
Contents

CONTRIBUTORS . ix
PREFACE . xiii

Software Development Productivity

Katrina D. Maxwell

1. Introduction . 2
2. What Is Software Development Productivity? 3
3. What Factors Can Have an Impact on Productivity? 9
4. How to Identify Influential Factors . 15
5. Case Study . 25
6. Benchmarking Software Development Productivity 40
7. Conclusions . 43

References . 44

Transformation-Oriented Programming: A Development Methodology
for High Assurance Software

Victor L. Winter, Steve Roach and Greg Wickstrom

1. Background . 49
2. High-Consequence Systems . 50
3. Approaches to Developing High-Assurance Systems 54
4. Transformation-Oriented Programming 62
5. TOP as a Program Development Method 68
6. HATS . 74
7. Embedded Systems . 80
8. Future Work: Verification . 102
9. Summary and Conclusion . 108

Appendix A: A Small Java Program . 109
Appendix B: Java Classfile . 111
Appendix C: Resolved Classfile . 113
References . 113

v

vi CONTENTS

Bounded Model Checking

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman and
Yunshan Zhu

1. Introduction . 118
2. Model Checking . 121
3. Bounded Model Checking . 126
4. Reducing Bounded Model Checking to SAT 129
5. Techniques for Completeness . 134
6. Propositional SAT Solvers . 138
7. Experiments . 141
8. Related Work and Conclusions . 144

References . 146

Advances in GUI Testing

Atif M. Memon

1. Introduction . 150
2. GUI Testing Steps . 155
3. Record/Playback Tools . 157
4. Challenges . 159
5. State Machine Models . 162
6. Behavioral Models . 168
7. Statistical Methods . 170
8. Hierarchical Techniques . 172
9. Discussion . 194

10. Summary . 195
References . 197

Software Inspections

Marc Roper, Alastair Dunsmore and Murray Wood

1. Introduction . 204
2. The Beginnings of the Inspection Process 205
3. Variations on the Original Process . 207
4. Reading Techniques . 211

CONTENTS vii

5. Adapting to a New Paradigm—Dealing with Object-Orientation 218
6. Tool Support for Inspection . 227
7. Conclusions . 233

References . 234

Software Fault Tolerance Forestalls Crashes: To Err Is Human;
To Forgive Is Fault Tolerant

Lawrence Bernstein

1. Background . 240
2. Fault Tolerance Is Related to Reliability Theory 248
3. Summary . 283

Acknowledgements . 285
References . 285

Advances in the Provision of System and Software Security—
Thirty Years of Progress

Rayford B. Vaughn

1. Introduction . 288
2. Concepts of Information Assurance . 289
3. A Historical Perspective . 295
4. Today’s Threat and Countermeasures . 327
5. Conclusions . 335

Acknowledgements . 338
References . 339

AUTHOR INDEX . 341
SUBJECT INDEX . 349
CONTENTS OF VOLUMES IN THIS SERIES 361

Contributors

Prof. Armin Biere received a diploma in computer science and the title Dr.rer.nat.
from the University of Karlsruhe, Germany, in 1993 and 1997, respectively. In
1997/1998 he worked as a PostDoc at CMU and then joined the EDA startup Verysys.
Since 2000 he is an assistant professor for computer science at ETH Zurich, Switzer-
land.

Prof. Larry Bernstein is currently the Industry Research Professor of Software En-
gineering at Stevens Institute of Technology in Hoboken, New Jersey. He is on the
board of Center for National Software Studies and he is director of the New Jersey
Center for Software Engineering. He had a 35-year distinguished career at Bell Lab-
oratories managing large software projects. He is a Fellow of both the Institute of
Electrical and Electronics Engineers and the Association for Computing Machinery.

Dr. Alessandro Cimatti is a Research Scientist at Institute for Scientific and Techno-
logical Research (IRST) in Trento, Italy, where he is the head of the Formal Methods
group. He has participated in and lead several industrial technology transfer projects
aiming at the application of formal methods to the development of industrial critical
systems. His main research interests include symbolic model checking, the NuSMV
OpenSource project, and the application of model checking to automated task plan-
ning, safety analysis, and to the verification of multi-agent systems and model-based
diagnosis systems.

Prof. Edmund M. Clarke received a B.A. degree in mathematics from the Uni-
versity of Virginia, Charlottesville, VA, in 1967, an M.A. degree in mathematics
from Duke University, Durham NC, in 1968, and a Ph.D. degree in Computer Sci-
ence from Cornell University, Ithaca NY, in 1976. Before joining CMU he was at
Duke University and Harvard University. In 1995 he became the first recipient of
the FORE Systems Professorship, an endowed chair in the School of Computer Sci-
ence. Dr. Clarke has served on the editorial boards of Distributed Computing and
Logic and Computation and is currently on the editorial board of IEEE Transac-
tions in Software Engineering. He is editor-in-chief of Formal Methods in Systems
Design. He is on the steering committees of two international conferences, Logic

ix

x CONTRIBUTORS

in Computer Science and Computer-Aided Verification. He was a cowinner along
with Randy Bryant, Allen Emerson, and Kenneth McMillan of the ACM Kanellakis
Award in 1999 for the development of Symbolic Model Checking. For this work he
also received a Technical Excellence Award from the Semiconductor Research Cor-
poration in 1995 and an Allen Newell Award for Excellence in Research from the
Carnegie Mellon Computer Science Department in 1999. Dr. Clarke is a Fellow of
the Association for Computing Machinery, a member of the IEEE Computer Society,
Sigma Xi, and Phi Beta Kappa.

Dr. Alastair Dunsmore received the B.Sc. and Ph.D. degrees in computer science
from the University of Strathclyde, Glasgow, Scotland. He is currently employed in
industry as a Java Developer. His research interests include software inspection, Java,
UML, and Object-Oriented systems.

Dr. Katrina D. Maxwell, a leading international expert in the area of software de-
velopment productivity, is currently a Partner at Datamax. She specializes in data
analysis, productivity benchmarking and software metrics research. Dr. Maxwell is
the author of “Applied Statistics for Software Managers” published by Prentice-Hall.
Her research has appeared in IEEE Transactions on Software Engineering, IEEE
Software and Management Science.

Prof. Atif M. Memon is an assistant professor in the Department of Computer Sci-
ence, University of Maryland. He received his BS, MS, and Ph.D. in Computer Sci-
ence in 1991, 1995, and 2001, respectively. He was awarded a Gold Medal in BS.
He was awarded a Fellowship from the Andrew Mellon Foundation for his Ph.D.
research. He is the inventor of the GUITAR system (guitar.cs.umd.edu) for GUI test-
ing. His research interests include program testing, software engineering, artificial
intelligence, plan generation, and code improving compilation techniques. He is a
member of the ACM and the IEEE Computer Society.

Prof. Steve Roach received his Ph.D. from the University of Wyoming in 1997.
Prior to that he developed process control, data acquisition, and process modeling
software for insitu chemical and environmental engineering firms. He has contributed
to NASA’s Amphion deductive synthesis system and developed application software
for the Cassini mission to Saturn. He is currently an Assistant Professor of Computer
Science at the University of Texas at El Paso where he is a member of the Software
Engineering Research Group.

Prof. Marc Roper obtained his BSc (Hons) degree in Computer Science from the
University of Reading in 1982. After a brief period working as a programmer for
Mars Group Services he moved to Sunderland Polytechnic as a research assistant in
1983 and was appointed lecturer in 1986. He was awarded his PhD in Computer Sci-

CONTRIBUTORS xi

ence from the CNAA in 1988. In 1989 he joined the Computer Science Department
at the University of Strathclyde in Glasgow Scotland as a lecturer and was appointed
senior lecturer in 1996. His research interests are in the development and rigorous
evaluation of technologies to support the construction, comprehension and validation
of reliable large-scale software systems.

Dr. Ofer Strichman received his B.Sc. and M.Sc. from the Technion, Israel, in Oper-
ations Research and Systems Analysis. He received his Ph.D from the Weizmann In-
stitute, where he worked, under Amir Pnueli, on translation validation for compilers,
Bounded Model Checking, and other topics in formal verification. His research in-
terests include formal equivalence checking, decision procedures in first order logic,
SAT procedures, and selected areas in operations research. He is currently a post-doc
at Carnegie Mellon University.

Prof. Rayford Vaughn is currently a professor of computer science at Mississippi
State University where he teaches and conducts research in the areas of Software
Engineering and Information Security. Prior to joining the University, he completed
a twenty-six year career in the Army where he commanded the Army’s largest soft-
ware development organization and created the Pentagon Single Agency Manager
organization to centrally manage all Pentagon IT support. While on active duty with
the Army, he served a three-year assignment with the National Security Agency’s
National Computer Security Center where he authored national level computer secu-
rity guidance and conducted computer security research. After retiring as a Colonel
in June 1995, he accepted a position as a Vice President of Integration Services, EDS
Government Systems where he was responsible for a wide variety of technical ser-
vice contracts and customer satisfaction. Dr. Vaughn has over 40 publications to his
credit and is an active contributor to software engineering and information security
conferences and journals. He holds a PhD in Computer Science from Kansas State
University.

Greg Wickstrom is a Principle Member of Technical Staff at Sandia National Labo-
ratories. He joined the labs in 1983 with an associate’s degree in Electronic Engineer-
ing Technology from Valparaiso Technical Institute. He continued his education to
receive a BSEET and then received a MSCS degree in 1995. Greg spent his first few
years at Sandia developing instrumentation for a laser physics lab. He then developed
a cryptographic authenticator for a military communications application. For the lat-
est half of Greg’s career he has been working a various aspects of security systems
for the nation’s weapons systems. His most recent assignment has been to improve
the development infrastructure of these systems with respect to assurance, cost, and
schedule. Most recently, Greg is determining where and how formal methods can be
incorporated into this new development infrastructure.

xii CONTRIBUTORS

Prof. Victor Winter received his Ph.D. from the University of New Mexico in
1994. His specific research interests include high-assurance software development,
program transformation, semantic models, language design, theory of computa-
tion, automated reasoning, reactive systems, and virtual reality environments. From
1995 to 2001, Dr. Winter worked at Sandia National Laboratories as a mem-
ber and later on the principal investigator of the High Integrity Software pro-
gram. He is currently an Assistant Professor of Computer Science at the Univer-
sity of Nebraskaat Omaha. More information about his research can be found at
http://www.ist.unomaha.edu/faculty/winter/index.htm.

Prof. Murray Wood received the BSc (Hons) and the PhD degrees in Computer
Science from the University of Strathclyde in 1983 and 1988, respectively. He was
appointed lecturer in Computer Science at the University of Strathclyde in 1987 and
senior lecturer in 2000. His main interests are in software architecture and design,
software inspection and empirical evaluation.

Dr. Yunshan Zhu did his undergraduate study at the University of Science and Tech-
nology of China. Yunshan received his Ph.D. in computer science from University
of North Carolina at Chapel Hill in May 1998. He was a visiting scientist/postdoc at
Carnegie Mellon University from 1997 to 1998. Yunshan is currently a member of
the advanced technology group in Synopsys.

http://www.ist.unomaha.edu/faculty/winter/index.htm

Preface

This volume ofAdvances in Computers is the 58th in this series. This series, which
has been continuously published since 1960, presents in each volume six or seven
chapters describing new developments in software, hardware, or uses of computers.
As machines continually get smaller, faster, and less expensive, they are becoming
increasingly important in many facets of our everyday lives—which leads us to the
theme of this volume “highly dependable software.” As computers take over the con-
trols of many devices our very lives may be at stake. It may be an inconvenience if
your VCR or digital watch fails, but the consequences can be much more severe if the
computer controlling the steering or brakes of your automobile fails. You want soft-
ware (and hardware) to do what it was intended to do. You want it to be dependable,
highly dependable in fact.

Dependability comes in various forms. You certainly want software to be reliable
and not fail. But you also want it to be useful—you want to understand the controls
and user interface. You want it to be secure from outside tampering and immune
from hackers. You want it to be maintainable to allow for requested changes. You
want it to be efficient. You want it to be available whenever it is needed. Because of
these many demands dependability becomes a hard characteristic to define and even
harder to achieve in practice. In this volume we present seven chapters that address
various aspects of how to make software more dependable.

In order to increase dependability of a system, we have to be able to measure it in
order to know when it is increasing or decreasing. Chapter 1, “Software Development
Productivity” by Katrina D. Maxwell, is all about measuring software development.
In this chapter the emphasis is on productivity measures, but the basic concept of
collecting data to measure relevant attributes is critical for any development envi-
ronment, and all too often, is ignored in most development environments. There is
a continuing need to make software engineering more of an engineering discipline
by including the measurement and data collection aspects of the other engineering
sciences.

Chapter 2, “Transformation-Oriented Programming: A Development Methodol-
ogy for High Assurance Software” by Victor L. Winter, Steve Roach and Greg Wick-
strom discusses one particular development method called Transformation-Oriented

xiii

xiv PREFACE

Programming (TOP) as a mechanism for using formal methods to help convert a for-
mal specification of a program into software. The authors built the High Assurance
Transformation System (HATS) as an implementation of the TOP method and show
how HATS can be used to develop a portion of a secure operating system.

Model checking is another formal model for verifying the correctness of a soft-
ware specification for software that enters one of many states. Many model checkers
use the binary decision diagrams (BDD) as the method for checking the specifi-
cation. The problem, however, is that the number of possible states to check over-
whelms the capacity of most computers. Various methods have been introduced to
limit the size of this state space explosion. In Chapter 3, Armin Biere, Alessandro
Cimatti, Edmund M. Clarke, Ofer Strichman and Yunshan Zhu present “Bounded
Model Checking,” where the authors present their Bounded Model Checking (BMC)
process for limiting this state explosion.

Today, most interaction with computers is via an interface consisting of a mouse
for input, and windows with pull down menus, scroll bars, radio buttons, and other
forms of interaction with the user. Testing a graphical user interface (GUI) is similar
to the model-checking problem of Chapter 3 in that the interface can enter one of
many states. Testing the interface, however, requires more of an interactive testing
process than in traditional model checking. In Chapter 4, “Advances in GUI Testing,”
Atif M. Memon discusses how graphical user interfaces can be effectively tested.

In today’s fast-paced computer world, 1976 is ancient history. However, in 1976
Michael Fagan of IBM developed a process called software inspections for discov-
ering flaws in software development. Although inspections have repeatedly been
shown to be effective, they are still not universally used. Why? Current research is
still looking at ways to make inspections more effective, and more importantly, more
relevant to companies so that they will be used. In Chapter 5, “Software Inspections”
by Marc Roper, Alastair Dunsmore, and Murray Wood, the authors explore the his-
tory of inspections and discuss some of the recent research in this area.

“Software Fault Tolerance Forestalls Crashes: To Err Is Human; To Forgive Is
Fault Tolerant” by Lawrence Bernstein in Chapter 6 addresses a different issue.
Whereas the first 5 chapters focus on removing errors prior to release of the soft-
ware, this chapter looks at the problem of users obtaining software with errors. How
can systems continue to operate in the face of errors and how can users measure
the impact that errors have on their use of the software? Can the software be toler-
ant of its own failures? How can systems be designed with appropriate redundancy
much like redundancy in hardware? And finally, how can software be designed that
minimizes the appearance of such problems? These are all issues discussed in this
chapter.

The last chapter by Rayford B. Vaughn is entitled “Advances in the Provisions of
System and Software Security—Thirty Years of Progress.” Security is certainly an

PREFACE xv

aspect of making a dependable system. In this chapter, Dr. Vaughn discusses the evo-
lution of the various security policies that ensure appropriate secure behavior. Most
computer professionals have heard of security terms such as the “Bell and LaPadula
security model” and the “Orange book.” This chapter discusses the evolution of these
and other security policies over the past thirty years.

I hope that you find these articles of interest. If you have any suggestions of topics
for future chapters, or if you wish to be considered as an author for a chapter, I can
be reached atmvz@cs.umd.edu.

Marvin Zelkowitz
College Park, MD, USA

mailto:mvz@cs.umd.edu

Software Development Productivity

KATRINA D. MAXWELL

Datamax
7 bis bld. Foch
77300 Fontainebleau
France
kmaxwell@datamax-france.com

Abstract
This chapter explains what software development productivity is and why it is
important. It discusses the various ways of measuring software size and project
effort using examples from past research. An overview of productivity factors
considered in prior research is also presented. A methodology for determining
influential productivity factors in software project data is briefly described. This
is followed by a case study that shows what one bank learned from the productiv-
ity analysis of their software project data. Finally, the author shares her practical
real-life experiences of benchmarking software development productivity.

1. Introduction . 2
2. What is Software Development Productivity? . 3

2.1. Software Size Measurement . 3
2.2. Effort Measurement . 8

3. What Factors Can Have an Impact on Productivity? 9
4. How to Identify Influential Factors . 15

4.1. Data Validation . 16
4.2. Variable and Model Selection . 17
4.3. Preliminary Analyses . 18
4.4. Building the Multi-Variable Model . 22
4.5. Checking the Model . 23

5. Case Study . 25
5.1. Data Validation . 31
5.2. Variable and Model Selection . 32
5.3. Analysis Results . 33
5.4. Interpreting the Equation . 37
5.5. Management Implications . 39

ADVANCES IN COMPUTERS, VOL. 58 1 Copyright © 2003 by Elsevier Science (USA)
ISSN: 0065-2458 All rights reserved.

2 K.D. MAXWELL

6. Benchmarking Software Development Productivity 40
6.1. Planning for Data Collection . 40
6.2. Benchmarking and Data Comparability . 41
6.3. Benchmarking and Project Comparability . 42
6.4. Benchmarking Data Availability . 42

7. Conclusions . 43
References . 44

1. Introduction

Software is everywhere. In the modern world, software is a fundamental element
of the infrastructure of industry, commerce and government. Companies whose pri-
mary business is to sell books, insurance or savings accounts, or to manufacture cars,
telephones or cameras have increasingly found that they are also in the business of
software development. Although software development lies on the critical path of
their activities—to many, software development remains mysterious and uncontrol-
lable. Companies that are used to applying quantitative techniques to other parts of
their business still hesitate to apply similar techniques to software development, in
spite of over 30 years of research in this subject.

Engineering techniques that use metrics, measurements and models to make quan-
titative assessments of the productivity and cost of software development were first
introduced in the late 1960s. Why aren’t they being used more? One explanation
is that senior managers may be more concerned about the strategic and operational
impact of the software than they are in its production. Even if the software is a suc-
cess from the development standpoint (i.e., on time and within budget), they will
still consider the project a failure if the implementation of the software does not have
the desired effect (e.g., were the company’s business processes improved?). Another
explanation is that today’s software managers never received any education in this
subject. Until recently, these techniques were not taught in most undergraduate de-
gree programs related to computer science [39]. As software-producing companies
rarely provide such training themselves, a software manager with no time to read
academic journals might not even be aware that such practices exist.

In this chapter, I will focus on developing your awareness of software develop-
ment productivity. Let’s start by answering a key question—Why is measuring soft-
ware development productivity important? There are several reasons you might like
to measure software productivity. First of all, if you can determine what factors have
an impact on productivity, this will give you some clues as to how to improve your
software development process. Perhaps you would like to know if your productiv-
ity is improving. If you don’t know your initial productivity level, you won’t be

SOFTWARE DEVELOPMENT PRODUCTIVITY 3

able to tell if you are getting any better. Development cost depends on productivity.
If you know what software development productivity to expect for certain types of
applications, then you can better estimate the cost of development—next time. Time-
to-market is also related to productivity. Finally, you can compare your productivity
rates externally. Are you doing better than your competitors? If you want to bench-
mark your productivity rates with other companies, then you have to use the same
variable definitions as they do. As we will see, definitions can vary enormously.

2. What is Software Development Productivity?

Productivity is typically defined as output divided by the effort required to pro-
duce that output. For example, the productivity of a car manufacturing line can be
described as the number of cars produced per 24 hours. The output is the quantity of
cars produced. It is much more difficult to measure software development productiv-
ity. Just what is the output we should measure? If a software developer works for one
day, just what has he or she achieved at the end of it? A better understanding of the
customer’s requirements, a better design, some coding or testing? Or perhaps the day
was spent documenting how the application works, learning a new tool, or training a
new colleague. If a team of software developers work together for months (or years)
to develop an application, how do we quantify what they have produced? Although
not perfect, we traditionally use the size of the software as the output measure for
software development productivity.

2.1 Software Size Measurement

How do you measure software size? Is it the number of bytes the software takes
up on the disk? The lines of code? The number of screens? The number of data
elements? A measure which takes into account what the software actually does? Just
what does software size mean? Researchers have been pondering this question for
years. The inability of the software engineering community to reach consensus on
the definition of software size is believed by some to be the single most significant
factor holding back the increasing use of complex metrics for estimation, control and
comparison [43]. Many software size metrics now exist, the most common of these
are lines-of-code and function points.

2.1.1 Lines-of-code

Lines-of-code means you count the lines of code in the application. Exact defini-
tions can vary. Let’s take a trip back in time to see how this definition has evolved.

4 K.D. MAXWELL

In 1976, J.D. Aron published “Estimating resources for large programming sys-
tems” [3]. This paper is based on IBM’s Federal Systems Division’s experiences
developing large software projects (from 1959). The output measure used is the
number of deliverable instructions. These include source statements and data de-
scriptions written by the programmer in a macro-assembly language. He also notes
that the method is not precise, and that the estimator should never allow himself to
treat answers as anything other than an approximate representation of system size.

In Walston and Felix’s classic 1977 study at IBM [51], their measure of output is
the number of lines of delivered source code. Source lines are defined as 80-character
source records provided as input to a language processor. They include job control
languages, data definitions, link edit language, and comment lines. They do not in-
clude reused code.

The lines-of-code definition used in Conte et al.’s 1986 book [17] is any line of pro-
gram text that is not a comment or blank line, regardless of the number of statements
or fragments of statements on the line. This includes all lines containing program
headers, declarations, and executable or non-executable statements. They note that
in 1986 this was the predominant definition used by researchers. They also note that
they do not advocate developing computer programs without comments, which are
a valuable aid during program development and maintenance.

So on one hand we have the problem that if we include comments in the defin-
ition of lines-of-code we encourage programmers to add unnecessary comments to
their programming in order to create the illusion of high productivity by increasing
their output. On the other hand, if we don’t include comments, we discourage pro-
grammers from spending their time making their program understandable to others,
because doing so takes time that could be spent coding. This is one of the reasons
that we do not measure the productivity of individuals, but of entire software devel-
opment projects.

Conte et al.’s book also discusses the question of whether or not reused code
should be included in the lines-of-code measure and if so, what adjustment should be
made, by referring to research available at the time. The major question being does
the size of the software simply equal the amount of new code plus the reused code?
Should the number of lines of reused code be adjusted down because simply copying
code is easy and requires little effort, or should it be left as is because it is some-
times necessary to adapt code to fit the existing system and this takes extra time?
The researchers agreed that, at most, it could be equally difficult to adapt used code
or to rewrite it completely; however, they disagreed about the amount of adjustment
needed for easier cases.1 Conte concluded that there was no consensus about how to
compute this “equivalent size.”

1If the reused code does not include comments, I would say that it could be even more difficult to adapt
it than to rewrite it completely.

SOFTWARE DEVELOPMENT PRODUCTIVITY 5

Ten years on, in a 1996 study of the European Space Agency (ESA) software
project database [33], source lines of code (SLOC) is defined as the amount of non-
blank, non-commented delivered lines of code. Adaptation adjustment factors are
used to adjust the size of reused code when available, otherwise only the size of new
code is included.

The growing need to be as precise as possible, especially about reuse issues,
has led to longer and more complicated lines-of-code definitions. In 2001, Boehm
et al. [12] used a Software Engineering Institute (SEI) definition checklist for logi-
cal source statements to define the COCOMO II line of code measure, which differs
somewhat from the SEI default definition. This checklist takes more than 4 pages of
the book. Briefly, SLOC is the amount of non-blank, non-commented logical source
statements. They include code produced by programming, conversion with auto-
mated translators, code copied or reused without change, and modified code. They
exclude code generated with source code generators, or removed code. The origin of
the code counted can be new code, previous versions or releases, reuse libraries, or
other software components or libraries. They don’t include code taken from another
product, commercial-off-the-shelf software (COTS), government furnished software
(GFS), vendor-supplied language support libraries, operating systems or utilities (un-
modified), local or modified language support libraries or operating systems in their
definition.

There has been much discussion concerning the validity of using lines-of-code
in the measurement of productivity. According to Jones [23] there are three serious
problems associated with lines-of-code:

1. The number of lines-of-code is dependent on the language used. Higher level
languages, such as Ada and C, appear less productive then low-level languages
such as Assembler, because fewer lines are required to generate the same func-
tionality.

2. There is no international standard for a line of code that encompasses all pro-
cedural languages.

3. Software can be produced by program generators, graphic icons, etc. which
makes the effort of producing lines of code irrelevant.

Other disadvantages with the lines-of-code measure include the fact that coding is
only a minor part of the effort required to produce software. In addition, the actual
lines of code that will be required cannot be estimated very accurately before starting
the project. Estimating software size early is important in order to estimate the cost
of software development [35,43]—one of the main reasons you may be interested
in knowing your software development productivity. This is because the forecasted
effort can be roughly estimated as the reciprocal of past productivity (also known as
the project delivery rate) multiplied by the estimated size.

6 K.D. MAXWELL

Although the lines-of-code metric is the subject of much debate, the fact re-
mains that it is considered by many organizations as a more practical productivity
metric than the currently available alternatives [11], particularly in the domain of
space, military and industrial applications. In a recent study of the European Space
Agency software project database, lines-of-code was the only size measure avail-
able [13].

2.1.2 Function Points

In 1979, Albrecht [2] developed a new measure of software size—function points.
While lines-of-code size software from the developer’s point of view, function points
are based on the functionality of the software as seen by the user [38]. Albrecht
calculated the total number of function points by weighting the sums of five different
factors: inputs, outputs, inquiries, logical files and interfaces.

• Inputs: e.g., transactions to create, modify or delete records in logical files.

• Outputs: e.g., reports.

• Inquiries: e.g., on-line inquires supported by the application.

• Logical files: logical files updated by the application.

• Interfaces: logical files accessed by the application but not updated by it.

One advantage of function points is that they can be estimated during the require-
ments phase. This also means that the downstream costs of changing requirements
can be quantified. In addition, using metrics such as the cost per function point in
contracts helps everyone involved (clients, accountants, project managers, contract
officers and attorneys) understand software economics better [24].

One of the main disadvantages of the initial function point method is that it was
created and used primarily in business systems environments. For other types of soft-
ware that have high algorithmic complexity but low numbers of inputs and outputs,
such as technical or scientific applications, the Albrecht function point method gives
misleading counts [23]. It is for this reason that some later function point meth-
ods, for example, Feature Points [23] and Experience [32], also include measures of
the number of algorithms in the application. In addition to different counting rules,
some of the function point counting methods, for example, IFPUG [38], adjust the
size for a number of external complexity factors, and some, for example, Experience,
do not.

Since Albrecht’s initial work, close to 40 different methods of measuring function-
ality have been developed—IFPUG, Mark II, 3D, Asset-R, Feature Points, Experi-
ence and Cosmic, just to name a few [1,32,38,41,43,47]. While each performs well
in the particular environment for which it is intended, the proliferation of different

SOFTWARE DEVELOPMENT PRODUCTIVITY 7

function point counting methods means that few companies count software size in
the same way. As software development productivity is a function of software size,
this makes comparisons of software productivity across organizations and countries
very difficult.

In 1993, work began to develop a technology independent international standard
for functional size measurement under the guidance of the International Organi-
zation for Standardization committee for software engineering standards (ISO/IEC
JTC1/SC7 Working Group 12) [43]. The first part of the standard “Definition of the
Concepts of Function Size Measurement” was published in June 1998. This part
identifies the common fundamental characteristics of functional size measurement
methods. It also defines a set of generic mandatory requirements for a method to be
called a Functional Size Measurement (FSM) method. The role of the standard is to
promote the consistent interpretation of FSM principles.

As of June 2002, agreement had not been reached regarding the four other parts
of the standard:

• Part II: Compliance Assessment of Software Size Measurement Methods
Will establish a framework to assess the extent of compliance of a particular

FSM method with Part I.

• Part III: Verification of an FSM Method
Will provide the process and the criteria against which specific claims (for

example, accuracy, reliability, . . .) of an FSM method can be verified.

• Part IV: FSM Reference Model
Will provide reference points against which users of the verification process

can assess the effectiveness of an FSM for different software types in various
software environments.

• Part V: Determination of Functional Domains for use with FSM
Will establish a standard for mapping functional user requirements to one

or more functional domains. Exactly what type of software belongs in a func-
tional domain, for example, MIS, real time or scientific software, will be clearly
defined.

That nearly 10 years on, agreement has not been reached on an international stan-
dard for functional size measurement is not surprising. Each different function point
method is supported by consultants, tools, companies and conferences with a vested
interest to not change their unique product or service. It is in their interest to make
sure that the method on which they have based their business will comply with future
standards. And there is no better way to do this then to participate in making those
standards, hence the difficulty in reaching consensus. Nonetheless, the eventual pub-
lication of an international standard for functional size measurement will not drasti-
cally reduce the number of different functional sizing methods. The main difference

8 K.D. MAXWELL

is that there will be a compliance assessment and verification of the strengths and
weaknesses of each method’s performance sizing different types of software. This
way, companies can select the method most suitable for their purposes.2 Thus, it is
highly improbable that there will ever be one single functional sizing method used
worldwide.

2.2 Effort Measurement

How should you measure effort? Should you measure it in hours or months?
Should you include management time, support staff time, or just developers time?
Should you include unpaid overtime? Should you include the effort the customer
spent working on the project? How many phases should you include in the definition
of effort—from requirements specification through installation, or feasibility study
through testing? Let’s take a look at how some large multi-company databases have
defined effort.

In the ESA database [33], effort is measured in person-months and is defined as
beginning at specification delivery and ending at customer acceptance. It covers all
directly charged labor on the project. As the data comes from companies in several
different countries, each having a different definition of a month of work, each com-
pany also provides data about the number of hours in their person-month. The effort
data is then adjusted to person-months of 144 hours based on this information so that
the effort data is comparable.

In COCOMO II [12] effort is expressed in person-months. This is the amount
of time one person spends actually working on the software development project
for one month. Each person-month is equivalent to 152 hours of working time. It
excludes holidays, vacations, and sick leave. It covers all directly charged project
effort. For example, it includes project managers and program librarians, but ex-
cludes computer center operators, secretaries, higher management, and other jobs
considered as overheads. For the waterfall process model, the effort is defined as
beginning at software requirements review and ending at software acceptance re-
view. For a second type of process model, project effort is defined as starting with
life cycle objectives and ending with initial operational capability. For both process
models, software development activities such as documentation, planning and con-
trol, and configuration management are included, while database administration is
not.

2I hope that this international standard will be made freely available so that the many small to medium
size software producers will read it. If it is too difficult or costly to find out what the standards are they
will never be used.

SOFTWARE DEVELOPMENT PRODUCTIVITY 9

In the Experience database [32], effort is measured in hours. It covers all directly
charged labor on the project, defined as the work carried out by the software supplier
from the beginning of the requirement specification phase to customer delivery.

In the International Software Benchmarking Standards Group (ISBSG) data-
base [20], effort is measured in hours. It includes all personnel effort needed to
complete a software development project including over-time, whether paid or un-
paid. It includes the effort of the client representatives as well as the effort of the
IT personnel. It excludes public holidays, annual leave, sick leave and non-project
related training. Project effort is collected from feasibility study through implemen-
tation/installation/user training.

Effort is notoriously difficult to measure accurately, even within a company. In
addition to making sure that everyone collects effort using the same definition, other
sources of error include late time sheets, missing cost codes, or misallocation of
time for various reasons. In a recent article [45], Martin Shepperd and Michelle
Cartwright recount the experience of assisting one organization with its effort es-
timating practices. When they cross-validated the total effort of one project using
three different sources in the company, they found that total effort differed in excess
of 30%.

With effort measurement as with size measurement, it is important that you decide
what you are going to do and then do it consistently.

3. What Factors Can Have an Impact on Productivity?

Productivity rates are highly variable across the software development indus-
try [4]. Business sector, requirements volatility, application language, hardware plat-
form, tool use, quality requirements and hundreds of other parameters can affect
productivity. An overview of some of the productivity factors considered by past re-
searchers can be found in Table I. Walston and Felix [51] found 29 factors that were
significantly correlated with productivity at IBM. Bailey and Basili [5] identified 21
productivity parameters in an analysis of data from the NASA/Goddard Space Flight
Center. At ITT, Vosburgh et al. [49] found 14 significant productivity factors, with
modern programming practice usage and development computer size playing impor-
tant roles. Boehm’s first COCOMO model [10] was based on 15 software factors.
However, such major factors as application type and programming language were
omitted in these models.

Several studies look at the relationship between productivity rates and the type
of software being developed [18,29,42]. Real-time software was found to have the
lowest productivity in a study by Stephenson [46]. Vosburgh et al. [49] identified 3
different programming environments with business applications having the highest

10
K

.D
.M

A
X

W
E

LL
TABLE I

OVERVIEW OF SOME PRODUCTIVITY FACTORS CONSIDERED IN RESEARCH FROM 1976–1996

Some major productivity factors ESA Aa B C D E F G H I J K L M N O P Q R
data

Country X X
Company X X
Category/type X X X X X
Industrial/business environment X X X
Language X X X X X X
Team size X X X X
Duration X X X X X
Project size X X X X X X X X
Required software reliability X X
Execution time constraint X X X X X
Main storage constraint X X X X X
Virtual machine volatility X X
Programming language experience X X X X X X
Modern programming practices X X X X X X X X X X X X X
Tool use X X X X X X X
Product complexity X X X X X X X X
Analyst capability X X X X
Applications experience X X X X X X X
Programmer capability X X X X X
Virtual machine experience X X X X X X
Amount of documentation X X X
Overall personnel experience X X X X X
Customer interface complexity X X X X X
Design volatility X X X X X X X
Hardware concurrent development X X X
Quality assurance X X X
Development environment (on-line) X X X X

aTable II describes the research referred to by each letter.

Reproduced from Maxwell, K., Van Wassenhove, L. and Dutta, S., Software development productivity of European space, military and industrial applications. IEEE
Transactions on Software Engineering. © 1996 IEEE. Used with permission.

SOFTWARE DEVELOPMENT PRODUCTIVITY 11

average productivity followed by normal-time and real-time applications. Maxwell
and Forselius [32] found that the type of business for which the software was devel-
oped explained most of the productivity variation in the Experience database. Higher
productivity was found in the manufacturing, wholesale and retail, and public ad-
ministration sectors, and lower productivity was found in the banking and insurance
sectors.

Aron [3] found that the productivity variation of a number of IBM projects involv-
ing systems programs and business applications was due to differences in system dif-
ficulty and project duration. He also adjusted his cost estimate for the use of higher-
level languages. Kitchenham [26] found that productivity varied with programming
language level and working environment. Productivity has also been found to vary
with tool use [32,33], user interface type [32], requirements volatility [32], program-
mer experience [10,23,29,48,49,51], hardware constraints [10,49], team size [14,17,
22,33], duration [3,9,33], project size [2,8,17,22,25,32,33,42,49] and modern pro-
gramming practices [6,10,15,23,33,49], among other factors. It should be noted that
many of these findings differ and are limited to programming environments similar
to those studied.

Several studies have also found differences in the factors that explain productivity
in a single company, and the factors that explain the productivity of multi-company
databases [13,21,35]. In one study productivity factors common to both the ESA
database and one company’s database were analyzed [35]. In the ESA database,
productivity depended on the application category, language, required software re-
liability, main storage constraint, and the use of modern programming practices or
software tools. Productivity in the company was a function of only two factors: the
application language and the start year. An overview of the major databases that
include productivity factors can be found in Table II.

As is evident in Table II, some of the databases studied measured software size
in lines-of-code and some used function points. Does measuring size, and hence
productivity, differently have an impact on the variables that are found to be im-
portant? Apparently not. In a little known comparative study of the ESA database
and the Laturi database (now called Experience), the authors found that although
the two databases studied used different measures of size, effort and productivity,
and contained very different types of projects, the similarity of the results was quite
striking [34]. In both databases, company differences explained the greatest amount
of productivity. In both databases, a 2-class model based on application category and
language was found to explain the greatest amount of productivity variation. And in
both databases, software development productivity had been significantly increasing
over time.

One of the difficulties in maintaining a software metrics database is that the factors
that are important can change over time. In Tables III and IV, you can see the evo-

12
K

.D
.M

A
X

W
E

LL

TABLE II
SOME REFERENCES FOR DATABASES WHICH INCLUDE PRODUCTIVITY FACTORS 1976–2002

Reference No. Environment Scope Size Database code
projects measure in Table I

Maxwell 2002 [37] 63 Bank One company F.P.
Lokan et al. 2001 [30] 208/60 Mixture/not identified Multi-company/one company F.P.
Lokan 2001 [31] 465 Mixture Multi-company F.P.
Boehm et al. 2000 [12] 161 Mixture Multi-company L.O.C.

(sometimes
converted
from F.P.)

Jeffery et al. 2000 [21] 145/19 Mixture/business Multi-company/one company F.P.
Maxwell and Forselius 2000 [32] 206 Business software Multi-company F.P.
Briand et al. 2000 [13] 160/29 Space-military-industrial/military Multi-company/one company L.O.C.
Maxwell et al. 1999 [35] 108/29 Space-military-industrial/military Multi-company/one company L.O.C.
Walkerden and Jeffrey 1999 [50] 19 Not identified One company F.P.
Maxwell et al. 1996 [33] 99 Space/military/industrial Multi-company L.O.C. ESA data
Kraut and Streeter 1995 [28] 65 Telecommunications One company L.O.C.
Nevalainen and Mäki 1994 [40] 120 Commercial Multi-company F.P. O
Putnam and Myers 1992 [42] 1486 Mixture (primarily Business systems) Multi-company L.O.C. P
Kitchenham 1992 [26] 108 Not identified (probably Commercial) One company F.P. M
Jones 1991 [23] 4000 Mixture (primarily Systems and MIS) Multi-company F.P.

(converted
from L.O.C.) L

(continued on next page)

S
O

F
T

W
A

R
E

D
E

V
E

LO
P

M
E

N
T

P
R

O
D

U
C

T
IV

IT
Y

13

TABLE II — Continued

Reference No. Environment Scope Size Database code
projects measure in Table I

Banker et al. 1991 [6] 65 Bank maintenance projects One company F.P. and L.O.C. D
Cusumano and Kemerer 1990 [18] 40 Mixture Multi-company L.O.C. K
Card et al. 1987 [16] 22 Space (NASA/Goddard) One company L.O.C. I
Conte et al. 1986 [17] 187 Mixture Multi-company L.O.C. J
Vosburgh et al. 1984 [49] 44 Mixture (from ITT) One company L.O.C. Q
Behrens 1983 [8] 24 Data processing One company F.P. E
Bailey and Basili 1981 [5] 18 Space (NASA/Goddard) One company L.O.C. C
Boehm 1981 [10] 63 Mixture Multi-company L.O.C. G
Brooks 1981 [15] 51 Mixture (from Walston–Felix) One company L.O.C. H
Lawrence 1981 [29] 278 Commercial Multi-company L.O.C. N
Belady and Lehman 1979 [9] 37 Not identified One company L.O.C. F
Albrecht 1979 [2] 22 IBM data processing One company F.P. B
Schneider 1978 [44] 400 Mixture (mainly military) Multi-company L.O.C.
Walston and Felix 1977 [51] 60 Mixture (from IBM) One company L.O.C. R
Aaron 1976 [3] 9 IBM large systems One company L.O.C. A

14 K.D. MAXWELL

TABLE III
EVOLUTION OF SOFT PRODUCTIVITY FACTORS IN COCOMO DATABASE

Soft productivity factors COCOMO 1981 COCOMO II
(15 factors) (22 factors)

Programmer capability X X
Analyst capability X X
Product complexity X X
Time constraint X X
Required software reliability X X
Multi-site development X
Documentation match to life cycle needs X
Personnel continuity X
Applications experience X X
Use of software tools X X
Platform volatility X
Storage constraint X X
Process maturity X
Language and tools experience X
Required development schedule X X
Database size X X
Platform experience X
Architecture and risk resolution X
Precedentedness X
Developed for reuse X
Team cohesion X
Development flexibility X
Modern programming practices X
Programming language experience X
Computer turnaround time X
Virtual machine experience X
Virtual machine volatility X

lution of the productivity factors collected, or no longer collected, in the COCOMO
and Experience databases. In addition, even if the same productivity factor is col-
lected, its definition can change over time. What was considered an average level
of tool use in 1986, might be considered a low level of tool use by 1996. “Modern
programming practices” is another variable which is hard to define consistently over
time. What was modern in the past is no longer modern today, and what is modern
today did not exist in the past. So just what does “modern” mean? Modern compared
to now, or modern compared to what was available at the time? (This variable has
been dropped from COCOMO II [12].) As practices change, new variables need to
be collected, definitions need to evolve, and past data needs to be adjusted in order
for data to remain comparable.

SOFTWARE DEVELOPMENT PRODUCTIVITY 15

TABLE IV
EVOLUTION OF SOFT PRODUCTIVITY FACTORS IN EXPERIENCE DATABASE

Soft productivity factors Experience v1.4 Experience v2.0
(15 factors) (21 factors)

Customer involvement X X
Performance and availability of the development environment X X
IT staff availability X X
Number of different stakeholders X
Pressure on schedule X
Impact of standards X X
Impact of methods X X
Impact of tools X X
Level of change management (Requirements volatility in v1.4) X X
Process maturity X
Functionality requirements X
Reliability requirements X
Usability requirements X
Efficiency requirements X X
Maintainability requirements X
Portability requirements X
Staff analysis skills X X
Staff application knowledge X X
Staff tool skills X X
Project manager’s experience X
Team skills X X
Software’s logical complexity X
Installation requirements X
Quality requirements X

4. How to Identify Influential Factors3

So finally, you have decided what data to collect and what definitions you are
going to use. You’ve made sure that everyone is measuring in the same way and you
are the proud owner of a software metrics database. Great, but do you know how
to make the most of this valuable asset? As we have seen in the previous section
categorical variables such as language, development platform, application type, and
tool use can be important factors in explaining the productivity of your company’s
software projects. However, analyzing a database containing many non-numerical
variables is not a straightforward task.

3This section was adapted from Chapter 1 in K.D. Maxwell, “Applied Statistics for Software Managers”
published by Prentice-Hall PTR in June 2002. It is provided here with permission of Prentice-Hall PTR.

16 K.D. MAXWELL

Data Analysis Methodology
Step 1: Validate your data
Step 2: Select the variables and model
Step 3: Perform preliminary analyses (using graphs, tables, correlation and stepwise

regression analyses)
Step 4: Build the multi-variable model (using analysis of variance)
Step 5: Check the model

FIG. 1. Data analysis steps.

Statistics, like software development, is as much an art as it is a science. Choos-
ing the appropriate statistical methods, selecting the variables to use, creating new
variables, removing outliers, picking the best model, detecting confounded variables,
choosing baseline categorical variables, and handling influential observations all re-
quire that you make many decisions during the data analysis process. Decisions for
which there are often no clear rules. What should you do? Read my book “Applied
Statistics for Software Managers” [37]. Using real software project data, this book
leads you through all the steps necessary to extract the most value from your data.
First, I describe in detail my methodology for analyzing software project data. You
do not need to understand statistics to follow the methodology. I simply explain what
to do, why I do it, how to do it, and what to watch out for at each step.

Common problems that occur when analyzing real data are thoroughly covered
in four case studies of gradually increasing complexity. Each case study is based
around a business issue of interest to software managers. You will learn how to de-
termine which variables explain differences in software development productivity.
You will look at factors that influence time to market. You will learn how to develop
and measure the accuracy of cost estimation models. You will study the cost drivers
of software maintenance, with an emphasis on presenting results. Finally, you will
learn what you need to know about descriptive statistics, statistical tests, correlation
analysis, regression analysis, and analysis of variance.

In this section, I briefly describe my data analysis methodology (Fig. 1) and the
reasons why I undertake each step.

4.1 Data Validation

The most important step is data validation. I spend much more time validating data
than I do analyzing it. Often, data is not neatly presented to you in one table, but is in
several files that need to be merged and which may include information you do not
need or understand. The data may also exist on different pieces of paper.

What do I mean by data validation? In general terms, I mean finding out if you
have the right data for your purpose. It is not enough to write a questionnaire and

SOFTWARE DEVELOPMENT PRODUCTIVITY 17

get people to fill it out; you need to have a vision. Like getting the requirement
specifications right before starting to develop the software. Specifically, you need to
determine if the values for each variable make sense.

If you haven’t collected the data yourself, start off by asking these questions:

• What is this data?

• When was the data collected?

• Why was the data collected?

• Who collected it?

• How did that person ensure that everyone understood the definitions?

• What is the definition of each variable?

• What are the units of measurement of each variable?

• What are the definitions of the values of each variable?

Other typical questions I ask when validating software project databases in-
clude [36]: What does a zero mean? Does it mean none, is it a missing value, or
is it a number which has been rounded to zero? And if a value is missing, does that
indicate no value or don’t know? The response “other” is also problematic, especially
when collecting data for benchmarking. “Other” can represent a variety of different
things (e.g., tools, languages, methods) for different organizations.

Why Do It?

You can waste months trying to make sense out of data that was collected without
a clear purpose, and without statistical analysis requirements in mind. It is much
better to get a precise idea of exactly what data you have and how much you trust
it before you start analyzing. Regardless of whether the data concerns chocolate bar
sales, financial indicators, or software projects, the old maxim “garbage in equals
garbage out” applies. If you find out that something is wrong with the raw data after
you have analyzed it, your conclusions are meaningless. In the best case, you may
just have to correct something and analyze it all again. However, if the problem lies
with the definition of a variable, it may be impossible to go back and collect the data
needed. If you are collecting the data yourself, make sure you ask the right questions
the first time. You may not have a second chance.

4.2 Variable and Model Selection

Once we understand what data we actually have, we need to determine what we
can learn from it. What possible relationships could we study? What possible rela-

18 K.D. MAXWELL

tionships should we study? What relationship will we study first? Your answers to
the last two questions will depend on the overall goals of the analysis.

Why Do It?

The data may have been collected for a clearly stated purpose. Even so, there might
be other interesting relationships to study that occur to you while you are analyzing
the data, and which you might be tempted to investigate. However, it is important to
decide in advance what you are going to do first and then to complete that task in a
meticulous, organized manner. Otherwise, you will find yourself going in lots of dif-
ferent directions, generating lots of computer output, and becoming confused about
what you have tried and what you have not tried; in short, you will drown yourself
in the data. It is also at this stage that you may decide to create new variables or to
reduce the number of variables in your analysis. Variables of questionable validity,
variables not meaningfully related to what you want to study, and categorical vari-
able values that do not have a sufficient number of observations should be dropped
from the analysis.

4.3 Preliminary Analyses

Before running “blind” statistical tests, I check that the assumptions underlying
them are true. In addition, I like to get some first impressions of the data. My ob-
jective is not a complete understanding of all possible relationships among all the
variables. For example, in Step 2, variable and model selection, I could decide that
my first goal is to determine which of the variables collected have an influence on
productivity. To achieve that goal, I undertake the following preliminary analysis
steps before building the multi-variable model (Step 4).

4.3.1 Graphs

Histograms

To start, I look at a graph of each numerical variable individually to see how many
small values, large values, and medium values there are, that is, the distribution of
each variable. These are also called histograms.

Why Do It?

I want to see if the variables are normally distributed. Many statistical techniques
assume that the underlying data is normally distributed, so you should check if it is.
A normal distribution is also known as a bell-shaped curve. In a bell-shaped curve,

SOFTWARE DEVELOPMENT PRODUCTIVITY 19

FIG. 2. Example of a normal distribution—hypothetical data.

most values fall in the middle, with few very high and very low values. The his-
togram of an approximately normally distributed variable will look like Fig. 2. This
shows the distribution of the sizes of a hypothetical group of software development
projects. From this histogram, we can see that most projects in the group are around
2000 function points, and only a small number are less than 800 or more than 3200
function points. (n.b. the y-axis label “Fraction” refers to the percentage of projects
that fall into one of the intervals. For example, 0.4 = 40% of projects.)

If the histograms show that some variables are not normally distributed (which is
often the case with the size, effort, duration and productivity found in real software
project databases), it is common to transform these variables by taking their natural
log. Fig. 3 shows the size distribution of one bank’s software project database. In this
real-world example, size is not normally distributed. Almost 80% of projects are less
than 800 function points. However, ln(size) looks more normally distributed (Fig. 4).
Thus the bank should use ln(size) in their models, not size.

4.3.2 Two-Dimensional Graphs

I also make graphs of the dependent variable against each independent numerical
variable. The dependent variable is the variable you want to model—for example,
productivity. The independent variables are the variables you think could explain the
differences in the productivity of your projects—for example, size.

20 K.D. MAXWELL

FIG. 3. Histogram showing distribution of software size (size)—real data.

FIG. 4. Histogram showing distribution of ln(size)—real data.

Why Do It?

A picture is worth a thousand words. I highly recommend visualizing any relation-
ship that might exist between the dependent and independent variables before run-
ning “blind” statistical tests. It is important to see if the relationship is linear as our

SOFTWARE DEVELOPMENT PRODUCTIVITY 21

FIG. 5. Example of a two-dimensional graph—productivity vs. software size (both variables have
undergone a log transformation).

statistical tests are based on linear relationships and will “ignore” non-linear relation-
ships. A relationship is linear if you can fit one straight line through the data points,
and this represents them well. Fig. 5 shows an example of a two-dimensional graph
using two variables from one bank’s software project database. Here productivity is
a function of size. Both variables have undergone a natural log transformation.

4.3.3 Tables

I print out the average value of the dependent variable and the number of obser-
vations it is based on for each value of each categorical variable. In Example 1, we
can see the mean (or average) value of productivity (prod) for each value of the
categorical variable user interface.

-----------------+-----------------------
User Interface | N (prod) mean (prod)

-----------------+-----------------------
GUI | 4 0.2016

TextUI | 58 0.0943
-----------------+-----------------------

EXAMPLE 1. Mean productivity by user interface type.

22 K.D. MAXWELL

The 4 graphical user interface (GUI) applications seem a lot more productive than
the 58 text user interface (TextUI) applications.

Why Do It?

We make tables to see if there is a big difference in the productivity needed by
category and to start formulating possible reasons for this.

4.3.4 Correlation Analysis

Another assumption of the statistical procedure I use to build a multi-variable
model is that independent variables are independent; that is, they are not related to
each other. There is a very quick way to check if the numerical variables are inde-
pendent: correlation analysis. I use Spearman’s rank correlation coefficient because
it tests the relationships of orders rather than actual values. This is important as some
of our variables may be measured using subjective scales (e.g., t01–t15 in Table V).
Another important feature of Spearman’s rank correlation coefficient is that it is less
sensitive to extreme values than the standard Pearson correlation coefficient.

4.3.5 Stepwise Regression Analysis

Performing multiple regression analyses allows us to determine the relative impor-
tance of each independent, numerical variable’s relationship to the dependent vari-
able.

Why Do It?

Because stepwise regression analysis is automatic and very simple to run, I always
like to see how good a model can be built by just using the non-categorical data.
In addition to learning if the non-categorical variables collected are very important
indicators of productivity, this also gives me a quick idea of what performance the
categorical data is going to have to beat.

4.4 Building the Multi-Variable Model

I call the technique I’ve developed to build the multi-variable model “stepwise
ANOVA” (analysis of variance). It is very similar to forward stepwise regression
except I use an analysis of variance procedure to build models with categorical vari-
ables. This procedure allows us to determine the influence of numerical and cate-
gorical variables on the dependent variable. The model starts “empty” and then the
variables most related to productivity are added one by one in order of importance

SOFTWARE DEVELOPMENT PRODUCTIVITY 23

until no other variable can be added to improve the model. The procedure is very
labor-intensive because I make the decisions at each step myself; it is not automat-
ically done by the computer. Although I am sure this could be automated, there are
some advantages to doing it yourself. As you carry out the steps, you will develop
a better understanding of the data. In addition, in the real world, a database often
contains many missing values and it is not always clear which variable should be
added at each step. Sometimes you need to follow more than one path to find the
best model.

4.5 Checking the Model

Before we can accept the final model found in the previous step, we must check
that the assumptions underlying the statistical tests used have not been violated. In
particular, this means checking that:

• Independent numerical variables are approximately normally distributed.

• Independent variables are not strongly related to each other.

• The errors in our model should be random and normally distributed.

In addition, we also need to check that no single project or small number of
projects has an overly strong influence on the results.

4.5.1 Numerical Variable Checks

When I have my final model, I need to check that all the independent numerical
variables present in the final model are not strongly linearly related to each other. In
other words, I need to check for multicollinearity problems. Why would this cause a
problem? If two or more explanatory variables are very highly correlated, it is some-
times not possible for the statistical analysis software to separate their independent
effects and you will end up with some strange results. Exactly when this will happen
is not predictable. So, it is up to you to check the correlations between all numerical
variables. To avoid multicollinearity problems, I do not allow any two variables with
an absolute value of Spearman’s rho greater than or equal to 0.75 in the final model
together.

You should also be aware that there is always the possibility that a variable outside
the analysis is really influencing the results. Always ask yourself if your results make
sense and if there could be any other explanation for them. Unfortunately, we are less
likely to ask questions and more likely to believe a result when it proves our point.

24 K.D. MAXWELL

4.5.2 Categorical Variable Checks
Strongly related categorical variables can cause problems similar to those caused

by numerical variables. Unfortunately, strong relationships involving categorical
variables are much more difficult to detect. How do we check that categorical vari-
ables are not related to each other or to the numerical variables in the model?

To determine if there is a relationship between a categorical variable and a numer-
ical variable, I use an analysis of variance procedure. It is more difficult to determine
if there is an important relationship between two categorical variables. To check this,
I first calculate the chi-squared statistic to test for independence. From this I learn if
there is a significant relationship between two categorical variables, but not the ex-
tent of the relationship. If there is a significant relationship, I need to look closely at
the two variables and judge for myself if they are so strongly related that there could
be a problem.

If I find any problems in the final model, I return to the step where I added the
correlated/confounded variable to the variables already present in the model, take
the second best choice, and rebuild the model from there. I do not carry out any
further checks. The model is not valid, so there is no point. We have to start again.

4.5.3 Testing the Residuals
In a well-fitted model, there should be no pattern to the errors (residuals) plot-

ted against the fitted values (Fig. 6). The term “fitted value” refers to the productivity

FIGURE 6. Example of plotting residuals.

SOFTWARE DEVELOPMENT PRODUCTIVITY 25

predicted by our model; the term “residual” is used to express the difference between
the actual productivity and the predicted productivity for each project. Your statis-
tical analysis tool should calculate the predicted values and residuals automatically
for you. The errors of our model should be random. For example, we should not be
consistently overestimating small productivities and underestimating large produc-
tivities. It is always a good idea to plot this relationship and take a look. If you see a
pattern, it means that there is a problem with your model. If there is a problem with
the final model, then try the second best model. If there is a problem with the second
best model, then try the third best model, and so on.

You should also make a histogram of the residuals to check that they are approxi-
mately normally distributed.

4.5.4 Detecting Influential Observations
How much is our final model affected by any one project or subset of our data? If

we dropped one project from our database, would our model be completely differ-
ent? I certainly hope not. But we can do better than hope; we can check the model’s
sensitivity to individual observations. Projects with large predicted errors (residuals)
and/or projects very different from other project’s values for at least one of the in-
dependent variables in the model can exert undue influence on the model (leverage).
I check this with a statistic called Cook’s distance.

5. Case Study4

In this case study, I will show you what can be learned from the productivity
analysis of one bank’s software metrics database. The initial database contained 29
variables for 63 completed software development applications. As the project data
had already been entered into a software management data collection tool, which
included definitions of all the variables, I did not have to spend too much time try-
ing to understand the data and correcting mistakes. The bank collected this data to
help manage project portfolios. The project’s manager provided data at the end of
each project. One person entered all project data into the database and validated
it. In addition to the data file, I received a copy of the Experience software tool
(http://www.sttf.fi), a database parameter file, and a productivity factor definition
file. The database parameter file defined each categorical variable value’s code. For
example, app = 406 corresponded to a transaction processing application. Nonethe-
less, an initial face-to-face meeting with the data provider was necessary to fully
understand everything I was given. I then consolidated all the information I needed
to understand the data into a variable definition table (Table V).

4This section was adapted from Chapter 2 in K.D. Maxwell, “Applied Statistics for Software Managers”
published by Prentice-Hall PTR in June 2002. It is provided here with permission of Prentice-Hall PTR.

http://www.sttf.fi

26 K.D. MAXWELL

TABLE V
VARIABLE DEFINITIONS

Variable Full name Definition

id identification
number

Each completed project has a unique identification number. (Orig-
inally, each project was given a name instead of a number, but I
replaced these names for data confidentiality reasons.)

size application size Function points measured using the Experience method.

effort effort Work carried out by the software supplier from specification until
delivery, measured in hours.

duration duration Duration of project from specification until delivery, measured in
months.

start exact start date Day/month/year application specification started.

app application type 401=Customer service (CustServ)
402=Management information system (MIS)
406=Transaction processing (TransPro)
407=Production control, logistics, order processing (ProdCont)
408= Information/on-line service (InfServ)

har hardware 1001=Networked (Network)
platform 1002=Mainframe (Mainfrm)

1003=Personal computer (PC)
1004=Mini computer (Mini)
1005=Multi-platform (Multi)

dba DBMS 1602=Relational (Relatnl)
architecture 1604=Other (Other)

1605=Sequential (Sequentl)

ifc user interface 2001=Graphical user interface (GUI)
2002=Text user interface (TextUI)

source where developed 7001= In-house (Inhouse)
7004=Outsourced (Outsrced)

lan1 language used Up to four languages were used per application. They could be used
in any order; thus, lan1 is not necessarily the most important lan-
guage. Too many codes to list here; however, codes of special in-
terest include:

lan2
lan3
lan4

2617=COBOL
2660=Telon

(continued on next page)

SOFTWARE DEVELOPMENT PRODUCTIVITY 27

TABLE V — Continued

Variable Full name Definition

t01 customer How actively customer took part in development work:
participation 1=Very low; none

2=Low; passive; client defined or approved < 30% of all functions
3=Nominal; client defined and approved 30–70% of all functions
4=High; active; client defined and approved all of most important
functions, and over 70% of others
5=Very high; client participated very actively, thus most functions
were slightly volatile and changes had to be made

t02 development Performance level of tool resources and equipment during project:
environment
adequacy

1=Very low; continuous shortcomings in devices, building of test
environments and testing required special arrangements
2=Low; shared equipment/machine resources; delays in some
work stages (e.g., compiling and testing)
3=Nominal; enough during development work; a workstation for
everybody
4=High; enough to deal with capacity peaks (efficiency, storage,
response time)
5=Very high; dedicated, over-dimensioned development environ-
ments, in practice only for this project

t03 staff availability Availability of software personnel during project:
1=Very low; big problems with key personnel availability; lots
of simultaneous customer and maintenance responsibilities; special
know-how required
2=Low; personnel involved in some other simultaneous projects
and/or maintenance responsibilities
3=Nominal; key members involved in only one other project
4=High; project members involved almost full-time
5=Very high; qualified personnel available when needed; full-time
participation

t04 standards use Level and use of standards:
1=Very low; standards developed during project
2=Low; some standards, but not familiar ones; more must be de-
veloped for some tasks
3=Nominal; generally known standards applied in environment
before; some tailoring needed
4=High; detailed standards applied in same environment for some
time
5=Very high; stable and detailed standards; already familiar to
team; use controlled

(continued on next page)

28 K.D. MAXWELL

TABLE V — Continued

Variable Full name Definition

t05 methods use Level and use of methods:
1=Very low; no modern design methods; mostly meetings; used
by individuals
2=Low; use beginning; traditional concepts employed (structural
analysis and design, top–down design, etc.)
3=Nominal; generally known methods used
4=High; methods integrated in detail and most activities covered;
support existed; used by everyone
5=Very high; methods used during entire life cycle; methods tai-
lored for specific needs of project; methods supported for individ-
ual projects

t06 tools use Level and use of tools:
1=Very low; minimal tools: editors, compilers, and testing tools
2=Low; basic tools: interpreters, editors, compilers, debuggers,
databases, and libraries
3=Nominal; development environment, database management
system (DBMS), and support for most phases
4=High; modern tools like CASE, project planners, application
generators, and standardized interfaces between phases
5=Very high; integrated CASE environment over entire life cycle;
all tools support each other

t07 software’s Computing, I/O needs, and user interface requirements:
logical
complexity

1=Very low; only routines; no need for user interface; simple
databases
2=Low; functionally clear; no algorithmic tasks; database solution
clear
3=Nominal; functionally typical; normal, standard database; no
algorithms
4=High; processing more demanding; database large and com-
plex; new requirements for user interfaces
5=Very high; functionally and technically difficult solution; user
interface very complex; distributed databases

t08 requirements Volatility of customer/user requirements during project:
volatility 1=Very low; no new features; standard components; conversions

only
2=Low; some changes to specifications; some new or adapted
functions; some minor changes in data contents
3=Nominal; more changes to specifications, but project mem-
bers could handle them; impact minor (< 15% new or modified
functions)
4=High; some major changes affecting total architecture and re-
quiring rework; 15–30% of functions new or modified
5=Very high; new requirements added continuously; lots of re-
work; more than 30% new or modified functions compared to orig-
inal requirements

(continued on next page)

SOFTWARE DEVELOPMENT PRODUCTIVITY 29

TABLE V — Continued

Variable Full name Definition

t09 quality Quality goals of software:
requirements 1=Very low; no quality requirements; “quick-and-dirty” allowed

2=Low; basic requirements satisfied (documentation, implemen-
tation testing, system testing, and module testing); no statistical
controls or reviews
3=Nominal; proper documentation of critical features; design- and
implementation-tested; modules/job flows tested; walk-throughs;
maintenance work planned
4=High; formal reviews and inspections between all phases; at-
tention to documentation, usability, and maintenance
5=Very high; quantified quality requirements; 100% satisfaction
of technical and functional goals; maintenance work minimal

t10 efficiency Efficiency goals of software:
requirements 1=Very low; no efficiency requirements needing attention or

planning
2=Low; efficiency goals easy to reach; requirements below
average
3=Nominal; capacity level of software stable and predictable; re-
sponse time, transaction load, and turnaround time typical
4=High; specific peaks in capacity, response time, transaction
processing, and turnaround time reached by specific design and im-
plementation techniques
5=Very high; efficiency essential; strict efficiency goals needing
continuous attention and specific skills

t11 installation Training needs for users and variants of platform:
requirements 1=Very low; no training needs; < 10 users

2=Low; some training; about 10 users; creation of basic data only
minor
3=Nominal; typical training; 10–50 users; some conversions of
old data
4=High; large-scale training for several organizations; < 1000
users; extra software for conversions; possible parallel runs; sev-
eral platforms
5=Very high; > 1000 users; long expected lifetime; several user
organizations; several different platforms

t12 staff analysis Analysis skills of project staff at kick-off:
skills 1=Very low; no experience in requirements analysis or similar

projects
2=Low; < 30% of project staff with analysis and design experi-
ence in similar projects
3=Nominal; 30–70% of project staff with analysis experience; one
experienced member
4=High; most members of staff with experience in specifications
and analysis; analysis professional in charge

(continued on next page)

30 K.D. MAXWELL

TABLE V — Continued

Variable Full name Definition

5=Very high; project staff composed of first-class profession-
als; members have strong vision and experience with requirements
analysis

t13 staff application
knowledge

Knowledge of application domain in project team (supplier and
customer):
1=Very low; team application experience < 6 months on average
2=Low; application experience low; some members have experi-
ence; 6–12 months on average
3=Nominal; application experience good; 1–3 years on average
4=High; application experience good both at supplier and cus-
tomer sites; 3–6 years on average; business dynamics known
5=Very high; both supplier and customer know application area
well, including the business; > 6 years’ average experience

t14 staff tool skills Experience level of project team (supplier and customer) with de-
velopment and documentation tools at project kick-off:
1=Very low; team has no experience in necessary tools; team’s
average experience < 6 months
2=Low; tools experience less than average; some members have
experience with some tools; 6–12 months on average
3=Nominal; tools experience good in about half the team; some
members know development and documentation tools well; 1–3
years on average
4=High; most team members know tools well; some members can
help others; 3–6 years on average
5=Very high; team knows all tools well; support available for spe-
cific needs of project; > 6 years’ average experience

t15 staff team skills Ability of project team to work effectively according to best project
practices:
1=Very low; scattered team; minimal project and management
skills
2=Low; some members with previous experience on similar
projects; not united as a group
3=Nominal; most members with experience on similar projects;
commitment on project goals good; no motivation to utilize real
team spirit
4=High; group very active and knows how to exploit team
effectiveness
5=Very high; very anticipatory team; team can solve in an innov-
ative way most personal and team problems; superior spirit

Reproduced from Maxwell, K.D. “Applied Statistics for Software Managers.” Prentice-Hall PTR, Upper Saddle River.
© 2002 Pearson Education. Used with permission.

SOFTWARE DEVELOPMENT PRODUCTIVITY 31

The size of projects in this database range from 48 function points to 3634 function
points; the average project size is 671 function points. Effort ranges from 583 to
63,694 hours, with an average of 8110 hours. Project duration ranges from 4 months
to 54 months; the average project duration is 17 months.

Whatever we are going to find out from our data analysis, it is important to re-
member that it is only true for similar projects, that is, projects with sizes, efforts,
and durations within the domain of this database. My conclusions will not apply to
projects in this bank that are smaller than 48 function points, or that used less than
583 hours of effort, or that were less than four months in duration. They will also not
apply to projects bigger than 3634 function points, or projects that used more than
63,694 hours of effort, or projects longer than 54 months in duration.

5.1 Data Validation

While validating the data I noticed that some variables had missing values. The
DBMS architecture (dba) was missing for two projects. In addition, two projects
did not have valid language data. On closer inspection of the data, I found out that
Project 12, which does not have a value for lan1, does have one for lan2. Project 24
has no language at all. I contacted the data provider for more information. First of
all, I learned that the two projects with a missing dba value were “client application”
development projects and did not have a database. Thus, they did not have any DBMS
architecture. So in this case, missing data means “none.” I was told that the project
with no language at all actually used a development tool called Clipper. It had not
been entered in the database because it was not one of the choices in the list. I created
a new code, 2670, for Clipper. Finally, I learned that for the project with a lan2
and no lan1, there was only one language used, the language listed in lan2. Until
this conversation, I had assumed that lan1 was the most important language, lan2
the second most important language, etc.; however, I learned that this was not the
case. The languages were input in any order, not in order of importance. There was
no information about the percentage use of each language. This was bad news for
me; from previous research, I knew that language was important and it would have
been interesting to look at the effect of language on productivity in the bank. I was
planning to use lan1 as the principal language to do this.

I also noticed one outlier because of its very high productivity, approximately 0.53
function points/hour. It was over twice as productive as the next highest rated project
in the database. When I contacted the data provider to find out more, I learned that
this project was an exceptional project. It was the only Macintosh project the bank
ever had. More importantly, it was outsourced at a fixed price. So it was the only
project in the database where the actual effort was not really known. The effort input
in the database was derived from the outsourcing price. As this price was fixed, and it

32 K.D. MAXWELL

was impossible to know if the developing company made or lost a lot of money on it,
the derived effort value was not comparable with the other projects’ efforts. As this
project was neither a typical project for this bank, nor was its productivity reliable,
I dropped it from the analysis.

5.2 Variable and Model Selection

Because I couldn’t make use of the language variable in the traditional way,
I needed to find a way to transform the language information I did have into some-
thing useful. First, I decided to try grouping projects that used the same combinations
of languages together. I found 32 different language combinations for 63 projects.
This meant that, on average, there were two projects per language combination—
not enough to make any meaningful conclusions. In addition, most language com-
binations containing enough observations to analyze used COBOL, so perhaps they
weren’t really that different. I then decided it might be interesting to see if pro-
ductivity was different for projects that used one language, two languages, three
languages, or four languages, so I created the variable nlan—number of languages
used. I thought that perhaps it might be less productive to use many languages in a
project. In addition, as some research has suggested that using Telon can improve
productivity, I decided to create a new categorical variable, telonuse, which was 1 if
Telon was one of the languages used and 0 if it was not.

I also created the following new variables:

• syear—As it could be interesting to see if productivity had increased or de-
creased over time, I decided to create one new variable by extracting the year
from the exact start date of the project. I used this variable for making graphs
and tables.

• time—This is the variable I used in the regression and ANOVA models to rep-
resent time. I calculated it from the start year:

time = syear − 1985 + 1,

thus time is 1 in 1985, 2 in 1986, etc. (n.b. 1985 was the minimum value of
syear). Why do I do this? Why not just put syear in the models? First of all, it is
common practice in time series analysis to do this. It is not the actual year that
matters, just the fact that a year is one year more than the previous year (or one
year less than the following year). In addition, should I have to transform syear
by taking its natural log, ln, I will find that the natural logs of large numbers like
1985, 1986, etc. are not very different (ln(1985) = 7.5934; ln(1990) = 7.5959,
ln(1993) = 7.5973). It will look like time does not vary very much. This will
have a bizarre influence on the results. The logs of smaller numbers are more

SOFTWARE DEVELOPMENT PRODUCTIVITY 33

differentiated. In addition, if time has an exponential effect on productivity and
I try to calculate esyear, I will get a number so big that it will overload the
computer.

• prod—If I want to study productivity, I must have a variable that measures pro-
ductivity.

prod = size/effort.

Model Selection

My goal in this study is to determine which variables explain the productivity
differences among software development projects in this bank. Once I understood the
variable definitions and decided which variables to use, this is the model I selected.

prod = f (size, effort, duration, app, har, ifc, source, t01–t15, nlan,

telonuse, time).

What is the relationship between productivity and the size of the application, the
amount of effort spent, the duration of the project, the type of application, the type
of hardware, the user interface, whether or not the development was outsourced, the
15 different productivity factors, the number of languages used, Telon use and time?

5.3 Analysis Results

I’ve highlighted some of the most interesting productivity analysis findings in this
section. From the histogram step in the preliminary analysis, I learned that the pro-
ductivity factors, t01–t15, were approximately normally distributed in the sample.
I’ve printed out two histograms so you can see how I interpret them (Figs. 7 and 8).

The definitions of these factors were chosen especially so that most projects from
a diverse group of companies and industries would be average and the distributions
would be normal. This is the case in the larger multi-company database from which
this subset was taken. However, in this bank, I noted some differences.

• Most applications had high customer participation (t01) (see Fig. 7).

• No application had big problems with key personnel availability (t03) (see
Fig. 8).

• No project needed standards development (t04).

• No application used an integrated CASE environment (t06).

• The logical complexity of the software was on the high side (t07).

34 K.D. MAXWELL

FIGURE 7. Distribution of t01 (customer participation).

FIGURE 8. Distribution of t03 (staff availability).

• Requirements volatility was quite high. Half the applications had high or very
high requirements volatility. No application had very low requirements volatil-
ity (t08).

• No application had zero quality requirements—“quick-and-dirty” would never
be allowed in a bank. About 75% of the applications had high to very high
quality requirements (t09).

SOFTWARE DEVELOPMENT PRODUCTIVITY 35

TABLE VI
SUMMARY OF CORRELATION COEFFICIENTS

Variables Num obs Correlation

t06 and time 62 0.54
t07 and effort 62 0.59
t07 and size 62 0.57
t11 and nlan 62 0.58
t12 and t15 62 0.53
t09 and t10 62 0.60
size and duration 62 0.54
effort and size 62 0.75
effort and duration 62 0.75

Reproduced from Maxwell, K.D. “Applied Statistics for Software Managers”. Prentice-Hall PTR, Upper Saddle River.
© 2002 Pearson Education. Used with permission.

• Some level of attention and planning was needed for the efficiency requirements
of all applications. Efficiency requirements were also on the high side (t10).

• All applications required some kind of user training (t11).

• For most projects, the analysis skills of the project staff at the time of kick-off
were high. Most people had experience with specification and analysis, and the
project manager was a professional analyst (t12).

• Tools experience was on the high side (t14).

During the correlation analysis step of the preliminary analysis, I searched the
correlation output for any significant correlation coefficients greater than |0.5|. The
summary is presented in Table VI. Note that these results are based on 62 projects,
not 63, because one outlier was detected and removed during the data validation step.
From this summary we learn that tools use (t06) increased over time. Projects with
higher logical complexity (t07) often required more effort and were bigger in size.
The more development languages used in a project (nlan), the higher its installation
requirements (t11). Staff analysis skills (t12) and staff team skills (t15) are positively
correlated; project staff with good analysis skills generally have good team skills,
too. Quality (t09) and efficiency requirements (t10) are also positively correlated;
projects with high quality requirements often have high efficiency requirements too.
Size, effort, and duration are all positively correlated with each other; bigger projects
usually take longer and require more effort. The correlations between effort and size,
and effort and duration are so strong that these pairs of variables should not be in the
final model together (risk of multicollinearity).

I also thought it would be interesting to see how time was related to the different
factors. Table VII summarizes all significant correlations involving time. I discussed

36 K.D. MAXWELL

TABLE VII
VARIABLES CORRELATED WITH time

Variable Num obs Correlation

t05 62 0.30
t06 62 0.54
t08 62 −0.43
t14 62 0.28
t15 62 0.27
duration 62 −0.35
nlan 62 0.32

Reproduced from Maxwell, K.D. “Applied Statistics for Software Managers”. Prentice-Hall PTR, Upper Saddle River.
© 2002 Pearson Education. Used with permission.

the correlation analysis results with the data provider to see if they made sense in
the context of his company. He agreed with the results and was able to provide some
explanations.

The increased level and use of methods (t05) over time indicate some process
improvement in the company. The level and use of tools (t06) also increased over
time. Requirements volatility (t08) decreased over time as well. This could be be-
cause the company learned better requirements management. Staff tool skills (t14)
and team skills (t15) increased over time. This is because staff turnover was low, an-
other factor that increased organizational learning. Project duration decreased over
time. This could be the result of process improvement in the company. The number
of languages (nlan) increased over time. This was due to the development of more
three-tier architecture projects at the end of the time period.

I ended up with the following final productivity model that passed all the model
checks. Note that productivity, duration and size required log transformations (lprod,
ldur and lsize).

Final Model

. fit lprod ldur lsize t09 t14 t10
Source | SS df MS Number of obs = 62

---------+------------------------- F(5, 56) = 17.80
Model | 13.6939918 5 2.73879836 Prob > F = 0.0000

Residual | 8.61777376 56 .153888817 R-squared = 0.6138
---------+------------------------- Adj R-squared = 0.5793

Total | 22.3117655 61 .365766648 Root MSE = .39229
--

SOFTWARE DEVELOPMENT PRODUCTIVITY 37

lprod | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--
ldur | -.7223637 .1020141 -7.081 0.000 -.9267224 -.518005

lsize | .4475299 .0633893 7.060 0.000 .3205459 .574514
t09 | -.190931 .0855067 -2.233 0.030 -.3622215 -.0196405
t14 | .144847 .0518125 2.796 0.007 .0410541 .2486399
t10 | -.1437862 .0711115 -2.022 0.048 -.2862396 -.0013328

_cons | -2.406596 .478281 -5.032 0.000 -3.364708 -1.448484
--

The equation as read from the final model’s output is:

ln(prod) = −2.406596 − 0.7223637 × ln(duration) + 0.4475299 × ln(size)

− 0.190931 × t09 + 0.144847 × t14 − 0.1437862 × t10.

How did I read the equation off the output? The equation is a linear equation
of the form y = a0 + a1x1 + a2x2 + a3x3 + a4x4 + a5x5.y is ln(prod), x1 is
ln(duration), and x2 is ln(size), and so on. a1–a5 are the coefficients (Coef.) from
the output. The constant (_cons), a0, is −2.406596, the coefficient of ln(duration),
a1, is −0.7223637, the coefficient of ln(size), a2, is 0.4475299, and so on.

In a presentation or report, I give the results in the form of an equation for prod,
not ln(prod). I find it is easier for people to understand. Keep in mind that most
people don’t want to know how you analyzed the data or the equation; they just
want to know the management implications. I almost never include an equation in
an oral presentation. By all means, prepare some slides about the methodology and
the equation, but do not show them unless specifically asked to go into the details in
public.

To transform ln(prod) into prod, I take the inverse natural log (or e) of each side of
the equation. To do this accurately, I use all seven significant digits of the coefficients
from the output. However, when I present the equation, I round the transformed
coefficients to four digits.

This results in the following equation for productivity (prod):

prod = 0.0901 × duration−0.7224 × size0.4475 × e−0.1909×t09

× e0.1448×t14 × e−0.1438×t10.

5.4 Interpreting the Equation

How can I interpret this equation? Let’s look at the influence of the productivity
factors on the value of productivity (prod). First, I calculate the value of each produc-

38 K.D. MAXWELL

TABLE VIII
PRODUCTIVITY FACTOR MULTIPLIERS

Defn. Value t09 multiplier t14 multiplier t10 multiplier

very low 1 ∗0.826190 1.155863 ∗0.866073
low 2 0.682589 1.336019 0.750082
average 3 0.563948 1.544254 0.649626
high 4 0.465928 1.784946 0.562623
very high 5 0.384945 2.063152 0.487273

Reproduced from Maxwell, K.D. “Applied Statistics for Software Managers”. Prentice-Hall PTR, Upper Saddle River.
© 2002 Pearson Education. Used with permission.

TABLE IX
NORMALIZED PRODUCTIVITY FACTOR MULTIPLIERS

Defn. Value t09 multiplier t14 multiplier t10 multiplier

very low 1 ∗1.465 0.748 ∗1.333
low 2 1.210 0.865 1.155
average 3 1 1 1
high 4 0.826 1.156 0.866
very high 5 0.683 1.336 0.750

Reproduced from Maxwell, K.D. “Applied Statistics for Software Managers”. Prentice-Hall PTR, Upper Saddle River.
© 2002 Pearson Education. Used with permission.

tivity factor multiplier (Table VIII); that is, what is e to the power −0.190931 × t09
when t09 is 1, when it is 2, etc.?

It is easier to think of an effect on productivity as being more or less than average.
To do this, I calculate the normalized productivity factor multipliers by dividing each
variable’s multiplier by its average value (Table IX).

From Table IX, I can easily see that if all other variables remain constant, the
effect on productivity (prod) of low quality requirements (t09) as opposed to average
quality requirements is to increase productivity by 21%. On the other hand, if quality
requirements are very high, I can expect productivity to be about 32% lower (1–
0.683) than for an identical project with average quality requirements. Staff tool
skills (t14) and efficiency requirements (t10) can be interpreted in the same manner.
The quality requirements (t09) multiplier has the largest spread, from 0.683 to 1.465,
thus quality requirement differences have a stronger impact on productivity than staff
tool skills (t14) or efficiency requirements (t10). You can also deduce this from the
equations because t09’s coefficient has the largest absolute value.

SOFTWARE DEVELOPMENT PRODUCTIVITY 39

You should also keep in mind that no project in the database actually had very low
quality requirements or efficiency requirements (denoted by ∗ in Tables VIII and IX).
So although the model says that very low quality requirements would increase pro-
ductivity by 46.5% compared with average quality requirements, we cannot be com-
pletely sure about this. However, within the bank, this should not pose a problem
because the bank is unlikely to ever undertake a project with either very low quality
requirements or very low efficiency requirements.

What about the effects of duration and size on productivity? What can I learn from
the equations? The coefficient of duration is approximately −0.72. This means that
for every 1% increase in duration, productivity is expected to decrease by 0.72%,
all other variables remaining constant. For example, if duration is increased by 5%,
productivity should decrease by 3.6%. The coefficient of size is approximately 0.45.
Assuming that all other variables remain constant, this means that for every 1% in-
crease in size, productivity should increase by 0.45%.

5.5 Management Implications

The data provider was surprised to learn that bigger projects had higher produc-
tivities. As past research had indicated that there were large diseconomies of scale,
the trend in the bank was to break large software development projects into smaller
projects. However, these smaller projects’ proportionally larger overhead probably
made them less productive. Project duration had an impact on productivity in this
bank. Can the bank do anything to reduce the duration of their projects?

Of the three significant productivity factors, quality requirements, efficiency re-
quirements, and staff tool skills, only the level of staff tool skills is controllable. The
quality and efficiency requirements of the projects are fixed. Tool skills are very im-
portant in the banking sector. It is important for a project team to be fully trained
in all development and documentation tools. The bank could improve this by care-
fully selecting a small portfolio of development and documentation tools to use in
their projects, sticking to their choice for a number of years, fully training their staff
to use these tools, and reducing staff turnover. The implications of changing tools
should be considered very carefully. Even if a better tool becomes available, the cost
of retraining everyone may not make the change worthwhile.

It is also worth noting that many of the variables considered did not have a sig-
nificant impact on productivity. None of the categorical variables, application type,
hardware platform, user interface, number of languages used, Telon use, or whether
or not the project was outsourced, explained any additional variation in productivity
once size, duration, quality and efficiency requirements, and staff tool skills were
taken into consideration. In addition, only 3 of the 15 productivity factors explained
any variation in productivity. Does that mean that collecting the other 12 was a waste

40 K.D. MAXWELL

of time? Only 58% of the variation in productivity was explained by the variables
collected. This means that 42% of the variation is still unexplained. Are there other
variables that should have been collected? Before deciding what to collect or not
collect in the future, we should first determine if any of the collected variables influ-
enced project duration and cost. You must also keep in mind that a variable that is
not important today might be important in the future, so you may want to collect it
anyway.

6. Benchmarking Software Development Productivity5

Many companies want to improve the delivery of software solutions to their cus-
tomers through better quality, reduced development time and lower costs. One key
step in the continuous process of optimizing software development is to benchmark
software development productivity (Fig. 9).

Benchmarking → Detailed analysis → Action plan → Implementation → Benchmarking

FIGURE 9. The place of benchmarking in the continuous process of improvement.

Benchmarking provides a diagnosis of actual performance and potential for im-
provement. Benchmarking also helps to identify levers for improvement and to pri-
oritize actions. Benchmarking leads to more effective project and resource manage-
ment (e.g., defining people skills and training needs, setting objectives and reviewing
performance, choosing techniques and budgeting), increased staff motivation, and
software process improvement.

However, this is easier said than done. The fact is, whether you are benchmarking
an organization or simply a project, it all boils down to one thing—data.

Do you have the necessary data in your company? Is your data valid and compara-
ble? Where can you access data from other organizations? To help you answer these
questions and avoid some common serious mistakes in the benchmarking process,
I’ve summarized my practical real-life experiences with software project data collec-
tion and benchmarking efforts in this section.

6.1 Planning for Data Collection

First of all, you can’t benchmark data if you haven’t collected it. In addition, you
need to decide exactly what you are going to do with the data before you start col-

5This section was adapted from K.D. Maxwell, Collecting data for comparability: benchmarking
software development productivity. IEEE Software. © 2001 IEEE. It is provided here with permission
of the IEEE.

SOFTWARE DEVELOPMENT PRODUCTIVITY 41

lecting it. If you work for a large company, consider asking the market or operations
research department to help design your benchmarking questionnaire. Software man-
agers know about software; data analysts know about questionnaire development.
Collecting the right data for your purposes might require a multifunctional team ef-
fort.

When I receive a new software project database, I usually need to spend much
more time understanding and validating the data than I do actually analyzing it. You
can greatly reduce the risk of collecting the wrong data and the effort spent validat-
ing it if you spend more time up-front defining what variables to collect and how to
measure them [27]. Think about how you collect data in your company. How care-
ful are you? Do you ensure that everyone understands the definitions? How do you
ensure uniformity over the years? Has your definition of effort evolved over time?
Have you always counted support staff effort and tracked management time? If the
person initially in charge of collecting the data has left the company, is the current
person collecting the data in exactly the same way, using the same definitions? Even
assuming that you have a high-quality data collection process for estimating cost
and comparing project productivity within your company, if you want to benchmark
against other companies the critical question is: Is your data comparable?

6.2 Benchmarking and Data Comparability

Given the various definitions of effort and size that exist, if they do not pay at-
tention to data comparability, two companies measuring the same project can end
up with very different sizes and efforts. As productivity is calculated by dividing
these two error-prone terms, benchmarking productivity is potentially extremely in-
accurate. For example, let’s assume that Companies A and B have developed the
exact same insurance software application and used exactly the same effort. How-
ever, Company A uses the IFPUG 4.0 method [19] which doesn’t count algorithms,
and Company B uses the Experience 2.0 function point method [41] which does
count them. This results in a 20% greater function-point count for Company B. In
addition, Company B does not count the effort of installation at the customer site,
whereas Company A does, and this results in a 20% lower effort for Company B.
So, for Company A, 100 function points divided by 400 hours equals 0.25 function
points per hour. For Company B, 120 function points divided by 320 hours equals
0.375 function points per hour. Because Company B divides a 20% larger size by a
20% smaller effort, it calculates its productivity as 50% higher than Company A.

Obviously, you need to beware of comparability errors. If you think that com-
parability errors exist, rather than calculate a single productivity value, calculate a
probable range of productivity values assuming an error in both terms.

42 K.D. MAXWELL

If you want a dependable benchmark of software development productivity, make
every effort possible to measure in exactly the same way. One way to compare your
data to similar benchmarking data is to collect effort in hours by phase and staff
type, and to keep the detailed breakdown of the function-point count so that you
can create the different effort and function-point metrics. Another way is to decide
in advance which benchmarking database you want to use and to collect your data
using its definitions. If benchmarking is something you plan to do on a regular basis,
you should collect your data with a tool used by other companies that also want
to benchmark. In addition, verify that the benchmarking database you use contains
projects that the data collector has carefully validated.

6.3 Benchmarking and Project Comparability
Even if you are measuring productivity in exactly the same way, you must also

benchmark against similar projects. It is not enough to measure a project’s size and
effort and compare it with a large database’s average productivity. As we have seen,
productivity rates are highly variable across the software development industry. Hun-
dreds of factors can affect productivity, and it is the identification and interaction of
these factors that make comparing productivity rates very difficult. This is why soft-
ware development databases should be statistically analyzed to determine the factors
that contribute most to the specific database’s productivity variation. Once you’ve
identified the variables—or combinations of variables—that explain most of the data-
base’s productivity variation, you can limit your comparisons to projects similar to
your own.

For example, if you developed a project using Cobol on a mainframe, and lan-
guage and platform are important factors in explaining productivity differences in the
database, then you should only benchmark your productivity against other projects
using Cobol on a mainframe platform. On the contrary, if your project uses case tools
and using the tools does not explain the differences in productivity of the database
projects, there is no point in limiting your comparisons to other projects that also use
case tools. So, either verify that the benchmarking service statistically analyzes the
data and informs you of the key factors, or that it provides you with the raw data so
that you can do so yourself. Also, pay attention to how many projects the benchmark
is based on for each subset of data. You might consider a benchmark more reliable if
it is based on 20 projects rather than four. Benchmarking against up-to-date data is
also important.

6.4 Benchmarking Data Availability
Although many companies would like to benchmark projects, few contribute data

to multicompany databases. Data is needed on a regular basis to keep these ser-

SOFTWARE DEVELOPMENT PRODUCTIVITY 43

TABLE X
SOURCES OF SOFTWARE PROJECT BENCHMARKING DATA

Name of service provider Website

Experience benchmarking http://www.datamax-france.com/benchmk.htm
INSEAD/European Space Agency http://www.insead.fr/~rise
International Software Benchmarking Standards Group http://www.isbsg.org.au
NASA Software Engineering Laboratory database [7] http://www.dacs.dtic.mil/databases/sled/sel.shtml
Software Productivity Research http://www.spr.com

vices up-to-date. Although large companies with well-established metrics programs,
high project turnover, and data analysis competency might be content to benchmark
projects internally, smaller companies do not have this option. These companies must
look to benchmarking services for access to numerous recent, comparable projects.
(See Table X.) In addition, most cost estimation tool vendors have databases that you
can use for benchmarking.

7. Conclusions

The productivity of different car manufacturing lines can be easily compared.
There is not much ambiguity about the definition of a car. The same cannot be said
about software development. As we have seen, the output of a software development
project is neither easily defined, nor easily measured. The explanation behind much
of the software development productivity variation among companies may simply lie
in the unlimited number of definitions of software size and project effort. It is for this
reason that the collection of comparable software project data is crucial.

Once you have a software project database, your company possesses a valuable
asset. You can determine the factors that influence the productivity of software de-
velopment projects in your company. You may find that some of these important
factors are given and unchangeable; for example, certain applications of a particu-
lar type may always be more difficult and associated with lower productivity rates.
However, some variables, such as choice of tool, may be within your control. In ad-
dition, if your company has a well-established metrics program and a high project
turnover, you have a definite advantage. You can benchmark your projects internally
and avoid many of the measurement comparability problems associated with multi-
company databases.

In addition to productivity analyses, you can determine the variables that have an
impact on software development duration (i.e., time-to-market). You can also use
your data to calibrate cost estimation tools. And while you’re at it, why not see how
accurate of a cost estimation model you can build with your own data? Extract the

http://www.datamax-france.com/benchmk.htm
http://www.insead.fr/~rise
http://www.isbsg.org.au
http://www.dacs.dtic.mil/databases/sled/sel.shtml
http://www.spr.com

44 K.D. MAXWELL

most value you can from your data collection efforts. Use this knowledge to guide,
and defend, your future actions. Recommendations backed up by hard data carry
more weight with upper levels of management.

In your quest for productivity improvements, don’t neglect quality. If the cars have
to be recalled, if the software is full of bugs. . . don’t expect to be congratulated on
your high productivity. It does not matter how fast you are if no-one wants to buy
your product, or use your services again. Nor does it matter how productive you are
during software development if time-consuming problems are just postponed to the
software maintenance phase. While important, software development productivity is
only one part of the total picture.

REFERENCES

[1] Abran A., et al., in: S. Oligny (Ed.), COSMIC-FFP Measurement Manual, version 2.0,
Software Engineering Management Research Laboratory, Université du Québéc à Mon-
treal, Canada, 1999, http://www.lrgl.uqam.ca/cosmic-ffp.

[2] Albrecht A.J., “Measuring application development productivity”, in: Proceedings of
the Joint SHARE/GUIDE/IBM Application Development Symposium, Monterey, 1979,
pp. 83–92.

[3] Aron J.D., “Estimating resources for large programming systems”, in: J.M. Buxton,
P. Naur, B. Randell (Eds.), Software Engineering: Concepts and Techniques, Litton Ed-
ucation Publishing, New York, 1976, pp. 206–217.

[4] Arthur L.J., Measuring Programmer Productivity and Software Quality, John Wiley &
Sons, New York, 1985.

[5] Bailey J.W., Basili V.R., “A meta-model for software development resource expendi-
tures”, in: Proceedings of the 5th International Conference on Software Engineering,
San Diego, 1981, pp. 50–60.

[6] Banker R.D., Datar S.M., Kemerer C.F., “A model to evaluate variables impacting the
productivity of software maintenance projects”, Management Science 37 (1) (1991) 1–
18.

[7] Basili V., Zelkowitz M., McGarry F., Page J., Waligora S., Pajerski R., “SEL’s software
process-improvement program”, IEEE Software 12 (6) (1995) 83–87.

[8] Behrens C.A., “Measuring the productivity of computer systems development activities
with function points”, IEEE Transactions on Software Engineering SE-9 (6) (1983) 648–
652.

[9] Belady L.A., Lehman M.M., “The characteristics of large systems”, in: P. Weger (Ed.),
Research Directions in Software Technology, MIT Press, Cambridge, 1979, pp. 106–142.

[10] Boehm B.W., Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ,
1981.

[11] Boehm B.W., “Improving software productivity”, IEEE Computer 20 (1987) 43–57.
[12] Boehm B.W., Abts C., Brown A.W., Chulani S., Clark B.K., Horowitz E., Madachy R.,

Reifer D., Steece B., Software Cost Estimation with COCOMO II, Prentice-Hall, Upper
Saddle River, 2000.

http://www.lrgl.uqam.ca/cosmic-ffp

SOFTWARE DEVELOPMENT PRODUCTIVITY 45

[13] Briand L., El Emam K., Maxwell K., Surmann D., Wieczorek I., “An assessment and
comparison of common software cost estimation modeling techniques”, in: Proceed-
ings of the 21st International Conference on Software Engineering, Los Angeles, 1999,
pp. 313–322.

[14] Brooks F.P., in: The Mythical Man-Month: Essays on Software Engineering, Addison-
Wesley, Reading, MA, 1975.

[15] Brooks W.D., “Software technology payoff: some statistical evidence”, The Journal of
Systems and Software 2 (1981) 3–9.

[16] Card D.N., McGarry F.E., Page G.T., “Evaluating software engineering technologies”,
IEEE Transactions on Software Engineering SE-13 (7) (1987) 845–851.

[17] Conte S.D., Dunsmore H.E., Shen V.Y., Software Engineering Metrics and Models, Ben-
jamin/Cummings Publishing Company, Menlo Park, 1986.

[18] Cusumano M.A., Kemerer C.F., “A quantitative analysis of U.S. and Japanese practice
and performance in software development”, Management Science 36 (11) (1990) 1384–
1406.

[19] Function Point Counting Practices Manual, Release 4.0, International Function Point
Users Group, Westerville, OH, 1994.

[20] P. Hill (Ed.), The Benchmark Release 6, International Software Benchmarking Standards
Group, Warrandyte, Victoria, Australia, 2000, pp. 77–78.

[21] Jeffery R., Ruhe M., Wieczorek I., “A comparative study of two software development
cost modeling techniques using multi-organizational and company-specific data”, Infor-
mation and Software Technology 42 (14) (2000) 1009–1016.

[22] Jeffrey D.R., “Time-sensitive cost models in the commercial MIS environment”, IEEE
Transactions on Software Engineering SE-13 (7) (1987) 852–859.

[23] Jones C., Applied Software Measurement: Assuring Productivity and Quality, McGraw-
Hill, New York, 1991.

[24] Jones C., “Software change management”, Computer (1996) 80–82.
[25] Jones T.C., “The limits of programming productivity”, in: Proceedings of the Joint

SHARE/GUIDE/IBM Application Development Symposium, Monterey, 1979, pp. 77–82.
[26] Kitchenham B.A., “Empirical studies of assumptions that underlie software cost-

estimation models”, Information and Software Technology 34 (4) (1992) 211–218.
[27] Kitchenham B.A., Hughes R.T., Linkman S.J., “Modeling software measurement data”,

IEEE Transactions on Software Engineering 27 (9) (2001) 788–804.
[28] Kraut R.E., Streeter L.A., “Coordination in software development”, Communications of

the ACM 38 (3) (1995) 69–81.
[29] Lawrence M.J., “Programming methodology, organizational environment, and program-

ming productivity”, The Journal of Systems and Software 2 (1981) 257–269.
[30] Lokan C., Wright T., Hill P.R., Stringer M., “Organizational benchmarking using the

ISBSG data repository”, IEEE Software 18 (5) (2001) 26–32.
[31] Lokan C.J., “Impact of subjective factors on software productivity”, in: Proceedings of

the 7th Australian Conference on Software Metrics, Melbourne, 2001.
[32] Maxwell K., Forselius P., “Benchmarking software development productivity”, IEEE

Software 17 (1) (2000) 80–88.

46 K.D. MAXWELL

[33] Maxwell K., Van Wassenhove L., Dutta S., “Software development productivity of Eu-
ropean space, military and industrial applications”, IEEE Transactions on Software En-
gineering 22 (10) (1996) 706–718.

[34] Maxwell K., Van Wassenhove L., Dutta S., “Benchmarking: the data contribution
dilemma”, in: Proceedings of the 1997 European Software Control and Metrics Con-
ference, The ESCOM Conference, Reading, MA, 1997, pp. 82–92.

[35] Maxwell K., Van Wassenhove L., Dutta S., “Performance evaluation of general and
company specific models in software development effort estimation”, Management Sci-
ence 45 (6) (1999) 787–803.

[36] Maxwell K.D., “Collecting data for comparability: benchmarking software development
productivity”, IEEE Software 18 (5) (2001) 22–25.

[37] Maxwell K.D., Applied Statistics for Software Managers, Prentice-Hall, Upper Saddle
River, 2002.

[38] Maya M., Abran A., Oligny S., St-Pierre D., Desharnais J.M., “Measuring the functional
size of real-time software”, in: R. Kusters, et al. (Eds.), Project Control for 2000 and
beyond, Shaker Publishing Company, Maastricht, 1998, pp. 191–199.

[39] McConnell S., “Closing the gap”, IEEE Software 19 (1) (2002) 3–5.
[40] Nevalainen R., Maki H., Laturi-System Productivity Model Version 1.4, Technical Report

30.3, Information Technology Development Center, Helsinki, 1994.
[41] Nevalainen R., Maki H., Laturi-System Product Manual Version 2.0, Information Tech-

nology Development Center, Helsinki, Finland, 1996.
[42] Putnam L.H., Myers W., Measures for Excellence: Reliable Software on Time within

Budget, Prentice-Hall, Englewood Cliffs, NJ, 1992.
[43] Rehesaar H., “Software size: the past and the future”, in: R. Kusters, et al. (Eds.), Project

Control for 2000 and beyond, Shaker Publishing Company, Maastricht, 1998, pp. 200–
208.

[44] Schneider V., “Prediction of software effort and project duration—four new formulas”,
SIGPLAN Notices 13 (6) (1978) 49–59.

[45] Shepperd M., Cartwright M., “Predicting with sparse data”, in: Proc. 7th International
Software Metrics Symposium, IEEE Computer Society, Los Alamitos, 2001, pp. 28–39.

[46] Stephenson W.E., “An analysis of the resources used in the safeguard system software
development”, in: Proceedings of the 2nd International Conference on Software Engi-
neering, 1976, pp. 312–321.

[47] Symons C.R., “Function point analysis: difficulties and improvements”, IEEE Transac-
tions on Software Engineering 14 (1) (1988) 2–11.

[48] Thadhani A.J., “Factors affecting programmer productivity during application develop-
ment”, IBM Systems Journal 23 (1) (1984) 19–35.

[49] Vosburgh J., Curtis B., Wolverton R., Albert B., Malec H., Hoben S., Liu Y., “Produc-
tivity factors and programming environments”, in: Proceedings of the 7th International
Conference on Software Engineering, 1984, pp. 143–152.

[50] Walkerden F., Jeffrey R., “An empirical study of analogy-based software effort estima-
tion”, Empirical Software Engineering 4 (1999) 135–158.

[51] Walston C.E., Felix C.P., “A method of programming measurement and estimation”, IBM
Systems Journal 16 (1) (1977) 54–73.

Transformation-Oriented Programming:
A Development Methodology for High
Assurance Software1

VICTOR L. WINTER

Computer Science Department
University of Nebraska at Omaha
6001 Dodge Street, PKI 175A
Omaha, NE 68182
USA
vwinter@ist.unomaha.edu

STEVE ROACH

University of Texas at El Paso
El Paso, TX 79968
USA
sroach@cs.utep.edu

GREG WICKSTROM

Sandia National Laboratories
USA
glwicks@sandia.gov

Abstract
A software development paradigm known as Transformation-Oriented Program-
ming (TOP) is introduced. In TOP, software development consists of construct-
ing a sequence of transformations capable of systematically constructing a soft-

1This work was supported by the United States Department of Energy under Contract DE-AC04-
94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy. Victor Winter was also partially supported by NSF
grant number CCR-0209187.

ADVANCES IN COMPUTERS, VOL. 58 47 Copyright © 2003 by Elsevier Science (USA)
ISSN: 0065-2458 All rights reserved.

48 V.L. WINTER ET AL.

ware implementation from a given formal specification. As such TOP falls under
the category of formal methods.

The general theory and techniques upon which TOP is built is presented. The
High Assurance Transformation System (HATS) is described. The use of the
HATS tool to implement a portion of the functionality of a classloader needed
by the Sandia Secure Processor (SSP) is described.

1. Background . 49
1.1. Chapter Overview . 50

2. High-Consequence Systems . 50
2.1. Building Software is Deceptively Hard . 51
2.2. Software Development Risks . 53

3. Approaches to Developing High-Assurance Systems 54
3.1. Imperative Programming . 55
3.2. Object-Oriented Programming . 55
3.3. Functional Programming . 56
3.4. Aspect-Oriented Programming . 56
3.5. Declarative Programming . 57
3.6. Formal “Methods” . 57
3.7. Formal Specifications . 58
3.8. Theorem Proving . 59
3.9. Model Checking . 60

3.10. Synthesis . 61
4. Transformation-Oriented Programming . 62

4.1. Example . 64
4.2. Example . 66

5. TOP as a Program Development Method . 68
5.1. Contrasting TOP with Component-Based Software Development 69
5.2. History of TOP . 71
5.3. Transformation Systems General Architecture 72
5.4. Syntax and Semantics of Transformation Rules 72

6. HATS . 74
6.1. Writing Transformation Rules . 76
6.2. Dynamic Transformations . 78

7. Embedded Systems . 80
7.1. The SSP Project . 82
7.2. The SSP-classloader . 83
7.3. A Transformation-Based Classloader . 86
7.4. Removal of Indirection . 88
7.5. Relevant Constant Pool Construction . 98
7.6. Offset Indexing . 99

8. Future Work: Verification . 102
8.1. Design Verification: Eval and BCE . 103

TRANSFORMATION-ORIENTED PROGRAMMING 49

8.2. Basis for Verifying the Partial Classloader Design 107
8.3. Implementation Verification . 108

9. Summary and Conclusion . 108
Appendix A: A Small Java Program . 109
Appendix B: Java Classfile . 111
Appendix C: Resolved Classfile . 113
References . 113

1. Background

Computer-enhanced problem solving has evolved dramatically over the past 50
years. When viewed in isolation, a computer is a device, that when presented a prob-
lem expressed in a binary language, will compute an answer also expressed in a
binary language. While increases in processor speed and memory have been nothing
short of astounding, the fundamental model of a computer as a function mapping bi-
nary inputs (i.e., programs and input data) to binary outputs has essentially remained
unchanged. However, what have changed dramatically over the past 50 years are the
techniques and approaches that can be employed to produce these binary inputs—in
particular, binary programs.

Initially, the construction of binary programs was undertaken entirely by humans.
Conceptually simple computations had to be described in terms of long sequences
of 0’s and 1’s. Such program development was highly error prone. Even the slightest
slip of the finger on the keyboard (or punchcard) would cause the program to fail.
Furthermore, discovering the root cause of failure in programs written in machine
code could require extremely complex analysis. Because of the cryptic notation and
nature of feedback provided, the class of problems that could be effectively solved in
this paradigm (i.e., the programs constructed) was (of necessity) quite modest when
compared to modern standards. To assist in the development of software, tools were
developed. Many of these tools partition software development into segregated activ-
ities where the responsibility of accomplishing a particular task fell predominantly
upon either the developer (e.g., design) or the tool (e.g., compilation). Thus a crisp
boundary existed between human tasks and computer tasks.

However, a dramatic blurring of this boundary is occurring. A plethora of tools
and notations have been developed to assist the developer in virtually every aspect of
software development including problem conceptualization, requirements elicitation,
specification, design, code generation, and verification and validation. As a result,
human activities and tool activities are becoming intertwined within software devel-
opment paradigms. This chapter is devoted to transformation-oriented programming
(TOP), an intertwined software construction paradigm for which formal verification
can be used to provide assurance of correct software behavior.

50 V.L. WINTER ET AL.

1.1 Chapter Overview
This chapter has two parts. The first half is a general introduction to various par-

adigms of programming with particular attention given to TOP. The second half is a
more detailed description of a specific tool called HATS and an application demon-
strating its use. In the following section, we discuss high consequence systems and
motivate the need for improvement in software development practices, in particular
with respect to providing evidence in correct behavior. Section 3 describes current
approaches to software development and puts transformation-oriented programming
in the context of current work.

Section 4, Transformation-Oriented Programming, introduces transformations
and rewriting as a mechanism for describing the conversion of data from one form
to another. Section 5 extends the idea of transformation-oriented programming to
include the creation of programs. The fundamental idea is that given a formal spec-
ification, a correct program can be created using a transformation tool. Section 6
describes a particular transformation tool called HATS, the High-Assurance Trans-
formation Program.

In Section 7 we describe a specific application of transformation-oriented pro-
gramming, the Sandia Secure Processor (SSP). This processor is intended to be
an embedded processor interpreting a subset of the Java bytecode language for
high-assurance applications. Transformations that implement the classloader for this
processor are presented. Section 8 outlines work that must be done in order to vali-
date the code generated by the transformations.

2. High-Consequence Systems

Applications in which there is a high cost associated with failure are called high-
consequence systems. In addition, if the cost of failure is measured in terms of human
life we call the system a safety-critical system. In order for a high-consequence sys-
tem to be certified for use, it typically must be demonstrated that the likelihood of a
failure occurring during any given operational hour is on the order of 1-in-109. Such
a system can be expected to fail only once every 114,155 years.

High-assurance software is software for which there is convincing evidence that
the software possesses certain explicitly stated attributes (e.g., reliability). The at-
tribute that one is generally most interested in here is correctness, which is the notion
that the behavior of the software is in compliance with its intent (not just its speci-
fication). Because of the dominance of correctness as an attribute, the phrases high
assurance and high assurance of correctness are often used synonymously. A high-
assurance system is a system for which convincing evidence has been provided show-
ing that its behavior will not result in a failure.

TRANSFORMATION-ORIENTED PROGRAMMING 51

In spite of the dangers, software is being used at an accelerating rate to control
systems that have the potential to affect the safety and well being of large numbers
of people. For example, software plays a critical role in numerous systems such as
antilock brakes, flight control systems, weapons systems, nuclear power plants, elec-
trical power grids, and a wide variety of medical systems such as those for embedded
cardiac support. As a result, the dependence of modern society on safety-critical soft-
ware has become deeply rooted.

As society’s appetite for high-consequence software increases, the importance of
developing high-assurance software systems becomes essential. A key component
of any construction technique claiming to produce high-assurance software is the
ability to provide sufficiently convincing evidence, prior to fielding the system, that
the software will function in its intended manner. In other words, when developing a
high-consequence software system, it is not sufficient to merely build a dependable
system. One must also be able to convince the stakeholders (e.g., society) that this
system will function correctly if and when it is put into operation.

In this chapter, we assume that high-assurance software will be developed in two
phases: a formalization phase and an implementation phase. Fig. 1 gives an overview
of these two phases. The goal of the formalization phase is to understand an infor-
mally stated problem and express it in a formal framework. The artifact produced by
the formalization phase is a formal specification. The implementation phase uses this
formal specification as the basis for constructing an implementation. Here we define
an implementation as representation of software that is either in an executable form
or in a form that can be automatically translated (e.g., via a compiler) into an exe-
cutable form. In the implementation phase, we assume that the formal specification
is correct. This implies that the implementation phase will be considered successful
if the software system developed satisfies the formal specification.

Though they are extremely important, the tools and techniques that can be brought
to bear in the formalization phase of software development are beyond the scope of
this chapter. Instead, our focus is on the implementation phase as it relates to high-
assurance system development. When given a formal specification, our goal is to
construct an implementation in which convincing evidence can be provided that the
implementation satisfies the formal specification.

2.1 Building Software is Deceptively Hard

Software is malleable. This is both its strength and weakness and has often re-
sulted in unrealistic expectations regarding (1) what software can and cannot do,
(2) how easily something can be done in software, and (3) the level of effort re-
quired to effectively modify a software system. Unlike other engineered products

52 V.L. WINTER ET AL.

FIG. 1. High-assurance software development phases.

(e.g., a bridge or an airplane), modification of software does not require the re-
placement of tangible parts [18]. The malleable nature of software has frequently
resulted in system redesigns where many mechanical controls are re-implemented
in software. With mechanical controls, safety interlocks are common. If a mech-
anism fails, the interlock ensures the system remains in a safe state. With soft-
ware systems, these controls may fail, and the software-based interlocks may also
fail, sometimes for the same reasons. An example of this is the Ariane 5 rocket
failure [8]. Another failure of this type occurred in the mid 1980s, the computer-
controlled Therac-25 radiation therapy machine delivered overdoses resulting in se-
rious injury or death to at least six people. The Therac-25 reused software from
the Therac-20, but the Therac-20 had independent hardware protective circuits that
prevented an overdose. The Therac-25 depended solely on software [29]. In a well
designed system such as commercial aircraft, a single point of failure does not re-
sult in a system failure. However, in software, a failure can frequently be traced to
a single point. When considered in the context of a physical system, this can con-
tribute to system failure. In this chapter, we restrict our attention simply to software
failures.

TRANSFORMATION-ORIENTED PROGRAMMING 53

Software systems can easily become overly complex. “Computers often allow more
interactive, tightly coupled, and error-prone designs to be built, and thus may en-
courage the introduction of unnecessary and dangerous complexity” [29]. A sig-
nificant source of complexity arises from coupling of processes, which Chiles [10]
and Dorner [13] independently suggest is difficult or impossible for humans to fully
grasp. Analysis of major accidents such as nuclear power plant accidents and airline
crashes invariably shows that these accidents are not caused by single component
failures, but by highly complex, cascading sequences of events.

Software is buggy. The increased complexity in both product and process give rise
to many new hazards. Oftentimes testing is used in hopes that hazards and errors
will be discovered. Unfortunately, as the complexity of systems increase, a point of
diminishing returns is reached. “Microsoft released Windows XP on Oct. 25, 2001.
That same day, in what may be a record, the company posted 18 megabytes of patches
on its Web site: bug fixes, compatibility updates, and enhancements” [32]. Microsoft
is not alone. In [45] it was reported to the National Institute of Standards and Tech-
nology that 30–90% of labor expended to produce a working program is testing.
Furthermore, the findings of the report indicated that even when using software en-
gineering best practices, when counting all errors found during design, implementa-
tion, unit testing, integration testing, and maintenance of a software system, 5% of
the errors are only discovered after the product is released. In 1999, the estimated
cost due to software error in the aerospace industry alone was $6 billion dollars.

2.2 Software Development Risks

In a well-planned software project, the tools used, the techniques applied, and
the resources allocated to various development activities should be appropriate for
the actual risks faced in the project. In order to accomplish this, one must have a
clear understanding of the nature and scope of the risks encountered in software
development as well as what tools and techniques can be best applied to mitigate
these risks. Overly optimistic misconceptions of software is a recipe for disaster,
especially for high-consequence systems.

Abstractly speaking, risk is a combination of the likelihood of an undesirable event
and the severity of its consequences. What constitutes risk with respect to a par-
ticular software product depends largely on the nature of the product as well as a
given perspective (e.g., economic, environmental, etc.). For example, when develop-
ing commercial software in a highly competitive marketplace, time to market may be
the most important factor in the risk equation from the standpoint of sales and prof-
itability. In contrast, when developing software for niche markets, development cost
may be the dominating factor. And when developing software for high-consequence

54 V.L. WINTER ET AL.

systems, the primary factor is the ability to achieve high-assurance; that is, to con-
vincingly demonstrate that the system will function as intended. A high-consequence
software system for which such high-assurance cannot be provided is useless at best
(because it will not be fielded) and extremely dangerous at worst (it is fielded and a
failure is encountered).

So how does one address the risks associated with high-consequence software de-
velopment? To date, some of the most promising tools and techniques for construct-
ing high-assurance software are rooted in a form of mathematics that is known as
formal methods [7,24,46]. The basic idea when using a formal method is to construct
a particular artifact (e.g., a specification, or an implementation) in such a way that
mathematical reasoning (i.e., calculation) can be used to answer certain questions—
the most ambitious of which would be, “Is this program correct?”.

3. Approaches to Developing High-Assurance Systems

There are many approaches to the development of software systems, and there are
a large number of tools and notations available to assist software developers. Finding
the right approach and using the right tools to develop a particular software system
is key to achieving our software development goal. This section takes a brief look at
some of these approaches. We use the term paradigm to mean a general approach to
problem solving facilitated by a particular notation. In contrast, a method is defined
here as a notation accompanied by a process. A process suggests a sequence of steps
that a developer takes in order to produce some artifact such as a design or a test case.
The notations and processes used influence how developers think about problems and
software solutions. Frequently, different paradigms and methods can be combined,
each being used to solve different parts of a larger problem.

Regardless of the paradigms or methods used to develop a software system, in
order to successfully construct a software system, the following three steps must
be accomplished: (1) the requirements of the system must be established; (2) the
software must be designed; and (3) the design must be translated into machine ex-
ecutable code. This translation is typically accomplished in part by humans writing
high-level language code, and in part by computers executing compilers, translators,
interpreters, and assemblers. It is not necessary that the three steps be completed in
a particular order, nor is it necessary for each step to have an artifact associated with
it. A programmer who does not write a design on paper still has a design, even if
its only manifestation is in the programmer’s head. These steps may also be accom-
plished in strict sequence with no overlap as they are, for example, in the waterfall
development process. Or they may be completed incrementally as they are in the

TRANSFORMATION-ORIENTED PROGRAMMING 55

spiral and evolutionary development processes. For high-assurance systems, there is
the additional task of providing evidence that the software is correct.

3.1 Imperative Programming

It is widely accepted that the first imperative language was Fortran, and many
other imperative languages followed, including Algol and Cobol [47]. In impera-
tive programming, program variables hold the program state, and the primary unit of
computation responsible for incremental change is the assignment statement. Control
is dictated by various constructs such as the sequential composition operator as well
as conditional statements, looping statements, jumps, and procedure calls. This pro-
vides a way in which solutions can be incrementally constructed. Block structuring
provides a way of grouping code fragments such as statement sequences, and even
other blocks into a unit or module. Such groupings can facilitate the understanding
of the structures within a program at higher levels of abstraction than is possible
when simply viewing a program as a composition of primitive statements. The intro-
duction of block structuring has had a major impact on the ability of programmers
to construct larger more complex software systems because it enables them to envi-
sion a software system in terms of an architecture consisting of blocks rather than
statements. The primary tool support to programmers using the common imperative
languages is editors, compilers, and debuggers.2 The errors detected in this frame-
work include syntax and type errors.

3.2 Object-Oriented Programming

As the problems to which software systems are being applied become more com-
plex, software developers realize that more effort must be expended establishing the
requirements and designing a solution. There is also the need to demonstrate that
the software is adequate either through testing or through some other means. The
management of complexity has become the primary consideration.

One approach to managing this complexity is to decompose software and encap-
sulate functionality into discrete units. Objected-oriented programming is the current
dominant paradigm. It is an extension of imperative programming that encourages
system decomposition in terms of objects and classes. The class is essentially an
extension of the block structure in which a rich mechanism is provided for defin-
ing the internal state of an object as well as controlling the visibility of methods,
variables, and types. Inheritance is a mechanism provided for defining new classes

2There are tools available that generate imperative language code such as code generators and report
writers. These are considered in later sections.

56 V.L. WINTER ET AL.

based on other classes. Inheritance facilitates the creation of class hierarchies in
which classes leverage off of the similarities between each other, thereby maximizing
code reuse and understanding. Most object-oriented languages can trace their roots
to Smalltalk. Object-oriented programming tends to require a greater emphasis on
design and factoring than imperative programming does. While it is possible to im-
plement an object-oriented design in an imperative language, some languages such
as Eiffel, Java, and C++ more easily support inheritance, polymorphism, and encap-
sulation. Modern object-oriented software development environments facilitate the
creation and modification of design documents such as diagrams in the Unified Mod-
eling Language (UML). Some of these environments assist the user in the creation
of high-level language code from design specifications.

3.3 Functional Programming

A alternative approach to problem decomposition is given in the functional pro-
gramming paradigm. Here, programs are decomposed into functions, each of which
may be arbitrarily complex. Once a function is written, it may be used with-
out concern for the internal details. Functional programming paradigms typically
provide a mathematically clean semantic framework (e.g., call-by-value parameter
passing, type completeness, referential transparency) that encourages equational rea-
soning. Computation is accomplished by function evaluation. A purely functional
language does not require variables or assignment statements. Iteration is accom-
plished through the use of recursion. The origins of functional programming are
rooted in the Lambda Calculus. Lisp was the first functional language, and Common
Lisp continues to be widely used in the field of artificial intelligence. Most modern
functional languages provide a rich set of abstraction mechanisms. For example, ML
offers structures, which are akin to classes as well as functors, which can be thought
of as generalizations of structures.

3.4 Aspect-Oriented Programming

Not every problem can be cleanly decomposed into cohesive pieces. The motiva-
tion behind aspect-oriented programming [14,28] (AOP) is separation of crosscut-
ting concerns. Concerns can range from high level, such as security, to low level,
such as caching and buffering. An aspect is the embodiment of a concern. Other ex-
amples of aspects are: correctness/understandability, spatial efficiency, temporal ef-
ficiency, and error recovery. In standard object-oriented programming, it is difficult
to separate these concerns into classes or objects. The source code that embodies an
aspect is spread throughout many objects. AOP advocates the construction of sys-
tems by first specifying the various concerns and their relationships, then relying on

TRANSFORMATION-ORIENTED PROGRAMMING 57

the environment to automatically weave the code supporting the aspect with other
code, forming a complex system that satisfies all aspects simultaneously. AOP ex-
tends object-oriented and imperative programming using all techniques available to
achieve their goal of separation of concerns.

3.5 Declarative Programming

Declarative programming (or logic programming) provides an altogether differ-
ent paradigm for solving problems [51]. In a declarative environment, properties of
a system are stated in terms of logical formulas. These formulas are typically pre-
sented in predicate logic. Prolog, the most widely used declarative language, uses
Horn-clauses, a subset of predicate logic. Programs do not state how a solution is
to be computed. Instead, a problem (i.e., computation) is stated in terms of a query.
When presented with a query, a declarative programming system uses a complex
search algorithm (transparent to the user) based on resolution and backtracking in
order to find an answer to the query. Declarative environments provide a powerful
(and complex) computational framework; however, the implementations of these en-
vironments tend to be complex, and the search required by the implementation tends
to require semantic information (e.g., the cut) to direct search by pruning the search
tree. Declarative programmers still must develop designs and algorithms, but their
designs and solutions are much different than imperative and object-oriented solu-
tions are.

3.6 Formal “Methods”

As demonstrated by logic programming, formal notations may be used to describe
not only the programs, but also the designs and requirements of the software system.
We believe that in situations where the cost of failure is the overriding concern, as it is
in high-consequence and safety-critical applications, formal approaches to software
development are not just viable, but necessary. We use the term formal method to
mean a language with formal syntax and semantics and a set of rules for inferring
useful information from sentences written in the language [23]. Typically, we start
with a set of requirements and then prove properties about the specification, derive
an implementation, or prove that a given implementation satisfies the requirements.

The use of formal methods is not the norm in industry, even for high-consequence
software. As Parnas explains,

“When new methods do not catch on, there are two obvious possible explana-
tions. Either the methods are not yet good enough, or practitioners are too con-
servative, unwilling to learn, and resistant to change. In most cases, there is truth

58 V.L. WINTER ET AL.

in both explanations. The best known formal methods clearly work, but it is
equally clear that they require a lot of tedious writing of expressions that are
difficult to read” [42].

It is true that the use of formal methods is expensive, in part because it requires
time-consuming formulation of problems in a mathematically rigorous and precise
manner. However, after the initial cost of formulation, the use of formal methods may
actually drive down the cost of systems. As further evidence of their usefulness, note
that in every case where formal methods were used under a NASA Formal Meth-
ods program [9], previously unknown errors were discovered. Examples of costly
errors in mission software include the Mars Rover priority inversion and deadlock
in the Deep Space 1 Remote Executive [21,22,27,44]. In spite of extensive testing
and reviews using the best available methods, these errors persisted. These errors
were discovered (or at least detected) using formal methods. In other words, even
the best software practices deliver software with errors that can be detected using
formal methods.

Formal methods work well for simple, textbook examples used in the classroom.
Until recently, they have not competed well against traditional approaches for a class
or size of programs of practical use, e.g., the kinds of programs that developers have
succeeded at writing over the past fifty years. Current programs tend to be decompos-
able, with each unit significantly decoupled from other units, and they can be tested
(though not completely or perfectly). However, we believe that software systems in
the near future will be larger, more complex, not easily decomposed, and the com-
ponents of this software will be tightly coupled with complex interactions. They will
have many tedious details and require vast inputs and high speed. Some will control
safety-critical systems. The system developer of the mid 21st century will require
software tools to support program development, and the program support will be in
the form of formal methods.

It is clear that formal methods hold great promise in the cost-effective construction
of reliable software. It is equally clear that in order for formal methods to gain accep-
tance in the software development community, tools must continue to be developed
to assist practitioners. This remainder of this section discusses some of the formal
approaches that have been used successfully in industry.

3.7 Formal Specifications

A formal specification is the statement of a collection of properties that a sys-
tem should satisfy, given in a formal language at some level of abstraction. The key
difference between a specification and a program is that a specification must offer
some abstraction of the problem. The examples of formal specifications have shifted

TRANSFORMATION-ORIENTED PROGRAMMING 59

over the past half-century. In the late 1950s, Fortran was considered a specification
language. It dictated at some level of abstraction what a program was to do. The
drive throughout computing history is to increase the power of translators that create
executable code from specifications.

Current specification languages are much more sophisticated than Fortran. There
are many such languages available, including report generator languages (fourth gen-
eration languages), model languages based on set theory and predicate logic such as
Z and VDM, and algebraic specification languages such as CLEAR. Introductions to
formal specifications are available [16,26,41].

A major benefit of formal specification is that many errors are caught simply by
the act of specifying a system formally. For example, Mukherjee and Wichmann [40]
describe the certification of a computerized voting system for the Church of England
where the act of specifying the algorithm in VDM exposed several ambiguities in the
English language description of the algorithm.

3.8 Theorem Proving

An automated theorem prover is a software system that takes a set of formulas
as input and applies inference rules to derive new formulas that are logical con-
sequences of the original formulas. Typical inference rules include modes ponens,
resolution, and induction. Theorem provers are usually associated with a given logic,
such as propositional, first-order, higher-order, or Horn-clause logic. They may be
fully automated, or they may rely on interaction with humans to guide the search for
a proof.

In theorem proving, we care about the form of the arguments. For example, given
the statement “All men are mortal,” and the statement “Socrates is a man,” we can
derive the statement “Socrates is mortal.” As another example, given the two state-
ments “All dogs are loyal” and “Uri is a dog,” we can derive “Uri is loyal.” Note that
these two arguments have the same form. A theorem prover treats them in the same
way.

In general, we start with a formula that is a formal specification S of program
behavior and a set of formulas that describe the context C, including assumptions
about the program and its environment. Then we try to demonstrate that for some
formal model of the implementation I, C → (I → S). If we succeed in proving this,
then we can say that I is correct with respect to S and C.

As with testing, failed proofs can serve diagnostic purposes. “Why can’t I prove
it” is sometimes answered, “because I need more information” or perhaps “because
it is wrong.” Either of these answers can lead us to discover errors before the error
manifests itself at runtime.

60 V.L. WINTER ET AL.

A recent example of the use of theorem provers in software development is the use
of the PVS [48] theorem proving system in the verification of the AAMP5 proces-
sor [50]. A portion of the instruction set and register-level transfers were described
formally, and PVS was used to demonstrate that the microcode correctly imple-
mented the specified behavior of the instruction set. During this exercise, errors were
discovered both during the specification of the system and during the proof process.

The Nqthm theorem prover [39] was used to verify the implementation of an
assembly-level programming language called Piton, which supports constructs such
as recursive subroutine call and return, stack-based parameter passing, and arrays.
Piton is implemented via a mathematical function called a downloader that accepts a
Piton program as input and produces a binary image as its output. This binary image
can be run on the FM9001 processor. The downloader function can be decomposed
into a compiler, assembler, and linker. The theorem that is proven is essentially the
following: Let Sn denote the state (e.g., the answer) that is produced from running a
well-formed Piton programp0 for n steps. Let S′

n denote the state produced by down-
loading p0 and running the resulting binary image on the FM9001 for k steps. Then
S′
n is equivalent to Sn. Here, link tables are used to properly interpret S′

n enabling the
extraction of the answer.

3.9 Model Checking

Model checking [25,38] is a technique used to test properties of programs by ver-
ifying the property using an exhaustive finite-state search of a model of a program.
Because the state space of complex programs is too large for exhaustive search, a
common approach is to abstract the program to a model and test properties of the
model. If it is possible for the model to enter a state where a specified property does
not hold, the model checker detects the error and provides a transition sequence lead-
ing to that state. Model checking is most often used to discover errors in concurrent
systems such as deadlock and data race. Testing and debugging concurrent systems
are notoriously difficult, and some recent NASA projects have suffered from defects
in concurrent systems [21,22,27,44].

A standard technique used to discover errors in software systems via model check-
ing follows the sequence given below.

• The developer determines desirable properties for a program (such as the avoid-
ance of deadlock) and specifies these in the formal language required by the
model checker.

• The developer manually abstracts the program source code to a model, attempt-
ing to be faithful to the relevant characteristics of the program.

• This model is encoded in the language of a model checker.

TRANSFORMATION-ORIENTED PROGRAMMING 61

• The model checker is run. The model checker tests the properties in each state.

• If an error is discovered, a trace explaining an execution path reaching the error
is reported by the model checker. The developer then attempts to map the error
back to the program and verify that a corresponding error is present in the actual
program. Either the model is corrected or the program is corrected, and the
process is repeated.

Model checking is based on temporal logic. Temporal logic is a logic of state
sequences. Thus, in temporal logic, formulas are not statically true: the truth-value
may change depending on the state. Model checkers have been used to identify errors
in software and protocols for concurrent, distributed, and reactive systems. Some
of the most popular model checking systems available today include SPIN, SMV,
and UPPAL. An introduction to model checking and these systems can be found in
Berard et al. [4].

3.10 Synthesis

The goal of program synthesis is to automate the process of transforming a for-
mal specification to code that is executable on a computer. Program synthesis is a
mechanism for elevating the task of programming from code generation to specifi-
cation generation [15]. An incomplete taxonomy of synthesis mechanisms includes
the following:

• Inductive synthesis: In inductive synthesis, a program is obtained from a gen-
eralization of partial specifications. Given a set of both positive and negative
examples, a program is generated that covers at least all the examples. Inductive
synthesis usually requires a great deal of interaction with the programmer [17].

• Deductive synthesis: Deductive synthesis systems constructively prove a con-
jecture based on the specification. The three steps in the synthesis are to con-
struct a formula, prove it, then extract instances of values bound to existential
variables as the program. The resulting program is a logical consequence of the
specification and the background theory. Three fundamental methods of deduc-
tive synthesis are:
– Transformational synthesis. Transformation rules are applied to program

specifications iteratively until an executable program is generated. This work
is an outgrowth of optimization techniques. REFINE is one example of a
transformational synthesis system [43].

– Schema guided synthesis. Programs are designed by successive instantiation
of templates. KIDS [49] and SPECWARE [37] are examples of this type of
system.

62 V.L. WINTER ET AL.

– Proofs as programs. Proofs are the traditional approach to deductive syn-
thesis [19,20,33,34]. A program is extracted from the proof. These systems
take a specification of the form ∀x∃y :P(x) → R(x, y) and prove a theorem
of the form ∀x :P(x) → R(x,f (x)). Here, P is some set of preconditions
on the input variables x; y is a set of outputs; R is a set of post conditions
constraining the outputs in terms of the inputs. The theorem prover constructs
the term f (x), that computes the outputs. Amphion [31] is an example of this
type of program.

4. Transformation-Oriented Programming

Transformation-oriented Programming (TOP) is a software development para-
digm that encourages viewing and manipulating a program in “terms of the whole”
rather than in “terms of its parts.” As such, this approach is well suited for an imple-
mentation phase that begins with a formal specification. This is one of the attributes
that makes TOP a candidate for high-assurance software development.

The concept of understanding change (e.g., development) with respect to the
whole is becoming widely used for commercial software development. For ex-
ample, eXtreme Programming [3] advocates that software changes be under-
taken in such a manner that a functioning product is produced each day. A sim-
ilar approach is adopted by Microsoft. “A common practice at Microsoft and
some other shrink-wrap software companies is the ‘daily build and smoke test’
process [36]. Every file is compiled, linked, and combined into an executable
program every day, and the program is then put through a ‘smoke test,’ a rela-
tively simple check to see whether the product ‘smokes’ when it runs. . . By the
time it was released, Microsoft Windows NT 3.0 consisted of 5.6 million lines
of code spread across 40,000 source files. A complete build took as many as 19
hours on several machines, but the NT development team still managed to build
every day [58]. Far from being a nuisance, the NT team attributed much of its
success on that huge project to their daily builds.”

In TOP, the basic unit effecting change is the transformational step. A term is the
data changed by a transformational step. In this context, it is helpful to think of a
term as a structured representation of data such as a parse tree corresponding to a
program string. The purpose of the term structure is to provide information (e.g.,
type information or contextual information) about data. This information typically
provides the basis for defining change. How terms can be constructed, what informa-

TRANSFORMATION-ORIENTED PROGRAMMING 63

tion their structure can contain, and support for detecting inappropriate contexts for
terms are areas currently being researched [11,12,53].

A transformation rule is a function from terms to terms. The syntax and semantics
of transformation rules are discussed in more detail in Section 5.4. In the current
section we develop some basic terminology. The application of a transformation
rule T to a term P is generally written T (P) and results in one of two possible
outcomes: (1) the application produces a transformational step, in which case P �=
T (P), or (2) the application fails to produce a transformational step,3 in which case
P = T (P).

Let P1 denote a term and T denote a transformation rule. If P1 is constructed
from other terms, it will be possible to apply T to more than one point in P1. We
choose any subterm x in P1 and apply T . This results in a transformational step that
produces a transformed term P2. It is again possible to apply T to each point in P2. In
general for a given a set of transformation rules R, and an input term P1, a graph can
be constructed reflecting all possible transformational steps. This graph describes a
rewrite relation. In the graph, nodes denote unique terms, and directed edges denote
transformational steps. A directed edge exists between Pi and Pj if and only if there
exists a transformation rule, in R, that when applied to a particular subterm in Pi

yields Pj and Pi �= Pj . It is worth noting that paths in this graph may be infinite and
either non-cyclic or cyclic. In Fig. 2, the initial term is labeled P1. The graph shows
that if the transformation rule R1 ∈ R is applied to P1, the result is P2. We label
the node P

R1
2 to indicate that P2 was derived from P1 by application of rule R1. If

instead transformation rule R2 ∈ R is applied to P1, the result is P
R2
2 . Note that in

Fig. 2, PR2R1
3 could also be labeled P

R1R2
3 .

We define a transformation sequence as a path in a rewrite relation, i.e., the se-
quential composition of one or more transformational steps. In this path, nodes other
than the initial and final nodes are referred to as intermediate forms. In practice, a
transformation sequence is realized through the controlled application of a sequence
of transformation rules to some initial term.

In TOP, software development consists of manipulating terms via transformation
sequences. We want to develop a set of transformation rules R, and define a strategy
for the application of rules in R such that the endpoint of the transformation sequence
defined by the strategy is our desired term. Strategies define how often, when, and
where transformation rules are to be applied. Metaphorically, they play the role of
a navigator within the rewrite relation. A strategy makes precise what it means to
apply a transformation rule to a term in the case where the rule is applicable in
various places.

3The ρ-calculus [11] is based on a different application semantics. Specifically, if an application of a
transformation to a term is inappropriate then the empty term (actually an empty set) is returned.

64 V.L. WINTER ET AL.

FIG. 2. A rewrite relation.

Below is an operational example of a strategy that exhaustively applies a transfor-
mation T to a term P1. Mathematically speaking, we say this strategy computes a
fixed-point of T .

Repeat
Let P1 denote the current form of the term.
Scan P1 from top to bottom and apply T to every
point in P1.

Let P2 denote the result of step 2.
Until P1 = P2

The next sections give two concrete examples of transformation-oriented ap-
proaches to problem solving. In the examples, the intent is not to focus on nota-
tion and technical detail, but rather on the spirit of transformation-oriented problem
solving.

4.1 Example

Consider the problem of translating an internally stored tree structure into a string
that can be written to a file. When a tree is represented as a string, parentheses pro-
vide a way of encoding the tree’s structure. For example, a parenthesized expression
having the form

(root subtree1 subtree2 . . . subtreen)

can be used to denote a tree having n children whose root node has the label root
and whose immediate children are described by the expressions subtree1 subtree2 . . .

subtreen, respectively. Consider a tree consisting of five nodes, A, B, C, D, and E.

TRANSFORMATION-ORIENTED PROGRAMMING 65

FIG. 3. Tree and term structure.

Node A is the root, B and C are the immediate children of A, and D and E are im-
mediate children of C. The structure of the tree as well as its term representation are
shown in Fig. 3.

For larger trees it is difficult to write the corresponding parenthesized expression
if one proceeds in a strictly left-to-right fashion. (Consider a tree with 30 nodes, for
example.) This difficulty arises because the relationship between a partial solution
and the whole solution is not immediately obvious at any given time. (See Table I.)
In contrast, if we approach the construction of the expression from the perspective
of the whole, the complexity of the problem vanishes. We proceed in a top–down
manner producing a sequence of increasingly refined expressions. We initially denote
the expression for the entire tree by the variable X1. We then examine the root and
children of X1 and use the information obtained from this analysis to construct our
first intermediate form. Suppose that the root node of X1 has the label A and that
A has two children. The expression (A X1.1 X1.2) describes this refinement. Here

TABLE I
COMPARISON OF APPROACHES

Left-to-right approach Refinement-based approach

(A X1
(A(B) (A X1.1 X1.2)

(A(B)(C (A (B) X1.2)

(A(B)(C(D) (A (B) (C X1.2.1 X1.2.2))

(A(B)(C(D)(E) (A (B) (C (D) X1.2.2))

(A(B)(C(D)(E))) (A (B) (C (D) (E)))

66 V.L. WINTER ET AL.

X1.1 and X1.2 are variables denoting the expressions corresponding to the children
of A. Parentheses are always introduced in a balanced fashion. Furthermore, the
relationship between (A X1.1 X1.2) and the initial tree is straightforward. We can
now refine any of the variables in our expression in the manner that we used to refine
X1, producing an even more complex expression that still has balanced parenthesis.
This refinement process continues until our expression is free from any variables, at
which point we have our result. Table I compares the left-to-right approach and the
refinement-based approach for our example.

4.2 Example
In this example, we consider compiling simple programs consisting of a single as-

signment statement into a sequence of RISC assembly instructions. This machine has
a large number of registers, and the instruction set includes instructions for loading
from memory to registers, storing from registers to memory, and adding the values
in registers. The instruction set is described below.

LD R1 Addr Load register R1 with the value in memory address Addr
ST Addr R1 Store the value in register R1 into memory address Addr
ADD R1 R2 R3 Store the sum of the values in registers R2 and R3 into

register R1

The following partial grammar describes a small language where a program can
be a high-level program or a low-level program. A high-level program consists of a
single assignment of an expression to an address. A low-level program is a sequence
of assembly instructions. Initially, expressions in high-level programs are either the
address of a value or a term consisting of the sum of two other expressions. However,
intermediate forms of expressions are also possible—for example, an expression may
be a tuple consisting of a register followed by a list of one or more assembly instruc-
tions. The addition tuples to our language reflects a design decision in which compi-
lation is realized by passing expressions in high-level programs through intermediate
forms containing tuples.

EXP ::= Addr |
SUM EXP EXP |
[register, assembly_seq]

PROG ::= ASSIGN Addr EXP |
assembly_seq

Our goal is to create a transformation sequence capable of rewriting terms cor-
responding to high-level programs into terms representing assembly instruction se-
quences. In order to make our discussion more concrete, let us consider the following

TRANSFORMATION-ORIENTED PROGRAMMING 67

program as input to our transformation sequence.

initial program: ASSIGN 100 SUM SUM 101 102 103

Our plan is to transform this program into assembly instructions in the fol-
lowing fashion: First, we rewrite addresses to register load instructions. Then
we rewrite each SUM to an appropriate add instruction. This step utilizes the
[register, machine_instr_list] expression. The idea is to store the results of the eval-
uation of any expression into a register and explicitly keep track of that register by
making it the first element of a tuple. For example, in the term [r1, a_seq], the value
in register r1 represents the sum computed by a_seq. And finally, when the expres-
sion has been fully processed, we rewrite the ASSIGN term to a store instruction.

In formalizing these ideas, we make the following assumptions and notational
simplifications:

1. We assume that at transformation time, the function reg() will provide the name
of an unused register. (This allows us to avoid the details of register allocation
in this presentation.) Further, we assume there are enough available registers to
hold the needed intermediate values.

2. We assume that we have a concatenation function, +, allowing us to add state-
ments to a statement list.

The following rewrites convert a statement in the abstract language into the ma-
chine instructions needed to execute the statement.

Rule 1: Addr → [z, “LD z Addr”] where z = reg()

Rule 2: SUM [reg1, stmtlist1] [reg2, stmtlist2] → where z = reg()
[z, [stmtlist1 + stmtlist2 + “ADD z reg1 reg2”]]

Rule 3: ASSIGN Addr [reg stmtlist] →
[stmtlist + “ST Addr reg”]

Transformation Rule 1 states that if we have an expression that is an address Addr,
we can replace this with a tuple consisting of a register followed by a single machine
instruction. Note that the sum computed by the machine instruction list is stored in
the register z. Transformation Rule 2 states that if we have an expression consist-
ing of a SUM followed by two tuples, each consisting of a register and a list of
statements, we replace the entire term with a tuple having a register and a list of
statements. This list of statements returned is the concatenation of the two statement
lists and an ADD instruction. Again, the newly introduced register z holds the sum
computed by the machine instruction list. Transformation Rule 3 states that if we
have a program consisting of the terminal symbol ASSIGN followed by an address
followed by a tuple, we can replace it with a list of statements.

68 V.L. WINTER ET AL.

Below is a trace highlighting of some of the intermediate forms produced when
the above transformation rules are applied using an inside-out strategy to our initial
program.

1 ASSIGN 100 SUM SUM 101 102 103
2 ASSIGN 100 SUM SUM [R3, LD R3 101][R2, LD R2 102]

[R1, LD R1 103]
3 ASSIGN 100 SUM [R4, LD R3 101 + LD R2 102 + ADD R4 R3 R2]

[R1, LD R1 103]
4 ASSIGN 100 [R5, LD R3 101 + LD R2 102 + ADD R4 R3 R2

+ LD R1 103 + ADD R5 R4 R1]
5 [LD R3 101 + LD R2 102 + ADD R4 R3 R2 + LD R1 103

+ ADD R5 R4 R1 + ST 100 R5]

Form 1 is the initial string. In a more standard notation, this could have the form
d := (a + b) + c. The terms 100,101,102, and 103 are addresses of the variables
a, b, c, and d . Form 2 is the result of applying Transformation Rule 1 to the addresses
101,102, and 103. Forms 3 and 4 result from the application of Transformation
Rule 2. Form 5 is the result of applying the last transformation. Boyle et al. [5]
describes another approach to this type of problem.

5. TOP as a Program Development Method

In Example 2 above, we demonstrated the refinement of a program from a simple
high-level language into low-level assembly code. This type of approach can gen-
eralized and used to solve the problem of transforming high-level specifications of
program behavior into lower level, executable programs. When discussing the trans-
formation of specifications, programs, and the like, we say program when referring
to any term along the transformation sequence (e.g., intermediate forms as well as
initial and final endpoints). Correctness is typically an invariant property spanning
the entire transformation sequence. Informally we say that an intermediate form of a
program is correct if it has the same semantics as the initial program. The correctness
property is the dominant influence in TOP. It requires transformational changes to be
understood with respect to the entire program. It also encourages encapsulation of
changes as well as separation of concerns.

A typical TOP development cycle begins with a (correct) formal specification,
which we will generically call a program. Then a set of transformation rules are con-
structed, and the application of these rules is guided by a strategy. In this context, we
consider a program to be a specification if it satisfies any of the following properties:

TRANSFORMATION-ORIENTED PROGRAMMING 69

1. It describes an algorithm in abstract terms (for which no compiler or interpreter
exists).

2. It describes an algorithm in a clear, but unnecessarily inefficient manner (e.g.,
an exponential time algorithm describing a problem that can be solved in poly-
nomial time).

3. It describes a non-computable function.

In contrast, we consider a program to be an implementation if it describes an ef-
ficient algorithm and is either expressed in a language for which a compiler exists
or is expressed in a language that can be directly executed (i.e., machine code) by
the targeted processor. Our goal is to define a transformation sequence that, when
applied to a specification, will produce an implementation.

It is a violation of the TOP philosophy to apply a transformation rule that pro-
duces an incorrect intermediate form that must then be repaired by later transforma-
tional steps. This requirement of only producing correct intermediate forms of pro-
grams encourages a more global perspective in which software development steps
are viewed in relation to the program as a whole. This global perspective allows
certain types of complexity to be managed in manner that would otherwise not be
possible.

5.1 Contrasting TOP with Component-Based Software
Development

The construction of a jigsaw puzzle provides a useful metaphor for contrasting
the differences between TOP development and a more traditional, component-based
approach. Fig. 4 illustrates how component-based software development might pro-
ceed.

Initially, the system is decomposed into a collection of components taking into
account an understanding of the entire system. Interfaces between components are
specified. Later, when implementing the interfaces, a component-centric perspective
is taken. The focus typically shifts to the interface requirements between compo-
nents. After the components have been developed, they must then be assembled to
produce a software system. The interfaces between components frequently change
during the course of the development as requirements change or better abstractions
are discovered. When the system design changes in this fashion, great care must
be taken to ensure that all interfaces between components are consistent and reflect
the current structural decomposition. Assuring such consistency requires a global
perspective.

70 V.L. WINTER ET AL.

(a) (b)

(c) (d)

FIG. 4. Component-based development.

(a) (b)

(c) (d)

FIG. 5. Transformation-oriented development.

TRANSFORMATION-ORIENTED PROGRAMMING 71

In contrast, TOP development strongly encourages such a global perspective, as
shown in Fig. 5. Each transformational step produces a program at a lower level
of abstraction. The product of each transformational step is a correct program. To
refactor or reconfigure interfaces requires that the transformation rules be written
with the proper perspective.

5.2 History of TOP

The seeds of transformation-oriented programming can be traced back to the
1970s where a landmark paper by Burstall and Darlington [6] outlined an approach in
which a correct but inefficient specification could be transformed (in a semi-rigorous
manner) into an efficient, albeit significantly more complex, implementation. Since
then, advances in transformation-oriented programming have been sporadic. Re-
search in this area has been triggered by several events such as discovery of new
ideas, availability of more powerful computational environments, and increasing de-
mand for highly dependable systems.

Currently, the TOP paradigm is being applied to a wide variety of problem do-
mains within software engineering including synthesis [57], reverse engineering [2,
55], and various forms of optimization [52]. The goal in synthesis is to take a pro-
gram at one level of abstraction and transform it into a program at a lower level
of abstraction (where the term “lower” refers to the conceptual distance between a
program and its binary executable). In Visser [54], a taxonomy of application ar-
eas is given in which transformation goals fall into two broad categories: translation
and rephrasing. Translation takes a source program belonging to one language (e.g.,
specification language) and transforms it into a target program belonging to another
language (e.g., a high-level programming language). A rephrasing takes a source
program belong to one language and transforms it into a target program belonging
to the same language. Given these definitions, synthesis (both refinement and com-
pilation) as well as reverse engineering falls under the category of translation, while
optimization falls under the category of rephrasing.

Reverse engineering is essentially the opposite of synthesis. Here the goal is to
raise the level of abstraction rather than lower it. Reverse engineering has been used
during software maintenance to provide specifications for legacy systems that require
new functionality, for example the ability to handle calendar years beyond 1999 (i.e.,
the Y2K problem).

The goal in optimization is to improve the time and/or space requirements that a
program needs in order to execute. Function inlining, variable inlining, and common
subexpression elimination are well-known optimization techniques that have been
implemented using transformations.

72 V.L. WINTER ET AL.

5.3 Transformation Systems General Architecture
A program transformation system is an environment that supports transformation-

oriented programming. Such an environment typically includes:

1. a component, such as a parser, capable of defining elements in the domain of
discourse (i.e., the programs we are interested in transforming);

2. a specialized transformation language containing appropriate primitives facil-
itating the development of transformation rules and strategies (We refer to pro-
grams written in this transformation language as transformation programs. The
transformation language typically includes, as primitives, various term traver-
sal operators, some form of matching, and iterators.);

3. an engine for executing transformation programs;
4. a means for displaying the results of transformation steps such as pretty-

printing the initial, intermediate, and final forms of a program; and
5. a feedback system, such as a GUI containing a debugger, for facilitating the

comprehension of transformation rules and how they are being applied by a
particular strategy.

5.4 Syntax and Semantics of Transformation Rules
When designing a transformation system a number of issues must be addressed in-

cluding the question, “What type of ‘things’ should the system transform?” Transfor-
mation systems commonly transform programs, strings, expressions, or even other
transformation rules. We consider transformations on two types of structures, ab-
stract syntax trees (ASTs) and syntax derivation trees (SDTs). ASTs can be described
by an abstract syntax, and SDTs are described by BNF grammars. When the context
is clear, we will refer to these structures as terms.

A transformation rule is a variation or extension of a rewrite rule. A rewrite rule
consists of a left-hand side, called the pattern, and a right-hand side, called the re-
placement. A rewrite operator, denoted by the symbol →, is used to connect a pattern
with a replacement. Thus rewrite rules have the form:

pattern → replacement

The purpose of the pattern is to describe a particular term or type of term that
one would like to transform. The purpose of the replacement is to define a term that
will replace the pattern. Frequently this term is based on some manipulation of the
accompanying pattern.

Patterns may contain variables. For example, we may have a rewrite rule of the
form:

P(x) → Q(b,x),

TRANSFORMATION-ORIENTED PROGRAMMING 73

where b is a constant and x is a variable. If we are given the term P(10), we can
match this to the pattern by assigning the term “10” to the variable x . The pair x/10
is called a substitution. A substitution is applied to a term by replacing variables in
the term with the pair of that variable in a substitution. The result of applying the
substitution x/10 to the term P(x) is P(10). A set of substitutions is a unifier if,
when the substitutions are applied to a pair of terms, the results are identical. When
a substitution can be applied to a pattern p so that the result matches a term t , we
say that t is an instance of p and that the rewrite rule applies to t .

Rewriting proceeds as follows. For a given term t , a determination is made to see
if t is an instance of some pattern in a rewrite rule. If t is an instance of a pattern, the
rule applies, and a corresponding instance of replacement is constructed by applying
the unifier to the replacement. The result of this is used to replace t . In the example
above, the result of applying P(x) → Q(a,x) to the term P(10) is Q(a,10).

A pattern defines a set of terms. Determining whether a rewrite rule applies to a
term t involves solving the set membership problem. Unification algorithms [35] can
be used to solve the set membership problem. Higher-order, associative-commutative
(AC) matching or unification as well as matching and unification modulo equational
theories have also been used to further increase the power of patterns to describe
sets [11]. In the case of first-order matching, the result of a successful match between
a pattern and a term t is a substitution list in which variables occurring in the pattern
are bound to subterms in t . This substitution is then applied to the replacement in
order to produce the resultant term (i.e., the term that will be substituted in place
of t). In the case of higher-order matching or AC-matching, the result will typically
be a set of substitutions, in which case the result will a set of terms.

Rewrite rules can also be annotated with conditions. In this case, they are called
conditional rewrites. A conditional rewrite is typically written as

pattern → replacement if c

where c denotes a Boolean formula. When a conditional rewrite is applied to a term
t , a unification or match is attempted between the pattern and t , if this succeeds, the
resulting substitution is applied to c after which c is evaluated. If c evaluates to true,
then the conditional rewrite rule produces a transformational step, otherwise the term
t is returned as the result of the rule application.

5.4.1 Example 3
The following example motivates the need for effective strategies for applying

transformation rules. Consider a term language defining mathematical expressions.
This language allows for integer values and expressions built from addition and mul-
tiplication. The following signature defines this language:

74 V.L. WINTER ET AL.

Signature
Sorts: Integer, Expr
Constructors

num: Integer → Expr
plus: Expr ∗ Expr → Expr
mult: Expr ∗ Expr → Expr

If we assume first-order matching will be used during rule application, the dis-
tribution of multiplication over addition can be described by the following rewrite
rules:

Rule1: mult (x, add (y, z)) → add (mult (x, y), mult (x, z))
Rule2: mult (add (y, z), x) → add (mult (y, x), mult (z, x))

Another possibility would be the following:

Rule1′: mult (x, add (y, z)) → add (mult (x, y), mult (x, z))
Rule2′: mult (x, y) → mult (y, x)

For the first set of rules, any arbitrary exhaustive rule application strategy (such
as the fixed-point strategy given in the previous section) will succeed. However, in
the second case we must be a little more careful when applying rules. The reason we
need to be careful is that Rule2′ can be applied infinitely often to a term. A possible
strategy for this second set of rules would be the following:

1. Apply Rule1′ to exhaustion.
2. Apply Rule2′ exactly once to every (sub)term.
3. If Rule1′ can be applied to any (sub)term, then goto step 1, else stop.

This example illustrates the difference between rules and strategies. Note that all
rules are correctness preserving (in the sense that they preserve the numerical value
of the expression) regardless of the strategy that is used to apply them.

6. HATS

The High-Assurance Transformation System (HATS) is a language-independent
program transformation system whose development began in the late 1990s at Sandia
National Laboratories [56]. The goal of HATS is to provide a transformation-oriented
programming environment facilitating the development of transformation rules and
strategies whose correctness can be formally verified. The following diagram (see
Fig. 6) shows the HATS architecture.

In HATS, programs belonging to a particular problem domain are defined by a
context-free grammar. Internally, HATS stores and manipulates these programs as

TRANSFORMATION-ORIENTED PROGRAMMING 75

FIG. 6. HATS architecture.

syntax derivation trees. HATS provides a special purpose language for defining trans-
formation rules and strategies. This language enables the description of the domain
language in the standard manner [1]. A grammar G = (V ,T ,P,S) is composed of
a set of non-terminal symbols V , a set of terminal symbols T , a set of productions
P , and a start symbol S ∈ V . Each production consists of a non-terminal symbol
on the left-hand side and a sequence of terminal and non-terminal symbols on the
right-hand side. A grammar derives a string by beginning with the start symbol and
repeatedly replacing a nonterminal by the right-hand side of a production whose left-
hand side matches that non-terminal. Given a context-free grammar G, the notation
A

∗�⇒β denotes a derivation belonging to G. The expression A[β] denotes the term
whose start symbol (root of the SDT) is A and whose final form (leaf nodes of the
SDT) are β .

Presently, an LR(k) parser4 supporting Extended-BNFs is used to automatically
convert an expression of the form A[β] into a completed term. In this framework,
nonterminal symbols in the grammar form the basis for defining variables that can
be instantiated during matching. In particular, subscripted instances of nonterminal
symbols of the context-free grammar are used to denote variables. For example, if
E is a nonterminal symbol in our grammar, then E1,E2,E3, . . . denote distinct vari-

4An LR(k) parser is for a grammar that can be parsed scanning left to right using k symbol look ahead.
See Aho [1], pp. 215–247 for details.

76 V.L. WINTER ET AL.

ables of type E. Variables are quantified over the sublanguage of terms which they
can derive according to the given grammar. As a result, they can only match with a
term sharing the same root symbol.

6.1 Writing Transformation Rules

In HATS, a transformation rule, or transform, is a function that is parameterized
on the term to which it is applied. At present, HATS uses a first-order matching
algorithm to determine if a transform applies to a given term. A distinguishing feature
of HATS is that the matching operation is explicit and is denoted by the symbol ==.
The syntax we will use to describe transformation rules in this chapter is5

transform rule_name(variable){match_expression → replacement}
where rule_name denotes the name of the rule, variable denotes a term variable to
which the rule will be applied, match_expression is a pattern that when matched
returns an instance of replacement. The rule is preceded by the key word trans-
form. The evaluation of a match expression produces a pair consisting of a Boolean
value and a substitution list. If the Boolean value is true, the evaluation has suc-
ceeded and the substitution is applied to the replacement, which then rewrites
the original term. If the Boolean value is false, the transform returns the input
term.

6.1.1 Example 4

In this example, we show how the rules for distributing multiplication over addi-
tion can be expressed in HATS. Because HATS is SDT-based, we must define our
language in terms of a BNF grammar (rather than a signature). The BNF and trans-
formation rules are:

factor ::= plus(factor, factor)
| mult(factor, factor)
| integer

transform Rule1 (factor0)
{ factor0 == factor[mult(factor1, plus(factor2, factor3))]

→
factor[plus(mult(factor1, factor2), mult(factor1, factor3))]

}

5The actual syntax in HATS is somewhat different. For an example of actual HATS syntax, see Win-
ter [56].

TRANSFORMATION-ORIENTED PROGRAMMING 77

transform Rule2 (factor0)
{ factor0 == factor[mult(plus(factor1, factor2), factor3))]

→
factor[plus(mult(factor1, factor3), mult(factor2, factor3))]

}

Note that both Rule1 and Rule2 are of the same type in the sense that they can only
produce transformational steps when applied to SDTs having the nonterminal symbol
factor as the root symbol.6 HATS provides the vertical bar symbol, “|”, as a composi-
tion mechanism enabling rules of the same type to be conditionally grouped.7 Using
the vertical bar, the above rules may be also be written within a single transform as
follows:

transform distribute_mult1 (factor0)
{ factor0 == factor[mult(factor1, plus(factor2, factor3))]

→
factor[plus(mult(factor1, factor2), mult(factor1, factor3))]

| factor0 == factor[mult(plus(factor1, factor2), factor3))]
→
factor[plus(mult(factor1, factor3), mult(factor2, factor3))]

}

Due to the fact that matching is explicit in HATS, match expressions can be el-
egantly combined with other match expressions or modified through Boolean con-
nectives. This has the effect of embedding application conditions within the match
expression, and this gives HATS the ability to express conditional rewrites. Utilizing
this feature of HATS enables us to alternatively express the distribution of multipli-
cation over addition as follows:

transform distribute_mult2 (factor0)
{ factor0 == factor[mult(factor1, plus(factor2, factor3))]

or
factor0 == factor[mult(plus(factor2, factor3), factor1))]
→
factor[plus(mult(factor1, factor2), mult(factor1, factor3))]

}

6In this example the point is moot since the grammar only contains a single nonterminal symbol.
7Technically speaking, the semantics of the vertical bar is similar but not equivalent to the sequential

composition of Rules 1 and 2. However, this difference does not come into play in this example.

78 V.L. WINTER ET AL.

int x; int x; int x; int x;
bool y; bool y; bool y; bool y;

x=6; INT=INT; INT=INT; INT=INT;
x=x*x; INT=INT*INT; INT=INT; INT=INT;
y=true; BOOL=BOOL; BOOL=BOOL; BOOL=BOOL;
x=y; INT=BOOL; INT=BOOL; ABORT;
y=x and y; BOOL=INT and BOOL; BOOL=ERROR_VALUE; ABORT;
Form 1 Form 2 Form 3 Form 4

FIG. 7. Simple type checking.

6.2 Dynamic Transformations

There are situations in which it is not possible to tell a priori what a transformation
rule should be, but it is possible to tell the form of the rule. In this section, we describe
one of HATS’ more advanced capabilities, rules for creating transformation rules.

When manipulating large terms, two or more data elements that are related with
respect to a particular perspective may be scattered within the structure of the term.
In the example below, we consider a Java program. We are interested in verifying the
correctness of type assignments in the program.8 In the example shown in Fig. 7, type
information derived from declarations, constants, and expressions and is propagated
across assignments.

Consider the code fragment in Form 1 of Fig. 7. If we wanted to use a transfor-
mational approach to check whether the code fragment is type correct, we might
proceed as follows. First, rewrite all occurrences of variables in statements with their
declared types and all constants to their types. This would result in the intermediate
form in Form 2. Second, apply rules that transform expressions into their types. For
example, an expression that adds two integers is of type integer. In this stage, we also
introduce a new type called ERROR_VALUE that is used to denote the type of an ex-
pression that is type incorrect. The results of these transformations are displayed in
Form 3.

Finally, construct transformation rules that capture the notion of type correctness
at the statement-level. In our example, we define an assignment statement to be type
correct if and only if the type of the variable assigned to (i.e., the left-hand side) is
identical to the type of the value to be assigned (i.e., the expression on the right-hand
side). We introduce a new type of statement called ABORT that we use to denote a
statement that is type incorrect. Form 4 shows the results of applying these transfor-
mations.

8This example was inspired by a similar example given by Visser [53].

TRANSFORMATION-ORIENTED PROGRAMMING 79

Performing simple type checking on programs in a transformational manner is
conceptually straightforward. The major problem here is how the type of an identi-
fier, which is found in the declaration, can be distributed throughout the program. We
will refer to this problem as the distributed data problem. The root of the distributed
data problem lies in the fact that one part of the program (e.g., the occurrence of an
identifier in an expression) needs information that occurs in another part of the pro-
gram. The syntactic distance between the declaration of an identifier and its first use
can be arbitrarily large. This makes it impossible to use standard first-order matching
to capture, within a single match, the declaration of an identifier and its first use.9

Somehow we need to achieve the transmission of data between transformation rules.
In the example above, we simply wrote transformation rules that rewrote all occur-

rences of x and y to the types INT and BOOL, respectively. That is, we “hardwired”
the type relationships within the transformation rules. These transformation rules are
straightforward, and their correctness is easily shown. However, our goal is to write
a general set of rules that is capable of type checking all programs. The distributed
data problem arises precisely because we do not know the declarations that are in the
code fragment at the time that we are writing our transformation rules.

HATS makes use of meta-transformation rules called dynamic transformation
rules. A dynamic transformation rule takes a term as input and returns a set of trans-
formation rules as its result. In contrast, a transformation rule takes a term as input
and returns a term as its output. In HATS, the basic syntax of a dynamic transforma-
tion rule is:

dynamic rule_name (variable)
{ match_expression

→
transform (variable) {match_expression → term}

}

Let us examine how the distributed data problem can be solved using dynamic
transformations. At this point, we include the BNF grammar describing our mini-
programming language.

Given the grammar in Fig. 8, a dynamic transformation that solves the distributed
data problem can be written in HATS as follows:

9If we contemplate extending the capabilities of our matching algorithm, we run into other problems like
nested scopes containing multiple declarations of the same identifier. Another possibility is to somehow
“carry” the information found in the declaration to the places in the program where the information is
needed. In an imperative or functional paradigm, parameter passing is a key mechanism that is used to
transmit information. Global variables can also be used, but it is widely accepted that these should be used
sparingly as the concept of a global variable violates referential transparency, making it more difficult to
reason about and maintain the program.

80 V.L. WINTER ET AL.

prog ::= decl_list ; stmt_list ;
decl_list ::= decl ; decl_list | decl
decl ::= type id
stmt_list ::= stmt ; stmt_list | stmt
stmt ::= assign | ABORT
assign ::= type_term = expr
expr ::= expr b_op term | term
term ::= boolean | (expr) | not(expr) | E
b_op ::= or | and
E ::= E + T | T
T ::= T * F | F
F ::= (expr) | int | type_term
type_term ::= type | id
id ::= ident
type ::= type_name
int ::= integer_value
boolean ::= boolean_value

FIG. 8. BNF grammar of mini-programming language.

dynamic distribute_type_info (decl0)
{ decl0 == decl[type1 id1]

→
transform (type_term0)

{ type_term0 == type_term[id1] → type_term[type1]}
}

When this dynamic transformation is applied to our sample program, it will pro-
duce the following sequence of (anonymous) transformation rules:

transform (type_term0) { type_term0 == type_term[x] → type_term[int]}
transform (type_term0) { type_term0 == type_term[y] → type_term[bool]}

Given these rules, we can easily transmit the type information of an identifier to
places in the program where it is needed (e.g., a fixed point application of the above
transformation rules to the statement list portion of the program). Furthermore, given
the semantics of dynamic transformations, it is easy to conclude that the distributed
data problem has been solved correctly.

7. Embedded Systems

Advances in computer technology are rapidly increasing the computational power
that can be brought to bear within embedded systems. Chip designs are now reaching

TRANSFORMATION-ORIENTED PROGRAMMING 81

the point where the computational power they provide makes it possible to include
dependability as a primary design objective, which in turn has opened the door for
the consideration of such systems in high-consequence applications. The bottleneck
facing high-consequence embedded system developers is their ability to provide suf-
ficient evidence that an embedded design satisfies a given set of stringent depend-
ability requirements.

Embedded systems are being developed to solve increasingly complex problems.
For practical reasons, designers must give serious consideration to incorporating or
leveraging existing research results and technologies such as robust programming
languages and COTS products. When this is done judiciously, it becomes possible to
develop dependable systems within reasonable time frames and cost constraints.

In this section we consider the adaptation of the Java Virtual Machine (JVM) to a
particular class of embedded system designs. The specification of the JVM provides
it with the ability to dynamically load and link classfiles during execution. This fea-
ture enables an application to begin execution before all of its classfiles have been
loaded. Such eager execution is highly beneficial for applications having classfiles
distributed across the Internet. However, the price that must be paid for this func-
tionality is that many attributes of an application which are typically considered to
be static (i.e., they can be resolved at compile-time) are now dynamic (i.e., their
resolution must occur at runtime).

In many embedded applications, the eager execution capability provided by the
JVM is not useful or even desirable. For example, downloading classfiles over the
Internet during execution may present an unacceptable risk for a high-consequence
application. Thus, the design for such an embedded system allows for the (more
traditional) separation of the static and dynamic aspects of the JVM. As shown in
Fig. 9, the goal of the classloader (the static portion of the JVM) is to take a set of
classfiles as input and output an intermediate form in which all static aspects of the
classfiles have be resolved.

Because the goal of the classloader is to manipulate a formally defined input (i.e.,
a set of classfiles), the problem is an ideal candidate for TOP. Furthermore, due to
the size of the input space, testing, when used exclusively, is not an effective method
for providing strong evidence in the correctness of the classloader. Thus, in order to
achieve high-assurance other forms of evidence must be provided.

In this section, we demonstrate how program transformation can be used to pos-
itively impact an embedded system design having the architecture described above.
In particular, we describe how the static functionality of the Java Virtual Machine
(JVM) can be realized through TOP.

82 V.L. WINTER ET AL.

FIG. 9. Partitioning the JVM.

7.1 The SSP Project

At Sandia National Laboratories, an effort is underway to develop a system called
the Sandia Secure Processor (SSP). This system consists of the SSP-classloader
function that is implemented in software and the SSP-runtime function that is im-
plemented in hardware. The intent is to develop a general-purpose computational in-
frastructure suitable for use in high-consequence embedded systems. Because of this,
considerable resources are dedicated to providing strong evidence that all aspects of
the SSP, both the classloader and the runtime, have been designed and implemented
correctly.

In typical stand-alone embedded applications, all classes can be made available to
the JVM before there is a need to invoke the application’s main method. Because of
this, loading, verification, most of preparation, and resolution can be done statically.
The SSP has been suitably designed to enable a clean separation of the static and
dynamic aspects of the preparation step thereby allowing the static portion to be
shifted to the classloader and the dynamic portion to be shifted to the runtime.

The SSP is based on the JVM with three significant restrictions. First, threads
are not supported. Second, strings and real numbers are not supported. Finally, dy-
namic loading is not supported. The classloader completes execution before the SSP
runtime begins. This separation allows the development of a microprocessor imple-
menting only the runtime function of the SSP, which results in a reduction of the size

TRANSFORMATION-ORIENTED PROGRAMMING 83

FIG. 10. Transforming classfiles into a ROM image.

of the microprocessor gate count, a reduction in microprocessor complexity, and an
increase in execution speed.

7.2 The SSP-classloader

The specification of the JVM states that classes should be made available to a
running program via a loading and linking sequence. The loading step consists of
importing a classfile into the JVM. A classfile is the binary form of a class and is
typically generated by a Java compiler. The linking phase can be broken down into
three steps: (1) verification, (2) preparation, and (3) resolution. Verification ensures
that a class is well formed. Preparation involves allocating the appropriate amounts
of memory for classes and objects and assigning default values to these memory loca-
tions. Resolution is the act of transforming symbolic references into direct references
with respect to a given hardware architecture.

The job of the SSP-classloader is to correctly translate Java classfiles into a form
suitable for execution by the SSP-runtime. This translation produces an intermediate
form that we call a ROM image (Fig. 10), and concerns itself with many issues such
as:

1. Resolving symbolic references to physical addresses or direct and indirect off-
sets. This resolution is intimately linked to the architecture of the hardware.10

2. Correctly capturing the inheritance semantics of Java for applications consist-
ing of multiple classfiles.

3. Providing suitable information for method invocation and return.
4. Constructing method tables.

The correctness of the classloader is the attribute that is of primary importance.
Other attributes such as spatial and temporal efficiency are a distant second. Given

10One of the unique aspects of this project has been the close relationship between the classloader de-
velopment team and the SSP development team. Both teams have frequent contact and are willing to
negotiate design complexity issues in favor of increasing the analyzability of the overall system.

84 V.L. WINTER ET AL.

these constraints, program transformation provides a technology well suited for re-
alizing the functionality of the classloader in an offline manner. While it is true that
a more efficient implementation of the classloader can be constructed, for example,
by simply implementing the SSP-classloader in C, the verification of such a class-
loader would undoubtedly be intractable. In contrast, program transformation lays
the groundwork that provides the possibility of formally verifying the correctness of
the classloader.

7.2.1 The SSP-runtime

The SSP-runtime is the hardware component of the SSP. It is charged with the
responsibility of correctly executing bytecodes as well as handling any runtime re-
quirements, such as exceptions, that result from their execution. The execution of the
SSP with a given ROM image should produce the same behavior as the execution of
a correct JVM implementation given the corresponding set of class files. This can be
stated more precisely as follows:

• Let App denote the set of classfiles in a Java application.

• Let SSP-classloader and SSP-runtime denote the classloader and runtime func-
tions of the SSP.

• Let JVM denote a Java Virtual Machine.

• Let JVM(App) denote the execution of App by JVM.

• Then SSP-runtime(SSP-classloader(App)) = JVM(App).

Below is a partial list of requirements the SSP-runtime design should satisfy:

1. There must be the option of building the processor using radiation-hardened
technology for military applications.

2. An open-source for the system must be available allowing detailed design
analysis and testing of all aspects of the system down to the gate level.

3. Certification evidence should be provided by formal mathematical proofs of
correctness to the extent possible, and strongly convincing evidence must be
provided in all other cases where mathematical proofs have not been achieved.

4. A security policy must be strictly enforced ensuring that any program is either
rejected as incorrect by compile-time or run-time checks, or its behavior must
be understandable by reasoning based entirely on the language semantics, in-
dependent of the implementation. In particular, no violation of this policy may
be permitted regardless of whether it results from an inadvertent error or a
malevolent attack.

5. The processor should support an I/O interface such that the impact of I/O on
computation is separated to as large an extent as possible. For example, I/O

TRANSFORMATION-ORIENTED PROGRAMMING 85

FIG. 11. 8031 system.

implementation via interrupts may dramatically impact computation time and
is thus a poor design choice.

6. The processor should be compatible with Java technology (e.g., development
environments, compilers, and byte-code verifiers).

At Sandia National Laboratories, an initial version of the SSP-runtime has been
designed in VHDL. All indications are that it will be less than 40K gates and capable
of operating near 75 MHz. Most importantly however is that the simplifications have
reduced by at least an order of magnitude the number of test vectors required to fully
verify the correct operation of the digital logic.

Current plans for fabrication are to use the design as a processor core in a system-
on-a-chip that is based on a previously designed system. The system, shown in
Fig. 11, was fabricated in CMOS6 technology and used a core based on Intel’s 8031.
The total number of gates in that system was approximately 120 K gates, of which the
processor core consumed roughly 25 K gates. The total die size was 378 × 347 mils,
and was packaged in a 208 BGA ceramic package.

The core logic of the new VHDL design synthesizes to approximately 37 K gates.
The radiation hardened CMOS6R process will be used for initial fabrication. Tuning
it for the desired radiation hardness characteristics in that technology will allow a
maximum clock rate of 35 MHz. It is still unclear the number of bond pads that

86 V.L. WINTER ET AL.

will be required as the testing methodology for the die is still being developed. It is
expected that enhancements made to the surrounding logic coupled with a number
of static memories to be included on the die would yield a final equivalent number
of gates that approaches 200 K gates.

A second-generation part is intended to target the Silicon On Insulator (SOI) tech-
nology. Its smaller geometry will allow for the resultant maximum clock rate of
50 MHz.

7.3 A Transformation-Based Classloader
In this section we describe a TOP solution to the classloader problem. As a pre-

condition we assume that classfiles can be represented by terms according to a given
grammar description. The structure of these classfile terms closely matches the struc-
ture of classfiles as described in the JVM specification [30]. However, there are a few
differences: (1) constant pool entries are explicitly indexed, (2) constant pool entries
are modified so that they have a more homogeneous structure, and (3) constant pool
indexes throughout the classfile are also correspondingly altered except for indexes
that occur within bytecodes (e.g., checkcast, getfield). These alterations will be dis-
cussed in more detail in the following sections. The important point to remember is
that the classfile is translated to a term (i.e., a parse tree) whose structure is similar,
but not identical, to the term structure described in the JVM specification.

Under these conditions, the goal is to develop a set of transformation rules that
when guided by an appropriate strategy will transform a collection of classfiles be-
longing to a Java application into a ROM image. A prototype transformation-based
classloader has been implemented and the lessons learned have been used to extend
and enhance the capabilities of our transformation system.

It is difficult to construct a suitable term language that describes the structure of
Java classfiles, the structure of the ROM Image, and necessary intermediate forms.
The capabilities of the transformation system (e.g., higher-order matching, AC-
unification, dynamic transformations) as well as the transformational approach envi-
sioned by the development team affect the design of the intermediate forms needed.
There are many aspects that come into play here such as how the system matches
terms, constructs replacement terms, as well as controls the application of transfor-
mation rules. One of the areas that we are actively researching is the application
of various software engineering techniques such as UML class diagrams and OO
analysis to help us in the construction of term languages [12].

7.3.1 Constant Pool Resolution
We will use the term resolution to refer to the various translations needed to con-

vert a set of classfiles into a ROM image. Classfiles are assumed to come from trusted

TRANSFORMATION-ORIENTED PROGRAMMING 87

sources and are loaded offline. Thus, much of the information contained in a classfile
can be discarded. The ROM image of a classfile consists predominantly of a constant
pool and method areas.

The heart of resolution performed by the classloader is the construction of the
ROM image constant pool. For a given classfile, constant pool resolution is accom-
plished by transforming the classfile through a sequence of canonical forms, each
of which has some abstract property that can be utilized by a later transformational
stage. The following canonical forms are used.

Canonical Form 1: Removal of indirection. A useful intermediate form when cre-
ating a ROM image is to remove all indirection in the constant pool. Initially,
various types of information within a Java classfile are expressed as indexes into
the constant pool. For example, bytecodes within methods can have constant pool
indexes as arguments, and the name and type of a field element are expressed
in terms of constant pool indexes. Furthermore, constant pools themselves store
much of their information internally through indirection. For example, a class
element entry contains a name_index rather than the name of the class. The
constant pool entry at name_index is a string (i.e., a constant_utf8_info
entry) whose value is the name of the class.

Canonical Form 2: Relevant constant pool construction. Since the SSP does not
support Java string types, the string entries serve no useful purpose. Thus, con-
stant_utf8_info and constant_name_and_type_info entries can be
removed. We call the form that remains the relevant constant pool.

Canonical Form 3: Offset indexing. In this form, an offset is computed for each
relevant constant pool entry. The reason for this is that the SSP accesses constant
pool entries via offsets rather than abstract indexes. In contrast, Java classfiles
access constant pool entries via abstract indexes. The difference between an offset
and an abstract index is that an offset allows entries to have varying sizes (e.g., a
2 word entry versus a 1 word entry) while an abstract index considers all entries
to have equal size.

Canonical Form 4: Resolution of fields. All field entries must be resolved either
to absolute addresses (for static fields) or to offsets (for instance fields). Both of
these resolutions require global information. For example, the absolute address
of a static field depends on how many such addresses have been assigned during
the resolution of other constant pools. The assignment of offsets to instance fields
requires knowledge of where within the inheritance hierarchy this field declaration
falls.

Canonical Form 5: Resolution of classes. Resolved class entries consist of an ad-
dress to the class’s method area structure and the object size for that class (e.g.,
how many instance fields an object will have).

88 V.L. WINTER ET AL.

Canonical Form 6: Resolution of methods. Java supports three types of methods:
virtual, static, and special. Within the ROM image, resolved constant pool en-
tries for static and special methods occupy two words of memory and contain
the following information: (1) the memory size of the method’s local variables,
(2) the memory size of the methods parameters, (3) the location of the start of the
method’s bytecodes, and (4) the address of the constant pool structure associated
with the method. In this chapter, we make the simplification that a virtual method
element also occupies two words of memory. In the actual ROM image for the
SSP, a virtual method occupies only one word.

The following sections describe in detail how transformations are used to real-
ize the constant pool resolution steps for removal of indirection, construction of a
relevant constant pool, and offset indexing.

7.4 Removal of Indirection

In this section we begin with a concrete example that shows how indirection can
be removed from the entries in a constant pool that has been modified to improve its
readability by humans. (See Appendices A, B, and C for a more complete example).
With respect to an SSP constant pool, we have taken some liberties with how we
present constant pool data. For example, we assume that abstract indexes for the
constant pool have been made explicit.

Consider the following constant pool entries describing the field x of type integer
belonging the to the class animal, shown in Fig. 12. This constant pool has six entries.
Entry 4 in the table that describes x. This entry contains two pieces of information:
the class_index, which leads to the class, and the name_and_type index,
which leads to the name and type of the variable. The class_index refers to
the second entry in the constant pool. This entry contains the index of a constant
pool entry that contains a class name, namely the first entry. The first entry is a
constant string of type constant_utf8_info and contains the string animal.
The name_and_type_index of entry 4, through double indirection, arrive at the
variable name x and the type I, contained in the final two table entries shown here.

The first task is to remove one level of indirection in this table. For example, we
can take the name_index in the second entry and replace it with the value ani-
mal. The type of the entry in the constant pool changes. For example, the second
entry should have type constant_utf8_info after the index is replaced by the
string value. In the following tables, we keep the original type names and infer the
actual type from the context. The removal of one level of indirection from each con-
stant pool entry yields the table shown in Fig. 13.

The removal of one more level of indirection yields the table shown in Fig. 14.

TRANSFORMATION-ORIENTED PROGRAMMING 89

Index Original type Contents
1 constant_utf8_info animal
2 constant_class_info name_index = 1
3 constant_name_and_type_info name_index = 5

descriptor_index = 6
4 constant_fieldref_info class_index = 2

name_and_type_index = 3
5 constant_utf8_info x
6 constant_utf8_info I

FIG. 12. Unresolved constant pool entries.

Index Original type Contents
1 constant_utf8_info animal
2 constant_class_info animal
3 constant_name_and_type_info x

I
4 constant_fieldref_info class_index = 1

name_index = 5
descriptor_index = 6

5 constant_utf8_info x
6 constant_utf8_info I

FIG. 13. Partially resolved constant pool entries.

Index Original type Contents
1 constant_utf8_info animal
2 constant_class_info animal
3 constant_name_and_type_info x

I
4 constant_fieldref_info animal

x
I

5 constant_utf8_info x
6 constant_utf8_info I

FIG. 14. Resolved constant pool entries.

In order to put a classfile in Canonical Form 1, we need to construct transformation
rules that perform the operations shown above. We begin by considering how the
removal of indirection can be expressed for constant-pool-like structures where each

90 V.L. WINTER ET AL.

entry is either a data element or an index. Let CP denote an array corresponding to
our constant pool. Abstractly, the removal of one level of indirection from an entry
k would be achieved by simply replacing the current value of entry k (say, an index)
with the entry in CP that is indexed by entry k. Transformationally this concept can
be expressed in a rewrite rule-like style as:

CP[k] → CP[CP[k]] when CP[k] is an index

More concretely, let us assume that CP is denoted by a list of tuples of the form:
(index, data), where the first element of the tuple denotes the position of the tuple in
the list, and data may be an index or a string (e.g., a utf8). For example, suppose we
were given a constant pool called CP with the following form:

(1, 3)
(2, 4)
(3, “hello”)
(4, “world”)

The following dynamic transformation rule captures the removal of indirection
concept.

dynamic remove_indirection (entry1)
{entry1 == entry[(index1, data1)]
→
transform (entry2) {entry2 == entry[(index2, index1)]

→ entry[(index2, data1)]}
}

This dynamic transformation rule, when instantiated with respect to a particular value
for entry1, will create a transformation rule that rewrites indirect references to entry1

with the actual data corresponding to the reference. If we apply the above dynamic
transformation rule to CP, the system will (internally) generate the following set of
transformation rules, one rule for each entry in CP:

transform (entry2) { entry2 == entry[(index2, 1)] → entry[(index2, 3)]}
transform (entry2) { entry2 == entry[(index2, 2)] → entry[(index2, 4)]}
transform (entry2) { entry2 == entry[(index2, 3)]

→ entry[(index2, “hello”)]}
transform (entry2) { entry2 == entry[(index2, 4)]

→ entry[(index2, “world”)]}

If we now apply the above transformation rules to CP we will get:

TRANSFORMATION-ORIENTED PROGRAMMING 91

(1, “hello”)
(2, “world”)
(3, “hello”)
(4, “world”)

Because the first two transformation rules above are never applied, one might con-
clude that they are not needed. In general, this is not the case. The reason the rules did
not apply is because the level of indirection in the example given was only one level
deep. Consider the addition of (5,1) and (6,2) to CP. The dynamic transformation
rule generates two additional rules:

transform (entry2) { entry2 == entry[(index2, 5)] → entry[(index2, 1)]}
transform (entry2) { entry2 == entry[(index2, 6)] → entry[(index2, 2)]}

When this set of six rules is applied to the new CP, the last two rules are not used,
but the first two are used. In general, it is not possible to determine in advance which
rules will be applied.

This example demonstrates how the removal of indirection might be realized in
a transformational manner. In order for this idea to be applied to the removal-of-
indirection problem in the SSP classloader, a term language supporting suitable
intermediate classfile forms must be designed. Below is an example of a partially
completed context-free grammar describing such a term language. The grammar
fragment below is intentionally ambiguous. HATS can parse such grammars so long
as the transformation rules themselves do not define any terms in an ambiguous man-
ner.

ClassFile ::= magic
minor_version
major_version
constant_pool_count
constant_pool
access_flags
this_class
super_class
interface_count
interfaces
fields_count
fields
methods_count
methods
attributes_count
attributes

92 V.L. WINTER ET AL.

constant_pool ::= cp_info_list
cp_info_list ::= cp_info cp_info_list | () the () denotes the ε-production
cp_info ::= access base_entry | base_entry
access ::= index | offset index

base_entry ::= constant_class_info
| constant_utf8_info
| constant_fieldref_info
| constant_methodref_info
| constant_name_and_type_info
| constant_integer_info

constant_name_and_type_info ::= info2
constant_fieldref_info ::= info2
constant_methodref_info ::= info2
constant_class_info ::= info1
constant_integer_info ::= bytes
constant_utf8_info ::= info1

info1 ::= index | utf8
info2 ::= index | class name_and_type | name descriptor
class ::= name
name ::= info1
name_and_type ::= info2
descriptor ::= info1

This is similar to the structure of classfiles specified in the JVM specification [30].
The major differences are:

1. a constant pool entry can be a base entry, or it can be a base entry preceded by
access data (e.g., an index);

2. access data can be an abstract index (as defined by in JVM specification) or an
offset address and an abstract index;

3. entities such as name, class, and descriptor are of type info1 and the
name_and_type entry is of type info2;

4. info1 can be either an index or a utf8 value; and
5. info2 can be an (a) index, (b) a class and name_type, or (c) a name

and descriptor.

While the construction of the term language shown above is not particularly com-
plex, the structure and abstractions of such a grammar can profoundly influence how
the developer thinks and expresses transformational ideas, both at the rule level and
the strategy level. Grammars define how information can be represented. The nonter-

TRANSFORMATION-ORIENTED PROGRAMMING 93

FIG. 15. Parse trees for constant pool entries.

minal symbols in a well-designed grammar describe important semantic concepts in
the language. Similarly, important relationships and groupings between concepts can
also be captured. We believe that it is well worth the effort to construct grammars in
which the right semantic relationships are elegantly captured at the syntactic level.

In order to help us design a transformation strategy for removing indirection, let
us look at the structure of some constant pool entries. Figs. 15 and 16 show the parse
trees (i.e., terms) that describe five types of constant pool entries: uft8 entries,
class entries, field entries, method entries, and name_and_type entries.

Each constant pool entry type is ultimately defined with respect to either an
info1 or an info2 element. This is an important structural design decision that
permits writing transformation rules that rewrite info1 and info2. To see how
this might be done, let us now look more closely at the structure of info1 and
info2 shown in Fig. 17.

As indicated by the grammar, info1 can be either an index or a utf8 value.
Similarly, info2 can be an index, a name and descriptor, or a class
followed a name_and_type value. In turn, name, descriptor, classes,
and name_and_type are all defined in terms of info1. Given these struc-
tural relationships, we can resolve indirection by: (1) rewriting all info2 in-
dex terms to an info2 name and descriptor term or to an info2 class
and name_and_type term; and (2) rewriting all info1 index terms to info1
utft8 terms. Such rewriting will remove all info1 and info2 indexes.

94 V.L. WINTER ET AL.

FIG. 16. Detailed parse tree of dual index entry.

FIG. 17. The structure of info1 and info2.

Figs. 18 and 19 show how this approach would resolve a constant_method-
ref_info element.

We need to construct transformation rules that rewrite info2 and info1 indexes
to their proper non-index terms. Notice that a class index references a class
entry, and a class entry is an index to a utf8 element. Thus, we have two levels
of indirection in this case. The dynamic transformation rule shown below constructs
transformation rules that resolve both types of indirection occurring in info1 terms.

TRANSFORMATION-ORIENTED PROGRAMMING 95

FIG. 18. Resolution of info2.

This dynamic transformation also constructs transformation rules that resolve the
indirection that arises in info2 terms.

dynamic resolve_info (cp_info0)
{ (* this section constructs transformation rules for info1 indexes *)

(cp_info0 == cp_info[index1 constant_utf8_info1]
and
constant_utf8_info1 == constant_utf8_info[info11]

)
or

(cp_info0 == cp_info[index1 constant_class_info1]
and
constant_class_info1 == constant_class_info[info11]

)
→

transform (info10) {info10 == info1[index1] → info11 }
|

(* this section constructs transformation rules for info2 indexes *)
cp_info0 == cp_info[index1 constant_name_and_type_info1]

96 V.L. WINTER ET AL.

FIG. 19. Resolution of info1.

and
constant_name_and_type_info1 == constant_name_and_type_info[info21]

→
transform (info20) {info20 == info2[index1] → info21 }

}

A feature of HATS seen in the above transformation rule is that match expressions
can be disjunctions of other match expressions. Disjunctions come into play when
information is common across the replacement of a number of transformation rules.
In such cases, match expressions can be factored out of multiple rules and formed
into a disjunction. For example, consider n rules having distinct match expressions
but producing the same replacement term. Without the ability to express disjunction
one would have to write n distinct rules:

Rule 1: match_expr_1 → X
Rule 2: match_expr_2 → X
. . .
Rule n: match_expr_n → X

TRANSFORMATION-ORIENTED PROGRAMMING 97

However, with disjunction, these rules can be factored into a single rule:

Rule 1: match_expr_1 or match_expr_2 or . . . or match_expr_n → X

The dynamic transformation, resolve_info, when applied to a classfile, will create
the set of transformation rules, T 1, needed for removal of indirection. What remains
is for these rules to be applied by an appropriate strategy. Recall that our goal is
to remove all indirection (i.e., all indexes) through the entire classfile. Obviously
a single pass is not sufficient; thus, an exhaustive application strategy is used. The
transformation rule shown below defines a strategy that is capable of removing the
indirection within classfiles.

In the resolve strategy, the expression eval(post_order, resolve_info, ClassFile0)
applies the dynamic rule resolve_info in order to produce a set of transformation
rules which can then be applied to the entire classfile in order to remove indirection.

The transformation rule below defines a strategy for applying the resolve rule.

transform resolve (ClassFile0)
{ ClassFile1 == fix(post_order, ClassFile0,

eval(post_order, resolve_info, ClassFile0))
→
ClassFile1

}

The current version of HATS provides three universal iteration operators: first,
once, and fix. All iterators take three arguments: (1) the order that a term is to be
traversed (pre-order or post-order), (2) the term to be traversed, and (3) the trans-
formation rules to be attempted at every point in the traversal. The first operator
traverses the term in the order specified and continues until the transformation
rule is successfully applied for the first time. If the rule does not apply at all
then when first reaches the end of its traversal it returns the original term (i.e.,
it leaves the input term unaltered). The once operator traverses the term in the
order specified and attempts to apply the transformation rule to every point in the
term. When the end of the traversal is reached, the resulting term is returned. And
finally, the fix operator continues to traverse the term in the order specified until
the transformation rule can no longer be applied. Note that this may require mul-
tiple traversals and can continue indefinitely in cases where the transformation
rule is non-terminating.
Presently, the concept of a strategy and how it can be defined within HATS is
undergoing a major revision, both at the theoretical level as well as the nota-
tional level. Our intention is to provide the user with more general capabilities

98 V.L. WINTER ET AL.

for defining general strategies such as the recursive closures in Stratego as well
as some of the concepts defined in the Rho-calculus.

It is worth mentioning that constant pool indexes throughout the entire classfile
will be resolved using the above strategy. With the exception of indexes that occur
within bytecodes (e.g., checkcast, getfield), a global resolution is exactly
what our design calls for. In the approach presented, index resolution will not apply
within the context of bytecodes because terms describing indexes within bytecodes
differ from terms describing indexes in the remainder of the classfile. This restriction
was stated at the beginning of the section. It is relatively easy to relax this restriction
and require the selection of index resolution to be controlled by the strategy.

7.5 Relevant Constant Pool Construction

Continuing on with our example, we now show the relevant constant pool can be
extracted from the present form of the constant pool. Recall that the constant pool
with indirection removed has the form shown in Fig. 20.

The constant pool with only relevant entries is shown in Fig. 21.
An important observation at this point is that the abstract indexes (i.e., 2 and 4) no

longer correspond to the position of the entry in the constant pool. This however does
not present a problem because at the beginning of this example the abstract indexes
were made explicit (i.e., part of the constant pool entry).

Here, the goal is to discard allconstant_utf8_info and constant_name_
and_type_info entries. The transformation given below applies to all constant
pool lists in which the first element is either a constant_utf8_info or con-
stant_name_and_type_info. A successful application of the transformation
will result in this first element being dropped from the list. A single traversal of the

Index Original type Contents
1 constant_utf8_info animal
2 constant_class_info animal
3 constant_name_and_type_info x

I
4 constant_fieldref_info animal

x
I

5 constant_utf8_info x
6 constant_utf8_info I

FIG. 20. Fully populated constant pool.

TRANSFORMATION-ORIENTED PROGRAMMING 99

Index Original type Contents
1
2 constant_class_info animal
3
4 constant_fieldref_info animal

x
I

5
6

FIG. 21. Relevant entries after resolution.

constant pool will produce the relevant constant pool. Note that because we have de-
fined a constant pool entry list (i.e., cp_info_list) as a list whose last element is
the empty string, we know that the final element of a cp_info_list will always
be the empty string and therefore will not need to be removed.

transform relevant_cp (cp_info_list0)
{ cp_info_list0 == cp_info_list[index1 constant_utf8_info1 cp_info_list1]

or
cp_info_list0 == cp_info_list[index1 constant_name_and_type_info1

cp_info_list1]
→
cp_info_list1

}
transform relevant (ClassFile0)
{ ClassFile1 == once(post_order, ClassFile0, relevant_cp) → ClassFile1 }

7.6 Offset Indexing

We continue with our example showing the result of adding offset information to
our relevant constant pool. In this example, the offset for the first relevant constant
pool entry is 4 words (i.e., the words at offset 0–3 in the constant pool are reserved
for some other information). Furthermore, we are given that the class entry has a
size of one word; hence the constant_fieldref_info entry has an offset of 5
words as shown in Fig. 22.

Expressing how offsets should be inserted into constant pool entries is simple,
though the notation is somewhat verbose. Our approach is to define two transforma-
tion rules that accomplish simple rewrites and a third, strategic rule that controls their
application. The initial_offset rule inserts, in the first element of the constant pool, an

100 V.L. WINTER ET AL.

Offset index Original index Original type Contents
0004 2 constant_class_info animal
0005 4 constant_fieldref_info animal x I

FIG. 22. Relevant constant pool entries with physical offsets.

initial offset whose value is obtained from the function call baseOffset(). The value
of this base offset is defined by the specification of the structure of the ROM image.
The percolate_offset rule adjusts and “percolates” the offset through the remaining
entries in the constant pool according to the size of each entry.

transform initial_offset (cp_info0)
{ cp_info0 == cp_info[index1 base_entry1]

and
(* the function baseOffset is a library function *)

{ offset1 := baseOffset() }
→
cp_info[offset1 index1 base_entry1]

}

Note that the initial_offset transformation makes use of a library call to the func-
tion baseOffset denoted by the expression:

{ offset1 := baseOffset() }

Such functionality, supported by HATS, falls outside the realm of pure rewrite-based
transformation. Nevertheless, it can be successfully applied in cases where one is
willing to assume that the library function used is correct. A classic example where
such functionality is highly beneficial is in situations (such as the upcoming trans-
formation) where one wants to perform mathematical operations (e.g., addition and
division). While it is possible to write transformation rules capable of performing
such mathematical operations, doing this does not increase the understandability or
correctness of the program.

The second transformation rule, percolate_offset, applies to adjacent constant pool
entries where the first entry has an offset and the second entry does not. In such a
situation, the offset for the second entry should be the value of the first offset plus 1
or 2 depending on the type of the first base_entry. If the first base_entry denotes a
class, an integer, or a fieldref, then the offset for the second entry is equal to the offset
for the first entry plus 1; otherwise, it is equal to the offset for the first entry plus 2.

transform percolate_offset (cp_info_list0)
{ cp_info_list0 == cp_info_list[offset1 index1 base_entry1

index2 base_entry2 cp_info_list1]

TRANSFORMATION-ORIENTED PROGRAMMING 101

and
(base_entry1 == base_entry[constant_class_info1] or

base_entry1 == base_entry[constant_integer_info1] or
base_entry1 == base_entry[constant_fieldref_info1])

and
(* the function u4_plus1 is a library function *)
{ offset2 := u4_plus1(offset1) }

→
cp_info_list[offset1 index1 base_entry1

offset2 index2 base_entry2 cp_info_list1]
| (* conclude base_entry1 is a 2 word entry *)

cp_info_list0 == cp_info_list[offset1 index1 base_entry1

index2 base_entry2 cp_info_list1]
and

(* the function u4_plus2 is a library function *)
{ offset2 := u4_plus2(offset1) }

→
cp_info_list[offset1 index1 base_entry1

offset2 index2 base_entry2 cp_info_list1]
}

The strategic transformation rule, calculate_offsets, is responsible for applying the
initial_offset rule to the first entry in the constant pool followed by an application of
the percolate_offset rule to every pair of constant pool entries beginning with the first
two entries and proceeding in an ordered fashion from there. The application of both
of the above transformation rules is controlled by the strategy calculate_offsets. In
this rule, the word first indicates that the rule is to be applied to the first match only.
After one application succeeds, HATS discontinues its attempt to apply the rule. The
word once indicates that HATS will traverse the entire term one time, applying the
transformation everywhere it matches.

transform calculate_offsets (cp_info_list0)
{ cp_info_list1 == first(post_order, cp_info_list0, initial_offset)

and
cp_info_list2 == once(pre_order, cp_info_list1, percolate_offset)
→
cp_info_list2

}

102 V.L. WINTER ET AL.

8. Future Work: Verification

Earlier in this chapter we mentioned that one of the attractive features of TOP
is that one can provide strong evidence that the output term of a transformation
sequence is correct with respect to its input term. The ideal situation arises when
transformation rules and strategies are so simple that the correctness of all rules and
strategies can be (1) informally validated in situations where validation is considered
to constitute acceptably strong evidence, or (2) automatically verified using theorem
provers in situations where mathematical certainty constitutes strong evidence. In
this section we discuss current work towards verification of the SSP classloader.
It is our intent to complete the formal verification of the classloader in the near
future.

In a TOP paradigm, problems are solved by transformation sequences, which
are typically constructed in the following manner. First, an overall transformation-
oriented design (TOP design) is developed in which a number of canonical forms
are identified. Then an ordering of these canonical forms is determined. Finally,
transformation rules and strategies are developed. We use the term TOP imple-
mentation when referring to the transformation rules and strategies that implement
a TOP design. Because of the influence the structure of the term language can
have over a TOP implementation, it is generally advisable to develop the term lan-
guage concurrently (or iteratively) with the transformation rules and strategies when
possible.

The two objectives of verification in a TOP framework are design verification
and implementation verification. The objective of design verification is to show that
passing an input term through the various canonical forms identified in the design
produces an output term that solves the problem. The objective of implementation
verification is to show that the design is correctly implemented, i.e., that the trans-
formation rules and strategies are able to pass any input term through the various
canonical forms identified in the design.

In this section, we consider a fragment of the TOP design for the classloader.
In particular we will restrict our attention to the first three canonical forms of the
design described in Section 7.3.1. We will refer to this fragment of the design as
our partial classloader design. The partial classloader design is implemented by the
following transformation rules and strategies discussed earlier: resolve_info, resolve,
relevant_cp, relevant, initial_offset, percolate_offset, calculate_offsets.

The sequential application of resolve, relevant, and calculate_offsets to a classfile
will produce a classfile that is in Canonical Form 3. In the following sections we
sketch how one might go about verifying the correctness of the partial classloader
design as well as its implementation.

TRANSFORMATION-ORIENTED PROGRAMMING 103

8.1 Design Verification: Eval and BCE
The approach to verification described below is based on viewing the Java Virtual

Machine in terms of a semantic function that defines the meaning of each bytecode
relative to a set of classfiles and a current state. We extend this idea to a framework
in which a number of such semantic functions can be defined. In this framework,
semantic functions are linked. The functionality common between them is explicitly
identified and sharable. Our goal is to demonstrate an equivalence, modulo transfor-
mation, between the semantic function defining the JVM and the semantic function
defining the SSP.

Let Eval be a class of semantic functions that take as arguments a set of bytecode
class files C and a program state s and return as output the next program state s′. The
program state records the values in program memory (the heap, frame, and opstack),
registers, and the next bytecode instruction to be executed. Let EvalJVM ∈ Eval de-
note the semantic function that, given a set of classfiles C0 and a state, computes the
next state in accordance with the JVM specification. Similarly, let EvalSSP ∈ Eval
denote the semantic function that, given a transformed set of classfiles Cn = T (C0)

(where T denotes the transformation implementation of the classloader) and a state,
computes the next state in accordance with the SSP specification. We want to show
that these two functions with their respective inputs compute the same values. This
problem can be decomposed into a sequence of equivalences as follows. For each
(intermediate) canonical form i produced by the classloader, we define a semantic
function Evali . To show that EvalJVM(C0, s) = EvalSSP(Cn, s), we will demonstrate
that

EvalJVM(C0, s) = Eval1(C1, s) = Eval2(C2, s) = · · · = EvalSSP(Cn, s)

Decomposing EvalJVM(C0, s) = EvalSSP(Cn, s) into a set of equivalences allows the
proof to be constructed incrementally, reducing the complexity of the proof.

Let s′ = EvalJVM(C0, s) for input state s. In order for EvalJVM to correctly com-
pute s′, it must effect the actions required by the JVM specification for the particular
bytecode instruction to be executed in s. We define two sets of functions, Fa and
Fb as follows. Let Fb be the set of functions that define the semantics of Java byte-
codes. In other words, for each bytecode there exists one function in Fb defining its
semantics. Let Fa be the set of auxiliary functions that may be used by the functions
in Fb .

In the partial classloader example that we are considering, Fa = { info,access }.
The function info returns the resolved information for a constant pool index. For a
standard classfile, this function traces through the indirection and returns the actual
value required for computation. On the other hand, the function access, when given
an index into the constant pool, simply returns the corresponding constant pool entry
without tracing indirection.

104 V.L. WINTER ET AL.

In this discussion, we assume that the functions in Fb may only access the constant
pool through the functions in Fa . This means that the information associated with
an entry necessary for properly executing bytecodes can only be obtained via the
function info. Other information such as tags on constant pool entries and indexes
are not needed other than to determine the information in an entry, and hence can be
removed from Cn.

DEFINITION 1. An interpretation I = Fa ∪Fb is the set of functions needed to com-
pute a successor state given a set of classfiles and an initial state.

DEFINITION 2. Let IJVM = (Fa
JVM ∪ Fb

JVM) be the interpretation corresponding to
the JVM.

DEFINITION 3. Let ISSP = (Fa
SSP ∪ Fb

SSP) be the interpretation corresponding to
the SSP.

DEFINITION 4. Let BCE be a (byte code evaluator) function that takes an interpre-
tation and produces a function EvalI ∈ Eval. In particular, EvalJVM = BCE(IJVM),
and EvalSSP = BCE(ISSP).

When defining the semantic functions EvalJVM and EvalSSP, we require that
Fb

SSP = Fb
JVM . Thus, all differences between these two semantic functions must be

localized in Fa . Therefore what must be investigated is the relationship between the
functions in Fa

JVM and Fa
SSP relative to the classloader.

Note that every function Evali in the sequence from EvalJVM to EvalSSP is para-
meterized on classfiles of a distinct type. Let Ci−1 denote a set of classfiles having
a type appropriate for Evali−1. The set of classfiles Ci appropriate for Evali is then
derived from Ci−1 via a transformation strategy Ti capable of transforming Ci−1 to
Ci . If we define Mi to be the mapping of functions in Fi−1 to the corresponding func-
tions in Fi , then in order to show that Evali−1(Ci−1, s) = Evali (Ci , s), it is necessary
to show the following:

[
BCE(Ii)

]
(s,Ci) = [

BCE
(
Mi(Ii)

)](
Ti(s,Ci)

)

which is true if

∀(
fi ∈ Fa

i−1

)∃(
fj ∈ Fa

i

)
: fj = Mi(fi),

∀(
fi ∈ Fa

i

)
: fi(Ci) = Mi(fi)

(
Ti(Ci)

)
.

From this we see that the various interpretations of BCE form the basis for for-
mally defining the meaning of the canonical forms in our design as well as all inter-
mediate forms of classfiles that are produced by the classloader. At one end of the

TRANSFORMATION-ORIENTED PROGRAMMING 105

spectrum, BCE produces a function capable of executing bytecodes with respect to
“pure” Java classfiles. At the other end of the spectrum, BCE produces a function
capable of executing bytecodes with respect to ROM image classfiles. For all inter-
pretations, the functions produced by BCE compute the same results when applied
to the appropriate classfiles. Thus, the goal of a transformation step is to produce
classfiles that preserve bytecode equivalence.

Below we sketch various interpretations of Fa = { info,access }. We represent a
constant pool as a list of constant pool entries, i.e., we abstract the constant pool to
the extent that we can focus on the semantics of resolution and ignore the tech-
nical details of data representation. Furthermore, we abstractly define a constant
pool entry as a list of data elements where the elements may be indexes or strings.
In this setting, the information associated with a constant pool entry is a list of
strings where each a string is ultimately the value of a utf8 entry. For example,
in its unresolved form, a constant_fieldref_info entry is a list of two in-
dexes (an index to a constant_class_info entry, and an index to a con-
stant_name_and_type_info entry). In contrast, the information in a resolved
constant_fieldref_info entry will be a list containing (1) a string denot-
ing the name of a class, (2) a string denoting the name of the field, and (3) a string
denoting the type of the field (i.e., the field descriptor).

Given this model of the constant pool and its entries, we now formally define
the auxiliary functions info and access. We encapsulate each interpretation of the
auxiliary functions Fa in a structure where functions within the structure can be
externally referenced using the traditional dot notation. Within a structure for a given
interpretation, we define info and access in an equational manner using a syntax
similar to the programming language ML. For the sake of readability, we pass a
minimal number of parameters to each function.11

Below we define three interpretations for info and access. While the definitions of
these interpretations is not completely formal, we hope that they are rigorous enough
to convince the reader that their complete formalization would not be particularly
difficult.

(* *)
I0:

info(Index(i)::es) = info(access(i, constant_pool)) @ info(es)
info(String(s)::es) = String(s)::info(es)
info([]) = []

11The drawback of minimizing parameters is that we must assume that certain information such as the
constant pool is globally available to auxiliary functions whenever needed. This is a small technical prob-
lem that can be easily fixed in a more complete treatment of the definitions.

106 V.L. WINTER ET AL.

access(1, entry::entry_list) = entry
access(index, entry::entry_list) = access(index-1, entry_list)
access(index, []) = undefined

(* *)
I1:

info(Index(i)::es) = I0.info(Index(i)) @ info(es)
info(String(s)::es) = String(s)::info(es)
info([]) = []

access(j, element::entry_list) = if element = (j, entry) then entry
else access(j, entry_list)

access(j, []) = I0.access(j, constant_pool)

(* *)
I2:

info(Index(i)::es) = I1.info(Index(i)) @ info(es)
info(String(s)::es) = String(s)::info(es)
info([]) = []

access(j, element::entry_list) = if element = (j, k, entry) then entry
else access(j, entry_list)

access(j, []) = I1.access(j, constant_pool)
(* *)

In interpretation I0, constant pool entries are abstractly referenced by their posi-
tion in the list, and the information associated with a constant pool entry is obtained
by resolving indexes within an entry until all that remains is a list of string values.
The interpretation I1, is stacked on top of the definition of I0. I1 assumes that con-
stant pool entries are tuples of the form (index, entry), where index is the abstract
reference of the entry and the second element is a fully resolved entry as defined in
I0. Note that if a particular element of the expected form cannot be found, the search
is repeated using the functionality defined in I0. Similarly, if the information in an
entry is not in its expected (i.e., resolved) form, a resolution call is made to the info
function in I0.

In a similar fashion, the interpretation I2, is stacked on top of I1. The interpreta-
tion I2 differs from I1 only in that I2 expects constant pool entries to be triples of
the form (offset, index, entry) where offset is the physical offset of the constant pool
entry within memory. In I2 constant pool entries are accessed by their offset rather
than their (abstract) index.

TRANSFORMATION-ORIENTED PROGRAMMING 107

In the interpretations I0, I1, and I2, if one strips away all references to previously
defined interpretations, one is left with semantic functions that are suitable for con-
stant pools that are in the appropriate canonical forms. The goal of transformation is
to produce such canonical forms. Stacking of interpretations is needed to account for
the incremental nature of transformation (intermediate forms are produced that are
not canonical). Stacking of interpretations gives a well defined semantics to interme-
diate forms.

8.2 Basis for Verifying the Partial Classloader Design

Informally, the correctness of the partial classloader design can be argued as fol-
lows:

1. The representation of information in a direct fashion in constant pool entries is
a refinement of the representation of the same information via indirection.

2. Explicit indexing enables entries to be removed from the constant pool while
preserving abstract indexing.

3. All constant pool entries that are not referenced anywhere in the classfile can
be removed from the constant pool.

4. Offsets can be computed for the remaining entries according to their specified
sizes.

Let T1, T2, and T3 respectively denote the following transformations:

1. Given a Java classfile cf , T1(cf) is a classfile in Canonical Form 1.
2. Given a classfile cf ′ in Canonical Form 1, T2(cf ′) is a classfile in Canonical

Form 2.
3. Given a classfile cf ′′ in Canonical Form 2, T3(cf ′′) is a classfile in Canonical

Form 3.

From a formal standpoint, we want to show the following:

THEOREM 5. ∀cf, state: BCE[I1](state, cf) = BCE[I2](state, T1(cf)).

The proof of this is based on the assumption that information from an constant
pool entry can only be obtained by calling the info function.

THEOREM 6. ∀cf , state: BCE[I2](state, T1(cf)) = BCE[I2](state, T2(T1(cf))).

The proof of this is based on the fact that no bytecode has an index corresponding
to entries that are not relevant.

108 V.L. WINTER ET AL.

THEOREM 7. ∀cf, state: BCE[I2](state, T1(T2((cf))) = BCE[I3](T3(T2(T1(cf)))).

The proof of this is based on the fact that the sizes of constant pool entries in the
ROM image are specified by the SSP.

8.3 Implementation Verification

In general, interpretations can be viewed as the pre- and post-conditions of trans-
formation sequences that take a term from one canonical form to the next. Given an
interpretation I1 for a canonical form CF1 and an interpretation I2 for a canonical
form CF2, one must demonstrate that the transformation rules and strategies are able
to transform any term in CF1 to a corresponding term in CF2. In this setting, the
interpretations I1 and I2 determine how terms in CF1 correspond to terms in CF2.

For example, to show that the dynamic transformation rule resolve_cp together
with the strategy resolve correctly transform an indexed classfile into canonical
form 1 (as defined in our partial classloader design) we need to show that all in-
dex data are correctly replaced by string data throughout the classfile. Informally we
argue that one can use the semantics of dynamic transformation rules to show that
resolve_cp will produce transformation rules that, when applied, correctly replace
constant pool index data found throughout the classfile with data that is presently
associated with the constant pool entry having that index. Furthermore, it can be ar-
gued that an exhaustive application of these transformations (as is done by the resolve
strategy) will remove all indirection from the constant pool.

9. Summary and Conclusion

In this chapter, we described high-consequence systems and argued that the abil-
ity to provide high assurance is one of the major risks faced in their development.
Sufficient failures of high-consequence systems have been documented to support
the allocation of resources in order to develop high-assurance systems. However, the
willingness of management to devote sufficient resources is often clouded by short-
term objectives such as return on investment. Another reason why management fails
to allocate sufficient resources stems from a perception problem. It is difficult for hu-
mans to fully comprehend extremely large or extremely small numbers such as those
used to define the reliability requirements for high-consequence systems. One might
wonder if it matters (or how much it matters) that the system built has a reliability of
1-in-108 rather than 1-in-109.

Increasing the rigor in software development leads to the construction of more
robust systems. The up-front costs associated with increased rigor often appear to

TRANSFORMATION-ORIENTED PROGRAMMING 109

be noticeably higher than the up-front costs associated with more traditional soft-
ware development practices. However, increased expenditures early in a project are
frequently rewarded by substantial savings later in the project (e.g., during the test-
ing and maintenance phases). Furthermore, when developing a family of products,
the cost of rigor can often be amortized over the product family, reducing the costs
associated with rigor further.

In order to add rigor to software development, we proposed transformation-
oriented programming (TOP) as a development paradigm. The approaches taken in
TOP are based on equational reasoning. As such TOP lays the groundwork for the
employment of formal verification to various development aspects, making TOP a
suitable candidate for high-assurance software development. In TOP, the solution of
a problem is captured by a TOP design and is realized by a TOP implementation.
Transformation-oriented designs focus on passing an artifact (e.g., a formal speci-
fication) through a number of canonical forms. Transformation rules and strategies
are realizations of transformation-oriented designs. We described in general terms
a transformation system for implementing transformation-based designs, then we
described the notation and capabilities of a specific transformation system called
HATS. The remainder of the chapter was devoted to a TOP-based design and imple-
mentation of the static functionality of the Java Virtual Machine (JVM).

Appendix A: A Small Java Program

Jim McCoy developed the example below while he was working on the SSP
project.

// animal class example for inheritance
// jamccoy 7/20/99
public class animal
{

private int Location;
protected int Feet;
protected int Position;
public static int START = 10;
public static int FORWARD = 11;
public static int BACKWARD = 12;
public static int STANDING = 11;
public static final int SITTING = 12;
public static final int LAYING = 13;

// constructors

110 V.L. WINTER ET AL.

animal()
{
Feet = 1;
Location = START;
Position = STANDING;

}
animal(int NumFeet)
{
Feet = NumFeet;
Location = START;
Position = STANDING;

}
// the default way for all animals to stand
public void stand()
{
Position = STANDING;

} // end of stand
// since Location is private even animal’s children can’t see it so we
// need a way for children to initialize it

public void setLoc(int NewLoc)
{
if (NewLoc >= −25 && NewLoc <= 25) // make sure it is safe

{
Location = NewLoc;

}
else
{
Location = –50; // otherwise put them in a known location

}
} // end of setLoc

// the default way for animals to walk
// an animal object can modify Location directly but since Location is
// private none of animal’s children can see it or modify it directly
// this method provides a common interface for everything that is like
// an animal

public void walk(int Distance, int Direction)
{
if (Position == STANDING && Feet >= 2) // make sure the conditions are

{ // correct
if (Direction == FORWARD) // and handle the different

TRANSFORMATION-ORIENTED PROGRAMMING 111

Location += Distance; // situations correctly
else if (Direction == BACKWARD)
Location –= Distance;
else
Location = START; // provide a default when things

} // aren’t the way they should be
} // end of walk

// the default way for animals to count their feet
public int countFeet()
{

return Feet;
} // end of countFeet

// the default way to find out what position an animal is in
public int getPos()
{

return Position;
} // end of getPos
} // end of animal

Appendix B: Java Classfile

Here we present the constant pool entries corresponding to the animal class in a
human-readable form.

animal
0001
java/lang/Object
0003
Location
I
Feet
Position
START
FORWARD
BACKWARD
STANDING
SITTING
ConstantValue
0000000C
LAYING

112 V.L. WINTER ET AL.

0000000D
<init>
()V
Code
0012 0013
0004 0015
0007 0006
0002 0017
0009 0006
0002 0019
0005 0006
0002 001B
000C 0006
0002 001D
0008 0006
0002 001F
LineNumberTable
LocalVariableTable
this
Lanimal;
(I)V
NumFeet
stand
setLoc
NewLoc
walk
(II)V
000A 0006
0002 002C
000B 0006
0002 002E
Distance
Direction
countFeet
()I
getPos
<clinit>
SourceFile
animal.java
FastJavac3.0

TRANSFORMATION-ORIENTED PROGRAMMING 113

Appendix C: Resolved Classfile

This is the result of the three constant pool transformation steps we discussed. The
numbers in the first column are hexadecimal offset values beginning with 4 as the
base offset. The numbers in the second column are the hexadecimal abstract indexes
that are originally used to reference constant pool entries.

0004 0002 = animal
0005 0004 = java/lang/Object
0006 000F = 0000000C
0007 0011 = 0000000D
0008 0016 = java/lang/Object <init> ()V
000A 0018 = animal Feet I
000B 001A = animal START I
000C 001C = animal Location I
000D 001E = animal STANDING I
000E 0020 = animal Position I
000F 002D = animal FORWARD I
0010 002F = animal BACKWARD I

REFERENCES

[1] Aho A., Sethi R., Ullman J., Compilers, Principles, Techniques, and Tools, Addison-
Wesley, Reading, MA, 1988.

[2] Baxter I., Mehlich M., Reverse Engineering is Reverse Forward Engineering. Working
Conference on Reverse Engineering, IEEE Press, New York, 1997.

[3] Beck K., eXtreme Programming Explained, Addison-Wesley, Boston, MA, 2000.
[4] Berard B., Bidoit M., Finkel A., Laroussinie F., Petit A., Pertucci P., Schnoebelen Ph.,

McKenzie P., Systems and Software Verification, Model-Checking Techniques and Tools,
Springer, Berlin, 2001.

[5] Boyle J., Resler R., Winter V., “Do you trust your compiler?”, IEEE Computer 32 (5)
(1999) 65–73.

[6] Burstall R., Darlington J., “A transformation system for developing recursive programs”,
Journal of the ACM 24 (1) (1977) 44–67.

[7] Butler R., Finelli G., “The infeasibility of quantifying the reliability of life-critical real-
time software”, IEEE Transactions on Software Engineering 19 (1) (1993) 3–12.

[8] Butlin R., “Ariane explosion—positive aspects”, The Risks Digest 18 (5) (1996),
http://catless.ncl.ac.uk/Risks.

[9] Caldwell J., “Formal methods technology transfer: A view from NASA”, Formal Meth-
ods in System Design 12 (1998) 125–137.

http://catless.ncl.ac.uk/Risks

114 V.L. WINTER ET AL.

[10] Chiles J., Inviting Disaster Lessons from the Edge of Technology, Harper Business, New
York, 2001.

[11] Cirstea H., Kirchner C., Introduction to the rewriting calculus, INRIA Research Report
RR-3818, December 1999.

[12] Davis J., Gacek A., Vharma R., Winter V., Constructing transformable context-free
grammars, Submitted to 3rd ACM SIGPLAN Workshop on Rule-Based Programming,
October 5, 2002.

[13] Dorner D., The Logic of Failure, Perseus Books, Cambridge, MA, 1989.
[14] Elrad T., Filman R., Bader A., “Aspect oriented programming”, Communications of the

ACM 44 (10) (2001) 29–32.
[15] Flener P., Logic Program Synthesis from Incomplete Information, Kluwer Academic

Publishers, Norwell, MA, 1995, pp. 3–53.
[16] Gannon J., Purtilo J., Zelkowitz M., Software Specification A Comparison of Formal

Methods, Ablex Publishing Company, Norwood, NJ, 1995.
[17] Genesereth M., Nilsson N., Logical Foundations of Artificial Intelligence, Morgan Kauf-

mann, Los Altos, CA, 1987.
[18] Ghezzi C., Jazayeri M., Mandrioli D., Fundamentals of Software Engineering, Prentice-

Hall, Englewood Cliffs, NJ, 1991.
[19] Green C., “Applications of theorem proving”, IJCAI 69 (1969) 219–239.
[20] Green C., “Resolution in knowledge based program synthesis”, IJCAI 79 (1979) 342–

344.
[21] Havelund K., Lowry M., Penix J., “Formal analysis of a space craft controller using

SPIN”, in: 4th International SPIN Workshop, Paris, France, November 1998.
[22] Havelund K., Lowry M., Park S., Pecheur C., Penix J., Visser W., White J., “Formal

analysis of the remote agent before and after flight”, in: Proceedings of the 5th NASA
Langley Formal Methods Workshop, Williamsburg, VA, June 2000.

[23] Hinchey M., Bowen J., Applications of Formal Methods, Prentice-Hall, London, 1995.
[24] Holloway C.M., “Why engineers should consider formal methods”, in: Proceedings of

the 16th Digital Avionics Systems Conference, October 1997.
[25] Holzmann G., Design and Validation of Computer Protocols, Prentice-Hall, Englewood

Cliffs, NJ, 1991.
[26] Jones C., Systematic Software Development using VDM, 2nd edn., Prentice-Hall, New

York, 1990.
[27] Jones M., “What happened on Mars?”, http://www.cs.cmu.edu/afs/cs/user/raj/www/mars.

html, 1997.
[28] Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C.V., Loingtier J., Irwin J.,

Aspect-Oriented Programming, in: Lecture Notes in Comput. Sci., Vol. 1241, Springer-
Verlag, Berlin, 1997.

[29] Leveson N., Safeware: System Safety and Computers, Addison-Wesley, Reading, MA,
1995.

[30] Lindholm T., Yellin F., The Java Virtual Machine Specification, 2nd edn., Addison-
Wesley, Reading, MA, 1999.

[31] Lowry M., Philpot A., Pressburger T., Underwood I., “A formal approach to domain-
oriented software design environments”, in: KBSE, 1994.

http://www.cs.cmu.edu/afs/cs/user/raj/www/mars.html
http://www.cs.cmu.edu/afs/cs/user/raj/www/mars.html
http://www.cs.cmu.edu/afs/cs/user/raj/www/mars.html

TRANSFORMATION-ORIENTED PROGRAMMING 115

[32] Mann C., “Why software is so bad...and what’s being done to fix it?”, Technology Review
(July/August 2002), http://www.technologyreview.com/articles/mann0702.asp.

[33] Manna Z., Waldinger R., “A deductive approach to program synthesis”, ACM Transac-
tions on Programming Languages and Systems 2 (1) (1980) 90–121.

[34] Manna Z., Waldinger R., “Fundamentals of Deductive Program Synthesis”, IEEE Trans-
actions on Software Engineering 18 (8) (1992) 674–704.

[35] Martelli A., Montanari U., “An efficient unification algorithm”, ACM Transactions on
Programming Languages and Systems 4 (2) (1982) 258–282.

[36] McConnell S., “Daily build and smoke test”, Best Practices IEEE Software 13 (4) (1996),
http://www.construx.com/stevemcc/.

[37] McDonald J., Anton J., SPECWARE—Producing software correct by construction,
Kestrel Institute Technical Report KES.U.01.3., March 2001.

[38] McMillan K., Symbolic Model Checking, Kluwer Academic Publishers, Dordrecht,
1993.

[39] Moore J., Piton: A Mechanically Verified Assembly-Level Language, Kluwer Academic
Publishers, Dordrecht, 1996.

[40] Mukherjee P., Wichmann B.A., STV: A case study in VDM, Technical report DITC
219/93, National Physical Laboratory, Teddington, UK, May 1993.

[41] Nissanke N., Formal Specification Techniques and Applications, Springer, London,
1999.

[42] Parnas D., “Using mathematical models in the inspection of critical software”, in:
M. Hinchey, J. Bowen (Eds.), Applications of Formal Methods, Prentice-Hall, London,
1995.

[43] Pettorossi A., Proietti M., “Transformation of logic programs: Foundations and tech-
niques”, Journal of Logic Programming 19 (20) (1994) 261–320.

[44] Reeves G., “What really happened on Mars?”, http://research.microsoft.com/~mbj/
Mars_Pathfinder/Authoritative_Account.html, 1998.

[45] RTI Health, Social, and Economics Research, The Economic Impacts of Inadequate In-
frastructure for Software Testing, Final Report, Prepared for National Institute of Stan-
dards and Technology, Acquisition and Assistance Division, Gathersburg, MD, May
2002.

[46] Rushby J., Formal methods and their role in the certification of critical systems, Techni-
cal Report CSL-95-1, SRI International.

[47] Sebesta R., Concepts of Programming Languages, 5th edn., Addison-Wesley, Boston,
2002.

[48] Shankar N., Owre S., Rushby J., The PVS proof checker, A Reference Manual, Technical
Report SRI-CLS-92-12, SRI International, Menlo Park, CA, February 1993.

[49] Smith D., “KIDS: A semiautomatic program development system”, IEEE Transactions
on Software Engineering 16 (9) (1990) 1024–1043.

[50] Srivas M., Miller S., “Formal verification of the AAMP5 microprocessor”, in:
M. Hinchey, J. Bowen (Eds.), Applications of Formal Methods, Prentice-Hall, London,
1995.

[51] Sterling L., Shapiro E., The Art of Prolog, 2nd edn., MIT Press, Cambridge, MA, 1994.

http://www.technologyreview.com/articles/mann0702.asp
http://www.construx.com/stevemcc/
http://research.microsoft.com/char 126
elax mbj/Mars_Pathfinder/Authoritative_Account.html
http://research.microsoft.com/char 126
elax mbj/Mars_Pathfinder/Authoritative_Account.html
http://research.microsoft.com/char 126
elax mbj/Mars_Pathfinder/Authoritative_Account.html

116 V.L. WINTER ET AL.

[52] Visser E., Benaissa Z., Tolmach A., “Building program optimizers with rewriting strate-
gies”, in: Proceedings of the 3rd ACM SIGPLAN International Conference on Functional
Programming (ICFP’98), ACM Press, New York, September 1998, pp. 13–26.

[53] Visser E., “Strategic pattern matching”, in: Rewriting Techniques and Applications
(RTA’99), Trento, Italy, in: Lecture Notes in Comput. Sci., Vol. 1631, 1999, pp. 30–44.

[54] Visser E., “A survey of rewriting strategies in program transformation systems”, in:
B. Gramlich, S. Lucas (Eds.), Workshop on Reduction Strategies in Rewriting and Pro-
gramming (WRS’01), in: Electronic Notes in Theoretical Computer Science, Vol. 57/2,
Elsevier Science Publishers, Amsterdam, 2001.

[55] Ward M., “Abstracting a specification from code”, Journal of Software Maintenance:
Research and Practice 5 (1993) 101–122.

[56] Winter V., “An overview of HATS: A language independent high assurance transforma-
tion system”, in: Proceedings of the IEEE Symposium on Application-Specific Systems
and Software Engineering Technology (ASSET), March 24–27, 1999.

[57] Winter V., Kapur D., Berg R., “A refinement-based approach to developing software
controllers for train systems”, in: Proceedings of the 2nd International Conference on
High Integrity Software (HIS), November 1999.

[58] Zachary G., Show-Stopper!: The Breakneck Race to Create Windows Nt and the Next
Generation at Microsoft, Free Press, 1994.

Bounded Model Checking1

ARMIN BIERE

Institute of Computer Systems
ETH Zurich, 8092 Zurich
Switzerland
biere@inf.ethz.ch

ALESSANDRO CIMATTI

Istituto per la Ricerca Scientifica e Technologica (IRST)
via Sommarive 18, 38055 Povo (TN)
Italy
cimatti@irst.itc.it

EDMUND M. CLARKE AND OFER STRICHMAN

Computer Science Department
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
USA
{emc,ofers}@cs.cmu.edu

YUNSHAN ZHU

ATG, Synopsys, Inc.
700 East Middlefield Road
Mountain View, CA 94043
USA
yunshan@synopsys.com

1This research was sponsored by the Semiconductor Research Corporation (SRC) under contract no. 99-
TJ-684, the National Science Foundation (NSF) under grant no. CCR-9803774, the Army Research Office
(ARO) under grant DAAD19-01-1-0485, the Office of Naval Research (ONR), and the Naval Research
Laboratory (NRL) under contract no. N00014-01-1-0796. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the official policies, either
expressed or implied, of SRC, ARO, NSF, ONR, NRL, the U.S. government or any other entity.

ADVANCES IN COMPUTERS, VOL. 58 117 Copyright © 2003 by Elsevier Science (USA)
ISSN: 0065-2458 All rights reserved.

118 A. BIERE ET AL.

Abstract
Symbolic model checking with Binary Decision Diagrams (BDDs) has been suc-
cessfully used in the last decade for formally verifying finite state systems such
as sequential circuits and protocols. Since its introduction in the beginning of
the 90’s, it has been integrated in the quality assurance process of several ma-
jor hardware companies. The main bottleneck of this method is that BDDs may
grow exponentially, and hence the amount of available memory restricts the size
of circuits that can be verified efficiently. In this article we survey a technique
called Bounded Model Checking (BMC), which uses a propositional SAT solver
rather than BDD manipulation techniques. Since its introduction in 1999, BMC
has been well received by the industry. It can find many logical errors in com-
plex systems that can not be handled by competing techniques, and is therefore
widely perceived as a complementary technique to BDD-based model checking.
This observation is supported by several independent comparisons that have been
published in the last few years.

1. Introduction . 118
2. Model Checking . 121
3. Bounded Model Checking . 126
4. Reducing Bounded Model Checking to SAT . 129
5. Techniques for Completeness . 134

5.1. The Completeness Threshold . 134
5.2. Liveness . 136
5.3. Induction . 137

6. Propositional SAT Solvers . 138
7. Experiments . 141
8. Related Work and Conclusions . 144

References . 146

1. Introduction

Techniques for automatic formal verification of finite state transition systems have
developed in the last 12 years to the point where major chip design companies are be-
ginning to integrate them in their normal quality assurance process. The most widely
used of these methods is called Model Checking [11,12]. In model checking, the
design to be verified is modeled as a finite state machine, and the specification is
formalized by writing temporal logic properties. The reachable states of the design
are then traversed in order to verify the properties. In case the property fails, a coun-
terexample is generated in the form of a sequence of states. In general, properties
are classified to ‘safety’ and ‘liveness’ properties. While the former declares what
should not happen (or equivalently, what should always happen), the latter declares

BOUNDED MODEL CHECKING 119

what should eventually happen. A counterexample to safety properties is a trace of
states, where the last state contradicts the property. A counterexample to liveness
properties, in its simplest form, is a path to a loop that does not contain the desired
state. Such a loop represents an infinite path that never reaches the specified state.

It is impossible to know whether the specification of a system is correct or
complete—How can you know if what you wrote fully captures what you meant?
As a result, there is no such thing as a ‘correct system;’ it is only possible to check
whether a system satisfies its specification or not. Moreover, even the most advanced
model checkers are unable to verify all the desired properties of a system in a reason-
able amount of time, due to the immense state-spaces of such systems. Model check-
ing is often used for finding logical errors (‘falsification’) rather than for proving that
they do not exist (‘verification’). Users of model checking tools typically consider it
as complementary to the more traditional methods of testing and simulation, and not
as an alternative. These tools are capable of finding errors that are not likely to be
found by simulation. The reason for this is that unlike simulators, which examine a
relatively small set of test cases, model checkers consider all possible behaviors or
executions of the system. Also, the process of writing the temporal properties in a
formal language can be very beneficial by itself, as it clarifies potential ambiguities
in the specification.

The term Model Checking was coined by Clarke and Emerson [11] in the early
eighties. The first model checking algorithms explicitly enumerated the reachable
states of the system in order to check the correctness of a given specification. This
restricted the capacity of model checkers to systems with a few million states. Since
the number of states can grow exponentially in the number of variables, early im-
plementations were only able to handle small designs and did not scale to examples
with industrial complexity.

It was the introduction of symbolic model checking [9,15] that made the first break-
through towards wide usage of these techniques. In symbolic model checking, sets
of states are represented implicitly using Boolean functions. For example, assume
that the behavior of some system is determined by the two variables v1 and v2, and
that (11,01,10) are the three combinations of values that can be assigned to these
variables in any execution of this system. Rather than keeping and manipulating this
explicit list of states (as was done in explicit model checking), it is more efficient
to handle a Boolean function that represents this set, e.g., v1 ∨ v2. Manipulating
Boolean formulas can be done efficiently with Reduced Ordered Binary Decision
Diagrams [8] (ROBDD, or BDD for short), a compact, canonical graph representa-
tion of Boolean functions. The process works roughly as follows:2 The set of initial

2The exact details of this procedure depends on the property that is being verified. Here we describe
the procedure for testing simple ‘invariant’ properties, which state that some proposition p has to hold
invariantly in all reachable states. There is more than one way to perform this check.

120 A. BIERE ET AL.

states is represented as a BDD. The procedure then starts an iterative process, where
at each step i , the set of states that can first be reached in i steps from an initial state
are added to the BDD. At each such step, the set of new states is intersected with the
set of states that satisfy the negation of the property. If the resulting set is non-empty,
it means that an error has been detected. This process terminates when the set of
newly added states is empty or a an error is found. The first case indicates that the
property holds, because no reachable state contradicts it. In the latter case, the model
checker prints a counterexample. Note that termination is guaranteed, since there are
only finitely many states.

The combination of symbolic model checking with BDDs [15,20], pushed the
barrier to systems with 1020 states and more [9]. Combining certain, mostly manual,
abstraction techniques into this process pushed the bound even further. For the first
time a significant number of realistic systems could be verified, which resulted in a
gradual adoption of these procedures to the industry. Companies like Intel and IBM
started developing their own in-house model checkers, first as experimental projects,
and later as one more component in their overall quality verification process of their
chip designs. Intel has invested significantly in this technology especially after the
famous Pentium bug a few years ago.

The bottleneck of these methods is the amount of memory that is required for
storing and manipulating BDDs. The Boolean functions required to represent the set
of states can grow exponentially. Although numerous techniques such as decompo-
sition, abstraction and various reductions have been proposed through the years to
tackle this problem, full verification of many designs is still beyond the capacity of
BDD based symbolic model checkers.

The technique that we describe in this article, called Bounded Model Checking
(BMC), was first proposed by Biere et al. in 1999 [5]. It does not solve the com-
plexity problem of model checking, since it still relies on an exponential procedure
and hence is limited in its capacity. But experiments have shown that it can solve
many cases that cannot be solved by BDD-based techniques. The converse is also
true: there are problems that are better solved by BDD-based techniques. BMC also
has the disadvantage of not being able to prove the absence of errors, in most real-
istic cases, as we will later explain. Therefore BMC joins the arsenal of automatic
verification tools but does not replace any of them.

The basic idea in BMC is to search for a counterexample in executions whose
length is bounded by some integer k. If no bug is found then one increases k until
either a bug is found, the problem becomes intractable, or some pre-known upper
bound is reached (this bound is called the Completeness Threshold of the design.
We will elaborate on this point in Section 5). The BMC problem can be efficiently
reduced to a propositional satisfiability problem, and can therefore be solved by SAT
methods rather than BDDs. SAT procedures do not suffer from the space explosion

BOUNDED MODEL CHECKING 121

problem of BDD-based methods. Modern SAT solvers can handle propositional sat-
isfiability problems with hundreds of thousands of variables or more.

Thus, although BMC aims at solving the same problem as traditional BDD-based
symbolic model checking, it has two unique characteristics: first, the user has to pro-
vide a bound on the number of cycles that should be explored, which implies that
the method is incomplete if the bound is not high enough. Second, it uses SAT tech-
niques rather than BDDs. Experiments with this idea showed that if k is small enough
(typically not more than 60 to 80 cycles, depending on the model itself and the SAT
solver), it outperforms BDD-based techniques. Also, experiments have shown that
there is little correlation between what problems are hard for SAT and what prob-
lems are hard for BDD based techniques. Therefore, the classes of problems that are
known to be hard for BDDs, can many times be solved with SAT. If the SAT check-
ers are tuned to take advantage of the unique structure of the formulas resulting from
BMC, this method improves even further [27]. A research published by Intel [14]
showed that BMC has advantages in both capacity and productivity over BDD-based
symbolic model checkers, when applied to typical designs taken from Pentium-4™.
The improved productivity results from the fact that normally BDD based techniques
need more manual guidance in order to optimize their performance. These and other
published results with similar conclusions led most relevant companies, only three
years after the introduction of BMC, to adopt it as a complementary technique to
BDD-based symbolic model checking.

The rest of the article is structured as follows. In the next section we give a techni-
cal introduction to model checking and to the temporal logic that is used for express-
ing the properties. In Section 3 we describe the bounded model checking problem.
In the following section we describe the reduction of the BMC problem to Boolean
satisfiability, including a detailed example. In Section 5 we describe several meth-
ods for achieving completeness with BMC. In Section 6 we describe some of the
essential techniques underlying modern SAT solvers, and in Section 7 we quote sev-
eral experiments carried out by different groups, both from academia and industry,
that compare these techniques to state of the art BDD-based techniques. We survey
related work and detail our conclusions from the experiments in Section 8.

2. Model Checking

Model checking as a verification technique has three fundamental features. First,
it is automatic; It does not rely on complicated interaction with the user for incre-
mental property proving. If a property does not hold, the model checker generates
a counterexample trace automatically. Second, the systems being checked are as-

122 A. BIERE ET AL.

sumed to be finite.3 Typical examples of finite systems, for which model checking
has successfully been applied, are digital sequential circuits and communication pro-
tocols. Finally, temporal logic is used for specifying the system properties. Thus,
model checking can be summarized as an algorithmic technique for checking tem-
poral properties of finite systems.

As the reader may have deduced from the terminology we used in the introduc-
tion, we do not distinguish between the terms design, system, and model. An engineer
working on real designs has to use a syntactic representation in a programming or
hardware description language. Since we are only considering finite systems, the
semantics of the engineer’s design is usually some sort of a finite automaton. Inde-
pendent of the concrete design language, this finite automaton can be represented
by a Kripke structure, which is the standard representation of models in the model
checking literature. It has its origin in modal logics, the generalization of temporal
logics.

Formally, a Kripke structure M is a quadruple M = (S, I, T ,L) where S is the set
of states, I ⊆ S is the set of initial states, T ⊆ S × S is the transition relation and
L :S → P(A) is the labeling function, where A is the set of atomic propositions, and
P(A) denotes the powerset over A. Labeling is a way to attach observations to the
system: for a state s ∈ S the set L(s) is made of the atomic propositions that hold
in s.

The notion of a Kripke structure is only a vehicle for illustrating the algorithms.
It captures the semantics of the system under investigation. For a concrete design
language, the process of extracting a Kripke structure from a given syntactic repre-
sentation may not be that easy. In particular, the size of the system description and the
size of the state space can be very different. For example, if we model a sequential
circuit with a netlist of gates and flip-flops then the state space can be exponentially
larger than the system description. A circuit implementing an n-bit counter illus-
trates this ratio: it can easily be implemented with O(n) gates and O(n) flip-flops,
though the state space of this counter is 2n. The exponential growth in the number of
states poses the main challenge to model checking. This is also known as the state
explosion problem.

The next step is to define the sequential behavior of a Kripke structure M . For this
purpose we use paths. Each path π in M is a sequence π = (s0, s1, . . .) of states,
given in an order that respects the transition relation of M . That is, T (si , si+1) for
all 0 � i < |π | − 1. If I (s0), i.e., s0 is an initial state, then we say that the path is
initialized. The length |π | of π can either be finite or infinite. Note that in general
some of the states may not be reachable, i.e., no initialized path leads to them. For i <

3There is an ongoing interest in generalizing model checking algorithms to infinite systems, for exam-
ple, by including real-time, or using abstraction techniques. In this article we will restrict the discussion
to finite systems.

BOUNDED MODEL CHECKING 123

process A
forever

A.pc = 0 wait for B.pc = 0
A.pc = 1 access shared resource

end forever
end process

process B
forever

B.pc = 0 wait for A.pc = 0
B.pc = 1 access shared resource

end forever
end process

FIG. 1. Pseudo code for two processes A and B competing for a shared resource.

|π | we denote by π(i) the ith state si in the sequence and by πi = (si, si+1, . . .) the
suffix of π starting with state si . To simplify some technical arguments we assume
that the set of initial states is non-empty. For the same reason we assume that the
transition relation is total, i.e., each state has a successor state: for all s ∈ S there
exists t ∈ S with T (s, t).

As an example, consider the mutual exclusion problem of two processes compet-
ing for a shared resource. Pseudo code for this example can be found in Fig. 1. We
assume that the processes are executed on a single computing unit in an interleaved
manner. The wait statement puts a process into sleep. When all processes are asleep
the scheduler tries to find a waiting condition which holds and reactivates the corre-
sponding process. If all the waiting conditions are false the system stalls.

On an abstract level, each process has two program counter positions 0 and 1 with
1 representing the critical section. A process may only access the shared resource
in the critical section of its program. A state of the system is a pair of program
counters and can be encoded as a binary vector s ∈ S = {0,1}2 of length two. Thus
S = {0,1}2 is the set of states of the system. We assume that both processes start at
program counter position 0, which implies that the set of initial states I consists of
the single state represented by the Boolean vector 00. The transition relation consists
of several possible transitions, according to the following two rules: the next state s′
is the initial state 00 unless the current state is already the initial state; The initial
state can transition forth and back to both 01 and 10. Thus, the transition relation
T ⊆ S2 = {0,1}4 can be represented as the following set of bit strings:

{0100,1000,1100,0001,0010}.
A graphical representation of this example in form of a Kripke structure is shown
in Fig. 2. The initial state has an incoming edge without a source. The other edges
correspond to one of the five transitions. Note that unreachable states, such as state
11 in this example, can only be removed after a reachability analysis has marked
all reachable states. Accordingly the sequence 11,00,10, . . . is a valid path of the
Kripke structure, but it is not initialized, since initialized paths start with the state
00. An example of an initialized path is the sequence 00,01,00,10,00,01, . . .where
each process takes its turn to enter the critical region after the other process has left it.

124 A. BIERE ET AL.

FIG. 2. A Kripke structure for two processes that preserve mutual exclusion.

Our example system is safe in the sense that the two processes obey the mutual
exclusion property: at most one process can be in its critical region. A negative for-
mulation of this property is that the state in which both processes are in their critical
region is not reachable. Thus a simple model checking algorithm to check safety
properties is to build the state transition graph and enumerate all reachable states
through a graph search, starting from the set of initial states. Each visited state is
analyzed in order to check whether it violates the safety property.

Now, assume that we add a faulty transition from 10 to 11. A depth first search,
starting from the initial state 00 visiting 10 and then reaching 11 will show that the
bad state 11 is reachable and thus the safety property fails. This path is a counterex-
ample to the safety property that can help the user to debug the system.

What we have discussed so far is a typical explicit model checking algorithm for
simple safety properties. It can be refined by building the Kripke structure on-the-
fly: only after a state of the system is visited for the first time, the set of transitions is
generated leaving this state. Once a bad state is found, the process terminates. This
technique is particularly useful if the number of reachable states is much smaller than
|S|, the number of all states, which is often the case in practice.

Recall that safety properties describe invariants of a system, that is, that something
bad does not happen. As we have seen, these properties can be checked by reacha-
bility analysis, i.e., by searching through the states graph and checking that each
visited state does not violate the invariant. Also recall that in addition to safety prop-
erties, it is sometimes desirable to use liveness properties in order to check whether
something good will eventually happen. In the mutual exclusion example, a natural
question would be to ask whether each process will eventually enter its critical re-
gion. For the first process this means that the state 01 is eventually reached. More
complicated liveness properties can specify repeatedly inevitable behavior, such as
‘a request always has to be acknowledged.’ To capture this nesting and mutual de-
pendency of properties, temporal logic is used as a specification language.

Temporal logic is an extension of classical logic. In this article we concentrate
on Propositional Linear Temporal Logic (PLTL, or LTL for short) as an extension
of propositional logic. From propositional logic LTL inherits Boolean variables and
Boolean operators such as negation ¬, conjunction ∧, implication →, etc. In addition

BOUNDED MODEL CHECKING 125

(a) (b)

FIG. 3. Validity of next time operator in the formula Xp along a path.

to the Boolean connectives, LTL has temporal operators. First, there is the next time
operator X. The formula Xp specifies that property p holds at the next time step.

In Fig. 3(a) a path is shown for which Xp holds. Each state is labeled with the
atomic properties that hold in it. Fig. 3(b) depicts a path for which Xp does not hold,
because p holds in the first state but not in the next, second state. Now we can use
this operator to build larger temporal formulas. For instance, p ∧ X¬p holds iff p
holds in the first state and p does not hold in the second. As usual ¬ is the Boolean
negation operator. This formula is true for the path on Fig. 3(b) and fails for the path
on Fig. 3(a). By nesting the operator X we can specify the behavior of the system up
to a certain depth. For instance, the formula XXp holds for both paths.

The next class of temporal operators that we discuss, allows specifying repeated
unbounded behavior along an infinite path. The Globally operator G is used for
safety properties. A formula Gp holds along a path if p holds in all states of the
path. Thus, it fails for the path in Fig. 3(b), since p does not hold in the second state.
The safety property for our earlier example, the Kripke structure of Fig. 2, can be
specified as G¬(c1 ∧ c2), where ci labels the states where process i is in its critical
section. It literally can be translated into English as follows: for all states it is not the
case that both c1 and c2 are true.

If all initialized paths of a Kripke structure satisfy a property, we say that the
property holds for the Kripke structure. For instance, by making the state 11 in
Fig. 2 an initial state, each path starting at 11 would be initialized and would vio-
late G¬(c1 ∧ c2) already in its first state. However since in our model 11 is not an
initial state the property holds for the Kripke structure.

Finally we look at liveness properties. The simplest liveness operator is F, the
Finally operator. The formula Fp holds along a path if p holds somewhere on the
path. Equivalently, it fails to hold if p stays unsatisfied along the whole path. For
instance, Fp trivially holds in both paths of Fig. 3 since p is already satisfied in the
first state. Similarly F¬p holds for the path in Fig. 3(b), because p does not hold in
the second state.

The liveness property for Fig. 2, which says that the first process will eventually
reach its critical section, can be formalized as Fc1. Since the system may loop be-
tween the initial state and the state 10 on the right, never reaching 01, this property
does not hold. The initialized infinite path that starts with 00 and then alternates
between 00 and 10 is a counterexample.

126 A. BIERE ET AL.

Now we can start to build more sophisticated specifications. The request/acknowl-
edge property mentioned above is formulated as G(r → Fa), where r and a are
atomic propositions labeling states where a request and an acknowledge occurs, re-
spectively. The same idea can be used to specify that a certain sequence of actions
a1, a2, a3 has to follow a guard g : G(g → F(a1 ∧F(a2 ∧Fa3))). Note that there may
be an arbitrary, finite time interval (possibly empty) between the actions.

In this informal introduction to temporal logic, we will avoid a detailed expla-
nation of the binary temporal operators Until (U) and Release (R). The reader is
referred to [12] for more details. Also note that in the literature one can find an alter-
native notation for temporal operators, such as �p for Xp, ✸p for Fp and ✷p for
Gp.

The formal semantics of temporal formulas is defined with respect to paths of a
Kripke structure. Let π be an infinite path of a Kripke structure M and let f be a
temporal formula. We define recursively when f holds on π , written π |= f :

π |= p iff p ∈ L
(
π(0)

)
,

π |= ¬f iff π �|= f,

π |= f ∧ g iff π |= f and π |= g,

π |= Xf iff π1 |= f,

π |= Gf iff πi |= f for all i � 0,
π |= Ff iff πi |= f for some i � 0,
π |= f Ug iff πi |= g for some i � 0 and πj |= f for all 0 � j < i,

π |= f Rg iff πi |= g if for all j < i, πj �|= f.

The semantics of the other Boolean operators such as disjunction and implication
can be inferred from the above definition. As mentioned above we say that a tem-
poral formula f holds for a Kripke structure M , written M |= f , iff π |= f for all
initialized paths π of M . Finally, we say that two temporal formulas f and g are
equivalent, written f ≡ g iff M |= f ↔ M |= g for all Kripke structures M . With
this notion, the semantics imply that ¬F¬p ≡ Gp. Thus, F and G are dual operators.

The standard technique for model checking LTL [19] is to compute the product of
the Kripke structure with an automaton that represents the negation of the property
(this automaton captures exactly the execution sequences that violate the LTL for-
mula). Emptiness of the product automaton is an evidence of the correctness of the
property. More details about this procedure can be found in [12].

3. Bounded Model Checking

The original motivation of bounded model checking was to leverage the success
of SAT in solving Boolean formulas to model checking. During the last few years

BOUNDED MODEL CHECKING 127

there has been a tremendous increase in reasoning power of SAT solvers. They can
now handle instances with hundreds of thousands of variables and millions of clauses
(we will elaborate more on how these solvers work in Section 6). Symbolic model
checkers with BDDs, on the other hand, can check systems with no more than a few
hundred latches. Though clearly the number of latches and the number of variables
cannot be compared directly, it seemed plausible that solving model checking with
SAT could benefit the former.

A similar approach has been taken in tackling the planning problem in Artificial
Intelligence [18]. Classical planning problems seek for a plan, i.e., a sequence of
steps, to perform some task (e.g., position cubes one above the other in descending
size under certain constraints on the intermediate states). As in BMC, the search for
a plan is restricted to paths with some predetermined bound. The possible plans in
a given bound are described by a SAT instance, which is polynomial in the original
planning problem and the bound. Compared to model checking, deterministic plan-
ning is only concerned with simple safety properties: whether and how the goal state
can be reached. In model checking we want to check liveness properties and nested
temporal properties as well.

Since LTL formulas are defined over all paths, finding counterexamples corre-
sponds to the question whether there exists a trace that contradicts them. If we find
such a trace, we call it a witness for the property. For example, a counterexample
to M |= Gp corresponds to the question whether there exists a witness to F¬p. For
clarity of presentation we will use path quantifiers E and A to denote whether the
LTL formula is expected to be correct over all paths or only over some path. In other
words, M |= Af means that M satisfies f over all initialized paths, and M |= Ef
means that there exists an initialized path in M that satisfies f . We will assume
that the formula is given in negation normal form (NNF), in which negations are
only allowed to occur in front of atomic propositions. Every LTL formula can be
transformed to this form by using the duality of LTL operators and De-Morgan’s
laws.

The basic idea of bounded model checking, as was explained before, is to consider
only a finite prefix of a path that may be a witness to an existential model checking
problem. We restrict the length of the prefix by some bound k. In practice, we pro-
gressively increase the bound, looking for witnesses in longer and longer traces.

A crucial observation is that, though the prefix of a path is finite, it still might
represent an infinite path if there is a back loop from the last state of the prefix to any
of the previous states, as in Fig. 4(b). If there is no such back loop, as in Fig. 4(a),
then the prefix does not say anything about the infinite behavior of the path beyond
state sk . For instance, only a prefix with a back loop can represent a witness for Gp.
Even if p holds along all the states from s0 to sk , but there is no back loop from sk

128 A. BIERE ET AL.

(a) (b)

FIG. 4. The two cases for a bounded path. (a) No loop, (b) (k, l)-loop.

to a previous state, we cannot conclude that we have found a witness for Gp, since
p might not hold at sk+1.

DEFINITION 1. For l � k we call a path π a (k, l)-loop if T (π(k),π(l)) and π =
u · vω with u = (π(0), . . . , π(l − 1)) and v = (π(l), . . . , π(k)).4 We call π a k-loop
if there exists k � l � 0 for which π is a (k, l)-loop.

We will use the notion of k-loops in order to define the bounded semantics
of model checking, i.e., semantics of model checking under bounded traces. The
bounded semantics is an approximation to the unbounded semantics, which will al-
low us to define the bounded model checking problem. In the next section we will
give a translation of a bounded model checking problem into a satisfiability problem.

In the bounded semantics we only consider a finite prefix of a path. In particular,
we only use the first k + 1 states (s0, . . . , sk) of a path to determine the validity of
a formula along that path. If a path is a k-loop then we simply maintain the original
LTL semantics, since all the information about this (infinite) path is contained in the
prefix of length k.

DEFINITION 2 (Bounded semantics for a loop). Let k � 0 and π be a k-loop. Then
an LTL formula f is valid along the path π with bound k (in symbols π |=k f) iff
π |= f .

We now consider the case where π is not a k-loop. The formula f := Fp is valid
along π in the unbounded semantics if we can find an index i � 0 such that p is valid
along the suffix πi of π . In the bounded semantics the (k + 1)th state π(k) does
not have a successor. Therefore, unlike the unbounded case, we cannot define the
bounded semantics recursively over suffixes (e.g., πi) of π . We therefore introduce
the notation π |=i

k f , where i is the current position in the prefix of π , which means
that the suffix πi of π satisfies f , i.e., π |=i

k f implies πi |= f .

DEFINITION 3 (Bounded semantics without a loop). Let k � 0, and let π be a path
that is not a k-loop. Then an LTL formula f is valid along π with bound k (in

4The notation vω represents an infinite repetition of v.

BOUNDED MODEL CHECKING 129

symbols π |=k f) iff π |=0
k f where

π |=i
k p iff p ∈L

(
π(i)

)
,

π |=i
k f ∧ g iff π |=i

k f and π |=i
k g,

π |=i
k Gf is always false,

π |=i
k Xf iff i < k and π |=i+1

k f,

π |=i
k f Ug iff ∃j, i � j � k, π |=j

k g and ∀n, i � n < j, π |=n
k f,

π |=i
k f Rg iff ∃j, i � j � k, π |=j

k f and ∀n, i � n < j, π |=n
k g,

π |=i
k ¬p iff p /∈L

(
π(i)

)
,

π |=i
k f ∨ g iff π |=i

k f or π |=i
k g,

π |=i
k Ff iff ∃j, i � j � k, π |=j

k f.

Note that if π is not a k-loop, then we say that Gf is not valid along π in
the bounded semantics with bound k since f might not hold along πk+1. These
constraints imply that for the bounded semantics the duality between G and F
(¬Ff ≡ G¬f) no longer holds.

Now we describe how the existential model checking problem (M |= Ef) can be
reduced to a bounded existential model checking problem (M |=k Ef). The basis for
this reduction lies in the following two lemmas.

LEMMA 1. Let f be an LTL formula and π a path, then π |=k f ⇒ π |= f .

LEMMA 2. Let f be an LTL formula and M a Kripke structure. If M |= Ef then
there exists k � 0 with M |=k Ef .

Based on Lemmas 1 and 2, we can now state the main theorem of this section. In-
formally, Theorem 1 says that if we take a sufficiently high bound, then the bounded
and unbounded semantics are equivalent.

THEOREM 1. Let f be an LTL formula and M be a Kripke structure. Then M |= Ef
iff there exists k � 0 s.t. M |=k Ef .

4. Reducing Bounded Model Checking to SAT

In the previous section we defined the semantics for bounded model checking.
We now show how to reduce bounded model checking to propositional satisfiability.

130 A. BIERE ET AL.

This reduction enables us to use efficient propositional SAT solvers to perform model
checking.

Given a Kripke structure M , an LTL formula f and a bound k, we will construct
a propositional formula ❏M,f ❑k . Let s0, . . . , sk be a finite sequence of states on a
path π . Each si represents a state at time step i and consists of an assignment of
truth values to the set of state variables. The formula ❏M,f ❑k encodes constraints
on s0, . . . , sk such that ❏M,f ❑k is satisfiable iff π is a witness for f . The definition
of formula ❏M,f ❑k will be presented as three separate components. We first define
a propositional formula ❏M❑k that constrains s0, . . . , sk to be a valid path starting
from an initial state. We then define the loop condition, which is a propositional
formula that is evaluated to true only if the path π contains a loop. Finally, we define
a propositional formula that constrains π to satisfy f .

DEFINITION 4 (Unfolding of the transition relation). For a Kripke structure M , k �
0

❏M❑k := I (s0)∧
k−1∧
i=0

T (si, si+1).

The translation of an LTL formula depends on the shape of the path π . We define
the propositional formula lLk to be true if and only if there is a transition from state
sk to state sl . By definition, lLk is equal to T (sk, sl). We use lLk to define the loop
condition Lk :

DEFINITION 5 (Loop condition). The loop condition Lk is true if and only if there
exists a back loop from state sk to a previous state or to itself: Lk :=∨k

l=0 lLk .

Depending on whether a path is a k-loop (see Fig. 4), we have two different trans-
lations of a temporal formula f . First we consider the case where the path is a k-loop.
We give a recursive translation of an LTL formula f for a k-loop path π . The trans-
lation of f recurses over its subterms and the states in π . The intermediate formula
l❏·❑ik depends on three parameters: l, k and i . We use l for the start position of the
loop, k for the bound, and i for the current position in π .

DEFINITION 6 (Successor in a loop). Let k, l and i be non-negative integers s.t.
l, i � k. Define the successor succ(i) of i in a (k, l)-loop as succ(i) := i + 1 for
i < k and succ(i) := l for i = k.

BOUNDED MODEL CHECKING 131

DEFINITION 7 (Translation of an LTL formula for a loop). Let f be an LTL formula,
k, l, i � 0, with l, i � k.

l❏p❑
i
k := p(si),

l❏¬p❑ik := ¬p(si),

l❏f ∨ g❑ik := l❏f ❑
i
k ∨ l❏g❑

i
k,

l❏f ∧ g❑ik := l❏f ❑
i
k ∧ l❏g❑

i
k,

l❏Gf ❑ik := l❏f ❑
i
k ∧ l❏Gf ❑succ(i)

k ,

l❏Ff ❑ik := l❏f ❑
i
k ∨ l❏Ff ❑

succ(i)
k ,

l❏f Ug❑ik := l❏g❑
i
k ∨ (l❏f ❑ik ∧ l❏f Ug❑

succ(i)
k

)
,

l❏f Rg❑ik := l❏g❑
i
k ∧ (l❏f ❑ik ∨ l❏f Rg❑succ(i)

k

)
,

l❏Xf ❑ik := l❏f ❑
succ(i)
k .

The translation in Definition 7 is linear with respect to the size of f and bound k

if subterms are shared. A common technique for sharing subterms in propositional
logic is to introduce new Boolean variables for subterms. Consider, for example, the
formula (a ∧ b) ∨ (c → (a ∧ b)). We introduce a new variable x for the subterm
a ∧ b, and transform the original formula into (x ∨ (c → x))∧ (x ↔ (a ∧ b)). The
transformation clearly preserves satisfiability.

For the translation presented in Definition 7, a new propositional variable is in-
troduced for each intermediate formula l❏h❑

i
k , where h is a subterm of the LTL for-

mula f and i ranges from 0 to k. The total number of new variables is O(|f | × k),
where |f | denotes the size of f . The size of the propositional formula l❏f ❑

0
k is also

O(|f | × k).
For the case where π is not a k-loop, the translation can be treated as a special

case of the k-loop translation. For Kripke structures with total transition relations,
every finite path π can be extended to an infinite one. Since the property of the path
beyond state sk is unknown, we make a conservative approximation and assume all
properties beyond sk are false.

DEFINITION 8 (Translation of an LTL formula without a loop).
Inductive case: ∀i � k

❏p❑ik := p(si),

❏¬p❑ik := ¬p(si),

❏f ∨ g❑ik := ❏f ❑ik ∨ ❏g❑ik ,

❏f ∧ g❑ik := ❏f ❑ik ∧ ❏g❑ik ,

132 A. BIERE ET AL.

❏Gf ❑ik := ❏f ❑ik ∧ ❏Gf ❑i+1
k ,

❏Ff ❑ik := ❏f ❑ik ∨ ❏Ff ❑i+1
k ,

❏f Ug❑ik := ❏g❑ik ∨ (❏f ❑ik ∧ ❏f Ug❑i+1
k

)
,

❏f Rg❑ik := ❏g❑ik ∧ (❏f ❑ik ∨ ❏f Rg❑i+1
k

)
,

❏Xf ❑ik := ❏f ❑i+1
k .

Base case:

❏f ❑k+1
k := 0.

Combining all components, the encoding of a bounded model checking problem
in propositional logic is defined as follows.

DEFINITION 9 (General translation). Let f be an LTL formula, M a Kripke struc-
ture and k � 0

❏M,f ❑k := ❏M❑k ∧
((¬Lk ∧ ❏f ❑0

k

)∨
k∨

l=0

(
lLk ∧ l❏f ❑

0
k

))
.

The left side of the disjunction is the case where there is no back loop and the
translation without a loop is used. The right side represent all possible starting points
l of a loop, and the translation for a (k, l)-loop is conjoined with the corresponding
lLk loop condition. The size of ❏M,f ❑k is O(|f | × k × |M|), where |M| represents
the size of the syntactic description of the initial state I and the transition relation T .

The translation scheme guarantees the following theorem, which we state without
proof:

THEOREM 2. ❏M,f ❑k is satisfiable iff M |=k Ef .

Thus, the reduction of bounded model checking to SAT is sound and complete
with respect to the bounded semantics.

EXAMPLE 1. Let us consider the mutual exclusion example in Fig. 2. Each state s

of the system M is represented by two bit variables. We use s[1] for the high bit and
s[0] for the low bit.

The initial state is represented as follows,

I (s) := ¬s[1] ∧ ¬s[0].

BOUNDED MODEL CHECKING 133

The transition relation is represented as follows,

T (s, s′) := (¬s[1] ∧ (s[0] ↔ ¬s′[0]))∨ (¬s[0] ∧ (s[1] ↔ ¬s′[1]))
∨ (s[0] ∧ s[1] ∧ ¬s′[1] ∧ ¬s′[0]).

We now add a faulty transition from state 10 to state 11. We denote by Tf the new
faulty transition relation.

Tf (s, s
′) := T (s, s′)∨ (s[1] ∧ ¬s[0] ∧ s′[1] ∧ s′[0]).

Consider the safety property that at most one process can be in the critical region
at any time. The property can be represented as G¬p, where p is s[1] ∧ s[0]. Using
BMC, we attempt to find a counterexample of the property, or, in other words, look
for a witness for Fp. The existence of such a witness indicates that the mutual exclu-
sion property is violated by M . If, on the other hand, no such witness can be found,
it means that this property holds up to the given bound.

Let us consider a case where the bound k = 2. Unrolling the transition relation
results in the following formula:

❏M❑2 := I (s0)∧ Tf (s0, s1)∧ Tf (s1, s2).

The loop condition is:

L2 :=
2∨

l=0

Tf (s2, sl).

The translation for paths without loops is:

❏Fp❑0
2 := p(s0)∨ ❏Fp❑1

2, ❏Fp❑1
2 := p(s1)∨ ❏Fp❑2

2,

❏Fp❑2
2 := p(s2)∨ ❏Fp❑3

2, ❏Fp❑3
2 := 0.

We can introduce a new variable for each intermediate formula ❏Fp❑i2. Alternatively,
we can substitute all intermediate terms and obtain the following formula.

❏Fp❑0
2 := p(s0)∨ p(s1)∨ p(s2).

The translation with loops can be done similarly. Putting everything together we get
the following Boolean formula:

(1)❏M,Fp❑2 := ❏M❑2 ∧
((¬L2 ∧ ❏Fp❑0

2

)∨
2∨

l=0

(
lL2 ∧l ❏Fp❑0

2

))
.

Since a finite path to a bad state is sufficient for falsifying a safety property, the
loop condition in the above formula may be omitted. This will result in the following

134 A. BIERE ET AL.

formula:

❏M,Fp❑2 := ❏M❑2 ∧ ❏Fp❑0
2

= I (s0)∧ Tf (s0, s1)∧ Tf (s1, s2)∧ (p(s0)∨ p(s1)∨ p(s2)
)
.

The assignment 00, 10, 11 satisfies ❏M,Fp❑2. This assignment corresponds to a
path from the initial state to the state 11 that violates the mutual exclusion property.

5. Techniques for Completeness

Given a model checking problem M |= Ef , a typical application of BMC starts at
bound 0 and increments the bound until a witness is found. This represents a partial
decision procedure for model checking problems. If M |= Ef , a witness of finite
length k exists, and the procedure terminates at length k. If M �|= Ef , however, the
outlined procedure does not terminate. Although the strength of BMC is in detection
of errors, it is desirable to build a complete decision procedure based on BMC for
obvious reasons. For example, BMC may be used to clear a module level proof oblig-
ation which may be as assumption for another module. A missed counterexample in
a single module may have the unpleasant consequence of breaking the entire proof.
In such compositional reasoning environments, completeness becomes particularly
important.

In this section, we will highlight three techniques for achieving completeness with
BMC. For unnested properties such as Gp and Fp, we determine in Section 5.1 the
maximum bound k that the BMC formula should be checked with in order to guaran-
tee that the property holds. This upper bound is called the Completeness Threshold.
For liveness properties, we show an alternative path to completeness in Section 5.2.
The alternative method is based on a semi-decision procedure for AFp combined
with a semi decision procedure for EGp. Finally, in Section 5.3, we show how for
safety properties completeness can be achieved with induction based on strengthen-
ing inductive invariants.

5.1 The Completeness Threshold
For every finite state system M , a property p, and a given translation scheme,

there exists a number CT , such that the absence of errors up to cycle CT proves that
M |= p. We call CT the Completeness Threshold of M with respect to p and the
translation scheme.

The completeness threshold for Gp formulas is simply the minimal number of
steps required to reach all states. We call this the reachability diameter and formally
define it as follows:

BOUNDED MODEL CHECKING 135

DEFINITION 10 (Reachability diameter). The reachability diameter rd(M) is the
minimal number of steps required for reaching all reachable states:

rd(M) := min

{
i

∣∣∣ ∀s0, . . . , sn, ∃s′
0, . . . , s

′
t , t � i,

I (s0)∧
n−1∧
j=0

T (sj , sj+1)→

(2)

(
I (s′

0)∧
t−1∧
j=0

T
(
s′
j , s

′
j+1

)∧ s′
t = sn

)}
.

Formula (2) simply states that every state that is reachable in n steps (left side of
the implication) can also be reached in i steps (right side of the implication). In other
words, rd(M) is the longest ‘shortest path’ from an initial state to any reachable state.
This definition leaves open the question of how large should n be. One option is to
simply take the worst case, i.e., n = 2|V |, where V is the set of variables defining the
states of M . A better option is to take n = i + 1 and check whether every state that
can be reached in i + 1 steps, can be reached sooner:

rd(M) := min

{
i

∣∣∣ ∀s0, . . . , si+1, ∃s′
0, . . . , s

′
i ,

I (s0)∧
i∧

j=0

T (sj , sj+1)→

(3)

(
I (s′

0)∧
i−1∧
j=0

T
(
s′
j , s

′
j+1

)∧
i∨

j=0

s′
j = si+1

)}
.

In formula (3), the sub formula to the left of the implication represent an i + 1 long
path, and the sub-formula to the right of the implication represents an i long path.
The disjunction in the end of the right-hand side forces the i + 1 state in the longer
path to be equal to one of the states in the shorter path.

Both Eqs. (2) and (3) include an alternation of quantifiers, and are hence hard
to solve for realistic models. As an alternative, it is possible to compute an over
approximation of rd(M) with a SAT instance. This approximation was first defined
in [5] as the recurrence diameter, and we now adapt it to the reachability diameter:

DEFINITION 11 (Recurrence diameter for reachability). The recurrence diameter
for reachability with respect to a model M , denoted by rdr(M), is the longest loop-

136 A. BIERE ET AL.

free path in M starting from an initial state:

(4)

rdr(M) := max

{
i

∣∣∣ ∃s0 . . . si, I (s0)∧
i−1∧
j=0

T (sj , sj+1)∧
i−1∧
j=0

i∧
k=j+1

sj �= sk

}
.

rdr(M) is clearly an over-approximation of rd(M), because every shortest path is
a loop-free path.

The question of how to compute CT for other temporal properties is still open.
Most safety properties used in practice can be reduced to some Gp formula, by
computing p over a product of M and some automaton, which is derived from the
original property. Therefore computing CT for these properties is reduced to the
problem of computing CT of the new model with respect to a Gp property.

5.2 Liveness

In the discussion of bounded model checking so far, we have focused on exis-
tentially quantified temporal logic formulas. To verify an existential LTL formula
against a Kripke structure, one needs to find a witness. As explained before, this is
possible because if a witness exists, it can be characterized by a finite sequence of
states. In the case of liveness, the dual is also true: if a proof of liveness exists, the
proof can be established by examining all finite sequences of length k starting from
initial states (note that for a proof we need to consider all paths rather than search for
a single witness).

DEFINITION 12 (Translation for liveness properties).

(5)❏M,AFp❑k := I (s0)∧
k−1∧
i=0

T (si, si+1)→
k∨

i=0

p(si).

THEOREM 3. M |= AFp iff ∃k ❏M,AFp❑k is valid.

According to Theorem 3, we need to search for a k that makes the negation of
❏M,AFp❑k unsatisfiable. Based on this theorem, we obtain a semi-decision proce-
dure for M |= AFp. The procedure terminates if the liveness property holds. The
bound k needed for a proof represents the length of the longest sequence from an
initial state without hitting a state where p holds. Based on bounded model check-
ing, we have a semi-decision procedure for M |= EG¬p, or equivalently,M �|= AFp.
Since we know that either AFp or EG¬p must hold for M , one of the semi-decision

BOUNDED MODEL CHECKING 137

procedures must terminate. Combining the two, we obtain a complete decision pro-
cedure for liveness.

5.3 Induction

Techniques based on induction can be used to make BMC complete for safety
properties [25]. Proving M |= AGp by induction typically involves finding (manu-
ally) a strengthening inductive invariant. An inductive invariant is an expression that
on the one hand is inductive (i.e., its correctness in previous steps implies its cor-
rectness in the current step), and on the other hand it implies the property. Proofs
based on inductive invariants have three steps: the base case, the induction step and
the strengthening step. Given a bound n, which we refer to as the induction depth,
we first prove that the inductive invariant φ holds in the first n steps, by checking
that formula (6) is unsatisfiable.

(6)∃s0, . . . , sn, I (s0)∧
n−1∧
i=0

T (si, si+1)∧
n∨

i=0

¬φ(si).

Next, we prove the induction step, by showing that formula (7) is unsatisfiable:

(7)∃s0, . . . , sn+1,

n∧
i=0

(
φ(si)∧ T (si , si+1)

)∧ ¬φ(sn+1).

Finally, we establish that the strengthening inductive invariant implies the property
for an arbitrary i:

(8)∀si , φ(si)→ p(si).

If we use the property p as the inductive invariant, the strengthening step holds triv-
ially and the base step is the same as searching for a counterexample to Gp.

In a further refinement of formula (7) suggested by Sheeran et al. [25], paths in
M are restricted to contain distinct states. The restriction preserves completeness
of bounded model checking for safety properties: if a bad state is reachable, it is
reachable via a path with no duplicate states, or, in other words, via a loop-free path.
The inductive step is now represented by formula (9):

(9)

∃s0, . . . , sn+1,

n∧
j=0

n+1∧
k=j+1

(sj �= sk)∧
n∧

i=0

(
φ(si)∧ T (si, si+1)

)∧ ¬φ(sn+1).

The restriction to loop-free paths constrains the formula further and hence prunes the
search space of the SAT procedure and consequently improves its efficiency. On the

138 A. BIERE ET AL.

other hand, the propositional encoding of distinct state restriction is quadratic with
respect to the bound k. When k is large, the restriction may significantly increase the
size of the propositional formula. The practical effectiveness of this restriction is to
be further studied.

6. Propositional SAT Solvers

In this section we briefly outline the principles followed by modern propositional
SAT-solvers. Our description follows closely the ones in [30] and [27].

Given a propositional formula f , a SAT solver finds an assignment to the variables
of f that satisfy it, if such an assignment exists, or return ‘unsatisfiable’ otherwise.
Normally SAT solvers accept formulas in Conjunctive Normal Form (CNF), i.e., a
conjunction of clauses, each contains a disjunction of literals and negated literals.
Thus, to satisfy a CNF formula, the assignment has to satisfy at least one literal in
each clause. Every propositional formula can be translated to this form. With a naive
translation, the size of the CNF formula can be exponential in the size of the original
formula. This problem can be avoided by adding O(|f |) auxiliary Boolean variables,
where |f | is the number of sub expressions in f .

Most of the modern SAT-checkers are variations of the well-known Davis–Putnam
procedure [17] and its improvement by Davis, Loveland and Logemann (known as
DPLL) [16]. The procedure is based on a backtracking search algorithm that, at each
node in the search tree, decides on an assignment (i.e., both a variable and a Boolean
value, which determines the next sub tree to be traversed) and computes its imme-
diate implications by iteratively applying the ‘unit clause’ rule. For example, if the
decision is x1 = 1, then the clause (¬x1 ∨ x2) immediately implies that x2 = 1. This,
in turn, can imply other assignments. Iterated application of the unit clause rule is
commonly referred to as Boolean Constraint Propagation (BCP). A common result
of BCP is that a clause is found to be unsatisfiable, a case in which the procedure
must backtrack and change one of the previous decisions. For example, if the for-
mula also contains the clause (¬x1 ∨ ¬x2), then clearly the decision x1 = 1 must
be changed, and the implications of the new decision must be re-computed. Note
that backtracking implicitly prunes parts of the search tree. If there are n unassigned
variables in a point of backtracking, then a sub tree of size 2n is pruned. Pruning is
one of the main reasons for the impressive efficiency of these procedures.

Fig. 5 describes a template that most SAT solvers use. It is a simplified version
of the template presented in [30]. At each decision level d in the search, a variable
assignment Vd = {T ,F } is selected with the Decide() function. If all the vari-
ables are already decided (indicated by ALL-DECIDED), it implies that a satisfying

BOUNDED MODEL CHECKING 139

// Input arg: Current decision level d

// Return value:
// SAT(): {SAT, UNSAT}
// Decide(): {DECISION, ALL-DECIDED}
// Deduce(): {OK, CONFLICT}
// Diagnose():{SWAP, BACK-TRACK} also calculates β

SAT(d)
{

l1: if (Decide(d) == ALL-DECIDED) return SAT;
l2: while (TRUE) {
l3: if (Deduce(d) != CONFLICT) {
l4: if (SAT(d + 1) == SAT) return SAT;
l5: else if (β < d || d == 0)
l6: { Erase(d); return UNSAT; }

}
l7: if (Diagnose(d) == BACK-TRACK) return UNSAT;

}
}

FIG. 5. Generic backtrack search SAT algorithm.

assignment has been found, and SAT returns SATISFIABLE. Otherwise, the im-
plied assignments are identified with the Deduce() function, which corresponds
to a straightforward BCP. If this process terminates with no conflict, the procedure
is called recursively with a higher decision level. Otherwise, Diagnose() ana-
lyzes the conflict and decides on the next step. If Vd was assigned only one of the
Boolean values, it swaps this value and the deduction process in line l3 is repeated.
If the swapped assignment also fails, it means that Vd is not responsible for the con-
flict. In this case Diagnose() identifies the assignments that led to the conflict
and computes the decision level β (β is a global variable that can only be changed
by Diagnose()) to which SAT() should backtrack to. The procedure will then
backtrack d − β times, each time Erase()-ing the current decision and its implied
assignments, in line l6.

The original Davis–Putnam procedure backtracked one step at a time (i.e., β =
d−1). Modern SAT checkers include Non-chronological Backtracking search strate-
gies (i.e., β = d − j , j � 1), allowing them to skip a large number of irrelevant
assignments. The introduction of non-chronological backtracking to SAT solvers in
the mid 90’s was one of the main breakthroughs that allowed these procedures for
the first time to handle instances with tens of thousands of variables (this technique
was used previously in general Constraint Solving Problem (CSP) tools. See [30] for
more details).

140 A. BIERE ET AL.

(a) (b)

FIG. 6. A clause data base (a) and an implication graph (b) of the assignment x1 = 1 shows how this
assignment, together with assignments that were made in earlier decision levels, leads to a conflict.

The analysis of conflicts is also used for learning. The procedure adds constraints,
in the form of new clauses (called conflict clauses) that prevent the repetition of
bad assignments. This way the search procedure backtracks immediately if such an
assignment is repeated. We explain the mechanism of deriving new conflict clauses
by following a simplified version of an example given in the above reference.

EXAMPLE 2. Assume the clause data base includes the clauses listed in Fig. 6(a), the
current truth assignment is {x5 = 0}, and the current decision assignment is x1 = 1.
Then the resulting implication graph depicted in Fig. 6(b) describes the unit clause
propagation process implied by this decision assignment.

Each node in this graph corresponds to a variable assignment. The incom-
ing directed edges (x1, xj) . . . (xi, xj) labeled by clause c represent the fact that
x1 . . . xi, xj are c’s literals and that the current value of x1, . . . , xi implies the value
of xj according to the unit clause rule. Thus, vertices that have no incoming edges
correspond to decision assignments while the others correspond to implied assign-
ments. The implication graph in this case ends with a conflict vertex. Indeed the
assignment x1 = 1 leads to a conflict in the value of x4, which implies that either
c3 or c4 cannot be satisfied. When such a conflict is identified, Diagnose() deter-
mines those assignments that are directly responsible for the conflict. In the above
example these are {x1 = 1, x5 = 0}. The conjunction of these assignments therefore
represents a sufficient condition for the conflict to arise. Consequently, the negation
of this conjunction must be satisfied if the instance is satisfiable. We can therefore
add the new conflict clause π : (¬x1 ∨ x5) to the clause database, with the hope that
it will speed up the search.

Another source of constant improvement in these tools is the development of new
decision heuristics in DECIDE(), i.e., the strategy of picking the next variable and

BOUNDED MODEL CHECKING 141

its value. The order can be static, i.e., predetermined by some criterion, or decided
dynamically according to the current state of the search. For example, the DLIS strat-
egy [29] picks an assignment that leads to the largest number of satisfied clauses. Al-
though this strategy normally results in a good ordering, it has a very large overhead,
since each decision requires a count of the currently unsatisfied clauses that contain
each variable or its negation. A recently suggested strategy, called Variable State In-
dependent Decaying Sum (VSIDS) [22], avoids this overhead by ignoring whether
the clause is currently satisfiable or not. It counts (once) the number of times each
variable appears in the formula, and then updates this number once new conflict
clauses are added to the formula. By giving more weight to variables in newly added
conflict clauses, it makes the decision conflict-driven, i.e., it gives higher priority to
solving conflicts that were recently identified. This procedure turned out to be an
order of magnitude faster, on average, compared to DLIS.

7. Experiments

Since the introduction of BMC several independent groups published experimen-
tal results, comparing BMC to various BDD based symbolic model checkers. In this
section we quote some of the experiments conducted by the verification groups at
IBM, Intel and Compaq, as well as our own experiments. All of these experiments
basically reach the same conclusion: SAT based Bounded Model Checking is typi-
cally faster in finding bugs compared to BDDs. The deeper the bug is (i.e., the longer
the shortest path leading to it is), the less advantage BMC has. With state of the art
SAT solvers and typical hardware designs, it usually cannot reach bugs beyond 80
cycles in a reasonable amount of time, although there are exceptions, as the experi-
ments conducted in Compaq show (see Fig. 10 below). In any case, BMC can solve
many of the problems that cannot be solved by BDD based model checkers.

The experiments were conducted with different SAT solvers and compared against
different model checkers. The introduction of the SAT solver CHAFF in mid 2001
changed the picture entirely, as on average it is almost an order of magnitude faster
than previous SAT solvers. This means that experiments conducted before that time
are skewed towards BDDs, compared to what these experiments would reveal today.

The first batch is summarized in Fig. 7. It shows the results of verifying a 16 × 16
shift and add multiplier, as was first presented in [4]. This is a known hard problem
for BDDs. The property is the following: the output of the sequential multiplier is
the same as the output of a combinational multiplier applied to the same input words.
The property was verified for each of the 16 output bits separately, as shown in the
table. For verifying bit i , it is sufficient to set the bound k to i + 1. This is the reason
that the SAT instance becomes harder as the bit index increases. As a BDD model

142 A. BIERE ET AL.

Bit k SMV2 MB PROVER MB
0 1 25 79 < 1 1
1 2 25 79 < 1 1
2 3 26 80 < 1 1
3 4 27 82 1 2
4 5 33 92 1 2
5 6 67 102 1 2
6 7 258 172 2 2
7 8 1741 492 7 3
8 9 > 1GB 29 3
9 10 58 3

10 11 91 3
11 12 125 3
12 13 156 4
13 14 186 4
14 15 226 4
15 16 183 5

FIG. 7. Results in seconds and Mega-Byte of memory when verifying a 16 × 16 bit sequential shift
and add multiplier with overflow flag and 16 output bits.

Model k RULEBASE1 RULEBASE2 GRASP GRASP (tuned) CHAFF

Design 1 18 7 6 282 3 2.2
Design 2 5 70 8 1.1 0.8 < 1
Design 3 14 597 375 76 3 < 1
Design 4 24 690 261 510 12 3.7
Design 5 12 803 184 24 2 < 1
Design 6 22 * 356 * 18 12.2
Design 7 9 * 2671 10 2 < 1
Design 8 35 * * 6317 20 85
Design 9 38 * * 9035 25 131.6
Design 10 31 * * * 312 380.5
Design 11 32 152 60 * * 34.7
Design 12 31 1419 1126 * * 194.3
Design 13 14 * 3626 * * 9.8

FIG. 8. The IBM® benchmark: verifying various hardware designs with an in-house BDD model
checker (RULEBASE) and the SAT solver GRASP with and without special tuning. The last column presents
the results achieved with the newer SAT solver CHAFF on the same benchmark examples. Results are given
in seconds.

checker, we used B. Yang’s version of SMV, which is denoted in the table as SMV2.
The variable ordering for SMV was chosen manually such that the bits of registers
are interleaved. Dynamic reordering did not improve these results.

BOUNDED MODEL CHECKING 143

A second batch of comparisons was published in [27]. It presents a comparison
between RULEBASE, IBM’s BDD based symbolic model checker, and several SAT
solvers, when applied to 13 hardware designs with known bugs. The columns RULE-
BASE1 and RULEBASE2 represent results achieved by RULEBASE under two different
configurations. The first is the default configuration, with dynamic reordering. The
second is the same configuration without reordering, but the initial order is taken
from the order that was calculated with RULEBASE1. These two configurations rep-
resent a typical scenario of Model Checking with RULEBASE. Each time reordering
is activated, the initial order is potentially improved and saved in a special order file
for future runs. The column ‘GRASP’ contains results of solving the corresponding
BMC formulas with the SAT solver GRASP. The following column, ‘GRASP (tuned)’,
contains results of solving the same instances with a version of GRASP that is tuned
for BMC, as explained in the above reference. The last column was not part of the
original presentation in [27]; rather it was added for this article. It contains results
achieved by CHAFF on the same benchmarks, without any special tuning (CHAFF was
released after the above reference was published). The fact that CHAFF can solve all
instances, while GRASP, which was considered as the state of the art solver before
CHAFF, cannot solve it even with special tuning, demonstrates the great progress of
SAT solvers and the influence of this progress on BMC.

Model k FORECAST (BDD) THUNDER (SAT)
Circuit 1 5 114 2.4
Circuit 2 7 2 0.8
Circuit 3 7 106 2
Circuit 4 11 6189 1.9
Circuit 5 11 4196 10
Circuit 6 10 2354 5.5
Circuit 7 20 2795 236
Circuit 8 28 * 45.6
Circuit 9 28 * 39.9
Circuit 10 8 2487 5
Circuit 11 8 2940 5
Circuit 12 10 5524 378
Circuit 13 37 * 195.1
Circuit 14 41 * *
Circuit 15 12 * 1070
Circuit 16 40 * *
Circuit 17 60 * *

FIG. 9. The Intel® benchmark: verifying various circuit designs with an in-house BDD model checker
(FORECAST) and an in-house SAT solver (THUNDER). Results are given in seconds.

144 A. BIERE ET AL.

k SMV PROVER

25 62280 85
26 32940 19
34 11290 586
38 18600 39
53 54360 1995
56 44640 2337
76 27130 619

144 44550 10820

FIG. 10. The Compaq® benchmark: verifying an Alpha microprocessor with BDDs (SMV) and SAT
(PROVER). Results are given in seconds.

The next benchmark examples was published in [14] by the formal methods group
of Intel. They compared the run time of their BDD model checker FORECAST and
their bounded model checker THUNDER (based on a SAT solver called SIMO) when
applied to 17 different circuit designs. The table in Fig. 9 summarizes the results of
their comparison when the two tools are run under their default configuration.5

Finally, Compaq published another batch of results obtained with industrial ex-
amples [6]. They used bounded model checking with the PROVER SAT solver for
finding bugs in the memory system of an advanced Alpha microprocessor. Their
conclusion was similar to the previous published comparative research: SAT based
bounded model checking can solve in a short amount of time examples that cannot
be solved with a BDD based model checker. Their results are summarized in Fig. 10.

8. Related Work and Conclusions

Verification techniques based on satisfiability checking have been used since the
early 90’s by G. Stålmarck and his company Prover Technologies [31]. The method
is based on the patented SAT solver PROVER [26], that is very effective in tackling
structured problems that arise from real-world designs. The work in [31] focuses on
checking correctness of designs by means of inductive reasoning, as was explained
in Section 5.3. Impressive results have been achieved in terms of integration of this
technique within the development process in several domains (see e.g., [7]).

The initial successes of BMC drew attention from the verification community. It
has been introduced in several model checkers (e.g., NuSMV [10]), and a number of
advances have been achieved in several directions, which we briefly describe now.

5Other tables in the above reference show that with manual intervention in choosing the variable order
the results can change in favor of FORECAST.

BOUNDED MODEL CHECKING 145

In [27], Strichman showed that it is possible to tune SAT solvers by exploiting
the structure of the problem being encoded in order to increase efficiency. Notable
contributions in [27] and [28] are the use of problem-dependent variable ordering
and splitting heuristics in the SAT solver, pruning the search space by exploiting the
regular structure of BMC formulas, reusing learned information between the various
SAT instances and more. These improvements were the basis for the tuned SAT
solver presented in Fig. 8. The work in [32] pushes this idea further. It relies on
an incremental SAT solver, rather than on generating a new SAT instance for each
attempted bound. At each step, they add and remove clauses from a single SAT
instance, and this way retain the learned information from the previous instances,
as was independently suggested in [28].

A related development was the extension of Bounded Model Checking to Timed
Systems [2]. For this purpose they use MATHSAT [1], a SAT solver extended to deal
with linear constraints over real variables. The encoding style extends the encoding
for the untimed case, and uses constraints over real variables to represent the aspects
related to time.

The success of SAT in solving large problems led several groups to combine SAT
in various ways with other techniques used in verification, not just as part of BMC.
We will mention here two of these works. McMillan [21] recently introduced a SAT-
based unbounded CTL model checker. It is based on an quantifier elimination pro-
cedure similar to [23,24]. While the top level algorithm is basically the same as used
in BDD-based CTL model checking, sets of states are represented as CNF formulas
rather than with BDDs. This required a modification of the SAT solver in order to be
able to perform the key operation of quantifier elimination. His experimental results
show that this technique can compete with BDD based model checkers and in some
cases outperform it. Compared to BMC, it has the obvious advantage of reaching a
fixpoint after rd(M) steps, rather than after rdr(M) steps (see Section 5.1), which is
only an over approximation of rd(M). Currently there is no available data comparing
this technique to BMC.

SAT-based techniques have also been used in the framework of abstraction/
refinement [13]. While a BDD based model checker is used to prove the abstract
model, SAT solvers are used to check whether the counterexamples constructed in
the abstract space are real or spurious, and also to derive a refinement to the abstrac-
tion being applied. This procedure relies on the speed of SAT to check whether a
given trace (i.e., with a known length, as in BMC) is real. On the other hand it enjoys
the completeness guaranteed by using BDD based model checkers.

A recently published work by Baumgartener et al. [3] holds a large promise for
making BMC complete for a large class of hardware designs. They perform a struc-
tural analysis of the design in order to derive an over approximation of the reacha-
bility diameter, thus achieving completeness. The experiments show that the reach-

146 A. BIERE ET AL.

ability diameter of realistic designs can be reached, and hence the property can be
proved. This work was published only recently, and its effect is not yet clear. The au-
thors of [3] showed that for a large class of netlists, it is possible to find smaller reach-
ability diameters than those that are defined by formula (4). This requires a fairly
simple analysis of the netlist structure, identifying frequently occurring components
like memory registers, queue registers, etc., and identifying its Strongly Connected
Components (SCC). The overall reachability diameter is then defined recursively on
the reachability diameters of its individual SCCs. Their experiments showed that
many netlists have reachability diameters as small as 20, which means that they can
be easily proved with BMC. It is perhaps too early to judge to what degree this im-
provement will make BMC viable for verification, rather than for falsification alone.

Despite its recent introduction, Bounded Model Checking is now widely accepted
as an effective technique that complements BDD-based model checking. A typical
methodology applied in the industry today is to use both BMC and BDD based model
checkers as complementary methods. In some cases both tools are run in parallel, and
the first tool that finds a solution, terminates the other process. In other cases BMC is
used first to find quickly the more shallow bugs, and when this becomes too hard, an
attempt to prove that the property is correct is being made with a BDD based tool. In
any case, it is clear that together with the advancements in the more traditional BDD
based symbolic model checkers, formal verification of finite models has made a big
step forward in the last few years.

REFERENCES

[1] Audemard G., Bertoli P., Cimatti A., Kornilowicz A., Sebastiani R., “A SAT based ap-
proach for solving formulas over boolean and linear mathematical propositions”, in:
18th Internat. Conference of Automated Deduction (CADE’02), Copenhagen, in: Lec-
ture Notes in Artif. Intell., Springer-Verlag, Berlin, 2002.

[2] Audemard G., Cimatti A., Kornilowicz A., Sebastiani R., “Bounded model checking
for timed systems”, in: 22nd Joint International Conference on Formal Techniques for
Networked and Distributed Systems (FORTE 2002), Houston, TX, in: Lecture Notes in
Comput. Sci., Springer-Verlag, Berlin, 2002.

[3] Baumgartner J., Kuehlmann A., Abraham J., “Property checking via structural analy-
sis”, in: Proc. 14th Internat. Conference on Computer Aided Verification (CAV’02), in:
Lecture Notes in Comput. Sci., Vol. 2404, 2002, pp. 151–165.

[4] Biere A., Cimatti A., Clarke E.M., Fujita M., Zhu Y., “Symbolic model checking using
SAT procedures instead of BDDs”, in: Design Automation Conference (DAC’99), 1999.

[5] Biere A., Cimatti A., Clarke E., Zhu Y., “Symbolic model checking without BDDs”, in:
Proc. of the Workshop on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’99), in: Lecture Notes in Comput. Sci., Springer-Verlag, Berlin, 1999.

BOUNDED MODEL CHECKING 147

[6] Bjesse P., Leonard T., Mokkedem A., “Finding bugs in an alpha microprocessor using
satisfiability solvers”, in: Berry G., Comon H., Finkel A. (Eds.), Proc. 12th Internat.
Conference on Computer Aided Verification (CAV’01), in: Lecture Notes in Comput. Sci.,
Springer-Verlag, Berlin, 2001.

[7] Boralv A., Stalmarck G., “Prover technology in railways”, in: Industrial-Strength Formal
Methods, Academic Press, New York, 1998.

[8] Bryant R.E., “Graph-based algorithms for Boolean function manipulation”, IEEE Trans-
actions on Computers C-35 (12) (1986) 1035–1044.

[9] Burch J.R., Clarke E.M., McMillan K.L., Dill D.L., Hwang L.J., “Symbolic model
checking: 1020 states and beyond”, Information and Computation 98 (2) (1992) 142–
170.

[10] Cimatti A., Clarke E.M., Giunchiglia E., Giunchiglia F., Pistore M., Roveri M., Sebas-
tiani R., Tacchella A., “NuSMV 2: An OpenSource tool for symbolic model checking”,
in: Proc. 14th Internat. Conference on Computer Aided Verification (CAV’02), in: Lec-
ture Notes in Comput. Sci., Vol. 2404, 2002, pp. 359–364.

[11] Clarke E.M., Emerson A., “Synthesis of synchronization skeletons for branching time
temporal logic”, in: Logic of Programs: Workshop, Yorktown Heights, in: Lecture Notes
in Comput. Sci., Vol. 131, Springer-Verlag, Berlin, 1981, pp. 52–71.

[12] Clarke E.M., Grumberg O., Peled D., Model Checking, MIT Press, Cambridge, MA,
1999.

[13] Clarke E.M., Gupta A., Kukula J., Strichman O., “SAT based abstraction-refinement
using ILP and machine learning techniques”, in: Proc. 14th Internat. Conference on
Computer Aided Verification (CAV’02), in: Lecture Notes in Comput. Sci., Vol. 2404,
Springer-Verlag, Berlin, 2002, pp. 265–279.

[14] Copty F., Fix L., Fraer R., Giunchiglia E., Kamhi G., Tacchella A., Vardi M.Y., “Benefits
of bounded model checking at an industrial setting”, in: Proc. 12th Internat. Conference
on Computer Aided Verification (CAV’01), in: Lecture Notes in Comput. Sci., Springer-
Verlag, Berlin, 2001, pp. 436–453.

[15] Coudert O., Madre J.C., “A unified framework for the formal verification of sequential
circuits”, in: Proc. IEEE International Conference on Computer-Aided Design, 1990.

[16] Davis M., Logemann G., Loveland D., “A machine program for theorem-proving”, Com-
munications of the ACM 5 (1962) 394–397.

[17] Davis M., Putnam H., “A computing procedure for quantification theory”, Journal of the
ACM 7 (1960) 201–215.

[18] Kautz H., Selman B., “Pushing the envelope: planning, propositional logic, and stochas-
tic search”, in: Proc. AAAI’96, Portland, OR, 1996.

[19] Lichtenstein O., Pnueli A., “Checking that finite state concurrent programs satisfy their
linear specification”, in: Proceedings of the 12th Annual ACM Symposium on Principles
of Programming Languages, 1985, pp. 97–107.

[20] McMillan K.L., Symbolic Model Checking, Kluwer Academic Publishers, Boston, 1993.
[21] McMillan K.L., “Applying SAT methods in unbounded symbolic model checking”, in:

Proc. 14th Internat. Conference on Computer Aided Verification (CAV’02), in: Lecture
Notes in Comput. Sci., Vol. 2404, Springer-Verlag, Berlin, 2002, pp. 250–264.

148 A. BIERE ET AL.

[22] Moskewicz M., Madigan C., Zhao Y., Zhang L., Malik S., “Chaff: Engineering an effi-
cient SAT solver”, in: Proc. Design Automation Conference 2001 (DAC’01), 2001.

[23] Plaisted D., Method for design verification of hardware and non-hardware systems,
United States Patent, 6,131,078, October, 2000.

[24] Plaisted D., Biere A., Zhu Y., “A satisfiability procedure for quantified boolean formu-
lae”, Discrete Applied Mathematics (2002), accepted for publication.

[25] Sheeran M., Singh S., Stalmarck G., “Checking safety properties using induction and
a SAT-solver”, in: Hunt W.A., Johnson S.D. (Eds.), Proc. Internat. Conf. on Formal
Methods in Computer-Aided Design (FMCAD 2000), 2000.

[26] Sheeran M., Stalmarck G., “A tutorial on Stalmarck’s method”, Formal Methods in Sys-
tem Design 16 (1) (2000).

[27] Shtrichman O., “Tuning SAT checkers for bounded model checking”, in: Emerson E.A.,
Sistla A.P. (Eds.), Proc. 12th Internat. Conference on Computer Aided Verification
(CAV’00), in: Lecture Notes in Comput. Sci., Springer-Verlag, Berlin, 2000.

[28] Shtrichman O., “Prunning techniques for the SAT-based bounded model checking prob-
lem”, in: Proceedings of the 11th Advanced Research Working Conference on Correct
Hardware Design and Verification Methods (CHARME’01), Edinburgh, 2001.

[29] Silva J.P.M., “The impact of branching heuristics in propositional satisfiability algo-
rithms”, in: 9th Portuguese Conference on Artificial Intelligence (EPIA), 1999.

[30] Silva J.P.M., Sakallah K.A., GRASP—a new search algorithm for satisfiability, Techni-
cal Report TR-CSE-292996, University of Michigan, 1996.

[31] Stålmarck G., Säflund M., “Modelling and verifying systems and software in proposi-
tional logic”, in: Proc. SAFECOMP’90, 1990.

[32] Whittemore J., Kim J., Sakallah K.A., “Satire: A new incremental satisfiability engine”,
in: Design Automation Conference (DAC’01), 2001, pp. 542–545.

Advances in GUI Testing

ATIF M. MEMON

Department of Computer Science
University of Maryland and Fraunhofer Center

for Experimental Software Engineering
College Park, MD 20742
USA
atif@cs.umd.edu

Abstract
Graphical user interfaces are by far the most popular means used to interact with
software today. Unfortunately, the state-of-the-practice in GUI testing has not
kept pace with the rapidly evolving GUI technology. In practice, GUI testing is
largely manual, often resulting in inadequate testing. There have been several
research efforts to improve GUI testing. This chapter presents some of the recent
advances in GUI testing and provides guidelines on how to combine them.

1. Introduction . 150
1.1. What is GUI Testing? . 151
1.2. Usability Evaluation . 152
1.3. Types of GUI Testing . 153

2. GUI Testing Steps . 155
3. Record/Playback Tools . 157
4. Challenges . 159
5. State Machine Models . 162

5.1. Finite State Machines . 162
5.2. Variable Finite State Machines . 164
5.3. Complete Interaction Sequences (CIS) . 166

6. Behavioral Models . 168
7. Statistical Methods . 170
8. Hierarchical Techniques . 172

8.1. AI Plan Generation . 173
8.2. Creating the GUI Model . 178
8.3. Modeling Planning Operators . 185
8.4. Modeling the Initial and Goal State and Generating Test Cases 188
8.5. Generating Plans . 188

ADVANCES IN COMPUTERS, VOL. 58 149 Copyright © 2003 by Elsevier Science (USA)
ISSN: 0065-2458 All rights reserved.

150 A.M. MEMON

8.6. Algorithm for Generating Test Cases . 192
9. Discussion . 194

10. Summary . 195
References . 197

1. Introduction

Graphical user interfaces (GUIs) have become nearly ubiquitous as a means of
interacting with software systems. GUIs make software easy to use and, recognizing
the importance of user-friendly software, today’s software developers are dedicating
an increasingly large portion of software code to implementing GUIs. GUIs consti-
tute as much as 45–60% of the total software code [25,31,33,35,36].

A GUI is the front-end to underlying code (Fig. 1), and a software user interacts
with the software using the GUI. The user performsevents such as mouse move-
ments, object manipulation, menu selections, and opening and closing of windows.
The GUI, in turn, interacts with the underlying code through messages and/or method
calls.

The widespread use of GUIs is leading to the construction of increasingly
complex GUIs. Their use in safety-critical systems is also growing [56]. Many
modern aircrafts, cars, trains, medical equipment provide information to their pi-
lots/drivers/users in the form of a GUI. Human lives may be lost if these GUIs do not
function correctly.

There are several different practices used to determine the correctness of GUIs.
A popular method is to maintain checklists (usually organization specific) to con-
duct manual inspections1 of the GUI. Another well-studied and applied method is
to conduct usability evaluations [7,12,16,17,19,22,23,26,47,48] of the GUI. Yet an-
other, albeit less popular, method is to use model-based approaches to check the
structure and correctness of the GUI.

A popular method to check conventional software for errors is by testing the soft-
ware. Automated testing of conventional software has achieved considerable success
in the past two decades [8,15,37,42–45,49,58]. Adrion et al. [1] and Zhu et al. [59]
provide an excellent survey of popular techniques for testing conventional software.

This chapter presents the recent advances in GUI testing, focusing primarily on au-
tomated techniques. In particular, the use of the following approaches is presented:
(1) record/playback tools, (2) finite state machines, (3) variable finite state machines,
(4) complete interaction sequences, (5) genetic algorithms, (6) Latin square methods,
and (7) AI planning. Most of these techniques create an explicit/implicit model of the

1http://www.csst-technologies.com/guichk.htm.

http://www.csst-technologies.com/guichk.htm

ADVANCES IN GUI TESTING 151

FIG. 1. The GUI is the front-end to underlying code.

GUI for test case generation. These models and the test case generation techniques
will be presented. An important aspect that is beyond the scope of this work is check-
ing the correctness of the model. Model checking [9] can be used to detect defects in
the model before it is actually used for testing. This chapter addresses the detection
of faults in the actual implementation of the GUI assuming a correct model.

1.1 What is GUI Testing?
Before we discuss the techniques used to test GUIs, we must first understand why

GUI testing should be addressed as a separate testing problem and what is required
of GUI testing, i.e., its goals.

When testing the underlying code, the code for the GUI may also be tested. How-
ever, it is important to separate the testing of the GUI from that of the underlying

152 A.M. MEMON

code. Multiple GUIs and multiple versions of GUIs are increasingly being used as
front-ends to the same underlying code. The increased use of mobile devices inter-
acting with software places limitations on the capabilities of GUIs that are used with
some of these devices [21]. Device restrictions such as display resolution may re-
quire that different interfaces be implemented to access the same underlying applica-
tion, such as a web application. Also, security restrictions may require that restricted
views of the same software be provided to users with different security privileges.
For example, the GUI for the MS Windows 2000 control panel of a system admin-
istrator has many more features than that of an ordinary user. Finally, the increased
use of customizable interfaces provides different views to the same underlying code.
A common example is customizable tool-bars available in most of today’s software.
By separately testing the underlying code (employing code-based testing techniques)
and separately testing each GUI (employing GUI testing techniques), the final soft-
ware can be composed by plugging-in the appropriate GUI as demanded by the ap-
plication.

In its very fundamental form, the goal of GUI testing is to determine whether
the GUI executes as expected, as documented in the specifications, or as required
by the intended user. This definition is very broad and may encompass factors such
as testing the GUI’s usability, correctness, and performance. Since GUI testing is
a multifaceted problem, no one technique can be used for GUI testing; in fact, in
practice, a collection of techniques is almost always used. The most popular are
usability evaluation and testing. While the primary focus of this chapter is testing, the
next section briefly describes usability evaluations to make the distinction between
the two approaches clear.

1.2 Usability Evaluation

The human–computer interaction characteristics of a system are measured by per-
forming usability evaluation, the goal being the identification of usability weaknesses
in the interface. There are several usability evaluation techniques. However, while
they differ in effort invested in usability evaluation and hence the amount of im-
provement to the GUI, the basic principle is to involve users. For example, users
may examine/use the GUI from the following perspectives.

• The user examines a GUI and looks for areas of confusion, slow-down, and/or
mistakes, hence performingexploratory evaluation. Users perform such evalu-
ation with no particular preconceived notions about where the problems lie or
what form they may take. The deliverable for an exploratory evaluation is a list
of problem areas for further examination: “users were visibly confused when
faced with pagep; only half the users were able to complete taskx; taskz takes

ADVANCES IN GUI TESTING 153

longer than it should.” Exploratory evaluation can be used at any point in the
development life cycle, but is most effective when implemented early and often.

• The user measures the performance characteristics of a system against predeter-
mined goals, hence performingthreshold evaluation. This is a pass/fail effort:
“with this system, users were able to complete taskx in y seconds, making an
average ofz mistakes. This does (or does not) meet the release criteria.” Thresh-
old evaluation typically accompanies a beta release.

• The user measures the usability characteristics of two approaches or designs to
determine which better suits users’ needs, hence performingcomparison evalu-
ation. This evaluation is usually done at the early prototyping stage.

The key difference between usability evaluation and testing is that they have dif-
ferent goals. Usability evaluation is used to check the human–computer interaction
aspects of a GUI (e.g., user friendliness), whereas testing is targeted towards finding
faults in the GUI.

1.3 Types of GUI Testing
One way to test a GUI is to test the written code used to implement the GUI.

In practice, unit testing of GUI code is performed by testers/developers who write
unit tests to test each GUI event handler (e.g., class, method) in a given state. This
approach is useful for identifying problems early in the development process. Unit
testing is gaining popularity with emerging development processes such as extreme
programming, which advocate unit testing. An example of a tool used for unit testing
of GUI code isJFCUnit.2 JFCUnit is an extension to the JUnit framework that en-
ables a developer to execute unit tests against code that presents a Java Swing-based
interface.3

An example of a Java Swing-based GUI application under test (AUT) is shown in
Fig. 2(a). This Java code, when executed, opens a single window entitled “Testing
Example” (executing application shown in Fig. 2(b)). This is done byLines 6, 7,
and8 of the main method that creates a new objectAUT, which creates a frame
and shows it (Lines 10, 11, 12). Once a programmer has written theAUT class,
it must be tested. JFCUnit provides the necessary framework for writing such a test.
Fig. 2(c) shows a part of one such test case. The test case first invokes the AUT’s
main method so that its GUI is launched (Line 11) waits for a while (Line 14)
and then checks whether a window is open. In case the window is not opened, or
multiple windows are open, then an error is returned (Lines 19, 20). JFCUnit is
still in its infancy and is constantly being upgraded with better features.

2http://sourceforge.net/projects/jfcunit.
3A tutorial of Swing is available athttp://java.sun.com/docs/books/tutorial/uiswing/.

http://sourceforge.net/projects/jfcunit
http://java.sun.com/docs/books/tutorial/uiswing/

154 A.M. MEMON

FIG. 2. A JFCUnit example.

Another popular way to test a GUI is to check the interaction of its events by
performing sequences of events on the GUI. This type of testing is calledinteraction
testing [54]. Although the use of GUIs continues to grow, GUI interaction testing

ADVANCES IN GUI TESTING 155

FIG. 3. Part of the search space for Adobe Acrobat Reader 5.0 GUI.

has remained a neglected research area. Adequately testing the interaction of events
in a GUI is required to help ensure the safety, robustness and usability of an entire
software system [34].

The GUI interaction testing problem can be viewed as a search problem with the
state space of the GUI being the search space and the objective of the search to find
errors. Since the number of events that a user may perform on the GUI at any given
time is very large, the search space is extremely large (even infinite in most cases).
Exhaustively traversing the search space is impractical in such cases. Fig. 3 shows a
small part of the search space for the popular Adobe Acrobat Reader 5.0 GUI. As the
figure shows, the user can start in a stateS0 and perform a number of events on the
software, all leading to different states. The user can continue to perform different
events in each state, hence traversing new states.

Since the entire search space of the GUI cannot be covered, any testing method
must focus on a restricted set of interactions. Each of the approaches discussed in
this chapter uses a unique technique to explore the restricted space. In the remainder
of this chapter, the term “GUI testing” will be used for interaction testing.

2. GUI Testing Steps

Although GUIs have characteristics, such as user events for input and graphical
output, that are different from those of conventional software and thus require the
development of different testing techniques, the overall process of testing GUIs is

156 A.M. MEMON

similar to that of testing conventional software. The testing steps for conventional
software, extended for GUIs, follow:

• Determine what to test
During this first step of testing,coverage criteria, which are sets of rules used

to determine what to test in a software, are employed. In GUIs, a coverage cri-
terion may require that each event be executed to determine whether it behaves
correctly.

• Generate test input
The test input is an important part of the test case and is constructed from the

software’s specifications and/or from the structure of the software. For GUIs,
the test input consists of events such as mouse clicks, menu selections, and
object manipulation actions.

• Generate expected output
Test oracles generate the expected output, which is used to determine whether

or not the software executed correctly during testing. Atest oracle is a mecha-
nism that determines whether or not the output from the software is equivalent
to the expected output. In GUIs, the expected output includes screen snapshots
and positions and titles of windows.

• Execute test cases and verify output
Test cases are executed on the software and its output is compared with the

expected output. Execution of the GUI’s test case is done by performing all
the input events specified in the test case and comparing the GUI’s output to the
expected output as given by the test oracles.

• Determine if the GUI was adequately tested
Once all the test cases have been executed on the implemented software, the

software is analyzed to check which of its parts were actually tested. In GUIs,
such an analysis is needed to identify the events and the resulting GUI states
that were tested and those that were missed. Note that this step is important
because it may not always be possible to test in a GUI implementation what is
required by the coverage criteria.

After testing, problems are identified in the software and corrected. Modifications
then lead to regression testing, i.e., re-testing of the changed software.

• Perform regression testing
Regression testing is used to help ensure the correctness of the modified parts

of the software as well as to establish confidence that changes have not ad-
versely affected previously tested parts. A regression test suite is developed that
consists of (1) a subset of the original test cases to retest parts of the original
software that may have been affected by modifications, and (2) new test cases to

ADVANCES IN GUI TESTING 157

test affected parts of the software, not tested by the selected test cases. In GUIs,
regression testing involves analyzing the changes to the layout of GUI objects,
selecting test cases that should be rerun, as well as generating new test cases.

Any GUI testing method must perform all of the above steps. By far, the most com-
monly used tools for testing are record/playback tools [14,50], which are discussed
next.

3. Record/Playback Tools

In their basic form, record/playback tools provide a mechanism to record a user’s
interaction with the GUI. The recorded sessions can later be replayed on the GUI
(or its modified version) to recreate the same/similar sequences of user events, hence
retesting the GUI.

Consider the simple GUI-based software shown in Fig. 4(a). TheMainWindow
contains only two buttons, namelyEdit andSaveFile. Edit opens a new win-
dow entitledText Editor used to edit a text file.SaveFile opens a window
entitledSave Modified File only if the file has been modified. A simple inter-
action done on this software may beEdit, TypeInText("Test"), Back to
Main Menu, SaveFile, TypeFileName("new.txt"), Save. This interac-
tion may be stored as a sequence of system-level events shown in Fig. 4(b). Note that
the session contains operating system-level mouse-clicks and keyboard events with
hard-coded coordinates for buttons. Such a session can be played back by invoking
operating-system calls, thereby mimicking the user and creating the same interaction
with the GUI.

There are several disadvantages to using the above low-level approach. First, the
test cases are system configuration dependent. For example, if the screen resolution
changes, then the test cases cannot be rerun since the same coordinates may represent
other events or no events at all. Second, the test cases are dependent on the GUI’s
layout. If the positions of the widgets change, then the test cases become useless.

To alleviate the above problems, several variations of the above low-level approach
have been implemented. Instead of storing coordinates and system-level actions,
events are stored in the test cases. The recording and playback mechanism is more
sophisticated; recording extracts and stores the widget information rather than mouse
coordinates, and playback searches for the correct widget and activates it. Fig. 4(c)
shows the same test case as Fig. 4(b), except that the actions are represented in the
form of widgets.

Other variations include synchronization with windows, GUI objects, etc. and stor-
ing partial state information of the GUI to be used as a test oracle at playback time.

158 A.M. MEMON

FIG. 4. Examples of record/playback sessions. Notations borrowed from a tool available at
http://guitar.cs.umd.edu.

For example, Fig. 4(d) shows the same test case with windows synchronization prim-
itives (italicized) and partial state information (boldfaced).

Even though record/playback tools are popular and effective at finding problems
with GUIs, the process involved in using them is largely manual, making GUI testing
slow and expensive. There have been several research efforts at developing tools and

http://guitar.cs.umd.edu

ADVANCES IN GUI TESTING 159

techniques for automating some aspects of GUI testing. The next section explains
the challenges of developing such tools.

4. Challenges

Developing tools for GUI interaction testing offers a number of challenges. First,
a representation of a GUI must be created that can be used across all the tools.
A representation must be developed at a sufficiently high level of abstraction that it
effectively captures the GUI events and their interactions and is general enough to
be applicable to a wide variety of GUIs. Yet, the same representation must capture
sufficient low level details of the GUI to enable a test oracle to verify the correctness
of the GUI. An additional challenge for the representation is scalability; GUIs are
large, containing huge bit-maps and a large number of events. If the representation
is not scalable, then all phases of testing that employ it will also fail to scale.

For conventional software,coverage is evaluated using the amount and type of
underlying code tested. Traditional coverage criteria may not work well for GUI
testing, because what matters is not only how much of the code is tested, but whether
the tested code corresponds to potentially problematic user interactions. Consider
the example of aTelnet application’sEdit menu shown in Fig. 5. Traditional code-
based coverage criteria evaluate the amount of underlying code tested. GUIs and
the underlying code are conceptually at different levels of abstraction. Therefore,
it is difficult to obtain a mapping between GUI events and the underlying code. If
code-based coverage criteria are used when testing GUIs, then problematic event
interactions might be missed. For example, in the absence of sufficient memory, the
eventsEdit + Copy generate a memory error but allow the user to continue after
closing the error window. If the user continues to use the application, anotherEdit
+ Copy results in a system crash. If traditional code-based coverage criteria are
employed, it may be difficult to test the code for such an interaction. This example
illustrates that it is important to develop coverage criteria based on user events.

A third challenge is that even though the coverage criteria may help focus on spe-
cific parts of a GUI, it may be impractical to generate all possibletest cases for these
selected parts. A subset of these test cases must be generated for testing. The subset
selection decision may have to be made by the test designer during test case gen-
eration. Another problem related to test case generation is called thecontrollability
problem, i.e., bringing the GUI to a state in which a test case may be executed on it
[3]. For each test case, appropriate events may need to be performed on the GUI to
bring it to the desired state.

Fourth,test oracles for GUIs are different from those for conventional software.
Test oracles determine whether or not the software executed correctly during test-

160 A.M. MEMON

FIG. 5. A Telnet application’s GUI.

ing. In conventional software testing, the test oracle is invoked after the end of test
case execution, as shown in Fig. 6(a). The test case is executed by the software, and
the final output is compared with the expected output. In contrast, GUI test case
execution, shown in Fig. 6(b), requires that the test oracle invocation and test case
execution be interleaved because an incorrect GUI state can lead to an unexpected
screen. This screen may make further execution of the test case useless since events
in the test case may not match any button on the GUI screen. Thus, execution of the
test case should be terminated as soon as an error is detected. Also, if verification is
not done after each step of test case execution, it may become difficult to pinpoint the
actual cause of the error since in some cases the final output may be correct whereas
the intermediate outputs may be incorrect. Consequently, in GUI test case execution,
the inputs are given one step at a time, and the expected output is compared with
the GUI’s output after each step. This interleaving of verification and test case ex-
ecution makes GUI testing more complex because (1) the expected output needs to
be generated for each event, and (2) the correctness of the GUI is checked after each
event is executed.

Finally, regression testing presents special challenges for GUIs. Both inputs and
outputs to a GUI depend on positions of graphical elements on the screen. The
input–output mapping may not remain constant across successive versions of the
software [32]. Movement of buttons, changes in the bit-maps, and organization of
menus may render older test cases useless. Moreover, the expected output used by
the test oracles may become obsolete. Regression testing is especially important for

ADVANCES IN GUI TESTING 161

FIG. 6. Comparing the test case execution of (a) conventional software, and (b) GUIs.

GUIs as they are typically designed usingrapid prototyping [32]. The GUI software
is modified and tested on a continuous basis. Efficient regression testing mechanisms
are needed to detect the frequent modifications to the GUI and adapt the old test
cases.

Despite the above challenges, several techniques have been developed to perform
interaction testing of GUIs. These techniques make two valuable contributions. One

162 A.M. MEMON

is the development of a representation of the GUI. The other one is the algorithm for
test case generation. These techniques are discussed next.

5. State Machine Models

Several finite-state machine (FSM) models have been proposed to generate test
cases for conventional software [2,4,5,10]. In this approach, the software’s behavior
is modeled as a FSM where each input triggers a transition in the FSM. A path in
the FSM represents a test case, and the FSM’s states are used to verify the software’s
state during test case execution. This approach has been used extensively for test
generation of hardware circuits [13]. An advantage of this approach is that once the
FSM is built, the test case generation process is automatic. It is relatively easy to
model a GUI with a state machine model; each user event leads to a new state, and
each transition models a user event. This simplistic approach has scaling problems
for GUIs. Most approaches that employ FSMs to generate GUI test cases also make
use of additional information to restrict the state space of the FSM.

5.1 Finite State Machines

In this section, we present details of the approach taken by Esmelioglu et al. [10].
who model the GUI as a finite state machine (FSM), represented by a directed graph.
To aid in the testing process, they also create the model of a path through the FSM,
the functional requirements, process flow, data model, context, transaction flow, and
constraints. Subsequent paragraphs describe these aspects of the model and how they
are used for test case generation.

Formally, a FSM can be represented as a quintupleFSM = (S, I,O,T ,Φ), where
S is the finite set of GUI states,I is the set of inputs, i.e., events that may be
performed on the GUI,O is the finite set of outputs,T is the transition function
S × I → S that specifies the next state as a function of the current state and input
event,Φ is the output functionS × I →O that specifies the resulting output from a
transition.

Fig. 7 shows the FSM of the GUI shown in Fig. 4(a).S0 is the start state. The user
may performSaveFile to remain in the same state orEdit to transit to a new
stateS1. If no editing is done, then the user returns toS0 by performingBack to
Main Menu. If however, some text has been modified, then the GUI transits toS′1,
where modifications can continue. If the user chooses to go back to the main menu,
then the file is “dirty”, hence the stateS′0 is reached. The eventSaveFile will take
the user to theSave dialog in whichSave can be performed and return toS0.

ADVANCES IN GUI TESTING 163

FIG. 7. The FSM of the GUI of Fig. 4(a).

DEFINITION. A path is a sequence of events that traverse through the FSM model
defining a user scenario of the software.

The information along the vertices and edges along the path can be used during
testing. For example, the edges may be used to determine the event that must be
performed to transit the software from one state to the next, verify that the reached
state is indeed correct, and that the software has responded correctly to an event.
Once a path has been defined from the model, a test case is created for the path. The
key idea is that when the test case is executed on the actual software, it follows the
same sequence (or path) defined by the path derived from the model. The process
of identifying paths, defining user scenarios, creating test cases may be repeated
multiple number of times.

The software’s behavior is modeled to help generate test cases. The model cap-
tures thefunctional requirements and process flow. The model contain functional
description of the application as well as detailed data description. This model is used
at two levels of abstraction: (1) a high-level to determine valid user scenarios, and
(2) a low level to determine valid inputs and expected outputs.

Another important aspect of this work is thedata modeling and maintaining the
applicationcontext within the model. The authors make a distinction between hard
and soft failures. Hard failures cause no change in the GUI’s state. This feature en-
ables the model to continue executing events that will cause hard failures so that all

164 A.M. MEMON

hard failures can be exhausted in one test case. Soft failures, however, cause a change
in the GUI’s state. During exhaustive testing, such failures may result in many per-
mutations of events. A constraining strategy is used to narrow down the search.

Context is maintained in the model by embedding variables in the state machine.
These variables can be changed, conditionally checked, and output at any point dur-
ing test case execution. Moreover, these variables can be used to maintain context
and generate data. For example, data values can be conditionally checked to ver-
ify the application’s behavior. A variable calledclipboard may be maintained
to represent the state of the system’s clipboard. When tests are being executed on
the software,clipboard may be assignednon-empty after acopy or acut.
This assignment is used to define the current context for later use in determining the
appropriate paths.

Since the authors tested a database application with a form-based GUI front-end,
they also created a model of thetransaction flow and the values of the data through-
out this flow. The flow is used to generate database verification records. During test
case execution, the data values are output to a forms processing script in the proper
sequence creating the verification record. For verification, the database state is ver-
ified by querying the database. The output record is compared with the verification
record; if it does not match then an error is logged.

Constraints play an important role in the testing process. Otherwise the number of
permutations may lead to problems. Tests may be focused in several ways. First, the
user scenarios provide a natural mechanism to generate focused test cases. Second,
several constraints may be used to limit the scope of testing based on execution time,
test case quality, as well as specific user functions. Finally, conditional expressions
may be used in the FSM model to constrain the type of scenarios generated. For
example, trivial cases may be filtered, cycles in the FSM may be removed, etc.

Test case generation from an FSM is very intuitive. The test designer may start
at the start state, traverse edges of the FSM as desired and record the transitions as
events. For example, in Fig. 7, a test case could be:Edit, Modify Text, Main
Menu, SaveFile, andSave.

Although FSMs are easy to create, they suffer from some major problems. First,
they do not scale for large GUIs. Moreover, the states may not have any relationship
to the structure of the GUI. Hence they can be difficult to maintain. A new model
called variable finite state machines (VFSMs), developed by Shehady et al. [46],
presented next, attempts to rectify these problems.

5.2 Variable Finite State Machines

Shehady et al. use more sophisticated transition and output functions, and hence
are able to describe the GUI in fewer number of states. Additionally, the VFSM’s

ADVANCES IN GUI TESTING 165

elements correspond closely to the structure of the GUI, making maintenance intu-
itive. Since the VFSMs are both smaller than FSMs and closely correspond to the
GUIs elements, they are easier and cheaper to create and maintain.

The key difference between VFSMs and FSMs is that VFSMs allow a number of
global variables, each of which takes values from a finite domain. Also, the value of
the variable may be modified by a transition. The value of these variables is used to
compute the next state and the output in response to an input. For example, the value
of a variable may be used by the model to specify which transition should be taken
for a particular input.

Formally, a VFSM is represented as a 7-tupleVFSM = (S, I,O,T ,Φ,V,Σ),
whereS, I , O are similar to their counterparts in FSMs,V = {V1,V2,V3, . . . , Vn}
(eachVi is the set of values that theith variable may assume) andn is the total num-
ber of variables in the VFSM. LetD = S × I ×V1× V2× · · ·× Vn andDT ⊆D; T

is the transition functionDT → S andΦ is a functionDT →O . Hence the current
state of each of the variables affects both the next state and the output of the VFSM.
Σ is the set of variable transition functions. At each transition,Σ is used to deter-
mine whether any of the variables’ values have been modified. Each variable has an
initial state at startup.

The space of GUIs that can be modeled using VFSMs is the same as those that can
be modeled using FSMs. A VFSM simply folds sequences of states into a variable,
allowing the VFSM to model a state that can use previous inputs as a factor in how
to respond to a current input. Variables reduce the size of the VFSM.

VFSMs can be converted into their equivalent FSMs for test case generation.
VFSM is converted to an FSM. The key idea is to fold the information ofV and
Γ into S andT . Given a VFSM’sS andV = {V1,V2, . . . , Vn}, the new FSM’s set
of statesSeq is obtained asSeq = {Si | Si ∈ S × V1× V2× V3× · · · × Vn}, i.e., this
creates a set of states that combines the information of the states and the variables
into one state. Similarly, the new FSM’s transition functionTeq : Seq × I → Seq may
be created by combining theT andΓ functions of the VFSM. Since the range ofT

is S and the range ofΓ is V = {V1,V2, . . . , Vn}, Seq is the Cartesian product of the
two ranges; alsoT andS have the same domain. Once the FSM has been created,
the test cases may be generated as described earlier for FSMs.

Fig. 8 shows the VFSM of the GUI shown in Fig. 4(a). Note that the FSM for the
same GUI was shown earlier in Fig. 7. The structure of the VFSM is more intuitive
than the FSM because it contains three vertices that correspond to the three windows
in the GUI. The information of whether the file being edited is clean or dirty is main-
tained in a variable calledVclean. Edges of the VFSM are annotated with predicates
(italicized) or assignments (boldfaced). Initially,Vclean is set to 0. Transitions are
taken depending on the outcome of the predicates.

166 A.M. MEMON

FIG. 8. The VFSM of the GUI of Fig. 4(a).

5.3 Complete Interaction Sequences (CIS)

Another approach to restrict the state space of a state machine is by employing
software usage information. The method proposed by White et al. [55] solves the
FSM’s state explosion problem by focusing on a subset of interactions performed
on the GUI. They key idea is to identifyresponsibilities for a GUI; a responsibil-
ity is a GUI activity that involves one or more GUI objects and has an observable
effect on the surrounding environment of the GUI, which includes memory, periph-
eral devices, underlying software, and application software. For each responsibility,
a complete interaction sequence (CIS), which is a sequence of GUI objects and se-
lections that will invoke the given responsibility, is identified. Parts of the CIS are
then used for testing the GUI.

The GUI testing steps for CIS are as follows.

(1) Manually identify responsibilities in the GUI.
(2) For each responsibility, identify its corresponding CIS.
(3) Create an FSM for each CIS.
(4) Apply transformations to the FSM to obtain areduced FSM. These transfor-

mations include the following.
(a) Abstracting strongly connected components into asuperstate.
(b) Merging CIS states that have structural symmetry.

(5) Use the reduced FSM to test the CIS for correctness.

The two abstractions mentioned above (Steps (4a) and (4b)) are interesting from a
modeling point of view. They are described in more detail next.

ADVANCES IN GUI TESTING 167

DEFINITION. A part of a FSM, called asubFSM, is astrongly connected component
if for every pair (S1, S2), S1, S2 ∈ S, there exists a path fromS1 to S2. Each such
component is then replaced by asuperstate and tested in isolation.

A subFSM has structural symmetry if the following conditions hold.

(1) it contains statesS1 andS2 such thatS1 has one incoming transition,S2 has
one outgoing transition, and a number of paths reachS2 from S1;

(2) for each path in the subFSM, context (the path taken to get toS1 from outside
the subFSM) has no effect on the states/transitions or output;

(3) no transition or state encountered afterS2, is affected by paths taken inside
the subFSM.

Such a subFSM can be reduced into a superstate and tested in isolation.
Given a GUI, the test designer first reduces the FSM after applying the above

transformations, thereby reducing the total number of states in the FSM. This results
in smaller number of paths in the FSM, hence reducing the number of test cases.
Without any loss of generality, each FSM is assumed to have a distinct start state and
distinct terminating state.

As mentioned earlier in previous sections, a test is a path through the FSM. The
test designer then creates two types of tests:design tests that assume that the FSM
is a faithful representation of the GUI’s specifications, andimplementation tests that
for each CIS, assume that potential transitions not described in the design may also
occur to and from all states of the given FSM.

For design tests, the test designer creates sufficient number of tests starting at the
initial state and ending at the termination state so that the following conditions hold:

• all distinct paths in the reduced FSM are executed; each time a path enters a
superstate corresponding to a component, an appropriate test path of the com-
ponent is inserted into the test case at that point,

• all the design subtests of each component are included in at least one test, which
may require additional tests of the reduced FSM to satisfy this constraint.

The key idea of conducting implementation testing is to check all GUI events in
the CIS to determine whether they invoke any new transitions in the reduced FSM.
To implement test the reduced FSM, the test designer must construct sufficient test
sequences at the initial state and stopping at the terminal state so that the following
conditions hold:

• all the paths of the reduced FSM are executed, and

• all the implementation tests for each remaining component are included at least
once.

168 A.M. MEMON

By using the CIS concept, the test designer can test a GUI from various perspec-
tives, each defined by the CIS. These CIS can also be maintained in a library to be
reused across various GUIs.

6. Behavioral Models

The notion of usage was introduced in the previous section, where a CIS was used
to define an interaction. There is also a need to test the GUI from the perspective of
different groups of users, e.g., experts and novice users. Unsophisticated and novice
users often exercise GUI applications in ways that the designer, the developer, and the
tester did not anticipate. An expert user or tester usually follows a predictable path
through an application to accomplish a familiar task. The developer knows where
to probe, to find the potentially problematic parts of an application. Consequently,
applications are well tested for state transitions that work well for predicted usage
patterns but become unstable when given to novice users. Novice users follow unex-
pected paths in the application, causing program failures. This notion is summarized
in Fig. 9, where the solid arrows represent paths taken by the expert and tester. The
dotted lines show the (often untested) paths taken by the novice, leading to system
failures. Such failures are difficult to predict at design and testing time.

Kasik et al. [20] have developed a model of a novice user and have used it to
generate test cases. Their key idea is to test the GUI for interactions that novice users
may encounter in practice. The technique is based on genetic algorithms.

FIG. 9. Novice users may traverse indirect, untested paths (dotted lines) leading to software failures.

ADVANCES IN GUI TESTING 169

In its simplest form, a genetic algorithm manipulates a table of random numbers;
each row of the table represents a gene. The individual elements of a row (gene)
contain a numeric genetic code and are calledalleles. Allele values start as numbers
that define the initial genetic code. The genetic algorithm lets genes that contain
“better” alleles survive to compete against new genes in subsequent generations.

The basic genetic algorithm is as follows:

• Initialize the alleles with valid numbers.

• Repeat the following until the desired goal is reached:
– Generate ascore for each gene in the table.

– Reward the genes that produce the best results by replicating them and allow-
ing them to live in a new generation. All others are discarded using adeath
rate.

– Apply two operators, mutation and crossover, to create new genes.

For GUIs, the event sequence is represented by a gene, each element being an
event. The primary task of setting up the genetic algorithm is to set the death rates,
crossover styles, and mutation rates so that novice behavior is generated. Also, to
use genetic algorithms to generate meaningful interactions mimicking novice users,
a clear and accurate specification of both the user interface dialog and the program
state information is needed. The state information controls the legality of specific
dialog components and the names of a legal command during an interaction. Without
access to the state information, the generator may produce many meaningless input
events.

The bestreward system would let the genes that generated the ‘best’ novice-like
behavior survive by assigning a weighted score to user events. For example, one
score can be given to a set of alleles that picks a list widget, a second to a set that
types in specific characters, and a third to a set that provides input to a widget on
the same window as the previous widget. Adjusting the weights allows the reward
system to represent different types of novice user behavior.

The reward system can be based on the observation that a novice user learns how
to use an application via controlled experiments. A novice starts one function in
a dialog sequence and experiments with a number of different parameters. In this
way, the novice uses localized parameter settings to understand the overall effect of
a single function. This is only one of the possible characterizations of novice user
behavior.

To implement this reward system, the weight for all user events is set to zero except
one. A gene receives a positive score each time its allele values generate input for
a widget (e.g., entering data into a text field, choosing an item from a list, selecting
a radio button) that has the same window name as the last active window name. No

170 A.M. MEMON

additional score is generated to differentiate among the possible types of widgets on
the window. The net result is that the longer a gene stays on the same window, the
higher its score and better its odds of survival.

To simulate novice behavior, a tester:

• Begins with an expert generated test script.

• Inserts one or moreDEVIATE commands into the script.DEVIATE departs
from the existing script via the genetic algorithm and tries to return to the script.

• Tunes the genetic algorithm parameters to build a set of scripts that represent
novice behavior.

This interface strategy lets the tester control when deviations occur because aDE-
VIATE command can be inserted at arbitrary script locations. The script can then
continue in either ofpullback or meander mode. Pullback mode rewards genes for
returning to the original script, while meander mode allows the activity to wander
indefinitely. Even though pullback mode returns to the expert script, it will generally
not generate the same results because additional functions are exercised.

Kasik et al. state that their technique my help uncover failures from novice usage
earlier in the GUI development process if a model of the GUI can be created. This can
result in considerable savings by cutting down on beta testing, a currently popular
technique to test a software for novice behavior.

7. Statistical Methods

In its basic form, GUI interaction testing consists of testing for interactions be-
tween all GUI objects and their selections. White [54] identifies two ways in which
GUI interactions can arise: statically and dynamically (or a combination of both).
Static interactions are restricted to one screen whereas dynamic interactions move
from one screen to another to perform events on GUI objects. White makes the
assumption that it is enough to test pair-wise interactions of GUI events. Similar
assumptions have led to success in finding errors efficiently for conventional soft-
ware [6]. Consider the GUI window shown in Fig. 10. The total number of possible
interactions on this window is 2× 2× 2× 1= 8. Using the pair-wise assumption,
the total number of interactions can be cut down to 2× 2= 4.

White proposes the use of Latin squares to generate test cases that check the soft-
ware for pair-wise interactions.

DEFINITION. A Latin square, of ordern, is a matrix ofn symbols inn× n cells,
arranged inn rows andn columns, such that every symbol is exactly once in each
row and once in each column.

ADVANCES IN GUI TESTING 171

FIG. 10.

DEFINITION. A pair of Latin squaresA= (aij) andB = (bij) areorthogonal iff the
ordered pairs(aij , bij) are distinct for alli andj .

Here are a pair of orthogonal Latin squares of order 3.

A=
(1 2 3

2 3 1
3 1 2

)
, B =

(1 2 3
3 1 2
2 3 1

)
,

(A,B)=
(

(1,1) (2,2) (3,3)

(2,3) (3,1) (1,2)

(3,2) (1,3) (2,1)

)
.

A andB are clearly orthogonal Latin squares since, when superimposed, all or-
dered pairs from corresponding square entries are distinct.

Orthogonal Latin squares do not exist for all matrix sizes. There are no orthogonal
Latin squares of order 2 because there are only two Latin squares of order 2 in the
same symbols and they are not orthogonal. There are orthogonal Latin squares of or-
der 3 as exemplified above. Orthogonal Latin squares of order 4 exist but are difficult
to obtain. There are no orthogonal Latin squares of order 6 and 10.

Test case generation for GUIs starts by generating the elements of each factor by
using mutually orthogonal Latin squares. The use of Latin squares will result in the

172 A.M. MEMON

minimum number of tests generated to solve the pair-wise interaction problem as
long as the following conditions hold.

• k−2� n−1 wheren is the order of the Latin squares used andk is the number
of factors, i.e., a GUI object from which selections are made,

• n is not equal to 6 or 10, or any other order for whichn−1 mutually orthogonal
Latin squares do not exist.

Although the use of Latin squares allows the test designer to focus on pair-wise
interactions of events, longer sequences must still be tested to uncover errors that
require context of several events.

8. Hierarchical Techniques

Since GUI software is large, i.e., it may contain many events, some techniques
have decomposed GUIs into smaller parts, the goal being to test these parts indi-
vidually. In an approach presented by Memon et al. [29], the test designer identifies
commonly used tasks for the GUI; these are then input to the test case generator.
The generator employs the GUI representation and specifications to generate event
sequences to achieve the tasks. The motivating idea behind this approach is that GUI
test designers will often find it easier to specify typical user goals than to specify
sequences of GUI events that users might perform to achieve those goals. The soft-
ware underlying any GUI is designed with certain intended uses in mind; thus the
test designer can describe those intended uses. Note that a similar approach is used
to manually perform usability evaluation of the GUI [57]. However, it is difficult to
manually obtain different ways in which a user might interact with the GUI to achieve
typical goals. Users may interact in idiosyncratic ways, which the test designer might
not anticipate. Additionally, there can be a large number of ways to achieve any given
goal, and it would be very tedious for the GUI tester to specify even those event se-
quences that s/he can anticipate. The test case generator described in this section uses
an automated technique to generate GUI test cases for commonly used tasks.

Note that test cases generated for commonly used tasks may not satisfy any of
the structural coverage criteria defined by Memon et al. [30]. In fact, the underly-
ing philosophies of testing software using its structure vs. commonly used tasks are
fundamentally different. The former tests software for event sequences as dictated
by the software’s structure whereas the latter determines whether the software exe-
cutes correctly for commonly used tasks. Both testing methods are valuable and may
be used to uncover different types of errors. The structural coverage criteria may be
used to determine the structural coverage of test cases generated for commonly used

ADVANCES IN GUI TESTING 173

TABLE I
ROLES OF THETEST DESIGNER ANDPATHS DURING TEST CASE GENERATION

Phase Step Test designer PATHS

Setup 1 Derive planning operators from the
GUI representation

2 Define preconditions and
effects of operators

Plan generation 3 Identify a taskT
4 Generate test cases forT

Iterate 3 and 4 for multiple scenarios.

tasks; missing event sequences may then be generated using a structural test case
generation technique.

This approach uses AI planning to generate test cases for GUIs. The test designer
provides a specification of initial and goal states for commonly used tasks. An auto-
mated planning system generates plans for each specified task. Each generated plan
represents a test case that is a reasonable candidate for helping test the GUI, because
it reflects an intended use of the system.

This technique of using planning for test case generation is called Planning
Assisted Testing (PAT). The test case generator is called Planning Assisted Tester
for grapHical user interface Systems (PATHS). The test case generation process is
partitioned into two phases, thesetup phase andplan-generation phase. In the first
step of the setup phase, the GUI representation is employed to identify planning op-
erators, which are used by the planner to generate test cases. By using knowledge of
the GUI, the test designer defines the preconditions and effects of these operators.
During the second or plan-generation phase, the test designer describes scenarios
(tasks) by defining a set of initial and goal states for test case generation. Finally,
PATHS generates a test suite for the tasks using the plans. The test designer can iter-
ate through the plan-generation phase any number of times, defining more scenarios
and generating more test cases. Table I summarizes the tasks assigned to the test
designer and those performed by PATHS.

8.1 AI Plan Generation

Automated plan generation has been widely investigated and used within the field
of artificial intelligence. Given an initial state, a goal state, a set of operators, and a
set of objects, a planner returns a set of actions (instantiated operators) with ordering
constraints to achieve the goal. Many different algorithms for plan generation have

174 A.M. MEMON

been proposed and developed. Weld presents an introduction to least commitment
planning [52] and a survey of the recent advances in planning technology [53].

Formally, a planning problemP (Λ,D, I,G) is a 4-tuple, whereΛ is the set of
operators,D is a finite set of objects,I is the initial state, andG is the goal state.
Note that an operator definition may contain variables as parameters; typically an
operator does not correspond to a single executable action but rather to a family of
actions, one for each different instantiation of the variables. The solution to a plan-
ning problem is a plan: a tuple〈S,O,L,B〉 whereS is a set of plan steps (instances
of operators, typically defined with sets of preconditions and effects),O is a set of
ordering constraints on the elements ofS, L is a set of causal links representing the
causal structure of the plan, andB is a set of binding constraints on the variables
of the operator instances inS. Each ordering constraint is of the formSi < Sj (read
as “Si beforeSj ”) meaning that stepSi must occur sometime before stepSj (but
not necessarily immediately before). Typically, the ordering constraints induce only
a partial ordering on the steps inS. Causal links are triples〈Si , c, Sj 〉, whereSi and
Sj are elements ofS andc represents a proposition that is the unification of an effect
of Si and a precondition ofSj . Note that corresponding to this causal link is an or-
dering constraint, i.e.,Si < Sj . The reason for tracking a causal link〈Si , c, Sj 〉 is to
ensure that no step “threatens” a required link, i.e., no stepSk that results in¬c can
temporally intervene between stepsSi andSj .

Fig. 11(a) shows an example plan for a problem in which memory (RAM) and a
network interface card (NIC) need to be installed in a computer system (PC). The
initial and goal states describe the problem to be solved. Plan steps (shown as boxes)
represent the actions that must be carried out to reach the goal state from the initial.
For ease of understanding, partial state descriptions (italicized text) are also shown
in the figure. Note that the plan shown is a partial-order plan, i.e., the RAM and NIC
can be installed in any order once the PC is open. Fig. 11(b) shows the four operators
used by the planner to construct the plan. Each operator is defined in terms of pre-
conditions and effects. Preconditions are the necessary conditions that must be true
before the operator could be applied. Effects are the result of the operator application.
Fig. 11(c) shows the details of theinstallNIC operator. This operator can only
be applied (i.e., the NIC can only be installed) when a NIC is available (haveNIC),
the PC is open (∼PCclosed), and there is no NIC already installed (∼installedNIC).
Once all these conditions are satisfied, theinstallNIC operator can be applied
resulting in an installed NIC (installedNIC).

As mentioned above, most AI planners producepartially-ordered plans, in which
only some steps are ordered with respect to one another. A total-order plan can be
derived from a partial-order plan by adding ordering constraints, induced by remov-
ing threats. Each total-order plan obtained in such a way is called a linearization
of the partial-order plan. A partial-order plan is a solution to a planning problem if

ADVANCES IN GUI TESTING 175

FIG. 11. (a) A plan to install ram and a network interface card in the computer, (b) the operators used
in the plan, and (c) detailed definition of the installNIC operator.

and only if every consistent linearization of the partial-order plan meets the solution
conditions.

Fig. 12(a) shows another partial-order plan, this one for a GUI interaction. The
nodes (labeledSi , Sj , Sk , andSl) represent the plan steps (instantiated operators)
and the edges represent the causal links. The bindings are shown as parameters
of the operators. Fig. 12(b) lists the ordering constraints, all directly induced by

176 A.M. MEMON

FIG. 12. (a) A partial-order plan, (b) the ordering constraints in the plan, and (c) the two linearizations.

the causal links in this example. In general, plans may include additional ordering
constraints. The ordering constraints specify that theDeleteText() andType-
InText() actions can be performed in either order, but they must precede the
FILE_SAVEAS() action and must be performed after theFILE_OPEN() action.
Two legal orders shown in Fig. 12(c) are obtained.

ADVANCES IN GUI TESTING 177

8.1.1 Action Representation

The output of the planner is a set of actions with certain constraints on the relation-
ships among them. An action is an instance of an operator with its variables bound
to values. One well-known action representation uses the STRIPS4 language [11]
that specifies operators in terms of parameterized preconditions and effects. STRIPS
was developed more than twenty years ago and has limited expressive power. For in-
stance, no conditional or universally quantified effects are allowed. Although, in prin-
ciple, sets of STRIPS operators could be defined to encode conditional effects, such
encodings lead to an exponential number of operators, making even small planning
problems intractable. A more powerful representation is ADL [38,39], which allows
conditional and universally quantified effects in the operators. This facility makes it
possible to define operators in a more intuitive manner. A more recent representation
is the Planning Domain Definition Language5 (PDDL). The goals of designing the
PDDL language were to encourage empirical evaluation of planner performance and
the development of standard sets of planning problems. The language has roughly
the expressiveness of ADL for propositions.

8.1.2 Plan Generation as a Search Problem

The roots of AI planning lie in problem solving by using search. This search can
either be through a space of domain states or plans. Astate space search starts at
the initial state, and applies operators one at a time until it reaches a state contain-
ing all the requirements of the goal. This approach—as is the case with all search
problems—requires good heuristics to avoid exploring too much of the huge search
space. State space planners typically produce totally-ordered plans. Aplan space
planner searches through a space of plans. It starts with a simple incomplete plan
that contains a representation of only the initial and goal states. It then refines that
plan iteratively until it obtains a complete plan that solves the problem. The inter-
mediate plans are called “partial plans”. Typical refinements include adding a step,
imposing an ordering that puts one step before another, and instantiating a previ-
ously unbound variable. Plan space planners producepartial-order plans, introduc-
ing ordering constraints into plans only when necessary. A solution to the planning
problem is any linearization of the complete plan that is consistent with the ordering
constraints specified there. A partial order plan is a solution to a planning problem
if and only if every consistent linearization of the partial order plan meets the solu-
tion conditions. Usually, the performance of plan space planners is better than that
of state space planners because the branching factor is smaller (but cf. Veloso and

4STRIPS is an acronym for STanford Research Institute Problem Solver.
5Entire documentation available athttp://www.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz.

http://www.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz

178 A.M. MEMON

Stone [51]). Again, however, heuristic search strategies have an important effect on
efficiency.

A popular example of a plan space planner is UCPOP [40]. UCPOP and other ear-
lier planning systems rely on graph search requiring unification of unbound variables.
Unification considerably slows down the planning process. Consequently, these plan-
ners are useful for solving small problems and studying the behavior of different
search strategies [41]. Results of experiments conducted by Memon et al. have in
fact shown that these planners are much faster than their modern counterparts in
finding short plans in domains containing a large number of objects [27].

The remainder of this section presents the design of PATHS. In particular, the
derivation of planning operators and how AI planning techniques are used to gen-
erate test cases is described. An algorithm that performs a restricted form of hierar-
chical planning is presented that employs new hierarchical operators and leads to an
improvement in planning efficiency and to the generation of multiple alternative test
cases. The algorithm has been implemented in PATHS, and Memon et al. [29] present
the results of experiments in which test cases for the example WordPad system were
generated using PATHS.

8.2 Creating the GUI Model

The state of a GUI is not static; events performed on the GUI change its state.
Events are modeled as state transducers.

DEFINITION. Theevents E = {e1, e2, . . . , en} associated with a GUI are functions
from one state of the GUI to another state of the GUI.

Since events may be performed on different types of objects, in different contexts,
yielding different behavior, they are parameterized with objects and property val-
ues. For example, an eventset-background-color(w, x) may be defined
in terms of awindow w andcolor x; w andx may take specific values in the
context of a particular GUI execution. As shown in Fig. 13, whenever the eventset-
background-color(w19, yellow) is executed in a state in which window
w19 is open, the background color ofw19 should becomeyellow (or stayyel-
low if it already was), and no other properties of the GUI should change. This ex-
ample illustrates that, typically, events can only be executed in some states;set-
background-color(w19, yellow) cannot be executed when windoww19
is not open.

It is of course infeasible to give exhaustive specifications of the state mapping
for each event: in principle, as there is no limit to the number of objects a GUI can

ADVANCES IN GUI TESTING 179

FIG. 13. An event changes the state of the GUI.

contain at any point in time, there can be infinitely many states of the GUI.6 Hence,
GUI events are represented usingoperators, which specify their preconditions and
effects:

DEFINITION. An operator is a 3-tuple<Name, Preconditions, Effects>

where:

• Name identifies an event and its parameters.

• Preconditions is a set of positive ground literals7 p(arg1, . . . , argn), where
p is ann-ary property (i.e.,p ∈ P). Pre(Op) represents the set of preconditions
for operatorOp. An operator is applicable in any stateSi in which all the literals
in Pre(Op) are true.

6Of course in practice, there are memory limits on the machine on which the GUI is running, and hence
only finitely many states are actually possible, but the number of possible states will be extremely large.

7A literal is a sentence without conjunction, disjunction or implication; a literal is ground when all of
its arguments are bound; and a positive literal is one that is not negated. It is straightforward to generalize
the account given here to handle partially instantiated literals. However, it needlessly complicates the
presentation.

180 A.M. MEMON

• Effects is also a set of positive or negative ground literalsp(arg1, . . . , argn),
wherep is ann-ary property (i.e.,p ∈ P). Eff (Op) represents the set of effects
for operatorOp. In the resulting stateSj , all of the positive literals inEff (Op)

will be true, as will all the literals that were true inSi except for those that
appear as negative literals inEff (Op).

For example, the following operator represents theset-background-color
event discussed earlier:

Name: set-background-color(wX: window, Col: Color)
Preconditions: is-current(wX), background-color(wX, oldCol),
oldCol �= Col

Effects: background-color(wX, Col)

Going back to the example of the GUI in Fig. 13 in which the following prop-
erties are true before the event is performed:window(w19), background-
color(w19, blue), is-current(w19). Application of the above op-
erator, with variables bound asset-background-color(w19, yellow),
would lead to the following state:window(w19), background-color(w19,
yellow), is-current(w19), i.e., the background color of windoww19
would change fromblue to yellow.

The above scheme for encoding operators is the same as what is standardly used
in the AI planning literature [39,52,53]; the persistence assumption built into the
method for computing the result state is called the “STRIPS assumption.” A complete
formal semantics for operators making the STRIPS assumption has been developed
by Lifschitz [24].

One final point to note about the representation of effects is the inability to ef-
ficiently express complex events when restricted to using only sets of literals. Al-
though in principle, multiple operators could be used to represent almost any event,
complex events may require the definition of an exponential number of operators,
making planning inefficient. In practice, a more powerful representation that allows
conditional and universally quantified effects is employed. For example, the operator
for the Paste event would have different effects depending on whether the clip-
board was empty or full. Instead of defining two operators for these two scenarios, a
conditional effect could be used instead. In cases where even conditional and quan-
tified effects are inefficient,procedural attachments, i.e., arbitrary pieces of code
that perform the computation, are embedded in the effects of the operator [18]. One
common example is the representation of computations. A calculator GUI that takes
as input two numbers, performs computations (such as addition, subtraction) on the
numbers, and displays the results in a text field will need to be represented using
different operators, one for each distinct pair of numbers. By using a procedural at-

ADVANCES IN GUI TESTING 181

FIG. 14. The eventSet Language opens a modal window.

tachment, the entire computation may be handled by a piece of code, embedded in a
single operator.

Since today’s GUIs are large and contain a large number of events, any scalable
representation must decompose a GUI into manageable parts. As mentioned previ-
ously, GUIs are hierarchical, and this hierarchy may be exploited to identify groups
of GUI events that can be analyzed in isolation. One hierarchy of the GUI and the
one used in this research is obtained by examining the structure ofmodal windows
in the GUI.

DEFINITION. A modal window is a GUI window that, once invoked, monopolizes
the GUI interaction, restricting the focus of the user to a specific range of events
within the window, until the window is explicitly terminated.

The language selection window is an example of a modal window in MS Word.
As Fig. 14 shows, when the user performs the eventSet Language, a window en-
titled Language opens and the user spends time selecting the language, and finally
explicitly terminates the interaction by either performingOK or Cancel.

Other windows in the GUI are calledmodeless windows that do not restrict the
user’s focus; they merely expand the set of GUI events available to the user. For ex-
ample, in the MS Word software, performing the eventReplace opens a modeless
window entitledReplace (Fig. 15).

At all times during interaction with the GUI, the user interacts with events within a
modal dialog. This modal dialog consists of a modal windowX and a set of modeless
windows that have been invoked, either directly or indirectly byX. The modal dialog
remains in place untilX is explicitly terminated. Intuitively, the events within the
modal dialog form aGUI component.

182 A.M. MEMON

FIG. 15. The eventReplace opens a modeless window.

DEFINITION. A GUI component C is an ordered pair (RF , UF), whereRF repre-
sents a modal window in terms of its events andUF is a set whose elements repre-
sent modeless windows also in terms of their events. Each element ofUF is invoked
either by an event inUF orRF .

Note that, by definition, events within a component do not interleave with events
in other components without the components being explicitly invoked or terminated.

Since components are defined in terms of modal windows, a classification of GUI
events is used to identify components. The classification of GUI events is as follows:

Restricted-focus events open modal windows. Set Language in Fig. 14 is a
restricted-focus event.

Unrestricted-focus events open modeless windows. For example,Replace in
Fig. 15 is an unrestricted-focus event.

Termination events close modal windows; common examples includeOK and
Cancel (Fig. 14).

ADVANCES IN GUI TESTING 183

FIG. 16. Menu-open events:File andSend To.

The GUI contains other types of events that do not open or close windows but
make other GUI events available. These events are used to open menus that contain
several events.

Menu-open events are used to open menus. They expand the set of GUI events
available to the user. Menu-open events do not interact with the underlying soft-
ware. Note that the only difference between menu-open events and unrestricted-
focus events is that the latter open windows that must be explicitly terminated. The
most common example of menu-open events are generated by buttons that open
pull-down menus. For example, in Fig. 16,File andSentTo are menu-open
events.

Finally, the remaining events in the GUI are used to interact with the underlying
software.

System-interaction events interact with the underlying software to perform some
action; common examples include theCopy event used for copying objects to the
clipboard (see Fig. 17).

Table II lists some of the components of WordPad. Each row represents a com-
ponent and each column shows the different types of events available within each
component.Main is the component that is available when WordPad is invoked.

184 A.M. MEMON

FIG. 17. A system-interaction event:Copy.

TABLE II
TYPES OFEVENTS IN SOME COMPONENTS OFMS WORDPAD

Component name Event type Sum
Menu System Restricted Unrestricted Termination
open interaction focus focus

Main 7 27 19 2 1 56
FileOpen 0 8 0 0 2 10
FileSave 0 8 0 0 2 10
Print 0 9 1 0 2 12
Properties 0 11 0 0 2 13
PageSetup 0 8 1 0 2 11
FormatFont 0 7 0 0 2 9

Sum 7 78 21 21 3 121

Other components’ names indicate their functionality. For example,FileOpen is
the component of WordPad used to open files.

As described in Section 8.1, setting up a planning problem requires performing
two related activities: (1) defining planning operators in terms of preconditions and
effects, and (2) describing tasks in the form of initial and goal states. This section
provides details of these two activities in the context of using planning for test case
generation.

ADVANCES IN GUI TESTING 185

8.3 Modeling Planning Operators
For a given GUI, the simplest approach to obtain planning operators would be to

identify one operator for each GUI event (Open, File, Cut, Paste, etc.) directly
from the GUI representation, ignoring the GUI’s component hierarchy. For the re-
mainder of this chapter, these operators, presented earlier in Section 8.2, are called
primitive operators. When developing the GUI representation, the test designer de-
fines the preconditions and effects for all these operators. Although conceptually
simple, this approach is inefficient for generating test cases for GUIs as it results in
a large number of operators.

An alternative modeling scheme, and the one used in this test case generator, uses
the component hierarchy and creates high-level operators that are decomposable
into sequences of lower level ones. These high-level operators are calledsystem-
interaction operators and component operators. The goal of creating these high-
level operators is to control the size of the planning problem by dividing it into sev-
eral smaller planning problems. Intuitively, the system-interaction operators fold a
sequence of menu-open or unrestricted-focus events and a system-interaction event
into a single operator, whereas component operators encapsulate the events of the
component by treating the interaction within that component as a separate planning
problem. Component operators need to be decomposed into low-level plans by an
explicit call to the planner. Details of these operators are presented next.

The first type of high-level operators are called system-interaction operators.

DEFINITION. A system-interaction operator is a single operator that represents a
sequence of zero or more menu-open and unrestricted-focus events followed by a
system-interaction event.

Consider a small part of the WordPad GUI: one pull-down menu with one option
(Edit) which can be opened to give more options, i.e.,Cut andPaste. The events
available to the user areEdit, Cut andPaste. Edit is a menu-open event, and
Cut andPaste are system-interaction events. Using this information the following
two system-interaction operators are obtained.

EDIT_CUT = <Edit, Cut>
EDIT_PASTE = <Edit, Paste>

The above is an example of anoperator-event mapping that relates system-
interaction operators to GUI events. The operator-event mappings fold the menu-
open and unrestricted focus events into the system-interaction operator, thereby
reducing the total number of operators made available to the planner, resulting in
planning efficiency. These mappings are used to replace the system-interaction oper-
ators by their corresponding GUI events when generating the final test case.

186 A.M. MEMON

In the above example, the eventsEdit, Cut and Paste are hidden from
the planner, and only the system-interaction operators, namely,EDIT_CUT and
EDIT_PASTE, are made available to the planner. This abstraction prevents gen-
eration of test cases in whichEdit is used in isolation, i.e., the model forces the use
of Edit either withCut or withPaste, thereby restricting attention to meaningful
interactions with the underlying software.8

The second type of high-level operators are calledcomponent operators.

DEFINITION. A component operator encapsulates the events of the underlying com-
ponent by creating a new planning problem and its solution represents the events a
user might generate during the focused interaction.

The component operators employ the component hierarchy of the GUI so that test
cases can be generated for each component, thereby resulting in greater efficiency.
For example, consider a small part of the WordPad’s GUI shown in Fig. 18(a):
a File menu with two restricted-focus events, namelyOpen andSaveAs. Both
these events invoke two components calledOpen andSaveAs, respectively. The
events in both windows are quite similar. ForOpen the user can exit after pressing
Open or Cancel; for SaveAs the user can exit after pressingSave or Cancel.
For simplicity, assume that the complete set of events available isOpen, SaveAs,
Open.Select, Open.Up, Open.Cancel, Open.Open, SaveAs.Select,
SaveAs.Up, SaveAs.Cancel andSaveAs.Save. (Note that the component
name is used to disambiguate events.) Once the user selectsOpen, the focus is re-
stricted toOpen.Select, Open.Up, Open.Cancel andOpen.Open. Simi-
larly, when the user selectsSaveAs, the focus is restricted toSaveAs.Select,
SaveAs.Up, SaveAs.Cancel andSaveAs.Save. Two component operators
calledFile_Open andFile_SaveAs are obtained.

The component operator is a complex structure since it contains all the necessary
elements of a planning problem, including the initial and goal states, the set of ob-
jects, and the set of operators. Theprefix of the component operator is the sequence
of menu-open and unrestricted-focus events that lead to the restricted-focus event,
which invokes the component in question. This sequence of events is stored in the
operator-event mappings. For the example of Fig. 18(a), the following two operator-
event mappings are obtained, one for each component operator:

File_Open = <File, Open>, and
File_SaveAs = <File, SaveAs>.

8Test cases in whichEdit stands in isolation can be created by (1) testingEdit separately, or (2) in-
sertingEdit at random places in the generated test cases.

ADVANCES IN GUI TESTING 187

FIG. 18. (a)Open andSaveAswindows as component operators, (b) component operator templates,
and (c) decomposition of the component operator using operator-event mappings and making a separate
call to the planner to yield a sub-plan.

Thesuffix of the component operator represents the modal dialog. Acomponent
operator definition template is created for each component operator. This
template contains all the essential elements of the planning problem, i.e., the set of
operators that are available during the interaction with the component and initial and
goal states, both determined dynamically at the point before the call. The component
operator definition template created for each operator is shown in Fig. 18(b).

188 A.M. MEMON

The component operator is decomposed in two steps: (1) using the operator-events
mappings to obtain the component operator prefix, and (2) explicitly calling the plan-
ner to obtain the component operator suffix. Both the prefix and suffix are then sub-
stituted back into the high-level plan. At the highest level of abstraction, the planner
will use the component operators, i.e.,File_Open andFile_SaveAs, to con-
struct plans. For example, in Fig. 18(c), the high-level plan containsFile_Open.
DecomposingFile_Open requires (1) retrieving the corresponding GUI events
from the stored operator-event mappings (File, Open), and (2) invoking the plan-
ner, which returns the sub-plan (Up,Select,Open).File_Open is then replaced
by the sequence (File, Open, Up, Select, Open). Since the higher-level plan-
ning problem has already been solved before invoking the planner for the component
operator, the preconditions and effects of the high-level component operator are used
to determine the initial and goal states of the sub-plan.

8.4 Modeling the Initial and Goal State and Generating Test
Cases

Once all the operators have been identified and defined, the test designer begins
the generation of particular test cases by identifying a task, consisting of an initial
state and a goal state. The test designer then codes these initial and goal states. Recall
that GUI states are represented by a set of properties of GUI objects. Fig. 19 shows
an example of a task for WordPad. Fig. 19(a) shows theinitial state: a col-
lection of files stored in a directory hierarchy. The contents of the files are shown
in boxes, and the directory structure is shown in anExploring window. Assume
that the initial state contains a description of the directory structure, the location of
the files, and the contents of each file. Using these files and WordPad’s GUI, a goal
of creating the new document shown in Fig. 19(b) and then storing it in filenew.doc
in the/root/public directory is defined. Fig. 19(b) shows thisgoal state
that contains, in addition to the old files, a new file stored in/root/public di-
rectory. Note thatnew.doc can be obtained in numerous ways, e.g., by loading file
Document.doc, deleting the extra text and typing in the wordfinal, by load-
ing file doc2.doc and inserting text, or by creating the document from scratch by
typing in the text. The code for the initial state and the changes needed to achieve
the goal states is shown in Fig. 20. Once the task has been specified, the system
automatically generates a set of test cases that achieve the goal.

8.5 Generating Plans

The test designer begins the generation of particular test cases by inputting the
defined operators into PATHS and then identifying a task, such as the one shown

ADVANCES IN GUI TESTING 189

FIG. 19. A task for the planning system; (a) the initial state, and (b) the goal state.

in Fig. 19, that is defined in terms of an initial state and a goal state. PATHS auto-
matically generates a set of test cases that achieve the goal. An example of a plan
is shown in Fig. 21. (Note thatTypeInText() is a keyboard event.) This plan
is a high-level plan that must be translated into primitive GUI events. The transla-
tion process makes use of the operator-event mappings stored during the modeling
process. One such translation is shown in Fig. 22. This figure shows the component
operators contained in the high-level plan are decomposed by (1) inserting the ex-
pansion from the operator-event mappings, and (2) making an additional call to the
planner. Since the maximum time is spent in generating the high-level plan, it is de-
sirable to generate a family of test cases from this single plan. This goal is achieved
by generating alternative sub-plans at lower levels. One of the main advantages of
using the planner in this application is to automatically generate alternative plans (or

190 A.M. MEMON

FIG. 20. Initial State and the changes needed to reach the goal state.

sub-plans) for the same goal (or sub-goal). Generating alternative plans is important
to model the various ways in which different users might interact with the GUI, even
if they are all trying to achieve the same goal. AI planning systems typically gener-
ate only a single plan; the assumption made there is that the heuristic search control
rules will ensure that the first plan found is a high quality plan. PATHS generates
alternative plans in the following two ways.

1. Generating multiple linearizations of the partial-order plans. Recall from an
earlier discussion (Section 8.1) that the ordering constraintsO only induce a
partial ordering, so the set of solutions are all linearizations ofS (plan steps)
consistent withO . Any linear order consistent with the partial order is a test

ADVANCES IN GUI TESTING 191

FIG. 21. A plan consisting of component operators and a GUI event.

FIG. 22. Expanding the higher level plan.

case. All possible linear orders of a partial-order plan result in a family of test
cases. Multiple linearizations for a partial-order plan were shown earlier in
Fig. 12.

2. Repeating the planning process, forcing the planner to generate a different test
case at each iteration.

192 A.M. MEMON

FIG. 23. An alternative expansion leads to a new test case.

The sub-plans are generated much faster than generating the high-level plan and
can be substituted into the high-level plan to obtain alternative test cases. One such
alternative low-level test case generated for the same task is shown in Fig. 23. Note
the use of nested invocations to the planner during component-operator decomposi-
tion.

8.6 Algorithm for Generating Test Cases

The test case generation algorithm is shown in Fig. 24. The operators are assumed
to be available before making a call to this algorithm, i.e., steps 1–3 of the test case

ADVANCES IN GUI TESTING 193

Lines
Algorithm :: GenTestCases(

Λ = Operator Set; 1
D = Set of Objects; 2
I = Initial State; 3
G = Goal State; 4
T = Threshold) { 5

planList← {}; 6
c← 0; 7
/* Successive calls to the planner (Φ),

modifying the operators before each call */
WHILE ((p==Φ(Λ,D, I,G)) ! = NO_PLAN) 8

&& (c < T) DO { 9
InsertInList(p, planList); 10
Λ← RecordPlan(Λ, p); 11
c++} 12

linearPlans← {}; /* No linear plans yet */ 13
/* Linearize all partial order plans */
FORALL e ∈ planList DO { 14

L← Linearize(e); 15
InsertInList(L, linearPlans)} 16

testCases← linearPlans; 17
/* decomposing the testCases */
FORALL tc ∈ testCases DO { 18

FORALL C ∈ Steps(tc) DO { 19
IF (C == systemInteractionOperator) THEN { 20

newC← lookup(Mappings,C); 21
REPLACE C WITH newC IN tc} 22

ELSEIF (C == componentOperator) THEN { 23
ΛC ← OperatorSet(C); 24
GC← Goal(C); 25
IC← Initial(C); 26
DC← ObjectSet(C); 27

/* Generate the lower level test cases */
newC← APPEND(lookup(Mappings,C), GenTestCases(ΛC,DC,IC,GC, T)); 28

FORALL nc ∈ newC DO { 29
copyOftc← tc; 30
REPLACE C WITH nc IN copyOftc; 31
APPEND copyOftc TO testCases}}}} 32

RETURN(testCases)} 33

FIG. 24. The complete algorithm for generating test cases.

194 A.M. MEMON

generation process shown in Table I must be completed before making a call to this
algorithm. The parameters (lines 1..5) include all the components of a plan-
ning problem and a threshold (T) that controls the looping in the algorithm. The loop
(lines 8..12) contains the explicit call to the planner (Φ). The returned planp
is recorded with the operator set, so that the planner can return an alternative plan
in the next iteration (line 11). At the end of this loop,planList contains all the
partial-order plans. Each partial-order plan is then linearized (lines 13..16),
leading to multiple linear plans. Initially the test cases are high-level linear plans
(line 17). The decomposition process leads to lower level test cases. The high-
level operators in the plan need to be expanded/decomposed to get lower level test
cases. If the step is a system-interaction operator, then the operator-event mappings
are used to expand it (lines 20..22). However, if the step is a component oper-
ator, then it is decomposed to a lower level test case by (1) obtaining the GUI events
from the operator-event mappings, (2) calling the planner to obtain the sub-plan, and
(3) substituting both these results into the higher level plan. Extraction functions are
used to access the planning problem’s components (lines 24..27). The lowest
level test cases, consisting of GUI events, are returned as a result of the algorithm
(line 33).

9. Discussion

All (or a combination of some) of the techniques presented in this chapter may be
used for GUI testing. However, test planning becomes challenging when mixing and
matching testing techniques. What is needed is a set of guidelines that may be used
to assist in test planning.

Ideally, a comparison of the presented techniques along several dimensions is re-
quired to present these guidelines. These dimensions include the resource require-
ments (time, effort, cost, etc.) and fault-detection effectiveness of each technique
on a standard set of programs. However, no formal empirical study comparing and
evaluating these techniques exists.

Experience and familiarity with these techniques may still be used to sketch a
set of guidelines for practitioners. These guidelines have been developed keeping
in mind the coverage criteria presented by Memon et al. [30]. The guidelines are
presented next:

1. Unit test each event in the GUI by performing each event at least once. This
is the least expensive type of testing and may be done manually. Errors in the
implementation of individual events may be exposed during this step.

ADVANCES IN GUI TESTING 195

2. Interactions between events may be tested by using the Orthogonal Latin
Squares technique. This step may expose additional errors due to event inter-
actions.

3. Longer event sequences may need to be tested. Specific interactions may be
tested by using Complete Interaction Sequences. The cost of this type of testing
may be controlled by restricting the number of interactions during testing.

4. While the above steps are important to expose faults in the GUI implemen-
tation, the techniques used for the steps are influenced by the test designer.
To complement the above steps, the AI planning technique and state machine
models may be used to generate long sequences of events automatically. Al-
though the setup cost of these techniques may be high, a large number of test
cases may be obtained once a model has been created. Moreover, the test oracle
is obtained automatically [28].

5. Finally, once the GUI has been tested for predictable event sequences and/or
predictable tasks, the sequences taken by novice users may be checked by using
the Genetic Algorithms technique. The advantage of using this technique at the
end is that much of the testing information collected during the earlier steps
may be reused. For example, event sequences obtained from planning and state
machine models may be used as a starting point for genetic algorithms.

Not all of the above steps may be performed because of practical limitations. Most
test designers may choose to perform the first three (cheapest) steps.

10. Summary

• Graphical user interfaces (GUIs) have become critical parts of today’s software.
Their correct operation is imperative to the correctness and safety of the overall
software.

• There are several ways to check a GUI for correctness; the most popular being
manual inspections, usability evaluations, and testing.
– Inspections: checklists are used to manually examine specific features of the

GUI for correctness.

– Usability evaluations: usability weaknesses in the interface are identified by
users who examine the GUI from several different perspectives.

– Testing: test cases are created and executed (either manually or automatically)
to find errors in the GUI.

• There are several different approaches to test GUIs: unit testing and interaction
testing.

196 A.M. MEMON

– Unit testing: tools such asJFCUnit are employed by code developers to write
unit tests for event handlers, e.g., methods, classes.

– Interaction testing: the interaction between GUI events is checked by execut-
ing sequences of events on the GUI.

• The following ways are used to perform interaction testing.
– Finite state machines: the GUI’s behavior is modeled as a FSM where each

input event triggers a transition in the FSM. A path in the FSM represents
a test case, and the FSM’s states are used to verify the GUI’s state during
test case execution. Once the FSM is built, the test case generation process is
automatic.

– Variable finite state machines: VFSMs are extensions of FSMs; the key dif-
ference being that VFSMs allow a number of global variables, each of which
takes values from a finite domain. Also, the value of the variable may be
modified by a transition. The value of these variables is used to compute the
next state and the output in response to an input. For example, the value of
a variable may be used by the model to specify which transition should be
taken for a particular input.

– Complete interaction sequences: FSMs for large GUIs may be too large for
practical use. CISs solve this problem by focusing on a subset of interac-
tions performed on the GUI. They key idea is to identifyresponsibilities for
a GUI; a responsibility is a GUI activity that involves one or more GUI ob-
jects and has an observable effect on the surrounding environment of the
GUI, which includes memory, peripheral devices, underlying software, and
application software. For each responsibility, acomplete interaction sequence
(CIS), which is a sequence of GUI objects and selections that will invoke the
given responsibility, is identified. Parts of the CIS are then used for testing
the GUI.

– Genetic algorithms: Genetic algorithms have been used to test the GUI for
interactions that novice users may encounter in practice. This comes from a
need to test the GUI from the perspective of different groups of users, e.g.,
experts and novice users. Unsophisticated and novice users often exercise
GUI applications in ways that the designer, the developer, and the tester did
not anticipate. An expert user or tester usually follows a predictable path
through an application to accomplish a familiar task. The developer knows
where to probe, to find the potentially problematic parts of an application.
Consequently, applications are well tested for state transitions that work well
for predicted usage patterns but become unstable when given to novice users.
Novice users follow unexpected paths in the application, causing program
failures. Such failures are difficult to predict at design and testing time.

ADVANCES IN GUI TESTING 197

– Orthogonal Latin squares: A Latin square, of ordern, is a matrix ofn sym-
bols inn×n cells, arranged inn rows andn columns, such that every symbol
exactly once in each row and once in each column. A pair of Latin squares
A = (aij) andB = (bij) areorthogonal iff the ordered pairs(aij , bij) are
distinct for all i andj . The use of orthogonal Latin squares is based on the
assumption that it is enough to test pair-wise interactions of GUI events.

– AI planning: The test designer provides a specification of initial and goal
states for commonly used tasks. An automated planning system generates
plans for each specified task. Each generated plan represents a test case that
is a reasonable candidate for helping test the GUI, because it reflects an in-
tended use of the system. The motivating idea behind this approach is that
GUI test designers will often find it easier to specify typical user goals than
to specify sequences of GUI events that users might perform to achieve those
goals. The software underlying any GUI is designed with certain intended
uses in mind; thus the test designer can describe those intended uses. How-
ever, it is difficult to manually obtain different ways in which a user might
interact with the GUI to achieve typical goals. Users may interact in idiosyn-
cratic ways, which the test designer might not anticipate. Additionally, there
can be a large number of ways to achieve any given goal, and it would be very
tedious for the GUI tester to specify even those event sequences that s/he can
anticipate. The planning based test case generator uses an hierarchical plan-
ning to generate GUI test cases for commonly used tasks.

• Although there are no empirical studies comparing the techniques presented in
this chapter, experience with these techniques has been used to develop guide-
lines useful for test planning.

REFERENCES

[1] Adrion W.R., Branstad M.A., Cherniavsky J.C., “Validation, verification, and testing of
computer software”,ACM Computing Surveys (CSUR) 14 (2) (1982) 159–192.

[2] Bernhard P.J., “A reduced test suite for protocol conformance testing”,ACM Transac-
tions on Software Engineering and Methodology 3 (3) (1994) 201–220.

[3] Chays D., Dan S., Frankl P.G., Vokolos F.I., Weyuker E.J., “A framework for testing
database applications”, in:Proceedings of the 2000 International Symposium on Soft-
ware Testing and Analysis (ISSTA), 2000, pp. 147–157.

[4] Chow T.S., “Testing software design modeled by finite-state machines”,IEEE Trans. on
Software Engineering SE-4 3 (1978) 178–187.

[5] Clarke J.M., “Automated test generation from a behavioral model”, in:Proceedings of
Pacific Northwest Software Quality Conference, IEEE Press, New York, 1998.

198 A.M. MEMON

[6] Cohen D.M., Dalal S.R., Kajla A., Patton G.C., “The automatic efficient test genera-
tor (AETG) system”, in:Proceedings of the 5th International Symposium on Software
Reliability Engineering, IEEE Computer Society Press, 1994, pp. 303–309.

[7] Corry M.D., Frick T.W., “User-centered design and usability testing of a Web site: An il-
lustrative case study”,Educational Technology Research and Development 45 (4) (1997)
65–75.

[8] Dillon L.K., Ramakrishna Y.S., “Generating oracles from your favorite temporal logic
specifications”, in:Proceedings of the 4th ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, in: ACM Software Engineering Notes, Vol. 21, ACM
Press, New York, 1996, pp. 106–117.

[9] Dwyer M.B., Carr V., Hines L., “Model checking graphical user interfaces using abstrac-
tions”, in: Jazayeri M., Schauer H. (Eds.),ESEC/FSE’97, in: Lecture Notes in Computer
Science, Vol. 1301, Springer/ACM Press, 1997, pp. 244–261.

[10] Esmelioglu S., Apfelbaum L., “Automated test generation, execution, and reporting”, in:
Proceedings of Pacific Northwest Software Quality Conference, IEEE Press, 1997.

[11] Fikes R., Nilsson N., “STRIPS: A new approach to the application of theorem proving to
problem solving”,Artificial Intelligence 2 (1971) 189–208.

[12] Grady H.M., “Web site design: A case study in usability testing using paper prototypes”,
in: Approaches to Prototyping, IEEE IPCC 2000/ACM 18th International Conference on
Systems Documentation, 2000, pp. 39–46.

[13] Cho H., Hachtel G.D., Somenzi F., “Redundancy identification/removal and test gen-
eration for sequential circuits using implicit state enumeration”,IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 12 (7) (1993) 935–945.

[14] Hammontree M.L., Hendrickson J.J., Hensley B.W., “Integrated data capture and analy-
sis tools for research and testing an graphical user interfaces”, in:Proceedings of the
Conference on Human Factors in Computing Systems, New York, NY , 1992, pp. 431–
432.

[15] Harrold M.J., Soffa M.L., “Interprocedual data flow testing”, in:Proceedings of the
ACM SIGSOFT’89 3rd Symposium on Testing, Analysis, and Verification (TAV3), 1989,
pp. 158–167.

[16] Hong J.I., Landay J.A., “WebQuilt: a framework for capturing and visualizing the web
experience”, in:Proceedings of the 10th International World Wide Web Conference on
World Wide Web, 2001, pp. 712–724.

[17] Ivory M.Y., Hearst M.A., “The state of the art in automating usability evaluation of user
interfaces”,ACM Computing Surveys (CSUR) 33 (4) (2001) 470–516.

[18] Jónsson A.K., Ginsberg M.L., “Procedural reasoning in constraint satisfaction”, in:
Aiello L.C., Doyle J., Shapiro S. (Eds.),Proceedings of the 5th International Confer-
ence on Principles of Knowledge Representation and Reasoning, Morgan Kaufmann,
San Francisco, 1996, pp. 160–173.

[19] Kaasgaard K., Myhlendorph T., Snitker T., Sorensen H.-E., “Remote usability testing
of a web site information architecture: ‘testing for a dollar a day’ ”, in:Remote Interac-
tion and Evaluation Proceedings of IFIP INTERACT’99: Human–Computer Interaction,
1999, pp. 443–450.

ADVANCES IN GUI TESTING 199

[20] Kasik D.J., George H.G., “Toward automatic generation of novice user test scripts”,
in: Proceedings of the Conference on Human Factors in Computing Systems: Common
Ground, ACM Press, New York, 1996, pp. 244–251.

[21] Kirda E., “Web engineering device independent web services”, in:Proceedings of the
23rd International Conference on Software Engineering, Doctoral Symposium, Toronto,
Canada, 2001.

[22] Kotelly C.B., “World wide web as usability tester, collector, recruiter”, in:Proceedings
of ACM CHI 97 Conference on Human Factors in Computing Systems, Short Talks:
Usability, Vol. 2, 1997, pp. 285–286.

[23] Levi M.D., Conrad F.G., “Usability testing of World Wide Web sites: A CHI 97 work-
shop”,ACM SIGCHI Bulletin 29 (4) (1997) 40–43.

[24] Lifschitz V., “On the semantics of STRIPS”, in: Georgeff M.P., Lansky A.L. (Eds.),
Reasoning about Actions and Plans: Proceedings of the 1986 Workshop, Timberline,
Oregon, Morgan Kaufmann, 1986, pp. 1–9.

[25] Mahajan R., Shneiderman B., Visual and textual consistency checking tools for graphical
user interfaces, Technical Report CS-TR-3639, University of Maryland, College Park,
May 1996.

[26] Marold K.A., Larsen G., Shaw K., Robertus P., “Usability testing for a computer skills
WBT (web based training) program”, in: Prasad J. (Ed.),Proceedings of the 1999 ACM
SIGCPR Conference (SIGCPR-99), ACM Press, New York, 1999, p. 304.

[27] Memon A.M., Pollack M., Soffa M.L., Comparing causal-link and propositional plan-
ners: Tradeoffs between plan length and domain size, Technical Report 99-06, University
of Pittsburgh, Pittsburgh, 1999.

[28] Memon A.M., Pollack M.E., Soffa M.L., “Automated test oracles for GUIs”, in:Pro-
ceedings of the ACM SIGSOFT 8th International Symposium on the Foundations of
Software Engineering (FSE-8), New York, 2000, pp. 30–39.

[29] Memon A.M., Pollack M.E., Soffa M.L., “Hierarchical GUI test case generation using
automated planning”,IEEE Transactions on Software Engineering 27 (2) (2001) 144–
155.

[30] Memon A.M., Soffa M.L., Pollack M.E., “Coverage criteria for GUI testing”, in:Pro-
ceedings of the 8th European Software Engineering Conference (ESEC) and 9th ACM
SIGSOFT International Symposium on the Foundations of Software Engineering (FSE-
9), 2001, pp. 256–267.

[31] Myers B.A., in:State of the Art in User Interface Software Tools, Vol. 4, Ablex Publish-
ing, 1993, pp. 110–150.

[32] Myers B.A., Why are human–computer interfaces difficult to design and implement?,
Technical Report CS-93-183, Carnegie Mellon University, School of Computer Science,
July 1993.

[33] Myers B.A., “User interface software tools”,ACM Transactions on Computer–Human
Interaction 2 (1) (1995) 64–103.

[34] Myers B.A., Hollan J.D., Cruz I.F., “Strategic directions in human–computer interac-
tion”, ACM Computing Surveys 28 (4) (1996) 794–809.

200 A.M. MEMON

[35] Myers B.A., Olsen Jr. D.R., “User interface tools”, in:Proceedings of ACM CHI’94
Conference on Human Factors in Computing Systems, Tutorials, Vol. 2, 1994, pp. 421–
422.

[36] Myers B.A., Olsen D.R. Jr., Bonar J.G., “User interface tools”, in:Proceedings of ACM
INTERCHI’93, Conference on Human Factors in Computing Systems—Adjunct Pro-
ceedings, Tutorials, 1993, p. 239.

[37] Osterweil L., Clarke L.A. Directions for U.S. research and development efforts on soft-
ware testing and analysis, Technical Report UM-CS-1990-073, University of Massa-
chusetts, Amherst, Computer Science, March 1990.

[38] Pednault E.P.D., Toward a mathematical theory of plan synthesis, PhD thesis, Dept. of
Electrical Engineering, Stanford University, Stanford, CA, December 1986.

[39] Pednault E.P.D., “ADL: Exploring the middle ground between STRIPS and the situation
calculus”, in:Proceedings of KR’89, Toronto, Canada, 1989, pp. 324–331.

[40] Penberthy J.S., Weld D.S., “UCPOP: A sound, complete, partial order planner for ADL”,
in: Nebel B., Rich C., Swartout W. (Eds.),Proceedings of the 3rd International Con-
ference on Principles of Knowledge Representation and Reasoning, Cambridge, MA,
Morgan Kaufmann, 1992, pp. 103–114.

[41] Pollack M.E., Joslin D., Paolucci M., “Flaw selection strategies for partial-order plan-
ning”, Journal of Artificial Intelligence Research 6 (6) (1997) 223–262.

[42] Richardson D.J., “TAOS: Testing with analysis and oracle support”, in: Ostrand T. (Ed.),
Proceedings of the 1994 International Symposium on Software Testing and Analysis
(ISSTA): August 17–19, 1994, Seattle, Washington, ACM SIGSOFT, ACM Press, New
York, 1994, pp. 138–153.

[43] Rosenblum D.S., Weyuker E.J., “Using coverage information to predict the cost-
effectiveness of regression testing strategies”,IEEE Transactions on Software Engineer-
ing 23 (3) (1997) 146–156.

[44] Rothermel G., Harrold M.J., “Empirical studies of a safe regression test selection tech-
nique”, IEEE Transactions on Software Engineering 24 (6) (1998) 401–419.

[45] Rothermel G., Harrold M.J., Ostrin J., Hong C., “An empirical study of the effects of
minimization on the fault detection capabilities of test suites”, in:Proceedings Interna-
tional Conference on Software Maintenance, 1998, pp. 34–43.

[46] Shehady R.K., Siewiorek D.P., “A method to automate user interface testing using
variable finite state machines”, in:Proceedings of the 27th Annual International Sym-
posium on Fault-Tolerant Computing (FTCS’97), Washington–Brussels–Tokyo, IEEE
Press, 1997, pp. 80–88.

[47] Spool J.M., Scanlon T., Snyder C., Schroeder W., “Measuring website usability”, in:Pro-
ceedings of ACM CHI 98 Conference on Human Factors in Computing Systems (Sum-
mary), Vol. 2, Special Interest Groups (SIGs), 1998, p. 390.

[48] Szczur M., “Usability testing—on a budget: A NASA usability test case study”,Behav-
iour and Information Technology 13 (1,2) (1994) 106–118.

[49] Taylor R.N., Levine D.L., Kelly C.D., “Structural testing of concurrent programs”,IEEE
Transactions on Software Engineering 18 (3) (1992) 206–215.

[50] The L., “Stress tests for GUI programs”,Datamation 38 (18) (1992) 37.

ADVANCES IN GUI TESTING 201

[51] Veloso M., Stone P., “FLECS: Planning with a flexible commitment strategy”,Journal
of Artificial Intelligence Research 3 (1995) 25–52.

[52] Weld D.S., “An introduction to least commitment planning”,AI Magazine 15 (4) (1994)
27–61.

[53] Weld D.S., “Recent advances in AI planning”,AI Magazine 20 (1) (1999) 55–64.
[54] White L., “Regression testing of GUI event interactions”, in:Proceedings of the Inter-

national Conference on Software Maintenance, Washington, 1996, pp. 350–358.
[55] White L., Almezen H., “Generating test cases for GUI responsibilities using complete

interaction sequences”, in:Proceedings of the International Symposium on Software Re-
liability Engineering, 2000, pp. 110–121.

[56] Wick D.T., Shehad N.M., Hajare A.R., “Testing the human computer interface for the
telerobotic assembly of the space station”, in:Proceedings of the 5th International Con-
ference on Human–Computer Interaction, Special Applications, Vol. 1, 1993, pp. 213–
218.

[57] Wong A.Y.K., Donkers A.M., Dillon R.F., Tombaugh J.W., “Usability testing: Is the
whole test greater than the sum of its parts?”, in:Proceedings of ACM CHI’92 Con-
ference on Human Factors in Computing Systems—Posters and Short Talks, Posters:
Helping Users, Programmers, and Designers, 1992, p. 38.

[58] Yang C.-S., Souter A., Pollock L., “All-du-path coverage for parallel programs”,Pro-
ceedings of the ACM SIGSOFT International Symposium on Software Testing and Analy-
sis (ISSTA-98), New York, ACM Software Engineering Notes 23 (2) (1998) 153–162.

[59] Zhu H., Hall P., May J., “Software unit test coverage and adequacy”,ACM Computing
Surveys 29 (4) (1997) 366–427.

Software Inspections

MARC ROPER, ALASTAIR DUNSMORE AND
MURRAY WOOD

Department of Computer and Information Science
University of Strathclyde, Livingstone Tower
Glasgow G1 1XH, Scotland
UK

Abstract
Since their introduction in the mid 1970s software inspections have become
established as an effective means of finding defects. Inspections are a simple
technique—essentially a group of people read a document (which might be code
or design), and then get together to draw up an agreed list of defects. The ap-
peal of the technique is not only in its effectiveness and simplicity, but also in
its wide range of applicability. Any form of document produced at any stage in
the lifecycle can be inspected with the minimum of support. Over the years, peo-
ple have questioned the organisation and execution of inspections and suggested
alternative process models. There has also been a shift away from the meeting,
and towards the individual, as the prime detector of defects. This has led to an
increase in the importance of support mechanisms (in the form of “reading tech-
niques”) for the individual. The period has also seen dramatic changes in the way
that software is developed (primarily the introduction of object-orientation) and
inspections have had to adapt to these changes. Finally, tool support is becoming
more prevalent and has opened up the possibility of providing even more support
to the individual and exploring new inspection processes.

1. Introduction . 204
2. The Beginnings of the Inspection Process . 205
3. Variations on the Original Process . 207

3.1. Active Design Reviews . 208
3.2. N -Fold Inspections . 208
3.3. Phased Inspections . 209
3.4. To Meet or not to Meet . 209
3.5. Gilb and Graham/Jones Inspection . 210
3.6. Formal Technical Asynchronous Review Method (FTArm) 210

ADVANCES IN COMPUTERS, VOL. 58 203 Copyright © 2003 by Elsevier Science (USA)
ISSN: 0065-2458 All rights reserved.

204 M. ROPER ET AL.

3.7. Humphrey’s Inspection Process . 210
3.8. Sample-Driven Inspections . 211
3.9. Summary . 211

4. Reading Techniques . 211
4.1. Ad-hoc . 212
4.2. Checklist . 212
4.3. Step-wise Abstraction . 213
4.4. Scenario-Based Reading . 214
4.5. Perspective-Based Reading . 215
4.6. Summary . 217

5. Adapting to a New Paradigm—Dealing with Object-Orientation 218
5.1. Object-Oriented Problems and Pitfalls for Inspection 218
5.2. Current State of Object-Oriented Inspection 220
5.3. Investigating the Inspection of Object-Oriented Code 222
5.4. Inadequacy of Current Inspection Approaches 223
5.5. Techniques for Object-Oriented Code Inspection 224
5.6. Advice on Practical Object-Oriented Code Inspection 226

6. Tool Support for Inspection . 227
6.1. Introduction . 227
6.2. Document Handling . 228
6.3. Meeting Support . 229
6.4. Data Collection . 229
6.5. Reading Support . 229
6.6. Current Tool Support . 230
6.7. Tool Summary . 232

7. Conclusions . 233
References . 234

1. Introduction

Software Inspection is a defect-detection technique that essentially involves dis-
tributing a document to a number of individuals, allowing them time to study it, and
then bringing them together to collect their observations. Given the context of its ap-
plication it is a remarkably simple approach that acknowledges the fact that people
are fairly good at spotting errors in the work of others (most people have experienced
the impact that a “fresh pair of eyes” can have on their buggy code—typically a form
of exasperated elation coupled with a gasp of “Why didn’t I see that?”). But this is
trivialising the large amount of effort that has gone into refining and improving the
technique, and Software Inspection has, over the last twenty-five years, established
itself as an effective and efficient technique for finding defects. The effectiveness of
inspections has been established through a large number of controlled experiments

SOFTWARE INSPECTIONS 205

and industrial case studies and over the years numerous efforts have been made to
optimise the process and increase its effectiveness. The aim of this chapter is to re-
view the progress that has been made in this area and describe the current state of the
technique.

Inspections, as originally defined by Fagan [20], usually involve four or more
people and are made up of several phases: an introduction, where participants are
presented with a general overview of the area being addressed; preparation, where
individual participants try to understand the artefacts under inspection; group inspec-
tion, where participants get together as a group and attempt to find as many defects as
possible; rework, where defects found are dealt with by the designer or implementor
of the artefacts; and follow-up, where all issues and concerns are verified as being
dealt with.

One of the most appealing aspects of inspections to emerge was their flexibility.
Inspections can be carried out at many of the stages in the software development
process—in addition to being used for code documents, inspections are applied to a
wide range of other documents including software requirements, design documents,
test plans, and test cases [4,21,57,67]. As well as expanding the scope of documen-
tation covered by inspection, the application of the technique and the supporting
materials have been refined and honed and there is active interest in continually de-
veloping the concept, and much research has been carried out in the area of software
inspection since Fagan’s original description in 1976. There have been many vari-
ations proposed on the traditional inspection process that he first described. Tools
have been created to help inspectors find more defects and co-ordinate their efforts
in more cost-effective ways. Defect detection aids (e.g., reading techniques) have
been defined for different software development artefacts (requirements, code, etc.).

This chapter provides an introduction to inspection by describing Fagan’s original
inspection process and the numerous variations of this that have been developed
over the years. It shows how the focus of detecting defects has moved away from
being a group activity to one that is carried out by the individual inspector. This
refocus makes the reading technique used by the inspector to help prepare and find
defects within an inspection artefact one of the key parts of the inspection process.
An overview is presented of the various reading techniques currently available for
individual inspectors. This is followed by a review of current work in the area of
object-oriented inspection. The chapter concludes with a review of the developments
in tools to support the inspection activity.

2. The Beginnings of the Inspection Process

Fagan originally defined his inspection process in 1976 [20], later updating it in
1986 [21]. Inspections, as originally discussed by Fagan [20], are a “formal, efficient,

206 M. ROPER ET AL.

FIG. 1. The five steps in Fagan’s original inspection process.

and economical method of finding errors in design and code.”Fagan went on to de-
fine an error, or as is now commonly termed, a defect, as “any condition that causes
a malfunction or that precludes the attainment of expected or previously specified
results.” As an example, a deviation between a specification and the corresponding
code document is a defect.

In Fagan’s original description of inspection, there should, under ideal conditions,
be four people in an inspection team, each having a specific role. These roles include
the Moderator (a competent programmer, sometimes from a different project, to man-
age the inspection team and offer guidance), Designer (person who produced the
program design), Coder/Implementor (person who translated the design into code),
and Tester (person responsible for testing the product). In Fagan’s original inspection
process he defines five main steps (shown in Fig. 1):

(1) Overview—The designer uses this phase to present all the participants in-
volved in the inspection with a general overview of the area being addressed,
followed by more specific information on the artefact to be inspected. For code
inspections, the overview phase is considered optional.

(2) Preparation—This phase is carried out individually. Participants should un-
derstand the artefact under inspection using the appropriate documentation
(requirements, design, etc.). The inspection team are aided in this process by
the use of ranked distributions of error types based on recent inspections, as

SOFTWARE INSPECTIONS 207

well as checklists containing clues on finding these errors. The main emphasis
of this phase is on understanding rather than defect detection.

(3) Inspection—All participants in the inspection group get together. The mod-
erator controls the meeting, making sure that it stays focused, so that it does
not get out of hand or stray off course. All related documentation should be
available during the inspection. With the design of the artefact under inspec-
tion understood (in the previous preparation phase), the main objective in this
phase is to find defects. This occurs as the “reader,” chosen by the modera-
tor (usually the coder) takes the team through the inspection artefact. Once a
defect is found, no attempt should be made by the inspectors to find a solu-
tion. Defects are noted by one of the group members given the task of being
meeting scribe (either the tester or someone with no other task).

(4) Rework—All the defects noted in the inspection report from the previous
phase are resolved by the designer or implementer.

(5) Follow-up—All issues and concerns are verified as being followed-up. If more
than 5% of the material inspected has in some form had to be reworked, the
inspection team should regroup and carry out a full re-inspection of the mate-
rial.

There have been many reports on the successes achieved through the use of in-
spections. Fagan [21] commented that inspection was detecting between 60 to 90%
of defects and that the feedback obtained from the inspections was proving useful in
helping programmers avoid making the same mistakes. Ackerman et al. [1] reported
that inspections were two to ten times more efficient at defect removal than testing.
Russell [60], based on 2.5 million lines of high-level code, found that if inspection
was correctly implemented, then approximately one defect was found for every man-
hour invested, leading to savings of nearly 33 hours of maintenance due to every hour
spent on inspection. Russell claims this was two to four times faster than detecting
defects by testing. Reports by Weller [70], Grady and Slack [25], have also sup-
ported the use of inspection, detailing improvements to the process and suggestions
for achieving widespread use. In addition to these findings there is general accep-
tance of the benefits that inspection can bring: the ability to catch many defect types,
its complementary nature to testing, the beneficial learning and training effects, and
its applicability to all stages of the lifecycle, have seen it become established as a
standard of good software engineering practice.

3. Variations on the Original Process

Since Fagan’s original inspection process, there have been many variations at-
tempting to improve the performance of inspections as a result of real or perceived

208 M. ROPER ET AL.

inefficiencies in Fagan’s original proposal. These alterations tend to focus on two
main areas: the meeting stage and the preparation stage. Over the years some doubt
has arisen over the efficacy of the meeting phase and the alleged synergy that makes
it a powerful defect detection activity. In contrast, the role of the individual has in-
creased and efforts have been made to reliably capture the benefits of having a di-
verse and talented team of inspectors available. This section presents, in approximate
chronological order, the major process alterations that have been suggested over the
years.

3.1 Active Design Reviews

Active Design Reviews [52] were originally created to ensure complete coverage
of design documents and advocate several small, focused inspection meetings rather
than one large meeting involving a lot of people. Additionally, the overall process is
less rigorously specified than that proposed by Fagan. In each of these smaller meet-
ings, inspectors are assigned different and specific roles to look for different types of
defect, and are selected according to their particular skills. This role is emphasised by
requiring the inspector to complete a questionnaire specific to their particular error
type during the checking (preparation) phase. Following on from this is the discus-
sion phase where the authors read the questionnaire and discuss issues raised with the
reviewers. A meeting is held for each reviewer responsibility and to further ensure
complete coverage of the document, some reviewers will be looking at the document
as a whole.

3.2 N -Fold Inspections

N -Fold Inspections [61] involve performing not one but many parallel inspections
by different teams on the same artefact. The assumption is that a single inspection
team will only find a fraction of the defects, and that multiple teams will not signifi-
cantly duplicate each other’s efforts, and hence an increase in defect detection will be
seen when the results are combined. The number of teams involved in the inspection
is increased until the costs of employing another inspection team outweigh the bene-
fits (i.e., a significant number of unique defects are not being detected). The value of
N is going to vary between organisations and will typically take some effort to es-
tablish. The technique was originally conceived for application to user requirements
documents. The cost of repairing defects in these documents later in the lifecycle
can be dramatic, and so the potential savings that can be made at the requirements
stage are great (this justifies the potentially high cost of the approach). However, in
principle there is no reason why the technique could not be applied to any type of
document.

SOFTWARE INSPECTIONS 209

3.3 Phased Inspections

Phased Inspections [35] divide the normal inspection into several smaller phases.
Each phase focuses on one specific type of defect (compared to more traditional in-
spections, which look for all types of defect in one big inspection) or a particular
property such as portability or reusability. One or more inspectors may carry out
these phases, and individual inspectors are assigned to check properties related to
their areas of expertise. If only one inspector is employed then they strictly apply a
checklist to judge the compliance of the product. Phases are carried out in sequence,
meaning that the next phase is not started until the previous one has been completed
and satisfied all the questions on the checklist. Properties that cannot be easily cap-
tured by simple checklist questions are tackled by several inspectors who examine
the document independently and then meet to create one definitive defect list.

3.4 To Meet or not to Meet

In Fagan’s original inspection process [20], the preparation phase was used by
inspectors to obtain an understanding of the inspection artefact and the inspection
phase was used by the inspectors as a group to carry out defect detection. A series
of empirical studies investigating the group aspect of the inspection process have
cast doubt on its relevance as a focus for defect detection. Votta [69] suggests that
inspection meetings are no longer required since the number of extra defects dis-
covered in the meeting over those found in the individual phase is relatively small
(average 4%), and they are not cost effective due to the time delay in preparing, or-
ganising, and holding the inspection meetings. Meetings should be replaced by either
small deposition meetings (used to collect reviewers’ findings and comments), or de-
fect lists should be collected by other verbal or written media (e.g., electronic mail,
telephone). Land et al. [41] found that the strength of inspection meetings is not in
finding defects, but discriminating between true defects and false positives (potential
defects which turn out not to be actual defects). They found that only a small num-
ber of extra defects were found by inspectors when working in a group. Porter and
Johnson [54] found that far more issues are generated by individual defect detection
compared to group-based defect detection, but this comes at the cost of higher rates
of false positives and defect duplication. The current goals of the group aspect of
inspection are now for the inspectors to agree upon a final list of defects based upon
those found individually, and to reduce the number of false positives in the final re-
port [40]. The main focus for the preparation phase of inspection is now the detection
of defects [40,55].

210 M. ROPER ET AL.

3.5 Gilb and Graham/Jones Inspection
In their authoritative text, Gilb and Graham [24] describe an inspection process

that is similar to that of Fagan but which incorporates the defect prevention process
described by Jones [31]. The essential difference is a shift in the major focus of
defect detection from the meeting to the preparation phase. This preparation phase is
known as the “checking” phase (and the author also contributes to this) when each
individual works independently to discover defects and records them for presentation
at the meeting. The meeting is essentially a logging session that ensures that the
maximum number of potential defects noted by the individual checkers is recorded.
The process then reverts to that described by Fagan.

3.6 Formal Technical Asynchronous Review Method (FTArm)
FTArm [29] is supported by the Collaborative Software Review System (CSRS).

In the set up phase the document has to be prepared for inspection using CSRS by
organizing it into a hypertext structure and entering it into a database. Following this
is the private review phase (similar to preparation) during which the inspector reads
each source node in turn and make annotations (which take the form of new nodes).
These annotations can include issues indicating defects, comments or questions di-
rected at the producer, and actions indicating a possible solution to a defect. When
all nodes have been reviewed by each inspector, all annotations become public and
inspectors can asynchronously examine each one and vote on its status. This phase is
effectively the meeting phase (but no traditional meeting takes place) and tool sup-
port is essential for this activity to take place. When all nodes have been resolved, or
if the moderator decides that further voting and on-line discussion will not be fruit-
ful, the public (meeting) phase is declared complete. The moderator then summarises
any unresolved issues and may decide to call a group meeting to handle these. After
this point the inspection proceeds as normal.

3.7 Humphrey’s Inspection Process
The initial and final phases of the inspection process described by Humphrey [28]

are similar to that described by Fagan. However, there is considerable variation at the
heart of the process. During the preparation stage, instead of familiarizing themselves
with the documents and being prepared to put forward defects, the reviewers are
required to produce a list of defects which are then analysed and collated by the
producer prior to the meeting. The meeting itself is then centred around this defect
list, where the producer addresses each defect in turn but may seek clarification from
the reviewers. This result in an agreed defect list which is then addressed in the
standard way.

SOFTWARE INSPECTIONS 211

3.8 Sample-Driven Inspections
Sample-Driven Inspections [66] is a method designed to reduce the effort during

an inspection session by concentrating the inspection effort on the software artefacts
that contain the most defects. The approach is a reaction to the fact that, effective
though they are, inspections are a time-consuming activity and to review all the doc-
uments in an entire project is going to be expensive. The defect searching is divided
into two parts. A pre-inspection occurs where samples of the artefacts are inspected
to estimate which artefacts contain the most faults. Secondly, the main inspection is
carried out on the selected artefacts.

3.9 Summary
These alternative processes have varied such elements as the number of steps in the

inspection process, the number of inspectors, and the roles of inspectors. Although
each variation has made alterations to the inspection process or altered characteristics
of the phases, the inspection phases of preparation, inspection, and rework/follow-up
from Fagan’s original description have remained [39]. Although there have been a
number of variations on the process proposed, the most common factor is the move
away from the allegedly synergistic meeting as the primary defect detection phase
to the preparation or checking phase. This shift has placed more emphasis on the
performance of the individual and the material provided to support them.

Porter and Votta [53] found that defect detection results have less to do with the
particular inspection process used, and have more to do with the techniques and tech-
nology supporting individual inspectors. Giving support to individual inspectors to
find defects may increase their effectiveness. With the re-emphasis of the defect de-
tection part of the inspection process on the individual preparation phase, there has
been a shift in inspection research. Basili [3] pointed out that reading was by far the
most important activity for successful individual defect detection and highlighted the
lack of research examining the technologies that underlie the reading process. Ade-
quate support for the defect detection activity of inspectors (i.e., reading strategies)
has the potential to dramatically improve the effectiveness and efficiency of inspec-
tion [40]. The more the inspector can understand the material to be inspected, the
greater the chance of finding defects [59]. The next section presents a summary of the
reading techniques and looks at how they attempt to help the inspector find defects.

4. Reading Techniques

With the emphasis of defect detection being placed on the preparation phase of in-
spection [40,55] and a realisation that reading is important for defect detection, there

212 M. ROPER ET AL.

has been an increased emphasise on the development and evaluation of effective
reading techniques. Laitenberger and DeBaud [39] described a reading technique as
a “series of steps or procedures whose purpose is for an inspector to acquire a deep
understanding of the inspected software product.” One purpose of the reading tech-
nique is to support the individual and make the defect detection less reliant on the
talents, enthusiasm and experience of the individual. Another purpose is to focus
an individual’s attention towards certain classes of defect or types of deficiency in
the document. In Fagan’s original inspection process he suggested the use of check-
lists [20], but since then a number of other approaches have been developed. This
section describes some of the more prominent reading techniques currently available.

4.1 Ad-hoc

One of the simplest reading techniques (and probably more accurately defined as
the absence of a technique), ad-hoc, provides no support for inspectors, i.e., no guide-
lines or direction. Inspectors have to rely on their own knowledge and experience,
reading the inspection artefact, whether they are specifications or code, in their own
preferred way. Although the ad-hoc approach offers no guidance to inspectors, it is
considered to be a reading technique [39,56].

A strength of the ad-hoc technique is that more experienced inspectors have the
freedom to use their knowledge and abilities to find defects, free from any technique
overhead that may intrude upon their thinking. The main weakness of the ad-hoc
technique is that with no support, the performance of the less experienced inspectors
may suffer, since they do not have the experience to guide them.

4.2 Checklist

Checklists, which were first introduced in Fagan’s early inspections, are straight-
forward to use and offer stronger guidance to inspectors than ad-hoc reading. They
are based upon a series of specific questions that are intended to focus the inspector’s
attention towards common sources of defects. The questions in a checklist are there
to guide the inspector through the document under inspection. To make it clear that
a potential defect has been found, the questions are phrased in such a way that if the
answer is ‘No,’ then a potential defect has been discovered. A typical code-oriented
checklist might contain the following type of questions:

Are all variables initialised correctly?
Are all logical expressions correct?
Do procedure invocations match the definitions?
Are all parameters used with procedures?
And so on. . .

SOFTWARE INSPECTIONS 213

The precise questions will vary according to the document. For example, an
object-oriented language checklist will refer to classes, methods, etc., whereas
checklists for languages such as C or C++ might place more emphasis on the errors
that can arise through incorrect use of pointers or de-referencing operators. For an
example of such a checklist see Humphrey [28]. According to Gilb and Graham [24]
and Humphrey [28], checklists should be based on localised historical information
and should not be general checklists obtained from elsewhere as they can lose their
relevance. This implies a need for constant data capture and analysis from inspection
meetings in order to keep checklists relevant. Checklists, along with ad-hoc reading
are still thought of as the most frequently used defect detection methods [24,55].
Checklists have been used to inspect many different documents, including design,
specification, and code.

Although checklists have been well promoted [21,28], there are several weakness
which have been identified. Laitenberger et al. [39] summarised a list of the weak-
nesses of the checklist technique from the literature. Firstly, that the questions are of-
ten too general or based upon checklists created from the defect experience of others.
Similarly, Tervonen [65] commented that one of major problems facing checklists is
their generality, that they are not sufficiently tailored to a particular development
method or phase in a specific project. Second, instructions guiding inspectors on
how to use a checklist are rarely available, i.e., it is often unclear when and based on
what information an inspector is to answer a particular checklist question. Finally,
the questions of a checklist are often limited to the detection of defects which be-
long to particular defect types. Since the defect types are based on past information
[13], inspectors may fail to spot defect types not previously detected and, therefore
may miss whole classes of defects (a problem only slightly reduced by the constant
revision that should occur with checklists).

4.3 Step-wise Abstraction

The step-wise abstraction reading strategy offers more structured and focused in-
structions on how to read code. The technique was based on the step-wise abstraction
technique of reading developed in the late 70’s by Linger, Mills and Witt [45]. In
step-wise abstraction, the aim is to start with the simplest components in the code,
understand them, and abstract out a higher level description of their functionality [6].
This process is repeated, combining higher and higher levels of functionality, until a
final description of the code is obtained. This final description is then compared with
the original specification. This way any differences between the original specifica-
tion and the derived specification highlight potential defects. Stepwise abstraction
has been most commonly used as a code reading technique by the Cleanroom com-

214 M. ROPER ET AL.

munity [62] (the Cleanroom development method is a technical and organisational
approach to developing software with certifiable reliability).

Based upon evidence from the literature, Laitenberger et al. [40] believed that
inspectors utilising the step-wise abstraction technique were forced into a more rig-
orous examination of the code than using either the ad-hoc or checklist reading tech-
niques.

4.4 Scenario-Based Reading

The scenario reading strategy was created by Porter et al. [57] to address a per-
ceived lack of effectiveness in the use of ad-hoc and checklist methods for Software
Requirements Specifications (SRS). The work builds on the inspection process from
Active Design Reviews by Parnas and Weiss [52], who argued for the need for dif-
ferent and specific roles for inspectors to systematically inspect a document. Porter
et al. described a scenario as a “collection of procedures that operationalise strate-
gies for detecting particular classes of defects.”Each inspector is given one scenario,
which differs from the scenarios given to the other inspectors in the inspection team.
Each scenario contains a set of questions and instructions informing the inspector
how to perform the inspection of the SRS. Multiple inspectors are required to obtain
a reasonable level of coverage from the document.

To illustrate this point, consider the checklists and scenarios described by Porter
et al. [57]. The checklist entry for “Incorrect or Extra Functionality” contains the
following points:

• Are all the described functions necessary to meet the system objectives?

• Are all inputs to a function necessary to perform the required function?

• Are the inputs and outputs for all interfaces necessary?

• Are all the outputs produced by a function used by another function or trans-
ferred across an external interface?

In contrast, the “Incorrect Functionality Scenario” contains points such as:

• For each functional requirement identify all input/output data objects:
– Are all values written to each output data object consistent with its intended

function?

– Identify at least one function that uses each output data object.
And:

• Develop an invariant for each system mode (i.e., Under what conditions must
the system exit or remain in a given mode?):
– Can the system’s initial conditions fail to satisfy the initial mode’s invariant?

SOFTWARE INSPECTIONS 215

– Identify a sequence of events that allows the system to enter a mode without
satisfying the mode’s invariant.

– Identify a sequence of events that allows the system to enter a mode, but never
leave (deadlock).

These two are only samples from the two types of support documents but provide
an illustration of the difference. The checklist is more passive and often relies on the
vigilance or ingenuity of the inspector to spot defects. The scenario is more active
and challenges the inspector to identify or find particular instances that are going to
either cause problems or refute the presence of a defect.

The success of this technique relies heavily on the effectiveness of the designed
scenarios. Several variations on the scenario approach have been developed, each
varying the way the scenarios are created. In defect-based reading by Porter et al.
[57], the scenarios are derived from defect classes with a set of questions the inspec-
tor has to answer. For scenario-based reading by Cheng and Jeffrey [12], the scenar-
ios are based on Function Point Analysis (scenarios are developed around a software
system defined in terms of its inputs, files, enquiries, and outputs). In perspective-
based reading by Basili et al. [4], the inspection artefact is inspected from the per-
spective of different stakeholders. Each of these reading techniques provide a generic
process for inspecting requirements documents, although the material generated by
the processes for use in inspections are target specific (to a particular development
environment).

The last of these techniques, perspective-based reading, has continued to be re-
fined and has been implemented not just for requirements documents but for code
documents as well.

4.5 Perspective-Based Reading

Perspective-based reading (PBR), first presented by Basili et al. [4], evolved from
the work carried out on scenarios. PBR, compared to the Scenario technique, of-
fers a more detailed set of instructions (scenarios) for inspectors. The PBR-scenarios
are an algorithmic set of instructions informing inspectors how to read an artefact
under inspection. Inspectors understand the artefact by constructing an appropriate
abstraction defined by the scenario. Laitenberger and DeBaud [38] claim that a fo-
cused understanding of the document obtained through the use of PBR should be
more effective than either an ad-hoc or a checklist based reading technique. Ad-hoc
and checklist based reading techniques are thought of as non-systematic in nature
[55]. They do not offer a set of concrete reading instructions, meaning that inspec-
tors’ experience has a significant impact on the number of defects found [38]. One
of the aims of PBR is to enforce the independence of inspectors and encourage a

216 M. ROPER ET AL.

diversity of views. It is also notable that most changes in the inspection process de-
scribed earlier in this chapter also appear to be ways of trying to achieve different
perspectives.

The PBR technique continues to be refined, giving better instructions on the cre-
ation and content of scenarios [36]. A PBR-scenario contains three parts. The first
explains to inspectors their interest/perspective on the inspection artefact. The sec-
ond part consists of a set of activities that inspectors have to perform. This allows
them to extract the required information out of the inspection artefact. In the final
part, inspectors then apply a series of questions to this information to verify its cor-
rectness. As an example, the tester scenario for the C programming language, cre-
ated by Laitenberger et al. [40], contains the following instructions: The first part
outlines the role of the tester (ensuring that the functionality of the code is cor-
rect). The second (activities) part requires the inspector to identify the functions,
determine their inter-dependencies, and create a call-graph. Following this they are
instructed to start with the functions at the leaves of the graph and determine test
cases to verify the operation of the function by checking each branch and loop. In-
spectors are then told to mentally execute these test cases and report any differences
with respect to the specification as a defect. The final part consist of the follow-
ing questions which they are told to ask themselves while following the instruc-
tions:

(1) Do you have the necessary information to identify a test case (e.g., are all
constant values and interfaces defined)?

(2) Are branch conditions used in a correct manner?
(3) Can you generate test cases for each branch and each loop? Can you traverse

all branches by using specific test cases?
(4) Is allocation and de-allocation of memory used correctly?

In an inspection, each inspector has a different scenario to allow the artefact to
be looked at from different views (e.g., analyst, maintainer, tester). By following the
scenario the inspectors should build up an understanding of the artefact. Although
the early work on PBR was carried out on requirements documents [4], some of the
more recent work has focused on C code documents [38,40].

An experiment by Laitenberger et al. [40], investigated the effectiveness and
cost per defect ratio of PBR compared to checklists for C code documents. The
results showed that two-person inspection teams were more effective using PBR
than checklists. Applying PBR was found to increase subjects understanding of
the code, but was found to require greater effort from inspectors. This improved
understanding was also found to have helped to reduce the cost of defects for
PBR compared to checklists during the meeting phase. With a greater understand-
ing in the meeting, it took less effort on the inspectors’ behalf to explain the de-

SOFTWARE INSPECTIONS 217

fect they had found to the other inspectors, as well as taking less effort to re-
solve false positives. It should be noted however, that the checklist used during
the experiment was a general one, based upon an existing checklist [50] and books
on C programming [16,33]. This goes against the currently available advice [24,
28], which states that checklists are most effective when based upon historical
data.

Biffle and Gutjhar [8] used the results from 196 student inspectors applying either
a checklist-based approach or one of three scenario [perspective]-based approaches
on a requirements document, to investigate the possible impact of varying team sizes
and inspection technique combinations. They found that for a team size of greater
than three, a mixture of reading techniques was the most effective approach to de-
tecting defects (below this, the effective approach was for all inspectors to use the
best single technique). As intuitively expected, as team size grows, the efficiency of
inspection decreases. Since the work is based on student inspectors, they do not pro-
nounce on the ideal team size and combination, but instead provide a model that uses
context-dependent data to calculate these values.

Although most of the experiments investigating the effectiveness of using PBR
have been positive, there has recently been one experiment (based upon a lab pack-
age by Basili et al. [5]) investigating its effectiveness and efficiency with relation to
requirements documents [58]. The results contradicted the earlier work on PBR and
showed that there was no significant difference in the type of defects found by each
of the three perspectives used during the inspection.

4.6 Summary

Reading techniques have evolved from offering no support and minimal guidance
to inspectors into detailed task driven processes that encourage inspectors to attain a
good understanding of the artefact under inspection. More recent reading techniques
have also introduced the notion of inspecting artefacts from different views (perspec-
tives). This allows inspectors to focus on different aspects and different defect types
in greater detail.

The increased understanding promoted by recent reading techniques is achieved
through clear, unambiguous instructions that guide the inspector in extracting and
querying the required information from the inspected artefact. It is the development
of this good understanding of the code that is key to a successful inspection. The main
drawbacks of these techniques are an increased pressure on the individual inspector
and the additional effort involved in the preparation and maintenance of support ma-
terials (such as checklists, perspectives and scenarios).

218 M. ROPER ET AL.

5. Adapting to a New Paradigm—Dealing with
Object-Orientation

Although the most recent work on inspection reading techniques has focused on
design and requirements documents, and one of the strengths of inspections is their
flexible application to a variety of document types, in industry it is the inspection of
code documents that is still predominant [39]. Laitenberger et al. [40] conclude that
this makes the improvement of reading techniques for code documents a high prior-
ity. Until recently, most of the research carried out in connection with reading tech-
niques, and inspection in general has related to procedural languages—the predom-
inant paradigm used when inspections were originally proposed. The last ten years
have seen the object-oriented paradigm growing in influence and use—particularly
since the introduction of C++ and Java. Laitenberger et al. [36] commented that
“over the past decade object-oriented development methods have replaced conven-
tional structured methods as the embodiment of software development, and are now
the approach of choice in most new software development projects.”But in the area
of software inspections the response to this development has been slow and conse-
quently there is a significant lack of information indicating how inspections should
be applied to object-oriented code.

The object-oriented paradigm has gained widespread acceptance [11] and, it has
been argued, has delivered many benefits to the programmer such as better structured
and more reliable software for complex systems, greater reusability, more extensibil-
ity, and easier maintainability [34]. With these claimed successes, there have also
arisen new problems to be tackled. In 1994, Jones [30] listed some of the gaps in
information about the object-oriented paradigm. One of those gaps was in the area of
inspection. Jones noted that “Since formal inspections are the most effective known
way of eliminating software defects, software quality assurance personnel are anx-
iously awaiting some kind of guidance and quantitative data on the use of inspections
with object-oriented projects.”

The lack of guidance on how to apply inspections to object-oriented code is
disturbing—the impact of the paradigm on the inspection process and the effective-
ness of the highly important reading techniques are unknown. This could result in
inspections being performed in a far from efficient manner. This section looks at
the impact that the object-oriented paradigm has on the code inspection activity and
describes the developments that have taken place so far to address this.

5.1 Object-Oriented Problems and Pitfalls for Inspection

Object-oriented languages differ from procedural ones in a number of profound
ways—the encapsulation of data and associated functionality, the common use of

SOFTWARE INSPECTIONS 219

inheritance, and the concepts of polymorphism and dynamic binding—to name but
a few. These factors influence the way that modules (classes) are created in object-
oriented systems, which in turn influences the way that object-oriented systems are
structured and execute. The key features of the object-oriented paradigm may have
a significant impact on the ease of understanding of program code and failing to
adapt to this paradigm may inhibit the effective application of inspections to object-
oriented systems.

There is a significant body of literature developing that suggests that the char-
acteristic features of the paradigm can make object-oriented code more difficult to
understand compared to the procedural equivalent—an issue that has direct impact
on code inspection. Much of this literature centres on experience gathered from the
software maintenance domain. The problems encountered in maintenance can ap-
ply equally to the task of inspection—both require sections of code to be read and
understood.

According to Gamma et al. [23], the structure of an object-oriented program at
run-time is vastly different to that of its code structure, “In fact, the two structures
[run-time and compile-time] are largely independent. Trying to understand one from
the other is like trying to understand the dynamism of living ecosystems from the
static taxonomy of plants and animals, and vice-versa.”Whereas the compile-time
structure code structure is static, the run-time structure consists of rapidly changing
networks of communicating objects.

Dependencies exist in all code, but their number are increased by object-oriented
languages [11,71]. Wilde and Huitt [71] described a dependency in a software sys-
tem as “A direct relationship between two entities in the systemX → Y such that
a programmer modifyingX must be concerned about possible side effects inY .”
Wilde and Huitt suggested that using polymorphism and inheritance hierarchies dra-
matically increases the kinds of dependencies that need to be considered. Chen et al.
[11] described three kinds of dependencies found in object-oriented languages, mes-
sage dependence (relationship between a method and its callers), class dependence
(inheritance, aggregation and association relationships) and declaration dependence
(relationship between classes (types) and objects (variables)).

Dynamic binding is a specific example of a characteristic of object-oriented pro-
grams that increases the complexities and dependencies in a program. This concept,
closely associated with polymorphism, involves not knowing the type of a particular
object referenced by a variable, as this is only determined at run time [10,48]. When
a method invocation occurs, only at run time can the type of an object be correctly
identified. All the associations created through the use of polymorphism and dynamic
binding usually mean that more than one class needs to be looked at (especially in the
case of a class which is part of a deep inheritance hierarchy) in order to fully under-
stand how one small fragment of code works. Wilde and Huitt suggested that tracing

220 M. ROPER ET AL.

FIG. 2. Chain of message invocations. (Reproduced from [17] with kind permission of the ACM.)

these dependencies is vital for effective software maintenance [71]. Lejter et al. [43]
claimed that dynamic binding (along with inheritance) made object-oriented pro-
grams much more difficult to maintain and understand. This view is also supported
by Crocker and von Mayrhauser [14].

The structure of object-oriented programs differs from that of conventional pro-
grams [71]. Method sizes may be very small as a natural consequence of good object-
oriented design [44,72]. Daly et al. [15] found that unconstrained use of inheritance
may result in understanding difficulties. When investigating the difficulties experi-
enced programmers encountered learning and using the Smalltalk programming lan-
guage, Nielsen and Richards [51] found that the distributed nature of the code caused
problems when attempting to understand a system. Together with inheritance, this
distribution may result in traversing up and down inheritance hierarchies and across
class boundaries in an attempt to locate where the work is carried out and build up a
complete understanding of the task. This problem is illustrated in Fig. 2.

Many of the problems that have been mentioned have also created difficulty for
other areas of software engineering outside of software maintenance, such as com-
prehension [42], component reuse [22], testing [32,49], and visualisation [42]. Each
area has had to re-evaluate how it achieves its objectives, and in many cases redesign
its processes. Binder [9], in his review of testing for object-oriented software, high-
lighted that most believe the feature set of object-oriented software will require the
development of new approaches to be able to achieve adequate levels of testing.

5.2 Current State of Object-Oriented Inspection

With the rise in popularity of object-orientation, the research community has
turned to adapting inspections to this new paradigm and its particular artefacts. As

SOFTWARE INSPECTIONS 221

will be seen in this section, the work carried out so far has focused on the inspection
of object-oriented requirements and design documents. Although some initial work
has been positive, there has been a lack of research regarding how the key features of
the object-oriented paradigm may impact on the inspection of object-oriented code.

Travassos et al. [67] found that there was a lack of guidance on how to inspect
object-oriented design documents and carried out a preliminary investigation. The
main focus was on designs described by UML diagrams. They developed a technique
called Traceability-Based Reading (TBR) that evolved from the experience gathered
from the development of reading techniques for requirements documents [57]. TBR
is a two-step process. The first step involves the correctness and consistency checks
on requirements documents that have traditionally occurred. This is described as
horizontal reading and takes the form of comparing requirements documents with
the likes of use-case diagrams or scenario descriptions (i.e., documents capturing a
similar level of abstraction). The second step is described as vertical reading, and
differs from the traditional process, in that requirements documents are compared
with design documents (such as class diagrams, object interaction diagrams or state
machine diagrams) to ensure consistency.

An experiment carried out using TBR found encouraging, but not conclusive re-
sults. Horizontal and vertical reading were found on average to highlight different
types of defect. Vertical reading found slightly more defects concerning omission
and inconsistency (between diagrams and requirements), whereas horizontal reading
found more defects concerning ambiguity and inconsistency (between diagrams). An
important finding was that the technique forced more focus on semantic information
(an understanding of the meaning of the document), similar to the focus encouraged
by the scenarios of PBR. In its current state, the technique relies too much on syntac-
tic information, making sure that certain words and attributes in one diagram appear
in their correct location elsewhere. Another drawback is that the technique was found
to be time consuming.

Laitenberger and Atkinson [36] presented an adaptation of Perspective-Based
Reading (PBR) for any object-oriented development artefact. They provided a gener-
ally applicable definition of the technique, describing instructions on how to generate
PBR-scenarios. An experiment [37] was carried out to investigate the effectiveness
of PBR for UML design documents in comparison to checklists. The results of the
experiment showed that PBR-scenarios help improve inspectors understanding of the
inspection artefacts. This was found to reduce the cost of defects in the group phase
(as a collation exercise) for PBR in comparison to checklists. The checklist structure
was designed along the lines discussed by Chernak [13], but the checklist questions,
due to the lack of other such checklists for object-oriented design documents that
could be reused, were developed from scratch.

222 M. ROPER ET AL.

As can be seen, the majority of research carried out in the area of object-oriented
inspection has so far been aimed at the development of reading techniques to help in-
spectors find defects in requirements and design documents. These techniques have
tried to address a perceived lack of reading guidance, but have not fully investi-
gated how the key features of the object-oriented paradigm impact upon code in-
spections.

5.3 Investigating the Inspection of Object-Oriented Code

Dunsmore et al. [17] carried out an empirical investigation into the issues arising
when inspecting object-oriented code. They found that the characteristics of the ‘hard
to find’ defects included use of class libraries, sending wrong messages to objects,
inheritance, overriding and design mismatches. Many of the problem characteristics
identified by the investigation were also highlighted by an industrial survey. The key
features of object-orientation were found to have a significant impact on the ease of
understanding of the resulting program by distributing closely related information
throughout the code. To understand a piece of code, trails of method invocations
had to be followed through many classes, moving both up and down the inheritance
hierarchy. Soloway et al. [63] first observed this in the context of program compre-
hension, describing a ‘delocalised plan’ as “where the code for one conceptualised
plan is distributed non-contiguously in a program”. Soloway continues, “Such code
is hard to understand. Since only fragments of the plan are seen at a time by a reader,
the reader makes inferences based only on what is locally apparent—and these in-
ferences are quite error prone.”

Dunsmore et al. [17] identified three significant issues requiring further research:

(1) Chunking—The many dependencies and links between classes make it very
difficult to isolate even one or two classes for inspection, and delocalisation
complicates this further. How you partition the code for inspection defines
what an inspector gets to inspect. Two issues in this respect need to be ad-
dressed: (1) the identification of suitable chunks of code to inspect, and (2) de-
cide how to break the chunk free of the rest of the system, minimising the
number of dependencies and the amount of delocalisation.

(2) Reading strategy—How should object-oriented code be read, especially if sys-
tematic reading of code is impractical? Is there a reading strategy that could
help inspectors deal with delocalisation? Can checklists or PBR be modified
to address delocalisation or are new reading strategies required?

(3) Localising the delocalisation—A way has to be found to abstract the de-
localised information for the inspector, providing the benefits of systematic
reading without the unrealistic requirement that everythingis read. Inspections

SOFTWARE INSPECTIONS 223

FIG. 3. Example of a delocalised defect. (Reproduced from [17] with kind permission of the ACM.)

have to be able to address the frequent references that object-oriented code
makes to parts of the system that are outwith the current inspection focus.

5.4 Inadequacy of Current Inspection Approaches

There are various reading techniques available that can be used by individual in-
spectors during the inspection of code. How much do currently available reading
techniques help inspectors deal with the issue of delocalisation?

Consider the example shown in Fig. 3. There are several flaws in the structure of
the cancelReservation method. Given a person and a date, the method was
supposed to remove the associated reservation that had previously been made for a
particular video. The flaws in the method were:

• The use of a for loop when none was required.

• An assumption placed on comparisons made between the date held in d and
the dates held in the reservations vector. The specification for the method
stated that only the year, month and day were to be taken into account when
comparing dates. However, the Vector method removeElement compares
two objects using their equals method, meaning that in this case, the hour,
minute and seconds values in both these objects were also considered in the
comparison.

The ad-hoc reading technique offers no support to the inspector, who instead re-
lies on their own knowledge and experience and reads the code in their own preferred
way. It offers no guide to help focus an inspector on parts of the code or help them
comprehend the code. Whether any of the delocalised information is traced depends
solely on what the inspector does. This suggests that ad-hoc reading may have poor

224 M. ROPER ET AL.

results when dealing with delocalised information, and depends heavily on the indi-
vidual inspectors. It certainly provides no active support to address delocalisation.

Checklists offer more support than ad-hoc in the form of a series of questions,
which must be answered by the inspector. One drawback of using a checklist is that
it “provides little support to help an inspector understand the inspected artefact”
[39]. It is unlikely that a checklist would highlight incorrect use of the date storage
class GregorianCalendar in Fig. 3 as the code is, in itself, functionally correct
but contains the hidden assumption relating to the number of fields used in the date
comparison. Although Porter et al. [57] commented that checklists might be thought
of as systematic because they define reviewers responsibilities and ways to identify
faults, they argue that the generality of the questions and lack of concrete strate-
gies for answering the questions makes checklists a non-systematic reading strategy.
Checklists do not encourage inspectors to follow the trail of delocalisation, they en-
courage localised, as-needed reading(see following section).

In PBR each inspector is given one perspective. Multiple inspectors are required
to obtain a ‘reasonable’ level of coverage of the document. Each perspective con-
tains instructions on extracting the relevant information for examination (in respect
to their perspective), and is followed by a series of questions to be answered based
on the information collected. In this way, PBR encourages a better understanding of
the code but, like checklists, it doesn’t actively encourage inspectors to follow the
delocalisation trail. However, it is conceivable that a perspective could be created
with just this remit, although this idea has not yet been explored.

Another weakness of all three approaches—ad-hoc, checklist and PBR—is that
none of them help reduce the amount of code that would have to be understood if
delocalisation trails were followed. Following the trails is necessary for a sufficient
understanding of the code to help identify delocalised defects. An inspection on 200
lines of object-oriented code could easily swell by an order of magnitude due to
inter-class dependencies. All of the approaches assume that a manageable quantity
of code (e.g., 100 lines per hour) can be easily isolated.

Thus the reading techniques ad-hoc, checklist and PBR are not designed to cope
with defects where the information required to understand and identify them is delo-
calised. They neither encourage inspectors to follow the trails of delocalisation nor
help reduce the amount of code to be read if the delocalisation trail is followed. New
techniques and aids are needed to address these problems.

5.5 Techniques for Object-Oriented Code Inspection

To address the problems of reading strategy and delocalisation, Dunsmore et al.
[18] developed and evaluated a systematic abstraction-driven reading technique. The

SOFTWARE INSPECTIONS 225

systematic technique forced inspectors to follow the trail of delocalisation, build-
ing up their understanding of the code by reverse engineering an abstract specifi-
cation of the method currently under inspection. These abstract specifications can
then be referenced by current and future inspections and bypass the need to fol-
low further trails of delocalised code—all the information necessary to understand
the method should be contained within the specification. An evaluation of the sys-
tematic reading technique comparing it against the ad-hoc reading technique found
that there was no significant difference between the number of defects found by
ad-hoc subjects compared to systematic subjects. However, some interesting issues
emerged.

Defects with delocalised characteristics still appeared difficult to find. Subjects
using the systematic technique found all the defects, whereas those using the ad-hoc
technique missed several delocalised defects. As a by-product the systematic tech-
nique produced abstractions that can be reused at a later date for re-inspection. By
generating the abstractions subjects found that they obtained a greater understanding
of the code. Subjects commented favourably on the more structured process and or-
dering of the code encouraged by the systematic technique, but found that the process
of generating the abstractions required a lot of time. The systematic technique was
found to help the weaker subjects, improving their defect detection ability, but was
also found to inhibit the natural abilities of the stronger subjects. A potential weak-
ness of the systematic technique was found to be its reliance on the static view of
object-oriented code. The dynamic nature of object-oriented systems may hinder the
effectiveness of such a static reading approach.

Following on from this, three reading techniques were developed and compared
to investigate these issues [19]. The three techniques were: a checklist, a systematic
reading technique, and a technique based upon use-cases. The checklist was updated
to reflect the demands of object-oriented code. It included specific guidance on read-
ing order (in an attempt to minimise the impact of delocalisation), and was based
upon the defect data from earlier studies. The systematic reading technique was es-
sentially a slight evolution from that explored in the first evaluation. The use-case
technique involved developing scenarios (particular test cases) from use cases and
following these through sequence diagrams until the class under inspection was en-
countered. At this point, focus is transferred to the code until an invocation is made
to some external object, when focus is returned to the sequence diagram. The philos-
ophy behind the technique is to explore the dynamic use of an object and determine
its response to a variety of likely input scenarios.

An evaluation of the three reading techniques found a significant difference (at the
10% level) in the number of defects detected between the reading techniques. The
delocalised defects that were seeded in the experiment were more evenly distributed
within the results for all the techniques.

226 M. ROPER ET AL.

The checklist technique was found to have the best overall performance, although
subjects using the systematic technique were more effective at finding delocalised de-
fects. Subjects noted that the checklist technique was easy and straightforward to use.

Those who used the systematic technique stated that it encouraged a greater level
of understanding. Subjects with different ability levels using the checklist performed
reasonably well. The systematic technique was again found to help the defect detec-
tion ability of weaker subjects, but still seemed to constrain the ability of stronger
subjects.

Weaker use-case subjects appeared to struggle (possibly due to the complexity of
the technique). In general subjects found this technique very demanding but this may
be a result of using students rather than subjects with more industrial experience.

5.6 Advice on Practical Object-Oriented Code Inspection

The work presented in this section has made an initial investigation into the is-
sues facing the inspection of object-oriented code. The main indication is that for
inspections to continue to be effective, they must take into account the effect of delo-
calised information and the difference between the static and dynamic representation
of code.

Checklists, despite their criticisms in the literature, can be very effective at this
task. They are relatively straightforward to use and have very few overheads. If
checklists can be tailored to the development environment using historical defect
data and include questions that specifically target object-oriented characteristics then
they have the potential to be an effective aid to object-oriented inspections. However,
it should be noted that this limits the checklist to recognised defect characteristics,
and reduces the chances of finding new or unexpected defects. The questions used
within the checklist should also try to encourage a deeper understanding of the code
and, in particular, its relationship with the rest of the system. This would help avoid
the more traditional ‘lightweight’ checklist questions that only superficially probe
the code.

The systematic technique provided encouraging results concerning the detection
of delocalised defects. The technique offers a potential long-term advantage through
the creation of abstractions. However, it has a higher overhead than checklists and
may fail to adequately deal with some localised defects. Although the generated
abstractions require further evaluation to establish their most effective form and use-
fulness, the ordering of code for inspection and the use of stepwise abstraction to
help with delocalisation are aspects of the technique that can be recommended.

Although the results for the use-case technique were weaker, it has several po-
tential strengths. Inspectors read the code from a dynamic model viewpoint and the
technique offers an independent source of comparison for the code with software

SOFTWARE INSPECTIONS 227

requirements (in the form of use-cases, scenarios and sequence diagrams). The tech-
nique better focuses on inter-class relationships as well as state information and has
the potential to deal with defects of omission. This was found to be the most demand-
ing of all the reading techniques, and it may be that it is a technique that can only be
used by those with more industrial experience. However, it should be remembered
that due to the nature of the technique, some parts of a class may go unchecked be-
cause they do not participate in the use-case that is driving the current inspection.
It may be necessary to compliment this reading technique with another to ensure
complete coverage of a class.

Where practical, object-oriented inspections should be based on teams of inspec-
tors using at least two different reading techniques. The checklist was found to have
a strong overall performance, but the systematic technique was found to be more
effective at finding delocalised defects. A problem with the checklist is that its per-
formance can rely heavily on the relationship between the questions and the context
it is used in, whereas other techniques have less reliance on context and may give a
more consistent performance.

Using a combination of reading techniques is a view similar to the one advocated
by the developers of the Perspective Based Reading (PBR) technique, where different
perspectives are used to represent different stakeholders, e.g., tester or code analyst.
Each of these perspectives is expected to highlight different types of defects. If a
PBR approach was to be adopted, it is suggested that one of the perspectives should
specifically focus on object-oriented issues. Combining reading techniques, such as
those described in this section, offers a good degree of robustness and the potential
to deal with many different defect types—the recurring defects, defects that require
deeper insights, and defects associated with the features of object-orientation that
distribute functionality throughout a system.

6. Tool Support for Inspection

6.1 Introduction
Over the last decade tool support for inspection has been an area of active and

widespread research and development. Conventionally, software inspection is imple-
mented as a manual, paper-based process but there is great potential to computerise
almost all aspects of the process. The focus of early tools was on the support of
single, usually proprietary processes [46]. In recent years, as the focus of manual,
paper-based inspection has moved to individual reading, there has been a trend to-
wards more general tool support managing documents, collecting data, supporting
meetings and thus allowing the developer to concentrate on the key activity of defect
detection.

228 M. ROPER ET AL.

There are differing views on the use or benefits of tool support. Code inspections
are traditionally thought of as non-execution based, i.e., the inspector is never al-
lowed to execute or compile the code during the inspection. This allows inspection
to be applied to code documents long before tests are designed or even run [24]. It
has also been found that if the code is executed and tested before an inspection, the
motivation of the inspectors may be reduced and make the inspection process appear
redundant [60,70]. Humphrey [28], in the Personal Software Process (PSP), states
that as part of the process to ensure a quality product, inspections should take place
before the first compile or test. Taking the opposite view, Gilb and Graham [24] and
Strauss and Ebenau [64] consider sending code to a compiler as one of the many
different entry criteria that have to be passed before an inspection can begin. The
reason for the clean compilation check is that it is cheaper for the compiler (or other
automatic tools) to find those kinds of defects, than the more expensive inspector.

This section discusses those aspects of inspection that are the focus of current
tool support: document handling, meeting support, data collection and reading sup-
port. It then briefly describes the features of two representative tools that explicitly
support those aspects. After that, two approaches that reflect a current emphasis in
inspection tool development, namely the use of Groupware Support Systems and
Web-based systems, are described. The section concludes with an example of a tool
that explicitly supports defect detection during individual reading.

6.2 Document Handling

Supporting documents in an electronic format during inspection has a number
of potential benefits. Since most documents are inevitably developed and stored on
computers, it would seem natural to distribute and view them this way. The distribu-
tion of documents is considerably simplified (and is environmentally beneficial) and
more complex documents (such as design diagrams which might span several pages
or take the form of navigable hierarchies) are easier to view, explore and analyse. An
additional benefit is the capability to cross-reference multiple documents and then
provide automatic links between these documents.

One of the major challenges identified in inspecting object-oriented code was the
problem of delocalisation—understanding information directly related to the object
under inspection that was not local to that object. Tool support is seen as having
an important role to play in addressing this—supporting controlled navigation to re-
lated code, design documentation, library code documentation, etc. If the use-case
approach is taken to object-oriented code inspection then tool support has an impor-
tant role to play in allowing the inspector to visualise the use-cases simultaneously
with the code.

SOFTWARE INSPECTIONS 229

6.3 Meeting Support

Due to the recommended two-hour time limit on inspection meetings it may take
several meetings before an inspection is complete. There is typically a large overhead
in setting up a meeting: finding a time that is mutually agreeable, a suitable location,
and so on. Depending on the company organization and project management style,
there may also be an overhead in travelling to the meeting. For example, a project
might be spread over different company sites, or a user from a different company
might be involved in the inspection. One possible solution is to hold a distributed
meeting where all meeting participants may communicate with each other electron-
ically and the meeting itself is supported by software that enables decision making,
records outcomes etc. Given that current thinking de-emphasises the role of the in-
spection meeting, a natural extension of this idea is to dispense with the traditional
meeting phase and execute the inspection asynchronously. In this case individual
inspectors work in their own time and, on completion, the author and moderator,
perhaps with automated support, resolve the individual defect lists.

6.4 Data Collection

The use of tools also provides the opportunity to automatically capture data for
use in analysing and improving the inspection process. This might include time spent
during preparation, or in the meeting, exactly where time was spent, defects found
and so on. It could also provide evidence that supports the tuning of checklists or
PBR-scenarios based on the behaviour of the inspectors utilizing them. Manual col-
lection of such data in an accurate and reliable fashion is notoriously difficult. This
is particularly relevant for support materials such as checklists, which rely on the
timely analysis of frequently occurring defects to maintain their effectiveness.

6.5 Reading Support

Although it is unlikely that automation will ever replace the human in this key
phase of inspection, there are several ways in which tool support can assist the indi-
vidual in preparation for, and during, the reading phase. Initially, a certain amount of
automatic defect detection may be carried out addressing tasks that are fairly mun-
dane for the human, e.g., removing syntax errors and detecting standards violations.
This has the benefit of freeing the inspector to concentrate on the deeper, and poten-
tially far more troublesome, semantic issues.

Checklists and PBR-scenarios should be visible and take the form of “active” on-
line forms that have to be completed before the inspection can continue. Tool support
should be provided to help create the models or test cases required by PBR-scenarios

230 M. ROPER ET AL.

to reflect the deep understanding encouraged by the perspective. Supporting docu-
ments should be kept visible and clearly cross-referenced.

If electronic document support is available then an individual’s comments (defects,
questions, etc.) may take the form of annotations to the document. This allows for a
more accurate correspondence between the defect description and its location as well
as ensuring that all comments are recorded. Following on from this the comments
from all individuals can then be simply gathered, collated and distributed for use
before and during the meeting.

In addressing the challenges of object-oriented code inspection using the system-
atic, abstraction-driven reading strategy tools have a critical role to play both in vi-
sualizing abstractions and supporting their creation.

6.6 Current Tool Support

Macdonald and Miller [46] provide a thorough description and comparison of six-
teen inspection tools developed during the 1990s. During this period there has been
a move from focused support for specific standalone inspection processes, towards
tools that provide generic support for a variety inspection process, general document
types and enable inspections to be carried out asynchronously, distributed across
multiple sites.

An example of the former is ICICLE (Intelligent Code Inspection in a C language
Environment) [7]. ICICLE was designed to support the inspection of C/C+ code
providing some automated support for defect detection based on the use of the UNIX
tool ‘lint’ and its own rule-based system that was capable of detecting issues such as
failure to de-allocate memory. It also include a feature to browse Unix manual pages
and cross reference code over multiple files. ICICLE supported synchronous, same-
room meetings where the “reader” controlled the rate of inspection on all machines.
After the inspection ICICLE generated a list of defects summarized by type and
severity together with basic process timing information.

Macdonald and Miller themselves developed ASSIST (Asynchronous/Synchro-
nous Software Inspection Support Tool) [47] which is a good example of the kind
of automated support that is currently available. ASSIST was designed to address a
range of inspection processes and document types, and to reduce effort and improve
inspector performance. A full range of inspection processes may be defined using
the associated inspection process definition language. The system has flexible doc-
ument support that allows the addition of new document types and their associated
browsers. Individual inspectors may then annotate documents at varying degrees of
detail. A checklist browser supports active checklists (which have to be completed
by the individual) and the system cross-references items in the checklist with key-
words in the document. The on-line meeting is controlled by the reader and may be

SOFTWARE INSPECTIONS 231

distributed, synchronous or asynchronous. The system has an auto-collation facility
that allows multiple defect lists to be combined.

Current thinking on inspection tools reflects the emphasis on the individual read-
ing phase that is now apparent in manual, paper-based inspection. It is suggested
that Groupware Support Systems or Web-based systems can provide the basis for
effective generic support for the inspection process, management of documents, data
collection, synchronous or asynchronous, distributed meetings together with basic
support for the reading phase. In parallel with this specialised tools that specifically
aid the individual reading phase are being proposed.

Halling et al. [26] suggest that GroupWare Support Systems (GSSs) provide the
necessary infrastructure for automated support of the inspection process. GSS tech-
nology is widely used to communicate, cooperate, coordinate, solve problems or
negotiate. Van Genuchten et al. [68] provide empirical evidence from a professional
environment that a GSS can support and enforce the inspection process leading to
improved effectiveness and efficiency compared to a manual process.

Halling et al. (see http://www.groupsystems.com) argue that a GSS such as Group-
Systems actively supports inspection in the following ways. GSSs are tailorable to
any inspection process and automatically support distributed and synchronous or
asynchronous meetings. GSSs support a variety of communication models between
inspectors ranging from the possibility of no communication to full communication
(every participant receives all the annotations of all other team members). GSSs sup-
port extracting the semantic structure from (textual) documents. This enables check-
list questions, for example, to be directly related to the relevant parts of the document
(though there no is built-in support in these systems for reading strategies based on
checklists or PBR-scenarios). Similarly defect data can be directly associated to the
underlying semantic structure of the document. GSSs provide built-in support for
data collection that includes information on process conformance, process effective-
ness and inspector performance. Halling et al. also argue that the high degree of
flexibility in a GSS means that the inspection process may be changed as a reaction
to experiences or data gathered during an actual inspection run. The downside of
these tools is the effort required to tailor the tool to the inspection process, an effort
that, it is argued, is clearly less than developing a tool from scratch.

A third trend in general inspection process support is the use of Web-based tools.
Harjumma et al. [27] have been at the forefront of Web-based inspection tools over
the last five years. They argue that the Web provides a useful infrastructure for col-
laborative inspection tools due to its “prevalence, platform independence and fa-
miliarity.” the fact that its browsers can cope with most document formats and that
geographical distribution is a fundamental feature. They have developed Web-based
inspection tools that support inspection and annotation of any HTML document,
simultaneous viewing of checklists, and basic process statistics gathering. Current

http://www.groupsystems.com

232 M. ROPER ET AL.

Web-based tools provide no support for synchronous meetings and, according to Har-
jumma et al. suffer from a lack of “flexibility and interoperability”—the capability to
smoothly integrate different document and tool types into a web-based environment.
Their current research is aimed at addressing these weaknesses based on the use of
Mozilla as a generic application environment and XML as an underlying document
format.

The final area of focus for current tool support is in actively helping the inspector
to discover defects during the individual reading phase. It is extremely unlikely that
tools will ever replace humans in this phase but there is plenty of scope for tool
support to help humans acquire the deep understanding that is necessary for this
task. CodeSurfer [2] is a good example of such a commercial tool. CodeSurfer uses
a range of dependence graphs together with slicing and graph reachability algorithms
to provide the following facilities to support the inspection of structured languages
such as C:

• variable usage information—where variables are defined, used and modified,
including via pointers,

• predecessors and successors—how does a variable acquire a certain value, or
where is a value, generated at a certain point, used,

• slicing—what points in the program does a set of starting points depend on,
what points in the program depend on a set of starting points,

• chopping—how does execution of one set of program points affect a second set
of program points,

• model checker—supports a variety of ‘canned’ queries about possible paths
through the software.

Although CodeSurfer has not been applied to object-oriented code the approach
it embodies would seem to offer potential support for the delocalisation issues dis-
cussed earlier in this chapter. More generally, careful investigation is required to
determine how such tools can be properly integrated with reading strategies based
on the use of checklists or PBR-scenarios.

6.7 Tool Summary

Over the last decade there has been a significant amount of development of and
experimentation on tools to support software inspection. Initially these tools were
aimed at specific models of inspection. Over the years the focus has become more
general, accommodating a variety of inspection processes and document types, and
making use of communications technology to enable new models of distributed and
asynchronous inspection. Current researchers advocate the use of more generalized

SOFTWARE INSPECTIONS 233

software such as Groupware Support Systems or web infrastructure as the basis of
inspection tools, ideally in conjunction with tools that actively support the core in-
spection activity of defect detection. An issue of some concern is that, despite the
significant efforts that have been made in the area of tool support and the fairly
compelling arguments for their usefulness, there is not much evidence of these tools
being used to support inspection outside of the organizations responsible for their
development. Finally, object-oriented technology currently dominates the construc-
tion of new software systems but there is no tool support that specifically addresses
the kind of issue that can arise when inspecting object-oriented code.

7. Conclusions

Inspections are an effective method used to find defects in many different docu-
ments generated throughout the lifetime of a software project. Recently, the focus
for detecting defects has moved away from the group inspection activity. Instead, the
focus for detecting defects is the preparation phase, where the individual inspector
reads the artefact in preparation for the group phase (which is now used for defect
collation).

With the focus for detecting defects in inspection moved to the preparation phase,
the reading technique used by the inspector to help prepare and find defects within
an inspection artefact has become one of the key aspects of the inspection process.
Adequate support for inspectors is necessary to help them be as efficient and as
effective as possible.

Reading techniques have evolved from offering no support and minimal guidance
to inspectors (e.g., ad-hoc and checklist) into detailed task driven processes that en-
courage inspectors to attain a good understanding of the artefact under inspection
(e.g., scenarios and perspective-based reading). It is the development of this good
understanding of the code that is key to helping inspectors increase their effective-
ness.

Within the last decade, the object-oriented paradigm has grown both in influence
and use. It has been shown that this presents significant challenges to the software
inspector. The major issues to be addressed are delocalisation (the distribution of
semantically related information over a wide range of classes), and chunking (the
problem of extracting an “inspectable” block of code from a tightly coupled network
of objects). In addition, the dynamics of object-oriented code are very different from
its static representation. It has been shown that a checklist based upon a good set of
historical data, and modified to acknowledge the chunking problem, can be an effec-
tive inspection aid. The systematic abstraction based approach may be effective with
delocalised defects, and the use-case driven technique has the potential to deal with

234 M. ROPER ET AL.

faults of omission and understanding the dynamics of the code. Overall, a combina-
tion of approaches is recommended in order to ensure a range of perspectives and a
high degree of robustness.

Tool support has also changed considerably since the advent of inspections. Once
the suitable technology was available the initial systems concentrated on providing
support for proprietary processes. Since then, tools have continued to capitalise on
technological advances, have increased in flexibility (in particular in their ability to
handle a wide range of document types), have opened up new possibilities for models
of inspection (such as distributed, asynchronous inspections).

REFERENCES

[1] Ackerman A.F., Buchwald L.S., Lewski F.H., “Software inspections: An effective veri-
fication process”, IEEE Software6 (3) (1989) 31–36.

[2] Anderson P., Teitelbaum T., “Software inspection using CodeSurfer”, in: Proceedings
of the 1st Workshop on Inspection in Software Engineering (WISE’01), Paris, 2001,
http://www.cas.mcmaster.ca/wise/wise01/.

[3] Basili V.R., “Evolving and packaging reading technologies”, Journal of Systems and
Software38 (1) (1997) 3–12.

[4] Basili V.R., Green S., Laitenberger O., Lanubile F., Shull F., Sørumgård S., Zelko-
witz M., “The empirical investigation of perspective-based reading”, Empirical Software
Engineering2 (1) (1996) 133–164.

[5] Basili V.R., Green S., Laitenberger O., Lanubile F., Shull F., Sørumgård S.,
Zelkowitz M., “Lab package for the empirical investigation of perspective-based
reading”, 1998. Available at http://www.cs.umd.edu/projects/SoftEng/ESEG/manual/
pbr_package/manual.html.

[6] Basili V.R., Mills H.D., “Understanding and documenting programs”, IEEE Transac-
tions on Software Engineering8 (3) (1982) 270–283.

[7] Bell Communications Research, ICICLE User’s Guide(1993).
[8] Biffl S., Gutjahr W., “Influence of TEM size and defect detection technique on inspection

effectiveness”, in: Proceedings of the 7th International Software Metrics Symposium
(METRICS 2001), IEEE Press, 2001.

[9] Binder R.V., “Testing object-oriented software: a survey”, in: Software Testing, Verifica-
tion and Validation, Vol. 6, 1996, pp. 125–252.

[10] Booch G., Object-Oriented Analysis and Design with Applications, 2nd edn., Ben-
jamin/Cummings Publishing Company, 1994.

[11] Chen X., Tsai W., Huang H., “Omega—an integrated environment for C++ program
maintenance”, International Conference on Software Maintenance(1996) 114–123.

[12] Cheng B., Jeffrey R., “Comparing inspection strategies for software requirements spec-
ifications”, in: Proceedings of the 1996 Australian Software Engineering Conference,
1996, pp. 203–211.

http://www.cas.mcmaster.ca/wise/wise01/
http://www.cs.umd.edu/projects/SoftEng/ESEG/manual/pbr_package/manual.html
http://www.cs.umd.edu/projects/SoftEng/ESEG/manual/pbr_package/manual.html
http://www.cs.umd.edu/projects/SoftEng/ESEG/manual/pbr_package/manual.html

SOFTWARE INSPECTIONS 235

[13] Chernak Y., “A statistical approach to the inspection checklist formal synthesis and im-
provement”, IEEE Transactions on Software Engineering22 (12) (1996) 866–874.

[14] Crocker R.T., von Mayrhauser A., “Maintenance support needs for object-oriented soft-
ware”, in: Proceedings of COMPSAC’93, 1993, pp. 63–69.

[15] Daly J., Brooks A., Miller J., Roper M., Wood M., “Evaluating inheritance depth on
the maintainability of object-oriented software”, Empirical Software Engineering1 (2)
(1996) 109–132.

[16] Deitel H., Deitel P., C How to Program, 2nd edn., Prentice-Hall, 1994.
[17] Dunsmore A., Roper M., Wood M., “Object-oriented inspection in the face of delocali-

sation”, in: Proceedings of the 22nd International Conference on Software Engineering,
ACM Press, New York, 2000, pp. 467–476.

[18] Dunsmore A., Roper M., Wood M., “Systematic object-oriented inspection—an empiri-
cal study”, in: Proceedings of the 23rd International Conference on Software Engineer-
ing, IEEE Computer Society Press, 2001, pp. 135–144.

[19] Dunsmore A., Roper M., Wood M., “Further investigations into the development and
evaluation of reading techniques for object-oriented inspection”, in: Proceedings of the
24th International Conference on Software Engineering, ACM Press, New York, 2002,
pp. 47–57.

[20] Fagan M.E., “Design and code inspections to reduce errors in program development”,
IBM Systems Journal15 (3) (1976) 182–211.

[21] Fagan M.E., “Advances in software inspections”, IEEE Transactions in Software Engi-
neering12 (7) (1986) 744–751.

[22] Fichman R.G., Kemerer C.F., “Object technology and reuse: lessons from early
adopters”, IEEE Computer30 (10) (1997) 47–59.

[23] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, MA, 1994.

[24] Gilb T., Graham D., Software Inspection, Addison-Wesley, Reading, MA, 1993.
[25] Grady R.B., Van Slack T., “Key lessons in achieving widespread inspection use”, IEEE

Software11 (4) (1994) 46–57.
[26] Halling M., Grunbacher P., Biffl S., “Groupware support for software requirements in-

spection”, in: Proceedings of the 1st Workshop on Inspection in Software Engineering
(WISE’01), Paris, 2001, http://www.cas.mcmaster.ca/wise/wise01/.

[27] Harjumma L., Hedberg H., “Web-based software inspection tools—past, present and
future”, in: Proceedings of the 20th IASTED International Multi-Conference Applied
Informatics (AI 2002), Austria, 2002.

[28] Humphrey W.H., A Discipline for Software Engineering, Addison-Wesley, Reading,
MA, 1995.

[29] Johnson P., “An instrumented approach to improving software quality through formal
technical review”, in: Proceedings of the 16th International Conference on Software
Engineering, 1994.

[30] Jones C., “Gaps in the object-oriented paradigm”, IEEE Computer27 (6) (1994).
[31] Jones C.L., “A process-integrated approach to defect prevention”, IBM Systems Jour-

nal 24 (2) (1985) 150–167.

http://www.cas.mcmaster.ca/wise/wise01/

236 M. ROPER ET AL.

[32] Jüttner P., Kolb S., Zimmerer P., “Integrating and testing of object-oriented software”,
in: Proceedings of EuroSTAR’94, 1994, pp. 13/1–13/14.

[33] Kernighan B., Ritchie D., Programming in C, Hanser-Verlag, 1990.
[34] Khan E.H., Al-A’ali M., Girgis M.R., “Object-oriented programming for structured pro-

cedural programmers”, IEEE Computer28 (10) (1995) 48–57.
[35] Knight J.C., Myers E.A., “An improved inspection technique”, Communications of the

ACM 36 (11) (1993) 51–61.
[36] Laitenberger O., Atkinson C., “Generalising perspective-based inspection to handle

object-oriented development artefacts”, in: Proceedings of the 21st International Con-
ference on Software Engineering, 1999, pp. 494–503.

[37] Laitenberger O., Atkinson C., Schlich M., El Emam K., “An experimental comparison
of reading techniques for defect detection in UML design documents”, The Journal of
Systems and Software53 (2) (2000) 183–204.

[38] Laitenberger O., DeBaud J.-M., “Perspective-based reading of code documents at Robert
Bosch GmbH”, Information and Software Technology (Special Issue)39 (1997) 781–
791.

[39] Laitenberger O., DeBaud J.-M., “An encompassing life-cycle centric survey of software
inspection”, Journal of Systems and Software50 (1) (2000) 5–31.

[40] Laitenberger O., El-Emam K., Harbich T.G., “An internally replicated quasi-experiment
comparison of checklist and perspective-based reading of code documents”, IEEE Trans-
actions on Software Engineering27 (5) (2001) 387–421.

[41] Land L.P.W., Sauer C., Jeffery R., “Validating the defect detection performance advan-
tage of group designs for software reviews: Report of a laboratory experiment using
program code”, in: 6th European Software Engineering Conference, 1997, pp. 294–309.

[42] Lange D.B., Nakamura Y., “Object-oriented program tracing and visualisation”, IEEE
Computer30 (5) (1997) 63–70.

[43] Lejter M., Meyers S., Reiss S.P., “Support for maintaining object-oriented programs”,
IEEE Transactions on Software Engineering18 (12) (1992) 1045–1052.

[44] Lieberherr K.J., Holland I., “Assuring good style for object-oriented programs”, IEEE
Software6 (5) (1989) 38–48.

[45] Linger R., Mills H., Witt B., Structured Programming: Theory and Practice, Addison-
Wesley, Reading, MA, 1979.

[46] Macdonald F., Miller J., “A comparison of computer support systems for software in-
spection”, Automated Software Engineering6 (3) (1999) 291–313.

[47] Macdonald F., Miller J., “ASSIST—A tool to support software inspection”, Information
and Software Technology41 (1999) 1045–1057.

[48] Macdonald F., Miller J., Brooks A., Roper M., Wood M., “Applying inspection to
object-oriented software”, in: Software Testing, Verification and Reliability, Vol. 6, 1996,
pp. 61–82.

[49] Murphy G.C., Townsend P., Wong P.S., “Experiences with cluster and class testing”,
Communications of the ACM37 (9) (1994) 39–47.

[50] National Aeronautics and Space Administration, “Software Formal Inspection Guide-
book”, Technical Report NASA-GB-A302, National Aeronautics and Space Adminis-
tration, 1993, http://satc.gsfc.nasa.gov/fi/fipage.html.

http://satc.gsfc.nasa.gov/fi/fipage.html

SOFTWARE INSPECTIONS 237

[51] Nielsen J., Richards J., “Experience of learning and using Smalltalk”, IEEE Soft-
ware6 (3) (1989) 73–77.

[52] Parnas D.L., Weiss D.M., “Active design reviews: principles and practice”, in: Proceed-
ings of 8th International Conference on Software Engineering, 1985, pp. 132–136.

[53] Porter A., Votta L., “What makes inspections work”, IEEE Software14 (6) (1997) 99–
102.

[54] Porter A.A., Johnson P.M., “Assessing software review meetings: Results of a compar-
ative analysis of two experimental studies”, IEEE Transactions on Software Engineer-
ing 23 (3) (1997) 129–144.

[55] Porter A.A., Siy H.P., Toman C.A., Votta L.G., “An experiment to assess the cost-benefits
of code inspections in large scale software development”, IEEE Transactions in Software
Engineering23 (6) (1997) 329–346.

[56] Porter A.A., Siy H.P., Votta L.G., “A review of software inspections”, Advances in Com-
puters42 (1996) 39–76.

[57] Porter A.A., Votta L.G., Basili V.R., “Comparing detection methods for software require-
ments inspections: A replicated experiment”, IEEE Transactions on Software Engineer-
ing 21 (6) (1995) 563–575.

[58] Regnell B., Runeson P., Thelin T., “Are the perspectives really different? Further exper-
imentation on scenario-based reading on requirements”, Empirical Software Engineer-
ing: An International Journal5 (4) (2000) 331–356.

[59] Rifkin S., Deimel L., “Applying program comprehension techniques to improve soft-
ware inspections”, in: 19th Annual NASA Software Engineering Laboratory Workshop,
Maryland, 1994.

[60] Russell G.W., “Experience with inspection in ultralarge-scale developments”, IEEE Soft-
ware8 (1) (1991) 25–31.

[61] Schneider G.M., Martin J., Tsai W.T., “An experimental study of fault detection in user
requirements documents”, ACM Transactions on Software Engineering and Methodol-
ogy1 (2) (1992) 188–204.

[62] Selby R.W., Basili V.R., Baker F.T., “Cleanroom software development: An empirical
evaluation”, IEEE Transactions on Software Engineering13 (9) (1987) 1027–1037.

[63] Soloway E., Pinto J., Letovsky S., Littman D., Lampert R., “Designing documentation to
compensate for delocalised plans”, Communications of the ACM31 (11) (1988) 1259–
1267.

[64] Strauss S.H., Ebenau R.G., Software Inspection Process, McGraw-Hill Systems Design
and Implementation Series, 1993.

[65] Tervonen I., “Consistent support for software designers and inspectors”, Software Qual-
ity Journal5 (1996) 221–229.

[66] Thelin T., Petersson H., Wohlin C., “Sample-driven inspection”, in: Proceedings of the
1st Workshop on Inspection in Software Engineering, Software Quality Research Lab,
McMaster University, 2001, pp. 81–91.

[67] Travassos G.H., Shull F., Fredericks M., Basili V.R., “Detecting defects in object ori-
ented designs: Using reading techniques to increase software quality”, in: Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
1999.

238 M. ROPER ET AL.

[68] van Genuchten M., van Dijk C., Scholten H., Vogel D., “Using group support systems
for software inspections”, IEEE Software18 (3) (2001).

[69] Votta L.G., “Does every inspection need a meeting?”, ACM Software Engineering
Notes18 (5) (1993) 107–114.

[70] Weller E.F., “Lessons from three years of inspection data”, IEEE Software10 (5) (1993)
38–45.

[71] Wilde N., Huitt R., “Maintenance support for object-oriented programs”, IEEE Transac-
tions on Software Engineering18 (12) (1992) 1038–1044.

[72] Wilde N., Matthews P., Huitt R., “Maintaining object-oriented software”, IEEE Soft-
ware10 (1) (1993) 75–80.

Software Fault Tolerance
Forestalls Crashes: To Err Is Human;
To Forgive Is Fault Tolerant

LAWRENCE BERNSTEIN

Stevens Institute of Technology
Castle Point
Hoboken, NJ 07030
USA
lbernstein@ieee.org

Abstract
Software Fault Tolerance prevents ever-present defects in the software from
hanging or crashing a system. The problem of preventing latent software faults
from becoming system failures is the subject of this chapter. Software architec-
tures, design techniques, static checks, dynamic tests, special libraries, and run-
time routines help software engineers create fault tolerant software. The nature
of software execution is chaotic because there are few ways to find singularities,
and even those are rarely practiced. This leads to complex and untrustworthy
software products.

The study of software fault tolerance starts with the goal of making software
products available to users in the face of software errors. Availability is a math-
ematical concept; it is the Mean Time-To-Failure divided by the Mean Time-To-
Failure plus the Mean Time-To-Repair. The idea is to make the Mean Time-To-
Failure as large as possible and the Mean Time-To-Repair as small as possible.
Continuing with Reliability Theory we can express the Mean Time-To-Failure
as the reciprocal of the failure rate. Assuming an exponential reliability model
the failure rate is the expected value of the reliability of the system. This chapter
shows how these quantitative concepts can be used to make software engineering
tradeoffs.

First, there is a historical perspective on, and problems with, the study of
software fault tolerance. Then new approaches are presented with a theme of
making it possible to trade-off software execution time, complexity, staff effort,
and the effectives of the staff to achieve desired system availability.

ADVANCES IN COMPUTERS, VOL. 58 239 Copyright © 2003 by Elsevier Science (USA)
ISSN: 0065-2458 All rights reserved.

240 L. BERNSTEIN

1. Background . 240
1.1. Fault Tolerant Computers . 240
1.2. Why Software Is Different from Hardware . 241
1.3. Software Errors (Bugs) . 244
1.4. Application Concerns . 246
1.5. Origins of Software Engineering . 247

2. Fault Tolerance Is Related to Reliability Theory . 248
2.1. Sha’s Reliability Model . 250
2.2. Effectiveness Extension of Reliability Model 250
2.3. Complexity Factors (C) . 251
2.4. Time Factors (t) . 272
2.5. Effort Factors (E) . 274

3. Summary . 283
Acknowledgements . 285
References . 285

1. Background

1.1 Fault Tolerant Computers

The 1990s were to be the decade of fault tolerant computing. Fault tolerant hard-
ware was in the works and software fault tolerance was imminent. But it didn’t hap-
pen. Hardware suppliers successfully convinced customers that highly reliable con-
figurations with duplicate disks in RAID configurations as shown in Fig. 1 were good
enough. The most popular computer suppliers did not have fault tolerant configura-
tions to offer their customers. To keep their market share they convinced their cus-
tomers that the incremental value of a hardware fault tolerant configuration did not
warrant the extra costs. In addition, they radically reduced the costs of their high re-
liability configurations. Fault tolerant computers became twice as expensive as high
reliable ones. Since the application software was not fault tolerant the incumbent
suppliers argued the new computers were not cost effective. Except in some spe-
cial cases their arguments carried the day. The incumbent suppliers eventually ab-
sorbed the new companies that made fault tolerant computers. In the 1990s, the Web
Wave surged. Highly reliable server hardware configurations became the solution of
choice. Software failures were not addressed. Software developers lost interest in
fault tolerance until a rash of server failures, denial of service episodes, web outages
and the September 11th attack occurred.

Software fault tolerance methods are often extrapolated from hardware fault tol-
erance concepts. This approach misses the mark because hardware fault tolerance is
aimed at conquering manufacturing faults. Environmental and other faults are rarely

SOFTWARE FAULT TOLERANCE 241

FIG. 1. High reliability Storage Server.

treated. Redundant hardware subsystems solved many single errors with extended
operating systems programmed to recognize the hardware failure and launch the ap-
plication on the working hardware. Design diversity was not a concept usually ap-
plied hardware fault tolerance. Software fault tolerant designers, however, adopt this
approach by using N -version (also called multi-version) programming.

1.2 Why Software Is Different from Hardware

The N -version concept attempts to parallel in software the hardware fault toler-
ance concept of N -way redundant hardware. In an N -version software system, each
module is made with up to N different implementations. Each version accomplishes
the same task but in a different way. Each version then submits its answer to a de-
cider that determines the correct answer and returns that as the result of the module.
In practice, this means that more than one person must work a module to have dif-
ferent approaches. If each version but one succumbed to the same conceptual error,
the one correct version would be cancelled out even though it alone was correct.
This approach works only when it is possible to create uncorrelated yet equivalent
designs and that the resulting programs do not share similar failure modes. Design
diversity with independent failure modes are hard to achieve. Nancy Leveson points
out, “. . . every experiment with [multi-version programming] that has checked for

242 L. BERNSTEIN

dependencies between software failures has found that independently written soft-
ware routines do not fail in a statistically independent way” [17]. The techniques of
N -version programming are well treated by Michael Lyu [19].

Lui Sha shows that “. . . the key to improving reliability is not the degree of di-
versity, per se. Rather the existence of simple and reliable components ensures the
system’s critical functions despite the failure of non-core software components.” He
continues to say, “. . . diversity with N -version programming does not usually im-
prove reliability and points out that FAA DO 178B discourages its use” [28].

An alternative to N -version is the use of recovery blocks. Transactions are closely
monitored so that if there is a failure during the execution of any transaction, the
software can be rolled back to a previously sound point. Then special recovery soft-
ware is executed based on the needs of the application. The failed transaction can
be dropped allowing the system to execute other transactions, or the transaction may
be retried and, if it is not successful within some number of attempts, the entire sys-
tem may be halted. If the loss of any transaction is unacceptable, the database may
be secured and the system halted. The database might be rebuilt by special recov-
ery software and then the system could be restarted. Older recovery blocks executed
several alternative paths serially until an acceptable solution emerged. Newer re-
covery block methods may allow concurrent execution of various alternatives. The
N -version method was designed to be implemented using N -way hardware concur-
rently. In a serial retry system; the cost in time of trying multiple alternatives may
be too expensive, especially for a real-time system. Conversely, concurrent systems
require the expense of N -way hardware and a communications network to connect
them. Software uses a module to decide. It may consider more than the absolute re-
sults to determine the action to take. Hardware uses strict comparison of results. The
recovery block method requires that each module build a specific decider. This re-
quires a lot of development work. The recovery block method creates a system that
makes it is difficult to enter into an incorrect state, if and only if the programmer can
design simple and bug free decision code. In comparison the N -version method may
use a single decider.

Hardware faults are predominantly caused when component performance de-
grades. Design faults are found and fixed early. In a few cases hardware design
failures appear in the final system. When they do, it is often left to the software
to compensate for them. Software faults are different; they result from design short-
comings. Techniques for dealing with such shortcomings are detailed later in this
chapter. Software manufacturing is the process of configuration management, trou-
ble tracking and reproduction of software [26]. Errors in this process, unlike the
hardware-manufacturing situation can be entirely prevented by appropriate tools,
technician education and standards. Errors in software manufacturing are not part of

SOFTWARE FAULT TOLERANCE 243

software fault tolerance studies. For the purposes of this chapter, the software is as-
sumed to be accurately reproduced and installed on the target host computer.

Software is characterized by branching, executing alternative series of commands
based on input. This quality creates complexity. Even short programs can be very
difficult to fully understand. Software branching can contain latent faults that only
come to light long after a software product is introduced into the marketplace.

Typically, testing alone cannot fully verify that software is complete and correct.
In addition to testing, other verification techniques and a structured and documented
development process must be combined to assure a comprehensive validation ap-
proach.

In their work on “Quantitative Analysis of Faults and Failures in a Complex Soft-
ware System” N.E. Fenton and N. Ohlsson describe a number of results from a study
of faults and failures in two releases of a major commercial system. They tested a
range of basic software engineering hypotheses relating to: the Pareto principle of
distribution of faults and failures; the use of early fault data to predict later fault and
failure data; metrics for fault prediction; and benchmarking fault data. They found
very strong evidence that a small number of modules contain most of the faults dis-
covered in pre-release testing, and that a very small number of modules contain most
of the faults discovered in operation. However, in neither case is this explained by the
size or complexity of the modules. They found no evidence relating module size to
fault density, nor did they find evidence that popular complexity metrics are good pre-
dictors of either fault-prone or failure-prone modules. They confirmed that the num-
ber of faults discovered in pre-release testing is an order of magnitude greater than
the number discovered in one year of operational use. They also discovered stable
numbers of faults discovered at corresponding testing phases. Their most surprising
and important result was strong evidence of a counter-intuitive relationship between
pre and post release faults: those modules which are the most fault-prone pre-release
are among the least fault-prone post-release, while conversely the modules which are
most fault-prone post release are among the least fault-prone pre-release. This obser-
vation has serious ramifications for the commonly used fault density metric. Not only
is it misleading to use it as a surrogate quality measure, but its previous extensive use
in metrics studies is flawed.

Software is deceptively easy and fast to change the speed and ease. This can lead
to the false impression that software faults can be easily corrected. Combined with a
lack of understanding of software, it can lead engineering managers to believe that
tightly controlled engineering is not as important for software projects as it is for
hardware ones. In fact, the opposite is true. Because of its complexity, the devel-
opment process for software should be tightly controlled as the development cycle
nears project completion. The goal is to prevent problems that will be hard to find
later.

244 L. BERNSTEIN

Software may improve with age, as latent defects are discovered and removed.
Repairs made to correct software defects, in fact, establish a new design. Seemingly
insignificant changes in software code can create unexpected and very significant
problems elsewhere. Musa’s execution time model takes advantage of data gathered
during software testing [23]. His approach extends the fundamental reliability ex-
ponential model that can be used at all stages of the software development process.
Musa’s approach is best used during a carefully designed set of longevity and stress
tests. Test cases typically reflect samples of user operations. The key idea is to find
how long a system will operate before it fails and the operational impact when it
does fail. One way to estimate the intrinsic reliability of the software is to examine
charts showing tests passed as a function of time. The more reliable the software the
more this plot follows a typical human skills acquisition graph, with plateaus during
which competence is acquired followed by sudden jumps in capability [5].

Software validation is a critical tool in assuring product quality for device software
and for software automated operations. Software validation can increase the usabil-
ity and reliability of the device, resulting in decreased failure rates, fewer recalls and
corrective actions, less risk to patients and users, and reduced liability to manufac-
turers. Software validation can also reduce long term costs by making it easier and
less costly to reliably modify software and revalidate software changes. Software
maintenance represents as much as 50% of the total cost of software. An established
comprehensive software validation process helps to reduce the long term software
cost by reducing the cost of each subsequent software validation.

1.3 Software Errors (Bugs)

In contrast to hardware, software faults are most often caused by design short-
comings that occur when a software engineer either misunderstands a specification
or simply makes a mistake. Design for reliability is rarely taught to Computer Sci-
ence majors. Software faults are common for the simple reason that the complexity
in modern systems is often pushed into the software part of the system. Then the soft-
ware is pushed to and beyond its limits. I estimate that 60–90% of current computer
errors are from software faults.

Software faults may also be triggered from hardware; these faults are usually tran-
sitory in nature, and can be masked using a combination of current software and
hardware fault tolerance techniques. In the 1960s, I managed a software project that
tracked missiles. As we prepared for the first missile test, managers argued about
the wisdom of using special fault tolerant hardware and software subsystems called
‘Mission Mode.’ The problem was that these subsystems were not fully tested. One
manager argued using the alternative the ‘stop on error’ approach there would be no
chance to recover from an error. Another argued, “Untested software will not work.”

SOFTWARE FAULT TOLERANCE 245

Which would you pick? The executive in charge chose the logically correct ‘Mission
Mode’ approach. The missile blew up. The computer skipped the instruction that up-
dated the position of the electronically steered phase array radar. There was no inertia
to keep the radar pointing in the general direction of the missile. A six-week inves-
tigated showed that the timing chains in the logic had negative timing margins when
run in certain configurations peculiar to Mission Mode and with a particular combi-
nation of data. Even though there had been hundreds of tests run before the mission,
the hardware executed the software in that configuration for the first time 30 sec-
onds into the mission. During the investigation, the problem could not be reproduced
and all missile testing stopped. Some wanted to proceed with more missions before
the problem was solved, claiming that the problem was a random occurrence. Some
twenty-five years later AT&T experienced a massive network failure caused by a
similar problem in the fault recovery subsystem they were upgrading. This time there
was a latent software fault in the update. It became a failure. There was not enough
testing of the recovery subsystem before it was deployed. In both cases, the system
failed because there was no limits placed on the results the software could produce.
There were no boundary conditions set. Designers programmed with a point solution
in mind and without bounding the domain of software execution. Testers were rushed
to meet schedules and the planned fault recovery mechanisms did not work.

While software cannot be designed without bugs, it does not have to be as buggy
as it is. For example, as early as 1977, a software based store and forward message
switch was in its fourth year of operation and it handled all administrative messages
for Indiana Bell without a single failure. This record was achieved after a very buggy
start followed by a substantial investment in failure prevention and bug fixes. One
particularly error-prone software subsystem was the pointers used to account for
clashes in the hash function that indexed a message data file. The messages could
remain in the file system for up to thirty days. There were many hash clashes due
to the volume of messages and the similarity of their names. Once the obvious bugs
were fixed the residual ones were hard to find. This led to unexpected behavior and
system crashes. A firm requirement was not to lose any messages. Failures exhibited
by latent faults can appear to be random and transient. But they are predictable if
only we can get the initial conditions and transaction load that trigger them. They are
sometimes called Heisenbugs. It was just too costly to find and fix all the Heisenbugs
in the file index code, so the hash tables were rebuilt daily in the early hours of the
morning when there was no message traffic. With fresh hash tables daily, the chances
of triggering a fault was small especially after the bugs that were sensitive to the
traffic mix were found and fixed. This experience shows that it is not necessary for
software to be bug free.

Software runs as a finite state machine. Software manipulates variables that have
states. Unfortunately flaws in the software that permit the variables to take on values

246 L. BERNSTEIN

outside of their intended operating limits often cause software failures. Software also
fails when coded correctly, but the design is in error. Software can fail when the hard-
ware or operating systems are changed in ways unanticipated by the designer. Also,
software often fails when users overload it. In the final analysis, most failures are
due to some human error. While human error is hard to predict, it is predictable. The
work of John Musa, for example, which for years has dealt with the predictability of
software faults, shows that the behavior of many software failures fit a mathematical
model.

1.4 Application Concerns

When some service is especially critical or subject to hardware or network failure,
the application designer needs to include software fault tolerance in its design. These
are typical issues facing application designers:

• Consistency: In distributed environments, applications sometimes become in-
consistent when code in a host is modified unilaterally. For example, the code in
one software component may be updated and this change may require sending
out new versions of the client application code. In turn, all dependent proce-
dures must be re-compiled. In situations where a single transaction runs across
several servers, a two-phase commit approach may be used to keep the distrib-
uted databases consistent. If the clients and servers are out of step there is a
potential for a failure even though they have been designed and tested to work
together. The software in the hosts need to exchange configuration data to make
sure they are in lock step before every session.

• Robust security: Distributed application designers need to ensure that users can-
not inadvertently or deliberately violate any security privileges.

• Software component fail over: The use of several machines and networks in dis-
tributed applications increases the probability that one or more could be broken.
The designer must provide for automatic application recovery to bypass the out-
age and then to restore the complex of systems to its original configuration. This
approach contains the failure and minimizes the execution states of the complex
of systems.

BEA pioneered industrial strength two-phase commit middleware in their Tuxedo
product that originated at Bell Laboratories. Applications developed using Oracle
databases address many of the complex reliability and security considerations that
affect partitioned, distributed applications. BEA’s Application Infrastructure plat-

SOFTWARE FAULT TOLERANCE 247

form [3] implements each layer of the application infrastructure as a single, well-
architect solution. The platform simplifies software engineering by providing an
integrated framework for developing, debugging, testing, deploying and managing
applications. The platform is

(a) Reliable—ensuring that applications never “break,” even under the most de-
manding circumstances.

(b) Available—enabling applications that can run continuously 24 × 7 × 365.
(c) Scalable—allowing companies to plan cost-effectively for any level of usage.
(d) Trusted—because in today’s world of heightened security, an enterprise must

maintain complete control of its data.

In information technology—communications no less than computing—software of-
ten is the machine. It’s been said that it takes 100 million lines of code to make a
typical phone call. The global telecommunications industry has roughly 100 billion
lines of software code in products or in development. Any of these may be a bug.
Across the board, there will be increasing demands for reliability on a level seldom-
encountered outside telecommunications, defense and aerospace. Customers want
future Internet services to be as reliable and predictable as services on yesterday’
voice networks.

Software fault tolerance is at the heart of the building trustworthy software. To-
day Microsoft is embarking on a major Trustworthy Computing initiative. Bill Gates
sent a memo to his entire workforce demanding, “. . . company wide emphasis on de-
veloping high-quality code that is available, reliable and secure-even if it comes at
the expense of adding new features.” [Information Week 873 (21 Jan. 2002) p. 28.]
Trustworthy software is stable. It is sufficiently fault-tolerant that it does not crash
at minor flaws and will shut down in an orderly way in the face of major trauma.
Trustworthy software does what it is supposed to do and can repeat that action time
after time, always producing the same kind of output from the same kind of input.
The National Institute of Standards and Technology (NIST) defines trustworthiness
as “software that can and must be trusted to work dependably in some critical func-
tion, and failure to do so may have catastrophic results, such as serious injury, loss of
life or property, business failure or breach of security. Some examples include soft-
ware used in safety systems of nuclear power plants, transportation systems, medical
devices, electronic banking, automatic manufacturing, and military systems” [32].

1.5 Origins of Software Engineering

NATO convened a meeting in 1968 to confront a crisis that didn’t make the
headlines—“the software crisis.” Experts from a dozen countries, representing in-

248 L. BERNSTEIN

dustrial labs as well as universities, met in Garmisch, Germany, to grapple with two
basic questions that are still with us: Why is it so hard to produce functionally cor-
rect and reliable software that meets users’ needs and performance requirements and
comes in on time and within a projected budget? And where should software produc-
ers be looking for solutions? The answers revolved around “software engineering,”
a term coined by the organizers of the Garmisch conference—somewhat controver-
sial at the time, and wholly inspirational—to focus on a missing discipline with the
potential to resolve the crisis. Software production should be “industrialized.” Sys-
tems should be built from reliable components.

There are significant advances in Software Engineering. Programmers are better
now, most code is written in high level languages, better tools exist, development
is done on-line, better design models exist, and standards have been established in
some key areas. A number of recently developed or recently successful innovations
include libraries for fault tolerant computing, object-oriented programming, remote
procedure calls that are the foundation for client–server applications, application pro-
gramming interfaces, graphical user interfaces and development tools, prototyping,
and source-level debugging. Components exist and are widely used. This belies the
common wisdom that software components are rare. The C libraries with all their
richness of fundamental or atomic functions provide 20% reuse in most industrial
strength UNIX based applications. Software that makes a library of graphical ele-
ments, or a text-processing tool, available to multiple applications—with a major
reservation is also in wide use. IBM and others are using software libraries provid-
ing generic fault avoidance and recovery.

2. Fault Tolerance Is Related to Reliability Theory

A fault is an erroneous state of software and fault tolerance is the ability of the
software system to avoid execution the fault in a way that causes the system to fail.
“The reliability of a system as a function of time R(t), is the conditional probability
that the system has (not failed) in the interval [0, t], given that it was operational at
time t = 0” [29]. Therefore it is essential to examine software reliability to under-
stand software fault tolerance.

The most common reliability model is:

R(t) = e−λt ,

where λ is the failure rate. It is reasonable to assume that the failure rate is constant
even though faults tend to be clustered in a few software components. The software
execution is very sensitive to initial conditions and external data driving the software.
What appear to be random failures are actually repeatable. The problem in finding

SOFTWARE FAULT TOLERANCE 249

FIG. 2. Two-state reliability model.

and fixing these problems is the difficulty of doing the detective work needed to
discover the particular initial conditions and data sequences that can trigger the fault
so that it becomes a failure [23].

In a two-state continuous-time Markov chain the parameters to be estimated are
failure rate λ and repair rate µ (see Fig. 2).

The Mean Time Between Failures (MTTF) = 1/λ.

The Mean Time To Repair (MTTR) = 1/µ.

The steady-state availability is:

Availability = MTTF/(MTTF + MTTR) = 1/[1 + λ/µ].
The goal of Software Fault Tolerance is to make Availability = 1.

This can be approached by making λ very small and/or by making µ very large. The
rest of this chapter describes how to accomplish both using a unified equation tying
the practices, processes, algorithms and methods of software engineering together.
With this unifying equation software engineering tradeoffs may be quantitatively
made.

Software Fault Tolerance in the large focuses on failures of an entire system,
whereas Software Fault Tolerance in the small, usually called transaction recov-
ery, deals with recovery of an individual transaction or program thread. The sys-
tem MTTF is usually greater for the system than for any transaction as individual
transactions may fail without compromising other transactions. Telephone switching
systems employ this strategy by aborting a specific call in favor of keeping the re-
maining calls up. Sometimes the integrity of the data is so important that the system
tries to rerun a transaction or recover lost data as part of an error recovery strategy.
This recovery software operates for one transaction while the rest of the transactions
operate normally. If there are too many transaction failures the system may need to
be restarted to clear a data problem or reinitialize control flows. This is a fault be-
coming a failure. The MTTR usually addresses the recovery of a transaction, but with
the software rejuvenation technique [15], described in this paper, the re-initialization

250 L. BERNSTEIN

of the software execution states can be considered as part of the MTTR. With this
function there may be no system failure, but transaction executions may be delayed.

2.1 Sha’s Reliability Model

Professor Lui Sha’s of University of Illinois at Urbana-Champaign created a model
of reliability based on these postulates [28]:

(1) Complexity begets faults. For a given execution time software reliability de-
creases as complexity increases.

(2) Faults are not equal, some are easy to find and fix and others are Heisenbugs.
Faults are not random.

(3) All budgets have limits so that there is not unlimited time or money to pay for
exhaustive testing.

Sha chooses the MTTF = E/kC and the reliability of the system is R(t) = e−kCt/E ,
where k is a scaling constant, C is the complexity. Sha defines complexity as the
effort needed to verify the reliability of a software system made up of both new and
reused components, t is the continuous execution time for the program, E is the
development effort that can be estimated by such tools as Checkpoint, COCOMO
or Putnam’s approach. Development effort is a function of the complexity of the
software so the numerator and denominator of the exponent must be factored. R(0) =
1 because all the startup failures are assumed to be removed through classical unit,
block and system testing.

Unfortunately we cannot use these equations to compute the reliability of a system
from its components because failure modes may depend on a particular combination
of the software components. Sha’s approach works for a system as a whole. Until
software components can be isolated and their execution characteristics made inde-
pendent of one another the reliability of an entire system is not the product of the
reliability of its component parts.

2.2 Effectiveness Extension of Reliability Model

An extension of the model adds an effectiveness factor to the denominator. This
reflects the investment in software engineering tools, processes and code expansion
that makes the work of one programmer more effective. Let ε be the expansion factor
that expresses the ability to solve a program with fewer instructions with a new tool
such as a compiler. It may be the ratio of the number of lines of code a compiler
may expand into machine code. This idea of the improvement in productivity due to
investment in the software tools has been explained in an earlier article [4]. Then the

SOFTWARE FAULT TOLERANCE 251

effectiveness equals the conciseness factor and the reliability equation becomes:

R = e−kCt/Eε.

This equation expresses reliability of a software system in a unified form as related to
software engineering parameters. The longer the software system runs the lower the
reliability and the more likely a fault will be executed to become a failure. Reliability
can be improved by investing in tools (ε), simplifying the design (C), or increasing
the effort in development to do more inspections or testing than required by software
effort estimation techniques. The estimation techniques provide a lower bound on
the effort and time required for a successful software development program. These
techniques are based on using historical project data to calibrate a model of the form:

Effort = a + b(NCSLOC)β,

where a and b are calibration constants, NCSLOC is the number of new or changed
source lines of code needed to develop the software system, β is an exponent ex-
pressing the diseconomies of scale for software projects and is greater than 1 [7].

An elaboration of the Sha model provides the foundation for a general theory of
reliability-based software engineering. Various software engineering processes are
combined to understand the reliability of the software; by increasing reliability, the
software becomes more fault tolerant. Consider the reliability equation term by term:
C, t , and E.

2.3 Complexity Factors (C)

2.3.1 Complexity

Sha states that the primary component of complexity is the effort needed to verify
the reliability of a software system. Typically reused software has less complexity
than newly developed software because it has been tested in the crucible of live
operation [18]. But, this is just one of many aspects of software complexity. Among
other aspects of software engineering complexity a function of [30]:

(a) The nature of the application characterized as
(1) Real-time, where key tasks must be executed by a hard deadline or the sys-

tem will become unstable. Other high complexity software must be aware
of the details of the hardware operation. Operating systems, communi-
cation and other drivers are typical of this software. Embedded software
must deal with all the states of the hardware. The hardest ones for the
software engineer to cope with is the ‘don’t care states.’

252 L. BERNSTEIN

(2) On-line transactions, where multiple transactions are run concurrently in-
teracting with people or to with other hardware. Large database systems
are typical of these applications.

(3) Report generation and script programming;
(b) the nature of the computations including the precision of the calculations;
(c) the size of the component;
(d) the steps needed to assure correctness of a component;
(e) the length of the program; and
(f) the program flow.

Sha’s view is that the effort to verify the correctness of the component factor domi-
nates the length factor. He assumes that reasonable design steps have been taken and
the there are no singularities in the execution of the component. Cyclomatic metrics
are used effectively to find components that are orders of magnitude more complex
than others in the system. Trustworthy system design demands that these components
be redesigned. In any event, by reducing complexity or equivalently simplifying the
software, the reliability increases.

2.3.2 Trustworthy Software Is Reliable

First there must not be any degenerate situations in the implementation of the
software. A few causes for such degeneration are:

(1) computational lags in controlling external equipment,
(2) round-off errors in computing control commands,
(3) truncation errors induced when equations are approximated,
(4) memory leaks that prevent other processes from executing memory,
(5) thrashing, and
(6) buffer overflows.

Reliable software is trustworthy software. It is easier to make simple software re-
liable than it is to make complex software reliable. Trustworthiness is the ideal. It
is confounded by what insurance companies call “acts of God” in the environment,
by human beings who misunderstand, ignore or circumvent system warnings, by
chaotic software conditions that arise from untested areas, by the pressures of the
marketplace to sell new versions of software that invalidate earlier versions, and by
malevolent attacks from people. The interplay among these dimensions of instability
is complicated.

Software system development is frequently focused solely on performance and
functional technical requirements and does not adequately address the need for reli-
ability or trustworthiness in the system. Not only must software designers consider

SOFTWARE FAULT TOLERANCE 253

how the software will perform they must account for consequences of failures. Trust-
worthiness encompasses this concern.

“Trustworthiness is a holistic property, encompassing security including confiden-
tiality, integrity, and availability, correctness, reliability, privacy, safety and surviv-
ability. It is not sufficient to address only some of these diverse, dimensions, nor is it
sufficient to simply assemble components that are themselves trustworthy. Integrat-
ing the components and understanding how the trustworthiness dimensions interact
is a central challenge in building a trustworthy Networked Information System.” This
definition appeared in a fine article by Fred Schneider, Steven Bellovin and Alan S.
Inouye in the November/December 2002 issue of IEEE Internet Computing, p. 64
[http://computer.org/internet/]. The article discusses many aspects of network opera-
tion but takes for granted the trustworthiness of the underlying software. Because of
the increasing complexity and scope of software, its trustworthiness will become a
dominant issue.

Modern society depends on large-scale software systems of astonishing complex-
ity. Because the consequences of failure in such systems are so high, it is vital that
they exhibit trustworthy behavior. Much effort has been expended in methods for
reliability, safety and security analysis, as well as in methods to design, implement,
test and evaluate these systems.

Yet the “best practice” results of this work are often not used in system devel-
opment. A process is needed to integrate these methods within a trustworthiness
framework, and to understand how best to ensure that they are applied in critical
system development. It is critical that we focus attention on critical systems and to
understand the societal and economic implications of potential failures.

Trustworthiness is already an issue in many vital systems, including those found
in transportation, telecommunications, utilities, health care and financial services.
Any lack of trustworthiness in such systems can adversely impact large segments of
society, as shown by software-caused outages of telephone and Internet systems. It is
difficult to estimate the considerable extent of losses experienced by individuals and
companies that depend on these systems. This issue of system trustworthiness is not
well understood by the public. One measure of the Trustworthiness of a system is its
stability.

2.3.3 Software Stability Is Key to Simplicity
Internal software stability means that the software will respond with small out-

puts to small inputs. If the software response grows without bound, the system will
usually crash or hang. These are the most egregious failures. All systems have latent
faults that can cause system failures. The trick is to use feedback control to keep
system execution away from these latent faults or singularities so that the faults do
not become failures. Most instabilities internal to the software are caused by:

http://computer.org/internet/

254 L. BERNSTEIN

• buffer usage that increases to eventually dominate system performance,

• computations that cannot be completed before new data arrive,

• round-off errors that build,

• an algorithm that is embodied in the software is inherently flawed,

• memory leaks,

• register overflow,

• thrashing access to files on secondary storage,

• thrashing of routes in a network,

• broadcast storms.

There is only a weak theoretical model for software behavior. Chaotic conditions
can arise over time outside the windows of testing parameters. There is little theory
on dynamic analysis and performance under load. The question is how to compen-
sate for destabilizing factors and catch problems early in the design process. The
Federal Food and Drug Administration has issued a paper on general principles of
software validation that remarks, “Software verification includes both static (paper
review and automatic programs that process the source code such as Lint) and dy-
namic techniques. Dynamic analysis (i.e., testing) is concerned with demonstrating
the software’s run-time behavior in response to selected inputs and conditions. Due
to the complexity of software, both static and dynamic analysis is needed to show
that the software is correct, fully functional and free of avoidable defects.”

2.3.4 Buffer Overflows

A significant issue facing software engineers is keeping buffers from overflowing.
Buffers are used to allow computer processors to multithread processes and by TCP
to exchange data between computers. When control programs are fast, buffer areas
can be small, otherwise large buffers must be available so that they do not overflow
and cause the software to stop exchanging data or to transfer to undefined locations
causing the system to hang or crash and thus fail.

The exploitation of buffer overflow bugs in process stacks cause many security
attacks. To deal with the problems there are new libraries that work with any existing
pre-compiled executable and can be used system-wide.

The Microsoft® .NET Framework eliminates security risks due to buffer over-
flows; and shifts the burden from having to make critical security decisions—such
as whether or not to run a particular application or what resources that application
should be able to access—from end users to developers. With the ever-increasing
complexity and functionality of software applications comes assaults. The man-
aged code architecture of the .NET Framework provides one solution to the prob-

SOFTWARE FAULT TOLERANCE 255

lem of software application security. It transparently controls the behavior of code
even in the most adverse circumstances, so that the risks inherent in all types of
applications—client- and server-side—are greatly reduced. A common language
runtime (CLR) is the engine that runs and “manages” executing code enforcing .NET
Framework’s restrictions and prevents executing code from behaving unexpectedly.
The CLR performs “just-in-time” compilation and inserts control code in the ex-
ecution module. The .NET Framework class libraries are a collection of reusable
classes, or types, that developers use to write programs that will execute in the com-
mon language runtime. An assembly is an executable compiled using one of the
.NET Framework’s many language compilers. Assemblies contain metadata, which
the CLR uses to locate and load classes, lay out instances in memory, resolve method
invocations and generate native code.

It sets runtime context boundaries. The verification process ensures the runtime
safety of managed code. During JIT compilation, the CLR verifies all managed code
to ensure memory type safety. This eliminates the risk of code executing or pro-
voking “unexpected” actions that could bypass the common application flow and
circumvent security checks. The verification process prevents common errors from
occurring. It does not allow integer pointers to access arbitrary memory locations. It
does not allow access to memory outside the object boundary or accessing method
outside its class. It does not allow access to newly created objects before they have
been initialized. It prevents buffer overflows. These common programming faults
no longer pose a threat within the type safe, managed environment provided by the
.NET Framework. .NET cannot be used to solve all problems and many applications
cannot honor the .NET restrictions.

Another approach is to use special library processes to intercept all calls to other
library functions known to be vulnerable. A safe version of the buffer management
code then ensures that any buffer overflows are contained within the invoked stack
frame. A second approach is to force verification of critical elements of stacks be-
fore use. Performance overhead of fault tolerant libraries implementing these safe
approaches range from negligible to 15%. This method does not require any modifi-
cation to the operating system and works with existing binary programs. It does not
require access to the source code of defective programs, nor does it require recom-
pilation or off-line processing of binaries. It can be implemented on a system-wide
basis transparently. It is based on a middleware software layer that intercepts all
function calls made to library functions that are known to be vulnerable. A substi-
tute version of the corresponding function implements the original functionality, but
in a manner that ensures that any buffer overflows are contained within the current
stack frame, thus, preventing attackers from ‘smashing’ (overwriting) the return ad-
dress and hijacking the control flow of a running program. It is a Linux dynamically
loadable library called libsafe. Fig. 3 is a description of the library [2].

256 L. BERNSTEIN

Overview
It is generally accepted that the best solution to buffer overflow and format string
attacks is to fix the defective programs. However, fixing defective programs re-
quires knowing that a particular program is defective. The true benefit of using
libsafe and other alternative security measures is protection against future attacks
on programs that are not yet known to be vulnerable. That is libsafe version 2.0
source code is under the GNU Lesser General Public License.
In contrast to most other solutions, libsafe is extremely easy to install and use.
No source code, recompilation or special expertise is needed. And, the installation
only takes a few minutes.
Libsafe does not support programs linked with libc5. If you find that a process
protected by libsafe experienced a segmentation fault, use the ldd utility to deter-
mine if the process is linked with libc5. If that is the case, then you will either need
to recompile/relink the application with libc6 (i.e., glibc) or to download a newer
version that has been linked with libc6 although most applications are offered with
a libc6 version.
NOTE: The latest release of libsafe is version 2.0-11, released on 02-28-02.

FIG. 3. Libsafe: Protecting critical elements of stacks.

Buffer overflow bugs can cause a large transfer of data to a buffer, overflowing it,
and then overwriting the memory. A hacker can inject additional code into an unsus-
pecting process and hijack control of that process by overwriting return addresses on
the process stack or by overwriting function pointers in the process memory. There
are many error-prone functions in the Standard C Library. Here are a few examples
of these functions:

Function Potential problem
strcpy(char *dest, const char *src) May overflow the destination buffer
gets(char *s) May overflow the s buffer
realpath(char *path, char resolved path[]) May overflow the path buffer
scanf(const char *format, ...) May overflow its arguments

Nicolas Wirth defines intermediate level languages such as C in his paper PL/360.
These languages differ from Higher Level Languages in that they give programmers
access to the machine registers and architecture when they need it. The compilers for
these languages differ from assembly languages in that they provide compactness of
expression. This ability along with the C libraries made C industrial strength. It is
widely used today and laid the foundation for C++. One can even see the influence
of C on Java [1].

SOFTWARE FAULT TOLERANCE 257

The importance of C is that it led to remarkable improvement in software reli-
ability and programmer productivity by a factor of 3 : 1 over assembler language
development without giving up the key ability to solve complex software problems
or meet harsh performance requirements in industrial strength production systems.
Because of its inherent flexibility, C is vulnerable to misuse. Higher-level languages
protect programmers from the architecture of the machine. If they need to gain sig-
nificant performance improvement they must drop down to the machine level. This
leads to a discontinuity in the development environment and makes it likely that more
code than desired will be low-level code. It is very hard for skilled software engineers
to switch between development paradigms. Furthermore, tools are needed to manage
two and sometimes more languages and the issue of assembler vs. compiler perme-
ates many design designs within the project. Control of software changes becomes
more difficult too. Today’s Java-hype as a total C++ replacement still is unproven.
Java is a fine language, but when industrial strength programs are needed C++ with
its ability to naturally drop down to C is the industrial software engineer’s choice.

2.3.5 Small and Bounded Time Lags Are Critical

Sometimes software components embedded in a system must respond to the envi-
ronment within some time interval. If the system fails because the time constraints
are not satisfied the system is a real-time one. If the response time becomes unac-
ceptably long the system is an on-line one. In either case successful performance
of the software demands that the computations are completed in the required time.
The feedback characteristics of these systems often dominate, as computation results
must be available in sufficient time to affect some external process. Feedback oper-
ation and meeting deadlines are two key attributes of embedded software. Systems
containing a computer as one of their elements belong to the class of sampled data
systems. A typical feedback control system is shown in Fig. 4, where x(n) is the
physical input to the external equipment that is sampled and encoded with a certain
number of bits or precision, y(n) is the computer output from the computers control
equations using the error from the previous sampled time as the input.

The objectives of the control equations are to:

• achieve a satisfactory level of reliability in system operation. The outputs of the
system need to be bounded to match physical properties of the equipment being
controlled,

• be easy to initialize and that the initial conditions lead to stable software execu-
tion,

• calculations should be easy to implement and quick to process,

258 L. BERNSTEIN

FIG. 4. Feedback control system.

• occupy a minimum amount of memory that suggests using recursive filters such
as those use in the Transaction Control Protocol (TCP) computation of roundtrip
time used for flow control in Internet applications,

• avoid duration-related memory leaks and fragmentation can degrade execution
time, often causing reduced throughput and eventual system failure.

A case history of a mechanism all web users employ daily illustrates these points.

2.3.6 Case Study: TCP Timer for Resend

TCP uses an Automatic Request Response window with selective repeat to con-
trol the flow of packets between the sender and the receiver. The buffer size of the
receiver and the bandwidth-delay product of the network typically limit the window
size. Buffers may overflow. The lowest capacity link on the route becomes the bot-
tleneck. The goal is to make the window as large as possible to gain the best network
throughput consistent with not losing packets or driving the network into congestion
that can lead to application failures. Fig. 5 shows a client accessing a web page across
the Internet using TCP.

If one packet is lost TCP re-sends everything.
The problem is when do the senders resend packets. Resending too soon and too

often causes congestion and resending too late causes inefficient network throughput.
Therefore, the engineering compromise is to average the last 10 measurements of the
round trip-time (RTT). Every TCP message is time stamped, the receiver measures
the difference between the time the acknowledgement is received, and the time the

SOFTWARE FAULT TOLERANCE 259

FIG. 5. TCP timer for resend.

message is sent.

RTT(k) = 1/k

k∑
i=1

RTT(i),

where RTT(k) is the average roundtrip time.

RTT(k + 1) = 1/(k + 1)

k+1∑
i=1

RTT(i)

= 1/(k + 1)

[
RTT(k + 1) + k/k

k∑
i=1

RTT(i)

]
= k/(k + 1)RTT(k) + 1/(k + 1)RTT(k + 1).

260 L. BERNSTEIN

Now using exponential filter smoothing

R̂TT(k + 1) = αR̂TT(k) + (1 − α)RTT(k + 1),

α = 7/8 for smoothing over the last 10 observations.
But with wild swings in RTT , TCP had too many retransmissions clogging up the

links.
Designers wanted to use the standard deviation of the average RTT but they soon

saw that they would be unable to complete the computations within the required
time because of the need to take a square root. The time needed would lead to a
computation lag destabilizing the system. So a measure of the variance is used, the
mean variance that avoids square roots.

D̂EV(k + 1) = αD̂EV(k) + (1 − α)
∣∣RTT(k) − RTT(k)

∣∣,
RTO(k + 1) = R̂TT(k + 1) + f D̂EV(k + 1).

By trial and error it was found that the expected value of f = 2 that reflected on de-
viation for each direction was too tight a bound and many retransmissions occurred.
The pragmatic use of f = 4 was used to keep the calculations simple.

If a timeout still occurs a binary exponential backoff is used for each timeout

RTO(j) = 2RTO(j − 1),

where j − 1 is the number of timeouts in a row up to 16.
Here is a summary of fault tolerant design algorithms:

• Approximate an averaging process by a polynomial filter of length 10.

• Change the filter length from 0.9 to 7/8 to simplify the implementation and take
advantage of binary arithmetic in the computer.

• Move from standard deviation to mean variance to eliminate square roots.

• Use 4, a binary number, for computing RTO settings.

Simplify the design by reducing complexity of equations, eliminating redundant
functions and sections of code, and reducing the fan out of the modules. The fan
out is the ‘used by’ view, which is the inverse of the ‘uses.’ A general approach is to
use a concordance of the components ‘make files.’ Start with a visualization of the
makefile calling trees to see the complexity.

• Eliminate ‘gold plated’ functions.

• Use Commercial Off-the-Shelf packages to replace custom modules.

SOFTWARE FAULT TOLERANCE 261

• Renegotiate requirements with hard cost/value analysis. Costs may be develop-
ment or equipment costs in the target machine.

• Use architectural, design and implementation patterns.

• Use well-known algorithms.

2.3.7 Refactoring to Simpler Software

Martin Fowler writes, “Refactoring is the process of changing a software system
in such a way that it does not alter the external behavior of the code yet improves its
internal structure. It is a disciplined way to clean up code that minimizes the chances
of introducing bugs. In essence when you refactor you are improving the design of
the code after it has been written” [10].

Refactoring is a powerful and very effective way to reduce complexity. The notion
of ‘if it works, don’t fix it’ is a poor approach to software design. Experts, the in-
ventors of Unix, C and C++, practiced a ‘make it work, make it work right and then
make it work better philosophy.’ One big obstacle is that software revision is very
difficult without the originator’s help because most code is obscure. Designers must
work hard to get the logical organization right at every level. It is even harder with
object-oriented code because the long-reaching effects of early decisions in bottom-
up design demand greater insight than top-down design. Managers don’t tout their
product’s internal simplicity and clarity. Efficiency, features, production schedule,
all comes in for praise, but clarity—never! Yet only clear code can be modified.
Preserving clarity through cycles of modification is even harder. During Norman
Wilson’s five-year tenure as the primary maintainer of research UNIX™, he wrote a
negative amount of code. The system became more capable, more maintainable and
more portable. Imagine a major software project subtracting code in the course of
adding a feature! Allocating as much as twenty percent of the effort on a new release
to refactoring pays large dividends by making the system perform better, avoiding
failures induced by undesired interactions between modules and reducing the time
and space constraints on new feature designs. The goal is to reduce the amount of
processor time modules use and the amount of memory they occupy or I/O they trig-
ger while holding their interfaces fixed. Other modules may be modified or new ones
added to provide new features. This strategy naturally leads to more reliable sys-
tems. This approach is best demonstrated in the story of the development of ‘diff,’
one of the most used and least understood C function that can take the difference
of arbitrary files. It is the backbone of most software change control and build sys-
tems.

262 L. BERNSTEIN

2.3.8 The Tale of “diff”: Real-World Refactoring

Once upon a time, there was a mathematical problem of finding the longest subse-
quence of lines common to two files.1 “No sweat,” thought the developer. A dynamic
programming technique that takes time mn and space mn to compare an m-line file
to an n-line file would do the trick. But space mn was unacceptable on the small
machines of yesteryear. “OK, we’ll fly seat of the pants,” thought our hero. So he
read both files until he found a line that disagreed, then figured he would somehow
search back and forth in both until he got back in sync. ‘Somehow’ was the killer.
Suppose the second line in one file agreed with the fourth line ahead in the other and
vice versa. How to choose?

Then news came from afar in Princeton that the Wizard Hirschberger had seen a
way to reduce space mn by a mathematical method to space m, while only doubling
the time. “Good deal!” thought our guy. “Now we can afford to run it. It was slow,
but it did work and gave an explainable ’right’ answer in a clearly defined way.”

But the people complained. When they moved a paragraph, it showed up as two
changes, a deletion here and an addition there. So our hero made a “diff” that found
moves. It was again seat of the pants, but it ran pretty well. Yet, sometimes, an evil
occurred. If the people ran it on stuff where the same line occurred in many places,
like assembly language or text processing, it discovered lots of deletions and addi-
tions that could be explained as moves. Our hero was filled with consternation.

Then along came a shining knight, Harold Stone, with a dynamic programming
technique that reduced the running time from the product to the sum of the file
lengths, except in unnatural cases. Now here was something fast enough to use on big
files, efficient in space and time, mathematically justifiable as giving a good answer,
and experimentally shown to be physiologically useful.

But then the people tinkered. Three times they altered output. They added features.
They added stars! And the tinkering caused the code to increase and the manual to
swell to half again its size. “Well,” said our guy. “It is important to know when to
stop.”

2.3.9 Reuse ‘as is’

Data collected on the reuse of 2954 modules of NASA programs [27] clearly de-
mands the shocking conclusion that to reap the benefits of the extra original effort to
make a module reusable, it must be reused essentially unchanged. No change costs
five percent; the slightest change drives the cost up to sixty percent. The issues of
who pays the differential and who pays for ongoing support remain serious barriers
to reuse. Within an organization, however, success is possible. Before middleware

1With the permission of Doug McIlroy, inventor of diff.

SOFTWARE FAULT TOLERANCE 263

platforms were available, most products contained only ten percent reused modules
and none contained a hundred percent reused modules. After platforms became avail-
able some product was made entirely of reused modules.

In the category of currently intractable problems, it has been impossible to system-
atically reuse software across application domains. There is ongoing work in model-
ing application domains to capture the relationship between requirements and object
types to reuse software architectures [13]. Also, reuse even in the same application
domain is successful only when throughput and response time are not overriding
concerns. Finally, it is not yet possible to maintain an asset base of software modules
except when they are in packaged libraries and when they are utility functions.

Where reuse is successful, there is high level of management attention to detail
and a willingness to invest in design for reusability. Software configuration manage-
ment assumes that there is an existing base of software components from which the
components of a specific system are chosen, assembled, tested and distributed to a
user [16]. Even then, exhaustive re-testing is still required to root out what Jackson
called “undesired interactions.”

2.3.10 Boundary and Self-Checking Software
One of the fundamental challenges to those building fault tolerant software is

bounding the results so that errors cannot propagate and become failures. In one
case, mentioned in Section 1.2, an electronically steered radar was tracking a mis-
sile when it told by a computer to suddenly steer the radar beam down to the horizon
when the missile was actually at 10,000 feet. The system lost track of the missile. For
safety reasons the missile was destroyed when an onboard countdown timer timed
out and triggered an explosion. The countdown timer was reset whenever a radar
tracking pulse reflected off the missile. This was a pioneering use of electronically
steered radars and the software developers could not imagine the radar beam shifting
so wildly so quickly. After all, mechanically steered radars had inertia working for
them. There were no bounds placed on the output commands for radar beam steer-
ing from the computer. Software engineers understand the need to bound outputs but
they are often at a loss for just what bounds to use. Checking on the outputs and other
internal states of the software during its execution is referred to as self-checking soft-
ware.

Self-checking software is not a rigorously described method in the literature, but
rather a more ad hoc method used in some important systems [20]. Self-checking
software has been implemented in some extremely reliable and safety-critical sys-
tems already deployed in our society, including the Lucent ESS-5 phone switch and
the Airbus A-340 airplanes [20].

Self-checking software often include some amount of check pointing and rollback
recovery for fault-tolerant or safety critical systems. Other methods include separate

264 L. BERNSTEIN

tasks that “walk” the heap to find and correct data errors and there is always an option
to use reliable but degraded performance algorithms. While self-checking may not
be a rigorous methodology, it has shown to be surprisingly effective.

The obvious problem with self-checking software is its lack of rigor. Code cover-
age for a fault tolerant system is unreliable. Without the proper rigor and experiments
comparing and improving self-checking software cannot effectively be done.

A breakthrough idea by Sha [28] uses well-tested high reliable components to
bound the outputs of newer high performance replacements. He reports, “Once we
ensure that the system states will remain admissible, we can safely conduct statisti-
cal performance evaluation of the high-performance controller. . . the high-assurance
subsystem (used to bound the states). . . protects. . . against latent faults in the high-
performance control software that tests and evaluations fail to catch.” I call this the
‘Sha Tandem High-Assurance Paradigm.’

When systems share a common architecture, they are the same and can form the
base for use of the Sha Tandem paradigm. Architecture is the body of instructions,
written in a specific coding language, which controls the structure and interactions
among the system modules. The properties of reliability, capacity, throughput, con-
sistency and module compatibility are fixed at the architectural level.

The processing code governs how the modules work together to do the system
functions. The communication architecture is code that governs the interactions
among the processing modules with data and with other systems. The data archi-
tecture is code that controls how the data files are structured, filled with data, and
accessed.

Once the architecture is established, functions may be assigned to processing mod-
ules, and the system may be built. Processing modules can vary greatly in size and
scope, depending on the function each performs, and the same module may be con-
figured differently across installations. This is called feature loading. In every case,
however, the processing architecture, communication architecture and data archi-
tecture constitute the software architecture that is the system’s unchanging ‘finger-
print.’

When several sites use software systems with a common architecture, they are
considered to be using the same software system even though they may do somewhat
different things. Alternatively, two systems with differing architectures can perform
the same function although they do not do it the same way. They would be different
systems.

For example, in the late 1980s, Bell Laboratories needed to develop a system to
control a very critical congestion situation. The system was called NEMOS and had
distributed database architecture. It soon became apparent that the design problem
was extremely complex and broke new theoretical ground. Since there was no his-
tory of similar development for a guide and the need was urgent, Bell Laboratories

SOFTWARE FAULT TOLERANCE 265

decided, for insurance, to develop a second system in parallel. It was also called
NEMOS, but used instead integrated database architecture. The result was two sys-
tems with the same name, performing the same function. The system with the dis-
tributed database architecture failed, and the system with the integrated database
architecture succeeded. They were two different systems.

No two iterations of a software system are the same, despite their shared architec-
ture. When a system is installed at two or more sites, localization is always required.
Tables are populated with data to configure the software to meet the needs of specific
customer sites. The customer may have special needs that require more than minor
table adjustments. Customization of some modules may be required. New modules
may be added. Ongoing management of this kaleidoscope of systems is a major ef-
fort. The use of the Sha Tandem paradigm to bound nominal performance again can
keep all sites at a high assurance level.

2.3.11 Trustworthiness in the Large

Some software practitioners [24] broaden the definition of trustworthiness to in-
clude confidentiality, authentication of users and authentication of the source and in-
tegrity of data. Technologies exist to further these ends. Cryptography is little used in
commercial, personal computer and network environments. It is expensive and hard
to use, and imposes significant performance burdens. Firewalls are a mechanism that
is deployed at the boundary between a secure enclave and an insecure network, a
somewhat effective and relatively inexpensive approach. Specifications for system
functionality can constrain access to system resources and require authentication of
users and their access requests. An interesting idea is to build networked computer
systems that protect themselves with the same kind of herding or schooling behaviors
exhibited in the natural world. The aggregate behavior of the system, not the func-
tioning of specific single components according to their requirements, would achieve
trustworthiness. For example, a system that relies on a consensus decision to change
a routing table may be more resilient than one that does not, because an attacker
would need to subvert not just an individual router but the entire consensus group.
The best protection is increasing the overall quality of commercial software through
formal engineering methods: high-level languages, coding standards, object-oriented
design and testing based on various coverage metrics.

First Constraint: Control-free Interfaces. Large distributed real-time
systems can be built effectively by integrating a set of nearly autonomous compo-
nents that communicate via stable control-free interfaces, called temporal firewalls.
A temporal firewall provides an understandable abstraction of the subsystem behind
the firewall, confines the impact of most changes to the encapsulated subsystem, and

266 L. BERNSTEIN

limits the potential of error propagation. “Reusing software components in mission-
critical applications cannot succeed if the components do not provide clearly stated
service guarantees [6].”

Second Constraint: Software Error Recovery. If failure is unavoid-
able, then the software design must be constrained so that the system can recover in
an orderly way. This is called exception handling. Each software process or object
class should provide special code that recovers when triggered. A software fault-
tolerant library with a watchdog daemon can be built into the system. When the
watchdog detects a problem, it launches the recovery code peculiar to the applica-
tion software. In call processing systems this usually means dropping the call but not
crashing the system. In administrative applications where keeping the database is
key, the recovery system may recover a transaction from a backup data file or log the
event and rebuild the database from the last checkpoint. Designers are constrained
to explicitly define the recovery method for each process and object class using a
standard library.

Fault tolerance differs from exception handling. Fault tolerance attempts to pro-
vide services compliant with the specification after detecting a fault [20]. Exception
handling contains a problem and eliminates it. Reliable software accomplishes its
task under adverse conditions while robust software finds and isolates a problem.
Both approaches are needed in trustworthy software.

Peter Weinberger of AWK fame2 pointed out that there are process recovery fea-
tures in UNIX: “A process can choose to catch signals. This mechanism gives the
process a chance to react to certain kinds of internal and external events. A data fil-
tering process can catch arithmetic errors (like overflow or divide by zero). . . and by
using longjump() to re-initialize itself and continue.” A parent process can restart a
damaged process and avoid complicated recovery code.

The software architecture for the Safeguard anti-missile system included restarts.
The operating system provided a ‘mission mode’ capability. It allowed the software
engineer to tailor specific error recovery to a process and exit without crashing or
hanging the computer. For example, the software that tracked Intercontinental Ballis-
tic Missiles had error recovery code that dropped track and reinitialized the tracking
data area when a ‘divide by zero’ trap alerted the operating system. The operating
system transfered the computer to special ‘on interrupt’ code and then returned to
normal processing. Since the fuel tank of an ICBM flies on a lower trajectory than
its re-entry vehicle (RV) and breaks into pieces during atmospheric reentry, a vital
questions facing the software engineers was, “could the system track the reentry ve-
hicle through tank breakup? Would the RV be masked by the tank pieces? Would the

2Private communication.

SOFTWARE FAULT TOLERANCE 267

system lose track of the reentry vehicle?” Once ballistic missiles and their fuel tanks
reenter the atmosphere they slow down. Being heavier and specially designed the
reentry vehicle continues to fly at high speed. The tank or its pieces slow down faster
than the RV. The software uses measured position and the Doppler effect to predict
the next position of an object it is tracking. Multiple radar returns from different
objects close together confuse the software. During one test flight, the software was
tracking the tank and the reentry vehicle as two separate objects. Once the tank hit the
atmosphere it broke up and slowed. Additional software tracking channels were as-
signed and tank pieces were tracked. The re-entry vehicle flew through the dispersed
tank debris. The software computed zero or negative velocity for several objects
being tracked. The radar returns from the debris and the re-entry vehicle became
confused. A design flaw, later corrected, did not bound and validate the computed
velocity for an object in a track. More than 1000 ‘divide by zero’ traps occurred in
the tracking equations assigned to the tank and its pieces, but the system continued
operating satisfactorily. The software continued to track the RV. An interceptor mis-
sile was launched and came with a lethal distance of the attacking RV. Since this tank
breakup and subsequent fly through was not expected, the software was not tested
for the high rate of ‘divide by zero’ traps before the test flight.

Third Constraint: Recovery Blocks. The recovery block method is a sim-
ple method developed by Randell from what was observed as somewhat current prac-
tice at the time [20]. The recovery block operates with a program that confirms the
results of various implementations of the same algorithm. In a system with recov-
ery blocks, the system view is broken down into fault recoverable blocks. The entire
system is constructed of these fault tolerant blocks. Each block contains at least a
primary, secondary and exceptional case code along with an adjudicator. (It is im-
portant to note that this definition can be recursive, and that any component may
be composed of another fault tolerant block composed of primary, secondary, ex-
ceptional case, and adjudicator components.) The adjudicator is the component that
determines the correctness of the various blocks to try. The adjudicator should be
kept somewhat simple in order to maintain execution speed and aide in correctness.
Upon first entering a unit, the adjudicator first executes the primary alternate. (There
may be N alternates in a unit which the adjudicator may try.) If the adjudicator de-
termines that the primary block failed, it then tries to roll back the state of the system
and tries the secondary alternate. If the adjudicator does not accept the results of any
of the alternates, it then invokes the exception handler, which then indicates the fact
that the software could not perform the requested operation. The challenge is to write
a reliable adjudicator.

The recovery block system is also complicated by the fact that it requires the abil-
ity to roll back the state of the system from trying an alternate. This may be accom-

268 L. BERNSTEIN

plished in a variety of ways, including hardware support for these operations. This
‘try and rollback’ ability has the effect of making the software to appear extremely
transactional. A transaction is constrained within a recovery block. The advantages
of a system built with a transactional constraints is, that it tends to resist incorrect
or unstable states. This property, in combination with check pointing and recovery
helps build distributed hardware fault tolerant systems.

Fourth Constraint: Limit the Language Features Used and In-
spect the Code. Most communications software is developed in the C or
C++ programming languages. Java is promising but still not industrial strength for
many applications. Hatton’s Safer C [14] describes the best way to use C and C++
in mission-critical applications. Hatton advocates constraining the use of the lan-
guage features to achieve reliable software performance and then goes on to specify
instruction by instruction how to do it. He says, “The use of C in safety-related
or high-integrity systems is not recommended without severe and automatically en-
forceable constraints. However, if these are present using the formidable tool support
(including the extensive C library), the best available evidence suggests that it is then
possible to write software of at least as high intrinsic quality and consistency as with
other commonly used languages.”

C is an intermediate language, between high level and machine level. The power of
C can be harnessed to assure that source code is well structured. One important con-
straint is to use function prototypes or special object classes for interfaces. Patterns
also help assure consistency of execution.

Once you have the code it is important to read it. While formal code inspections
have proven valuable in finding faults and improving the reliability of the software it
can lead to an exodus of the very best developers. This happens when code inspec-
tions become perfunctory. A good practice is to inspect the code of programmers
when they first join the project and then inspect their code again whenever they pro-
duce buggy code. Programming standards should at least cover:

(1) Defining variable names that make the code self-documenting.
(2) Commentary: Too many comments could mask the code and be hard to keep

current. The comments be balanced and explain why a particular pattern of
instructions is used rather than what they do.

Code Reviews are needed to determine:

(1) If wild transfers are possible by checking every entry and exit point.
(2) If boundary conditions are checked.
(3) Are there buffer overflows? Buffer overflows are still a serious problem, even

with Java. Unconstrained pointers can result from poor array bounds leading
to memory leaks.

SOFTWARE FAULT TOLERANCE 269

(4) Do comments agree with code?
(5) Are variables, pointers and arrays initialized?
(6) Does every loop terminate?
(7) Are subscripts to see if we are within bounds?

EXAMPLE.
Array

X[i]
.
.
.

i is defined as 16 � i � 37
How many elements are there in the array? It is (h − 1 + 1), but too
often software designers forget to take into account the “1”
Best way to define i is 16 � i < 38
Now the equation becomes (h − 1), i.e. (38 − 16) = 22

Check if semantics and syntax of boundary conditions are specified properly.

Code Reading. Everybody on the team is involved in this process. Designers
submit their unit tested code. The code is re-distributed until everyone has somebody
else’s code. Code is read and then they group meets to discuss what they have found.
This process improves the coding ability of the group.

Code Review. The designer finds the most bugs. Test the code for syntax er-
ror, logic errors, and incompleteness error. Check the code against user require-
ments. Check the code against coding standards.3 Don O’Neill, an expert in software
process writes, “Analysis of the issues raised in the experiment to date has revealed
common problems that reoccur from session to session. Organizations that want to
reduce their software fault rates need to prevent these defects:

(1) Software product source code components not traced to requirements. As a
result, the software product is not under intellectual control, verification pro-
cedures are imprecise, and changes cannot be managed.

(2) Software engineering practices for systematic design and structured program-
ming is applied without sufficient rigor and discipline. As a result, high defect
rates are experienced in logic, data, interfaces and functionality.

(3) Software product designs and source code are recorded in an ad hoc style. As
a result, the understandability, adaptability and maintainability of the software
product is directly impacted.

(4) The rules of construction for the application domain are not clearly stated,
understood, and applied. As a result, common patterns and templates are not
exploited in preparation for later reuse.

3See http://hometown.aol.com/ONeillDon/nsqe-results.html where there is an explanation of the code
review process.

http://hometown.aol.com/ONeillDon/nsqe-results.html

270 L. BERNSTEIN

(5) The code and upload development paradigm is becoming predominant in
emerging e-commerce applications. As a result, the enterprise code base ser-
vices only the short term planning horizon where code rules and heroes flour-
ish, but it mortgages the future where traceable baseline requirements, speci-
fication, and design artifacts are necessary foundations.”

Read the following code segment. Note how it is self-documenting but it is not fault
tolerant. Even though Qname and Qvalue are validated an input by a web client,
there is the possibility that an unanticipated data value can be passed to the server.
The last ‘else’ clause should have another else that reports an error condition and
reinitializes the process so that it is ready for the next user. This code was taken from
an undergraduate class in formal code reviews at Stevens Institute of Technology:

Code Extract:
while(values.hasMoreElements())

{
Qname = new String((String)values.nextElement());
Qvalue = new String(req.getParameterValues(Qname)[0]);

if ((“day”.equals(Qname)) || (“month”.equals(Qname)) ||
(“year2”.equals(Qname)))

{
date.addElement(Qvalue);

}
else if ((“death”.equals(Qname)) || (“road_func”.equals(Qname)) ||

(“atmos_cond”.equals(Qname)))
{

afields.addElement(Qname); // accident category
avals.addElement(Qvalue);

}
else if ((“restraint”.equals(Qname)) || (“drug_invl”.equals(Qname)) ||

(“injury_severity”.equals(Qname)) || (“police_report_alco”.equals(Qname)) ||
(“sex”.equals(Qname)) || (“ejection”.equals(Qname)))

{
pfields.addElement(Qname); // person category
pvals.addElement(Qvalue);

}
else if ((“make”.equals(Qname)) || (“model”.equals(Qname)) ||

(“year”.equals(Qname)) || (“rollover”.equals(Qname)) ||
(“no_of_occup”.equals(Qname)) || (“death”.equals(Qname)) ||
(“reg_state”.equals(Qname)) || (“impact1”.equals(Qname)) ||
(“fire”.equals(Qname)))

SOFTWARE FAULT TOLERANCE 271

{
vfields.addElement(Qname); // vehicle category
vvals.addElement(Qvalue);

}
else

{
dfields.addElement(Qname); // driver category
dvals.addElement(Qvalue);

}
}

Fifth Constraint: Limit Module Size and Initialize Memory. The op-
timum module size for the fewest defects is between 300 to 500 instructions. Smaller
modules lead to too many interfaces and larger ones are too big for the designer to
handle. Structural problems creep into large modules.

All memory should be explicitly initialized before it is used. Memory leak de-
tection tools should be used to make sure that a software process does not grab all
available memory for itself, leaving none for other processes. This creates gridlock
as the system hangs in a wait state because it cannot process any new data.

Sixth Constraint: Reuse Modules Without Change. A study of 3000
reused modules by NASA as reported by Selby [27] showed that changes of as little
as 10% led to substantial rework—as much as 60%—in the reused module. It is dif-
ficult for anyone unfamiliar with a module to alter it, and this often leads to redoing
the software rather than reusing it. For that reason, it is best to reuse tested, error-free
modules as they are with no changes.

In Summary. Formal methods specify or model the requirements mathemati-
cally, even though not all ambiguity can be eliminated with this method. Prototyp-
ing, simulation and modeling can also be used to complement mathematical require-
ments. Component isolation separates safety critical components; this modularity
ensures that changes are contained. Information hiding similarly prevents one com-
ponent’s actions from affecting another’s. Redundancy is used to prevent or recover
from failure. Human factors design during the design phase is critical.

Use of high-level languages lessens programming errors by eliminating problem-
atic programming practices. Reverse engineering recreates documentation for preex-
isting software and provides a basis for reuse. There are also software engineering
practices that apply to the software assurance processes. Cost-modeling and risk as-
sessment techniques aid the project management process. Inspections, reviews and

272 L. BERNSTEIN

audits can be applied to all software processes under the software quality assurance
process. Software error measurement, and timing and sizing analysis techniques are
useful during the software verification and validation process.

2.4 Time Factors (t)

2.4.1 Program Execution Time—Software Rejuvenation
Reliability is improved by limiting the execution domain state space. Today’s soft-

ware runs non-periodically, which allows internal states to develop chaotically too
often without bound. Software rejuvenation is a concept that seeks to contain the
execution domain by making it periodic. An application is gracefully terminated
and immediately restarted at a known, clean, internal state. Failure is anticipated and
avoided. Non-stationary, random processes are transformed into stationary ones. The
software states would be re-initialized periodically, process by process, while the sys-
tem continued to operate. Increasing the rejuvenation period reduces downtime but
increases overhead. Rejuvenation does not remove bugs; it merely avoids them with
incredibly good effect. Chandra Kintala of Bell Labs defines three software fault tol-
erance components. They may be used with any UNIX or NT application to let the
application withstand faults. They are watchd, libft and repl.4

Watchd is a watchdog daemon process for detecting UNIX process failures
(crashes and hangs) and restarting those processes. The fault tolerance mechanism
is based on a cyclic protocol and the recovery mechanism is based on the primary
copy approach. Libft is a C library for check pointing the internal state of an appli-
cation process periodically on a backup node. It also provides recovery routines to
restore the state of a process at the backup node and a location-dependent connection
mechanism between server and client processes. With these checkpoint and recov-
ery mechanisms, a server process can be dynamically migrated to a different node
for load balancing and fault tolerance. To tolerate design and program faults, it pro-
vides fault tolerance programming constructs, such as, recovery blocks, N -version
programming, and exception handling. It also provides fault tolerant I/O functions
for safe I/O.

REPL is a file replication mechanism that replicates files located on one physical
file system onto another physical file system at run time. It provides features for both
synchronous as well as asynchronous run-time replication of file updates [15].

Windows has a special library WinFT that provides automatic detection and
restarting of failed processes; diagnosing and rebooting of a malfunctioning or stran-
gled OS; check pointing and recovery of critical volatile data; and preventive actions,
such as software rejuvenation [8] (Fig. 6).

4Note that watchd, libft and REPL are registered trademarks of AT&T Corporation.

SOFTWARE FAULT TOLERANCE 273

FIG. 6. Watchdog and application messages (from [8]).

By using a fixed or upper bound on the execution time and then restarting the
reliability equation becomes:

R(t) = e−ktC/E , where 0 < t < T and T is the upper bound of the rejuvenation
interval. This limits the reliability to be no less than e−kT C/E for a fixed C and E.

Software rejuvenation was initially, developed by Bell Laboratories in the late
1970s for its billing systems and perfected by NASA.

The execution of a software process can show signs of wear after it executes for a
long period. This process aging can be the effects of buffer overflows, memory leaks,
unreleased file locks, data corruption or round-off errors. Process aging degrades
the execution of the process and can often cause it to fail. This effect is different
than the software aging problem identified by Parnas. He points out that application
programs become less reliable and often fail due to a changing extended machine
environment, new requirements and maintenance. In contrast process aging is related
to application processes degrading after days and weeks of execution. Software fault
tolerance techniques need to deal with both aging mechanisms.

With process aging the software works perfectly for a period with no risk of fail-
ure. It then enters a jeopardy period where it is vulnerable to executing the fault that
now becomes a failure. As an example a process with a memory leak problem will

274 L. BERNSTEIN

not fail until the process memory request exceeds all allocated memory. For the time
that the memory footprint for the process is growing the software is executing with
no problem. Sometimes slower response times are noticed before the failure when
the process enters the jeopardy state. Kintala calls the period that the software is
working fine the ‘base longevity interval.’

This story is in progress. The NASA mission to explore Pluto has a very long mis-
sion life of 12 years. A fault-tolerant environment incorporating on-board preventive
maintenance is critical to maximize the reliability of a spacecraft in a deep-space mis-
sion. This is based on the inherent system redundancy (the dual processor strings that
perform spacecraft and scientific functions). The two processor strings are scheduled
with an on/off duty cycle periodically, to reduce the likelihood of system failure due
to radiation damage and other reversible aging processes.

Since the software is reinitialized when a string is powered on, switching between
strings results in software rejuvenation. This avoids failures caused by potential error
conditions accrued in the system environment such as memory leakage, unreleased
file locks and data corruption. The implementation of this idea involves deliberately
stopping the running program and cleaning its internal state by flushing buffers,
garbage collection, reinitializing the internal kernel tables or, more thoroughly, re-
booting the computer.

Such preventive maintenance procedures may result in appreciable system down-
time. However, by exploiting the inherent hardware redundancy in this Pluto mission
example, the performance cost is minimal. One of the strings is always performing
and starting it before the current active string is turned off can mask the overhead for
a string’s initialization. An essential issue in preventive maintenance is to determine
the optimal interval between successive maintenance activities to balance the risk of
system failure due to component fatigue or aging against that due to unsuccessful
maintenance itself [31].

Continuing experimentation is being done, to refine this technique. It has, how-
ever, been in the literature for more than twenty years and its use in the industry is
negligible. Most software practitioners are unaware of it.

2.5 Effort Factors (E)

2.5.1 Effort Estimates

Barry Boehm, Capers Jones and Larry Putnam have developed software estimation
theory and models. The fundamental equation in Barry Boehm’s COCOMO model
is

SM = (2.94)(Size)E
[∏

EM(n)
]
,

SOFTWARE FAULT TOLERANCE 275

where SM is the expected number of staff months required to build the system,
size is thousands of new or changed source lines of code excluding commentary,
[∏EM(n)] is the product of effort multipliers, one of the multipliers is complexity.
The complexity multiplier rates a component based on the factors of Control Oper-
ations, Computational Operations, Device dependent operations, Data Management
Operations and User Interface Management Operations. This effort multiplier varies
from 0.73 for very low complexity and 1.74 for extra high complexity.

The effort term E in the Sha equation is equal to or greater than PM. For a given
component once the average effort is estimated, reliability can be improved if the
invested effort exceeds the nominal effort. If the invested development effort is less
very unreliable software can be expected. The programmers can be made more effec-
tive by investing in tools and training. These factors are integrated into the COCOMO
model.

2.5.2 Hire Good People and Keep Them
This is key. Every shop software claims to employ the ‘best and the brightest.’

Few really do. The book Peopleware is a necessary read for how to improve the
software staff. Guru Programmers who are masters at their art are twenty to thirty
times more productive than average programmers. Hiring the best tends to raise the
level of the entire organization as methods and reasoning are taught to colleagues.
It is vital to recognize the difference between vocational training and education. An
educated staff can quickly adapt to new technologies and processes.

Practitioners are too poorly trained in known good methods. The New York Times
has commented on the trend in the computer industry towards younger and less well
educated practitioners. They are supposedly valued for their intuitive skills and aver-
sion to structure. High school dropouts are hobbyists who learn skills not in a class-
room but in pursuit of computer games, digital music, video editing, computer ani-
mation and film. On the job training consists of random mucking about, romantically
excused by saying the industry moves too quickly for textbooks and knows precious
few rules. Immaturity is prized. Some started as toddlers with parents’ home com-
puters and are admittedly deficient in human socialization and interactive skills due
to that early and prolonged isolation. That a major software corporation offers quasi-
certification of such people diminishes the value of genuine engineering. A Cisco
Certified Internet work Expert certificate holder’s starting salary was $75K, quite re-
markable even in an inflated technology atmosphere [33]. By 2002 these same hot
shots were looking for work.

2.5.3 Effectiveness of Programming Staff
Any software shop can make their people more effective as they set about improv-

ing the quality of their people. They can recognize that very large changes (more than

276 L. BERNSTEIN

100 instructions) and very small changes (fewer than 5 instructions) are more error-
prone than medium sized changes. This may have some relationship to the average
size of human working memory, and our limited ability to attend to details.

Even when excellent methods are developed it is difficult to have the methodol-
ogy promulgated and incorporated into school curricula for widespread study. An
effective software shop invests in keeping their people current.

Do new methods ignore the dynamics of commercial software development?
Successful corporations act in their own best interests. If basic engineering prin-
ciples are ignored and trustworthiness is imperiled, there must be some stronger
motivation in operation. Microsoft Windows is an example of planned obsoles-
cence. Each new version is deliberately incompatible with the previous version in
some commands, menus, formats and responses. Each new version requires ex-
tensive human re-learning and reconfiguration of interfacing systems. It creates a
market for services and pressure to buy the most current version to remain com-
patible, which is profitable for Microsoft, but it is a chronic drain of time and
money.

Sometimes it might be expedient to not invest in expensive security measures be-
cause the customer had not demanded it. It might be that customers are slowly be-
coming better-educated consumers, however. The lessons learned from a recent crip-
pling of commercial web servers are that everyone is super-empowered, individuals
and vandals alike, in a networked world. Many little encroachments on privacy add
up to large losses of personal control that people find distressing. Nations may come
to understand that government still matters because it is the only entity with the re-
sources and the laws to ensure that personal rights are protected [11]. When there is
such demand from people through their governments, basic engineering principles
will probably be valued by software corporations.

Do practitioners accurately identify key problems? There is no cultural basis for
sound engineering practice in the software industry. Even NASA, the very best soft-
ware shop in the world and renown for its early successes has fallen into the trap of
taking engineering shortcuts that have come back to haunt them.

On June 4, 1997, the Mars Pathfinder landed and for the next 3 months So-
journer surveyed the terrain. This very successful mission began, however, with
Pathfinder experiencing mysterious system resets that took ingenious work on the
part of the software design team at NASA’s Jet Propulsion Laboratory to find
and fix the defect. It turned out that the priorities assigned to tasks in the multi-
tasking real-time system fell into a priority inversion because the load volume
was heavier than the maximum that had been tested as shown in the next case
study.

SOFTWARE FAULT TOLERANCE 277

2.5.4 Case study: the Mars Explorer

Failures on Mars missions:

• communication problem between 2 teams, one using the metric system and the
other using yards,

• a software bug caused the probe not to decelerate fast enough when entering the
Mars atmosphere.

• the Mars lander stops sending images occasionally, and then reboots.

Explanation:

There is a conflict for accessing the resource: Bus
Priorities should be:

• Reboot,

• Send images,

• Gather data.

But due to a faulty use of preemptive multithreading, they were:

• Reboot,

• Gather data,

• Send images.

Priorities designed for the hardware, the application software and the driver that con-
trolled the bus were inconsistent. A fail-safe watchdog counter rebooted the system
after it had been inactive for some time. This is why the lander was rebooting after
being silent for too long. This is a fail-safe system.

278 L. BERNSTEIN

This problem is a typical deadlock that can happen when access to resources are
not properly designed. The deadlock is similar to those experienced in multi-thread
database systems.

Some Solutions.

• Design defensively: leave in the debug code, build fail-safe systems.

• Stress test: test the system beyond its limits established in the requirements. It is
best to test to the breaking point. The difference between the breaking point and
the maximum design load is the system margin. The stress tests for the Mars
Explorer were actually thought to be the worst case. But because data gathering
was so successful there was more data than expected. This resulted in the shared
bus not being released.

• Explain all anomalies that show up during system test. Sometimes you must
release the software for its intended use even though you have not been able
to discover the cause of the anomaly. In these cases treat the release as “pro-
visional” and continue to work on understanding the anomaly. In the case of
the Mars Explorer, the anomaly was detected during the tests; however, it was
believed to be a hardware problem and ignored.

• Hold architecture reviews and pay special attention to performance issues.
Process scheduling algorithms need detailed analysis. All shared resources must
be understood and interactions must be analyzed. Simulate use cases.

Fortunately, the software on the Pathfinder had debugging trace features left in place,
so an exact replica of the software could be used on Earth with the confidence that
the timing nature of the problem would not be contaminated. A fix was implemented
using a priority inheritance protocol that was built into the operating system. As an
aside, an early anti-missile test failed when the configuration used in the missile
firing differed slightly from the one used in testing. Software developers insisted that
the firing be done with the debug software in the configuration. The mission planners
over ruled them since the debug software might halt the computer. Logic in this case

SOFTWARE FAULT TOLERANCE 279

failed because of the fragile nature of the software. A small difference in the real data
from that used in all the tests caused mission failure.

Returning to the Mars Mission. The actual data rates experienced during
the mission were better than the test “worst case.” NASA’s test engineers did report
one or two system resets during their testing, however they never successfully repro-
duced or explained these failures. Their observations were dismissed as aberrations.

There were two missed opportunities to catch this priority inversion. First, clas-
sically trained engineers stress a system until it breaks, then guarantee it for con-
siderably less than the break point. A mere guess at what the break point might
be, especially in a very new environment, is unacceptable. Had the software been
sufficiently loaded to reveal the priority inversion, it could have been fixed without
heroics. Over-engineering and over-testing are not sound practices that take the place
of analysis and designs.

Human factors specialists are familiar with the pitfalls of ‘wishing problems away’
and are vigilant against it. Unexplained system failures cannot be ignored because
of management pressures to pass the software to meet a date. Failures cannot be
brushed away with the hope that they were so infrequent, maybe they will not hap-
pen again [21]. The Apollo missions owed their successes in large part to the ex-
cellent human factors work that was done to rehearse and anticipate every possible
contingency in entirely new circumstances. Apparently, with a new generation of de-
signers, that knowledge has been lost because it is rarely incorporated in university
curricula. Moreover, these efforts are expensive. They can consume as much as 20%
of resources and there are few financial consequences to failure. To get the contract
be the low-cost bidder. The low-cost bidder too often minimizes reliability testing.

2.5.5 Object-Oriented Design Improves Effectiveness

Object oriented technology can help to fulfill early computer industry aspirations
and lead to predictable system developments with high reliable software, fast time to
market and solid performance [22].

The case history of one modern telephone software system makes the point. The
project was to support the use of new, very fast broadband networks in the telephone
company access network. Since this was clearly a large-scale development effort,
the designers adopted the use of objects very early. The size of the project in its
first release was 12,600 function points, 22 software modules with 47 interfaces,
and 12 databases. This complexity was organized into 278 object classes and 1200
objects. The developers adhered to five overarching principles in making their design
decisions:

280 L. BERNSTEIN

(1) System synthesis, the melding of methods and business objects, began from
the customer’s, not the developers’, viewpoint.

(2) Modular architecture separated data from applications.
(3) Effective data stewards were appointed with responsibility and authority for

the object classes. They were charged with authority and responsibility of the
reliability of the methods in the object class.

(4) Object oriented analysis included extensive domain analysis, rigorous require-
ments, business usage scenarios worked out with the user, formal external and
internal interface agreements, and an integrated data model.

(5) Object oriented design used client/server architecture and industry wide stan-
dards.

(6) Code inspections were performed on selected modules. Cyclomatic metrics
were computed for each module to find those that needed formal code inspec-
tions.

(7) System testers were granted the ‘right of refusal.’ They could reject any ob-
ject library or application processes that in their judgment were not reliable.
Designers had to do the redesign and still meet their schedule commitments.
These redesigned modules were expected to be formally code inspected. Man-
agement resolved conflicts.

The most serious problem this project faced was the need to keep data consistent.
Consistency drove accuracy. All former designs used convoluted error paths; these
were error-prone and required more code and execution time than straightforward
designs that included consistency checks in the object class methods.

Legacy systems provided and accepted data from the system. Data normalization
techniques, with robust error processing isolated the new system from the legacy sys-
tem. Here object oriented technology was a powerful tool for allowing quick system
updates to accommodate new features and changes in business practices. It made
reuse natural. System designers were able to accurately reflect business objectives in
the object classes.

Until such robust object oriented design became a habit, an enforced object encap-
sulation strategy with centralized object libraries is vital. Skilled project managers
must insist that all subsystems and modules use the same Operation, Administration
and Management (OA&M) software. This achieves meaningful reuse and results in
huge system cost savings in operation of the system itself.

2.5.6 Corroborating Object Experiences

That these results can be attributed to a disciplined use of object-oriented tech-
nology is corroborated by the experience of others. Swiss Bank Corporation de-

SOFTWARE FAULT TOLERANCE 281

signers told me that they obtained a fifty percent productivity improvement during
re-engineering efforts that started in 1991. By 1994, they were installing their new
object oriented system and said that reuse was the key to their success. The bene-
fits of prototyping and adherence to clean object class definitions were particularly
apparent. They managed risks by adhering to the standard enterprise object classes
and linking them together. They anticipated some performance problems and these
did occur, but the cost/performance improvement of new computer servers more than
compensated for the ten percent performance overrun they saw.

AT&T developed more than fifty object-oriented systems using a unique ‘objects
in memory approach.’ The objects were locked in memory while the system ran. One
such system may be biggest and fastest object oriented network management system
in the world. It uses 1 gigabyte of memory for its 15 million objects and thousands
of transactions per second on a HP high-end workstation. It has been in production
for three years with no significant problems. It replaced a vintage IBM-hosted facil-
ity provisioning system. This new approach can become widely used when logical
memory is extended to 64 bit addressing and added to the natural structure of object-
oriented databases. This will open virtual memory machines to objects and regain
freedom from memory constraints enjoyed by application developers in the earlier
transaction systems.

2.5.7 Objects in Large-Scale Projects

Large-scale evolving software presents a special challenge to object architects.
Typically, an application consists of a network of objects connected through compat-
ible interfaces. The need to meet new requirements and/or fix defects often results
in new interfaces and object versions. When a new version of an object is created, it
must be dynamically installed without causing disruption to existing software. Ob-
jects must be intelligent enough to handle the problems of dynamic reconfigura-
tion, coordinate inter-module communication, and track the internal states of both
the objects and the links. This increases the complexity of objects and can prevent
them from being reused in different contexts. One solution is to not allow interface
changes. This harsh rule often makes the application difficult to build because ap-
plication level interfaces are imprecise due to time-outs and repeated transmissions
triggered by buffer losses in asynchronous communication. Additionally, the inter-
face specifications are vague and not amenable to analysis.

In this dynamic environment, however, there is a premium for keeping all the mod-
ules consistent. It is very difficult for designers, who are focused on the function of
each module, to worry about the way all the pieces will fit together. As a result, the
issue of interface consistency is often left to test teams, where it is inefficient and

282 L. BERNSTEIN

time consuming. Experience shows that it is three times more expensive for testers
to find and fix problems than developers. So, the interfaces must change but in a
controlled way. Object oriented technology opens the door to dynamic checking of
interface states and internal consistency because for the first time it is possible for
projects to create libraries of interface object classes to do this job. International stan-
dards bodies recognized this problem and developed the Common Object Request
Broker Architecture (CORBA) standard to do distributed computing. CORBA is in
its infancy, but industry cooperation is making CORBA the object middleware stan-
dard [12]. One problem is that CORBA locks the sender until the receiver receives
and acknowledges the message, and CORBA does not support multi-cycle transac-
tions. CORBA’s object module is evolving and may become the standard of choice.
The hope is that the object oriented CORBA will provide the fabric to let architects
connect independently designed components together. Mediators add the dimension
of a database storing the objects used in the communication interfaces. Network
Programs, Inc. provided a multiple transaction capability for mapping applications
to one another. Their adapter/collector technology is a robust way of connecting
systems while avoiding undesired interactions. Meanwhile, Microsoft offers its own
brand-specific object approach, Distributed Common Object Model (DCOM), which
allows clients to access servers across a network and provides a binary interface for
packaging and linking libraries or other applications. Since the situation is still fluid,
most organizations are using both approaches in combination with in-house controls
for their interface designs.

Java applets and CORBA are well suited to building distributed web applications.
Browsers give access to network management data, and they allow networks to be
managed remotely. To overcome delays due to network latency in the time it takes for
a command to get to a network element, the management by delegation approach has
become popular [34]. Data are stored in management information databases close to
the network elements. They may be sent to the network elements as remote agents
with their programs or they may be mapped to CORBA objects which can be located
anywhere but must be statically mapped to the network element. Using Java applets,
designers can overcome this limitation and dynamically reconfigure programs and
their data objects. Java has a remote method invocation feature that is similar to
CORBA but is restricted to only Java objects. Since CORBA can be used for many
languages, it is the best choice for distributing the network management data. This
client approaches are proving successful too.

SOFTWARE FAULT TOLERANCE 283

3. Summary

Software Fault Tolerance can be aimed at either preventing a transaction failure to
keep the system operating or at recovering the database for an entire system. In both
cases the goal is to prevent a fault from becoming a failure.

Software fault tolerance can be measured in terms of system availability that is
a function of reliability. The exponential reliability equation using an extension to
Sha’s Mean Time To Failure can be used to quantitatively analyze the utility vari-
ous processes, tools, libraries, test methods, management controls and other quality
assurances technologies. Collectively these technologies comprise the field of soft-
ware engineering. The extended reliability equation provides a unifying equation to
reliability-based software engineering. Now, it is possible to define the software fault
tolerance requirements for a system and then make engineering tradeoffs to invest in
the software engineering technology best able to achieve the required availability.

Citigal Labs measures software fault tolerance and software safety. Their web page
summarizes the state-of-the art of software fault tolerance in 2002:

“Traditionally, fault-tolerance has referred to building subsystems from redun-
dant components that are placed in parallel” [9]. A prime example is the com-
puter system for the space shuttle. On page 20 of his book, Peter Neuman states
that [25]: “the on-board shuttle software runs on two pairs of primary comput-
ers, with one pair being in control as long as the simultaneous computations on
both agree with each other, with control passing to the other pair in the case
of a mismatch. All four primary computers run identical programs. To prevent
catastrophic failures in which both pairs fail to perform (for example, if the soft-
ware were wrong), the shuttle has a fifth computer that is programmed with
different code by different programmers from a different company, but using
the same specifications and the same compiler (HAL/S). Cutover to the backup
computer would have to be done manually by the astronauts.”

On the shuttle, we see a combination of redundant computers and redundant soft-
ware versions; redundant software versions from the same specification are typically
referred to as N -version programming. N -version programming is a fault-tolerance
improvement paradigm that executes multiple versions (that were independently de-
signed/written and implement the same software function) in parallel and then takes
a vote among the results as to which output value is most frequent.

We use the term fault-tolerance in our research and commercial products at Citigal
slightly differently. For us, software is deemed as fault-tolerant if and only if:

(1) the program is able to compute an acceptable result even if the program itself
suffers from incorrect logic; and,

284 L. BERNSTEIN

(2) the program, whether correct or incorrect, is able to compute an acceptable
result even if the program itself receives corrupted incoming data during exe-
cution.

The key to our definition is what is considered “acceptable.” This can include charac-
teristics such as correctness and/or safety, and is based on the system. The interpreta-
tion for what constitutes software fault-tolerance according to our definition results
from a combination of the principles of software safety and robust design.

Widely accepted software engineering design practices call for robustness and
graceful degradation whenever a system gets into an undesirable state. Software
fault tolerance is a related concept. The distinction between robustness and fault
tolerance rests on whether the undesirable state is “expected” or “unexpected.” Ro-
bustness deals primarily with problems that are expected to occur and must be pro-
tected against. By contrast, fault tolerance deals with unexpected problems. These
must also be protected against. For example, if we are accessing in an integer to be
used in a division operation, a robust design ensures that the division operation is
not executed if the integer is zero. A fault-tolerant design accounts for unanticipated
possibilities (e.g., if the integer is corrupted, a fault tolerant design might freeze the
state of the program and not complete a division operation or it might require that
the integer be reread). Here, we are interested in assessing fault-tolerance, which can
be a side-benefit of robust design practices.

For critical software, there are three classes of output states that can be pro-
duced from a program execution: (1) correct, (2) incorrect, but acceptable, and non-
hazardous, and (3) hazardous. Software fault-tolerance refers to the ability of the
software to produce “acceptable” outputs regardless of the program states that are
encountered during execution. Software safety refers to the ability of the software to
produce “non-hazardous” outputs regardless of the program states that are encoun-
tered during execution. (What constitutes an output hazard is defined by the system
level safety requirements.) Software safety then, according to our perspective on
fault-tolerance, is a special type of software fault-tolerance.

Fault-tolerance refers to a class of outputs that can be tolerated, and software safety
refers to a class of outputs that cannot be tolerated. For example, for an input value of
1 to the software, suppose that the correct output value is 100.0. But suppose that the
numerical algorithms we use produce an output of 99.9. If the set of acceptable, non-
hazardous values is {99.0,101.0} and only this range, then this value is acceptable,
and hence the software was fault-tolerant with respect to an inaccurate algorithm.
Further suppose that the software, for some reason, may not receive the correct in-
put value of 1 when it should, due to some external problem. Say the code instead
receives a value of 0.0. Finally suppose that along with its low-accuracy numerical
algorithm, the software produces an output value of 102.0, which is hazardous since

SOFTWARE FAULT TOLERANCE 285

it is out of the range of {99.0,101.0}. Then we immediately gain knowledge that
there is a potential safety problem.”

ACKNOWLEDGEMENTS

The New Jersey Center for Software Engineering sponsored some of the work re-
ported here. The Committee on National Software Studies (http://www.cnsoftware.
org) provided data and contacts. Professor Sha’s excellent paper triggered the reli-
ability approach to software engineering. Professor Brian Randell’s, winner of the
2002 IEEE Emanuel R. Piore Award for seminal contributions and leadership in
computer system dependability research, established this filed of study. Les Hatton,
Collin Tulley, Sam Keene leads discussions groups on software reliability and qual-
ity that were very helpful. Chandra Kintala and H. Yuang worked with me on these
ideas for many years and made fundamental contributions to making software more
reliable as they made my rejuvenation insights practical. Peter Neuman identified
the risks of not attending to software reliability. Will Tracz encouraged me for many
years.

Special thanks to my dear friend C.M. Yuhas of ‘Have Laptop—Will Travel’ for
contributing material in this chapter.

REFERENCES

[1] AT&T Bell Laboratories, “Programming languages”, in: A History of Engineering and
Science in the Bell System, Vol. VII, 1984, pp. 379–380.

[2] Baratloo A., Singh N., Tsai T., “Transparent run-time defense against stack smashing
attacks”, in: Proceedings of 2000 USENIX Annual Technical Conference, San Diego,
CA, 2000, pp. 18–23.

[3] BEA White Paper, “Managing complexity with application infrastructure”, BEA Sys-
tems, San Jose, CA, http://www.bea.com.

[4] Bernstein L., “Software investment strategy”, Bell Labs Technical Journal 2 (3) (1997)
233–243.

[5] Bernstein L., Yuhas C.M., “Testing network management software”, Journal of Network
and Systems Management 1 (1) (1993) 5–15.

[6] Beugnard A., “Making components contract aware”, Computer 12 (7) (1999) 38–45.
[7] Boehm B., et al., Software estimation with COCOMO II, PTR.
[8] Carreira J., et al., “Fault tolerance for Windows applications”, Byte Magazine (February

1997) 51–52.
[9] http://www.cigitallabs.com/resources/definitions/software_safety.html.

[10] Fowler M., Refactoring-Improving the Design of Existing Code, Addison-Wesley, 2000,
p. xvi.

[11] Friedman T.L., “The Hackers’ lessons”, The New York Times 15 (2000) A27.
[12] Gaud S., “Object stamp of approval”, ComputerWorld 31 (11) (1997) 1.
[13] Goma H., “Reusable software requirements and architecture for families of systems”,

Journal of Systems & Software 28 (3) (1995) 189–202.

http://www.cnsoftware.org
http://www.cnsoftware.org
http://www.cnsoftware.org
http://www.bea.com
http://www.cigitallabs.com/resources/definitions/software_safety.html

286 L. BERNSTEIN

[14] Hatton L., Safer C: Developing Software for High-Integrity and Safety-Critical Systems,
in: The McGraw-Hill International Series in Software Engineering, 1997.

[15] Huang Y., Kintala C.M.R., “Software implemented fault tolerance: technologies and ex-
perience”, in: Lyu M. (Ed.), Proceedings of 23rd Internat. Symposium on Fault-Tolerant
Computing, Toulouse, France, June 1993, Software Fault Tolerance, John Wiley & Sons,
1995, pp. 2–9.

[16] Krishnamurthy B. (Ed.), Practical Reusable UNIX Software, John Wiley & Sons, New
York, 1995, pp. 5–8.

[17] Leveson N.G., Safeware-System Safety and Computers, Addison-Wesley, 1995, p. 436.
[18] Lim W.C., “Effects of reuse on quality, productivity and economics”, IEEE Software

(1994) 23–29.
[19] Lyu M., Handbook of Software Fault Tolerance, chapter 2.
[20] Lyu M.R., Software Fault Tolerance, John Wiley and Sons, Chichester, 1995.
[21] March S., “Learning from Pathfinder’s bumpy start”, Software Testing & Quality Engi-

neering 1 (5) (1999) 10–12.
[22] Marciniak J.J., Encyclopedia of Software Engineering, John Wiley and Sons, 2002,

pp. 526–546.
[23] Musa J., Iannino A., Okumoto K., Software Reliability: Measurement, Prediction, Ap-

plication, McGraw-Hill, 1987, Appendix E.
[24] National Research Council, Information Systems Trustworthiness Interim Report, Na-

tional Academy Press, Washington, DC, 1997, pp. 18–29.
[25] Neuman P.G., Computer Related Risks, Addison-Wesley, 1995, pp. 20–21.
[26] “Software manufacturing”, UNIX Review 7 (1989) 38–45.
[27] Selby R., “Empirically analyzing software reuse in a production environment”, in:

Tracz W. (Ed.), Software Reuse: Emerging Technology, IEEE Computer Society Press,
1988, pp. 176–189.

[28] Sha L., “Using simplicity to control complexity”, IEEE Software 18 (4) (2001) 27.
[29] Siweiorek D., Swarz R., The Theory and Practice of Reliable System Design, Digital

Press, Bedford, MA, 1982, p. 7.
[30] Stoyen A.D., “Fighting complexity in computer systems”, Computer 30 (8) (1997) 47–

48, http://computer.org/pubs/computer/computer.htm.
[31] Tai A.T., Chau S.N., Alkalaj L., Hecht H., “On-board preventive maintenance: Analysis

of effectiveness and optimal duty period”, in: Proceedings of the 3rd International Work-
shop on Object-Oriented Real-time Dependable Systems (WORDS’97), Newport Beach,
CA, 1997, pp. 40–47.

[32] Wallace D.R., Ippolito L.M., “A framework for the development and assurance of high
integrity software”, National Institute of Standards and Technology (NIST) Special Pub-
lication 500-223, U.S. Dept. of Commerce, Dec. 1994, p. ix.

[33] Wallace M., “Who Needs a Diploma? Why the high-tech industry wants dropouts”, The
New York Times Magazine 5 (2000) 76–78.

[34] Yemini Y., Goldszmidt G., Yemini S., “Network management by delegation”, in: I. Kr-
ishnan, W. Zimmer (Eds.), Integrated Network Management, II, Elsevier, New York,
1991, pp. 95–107.

http://computer.org/pubs/computer/computer.htm

Advances in the Provision of System
and Software Security—
Thirty Years of Progress

RAYFORD B. VAUGHN

Mississippi State University
P.O. Box 9637
Mississippi State, MS 39762
USA
vaughn@cse.msstate.edu

Abstract
This chapter addresses systems and software security in computing environments
over the past thirty years. It is partially a historical treatment of the subject
which outlines initial efforts to bound the security problem beginning early 1970
through today’s state of security engineering practice. It includes an introduc-
tion to the topic, definitions and explanations necessary for background, design
principles that were established by researchers and practiced today by security
engineers. Government programs are described as they were initiated over time
and their applicability to today’s security engineering practice is discussed. Im-
portant law and Executive decisions are included which have had a direct impact
on the state of computer security today. Lessons learned by practicing security
engineers are included as a part of concluding remarks. Much progress has been
accomplished in research and practice, yet systems today appear as vulnerable or
perhaps more vulnerable than they were in the past. This should not be necessar-
ily interpreted as a lack of progress—but as an indication of the complexity of the
problem being addressed and the changing nature of the systems and networks
needing the protection.

1. Introduction . 288
2. Concepts of Information Assurance . 289

2.1. Overview . 289
2.2. Background Concepts . 292

3. A Historical Perspective . 295
3.1. Introduction . 295

ADVANCES IN COMPUTERS, VOL. 58 287 Copyright © 2003 by Elsevier Science (USA)
ISSN: 0065-2458 All rights reserved.

288 R.B. VAUGHN

3.2. The Defense Science Board Report . 297
3.3. The Reference Monitor . 301
3.4. More Architectural Principles . 303
3.5. A Government Infrastructure Is Built . 305
3.6. Other Notable Legislation . 316
3.7. Worms, Viruses and other Malevolent Code . 321
3.8. Summary and Concluding Comment . 326

4. Today’s Threat and Countermeasures . 327
4.1. Overview and Awareness . 327
4.2. Products and Procedures . 328
4.3. The Art of Security Engineering . 332

5. Conclusions . 335
Acknowledgements . 338
References . 339

1. Introduction

At no time in our past history has there been more emphasis placed on the means
and methods to secure systems and software than at the present time. Although much
of this focus came to public attention following the tragic events of September 11,
2001, efforts to bring trust and security to software and systems have actually been
underway for approximately the past 30 years. This chapter addresses this progress,
beginning with initial efforts by the federal government and ending with thoughts
on what the future holds. The chapter is written for those who are not specialists
in this area, yet wish to understand the field at the generalist level. Background and
definitional material is provided in Section 2 to facilitate concepts presented later and
references are periodically given for those that desire to pursue any specific topic to
greater depth. When web links are available and likely to remain present for the
foreseeable future, they too are included for the reader’s benefit.

The organization of this chapter is essentially chronological. A section discussing
terminology and concepts is presented following the introduction to assist the reader
with the context and content that follows. A section on historical perspectives follows
which documents the many efforts in research and policy to bring trust, confidence,
and correctness to our systems and software. The historical presentation contains
comment and observations made by the author that often represents personal opin-
ion and experience over the years. Sections then follow to discuss the state of current
practice, security engineering capabilities, examples of what problems remain un-
solved, and what the future may hold in this important area. Along the way, the
reader may encounter recommendations and need for additional research effort. This

PROVISION OF SYSTEM AND SOFTWARE SECURITY 289

chapter is not offered as a comprehensive treatment of the subject of computer secu-
rity (aka, information assurance). Many good textbooks have been published on this
subject, yet none of them would likely claim to be comprehensive. The problem of
providing a secure solution for a specific software system or network is simply too
difficult and too complex to be reduced to a single text or to a set of practices that
will guarantee success. While there are commonly accepted best practices and some
fundamental science involved, most would agree that securing systems and networks
is today primarily a function of experienced, skilled, and knowledgeable systems
administrators who constantly monitor and improve the protection mechanisms as-
sociated with that which is being protected. The reader will undoubtedly find that
much of what is presented here appears to have a strong government emphasis to it.
This is because most of the work done over the past thirty years has been government
sponsored and promoted, but is still applicable to the commercial world and systems.

2. Concepts of Information Assurance

2.1 Overview

Information assurance or IA can mean something different to various individuals—
depending on their position, interest, business, employer, and many other factors.
To some, the focus is on a network; to others, the interest may be on a particu-
lar software system or may involve a complete systems engineering effort (which
should include hardware, software, people, processes, and procedure). In truth, se-
curity in any automation environment (networks, software, systems of systems, etc.)
must take a holistic approach and include a complete systems engineering view—to
include people and process as well as hardware and software. An attack or threat
of any kind (intentional or unintentional) has a high likelihood of occurring at the
point of the least resistance (or the weakest link). A comprehensive defense means
that each point of attack or risk must be identified, assessed for threat, and some
sufficient defensive measure taken or planned. When we say holistic treatment or
comprehensive approach, this normally means that the security engineer must con-
sider hardware security, software security, policy, procedures, personnel employed,
electronic emission security, and physical protection when constructing a protection
strategy. Failure to properly address security in any one of these areas can and will
introduce a point of vulnerability.

The process just described is in no way trivial and forms the essence of the infor-
mation assurance discussion that follows and the research that has occurred over the
past three decades. First, we need to make a distinction between the study of penetrat-
ing systems and that of defending systems. These two areas are sometimes referred

290 R.B. VAUGHN

to as offensive operations and defensive operations. On the offensive side, the pen-
etration of systems can be a legal or illegal activity. Illegal activities may include
authorized individuals inside the organization (we refer to this as aninsider threat)
who are misusing or abusing the computing assets in some manner that results in a
violation of law or policy. This may be intentional or unintentional on the part of the
employee. Examples of such actions could be installation of an unauthorized modem
connection in a corporate network that then provides an unprotected entry point into
otherwise protected assets (unintentional side effect), deletion of important and sen-
sitive data by a disgruntled employee (intentional action), or use of corporate hard-
ware and software to establish and run an adult web site (intentional action). In each
case, damage to the organization occurs and policy (or perhaps law) is likely violated.
Illegal activity can often occur from outside the organization (we refer to this as an
outsider or external threat) by an unauthorized user. This again can be intentional
or unintentional, although the preponderance of such activity is assumed intentional.
Examples of such attacks might include overwhelming an organization’s networks
by sending a very large amount of spurious traffic to a single entry point and causing
a system failure (or at least an availability issue), discovering a flaw in the operat-
ing system that allows the outsider to bypass protection and gain entry to a system
(a hacker threat), downloading or receiving harmful (malicious) code or email that
damages the system (unintentional outsider), or providing easy access to an unau-
thorized outsider which results in their ability to penetrate system defenses (e.g.,
providing one’s password and user identification by failing to properly protect it).

While illegal activities might be more intuitive to the reader, legal (from the U.S.
point of view) penetrations are also a subject of interest to readers. A common
method of testing system defenses is known as “penetration testing” (also known
as “red teaming”)—a sanctioned activity to attempt (in a controlled fashion) to gain
unauthorized access. This form of testing can be accomplished by insiders (employ-
ees of the organization involved in testing system security) or outsiders (third party
testing). In either case, the penetration is done on behalf of the organization with the
intention of discovering weak defenses so that they can be shored up. It has been
argued that this form of testing is one of the more useful measures of a system’s
overall protection [9]. Additionally, there is another form of penetration that is not
often considered on first thought—that of information warfare [4] (or information
operations, network centric warfare, or other similar terms). Government sponsored
technical staffs generally accomplish this form of penetration activity as part of its in-
telligence gathering activities or in preparation for military action (declared or unde-
clared) against another government. This may include mapping networks to discover
topologies and weak points, covert insertion of malicious code, denial of service at-
tacks, or traffic analysis. We will not further address this form of legal penetration
testing but wish to include mention of it here for the sake of completeness.

PROVISION OF SYSTEM AND SOFTWARE SECURITY 291

On the defensive side of information assurance, the security engineer tries to cre-
ate what is referred to as a defensive perimeter (also known as a security perimeter)
around the object of protection (e.g., the system, a network, a single host, a physi-
cal facility). The objective is to create enough penetration difficulty for the attacker
so that the level of effort to penetrate exceeds the value gained if the penetration is
successful. This is the same concept one uses when securing a home against possible
invaders—that is, to make the level of effort necessary to gain entry more difficult
than the attacker is willing to exert. Just as no home is one hundred percent secure, no
useful computer system can guarantee total security. Because we cannot guarantee
total security and because there is always risk present, we tend to use the termassur-
ance to mean strength of protection. High assurance means a very strong system in
terms of the security protection it offers and low assurance means very little security
protection. A better characterization might be to think of assurance as trust in a sys-
tem’s ability to provide protection. Trust can come from many sources—experience,
examination of the code, testing, certification by experts, and others. Hence, this
chapter is concerned with information assurance (a term that indicates a property
having various scalable values) more so than computer security (an objective that is
either present or not).

The degree of assurance that we arrive at for a system (through whatever means
we employ) is not a static value. That is, a high assurance system yesterday may
be reduced to a low assurance system tomorrow though many means. This might
occur because a previously undiscovered vulnerability in a specific operating system
is announced, an update to the software configuration is installed with flawed code, a
lapse in security procedures occurs due to a change in key personnel, or a firewall1 is
accidentally misconfigured by a systems administrator. Many other examples could
be provided here, but the point is that past performance in terms of trust says very
little about future performance characteristics. It is incumbent on the systems and/or
security engineer to continuously update the security perimeter and to check on its
effectiveness. There is simply no guarantee of impenetrability and today much of
our reliance is on the individual skill set of those that administer the system and
its protection. The advantage always lies with the attacker of a system in that, with
patience, the attacker must only find a single unguarded entry point into the system
while the defender must block them all. Even when penetration is prevented, the
majority of systems are certainly subject to being taken out of service though a denial
of service attack, which may overwhelm its processing capacity or network resources
to the point of failure.

1A firewall is a collection of components (hardware and/or software) that is placed between networks for
the purpose of protection of the inner network. Network traffic from the outside is filtered and restricted
by a set of rules that enforce a policy or a part of a policy.

292 R.B. VAUGHN

2.2 Background Concepts

Initially, security for computing systems was thought to be primarily an issue of
access control to data so that users could be assured that others having access to the
computer system could not obtain access to data in the system that they did not have
permission to see. In other words, early attempts to protect systems worked within a
confidentiality paradigm. Section 3 will address more of the rationale for this early
view. As the professional and technical communities learned more about the security
problem and the needs of specific organizations, other definitions began to surface
that were not confidentiality issues. In fact, before a security engineer can accomplish
any work, it is important that a firm understanding of the organizational definition of
security be achieved and agreed to. This is often referred to as the security “policy”
for an organization. Once a firm understanding of the policy is obtained, the security
engineer (working with the organization) may develop a “model” of proper system
behavior which complies with the policy and which can serve as a system specifica-
tion. Common security concerns today are generally one of or a combination of the
following characteristics:

– Secrecy or Confidentiality: A guarantee that assets of a protected system are
accessible only by authorized parties.

– Integrity: Data assets can only be modified by authorized parties and only in
authorized ways. Related issues include the preciseness of the data, consistency
of data, and accuracy of the data.

– Availability: Computing assets (e.g., data, processing power, network band-
width) are accessible to authorized parties when needed. Note that the absence
of this characteristic is known as adenial of service.

– Accountability: The ability to establish correspondence between an action on
the system and the responsibility for the action. This characteristic also includes
a more specific area callednon-repudiation, which is the establishment of re-
sponsibility for a computing action that cannot be denied.

A primary object of concern when developing a protection strategy is the data main-
tained by the computing system. Data must be in one of three electronic states—
processing (active manipulation), storage (passive or at rest), or in transmission. The
security engineer’s objective then becomes to preserve the security characteristics of
interest to the organization (i.e., confidentiality, availability, integrity, accountabil-
ity) across all possible states of processing—a very difficult problem and one which
involves significant analysis, testing, the weaving together of several disparate prod-
ucts (also known as mechanisms) into a protection perimeter, and then monitoring
its effectiveness over time.

PROVISION OF SYSTEM AND SOFTWARE SECURITY 293

Often information security is thought to be synonymous with encryption.2 While
encryption is indeed a strong tool to use in developing a protection scheme, it is not
a complete solution. When one considers how to protect data in transmission, en-
cryption is the obvious solution, but it does not adequately or completely address
protection needs while data is being processed or stored. Strong encryption is useful
to keep data confidential while transiting a network for example. It is also a means to
guarantee integrity of the data in that unauthorized modification of encrypted pack-
ets is likely detectable when the data is deciphered at the receiving end. Because of
these characteristics, encryption has been the tool of choice in not only protecting
data while moving it over a network, but also in specific protocols that result in the
ability to digitally sign an electronic document in such a manner that the signature
cannot be repudiated—to exchange encryption keys securely and to carry out secure
dialogue in a client server environment. Encryption is more of a commodity today
to those that must employ it (with the exception being the intelligence community,
who create their own). It comes preinstalled in web browsers, is available in many
commercial off-the-shelf products, and is available as freeware from web sites. En-
cryption strength is always a subject of concern and the length of time needed for
a dedicated adversary to break it changes over time as computing technology im-
proves. Web browser security offers sufficient security today for web transactions,
but would not be sufficient to protect national secrets. The complete study of encryp-
tion and its progress through the years is beyond the scope of this chapter. It is treated
here as one of many mechanisms that the security engineer must consider using in
providing a total solution.

When taking a necessary holistic approach to the security problem, there are many
areas of concern that encryption will not solve. There are many examples of such
areas and the following are provided as a representative sampling.

– Physical controls. A good security perimeter requires solid physical controls
so that an attacker does not have access to the equipment, the network wiring,
employee workspace, files, or other sensitive items. A lack of such controls can
result in the theft of equipment which contains sensitive data, asocial engineer-
ing attack where the attacker uses human error or a lack of attention to policy
and procedure to discover sensitive information or to gain access, the installa-
tion of a network recording device (called asniffer) to record sensitive packets,
or the installation of malicious software (e.g., a trap door or Trojan horse which
can be used later by the attacker to gain system access). Good physical controls
are necessary to protect against the outsider threat.

2Cryptography is the use of secret codes to transform and hide data from those that are not authorized
to view it. It is sometimes used to authenticate origin and content. It is distinguished from information
hiding where no transformation takes place (e.g., stenography or invisible inks) [7].

294 R.B. VAUGHN

– Policy. Written policy and procedures that are made known to all authorized
users of the system and enforced are paramount to overall system security.
Studies in the past have shown that a large number of reported security inci-
dents are unintentional, insider actions—that is, mistakes by an otherwise well-
intentioned employee. Written policy, which is known and understood by em-
ployees, addresses this vulnerability. Examples of such policy might include
disallowing an employee to install a dial-up modem on their office computer
because such a device may introduce an unprotected entry point into the cor-
porate network; prohibiting employees from downloading Active X controls
(a form of what is known asmobile code) from a web server (accomplished
by a simple browser setting) because such action can introduce malicious code
into the corporate system; or, establishing a policy requiring frequent changing
of passwords that are at least 8 alphanumeric characters long as a preventative
measure against password discovery (e.g.,cracking attacks). Policy is an excel-
lent non-technical risk mitigation strategy—but only if employees understand
the policy and the reason for it.

– Software controls. Any useful computing system contains a vast quantity of
software integrated into a suite of services and functionality for the user. Soft-
ware can contain intentional or unintentional hidden functionality that might
be exploited by an attacker. Acquiring software with high assurance mitigates
risk associated with software that might be of lesser assurance. Using an oper-
ating system that has been certified as having high assurance by a government
agency (e.g., the National Institute of Standards and Technology) is preferred
over using one that has not. Acquiring application software from a responsible
and reputable source is preferred over downloading such software from an un-
known author who may have posted it free of charge on a web site. This area
of concern also includes protection against malicious code attacks such as com-
puter viruses, worms, or Trojan horses. Charles (Chuck) Pfleeger addresses this
topic nicely in Chapter 5 of his book, “Security in Computing” [13].

– Inference or aggregation. In the modern world of Internet connectivity and web
servers, organizations must exercise caution with respect to the amount of in-
formation that is placed in various publicly available areas that might be inde-
pendently accessed and combined together by an attacker to gain confidential or
sensitive insights that should not have been publicly disclosed. This is referred
to as the problem of aggregation. An example might include a corporate web site
that on a general news page carries an announcement that there are confidential
discussions underway with a competing company that may lead to a merger.
A link from the main page to the human resources page may contain new infor-
mation on a plan to move to a new employee benefit program that is generally
known to be a benefits provider for competitor X. A third link may appear on

PROVISION OF SYSTEM AND SOFTWARE SECURITY 295

the corporate web page housing “other links of interest” to competitor X’s web
site. Each piece of information by itself is not sensitive—but combined it be-
gins to leak sensitive information to the detriment of the organization. Inference
is a close relative of aggregation and occurs when non-sensitive information is
obtained from a computer system and mathematically manipulated to discover
sensitive information. Inference is generally associated with database queries,
but need not be strictly isolated to that area. An example might include ob-
taining the total of all executive salaries in a small organization (non-sensitive
aggregate data) and subtracting from that the total of all male executive salaries
in the same organization (non-sensitive aggregate data) to arrive at the salary
for the only female executive in the organization (sensitive, specific data). De-
fenses against inference and aggregation attacks are difficult to achieve since,
in the majority of cases, the attacker uses information obtained outside the or-
ganization, and combines it with information obtained freely and legally from
the organization resulting in disclosures that should not have been allowed.

The examples above were provided to demonstrate the wide area of concern that a
practicing security engineer must be concerned with and to show that a single solu-
tion set is not adequate for an organization. It is imperative that a suite of products,
policy, procedure, and training be combined by a knowledgeable engineer and con-
stantly monitored over time if risk of attack is to be reduced to an acceptable level.
This is often more art than science today.

3. A Historical Perspective

3.1 Introduction

Protection of information while in transit has far deeper roots than does comput-
ing security. The use of cryptography, our most useful tool in this regard, can be
traced back more than 4000 years to ancient Egypt and in some reports, even earlier
(for a good overview of historical notes, the reader is invited to review Ron Gove’s
historical perspectives in the Information Security Management Handbook [7]). The
history of the origin of computing machines is somewhat more recent and can be
traced back to the seventeenth century when gear driven computing machines were
described and constructed. Credit for these advances is often given to notable early
scientists such as Blaise Pascal of France, Gottfried Wilhelm Leibniz of Germany,
and Charles Babbage of England. All of these machines were capable of following
some algorithm (a precursor of computer programming). Even the historically fa-
mous automated weaving loom developed by Joseph Jacquard of France in the early

296 R.B. VAUGHN

1800s was an example of a programmable computing device used to control an in-
dustrial process. Security in these devices was not an architectural consideration and
some would agree that even if security were a recognized need, it was provided for
by the obscurity of the technology and the high level of knowledge needed to under-
stand the mechanics and mathematics associated with these devices. Similar thought
processes occurred when electronics was applied to these mechanical structures and
modern day computers began to evolve. During the early 1940s, the truly first com-
puters (as we know them today) were built. These included early prototype work at
Bell Laboratories, Harvard University (the Mark I computer), Iowa State University
(the Atanasoff–Berry machine), the University of Pennsylvania (ENIAC), and a code
breaking machine developed in England for the intelligence community, known as
the COLOSSUS. Other machines followed over the years, gradually moving from
highly specialized and dedicated machines to general purpose computers that were
cost effective for use in administering business or government, as well as useful in
scientific exploration. Interestingly, the time between the introduction of the first
prototype specialized computers and their widespread general use was only approx-
imately 20 years. During this evolution of general purpose computing, engineering
emphasis was placed on ease of use, speed, operating systems, programming lan-
guages, utility software, storage advances, and memory to name a few. Security, as a
serious requirement, was not a high priority, or even a major consideration, beyond
the need for some basic auditing (for cost accounting purposes). Physical access
controls were generally thought to be sufficient to address any other concerns in this
area. During the decade 1960–1970, however, security and protection of information
assets began to assert itself as a requirement in modern computing systems and one
that could be difficult to resolve. The interest in security was being driven more by
evolving technology at this time than by user demand. Computing machines were
becoming more affordable and as a result were proliferating quickly into society
at large. Additionally, advances such as multiprogramming, networking, disk stor-
age, large and persistent memories, application layer programs, resource sharing,
and databases were increasing the amount of shared space and data exposure. The
serious study of computer security began toward the end of this decade (circa 1967)
sponsored by the U.S. Department of Defense as a response to growing concern with
resource sharing computers and the risk they posed to loss of National classified in-
formation. One of the earliest reports addressing this concern was a Defense Science
Board report [23] titled “Security Controls for Computer Systems” that was chaired
by Dr. Willis H. Ware, then of the RAND Corporation. This paper is often cited as
seminal work and the first that truly outlined the security problem in computing. It set
in motion a series of events and responses by the Department of Defense (DOD) and
the Federal government that resulted in international impact and advances through
research that continue today. The historical overview that follows in this section is

PROVISION OF SYSTEM AND SOFTWARE SECURITY 297

intended to provide the reader with a broad sense of past efforts and where they have
led us over time to the present day. In the large, the problem remains unsolved, but
important progress in understanding the problem has been made.

The remainder of this section is an attempt to overview significant events begin-
ning with the 1970 Defense Science Board (DSB) report and ending with perspec-
tives on where we are today. Apologies are extended if in the opinion of the reader,
an important historical event is omitted in the remainder of this chapter. Admittedly,
the events discussed here are based on this author’s opinion of their importance.

3.2 The Defense Science Board Report

This report [23] is generally considered the first major scientific work review-
ing and documenting the computer security problem. It was commissioned in the
summer of 1967 by the Department of Defense (the Assistant Secretary of Defense,
Deputy Director for Administration, Evaluation, and Management) in response to
growing concerns that computer systems were proliferating throughout the military
which were then being used to process and store sensitive information. Both de-
fense contractors and DOD technical staffs were pressing the issue of security, the
need for appropriate policy, and safeguards. The task eventually fell to the Advanced
Research Projects Agency or ARPA (the forerunner of today’s Defense Advanced
Research Projects Agency or DARPA) and a task force, operating under the author-
ity of the Defense Science Board, was eventually formed with Dr. Willis Ware, of
the Rand Corporation, as its chairperson. Two panels were organized to review the
problem and to make recommendations—a technical panel and a policy panel. Mem-
bership on these panels was diverse and well chosen. Many members were later
recognized for their strong contributions to addressing the problem of computer se-
curity and are known today for their seminal work in this area. A full list of the
membership is contained in the report, which is publicly available on the web at
http://seclab.cs.ucdavis.edu/projects/history(note: this report and other key early pa-
pers were collected and stored electronically for public review under a grant by the
National Security Agency to the University of Maryland). The report was originally
classified at the Confidential level by the DOD and later downgraded to unclassified
and made publicly releasable.

The report clearly addressed the need for holistic security controls—a theme that
still exists today. Technical measures, as well as administrative policy and proce-
dures, must all work together to address the security problem. They also character-
ized two important environments within which secure computing systems must oper-
ate. These environments still generally exist today, albeit with some modification as a
result of technical advances over the years. They were identified asclosed andopen
environments, where a closed environment was one that consisted only of trusted

http://seclab.cs.ucdavis.edu/projects/history

298 R.B. VAUGHN

(or in the DOD vernacular, “cleared”) users, working at physically protected work-
stations, connected to a physically protected computer system by protected commu-
nication circuits (i.e., physical, cryptographic, and electronic protection). Such an
environment offers opportunity for the construction of a high assurance system that
can process very sensitive information. This kind of closed system can reasonably be
established in the commercial world also—for example, in the domain of banking.
The other environment, and the more problematic, is known as open and is character-
ized as one in which there is a mixture of trusted and untrusted (or cleared/uncleared)
users. The untrusted users use the system at unprotected workstations, connected to a
central computing system by communicating over unprotected communication lines.
The trusted users work from protected workstations and communicate over protected
communication lines. Such an environment is far more difficult to establish assur-
ance for and at the time of the DSB report, the authors believed that technology
did not exist to fully address this problem [note: There is good argument that this
has not changed a lot in the ensuing 30 plus years]. Furthermore, in a memoran-
dum to the Chairman of the Defense Science Board, Dr. Willis wrote, “Thus, the
security problem of specific computer systems must, at this point in time, be solved
on a case-by-case basis employing the best judgment of a team consisting of sys-
tem programmers, technical hardware and communications specialists, and security
experts.” This same truth holds today in that security engineers employ best judg-
ment in a specific environment against a specific set of threats [22]. The conclusions
reached by the task force in 1970 are reported verbatim below, as taken from the
memorandum written by Dr. Ware to the Chairman of the DSB, and are annotated
with this author’s comments and thoughts. The annotations are enclosed in brackets
following each conclusion for ease of separation.

– Providing satisfactory security controls in a computer system is in itself a sys-
tem design problem. A combination of hardware, software, communications,
physical, personnel, and administrative-procedural safeguards is required for
comprehensive security. In particular, software safeguards alone are not suffi-
cient. [This conclusion holds today and refers to the need for a holistic approach
by the security engineer. An attacker will penetrate the point of least resistance
so a weakness in any of the areas identified in this conclusion will become a
potential target. In general, most penetrations today are not technical.]

– Contemporary technology can provide a secure system acceptably resistant to
external attack, accidental disclosures, internal subversion, and denial of use to
legitimate users for aclosed environment (cleared users working with classified
information at physically protected consoles connected to the system by pro-
tected communication circuits). [The key to this conclusion is the “acceptably
resistant” phrase. This means that we can provide a sufficiently secure solu-

PROVISION OF SYSTEM AND SOFTWARE SECURITY 299

tion in most cases if we can assume trusted users and protected systems and
networks. The same is true today.]

– Contemporary technology cannot provide a security system in anopen environ-
ment, which includes uncleared users working at physically unprotected con-
soles to the system by unprotected communications. [Recalling that an open
environment means a mix of trusted and untrusted users coupled with protected
and unprotected systems and networks, this conclusion is only partially true to-
day. Research and advances in security engineering have allowed for a much
greater degree of protection in open environments today than in 1970. While it
is still unwise to place national secrets in such an environment, e-commerce and
other business applications today operate in this environment quite comfortably
with, in most cases, sufficient security.]

– It is unwise to incorporate classified or sensitive information in a system func-
tioning in an open environment unless a significant risk of accidental disclosure
can be accepted. [Again, most would agree that significant advances have been
made with respect to this conclusion. While it is still unwise to mix highly sen-
sitive information with public information in an open environment, some lower
level sensitive information can be resident on the same system accessible by the
public with adequate assurance of separation today.]

– Acceptable procedures and safeguards exist and can be implemented so that a
system can function alternately in a closed environment and in an open environ-
ment. [This conclusion addresses a work around that the panel came up with,
sometimes called periods processing. The procedure can still be used effectively
today for a stand-alone system. It requires that the system be brought to a halt,
all sensitive information is removed, and then the system is reinitialized for
open processing.]

– Designers of secure systems are still on the steep part of the learning curve and
much insight and operational experience with such systems is needed. [Most
security engineers would agree that the learning curve is still steep and that
operational experience and insights are still required.]

– Substantial improvement (e.g., cost, performance) in security-controlling sys-
tems can be expected if certain research areas can be successfully pursued. [This
conclusion initiated significant government funding of trusted computing sys-
tems which continues today in various forms.]

Clearly, the authors of the DSB report recognized the lack of architectural guidelines
for secure systems and the risk that the Federal government was taking in the use of
resource sharing computers. The call for research in this area was not ignored and

300 R.B. VAUGHN

resulted in a research focus that continues today. Specifically, the DSB report called
for research in the following areas:

– Facilitate progress toward handling the open environment. The development of
encryption devices to function internally within the computer proper was seen
as a strong need as was the development of special hardware configurations that
could provide satisfactory security controls in an open environment.

– Improve the understanding of failure risks. This suggestion was designed to
initiate a program of research leading to a better understanding of the processes
and policy needed to certify and re-certify systems for sensitive processing. In
today’s world, the federal government does have such processes in place, but
there remains much room for improvement and the need for qualified certifiers
remains.

– Improve the efficiency of security controlling systems. This suggestion reflected
the need to develop new architectures for resource sharing computers that had,
as a fundamental design principle, a security requirement. The members of the
DSB study believed that with appropriate research focus new computer archi-
tectures could implement security controls more efficiently and correctly than
present day systems did. They also recommended a parallel program of research
to predict failure probabilities and failure modes in systems. The suggested fo-
cus on creating security architectures was taken to heart by the Department of
Defense and major investments were made in this area throughout the 1970–
1990 timeframe. In fact, this work continues in various forms even today.

– Solve a latent and not fully understood leakage point. In the context of the DSB
report, resource-sharing computers were viewed as information repositories that
were porous in nature with a tendency to “leak” protected information in a large
variety of ways such that compromise of the information could occur. The report
specifically mentioned leakage occurring from improper “erasing” of magnetic
media—but within the entire report, many other leakage points were identified.
This call for research was insightful for its time—particularly in the area of
magnetic remanence where researchers were discovering the persistent nature
of magnetic memory and that with highly specialized techniques, information
could be retrieved even after having been erased. Additionally, this suggestion
was directly related to the whole area known as object reuse which in the years
following the DSB report became a required architectural component in trusted
systems (note: object reuse will be discussed later in this chapter, but involves
the requirement to clear information from shared resources prior to allocating
that resource for reuse by another subject).

The authors of the report also prophesied that although the Department of Defense
had initiated the study on computer systems security controls, this subject would

PROVISION OF SYSTEM AND SOFTWARE SECURITY 301

very soon transcend the DOD and become an area of interest to the entire federal
government and industry. Although not specifically addressing this thought in de-
tail, it proved entirely accurate as in the next few years confidentiality concerns in
the DOD were joined by integrity and availability concerns from the private sector
and from the federal government. As time passed, sensitive but unclassified, privacy
data, non-repudiation, and other such issues demonstrated that security in computer
systems extended far beyond what was initially thought to be only a confidentiality
problem.

This report has long been considered a seminal work in computer security and one
that still deserves study today. It bounds the problem nicely for students and outlines
the fundamental areas that are of concern to those that are charged with securing
systems. Much of the work that is reported on in this chapter is a result of the DSB
report and its recommendations.

3.3 The Reference Monitor

One of the DSB recommendations was for architectural change in computing sys-
tems such that security could be enhanced. An important response to that call was
suggested by James P. Anderson [1] in 1972, within a report prepared for the U.S.
Air Force. In this report, Anderson outlined the need for strong access controls and
recommended the use of hardware and software to implement areference validation
mechanism (later referred to as areference monitor concept). Although there are fine
differences between the terms reference validation mechanism and reference mon-
itor, they are used interchangeably in this chapter. The idea was elegant in notion
and design and later became an important feature of operating system security and
was adopted by the DOD as a fundamental architectural concept for trusted systems
and was included in national level guidance and standards (specifically the DOD
5200.28-STD, the DOD Trusted Computer System Evaluation Criteria or “Orange
Book”). It persists today in other trusted systems documents to include ISO Stan-
dard 15408 (The Common Criteria).

In the Anderson report, the computer system was modeled as a set ofsubjects (ac-
tive entities in the system, e.g., processes) and a set ofobjects (passive entities in
the system, e.g., file storage). Anderson suggested the use of a reference validation
mechanism that would intercept every request by a subject for access to an object
and validate that access based on a set of rules. These rules could, in effect, imple-
ment a security policy for the system—both discretionary (user/owner determined)
and mandatory (organizationally determined) policy. In fact, the reference validation
mechanism could be used to enforce a mandatory policy over a user’s desire to share
information or provide access to another subject if the organizational policy would
be violated as a result. Although a specific implementation of a reference monitor

302 R.B. VAUGHN

was not given in the report, three important properties that any implementation of it
would have to have were provided. These are given below with brief explanation.

• The reference validation must be tamperproof. This requirement was one of pro-
tection against attack and modification. If the hardware, software, or firmware
components were modified, then no guarantee of its proper action could be
made for access control. In any trusted system that employs the reference moni-
tor concept, protection must be convincingly demonstrated to evaluators of that
system. This characteristic is sometimes referred to asisolation.

• The reference validation mechanism must always be invoked. This character-
istic is sometimes referred to as a no bypass capability orcompleteness. There
must be no path in the system such that a subject can access an object with-
out invoking the reference monitor. In practical systems, this rule is violated
by privileged users such as system administrators or security officers, but each
such exception increases the risk of a security failure.

• The reference validation mechanism must be small enough to be subject to
analysis and tests so that its completeness can be assured. There is more require-
ment in this simple sentence than may first be observed by the reader. What is
implied here is that the reference monitor must be correctly implemented and
that correctness determination is enhanced if the mechanism is small enough
to be comprehensible. The word “assured” was used by Anderson, and in com-
puter security study, that term (assurance) means “a degree of trust.” Trusted
systems, for example, offer more “assurance” to the user that their information
assets will be protected than do systems that are not trusted. Software from a
reputable and known source generally offers more assurance that it has no mali-
cious components than does software from unknown sources. The desire for the
reference validation mechanism to be small stems from a desire to inspect (but
formal inspection as well as informal inspection techniques) the software code
and to use mathematical rigor to prove it correct for high assurance systems.
This is known asverifiability.

An Air Force officer by the name of Roger Schell was actively involved in the study
of computer system security vulnerabilities in the early 1970s and is generally cred-
ited with first specifying the concept of a reference monitor in 1972, as a security
kernel. The implementation of the reference monitor concept has become known
as asecurity kernel since that time and over the past thirty years there have been
many commercial attempts to implement one. Although existing reference monitors
have primarily been implemented in software, the concept itself is not restricted to
software implementations. During the late 1970s several security kernel implementa-
tions were accomplished—primarily as research projects. MITRE is generally given
credit for implementing the first on a DEC PDP-11/45 in 1975. For a full treatment

PROVISION OF SYSTEM AND SOFTWARE SECURITY 303

of the advances in security kernels and the history behind them, the reader is invited
to review Chapter 10 of Gasser’s excellent book titledBuilding a Secure Computer
System [6].

A closely related concept is thetrusted computing base or TCB defined in
the DOD Trusted Computing Systems Evaluation Criteria (TCSEC) [5]. The TCB
was defined as the totality of protection mechanisms within a computer system—
including hardware, firmware, and software—the combination of which is respon-
sible for enforcing a security policy. The TCB concept is broader than the security
kernel and in a system using the security kernel it becomes that kernel plus various
trusted processes. Not all systems that are certified to process sensitive information
use the reference monitor approach. The TCB description was offered as a matter of
convenience so that protection components of a computer system could be described
as a set of elements. The TCB is sometimes referred to as asecurity perimeter and
includes all parts of the operating system that enforces a security policy. While it
may seem better to use a reference monitor approach, in reality it may not be possi-
ble with legacy systems. A reference monitor is an architectural decision that must
be implemented during the initial construction of an operating system—not a retrofit
added later. In cases where software systems not employing a reference monitor con-
cept are used in sensitive environments, a description of the TCB may be sufficient
to convince a certification authority that security policy enforcement is sufficient for
the degree of assurance required by the system and its users.

3.4 More Architectural Principles
Corresponding with the increased research activity brought on by the 1970 DSB

report and the emphasis being placed on the development of more trusted systems
for use by the government, Jerome Saltzer and Michael Schroeder (in 1975) [16]
published eight fundamental principles for secure system design. These have been
cited many times since and still today form an important basis for those constructing
trusted systems or networks. They are repeated below with a brief synopsis taken
from Saltzer and Schroeder with additional comments included in brackets.

• Economy of mechanism. It is important to keep the security design as small and
as simple as possible. Security errors do not tend to manifest themselves in nor-
mal use and special examination techniques are required to find and eliminate
them. By keeping the design small, examination and discovery of security er-
rors is made less difficult. [This is also a common software engineering best
practice. The principal can be difficult to implement in a security context since
security functionality touches so many other areas in an overall system.]

• Fail-safe defaults. Access permissions should be based on explicit permissions
and not exclusion. Defaults should always be the more secure option. [In mod-

304 R.B. VAUGHN

ern day firewall practice, a similar practice is encouraged in that behavior not
explicitly allowed is denied. Many operating systems today are shipped with
defaults set to relatively open permission and the installer has to close these
permissions explicitly. The fail-safe default principle would tell us that such
systems should be shipped with all permissions turned off and only those that
are to be allowed in operation should be explicitly turned on. There is debate as
to whether or not this is a truly practical approach.]

• Complete mediation. Every access to every object must be validated and me-
diation cannot be bypassed. [This is a reinforcement of the reference monitor
concept presented earlier.]

• Open design. The design itself should not be the basis for secrecy nor should
it be a secret at all. The more open a design is, the more likely it is that the
community of reviewers will find flaws and repair them. [Salter and Schroeder
might be considered early advocates of the open source movement. This argu-
ment is one that open source advocates espouse and claim that such software is
more robust, efficient, and secure due to the inspection process that tends to oc-
cur with open source development. There has been other research that disputes
this and claims made that there is ‘security in obscurity.’]

• Separation of privilege. This principle advocates not putting too much authority
in a single mechanism and requires, for critical or sensitive applications, that
two or more separate process cooperate to accomplish a function.

• Least privilege. It is important that all mechanisms run at the lowest privilege
required to appropriately perform their intended function. If an application pro-
gram invokes a system utility, that utility should run, if at all possible, at the
application program level or privilege and not at “root” level.

• Least-common mechanism. The idea behind this principle is to design system
mechanisms such that they tend to operate on behalf of a single user and per-
form a single function. If we have a mechanism that operates on behalf of sev-
eral users at the same time, we increase the risk of information compromise or
having the mechanism itself used as a means to upgrade user privilege.

• Psychological acceptability. The security features used in a system must meet
with user acceptance or they will be ignored or bypassed. Human factors engi-
neering is important.

The Saltzer and Schroeder principles are not complete and there are other good best
practices found in the literature, but their principles are the most widely cited. In-
herent in the message they tried to communicate in their paper is another principle
that has been widely regarded as key—build security into a system from the very
beginning. Security must be a fundamental design objective and not an afterthought.

PROVISION OF SYSTEM AND SOFTWARE SECURITY 305

One of the major difficulties faced today by practicing security engineers is to take
an existing system or network that was not constructed with security as a design
constraint and to then secure it. Adding security to a completed system is not effec-
tive in the majority of cases and can lead to what is known as a penetrate and patch
philosophy—that is, various mechanisms are added to counter each penetration of
the system.

3.5 A Government Infrastructure Is Built

During the late 1970s and early to mid 1980s, the Federal Government began to
build an infrastructure and publish standards and guidance in the area of computer
security and computer controls. This activity was partially in response to the DSB
report discussed in 3.2 above (within the Department of Defense) and partially in re-
sponse to US Congressional legislation—the Brooks Act of 1965. As members of the
DSB had predicted, concerns with security issues were not unique to the DOD and
would most certainly involve other government activities and industry. The Brooks
Act specifically named the National Bureau of Standards or NBS (later renamed
the National Institute of Standards and Technology or NIST) as the federal agency
responsible for the creation and promulgation of federal computer standards, imple-
mentation, and research. This legislation officially marked the beginning of a long
partnership between the National Security Agency (representing DOD) and the fed-
eral government in the area of computer security—a cooperative arrangement that
continues today.

In response to the Brooks Act, NBS initiated several studies to define the secu-
rity problem and to organize their own internal effort to begin standards production.
In 1977, NBS began an important series of workshops [15] (by invitation only) to
investigate the needs for audit and evaluation in computer systems. The goal of the
workshops was to determine “What authoritative ways exist, or should exist, to de-
cide whether a particular computer system is ‘secure enough’ for a particular in-
tended environment or operation, and if a given system is not ‘secure enough’ what
measures could or should be taken to make it so.” Nearly sixty attendees participated
from the federal government and supporting contractors and their work resulted in a
series of NBS publications—but more importantly the workshop formalized for the
federal government, conclusions very similar to those already reached by the DSB
in their report a few years earlier, that the provision of security in a computer system
involved much more than just technical solutions. Attention to policy, hardware and
software mechanisms, and a way to measure the strength provided by the system
(known as assurance) was needed. Secondly, the workshop concluded that no then
present day operating system could be considered secure in terms of its ability to
separate users of that system from data that they were not authorized to see. They

306 R.B. VAUGHN

noted that computer systems could of course, process highly sensitive data, but that
specialized process and procedure had to be employed to protect the confidentiality
of the data processed. Reliance on the operating system for such protection was not
technologically possible. While this statement might not seem too insightful today,
it represented a formal beginning to the quest for what today is known asmultilevel
security. A second NBS workshop was held the following year (1978) that resulted
in a call for specific actions that needed to be taken. These included the need for a na-
tional computer security policy for information considered sensitive, yet not covered
by existing policies (this later became known as “sensitive but unclassified” or SBU
information); the need for the creation of a government process leading to formal
evaluation and accreditation of computer systems; and a formal technical means to
measure and evaluate the overall security of a system (assurance evaluation). Embed-
ded in this report was also a call for the government to maintain a list of “government
approved” products that could be used for sensitive environments—essentially a list
of evaluated products whose assurance level was known and trusted. These recom-
mendations were key events in the evolution of a government infrastructure that ex-
ists today to evaluate and recommend products. Also beginning in 1979, in response
to the NBS workshops, was the DOD Computer Security Initiative consisting of a
series of workshops and resulting in a new mission assignment to the National Se-
curity Agency (NSA) in 1980—that of promoting trusted information systems and
products within the DOD (although their actual impact was far outside the DOD
community). As an outcome of the NBS workshops and interest from the DOD,
MITRE assumed the task of creating computer security evaluation criteria that could
be used to measure assurance (trust) in a computer system. This project resulted in
several documents and proposed criteria [11,12,19] that formed the foundation for
later DOD and national standards in this area.

3.5.1 Birth of the National Computer Security Center (NCSC)

In January of 1981, the DOD formally established and chartered what was then
known as the DOD Computer Security Center (later renamed the National Computer
Security Center or NCSC, in 1985). In the evolution of trusted systems, this was
perhaps one of the most important events. Established originally by DOD Directive
5215.1, the Center was assigned the following goals.

• Encourage the development of trusted computer systems.

• Evaluation of the protection capability (strength) of systems.

• Provide technical support and advice to those involved in computer security
R&D and conduct and sponsor research efforts.

PROVISION OF SYSTEM AND SOFTWARE SECURITY 307

• Develop and publish technical criteria to be used in the evaluation of computer
systems and products.

• Apply these technical criteria to the evaluation of commercial computer systems
and products.

• Develop tools to assist in building trusted systems.

• Publish computer security guidance.

• Conduct computer security training.

One might notice at this point that both NIST and NSA were key players in the
emerging government interest and standardization of computer security guidance and
the efforts of one were consistent and supportive of the other. This strong relation-
ship was forged over time and continues today. The initial MITRE efforts for NBS
in the area of evaluation criteria became the foundation documents for the evaluation
criteria published by the NSA as the DOD Trusted Computer System Evaluation
Criteria in August 1983 and later re-released as DOD Standard 5200.28-STD in De-
cember 1985. This document became known as theOrange Book based on the color
of its cover and, for the first time, established a method for evaluating and ranking
trusted operating systems—satisfying at least part of the new mission assigned to
NSA. An interesting component of this document was the promotion of a computer
security model of behavior known as the Bell and LaPadula model. This model was
the first to be implemented in useful operating systems with the government and re-
mains today a widely accepted confidentiality model of behavior. Specifics of this
model and others are adequately covered in Chapter 7 of [13] and will not be further
discussed here. While there will be no attempt to present the details of this land-
mark document here, the interested reader is invited to review it in greater detail at
http://www.radium.ncsc.mil/tpep/. The evaluation criteria itself consisted of seven
hierarchical classes of assurance which were contained in four divisions (A, B, C,
and D). Most divisions were further sub-divided into classes. Various security mech-
anisms were required at specific classes (e.g., mechanisms might include auditing
of security relevant events or identification and authentication). At the higher levels
of assurance, fewer mechanisms were required, but stronger assurance practices be-
came necessary (e.g., security testing, covert channel analysis, and specification and
verification procedures). A summary of the evaluation classes, and their meaning as
taken from the Trusted Computer System Evaluation Criteria (TCSEC) Appendix C,
is provided in Table I and is presented in order of increasing assurance.

The NCSC built an infrastructure around the TCSEC in order to respond to its
mission assigned by DOD Directive 5215.1. The evaluation criterion responded to a
specific mission requirement but was not complete in and of itself. The NCSC also
established a strong research and development office, a criteria and standards office,

http://www.radium.ncsc.mil/tpep/

308 R.B. VAUGHN

TABLE I
SUMMARY OF EVALUATION CRITERIA CLASSES

TCSEC class General description

Class (D): Minimal
protection

This class is reserved for those systems that have been evaluated but that fail
to meet the requirements for a higher evaluation class.

Class (C1):
Discretionary
security protection

The Trusted Computing Base (TCB) of a class (C1) system nominally satisfies
the discretionary security requirements by providing separation of users and
data. It incorporates some form of credible controls capable of enforcing access
limitations on an individual basis, i.e., ostensibly suitable for allowing users to
be able to protect project or private information and to keep other users from
accidentally reading or destroying their data. The class (C1) environment is
expected to be one of cooperating users processing data at the same level(s) of
sensitivity.

Class (C2):
Controlled access
protection

Systems in this class enforce a more finely grained discretionary access con-
trol than (C1) systems, making users individually accountable for their actions
through login procedures, auditing of security-relevant events, and resource
isolation.

Class (B1): Labeled
security protection

Class (B1) systems require all the features required for class (C2). In addi-
tion, an informal statement of the security policy model, data labeling, and
mandatory access control over named subjects and objects must be present.
The capability must exist for accurately labeling exported information. Any
flaws identified by testing must be removed.

Class (B2):
Structured protection

In class (B2) systems, the TCB is based on a clearly defined and documented
formal security policy model that requires the discretionary and mandatory
access control enforcement found in class (B1) systems be extended to all
subjects and objects in the ADP system. In addition, covert channels are ad-
dressed. The TCB must be carefully structured into protection-critical and non-
protection-critical elements. The TCB interface is well defined and the TCB
design and implementation enable it to be subjected to more thorough test-
ing and more complete review. Authentication mechanisms are strengthened,
trusted facility management is provided in the form of support for system ad-
ministrator and operator functions, and stringent configuration management
controls are imposed. The system is relatively resistant to penetration.

Class (B3): Security
domains

The class (B3) TCB must satisfy the reference monitor requirements that it me-
diate all accesses of subjects to objects, be tamperproof, and be small enough to
be subjected to analysis and tests. To this end, the TCB is structured to exclude
code not essential to security policy enforcement, with significant system en-
gineering during TCB design and implementation directed toward minimizing
its complexity. A security administrator is supported, audit mechanisms are ex-
panded to signal security-relevant events, and system recovery procedures are
required. The system is highly resistant to penetration.

(continued on next page)

PROVISION OF SYSTEM AND SOFTWARE SECURITY 309

TABLE I — Continued

TCSEC class General description

Class (A1): Verified
design

Systems in class (A1) are functionally equivalent to those in class (B3) in that
no additional architectural features or policy requirements are added. The dis-
tinguishing feature of systems in this class is the analysis derived from formal
design specification and verification techniques and the resulting high degree
of assurance that the TCB is correctly implemented. This assurance is devel-
opmental in nature, starting with a formal model of the security policy and a
formal top-level specification (FTLS) of the design. In keeping with the exten-
sive design and development analysis of the TCB required of systems in class
(A1), more stringent configuration management is required and procedures are
established for securely distributing the system to sites.
A system security administrator is supported.

and an evaluation office to meet other missions assigned to it. The R&D effort in-
vested time and resources in promoting advances in products and tools that could
support the advance of trusted systems. Examples included strong support of multi-
level secure database research, hardware based access controls, and secure operating
system architectures.

The evaluation component of the NCSC was charged with evaluating commercial
products against the criteria specified in the TCSEC standard and in maintaining an
“evaluated products list” or EPL. A related endeavor was known as the rating and
maintenance program or RAMP, which was a strong process involving certification
for commercial vendors to modify their evaluated products (necessary because of
normal software maintenance) and yet retain the original evaluation level. This office
was populated with a very strong technical staff that worked closely with commer-
cial technical staffs to evaluate products at the source code level as well as accompa-
nying documentation. The evaluation process was, in concept, very straightforward
and accomplished in three phases (a preliminary product evaluation, a formal prod-
uct evaluation, and entry onto the evaluated products list). The preliminary product
evaluation was characterized as “informal dialogue” to scope the level of effort and
to make sure that all parties understood the evaluation process and its requirements.
Target evaluation objectives and evaluation concerns were all addressed during this
process. Once both the commercial enterprise and the NCSC evaluators decided to
move forward with the actual evaluation, they entered a formal product evaluation
phase during which appropriate non-disclosure agreements and memoranda of un-
derstanding were executed. During this phase, the product was subjected to intense
scrutiny and a publicly available final report was created along with a rating. The
product was then entered onto the EPL at the rating level assigned. As normal soft-
ware maintenance occurred over time, the product was maintained at its evaluated

310 R.B. VAUGHN

level by the corporate technical staff through the RAMP program as described ear-
lier in this section.

3.5.2 Experience with the Orange Book

The evaluation process quickly became a bottleneck to the overall objective of
third party evaluation and ranking. Not only was the process exceptionally time
consuming, but it also required an experienced evaluation staff possessing techni-
cal skills that were in high demand in industry as well as in the federal government.
Many evaluators were offered much more lucrative positions in industry while re-
placement personnel became increasingly difficult to find. While backlogs grew, the
federal government continued to press for purchase of evaluated products. Mandates
such as “C2 by 1992” became unachievable because policy was ahead of reality in
terms of ability to produce products and get them evaluated in time for necessary pur-
chases. Prices for those products that were evaluated were often not competitive with
non-evaluated similar software. Waivers to government policy promoting evaluated
products were often granted so that vendors that had invested heavily in the TCSEC
process felt that they had not been able to recoup their investment and that the gov-
ernment was not following though with its earlier commitment to buy the products
produced to the TCSEC specifications. Overtime, the TCSEC and the NCSC became
less relevant and other approaches began to surface. Challenges to the TCSEC ap-
proach came both nationally and internationally. In 1989, the U.S. Air Force began a
program of product evaluation at their facility in San Antonio, Texas as a service to
Air Force customers. This was partially a reaction to the bottleneck process at NSA
as well as in response to a need for evaluation of products other than those submitted
to NSA. At almost the same time, other countries began to publish evaluation criteria
of their own which differed substantially in content and approach from the TCSEC.
Other nations with evaluation interest and emerging criteria included Canada (Cana-
dian Trusted Computer Product Evaluation Criteria or CTCPEC), Germany (IT—
Security Criteria), the Netherlands, the United Kingdom, and France. The European
efforts quickly joined together as what became know as a “harmonized criteria” in
1990, while the U.S. and Canada maintained their approach separately. The European
harmonized approach became known as the Information Technology Security Eval-
uation Criteria (ITSEC) in 1991, and varied somewhat substantially from the North
American approach. Whereas the TCSEC primarily addressed government systems
and combined assurance and functionality into one rating, the ITSEC addressed com-
mercial and government security and separated functionality from assurance. Both
communities, North American and European, recognized that software manufactur-
ers could not afford to build trusted products to different standards and began efforts
to explore how they might couple the criteria in a way that the international and

PROVISION OF SYSTEM AND SOFTWARE SECURITY 311

commercial communities could accept them. Initial efforts were directed at coming
up with equivalence correspondence mappings so that a system or product rated by
the European process could be viewed as some equivalent TCSEC class. These en-
deavors were never successful and were subject to much valid criticism. In 1992,
discussions began to merge the two approaches into a “Common Criteria” that the
international community—both government and industry—could accept. Work in
earnest followed a year or two later with representation from Canada, France, Ger-
many, Netherlands, United Kingdom, and the U.S. While many draft criteria were
produced for comment, the first true version of the Common Criteria was published
as version 1.0 in January 1996. Taking into account comments, reviews, and ex-
perience with this initial version, a revised version 2.0 was released in May 1998.
A modification of this second version, version 2.1, was adopted by the International
Standards Organization (ISO) as an international standard in 1999 (ISO Standard
15408).

3.5.3 The Common Criteria (CC)

Today, ISO Standard 15408 is the recognized computer security evaluation and
rating criteria internationally and the TCSEC was formally retired in 2001 by the
U.S. government. Following the development of the Common Criteria, the National
Institute of Standards and Technology (NIST) and the National Security Agency, in
cooperation with the U.S. State Department, worked with the CC Project to produce
a mutual recognition arrangement for IT security evaluations. In October 1998, after
two years of negotiations, government organizations from the United States, Canada,
France, Germany, and the United Kingdom signed a historic recognition arrangement
for Common Criteria-based IT security evaluations. The “Arrangement” (officially
known as the Arrangement on the Mutual Recognition of Common Criteria Certifi-
cates in the field of IT Security) was a significant step forward for both government
and industry in IT product security evaluations. The U.S. government and its part-
ners in the Arrangement agreed to the following objectives with regard to common
evaluations:

• Ensure that evaluations are performed to high and consistent standards and are
seen to contribute significantly to confidence in the security of those products
and profiles.

• Increase the availability of evaluated products for national use.

• Eliminate duplicate evaluations between the signatories.

• Improve the efficiency and cost-effectiveness of security evaluations and the
certification/validation process.

312 R.B. VAUGHN

In October 1999, Australia and New Zealand joined the Mutual Recognition
Arrangement increasing the total number of participating nations to seven. Follow-
ing a brief revision of the original Arrangement to allow for the participation of
both certificate-consuming and certificate-producing nations, an expanded Recogni-
tion Arrangement was signed in May 2000, at the 1st International Common Crite-
ria Conference by Government organizations from thirteen nations. These include:
the United States, Canada, France, Germany, the United Kingdom, Australia, New
Zealand, Italy, Spain, the Netherlands, Norway, Finland, and Greece. The State of Is-
rael became the fourteenth nation to sign the Recognition Arrangement in November
2000. The Common Criteria continues to this day to gain in acceptance and several
other nations are actively considering its adoption (e.g., Russia, China, and Japan).

The Common Criteria represents a departure from the TCSEC approach and is
more closely related to the approach developed by the European community. A very
brief overview will be presented here, but for a more detailed review of this doc-
ument and its processes the interested reader is directed tohttp://csrc.nist.gov/cc/,
http://www.commoncriteria.org/, andhttp://niap.nist.gov/. The CC is a lengthy doc-
ument divided into three parts. Part 1 provides background information on the criteria
itself, an overview of its processes, and serves as a general reference. Part 2 addresses
functional requirements, assists users in formulating statements of requirements for
secure systems, and assists developers in interpreting those requirements. Similarly,
Part 3 addresses assurance requirements. Note that assurance and functionality have
been separated in this document and are no longer coupled as they were in the TC-
SEC. The CC also introduced several new terms that were important to its processes.
First is that of the Protection Profile (PP). A protection profile is an implementa-
tion independent requirements document that specifies a need. A consumer can use
requirement statements from Parts 2 and 3 to describe the functionality and assur-
ance needed in a product. Additionally, the PP contains a statement of the security
problem to be solved by the IT product (which may include specific assumptions
that may be made concerning the operating environment, the anticipated threats, and
organizational security policies). The PP, although a requirements document, can be
submitted for evaluation under the CC and receive a rating. Once rated, it can be
placed on the list of evaluated products so that others can make use of it. There was
no equivalent to this in the TCSEC process. An IT product that is to be evaluated is
known as a Target of Evaluation (TOE). Actually, a TOE can be a complete prod-
uct or a part of a product or system. It includes the product itself and all associated
documentation. In order to have a TOE evaluated under the CC process, a Security
Target (ST) must be created. For the most part, the ST follows the same specified
format as the PP with the exception that the ST references a specific PP and contains
a description (claims) of how the TOE meets the requirements of a PP or where it
falls short of doing so. Whereas the PP is a generic requirement—the ST is specific

http://csrc.nist.gov/cc/
http://www.commoncriteria.org/
http://niap.nist.gov/

PROVISION OF SYSTEM AND SOFTWARE SECURITY 313

to a particular TOE and makes specific claims as to its assurance, its functionality,
and its compliance with the PP requirements. An evaluation, therefore, under the
terms of the CC, would require the ST, the set of evidence about the TOE, and the
TOE itself. The result of the evaluation would be confirmation that the ST is satisfied
by the TOE. More simply stated, the PP is the end user requirement, the TOE is the
product, the ST is the claim that the product meets the need, and the evaluation is the
third party review that the claim is correct.

Under the terms of the CC process, a certified private laboratory accomplishes the
evaluation of the actual product. Each signatory to the CC has a government over-
sight body that validates laboratories as being compliant with CC standards. Evalua-
tions conducted at any laboratory certified by a signatory to the CC are acceptable (at
the first four levels of evaluation only) to all nations that participate in the CC recog-
nition agreement. Evaluations are paid for by the product manufacturer, as agreed
to by the vendor and the laboratory. This is a major departure from the early U.S.
TCSEC procedure that offered a single evaluation facility that was largely funded by
the government.

The evaluation scheme consists of seven levels—evaluation assurance level (EAL)
1 through 7. Each level is only an assurance level and does not imply any specific
mechanisms since the CC decoupled mechanisms and assurance. Their meaning is
summarized below as taken from the Common Criteria introductory brochure [3].

• EAL 1: Functionally tested. Used where some confidence in correct operation
is required, but the threats to security are not viewed as serious. The evaluation
at this level provides evidence that the TOE functions in a manner consistent
with its documentation, and that it provides useful protection against identified
threats.

• EAL 2: Structurally tested. Evaluation at this level involves a review of design
information and test results. This level may be appropriate where developers or
users require a low to moderate level of independently assured security in the
absence of ready availability of the complete development record (e.g., when
securing legacy systems).

• EAL 3: Methodically tested and checked. This level is applicable where the
requirement is for a moderate level of independently assured security, with a
thorough investigation of the TOE and its development. An EAL 3 evaluation
provides an analysis supported by testing based on “gray box” testing, selec-
tive independent confirmation of the developer test results, and evidence of a
developer search for vulnerabilities.

• EAL 4: Methodically designed, tested and reviewed. This is the highest level at
which it is likely to be economically feasible to retrofit an existing product line
with security. It is applicable to those circumstances where developers or users

314 R.B. VAUGHN

require a moderate to high level of independently assured security and there is
willingness to incur some additional security specific engineering costs.

• EAL 5: Semiformally designed and tested. This is applicable where the re-
quirement is for a high level of independently assured security in a planned
development, with a rigorous development approach, but without incurring un-
reasonable costs for specialized security engineering techniques. Assurance is
supplemented by a formal model, a semiformal presentation of the functional
specification and high level design, and a semiformal demonstration of corre-
spondence. A search for vulnerabilities that includes resistance to penetration
attacks and a covert channel analysis is also required.

• EAL 6: Semiformally verified design and tested. This EAL is applicable to the
development of specialized TOEs for application in high risk situations where
the value of the protected assets justifies the additional costs. The evaluation
provides an analysis, which is supported by a modular and layered approach
to design. The search for vulnerabilities must ensure resistance to penetration
by attackers with high attack potential. The search for covert channels must be
systematic. Development environment and configuration management controls
are enhanced at this level.

• EAL 7: Formally verified design and tested. Applicable to the development of
security TOEs for application in extremely high risk situations, and/or where the
high value of the assets justifies the higher costs. For an evaluation at this level,
the formal model is supplemented by a formal presentation of the functional
specification and high level design showing correspondence. Evidence of devel-
oper “white box” testing and complete independent confirmation of developer
test results are required. As a practical matter, a TOE at EAL 7 must minimize
design complexity and have tightly focused security functionality amenable to
extensive formal analysis.

There is a distinct break between EAL 1 through 4 versus EAL 5 through 7. EAL 4
and below can generally be achieved by retrofitting existing products and systems
and can be done so economically. Evaluation certification of an IT product by any
laboratory certified by a signatory of the CC at EAL 1 through 4 is acceptable in
any other signatory nation. Products certified at EAL 5 through 7 must be certi-
fied by the nation that uses them in its government systems. At EAL 5 and above,
specialized security engineering techniques are required and retrofit of existing prod-
ucts is generally not possible. A complete list of certified products can be found at
http://www.commoncriteria.org/. The reader will note that most evaluated products
lie in the EAL 1 through 4 range (see Table III).

One of the objectives of the CC effort was to maintain a backwards compatibility
with the TCSEC (recall that it had been used by the U.S. for over ten years prior

http://www.commoncriteria.org/

PROVISION OF SYSTEM AND SOFTWARE SECURITY 315

TABLE II
EVALUATION COMPARISONS(APPROXIMATE)

Common TCSEC ITSEC
criteria

– D: Minimal protection E0
EAL 1 – –
EAL 2 C1: Discretionary access protection E1
EAL 3 C2: Controlled access protection E2
EAL 4 B1: Labeled security protection E3
EAL 5 B2: Structured protection E4
EAL 6 B3: Security domains E5
EAL 7 A1: Verified design E6

to the arrival of the CC) and the European ITSEC. This was made necessary due
to the heavy investment that the software industry had made in producing evaluated
products and in order for government agencies to remain compliant with specific reg-
ulatory guidance. The general equivalency between CC, TCSEC, and ITSEC eval-
uations is given in Table II as published by the CC working group. Although com-
mercial vendors of trusted products sometimes cite this table, one needs to be aware
that many valid arguments can be made that the mappings are not exact and that no
direct comparisons can be made. It serves as a general guideline only.

It remains to be seen how effective the CC scheme will be over time. At the
present, it seems to be gaining acceptance and strength. As of this writing, there
are approximately fifty IT products on the evaluated list, which have been certified
between 1997 and 2002 and several others undergoing evaluation. Table III depicts
the number of products by year and evaluation level achieved. Clearly, early eval-
uations were concentrated on lower level assurance (EAL 1 and 2) while in more
recent years higher levels of assurance have begun to appear on the list (EAL 3 to 5).
While some of this trend is likely due to an initial effort by vendors to obtain the
quickest and lowest cost evaluation, it also reflects a growing willingness to invest
in the process and the desire to produce products that are more trustworthy than in
the past. It is also interesting to note that evaluations at the very highest levels of
EAL 6 and 7 are missing which may be a reflection on a lack of necessary software
engineering tools to perform adequate formal analysis, verification, and proofs of
correctness for large software based systems or perhaps it is an indication that ven-
dors are not yet willing to risk the high cost of development of such systems until
they are more confident of a return on investment. In order to achieve a multilevel
security capability, IT products and systems will need EAL 6 and 7 levels of as-
surance. To promote the use of CC evaluated products within the U.S. government,
the National Security Telecommunications and Information Systems Security Policy

316 R.B. VAUGHN

TABLE III
COMMON CRITERIA PRODUCT RATING BY YEAR AND EAL

EAL 1 EAL 2 EAL 3 EAL 4 EAL 5 EAL 6 EAL 7 Total

1997 1 1
1998 2 2 2 1 7
1999 4 3 1 1 9
2000 1 3 5 6 15
2001 2 2 4 8
2002 2 3 3 1 9

Total 7 12 14 15 1 0 0 49

(NSTISSP) number 11 was issued in January 2000 which requires that preference be
given to acquisition of commercial off-the-shelf (COTS) information assurance (IA)
products and IA-enabled IT products which have been evaluated in accordance with
the Common Criteria, the National Information Assurance Partnership (NIAP), or
NIST Federal Information Processing Standard (FIPS) programs. The policy further
requires that, as of July 1, 2002, acquisition of such products will belimited to those
that have been evaluated. It remains to be seen whether or not this policy will indeed
have the desired effect to promote an increase in the number of evaluated products
and their use—or whether the policy’s waiver process will be used extensively to
circumvent it. In today’s environment, with a necessity to establish a strong defense
in depth strategy, there simply is not enough diversity of products on the evaluated
list from which one could construct a total defense so the waiver process will have to
be used for valid reasons. Additionally, for the CC process to be a long-term success,
it will need to gain acceptance in the industrial (non government) communities—an
objective that has not been met today.

3.6 Other Notable Legislation

While some legislation and government guidance has been presented already, sev-
eral key laws and directives were omitted. A reasonably comprehensive treatment of
computer security mandates and legislation can be found in the Russell and Gangemi
text titled Computer Security Basics [14], Appendix B.

The importance of the Brooks Act of 1965 has already been discussed. Although
several additional mandates, directives, and laws pertaining to classified information
processing and protection of signals were issued in years following the Brooks Act,
it was not until 1984 that the next major computer security mandate was issued. That
came in the form of National Security Decision Directive (NSDD) 145, which among
other things, created a high level government computer security oversight commit-

PROVISION OF SYSTEM AND SOFTWARE SECURITY 317

tee which over time (and with the help of National Security Directive 42 in 1990)
created a policy body known as the National Telecommunications and Information
Systems Security Committee (NTISSC). This directive also required protection for
sensitive, but unclassified information for the first time and assigned to the National
Security Agency the tasks of encouraging, advising, and assisting the private sector
in information protection. This appeared to be a major shift in national leadership
responsibility for computer security from NIST to NSA—but not without contro-
versy. The National Security Agency had long been regarded as a closed intelligence
organization with almost no public presence. The assignment of a public mission
to such an organization that involved assisting the public sector in the protection of
information by an organization whose intelligence role included penetrating foreign
government systems seemed, to some, a bit of a conflict. This role included pro-
viding encryption algorithms to the public sector to protect data in transit—while
NSA retained the role of being responsible for breaking encryption algorithms for
intelligence purposes. Not withstanding this appearance of a conflicting role, there
was also a certain amount of mistrust prevalent in the public sector toward such an
organization and its culture.

Responsibility for computer security at the federal level seemed to shift once more
with the Public Law 100-235 (also known as the Computer Security Act of 1987),
which became effective in the fall of 1988. This law assigned to NIST responsibil-
ity for computer security vulnerability assessments, standards, technical assistance,
guidelines, and training and gave NSA a supporting role to NIST. The law did not
apply to classified material and left responsibility for that with NSA. Additionally,
the law required all federal agencies to create a specific computer security plan for
their organization and to provide computer security training for their people. While
these actions might have seemed fairly basic, they were needed in that few organiza-
tions had such plans and many that did had not exercised them or updated them for
the actual environment they were working in.

In 1996 Congress passed what has become known as the Clinger–Cohen Act (also
called the IT Management Reform Act) that assigned to the Office of Management
and Budget the responsibility for acquisition and management of IT. While much of
what the Act mandated was strictly procurement related, it did have interesting side
effects related to security. These included giving authority to acquire IT resources
to the head of each executive agency of the government and encouraging the pro-
curement of commercial off-the-shelf (COTS) products as preferred over initiating
special developments. Most importantly, the Act required the appointment of a Chief
Information Officer (CIO) in federal agencies—an office that naturally assumes the
responsibility for computer security in most cases. Later in 1996, President Clinton
issued an Executive Order creating a CIO council that has today assumed computer
security policy and mandates to be a part of their charter. The core responsibility for

318 R.B. VAUGHN

carrying out the requirements of the Clinger–Cohen Act and the follow on Executive
Order 13011 (establishment of the CIO Council), lies with the Office of Management
and Budget or OMB which has statutory responsibility for setting policy for the secu-
rity of Federal automated information systems. It implements these responsibilities
through OMB Circular A-130, Appendix III, “Security of Federal Automated Infor-
mation Resources” (seehttp://www.whitehouse.gov/omb/circulars).

Nearly simultaneous with the actions in the preceding paragraph, President Clin-
ton issued Executive Order 13010 in 1996, creating the President’s Commission on
Critical Infrastructure Protection (PCCIP). The order stated, “Certain national in-
frastructures are so vital that their incapacity or destruction would have a debilitating
impact on the defense or economic security of the United States. These critical in-
frastructures include telecommunications, electrical power systems, gas and oil stor-
age and transportation, banking and finance, transportation, water supply systems,
emergency services (including medical, police, fire, and rescue), and continuity of
government. Threats to these critical infrastructures fall into two categories: physi-
cal threats to tangible property (“physical threats”), and threats of electronic, radio
frequency, or computer-based attacks on the information or communications com-
ponents that control critical infrastructures (“cyber threats”). Because many of these
critical infrastructures are owned and operated by the private sector, it is essential
that the government and private sector work together to develop a strategy for pro-
tecting them and assuring their continued operation.” The significance of this EO is
that it was the first to recognize the vulnerability of the Nation’s infrastructure sys-
tems and the dependence our national security places on their operation. In the words
of the resulting report, “The cyber dimension promotes accelerating reliance on our
infrastructures and offers access to them from all over the world, blurring traditional
boundaries and jurisdictions. National defense is not just about government anymore,
and economic security is not just about business. The critical infrastructures are cen-
tral to our national defense and our economic power, and we must lay the foundations
for their future security on a new form of cooperation between the private sector and
the federal government. The federal government has an important role to play in
defense against cyber threats—collecting information about tools that can do harm,
conducting research into defensive technologies, and sharing defensive techniques
and best practices. Government also must lead and energize its own protection ef-
forts, and engage the private sector by offering expertise to facilitate protection of
privately owned infrastructures.” The report listed eight infrastructures “so vital that
their incapacity or destruction would have a debilitating impact on our defense and
economic security.” These infrastructures and their importance were reported as:

• Transportation: moves goods and people within and beyond our borders, and
makes it possible for the U.S. to play a leading role in the global economy.

http://www.whitehouse.gov/omb/circulars

PROVISION OF SYSTEM AND SOFTWARE SECURITY 319

• Oil and gas production and storage: fuels transportation services, manufactur-
ing operations, and home utilities.

• Water supply: assures a steady flow of water for agriculture, industry, business,
firefighting, and homes.

• Emergency services: responds to our urgent police, fire, and medical needs.

• Government services: consists of federal, state, and local agencies that provide
essential services to the public.

• Banking and finance: manages trillions of dollars—from individual accounts to
support of global enterprises.

• Electrical power: generation, transmission, and distribution systems that are
essential to all other infrastructures and every aspect of the nation’s economy.

• Telecommunications: includes the public telecommunications network, the In-
ternet, computers used in homes, commerce, academia, and government, and
all forms of communication that connect systems together.

The final report can be accessed athttp://www.ciao.gov/resource/pccip/report_index.
htm for those that are interested in further exploring the findings.

Based on the findings of the PCCIP, President Clinton signed Presidential Deci-
sion Directive (PDD) 63 on May 22, 1998. This event officially expanded the nation’s
policy interest to the cyber security world and, in effect, recognized a need to couple
more tightly the nation’s critical infrastructure industrial base with corresponding
federal government offices and to establish a specific law enforcement focus on cy-
ber protection and incident response. To this end, PDD-63 formally assigned lead
government agencies to specific industrial sectors and for what was referred to as
“special functions.” Table IV depicts the agency/sector partnering.

As of the writing of this chapter, the lead agencies are as established by PDD-
63, but the terrorist attacks of September 11, 2001 and the subsequent establishment
of the Office of Homeland Security will likely change this assignment as responsi-
bilities are realigned in the federal government. The President’s decision required
each lead agency to designate one individual of Assistant Secretary rank or higher
to be the sector liaison official and to coordinate/cooperate with the private sector
in addressing problems related to critical infrastructure protection. In addition to the
sector liaisons, the PDD also established lead agencies for “special functions.” Spe-
cial functions were defined as those related to critical infrastructure protection that
must be chiefly performed by the federal government (e.g., national defense, foreign
affairs, intelligence, and law enforcement). The most important aspect of the special
function lead is that they have responsibility for coordinating all the activities of the
federal government in their assigned area. The lead agencies and their designated
special functions are:

http://www.ciao.gov/resource/pccip/report_index.htm
http://www.ciao.gov/resource/pccip/report_index.htm
http://www.ciao.gov/resource/pccip/report_index.htm

320 R.B. VAUGHN

TABLE IV
PDD-63 LEAD AGENCY FORSECTORL IAISON

Lead Government agency Critical Infrastructure sector

Commerce Information and communications

Treasury Banking and finance

Environmental Protection Agency Water supply

Transportation Aviation, Highways, Mass transit, Pipelines, Rail, Water-
borne commerce

Justice/FBI Emergency law enforcement services

Federal Emergency Management Agency Emergency fire service, Continuity of government services

Health and Human Services Public health services, including prevention, surveillance,
laboratory services and personal health services

Energy Electric power, Oil and gas production storage

• Department of Justice/FBI: Law enforcement and internal security,

• Central Intelligence Agency: Foreign intelligence,

• Department of State: Foreign affairs,

• Department of Defense: National defense.

The above is a high level overview of the structure established by the federal gov-
ernment. Other functions, such as the role of a National Coordinator for Security, In-
frastructure Protection and Counter-Terrorism; the creation of a National Infrastruc-
ture Protection Center (NIPC); and the research and development role for the Office
of Science and Technology Policy, are all discussed in the PDD. The full version
of PDD-63 can be found athttp://www.terrorism.com/homeland/PDD-63.pdffor the
interested reader. While the objectives of the PDD were quite lofty, actual progress
has been slow and real results are few. The greatest contribution, however, was its
focus on the problem as a national policy issue and the formal structure it created.

As a reaction to the terrorist attacks of September 11, 2001, a new law known
as the Patriot Act was hurriedly pushed though Congress and signed by the Pres-
ident on October 26, 2001. The bill is 342 pages long and makes changes, some
large and some small, to over 15 different statutes. The government may now moni-
tor web surfing activities of Americans, including terms entered into search engines,
by merely convincing a judge that the monitoring could lead to information that is
“relevant” to an ongoing criminal investigation. The person monitored does not have
to be the target of the investigation. The judge must grant this application and the
government is not obligated to report to the court or tell the monitored subject what
has been done. The law also makes two changes to increase how much information

http://www.terrorism.com/homeland/PDD-63.pdf

PROVISION OF SYSTEM AND SOFTWARE SECURITY 321

the government may obtain about users from their Internet service providers (ISPs)
or others who handle or store their online communications. It allows ISPs to volun-
tarily hand over all “non-content” information to law enforcement with no need for
any court order or subpoena. Second, it expands the records that the government may
seek with a simple subpoena (no court review required) to include records of session
times and durations, temporarily assigned network (I.P.) addresses, and means and
source of payments, including credit card or bank account numbers. Lastly, and most
important, the Patriot Act makes a tie between terrorism and computer crime. This
piece of legislation has the potential to become a defining point in combating com-
puter crime, but will certainly be challenged in the courts over the next few years.

3.7 Worms, Viruses and other Malevolent Code

No historical treatment of computer security would be complete without some
discussion of the impact that malicious code has had on the computing community.
Malicious code is software that is created to intentionally violate policy or desired
rules of behavior on your system—often with destructive intent. Code run on any
computer system executes at some permission level—normally either the permission
level of a particular user or at “system level.” Access controls normally limit what
actions user level permissions can take, while system level permission is generally
unrestricted. The challenge of the author of malicious code is to have the code run at
the highest permission level possible so that it activities are not restricted. Nonethe-
less, any malicious code run at a specific user’s permission level can certainly dam-
age, destroy, or compromise any information assets owned by that user and that alone
is generally considered a significant threat.

Malicious code exists in many varieties and is classified in several ways. The intent
of this section is not to define a taxonomy of malicious code or to present precise
definitions, but rather to provide the reader with a sense of the types of malicious
code, the basic way they operate, and to disclose some noteworthy incidents. We
include the termmobile code in this discussion to refer to code that is downloaded
from a server to a client machine and executes on the client. Mobile code is not
necessarily bad and in the majority of cases it performs a useful and desired function,
but the potential exists for such code to be malicious in the client’s environment.

Malicious code either operates on its own (independent) or requires a host pro-
gram (dependent). Some such code has the ability to reproduce (propagate) while
others may not. The generally accepted types of malicious code are trap doors, Tro-
jan horses, logic or time bombs, viruses, and worms. There are many more names,
nuances, and descriptions of such code in the literature, but these are sufficient for
this discussion. We begin with a brief description of each type of malicious code,

322 R.B. VAUGHN

followed by a discussion of some historical landmark incidents, and end with some
thoughts on how one defends against such attacks today.

Malicious code is written intentionally to cause harm or at least mischief. It is
different from legitimate software errors that may result in harm or system failure.
While the end result is the same, the cause and defenses against it are different. Intent
is the differentiator.

• Trap door—a secret, undocumented entry point into program software that can
be used to grant access without going through the normal access authentication
process. This might be, for example, software that recognizes a certain sequence
of keystrokes or accepts a certain key word as input to turn control over to the
attacker. This code does not reproduce itself nor can it “infect” other code. It is
a specific entry point into executable code that is generally undocumented. Pro-
grammers often insert trap doors in code under development to assist in testing
or as a shortcut in debugging. This practice is discouraged in most software de-
velopment activities, yet it does occur. Occasionally, the programmer forgets to
remove the trap door and it is discovered by others who exploit it for malicious
purposes.

• Trojan horse—a computer program with an apparent or actual useful function
that contains additional hidden functionality that surreptitiously exploits the
legitimate authorizations of the invoking process to the detriment of security.
These are often found in a useful utility program or game that when executed
may also delete files or change file permissions or corrupt data. An example
of this kind of attack might be a free computer game that when executed not
only provides a game function for the user, but also accesses the user’s files and
writes them off to another location that the attacker can access later. A Trojan
horse does not replicate or infect other programs.

• Logic or time bombs—a computer program that contains a malicious function
and lies dormant in a computer system until triggered by a set of logical events
(logic bomb) or a specific time/date combination (time bomb). Such bombs have
been a nuisance for a very long time in computing. An example of a logic bomb
might be code written into a financial system that destroys all financial records
maintained by the system if a certain social security number is not present in
the payroll file. This might be a tactic employed by a disgruntled programmer to
guard against being fired. An example of a time bomb might be code that deletes
files on Friday the thirteenth, April Fool’s Day, or Halloween, for example.
Logic or time bombs by themselves do not replicate or infect other files.

• Viruses—malicious software that is embedded within other code (normally an-
other computer application program) or is hidden in a boot sector of a disk. It
normally consists of three parts—a mission, a trigger, and a propagation (repli-

PROVISION OF SYSTEM AND SOFTWARE SECURITY 323

cation) component. A virus does not exist on its own and requires a host in order
to execute and reproduce. When a legitimate (but infected) program executes,
it will also execute the virus code unknowingly. The virus code will generally
copy itself (infect) to another software program on the computer or imbed itself
in memory and copy itself to every program that runs on that machine. After
replicating itself, it may execute a specific function (mission) such as delete
files, copy files, or modify data. In some cases, the virus has a trigger (logical
or time condition) that it checks first before executing the mission. Similar to
the logic or time bomb approach, this might be a trigger that looks for a specific
program being ran before it executes or it may look for a specific time of day,
month or year (e.g., Friday the thirteenth). Viruses are sometimes referred to as
“self-replicating Trojan horses.”

• Worms—malicious software that does not need a host to survive. Worm soft-
ware is written to be independent code that replicates and travels through net-
works infecting machines. Like a virus, it can have a mission, trigger, and prop-
agation component. It is designed, however, to attack networks and distributed
systems.

• Mobile Code—came into existence as an efficiency technique associated with
client server architectures and Internet usage. This is code that exists on a dis-
tant server and when a client connects, it is downloaded and executes on the
client machine. There are many specific techniques used to accomplish this—
some more risky to the user than others. Examples might include Java Applets,
Active X, plug-ins, and JavaScript. While knowledgeable users have the ability
to restrict or prohibit such code from running on their machine, in practice few
actually do. The vast majority of mobile code implementations are beneficial
and not malevolent but the technique itself does represent a vulnerability that
can be exploited.

The use of malicious code has a rich and interesting history. It has been reported
that even John von Neumann, often considered the father of the modern day com-
puter, once published an article in 1949, titled “Theory and Organization of Compli-
cated Automata” [18]—a report which dealt with what he referred to as self repro-
ducing automata—an early description of what we now call a virus. Early scientists
and computer technical staffs often used these techniques in games designed to prove
their skill. A game originally calledDarwin and laterCore Wars was a contest be-
tween “assembler” programs in a machine or machine simulator, where the objective
was to kill your opponent’s program by overwriting it. The game was devised and
played by Victor Vyssotsky, Robert Morris Sr., and Doug McIlroy in the early 1960s
while working at Bell Labs. Most such exploits were harmless pastimes for techni-
cal wizards of the day. During the late 1960s and into the mid-1970s government

324 R.B. VAUGHN

penetration testing used the technique of a Trojan horse to exploit operating systems
and achieve access. In the early 1980s, researchers at Xerox tried to create what we
would refer to as a “worm” today that had no malicious intent and was designed as
a maintenance program. Due to a flaw in the program logic, this Xerox worm [17]
accidentally caused a denial of service issue. Essentially, there was very little, if any
malicious activity, although the potential was there to exploit.

This changed dramatically in the early 1980s when a researcher by the name of
Dr. Fred Cohen, then a professor of Computer Science and Electrical Engineering at
Lehigh University, began a research effort focusing on computer viruses. The results
of his work were published widely, but the initial publication came in a paper dated
August 31, 1984 titled simply “Computer Viruses” and delivered at the 7th Depart-
ment of Defense/National Bureau of Standards Computer Security Conference [2].
Within this paper, Dr. Cohen described the technique of creating a virus, general
experiments with their propagation, concluded that virus detection by analysis is un-
decidable, and that countermeasures are extremely difficult to employ. Interest and
experimentation in this technique quickly became widespread and continues into the
present. Incidents have been reported involving computer viruses used for destructive
purposes, industrial sabotage, as a terrorist tool, as an advertising ploy, and simply
for the purpose of creating one. Over time as technology changes, the techniques
of using a virus have evolved and have been adapted to macro languages (e.g., in
Microsoft products like Excel or Word), some viruses have been created that change
their appearance or signatures (called polymorphic viruses), and others have intro-
duced code to help avoid detection and removal. While viruses have continued to
plague the computing community, they have largely become more of a nuisance than
the disaster they once were considered to be.

A major incident occurred in November of 1988 that is arguably the single most
published computer security event, and the one incident that, more than any other,
focused international attention on computer security and the fragility of operating
systems and networks. While the incident is described in great detail in many publi-
cations since, the interested reader may wish to obtain a copy of the June 1989 issue
of Communications of the ACM (volume 32, number 6) for a good synopsis of the
attack. On November 2, 1988 a graduate student at Cornell University, Robert Tap-
pan Morris, released a computer worm that he had created, into the Internet. Within
hours the worm had penetrated thousands of computers and had caused many to fail
due to a flaw in the worm that resulted in it consuming too many system resources
and causing a denial of service (DOS) problem. The worm itself exploited several
flaws in Unix operating systems that were, for the most part, well known in the tech-
nical community. It involved password cracking, exploitation of design flaws, and
exploitation of design “features” to replicate and travel the Internet. Mr. Morris was
identified within days of the incident and was eventually found guilty of violating

PROVISION OF SYSTEM AND SOFTWARE SECURITY 325

section 1030 of U.S. Code Title 18 (the 1986 Computer Fraud and Abuse Act). He
received a $10,000 fine and a suspended jail sentence with a community service
obligation of 400 hours. This single incident not only focused community attention
on computer security, but it also started a series of events to change the law, revisit
the study of computing ethics, and the creation of Computer Emergency Response
Teams (CERTs). The first of these CERTs was one created at Carnegie Mellon Uni-
versity’s Software Engineering Institute (seehttp://www.cert.org). This CERT has
assumed a national leadership role and is generally accepted as the “lead” CERT.
Many other CERTs (over 200 worldwide) have been subsequently established to ser-
vice a particular clientele. While many of the details of the worm attack are omitted
here, it is important to realize that the same kind of attack can and does occur today.
Many of the vulnerabilities exploited by the 1988 worm still exist.

Defense against malicious code and mobile code is today an important con-
sideration. A total defense is not possible but mitigation strategies are possible
and recommended—primarily against viruses, worms, and malevolent mobile code.
Many good virus detection software products are available on the market today and
it is important that users have one and keep it updated. Most virus scanners look at
incoming email, web transactions, and software distribution media (disk or CD), and
resident software for the presence of viruses or worms. Since these products work on
the basis of recognizing known viruses and variants of them, it becomes important
to update the virus scanner code frequently (once a week or so). New or redesigned
viruses are discovered frequently and their recognition patterns need to be added
to a user’s virus detection system. This is normally accomplished over an Internet
connection to the vendor’s web site. Some worms can be discovered by virus scan-
ning software, but not all. Having a firewall in place, which isolates a network, is
helpful as a worm defense mechanism. Keeping operating systems up-to-date with
the latest patch version is also an important defense. During the early 2000s a new
software product began to appear known as operating system behavior based tools.
These products are useful as a defense against virus or worm attacks that are new
or have not yet been added to a virus scanner. The idea behind this approach is to
establish user-defined rules of un-allowed behavior at the operating system kernel
level so that if executing code attempts to perform some malicious function in vi-
olation of a rule, it is prevented. Finally, policy, procedure, and training employed
by the organization helps to avoid activity that can introduce a virus and assists em-
ployees in identifying when a virus or a worm has been introduced. Web browsers
today have security settings that help to act as a deterrent to malicious mobile code.
By accessing browser security settings, a user can allow or disallow various forms
of mobile code. Additionally, many reputable software producers “sign” their mo-
bile code with a certificate that is displayed on the client machine so that the user
can accept or reject the code based on knowing where it came from. Certified code

http://www.cert.org

326 R.B. VAUGHN

is generally reasonably safe, while code from unknown sources may not be. Many
organizations today with centrally managed networks are establishing policy toward
mobile code and implementing that policy through system settings established and
maintained by the systems administrator.

3.8 Summary and Concluding Comment

This section has presented a historical treatment of computer security with con-
centration on many events that the author considered important over the past thirty
years. This is by no means a complete historical and topical treatment, but it does
show progress over time and an increasing understanding of the problem. The mo-
tivations for computer security have been presented, design principles introduced,
attempts to mandate security through law and policy were discussed, and significant
events were related. In each case, the historical event was related to today’s approach
(as in movement from the orange book to the common criteria). It was the intent
of this section to show advances over thirty years of work in the computer secu-
rity/information assurance area, yet also demonstrate that much of the basic problem
that one must grapple with in security has not really changed although technology
itself has changed substantially. As Dr. Ware and the Defense Science Board so ef-
fectively pointed out in their landmark 1970 report, securing an information system
is a difficult process that involves more than technical solution sets. It remains a com-
bination of effective policies, procedures, strong (high assurance) software products,
and defensive in depth architectures all coupled with trained and trusted employees.

We must also conclude with a note on network security. Saltzer and Schroeder [16]
tell us that security must be designed in as an architectural objective. Gasser [6] reit-
erates that concern in his book. The current Internet, however, did not evolve with se-
curity as a requirement. It was, in fact, a project sponsored by the Advanced Projects
Research Agency (a Department of Defense research organization) with much of
the construction taking place in the academic sector. The protocol for network com-
munication became known as the Transmission Control Protocol/Internet Protocol
(TCP/IP)—again, without significant security measures being considered. This de-
velopment activity was taking place in the mid-70s at about the time the DOD was
coming to understand security as an issue in networks and resource sharing comput-
ers. This ARPANET (as it became known as) eventually split into two networks—
each evolving a bit differently. One became the open, ubiquitous Internet and the
other became a closed military Intranet (originally known as MILNET, but today
called NIPRNET and SIPRNET). Because the networks were created with no under-
lying security architecture and were thought to be simply useful for global sharing
of computational resources, countless vulnerabilities have been uncovered and ex-
ercised by attackers using the system. This led to a proliferation of add-on security

PROVISION OF SYSTEM AND SOFTWARE SECURITY 327

products to address vulnerabilities. Such products now include various firewall ap-
pliances, virtual private networks, encryption, virus detection software, vulnerability
scanners, and many others.

4. Today’s Threat and Countermeasures

4.1 Overview and Awareness

While the actual problem of securing computing systems and networks remains
largely unsolved, substantial progress has been made over the past thirty years. Even
the realization that perfect security is unobtainable must be considered a form of
progress in understanding and allows the community to factor this risk into policy
and procedure in today’s information infrastructure. Improvements can be seen in the
number of security products available today, the strength of those products, the num-
ber of security engineers, training of employees, strong internal policies, stronger op-
erating systems, better networking procedures, and more effective laws. Awareness
alone is not sufficient to fully address this problem, but does help employees under-
stand and adhere to policies and helps managers support the IT budgets necessary to
safeguard systems. In present day security, a security engineer has a broad experi-
ence base on which to examine the effectiveness of products and has the advantage
of an evaluation process that many products have been exposed to through either
the old Trusted Computing System Evaluation Criteria program (aka, the Orange
Book process) or the newer, more current ISO Standard 15408, or Common Criteria.
In short, today’s security engineer knows more about the problem, the threat, and
what comprises sufficient defenses than was generally known twenty or thirty years
ago. On the negative side, the problem of knowing how to compose together a set
of products that offer sufficient protection for a system is still a matter of individual
engineering expertise and, to a certain extent, an art more than a science. Measure-
ment of a protection structure, in terms of “how much” security is achieved by a
specific architecture, is not possible today. It is also often not possible to shape a re-
alistic return on investment strategy when one is faced with convincing the financial
watchdogs that a particular security product or capability should be purchased for an
organization.

The ability to secure systems would appear to have not advanced much—but such
an observation would be deceptive at best. First, the field of computing itself is
roughly only 50 years old. The interest in securing such systems has only been the
focus of any serious attention for the last 30 years. Security of desktop machines
at home and office has been an issue for less than 20 years. While these are rela-
tively short periods of time in the field of scientific advances, one must also consider

328 R.B. VAUGHN

that the field of computing has been advancing rapidly while the investigations into
its security aspects continued. A more succinct way of stating this might be to say
that the provision of computing security has been a moving target with technology
moving ahead faster than the security solution set seems to move. On top of ad-
vancing technology has been the issue of unreliable software. Major vulnerabilities
exist in software today that allow outsiders to acquire unauthorized access or ele-
vate their privileges, cause denial of service attacks, or affect the integrity of stored
and processed data. Rather than become more secure over time, software seems to
have become less secure. While software engineering principles are reasonably well
understood, they are simply not practiced well today in many organizations nor has
the community that relies on reliable software been very insistent on reliable code.
For the reader interested in pursuing this observation a bit further, an article [10]
addressing this topic written by Charles Mann inTechnology Review is worth re-
viewing. An interesting observation made by Mr. Mann is that “Microsoft released
Windows XP on Oct 25, 2001. That same day, in what may be a record, the company
posted18 megabytes of patches on its Web site: bug fixes, compatibility updates, and
enhancements. Two patches fixed important security holes. Or rather, one of them
did; the other patch didn’t work.” This, as well as many other such episodes, attests
to the fact that several dynamics are at play here—they include the expanding com-
plexity of software systems today (Windows XP has approximately 45-million lines
of code) versus systems of several years ago; the lack of programmer quality focus
(a focus which seems to be decreasing over the years); and the lack of appropriate
software engineering tools to prove code correct (verification and validation tools).
The overall quality of software is an important consideration in the overall security
of a system. The evaluated products process sponsored by the National Institute of
Standards and Technology (NIST) implementing the ISO Standard 15408 helps to
improve confidence in the quality as well as the trustworthiness of software.

4.2 Products and Procedures

Early researchers believed that access control by the operating system was the
key technical focus to providing trustworthy computing and that if access control
could be guaranteed to conform to some established security policy, then enforce-
ment by the operating system could insure that no unauthorized access of a user to
data could occur. While this model may have been satisfactory in a standalone, main-
frame world—it could not scale up to technology changes, which included network-
ing, database systems, wireless technology, high performance computing clusters,
electronic commerce, and other advances. While this statement is not meant to di-
minish the role of strong access control in any way, it is meant to show that there are
issues beyond access control that need to be solved as well in order to truly establish

PROVISION OF SYSTEM AND SOFTWARE SECURITY 329

FIG. 1. Typical architecture for an information protection network.

a secure environment. Today, a defense in depth strategy is necessary in order to pro-
vide security in a networked environment. An example of such a strategy at a high
level is shown in Fig. 1, where a typical architecture for an information protection
network (IPN) is shown. When operating in a networking environment, a security
engineer may be charged with insuring that the assets of the protected company net-
work are secure from attacks from the outside world over Internet connectivity. To do
so, the engineer will weave together an intermediate network of protection mecha-
nisms and products that is fitted between the protected network and the open Internet.
This is sometimes referred to as a Demilitarized Zone or DMZ. The IPN can process
and analyze incoming and outgoing traffic in this “buffer zone” and add a signif-
icant degree of protection for the internal user. Using this IPN template in Fig. 1,
a security engineer can make adjustments by adding or deleting products that lead
to the engineered solution needed. For example, the engineer may decide that a web
proxy server is actually not needed and delete that device based on a risk analysis
or vulnerability assessment performed on the system being protected. Similarly, the
engineer may decide that a network filter product is needed to filter outgoing and
incoming emails looking for unauthorized communications. A wide variety of prod-
ucts can be accommodated in the IPN, but the final solution set is determined on a
situation specific basis by a trained security engineer who uses personal knowledge
and skill to design it and tweak it over time. Note that the IPN does include a strong
access control component at the network level—an important fundamental consider-
ation. The IPN also, however, accommodates other security concerns such as privacy
of network addresses, proper policy enforcement, malicious code detection, remote

330 R.B. VAUGHN

FIG. 2. Host level security concerns.

authentication, and other important functions. The security engineer will also be con-
cerned with products that operate at the host level (which may be a desktop machine,
a large central server, a mainframe, a traveling laptop, or some combination of these).
Certainly the trustworthiness of the OS is important, but so are many other features
that may result in product selection for each machine. Figure 2 depicts a template
of concerns for a specific host that once again may be tweaked and modified by the
engineer to meet a particular risk or address a specific vulnerability. Access control
and identification and authentication (I&A) are generally included in the operating
system, but stronger I&A may be required. In such a case, the engineer may need
to choose from an array of products that might be useful to strengthen this func-
tion. That may include choosing a smart card product or perhaps a biometric device
(e.g., fingerprint scanner, voice identification, or retina scanner). Similarly, products
to combat intrusions, malicious code, or misuse of the computing resource may need
to be added (e.g., a personal firewall, a virus scanner, and a network filter). If a wire-

PROVISION OF SYSTEM AND SOFTWARE SECURITY 331

TABLE V
PREVENTION, DETECTION, AND RESPONSE/RECOVERYSTRATEGY EXAMPLES

Prevention and deterrence Detection Response and recovery

• Firewalls • Firewalls • Backup procedures
• Public Key Infrastructure • Malicious code scanners • Forensic tools
• Smart Cards for I&A • Intrusion detection systems • Law enforcement
• Encryption devices (hardware/software) • Content filters • Policy
• OS behavior monitors • Audit log analysis • Procedure
• Employee training • Employee training
• Enforcement of security policy • Forensics tools
• Use of high assurance products • Procedures

less card is present and used, special encryption software may need to be installed so
that a virtual private network (VPN) can be accommodated.

In general, the engineer must insure that protection coverage is applied in three
broad areas—prevention and deterrence, detection, and response and recovery.
Again, these responsibilities must be translated into procedures and products. These
concerns and their countermeasures are synopsized in Table V. The specific method
used to address each concern is again a decision left to the organization and its en-
gineers. The solution chosen is often based on non-technical rationale to include
budgetary concerns, return on investment models, risk assessments, personal expe-
rience with a product, salesperson emphatic assertions, and recommendations from
others. Better approaches might include reviewing evaluated product lists and inter-
nal testing of products in the operational environment if possible.

This section would not be complete without a brief comment on response and
recovery—an often overlooked, but essential, security service. Without doubt, an
unauthorized outsider will eventually penetrate a system regardless of its protection
architecture. Recovery from this penetration and its likely consequences is a neces-
sary planning function. This involves such mundane tasks as insuring system back-
ups are acquired on a regular basis and stored in a location that would be safe should
the system infrastructure be attacked or damaged. Response is an important consid-
eration too. If a system is damaged maliciously and business loss occurs—what will
be the organization’s response? Will legal remedies be pursued? Will employees that
violate policy be terminated? Will law enforcement agents be called in? Such plans
and decisions will need to be made ahead of time and invoked when the incident
occurs. Thirty years ago, little response would be possible in that laws did not exist
to prosecute against, forensics tools did not exist to gather evidence with, and law
enforcement expertise in this highly technical area was virtually absent. Today this
is not the case.

332 R.B. VAUGHN

4.3 The Art of Security Engineering
As with other requirement elicitation difficulties that exist in traditional systems

engineering, determining what the information security requirements of a customer
are and how they can be best satisfied is left largely in the hands of the systems se-
curity engineer. In turn, this security engineer develops a security architecture that
can address the needs of the customer and meet comprehensive system-level require-
ments. Customers and end users are, for the most part, incapable of articulating their
security needs as anything more than high-level declarations. To develop a com-
mon understanding (or perhaps a common mental model) between the engineer and
customer, some form of a business process reengineering (BPR) generally occurs.
This BPR involves the engineer, the end customer, and perhaps other stakeholders
who work together to understand the current business process. Over the life of the
BPR review, the team reaches a comprehensive understanding of what the current
business processes are and how they can be changed within business constraints to
improve security to some level acceptable in the organization. Henning [8] makes
the case that existing requirements engineering tools, such as Zachmann Business
Process Models, can be augmented to allow common requirements engineering tools
to collect raw input on information security data flows. Sufficiency in information
security is achieved whenthe solution’s cost, in operational terms, does not exceed
its value in terms of the protection it affords—a principle previously described by
the author [20,21]. Starting with information gained from working closely with the
customer (current processes, constraints, security policies, desired outcomes, etc.),
the security engineer will generally conduct a risk assessment/analysis, a vulnerabil-
ity analysis, propose an engineered solution, implement the solution, test, document
procedures, and train the organization in new procedures. This process, depicted in
Fig. 3, is cyclic and needs to be periodically repeated, because the solution set tends
to deteriorate over time as new vulnerabilities are discovered and promulgated and
as new attack schemes are discovered and employed.

What appears to be the current pervasive view is an approach to securing systems
that applies a defense in depth architecture to mitigate the risk to information assets
down to a sufficient level as determined jointly by the engineer and the customer.
A representative process for this approach is provided in Fig. 4. In this environ-
ment, the security engineer composes various security products to define sufficient
protection. In some cases this judgment proves accurate and in other cases it does
not. In suggesting the architecture, the engineer generally has several templates of
tried and proven solutions that are then adjusted to provide the best fit to the specific
customer’s solution need.

Building a system to meet a security requirement is often difficult, because the
problem being addressed is not static, but rather dynamic. Requirements such as
providing an easy to use interface, online help facilities, or real time scheduling are

PROVISION OF SYSTEM AND SOFTWARE SECURITY 333

FIG. 3. Security engineering process view.

static requirements. For static requirements, the technical solution can be determined
when the system is built and delivered and that solution is generally viable for the
life of the system. A security requirement is dynamic for several reasons. First, the
security solution is dependent on several factors:

• the threat against the system,

• the likelihood of the threat being exercised,

• the state of technology available for system protection,

• the state of technology for system attack, and

• the perceived value of the enterprise’s information assets.

Second, a security solution, in most cases, needs to be developed to defend against
the most likely threats. The security solution itself is also a dynamic factor. The
threat against an enterprise can change depending upon specific, identifiable events.
If the security solution proposed by an engineer is viewed as static, then the engineer
must endeavor to establish a protection solution that addresses the greatest threat

334 R.B. VAUGHN

FIG. 4. A representative security engineering process applying a defense in depth solution to mitigate
the risk profile to an acceptable level [22].

that can occur. If the solution is viewed as dynamic, then a range of protections
can be proposed that address specific threat conditions and events leading to those
conditions.

Third, there are no agreed upon or accepted information assurance measures or
metrics that one can apply today to determine “how” secure a system is. We have
no “composibility” metrics that help us understand the algebra of integrating several
products together into a solution and how strong that solution is to a set of known
attacks. We rather tend to use our base of empirical experience to suggest security
solution sets that we have confidence in from experience or reputation and then we
monitor the solution’s success during test attacks (aka, red team penetration testing)
or actual performance. We also note that the security threat changes over time based
on a number of factors specific to each customer we work with and that change needs
to be accommodated in the eventual solution that is engineered.

Earlier in this section, the point was made that new technology often comes along
and that old security solutions do not apply or new security solutions need to be
considered. In reality, this may not be a completely fair statement. What is really
meant is the essential principals of security, those that were presented in Section 3,
need to be reapplied in a new domain or problem set. Recent examples of this can be
seen in the emergence of wireless computing and high performance computing. In

PROVISION OF SYSTEM AND SOFTWARE SECURITY 335

the future, quantum computing will again introduce new security challenges for the
security engineer.

5. Conclusions

We have attempted in this chapter to outline advances over a period of some thirty
years in the area of information assurance (or computer security). We have moved
through a discussion of what the problem is, historical efforts to address it, design
principles and commonly accepted engineering practices. We have also presented
challenges that the modern day security engineer faces in bringing an adequate de-
fense in depth strategy to bear in a specific environment. It seems appropriate to end
this chapter with some challenges to conventional wisdom and historic practices as
well as some heuristics applied by the author and others over time.

The world is changing and so is our ability to secure its automation. We have many
products in the market place today, but we are also finding that the products do not
keep pace with the problems needing solutions. Old models of security engineering
do not always work well with today’s problem sets. Much of security engineering is
still based on the experience of the engineer, risk management, and even luck. Soft-
ware that we rely on and expect to work correctly often does not. The creation of
correct software adhering to the best development practices seems to not be occur-
ring and in fact, some suggest that the situation is worsening over time. One might
suggest that, even with over thirty years of research and progress, we should be closer
to being able to protect our systems, but in reality, it is easier today to mount a sig-
nificant attack against systems than it was in years gone by. This is primarily due
to automated attack scripts, the abundance of attack information available to mali-
cious users, higher speed machines, higher speed networks, advances in parallel and
distributed computation, and global interconnection.

Training and experience for employees and technical staff still goes a long way
toward addressing much of the problem. Awareness programs and user training are
important. Most important however, is the training of our systems administration
staff—an area of increasing importance and one that is often sorely neglected. The
technical talent shortage continues to grow and finding capable staff with experience
is becoming much more difficult. Security engineering service providers that have
managed to acquire a critical mass of these individuals are lower risk companies to
the clients that they provide services to. Past history is important. Beginning in 2000,
the U.S. Government initiated strong university scholarship programs designed to
encourage faculty and students to study this area and to enter federal service after
graduation as a partial means to address the skill set shortage. Meanwhile, both com-
mercial and government entities must be educated on the value of their information,

336 R.B. VAUGHN

exposures in their networks, threats, risks and thus their need to consider security as
a vital requirement within their larger networked computing systems.

Information assurance or security engineering is sometimes referred to as a “black
art” or “arcane science.” A good security engineer should know and understand a
good security design or implementation by intuition vice quantifiable measures. In
some regards, security engineering is more closely related to the legal profession: it
relies upon a common body of knowledge and “case law” precedents for given archi-
tectures. Security engineers are reluctant to use the first known implementation of a
particular architecture—the penalty for being first is additional scrutiny and analysis,
causing cost and schedule impacts. Given that commonly accepted information as-
surance metrics are not agreed upon today, much of what we do, the tools we choose,
and the perimeters we employ are based on empirical measures and past experience.
Listed below are some observations and heuristics that are founded on experience in
practicing security engineering.

• There are different security assurance needs for different application do-
mains. Government intelligence agencies are far more likely (for good reason)
to demand evaluated products, formal verification of code, trusted development
environments, and high-end encryption. They are more prone to use evaluated
products and support international efforts to build more trusted products. Gov-
ernment agencies, not in the intelligence business, are far more likely to settle
for less assurance to handle their abundance of sensitive but unclassified data.
Intelligence agency system security must start with the initial design of the sys-
tem and build security into the overall system itself. Others in Government ap-
plications may not need this rigor. Most, in fact, can quite easily accept “add
on” products to build an acceptable trust perimeter around a vulnerable system.
In this domain, evaluated products are important to the customer, but not an
overriding priority. Commercial encryption of browser quality is often accept-
able here. Meanwhile, the commercial customer will almost exclusively rely on
composition of commercial off the shelf products for their security. Evaluation
of the product by third party laboratories is not a key factor today. Within this
customer base, experience with products or protection architectures is the key
to acceptance.

• In many applications—past performance and emphatic praise DOES count.
This is particularly true with commercial clients who want to use products that
have an excellent reputation and service providers whose livelihood depends
upon reliable, predictable systems. If a product has performed well for other
clients, is reasonably straightforward in its installation, has a good support struc-
ture from the vendor, and has proven itself over time—the customer and security
engineer are both likely to favor it. This decision is often made without the ben-

PROVISION OF SYSTEM AND SOFTWARE SECURITY 337

efit of formal product evaluation, trusted development environments, or code
verification. There is nothing wrong with this approach in most applications
today. Experience does count and is important.

• History in the business keeps one from repeating past mistakes—even if it
isn’t the lowest cost proposal. There are many “start-up” companies that are
beginning to seek business in the information assurance business area. Gov-
ernment agencies are sometimes bound by the proposal process and low bid
selection. Selection of a security engineering capability based on price can (and
has) led to disaster. Experience, past performance, company commitment to the
IA business area, and permanent staff can be contractor pluses. Others may in-
volve more risk. A software engineer, systems engineer, and security engineer
do not have the same skill sets.

• There are frightening new programming paradigms taking hold in the dot
com world (e.g., extreme programming—http://www.extremeprogramming.
org) that will likely have a negative impact on trusted development or even
controlled development. Security starts with the coders and the code that is
written. This is true whether the code is for an operating system, compiler, appli-
cation layer, or any other executable. Testing, quality assurance, documentation,
standards, life cycle development and other standard software engineering prac-
tices are important to the assurance that we look for during execution. Trends
that produce code without such quality measures are also trading off assurance
for time to market. Such practices represent a threat to the security of systems.
Time to market pressures can lower software safety/trust/reliability. The con-
sumer then becomes the testing ground for the program. Many have suggested
that coding practices have become worse over time and not better. Programming
practices that emphasize speed over peer reviews, documentation, testing, and
formalism in development tend to result in less secure and perhaps less safe
code.

• Integration and system composibility is a great challenge and is not being
addressed to any great extent. What we mean by this is that the ability to add
on products to a system and know what results is still a black art. In part, this
stems from the complexity of systems and their emergent properties. It is en-
tirely possible to install several products that individually each provide some
security features/protections, yet the combination of products results in system
failure. So systems must be viewed as a whole, and not just considered piece-
meal. It is also possible that individual products have data that if combined with
other data would signal an attack or penetration—but there exists no framework
from which products can communicate with each other. In the network manage-
ment area, such products do exist. We need them in the security area too. We

http://www.extremeprogramming.org
http://www.extremeprogramming.org
http://www.extremeprogramming.org

338 R.B. VAUGHN

also need these strength measures for product compositions to support business
case analysis in industry when dollar costs must be weighed against risk miti-
gated. The entire area of metrics and measures in information assurance is an
interesting one and largely unsolved. The interested reader is invited to review
the proceedings of the Workshop on Information-Security-System Rating and
Ranking (ISSRR) [9] available on line athttp://www.acsac.org/measurement/.

Thirty years is a long time in the technical world and progress should be expected
over such a time frame. In the area of information assurance, this has been the case.
The problem areas defined by the Defense Science Board and discussed early in this
chapter still exist. Our understanding of this problem set and the skills to address it
have vastly improved. Attacks against systems have become easier over this same
thirty years as the speed of computation increases, networking becomes more perva-
sive, and attack methods become better known and readily accessible to those that
would use them against systems.

The information assurance area of research still requires greater attention and far
more research to address future needs. Coupled with this is a need for software en-
gineering to adopt more quality development practices and produce code with fewer
latent errors and vulnerable components that later become exploitable. As computing
becomes more ubiquitous and a part of every person’s daily routine, it will also be-
come a target for those that wish to damage an individual’s system or data holdings
or simply commit acts of electronic vandalism.

ACKNOWLEDGEMENTS

The author wishes to gratefully acknowledge the assistance and support of several
individuals that have been helpful in providing material and advise for this work.
First, Dr. Jack Murphy, EDS US Government Solutions Chief Technology Officer
located in Herndon, Virginia, who provided the template graphics used in Figs. 1
and 2. Dr. Murphy has always been willing to help and lend advice and EDS has
always allowed him to so in support of outside activities. Similarly, my good friends
Ms. Ronda Henning and Dr. Kevin Fox of Harris Corporation in Melbourne Florida
have contributed to this work in many ways by offering their comments and by work-
ing with the author on several related efforts. Ms. Henning and Dr. Fox are both
practicing security engineers with many years of experience in the field. Many of the
lessons learned that were presented in the concluding remarks came from their expe-
rience. I am grateful to my students at Mississippi State University who took the time
to read this Chapter, comment on it and discover errors. I also wish to thank the editor
of “Advances in Computers,” Dr. Marvin V. Zelkowitz for inviting me to author this

http://www.acsac.org/measurement/

PROVISION OF SYSTEM AND SOFTWARE SECURITY 339

chapter and for the collaboration we have had together for two years while develop-
ing a Center for Empirically Based Software Engineering—a collaborative effort be-
tween the University of Southern California, the University of Maryland, Mississippi
State University, and the University of Nebraska-Lincoln. This effort was partially
supported by the National Science Foundation Grant numberCCR-0085749.

REFERENCES

[1] Anderson J.P., in:Computer Security Technology Planning Study, ESD-TR-73-51, Vol. I,
ESD/AFSC, Hanscom AFB, Bedford, MA, October 1972.

[2] Cohen F., “Computer viruses—theory and experiments”, in:7th DOD/NBS Computer
Security Conference, September 24–26, 1984, pp. 240–263.

[3] Common criteria, An introduction, Available fromhttp://csrc.nist.gov/cc/info/cc_
brochure.pdf.

[4] Denning D.,Information Warfare and Security, ACM Press, New York, 1999.
[5] Department of Defense Standard,Trusted Computer System Evaluation Criteria, DOD

5200.28-STD, 1985.
[6] Gasser M.,Building a Secure Computer System, Van Nostrand Reinhold, New York,

1988.
[7] Gove R., “Fundamentals of cryptography and encryption”, in: Tipton H., Krause M.

(Eds.),Information Security Management Handbook, 4th edn., CRC Press, Boca Raton,
FL, 2000, pp. 339–366, Chapter 19.

[8] Henning R., “Use of the Zachmann model for security requirements engineering”, in:
20th National Information System Security Conference, Baltimore, MD, 1997.

[9] ISSRR 2001, “Proceedings Workshop on Information-Security-System Rating and
Ranking (ISSRR) held in Williamsburg, VA, May 21–23, 2001”,http://www.acsac.org/
measurement/.

[10] Mann C., “Why software is so bad”,Technology Review 105 (6) (2002) 33–38.
[11] Nibaldi G.,Proposed Technical Criteria for Trusted Computer Systems, M79-225, AD-A

108-832, MITRE, Bedford, MA, 1979.
[12] Nibaldi G.,Specification of a Trusted Computing Base (TCB), M79-228, AD-A108-831,

MITRE, Bedford, MA, 1979.
[13] Pfleeger C.,Security in Computing, Prentice-Hall, NJ, 1997.
[14] Russell D., Gangemi G.,Computer Security Basics, O’Reilly, Sebastopol, CA, 1991.
[15] Ruthberg Z., McKenzie R. (Eds.),Audit and Evaluation of Computer Security, NBS Spe-

cial Publication 500-19, 1977.
[16] Saltzer J., Schroeder M., “The protection of information in computer systems”,Proceed-

ings of the IEEE 63 (9) (1975) 1278–1308.
[17] Shoch J., Hupp J., “The worm programs—Early experience with a distributed computa-

tion”, Communications of the ACM 25 (1982) 172–180.
[18] Taub A.H., in:John von Neumann: Collected Works. Volume V: Design of Computers,

Theory of Automata and Numerical Analysis, Pergamon Press, Oxford, 1961.

http://csrc.nist.gov/cc/info/cc_brochure.pdf
http://csrc.nist.gov/cc/info/cc_brochure.pdf
http://csrc.nist.gov/cc/info/cc_brochure.pdf
http://www.acsac.org/measurement/
http://www.acsac.org/measurement/
http://www.acsac.org/measurement/

340 R.B. VAUGHN

[19] Trotter E., Tasker P.,Industry Trusted Computer Systems Evaluation Process, MTR-
3931, MITRE, Bedford, MA, 1980.

[20] Vaughn R., “Sufficiency in information security”, in:Proceedings of the 21st National
Information Systems Security Conference, Crystal City, VA, 1998.

[21] Vaughn R., Henning R., “A pragmatic applications oriented approach to information
assurance”, in:12th Annual Canadian Information Technology Security Symposium, Ot-
tawa, Canada, 2000.

[22] Vaughn R., Henning R., Fox K., “An empirical study of industrial security-engineering
practices”,Journal of Systems and Software 61 (3) (2002) 225–232.

[23] Ware W.,Security controls for computer systems, Report of the Defense Science Board
Task Force on Computer Security, The RAND Corporation, Santa Monica, CA, 1970.

Author Index

Numbers initalics indicate the pages on which complete references are given.

A

Abraham, J., 145, 146,146
Abran, A., 6,44, 46
Abts, C., 5, 8, 12, 14,44
Ackerman, A.F., 207,234
Adrion, W.R., 150,197
Aho, A., 75,113
Al-A’ali, M., 218, 236
Albert, B., 9, 11, 13,46
Albrecht, A.J., 6, 11, 13,44
Alkalaj, L., 274,286
Almezen, H., 166,201
Anderson, J.P., 301,339
Anderson, P., 232,234
Anton, J., 61,115
Apfelbaum, L., 162,198
Aron, J.D., 4, 11, 13,44
Arthur, L.J., 9,44
AT&T Bell Laboratories, 256,285
Atkinson, C., 216, 218, 221,236
Audemard, G., 145,146

B

Bader, A., 56,114
Bailey, J.W., 9, 13,44
Baker, F.T., 214,237
Banker, R.D., 11, 13,44
Baratloo, A., 255,285
Basili, V.R., 9, 13, 43,44, 205, 211, 213–217,

221, 224,234, 237
Baumgartner, J., 145, 146,146
Baxter, I., 71,113
Beck, K., 62,113

Behrens, C.A., 11, 13,44
Belady, L.A., 11, 13,44
Bell Communications Research, 230,234
Benaissa, Z., 71,116
Berard, B., 61,113
Berg, R., 71,116
Bernhard, P.J., 162,197
Bernstein, L., 244, 250,285
Bertoli, P., 145,146
Beugnard, A., 266,285
Bidoit, M., 61,113
Biere, A., 120, 135, 141, 145,146, 148
Biffl, S., 217, 231,234, 235
Binder, R.V., 220,234
Bjesse, P., 144,147
Boehm, B.W., 5, 6, 8, 9, 11–14,44, 251,285
Bonar, J.G., 150,200
Booch, G., 219,234
Boralv, A., 144,147
Bowen, J., 57,114
Boyle, J., 68,113
Branstad, M.A., 150,197
Briand, L., 6, 11, 12,45
Brooks, A., 219, 220,235, 236
Brooks, F.P., 11,45
Brooks, W.D., 11, 13,45
Brown, A.W., 5, 8, 12, 14,44
Bryant, R.E., 119,147
Buchwald, L.S., 207,234
Burch, J.R., 119, 120,147
Burstall, R., 71,113
Butler, R., 54,113
Butlin, R., 52,113

341

342 AUTHOR INDEX

C

Caldwell, J., 58,113
Card, D.N., 13,45
Carr, V., 151,198
Carreira, J., 272, 273,285
Cartwright, M., 9,46
Chau, S.N., 274,286
Chays, D., 159,197
Chen, X., 218, 219,234
Cheng, B., 215,234
Chernak, Y., 213, 221,235
Cherniavsky, J.C., 150,197
Chiles, J., 53,114
Cho, H., 162,198
Chow, T.S., 162,197
Chulani, S., 5, 8, 12, 14,44
Cimatti, A., 120, 135, 141, 144, 145,146, 147
Cirstea, H., 63, 73,114
Clark, B.K., 5, 8, 12, 14,44
Clarke, E.M., 118–120, 126, 135, 141, 144,

145,146, 147
Clarke, J.M., 162,197
Clarke, L.A., 150,200
Cohen, D.M., 170,198
Cohen, F., 324,339
Conrad, F.G., 150,199
Conte, S.D., 4, 11, 13,45
Copty, F., 121, 144,147
Corry, M.D., 150,198
Coudert, O., 119, 120,147
Crocker, R.T., 220,235
Cruz, I.F., 155,199
Curtis, B., 9, 11, 13,46
Cusumano, M.A., 9, 13,45

D

Dalal, S.R., 170,198
Daly, J., 220,235
Dan, S., 159,197
Darlington, J., 71,113
Datar, S.M., 11, 13,44
Davis, J., 63, 86,114
Davis, M., 138,147
DeBaud, J.-M., 211–213, 215, 216, 218, 224,

236

Deimel, L., 211,237
Deitel, H., 217,235
Deitel, P., 217,235
Denning, D., 290,339
Desharnais, J.M., 6,46
Dill, D.L., 119, 120,147
Dillon, L.K., 150,198
Dillon, R.F., 172,201
Donkers, A.M., 172,201
Dorner, D., 53,114
Dunsmore, A., 220, 222–225,235
Dunsmore, H.E., 4, 11, 13,45
Dutta, S., 5, 8, 11, 12,46
Dwyer, M.B., 151,198

E

Ebenau, R.G., 228,237
El-Emam, K., 6, 11, 12,45, 209, 211, 214,

216, 218, 221,236
Elrad, T., 56,114
Emerson, A., 118, 119,147
Esmelioglu, S., 162,198

F

Fagan, M.E., 205, 207, 209, 212, 213,235
Felix, C.P., 4, 9, 11, 13,46
Fichman, R.G., 220,235
Fikes, R., 177,198
Filman, R., 56,114
Finelli, G., 54,113
Finkel, A., 61,113
Fix, L., 121, 144,147
Flener, P., 61,114
Forselius, P., 6, 9, 11, 12,45
Fowler, M., 261,285
Fox, K., 298, 334,340
Fraer, R., 121, 144,147
Frankl, P.G., 159,197
Fredericks, M., 205, 221,237
Frick, T.W., 150,198
Friedman, T.L., 276,285
Fujita, M., 141,146

AUTHOR INDEX 343

G

Gacek, A., 63, 86,114
Gamma, E., 219,235
Gangemi, G., 316,339
Gannon, J., 59,114
Gasser, M., 303, 326,339
Gaud, S., 282,285
Genesereth, M., 61,114
George, H.G., 168,199
Ghezzi, C., 52,114
Gilb, T., 210, 213, 217, 228,235
Ginsberg, M.L., 180,198
Girgis, M.R., 218,236
Giunchiglia, E., 121, 144,147
Giunchiglia, F., 144,147
Goldszmidt, G., 282,286
Goma, H., 263,285
Gove, R., 293, 295,339
Grady, H.M., 150,198
Grady, R.B., 207,235
Graham, D., 210, 213, 217, 228,235
Green, C., 62,114
Green, S., 205, 215–217,234
Grumberg, O., 118, 126,147
Grunbacher, P., 231,235
Gupta, A., 145,147
Gutjahr, W., 217,234

H

Hachtel, G.D., 162,198
Hajare, A.R., 150,201
Hall, P., 150,201
Halling, M., 231,235
Hammontree, M.L., 157,198
Harbich, T.G., 209, 211, 214, 216, 218,236
Harjumma, L., 231,235
Harrold, M.J., 150,198, 200
Hatton, L., 268,286
Havelund, K., 58, 60,114
Hearst, M.A., 150,198
Hecht, H., 274,286
Hedberg, H., 231,235
Helm, R., 219,235
Hendrickson, J.J., 157,198
Henning, R., 298, 332, 334,339, 340

Hensley, B.W., 157,198
Hill, P.R., 9, 12,45
Hinchey, M., 57,114
Hines, L., 151,198
Hoben, S., 9, 11, 13,46
Hollan, J.D., 155,199
Holland, I., 220,236
Holloway, C.M., 54,114
Holzmann, G., 60,114
Hong, C., 150,200
Hong, J.I., 150,198
Horowitz, E., 5, 8, 12, 14,44
Huang, H., 218, 219,234
Huang, Y., 249, 272,286
Hughes, R.T., 41,45
Huitt, R., 219, 220,238
Humphrey, W.H., 210, 213, 217, 228,235
Hupp, J., 324,339
Hwang, L.J., 119, 120,147

I

Iannino, A., 244, 249,286
Ippolito, L.M., 247,286
Irwin, J., 56,114
Ivory, M.Y., 150,198

J

Jazayeri, M., 52,114
Jeffery, R., 11, 12,45, 209,236
Jeffrey, D.R., 11,45
Jeffrey, R., 12,46, 215,234
Johnson, P., 210,235
Johnson, P.M., 209,237
Johnson, R., 219,235
Jones, C.L., 5, 6, 11, 12,45, 59,114, 210, 218,

235
Jones, M., 58, 60,114
Jones, T.C., 11,45
Jónsson, A.K., 180,198
Joslin, D., 178,200
Jüttner, P., 220,236

K

Kaasgaard, K., 150,198
Kajla, A., 170,198

344 AUTHOR INDEX

Kamhi, G., 121, 144,147
Kapur, D., 71,116
Kasik, D.J., 168,199
Kautz, H., 127,147
Kelly, C.D., 150,200
Kemerer, C.F., 9, 11, 13,44, 45, 220,235
Kernighan, B., 217,236
Khan, E.H., 218,236
Kiczales, G., 56,114
Kim, J., 145,148
Kintala, C.M.R., 249, 272,286
Kirchner, C., 63, 73,114
Kirda, E., 152,199
Kitchenham, B.A., 11, 12, 41,45
Knight, J.C., 209,236
Kolb, S., 220,236
Kornilowicz, A., 145,146
Kotelly, C.B., 150,199
Kraut, R.E., 12,45
Krishnamurthy, B., 263,286
Kuehlmann, A., 145, 146,146
Kukula, J., 145,147

L

Laitenberger, O., 205, 209, 211–218, 221, 224,
234, 236

Lampert, R., 222,237
Lamping, J., 56,114
Land, L.P.W., 209,236
Landay, J.A., 150,198
Lange, D.B., 220,236
Lanubile, F., 205, 215–217,234
Laroussinie, F., 61,113
Larsen, G., 150,199
Lawrence, M.J., 9, 11, 13,45
Lehman, M.M., 11, 13,44
Lejter, M., 220,236
Leonard, T., 144,147
Letovsky, S., 222,237
Leveson, N.G., 52, 53,114, 242,286
Levi, M.D., 150,199
Levine, D.L., 150,200
Lewski, F.H., 207,234
Lichtenstein, O., 126,147
Lieberherr, K.J., 220,236
Lifschitz, V., 180,199

Lim, W.C., 251,286
Lindholm, T., 86, 92,114
Linger, R., 213,236
Linkman, S.J., 41,45
Littman, D., 222,237
Liu, Y., 9, 11, 13,46
Logemann, G., 138,147
Loingtier, J., 56,114
Lokan, C.J., 12,45
Lopes, C.V., 56,114
Loveland, D., 138,147
Lowry, M., 58, 60, 62,114
Lyu, M., 242,286
Lyu, M.R., 263, 266, 267,286

M

Macdonald, F., 219, 227, 230,236
Madachy, R., 5, 8, 12, 14,44
Madigan, C., 141,148
Madre, J.C., 119, 120,147
Maeda, C., 56,114
Mahajan, R., 150,199
Maki, H., 6, 12, 41,46
Malec, H., 9, 11, 13,46
Malik, S., 141,148
Mandrioli, D., 52,114
Mann, C., 53,115, 328,339
Manna, Z., 62,115
March, S., 279,286
Marciniak, J.J., 279,286
Marold, K.A., 150,199
Martelli, A., 73,115
Martin, J., 208,237
Matthews, P., 220,238
Maxwell, K., 5, 6, 8, 9, 11, 12,45, 46
Maxwell, K.D., 12, 16, 17,46
May, J., 150,201
Maya, M., 6,46
McConnell, S., 2,46, 62,115
McDonald, J., 61,115
McGarry, F.E., 13, 43,44, 45
McKenzie, P., 61,113
McKenzie, R., 305,339
McMillan, K., 60,115
McMillan, K.L., 119, 120, 145,147
Mehlich, M., 71,113
Memon, A.M., 172, 178, 194, 195,199

AUTHOR INDEX 345

Mendhekar, A., 56,114
Meyers, S., 220,236
Miller, J., 219, 220, 227, 230,235, 236
Miller, S., 60,115
Mills, H.D., 213,234, 236
Mokkedem, A., 144,147
Montanari, U., 73,115
Moore, J., 60,115
Moskewicz, M., 141,148
Mukherjee, P., 59,115
Murphy, G.C., 220,236
Musa, J., 244, 249,286
Myers, B.A., 150, 155, 160, 161,199, 200
Myers, E.A., 209,236
Myers, W., 9, 11, 12,46
Myhlendorph, T., 150,198

N

Nakamura, Y., 220,236
National Aeronautics and Space

Administration, 217,236
National Research Council, 265,286
Neuman, P.G., 283,286
Nevalainen, R., 6, 12, 41,46
Nibaldi, G., 306,339
Nielsen, J., 220,237
Nilsson, N., 61,114, 177,198
Nissanke, N., 59,115

O

Okumoto, K., 244, 249,286
Oligny, S., 6,46
Olsen Jr., D.R., 150,200
Osterweil, L., 150,200
Ostrin, J., 150,200
Owre, S., 60,115

P

Page, G.T., 13,45
Page, J., 43,44
Pajerski, R., 43,44
Paolucci, M., 178,200
Park, S., 58, 60,114
Parnas, D.L., 58,115, 208, 214,237

Patton, G.C., 170,198
Pecheur, C., 58, 60,114
Pednault, E.P.D., 177, 180,200
Peled, D., 118, 126,147
Penberthy, J.S., 178,200
Penix, J., 58, 60,114
Pertucci, P., 61,113
Petersson, H., 211,237
Petit, A., 61,113
Pettorossi, A., 61,115
Pfleeger, C., 294, 307,339
Philpot, A., 62,114
Pinto, J., 222,237
Pistore, M., 144,147
Plaisted, D., 145,148
Pnueli, A., 126,147
Pollack, M.E., 172, 178, 194, 195,199, 200
Pollock, L., 150,201
Porter, A., 211,237
Porter, A.A., 205, 209, 211–215, 221, 224,237
Pressburger, T., 62,114
Proietti, M., 61,115
Purtilo, J., 59,114
Putnam, H., 138,147
Putnam, L.H., 9, 11, 12,46

R

Ramakrishna, Y.S., 150,198
Reeves, G., 58, 60,115
Regnell, B., 217,237
Rehesaar, H., 3, 5–7,46
Reifer, D., 5, 8, 12, 14,44
Reiss, S.P., 220,236
Resler, R., 68,113
Richards, J., 220,237
Richardson, D.J., 150,200
Rifkin, S., 211,237
Ritchie, D., 217,236
Robertus, P., 150,199
Roper, M., 219, 220, 222–225,235, 236
Rosenblum, D.S., 150,200
Rothermel, G., 150,200
Roveri, M., 144,147
Ruhe, M., 11, 12,45
Runeson, P., 217,237
Rushby, J., 54, 60,115

346 AUTHOR INDEX

Russell, D., 316,339
Russell, G.W., 207, 228,237
Ruthberg, Z., 305,339

S

Säflund, M., 144,148
Sakallah, K.A., 138, 139, 145,148
Saltzer, J., 303, 326,339
Sauer, C., 209,236
Scanlon, T., 150,200
Schlich, M., 221,236
Schneider, G.M., 208,237
Schneider, V., 13,46
Schnoebelen, Ph., 61,113
Scholten, H., 231,238
Schroeder, M., 303, 326,339
Schroeder, W., 150,200
Sebastiani, R., 144, 145,146, 147
Sebesta, R., 55,115
Selby, R.W., 214,237, 262, 271,286
Selman, B., 127,147
Sethi, R., 75,113
Sha, L., 242, 250, 264,286
Shankar, N., 60,115
Shapiro, E., 57,115
Shaw, K., 150,199
Sheeran, M., 137, 144,148
Shehad, N.M., 150,201
Shehady, R.K., 164,200
Shen, V.Y., 4, 11, 13,45
Shepperd, M., 9,46
Shneiderman, B., 150,199
Shoch, J., 324,339
Shtrichman, O., 121, 138, 143, 145,148
Shull, F., 205, 215–217, 221,234, 237
Siewiorek, D.P., 164,200
Silva, J.P.M., 138, 139, 141,148
Singh, N., 255,285
Singh, S., 137,148
Siweiorek, D., 248,286
Siy, H.P., 209, 211–213, 215,237
Smith, D., 61,115
Snitker, T., 150,198
Snyder, C., 150,200
Soffa, M.L., 150, 172, 178, 194, 195,198, 199
Soloway, E., 222,237

Somenzi, F., 162,198
Sorensen, H.-E., 150,198
Sørumgård, S., 205, 215–217,234
Souter, A., 150,201
Spool, J.M., 150,200
Srivas, M., 60,115
St-Pierre, D., 6,46
Stålmarck, G., 137, 144,147, 148
Steece, B., 5, 8, 12, 14,44
Stephenson, W.E., 9,46
Sterling, L., 57,115
Stone, P., 178,201
Stoyen, A.D., 251,286
Strauss, S.H., 228,237
Streeter, L.A., 12,45
Strichman, O., 145,147
Stringer, M., 12,45
Surmann, D., 6, 11, 12,45
Swarz, R., 248,286
Symons, C.R., 6,46
Szczur, M., 150,200

T

Tacchella, A., 121, 144,147
Tai, A.T., 274,286
Tasker, P., 306,340
Taub, A.H., 323,339
Taylor, R.N., 150,200
Teitelbaum, T., 232,234
Tervonen, I., 213,237
Thadhani, A.J., 11,46
The, L., 157,200
Thelin, T., 211, 217,237
Tolmach, A., 71,116
Toman, C.A., 209, 211, 213, 215,237
Tombaugh, J.W., 172,201
Townsend, P., 220,236
Travassos, G.H., 205, 221,237
Trotter, E., 306,340
Tsai, T., 255,285
Tsai, W.T., 208, 218, 219,234, 237

U

Ullman, J., 75,113
Underwood, I., 62,114

AUTHOR INDEX 347

V

van Dijk, C., 231,238
van Genuchten, M., 231,238
Van Slack, T., 207,235
Van Wassenhove, L., 5, 8, 11, 12,46
Vardi, M.Y., 121, 144,147
Vaughn, R., 298, 332, 334,340
Veloso, M., 178,201
Vharma, R., 63, 86,114
Visser, E., 63, 71, 78,116
Visser, W., 58, 60,114
Vlissides, J., 219,235
Vogel, D., 231,238
Vokolos, F.I., 159,197
von Mayrhauser, A., 220,235
Vosburgh, J., 9, 11, 13,46
Votta, L., 211,237
Votta, L.G., 205, 209, 211–215, 221, 224,237,

238

W

Waldinger, R., 62,115
Waligora, S., 43,44
Walkerden, F., 12,46
Wallace, D.R., 247,286
Wallace, M., 275,286
Walston, C.E., 4, 9, 11, 13,46
Ward, M., 71,116
Ware, W., 296, 297,340
Weiss, D.M., 208, 214,237
Weld, D.S., 174, 178, 180,200, 201
Weller, E.F., 207, 228,238
Weyuker, E.J., 150, 159,197, 200

White, J., 58, 60,114
White, L., 154, 166, 170,201
Whittemore, J., 145,148
Wichmann, B.A., 59,115
Wick, D.T., 150,201
Wieczorek, I., 6, 11, 12,45
Wilde, N., 219, 220,238
Winter, V., 63, 68, 71, 74, 76, 86,113, 114,

116
Witt, B., 213,236
Wohlin, C., 211,237
Wolverton, R., 9, 11, 13,46
Wong, A.Y.K., 172,201
Wong, P.S., 220,236
Wood, M., 219, 220, 222–225,235, 236
Wright, T., 12,45

Y

Yang, C.-S., 150,201
Yellin, F., 86, 92,114
Yemini, S., 282,286
Yemini, Y., 282,286
Yuhas, C.M., 244,285

Z

Zachary, G., 62,116
Zelkowitz, M., 43,44, 59,114, 205, 215, 216,

217,234
Zhang, L., 141,148
Zhao, Y., 141,148
Zhu, H., 150,201
Zhu, Y., 120, 135, 141, 145,146, 148
Zimmerer, P., 220,236

Subject Index

A

Abstract syntax trees (ASTs), 72
Abstractions, 145, 225, 226
Acceptability, psychological, 304
Access auxiliary function, 105–6
Accountability, 292
Active Design Reviews, 208, 214
ADL, 177
Adobe Acrobat Reader, 155
Aggregation, 294–5
Algebraic specification languages, 59
Alleles, 169
Analysis of variance, 22–3, 24
ARPANET, 326
Artificial Intelligence, 127
Aspect-oriented programming (AOP), 56–7
Assembly code, 66
Assignments, 138, 139

implied, 139
ASSIST, 230–1
Assurance evaluation, 306
Atomic propositions, 122, 126, 127
Attack scripts, automated, 335
Availability, 249, 253, 292, 301

B

Back loop, 127
Backtracking, 138, 139

non-chronological, 139
Base longevity interval, 274
BDDs, 119–21

compared with BMC, 121, 141–4
FORECAST model checker, 143, 144
RULEBASE model checker, 142, 143

BEA, 246
Behavioral models, 168–70

Bell and LaPadula model, 307
Bell Laboratories, 272, 273
Benchmarking, 17, 40–3

data collection, 40–1
data comparability, 41–2
data sources, 43
project comparability, 42

Binary Decision Diagrams,see BDDs
Block structuring, 55
BMC, 120–1, 126–9

compared with BDDs, 121, 141–4
completeness techniques, 134–8
conclusions, 144–6
propositional SAT solvers, 138–41
reduction to SAT, 129–34
THUNDER, 143, 144

BNF grammars, 72, 75, 76
Boolean Constraint Propagation (BCP), 138,

139
Bounded Model Checking,see BMC
Bounded semantics, 128, 129, 132
Brooks Act (1965), 305
Buffer overflows, 254–7
Bugs, 53, 244–5
Business process reengineering (BPR), 332
Byte code evaluator (BCE), 104–5

C

C code documents, 216
C language, 256–7, 268
Canonical forms, 87–8, 102, 108

offset indexing (Canonical Form 3), 87,
99–101, 107

relevant constant pool construction
(Canonical Form 2), 87, 98–9, 107

removal of indirection (Canonical Form 1),
87, 88–98, 107, 108

349

350 SUBJECT INDEX

resolution of classes (Canonical Form 5), 87
resolution of fields (Canonical Form 4), 87
resolution of methods (Canonical Form 6),

88
Causal links, 174
Certified code, 325–6
CERTs, 325
Checkpoint mechanisms, 272
Citigal Labs, 283–4
Class libraries, 255
Classes, 55–6, 219, 222
Classfiles, 81, 92

canonical forms,see Canonical forms
in SSP, 83

Classloader, 81, 82
correctness of, 83–4
design verification, 103–8
transformation-based, 86–8

Cleanroom development method, 213–14
COCOMO model

effort, 8, 250, 274, 275
evolution of productivity factors, 9, 14
line of code measure, 5

Code documents, 216, 218, 228
CodeSurfer, 232
Collaborative Software Review System

(CSRS), 210
Common Criteria (CC), 311–16
Common language runtime (CLR), 255
Compaq, 141, 144
Compilers, 55, 228
Complete interaction sequences (CIS), 166–8,

195, 196
design tests, 167
implementation tests, 167

Completeness, 302
techniques for, 134–8

completeness threshold, 134–6
induction, 137–8
liveness, 136–7

Component-based software development,
69–70

Concerns, separation of, 56–7, 68
Concurrent systems, 60
Confidentiality, 292, 301, 306, 307
Conflict clauses, 140
Conflict-driven decisions, 141
Conjunctive Normal Form (CNF), 138

Consistency, 246, 280, 281–2
Constant pool resolution, 86–8

use of canonical forms in,see Canonical
forms

Constraint Solving Problem (CSP) tools, 139
Context of program, 59
CORBA, 282
Correctness, 50, 68, 74, 102

SSP-classloader, 83–4
type, 78

Correlation analysis, 22, 35–6
Cost estimation models, 16, 43–4
Coverage criteria, 156, 159, 172, 194
Cracking attacks, 294
Cryptography, 293, 295
CTL model checking, 145

D

Data integrity,see Integrity
Data states, 292
Database application testing, 164
Davis–Putnam procedure, 138, 139
DCOM, 282
Deadlocks, 278
Death rates, 169
Debuggers, 55
Declarative programming, 57
Defect, definition of, 206
Defense Science Board report (1970), 297–301
Defensive perimeters,see Security, perimeters
Degradation, graceful, 284
Denial of service, 290, 291, 292, 324
‘diff’ function, 262
Disjunction(s), 96–7, 126
Distributed Common Object Model (DCOM),

282
DLIS strategy, 141
DPLL, 138

E

Eager execution, 81
Editors, 55
Effects, representation of, 180
Effort measurement, 8–9, 31, 41, 42
Embedded systems, 80–102

in high-consequence applications, 81

SUBJECT INDEX 351

SSP project, 82–6
transformation-based classloader, 86–8
see also Canonical forms

Encryption, 293, 300, 317
Environments

closed, 297, 298
open, 297, 298, 299, 300

ESA database
productivity factors, 11
source lines of code (SLOC), 5

Eval functions, 103, 104
Evaluated products list (EPL), 309
Evaluation Assurance Level (EAL), 313–16
Evaluation criteria classes, 307, 308–9
Events

definition, 178
menu-open, 183
representation by operators, 179
restricted-focus, 182
system-interaction, 183, 184
termination, 182
unrestricted-focus, 182

Exception handling, 266–7, 272
Experience database, 25, 41

algorithm measures, 6
business type, 11
effort, 9
evolution of productivity factors, 15

Extreme programming, 337

F

Fail-safe systems, 277
Failure rate, 244, 248–9
Failure risks, 300
Falsification, 119, 146
Fault density metric, 243
Fault tolerant computers, 240–1
File replication, 272
Finally operator, 125
Finite state machines (FSMs),see State

machine models
Finite state systems, 118, 122, 134
Firewalls, 291, 304, 325, 327, 330

temporal, 265
Formal methods, 54, 57–8
Formal specifications, 51, 58–9, 62, 68

Formal Technical Asynchronous review
method (FTArm), 210

Fortran, 59
Function points, 6–8, 31, 41
Functional programming, 56
Functional Size Measurement (FSM) methods,

7–8
Functors, 56

G

Genetic algorithms, 168–70, 195, 196
Gilb and Graham/Jones Inspection, 210
Globally operator, 125
Grammars, 75, 91–3

BNF, 72, 75, 76
context-free, 74, 75, 91

Graphical user interfaces,see GUI interaction
testing; GUIs

Graphs, in preliminary analyses, 18–21
Groupware Support Systems (GSSs), 231
GUI component, 181–2
GUI interaction testing, 150–2, 154–97

AI plan generation, 173–8, 195, 197
behavioral models, 168–70
challenges in tool development, 159–62
controllability problem, 159
coverage criteria, 156, 159, 172, 194
description, 154–5
guidelines, 194–5
record/playback tools, 157–9
regression testing, 156–7, 160–1
state machine model use,see State machine

models
statistical models, 170–2
steps, 155–7
test case execution,see Test cases
test input, 156
test oracles, 156, 159–60, 161, 195
see also PATHS

GUIs
checklists for inspections, 150, 195
responsibilities for, 166
in safety-critical systems, 150
testing types, 153–5
unit testing, 153–4, 195–6
usability evaluations, 150, 152–3, 172, 195

comparison evaluation, 153

352 SUBJECT INDEX

exploratory evaluation, 152–3
threshold evaluation, 153

see also GUI interaction testing

H

Hardware design, 145–6, 240, 241
Hardware fault tolerance, 240–1
HATS, 74–80, 91, 97–8, 100, 101

architecture, 74–5
disjunctions, 96–7
dynamic transformations, 78–80
iteration operators, 97
library calls in, 100
strategy in, 97–8
writing of transformation rules, 76–7

Heisenbugs, 245, 250
High-assurance software systems, 50, 51, 108,

302
approaches to development, 54–62

aspect-oriented programming (AOP),
56–7

declarative programming, 57
development steps, 54–5
formal methods, 57–8
formal specifications, 58–9
functional programming, 56
imperative programming, 55, 56, 57, 79
model checking, 60–1
object-oriented programming, 55, 56, 57
synthesis, 61–2
theorem proving, 59–60, 62

development phases, 51, 52
High-Assurance Transformation System,see

HATS
High-consequence systems, 50–4, 81, 82, 108

definition, 50
software development difficulties, 51–3
software development risks, 53–4

Histograms, 18–19, 20, 33, 34
Humphrey’s inspection process, 210

I

IBM, 120, 141, 142, 143
ICICLE, 230
IFPUG, 6, 41
Imperative programming, 55, 56, 57, 79

Implementation, 51, 59, 69, 102, 108
Implication graphs, 140
Implication operator, 126
Indirection, removal of, 87, 88–98, 107, 108
Induction, 137–8
Inductive invariant, 137
Inference, 295
Inference rules, 59
Info auxiliary function, 105–6, 107
Information assurance (IA), 289–95, 335–8

assurance
definition, 291, 302
degree of, 291
measurement of, 306, 327, 338
varying needs for, 336

defensive operations, 290, 291
experience benefits, 336–7
insider threats, 290, 294
offensive operations, 291
outsider threats, 290
programming practice concerns, 337
system integration concerns, 337–8
see also Security

Information Protection Network (IPN), 329
Information warfare, 290
Infrastructures, critical, 318–19
Inheritance, 55–6, 219, 220
Integrity, 292, 301
Intel, 120, 121, 141, 143, 144
Intermediate forms, 63

correctness of, 69
in TOP examples, 65, 66, 68

Interpretations, 104, 105–7, 108
ISO Standard 15048, 311, 328
Isolation, 302
ITSEC, 310, 315

J

Java, 256, 257
applets, 282, 323
classfiles,see Classfiles
program example, 109–11

classfile for, 111–12
resolved classfile for, 113

Java Swing, 153
Java Virtual Machine,see JVM
Jeopardy state, 273–4

SUBJECT INDEX 353

JFCUnit, 153, 154
JVM, 81, 103

linking phase, 83
structure of classfiles in, 92

K

k-loop, 128, 129, 130
(k, l)-loop, 128, 129, 132
Kripke structure

definition, 122
property holds for, 125

L

Labeling function, 122
Latin squares, 170–2, 197

orthogonal, 171, 195, 197
Laturi database,see Experience database
Leakage points, 300
Learning, 140
Leverage, 25
Libft, 272
Libsafe, 255–6
Lines-of-code, 3–6
Lisp, 57
Literals, 179–80
Liveness properties, 124, 125, 136–7
Logic bombs, 322
Logic programming, 57
Loop condition, 130
LTL, 124–5, 126

translation of LTL formula, 130
general, 132
for a loop, 131
without a loop, 131–2

M

Malicious code, 321–6
Management by delegation, 282
Mean Time To Failure,see MTTF
Mean Time To Repair,see MTTR
Meander mode, 170
Mediation, complete, 304
Methods, resolution of, 88
Microsoft, 247

DCOM, 282
development approach, 62

.NET Framework, 254–5
Windows, 53, 276, 328

Mobile code, 294, 321, 323, 325, 326
Modal windows, 181, 182
Model checking, 60–1, 119, 121–6, 151

bounded,see BMC
bounded semantics of, 128, 129, 132
CTL, 145
for GUIs, 151
standard technique for, 126
symbolic, 119, 120

Model languages, 59
Modeless windows, 181, 182
MTTF, 249, 250
MTTR, 249
Multi-version programming,see N -version

programming
Multicollinearity, 23, 35
Mutual exclusion problem, 123–4

N

N -Fold Inspections, 208
N -version programming, 241–2, 272, 283
NASA

Apollo missions, 279
Mars mission, 276–9
Pluto mission, 274

National Computer Security Center (NCSC),
306–10

National Institute of Standards and
Technology,see NIST

National Security Agency (NSA), 306, 307,
310, 317

NCSC, 306–10
NCSLOC, 251
Negation normal form (NNF), 127
NEMOS, 264–5
Netlists, 146
Network security, 326–7
Next time operator, 125
NIST, 305, 307, 311, 316, 317, 328
Non-repudiation, 292, 301
Non-terminal symbols, 75
Novice user behavior, 168–70, 196
Nqthm theorem prover, 60
NSA, 306, 307, 310, 317

354 SUBJECT INDEX

O

Object reuse, 300
Object-oriented paradigm, 55, 56, 57, 218–27,

279–82
benefits, 218
code inspection, 218–27, 228, 233, 280

ad-hoc, 223–4, 225
advice on, 226–7
checklists, 221, 224, 225–7
chunking, 222, 233
current state, 220–2
delocalisation issues, 222–4, 228, 232,

233
inadequacy of current approaches, 223–4
investigation of, 222–3
Perspective-Based Reading (PBR), 221,

224, 227
problems, 218–20
reading techniques, 221, 222, 223–6

dynamic binding, 219, 220
effectiveness improvements by, 279–81
inheritance, 55–6, 219, 220
in large-scale projects, 281–2
polymorphism, 56, 219

Offset indexing, 87, 99–101, 107
Open source software, 304
Operator-event mappings, 185, 186, 187, 188,

189, 194
Operators, planning

component, 185, 186–8, 194
prefix of, 186
suffix of, 187

definition of, 174, 179
instantiated, 173, 175
modeling, 185–8
preconditions, 174, 179
primitive, 185
system-interaction, 185, 194

Optimization, 71
Orange Book, 307, 310–11
Orbix, 282
Ordering constraints, 174, 176
Outputs, bounds on, 263

P

Parse trees, 93, 94
Parsers, 72, 75

Path, 122, 163, 167
definition, 163
initialized, 122

Path quantifiers, 127
PATHS test case generator, 173, 178–94

creation of GUI model, 178–84
plan-generation phase, 173, 188–92
planning operator modeling, 185–8
setup phase, 173
test case generation, 188

algorithm for, 192–4
Patriot Act (2001), 320–1
Pattern, 72, 73, 76
PDD-63, 319–20
PDDL, 177
Penetrations, 290, 291, 298

penetration testing, 290, 324, 334
recovery from, 331
resistance to, 314, 331

Periods processing, 299
Permission levels, 321
Personal Software Process (PSP), 228
Perspective-based reading (PBR), 215–17,

221, 224, 227, 232
Phased Inspections, 209
Piton, 60
Plan space planners, 177–8
Planning, deterministic, 127
Planning Assisted Tester for grapHical user

interface Systems,see PATHS
Planning Assisted Testing (PAT), 173
Plans

partial, 177
partial-order, 174–6, 177, 190–1, 194
total-order, 174, 177

Preparation, 83
Privilege

least, 304
separation of, 304

Procedural attachments, 180
Process aging, 273–4
Productions, 75
Productivity factors, 9–15

business type, 11
data analysis methodology, 15–25

data validation, 16–17, 31–2
model checking, 23–5

SUBJECT INDEX 355

multi-variable model building, 22–3
preliminary analyses, 18–22, 33–6
variable and model selection, 17–18, 32–3

databases including, 11, 12–13
evolution of, 13–15
language, 5, 31, 32
multipliers, 38
overview, 10
quality requirements, 38–9, 44
staff tool skills, 39
see also Software development productivity

Program state, 103
Program synthesis,see Synthesis
Program transformation systems,see

Transformation systems
Project delivery rate, 5
Prolog, 57
Proofs as programs, 62
Propositional formula, 130
Propositional Linear Temporal Logic (PLTL),

see LTL
Protection Profile (PP), 312
Prototyping, rapid, 161
Pullback mode, 170
PVS theorem proving system, 60

R

Radiation hardness, 84, 85
RAMP, 309
Reachability analysis, 124
Reachability diameter, 134–5, 145–6
Record/playback tools, 157–9
Recovery blocks, 242, 267–8, 272
Recurrence diameter, 135–6
Refactoring, 261–2
Reference monitor, 301–3
Reference validation mechanism, 301, 302
Regression analysis, stepwise, 22
Regression testing of GUIs, 156–7, 160–1
Release operator, 126
Reliability, see Software reliability
Repair rate, 249
Rephrasing, 71
REPL, 272
Replacement, 72
Report generator languages, 59
Requirements documents, 208, 216, 217, 221

Requirements volatility, 11, 34, 36
Residuals, 24–5
Resolution, 83, 86–8
Reverse engineering, 71, 271
Reward systems, 169
Rewrite rules, 63, 64, 72–3
ROM image, 83, 86–7, 100, 105, 108
Root symbol, 76, 77
Round-trip time (RTT), 258

S

Safeguard anti-missile system, 266–7
Safety properties, 124, 125, 133, 136
Safety-critical systems, 50, 51, 57, 58

GUIs in, 150
Sample-Driven Inspections, 211
Sandia Secure Processor,see SSP
SAT, 120–1, 126–7

advances, 145
CHAFF, 141, 142, 143
GRASP, 142, 143
MATHSAT, 145
propositional SAT solvers, 138–41
PROVER, 142, 144
reduction of bounded model checking to,

129–34
SIMO, 144
SMV, 142

SBU information, 306
Scenario-based reading, 214–15
Secrecy, 292, 304
Security, 254–5, 288–338

architectural design, 300–5, 329
principles of, 303–5

current awareness, 327–8
current products and procedures, 328–31
detection, 331
DSB report, 297–301
early history, 295–7
engineering process, 332–5
identification and authentication (I&A), 330
kernels, 302–3
legislation, 305, 316–21
malicious code, 321–6
multilevel, 306
network, 326–7
perimeters, 291, 292, 293, 303, 336

356 SUBJECT INDEX

physical controls, 293, 296
policy, 292, 293, 301

discretionary, 301
mandatory, 301

prevention and deterrence, 331
reference monitor, 301–3
response and recovery, 331
robust, 246
software controls, 294
standards and guidance, 305–16
see also Information assurance

Security Target (ST), 312–13
Self-checking software, 263–5
Sha Tandem High-Assurance Paradigm, 264
Sha’s reliability model, 250, 275

effectiveness extension of, 250–1
Silicon on Insulator (SOI) technology, 86
Smalltalk, 56, 220
Sniffers, 293
Social engineering attacks, 293
Software aging, 273
Software architecture, 264, 278
Software complexity, 53, 243, 250, 251–2

see also Software reliability
Software component(s), 248

fail over, 246
Software development, component-based,

69–70
Software development productivity, 3–9

case study, 25–40
data validation, 31–2
final model, 36–7
interpretation of results, 37–9
management implications, 39–40
preliminary analysis, 33–6
variable definitions table, 26–30
variable and model selection, 32–3

cost estimation models, 16, 43–4
see also Benchmarking; Productivity factors

Software engineering, 283, 284
origins of, 247–8

Software errors,see Bugs
Software fault tolerance, 240–85

application concerns, 246–7
differences between software and hardware,

241–4
relation to reliability theory, 248–50
sofware errors, 244–6

see also Software reliability
Software inspections, 204–34

effectiveness, 204–5, 207, 211, 217
false positives, 209, 217
follow-up phase, 207
inspection/meeting phase, 207, 208, 209,

210
deposition meetings, 209
as logging session, 210
pre-inspection, 211

object-oriented code,see Object-oriented
paradigm, code inspection

original process, 205–7
overview phase, 206
preparation/checking phase, 206–7, 208,

209, 210, 233
reading techniques, 211–17, 221, 222,

223–6, 233
ad-hoc, 212, 215, 223–4, 225
checklists, 212–13, 215, 216–17, 232
checklists for object-oriented code

inspection, 221, 224, 225–7
defect-based reading, 215
Perspective-Based Reading (PBR),

215–17, 221, 224, 227, 232
scenario-based reading, 214–15
step-wise abstraction, 213–14
systematic, 224–5, 226, 227
Traceability-Based Reading (TBR), 221
use-case, 225, 226, 227, 228

rework phase, 207
tool support, 227–33

current, 230–2
data collection, 229, 231
document handling, 228–9
meeting support, 229
reading support, 229–30
Web-based tools, 231–2

variations on original process, 207–11
Active Design Reviews, 208, 214
Formal Technical Asynchronous Review

Method (FTArm), 210
Gilb and Graham/Jones Inspection, 210
Humphrey’s inspection process, 210
N -Fold Inspections, 208
Phased Inspections, 209
Sample-Driven Inspections, 211

SUBJECT INDEX 357

Software libraries, 248
Software malleability, 51–2
Software manufacturing, 242–3
Software rejuvenation, 272–4
Software reliability, 50, 108, 244, 248,

250–82, 328
complexity factors, 251–72

buffer overflows, 254–7
refactoring, 261–2
self-checking software, 263–5
software reuse, 262–3, 271, 280, 281
software stability, 253–4
time lags, 257–8
trustworthy software,see Trustworthiness

effort factors, 274–82
effort estimates, 274–5
object-oriented design, 279–82
staff effectiveness, 275–6
staff skills, 275

reliability equation, 251, 273
Sha’s reliability model, 250, 275

effectiveness extension of, 250–1
time factors, 272–4

Software Requirements Specifications (SRS),
214

Software reuse, 262–3, 271, 280, 281
Software robustness, 266, 284
Software safety, 284

see also Safety properties; Safety-critical
systems

Software size measurement, 3–8, 41, 42
Software stability, 253–4
Software validation, 244, 254
Source lines of code (SLOC), 5
Specifications, formal, 51, 58–9, 62, 68
SSP, 82–6

SSP-classloader, 82, 83–4
verification of, 102–8

SSP-runtime, 82, 84–6
Start symbol, 75
State explosion problem, 122
State machine models, 162–8, 195, 196

complete interaction sequences (CIS),
166–8, 195, 196

design tests, 167
implementation tests, 167

finite state machines (FSMs), 162–4, 196
constraints, 164

context, 163, 164, 167
data modeling, 163
functional requirements, 163
process flow, 163
reduced, 166
subFSM, 167
transaction flow, 164

variable finite state machines (VFSMs),
164–6, 196

global variables, 165
State space search, 177
States

set of initial, 122
set of, 122

Step-wise abstraction, 213–14
Strategies, 63–4, 74, 97–8, 101, 108
Stress testing, 278, 279
STRIPS

assumption, 180
language, 177

Strongly Connected Components (SCC), 146
Structures, 56
Substitution, 73
Successor in a loop, 130
Syntax derivation trees (SDTs), 72, 75, 76, 77
Synthesis, 61–2, 71, 280

T

Tables, in preliminary analyses, 21–2
Target of Evaluation (TOE), 312, 313, 314
TCB, 303, 308, 309
TCP timer for resend case study, 258–61
TCP/IP, 326
TCSEC, 303, 307, 309, 310, 311

compared with Common Criteria, 312, 313,
314–15

Telon, 32, 39
Temporal formulas, 125, 126, 130

equivalent, 126
Temporal logic, 61, 124
Terminal symbols, 75
Terms, 62–3, 72

definition, 62
term languages, 86, 91, 92, 102

Test cases, 156
AI plan generation, 173–8, 195, 197

action representation, 177

358 SUBJECT INDEX

as a search problem, 177–8
challenges in generation, 159
in JFCUnit, 153
in record/playback tools, 157

Theorem proving, 59–60, 62
Therac-25 machine, 52
Time bombs, 322
Time lags, 257–8
TOE, 312, 313, 314
TOP, 62–74, 86, 102

contrast with component-based
development, 68–70

definitions, 62–4
history, 71
implementation, 102
as program development method, 68–74
simple program example, 66–8
transformation systems architecture, 72
tree structure example, 64–6
verification in,see Verification

Traceability-Based Reading (TBR), 221
Training, 275, 317, 327, 335
Transaction recovery, 249, 266
Transform,see Transformation rules
Transformation language, 72
Transformation programs, 72
Transformation rules, 63, 67–8

application of, 63
dynamic, 79–80, 90, 94–6, 97, 108
fixed-point of transformation, 64
in HATS, 76–7
in offset indexing, 99–101
syntax and semantics of, 72–4

Transformation sequences, 63, 66, 68, 102
Transformation systems, 72, 74, 84
Transformational steps, 62, 63
Transition relation, 122

faulty, 124, 133
total, 123

Translation, 71
for liveness properties, 136–7
of LTL formula, see LTL

Trap doors, 322
Tree structures, 64–6
Trojan horses, 322, 323, 324
Trusted Computing Base (TCB), 303, 308, 309
Trusted Computing Systems Evaluation

Criteria,see TCSEC

Trustworthiness, 247, 252–3, 265–72, 328
code inspections, 268–9
code reading, 269
code review, 269–70
control-free interfaces, 265
language feature usage constraint, 268
memory initialization, 271
module reuse, 271
module size limits, 271
recovery blocks, 267–8
software error recovery, 266–8

Type checking, 78–80
Type correctness, 78

U

UCPOP, 178
UML diagrams, 221
Unbounded semantics, 128, 129
Unification, 73
Until operator, 126
Users, cleared, 298

V

Variable checks, in data analysis, 23–4
Variable finite state machines (VFSMs),see

State machine models
Variable State Independent Decaying Sum

(VSIDS), 141
VDM, 59
Verifiability, 302
Verification, 83, 102–8, 119, 120, 121, 144–6

design, 102, 103–7
basis for, 107–8

implementation, 102, 108
in .NET Framework, 255

Versant, 281, 282
Virtual Private Network (VPN), 331
Viruses, 322–3, 324, 325

scanners for, 325

W

Watchd, 272
Watchdog processes, 272, 273
Waterfall process model, 8, 54
Web browser security, 293, 325
Widgets, 157

SUBJECT INDEX 359

Windows
Microsoft, 53, 276, 328
modal, 181, 182
modeless, 181, 182

WinFT, 272, 273
Witnesses, 127, 133, 136
WordPad, 178, 183–4, 185, 186, 188
Worms, 323, 324, 325

Contents of Volumes in This Series

Volume 40

Program Understanding: Models and Experiments
A. VON MAYRHAUSER AND A. M. VANS

Software Prototyping
ALAN M. DAVIS

Rapid Prototyping of Microelectronic Systems
APOSTOLOS DOLLAS AND J. D. STERLING BABCOCK

Cache Coherence in Multiprocessors: A Survey
MAZIN S. YOUSIF, M. J. THAZHUTHAVEETIL, AND C. R. DAS

The Adequacy of Office Models
CHANDRA S. AMARAVADI, JOEY F. GEORGE, OLIVIA R. LIU SHENG, AND JAY F. NUNAMAKER

Volume 41

Directions in Software Process Research
H. DIETER ROMBACH AND MARTIN VERLAGE

The Experience Factory and Its Relationship to Other Quality Approaches
VICTOR R. BASILI

CASE Adoption: A Process, Not an Event
JOCK A. RADER

On the Necessary Conditions for the Composition of Integrated Software Engineering Environments
DAVID J. CARNEY AND ALAN W. BROWN

Software Quality, Software Process, and Software Testing
DICK HAMLET

Advances in Benchmarking Techniques: New Standards and Quantitative Metrics
THOMAS CONTE AND WEN-MEI W. HWU

An Evolutionary Path for Transaction Processing Systems
CARLTON PU, AVRAHAM LEFF, AND SHU-WEI, F. CHEN

Volume 42

Nonfunctional Requirements of Real-Time Systems
TEREZA G. KIRNER AND ALAN M. DAVIS

A Review of Software Inspections
ADAM PORTER, HARVEY SIY, AND LAWRENCE VOTTA

Advances in Software Reliability Engineering
JOHN D. MUSA AND WILLA EHRLICH

Network Interconnection and Protocol Conversion
MING T. LIU

A Universal Model of Legged Locomotion Gaits
S. T. VENKATARAMAN

361

362 CONTENTS OF VOLUMES IN THIS SERIES

Volume 43

Program Slicing
DAVID W. BINKLEY AND KEITH BRIAN GALLAGHER

Language Features for the Interconnection of Software Components
RENATE MOTSCHNIG-PITRIK AND ROLAND T. MITTERMEIR

Using Model Checking to Analyze Requirements and Designs
JOANNE ATLEE, MARSHA CHECHIK, AND JOHN GANNON

Information Technology and Productivity: A Review of the Literature
ERIK BRYNJOLFSSON AND SHINKYU YANG

The Complexity of Problems
WILLIAM GASARCH

3-D Computer Vision Using Structured Light: Design, Calibration, and Implementation Issues
FRED W. DEPIERO AND MOHAN M. TRIVEDI

Volume 44

Managing the Risks in Information Systems and Technology (IT)
ROBERT N. CHARETTE

Software Cost Estimation: A Review of Models, Process and Practice
FIONA WALKERDEN AND ROSS JEFFERY

Experimentation in Software Engineering
SHARI LAWRENCE PFLEEGER

Parallel Computer Construction Outside the United States
RALPH DUNCAN

Control of Information Distribution and Access
RALF HAUSER

Asynchronous Transfer Mode: An Engineering Network Standard for High Speed Communications
RONALD J. VETTER

Communication Complexity
EYAL KUSHILEVITZ

Volume 45

Control in Multi-threaded Information Systems
PABLO A. STRAUB AND CARLOS A. HURTADO

Parallelization of DOALL and DOACROSS Loops—a Survey
A. R. HURSON, JOFORD T. LIM, KRISHNA M. KAVI, AND BEN LEE

Programming Irregular Applications: Runtime Support, Compilation and Tools
JOEL SALTZ, GAGAN AGRAWAL, CHIALIN CHANG, RAJA DAS, GUY EDJLALI, PAUL

HAVLAK, YUAN-SHIN HWANG, BONGKI MOON, RAVI PONNUSAMY, SHAMIK SHARMA,
ALAN SUSSMAN, AND MUSTAFA UYSAL

Optimization Via Evolutionary Processes
SRILATA RAMAN AND L. M. PATNAIK

Software Reliability and Readiness Assessment Based on the Non-homogeneous Poisson Process
AMRIT L. GOEL AND KUNE-ZANG YANG

Computer-supported Cooperative Work and Groupware
JONATHAN GRUDIN AND STEVEN E. POLTROCK

Technology and Schools
GLEN L. BULL

CONTENTS OF VOLUMES IN THIS SERIES 363

Volume 46

Software Process Appraisal and Improvement: Models and Standards
MARK C. PAULK

A Software Process Engineering Framework
JYRKI KONTIO

Gaining Business Value from IT Investments
PAMELA SIMMONS

Reliability Measurement, Analysis, and Improvement for Large Software Systems
JEFF TIAN

Role-based Access Control
RAVI SANDHU

Multithreaded Systems
KRISHNA M. KAVI, BEN LEE, AND ALLI R. HURSON

Coordination Models and Language
GEORGE A. PAPADOPOULOS AND FARHAD ARBAB

Multidisciplinary Problem Solving Environments for Computational Science
ELIAS N. HOUSTIS, JOHN R. RICE, AND NAREN RAMAKRISHNAN

Volume 47

Natural Language Processing: A Human-Computer Interaction Perspective
BILL MANARIS

Cognitive Adaptive Computer Help (COACH): A Case Study
EDWIN J. SELKER

Cellular Automata Models of Self-replicating Systems
JAMES A. REGGIA, HUI-HSIEN CHOU, AND JASON D. LOHN

Ultrasound Visualization
THOMAS R. NELSON

Patterns and System Development
BRANDON GOLDFEDDER

High Performance Digital Video Servers: Storage and Retrieval of Compressed Scalable Video
SEUNGYUP PAEK AND SHIH-FU CHANG

Software Acquisition: The Custom/Package and Insource/Outsource Dimensions
PAUL NELSON, ABRAHAM SEIDMANN, AND WILLIAM RICHMOND

Volume 48

Architectures and Patterns for Developing High-performance, Real-time ORB Endsystems
DOUGLAS C. SCHMIDT, DAVID L. LEVINE, AND CHRIS CLEELAND

Heterogeneous Data Access in a Mobile Environment – Issues and Solutions
J. B. LIM AND A. R. HURSON

The World Wide Web
HAL BERGHEL AND DOUGLAS BLANK

Progress in Internet Security
RANDALL J. ATKINSON AND J. ERIC KLINKER

Digital Libraries: Social Issues and Technological Advances
HSINCHUN CHEN AND ANDREA L. HOUSTON

Architectures for Mobile Robot Control
JULIO K. ROSENBLATT AND JAMES A. HENDLER

364 CONTENTS OF VOLUMES IN THIS SERIES

Volume 49

A Survey of Current Paradigms in Machine Translation
BONNIE J. DORR, PAMELA W. JORDAN, AND JOHN W. BENOIT

Formality in Specification and Modeling: Developments in Software Engineering Practice
J. S. FITZGERALD

3-D Visualization of Software Structure
MATHEW L. STAPLES AND JAMES M. BIEMAN

Using Domain Models for System Testing
A. VON MAYRHAUSER AND R. MRAZ

Exception-handling Design Patterns
WILLIAM G. BAIL

Managing Control Asynchrony on SIMD Machines—a Survey
NAEL B. ABU-GHAZALEH AND PHILIP A. WILSEY

A Taxonomy of Distributed Real-time Control Systems
J. R. ACRE, L. P. CLARE, AND S. SASTRY

Volume 50

Index Part I
Subject Index, Volumes 1–49

Volume 51

Index Part II
Author Index
Cumulative list of Titles
Table of Contents, Volumes 1–49

Volume 52

Eras of Business Computing
ALAN R. HEVNER AND DONALD J. BERNDT

Numerical Weather Prediction
FERDINAND BAER

Machine Translation
SERGEI NIRENBURG AND YORICK WILKS

The Games Computers (and People) Play
JONATHAN SCHAEFFER

From Single Word to Natural Dialogue
NEILS OLE BENSON AND LAILA DYBKJAER

Embedded Microprocessors: Evolution, Trends and Challenges
MANFRED SCHLETT

Volume 53

Shared-Memory Multiprocessing: Current State and Future Directions
PER STEUSTRÖM, ERIK HAGERSTEU, DAVID I. LITA, MARGARET MARTONOSI, AND

MADAN VERNGOPAL

CONTENTS OF VOLUMES IN THIS SERIES 365

Shared Memory and Distributed Shared Memory Systems: A Survey
KRISHNA KAUI, HYONG-SHIK KIM, BEU LEE, AND A. R. HURSON

Resource-Aware Meta Computing
JEFFREY K. HOLLINGSWORTH, PETER J. KELCHER, AND KYUNG D. RYU

Knowledge Management
WILLIAM W. AGRESTI

A Methodology for Evaluating Predictive Metrics
JASRETT ROSENBERG

An Empirical Review of Software Process Assessments
KHALED EL EMAM AND DENNIS R. GOLDENSON

State of the Art in Electronic Payment Systems
N. ASOKAN, P. JANSON, M. STEIVES, AND M. WAIDNES

Defective Software: An Overview of Legal Remedies and Technical Measures Available to Consumers
COLLEEN KOTYK VOSSLER AND JEFFREY VOAS

Volume 54

An Overview of Components and Component-Based Development
ALAN W. BROWN

Working with UML: A Software Design Process Based on Inspections for the Unified Modeling Language
GUILHERME H. TRAVASSOS, FORREST SHULL, AND JEFFREY CARVER

Enterprise JavaBeans and Microsoft Transaction Server: Frameworks for Distributed Enterprise
Components

AVRAHAM LEFF, JOHN PROKOPEK, JAMES T. RAYFIELD, AND IGNACIO SILVA-LEPE

Maintenance Process and Product Evaluation Using Reliability, Risk, and Test Metrics
NORMAN F. SCHNEIDEWIND

Computer Technology Changes and Purchasing Strategies
GERALD V. POST

Secure Outsourcing of Scientific Computations
MIKHAIL J. ATALLAH, K.N. PANTAZOPOULOS, JOHN R. RICE, AND EUGENE SPAFFORD

Volume 55

The Virtual University: A State of the Art
LINDA HARASIM

The Net, the Web and the Children
W. NEVILLE HOLMES

Source Selection and Ranking in the WebSemantics Architecture Using Quality of Data Metadata
GEORGE A. MIHAILA, LOUIQA RASCHID, AND MARIA-ESTER VIDAL

Mining Scientific Data
NAREN RAMAKRISHNAN AND ANANTH Y. GRAMA

History and Contributions of Theoretical Computer Science
JOHN E. SAVAGE, ALAN L. SALEM, AND CARL SMITH

Security Policies
ROSS ANDERSON, FRANK STAJANO, AND JONG-HYEON LEE

Transistors and 1C Design
YUAN TAUR

366 CONTENTS OF VOLUMES IN THIS SERIES

Volume 56

Software Evolution and the Staged Model of the Software Lifecycle
KEITH H. BENNETT, VACLAV T. RAJLICH, AND NORMAN WILDE

Embedded Software
EDWARD A. LEE

Empirical Studies of Quality Models in Object-Oriented Systems
LIONEL C. BRIAND AND JÜRGEN WÜST

Software Fault Prevention by Language Choice: Why C Is Not My Favorite Language
RICHARD J. FATEMAN

Quantum Computing and Communication
PAUL E. BLACK, D. RICHARD KUHN, AND CARL J. WILLIAMS

Exception Handling
PETER A. BUHR, ASHIF HARJI, AND W. Y. RUSSELL MOK

Breaking the Robustness Barrier: Recent Progress on the Design of the Robust Multimodal System
SHARON OVIATT

Using Data Mining to Discover the Preferences of Computer Criminals
DONALD E. BROWN AND LOUISE F. GUNDERSON

Volume 57

On the Nature and Importance of Archiving in the Digital Age
HELEN R. TIBBO

Preserving Digital Records and the Life Cycle of Information
SU-SHING CHEN

Managing Historical XML Data
SUDARSHAN S. CHAWATHE

Adding Compression to Next-Generation Text Retrieval Systems
NIVIO ZIVIANI AND EDLENO SILVA DE MOURA

Are Scripting Languages Any Good? A Validation of Perl, Python, Rexx, and Tcl against C, C++, and
Java

LUTZ PRECHELT

Issues and Approaches for Developing Learner-Centered Technology
CHRIS QUINTANA, JOSEPH KRAJCIK, AND ELLIOT SOLOWAY

Personalizing Interactions with Information Systems
SAVERIO PERUGINI AND NAREN RAMAKRISHNAN

	Software Development Productivity
	Introduction
	What is Software Development Productivity?
	Software Size Measurement
	Lines-of-code
	Function Points

	Effort Measurement

	What Factors Can Have an Impact on Productivity?
	How to Identify Influential Factors
	Data Validation
	Why Do It?

	Variable and Model Selection
	Why Do It?

	Preliminary Analyses
	Graphs
	Histograms
	Why Do It?
	Two-Dimensional Graphs
	Why Do It?
	Tables
	Why Do It?
	Correlation Analysis
	Stepwise Regression Analysis
	Why Do It?

	Building the Multi-Variable Model
	Checking the Model
	Numerical Variable Checks
	Categorical Variable Checks
	Testing the Residuals
	Detecting Influential Observations

	Case Study
	Data Validation
	Variable and Model Selection
	Model Selection

	Analysis Results
	Final Model

	Interpreting the Equation
	Management Implications

	Benchmarking Software Development Productivity
	Planning for Data Collection
	Benchmarking and Data Comparability
	Benchmarking and Project Comparability
	Benchmarking Data Availability

	Conclusions
	References

	Transformation-Oriented Programming: A Development Methodology for High Assurance Software
	Background
	Chapter Overview

	High-Consequence Systems
	Building Software is Deceptively Hard
	Software Development Risks

	Approaches to Developing High-Assurance Systems
	Imperative Programming
	Object-Oriented Programming
	Functional Programming
	Aspect-Oriented Programming
	Declarative Programming
	Formal ``Methods''
	Formal Specifications
	Theorem Proving
	Model Checking
	Synthesis

	Transformation-Oriented Programming
	Example
	Example

	TOP as a Program Development Method
	Contrasting TOP with Component-Based Software Development
	History of TOP
	Transformation Systems General Architecture
	Syntax and Semantics of Transformation Rules
	Example 3

	HATS
	Writing Transformation Rules
	Example 4

	Dynamic Transformations

	Embedded Systems
	The SSP Project
	The SSP-classloader
	The SSP-runtime

	A Transformation-Based Classloader
	Constant Pool Resolution

	Removal of Indirection
	Relevant Constant Pool Construction
	Offset Indexing

	Future Work: Verification
	Design Verification: Eval and BCE
	Basis for Verifying the Partial Classloader Design
	Implementation Verification

	Summary and Conclusion
	A Small Java Program
	Java Classfile
	Resolved Classfile
	References

	Bounded Model Checking
	Introduction
	Model Checking
	Bounded Model Checking
	Reducing Bounded Model Checking to SAT
	Techniques for Completeness
	The Completeness Threshold
	Liveness
	Induction

	Propositional SAT Solvers
	Experiments
	Related Work and Conclusions
	References

	Advances in GUI Testing
	Introduction
	What is GUI Testing?
	Usability Evaluation
	Types of GUI Testing

	GUI Testing Steps
	Record/Playback Tools
	Challenges
	State Machine Models
	Finite State Machines
	Variable Finite State Machines
	Complete Interaction Sequences (CIS)

	Behavioral Models
	Statistical Methods
	Hierarchical Techniques
	AI Plan Generation
	Action Representation
	Plan Generation as a Search Problem

	Creating the GUI Model
	Modeling Planning Operators
	Modeling the Initial and Goal State and Generating Test Cases
	Generating Plans
	Algorithm for Generating Test Cases

	Discussion
	Summary
	References

	Software Inspections
	Introduction
	The Beginnings of the Inspection Process
	Variations on the Original Process
	Active Design Reviews
	N-Fold Inspections
	Phased Inspections
	To Meet or not to Meet
	Gilb and Graham/Jones Inspection
	Formal Technical Asynchronous Review Method (FTArm)
	Humphrey's Inspection Process
	Sample-Driven Inspections
	Summary

	Reading Techniques
	Ad-hoc
	Checklist
	Step-wise Abstraction
	Scenario-Based Reading
	Perspective-Based Reading
	Summary

	Adapting to a New Paradigm-Dealing with Object-Orientation
	Object-Oriented Problems and Pitfalls for Inspection
	Current State of Object-Oriented Inspection
	Investigating the Inspection of Object-Oriented Code
	Inadequacy of Current Inspection Approaches
	Techniques for Object-Oriented Code Inspection
	Advice on Practical Object-Oriented Code Inspection

	Tool Support for Inspection
	Introduction
	Document Handling
	Meeting Support
	Data Collection
	Reading Support
	Current Tool Support
	Tool Summary

	Conclusions
	References

	Software Fault Tolerance Forestalls Crashes: To Err Is Human; To Forgive Is Fault Tolerant
	Background
	Fault Tolerant Computers
	Why Software Is Different from Hardware
	Software Errors (Bugs)
	Application Concerns
	Origins of Software Engineering

	Fault Tolerance Is Related to Reliability Theory
	Sha's Reliability Model
	Effectiveness Extension of Reliability Model
	Complexity Factors (C)
	Complexity
	Trustworthy Software Is Reliable
	Software Stability Is Key to Simplicity
	Buffer Overflows
	Small and Bounded Time Lags Are Critical
	Case Study: TCP Timer for Resend
	Refactoring to Simpler Software
	The Tale of ``diff'': Real-World Refactoring
	Reuse `as is'
	Boundary and Self-Checking Software
	Trustworthiness in the Large
	First Constraint: Control-free Interfaces.
	Second Constraint: Software Error Recovery.
	Third Constraint: Recovery Blocks.
	Fourth Constraint: Limit the Language Features Used and Inspect the Code.
	Code Reviews are needed to determine:
	Code Reading.
	Code Review.
	Code Extract:

	Fifth Constraint: Limit Module Size and Initialize Memory.
	Sixth Constraint: Reuse Modules Without Change.
	In Summary.

	Time Factors (t)
	Program Execution Time-Software Rejuvenation

	Effort Factors (E)
	Effort Estimates
	Hire Good People and Keep Them
	Effectiveness of Programming Staff
	Case study: the Mars Explorer
	Some Solutions.
	Returning to the Mars Mission.

	Object-Oriented Design Improves Effectiveness
	Corroborating Object Experiences
	Objects in Large-Scale Projects

	Summary
	Acknowledgements
	References

	Advances in the Provision of System and Software Security- Thirty Years of Progress
	Introduction
	Concepts of Information Assurance
	Overview
	Background Concepts

	A Historical Perspective
	Introduction
	The Defense Science Board Report
	The Reference Monitor
	More Architectural Principles
	A Government Infrastructure Is Built
	Birth of the National Computer Security Center (NCSC)
	Experience with the Orange Book
	The Common Criteria (CC)

	Other Notable Legislation
	Worms, Viruses and other Malevolent Code
	Summary and Concluding Comment

	Today's Threat and Countermeasures
	Overview and Awareness
	Products and Procedures
	The Art of Security Engineering

	Conclusions
	Acknowledgements
	References

	Author Index
	Contents of Volumes in This Series

