
Contents

CONTRIBUTORS . ix
PREFACE . xiii

Collaborative Development Environments

Grady Booch and Alan W. Brown

1. Introduction . 2
2. The Physics of Software . 3
3. A Day in the Life of a Developer . 6
4. The Emergence of Collaborative Development Environments 8
5. Creating a Frictionless Surface . 9
6. A Survey of Collaborative Sites . 12
7. Collaborative Development Environment Features 21
8. The Evolution of Collaborative Development Environments 24
9. Summary . 25

References . 27

Tool Support for Experience-Based Software Development
Methodologies

Scott Henninger

1. Experience-Based Approaches for Software Engineering 30
2. Experience-Based Knowledge Management 32
3. Tool Support for Experience-Based Approaches 41
4. The BORE Software Experience Base Tool 44
5. Putting BORE into Practice: Some Starting Points 61
6. Other Related Research . 65
7. Open Issues and Future Work . 69
8. Conclusions . 72

Acknowledgements . 73
References . 73

v

vi CONTENTS

Why New Software Processes Are Not Adopted

Stan Rifkin

1. Change Is Harder Than We Think . 84
2. The Answers . 86
3. Beginning the Inquiry . 93
4. Process Descriptions of Implementation 96
5. Diffusion: The Most Popular Explanation 101
6. Resistance . 105
7. Path Dependence Theory . 109
8. Process Studies . 110
9. Factor Studies . 110

10. Case Studies . 115
11. Conclusion . 115

Acknowledgements . 116
References . 116

Impact Analysis in Software Evolution

Mikael Lindvall

1. Introduction . 130
2. Related Work . 135
3. The PMR-Project and Its Context . 143
4. Evaluation on the Class Level . 151
5. Evaluation of RDIA on the Member Function Level 156
6. Summary of Statistics . 162
7. Evaluation of RDIA per Requirement . 163
8. Models vs. Actual Implementation . 169
9. Class Size . 178

10. Relations between Classes . 182
11. Discussion of Findings . 190
12. Comments Regarding RDIA . 193
13. Summary and Conclusions . 205

References . 207

CONTENTS vii

Coherence Protocols for Bus-Based and Scalable Multiprocessors,
Internet, and Wireless Distributed Computing Environments: A Survey

John Sustersic and Ali Hurson

1. Introduction and Background . 212
2. Broadcast (Bus-Based) Protocols . 216
3. Message-Passing (Directory Based) Protocols 227
4. Coherence on the World Wide Web . 246
5. Wireless Protocols . 259
6. Summary and Conclusions . 267

Acknowledgements . 273
References . 273

AUTHOR INDEX . 279
SUBJECT INDEX . 289
CONTENTS OF VOLUMES IN THIS SERIES 297

Contributors

Grady Booch is recognized internationally for his innovative work on software ar-
chitecture, modeling, and software engineering process. His work has improved the
effectiveness of software developers worldwide. He has been with Rational Software
Corporation as Chief Scientist since its founding in 1980. Grady is one of the original
developers of the Unified Modeling Language (UML) and was also one of the origi-
nal developers of several of Rational’s products including Rational Rose. Grady has
served as architect and architectural mentor for numerous complex software systems
around the world. Grady is a member of the Association for Computing Machinery
(ACM), the Institute of Electrical and Electronics Engineers (IEEE), the American
Association for the Advancement of Science (AAAS), and Computer Professionals
for Social Responsibility (CPSR). He is also an ACM Fellow and a Rational Fellow.
Grady received his BS in engineering from the United States Air Force Academy in
1977 and his MSEE from the University of California at Santa Barbara in 1979. He
can be reached at eqb@rational.com.

Dr. Alan W. Brown is Director of the Rational Development Accelerator team at
Rational, helping customers to be more productive in the application of Rational
tools and services. In this capacity Alan manages intellectual property artifacts sup-
porting Rational’s desktop products, including Rational Rose and Rational XDE. Be-
fore joining Rational Software through the acquisition of Catapulse in 2001, he was
Chief Technology Officer for Sterling Software’s Application Development Group
(ADG) where he was responsible for advanced technology activities across the or-
ganization. Previously, Alan had spent five years at the Software Engineering In-
stitute (SEI) at Carnegie Mellon University in Pittsburgh, Pennsylvania. There he
led the CASE environments project advising on a variety of U.S. government agen-
cies and contractors on the application and integration of CASE technologies. Alan’s
primary research interests are in component-based development, software engineer-
ing environments, and enterprise application development tools. He has published
over 40 papers, edited three books and is the author of five books. Alan received his
PhD from the University of Newcastle-upon-Tyne, UK. Dr. Brown can be reached at
alan.brown@rational.com.

ix

mailto:eqb@rational.com
mailto:alan.brown@rational.com

x CONTRIBUTORS

Prof. Scott Henninger is with the Department of Computer Science and Engineer-
ing, University of Nebraska–Lincoln. Dr. Henninger received in Ph.D. in Computer
Science from the University of Colorado–Boulder in 1993 and a Bachelors of Sci-
ence in Electrical Engineering at the University of Southern California in 1983.
He has published 50 papers in the general research areas of software engineering
and human–computer interaction. His current research efforts focus on using the
software process and workflow management as an organizing principle for knowl-
edge building and management, particularly in the context of software development.
Techniques are being investigated that ensures that past knowledge is used as the
basis for current work and the continuous improvement of the process. His work
has been funded by the National Science Foundation for the past eight years and
has also received funding from various industry organizations, such as The Gallup
Organization, JD Edwards Company, Union Pacific, and Microsoft. In addition, he
founded the Software Design Studios for the JD Edwards Honors Program in Com-
puter Science and Management at the University of Nebraska. He is President of the
newly founded Adaptive Process Technologies company, a software process consult-
ing firm that uses the BORE framework to develop flexible development processes
that can adapt to the changing needs of organizations. Dr. Henninger can be reached
at scotth@cse.unl.edu.

Prof. A. R. Hurson is on the Computer Science and Engineering Faculty at The
Pennsylvania State University. His research for the past 20 years has been directed
toward the design and analysis of general as well as special purpose computer ar-
chitectures. His research has been supported by NSF, ONR, DARPA, NCR Corp.,
IBM, Lockheed Martin, and Penn State University. He has published over 200
technical papers in areas including database systems, multidatabases, object ori-
ented databases, computer architecture and cache memory, parallel and distributed
processing, dataflow architectures, and VLSI algorithms. He is the co-author of the
IEEE Tutorials on Parallel Architectures for Database Systems, Multidatabase sys-
tems: An advanced solution for global information sharing, Parallel architectures for
data/knowledge base systems, and Scheduling and Load Balancing in Parallel and
Distributed Systems. He is also the Co-founder of the IEEE Symposium on Paral-
lel and Distributed Processing (currently IPDPS). Professor Hurson has been active
in various IEEE/ACM Conferences and has given tutorials for various conferences
on global information sharing, dataflow processing, database management systems,
supercomputer technology, data/knowledge-based systems, scheduling and load bal-
ancing, and parallel computing. He served as a member of the IEEE Computer So-
ciety Press Editorial Board, the editor of IEEE transactions on computers, and an
IEEE Distinguished speaker. Currently, he is serving in the IEEE/ACM Computer
Sciences Accreditation Board and as an ACM lecturer. Hurson can be reached at
hurson@cse.psu.edu.

mailto:scotth@cse.unl.edu
mailto:hurson@cse.psu.edu

CONTRIBUTORS xi

Dr. Mikael Lindvall is a scientist at Fraunhofer Center for Experimental Software
Engineering Maryland. Dr. Lindvall specializes on experience and knowledge man-
agement in software engineering and on software architecture evaluation and evolu-
tion. He is currently working on ways of building experience bases to attract users to
both contribute and use experience bases tools as well as on methods to quickly
understanding an architecture and identifying architectural deviations. Dr. Lind-
vall received his PhD in computer science from Linköpings University, Sweden in
1997. Lindvall’s PhD work focused on evolution of object-oriented systems and was
based on a commercial development project at Ericsson Radio in Sweden. Contact
Dr. Lindvall at mlindvall@fc-md.umd.edu.

Stan Rifkin is a principal with Master Systems Inc., an advisory services firm spe-
cializing in software improvement. Started in 1985 at the request of the National
Headquarters of the American Red Cross, Master Systems serves the improvement
needs of organizations for which computing is strategic. Mr. Rifkin worked at the
American Red Cross, the American Association for the Advancement of Science,
and the Software Engineering Institute (SEI). He was the co-chair of the Software
Engineering Process Group (SEPG) Conference in 2002 and has started many SEPGs
and Software Process Improvement Network (SPIN) chapters, most recently in San
Diego, California. At the SEI he co-wrote the SEPG Guide and Measurement in
Practice. He recently wrote articles in IEEE Software about the place of organiza-
tional strategy in improvement. He earned a BS in Business Administration (quanti-
tative methods) from California State University at Northridge, an MS in Computer
Science at UCLA, and is near a doctorate in education at the George Washington
University in Washington, DC. He is a member of IEEE, ACM, Institute for Opera-
tions Research and Management Science, Academy of Management, and is a charter
member of the editorial board of Empirical Software Engineering. He can be reached
at sr@Master-Sytems.com.

J.P. Sustersic is a Ph.D. Candidate in the Department of Computer Science and
Engineering at The Pennsylvania State University. After completing his Bachelor’s
in Electrical Engineering at Cleveland State in 1999, John spent a year research-
ing and developing digitally controlled DC-DC power converter technology to be
used in a distributed, cooperative environment in Space Applications. Funded by a
NASA-Glenn grant, this work included helping to establish the Advanced Research
Lab at Cleveland State University as that college’s premier research organization.
John then entered the Ph.D. program at Penn State to pursue his primary research
interests of parallel and distributed computing, focusing his work on the study of
caching in heterogeneous distributed computing environments. John may be reached
at sustersi@cse.psu.edu.

mailto:mlindvall@fc-md.umd.edu
mailto:sr@Master-Sytems.com
mailto:sustersi@cse.psu.edu

Preface

This is volume 59 of Advances in Computers. This series, which has been contin-
uously published since 1960, presents in each volume several chapters describing
new developments in software, hardware, or uses of computers. In each volume we
chronicle the ever-changing landscape of computer technology. In this volume, we
cover five new developments that affect how computers are used. Four describe var-
ious components of how individuals or groups use computers to produce software
and the fifth describes hardware features that improve a computer’s performance.

The first chapter by Grady Booch and Alan W. Brown, entitled “Collaborative
Development Environments” describes environments where a team of individuals,
separated geographically, can work cooperatively on a single development. Previ-
ously all developers needed access to the same set of files to manage a development.
Today, the World Wide Web has enabled worldwide development practices via a vir-
tual development environment where stakeholders can gather to discuss issues, make
decisions, and develop products. This chapter includes many of the features that such
environments contain.

Chapter 2, “Tool Support for Experienced-Based Software Development Method-
ologies” by Scott Henninger, explores a different form of development environment
than the one described by Booch and Brown in Chapter 1. In this chapter, Dr. Hen-
ninger uses an experience base as the mechanism for capturing and sharing knowl-
edge among the stakeholders in a development. The ideas explored are based on
Basili’s Experience Factory development model and on organizational learning. The
author uses his BORE (Building an Organizational Repository of Experiences) envi-
ronment as an example of the approach he is describing.

There have been many chapters in previous volumes of the “Advances” which de-
scribe new technologies to help developers improve the software they are producing.
Sadly, many of these technologies are ignored. Why is this so? In Chapter 3, Stan
Rifkin explores this in “Why New Software Processes Are Not Adopted.” The author
explores many different formal models of process adoption, from general process
models of Repenning and Markus, which describe the process of innovation entering
the mainstream of industry, to the more software-oriented approach of Redwine and
Riddle, who try and calculate the stages of innovation and compute how long it takes
for a new technology to get adopted.

xiii

xiv PREFACE

“Impact Analysis in Software Evolution” by Mikael Lindvall looks at the require-
ments process in software development, especially as that software evolves over
time. Project planning requires accurate estimates on any tasks that are necessary
to complete. However, as a project evolves and new versions are produced, an ex-
perience base of previous versions provides data that can be used to produce better
estimates on the effort needed to produce the next version. In this chapter, a method,
called Requirements-Driven Impact Analysis (RDIA), is described, which provides
the necessary feedback from earlier versions looking at change data—counting those
attributes of the new version that changed from the previous version. This chapter
provides an in-depth case study of the effectiveness of RDIA.

In the final chapter, “Coherence Protocols for Bus-Based and Scalable Multi-
processors, Internet, and Wireless Distributed Computing Environments” by John
Sustersic and Ali Hurson, the authors discuss the problems inherent in cache memory
systems. Most modern computers use a cache memory, a small very fast memory that
is between the central processor and the large main memory, for storing information
very quickly in order to process the next instruction, while the hardware takes con-
siderably longer to move the information from the cache into the main memory. With
a single processor, there are few problems. But if a machine has multiple processors
executing from the same main memory, situations arise where one processor puts
information into the cache, and before it can be stored into the main memory, the
other processor wants to access it. This is the cache coherence problem. This chapter
discusses various solutions to this problem for various system architectures.

I hope that you find these articles of interest. Each year I try and anticipate what
developments will be most important two years hence—not any easy task. If you
have any suggestions of topics for future chapters or think that a given topic has been
ignored for too many years, let me know. If you wish to be considered as an author
for a chapter, I can be reached at mvz@cs.umd.edu.

Marvin Zelkowitz
University of Maryland,
College Park, MD, USA

Fraunhofer Center for Experimental Software Engineering
College Park, MD, USA

mailto:mvz@cs.umd.edu

Collaborative Development Environments

GRADY BOOCH AND ALAN W. BROWN

IBM Rational Software
USA

Abstract
A collaborative development environment (CDE) is a virtual space wherein all
the stakeholders of a project—even if distributed by time or distance—may nego-
tiate, brainstorm, discuss, share knowledge, and generally labor together to carry
out some task, most often to create an executable deliverable and its supporting
artifacts. CDEs are particularly useful as places where engineers may collaborate
to solve problems. Here we focus on software developers in their tasks of design-
ing, implementing, deploying, and maintaining high quality software-intensive
systems where they are physically separated and make use of the Internet as the
basis for their interactions.

In this paper, we examine the points of friction in the software development
process and the mechanisms that reduce that friction. We then survey a variety of
sites, both inside and outside the software domain, which provide some of these
mechanisms. We conclude with observations as to what a CDE is, what it is not,
and what it can become.

1. Introduction . 2
2. The Physics of Software . 3
3. A Day in the Life of a Developer . 6
4. The Emergence of Collaborative Development Environments 8
5. Creating a Frictionless Surface . 9
6. A Survey of Collaborative Sites . 12

6.1. Non-Software Domains . 12
6.2. Asset Management . 14
6.3. Information Services . 15
6.4. Infrastructure . 16
6.5. Community . 17
6.6. Software Development . 19

7. Collaborative Development Environment Features 21
8. The Evolution of Collaborative Development Environments 24
9. Summary . 25

References . 27

ADVANCES IN COMPUTERS, VOL. 59 1 Copyright © 2003 by Elsevier Science (USA)
ISSN: 0065-2458 All rights reserved.

2 G. BOOCH AND A.W. BROWN

1. Introduction

A collaborative development environment (CDE) is a virtual space wherein all the
stakeholders of a project—even if distributed by time or distance—may negotiate,
brainstorm, discuss, share knowledge, and generally labor together to carry out some
task, most often to create an executable deliverable and its supporting artifacts.

Collaboration is essential to every engineering domain. What we are interested in,
and what we focus on in this paper, are engineers working to solve problems collabo-
ratively. More specifically, we are focused on software engineers in their tasks of de-
signing, implementing, deploying, and maintaining high quality software-intensive
systems where they are physically separated and make use of the Internet as the basis
for their interactions. This scenario is commonplace, fueled by outsourcing, integra-
tion of third party software, increasing off-shore development, use of home offices,
strategic partnerships among companies, etc. The success of distributed teams work-
ing together effectively is imperative, and is a distinguishing factor in the success or
failure of many modest to large software development organizations.

From its earliest days, collaboration has been an essential part of the fabric of the
Internet: email, instant messaging, chat rooms, and discussion groups are common
collaborative elements that already exist, and so in one regard, there is nothing new
or novel here. Furthermore, collaboration among teams is already common through
the use of an increasing number of features embedded into common desktop products
such as office suites (e.g., Microsoft Office Suite and Sun StarOffice), and commu-
nications packages (e.g., Microsoft Outlook and IBM LotusNotes). In both, there is
ample support for shared document reviews, distribution of documents among teams,
and some mechanisms for performing common collaborative tasks. In a very prac-
tical sense these tools provide the baseline of collaboration functionality for today’s
software developers, though typically augmented with an assortment of open source,
proprietary, and commercial stand-alone point products.

However, what is different about the emergence of CDEs is the collection of these
mechanisms into a virtual project space, delivered over the Web and supplemented
with tools and creature comforts that are focused on the mission of that particular
team, in this case, the creation of software products. Communities of practice are
fragile things that can flourish only given the right balance of technology and user
experience, and thus creating a CDE that enables efficient, creative teamwork is a
hard thing. It is the supportive, integrated nature of a CDE that distinguishes it from
the variety of disparate functional products typically in use today.

Ultimately, the purpose of a CDE is to create a frictionless surface for development
by eliminating or automating many of the daily, non-creative activities of the team
and by providing mechanisms that encourage creative, healthy, and high-bandwidth
modes of communication among a project’s stakeholders. In this paper, we examine

COLLABORATIVE DEVELOPMENT ENVIRONMENTS 3

the points of friction in the development process and the mechanisms that reduce
that friction. We then survey a variety of sites, both inside and outside the software
domain, which provide some of these mechanisms. We conclude with observations
as to what a CDE is, what it is not, and what it can become.

2. The Physics of Software

Many aspects of software engineering have changed little in the past twenty years.
Re-reading some of the seminal works in software engineering, it is striking just
how much of that work remains relevant to today’s challenges for developing quality
software on time and within budget: abstraction, information hiding, and having a
good separation of concerns are all essential principles that apply to every manner
of software system; additionally, the requirements management, change control, ar-
chitecture, iterative development are all well-understood principles of the software
development process. However, in other ways the past two decades has witnessed
many advances in the technology, the business, and the practice of software engi-
neering.

It is useful to reflect back on the nature of software development some twenty
years ago, before the creation of the Unified Modeling Language (UML), the Ra-
tional Unified Process (RUP) and the methods that preceded it. This was the time
before the Web was a central part of the software development landscape and before
the existence of contemporary programming languages such as Java, C++, and C#.
Indeed, this was even the time before object-orientation had entered the mainstream
of development, although the roots of object-orientation were already present in lan-
guages such as Simula and Smalltalk and in abstract data type theory. Integrated
development environments (IDEs) were just emerging, with many developers still
toiling with command line tools and WYSINWYG (What You See Is Not What You
Get) editors. Methodologically, the industry was focused primarily on improving the
productivity of the individual developer, although some individuals, most notably
Gerald Weinberg, Tom DeMarco, Tim Lister, Larry Constantine, Ed Yourdon, and
Fred Brooks were urging us to consider the human side of development.

The world of software development has clearly progressed: the Web and its re-
lated technologies are a factor in virtually every project, object-oriented methods
and languages are mainstream, IDEs are far more powerful, and methods have be-
gun to address the social dynamics of the development team. Still, as Walker Royce
describes it, software development remains an industry that is marked by a disecon-
omy of scale. In other words, as project functionality, size, and complexity rise, the
incremental cost of each new line of code or additional feature tends to increase, not

4 G. BOOCH AND A.W. BROWN

FIG. 1. Forces in software.

decrease, as we might expect in a classical engineering setting. Furthermore, eco-
nomic pressures that demand faster time to market often collide with the engineering
demands for higher quality.

Figure 1 illustrates a number of pressures that weigh upon and the development
team as a whole. Cost, schedule, functionality, and compatibility (with legacy code
and with packaged software, including operating systems and middleware, both of
which are outside the primary control of the development team) are the most pressing
forces. Depending upon the particular nature of the problem domain, performance,
capacity, scalability, reliability, availability, security, and fault tolerance weigh in
with varying amounts. Technology churn represents the force caused by the rate of
change of packaged software, protocols, and hardware, also all outside the control
of the development team (except for the choice of what technology to be used).
Finally, resilience represents the force caused by the need to construct systems that
must accommodate continuous change, with different parts of the system changing
at different rates of speed.

For systems of any reasonable complexity, no one person can efficiently counter-
act these forces. Thus, for most systems under construction, operation, or revision,
software development is a team sport. In these circumstances inter- and intra-team
interaction, communication, and dynamics play as least as important a role as indi-
vidual heroics in successful software development. For this reason, understanding
more about optimizing software development team performance is a critical task of
software engineering.

There are no hard studies that tell us the median size of a contemporary develop-
ment team, but our experience, across a broad range of domains, is that teams of four

COLLABORATIVE DEVELOPMENT ENVIRONMENTS 5

to eight people are most common, with teams of one or two being the second-most
common. Beyond the range of four to eight members, the existence of larger teams
tends to tail off although we also find a peak in the curve of team size/occurrence
somewhere around the one to two hundred mark. Some systems, such as telephony,
financial, and command and control systems are so complex that they require large
teams to complete the work in a timely fashion.

To be honest, these apocryphal figures are not especially useful, because they fo-
cus only upon the immediate development team. In practice, most organizations build
systems, not just applications. Furthermore, for any interesting system that has deep
economic value to the development organization or its users, there are a number of
stakeholders beyond the core programming team who have a say in the development
process. Web-centric systems are especially sensitive to this factor, for the extended
team will typically involve network engineers, security architects, and content cre-
ators. If we take these elements into account, our experience is that the median team
size for building systems is much larger, somewhere in the range of several dozen to
one hundred or more.

Not only must an organization focus upon the efficiency of each individual team,
it must also be concerned about the efficiency of its teams of teams. In even a modest
size development organization, there might be a hundred or so developers perhaps
organized in teams of four to eight, with most focused on point products but a few
focused on infrastructure technologies that support all the other teams.1 In practice,
most of these individual teams will themselves be contiguous (that is, their cubicles
are physically close to one another), which encourages the jelling of the team through
the myriad of informal interactions that occur during the day. However, relative to
one another, these teams will typically be physically disconnected from other teams,
thus reducing the level of informal contact and in turn reducing the bandwidth and
quality of inter-team communication. Indeed, one of the problems any such organi-
zation faces is simply keeping these teams of teams on the same page. That requires
sharing project status, reducing duplication of work, engineering the architectural
seams among groups, and sharing knowledge and experience.

In short, delivering better software faster involves the rhythms of the individual
developer, the small team of developers and—for larger projects—teams of teams
and even teams of teams of teams of developers.

Relative to software development two decades ago, we now better understand the
best practices of software development that work and those that do not work. How-
ever, as Gerald Weinberg has noted, ultimately, programming is a human activity. All

1For example, it is common to have an architecture team that builds mechanisms upon commercial
middleware such as Microsoft’s .NET or IBM’s WebSphere. Creating such mechanisms typically requires
special knowledge, which is more efficiently managed by a centralized team than by every individual
developer most of whom are domain experts, not technology experts.

6 G. BOOCH AND A.W. BROWN

meaningful development work derives from activities that beat at different rhythms:
the activities of the individual developer, the social dynamics among small teams
of developers, and the dynamics among teams of teams. Thus, even if we use the
most expressive languages, the most comprehensive packaged software, and the best
methods, it is still the manual labor of the development team that yields systems of
quality.

Software developers spend a majority of their time on code-centric activities sup-
ported by an IDE offering a range of code development and manipulation features.
Other aspects of their task involving interaction, communication and coordination
within and across teams are generally supported by a discrete combination of ca-
pabilities including configuration management systems, issue tracking databases,
instant messaging systems, project websites, and so on. Assembled in a coherent
fashion, this latter set of capabilities can compose a collaborative development envi-
ronment (CDE) for software engineers.

Whereas traditional IDEs focus upon improving the efficiencies of the individual
developer, CDEs focus upon improving the efficiencies of the development team as a
whole. While it is the case that most modern IDEs have some degree of collaborative
support (for example, the ability to check in/check out an artifact from a common
repository or call out to NetMeeting and whiteboards from a menu), we contend
that incrementally adding such collaborative features will not transmogrify an IDE
into a CDE. IDEs are essentially developer-centric, meaning that their primary user
experience focuses on the individual developer, whereas CDEs are essentially team-
centric, meaning that their primary user experience focuses on the needs of the team
(but with points of entry for different individuals). Psychologically, this is a subtle
yet very important shift of perspective.

3. A Day in the Life of a Developer

In order to best understand the requirements for a CDE, it is reasonable to first
understand the social dynamics of the individual, the team and a team of teams.
Surprisingly, however, there exist very few empirical studies that highlight what de-
velopers really do with their time. There are some soft studies, such as found in the
experiences of Gerald Weinberg [1], Tom DeMarco [2], and Larry Constantine [3].
Larry Votta has proposed a framework for such scientific study [4], although no deep
studies from that framework have yet been released.

There is one interesting empirical study that can be found, carried out by Joerg
Strubing, a sociologist at the University of Berlin. In his study [5], he observed,
“Being a sociologist, I have found that designing software is a highly cooperative
process.” His study consisted of two series of experiments. In the first series, he

COLLABORATIVE DEVELOPMENT ENVIRONMENTS 7

conducted 10 open-ended interviews and one group discussion; in the second series,
he conducted 25 interviews with programmers and two other experts.

Although his sample size was relatively small, Strubing found three activities
that developers consistently carried out beyond just coding: organizing their work-
ing space and process, representing and communicating design decisions and ideas,
and communicating and negotiating with various stakeholders. Thus, beyond coding,
Strubing declared programming to be a profession that involved very heterogeneous
activities, the management of ambiguity, and a significant degree of negotiativeness.

Because of the scarcity of hard data, Booch conducted an experiment in March
2001 to obtain a snapshot of the daily life of a developer. This experiment was car-
ried out on the Web and involved 50 developers from around the world. Artifacts
generated for this experiment included a pre-day survey, timesheets during the event,
a digital photo of each participant taken at noon local time on the day of the survey,
and one or two snapshots of their desktop. Here we provide a short summary of the
main results of that study.

Participants were 81% male and 19% female with most coming from the United
States but others from countries including Austria, Germany, Canada, India, Aus-
tralia, New Zealand, Venezuela, and the Russian Federation. On average, participants
had nine years of experience in software development, ranging from one to 43 years.
Project domains varied widely, encompassing command and control, financial, com-
munications, and entertainment industries. 46% of the participants worked on Unix,
41% on Windows, 7% on Linux, and 5% on pure Web applications.2 37% of the par-
ticipants worked in Java, 35% in C, C++, or C#, and 28% worked in other languages,
most commonly Perl, Visual Basic, Ada, and assembly language.

In analyzing their surveys and time sheets, participants spent about 16% of their
day in analysis (ranging from 5% to 40%), 14% of their day designing (ranging from
1% to 40%), 16% of their day coding (ranging from 0% to 60%), and 10% of their
day testing (ranging from 0% to 50%).

Beyond these traditional activities, what’s particularly interesting is the time each
spent on infrastructure tasks. On average, participants spent 3% of their day on the
phone and 7% reading (email, snail mail, documents, journals, and magazines). The
survey asked participants to distinguish between productive and useless meetings:
on average, 10% of their time was spent in productive meetings and a disturbing 7%
was spent in useless ones.

This study on day in the life of a developer resonates with Strubing’s research:
software development is a deeply social process. Whereas IDEs such as Microsoft’s
VisualStudio, the open source NetBeans and eclipse, IBM’s WebSphere Studio, and
Borland’s JBuilder are primarily individual productivity tools, there is emerging a

2These numbers add up to more than 100%, because several participants worked on multiple platforms.

8 G. BOOCH AND A.W. BROWN

genre of development environments we call collaborative, because they address the
requirements of this social process.

4. The Emergence of Collaborative Development
Environments

To paraphrase Abraham Lincoln, software development takes place of the Web,
by the Web, and for the Web. There is considerable developmentof the Web’s in-
frastructure; similarly, a great deal of application software is being developedfor
Web-centric systems. Relative to CDEs, however, developmentby the Web means
using the Web to change the nature of software development itself.

If we project out from the most common IDEs such as Microsoft’s Visual Studio
and IBM’s open source eclipse, we observe that emerging CDEs are and should be
Web-based, artifact-centric, and multi-dimensional. The Web is an ideal platform for
doing software engineering because the very nature of the Web permits the creation
of virtual spaces that transcend the physical boundaries of its participants. CDEs
should also be artifact-centric, meaning that they should offer up a user experience
that makes work products primary and engages tools only as necessary.3 Finally, a
CDE should be multidimensional in the sense that different stakeholders should be
offered different views, each adapted to that stakeholder’s specific needs.

Collaborative sites both on and off the Web have existed for some time,4 but we
began to see collaborative sites focused solely on software development starting only
about five years ago. Most of these sites were neither public nor reusable, but rather
were one-off creations for specific projects. One of the earliest such sites we encoun-
tered was for a large command and control system. As part of an architectural review,
we were placed in front of a homegrown intranet that contained literally every arti-
fact created by the project, from vision documents to models to code to executables.
Although this site offered very little in terms of collaborative mechanisms, it did of-
fer up a virtual presence, a veritable electronic meeting place for the project’s team
members, many of whom were geographically distributed.

Soon after, we saw emerge commercial sites for the construction and CAD indus-
tries, both using the Web to provide a virtual project space. Similar sites grew up
for the open source software development industry. Indeed, since much open source
code is written by individuals who never interact with one another in person but

3This is a subtle but psychologically important shift: rather than saying “I shall open this editor so that
I can cut some code” one would say “here’s an aspect of code that I need to work on (and hand me the
right tools to do the job).”

4In particular, the Well is perhaps the quintessential collaborative site.

COLLABORATIVE DEVELOPMENT ENVIRONMENTS 9

only via email and the Web, it is natural that the Web be used to provide a sense of
presence for open source projects.

Recognizing the emergence of the Web as a platform for software development,
Frank Maurer, an associate professor at the University of Calgary, began sponsor-
ing a workshop on software engineering over the Internet in conjunction with the
International Conference on Software Engineering. His workshops have been con-
ducted since 1998, and have generated several dozen important papers on the the-
ory and practice of CDEs. Many of the mechanisms visible in the sites we survey
later in this paper had their roots or were described in these workshops. In ad-
dition to Maurer’s workshops, A.J. Kim5 and Adele Goldberg [6] have indepen-
dently contributed to the practice of building communities on the Web that, relative
to CDEs, offer valuable insights into the social dynamics of groups and the ele-
ments necessary to make such communities flourish. Finally, the MIT Media Lab-
oratory (www.media.mit.edu) has conducted basic research regarding collaboration
and the Starfire (www.asktog.com/starfire/starfireHome.html) project, led by Bruce
Tognazzini while he was at Sun Microsystems, offers a future vision of collaborative
development that is worth study.

It can also be noted that collaborative development environments are beginning
to get traction in traditional consumer product development [7]. Proctor & Gam-
ble, Johnson & Johnson, Ford, SCI Systems, and The Limited, among many others,
are all currently using a variety of collaborative mechanisms to manage their re-
search, design, manufacturing, and shipping needs. Clearly, the artifacts that these
companies manipulate are not the same as one would find in a software development
organization, but it appears that many of the underlying collaborative mechanisms
are identical. This is good news, for it means that there is likely a broad market for
general CDEs, which can thus raise the level of practice for software-specific CDEs.

5. Creating a Frictionless Surface

The purpose of a CDE is to create a frictionless surface for development. Our
experience suggests that there are a number of points of friction in the daily life of
the developer that individually and collectively impact the team’s efficiency:

• the cost of start up and on-going working space organization,

• inefficient work product collaboration,

• maintaining effective group communication, including knowledge and experi-
ence, project status, and project memory,

5In particular, see Kim, A.J., 2000,Community Building on the Web: Secret Strategies for Successful
Online Communities, Peachpit Press.

http://www.media.mit.edu
http://www.asktog.com/starfire/starfireHome.html

10 G. BOOCH AND A.W. BROWN

• time starvation across multiple tasks,

• stakeholder negotiation,

• stuff that doesn’t work.

We call these points of friction because energy is lost in their execution which oth-
erwise could be directed to more creative activities that contribute directly to the
completion of the project’s mission. Addressing these points of friction represents
substantial return on investment for many organizations.

Thecosts of start up are related to Strubing’s observations concerning organizing
the working space. As a team gets started or as new team members join a project,
there is always an awkward, disorienting period of time that the member gets settled
into his or her space. Finding the right tools, knowing who to talk to, knowing what
documents to read first, understanding the current state of the project are activities
that all take time, and are especially painful if the project or member is not offered
any guidance as to where to begin.

Work product collaboration involves the friction associated with multiple stake-
holders creating a shared artifact. Often, one person is given the responsibility for
owning a particular artifact and so serves as its primary author. Over time, however,
critical documents involve many people in their evolution. Keeping track of changes,
knowing who changed things and why, synchronizing simultaneous edits, and in gen-
eral handling accountability for the life of the artifact are all activities that cost time
and that can create inefficiencies if not automated.

Communication is perhaps the largest point of friction. As Strubing noted, “ne-
gotiativeness” and the management of ambiguity are both critical non-programming
tasks, and both are at the core of sound communication. Typically, the memory of a
project, its culture, and its design decisions are locked up in the heads of a few core
individuals, and part of a team’s activities involve sort of a tribal sharing. Insofar as
such knowledge is inaccessible, the depth of information flow will suffer. Further-
more, insofar as the communication paths among team members are noisy—such
as it is within teams of teams—communication quality and hence team efficiency
suffers.

Time starvation refers to the reality that there is typically never enough time to
complete everything on an individual’s to do list. Developers are finite in their ca-
pacity to work. Although time cannot be expanded, projects on a death march will
try to squeeze out every possible cycle by pushing those human limits, typically at
great human expense (which is why death marches are not sustainable) [8].

Stakeholder negotiation involves the time necessary to drive different members of
the team having different worldviews to some degree of closure so that the team can
make progress. Within a project, time will always be spent on explaining to various
stakeholders what’s being built, the precise desired structure and behavior of the

COLLABORATIVE DEVELOPMENT ENVIRONMENTS 11

system, and the semantics of design alternatives and ultimately design decision. In
short, stakeholder negotiation is the process of driving out ambiguity.

Surprisingly little has been written about the impact oftechnology and tools that
don’t work upon the efficiency of the development team. Intermittent network out-
ages, operating systems that behave in mysterious ways as if possessed, buggy pack-
aged software, tools that don’t work quite as advertised all eat up a teams time. Such
interruptions are often small, but any loss will interrupt the concentration of the de-
veloper and, ultimately, losses will mount up, one minute at a time.

A CDE can address many of these points of friction. Making a virtual project envi-
ronment just an URL away can minimize start up costs; being able to self-administer
such sites also means that the team can manage its own artifacts rather than require
the services of a dedicated support team. The friction associated with work product
collaboration can be minimized by offering up artifact storage with integrated change
management and the storage of metaknowledge. Communication can be facilitated
by the use of mechanisms for discussions, virtual meetings, and project dashboards.
Time starvation can be addressed not only by a hundred small creature comforts for
the developer, but by making possible virtual agents that act as non-human members
of the development team, responsible for carrying out scripted, tedious tasks.6 Stake-
holder negotiation can be facilitated by mechanisms that automate workflow. As for
stuff that doesn’t work, well, a CDE won’t make much different: the best we can
suggest is that you should simply refuse to buy or use products of inferior quality.7

That notwithstanding, if stuff doesn’t work for you, then it is likely that there are
others in the world who have experienced the same problem and might have solved
it or found a work around. In the presence of an extended community of developers,
such as might interact with a CDE, mechanisms for sharing experiences can some-
what temper the problems of hard failure (and perhaps even offer a form of collective
bargaining to put pressure on the vendor who has delivered up shoddy products).

Ultimately, technology is valuable to an organization insofar as it provides a mean-
ingful return on investment. With CDEs, there exists a potential for both tangible
and intangible returns.8 Tangibly, there exist opportunities for real reduced costs in
start up, tool administration, and artifact administration. In difficult economic times,
a company’s travel budget is invariably under pressure, yet collaborative work must

6As the classic joke (fromwww.cartoonbank.com) goes, “On the Internet, no one knows you are a dog.”
In a virtual project space, whether or not a team member is human is sometimes irrelevant.

7Of course, sometimes that’s not so easy an edict to follow, especially if the market place offers limited
choices.

8We saypotential simply because there have been no hard economic studies for the ROI of CDEs in
practice. However, the business value of a CDE comes from the observation that this technology can be
both an aspirin as well as a vitamin: it alleviates some of the pain of development and promotes healthy
project behavior.

http://www.cartoonbank.com

12 G. BOOCH AND A.W. BROWN

continue. The presence of a CDE can actually reduce these company and human costs
by eliminating the need for some travel. Intangibly, a CDE provides a sense of place
and identity for the organization’s nomadic developers who may be geographically
distributed and mobile; such a space helps jell the team. Furthermore, in examining
the patterns of communication within teams, it appears that healthy organizations
create and collapse small tiger teams all the time for the purpose of wrestling spe-
cific problems to the ground. Facilitating the management of such teams permits
greater accountability and focus of mission.

6. A Survey of Collaborative Sites

There exist only a few commercial CDEs focused primarily on the problem of
software development over the Internet, but there are many more that have been
generated for other domains or that address one specific element of the software
CDE domain. Studying these different sites can help us understand what a CDE is,
what it is not, and what it can be.

We can classify the spectrum of CDEs as follows, and examine exemplars of each
in turn:

• non-software domains,

• asset management,

• information services,

• infrastructure,

• community,

• software development.

6.1 Non-Software Domains

The construction, manufacturing and electronics industries have been a fruitful
place for the evolution of CDEs. In fact, it is these industries that have been the
earliest adopters of collaborative technology, perhaps because many of their points
of friction are directly addressed by the features of a CDE. Imagine, for example, a
building being erected in Kuala Lumpur. On site, the construction supervisor might
encounter a design problem whose resolution would require the interaction of the
building’s architect, structural engineers, and end users (and, amazingly so, lawyers).
If the architect were in London, the structural engineer in New York, and the client in
Hong Kong, getting these stakeholders together in real time would be problematic.

COLLABORATIVE DEVELOPMENT ENVIRONMENTS 13

FIG. 2. BuildTopia Web-centric design collaboration.

Instead, by using the Web as a virtual meeting place for the project, resolution can
take place in real time.

This kind of collaborative development is what lies behind products such as Build-
Topia (www.buildtopia.com), a Web-centric system for design collaboration, project
management, bidding, sales, and customer support for the homebuilding industry. As
Fig. 2 shows, BuildTopia’s product line permits Web-based collaboration on design
artifacts such as blueprints. Within a project site, users can manipulate diagrams in
real time as well as manage the workflow and artifacts of a set of building projects.

The manufacturing and electronics industries have similarly pioneered a number
of Web-centric collaborative solutions. For example, CoCreate (www.cocreate.com),
a subsidiary of Hewlett Packard, offers a product called OneSpace, which delivers a
virtual conference room. In their words, “through the use of shared views, pointers,
and annotations, product development partners can concurrently engineer through
co/viewing, co/inspecting, and co/modeling.” iCadence (www.cadence.com) is a
similar product line directed to the collaborative engineering of electronic devices.

http://www.buildtopia.com
http://www.cocreate.com
http://www.cadence.com

14 G. BOOCH AND A.W. BROWN

Sites such as these are most relevant to the problem of software development over
the Internet, because they are chasing the same issues, albeit in a different domain.
Thus, these CDEs contain many of the same basic elements that a software CDE
requires, such as asset storage, basic mechanisms for collaboration, and multiple
stakeholder views.

6.2 Asset Management

As Strubing noted, the communication of knowledge is an important task in
the daily use case of developers. For software development teams in particu-
lar, a key manifestation of that knowledge is found in the project’s code and
components, which may be shared across releases or even across teams. Us-
ing the Web as a repository for such assets is but one feature of a full-blown
CDE, but is already commercially available with vendor-neutral component ven-
dors such as ComponentSource (www.componentsource.com, as shown in Fig. 3)
and Flashline (www.flashline.com) as well as platform-specific sites such as
IBM’s developerWorks (www.ibm.com/developerworks) and Microsoft’s MSDN
(msdn.microsoft.com), both of which deliver component repositories.

From the perspective of its users, sites such as these essentially push their un-
derlying assets outward via a fairly rigid categorized listing, but with the ability to
carry out a general search for specific content. Self-publishing of content is gener-
ally not supported directly (because the site owners want to maintain control over the
content).

By contrast, variations of the commercial sites, as well as homegrown solutions,
are often found deployed within an organization to serve as a general repository of
non-public components, parts that are either proprietary or of strategic importance
to the company. In these cases, some degree of self-publication is typically possible.
However, it should be noted that, without some energy applied to the process, such
asset repositories could quickly turn into vast, stinking wastelands of decaying code
that no one in the organization wants to touch.

Thus, asset management sites support three primary things: a public or private
marketplace for assets (a primary feature of ComponentSource); an infrastructure
for asset management (a primary strength of Flashline); and a source for community-
contributed assets (a primary feature of MSDN and developerWorks).

In addition to these basic features, it is worth noting that most asset management
sites have begun to recognize the need for a deeper user experience surrounding
their assets. For example, simple features pioneered (and some patented) by Ama-
zon (www.amazon.com), such as “top 10 lists,” targeted, personalized home pages,
user feedback, and discussion groups can contribute to this user experience and the
creation of a vibrant community of practice surrounding these assets.

http://www.componentsource.com
http://www.flashline.com
http://www.ibm.com/developerworks
http://msdn.microsoft.com
http://www.amazon.com

COLLABORATIVE DEVELOPMENT ENVIRONMENTS 15

FIG. 3. ComponentSource asset management.

6.3 Information Services

Whereas asset management sites focus on the delivery of tangible code and com-
ponents, information service sites focus on pure intellectual property and as such
offer guidance on using particular platforms or best practices in software engineer-
ing. Information services typically come in three flavors: public sites which are either
vendor-sponsored (and therefore focus on one specific platform) or vendor-neutral,
and private sites, which tend to be internal project- or organization-specific. In the
public categories, there are sites sponsored by the major platform vendors, including
Microsoft’s MSDN and IBM’s developerWorks, as well as other vendor-neutral (but
technology-specific) sites, such as TheServerSide (www.theserverside.com, shown
in Fig. 4), Web Monkey (www.hotwired.lycos.com/webmonkey), and the Rational
Developer Network (RDN) (www.Rational.net). For a subscription fee, both the

http://www.theserverside.com
http://www.hotwired.lycos.com/webmonkey
http://www.Rational.net

16 G. BOOCH AND A.W. BROWN

FIG. 4. TheServerSide information services.

IEEE (www.computer.org/publications/dlib) and the ACM (www.acm.org/dl) offer
digital libraries, which provide access to journal articles and conference proceed-
ings.

6.4 Infrastructure

As we will discuss shortly, a CDE is not so much a single killer app as it is a
coherent collection of one hundred small things. Although not really CDEs in their
own right, there exist a genre of technologies that provide critical collaborative in-
frastructures for full-blown CDEs. Of these, instant messaging (IM) is perhaps the
most pervasive mechanism for collaboration. In our day in the life experiment, a large
percentage of participants reported using IM in their desktop snapshots. Microsoft’s

http://www.computer.org/publications/dlib
http://www.acm.org/dl

COLLABORATIVE DEVELOPMENT ENVIRONMENTS 17

NetMeeting (www.microsoft.com/windows/NetMeeting) is perhaps the most com-
monly used infrastructure for peer-to-peer video conferencing. For web conferenc-
ing that scales, there are products such as WebEx (www.webex.com) and PlaceWare
(www.placeware.com). Although subtly different in their user experience, both ser-
vices offer Web-centric conferencing with the ability to broadcast documents and
slides (for lectures) and to share desktops (offering the moral equivalent of an elec-
tronic whiteboard).

Indeed, there really is a spectrum of infrastructure collaborative mechanisms that
may be applied to a Web community, each with its own value. Specifically:

• Mailing lists are good for small groups with a common purpose, conversations
that wax and wane over time, communities that are just getting started, and
newsletters and announcement.

• Message boards are useful for asking and answering questions, encouraging in-
depth conversations, managing high-volume conversations, and providing con-
text, history, and a sense of place.

• Chat rooms are good for holding scheduled events, preparing for and debrief-
ing after life events, discussing offline events in real time, and for hanging out
(namely, relaxing, flirting, gossiping, and visiting).

• Whiteboards are useful for brainstorming, communicating, and discussing.

• Net meetings are useful for one-on-one discussions.

• WebEx and PlaceWare meetings are useful for group presentations and distrib-
uted discussions.

Most of these infrastructure services are quickly becoming commodities, meaning
that they are already available from a variety of sources and are ultimately being
bundled as a core part of operating systems and main desktop productivity tools,
such as Windows XP and Microsoft Office XP.

6.5 Community

Moving closer to complete CDEs are sites that exist to build Web communities.
Basically, a Web community is a collection of individuals with a shared interest and
a shared identity with that group. A multitude of small things go in to growing and
sustaining a vibrant community, but in turn only one or two few small things gone
bad can quickly destroy that same community. Usenet newsgroups are perhaps the
most elementary Internet communities, but most are generally not satisfying because
their signal to noise ratio is extremely low. Lotus Notes (www.lotus.com), developed
by Ray Ozzie, has proven effective in building business communities and as such

http://www.microsoft.com/windows/NetMeeting
http://www.webex.com
http://www.placeware.com
http://www.lotus.com

18 G. BOOCH AND A.W. BROWN

serves as an electronic bulletin board for an organization. Public community ser-
vices, such as the Ward Cunningham’s WikiWeb (www.wikiweb.com) and Yahoo’s
groups (groups.yahoo.com) both offer virtual meeting spaces with the ability to share
artifacts and self-administer a community’s members and content.

A very vibrant community of a different sort may be found at Slashdot
(www.slashdot.com). Although short on tangible artifacts but long on collaborative
content, Slashdot is a Web community in a very real sense, for its participants are
typically quite passionate and involved contributors to a multitude of threads of dis-
cussion. Slashdot is a good example of a jelled community; small things, such as
the personal recognition given to individuals, the high rate of change of content, and
the information-rich but easily navigated pages all contribute to Slashdot being a
genuinely fun place to hang out.

Groove (www.groove.com) is Ray Ozzie’s take on building scalable communi-
ties by using peer-to-peer technology. Groove is a for-fee Web-centric service, and
is perhaps the best example of a general, domain-independent collaborative site. As
Fig. 5 illustrates, the Groove user experience provides a virtual project space with the
ability to share assets, conduct discussions, and manage tasks and schedules. Groove

FIG. 5. A Groove workspace.

http://www.wikiweb.com
http://groups.yahoo.com
http://www.slashdot.com
http://www.groove.com

COLLABORATIVE DEVELOPMENT ENVIRONMENTS 19

features include desktop integration with tools such as Microsoft Office, an open
framework for integrating other tools, text and voice chat, and dynamic awareness of
users and content.

Similar to Groove but using a very different underlying technology is Mi-
crosoft’s SharePoint (www.microsoft.com/sharepoint). SharePoint comes in two fla-
vors: SharePoint Team services (for ad hoc, small teams) and SharePoint Portal (for
enterprise intranets). In Microsoft’s words:

• Small or ad hoc workgroups need informal means to work together on group
deliverables, share documents, and communicate status with one another. These
groups need to share information easily and effortlessly and SharePoint Team
Services-based Web sites allow them to do that.

• Large workgroups with structured processes need greater management over
their information. They require features like formal publishing processes and
the ability to search for and aggregate content from multiple data stores and file
formats. For this scenario, SharePoint Portal Server 2001 is recommended.

6.6 Software Development

Currently, there exist a handful of research CDEs directed to the problem of soft-
ware development, and an even smaller number of commercial sites.

Perhaps the most interesting research CDE is MILOS (Minimally Invasive Long-
term Organizational Support), an effort being carried out by the Software Process
Support Group at the University of Calgary and the Artificial Intelligence Group at
the University of Kaiserslautern [9]. MILOS is an open source effort (under a GNU
public license) and focuses primarily on software process workflow automation.

Commercially, DevX (www.devx.com) and collab.net’s (www.collab.net) prod-
ucts fit the category of software CDEs, with DevX offering only minimal features
and collab.net offering many more creature comforts. DevX is more so an informa-
tion services site, although it does offer some basic tools for bug tracking.

Collab.net has both a public and a private face. Its public face is SourceForge
(sourceforge.net), an open source CDE focused on, not surprisingly, the development
of open source software. SourceForge is host to projects ranging from the generally
useful MySQL to the more sinister BackOrfice 2000. Its private face is SourceCast
(www.collab.net/products/sourcecast), in effect a private label SourceForge (but with
a number of other important features, such as greater security, something that is
largely a non-issue for open source development).

As Fig. 6 illustrates, the SourceForge user experience is both project- and artifact-
centric. A user may enter the site via a specific project or via a personalized home
page. Within a project, there are facilities for artifact storage, simple configuration

http://www.microsoft.com/sharepoint
http://www.devx.com
http://www.collab.net
http://sourceforge.net
http://www.collab.net/products/sourcecast

20 G. BOOCH AND A.W. BROWN

FIG. 6. SourceForge CDE.

management (via the open source CVS), simple bug tracking (also via an open source
tool), task management, and discussions. SourceForge offers a number of creature
comforts, such as the ability to self-publish, track changes, and manage project mem-
bership.

We cannot overemphasize the contribution made by the open source community
to the creation of CDEs, recognizing that this is an emergent benefit from the open
source movement. Beyond the creation of some genuinely useful software (e.g.,
Linux and Apache), the community has demonstrated that complex software of scale
can be created by large, dispersed teams over the Internet using an interactive, fast-
turnaround lifecycle, but with a core team and collaborative mechanisms that permit
continuous integration and the creation of stable, intermediate releases.

COLLABORATIVE DEVELOPMENT ENVIRONMENTS 21

7. Collaborative Development Environment Features

Our survey suggests that there does not yet exist the quintessential software-
specific CDE although the prognosis for such an entity is promising, since this broad
spectrum of sites and technologies offer the underlying features necessary for such a
CDE. After looking at history, performing our own study of developer practices, and
examining the key technical trends in the current state of the practice with collabo-
rative solutions, we are able to synthesize the primary features of a software CDE.

The value of a CDE comes primarily in addressing the points of friction in soft-
ware development. We observe that this manifests itself in features that support keep-
ing track of project information and resources, manage tools and artifacts responsible
for generating those resources, and enable communication among teams.

More specifically, Roger Fournier suggests that the following elements are essen-
tial in the creation of a virtual meeting space [10]:

• instant messaging,

• virtual meeting room,

• application sharing,

• centralized information management,

• searching and indexing,

• configuration control of shared artifacts,

• co-browsing,

• electronic document routing and workflow,

• calendaring and scheduling,

• online event notification,

• project resource profiling,

• whiteboards,

• online voting and polling.

We would add to this list the following features:

• tools for both connected and disconnected use,

• threaded discussion forum,

• project dashboards and metrics,

• self-publication of content,

• self-administration of projects,

• multiple levels of information visibility,

22 G. BOOCH AND A.W. BROWN

FIG. 7. A categorization of CDE features.

• personalization of content,

• virtual agents that can be scripted to manage daily project hygiene and other
repetitive tasks.9

As illustrated in Fig. 7, we can organize these features into three categories of ca-
pabilities necessary for any CDE. Informally known as the “Three Cs”, these cate-
gories are based on the coordination, collaboration, and community building nature
of a CDE.

9It’s not a great leap to imagine anthropomorphized agents such as found atwww.annanova.comserv-
ing as extended team members. Such virtual agents could be tasked with regular tedious administrative
activities, such as providing meeting reminders, driving common workflows such as a document review
cycle, or nagging developers to assemble components for daily releases.

http://www.annanova.com

COLLABORATIVE DEVELOPMENT ENVIRONMENTS 23

FIG. 8. Conceptual model of a Collaborative Development Environment. Adapted from a model first
drawn by Dan Wedge and Rich Hillebrecht of Rational Software Corporation.

None of these features are, by themselves, particularly complex or difficult to im-
plement.10 For this reason, we observe that a rich CDE is the emergent creature that
rises from a hundred small things, using the Web as the center of the user experi-
ence. Collectively, however, this set of capabilities offers significant challenges in
the technical integration of these features, and the creation of a satisfying user ex-
perience for teams and individuals routinely employing many of these features to
complete a shared task. Much of the diversity seen the examples referenced in this
paper are a result of different approaches taken toward addressing these challenges.

Conceptually, we may render a software development-specific CDE as shown in
Fig. 8. Orbiting the CDE are team members who may or may not be geographically
dispersed. The CDE itself is bounded by a secure physical and software boundary
that guards the sanctity of the CDE’s content and validates users (who likely have
different rights that yield different views and permissible operations upon a project’s
artifacts). The CDE is further decomposed into three layers:

• project workspaces, which provide mechanisms for team management and col-
laboration,

10Except for the hosting of tools and the provision of strong security, both of which are inherently difficult
issues.

24 G. BOOCH AND A.W. BROWN

• team tools, which provide infrastructure support for requirements management,
change management/version control, and document management,

• development resources, which provide artifact-specific tools, Web-centric train-
ing, asset management, and information services.

There are some important variations upon this model that must be considered for the
general case.

First, are tools hosted or non-hosted? If fully hosted, this leads to an ASP (appli-
cation service provider) model with all of its benefits (ease of tool distribution and
administration) as well as its challenges (delivering a meaningful user experience for
highly interactive tools such as visual modeling tools). If not fully hosted, the user
experience is somewhat complicated because each user’s desktop must host the ap-
propriate tools. In practice, our experience is that a mix of hosting and non-hosting
is best: host core infrastructure tools, such as change management, that must be used
by every stakeholder, and support desktop integration to other, more semantically
rich tools.

Second, does the CDE reside in front of or behind an organization’s firewall? If
the CDE lives behind the organization’s firewall and is therefore a captive resource,
physical and soft security issues are somewhat simplified, or rather, delegated to the
company’s existing information technology security policies and mechanisms. If the
CDE lives on the open Web, in front of a company’s firewall, security issues are
more complicated, although little more so than required by any public enterprise
site. Indeed, once such security mechanisms are in place, the barriers are mainly
emotional, not real.

Third, does the CDE support disconnected use? If its stakeholders are all directly
connected to the CDE when working with its content, the management of project
state is simplified. However, in practice, developers engage in project work while
disconnected: long airplane flights are still a fine place to code, as is a home of-
fice. In such cases, the CDE must take into account the synchronization of changes
and the cloning of a project’s state. Our experience is that the presence of a solid
change management system in the CDE’s infrastructure can generally deal with the
disconnected use case fairly well.

8. The Evolution of Collaborative Development
Environments

Given this survey of the current state of the practice in collaborative solutions on
the Web, and the complete set of CDE features that may be provided in any solution,

COLLABORATIVE DEVELOPMENT ENVIRONMENTS 25

we recognize that there are a number of substantial barriers to successful adoption of
a CDE. These include technological, emotional, and business barriers.

First, there remain complex technical barriers. Building a highly secure, scalable,
high-performance Web-centric system, no matter the problem domain, is still a chal-
lenging engineering problem. In fact, many question the whole basis of using a public
(and inherently insecure), uncontrolled infrastructure such as the Internet as the basis
for many kinds of collaborative tasks involving key pieces of a corporation’s intellec-
tual property. Second, there are emotional barriers: leaving a project’s key assets on
servers out of the immediate control of the team is potentially frightening. Addition-
ally, communities are fragile things, easily ruined by small, meddlesome features; as
such, the importance of a simple, friendly, and complete user experience cannot be
discounted. Furthermore, the presence of a CDE encourages the sharing of informa-
tion, and in some larger organizations, that’s viewed as a political threat. Third, there
are business issues surrounding the nature of a successful business model for a CDE.
This includes fundamental issues such as subscription versus pay-per-use versus sin-
gle fee charging, charging for tools versus charging for services versus charging for
information, and loosely-coupled best-of-breed solutions versus tightly-coupled cus-
tom developed solutions.

As for the technical issues, the good news is that time is on our side, for the gen-
eral trend is that mechanisms and best practices for Web-centric development are
maturing. Emotional barriers are harder to overcome, although it should be pointed
out that, for most modest to large organizations, project assets are already outside
the direct control of each team (and instead in the hands of the company’s IT de-
partment). As for business barriers, we expect that the market place will, over time,
center upon the right business models for CDEs.

9. Summary

Effective teamwork is an essential part of every non-trivial software engineering
effort. Collaborative capabilities are essential to support these teams, particularly as
team sizes get smaller, and team interaction becomes more geographically dispersed.
This paper has examined the current features required for a fully functioning CDE
by surveying the current state of the practice as represented by a range of different
solutions. The paper then synthesized a complete feature list from these examples,
and categorized those features into three main types: coordination, collaboration, and
community building mechanisms.

However, as we have already stated, no CDE currently supports all of the features
we have discussed. Furthermore, few organizations find themselves in a position
to readily adopt such a CDE should it be available. Thus, having read this paper

26 G. BOOCH AND A.W. BROWN

many individuals and project managers are left asking what positive steps they can
now take to prepare their teams for effective adoption of CDE technology. Simply
stated, we believe there are 5 key steps to prepare an organization for successful CDE
adoption:

1. Get some good team processes in place for coordination, collaboration, and
community building within and across your organization. Document those
processes, and understand some of the key inefficiencies, or points of friction,
that currently exist.

• To assist with this you can learn from, and adopt, existing process frame-
works such as the Rational Unified Process (RUP), and agree on commu-
nication via standard notations for describing artifacts and processes such
as the Unified Modeling Language (UML).

2. If you have existing team infrastructure technology, evaluate it against the fea-
tures described in this paper. If you don’t already have that technology, examine
what is available and invest in some key areas.

• A number of products are available offering many essential infrastructure
features, e.g., requirements management, visual modeling, test manage-
ment.

3. Standardize on a common IP approach across the teams and projects.

• This may involve use of information portals offered by tool vendors, to-
gether with locally maintained project specific information repositories.

4. Examine current reuse practices within and across the teams. Look for op-
portunities to increase collaboration and sharing of IP, and provide practical
guidance that facilitates this.

• Common standards for documentation and discovery of project assets may
be helpful. Examine work such as the Reusable Asset Specification (RAS)
(www.rational.com/ras) for ideas on how this can practically be achieved.

5. Monitor, optimize, and iterate these 5 steps.

To conclude, we observe that CDEs may be classified in one of several stages of
maturity, each of which builds upon the previous stage:

• Stage 1: Support for simple artifact storage.

• Stage 2: Availability of basic mechanisms for collaboration.

• Stage 3: Infrastructure tools for advanced artifact management.

http://www.rational.com/ras

COLLABORATIVE DEVELOPMENT ENVIRONMENTS 27

• Stage 4: Creature comforts for team management, advanced mechanisms for
collaboration, and availability of artifact-specific tools.

• Stage 5: Asset and information services that encourage a vibrant community of
practice.

With regard to the state of the practice in CDEs, the current median is hovering
somewhere around Stage 1 and 2, but with point solutions, as our survey indicates,
for elements at advanced stages.

Indeed, the proliferation of these point solutions suggests that the prognosis for the
future of CDEs is encouraging, since vibrant CDEs are primarily the sound collection
of these hundred things. Even if a project’s understanding of a problem were perfect,
even if things always worked, even if all stakeholders were in agreement, a software
development project has inherent friction. As we have examined, the core value of
a vibrant CDE is to provide a frictionless surface for the development team, thereby
minimizing the many daily irritants of collaboration and letting the team focus on its
primary task, namely, the creation of useful software that works.

REFERENCES

[1] Weinberg G.,The Psychology of Computer Programming, Dorset House Publishing,
1989.

[2] DeMarco T., Lister T.,Peopleware: Productive Projects and Teams, Dorset House Pub-
lishing, 1999.

[3] Constantine L.,Peopleware Papers: Notes on the Human Side of Computing, Prentice
Hall, 2001.

[4] Votta L., “By the way, has anyone studied real programmers yet?”, in:9th International
Software Process Workshop, Reston, Virginia, 1994.

[5] Strubing J., “Designing the working process: What programmers do besides pro-
gramming”, in:User-Centered Requirements for Software Engineering Environments,
Springer, Berlin, Germany, 1994.

[6] Goldberg A., “Collaborative software engineering”, in:Net Object Days, Erfurt, Ger-
many, 2000.

[7] Ante S., “Simultaneous software”,BusinessWeek (August 27, 2001).
[8] Yourdon E.,Death March, Prentice-Hall, 1997.
[9] Holtz H., Konnecker A., Maurer F., “Task-specific knowledge management in a process

centred SEE”, in:Proceedings of the Workshop on Learning Software Organizations,
LSO-2001, Springer, 2001.

[10] Fournier R.,Infoworld (March 5, 2001).

Tool Support for Experience-Based
Software Development Methodologies

SCOTT HENNINGER

Department of Computer Science & Engineering
University of Nebraska–Lincoln
Lincoln, NE 68588-0115
USA

Abstract
Experience-based approaches to software development promise to capture crit-
ical knowledge from software projects that can be used as a basis for contin-
uous improvement of software development practices. Putting these ideas into
practice in the quickly evolving discipline of software engineering has proven
elusive. Techniques and tools are needed that help software practitioners ap-
ply past knowledge to current projects while engaging in knowledge creation
processes. This paper outlines the experience factory and organizational learning
approaches, both of which explore how experience-based approaches to software
development can be used to improve software development practices. A software
tool is used to investigate how these two approaches can be integrated to create an
approach that addresses many issues of knowledge management in the software
engineering field.

1. Experience-Based Approaches for Software Engineering 30
2. Experience-Based Knowledge Management . 32

2.1. The Experience Factory Approach . 33
2.2. The Organizational Learning Approach . 34
2.3. The Domain Lifecycle . 36
2.4. Stepping Through the Lifecycle . 37

3. Tool Support for Experience-Based Approaches . 41
3.1. Developing Communities of Practice . 42
3.2. Experience-Based Repositories . 43
3.3. Continuous Feedback of Development Knowledge 43

4. The BORE Software Experience Base Tool . 44
4.1. BORE Terminology . 46
4.2. The BORE Approach . 48

ADVANCES IN COMPUTERS, VOL. 59 29 Copyright © 2003 by Elsevier Science (USA)
ISSN: 0065-2458 All rights reserved.

30 S. HENNINGER

4.3. Creating BORE Methodologies . 49
4.4. Project Instantiation . 54
4.5. Project Execution . 56
4.6. Analysis and Review Processes . 57
4.7. Experience Packaging . 61

5. Putting BORE into Practice: Some Starting Points 61
5.1. Roles and Tasks for Implementing the BORE Approach 61
5.2. Evaluation Contexts for BORE . 62

6. Other Related Research . 65
6.1. Software Process Frameworks . 66
6.2. Software Process Modeling . 66
6.3. An Analysis of Process Models and Frameworks 68
6.4. Design Rationale . 68

7. Open Issues and Future Work . 69
7.1. Future Work . 70

8. Conclusions . 72
Acknowledgements . 73
References . 73

1. Experience-Based Approaches for Software
Engineering

The lack of a silver bullet, a single universally applicable problem solving tech-
nique for engineering software applications [36], has been the topic of much debate
within the software engineering community over the past decade. Meanwhile, an
arsenal of techniques have emerged that provide reasonable and sometimes revolu-
tionary support for pieces of the overall process and/or isolated application domains.
Techniques as diverse as component and object technologies, formal methods, us-
ability techniques, end user programming environments, database technologies, an
exploding array of Web technologies, and many others continue to add to the “tool
mastery burden” [36] facing modern software developers.

In spite of a general agreement in the software engineering community that no
single tool or technique can cover the needs of a field as diverse as software develop-
ment has become, most research focuses on isolated techniques, normally involving
a “new” programming language, formal model, or design notation. Little attention
has been given to understanding the scope and limitations of these point solutions,
causing much confusion on what should be used and when. To make matters worse,
the diversity of application domains continue to proliferate while the pace of busi-
ness change rivals or exceeds the pace of technology change. Software is no longer
the sole dominion of technical personnel, but reach nearly every aspect of human ac-

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 31

tivity [75]. Software developed for algorithm-intensive scientific applications differ
significantly from database-intensive information technology applications, which in
turn differ significantly from image processing, real-time systems, word processing,
and other types of applications.

Techniques to develop software systems must necessarily mirror the diversity of
the types of applications being developed. Recognition of this diversity has led to
recent studies of software architectures [136], domain-specific component technolo-
gies [37,96], and software process diversity [108], all of which attempt to establish
frameworks for understanding the conditions for which specific tools, techniques, or
methodologies are best suited for a given problem setting. But these and other efforts
must necessarily settle at a high level of abstraction that can be applied across many
development contexts. Each organization, and each project within an organization,
must refine, specialize and extend these abstract frameworks to suit their specific
needs.

An experience-based approach to software development seeks to draw on past ex-
periences as a resource for planning and executing software development efforts [21,
89]. By drawing on experiences, these techniques must necessarily be able to address
diverse development needs arising from the many application needs and development
approaches available in the modern software developer’s toolbox. The objective of an
experience base becomes less one of trying to find a single universally applicable de-
velopment approach and/or programming language, and more one of understanding
the circumstances in which a given technique, tool, methodology, etc., is most ap-
propriate. Developing this understanding requires an empirical approach, one that
carefully collects observations from experience and establishes causal relationships
between contextual factors and outcomes.

The knowledge generated within each organization to specialize existing tech-
niques to the point that software products can be developed represents a significant
corporate asset. Knowing how the Capability Maturity Model is structured or how
Enterprise JavaBeans can be used to create applications is one form of knowledge
that is often found in textbooks. But understanding how those techniques can be used
to create a payroll application for a specific corporation is a more valuable kind of
knowledge that is more localized and consequently cannot be found in textbooks.
This knowledge is both created by and used within the specific context of a software
development organization.

While frameworks for experience-based approaches have been developed [18,
29,48], little research has been performed on how this knowledge can be captured
and systematically employed within an organizational context. Tools and techniques
are needed that capture software development experiences and make them available
for subsequent development efforts. This paper explores the intersection of two ap-
proaches that begin to address these issues, the Experience Factory [15] and Or-

32 S. HENNINGER

ganizational Learning [89] approaches to software development, and demonstrates
these concepts through an exploratory prototype that supports the capture and use of
project experiences.

2. Experience-Based Knowledge Management

An experience-based approach to software development involves using an orga-
nization’s accumulated knowledge of the development process and application do-
mains as the basis for planning, design, and implementation. While the ultimate
goal may be to create automatic programming tools [130], coalescing and analyz-
ing the necessary knowledge to achieve this goal is a difficult process that can only
be accomplished in well-understood domains [10,63,145]. Intermediate methods are
needed that can disseminate knowledge as it is created in the organization so peo-
ple can begin to build a culture based on success, avoid duplicate efforts, and avoid
repeating mistakes. These techniques provide information relevant to local devel-
opment practices that “you can’t learn in school” [145], such as custom languages,
organization and project-specific programming conventions, policies and guidelines
concerning tool usage, individuals with expertise in specific areas, and many others.

Figure 1 depicts the experience-based knowledge lifecycle as one of using soft-
ware development knowledge to create new products. Knowledge can come in many
forms, including guidelines, standards, experience packages, pattern languages, man-
uals, software development and domain ontologies, and other forms of knowledge.
During product creation, new knowledge is created to meet development needs that
are unique to the project [118]. This new knowledge can be synthesized and pack-
aged in an analysis phase to create new knowledge resources. The newly formed
knowledge is then used as the basis for new product development efforts.

Within product creation lies another critically important cycle, in which existing
knowledge is applied and extended to create new products. Building on past experi-
ences is a software development step missed by most development methodologies,
and in practice is normally accomplished by “reusing” experienced personnel on
new development efforts. But because every project is unique, past experiences can
only be used as a resource, a guide that helps ensure improvement while avoiding
known pitfalls. While some experiences, design artifacts, planning modules, etc., can
be reused, each project has unique characteristics and requirements that extend the
available store of knowledge. The result is a product creation knowledge spiral [118]
(see the Product Creation step in Fig. 1) in which new ideas are built on existing
knowledge, made explicit so it can be communicated to others (see the Analysis
step in Fig. 1), then routinized to become part of everyday practices that serve as

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 33

FIG. 1. The experience-based knowledge lifecycle.

the basis for future knowledge creation [118] (Software Development Resources in
Fig. 1).

The exploration of how existing knowledge is brought to bear on a problem and
used to create new knowledge [110] during product development has yet to be pur-
sued in any kind of scale, particularly in the context of software engineering. The
experience factory and organizational learning paradigms promise to address many
of these issues. Integrating the ideas embedded in these approaches seems a worth-
while endeavor that is explored in the following sections.

2.1 The Experience Factory Approach

The Experience Factory is a framework that explicitly addresses validating
processes and technologies in the context in which they are used [16,20]. This ap-
proach divides software development effort among organizations with separate re-
sponsibilities of developing projects and capturing experience. The Experience Fac-
tory unit is responsible for developing, updating and providing reusable experiences
that can be utilized by product development teams. Experience artifacts can be gen-
erated either through requests by the product development units or through indepen-
dent analysis of existing projects [15]. This approach addresses a widely held tenet in

34 S. HENNINGER

software reuse that a separate reusability unit is necessary for successful large-scale
reuse efforts [72] and supports a kind of reflection-in-action [134] that can lead to
organizational learning and improvements [4,89].

The main focus of the Experience Factory, to “make reuse easy and effective” [15]
is accomplished through an infrastructure to produce, store, and reuse experience.
It uses the Quality Improvement Paradigm (QIP), which consists of six steps and
two feedback cycles [16]. The steps, performed within projects, are (1) characterize
project goals, (2) set goals, (3) choose a process, (4) execute, (5) analyze results, and
(6) package the results of analysis. The two feedback cycles are a project feedback
cycle (feedback provided during the execution phase of the project) and an organiza-
tional feedback cycle (feedback provided to the organization during project execution
and at the completion of the project). The definition of the QIP implies that organi-
zational and product improvement requires continually accumulating knowledge and
storing that knowledge in a form that can be easily accessed, used, and modified.

Note the close relationship between Fig. 1 and the QIP. The software development
resources, captured from previous development efforts, are used to characterize and
set project goals. Processes are chosen and executed during project creation. During
and after execution, the results of the development effort are analyzed and packaged
as new resources that can be utilized by subsequent development efforts. The two
QIP feedback loops are represented in Fig. 1 by the outside cycle at the organizational
level and the project level feedback in the product creation phase.

The Experience Factory is designed to support the entire process of knowledge
management, including accumulating experience from the project organization, eval-
uating those experiences, repairing faults, and extracting items that need to be stored.
But current tools to support the Experience Factory have focused almost exclusively
on repository technology and experience packaging [4,18,21,49,117]. Although it is
recognized that a high level of intuition is required for the analysis phase, making
it extremely difficult to automate [5], analysis tools have received some attention,
particularly in terms of lessons learned repositories [3,5]. Some work has also been
done on tools for measuring the effectiveness of repositories [56] and using user feed-
back to calculate the perceived usefulness of knowledge assets [6]. But little work
to date has concentrated on tools to support the (re)use of experiences and develop
methodologies that explicitly integrate prior experiences and lessons learned into the
development process.

2.2 The Organizational Learning Approach

The organizational learning approach to software development [89] captures
project-related information during the creation of individual software products. Sim-
ilar to the experience factory concept, it is designed to capture and disseminate

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 35

emerging knowledge as it is created in the organization [79]. Subsequent projects
can then use this information by searching for issues and problems in a repository
of project experiences. The repository contains significant problems addressed in a
project along with the solution and method of solution used by the project. Projects
with similar characteristics can be retrieved and assessed for applicability to the
problem at hand. The case-based structure of the repository can not only point to re-
usable solutions and code, but also suggest how novel problems can be approached
by adapting similar problems, warn of possible problems with solution methods, and
help designers understand the boundaries of a problem. These principles have been
demonstrated through an exploratory prototype, named BORE (Building an Organi-
zational Repository of Experiences) [83].

The experience factory and organizational learning approaches reverse the tradi-
tional methodological tendency for software development. Instead of looking at the
problem from the solution perspective, the methodology itself, the experience factory
facilitates viewing the problem from the perspective of the application domain [149].
Accomplishing this reversal of perspective may be a proper and more accurate way to
view software development [149], but the resulting diversity of development method-
ologies and processes to meet diverse application needs creates another problem, one
of understanding what tool, technique, methodology, and etc, are most applicable to
a given application domain and its associated development needs [89]. These issues
are addressed in Section 4.

Initial pilot projects using BORE addressed some of these issues [89], but feed-
back revealed that the approach lacked specific system support for process use and
improvement. Pilot projects conducted with the tool revealed that people needed
more guidance on what information should be captured and when the repository
should be consulted. In other words, having a repository and a search engine pro-
vided inadequate support for the overall approach of capturing, packaging, and dis-
seminating experiential knowledge. More recent activities, reported here, have be-
gun to couple software process support with the repository. This has demonstrated
promise to provide necessary guidance while ensuring that the repository is used as a
significant resource in the development process. In addition, adopting an experience
factory approach guides repository evolution to ensure that high quality, broadly ap-
plicable, processes are put in place and refined through use.

To accomplish these goals, the Experience Factory framework needed to be ex-
tended to show how tool support factored into the experience-based knowledge life-
cycle. This has lead to a specific instance of tool support that was formalized through
the “domain lifecycle” framework [77], a model of how domain knowledge evolves
and is used in the software development process.

36 S. HENNINGER

FIG. 2. The domain lifecycle as an instance of an Experience Factory.

2.3 The Domain Lifecycle

The domain lifecycle1 (shown in Fig. 2) is a representation of two simultaneous
phenomena; how knowledge evolves in an experience-based environment (the out-
side circle), and a model of the level of support software developers have at their
disposal during the development process (inside of circle). It depicts domain analy-
sis and the design of development tools as key experience factory concepts that con-

1The term “domain” is an overused word with multiple meanings in different contexts. In this paper,
we will mainly focus on the domain of software processes (which also can, unfortunately, also have broad
interpretations). Although our method is capable of maintaining other types of domain knowledge from
application domain knowledge, to abstract solutions such as software design patterns [87] to specific
techniques, such as the construction of Oracle configuration files [91].

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 37

tribute to the evolution of knowledge, while providing essential tools for the software
developer.

The progression of knowledge in Fig. 2 proceeds clockwise (see red arrows),
where knowledge begins as cases, individual pieces of highly contextualized knowl-
edge that have little use beyond their specific setting (development tools, languages,
operating systems, application domains, etc.). This is normally the project or de-
velopment effort for which they were specifically created. As the situations repre-
sented in case-based knowledge recur, or are seen as key information that may be
useful in other contexts, domain analysts (a specific experience factory role) perform
similarity-difference analysis methods [138,139] and other domain analysis tech-
niques designed to systematically identify objects and relationships for a class of sys-
tems [10,116,125,128]. Other techniques, such as pattern analysis [68,152], can be
used to create “domain abstractions” in the form of standards, guidelines, knowledge
ontologies, value-added or parameterized code pieces and other forms of knowledge.
These techniques are as difficult and time consuming as software development efforts
themselves, further strengthening the argument that a separate organization for this
kind of analysis is crucial to the success of a software experience factory [15].

The last step of this incremental knowledge formalization process [137] is to em-
bed the knowledge in domain-specific design environments. These environments
will have limited use as a general development method, but will have high levels
of reusability and utility within the domain they are designed for [63,149]. Object-
oriented frameworks, although lacking the knowledge component of a design envi-
ronment, are one way to develop a domain-specific development environment. Using
a design environment to construct a software system will involve extending the en-
vironment’s framework, creating new cases and the cycle repeats itself.

The model of developer support (blue arrows in Fig. 2) moves in the opposite di-
rection. Development efforts start with the design environment, choosing options and
receiving a partial solution to their problem. When design environment components
meeting their needs are not available, they turn to domain abstractions such as guide-
lines to support the development of new components that may become part of the
design environment once completed. If no domain abstraction exists for the problem
domain, project personnel can search the case-based repository for similar compo-
nents that can be used as-is, or specialized to meet their needs. Using programming
languages to solve the problem is the last resort, in a similar manner that hardware
designers resorting to expensive VLSI designs only when absolutely necessary.

2.4 Stepping Through the Lifecycle

Suppose a traditional IT organization begins to move towards a client-server plat-
form. Individual projects were beginning to develop their own backup and recovery

38 S. HENNINGER

schemes, a process that had been automatic and standardized in the mainframe envi-
ronment [89]. The domain analyst 1© will discover this, through either requests from
the development organization or an analysis of system characteristics [15]. The do-
main analyst evaluates these systems, begins to create a core set of best practices, and
catalogs the variations between the different development contexts and the backup
and recovery requirements these systems need [139]. As shown in Fig. 2, this can
be characterized in a variety of ways, from documents to value added code segments
(interfaces, parameterized classes, etc.), knowledge ontologies, and etc.

This knowledge, if sufficient cost–benefit ratios exist [14,107], is formulated into
reusable tools, frameworks, or other reusable artifacts that can be reused, extended,
and instantiated by a tool designer 2© in domain-specific tools. In our example,
a framework for backup and recovery, in terms of a framework, an interface, a sub-
system, or parameterized classes, would be created and placed in a Domain-Specific
Design Environment [58,59,63]. The knowledge embedded in this design environ-
ment, which may include hypertext-based references [8] to domain abstractions,
code artifacts, and etc., would still be specific to that knowledge domain (backup
and recovery, in this example), and of little use to other domains.

Suppose a new project needs a backup and recovery module. The development
team begins with the design environment, choosing options that fit their specific
backup and recovery needs. Although the domain-oriented tools can provide sub-
stantial coverage of the domain, they will not cover entire project domains. The rest
of the project artifacts needed to complete the project would be created by the project
team, creating situation-specific cases 3©, or by the Experience Factory, which cre-
ates new reusable artifacts 4© and design environment (tool) extensions 2© to meet
the project’s needs. I.e., even with the creation of knowledge environments, knowl-
edge creation is still an essential part of software development [151], and each project
will extend the case-based repository in some way to fill in what the environment
lacks (see the Product Creation sub-cycle in Fig. 1).

Although knowledge is accumulated in specific domains, the experience factory
and organizational learning paradigms assert that over time this knowledge will en-
hance the coverage of problem and solution domains [20,84], especially if the organi-
zation builds a fairly homogeneous product line, which is true of most organizations.
Long-term empirical results provide evidences that these assertions hold [17,19,67].
Development environments with heterogeneous products will require mechanisms to
differentiate between the separate application types and provide process models and
information that are appropriate to the type of project (see Section 4.4.1). In addi-
tion the knowledge will be continuously refined to meet the needs of the organization
and become increasingly accurate with respect to business and software development
needs [81] while evolving with changing business practices and technology.

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 39

2.4.1 Case-Based Decision Support Tools

Case-based repository support collects experiences from individual projects, tool
experiences, and other artifacts generated to support the development infrastructure
of the organization. Project experiences and design artifacts are captured during the
development process and collected in the repository as project-specific cases. The
fact that knowledge in software development settings is both dynamic and situation-
specific [48,83,88,143] indicates that a case-based approach is a good match in this
setting [83,143]. A case is a “contextualized piece of knowledge representing an
experience” [102], making case-based decision support an excellent choice to rep-
resent experience-based software engineering methodologies, lessons learned, suc-
cessful, and failed techniques. Case-based decision support technology [102,101,
122], a branch of case-based reasoning that focuses more on the collection and re-
trieval of cases than on automated reasoning techniques [102], can be utilized for
similarity matching of attributes for providing a basis for understanding the context
in which specific methods will work.

The case-based reasoning cycle [1] naturally incorporates building on past expe-
riences in a continuous learning process. The cycle advocates cases first being re-
trieved from a case base, which ensures knowledge use as shown in Fig. 1. The best
choice is then chosen and revised or otherwise adapted to the current problem setting.
Then the newly adapted case is stored to accumulate the new experiences gained.

2.4.2 Domain Abstractions and Domain Analysis

One problem with a case-based approach to software development is that cases
tend to represent isolated problems that need to be adapted from one set of specifics
to another. Domain analysis methods are needed that synthesize similar cases into
knowledge that is applicable to a class of problems. This is precisely where organiza-
tional learning comes in. Most methods advocate creating a formal model of the do-
main [126], making domain analysis and software reuse most useful for established
domains with well-known parameters [27,127,140]. But in the fast-paced world of
technological advances that characterizes the computer industry, well-established do-
mains are an increasingly rare commodity. Domain analysis methods are needed that
accommodate the intrinsic forces of change stemming from the difficulty of creat-
ing well-designed systems to begin with, as well as meeting the needs of a dynamic
marketplace that reflect changing and evolving user needs [44].

A key issue for domain analysis is to find commonalties and differences among
systems to facilitate reusing software and other design artifacts [138,139]. From this
perspective, domain analysis is a process of identifying commonly occurring pat-
terns across a number of development efforts. The “domain” does not necessarily
need to be a family of applications or a formal model, but a set of problems within

40 S. HENNINGER

applications with recurring activities and/or work products [89]. As patterns emerge,
top-down domain analysis methods can be used to formalize the patterns, facilitat-
ing domain evolution from the identification of isolated patterns to formally defined
domain knowledge. Identifying established patterns of system artifacts reduces the
risk of costly domain analysis efforts by ensuring that the cost of analysis can be
amortized over many uses.

In general, domain abstractions are domain-specific models of design problems,
including domain models, design guidelines, value-added reusable artifacts, domain-
specific handbooks, process models, design checklists, analysis similarities and dif-
ferences between systems, formal notations or ontologies, and other forms of knowl-
edge. It is precisely this kind of support for domain analysis that is necessary to
provide “the reference assistance other types of engineers have benefited from for
decades” [44, p. 5].

2.4.3 Support for Domain-Specific Design Environments
Domain-Oriented Design Environments (DODEs) [61,63] integrate a domain-

oriented framework with reusable components that can be selected and configured
to automatically construct systems or partial systems though the direct manipulation
of visual icons representing code components. Tool designers using accumulated
knowledge from the domain models, specific cases, and reusable artifacts from the
case-based repository create a “seed” for the environments [65], which have mecha-
nisms for evolving the environment to meet new needs [60].

In this paradigm, systems are composed in a work area that is monitored by “crit-
ics” [61] that display artifact-centered, domain-specific, intelligent support when
sub-optimal design decisions are detected. Although knowledge accumulated in this
paradigm is limited to particular domains, these systems can provide a stronger level
of support because they concentrate effort on good solutions within a domain, instead
of addressing universal, domain-independent methods [149]. Fischer and colleagues
have also defined an incremental process of knowledge acquisition [65] where an
initial seed is constructed through knowledge acquisition methods, then allowed to
grow and evolve as it is used, maintaining the knowledge through “re-seeding” ef-
forts as the knowledge base becomes outdated or unwieldy.

Frameworks are another source of domain-specific design environments that are
becoming increasingly popular in systems development [34,96]. In effect, a frame-
work or framework architecture, such as J2EE and .net define the construction kit
component of a design environment [63], albeit at a lower level than Fischer’s defini-
tion of a design environment. Developers use components and component constraints
to compose systems by choosing options, using existing classes, and instantiating ex-
isting classes in the framework. Although wizards [22] and patterns [40] have been
constructed for frameworks, the missing element in this approach is knowledge about

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 41

which components should be used in a given set of circumstances and other design
issues, such as conflicting components and advice on how to instantiate components.
Future work in domain-specific design environments will largely take place in the
context of framework architectures.

3. Tool Support for Experience-Based Approaches

Tool support for an experience-based approach to software development need
to support the knowledge lifecycle shown in Fig. 1. Not only is experience-based
repository technology necessary, but methodologies must also be established and
practiced that ensure existing knowledge is utilized and refined in a disciplined
fashion in the development process. Relationships between activities and appropri-
ate tools, techniques, and knowledge must be established to help guide the devel-
opment process. Furthermore, establishing these relationships is not a static, one-
shot, endeavor. As new technologies emerge, business practices evolve, and social
institutions change [100], the techniques used to address these needs will evolve.
Experience-based techniques must therefore support the continuous feedback loop
shown in Figs. 1 and 2.

The integration of the experience factory and organizational learning approaches
show promise for addressing these issues while complementing each other. Cur-
rently, tools designed to support experience factory approaches have focused on tech-
nology for the experience base [18,29,48,55], leaving important issues unresolved,
such as how the packages are acquired, used, and evolved in the context of devel-
opment efforts. The organizational learning approach has focused on establishing
criteria to associate knowledge with specific experiences, but lacks the kind of orga-
nizational structure found in the experience factory approach.

Bringing these two approaches together requires a combination of experience
feedback techniques and repository technology. While the need to continuously
evolve and improve the process is generally recognized, the problem of ensuring
knowledge of best practices is used in the context of development efforts has re-
ceived far less attention. Given this background, our high-level requirements for tools
supporting an experience based approach is as follows:

1. An overall methodology and/or a community of practice that incorporates use
of the repository in daily development practices.

2. Repository technology capable of representing both general and project-
specific knowledge.

3. Means of using experience-based feedback to continuously refine and improve
repository contents.

Each of these is explained in detail in the following sections.

42 S. HENNINGER

3.1 Developing Communities of Practice

Experience reports from organizations and researchers attempting to build expe-
rience factory repositories have found that simply having a repository is not enough
for success [133]. In the very least, the repository needs to be adequately seeded with
a critical mass of information before people will perceive a benefit in using it [65,74,
133]. But to create a repository that will grow and evolve with the dynamic needs of
the organization requires that people use and are committed to the sustained growth
of the repository.

The first requirement is that the repository is used, not just at the beginning (project
planning) and end of the project (feedback and/or post mortem) [28,41], but through-
out the development process. Work practices need to be designed that incorporate the
use of existing knowledge as a normal part of the workflow. The underlying prob-
lem is not so much of capturing and storing knowledge, but using existing knowl-
edge as the basis for current activities. Mandating the use of repositories does not
solve the problem. This has been demonstrated by software reuse initiatives using
various forms of incentive, most of which have failed to produce the desired re-
sults, thus demonstrating that good incentive-based solutions are not easy to cre-
ate [124].

The creation of knowledge, and indeed the process of creating software systems, is
a social process [153]. People work together, collaborate, challenge each other’s as-
sumptions, and generally set the knowledge creation process in motion. They create
networked communities of practice [38] within the organization that disseminate and
exploit existing knowledge and work together to create new knowledge when novel
circumstances arise. They collaboratively adapt canonical accounts from manuals
and other existing resources to novel situations to create new insights and learn. The
open source community is one example that has largely used on-line communication
mediums to perform work and create communities of practice [131,132].

Tool support for communities of practice must recognize that use of the knowledge
is equally important to capturing and representing the information. Systems such
as Eureka [39], the Designer Assistant [145], and others have shown that periodic
review of the repository is critically important to the sustained use of the system. The
Designer Assistant [145], an expert system for using a complex software component
in telephone switching systems, integrated a review of the knowledge into the design
and development review process. I.e., when the software developers reviewed their
code, they also reviewed the adequacy and accuracy of the advice they received from
the system [145]. Not only did this provide valuable feedback, but the reviews also
made people take notice that using the system was valued and a necessary part of
development practices at the organization.

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 43

3.2 Experience-Based Repositories

Knowledge repositories in fast evolving domains, such as software development,
face becoming obsolete almost as quickly as information is captured. Experience
based approaches “try to avoid this by enriching the best practice description with
experience gained in its application” [117]. To accomplish this requires repository
technology capable of representing both knowledge categories and associated expe-
riences.

Relational models have been used to represent attributes of specific packages [18]
and object-oriented models have also been developed [119]. These representations
allow the definition of types and attribute-value pairs to describe elements of the
types. Case-based technology further builds on attribute-value representations by ap-
plying similarity matching techniques [143] and a representation-adaptation-capture
cycle addressing continuous knowledge acquisition. Note similarities with the gen-
eral experience based knowledge framework of Fig. 1.

A problem rarely recognized in repository technology and case-based techniques
are the passive nature of how they are utilized in the development process. Search is
seen as an extra and optional step that is abstracted from the normal workflow and
used on a discretionary basis. This is problematic for two reasons: (1) people are not
able to articulate their problem in the correct terms because they are unfamiliar with
terminology used in the repository [24,25], and (2) people are not always aware of the
fact that information exists that may help them, and therefore do not seek assistance
from repositories [50,64]. Simply having a repository of experiences and/or lessons
learned is insufficient to getting the knowledge to the people that may benefit from
it. Mechanisms are needed that trigger or otherwise alert people to knowledge that is
available and relevant to the task at hand.

3.3 Continuous Feedback of Development Knowledge

The first step in establishing an experience-based approach is to integrate use of
the repository into development practices. Once this is instituted, mechanisms are
needed that ensure quality and continuous refinement of development knowledge.
Knowledge acquisition cannot be viewed with an expert system mentality, where
knowledge is acquired in a process separated from its use and then applied as a com-
plete solution. Instead, knowledge must be acquired in context and in a continuous
process [84] that not only keeps repository contents current with changing devel-
opment needs [89], but also supports diverse development processes [108] that are
necessitated by diverse application requirements.

The implication is that while a disciplined process based on past experiences is
needed, there must also be a way to deviate from the process in a disciplined manner.

44 S. HENNINGER

These deviations must not be viewed as exceptional [45] or undesired consequences,
but as a normal part of the development process, one that leads to refinements in the
experience base, organizational processes, etc. Because software development (and
design in general) has so much variance between projects, we need to focus more on
the knowledge creation process [66]. One way to look at this is as a process of im-
provisation, where knowledge is not constructed from a blank sheet of paper, but “in-
volves and partly depends on the exploitation of prior routines and knowledge” [52].
In other words, knowledge creation depends on knowledge use and knowledge use
leads to knowledge creation (see Fig. 1). This is particularly critical to experience-
based approaches for software development, as both software technology and domain
knowledge continues to evolve at a rapid pace.

4. The BORE Software Experience Base Tool

BORE (Building an Organizational Repository of Experiences) is a prototype
tool designed to further explore and refine the requirements for tools supporting
experience-based approaches. Its purpose has been as a proof-of-concept prototype
that is used to articulate organizational learning and experience-based software de-
velopment techniques. The tool has evolved from exclusively focusing on repository
technology [83,80] to using defined software processes as the organizing principle
of the technology [85]. It creates a framework for the experience factory by combin-
ing a work breakdown structure with repository tools for designing software process
methodologies, and repository technology for capturing and applying knowledge ar-
tifacts. The BORE tool and methodology extends the experience factory concept
through rule-based process tailoring, support for process modeling and enactment,
and case-based organizational learning facilities.

The BORE prototype is a Web-enabled application using a three-tiered architec-
ture with Java Swing for the interface, Java for the client application logic and server,
and an SQL database back-end.2 BORE has two main interfaces, shown in Fig. 3.
The Task Manager, shown to the left in Fig. 3, displays a hierarchical arrangement of
cases that define the tasks in a project’s development process. In the figure, a project
named “ProjectX Demo” has been chosen from the list of resources in the drop-
down menu that displays projects. Each of the nodes in the project hierarchy, which
are cases corresponding to project tasks, can be opened to view information about
the task. In the window to the right in Fig. 3, the task named “0.10.0 Choose Project
Methodology” has been opened. Status and completion of the task is indicated by
the colored icon to the left of the task name in the Task Manager.

2Interested readers can log into BORE at http://cse-ferg41.unl.edu/bore.html. Click on the production
version link and log in as ‘guest’ with no password.

http://cse-ferg41.unl.edu/bore.html

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 45

FIG. 3. The BORE Task Manager (left) and a Task Window (right).

BORE is based on a case-based architecture in which cases are used for represent-
ing all primary information sources. The primary use of cases is to represent project
tasks, such as the one shown in Fig. 3. The description field of the task is normally
used to describe the defined process standard while the solution field is used to doc-
ument project-specific information accumulated while executing the task. The Edit
tab is used to edit the task fields and the Resources tab is used to attach project doc-
uments to the task. The Options tab, which will be described in detail later, is used
to choose process options available to the task. Task status is kept for each task and
is displayed as a color-coded icon in the Task Manager (active, resolved, etc.), thus
providing a way to get a visual overview of a project’s status.

Less important for the purposes of experience-based knowledge management, but
equally critical for capturing project and task metrics [32,94], and analyzing project
data are the Time Reports, Task Dependency, and Task History tabs. Time Reports
keeps track of time spent on a task by category. Task Dependency keep track of any
kind of dependency that may exist between tasks, such as task ordering dependen-
cies, and Task History keeps track of all changes made to the task.

These core features represent case-based organizational memory paradigm of
BORE [83]. Each case represents a project-specific task that is used to help coor-
dinate and disseminate project experiences. The project hierarchy can be used as

46 S. HENNINGER

a dynamic checklist of project tasks that captures information about projects in an
organization-wide repository. A second view of the project can be created through
the task dependencies, which are capable of creating Gantt Charts. A bi-directional
interface between BORE and Microsoft Project has been created, and BORE has
the ability to create comma-delimited files for other project scheduling programs.
Effort metrics can be derived from this information that can be used for more accu-
rate project forecasting. These features are designed to make the BORE system an
integral part of project management and task enactment, which is necessary to cap-
ture the kind of experience-based knowledge necessary to implement an experience
factory methodology.

4.1 BORE Terminology

Figure 4 shows a model of the major concepts used in the BORE approach to
the experience-based software development. Some of these terms were introduced
in the previous section and some will be used in later sections. Terminology can be
difficult in this area, as researchers have used terms differently [43,54]. Therefore,
the following terms only apply when we discuss BORE concepts.

Case. A case is the atomic unit of information in BORE and is used to represent
all types of tasks, software patterns [68], and etc.

Task. This is a generic term for any type of task in the BORE system. In opera-
tional terms, a task is the smallest unit of work that can be represented in the system.
Sets of related tasks are often referred to as activities. It is a subtype of a case. Al-
though most tasks in a project are an instance of a methodology task, project team
members can create tasks specific to a project. These tasks are tracked through a de-
viation process, described later (Section 4.6.1). Note that a task is unique to a project
(i.e., a project can have more than one task, but a task, having been created by a
project, can be part of only one project).

Methodology. A methodology in BORE is a defined or standardized set of tasks
that together represent a general way of developing a software system. A methodol-
ogy is more specific than a “Waterfall” or “Spiral” model in that it specifies specific
activities that are required in projects. In BORE, methodologies are used as a tem-
plate for creating projects. A methodology is composed of one or more methodology
tasks.

Methodology Task. A methodology task is a task that is defined in a method-
ology. When a project is instantiated from a methodology in BORE, methodology

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 47

FIG. 4. UML model of BORE concepts.

tasks are copied to the project, creating project tasks. Process engineers create and
edit methodology tasks to construct a methodology.

Project. A project in BORE is an instance of a defined methodology. It consists
of one or more project tasks. Not all of the methodology’s tasks need to be included
in the project, but all tasks in the project (unless they are part of a process deviation,
as explained in Section 4.6.1) are an instance of a methodology task. Projects will
have one or more project tasks and/or methodology tasks.

Project Task. A project task is an instance of a methodology task that belongs
to a single project. Project personnel can edit project tasks.

Organization. An organization is any business organization or unit using the
BORE system to develop software and/or systems. An organization can define one
or more methodology.

48 S. HENNINGER

4.2 The BORE Approach

Using BORE to manage software development processes and methodologies can
be mapped to the QIP experience-based paradigm, as shown in Fig. 5. The figure
shows relationships between the steps in the methodology and, where applicable, the
six QIP steps described earlier in this paper are shown in the bottom-right of the task
bubbles.

To use BORE, the organization first creates a methodology by creating a work
breakdown structure of tasks. Rules are also created that define when a task should
be assigned to a given project. Rules and tasks define a “methodology” in BORE,
which is a standard process of developing software that is defined for a specific orga-
nization, whether that organization is a company, a sub-division, or a small working
group. BORE supports the representation of different organizations and methodolo-
gies within the methodology, so that many organizations can use the same BORE
server securely.

Once defined, the methodology is used to create an instance of the methodology
for each project using the system. This creates a set of project initiation tasks as
defined in the methodology (“characterize” in QIP terminology Fig. 5). Project per-
sonnel then execute the tasks and document their progress in the tasks assigned to the
project. BORE also allows tasks to be further broken down by associating tailoring
options to any of the methodology tasks. Choosing options may assign other work

FIG. 5. The BORE experience-based methodology.

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 49

breakdown structures to the project, thereby refining the tasks that the project will
undertake (Set Goals and Choose Process in QIP terms).

The result is a tailored development process consisting of tasks to be executed by
the project team. For example, The Task Manager window of Fig. 3 shows the project
initiation tasks that are assigned to a project when it is created from the methodology
named “ADM”. Once instantiated, the tasks are used to document project-specific
issues (Execution in QIP terminology). Project documents and code artifacts, tem-
plates for which can be defined in the methodology and copied to projects, are at-
tached to project tasks to act as a repository for document management. The process
of choosing tailoring options, executing the assigned tasks, and periodically review-
ing the project, defines the project development cycle, or spiral [33].

While executing, project members are creating and modifying project artifacts
and further tailoring the development process, often through project reviews (see the
Product Creation cycle in Fig. 1 and the Project Review process in Fig. 5). This
may entail deviating from the process (see Section 4.6.1) as defined in the method-
ology, shown by the double arrow from Project Execution to the Experience Repos-
itory in Fig. 5. These deviations are knowledge creation points that can be analyzed
and potentially added to the repository. This involves an organization-level review
(Analysis in the QIP) that can be as lightweight as allowing project members change
the process or as heavyweight as appointing task forces to analyze and change the
process, which is standard in large and diverse organizations with safety critical ap-
plications, such as NASA [114], or Hughes [95]. The tasks are then packaged (see
Fig. 5) and placed in the repository with appropriate rules that determine what kinds
of projects should use the newly defined tasks (Package in QIP terminology). The
methodology is thus modified through the modified experience base, completing the
experience-based knowledge lifecycle.

Note that we have purposefully omitted an explicit link from packaging to method-
ology creation in Fig. 5. This is to show that projects refine the domain through
the experience base. Each project therefore draws on the collective definition of the
process by reusing knowledge (experience-based knowledge) placed in the reposi-
tory and structured through defined methodologies. Steps in this methodology are
further explained in the following sections.

4.3 Creating BORE Methodologies

Each methodology in BORE is defined by a set of methodology tasks in a hier-
archical work breakdown structure and methodology rules that define when a task
should be used. A methodology in BORE can be as simple as a repository of tasks
related to a topic or as complex as a development methodology for a software de-
velopment organization with program-level efforts that must coordinate multiple

50 S. HENNINGER

projects, contractors, and other development efforts. Projects are an instance of a
single methodology, which is chosen when a project is created in BORE. All subse-
quent project tasks will use the tasks and rules defined for that methodology. Allow-
ing multiple methodologies supports scalability and allows organizations to partition
development tasks to meet the needs of diverse environments or product lines.

Methodology tasks define the space of possible tasks for projects within a given
methodology. Tasks can be as high-level or detailed as desired. The Task Manager
in the right-hand window of Fig. 6 shows a set of tasks that define a methodology
using a combination of MBASE [31] and RUP (Rational Unified Process) processes.
Tasks are defined in a task/subtask relationship represented in a hierarchical work
breakdown. The middle window of Fig. 6 shows the Resources Tab, which both
allows documents to be attached to tasks and shows all other tasks created from the
same methodology task.

The defined process can be tailored to meet project-specific needs through method-
ology rules, which define a set of conditions under which a project is required to
execute a specific task. In other words, the methodology rules choose which method-
ology tasks a project must follow to conform to the process standard. Therefore, the
standard can define a broad set of tasks and the methodology rules determine which
of those tasks are applicable to a given project. The defined methodology is there-
fore more than a set of tasks or activities. It is a representation of tasks combined
with rules for when the tasks are applicable to specific project types. In essence, the
methodology is a program with data [120], not data alone in the form of a docu-
ment.

4.3.1 Creating Methodology Tasks

Methodology tasks are created and edited in the Task Manager using the same in-
terface and tools available for editing project hierarchies. The window to the left in
Fig. 6 shows the resource menu with 17 defined methodologies, each of which has a
separate set of methodology tasks and rules. To add new tasks to the methodology,
process engineers create new methodology tasks, place them in the methodology’s
task/subtask hierarchy (shown in the right-hand window of Fig. 6), and populate
them with information about the standard. Templates, guidelines, and etc. of any
document type can be attached to methodology tasks as shown in the Attached Doc-
uments field of the Resources tab (middle window of Fig. 6). The Related Projects
pane displays all instances of this methodology task, which is discussed further in
Section 4.4.4.

When a methodology task is assigned to a project, creating a project task, all in-
formation in the methodology task is copied to the task in the project, including
creating a copy of the Attached Documents in the project’s file space on the server.

TO
O

L
S

U
P

P
O

R
T

F
O

R
E

X
P

E
R

IE
N

C
E

-B
A

S
E

D
S

O
F

T
W

A
R

E
51

FIG. 6. Editing methodologies and attaching resources and templates.

52 S. HENNINGER

Project personnel edit the task fields and download the templates in the Attached
Documents field. During project enactment, project personnel will fill in the tem-
plate with project information. The edited documents can then be uploaded to the
server so others can view them. Access control is allowed by locking the document.
This has been sufficient to allow version management by locking the document for
editing and uploading an edited document with a new version number in the name,
although more sophisticated change management may be needed in the future.

4.3.2 Editing Methodology Rules
The Rules Manager provides tools for creating and editing methodology rules and

associated questions and answers (see Fig. 7). The initial window displays precon-
ditions and actions for a given rule, as shown to the left of Fig. 7. A rule is defined
through a set of preconditions, defined by question/answer pairs, and actions, that
are fired when all preconditions evaluate to true. For example, following the precon-
ditions of the figure, when the size if the team is medium, the type of project is new
software development, the software is critical to mission success, and there is a sig-
nificant level of hardware/software integration, the rule will fire, causing the actions
to be executed. In this instance, rule actions, shown both in the Action(s) pane of the
Rules Manager and Edit Actions windows execute to add three tasks to the project.
In addition, when choosing options to tailor the project during process enactment
(see Fig. 8), questions can be added to and removed from the New Question pane,
allowing for the implementation of decision trees. The actions defined in Fig. 7 show
that two questions will be added and one question removed from the New Questions
stack when the rule’s preconditions are met.

Preconditions are edited in a separate window (not shown) that choose the ques-
tion/answer pairs for the rule (other types of preconditions, such as status change for
completion of a task and others are currently under consideration). Actions are edited
through the Edit Actions window shown to the right in Fig. 7. Choosing the action,
type, and task to be added creates actions that add tasks to, or remove tasks from a
project. Other options for the task, such as the initial status and task owner, can also
be chosen (small window to the right in Fig. 7). Actions can be designed by choos-
ing the proper Action and Type in the Edit Actions window, defining actions such as
adding or removing questions from the New Questions pane, e-mail can be sent, and
other actions. The list of actions is executed in the order shown in the Actions field,
and can be moved through the arrow buttons.

The rule system is implemented as a simple forward-chaining rule engine that is
persistently stored in a relational database. Full backtracking (undoing a fired rule) is
supported, allowing people to play what-if scenarios, by choosing different options
in the Options pane of a Task Window (see Fig. 8) to observe the impact of selecting
different options.

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 53

F
IG

.7
.

E
di

tin
g

ru
le

s
w

ith
th

e
R

ul
es

M
an

ag
er

.

54 S. HENNINGER

FIG. 8. The Options tab.

4.4 Project Instantiation

When a project is created in BORE, an instance of the process is created. This
involves creating a set of project initiation tasks that are specified in the methodol-
ogy’s “rule 0” and copying the associated methodology tasks into the project hierar-
chy. From these initial tasks and the options designed into tasks by the methodology
designer, a tailored project is created.

4.4.1 Tailoring the Process

In most BORE methodologies, the initial tasks represent a first pass to define
project tasks than can be further broken down through options that can be attached
to any of the methodology tasks. Tasks that have options associated with them are

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 55

denoted by the “?” in the icon next to the task label in the Task Manager (see the
project hierarchy in Figs. 3 or 7). The options are found by opening the Options
tab (Fig. 8) and are used to tailor the process to the project’s unique character-
istics, usually through rules that break down the task into constituent sets of sub-
tasks.

For example, the Software Design Studio methodology defines a number of tailor-
ing options for the elaboration phase that indicate key areas where the project may
want to look for Use Cases (as shown in Fig. 8). Three questions have been answered
and more remain in the New Questions stack. When a question is chosen, possible
answers are displayed in the Answers field in the middle of the window. Selecting
the answer moves the question/answer pair to the Answered Questions field. Choos-
ing a different answer causes BORE to backtrack the actions previously executed
and executing the actions required by any rules fired by the new question/answer
pair.

A key feature of this tailoring process is the flexibility offered by allowing options
to be associated with any methodology task. This allows processes to be defined that
iteratively expand each part of the project’s process as they gain the knowledge nec-
essary to address process issues [120]. Initial projects can define tasks with options
that add new tasks that can in turn have options to further refine the process and
provide resources for the project. In this way, the project tailors the overall process
to its needs when it is able to address the issues involved. In addition, varying levels
of detail can be supported by defining options as deeply in the tree of methodology
tasks as desired.

4.4.2 The Rule-Based System

When an option is chosen, the rule engine is invoked to find satisfied rules. When
all preconditions for a rule evaluate to true, the rule “fires,” causing the rule’s actions
to be executed. The actions associated with process tailoring take one of three main
forms: (1) A question can be removed from the question stack (displayed in the
New Questions field of the Options tab of a task), (2) a question can be added to
the question stack, and (3) a task or set thereof is added to the project in the proper
places in the hierarchy as defined by the process domain. Other actions, such as
adding information to a database, automatically alerting people of events through
e-mail, and other types of actions as required by corporate standards can also be
designed into a rule.

Users may exit the Options tab at any point in the session. The state of the project
and its tasks will be stored in the database and restored when the user opens the
Options tab for that task. BORE maintains a separate rule space for each project so
that multiple projects can choose individual options.

56 S. HENNINGER

4.4.3 Knowledge Access vs. Knowledge Delivery
Note that by creating a tailored instance of the development methodology for each

project, we have changed the paradigm of following a methodology from one of man-
ual search and determining whether process conformance is being achieved (knowl-
edge access) to one of knowledge delivery. Through the tailoring rules, BORE has
assigned activities to the project in an agent-like fashion that assures conformance.
The software developer or manager does not have to fumble through dozens or three-
ring binders or Web pages to find the information they need to perform the activity.
It is delivered to the user in the activity.

4.4.4 Delivering Development Resources
BORE provides not just process support, but also templates and cross-references

to task instances in other projects. Because each project is an instance of the method-
ology, it is easy to cross-reference a project’s task to all other project instances of the
associated methodology task. The Related Projects window of the task Resources
tab, shown in Fig. 6, displays a list of all cross referenced projects using that task.
Double-clicking on the project will display that project in the Task Manager hierar-
chy and double-clicking on the task name will open a task window for the specific
project.

There is thus a level of project transparency, constrained by some access control
permissions not discussed here, which allows projects within an organization to view
how others have addressed the task, how long it has taken to finish the task, and
view any artifacts associated with the task. This is a direct conduit to the reuse of
software development artifacts that can be used to build upon and improve known
best practices.

4.5 Project Execution

As project personnel perform the work specified in the tasks, work is documented
using features in the Task window. This includes editing the task (in the solution
field, shown in the task window of Fig. 3) or attaching work products to the task.
Although many formalisms have been created for software process automation [12,
69,142], this has not been the focus of our work. Instead, we have created tools that
focus on supporting parts of the process requiring human interpretation and effort by
helping managers and developers make informed decisions.

Editing the Solution field of the Task Window (see Fig. 3) is intended as a quick
and easy way to annotate a task, although any amount of documentation is allowed.
This field is represented HTML, as are the other Overview fields, so that multimedia
objects can be embedded in the text. A second method of project documentation is

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 57

found in the Attached Documents pane of the Resources tab (see middle window
in Fig. 6), which allows documents of any type to be attached to a task. Using the
browser’s HTTP facilities, the document can then be downloaded and opened with a
simple mouse click, as discussed in Section 4.3.1.

BORE also supports assigning project personnel to tasks. When methodology
rules are created, roles can be assigned to tasks when they are instantiated in a
project, as shown in the Initial Task Attributes window in the lower right of Fig. 7.
Each methodology defines a set of roles and projects can assign one or more persons
to the role. Tasks can thus be assigned to specific project personnel assigned to the
role for execution. The task owner can also be manually set for each task. A privilege
manager allows different methodologies to define privileges for the roles in that do-
main. All of these features combine to allow organizations to define which personnel
can have access to sensitive actions, such as deleting tasks in projects a person does
not belong to, or editing the methodology tasks and rules.

4.6 Analysis and Review Processes

Once options have been chosen, and rules fired to assign the set of defined tasks,
the project tasks should be reviewed for accuracy. Analysis and review of process
tasks can occur at two distinct levels. The first is at the project level (see Fig. 5),
where it is anticipated that each project has unique characteristics and will there-
fore need to deviate from the process in some way. Note that the assumption here
is that more detailed process definitions are possible with this technology than with
traditional, high-level, process definitions. Instead of stopping at stating that a re-
quirements definition document is required, this approach allows organizations to
define best practices for eliciting and defining requirements, potentially for different
kinds of user populations. For example, the organizational standard and code for a
Web-based login screen could be attached to a low-level user interface task. With this
level of detail, one that can truly support software developers and managers in their
daily activities, tool support for finding appropriate tasks becomes crucial with this
level of detail. Therefore, the unique characteristics of each project will necessitate
extensions to the process. Note that this approach is a combination of knowledge
management and process support.

4.6.1 Project-Level Deviations

At the project level, process deviations are used to allow projects to define new
tasks for their project and remove tasks that are deemed inappropriate. As shown
in left-hand window of Fig. 9, the project has deleted the task “1.3 COTS/GOTS
Evaluation. . .” and its subtasks, shown by the status box with a red box inside of

58 S. HENNINGER

FIG. 9. Project-level Deviation Rationale.

it. In addition, a new task for evaluating Java Architectures had been added, along
with a number of subtasks supporting this activity. Deviations are freely allowed,
being seen as a breakdown of normal operations that leads to new knowledge of
the process [153]. Each time a project deviates from the process, the task either be-
ing added or removed opens the task’s Design Rationale tab (right-hand window in
Fig. 9). The user must provide some information into this tab or the add/delete op-
eration will not be completed. The purpose of this deviation rationale is to provide
information about the project’s specific circumstances, or context, in which the de-
viation should occur. The project is allowed full editing privileges for the task after
rationale is entered and while it is being reviewed. If no rationale is provided, the
operation is cancelled.

At the process management level, the deviations are placed in a Project Devia-
tion resource area (see Fig. 10) where an analyst can look at the deviations to find

TO
O

L
S

U
P

P
O

R
T

F
O

R
E

X
P

E
R

IE
N

C
E

-B
A

S
E

D
S

O
F

T
W

A
R

E
59

FIG. 10. Analyzing and approving process deviations.

60 S. HENNINGER

emerging best practices. For example, if all the projects are adding a “Backup and
Recovery Strategy” to their project, the analyst can detect this and begin the process
of creating an organization-wide standard for this activity. In addition, since the de-
viation rationale is stated in terms of “under these circumstances” the analyst should
be able to turn the deviation rationale into rules for when the new processes should
apply. The same can happen for outdated processes that most projects remove. The
analyst can determine that the information is outdated or no longer needed, either
updating the task(s) or removing them from the process.

4.6.2 Process-Level Reviews

In a disciplined environment, deviations from the process would be escalated to a
project-level review, as shown in the Analysis/Organizational Review step in Fig. 5.
In BORE, the approval process begins after deviation rationale has been entered. The
task is marked as a process deviation in the Task Manager by changing the status to
“Needing Approval,” represented by a square icon with a smaller square inside (see
left-hand window of Fig. 9). If the deviation is a deletion, the square is red, if it is an
added task the square is green. The outcome of the approval procedure, whether light-
weight (the manager or developer approves their own deviations) or heavyweight (an
SEPG committee must review all deviations), can have one of a number of implica-
tions. For example, discussion can take place on the appropriateness of the chosen
options, perhaps requesting that one or more of them are changed. Another is that the
deviations are deemed inappropriate and the project is directed toward accepted de-
velopment practices that project personnel may have been unaware of. For example,
note that the “Choose Java Architecture” deviation has been rejected. This can occur
because the organization already has a standard that the process engineer will alert
the project to, etc. One-time deviations can also be allowed by simply approving the
deviation.

The most significant result, one that all projects will encounter, is that the method-
ology needs to be extended to meet emerging software development needs. Using
Java architecture example in Fig. 9, the person or team with organization-wide re-
sponsibility for the process can approve the deviation (see the middle window of
Fig. 10), putting a check mark in the icon that appears both in the project deviation
window (shown in the Task Manager) to track whether or not deviations are accepted,
and in the project, to notify project members that the deviation has been approved.
Declining the deviation (‘Disapprove’ in the middle window of Fig. 10) causes a
cross out of the icon. The task is then deleted or its status set to ‘Open’ when the
task name is selected, depending on whether the deviation was an approved addition
(status set to ‘Open’), an approved task removal (task deleted), and etc.

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 61

4.7 Experience Packaging

Packaging project experience is a two-step process of creating the work break-
down structure of tasks and defining rules for when tasks should be applied to a
project, bringing us back to the methodology definition phase. In the scenario de-
picted in Fig. 10, new methodology tasks such as “Evaluate Java Architectures” and
“Prototype Java Plug-in Approaches” are created by the process manager along with
attached documents, task dependencies, estimated task durations, and etc. The devi-
ation rationale, for example, the Java Plug-In rationale in the right-hand window of
Fig. 9, could be turned into an option asking whether user requirements constrain the
choices for choosing a Java Plug-in version, providing a list of known choices, one
of them being the 1.4 version. The actions for this rule would be the tasks created
by the process manager, and guided by the project creating the deviation, to address
Java Plug-in 1.4 issues. In this manner, the project’s experiences are used to pave a
new path that other projects can follow as part of the refined process.

5. Putting BORE into Practice: Some Starting Points

As has been stated numerous times in this document and elsewhere [15,73,147],
successful experience factory and software programs require separate organizations
that focus on the separate concerns of the application and technical domains [47].
Figure 11 shows how the BORE methodology accomplishes this separation between
experience factory and project organization concerns. The figure shows the flow of
events to create, use, and modify software development knowledge through feedback
from project experiences.

5.1 Roles and Tasks for Implementing the BORE Approach

Using any experience factory approach is not a simple matter of installing soft-
ware. As depicted in Fig. 11, the BORE approach is only partly a matter of keep-
ing a repository of tasks and tailoring rules. It also involves people, reviews, and
processes. In part Fig. 11 is a re-drawing of Fig. 5, but focusing on the actors and
process involved. It shows that a process engineer (or Software Engineering Process
Group (SEPG), etc.) must first create a methodology consisting of methodology tasks
and tailoring rules. Project personnel then choose project options that fire tailoring
rules, resulting in a tailored set of activities. This is normally the project manager
but BORE can allow policies in which designers and developers can choose options
for different kinds of tasks. The options and results of tailoring rules are then re-
viewed at the project level, potentially with process engineers present. This leads to

62 S. HENNINGER

FIG. 11. Actors and processes involved in implementing the BORE approach.

the set of project activities that will be used by the project. Also, because each project
creates an instance of the methodology, new cases are created in the repository. At
any point in project execution, or at a project post-mortem [28], information is gath-
ered in the form of feedback and lessons learned. This information is reviewed at
the process level by the process manager and/or SEPG group, resulting in method-
ology refinement, including both changes to methodology tasks and tailoring rules.
External sources can also prompt methodology refinements and/or be combined with
project experiences to refine the methodology.

Another role needed to implement the BORE approach is a rule designer. Although
interfaces have been designed to make rule creation as easy as possible, the rule
system is, in effect, a type of program. This means careful design and testing of rules
is necessary to ensure the proper actions are taken when options are chosen. It is
perfectly reasonable, particularly in small organizations, that one person performs
both roles of process manager and rules manager.

5.2 Evaluation Contexts for BORE

BORE has currently been evaluated in three contexts, each quite different in the
scope of problems the system is used to address, ranging from process discovery
to implementing and ensuring conformance to, well-defined processes. Other imple-
mentation and evaluation efforts are in inception processes and we hope to continue

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 63

to use feedback from these projects to refine the methodology and begin to systemat-
ically study contextual factors that impact software development efforts and mitigate
between success and failure.

5.2.1 Process Discovery
We have worked at bringing BORE to three separate IT organizations responsible

for software development and integration for two large and one small company in
three different industries. In these settings, process knowledge tends to be scattered
throughout many data stores and file systems, with much of the process knowledge
being held in the minds of individual workers. In these cases, process discovery is
necessary to construct an initial seed repository for BORE.

We began by systematically studying software development at both macro and mi-
cro levels. The macro level was revealed through a series of interviews with devel-
opers and key management personnel. We coalesced ideas from the interviews into a
prototype methodology that led to further feedback and a refinement of the process.
The micro level was explored by using contextual inquiry techniques [93], in which
we followed developers and project managers for a partial day and interviewed them
about their work while they performed their daily activities. This technique helps
uncover details and reveal aspects of one’s job that they tend to abstract out in a for-
mal interview setting. These studies were used to elicit tailoring criteria and refine
methodology tasks to meet the needs of representative projects we observed.

This led to prototype methodologies that could be piloted in small projects that are
currently underway. We purposefully chose projects that were partially completed so
we could demonstrate to team member how the system could and should be used.
We created a project with our initial methodology representation and seeded it with
project artifacts and any deviations we could elicit from the team. We then held
group-training sessions and visited key personnel working with BORE to assist with
problems and explain approaches to their needs. While it is too early to have any sys-
tematic data on these efforts, we are collecting survey data before, during, and after
the pilot study and have been collecting information, much of it encoded in BORE,
on the actual practices we observe. While some missing features and marginal sys-
tem quality are preventing the full empirical results we have hoped for, the efforts
have been invaluable at eliciting the features and processes needed to make this kind
of approach work. Feedback on the concept has been largely positive, supporting the
hypothesis that we are filling a gap that is needed in IT organizations.

5.2.2 Implementing the MBASE Process
BORE has also been used to implement the MBASE (Model-Based Architecting

and Software Engineering) [30] methodology as it is practiced in a yearlong soft-

64 S. HENNINGER

ware engineering course, CS577a and CS577b, at the University of Southern Califor-
nia [148]. The MBASE CS577 guidelines exist as document with close to 200 pages
of text, plus a myriad of associated documents (templates, procedures, etc.), models
(UML, COCOMO, etc.), tools (cost estimation, Rational products, etc.) and other re-
sources. A unique aspect of MBASE is the creation of five main documents in three
defined milestones, or anchor points [30]. Each anchor point specifies an iteration
of partially completed documents, starting with high-level definitions and refining
them as the project progresses, with some sections being more important in different
phases. In addition, there are numerous cross-references throughout the guidelines
that represent different parts of coherent models. The problem is that MBASE is
specified in a monolithic document. There is no good way to view the guidelines
or documents created to reflect the specific needs of a given milestone, which are
specified in a separate exit criteria document.

USC students implemented MBASE in BORE in the 2001–2002 academic year.
The approach taken was to place each MBASE section in a BORE task and create
a project hierarchy to mirror the MBASE cs577 guidelines structure. This involved
the creation of over 300 tasks, performed over the Internet using the BORE server
at the University of Nebraska. The advantage of having MBASE in this form in
BORE is that it is easier to change tasks in the methodology, and all information
from the various models, templates, and etc. are placed in one location—the BORE
repository represented as methodology tasks. This has proven to be much more ef-
fective than each team attempting to keep their own Web page or project files (see
Section 5.2.3). To address some of the model agreement issues, which are central
to the MBASE methodology, we have also created a document generation system
that allows users to create custom views of task hierarchies. This replaces the many
cross-references currently used in MBASE documentation to ensure agreement with
custom-built documents for each model that can show an individual model or portion
thereof so people can more easily assess agreement issues.

Initial investigations demonstrate that BORE already addresses many of the is-
sues identified in implementing MBASE, but work is needed to enhance current fea-
tures so BORE can be used as an empirical testbed for software project data collec-
tion. Work is currently underway to begin implementing the metrics-based CeBASE
methodology [32] in BORE so that tailoring rules and other BORE features can help
projects benefit from the use of metrics collected during software development ef-
forts [90].

5.2.3 The Software Design Studio Implementation

The Software Design Studio is the centerpiece of the curriculum for the JD Ed-
wards Honors Program in Computer Science and Management (http://jdedwards.unl.

http://jdedwards.unl.edu

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 65

edu) at the University of Nebraska–Lincoln (UNL), a program that integrates busi-
ness concerns and technology. It is a two-year (four consecutive semesters) course in
which students use software engineering principles and business practices to develop
software for clients external to UNL. The development process taught and used in
this course is based on MBASE and implemented in BORE, complete with tailoring
criteria that have been created by analyzing the previous year’s projects and antici-
pating the needs of this year’s seven projects. This is a bottom-up experience factory
strategy [146], where experiences are packaged for future development efforts [18,
21,90].

The Software Design Studio (SDS) also integrates some agile methods into
MBASE. The teams work on three-week iterations that are independent of the four
MBASE milestones, which are also used by RUP (Inception, Elaboration, Construc-
tion, and Transition). Every three weeks, the team starts a new iteration by perform-
ing risk and project planning activities. As in the SCRUM method [2,135], an itera-
tion list and a backlog list are kept for each iteration. When a new iteration is created,
all tasks not marked “Resolved” are automatically moved to the new iteration’s iter-
ation list. As part of the planning process, team members re-prioritize the tasks and
plan the tasks that can be accomplished and/or started in the three-week iteration.
All other tasks are added to the backlog list. Creating this methodology involved the
development of methodology tasks and rules that implement the iterations. The fit
here was not perfect, and we are working on techniques to better support some of
these features, such as iteratively reusing the same set of methodology tasks while
preserving rule and task scoping in the iterations.

5.2.4 CMMI Compliance

We are also working on implementing an existing CMMI guidebook to support the
process of auditing for CMMI compliance. This has involved no new enhancements
to BORE. By simply adding sections of the guidebook as BORE tasks, and adding
a few tailoring rules, we have created a much more powerful guidebook than what
was previously available on the Web. In addition, creating projects as methodology
instances makes auditing much faster, easier, and cheaper. An auditor can do much
of their work by remotely viewing project conformance and deviations from a Web
browser, thus doing much of the “legwork” before visiting the site.

6. Other Related Research

The experience factory and organizational learning approaches lie at the inter-
section of a number of software development and management disciplines. Perhaps

http://jdedwards.unl.edu
http://jdedwards.unl.edu

66 S. HENNINGER

most central is the perspective of software reuse [21,85], where reusable assets are
not limited to source code or frameworks, but also levels of artifacts generated in the
development of large-scale software development.

6.1 Software Process Frameworks

Much of the current research on software development processes have focused
on defining the parameters that define software development practices. These ap-
proaches, including CMM [121], CMMI [32], SPICE [53,103], ISO 9000 [99], Boot-
strap [104] and others, aim to define the process elements that constitute good soft-
ware development processes, leaving implementation and enactment of the processes
to individual organizations and development efforts.

While advocated as important by most process framework and modeling frame-
works, none have defined guidelines for how disciplined tailoring can or should be
achieved. A significant contribution of this work, both experience factories and the
BORE approach, is to define not only the process, but also how the process evolves
with the changing needs of the development organization. In addition, the process
can be defined at many levels of detail, allowing projects to adopt the process at an
appropriate level of detail for the organization and project types within an organiza-
tion.

The approaches described here define process tailoring and evolution at both the
organizational and project levels. The BORE approach tailors processes through tai-
loring options and a review process to look over deviations to the methodology.
Organization-level evolution is addressed through techniques and processes for re-
fining, evolving, and improving the development process. No “Level 5” process is
assumed as advocated by the CMMI staged model. Rather, feedback from actual
projects is used to define the best-known methods within the development context
and application requirements of a specific development organization. In addition,
instead of stating that “Configuration Management” is a required process, these ap-
proaches provide the means to create experience-based resources for how this should
be accomplished.

6.2 Software Process Modeling

Integrating languages and formal process models into environments has been
researched in a number of contexts [7]. These process-based environments, often
referred to as Process-centered Software Engineering Environments (PSEEs), of-
ten cover process modeling and process enactment phases of the process engineer-
ing lifecycle [69,76]. Some of these environments have investigated different for-
malisms, such as knowledge-based [26,97] and Petri net [11,12] approaches, while

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 67

others have focused on elements of software development, such as hierarchical de-
composition of activities [23,57], collaboration and coordination [51,70], and analy-
sis and simulation of software processes [111].

The observation that developing software process definitions is similar to devel-
oping software systems [120] has given rise to a number of approaches based on
programming languages [43,46,98,105] that provide language constructs for creat-
ing processes and automatable process actions, such as running test scripts when a
changed file is checked in. The process representations that can be created by these
languages, especially where process automation is concerned, have not been the fo-
cus of BORE and the experience factory approaches, where more emphasis is placed
on supporting the human aspects of the software process. Also, the same problems
facing programming language-based software development also trouble process pro-
gramming. One of the problems is the difficulty of reusing program components.
The entire BORE tool and methodology is designed to identify reusable processes
and define them for reuse [85]. Not only does this support the modeling process,
it ensures a degree of conformance with known best practices and enhances orga-
nizational learning. Nonetheless, the use of a process language would enable the
integration of many automation features and future work will look into this, perhaps
by embedding language support in the BORE rule engine.

A number of process notations and methods for defining processes have been re-
searched [12,123], often using entrance criteria, task, validation, and exit criteria (the
so-called ETVX method [129]) as a means to formally define a process. The purpose
of these languages is often to create models that “detect inconsistencies, ambiguities,
incompleteness, and opportunities for improvement for both the software process and
its documentation” [13]. Frameworks and process languages are also a common re-
search topic [35,92]. For example, Hollenbach and Frakes report on a diagram nota-
tion that creates a process definition and tailoring methodology [92]. They report that
the methodology significantly reduced the time and effort to create project-specific
processes in an industry setting.

The Endeavors system [35] is a flexible workflow environment that allows users
to create and evolve processes while a project is in progress. It uses a visual environ-
ment to connect process elements together in a pipeline that represents a workflow.
Endeavors supports most of the features found in process definition languages, and
can raise warnings and notify personnel of events in the workflow. This kind of re-
active process control fits into our view that modification of the process is necessary,
but conflicts with the principle of drawing on current best practices. If users are able
to change the process dynamically with no accountability, then we are back to doc-
umenting an ad-hoc process that can lead to chaotic and disorganized development
processes. We wish to take a step further to combine reactive and proactive process

68 S. HENNINGER

control, and it is our strong opinion that some kind of process reuse will prove nec-
essary to ensure a degree of discipline in developing large software systems.

6.3 An Analysis of Process Models and Frameworks

Although it is desirable to describe processes in a precise and unambiguous man-
ner, most of these approaches fall on either side of a dichotomy. On one side are
the Universalists, such as the CMM family and the Rational Unified Process (RUP),
which wish to define a one-size-fit-all comprehensive process to be followed by all
development organizations. On the other side are the Constructors [120] that provide
primitives to define a process, but little guidance on whether a given process will
lead to desired results.

The experience factory approach and the BORE implementation discussed here
are positioned to span this dichotomy. While the focus of this research has not been
on process representations, the tailoring rules, methodology instantiations, and case-
based architecture of BORE can support, and could benefit from, a wide variety of
formal representations. For example, the ability to specify activity precedence has
recently been added to BORE by representing task dependencies and durations. This
previously missing element of BORE was easily added to the task representation
and is implemented through an add-on module to import and export MS Project
Gantt Chart representations. Rules can be used to determine which dependencies
and durations should be used that best fit a project’s need and schedule constraints.
The dependencies and durations are inherited by projects, facilitating the creation of
first drafts of schedules that provide dependencies and estimates of task durations
that are a significant aid to project managers.

6.4 Design Rationale

The BORE approach also has some roots in the design rationale field [42,62,106,
109,112]. Similar to organizational memory approaches [141,150], the motive for
capturing design rationale is to avoid repeating common pitfalls or re-discussion
of design decisions by describing the alternatives debated and decisions made for
a given effort. Many schemes, from straightforward Procedural Hierarchy of Issue
structures [42,62] to more complex structures designed to capture logical relation-
ships for computation [106] have been devised. All have the same basic structure of
a set of hierarchically arranged questions posed to flesh out issues. Alternatives and
rationale for the alternatives can be attached to the questions to document discussion
paths.

While a valuable brainstorming tool that organizes alternative solutions, design
rationale techniques have not focused on how past rationale can be used to drive

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 69

a reuse-based software development process. Furthermore, there is no mechanism
to ensure the rationale is used to improve future efforts, and therefore risks becom-
ing a form of write-only memory [42]. Our approach is more principled, using a
push model to ensure conformance with known best practices and putting explicit
procedures in place to compare past and present design contexts as an impetus for
continuous improvement. The approach described here also differs from the current
trend in design rationale research to motivate developers to use the approach by low-
ering the cost of collecting information. This has led to the development of a plethora
of retrieval or filter-based systems that work on existing documents, such as e-mail
messages or discussion databases, that tend to suffer from both information overload
and knowledge paucity [9]. Our motivator for using the system is part conformance
and part self-motivating. The approach embodies corporate procedures that need to
be followed, but the extent to which the approach can be tailored to real project needs
and provide developers and managers with valuable information will determine its
fate as a development strategy.

7. Open Issues and Future Work

BORE was originally designed as a knowledge management tool for software
reuse [78]. The work became involved in process modeling and process improvement
out of necessity because we observed that for a knowledge management system to be
used it must become part of the defined work activities—it is not sufficient to have
a repository and hope people will go to it [133], much less use it effectively. Use of
the experience base must become part of the development process. The experience
factory and organizational learning approaches advocates knowledge management
that facilitates the reuse of software artifacts. In spite of many years of research, few
tools have been built to explicitly support experience factories, and all have supported
repository aspects (the experience base), with little to no support for the processes
involved in the experience factory, the project development organization, and the in-
teractions between them. The research described here explores a specific approach
for tools supporting these processes and other types of experience-based methods,
such as the organizational learning method for software development.

Developing an understanding of the impact of experience-based approaches re-
quires an empirical approach that both refines the approach through feedback and
establishes causal relationships between contextual factors and outcomes. Early eval-
uations of BORE [82,86] have indicated that progress has been made on our overall
goals of creating a medium for flexible software process definitions, capturing de-
velopment practices from experience, and ensuring those practices are applied in a

70 S. HENNINGER

disciplined manner. The BORE system is beginning to move out of the prototyp-
ing phase and become a production-quality system, enabling evaluations in realistic
software development settings, as described in Section 5.2. Through these evalua-
tions, we hope to gain an increased understanding in the overall approach and how
experience-based tools such as BORE can be used to improve software development
practices.

Some of the research questions we will continue to explore with BORE in-
clude designing work practices centered on experience-based organizational learning
processes. Design tools must reward users for use in the current project as well as
leaving information for subsequent development and maintenance efforts. We believe
these are compatible goals, as long-term projects need to track their progress and de-
cision making process. Some major research questions include: designing method-
ologies based on standards set by previous projects yet flexible enough to accommo-
date changes in business needs and technology; creating a development process that
begins by using the resources supplied by the repository and updates the repository as
the project progresses; finding the “right” level of documentation that doesn’t impede
progress yet leaves a trace for subsequent efforts; and organizational changes needed
to make such techniques work in the organization (i.e., the technology transfer and
tool adoption problems).

The most important next steps include the difficult task of getting organizations to
take part in efforts to evaluate emerging research in realistic settings. This involves
both moving beyond the fragile system prototype stage, and finding realistic con-
texts for evaluation. Empirical evaluations are continuing and will provide additional
sources of feedback on the approach and tool. More importantly, the potential for
BORE to serve as a repository for software development phenomenon, indexed by
project characteristics, will continue to be evaluated and refined. To this end, we will
continue to employ a mixture of ethnographic studies and laboratory experiments to
study software process improvisation and the impact of delivering process and prod-
uct knowledge sources during software development efforts. This strategy will not
only yield innovative system building efforts, but to also improve the field’s overall
understanding of software development practices.

7.1 Future Work

The overall purpose of BORE is not to restrict creativity through strict enactment
of rules, but to enable creativity by identifying resources and best practices that peo-
ple can build on. Rules in the rule-based system serve only as a means of representing
contextual factors that determine whether or not tasks, or sets of related tasks, are ap-
propriate for the specific circumstances of a project. Better tools are needed that help
process engineers insert new processes and the associated rules into methodologies.

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 71

This is essentially a knowledge acquisition problem, and we are looking into using
agents and critics to flag knowledge base inconsistencies and gaps [144] and ensure
that complete and consistent processes are assigned to projects. One means we in-
tend to investigate is the formal definition of entrance and exit criteria for tasks and
sets of tasks.

Although our approach does not specifically call for a separate Experience Factory
organization, the roles necessary to implement BORE in an organization are easily
broken into experience factory and project organizations, as shown in Fig. 11. We are
in full agreement that “In order to practice reuse effectively, an organization is needed
whose main focus is to make reuse easy and effective.” [15], and we will continue
to create tools and techniques that are compatible with this methodology. Another
aspect of the Experience Factory and QIP approaches is the use of metrics and project
data in the project decision-making process and for process improvement. Apart from
collecting task-based effort data, metric collection and analysis is currently lacking in
BORE. A configuration management system has been created and we are collecting
data on BORE versions, but this has not been fully integrated into the task-based
structure. Defect tracking and links to change management and BORE tasks is also
lacking. These are recognized deficits that we are actively working on in an integrated
strategy to address them [90].

Beyond the creation of experience-based tools, our research group is involved in
the CeBASE effort, which has developed a next-generation development process that
focuses on integrating project-level and organizational-level processes [32]. This ef-
fort will integrate a general QIP and Experience Factory framework with the MBASE
methodology [31]. The BORE tool has been designed to integrate organizational and
project level concerns, and we are working on enhancements and demonstrations to
illustrate BORE compatibility with the CeBASE method [90].

The BORE system currently relies on rules to find relevant activities for projects.
To the extent that the activities can be designed properly, this will work. But there
may be instances where a search for related activities may be useful. BORE has a
simple search tool to find activities when people can specify what tasks are needed.
Drawing on the observation that software development processes are a type of plan-
ning activity, we are working on using hierarchical case-based planners [115], which
generate plans based on case-based search criteria and options, to find sets of tasks
meeting criteria set by options. Integrating rule-based and case-based planning sys-
tems [71,113] to find work breakdowns that are relevant to the characteristics of a
project holds promise to find software development processes that meet certain cri-
teria, but do not exactly match the rule criteria designed into BORE rules.

Currently, BORE methodologies are designed using individual tasks. While this is
adequate for many methodologies, rule actions (see Fig. 7) that add many tasks can
become tedious to implement and maintain. In addition, many processes, such as bug

72 S. HENNINGER

tracking and the risk-based iterative process used in the Software Design Studio and
MBASE (see Section 5.2), involve reusing the same or similar sets of tasks. We are
therefore in the process of adding a “process model” layer between methodologies
and tasks. Each process model in this layer would have its own rule and task scoping
for tailoring the model, depending on evolving project needs. Methodologies would
then be created with a mixture of tasks and process models, which can be repeated
in projects while allowing process developers to specify the methodology at a higher
level of abstraction. This will enhance methodology creation and maintenance in the
BORE system.

8. Conclusions

A goal of the organizational learning and experience factory approaches is to turn
development methodologies into a resource, something that truly supports the de-
velopment process as actually practiced. These approaches, an example of which is
implemented in BORE, allow necessary degrees of formal procedures that ensure
high-quality products while allowing the necessary freedom to improvise, innovate,
and adapt to specific needs of a software development effort. This involves not only
defining a process, but also using feedback from projects using the defined process to
refine and improve its procedures. To date, little research has been done to create sup-
port tools and interfaces for using the process to disseminate and organize software
development knowledge. This work attempts to fill this gap with the organizational
learning perspective, process tailoring techniques, case-based decision support, and
the BORE prototype.

QIP and Experience Factory are experience-based techniques that advocate cap-
turing project data as the basis for creating artifacts that can be reused in subsequent
efforts. The BORE research effort takes the next step to turn the concept into a soft-
ware tool capable of implementing experience-based techniques, including the ex-
perience factory. The research described here investigates the problem of creating
tools that push models of best practices while allowing the flexibility necessary to
improvise [52] and address the needs of individual development efforts. This has
been accomplished through a process-centered approach that couples a repository of
process models and best practices with an organizational learning methodology and
a tool designed to support the process and repository.

To achieve these goals, we have coupled process and technology to turn defined
development processes into dynamic “living” resources that can be extended and im-
proved as new project needs and application requirements emerge. General principles
are captured in the process standard and cases capture situation-specific knowledge
of actual practice. The BORE tool has been created to collect and disseminate project

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 73

experiences as “cases” representing emerging knowledge of development practices
in an organization. The emerging, case-based, knowledge can then be turned into
standards representing a software development organization’s best practices that can
be brought to bear on individual development efforts. As the repository accumulates
through principled evolution of the methodology, it improves and is able to handle a
wider range of circumstances [101], while evolving toward answers to problems that
fit the organization’s technical and business context.

Centering the information around a single repository through an ongoing process
of capturing project experiences can prevent the duplication of efforts, avoid repeat-
ing common mistakes, and help streamline the development process. Similar projects
have shown that development personnel will use such a system, provided it contains
relevant, useful and up-to-date information [145]. This mandates a strong tie between
technology and process in which using the technology must become part of routine
work activities. Such an approach will succeed to the extent that people are rewarded
in the short term for their efforts and can feel a sense of ownership of the process.
This work takes some first steps in this direction, and continued efforts to gather
empirical data on its use will help refine the method and learn more about how to
support the software development process.

ACKNOWLEDGEMENTS

We gratefully acknowledge the efforts a number of graduate students that have
helped develop BORE, particularly Kurt Baumgarten, Kalpana Gujja, Ryan Kinwor-
thy, V. Rishi Kumar, Yu Li, Sarathkumar Polireddy and Liyuan Yu. This research was
funded by the National Science Foundation (CCR-9502461, CCR-9988540, ITR-
0085788, and CCR-0204436).

REFERENCES

[1] Aamodt A., Plaza E., “Case-based reasoning: Foundational issues, methodological vari-
ations, and system approaches”, AI Communications 7 (1) (1994) 39–52.

[2] Agile Alliance, Introduction to Scrum, 2002. Available at http://www.controlchaos.
com/scrumwp.htm#Introduction2002, last accessed: 4/1/02.

[3] Aha D.W., Weber R. (Eds.), Intelligent Lessons Learned Systems: Papers from the 2000
Workshop, AAAI Press, Menlo Park, CA, 2000.

[4] Althoff K.-D., Birk A., Hartkopf S., Müller W., “Managing software engineering expe-
rience for comprehensive reuse”, in: Proc. 11th International Conference on Software
Engineering and Knowledge Engineering, Kaiserslautern, Germany, 1999, pp. 10–19.

http://www.controlchaos.com/scrumwp.htm
http://www.controlchaos.com/scrumwp.htm
http://www.controlchaos.com/scrumwp.htm

74 S. HENNINGER

[5] Althoff K.-D., Birk A., Tautz C., “The experience factory approach: Realizing learning
from experience in software development organizations”, in: Tenth German Workshop
on Machine Learning, University of Karlsruhe, 1997.

[6] Althoff K.-D., Nick M., Tautz C., “Improving organizational memories through user
feedback”, in: 2nd International Workshop on Learning Software Organizations (LSO
2000), Oulu, Finland, 2000, pp. 27–44.

[7] Ambriola V., Conradi R., Fuggetta A., “Assessing process-centered software engineer-
ing environments”, ACM Transactions of Software Engineering and Methodology 6 (3)
(1997) 283–328.

[8] Anderson K.M., Taylor R.N., Whitehead E.J., “Chimera: Hypermedia for heteroge-
neous software development environments”, ACM Transactions on Information Sys-
tems 18 (3) (2000) 211–245.

[9] Applehans W., Globe A., Laugero G., Managing Knowledge: A Practical Web-Based
Approach, Addison-Wesley, Reading, MA, 1999.

[10] Arango G., “Domain analysis: From art form to engineering discipline”, in: Fifth Inter-
national Workshop on Software Specification and Design, Pittsburgh, PA, ACM, New
York, 1989, pp. 152–159.

[11] Bandinelli S., DiNitto E., Fuggetta A., “Supporting cooperation in the SPADE-1 envi-
ronment”, Transactions on Software Engineering 22 (12) (1996) 841–865.

[12] Bandinelli S.C., Fuggetta A., Ghezzi C., “Software process model evolution in the
SPADE environment”, Transactions of Software Engineering 19 (12) (1993) 1128–
1144.

[13] Bandinelli S., Fuggetta A., Lavazza L., Loi M., Picco G.P., “Modeling and improving
an industrial software process”, Transaction on Software Engineering 21 (5) (1995)
440–453.

[14] Barnes B.H., Bollinger T.B., “Making reuse cost-effective”, IEEE Software 8 (1) (1991)
13–24.

[15] Basili V.R., Caldiera G., Cantone G., “A reference architecture for the component fac-
tory”, ACM Transactions on Software Engineering and Methodology 1 (1) (1992) 53–
80.

[16] Basili V., Caldiera G., Rombach D., “Experience factory”, in: Encyclopedia of Software
Engineering, Wiley & Sons, 1994, pp. 469–476.

[17] Basili V.R., Daskalantonakis M.K., Yacobellis R.K., “Technology transfer at Mo-
torola”, IEEE Software 11 (2) (1994) 70–76.

[18] Basili V., Lindvall M., Costa P., “Implementing the experience factory concepts as a
set of experience bases”, in: International Conference on Software Engineering and
Knowledge Engineering (SEKE ’01), Buenos Aires, Argentina, 2001.

[19] Basili V.R., McGarry F., Pajerski R., Page G., Waligora S., Zelkowitz M., Software
Process Improvement in the NASA Software Engineering Laboratory, Software Engi-
neering Institute, 1994.

[20] Basili V.R., Rombach H.D., “The TAME project: Towards improvement-oriented soft-
ware environments”, IEEE Transactions on Software Engineering 14 (6) (1988) 758–
773.

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 75

[21] Basili V.R., Rombach H.D., “Support for comprehensive reuse”, Software Engineering
Journal 6 (5) (1991) 303–316.

[22] Batory D., Chen G., Robertson E., Wang T., “Design wizards and visual programming
environments for GenVoca generators”, Transactions on Software Engineering 26 (5)
(2000) 441–452.

[23] Belkhatir N., Estublier J., Melo W.L., “Software process model and work space control
in the Adele system”, in: 2nd International Conference on the Software Process, Berlin,
FRG, IEEE Computer Society, 1993, pp. 2–11.

[24] Belkin N., “Helping people find what they don’t know”, Comm. of the ACM 43 (8)
(2000) 58–61.

[25] Belkin N.J., Oddy R.N., Brooks H.M., “Ask for information retrieval: Parts 1 & 2”,
Journal of Documentation 38 (2, 3) (1982) 61–71, 145–163.

[26] Ben-Shaul I.Z., Kaiser G.E., “A paradigm for decentralized process modeling and its
realization in the Oz environment”, in: Proc. Sixteenth International Conference on
Software Engineering, Sorrento, Italy, IEEE Computer Society Press, 1994, pp. 179–
188.

[27] Biggerstaff T.J., “An assessment and analysis of software reuse”, Advances in Comput-
ers 34 (1992) 1–57.

[28] Birk A., Dingsøyr T., Stålhane T., “Postmortem: Never leave a project without it”, IEEE
Software 19 (3) (2002) 43–45.

[29] Birk A., Kröschel F., “A knowledge management lifecycle for experience packages
on software engineering technologies”, in: 1st International Workshop on Learning
Software Organizations (LSO 1999), Kaiserlautern, FRG, 1999, pp. 115–126.

[30] Boehm B., “Anchoring the software process”, IEEE Software 13 (4) (1996) 73–82.
[31] Boehm B., Port D., “Balancing discipline and flexibility with the spiral model and

MBASE”, Crosstalk (December 2001).
[32] Boehm B., Port D., Jain A., Basili V., “Achieving CMMI level 5 improvements with

MBASE and the CeBASE method”, Crosstalk (May 2002).
[33] Boehm B.W., “A spiral model of software development and enhancement”, Com-

puter 21 (5) (1988) 61–72.
[34] Bohrer K., Johnson V., Nilsson A., Rubin B., “The San Francisco project: An object-

oriented framework approach to building business applications”, in: COMPSAC ’97—
21st International Computer Software and Applications Conference, 1997, pp. 416–
424.

[35] Bolcer G.A., Taylor R.N., “Endeavors: A process system integration infrastructure”, in:
Proceedings of the Fourth International Conference on the Software Process, Brighton,
UK, IEEE Computer Society Press, 1996, pp. 76–85.

[36] Brooks F.P., “No silver bullet: Essence and accidents of software engineering”, Com-
puter 20 (4) (1987) 10–19.

[37] Brown A.W., Wallnau K.C., “The current state of CBSE”, IEEE Software 15 (5) (1998)
37–46.

[38] Brown J.S., Duguid P., “Organizational learning and communities-of-practice: Toward
a unified view of working, learning, and innovation”, Organization Science 2 (1) (1991)
40–57.

76 S. HENNINGER

[39] Brown J.S., Duguid P., The Social Life of Information, Harvard Univ. Press, 2000.
[40] Carey J., Carlson B., Framework Process Patterns: Lessons Learned Developing Ap-

plication Frameworks, Addison-Wesley, Boston, MA, 2002.
[41] Collier B., DeMarco T., Fearey P., “A defined process for project postmortem review”,

IEEE Software 13 (4) (1996) 65–72.
[42] Conklin E.J., Yakemovic K., “A process-oriented approach to Design Rationale”,

Human–Computer Interaction 6 (3–4) (1991) 357–391.
[43] Conradi R., Liu C., “Process modeling languages: One or many?”, in: 5th Euro-

pean Workshop on Software Process Technology (EWSPT ’95), Noordwijkerhout, The
Netherlands, 1995, pp. 98–118.

[44] CSTB, Scaling Up: A Research Agenda for Software Engineering, Academic Press,
1989.

[45] Cugola G., “Tolerating deviations in process support systems via flexible enactment
of process models”, IEEE Transactions on Software Engineering 24 (11) (1998) 982–
1000.

[46] Curtis B., Kellner M.I., Over J., “Process modeling”, Communications of the
ACM 35 (9) (1992) 75–90.

[47] Curtis B., Krasner H., Iscoe N., “A field study of the software design process for large
systems”, Communications of the ACM 31 (11) (1988) 1268–1287.

[48] Decker B., Althoff K.D., Nick M., “Integrating business process and lessons learned
with an experience factory”, in: 1st German Conference on Professional Knowledge
Management, 2001.

[49] Decker B., Althoff K.-D., Nick M., Jedlitschka A., Rech J., “Corporate Information
Network (CoIN): Experience management at IESE”, in: Knowledge Engineering &
Management (KnowTech 2001), Dresden, 2001.

[50] Devanbu P., Brachman R.J., Selfridge P.G., Ballard B.W., “LaSSIE: A knowledge-
based software information system”, Communications of the ACM 34 (5) (1991) 34–49.

[51] Dieters W., Gruhn V., “Managing software processes in the environment MELMAC”,
in: 4th ACM SIGSOFT Symposium on Software Development Environments, Irvine, CA,
1990, pp. 193–205.

[52] Dybå T., “Improvisation in small software organizations”, IEEE Software 17 (5) (2000)
82–87.

[53] Emam K.E., Drouin J.N., Menlo W., SPICE: The Theory and Practice of Software
Process Improvement and Capability Determination, IEEE Computer Society, Los
Alamitos, CA, 1998.

[54] Feiler P.H., Humphrey W.S., “Software process development and enactment: Con-
cepts and definitions”, in: Second International Conference on Software Process, 1993,
pp. 28–40.

[55] Feldmann R., “Developing a tailored reuse repository structure—experience and first
results”, in: 1st International Workshop on Learning Software Organizations (LSO
1999), Kaiserlautern, FRG, 1999.

[56] Feldmann R., Nick M., Frey M., “Towards industrial-strength measurement programs
for reuse and experience repository systems”, in: 2nd International Workshop on Learn-
ing Software Organizations (LSO 2000), Oulu, Finland, 2000, pp. 7–18.

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 77

[57] Fernström C., “PROCESS WEAVER: Adding process support to UNIX”, in: 2nd Inter-
national Conference on the Software Process: Continuous Software Process Improve-
ment, Berlin, FRG, IEEE Computer Society Press, 1993, pp. 12–26.

[58] Fischer G., “Domain-oriented design environments”, Automated Software Engineer-
ing 1 (2) (1994) 177–203.

[59] Fischer G., “Seeding, evolutionary growth and reseeding: Constructing, capturing and
evolving knowledge in domain-oriented design environments”, Journal of Automated
Software Engineering 5 (4) (1998) 447–464.

[60] Fischer G., Girgensohn A., “End-user modifiability in design environments”, in: Proc.
Human Factors in Computing Systems (CHI’90), Seattle, WA, 1990, pp. 183–191.

[61] Fischer G., Girgensohn A., Nakakoji K., Redmiles D., “Supporting software designers
with integrated, domain-oriented design environments”, IEEE Transactions on Soft-
ware Engineering 18 (6) (1992) 511–522.

[62] Fischer G., Grudin J., Lemke A., McCall R., Ostwald J., Reeves B., Shipman F., “Sup-
porting indirect collaborative design with integrated knowledge-based design environ-
ments”, Human–Computer Interaction 7 (1992) 281–314.

[63] Fischer G., Lemke A.C., “Construction kits and design environments: Steps toward
human problem-domain communication”, Human–Computer Interaction 3 (3) (1988)
179–222.

[64] Fischer G., Lemke A., Schwab T., “Knowledge-based help systems”, in: Proc. Human
Factors in Computing Systems (CHI ’85), 1985, pp. 161–167.

[65] Fischer G., McCall R., Ostwald J., Reeves B., Shipman F., “Seeding, evolutionary
growth and reseeding: Supporting the incremental development of design environ-
ments”, in: Proc. Human Factors in Computing Systems (CHI ’94), Boston, MA, ACM,
New York, 1994, pp. 292–298.

[66] Fischer G., Ostwald J., “Knowledge management: Problems, promises, realities, and
challenges”, IEEE Intelligent Systems 16 (1) (2001) 60–72.

[67] Fuggetta A., Lavazza L., Morasca S., Cefriel, Cinti S., Oldano G., Orazi E., “Applying
GQM in an industrial software factory”, Transactions on Software Engineering and
Methodology 7 (4) (1998) 441–448.

[68] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, MA, 1995.

[69] Garg P.K., Mi P., Pham T., Scacchi W., Thunquest G., “The SMART approach for
software process engineering”, in: International Conference on Software Engineering
(ICSE 94), Sorrento, Italy, IEEE Computer Society, 1994, pp. 341–350.

[70] Garg P.K., Pham T., Beach B., Deshpande A., Ishizaki A., Wentzel W., Fong W., “Ma-
tisse: A knowledge-based team programming environment”, International Journal of
Software Engineering and Knowledge Engineering 4 (1) (1994) 17–59.

[71] Golding A., Rosenbloom P.S., “Improving rule-based systems through case-based rea-
soning”, in: Proc. 9th National Conference on Artificial Intelligence, Anaheim, CA,
1991, pp. 22–27.

[72] Griss M.L., “Software reuse: From library to factory”, IBM Systems Journal 32 (4)
(1993) 548–565.

78 S. HENNINGER

[73] Griss M.L., “Software reuse experience at Hewlett-Packard”, in: Proc. Sixteenth Intl.
Conference on Software Engineering, 1994, p. 270.

[74] Grudin J., “Why CSCW applications fail: Problems in the design and evaluation of
organizational interfaces”, in: Proceedings of the Conference on Computer-Supported
Cooperative Work (CSCW’88), ACM, New York, 1988, pp. 85–93.

[75] Grudin J., “The computer reaches out: The historical continuity of interface design”, in:
Proc. Human Factors in Computing Systems (CHI ’90), Seattle, WA, ACM, New York,
1990, pp. 261–268.

[76] Grundy J.C., Hosking J.G., “Serendipity: Integrated environment support for process
modelling, enactment and work coordination”, Automated Software Engineering: An
International Journal 5 (1) (1998) 27–60.

[77] Henninger S., “Supporting the domain lifecycle”, in: IEEE Seventh International Work-
shop on Computer-Aided Software Engineering—CASE ’95, Toronto, CA, IEEE Com-
puter Society Press, 1995, pp. 10–19.

[78] Henninger S., “Accelerating the successful reuse of problem solving knowledge
through the domain lifecycle”, in: Fourth International Conference on Software Reuse,
Orlando, FL, IEEE Computer Society Press, Los Alamitos, CA, 1996, pp. 124–133.

[79] Henninger S., “Building an organization-specific infrastructure to support CASE tools”,
Journal of Automated Software Engineering 3 (3/4) (1996) 239–259.

[80] Henninger S., “Supporting software development with organizational memory tools”,
International Journal of Applied Software Technology 2 (1) (1996) 61–84.

[81] Henninger S., “Capturing and formalizing best practices in a software development
organization”, in: International Conference on Software Engineering and Knowledge
Engineering (SEKE ’97), Madrid, Spain, 1997.

[82] Henninger S., “Tools supporting the creation and evolution of software development
knowledge”, in: Proceedings of the Automated Software Engineering Conference, Lake
Tahoe, NV , 1997, pp. 46–53.

[83] Henninger S., “Case-based knowledge management tools for software development”,
Journal of Automated Software Engineering 4 (3) (1997) 319–340.

[84] Henninger S., “An evolutionary approach to constructing effective software reuse
repositories”, ACM Transactions on Software Engineering and Methodology 6 (2)
(1997) 111–140.

[85] Henninger S., “An environment for reusing software processes”, in: Fifth International
Conference on Software Reuse, Victoria, British Columbia, 1998, pp. 103–112.

[86] Henninger S., “Using software process to support learning software organizations”, in:
1st International Workshop on Learning Software Organizations (LSO 1999), Kaiser-
lautern, FRG, 1999.

[87] Henninger S., “An organizational learning method for applying usability guidelines and
patterns”, in: 8th IFIP Working Conference on Engineering for Human–Computer In-
teraction (EHCI’01), Toronto, in: Lecture Notes in Computer Science, Springer, Berlin,
2001, pp. 141–155.

[88] Henninger S., Baumgarten K., “A case-based approach to tailoring software processes”,
in: International Conference on Case-Based Reasoning (ICCBR 01), Vancouver, BC,
2001, pp. 249–262.

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 79

[89] Henninger S., Lappala K., Raghavendran A., “An organizational learning approach to
domain analysis”, in: 17th International Conference on Software Engineering, Seattle,
WA, ACM Press, New York, 1995, pp. 95–104.

[90] Henninger S., Li Y., Modali S., Yu L., “Adaptive process tool support for the CeBASE
method”, CrossTalk. In preparation.

[91] Henninger S., Schlabach J., “A tool for managing software development knowledge”,
in: 3rd International Conference on Product Focused Software Process Improvement
(PROFES 01), Kaiserslautern, FRG, Springer, 2001, pp. 182–195.

[92] Hollenbach C., Frakes W., “Software process reuse in an industrial setting”, in: Fourth
International Conference on Software Reuse, Orlando, FL, IEEE Computer Society
Press, Los Alamitos, CA, 1996, pp. 22–30.

[93] Holtzblatt K., Jones S. (Eds.), Contextual Inquiry: A Participatory Technique for System
Design, Erlbaum, Hillsdale, NJ, 1993.

[94] Humphrey W.S., Managing the Software Process, Addison Wesley, Reading, MA,
1989.

[95] Humphrey W.S., Snyder T.R., Willis R.R., “Software process improvement at Hughes
Aircraft”, IEEE Software 8 (4) (1991) 11–23.

[96] Johnson R.E., “Frameworks = (components + patterns)”, Communications of the
ACM 40 (10) (1997) 39–42.

[97] Kaiser G.E., Feiler P.H., Popovich S.S., “Intelligent assistance for software develop-
ment and maintenance”, IEEE Software 5 (3) (1988) 40–49.

[98] Kaiser G.E., Popovich S.S., Ben-Shaul I.Z., “A bi-level language for software process
modeling”, in: Proc. Fifteenth International Conference on Software Engineering, Bal-
timore, Maryland, 1993.

[99] Kehoe R., Jarvis A., ISO 9000–3: A Tool for Software Product and Process Improve-
ment, Springer, New York, 1996.

[100] Kling R., “Organizational analysis in computer science”, The Information Society 9 (2)
(1993).

[101] Kolodner J.L., “Improving human decision making through case-based decision aid-
ing”, AI Magazine 12 (1) (1991) 52–68.

[102] Kolodner J.L., Case-Based Reasoning, Morgan-Kaufman, San Mateo, CA, 1993.
[103] Konrad M.D., Paulk M.C., “An overview of SPICE’s model for process management”,

in: Proc. 5th International Conference on Software Quality, Austin, Texas, 1995.
[104] Kuvaja P., Bicego A., “BOOTSTRAP—A European assessment methodology”, Soft-

ware Quality Journal 3 (1994) 117–127.
[105] Lee H., Osterweil L.J., “HI-PLAN and Little-JIL: A study of contrast between two

process languages”, in: International Conference on Software Theory and Practice
(ICS2000), Beijing, PRC, 2000.

[106] Lee J., “Design Rationale capture and use”, AI Magazine 14 (2) (1993) 24–26.
[107] Lim W.C., “Effects of reuse on quality, productivity, and economics”, IEEE Soft-

ware 11 (5) (1994) 23–30.
[108] Lindvall M., Rus I., “Process diversity in software development”, IEEE Software 17 (4)

(2000) 14–18.

80 S. HENNINGER

[109] Maclean A., Bellotti V., Young R., Moran T., “Questions, options, and criteria: Ele-
ments of design space analysis”, Human–Computer Interaction 6 (3–4) (1991) 201–
251.

[110] March J.G., “Exploration and exploitation in organizational learning”, Organizational
Science 2 (1) (1991) 71–87.

[111] Mi P., Scacchi W., “Modeling articulation work in software engineering processes”,
in: 1st International Conference on the Software Process, Redondo Beach, CA, 1991,
pp. 188–201.

[112] Moran T., Carroll J. (Eds.), Design Rationale: Concepts, Techniques and Use,
Lawrence Erlbaum Associates, Hillsdale, NJ, 1996.

[113] Muñoz-Avila H., Aha D.W., Breslow L.A., Nau D.S., Weber R., “Integrating conver-
sational case retrieval with generative planning”, in: Proc. 5th European Workshop on
Case Based Reasoning, Trento, Italy, 2000, pp. 322–334.

[114] NASA GSFC, Recommended Approach to Software Development. Available at http://
sel.gsfc.nasa.gov/website/documents/online-doc.htm, last update: June 1992, 1999, last
accessed: August 2002.

[115] Nau D., Cao Y., Lotem A., Muñoz-Avila H., “SHOP: Simple Hierarchical Ordered
Planner”, in: Proc. 16th International Conference on Case-Based Reasoning, Stock-
holm, AAAI Press, 1999, pp. 968–973.

[116] Neighbors J., “The Draco approach to constructing software from reusable compo-
nents”, IEEE Transactions on Software Engineering 10 (1984) 564–573.

[117] Nick M., Althoff K.-D., Tautz C., “Systematic maintenance of corporate experience
factories”, Computational Intelligence 17 (2) (2001) 364–386.

[118] Nonaka I., Takeychi H., The Knowledge-Creating Company: How Japanese Companies
Create the Dynamics of Innovation, Oxford Univ. Press, New York, 1995.

[119] Oivo M., Basili V.R., “Representing software engineering models: The TAME goal
oriented approach”, IEEE Transactions on Software Engineering 18 (10) (1992) 886–
898.

[120] Osterweil L., “Software processes are software too”, in: Ninth International Conference
on Software Engineering, Monterey, CA, ACM, IEEE, Los Alamitos, CA, 1987, pp. 2–
13.

[121] Paulk M.C., Curtis B., Chrissis M., Weber C.V., “Capability maturity model, version
1.1”, IEEE Software 10 (4) (1993) 18–27.

[122] Pearce M., Goel A.K., Kolodner J.L., Zimring C., Sentosa L., Billington R., “Case-
based design support: A case study in architectural design”, IEEE Expert 7 (5) (1992)
14–20.

[123] Perry D.E., Staudenmayer N.A., Votta L.G., “People, organizations, and process im-
provement”, IEEE Software 11 (4) (1994) 36–45.

[124] Poulin J.S., Caruso J.M., “A reuse metrics and return on investment model”, in: Ad-
vances in Software Reuse, IEEE Computer Society Press, Los Alamitos, CA, 1993,
pp. 152–166.

[125] Prieto-Díaz R., “Domain analysis: An introduction”, ACM SigSoft Software Engineer-
ing Notes 15 (2) (1990) 47–54.

http://sel.gsfc.nasa.gov/website/documents/online-doc.htm
http://sel.gsfc.nasa.gov/website/documents/online-doc.htm
http://sel.gsfc.nasa.gov/website/documents/online-doc.htm

TOOL SUPPORT FOR EXPERIENCE-BASED SOFTWARE 81

[126] Prieto-Díaz R., “Implementing faceted classification for software reuse”, Communica-
tions of the ACM 35 (5) (1991).

[127] Prieto-Díaz R., Arango G., Domain Analysis and Software Systems Modeling, IEEE
Computer Society Press, Los Alamos, CA, 1991.

[128] Prieto-Díaz R., Arango G., “Domain analysis concepts and research directions”, in:
Prieto-Díaz R., Arango G. (Eds.), Domain Analysis and Software Systems Modeling,
IEEE Computer Society Press, Los Alamos, CA, 1991, pp. 9–33.

[129] Radice R., Roth N., O’Hara A., Ciarfella W., “A programming process architecture”,
IBM Systems Journal 24 (2) (1985).

[130] Rich C.H., Waters R.C., “Automatic programming: Myths and prospects”, Com-
puter 21 (8) (1988) 40–51.

[131] Scharff E., “Applying open source principles to collaborative learning environments”,
in: Proc. Conference on Computer Supported Collaborative Learning (CSCL 2002),
Boulder, CO, 2002, pp. 499–500.

[132] Scharff E., “Open source: A conceptual framework for collaborative artifact and knowl-
edge construction”, in: Computer Science, Univ. of Colorado–Boulder, 2002, p. 198.

[133] Schneider K., Schwinn T., “Maturing experience base concepts and DaimerChrysler”,
Software Process Improvement and Practice 6 (2001) 85–96.

[134] Schön D.A., The Reflective Practitioner: How Professionals Think in Action, Basic
Books, New York, 1983.

[135] Schwaber K., Beedle M., Agile Software Development with Scrum, Prentice-Hall, 2001.
[136] Shaw M., Garlan D., Software Architecture: Perspectives on an Emerging Domain,

Prentice-Hall, Upper Saddle River, NJ, 1996.
[137] Shipman F., McCall R., “Supporting knowledge-base evolution with incremental for-

malization”, in: Proc. Human Factors in Computing Systems (CHI ’94), Boston, MA,
ACM, New York, 1994, pp. 285–291.

[138] Simos M., “Organization domain modeling (ODM): Formalizing the core domain mod-
eling lifecycle”, in: Proc. Symposium on Software Reusability SSR’95, Seattle, WA,
1995, pp. 196–205.

[139] Simos M., Creps D., Klinger C., Levine L., Organization Domain Modeling (ODM)
Guidebook, Unisys Corporation, Reston, VA, 1995.

[140] Simos M.A., “The growing of an Organon: A hybrid knowledge-based technology for
software reuse”, in: Prieto-Díaz R., Arango G. (Eds.), Domain Analysis and Software
Systems Modeling, IEEE Computer Society Press, 1991, pp. 204–221.

[141] Stein E.W., Zwass V., “Actualizing organizational memory with information systems”,
Information Systems Research 6 (2) (1995) 85–117.

[142] Sutton S.M., Heimbinger D., Osterweil L.J., “APPL/A: A language for software process
programming”, Transactions on Software Engineering and Methodology 4 (3) (1995)
21–286.

[143] Tautz C., Althoff K.-D., “Using case-based reasoning for reusing software knowl-
edge”, in: Proc. 2nd International Conference on Case-Based Reasoning (ICCBR’97),
Springer-Verlag, 1997, pp. 156–165.

82 S. HENNINGER

[144] Terveen L., Wroblewski D., “A collaborative interface for browsing and editing large
knowledge bases”, in: National Conference of the American Association for AI, Boston,
MA, AAAI, 1990, pp. 491–496.

[145] Terveen L.G., Selfridge P.G., Long M.D., “Living design memory—framework, imple-
mentation, lessons learned”, Human–Computer Interaction 10 (1) (1995) 1–37.

[146] Thomas M., McGarry F., “Top down vs. bottom up process improvement”, IEEE Soft-
ware 11 (4) (1994) 12–13.

[147] Tracz W., “International conference on software reuse summary”, ACM SIGSOFT Soft-
ware Engineering Notes 20 (2) (1995) 21–25.

[148] USC, Model-Based Architecting & Software Engineering. Available at http://sunset.
usc.edu/research/MBASE/index.html, last update: 6/6/2002, 2002, last accessed: Nov.
2002.

[149] Vessey I., Glass R., “Strong vs. weak approaches to system development”, Communi-
cations of the ACM 41 (4) (1998) 99–102.

[150] Walsh J.P., Ungson G.R., “Organizational memory”, Academy of Management Re-
view 16 (1) (1991) 57–91.

[151] Walz D.B., Elam J.J., Curtis B., “Inside a software design team: Knowledge acquisition,
sharing, and integration”, Communications of the ACM 36 (10) (1993) 62–77.

[152] Winn T., Calder P., “Is this a pattern?” IEEE Software 19 (1) (2002) 59–66.
[153] Winograd T., Flores F., Understanding Computers and Cognition: A New Foundation

for Design, Addison-Wesley, Reading, MA, 1986.

http://sunset.usc.edu/research/MBASE/index.html
http://sunset.usc.edu/research/MBASE/index.html
http://sunset.usc.edu/research/MBASE/index.html

Why New Software Processes Are Not
Adopted

STAN RIFKIN

Master Systems Inc.
2604B El Camino Real
Carlsbad, CA 92008
USA

Abstract
Why do we often appear not to do what is best for us, at least what someone else
thinks is? To what extent do the reasons have to do with what is being suggested
vs. to how the implementation is planned and executed? Is there a way to accel-
erate the rate at which the implementation of process adoption can be achieved?
These questions are addressed by reviewing the considerable literature on imple-
mentations of software engineering, information systems, and quality improve-
ment.

1. Change Is Harder Than We Think . 84
2. The Answers . 86

2.1. The First Model . 86
2.2. Advantages of the First Model . 89
2.3. The Second Model . 89
2.4. Advantages of the Second Model . 93

3. Beginning the Inquiry . 93
3.1. Definition of Adoption . 93
3.2. Framework for Inquiry . 93
3.3. Fields Touched by Implementation Research 94
3.4. Ambit of Software Processes . 95

4. Process Descriptions of Implementation . 96
4.1. Description of Stage or Phase Models . 96
4.2. Duration of Stage or Phase Models . 97
4.3. Non-Linear (Messy) Models . 98

5. Diffusion: The Most Popular Explanation . 101
5.1. Problems with Diffusion as an Explanation 103

6. Resistance . 105

ADVANCES IN COMPUTERS, VOL. 59 83 Copyright © 2003 by Elsevier Science (USA)
ISSN: 0065-2458 All rights reserved.

84 S. RIFKIN

6.1. Reluctance Because the Proposed Change is a Bad Idea. That Is, There Is
Conflict! . 105

6.2. Reluctance Because We Are Inertial Beings and We Resist Change 106
6.3. Institutional Forces Invite Us to Imitate, to Conform 107
6.4. Latency Because There Is Gap between Knowing and Doing 108

7. Path Dependence Theory . 109
8. Process Studies . 110
9. Factor Studies . 110

9.1. Characteristics of the Innovation . 111
9.2. Organizational Characteristics . 113
9.3. Environmental Factors . 113
9.4. Adopter Characteristics . 114
9.5. Leadership . 114
9.6. User Acceptance . 115

10. Case Studies . 115
10.1. Diffusion . 115
10.2. Other Case Studies . 115

11. Conclusion . 115
Acknowledgements . 116
References . 116

In general, this chapter is a literature review of how to accelerate adoption of software
engineering-related processes by software managers and engineers. It adds value by
acting as a lens to help make sense of the numerous field studies on the subject (175
references are cited).

1. Change Is Harder Than We Think

“Not much has changed in a system that failed: The F.B.I. and C.I.A. missed sig-
nals a year ago. Now they do well in capital turf wars” [1]. So reads a recent headline
related to change one year after the September 11th, 2001, attack on the World Trade
Center. If ever there were motivation to change disaster has to be it.

Or does it? One way that the history of surgery is divided is pre- and post-
Listerism.1 Joseph Lister, also the namesake of Listerine-brand mouthwash, was the
inventor of antiseptic surgery in the 1850s in Scotland. In the wars at the time there
were more injuries from field surgery than from battle! Surgery then was consid-
ered a form of butchery because of the pain (there was no anesthesia) and the near
certain death from infection. Lister missed many cues on his way to discover that
cleaning the wound—and his hands, uniform, and instruments—before, during and

1I am indebted to Watts Humphrey for this example.

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 85

after surgery dramatically reduced mortality. But even after he demonstrated this dra-
matic decrease in mortality (from forty percent in one ward to two percent) antiseptic
surgery was not adopted in England and the United States (it was adopted in Ger-
many, where it saved many, many lives). An analysis of the diffusion of antiseptic
surgery lists nine factors2 that impeded its adoption [2]. Oddly, about the same time
anesthesia during surgery was invented and it was promptly adopted in England and
the U.S.

“Turf” referred to in the F.B.I. and C.I.A. headline, above, also was one of the
factors in the impediments to adopting antiseptic surgery. As will be explored below,
new processes often mean a change in power and a change in power can mean a
change in the ability to pay the mortgage. What we ordinarily call resistance may be
nothing more pernicious than protecting our ability to pay our mortgages.

“This failure to sustain [improvement processes] recurs again and again despite
substantial resources committed to the change effort (many are bankrolled by
top management), talented and committed people ‘driving the change,’ and high
stakes. [T]he sources of these problems cannot be remedied by more expert ad-
vice, better consultants, or more committed managers. The sources lie in our
most basic ways of thinking.” [3, p. 6]

In today’s world of pressure to deliver software in a very short time, we barely
have time to develop the software that is functionally required, so how would we
have time to learn and become competent at a new process? This question is often
produced when such “grand” improvements as the Software Engineering Institute’s
Capability Maturity Models are suggested or the Experience Factory or ISO 9000.
Yet, when eXtreme programming or agile methods or the Rational Unified Process
are suggested there appears to be a receptiveness absent to the grand processes. The
explanation, suggested below (Section 9.1), is that the grand methods are not suffi-
ciently divisible, even though they have a bunch of little moving parts. One has to
adopt a totality of the processes in those grand methods in order to achieve certifica-
tion or the promised benefits, but with the smaller methods the benefits appear to be
incremental and closely follow the implementation of any one of the sub-practices
(such as pair programming and refactoring in eXtreme programming).

We all adopt new practices for reasons, presumably rational ones. One observes
that there is almost no empirical evidence for the most widely-adopted software
engineering processes, which include structured programming, abstract data types,
object-oriented design and programming, CASE tools, statistical process control,
fourth-generation languages, and formal methods [4]. This applies as well to the

2Medical administration, social interpretation, professional tradition, national competition, theoretical
orientation, experimental investigation, technical evaluation, surgical demonstration, and final assimila-
tion.

86 S. RIFKIN

more modern adaptations, such as eXtreme programming and agile methods (though
there is some empirical evidence for pair programming [5]).3

Another observation would not be so flattering about the decision to adopt. In the
most widely cited business journal article [6], the authors explain how they sought
to understand how managers made decisions, which rational models did they ap-
ply to weigh the multiple factors that would need to be taken into account. Instead
they found a garbage can: managers are presented solutions and problems asynchro-
nously. Solutions are matched to problems when the presentation of the problem is
proximate in time (especially just after) the presentation of the solution: they are
taken out of the garbage can when a match is made with a problem.

Whether there is a good reason to change can be seen in either light (no empirical
evidence or the garbage can), neither of which is potentially very compelling.

2. The Answers

Alas, our field is known for its impatience. In that spirit, I want to sum up the
whole chapter with the best two descriptions of adoption. That is, I want to present
The Answers. Each is more or less from a single reference; it is always dangerous
to rely on a single source, and the justifications after the explanation of the models
explore why that particular article is seminal.

The basis of selection for these two answers is over-simple: They elegantly ex-
plain a great deal of otherwise monolithic approaches, such as factor studies that try
to identify and isolate the controlling influences on adoption. The two answers be-
low are more dynamic and identify that certain factors are more influential during
certain epochs or under certain conditions and not at other times/conditions. Such a
contingency style (“What is critical for adoption?” “It depends!”) reveals far more
than any set of single factors that are linearly aligned in an inexorable (or unstated)
time sequence. Also, both answers leave plenty of room for human forces, technical
details, and organizational/environmental influences, all of which are part of the rich
reality of implementing software engineering processes.

2.1 The First Model

The model is taken from Repenning [7]. The explanation of process adoption relies
on Fig. 1. The grammar of the diagram was first popularized in Senge [8], where it is

3In all fairness, the journal Empirical Software Engineering(ISSN 1382-3256) has been created to fulfill
the need for empirical evidence regarding software technologies. There is no evidence that the Journal is
consulted by decision-makers, nor is there evidence that decision-makers consult any substantiation of
advantage of the technology under consideration.

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 87

FIG. 1. Arrangement of the dynamic forces of implementation (from [7, pp. 109–127]. Reprinted by
permission of the Institute for Operations Research and the Management Sciences (INFORMS)).

called a causal loop diagram. The intuition is that there are three forces that determine
whether a new process will be used in practice: normative pressure, reinforcement,
and diffusion.

• Normative pressure is that exerted by management to meet expectations, to
achieve norms. Managers set goals for commitment to implement the innova-
tion (in this case, process improvement). If the gap between the managers’ goal
and the current commitment is large enough, then the pressure on those affected
is increased to raise their commitment to implement.

• Reinforcement is the process by which the pressure to increase commitment is
translated into effort. In this model there is a direct relationship between effort
and results, so as effort is increased then positive results are, too.

• Diffusion is something of the flywheel effect in which those affected observe
improved results so they, in turn, increase their commitment to implement the
improvement innovation.

The explanation—composed of the (necessarily) linear arrangement of words, sen-
tences, and paragraphs—gives the appearance that managers’ normative intentions
might begin the whole process and then the flow proceeds in the manner described
above for the first time through. After that, things can get interesting. For exam-
ple, Repenning [7, p. 120] described an instance where the diffusion loop damps the

88 S. RIFKIN

commitment to implement when the results appear to be disproportionately low with
respect to the effort allocated.

The simulation model in the title of Repenning’s article illustrates the interaction
among the three forces. Essentially, the two loops with the R1 and R2 labels tend
to amplify effects, because there are + marks all the way around each loop; the
one marked B1, where B stands for balancing, because it has an odd number of +
marks [9], can reduce future commitment as the gap between actual commitment and
the managers’ goals closes.

Now we can see the ups and downs of implementation:

• When the managers’ goals for commitment are not sufficiently different from
the current commitment then there will be insufficient pressure to commit to
going forward.

• Whenever the effort is (too) low, then the results will be low and the commit-
ment will decrease in a vicious cycle.

• Whenever the effort-results linkage observed is (too) low, then others will not
be inspired to commit and the effort allocated will be decreased, decreasing the
results still more, in a vicious cycle.

Repenning was able to reproduce in his model the situation in which managers set
appropriate goals, allocate sufficient effort and then underestimate the delay needed
to achieve results, so the commitment is eroded and the results fall off because of
the connections among the goal, commitment, effort, and results. With another set of
values, Repenning showed that once the flywheel effect of diffusion is in place, due
to the long-term positive relationship between effort and results, then normative pres-
sure does not play such an important role, can be removed, and the implementation
continues its virtuous cycle.

Repenning, at the end of the article gives advice to managers facing the task of
implementation:

1. Do not prepare to implement something new until and unless “fully committed
to the effort and patient in the months between adopting” and having the results
motivate further deployment.

2. While seeking to have the results themselves stimulate the flywheel effect,
do not do this at all costs. Such a Herculean effort would be seen by future
adopters as an effort disproportionate to the results and therefore the virtuous
cycle would not happen.

The first bit of advice is important because so many authors implore their readers to
frame the process improvement implementation as a project, rather like a software
project. This would miss the point that planning a software project is by and large

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 89

a solved problem, while planning human changes, especially by engineers and en-
gineering managers, is not. Accordingly, Repenning’s advice can be seen as a case
perhaps for planninga process improvement as a project, but then do not implement
it as a project, as it is too difficult to estimate the relationships among the variables.4

2.2 Advantages of the First Model
There are several reasons that Repenning is a superior source on understanding

why new processes are not adopted:

• It has face validity, that is, it tracks what we already know by personal, idiosyn-
cratic experience, and by the experience of others (to be detailed below as part
of the literature review).

• It pulls in the characteristics we customarily, perhaps cursorily, associate with
implementation success, such as leadership (setting norms and sticking with
them), managing change (how improvement is communicated, as in the effort-
results link), allocating sufficient resources (effort in this case), rewards, and the
need to begin improvement with sufficient energy.

• It takes into account many forces, not just a single one.

• Those forces are arranged in a simple structure that can have a complex, non-
linear interaction. Causes may become effects, there can be competition among
the forces or they can align, and, therefore, not only success can be explained
but so can failure. And the model illustrates the possible ups and downs.

• It describes both a process and factors.

• It depends upon and sums up considerable theory. It is not just one person’s
bright idea.

• Without the insight gained by using the model we are unlikely to succeed on
intuition alone.

We will visit and re-visit these desiderata in the course of reviewing the history of
what is known about getting best software engineering practices into actual practice.

2.3 The Second Model
In her article, Markus [10] guides us through the “home grounds” of the two

most prevalent arguments about why process innovations are not adopted: either the

4Mark Paulk frames it differently. Some software projects are planned as discovery activities, iteratively
reducing equivocality in the problem, solution, and/or project spaces. Implementation can gainfully be
planned and performed this way, in planned cycles that iteratively identify and reduce risk. (Personal
communication.)

90 S. RIFKIN

process (or system of processes) itself is flawed in some technical respect (e.g., hard
to use) [11], or the intended targets of the improvement (we humans) have some in-
herent reason to resist the implementation [12]. That is, there is a system-determined
answer and a people-determined answer; the result in both cases is resistance. It is,
therefore, the role of the implementer to either restructure the technical aspects of the
system or restructure the people aspects (rewards, incentives, span of control, new
job titles).

Markus notes that we see this dichotomy in solutions: some solutions address
purely technical aspects, such as user involvement in the requirements and design
phases, and others address how humans change in response to new processes trying
to be introduced. She proposes a third theory, interaction, which does not rely on the
assumptions of the other two. There are two variants of interaction theory:

1. Sociotechnical: it’s all one system, and every part interacts with the others
[13–15].

2. Political: it’s about power, who has it, and who loses and gains with the intro-
duction of the new stuff.

Markus frames her insights in terms of resistance (see Table I).
Like any good theory, these three can be used to predict where to look for problems

and solutions (see Table II).
What she finds, and asks us readers to look closely at our own situations for, is

that (even) when people- and system-determined problems are addressed and solved,
“resistance” remains, but when interaction with the organizational context or power
distribution is addressed, then the “resistance” goes away. Accordingly, interaction
theory is a better guide for implementation.

Looking at interaction instead of people or systems implies that a certain kind of
information is used as evidence of implementation. That kind of information is not
usually valued by us engineers or business people. The logic of using this kind of
evidence begins with a worldview or ontology. Ontologies are basic beliefs about
how the world works. One example is positivism, which believes that there is an en-
during reality that exists independent of our sensing or perception of it. When we
turn our backs on a mountain it is still there! Another example is that the world is
socially-constructed, that we make sense of what we perceive based on what society
instructs us to. Each of these two examples also implies epistemology and method-
ology, that is, what can be known for sure and what methods generate such knowl-
edge. Positivism, sometimes called “normal science,” believes in “hard” facts—that
is, quantitative measurements—obtained in such a way that the measurements can be
obtained by anyone else equipped with the instruments. Interpretivism, which corre-
sponds to the social construction of reality, seeks to find the patterns that operate in
social settings, the collections of phenomena that seem to fit together. In the interpre-

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 91

TABLE I
THEORIES OF RESISTANCE: UNDERLYING ASSUMPTIONS (FROM [10, PP. 430–444]. (C) 1983

ACM, INC. REPRINTED BY PERMISSION)

People Determined System-Determined Interaction Theory

Cause of resistance Factors internal to
people and groups

System factors such as
technical excellence and
ergonomics

Interaction of system and
context of use

Cognitive style Lack of user-friendliness Sociotechnical variant:
Interaction of system with
division of labor

Personality traits Poor human factors
Human nature

Inadequate technical de-
sign or implementa-
tion

Political variant: Inter-
action of system with
distribution of intra-
organizatonal power

Assumptions about
purposes of infor-
mation systems

Purposes of systems
are consistent with
Rational Theory of
Management, can be
excluded from
further con-
sideration

Purposes of systems are
consistent with Ratio-
nal Theory of Man-
agement, can be ex-
cluded from further
consideration

Sociotechnical variant:
Systems may have the
purpose to change
organizational culture, not
just workflow
Political variant: Systems
may be intended to change
the balance of power

Assumptions about
organizations

Organizational goals
shared by all par-
ticipants

Organizational goals
shared by all partici-
pants

Sociotechnical variant:
Goals conditioned by
history
Political variant: Goals
differ by organizational
location; conflict is en-
demic

Assumptions about
resistance

Resistance is at-
tribute of the
intended system
user; undesirable
behavior

Resistance is attribute of
the intended system
user; undesirable be-
havior

Resistance is a product of
the setting, users, and
designers; neither desir-
able nor undesirable

tivist paradigm it is acceptable that the search for those patterns is in a social setting
that cannot be repeated, because the environment is not controlled or even control-
lable, as in a test tube laboratory. Objectivity in this paradigm cannot be obtained.
The methods are generally called qualitative [16–20].

The interaction framework espoused by Markus means leaving the methods of
normal science (and engineering and commerce) in favor of interpretation, a form

92 S. RIFKIN

TABLE II
THEORIES OF RESISTANCE: PREDICTIONS (FROM [10, PP. 430–444]. (C) 1983 ACM, INC.

REPRINTED BY PERMISSION)

People-Determined System-Determined Interaction Theory
(Political Variant)

Facts needed in real-
world case for the-
ory to be applica-
ble

System is resisted,
resistors differ
from nonresistors on
certain personal
dimensions

System is resisted,
system has technical
problems

System is resisted, re-
sistance occurs in the
context of political
struggles

Predictions derived
from theories

Change the people
involved, resistance
will disappear

Fix technical problems,
resistance will disap-
pear

Changing individuals
and/or fixing technical
features will have little
effect on resistance

Job rotation among
resistors and nonre-
sistors

Improve system effi-
ciency

Resistance will persist in
spite of time, rotation,
and technical improve-
ments

Improve data entry

Interaction theory can
explain other relevant
organizational phe-
nonema in addition to
resistance

of subjective judgment. If we accept the invitation to take into account new kinds of
information (namely subjective sources) then we may see things we did not before.
But, it is a difficult habit to break by letting go what we think we can know for sure in
exchange for learning more about the situation from less of an absolute perspective.

It is worth mentioning that one of the objections of normal science is that social
scientists “make up” constructs, such as morale, intelligence, and power, that those
constructs do not have an existence independent of their definitions. Abraham [21], a
recovering physicist, has argued persuasively that the constructs of classical physics,
such as distance, acceleration, and force, to mention but a few, are no less “made
up” and do not exist independent of our thoughts about them. That we ascribe mea-
surements to distance, acceleration, and force reify them precisely to the extent that
measurements of morale, intelligence, and power do.

One of the popular ways to express that the social construction of reality acts as
filter on what we see is the often-cited quip quoted by Karl Weick [22, p. 1]. It refers
to American baseball, where a ball is thrown (pitched) towards a batter. If the batter
does not swing, then a judge (an umpire) calls either “ball” if the trajectory was
outside a mythical box between the shoulders of the batter and his knees, or “strike”
if it was inside that box. Three umpires were talking. The first said, “I calls them

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 93

as they is.” The second said, “I calls them as I sees them.” The third and cleverest
umpire said, “They ain’t nothin’ till I calls them.” Later Weick avers that when people
say “I’ll believe it when I see it,” they more likely mean “I’ll see it when I believe it.”
And, quoting another source, “man is an animal suspended in webs of significance
he himself has spun” [22, pp. 134–135].

2.4 Advantages of the Second Model

Like the first model, this one incorporates other theories [23], so it is not (just)
one person’s bright idea. It also addresses competing theories that are likely the most
prevalent in the implementation literature and practice, so the insights are novel and
useful. It also predicts the problems and solutions better than the other two compet-
ing theories. In addition, “resistance” is redefined as natural and a part of any change,
not something to be conquered and overcome. And last, it invites us to broaden our
computer science-, software engineering-centric methods for observing and gather-
ing information, something that many implementers feel is necessary to be success-
ful, that somehow trying harder with what we already know how to do is not more
effective [24].

3. Beginning the Inquiry

We begin by delimiting the scope of our inquiry. We examine definitions of adop-
tion, phases of getting processes into practice, which fields might best contribute to
our understanding, and what we mean by software processes. Then we examine the
sources of insight one subject at a time. The conclusion is brief, as The Answers have
already been presented above.

3.1 Definition of Adoption

There are many synonyms, such as technology transfer, technology transition,
technology infusion, diffusion, dissemination, deployment, assimilation, and imple-
mentation. In the sense we use them we mean that some practice or process or pro-
cedure is in regular, normal use by those intended as targets of usage. The focus is
on usage on the job, the actual practice of a process.

3.2 Framework for Inquiry

Lucas et al. [25] suggest a framework for reviewing what is known about imple-
mentation: theory, process, and factor; see also Kwon and Zmud [26]. To this we add

94 S. RIFKIN

the single category of case studies and personal (idiosyncratic) experiences. Essen-
tially, theory represents the accumulation of empirical evidence of patterns. It is the
highest form of knowledge because it sums so many observations. At the other end
of the knowledge spectrum, case studies and personal experiences represent the least
knowledge because they are points about which we must infer the salient factors for
our own purposes.

In between theory and stories there are studies of the process or steps and the char-
acteristics that imply success or failure, that is, the factors that bear on the outcome of
implementation. There are naturally many studies that cross over, such as the theory
of the process of implementation.

3.3 Fields Touched by Implementation Research

Why and how some implementations of processes are successful and others are not
can be seen from many perspectives. Among those surveyed here, however briefly,
are:

• Innovation—This is the creation of the new process. Many believe that taking
implementation concerns into account during innovation increases the likeli-
hood of adoption. Therefore, some scrutiny of the innovation process is com-
mon. In addition, there is belief that one of the important predictors of imple-
mentation success is an “innovative” atmosphere, one that is receptive to new
ideas. This is also the place for path dependence, the notion that in order for
certain innovations to be successful there must have been a path or trajectory of
prerequisite occurrences.

• Managing human change and organizational culture—This is usually couched
in terms of identifying and countering “resistance,” though sometimes one can
only infer that “resistance” is being addressed because it is not explicitly stated.
There are many commercially available change management approaches and
programs, all of which subscribe to the people-oriented theory in the Markus
article, above. The notion is that some organizational cultures (for example,
the unspoken rules) are more conducive to adoption than others. Qualitative
organizational learning is in this category because it tries to leverage human
change lessons learned (actually lessons observed).

• Leadership and management—It is received wisdom that change is accelerated
when it is sponsored by the leader of the organization. Accordingly, this field is
also based on the people-oriented theory, and can be part of the process descrip-
tion (that is, exactly what does leadership do) or part of the factors (strength of
leader’s support). Leadership is commonly the subject of idiosyncratic stories
(“Here is how I led change”), perhaps because leadership is often thought to

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 95

be determinative of the outcome, and a common trait of failure: lack of upper
management support (whatever that might mean) augurs for an unsuccessful
outcome.

• Social construction of reality—All engineering takes place in a context, much
of which is socially constructed. Therefore, it is useful to view adoption as an
activity situated in a social system. Indeed, such a view is indispensable because
it enables the planner of an implementation to take into account the human
and collective aspects in addition to the technical or engineering aspects. The
difference between this area and the one on managing human change is the unit
of analysis. The unit in this area is a team, group, division, or other collective.
The unit in the human change area is the individual, be it a leader, manager,
champion, agent, or target.

• Social shaping of technology—Technology is not a value-free, neutral con-
duit through which new ideas flow. Rather, the technical aspects of innovations
themselves are the results of choices, sometimes on a scale that is impacted
by national policy, habits, culture, and economics. Sometimes, for example, the
technology represents a dialectic between labor and management, as when it is
applied to the de-skilling of workers.

• Mathematical modeling—This is normally applied to the view of adoption as
diffusion, something like a contagion or bacterium spreading in a finite medium.
This also includes quantitative learning curves, the steady improvement with
practice.

3.4 Ambit of Software Processes

The scope of this chapter is software engineering processes and software devel-
opment management processes. These processes include the type that are standard-
ized by international standards organizations, such as ISO 9000, and standardized
by governments, such as military standards, federal civilian agency standards (e.g.,
U.S. National Aeronautics and Space Administration, U.S. Federal Aviation Admin-
istration). They also include de facto standards, such as the Software Engineering
Institute’s Capability Maturity Model, Bootstrap, and other normative process stan-
dards. In addition, software engineering processes include computer-aided software
engineering (CASE), about which much has been written with regard to implemen-
tation, adoption, deployment, and their many synonyms.

While we focus on software processes, we do not confine our inquiry solely to
them. We borrow where appropriate from other engineering and business disciplines,
including adopting new products. While products and processes have several impor-
tant differences, primary among them the ability to observe adoption, we borrow

96 S. RIFKIN

from the understanding of product adoption when it helps us understand process
adoption. See, for example, [27].

4. Process Descriptions of Implementation

4.1 Description of Stage or Phase Models

Adoption can be viewed as one phase or stage in a sequence of events. Here are
several descriptions of the stream:

Redwine et al. [28] use:

1. Concept formulation, the emergence of the key idea.
2. Development and extension, usually via a seminal paper or demonstration sys-

tem.
3. Enhancement and exploration (internal), in which usable capabilities are avail-

able.
4. Enhancement and exploration (external), which shifts usage outside of the de-

velopment group.
5. Popularization, substantial evidence of value and application, such as 40–70%

usage.

Maier [29], in Fig. 2, relying on Schumpeter [30], uses three stages:

1. Invention, when new products or processes are developed.
2. Innovation, when the products or processes are introduced in the market.
3. Imitation or diffusion, when they are spread.

The Software Engineering Institute has created the IDEAL model [31] to sequence
the phases:

1. Initiating, a discovery activity, looking for motivation and alternatives.
2. Diagnosing, performing an appraisal of the baseline.
3. Establishing, setting goals and planning.
4. Acting, actually introducing the new process (in this case).
5. Leveraging, observing lessons and trying to feed them back into the next im-

provement cycle.

Caputo uses a framework that has grown through oral repetition [32,33]:

1. Contact with the new idea.
2. Awareness of the technical merits and its possible impact.
3. Understanding what it could mean in this organization.
4. Definition of the new process or how the new product will be used.

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 97

FIG. 2. Cascading outcome of innovation activity (from [29, p. 286]. © John Wiley & Sons Limited.
Reproduced with permission).

5. Installation of the new product or process, evaluate first instances.
6. Adoption, requiring regular usage.
7. Institutionalization, during which the practice becomes the normal way.
8. Internalization, when one can no longer remember doing it any other way.

4.2 Duration of Stage or Phase Models

Two studies have measured the duration for software engineering process innova-
tions to transit roughly from awareness to regular usage. Redwine and his colleagues
found the duration to be 8 to 20 years across an industry [28], and Zelkowitz found
it took four to five years within a given company [27]. One other study, of Hewlett
Packard’s adoption of the formal software inspection process, suggests it can take
ten years to reach a 25% adoption level [34].

98 S. RIFKIN

FIG. 3. Mutual adaptation of technology and organization. (Reprinted from [35]. © 1988, with per-
mission from Elsevier Science.)

4.3 Non-Linear (Messy) Models

Leonard-Barton [35], in a model that augurs the future, proposes a messy process
of mutual adaptation, where the technology to be adopted is modified as it is assim-
ilated and the organization transforms, too, as the technology is assimilated. Each—
the technology and the organization—accommodate to each other. Her Fig. 3 clearly
indicates that this process is not algorithmic, not linear, not even predictable except
at its highest level of granularity.

She also introduces the logic of “fit” by showing the potential for misalignments
among the technical details of the technology, how success is measured, and how the
technology is used in the user environment. Perhaps more than any other description
of the process of adoption, this one tips away from normal engineering and towards
a more liberal allowance for the evidence that will be admitted (translated) as knowl-
edge. This view will argue against application of traditional project management for
adoption because loops are not permitted in normal descriptions of projects and also
because it will be difficult to estimate the transit time and resources needed to make
forward progress. Rather, progress in this model is made by surfacing and addressing
issues and bottlenecks, and it is difficult to anticipate what those might be and how

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 99

FIG. 4. Keep the rhythm going for two beats to make successful change (from [32, p. 61], fig. 4-12.
© UNISYS Corp. Reprinted by permission of Pearson Education, Inc.).

long it might take to resolve each one. Accordingly, managing adoption qualearning
has apparent appeal.

Inspired by Leonard-Barton, we can find additional evidence of the messiness of
implementation. Caputo [32] offer a unique perspective, in which cycles of doubt,
concern, and certainty are normal. She found that if two of these cycles could be
completed then change, that is implementation, is successful (see Fig. 4).

Another view that supports the cyclic nature of change, and therefore the problem
of predicting how many cycles an organization will transit in order to make change,
comes from the addiction literature [36]. At the risk of conflating the unit of analysis
by moving from organizational to individual, there is some value in seeing that in cer-
tain contexts it is normal that change is not a linear, step-by-step process, but rather
an (a priori) unknown number of iterations, each of which consumes an unknown
length of time (see Fig. 5).

In yet further support for the cyclic nature of adoption, Tyre and Orlikowski [37,
38] found that adoption and utilization of technology is not an incrementally adaptive
pattern described by stage models. Instead they found that mutual adaptation à la
Leonard-Barton occurs in a discontinuous pattern that frequently displays periods of
routine use [39].

Perhaps the least “process” of the process models is due to Fowler and Rifkin [40],
the so-called double-bubble (see Fig. 6); also shown without attribution in Rai [41,
p. 99]. It differentiates between the push of technology attractiveness and the pull
of market or technology needs [42]. The intuition is that technology producers cre-
ate innovations that are advocated inside their own organizations, perhaps by staff
members who have a marketing role. Those advocates communicate to a population
containing potential adopters, sometimes using advertising or other public methods
of communication. In organizations that are “eligible” to adopt there are other staff
members who represent a “surface” of needs to the world. Those staff members have
(many) contacts in the technology provider community so they are “connected” [43].

100 S. RIFKIN

FIG. 5. Prochaska and DiClemente’s six stages of change (from [36]).

FIG. 6. “Double-bubble” process of technology adoption (from [40, p. 118], permission to reproduce
© 1990 by Carnegie Mellon University is granted by the Software Engineering Institute).

When such a technology receptor locates what appears to be a solution to his/her or-
ganization’s problems, then the diffusion process described by Rogers, below, begins.

Other process descriptions include Huff and Munro [44], and Lassila and Bran-
cheau [39].

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 101

5. Diffusion: The Most Popular Explanation

“Diffusionism does not consist of a single idea.” [45, p. 67]

Rogers has provided an encyclopedic description [46] of the diffusion of innova-
tion from thought to implementation. He defines “diffusion is the process by which
an innovation is communicated through certain channels over time among the mem-
bers of social system” [46, pp. 5–6]. While Rogers takes pains to argue the con-
trary, most interpreters view diffusion as a linear, one-way process in which a small
group of first adopters (“innovators” in Rogers’ terminology) inform the next round
of adopters, who in turn inform the next round, etc. And the usual growth of adop-
tion is a pattern like the growth of bacteria in a finite medium, the familiar cumulative
S-curve (see Fig. 7).

The first derivative of the S-curve can be the normal distribution, so many authors,
including Rogers, use the symmetric bell curve to describe the population of adopters
(see Fig. 8).

Somebody develops an innovation. The innovation has (user) features that can
be fairly exactly described and it is clearly separated from other physical ob-
jects or abstract phenomena. The innovation is in essence without modifications,
spread to people who individually decide whether or not to adopt the innova-
tion. Information about the innovation is initially spread through channels such
as professional associations and journals. Next, the news about the innovation is
communicated through a social network where the first adopters are key. From
these prerequisites follows the division of adopters into the categories . . . [47,
p. 36]

FIG. 7. Usual pattern of diffusion, according to [46, p. 106].

102 S. RIFKIN

FIG. 8. Adopter categorization on the basis of innovativeness (from [46, p. 262]. Reprinted with the
permission of The Free Press, an imprint of Simon & Schuster Adult Publishing Group. © 1995 by Everett
M. Rogers. © 1962, 1971, 1983 by The Free Press.)

Since it is based on a mathematical formulation of a communication process, sev-
eral authors [48–53] use diffusion to predict adoption. In particular they often use a
formulation due to Bass [52] (q.v. for a diskette containing an Excel spreadsheet to
compute the diffusion), in which additional forces are taken into account, namely the
(internal) pressure to imitate and the (external) pressure to innovate.

The mathematical formulation of diffusion can be stated as:

dN(t)

dt
= g(t)

[�N − N(t)
]
,

where N(t) is the cumulative number of adopters at time t , �N is the total number
of potential adopters in the social system at time t (the ceiling or asymptote of the
adoption curve), and g(t) is the coefficient of diffusion. Then the general, mixed
influence model is

dN(t)

dt
= (

a + bN(t)
)[�N − N(t)

]
,

where everything is as before, and a is the coefficient of external influence and b is
the coefficient of internal influence. As mentioned above, external influence refers to
the pressure to innovate and internal influence refers to the pressure to imitate. With
appropriate manipulation, the mixed influence equation can be solved for N(t) for
estimated values of a and b (which are usually estimated from history) [51].

The International Federation for Information Processing (IFIP) Working Group
8.6 was established by IFIP in 1994 to focus on diffusion, transfer and implementa-
tion of information technology. Working Group 8.6 conducts conferences and work-
shops, maintains a listserv, publishes books (usually workshop proceedings [54–57])
and a semi-annual newsletter (Eight.six at http://www.isi.salford.ac.uk/ifip/home.

http://www.isi.salford.ac.uk/ifip/home.html

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 103

html). In addition, the Diffusion Interest Group in Information Technology (DIGIT)
usually holds an annual workshop in conjunction with the International Conference
on Information Systems (http://www.icisnet.org/).

5.1 Problems with Diffusion as an Explanation
Despite its surface appeal there have been numerous objections. Perhaps the most

striking one is “No theory of diffusion has been developed as yet. Hence, diffusion,
at best, might is [sic] an umbrella for strategy, innovation, network theory, social
structural theory, and a host of other approaches to understanding change in organi-
zational settings” [47, p. 35]. Rogers himself has a section on “Criticisms of diffusion
research” [46, Chapter 3] that addresses many of the arguments against diffusion as
an explanation of adoption.

Perhaps two of the most unaddressed areas by Rogers are complexity and colo-
nialization. Numerous authors [26,47,58–64] remark that Rogers’ view of diffusion
is too simple, too linear. It does not take into account price, substitutable alternatives,
marketplace externalities (such as standardization or widespread adoption), network
externalities (how many others are using it that I need to interconnect with) [65],
the diversity of the adopter population, the complications of making the adoption
decision (one part of the organization decides to adopt, another pays for it, and yet
another is actually the target of change), simple vs. complex innovations, and rad-
ical vs. incremental innovation. Granstrand, for example, proposes a model where
the diffusion is separable between buyers and sellers [66], Glaziev and Kaniovski
propose a model that is stochastic, not just deterministic (as is Rogers) [67], Fich-
man and Kemerer study the situation in which the technology has been acquired
but not deployed [59], Lyytinen takes into account transaction costs [68], Swanson
and Ramiller note that innovation and diffusion are not separate and disconnected
stages [69],5 and Chaddha and Chitgopekar argue that Rogers explains successful
diffusion but not its failure, in this case Picturephone [70].

One of the most popular of these views is Moore [61], a marketing specialist, who
tried to apply Rogers’ adopter categories and instead found gaps, chasms, between
adjoining categories. Moore redrew Rogers’ bell curve (see Fig. 9).

The speculation based on experience is that adoption is not a smooth process like a
contagion, rather it is a difficult selling effort in which adopters of earlier categories
do not and possibly cannot influence future adopters. Rather, it is up to marketing
and sales forces to reframe the reasons for adoption and to act as the power behind
the diffusion.

Similar to this view is that diffusion is a construct of reductionists who see the
world as a set of problems to be solved, where the problems are defined in terms of a

5This is akin to the social structuring of technology.

http://www.isi.salford.ac.uk/ifip/home.html
http://www.isi.salford.ac.uk/ifip/home.html
http://www.icisnet.org/

104 S. RIFKIN

FIG. 9. The revisedtechnology adoption life cycle (from [61, p. 17]. © 1991 by Goeffrey A. Moore.
Reprinted by permission of HarperCollins Publishers Inc.).

(limited) number of variables that are usually related linearly. This ontological com-
mitment relies on a persistent or observer-invariant truth, with time moving linearly
at a universal rate with no consideration of different time perceptions [71].

The principal antidote applied to information systems is Soft Systems Methodol-
ogy [72,73] and its cousin, Actor Network Theory [17]. These approaches are more
qualitative than quantitative, see innovations not so much as waiting to be discovered
but rather already in the landscape to be reframed (translated) into useful knowledge
by any of the actors, not some specially-designated “inventors” or geniuses. There is
a collective, holistic sense, not atomistic (that is, reductionist) sense, to these meth-
ods, so they tend to be rich with detail and a complexity that reflects the situation
(that is, requisite complexity). In addition, these methods do not separate technology
and the social system, rather technology is situated along with many other things
in the social system. Another way of saying this is that adoption of technology is
socially constructed [74].

The concept of the social construction of business events is illustrated by a busi-
ness researcher [75], “Organizational change is stimulated not by pressuresfrom the
environment, resulting in a buildup of problems triggering an automatic response,
but by the perceptionsof that environment and those pressures held by key actors”
[75, p. 281] [italics in original]. Later she writes, “Organizational change consists in
part of a series of emerging constructions of reality, including revision of the past, to
correspond to the requisites of new players and new demands” [75, p. 287].

Perhaps the most intriguing critique is that diffusion à la Rogers is fundamentally
imperialism, the standard model of Western colonialism [45]. Basically this view is

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 105

that we view adopters as open vessels ready to accept (that is, adopt) our ideas be-
cause we are superior so then are our ideas. Traditional diffusion assumes evaluation
of innovation on the basis of the transmitter, not necessarily of the receiver. “For
example at a fundamental level, diffusionism takes ‘facts’ to be pre-existing (often
hidden), waiting to be uncovered at some point by heroic discoverers and inventors”
[45, p. 68].

6. Resistance

Markus [10] is not the first to observe that we often attribute our frustration with
the rate of adoption to the individual personalities of the adopters. In particular, we
typify them as “bad characters,” resisters who eschew change, stuffy, viscous, and
ossified. Certainly one of Rogers’ contributions is that to the extent personalities
enter into the adoption decision, there is a range of possibilities to consider, including
those that easily, quickly, and readily adopt.

6.1 Reluctance Because the Proposed Change is a Bad Idea.
That Is, There Is Conflict!

Sometimes conflict itself is the beacon that can serve to warns us that the change(s)
we are proposing are bad ideas. It’s not the actors, it’s the technology being imple-
mented: it does not fit in some significant way. This tension can be managed in a
dialectic [76], or used as a barometer such that implementation is not attempted until
and unless the tension has been resolved rationally.

One of the conflicts identified is a misfit with strategy [77,78]. Essentially, most
process improvements are aimed at a particular organizational strategy or value
proposition called operational excellence. This strategy is to be the lowest cost
provider in a market by having the highest quality. Operationally excellent organi-
zations have short menus of goods or services, and have a “formula” for addressing
buyer needs. But that leaves two other strategies underserved by traditional process
improvement. Those strategies are product innovativeness and customer intimacy.

Each of the three strategies requires a different set of software engineering process
innovation in order to optimize the values it delivers to its clients. Therefore, one
size cannot fit all, and therefore some of the organizations that attempt to adopt a
particular innovation might find that it is ill suited for its purposes. Naturally, the
members of that organization should be counted on to raise this possibility to those
supporting adoption, not as resisters, but rather as protectors of the organization’s
unique value proposition.

Perhaps it is worth mentioning that sometimes hierarchical power is used to
counter resistance. While in general beyond the scope of this chapter, there is at

106 S. RIFKIN

least one study [79] of software engineering innovation that indicates that when the
power inherent in the hierarchy is imposed on those required to adopt we can expect
a lack of adoption. The exercise of the power of the hierarchy is not an effective
accelerator of innovation adoption.

In addition, exercise of the power of the hierarchy is coercive [80], something
usually perceived and resented by software engineers. The most effective innovative
organizations use influence instead of authority to stimulate change [81].

6.2 Reluctance Because We Are Inertial Beings and We
Resist Change

Tushman and his colleagues [82,83] examined organizations that had made suc-
cessful technological changes and compared them with organizations that had not
successfully made such changes. They sought the critical difference that spelled suc-
cess or failure.

They developed a construct, competency-enhancing and competency-destroying,
to characterize technology and the way it is introduced for implementation. Com-
petency-enhancing technology is that which performs functions we already perform
another way. The standard examples are word processors and spreadsheet programs,
as we have been writing and calculating for a long time before the advent of these
computerized tools. We implement competency-enhancing technologies by execut-
ing the tutorials, reading the help screens, and asking central help desks.

Competency-destroying technologies, on the other hand, require that we learn
something so new that everything we have learned to date may not help us under-
stand this new technology. In the realm of software engineering, object orientation
is a competency-destroying technology to a lifelong COBOL programmer. Noth-
ing about COBOL or the years spent becoming competent would help prepare a
COBOL programmer for object orientation. The authors in their study found that
implementing a competency-destroying technology is different than implementing
a competency-enhancing one. For competency-destroying, we are undermining the
power relations in the organization, we are making people who have become compe-
tent and skilled look stupid and incompetent. We are threatening to move them from
self-actualization down the Maslow hierarchy back to shelter and hygiene. That is,
we are threatening them with losing their jobs.

In order to protect the ability to pay mortgages, people who have to adopt
competency-destroying technologies have to be reassured that their competence will
be gradually restored in a planning and managed way, that their power and ability
to pay their mortgage are not at stake, and that they won’t have their performance
assessed for a long time as they learn this new technology. The method of imple-

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 107

mentation is more idiosyncratic, personal, one-to-one, adapted to the particular char-
acteristics of the new learner.

There are other variations than competency-enhancing vs -destroying, e.g., evolu-
tion vs. revolution [84].

Many authors have suggested that “resistance” be dropped from our collective vo-
cabularies [85–92] at least because by labeling a behavior we stop examining it, stop
continuing to develop an understanding of it. One thing seems evident: we are not
inertial beings, resistant to change. But it is natural that we do express doubts about
changes that challenge either what we understand is the purpose of our organization
or our long-earned power inside the organization.

6.3 Institutional Forces Invite Us to Imitate, to Conform

Institutionalization in sociology is the habit of an organization to repeat what it
knows and to imitate others it admires.6

Just look at the title of the seminal article on the subject: The Iron Cage Revisited:
Institutional Isomorphism and Collective Rationality in Organizational Fields[93].
The Iron Cage! Iron cage is the literary term for prison. Max Weber, one of the most
famous sociologists, wrote: “. . . the care for external goods should only lie on the
shoulders of the ‘saint like a light cloak, which can be thrown aside at any moment.’
But fate decreed that the cloak should become an iron cage.” DiMaggio and Powell
write that by this Weber warned that rationalism had ushered in an era in which
capitalism and its offspring, bureaucracy, had become an iron cage for humanity [93,
p. 147].

What accounts for the lack of diversity in organizational life when organizations
themselves—from the standpoint of the diversity of the people in them and the di-
versity of their markets and market disciplines—seem so different? It’s that organi-
zations copy one another and there is great pressure to look and act alike, the authors
show. The main point of the literature on institutionalization is what a strong, perva-
sive, and latent force it is. Organizations may not so much resist change; rather they
conform to very large, powerful norms. One can see it in the number of organiza-
tions that try to imitate Microsoft’s software development practices, but few try to
imitate the Software Engineering Laboratory at NASA’s Goddard Space Flight Cen-
ter, a standard example of a measurement-centric high process maturity organization
(http://sel.gsfc.nasa.gov/).

6Unfortunately the Software Engineering Institute has used the term to mean adoption, the way Rogers
defined it as “regular usage.”

http://sel.gsfc.nasa.gov/

108 S. RIFKIN

6.4 Latency Because There Is Gap between Knowing and
Doing

Authors Pfeffer and Sutton, in The Knowing-Doing Gap[94], explore a phenom-
enon that many of us see every day: we fail to do what we know we should. Their
four-year in-depth study indicates that there are no simple answers, except, perhaps
that more information is not needed (for example, ask a cigarette smoker if he/she
needs more information in order to stop). They found eight guidelines for closing the
gap between knowing what to do and actually doing it.

Why before how: Philosophy is important. Organizations that try to
copy the processes of others often find those processes ineffective. The survey illus-
trates that processes are situated in organizations that have reasons for performing
those processes and the borrowing organization might not have the “why,” so the
“how” does not work.

Knowing comes from doing and teaching others how. To some
degree this is restatement of what Peters and Waterman [95] found long ago among
some of the most successful organizations: a bias towards action. In a theme re-
peated often, we cannot know how to implement unless we try it because it’s a messy
process. And we should not mistake talk for action, we should not accept that decid-
ing to implement is the same as implementing.

Action counts more than elegant plans and concepts. To some
degree this is restatement of the principle above and borrows from Peters and Wa-
terman’s famous observation of “ready, fire, aim.” There is such value in learning by
doing that plans and concepts are no substitute.

There is no doing without mistakes. What is the company’s re-
sponse? In the world of action mistakes are inevitable. Organizations that have
closed the knowing-doing gap treat mistakes as a natural part of doing and use the
mistakes as occasions for learning. Surgeons call this “forgive and remember” [94,
p. 132]!

Fear fosters knowing-doing gaps, so drive out fear. If we fear for
our jobs then we are less likely to take the chances that are inherent in performing
some new action, making the inevitable mistakes. We would fear that such mistakes
would count against us and we may form a basis for poor performance and then we
could lose our jobs.

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 109

Beware of false analogies: fight the competition, not each other.
In some organizations, particularly ones that are considered fiercely competitive, it is
difficult to achieve teamwork because the external competitive spirit “leaks” into in-
ternal behavior and undermines cooperation. Therefore, internal competition defeats
closing the knowing-doing gap.

Measure what matters and what can help turn knowledge into
action. Those organizations that have closed the knowing-doing gap use (a) a
few simple measures, and (b) have a clear implication of the impact of each person’s
performance on the goals of the organization. Some organizations use a balanced
scorecard, but cut the number of measures way down from the number usually sug-
gested for “completeness.”

What leaders do, how they spend their time and how they allo-
cate resources, matters. Time is a non-renewable resource. We all know
that, so if our leader spends his or her time acting on knowledge then we all see that
is valued and we begin to understand that is part of our job, too.

7. Path Dependence Theory

Path dependence is the observation that sometimes the trajectories of events lead-
ing to an innovation all pointed in the same direction. There was a path, more or less
inexorable, along which our adoption travels. How could we fail to adopt microwave
ovens and cellular phones? There were historical antecedents of what we thought is
novel.

Sometimes this temporal process that underlies the construction of phenomena is
called creative destruction [96]. If there is an inexorable path, then what about inno-
vators and entrepreneurs? Garud and Karnøe [97] come to the rescue by proposing a
relatively new construct, path creation. Stated most succinctly,

For entrepreneurs attempting to create paths, the world is constantly in the mak-
ing. Indeed, entrepreneurs creating new paths are more likely to embrace a logic
of mindful deviation. Such logic involves spanning boundaries between struc-
tures of relevance. On one hand, entrepreneurs are insiders possessing knowledge
of a technological field and an appreciation of what to deviate from and the value
of pursuing such a strategy. On the other hand, they are outsiders evaluating how
much they can deviate from existing relevance structures. And because many de-
viations are perceived as threatening, entrepreneurs have to buy time, with which
and within which to protect and nurture new ideas and create provinces of mean-
ing. From this perspective, ideas are carefully evaluated on an ongoing basis and
even those that are abandoned may play a role in shaping ideas that survive over

110 S. RIFKIN

time. Temporal elasticity is linked with intertemporal acumen. [97, p. 9, without
notes and references]

This description is akin to Leonard-Barton’s in Fig. 3, above. In this sense, we
implementers are the entrepreneurs about which Garud and Karnøe speak because
we are treading new ground as we try to weave technology and organization together.

8. Process Studies

Besides the process studies cited in Section 4, above, we add here a few of the
details of the process of adoption from Rogers’ explanation of diffusion [46]. He de-
fines “the innovation-decision process as the process through which an individual (or
other decision-making unit) passes from first knowledge of an innovation to forming
an attitude toward the innovation, to a decision to adopt or reject, to implementa-
tion and use of the new idea, and to confirmation of this decision” (p. 20). The five
main steps in time order, therefore, are (1) knowledge, (2) persuasion, (3) decision,
(4) implementation, and (5) confirmation. For Rogers, the transit is a communication
process, where individuals use communication channels to traverse the steps.

We can visualize the steps Rogers describes by thinking of a different kind of com-
munication, that of a disease, the type that is, well, communicable. The progression
of steps that Rogers describes is an epidemic, started in a particular locus and then
transmitted to an ever-increasing radius of individuals by positive contact [98]. In
this model, increased communication implies increased adoption. Increased speed of
communication implies increased speed of adoption.

9. Factor Studies

Factor studies seek to identify and isolate the variables that correlate with out-
comes. The usual criticism of factor studies most significant in our case is that fac-
tors represent some linear combination of influences, but offer little about the tim-
ing, interaction, and causal implications of the influences. Some studies cover a large
number of factors [99–101] and others focus on a single factor or cluster of them that
might be identified by a single term, such as “leadership.”

Perhaps the best study for our purposes is Lopata’s dissertation [102]. She exam-
ined a range of factors in four categories (see Fig. 10).

As the reader can see, Lopata attempts to predict what drives Leonard-Barton’s
model mutual adaptation between the organization and the technology [35]. Lopata’s
study is one of the very few that have any quantitative data, holding out the hope that
one day we may be able to predict the duration, effort, and resources required to
implement an information system.

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 111

FIG. 10. Factor model of the information system implementation process. Adapted from [102, p. 95].
Legend: Plain = not predicted by the literature, yet found in the Lopata study, that is, a new factor; italics
= predicted in the literature and not found in the study; underlined = predicted in the literature and found
in the study.

9.1 Characteristics of the Innovation

Lopata uses five of Rogers’ characteristics of innovations that predict adoption [46,
pp. 15–16]:

112 S. RIFKIN

1. Relative advantage is the degree to which an innovation is perceived to be better
than the idea or product or process it supersedes.

2. Compatibility is the degree to which an innovation is perceived to be con-
sistent with the existing culture and needs. See also Ramiller for a counter-
argument [103].

3. Complexity is the degree to which the innovation is difficult, or at least more
difficult than its competitors.

4. Trialability and divisibility are measures of the degree to which an innovation
may be taken apart and only a part tried. A thick, monolithic innovation has a
lower trialability than one that has separable components, each of which adds
some value.

5. Observability is the degree to which the results of the implementation will be
visible.

Tornatzky and Klein [104], studying 75 reports of innovation characteristics, aug-
ment the list with:

6. Cost, presumably negatively related to adoption.
7. Profitability, presumably positively correlated with adoption.
8. Social approval is the degree to which one’s status is improved by the inno-

vation. In light of the “cost” and “profit” categories, this one refers to a non-
financial reward.

Lopata found these factors to add:

9. Originality is the novelty of the innovation.
10. Transferability refers to the ability inherent in the innovation to transfer skill

and knowledge about it to others.
11. Generality of purpose is the degree to which an innovation fills a large space

of needs. Low generality would be a very specific innovation.

There is an important sense that in order to improve the chances of implementation,
one must design into the technology (that is, product, services, or process) charac-
teristics that make it possible to adopt a little at a time, factors such as trialability,
divisibility, observability, and transferability. These all imply the “chopping” up of
the technology so that it can be absorbed in small pieces, not as one whole, big chunk.
This may be the reason for the popularity of the 12 eXtreme programming practices
or the Rational Unified Process: one can select as much or as little as is needed in one
application. And this may be part of the problem with grand improvement schemes,
such as the SEI CMM or ISO 9000: they are a lot to swallow and you have to swallow
the whole thing to earn the certification.

Swanson creates a typology of information systems innovations and notes that the
pattern of adoption is different for different types of innovations [105].

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 113

9.2 Organizational Characteristics

The organization is the collective that is going to use the new product or process.
There are factors in the target organization that can accelerate or impede implemen-
tation. Lopata [102] cites the following factors among many others:

1. Networks refers to the existence of communication channels via which infor-
mation (buzz) about an innovation can travel.

2. Centralization is the degree to which decisions are made centrally, presumably
taking into account factors from a wide perspective.

3. Formalization is the degree to which decisions are formally decided, with a
written trail (see also [106]).

4. Task/problem variety is the degree to which the work that the innovation ad-
dresses is routine or varied.

5. Encouragement is the degree to which there is a climate of risk taking with
respect to innovation.

6. Local ownership is the degree to which implementation is managed locally,
independent of the decision to adopt (which would be centralization).

7. Resources is the degree to which the organization has the ability to adopt the
innovation.

In addition, organization structure has been studied [107], the impact of information
overload [108], task-technology fit, technology-strategy fit [109], product champi-
onship and top management support [110], and overall organizational context (a con-
tingency approach) [111–115].

9.3 Environmental Factors

There are factors that surround the organization, adopters, and the innovation.
They are large-scale forces that can impact the environment in which innovations
are being created, introduced, and implemented.

1. Market demands is the degree to which this innovation is required by the mar-
ket, reflects an imitation of a competitor organization, or is ahead of the market.

2. Uncertainty is the degree to which market conditions are unforeseen or unfore-
seeable.

3. Inter-organizational dependence is the degree to which an innovation will have
a ripple effect among related organizations.

Slightly different lists can be found in other studies [116–119]. Also, there have been
studies that focus on the relative strength of the pull of market needs vs. the push of
technological advantages [120–122].

114 S. RIFKIN

9.4 Adopter Characteristics
Rogers [46] lists the five categories that are in Figs. 8 and 9. He calls first adopters

or innovators venturesome, early adopters respectful, the early majority deliberate,
the late majority skeptical, and the laggards traditional. Moore [61] calls the first
adopters deviant, early adopters visionaries, early majority needing a business case,
late majority want the innovation shrink-wrapped, and laggards are, well, never going
to adopt.

Lopata adds [102, p. 95]:

6. Span and scope, which refers to the reach of communications by an individual.
This is sometimes called sphere of influence.

7. Cosmopolitanism, which implies that people who are more worldly adopt more
easily.

8. Readiness is the degree to which an individual has the resources to attend to an
innovation.

9. Specialization is the degree to which special knowledge is needed to imple-
ment the innovation or the benefits of the innovation. See also Fichman and
Kemerer [58] and Marshall et al. [123].

Other authors offer additions, in particular voluntariness, management support, ex-
pectation realism, and the participation in the adoption decision by the targets [124],
demographics [125], adoption beliefs [126], implementation history [127], character-
istics of the external information sources and communication channel effectiveness
[41,128], and job experience and persuasion strategy [129].

9.5 Leadership
Perhaps one of the most-cited characteristics of successful implementation efforts

is executive sponsorship, that is, how people at the top of organizations express their
leadership. Perhaps the most articulate and detailed advocate for the leadership effect
on implementation is Rosabeth Moss Kanter [75,130–158].

Moss Kanter, through extensive and intensive case studies, has found a number
of philosophies and behaviors that if leaders adopt them then there in markedly in-
creased probability of implementation success. Her work straddles leadership, in-
novation, managing change, and implementation. Her mantra is “The imagination to
innovate, the professionalism to perform, and the openness to collaborate, this is how
to lead the change-adept organization” [155]. She is sanguine about providing The
Answer [158]: “I also learned there are no easy answers. Indeed, I conceive of the
task of ‘managing change’—a task we perform in our personal lives as well as our
business lives—as a series of perennial balancing acts. We must juggle contradic-
tions, we must make tradeoffs between contrasting goals, and we must steer a course

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 115

that does not go too far in any one direction lest events require an about-face. We are
perched on a pendulum that is swinging back and forth faster and faster” [158, p. 13].

9.6 User Acceptance

A number of studies address the distinction among the factors of usage, perceived
ease of use, and perceived usefulness [77,159]. Others have addressed user involve-
ment in the systems development process, which, in our context would be akin to
software engineers being involved in the design and development of their own man-
agement and engineering practices [160,161].

10. Case Studies

Case studies are perspectives or retrospectives that depend upon the observer’s
direct experience. While all case studies try to offer information that can be used
generally, it is usually unclear how to generalize these personal observations.

10.1 Diffusion
As diffusion is a simple, easily-understood, and often-cited framework for adop-

tion, there are many case studies that bear on software engineering processes
[162–164]. See Zelkowitz for a particularly careful case study [27].

10.2 Other Case Studies

Swanson is a collection of case studies [165]. In addition there is a survey of soft-
ware developers’ perception of the value of software process improvement [166],
expert systems adoption that does not appear to use an theoretical basis for data
collection [167], evolution of CASE adoption in Finland [168], CASE adoption in
Taiwan [169], the difference between user and non-users of CASE [170], the use
of innovation characteristics to predict failure [171], phased adoption applied to
reuse [172], and adoption patterns and attitudes about computer-supported meet-
ings [173].

11. Conclusion

One observation is inescapable: we don’t have models of adoption that we can
use quantitatively to estimate the duration of adoption, the cost of adoption, or the
impact of various accelerators and barriers on the rates and degree of penetration.
Two studies give us hope:

116 S. RIFKIN

• Lopata’s in which she counted the number of meetings, hours, durations, docu-
ments, and other artifacts of adoption [102].

• Byrd and Marshall’s model of the determinants of how information technology
impacts organizational performance [174], which is what we seek for adoption.
See also Cale and Curley [175].

A common theme is that there is not one single answer to why software engineering
processes, or any other processes, are not implemented. Instead, implementation can
be a messy, social process among humans and not have much in common with the
expected practice of engineering. To illustrate this and give us hope that we can
marshal the actions of implementation we might look at what Rosabeth Moss Kanter
found as she chronicled the implementation of innovations in many organizations
[75, pp. 284 ff]:

• Individuals disappear into collectives.

• Early events and people disappear into the background as later events and peo-
ple come forward.

• Conflicts disappear into consensuses.

• Equally plausible alternatives disappear into obvious choices.

• Accidents, uncertainties, and muddle-headed confusions disappear into clear-
sighted strategies.

• Multiple events disappear into single thematic events.

• The fragility of changes (that exist alongside the residues of the old system)
disappear into images of solidarity and full actuality.

ACKNOWLEDGEMENTS

This chapter has benefited from improvements suggested by Ray Fleming, Robert
Glass, Watts Humphrey, Philip Johnson, Steve Ornburn, Mark Paulk, Shari Lawrence
Pfleeger, and John Tittle. I am especially grateful to the Series Editor, Marvin
Zelkowitz, for letting me express some thoughts that had been brewing for a long
time.

REFERENCES

[1] Risen J., Johnston D., “Not much has changed in a system that failed: The F.B.I. and
C.I.A. missed signals a year ago. Now they do well in capital turf wars”, New York
Times(September 8, 2002), Section 4, p. 1.

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 117

[2] Gaw J.L., ‘A Time to Heal’: The Diffusion of Listerism in Victorian Britain, American
Philosophical Society, Philadelphia, PA, 1999.

[3] Senge P., et al., The Dance of Change: The Challenges of Sustaining Momentum in
Learning Organizations, Currency Doubleday, New York, NY, 1999.

[4] Fenton N., Pfleeger S.L., Glass R.L., “Science and substance: A challenge to software
engineers”, IEEE Software11 (4) (1994) 86–95.

[5] Williams L., Kessler R.R., Cunningham W., Jeffries R., “Strengthening the case for pair
programming”, IEEE Software17 (4) (2000) 19–25.

[6] Cohen M.D., March J.G., Olsen J., “A garbage can model of organizational choice”,
Administrative Science Quarterly17 (1) (1972) 1–25.

[7] Repenning N.P., “A simulation-based approach to understanding the dynamics of inno-
vation implementation”, Organization Science13 (2) (2002) 109–127.

[8] Senge P.M., The Fifth Discipline: The Art & Practice of the Learning Organization,
Currency Doubleday, New York, NY, 1990.

[9] Richardson G.P., Feedback Thought in Social Science and Systems Theory, University
of Pennsylvania Press, Philadelphia, PA, 1991.

[10] Markus M.L., “Power, politics, and MIS implementation”, Communications of the
ACM 26 (8) (1983) 430–444.

[11] Fitzgerald B., “Formalized systems development methodologies: A critical perspec-
tive”, Information Systems Journal6 (1) (1996) 3–23.

[12] Roth G., Kleiner A., Car Launch: The Human Side of Managing Change, Oxford Uni-
versity Press, New York, NY, 2000.

[13] Bostrom R.P., Heinen J.S., “MIS problems and failures: A socio-technical perspective,
part I: The causes”, MIS Quarterly1 (3) (1977) 17–32.

[14] Harris M., “Organizational politics, strategic change and the evaluation of CAD”, Jour-
nal of Information Technology11 (1) (1996) 51–58.

[15] Ryan T.F., Bock D.B., “A socio-technical systems viewpoint to CASE tool adoption”,
Journal of Systems Management43 (11) (1992) 25–29.

[16] Burrell G., Morgan G., Sociological Paradigms and Organizational Analysis, Heine-
mann, Portsmouth, NH, 1979.

[17] McMaster T., Vidgen R.T., Wastell D.G., “Technology transfer: diffusion or transla-
tion?”, in: McMaster T., Mumford E., Swanson E.B., Warboys B., Wastell D. (Eds.),
Facilitating Technology Transfer Through Partnership: Learning from Practice and Re-
search, Proceedings of the IFIP TC8 WG8.6 International Working Conference on Dif-
fusion Adoption and Implementation of Information Technology, Ambleside, Cumbria,
UK, Chapman & Hall, London, 1997, pp. 64–75.

[18] Meyerson D., Martin J., “Cultural change: An integration of three different views”,
Journal of Management Studies24 (6) (1987) 623–647.

[19] Silva J., Backhouse J., “Becoming part of the furniture: The institutionalization of in-
formation systems”, in: Lee A.S., Liebenau J., DeGross J.I. (Eds.), Information Systems
and Qualitative Research, Proceedings of the IFIP TC8 WG 8.2 International Confer-
ence on Information Systems and Qualitative Research, May 31–June 3, Philadelphia,
PA, USA, 1997, Chapman & Hall, London, 1997, pp. 389–414, Chapter 20.

118 S. RIFKIN

[20] Orlikowski W.J., Baroudi J.J., “Studying information technology in organizations: Re-
search approaches and assumptions”, Information Systems Research2 (1) (1991) 1–28.

[21] Kaplan A., The Conduct of Inquiry: Methodology for Behavioral Science, Chandler
Pub. Co., San Francisco, 1964.

[22] Weick K., The Social Psychology of Organizing, 2nd ed., Wiley, New York, 1979.
[23] Markus M.L., Robey D., “Information technology and organizational change: Causal

structure in theory and research”, Management Science34 (5) (1988) 583–598.
[24] Butler B., Gibbons D., “Power distribution as a catalyst and consequence of decentral-

ized diffusion”, in: Larsen T.J., McGuire E. (Eds.), Information Systems Innovation and
Diffusion: Issues and Directions, Idea, Hershey, PA, 1998, pp. 3–28.

[25] Lucas Jr. H.C., Ginsberg M.J., Schultz R.L., Information Systems Implementation: Test-
ing a Structural Model, Ablex, Norwood, NJ, 1990.

[26] Kwon T.H., Zmud R.W., “Unifying the fragmented models of information systems im-
plementation”, in: Boland Jr. R.J., Hirschheim R.A. (Eds.), Critical Issues in Informa-
tion Systems Research, John Wiley, Chichester, England, 1987, pp. 227–251.

[27] Zelkowitz M.V., “Software engineering technology infusion within NASA”, IEEE
Transactions on Engineering Management43 (3) (1996) 250–261.

[28] Redwine Jr. S.T., Becker L.G., Marmor-Squires A.B., Martin R.J., Nash S.H., Riddle
W.E., DoD Related Software Technology Requirements, Practices and Prospects for the
Future, Institute for Defense Analysis, Alexandria, VA, 1984 (P-1788).

[29] Maier F.H., “New product diffusion models in innovation management—a system dy-
namics perspective”, System Dynamics Review14 (4) (1998) 285–308.

[30] Schumpeter J.A., Business Cycles: A Theoretical, Historical and Statistical Analysis of
the Capitalist Process, McGraw-Hill, New York, NY, 1939.

[31] McFeeley B., IDEAL: A User’s Guide for Software Process Improvement, Software
Engineering Institute, Pittsburgh, PA, 1996 (CMU/SEI-96-HB-001).

[32] Caputo K., CMM Implementation Guide: Choreographing Software Process Improve-
ment, Addison-Wesley, Reading, MA, 1998.

[33] Conner D., Managing at the Speed of Change: How Resilient Managers Succeed and
Prosper Where Others Fail, Villard Books, New York, NY, 1993.

[34] Grady R.B., Van Slack T., “Key lessons in achieving widespread inspection use”, IEEE
Software11 (1994) 46–57.

[35] Leonard-Barton D., “Implementation as mutual adaptation of technology and organi-
zation”, Research Policy17 (5) (1988) 251–267.

[36] Miller W.R., Rollnick S., Motivational Interviewing: Preparing People to Change Ad-
dictive Behavior, Guilford Press, New York, NY, 1991.

[37] Tyre M.J., Orlikowski W.J., “The myth of continuous improvement”, Chemtech24
(1994) 12–19.

[38] Orlikowski W.J., “CASE tools as organizational change: Investigating incremental and
radical changes in systems development”, MIS Quarterly17 (3) (1993) 309–340.

[39] Lassila K.S., Brancheau J.C., “Adoption and utilization of commercial software pack-
ages: Exploring utilization equilibria, transitions, triggers, and tracks”, Journal of Man-
agement Information Systems16 (2) (1999) 63–90.

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 119

[40] Fowler P., Rifkin S., Software Engineering Process Group Guide, Software Engineering
Institute, Pittsburgh, PA, 1990 (CMU/SEI-90-TR-24).

[41] Rai A., “External information source and channel effectiveness and the diffusion
of CASE innovations: An empirical study”, European Journal of Information Sys-
tems4 (2) (1995) 93–102.

[42] Zmud R.W., “An examination of “push-pull” theory applied to process innovation in
knowledge work”, Management Science30 (6) (1984) 727–738.

[43] Spilka R., “Communicating across organizational boundaries: A challenge for work-
place professionals”, Technical Communication42 (3) (1995) 436.

[44] Huff S.L., Munro M.C., “Information technology assessment and adoption: A field
study”, MIS Quarterly(1985) 327–339.

[45] McMaster T., “The illusion of diffusion in information systems research”, in: Ardis
M.A., Marcolin B.L. (Eds.), Diffusing Software Product and Process Innovations, Pro-
ceedings of the IFIP TC8 WG8.6 Fourth Working Conference on Diffusing Software
Product and Process Innovations, Banff, Canada, Kluwer Academic Press, Boston,
2001, pp. 67–86.

[46] Rogers E.M., Diffusion of Innovations, 4th ed., The Free Press, New York, NY, 1995.
[47] Larsen T., “The phenomenon of diffusion: Red herrings and future promises”, in: Ardis

M.A., Marcolin B.L. (Eds.), Diffusing Software Product and Process Innovations, Pro-
ceedings of the IFIP TC8 WG8.6 Fourth Working Conference on Diffusing Software
Product and Process Innovations, Banff, Canada, Kluwer Academic Press, Boston,
2001, pp. 35–50.

[48] Geroski P.A., “Models of technology diffusion”, Research Policy29 (2000) 603–625.
[49] Mahajan V., Muller E., Bass F.M., “New product diffusion models in marketing: A re-

view and directions for research”, Journal of Marketing54 (1990) 1–26.
[50] Jaakkola H., “Comparison and analysis of diffusion models”, in: Kautz K., Pries-Heje J.

(Eds.), Diffusion and Adoption of Information Technology, Proceedings of the First
IFIP WG 8.6 Working Conference on the Diffusion and Adoption of Information Tech-
nology, Oslo, Norway, Chapman & Hall, London, 1996, pp. 65–82.

[51] Mahajan V., Peterson R.A., Models for Innovation Diffusion, Sage, Beverly Hills, CA,
1985.

[52] Mahajan V., Muller E., Wind Y. (Eds.), New-Product Diffusion Models, Kluwer Acad-
emic, Boston, 2000.

[53] Larsen T.J., McGuire E. (Eds.), Information Systems Innovation and Diffusion: Issues
and Directions, Idea, Hershey, PA, 1998.

[54] Levine L., in: Diffusion, Transfer and Implementation of Information Technology, Pro-
ceedings of the IFIP TC8 Working Conference, Pittsburgh, PA, North-Holland, Ams-
terdam, 1994.

[55] Kautz K., Pries-Heje J., in: Diffusion and Adoption of Information Technology, Pro-
ceedings of the First IFIP WG 8.6 Working Conference on the Diffusion and Adoption
of Information Technology, Oslo, Norway, Chapman & Hall, London, 1996.

[56] McMaster T., Mumford E., Swanson E.B., Warboys B., Wastell D., in: Facilitating
Technology Transfer through Partnership: Learning from Practice and Research, Pro-

120 S. RIFKIN

ceedings of the IFIP TC8 WG8.6 International Working Conference on Diffusion, Adop-
tion and Implementation of Information Technology, Ambleside, Cumbria, UK, Chap-
man & Hall, London, 1997.

[57] Ardis M.A., Marcolin B.L., in: Diffusing Software Product and Process Innovations,
Proceedings of the IFIP TC8 WG8.6 Fourth Working Conference on Diffusing Software
Product and Process Innovations, Banff, Canada, Kluwer Academic Press, Boston,
2001.

[58] Fichman R.G., Kemerer C.F., “The assimilation of software process innovations: An
organizational learning perspective”, Management Science43 (10) (1997) 1345–1363.

[59] Fichman R.G., Kemerer C.F., “The illusory diffusion of innovation: An examination of
assimilation gaps”, Information Systems Research10 (3) (1999) 255–275.

[60] Bayer J., Melone N., “A critique of diffusion theory as a managerial framework for
understanding adoption of software engineering innovations”, Journal of Systems &
Software9 (2) (1989) 161–166.

[61] Moore G.A., Crossing the Chasm: Marketing and Selling Technology Products to
Mainstream Customers, HarperBusiness, New York, NY, 1991.

[62] Tornatzky L.G., Fleischer M., The Processes of Technological Innovation, Lexington
Books, Lexington, MA, 1990.

[63] Lyytinen K., Damsgaard J., “What’s wrong with the diffusion of innovation theory?
A case of complex and networked technology”, in: Ardis M.A., Marcolin B.L. (Eds.),
Diffusing Software Product and Process Innovations, Proceedings of the IFIP TC8
WG8.6 Fourth Working Conference on Diffusing Software Product and Process Inno-
vations, Banff, Canada, Kluwer Academic Press, Boston, 2001, pp. 173–189.

[64] Attewell P., “Technology diffusion and organizational learning: The case of business
computing”, Organization Science3 (1) (1992) 1–19.

[65] Lange R., McDade S., Oliva T.A., “Technological choice and network externalities:
A catastrophe model analysis of firm software adoption for competing operating sys-
tems”, Structural Change & Economic Dynamics12 (1) (2001) 29–57.

[66] Granstrand O., “Temporal diffusion and population dynamics: A systems model”, in:
Nakićenović N., Grübler A. (Eds.), Diffusion of Technologies and Social Behavior,
Springer-Verlag, Berlin, 1991, pp. 247–263.

[67] Glaziev S.Yu., Kaniosvki Y.M., “Diffusion of innovations under conditions of uncer-
tainty: A stochastic approach”, in: Nakićenović N., Grübler A. (Eds.), Diffusion of Tech-
nologies and Social Behavior, Springer-Verlag, Berlin, 1991, pp. 231–246.

[68] Lyytinen K., “Penetration of information technology in organizations: A comparative
study using stage models and transaction costs”, Scandinavian Journal of Information
Systems3 (1991).

[69] Swanson E.B., Ramiller N.C., “The organizing vision in information systems innova-
tion”, Organization Science8 (5) (1997) 458–474.

[70] Chaddha R.L., Chitgopekar S.S., “A “generalization” of the logistic curves and long-
range forecasts (1966–1991) of residence telephones”, Bell Journal of Economics2 (2)
(1971) 542–560.

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 121

[71] Linstone H.A., “Multiple perspectives on technological diffusion: Insights and
lessons”, in: Nakićenović N., Grübler A. (Eds.), Diffusion of Technologies and Social
Behavior, Springer-Verlag, Berlin, 1991, pp. 53–92.

[72] Checkland P., Scholes J., Soft Systems Methodology in Action, John Wiley & Sons,
West Sussex, England, 1999.

[73] Checkland P., Systems Thinking, Systems Practice: Includes a 30-Year Retrospective,
John Wiley & Sons, West Sussex, England, 1999.

[74] Bijker W.E., Hughes T.P., Pinch T.J. (Eds.), The Social Construction of Technologi-
cal Systems: New Directions in the Sociology and History of Technology, MIT Press,
Cambridge, MA, 1987.

[75] Kanter R.M., The Change Masters: Innovation & Entrepreneurship in the American
Corporation, Simon & Schuster, New York, NY, 1983.

[76] Easterbrook S. (Ed.), CSCW: Cooperation or Conflict?Springer-Verlag, London, 1992.
[77] Rifkin S., “What makes measuring software so hard?” IEEE Software10 (3) (2001)

41–45.
[78] Rifkin S., “Why software process innovations are not adopted”, IEEE Software10 (4)

(2001) 110–112.
[79] Bayer J., Melone N., Adoption of Software Engineering Innovations in Organizations,

Software Engineering Institute, Pittsburgh, PA, 1988 (CMU/SEI-88-TR-27).
[80] Jermier J.M., Knight D., Nord W.R., “Resistance and power in organizations: Agency,

subjectivity and the labour process”, in: Jermier J.M., Knight D., Nord W.R. (Eds.),
Resistance and Power in Organizations, Routledge, London, 1994.

[81] Lawrence P., Lorsch J., Organization and Environment: Managing Differentiation and
Integration, Irwin, Homewood, IL, 1967.

[82] Tushman M.L., Anderson P., “Technological discontinuities and organizational envi-
ronments”, Administrative Science Quarterly31 (1986) 439–465.

[83] Tushman M.L., Rosenkopf L., “Organizational determinants of technological change:
Toward a sociology of technological evolution”, Organizational Behavior14 (1992)
311–347.

[84] Hardgrave B.C., “Adopting object-oriented technology: Evolution or revolution?” Jour-
nal of Systems & Software37 (1) (1997) 19–25.

[85] Bartlem C.S., Locke E.A., “The Coch and French study: A critique and reinterpreta-
tion”, Human Relations34 (7) (1981) 555–566.

[86] Coch L., French J.R.P., “Overcoming resistance to change”, Human Relations1 (4)
(1948) 512–532.

[87] Dent E.B., Goldberg S.G., “Challenging “resistance to change” ”, Journal of Applied
Behavioral Science35 (1) (1999) 25–41.

[88] Diamond M.A., “Resistance to change: A psychoanalytic critique of Argyris and
Schon’s contributions to organization theory and intervention”, Journal of Management
Studies23 (5) (1986) 543–562.

[89] Hirschheim R., Newman M., “Information systems and user resistance: Theory and
practice”, Computer Journal31 (5) (1988) 398–408.

[90] Krantz J., “Comment on “Challenging ‘resistance to change’ ” ”, Journal of Applied
Behavioral Science35 (1) (1999) 42–44.

122 S. RIFKIN

[91] Merron K., “Let’s bury the term “resistance” ”, Organization Development Jour-
nal 11 (4) (1993) 77–86.

[92] Levine L., “An ecology of resistance”, in: McMaster T., Mumford E., Swanson E.B.,
Warboys B., Wastell D. (Eds.), Facilitating Technology Transfer through Partnership:
Learning from Practice and Research, Proceedings of the IFIP TC8 WG8.6 Interna-
tional Working Conference on Diffusion, Adoption and Implementation of Information
Technology, Ambleside, Cumbria, UK, Chapman & Hall, London, 1997, pp. 163–174.

[93] DiMaggio P.J., Powell W.W., “The Iron Cage revisited: Institutional isomorphism and
collective rationality in organizational fields”, American Sociological Review48 (2)
(1983) 147–160.

[94] Pfeffer J., Sutton R.I., The Knowing-Doing Gap: How Smart Companies Turn Knowl-
edge into Action, Harvard Business School Press, Boston, MA, 2000.

[95] Peters T., Waterman Jr. R.H., In Search of Excellence: Lessons from America’s Best-
Run Companies, Harper & Row, New York, NY, 1982.

[96] Schumpeter J.A., Capitalism, Socialism, and Democracy, Harper & Row, New York,
NY, 1942.

[97] Garud R., Karnøe P., “Path creation as a process of mindful deviation”, in: Garud R.,
Karnøe P. (Eds.), Path Dependence and Creation, Lawrence Erlbaum Associates, Mah-
wah, NJ, 2001, pp. 1–38.

[98] Ahire S.L., Ravichandran T., “An innovation diffusion model of TQM implementation”,
IEEE Transactions on Engineering Management48 (4) (2001) 445–464.

[99] Roberts Jr. T.L., Gibson M.L., Fields K.T., Rainer Jr. R.K., “Factors that impact imple-
menting a system development methodology”, IEEE Transactions on Software Engi-
neering24 (8) (1998) 640–649.

[100] Yadav S.B., Shaw N.G., Webb L., Sutcu C., “Comments on ‘Factors that impact imple-
menting a system development methodology’ ”, IEEE Transactions on Software Engi-
neering27 (3) (2001) 279–281.

[101] Roberts T.L., Gibson M.L., Rainer R.K., Fields K.T., “Response to ‘Comments on fac-
tors that impact the implementation of a systems development methodology’ ”, IEEE
Transactions on Software Engineering27 (3) (2001) 282–286.

[102] Lopata C.L., The Cooperative Implementation of Information Technology: A Process of
Mutual Adaptation, Drexel University, Philadelphia, PA, 1993. Unpublished doctoral
dissertation.

[103] Ramiller N.C., “Perceived compatibility of information technology innovations among
secondary adopters: Toward a reassessment”, Journal of Engineering & Technology
Management,11 (1) (1994) 1–23.

[104] Tornatzky L.G., Klein K.J., “Innovation characteristics and innovation-implementation:
A meta-analysis of findings”, IEEE Transactions on Engineering ManagementEM-
29 (1) (1982) 28–45.

[105] Swanson E.B., “Information systems innovation among organizations”, Management
Science40 (9) (1994) 1069–1092.

[106] Zmud R.W., “Diffusion of modern software practices: Influence of centralization and
formalization”, Management Science28 (12) (1982) 1421–1431.

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 123

[107] DeCanio S.J., Dibble C., Amir-Atefi K., “The importance of organizational structure
for the adoption of innovations”, Management Science46 (10) (2000) 1285–1299.

[108] Edmunds A., Morris A., “The problem of information overload in business organi-
sations: A review of the literature”, International Journal of Information Manage-
ment20 (1) (2000) 17–28.

[109] Fan M., Stallaert J., Whinston A.B., “The adoption and design methodologies of
component-based enterprise systems”, European Journal of Information Systems9 (1)
(2000) 25–35.

[110] Premkumar G., Potter M., “Adoption of computer aided software engineering (CASE)
technology: An innovation adoption perspective”, Data Base for Advances in Informa-
tion Systems26 (2–3) (1995) 105–123.

[111] Rai A., Howard G.S., “Propagating CASE usage for software development: An em-
pirical investigation of key organizational correlates”, Omega (Oxford)22 (2) (1994)
133–147.

[112] Rai A., Howard G.S., “An organizational context for CASE innovation”, Information
Resources Management Journal6 (3) (1993) 21–34.

[113] Ravichandran T., “Swiftness and intensity of administrative innovation adoption: An
empirical study of TQM in information systems”, Decision Sciences31 (3) (2000) 691–
724.

[114] Ravichandran T., Rai A., “Quality management in systems development: An organiza-
tional system perspective”, MIS Quarterly24 (3) (2000) 381–386, 405–410.

[115] Wolfe R.A., “Organizational innovation: Review, critique and suggested research di-
rections”, Journal of Management Studies31 (3) (1994) 405–431.

[116] Chau P.Y.K., Tam K.Y., “Factors affecting the adoption of open systems: An ex-
ploratory study”, MIS Quarterly,21 (1) (1997) 1–20.

[117] Chiasson M.W., Lovato C.Y., “Factors influencing the formation of a user’s percep-
tions and use of a DSS software innovation”, Data Base for Advances in Information
Systems32 (3) (2001) 16–35.

[118] Cooper R.B., Zmud R.W., “Information technology implementation research: A tech-
nological diffusion approach”, Management Science36 (2) (1990) 123–139.

[119] Fichman R.G., Kemerer C.F., “Adoption of software engineering process innovations:
The case of object orientation”, Sloan Management Review34 (2) (1993) 7–22.

[120] Fowler P., Levine L., Technology Transition Push: A Case Study of Rate Monotonic
Analysis (Part 1), Software Engineering Institute, Pittsburgh, PA, 1993 (CMU/SEI-93-
TR-29).

[121] Fowler P., Levine L., Technology Transition Pull: A Case Study of Rate Monotonic
Analysis (Part 2), Software Engineering Institute, Pittsburgh, PA, 1995 (CMU/SEI-93-
TR-030. Note that the date from the edition ID is 1993).

[122] Rai A., Patnayakuni R., “A structural model for CASE adoption behavior”, Journal of
Management Information Systems13 (2) (1996) 205–234.

[123] Marshall T.E., Byrd T.A., Gardiner L.R., Rainer Jr. R.K., “Technology acceptance and
performance: An investigation into requisite knowledge”, Information Resources Man-
agement Journal13 (3) (2000) 33–45.

124 S. RIFKIN

[124] Iivari J., “Why are CASE tools not used?” Communications of the ACM39 (10) (1996)
94–103.

[125] Iivari J., “Factors affecting perceptions of CASE effectiveness”, European Journal of
Information Systems4 (3) (1995) 143–158.

[126] Karahanna E., Straub D.W., Chervany N.L., “Information technology adoption across
time: A cross-sectional comparison of pre-adoption and post-adoption beliefs”, MIS
Quarterly23 (2) (1999) 183–213.

[127] Myers W., “Why software developers refuse to improve”, IEEE Computer(1998) 110–
112.

[128] Zmud R.W., “The effectiveness of external information channels in facilitating innova-
tion within software development groups”, MIS Quarterly16 (1983) 43–58.

[129] Sagie A., Elizur D., Greenbaum C.W., “Job experience, persuasion strategy and resis-
tance to change: An experimental study”, Journal of Occupational Behaviour6 (2)
(1985) 157–162.

[130] Kanter R.M., Corn R.I., “Do cultural differences make a business difference? Con-
textual factors affecting cross-cultural relationship success”, Journal of Management
Development13 (2) (1994) 5–23.

[131] Kanter R.M., “Swimming in newstreams: Mastering innovation dilemmas”, California
Management Review31 (4) (1989) 45–69.

[132] Kanter R.M., North J., Richardson L., Ingols C., Zolner J., “Engines of progress: de-
signing and running entrepreneurial vehicles in established companies: Raytheon’s new
product center, 1969–1989”, Journal of Business Venturing6 (2) (1991) 145–163.

[133] Kanter R.M., Fonvielle W.H., “When to persist and when to give up”, Management
Review76 (1) (1987) 14–15.

[134] Kanter R.M., “Change masters vs. change stiflers”, Executive Excellence5 (3) (1988)
12–13.

[135] Kanter R.M., North J., Bernstein A.P., Williamson A., “Engines of progress: Designing
and running entrepreneurial vehicles in established companies”, Journal of Business
Venturing5 (6) (1990) 415–427.

[136] Kanter R.M., “Managing traumatic change: Avoiding the ‘unlucky 13’ ”, Management
Review76 (5) (1987) 23–24.

[137] Kanter R.M., “Championing change: An interview with Bell Atlantic’s CEO Raymond
Smith”, Harvard Business Review69 (1) (1991) 118–130.

[138] Kanter R.M., “Thinking across boundaries”, Harvard Business Review68 (6) (1990) 9.
[139] Kanter R.M., “Change masters: Playing a new game”, Executive Excellence5 (1)

(1988) 8–9.
[140] Kanter R.M., “Transcending business boundaries: 12,000 world managers view

change”, Harvard Business Review69 (3) (1991) 151–164.
[141] Kanter R.M., Richardson L., “Engines of progress: Designing and running entrepre-

neurial vehicles in established companies—the Enter-Prize Program at Ohio Bell,
1985–1990”, Journal of Business Venturing6 (3) (1991) 209–229.

[142] Kanter R.M., Richardson L., North J., Morgan E., “Engines of progress: Designing and
running entrepreneurial vehicles in established companies; the new venture process at
Eastman Kodak, 1983–1989”, Journal of Business Venturing6 (1) (1991) 63–82.

WHY NEW SOFTWARE PROCESSES ARE NOT ADOPTED 125

[143] Kanter R.M., Parkes C., “In search of a single culture”, Business (London)(1991) 58–
66.

[144] Kanter R.M., “Change: Where to begin”, Harvard Business Review69 (4) (1991) 8.
[145] Kanter R.M., “Discipline!” Harvard Business Review70 (1) (1992) 7.
[146] Kanter R.M., “Six certainties for CEOs”, Harvard Business Review70 (2) (1992) 7.
[147] Kanter R.M., “Ourselves versus ourselves”, Harvard Business Review70 (3) (1992) 8.
[148] Stein B.A., Kanter R.M., “Leadership for change: The rest of the story”, Frontiers of

Health Services Management10 (2) (1993) 28.
[149] Kanter R.M., Stein B.A., “New models, but where’s the process?—Transforming Or-

ganizations edited by Thomas A. Kochan and Michael Useem”, Contemporary Sociol-
ogy21 (6) (1992) 758.

[150] Kanter R.M., “Mastering change”, Executive Excellence10 (4) (1993) 11.
[151] Stein B.A., Kanter R.M., “Why good people do bad things: A retrospective on the

Hubble fiasco”, The Academy of Management Executive7 (4) (1993) 58.
[152] Kanter R.M., “Can giants dance in cyberspace?” Forbes (ASAP)(1996) 247–248.
[153] Kanter R.M., “From spare change to real change”, Harvard Business Review77 (3)

(1999) 122–132.
[154] Kanter R.M., “The enduring skills of change leaders”, Ivey Business Journal64 (5)

(2000) 31–36.
[155] Kanter R.M., Frontiers of Management, Harvard Business School, Boston, MA, 1997.
[156] Kanter R.M., Stein B.A., Jick T.D. (Eds.), The Challenge of Organizational Change:

How Companies Experience it and Leaders Guide It, Free Press, New York, NY, 1992.
[157] Kanter R.M., Improving the Acceptance and Use of New Technology: Organizational

and Inter-Organizational Challenges, Division of Research, Harvard Business School,
1989 (Working Paper 90–043).

[158] Kanter R.M., When Giants Learn to Dance, Simon & Schuster, New York, NY, 1989.
[159] Venkatesh V., Smith R.H., Morris M.G., “Why don’t men ever stop to ask for direc-

tions? Gender, social influence, and their role in technology acceptance and usage be-
havior”, MIS Quarterly24 (2) (2000) 115–118, 131–136.

[160] Ives B., Olson M.H., “User involvement and MIS success: A review of research”, Man-
agement Science30 (5) (1984) 586–603.

[161] Tait P., Vessey I., “The effect of use involvement on system success: A contingency
approach”, MIS Quarterly(1988) 91–108.

[162] Buxton J.N., Malcolm R., “Software technology transfer”, Software Engineering Jour-
nal 6 (1) (1991) 17–23.

[163] Jurison J., “Perceived value and technology adoption across four end user groups”,
Journal of End User Computing12 (4) (2000) 21–28.

[164] Williams L.R., Rao K., “Information technology adoption: Using classical adoption
models to predict AEI software implementations”, Journal of Business Logistics18 (2)
(1997) 43–54.

[165] Swanson E.B., Information System Implementation: Bridging the Gap Between Design
and Utilization, Irwin, Homewood, IL, 1988.

[166] Kuilboer J.P., Ashrafi N., “Software process improvement deployment: An empirical
perspective”, Journal of Information Technology Management10 (3–4) (1999) 35–47.

126 S. RIFKIN

[167] Kunnathur A.S., Ahmed M.U., Charles R.J.S., “Expert systems adoption: An analytical
study of managerial issues and concerns”, Information Management30 (1) (1996) 15–
25.

[168] Maansaari J., Iivari J., “The evolution of CASE usage in Finland between 1993 and
1996”, Information & Management36 (1) (1999) 37–53.

[169] Yang H.-L., “Adoption and implementation of CASE tools in Taiwan”, Information &
Management35 (2) (1999) 89–112.

[170] Nelson A.C., Rottman J., “Before and after CASE adoption”, Information & Manage-
ment31 (1996) 193–202.

[171] Shim S.J., “Characteristics and adoption of generic financial expert systems: A case
study of failure”, Journal of Information Technology Management9 (3) (1998) 43–51.

[172] Wartik S., Davis T., “A phased reuse adoption model”, Journal of Systems & Soft-
ware46 (1) (1999) 13–23.

[173] Zigurs I., DeSanctis G., Billingsley J., “Adoption patterns and attitudinal development
in computer-supported meetings: An exploratory study with SAMM”, Journal of Man-
agement Information Systems7 (4) (1991) 51–70.

[174] Byrd T.A., Marshall T.E., “Relating information technology investment to organiza-
tional performance: A causal model analysis”, Omega, International Journal of Man-
agement Science25 (1) (1997) 43–56.

[175] Cale E.G., Curely K.F., “Measuring implementation outcome: Beyond success and fail-
ure”, Information & Management13 (5) (1987) 245–253.

Impact Analysis in Software Evolution

MIKAEL LINDVALL

Fraunhofer Center for Experimental Software Engineering
Maryland, 4321 Hartwick Rd., Suite 500
College Park, MD 20742-3290
USA
mlindvall@fc-md.umd.edu

Abstract
Project planning relies on accurate estimates of the work at hand. In software
development, the work at hand is represented by the requirements. In software
evolution, when new requirements are added to an existing system in order to
produce a new software release, it is important to base the project plan on how
much the requirements will cause change in the software. Requirements-Driven
Impact Analysis (RDIA) is a critical tool in the planning process as it identifies
the set of software entities that need to be changed to implement a new require-
ment in an existing system. RDIA thus involves a transition from requirements to
software entities or to a representative model of the implemented system. RDIA is
performed during the release-planning phase. Input is a set of requirements and
the existing system. Output is, for each requirement, a set of software entities
that have to be changed. The output is used as input to many project-planning
activities, for example cost estimation based on change volume.

The overall goal of this work has been to gather knowledge about RDIA and
how to improve this crucial activity. The overall means has been an empirical
study of RDIA in the industrial object-oriented PMR-project. RDIA has been car-
ried out as a normal part of project developers’ work. This in-depth case-study
has been carried out over four years and in close contact with project developers.

Problems with underprediction have been identified and many more entities
than predicted are changed. We have also found that project developers are un-
aware of their own positive and negative capabilities in predicting change. We
have found patterns that indicate that certain characteristics among software en-
tities, such as size, relations and inheritance, may be used together with comple-
mentary strategies for finding candidates for change. Techniques and methods for
data collection and data analysis are provided as well as a thorough description
of the context under which this research project was conducted. Simple and ro-
bust methods and tools such as SCCS, Cohen’s kappa, median tests and graphical
techniques facilitate future replications in other projects than PMR.

ADVANCES IN COMPUTERS, VOL. 59 127 Copyright © 2003 by Elsevier Science (USA)
ISSN: 0065-2458 All rights reserved.

128 M. LINDVALL

1. Introduction . 130
1.1. The PMR-Project . 132
1.2. Problem . 133
1.3. Research Issues and Research Questions 134
1.4. Structure of This Chapter . 135

2. Related Work . 135
2.1. Requirements-Driven Impact Analysis . 135
2.2. Other Impact Approaches . 136
2.3. A Software Change Process with Impact Analysis 137
2.4. Ripple Effect Analysis and Dependency Analysis 138
2.5. Traceability Approaches . 140
2.6. A Framework for Impact Analysis . 141
2.7. Evaluation of Impact Analysis Effectiveness 142

3. The PMR-Project and Its Context . 143
3.1. Ericsson Radio Systems . 143
3.2. The PMR-System . 144
3.3. The Structure of the System . 144
3.4. Design and Implementation of the System 146
3.5. Software Development Process Model . 146
3.6. The Use of Objectory . 147
3.7. Input to Objectory . 147
3.8. Output from Objectory . 148
3.9. The Intentions Underlying Different Models 148

3.10. The Use of Objectory during RDIA . 149
3.11. Objectory vs. Objectory SE . 149
3.12. Project Developers . 150

4. Evaluation on the Class Level . 151
4.1. Questions on the Class Level . 151
4.2. Answering the Questions on Prediction I 153
4.3. Discussion . 154
4.4. Answering the Questions on Prediction II 155
4.5. Concluding Remarks on This Analysis . 155

5. Evaluation of RDIA on the Member Function Level 156
5.1. Questions on the Member Function Level 157
5.2. Design . 158
5.3. Analysis on the Member Function Level 158
5.4. Member Function Change Statistics . 159
5.5. Answering the Questions on Prediction . 161
5.6. Discussion . 162

6. Summary of Statistics . 162
7. Evaluation of RDIA per Requirement . 163

7.1. Questions on the per Requirement Level 163
7.2. Analysis on the Requirements Level . 163

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 129

7.3. Relative Rank-Order of Requirements . 165
7.4. Concluding Remarks on This Analysis . 169

8. Models vs. Actual Implementation . 169
8.1. Contents Analysis—Describing the Abstraction Level 169
8.2. Questions Regarding the Design Model . 171
8.3. Preparation . 171
8.4. Analysis . 172
8.5. Discussion . 173
8.6. Describing Abstraction Using a Constant Set of Objects 174
8.7. Inheritance Relations Change . 174
8.8. Inter-Object/Class Relations Change . 175
8.9. Discussion . 176

8.10. Answers to Questions Raised by the Design Model 176
8.11. Concluding Remarks on This Analysis . 177

9. Class Size . 178
9.1. Questions Regarding Class Size . 178
9.2. Size—Changed vs. Unchanged Classes . 179
9.3. Size—Predicted vs. Unpredicted Classes 179
9.4. Size—Predicted vs. Changed Classes . 180
9.5. Answers to Questions Regarding Class Size 181
9.6. Discussion . 182

10. Relations between Classes . 182
10.1. Questions Regarding Relations . 183
10.2. Inter-class Relations—Changed vs. Unchanged 185
10.3. Inter-Class Relations—Predicted vs. Non-Predicted 186
10.4. Inheritance Relations—Changed vs. Unchanged 187
10.5. Inheritance Relations—Predicted vs. Non-Predicted 188
10.6. Answering the Questions . 189
10.7. Concluding Remarks on This Analysis . 190

11. Discussion of Findings . 190
11.1. Qualitative and Quantitative Results . 190
11.2. Questionnaire Completed by Developers 190

12. Comments Regarding RDIA . 193
12.1. Summary of Quantitative Results . 193
12.2. Feeding Back the Results . 194
12.3. Comments about the Results and the Evaluation 195
12.4. Explanation Building . 196
12.5. Suggested Improvements . 197
12.6. Complementary Release-to-Class View . 198
12.7. Complementary Conservative Prediction 199
12.8. Using Historical Data to Support Prediction 200
12.9. Tool Support . 200

12.10. Alternative Input to Cost Estimation . 200

130 M. LINDVALL

12.11. Discussion on Quantitative and Qualitative Results 201
12.12. RDIA Using Models and Traceability . 202
12.13. Other Models for Identification of Change 202
12.14. Discussion on RDIA Using Models and Traceability 203

13. Summary and Conclusions . 205
13.1. Summary . 205
13.2. Conclusions . 206

References . 207

1. Introduction

The success of software is striking. Almost all technical products developed today
are either based on software or partly implemented in software. This success leads
to a dramatic increase in the economic importance of software, and software is now
a major part of many firms’ business. As such it will inevitably be subject to change
due to changes of business prerequisites, as well as changes of expectations on soft-
ware implied by technical development. To be able to change a software system in
a controlled way, the implications of such a change must be fully understood. Full
understanding is very difficult to achieve because of the complexity of the different
parts of a software system, their characteristics and their dependencies of each other.

One way of dealing with this complexity is release-oriented software development,
which results from an ever increasing demand for even more successful, faster and,
in all possible ways, better software. The demand for better software is expressed
in terms of new requirements stemming, for example, from the use of the system
in that the users simply like it, get used to it and eventually want more from it. The
effect is that the system has to evolve over time, where each step of evolution reaches
the market as a new release of the system. Further success of the system, therefore,
depends to a large extent on the ability to meet users’ constant stream of new expec-
tations within a reasonable time frame, within the time and cost budget and without
destroying the possibility of adding future functionality to the system. The risk is that
the new release of the previously successful system reaches the market too late, costs
too much, or has reached a point beyond which further evolution is no longer fea-
sible. The system manager of a successful software system can therefore never rest,
but must continue to seek new ways for product and process improvement so that
new releases of the software product can be smoothly developed and successfully
delivered to and accepted on the market.

This section is focused on Requirements-Driven Impact Analysis(RDIA), which
constitutes analyzing how new requirements generate change in an existing system.
RDIA is new in a sense and distinguishes itself as being part of Impact Analysis (IA)

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 131

as described by Bohner [6]. RDIA is conducted very early in the release-planning
phase, while in Bohner’s broader model IA can be conducted at every stage in the
software development life cycle. Relevant work in the area, as, for example, collected
by Bohner and Arnold [7] is mostly focused on change propagation as an effect of
alteration of source code during the coding phase. RDIA deals with changes as an
effect of new requirements proposed during the planning phase. Because of its early
application, the constraints on RDIA are to be conducted fast and produce an accu-
rate result to a low cost without performing detailed design or altering source code.
Practitioners have conducted RDIA for a long time, but to the best of our knowledge
there are few, if any, empirical investigations of RDIA before.

RDIA is the foundation for many activities related to maintenance, such as cost
estimation, requirements selection, resource allocation, project planning, work dis-
tribution and detailed design of new functionality. While the input to RDIA is a set of
new requirements together with the system to be altered, it is important to recognize
that the different maintenance activities need different outputs from RDIA. Cost esti-
mation requires knowledge of the numberof software entities to be changed; initial
design of the new functionality requires knowledge of exactly which software enti-
ties are changed and how. Performing RDIA correctly is hard and depends to a large
extent on earlier experience with the task and the system.

The overall goal of this work is to build well-grounded knowledge about RDIA,
understand it as a phenomenon, and discuss ways to improve this crucial activity.
The overall means is an empirical study of RDIA in the context of a commercial
software development project.

This work results from a long-term case study of the successful industrial object-
oriented PMR-project performed at Ericsson Radio Systems (ERA) in Linköping,
Sweden, as a part of the operation and support system of a cellular telecom system.
The project and its resulting software system have been extensively studied since its
inception in 1992 to the completion of the development of the sixth release of the
system in early 1996. This analysis covers release R4 in which RDIA was conducted.

Conducting a case study is one way to empirically investigate RDIA and to gain
knowledge about the phenomenon. The case study was a natural step as we studied
and documented the development of the first release in order to acquire a deeper
understanding of development of object models and relations in terms of traceability
between them [27]. As the PMR-project turned out to be long-lived and a relevant
study object, we seized the research opportunity to further study, document, and
analyze the evolution of the system in terms of RDIA.

The result is a thorough description of a commercial object-oriented project in
an industrial setting and its evolution. The process for RDIA as conducted in the
project is documented, and the result in terms of how well change is predicted by
experienced developers is presented. Characteristics of the main building blocks in

132 M. LINDVALL

object-oriented systems are used in order to explain discrepancies between predicted
and actual change. We believe that these results together with our methods for data
collection and analysis are useful for both researchers and practitioners, especially
for understanding RDIA and for its improvement.

This case study relies largely on quantitative data, but a software development
project such as PMR, which is a human activity, can never be fully characterized
quantitatively. Consequently we gathered much qualitative and quantitative data dur-
ing these years to

• formulate research questions,

• describe context,

• analyze and interpret the results, and

• suggest improvements.

1.1 The PMR-Project

The PMR-project was a successful project. Before getting into the detailed analyses
it is important to note the following characteristics and circumstances.

The releases were delivered with the intended functionality, on time and within
budget.1

• While some developers left the project and others joined it, the leading core of
developers has been with the project since its inception. Thus the project team
by large was familiar with initial requirements, design, and implementation as
well as with the subsequent releases.

• All types of documentation of the system and the project were continually up-
dated and inspected as a normal and well-established part of the development
process.

• Requirements that had been subject for RDIA were stable during the develop-
ment process, meaning that the customer did not change his mind regarding
them.

• Neither the source code, nor any other system material were available to anyone
other than the developers in the PMR-project, hence all changes were in the
control of the project developers.

• The RDIA activity was conducted by developers together with requirements’
analysts thus enabling both correct interpretation of requirements as well as
correct information about the structure of the system.

1R4 was a little late and little more expensive than expected.

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 133

• The RDIA activity was conducted over a considerably long time and the pre-
dicted changes of the system were documented on a detailed level, the member
function level, as well as the class level.

• System development and maintenance have used object-oriented analysis,
object-oriented design, and object-oriented implementation techniques.

• The Objectory method [23,38] and tool [40] have been used since the inception
of the project, providing a maintained set of object and use-case models where
inter-model relationships were documented with traceability links.

These circumstances form an impression of the PMR-project as an example of
best-of-practice, consisting of preferable software engineering principles and a good
environment. There are many projects and systems described in the literature where
this is not the case. Instead requirements are commonly highly volatile, the system
is not well understood by the developers or frequent changes occur among person-
nel, which lead to change of other developers’ code. Often documentation, models
or traceability are not included. We therefore have reason to believe that the RDIA

approach in use in the PMR-project and the accuracy of its outcome are at least as
good as other contemporary object-oriented software development projects.

1.2 Problem

Project planning is in general a hard problem, and there are many witnesses among
software practitioners and their customers who are familiar with the effects of large
deviations between planned time for delivery and the actual one.

Planning of software evolution, where RDIA is a part, is no exception and is there-
fore selected as the main problem for investigation in this work. While the output
from the RDIA activity, the prediction, serves as input to many different activities
related to planning of software evolution we have chosen to primarily limit and sim-
plify our model of the planning process as follows:

1. To determine the size of the work to be done.
2. To calculate cost.

The size of the work to be performed is predicted during RDIA, whereas calculation
of cost, a rough term for estimation of man-hours of which the cost is known, is
based on the output from RDIA. Hence, there is a dependency between these two
tasks.

The potential problems with this approach, which are likely to be the common
case in contemporary planning of software evolution, are:

• the actual impact is different from that expected, or

134 M. LINDVALL

• the cost model is not appropriate, or

• a combination of both of these.

A deviation between predicted impact and the actual results implies that the size of
the work to be performed is greater (most likely) than expected. Bad input to the cost
model results in the cost model, even if correct, producing bad output. Example: if
the size of work is predicted in terms of 4 changed software items but 10 are actually
changed, then the effect is that too few man-hours are planned for.

If the output from the RDIA is correct, but the cost model is not appropriate, then
there is a problem in any case. Example: if the size of work is correctly predicted and
is expected to require 40 man-hours, but instead requires 100 man-hours, the effect
is the same as above: too few man-hours are planned for.

A combination of the two situations can, of course, also arise. In the fortunate case,
the size of work would be underpredicted, while the cost for each size unit would be
overestimated. In the unfortunate case, the situation would be the opposite.

At the time of planning the research project we knew from project developers that
project planning was a problem, but as no evaluation of the accuracy of the prediction
earlier had been made there were no facts regarding this issue. At the time it was
unknown whether RDIA was a problem or not. Actually, project developers stated, at
the time for conducting RDIA for R4, that the main problem was not determining the
changes (conducting RDIA accurately), but to correctly estimate the amount of hours
(cost estimation) required [29]. Together with our interest for RDIA the following
circumstances strengthened our decision to focus on the subject:

• Well-known cost models have been published for a long time, for example,
COCOMO [5] while work done on impact analysis is almost limited to the papers
collected by Bohner and Arnold [7].

• Cost models are logically connected to RDIA and rely on accurate results from
the RDIA activity.

• The effort involved is very hard to measure on a reasonably detailed level,
and even worse, Ericsson would not, at the time, allow publication of time- or
productivity-oriented measures for this kind of projects whose resulting prod-
ucts compete on the commercial market.

1.3 Research Issues and Research Questions
In this work we have tried to identify a space of research issues and questions

related to RDIA. This has been done in order to set up an investigation as completely
as possible. Not surprisingly, the space turns out to be very large. Our intention is
not to answer all the questions, but a careful selection of them. To quote my mentor
and good friend Al Goerner:

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 135

“A good question is often more interesting than the answer”.

The space of research questions, so far identified as regarding RDIA, is largely based
on the main building blocks provided in object-oriented software technology, which
are:

• the objects/classes,

• their characteristics:
◦ inter-relations,

◦ size,

◦ attributes,

◦ methods,

◦ predicted and actual reason for change.

The research questions concern and compare

• the set of objects/classes predictedto be changed, their characteristics, and pre-
dicted reason for change,

• the set of objects/classes actually changed, their characteristics, and actual rea-
son for change.

1.4 Structure of This Chapter

This is a case study and as such hard to separate from its context. In order to let the
reader interpret our results we provide an extensive set of context material. The aim
is to separate background and context material from research issues. Following this
introduction, each section deals with one research issue which is broken down into
research questions; thus it consists of a set of chapters of the form: issues/questions,
statistics and analysis, answers to the questions, interpretation and discussion. The
section concludes with qualitative reflections and interpretations connecting quanti-
tative and qualitative data and discusses the major points of the work in summary
and conclusion.

2. Related Work

2.1 Requirements-Driven Impact Analysis

Requirements-driven impact analysis identifies the set of software entities that
need to be changed to implement a new requirement in an existing system. RDIA

136 M. LINDVALL

thus involves a transition from requirements to software entities or to a representa-
tive model of the implemented system. RDIA is performed during the release plan-
ning phase. Input is a set of requirements and the existing system. Output is, for each
requirement, a set of software entities that need to be changed. The output is used
as input to many project-planning activities, for example, cost estimation based on
change volume. Cost estimation is further used for requirements selection based on
a cost-benefit analysis of each requirement, as described by Karlsson [24], for ex-
ample. Requirements with the highest value are selected for implementation. RDIA

is thus performed at an early stage in the project when little is known; the set of can-
didate requirements is known, but not which requirements should be implemented.
This constrains the RDIA:

• RDIA must be performed as accurately as possible; cost estimation and require-
ments selection are conducted on the basis of its result.

• RDIA must be performed at a relatively low cost; it is desirable that the cost for
analyzing the cost of a requirement is lower than the cost of implementing it.
As not all requirements will be implemented, the cost for RDIA for unselected
requirements must be kept low.

• RDIA must be performed without altering any source code; RDIA is conducted
at the planning stage when it is not decided which source code changes actually
should be implemented.

• RDIA must be documented so the result can be used in subsequent phases.

• RDIA must be evaluated; in order to improve RDIA and its dependent activities,
for example, cost estimation, it is important to evaluate, in different aspects of
how well the prediction corresponds to the actual outcome.

2.2 Other Impact Approaches

RDIA is a concept coined in [32]. The intention of this section is to describe some
of the common concepts found in the literature. Related work is often found un-
der impact analysisor software change impact analysis, but also in work on ripple
effects, dependency analysisand traceability. The impact analysis literature is, how-
ever, limited. An excellent contemporary overview is provided by Bohner and Arnold
[7] as a collection of some of the relevant papers in the area. Bohner is also one of
the main authors in impact analysis and we have chosen to start by relating our work
with his model for software change process.

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 137

2.3 A Software Change Process with Impact Analysis

In Bohner’s detailed software change process model[6] IA is applied at every stage
and phase during the maintenance life-cycle, including the release-planning phase.
The model is built upon the following activities:

Manage software change. This activity manages the software change activities by
establishing software quality goals, determining risks, producing estimates, track-
ing software change activities, and assigning resources.

Understand software change and determine impact. This activity regulates all
other activities and its results are refined during the whole process. Its main
subactivities are: review software documentation, clarify change request, identify
change impacts, record software change impacts, and determine software stability.

Identify software change impacts. This activity supports all other activities and
constantly adds newly identified impacts to the set of already known impacts. This
is carried out by examining requirements traceability, determining requirements
impacts, identifying software design impacts, analyzing source program impacts,
classifying and exploring similar changes, and determining regression test candi-
dates.

Specify and design software change. During this activity the clarified change re-
quests are used as input to the generation of requirements and design. Subactivities
are: analyze change requirements, examine software architecture changes, derive
related change requirements, and design program changes.

Implement software change. During this activity the changes are determined on
the module and statement level and implemented. Subactivities: Determine mod-
ules to be changed, identify statement level changes, apply program level changes,
test modified software units.

Retest affected software. The system is tested to ensure that it meets both new re-
quirements and old requirements. The subactivities are: generate test cases for
new/added functionality, update test suites, perform integration tests, conduct sys-
tem testing, and conduct acceptance testing.

Bohner’s model uses different approaches for impact analysis to identify change in
different work products. The approaches for impact analysis are: traceability analy-
sis for dependencies between work-products, ripple-effect analysisfor dependen-
cies within work-products, and change history analysisfor knowledge about similar
changes made earlier. The work-products that can be impacted are requirementsand
design specifications, the program, and test documents.

Our work is focused on how requirements impact software entities (C++ classes
and member functions) using a design object model and traceability as documenta-
tion aid. Bohner mentions the use of change history data, which is a way to learn

138 M. LINDVALL

from past experience, but says nothing explicitly about the importance of evaluat-
ing the impact analysis results. We propose an improvement of Bohner’s model by
adding an Evaluate Impact Analysis-activity after Retest affected software. We also
propose the insertion of a Select Requirements-activity as an explicit subactivity of
Manage software change.

2.4 Ripple Effect Analysis and Dependency Analysis

Impact analysis can be characterized as detecting consequences of changeusing
some kind of dependency analysis. Haney’s [17] model for module connection analy-
sis is an early and typical example of this. It uses a probability connection matrix
which subjectively models the dependencies between modules in order to determine
how change in one module necessitates change in other modules. Haney’s model is
probabilistic, meaning that it is probable, but not necessarily true, that change will
propagate as the model forecasts. Mechanical approaches, as described by for exam-
ple, Queille and colleagues [42] are instead based on a model of the system in terms
of the static dependencies between entities together with change propagation rules.
Using a change propagation mechanism it is then possible to pinpoint changes that
must be made, for example, as a consequence of a changed public interface.

Queille and colleagues [42] aim at analyzing how change propagates in order
to identify secondary changeas a consequence of planned or conducted primary
change. Change candidatesare entities in the source code that are likely to change
and each candidate must be analyzed in order to determine whether it must be
changed or not. Secondary change candidatescan be found using change propa-
gation techniques, while primary change candidatesare found during the analysis of
how the implementation of a new requirement generates change of source code.

It is also desirable to analyze which entities are affectedby a change (ripple ef-
fects). An entity might be affected by a change, but it might not be necessary to
change it. It is, however, necessary to retest the affected entity as it might behave
differently though still producing a correct result. An example of this is given by
Arango and colleagues [2] who present a technique for explaining how changes in
data representation translate into performance changes. How these concepts are re-
lated is shown in Figs. 1 and 2.

A common motivation for impact analysis during the testing phase is to limit the
need for regression testing—if it is known exactly which entities are affected by
a change, the unaffected ones need no regression testing [25]. Examples of such
analysis techniques, which are all based on static dependencies, are described in [53,
25], and [26].

A totally different approach aiming at the same problem is slicing [15]. The pro-
gram is sliced into a decomposition slice, which contains the place of the change,

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 139

FIG. 1. Impact from a new requirement not yet selectedfor implementation.

FIG. 2. Impact from a new requirement selectedfor implementation.

and the rest of the program, a complement slice. Slicing is based on data and control
dependencies in the program. Changes made to the decomposition slice are guaran-
teed not to affect the complement if a certain set of rules is obeyed. Slicing limits the
scope for propagation of change and make that scope explicit. The technique is, for
example, used in [51] for slicing of documents in order to account for ripple effects

140 M. LINDVALL

as a part of impact analysis. Shahmehri and colleagues [45] apply the technique to
debugging and testing. Pointer-based languages like C++ have not been supported,
but this is changing as Tip and colleagues now present slicing techniques for C++
[50]. Slicing tools have long relied on character-based presentation techniques, but
visual presentation of slices is now available and applied to impact analysis in Gal-
lagher [15].

Comments
None of the above approaches for finding change candidates or affected software

entities were used during the PMR project. There are, however, reasons to experiment
with a selected set of them in order to improve the accuracy of the prediction.

2.5 Traceability Approaches

Traceability is germane to life-cycle meta-models such as Basili’s iterative reuse
model [4]. In this model, software includes not only the resulting source code, but
also up-front documents such as requirements- and design specifications, which are
regarded as models at various abstraction levels of the software in service [23].

Maintenance in Basili’s perspective initially performs and documents changes of
requirements that are subsequently propagated through the analysis and design mod-
els to the source code. Proponents of this approach, such as [41], assume a high level
of traceability, which in practice implies that:

• all models of the software are consistently updated;

• it is possible to trace dependent items within a model (vertical traceability or
intra-model traceability); and

• it is possible to trace correspondent items between different models (horizontal
traceability or inter-model traceability).

Traceability can be graphically represented, where the software items are nodes
and the traceable dependencies are edges forming a traceability web. A node denotes
each requirement, each design component and each part of code and every link of
dependence is denoted by an edge [41]. It is assumed that if tracing dependencies in
the web is easy, the effort required to understand the software and assess the impact
of a proposed change is decreased.

Traceability links are often provided as a feature in many life-cycle oriented tools
(e.g., Objectory SE [40], SODOS [18]), but to our knowledge little has been pub-
lished about how to actually use them [31]. One impact analysis experiment based
on traceability is, however, provided by Abbattsista and colleagues [1]. It is seem-
ingly a paradox that even though it is well known that the problem of understanding

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 141

the relationship between requirements and code consumes much time and money
[47], practitioners of today are not at all convinced of the usefulness of traceability.

Traceability is required by the Department of Defense [10] and recommended in
many software engineering quality standards [19–22] and other Software Engineer-
ing related documents [11,44,46].

As a reaction to the fact that traceability between requirements and code is unlikely
to be found in a real project, a test-case-based method for finding a starting place
(finding primary changes) for further investigations prior to changing the system
was proposed by Wilde and colleagues [52].

Comments
Traceability was used during RDIA in the PMR-project, but primarily as an aid for

documentation of how new requirements were related to the C++ classes (design ob-
jects). In this research project traceability has been extensively used to establish a
clear connection between new requirements, the set of classes predicted to change,
and the set of classes actually changed. Our initial assumption was that models and
traceability should be useful for finding change candidates. The models and the ex-
isting traceability proved, however, to be on a level not obviously useful for RDIA

and project developers were reluctant to use this kind of information rather than the
information provided by other developers and the source code.

2.6 A Framework for Impact Analysis

For the purpose of comparing different impact analysis approaches, Arnold and
Bohner [3] defined a framework for impact analysis. It should be noted that the im-
pact analysis approaches the framework aims at are change propagation approaches.
This means that the primary changes are already determined and the goal is to an-
alyze secondary changes or which entities can be affected by the changes. The ap-
proaches covered by the framework are, for example, determination by incremental
compilers of which parts to recompile as well as changes induced by a maintainer
and their potential effects. The framework is useful as it reveals the underlying mech-
anisms in most impact analysis approaches available.

The following parts of an impact analysis approach are identified:

• a change,

• the artifact object model (the system),

• the interface object model (a model of the system—its interface),

• the internal object model (a model of the system—its internals),

• the impact model (knowledge about change propagation).

142 M. LINDVALL

We will now describe how the effects of a proposed changeon the artifact object
modelare determined by using an impact analysis approach.

The impact analysis approach is based on a model of the system which describes
dependencies between entities in the system. Communication with the impact analy-
sis approach is carried out via the interface object model(interface for short). The
interface is used to describe the change to be analyzed. The internal object model
contains information about the objects in the system and the dependencies between
them. The difference between the interface and the internal model is analogous to the
difference between a database and the different views of it. The database constitutes
the underlying representation of the structure and is populated with data. The data-
base is manipulated via views (for example, a selected set of entities, their relations,
and tools for manipulating them) which constitute the interface to the database.

While the internal object model captures information about the objects and their
dependencies, the impact modelcaptures knowledge about how change propagate
from object to object via dependencies. The knowledge can be expressed in terms of
rules or algorithms.

When the user orders an analysis of the change, the impact analysis approach uses
the definition of the change, as defined using the interface, translates it to the internal
object model, and uses the knowledge in the impact model to propagate the initial
change throughout the internal object model. The result, in terms of a set of affected
interface objects, is presented to the user via the interface. In totally automated en-
vironments (e.g., incremental compilers), some of the steps are automated and not
visible to the user, while in less automated, or even manual environments (e.g., case
tools with some support for dependency analysis, but without knowledge and rou-
tines for change propagation) much of the initial analysis work has to be done by
the user. In the latter case, the user must also be prepared to spend time on the result
from the impact analysis as objects presented as affected might be false positives and
thus not needing to change.

2.7 Evaluation of Impact Analysis Effectiveness
The next part of the work by Arnold and Bohner [3] concerns evaluation of im-

pact analysis effectiveness. Bearing parts of an impact analysis approach in mind, a
number of concepts are defined based on the notion of sets.

The System Set represents the set of all objects in the system.
The Starting Impact Set (SIS) represents the set of objects that are initially changed.

The SIS is defined by the user in some way and fed into the impact analysis ap-
proach by using the interface object model.

The Estimated Impact Set (EIS) is the result delivered by the impact analysis ap-
proach. The EIS always includes the SIS and can therefore be seen as an expansion

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 143

of the SIS. The expansion is the result from applying the change propagation rules
to the internal object model over and over again until all objects that may be af-
fected are discovered.

The Actual Impact Set (AIS) is the set of objects that actually were changed during
the implementation. It is important to note that the AIS is not unique as there are
many different ways to implement a solution.

Although these three sets are necessary, they are not sufficient. There are at least
two2 different models where these sets can occur:

• in the artifact object model, and

• in the interface object model.

The evaluation is conducted by comparing these different sets for different meth-
ods. Arnold and Bohner’s underlying assumption is that the EIS should be safe (con-
servative) and thus greater than AIS.

3. The PMR-Project and Its Context

This section provides a context to our work and facilitates an understanding of the
analyses presented in the following sections. We introduce the PMR-project, in which
we participated, and the resulting system and its requirements and models, which
we investigated. The intention is to allow the reader to judge the generality of our
results. It starts with a short description of the company, an introduction to the system
that was developed, an overview of the various development and implementation
techniques used in the project, and a description of the process model used. As object
models were used in the project and as object models constitute a central part of this
work, their use in the PMR-project is extensively discussed. The section concludes
with a description of the project developers.

3.1 Ericsson Radio Systems

Ericsson is a Swedish company that develops, produces and markets telecommuni-
cation equipment worldwide. One of the fastest growing markets is mobile telecom-
munication, and Ericsson dominates this market. Ericsson Radio Systems (ERA), the
owner of the project under study, is involved in the development of all software prod-
ucts that make a mobile system. The department at ERA studied in this research is

2The internal object model is not treated in the paper by Arnold and Bohner, but may also be used to
characterize the three sets.

144 M. LINDVALL

responsible for the development of one particular system, namely Performance Man-
agement Traffic Recording (PMR).

3.2 The PMR-System

The operator of the Networkneeds to record traffic events during the communica-
tion between the Networkand Mobile Stationsfor several reasons. PMR supports this
by providing, among other features, a function for the recording of how the traffic is
managed to keep connections established. The system has been developed in certain
steps of evolution and packaged and delivered in various releases. This work starts
with the result (object models and source code) from the third release (R3) and use it
as a baseline for analyses of the fourth 4th release (R4). PMR offered, to begin with
(in R1 to R4), two different ways of recording depending on the operator’s need of
data. It was possible to order the system to set a particular Mobile Stationin focus
and to record its interactions with different Cells (Mobile Related Recording). The
other alternative was to set a particular Cell in focus and record the Mobile Stations
communicating with it (Cell Related Recording). The operator initiates the recording
process. The result of the recording is collected, parsed and stored in a database. The
operator is able to select from several predefined reports showing the recording result
from different viewpoints. By using this information, the operator is able to trace the
events that occurred in the system.

3.3 The Structure of the System

The system can be divided into three main functions:

• initiation of a recording,

• collecting, parsing and storing the results from the recording process, and

• analyzing and presenting the recording results.

The system has three main parts, mapping to the functionality described above:

• a user interface,

• a parser-based part which collects, parses, and stores files, and

• a database with attached reports.

The system is configurable to support two different markets—the Japan market
and the European market. Each release of the product is aimed towards one of the
two markets. The two different markets have much in common, but also differences.
The commonalities are placed together in common objects/classes, while differences
have been placed in objects/classes whose name indicates which market it is designed

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 145

for. The inheritance structure is used to explain these differences and commonalties.
This conforms to how a family of products can be structured [16].

An analysis of the system shows that the objects/classes can be divided into
domain-oriented classes and others. A domain-oriented class is a class that as part
of its name has a domain-oriented concept, for example, Cell. Examples of domain-
oriented classes are: Cell.C, ActionCell.C, and CellTranslationTable.C. Classes that
are not domain-oriented are classes that do not have a domain-oriented name, but
names that are common among software systems of all kinds of domains. Examples
are: PrintPopup.C, Menu.C, TextPane.C. Classes with such names can with great
likelihood be found in any window-based software system and are thus not specific
to the PMR-system.

Of the 136 classes in release R4 of the PMR-system, 37 (27,2%) classes are
domain-specific and the remaining 99 (72,8%) are not. The 37 domain-specific
classes are built upon 14 important concepts, such as Network, Cell, MTR (Mobile
Traffic Recording) and CTR (Cell Traffic Recording). These domain-specific classes
were compared with the 13 basic domain objects in the initial domain object model
developed during the first release. The comparison showed that 22 of the domain-
specific classes could be name traced to domain objects, 12 could not be traced to
domain objects, but could instead be traced to domain-related concepts used in the
textual descriptions of the domain object model. Only three classes with domain-
related names were unable to trace to the domain object model, which shows that the
concepts central to the system were identified at the inception of the project.

The evolution of the domain object model also mirrors the development of the
system. Releases R1, R2, and R3 were all analyzed and designed during R1, but in-
crementally implemented during R1, R2, and R3. Thus the domain object model was
not changed at all during the first three releases. Release R4 was characterized as a
common improvement of the system as well as porting it to a new operating system.
These common improvements and the porting, did not require new concepts, thus the
domain object model also remained unchanged during R4. Release R4 of the PMR-
system is characterized as an overall improvement of usability-related functionality.
There were 21 requirements in R4 divided into 14 functionality-related requirements,
3 performance-related requirements and 4 trouble-report-related requirements. The
dominating requirement was “Porting to Solaris” because of its impact on the system.
This requirement affected 44 of the 136 classes in the system (32.4%). “Porting to
Solaris” allows the system to be executed under the newest operating system, which
is of course a customer requirement, or rather it is a necessity to evolve together
with the system’s environment. The requirement was expensive in terms of changed
classes, but no new functionality was added. In order to fulfill the set of new require-
ments, very few new classes had to be added to the system.

146 M. LINDVALL

3.4 Design and Implementation of the System

The system is modeled with object-oriented modeling techniques. Some parts are
implemented using C++ [48]. Some parts are implemented using a relational data-
base (RDB) [8]. There are also many other implementation tools and techniques used
for implementing the system. A large commercial system consists of a number of
different parts developed using different implementation techniques. In this work we
are investigating object-oriented techniques. Therefore we have included the models
of the parts that were implemented in C++ in our discussions, but excluded the other
parts described in the list above.

3.5 Software Development Process Model

The project process at ERA (PROPS) consists of two parts: one administrative part
(the general project model) and a technical model. The administrative part is common
to all types of projects, whereas the technical model depends on the project type
[13]. The common technical model is called SDPM (software development process
model) [12], and a significant amount of work has been performed to adapt SDPM to
the Objectory process model that can be used to carry out some of the phases and
activities described by SDPM. This implies that Objectory is used for some, but not,
all technical activities and phases during the project, but not at all for administrative
issues.

Objectory can be configured to suit the type of project, i.e., appropriate phases
and activities can be selected. The configuration used in this project conforms to the
most comprehensive configuration—Premium Analysis & Design—described in the
Objectory handbook [38].

The PROPS model itself has characteristics conforming to a rather strict waterfall
model [43] as it prescribes the use of a number of tollgates (TG). Each tollgate serves
as a decision point and due to the status of the project at the time of the tollgate,
management decides on how the project should proceed, change its goals or whether
it should be stopped. At the tollgate meeting all prescribed documents are reviewed.
The project is not allowed to continue until the exit/entry criteria are fulfilled. A com-
mon and wrong interpretation of the waterfall model is that is not possible to go back
to earlier activities if needed. It is, of course, possible to change a document com-
pleted earlier in the process. The analysis object model was, for example, updated
with respect to traceability as changes were discovered during design.

The process used at ERA for software development is well defined and generally
followed by both project managers and project developers. The process constitutes
a common language between project members both within and between projects.
Impact analysis has a clear role in the process and is conducted as a release plan-

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 147

ning activity in order to provide facts for decision support regarding planning and
requirements selection.

3.6 The Use of Objectory

The tool as well as the methodology was used rather strictly, but in a practical
way. Strictly in the sense that all modeling activities were performed according to the
methodology and documented using the tool. Practical in the sense that the models
did not have to be formally correct, but understandable. The Objectory methodology
was almost used as is without mixing the methodology with features from other
methodologies. This seems not to be the common case. Many reports from the use
of object-oriented technology in large projects presented as experience reports at,
for example, OOPSLA 1994 [28], indicate a need for mixing different object-oriented
methodologies to form a sufficient resulting methodology. We noted, however, an
emphasis on object modeling compared to use-case modeling in the development of
the first release (R1) of the system and we base this statement on the fact that all
object models seemed to be further elaborated, while the different use-case models
were not. During the development of the subsequent releases the use-case models
have been left as is, while the design object model has both been used and updated.
The explanation by project developers as to why the use-case model has not been
updated is that the use-cases actually were so broad that they not only covered the
initial requirements but also all new requirements. New use-cases were simply not
needed, and the existing use-cases did not need to be changed to reflect the new
functionality, according to project developers.

3.7 Input to Objectory

Input to Objectory consisted of the requirements specification, which comprised
functional as well as non-functional requirements, but only the functional require-
ments were explicitly modeled with Objectory.

Requirements analysis in this context means analysis of existing requirements.
In other contexts requirements analysis is used to denote elicitation, definition and
documentation of requirements.

A rough description of requirements analysis according to Objectory is to find the
functional requirements and to map them onto use-cases. In this project, the devel-
opers responsible for writing the initial requirements specification (R1), knew the
analysts were going to use Objectory. As a consequence they structured the require-
ments in such a way that it was easy to do the mapping. They even used the word
use-case in the requirements specification to denote a major functional requirement.

148 M. LINDVALL

At the same time they strove to keep the names of main requirements as the names of
requirements. This resulted in quite an easy mapping from requirements to use-cases.

Over time it turned out that the new requirements fitted into the existing use-cases,
which resulted in that the kind of requirements analysis described above was only
carried out during R1. Instead requirements-driven impact analysis was used.

3.8 Output from Objectory

The output from Objectory consists mainly of detailed design descriptions, com-
prising a design object model, a designed use-case model and interaction diagrams.
Some interactions between objects, particularly complex parts, were modeled in de-
tail by using interaction diagrams. Hence, the output from the process that was used
as input for programmers was an extensive design object model showing the struc-
ture of the system, an overall use-case description and interaction diagrams showing
the complex parts of the system. A rudimentary skeleton for C++ was also generated
during R1. Over time it turned out that it was the design object model that was used,
especially for documentation of impact analysis.

3.9 The Intentions Underlying Different Models

During the project, the object models have been kept and maintained as much
as the time pressure has allowed. Interviews with developers regarding this topic
show that the intention has always been to keep and maintain models to make future
enhancements easier. From interviews with developers in the PMR-project regarding
the roles of the different models we learn the following:

The domain object modelis intended to serve as a model of the real world entities
important for this particular system. The intention is to refine the model over time
adding more domain knowledge to it, to make the model more complete. The domain
model provides a common terminology and description of the important parts of the
problem domain.

The analysis object modelshows commonalities and differences between the two
different products within the family of products.

The design object modelis an abstraction, a high level representation, of the actual
implementation. This implies that if we examine a design object with associations to
other design objects, we should be able to find the corresponding object3 and its
associations in the source code as a class.

3Actually, what we find in the source code are classes. The transformation from objects to classes
may seem strange, due to the fact that Objectory does not distinguish between object diagram and class
diagrams, but is quite straightforward. Each object in the design object modelbecomes a class in the
implementation according to the approach used here.

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 149

The different use-case modelsmirror the requirements for the systems and all
models are intended to serve to help for developers, especially newcomers, when
they maintain and enhance the system in the future.

3.10 The Use of Objectory during RDIA

The development of a new release in the PMR-project can be generally described
using Basili’s iterative reuse model[4]. In Basili’s model, software includes not only
the resulting source code, but also up-front documents such as requirements- and
design specifications, which are regarded as modelsat various abstraction levels of
the software in service [23]. Maintenance in Basili’s perspective initially performs
and documents changes of requirements that are subsequently propagated through
the analysis and design models to the source code. In the PMR-project, the effect of
a new requirement is first analyzed and documented in terms of the design object
model, and then the change is actually carried out in the code. The effects of a new
requirement, which resulted from RDIA, was documented in the following way using
Objectory:

• Each requirement was defined as a requirement in Objectory.

• Between each requirement and the design objects (classes) that were predicted
to be changed as an effect of the requirement a traceability link was established.

• If a new design object/class was needed, it was defined in Objectory.

• For each requirement it was also documented how many, and sometimes which,
member functions had to be changed or added in the particular object/class.

The linked requirements and design objects were used to answer questions about
requirements and the amount of change that was predicted for them. It was also used
to distribute work among the project developers and to inform them about which
requirements were linked to the set of objects/classes they were about to change.

The dependent objectsfunction was used, but in a limited way. Dependent objects
is a function that is nearly ideal for impact analysis as it answers the question: “What
other objects are dependent on a particular object?” There may be many reasons why
this function was not extensively used during impact analysis. One of the reasons is
that relatively few project developers were aware of it.

3.11 Objectory vs. Objectory SE

Objectory (the methodology) was never considered to be used without the use of
Objectory SE (the accompanying CASE tool) in the PMR-project, which the following
citation shows.

150 M. LINDVALL

“A methodology is not worth more than its accompanying casetool”.

The citation is from an interview with a former practitioner and now manager
at ERA with experience from the use of methodologies and case tools. It clearly
indicates that in the practical world there is a tight relation between a methodology
and its tool.

3.12 Project Developers

The PMR-project was staffed with developers who were mainly not used to object-
oriented modeling techniques from the beginning. An extensive series of courses was
organized by ERA to teach the project developers system development using Objec-
tory: [36,39], and [37]. Instructors from Objectory AB taught the courses. To make
the transition to the new technology easier, the technical manager for the project was
employed directly from Objectory AB.

C++ was familiar to some of the programmers, while others were not used to it.
Hence, the staff represented a broad spectrum of developers with large differences
in experience in object-oriented modeling and implementation. Over the years the
group of project developers has become experienced with both object-oriented mod-
eling using Objectory and with implementation using C++.

The composition of developers in the project group has changed over the years, but
in a controlled way. Developers have left the project group and others have joined
it, but the leading core of developers has been with the project since its inception.
Thus within the project team there were always knowledgeable developers familiar
with initial requirements, design, and implementation as well as with the subsequent
releases. The need of teaching newcomers the system, its requirements, its design,
and its source-code was, however, a major problem. Requirements-driven impact
analysis was one way of dealing with this problem as it let developers exercise new
requirements prior to implementing them. According to developers this led to an
increased understanding of the system and its requirements.

Previously all documents were produced using FrameMaker, while in this project
the Objectory SE was used. Most of the developers were eager to start learning the
new technology and had high expectations on it. During the development of R1,
project management performed evaluations of the methodology and the tool twice.
These evaluations were used to collect and assess the developers’ experience and
to improve their use of the methodology and the tool. Among the experiences we
note that many developers appreciated the methodology and the tool, but that several
improvements regarding the tool were suggested, for example features for version
management. Lack of version management also turned out to be one of the main
problems for analyses of the content and evolution of the object models.

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 151

4. Evaluation on the Class Level

The goal of this section, is twofold. The first goal is to provide an introduction to
the evaluation of impact analysis results when using both qualitative and quantitative
data about the system and the project. The second goal is to investigate whether there
is a deviation between predicted and actual changes and to use this result as a vehicle
of motivation for further investigations of the problem. This section was published
in [30].

The predicted changes, resulting from the project developers’ impact analysis and
which they had carefully documented with object models, have been compared with
the actual changes in the source code. This comparative analysis has been conducted
at several levels of detail, which are presented in forthcoming sections. In the analy-
ses, a release level viewis first taken: the predicted impact of all new requirements is
compared with the actual impact on the system. Then the analysis is discussed and
further refined in a number of steps until a level suitable for evaluating impact analy-
sis is reached. Qualitative data is used to explain some of the discrepancies between
the prediction and the actual outcome in order to adjust and refine the quantitative
data. Project managers can analyze potential discrepancies between the estimated
change volume and the actual using the results.

4.1 Questions on the Class Level
The questions we sought answers for are the following:

Q1 How good was the prediction on the class level?

One way of answering this question is by using Cohen’s Kappa value, which mea-
sures the agreement between two groups ranging from −1.0 to 1.0. The −1.0 figure
means total discompliance between the two groups, 1.0 means total compliance and
0.0 means that the result is no better than pure chance [9].

Q1.1 How good was the prediction according to the kappa value?

The Q1-question can also be broken down into two subquestions (Q1.2 and Q1.3):

Q1.2 How good was the prediction when it comes to predicting the number
of classes to be changed?

The question can be broken down into two subquestions:

Q1.2.1 What is the percentage of correct predictions (p0)?
Q1.2.2 Was the number of classes to be changed correctly predicted

(1/UF)?
Q1.3 How good was the prediction when it comes to predicting whichclasses

should be changed?

152 M. LINDVALL

This question can also be broken down into two subquestions:

Q1.3.1 Were changed classes predicted (CP)?

and

Q1.3.2 Were the predicted classes changed (PC)?

There is a total of 136 classes in the system. Of these 30 were predicted to be
changed. Our analysis of the source code edits showed that 94 classes were actually
changed, see Table I. This answers question Q1.2: In terms of the number of classes
only 31.0% (30/94) of the number of changed classes were predicted.

Let us now go further and compare the prediction with the actual changes in more
detail. We use a 2 × 2 contingency table (see Table II) which first separates the
classes into two groups: Predictive groupand Actual group. Each group has two
subgroups: Unchangedand Changed. This gives us four groups and the 136 classes
are distributed among these groups as follows.

Cell A represents the 42 classes that were not predicted to change and that also re-
mained unchanged. Classes in this cell are correctly predicted, however, implicitly.
They are correct as these classes were predicted to remain unchanged, which also
turned out to be true. The prediction is implicit as these classes were indirectly
identified—they resulted as a side effect as complement of predicting changed
classes.

TABLE I
PREDICTED VS. ACTUAL CHANGES

TABLE II
PREDICTED VS. ACTUAL CHANGES. ALL CHANGED CLASSES INCLUDED

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 153

Cell B represents the zero classes that were predicted to change, but actually re-
mained unchanged. A large number here would indicate a large deviation from the
prediction.

Cell C represents the 64 classes that were not predicted to change, but turned out to
be changed after all. As with cell B, a large number in this cell indicates a large
deviation from the prediction.

Cell D, finally, represents the 30 classes that were predicted to be changed and were,
in fact, changed. This is a correct prediction. A large number in this cell indicates
a good prediction.

On the basis of the values in the cells the answers to the questions can be calculated.
p0 = the proportion of units in which there is an agreement:

p0 = A + D

N
= 42 + 30

136
= 0.529;

pc = the proportion of units for which agreement is expected by chance:

pc = A + B

N
× A + C

N
+ B + D

N
× C + D

N
.

The kappa value is finally calculated:

κ = p0 − pc

1 − pc

= 0.529 − 0.393

1 − 0.393
= 0.224.

The Underprediction Factor, UF, is calculated:

UF = C + D

B + D
= 94

30
= 3.1.

The percentage of Predicted classes that were also Changed, PC:

PC= D

B + D
× 100 = 30

30
× 100 = 100.0%.

The percentage of Changed classes that were also Predicted, CP:

CP= D

C + D
× 100 = 30

94
× 100 = 31.9%.

4.2 Answering the Questions on Prediction I

On the basis of calculations we can now answer the questions.

A1.1 The kappa value is 0.22.
A1.2.1 The percentage of correct predictions, p0, is (42 + 30)/136 =

52.9%.

154 M. LINDVALL

A1.2.2 The number of classes predicted to be changed compared with the
number of actually changed classes, is 30 and 94, respectively; the
underprediction factor, UF, 94/30 = 3.1.

A1.3.1 The ratio of changed classes that were predicted, CP, is 30/94 =
31.9%.

A1.3.2 The ratio of classes that were predicted to be changed and changed,
PC, was 30/(30 + 0) = 100%.

From the answers we can see the following:

• The kappa value indicates a fair prediction.

• The prediction was correct in about half of the cases.

• The number of classes predicted to be changed is largely underpredicted.

• Only about one third of the set of changed classes were identified.

• All of the classes that were predicted to be changed were in fact changed.

4.3 Discussion

While this information might be sufficient for the project manager to be able ex-
plain the difference between the expected workload and the actual one, more infor-
mation is needed to explain the discrepancy between the prediction and the actual
outcome. Questions such as “Is it the prediction approach in use to be blamed or
do other circumstances impede an accurate prediction?” cannot be answered with-
out more data, both quantitative and qualitative. Quantitative data on a more detailed
level involves, in this case, data about each implemented requirement: what was the
predicted impact and what was the actual impact? Qualitative data regards knowl-
edge about the project and its context, which in this case means non-quantifiable
information such as additional work required, i.e., work not known about at the time
for Impact Analysis, but which was performed during the project.

An analysis per requirement shows that one requirement in particular is extraordi-
nary in this case: Porting to another operating system. This requirement is extraor-
dinary both in its nature and in that it was predicted to affect only six C++ classes,
while it turned out to affect as many as 44. The changes for the port were, in other
words, scattered around the system affecting as many as 32.4% of the classes in the
system.

Knowledge about the project shows that some additional work was carried out dur-
ing the project. The additional work arose, for example, from trouble reports from
earlier releases that also affected the current release. These trouble reports were not
known at the time for impact analysis; they were reported during the project. Analy-
sis of the data shows that 13 C++ classes were changed for this reason alone.

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 155

TABLE III
ACTUAL VS. PREDICTED CHANGES. ONLY CHANGES CAUSED BY “NORMAL” REQUIREMENTS

INCLUDED

Adjusting the figures in Table II results in a new set of figures saying more about
the Impact Analysis approach in use (Table III). In the new table the requirement
“Porting to Solaris” and additionals are not considered as changes. Still there is a high
potential for improvement, especially in finding the 31 classes that were predicted to
remain unchanged but turned out to be changed—a challenging task.

4.4 Answering the Questions on Prediction II
The new answers are as follows.

A1.1 The new kappa value is 0.46.
A1.2.1 The percentage of correct predictions, p0, is (80 + 24)/136 =

76.5%.
A1.2.2 The underprediction factor, UC, is 55/25 = 2.2.
A1.3.1 CP, changed classes that were predicted, is 24/55 = 43.6%.
A1.3.2 PC, predicted classes that were changed, is 24/25 = 96.0%.

These new values are interpreted as follows:

• The new kappa value now indicates a moderate prediction.

• The prediction was correct in three cases out of four.

• The number of classes predicted to be changed is still underpredicted.

• Less than half of the classes that were changed were predicted.

• Nearly all of the classes that were predicted to be changed were, in fact,
changed.

4.5 Concluding Remarks on This Analysis
The RDIA approach used in the development of release R4 of the PMR-system was

evaluated on the release level, meaning that all of the requirements were analyzed

156 M. LINDVALL

together, while the source code was analyzed on the C++ class level. It was demon-
strated that to be able to refine the analysis, it is important to be able to separate new
requirements and their impact from additional ones and their impact. The separation
of each requirement’s impact on the system was also important. To achieve this, both
quantitative and qualitative data were necessary.

The results from the evaluation when considering all changes conducted during the
project were that the prediction was fair according to the kappa value, which is the
effect of a large underprediction in the total numbers of changed classes, but a correct
prediction of classes that had to be changed. When the data was adjusted by filtering
out the effects caused by an extraordinary requirement and all additional changes,
the result was a moderate prediction according to the kappa value, but otherwise the
same patterns as earlier. In the last analysis 24 of 25 predicted classes were changed,
thus evaluation on the requirements level resulted in a worse prediction than on the
release level regarding the PC value. The reason is that the 25th class was predicted
to be changed because of one of the new requirements, but was actually changed
because of an additional trouble report or requirement. Separating the causes for
change from each other is necessary in order to discover this fact. The general pattern
is, however, that the large majority of the predicted classes are actually changed, but
the total number of changed classes is largely underpredicted.

With these patterns in mind a series of new pattern-related questions arises:

1. Is there a problem of underprediction in other releases and for all requirements?
2. If so, what is the variation of the underprediction factor?
3. Is it always the case that classes predicted to be changed are changed?

These questions will be examined in forthcoming sections.

5. Evaluation of RDIA on the Member Function Level

The previous analysis was concerned with evaluation of impact analysis as con-
ducted on the class level. The question is, however, what a reasonable level of RDIA

would be? Is the class level the optimum level, or would some other level be more
appropriate? Should the number of changed member functions be predicted as a com-
plement to classes? Or should the prediction be conducted on an even more detailed
level, for example, in terms of how many statements or lines of code that will be
changed? Cost estimation models, for example, COCOMO [5], often base the calcu-
lation of cost on very detailed measures, for example, on the number of lines of code
that should be produced or altered. So it seems that lines of code is an accepted level
for estimation of size, at least among COCOMO users.

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 157

During RDIA, project developers specified which classes they predicted to be
changed by a certain requirement and how many member functions for each class
had to be added or changed to implement the requirement. This made it possible in
this study to evaluate the prediction on two levels—the class level and the member
function level. We can compare the prediction conducted at the class level with the
prediction conducted at the member function level, which will be done mainly in
terms of the number of predicted and changed member functions. The reason for this
is that member functions was generally predicted and documented as the numberof
member functions that would be changed for each new requirement. This means that
an analysis of whether the right member functions were predicted or not is impossi-
ble to perform.

5.1 Questions on the Member Function Level

The following questions are answered:

Q2 How good was the prediction on the member function level?

The question is usually broken down into subquestions, but only question Q2.2 is
used in this analysis as often only the number of member functions to be changed
was predicted, not which ones.

Q2.1 How good was the prediction according to the kappa value? (not ap-
plicable)

Q2.2 How good was the prediction when it comes to predicting the right num-
ber of member functions to be changed?

The question is usually broken down into the two subquestions.

Q2.2.1 What was the percentage of correct predictions (p0)? (not ap-
plicable)

This subquestion is, however, not applicablefor the same reason as above. The only
subquestion possible to deal with when it is not known which member functions
were predicted is thus:

Q2.2.2 Was the number of member functions to be changed correctly
predicted (1/UF)?

Q2.3 How good was the prediction when it comes to predicting which mem-
ber functions should be changed? (not applicable)

Finally we want to compare the result with previous results:

Q3 How good was the prediction compared with previous analyses?

158 M. LINDVALL

5.2 Design

For the evaluation of predicted vs. changed member functions, the classes were
divided into two sets: classes changed because of new requirements and classes
not changed because of any of these requirements. This implies that the second set
of classes includes both classes that remained totally unchanged and classes being
changed for some other reason than a new requirement. The analysis on the class
level is presented in previous section, but a class level analysis will also be presented
here for the reader’s convenience. The analysis regards changes caused by new re-
quirements (requirements level analysis) and have not been presented earlier (see
Table IV). The classes in the first set (changed classes) were then analyzed regard-
ing member functions, which were divided into two sets: changed member functions
and unchanged. The number of changed member functions was then compared with
the number of predicted member functions in calculating the underprediction factor.
This was then compared with the results from analyses on the class level.

The number of classes predicted to be changed compared with the number of
actually changed classes are 30 and 81, respectively; 30/81 = 37.0%. This is an
underprediction factor of 2.7. The kappa value is 0.32 (Fair).

5.3 Analysis on the Member Function Level

The analysis on the member function level required much more work to be con-
ducted than the analysis on the class level, we refer to the section on preparation
for data analysis in [32] for details. The prediction was stored in Objectory SE as a
traceability link between the requirement and the predicted design objects together
with the number of predicted member functions.

DEFINITION 1. The number of member functions predicted for a class is represented
by the number documented in Objectory SE.

TABLE IV
R4 CHANGED CLASSES—PREDICTED VS. ACTUAL. ONLY CHANGES CAUSED BY A REQUIREMENT

ARE INCLUDED. 81 CLASSES CHANGED

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 159

30 of 136 (22.1%) classes were predicted to be changed as a consequence of im-
plementing the new requirements and 98 member functions out of 1179 (8.3%). In
this analysis we are interested in member functions that are changed in any way and
therefore we use the following definition.

DEFINITION 2. A member function is considered changed if it is either reused from
the previous release and edited, or added.

5.4 Member Function Change Statistics
The number of member functions is presented in Table V. The statistics of mem-

ber function change based on source code edits during the release-project has been
collected as described earlier and is summarized in Table VI. The three columns rep-
resent the different ways to classify the cause of change. The first column (Total)
represents all changes on the member function level that were conducted during the
release-project (release level). The second column (Cause: Req. Class) represents
the changes that were caused by requirements, additionals have been filtered out.
The third column (Cause: Req. Edits) results when every edit is examined to filter
out irrelevant edits (requirements level).

The figures in Table VI are now inserted into Tables VII, VIII, and IX. As this
analysis does not concern whichmember function were predicted to be changed, the
resulting table based on the statistics can only be partially filled.

According to the definition of a changed member function (reused and edited +
added) we get 262 + 338 changed member functions, i.e., 600.

TABLE V
MEMBER FUNCTION INCREASE STATISTICS

TABLE VI
R4 MEMBER FUNCTION CHANGE STATISTICS

160 M. LINDVALL

TABLE VII
R4 CHANGED MEMBER FUNCTIONS—PREDICTED VS. ACTUAL. ALL CHANGES (TOTAL)

INCLUDED

TABLE VIII
R4 CHANGED MEMBER FUNCTIONS—PREDICTED VS. ACTUAL. ONLY MFS IN CLASSES CHANGED

BECAUSE OF NEW REQUIREMENTS INCLUDED

TABLE IX
R4 CHANGED MEMBER FUNCTIONS—PREDICTED VS. ACTUAL. ONLY MEMBER FUNCTIONS

CHANGED BECAUSE OF NEW REQUIREMENTS INCLUDED

An analysis of the table regarding the accuracy of the number of predicted shows
that 98/600 = 16.3% or, calculated as a ratio, it says that the number of predicted
member functions is underpredicted with a factor 6.1.

While this factor is important as it shows the ratio between the number of member
functions that were changed during the release-project and the predicted number,

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 161

it is still not an evaluation of the impact analysis approach. The first step towards
such an evaluation is to exclude all member functions belonging to changed classes
that were altered for other reasons than new requirements. The list of such classes
resulted from the analysis conducted on the class level presented in Table IV. The
new table is shown in Table VIII.

The table shows that 17.6% (98/557) of the actual number of changed member
functions were predicted, which is underprediction by a factor of 5.7.

While this investigation might be appropriate in the normal case, that is when
data about causes is not available on the member function level, we intend to con-
tinue and refine the results even more. The problem with the previous analyses is
that they are based on the division of classes into classes changed because of new
requirements, and unchanged classes or classes changed for some other reason than
new requirements. This division might result in edits of a particular class conducted
because of new requirements, which is correct, while not all of the member func-
tions in that class were changed each time. Hence, to be fair, we need to identify
not only member functions defined in those classes that are changed because of new
requirements, but also member functions that are truly changed because of new re-
quirements.

An analysis of Table IX regarding the accuracy in number of predicted shows
that 98/443 = 22.1% or, calculated as a ratio, it says that the number of predicted
member functions is underpredicted by a factor 4.5.

5.5 Answering the Questions on Prediction

Q2 How good was the prediction on the member function level?

The only applicable subquestion is:

Q2.2.2 Was the number of member functions to be changed correctly pre-
dicted (1/UF)?

A2.2.2 The underprediction on the member function level ranges between 4.5
and 6.1 depending on the level of change analysis.

Q3 How good was the prediction compared with previous analyses?

A3 The underprediction factor on the class level is 3.1. The factor in the exam-
ple given in this section is 2.7 (Table IV). The answer is that a comparison
between the class level and the member function level results in lower under-
prediction factors for the class level.

162 M. LINDVALL

5.6 Discussion

We have calculated the accuracy in predicting the number of changed member
functions and the predicted number of changed classes. The prediction on the two
levels was compared with the actual changes on the two levels respectively. The re-
sult is that there is an underprediction also on the member function level. The other
results is that the underprediction factor for classes was lower than for member func-
tions. This is important and largely influences the cost estimation process following
RDIA, which is based on the number of changed member functions, not changed
classes. The conclusion based on these analyses is that it is not necessarily better to
perform RDIA on as detailed level as possible because of the large deviations between
predicted and actual number of member functions.

6. Summary of Statistics

The underprediction factor has now been calculated on the release level as well as
on the evaluation of the requirements level on both class and member function level.
As a conclusion for the evaluation part of the work, Table X summarizes the results.

TABLE X
SUMMARY OF UNDERPREDICTION FACTORS

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 163

7. Evaluation of RDIA per Requirement

We have seen that change was underpredicted on the release level, the require-
ments level and on the selected requirements level, for example, in terms of the
predicted number of changed classes compared with the actual number of changed
classes. In this analysis we move to a finer granularity level as regards cause for
change and examine single requirements. We do this by comparing, for each re-
quirement, the prediction with the actual outcome.

7.1 Questions on the per Requirement Level

The questions we sought answers for are the following:

Q4 How good was the prediction on the requirements level?
Q4.1 How good was the prediction according to the kappa value? (not ap-

plicable)
Q4.2 How good was the prediction when it comes to predicting the number

of classes to be changed?
Q4.2.1 What was the percentage of correct predictions? (not applica-

ble)
Q4.2.2 Was the number of classes to be changed correctly predicted?

Q4.3 How good was the prediction when it comes to predicting which classes
should be changed?
Q4.3.1 Were changed classes predicted (CP)?
Q4.3.2 Were the predicted classes changed (PC)?

Q5 Was the rank-order among requirements the same when it comes to the pre-
dicted and actual change volumes?

7.2 Analysis on the Requirements Level

The requirements are presented in Table XI. The first row represents the set of
classes predicted to be changed per requirement. The first row should be compared
with the last row where the set of changed classes for each requirement is presented.
In between the first and the last row, the data that is normally presented in contin-
gency tables are presented. In the middle row, for example, the intersection between
the two sets, classes that were both predicted and changed, is presented.

EXAMPLE 1. Requirement 1.01 was predicted to cause change in three classes, but
four were actually changed. The question is: were the three predicted classes also
changed? The middle row in the table reveals that two of the three classes were both

164 M. LINDVALL

TABLE XI
PREDICTED VS. CHANGED CLASSES PER REQUIREMENTa

aRequirements 1.11, 1.13, and 3.02 are removed as they had no values but zeros. Zeros occur, for example, when
non-C++ related parts were subject for change.

predicted and changed. Thus one class was predicted but not changed, while two
classes were not predicted but changed.

The table shows that in almost all cases, there is an underprediction in terms of
number of classes, for example, Requirement 1.01 where three classes were predicted
and four actually changed. The exceptions to the rule are Requirement 1.09 (five
predicted, five changed) and 1.12 (one predicted, zero changed).

For six of the requirements one to three classes were predicted, but not changed,
see Example 1. It should be noted that such a class (predicted but not changed) very
well might have been changed in order to implement some other requirement. The
analysis on the release level (all requirements analyzed together) is not sensitive to
that kind of error, while this analysis is.

For the calculations of PC, CP, and UF, Table XI is divided into three tables in
the following way: Tables XII to XIV.

From Table XII we can see that the number of predicted classes that were also
changed divided by the number of predicted classes ranges from 60% to 100%.

Table XIII tells that the number of predicted classes that were also changed divided
by the number of changed classes ranges from 11.9% to 100%.

The underprediction factor, the number of changed classes divided by the number
of predicted classes (Table XIV), ranges from 1.0 to 7.0.

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 165

TABLE XII
PC, PREDICTED CLASSES THAT WERE ALSO CHANGED

TABLE XIII
CP, CHANGED CLASSES THAT WERE ALSO PREDICTED

TABLE XIV
UF, UNDERPREDICTION FACTOR

7.3 Relative Rank-Order of Requirements

Estimating cost in requirements selection is often based on the prediction, which
means that requirements predicted to cause change in few entities are regarded cheap,
while requirements predicted to cause change in many entities are regarded expen-
sive. This makes the rank-order of requirements selection equal to a requirements list

166 M. LINDVALL

TABLE XV
ORDERING OF REQUIREMENTS. ORDERING: PREDICTED TO BE CHEAPEST REQUIREMENT FIRST

sorted by the number of items predicted. The way of analyzing whether the require-
ments kept their order used here is to compare the relative order based on the number
of predicted classes with the relative order based on the number of actually changed
classes. In Table XV the requirements in R4 are ordered in terms of the number of
classes that were predicted for each requirement. Note that requirements that predict
the same number of classes are not distinguished from each other, but given the same
ordering number.

EXAMPLE 2. Requirement 1.02 was predicted to cause change in six classes, see
the right part of Table XV. Requirement 1.03 was predicted to cause change in ten
classes. We can say that Requirement 1.02 is predicted to be cheaper than Require-
ment 1.03 in terms of the predicted number of changed classes. The requirements are
rank-ordered as number 17 and number 18 respectively.

The next step is to order the requirements according to the number of classes
that were actually changed per requirement, which is done in Table XVI. The row
showing the previous order (from Table XV) for the requirements indicates any re-
ordering.

TABLE XVI
ORDERING OF REQUIREMENTS; THE ACTUALLY CHEAPEST REQUIREMENT FIRST

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 167

EXAMPLE 3. The requirements 1.02 and 1.03 ordered as 17 and 18 according to
the prediction (Table XV) are now reversed based on the number of classes actually
changed, see right part of Table XVI. This means that Requirement 1.02, which was
predicted to be cheaper than Requirement 1.03, is actually more expensive in terms
of the number of changed classes.

Many (6) of the requirements were predicted to cause change in zero classes (see
Table XV) and therefore are regarded cheapest, zeros are however doubtful and the
analysis is therefore conducted once more, with these requirements excluded, see
Tables XVII and XVIII.

The two tables are illustrated in Fig. 3, which is used for a comparison of the
predicted order with the actual order. The diagram shows the following:

Three requirements were correctly predicted.

Six requirements were relatively more expensive than predicted.

Three requirements were relatively cheaper than predicted.

The maximum difference in order (predicted order–actual order) is three.

The conclusion drawn from this is that even if the predicted order is correct in only
three cases and that in six cases the requirements were relatively more expensive

TABLE XVII
ORDERING OF REQUIREMENTS; REQUIREMENT PREDICTED TO BE CHEAPEST FIRST

TABLE XVIII
ORDERING OF REQUIREMENTS; THE ACTUALLY CHEAPEST REQUIREMENT FIRST

168 M. LINDVALL

FIG. 3. Predicted vs. actual order of requirements.

than predicted, in general the prediction is reliable as the maximum disorder is three.
This means that requirements predicted to be cheap are also relatively cheap. It must
be noted, though, that the range of the number of predicted classes is small (1–6 and
10), while the range of the number of changed classes is greater (0–13 and 42), which
confirms earlier analyses that there is an underprediction. However, the number of
requirements is too small to base a hard conclusion on. Instead the phenomenon
should be observed over time, in this and in other projects.

Answering the Questions on Prediction

Q4.2.2 Was the number of classes to be changed correctly predicted?

A4.2.2 The underprediction factor ranges from 1.0 to 7.0.

Q4.3.1 Were changed classes predicted (CP)?

A4.3.1 The ratio of changed classes that were predicted ranges from 11.9%
to 100%.

Q4.3.2 Were the predicted classes changed (PC)?

A4.3.2 The ratio of predicted classes that were also changed ranges from 60%
to 100%.

Q5 Was the rank-order among requirements the same when it comes to the pre-
dicted and actual change volumes?

A5 The ordering based on predicted number of classes compared to the actual
number of classes should not be literally interpreted. This means that the or-

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 169

dering of requirements is not entirely intact, but the disorder is limited. The
requirements are, however, too few for drawing any hard conclusions.

7.4 Concluding Remarks on This Analysis

The analysis on the requirements level shows that a majority of the requirements
are underpredicted. It is also clear that it is relatively common that classes predicted
for one requirement are not changed because of this particular requirement, but be-
cause of some other requirement. The analysis of the ordering among requirements
based on number of predicted classes shows that the ordering is not kept intact, but
are in general good. Small requirements seem to be small, and vice versa.

8. Models vs. Actual Implementation

Object models and object modeling techniques are often used as design aids, help-
ing designers to identify objects and to structure the system during the development
of the first release. In the PMR-project the design object model was not only devel-
oped during the first release, it was also kept, updated and further used to develop a
set of subsequent releases. During RDIA for these releases the most obvious sign of
this use is that the design object model was used for documentation of the predicted
impact. The result of RDIA was documented using the Objectory case-tool—the set
of new requirements was defined, and traceability links were established between
each new requirement and the predicted set of design objects.

In the first set of analyses in this work, the extent to how well the prediction
matched the actual outcome was investigated. This was done by comparing the set
of predicted classes (documented as a set of design objects) with the set of changed
classes. In the current analysis (the third research issue) we will take a broader ap-
proach comparing the main structural elements of the model with the main structural
elements of the system. The motivation for this analysis is that, as with all sorts of
documentation, the common intuition among practitioners would be that the design
object model would have deteriorated after so long a time after its creation. A dete-
rioration of the object model would make it a inadequate basis for impact analysis.
A related study is also published in [34].

8.1 Contents Analysis—Describing the Abstraction Level

A model is an abstract representation of an object [14]. The design object model
was always intended to serve as an abstract model of the actual system, but how

170 M. LINDVALL

FIG. 4. The relationship between models and code for R3 to R6.

abstract? Abstract means emphasizing important entities, while suppressing details
and less important entities. The intention of this analysis is to describe the abstraction
level of the design object model. We do this done by comparing the content of the
model with the actual system in two ways. First we compare the part of the design ob-
ject model corresponding to C++ classes with the whole C++ implementation. As the
first analysis shows that there is almost a one-to-one relationship between objects and
classes and their inheritance relationships, we proceed with a second analysis. In the
second analysis we select a subset of objects and corresponding classes and exam-
ine these. By doing this we are able to investigate how the inheritance structure, the
relations and the operations/member functions change over time for a well-defined
and constant set of objects and classes.

The analysis covers four object models and three releases of source code, Fig. 4.
The first model, R3M, played the role as an abstract model of the third release

of the system, R3S. R3M together with the system R3S served as input to the im-
pact analysis conducted prior to release R4S. When the impact analysis was done,
the R3M model had been updated and now described (predicted) the system to be,
namely R4S. The new model is called R4IA. When R4S was developed, R4IA was
updated to adjust for the changes that were not anticipated. R4IA then became R4M,
which is an abstract model of the system.

The main structural elements in use in the design object model that we have se-
lected as elements for analysis are

• objects,

• operations,

• inheritance relations, and

• inter-object relations.

The corresponding structural elements in object-oriented source code are

• classes,

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 171

• member functions,

• inheritance relations, and

• inter-class relations.

Hereafter we refer to design objects as “objects” or “design objects” and to C++
classes as “classes” or “source code classes”. Thus “object” never refers to the source
code. “Class” never refers to the design object model.

8.2 Questions Regarding the Design Model

We will now investigate how well the content of the design object model describes
the system, which generates the following questions:

Q6 Is the object model a good abstraction of the system?
Q6.1 On the object level?

Q6.1.1 How many objects are there in the object model?
Q6.1.2 How many classes are there in the source code?

Q6.2 On the method level?
Q6.2.1 How many operations are there in the model?
Q6.2.2 How many member functions are there in the source code?

Q6.3 On the inheritance level?
Q6.3.1 How many inheritance relations are there in the model?
Q6.3.2 How many inheritance relations are there in the source code?

Q6.4 On the inter-object/class relations level?
Q6.4.1 How many inter-object relations are there in the source code?
Q6.4.2 How many inter-class relations are there in the model?

Q6.5 Will the answers be the same for a constant set of classes?

8.3 Preparation

In this analysis the C++-related part of the system and its corresponding design
object model is analyzed to describe the level of abstraction. The analysis of the de-
sign object model was conducted by first identifying all the design objects directly
corresponding to C++ classes.4 When the set of design objects was identified, all
operations (corresponding to member functions) associated with these design ob-
jects were identified. Last, all relations between any two design objects in the set
were identified. The result of the analysis of the design object model, i.e., a count
of the number of items in each set, is presented in the first row of Table XIX. The

4Design objects not included are, for example, database tables.

172 M. LINDVALL

analysis of the C++ source code was conducted in a similar way. The C++ classes
were identified, all member functions associated with these classes were identified,
and eventually, all relations between the classes were identified. While a relation be-
tween two design objects is well-defined, it is not the common case with relations
between C++ classes. Our definition of an inter-class relation is as follows.

DEFINITION 3. A relation between class A and B occurs if class A references
class B by mentioning its name in a source code statement, which is not a file name.

The implication of this definition is that the relation between C++ classes is uni-
directional, which corresponds to the definition of relations between design objects.
The problem with the definition is that it also includes inheritance relations, which
therefore must be compensated for. To compensate for this fact we have included the
inheritance relations in the set of object-relations.

It is important to note that member functions are counted using a different tech-
nique than was used in previous sections. The technique used here is based on an
analysis of the assembly files, thus after the compilation, rather than analysis of the
C++ source code itself. The result is a larger number of member functions, which
corresponds to a conservative measure of the number of member functions. Count-
ing member functions in C++ source code corresponds to an optimistic measure.

8.4 Analysis

The analysis results in a table representing the object models (Table XIX), a table
representing the source code releases (Table XX), and a table with the calculated
abstraction factors (Table XXI). The factors are calculated as the value for the source
code divided by the corresponding value for the model.

TABLE XIX
THE FOUR DESIGN OBJECT MODELS AND THEIR CONTENT

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 173

TABLE XX
THE THREE RELEASES AND THEIR CONTENT

TABLE XXI
FACTORS OF ABSTRACTION, MODEL VS. SYSTEM SOURCE CODE

8.5 Discussion

The comparison between the various models and the corresponding system source
code in the various releases shows that both the models and the source code grew in
all of the four aspects that we have analyzed. This is a sign of the evolution of the
system and also verifies the assumption that time is spent on the design object model
with the intention of keeping it alive and up-to-date with the source code.

It is interesting to note the one-to-one correspondence on the object/class level,
which is almost true on the inheritance level as well, with R3M as an exception. The
more detailed levels, inter-object/class relations and operations/member functions,
deviate more.

Knowing that the skeleton of source code of the first release of the system was gen-
erated directly from the design object model, it is clear that over the years the number

174 M. LINDVALL

of member functions has increased in a way that is not reflected in the model. The
number of object/classes, on the other hand, has not changed much in comparison
with the number of member functions. The great difference in the number of rela-
tions tells us that the actual interaction between C++ classes is much more complex
than is shown in the model.

8.6 Describing Abstraction Using a Constant Set of Objects

Now when the abstraction level considering objects/classes is quantified to be one-
to-one (one design object maps to one class), we will investigate how a well-defined
subset of the C++ source classes change over time and how that change is reflected by
change in the corresponding models. Let us call this subset a baseline to be used for
comparisons, not only between model and system, but also between releases. While
the model and the system grow in many directions, the purpose of this baseline is
to provide a constant set of objects/classes to investigate how relations change in
more detail. The analysis resembles in much the kind of analysis we conducted in
Section 8.4, with the difference that 96 classes that existed in all three releases and
were possible to trace by name to their 96 corresponding design objects were selected
for analysis. Thus these 96 objects can be found in all models (R3M, R4IA, and
R4M) and the corresponding 96 classes (object name = class name) can be found in
the source code of all releases (R3S and R4S).

All relations between the design objects and the classes, respectively, were identi-
fied. Of the 96 classes, 70 (72.9%) were changed in the transition between R3S and
R4S. Thus a major part of the changed system is represented by this set of classes.

8.7 Inheritance Relations Change

The data showing how inheritance relations in the models correspond to the source
code is presented in Table XXII. Total no. relations in modelrepresents all inheri-
tance relations in the model that are defined between any of the investigated design
objects. No. relations only in modelrepresents the inheritance relations that could not
be traced to corresponding inheritance relations in the source code. No. relations in
both model and systemrepresents the inheritance relations in the model that could be
traced to corresponding inheritance relations in the source code. No. relations only in
systemrepresents the inheritance relations in the system source code that could not
be traced to corresponding inheritance relations in the design object model. Total no.
relations in system, finally, represents the total number of inheritance relations in the
system source code.

The table and the diagram show that there was a great discrepancy between the
model R3M and the source code R3S, which was adjusted in the subsequent model

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 175

TABLE XXII
INHERITANCE RELATIONS AND THE MODEL’S REPRESENTATION OF THE SYSTEM

R4IA and then stabilized. It should be noted that the inheritance hierarchy was un-
changed as regards this set of 96 classes. Thus the 41 inheritance relations between
classes in the source code remained completely unchanged in the three releases.
What we see in the table and in the diagram is thus an effort to seek conformance of
the model to the source code, i.e., the model has changed, but not the source code.

8.8 Inter-Object/Class Relations Change

While the inheritance hierarchy was stable and remained unchanged as regards
these three releases, this was not the case as regards inter-class relations. How inter-
class relations were changed over time is shown in Table XXII. The value in each cell
represents the number of inter-class relations present. The set of unchanged relations
represents a large part of all relations: 90.9% (450/495).

Analysis shows that 6 relations were deleted and 28 were added for the creation
of R4. The change of inter-class relations is thus relatively small. The interesting
part, though, is that in a constant set of classes which represent a major part of the
changes in the system where the inheritance hierarchy is stable, there still is a need
of removing and adding inter-class relations.

Let us now see how the models mirror this change, which is presented in Ta-
ble XXIII. The cells in the table are first explained. Total no. relations in model
represents all relations in the model that are defined between any of the investigated
design objects. No. relations only in modelrepresents the relations that could not
be traced to corresponding relations in the source code. No. relations in both model
and systemrepresents the inter-object relations in the model that could be traced to
corresponding inter-class relations in the source code. No. relations only in system
represents the inter-class relations in the system source code that could not be traced
to corresponding inter-object relations in the design object model. Total no. relations

176 M. LINDVALL

TABLE XXIII
INTER-OBJECT/CLASS RELATIONS FOR MODELS AND SOURCE CODE

in systemrepresents the total number of inter-class relations in the system source
code.

The same pattern as was found for the inheritance hierarchy can be seen here as
well. The model R3M diverges relatively largely from the system, but is adjusted
in the model R4IA. The number of inter-object relations has increased dramatically,
which not only accounts for the deletions (6) and additions (28), but must be seen as a
common improvement of the model. There is, however, a great discrepancy between
the model and the source code as regards inter-class relations. The discrepancy varies
over time, but is stabilized with a discrepancy factor of 2.8 ((163+13)/(163+323)).

8.9 Discussion

This detailed analysis of the design object model compared with the source code
confirms the earlier results showing that the actual relations between classes are
much more complex than the model indicates.

8.10 Answers to Questions Raised by the Design Model

Q6 Is the object model a good abstraction of the system?

Q6.1 On the object level?

A6.1 There is a very high correspondence between the model and the system
on the Object/Class level, the abstraction level is 1.0 in all cases.

Q6.2 On the method level?

A6.2 There is a lower correspondence on the operations/member function level
starting with a factor of 2.2 later stabilizing at 1.8.

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 177

Q6.3 On the inheritance level?

A6.3 The deviation between model and system on the inheritance level starts
with a high factor (2.9), but the model becomes adjusted along the way
and stabilizes at 1.3.

Q6.4 On the inter-object/class relations level?

A6.4 The deviation on the inter-object/class level is high in the first model
(5.3), but decreases to 2.8.

Q6.5 Will the answers be the same for a constant set of classes?

A6.5 The inheritance relations in the source codewere constant over the three
releases, but not in the model. This is interpreted as an effort to seek
conformance of the model to the source code. The inter-class relations
changed some, but not much during the transition from release R3S to
release R4S. The model R3M diverges relatively largely from the sys-
tem as regards inter-object/class relations, but is slightly adjusted in the
model R4IA. The number of inter-object relations has increased signifi-
cantly, which must be seen as a common improvement of the model. The
final discrepancy factor regarding inter-object/class relations is 2.8.

8.11 Concluding Remarks on This Analysis

We have compared the three design object models with the corresponding source
code in order to characterize the models’ level of abstraction and how they reflect
changes that occur in the source code.

The abstraction level can be characterized as a one-to-one mapping between de-
sign objects and classes, and almost the same regarding the inheritance hierarchy.
There is an abstraction regarding operations/member functions, which is about 1.8.
The greatest abstraction is about 3, regarding inter-object/class relations.

In a situation where a constant set of classes are selected, where the inheritance
hierarchy is also constant, we have seen that the previous results are confirmed. We
have also seen that changes as regards inter-class relations, which are relatively few
even though many of the classes changed (70 of 96), are not clearly captured by the
model.

The results confirm the common belief among analysts that the model is a good
abstraction of the system and the common belief among designers/programmers that
the model is not a good abstraction of the system. In fact, both groups are right. It
serves as a good abstraction—on the object/class level and regarding the inheritance
hierarchy, but it certainly lacks information (which is a consequence of abstraction)
on more detailed levels.

178 M. LINDVALL

The implication of this lack of information is that it is doubtful whether to use
the model for dependency analysis as a part of RDIA. The real world is simply more
complex than the model indicates. The model can still be useful for documenting
impact analyses, provided that it is kept up-to-date, at least as regards objects/classes.

9. Class Size

In the source code of an object-oriented system, the most prominent entity is the
class. The class has many different characteristics which can affect its likelihood to
change, and in this section, which deals with the fourth research issue, we will search
for patterns regarding one of these characteristics: the size of the class. We will inves-
tigate whether large classes were changed or not. We will also investigate whether
it is likely that developers conducting RDIA base their prediction, consciously or
not, on such a factor as size. Size is a factor that is likely to explain why a class
is changed. Let us use an extreme example for illustration. Assume that we have a
system of 1001 classes of varying sizes. One class contains about 10 000 lines of
source code, the other 1000 contain only 10 lines each. If a developer had to choose
ten classes as candidates for change, no doubt that the 10 000-lines class would be
one of the classes selected. This is an extreme example, but intuition tells us that
such a relationship is possible. In this section we will see if the reasoning holds for
the PMR-project. We will also calculate how large a part of the system, in terms of
uncommented lines of source code, was covered by the changed set of classes and
the predicted set of classes, respectively. This section was also published in [33].

9.1 Questions Regarding Class Size

The size is measured in terms of number of uncommented lines of source code,
and the source code is counted in the C++ files in the system release. In each analysis,
the classes are divided into two categories: changed or unchanged, and predicted or
non-predicted. For each analysis the distribution of the sizes of the changed/predicted
classes is presented in one box plot and compared with the distribution of the size of
the unchanged/non-predicted classes.

The three questions:

Q7 Were large classes changed?
Q8 Were large classes predicted?
Q9 Were large classes predicted compared to changed classes?

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 179

9.2 Size—Changed vs. Unchanged Classes
The distribution of the size of unchanged classes is compared with the distribution

of the size for changed classes (see Table XXIV). The changed classes are measured
in terms of their size in R3. The distribution of the unchanged classes is kept fairly
tight with a median of 47.0. The distribution of the changed classes, on the other
hand, is skewed to the left and much wider with a median of 175.0. The median
differs by a factor of 3.9 (175.0/47.0). The observation is that unchanged classes are
smaller than changed classes, but a few large classes also remained unchanged.

To test whether the difference in the median value is statistically significant the
median test is conducted.

The statistics used for the median test are presented in Table XXV. It shows how
the classes in the two groups discriminate above and below the combined median
of 108.5. The χ -test is calculated from the data in the table, resulting in χ = 14.35
which is larger than the critical value of 6.64. The conclusion is that the 0-hypothesis
that the median values for the two groups are not different is rejectedon the 0.01
level. The conclusion is that the median of the size of changed classes is larger than
unchanged classes.

9.3 Size—Predicted vs. Unpredicted Classes

An analysis of non-predicted classes vs. predicted classes was also carried out (see
Table XXIV). The distribution shows a median for non-predicted classes of 80.0 to

TABLE XXIV
STATISTICS FOR UNCHANGED CLASSES VS. CHANGED CLASSES

TABLE XXV
SIZE DISTRIBUTIONS FOR CLASSES

180 M. LINDVALL

TABLE XXVI
STATISTICS FOR NON-PREDICTED CLASSES VS. PREDICTED CLASSES

TABLE XXVII
SIZE DISTRIBUTIONS FOR CLASSES, RELATED TO COMBINED MEDIAN: 108.5

be compared with non-predicted classes: 315.0. A factor of 3.9 (315.0/80.0). The
numbers indicate that the predicted classes are generally large, while the majority of
the non-predicted classes are small.

The median test was also carried out for the predicted sets.
The statistics for the median test are presented in Table XXVII. The combined

median is 108.5. The χ -test results in χ = 23.03—the 0-hypothesis is rejectedat the
0.01 level. The conclusion is that the median of the size of predicted classes is larger
than non-predicted classes.

9.4 Size—Predicted vs. Changed Classes

We have seen that the median value of predicted classes is larger than the median
value for unpredicted classes. The same is true for changed classes compared with
unchanged classes. We will now compare predicted classes with changed classes
as regards size. The median value for predicted classes is however greater than the
median value for changed classes, see Table XXVIII.

To test whether the difference in the median value is statistically significant the
median test is conducted.

The combined median is 230.0 (Table XXIX). The χ -test results in χ = 7.88
which is larger than the critical value 6.64. The conclusion is that the 0-hypothesis
that the median values for the two groups are not different is rejectedon the 0.01

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 181

TABLE XXVIII
STATISTICS FOR BOX PLOT IN PREDICTED VS. CHANGED CLASSES IN R4

TABLE XXIX
SIZE DISTRIBUTIONS FOR CLASSES, RELATED TO COMBINED MEDIAN: 230.0

level. Our conclusion is that the median of the size of predicted classes is larger than
changed classes.

9.5 Answers to Questions Regarding Class Size

Q7 Were large classes changed?

A7 The median-based factor is 3.9 indicating that, in general, changed classes
are large, while unchanged classes are small. The median test shows that the
difference is significant on the 0.01 level.

Q8 Were large classes predicted?

A8 The median-based factor is 3.9 indicating that, in general, predicted classes
are large, while non-predicted classes are small. The median test shows that
the difference is significant on the 0.01 level.

Q9 Were large classes predicted compared to changed classes?

A9 The median-based factor is 1.8 indicating that, in general, predicted classes
are larger than the changed classes. The median test shows that the difference
is significant on the 0.01 level.

182 M. LINDVALL

9.6 Discussion

The analyses indicate that large classes are changed, while small classes remain
unchanged. They also indicate that large classes were predicted which leads to the
conclusion that class size may be one of the ingredients used by developers, maybe
unconsciously, when searching for candidates for change. A further investigation of
the large outliers in R4 that were non-predicted shows that all 12 of the outliers (non-
predicted) were actually changed. According to these results an investigation based
on the largest classes should be an strategy to encourage. The comparison between
the median value for predicted and changed classes results in that the median value
for changed classes is greater. Thus large classes are predicted, while a set of large
classes are non-predicted but changed.

10. Relations between Classes

In an object-oriented system there are classes, and relations tie classes together.
Without the relations, the classes would be isolated chunks of data and code totally
independent of other classes. Relations between classes make it possible for one class
to take advantage, in different ways, of other classes. The object-oriented paradigm is
perhaps most known because of the inheritance relation, which is one of the possible
relations, but there are also others. While the inheritance relation makes it possible
for one class to inherit (copy) the properties of another class, the communications
relation makes it possible for one class (the sender) to send messages (invoke func-
tions) to another class (the receiver). Relations can be seen in another perspective:
as a concern of class visibility. To be able to send a message to a class the receiving
class must be visible to the sending class. The inverse is not true: the sender of the
message is not necessarily visible to the receiver of the message. Visibility means
that the receiving class’s name is, at least, mentioned (referenced) by the sending
class, which in turn creates a unidirectional coupling between the two classes. Such
a coupling is certainly a source for a ripple of change, i.e., that a change in one class
causes changes to occur in other classes. The following two examples show what is
meant. Assume that class A references class B, but the opposite is not true. Then

1. If the name of class B is changed, then all references in A to B must be changed
to the new name.

2. If class B is removed from the system, then all references in A to B must be
removed.

A strong factor here is the degree of coupling between classes. Think of a system
with N classes which is completely coupled in that each class references all other

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 183

classes. In such a system the examples above would generate changes, not only in
class A, but in N −1 classes. The number of unidirectional relations in such a system
would be N(N − 1).

Besides these obvious examples of ripple effects, there are other but more sub-
tle situations where change in one class will cause change in other classes. For the
RDIA, however, it is important to be aware of whether this is a real problem or not
and a factor that should be regarded during the analysis process. Tools for impact
analysis are often built upon the assumption that dependencies between entities are
the source for change propagation. The analyses presented in this section investigate
this assumption.

10.1 Questions Regarding Relations

The questions regarding relations are broken down in the following way:

Q10 Is there a pattern related to relations?

It is desirable to compare what was predicted to change with the actual changes, so
the question is divided into the following subquestions:

Q10.1 Can relations describe clusters of changed and unchanged classes?
Q10.2 Can relations describe clusters of predicted and unpredicted classes?
Q10.3 Can inheritance relations describe clusters of changed and unchanged

classes?
Q10.4 Can inheritance relations describe clusters of predicted and unpre-

dicted classes?

Let us regard the system as a set of unique unidirectional binary relations between
two different classes. Hence, each class can occur as a referencing class and/or ref-

FIG. 5. Classification of relations in Fig. 6.

184 M. LINDVALL

FIG. 6. Example of relationships between classes (see Fig. 5).

TABLE XXX
RELATIONS BETWEEN REFERENCING AND REFERENCED CLASSES

erenced class in many different relations, but there is only one unique occurrence of
each relation. Classes are either changed (predicted) or unchanged (non-predicted).
Let us divide the set into four disjunct subsets (Table XXX)

“U->U”: Relations where both classes are unchanged.

“C->U”: Referencing class is changed, referenced class is unchanged.

“U->C”: Referencing class is unchanged, referenced class is changed.

“C->C”: Relations where both classes are changed.

Clusters of changed/predicted classes and unchanged/non-predicted classes would
occur if the changed/predicted classes had many relations with other changed/predict-
ed classes and few relations with unchanged/non-predicted classes, and vice versa.
Table XXX shows how the contingency table is used for analysis in this section.

Each of the questions is answered by identifying patterns according to how their
relations distribute among the four subsets. In each analysis, the set of predicted
or changedclasses is compared with the set of relations as was extracted from the
previous release, which was at hand during the impact analysis. This means that the

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 185

prediction made for Release 4 is compared with the relations in the source code from
Release 3. The consequence is that added or deleted relations are not regarded and
the analysis of R4 examines the relations in R3, but not the relations added or deleted
during the R4-project in order to develop release R4.

10.2 Inter-class Relations—Changed vs. Unchanged

As we mentioned above, relations can be of several types. In this analysis we will
analyze all kinds of inter-class relations together including inheritance relations.

The data for the first analysis, all relations, was collected by extracting, for each
class, all unique references to other classes. The number of relations according to this
definition is 572. The number of references, for each class, to other classes ranges
between 1 and 23 and the median number is 4. This should be compared with a
situation where a system with 136 classes is completely coupled. The number of
unidirectional binary relations would be 136(136 − 1) = 18360. The system is thus
far from being completely coupled.

The 572 relations and the four subsets are presented in Table XXXI. If it always
were the case that a relation between two classes transferred change from one class
to another then the two subsets “U->U” and “C->C” would together contain the main
part of the relations, only leaving a few for “U->C” and “C->U”. As a matter of fact,
it would be possible to measure how well the four subsets conform to this pattern by
using the kappa value. For R4 the kappa value is −0.02 (poor), which means that the
described pattern does not occur here.

The relative number of relations in the “C->C” subset and the number of changed
classes in this set indicate that a majority of the changed classes is related to other
changed classes and not isolated as regards relations. As many as 59.8% of the rela-
tions are found in “C->C” together with 89.3% (84 of 94) of the changed classes.

TABLE XXXI
R4S 80. RELATIONS—ACTUAL. ALL CHANGES INCLUDED

186 M. LINDVALL

10.3 Inter-Class Relations—Predicted vs. Non-Predicted

In this analysis we will investigate whether inter-class relations could be used to
describe the prediction as clusters of predicted and non-predicted classes. For this
analysis the set of predicted classes are regarded “changed” and all other classes
regarded “unchanged” which was the point of the prediction.

The result is the following. The kappa value for R4 is 0.09 (Table XXXII), which
indicate a slight conformance to the pattern where “U->U” and “C->C” would dom-
inate the table.

There is a relatively small number of relations in the sub set “C->C”, 15.0% in
Table XXXII and 7.9% in Table XXXIII. The last fact is important when we remind
ourselves of the number of classes involved: 30 were predicted to be changed, but
it must be remembered that we compare with the classes that existed already in the
previous release. An adjustment of the figures shows that all 30 classes that were
predicted in R4 also existed in R3. Let us also consider how manyclasses there are
in the subset “C->C”. In the case of R4, 29 of 30 predicted and existing classes reside
in “C->C”. This means that there are relations between the classes in the predicted
set, the classes are not isolated from each other. The analysis shows that the classes
predicted to be changed are related to each other in some way.

TABLE XXXII
R3S 30. ALL RELATIONS—PREDICTED SET OF CLASSES

TABLE XXXIII
R4S 36. ALL RELATIONS—PREDICTED SET OF CLASSES

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 187

10.4 Inheritance Relations—Changed vs. Unchanged

While the previous analysis included all kinds of relations, the following analyses
only include inheritance relations. The inheritance relations were extracted from the
derivation list for each class in the header files of the system. The inheritance rela-
tions follow the same patterns as other relations: the inheriting class, the subclass,
references the class to inherit from, the superclass. The superclass does not reference
the subclass, and the subclass is thus not visible to the superclass. The superclass
does not know which subclasses inherit from it. We illustrate with two examples.

A changed name of a superclass, for example, requires that all references to the
superclass in subclasses must be changed.

A removed superclass means that the subclass’s references must be removed,
but also that all other classes that use the inherited properties must be changed.

The set of inheritance relations is a much smaller subset of the set of all relations
as discussed above. In R4S, for example, there were 66 inheritance relations involv-
ing 75 classes. Of these 75 classes the great majority (73) has a single inheritance
and 2 have multiple inheritance from two super classes. Taking the viewpoint from
superclasses, the median value of subclasses per superclass is 2 and the maximum
value is 12.

The 64 relations between the 73 super- and subclasses in R3 are distributed among
the four subsets as presented in Table XXXIV.

The same reasoning as above is applied here, too. The kappa value would indicate
whether there is a pattern that relations gather in the subset “U->U” and “C->C”.
The kappa value for Table XXXIV is −0.24 (poor). The kappa values thus do not
indicate a common pattern, even if a fair correspondence (0.21) is observed in the
latter case.

TABLE XXXIV
R4S 94. INHERITANCE RELATIONS—ACTUAL. ALL CHANGES INCLUDED

188 M. LINDVALL

10.5 Inheritance Relations—Predicted vs. Non-Predicted

In the analyses carried out above we have used the set of actually changed classes.
We will now analyze the set of predicted classes and their relations in the same way,
which can give an indication of whether relations were used as a vehicle for finding
changed classes during the prediction.

The set of predicted classes are considered changed in this analysis, which was
actually almost true in both cases, see previous sections for more information. The
set is again compared with the set of relations which was extracted from the previous
release. Thus, the prediction for Release R4 is compared with the relations from
Release R3.

The kappa value is −0.19 (poor) for Table XXXV and 0.13 (slight) for Ta-
ble XXXVI, which conforms to previous kappa values regarding associations.

The most striking fact is that there are very few relations between the classes
in the predicted set: 0 (Table XXXV) and 2 (Table XXXVI). This is interpreted
as inheritance not being considered as an indication of change during the impact
analysis.

TABLE XXXV
R3S 30. INHERITANCE RELATIONS—PREDICTED

TABLE XXXVI
R4S 36. INHERITANCE RELATIONS—PREDICTED

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 189

10.6 Answering the Questions

Based on the analyses above we will now return to the questions stated at the
beginning of the section.

Q10 Is there a pattern related to relations?

A10 No pattern with a significant kappa value was found in any of the analyses.
Analyses of the “C->C” subset showed that, in the case of all relations, a
majority of the classes in the set are connected. This was true both for actual
outcome and predicted, and for actual inheritance relations. In the case of
predicted inheritance relations, this was not true.

Q10.1 Can relations describe clusters of changed and unchanged classes?

A10.1 No pattern with a significant kappa value was found even if the ma-
jority of relations and changed classes were found in “C->C”. An
investigation of the subset “C->C” shows that 61.0% of the relations
and 84.0% of the changed classes reside in this subset. This indicates
that a majority of the changed classes is related to other changed
classes and not isolated as regards relations as defined here.

Q10.2 Can relations describe clusters of predicted and unpredicted classes?

A10.2 No pattern with a significant kappa value was found even if the ma-
jority of relations and predicted classes were found in “C->C”. The
kappa values were 0.09 and 0.14 which indicates a slight confor-
mance to the kappa-pattern. As many as 29 of 30 predicted and ex-
isting classes reside in “C->C”.

Q10.3 Can inheritance relations describe clusters of changed and unchanged
classes?

A10.3 No pattern with a significant kappa value was found even if the ma-
jority of inheritance relations and changed classes were found in the
subset “C->C”. The kappa value is −0.24 and 0.21, respectively. The
relative number of relations in the subset “C->C” and the relative
number of classes in the subset, 34.8% and 60% for R4.

Q10.4 Can inheritance relations describe clusters of predicted and unpre-
dicted classes?

A10.4 No pattern with a significant kappa value was found. Few inheritance
relations between predicted classes were found in the subset “C->C”.
The kappa value is −0.19 for and 0.13. There are very few relations
in the subset “C->C” 0 and 2.

190 M. LINDVALL

10.7 Concluding Remarks on This Analysis

The following conclusions are drawn based on the results from the analyses:

• No pattern with a significant kappa value was found.

• There are reasons for using all kind of relations when looking for candidates of
change during impact analysis.

• There are reasons to believe that inheritance relations were not used as an indi-
cator of change during impact analysis.

• There are reasons to believe that other relations were used as indicators of
change during impact analysis.

The relatively low kappa values indicate that relations do not describe changed/pre-
dicted and unchanged/unpredicted classes as clusters. This means that the assump-
tion that dependencies in terms of relations between classes propagate change may
be true, but not in a simple and obvious way. The implication is that when a
changed class is encountered, the probability is relatively low that each related class
is changed, too. Thus it is reasonable to believe that an impact analysis tool which
propagates change based on relational-dependencies would generate too large a set
of change candidates than would be useful.

11. Discussion of Findings

11.1 Qualitative and Quantitative Results

In this section we will connect the qualitative and quantitative results, which will
be commented on and interpreted.

11.2 Questionnaire Completed by Developers

After that release R4 was implemented we asked participating developers to fill
out a questionnaire on the RDIA, the information available and used, and finally how
they assessed the prediction compared with the actual result. Here are some of the
responses we got from the questionnaire.

Developers’ perceived strengths with requirements-driven impact analysis are, for
example:

Developers have a chance to get to know the new requirements, the system, and
the changes that have to be conducted in order to implement the requirements.
It is a way of learning by doing in a structured way.

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 191

The result from RDIA constitutes a basis for further estimation of effort and
resources required. It is also useful for final design and implementation of the
requirements as designers know exactly where to start.

Perceived weaknesses are:

To achieve an accurate result using RDIA requires deep insight into the system
and its structure.

RDIA consumes much effort and takes much time to conduct.

It is easy to become optimistic and believe that the result from RDIA covers all
necessary changes and all aspects of the requirements, which is not the case.

Developers were asked about what kind of information they used during the RDIA to
identify software entities that would be changed:

The most common way to acquire information was to interview knowledgeable
developers of what they believed would be the effect of implementing a new re-
quirement. The explanation developers provided is that it is highly cost-effective
to ask a knowledgeable person instead of searching in documents or other forms
of information sources. Extensive communication between developers was also
mentioned as a success factor for software development projects.

Analysis of source code was the second most common way of acquiring infor-
mation.

While all developers said they interviewed other developers and consulted
source code, about half of the developers answered that they also consulted the
information stored in Objectory SE. On the question about the reason why in-
formation in Objectory SE was not used more extensively, developers answered
that the information in Objectory SE was not detailed enough for RDIA, and that
they did not believe that the information in the model was up-to-date. “Source
code, on the other hand, is always up-to-date”. Among some developers, es-
pecially newcomers, the attitude towards Objectory was almost negative. Ob-
jectory SE was, however, mentioned as a good tool for documenting RDIA and
for answering questions about the relation between requirements and design
objects.

On the question about what they believed about the result from RDIA immediately
after RDIA had been conducted, developers gave the following answers.

About half of the developers doubted that they had found all the changed soft-
ware entities, but believed that the result was accurate enough. One developer
mentioned that he had conducted RDIA before and therefore knew that “some
changes are always forgotten and the prediction has a tendency to be too opti-
mistic”.

192 M. LINDVALL

The other developers said they believed that almost all changed software entities
were found during RDIA.

On the question about how they considered the result from RDIA after completion of
implementation, the following characteristic examples of answers were given:

• We were pretty close, one developer said.

• The result from RDIA was relatively good in that we found all software entities,
but for each entity more work than expected was conducted, another developer
stated.

There was a consensus among developers that the result from RDIA should be treated
conservatively rather than optimistically, which means that it is better that too many
software entities are predicted than too few.

Developers were asked to comment about what makes it easy and hard respec-
tively, to conduct RDIA. Their answers are as follows.

• Well-defined requirements make it easier.

• “Small” requirements make it easier.

• Repetitious requirements, i.e., requirements of a certain kind that appear in
nearly every release around which experience is built make it easier.

• Knowledge about the system makes it easier.

• Loose coupling between software entities makes it easier.

• Localized functionality makes it easier.

• Ill-defined requirements make it harder.

• Many subclasses (inheritance) make it harder.

All developers said they wanted to continue with RDIA in the future, but suggested
improvements:

• To use the source code analysis tool, Sniff, more extensively in order to reveal
dependencies between source code entities.

• To up-date the information in Objectory SE in a structured way, for example, by
incorporating a reverse-engineering feature that generates object models from
analyses of source code.

• To annotate each check-in in SCCS with explicit comments about member func-
tions that were added, changed, or deleted.

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 193

12. Comments Regarding RDIA

Our comments regarding RDIA and developers’ opinions:

1. RDIA seems to be a good exercise for team building and the way it is conducted
in the PMR-project seems to be valuable alternating between individual investi-
gations and group discussions. It allows the possibility to discuss the prediction
and to identify potential forgotten aspects at the same time as it allows develop-
ers to work individually on the problem. It certainly gives developers a chance
to get to know the system, the new requirements, and the changes they generate
at a very early stage in the release-project.

2. We believe RDIA could be performed in a more structured way using the avail-
able information in terms of object models, source code, and text documents.
We are surprised that developers are very good at writing documentation while
at the same time being reluctant to read other developers’ documents. Instead
RDIA relies on interviews with knowledgeable developers in an informal way.
A structured approach using available written information may result in better
prediction.

3. We are surprised of the attitude towards Objectory SE among developers. After
five years experience with it, developers are in general not too happy about
the tool. The pattern is that new developers are more negative than developers
who have been with the project for a longer time. This is surprising as the
intention was to ease newcomers’ understanding of the system by providing a
set of abstract models of it. This has obviously not happened even though much
effort has been spent on training and working with the models.

4. It was also notable that tools available at the work-place were not used in a
coherent manner—some developers used the tools extensively, some were un-
aware of their existence. The basic tool set seemed to be based on very fun-
damental tools: EMACS, SCCS, make, a debugger, and a compiler and linker,
while other tools such as the source code browser, SNIFF, were used by some
developers, but not by others.

12.1 Summary of Quantitative Results

In brief, the results from the previous sections show that

• Change was underpredicted by a factor of 2.2–3.1 on the class level.

• Change was underpredicted by a factor of 4.5–6.1 on the method level.

• Change was underpredicted by a factor of 1.0–7.0 per requirement.

• Size seems to explain prediction: large classes are predicted.

194 M. LINDVALL

Size seems to explain change: large classes are changed.

The design object model is a one-to-one abstraction of the source code on the
object/class level. This is almost true as regards the inheritance hierarchy, too.
There is a discrepancy between methods in the model and member functions in
the code. The largest discrepancy is, however, on the relations level—there are
about 3 times as many relations between classes than between design objects.

The design object model is changed over time—the conclusion drawn is that it
is actively used and updated.

In a selected set of 96 design objects/classes that existed in all models and all
releases of source code it was shown that the inheritance hierarchy in the source
code was completely stable even though many of the classes were changed.

Relations do not seem to explain prediction: when a super-class is predicted to
change, for example, it does not seem to lead to sub-classes are being predicted.

Relations seem not to explain change propagation, even if changed classes are
connected via relations.

The number of relations seems to explain prediction: classes with many rela-
tions to other classes are predicted; classes that reference many other classes
are predicted. Nothing can be said, however, about classes that are referenced
by many classes.

The number of relations seems to explain change: classes with many relations to
other classes are changed; classes that reference many other classes are changed.
Nothing can be said, however, about classes that are referenced by many classes.

12.2 Feeding Back the Results

The result was fed back to developers in order to discuss it, but first we asked
developers for their comments. The answers were mixed, but the common pattern is
that

Developers believed that the prediction was much better than it proved to be.

Even the requirements that were mostly underpredicted were by some develop-
ers regarded as relatively well-predicted.

Some developers thought that the number of changed member functions was
better predicted than the number of changed classes because reasoning on the
member function level requires more detailed knowledge about the required
change.

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 195

Some developers thought that the number of changed classes as better predicted
than the number of changed member functions because classes represent larger
chunks of code and are therefore easier to identify.

All developers were surprised by the large difference between the prediction
and the actual outcome, but found no reason to believe that our analysis was
anything but correct.

When asked about common characteristics among the changed classes devel-
opers mentioned the size: large classes are anticipated to change, while small
ones are not. This was, however, an unspoken theory not used as a guide to find
change candidates during RDIA.

Inheritance was not used as an indication of change propagation and developers
did not believe that inheritance itself generates change.

Dependencies between member functions were used as an indication of change
during RDIA as developers tried to determine which member functions were
dependent on a predicted member function.

12.3 Comments about the Results and the Evaluation

Our comments regarding RDIA and the developers’ opinions, and the actual results
are:

1. At the inception of the research project we did not know whether prediction
of changed software entities was a problem, or the dimensions of the possible
problem. We are surprised that underprediction is of such a large magnitude de-
spite the good conditions in the project. It is notable that the underprediction is
so much greater regarding changed member functions than regarding changed
classes. It is also surprising that the releases were delivered on time despite
these facts. Our conclusion is that good marginal are built into the cost estima-
tion model used in the project, which is also confirmed by interviews with the
project leader—an optimist factor is used to compensate for prediction errors
of this kind. We are also surprised that developers’ knowledge of their own
capability to predict is limited—that developers believe the prediction is much
better than it actually is. Knowledge about the current capability is necessary
in order to understand why the workload was worse than initially planned, for
example. On the other hand, developers appreciate RDIA and want to continue
with it. Developers have told us they feel comfortable after having conducted
RDIA despite the underprediction and of which they knew nothing until we told
them. We see this as a reason to believe that the RDIA process itself has a high
value, perhaps a greater value than the result of the prediction.

196 M. LINDVALL

2. Although we expected this research project to consume much effort, it has
indeed consumed much more effort than expected. It was, for example, sur-
prisingly hard to analyze C++ source code and to measure change over many
versions of a C++ program. It was reasonably simple to analyze change on the
class level, but due to features such as overloading, overriding, inheritance, and
division of definition and declaration into a header and a text file made it hard
and time-consuming to analyze change on the member function level.

3. Written information can be useful during RDIA, but also other information,
such as the edit-history that has proven to be useful for evaluation, can be used
to support RDIA. The edit-history provides data about which software entities
have been changed, when the changes occur and why, together with informa-
tion about what was changed. After working extensively with the edit-history,
we have a strong belief that the data is also useful for conducting RDIA to
achieve a better result. The data is, however, hard to use as is, which is why we
needed to define procedures and build tools to make data more available.

4. Evaluation of RDIA was not conducted by the project developers but by us on
our initiative and would not have been conducted if the release project had not
been part of the research project. We believe that evaluation as such is neces-
sary as a first step to improvement. The first evaluation describes the current
situation and the subsequent evaluations can be used to measure the relative
improvement that has been achieved. Evaluations set focus on the problem and
we have seen that by conducting the evaluations and feeding the result back
developers start thinking about how to improve.

12.4 Explanation Building

The quantitative and qualitative information led to the following hypothesis as an
explanation of the RDIA process as conducted in the PMR-project:

Developers were concerned with determining how each requirement would
cause change in the source code.

The changes in source code were mainly determined by finding ‘starting’ mem-
ber functions to be changed, thus localizing primary changes. This was con-
ducted first by interviewing knowledgeable developers, secondly by analyzing
source code.

Secondary changeswere determined by examining how the member functions
call each other and which other member functions needed to be changed.

The results from this analysis were discussed with the group of developers in
order to reveal change that had not yet been uncovered.

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 197

The procedure was repeated until the group decided that a substantial number
of the changes had been determined.

The number of member functions was used to calculate the estimated cost in
terms of man-hours required.

The selected requirements were implemented.

Evaluation was conducted: The actual number of man-hours spent on the project
and the time for actual delivery was compared with the estimated number of
man-hours and the planned time for delivery.

This RDIA procedure could be characterized as “determining how single require-
ments cause change in member functions”. The evaluation was conducted on the
release level considering the two different time estimates.

12.5 Suggested Improvements

In our analysis we have taken a different perspective which we also suggest as an
improvement for conducting more accurate RDIA. Based on our experiences from
evaluation of RDIA together with the quantitative and qualitative results, the follow-
ing improvements for forthcoming PMR-projects conducting RDIA are suggested:

1. Evaluations of release projects should be conducted on the same granularity
level as prediction are conducted.

2. The requirements-to-member-function-view used during RDIA should be com-
plemented with a release-to-classes-view in order to use characteristics of
classes to find candidates for change.

3. The optimistic prediction should be complemented with a conservative one.
4. The edit-history should be extended, made available and used to support RDIA

and to evaluate the result.
5. Tools should be used to support RDIA.
6. An alternative to using the number of member functions as input to cost-

estimation is to use the prediction on the class level, which historically has
been more accurate.

In the remainder of this section we will explain these items in more detail.

Evaluations of Release Projects

Evaluation carried out as an ordinary task in the release project was conducted on
a high level of abstraction, namely on the effort level. While this level is suitable for
evaluation of the predicted effort compared with the actual one, it does not neces-
sarily reveal underprediction on the software entity level, as is the result from our

198 M. LINDVALL

analysis. The prediction was conducted on the level of classes and member func-
tions. Therefore it seems natural to suggest that to get proper feedback, evaluation
of the accurateness of the prediction should be carried out on the same level as the
prediction was conducted. In this case this means that if prediction is carried out on
the member function level and the number of changed member functions is used to
estimate cost, then the evaluation should be carried out beginning with counting the
actual number of changed member functions.

The cost for conducting evaluation on this detailed level was relatively high for
this research project, while it should be much less now when a set of data collection
and analysis methods have been defined and validated. The benefits from conducting
evaluations on this level are that it will be possible to detect problems with predic-
tion, possible to determine whether improvements have occurred and achieve better
predictions, and thus better cost estimations.

12.6 Complementary Release-to-Class View

As an addition to analyzing the prediction vs. the actual outcome on the mem-
ber function level in the research project we also conducted the analysis on a more
abstract level on the class level and for all requirements together.

Conducting the RDIA on the more concrete level makes the developer focus on
questions of the kind: “How should member functions be changed in order to im-
plement this requirement”. Our suggestion is that a complementaryview should also
be adopted, namely the more abstract view. A more abstract reasoning about the
changes would steer developers’ reasoning to ask questions such as:

“Which classes are changed in each release seemingly independently of the
requirements? (change-prone classes)” and

“What characteristics of classes lead to change in each release?”

The first question would lead to an investigation and identification of a set of
change-prone classes that are changed in each release—such as central classes. All
these classes should then be regarded as candidate classes in the future and inspected
in order to exclude those classes that would not be changed in the current release.

The second question would lead developers to look for large and small classes,
for example. All large classes would be regarded as change candidates and inspected
in order to identify those large classes not needed to be changed during the release.
Small classes would be inspected in order to find the relatively small set of these
classes needed to be changed. The same reasoning could be applied to those classes
with many, respectively few, relations to other classes.

We also have reason to believe that current reasoning about changes in the source
code are not explicitly object-oriented. An indication of this is the focus on changed

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 199

member functions instead of changed classes. The result is that inheritance relations
are not investigated for change. Concretely this means that whenever a superclass
is changed, its subclasses should be investigated for change as well and vice versa.
This is not explicitly conducted today.

The cost of implementing the complementary view is low—it requires that devel-
opers think in another way. Using characteristics among software entities requires
more work, though. It requires that someone analyses the classes in order to find
change candidates, which would be best done with tool support. The benefit would
be better prediction and thus a possibility to produce better plans.

12.7 Complementary Conservative Prediction

We would like to emphasize that the more abstract way of conducting RDIA should
be a complementto the more concrete way as performed today. Obviously the devel-
opers are very accurate in their prediction of finding the classes that will change. Very
few classes are predicted but not changed, on the release level. This is not true on the
requirements level. This means that relatively often a class is predicted to change for
one particular requirement, but is actually changed because of some other require-
ment. The knowledge that predicted classes will always be changed but also many
others indicate that developers find ‘the lowest level’ or that the prediction is opti-
mistic. Optimistic means that the predicted set of classes represents the least possible
amount of work. It cannot be easier, only worse. As some developers mentioned, it
would be preferable also to make a conservative prediction and ‘the worst level’ and
the amount of work will with high probability be less than this level. Successively
the actual outcome should lie somewhere between the predicted conservative and
predicted optimistic level. The next goal would then be to decrease the variation as
the process stabilizes.

The cost associated with producing a conservative prediction depends on its ex-
pected accuracy. The cheapest way to produce a worst prediction would be to predict
all software entities in the system. A more useful prediction requires, however, an en-
tirely different approach than the RDIA approach used today, which may be relatively
expensive to incorporate. Such an approach could, for example, be based on change
propagation techniques mentioned earlier. The risk associated with producing con-
servative predictions is that so large part of the system is predicted that developers
have a hard time to believe it is realistic. The benefit from having a conservative pre-
diction is that the actual result would be somewhere between the optimistic and the
conservative prediction, and a most probable prediction could be determined.

200 M. LINDVALL

12.8 Using Historical Data to Support Prediction

To be able to identify change-prone software entities the information in SCCS must
be extended and be available. We suggest that each change be annotated with the
reason behind the change and what was changed, for example, added, deleted and
changed member functions of a changed class. Together with a tool that lets devel-
oper analyze the edit-history, the possibility to improve prediction would increase
substantially.

The cost associated with finding change-prone software entities can be relatively
low as the data is already available in terms of SCCS edit-histories. To develop a tool
that makes data available for such analyses is also relatively inexpensive as a work-
ing program for internal use could be developed relatively quickly. Extending the
information associated to each source code edit is very inexpensive, but requires that
developers work in a different way—they have to add the information. This might
be a problem as developers can have a hard time understanding why this would be
necessary. The benefit, on the other hand, is that better prediction could be achieved
and also better controls over the change activities, together with better system under-
standing. This is because it provides information about which parts are change-prone
and which parts are not.

12.9 Tool Support

We suggest that source-code browsers like Sniff [49] or source code analysis tools
like CIA++ be incorporated into the project in order to find change candidates based
on dependencies between software entities. In these cases tools are already available
and we have reason to suggest that developers are trained how to use them.

The cost for buying software tools is almost always less than the cost that develop-
ers spend on projects. The cost for convincing developers they should use tools can
very well be higher. The risk is that tools are bought, but not used. To reduce this risk
it is important that tools solve real problems in a convenient way. The benefit from
having good tools that are used is better predictions.

12.10 Alternative Input to Cost Estimation

Prediction was carried out on two different levels: class and member function
level. The prediction based on the number of changed member functions was used as
an input to the cost estimation model while the prediction on the class level was more
accurate. We suggest that a new cost estimation model be used which takes the num-
ber of changed classes as input while the prediction of changed member functions
should still be used, but as input to detailed design and implementation.

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 201

The associated cost lies in correlating cost or effort to change on the class level.
The benefit would be better input to the cost estimation model.

12.11 Discussion on Quantitative and Qualitative Results

Requirements-driven impact analysis is a crucial activity, many subsequent activ-
ities are dependent on its result. Achieving an accurate result from RDIA is hard.
We have seen that experienced and knowledgeable software developers conducting
RDIA in a stable environment still largely underpredict the number of classes and the
number of member functions to be changed. This underprediction is compensated
for during the cost estimation by project leaders who ‘know’ that underprediction is
always the case. On the other hand, developers are not aware themselves of how good
they are in predicting—they are surprised about the large discrepancies between the
prediction and the actual outcome. This is true even after the implementation of the
requirements, which means that developers do not remember how much work was
actually spent on implementing the requirements and therefore believe that the pre-
diction is much better than it actually is. Remembering that the developers studied
were experienced and that the conditions were good, we have reason to believe that
underprediction in other projects might very well be the same or even worse.

On the other hand, the potential for improvements is great. We believe that by com-
bining the requirements-to-member-function view with a release-to-classes-view
much could be gained. Developers should look for classes with certain character-
istics that tend to change, such as large classes, and classes, which tend to change in
every release. This is likely to be a good way to start with hunting down the classes
that are not predicted, but changed. We also recommend to strive for establishing a
conservative prediction and successively narrowing the gap between the optimistic
and the conservative prediction, thus decreasing the variation.

Much time is spent on RDIA and the result is largely underpredicted. Should RDIA

be discarded in the future to save time?
Developers like RDIA and appreciate that it gives them a possibility to review the

requirements, the system, and understand the changes prior to design and imple-
mentation. We feel that RDIA becomes even more valuable when all the experienced
developers have left the project and newcomers are to predict change. It will be even
more important to discuss and analyze each requirement in order to produce a high
quality system on time and within budget. RDIA will be even more important and
we recommend that all available statistics from previous releases be used in order to
support and improve prediction capability. It might even be the case that the process,
actually conducting RDIA, is more important than the product, the prediction itself.
The effect of the major discrepancy between the predicted number of member func-
tions and the actual number of changed member functions could even be limited by

202 M. LINDVALL

treating the prediction on the member function level solely as an implementation pro-
posal, not as a basis for cost estimation. As the prediction of the number of classes
improves, this number should be used for cost estimation instead.

12.12 RDIA Using Models and Traceability

The design object model was used to document the RDIA and was appreciated
by developers for this possibility. On the other hand, some developers distrusted the
model because of lack of information. We will now discuss the possibilities of using
the design object model more extensively in the light of the analyses conducted in
this work. The main reason for this discussion is that we assumed that all models
(the domain object model to the design object models, and the use-case model) and
various forms of traceability could be extensively used during RDIA [27,31]. We
found, however, that this was not practical as requirements stated for the first to the
third release, R1–R3, were formulated on a much higher level of abstraction than the
requirements in R4.

12.13 Other Models for Identification of Change

RDIA was documented by defining traceability links between requirements and
design objects, both stored in Objectory SE. There were, however, also other mod-
els available: the domain object model, the analysis object model, and the use-case
model.

The Use-Case Model

The use-case model has not been changed since the first release, R1, because “new
requirements fitted into the existing set of use-cases”. Our conclusion is that the use-
cases are defined on a very high level of abstraction, as are the initial requirements.
When new requirements, on a finer level of granularity, were added developers saw
no reason for altering the use-cases. Used in this way the use-case model is an indi-
cator of change only if a new requirement did not fit into the existing use-case model,
thus generating entirely new use-cases, or causing change in existing use-cases. On
the other hand, this would be an early warning of relatively large changes of the sys-
tem as the use-case model shows the broad paths the system is designed for. As long
as a new requirement resides inside these paths, changes are relatively small, while
new requirements outside these paths indicate that new paths are needed.

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 203

The Domain Object Model

It was previously reported that the domain object model remained unchanged from
the first release, R1, to the fourth release, R4. The domain object defines the vocab-
ulary needed for building the system was still sufficient.

The Analysis Object Model

The analysis object model lies between the domain object model and the design
object model. It was not changed during R4. The analysis object model is an ideal, or
logical description of the system to be built, while the design object model is a real,
or physical description. The analysts used this fact, as they knew how many physical
files that were needed in order to implement, for example, a new report. For each
new report a new analysis object was defined and between the new report analysis
object and the set of new design objects generated by the report traceability links
were defined. Each of these design objects represented a physical file needed and
by using the traceability links it was possible to relate the logical report object to its
physical implementation as represented by design objects.

Seriousness of Software Change

We have seen that the different models indicate change but on different levels.
We propose a model based on the Software Architecture Analysis Method (SAAM)
(1996) criterion for evaluation of the adaptability in terms of source code impact
factors, see Table XXXVII. The higher the impact factor, the more severe the change.

Our model-related impact factors in Table XXXVIII complement the source code-
related impact factors in Table XXXVII and should be used in combination with
these. For example, an addition of a use-case not related to the existing use-cases
should raise a warning flag that entirely new kinds of functionality of the system
may now be required. Traceability between the different models should ease the
localization of changed objects in related models, and the structure that traceability
links constitute should make it easier to localize where new objects should be added.

12.14 Discussion on RDIA Using Models and Traceability

The use of models and traceability has been discussed and we conclude the fol-
lowing: Objectory SE supports analysis on the object level, thus supporting the more
abstract analysis discussed here. It does not, however, support the more concrete
level—the analysis on the member function level. To serve as good support, it must
be up-dated so that it reflects the source code on a determined level. If the determined

204 M. LINDVALL

TABLE XXXVII
SOURCE CODE-RELATED IMPACT FACTORS ACCORDING TO [35]

TABLE XXXVIII
MODEL-RELATED IMPACT FACTORS

level is, for example, classes, then relations between design objects should mirror the
situation in the source code.

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 205

A new set of model related impact factors for using all available models defined in
Objectory based on the indication of change observed in the PMR-project has been
proposed.

13. Summary and Conclusions

13.1 Summary

The overall goal of this work has been to gather knowledge about RDIA and how
to improve this crucial activity. The overall means has been an empirical study of
RDIA in an industrial object-oriented project and the PMR-project. RDIA has been
carried out as a normal part of project developers’ work. The work on RDIA was pre-
ceded by observational research on traceability between various models during the
development of the first release (R1) of PMR. In the licentiate thesis of this work [27]
it was shown how traceability could be used to aid changing the system in general.
What was lacking for continued research was a concrete real-life problem that could
be treated both quantitatively and qualitatively. At the time of planning the research
project we knew from project developers that project planning was a problem but not
whether RDIA was a problem or not. Actually, project developers stated, at the time
for conducting RDIA for R4, that the main problem was not determining the changes
(conducting RDIA accurately), but to correctly estimate the number of hours (cost
estimation) required [29]. Ericsson would not, however, at the time, allow publica-
tion of time- or productivity-oriented measures for this kind of project, which is why
we decided to form the research project around RDIA viewing cost estimation as a
consumer of the result from RDIA. As the evaluation of release projects at Ericsson
was conducted on the project level—estimated time vs. actual time—finer granular
evaluation techniques and entities predicted to change vs. entities actually changed—
were not available. The first issue thus dealt with the development of such techniques
and use them for evaluation of RDIA resulting in quantification of the accuracy of the
result from RDIA. In the development of evaluation techniques we searched for sim-
plicity and robustness so that the techniques could be used in a broader context. The
deep knowledge about the project was used to ensure a fair evaluation, for instance
by removing changes not due to requirements known at the time of prediction.

After having conducted evaluation of RDIA on several different levels, we con-
cluded that the number of entities predicted to change was largely underpredicted.
After having quantified the magnitude of the underprediction and concluded that the
underprediction was a problem with great impact on subsequent activities, such as
cost estimation, work distribution, and initial design, we continued with investiga-
tions of how characteristics of software entities, for example size, were related to

206 M. LINDVALL

change. We did this in order to find factors and patterns that could explain the situ-
ation. This comparative analysis approach, which is used in all analyses conducted
in this work, compares the prediction with the actual changes made. We compared,
for example, the number of predicted classes with the number of actually changed
classes, and the size of predicted classes with the size of changed classes.

We also compared the size of predicted classes with the size of unpredicted classes.
Other characteristics we examined were the number of relations between classes and
whether relations between classes could describe clusters of changed/predicted and
unchanged/unpredicted classes. We also examined the abstract models that were used
for documenting the predicted change in terms of traceability between new require-
ments and design objects. The level of abstraction of the models and how change in
the source code was reflected in models were investigated. This was performed in
order to find differences and similarities between prediction and actual result, and
the use of abstract models. As reported in [32] this was done for two releases (R4
and R6). When we found the same results in the two releases, we regarded it as a
pattern that could be used as decision support in future RDIA activities, primarily in
the PMR-project, but also in other related projects.

The result is thus well-grounded knowledge about RDIA as a phenomenon and
its context, defined and used methods for quantification of RDIA on various dimen-
sions together with the evaluation results, and patterns various characteristics. The
quantitative results were connected to qualitative results from interviews with, and
questionnaires completed by, project developers and also commented on by us as
observers. The results were then discussed in terms of suggestions for future im-
provements.

13.2 Conclusions

We can scientifically conclude that we have gathered knowledge about the RDIA

phenomenon in two releases of the PMR-project owned by ERA. The result from RDIA

was quantified by using evaluation techniques defined and used during the research
project. Qualitative data was used to support the quantitative results. The context, the
procedures, the data collection, the analyses, the results and the reflections have been
thoroughly documented.

We have identified a problem in terms of underprediction of the number of
changed entities and also identified problems with using object models and trace-
ability for detailed RDIA. We have found that project developers are unaware of their
own capability in predicting change. We have also found that certain characteristics
of software entities can indicate change-prone classes. We have proposed improve-
ments based on the findings in order to improve the accuracy of future RDIA.

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 207

In retrospect, the work can be viewed as an experiment investigating whether the
methods for data collection capture the RDIA process so faithfully that evaluation
and analysis lead to process improvement. The documented methods together with
the existing database provide enough information for replication in other contexts,
such as subsequent PMR-releases, and other similar projects. To support this we have
initiated a research project with the goal of the automation of data collection and
data analysis as described in this work. The tool provides project developers with the
possibility of actively using the edit-history of source code both for complementing
on the requirements-to-member-function-view with a release-to-classes-view and to
evaluate the prediction. The tool is intended to be used in object-oriented projects
using SCCS as a version management system where RDIA is conducted and edits are
annotated with the cause of the change.

The status of the research project is that the complete data set (i.e., the set of new
requirements, the set of causes for change, the three releases of source code, the edit-
history, the four versions of design object models, and traceability between all these
entities) is stored in relational database tables using Microsoft Access together with
a large set of queries used for analyses of the data. The data and the queries are con-
nected to Microsoft Excel for further analysis and generation of diagrams of various
kinds. This arrangement makes it possible to conveniently conduct analyses of the
data in different ways. New data sets from new releases can be inserted smoothly into
the existing structure and analyzed using the existing queries. New kinds of analyses
can be defined in terms of new queries on existing data.

The status of the PMR-project has reached a point where the development of 13th
release (R13) has now started. All of the original developers are now busy with other
products and thus the development group is entirely different than was the case for
R4. We look forward to comparing the result of conducting RDIA under these new
circumstances. The PMR-project will, however, be moved to a design office in India
in the near future which generates entirely new possibilities for research based on
cultural differences.

REFERENCES

[1] Abbattsista F., Lanubile F., Mastelloni G., Vissaggio G., “An experiment on the effect of
design recording on impact analysis”, in: International Conference on Software Mainte-
nance 1994, IEEE Computer Society Press, Los Alamitos, CA, USA, 1994, pp. 253–259.

[2] Arango G., Schoen E., Pettengill R., “A process for consolidating and reusing design
knowledge”, in: Software Change Impact Analysis, IEEE Computer Society Press, Los
Alamitos, CA, USA, 1996, pp. 237–248.

[3] Arnold R.S., Bohner S.A., “Impact analysis—towards a framework for comparison”, in:
International Conference on Software Maintenance 1993, IEEE, 1993, pp. 292–301.

208 M. LINDVALL

[4] Basili V., “Viewing maintenance as reuse-oriented software development”, IEEE Soft-
ware7 (1) (1990) 19–25.

[5] Boehm B.W., Software Engineering Economics, Prentice-Hall International, Inc., Engle-
wood Cliffs, NJ, USA, 1981.

[6] Bohner S., “Impact analysis in the software change process: A year 2000 perspective”,
in: International Conference on Software Maintenance 1996, IEEE Computer Society
Press, Los Alamitos, CA, USA, 1996, pp. 42–51.

[7] Bohner S.A., Arnold R.S. (Eds.), Software Change Impact Analysis, IEEE Computer
Society Press, Los Alamitos CA, USA, 1996.

[8] Codd E.F., “A relational model for large shared databanks”, Communications of the
ACM 13 (6) (1970) 377–387.

[9] Cohen J., “A coefficient of agreement for nominal scales”, Educational and Psychologi-
cal Measurement20 (1) (1960) 37–46.

[10] DOD-STD-2167A, Military Standard. Defense Systems Software Development, Depart-
ment of Defense, Washington, D.C. 20301, USA, 1988.

[11] EEA, Guide to Software Quality Audit, Electronic Engineering Association, 1988.
[12] Ericsson, System Development Process Model, Design Rules & Guidelines, Ericsson,

Sweden, 1993.
[13] Ericsson Telecom AB, Your Guide to PROPS, Ericsson Telecom AB, Sweden, 1990.
[14] Fenton N.E., Software Metrics A Rigorous Approach, Chapman & Hall, New York, USA,

1991.
[15] Gallagher K.B., Lyle J.R., “Using program slicing in software maintenance”, IEEE

Transactions on Software Engineering17 (8) (1991) 751–761.
[16] Gomaa H., “Reusable software requirements and architectures for families of systems”,

The Journal of Systems and Software28 (3) (1995) 189–202.
[17] Haney F.M., “Module connection analysis—a tool for scheduling software debugging

activities”, in: AFIPS Joint Computer Conference, 1972, pp. 173–179.
[18] Horowitz E., Williamson R., “SODOS: A Software Documentation Support Environ-

ment—its definition”, IEEE Transactions on Software Engineering12 (8) (1986) 849–
859.

[19] IEEE Std. 1219, IEEE Standard for Software Maintenance, Institute of Electrical and
Electronic Engineers, New York, USA, 1992.

[20] IEEE Std. 830, IEEE Guide to Software Requirements Specifications, Institute of Elec-
trical and Electronic Engineers, New York, USA, 1984.

[21] IEEE Std. 982.1, IEEE Standard Dictionary of Measures to Produce Reliable Software,
Institute of Electrical and Electronic Engineers, New York, USA, 1989.

[22] ISO9000-3, Quality Management and Quality Assurance Standards, International Orga-
nization for Standardization, Geneve, Switzerland, 1991.

[23] Jacobson I., Christersson M., Jonsson P., Overgaard G., Object-Oriented Software Engi-
neering, Addison-Wesley, Menlo Park, CA, USA, 1992.

[24] Karlsson J., “Software requirements prioritizing”, in: 2nd IEEE International Confer-
ence on Requirements Engineering, 1996, pp. 100–116.

IMPACT ANALYSIS IN SOFTWARE EVOLUTION 209

[25] Kung D., Gao J., Hsia P., Wen F., Toyoshima Y., Chen C., “Change impact identifica-
tion in object-oriented software maintenance”, in: International Conference on Software
Maintenance 1994, 1994, pp. 202–211.

[26] Li W., Henry S., “Object-oriented metrics that predict maintainability”, The Journal of
Systems and Software23 (1993) 111–122.

[27] Lindvall M., A Study of Traceability in Object-Oriented Systems Development. Licenti-
ate thesis, Linköping Studies in Science and Technology No. 462, Linköping University,
Institute of Technology, Sweden, 1994.

[28] Lindvall M., “Report from OOPSLA’95”, The Software Practitioner5 (3) (1995).
[29] Lindvall M., Traceability Aspects of Impact Analysis in the Fourth Release of an Indus-

trial Object-Oriented System. Memo 95-03, ASLAB, Linköping University, Linköping,
Sweden, 1995.

[30] Lindvall M., “Evaluating impact analysis—a case study”, in: International Workshop on
Empirical Studies of Software Maintenance, 1996.

[31] Lindvall M., Sandahl K., “Practical implications of traceability”, Journal of Software
Practice and Experience26 (10) (1996) 116–1180.

[32] Lindvall M., An Empirical Study of Requirements-Driven Impact Analysis in Object-
Oriented Systems Evolution. PhD thesis No 480, Linköping University, Institute of Tech-
nology, Sweden, 1997.

[33] Lindvall M., “Are large C++ classes change-prone? An empirical investigation”, Soft-
ware Practice and Experience28 (15) (1998) 1551–1558.

[34] Lindvall M., Runesson M., “The visibility of maintenance in object models: An empiri-
cal study”, in: International Conference on Software Maintenance, IEEE, Los Alamitos,
CA, 1998, pp. 54–62.

[35] McCrickard D.S., Abowd G.D., “Assessing the impact of changes at the architectural
level: A case study on graphical debuggers”, in: International Conference on Software
Maintenance 1996, 1996, pp. 59–67.

[36] Object-Oriented Software Engineering, Course Material: Object-Oriented Software En-
gineering, Objective Systems SF AB, Kista, Sweden, 1993.

[37] Objectory Design, Course Material: Objectory Design, Objective Systems SF AB, Kista,
Sweden, 1993.

[38] Objectory Process, Objectory Analysis and Design 3.3 Process, Objective Systems SF
AB, Kista, Sweden, 1993.

[39] Objectory Requirements Analysis and Robustness Analysis, Course Material: Objec-
tory Requirements Analysis and Robustness Analysis, Objective Systems SF AB, Kista,
Sweden, 1993.

[40] Objectory Tool, Objectory Analysis and Design 3.3 Tool, Objective Systems SF AB,
Kista, Sweden, 1993.

[41] Pfleeger S.L., Bohner S.A., “A framework for software maintenance metrics”, in: Con-
ference on Software Maintenance, IEEE Computer Society Press, Los Alamitos, CA,
USA, 1990, pp. 320–327.

[42] Queille J., Voidrot J., Wilde N., Munro M., “The impact analysis task in software main-
tenance: A model and a case study”, in: International Conference on Software Mainte-
nance 1994, IEEE Computer Society Press, Los Alamitos, CA, USA, 1994, pp. 234–242.

210 M. LINDVALL

[43] Royce W.W., “Managing the development of large software systems: Concepts and tech-
niques”, in: Proceedings IEEE WESCON, 1970, pp. 1–9.

[44] SEI, Software Process Maturity Questionnaire, Capability Maturity Model, Version 1.1,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA, 1994.

[45] Shahmehri N., Kamkar M., Fritzson P., “Semi-automatic bug localization in soft-
ware maintenance”, in: International Conference on Software Maintenance 1990, 1990,
pp. 30–36.

[46] Singer C.A., “Software quality program, generic requirements”, Technical Report TR-
TSY-000179 issue 1, Navesink Research and Engineering Center, Bellcore NJ, USA,
1989.

[47] Soloway E., Pinto J., Letovsky S., Littman D., Lampert R., “Designing documentation to
compensate for delocalized plans”, Communications of the ACM31 (11) (1988) 1259–
1267.

[48] Stroustrup B., “Classes: An abstract data type facility for the C language”, SIGPLAN
Notices17 (1) (1982) 42–51.

[49] TakeFive Software, I., Sniff+ Release 2.0, sniff-gst-002 Edition, 1995.
[50] Tip F., Jong D.C., Field J., Ramlingam G., “Slicing class hierarchies in C++”, in: Con-

ference on Object-Oriented Programming, Systems, Languages & Applications 1996,
1996, pp. 179–197.

[51] Turver R.J., Munro M., “An early impact analysis technique for software maintenance”,
Journal of Software Maintenance Research and Practice6 (1) (1994) 35–52.

[52] Wilde N., Gomez J.A., Gust T., Strasburg D., “Locating user functionality in old code”,
in: Conference on Software Maintenance 1992, IEEE Computer Society Press, Los
Alamitos, CA, USA, 1992, pp. 200–205.

[53] Yau S., Collofello J.S., “Some stability measurements for software maintenance”, IEEE
Transactions on Software Engineering6 (6) (1980).

Coherence Protocols for Bus-Based
and Scalable Multiprocessors, Internet,
and Wireless Distributed Computing
Environments: A Survey

JOHN SUSTERSIC AND ALI HURSON

The Department of Computer Science and Engineering
Pennsylvania State University
202 Pond Laboratory
University Park, PA 16802
USA

Abstract
Caching has been widely used in many diverse computer applications to improve
performance. Although these applications often utilize diverse platforms due to
their inherent natures and scope of applicability, there are elements of the caching
scheme and the coherence protocol operations that are common to all implemen-
tations, regardless of the differences in implementation. This paper attempts to
take a wide survey of caching applications to illustrate both the common and the
differing elements of caching implementations. Widely researched, traditional
caching applications using snoopy (bus-based) and directory protocols will be
reviewed, then the relatively newer problems of web caching and the unique
implementation issues of wireless networking will be considered. This analysis
will be utilized to build a characterization of the various caching implementa-
tions, specifically considering the order of complexity in memory requirements,
message complexity, message size, and synchronization delay. These parameters
will be used to suggest that the underlying network topology, the sharing char-
acteristics and the granularity of the data items being cached strongly affect the
performance of coherence protocols.

1. Introduction and Background . 212
1.1. Introduction . 212
1.2. Motivation . 214
1.3. Major Parameters of Survey . 214
1.4. Road Map . 215

ADVANCES IN COMPUTERS, VOL. 59 211 Copyright © 2003 by Elsevier Science (USA)
ISSN: 0065-2458 All rights reserved.

212 J. SUSTERSIC AND A. HURSON

2. Broadcast (Bus-Based) Protocols . 216
2.1. Background . 216
2.2. The Update Based Coherence Protocols . 217
2.3. The Invalidation Based Coherence Protocols 219
2.4. The Hybrid Protocols . 220
2.5. The Adaptive Hybrid Protocols . 221
2.6. The Selective Protocol . 223
2.7. Summary of Broadcast Protocols . 224

3. Message-Passing (Directory Based) Protocols . 227
3.1. Introduction . 227
3.2. CC-NUMA Architecture . 228
3.3. Directory-Based Organizations—Principal . 230
3.4. Directory-Based Organizations—Implementation 234
3.5. Summary of Message-Passing Protocols . 246

4. Coherence on the World Wide Web . 246
4.1. Introduction . 246
4.2. Hierarchical Web Caching Schemes . 250
4.3. Distributed Web Caching Schemes . 251
4.4. Hybrid Web Caching Schemes . 252
4.5. Coherence in Web Caching Schemes . 253
4.6. Summary of Web Coherence . 258

5. Wireless Protocols . 259
5.1. Introduction . 259
5.2. Cache Coherence Design Requirements in the Wireless Network Environment 261
5.3. Analysis of Basic Wireless Coherence Protocols 263
5.4. Summary of Wireless Protocols . 266

6. Summary and Conclusions . 267
6.1. Introduction . 267
6.2. Summary of Bus-Based Coherence Protocols 269
6.3. Summary of Message-Passing (Directory) Coherence Protocols 269
6.4. Summary of Caching Coherence on the World Wide Web 270
6.5. Summary of Wireless Cache Coherence . 271
6.6. Conclusions and Recommendations . 271
Acknowledgements . 273
References . 273

1. Introduction and Background

1.1 Introduction

Data duplication has long been used as a performance-enhancing technique in re-
ducing access latency in computer systems. The basic concept is simple: make a

COHERENCE PROTOCOLS 213

copy of frequently-used data in a higher performance storage device that is logically,
physically, and temporally closer to the processing unit than the primary storage lo-
cation of the data. This reduces the latency of accessing frequently used data and,
consequently, increases the process’s performance. However, this performance im-
provement does not come without a cost. Specifically, there are now two copies of
the same data in the system. What happens if one of the copies of the data is modi-
fied? The problem becomes increasingly complicated as more copies of the data are
created. This process, known as caching, has become a staple of modern computer
architecture. To deal with the complexity of managing these cached copies of data,
cache coherence protocols were developed [1–43,83].

Formally, a distributed memory (storage) system is said to be coherent if, for each
shared memory location in the system, there exists some total serial order of the
operations on those storage locations that is consistent and that satisfy the following
conditions [44]:

• Operations issued by any process are applied to the storage location in the order
in which they were issued by that process.

• Each read operation returns the value written by the last write operation to that
storage location in the total serial order.

It is the responsibility of the coherence protocol to manage all copies of data
throughout the system, keep track of which copy or copies are valid, and enforce the
aforementioned conditions on the memory system. Most importantly, the coherence
protocols define what actions are necessary when some process modifies a cached
copy of the shared data.

At first, caching was utilized in uniprocessor systems to improve system perfor-
mance. Later, these techniques were adapted for use in multiprocessor and distrib-
uted systems for similar purposes. More recently disk caching is employed in mod-
ern computer systems to provide lower-latency access to frequently used disk blocks
(storage locations) and web browsers cache Internet documents to provide lower-
latency access to those files (remote storage locations).

As one might expect, the great variety of caching applications has led to a similar
diversity in coherence protocols that have been developed for those applications.
The evolution of cache coherence protocols also illustrates some of the underlying
rationale for the diversity exhibited by these protocols.

This chapter will examine the protocols developed for several of these applications
and analyze the protocol operation in terms of several key parameters. The goal of
these analyses is simple: to compare and contrast coherence protocol operation of a
wide variety of protocols from different points of view. This will provide a useful
perspective in applying the concepts and techniques developed for coherence opera-
tions to new applications in arbitrary distributed systems and in web-based systems.

214 J. SUSTERSIC AND A. HURSON

1.2 Motivation

Caching has been employed for decades in computer architecture to improve sys-
tem performance; consequently, a tremendous amount of research has been expended
in this area over the past twenty-five years. The concept of caching is universal. How-
ever, the application of caching varies considerably, even among different solutions
for similar caching problems.

This work analyses coherence protocols for various applications from bus-based,
directory-based, and wireless domains in a common, generalized context. This analy-
sis compares and contrasts the operation of these protocols in terms of global mes-
saging of coherence protocol traffic and protocol behavior in the event of a modi-
fication to shared data. A generalized set of metrics is introduced to facilitate the
analysis of these heterogeneous coherence protocols. The analysis developed in this
paper is then used to identify key elements of effective coherence protocols and to
make some recommendations on the development of coherence protocols particu-
larly well-suited for internet and wireless internet applications.

1.3 Major Parameters of Survey

To properly compare the heterogeneous coherence protocols employed in the va-
riety of applications considered by this paper, it is first necessary to identify and
define a generalized set of metrics. These parameters may then be used in a quanti-
tative analysis of these sundry protocols.

In the following discussion, N and M stand for the number of nodes in the system,
and the number of global memory blocks, respectively. The parameters employed in
this survey may be categorized into two well-defined groups: Message Parameters
and Memory Requirements.

1.3.1 Message Parameters

Message Parameters are necessary to quantitatively compare and contrast the com-
munication requirements of the various coherence protocols. The specific metrics
used to quantify the message complexity are:

• Transaction Size—This metric quantifies the size of each transaction defined in
the protocol operation. Unless otherwise noted, the transaction size is specified
in units of bits per transaction.

• Messaging Complexity—The message complexity of the coherence protocol is
specified in O() notation and is defined as the number of messages required for
protocol operation. This complexity is a function of the number of processes in
the distributed system.

COHERENCE PROTOCOLS 215

• Synchronization Delay—The synchronization delay of the coherence protocol
is also specified in O() notation. This delay is defined as the time (in terms
of global clock cycles) required for protocol operation. As with the message
complexity, the synchronization delay is a function of the number of processes
in the distributed system.

1.3.2 Memory Requirements
A single memory metric is employed to quantify the storage requirements of the

coherence protocol for each node in the distributed system. The memory require-
ments of the protocol are specified in bits per node unless otherwise noted. The
complexity of the memory requirement is also given in O() notation.

1.4 Road Map

Abstract has expressed the background, motivation, and approach used in this
chapter. The remainder of this document is organized in the following manner.

First, selected coherence protocols are divided into several broad categories:

• The bus-based, or broadcast protocols—As these protocols were the first de-
veloped in the evolution of coherence protocols, they provide a logical start
point for this survey. Furthermore, they provide valuable illustration to the ba-
sic operation of the various types of coherence protocols. Broadcast protocols
are discussed in Section 1.

• The directory-based protocols—These protocols are the natural evolution of
the broadcast, bus-based protocols. Specifically, directory-based protocols are
designed for the large-scale interconnected network of symmetric multiproces-
sor machines. Directory-based coherence protocols are also suitable for non-
uniform multiprocessor systems and arbitrary distributed systems. These proto-
cols are discussed in Section 2.

• The wireless protocols—The wireless network environment has proven to be the
most challenging for several reasons. Most notably, wireless protocols must deal
with frequent disconnections, lower bandwidth, and limited resources. Section 3
discusses wireless coherence protocols.

Section 4 considers coherence issues on the World Wide Web from a high-level
perspective, then drills down to evaluate the low-level protocol requirements of this
exceptionally diverse arrangement.

Finally, Section 5 summarizes the key points of this paper and provides an outline
of key components of coherence protocols for internet and wireless internet applica-
tions.

216 J. SUSTERSIC AND A. HURSON

2. Broadcast (Bus-Based) Protocols

2.1 Background
The issue of coherence protocols within the scope of memory hierarchy has

evolved considerably over the past decades. Originally, coherence protocols were
used to maintain the consistency of a local cache in a uniprocessor environment. In
this role, coherence protocols supported the cache memory abstraction—a low la-
tency, high-speed memory that mirrored an exclusive main memory to improve per-
formance. Later, multiprocessor systems forced coherence protocols to evolve and
support the more complicated abstraction of shared global and/or private memory.
Recently, the explosive growth of the world wide web has forced computer sys-
tem engineers to use the more literal interpretation of ‘global’ in the global memory
abstractions required for pure applications of the distributed computing paradigm.
However, the technical requirements of implementing such a memory abstraction
are not trivial. Indeed, only specific applications can justify the cost of such an im-
plementation.

Central to any of these aforementioned computing paradigms are the coherence
protocols that maintain the consistency between the different levels of memory ab-
stractions. In this section, the traditional coherence protocols will be summarized
and analyzed in terms of coherence operation, transaction size, messaging complex-
ity, memory requirements, and synchronization delay for an N node system.

The basic problem of maintaining consistency is straightforward. A process
wishes to access a memory block B that resides at address A in the global address
space. With no other processes involved, the requesting process need only load a
copy of the memory block into its cache. That process is free to use the block as nec-
essary, either reading or writing to the block, with the restriction that any changes
made in the block are somehow updated in the global memory. The problem compli-
cates considerably when multiple processes access the same memory block. Consider
the case when J processes require access to the memory block B . If all J processes
require only read-access to the block B and stores that block in their respective local
caches, then there exists J +1 copies of memory block B . The difficulty occurs when
a process modifies one of those J + 1 copies—how does the system efficiently com-
municate this change, or at least that a change has occurred, to the other processes
that hold a copy of block B is the principle challenge faced by coherence protocol
developers.

The coherence protocols first developed took advantage of the broadcast nature
of the busses on which they operated. In these systems, the full bandwidth of the
bus was available to every node in a time-division multiplexed manner. As will be
discussed later, the broadcast coherence protocols are the most efficient ones in terms
of both hardware requirements and synchronization delays.

COHERENCE PROTOCOLS 217

By returning to the simple example introduced previously, one can see the great
advantage the broadcast medium offers in maintaining coherence. Recall that J

processes have each a copy of memory block B . Consider that process k (1 � k � J)

now modifies block B . The broadcast medium permits all remaining memory mod-
ules holding that block to be aware of the change concurrently. The various broadcast
protocols differ in handling of those additional copies as described in the following
sections. For perspective, it should be noted that the machines that employ bus-based
protocols typically have between 2 and 32 processors, an address space on the order
of gigabytes, and cache block sizes on the order of tens or hundreds of bytes.

It should be noted that, by no means, the following discussion is comprehensive.
While the literature is abandon with many coherence protocols, due to the space
limitations, only a generalization of the concept, illustrated with a few examples
with be covered in this paper.

2.2 The Update Based Coherence Protocols

Update coherence protocols attempt to modify replicated memory blocks imme-
diately, updating the remote copies. All remote nodes listen to (snoop) all bus trans-
actions: when a node indicates that it is writing to a block that is cached on a remote
node, the remote node simply reads the updated data and stores it in its cache. If the
update protocol were used in the example above, after a process updated memory
block B , there would be J processes that each had an updated copy of that block.
Update-based protocols developed include the Dragon [15], Firefly [35], and Re-
duced State Transition (RST) [36]. Of these, the Dragon protocol has been more
widely used and will be used as a representative of update protocol in this paper.

The Dragon protocol implementation is quite straightforward. Each block can be
in one of the following four possible configurations:

• VALID-EXCLUSIVE: Cached copy is valid, not different from main memory,
and no other copy exists in other caches.

• SHARED-DIRTY: Copy in cache is valid, is different from main memory
(hence write-back is required when cache line is replaced) and other copies
exist in other caches.

• SHARED-CLEAN: Copy in cache is valid, not different from main memory,
and other copies exist in other caches.

• DIRTY: Copy in cache is valid, different from main memory (write-back re-
quired) and no other copies exist in other caches.

These four states dictate how the protocol will respond to any possible read or
write access in the multiprocessor environment. To aid in the understanding of the

218 J. SUSTERSIC AND A. HURSON

operation of this and the other protocols discussed in this chapter, a very basic dis-
cussion of the operation of the Dragon protocol is discussed here (please see the liter-
ature for more information [15]). Consider a multiprocessor system with all caches
initially empty. Some processor P1 requests a read access to a particular block of
memory B . Processor P1’s cache will load a copy of B from main memory, and
mark the block VALID-EXCLUSIVE, since no other cache has block B stored. If
another processor P2 requests a read request to block B , P1’s cache observes the
request and signals that it has a copy of B . Both P1 and P2 caches change their states
for B to SHARED-CLEAN, indicating now that multiple caches have the block, and
that the cached copies are identical to main memory. If additional processors request
block B for read access, that processor’s cache will load the block as SHARED-
CLEAN as well. Now consider a write request for block B made by processor P3.
The caches of P1, P2, and any other processor that may have previously read block B

will indicate that the block is shared. P3 will then provide the updated data block to
the system bus, and the caches that hold an old copy of block B will update their
copies. All caches now change the state of block B to SHARED-DIRTY to reflect
the fact that the copies held in the caches differ from main memory. A block may
enter the DIRTY state when a write access for an uncached block is executed, or
when a write access is requested by a processor whose cache contains the block
in VALID-EXCLUSIVE state. In either case, the writing processor will contain the
single cached copy of a data block—a block that differs from main memory.

Three types of transactions are allowable, the Read Block (RB), Write (W), and
Update (UP) transactions. The RB transaction is used when a block is to be read from
memory. The W transaction stores a block in memory. The UP transaction is used
when a block loaded by a prior transaction is modified. Remote caches use the UP
transaction to update their copies. Note that the data block is transferred during each
of the three transactions in the Dragon protocol. Each transaction therefore requires
a size sufficient large to hold the entire data block, the address of that block, and the
status (control) bits.

The memory overhead of the Dragon protocol is small. Only two bits are required
for each block to indicate its state. Additionally, tag bits are required to match ad-
dresses. The number of tag bits varies depending on cache size and degree of asso-
ciativity. The maximum size of the tag bits is the number of bits of address used.
In caches, this would correspond to a fully associative cache of any size. For the
purposes of this paper, the maximum size is used.

Since update protocols operate in a broadcast medium, both the complexity of the
messaging and the delay in synchronizing the caches is independent of the number
of nodes in the system. Therefore, both these metrics are O(1). Table I summarizes
the physical characteristics of this protocol.

COHERENCE PROTOCOLS 219

TABLE I
THE DRAGON PROTOCOL

RB: number bits (A) + number bits (B) + 2 status bits
Transaction Size W : number bits (A) + number bits (B) + 2 status bits

UP: number bits (A) + number bits (B) + 2 status bits
Messaging Complexity O(1)
Memory Requirements 2 bits state + number bits (A) per block

O(N)
Synchronization Delay O(1)

Where: A is the Address, B is the Data Block.

2.3 The Invalidation Based Coherence Protocols

While there is a certain aesthetic appeal in update protocols, the update transac-
tions are expensive. More importantly, many applications exhibit a sharing pattern
that makes many of those update transactions unnecessary [39,40,43–45]. Invalida-
tion coherence protocols maintain consistency by simply broadcasting that a change
has occurred in a block.

An invalidation protocol would handle our running example as follows: When
process k modifies block B , instead of broadcasting an update transaction that in-
cludes block B , the process simply broadcasts an upgrade transaction containing
the address A of the block and the appropriate status information. Remote processes
listen for these upgrade transactions, and when a block that is stored locally is up-
graded, the cache simply marks that block as Invalid. Of the many invalidation pro-
tocols developed, the Illinois–MESI protocol [14] has by far been the most widely
used protocol; this protocol will be discussed in this work.

The complexity of the MESI protocol is quite similar to that of the Dragon pro-
tocol. The MESI protocol is also a four-state protocol (Modified, Exclusive, Shared,
and Invalid–MESI). It also uses three transactions: Read Block (RB), Write (W), and
Upgrade (UP). The RB and W transactions are identical in both Dragon and MESI;
the Upgrade transaction differs from Dragon’s Update transaction primarily in size,
as the Upgrade transaction does not include the memory block. The Upgrade trans-
action’s primary purpose is to invalidate stale copies of a block in remote caches.

As the RB and W transactions are identical in both Dragon and MESI, so are the
sizes of those transactions. The principle benefit of the MESI protocol is the smaller
size of the UP transaction and the corresponding reduction in traffic from that of the
Dragon protocol. The messaging complexity, memory requirements, and synchro-
nization delay of the MESI protocol are identical to their Dragon counterparts as
depicted in Table II.

220 J. SUSTERSIC AND A. HURSON

TABLE II
THE ILLINOIS–MESI PROTOCOL

RB: number bits (A) + number bits (B) + status bits
Transaction Size W : number bits (A) + number bits (B) + status bits

UP: number bits (A) + status bits
Messaging Complexity O(1)
Memory Requirements 2 bits state + number bits (A) per block O(N)
Synchronization Delay O(1)

Where: A is the Address, B is the Data Block.

2.4 The Hybrid Protocols
In the study of the access patterns of applications, two metrics [39,40] were in-

troduced to characterize access patterns to shared data. The first, “write-run length”
(WRL), is defined as the number of write operations issued by a process before a
shared memory block is accessed by another process. The second, “external rereads”
(XRR), is defined as the number of external processes that access a memory block
between two consecutive write runs. An application that exhibits a high WRL metric
and a low XRR metric would benefit most from an invalidation-based protocol; the
update protocol traffic of an update protocol is largely unnecessary and a waste of
communication bandwidth. Conversely, applications exhibiting high XRR and low
WRL would benefit from that coherence traffic, as external processes would have the
updated block available in cache on demand. More seriously, if a large number of
external processes require a modified block, each request would be satisfied by a
separate RB transaction in an invalidation scheme. An update scheme would satisfy
all these requests (assume the block was previously loaded) with a single UP trans-
action. Analyzing application access patterns revealed a large variation in both these
metrics.

As individual access patterns determine if an update or an invalidation protocol
would be more efficient in a given application, clearly neither can be optimal for all
cases [37]. Hybrid protocols switch between update and invalidation behaviors based
on some defined transitions threshold; the aim is to provide more efficient coherence
protocol operation.

The literature has addressed several coherence protocols that fall into this class.
One of the first coherence protocols to exhibit a hybrid behavior was the Read Write
Broadcast (RWB) [41]. This protocol switches to an invalidation scheme after one
update on a shared memory block.

The ‘competitive snooping’ algorithm was introduced that dynamically switches
between update and invalidation modes when the cumulative costs of executing the
updates equals the cost of reading the blocks [42].

Similar to competitive snooping, Efficient Distributed Write Protocol (EDWP)
[43] uses an invalidation threshold of three and an additional signal to indicate a

COHERENCE PROTOCOLS 221

TABLE III
THE UPDATE-ONCE PROTOCOL

RB: number bits (A) + number bits (B) + status bits
Transaction Size W : number bits (A) + number bits (B) + status bits

UP: number bits (A) + status {+ number bits (B)}a

Messaging Complexity O(1)
Memory Requirements 3 bits state + number bits (A) per block O(N)
Synchronization Delay O(1)

Where: A is the Address, B is the Data Block.
aWhen updating remote caching.

consensus among processes holding a copy of a shared memory block to switch
from update behavior to invalidation behavior.

The “Update-Once” [44] protocol is a variant of the EDWP algorithm. Update-
Once uses an invalidation threshold of one and was shown to have the highest av-
erage performance over a wide range of traces and architectural parameters when
compared with several coherence protocols including; Write-Once, Illinois–MESI,
Dragon, and EDWP.

The complexity of the Update-Once protocol is not significantly greater than that
of Dragon or MESI. Requiring six states, Update-Once needs three bits per block
to record state. However, the messaging complexity and synchronization delay are
O(1).

Update-Once uses only three transactions. Two (RB and W) are identical in
Dragon and MESI. The third, UP, behaves either like Dragon’s Update transaction
or MESI’s Upgrade transaction, depending on a block’s current state. The first write
on a shared block issues an UP transaction that includes the updated memory block.
Second or later writes to that block result in an UP transaction that does not include
the data block that signals external caches holding a copy of that block to invalidate
them (Table III).

2.5 The Adaptive Hybrid Protocols

The hybrid protocols discussed thus far have been static in that the threshold be-
tween the update and invalidate modes was predetermined and fixed. However, the
large variations in XRR and WRL metrics—not only between applications, but also
between different blocks of the same applications, indicate that a dynamic coherence
protocol may provide additional benefits. Adaptive Hybrid protocols dynamically
modify their behavior to adjust to varying application access patterns.

An adaptive hybrid protocol was introduced specifically to detect migratory shar-
ing (AHDMS) [45]. Migratory data is defined as data used exclusively by a single

222 J. SUSTERSIC AND A. HURSON

process for an extended period before moving to another process. A six-state pro-
tocol, AHDMS uses an additional bus signal to indicate data blocks identified as
migratory, and adapts its coherence operation on this basis. The six states utilized in
the protocol are defined as follows:

• EE—Exclusive state: Cache has only copy, and the copy is valid.

• D—Dirty: Cache has valid copy, and the copy in memory is invalid.

• S2—Shared 2: Block is stored in exactly two cache memories, and both are
consistent with main memory.

• S—Shared: Block is stored in more than two cache memories, and all are con-
sistent with main memory.

• MC—Migratory Clean: Block is identified as Migratory, and as such may exist
in exactly one cache at a time. Block is consistent with main memory.

• MD—Migratory Dirty: Block is identified as Migratory and may exist in exactly

• One cache at a time. Memory copy is invalid.

AHDMS has a complexity similar to the Update-Once hybrid protocol. Using
six states, 3 bits per block are required to store this information. Furthermore,
three coherence transactions are required. The first, Read Block (RB) is identical
to the other transactions employed by the aforementioned coherence protocols dis-
cussed.

The second, invalidate (I) is analogous to the upgrade transactions used in the
invalidation-based protocols and is used as an explicit directive for remote caches
to invalidate the cached memory block specified by address. The third transaction,
Update (UP) is identical to the UP transaction used in the Dragon’s update protocol.
Unlike the other protocols discussed herein, an explicit write transaction is not used
in the AHDMS protocol—it is assumed that memory also snoops the protocol trans-
actions and updates itself on UP transactions. Finally, AHDMS has identical metrics
of messaging complexity, memory requirements, and synchronization delay, as does
the Update-Once protocol (see Table IV).

TABLE IV
THE ADAPTIVE HYBRID PROTOCOL TO DETECT MIGRATORY SHARING

RB: number bits (A) + number bits (B) + status bits
Transaction Size I : number bits (A) + status bits

UP: number bits (A) + status + number bits (B)

Messaging Complexity O(1)
Memory Requirements 3 bits state + number bits (A) per block O(N)
Synchronization Delay O(1)

Where: A is the Address, B is the Data Block.

COHERENCE PROTOCOLS 223

2.6 The Selective Protocol

The coherence protocols studied so far assumed no a-priori knowledge about the
nature of the data block. In lieu of foreknowledge about a block’s sharing character-
istics, the best these coherence protocols can do is to employ some heuristic to ap-
proximate an optimal coherence behavior. A-priori knowledge about a data block’s
sharing status could prove useful in developing a concurrency protocol. For example,
an application’s private data blocks need never be updated across multiple caches—
the block will only be needed by the owner process. However, as processes may not
always be scheduled in the same processors, a static coherence protocol may gener-
ate useless coherence traffic, unaware that a particular block is private. This is known
as passive sharing [46].

Modern compilers and operating systems normally distinguish between private
and shared data. Therefore, it is a simple matter to use this information by the coher-
ence protocol to adjust its behavior accordingly. The Passive Shared Copy Removal
(PSCR) [13] protocol does just this.

PSCR utilizes an additional bit on the bus to communicate the shared/private infor-
mation for a given data block. Three states are legal for private (P) blocks—Invalid,
Private Clean, and Private Dirty. For shared (S) blocks, there are four valid states
(two of which are common with P blocks)—Private Clean, Private Dirty, Shared
Clean, and Shared Dirty. With five distinct states, three bits are required to store the
state information. For P blocks, the protocol behaves similarly to an invalidation
protocol with two significant exceptions. First, there is no shared state (private data
should not be shared). Second, the block is invalidated by any remote action on the
block. For S blocks, the protocol behaves like a standard static update protocol.

PSCR has a complexity similar to AHDMS and Update-Once. Three transactions
are required: Read Block (RB), Write (W), and Update (U). These transactions are
identical to the Dragon protocol’s transactions. PSCR initiates invalidation based
on RB transactions to a private data block, eliminating the necessity of an explicit
invalidation transaction. The Message Complexity and the Synchronization Delays

TABLE V
THE PSCR PROTOCOL

RB: number bits (A) + number bits (B) + status bits
Transaction Size W : number bits (A) + number bits (B) + status bits

UP: number bits (A) + status + number bits (B)

Messaging Complexity O(1)
3 bits state + number bits (A) + 1 bit (P/S)

Memory Requirements per block and 1 bit per block in global memory.
O(N + M)

Synchronization Delay O(1)

Where: A is the Address, B is the Data Block.

224 J. SUSTERSIC AND A. HURSON

are identical to the other broadcast protocols. The memory requirements for PSCR
differ from AHDMS and Update-Once by only one additional bit (P/S) for each
block in the cache memory. In addition, a single bit per block is required to store the
Private/Shared flag. Table V summarizes the physical characteristics of this proto-
col.

2.7 Summary of Broadcast Protocols
Broadcast protocols have made coherence operation on bus-based multiprocessors

fast and (relatively) efficient. Early broadcast protocols required no knowledge of the
actual use of a data block. Later protocols found that using some readily-available
knowledge about the sharing status of a data block was useful in optimizing a proto-
col’s behavior. Finally, an application’s unique access patterns to shared data largely
determine these algorithms’ efficiencies.

Researchers in [13] compared several broadcast cache coherence protocols against
each other. Figure 1 illustrates the bus utilization results for a sample application
mix for the five coherence protocols outlined in this survey. While most of the pro-
tocols have similar performance in terms of bus utilization, two exhibit significantly
different performance. The Dragon protocol saturates the bus for a much smaller
number of processors (∼16) than the other protocols for the same application mix
(∼30). This is significant in that it implies that the fixed update characteristic of the
Dragon protocol generates considerably more bus traffic than other coherence pro-
tocols for the same set of applications. Additionally, the selective PSCR protocol

FIG. 1. Bus utilization for an application mix [13].

COHERENCE PROTOCOLS 225

FIG. 2. Cache miss ratio for an application mix [13].

exhibits lower bus utilization for a given number of processors. This implies that the
additional knowledge of the sharing characteristics of the cached data blocks enable
the protocol to more effectively perform coherence operations.

Figure 2 illustrates the cache miss ratio vs. number of processors [13]. These data
indicate that, as in the case of Fig. 1, Update Once, MESI, and AHMSD protocols
are similar in performance, while Dragon and PSCR show quite different miss ratios.
As one might expect, the update-based Dragon protocol exhibits lower miss ratios
than average; this is reasonable as the update transactions make frequently-accessed
shared data available in all caches when one process updates the block. However,
the PSCR protocol outperforms even the Dragon protocol in terms of miss ratio.
The implied conclusion is significant—not only does the additional knowledge of
a block’s sharing characteristics improves the bus utilization for a given number of
processors, that knowledge also reduces the cache miss rate. This indicates that the
a prior knowledge of sharing characteristics enable the selective protocol to provide
a lower miss ratio (and, consequently, lower latency and higher performance) while
using significantly less bus bandwidth for a given application load and number of
processors.

The summary of the major parameters of each of the five broadcast protocols dis-
cussed in this section is displayed in Table VI. All five protocols have identical Mes-
sage Complexity and Synchronization Delays. This may be attributed to the broad-
cast nature of the system bus—a single message simultaneously directs the specified
coherence activity in all elements of the memory hierarchy. Clearly, the message
complexity is therefore independent of the number of nodes in the system. By simi-

226
J.S

U
S

T
E

R
S

IC
A

N
D

A
.H

U
R

S
O

N

TABLE VI
SUMMARY OF BROADCAST PROTOCOLS

Dragon (Update) Illinois–MESI Update Once AHDMS (Adaptive) PSCR (Selective)
(Invalidate) (Hybrid)

RB: number bits (A) + RB: number bits (A) + RB: number bits (A) + RB: number bits (A) + RB: number bits (A) +
number bits (B) + number bits (B) + number bits (B) + number bits (B) + number bits (B) +
status status status status status

Transaction W : number bits (A) + W : number bits (A) + W : number bits (A) + I : number bits (A) + W : number bits (A) +
Size number bits (B) + number bits (B) + number bits (B) + status number bits (B) +

status status status status
UP: number bits (A) + UP: number bits (A) + UP: number bits (A) + UP: number bits (A) + UP: number bits (A) +
number bits (B) + status status {+ number bits status + number bits status + number bits
status (B)}a (B) (B)

Message O(1) O(1) O(1) O(1) O(1)
Complexity

2 bits state + number 2 bits state + number 3 bits state + number 3 bits state + number 3 bits state + number bits
Memory bits (A) per block bits (A) per block bits (A) per block bits (A) per block (A) + 1 bit (P/S) per block

Requirements O(N) O(N) O(N) O(N) and 1 bit per block in
global memory
O(N + M)

Synchronization O(1) O(1) O(1) O(1) O(1)
Delay

aWhen updating remote caching.

COHERENCE PROTOCOLS 227

lar argument, the synchronization delay is also independent of the number of nodes
in the system. Table VI also illustrates that each protocol requires three transactions.
Furthermore, these required transactions are very similar in size and complexity.

The principle difference in the quantitative parameters of these five coherence pro-
tocols is in their memory requirements. Each protocol requires a certain number of
bits for each data block. Each protocol requires a number of bits equal to the number
of address bits employed in the system. Additional bits are dependent on the specifics
of the protocol. The simplest of the protocols—Dragon and MESI—require only two
bits to store the status (state) of the corresponding block. The hybrid Update-Once
protocol and the adaptive AHDMS protocol require three bits per block for this pur-
pose. For an implementation that utilizes a sixty-four-bit address space, this addi-
tional memory requirement is a modest 1.5% increase over the simpler protocols.
For the PSCR protocol, the memory cost is significantly higher. In addition to the
three bits per block to hold the status of the block, two additional bits per block are
required—one in the cache tag and one for each data block in the main memory. For
the sixty-four bit address space implementation, the additional cache tag bit requires
3.0% more memory than the simple Dragon and MESI protocols and 1.5% more
memory than the hybrid and adaptive protocols. Each of these percentages of mem-
ory requirements refers to the per-cache block storage for each cache memory in the
system. For the PSCR protocol, the additional bit required per block in main mem-
ory adds to the memory requirement. This additional bit is required for all memory
blocks; consequently, the total memory required for this protocol is dependent on
the total storage capacity of the main memory. As a result, the affect on the memory
requirements of the protocol cannot be directly included in quantitative comparisons
with the other protocols that have no such main memory storage requirements. Qual-
itatively, since the ratio of main memory to cache memory is generally two orders of
magnitude, one may safely conclude that the additional bit required in main memory
is quite significant in terms of total memory cost.

3. Message-Passing (Directory Based) Protocols

3.1 Introduction

As illustrated in Section 1, there are several effective and efficient methods of
providing memory coherence in bus-based multiprocessor systems using broadcast
coherence protocols. However, in bus-based organizations, since every transaction
from every processor is visible globally, it seems reasonable to expect the system
bus to become a performance bottleneck. This fact was evident in Fig. 1, where the
bus utilization quickly approaches unity for systems composed of fourteen to twenty-

228 J. SUSTERSIC AND A. HURSON

eight processors. Once the bus utilization approaches one (i.e., saturation) the scal-
ability of the system should be questioned since, any new processors added to the
system will provide little performance gain as the processors’ idle time increases.
One should also note that the coherence protocol operation does account for some
fraction of the observed bus utilization. Note that the update-based protocols, such
as Dragon, saturate the system bus at a considerably lower number of processors.
Conversely, the PSCR protocol does not completely saturate the system bus even for
twenty-eight processor nodes. Nevertheless, there is a limit to the number of proces-
sors any of these protocols could effectively support. Consequently, for systems with
a greater number of nodes, a different, more scalable approach to memory system
coherence is required. As one will see, this approach extends beyond the coherence
protocol to include the fundamental architecture of the underlying platform. While
it is not the intention of this chapter to discuss the architecture of the multiprocessor
systems, it is necessary, for the sake of clarity, to briefly discuss the similarities and
the differences between these architectures.

3.2 CC-NUMA Architecture

Bus-based multiprocessor systems feature one or more processors, each of which
may (and typically does) have a cache memory. These processors communicate with
a centralized, global memory via the system bus. Figure 3 illustrates this basic or-
ganization. This organization is generally described as a Symmetric Multi-Processor
(SMP) and is distinguished by the property that every process has uniform access to
the shared system memory [46].

FIG. 3. Bus-based multiprocessor organization.

COHERENCE PROTOCOLS 229

FIG. 4. General CC-NUMA architecture.

As discussed before, in such an organization all nodes, including processor nodes,
the memory, and the bus, form a performance bottleneck. To alleviate this bottle-
neck, computer architects have devised alternative communication organizations to
establish a higher bandwidth between processor and memory nodes. The term band-
width refers to both the bandwidth of the communication medium and the available
memory bandwidth.

Alternatively, the global memory is distributed among the processors of the sys-
tem. In this way, each node in the system contains some fraction of the total global
memory. To connect these nodes, an interconnection network is employed. Figure 4
illustrates the basic block diagram of such a system, generally described as a scalable
multiprocessor. When such a multiprocessor employs some coherence protocol, the
system is termed as Cache-Coherent, Non-Uniform Memory Access (CC-NUMA)
system [46].

In scalable multiprocessor configurations, each processor node has a portion of
the global shared memory that may be accessed directly. To access a memory block
from other portions of the global memory, the coherence protocol must provide three
important functions:

• determine the states of the block in other caches to know what actions to take,

• locate the other copies (if necessary, for example, to invalidate them), and

230 J. SUSTERSIC AND A. HURSON

• communicate with the other copies—obtain the data, or invalidating/update
them, as necessary.

By contrast, the bus-based protocols utilized the broadcast nature of the system
bus to provide key features that support efficient coherence protocols. First, every bus
operation (transaction) can be seen by every node in the system. Second, since the
system bus is shared by all processes, its nature inherently enforces a serial order on
the bus transactions. Recall from section one that the second condition is a necessary
condition for a consistent memory, e.g., a read must return the value of the latest write
operation in the hypothetical serial order. The message-passing protocols developed
for CC-NUMA architectures must provide these functions directly.

There are two basic approaches to provide coherence for CC-NUMA architec-
tures—hardware based and software based [46,56,58]. Software based approaches
view the address space of each processing node as independent memories and pro-
vide global coherent memory via a software layer [46,58]. Typically, this software
layer uses a lower network communication protocol to generate coherence traffic
to remote nodes. Hardware-based approaches, as the name implies, require dedi-
cated hardware support in processor caches, memories, and in their communication
assists [46,56]. This additional hardware is used by the coherence protocol to gener-
ate coherence messages to remote nodes. Typically, the messages generated by the
coherence protocol are managed by the communication assist, and as such, are trans-
parent to the processors of the system and, consequently, the operating system. For
these reasons, the hardware approach tend to provided better overall performance and
are more commonly used in CC-NUMA applications [46]. Therefore, this paper will
consider several variations of full hardware supported directory-based approaches to
cache coherence. The machines that typically employ directory based cache coher-
ence schemes have on the order of hundreds or thousands of processors, an address
space on the order of terabytes, and cache block sizes on the order of kilobytes to
tens of kilobytes.

3.3 Directory-Based Organizations—Principal

To manage the complexity of finding cached copies of memory blocks, determin-
ing the state of these copies, and communicating the appropriate information among
the various copies when coherence activities are required, a directory-based approach
is typically used in CC-NUMA organizations.

In discussing the operation of these directories, it is necessary to make a few key
definitions:

• Home Node: System node in which the memory block is allocated.

• Dirty Node: System node whose cache holds a modified (dirty) block.

COHERENCE PROTOCOLS 231

• Owner Node: System node that holds a valid copy of the block and that must
supply the data when requested by another node. The Owner node is the Home
node when no node has the block in the dirty (modified) state.

• Exclusive Node: System node that has a copy of a block in exclusive state (only
existing copy). Exclusive states are either Dirty or Exclusive (i.e., Clean1).

• Local (requesting) Node: The node from which a processor has issued a request
for a block.

• Local Blocks: Memory blocks for which the local node is the home node.

• Remote Blocks: Memory block for which the local node is not the home node.

There are two basic divisions in directory schemes, namely, the full mapped direc-
tory [46,54,56] and the partial mapped directory [46,56]. In full mapped directories,
the precise location of every cached copy of a memory block is maintained by the
system. In partial-mapped directories, a specific number of copies is permitted within
the system. These systems may provide support for situations when this supported
number of copies is exceeded in the system.

3.3.1 Fully-mapped Directory Organizations
Fully-mapped directory organizations can be categorized by the logical structure

of the directory. There are three basic structures: centralized, flat, and hierarchical.
Centralized directories bring all of the directory information to a common

location—the memory of the system is still distributed among the nodes of the sys-
tem. Since this organization creates a bottleneck at the directory, centralized directo-
ries are not commonly used.

In flat organizations, the directory information for a memory block is immediately
available to the requesting node, typically by decoding the address of the block. In
flat schemes, the location of the directory is fixed.

In hierarchical directory organizations, the location of the directory information
for a requested block is not known a priori. Hierarchical directories are organized as
a logical tree where the leaves of the tree are the processing nodes and the internal
nodes of the tree are directories of the memory blocks for the processing nodes of
its children. When a request is made for a block whose directory information is not
available directly for this node, the request simply traverses up the tree until a node
is found that has the directory information. While hierarchical organizations have
received some academic attention for their mathematical aesthetics, the additional
latency of determining the home node of a memory block has prevented widespread
utilization of this organization.

1Recall clean copies are consistent with main memory; dirty copies have been updated and, conse-
quently, are valid, but differ from main memory. (The block has not yet been updated in main memory.)

232 J. SUSTERSIC AND A. HURSON

Based on the physical location of the directory, the flat directory schemes may be
classified into three groups:

1. Memory-based: The directory information is stored directly with the memory
block on the home node.

2. Cache-based: Directory information is stored with a cached copy of the data
block. The home node contains only a pointer to the node with the directory
copy.

3. Hybrid: An intermediate approach that is partially memory-based and partially
cache-based.

Fully-mapped directories typically use an N bit wide vector and additional bits to
indicate the location and state of the cached copies for each block. In this scheme, the
ith bit of the vector corresponds to the ith node of the system: if the bit is set, then
the corresponding node holds a cached copy of the data block. For most of these
directory schemes, the memory requirements will therefore grow as O(N2).2 By
comparison, the broadcast protocols discussed in Section 1 have memory complexi-
ties of O(N). For this reason, alternative directory implementations were developed
that will support only a limited number of cached copies [46,56].

3.3.2 Partially-Mapped Directory Organizations

Investigations into the sharing patterns of parallel programs have determined that
the probability of a large number of processors accessing a particular data block is
small [43]. It logically follows that a practical approach to reducing the large memory
requirements of the fully-mapped directory would be to limit the number of cached
copies the directory can maintain. In this way, the system will be able to handle most
applications without difficulty. A performance penalty must be incurred only when
the maximum number of directly supported copies is exceeded.

The most common approach to partially-mapped directories involves maintaining
a certain number of pointers to nodes that contain a cached copy of a memory block.
Recall that in the fully mapped bit vector, the state of a bit indicated whether or not
a particular node currently holds a valid copy of that block; in partially-mapped di-
rectories this bit vector is replaced by multi-bit pointers, each of which is log2(N)

bits wide. For the directory to support ι copies of a data block, then the total storage
requirements for a directory entry is ι log2(N); for small ι, this storage requirement
is much less than the N bits required for the fully-mapped directory. When a lim-
ited number of pointers are used to indicate the location of cached data blocks, the
directory scheme is called a dirι organization.

2This will be developed in detail later in this section.

COHERENCE PROTOCOLS 233

By using a small number of pointers, partially-mapped directories reduce the large
storage requirements of directory coherence protocols; however, what happens when
the supported number of copies is exceeded (i.e., pointer overflow)? In practice, sev-
eral approaches address this issue [46,47,49–58]. The simplest approach is to ab-
solutely forbid more than the supported number of copies in the system. Under this
implementation, when an application requests the ι + 1 copy, a previously allocated
copy is simply invalidated; therefore, there is never more than ι copies of any mem-
ory block in the system. This approach works fine when fewer than ι copies are re-
quired. However, when an application does frequently exceed the supported number
of copies, then the repeated invalidations of active remote copies generates consid-
erable excessive coherence traffic and seriously reduces the overall system perfor-
mance. This type of partially-mapped directory is known as the dirι-NB directory
organization.

The second approach to handling the pointer overflow problem is to broadcast
coherence traffic to all nodes when more than ι copies of a data block are cached. To
facilitate this, an additional bit, the overflow bit, is set whenever broadcasts must be
used for coherence protocol operations. However, as the interconnection network is
not a broadcast-based network, the network must propagate the message to all nodes
of the network. This approach is effective in maintaining cache coherence; however,
the high cost of propagating these messages introduces considerable performance
penalties. As many of the messages are sent to nodes that do not have a valid copy of
the data block, these additional messages are unnecessary. This approach is known
as the dirι-B directory organization.

The third approach to solve the pointer overflow problem is known as the coarse
vector. In this organization, the directory behaves as a simple dirι directory when the
number of active copies of a data block is less than ι. However, when the number of
active copies is greater than or equal to ι, the directory switches to a coarse vector.
As a coarse vector, the directory bits used for the pointers are redefined as a bit
vector. The coarse vector identifies not a single node, but rather a specific group of
nodes. As a result, a bit indicates whether or not at least one copy of the data block
is cached in a group of nodes. Therefore, coherence protocol messages are broadcast
to all the nodes of a group whose corresponding bit in the coarse vector indicates the
presence of a cached copy. This reduces the total network coherence protocol traffic
generated when the number of cached copies exceeds ι without paying the higher
storage costs of a fully-mapped directory. This scheme is known as the dirι-CVκ

directory organization, where κ is the number of nodes in the group. When κ = 1, the
scheme is equivalent to a fully-mapped directory; when κ = N , the scheme reduces
to the dirι-B directory organization. Figure 5 illustrates this hierarchy of directory
organizations.

234 J. SUSTERSIC AND A. HURSON

FIG. 5. Overview of directory organizations.

3.4 Directory-Based Organizations—Implementation

The variety of approaches outlined thus far supply the necessary information that
allows a directory-based coherence protocol to operate properly. As yet, we have
not addressed the actual implementation of any protocols. In general, coherence di-
rectories require multiple point-to-point messages; consequently, they load the inter-
connection network heavily. As illustrated in section two, update-based coherence
approaches generate more traffic than do simple invalidation-based approaches. For
this reason, directory-based systems tend to use some variant of the Illinois–MESI
coherence protocol [46].

Due to the space constraints, this paper looks at a selected number of hardware-
based protocols. Interested reader is further referred to [46–58]. Within the class
of fully-mapped directory organization two implementations based on the SGI Ori-
gin [43] and the Scalable Coherence Interface (SCI) [55] is discussed. This discus-
sion is further enhanced by a study a hybrid fully-mapped organization [50].

Within the class of partially-mapped directory organizations, three directory orga-
nizations are discussed as indicated below and illustrated in Fig. 5:

• dirι-NB.

• dirι-B.

• dirι-CVκ .

COHERENCE PROTOCOLS 235

It should be noted that the literature is abandon with significant research in
software-based coherence schemes. Interested reader is referred to [46,58] for fur-
ther study.

3.4.1 Fully-Mapped Directories

3.4.1.1 Flat, Memory-Based Directory. In a flat directory scheme, the
home node of any given memory block can be directly determined from the address
of that block. In the Stanford Flash, the directory information for its distributed mem-
ory is maintained with the main memory at its home node. The full bit vector is pro-
vided for each memory block in its directory entry. An additional bit, the dirty bit, is
maintained to indicate that a cached copy has been modified and that the main mem-
ory result differs from that cached copy. Since only one cache may hold a dirty copy
at any one time, when a node must modify a copy, all other cached copies of the block
must be invalidated. Consequently, when the dirty bit is set, the memory block must
be cached at exactly one processor node. Additionally, a single bit is used to provide
mutual exclusion of potentially simultaneous requests. These various combinations
represent the three directory states of the Flash’s directory:

• Shared (Unowned)—Main memory has a valid copy of the block. One or more
valid cached copies may exist as indicated by the bit vector.

• Busy—A pending request to the block is in progress. SGI Origin replies with a
NACK when a request is received for a block in this state.

• Exclusive—A single cache (as indicated by a single bit set in the vector and the
dirty bit) is the owner of the block. The owner must provide the block to both
the requesting node and to the home node since its state will change to shared
upon completion.

Additionally, the state of each block in every cache must be maintained as was
done for the bus-based protocols. Three states analogous to the MESI protocol’s ESI
states are used. The modified state cannot be represented by the directory structure
(recall that a block in modified state is cached in multiple locations and the block is
not consistent with main memory). In order to represent this state, the directory size
must be increased to 2N instead of the N + 1. The Flash’s directory (as well as most
other flat organizations) eliminates the need for this additional state by requiring a
write back when a request is made for a block in Exclusive state.

As one might expect, the messages generated by the coherence protocol operation
are somewhat more complicated than the messages in the bus-based transactions. In
addition to the status bits attached to every message, a network header must be in-
cluded that specifies the source and destination nodes of the message, each of which
consists of log2 N bits.

236 J. SUSTERSIC AND A. HURSON

The coherence protocol in the Flash’s architecture is based on three categories of
transactions:

• Read, Read Exclusive, Upgrade, and Intervention messages each requesting a
data block.

• Shared Response, Exclusive Response, Revision, and Speculative Reply are
generated in response to request messages. All include the data block.

• ACK, NACK, and Intervention messages are issued by the home node in re-
sponse to request messages.

When read transactions are sent to the home node of a block, the status of that
block is checked in the directory; if the block is not in the Exclusive state, the home
node responds with a shared response or an exclusive response transaction that con-
tains the requested data, as appropriate.

If the block is in an exclusive state, the home node responds with a speculative
reply and sends an intervention request to the owner node: the owner node must then
send the updated node to the requesting node and write back the block to the home
node.

When Read Exclusive transactions are requested, the home node immediately
sends invalidation requests to every node with a copy of the data block and sup-
plies the data block in an Exclusive Response message. To maintain consistency, the
Requesting node must block the requesting process until each node that had a valid
copy of the block acknowledges the transaction. Similarly, Upgrade requests gener-
ate the same set of coherence activity and invalidation messages; the only difference
is that the home node will simply acknowledge the request instead of supplying the
data block in an exclusive response.

Lastly, when any request for a block is made to a memory block whose directory
is in the busy state (i.e., there is a pending request) the home node replies with a
NACK message that instructs the requesting node to try the transaction again later.

Table VII depicts physical characteristics of the SGI Origin’s Directory and Co-
herence Protocol based on the performance parameters as discussed in section one.
As the SGI Origin employs a switch-based interconnection network, the latency of
transaction is independent of the number of nodes in the system.3 Therefore, the
Synchronization Delay is constant with respect to the number of nodes in the system
(O(1)).

The message complexity of the protocol varies with the requests and the directory
state. For exclusive or upgrade requests to a block in shared states, invalidation mes-
sages and acknowledgements must be sent to every node that holds a copy. Therefore,
the complexity of these messages is O(Nc). The other valid sets of transactions also

3Assuming that the network is scaled with the number of nodes in the system.

COHERENCE PROTOCOLS 237

TABLE VII
STANFORD FLASH—FLAT, MEMORY-BASED DIRECTORY AND COHERENCE PROTOCOL

Read, Read Exclusive, Invalidation, Upgrade: number bits (A) + number
of bits header + number of status bits

Transaction Shared Response, Exclusive Response, Revision, Speculative Reply:
Size number bits (A) + number bits (B) + number of bits header + status

ACK, NACK, Intervention: number bits (A) + number of bits header +
status

Messaging Read Exclusive, Upgrade Transactions to shared block: O(Nc)
Complexity Other Transactions: O(1)

Memory 2 bits state + number bits (A) per node and N + 2 bits per block
Requirements in global memory

O(N + NM + M)
Synchronization O(Nc)

Delay

differ in the number of messages necessary; however, since the number of messages
required for all of these transactions is independent of the number of nodes in the
system, the complexity for these is O(1).

To support the memory requirements, two types of storage is needed—the direc-
tory itself and the cache tags of each node. Each cache tag is sized similarly to the
MESI protocol, consisting of two bits to represent the state of the cached block and
a field to represent an address. Remember that each node has one or more cache
blocks; consequently, this component of the memory requirement is O(N). A direc-
tory entry requires the N bit vector and two additional bits—one to indicate a dirty
status and one to provide mutual exclusion. Since there are M global memory blocks,
each of which has a directory entry, the total storage requirement for the directory
is N(M + 2), or O(NM + N). Therefore, the total storage requirement for both di-
rectory and cache tags is O(N + NM + M). If one expresses the total number of
memory blocks as the product of the average number of blocks per node times the
number of nodes, or M = αN , then the complexity reduces to O(N + N2)-typically,
N � M .

3.4.1.2 Cache-Based Directory. The memory-based directory organi-
zation discussed in the previous section is not scalable, and the storage requirements
are quadratic in complexity—a directory entry is maintained for every global mem-
ory block (even unused blocks and blocks that are not cached). Cached-based direc-
tories reduce these memory requirements by storing the directory entry not based
on the block in main memory, but rather with a cached copy of the block instead.
Since the number of cache blocks available in a system is typically much less than
the total number of memory blocks, a storage savings should be evident. To illustrate

238 J. SUSTERSIC AND A. HURSON

this operation, the SCI protocol implementation used in the Sequent NUMA-Q will
be discussed.

The NUMA-Q multiprocessor consists of a number of processing nodes, each of
which consists of a four processor bus-based multiprocessor, a portion of the globally
shared memory, a remote cache for non-local memory blocks, multiple cache levels
for each of the four processors, and a communication controller. The Illinois–MESI
protocol is used to maintain coherence within the multiprocessor node. The direc-
tory does not distinguish between the individual processors of these multiprocessor
nodes, only tracking that at least one cache in a given node has a copy of the memory
block.

In the NUMA-Q directory, the presence of a cached copy by a node is tracked
using a doubly linked list. The home node of a block maintains a small directory
entry that consists of a pointer to the head node (of size log2 N) and several bits that
indicate the status of the memory block.

The linked list implementation consists of forward and backward pointers, each
of which is also of size log2 N . The head node of the list generally has read and
write access to the memory block, where other members of the list have read-only
privilege.

Three directory states are provided in the NUMA-Q system, roughly analogous to
their SGI Origin counterparts.

• Home—No remote cache contains a copy of the block. Analogous to the Un-
owned state in the Flash. Linked list is empty.

• Fresh—Similar to the shared state in the SGI Origin, one or more remote caches
may have a read-only copy. Copy in memory is valid. Linked list has one or
more elements.

• Gone—A remote cache contains an exclusive (dirty) copy of the memory block.
Home node does not have a valid copy.

Since each node employs a four-state MESI bus-based protocol internally, the in-
teractions between these directory states create a large number of possible states for
each cached copy. Seven bits are used for each remote cache block to represent the
29 stable states and additional busy (pending) transient states.

Three primitive operations specified in the SCI standard are used to implement
memory operations.

• Constructing the List—A new node (sharer) is added to the head of the list.

• Rollout—Removing a node from the list.

• Purge—Issued by the head node exclusively; used to invalidate all other copies
by successive rollouts.

COHERENCE PROTOCOLS 239

In the case of a read miss to a remote node, the list construction primitive is issued
to the home node of the block. If the directory state is Home or Fresh, then the list is
modified so that the requesting node is the new head, the directory state is updated
as required, and the data is provided to the requestor. If the state is Gone, then the
location of the valid copy is sent in the reply to the requesting node. The requesting
node will then make a request directly to the current owner of the block, and the
list is adjusted so that the requesting node is now the head. The previous head node
supplies the data block to the requestor.

When a write miss to a remote node occurs, the list construction primitive again
is issued to the block’s home node. If the state is either Fresh or Gone, the purge
primitive is issued to invalidate every cached copy, the state is set to Gone, and the
list is set to consist of only the single requesting node. If the state is Home, then the
state is simply sent to gone and the list is set as before.

Similar primitive transactions are issued when upgrade requests are made to a
block. When a cache block in Fresh state or in Gone state is replaced and the request
is not from the head, the rollout primitive is used to remove that node from the list.
When a cache replacement is required by the head node, then the memory is updated,
the directory state is changed to Fresh, and the list is updated appropriately.

Table VIII summarizes the key parameters of this protocol implementation. As in
the Stanford Flash, the number of transactions used by the protocol is considerable:
the basic transactions are listed for comparison. Furthermore, for the three primitive

TABLE VIII
SEQUENT NUMA-Q FLAT, CACHE-BASED DIRECTORY AND COHERENCE PROTOCOL

List Construction Request: number bits (A) + number of bits header +
number of status bits
Response to read, Home or Fresh State: number bits (A) + number of bits
header + number bits status + number bits (B)

Transaction Response to write, or state Gone:
Size number bits (A) + number of bits header + number bits status

Rollout:
number bits (A) + number of bits header + status bits
Purge:
number bits (A) + number of bits header + status bits

Messaging Purge: O(Nc)
Complexity Rollout: O(1)

Constructing List: O(1)
Memory 7 bits state + number bits (A) + 2 log2 N per node and 2 bits state + log2 N

Requirement per block in global memory.
O(N + (N + M) log2 N + M)

Synchronization O(N)
Delay

240 J. SUSTERSIC AND A. HURSON

operations used in the SCI standard, the messaging complexity is indicated. For the
rollout and the construct list primitives, a constant number of messages is required
for protocol operation; consequently the complexity for these primitives is O(1). The
complexity of the purge primitive is dependent on the length of the list and is indi-
cated as such in the summary.

The NUMA-Q multiprocessor utilizes a high-speed ring for its interconnection
network; consequently, the latency of messages across the network scale linearly
with the number of nodes in the system [46]. Therefore, the synchronization delay
of this implementation is O(N).

The principle difference found between the SGI Origin’s flat memory-based direc-
tory organization and the NUMA-Q’s flat, cache-based directory organization can be
traced in their storage requirements. In the case of the NUMA-Q, main memory stor-
age is required for the two directory state bits and the pointer to the head node (of size
log2 N) for each memory block. Therefore, the storage complexity of this portion of
the organization is O(M + M log2 N). As outlined in the preceding discussion, the
directory requires a forward and backward pointer for each directory entry and seven
state bits per cache line. As each pointer is of size log2 N , then the storage complex-
ity for the cache directory entries of the multiprocessor system is O(N + N log2 N).
Taken together, the total storage complexity is O(N + (N + M) log2 N + M).

3.4.1.3 Hybrid Directory. Design of a hybrid fully-mapped directory
based has been reported in [50] It should be noted that, in some respects, the NUMA-
Q is also a hybrid organization since both home node and a remote cache store di-
rectory information. The NUMA-Q directory, however, is a quite special cache of
cache-based directories. Typically, cached-based directories use a bit vector, similar
to the memory-based directory, which is just stored in the cache. NUMA-Q organi-
zation improves the storage complexity over traditional cache-based directory orga-
nizations (which are O(N2 + N)). However, the implementation discussed in Sec-
tion 3.4.1.2 entails significantly higher synchronization delays over the traditional
hybrid approach. The hybrid approach improves the storage requirements over both
the memory-based directory and the traditional cache-based directory while provid-
ing latencies of the order of traditional cache-based directories.

The hybrid directory is formed by first logically partitioning the N processor nodes
into K clusters of N/K nodes. The memory-based component of the directory entry
then consists of a K bit vector, the ith bit of which indicates the presence of a cached
copy on one or more of the N/K nodes in the corresponding cluster. Additionally,
K pointers, each of size log2(N/K), are used to indicate which of the nodes in the
cluster holds the cache portion of the directory entry; this node is known as the cluster
owner.

COHERENCE PROTOCOLS 241

TABLE IX
FLAT, HYBRID DIRECTORY AND COHERENCE PROTOCOL

Read, Read Exclusive, Invalidation, Upgrade: number bits (A) +
number of bits header + number of status bits

Transaction Shared Response, Exclusive Response, Revision, Speculative Reply:
Size number bits (A) + number bits (B) + number of bits header + status bits

ACK, NACK, Intervention: number bits (A) + number of bits header
+ status bits

Messaging Read Exclusive, Upgrade Transactions to shared block: O(KcNc)
Complexity Other Transactions: O(Kc)

Memory 2 bits state + (N/K) − 1 bits + number bits (A) per node and K + 2
Requirements bits + K log2(N/K) per block in global memory

O(N + (N2/K) + MK(log2(N/K) + 1))

Synchronization O(KcNc)
Delay

In this way, the precise location of every cached copy throughout the multiproces-
sor system can be determined by searching the main memory directory entry and the
indicated cache directory entries for that block.

In fact, the protocol implementation, directory states, and message types are nearly
identical to those used in the memory-based SGI Origin protocol.4 Consequently,
the transaction sizes are also identical to those of that protocol. However, there is a
difference in messaging complexity. In the hybrid scheme, a cache directory must
be consulted for every cluster that holds a copy of the memory block. Therefore,
the complexity of even simple transactions is dependent of the number of clusters
holding a block. As a result, the complexity of these transactions is O(Kc), where Kc

is the number of clusters with a valid copy. Similarly, the more complex transactions
on shared blocks are O(KcNc) complex.

The memory complexity of the aforementioned hybrid protocol may be described
as follows.

• The main memory directory entry consists of K + 2 bits + K log2(N/K) bits.

• Each cache entry consists of 2 bits state + (N/K) − 1 bits + number bits (A),
where A is the address.

Therefore, the total storage complexity of this directory organization is O(N +
(N2/K) + MK(log2(N/K) + 1)).

Table IX summarizes the key parameters of this protocol.

3.4.2 Partially-Mapped Directories
The directory in fully-mapped implementation requires significant storage re-

sources mainly due to the fact that a large number of processors may cache a block.

4The differences are found only in elements of the protocol not discussed directly in this chapter.

242 J. SUSTERSIC AND A. HURSON

Research into the sharing characteristics of parallel programs has indicated that a
large number of cached copies is not likely [40,56]. Limited directory schemes re-
duce the storage required for the directory by providing direct support for only a
specific number of cached copies. These limited directory schemes are denoted as
diri directories, where ι is the number of cached copies that may be directly mapped
in the scheme. The major difference among the many protocols that fall into this class
is due to the manner in which the protocol handles requests for more than ι copies.

3.4.2.1 No-Broadcast Limited Directories. The simplest implemen-
tation of a limited directory is the no-broadcast directory, designated as dirι-NB.
This organization utilizes a directory entry that consists of ι pointers, each of which
indicates a node that has a valid cached copy of the data block corresponding to a
directory entry. In this way, the coherence protocol maintains the precise location of
up to ι copies for each block in the multiprocessor system. While a memory block is
cached in ι or fewer locations, the protocol operates exactly as the fully-mapped di-
rectory organizations do. When an application makes a memory reference that would
require ι + 1 cached copies, the protocol simply invalidates one of the older cached
copies [46].

Table X summarizes the parameters of the dirι-NB directory coherence protocol.
Though discussed extensively in the literature, no actual, full-scale implementation
of this directory organization was found. Consequently, the metrics used to illus-
trate this organization have been developed from the descriptions described purely
through the academic analyses of the literature [46,50–53,83,84]. The format, com-
plexity, and size of transactions utilized in this scheme are identical to those used in
the fully-mapped directory schemes.

The major improvement in this directory organization may be found in its memory
complexity. Each cache requires 2 bits per block for each cache block and a number
of bits equal to the number of address bits, the same as the other directories. The
directory entry consists of ι log2 N bits per block for the ι pointers. For small ι, this
quantity is much less than the N bits needed for fully-mapped directory schemes.

3.4.2.2 Broadcast Limited Directories. The limited directory scheme
dirι-NB provides significant reduction in the storage requirements relative to fully-
mapped directory protocols at the expense of poor performance when more than ι

copies of a memory block are actively shared. In these cases, the repeated invalida-
tions and subsequent cache misses require considerable communication overhead—
particularly when the cache block is read-shared only [46]. When a block is only be-
ing read by multiple processes, a fully-mapped directory would require no coherence
communication traffic.5 The same is true for limited directories when the number of

5After the initial read miss.

COHERENCE PROTOCOLS 243

TABLE X
dirι -NB LIMITED DIRECTORY

Read, Read Exclusive, Invalidation, Upgrade: number bits (A) + number of bits
header + number of status bits

Transaction Shared Response, Exclusive Response, Revision, Speculative Reply:
Size number bits (A) + number bits (B) + number of bits header + status bits

ACK, NACK, Intervention: number bits (A) + number of bits header +
status bits

Messaging Read Exclusive, Upgrade Transactions to shared block: O(Nc)
Complexity Other Transactions: O(1)

Memory 2 bits state + number bits (A) per node and ι log2 N bits per block in
Requirements global memory

O(N + M log2 N)
Synchronization O(Nc)

Delay

cached copies is below that threshold limit. However, when the limit is exceeded, re-
peated read misses generate remote invalidations and consequent coherence protocol
traffic.

One proposed approach to this limitation is the dirι-B limited directory organiza-
tion. This coherence protocol is identical in structure to the dirι-NB directory. How-
ever, instead of forcing invalidation when the number of cached copies exceeds the
limit, the protocol simply abandons the precise locations of the cached copies and
proceeds under the assumption that ALL nodes of the multiprocessor have a cached
copy of that block. Consequently, coherence operations that generate messages to
remote caches must broadcast those messages to all nodes. This is significant in that
the interconnection network is not a broadcast medium. As such, the broadcast is ac-
complished by propagating individual messages to every node in the system. In this
way, the system provides for an arbitrary number of allowed caches to hold a copy
of any memory block [46].

As was the case for the dirι-NB directory organization, no actual, full-scale imple-
mentation of this directory organization was found in the literature. Consequently,
the metrics used to illustrate this organization have been developed from the descrip-
tions described purely through the academic analyses of the literature [46,50–53,83,
84].

The transactions and their respective sizes utilized in a dirι-B limited directory
are identical to those used in the dirι-NB directory organization. Furthermore, the
memory requirements are nearly identical, with the dirι-B directory organization re-
quiring a single additional bit per directory entry to indicate the overflow state of the
directory when broadcast messages are required.

The messaging complexity, and consequently, the synchronization delay, is also
identical to the previous limited directory organization when the number of cached

244 J. SUSTERSIC AND A. HURSON

TABLE XI
dirι -B LIMITED DIRECTORY

Read, Read Exclusive, Invalidation, Upgrade: number bits (A) +
number of bits header + number of status bits

Transaction Shared Response, Exclusive Response, Revision, Speculative Reply:
Size number bits (A) + number bits (B) + number of bits header + status bits

ACK, NACK, Intervention: number bits (A) + number of bits header +
status bits

Messaging Read Exclusive, Upgrade Transactions to shared block:
Complexity c < ι O(Nc)

else O(N)
Other Transactions: O(1)

Memory 2 bits state + number bits (A) per node and ι log2 N + 1 bits per block
Requirements in global memory

O(N + M log2 N)
Synchronization c < ι O(Nc)

Delay else O(N)

copies can be precisely represented in the directory entry. However, when an over-
flow condition is encountered, the messaging complexity increases to O(N), regard-
less if a particular node is currently caching that block. Similarly, the synchronization
delay is also O(N) under an overflow condition. Table XI summarizes these parame-
ters.

3.4.2.3 Coarse-Vector Limited Directories. The broadcast approach
utilized in the dirι-B directory organization eliminates unnecessary coherence mes-
sages when a larger number of processors are actively read-sharing a given data
block. However, the solution introduces significant overhead when only ι + 1 copies
are active in the system.

To address this limitation, researchers in [57] introduced the coarse-vector limited
directory. When the number of cached copies is less than ι, the directory organiza-
tion is the same as both limited directories discussed previously. However, when an
overflow condition exists, the bits of the directory entry are reorganized as a ‘coarse-
vector’, where a bit indicates the presence of a cached copy in at least one node
of the well-defined cluster of nodes represented by the bit. In this way, coherence
messages need not be sent to ever node in the system, only to the nodes of those
clusters whose directory bit indicates the presence of a cached copy. While this ap-
proach does not offer optimal performance in terms of the number of messages sent,
it does significantly reduce the total messaging load generated by the coherence pro-
tocol.

This directory organization was designated as a dirι-CVκ limited directory orga-
nization, where κ is the number of nodes in the cluster. It should be noted that when

COHERENCE PROTOCOLS 245

TABLE XII
SGI ORIGIN 2000—dirι -CVκ LIMITED DIRECTORY

Read, Read Exclusive, Invalidation, Upgrade: number bits (A) +
number of bits header + number of status bits

Transaction Shared Response, Exclusive Response, Revision, Speculative Reply:
Size number bits (A) + number bits (B) + number of bits header + status bits

ACK, NACK, Intervention: number bits (A) + number of bits header
+ status bits

Messaging Read Exclusive, Upgrade Transactions to shared block:
Complexity c < ι O(Nc)

else O(Nκ)
Other Transactions: O(1)

Memory 2 bits state + number bits (A) per node and ι log2 N + 1 bits per
Requirements block in global memory

O(N + M log2 N)
Synchronization c < ι O(Nc)

Delay else O(Nκ)

κ = ι, the organization becomes a full-broadcast limited directory (dirι-B). When
κ = 1, then the directory becomes a fully-mapped directory.

Table XII indicates the study parameters for the dirι-CVκ directory organization
as employed in the SGI Origin 2000.6 The SGI Origin 2002 uses two different sized
vectors, either 16 or 64 bits. To enhance the scalability of the directory organization,
the Origin utilizes different interpretations of each directory entry, as well. Of con-
cern to this discussion is when a directory entry indicates that a block is in the shared
state. In this case, the bit vectors (either 16 or 64 bit variants) are coarse vectors that
divide the 1024 processor nodes into 64 node octants. When one or more nodes of
a particular octant hold a copy of the shared block, the corresponding bit in the di-
rectory is set; when an invalidation message is generated for the block, invalidation
messages are sent to all 64 nodes of the octant indicated by the coarse vector. The
transaction types and sizes are identical to those utilized in the other limited direc-
tory organizations. The memory requirements are identical to the dirι-B directory
organization, as on the definition of the bits change in the overflow condition, not the
number of bits.

The principle improvement in the coarse-vector directory organization is found in
the messaging complexity and synchronization delays. When the number of cached
copies of a given data block is less than or equal to ι, the directory operates as before.
When a directory overflows and the directory entry is restructured as a coarse vec-
tor, the messaging complexity is reduced from O(N) of the broadcast-based limited

6The operation of the SGI Origin’s directory changes as the number of processors is changed; for sim-
plicity, this analysis considers only the basic directory operation.

246 J. SUSTERSIC AND A. HURSON

directory to O(Nκ), where Nκ is the number of clusters that contain at least once
cached copy of a block.

3.5 Summary of Message-Passing Protocols

The fully-mapped memory-based directory organization was outlined and shown
to maintain the precise location of each remotely cached copy with quadratic com-
plexity in storage requirements. To reduce the overall storage requirement of the
memory-based fully-mapped directory the cache-based fully-mapped directory was
then developed. In comparison with memory-based fully-mapped directory, cache-
based fully-mapped directory still offers quadratic memory complexity at a signif-
icant cost in messaging complexity and latency. Finally, a hybrid fully-mapped ap-
proach was discussed that provides an intermediate cost in terms of storage require-
ments at a performance comparable to that of the fully-mapped memory-based di-
rectory.

Organizations and limitations of partially mapped directory organizations were
addressed. The three approaches summarized identify the trade-offs between storage
requirements and performance (i.e., synchronization delay and messaging complex-
ity). Table XIII summarizes the three significant parameters of these six directory
based organizations. The details of the transactions are omitted, as they are constant
over all the directories.

4. Coherence on the World Wide Web

4.1 Introduction

The preceding sections have described caching and cache coherence schemes for
small and medium-scaled parallel computer systems. Bus-based coherence solutions
are appropriate for small-scale parallel systems utilizing a broadcast interconnect
medium—the system bus. As these systems grew, the system bus became a limiting
factor in the scalability; thus, a different approach to interprocessor communication
was developed and consequently, the directory-based coherence approaches were
proposed. As shown in previous section, directory-based coherence protocols scale
up well regardless of the interconnection network employed. The exponential growth
in the world’s largest parallel and distributed system, the world wide web [59], has
forced evolutionary changes in the caching techniques and the coherence protocols
employed in its operation. This section is intended to survey the caching schemes
and the coherence methods employed in this environment.

Caching on the World Wide Web has found three principle applications:

C
O

H
E

R
E

N
C

E
P

R
O

TO
C

O
LS

247

TABLE XIII
SUMMARY OF SELECTED SURVEY PARAMETERS OF THE MESSAGE-PASSING COHERENCE PROTOCOLS

Messaging Complexity Memory Requirements Synchronization Delay
SGI Origin—Flat, Read Exclusive, Upgrade Transactions to 2 bits state + number bits (A) per node and N + 2 O(Nc)
Memory-Based shared block: O(Nc) bits per block in global memory
Directory Other Transactions: O(1) O(N + NM + M)
Sequent NUMA-Q Purge: O(Nc) 7 bits state + number bits (A) + 2 log2 N per node O(N)
Flat, Cache-Based Rollout: O(1) and 2 bits state + log2 N per block in global memory
Directory Constructing List: O(1) O(N + (N + M) log2 N + M)
Flat, Hybrid Read Exclusive, Upgrade Transactions to 2 bits state + (N/K) − 1 bits + number bits (A) O(KcNc)
Directory shared block: O(KcNc) per node and K + 2 bits + K log2(N/K) per block

Other Transactions: O(Kc) in global memory
O(N + (N2/K) + MK(log2(N/K) + 1))

dirι-NB Read Exclusive, Upgrade Transactions to 2 bits state + number bits (A) per node and ι O(Nc)
shared block: O(Nc) log2 N bits per block in global memory
Other Transactions: O(1) O(N + M log2 N)

dirι-B Read Exclusive, Upgrade Transactions to 2 bits state + number bits (A) per node and ι c < ι O(Nc)
shared block: log2 N + 1 bits per block in global memory else O(N)
c < ι O(Nc) O(N + M log2 N)
else O(N)
Other Transactions: O(1)

dirι-CVκ Read Exclusive, Upgrade Transactions to 2 bits state + number bits (A) per node and ι c < ι O(Nc)
shared block: log2 N + 1 bits per block in global memory else O(Nκ)
c < ι O(Nc) O(N + M log2 N)
else O(Nκ)
Other Transactions: O(1)

248 J. SUSTERSIC AND A. HURSON

1. Server Caches—Cache memories employed at WWW server to reduce access
latency of the pages it serves.

2. Client Caches—Cache memories employed at WWW clients to reduce the ac-
cess latency of the requested pages.

3. Proxy Caches—Cache memories placed intermediate to the server and the
client at a proxy server (often a network firewall) to reduce the access latency
of commonly accessed documents within the proxy server’s domain.

A significant volume of research has shown that there are several considerable
advantages in using web caching [59–62]:

• Web caching reduces network traffic, and hence reducing congestion.

• Web caching reduces average access latency due to the reduced network traffic
and by providing a copy of requested document from a lower latency location.

• Web server workload is reduced by cache hits in client and proxy server caches.

• Improved system robustness in allowing a cache to provide a document whose
server is temporarily unavailable.

As with previous cache applications studied thus far, the advantages are found at
the expense of some disadvantages. Primarily, the use of caching can result in inco-
herence between the cached copies throughout the system. Secondarily, cache misses
will experience slightly longer access times due to the additional processing required
by the cache implementation. However, the focus of web caching implementations
remains on ensuring coherence among the shared documents.

In general, the web caching applications indicate the basic client-server abstrac-
tion employed in WWW operations. The client-server computational paradigm is
a significant departure from the large-scale parallel computer systems that employ
directory-based cache coherence protocols, where the system organization is one of
a peer-to-peer configuration. Figure 6 illustrates the basic elements of this hierarchy
with web caching [59].

While Fig. 6 indicates the hierarchy of the WWW, it cannot accurately impress
upon the reader the scale of the hierarchy. The ratio of clients for any particular
server may vary widely from server to server over several orders of magnitude. Ad-
ditionally, these ratios may change over time.

Figure 6 also indicates the possibility of some degree of cooperation among the
proxy servers of the web hierarchy. As a result, certain proxy servers may operate
independently of others, while some may work with a trusted set of proxy servers as
configured by their administrators.

There are several specific approaches to web caching identified in the litera-
ture [59]. Three general approaches are defined as:

COHERENCE PROTOCOLS 249

FIG. 6. Basic Web hierarchy [59].

1. Hierarchical web caching conventionally utilizes a four-level cache hierar-
chy superimposed on the typical hierarchy of Internet Service Providers
(ISPs) [63]; hierarchical web cache architectures are discussed in Section 3.2.

2. Distributed web caching approaches do not deepen the client-server hierarchy
of the World Wide Web with additional cache levels. Instead, improved client
caching is facilitated by cooperation between client caches. Distributed web
caching is discussed in Section 3.3.

3. Hybrid web caching approaches blend elements of both hierarchical and dis-
tributed web caching in varying proportions to improve the caching perfor-
mance while reducing some of the undesirable side effects introduces by the
basic cache configurations. Hybrid web caching is discussed in Section 3.4.

Additionally, a highly simplified, specialized form of web caching—web site
mirroring—has been used extensively to achieve some of the benefits of caching
without fully implementing a traditional caching system. Typically, a high-traffic
web site is replicated on one or more separate web servers, each with its own unique
IP address. These additional web servers contain an exact duplicate, or ‘mirror im-
age’ of the original web server; consequently, accessing a page from one of the mirror
sites is equivalent to accessing the original host. Mirror sites are typically located in
geographically separate networks (e.g., a site based in the UK frequently accessed in
North America might establish a mirror site in the United States, potentially elimi-
nating trans-continental routing expenses and delays, etc.) This arrangement permits
many of the advantages of caching discussed previously. In effect, a mirror site is
similar to a proxy cache that is constantly synchronized to the original host. How-

250 J. SUSTERSIC AND A. HURSON

ever, there are some distinct differences between web caching and site mirroring.
Most significantly, a mirror site copies the entire contents of the original web site,
regardless of the access frequency of individual data items within that site. Addi-
tionally, the mirror site—as a replica of one particular web server—does nothing to
improve the performance of any other web server; a proxy server, for comparison,
copies frequently-used data items from multiple web servers. In some cases, load
balancing between the primary server and its mirror sites may be automatic and,
therefore, transparent to the user; more often, the user might simply select a mirror
site when unhappy with the performance of the primary site. In these cases, mirroring
is not transparent to the user. In general, mirror sites are most effective when dealing
with heavily-accessed, globally read-only data, where changes are only made at the
host server and reflected at the mirror sites. However, since mirroring is a limited,
specialized application of web caching, it will not be discussed in detail in this paper.
Please refer to the literature for more information [59–72].

It should be noted that, due to the space limitations of this paper, the web caching
organizations discussed herein are by no means meant to be comprehensive. One
should refer to the literature for further information [59–72].

4.2 Hierarchical Web Caching Schemes

Hierarchical web cache organizations employ proxy server caching at network-
level gateways or firewall along the general structure of the World Wide Web
[63–66]. At the lowest level, client machines are serviced by an institutional (i.e., lo-
cal) level network. These institutional-level networks are serviced by regional-level
networks, which in turn are serviced by national-level networks. Figure 7 illustrates
this basic hierarchy [63].

In hierarchical web cache organizations, client requests propagate up the hierar-
chy until the request can be satisfied. Client requests that cannot be satisfied by the
client’s cache are sent to the institutional level. The institutional-level cache is then
examined for the requested document; if the document does not currently exist in
the institutional cache, the request is then resolved to the host server if the server
resides in the institutional domain. Cache misses to host that do not remain in the
institutional domain are transmitted to the regional level network. In this way, cache
misses propagate up the hierarchy tree. The same algorithm described for the insti-
tutional level request processing is used at the regional level. At the national level,
cache misses are resolved to the particular national network where the server con-
taining the requested document resides. When a document request is satisfied at any
level, the document is transmitted back along the hierarchy to the requesting client,
with a copy left at the caches of each level of the hierarchy.

COHERENCE PROTOCOLS 251

FIG. 7. Basic hierarchical cache organization.

While hierarchical caching architectures offer certain advantages—most notably
simple basic implementations into the pre-existing network hierarchy, there are sev-
eral significant disadvantages to this web caching organization [59,61,63].

• Since the cache server must be placed at key access points in the networks,
significant coordination may be required among participating cache servers.

• Hierarchical levels may introduce additional delays.

• Higher-level caches may have long queuing delays, producing a bottleneck.

• Multiple copies of the same document may be stored in multiple caches at each
level.

Most significant among these disadvantages is in having multiple copies of the
same document at different levels of the hierarchy. This is particularly troublesome
in that the ratio of lower-level caches to the regional and national-level caches is quite
large; consequently, it is not possible to guarantee inclusion in the cache hierarchy—
that is every document contained in a lower-level cache is also contained in every
higher-level cache. This effect must be considered in attempting to maintain coher-
ence of the caches.

4.3 Distributed Web Caching Schemes

In distributed web caching, only the institutional level caches are employed to
cache web documents, and cooperating groups of these institutional caches attempt
to serve each other’s cache misses [59,63,65,67]. In this organization, each proxy
cache at the institutional level keeps meta-data information on the contents of every
cooperating proxy cache. This meta-data information is used to allow the cooperating

252 J. SUSTERSIC AND A. HURSON

cache that contains a requested document to serve that document, presumably at a
cost lower than that incurred by retrieving the requested document from the server.
The meta-data used in the caching schema may be organized as a hierarchy similar to
that employed in a hierarchical web caching organizations. The principle difference
between these distributed caching organizations and hierarchical caching schemes is
that only meta-data, not the actual documents, is distributed by a hierarchy.

In general, the distributed web caching approaches generate more network traffic
at the lower levels while reducing network traffic at the higher levels which tend to
become bottlenecks to the overall distributed system performance [59]. The various
distributed web caching organizations proposed in the literature, however, differ in
how they achieve distributed caching [59].

• Internet Cache Protocol—Provides a mechanism to locate cached copies
throughout the network.

• Cache Array Routing Protocol—URL-space is hashed to a set of cooperating
proxy caches; only cache to which a document URL is hashed may store a copy
of that document.

• Distributed Internet Cache [67]—Higher-level caches of hierarchical cache or-
ganizations are enhanced by directory servers that point to the location of
cached copies of requested documents.

• Fully distributed internet Cache [65]—Is similar to the Distributed Internet
Cache scheme, except that replicated location information is maintained at each
cache instead of using a meta-data hierarchy.

• Central Directory Approach (CRISP) [69]—A central mapping service is em-
ployed to provide location information of a set of cooperating proxy cache
servers.

• Cachemesh [70]—A group of cooperative proxy caches jointly generate routing
tables to indicate the location of cached copies of requested documents. A par-
ticular cache server will service only a subset of the requested documents.

• Summary Cache [72], Cache Digest [71]—Cooperating caches exchange infor-
mation regarding contents of their caches; maintain directories of local docu-
ment copies.

4.4 Hybrid Web Caching Schemes

Hybrid web caching schemes feature characteristics of both hierarchical and dis-
tributed web caching architectures [59,63,68,69,72]. As in hierarchical web caching,
proxy caches are implemented for multiple network levels; as in distributed web
caching, proxy caches are permitted to interoperate with other proxy caches at the

COHERENCE PROTOCOLS 253

same or higher cache levels. This arrangement is designed to take advantage of the
desirable characteristics of hierarchical and distributed web caching while mitigat-
ing some of the undesirable characteristics of each. Hierarchical web caching po-
tentially may increase access latency due to the increased cache processing at each
level of the hierarchy. Additionally, hierarchical web caching may result in multi-
ple copies of a document at various cache level—this increases the complexity of
the coherence problem. Distributed caching attempts to leverage spatial locality of
cooperating caches at a considerable cost of both the memory and the processing
overhead required to maintain the meta-data information stored at every cache. By
design, distributed cache organizations tend to reduce the number of cached copies
of a document by maintaining limited numbers of copies in strategic locations. Hy-
brid web caching offers an intermediate configuration between these two, reducing
the number of cached copies at various levels of the caching hierarchy by enabling
interoperation between caches at multiple levels.

4.5 Coherence in Web Caching Schemes

The previous sections have outlined the basic approaches described in the litera-
ture to implement web caching [59–72]. To be complete, however, some discussion
of potential coherence mechanisms must be provided. In principle, this problem is no
different from maintaining coherence among the various caches of parallel proces-
sors as discussed in sections two and three. Each block of memory has some set of
zero or more caches that are storing a copy of that block; some mechanism must
be provided to locate each copy so that a change to any copy may be properly re-
flected in all copies in a timely manner. Section 2 outlined several directory-based
approaches reported in the literature that were scalable for a large number of shared
copies. Several important factors make a straight implementation of one of these
directories impractical in the WWW environment.

1. Scale of shared memory space—Clearly, the total memory available over the
World Wide Web is by orders of magnitudes greater than the largest distrib-
uted shared memory multiprocessor organization. Additionally, the number of
potential caches that might share a particular block of memory is similarly as
large. As noted in Section 2, the memory requirements of the directory schemes
where at best O(N +M log2 N), scaling both N and M by any factor reasonable
for the internet environment results in an impractical complexity in memory re-
quirements.

2. Access Latencies and Communication Link Bandwidths—The parallel systems
for which bus-based and directory based protocols were designed for featured
high-bandwidth, tightly coupled intercommunication networks. The World

254 J. SUSTERSIC AND A. HURSON

Wide Web is a collection of heterogeneous networks and network topologies,
each of which has varying bandwidths and latencies. To hide this complexity,
the Internet Protocol (IP) was developed to allow communication across these
heterogeneous topologies. However, the cost of implementing IP includes ad-
ditional latencies for such functions as Domain Name Service (DNS) and con-
nection delays. These delays have been found to dominate the latency of WWW
transactions, particularly on the initial access to a web resource [63].

3. Message Complexities—The communication overhead associated with scal-
able directory-based coherence organizations are significant; Section 2 showed
that the best-case complexity was of the order of the number of cache blocks
in the total system. Similar to the memory requirement outlined above, a scale
in the system at the level of the WWW environment increases communication
complexity, drastically. Additionally, the access latency issues outlined previ-
ously further increases the expense of these increasingly complex messages.

These factors have combined to affect the way in which web designers structure
their websites and online applications. The World Wide Web has exhibited exponen-
tial growth over its lifetime [59], and this explosive growth in the Internet has further
complicated the cache coherence issue.

Initial web caching organizations offered no inherent coherence mechanism; con-
sequently, there was a finite chance that a cached copy was delivered stale. Hyper-
Text Transfer Protocol (HTTP) incorporates several directives to help manage proxy
caches. These directives may be used by the web designer to customize proxy re-
sponse to requests for that page, in an attempt to provide best coherence and perfor-
mance. The directives provided by HTTP are outlined as follows:

1. GET—Retrieve a document from the specified Uniform Resource Locator
(URL).

2. Conditional GET—Used in conjunction with an if-modified-since header to re-
trieve a page only if the page was changed since a specified time stamp.

3. Pragma No-cache—A header directive that forces all caches along a request
path to retrieve the requested page directly from the server.

4. Last modified Time stamp—Returned with every accessed web document to
indicate the last time resource was updated.

5. Date—A time stamp indicating when last the document was considered fresh.7

Cache coherence has been researched and implemented in two basic forms:
strongly consistent cache coherence and weakly consistent cache coherence [59].
These basic coherence schemes and several broad implementation approaches for
each scheme will be discussed in the following sections.

7One of the most popular web browsers, Netscape, provides no mechanism for accessing this data [59].

COHERENCE PROTOCOLS 255

TABLE XIV
STRONGLY CONSISTENT WEB COHERENCE, CLIENT VALIDATION

Conditional GET:
Size of (TCP/IP Header + request URL)

Transaction Server Reply, cached page valid:
Size Size of (TCP/IP Header + request URL)

Server Reply, cached page valid:
Size of (TCP/IP Header + request URL + requested page)

Messaging Complexity O(1)
Memory Requirements O(N + M)
Synchronization Delay O(1)

4.5.1 Strongly Consistent Web Caching

Strongly consistent cache coherence provides each requested document to the
client with perfect consistency—that is, each read request returns the document with
all previous writes and updates. Strongly consistent coherence has been implemented
as client validation and server invalidation.

4.5.1.1 Client Validation. Client validation is implemented by appending
a conditional get HTTP directive to each request for an Internet document. If the
document has not been changed since the last request, the server responds with a
simple acknowledgement and the cached document may be used with confidence;
otherwise, the server returns the updated document. This document is provided to
the client and is used to update the cache(s).

Table XIV outlines the performance metrics for strongly consistent, client valida-
tion based web cache coherence.

4.5.1.2 Server Invalidation. Server invalidation requires each server to
maintain a list of every client that has requested a particular document. When a
document is modified, the server will send an invalidation message to every client
that had previously requested that document. As one might imagine, the overhead in
maintaining these lists can be considerable. Additionally, the lists themselves may
become stale. Table XV outlines the performance metrics for strongly consistent,
server invalidation based web cache coherence.

4.5.2 Weakly Consistent Web Caching

Weakly consistent web caching allows for the possibility of retrieving a stale copy
of a web document in exchange for an improvement in overall performance. Two
approaches to weakly consistent caching will be discussed here—Adaptive Time-
To-Live (TTL) and Piggyback Invalidation.

256 J. SUSTERSIC AND A. HURSON

TABLE XV
STRONGLY CONSISTENT WEB COHERENCE, SERVER INVALIDATION

GET:
Size of (TCP/IP Header + request URL)

Transaction Server Reply, cached page valid:
Size Size of (TCP/IP Header + request URL + requested page)

Server Invalidation:
Size of (TCP/IP Header + request URL)

Messaging Request: O(1)
Complexity Invalidation: O(Nc)

Memory Requirements O(N + M)
Synchronization Request: O(1)

Delay Invalidation: O(Nc)

4.5.2.1 Adaptive Time-To-Live (TTL) [73]. Adaptive TTL is a weakly
consistent approach to web cache coherence. Adaptive TTL takes advantage of bi-
modal nature of update patterns to web documents—either web documents are up-
dated frequently, or they are not likely to be updated for a long time. In adap-
tive TTL, the cache will fetch a requested page that it currently holds only when
a heuristic based on the document’s time-to-live so indicates. Researchers have
shown that this approach will provide stale data only in approximately 5% of the
requests.

Table XVI outlines the performance metrics for weakly consistent, adaptive TTL
based web cache coherence. A close comparison of Tables XVI and XIV illustrates
the similarity in these performance metrics; while the transactions used and perfor-
mance metrics are identical, the primary differences in the performance of the two
protocols is determined by the frequency with which the various transactions are
used. In client validation, every client request generates a conditional request to the
server. In adaptive TTL, only requests indicated by the heuristic algorithm generate
this request.

TABLE XVI
WEAKLY CONSISTENT WEB COHERENCE, ADAPTIVE TTL

Conditional GET:
Size of (TCP/IP Header + request URL)

Transaction Server Reply, cached page valid:
Size Size of (TCP/IP Header + request URL)

Server Reply, cached page valid:
Size of (TCP/IP Header + request URL + requested page)

Messaging Complexity O(1)
Memory Requirements O(N + M)
Synchronization Delay O(1)

COHERENCE PROTOCOLS 257

4.5.2.2 Piggyback Coherence Techniques. The literature has out-
lined several implementations to piggyback coherence traffic on requests messages.
The general philosophy behind these approaches is to incorporate (or piggyback)
relatively small-sized coherence information with any messages to the same server,
when needed. This eliminates additional connection time costs for coherence traffic
and hence reduces communication overhead costs. The first proposed approach, Pig-
gyback Cache Validation (PCV) [74], appends proxy cache validation messages to a
particular server to htt:get requests sent to that server. The second approach utilizes
piggybacked invalidation messages from a server to mark cache entries as dirty. This
approach is called Piggyback Server Invalidation (PSI) [75] in the literature.

Coherence achieved through PCV appends coherence validation requests to re-
quests made to a particular server. A cache maintains a history of a document’s
source and the last time that document was out of date; at an interval determined by
the coherence heuristic, the cache will attempt to obtain a validation from the server
to ensure that the document is still valid. Therefore, PCV is most effective when there
are many requests to a particular server on which to piggyback these validations. By
contrast, PSI sends explicit invalidations to documents sent to a requesting cache.
In addition to the added complexity of having to maintain a list of every cache that
has requested every document served, PSI has the additional complexity of dealing
with cache page replacements—in effect, the coherence of the lists of the requested
cache documents must be maintained. However, as with the invalidation approaches
discussed in previous sections, invalidation schemes have the advantage of reducing
overall communication requirements. PSI sends a list of the documents that have
changed since the last access by a given proxy cache. The proxy cache may then
invalidate those documents that have changed since the last access. The lifetimes of
cached documents not invalidated may also be extended. Therefore, PSI approaches
are most effective when documents are frequently retrieved from a server, providing
more opportunities for piggybacked coherence messages.

A third hybrid approach was proposed in the literature to help provide more opti-
mal performance by switching between PSI and PCV modes [76]. As outlined pre-
viously, the PSI approach is more efficient when requests are frequently made from
a server—therefore, the list of changed documents is small and the time a document
may sit stale in a cache is consequently small as well. When the time between re-
quests is longer, then it is prudent to explicitly perform a PCV validation to ensure
that the documents have not changed. The hybrid approach maintains the time since
a server was last accessed, and selects which of the two coherence protocols would
most efficiently handle each request. Table XVII displays the performance metrics
of the general hybrid weakly consistent web coherence protocols.

258 J. SUSTERSIC AND A. HURSON

TABLE XVII
WEAKLY CONSISTENT WEB COHERENCE, PIGGYBACK CACHE TECHNIQUES

Conditional GET:
Size of (TCP/IP Header + request URL)

Transaction Server Reply, cached page valid:
Size Size of (TCP/IP Header + request URL)

Server Reply, cached page valid:
Size of (TCP/IP Header + request URL + requested page)

Messaging Complexity O(N)
Memory Requirements O(N + M)
Synchronization Delay O(1)

4.6 Summary of Web Coherence

This section has attempted to outline the basic approaches utilized in implement-
ing caching and cache coherence in the challenging heterogeneous environment of
the World Wide Web. Table XVIII compares the performance characteristics of the
various approaches discussed, and illustrates the similarity in these metrics. The
biggest difference may be found between the strongly consistent and the weakly
consistent approaches. However, these differences are small and heavily dependent
on the sharing characteristics and access patterns of not only a particular document,
but also on the access patterns of other documents from the same servers and the set
of documents cached at a particular proxy. The analysis of these interactions is com-
plex and beyond the scope of this paper; however the existence of these interactions
must be kept in mind while considering the various coherence approaches—and in
planning new ones.

TABLE XVIII
SUMMARY OF SELECTED SURVEY PARAMETERS OF THE WEB COHERENCE PROTOCOLS

Messaging Memory Synchronization
Complexity Requirements Delay

Strongly Consistent Web
Coherence, Client O(1) O(N + M) O(1)
Validation
Strongly Consistent Web
Coherence, Server Request: O(1) O(N + M) O(1)
Invalidation Invalidation: O(Nc)
Weakly Consistent Web
Coherence, Adaptive O(1) O(N + M) O(1)
TTL
Weakly Consistent Web
Coherence, Piggyback O(N) O(N + M) O(1)
Cache Techniques

COHERENCE PROTOCOLS 259

5. Wireless Protocols

5.1 Introduction

Through the evolution of the coherence protocols outlined in this paper, the com-
plexity of the problem has increased exponentially. Bus-based systems utilize broad-
cast coherence messages, permitting each node to track every transaction to analyze
how the transactions might affect the contents of that node’s cache. Directory-based
protocols were developed to accommodate the point-to-point communication net-
works used in scalable multiprocessor architectures. In the next step in this evolution
trend, the heterogeneous distributed computing environment of the World Wide Web
forced further adaptations not only in the coherence mechanisms but also in the ac-
cess patterns and sizes of shared documents. The final step outlined in this evolution
will involve the adaptations of cache coherence techniques to wireless networking
environments [28–30]. This environment has all the complexity of the heterogeneous
World Wide Web environment and additional complexity as well [77–82]. These ad-
ditional technical difficulties include three principle components:

• Mobility—Mobile computing devices potentially change location; this intro-
duces considerable complexity in tracking that device to and, consequently, in
routing coherence traffic (as well as other internet communications).

• Limitation of Wireless Bandwidth—While the World Wide Web generally has
a lower throughput than the tightly integrated, high bandwidth intercommu-
nication networks found in large-scale multiprocessor architectures, wireless
networking introduces even tighter restrictions on bandwidth. Furthermore, the
available bandwidth costs are considerably higher for the available wireless net-
works.

• Frequent Disconnection—Wireless network resources are subject to frequent
disconnection from the network. Consequently, network protocols (including
coherence protocols) must account for this characteristic of the wireless net-
work and provide mechanisms to handle the likely occurrences of requiring
communication with a resource that is not available from time to time.

These three factors introduce significant difficulties, particularly when attempting
to implement a strongly consistent cache coherence protocol. For example, consider
the following scenario: a wireless device accesses a WWW document and stores that
document in a local cache. After disconnecting from the network, the document is
again accessed—without access to the network, there is no mechanism for the local
cache to determine the status of the stored copy. Validation schemes cannot query the
server to learn if the document had changed, and any invalidation sent from the server
has no way of reaching the disconnected node. Clearly, this is a difficult problem to

260 J. SUSTERSIC AND A. HURSON

handle efficiently. Is it necessary to block accesses to the document? Are there cases
where it is most likely safe to use the cached copy, even if it cannot be validated?
These are some of the questions that the wireless coherence protocols must address
in order to be effective and practical.

The limited bandwidth of a wireless network poses the most serious restriction to
the environment. Internet applications have taken full advantage of the growing band-
width of the wired network, further straining the already tight bandwidth availability
of the wireless networks. Caching is an important architectural feature of computer
environments that can be quite useful in reducing network traffic. As we have seen
throughout the evolution of coherence protocols, however, maintaining the coherence
of these caches imposes additional applied load to the network. Consequently, coher-
ence protocols for wireless networking have strict design requirements that strongly
emphasis the efficiency of its operation.

5.1.1 The Mobile Computing Network Environment
The mobile computing network environment consists of a series of contiguous

wireless cells, each of which contains a fixed, central server. The servers are inter-
connected by a conventional, wired network. Within each cell is some number of
mobile computing devices; the exact number of mobile computers within a cell may
change with time, and a mobile computer is free to move between cells in any pattern
and at any time. Figure 8 illustrates the basic configuration of the mobile network en-
vironment.

Duplex communications between the server and the mobile computing nodes are
provided via radio communications. The server communicates with all nodes within
the cell using broadcast communications: this is the downlink, or server-to-client
channel. Every node within the cell receives all communications from the server.

FIG. 8. The mobile computing network environment.

COHERENCE PROTOCOLS 261

Mobile computing nodes communicate with the server using point-to-point com-
munication: this is the uplink, or client-to-server channel. Thus, the wireless net-
work environment is a hybrid between the broadcast intercommunication network
used in bus-based multiprocessors and the point-to-point intercommunication net-
work used in the scalable multiprocessor architectures for which the directory class
protocols were developed. However, it must remain clear that the broadcast trans-
missions within a given cell are broadcast only within that cell.

5.2 Cache Coherence Design Requirements in the Wireless
Network Environment

The basic cache coherence mechanism in wireless networks operates in a periodic
update mode. Each server maintains a list of data blocks (or records) that have been
updated recently; this list is then periodically broadcast to all nodes within the cell
Client caches may then utilize these reports to make informed decisions on the status
of its cached data blocks. This approach solves the problem of disconnection from
the network, for a node that misses an update while disconnected will be able to
receive a future update. As long as the disconnection period is smaller than the time
the server will broadcast an update, the client will receive at least one—more likely
several—update reports that indicate the change.

One must be careful to differentiate the term ‘update report’ from the update-
based protocols discussed previously in this paper. While the update report implies
an update-based coherence operation, in fact the update report may be configured
to operate in either an update mode or an invalidation mode. In invalidation mode,
the update report contains only the identifier of the data blocks that have changed;
consequently, client caches may only note that a particular data block has changed
by invalidating its copy. This mode of operation has been called ‘update invalidation’
(UI) in the literature [29]. Similarly, the update report may include the modified data;
in this case, the update report is utilized in an update mode to modify the cached data.
This scheme is referred to as ‘update propagation’ (UP) in the literature [29].

With the update record as a basic mechanism for cache coherence, it is necessary
to consider when the update report is to be broadcast. The most direct approach is
to broadcast the report immediately upon a data block change. Under this approach,
clients are notified immediately upon an update; this operating mode is referred to
as asynchronous in the literature [29]. This operating mode is simplistic in opera-
tion, but since no regular times are defined for transmission of the update broadcast a
disconnected client has no way to determine if a relevant update report was missed.
Therefore, an alternate operating mode, called synchronous [29] establishes a fixed
interval for the update reports. This interval provides an upper bound for the trans-
mission of the update report. This bound allows a disconnected client to know pre-

262 J. SUSTERSIC AND A. HURSON

cisely how long it must wait to ensure receiving a current update report. Furthermore,
with a defined duration that an update record will be maintained, a disconnected
client has both upper and lower bounds within which the update report itself will
be sufficient to maintain coherence. Disconnections that last longer than this upper
bound will require explicit validation messages from the client upon reconnection.

The demanding requirements of maintaining coherence between caches within
the wireless network environment are driven by the limitations of the environment
itself—the limited bandwidth of the environment is the most serious of these re-
strictions. Consider the implication of this limitation on the operation of the basic
coherence protocol operations—update and invalidate. In broadcast invalidations, a
changed data block that may be cached by multiple nodes is indicated by an ex-
plicit invalidation of that block; the receipt of this invalidation message instructs
caches holding a dirty copy not to use their copy, and instead reload the data if it is
needed by a future access. Similarly, in broadcast updates, a changed data block that
is cached by at least one other node is broadcast, in its entirety, so that a snooping
cache that holds a replica may update its copy to reflect the change. These protocols
are employed regardless of the nature or the magnitude of the change, regardless if a
single bit changes or if every bit of the block changes. For the bus-based applications,
there is no advantage in distinguishing between these types of changes as bus-based
multiprocessors typically utilize data blocks of 32, 64, 128, or 256 bytes. However,
there is a cost in these approaches. Consider the case where an invalidation protocol
is used to maintain coherence of 10 cached copies of a data block consisting of 128
bytes (1024 bits). Let one node change a single bit of that block; the invalidation
protocol indicates this to the other caches of the system. Next, let the remaining 9
nodes access some data within that block. Since the block was invalidated, the entire
block will have to be loaded by each of the 9 nodes, requiring the transmission of
9 × 1024 bits. Therefore, the change of a single bit resulted in a total bandwidth cost
of about 10,000 bits. Most telling is the fact that, due to false sharing, the changed
bit may not have even been relevant to the operation of the system—an access to
any part of a data block must be treated the same, regardless of the part of the block
that is accessed. A similar argument is valid for the update protocols. Clearly, in an
environment with severe restrictions on communication bandwidth, these unneces-
sary transfers must be eliminated, particularly since the granularity of the data blocks
(files, documents, records, or objects, depending on the particular application) is con-
siderably coarser, with sizes varying between kilobytes and megabytes.

The limitations placed on bandwidth and its associated high cost has driven co-
herence protocol researchers to develop the class of incremental coherence proto-
col [29]. Incremental update protocols broadcast only the parts of a cached data ob-
ject that have changed; this saves the expense of retransmitting those parts of the data
that have not changed and are thus redundant.

COHERENCE PROTOCOLS 263

5.3 Analysis of Basic Wireless Coherence Protocols

5.3.1 Definitions

The analysis of basic wireless coherence protocols requires the definition of a
parameter to quantify the rate at which the update broadcasts occur.

• Let Φυ be defined as the frequency with which the update broadcasts occur.
For asynchronous implementations, Φυ is the average frequency of the update
broadcasts.

• Let Tυ = 1/Φυ . Therefore, Tυ is the period of the update report broadcasts. For
asynchronous implementations, Tυ is the average period of the update broad-
casts.

• Let T� be defined as the time duration a change report is maintained in the
update report broadcast.

• Let Nυ be defined as the number of items, on average, contained in the update
report.

• Let A be defined as the average percentage of the data item that changes.

• Let αι be defined as the percentage of the ith data item that changes.

5.3.2 Update Invalidation Coherence

In update invalidation coherence operation, the periodic update report contains the
identifiers of the data items that have changed within the interval T� immediately
preceding the broadcast. Clients receive the update report and invalidate cached data
items indicated by the report. Consequently, those clients that then access the invali-
dated data item must retrieve the item again from the server. Therefore, the messag-
ing complexity is O(Φυ + Nc).

The synchronization time of the system, after a change, is proportional to the pe-
riod of the update report broadcasts. To maintain a strongly consistent system, the
node that changes a data item should be blocked until the next update report is de-
livered, thereby guaranteeing that the clients have been notified of the change before
the new data is used. In the worst case, all caches may require access to the changed
data item; since the clients may only re-access the data item serially, at most Nc

transactions will be required at the upper bound. Consequently, the synchronization
delay is O(Tυ +Nc) = O(1/Φυ +Nc). Interestingly, both synchronization delay and
messaging complexity are dependent on the frequency of the update broadcasts but
in opposite senses—synchronization delay decreases while messaging complexity
increases with increasing broadcast frequency. Clearly, a trade-off must be reached
between these conflicting design performance metrics. Table XIX tabulates the per-

264 J. SUSTERSIC AND A. HURSON

TABLE XIX
GENERALIZED UPDATE INVALIDATION COHERENCE PROTOCOL FOR WIRELESS

NETWORKS

Conditional GET:
Size of (TCP/IP Header + request URL)
Server Reply, cached page valid:

Transaction Size Size of (TCP/IP Header + request URL)
Server Reply, cached page valid:
Size of (TCP/IP Header + request URL + requested page)
Update Report: Size of [Report Header + Nυ (request URL)]

Messaging Complexity O(Φυ + Nc)
Memory Requirements O(N + M)
Synchronization Delay O(Tυ + Nc)

formance metrics for a generalized update invalidation coherence protocol for wire-
less networks.

5.3.3 Update Propagation Coherence

Update propagation coherence protocol utilizes update reports that include not
only the identifiers of the data items changed, but also the changed data items them-
selves. As with the update invalidation methodology, the update report includes en-
tries for those data items changed within the interval T� immediately preceding
the broadcast. Clients receive the update report and update cached data items in-
dicated by the report. Since the update report itself contains the updated data items,
the clients need not retrieve the data item. Therefore, the messaging complexity is
O(Φυ).

As with the update invalidation approach to wireless coherence, the time required
for system synchronization is proportional to the period of the update report broad-
casts. However, since the update report contains the updated data items themselves,
the clients need not re-access the data items directly. Consequently, the synchroniza-
tion delay is O(Tυ) = O(1/Φυ).

Update propagation offers significant reduction in complexity of both synchro-
nization delay and messaging complexity over update invalidation; the cost of these
reductions may be found in the size of the update report itself. The update report
includes not only the identifiers of the changed data items, but also the data item.
Consequently, the update reports for update propagation coherence protocols are sig-
nificantly larger than those for update invalidation coherence protocols. Specifically,
the size of the update report is equal to the size of [Report Header + Nυ (request
URL)] +∑

υ sizeof(dataItemi). Table XX contains the performance metrics for the
generalized update propagation coherence protocol for wireless networks.

COHERENCE PROTOCOLS 265

TABLE XX
GENERALIZED UPDATE PROPAGATION COHERENCE PROTOCOL FOR WIRELESS NETWORKS

Conditional GET:
Size of (TCP/IP Header + request URL)
Server Reply, cached page valid:
Size of (TCP/IP Header + request URL)

Transaction Server Reply, cached page valid:
Size Size of (TCP/IP Header + request URL + requested page)

Update Report:
Size of [Report Header + Nυ (request URL)] + ∑

υ sizeof(dataItemi)

Messaging Complexity O(Φυ)
Memory Requirements O(N + M)
Synchronization Delay O(Tυ)

5.3.4 Incremental Update Invalidation

As outlined earlier, incremental coherence strategies were devised to reduce the
bandwidth requirements of the coherence protocol by removing the retransmission
of redundant data—particularly the unchanged portions of the data items. Since pro-
viding incremental update of the changed data items does not affect the messaging
requirements, the analyses of messaging complexity and synchronization delay are
identical to that of the standard update invalidation protocol (see Table XIX).

Incremental update invalidation coherence protocol differs in performance from
the standard update invalidation protocol primarily in the size of the server replies
to a request for a modified data item. For standard update invalidation, the server
will reply with the entire page; this message has the size of (TCP/IP Header + re-
quest URL + requested page). In incremental update invalidation, the reply message
contains only a portion of the changed data item. The reply must also contain some
additional header information to indicate which portion of the data item is contained
in the reply. Therefore, the reply message for incremental update invalidation has the
size of [TCP/IP Header + request URL + α(requested page) + incremental header],
where α is the percentage of the data item contained in the server reply. Table XXI
contains the performance metrics for the generalized incremental update invalidation
coherence protocol for wireless networks.

5.3.5 Incremental Update Propagation

The incremental coherence approach may be applied to the standard update prop-
agation coherence strategy. Using a similar argument to the one used in applying
incremental updates to the update invalidation strategy, one may show that the mes-
saging complexity and the synchronization delays for incremental and for standard
update propagation are of the same order (see Table XX).

266 J. SUSTERSIC AND A. HURSON

TABLE XXI
GENERALIZED INCREMENTAL UPDATE INVALIDATION COHERENCE PROTOCOL FOR

WIRELESS NETWORKS

Conditional GET:
Size of (TCP/IP Header + request URL)
Server Reply, cached page valid:
Size of (TCP/IP Header + request URL)

Transaction Size Server Reply, cached page valid:
Size of [TCP/IP Header + request URL + α(requested page)
+ incremental header
Update Report: Size of [Report Header + Nυ (request URL)]

Messaging Complexity O(Φυ + Nc)
Memory Requirements O(N + M)
Synchronization Delay O(Tυ + Nc)

In update propagation, the modified data items are themselves included in the
update report; therefore, the size of the update report must differ when using ei-
ther the standard or the incremental update propagation strategies. For standard
update propagation, the update report has the size of [Report Header + Nυ (re-
quest URL)] +∑

υ sizeof(dataItemi). For incremental updates, only a portion of
the data item is included in the update record. Therefore, the report header for in-
cremental update propagation has the size of [Report Header + Nυ (request URL)]
+∑

υ sizeof(αi ·dataItemi + incHeaderi). Table XXII contains the performance met-
rics for the generalized incremental update propagation coherence protocol for wire-
less networks.

5.4 Summary of Wireless Protocols
The preceding sections have outlined the basic, generalized operation and perfor-

mance of both invalidation and update modes utilized for the update reports of co-

TABLE XXII
GENERALIZED INCREMENTAL UPDATE PROPAGATION COHERENCE PROTOCOL FOR

WIRELESS NETWORKS

Conditional GET:
Size of (TCP/IP Header + request URL)
Server Reply, cached page valid:
Size of (TCP/IP Header + request URL)

Transaction Size Server Reply, cached page valid:
Size of (TCP/IP Header + request URL + requested page)
Update Report: Size of [Report Header + Nυ (request URL)]
+∑

υ sizeof(αi · dataItemi + incHeaderi)
Messaging Complexity O(Φυ)
Memory Requirements O(N + M)
Synchronization Delay O(Tυ)

COHERENCE PROTOCOLS 267

herence protocols employed in wireless network environments. As one may clearly
determine from these metrics as summarized in Table XXIII, there are inherent trade-
offs in the two operating modes. Most significant is the trade-off between messaging
complexity and synchronization delay with the sizes of the transactions employed
in the two coherence strategies. Clearly, update propagation reduces both messag-
ing complexity and synchronization delay while significantly increasing the size of
the update report. It is not quite as easy to see the total bandwidth requirements
of the two protocols. Update invalidation generates in the worst case Nc client re-
quest/server response pairs in addition to each data item invalidation, where each
server response contains a copy of the data item. In update propagation, all Nc cached
copies are updated by encapsulating the updated data item within the update report.
Clearly, update invalidation increases bandwidth requirements linearly with Nc while
the bandwidth requirements of update report are independent of Nc . Both, however,
are linearly dependent on the size of the data items themselves. This result was also
evident in the discussion of update-based and invalidation-based snoopy protocols
included in Section 1. Clearly, when Nc is small or zero, the update invalidation co-
herence strategy will perform better and, more importantly, utilize a smaller portion
of the available bandwidth, than the update propagation strategies. Similarly, when
Nc is larger, the update propagation approach will prove advantageous over update
invalidations.

Both update invalidation and update propagation coherence strategies may benefit
from incremental update organizations. While incremental updates do not affect the
messaging complexity or the synchronization delay, however, incremental updates
do reduce wireless network bandwidth by reducing the sizes of at least one class of
transactions—either the server reply in update invalidation or the update report in up-
date propagation. Since the capability to make incremental updates require additional
header information to indicate which part of the data item has changed, the reduction
in the sizes of these transactions is lower bounded by the ratio A, which was defined
previously as the average percentage of change with all data items. Therefore, meth-
ods of accommodating extremely small A—for example, a few bytes in a data item
several megabytes in size—offers considerable performance improvements, particu-
larly in terms of bandwidth requirements.

6. Summary and Conclusions

6.1 Introduction
Caching is an effective performance-enhancing technique that has proven its ad-

vantages on many levels of the parallel and distributed computing abstractions. How-
ever, caching introduces additional complexities into the system architecture—i.e.,

268
J.S

U
S

T
E

R
S

IC
A

N
D

A
.H

U
R

S
O

N

TABLE XXIII
SUMMARY OF COHERENCE PROTOCOLS FOR WIRELESS NETWORKS

Update Invalidation Update Propagation Incremental Update Incremental Update
Invalidation Propagation

Conditional GET: Conditional GET: Conditional GET: Conditional GET:
Size of (TCP/IP Header + Size of (TCP/IP Header + Size of (TCP/IP Header + Size of (TCP/IP Header +
request URL) request URL) request URL) request URL)
Server Reply, cached page Server Reply, cached page Server Reply, cached page Server Reply, cached page
valid: valid: valid: valid:
Size of (TCP/IP Header + Size of (TCP/IP Header + Size of (TCP/IP Header + Size of (TCP/IP Header +
request URL) request URL) request URL) request URL)

Transaction Server Reply, cached page Server Reply, cached page Server Reply, cached page Server Reply, cached page
Size valid: valid: valid: valid:

Size of (TCP/IP Header + Size of (TCP/IP Header + Size of [TCP/IP Header + Size of (TCP/IP Header +
request URL + requested page) request URL + requested page) request URL + α (requested request URL + requested page)

page) + incremental header
Update Report: Size of Update Report: Size of [Report Update Report: Size of Update Report: Size of [Report
[Report Header + Nυ Header + Nυ (request URL)] + [Report Header + Nυ Header + Nυ (request URL)] +
(request URL)]

∑
υ sizeof(αi · dataItemi (request URL)]

∑
υ sizeof(αi · dataItemi

+ incHeaderi) + incHeaderi)
Messaging O(Φυ + Nc) O(Φυ) O(Φυ + Nc) O(Φυ)
Complexity

Memory O(N + M) O(N + M) O(N + M) O(N + M)
Requirements

Synchronization O(Tυ + Nc) O(Tυ) O(Tυ + Nc) O(Tυ)
Delay

COHERENCE PROTOCOLS 269

cache coherence issue that was the main theme of this chapter. This paper is an
attempt to outline some of the basic approaches developed to maintain cache co-
herence, discussing the architectural issues that drive these coherence protocols, and
illustrating the significant protocol advantages and limitations. Furthermore, the co-
herence protocols discussed in this paper have been presented in a generalized view;
it was intended to highlight the similarities and differences of these coherence pro-
tocols. Exploiting the commonality between coherence protocols used for different
network environments.

6.2 Summary of Bus-Based Coherence Protocols

The bus-based coherence protocols discussed in section two, as the name implies,
are used in bus-based multiprocessor applications. The system bus permits all nodes
in the system to ‘snoop’, or monitor all bus activities to detect any bus transaction
that may affect cache content. Consequently, coherence may be maintained simply
by monitoring all broadcasts over the system bus and update the status of the cache
based on those broadcasts. Within this framework, two basic modes of operation
were employed—invalidation and update modes. Since neither mode is optimal for
all access patterns, hybrid and adaptive approaches were developed that switch be-
tween the two behavior modes. This trend of evolution resulted in a hybrid approach
(PSCR) that attempted to make educated decisions about which update mode would
be most effective given some knowledge about a data block’s access expectations.

6.3 Summary of Message-Passing (Directory) Coherence
Protocols

The message-passing, or directory-based, coherence protocols were developed to
accommodate the evolving architecture of parallel processing systems. While the
broadcast nature of the system bus simplified the design of coherence protocols,
the system bus proved to be a bottleneck as the number of processing nodes was
increased. Consequently, system architects turned to more scalable interconnection
network topologies to permit even larger parallel systems. These general intercon-
nection networks provide high-bandwidth, tightly integrated message-passing capa-
bilities at the expense of more complicated cache coherence as explicit coherence
messages must be used to communicate a change in status of shared memory. To
support these explicit messages, it is necessary to know which nodes are caching
which data blocks, or at least one node of a group of nodes is caching a particu-
lar data block (limited directory organizations). Within this framework, two issues
motivated the employment of various invalidation based protocols:

270 J. SUSTERSIC AND A. HURSON

TABLE XXIV
OVERVIEW OF FOUR CLASSES OF COHERENCE PROTOCOLS

Bus-based Directory-based Coherence Coherence in
on the WWW Wireless Networks

Network Bus High-performance Heterogeneous Wireless
Configuration general Broadcast

interconnection
network

Network Peer-to-peer Peer-to-peer Client-server Client-server
Organization
Uplink channel Broadcast Unicast Unicast Unicast
Downlink Broadcast Unicast Unicast Broadcast
channel
Coherence Invalidation, Invalidation Invalidation, Invalidation,
Modes Update, Hybrid, Update Update
Employed Adaptive, Selective
Coherence Snoop broadcast Directory Client-based Update
Organization channels validations, Report with

server-maintained client management
directory of cache

• The explicit message-passing operations do not adapt well to update-based co-
herence, and

• The significant memory requirements of maintaining the directories drive most
of the research in this area into developing directory organizations that provide
effective coherence operation in a more memory-efficient manner.

Table XXIV contains the four classes of cache coherence organizations discussed
in this paper and some of their key characteristics.

6.4 Summary of Caching Coherence on the World Wide Web

The World Wide Web has grown exponentially in the previous decades, not only in
size, but also in average network bandwidth and traffic. Caching has been employed
within this context to improve WWW performance. However, the cache coherence
approaches thus employed have evolved along somewhat different lines, driven by
the different sharing characteristics, network organization, and consistency require-
ments. The World Wide Web is typically viewed as a client-server model; as such
the clients are not likely to make changes to a shared document—these changes are
typically made at the server only. Furthermore, the sharing characteristics of World
Wide Web document are generally bi-modal; either a document will change fre-
quently, or it will not change for a long time. Finally, most Internet applications are
only loosely coupled for most applications. As a result, a weaker consistency model

COHERENCE PROTOCOLS 271

is sufficient. In this environment, similar to the discussion in section three, the ex-
pense of implementing traditional update-based coherence protocols offsets their po-
tential advantages; consequently, invalidation approaches are the focus. In addition,
the large number of potential clients that may be caching a particular document led
to the implementation of client-initiated validations on demand. Finally, researchers
have investigated ‘piggy-back’ techniques that incorporate coherence messages into
incoming or outgoing messages to the server. These piggyback techniques have in-
cluded both invalidation-based and update-based organizations; later techniques have
included some hybrid approaches similar to the hybrid approaches employed in bus-
based multiprocessors.

6.5 Summary of Wireless Cache Coherence

Wireless networks introduce significant complications into the cache coherence
problem. These problems include limited wireless bandwidth, mobility, and frequent
disconnections. The limited bandwidth of wireless networks places a strong moti-
vation to limit the bandwidth requirements of the coherence protocol. Mobility of
network resources introduces serious difficulties with directory-based approaches to
cache coherence. Finally, frequent disconnection from the network imposes the most
serious difficulty in the cache coherence problem; if a node holding a cached copy is
disconnected from the network when an invalidation is sent, the disconnected node
will not receive the invalidation. More seriously, the server that sends the invalida-
tion may not safely assume that the invalidation was received by all the mobile units.
Therefore, wireless cache coherence strategies resort to the periodic broadcast of up-
date reports. These update reports maintain a list of changed data items for a period
of time; these well-defined periods permit upper and lower bounds on client discon-
nection times within which a client may safely be able to salvage some contents of
its cache.

One additional network feature of the wireless network environment requires
attention—the hybrid nature of the duplex communication channels from client to
server and from server to client. The server-to-client channel of wireless networks
is a broadcast channel, whereas the client-to-server channel is a point-to-point chan-
nel. Consequently, the periodic broadcast of the coherence protocol’s update report
is practical and well suited to this environment. Furthermore, the update report may
be configured practically in either an update-based configuration or an invalidation-
based configuration.

6.6 Conclusions and Recommendations

Considering these four distinct classes of cache coherence protocols, several key
factors present themselves.

272 J. SUSTERSIC AND A. HURSON

• The underlying network topology strongly influences the implementation of the
cache coherence protocol.

• Invalidation-based and update-based coherence may offer advantages in par-
ticular applications or for particular shared data items, but are not optimal in
general.

• Knowledge of the sharing characteristics of a particular data item may be used
to help optimize coherence protocol operations; however, this optimization typ-
ically increases the costs in terms of memory requirements (and processor band-
width).

• The granularity of shared data items significantly affects required network band-
width requirements of the coherence protocol. Large granularity increases the
negative effects of passive and false sharing, while smaller granularity mitigates
these effects at the cost of increased complexity in memory and coherence pro-
tocol operation.

These observations imply several recommendations in continuing the development
of coherence protocols.

First, there have been demonstrated consistent benefits in leveraging the underly-
ing network topology to help perform coherence operations. To this end, an efficient
multicast mechanism in network topologies would prove most effective in imple-
menting coherence functionality.

Second, hybrid and adaptive coherence organizations have proven effective in im-
proving coherence protocol performance in bus-based multiprocessors. These orga-
nizations should find effective applications in wireless network applications. It would
be particularly interesting if these hybrid behaviors could be applied on a fine, even
incremental, granularity; research into the subject in the context of bus-based co-
herence protocol analysis has shown that the sharing characteristics may vary even
within a particular application.

Finally, the selective coherence protocol developed for bus-based multiprocessors
has demonstrated that there is considerable data for which there is no reason to im-
plement coherence. Furthermore, the analyses of web-based cache coherence for
Internet applications have demonstrated that some applications may tolerate some
degree of inconsistency; for these applications, a weaker consistency model is suf-
ficient. However, some applications, in particular e-business and e-banking, require
strongly consistent implementations. Since the level of consistency varies between
classes of applications, it seems logical to provide only strong consistency where it
is needed and allow weaker consistency where appropriate. To this end, a quality-of-
service organization that may specify the required level of consistency should prove
effective in reducing network traffic while guaranteeing that those applications that
require strong consistency will enjoy it.

COHERENCE PROTOCOLS 273

In conclusion, the coherence protocols discussed in this paper have proven effec-
tive in implementing cache coherence for their particular applications. The cache
coherence problem is not exclusive to a particular application; therefore there are
distinct advantages to considering the problem from different perspectives to learn
what the problems in the different applications have in common, where their dif-
ferences lie, and what techniques were used to overcome their particular obstacles.
This paper has attempted to provide a small step towards this larger perspective, to
illustrate a few of these commonalities and disparities, and to suggest a few possible
courses to follow in the continuing development of cache coherence protocols.

ACKNOWLEDGEMENTS

This work in part has been supported by the Office of the Naval Support under the
contract N00014-02-1-0282.

REFERENCES

[1] Theel O.E., Fleisch B.D., “A dynamic coherence protocol for distributed shared mem-
ory enforcing high data availability at low costs”, IEEE Transactions on Parallel and
Distributed Systems 7 (9) (1996) 915–930.

[2] Pong F., Dubois M., “A new approach for the verification of cache coherence protocols”,
IEEE Transactions on Parallel and Distributed Systems 67 (8) (1995) 773–787.

[3] Liu Y.A., “CACHET: An interactive, incremental-attribution-based program transforma-
tion system for deriving incremental programs”, in: Proceedings of the Tenth Knowledge-
Based Software Engineering Conference, 1995, pp. 19–26.

[4] Milutinovic V., “Caching in distributed systems”, IEEE Concurrency 8 (3) (2000) 14–15.
[5] Yang Q., Thangadurai G., Bhuyan L.N., “Design of an adaptive cache coherence pro-

tocol for large scale multiprocessors”, IEEE Transactions on Parallel and Distributed
Systems 3 (3) (1992) 281–293.

[6] Won-Kee Hong, Nam-Hee Kim, Shin-Dug Kim, “Design and performance evaluation of
an adaptive cache coherence protocol”, in: Proceedings of the International Conference
on Parallel and Distributed Systems, 1998, pp. 33–40.

[7] Bilir E.E., Dickson R.M., Ying H., Plakal M., Sorin D.J., Hill M.D., Wood D.A., “Multi-
cast snooping: A new coherence method using a multicast address network”, in: Proceed-
ings of the 26th International Symposium on Computer Architecture, 1999, pp. 294–304.

[8] Cano J.-C., Pont A., Sahuquillo J., Gil J.-A., “The differences between distributed shared
memory caching and proxy caching”, IEEE Concurrency 8 (3) (2000) 45–47.

[9] Pérez C.E., Román A.G., Ruíz B.H., “Using CSP to derive a sequentially consistent
DSM system”, in: Proceedings of the Eighteenth Annual ACM Symposium on Principles
of Distributed Computing, 1999, p. 280.

274 J. SUSTERSIC AND A. HURSON

[10] Park S., Dill D.L., “Verification of FLASH cache coherence protocol by aggregation of
distributed transactions”, in: Proceedings of the 8th Annual ACM Symposium on Parallel
Algorithms and Architectures, 1996, pp. 288–296.

[11] Williams C., Reynolds Jr. P.F., de Supinski B.R., “Delta coherence protocols”, IEEE
Concurrency 8 (3) (2000) 23–29.

[12] Lebeck A.R., Wood D.A., “Dynamic self-invalidation: Reducing coherence overhead
in shared-memory multiprocessors”, in: Proceedings of the 22nd Annual International
Symposium on Computer Architecture, 1995, pp. 48–59.

[13] Giorgi R., Prete C.A., “PSCR: A coherence protocol for eliminating passive sharing in
shared-bus shared-memory multiprocessors”, IEEE Transactions on Parallel and Dis-
tributed Systems 10 (7) (1999) 742–762.

[14] Papamarcos M., Patel J., “A low overhead coherence solution for multiprocessors with
private cache memories”, in: Proc. 11th Int’l Symposium Computer Architecture, 1994,
pp. 348–354.

[15] McCreight E.M., “The dragon computer system an early overview”, NATO Advanced
Study Institute on Microarchitecture of VLSI Computers, 1984.

[16] Kerhong C., Bunt R.B., Eager D.L., “Write caching in distributed file systems”, in: Pro-
ceedings of the 15th International Conference on Distributed Computing Systems, 1995,
pp. 457–466.

[17] Chenjie L., Pei C., “Maintaining strong cache consistency in the World-Wide Web”, in:
Proceedings of the 17th International Conference on Distributed Computing Systems,
1997, pp. 12–21.

[18] Adya A., Castro M., Liskov B., Maheshwari U., Shrira L., “Fragment reconstruction:
Providing global cache coherence in a transactional storage system”, in: Proceedings of
the 17th International Conference on Distributed Computing Systems, 1997, pp. 2–11.

[19] Zaharioudakis M., Carey M.J., “Hierarchical, adaptive cache consistency in a page server
OODBMS”, in: Proceedings of the 17th International Conference on Distributed Com-
puting Systems, 1997, pp. 22–31.

[20] Qing Y., Thangadurai G., Bhuyan L.N., “An adaptive cache coherence scheme for hierar-
chical shared-memory multiprocessors”, in: Proceedings of the Second IEEE Symposium
on Parallel and Distributed Processing, 1990, pp. 318–325.

[21] Krishnamurthy B., Wills C.E., “Proxy cache coherency and replacement-towards a more
complete picture”, in: Proceedings 19th IEEE International Conference on Distributed
Computing Systems, 1999, pp. 332–339.

[22] Choi L., Pen-Chung Yew, “Hardware and compiler-directed cache coherence in large-
scale multiprocessors: Design considerations and performance study”, IEEE Transac-
tions on Parallel and Distributed Systems 11 (4) (2000) 375–394.

[23] Tewari R., Dahlin M., Vin H.M., Kay J.S., “Design considerations for distributed caching
on the internet”, in: Proceedings of the 19th IEEE International Conference on Distrib-
uted Computing Systems, 1999, pp. 273–284.

[24] Rabinovich M., Rabinovich I., Rajaraman R., Aggarwal A., “A dynamic object replica-
tion and migration protocol for an internet hosting service”, in: Proceedings of the 19th
IEEE International Conference on Distributed Computing Systems, 1999, pp. 101–113.

COHERENCE PROTOCOLS 275

[25] Makpangou M., Pierre G., Khoury C., Dorta N., “Replicated directory service for weakly
consistent distributed caches”, in: Proceedings of the 19th IEEE International Confer-
ence on Distributed Computing Systems, 1999, pp. 92–100.

[26] Asaka T., Miwa H., Tanaka Y., “Distributed web caching using hash-based query caching
method”, in: Proceedings of the IEEE International Conference on Control Applications,
Vol. 2, 1999, pp. 1620–1625.

[27] Sinnwell M., Weikum G., “A cost-model-based online method for distributed caching”,
in: Proceedings of the 13th International Conference on Data Engineering, 1997,
pp. 532–541.

[28] Fong C.C.F., Lui J.C.S., Man Hon Wong, “Quantifying complexity and performance
gains of distributed caching in a wireless network environment”, in: Proceedings of the
13th International Conference on Data Engineering, 1997, pp. 104–113.

[29] Jun Cai, Kian-Lee Tan, Beng Chin Ooi, “On incremental cache coherency schemes in
mobile computing environments”, in: Proceedings of the 13th International Conference
on Data Engineering, 1997, pp. 114–123.

[30] Kung-Lung Wu, Yu P.S., Ming-Syan Chen, “Energy-efficient caching for wireless mo-
bile computing”, in: Proceedings of the Twelfth International Conference on Data Engi-
neering, 1996, pp. 336–343.

[31] Degenaro L., Iyengar A., Lipkind I., Rouvellou I., “A middleware system which intel-
ligently caches query results”, in: IFIP/ACM International Conference on Distributed
Systems Platforms, 2000, pp. 24–44.

[32] Menaud J.-M., Issarny V., Banatre M., “A scalable and efficient cooperative system for
web caches”, IEEE Concurrency 8 (3) (2000) 56–62.

[33] Tari Z., Hamidjaja H., Qi Tang Lin, “Cache management in CORBA distributed object
systems”, IEEE Concurrency 8 (3) (2000) 48–55.

[34] Graham P., Yahong Sui, “LOTEC: A simple DSM consistency protocol for nested object
transactions”, in: Proceedings of the Eighteenth Annual ACM Symposium on Principles
of Distributed Computing, 1999, pp. 153–162.

[35] Thacker C., Stewart L., Satterthwaite E., “Firefly: A multiprocessor workstation”, IEEE
Transactions on Computers 37 (8) (1988) 909–920.

[36] Prete C.A., “RST: Cache memory design for a tightly coupled multiprocessor system”,
IEEE Micro 11 (2) (1991) 16–19, 40–52.

[37] Veenstra J.R., Fowler R.J., “A performance evaluation of optimal hybrid cache coherency
protocols”, in: Proceedings of the Fifth International Conference Architectural Support
for Programming Languages and Operating Systems, 1992, pp. 149–160.

[38] Culler D.E., Jaswinder Pal Singh, Gupta A., Parallel Computer Architecture, Morgan
Kaufmann Publishers, Inc. San Francisco, CA, 1999.

[39] Eggers S.J., Katz R.H., “A characterization of sharing in parallel programs and its ap-
plication to coherency protocol evaluation”, in: Proceedings of the 15th International
Symposium on Computer Architecture, 1988, pp. 373–382.

[40] Eggers S.J., Simulation Analysis of Data Sharing in Shared Memory Multiprocessors.
Ph.D. thesis UCB/CSD 89/501, University of California, Berkeley, 1989.

276 J. SUSTERSIC AND A. HURSON

[41] Sleator D., “Dynamic decentralized cache schemes for MIMD parallel processors”,
in: Proceedings of the 11th International Symposium on Computer Architecture, 1984,
pp. 244–254.

[42] Archibald J.K., “A cache coherence approach for large multiprocessor systems”, in: Pro-
ceedings of the International Symposium on Supercomputing, 1988, pp. 337–345.

[43] Gee J.G., Smith A.J., Absolute and Comparative Performance of Cache Consistency
Algorithms. Technical Report UCB/CSD-93-753, EECS Computer Science Division,
University of California, Berkeley, 1993.

[44] Cox A.L., Fowler R.J., “Adaptive cache coherency for detecting migratory shared data”,
in: Proceedings of the 20th International Symposium on Computer Architecture, 1993,
pp. 98–108.

[45] Prete C.A., Prina G., Giorgi R., Ricciardi L., “Some considerations about passive sharing
in shared-memory multiprocessors”, in: IEEE TCCA Newsletter, 1997, pp. 34–40.

[46] Culler D.E., Singh J.P., Parallel Computer Architecture: A Hardware/Software Ap-
proach, Morgan Kaufmann Publishers, Inc. San Francisco, California, 1999.

[47] Aggarwal A., Simoni R., Hennessy J., Horowitz M., “An evaluation of directory schemes
for cache coherence”, in: Proceedings of the 15th Annual International Symposium on
Computer Architecture, 1988, pp. 280–289.

[48] Hao Che, Zhijung Wang, Ye Tung, “Analysis and design of hierarchical web caching
systems”, in: Proceedings IEEE INFOCOM, Vol. 3, 2001, pp. 1416–1424.

[49] Jong Hyuk Choi, Kyu Ho Park, “Segment directory enhancing the limited directory
cache coherence schemes”, in: Proceedings of the 13th International and 10th Sympo-
sium on Parallel and Distributed Processing, 1999, pp. 258–267.

[50] Jong Hyuk Choi, Kyu Ho Park, “Hybrid full map directory scheme for distributed shared
memory multiprocessors”, in: High Performance Computing on the Information Super-
highway, 1997, pp. 30–34.

[51] Thapar M., Delagi B., “Distributed-directory scheme: Stanford distributed-directory pro-
tocol”, Computer 23 (6) (1990) 78–80.

[52] Ashwini K., Nanda, Hong Jiang, “Analysis of directory based cache coherence schemes
with multistage networks”, in: Proceedings of the ACM Annual Conference on Commu-
nications, 1992, pp. 485–492.

[53] Hennessy J., “Retrospective: Evaluation of directory schemes for cache coherence”, in:
25 years of the International Symposia on Computer Architecture (selected papers),
1998, pp. 61–62.

[54] Censier L.M., Feautrier P., “A new solution to coherence problems in multicache sys-
tems”, IEEE Transactions on Computers C-27 (12) (1978) 1112–1118.

[55] Gustavson D., “The scalable coherence interface and related standards project”, IEEE
Micro 12 (1) (1992) 10–22.

[56] Tomasevic M., Milutinovic V., The Cache Coherence Problem in Shared-Memory Multi-
processors: Hardware Solutions, IEEE Computer Society Press, Los Alamitos, Califor-
nia, 1993.

[57] Gupta A., Weber W.-D., Mowry T., “Reducing memory and traffic requirements for scal-
able directory-based cache coherence schemes”, in: Proceedings of the International

COHERENCE PROTOCOLS 277

Conference on Parallel Processing, The Pennsylvania State University Press, 1990,
pp. I312–I321.

[58] Tartalja I., Milutinovic V., The Cache-Coherence Problem in Shared-Memory Multi-
processors: Software Solutions, IEEE Computer Society Press, Los Alamitos, California,
1996.

[59] Wang J., “A survey of web caching schemes for the internet”, ACM Computer Commu-
nication Review 29 (10) (1999) 36–46.

[60] Caceres R., Douglis F., Feldmann A., Glass G., Rabinovich M., “Web proxy caching:
The devil is in the details”, ACM Performance Evaluation Review 26 (3) (1998) 11–15.

[61] Duska B.M., Marwood D., Feelay M.J., “The measured access characteristics of
World Wide Web client proxy caches”, in: Proceedings of USENIX Symposium on
Internet Technologies and Systems, 1997. Available at http://cd.ubc.ca/spider/feeley/
wwwap/wwwap.html.

[62] Kroeger T.M., Long D.D.E., Mogul J.C., “Exploring the bounds of web latency reduction
from caching and prefetching”, in: Proceedings of the USENIX Symposium on Internet
Technologies and Systems, Monterey, CA, 1997.

[63] Rodriguez P., Spanner C., Biersack E.W., “Web caching architectures: Hierarchical and
distributed caching”, in: Proceedings of WCW, 1999.

[64] Michel S., Nguyen K., Rosenstein A., Zhang L., Floyd S., Jacobson V., “Adaptive web
caching: Towards a new caching architecture”, Computer Network and ISDN Systems
(1998).

[65] Tewari R., Dahlin M., Vin H., Kay J., Beyond Hierarchies: Design Considerations for
Distributed Caching on the Internet. Technical Report TR98-04, Department of Com-
puter Science, University of Texas at Austin, 1998.

[66] Yang J., Want W., Muntz R., Wang J., Access Driven Web Caching. UCLA Technical
Report #990007, 1999.

[67] Povey D., Harrison J., “A distributed internet cache”, in: Proceedings of the 20th Aus-
tralian Computer Science Conference, Sydney, Australia, 1997.

[68] Rabinovich M., Chase J., Gadde S., “Not all hits are created equal: Cooperative proxy
caching over a wide-area network”, Computer Networks and ISDN Systems 30 (1998)
2253–2259.

[69] Gadde S., Rabinovich M., Chase J., “Reduce, reuse, recycle: An approach to building
large internet caches”, in: Proceedings of the HotOS’97 Workshop, 1997. Available at
http://www.cs.duke.edu/ari/cisi/crisp-recycle/crisp-recycle.htm.

[70] Wang Z., “Cachemesh: A distributed cache system for World Wide Web”, in: Web Cache
Workshop, 1997.

[71] Ewing D., Hall R., Schwartz M., A Measurement Study of Internet File Transfer Traf-
fic. Technical Report CU-CS-571-92. University of Colorado, Department of Computer
Science, Boulder, Colorado, 1992.

[72] Fan L., Cao P., Almeida J., Broder A.Z., “Summary cache: A scalable wide-area web
cache sharing protocol”, in: Proceedings of SIGCOMM, 1998.

[73] Cate A.V., “A global file system”, in: Proceedings of the USENIX File System Workshop,
1992, pp. 1–12.

http://cd.ubc.ca/spider/feeley/wwwap/wwwap.html
http://cd.ubc.ca/spider/feeley/wwwap/wwwap.html
http://cd.ubc.ca/spider/feeley/wwwap/wwwap.html
http://www.cs.duke.edu/ari/cisi/crisp-recycle/crisp-recycle.htm

278 J. SUSTERSIC AND A. HURSON

[74] Krishnamurthy B., Wills C.E., “Study of piggyback cache validation for proxy caches in
the World Wide Web”, in: Proceedings of the USENIX Symposium on Internet Technol-
ogy and Systems, 1997, pp. 1–12.

[75] Krishnamurthy B., Wills C.E., “Piggyback server invalidations for proxy cache co-
herency”, in: Proceedings of the WWW-7 Conference, 1998, pp. 185–194.

[76] Krishnamurthy B., Wills C.E., “Proxy cache coherency and replacement—towards a
more complete picture”, in: ICDC99, 1999.

[77] Alonso R., Korth H.F., “Database systems issues in nomadic computing”, in: ACM SIG-
MOD International Conference on Management of Data, Sigmod Record, Vol. 22, 1993.

[78] Barbara D., Imielinski T., “Sleepers and workaholics: Caching strategies in mobile envi-
ronments”, in: ACM SIGMOD International Conference on Management of Data, 1994.

[79] Huang Y., Sista P., Wolfson O., “Data replication for mobile computers”, in: ACM SIG-
MOD International Conference on Management of Data, 1994.

[80] Huang Y., Wolfson O., “Object allocation in distributed databases and mobile comput-
ers”, in: Proceedings of the 10th International Conference on Data Engineering, 1994.

[81] Imielinski T., Badrinath B.R., “Data management for mobile computing”, in: ACM
SIGMOD International Conference on Management of Data, ACM SIGMOD Record,
Vol. 22, 1993.

[82] Chung H., Cho H., “Data caching with incremental update propagation in mobile com-
puting environments”, in: Proceedings Australian Workshop on Mobile Computing and
Databases and Applications, 1996.

[83] Kavi K., Kim H.S., Lee B., Hurson A.R., “Shared memory and distributed shared mem-
ory systems: A survey”, in: Advances in Computers, Vol. 53, 2000.

[84] Archibald J., Baer J.L., “Cache coherence protocols: Evaluation using a multiprocessor
simulation model”, ACM Transactions on Computer Systems (TOCS) 4 (4) (1986).

Author Index

Numbers in italics indicate the pages on which complete references are given.

A

Aamodt, A., 39, 73
Abbattsista, F., 140, 207
Abowd, G.D., 204, 209
Adya, A., 213, 274
Aggarwal, A., 213, 233, 234, 274, 276
Agile Alliance, 65, 73
Aha, D.W., 34, 71, 73, 80
Ahire, S.L., 110, 122
Ahmed, M.U., 115, 126
Almeida, J., 250, 252, 253, 277
Alonso, R., 259, 278
Althoff, K.D., 31, 34, 39, 41, 43, 73, 74, 76,

80, 81
Ambriola, V., 66, 74
Amir-Atefi, K., 113, 123
Anderson, K.M., 38, 74
Anderson, P., 106, 121
Ante, S., 9, 27
Applehans, W., 69, 74
Arango, G., 32, 37, 39, 74, 81, 138, 207
Archibald, J.K., 213, 220, 242, 243, 276, 278
Ardis, M.A., 102, 120
Arnold, R.S., 131, 134, 136, 141, 142, 207,

208
Asaka, T., 213, 275
Ashrafi, N., 115, 125
Ashwini, K., 233, 234, 242, 243, 276
Attewell, P., 103, 120

B

Backhouse, J., 91, 117
Badrinath, B.R., 259, 278
Baer, J.L., 242, 243, 278

Ballard, B.W., 43, 76
Banatre, M., 213, 275
Bandinelli, S.C., 56, 66, 67, 74
Barbara, D., 259, 278
Barnes, B.H., 38, 74
Baroudi, J.J., 91, 118
Bartlem, C.S., 107, 121
Basili, V.R., 31, 33, 34, 37, 38, 41, 43, 45, 61,

64–66, 71, 74, 75, 80, 140, 149, 208
Bass, F.M., 102, 119
Batory, D., 40, 75
Baumgarten, K., 39, 78
Bayer, J., 103, 106, 120, 121
Beach, B., 67, 77
Becker, L.G., 96, 97, 118
Beedle, M., 65, 81
Belkhatir, N., 67, 75
Belkin, N.J., 43, 75
Bellotti, V., 68, 80
Ben-Shaul, I.Z., 66, 67, 75, 79
Beng Chin Ooi, 213, 259, 261, 262, 275
Bernstein, A.P., 114, 124
Bhuyan, L.N., 213, 273, 274
Bicego, A., 66, 79
Biersack, E.W., 249–254, 277
Biggerstaff, T.J., 39, 75
Bijker, W.E., 104, 121
Bilir, E.E., 213, 273
Billingsley, J., 115, 126
Billington, R., 39, 80
Birk, A., 31, 34, 41, 42, 62, 73–75
Bock, D.B., 90, 117
Boehm, B.W., 45, 49, 50, 63, 64, 66, 71, 75,

134, 156, 208
Bohner, S.A., 131, 134, 136, 137, 140–142,

207–209

279

280 AUTHOR INDEX

Bohrer, K., 40, 75
Bolcer, G.A., 67, 75
Bollinger, T.B., 38, 74
Bostrom, R.P., 90, 117
Brachman, R.J., 43, 76
Brancheau, J.C., 99, 100, 118
Breslow, L.A., 71, 80
Broder, A.Z., 250, 252, 253, 277
Brooks, F.P., 30, 75
Brooks, H.M., 43, 75
Brown, A.W., 31, 75
Brown, J.S., 42, 75, 76
Bunt, R.B., 213, 274
Burrell, G., 91, 117
Butler, B., 93, 118
Buxton, J.N., 115, 125
Byrd, T.A., 114, 116, 123, 126

C

Caceres, R., 248, 250, 253, 277
Calder, P., 37, 82
Caldiera, G., 31, 33, 34, 37, 38, 61, 71, 74
Cale, E.G., 116, 126
Cano, J.-C., 213, 273
Cantone, G., 31, 33, 34, 37, 38, 61, 71, 74
Cao, P., 250, 252, 253, 277
Cao, Y., 71, 80
Caputo, K., 96, 99, 118
Carey, J., 40, 76
Carey, M.J., 213, 274
Carlson, B., 40, 76
Carroll, J., 68, 80
Caruso, J.M., 42, 80
Castro, M., 213, 274
Cate, A.V., 256, 277
Cefriel, 38, 77
Censier, L.M., 231, 233, 234, 276
Chaddha, R.L., 103, 120
Charles, R.J.S., 115, 126
Chase, J., 250, 252, 253, 277
Chau, P.Y.K., 113, 123
Checkland, P., 104, 121
Chen, C., 138, 209
Chen, G., 40, 75
Chenjie, L., 213, 274
Chervany, N.L., 114, 124

Chiasson, M.W., 113, 123
Chitgopekar, S.S., 103, 120
Cho, H., 259, 278
Choi, L., 213, 274
Chrissis, M., 66, 80
Christersson, M., 133, 140, 149, 208
Chung, H., 259, 278
Ciarfella, W., 67, 81
Cinti, S., 38, 77
Coch, L., 107, 121
Codd, E.F., 146, 208
Cohen, J., 151, 208
Cohen, M.D., 86, 117
Collier, B., 42, 76
Collofello, J.S., 138, 210
Conklin, E.J., 68, 69, 76
Conner, D., 96, 118
Conradi, R., 46, 66, 67, 74, 76
Constantine, L., 6, 27
Cooper, R.B., 113, 123
Corn, R.I., 114, 124
Costa, P., 31, 34, 41, 43, 65, 74
Cox, A.L., 213, 219, 221, 276
Creps, D., 37–39, 81
CSTB, 39, 40, 76
Cugola, G., 44, 76
Culler, D.E., 213, 223, 228–235, 240, 242,

243, 275, 276
Cunningham, W., 86, 117
Curely, K.F., 116, 126
Curtis, B., 38, 61, 66, 67, 76, 80, 82

D

Dahlin, M., 213, 250–253, 274, 277
Damsgaard, J., 103, 120
Daskalantonakis, M.K., 38, 74
Davis, T., 115, 126
de Supinski, B.R., 213, 274
DeCanio, S.J., 113, 123
Decker, B., 31, 34, 39, 41, 76
Degenaro, L., 213, 275
Delagi, B., 233, 234, 242, 243, 276
DeMarco, T., 6, 27, 42, 76
Dent, E.B., 107, 121
DeSanctis, G., 115, 126
Deshpande, A., 67, 77

AUTHOR INDEX 281

Devanbu, P., 43, 76
Diamond, M.A., 107, 121
Dibble, C., 113, 123
Dickson, R.M., 213, 273
Dieters, W., 67, 76
Dill, D.L., 213, 274
DiMaggio, P.J., 107, 122
Dingsøyr, T., 42, 62, 75
DiNitto, E., 66, 74
DOD-STD-2167A, 141, 208
Dorta, N., 213, 275
Douglis, F., 248, 250, 253, 277
Drouin, J.N., 66, 76
Dubois, M., 213, 273
Duguid, P., 42, 75, 76
Duska, B.M., 248, 250, 251, 253, 277
Dybå, T., 44, 72, 76

E

Eager, D.L., 213, 274
Easterbrook, S., 105, 121
Edmunds, A., 113, 123
EEA, 141, 208
Eggers, S.J., 213, 219, 220, 242, 275
Elam, J.J., 38, 82
Elizur, D., 114, 124
Emam, K.E., 66, 76
Ericsson Telecom AB, 146, 208
Estublier, J., 67, 75
Ewing, D., 250, 252, 253, 277

F

Fan, L., 250, 252, 253, 277
Fan, M., 113, 123
Fearey, P., 42, 76
Feautrier, P., 231, 233, 234, 276
Feelay, M.J., 248, 250, 251, 253, 277
Feiler, P.H., 46, 66, 76, 79
Feldmann, A., 248, 250, 253, 277
Feldmann, R., 34, 41, 76
Fenton, N.E., 85, 117, 169, 208
Fernström, C., 67, 77
Fichman, R.G., 103, 113, 114, 120, 123
Field, J., 140, 210

Fields, K.T., 110, 122
Fischer, G., 32, 37, 38, 40, 42–44, 68, 77
Fitzgerald, B., 90, 117
Fleisch, B.D., 213, 273
Fleischer, M., 103, 120
Flores, F., 42, 58, 82
Floyd, S., 250, 253, 277
Fong, C.C.F., 213, 259, 275
Fong, W., 67, 77
Fonvielle, W.H., 114, 124
Fournier, R., 21, 27
Fowler, P., 99, 100, 113, 119, 123
Fowler, R.J., 213, 219–221, 275, 276
Frakes, W., 67, 79
French, J.R.P., 107, 121
Frey, M., 34, 76
Fritzson, P., 140, 210
Fuggetta, A., 38, 56, 66, 67, 74, 77

G

Gadde, S., 250, 252, 253, 277
Gallagher, K.B., 138, 140, 208
Gamma, E., 37, 46, 77
Gao, J., 138, 209
Gardiner, L.R., 114, 123
Garg, P.K., 56, 66, 67, 77
Garlan, D., 31, 81
Garud, R., 109, 110, 122
Gaw, J.L., 85, 117
Gee, J.G., 213, 219, 220, 232, 234, 276
Geroski, P.A., 102, 119
Ghezzi, C., 56, 66, 67, 74
Gibbons, D., 93, 118
Gibson, M.L., 110, 122
Gil, J.-A., 213, 273
Ginsberg, M.J., 93, 118
Giorgi, R., 213, 219, 221, 223–225, 274, 276
Girgensohn, A., 40, 77
Glass, G., 248, 250, 253, 277
Glass, R.L., 35, 37, 40, 82, 85, 117
Glaziev, S.Yu., 103, 120
Globe, A., 69, 74
Goel, A.K., 39, 80
Goldberg, A., 9, 27
Goldberg, S.G., 107, 121
Golding, A., 71, 77

282 AUTHOR INDEX

Gomaa, H., 145, 208
Gomez, J.A., 141, 210
Grady, R.B., 97, 118
Graham, P., 213, 275
Granstrand, O., 103, 120
Greenbaum, C.W., 114, 124
Griss, M.L., 34, 61, 77, 78
Grudin, J., 31, 42, 68, 77, 78
Gruhn, V., 67, 76
Grundy, J.C., 66, 78
Gupta, A., 213, 233, 234, 244, 275, 276
Gust, T., 141, 210
Gustavson, D., 233, 234, 276

H

Hall, R., 250, 252, 253, 277
Hamidjaja, H., 213, 275
Haney, F.M., 138, 208
Hao Che, 234, 276
Hardgrave, B.C., 107, 121
Harris, M., 90, 117
Harrison, J., 250–253, 277
Hartkopf, S., 34, 73
Heimbinger, D., 56, 81
Heinen, J.S., 90, 117
Helm, R., 37, 46, 77
Hennessy, J., 233, 234, 242, 243, 276
Henninger, S., 31, 32, 34–36, 38–40, 43–45,

64–67, 69, 71, 78, 79
Henry, S., 138, 209
Hill, M.D., 213, 273
Hirschheim, R., 107, 121
Hollenbach, C., 67, 79
Holtz, H., 19, 27
Holtzblatt, K., 63, 79
Hong Jiang, 233, 234, 242, 243, 276
Horowitz, E., 140, 208
Horowitz, M., 233, 234, 276
Hosking, J.G., 66, 78
Howard, G.S., 113, 123
Hsia, P., 138, 209
Huang, Y., 259, 278
Huff, S.L., 100, 119
Hughes, T.P., 104, 121
Humphrey, W.S., 45, 46, 49, 76, 79
Hurson, A.R., 213, 242, 243, 278

I

IEEE Std. 1219, 141, 208
IEEE Std. 830, 141, 208
IEEE Std. 982.1, 141, 208
Iivari, J., 114, 115, 124, 126
Imielinski, T., 259, 278
Ingols, C., 114, 124
Iscoe, N., 61, 76
Ishizaki, A., 67, 77
ISO9000-3, 141, 208
Issarny, V., 213, 275
Ives, B., 115, 125
Iyengar, A., 213, 275

J

Jaakkola, H., 102, 119
Jacobson, I., 133, 140, 149, 208
Jacobson, V., 250, 253, 277
Jain, A., 45, 64, 66, 71, 75
Jarvis, A., 66, 79
Jaswinder Pal Singh, 213, 275
Jedlitschka, A., 34, 76
Jeffries, R., 86, 117
Jermier, J.M., 106, 121
Jick, T.D., 114, 125
Johnson, R.E., 31, 37, 40, 46, 77, 79
Johnson, V., 40, 75
Johnston, D., 84, 116
Jones, S., 63, 79
Jong, D.C., 140, 210
Jong Hyuk Choi, 233, 234, 240, 242, 243, 276
Jonsson, P., 133, 140, 149, 208
Jun Cai, 213, 259, 261, 262, 275
Jurison, J., 115, 125

K

Kaiser, G.E., 66, 67, 75, 79
Kamkar, M., 140, 210
Kaniosvki, Y.M., 103, 120
Kanter, R.M., 104, 114–116, 121, 124, 125
Kaplan, A., 92, 118
Karahanna, E., 114, 124

AUTHOR INDEX 283

Karlsson, J., 136, 208
Karnøe, P., 109, 110, 122
Katz, R.H., 213, 219, 220, 275
Kautz, K., 102, 119
Kavi, K., 213, 242, 243, 278
Kay, J.S., 213, 250–253, 274, 277
Kehoe, R., 66, 79
Kellner, M.I., 67, 76
Kemerer, C.F., 103, 113, 114, 120, 123
Kerhong, C., 213, 274
Kessler, R.R., 86, 117
Khoury, C., 213, 275
Kian-Lee Tan, 213, 259, 261, 262, 275
Kim, H.S., 213, 242, 243, 278
Klein, K.J., 112, 122
Kleiner, A., 90, 117
Kling, R., 41, 79
Klinger, C., 37–39, 81
Knight, D., 106, 121
Kolodner, J.L., 39, 73, 79, 80
Konnecker, A., 19, 27
Konrad, M.D., 66, 79
Korth, H.F., 259, 278
Krantz, J., 107, 121
Krasner, H., 61, 76
Krishnamurthy, B., 213, 257, 274, 278
Kroeger, T.M., 248, 250, 253, 277
Kröschel, F., 31, 41, 75
Kuilboer, J.P., 115, 125
Kung, D., 138, 209
Kung-Lung Wu, 213, 259, 275
Kunnathur, A.S., 115, 126
Kuvaja, P., 66, 79
Kwon, T.H., 93, 103, 118
Kyu Ho Park, 233, 234, 240, 242, 243, 276

L

Lampert, R., 141, 210
Lange, R., 103, 120
Lanubile, F., 140, 207
Lappala, K., 31, 32, 34, 35, 38, 40, 43, 79
Larsen, T.J., 101–103, 119
Lassila, K.S., 99, 100, 118
Laugero, G., 69, 74
Lavazza, L., 38, 67, 74, 77
Lawrence, P., 106, 121

Lebeck, A.R., 213, 274
Lee, B., 213, 242, 243, 278
Lee, H., 67, 79
Lee, J., 68, 79
Lemke, A.C., 32, 37, 38, 40, 43, 68, 77
Leonard-Barton, D., 98, 110, 118
Letovsky, S., 141, 210
Levine, L., 37–39, 81, 102, 107, 113, 119, 122,

123
Li, W., 138, 209
Li, Y., 64, 65, 71, 79
Lim, W.C., 38, 79
Lindvall, M., 31, 34, 41, 43, 65, 74, 79, 131,

134, 136, 140, 147, 151, 158, 169, 178, 202,
205, 206, 209

Linstone, H.A., 104, 121
Lipkind, I., 213, 275
Liskov, B., 213, 274
Lister, T., 6, 27
Littman, D., 141, 210
Liu, C., 46, 67, 76
Liu, Y.A., 213, 273
Locke, E.A., 107, 121
Loi, M., 67, 74
Long, D.D.E., 248, 250, 253, 277
Long, M.D., 32, 42, 73, 82
Lopata, C.L., 110, 111, 113, 114, 116, 122
Lorsch, J., 106, 121
Lotem, A., 71, 80
Lovato, C.Y., 113, 123
Lucas Jr., H.C., 93, 118
Lui, J.C.S., 213, 259, 275
Lyle, J.R., 138, 140, 208
Lyytinen, K., 103, 120

M

Maansaari, J., 115, 126
Maclean, A., 68, 80
Mahajan, V., 102, 119
Maheshwari, U., 213, 274
Maier, F.H., 96, 97, 118
Makpangou, M., 213, 275
Malcolm, R., 115, 125
Man Hon Wong, 213, 259, 275
March, J.G., 33, 80, 86, 117
Marcolin, B.L., 102, 120

284 AUTHOR INDEX

Markus, M.L., 89, 91–93, 105, 117, 118
Marmor-Squires, A.B., 96, 97, 118
Marshall, T.E., 114, 116, 123, 126
Martin, J., 91, 117
Martin, R.J., 96, 97, 118
Marwood, D., 248, 250, 251, 253, 277
Mastelloni, G., 140, 207
Maurer, F., 19, 27
McCall, R., 37, 40, 42, 68, 77, 81
McCreight, E.M., 213, 217, 218, 274
McCrickard, D.S., 204, 209
McDade, S., 103, 120
McFeeley, B., 96, 118
McGarry, F., 38, 65, 74, 82
McGuire, E., 102, 119
McMaster, T., 91, 101, 102, 104, 105, 117, 119
Melo, W.L., 67, 75
Melone, N., 103, 106, 120, 121
Menaud, J.-M., 213, 275
Menlo, W., 66, 76
Merron, K., 107, 122
Meyerson, D., 91, 117
Mi, P., 56, 66, 67, 77, 80
Michel, S., 250, 253, 277
Miller, W.R., 99, 100, 118
Milutinovic, V., 213, 230–235, 242, 273, 276,

277
Ming-Syan Chen, 213, 259, 275
Miwa, H., 213, 275
Modali, S., 64, 65, 71, 79
Mogul, J.C., 248, 250, 253, 277
Moore, G.A., 103, 104, 114, 120
Moran, T., 68, 80
Morasca, S., 38, 77
Morgan, E., 114, 124
Morgan, G., 91, 117
Morris, A., 113, 123
Morris, M.G., 115, 125
Mowry, T., 233, 234, 244, 276
Muller, E., 102, 119
Müller, W., 34, 73
Mumford, E., 102, 119
Muñoz-Avila, H., 71, 80
Munro, M.C., 100, 119, 138, 139, 209, 210
Muntz, R., 250, 253, 277
Myers, W., 114, 124

N

Nakakoji, K., 40, 77
Nam-Hee Kim, 213, 273
Nanda, 233, 234, 242, 243, 276
NASA GSFC, 49, 80
Nash, S.H., 96, 97, 118
Nau, D.S., 71, 80
Neighbors, J., 37, 80
Nelson, A.C., 115, 126
Newman, M., 107, 121
Nguyen, K., 250, 253, 277
Nick, M., 31, 34, 39, 41, 43, 74, 76, 80
Nilsson, A., 40, 75
Nonaka, I., 32, 33, 80
Nord, W.R., 106, 121
North, J., 114, 124

O

Object-Oriented Software Engineering, 150,
209

Objectory Design, 150, 209
Objectory Process, 133, 146, 209
Objectory Requirements Analysis and

Robustness Analysis, 150, 209
Objectory Tool, 133, 140, 209
Oddy, R.N., 43, 75
O’Hara, A., 67, 81
Oivo, M., 43, 80
Oldano, G., 38, 77
Oliva, T.A., 103, 120
Olsen, J., 86, 117
Olson, M.H., 115, 125
Orazi, E., 38, 77
Orlikowski, W.J., 91, 99, 118
Osterweil, L.J., 50, 55, 56, 67, 68, 79–81
Ostwald, J., 40, 42, 44, 68, 77
Over, J., 67, 76
Overgaard, G., 133, 140, 149, 208

P

Page, G., 38, 74
Pajerski, R., 38, 74
Papamarcos, M., 213, 219, 274
Park, S., 213, 274

AUTHOR INDEX 285

Parkes, C., 114, 125
Patel, J., 213, 219, 274
Patnayakuni, R., 113, 123
Paulk, M.C., 66, 79, 80
Pearce, M., 39, 80
Pei, C., 213, 274
Pen-Chung Yew, 213, 274
Pérez, C.E., 213, 273
Perry, D.E., 67, 80
Peters, T., 108, 122
Peterson, R.A., 102, 119
Pettengill, R., 138, 207
Pfeffer, J., 108, 122
Pfleeger, S.L., 85, 117, 140, 209
Pham, T., 56, 66, 67, 77
Picco, G.P., 67, 74
Pierre, G., 213, 275
Pinch, T.J., 104, 121
Pinto, J., 141, 210
Plakal, M., 213, 273
Plaza, E., 39, 73
Pong, F., 213, 273
Pont, A., 213, 273
Popovich, S.S., 66, 67, 79
Port, D., 45, 50, 64, 66, 71, 75
Potter, M., 113, 123
Poulin, J.S., 42, 80
Povey, D., 250–253, 277
Powell, W.W., 107, 122
Premkumar, G., 113, 123
Prete, C.A., 213, 217, 219, 221, 223–225,

274–276
Pries-Heje, J., 102, 119
Prieto-Díaz, R., 37, 39, 80, 81
Prina, G., 219, 221, 276

Q

Qi Tang Lin, 213, 275
Qing, Y., 213, 274
Queille, J., 138, 209

R

Rabinovich, I., 213, 274
Rabinovich, M., 213, 248, 250, 252, 253, 274,

277
Radice, R., 67, 81

Raghavendran, A., 31, 32, 34, 35, 38, 40, 43,
79

Rai, A., 99, 113, 114, 119, 123
Rainer Jr., R.K., 110, 114, 122, 123
Rajaraman, R., 213, 274
Ramiller, N.C., 103, 112, 120, 122
Ramlingam, G., 140, 210
Rao, K., 115, 125
Ravichandran, T., 110, 113, 122, 123
Rech, J., 34, 76
Redmiles, D., 40, 77
Redwine Jr., S.T., 96, 97, 118
Reeves, B., 40, 42, 68, 77
Repenning, N.P., 86, 87, 117
Reynolds Jr., P.F., 213, 274
Ricciardi, L., 219, 221, 276
Rich, C.H., 32, 81
Richardson, G.P., 88, 117
Richardson, L., 114, 124
Riddle, W.E., 96, 97, 118
Rifkin, S., 99, 100, 105, 115, 119, 121
Risen, J., 84, 116
Roberts Jr., T.L., 110, 122
Robertson, E., 40, 75
Robey, D., 93, 118
Rodriguez, P., 249–254, 277
Rogers, E.M., 101–103, 110, 111, 114, 119
Rollnick, S., 99, 100, 118
Román, A.G., 213, 273
Rombach, D., 31, 33, 34, 38, 65, 66, 74, 75
Rosenbloom, P.S., 71, 77
Rosenkopf, L., 106, 121
Rosenstein, A., 250, 253, 277
Roth, G., 90, 117
Roth, N., 67, 81
Rottman, J., 115, 126
Rouvellou, I., 213, 275
Royce, W.W., 146, 210
Rubin, B., 40, 75
Ruíz, B.H., 213, 273
Runesson, M., 169, 209
Rus, I., 31, 43, 79
Ryan, T.F., 90, 117

S

Sagie, A., 114, 124
Sahuquillo, J., 213, 273

286 AUTHOR INDEX

Sandahl, K., 140, 202, 209
Satterthwaite, E., 213, 217, 275
Scacchi, W., 56, 66, 67, 77, 80
Scharff, E., 42, 81
Schlabach, J., 36, 79
Schneider, K., 42, 69, 81
Schoen, E., 138, 207
Scholes, J., 104, 121
Schön, D.A., 34, 81
Schultz, R.L., 93, 118
Schumpeter, J.A., 96, 109, 118, 122
Schwab, T., 43, 77
Schwaber, K., 65, 81
Schwartz, M., 250, 252, 253, 277
Schwinn, T., 42, 69, 81
SEI, 141, 210
Selfridge, P.G., 32, 42, 43, 73, 76, 82
Senge, P.M., 85, 86, 117
Sentosa, L., 39, 80
Shahmehri, N., 140, 210
Shaw, M., 31, 81
Shaw, N.G., 110, 122
Shim, S.J., 115, 126
Shin-Dug Kim, 213, 273
Shipman, F., 37, 40, 42, 68, 77, 81
Shrira, L., 213, 274
Silva, J., 91, 117
Simoni, R., 233, 234, 276
Simos, M.A., 37–39, 81
Singer, C.A., 141, 210
Singh, J.P., 223, 228–235, 240, 242, 243, 276
Sinnwell, M., 213, 275
Sista, P., 259, 278
Sleator, D., 213, 220, 276
Smith, A.J., 213, 219, 220, 232, 234, 276
Smith, R.H., 115, 125
Snyder, T.R., 49, 79
Soloway, E., 141, 210
Sorin, D.J., 213, 273
Spanner, C., 249–254, 277
Spilka, R., 99, 119
Stålhane, T., 42, 62, 75
Stallaert, J., 113, 123
Staudenmayer, N.A., 67, 80
Stein, B.A., 114, 125
Stein, E.W., 68, 81
Stewart, L., 213, 217, 275
Strasburg, D., 141, 210

Straub, D.W., 114, 124
Stroustrup, B., 146, 210
Strubing, J., 6, 27
Sutcu, C., 110, 122
Sutton, R.I., 108, 122
Sutton, S.M., 56, 81
Swanson, E.B., 102, 103, 112, 115, 119, 120,

122, 125

T

Tait, P., 115, 125
TakeFive Software, 200, 210
Takeychi, H., 32, 33, 80
Tam, K.Y., 113, 123
Tanaka, Y., 213, 275
Tari, Z., 213, 275
Tartalja, I., 230, 233–235, 277
Tautz, C., 34, 39, 43, 74, 80, 81
Taylor, R.N., 38, 67, 74, 75
Terveen, L.G., 32, 42, 71, 73, 82
Tewari, R., 213, 250–253, 274, 277
Thacker, C., 213, 217, 275
Thangadurai, G., 213, 273, 274
Thapar, M., 233, 234, 242, 243, 276
Theel, O.E., 213, 273
Thomas, M., 65, 82
Thunquest, G., 56, 66, 77
Tip, F., 140, 210
Tomasevic, M., 230–234, 242, 276
Tornatzky, L.G., 103, 112, 120, 122
Toyoshima, Y., 138, 209
Tracz, W., 61, 82
Turver, R.J., 139, 210
Tushman, M.L., 106, 121
Tyre, M.J., 99, 118

U

Ungson, G.R., 68, 82
USC, 64, 82

V

Van Slack, T., 97, 118
Veenstra, J.R., 213, 220, 275

AUTHOR INDEX 287

Venkatesh, V., 115, 125
Vessey, I., 35, 37, 40, 82, 115, 125
Vidgen, R.T., 91, 104, 117
Vin, H., 250–253, 277
Vin, H.M., 213, 274
Vissaggio, G., 140, 207
Vlissides, J., 37, 46, 77
Voidrot, J., 138, 209
Votta, L.G., 6, 27, 67, 80

W

Waligora, S., 38, 74
Wallnau, K.C., 31, 75
Walsh, J.P., 68, 82
Walz, D.B., 38, 82
Wang, J., 246, 248–254, 277
Wang, T., 40, 75
Wang, Z., 250, 252, 253, 277
Want, W., 250, 253, 277
Warboys, B., 102, 119
Wartik, S., 115, 126
Wastell, D.G., 91, 102, 104, 117, 119
Waterman Jr., R.H., 108, 122
Waters, R.C., 32, 81
Webb, L., 110, 122
Weber, C.V., 66, 80
Weber, R., 34, 71, 73, 80
Weber, W.-D., 233, 234, 244, 276
Weick, K., 92, 93, 118
Weikum, G., 213, 275
Weinberg, G., 6, 27
Wen, F., 138, 209
Wentzel, W., 67, 77
Whinston, A.B., 113, 123
Whitehead, E.J., 38, 74
Wilde, N., 138, 141, 209, 210
Williams, C., 213, 274
Williams, L.R., 86, 115, 117, 125
Williamson, A., 114, 124
Williamson, R., 140, 208

Willis, R.R., 49, 79
Wills, C.E., 213, 257, 274, 278
Wind, Y., 102, 119
Winn, T., 37, 82
Winograd, T., 42, 58, 82
Wolfe, R.A., 113, 123
Wolfson, O., 259, 278
Won-Kee Hong, 213, 273
Wood, D.A., 213, 273, 274
Wroblewski, D., 71, 82

Y

Yacobellis, R.K., 38, 74
Yadav, S.B., 110, 122
Yahong Sui, 213, 275
Yakemovic, K., 68, 69, 76
Yang, H.-L., 115, 126
Yang, J., 250, 253, 277
Yang, Q., 213, 273
Yau, S., 138, 210
Ye Tung, 234, 276
Ying, H., 213, 273
Young, R., 68, 80
Yourdon, E., 10, 27
Yu, L., 64, 65, 71, 79
Yu, P.S., 213, 259, 275

Z

Zaharioudakis, M., 213, 274
Zelkowitz, M.V., 38, 74, 96, 97, 115, 118
Zhang, L., 250, 253, 277
Zhijung Wang, 234, 276
Zigurs, I., 115, 126
Zimring, C., 39, 80
Zmud, R.W., 93, 99, 103, 113, 114, 118, 119,

122–124
Zolner, J., 114, 124
Zwass, V., 68, 81

Subject Index

A

Access latency, 248, 253, 254
Actor Network Theory, 104
Actual Impact Set (AIS), 143
Adaptation, mutual, 98–9, 110
Adopters, categorization of, 101–2, 114
Adoption,see Process adoption
AHDMS protocol, 221–2

bus utilization, 224
cache miss ratio, 225
memory requirements, 222, 224, 226, 227
message complexity, 222, 223, 226
synchronization delay, 222, 226
transaction size, 222, 226

Amazon, 14
Analysis object model, 148, 203, 204
Artifact object model, 142, 143
Artifact storage, 11, 19, 26
Asset management, 14–15

B

Backup and recovery, 37–8
Bandwidth, 229, 253–4, 259, 260, 262
Bootstrap, 66, 95
BORE, 35, 44–66, 68–73

activity precedence, 68
approach overview, 48–9
case-based planning, 71
cases, 46, 73
CeBASE, 64, 71
CMMI compliance, 65
configuration management, 71
effort metrics, 46
experience packaging, 61
future work, 70–2
implementation roles, 61–3, 71

knowledge delivery, 56
MBASE, 63–5, 71
methodologies, 46

creation of, 49–54
methodology rules, 49

editing, 52–3
methodology tasks, 46

creation of, 50–2
model of concepts, 46, 47
organizations, 47, 48
pilot projects, 35, 63
privilege manager, 57
process discovery, 63
process models, 72
process-level reviews, 60
project, 47

execution of, 56–7
instantiation of, 54–6
process deviations, 57–60

project scheduling interfaces, 46
project tasks, 47
Software Design Studio (SDS), 55, 65
tailoring rules, 55–6, 62, 65, 68
Task Manager, 44, 45
tasks, 46
terminology, 46–7

Broadcast (bus-based) protocols, 216–27
adaptive hybrid protocols, 221–2
hybrid protocols, 220–1
invalidation based, 219–20
selective, 223–4
summary, 224–7, 269
update based, 217–19

BuildTopia, 13
Bus-based protocols,see Broadcast

(bus-based) protocols

289

290 SUBJECT INDEX

C

Cache Array Routing Protocol, 252
Cache Digest, 252
Cachemesh, 252
Caching on World Wide Web,see Web caching
Capability Maturity Models, 85, 95
Capitalism, 107
CASE, 95, 115

see also Objectory SE
CC-NUMA architecture, 228–30
CDEs, 2–3, 6–27

asset management, 14–15
barriers to, 25
classification of, 12, 26–7
collaboration, 22, 25, 26
community building, 22, 25, 26
coordination, 22, 25, 26
emergence of, 8–9
evolution of, 24–5
features, 21–4
information services, 15–16
infrastructure, 16–17
non-software domains, 12–14
points of friction addressed by, 9–12, 21
preparation for adoption, 26
for software development, 8–12, 19–24
Web communities, 17–19

CeBASE, 64, 71
Change candidates, 138
Change history analysis, 137
Change management, 11, 24, 94, 114
Changes

primary, 138, 196
secondary, 138, 196

Chat rooms, 17
Classes

change-prone, 198
coupling between, 182–3
relations between, 182–90

see also Inheritance relations; Inter-class
relations

size considerations, 178–82, 198
CMM, 66, 68, 112
CMMI, 66
COCOMO, 134, 156
CoCreate, 13
Cohen’s Kappa value, 151

Coherence protocols, 212–73
conclusions, 271–3
consistency requirement variations, 272
introduction, 212–13
motivation, 214
overview of classes, 270
parameter definitions, 214–15
see also Broadcast (bus-based) protocols;

Message-passing (directory based)
protocols; Web caching schemes; Web
coherence; Wireless protocols

Collab.net, 19
Collaborative development environments,see

CDEs
Communication

group, 9, 10, 11
in process adoption, 110

Communities of practice, 41, 42
Competency-destroying technology, 106
Competency-enhancing technology, 106
Competitive snooping algorithm, 220
ComponentSource, 14, 15
Computer-aided software engineering,see

CASE
Consumer product development, 9
Cost estimation models, 134, 156, 200–1
Creative destruction, 109
CRISP, 252
Customer intimacy, 105

D

Decision support, case-based, 39
Dependency analysis, 136, 138–40
Design environments, domain-specific, 36, 37,

38, 40–1
Design object models, 148, 169–78, 202, 203,

204
abstraction level, 169–71, 173, 174, 176–7

Design rationale techniques, 68–9
Designer Assistant, 42
Destruction, creative, 109
developerWorks, 14, 15
DevX, 19
Diffusion, 87, 88, 101–5, 110, 115

criticisms of theory, 103–5
DIGIT, 103

SUBJECT INDEX 291

Directory based protocols,see
Message-passing (directory based)
protocols

Directory organizations
fully-mapped, 231–2, 235–41

cache-based, 232, 237–40
centralized, 231
flat, 231, 232, 235–7
hierarchical, 231
hybrid, 232, 240–1
memory-based, 232

hierarchy of, 234
partially-mapped, 232–4, 241–6

dirι organization, 232
dirι-B organization, 233, 242–4
dirι-CVκ organization, 233, 244–6
dirι-NB organization, 233, 242, 243

Distributed Internet Cache, 252
Domain abstractions, 36, 37, 40
Domain analysis, 36, 37, 38, 39–40
Domain lifecycle, 35–7
Domain Name Services (DNS), 254
Domain object model, 148, 203, 204
Domain-Oriented Design Environments

(DODEs), 40
Dragon protocol, 217–19

bus utilization, 224
cache miss ratio, 225
memory requirements, 218, 219
messaging complexity, 218, 219, 221
saturation by, 224, 228
synchronization delay, 218, 219
transaction size, 218, 219, 226

E

Eclipse, 7, 8
Edit-history, 196, 197, 200
Efficient Distributed Write Protocol (EDWP),

220–1
EMACS, 193
Endeavors system, 67
Ericsson Radio Systems (ERA), 131, 143–4

see also PMR-project
Estimated Impact Set (EIS), 142, 143
ETVX method, 67
Eureka, 42
Experience factory, 33–4, 35, 38, 72, 85

Experience packaging, 34
External rereads (XRR) metric, 220, 221
eXtreme programming, 85, 86, 112

F

Factor studies, 110–15
Firefly protocol, 217
Flashline, 14
Formalization, 113
Frameworks, 38, 40–1
Friction, points of, 9–11, 21
Fully Distributed Internet Cache, 252

G

Groove, 18–19

H

Hyper-Text Transfer Protocol (HTTP), 254,
255

I

Cadence, 13
IDEAL model, 96
IDEs, 3, 5, 7
Illinois–MESI protocol,see MESI protocol
Impact Analysis (IA), 130–1, 136–43

dependency analysis, 136, 138–40
effectiveness evaluation, 142–3
framework for, 141–2
ripple effect analysis, 138–40
software change process model, 137–8
traceability approaches, 140–1
see also RDIA

Impact factors, 203–5
Impact model, 142
Imperialism, 104
Incremental update invalidation, 265, 266, 267

memory requirements, 266
messaging complexity, 265, 266
synchronization delay, 265, 266
transaction size, 266

Incremental update propagation, 265–6, 267
memory requirements, 266
messaging complexity, 265, 266
synchronization delay, 265, 266
transaction size, 266

Information services, 15–16

292 SUBJECT INDEX

Inheritance relations, 170, 171, 172, 177, 182
changed vs. unchanged, 187, 189
changes in, 174–5
investigating for change, 199
predicted vs. non-predicted, 188, 189

Innovation, 94, 101, 111–12
Instant messaging (IM), 16–17
Institutionalization, 107
Integrated development environments,see

IDEs
Inter-class relations, 171, 172, 175–6, 177,

185–6
definition, 172

Interaction theory, 90
Interconnection networks, 229
Interface object model, 142, 143
Internal object model, 142
Internet Cache Protocol, 252
Internet Protocol (IP), 254
Interpretivism, 90–1
ISO 9000, 66, 85, 95, 112
Iterative reuse model, 149

K

Knowing-doing gap, 108–9
Knowledge acquisition, 40, 43, 71
Knowledge creation, 33, 38, 42, 44, 49
Knowledge feedback, 43–4
Knowledge lifecycle, experience-based, 32–3
Knowledge management, experience-based,

32–41

L

Latency, 108–9
Leadership, 94–5, 109, 114–15
Lotus Notes, 17–18

M

Mailing lists, 17
Market demands, 113
MBASE, 63–5, 71
Member function definitions

changed, 159
predicted, 158

Memory blocks
local, 231

remote, 231
MESI protocol, 219

bus utilization, 224
cache miss ratio, 225
in directory-based systems, 234, 238
memory requirements, 219–20, 227, 235
messaging complexity, 219–20, 221
synchronization delay, 219–20
transaction size, 219–20, 226

Message boards, 17
Message-passing (directory based) protocols,

227–46
CC-NUMA architecture, 228–30
directory-based organizations,see Directory

organizations
summary, 246, 247, 269–70

Migratory data, 221–2
MILOS, 19
Mobile computing network environment,

260–1
MSDN, 14, 15
Multicast mechanism, 273
Mutual adaptation, 98–9, 110

N

NetMeeting, 6, 17
Nodes, definitions of

cluster owner, 240
dirty, 230
exclusive, 231
home, 230
local (requesting), 231
owner, 231

Normative pressure, 87
NUMA-Q, 238–40

see also SCI protocol

O

Object-oriented frameworks, 37
Objectory, 133, 146–50

dependent objects function, 149
input, 147–8
models, 148–9
output, 148
Premium Analysis & Design, 146
use, 147

during RDIA, 149

SUBJECT INDEX 293

Objectory SE, 149–50, 191, 192, 193
improvements, 150, 203–4

OneSpace, 13
Ontologies, 90
Open source development, 8–9, 20
Operational excellence, 105
Organization, characteristics of, 113
Organizational learning, 34–5, 38, 39, 72

P

Pair programmimg, 85, 86
Passive Shared Copy Removal protocol,see

PSCR protocol
Passive sharing, 223
Path creation, 109
Path dependence, 94, 109–10
Piggyback Cache Validation (PCV), 257
Piggyback Server Invalidation (PSI), 257
PlaceWare, 17
PMR-project, 131, 132–3, 143–50, 207

implementation, 146
introduction, 132–3
project developers, 150
software development process model

(SDPM), 146–7
system structure, 144–5
see also Objectory; RDIA

Pointer overflow, 233
Positivism, 90
Procedural Hierarchy of Issue structures, 68–9
Process adoption, 84–116

case studies, 115
communication, 110
cyclic nature, 99
definition, 93
double-bubble process, 99–100
factor studies, 110–15
fields touched by implementation research,

94–5
Markus model, 89–93
non-linear (messy) models, 98–100
quantitative estimates, 115–16
Repenning model, 86–9
stage/phase models, 96–7
user acceptance, 115
see also Diffusion; Resistance

Process languages, 67, 68

Process-centered Software Engineering
Environments (PSEEs), 66–7

Product adoption, 95–6
Product innovativeness, 105
Project dashboards, 11, 21
PSCR protocol, 223–4

bus utilization, 224–5
cache miss ratio, 225
memory requirements, 223, 224, 226, 227
message complexity, 223, 226
saturation by, 228
synchronization delay, 223, 226
transaction size, 223, 226

Q

QIP, 34, 48, 49, 71
Quality Improvement Paradigm,see QIP

R

Rational Developer Network (RDN), 15
Rational Unified Process (RUP), 3, 26, 50, 65,

68, 112
RDIA, 130–207

additional work, 154
class relation considerations, 182–90
class size considerations, 178–82, 198
conclusions, 206–7
conservative prediction, 199
constraints, 136
cost estimation models, 134, 156, 200–1
developers’ opinions, 190–2, 194–5

comments on, 193, 195–6
edit-history, 196, 197, 200
evaluation on class level, 151–6
evaluation on member function level,

156–62
evaluation per requirement, 163–9

relative rank-order of requirements, 165–8
evaluations of release projects, 197–8
explanation building, 196–7
impact factors, 203–5
improvements, 192, 196, 197–202
porting of operating system requirement,

154
purpose, 135–6
quantitative results summary, 193–4
release-to-class view, 198–9

294 SUBJECT INDEX

research effort, 196
research questions, 134–5
software evolution planning problem, 133–4
strengths, 190–1
tool support, 193, 197, 200, 207
underprediction factor statistics, 162, 165
weaknesses, 191
see also Design object models; PMR-

project
Read Write Broadcast (RWB) protocol, 220
Reality, social construction of, 95
Reasoning, case-based, 39
Reduced State Transition (RST) protocol, 217
Reductionism, 103–4
Reinforcement, 87
Relations, inter-class,see Inter-class relations
Repositories, 34, 35

case-based, 36, 37, 38
experience-based, 43

Requirements analysis, 147–8
Requirements-Driven Impact Analysis,see

RDIA
Resilience, 4
Resistance, 90, 93, 94, 105–9

theories of, 91, 92
Reusable Asset Specification (RAS), 26
Ripple effects, 136

analysis of, 138–40

S

Saturation, 224, 228
Scalable Coherence Interface,see SCI protocol
Scalable multiprocessors, 229
SCCS, 192, 193, 200, 207
SCI protocol, 238–40

memory requirements, 239
message complexity, 239–40
synchronization delay, 239, 240
transaction size, 239

SCRUM, 65
SDPM, 146–7
SGI Origin, 234, 235

coherence protocol
memory requirements, 237, 240
message complexity, 236–7, 241
synchronization delay, 236, 237

transaction size, 237, 241

SGI Origin 2000, 245
SGI Origin 2002, 245

SharePoint, 19
Slashdot, 18
Slicing, 138–40

complement slice, 139
decomposition slice, 138

SNIFF, 192, 193, 200
Snooping, 217, 220, 222, 262
Soft Systems Methodology, 104
Software Architecture Analysis Method

(SAAM), 203
Software change process model, 137–8
Software Design Studio (SDS), 55, 65
Software development

experience-based, 30–73
conclusions, 72–3
software process frameworks, 66–7
software process modeling, 66–8
tool support, 41–4
see also BORE; Knowledge management,

experience-based
release-oriented, 130
social dynamics of, 6–8
see also CDEs

Software process automation, 56
Software process frameworks, 66
Software process modeling, 66–8
Software reuse, 42, 66
SourceForge, 19–20
SPICE, 66
Stakeholder negotiation, 10, 11
Stanford Flash, 235–7

see also SGI Origin
Starfire project, 9
Start up costs, 9, 10, 11
Starting Impact Set (SIS), 142
Summary Cache, 252
Symmetric Multi-Processor organization, 228
System Set, 142

T

Technology
competency-destroying, 106
competency-enhancing, 106
social shaping of, 95, 104

Technology churn, 4
TheServerSide, 15, 16

SUBJECT INDEX 295

Time starvation, 10, 11
Tool designers, 38, 40
Traceability, 136, 137, 140–1, 203

U

Unified Modeling Language (UML), 3, 26
Uniform Resource Locator (URL), 254
Update invalidation (UI) coherence, 261,

263–4, 267
memory requirements, 264
messaging complexity, 263, 264
synchronization delay, 263, 264
transaction size, 264
see also Incremental update invalidation

Update propagation (UP) coherence, 261,
264–5, 267

memory requirements, 265
messaging complexity, 264, 265
synchronization delay, 264, 265
transaction size, 265
see also Incremental update propagation

Update-Once protocol, 221
bus utilization, 224
cache miss ratio, 225
memory requirements, 221, 222, 224, 226,

227
message complexity, 221, 222, 223, 226
synchronization delay, 221, 222, 226
transaction size, 221, 222, 226

Use-case models, 147, 148, 149, 202, 203, 204
User acceptance, 115

V

Video conferencing, 17
Visual Studio, 7, 8

W

Web caching schemes, 246–58
advantages, 248
client caches, 248, 250
coherence in,see Web coherence
distributed, 249, 251–2
hierarchical, 249, 250–1
hybrid, 249, 252–3
institutional-level caches, 250, 251
proxy caches, 248
server caches, 248

web site mirroring, 249–50
see also Web coherence

Web coherence, 253–8
access latency issues, 253, 254
communication link bandwidths, 253–4
memory requirements, 253
message complexity, 254
piggyback coherence techniques, 257–8,

271
strongly consistent cache coherence, 254,

255, 256
client validation, 255, 256
server invalidation, 255, 256

summary, 258, 270–1
weakly consistent cache coherence, 254,

255, 256–8
Adaptive Time-To-Live (TTL), 256

Web communities, 17–19
Web Monkey, 15
Web site mirroring, 249–50
WebEx, 17
Whiteboards, 6, 17, 21
WikiWeb, 18
Wireless protocols, 259–67

asynchronous operation mode, 261
bandwidth limitations, 259, 260, 262
design requirements, 261–2
disconnection factor, 259
future development, 272
mobility factor, 259
summary, 266–7, 268, 271
synchronous operation mode, 261
update broadcast parameter definitions, 263
see also Incremental update invalidation;

Incremental update propagation; Update
invalidation (UI) coherence; Update
propagation (UP) coherence

Work product collaboration, 9, 10, 11
Working space organization, 7, 9, 10
Write-Once protocol, 221
Write-run length (WRL) metric, 220, 221
WRL metric, 220, 221

X

XRR metric, 220, 221

Y

Yahoo groups, 18

Contents of Volumes in This Series

Volume 40

Program Understanding: Models and Experiments
A. VON MAYRHAUSER AND A. M. VANS

Software Prototyping
ALAN M. DAVIS

Rapid Prototyping of Microelectronic Systems
APOSTOLOS DOLLAS AND J. D. STERLING BABCOCK

Cache Coherence in Multiprocessors: A Survey
MAZIN S. YOUSIF, M. J. THAZHUTHAVEETIL, AND C. R. DAS

The Adequacy of Office Models
CHANDRA S. AMARAVADI, JOEY F. GEORGE, OLIVIA R. LIU SHENG, AND JAY F. NUNAMAKER

Volume 41

Directions in Software Process Research
H. DIETER ROMBACH AND MARTIN VERLAGE

The Experience Factory and Its Relationship to Other Quality Approaches
VICTOR R. BASILI

CASE Adoption: A Process, Not an Event
JOCK A. RADER

On the Necessary Conditions for the Composition of Integrated Software Engineering Environments
DAVID J. CARNEY AND ALAN W. BROWN

Software Quality, Software Process, and Software Testing
DICK HAMLET

Advances in Benchmarking Techniques: New Standards and Quantitative Metrics
THOMAS CONTE AND WEN-MEI W. HWU

An Evolutionary Path for Transaction Processing Systems
CARLTON PU, AVRAHAM LEFF, AND SHU-WEI, F. CHEN

Volume 42

Nonfunctional Requirements of Real-Time Systems
TEREZA G. KIRNER AND ALAN M. DAVIS

A Review of Software Inspections
ADAM PORTER, HARVEY SIY, AND LAWRENCE VOTTA

Advances in Software Reliability Engineering
JOHN D. MUSA AND WILLA EHRLICH

Network Interconnection and Protocol Conversion
MING T. LIU

A Universal Model of Legged Locomotion Gaits
S. T. VENKATARAMAN

297

298 CONTENTS OF VOLUMES IN THIS SERIES

Volume 43

Program Slicing
DAVID W. BINKLEY AND KEITH BRIAN GALLAGHER

Language Features for the Interconnection of Software Components
RENATE MOTSCHNIG-PITRIK AND ROLAND T. MITTERMEIR

Using Model Checking to Analyze Requirements and Designs
JOANNE ATLEE, MARSHA CHECHIK, AND JOHN GANNON

Information Technology and Productivity: A Review of the Literature
ERIK BRYNJOLFSSON AND SHINKYU YANG

The Complexity of Problems
WILLIAM GASARCH

3-D Computer Vision Using Structured Light: Design, Calibration, and Implementation Issues
FRED W. DEPIERO AND MOHAN M. TRIVEDI

Volume 44

Managing the Risks in Information Systems and Technology (IT)
ROBERT N. CHARETTE

Software Cost Estimation: A Review of Models, Process and Practice
FIONA WALKERDEN AND ROSS JEFFERY

Experimentation in Software Engineering
SHARI LAWRENCE PFLEEGER

Parallel Computer Construction Outside the United States
RALPH DUNCAN

Control of Information Distribution and Access
RALF HAUSER

Asynchronous Transfer Mode: An Engineering Network Standard for High Speed Communications
RONALD J. VETTER

Communication Complexity
EYAL KUSHILEVITZ

Volume 45

Control in Multi-threaded Information Systems
PABLO A. STRAUB AND CARLOS A. HURTADO

Parallelization of DOALL and DOACROSS Loops—a Survey
A. R. HURSON, JOFORD T. LIM, KRISHNA M. KAVI, AND BEN LEE

Programming Irregular Applications: Runtime Support, Compilation and Tools
JOEL SALTZ, GAGAN AGRAWAL, CHIALIN CHANG, RAJA DAS, GUY EDJLALI, PAUL

HAVLAK, YUAN-SHIN HWANG, BONGKI MOON, RAVI PONNUSAMY, SHAMIK SHARMA,
ALAN SUSSMAN, AND MUSTAFA UYSAL

Optimization Via Evolutionary Processes
SRILATA RAMAN AND L. M. PATNAIK

Software Reliability and Readiness Assessment Based on the Non-homogeneous Poisson Process
AMRIT L. GOEL AND KUNE-ZANG YANG

Computer-supported Cooperative Work and Groupware
JONATHAN GRUDIN AND STEVEN E. POLTROCK

Technology and Schools
GLEN L. BULL

CONTENTS OF VOLUMES IN THIS SERIES 299

Volume 46

Software Process Appraisal and Improvement: Models and Standards
MARK C. PAULK

A Software Process Engineering Framework
JYRKI KONTIO

Gaining Business Value from IT Investments
PAMELA SIMMONS

Reliability Measurement, Analysis, and Improvement for Large Software Systems
JEFF TIAN

Role-based Access Control
RAVI SANDHU

Multithreaded Systems
KRISHNA M. KAVI, BEN LEE, AND ALLI R. HURSON

Coordination Models and Language
GEORGE A. PAPADOPOULOS AND FARHAD ARBAB

Multidisciplinary Problem Solving Environments for Computational Science
ELIAS N. HOUSTIS, JOHN R. RICE, AND NAREN RAMAKRISHNAN

Volume 47

Natural Language Processing: A Human-Computer Interaction Perspective
BILL MANARIS

Cognitive Adaptive Computer Help (COACH): A Case Study
EDWIN J. SELKER

Cellular Automata Models of Self-replicating Systems
JAMES A. REGGIA, HUI-HSIEN CHOU, AND JASON D. LOHN

Ultrasound Visualization
THOMAS R. NELSON

Patterns and System Development
BRANDON GOLDFEDDER

High Performance Digital Video Servers: Storage and Retrieval of Compressed Scalable Video
SEUNGYUP PAEK AND SHIH-FU CHANG

Software Acquisition: The Custom/Package and Insource/Outsource Dimensions
PAUL NELSON, ABRAHAM SEIDMANN, AND WILLIAM RICHMOND

Volume 48

Architectures and Patterns for Developing High-performance, Real-time ORB Endsystems
DOUGLAS C. SCHMIDT, DAVID L. LEVINE, AND CHRIS CLEELAND

Heterogeneous Data Access in a Mobile Environment – Issues and Solutions
J. B. LIM AND A. R. HURSON

The World Wide Web
HAL BERGHEL AND DOUGLAS BLANK

Progress in Internet Security
RANDALL J. ATKINSON AND J. ERIC KLINKER

Digital Libraries: Social Issues and Technological Advances
HSINCHUN CHEN AND ANDREA L. HOUSTON

Architectures for Mobile Robot Control
JULIO K. ROSENBLATT AND JAMES A. HENDLER

300 CONTENTS OF VOLUMES IN THIS SERIES

Volume 49

A Survey of Current Paradigms in Machine Translation
BONNIE J. DORR, PAMELA W. JORDAN, AND JOHN W. BENOIT

Formality in Specification and Modeling: Developments in Software Engineering Practice
J. S. FITZGERALD

3-D Visualization of Software Structure
MATHEW L. STAPLES AND JAMES M. BIEMAN

Using Domain Models for System Testing
A. VON MAYRHAUSER AND R. MRAZ

Exception-handling Design Patterns
WILLIAM G. BAIL

Managing Control Asynchrony on SIMD Machines—a Survey
NAEL B. ABU-GHAZALEH AND PHILIP A. WILSEY

A Taxonomy of Distributed Real-time Control Systems
J. R. ACRE, L. P. CLARE, AND S. SASTRY

Volume 50

Index Part I
Subject Index, Volumes 1–49

Volume 51

Index Part II
Author Index
Cumulative list of Titles
Table of Contents, Volumes 1–49

Volume 52

Eras of Business Computing
ALAN R. HEVNER AND DONALD J. BERNDT

Numerical Weather Prediction
FERDINAND BAER

Machine Translation
SERGEI NIRENBURG AND YORICK WILKS

The Games Computers (and People) Play
JONATHAN SCHAEFFER

From Single Word to Natural Dialogue
NEILS OLE BENSON AND LAILA DYBKJAER

Embedded Microprocessors: Evolution, Trends and Challenges
MANFRED SCHLETT

Volume 53

Shared-Memory Multiprocessing: Current State and Future Directions
PER STEUSTRÖM, ERIK HAGERSTEU, DAVID I. LITA, MARGARET MARTONOSI, AND

MADAN VERNGOPAL

CONTENTS OF VOLUMES IN THIS SERIES 301

Shared Memory and Distributed Shared Memory Systems: A Survey
KRISHNA KAUI, HYONG-SHIK KIM, BEU LEE, AND A. R. HURSON

Resource-Aware Meta Computing
JEFFREY K. HOLLINGSWORTH, PETER J. KELCHER, AND KYUNG D. RYU

Knowledge Management
WILLIAM W. AGRESTI

A Methodology for Evaluating Predictive Metrics
JASRETT ROSENBERG

An Empirical Review of Software Process Assessments
KHALED EL EMAM AND DENNIS R. GOLDENSON

State of the Art in Electronic Payment Systems
N. ASOKAN, P. JANSON, M. STEIVES, AND M. WAIDNES

Defective Software: An Overview of Legal Remedies and Technical Measures Available to Consumers
COLLEEN KOTYK VOSSLER AND JEFFREY VOAS

Volume 54

An Overview of Components and Component-Based Development
ALAN W. BROWN

Working with UML: A Software Design Process Based on Inspections for the Unified Modeling Language
GUILHERME H. TRAVASSOS, FORREST SHULL, AND JEFFREY CARVER

Enterprise JavaBeans and Microsoft Transaction Server: Frameworks for Distributed Enterprise
Components

AVRAHAM LEFF, JOHN PROKOPEK, JAMES T. RAYFIELD, AND IGNACIO SILVA-LEPE

Maintenance Process and Product Evaluation Using Reliability, Risk, and Test Metrics
NORMAN F. SCHNEIDEWIND

Computer Technology Changes and Purchasing Strategies
GERALD V. POST

Secure Outsourcing of Scientific Computations
MIKHAIL J. ATALLAH, K.N. PANTAZOPOULOS, JOHN R. RICE, AND EUGENE SPAFFORD

Volume 55

The Virtual University: A State of the Art
LINDA HARASIM

The Net, the Web and the Children
W. NEVILLE HOLMES

Source Selection and Ranking in the WebSemantics Architecture Using Quality of Data Metadata
GEORGE A. MIHAILA, LOUIQA RASCHID, AND MARIA-ESTER VIDAL

Mining Scientific Data
NAREN RAMAKRISHNAN AND ANANTH Y. GRAMA

History and Contributions of Theoretical Computer Science
JOHN E. SAVAGE, ALAN L. SALEM, AND CARL SMITH

Security Policies
ROSS ANDERSON, FRANK STAJANO, AND JONG-HYEON LEE

Transistors and 1C Design
YUAN TAUR

302 CONTENTS OF VOLUMES IN THIS SERIES

Volume 56

Software Evolution and the Staged Model of the Software Lifecycle
KEITH H. BENNETT, VACLAV T. RAJLICH, AND NORMAN WILDE

Embedded Software
EDWARD A. LEE

Empirical Studies of Quality Models in Object-Oriented Systems
LIONEL C. BRIAND AND JÜRGEN WÜST

Software Fault Prevention by Language Choice: Why C Is Not My Favorite Language
RICHARD J. FATEMAN

Quantum Computing and Communication
PAUL E. BLACK, D. RICHARD KUHN, AND CARL J. WILLIAMS

Exception Handling
PETER A. BUHR, ASHIF HARJI, AND W. Y. RUSSELL MOK

Breaking the Robustness Barrier: Recent Progress on the Design of the Robust Multimodal System
SHARON OVIATT

Using Data Mining to Discover the Preferences of Computer Criminals
DONALD E. BROWN AND LOUISE F. GUNDERSON

Volume 57

On the Nature and Importance of Archiving in the Digital Age
HELEN R. TIBBO

Preserving Digital Records and the Life Cycle of Information
SU-SHING CHEN

Managing Historical XML Data
SUDARSHAN S. CHAWATHE

Adding Compression to Next-Generation Text Retrieval Systems
NIVIO ZIVIANI AND EDLENO SILVA DE MOURA

Are Scripting Languages Any Good? A Validation of Perl, Python, Rexx, and Tcl against C, C++, and
Java

LUTZ PRECHELT

Issues and Approaches for Developing Learner-Centered Technology
CHRIS QUINTANA, JOSEPH KRAJCIK, AND ELLIOT SOLOWAY

Personalizing Interactions with Information Systems
SAVERIO PERUGINI AND NAREN RAMAKRISHNAN

Volume 58

Software Development Productivity
KATRINA D. MAXWELL

Transformation-Oriented Programming: A Development Methodology for High Assurance Software
VICTOR L. WINTER, STEVE ROACH, AND GREG WICKSTROM

Bounded Model Checking
ARMIN BIERE, ALESSANDRO CIMATTI, EDMUND M. CLARKE, OFER STRICHMAN, AND

YUNSHAN ZHU

Advances in GUI Testing
ATIF M. MEMON

Software Inspections
MARC ROPER, ALASTAIR DUNSMORE, AND MURRAY WOOD

CONTENTS OF VOLUMES IN THIS SERIES 303

Software Fault Tolerance Forestalls Crashes: To Err Is Human; To Forgive Is Fault Tolerant
LAWRENCE BERNSTEIN

Advances in the Provisions of System and Software Security—Thirty Years of Progress
RAYFORD B. VAUGHN

	Collaborative Development Environments
	Introduction
	The Physics of Software
	A Day in the Life of a Developer
	The Emergence of Collaborative Development Environments
	Creating a Frictionless Surface
	A Survey of Collaborative Sites
	Non-Software Domains
	Asset Management
	Information Services
	Infrastructure
	Community
	Software Development

	Collaborative Development Environment Features
	The Evolution of Collaborative Development Environments
	Summary
	References

	Tool Support for Experience-Based Software Development Methodologies
	Experience-Based Approaches for Software Engineering
	Experience-Based Knowledge Management
	The Experience Factory Approach
	The Organizational Learning Approach
	The Domain Lifecycle
	Stepping Through the Lifecycle
	Case-Based Decision Support Tools
	Domain Abstractions and Domain Analysis
	Support for Domain-Specific Design Environments

	Tool Support for Experience-Based Approaches
	Developing Communities of Practice
	Experience-Based Repositories
	Continuous Feedback of Development Knowledge

	The BORE Software Experience Base Tool
	BORE Terminology
	Case.
	Task.
	Methodology.
	Methodology Task.
	Project.
	Project Task.
	Organization.

	The BORE Approach
	Creating BORE Methodologies
	Creating Methodology Tasks
	Editing Methodology Rules

	Project Instantiation
	Tailoring the Process
	The Rule-Based System
	Knowledge Access vs. Knowledge Delivery
	Delivering Development Resources

	Project Execution
	Analysis and Review Processes
	Project-Level Deviations
	Process-Level Reviews

	Experience Packaging

	Putting BORE into Practice: Some Starting Points
	Roles and Tasks for Implementing the BORE Approach
	Evaluation Contexts for BORE
	Process Discovery
	Implementing the MBASE Process
	The Software Design Studio Implementation
	CMMI Compliance

	Other Related Research
	Software Process Frameworks
	Software Process Modeling
	An Analysis of Process Models and Frameworks
	Design Rationale

	Open Issues and Future Work
	Future Work

	Conclusions
	Acknowledgements
	References

	Why New Software Processes Are Not Adopted
	Change Is Harder Than We Think
	The Answers
	The First Model
	Advantages of the First Model
	The Second Model
	Advantages of the Second Model

	Beginning the Inquiry
	Definition of Adoption
	Framework for Inquiry
	Fields Touched by Implementation Research
	Ambit of Software Processes

	Process Descriptions of Implementation
	Description of Stage or Phase Models
	Duration of Stage or Phase Models
	Non-Linear (Messy) Models

	Diffusion: The Most Popular Explanation
	Problems with Diffusion as an Explanation

	Resistance
	Reluctance Because the Proposed Change is a Bad Idea. That Is, There Is Conflict!
	Reluctance Because We Are Inertial Beings and We Resist Change
	Institutional Forces Invite Us to Imitate, to Conform
	Latency Because There Is Gap between Knowing and Doing
	Why before how: Philosophy is important.
	Knowing comes from doing and teaching others how.
	Action counts more than elegant plans and concepts.
	There is no doing without mistakes. What is the company's response?
	Fear fosters knowing-doing gaps, so drive out fear.
	Beware of false analogies: fight the competition, not each other.
	Measure what matters and what can help turn knowledge into action.
	What leaders do, how they spend their time and how they allocate resources, matters.

	Path Dependence Theory
	Process Studies
	Factor Studies
	Characteristics of the Innovation
	Organizational Characteristics
	Environmental Factors
	Adopter Characteristics
	Leadership
	User Acceptance

	Case Studies
	Diffusion
	Other Case Studies

	Conclusion
	Acknowledgements
	References

	Impact Analysis in Software Evolution
	Introduction
	The pmr-Project
	Problem
	Research Issues and Research Questions
	Structure of This Chapter

	Related Work
	Requirements-Driven Impact Analysis
	Other Impact Approaches
	A Software Change Process with Impact Analysis
	Ripple Effect Analysis and Dependency Analysis
	Comments

	Traceability Approaches
	Comments

	A Framework for Impact Analysis
	Evaluation of Impact Analysis Effectiveness

	The pmr-Project and Its Context
	Ericsson Radio Systems
	The pmr-System
	The Structure of the System
	Design and Implementation of the System
	Software Development Process Model
	The Use of Objectory
	Input to Objectory
	Output from Objectory
	The Intentions Underlying Different Models
	The Use of Objectory during rdia
	Objectory vs. Objectory se
	Project Developers

	Evaluation on the Class Level
	Questions on the Class Level
	Answering the Questions on Prediction I
	Discussion
	Answering the Questions on Prediction II
	Concluding Remarks on This Analysis

	Evaluation of rdia on the Member Function Level
	Questions on the Member Function Level
	Design
	Analysis on the Member Function Level
	Member Function Change Statistics
	Answering the Questions on Prediction
	Discussion

	Summary of Statistics
	Evaluation of rdia per Requirement
	Questions on the per Requirement Level
	Analysis on the Requirements Level
	Relative Rank-Order of Requirements
	Answering the Questions on Prediction

	Concluding Remarks on This Analysis

	Models vs. Actual Implementation
	Contents Analysis-Describing the Abstraction Level
	Questions Regarding the Design Model
	Preparation
	Analysis
	Discussion
	Describing Abstraction Using a Constant Set of Objects
	Inheritance Relations Change
	Inter-Object/Class Relations Change
	Discussion
	Answers to Questions Raised by the Design Model
	Concluding Remarks on This Analysis

	Class Size
	Questions Regarding Class Size
	Size-Changed vs. Unchanged Classes
	Size-Predicted vs. Unpredicted Classes
	Size-Predicted vs. Changed Classes
	Answers to Questions Regarding Class Size
	Discussion

	Relations between Classes
	Questions Regarding Relations
	Inter-class Relations-Changed vs. Unchanged
	Inter-Class Relations-Predicted vs. Non-Predicted
	Inheritance Relations-Changed vs. Unchanged
	Inheritance Relations-Predicted vs. Non-Predicted
	Answering the Questions
	Concluding Remarks on This Analysis

	Discussion of Findings
	Qualitative and Quantitative Results
	Questionnaire Completed by Developers

	Comments Regarding rdia
	Summary of Quantitative Results
	Feeding Back the Results
	Comments about the Results and the Evaluation
	Explanation Building
	Suggested Improvements
	Evaluations of Release Projects

	Complementary Release-to-Class View
	Complementary Conservative Prediction
	Using Historical Data to Support Prediction
	Tool Support
	Alternative Input to Cost Estimation
	Discussion on Quantitative and Qualitative Results
	rdia Using Models and Traceability
	Other Models for Identification of Change
	The Use-Case Model
	The Domain Object Model
	The Analysis Object Model
	Seriousness of Software Change

	Discussion on rdia Using Models and Traceability

	Summary and Conclusions
	Summary
	Conclusions

	References

	Coherence Protocols for Bus-Based and Scalable Multiprocessors, Internet, and Wireless Distributed Computing Environments: A Survey
	Introduction and Background
	Introduction
	Motivation
	Major Parameters of Survey
	Message Parameters
	Memory Requirements

	Road Map

	Broadcast (Bus-Based) Protocols
	Background
	The Update Based Coherence Protocols
	The Invalidation Based Coherence Protocols
	The Hybrid Protocols
	The Adaptive Hybrid Protocols
	The Selective Protocol
	Summary of Broadcast Protocols

	Message-Passing (Directory Based) Protocols
	Introduction
	CC-NUMA Architecture
	Directory-Based Organizations-Principal
	Fully-mapped Directory Organizations
	Partially-Mapped Directory Organizations

	Directory-Based Organizations-Implementation
	Fully-Mapped Directories
	Flat, Memory-Based Directory.
	Cache-Based Directory.
	Hybrid Directory.

	Partially-Mapped Directories
	No-Broadcast Limited Directories.
	Broadcast Limited Directories.
	Coarse-Vector Limited Directories.

	Summary of Message-Passing Protocols

	Coherence on the World Wide Web
	Introduction
	Hierarchical Web Caching Schemes
	Distributed Web Caching Schemes
	Hybrid Web Caching Schemes
	Coherence in Web Caching Schemes
	Strongly Consistent Web Caching
	Client Validation.
	Server Invalidation.

	Weakly Consistent Web Caching
	Adaptive Time-To-Live (TTL) [73].
	Piggyback Coherence Techniques.

	Summary of Web Coherence

	Wireless Protocols
	Introduction
	The Mobile Computing Network Environment

	Cache Coherence Design Requirements in the Wireless Network Environment
	Analysis of Basic Wireless Coherence Protocols
	Definitions
	Update Invalidation Coherence
	Update Propagation Coherence
	Incremental Update Invalidation
	Incremental Update Propagation

	Summary of Wireless Protocols

	Summary and Conclusions
	Introduction
	Summary of Bus-Based Coherence Protocols
	Summary of Message-Passing (Directory) Coherence Protocols
	Summary of Caching Coherence on the World Wide Web
	Summary of Wireless Cache Coherence
	Conclusions and Recommendations

	Acknowledgements
	References

	Author Index
	Contents of Volumes in This Series

