by an appropriate genotype-phenotype mapping (representation). As
seen in the previous chapter, there are many indirect representations for trees
such as NetKeys, the LNB encoding, the CV encoding, or Prüfer numbers.

In contrast, direct representations encode a tree as a set of edges and apply
search operators directly to the set of edges. Therefore, no representation is
necessary. Instead, tree-specific search operators must be developed as stan-
dard search operators can no longer be used. This chapter uses the insights
into representation theory for the analysis and design of search operators for
trees. In contrast to Chap. 6, where standard search operators are applied to
tree-specific genotypes, here tree-specific search operators are directly applied
to the phenotypes as there is no additional genotype-phenotype mapping.

Section 7.1 presents a direct representation for trees (NetDir) as an exam-
ple for the design of direct tree representations. Search operators are directly
applied to trees and problem-specific crossover and mutation operators are
developed. The search operators for the NetDir representation are developed
based on the notion of schemata from Sect. 6.1.4.

Section 7.2 analyzes the edge-set encoding (Raidl and Julstrom 2003)
which encodes trees directly by listing their edges. Search operators for edge-
sets are either heuristic considering the weights of edges they include in off-
spring, or naive, including edges without regard to their weights. Analyzing
the properties of the heuristic variants of the search operators shows that solu-
tions similar to the minimum spanning tree are favored. In contrast, the naive
variants are unbiased which means that genetic search is independent of the
structure of the optimal solution. Although no explicit genotype-phenotype
mapping exists for edge-sets and the framework for the design of representa-
tions can not be directly applied, it is useful for structuring the analysis of

218 7 Analysis and Design of Search Operators for Trees

edge-sets. The results of the analysis show that similarly to non-uniformly re-
dundant representations, edge-sets overrepresent some specific types of trees,
and GEA performance increases if optimal solutions are similar to the MST.

Analyzing and developing direct representations nicely illustrates the
trade-off between designing either problem-specific representations or problem-
specific operators. For efficient GEAs, it is necessary to design either problem-
specific representations and to use standard operators such as one-point or
uniform crossover, or to develop problem-specific operators and use direct
representations.

7.1 NetDir: A Direct Representation for Trees

The purpose of this section is to develop a direct representation for trees
(NetDir) and to illustrate that when using direct representations, the design
task of finding proper representations is substituted by the search for good
crossover and mutation operators. When using GEAs based on the notion of
schemata, these problem-specific operators must obey the linkage in the phe-
notypes and process BBs properly. Therefore, by using direct representations
it is not possible to get rid of the difficulties in designing efficient optimization
methods.

The section starts with a brief historical review of direct representations for
trees. In Sect. 7.1.2, we discuss the properties of direct representations. We
demonstrate the benefits and drawbacks of using direct representations for
GEAs. Because NetDir directly represents trees as graph structures and not
as a list of alleles, standard genetic operators can not be used any more. There-
fore, problem-specific operators are necessary. Consequently, in Sect. 7.1.3 we
develop mutation and crossover operators for the NetDir representation. The
section ends with a short summary.

7.1.1 Historical Review

One of the first approaches to direct representations for trees was presented by
Piggott and Suraweera (1993). Offspring individuals are created by randomly
copying n− 1 edges from both parents to the offspring. However, the creation
of an offspring does not ensure that the offspring represents a fully connected
tree. Therefore, a penalty for invalid solutions is necessary.

Li and Bouchebaba (1999) overcame the problem of invalid solutions and
designed more advanced operators such as path crossover and mutation. These
operators always generate feasible new solutions. Although Li and Bouchebaba
did not compare their new representation with other representations, the re-
sults presented were promising.

Raidl (2000) introduced edge crossover and edge insertion mutation for a
degree constrained tree problem. New offspring are created by edge crossover
in three steps. Firstly, a child inherits all edges which exist in both parents.

7.1 NetDir: A Direct Representation for Trees 219

Then, the offspring gets the edges which exist only in one parent. Finally,
the tree is completed with randomly chosen edges concerning the degree con-
straints. A direct comparison of this approach to other existing approaches for
solving the degree-constrained MST problem is difficult because an additional
heuristic for generating good initial solutions was used.

Li (2001) presented an implementation of a direct encoding. The imple-
mentation is based on predecessor vectors and the effort for crossover and
mutation goes with O(d), where d is the length of a path in a tree. The work
illustrates that also a direct representation of trees needs to be represented
on a computer system. Based on Raidl (2000), Raidl and Julstrom (2003)
presented the edge-set encoding which is analyzed in Sect. 7.2.

7.1.2 Properties of Direct Representations

We have noticed in Sects. 2.1.2 and 2.1.3 that GEAs using direct representa-
tions do not use an additional genotype-phenotype mapping fg : Φg → Φp. In
contrast to the so called indirect representations, where the genotypic space
is different from the phenotypic space, Φg �= Φp, the operators are directly
applied to the phenotypes xp ∈ Φp. This situation is illustrated in Fig. 7.1.
Therefore, differences between different implementations of direct encodings
are not the used representation (there is no genotype-phenotype mapping and
all genotypes are trees) but how the genetic operators crossover and mutation
are applied to the phenotypes.

genetic
operators are
applied to the
genotypes

specific genetic
operators are
applied to the
phenotypes.

011010101
genotypes

phenotypes

indirect encodings direct encodings

Figure 7.1. Direct versus indirect
representations

When using direct representations, it is neither necessary to define a rep-
resentation (genotype-phenotype) nor genotypes. At a first glance, it seems
that the use of direct representations makes life of GEA designer easier as
direct representations release us from the pain of designing efficient represen-
tations. However, when using direct representations, we are confronted with
two other, serious problems:

• Often no standard mutation and recombination operators can be used.
• It is difficult to design proper problem-specific search operators.

220 7 Analysis and Design of Search Operators for Trees

We briefly discuss these drawbacks of direct representations. For traditional,
indirect representations with standard genotypes, a large variety of different
genetic search operators with known properties are available. These standard
operators are well examined and well understood. However, when using di-
rect representations, standard operators like n-point or uniform crossover can
no longer be used. For each direct representation, problem-specific operators
must be developed. Therefore, most of the theory that predicts behavior and
performance of GEAs using standard genotypes and standard operators is
useless.

Furthermore, the development of proper problem-specific mutation and
crossover operators is a difficult task. High quality operators must be able
to detect the BBs and propagate them properly. When using direct repre-
sentations, the design of proper crossover and mutation operators is often
demanding as, in general, the phenotypes are not only strings but more com-
plicated structures like for example trees. Furthermore, to use more advanced
GEA methods like estimation of distribution algorithms (EDA) or probabilis-
tic model building GAs (PMBGA) become almost impossible. These types of
GEAs no longer use standard genetic search operators but build new genera-
tions according to a probabilistic model of the parent generations (Mühlenbein
and Paaß 1996; Mühlenbein and Mahnig 1999; Harik 1999; Pelikan et al. 1999;
Pelikan et al. 1999; Larranaga et al. 1999; Bosman 2003). These search meth-
ods are developed for a few standard genotypes (binary or continuous) and
result in better performance than traditional simple GAs for decomposable
problems. However, because direct representations with non-standard pheno-
types and problem-specific genetic operators can hardly be implemented in
EDAs or PMBGAs, direct representations can not benefit from these new
GEA types.

It is difficult to design high-quality representations when using an indirect
representation and standard search operators. However, the task of creating
efficient GEAs does not become easier when using direct representations be-
cause standard GEA operators can not be used any more and the design of
problem-specific operators that can be directly applied to the phenotypes is
difficult.

7.1.3 Operators for NetDir

When using direct representations for trees, problem-specific operators must
be developed. In the following paragraphs, we present mutation and crossover
operators for the NetDir encoding.

Mutation

Section 3.3.2 illustrated that, in general, mutation operators should create
offspring which are similar to the parent. Therefore, most mutation operators
create offspring with a minimal distance to the parent.

7.1 NetDir: A Direct Representation for Trees 221

Applying the mutation operator of the NetDir representation to an indi-
vidual results in a neighboring phenotype. The mutation operator is applied
directly to a phenotype xp ∈ Φp and results in an offspring yp ∈ Φp with
phenotypic distance dp

xp,yp = 1. Therefore, mutation randomly changes one
link in the tree. We illustrate the mutation operator in Fig. 7.2. The link
e1,5 is randomly chosen for deletion. After deleting this link we have two un-
connected subtrees. Finally, a node is randomly chosen from each of the two
unconnected subtrees and the link connecting the two nodes is inserted (e2,4).

edge
2,4

1,5
e

1,5
e

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

choose random remove link insert randomly
choosen edgeedge

e

Figure 7.2. The mutation
operator for the NetDir
representation. The phe-
notypic distance between
parent (left) and offspring
(right) is dp = 1.

When using linear genotypes and applying mutation to genotypes, an allele
of the string is mutated with mutation probability pm. Therefore, the prob-
ability for an individual to remain unchanged by mutation is P = (1 − pm)l,
where l denotes the length of the string. The situation is different for the
NetDir encoding because no linear genotype exists. Mutation for the NetDir
encoding is defined as randomly mutating an individual n times with probabil-
ity pm, where n is the number of nodes in the graph. Therefore, the probability
that the individual remains unchanged is P = (1 − pm)n.

Crossover

The situation becomes slightly more complicated for the crossover operator. In
Sect. 3.3.5, we wanted crossover operators to create offspring that are similar
to the parents. The offspring should inherit the high-quality sub-structures of
their parents. In terms of metric, crossover operators should ensure that the
distances between an offspring and its parents are smaller than the distance
between both parents. In terms of schemata, high-quality crossover operators
should be able to detect the linkage between the alleles in the string (Harik
and Goldberg 1996) and offspring should inherit the high-quality schemata
from their parents. Consequently, the crossover operator of the NetDir rep-
resentation only uses links that exist in the parents for the creation of the
offspring. Therefore, the offspring have similar properties than the parents
and the schemata are propagated properly.

We denote a complete undirected graph as G = (V,E), where v ∈ V
denotes the n different nodes and ei,j ∈ E denotes the edge between node
i ∈ V and j ∈ V . Two parents are denoted as G1 = (V,E1) and G2 = (V,E2).

222 7 Analysis and Design of Search Operators for Trees

The two offspring are denoted as Go1 = (V,Eo1) and Go2 = (V,Eo2). The
crossover goes with the following scheme:

1. The set of all nodes V is randomly separated into two subsets V1 and V2,
where V1 ∩ V2 = {} and V1 ∪ V2 = V .

2. All edges ei,j ∈ E1, where i, j ∈ V1 are added to Go1. All edges ei,j ∈ E1,
where i, j ∈ V2 are added to the second offspring Go2.

3. All edges ei,j ∈ E2, where i, j ∈ V2 are added to Go1. All edges ei,j ∈ E2,
where i, j ∈ V1 are added to the second offspring Go2.

4. Do the following steps for each offspring individual separately.
5. There are at least two unconnected subtrees Gs1 = (Vs1, Es1) and Gs2 =

(Vs2, Es2), where Gs1 �= Gs2. Add randomly an edge ei,j ∈ (E1 ∪ E2) to
the offspring, where either i ∈ Vs1 ∧ j ∈ Vs2 or i ∈ Vs2 ∧ j ∈ Vs1.

6. If the offspring is not fully connected, go to 5.

The crossover operator consists of two parts. At first, complete sub-structures
are passed from the parent to the offspring (item 1-3). Then, the yet uncon-
nected subtrees are connected by adding links that exist in one of the two
parents (item 4-6).

There are several choices for dividing the set of all nodes V into two subsets
V1 and V2 (item 1). If we assume that the n nodes are numbered, we can use
uniform, one-point, or n-point crossover. For uniform crossover the probability
that each node belongs to either V1 or V2 is 0.5. For one-point crossover we
have to choose a crossing point c ∈ {1, 2, . . . , n− 1}. The nodes with numbers
smaller than c belong to V1; the nodes with numbers equal or larger than c
belong to V2.

Figure 7.3 illustrates the crossover operator with a small 6-node exam-
ple. In a first step, the 6 nodes are separated according to uniform crossover
into two subsets V1 = {0, 2, 3} and V2 = {1, 4, 5}. Then, the edges e0,3

and e2,3 from parent 1 and the link e1,5 from parent 2 are added to off-
spring 1. Analogously, e1,5 and e4,5 from parent 1 and e2,3 from parent
2 are used for the construction of offspring 2. After copying the subtrees
from the parents to the offspring, the remaining separated subtrees must be
connected. We do this by randomly copying edges which are able to con-
nect the separated subtrees from the parents to the offspring until the off-
spring are completely connected. Offspring 1 has three unconnected subtrees
(G1 = ({0, 2, 3}, {(0, 3), (2, 3)}), G2 = ({1, 5}, {(1, 5)}), and G3 = ({4}, {})).
Therefore, the edges e0,1, e1,3, e3,5, e3,4, and e4,5 can be used for comple-
tion of offspring 1. After randomly choosing e3,5 and e3,4, offspring 1 is fully
connected and we can stop. Offspring 2 also has three unconnected subtrees
(G1 = ({1, 4, 5}, {(1, 5), (4, 5)}), G2 = ({2, 3}, {(2, 3)}), and G3 = ({0}, {})).
For offspring 2, the edges e0,1, e0,3, e1,3, e3,4, and e3,5 can be used for com-
pletion. With choosing e0,1 and e3,4, offspring 2 is fully connected and we can
terminate the algorithm.

When measuring the distances between the individuals, the distance be-
tween the parents is dp

G1,G2
= 3. The distance of offspring 1 to parent 1 is

7.1 NetDir: A Direct Representation for Trees 223

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

parents

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

offspring

parent 1 parent 2

offspring 1 offspring 2

1.

2. and 3.

4.

5.

steps

Figure 7.3. The
crossover operator of
the NetDir encoding.
The offspring only in-
herit information from
their parents. No ran-
domly created links are
used for the construc-
tion of the offspring.

dp
G1,Go1

= 2, and to parent 2 is dp
G2,Go1

= 1. The distance between offspring 2
and parent 1 is dp

G1,Go2
= 2, and to parent 2 is dp

G2,Go2
= 2. We see that the

distances between the offspring and their parents are smaller or equal to the
distances between the parents. The offspring exist mostly of sub-structures of
their parents.

7.1.4 Summary

This section presented the direct NetDir representation. After a short his-
torical review of direct tree representations, in Sect. 7.1.2 we discussed the
properties of direct representations. Because direct representations directly
encode the structure of the problem, standard mutation and crossover oper-
ators can often not be used any more. Therefore, we presented in Sect. 7.1.3
tree-specific mutation and crossover operators for the NetDir representation.

224 7 Analysis and Design of Search Operators for Trees

The purpose of this section was not just to present another, new repre-
sentation but to illustrate that the design of efficient GEAs does not become
easier when using direct representations. When using direct representations,
we need an engineers’ intuition and knowledge not for the design of a geno-
typic search space – it is the same as the phenotypic search space and it is
determined a priori by the structure of the problem – but for the design of
proper problem-specific genetic operators. Therefore, direct representations
do not provide efficient GEAs for free, but in comparison to indirect repre-
sentations, the overall difficulty of designing efficient GEAs remains the same
or even increases.

In this section, we presented the NetDir representation as an example of
a direct representation for trees. The NetDir representation directly encodes
trees and standard crossover and mutation operators can not be used any
more. As most of the existing knowledge about GEA behavior is based on
standard operators and standard genotypes, the existing knowledge does not
hold any more for direct representations and it is difficult to design high-
quality search operators.

7.2 The Edge-Set Encoding

Raidl and Julstrom (2003) proposed another direct representation for trees
denoted as the edge-set encoding. There are two different variants of the edge-
set encoding: heuristic variants where the encoding-specific search operators
consider the distance weights of the edges, and non-heuristic variants. Results
from applying the edge-set encoding to two sets of degree-constrained MST
problem instances indicated that the heuristic variants of the encoding show
a higher performance in comparison to other tree encodings such as the Blob
code, NetKeys, and weighted encodings (Raidl and Julstrom 2003, p. 238).

This section analyses the bias of the edge-set encoding. A bias of a direct
encoding means that the encoding-specific initialization, crossover, and mu-
tation operators prefer a specific type of solution and push a population in
this direction. As the heuristic variants of the edge-set encoding prefer edges
with low cost, these variants are expected to show a bias towards the MST.
In the second part of the section, the performance of edge-sets is investigated
for random instances of the optimal communication spanning tree (OCST)
problem from Sect. 8.2.1. In contrast to the degree-constraint MST problem
used in Raidl and Julstrom (2003), there are no additional constraints regard-
ing the structure of solutions and all possible trees are feasible. As optimal
solutions of the OCST problem are biased towards the MST (Rothlauf et al.
2003), heuristic versions of the edge-set encoding are expected to show good
performance.

The following subsection summarizes the functionality of the edge-set en-
coding with and without heuristics. Section 7.2.2 investigates the bias of the

7.2 The Edge-Set Encoding 225

encoding, and Sect. 7.2.3 examines its influence on the performance of evo-
lutionary search for the OCST problem. The section ends with concluding
remarks.

7.2.1 Functionality

The edge-set encoding directly represents trees as sets of edges. Therefore,
encoding-specific initialization, crossover, and mutation operators are nec-
essary. The following sections summarize the functionality of the different
variants with and without heuristics (Raidl and Julstrom 2003).

The Edge-Set Encoding without Heuristics

Initialization

The purpose of the initialization algorithms is to create an unbiased initial
solution. Raidl and Julstrom (2003) proposed and investigated three dif-
ferent initialization strategies: PrimRST, RandWalkRST, and KruskalRST.
PrimRST overrepresents star-like trees and underrepresents trees similar to
lists. RandWalkRST has an average running time of O(n log n), however, the
worst-case running time is unbounded. Therefore, Raidl and Julstrom (2003)
recommended the use of the KruskalRST which is based on the algorithm
from Kruskal (Kruskal 1956). In contrast to Kruskals’ algorithm, KruskalRST
chooses edges ei,j not according to their corresponding distance weights dij

but randomly. KruskalRST has a small bias towards star-like trees (which is
lower than the bias of PrimRST).

procedure KruskalRST(V,E):
T ← ∅, A ← E; //E is the set of available edges ei,j

while |T | < |V | − 1 do
choose an edge {(uv)} ∈ A at random;
A ← A − {(eu,v)};
if u and v are not yet connected in T then

T ← T ∪ {(eu,v)};
return T .

A spanning tree T of an undirected graph G(V,E) with the set E of edges and
the set V of nodes is a subgraph that connects all vertices of G and contains
no cycles.

Recombination

To obtain an offspring Toff from two parental trees T1 and T2 with the edge
sets E1 and E2, KruskalRST is applied to the graph Gcr = (V,E1 ∪ E2).
Instead of KruskalRST, in principle PrimRST and RandWalkRST can be
also used. The crossover operator has high heritability as in the absence of

226 7 Analysis and Design of Search Operators for Trees

constraints, only parental edges are used to create the offspring. Crossover
becomes more complicated for constraint MST problems as it is possible that
the RST algorithm can create no feasible tree from Gcr = (V,E1 ∪E2). Then,
additional edges have to be chosen randomly to complete an offspring.

Raidl and Julstrom (2003) distinguished two different recombination op-
erators: the variant previously described is denoted KruskalRST crossover.
The second variant is denoted KruskalRST* crossover. When using this vari-
ant, in a first step all edges (E1 ∩ E2) are included in the offspring Toff .
Then Toff is completed by applying KruskalRST to the remaining edges
(E1∪E2)\(E1∩E2). Results from Raidl and Julstrom (2003) indicate a better
performance of KruskalRST* for the degree-constraint MST problem.

Mutation

The mutation operator randomly replaces one edge in the spanning tree. This
replacement can be realized in two different ways. The first variant of the
mutation operator randomly chooses one edge that is not present in T and in-
cludes it in T . Then, one edge from the cycle is randomly chosen and removed
(“insertion before deletion”). The second variant first randomly deletes one
edge from T and then connects the two disjoint connected components using
a random edge not present in T (“deletion before insertion”). The running
time is O(n) if there are no additional constraints.

The Edge-Set Encoding with Heuristics

The following paragraphs describe how heuristics that rely on the distance
weights dij can be included in the edge-set encoding. Raidl and Julstrom
(2003) introduced these variants of the edge-set encoding due to the assump-
tion that in weighted tree optimization problems optimal solutions often prefer
edges with low distance weights dij .

Heuristic Initialization

To favor low-weighted edges when generating the initial population, the al-
gorithm KruskalRST starts by sorting all edges in the underlying graph ac-
cording to their distance weights dij in ascending order. The first spanning
tree is created by choosing the first edges in the ordered list. As these are the
edges with lowest distance weights, the first generated spanning tree is a MST.
Then, the kd edges with lowest distance weights are permuted randomly and
another spanning tree is created using the first edges in the list. The heuristic
initialization results in a strong bias towards the MST. With increasing kd,
the bias of randomly created trees towards the MST is reduced. The number
of edges which are permuted increases according to

kd = α(i − 1)n/N,

7.2 The Edge-Set Encoding 227

where N denotes the population size, i is the number of the tree that is actually
generated (i = 1, . . . , N) and α, with 0 ≤ α ≤ (n − 1)/2, is a parameter that
controls the strength of the heuristic bias.

Heuristic Recombination

The heuristic recombination operator is a modified version of KruskalRST*
crossover. Firstly, the operator transfers all edges E1 ∩ E2 that exist in both
parents T1 and T2 to the offspring. Then, the remaining edges are chosen
randomly from E′ = (E1∪E2)\(E1∩E2) using a tournament with replacement
of size two. This means, the distance weights dij of two randomly chosen edges
are compared and the edge with the lower distance weight is inserted into the
offspring (if no cycle is created). If the underlying optimization problem is
constrained, it is possible that the offspring has to be completed using edges
not in E′.

Heuristic Mutation

The heuristic mutation operator is based on mutation by “insertion before
deletion”. In a pre-processing step, all edges in the underlying graph are sorted
according to their weights in ascending order. Doing this, a rank is assigned
to every edge. The rank one is assigned to the edge with the lowest weight. To
favor low-weighted edges, the edge that is inserted by the heuristic mutation
operator is not chosen randomly but according to its rank

R = �|N (0, βn)|mod m + 1,

where N (0, βn) is the normal distribution with mean zero and standard devi-
ation βn and m = n(n−1)/2. β is a parameter that controls the bias towards
low-weighted edges. If a chosen edge already exists in T , the edge is discarded
and the selection is repeated.

7.2.2 Bias

As we have seen in Sect. 3.1 a redundant representation is unbiased if all
possible phenotypes are represented by, on average, the same number of geno-
types (compare also Sect. 6.3.3). Consequently, a search operator is unbiased
if it does not overrepresent specific solutions, and the application of the search
operator alone does not modify the statistical properties of a population. An
unbiased search operator allows a uniform, non-directed search through the
search space. A biased representation or operator should only be used if it
is known a priori that the optimal solution of the underlying optimization
problem is similar to the overrepresented solutions (compare Sect. 3.1.4). In
contrast, unbiased representations or operators should be used if no a priori
problem-specific knowledge is available. Then, the probability of finding the
optimal solution is independent of the structure of the optimal solution.

228 7 Analysis and Design of Search Operators for Trees

The following paragraphs investigate the bias of the edge-set encoding for
randomly created trees with n = 10 and n = 16 nodes. To every edge ei,j a
non-negative distance weight dij is associated. Two possibilities for choosing
the distance weights dij are considered:

• Random weights: The real-valued weights dij are generated randomly
and are uniformly distributed in]0, 100].

• Euclidean weights: The nodes are randomly placed on a 1000 × 1000
grid. The distance weights dij between the nodes i and j are the Euclidean
distances between the two nodes.

As the distance weights dij are randomly created and dij �= dkl, ∀i �= l, j �= l,
we can assume that there is an unique minimum spanning tree (MST) for every
problem instance. T is the MST if c(T) ≤ c(T ′) for all other spanning trees
T ′, where c(T) =

∑
ei,j∈T dij . The similarity between two spanning trees Ti

and Tj can be measured using the distance dp
Ti,Tj

∈ {0, 1, . . . , n−1} (compare
Sect. 6.1.2) as dp

Ti,Tj
= 1

2

∑
u,v∈V, u<v |liuv − ljuv|, where liuv is 1 if eu,v exists

in Ti and 0 if it does not exist in Ti.

Initialization

Raidl and Julstrom (2003) examined the bias of different initialization meth-
ods and found KruskalRST to be slightly biased towards stars. As the bias
is sufficiently small and due to its lower running time it is preferred in com-
parison to RandWalkRST and PrimRST, which show a stronger bias towards
stars.

Table 7.1 shows the average distances dp
rnd,MST between the MST and

randomly generated trees (the standard deviations are shown in brackets).
For each problem instance (1000 of each type) we generated 10,000 random
solutions using either an unbiased encoding (Prüfer numbers), KruskalRST
(p. 225), or the heuristic initialization (p. 226). For the heuristic initialization,
α was set either to α = 1.5 as recommended in Raidl and Julstrom (2003)
or to the maximum value α = (n − 1)/2, which results in the lowest bias.
The results confirm that for KruskalRST no bias towards the MST can be
observed. Furthermore, the heuristic versions show a strong bias towards the
MST even when using a large value of α.

Recombination

To investigate whether the crossover operator of the edge-set encoding leads to
an overrepresentation of MST-like individuals, we randomly generate an initial
population of 500 individuals and apply only the crossover operator iteratively.
As no selection operator is used, no selection pressure pushes the population
to high-quality solutions. The crossover operator is unbiased if the statistical
properties of the population do not change by applying crossover alone. In our

7.2 The Edge-Set Encoding 229

Table 7.1. Distances dp
rnd,MST between random trees and MST

tree size n = 10 n = 16

weights Euclidean random Euclidean random

unbiased 7.20 (1.1) 13.12 (1.2)

KruskalRST 7.20 (1.1) 7.20 (1.1) 13.13 (1.2) 13.13 (1.2)

heuristic (α = 1.5) 1.06 (1.2) 0.84 (1.1) 1.87 (1.8) 1.39 (1.7)

heuristic (α = (n − 1)/2) 3.92 (2.7) 3.85 (2.7) 8.82 (4.4) 8.87 (4.6)

experiments we measure in each generation the average distance dmst−pop =
1/N

∑N−1
i=0 dp

Ti,MST of the individuals Ti in the population towards the MST.
If dmst−pop decreases, the crossover operator is biased towards the MST. If
dmst−pop remains constant, the crossover operator is unbiased regarding the
MST.

As before, we perform this experiment on 1000 randomly generated 10
and 16 node tree instances with random and Euclidean distance weights dij .
For every tree instance we performed 50 runs with different, randomly chosen
initial populations (KruskalRST) and 60 generations.

Figure 7.4 shows the mean and the standard deviation of dmst−pop over
the number of generations. The plots compare the non-heuristic KruskalRST*
crossover (p. 225) with the heuristic KruskalRST* crossover (p. 227). Only
crossover and no selection is used. The results confirm the findings from
Tzschoppe et al. (2004) and reveal that the crossover operator without heuris-
tics is unbiased and does not modify the statistical properties of the population
(dmst−pop remains constant over the number of generations). In contrast, the
crossover operator with heuristics shows a strong bias towards the MST and
the population quickly converges to the MST.

Mutation

Finally, we investigate the bias of the mutation operator for 1000 random tree
instances of each type. As for the crossover operator we create a random pop-
ulation of 500 individuals using KruskalRST. Then, in every generation each
individual is mutated exactly once using either the non-heuristic “insertion-
before-deletion” mutation (p. 226) or the heuristic version (p. 227). Only
mutation and no selection is used. For the heuristic mutation operator the
parameter β is set to 1, 2, or 5. With lower β, edges with lower weights are
preferred.

Figure 7.5 shows the mean and the standard deviation of dmst−pop over
the number of generations. The results show that the non-heuristic mutation
operator is unbiased, whereas the heuristic mutation is biased towards the
MST. The bias increases with lower β. In contrast to the heuristic crossover
operator, the population does not always converge completely towards the

230 7 Analysis and Design of Search Operators for Trees

0
1
2
3
4
5
6
7
8
9

0 20 40 60

d m
st

−
po

p

generations

KruskalRST*
heur. KruskalRST*

(a) 10 node / random weights

0
1
2
3
4
5
6
7
8
9

0 20 40 60

d m
st

−
po

p

generations

KruskalRST*
heur.KruskalRST*

(b) 10 node / Euclidean weights

0
2
4
6
8

10
12
14

0 20 40 60

d m
st

−
po

p

generations

KruskalRST*
heur. KruskalRST*

(c) 16 node / random weights

0
2
4
6
8

10
12
14

0 20 40 60

d m
st

−
po

p

generations

KruskalRST*
heur. KruskalRST*

(d) 16 node / Euclidean weights

Figure 7.4. The plots show the mean and the standard deviation of the distance
dmst−pop between a population of 500 randomly generated individuals towards the
MST over the number of generations. Only crossover and no selection is used. The re-
sults show that the non-heuristic KruskalRST* crossover is unbiased as the distance
between the population and the MST remains constant. In contrast, the heuristic
crossover operator is strongly biased towards the MST.

MST but the average distance of the population towards the MST remains
stable after a few generations.

7.2.3 Performance for the OCST Problem

We want to investigate the performance of GEAs using the different variants
of the edge-set encoding for the OCST problem from Sect. 8.2.1. The OCST
problem is defined as follows: Let G = (V,E) be a complete undirected graph
with n = |V | nodes and |E| edges. To every pair of nodes (ij) a non-negative
distance weight dij and a non-negative communication requirement rij is as-
sociated. The communication cost c(T) (compare (8.2)) of a spanning tree T
is defined as

7.2 The Edge-Set Encoding 231

4

5

6

7

0 50 100 150 200 250 300

d m
st

−
po

p

generations

non−heuristic mutation
heur. mutation (β=5)
heur. mutation (β=2)
heur. mutation (β=1)

(a) 10 node / random weights

4

5

6

7

0 50 100 150 200 250 300

d m
st

−
po

p

generations

non−heuristic mutation
heur. mutation (β=5)
heur. mutation (β=2)
heur. mutation (β=1)

(b) 10 node / Euclidean weights

6

7

8

9

10

11

12

13

0 50 100 150 200 250 300

d m
st

−
po

p

generations

non−heuristic mutation
heur. mutation (β=5)
heur. mutation (β=2)
heur. mutation (β=1)

(c) 16 node / random weights

7

8

9

10

11

12

13

0 50 100 150 200 250 300

d m
st

−
po

p

generations

non−heuristic mutation
heur. mutation (β=5)
heur. mutation (β=2)
heur. mutation (β=1)

(d) 16 node / Euclidean weights

Figure 7.5. The plots show the mean and the standard deviation of the distance
dmst−pop between a population of 500 individuals towards the MST over the number
of generations. Only mutation (“insertion before deletion”) and no selection is used.
The results show that the non-heuristic mutation operator is unbiased. The heuristic
mutation operator is biased and the bias increases with lower β.

c(T) =
∑

i,j∈V, i<j

rij × d(pT
i,j),

where d(pT
i,j) denotes the weight of the unique path from node i to node j

in the spanning tree T . The OCST problem seeks the spanning tree with
minimal costs among all other spanning trees. The OCST problem becomes
the MST problem if there are no communication requirements rij and c(T) =∑

ei,j∈E dij .
It was shown in Rothlauf et al. (2003) that, on average, optimal solutions

for OCST problems are similar to the MST. That means the average distance
dopt,MST between the optimal solution Topt and the MST is significantly lower
than the average distance dp

rnd,MST between a randomly created tree and the
MST.

232 7 Analysis and Design of Search Operators for Trees

Finding Optimal Solutions for OCST Problems

To investigate how the performance of the edge-set encoding depends on the
structure of the optimal solution for a random OCST problem, an optimal
or near-optimal solution must be determined. Due to the NP-hardness of
the OCST problem (compare Sect. 8.2.2), optimal solutions can be deter-
mined only for small problem instances with reasonable computational effort.
Therefore, we limit our investigations to 10 and 16 node problem instances.

As GEA performance increases with N (Harik et al. 1997), to find a (near-
optimal) solution we apply a GEA niter times to an OCST problem using a
population size of N0. T best

0 denotes the best solution of cost c(T best
0) that is

found during the niter runs. In the next round we double the population size
and again apply a GEA niter times with a population size of N1 = 2N0. T best

1

denotes the best solution with cost c(T best
1) that can be found in the second

round. We continue this iteration and double the population size Ni = 2Ni−1

until T best
i = T best

i−1 and n(T best
i)/niter > 0.5, this means T best

i is found in more
than 50% of the runs in round i. n(T best

i) denotes the number of runs that
find the best solution T best

i in round i.

 0

 100

 200

 300

 400

 500

 0 2 4 6 8

nu
m

be
r

of
 p

ro
bl

em
 in

st
an

ce
s

dopt,MST

Euclidean weights
random weights

(a) 10 node

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14

nu
m

be
r

of
 p

ro
bl

em
 in

st
an

ce
s

dopt,MST

Euclidean weights
random weights

(b) 16 nodes

Figure 7.6. We randomly generated 1000 OCST problems and show the distribution
of the problem instances over the distance dopt,MST between the optimal solution
Topt and the MST. Results are presented for 10 and 16 node problems using either
random or Euclidean weights. The plots show that the optimal solutions for OCST
problems are biased towards the MST.

For finding the optimal solutions we use a standard GA with traditional pa-
rameter settings. The problem was encoded using the NetKey representation
(compare Sect. 6.5). The GA uses uniform crossover and tournament selec-
tion without replacement. The size of the tournament is three. The crossover
probability is set to pcross = 0.8 and the mutation probability (assigning a

7.2 The Edge-Set Encoding 233

random value [0, 1] to one allele) is set to pmut = 0.02. For the GA we started
with N0 = 100 and set niter = 20. Each GA run is stopped after a maximum
of 200 generations. The computational effort for the experiments is high.

Figure 7.6 presents the results of our experiments. We show the number
of problem instances over the distance dopt,MST between the optimal solu-
tion Topt and the MST for 1000 randomly created OCST problems with 10
(Fig. 7.6(a)) and 16 (Fig. 7.6(b)) nodes. The OCST problems are created ran-
domly using either random weights in]0,100] or placing the nodes randomly
on a 1000 × 1000 two-dimensional grid and calculating the weights as the
Euclidean distances between the nodes (details are described in Sect. 7.2.2).
The demands rij between the nodes are random and uniformly distributed in
]0,100].

Comparing the results to the average distance dp
rnd,MST between a ran-

domly created tree and the MST (Table 7.1) reveals that the optimal solutions
for OCST problems are biased towards the MST. Furthermore, OCST prob-
lems with random weights show a stronger bias than OCST problems with
Euclidean weights. Due to the bias of the optimal solutions towards the MST,
the problem should be easy to solve for GEAs using the edge-set encoding.

The Performance of the Edge-Set Encoding for Randomly
Generated OCST Problems

After determining optimal solutions as described in the previous paragraphs,
we examine the performance of GEAs using the edge-set encoding. We use
the same randomly generated problem instances as before and investigate how
the GEA performance depends on the distance dopt,MST between the optimal
solution and the MST. We use a generational GA with tournament selection
without replacement of size two and no mutation. Each run is stopped after
the population is fully converged or the number of generations exceeds 200. We
perform 50 GA runs for each of the 1000 problem instances. In our experiments
we compare the performance of GAs using

• non-heuristic KruskalRST crossover (p. 225) with non-heuristic KruskalRST
initialization (p. 225) (indicated as “KruskalRST”),

• non-heuristic KruskalRST* crossover (p. 225) combined with non-heuristic
KruskalRST initialization (indicated as “KruskalRST*”),

• non-heuristic KruskalRST* crossover combined with heuristic initializa-
tion (p. 226) with α = 1.5 (indicated as “heur ini”),

• heuristic crossover (p. 227) combined with non-heuristic KruskalRST ini-
tialization (indicated as “heur xover”),

• heuristic crossover combined with heuristic initialization with α = 1.5
(indicated as “heur ini & xover”), and

• as benchmark the unbiased network random key encoding with uniform
crossover (indicated as “NetKey”).

234 7 Analysis and Design of Search Operators for Trees

The population size N which is constant in all experiments, is chosen with
respect to the performance of the non-heuristic KruskalRST* crossover op-
erator. The aim is to find the optimal solution with a probability of about
50 %. Therefore, we choose for the 10 node problems a population size of
N = 60 (random weights) and N = 100 (Euclidean weights) and for the 16
node problems a population size of N = 200 (random weights) and N = 450
(Euclidean weights).

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d

dopt,MST

NetKey
KruskalRST

KruskalRST*
heur ini

heur xover
heur ini& xover

(a) 10 node / random weights

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d

dopt,MST

NetKey
KruskalRST

KruskalRST*
heur ini

heur xover
heur ini& xover

(b) 10 node / Euclidean weights

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d

dopt,MST

NetKey
KruskalRST

KruskalRST*
heur ini

heur xover
heur ini& xover

(c) 16 node / random weights

0

0.2

0.4

0.6

0.8

1

3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d

dopt,MST

NetKey
KruskalRST

KruskalRST*
heur ini

heur xover
heur ini& xover

(d) 16 node / Euclidean weights

Figure 7.7. The figures compare the performance of a GA using different com-
binations of crossover and initialization operators for randomly generated 10 (left)
and 16 (right) node OCST problems. The plots show the average percentage of op-
timal solutions that can be found over dopt,MST . The heuristic crossover operator
outperforms the non-heuristic version only if the optimal solution is very similar to
the MST (dopt,MST ≈ 0). If dopt,MST > 1 the heuristic crossover results in low GA
performance. In contrast, when using the non-heuristic KruskalRST* crossover, GA
performance remains about constant.

The results of the experiments are presented in Figs. 7.7 and 7.8. Figure
7.7 shows the percentage of GA runs that find the correct optimal solutions

7.2 The Edge-Set Encoding 235

0

2

4

6

8

10

12

14

0 1 2 3 4

ga
p

(in
 %

)

dopt,MST

NetKey
KruskalRST

KruskalRST*
heur ini

heur xover
heur ini& xover

(a) 10 node / random weights

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6

ga
p

(in
 %

)

dopt,MST

NetKey
KruskalRST

KruskalRST*
heur ini

heur xover
heur ini& xover

(b) 10 node / Euclidean weights

0

5

10

15

20

0 1 2 3 4 5 6

ga
p

(in
 %

)

dopt,MST

NetKey
KruskalRST

KruskalRST*
heur ini

heur xover
heur ini& xover

(c) 16 node / random weights

0

5

10

15

20

25

3 4 5 6 7 8 9 10

ga
p

(in
 %

)

dopt,MST

NetKey
KruskalRST

KruskalRST*
heur ini

heur xover
heur ini& xover

(d) 16 node / Euclidean weights

Figure 7.8. We show the mean of the gap between the cost of the best found
solution and the cost of the optimal solution over dopt,MST . The results confirm
that the heuristic crossover operator outperforms the non-heuristic variants only if
the optimal solutions are very similar to the MST (dopt,MST ≈ 0).

over dopt,MST . Fig. 7.8 shows the gap, c(Tfound)−c(Topt)
c(Topt)

(in percent), between
the cost of the best found solution and the cost of the optimal solution over
dopt,MST . We show results for 1000 randomly generated problem instances.
Results are plotted only for these dopt,MST , where there are more than 10
problem instances. For example, we show results for 10 node problems with
Euclidean weights only for dopt,MST ∈ {0, . . . , 6} as there are only 8 (out of
1000) instances with dopt,MST = 7 (compare Fig. 7.6(b)).

The results reveal that the heuristic crossover versions of the edge-set en-
coding (heur xover and heur ini & crossover) always find the optimal solution
if the optimal solution is the MST. However for dopt,MST �= 0, the performance
of GAs using the heuristic version drops sharply and the optimal solution can
not be found if dopt,MST > 2. In contrast, the performance of the non-heuristic
KruskalRST* operator decreases only slightly with larger dopt,MST and allows

236 7 Analysis and Design of Search Operators for Trees

the GA to correctly identify the optimal solution even for larger dopt,MST . The
performance of the non-heuristic crossover combined with an heuristic initial-
ization (“heur ini”) is similar to the heuristic crossover operator. It always
finds the optimal solution if it is the MST, however with increasing dopt,MST

the decrease of performance is slightly less than for the heuristic crossover.
In summary, the heuristic crossover operator performs well only for prob-

lems where the optimal solution is slightly different from the MST. Otherwise,
GAs using the edge-set encoding with heuristic crossover fail. The performance
of GAs using the non-heuristic variant is similar to the performance of the
NetKey encoding with uniform crossover. These results are confirmed when
examining the gap c(Tfound)−c(Topt)

c(Topt)
(Fig. 7.8). Heuristic variants of the en-

coding show high performance if the optimal solution is the MST. However,
with increasing dopt,MST the quality of the solutions strongly decreases and
the non-heuristic variants outperform the heuristic variants.

In the remaining paragraphs, the performance of the edge-set-specific mu-
tation operator is examined. As before 1000 random problems of different
types are generated and the optimal solutions are calculated as described on
page 232. For comparing the performance of different variants of the muta-
tion operator, a simple simulated annealing (SA) strategy (van Laarhoven and
Aarts 1988) is used as a representative example of mutation-based search. SA
can be modeled as an GEA with population size one and Boltzmann selec-
tion (Mahfoud and Goldberg 1995). In each generation a new solution Toff

is created by applying exactly one mutation to the parent solution Tpar. If
c(Toff) < c(Tpar), Toff replaces Tpar. If c(Toff) > c(Tpar), Tpar is replaced
with probability P (T) = exp (−(c(Toff) − c(Tpar))/T). With lower T , the
probability of accepting worse solutions decreases.

In our experiments the start temperature Tstart = 50 is reduced in every
step by the factor 0.99. Therefore, Tt+1 = 0.99 × Tt. The number of search
steps is set to tmax = 300 for 10 node and tmax = 1000 for 16 node problems.
We performed 50 independent runs for each problem instance and investigated
the performance of an SA using

• non-heuristic mutation (p. 226) and non-heuristic initialization (p. 225)
(denoted as “no heur mut&ini”),

• non-heuristic mutation and heuristic initialization (p. 226) with α = 1.5
(denoted as “no heur mut, α = 1.5”),

• heuristic mutation (p. 227) with β = 5 and non-heuristic initialization
(denoted as “β = 5, no heur ini”),

• heuristic mutation with β = 5 and heuristic initialization with α = 1.5
(denoted as “β = 5, α = 1.5”),

• heuristic mutation with β = 0.5 and non-heuristic initialization (denoted
as “β = 0.5, no heur ini”), and

• heuristic mutation with β = 0.5 and heuristic initialization with α = 1.5
(denoted as “β = 0.5, α = 1.5”).

7.2 The Edge-Set Encoding 237

We performed no experiments for NetKeys as the corresponding mutation
operator can not be directly compared. The mutation operator for NetKeys
which changes one allele of the genotype, often does not change the corre-
sponding phenotype, whereas the mutation operator of the edge-set encoding
always changes one edge.

The results of the experiments are presented in Fig. 7.9. It shows the per-
centage of SA runs that find the correct optimal solutions over dopt,MST . It can
be seen that an SA using heuristic initialization always finds the optimal solu-
tion if dopt,MST = 0. When using heuristic mutation with a low bias (β = 5),
SA performance is always higher than when using non-heuristic mutation (for
all considered dopt,MST). A small bias of the mutation operator does not push
the population towards the MST but allows a diversed population and efficient
SA search for solutions somehow similar to the MST. However, when increas-
ing the bias of the heuristic mutation to β = 0.5, SA performance becomes
lower than for the non-heuristic case even for small dopt,MST (especially for
the Euclidean problem instances). Then, the heuristic bias of the mutation
operator is too strong and pushes the population too strongly towards the
MST. The results reveal that by increasing the bias of the mutation operator
(lowering β) problems where the optimal solutions are similar to the MST can
be solved more efficiently; however, problems where the optimal solutions are
different from the MST can be solved less efficiently.

To summarize our findings, the heuristic crossover operator of the edge-
set encoding does not allow efficient search due to its strong bias towards
the MST. Only problems where the optimal solutions are slightly different
from the MST can be solved. The heuristic mutation operator results in good
performance if β is large as the resulting low bias of the mutation operator
prefers solutions similar to the MST and does not push a population too
strongly towards the MST. However, if the bias towards the MST induced
by β becomes stronger only optimal solutions similar to the MST can be
found and mutation-based search fails. The results for the heuristic mutation
operator show that the proper adjustment of β is important and crucial for
the success of local search.

7.2.4 Summary and Conclusions

This section investigated the bias of the edge-set encoding which was pro-
posed by Raidl and Julstrom (2003), and examines its performance for ran-
dom instances of the optimal communication spanning tree (OCST) problem.
The edge-set encoding belongs to the class of direct representations for trees.
Instead of defining an additional genotype-phenotype mapping, encoding-
specific initialization, crossover and mutation operators are directly applied
to the trees. Section 7.2.1 described the functionality of the edge-set encod-
ing and Sect. 7.2.2 performs an exhaustive investigation into the bias of the
different variants of the edge-set encoding. The work is completed by an inves-

238 7 Analysis and Design of Search Operators for Trees

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d

dopt,MST

no heur mut&ini
no heur mut, α=1.5

β=5,no heur ini
β=5,α=1.5

β=0.5,no heur ini
β=0.5,α=1.5

(a) 10 node / random weights

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d

dopt,MST

no heur mut&ini
no heur mut, α=1.5

β=5,no heur ini
β=5,α=1.5

β=0.5,no heur ini
β=0.5,α=1.5

(b) 10 node / Euclidean weights

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d

dopt,MST

no heur mut&ini
no heur mut, α=1.5

β=5,no heur ini
β=5,α=1.5

β=0.5,no heur ini
β=0.5,α=1.5

(c) 16 node / random weights

0

0.2

0.4

0.6

0.8

1

3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d

dopt,MST

no heur mut&ini
no heur mut, α=1.5

β=5,no heur ini
β=5,α=1.5

β=0.5,no heur ini
β=0.5,α=1.5

(d) 16 node / Euclidean weights

Figure 7.9. The figures show the performance of an SA using different variants of
initialization and mutation operators of the edge-set encoding. The plots show the
average percentage of optimal solutions that can be found over dopt,MST for 1000
randomly created OCST problems. The results show that the heuristic variants of
the mutation operator outperform the non-heuristic variants for the OCST problem
if β is set properly.

tigation into the performance of crossover-based search and mutation-based
search for randomly generated instances of the OCST problem.

The investigation into the bias of the edge-set encoding reveals that the
heuristic versions of the initialization, crossover, and mutation operators are
biased towards the MST defined on the distance weights. The bias is especially
strong for the heuristic crossover operator which results in a quick convergence
of a population of trees towards the MST. In contrast, the non-heuristic search
operators of the edge-sets are unbiased and their application results in an
undirected and uniform search through the search space.

7.2 The Edge-Set Encoding 239

Due to the strong bias of the heuristic search operators towards the MST,
tree optimization problems can easily be solved if optimal solutions are the
MST. However, if optimal solutions are only slightly different from the MST,
the heuristic crossover operator fails due to its strong bias towards the MST.
Therefore, the heuristic crossover operator is not appropriate for solving tree
optimization problems. Rothlauf and Tzschoppe (2004) proposed an exten-
sion of the heuristic crossover operator which allows us to reduce its strong
bias. Using the modified heuristic crossover operators results in higher GEA
performance if the optimal solution is different from the MST. In contrast to
the heuristic crossover operator, the non-heuristic crossover operator of the
edge-sets results in good performance for OCST problems even if the optimal
solutions are quite different from the MST. Its performance is similar to the
NetKey encoding from Sect. 6.5. For the mutation operator, the strength of
the bias towards the MST can be controlled by an encoding-specific parame-
ter β. With high β, the bias towards the MST is low, with low β it is strong.
Therefore, with low β, tree problems can be solved more efficiently if the op-
timal solutions are similar to the MST, but otherwise less efficiently. If β is
set appropriately, the heuristic mutation operator is a good choice for OCST
problems as optimal solutions of this problem are similar to the MST.

The problems of the heuristic variants of the edge-set encoding emphasize
the difficulties of a proper design of direct representations. In contrast to indi-
rect encodings, the behavior of new, problem-specific search operators is often
unknown. The analysis of the edge-set encoding has shown that although op-
timal solutions for the OCST problems are biased towards the MST (Rothlauf
et al. 2003), direct representations such as the heuristic edge-set encoding that
use this problem-specific knowledge and are biased towards the MST, can fail
if the bias is too strong. Therefore, unbiased representations should be used
if no problem-specific knowledge is known a priori.

8

Performance of Genetic and Evolutionary
Algorithms on Tree Problems

In the previous chapters, the presented theory about representations was used
for the analysis and design of representations as well as search operators. The
investigations into the properties of representations were based on theory and
helped us to understand what happens when GEAs use a specific representa-
tion. However, in practice, GEA users are often less interested in theory about
representations but want simple instruments for a quick and rough prediction
of the expected performance of a representation. They have several represen-
tations at hand and want to know which representation they should choose
for their problem. We do not want to leave them alone with their problems,
but illustrate how they can advantageously use the proposed theory.

This chapter illustrates for scalable test tree problems and real-world tree
problems how the performance of GEAs using different types of representa-
tions can be predicted by using the provided framework about representations.
Based on the framework, we give qualitative predictions of solution quality
and time to convergence for different types of tree representations. Doing
this, this chapter also provides an exhaustive comparison of the performance
of different tree representations. For our comparison we choose the indirect
representations Prüfer numbers (Sect. 6.2), characteristic vectors (Sect. 6.3),
the link and node biased encoding (Sect. 6.4), and NetKeys (Sect. 6.5) as well
as the direct encodings NetDir (Sect. 7.1) and edge-sets (Sect. 7.2). These
indirect and direct representations are used on scalable test problems like the
one-max tree and deceptive trap problem for trees and on various test in-
stances of the optimal communication spanning tree (OCST) problem from
the literature. The results show that using the outlined theory makes it easier
to select the proper representation for the problem at hand.

The test instances of the OCST problem are chosen because the exact
specifications of the problems are either easily available (Raidl 2001; Rothlauf
et al. 2002) or published (Palmer 1994; Berry et al. 1995). For summarizing
purposes, the exact data regarding the distance weights and the communi-
cation demands for the test instances of the OCST problems are listed in
Appendix A.

242 8 Performance of Genetic and Evolutionary Algorithms on Tree Problems

The following section provides a comparison of GEA performance for scal-
able test problems. After a brief analysis of representations in Sect. 8.1.1, we
present in Sect. 8.1.2 results for the fully easy one-max tree problem and in
Sect. 8.1.3 results for the the fully difficult deceptive tree problem. For each
of the two test problems, we provide theoretical predictions and empirical
evidence. Then, we focus in Sect. 8.2 on the OCST problem. This problem
is defined on trees and researchers have proposed some test instances in the
literature (Palmer 1994; Berry et al. 1995; Raidl 2001; Rothlauf et al. 2002).
For each problem, we deduce predictions of GEA performance and present
empirical results. The chapter ends with a brief summary.

8.1 GEA Performance on Scalable Test Tree Problems

This section compares the performance of different types of indirect and direct
representations for the one-max tree problem and the deceptive trap problem
for trees. After a brief analysis of tree representations based on the framework
from Chap. 4, we present results for the one-max tree problem (Sect. 8.1.2)
and for the deceptive tree problem (Sect. 8.1.3). For both problems, we pro-
vide brief descriptions, theoretical predictions about GEA performance, and
empirical evidence.

8.1.1 Analysis of Representations

We briefly summarize the most important properties of the different tree rep-
resentations and operators from the previous chapters. We focus on the results
concerning redundancy, bias, scaling, and locality for Prüfer numbers, char-
acteristic vectors (CV), the LNB encoding, NetKeys, NetDir, and edge-sets.

For the use of Prüfer numbers, NetKeys, CV, and NetDir no additional
representation-specific parameters are necessary. In contrast, for LNBs and
edge-sets, additional representation-specific parameters must be set by the
user. In the following experiments, we use the same variants of the edge-sets
as in the investigation presented in Sect. 7.2.3:

• KruskalRST: non-heuristic KruskalRST crossover (p. 225) with non-
heuristic KruskalRST initialization (p. 225),

• KruskalRST*: non-heuristic KruskalRST* crossover (p. 225) combined
with non-heuristic KruskalRST initialization,

• heur ini: non-heuristic KruskalRST* crossover combined with heuristic
initialization (p. 226) with α = 1.5,

• heur xover: heuristic crossover (p. 227) combined with non-heuristic
KruskalRST initialization, and

• h ini & xover: heuristic crossover combined with heuristic initialization
with α = 1.5.

8.1 GEA Performance on Scalable Test Tree Problems 243

Further details about the edge-set encoding can be found in Sect. 7.2. For the
LNB encoding, we use the following variants:

• NB (P2=1): the node-biased encoding (p. 180) with the node-specific bias
P2 = 1,

• NB (P2=20): the node-biased encoding with the node-specific bias P2 =
20,

• LB (P1=1): the link-biased encoding (p. 181) with the link-specific bias
P1 = 1,

• LB (P1=20): the link-biased encoding with the link-specific bias P1 = 20,
and

• LNB (P1=P2=1): the link-and-node-biased encoding (p. 182) with the
link-specific bias P1 = 1 and the node-specific bias P2 = 1,

The following paragraphs review important properties of the representations
presented in Chaps. 6 and 7 which are summarized in Table 8.1.

The investigation into the redundancy of indirect representations revealed
that Prüfer numbers are non-redundant and that NetKeys are uniformly and
synonymously redundant. Furthermore, the LNB encodings are synonymously
redundant; however, the over- and under-representation of solutions depends
on the setting of the node-specific and link-specific bias. Variants of the LNB
encoding that use a large link-specific bias P1 are approximately uniformly
redundant and show the same behavior as NetKeys. Therefore, GEA perfor-
mance is independent of the structure of the optimal solution. In contrast, the
LNB encoding is non-uniformly redundant if the link-specific bias is not large
enough. If P1 and P2 are small, LNB encodings are biased towards the mini-
mum spanning tree. For a large node-specific bias P2, the encoding is biased
towards stars. Therefore, GEA performance depends on the structure of the
optimal solution. In contrast, CVs are uniformly redundant but affected by
non-synonymous redundancy. As not all genotypes that represent the same
tree are similar to each other, the recombination of two genotypes that en-
code similar phenotypes can result in an offspring with different properties
(compare Sect. 6.3.3).

The situation is different for indirect encodings such as NetDir or edge-
sets. For direct encodings, it is not the properties of the genotype-phenotype
mapping which are relevant but the properties of the search operators. The in-
vestigation into the NetDir encoding shows (compare Sect. 7.1) that the search
operators are nearly unbiased which results in the same GEA performance as
with non-redundant or non-uniformly redundant encodings. In contrast, the
edge-sets show a bias towards the minimum spanning tree if heuristic variants
of the initialization and search operators are used. A biased search opera-
tor is equivalent to a non-uniformly redundant encoding. Due to the design
of the search operator, both direct representations show high locality as the
application of a mutation operator always results in a similar solution.

The investigation into the locality of tree representations shows that the
Prüfer number representation has in general low locality. However, the locality

244 8 Performance of Genetic and Evolutionary Algorithms on Tree Problems

Table 8.1. Summary of important properties of direct and indirect representations
for trees

redundancy & bias locality
BB-
scaling

Prüfer non-redundant high locality
around stars, low
locality elsewhere

uniformly
scaled

NetKey uniformly and synonymously redun-
dant

high locality uniformly
scaled

CV uniformly and non-synonymously re-
dundant

low locality due to
non-synonymous
redundancy

uniformly
scaled

NB (P2=1
and P2=20)

non-uniformly (bias towards stars)
and synonymously redundant

high locality uniformly
scaled

LB (P1=1) non-uniformly (bias towards MST)
and synonymously redundant

high locality uniformly
scaled

LB (P1=20) non-uniformly and synonymously re-
dundant

high locality uniformly
scaled

LNB
(P1=P2=1)

non-uniformly (bias towards stars and
MST) and synonymously redundant

high locality uniformly
scaled

NetDir non-redundant, search operator unbi-
ased

high locality -

KruskalRST non-redundant, search operator unbi-
ased

high locality -

KruskalRST* non-redundant, search operator unbi-
ased

high locality -

heur. ini non-redundant, initialization biased
towards MST (equivalent to non-
uniform redundancy)

high locality -

heur. xover non-redundant, search operator bi-
ased towards MST (equivalent to non-
uniform redundancy)

high locality -

h. ini & xover non-redundant, initialization and
search operator biased towards
MST (equivalent to non-uniform
redundancy)

high locality -

of Prüfer numbers is not low everywhere. When encoding stars, the locality
of Prüfer numbers is high; when encoding non-stars, the locality of Prüfer
numbers is low. For redundant representations, low locality is equivalent to
non-synonymity. As for low-locality representations, similar genotypes do not
encode similar phenotypes if non-synonymously redundant representations are
used. Therefore, all encodings that are synonymously redundant can be viewed
as high-locality encodings since small changes in the genotype always result
in small changes in the phenotype. The non-synonymously redundant CV
encoding has low locality as small changes of the genotype do not necessarily

8.1 GEA Performance on Scalable Test Tree Problems 245

result in a similar phenotype. For direct encodings, the locality is always high
as the mutation operators are designed such that trees with similar properties
are created.

The investigation into the scaling of the BBs has revealed that all examined
indirect tree representations have uniformly scaled BBs. There are no BBs that
have a higher contribution to the fitness of a tree. Therefore, the dynamics of
genetic search are not changed and all alleles are solved implicitly in parallel.

Table 8.2. We generated random genotypes xg
rnd of different sizes n and calculated

the minimum phenotypic distance min(dp
rnd,star) to stars, and the phenotypic dis-

tance dp
rnd,MST to the MST. The numbers confirm that CVs, NetKey, NetDir, LB

(P1 = 20), and edge-sets without initialization heuristics are unbiased (uniformly
redundant) as the distances are about the same as for the non-redundant Prüfer
numbers. Edge-sets with heuristic initialization are biased towards the MST. The
LNB encoding is biased towards stars for large P2 and towards the MST for low P1

and P2.

problem size n 8 20 40

distance d µ (σ) µ (σ) µ (σ)

Prüfer number
min(dp

rnd,star) 3.66 (0.64) 14.67 (0.79) 34.07 (0.84)

dp
rnd,MST 5.17 (1.01) 17.05 (1.26) 37.03 (1.34)

NetKey
min(dp

rnd,star) 3.75 (0.62) 14.77 (0.78) 34.15 (0.80)

dp
rnd,MST 5.22 (1.01) 17.10 (1.25) 37.06 (1.32)

CV
min(dp

rnd,star) 3.66 (0.64) 14.68 (0.80) 34.07 (0.83)

dp
rnd,MST 5.18 (1.01) 17.05 (1.27) 37.02 (1.34)

NB (P2=1)
min(dp

rnd,star) 2.46 (1.1) 10.72 (2.26) 26.90 (3.14)

dp
rnd,MST 3.31 (1.05) 11.65 (1.77) 26.85 (2.50)

NB (P2=20)
min(dp

rnd,star) 0.24 (0.68) 1.64 (2.79) 5.98 (7.09)

dp
rnd,MST 5.08 (0.80) 16.55 (1.13) 35.88 (1.53)

LB (P1=1)
min(dp

rnd,star) 3.74 (0.63) 14.79 (0.76) 34.24 (0.76)

dp
rnd,MST 3.54 (1.15) 12.64 (1.86) 28.93 (2.53)

LB (P1=20)
min(dp

rnd,star) 3.74 (0.61) 14.77 (0.76) 34.14 (0.80)

dp
rnd,MST 5.15 (1.06) 16.79 (1.34) 36.36 (1.53)

LNB (P1=P2=1)
min(dp

rnd,star) 3.06 (0.89) 12.55 (1.47) 30.18 (1.96)

dp
rnd,MST 3.90 (1.07) 13.88 (1.69) 31.74 (2.21)

NetDir
min(dp

rnd,star) 3.66 (0.65) 14.67 (0.79) 34.07 (0.83)

dp
rnd,MST 5.17 (1.02) 17.05 (1.26) 37.02 (1.34)

KruskalRST, KruskalRST*, min(dp
rnd,star) 3.75 (0.61) 14.78 (0.77) 34.17 (0.81)

heur xover dp
rnd,MST 5.26 (1.04) 17.10 (1.27) 37.04 (1.33)

heur ini, heur ini & xover
min(dp

rnd,star) 4.06 (0.52) 15.75 (0.45) 35.53 (0.53)

dp
rnd,MST 0.35 (0.58) 1.13 (1.29) 2.29 (2.30)

To investigate and verify the bias of the different representations, we can
measure the average distance of randomly generated solutions to a star or
to the MST. Consequently, Table 8.2 presents results for randomly created
genotypes that encode trees of different size n. For each representation, we

246 8 Performance of Genetic and Evolutionary Algorithms on Tree Problems

randomly generate 10,000 genotypes and measure the mean µ and the stan-
dard deviation σ of the minimum phenotypic distance min(dp

rnd,star) towards
a star, and the phenotypic distance dp

rnd,MST towards the MST. For the dif-
ferent variants of the LNB encoding, we randomly placed the n nodes on a
two-dimensional grid of size 1,000×1,000. As the distance weights dij are rele-
vant for the construction of the phenotype (compare (6.5)), we used Euclidean
distances between the nodes i and j as distance weights dij . For the edge-sets,
we created 100 random populations of size N = 100, and placed for each
population the nodes randomly on the 1,000×1,000 square.

The results confirm the findings from above. The direct encodings Net-
Dir as well as variants of the edge-sets that use non-heuristic initialization
(KruskalRST, KruskalRST*, and heur. xover) are about unbiased as the dis-
tances are similar to Prüfer numbers. Also, the uniformly redundant encodings
NetKeys, CVs, and the LB encoding with large link-specific bias are unbiased
because they have about the same distances as non-redundant representa-
tions (Prüfer numbers). In contrast, the NB and LNB encoding show a bias
towards stars as min(dp

rnd,star) is lower in comparison to the unbiased Prüfer
numbers. Variants of the edge-sets that use heuristic initialization as well as
the LB (P1 = 1) and LNB encoding show a bias towards the MST as dp

rnd,MST

is lower in comparison to Prüfer numbers.

8.1.2 One-Max Tree Problem

We examine the performance of GAs using different representations for the
one-max tree problem introduced in Sect. 6.1.5.

Problem Description

The one-max tree problem was defined in Sect. 6.1.5 as a fully easy tree
problem. The problem is fully easy for GEAs as the phenotypic size of the
BBs is kp = 1. All tree schemata that contain the optimal solution have higher
fitness than their competitors. For the one-max tree problem, an optimal
solution Topt is chosen a priori either randomly or by hand. The structure
of Topt can either be a random tree, a star, a list, the MST, or any other
pre-defined tree structure. In the following section, we assume a minimization
problem and define the fitness of a tree Ti as the distance di,opt between the
optimal solution and the tree. For di,opt = 0, Ti = Topt.

Further details regarding the one-max tree problem are provided in
Sects. 6.1.5 and 6.1.4.

Theoretical Predictions

We give predictions on GEA performance for the one-max tree problem. The
predictions are based on the results from Sect. 8.1.1.

8.1 GEA Performance on Scalable Test Tree Problems 247

We know that some representations are non-uniformly redundant and are
biased towards specific tree structures. Therefore, GEA performance depends
on the structure of the optimal solution. Using the results learnt about redun-
dancy from Sect. 8.1.1, we expect the CV, NetKey, NetDir, edge-set without
heuristics, and LB (P1 = 20) encoding to perform independently of the struc-
ture of the optimal tree Topt. GEAs using LNB encodings with small biases
P1 and P2 will perform better if the optimal solutions are similar to the MST.
However, GEAs using these encodings need more generations and find less
BBs if the optimal solutions are not similar to the MST. GEAs using the NB
encoding are biased towards stars and show high performance if the best solu-
tions are stars. If the best solutions are arbitrary trees or lists, GEAs will show
lower performance when using the LNB encoding. The edge-set encoding with
heuristics introduce a bias towards MST-like solutions. Therefore, GEAs us-
ing edge-sets with heuristics are expected to perform well for problems where
the optimal solutions are the MST, and show low performance elsewhere.

After we have examined the effects of redundancy, we focus on locality.
We have seen that Prüfer numbers have high locality around stars, but low
locality elsewhere. This means that the genotypic size of the BBs kg is larger
than the phenotypic size of the BBs kp = 1 if the optimal solution is not a
star. Therefore, the performance of GEAs using Prüfer numbers is low if the
optimal solution is not a star. CVs are also affected by low locality as the
encoding is non-synonymously redundant. Due to stealth mutation, offspring
can be created that are not similar to their parents. In general, we expect that
GEAs using CVs show lower performance for the easy one-max problem, as the
search is randomized and guided search is no longer possible. However, as we
use only crossover and no mutation in our experiments, BBs can not come back
into the population once they are extinct. The non-synonymous redundancy
of the CV encodings can partially solve this problem as it works like stealth
mutation (compare Sect. 6.3.3) and brings back lost BBs. Therefore, for small
problem instances, we expect GEAs using the CV encoding to be able to
find more BBs than other encodings, but to need much more time to do this.
The run duration and the number of solved problems at the end of the run
increases when using CVs. This effect of stealth mutation is amplified by
the low difficulty of the one-max problem. This problem is especially easy
for mutation-based GEAs because the landscape leads GEAs to the correct
solution. Therefore, mutation, as well as stealth mutation, increases GEA
performance for small problem instances.

In contrast, the other representations (NetKey, NetDir, edge-sets and
LNB) have high locality and the problem difficulty is not changed.

Empirical Results

For our experiments, we use a simple, generational genetic algorithm without
mutation, tournament selection without replacement of size 2, and uniform
crossover. We randomly generate 200 problems for each problem instance and

248 8 Performance of Genetic and Evolutionary Algorithms on Tree Problems

perform for each problem instance and each representation 25 GA runs. We
present results for the one-max tree problem with 8, 20, and 40 nodes. The
optimal solution is either a randomly chosen star or list, an arbitrary tree, or
the MST based on the the distance weights dij . The performance of GEAs is
determined by the percentage Psucc of correctly solved problems at the end
of the run and the number of generations tconv until the population is fully
converged. We use a population size of N = 16 for all n = 8 node problems,
N = 100 for all n = 20 node problems, and N = 600 for all n = 40 node
problems. The population sizes N are chosen such that some of the represen-
tations allow the GA to always find the optimal solutions. In general, a higher
population size N increases the performance (higher Psucc), whereas lower N
reduces GA performance. The performance differences between the different
representations remain about the same when using different population sizes.
All runs are stopped after the population is fully converged or a maximum of
200 generations is reached.

The performance of GAs using different representations (compare Sect.
8.1.1) for the one-max tree problem is shown in Tables 8.3 and 8.4. We present
results for different optimal solutions (Topt is either an arbitrary tree, the
MST, a random star, or a random list) and show the percentage Psucc of runs
that find the optimal solution Topt, the mean and standard deviation of the
fitness of the best found solution, and the mean and standard deviation of the
number of generations tconv until the population is fully converged or the GA
run is stopped after 200 generations. The fitness of the best found solution
directly measures the distance between the optimal solution Topt and the best
found solution. All results are averaged over 200 randomly created problems
and 25 runs for each problem.

The numbers show that the performance of GEAs searching for optimal
lists is about the same as when searching for optimal arbitrary trees. Further-
more, the performance of GAs using uniformly redundant encodings like CVs,
NetKeys, NetDir, edge-sets without heuristics, or the LB (P1 = 20) encoding
is about independent of the structure of the optimal solution Topt. There are
some exceptions for Topt is a star, but, in general, Psucc, the fitness, and Tconv

are not affected by the optimal solution being an arbitrary tree, the MST, a
star, or a list.

The performance of GAs using Prüfer number is low due to the low locality
of the encoding. However, we have seen in Sect. 6.2.4 that the locality of Prüfer
number is high around stars. Therefore, GAs using Prüfer numbers perform
better when searching for optimal stars than when searching for optimal trees,
lists, or MSTs.

If the problem instances are small (n = 8 and n = 20), GAs using the CV
encoding are able to find the optimal solution when searching for an arbitrary
tree, a list, or the MST, but need a high number of generations tconv. The non-
synonymous redundancy of the encoding continuously introduces new genetic
material into the search and prolongs search time allowing the GA to find its
way to the optimal solutions. However, for larger problem instances, the search

8.1 GEA Performance on Scalable Test Tree Problems 249

Table 8.3. Performance of GAs using different types of representations for one-max
tree problems of different sizes and with different Topt (arbitrary tree and MST)

T
o
p
t 8 nodes 20 nodes 40 nodes

Psucc
fitness tconv Psucc

fitness tconv Psucc
fitness tconv

µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ)

a
rb

it
ra

ry
tr

ee

Prüfer 0.05 1.65(0.8)18(4) 0 5.91 (1.2) 77 (9) 0 14.28(1.7)198 (5)
NetKey 0.59 0.47(0.6)16(3) 0.91 0.09 (0.3) 40 (4) 1 0 (0) 85 (9)
CV 0.95 0.05(0.2)20(4) 1 0.01 (0.1)137(22) 0 17.34(1.0)200 (0)
NB (P2=1) 0 3.20(0.9)10(3) 0 12.44(1.4) 28 (6) 0 29.58(1.8) 62 (12)
NB (P2=20) 0 3.52(0.7) 7 (3) 0 13.18(1.1) 20 (5) 0 30.06(1.5) 38 (9)
LB (P1=1) 0.11 1.63(0.9)14(4) 0 5.72 (1.8) 51 (12) 0 14.73(2.7)150(32)
LB (P1=20) 0.58 0.47(0.6)16(3) 0.90 0.11 (0.3) 40 (4) 1 0 (0) 85 (9)
P1=P2=1 0.13 1.47(0.9)18(4) 0 4.51 (1.5) 69 (11) 0 12.22(2.4)190(15)
NetDir 0.39 0.79(0.7)20(6) 0.72 0.32 (0.5)125(35) 0 10.08(0.8)200 (0)
KrukalRST 0.40 0.76(0.7)25(9) 0.02 2.14 (0.9)200 (0) 0 13.75(0.9)200 (0)
KruskalRST* 0.21 1.15(0.8)11(2) 0.54 0.58 (0.7) 26 (2) 0.99 0.01 (0) 38 (1)
heur. ini 0 4.89(1.1) 2 (2) 0 16.55(1.4) 3 (3) 0 36.43(1.5) 4 (3)
heur. xover 0 3.28(0.9) 9 (3) 0 13.60(1.5) 17 (4) 0 33.01(1.8) 20 (4)
h. ini & xover 0 5.19(1.0) 1 (2) 0 16.98(1.3) 3 (3) 0 36.88(1.4) 3 (3)

M
S
T

Prüfer 0.03 1.75(0.7)18(4) 0 6.15 (1.1) 79 (8) 0 14.44(1.6)199 (2)
NetKey 0.57 0.48(0.6)16(3) 0.91 0.10 (0.3) 39 (4) 1 0 (0) 81 (8)
CV 0.95 0.05(0.2)20(4) 1 0 (0) 132(19) 0 16.76(1.0)200 (0)
NB (P2=1) 0.55 0.50(0.5)11(3) 0.39 0.82 (0.7) 37 (5) 0.51 0.65 (0.5) 95 (12)
NB (P2=20) 0 2.96(0.8)10(3) 0 7.19 (1.3) 26 (5) 0 7.79 (1.6) 64 (10)
LB (P1=1) 0.96 0.04(0.2)12(2) 1 0 (0) 34 (4) 1 0 (0) 84 (9)
LB (P1=20) 0.61 0.43(0.6)16(3) 0.93 0.07 (0.2) 39 (4) 1 0 (0) 81 (8)
P1=P2=1 0.78 0.23(0.4)17(4) 0.87 0.14 (0.3) 63 (8) 0.98 0.02 (0.0)181(16)
NetDir 0.37 0.82(0.7)20(6) 0.73 0.33 (0.6)167(26) 0 9.96 (0.8)200 (0)
KrukalRST 0.42 0.73(0.7)25(9) 0.02 1.98 (0.8)200 (0) 0 13.54(0.9)200 (0)
KruskalRST* 0.23 1.12(0.8)11(2) 0.59 0.51 (0.7) 25 (2) 1 0 (0) 36 (1)
heur. ini 1 0 (0) 2 (1) 1 0 (0) 4 (1) 1 0 (0) 5 (0)
heur. xover 0.65 0.39(0.6) 6 (1) 0.97 0.03 (0.1) 11 (1) 1 0 (0) 14 (0)
h. ini & xover 1 0 (0) 1 (0) 1 0 (0) 2 (0) 1 0 (0) 3 (0)

space becomes too large and the random search behavior of GAs using the
CV encoding does not allow it to find the optimal solution any more. When
searching for optimal stars, the performance of GAs using the CV encoding
is in general low as the repair process has problems with creating star-like
structures.

LB encodings with P2 = 20 are strongly biased towards stars and GAs
perform very well when searching for the optimal solution is a star, but fail
completely when searching for lists, arbitrary trees, or the MST. When using
the LB encoding with P2 = 1, the bias towards the star is smaller and there is
an additional bias towards the MST. Therefore, this variant of the LB encod-
ing performs slightly better for non-stars especially if the optimal solution is
the MST. If the LB encodings only use a small link-specific bias P1 = 1, the

250 8 Performance of Genetic and Evolutionary Algorithms on Tree Problems

Table 8.4. Performance of GAs using different types of representations for one-max
tree problems of different sizes and with different Topt (star and list)

T
o
p
t 8 nodes 20 nodes 40 nodes

Psucc
fitness tconv Psucc

fitness tconv Psucc
fitness tconv

µ (σ) µ (σ) µ (σ) µ (σ) µ (σ) µ (σ)

ra
n
d
o
m

st
a
r

Prüfer 0.46 0.72(0.8)14 (3) 0.72 0.54 (1.0) 43 (9) 0.98 0.02 (0.1) 73 (18)
NetKey 0.67 0.38(0.6)16 (3) 0.94 0.06 (0.2) 41 (5) 1 0 (0) 94 (9)
CV 0.94 0.08(0.4)20 (4) 0 8.03 (0.9)200 (0) 0 27.49(0.8)200 (0)
NB (P2=1) 0.57 0.95(1.4)10 (3) 0.85 0.28 (0.8) 26 (7) 0.98 0.03 (0.1) 47 (10)
NB (P2=20) 0.90 0.66(1.9) 6 (2) 1 0.02 (0.3) 13 (3) 1 0 (0) 27 (5)
LB (P1=1) 0.23 1.68(1.4)14 (4) 0.07 5.78 (3.5) 52 (13) 0.02 15.32(7.7)140(38)
LB (P1=20) 0.66 0.38(0.6)16 (3) 0.94 0.06 (0.3) 41 (5) 1 0 (0) 95 (9)
P1=P2=1 0.77 0.34(0.8)16 (4) 0.99 0.01 (0.1) 48 (7) 1 0 (0) 135(16)
NetDir 0.30 1.05(0.9)17 (6) 0.48 0.72 (0.8) 56 (34) 0.99 0.01 (0.1) 64 (4)
KrukalRST 0.26 1.07(0.8)24(11) 0.24 1.22 (1.0)127(41) 0 20.84 (1) 200 (0)
KruskalRST* 0.14 1.42(0.9)11 (2) 0.14 1.65 (1.1) 30 (2) 0.69 0.36 (0.6) 54 (2)
heur. ini 0 4.94(0.9) 2 (2) 0 16.58(1.0) 3 (4) 0 36.47(1.1) 4 (4)
heur. xover 0 3.64(1.1) 9 (3) 0 14.41(1.4) 17 (4) 0 33.99(1.5) 20 (4)
h. ini & xover 0 5.23(0.7) 1 (2) 0 17.05(0.7) 2 (3) 0 36.96(0.7) 3 (4)

ra
n
d
o
m

li
st

Prüfer 0.02 1.81(0.7)18 (4) 0 6.20 (1.1) 80 (9) 0 14.35(1.7)199 (2)
NetKey 0.55 0.51(0.6)16 (3) 0.90 0.11 (0.3) 39 (4) 1 0 (0) 76 (7)
CV 0.96 0.04(0.2)20 (4) 1 0 (0) 114(14) 0 16.31(0.9)200 (0)
NB (P2=1) 0 3.61(0.8)11 (3) 0 13.04(1.3) 29 (6) 0 30.20(1.6) 65 (12)
NB (P2=20) 0 4.51(0.6) 7 (4) 0 14.23(1.0) 25 (5) 0 30.67(1.4) 47 (9)
LB (P1=1) 0.07 1.65(0.8)14 (4) 0 5.68 (1.6) 51 (12) 0 14.47(2.5)151(31)
LB (P1=20) 0.54 0.51(0.6)16 (3) 0.88 0.13 (0.3) 39 (4) 1 0 (0) 77 (8)
P1=P2=1 0.03 1.83(0.8)19 (4) 0 6.12 (1.3) 70 (11) 0 15.82(2.0)191(14)
NetDir 0.37 0.80(0.7)21 (6) 0.63 0.48 (0.7)198(10) 0 9.94 (0.8)200 (0)
KrukalRST 0.43 0.71(0.7)25 (9) 0.01 1.93 (0.8)200 (0) 0 13.76(0.9)200 (0)
KruskalRST* 0.25 1.07(0.8)11 (2) 0.63 0.44 (0.6) 25 (2) 1 0 (0) 35 (1)
heur. ini 0 4.90(1.1) 2 (2) 0 16.53(1.4) 3 (3) 0 36.43(1.5) 4 (3)
heur. xover 0 3.23(1.0) 9 (3) 0 13.49(1.6) 17 (4) 0 33.11(1.9) 20 (4)
h. ini & xover 0 5.19(1.1) 2 (2) 0 16.97(1.3) 3 (3) 0 36.84(1.4) 3 (3)

encoding is biased towards MSTs. Therefore, GEAs using this encoding show
low performance when searching for stars, lists, or arbitrary trees but high
performance when searching for the MST. When using the LB encoding with
a large link-specific bias P1 = 20 the encoding performs the same as NetKeys.
When using the LNB encoding with P1 = P2 = 1, there is a bias towards
stars and the MST, and GAs show a high performance when searching for
optimal stars or for the MST. However, for optimal lists or arbitrary trees,
GA performance is low.

The performance of the direct encodings NetDir and edge-sets is more
difficult to predict in comparison to the indirect encodings as the design of
the search operator is problem-specific, and it is often not obvious whether
there is a bias. The results for the NetDir encoding show that the crossover

8.1 GEA Performance on Scalable Test Tree Problems 251

operator is biased towards stars. If the optimal solution is an arbitrary tree,
a list, or the MST, GAs using the NetDir encoding fail for larger problem
instances (n = 40). The results for the edge-sets show that GAs using the
non-heuristic KruskalRST crossover operator fail; in contrast, when using the
slightly modified non-heuristic Kruskal RST* crossover operator, the encoding
shows a good performance (similar to NetKeys). When using the heuristic
variants of the edge-sets (heur. ini, heur. xover, and heur. ini & xover), the
results indicate a complete failure if the optimal solution is a star, a list, or
an arbitrary tree even for small problem instances. Due to the strong bias
of the heuristic edge-sets towards the MST, GAs using the heuristic variants
of the encoding fail when searching for non-MST-like optimal solutions. If
the optimal solution is the MST, edge-sets with heuristics allow high GA
performance and find the MST very quickly.

We see that the empirical results confirm the theoretical predictions. It
is more difficult to predict the performance of direct representation as the
properties of problem-specific search operators (like a possible bias) are more
difficult to identify. However, the theoretical investigations into the edge-sets
(compare Sect. 7.2) illustrated that analyzing the bias of the initialization,
crossover, and mutation operators also allow us to make accurate predictions
regarding GA performance.

The results show that only NetKeys and the LNB encoding with a large
link-specific bias P1 show high performance for the one-max tree problem
independently of the structure of the optimal solution. GAs using the non-
heuristic KruskalRST* encoding perform slightly worse but the performance
is still high. For the other types of encodings, we confirmed the theoretical
predictions and found that GAs using CVs fail for large problem instances due
to problems with non-synonymous redundancy, and GAs using Prüfer number
fail due to the low locality of the encoding. GAs using the NB encoding or
NetDir encoding only perform well if the optimal solution is a star, and GAs
using heuristic variants of the edge-set encoding fail if the optimal solution is
not the MST.

8.1.3 Deceptive Trap Problem for Trees

We compare the performance of GAs using different representations for the
deceptive trap problem for trees.

Problem Definition

The deceptive trap problem for trees is defined in Sect. 6.1.5. The problem is
fully difficult for crossover-based GEAs as all tree schemata with k < n−1 that
contain the optimal solution Topt have lower fitness than their competitors.

For the deceptive tree problem, an optimal solution Topt is chosen a priori
either randomly or by hand. As for the one-max tree problem, we assume a
minimization problem and the fitness of Topt is fTopt

= 0. The fitness fTi
of

252 8 Performance of Genetic and Evolutionary Algorithms on Tree Problems

other individuals Ti �= Topt is defined as di = n − dTopt,Ti
. Therefore, we get

for the fitness fi of an individual Ti

fi =

{
0 if Ti = Topt

n − dTopt,Ti
if Ti �= Topt

(8.1)

The lower fi of an individual Ti, the less links it has in common with the
optimal solution. The size of a deceptive trap problem denotes the number of
nodes n.

Even small instances of the trap problem for trees can not be solved by
GEAs with reasonable population sizes. Therefore, to be able to construct
larger problem instances, we concatenate m traps of size n. The size n of a
deceptive trap is denoted by the number of nodes that are part of this sub-
problem. As a result, by concatenating m deceptive trap problems for trees
of size n we can construct problems with overall m × n nodes. The fitness
of an individual is the sum of the fitness of the deceptive sub-problems and
is calculated as

∑m−1
i=0 fi, where fi is the fitness of a sub-tree (8.1). When

concatenating deceptive traps to larger problems, we have to consider that the
sub-problems of size n containing n−1 links must be connected to form a fully
connected tree with mn−1 links. Therefore, at least (mn−1)−m(n−1) = m−1
links are not considered for the fitness of an individual.

sub−problem 3

sub−problem 2

7

9

8
5

11 12

1 2

4

3
0

6
10 14 13

overall fitness: 4
number of correct sub−problems: 1

fitness: 0

sub−problem 1
fitness: 3

fitness: 1

Figure 8.1. Calculation of the fit-
ness for three concatenated, deceptive
traps of size n = 5. Although a tree
with 15 nodes has 14 links, only a
maximum of 12 links is considered for
the calculation of the fitness.

We illustrate in Fig. 8.1 how the fitness fi of an individual Ti is calculated
if we concatenate three deceptive sub-problems of size n = 5. The optimal
solution should be the star with center 5i, where i ∈ {0, 1, 2}. If we have three
concatenated sub-problems, there exist three groups of nodes each consist of

8.1 GEA Performance on Scalable Test Tree Problems 253

nodes. For example, sub-problem 3 consists of the nodes 5, 6, 7, 8, and 9. Sub-
problem 3 in Fig. 8.1 shows the optimal solution to the sub-problem which
is a star with center 5. The fitness of an individual is the sum of the fitness
of the deceptive sub-problems. Therefore, the minimum fitness is zero (all
three sub-problems are correct and Ti = Topt) and the maximum fitness is 12
(each solution of a sub-problem has only one link in common with the optimal
solutions of the sub-problem). In our example, sub-problem 2 has no links in
common with the optimal solution of the sub-problem and its contribution
to the overall fitness is f2 = 1. For more information regarding the deceptive
tree problem, the reader is referred to Sect. 6.1.5.

Theoretical Predictions

We predict the performance of GEAs for deceptive trap problems for trees
based on the redundancy and locality of the different representations.

Due to uniform redundancy (compare Sect. 8.1.1), we expect the perfor-
mance of GEAs using uniformly redundant encodings such as CVs, NetKeys,
NetDir, LB (P1 = 20), and edge-sets without heuristics to be independent of
the structure of the optimal solution.

We have seen in Sect. 8.1.1 that the non-uniformly redundant LNB encod-
ing using a small link-specific or node-specific bias is either biased towards
stars or the MST. Therefore, GEA performance would be high if we only had
one deceptive sub-problem, and the optimal solution is a star or the MST.
However, when concatenating m sub-problems to a larger problem, the overall
optimal solution is different from either a star or the MST. Thus, GEAs using
LNB encodings with small biases fail for concatenated traps as the optimal
solution is neither a star nor the MST. The situation is expected to be simi-
lar for edge-sets with heuristics. As these encodings have a bias towards the
MST, GEAs using these encodings also fail in finding the optimal solution as
the overall optimal solution is not similar to the MST (even if the optimal
solutions to the sub-problems are MSTs).

We have learned that low-locality encodings make fully difficult problems
easier and fully easy problems more difficult (compare Sect. 3.3.4). Therefore,
GEAs using Prüfer numbers will perform well when used on the fully deceptive
tree problem where the optimal solution is a non-star. In comparison to the
one-max tree problem where GEAs using Prüfer numbers failed completely,
we expect a better performance for the trap problems. The low locality of
the encoding destroys the deceptive character of the problem and makes it
easier to solve for GEAs. Furthermore, because Prüfer numbers have higher
locality around stars, GEAs have more difficulty in finding optimal stars than
arbitrary trees when solving the trap. Consequently, GEA performance will
be higher if the optimal solution of the deceptive trap is a non-star.

Finally, for the non-synonymous redundant CV encoding, we expect the
same effects as for the one-max tree problem. Due to the non-synonymity
of the encoding, we expect GEAs to need more generations but to correctly

254 8 Performance of Genetic and Evolutionary Algorithms on Tree Problems

solve a higher number of problems. Although the overall number of fitness
evaluations that are necessary to find the optimum strongly increases due
to stealth mutation (populations do not converge and the GEA runs until it
is stopped), CVs are an efficient encoding for solving deceptive traps as the
non-synonymity of the encoding makes the problem easier to solve for GEAs.

Experimental Results

For our experiments we concatenate four instances of a deceptive trap problem
for trees of size 3 and 4. The size of a sub-problem denotes the number of
nodes. Therefore, the problems for the empirical investigation have either
n×m = 12 (size 3) or m× n = 16 nodes (size 4). The minimum fitness of an
individual is 0 and the maximum fitness is either 4× 2 = 8 (4 instances of the
3 node trap) or 4 × 3 = 12 (four instances of the 4 node trap).

In our experiments we use a simple genetic algorithm without mutation.
For the size 3 problems we use a population size of N = 100 and for the size
4 problems we use N = 1, 200. Trap problems of size 4 are already difficult
to solve for GAs and larger problems could hardly be solved using standard
GAs. Because uniform crossover would result in high BB-disruption we use
two-point crossover in all runs. Furthermore, we use tournament selection
without replacement of size 3. The runs are stopped after the population is
fully converged or the number of generations exceeds 200 generations. We
generate 200 random problems for each problem instance and perform 25
runs for the different representations (compare Sect. 8.1.1) and for each of the
randomly generated problems. The optimal solutions for the sub-problems
are either an arbitrary tree, the MST, or a star. Because we have seen for the
one-max tree problem that GAs show the same performance when searching
for lists as when searching for arbitrary trees, we neglect the case that the
optimal solution is a list. As before, the GA performance is determined by
the percentage Psucc of correctly solved problems at the end of the run and
the number of generations tconv until the population is fully converged or the
GA run is stopped.

The performance of GAs using different representations for size 3 and 4
trap problems is shown in Table 8.5. We present results for different optimal
solutions (Topt is either an arbitrary tree, the MST, or a random star) and
show the percentage Psucc of runs that find the optimal solution Topt, the
mean and standard deviation of the fitness of the best found solution, and
the mean and standard deviation of the number of generations tconv until the
population is fully converged or the GA run is stopped after 200 generations.

As predicted, the performance of unbiased and uniformly redundant en-
codings (CV, NetKey, NetDir and LNB (P1 = 20)) is nearly independent of
the structure of the optimal solution. Because LNB encodings with small bi-
ases P1 and P2 are biased either towards stars or the MST, the performance
of GAs using these types of encodings is low. Because the optimal solutions
have nothing in common with a star or the MST, GAs fail. The situation

8.1 GEA Performance on Scalable Test Tree Problems 255

Table 8.5. Performance of GAs using different types of representations for deceptive
tree problems of different sizes and with different Topt (arbitrary tree, MST, and star)

T
o
p
t oder 3 order 4

Psucc
fitness tconv Psucc

fitness tconv

µ (σ) µ (σ) µ (σ) µ (σ)

a
rb

it
ra

ry
tr

ee

Prüfer 0.54 0.49 (0.6) 26.0 (8.6) 0.17 1.09 (0.6) 100.0 (44.3)
NetKey 0.78 0.23 (0.4) 23.0 (6.0) 0.15 1.37 (0.8) 95.3 (30.0)
CV 1 0 (0) 199.9 (0.4) 0.86 0.14 (0.3) 200 (0)
NB (P2=1) 0 2.58 (0.3) 15.8 (5.8) 0 3.12 (0.4) 62.6 (29.2)
NB (P2=20) 0 2.62 (0.2) 19.7 (6.6) 0 3.06 (0.4) 53.2 (35.5)
LB (P1=1) 0.09 1.69 (0.8) 19.5 (7.6) 0 3.00 (0.7) 96.4 (34.0)
LB (P1=20) 0.82 0.18 (0.4) 23.3 (6.1) 0.16 1.35 (0.9) 96.8 (30.4)
P1=P2=1 0.12 1.24 (0.6) 27.4 (8.0) 0.01 2.19 (0.7) 130.5 (32.0)
NetDir 0.94 0.06 (0.2) 107.0 (52.4) 0.54 0.65 (0.8) 162.2 (40.1)
KrukalRST 0.93 0.07 (0.2) 141.2 (63.9) 0 4.00 (0) 111.3 (37.5)
KruskalRST* 0.84 0.16 (0.4) 12.2 (1.8) 0 4.00 (0) 37.6 (7.5)
heur. ini 0 3.83 (0.1) 0.4 (0.3) 0 4.04 (0.1) 1.4 (1.6)
heur. xover 0 2.63 (0.5) 8.7 (2.4) 0 3.98 (0) 11.2 (3.1)
h. ini & xover 0 3.88 (0.1) 0.4 (0.4) 0 4.07 (0.1) 0.6 (0.8)

M
S
T

Prüfer 0.49 0.54 (0.5) 26.4 (8.6) 0.15 1.14 (0.6) 104.1 (43.5)
NetKey 0.78 0.23 (0.4) 23.3 (6.1) 0.14 1.41 (0.8) 96.5 (30.6)
CV 1 0 (0) 199.9 (0.4) 0.88 0.12 (0.3) 200 (0)
NB (P2=1) 0 2.53 (0.2) 16.3 (5.2) 0 2.96 (0.1) 54.5 (14.9)
NB (P2=20) 0 2.61 (0.2) 19.4 (6.3) 0 2.98 (0.1) 45.1 (21.6)
LB (P1=1) 0.14 1.41 (0.6) 20.9 (6.8) 0 2.52 (0.5) 104.9 (29.5)
LB (P1=20) 0.84 0.17 (0.4) 23.5 (6.1) 0.16 1.33 (0.8) 96.0 (30.7)
P1=P2=1 0.15 1.12 (0.5) 27.9 (7.9) 0.02 1.97 (0.5) 127.7 (29.8)
NetDir 0.91 0.09 (0.3) 108.2 (53.2) 0.47 0.77 (0.8) 158.6 (40.1)
KrukalRST 0.93 0.07 (0.2) 143.5 (63.9) 0 4.00 (0) 110.0 (36.3)
KruskalRST* 0.83 0.18 (0.4) 12.2 (1.9) 0 4.00 (0) 37.3 (7.5)
heur. ini 0 3.81 (0) 0.4 (0.1) 0 4.04 (0) 3.1 (0.8)
heur. xover 0 2.48 (0.4) 9.1 (2.5) 0 3.96 (0) 13.0 (1.3)
h. ini & xover 0 3.85 (0) 0.3 (0.1) 0 4.12 (0) 1.3 (0.2)

ra
n
d
o
m

st
a
r

Prüfer 0.50 0.54 (0.6) 26.4 (8.6) 0.07 1.43 (0.7) 111.2 (46.8)
NetKey 0.78 0.22 (0.4) 23.1 (5.9) 0.18 1.28 (0.8) 94.7 (30.1)
CV 1 0 (0) 200 (0.2) 0.91 0.09 (0.3) 200 (0)
NB (P2=1) 0 2.58 (0.3) 15.6 (5.6) 0 2.84 (0.1) 48.4 (14.2)
NB (P2=20) 0 2.59 (0.3) 19.3 (6.5) 0 2.71 (0.2) 76.5 (24.6)
LB (P1=1) 0.08 1.71 (0.8) 19.3 (7.6) 0 2.90 (0.7) 94.1 (35.1)
LB (P1=20) 0.81 0.20 (0.4) 23.5 (6.2) 0.20 1.21 (0.8) 95.3 (30.3)
P1=P2=1 0.10 1.28 (0.6) 27.3 (8.1) 0.03 1.70 (0.6) 131.6 (30.7)
NetDir 0.90 0.10 (0.3) 108.0 (52.9) 0.57 0.58 (0.8) 160.2 (40.8)
KrukalRST 0.93 0.07 (0.2) 143.2 (63.6) 0 4.00 (0) 120.8 (38.6)
KruskalRST* 0.84 0.17 (0.4) 12.2 (1.9) 0 4.00 (0) 39.2 (7.6)
heur. ini 0 3.85 (0.1) 0.4 (0.3) 0 4.04 (0.1) 1.3 (1.5)
heur. xover 0 2.62 (0.5) 8.7 (2.5) 0 3.98 (0) 11.2 (2.7)
h. ini & xover 0 3.89 (0.1) 0.3 (0.3) 0 4.05 (0.1) 0.6 (0.7)

256 8 Performance of Genetic and Evolutionary Algorithms on Tree Problems

is similar when using the heuristic variants of the edge-set encoding. Due to
their strong bias towards the MST, GAs fail for deceptive traps independently
of the optimal solution of the sub-problems, as the overall optimal solution
is not similar to the MST. The non-heuristic variants of the edge-sets show
good performance for the smaller problem instances but fail for the larger
problems.

In comparison to the fully easy one-max problems, GAs using Prüfer num-
bers perform well. The low locality of the encoding helps GAs find their way to
the optimal solution. As expected, the solution quality is lower when searching
for optimal stars (in comparison to arbitrary trees or the MST) because the
locality around star-like structures is higher.

As we have already seen for the one-max tree problem, the LB encoding
with a large link-specific bias P1 = 20 results in the same GA performance as
when using the NetKey encoding. Although both representations are synony-
mously redundant, GAs using one of these two encodings are able to solve the
problem and only need a few generations. Due to the non-synonymity of CVs,
GAs using the CV encoding perform very well for the difficult deceptive tree
problems. However, the non-synonymity of the encoding increases the number
of generations. The results for the NetDir representation are surprising. GAs
using this encoding are able to find a high proportion of BBs but need a larger
number of generations.

Coincidentally with the results for the one-max tree problem, NetKeys
and LNB encodings with a large link-specific bias allow GEAs to reliably solve
concatenated trap problems for trees after a few generations. In contrast to the
one-max tree problem, GEAs using Prüfer numbers or CVs show a comparable
or higher performance for this difficult problem as the low locality of Prüfer
numbers and the non-synonymity of CVs make difficult problems easier to
solve.

8.2 GEA Performance on Optimal Communication
Spanning Tree Problems

This section illustrates how we can use the framework about representations
for predicting and verifying differences of GEA performance for some instances
of the optimal communication spanning tree (OCST) problem. Consequently,
this section also provides a comprehensive comparison for the performance of
different tree representations on OCST problems. We present results for test
instances from Palmer (1994), Raidl (2001), Berry et al. (1995), and some new
test problems.

In Sect. 8.2.1, we give a brief description of the OCST problem. Section
8.2.2 gives an overview over different approaches from the literature that have
been used for solving the OCST problem. This is followed in Sect. 8.2.3 by a
short description of the test problems (further details can be found in Appen-
dix A). Then, in the remaining subsections, the influence of representations on

8.2 GEA Performance on the OCST Problem 257

GA performance is studied. Based on an analysis of the properties of represen-
tations, which is performed in Sect. 8.2.4, Sect. 8.2.5 gives some predictions
on the expected GA performance for the test instances. The predictions and
the validity of the developed theoretical concepts for the OCST test instances
are verified in Sect. 8.2.6.

8.2.1 The Optimal Communication Spanning Tree Problem

The OCST problem (also known as minimum communication spanning tree
problem or simple network design problem (Johnson et al. 1978)) was intro-
duced in Hu (1974). The problem is listed as [ND7] in Garey and Johnson
(1979) and Crescenzi and Kann (2003). For the OCST problem, the number
and positions of network nodes are given a priori and the cost of the tree is
determined by the cost of the links. A link’s flow is the sum of the commu-
nication demands between all pairs of nodes communicating either directly,
or indirectly, over the link. The goal is to find a tree that connects all given
nodes and satisfies their communication requirements for a minimum total
cost. The cost for each link is not fixed a priori but depends on its distance
weight and its capacity. A link’s capacity must satisfy the flow over this link,
which depends on the entire tree structure.

The OCST problem can formally be defined as follows. An undirected
graph is denoted as G = (V,E). n = |V | denotes the number of nodes and
|E| denotes the number of edges. There are communication or transportation
demands between the n different nodes. The demands are specified by an n×n
demand matrix R = (rij), where rij is the amount of traffic required between
location vi and vj . An n×n distance matrix D = dij determines the distance
weights associated with each pair of sites. A tree T = (V, F) where F ⊆ E
and |F | = |V | − 1 is called a spanning tree of G if it connects all the nodes.
The weight c(T) of the spanning tree is the weighted sum over all pairs of
vertices of the cost of the path between all pairs in T . In general,

c(T) =
∑

i,j∈F

f (dij , bij) ,

where the n × n matrix B = bij denotes the traffic flowing directly and indi-
rectly over the edge between the nodes i and j. It is calculated according to the
demand matrix R and the structure of T . T is the minimum communication
spanning tree if c(T) ≤ c(T ′) for all other spanning trees T ′.

For the OCST problem as proposed by Hu (1974) the cost of a link is
calculated as the product of the distance weight dij times the overall traffic
bij running over the edge. Therefore, f = dijbij and

c(T) =
∑

i,j∈V, i<j

rij × d(pT
i,j), (8.2)

258 8 Performance of Genetic and Evolutionary Algorithms on Tree Problems

where d(pT
i,j) denotes the weight of the unique path from node i to node j in

the spanning tree T . The OCST problem seeks the spanning tree with minimal
costs among all other spanning trees.

The OCST problem becomes the minimum spanning tree (MST) problem
if f = dij . No communication requirements rij are considered. Then, T is the
minimum spanning tree if c(T) ≤ c(T ′) for all other spanning trees T ′, where

c(T) =
∑

(i,j)∈E

dij (8.3)

8.2.2 Optimization Methods for the Optimal Communication
Spanning Tree Problem

Like other constrained spanning tree problems, the OCST problem is NP-
hard (Garey and Johnson 1979, p. 207). Furthermore, it was shown in Reshef
(1999) that the problem is MAX SNP-hard (Papadimitriou and Yannakakis
1991) which means it cannot be solved using a polynomial-time approximation
scheme, unless P = NP . Therefore, the OCST problem belongs to the class
of optimization problems that behave like MAX-3SAT (Garey and Johnson
1979).

Only for a few easy and restricted problem instances have algorithms been
developed that return optimal solutions. Hu (1974), who introduced the OCST
problem, gave exact algorithms for two specific versions of the OCST problem.
He showed that for the complete unweighted graph version, where dij = 1 for
every i and j, the problem can be solved in polynomial time using the Gomory-
Hu spanning tree algorithm (Gomory and Hu 1961; Hu 1974). Hu called this
the optimum requirement spanning tree problem. In addition, he showed for
the uniform demand version of the OCST, where the communication demands
rij between any two sites are equal, that the optimal solution is a star if the
distance weights dij satisfy a stronger version of the triangle inequality: for
every 1 ≤ i, j, k ≤ n such that dij ≤ dik ≤ djk, we have (djk − dij)/dik ≤
(n − 2)/(2n − 2). If both the communication demands rij and the distances
weights dij between any two sites are equal, then the optimal solution is also
a star. Later, Johnson et al. (1978) showed that only the uniform demand
version, where the dij satisfy this stronger version of the triangle equation,
can be solved in polynomial time, and that all other uniform demand versions
of the OCST problem, where dij ∈ {1,∞} are NP-hard. Wu et al. (1998)
extended this work and showed that the uniform demand version where the
weights dij satisfy the triangle inequality is NP-hard. For the uniform demand
version, Wong (1980) presented a heuristic that finds a tree T which has a
maximum cost which is twice that of the optimal solution, c(T) ≤ 2c(Topt).

The development of exact optimization methods for the general, non-
uniform demand version of the OCST problem showed less success. Some
early work (Dionne and Florian 1979; Lin 1982; Gavish 1983; Gavish and

8.2 GEA Performance on the OCST Problem 259

Altinkemer 1990) addressed the general network design problem and devel-
oped heuristics for finding optimal graphs G (not trees T) for given distance
weights dij and demands rij . However, as the assumptions that are made
for solving the general network design problem are incompatible with solv-
ing the OCST problem (Palmer 1994, p. 10ff), these heuristics can not be
applied to the OCST problem. Later, Peleg (1997) showed that the OCST
problem is reducible to a problem called minimum average stretch spanning
tree (MAST) problem. Therefore, both problems are equivalent to each other
and approximation algorithms for the MAST problem can also be used for
the OCST problem. In the MAST problem, which was introduced in Alon
et al. (1995), a graph G and a distance matrix D is given, and a spanning
tree T has to be found that minimizes the average stretch of the edges (e.g.
minimize 1

n−1

∑
i,j∈E d(pT

i,j)/dij , where d(pT
i,j) is the sum of all the weights

along the path between i and j in the spanning tree T). Alon et al. pre-
sented a randomized algorithm for the MAST problem that constructs a
spanning tree such that the average cost of the tree is less than, or equal
to, exp(O(

√
log n log log n)).

Other approximation algorithms for the OCST problem are based on the
volume of communication c(G) =

∑
i,j∈E rijd(pG

i,j) in the complete graph
G, where d(pG

ij) is the sum of all the weights along the shortest path be-
tween i and j in G. c(G) represents a trivial lower bound for c(T) because
it considers the full original graph G and not only the links used for the
tree T . Bartal (1996) and Wu et al. (1998) presented a randomized algo-
rithm that constructs a spanning tree T with expected communication cost
c(T) = O(log2 n)c(G). This result has been improved by Bartal (1998) to
an O(log n log log n) approximation. Around the same time, non-randomized,
deterministic algorithms were developed that find a spanning tree with cost
c(T) = O(log2 n)c(G) (Peleg and Reshef 1998; Reshef 1999). Charikar et al.
(1998) improved these results and presented a deterministic approximation
algorithm that results in c(T) = O(log n log log n)c(G). When using Euclid-
ean distances as distance weights dij , Charikar et al. (1998) and Reshef (1999)
presented deterministic approximation algorithms that output a spanning tree
with cost c(T) = O(log n)c(G). Despite the progress in developing approxi-
mation algorithms for the OCST problem that are based on the volume of
communication c(G), Alon et al. (1995) showed that such approximation tech-
niques cannot approximate the OCST problem better than Ω(log n). For more
detailed information about approximation algorithms for the OCST problem,
we refer to Reshef (1999).

When summarizing the development of optimization algorithms for the
OCST problem, we conclude that no efficient algorithmic methods for solving
the OCST problem are available. Some algorithms exist for simplified versions
of the OCST problems (complete unweighted graph problem and uniform de-
mand problems), but there are no efficient methods for standard OCST prob-
lems. Similarly, deterministic and randomized approximation algorithms for
the OCST problem are available which are based on the volume of commu-

260 8 Performance of Genetic and Evolutionary Algorithms on Tree Problems

nication c(G), but none of them are able to output optimal or near-optimal
solutions (c(T) ≥ Ω(log n)c(G)).

To overcome the limitations of exact and approximation algorithms, and
to be able to find optimal or near-optimal solutions for OCST problems,
researchers have used heuristic optimization methods like GEAs, simulated
annealing, tabu search, and other approaches. One of the first heuristic ap-
proaches for the OCST problem was presented by Palmer (1994). When ap-
plying GEAs to the OCST problem, he recognized that the design of a proper
tree representation is crucial for the performance of GEAs. Other represen-
tations that are used for the OCST problem or similar problems are the CV
encoding (Berry et al. 1994; Berry et al. 1995), weighted encodings like the
LNB encoding (Palmer 1994), the weighted encoding (Raidl and Julstrom
2000), the NetKey encoding (Rothlauf et al. 2002), different variants of the
LNB-encoding (Krishnamoorthy and Ernst 2001), direct representations like
edge-sets (Raidl and Julstrom 2003; Tzschoppe et al. 2004) or other direct rep-
resentations (Li 2001), determinant factorization (Abuali et al. 1995), Prüfer
numbers (Palmer 1994; Palmer and Kershenbaum 1994a; Kim and Gen 1999;
Zhou and Gen 1997; Krishnamoorthy et al. 1999; Gen et al. 1998; Gen et al.
1998; Gargano et al. 1998; Rothlauf and Goldberg 1999; Gottlieb et al. 2001;
Julstrom 2001), or variants of Prüfer numbers like the Blob Code, the Happy
Code and the Dandelion Code (Picciotto 1999; Julstrom 2001; Julstrom 2005).
Other work applying GEAs to OCST and related problems (e.g. degree con-
straint MST problems) have been presented by Premkumar et al. (2001) and
Chu et al. (2000)).

It was shown in Rothlauf et al. (2003) that on average, optimal solutions
for OCST problems are similar to the MST (compare also Sect. 7.2.3). That
means the average distance dopt,MST between the optimal solution and the
MST is significantly lower than the average distance drnd,MST between a
randomly created tree and the MST (Fig. 7.6). Therefore, as the optimal
solution of an OCST problem is biased towards the MST, representations as
well as operators that favor or overrepresent trees that are similar to the MST
are expected to solve the OCST problem more efficiently.

In summary, due to the lack of efficient algorithmic methods for finding
optimal or near-optimal solutions, a large amount of work has applied GEAs
to OCST problems. When using GEAs for tree problems, the choice of a
proper tree representation is one of the most important factors for success.

8.2.3 Description of Test Problems

Several instances of the OCST problem have been presented in the literature.
The oldest test instances are from Palmer who introduced OCST test

problems with 6, 12, 24, 47, and 98 nodes (Palmer 1994). The demands rij

were inversely proportional to the distance weights dij . The nodes correspond
to cities in the United States, and the distance weights dij were obtained from
a tariff database. In analogy to (8.2) the cost c(T) of a tree is defined as

8.2 GEA Performance on the OCST Problem 261

c(T) =
∑

i,j∈V, i<j

rij × d(pT
i,j), (8.4)

where d(pT
i,j) denotes the weight of the unique path from node i to node j in

the spanning tree T . For the exact distance and requirement matrix for the 6,
12 and 24 node problem the reader is referred to Palmer (1994) or Appendix
A.1. Unfortunately, the data for the 47 and 98 node problems is no longer
available1.

Raidl (2001) proposed several test instances of the OCST problem ranging
from 10 to 100 nodes. The distances weights dij and the traffic demands rij

have been generated randomly. The cost of a tree is calculated in analogy
to Palmer’s test instances (compare (8.2) or (8.4)) The distance matrix and
traffic demands are summarized in Appendix A.2.

Berry et al. (1995) presented three instances of the OCST problem. They
proposed one 6 node and two 35 node problems. The distance weights dij and
the traffic demands rij are listed in Appendix A.3. As before, the cost of a tree
is calculated according to (8.2) or (8.4)). Both 35 node problems use the same
traffic demands rij , but differ in the distance weights. One problem has uni-
form weights with dij = 1 (berry35u), and the other has non-uniform weights
(berry 35). The best solution found by Berry et al. (1995) for the problem
berry35 has cost c(Topt) = 30, 467. Li and Bouchebaba (1999) improved these
result to 16,915. The problem berry35u is an optimum requirement spanning
tree problem and can be solved in polynomial time using the Gomory-Hu
spanning tree algorithm (compare Sect. 8.2.2). The optimal solution has cost
16,273.

The fourth group of test problems consists of problems that are derived
from a real-world 26-node problem from a company with locations all over
Germany. For fulfilling the demands between the nodes, different line types
with only discrete capacities are available. The cost for installing a link consists
of a fixed share and a share which depends on its distance weight. Both cost
components depend on the capacity of the link. The cost are based on the
tariffs of the German Telecom from 1996. For an exact description on how
the cost of a link depends on its weight dij and its capacity bij , the reader is
referred to Appendix A.4.

There are four different problems. Rothlauf1 is a problem with n = 16
nodes and traffic demands ending only at node v1 (rij = 0, for i, j �= 1). In
rothlauf2, there are only n = 15 nodes and some additional traffic is added.
Rothlauf3 is similar to rothlauf1 but uses a modified cost function. Finally, in
rothlauf4 with n = 16, there is traffic between all nodes. The distance weights
dij between the nodes are calculated as the Euclidean distances. The known
best solutions for the four test problems are shown in Fig. A.1. We summarize
the most important properties of the four test problems:

1The data sets were not listed in the thesis and are not directly available from
Palmer.

262 8 Performance of Genetic and Evolutionary Algorithms on Tree Problems

• rothlauf1: One headquarter and 15 branch offices: This problem is
the original design problem. All 15 branch offices (node 2 to 16) commu-
nicate only with the headquarter (node 1). Possible line capacities are 64
kBit/s, 512 kBit/s, and 2048 kBit/s.

• rothlauf2: One headquarter and only 14 branches: In this problem,
one node is removed from the graph and some additional traffic is added.

• rothlauf3: One headquarter, 15 branches and cheap lines for
everybody: In this scenario, the fixed cost for installing a line is only
10% of the cost in rothlauf1. Therefore, the cost of a link is mainly deter-
mined by its distance weight. Hence, the optimal solution is more like a
minimum spanning tree. If the link costs would only be determined by the
distance weights, and if there was only one possible capacity, the optimal
solution would be the MST (compare (8.3)).

• rothlauf4: 4 headquarters, 12 branches and all working together:
For this problem, the demand matrix is completely filled. Between every
node i and j some traffic exists. Between the four headquarters (nodes 1,
2, 3 and 4), the traffic is randomly chosen between 256 kBit/s and 512
kBit/s. Every other node communicates with the four headquarters and
has a randomly chosen demand between 0 and 512 kBit/s. This demand is
split into the headquarters at a ratio of 0.4, 0.3, 0.2, and 0.1 for the nodes
1, 2, 3, and 42. Between all 12 branch offices the demand is randomly
chosen between 0 and 64 kBit/s. To make the problem more realistic, two
additional line types are available. It is possible to use a line with 128
kBit/s and 4,096 kBit/s capacity with twice the cost of a 64kBit/s and
2,048 kBit/s line.

8.2.4 Analysis of Representations

As we have seen in Sect. 8.1.1, an analysis of the bias of representations is im-
portant for evaluating the influence of representations on GEA performance
and to be able to make accurate predictions about the expected GEA per-
formance. Therefore, we perform the same type of analysis as described in
Sect. 8.1.1. For each representation, we randomly generate 10,000 genotypes
and measure the mean µ and the standard deviation σ of the minimum phe-
notypic distance towards a star, min(dp

rnd,star), and the phenotypic distance
towards the MST, dp

rnd,MST . For the different problems, we use the distance
weights from the Appendix A. When using edge-sets, the number N of individ-
uals that are generated influence the structure of the encoded tree (compare
Sect. 7.2.1). Therefore, for edge-sets, we created 100 random populations of
size N = 100 resulting in 10,000 random individuals.

2Node 1 is the most important node and 40% of the traffic of the branches ends
there; in node 2, 30% of the traffic ends, and so on.

8.2 GEA Performance on the OCST Problem 263

Table 8.6. We generate random genotypes xg
rnd for the test instances from Palmer

and Raidl and calculate the minimum phenotypic distance towards star networks,
min(dp

rnd,star), and the phenotypic distance to the MST, dp
rnd,MST . The results

confirm the results presented in Sect. 8.1.1.

problem palmer6 palmer12 palmer24 raidl10 raidl20
distance d µ (σ) µ (σ) µ (σ) µ (σ) µ (σ)

Prüfer min(dp
rnd,star)2.04 (0.6)7.22 (0.7) 18.50 (0.8) 5.42 (0.7)14.69 (0.7)

number dp
rnd,MST 3.36 (0.9)9.17 (1.2) 21.05 (1.3) 7.20 (1.1)17.07 (1.3)

NetKey
min(dp

rnd,star)2.12 (0.6)7.30 (0.7) 18.61 (0.8) 5.51 (0.7)14.78 (0.8)
dp

rnd,MST 3.34 (0.9)9.15 (1.2) 21.07 (1.3) 7.21 (0.8)17.11 (0.8)

CV
min(dp

rnd,star)2.04 (0.6)7.22 (0.7) 18.50 (0.8) 5.41 (0.7)14.67 (0.8)
dp

rnd,MST 3.38 (0.9)9.16 (1.2) 21.04 (1.3) 7.23 (1.1)17.05 (1.3)

NB (P2=1)
min(dp

rnd,star)1.00 (0.8)5.49 (1.3) 7.59 (4.2) 4.12 (1.1)10.75 (2.2)
dp

rnd,MST 2.37 (0.8)6.12 (1.1) 18.68 (1.6) 4.24 (1.1)11.63 (1.3)

NB (P2=20)
min(dp

rnd,star)0.08 (0.3)0.64 (1.4) 0.71 (2.1) 0.59 (1.1) 2.62 (3.2)
dp

rnd,MST 3.26 (0.5)8.86 (0.7) 20.90 (0.9) 6.91 (0.9)16.34 (1.4)

LB (P1=1)
min(dp

rnd,star)2.08 (0.6)7.50 (0.6) 18.61 (0.8) 5.41 (0.7)14.78 (0.8)
dp

rnd,MST 2.50 (1.0)6.55 (1.4) 19.45 (1.6) 4.61 (1.3)12.74 (1.8)

LB (P1=20)
min(dp

rnd,star)2.13 (0.6)7.30 (0.7) 18.59 (0.8) 5.51 (0.7)14.78 (0.8)
dp

rnd,MST 3.28 (0.9) 9.0 (1.2) 21.01 (1.3) 7.02 (1.1)16.77 (1.3)

LNB min(dp
rnd,star)1.59 (0.7)6.22 (1.1) 15.39 (1.7) 4.66 (1.0)12.48 (1.5)

(P1=P2=1) dp
rnd,MST 2.68 (0.9)7.12 (1.3) 20.21 (1.4) 5.11 (1.2)14.02 (1.7)

NetDir
min(dp

rnd,star)2.05 (0.6)7.22 (0.7) 18.50 (0.8) 5.42 (0.7)14.68 (0.8)
dp

rnd,MST 3.39 (0.9)9.19 (1.2) 21.05 (1.3) 7.22 (1.1)17.04 (1.3)

KruskalRST, Krus-

kalRST*, heur xover

min(dp
rnd,star)2.12 (0.6)7.30 (0.7) 18.60 (0.8) 5.50 (0.7)14.78 (0.7)

dp
rnd,MST 3.30 (0.9)9.17 (1.1) 21.07 (1.3) 7.20 (1.1)17.11 (1.2)

heur ini, heur ini &

xover

min(dp
rnd,star)2.86 (0.3)8.64 (0.5)19.79 (0.41)5.90 (0.3) 15.0 (0.1)

dp
rnd,MST 0.31 (0.6)0.66 (0.8) 1.72 (1.8) 0.15 (0.3) 2.22 (0.6)

In Tables 8.6 (test instances from Palmer (1994) and Raidl (2001)) and
8.7 (test instances from Berry et al. (1995) and real-world test instances) we
show the results for the different representations.

The results confirm the findings from Sect. 8.1.1. The use of uniformly
redundant encodings (NetKeys, CVs, or LB (P1 = 20)) results in about the
same distances as when unbiased and non-redundant Prüfer numbers are used.
The situation is the same for unbiased direct encodings (NetDir and edge-sets
with non-heuristic initialization).

The situation is different for non-uniform redundant or biased encodings.
The two variants of the NB encoding, which are non-uniformly redundant,
show a bias towards stars. As expected, the bias towards stars increases with
increasing P2 (compare Sect. 6.4.3). For the LB encoding, the distances be-
tween randomly generated solutions and the MST decreases with lower P1, as
variants of the LB and LNB encoding with a low link-specific bias P1 overrep-
resent MST-like trees. Finally, the results for variants of the edge-sets that use
heuristic initialization (heur. ini, heur. ini & xover) confirm the strong bias

264 8 Performance of Genetic and Evolutionary Algorithms on Tree Problems

Table 8.7. We generate random genotypes xg
rnd for the real-world test instances

and the test instances from Berry and calculate the minimum phenotypic distance
towards star networks, min(dp

rnd,star), and the phenotypic distance to the MST,
dp

rnd,MST .

problem berry6 berry35u berry35 rothlauf2 rothlauf1, 3, 4

distance d µ (σ) µ (σ) µ (σ) µ (σ) µ (σ)

Prüfer min(dp
rnd,star) 2.03 (0.6) 29.2 (0.8) 29.2 (0.8) 9.99 (0.8) 10.9 (0.8)

number dp
rnd,MST 3.51 (0.8) n.a. 32.05 (1.3) 12.1 (1.1) 13.1 (1.2)

NetKey
min(dp

rnd,star) 2.11 (0.6) 29.3 (0.8) 29.3 (0.8) 10.1 (0.7) 11.0 (0.8)
dp

rnd,MST 3.34 (0.9) n.a. 32.0 (1.3) 12.1 (1.0) 13.1 (1.2)

CV
min(dp

rnd,star) 2.04 (0.6) 29.2 (0.8) 29.2 (0.8) 9.98 (0.8) 10.9 (0.8)
dp

rnd,MST 3.54 (0.8) n.a. 32.0 (1.3) 12.1 (1.0) 13.1 (1.2)

NB (P2=1)
min(dp

rnd,star) 1.48 (0.6) 0 (0) 21.6 (3.5) 7.6 (1.8) 7.91 (1.8)
dp

rnd,MST 1.78 (0.9) n.a. 22.1 (2.7) 8.06 (1.4) 8.66 (1.5)

NB (P2=20)
min(dp

rnd,star) 0.16 (0.4) 0 (0) 3.84 (4.7) 0.00 (0) 0.00 (0.1)
dp

rnd,MST 3.20 (0.8) n.a. 30.91 (1.7) 12.13 (0.6) 13.12 (0.6)

LB (P1=1)
min(dp

rnd,star) 2.15 (0.5) 29.3 (0.8) 28.9 (0.9) 10.0 (0.8) 11.0 (0.8)
dp

rnd,MST 1.86 (0.9) n.a. 23.9 (2.4) 8.85 (1.6) 9.6 (1.7)

LB (P1=20)
min(dp

rnd,star) 2.11 (0.6) 29.3 (0.8) 29.3 (0.8) 10.1 (0.8) 11.0 (0.8)
dp

rnd,MST 3.25 (0.9) n.a. 31.4 (1.5) 11.9 (1.3) 12.9 (1.3)

LNB min(dp
rnd,star) 1.77 (0.6) 24.6 (1.9) 25.4 (2.0) 8.4 (1.3) 9.20 (1.3)

(P1=P2=1) dp
rnd,MST 2.14 (0.9) n.a. 26.54 (2.2) 9.75 (1.4) 10.5 1.5)

NetDir
min(dp

rnd,star) 2.04 (0.6) 29.2 (0.8) 29.2 (0.8) 9.98 (0.8) 10.91 (0.8)
dp

rnd,MST 3.50 (0.8) n.a. 32.0 (1.3) 12.1 (1.1) 13.1 (1.2)
KruskalRST,
KruskalRST*,
heur xover

min(dp
rnd,star) 2.12 (0.6) 29.3 (0.8) 29.2 (0.8) 10.1 (0.7) 11.0 (0.7)

dp
rnd,MST 3.34 (0.9) n.a. 32.0 (1.3) 12.1 (1.2) 13.1 (1.2)

heur ini,

heur ini &
xover

min(dp
rnd,star) 2.0 (0) 23.6 (0.7) 30 (0) 11.0 (0) 12.0 (0)

dp
rnd,MST 0.12 (0.3) n.a. 0 (0) 0.66 (0.7) 0.45 (0.6)

of these encodings towards the MST. Randomly created solutions are only
slightly different from the MST.

The findings for the different representations are consistent for the different
test problems. The reader should bear in mind that it is not meaningful to
calculate dp

rnd,MST for the problem berry35u as all distance weights dij = 1,
for i, j ∈ V . Therefore, no unique MST exists for this problem.

8.2.5 Theoretical Predictions on the Performance
of Representations

It is difficult to predict GEA performance on a problem of unknown complex-
ity. If we have no information regarding the structure of the optimal solution
and the difficulty of the problem, we are not able to make any predictions
about GEA performance. However, we know from experience that many real-
world problems are easy. Therefore, the problems are often decomposable and
the BBs are not fully deceptive, but of lower order.

8.2 GEA Performance on the OCST Problem 265

Therefore, due to the expected low difficulty of OCST problems (com-
pare Sect. 3.3.4) we expect GEAs using Prüfer numbers to fail when used
on these problems. The low locality of the encoding will increase the diffi-
culty of easy problems and the use of GEAs results more in a random than
a guided search. Furthermore, we know that the performance of GEAs using
either uniformly redundant encodings (NetKeys, NetDir, or LNB encodings
with large link-specific bias P1), or unbiased direct representations (NetDir or
the non-heuristic variants of the edge-sets), is independent of the structure of
the optimal solution. For the CV encoding, its non-synonymous redundancy
results in a higher evolvability and allows GEAs to reach a higher number of
different phenotypes. Therefore, we expect for smaller problems a better so-
lution quality but a much higher number of search steps. For larger problems
instances, we expect GEA failure due to the non-synonymous redundancy of
CVs.

An important problem-specific property of the OCST problem was found
by Rothlauf, Gerstacker, and Heinzl (2003) (compare also Sect. 7.2.3). This
work performed a statistical analysis on the properties of optimal solutions
Topt for randomly generated OCST problems using random demands rij and
either Euclidean (on a two-dimensional grid), or random distance weights dij .
They compared the average distances µ(dMST,rnd) of randomly created trees
towards the MST to the average distances µ(dmst,opt) of the optimal solutions
towards the MST. The results show that the average distance between the
optimal solution Topt and the MST is significantly smaller than the average
distance between a randomly created tree and the MST (compare Fig. 7.6).
Therefore, optimal solutions for the OCST problem are biased towards the
MST.

We have seen in Sects. 8.2.4 and 8.1.1 that the LB and LNB encoding using
a small link-specific bias P1 as well as the edge-set encoding with heuristics
are biased towards the MST. When using these types of encodings, the av-
erage distance between a randomly created solution and the MST is smaller
in comparison to a non-redundant and unbiased encoding. As the results pre-
sented in Fig. 7.6 indicate that in comparison to randomly created solutions
optimal solutions are more similar to the MST, we expect good GEA perfor-
mance for variants of the LNB encoding using a low link-specific bias. Such
variants of the LB and LNB encoding are biased towards the MST and can
make use of this problem-specific property of the OCST problem. Further-
more, Sect. 7.2.3 has shown that the performance of edge-sets with heuristics
is low if the optimal solution is not the MST. As for edge-sets with heuristics
the bias towards the MST is too strong, problems can only be solved where
the optimal solution is the MST. Therefore, we expect difficulties when using
edge-sets with heuristics for OCST problems as only problems can be solved
where the optimal solution is slightly different from the MST.

In analogy, we expect low performance for variants of the NB encoding,
as these encodings overrepresent trees that are similar to stars.

266 8 Performance of Genetic and Evolutionary Algorithms on Tree Problems

8.2.6 Experimental Results

As in Sects. 8.1.2 and 8.1.3, for our experiments we use a simple, generational
genetic algorithm without mutation. For all test problems, tournament selec-
tion without replacement of size 2 and uniform crossover is used. Due to the
different difficulty of the test problems, we use different population sizes N for
the different test instances. The used population sizes N are listed in Table
8.8 and are chosen independently for each test problem. They are chosen such
that for some representations the GA finds the optimal solution in more than
half of the runs (Psucc > 0.5). In general, higher N increases the performance
(higher Psucc), whereas lower N reduces GA performance. However, the per-
formance differences between the different representations remain about the
same when using different population sizes N . All runs are stopped after the
population is fully converged, or a maximum of 200 generations is reached.
We perform 250 runs for each representation and problem instance.

n N
Properties of optimal solutions
dmst,opt min(dstar,opt) c(Topt)

palmer6 6 16 1 2 693,180
palmer12 12 300 5 7 3,428,509
palmer24 24 800 12 17 1,086,656
raidl10 10 70 3 4 53,674
raidl20 20 800 4 14 157,570
berry6 6 16 0 2 534
berry35u 35 2,000 - 28 16,273
berry35 35 300 0 30 16,915
rothlauf1 16 800 7 9 60,883
rothlauf2 15 2,000 4 8 58,619
rothlauf3 16 1,200 6 9 28,451
rothlauf4 16 800 9 7 112,938

Table 8.8. Population size
N used for the different test
problems and properties of
the optimal (or known best)
solutions Topt of the test
instances

Furthermore, Table 8.8 presents the properties of the optimal (or best
found) solutions Topt for the test problems. The results show that the optimal
solutions have about the same minimal distances towards a star than ran-
domly created unbiased individuals (compare Tables 8.6 and 8.7). However,
the optimal solutions have a smaller distance towards the MSTs than a ran-
domly generated individual. This means that the good solutions are biased
towards the MST. As a result, we expect GAs that use encodings which in-
troduce a modest bias towards the MST to have high performance. For these
types of encodings (like the LB (P1 = 1) encoding), MST-like individuals are
overrepresented.

The performance of GAs using different representations (compare Sect.
8.1.1) for the different test instances is shown in Table 8.9. We show the
mean and standard deviation of the distance dbestf,opt between the best found
solution and the optimal solution, the percentage Psucc of runs that find the

8.2 GEA Performance on the OCST Problem 267

optimal solution Topt, the mean and standard deviation of the cost c(Tbestf)
of the best solution Tbestf that have been found after tconv generations, and
the mean and standard deviation of the number of generations tconv until the
population is fully converged or the GA run is stopped after 200 generations.
dbestf,opt and Psucc are related as a high percentage Psucc results in a low
distance dbestf,opt. All results are averaged over 250 runs.

Table 8.9. Performance of GA using different types of representa-
tions for the test problems described in Sect. 8.2.3.

dbestf,opt Psucc
c(Tbestf) tconv

µ (σ) µ (σ) µ (σ)

pa
lm

er
6

(c
(T

o
p
t
=

69
3,

18
0)

Prüfer 1.92 (0.93) 0.056 733,820 (39,464) 14.1 (3.5)
NetKey 1.32 (1.03) 0.268 716,171 (26,364) 15.4 (3.3)
CV 1.09 (1.02) 0.392 706,908 (17,693) 18.4 (5.6)
NB (P2 = 1) 0.38 (0.71) 0.720 697,842 (12,041) 10.7 (2.8)
NB (P2 = 20) 2.66 (0.68) 0.004 780,191 (36,189) 7.7 (3.1)
LB (P1 = 1) 0.56 (0.85) 0.660 698,782 (8,561) 12.1 (2.6)
LB (P1 = 20) 1.14 (0.97) 0.328 708,900 (18,926) 15.2 (3.3)
LNB (P1=P2=1) 0.70 (0.88) 0.532 700,173 (12,790) 16.2 (3.5)
NetDir 1.57 (0.83) 0.088 727,717 (42,784) 14.3 (3.8)
KrukalRST 1.62 (1.00) 0.152 731,675 (48,865) 17.1 (5.4)
KruskalRST* 1.58 (0.95) 0.136 728,206 (36,666) 10.6 (2.6)
heur. ini 1 (0) 0 709,770 (0) 1.5 (0.6)
heur. Xover 1 (0.70) 0.224 711,885 (21,340) 6.3 (1.8)
heur. ini & xover 1 (0) 0 709,770 (0) 1.1 (0.3)

pa
lm

er
12

(c
(T

o
p
t
=

3,
42

8,
50

9)

Prüfer 6.49 (0.95 0 4,111,091 (100,102) 46.1 (6.9)
NetKey 2.03 (1.78) 0.360 3,452,988 (27,768) 60.4 (7.2)
CV 4.10 (1.16) 0 3,700,839 (115,314) 200 (0)
NB (P2 = 1) 0 (0) 1 3,428,509 (0) 35.5 (5.2)
NB (P2 = 20) 1.09 (1.52) 0.604 3,463,583 (56,789) 33.6 (6.7)
LB (P1 = 1) 0.73 (1.18) 0.628 3,434,632 (14,913) 52.6 (7.0)
LB (P1 = 20) 1.99 (1.76) 0.352 3,450,763 (27,265) 60.2 (7.9)
LNB (P1=P2=1) 1.78 (1.64) 0.432 3,448,563 (22,482) 77.3 (11.1)
NetDir 1.72 (1.55) 0.268 3,456,236 (38,339) 61.5 (8.8)
KrukalRST 2.53 (1.32) 0.068 3,462,151 (44,551) 88.5 (10.7)
KruskalRST* 1.90 (1.52) 0.292 3,449,270 (22,488) 36.5 (8.3)
heur. ini 6.00 (0) 0 3,727,552 (0) 10.7 (1.0)
heur. Xover 4.81 (0.39) 0 3,744,861 (36,297) 16.7 (2.9)
heur. ini & xover 5.00 (0) 0 3,876,488 (0) 4.4 (0.6)

268 8 Performance of Genetic and Evolutionary Algorithms on Tree Problems

dbestf,opt Psucc
c(Tbestf) tconv

µ (σ) (σ) µ (σ)

pa
lm

er
24

(c
(T

o
p
t
=

1,
08

6,
65

6)

Prüfer 7.46 (1.06) 0 1,584,450 (171,348) 90.7 (22.9)
NetKey 0.26 (0.44) 0.736 1,086,866 (353) 87.3 (7.8)
CV 12.48 (1.59) 0 2,769,489 (286,982) 200 (0)
NB (P2 = 1) 2.52 (0.73) 0 1,120,965 (40,601) 55.3 (11.2)
NB (P2 = 20) 10.07 (2.74) 0 1,627,326 (196,475) 40.2 (10.9)
LB (P1 = 1) 0.56 (0.56) 0.476 1,087,090 (436) 85.4 (8.8)
LB (P1 = 20) 0.26 (0.44) 0.740 1,086,863 (350) 86.6 (9.2)
LNB (P1=P2=1) 0.16 (0.39) 0.852 1,092,012 (16,559) 135.3 (16.2)
NetDir 4.10 (1.84) 0 1,119,077 (43,933) 199.8 (1.3)
KrukalRST 10.65 (1.34) 0 1,547,827 (91,086) 200 (0)
KruskalRST* 1.80 (0.89) 0.068 1,088,152 (778) 54.3 (2.3)
heur. ini 11.00 (0) 0 1,884,444 (0) 6.9 (0.4)
heur. Xover 10.99 (0.32) 0 1,855,160 (76,119) 21.7 (3.6)
heur. ini & xover 12.00 (0) 0 1,959,790 (0) 6.7 (0.7)

ra
id

l1
0

(c
(T

o
p
t
=

53
,6

74
)

Prüfer 1.81 (0.89) 0.080 68,867 (9,914) 29.0 (5.2)
NetKey 0.34 (0.71) 0.760 54,514 (1,967) 33.1 (4.6)
CV 0.16 (0.38) 0.844 53,876 (520) 81.2 (16.7)
NB (P2 = 1) 0 (0.06) 0.996 53,693 (308) 16.6 (3.3)
NB (P2 = 20) 1.03 (0.49) 0.052 59,262 (5,361) 16.8 (4.1)
LB (P1 = 1) 0 (0) 1 53,674 (0) 24.8 (3.7)
LB (P1 = 20) 0.27 (0.59) 0.788 54,363 (1,776) 32.0 (4.4)
LNB (P1=P2=1) 0.04 (0.21) 0.956 53,888 (999) 30.9 (4.9)
NetDir 0.26 (0.52) 0.772 54,415 (2,275) 32.4 (4.0)
KrukalRST 0.34 (0.57) 0.708 54,208 (1,398) 51.8 (9.2)
KruskalRST* 0.79 (0.92) 0.480 56,013 (4,286) 23.1 (3.0)
heur. ini 2.04 (0.21) 0 55,942 (355) 7.4 (1.4)
heur. Xover 2.76 (0.45) 0 57,261 (864) 13.6 (3.7)
heur. ini & xover 3.00 (0) 0 58,352 (0) 2.1 (0.8)

be
rr

y6
(c

(T
o
p
t
=

53
4)

Prüfer 1.87 (0.69) 0.012 677 (75) 13.4 (3.3)
NetKey 0.52 (0.67) 0.568 557 (36) 14.5 (3.1)
CV 0.35 (0.62) 0.720 549 (33) 16.9 (4.0)
NB (P2 = 1) 0.04 (0.22) 0.960 535 (7) 9.0 (2.7)
NB (P2 = 20) 1.78 (0.67) 0.016 628 (59) 9.8 (2.9)
LB (P1 = 1) 0.02 (0.13) 0.984 535 (5) 9.2 (2.2)
LB (P1 = 20) 0.46 (0.61) 0.604 553 (29) 14.0 (3.0)
LNB (P1=P2=1) 0.09 (0.29) 0.908 536 (8) 13.2 (3.3)
NetDir 0.90 (0.86) 0.380 588 (69) 13.9 (3.1)
KrukalRST 0.63 (0.75) 0.524 563 (41) 15.2 (3.7)
KruskalRST* 1.08 (0.94) 0.324 592 (68) 10.3 (2.2)
heur. ini 0 (0) 1 534 (0) 0.7 (0.6)
heur. Xover 0.22 (0.45) 0.800 545 (26) 5.4 (1.1)
heur. ini & xover 0 (0) 1 534 (0) 0.6 (0.5)

8.2 GEA Performance on the OCST Problem 269

dbestf,opt Psucc
c(Tbestf) tconv

µ (σ) (σ) µ (σ)

be
rr

y3
5

(c
(T

o
p
t
=

16
,9

15
)

Prüfer 25.37 (1.25) 0 59,553 (2,795) 104.7 (12.3)
NetKey 4.11 (1.66) 0.028 18,083 (763) 99.1 (8.6)
CV 24.51 (1.69) 0 120,397 (12,749) 200 (0)
NB (P2 = 1) 0.16 (0.36) 0.988 16,916 (12) 56.1 (6.4)
NB (P2 = 20) 8.58 (2.83) 0 20,769 (1,976) 45.6 (5.9)
LB (P1 = 1) 0.44 (0.50) 1 16,915 (0) 75.2 (6.8)
LB (P1 = 20) 2.78 (1.34) 0.112 17,519 (526) 94.0 (8.0)
LNB (P1=P2=1) 1.88 (1.09) 0.256 17,181 (250) 128.2 (12.7)
NetDir 14.06 (2.28) 0 27,975 (4,019) 200 (0)
KrukalRST 18.47 (1.93) 0 39,806 (3,512) 200 (0)
KruskalRST* 6.87 (1.96) 0 19,913 (1,268) 74.8 (4.5)
heur. ini 0 (0) 1 16,915 (0) 0 (0)
heur. Xover 0.03 (0.18) 0.972 16,923 (56) 15.0 (0.7)
heur. ini & xover 0 (0) 1 16,915 (0) 0 (0)

be
rr

y3
5u

(c
(T

o
p
t
=

16
,2

73
)

Prüfer 30.68 (0.62) 0 21,553 (230) 190.2 (29.1)
NetKey 8.88 (2.01) 0 17,111 (326) 166.6 (30.2)
CV 25.94 (1.61) 0 34,989 (1,558) 200 (0)
NB (P2 = 1) 30 (0) 0 21,513 (0) 27.3 (3.7)
NB (P2 = 20) 30 (0) 0 21,513 (0) 28.5 (4.1)
LB (P1 = 1) 8.48 (2) 0 17,061 (329) 169.3 (28.9)
LB (P1 = 20) 8.54 (1.99) 0 17059 (362) 169 (30.5)
LNB (P1=P2=1) 25.56 (1.62) 0 20,093 (353) 189.4 (18.1)
NetDir 20.56 (1.98) 0 22,264 (1,441) 200 (0)
KrukalRST 22.82 (2.34) 0 26,929 (1053) 200 (0)
KruskalRST* 7.08 (0.97) 0.42 16,299 (73.2) 131.22 (47.9)
heur. ini 32.56 (1.03) 0 42,129 (5,711) 79.48 (87.48)
heur. Xover 7.1 (0.86) 0.32 16,323 (74.7) 125.58 (44.84)
heur. ini & xover 32.74 (1.07) 0 42,803 (6,585) 91.4 (89.87)

ro
th

la
uf

1
(c

(T
o
p
t
=

60
,8

83
)

Prüfer 6.94 (0.42) 0 63,680 (236) 62.1 (14.1)
NetKey 1.34 (1.16) 0.296 61,144 (345) 86.6 (9.1)
CV 8.75 (1.20) 0 71,657 (2,592) 200 (0)
NB (P2 = 1) 8.47 (0.97) 0 64,654 (684) 34.2 (9.6)
NB (P2 = 20) 8.98 (0.20) 0 64,997 (106) 28.6 (5.8)
LB (P1 = 1) 1.39 (1.22) 0.312 61,202 (424) 85.1 (8.5)
LB (P1 = 20) 1.50 (1.21) 0.272 61,161 (372) 85.5 (8.4)
LNB (P1=P2=1) 2.77 (0.95) 0.004 61,233 (123) 119.3 (17.5)
NetDir 3.88 (1.24) 0 61,709 (523) 110.9 (11.1)
KrukalRST 7.91 (1.47) 0 64,539 (1,411) 200 (0)
KruskalRST* 1.19 (1.08) 0.332 61,315 (474) 54.2 (5.0)
heur. ini 9.00 (0) 0 61,817,796 (0) 6.0 (0.3)
heur. Xover 7.25 (0.62) 0 628,632 (182,178) 20.9 (3.1)
heur. ini & xover 7.00 (0) 0 71,864,456 (0) 5.1 (0.5)

270 8 Performance of Genetic and Evolutionary Algorithms on Tree Problems

dbestf,opt Psucc
c(Tbestf) tconv

µ (σ) (σ) µ (σ)

ro
th

la
uf

2
(c

(T
o
p
t
=

58
,6

19
)

Prüfer 8.16 (0.91) 0 66,221 (868) 63.9 (28.2)
NetKey 0.46 (0.83) 0.756 58,651 (57) 91.1 (9.0)
CV 7.55 (1.23) 0 69,598 (1,960) 200 (0)
NB (P2 = 1) 8.74 (1.52) 0 69,901 (2,421) 45.7 (14.2)
NB (P2 = 20) 9.93 (0.49) 0 73,276 (917) 34.4 (8.1)
LB (P1 = 1) 0.54 (0.88) 0.720 58,664 (114) 90.9 (9.6)
LB (P1 = 20) 0.43 0.79) 0.760 58,652 (61) 90.2 (8.5)
LNB (P1=P2=1) 2.06 (0.33) 0 59,078 (318) 132.3 (18.1)
NetDir 1.43 (0.98) 0.168 58,872 (231) 107.9 (7.2)
KrukalRST 2.50 (1.01) 0.004 59,224 (404) 200 (0)
KruskalRST* 0.17 (0.48) 0.868 58,680 (207) 50.3 (10.1)
heur. ini 6.00 (0) 0 1,281,721 (0) 6.2 (0.4)
heur. Xover 4.82 (0.40) 0 74,522 (931) 20.0 (2.9)
heur. ini & xover 5.00 (0) 0 1,284,189 (0) 8.7 (0.8)

ro
th

la
uf

3
(c

(T
o
p
t
=

28
,4

51
)

Prüfer 6.94 (0.84) 0 31,247 (500) 79.0 (23.0)
NetKey 1.31 (1.49) 0.440 28,722 (352) 98.2 (9.1)
CV 9.32 (1.37) 0 34,870 (936) 200 (0)
NB (P2 = 1) 8.17 (1.16) 0 32,704 (897) 45.7 (16.2)
NB (P2 = 20) 8.92 (0.38) 0 34,286 (573) 34.3 (8.1)
LB (P1 = 1) 1.42 (1.52) 0.416 28,709 (337) 97.6 (9.8)
LB (P1 = 20) 1.35 (1.59) 0.480 28,694 (351) 99.4 (10.7)
LNB (P1=P2=1) 4.64 (1.09) 0 30,386 (298) 157.2 (21.3)
NetDir 1.80 (1.46) 0.384 28,891 (395) 115.2 (13.3)
KruskalRST 6.24 (1.34) 0 30,190 (520) 200 (0)
KruskalRST* 2.50 (2.01) 0.240 29,182 (542) 60.3 (10.4)
heur. ini 8.00 (0) 0 61,781,980 (0) 6.1 (0.3)
heur. Xover 4.92 (0.28) 0 589,340 (168,997) 19.0 (2.6)
heur. ini & xover 6.00 (0) 0 71,829,016 (0) 5.0 (0.4)

ro
th

la
uf

4
(c

(T
o
p
t
=

11
2,

93
8)

Prüfer 9.20 (0.7) 0 128,572 (2,350) 68.2 (29.0)
NetKey 3.20 (1.6) 0.128 115,016 (2968) 94 (8.2)
CV 10.03 (1.4) 0 146,387 (4,592) 200 (0)
NB (P2 = 1) 10.30 (0.8) 0 125,095 (1,856) 52.4 (45.7)
NB (P2 = 20) 11.76 (0.7) 0 128,211 (1,260) 28.6 (17.2)
LB (P1 = 1) 3.10 (1.5) 0.136 114,741 (2,570) 94 (11.6)
LB (P1 = 20) 3.22 (1.6) 0.14 115,106 (2,790) 93.6 (11.0)
LNB (P1=P2=1) 5.80 (1.32) 0 117,755 (1,990) 132.1 (21.9)
NetDir 1.84 (0.9) 0.156 113,086 (438) 92.2 (12.3)
KrukalRST 5.57 (1.0) 0.004 119,860 (941) 200 (0)
KruskalRST* 4.20 (1.8) 0.056 117,515 (4,107) 63.98 (28.5)
heur. ini 9 (0) 0 186,230 (0) 8.14 (0.4)
heur. Xover 8.07 (0.2) 0 156,209 (5,134) 19.61 (2.7)
heur. ini & xover 9 (0) 0 197,511 (0) 7.32 (0.8)

8.2 GEA Performance on the OCST Problem 271

The results confirm the predictions from Sect. 8.2.5. Due to problems with
low locality, GAs using Prüfer numbers fail and do not find the optimal solu-
tion even for small problem instances. GAs using the uniformly and synony-
mously redundant NetKey encoding show a good performance for the different
test problems independently of the properties of the optimal solution. The CV
encoding results in low GA performance as the non-synonymous redundancy
of the encoding does not allow guided search and GAs behave like random
search. Only for small six or ten node problem instances can good solutions
be found, but large numbers of generations are necessary. The results for the
LNB encoding and variants of it show that the use of low values for P1 an
P2 results in high GA performance as solutions similar to the MST are over-
represented. The LB encoding with P1 = 1 seems to be an especially good
choice, whereas using the NB encoding with large P2 results in a strong bias
towards stars and does not allow the GA to reliably solve the test problems.
The direct encoding NetDir shows good results and allows GAs to reliably
solve the problem instances. The situation is different when using edge-sets
as the performance of GAs depends on the properties of the optimal solution
Topt. GAs using heuristic variants of the edge-set encoding (heur. ini, heur.
xover, or heur. ini & xover) can only solve test problems where the optimal so-
lution is the MST (dmst,opt = 0). For other test problems, the optimal solution
Topt can not be found. In contrast, GAs using the non-heuristic and unbiased
variants of the edge-set encoding (KruskalRST or KruskalRST*) often show
good performance independently of the structure of Topt.

When focusing on the different test problems, the results reveal that for
berry6 and berry35, where the optimal solution is the MST, GAs using either
the LNB encoding with low bias values, or edge-sets with heuristics, show very
high performance and outperform all other unbiased encodings. However, with
increasing dopt,MST , GAs using heuristic variants of the edge-set fail as the
bias towards the MST is too strong. GAs using the LB or LNB encoding
with low link-specific bias still allow efficient search as the overrepresentation
of MST-like solutions is lower than the bias of the heuristic variants of the
edge-sets. Furthermore, the results show that the performance of GAs using
uniformly redundant or unbiased encodings such as NetKeys, NetDir, edge-
sets without heuristics, or the LB (P1 = 20) encoding is nearly independent
of the structure of the optimal solution Topt. Psucc and tconv are not strongly
affected by the properties of the optimal solution.

We see that the empirical results confirm the theoretical predictions made
in Sect. 8.2.5. As expected, it is more difficult to predict the performance of
direct representations as properties of problem-specific search operators (like
a possible bias) are more difficult to identify. However, using the developed
theory of representations for a thorough analysis of search operators (com-
pare Sect. 7.2 regarding the edge-sets) allows us to validate the predictions
about the expected GA performance not only for indirect, but also for direct
representations.

272 8 Performance of Genetic and Evolutionary Algorithms on Tree Problems

The experimental results confirmed the results of the theoretical analysis
from the previous chapters and showed that only NetKeys, the LNB encoding
with a large link-specific bias P1, edge-sets without heuristics, and NetDir
show good performance for the test problems independently of the properties
of the optimal solution. Furthermore, as expected, GAs using CVs fail for
large problem instances due to problems with non-synonymous redundancy,
GAs using Prüfer number fail due to the low locality of the encoding, GAs
using the NB encoding show low performance due to their bias towards stars,
and GAs using heuristic variants of the edge-set encoding fail if the optimal
solution is not the MST.

8.3 Summary

This chapter investigated for different tree problems how representations influ-
ence the performance of GEAs. Section 8.1 focused on scalable test problems
like the one-max tree problem and the deceptive trap problem for trees, and
examined how the performance of GEAs depends on the used representation.
These two types of test problems for trees allow us to determine a priori
the structure of the optimal solution. The experimental results confirmed the
theoretical predictions regarding the influence of representations on the per-
formance of GAs. Section 8.2 focused on OCST problems and investigated
for different test problems from the literature how the used representation
influences GEA performance. We defined the problem, described existing ap-
proaches to solve the problem, and developed theoretical predictions on how
the different representations influence GEA performance based on the proper-
ties of the encodings from Chaps. 6 and 7. The experimental results confirmed
the theoretical predictions.

This chapter illustrated how GEA users can use the framework of rep-
resentations for predicting and explaining the performance of GEAs using
different types of representations. When applying GEAs to the one-max tree
and deceptive trap problem, the optimal solutions are known a priori and
it is possible to validate the predictions concerning the expected GEA per-
formance. The experimental results for the scalable test problems confirmed
the theoretical predictions. GEAs using Prüfer numbers fail for one-max tree
problems but perform well for deceptive tree problems. Due to problems with
non-synonymous redundancy, GEAs using CVs can only solve small instances
of the one-max tree problem. When using CVs for larger one-max tree prob-
lems, GEAs fail. The situation is different for deceptive trap problems as the
non-synonymity of CVs makes such problems easier and allows GAs to find
optimal solutions more easily in comparison to other encodings. LNB encod-
ings with a small link-specific or node-specific bias are biased either towards
stars or towards the MST. Therefore, GEAs using such encodings perform well
if the optimal solution is either star-like or MST-like. If the optimal solution
is not star-like or MST-like, GEAs using LNB encodings with a small bias

8.3 Summary 273

show low performance. The situation is similar for edge-sets. Edge-sets with
heuristics show a strong bias towards the MST and only perform well if the
optimal solution is the MST. If the optimal solution is slightly different from
the MST, GEAs using edge-sets with heuristics fail. Edge-sets without heuris-
tics are nearly unbiased and GA performance is independent of the optimal
solution. Network random keys show the same performance as LNB encodings
with a large link-specific bias P1. GEAs using these encodings perform reliably
well on all test instances and are in general a good choice for the one-max
tree and deceptive tree problem.

The situation is similar when using GEAs for OCST problems. For many
problem instances, the optimal solution is similar to the MST. Therefore,
GEAs using encodings that are biased towards the MST show good perfor-
mance. However, the results show that the bias of the heuristic variants of
the edge-sets is too strong, as only problems can be solved where the optimal
solution is the MST. A better choice are the LNB or LB encoding with a small
link-specific bias (P1 = 1) as such encodings overrepresent solutions similar
to the MST but still allow us to find solutions that are different from the
MST. Furthermore, the results show that NetKeys and LNB encoding with a
large link-specific bias perform well, whereas Prüfer numbers, CVs and LNB
encodings with a large node-specific bias fail.

This chapter nicely illustrated the benefits we gain from analyzing the
properties of encodings and using the framework about representations for
predicting the expected GEA performance. We want to encourage researchers
to use the proposed tools for analyzing the properties of representations or
search operators for other problem domains. Examining redundancy, scaling,
and locality of an encoding a priori allows us to predict GEA performance
based on the presented framework about representations.

9

Summary and Conclusions

The purpose of this book is to understand the influence of representations on
the performance of genetic and evolutionary algorithms. This chapter sum-
marizes the work contained in this study and lists its major contributions.

9.1 Summary

We started in Chap. 2 by providing the necessary background for examining
representations for GEAs. Researchers recognized early that representations
have a large influence on the performance of GEAs. Consequently, after a
brief introduction into representations and GEAs, we discussed how the influ-
ence of representations on problem difficulty can be measured. The chapter
ended with prior guidelines for choosing high-quality representations. Most
of them are mainly based on empirical observations and intuition and not on
theoretical analysis.

Therefore, we presented in Chap. 3 three aspects of a theory of repre-
sentations for GEAs. We investigated how the locality, scaling, and locality
of an encoding influences GEA performance. The performance of GEAs is
determined by the solution quality at the end of a run and the number of
generations until the population is converged. Consequently, for redundant
and exponentially scaled encodings, we presented population sizing models
and described how the time to convergence is changed. Furthermore, we were
able to demonstrate that high-locality encodings do not change the difficulty
of a problem; in contrast, when using low-locality encodings, on average, the
difficulty of problems changes. Therefore, easy problems become more difficult
and difficult problems become easier by the use of low-locality encodings. For
all three properties of encodings, the theoretical models were verified with
empirical results.

In Chap. 4, we combined the three elements of representation theory from
Chap. 3 to form a framework for a theory-guided design and analysis of rep-
resentations. The framework describes how the time to convergence and the

276 9 Summary and Conclusions

solution quality of GEAs depends on the redundancy, scaling, and locality of
a representation. Using this framework, we could estimate the performance
of GEAs using different types of representations in a theory-guided manner.
We recognized that different types of representations can dramatically change
the behavior of GEAs. Consequently, we presented major implications when
using different types of representations.

In Chaps. 5, 6, and 7, we used the framework for the analysis of existing
representations and the design of new representations in a theory-guided mat-
ter. We analyzed the redundancy, scaling, and locality of a variety of different
representations and made predictions regarding GEA performance based on
the framework. These predictions were verified by experimental results. In
Chap. 5, we focused on binary representations for integers. We compared the
performance of binary, Gray, and unary encodings for integer problems. Based
on the properties of the encodings, the framework was able to explain existing
performance differences.

Chapter 6 focused on the analysis and design of tree representations. In
analogy to Chap. 5, we analyzed the properties of tree representations, namely
Prüfer numbers, NetKeys, characteristic vector encodings, and the link-and-
node-biased encoding. Based on these investigations, we were able to pre-
dict GEA performance using the representation framework. Based on the in-
sights into the insufficiencies of existing tree representations, we combined in
Sect. 6.5 advantageous elements of the CV and the LNB encoding to form the
NetKey encoding. The NetKey encoding is a redundant encoding that allows
GEAs to perform well independently of the structure of the optimal solution.
Furthermore, for the one-max tree problem, we presented a population siz-
ing model for the NetKey encoding and verified that the time to convergence
depends linearly on the problem size.

Direct representations do not use an explicit genotype-phenotype mapping,
but define search operators directly on the phenotypes. Therefore, in general,
standard genetic operators can no longer be used and problem-specific oper-
ators for the phenotypes must be developed. In Chap. 7, we focused on the
analysis and design of direct encodings. We developed search operators for a
new direct encoding (NetDir) and performed an exhaustive investigation into
the properties of the edge-set encoding. The investigation performed into the
properties of the edge-set encoding illustrated that the framework for the de-
sign of representations can not only be used for indirect representations, but
also for search operators and direct encodings.

Finally, Chap. 8 illustrated how GEA users can use the provided represen-
tation framework for estimating the influence of different representations on
GEA performance. Based on the analysis of redundancy, scaling, and locality
of tree representations, we compared GEAs performance for the one-max tree
problem, the deceptive trap problem for trees, and various instances of the
optimal communication spanning tree problem.

9.2 Conclusions 277

9.2 Conclusions

We summarize the most important contributions of this work.
Framework for design and analysis of representations (and oper-

ators) for GEAs. The main purpose of this study was to present a frame-
work which describes how genetic representations influence the performance
of GEAs. The performance of GEAs is measured by the solution quality at
the end of the run and the number of generations until the population is con-
verged. The proposed framework allows us to analyze the influence of existing
representations on GEA performance and to develop efficient new representa-
tions in a theory-guided way. Furthermore, we illustrated that the framework
can also be used for the design and analysis of search operators, which are
relevant for direct encodings. Based on the framework, the development of
high-quality representations remains not only a matter of intuition and ran-
dom search but becomes an engineering design task. Even though more work
is needed, we believe that the results presented are sufficiently compelling to
recommend increased use of the framework.

Redundancy, Scaling, and Locality. These are the three elements
of the proposed framework of representations. We demonstrated that these
three properties of representations influence GEA performance and presented
theoretical models to predict how solution quality and time to convergence
changes. By examining the redundancy, scaling, and locality of an encoding,
we are able to predict the influence of representations on GEA performance.

The theoretical analysis shows that the redundancy of an encoding in-
fluences the supply of building blocks (BB) in the initial population. r de-
notes the number of genotypic BBs that represent the best phenotypic BB,
and kr denotes the order of redundancy. For synonymously redundant encod-
ings, where all genotypes that represent the same phenotype are similar to
each other, the probability of GEA failure goes either with O(exp(−r/2kr))
(uniformly scaled representations) or with O(exp(−√

r/2kr)) (exponentially
scaled representations). Therefore, GEA performance increases if the repre-
sentation overrepresents high-quality BBs. If a representation is uniformly
redundant, that means each phenotype is represented by the same number
of genotypes, GEA performance remains unchanged in comparison to non-
redundant encodings.

The analysis of the scaling of an encoding reveals that non-uniformly scaled
representations modify the dynamics of genetic search. If exponentially scaled
representations are used, the alleles are solved serially which increases the
overall time until convergence and results in problems with genetic drift but
allows rough approximations of the expected optimal solution after a few
generations.

We know from previous work that the high locality of an encoding is
a necessary condition for efficient mutation-based search. An encoding has
high locality if neighboring phenotypes correspond to neighboring genotypes.
Investigating the influence of locality shows that high-locality encodings do

278 9 Summary and Conclusions

not change the difficulty of a problem. In contrast, low-locality encodings,
where phenotypic neighbors do not correspond to genotypic neighbors, change
problem difficulty and make, on average, easy problems more difficult and
deceptive problems easier. Therefore, to assure that an easy problem remains
easy, high-locality representations are necessary.

Population sizing and time to convergence models for redundant
encodings, exponentially scaled encodings, and NetKeys. Based on a
better understanding of redundancy and scaling, we were able to formulate
population sizing models and time to convergence models for redundant and
exponentially scaled encodings. The models show that for redundant encod-
ings the population size grows with O(2kr/r) and the time to convergence goes
with O(const−r/2krk−1), where k denotes the order of building blocks. When
using exponentially scaled encodings, we have to distinguish whether we want
to consider genetic drift or not. When neglecting genetic drift, the popula-
tion size N is independent of the length ls of an exponentially scaled BB,
but depends only on the number m of competing exponentially scaled BBs
(N = O (

√
m)). The time to convergence goes with O(ls

√
m). To consider

genetic drift, we developed two different population sizing models (stair-case
drift model and approximated drift model) based on the model for the non-
drift case. Due to genetic drift, the ability of GEAs to decide well between
competing schemata decreases with increasing number of generations. There-
fore, the probability of GEA failure increases with larger ls.

Instead of using binary genotypes, the NetKey encoding uses continuous
variables for representing trees. For NetKeys, we presented a population sizing
model for the easy one-max tree problem and showed that the population size
N goes with O(n1.5), where n denotes the number of nodes. The time to
convergence is linearly increasing with O(n).

Analysis of binary representations for integers. The framework can
be used for explaining the performance differences of GEAs using different
types of binary representations for integer problems. The analysis of binary,
Gray, and unary encoding has shown that the unary encoding is non-uniformly
redundant, that the binary encoding is exponentially scaled, and the Gray
and binary encoding have low locality. Therefore, the performance of GEAs
using unary encoding depends on the structure of the optimal solution. If the
optimal solution is underrepresented, GEAs fail; in contrast, if the optimal
solution is overrepresented, GEAs using the unary encoding perform well.
When using the binary encoding, all alleles are solved serially and the time to
convergence increases. Therefore, some low salient genes are randomly fixed
due to genetic drift before they can be reached by the search process. Finally,
binary and Gray encoding are low-locality encodings and change the difficulty
of the optimization problem. Thus, the resulting problem difficulty depends
not only on the used representation but also on the considered optimization
problem. Some problems like the easy integer one-max problem are easier
when using the binary encoding, but there are other problems that are easier
when using the Gray encoding.

9.2 Conclusions 279

Analysis of tree representations. The framework about representa-
tions can also be used for analyzing the influence of tree representations and
operators on GEA performance. Based on the properties of Prüfer numbers,
characteristic vectors, the link and node biased encoding, and edge-sets the
proposed framework allowed us to predict GEA performance.

The analysis of the Prüfer number encoding revealed that the locality of
the encoding is high around stars and low elsewhere. Therefore, GEA perfor-
mance is low for easy problems if the optimal solution is not a star, and high
if the problem at hand is deceptive and the optimal solution is a non-star.

The link and node biased (LNB) encoding uses a link-specific and node-
specific bias to control the representations influence on the structure of the
represented phenotype. The investigation into the properties of the encod-
ing revealed that the encoding is synonymously redundant. Furthermore, it
is uniformly redundant if a large link-specific bias is used. If the link-specific
bias is small the encoding is non-uniformly redundant and biased towards the
minimum spanning tree (MST). The use of a node-specific bias results in an
additional bias of the encoding towards star-like tree structures. Therefore,
only GEAs using LNB encodings with a large link-specific bias perform inde-
pendently of the structure of the optimal solution. If the link-specific bias is
small, GEAs only perform well when searching for optimal MST-like pheno-
types. When using an additional node-specific bias, GEAs also perform well
when searching for optimal solutions similar to stars.

Analyzing the characteristic vector encoding revealed that the encoding
is redundant. Because invalid solutions are possible when using characteristic
vectors, an additional repair mechanism is necessary which makes the rep-
resentation non-synonymously redundant. Due to the uniform redundancy of
characteristic vectors, GEA performance is independent of the structure of the
optimal solution. However, the repair mechanism results in non-synonymous
redundancy which has the same effect as low locality. Therefore, GEA per-
formance is reduced for easy problems and increased for deceptive problems.
With increasing problem size, the repair process generates more and more
links randomly and offspring trees do not have much in common with their
parents. Therefore, for larger problems, guided search is no longer possible
and GEAs behave like random search.

The edge-set encoding is an encoding which encodes trees directly by list-
ing their edges. Search operators for edge-sets may be heuristic when consid-
ering the weights of edges they include in the offspring, or naive, including
edges without regard to their weights. Analyzing the properties of the heuris-
tic variants of the search operators reveals a strong bias towards the MST.
Therefore, problems where the optimal solutions are different from the MST
could scarcely be solved. In contrast, the naive variants are unbiased which
means genetic search is independent of the structure of the optimal solution.
Although no explicit genotype-phenotype mapping exists for edge-sets and
the framework for the design of representations can not be directly applied, it
is useful for structuring the analysis of edge-sets. Similarly to non-uniformly

280 9 Summary and Conclusions

redundant representations, edge-sets overrepresent some specific types of trees
and GEA performance increases if optimal solutions are similar to the MST.

Design of new representations for trees. The framework about repre-
sentations can not only be used for the analysis of existing representations but
also for the development of new representations. Based on the insights into
representation theory, the NetKey encoding has been proposed. The NetKey
encoding is based on the characteristic vector encoding but uses continuous
variables for encoding a tree. The encoding is synonymously and uniformly
redundant as well as uniformly scaled. In contrast to other encodings, GEAs
using NetKeys are able to distinguish between important and unimportant
links. The high performance of GEAs using NetKeys was verified by empiri-
cal results and proposes an increasing use of this encoding. Furthermore, we
presented the NetDir representation as an example of a theory-guided design
of a direct encoding. The search operators for the NetDir representation are
developed based on the notion of schemata.

Scalable test problems for trees. Last but not least, we presented the
fully easy one-max tree problem and the deceptive trap problem for trees as
examples for scalable test problems. For these types of problems the optimal
solution is determined a priori and the distance of an individual towards the
optimal solution determines the fitness of the individual. Both problems, the
one-max tree problem and the deceptive trap problem for trees, are easy to
implement and can be advantageously used for comparing the performance of
GEAs on tree problems. By providing scalable test instances, the performance
of different types of representations or new, more effective search methods can
be analyzed and compared more easily.

A

Optimal Communication Spanning
Tree Test Instances

Searching the literature for standard test problems for the optimal communi-
cation spanning tree (OCST) problem reveals that many researchers use their
private test problems which are mostly not published. As a result, the com-
parison of different search algorithms or representations is a difficult and time
consuming task. It is not possible to quickly check if a new search method
is better than the existing ones. Furthermore, applicants hesitate to use new
and efficient search methods or representations if they can not be tested on
a variety of different test problems and solve these problems well and reli-
ably. Therefore, the building up of a collection of test instances for the OCST
problem is necessary.

The purpose of this appendix is to go one step in this direction and to
present a collection of different test instances for the OCST problem. It gives
exact details concerning the properties of the problems we used in Sect. 8.2 for
the comparison of different types of representations. Based on the presented
test instances, a fair and standardized comparison of new search techniques
or representations becomes possible.

For each test problem we present the best known solution, the demands,
and the distance weights. The upper right corner of the presented matrices
specifies the demands and distance weights. Sect. A.1 summarizes the prop-
erties of the test instances from Palmer (1994). We are not able to present
data for the 47 and 98 node problems because these are no longer available.
Sect. A.2 presents the details for the 10, 20, and 50 node OCST problem from
Raidl (2001), Sect. A.3 specifies the berry6, berry35, and berry35u problems
presented by Berry et al. (1995), and Sect. A.4 summarizes the specifications
of four real-world test problems from Rothlauf et al. (2002).

A.1 Palmer’s Test Instances

We present the details for palmer6, palmer12, and palmer24 test instances
presented by Palmer (1994).

282 A Optimal Communication Spanning Tree Test Instances

Table A.1 gives an overview of the best known solutions for the three test
problems. The cost of a link is calculated as the traffic over a link multiplied
by the distance weight of this link (compare (8.4)). Table A.2 lists the de-
mands and distance weights for the palmer6 problem. The properties of the
palmer12 problem are specified in Table A.3 (demands) and Table A.4 (dis-
tance weights). Finally, the properties of the palmer24 problem are listed in
Table A.5 (demands) and Table A.6 (distance weights).

c(Topt) used links
palmer6 693,180 DET-CHI, PHIL-DET, PHIL-NY, HOU-LA,

HOU-DET
palmer12 3,428,509 SD-PHNX, SD-LA, SF-SD, DET-CHI, PHIL-

BALT, PHIL-DET, PHIL-NY, DAL-SD,
DAL-DET, HOU-DAL, SANAN-DAL

palmer24 1,086,656 LA-PHNX, SD-LA, SF-LA, SJ-LA, CHI-LA,
CHI-DEN, DET-CHI, DET-IND, NY-BOS,
CLEVE-DET, COL-DET, PHIL-WDC,
PHIL-JACK, PHIL-BALT, PHIL-DET,
PHIL-NY, HOU-NO, HOU-DET, HOU-
MEMP, HOU-DAL, HOU-ELPAS, SANAN-
HOU, MILW-CHI

Table A.1. Cost and
structure of the best
solutions to the test
instances from Palmer
(1994)

(a) Demand matrix

LA CHI DET NY PHIL HOU

LA 0 1 1 1 1 2
CHI - 0 10 3 4 3
DET - - 0 5 6 2
NY - - - 0 31 2

PHIL - - - - 0 2
HOU - - - - - 0

(b) Distance matrix

LA CHI DET NY PHIL HOU

LA 0 16,661 18,083 21,561 21,099 13,461
CHI - 0 5,658 9,194 8,797 10,440
DET - - 0 7,230 6,899 11,340
NY - - - 0 4,300 13,730

PHIL - - - - 0 13,130
HOU - - - - - 0

Table A.2. Demand and distance matrix for palmer6

Table A.3. Demand matrix for palmer12

PHNX LA SD SF CHI BALT DET NY PHIL DAL HOU SANAN

PHNX 0 7 8 4 2 1 2 1 1 3 3 3
LA - 0 25 7 1 1 1 1 1 2 2 2
SD - - 0 6 1 1 1 1 1 2 2 2
SF - - - 0 1 1 1 1 1 2 2 2
CHI - - - - 0 4 11 4 4 3 3 2

BALT - - - - - 0 6 15 29 2 2 2
DET - - - - - - 0 5 6 3 2 2
NY - - - - - - - 0 33 2 2 2

PHIL - - - - - - - - 0 2 2 2
DAL - - - - - - - - - 0 11 10
HOU - - - - - - - - - - 0 14

SANAN - - - - - - - - - - - 0

A.1 Palmer’s Test Instances 283

Table A.4. Distance matrix for palmer12

PHNX LA SD SF CHI BALT DET NY PHIL DAL HOU SANAN

PHNX 0 6,490 5,903 8,484 14,561 18,359 15,976 19,360 18,867 10,090 10,883 9,665
LA - 0 4,523 6,256 16,661 20,618 18,083 21,561 21,099 12,639 13,461 12,236
SD - - 0 6,908 16,414 20,292 17,829 21,263 20,787 12,073 12,802 11,540
SF - - - 0 17,328 21,452 18,714 22,286 21,874 14,234 15,259 14,136
CHI - - - - 0 8,425 5,658 9,194 8,797 9,603 10,440 11,237

BALT - - - - - 0 6,621 5,067 4,439 12,385 12,526 13,722
DET - - - - - - 0 7,230 6,899 10720 11,340 12,297
NY - - - - - - - 0 4,300 13,531 13,730 14,912

PHIL - - - - - - - - 0 12,967 13,130 14,319
DAL - - - - - - - - - 0 4,888 5,076
HOU - - - - - - - - - - 0 4,478

SANAN - - - - - - - - - - - 0

Table A.5. Demand matrix for palmer24

P
H

N
X

L
A

S
D

S
F

S
J

D
E
N

W
D

C
J
A

C
K

C
H

I

IN
D

N
O

B
O

S
B

A
L
T

D
E
T

N
Y

C
L
E
V

E

C
O

L

P
H

IL

M
E
M

P
D

A
L

E
L
P
A

S

H
O

U

S
A

N
A

N

M
IL

W

PHNX 0 100 0
LA - 0 100 100 100 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SD - - 0
SF - - - 0
SJ - - - - 0

DEN - - - - - 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WDC - - - - - - 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0
JACK - - - - - - - 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0
CHI - - - - - - - - 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 100
IND - - - - - - - - - 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0
NO - - - - - - - - - - 0 0 0 0 0 0 0 0 0 0 0 100 0 0
BOS - - - - - - - - - - - 0 0 0 100 0 0 0 0 0 0 0 0 0
BALT - - - - - - - - - - - - 0 0 0 0 0 100 0 0 0 0 0 0
DET - - - - - - - - - - - - - 0 0 100 100 2 0 0 0 2 0 0
NY - - - - - - - - - - - - - - 0 0 0 2 0 0 0 0 0 0

CLEVE - - - - - - - - - - - - - - - 0 0 0 0 0 0 0 0 0
COL - - - - - - - - - - - - - - - - 0 0 0 0 0 0 0 0
PHIL - - - - - - - - - - - - - - - - - 0 0 0 0 0 0 0

MEMP - - - - - - - - - - - - - - - - - - 0 0 0 100 0 0
DAL - - - - - - - - - - - - - - - - - - - 0 0 100 0 0

ELPAS - 0 100 0 0
HOU - 0 100 0

SANAN - 0 0
MILW - 0

2
8
4

A
O

p
tim

a
l
C

o
m

m
u
n
ica

tio
n

S
p
a
n
n
in

g
T
ree

T
est

In
sta

n
ces

Table A.6. Distance matrix for palmer24

PHNXLA SD SF SJ DENWDCJACK CHI IND NO BOS BALTDET NY CLEVECOLPHILMEMPDALELPASHOUSANANMILW

PHNX 0 649590848824 808 1,810 1,700 1,4561,4891,3362,059 1,835 1,5971,936 1,674 1,5881,886 1,289 1,009 602 1,088 966 1,461
LA - 0 453626599 980 2,034 1,955 1,6611,7171,5952,275 2,068 1,8032,151 1,890 1,8132,109 1,537 1,269 852 1,341 1,226 1,664
SD - - 0 698664 967 2,003 1,897 1,6441,6881,5392,241 2,022 1,7892,123 1,864 1,7842,077 1,483 1,203 791 1,282 1,150 1,644
SF - - - 0 2821,056 2,126 2,106 1,7381,7951,7582,339 2,142 1,8742,226 1,963 1,8922,184 1,663 1,424 1,051 1,529 1,416 1,715
SJ - - - - 0 1,046 2,114 2,088 1,7201,7821,7422,323 2,136 1,8602,228 1,955 1,8872,176 1,643 1,404 1,031 1,508 1,390 1,719

DEN - - - - - 0 1,451 1,456 1,0681,1291,1541,674 1,471 1,2031,561 1,295 1,2231,515 1,005 833 741 975 920 1,065
WDC - - - - - - 0 855 829 754 1,064 675 387 657 524 615 605 463 914 1,206 1,582 1,225 1,348 853
JACK - - - - - - - 0 1,036 929 752 1,144 888 983 1,005 979 870 942 817 1,037 1,424 954 1,092 1,097
CHI - - - - - - - - 0 549 995 1,030 845 568 914 651 600 877 736 963 1,264 1,040 1,127 475
IND - - - - - - - - - 0 919 993 771 567 875 618 528 821 667 932 1,280 995 1,089 592
NO - - - - - - - - - - 0 1,373 1,100 1,0471,226 1,074 958 1,161 621 675 1,058 577 714 1,056
BOS - - - - - - - - - - - 0 655 823 530 813 8,571 585 1,203 1,494 1,851 1,511 1,631 1,038
BALT - - - - - - - - - - - - 0 661 507 633 627 449 940 1,235 1,617 1,256 1,372 862
DET - - - - - - - - - - - - - 0 720 463 491 689 812 1,070 1,404 1,130 1,227 576
NY - - - - - - - - - - - - - - 0 702 722 430 1,068 1,351 1,727 1,370 1,492 934

CLEVE - - - - - - - - - - - - - - - 0 493 660 858 1,123 1,472 1,170 1,279 663
COL - - - - - - - - - - - - - - - - 0 671 739 1,019 1,377 1,060 1,162 635
PHIL - - - - - - - - - - - - - - - - - 0 1,000 1,297 1,663 1,310 1,439 896

MEMP - - - - - - - - - - - - - - - - - - 0 652 1,044 680 795 792
DAL - - - - - - - - - - - - - - - - - - - 0 744 488 506 990

ELPAS - 0 809 674 1,280
HOU - 0 448 1,084

SANAN - 0 1,166
MILW - 0

A.2 Raidl’s Test Instances 285

A.2 Raidl’s Test Instances

This section presents the details for the raidl10, raidl20, and raidl50 test
problem proposed by Raidl (2001). We do not list the 75 and 100 nodes test
problems herein because they are too extensive to be published. However, the
details of the test instances are available and can be directly obtained from the
author1. All demands and distance weights between the nodes were generated
randomly and are uniformly distributed. The cost of a link is calculated as
the amount of traffic over a link multiplied by its distance weight (compare
(8.2)). The nodes are labeled with numbers between zero and n − 1.

Table A.7 presents the properties of the best known solutions for the
raidl10 and raidl20 problems. The demands and distance weights of the raidl10
test problem are specified in Table A.8. The demands for the raidl20 and
raidl50 test problem are shown in Tables A.9 and A.11. The corresponding
distance weights can be found in Tables A.10 and A.12.

c(Topt) used links

raidl10 53,674 1-0, 2-0, 3-0, 4-1, 5-0, 6-0, 7-3, 8-1, 9-1

raidl20 157,570 2-0, 7-5, 9-6, 9-7, 10-0, 11-0, 12-4, 13-0,
13-1, 13-3, 13-4, 14-10, 16-2, 17-0, 17-
15, 18-8, 18-9, 18-10, 19-10

Table A.7. Cost and
structure of the best
solutions for raidl10
and raidl20

Table A.8. Demand and distance matrix for raidl10

(a) Demand matrix

0 1 2 3 4 5 6 7 8 9

0 0 34 97 50 93 100 89 24 89 3

1 - 0 79 65 78 81 82 66 98 72

2 - - 0 11 36 87 23 78 97 81

3 - - - 0 23 88 40 91 83 84

4 - - - - 0 80 16 47 96 9

5 - - - - - 0 46 84 100 0

6 - - - - - - 0 53 78 66

7 - - - - - - - 0 98 58

8 - - - - - - - - 0 13

9 - - - - - - - - - 0

(b) Distance matrix

0 1 2 3 4 5 6 7 8 9

0 0 8 17 1 41 12 7 16 90 47

1 - 0 47 31 17 87 59 14 5 9

2 - - 0 53 36 29 47 14 18 84

3 - - - 0 53 83 72 6 79 36

4 - - - - 0 64 39 52 16 31

5 - - - - - 0 63 75 47 5

6 - - - - - - 0 21 45 87

7 - - - - - - - 0 89 31

8 - - - - - - - - 0 45

9 - - - - - - - - - 0

1Address: Günther Raidl, Institute of Computer Graphics, Vienna Univer-
sity of Technology, Favoritenstraße 9-11/1861, 1040 Vienna, Austria. E-Mail:
raidl@apm.tuwien.ac.at

286 A Optimal Communication Spanning Tree Test Instances

Table A.9. Demand matrix for raidl20
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 19 7 97 99 22 65 82 53 76 2 44 7 40 67 100 7 40 94 90
1 - 0 37 18 98 75 99 90 42 51 4 91 76 91 10 49 53 75 72 17
2 - - 0 56 91 59 24 34 33 30 0 32 38 6 25 94 43 9 57 18
3 - - - 0 8 13 26 25 17 16 67 74 93 16 26 33 54 10 90 44
4 - - - - 0 69 80 44 1 10 10 100 14 16 92 7 26 0 30 44
5 - - - - - 0 75 43 36 66 26 18 33 100 11 15 26 44 69 2
6 - - - - - - 0 100 79 37 80 22 39 56 32 4 70 48 96 77
7 - - - - - - - 0 74 63 73 84 3 16 86 70 8 4 2 8
8 - - - - - - - - 0 82 84 0 92 52 2 58 30 39 3 18
9 - - - - - - - - - 0 44 59 50 15 28 64 77 71 4 5
10 - - - - - - - - - - 0 43 88 9 25 40 79 34 44 47
11 - - - - - - - - - - - 0 8 92 30 8 83 82 77 40
12 - - - - - - - - - - - - 0 78 82 43 96 93 68 11
13 - - - - - - - - - - - - - 0 7 96 75 84 66 79
14 - - - - - - - - - - - - - - 0 90 76 33 99 0
15 - - - - - - - - - - - - - - - 0 73 43 0 83
16 - - - - - - - - - - - - - - - - 0 90 8 74
17 - - - - - - - - - - - - - - - - - 0 86 83
18 - - - - - - - - - - - - - - - - - - 0 22
19 - - - - - - - - - - - - - - - - - - - 0

Table A.10. Distance matrix for raidl20
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 30 6 15 67 100 99 34 85 56 3 13 23 2 72 24 53 12 94 57
1 - 0 98 30 53 35 38 59 85 82 85 78 16 3 59 73 17 77 73 15
2 - - 0 62 9 70 65 21 44 18 44 68 71 56 13 79 5 43 83 39
3 - - - 0 80 93 23 61 78 52 28 80 62 1 48 38 25 62 100 33
4 - - - - 0 84 16 6 27 85 49 46 7 4 59 37 8 53 19 98
5 - - - - - 0 32 12 20 92 41 71 20 72 32 72 19 22 96 80
6 - - - - - - 0 73 80 15 88 85 94 72 34 39 79 89 49 15
7 - - - - - - - 0 49 1 86 46 32 97 66 76 37 88 47 8
8 - - - - - - - - 0 72 18 78 93 65 57 65 44 24 4 29
9 - - - - - - - - - 0 17 75 14 55 5 54 56 72 2 56
10 - - - - - - - - - - 0 57 100 40 5 17 67 93 4 13
11 - - - - - - - - - - - 0 52 75 82 29 19 46 37 83
12 - - - - - - - - - - - - 0 41 60 38 21 76 13 86
13 - - - - - - - - - - - - - 0 83 69 40 90 40 93
14 - - - - - - - - - - - - - - 0 97 48 92 36 52
15 - - - - - - - - - - - - - - - 0 8 2 44 12
16 - - - - - - - - - - - - - - - - 0 66 95 38
17 - - - - - - - - - - - - - - - - - 0 99 23
18 - - - - - - - - - - - - - - - - - - 0 57
19 - - - - - - - - - - - - - - - - - - - 0

A
.2

R
a
id

l’s
T
est

In
sta

n
ces

2
8
7

Table A.11. Demand matrix for raidl50
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

0 0 62 56 24 24 29 17 9 97 47 42 5 25 22 11 59 16 97 87 26 65 7 38 9 66 74 94 2 23 14 65 42 42 87 32 66 16 49 75 79 97 83 50 21 71 62 47 87 24 100
1 - 0 79 55 6 16 64 73 57 23 41 80 37 72 88 45 58 19 78 40 69 18 86 31 1 35 18 38 63 65 25 54 64 70 8 37 87 39 9 43 62 50 22 66 21 10 10 45 96 88
2 - - 0 86 30 73 37 61 40 72 46 78 1 10 2 55 41 73 29 78 25 68 53 68 97 2 56 62 90 32 38 34 95 93 86 24 65 89 52 4 27 98 82 28 74 51 49 14 90 44
3 - - - 0 58 14 12 10 48 75 79 70 36 68 69 40 69 63 32 20 53 97 9 4 67 36 1 49 30 42 66 79 22 55 22 81 35 0 91 83 41 36 18 77 3 53 84 38 15 15
4 - - - - 0 25 69 79 0 73 45 36 41 60 32 49 92 77 71 46 65 51 81 66 8 29 6 44 14 50 13 67 33 18 49 14 43 17 59 43 56 71 45 63 97 77 11 89 53 83
5 - - - - - 0 34 17 100 82 49 7 77 22 17 91 38 98 24 37 15 73 51 24 56 77 67 78 47 78 41 43 54 18 31 73 67 32 90 67 13 5 40 56 27 58 13 65 55 37
6 - - - - - - 0 1 36 9 18 60 31 95 93 8 7 70 15 51 90 34 48 62 0 80 17 33 59 22 40 82 15 98 95 46 18 31 13 20 6 32 80 37 93 72 45 67 7 61
7 - - - - - - - 0 84 97 95 31 58 61 78 41 61 2 64 0 84 45 64 78 92 48 75 4 68 81 2 13 17 62 51 63 28 58 90 11 54 50 8 78 10 86 18 37 55 48
8 - - - - - - - - 0 37 38 94 0 83 85 14 57 55 82 38 58 95 21 19 45 50 13 69 39 91 22 89 99 66 66 51 85 2 5 32 6 9 92 73 92 76 88 15 31 69
9 - - - - - - - - - 0 19 55 30 40 40 41 91 53 77 96 9 65 85 7 31 16 58 82 85 29 80 91 39 72 30 97 13 17 11 10 52 30 65 48 37 71 90 27 90 66
10 - - - - - - - - - - 0 22 99 30 73 6 27 89 30 8 40 60 89 30 99 26 60 95 39 43 73 50 96 2 81 43 39 52 99 32 41 30 21 40 27 94 46 54 49 76
11 - - - - - - - - - - - 0 29 89 35 84 85 100 9 45 61 48 54 33 64 49 1 45 59 7 63 57 39 3 88 60 43 14 20 55 34 69 98 63 57 99 46 41 65 21
12 - - - - - - - - - - - - 0 52 25 36 6 58 100 21 25 10 80 32 73 37 72 43 91 98 52 71 17 7 4 86 71 34 8 69 46 16 33 68 68 24 70 40 48 35
13 - - - - - - - - - - - - - 0 62 74 46 41 5 85 44 43 27 34 7 46 4 24 53 76 77 90 9 85 24 55 0 58 89 35 48 58 75 97 94 36 70 5 44 41
14 - - - - - - - - - - - - - - 0 90 88 51 84 89 58 29 93 82 48 68 58 3 77 9 27 99 76 51 87 10 100 11 86 96 71 88 31 76 98 72 31 86 22 81
15 - - - - - - - - - - - - - - - 0 74 80 76 32 28 23 67 52 26 9 61 20 7 3 71 61 13 70 38 65 65 8 53 96 84 50 34 14 1 22 62 41 69 37
16 - - - - - - - - - - - - - - - - 0 74 63 27 40 14 19 15 42 39 23 45 10 50 24 80 88 90 11 62 42 73 45 58 73 25 60 96 87 0 30 24 40 93
17 - - - - - - - - - - - - - - - - - 0 51 46 73 70 62 14 76 51 25 86 67 50 65 20 39 42 82 47 15 93 4 88 17 30 49 71 31 79 61 37 71 78
18 - - - - - - - - - - - - - - - - - - 0 84 44 13 11 24 89 28 50 74 95 66 5 14 4 13 62 51 28 54 21 83 71 52 31 7 49 10 68 86 47 11
19 - - - - - - - - - - - - - - - - - - - 0 35 91 25 12 15 13 40 31 54 34 97 25 14 67 38 76 84 33 29 4 15 67 22 46 74 37 22 8 90 70
20 - 0 19 24 60 10 3 41 91 43 38 10 44 0 35 58 67 39 0 50 72 29 21 53 62 9 100 2 47 21 10
21 - 0 36 57 96 26 17 73 29 24 63 73 29 73 83 29 74 40 97 12 40 12 51 36 100 3 98 9 69 100
22 - 0 56 91 76 92 47 38 17 30 10 47 21 39 86 50 11 68 45 85 74 7 63 81 20 13 83 19 84
23 - 0 46 95 52 12 50 8 54 7 22 92 25 52 68 38 39 6 90 55 84 23 0 34 63 74 98 9
24 - 0 94 77 92 80 26 4 40 79 16 91 87 70 98 8 62 89 27 96 93 32 2 82 88 52 71
25 - 0 54 87 34 27 50 43 88 93 1 33 19 5 73 98 21 29 50 57 94 59 85 82 52 81
26 - 0 41 84 49 89 37 0 60 91 87 60 85 36 2 38 29 70 71 14 41 9 11 62 39
27 - 0 61 86 99 86 70 46 37 50 87 88 99 76 24 66 35 15 52 95 66 55 63 3
28 - 0 50 100 40 64 40 49 41 2 54 68 88 52 54 23 99 57 74 51 44 38 26
29 - 0 69 70 27 50 89 21 82 43 51 85 59 50 91 89 90 39 29 58 60 97
30 - 0 11 78 16 35 42 40 75 94 84 79 86 18 49 13 34 37 0 15 46
31 - 0 51 66 71 67 56 59 23 96 54 81 21 16 59 99 100 60 7 39
32 - 0 34 0 22 79 86 7 94 65 41 97 66 23 8 83 89 79 16
33 - 0 45 3 39 6 23 86 27 40 44 92 39 3 99 44 3 65
34 - 0 66 83 17 39 42 48 81 39 13 3 47 63 92 26 45
35 - 0 2 96 84 8 86 35 1 25 80 60 30 49 24 74
36 - 0 19 90 5 68 73 45 9 20 92 48 0 61 96
37 - 0 63 18 88 74 21 49 57 96 34 92 98 25
38 - 0 37 57 21 53 81 61 72 36 67 5 8
39 - 0 78 14 29 69 63 96 96 24 24 13
40 - 0 78 98 34 26 54 30 27 11 94
41 - 0 52 15 50 74 34 97 34 72
42 - 0 100 67 77 7 44 57 2
43 - 0 79 19 98 74 9 88
44 - 0 88 53 85 88 80
45 - 0 4 84 6 83
46 - 0 77 24 64
47 - 0 93 98
48 - 0 98
49 - 0

2
8
8

A
O

p
tim

a
l
C

o
m

m
u
n
ica

tio
n

S
p
a
n
n
in

g
T
ree

T
est

In
sta

n
ces

Table A.12. Distance matrix for raidl50
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

0 0 71 20 56 94 50 76 57 57 45 65 60 80 19 64 100 4 73 91 32 27 93 37 83 85 8 3 82 90 45 14 92 15 85 47 60 86 23 69 95 19 33 6 98 51 69 50 7 41 92
1 - 0 90 19 36 26 53 20 34 8 53 23 52 19 66 19 55 64 30 41 38 98 87 56 82 92 6 85 61 7 91 53 98 80 24 33 6 28 4 91 35 8 65 39 78 30 57 33 93 86
2 - - 0 25 31 36 11 38 17 54 95 1 66 1 91 19 50 23 94 34 28 21 89 70 56 97 34 94 26 63 2 58 7 87 34 89 22 96 27 91 50 73 91 15 74 34 85 75 56 78
3 - - - 0 9 35 51 97 4 6 45 37 51 71 51 52 80 9 90 66 98 64 61 76 6 62 48 96 29 73 29 13 48 84 43 8 70 45 4 73 2 1 61 52 71 11 55 2 20 96
4 - - - - 0 67 69 11 80 96 16 41 95 12 21 68 92 34 67 28 28 74 97 72 29 70 73 29 30 76 51 93 82 53 64 77 19 84 88 98 79 55 91 73 18 11 92 10 96 58
5 - - - - - 0 37 75 83 85 98 64 6 70 44 88 97 95 80 78 99 95 7 17 78 46 67 8 100 9 80 18 71 72 79 67 81 15 41 16 51 39 31 57 60 74 44 9 20 75
6 - - - - - - 0 86 18 69 44 87 98 89 5 5 89 13 36 58 83 59 36 1 92 2 94 7 52 84 89 8 95 62 51 3 82 25 41 99 45 84 85 42 73 41 98 13 53 34
7 - - - - - - - 0 70 88 92 5 40 83 6 33 41 57 68 29 17 63 43 67 65 24 44 57 74 88 41 11 82 65 51 79 77 56 64 46 43 8 2 34 42 7 67 83 15 34
8 - - - - - - - - 0 63 31 48 5 50 13 80 45 21 6 84 61 16 65 25 18 96 53 25 59 98 19 66 51 53 8 9 19 42 24 4 56 6 52 61 7 16 92 3 36 97
9 - - - - - - - - - 0 87 49 64 3 73 34 98 26 58 9 75 77 26 26 29 33 34 99 26 9 54 82 67 5 94 25 72 85 28 8 34 14 56 49 16 80 82 14 57 92
10 - - - - - - - - - - 0 74 84 68 99 61 48 84 46 98 9 7 51 42 73 8 35 97 79 72 24 38 57 37 45 5 5 77 39 70 33 30 43 68 49 41 28 48 24 26
11 - - - - - - - - - - - 0 45 85 32 95 26 4 54 61 52 33 84 28 70 40 64 15 44 20 91 34 89 75 63 31 95 63 24 22 62 47 99 6 31 30 53 57 85 6
12 - - - - - - - - - - - - 0 69 37 90 52 64 60 91 79 26 86 99 68 20 39 42 34 22 36 49 45 10 10 43 8 68 74 90 20 82 74 77 2 10 19 5 25 30
13 - - - - - - - - - - - - - 0 95 4 55 32 54 22 51 44 15 85 65 3 85 9 64 94 52 23 61 77 12 32 10 38 61 63 99 79 67 24 8 13 79 62 44 84
14 - - - - - - - - - - - - - - 0 35 95 27 1 31 92 55 15 52 70 60 55 93 21 83 56 52 92 93 12 54 92 42 20 67 49 84 45 62 28 28 48 74 6 1
15 - - - - - - - - - - - - - - - 0 4 49 7 70 1 77 81 7 21 1 90 76 5 33 69 68 39 12 10 10 78 10 94 22 72 21 1 71 94 58 23 49 7 30
16 - - - - - - - - - - - - - - - - 0 70 59 6 50 65 26 3 6 1 7 39 21 74 77 84 35 86 61 45 79 34 68 99 86 90 44 44 13 92 2 42 13 60
17 - - - - - - - - - - - - - - - - - 0 47 63 24 24 65 30 76 23 20 49 96 96 32 83 33 45 79 12 30 98 62 16 87 6 11 51 49 12 92 62 71 90
18 - - - - - - - - - - - - - - - - - - 0 76 46 65 40 27 41 14 98 41 61 93 72 43 26 68 73 89 98 70 50 65 9 7 27 59 56 90 3 69 60 92
19 - - - - - - - - - - - - - - - - - - - 0 44 57 57 35 36 49 48 33 89 8 78 12 3 3 80 75 43 29 45 92 45 5 99 71 63 6 60 65 74 71
20 - 0 9 17 79 17 3 14 65 50 99 5 9 76 16 11 30 95 38 72 75 34 15 19 38 13 41 52 18 100 17
21 - 0 43 22 25 11 1 41 13 66 57 14 64 61 75 91 76 37 20 23 74 43 49 7 58 68 96 22 60 48
22 - 0 92 60 64 34 33 40 45 85 32 9 51 40 75 66 100 49 57 27 85 28 1 11 23 50 17 80 69
23 - 0 65 1 28 12 44 39 27 78 72 18 74 56 49 34 58 88 8 24 39 56 32 65 93 11 66 3
24 - 0 33 15 71 64 35 35 17 62 46 60 1 24 37 24 41 62 31 89 96 89 28 3 64 66 11
25 - 0 47 83 3 57 48 5 42 14 75 5 48 10 21 61 7 81 13 31 69 88 23 31 19 12
26 - 0 78 59 91 32 74 9 42 20 91 96 28 90 100 69 3 27 74 2 88 46 14 94 26
27 - 0 27 76 95 14 99 77 84 62 6 42 4 37 67 12 31 86 2 26 66 91 78 34
28 - 0 45 4 59 98 43 5 12 88 82 90 64 28 55 14 4 39 27 61 32 30 50
29 - 0 51 42 80 88 43 57 53 86 86 39 82 89 49 80 83 53 43 71 87 84
30 - 0 86 14 38 99 70 28 25 30 12 6 79 62 47 10 1 42 67 54 27
31 - 0 52 44 60 93 92 91 75 97 85 97 83 68 82 96 58 80 65 37
32 - 0 56 47 100 62 77 13 60 87 14 1 5 67 79 56 10 39 100
33 - 0 1 81 27 49 66 23 31 33 5 79 42 36 95 79 44 41
34 - 0 78 57 18 91 16 56 56 69 60 22 47 67 83 37 67
35 - 0 35 70 45 84 35 67 66 67 23 44 61 11 91 39
36 - 0 54 31 68 62 100 10 77 55 65 97 66 38 96
37 - 0 33 20 84 51 7 53 95 90 87 13 7 6
38 - 0 36 51 66 98 93 56 3 23 23 64 75
39 - 0 33 92 81 49 89 47 87 84 31 58
40 - 0 67 81 64 20 27 5 58 39 12
41 - 0 63 26 14 80 75 6 35 77
42 - 0 80 58 40 54 42 32 87
43 - 0 90 20 85 76 55 67
44 - 0 86 21 99 49 92
45 - 0 25 54 50 15
46 - 0 65 64 93
47 - 0 30 44
48 - 0 67
49 - 0

A.3 Berry’s Test Instances 289

A.3 Berry’s Test Instances

This section presents the details for the berry6, berry35, and berry35u problem
instances proposed by Berry et al. (1995). Table A.13 presents the properties
of the best known solutions to the different problem instances. The demands
for the test problems are presented in Tables A.14(a) (berry6) and A.15(a)
(berry35 and berry35u). The distance weights are shown in Tables A.14(b)
(berry6) and A.15(b) (berry35). For berry35u, the distance weights dij = 1,
for i, j ∈ {0, . . . , 34}. The demands are the same for berry35 and berry35u.

c(Topt) used links

berry6 534 1-0, 3-1, 5-2, 5-3, 5-4

berry35u 16,273 1-0, 8-2, 11-4, 12-9, 12-10, 13-8, 15-9, 16-2,

17-3, 18-6, 19-15, 20-9, 21-8, 25-1, 25-3, 25-19,

25-24, 26-22, 27-15, 28-9, 29-8, 29-11, 29-25,

30-5, 30-14, 30-21, 30-22, 31-7, 31-12, 31-23,

32-18, 32-25, 33-25, 34-29

berry35 16,915 1-0, 8-2, 11-4, 12-9, 12-10, 13-8, 16-2, 17-3,

18-6, 19-15, 20-9, 20-15, 21-8, 24-1, 24-17, 24-

18, 25-3, 25-8, 25-19, 26-22, 27-15, 28-9, 29-

11, 29-25, 30-5, 30-14, 30-21, 30-22, 31-7, 31-

12, 31-23, 32-18, 33-24, 34-29

Table A.13. Cost
and structure of the
best solutions for
berry6, berry35u,
and berry35

Table A.14. Demand and distance matrix for berry6

(a) Demand matrix

0 1 2 3 4 5

0 0 5 13 12 8 9

1 - 0 7 4 2 6

2 - - 0 3 10 15

3 - - - 0 11 7

4 - - - - 0 12

5 - - - - - 0

(b) Distance matrix

0 1 2 3 4 5

0 0 3 6 5 9 7

1 - 0 3 2 4 8

2 - - 0 3 7 2

3 - - - 0 9 2

4 - - - - 0 1

5 - - - - - 0

290 A Optimal Communication Spanning Tree Test Instances

Table A.15. Demand and distance matrix for berry35 and berry35u

(a) Demand matrix for berry35 and berry35u

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
0 0 639 0 93 0 0 0 0 0 0 0 129 0
1 - 0 147 0 0 0 0 0 0 0 83 0 0
2 - - 0 0 0 0 0 0 189 0 0 0 0 0 0 0 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43 0 0
3 - - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 531 0 0 0 0 0 0 0 623 0 0 0 0 0 0 0 0 0
4 - - - - 0 0 0 0 0 0 0 53 0 0 0 0 0 0 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 - - - - - 0 43 0 0 0 0 0 0 0 119 0 0 0 0 0 0 0 329 0 0 0 0 0 0 0 651 0 0 0 0
6 - - - - - - 0 0 0 0 0 0 0 0 0 0 0 0 371 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 - - - - - - - 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 171 0 0 0
8 - - - - - - - - 0 0 0 0 0 41 0 0 0 0 0 0 0 189 0 0 0 0 0 0 0 123 0 0 0 0 0
9 - - - - - - - - - 0 0 0 351 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 217 0 0 0 0 0 0
10 - - - - - - - - - - 0 0 81 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 - - - - - - - - - - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 133 0 0 0 0 0
12 - - - - - - - - - - - - 0 0 0 27 0 0 0 0 0 0 0 161 0 0 0 0 0 0 0 261 0 0 0
13 - - - - - - - - - - - - - 0
14 - - - - - - - - - - - - - - 0 0 0 0 0 0 0 0 261 0 0 0 0 0 0 0 639 0 0 0 0
15 - - - - - - - - - - - - - - - 0 0 0 0 147 0 0 0 0 0 0 0 423 0 0 0 0 0 0 0
16 - - - - - - - - - - - - - - - - 0 0 0 0 0 0 0 0 0 69 0 0 0 0 0 0 0 0 0
17 - - - - - - - - - - - - - - - - - 0 0 0 0 0 0 0 351 0 0 0 0 0 0 0 117 0 0
18 - - - - - - - - - - - - - - - - - - 0 0 0 0 0 0 243 0 0 0 0 0 0 0 873 0 0
19 - - - - - - - - - - - - - - - - - - - 0 0 0 0 0 0 639 0 0 0 0 0 0 0 119 0
20 - 0 0 0 0 0 0 0 57 0 0 0 0 0 0 0
21 - 0 91 0 0 0 0 0 0 0 387 0 0 0 0
22 - 0 0 0 0 89 0 0 0 0 0 0 0 0
23 - 0 0 0 0 0 0 0 0 651 0 0 0
24 - 0 0 0 0 0 133 0 0 0 0 0
25 - 0 0 0 21 0 0 0 0 0 0
26 - 0 0 0 0 0 0 0 0 0
27 - 0 0 111 0 0 0 0 0
28 - 0 0 0 0 0 0 0
29 - 0 0 0 0 0 63
30 - 0 0 0 0 0
31 - 0 0 0 0
32 - 0 71 0
33 - 0 0
34 - 0

(b) Distance matrix for berry35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
0 0 1 7 4 8 9 4 12 6 9 11 7 10 7 9 7 8 3 3 6 8 7 10 12 2 5 9 8 10 6 8 11 4 3 7
1 - 0 6 3 7 8 3 11 5 8 10 6 9 6 8 6 7 2 2 5 7 6 9 11 1 4 8 7 9 5 7 10 3 2 6
2 - - 0 3 5 4 7 9 1 6 8 4 7 2 4 4 1 4 6 3 5 2 5 9 5 2 4 5 7 3 3 8 7 6 4
3 - - - 0 4 5 4 8 2 5 7 3 6 3 5 3 4 1 3 2 4 3 6 8 2 1 5 4 6 2 4 7 4 3 3
4 - - - - 0 7 8 10 4 7 9 1 8 5 7 5 6 5 7 4 6 5 8 10 6 3 7 6 8 2 6 9 8 7 3
5 - - - - - 0 9 11 3 8 10 6 9 4 2 6 5 6 8 5 7 2 3 11 7 4 2 7 9 5 1 10 9 8 6
6 - - - - - - 0 12 6 9 11 7 10 7 9 7 8 3 1 6 8 7 10 12 2 5 9 8 10 6 8 11 2 3 7
7 - - - - - - - 0 8 3 3 9 2 9 11 5 10 9 11 6 4 9 12 2 10 7 11 6 4 8 10 1 12 11 9
8 - - - - - - - - 0 5 7 3 6 1 3 3 2 3 5 2 4 1 4 8 4 1 3 4 6 2 2 7 6 5 3
9 - - - - - - - - - 0 2 6 1 6 8 2 7 6 8 3 1 6 9 3 7 4 8 3 1 5 7 2 9 8 6
10 - - - - - - - - - - 0 8 1 8 10 4 9 8 10 5 3 8 11 3 9 6 10 5 3 7 9 2 11 10 8
11 - - - - - - - - - - - 0 7 4 6 4 5 4 6 3 5 4 7 9 5 2 6 5 7 1 5 8 7 6 2
12 - - - - - - - - - - - - 0 7 9 3 8 7 9 4 2 7 10 2 8 5 9 4 2 6 8 1 10 9 7
13 - - - - - - - - - - - - - 0 4 4 3 4 6 3 5 2 5 9 5 2 4 5 7 3 3 8 7 6 4
14 - - - - - - - - - - - - - - 0 6 5 6 8 5 7 2 3 11 7 4 2 7 9 5 1 10 9 8 6
15 - - - - - - - - - - - - - - - 0 5 4 6 1 1 4 7 5 5 2 6 1 3 3 5 4 7 6 4
16 - - - - - - - - - - - - - - - - 0 5 7 4 6 3 6 10 6 3 5 6 8 4 4 9 8 7 5
17 - - - - - - - - - - - - - - - - - 0 2 3 5 4 7 9 1 2 6 5 7 3 5 8 3 2 4
18 - - - - - - - - - - - - - - - - - - 0 5 7 6 9 11 1 4 8 7 9 5 7 10 1 2 6
19 - - - - - - - - - - - - - - - - - - - 0 2 3 6 6 4 1 5 2 4 2 4 5 6 5 3
20 - 0 5 8 4 6 3 7 2 2 4 6 3 8 7 5
21 - 0 3 9 5 2 2 5 7 3 1 8 7 6 4
22 - 0 12 8 5 1 8 10 6 2 11 10 9 7
23 - 0 10 7 11 6 4 8 10 1 12 11 9
24 - 0 3 7 6 8 4 6 9 2 1 5
25 - 0 4 3 5 1 3 6 5 4 2
26 - 0 7 9 5 1 10 9 8 6
27 - 0 4 4 6 5 8 7 5
28 - 0 6 8 3 10 9 7
29 - 0 4 7 6 5 1
30 - 0 9 8 7 5
31 - 0 11 10 8
32 - 0 3 7
33 - 0 6
34 - 0

A.4 Real World Problems 291

A.4 Real World Problems

This section presents the properties of four real-world problems. The presented
problems are no classical OCST problems as the cost of a link depends non-
linearly on its distance weights dij and the traffic bij running over the link.

For fulfilling the demands between the nodes, different line types with
only discrete capacities are available. The cost of installing a link consists
of a fixed and length dependent share. Both depend on the capacity of the
link. The costs are based on the tariffs of the German Telekom from 1996
and represent the amount of money (in German Marks) a company has to
pay for a telecommunication line of a specific length and capacity per month.
For a detailed description of the four different problems the reader is referred
to Sect. 8.2.3. In particular, the overall cost of a communication network is
calculated as

c(T) =
∑

i,j∈F

f(dij , capij),

where F denotes the set of used links, dij are the distance weights of the links
between node i to node j, and capij is the capacity of the links. The distance
weight dij corresponds to the Euclidean distance between the nodes i and j.
The capacity capij of a link must be higher than the overall traffic bij running
over a link. Therefore,

capij ≥ bij ,

where bij denotes the overall traffic over the link between the nodes i and j.
This means that to every link between i and j a line is assigned with the next
higher available capacity capij .

We illustrate this with a brief example. If there are three line types avail-
able with capacity 64 kBit/s, 512 kBit/s, and 2048 kBit/s, a line with capacity
cap = 64 kBit/s is assigned to all links with less than b = 64 kBit/s of traffic.
If the traffic over a link is between 64 kBit/s and 512 kBit/s the 512 kBit/s
line is chosen. If the traffic over a link exceeds 512 kBit/s the 2048 kBit/s line
must be chosen.

Table A.16 and Fig. A.1 present the properties of the best known so-
lutions to the four test problems. Table A.17(a) (rothlauf1 and rothlauf2),
Table A.17(b) (rothlauf3), and Table A.18 (rothlauf4) illustrate how the cost
of a link depends on the overall traffic bij and the distance weight dij of the
used line. The largest available line type has capacity cap = 2, 048 kBit/s
(rothlauf1-3) or cap = 4, 096 kBit/s (rothlauf4). If the traffic b over a link
exceeds this value a large penalty is used.

In Table A.19 (rothlauf1 and rothlauf3), Table A.20 (rothlauf2), and Ta-
ble A.21 (rothlauf4) we present the demands for the different test problems.
Table A.22 lists the coordinates of the nodes. The distance weights di,j are
calculated as dij =

√
(xi − xj)2 + (yi − yj)2, where x and y denote the coor-

dinates of the nodes. To get the distances and coordinates in kilometer, the
distance weights must be multiplied by 14.87. The factor 14.87 results from
the used “Gebührenfeldverfahren” of the German Telekom.

292 A Optimal Communication Spanning Tree Test Instances

c(Topt) used links

rothlauf1 60,883 3-1, 4-1, 4-2, 5-1, 6-1, 7-1, 8-1, 9-3, 11-
4, 11-10, 12-4, 13-2, 14-11, 15-4, 16-6

rothlauf2 58,619 5-1, 6-1, 7-1, 8-3, 10-1, 10-2, 10-3, 10-
9, 11-4, 12-2, 13-10, 14-4, 14-10, 15-5

rothlauf3 28,451 5-1, 5-4, 6-1, 7-1, 8-1, 9-1, 9-3, 10-1,
11-10, 12-4, 13-2, 14-10, 15-2, 15-4,
16-6

rothlauf4 112,938 2-1, 3-1, 7-1, 7-5, 7-6, 8-1, 10-1, 11-
1, 12-1, 12-4, 13-10, 14-9, 14-10, 15-1,
16-7

Table A.16. Cost
and structure of the
best solutions for
selected real-world
test instances

cost: 60883.71

1

2

3

4

5

6

7

8

910

11

12

13

14

15

16

(a) rothlauf1

cost: 58619.43

1

3

4

5

6

7

9

12

13

14

15

2

11 8

10

(b) rothlauf2

cost: 28451.76

1

2

3

4

5

6

7

8

910

11

12

13

14

15

16

(c) rothlauf3

cost: 112938.45

1

2

3

4

5

6

7

8

910

11

12

13

14

15

16

(d) rothlauf4

Figure A.1. Best known solutions Topt for the four real-world problem instances

Table A.17. Cost of a link for rothlauf1, rothlauf2, and rothlauf3

(a) rothlauf1 and rothlauf2

bij dij cost

<64 kBit/s

[0; 1] 334.58d + 385
]1; 3] 148.70d + 572
]3; 10] 29.74d + 972.50
]10;∞] 22.31d + 1, 047

<512 kBit/s

[0; 1] 1, 107d + 975
]1; 3] 520d + 1, 567
]3; 10] 178d + 2, 717
]10;∞] 111.53d + 3, 392

<2,048 kBit/s

[0; 1] 2, 215d + 1, 950
]1; 3] 1, 040.9d + 3, 135
]3; 10] 356.88d + 5, 435
]10;∞] 223.05d + 6, 785

>2,048 kBit/s [0;∞] 500,000d + 50,000

(b) rothlauf3

bij dij cost

<64 kBit/s

[0; 1] 334.58d + 38, 5
]1; 3] 148.7d + 57, 2
]3; 10] 29.74d + 97, 25
]10;∞] 22.31d + 104.7

<512 kBit/s

[0; 1] 1, 107d + 97.5
]1; 3] 520d + 156.7
]3; 10] 178d + 271.7
]10;∞] 111.53d + 339.2

<2,048 kBit/s

[0; 1] 2, 215d + 195
]1; 3] 1, 040.9d + 313.5
]3; 10] 356.88d + 543.5
]10;∞] 223.05d + 678.5

>2,048 kBit/s [0;∞] 500,000d + 50,000

A.4 Real World Problems 293

bij dij cost

<64 kBit/s

[0; 1] 334.58d + 385
]1; 3] 148.70d + 572
]3; 10] 29.74d + 972.50
]10;∞] 22.31d + 1, 047

<128 kBit/s

[0; 1] 669.16d + 770
]1; 3] 297.40d + 1, 144
]3; 10] 59.48d + 1, 945
]10;∞] 44.62d + 2, 094

<512 kBit/s

[0; 1] 1, 107d + 975
]1; 3] 520d + 1, 567
]3; 10] 178d + 2, 717
]10;∞] 111.53d + 3, 392

<2,048 kBit/s

[0; 1] 2, 215d + 1, 950
]1; 3] 1, 040.90d + 3, 135
]3; 10] 356.88d + 5, 435
]10;∞] 223.05d + 6, 785

<4,096 kBit/s

[0; 1] 4, 430d + 3, 900
]1; 3] 2, 081.80d + 6, 270
]3; 10] 713.76d + 10, 870
]10;∞] 446.10d + 13, 570

>4,096 kBit/s [0;∞] 500,000d + 50,000

Table A.18. Cost of a link for roth-
lauf4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 424 458 727 468 414 440 521 50 48 381 34 28 48 34 28
2 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 - - - 0 0 0 0 0 0 0 0 0 0 0 0 0
5 - - - - 0 0 0 0 0 0 0 0 0 0 0 0
6 - - - - - 0 0 0 0 0 0 0 0 0 0 0
7 - - - - - - 0 0 0 0 0 0 0 0 0 0
8 - - - - - - - 0 0 0 0 0 0 0 0 0
9 - - - - - - - - 0 0 0 0 0 0 0 0
10 - - - - - - - - - 0 0 0 0 0 0 0
11 - - - - - - - - - - 0 0 0 0 0 0
12 - - - - - - - - - - - 0 0 0 0 0
13 - - - - - - - - - - - - 0 0 0 0
14 - - - - - - - - - - - - - 0 0 0
15 - - - - - - - - - - - - - - 0 0
16 - - - - - - - - - - - - - - - 0

Table A.19. Demand
matrix for rothlauf1 and
rothlauf3

294 A Optimal Communication Spanning Tree Test Instances

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 424 458 200 468 440 521 50 48 600 34 28 48 34 28
2 - 0 0 0 0 0 0 0 0 0 0 0 0 40 0
3 - - 0 0 0 0 0 0 0 0 0 0 0 0 0
4 - - - 0 0 0 0 0 0 0 0 0 0 0 0
5 - - - - 0 0 0 0 0 0 0 0 0 0 100
6 - - - - - 0 0 0 0 0 0 0 0 0 0
7 - - - - - - 0 0 0 0 0 0 0 0 0
8 - - - - - - - 0 0 0 0 0 0 0 0
9 - - - - - - - - 0 0 0 0 0 0 0
10 - - - - - - - - - 0 0 0 0 0 0
11 - - - - - - - - - - 0 0 0 0 0
12 - - - - - - - - - - - 0 0 0 0
13 - - - - - - - - - - - - 0 0 0
14 - - - - - - - - - - - - - 0 0
15 - - - - - - - - - - - - - - 0

Table A.20. Demand matrix
for rothlauf2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 308 491 364 36 51 195 72 114 111 14 150 78 136 33 44
2 - 0 503 323 27 38 146 54 86 83 11 112 59 102 24 33
3 - - 0 272 18 25 97 36 57 55 7 75 39 68 16 22
4 - - - 0 9 12 48 18 28 27 3 37 19 34 8 11
5 - - - - 0 51 17 1 34 40 54 36 47 45 25 11
6 - - - - - 0 15 63 22 16 31 42 28 54 33 7
7 - - - - - - 0 5 26 62 54 45 39 12 16 18
8 - - - - - - - 0 32 13 40 22 20 34 61 38
9 - - - - - - - - 0 35 16 54 13 38 49 17
10 - - - - - - - - - 0 10 12 47 4 5 49
11 - - - - - - - - - - 0 49 10 55 28 39
12 - - - - - - - - - - - 0 10 4 48 37
13 - - - - - - - - - - - - 0 19 41 38
14 - - - - - - - - - - - - - 0 17 34
15 - - - - - - - - - - - - - - 0 36
16 - - - - - - - - - - - - - - - 0

Table A.21. Demand
matrix for rothlauf4

problem node x;y node x;y node x;y

rothlauf1,
rothlauf3,
rothlauf4

1 29;12 2 26;42 3 41;34
4 10;27 5 18;18 6 16;13
7 19;7 8 30;2 9 41;25
10 29;25 11 24;34 12 10;25
13 27;48 14 35;26 15 14;32
16 9;12

rothlauf2

1 29;12 2 26;42 3 41;34
4 10;27 5 18;18 6 19;7
7 30;2 8 41;25 9 29;25
10 24;34 11 10;25 12 27;48
13 35;26 14 14;32 15 9;12

Table A.22. Position of the
nodes for the four selected real-
world problems

References

Abramowitz, M. and I. A. Stegun (1972). Handbook of Mathematical Func-
tions. New York: Dover Publications.

Abuali, F. N., D. A. Schoenefeld, and R. L. Wainwright (1994). Designing
telecommunications networks using genetic algorithms and probabilistic
minimum spanning trees. In E. Deaton, D. Oppenheim, J. Urban, and
H. Berghel (Eds.), Proceedings of the 1994 ACM Symposium on Applied
Computing, pp. 242–246. ACM Press.

Abuali, F. N., R. L. Wainwright, and D. A. Schoenefeld (1995). Determinant
factorization: A new encoding scheme for spanning trees applied to the
probabilistic minimum spanning tree problem. See Eschelman (1995), pp.
470–477.

Ackley, D. H. (1987). A connectionist machine for genetic hill climbing.
Boston: Kluwer Academic.

Albuquerque, P., B. Chopard, C. Mazza, and M. Tomassini (2000). On the
impact of the representation on fitness landscapes. In R. Poli, W. Banzhaf,
W. B. Langdon, J. Miller, P. Nordin, and T. C. Fogarty (Eds.), Genetic
Programming: Third European Conference, Berlin, pp. 1–15. Springer-
Verlag.

Alon, N., R. M. Karp, D. Peleg, and D. West (1995). A graph theoretic game
and its application to the k-server problem. SIAM Journal on Computing ,
78–100.

Altenberg, L. (1994). The schema theorem and price’s theorem. See Whitley
(1994), pp. 23–49.

Altenberg, L. (1997). Fitness distance correlation analysis: An instructive
counterexample. In T. Bäck (Ed.), Proceedings of the Seventh Interna-
tional Conference on Genetic Algorithms, San Francisco, pp. 57–64. Mor-
gan Kaufmann.

Angeline, P. J., Z. Michalewicz, M. Schoenauer, X. Yao, A. Zalzala, and
W. Porto (Eds.) (1999). Proceedings of the 1999 IEEE Congress on Evo-
lutionary Computation. IEEE Press.

296 References

Asoh, H. and H. Mühlenbein (1994). On the mean convergence time of evolu-
tionary algorithms without selection and mutation. See Davidor, Schwefel,
and Männer (1994), pp. 88–97.

Bäck, T., D. B. Fogel, and Z. Michalewicz (Eds.) (1997). Handbook of Evolu-
tionary Computation. Bristol and New York: Institute of Physics Publish-
ing and Oxford University Press.

Bäck, T. and H.-P. Schwefel (1995). Evolution strategies I: Variants and their
computational implementation. In G. Winter, J. Périaux, M. Galán, and
P. Cuesta (Eds.), Genetic Algorithms in Engineering and Computer Sci-
ence, Chapter 6, pp. 111–126. Chichester: John Wiley and Sons.

Bagley, J. D. (1967). The Behavior of Adaptive Systems Which Employ Ge-
netic and Correlation Algorithms. Ph. D. thesis, University of Michigan.
(University Microfilms No. 68-7556).

Banzhaf, W. (1994). Genotype-phenotype-mapping and neutral variation – A
case study in genetic programming. See Davidor, Schwefel, and Männer
(1994), pp. 322–332.

Banzhaf, W., J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela,
and R. E. Smith (Eds.) (1999). Proceedings of the Genetic and Evolu-
tionary Computation Conference: Volume 1, San Francisco, CA. Morgan
Kaufmann Publishers.

Barnett, L. (1997). Tangled webs: Evolutionary dynamics on fitness land-
scapes with neutrality. Master’s thesis, School of Cognitive Sciences, Uni-
versity of East Sussex, Brighton.

Barnett, L. (1998, June 27–29). Ruggedness and neutrality: The NKp family
of fitness landscapes. In C. Adami, R. K. Belew, H. Kitano, and C. Taylor
(Eds.), Proceedings of the 6th International Conference on Artificial Life
(ALIFE-98), Cambridge, MA, USA, pp. 18–27. MIT Press.

Barnett, L. (2001). Netcrawling - optimal evolutionary search with neutral
networks. In Proceedings of the 2001 Congress on Evolutionary Computa-
tion CEC01, Piscataway, NJ, pp. 30–37. IEEE Press.

Bartal, Y. (1996). Probabilistic approximation of metric spaces and its algo-
rithmic applications. In Proc. 37th IEEE Symp. on Foundations of Com-
puter Science, pp. 184–193.

Bartal, Y. (1998). On approximating arbitrary metrics by tree metrics. In
Proc. 30th Anual ACM Symp. on Theory of Computer Science, pp. 161–
168.

Bean, J. C. (1992, June). Genetics and random keys for sequencing and op-
timization. Technical Report 92-43, Department of Industrial and Opera-
tions Engineering, University of Michigan, Ann Arbor, MI.

Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and
optimization. ORSA Journal on Computing 6 (2), 154–160.

Beasley, D., D. R. Bull, and R. R. Martin (1993). Reducing epitasis in com-
binatorial problems by expansive coding. See Forrest (1993), pp. 400–407.

References 297

Belew, R. K. and L. B. Booker (Eds.) (1991). Proceedings of the Fourth In-
ternational Conference on Genetic Algorithms, San Mateo, CA. Morgan
Kaufmann.

Berry, L. T. M., B. A. Murtagh, and G. McMahon (1995). Applications of a
genetic-based algorithm for optimal design of tree-structured communica-
tion networks. In Proceedings of the Regional Teletraffic Engineering Con-
ference of the International Teletraffic Congress, Pretoria, South Africa,
pp. 361–370.

Berry, L. T. M., B. A. Murtagh, G. McMahon, and S. Sugden (1997). Opti-
mization models for communication network design. In Proceedings of the
Fourth International Meeting Decision Sciences Institute, Sydney, Aus-
tralia, pp. 67–70.

Berry, L. T. M., B. A. Murtagh, G. McMahon, S. Sugden, and L. Welling
(1999). An integrated GA–LP approach to communication network design.
Telecommunication Systems 12 (2), 265–280.

Berry, L. T. M., B. A. Murtagh, and S. J. Sugden (1994). A genetic-based
approach to tree network synthesis with cost constraints. In H. J. Zim-
mermann (Ed.), Second European Congress on Intelligent Techniques and
Soft Computing - EUFIT’94, Volume 2, Promenade 9, D-52076 Aachen,
pp. 626–629. Verlag der Augustinus Buchhandlung.

Bethke, A. D. (1981). Genetic Algorithms as Function Optimizers. Ph. D.
thesis, University of Michigan. (University Microfilms No. 8106101).

Bosman, P. (2003). Design and Application of Iterated Density-Estimation
Evolutionary Algorithms. Ph. D. thesis, Universiteit Utrecht, Utrecht, The
Netherlands.

Brittain, D. (1999). Optimisation of the telecommunications access network.
Unpublished doctoral dissertation, University of Bristol, Bristol.

Brittain, D., J. S. Williams, and C. McMahon (1997). A genetic algorithm
approach to planning the telecommunications access network. In T. Bäck
(Ed.), Proceedings of the Seventh International Conference on Genetic
Algorithms, San Francisco, pp. 623–628. Morgan Kaufmann.

Cahn, R. S. (1998). Wide Area Network Design, Concepts and Tools for Op-
timization. San Francisco: Morgan Kaufmann Publishers.

Caruana, R. A. and J. D. Schaffer (1988). Representation and hidden bias:
Gray vs. binary coding for genetic algorithms. In L. Laird (Ed.), Pro-
ceedings of the Fifth International Workshop on Machine Learning, San
Mateo, CA, pp. 153–161. Morgan Kaufmann.

Caruana, R. A., J. D. Schaffer, and L. J. Eshelman (1989). Using multiple
representations to improve inductive bias: Gray and binary coding for ge-
netic algorithms. In B. Spatz (Ed.), Proceedings of the Sixth International
Workshop on Machine Learning, San Mateo, CA, pp. 375–378. Morgan
Kaufmann.

Cavicchio, Jr., D. J. (1970). Adaptive Search Using Simulated Evolution. Un-
published doctoral dissertation, University of Michigan, Ann Arbor, MI.
(University Microfilms No. 25-0199).

298 References

Cayley, A. (1889). A theorem on trees. Quarterly Journal of Mathematics 23,
376–378.

Celli, G., E. Costamagna, and A. Fanni (1995, October). Genetic algorithm
for telecommunication network optimization. In IEEE Int. Conf. on Sys-
tems, Man and Cybernetics, Volume 2, Vancouver, pp. 1227–1232. IEEE
Systems, Man and Cybernetics Society.

Charikar, M., C. Chekuri, A. Goel, S. Guha, and S. Plotkin (1998, November).
Approximating a finite metric by a small number of tree metrics. In Proc.
39th IEEE Symp. on Foundations of Computer Science, pp. 111–125.

Chou, H., G. Premkumar, and C.-H. Chu (2001, June). Genetic algorithms
for communications network design - an empirical study of the factors
that influence performance. IEEE Transactions on Evolutionary Compu-
tation 5 (3), 236–249.

Christensen, S. and F. Oppacher (2001). What can we learn from no free
lunch? See Spector, E., Wu, B., Voigt, Gen, Sen, Dorigo, Pezeshk, Garzon,
and Burke (2001), pp. 1219–1226.

Chu, C.-H., C. Chou, and G. Premkumar (2000). Digital data networks
design using genetic algorithms. European Journal of Operational Re-
search 127 (1), 140–158.

Chu, C.-H., G. Premkumar, C. Chou, and J. Sun (1999). Dynamic degree
constrained network design: A genetic algorithm approach. See Banzhaf,
Daida, Eiben, Garzon, Honavar, Jakiela, and Smith (1999), pp. 141–148.

Chu, C. H.and Chou, H. and G. Premkumar (1999). Digital data networks
design using genetic algorithms. Technical Report 07-1999, Penn State,
USA.

Cohoon, J. P., S. U. Hegde, W. N. Martin, and D. Richards (1988). Floor-
plan design using distributed genetic algorithms. In IEEE International
Conference on Computer Aided-Design, pp. 452–455. IEEE.

Coli, M. and P. Palazzari (1995a). Searching for the optimal coding in ge-
netic algorithms. In 1995 IEEE International Conference on Evolutionary
Computation, Volume 1, Piscataway, NJ, pp. 92–96. IEEE Service Center.

Coli, M. and P. Palazzari (1995b). Searching for the optimal coding in ge-
netic algorithms. 1995 IEEE International Conference on Evolutionary
Computation 1, 92–96.

Crescenzi, P. and V. Kann (2003, Aug.). A compendium of NP optimization
problems. http://www.nada.kth.se/theory/compendium.

Darwin, C. (1859). On the Origin of Species. London: John Murray.
Dasgupta, D. (1995). Incorporating redundancy and gene activation mecha-

nisms in genetic search for adapting to non-stationary environments. In
L. Chambers (Ed.), Practical Handbook of Genetic Algorithms, Chapter 13,
pp. 303–316. CRC Press.

Davidor, Y. (1989). Epistasis variance – Suitability of a representation to ge-
netic algorithms. Tech. Rep. No. CS89-25, Department of Applied Math-
ematics and Computer Science, The Weizmann Institute of Science, Re-
hovot, Israel.

References 299

Davidor, Y. (1991). Epistasis variance: A viewpoint on GA-hardness. See
Rawlins (1991), pp. 23–35.

Davidor, Y., H.-P. Schwefel, and R. Männer (Eds.) (1994). Parallel Problem
Solving from Nature- PPSN III, Berlin. Springer-Verlag.

Davis, L. (1987). Genetic Algorithms and Simulated Annealing. San Mateo,
CA: Morgan Kaufmann.

Davis, L. (1989). Adapting operator probabilities in genetic algorithms. See
Schaffer (1989), pp. 61–69.

Davis, L., D. Orvosh, A. Cox, and Y. Qiu (1993). A genetic algorithm for
survivable network design. See Forrest (1993), pp. 408–415.

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adap-
tive systems. Ph. D. thesis, University of Michigan, Ann Arbor. (University
Microfilms No. 76-9381).

Deb, K., L. Altenberg, B. Manderick, T. Bäck, Z. Michalewicz, M. Mitchell,
and S. Forrest (1997). Theoretical foundations and properties of evolution-
ary computations: fitness landscapes. See Bäck, Fogel, and Michalewicz
(1997), pp. B2.7:1–B2.7:25.

Deb, K. and D. E. Goldberg (1993). Analyzing deception in trap functions.
See Whitley (1993), pp. 93–108.

Deb, K. and D. E. Goldberg (1994). Sufficient conditions for deceptive
and easy binary functions. Annals of Mathematics and Artificial Intel-
ligence 10, 385–408.

Dengiz, B., F. Altiparmak, and A. E. Smith (1997a). Efficient optimization
of all-terminal reliable networds, using an evolutionary approach. IEEE
Transactions on Reliability 46 (1), 18–26.

Dengiz, B., F. Altiparmak, and A. E. Smith (1997b). Local search genetic
algorithm for optimal design of reliable networks. IEEE Transactions on
Evolutionary Computation 1 (3), 179–188.

Dengiz, B., F. Altiparmak, and A. E. Smith (1997c). Local search genetic
algorithm for optimization of highly reliable communications networks. In
T. Bäck (Ed.), Proceedings of the Seventh International Conference on
Genetic Algorithms, San Francisco, pp. 650–657. Morgan Kaufmann.

Dionne, R. and M. Florian (1979). Exact and approximate algorithms for
optimal network design. Networks 9, 39–59.

Doran, J. and D. Michie (1966). Experiments with the graph traverser pro-
gram. Proceedings of the Royal Society of London (A) 294, 235–259.

Ebner, M., P. Langguth, J. Albert, M. Shackleton, and R. Shipman (2001, 27-
30 May). On neutral networks and evolvability. In Proceedings of the 2001
Congress on Evolutionary Computation CEC2001, COEX, World Trade
Center, 159 Samseong-dong, Gangnam-gu, Seoul, Korea, pp. 1–8. IEEE
Press.

Edelson, W. and M. L. Gargano (2000). Feasible encodings for GA solutions
of constrained minimal spanning tree problems. See Whitley, Goldberg,
Cantú-Paz, Spector, Parmee, and Beyer (2000), pp. 754.

300 References

Edelson, W. and M. L. Gargano (2001, 7 July). Leaf constrained minimal
spanning trees solved by a GA with feasible encodings. In A. S. Wu (Ed.),
Proceedings of the 2001 Genetic and Evolutionary Computaton Conference
Workshop Program, San Francisco, California, USA, pp. 268–271.

Elbaum, R. and M. Sidi (1996). Topological design of local-area networks
using genetic algorithms. IEEE/ACM Transactions on Networking 4 (5),
766–778.

Eschelman, L. (Ed.) (1995). Proceedings of the Sixth International Conference
on Genetic Algorithms, San Francisco, CA. Morgan Kaufmann.

Eshelman, L. J. and J. D. Schaffer (1991). Preventing premature convergence
in genetic algorithms by preventing incest. See Belew and Booker (1991),
pp. 115–122.

Even, S. (1973). Algorithmic Combinatorics. New York: The Macmillan Com-
pany.

Feller, W. (1957). An Introduction to Probability Theory and its Applications
(1st ed.), Volume 1. New York: John Wiley & Sons.

Forrest, S. (Ed.) (1993). Proceedings of the Fifth International Conference on
Genetic Algorithms, San Mateo, CA. Morgan Kaufmann.

Fox, B. R. and M. B. McMahon (1991). Genetic operators for sequencing
problems. See Rawlins (1991), pp. 284–300.

Gale, J. S. (1990). Theoretical Population Genetics. London: Unwin Hyman.
Garey, M. R. and D. S. Johnson (1979). Computers and Intractability: A

Guide to the Theory of NP-Completeness. New York: W. H. Freeman.
Gargano, M. L., W. Edelson, and O. Koval (1998). A genetic algorithm with

feasible search space for minimal spanning trees with time-dependent edge
costs. In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B.
Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. L. Riolo (Eds.), Ge-
netic Programming 98, San Francisco, pp. 495. Morgan Kaufmann Pub-
lishers.

Gaube, T. (2000, Februar). Optimierung baumförmiger Netzwerkstrukturen
mit Hilfe des Link and Node Biased Encodings. Master’s thesis, Universität
Bayreuth, Lehrstuhl für Wirtschaftsinformatik.

Gaube, T. and F. Rothlauf (2001). The link and node biased encoding revis-
ited: Bias and adjustment of parameters. In E. J. W. Boers, S. Cagnoni,
J. Gottlieb, E. Hart, P. L. Lanzi, G. R. Raidl, R. E. Smith, and H. Ti-
jink (Eds.), Applications of Eolutionary Computing: Proc. EvoWorkshops
2001, Berlin, pp. 1–10. Springer.

Gavish, B. (1983). Formulations and algorithms for the capacitated minimal
directed tree problem. Journal of the ACM 30 (1), 118–132.

Gavish, B. and K. Altinkemer (1990). Backbone network design tools with
economic tradeoffs. ORSA Journal on Computing 2 (3), 58–76.

Gen, M., K. Ida, and J. Kim (1998). A spanning tree-based genetic algorithm
for bicriteria topological network design. See Institute of Electrical and
Electronics Engineers (1998), pp. 15–20.

References 301

Gen, M. and Y. Li (1999). Spanning tree-based genetic algorithms for the
bicriteria fixed charge transportation problem. See Angeline, Michalewicz,
Schoenauer, Yao, Zalzala, and Porto (1999), pp. 2265–2271.

Gen, M., G. Zhou, and M. Takayama (1998). A comparative study of tree
encodings on spanning tree problems. See Institute of Electrical and Elec-
tronics Engineers (1998), pp. 33–38.

Gerrits, M. and P. Hogeweg (1991). Redundant coding of an NP-complete
problem allows effective Genetic Algorithm search. In H.-P. Schwefel and
R. Männer (Eds.), Parallel Problem Solving from Nature, Berlin, pp. 70–
74. Springer-Verlag.

Gerstacker, J. (1999, Februar). Netzwerkplanung durch Einsatz natu-
ranaloger Verfahren. Master’s thesis, Universität Bayreuth, Lehrstuhl für
Wirtschaftsinformatik.

Goldberg, D. E. (1987). Simple genetic algorithms and the minimal, deceptive
problem. See Davis (1987), Chapter 6, pp. 74–88.

Goldberg, D. E. (1989a). Genetic algorithms and Walsh functions: Part I, a
gentle introduction. Complex Systems 3 (2), 129–152.

Goldberg, D. E. (1989b). Genetic algorithms and Walsh functions: Part II,
deception and its analysis. Complex Systems 3 (2), 153–171.

Goldberg, D. E. (1989c). Genetic algorithms in search, optimization, and ma-
chine learning. Reading, MA: Addison-Wesley.

Goldberg, D. E. (1990a). A note on Boltzmann tournament selection for ge-
netic algorithms and population-oriented simulated annealing. Complex
Systems 4 (4), 445–460. (Also IlliGAL Report No. 90003).

Goldberg, D. E. (1990b, September). Real-coded genetic algorithms, virtual
alphabets, and blocking. IlliGAL Report No. 90001, University of Illinois
at Urbana-Champaign, Urbana, IL.

Goldberg, D. E. (1991a). Genetic algorithm theory. Fourth International Con-
ference conference on Genetic Algorithms Tutorial, unpublished manu-
script.

Goldberg, D. E. (1991b). Real-coded genetic algorithms, virtual alphabets,
and blocking. Complex Systems 5 (2), 139–167. (Also IlliGAL Report
90001).

Goldberg, D. E. (1992). Construction of high-order deceptive functions using
low-order Walsh coefficients. Annals of Mathematics and Artificial Intel-
ligence 5, 35–48.

Goldberg, D. E. (1998). The race, the hurdle, and the sweet spot: Lessons
from the genetic algorithms for the automation of design innovation and
creativity. IlliGAL Report No. 98007, University of Illinois at Urbana-
Champaign, Urbana, IL.

Goldberg, D. E. (1999). The race, the hurdle, and the sweet spot. In P. J. Bent-
ley (Ed.), Evolutionary Design by Computers, pp. 105–118. San Francisco,
CA: Morgan Kaufmann.

302 References

Goldberg, D. E. (2002). The Design of Innovation. Series on Genetic Al-
gorithms and Evolutionary Computation. Dordrecht, The Netherlands:
Kluwer.

Goldberg, D. E., K. Deb, and J. H. Clark (1992). Genetic algorithms, noise,
and the sizing of populations. Complex Systems 6, 333–362.

Goldberg, D. E., K. Deb, H. Kargupta, and G. Harik (1993). Rapid, accurate
optimization of difficult problems using fast messy genetic algorithms. See
Forrest (1993), pp. 56–64.

Goldberg, D. E., K. Deb, and D. Thierens (1993). Toward a better understand-
ing of mixing in genetic algorithms. Journal of the Society of Instrument
and Control Engineers 32 (1), 10–16.

Goldberg, D. E., B. Korb, and K. Deb (1989). Messy genetic algorithms:
Motivation, analysis, and first results. Complex Systems 3 (5), 493–530.

Goldberg, D. E. and P. Segrest (1987). Finite Markov chain analysis of ge-
netic algorithms. In J. J. Grefenstette (Ed.), Proceedings of the Second
International Conference on Genetic Algorithms, Hillsdale, NJ, pp. 1–8.
Lawrence Erlbaum Associates.

Gomory, R. E. and T. C. Hu (1961). Multi-terminal network flows. In SIAM
Journal on Applied Math, Volume 9, pp. 551–570.

Gottlieb, J. and C. Eckert (2000). A comparison of two representations for
the fixed charge transportation problem. See Schoenauer, Deb, Rudolph,
Yao, Lutton, Merelo, and Schwefel (2000), pp. 345–354.

Gottlieb, J., B. A. Julstrom, G. R. Raidl, and F. Rothlauf (2001). Prüfer
numbers: A poor representation of spanning trees for evolutionary search.
See Spector, E., Wu, B., Voigt, Gen, Sen, Dorigo, Pezeshk, Garzon, and
Burke (2001), pp. 343–350.

Gottlieb, J. and G. R. Raidl (2000). The effects of locality on the dynamics
of decoder-based evolutionary search. See Whitley, Goldberg, Cantú-Paz,
Spector, Parmee, and Beyer (2000), pp. 283–290.

Gottlieb, J. and G. Raidl (1999). Characterizing locality in decoder-based
eas for the multidimensional knapsack problem. In C. Fonlupt, J.-K. Hao,
E. Lutton, E. Ronald, and M. Schoenauer (Eds.), Proceedings of Artificial
Evolution, Volume 1829 of Lecture Notes in Computer Science, pp. 38–52.
Springer.

Grasser, C. (2000). Multiperiodenplanung von Kommunikationsnetzwerken
mit naturanalogen Verfahren. Master’s thesis, Universität Bayreuth,
Lehrstuhl für Wirtschaftsinformatik.

Güls, D. (1996). Optimierung der Netzkonfiguration eines Corporate network
am Beispiel des DATEV-Genossenschaftsnetzes. Master’s thesis, Univer-
sität Bayreuth, Lehrstuhl für Wirtschaftsinformatik.

Hamming, R. (1980). Coding and Information Theory. Prentice-Hall.
Harik, G. (1999). Linkage learning via probabilistic modeling in the ECGA.

IlliGAL Report No. 99010, University of Illinois at Urbana-Champaign,
Urbana, IL.

References 303

Harik, G., E. Cantú-Paz, D. E. Goldberg, and B. L. Miller (1999). The gam-
bler’s ruin problem, genetic algorithms, and the sizing of populations. Evo-
lutionary Computation 7 (3), 231–253.

Harik, G. R., E. Cantú-Paz, D. E. Goldberg, and B. L. Miller (1997). The
gambler’s ruin problem, genetic algorithms, and the sizing of populations.
In T. Bäck (Ed.), Proceedings of the Forth International Conference on
Evolutionary Computation, New York, pp. 7–12. IEEE Press.

Harik, G. R. and D. E. Goldberg (1996). Learning linkage. In R. K. Belew and
M. D. Vose (Eds.), Foundations of Genetic Algorithms 4, San Francisco,
CA, pp. 247–262. Morgan Kaufmann.

Hartl, D. L. and A. G. Clark (1997). Principles of population genetics (3 ed.).
Sunderland, Massachusetts: Sinauer Associates.

Harvey, L. and A. Thompson (1997). Through the labyrinth evolution finds a
way: A silicon ridge. Lecture Notes in Computer Science 1259, 406–422.

Hinterding, R. (2000, 6-9 July). Representation, mutation and crossover is-
sues in evolutionary computation. In Proceedings of the 2000 Congress
on Evolutionary Computation CEC00, La Jolla Marriott Hotel La Jolla,
California, USA, pp. 916–923. IEEE Press.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor,
MI: University of Michigan Press.

Horn, J. (1995). Genetic algorithms, problem difficulty, and the modality
of fitness landscapes. IlliGAL Report No. 95004, University of Illinois at
Urbana-Champaign, Urbana, IL.

Hu, T. C. (1974, September). Optimum communication spanning trees. SIAM
Journal on Computing 3 (3), 188–195.

Huynen, M. (1996). Exploring phenotype space through neutral evolution. J.
Mol. Evol. 43, 165–169.

Huynen, M., P. Stadler, and W. Fontana (1996). Smoothness within rugged-
ness: The role of neutrality in adaptation. In Proceedings of the National
Academy of Sciences of the USA, 1993, Washington, D.C., pp. 397–401.
National Academy of Sciences.

Igel, C. (1998). Causality of hierarchical variable length representations. See
Institute of Electrical and Electronics Engineers (1998), pp. 324–329.

Institute of Electrical and Electronics Engineers (Ed.) (1998). Proceedings of
1998 IEEE International Conference on Evolutionary Computation, Pis-
cataway, NJ. IEEE Service Center.

Johnson, D. S., J. K. Lenstra, and A. H. G. R. Kan (1978). The complexity
of the network design problem. Networks 8, 279–285.

Jones, T. (1995). Evolutionary algorithms and heuristic search. Unpublished
doctoral dissertation, University of New Mexico, Alberquerque, NM.

Jones, T. and S. Forrest (1995). Fitness distance correlation as a measure
of problem difficulty for genetic algorithms. See Eschelman (1995), pp.
184–192.

Julstrom, B. A. (1993). A genetic algorithm for the rectilinear steiner problem.
See Forrest (1993), pp. 474–480.

304 References

Julstrom, B. A. (1999). Redundant genetic encodings may not be harmful.
See Banzhaf, Daida, Eiben, Garzon, Honavar, Jakiela, and Smith (1999),
pp. 791.

Julstrom, B. A. (2000). Comparing lists of edges with two other genetic cod-
ings of rectilinear steiner trees. In Late Breaking Papers at the 2000 Ge-
netic And Evolutionary Computation Conference, Madison, WI, pp. 155–
161. Omni Press.

Julstrom, B. A. (2001). The blob code: A better string coding of spanning trees
for evolutionary search. In A. S. Wu (Ed.), Proceedings of the 2001 Ge-
netic and Evolutionary Computaton Conference Workshop Program, San
Francisco, California, USA, pp. 256–261.

Julstrom, B. A. (2005). The blob code is competitive with edge-sets in ge-
netic algorithms for the minimum routing cost spanning tree problem. In
Beyer, Hans-Georg et al. (Ed.), Proceedings of the Genetic and Evolution-
ary Computation Conference 2005, New York, pp. 585–590. ACM Press.

Kargupta, H. (2000a). The genetic code and the genome representation. In
A. S. Wu (Ed.), Proceedings of the 2000 Genetic and Evolutionary Com-
putaton Conference Workshop Program, Las Vegas, Nevada, pp. 179–184.

Kargupta, H. (2000b). The genetic code-like transformations and their effect
on learning functions. See Schoenauer, Deb, Rudolph, Yao, Lutton, Merelo,
and Schwefel (2000), pp. 99–108.

Kargupta, H. (2001). A striking property of genetic code-like transformations.
Complex Systems 13 (1), 1–32.

Kargupta, H., K. Deb, and D. E. Goldberg (1992). Ordering genetic algo-
rithms and deception. See Männer and Manderick (1992), pp. 47–56.

Kershenbaum, A. (1993). Telecommunications network design algorithms.
New York: McGraw Hill.

Kim, J. R. and M. Gen (1999). Genetic algorithm for solving bicriteria network
topology design problem. See Angeline, Michalewicz, Schoenauer, Yao,
Zalzala, and Porto (1999), pp. 2272–2279.

Kimura, M. (1962). On the probability of fixation of mutant genes in a pop-
ulation population. Genetics 47, 713–719.

Kimura, M. (1964). Diffusion models in population genetics. J. Appl. Prob. 1,
177–232.

Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge
University Press.

Knjazew, D. (2000). Application of the fast messy genetic algorithm to permu-
tation and scheduling problems. IlliGAL Report No. 2000022, University
of Illinois at Urbana-Champaign, Urbana, IL.

Knjazew, D. and D. E. Goldberg (2000). Large-scale permutation optimization
with the ordering messy genetic algorithm. IlliGAL Report No. 2000013,
University of Illinois at Urbana-Champaign, Urbana, IL.

Knowles, J., D. Corne, and M. Oates (1999). A new evolutionary approach
to the degree constrained minimum spanning tree problem. See Banzhaf,
Daida, Eiben, Garzon, Honavar, Jakiela, and Smith (1999), pp. 794.

References 305

Knowles, J. D. and R. A. Watson (2002). On the utility of redundant encod-
ings in mutation-based evolutionary search. In J. J. Merelo, P. Adamidis,
H.-G. Beyer, J.-L. Fernandez-Villacanas, and H.-P. Schwefel (Eds.), Paral-
lel Problem Solving from Nature, PPSN VII, Berlin, pp. 88–98. Springer-
Verlag.

Ko, K.-T., K.-S. Tang, C.-Y. Chan, K.-F. Man, and S. Kwong (1997, August).
Using genetic algorithms to design mesh networks. Computer 30 (8), 56–
61.

Krishnamoorthy, M. and A. T. Ernst (2001). Comparison of algorithms for
the degree constrained minimum spanning tree. Journal of Heuristics 7,
587–611.

Krishnamoorthy, M., A. T. Ernst, and Y. M. Sharaiha (1999). Comparison of
algorithms for the degree constrained minimum spanning tree. Tech. rep.,
CSIRO Mathematical and Information Sciences, Clayton, Australia.

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the
travelling salesman problem. Proc. Amer. Math. Soc. (7), 48–50.

Larranaga, P., R. Etxeberria, J. A. Lozano, and J. M. Peña (1999, Decem-
ber). Optimization by learning and simulation of bayesian and gaussian
networks. Technical report, Intelligent Systems Group, Dept. of Computer
Science and Artificial Intelligence, University of the Basque Country. EHU-
KZAA-IK-4/99.

Lewontin, R. C. (1974). The Genetic Basis of Evolutionary Change. Num-
ber 25 in Columbia biological series. New York: Columbia University Press.

Li, Y. (2001). An effective implementation of a direct spanning tree repre-
sentation in GAs. In E. J. W. Boers, S. Cagnoni, J. Gottlieb, E. Hart,
P. L. Lanzi, G. R. Raidl, R. E. Smith, and H. Tijink (Eds.), Applications
of evolutionary Computing: Proc. EvoWorkshops 2001, Berlin, pp. 11–19.
Springer.

Li, Y. and Y. Bouchebaba (1999). A new genetic algorithm for the optimal
communication spanning tree problem. In C. Fonlupt, J.-K. Hao, E. Lut-
ton, E. Ronald, and M. Schoenauer (Eds.), Proceedings of Artificial Evo-
lution: Fifth European Conference, Berlin, pp. 162–173. Springer.

Li, Y., M. Gen, and K. Ida (1998). Fixed charge transportation problem by
spanning tree-based genetic algorithm. Beijing Mathematics 4 (2), 239–
249.

Liepins, G. E. and M. D. Vose (1990). Representational issues in genetic opti-
mization. Journal of Experimental and Theoretical Artificial Intelligence 2,
101–115.

Liepins, G. E. and M. D. Vose (1991). Polynomials, basis sets, and deceptive-
ness in genetic algorithms. Complex Systems 5 (1), 45–61.

Lin, S. (1982). Effective use of heuristic algorithms in network design. In
Proceedings of Symposia in Applied Mathematics, Volume 26, pp. 63–84.

Lobo, F. G., D. E. Goldberg, and M. Pelikan (2000). Time complexity of ge-
netic algorithms on exponentially scaled problems. See Whitley, Goldberg,
Cantú-Paz, Spector, Parmee, and Beyer (2000), pp. 151–158.

306 References

Mahfoud, S. W. and D. E. Goldberg (1995). Parallel recombinative simulated
annealing: A genetic algorithm. In Parallel Computing, Volume 21, pp.
1–28. Amsterdam, The Netherlands: Elsevier Science.

Manderick, B., M. de Weger, and P. Spiessens (1991). The genetic algorithm
and the structure of the fitness landscape. See Belew and Booker (1991),
pp. 143–150.

Männer, R. and B. Manderick (Eds.) (1992). Parallel Problem Solving from
Nature- PPSN II, Berlin. Springer-Verlag.

Martin, W. and W. Spears (Eds.) (2000). Foundations of Genetic Algorithms
6, San Francisco, CA. Morgan Kaufmann.

Mason, A. (1995). A non-linearity measure of a problem’s crossover suitability.
In 1995 IEEE International Conference on Evolutionary Computation,
Volume 1, Piscataway, NJ, pp. 68–73. IEEE Service Center.

Mayr, E. (1991). One Long Argument: Charles Darwin and the Genesis of
Modern Evolutionary Thought. Cambridge, Massachusetts: Harvard Uni-
versity Press.

Mendel, G. (1866). Versuche über Pflanzen-Hybriden. In Verhandlungen des
naturforschenden Vereins, Volume 4, Brünn, pp. 3–47. Naturforschender
Verein zu Brünn.

Miller, B. L. (1997). Noise, sampling, and efficient genetic algorithms. doc-
toral dissertation, University of Illinois at Urbana-Champaign, Urbana.
Also IlliGAL Report No. 97001.

Miller, B. L. and D. E. Goldberg (1996a). Genetic algorithms, selection
schemes, and the varying effects of noise. Evolutionary Computation 4 (2),
113–131.

Miller, B. L. and D. E. Goldberg (1996b). Optimal sampling for genetic al-
gorithms. In C. H. Dagli, M. Akay, C. L. P. Chen, B. R. Fernández, and
J. Ghosh (Eds.), Proceedings of the Artificial Neural Networks in Engineer-
ing (ANNIE ’96) conference, Volume 6, New York, pp. 291–297. ASME
Press.

Minoux, M. (1987). Network synthesis and dynamic network optimization.
Ann. Discrete Math. 31, 283–323.

Mühlenbein, H. and T. Mahnig (1999). FDA - a scalable evolutionary algo-
rithm for the optimization of additively decomposed functions. Evolution-
ary Computation 7 (4), 353–376.

Mühlenbein, H. and G. Paaß (1996). From recombination of genes to the esti-
mation of distributions i. binary parameters. See Voigt, Ebeling, Rechen-
berg, and Schwefel (1996), pp. 178–187.

Mühlenbein, H. and D. Schlierkamp-Voosen (1993). Predictive models for the
breeder genetic algorithm: I. Continuous parameter optimization. Evolu-
tionary Computation 1 (1), 25–49.

Nagylaki, T. (1992). Introduction to Theoretical Population Genetics, Vol-
ume 21 of Biomathematics. Berlin: Springer-Verlag.

Naudts, B., D. Suys, and A. Verschoren (1997). Epistasis as a basic concept
in formal landscape analysis. In T. Bäck (Ed.), Proceedings of the Seventh

References 307

International Conference on Genetic Algorithms, San Francisco, pp. 65–
72. Morgan Kaufmann.

Norman, B. A. (1995). Scheduling Using the Random Keys Genetic Algorithm.
unpublished PhD thesis, University of Michigan, Ann Arbor, Michigan.

Norman, B. A. and J. C. Bean (1994). Random keys genetic algorithm for job
shop scheduling. Tech. Rep. No. 94-5, The University of Michigan, Ann
Arbor, MI.

Norman, B. A. and J. C. Bean (1997). Operation sequencing and tool as-
signment for multiple spindle CNC machines. In Proceedings of the Forth
International Conference on Evolutionary Computation, Piscataway, NJ,
pp. 425–430. IEEE.

Norman, B. A. and J. C. Bean (2000). Scheduling operations on parallel ma-
chines. IIE Transactions 32 (5), 449–459.

Norman, B. A. and A. E. Smith (1997). Random keys genetic algorithm with
adaptive penalty function for optimization of constrained facility layout
problems. In Proceedings of the Forth International Conference on Evolu-
tionary Computation, Piscataway, NJ, pp. 407–411. IEEE.

Norman, B. A., A. E. Smith, and R. A. Arapoglu (1998). Integrated facil-
ity design using an evolutionary approach with a subordinate network
algorithm. In A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel
(Eds.), Parallel Problem Solving from Nature, PPSN V, Berlin, pp. 937–
946. Springer-Verlag.

Oei, C. K. (1992). Walsh function analysis of genetic algorithms of non-binary
strings. Master’s thesis, University of Illinois at Urbana-Champaign, De-
partment of Computer Science, Urbana.

Orvosh, D. and L. Davis (1993). Shall we repair? Genetic algorithms, combi-
natorial optimization, and feasibility constraints. See Forrest (1993), pp.
650.

Palmer, C. C. (1994). An approach to a problem in network design using
genetic algorithms. unpublished PhD thesis, Polytechnic University, Troy,
NY.

Palmer, C. C. and A. Kershenbaum (1994a). Representing trees in genetic
algorithms. In Proceedings of the First IEEE Conference on Evolution-
ary Computation, Volume 1, Piscataway, NJ, pp. 379–384. IEEE Service
Center.

Palmer, C. C. and A. Kershenbaum (1994b). Two algorithms for finding op-
timal communication spanning trees. IBM research report RC-19394.

Papadimitriou, C. H. and M. Yannakakis (1991). Optimization, approxima-
tion, and complexity classes. J. Comput. System Sci. 43, 425–440.

Peleg, D. (1997). Approximating minimum communication spanning trees.
Proc. 4th Colloq. on Structural Information and Communication Com-
plexity, Ascona, Switzerland.

Peleg, D. and E. Reshef (1998). Deterministic polylog approximation for
minimum communication spanning trees. Lecture Notes in Computer Sci-
ence 1443, 670–682.

308 References

Pelikan, M. (2002). Bayesian Optimization Algorithm: From Single Level to
Hierarchy. Ph. D. thesis, University of Illinois at Urbana-Champaign.

Pelikan, M., D. E. Goldberg, and E. Cantú-Paz (1999). BOA: The Bayesian
optimization algorithm. IlliGAL Report No. 99003, University of Illinois
at Urbana-Champaign, Urbana, IL.

Pelikan, M., D. E. Goldberg, and F. Lobo (1999). A survey of optimization
by building and using probabilistic models. IlliGAL Report No. 99018,
University of Illinois at Urbana-Champaign, Urbana, IL.

Picciotto, S. (1999). How to encode a tree. Ph. D. thesis, University of Cali-
fornia, San Diego, USA.

Piggott, P. and F. Suraweera (1993). Encoding graphs for genetic algorithms:
An investigation using the minimum spanning tree problem. In X. Yao
(Ed.), Preprints of the AI’93 Workshop on Evolutionary Computation, pp.
37–48. Canberra, Australia: University of New South Wales, Australian
Defense Force Academy.

Poli, R. (2001a). General schema theory for genetic programming with
subtree-swapping crossover. In J. Miller, M. Tomassini, P. L. Lanzi,
C. Ryan, A. G. B. Tetamanzi, and W. B. Langdon (Eds.), Proceedings
of the Fourth European Conference on Genetic Programming (EuroGP-
2001), Volume 2038 of LNCS, Lake Como, Italy, pp. 143–159. Springer
Verlag.

Poli, R. (2001b). Recursive conditional schema theorem, convergence an pop-
ulation sizing in genetic algorithms. See Martin and Spears (2000), pp.
143–163.

Premkumar, G., C. Chu, and H. Chou (2001). Telecommunications network
design decision - a genetic algorithm approach. Decision Sciences 31 (2),
483–506.

Price, G. R. (1970). Selection and covariance. Nature 227, 520–521.
Prim, R. (1957). Shortest connection networks and some generalizations. Bell

System Technical Journal 36, 1389–1401.
Prüfer, H. (1918). Neuer Beweis eines Satzes über Permutationen. Archiv für

Mathematik und Physik 27, 742–744.
Radcliffe, N. J. (1991a). Equivalence class analysis of genetic algorithm. Com-

plex Systems 5 (2), 183–205.
Radcliffe, N. J. (1991b). Forma analysis and random respectful recombination.

See Rawlins (1991), pp. 222–229.
Radcliffe, N. J. (1992). Non-linear genetic representations. See Männer and

Manderick (1992), pp. 259–268.
Radcliffe, N. J. (1993a). Genetic set recombination. See Whitley (1993), pp.

203–219.
Radcliffe, N. J. (1993b). Genetic set recombination. Foundations of Genetic

Algorithms 2 , 203–219.
Radcliffe, N. J. (1994). The algebra of genetic algorithms. Annals of Maths.

and Artificial Intelligence 10, 339–384.

References 309

Radcliffe, N. J. (1997). Theoretical foundations and properties of evolution-
ary computations: schema processing. See Bäck, Fogel, and Michalewicz
(1997), pp. B2.5:1–B2.5:10.

Radcliffe, N. J. and P. D. Surry (1994). Formae and the variance of fitness.
See Whitley (1994), pp. 51–72.

Raidl, G. R. (2000). An efficient evolutionary algorithm for the degree-
constrained minimum spanning tree problem. In Proceedings of 2000 IEEE
International Conference on Evolutionary Computation, Piscataway, NJ,
pp. 43–48. IEEE.

Raidl, G. R. (2001, February). Various instances of optimal communication
spanning tree problems. personal communciation.

Raidl, G. R. and C. Drexel (2000, 8 July). A predecessor coding in an EA
for the capacitated minimum spanning tree problem. In D. Whitley (Ed.),
Late Breaking Papers at the 2000 Genetic and Evolutionary Computation
Conference, Las Vegas, Nevada, USA, pp. 309–316.

Raidl, G. R. and B. A. Julstrom (2000). A weighted coding in a genetic
algorithm for the degree-constrained minimum spanning tree problem. In
J. Carroll, E. Damiani, H. Haddad, and D. Oppenheim (Eds.), Proceedings
of the 2000 ACM Symposium on Applied Computing, pp. 440–445. ACM
Press.

Raidl, G. R. and B. A. Julstrom (2003). Edge-sets: An effective evolutionary
coding of spanning trees. IEEE Transactions on Evolutionary Computa-
tion 7 (3), 225–239.

Rana, S. and W. Whitley (1998). Search, binary representations, and counting
optima. In Proceeding of a workshop on Evolutionary Algorithms. Spon-
sored by the Institute for Mathematics and its Applications, pp. 1–11. Col-
orado State University.

Rana, S. B. and L. D. Whitley (1997). Bit representations with a twist. In
T. Bäck (Ed.), Proceedings of the Seventh International Conference on
Genetic Algorithms, San Francisco, pp. 188–195. Morgan Kaufmann.

Rawlins, G. J. E. (Ed.) (1991). Foundations of Genetic Algorithms, San Ma-
teo, CA. Morgan Kaufmann.

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Stuttgart-Bad Cannstatt:
Friedrich Frommann Verlag.

Reeves, C. (2000). Fitness landscapes: A guided tour. Joint tutorials of SAB
2000 and PPSN 2000, tutorial handbook.

Reeves, C. and J. Rowe (2003). Genetic Algorithms: Principles and Perspec-
tives. Kluwer.

Reeves, C. and C. Wright (1994). An experimental design perspective on
genetic algorithms. See Whitley (1994), pp. 7–22.

Reeves, C. R. (1999). Landscapes, operators and heuristic search. Annals of
Operational Research 86, 473–490.

Reidys, C. M. and P. F. Stadler (1998). Neutrality in fitness landscapes. Ap-
plied Mathematics and Computation 117 (2–3), 321–350.

310 References

Reshef, E. (1999, April). Approximating minimum communication cost span-
ning trees and related problems. Master’s thesis, Feinberg Graduate School
of the Weizmann Institute of Science, Rehovot 76100, Israel.

Ronald, S. (1995). Genetic algorithms and permutation-encoded problems: Di-
versity preservation and a study of multimodality. Unpublished doctoral
dissertation, The University of South Australia.

Ronald, S. (1997). Robust encodings in genetic algorithms: A survey of en-
coding issues. In Proceedings of the Forth International Conference on
Evolutionary Computation, Piscataway, NJ, pp. 43–48. IEEE.

Ronald, S., J. Asenstorfer, and M. Vincent (1995). Representational redun-
dancy in evolutionary algorithms. In 1995 IEEE International Conference
on Evolutionary Computation, Volume 2, Piscataway, NJ, pp. 631–636.
IEEE Service Center.

Rosenberg, R. S. (1967). Simulation of genetic populations with biochemical
properties. Ph. D. thesis, The University of Michigan. (University Micro-
films No. 67-17,836).

Rothlauf, F., J. Gerstacker, and A. Heinzl (2003). On the optimal communi-
cation spanning tree problem. Technical Report 15/2003, Department of
Information Systems, University of Mannheim.

Rothlauf, F. and D. E. Goldberg (1999). Tree network design with genetic
algorithms - an investigation in the locality of the prüfernumber encoding.
In S. Brave and A. S. Wu (Eds.), Late Breaking Papers at the Genetic and
Evolutionary Computation Conference 1999, Orlando, Florida, USA, pp.
238–244. Omni Press.

Rothlauf, F. and D. E. Goldberg (2000). Prüfernumbers and genetic algo-
rithms: A lesson on how the low locality of an encoding can harm the
performance of GAs. See Schoenauer, Deb, Rudolph, Yao, Lutton, Merelo,
and Schwefel (2000), pp. 395–404.

Rothlauf, F., D. E. Goldberg, and A. Heinzl (2000). Bad codings and the
utility of well-designed genetic algorithms. See Whitley, Goldberg, Cantú-
Paz, Spector, Parmee, and Beyer (2000), pp. 355–362.

Rothlauf, F., D. E. Goldberg, and A. Heinzl (2001). On the debate concerning
evolutionary search using Prüfer numbers. In A. S. Wu (Ed.), Proceedings
of the 2001 Genetic and Evolutionary Computaton Conference Workshop
Program, San Francisco, California, USA, pp. 262–267. Morgan Kaufmann.

Rothlauf, F., D. E. Goldberg, and A. Heinzl (2002). Network random keys –
A tree network representation scheme for genetic and evolutionary algo-
rithms. Evolutionary Computation 10 (1), 75–97.

Rothlauf, F. and C. Tzschoppe (2004). Making the edge-set encoding fly by
controlling the bias of its crossover operator. In G. Raidl and J. Gottlieb
(Eds.), Evolutionary Computation in Combinatorial Optimization 2005,
Volume 3348 of LNCS, pp. 202–212. Springer.

Rudnick, W. M. (1992). Genetic algorithms and fitness variance with an appli-
cation to the automated design of artificial neural networks. Unpublished

References 311

doctoral dissertation, Oregon Graduate Institute of Science & Technology,
Beaverton, OR.

Sastry, K. and Goldberg (2001). Modeling tournament with replacement using
apparent added noise. IlliGAL Report No. 2001014, University of Illinois
at Urbana-Champaign, Urbana, IL.

Schaffer, J. D. (Ed.) (1989). Proceedings of the Third International Conference
on Genetic Algorithms, San Mateo, CA. Morgan Kaufmann.

Schaffer, J. D., R. A. Caruana, L. J. Eshelman, and R. Das (1989). A study
of control parameters affecting online performance of genetic algorithms
for function optimization. See Schaffer (1989), pp. 51–60.

Schnier, T. and X. Yao (2000, 6-9 July). Using multiple representations in evo-
lutionary algorithms. In Proceedings of the 2000 Congress on Evolutionary
Computation CEC00, La Jolla Marriott Hotel La Jolla, California, USA,
pp. 479–486. IEEE Press.

Schoenauer, M., K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and
H.-P. Schwefel (Eds.) (2000). Parallel Problem Solving from Nature, PPSN
VI, Berlin. Springer-Verlag.

Schuster, P. (1997). Genotypes with phenotypes: Adventures in an RNA toy
world. Biophys. Chem. 66, 75–110.

Schwefel, H.-P. (1975). Evolutionsstrategie und numerische Optimierung. Ph.
D. thesis, Technical University of Berlin.

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. Chich-
ester: John Wiley & Sons.

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. New York: Wiley &
Sons.

Sendhoff, B., M. Kreutz, and W. von Seelen (1997a). Causality and the analy-
sis of local search in evolutionary algorithms. Technical report, Institut für
Neuroinformatik, Ruhr-Universität Bochum.

Sendhoff, B., M. Kreutz, and W. von Seelen (1997b). A condition for the
genotype-phenotype mapping: Causality. In T. Bäck (Ed.), Proceedings of
the Seventh International Conference on Genetic Algorithms, San Fran-
cisco, pp. 73–80. Morgan Kaufmann.

Shackleton, M., R. Shipman, and M. Ebner (2000, 6-9 July). An investigation
of redundant genotype-phenotype mappings and their role in evolutionary
search. In Proceedings of the 2000 Congress on Evolutionary Computation
CEC00, La Jolla Marriott Hotel La Jolla, California, USA, pp. 493–500.
IEEE Press.

Shannon, C. E. (1948). A mathematical theory of communication. Bell Syst.
Technical Jrnl. 27, 379–423, 623–656.

Shannon, C. E. and W. Weaver (1949). The Mathematical Theory of Com-
munication. Urbana, Illinois: University of Illinois Press.

Shipman, R. (1999). Genetic redundancy: Desirable or problematic for evo-
lutionary adaptation? In Proceedings of the 4th International Conference
on Artificial Neural Networks and Genetic Algorithms (ICANNGA), pp.
1–11. Springer Verlag.

312 References

Shipman, R., M. Shackleton, M. Ebner, and R. Watson (2000). Neutral search
spaces for artificial evolution: A lesson from life. In M. Bedau, J. McCaskill,
N. Packard, and S. Rasmussen (Eds.), Proceedings of Artificial Life VII,
pp. section III (Evolutionary and Adaptive Dynamics). MIT Press.

Shipman, R., M. Shackleton, and L. Harvey (2000). The use of neutral
genotype-phenotype mappings for improved evoutionary search. British
Telecom Technology Journal 18 (4), 103–111.

Sinclair, M. C. (1995). Minimum cost topology optimisation of the COST
239 European optical network. In D. W. Pearson, N. C. Steele, and R. F.
Albrecht (Eds.), Proceedings of the 1995 International Conference on Arti-
ficial Neural Nets and Genetic Algorithms, New York, pp. 26–29. Springer-
Verlag.

Smith, T., P. Husbands, and M. O’Shea (2001a). Evolvability, neutrality and
search space. Technical Report 535, School of Cognitive and Computing
Sciences, University of Sussex.

Smith, T., P. Husbands, and M. O’Shea (2001b). Neutral networks and evolv-
ability with complex genotype-phenotype mapping. In Proceedings of the
European Converence on Artificial Life: ECAL2001, Volume LNAI 2159,
Berlin, pp. 272–281. Springer.

Smith, T., P. Husbands, and M. O’Shea (2001). Neutral networks in an evolu-
tionary robotics search space. In I. of Electrical and E. Engineers (Eds.),
Proceedings of 2001 IEEE International Conference on Evolutionary Com-
putation, Piscataway, NJ, pp. 136–145. IEEE Service Center.

Spector, L., G. E., A. Wu, L. W. B., H.-M. Voigt, M. Gen, S. Sen, M. Dorigo,
S. Pezeshk, M. Garzon, and E. Burke (Eds.) (2001). Proceedings of the
Genetic and Evolutionary Computation Conference 2001, San Francisco,
CA. Morgan Kaufmann Publishers.

Stephens, C. R. and H. Waelbroeck (1999). Schemata evolution and building
blocks. Evolutionary Computation 7, 109–124.

Streng, C. (1997, Juli). Optimierung eines bundesweiten Corporate Network
am Beispiel der Firma DATEV. Master’s thesis, Universität Erlangen-
Nürnberg, Institut für Angewandte Mathematik.

Surry, D. and N. Radcliffe (1996). Formal algorithms + formal representations
= search strategies. See Voigt, Ebeling, Rechenberg, and Schwefel (1996),
pp. 366–375.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. See Schaffer
(1989), pp. 2–9.

Tang, K. S., K. F. Man, and K. T. Ko (1997). Wireless LAN desing using
hierarchical genetic algorithm. In T. Bäck (Ed.), Proceedings of the Seventh
International Conference on Genetic Algorithms, San Francisco, pp. 629–
635. Morgan Kaufmann.

Thierens, D. (1995). Analysis and design of genetic algorithms. Leuven, Bel-
gium: Katholieke Universiteit Leuven.

Thierens, D. and D. E. Goldberg (1993). Mixing in genetic algorithms. See
Forrest (1993), pp. 38–45.

References 313

Thierens, D. and D. E. Goldberg (1994). Convergence models of genetic algo-
rithm selection schemes. See Davidor, Schwefel, and Männer (1994), pp.
119–129.

Thierens, D., D. E. Goldberg, and Â. G. Pereira (1998). Domino convergence,
drift, and the temporal-salience structure of problems. See Institute of
Electrical and Electronics Engineers (1998), pp. 535–540.

Toussaint, M. and C. Igel (2002). Neutrality: A necessity for self-adaptation.
In D. B. Fogel, M. A. El-Sharkawi, X. Yao, G. Greenwood, H. Iba, P. Mar-
row, and M. Shackleton (Eds.), Proceedings of the 2002 Congress on Evo-
lutionary Computation CEC2002, pp. 1354–1359. IEEE Press.

Tzschoppe, C., F. Rothlauf, and H.-J. Pesch (2004). The edge-set encoding
revisited: On the bias of a direct representation for trees. In Deb, Kalyan-
moy et al. (Ed.), Proceedings of the Genetic and Evolutionary Computation
Conference 2004, Heidelberg, pp. 1174–1185. Springer.

van Laarhoven, P. J. M. and E. H. L. Aarts (1988). Simulated Annealing:
Theory and Applications. Dordrecht, The Netherlands: Kluwer.

Voigt, H.-M., W. Ebeling, I. Rechenberg, and H.-P. Schwefel (Eds.) (1996).
Parallel Problem Solving from Nature- PPSN IV, Berlin. Springer-Verlag.

Vose, M. D. (1991). Generalizing the notion of a schema in genetic algorithms.
Artificial Intelligence 50, 385–396.

Vose, M. D. (1993). Modeling simple genetic algorithms. See Whitley (1993),
pp. 63–73.

Vose, M. D. (1999). The simple genetic algorithm: foundations and theory.
Cambridge, MA: MIT Press.

Vose, M. D. and A. H. Wright (1998a). The simple genetic algorithm and the
Walsh transform: Part I, theory. Evolutionary Computation 6 (3), 253–273.

Vose, M. D. and A. H. Wright (1998b). The simple genetic algorithm and the
Walsh transform: Part II, the inverse. Evolutionary Computation 6 (3),
275–289.

Weinberger, E. (1990). Correlated and uncorrelated fitness landscapes and
how to tell the difference. Biological Cybernetics 63, 325–336.

Whitley, D. (1999). A free lunch proof for gray versus binary encodings. See
Banzhaf, Daida, Eiben, Garzon, Honavar, Jakiela, and Smith (1999), pp.
726–733.

Whitley, D. (2000a). Functions as permutations: Implications for no free
lunch, walsh analysis and statistics. See Schoenauer, Deb, Rudolph, Yao,
Lutton, Merelo, and Schwefel (2000), pp. 169–178.

Whitley, D. (2000b). Local search and high precision gray codes: Convergence
results and neighborhoods. See Martin and Spears (2000), pp. unknown.
in press.

Whitley, D. (2002, September). Evaluating evolutionary algorithms. Tutorial
Program at Parallel Problem Solving from Nature (PPSN 2002.

Whitley, D., D. E. Goldberg, E. Cantú-Paz, L. Spector, L. Parmee, and H.-G.
Beyer (Eds.) (2000). Proceedings of the Genetic and Evolutionary Compu-
tation Conference 2000, San Francisco, CA. Morgan Kaufmann Publishers.

314 References

Whitley, D. and S. Rana (1997). Representation, search, and genetic algo-
rithms. In Proceedings of the 14th National Conference on Artificial Intel-
ligence (AAAI-97), pp. 497–502. AAAI Press/MIT Press.

Whitley, D., S. Rana, and R. Heckendorn (1997). Representation issues in
neighborhood search and evolutionary algorithms. In Genetic Algorithms
and Evolution Strategy in Engineering and Computer Science, Chapter 3,
pp. 39–58. West Sussex, England: John Wiley & Sons Ltd.

Whitley, L. D. (Ed.) (1993). Foundations of Genetic Algorithms 2, San Mateo,
CA. Morgan Kaufmann.

Whitley, L. D. (Ed.) (1994). Foundations of Genetic Algorithms 3, San Fran-
cisco. Morgan Kaufmann Publishers, Inc.

Wolpert, D. H. and W. G. Macready (1995). No free lunch theorems for search.
Tech. Rep. No. SFI-TR-95-02-010, Santa Fe Institute, Santa Fe, NM.

Wong, R. (1980). Worst case analysis of network design problem heuristics.
SIAM J. Algebraic Discr. Meth. 1, 51–63.

Wu, B. Y., G. Lancia, Y. Bafna, K. M. Chao, R. Ravi, and C. Y. Tang
(1998, January). A polynomial time approximation schem for minimum
routing cost spanning trees. In Proc. 9th ACM-SIAM Symp. on Discrete
Algorithms, pp. 21–32.

Yu, T. and J. Miller (2001). Neutrality and evolvability of Boolean function
landscapes. In Proceedings of the 4th European Conference on Genetic
Programming (EuroGP), Volume LNCS 2038, pp. 204–217. Springer.

Yu, T. and J. Miller (2002). Finding needles in haystacks is not hard with
neutrality. In Proceedings of the 5th European Conference on Genetic Pro-
gramming (EuroGP), Volume LNCS, pp. 13–25. Springer.

Zhou, G. and M. Gen (1997). Approach to degree-constrained minimum span-
ning tree problem using genetic algorithm. Engineering Design & Automa-
tion 3 (2), 157–165.

List of Symbols

α probability of GEA failure
ᾱ average percentage of incorrect alleles
αi ith coefficients of the polynomial decomposition of x
b biased chromosome
bij amount of traffic running over link from node i to node j
c crossover-point in string
c(T) communication cost of a spanning tree T
c characteristic vector
capij capacity of a link between node i and j
d signal difference / distance between nodes / distance between

individuals
dc distance distortion of an encoding
dg genotypic distance
dh Hamming distance
di length of a link i
dm locality of an encoding
dMST distance of an individual towards the MST
dp phenotypic distance
dij distance weight (cost) of a link (ij)
dx,y distance between individual x and y
δ(h) defining length of a schema h
D distance matrix
deg(i) degree of node i
E set of edges
eij edge between node i and j
E(x) mean of x
fg genotype-phenotype mapping (representation)

316 List of Symbols

fp phenotype-fitness mapping
f(x), fx fitness of individual x
f(h, t) fitness of schema h at time t
f̄(t) average fitness of population at time t′

G graph
γavg average number of genotypes
h schema (ternary string of length l, where hi ∈ {0, 1, ∗}
hi ith allele of a schema h
I selection intensity
k size or oder of BB
kd number of parental edges
kg genotypic size of BB
kp phenotypic size of BB
kr order of redundancy
l length of a string
lg length of a genotypic bitstring
lp length of a phenotypic bitstring
ls genotypic length of an exponentially scaled BB
li,j link between node i and j
λ dividing line between converged and unconverged alleles

(domino convergence model) / order of schema (locality)
λc size of the convergence window
m number of BBs
m′ m-1
m(h, t) number of instances of schema h at time t
µ mean
n number of nodes
nf number of fitness calls
np number of different phenotypes
N population size
Ndrift population size necessary for GAs not to be affected by genetic

drift
N integer numbers
N(µ, σ) normal distribution with mean µ and standard deviation σ
o(h) order or size of a schema h
p probability
pc probability of crossover
pm probability of mutation
P1 link-specific bias
P2 node-specific bias

List of Symbols 317

Pn, Psucc probability of GEA success
pT

i,j unique path from node i to node j in tree T
ψj(x) jth Walsh function for x
Φg genotypic search space
Φp phenotypic search space
q probability of making the wrong decision when deciding

between a single sample of each BB
r number of genotypic BBs that represent the optimal pheno-

typic BB / order of a binary encoded problem
r random key vector
rs permutation vector
rij communication requirement
R real numbers
s order of scaling / size of tournament / number of possibilities
s(t) probability that an allele is fully converged
σ standard deviation
σBB standard deviation of a BB
σf standard deviation of function f
σN standard deviation of additional noise
t time, number of generations
tconv convergence time
tdrift drift time
T spanning tree / temperature (for simulated annealing)
u number of ones
u(x) number of ones in x
V set of nodes
w Walsh coefficients
χ cardinality of alphabet
x0 expected number of copies of the best BB in a randomly

initialized population
xi ith allele of an individual x
x vector of decision variables / individual
xg genotype of an individual
xp phenotype of an individual
xc

i contribution of the ith most salient allele to the fitness of the
individual

* don’t care symbol

List of Acronyms

BB building block
CV characteristic vector
GA genetic algorithm (meaning selectorecombinative GEAs)
GEA genetic and evolutionary algorithm (meaning GEAs using

crossover and mutation)
ES evolution strategy
eTV extended trivial voting
LB link biased
LNB link and node biased
MST minimum spanning tree
NB node biased
NetDir direct tree
NetKey network random key
OCST optimal communication spanning tree
RK random key
SA simulated annealing
TV trivial voting

Index

adaptive representation, 74
allele, 10–11
approximated drift model, see exponen-

tially scaled representation

Berry, 289
bias, see redundancy, 174–176, 184
binary encoding, 120–121, 126

fitness of schema, 127–129
BinInt problem, 68–72, 121
Bit, 35–36
bit-counting problem, see one-max

problem
Blob Code, 152, 260
building block, 20, 45–46

critique, 20–21
decision making between, 46
difficulty, 74–76
exponentially scaled, see exponen-

tially scaled representation
genotypic size of, 101–102
growth of, 46
hypothesis, 21–22, 146
initial supply of, 45, 47–48
length of, 27
meaningful, 28, 151
mixing of, 46
phenotypic size of, 101–102
preservation of, 86–89
quasi-decomposability of, 21, 23
scaling, 59–72
size of, 27, 45
supply of, 176

cardinality, 12, 14, 29, 65
causality, 73
Cayley’s theorem, 152
characteristic vector encoding, 171–178,

202
bias of, 174–176
convergence time, 176–177
invalid solution, 172–173
locality, 172
property of, 171–172
redundancy, 174
repair mechanism, 172–173

chromosome, 10–11
competent genetic algorithm, 220
connectivity of search spaces, 37, 42
convergence time, 98, 176, 211–212
convergence window, 60, 61, 101
correlation analysis, 25, 41–42
cross-competition, 46, 176
crossover, 18, 144

one-point, 18, 85–86
problem-specific operator, 221–223
uniform, 18, 85–86

crossover-based search, 101, 127, 140,
167

Dandelion Code, 260
Darwin, 15
Darwinism, 36
deceptive problem, 23, 27
deceptive trap problem, 55–56, 75, 80,

89, 90
size of, 252

322 Index

deceptive trap tree problem, 149,
251–256

demand matrix, 257
design of representations, 108–114,

150–151
direct representation for tree, 218–239

operators, 220–223
property of, 219–220

distance, 76, 144–145, 148
distance distortion, 84–86, 101–102

implications of, 112–114
distance matrix, 257
distance metric, 84, 119

Euclidean distance, 142, 185
Hamming distance, 120, 144, 172

distance weight, 257
distance weight matrix, 180
domino convergence, 60, 61, 66, 106,

126
drift, see genetic drift
dynamics of genetic search, 100

edge-set encoding, 224–239, 242
bias of, 224, 227–230
initialization, 225, 228
mutation, 226–227, 229–230
recombination, 225–229

epistasis, 23, 31
equivalence class, 29, 40
estimation of distribution algorithm,

220
evolution strategy, 14, 24, 73
evolvability, 37, 265
exponentially scaled representation,

100–101, 105–108, 121
approximated drift model, 67, 71
genetic drift, 65–72
implications of, 111–112
population sizing, 61–72
stair-case drift model, 67, 71
time to convergence, 64, 111–112

fitness function, 11
fitness landscape, 22, 58
forma, 29
fully deceptive problem, 74, 102, 147
fully difficult, 28, 75, 76, 127, 142
fully easy, 28, 75, 127, 142, 146–148, 246

Gambler’s ruin model, 47, 63

gene, 10–11
gene expression, 38
genetic algorithm, 16
genetic and evolutionary algorithms,

15–22
functionality of, 16
principles of, 15

genetic drift, see exponentially scaled
representation, 61, 65, 72, 126

genotype, 10
genotype-phenotype mapping, see

representation
Gomory-Hu spanning tree algorithm,

258, 261
graph

cycle in, 173
design problem, 144
fully connected, 142
number of links, 142
routing, 143
schema analysis, 146–147
test problem for, 147
undirected, 143

Gray encoding, 118, 121–122, 127–129
fitness of schema, 127–129
Free-Lunch theorem for, 118, 127

Hamming cliff, 121, 126
Happy Code, 260
heritability, 84
Hu, 258

information content, 35, 36, 43, 99, 124
integer problem, 118–120

comparison of different encodings,
130–139

deceptive trap, 119, 129–133
gen-one-max, 119, 134–139
one-max, 68, 119, 129–133, 147

invalid solution, 151
isomorphism of fitness landscapes, 82

Jones, 78–80

Kimura, 36, 61, 65

Liepins, 74, 76
link and node biased encoding, 178–201,

243
functionality, 179–183

Index 323

link-and-node-biased encoding, 182,
195–197

link-biased encoding, 181–182,
191–195

node-biased encoding, 180–181,
184–187

performance of, 197–200
locality, 40–42, 73–95, 101, 121, 126,

151
definition, 77
distance distortion, see distance

distortion
high, 81–82
influence on problem difficulty, 82–84
Prüfer number, 157–169

mapping
genotype-phenotype, 10, 12, 89–91
one-to-one, 152, 156
phenotype-fitness, 12, 90–91

mating pool, 18
Mendel, 10
metric, see distance metric, 39, 76–77,

84–85
metropolis probability, 167
minimal alphabet, 28, 120
minimum average stretch spanning tree,

259
minimum spanning tree, 174, 180, 208,

228, 231, 258
modality, 22
mutation, 18, 144

operator, 77–78
problem-specific operator, 220–221

mutation-based search, 84, 101, 118,
127, 140, 148, 167

locality, 83
redundancy, 58–59

natural selection, 36
neighbors, 76
NetDir, 218–224
network, see graph or tree
network random key, 201–213

benefits, 207–208
bias of, 208–210
construction algorithm, 205–207
convergence time, 211–212

difference to link-biased encoding,
202

functionality, 202–207
performance of, 208–210
population sizing model, 210–211

neutral mutation, 36
neutral networks, see neutral search

space
neutral search space, 35–38
neutral sets, 37
neutral theory, 36–37, 51
no-free-lunch theorem, 75, 76, 80
node

degree of, 145, 146, 154, 179
leaf, 146, 179

number of fitness calls, 98

one-max problem, 52, 86, 89, 90, 177
one-max tree problem, 147–148,

167–169, 175–177, 192, 246–251
optimal communication spanning tree

problem, 256–272
approximation algorithms, 258–259
experimental results, 230–237,

266–272
performance of edge-sets, 230–237
problem definition, 257–258
test problems, 260–262, 281–291
theoretical predictions of encoding

performance, 264–265
optimization problem, 11
optimum requirement spanning tree

problem, 258
order of scaling, 100
overspecification, 207

Palmer, 31, 150–152, 178, 281–282
permutation, 203
phenotype, 10
polynomial decomposition, 25
population sizing model, 210–211
Prim’s algorithm, 181
principles of life, 15–16
problem difficulty, 22–28, 78–80, 246

change of, 86–89, 126–129
extra-BB, 23
influence of representations on, 74–76
inter-BB, 23
intra-BB, 23, 27

324 Index

measurement of, 25–28, 78–80
reasons of, 22–25
reduction of, 75–76
tree, 147

problem-specific operator, 175
Prüfer, 152
Prüfer number, 151–170

construction, 154–156
locality of, 157
neighborhood of, 161–163
number of neighbors, 164–167
performance of, 167–169
property of, 156–157
random walk through, 158–161

Radcliffe, 29–31
Raidl, 285
random key, 203–205

property of, 203–205
random search, 24, 80, 85
real world problem, 21, 80
redundancy, 35–59, 99–100, 123–126,

174–176
bias and, 183–184
definition, 38–39, 43
diversity loss, 38
implications of, 108–110
locality, 40–42
non-synonymous, 39–42, 46, 123–124,

174–177
non-uniform, 183
order of, 43, 99, 109, 124
population sizing, 47–48, 52–54,

56–57
run duration, 49, 54–55
synonymous, 39–40, 43–45, 189, 207
trivial voting mapping, see trivial

voting mapping
uniform, 44–45, 99

representation, 10–15, 89–90
Prüfer number, see Prüfer number
analysis of, 242–246
bias of, 150
binary, 13
characteristic vector encoding, see

characteristic vector encoding
complexity, 151
design principles of, 28–32
direct, 6, 12–13, 15, 217–239

direct representation, see direct
representation for tree

edge-set encoding, see edge-set
encoding

exponentially scaled, see expo-
nentially scaled representation,
61

indirect, 217, 219

integer, 13, 14, 118–139

invalid solution, 150

link and node biased encoding, see
link and node biased encoding

locality, see locality

messy, 14

network random key, see network
random key

non-uniformly scaled, 60

real-valued, 13, 14

repair mechanism, 150

robust, 110, 184

types of, 13–15

uniformly scaled, 59–60, 104–105

usefulness of, 12

Ronald, 31

scaled representation, see exponentially
scaled representation

schema, 19, 23

fitness of, 19, 27, 127, 146–148

length of, 19

size of, 19

schema analysis, 25, 127–129, 146–148

schema theorem, 19–20

selection intensity, 64

selection scheme, 17

(µ + λ), 168

Boltzmann, 167

proportionate selection, 17

tournament selection, 17

selectorecombinative genetic algorithm,
13, 17, 24, 127

Shannon, 35

simulated annealing, 134, 167, 236

solution quality, 98

spanning tree, 257

stair-case drift model, see exponentially
scaled representation

stealth mutation, 176–177, 247

Index 325

tournament selection

with replacement, 17

without replacement, 17, 64

tree, 143–144

arbitrary, 146

encoding issues, 150–151

fitness of, 148

link or node failure, 143

list, 146, 161

ordered, 161

random, 161

schema, 146

star, 145–146, 161
structure of, 145–146

trivial voting mapping, 50–57
empirical results, 52–57
extended, 51–52
functionality, 50–52

unary encoding, 122–126
underspecification, 207

Walsh analysis, 25
weighted encoding, 201
Whitley, 118, 127

