
Advances in
COMPUTERS
Information Security

EDITED BY

MARVIN V. ZELKOWITZ
Department of Computer Science
and Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland

VOLUME 60

Amsterdam Boston Heidelberg London New York Oxford
Paris San Diego San Francisco Singapore Sydney Tokyo

This page intentionally left blank

Advances

in COMPUTERS
VOLUME 60

This page intentionally left blank

ELSEVIER B.V.
Sara Burgerhartstraat 25
P.O. Box 211, 1000 AE Amsterdam
The Netherlands

ELSEVIER Inc.
525 B Street, Suite 1900
San Diego, CA 92101-4495
USA

ELSEVIER Ltd
The Boulevard, Langford Lane
Kidlington, Oxford OX5 1GB, UK

ELSEVIER Ltd
84 Theobalds Road
London WC1X 8RR, UK

© 2004 Elsevier Inc. All rights reserved.
This work is protected under copyright by Elsevier Inc., and the following terms and conditions apply to its use:

Photocopying
Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission
of the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying,
copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available for
educational institutions that wish to make photocopies for non-profit educational classroom use.

Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (+44) 1865 843830, fax
(+44) 1865 853333, e-mail: permissions@elsevier.com. Requests may also be completed on-line via the Elsevier homepage
(http://www.elsevier.com/locate/permissions).

In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923, USA; phone: (+1) (978) 7508400, fax: (+1) (978) 7504744, and in the UK through the Copy-
right Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London W1P 0LP, UK; phone:
(+44) 20 7631 5555; fax: (+44) 20 7631 5500. Other countries may have a local reprographic rights agency for payments.

Derivative Works
Tables of contents may be reproduced for internal circulation, but permission of the Publisher is required for external
resale or distribution of such material. Permission of the Publisher is required for all other derivative works, including
compilations and translations.

Electronic Storage or Usage
Permission of the Publisher is required to store or use electronically any material contained in this work, including any
chapter or part of a chapter.

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the
Publisher.

Address permissions requests to: Elsevier’s Rights Department, at the fax and e-mail addresses noted above.

Notice
No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products
liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in
the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses
and drug dosages should be made.

First edition 2004

Library of Congress Cataloging in Publication Data
A catalog record is available from the Library of Congress.

British Library Cataloguing in Publication Data
A catalogue record is available from the British Library.

ISBN: 0-12-012160-3
ISSN (Series): 0065-2458

©∞ The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper).

Printed in Great Britain.

Contents

CONTRIBUTORS . ix
PREFACE . xiii

Licensing and Certification of Software Professionals

Donald J. Bagert

1. Introduction . 2
2. Licensing of Software Engineers . 6
3. The Certification of Software Developers 27

Acknowledgements . 31
References . 31

Cognitive Hacking

George Cybenko, Annarita Giani, and Paul Thompson

1. Introduction . 36
2. Examples of Cognitive Hacking . 44
3. Economic and Digital Government Issues Related to Cognitive Hacking . 53
4. Legal Issues Related to Cognitive Hacking 57
5. Cognitive Hacking Countermeasures . 60
6. Future Work . 67
7. Summary and Conclusions . 67

Acknowledgements . 68
References . 68

v

vi CONTENTS

The Digital Detective: An Intr oduction to Digital Forensics

Warren Harrison

1. Introduction . 76
2. Digital Evidence . 78
3. The Forensics Process . 80
4. An Illustrative Case Study: Credit Card Fraud 110
5. Law Enforcement and Digital Forensics 115
6. Organizational Structures of Digital Forensics Capabilities 116
7. Research Issues in Digital Forensics . 117
8. Conclusions . 118

References . 118

Survivability: Synergizin g Security and Reliability

Crispin Cowan

1. Introduction . 122
2. The Problem: Combining Reliability and Security 122
3. Survivability Techniques . 124
4. Evaluating Survivability . 135
5. Related Work . 139
6. Conclusions . 140

References . 141

Smart Cards

Katherine M. Shelfer, Chris Corum, J. Drew Procaccino, and Joseph Didier

1. Introduction . 149
2. A Typical Smart Card Transaction . 154
3. Smart Card Technology . 156
4. Smart Card Standards . 164
5. Associated Access Technologies . 173
6. Smart Card Security . 179
7. Future Developments . 183

Glossary of Terms . 186
References . 188

CONTENTS vii

Shotgun Sequence Assembly

Mihai Pop

1. Introduction . 194
2. Shotgun Sequencing Overview . 196
3. Assembly Paradigms . 205
4. Assembly Modules . 217
5. Exotic Assembly . 236
6. Conclusions . 241

Acknowledgements . 242
References . 242

Advances in Large Vocabulary Continuous Speech Recognition

Geoffrey Zweig and Michael Picheny

1. Introduction . 250
2. Front End Signal Processing . 251
3. The Acoustic Model . 256
4. Language Model . 263
5. Search . 272
6. Adaptation . 278
7. Performance Levels . 284
8. Conclusion . 286

References . 286

AUTHOR INDEX . 293
SUBJECT INDEX . 303
CONTENTS OFVOLUMES IN THIS SERIES 315

This page intentionally left blank

Contributors

Donald J. Bagert is a Professor of Computer Science and Software Engineering at
the Rose-Hulman Institute of Technology, where he also has the title of Director of
Software Engineering. Don came to Rose-Hulman in August 2002 after 14 years at
Texas Tech University. His current research interests include software process im-
provement, software tools for student advising, and software methodologies. Don
received a B.S. in Engineering from Tulane University, an M.S. in Computer Sci-
ence from the University of Louisiana at Lafayette in 1979, and a Ph.D. in Computer
Science from Texas A&M University in 1986. He is the first person licensed as a
Professional Engineer in software engineering in both Texas and the United States.
In 2002–03, Don was among the first group of ABET software engineering program
evaluators. He is also the Managing Editor ofFASE, an electronic newsletter devoted
to software engineering education, training and professional issues. Don is also the
chairperson of the CSDP Certification Committee, a member of both the Educational
Activities Board and the Professional Practices Committee for the IEEE Computer
Society, and is a Senior Member of the IEEE.

Chris Corum , co-founder of AVISIAN Inc., serves as Editor-in-Chief of the Con-
tactlessNews, CR80News, and SecureIDNews. In his work with AVISIAN, he pro-
vides ID technology guidance to government agencies including the Department of
Defense, leading financial institutions, and a range of corporate security entities. Pre-
viously he served as Director of Marketing for CyberMark, a pioneering smart card
systems integrator, and as a smart card and biometric technology analyst for Florida’s
Legislative Information Technology Committee. Mr. Corum’s degrees are in Adver-
tising, Information Technology Marketing, and he is currently completing a Ph.D. in
Communication.

Crispin Cowan is co-founder and Chief Scientist of Immunix, Inc. His research in-
terests include making systems more secure without breaking compatibility or com-
promising performance. He has coauthored 33 refereed publications, including those
describing the StackGuard compiler for defending against buffer overflow attacks.
He has a Ph.D. in computer science from the University of Western Ontario, and
Masters and Bachelors degrees in computer science from the University of Water-
loo. Contact him at Immunix, 920 SW 3rd Ave., Ste. 100, Portland, OR 97204.

ix

x CONTRIBUTORS

George Cybenkois the Dorothy and Walter Gramm Professor of engineering at
Dartmouth College. He received his B.Sc. in mathematics at the University of
Toronto, and an M.A. in mathematics and Ph.D. in electrical engineering/computer
science and applied mathematics from Princeton. He has taught on the computer sci-
ence faculty at Tufts University and was professor of electrical engineering and com-
puter science at the University of Illinois, Champaign–Urbana. At Illinois, he was
also a director of the university’s Centerfor Supercomputing Research and Devel-
opment. He has served as editor for seven mathematics, computer, and information
theory publications, has helped organize a dozen conferences and symposia, and has
published over fifty journal papers, book chapters, and conference proceedings. He
has also delivered over 100 research lectures at universities, symposia, and colloquia
around the world.

Joseph W. Didier is President & CEO of InfinaCard Inc. Joseph has a wide-range
of knowledge and experiences in card technology, smart cards, stored value, finan-
cial payment, transaction processing, and loyalty programs. Prior to launching his
own company, he was a Sales Executive for ACI Worldwide where he provided en-
terprise payment solutions; Director of Marketing for a start-up smart card solu-
tions provider; and he was directly involved with the development of the first multi-
applicational smart card system at The Florida State University. Joseph holds dual
Bachelor of Sciences degrees from The Florida State University in Entrepreneur-
ship & Small Business Management and Business Management. He has a Master in
Business Administration degree from Drexel University.

Annarita Giani is pursuing a Ph.D. in computer engineering at the Institute for Se-
curity Technology Studies and Thayer School of Engineering at Dartmouth College.
Her research interests include communication theory, signal analysis, and computer
security. She received a Laurea in applied mathematics from the University of Pisa.

Warren Harrison is Professor of Computer Science at Portland State University
and a Police Reserve Specialist with the Hillsboro (Oregon) Police Department. He
received his Ph.D. in Computer Science from Oregon State University and currently
serves as Editor-in-Chief of IEEE SoftwareMagazine. His research interests include
software engineering, digital forensics and mobile Internet technology.

Mihai Pop is a bioinformatics scientist at The Institute for Genomic Research
(TIGR) in Rockville, Maryland. His research interests include sequence assembly
algorithms and their practical applications as well as sequencing and finishing tech-
niques. He is the author of the open-source scaffolder Bambus, and an active member
of a collaborative effort to create a modular open-source assembler (AMOS). Mihai
Pop holds a Ph.D. in computer science from the Johns Hopkins University in Balti-
more, Maryland.

CONTRIBUTORS xi

Michael Picheny is the Manager of the Speech and Language Algorithms Group in
the Human Language Technologies Group at the IBM TJ Watson Research Center.
Michael has worked in the Speech Recognition area since 1981, joining IBM after
finishing his doctorate at MIT. He has been heavily involved in the development of al-
most all of IBM’s recognition systems, ranging from the world’s first real-time large
vocabulary discrete system through IBM’s current ViaVoice product line. Michael
served as an Associate Editor of the IEEE Transactions on Acoustics, Speech, and
Signal Processing from 1986–1989, is currently a member of the Speech Technical
Committee of the IEEE Signal Processing Society and its representative to the Signal
Processing Society conference board, and is a Fellow of the IEEE.

J. Drew Procaccinois an Assistant Professor of Computer Information Systems in
the College of Business Administration at Rider University (Lawrenceville, NJ). His
teaching interests include office productivity software, systems analysis and design,
systems development and database design. His research interests include electronic
commerce, software engineering, biometrics and smart card technology.

Katherine M. Shelfer is Assistant Professor of Competitive Intelligence, College of
Information Science and Technology, Drexel University in Philadelphia, PA, where
she also directs the Competitive Intelligence Certificate Program. Her research and
teaching interests include competitive intelligence, sources of business information
and the strategic implications of information systems and services, specifically smart
card systems. Dr. Shelfer has published work on smart cards in Communications
of the ACM, the Defense Intelligence Journal and Knowledge Management for the
Information Professional, among others.

Paul Thompsonis senior research engineer at the Institute for Security Technology
Studies and Thayer School of Engineering at Dartmouth College. His research inter-
ests include document retrieval, information extraction, and computer security. He
received a Ph.D. in library and information studies from the University of California,
Berkeley.

Geoffrey Zweig is the Manager of Advanced LVCSR Research at the IBM TJ Wat-
son Research Center. He received a B.A. degree in Physics with highest honors in
1985, and a Ph.D. in Computer Science in 1998, from The University of California
at Berkeley. Following his thesis on the application of Bayesian Networks to ASR,
Geoffrey joined IBM in 1998. In 2001, he co-authored the Graphical Models Toolkit
for speech recognition. He participatedin the 2001 DARPA-sponsored HUB-5 eval-
uations, and again in the 2003 EARS Rich Transcription evaluation. Geoffrey is cur-
rently a member of the IEEE, and Associate Editor of IEEE Transactions on Speech
and Audio Processing. His research interests include the development of multi-scale
acoustic models, the application of machine learning techniques to speech recogni-
tion, and reliable, efficient decoding techniques.

This page intentionally left blank

Preface

Advances in Computersis the oldest series to provide an annual update to the con-
tinuously changing information technology field. It has been continually published
since 1960. Within each volume are usually six to eight chapters describing new de-
velopments in software, hardware, or uses of computers. In this 60th volume of the
series, subtitledInformation Security, the focus of most of the chapters is on changes
to the information technology landscape involving security issues. With the growing
ubiquity of the Internet and its growing importance in the everyday life, the need
to address computer security issues is growing. The first 5 chapters describe aspect
of this information security problem. The final two chapters present other topics of
great interest and importance today—genome sequencing and speech recognition.

In Chapter 1, “Licensing and certification of software professionals,” Professor
Donald J. Bagert discusses the current controversy of certifying software profession-
als. Should software engineers be licensed? What does that mean? What is the body
of knowledge that defines what a software professional should know? Should edu-
cational programs be accredited like most engineering programs? All of these are
hotly debated today, and given the impact that computer software has on the world’s
economy, some resolution to these issues must be forthcoming.

Any user of computers today should understand the danger that viruses, worms,
and Trojan horses have on the integrity of their computer system. Most attacks are
known after they occur and after the damage has already been done. But in Chapter 2,
“Cognitive Hacking” by George Cybenko, Annarita Giani, and Paul Thompson, the
authors discuss a different form of attack where neither hardware nor software is nec-
essarily corrupted. Rather the computer system is used to influence people’s percep-
tions and behavior through misinformation. For example, anyone can post anything
on a Web page with few limitations. The issue is how to deal with false information
on the Web and how to decide whether a source is reliable. This and related topics
are the focus of this chapter.

Most people, criminals included, store information on computers. After a crime
has been committed and a suspect arrested, how do you provide evidence in a court
of law that an illegal action did occur andthat the suspect was indeed responsible?
This is the domain of computer forensics. In Chapter 3, Warren Harrison discusses

xiii

xiv PREFACE

“The digital detective: An introduction to digital forensics.” It is estimated that half
of all federal criminal cases require a computer forensics examination. This chapter
addresses the identification, extraction and presentation of evidence from electronic
media as it is typically performed within law enforcement agencies.

In Chapter 4 “Survivability: Synergizing security and reliability” by Crispin
Cowan, the author discusses the issue of survivability of a computer system. The
goal of the chapter is to show how security and reliability techniques are required
to achieve survivability, the ability of a system to continue to operate in the face of
failures. In the context of computer security, survivability is the study of howto mask
security faults, and do so such that attackers cannot bypass the fault masking.

Chapter 5 “Smartcards” by Katherine M.Shelfer, Chris Corum, J. Drew Procac-
cino, and Joseph Didier, is the final chapter in this section on information security.
Credit cards are now ubiquitous and vital to the economic well being of most national
economies. Because of their widespread use, there is interest in providing additional
information on such cards. By adding a processor directly on the card itself, addi-
tional security, as well as additional functionality, can be provided to both the user
and merchant. This chapter discusses the development of these “smart” cards.

Chapter 6 “Shotgun sequence assembly” by Mihai Pop discusses the important
issue of genome sequencing. With the decoding of human DNA into sequences, bi-
ology, especially medical research, has been greatly transformed in the past 10 years.
In this chapter, Dr. Pop discusses the shotgun sequencing technique used to decipher
the complete genome of various bacteria and viruses.

The final chapter, “Advances in large vocabulary continuous speech recognition”
by Geoffrey Zweig and Michael Picheny discusses the advances in accurate and ef-
ficient speech recognition systems. Theseare becoming quite common for customer
service, broadcast news transcription and automated directory assistance, among
other commercial applications. This chapter discusses the underlying technology that
is behind the increasing success of these systems.

I hope that you find these articles of interest. If you have any suggestions of topics
for future chapters, or if you wish to contribute such a chapter, I can be reached at
mvz@cs.umd.edu.

Marvin Zelkowitz
University of Maryland,
College Park, MD, USA

mailto:mvz@cs.umd.edu

Licensing and Certification of Software
Professionals

DONALD J. BAGERT

Rose-Hulman Institute of Technology
5500 Wabash Avenue, CM97
Terre Haute, IN, 47803-3999
USA
Don.Bagert@rose-hulman.edu

Abstract
For many years, software organizations have needed to hire developers with a
wide range of academic and professional qualifications, due to the ongoing short-
age of individuals qualified to create and maintain the products required to sat-
isfy marketplace demand. Many of these companies have used the certification
credentials of such individuals to help judge whether they have the proper back-
ground for the development requirements of their particular software organiza-
tion. Certificationis a voluntary process intended to document the achievement
of some level of skill orcapability. Such certification can be awarded through
a variety of organizations. To date, company-based certification programs have
been dominant in the software field. These programs have been created and run
by a particular company, and are usually centered on determining an individ-
ual’s qualification to use a particular type of software that is marketed by that
business. However, these programs are often limited in scope, and sometimes
make it possible to acquire certification with little practical software develop-
ment background or formal training.

However, there have recently been a growing number of efforts to provide
more comprehensive certification programs for software professionals through
professional societies and independent organizations. Some of such certificates
are offered as a specialization in areasthat in a number of fields are a part of the
product development process,e.g., quality assurance andproject management. In
other cases, there are programs intended to certify individuals for having general
knowledge and abilities across a wide range of software development areas. In
some countries, such certification of software engineering professionals is done
on a nationwide basis by an engineering professional society.

There has also been an increased interest in thelicensingof software engi-
neering professionals. Licensing is a more formal version of certification that

ADVANCES IN COMPUTERS, VOL. 60 1 Copyright © 2004 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(03)60001-X All rights reserved.

2 D.J. BAGERT

involves a government-sanctioned or government-specified process, with the
health, safety and welfare of the public in mind. Since engineering is a field
where licensing is commonplace in many countries, most of this effort has fo-
cused on the licensing of software engineers. However, while licensing is com-
monplace in professions such as law and medicine, it has until recently been vir-
tually unknown in the information technology field. A number of IT profession-
als have raised a variety of concerns about the licensing of software engineers,
including issues related to liability and the body of knowledge upon which to
base such licensing programs.

This chapter will examine the various licensing and certification initiatives, in-
cluding the history of its development, the process and content of such programs,
and the arguments both for and against licensing and certification.

1. Introduction . 2
1.1. Overview . 2
1.2. Area of Competency . 4
1.3. Procedure . 5
1.4. Renewal . 5
1.5. Summary . 6

2. Licensing of Software Engineers . 6
2.1. The Nature and Development of Software Engineering 6
2.2. The Guide to the Software Engineering Body of Knowledge (SWEBOK) . . . 9
2.3. Software Engineering Degree Programs and Accreditation 13
2.4. Legal Issues in Professional Licensing . 17
2.5. Pros and Cons of Licensing Software Engineers 19
2.6. Examples of Licensing . 22
2.7. Examples of National Certification . 25

3. The Certification of Software Developers . 27
3.1. Institute-Based Certification Programs . 27
3.2. Company-Based Certification Programs . 29
3.3. Conclusions and Future Directions . 29
Acknowledgements . 31
References . 31

1. Introduction

1.1 Overview

The number of software professionals in the workforce is large and growing. In
the United States, a December 2001 study by the Department of Labor [39] stated
that the number of people employed by software engineers in the United States was

LICENSING AND CERTIFICATION OF SOFTWARE PROFESSIONALS 3

697,000, and it was expected that there would be 1.36 million software engineering
jobs available in the U.S. by 2010. (Thesenumbers are in addition to computer pro-
grammers and other information technology-related positions, which number over
2.2 million in 2000, and is projected to grow to over 3.5 million by 2010.) In addi-
tion, these workers come from a wide variety of educational and work experiences.
Since there is such a large and diverse pool of potential workers, many employers
will look to see if job applicants possess any professional certifications or licenses as
one factor in evaluating their credentials.

Certificationis a voluntary process intended to document the achievement of some
level of skill or capability. This type of certification can be given through a variety
of organizations, such companies, professional societies, or institutes who primary
function is to award such credentials. To date,company-basedcertification programs
have been dominant in the software field. Such programs have been created and run
by a particular company (such as Microsoft), and are usually centered on determin-
ing an individual’s qualification to write programs or otherwise use software that is
marketed by that business. Therefore, company-based certification is by definition
usually limited in scope, and in some cases is possible to acquire with little practical
software development experience and no formal education. The Microsoft Certified
Solution Developer (MCSD) program is the one that is most related to software en-
gineering offered by Microsoft, and so willbe discussed in more detail later in this
article.

However, due to the aforementioned large and growing size of the software engi-
neering community, there have recently been a growing number of efforts to provide
more comprehensive certification programs for software professionals through pro-
fessional societies and independent organizations. Some suchinstitute-basedcerti-
fications are offered as a specialization in areas that in a number of fields are a part
of the product development process, e.g., the Software Quality Engineer certifica-
tion provided by the American Society for Quality (ASQ); others, such the IEEE
Certified Software Development Professional (CSDP) program, are intended to cer-
tify individuals for having general knowledge and abilities across a wide range of
software development areas.

There has also been an increased interest in thelicensingof software engineering
professionals, especially in North America. Licensing is a more formal version of
certification that involves a government-sanctioned or government-specified process,
with the health, safety and welfare of the public in mind. Since engineering is a field
where licensing is commonplace in many countries, most of this effort has focused
on the licensing of software engineers. However, while licensing is commonplace is
professions such as law and medicine, until recently it has been virtually unknown
in the information technology (IT) field. A number of IT professionals have raised
a variety of concerns about the licensing of software engineers, including issues re-

4 D.J. BAGERT

lated to liability, the body ofknowledge upon which to base examinations, and the
appropriateness of the engineering model for such licensing.

Some countries either implicitly or explicitly designate that nation’s primary engi-
neering professional society to certify engineers. Suchnational certificationof pro-
fessional engineers is done through a process similar to licensing in the United States,
except that national certification (as the name implies) is a voluntary process.

This article will examine the various licensing and certification initiatives, includ-
ing the history of its development, the process and content of such programs, and
the arguments both for and against licensing and certification. The remainder of Sec-
tion 1 looks how to view the area of competency for which someone is being certified
or licensed, and provides an outline of the steps commonly required in a certifica-
tion or licensing process. Section 2 will examine licensing and national certification,
Section 3 looks at institute-based and company-based certification; and the final sec-
tion will make some conclusions and outline some possible future directions for the
licensing and certification of software professionals.

1.2 Area of Competency

A competency area for professional certification and licensing is likely to include
(directly or indirectly) the following components:

• Body of knowledge

• Education and training

• Code of ethics and professional conduct

As the name implies, thebody of knowledge(BOK) of a particular subject encom-
passes the information essential for practitioners in that area. In order to be certi-
fied or licensed in a particular subject or field, a software professional would need
to demonstrate a particular level of understanding of the appropriate BOK. For a
company-based certification program, this would likely involve understanding how
to program using a particular set of company’s application software. In the case of
the licensing of software engineers, knowledge in a much wider range of subjects is
required. An extensive project that has compiled a guide to the body of knowledge
of software engineering is discussed in Section 2.2.

In order to obtain the knowledge necessary to demonstrate competency, some type
of education and trainingis almost always required. For licensing, this would include
a baccalaureate degree in a discipline relatedto software engineering, possibly from
an accredited program (see Section 2.3). The administrators of most certification
programs provide training materials or seminars to help prepare potential applicants.
(As of July 2003, Microsoft had 11,500 certified trainers for their programs.) Some

LICENSING AND CERTIFICATION OF SOFTWARE PROFESSIONALS 5

high schools and two-year colleges in the United States offer courses to help students
prepare for particular company-based certification exams [6].

Most professions also have acode of ethics and professional conductas defined by
either a related professional society or a legal authority. The two major U.S. comput-
ing professional societies have developed such a code for software engineering (see
Section 2.1). Most professional licensing jurisdictions will specify a code of ethics
and professional conduct required of all licensees. An organization which manages
a certification program usually has a code of ethics which applicants agree to adhere
to as part of their certification.

1.3 Procedure
One or more of the following pieces of information is commonly used in the as-

sessment of an application for certification or a license:

• Educational background

• Work experience and professional references

• Examinations passed

As previously stated, most professional licenses require a related baccalaureate de-
gree. Some certifications (such as CSDP) require a particular formal educational
background, while others (such as the Microsoft certifications) do not.

Most engineering license boards require four or more years of engineering expe-
rience, preferably under the supervision of a licensed engineer. They also require
references from professional engineers who have had an opportunity to observe the
applicant’s work. The CSDP requires 9000 hours of software development experi-
ence, but no accompanying references. TheMicrosoft certification programs recom-
mend some practical experience before attempting their examinations, but do not
require it (or any references).

Most certification programs have a person apply before administering any exam-
inations. In the U.S., the application for a state engineering license is submitted af-
ter the applicant has passed two-nationallyadministered examinations; however, In
Texas, however, there is a rule which allows the waiver of such exams with addi-
tional experiences and references (see Section 2.5). A test on that state’s engineering
practice laws is also usually required for licensure.

There is also an application fee, and there may be separate examination fees.

1.4 Renewal
Most certification programs are for a limited time, and require some type of re-

certification mechanism. Some licensing boards only require the payment of annual

6 D.J. BAGERT

fees, but an increasing number require of ongoing continuing education. Microsoft
certifications are based on a set of subject examinations, and if a new examination
comes out a particular subject, certificateholders are required to recertify by taking
the new exam within a certain time period. (Also, most Microsoft examinations are
eventually discontinued, as particular platforms are no longer supported, thus requir-
ing the certificate holder to be re-examined for the new operating system.)

1.5 Summary

Table I summarizes the different aspects of licensing, and the different types of
certification.

2. Licensing of Software Engineers

2.1 The Nature and Development of Software Engineering

The termsoftware engineeringhas been in use since the late 1960s, and has been
for many years in common use by the generalpublic. This is the despite the fact soft-
ware engineering does not fit the standard profile of an engineering field for several
reasons, including:

• Software is a non-physical product, and therefore acts upon a different set of
scientific principles (mostly involving computer science) than are used in other
engineering disciplines, which base their principles on other engineering sci-
ences such statics, thermodynamics, and strength of materials;

• While other engineering disciplines focus on design, a software engineer could
potentially work in any aspect of the process life cycle, thus also acting in the
roles traditionally held by architects, construction workers, and maintenance
personnel, among others; and

• Software is developed in a wide range of application domains, encompassing
virtually all aspects of modern life.

• Software professionals have a wide variety of educational background and ex-
perience; for instance, one might be a high school dropout with several years
of professional programming work, while another has a Bachelor of Science in
Software Engineering and no work experience.

Despite this, there are also strong arguments for identifying software development as
an engineering field, including the use ofa process very similar to that used in “tra-
ditional” engineering disciplines, with the same goals in mind: to efficiently develop
a reliable and usable product, on time and within budget estimates.

LIC
E

N
S

IN
G

A
N

D
C

E
R

T
IF

IC
AT

IO
N

O
F

S
O

F
T

W
A

R
E

P
R

O
F

E
S

S
IO

N
A

LS
7

TABLE I
A COMPARISON OFL ICENSING AND CERTIFICATION FEATURES

Licensing National Certification Institute-Based Certification Company-Based Certification
Granting organization Government-based or

government-sanctioned
body

That nation’s primary
society for that
profession

Private institute or
professional society

Company which
developed the software
being used

Legal permission to
practice granted?

Yes No No No

Body of knowledge
involved

For entire professional
discipline of license field

For entire professional
discipline of certification
field

For certification area For certification area

Formal Education Usually a baccalaureate
degree in related field

Usually a baccalaureate
degree in related field

None usually required,
but may reduce
experience requirement

Usually none required

Code of ethics and
professional conduct

Adherence required Adherence required Adherence usually
required

Usually none are directly
involved

Work experience Usually four years or
more in discipline

Usually four years or
more in discipline

Usually required;
amount may vary
depending on the
amount of formal
education

Usually none required

Professional
references

Usually required Usually required Usually not required Usually not required

Passage of
examinations
required?

Varies Varies Yes Yes

8 D.J. BAGERT

At any rate, since “software engineering” is firmly entrenched in the lexicon, the
ramifications of such terminology need to be addressed. At first, software engineer-
ing was considered a specialization; however, in the last twenty years it has been
increasingly regarded as a separate discipline and profession. This is turn has po-
tential ramifications for the licensing and certification. Frailey [23] asserts that four
facts need to be established in order to determine that licensing or certification of
software engineers:

1. That software engineering is a separate discipline,
2. That software engineering is a profession,
3. That software engineering is sufficiently established to justify certification or

licensing, and
4. That certification or licensing of software engineering would be beneficial

enough to justify the effort to establish them.

In the United Kingdom, the engineering and computing communities came to the
conclusion over a decade ago that these facts were indeed established, and thus began
creating undergraduate software engineering degree programs, and bestowing Char-
tered Engineer status to qualified individuals in the field. However, in the United
States and other countries, the process has been somewhat slower, and even today
there are many in the global engineering and computing communities that feel that
software engineering is not a separate discipline, and even if it is, is not engineering.

An important step came in 1993 with the creation of thead hocJoint IEEE Com-
puter Society and ACM Steering Committee for the Establishment of Software En-
gineering as a Profession (http://www.computer.org/tab/seprof). Although the Asso-
ciation of Computing Machinery (ACM) and the Computer Society of the Institute
of Electrical and ElectronicsEngineers, Inc. (IEEE-CS) are both based in the United
States, they each have a significant international component, and consider themselves
as representing the computing community worldwide.

The mission statement of the Joint Steering Committee was “To establish the ap-
propriate sets(s) of criteria and norms for professional practice of software engi-
neering upon which industrial decisions, professional certification, and educational
curricula can be based”. They established three task forces: Ethics and Professional
Practices, Body of Knowledge and Recommended Practices, and Education. (Note
that these correspond to the essential components for licensing and certification de-
scribed in Section 1.2.)

Work by the ethics task force proceeded quickly, andSoftware Engineering Code
of Ethics and Professional Practicewas approved by both ACM and the Computer
Society in 1999 [25]. The body of knowledge task force did a “pilot survey” of
software engineers to gather some initial data concerning the body of knowledge
[20]. It was apparent from the creation of this survey that a volunteer task force would

http://www.computer.org/tab/seprof

LICENSING AND CERTIFICATION OF SOFTWARE PROFESSIONALS 9

not have the resources required to properly compile the software engineering body
of knowledge, which led to the creation of the Guide to the Software Engineering
Body of Knowledge (SWEBOK) project in 1997. (SWEBOK will be discussed in
detail in Section 2.2.)

Since the education task force’s objective was to develop Software Engineering
Education recommendations based on the work of the body of knowledge task force,
most of their work would be delayed until there was further definition of the software
engineering BOK. In the meantime, accreditation efforts went forward in Australia,
Canada and the United States (see Section 2.3).

With the recognition that thead hoc joint steering committee would need
to be an ongoing effort, in late 1998 ACM and IEEE-CS voted to replace
that group with the Software Engineering Coordinating Committee (SWEcc or
SWECC), which would be a standing committee of the two societies (homepage
http://computer.org/tab/swecc.htm). The mission of SWECC was similar to that of
its predecessor, except that its structure would be different, in that instead of taking
on projects itself, it would coordinate various software engineering-related projects
approved and funded by the two societies. So, the new SWEBOK project reported
to SWECC, as well as the Software Engineering Education Project (SWEEP), which
was a continuation of the Education Task Force of thead hoccommittee.

All seemed to be progressing well—except that many (especially in ACM) were
very concerned that all the elements required for the licensing of software engineers
were coming into place, as will be discussed in Section 2.5. This eventually led to
the effective dissolution of SWECC.

2.2 The Guide to the Software Engineering Body of
Knowledge (SWEBOK)

2.2.1 Overview

As previously stated, due to the depth and breadth required to compile a body of
knowledge for software engineering, it was determined that such a project required
full-time rather than volunteer management. For this reason, IEEE-CS (and later
SWECC) contracted the Software Engineering Management Research Laboratory at
the Université du Québec à Montréal to manage the SWEBOK effort; the project
was later moved to the École technologie supérieure (ÉTS) in Montreal. The SWE-
BOK website is at http://www.swebok.org. The project is still ongoing, although it
is currently scheduled for completion at the end of 2003.

The SWEBOK project team established the project with five objectives:

1. Characterize the contents of the software engineering discipline.

http://computer.org/tab/swecc.htm
http://www.swebok.org

10 D.J. BAGERT

2. Provide topical access to the software engineering body of knowledge.
3. Promote a consistent view of software engineering worldwide.
4. Clarify the place and set the boundary of software engineering with respect

to other disciplines such as computer science, project management, computer
engineering, and mathematics.

5. Provide a foundation for curriculum development and individual certification
material [13].

That last objective is of the most interest to this article, and has perhaps been the
most controversial aspect of the project.

It is important to note that the product of the SWEBOK project was not intended
to be the body of knowledge itself, but rather a guide to it (thus its full name). A con-
sensus on the core subset of knowledge characterizing the software engineering dis-
cipline was sought in this project.

The SWEBOK project has a number of sponsors, including the IEEE Computer
Society, the (U.S.) National Institute ofStandards and Technology, the National Re-
search Council of Canada, Canadian Council of Professional Engineers, MITRE,
Rational Software, SAP Labs-Canada, Construx Software, Raytheon, and Boeing,
all of whom have representatives on the project’s Industrial Advisory Board. The
project’s three-man Panel of Experts consists of well-known software engineering
book authors Roger Pressman, Ian Sommerville and Steve McConnell.

The SWEBOK project also has a relationship to the normative literature of soft-
ware engineering as embodied in software engineering standards and related docu-
ments. Version 1.0 of the SWEBOK Guide [14], released in May 2001, is considered
an IEEE standard, and is in the final stages of receiving ISO (International Organiza-
tion of Standards) approval. Three review cycles were conducted before Version 1.0
was released for a two years of trial use. After the trial period ended, another review
cycle was conducted as a prelude to a revision of the document for Version 2.0, to be
released at the end of 2003.

2.2.2 Body of Knowledge Content

In [13], the authors state that “From the outset, the question arose as to the depth
of treatment the Guide should provide. After substantial discussion, we adopted a
concept ofgenerally acceptedknowledge. . . which we had to distinguish from ad-
vanced and research knowledge (on the grounds of maturity) and from specialized
knowledge (on the grounds ofgenerality of application). The generally accepted
knowledge applies to most projects most of the time, and widespread consensus val-
idates its value and effectiveness. . . However, generally accepted knowledge does
not imply that we should apply the designated knowledge uniformly to all software
engineering endeavors each project’s needs determine that—but it does imply that

LICENSING AND CERTIFICATION OF SOFTWARE PROFESSIONALS 11

competent, capable software engineers should be equipped with this knowledge for
potential application.”

Furthermore, it was intended (through a recommendation by the SWEBOK Indus-
trial Advisory Board) that this generally accepted knowledge would be appropriate
in the study material for a software engineering licensing examination that graduates
would take after gaining four years of work experience.

Version 1.0 of the SWEBOK Guide classifies the information compiled on soft-
ware engineering using ten knowledge areas (KA), as shown in Table II. Each KA
was authored by a leading expert in that particular area. The Guide also identifies
seven disciplines related to (but not part of) software engineering, such as computer
science and project management (Table III).

The resulting SWEBOK guide is one that reads somewhat like the very popular
software engineering textbooks written by Pressman [34] and Sommerville [36], but
has two major differences: it is intended for a different audience (practitioners rather
than college students), and is the result of a more widespread review and consensus,
as opposed to the vision of a single author.

TABLE II
SWEBOK KNOWLEDGEAREAS

Software Requirements
Software Design
Software Construction
Software Testing
Software Maintenance
Software Configuration Management
Software Engineering Management
Software Engineering Process
Software Engineering Tools and Methods
Software Quality

TABLE III
SWEBOK RELATED DISCIPLINES

Computer Science
Mathematics
Project Management
Computer Engineering
Systems Engineering
Management and Management Science
Cognitive Science and Human Factors

12 D.J. BAGERT

2.2.3 Criticisms of the SWEBOK Guide and BOK Efforts in
General

Although there has been a general consensus concerning the SWEBOK Guide
from a large number of practitioners in the software engineering community, there
have also been some high-profile detractors of the document. In some cases, those
critics assert that the field of software engineering is not yet mature enough for there
to be a consensus on a body of knowledge for the field.

The most well-known example of such criticism is a May 2000 ACM task force
report assessing SWEBOK and other body of knowledge efforts [32]. This report
was authored by David Notkin of the University of Washington and Mary Shaw of
Carnegie Mellon University, two highly respected software engineering researchers,
and Michael Gorlick of The Aerospace Corporation. This task looked at two major
body of knowledge projects that existed at the time: SWEBOK andThe Australian
Computer Society Core Body of Knowledge for Information Technology Profession-
als (http://www.acs.org.au/national/pospaper/bokpt1.htm). This is from the report’s
executive summary: “Our study and analysis has led us to the conclusion that the
current software engineering body of knowledge efforts, including SWEBOK, are at
best unlikely to achieve a goal of critical importance to ACM: the ability to provide
appropriate assurances of software quality for software systems of public interest. . .

we are uncertain whether, at present, there exists any process to articulate a core body
of knowledge in software engineering that will directly contribute to the solution of
the software quality problem.”

The specific points made by the authors of the report in their assessment of SWE-
BOK are:

• The Guide is too closely tied to textbooks, which provide an inadequate view of
software engineering, as they are by definition targeted to a student audience.

• SWEBOK does not distinguish among potential roles within a software engi-
neering project when discussing the body of knowledge that is required.

• SWEBOK does not address the knowledge for different software application
domain areas.

• Since the project sponsors are in “our understanding. . . must make substan-
tial financial contributions to the SWEBOK effort. . . almost certainly disen-
franchises some companies and significantly harms the potential authority that
SWEBOK might otherwise hold.”

• Since the authors feel that the initial SWEBOK development effort is flawed,
any process for updating the results would be based on that effort and would
therefore be unlikely to succeed.

http://www.acs.org.au/national/pospaper/bokpt1.htm

LICENSING AND CERTIFICATION OF SOFTWARE PROFESSIONALS 13

The report goes on to recommend that the ACM Council, the society’s governing
board, withdraw ACM from the SWEBOK effort, which they did, in June 2000 (more
details are provided in Section 2.5).

Another prominent critic of the SWEBOK Guide is Cem Kaner. Dr. Kaner is a
Professor of Computer Science at the Florida Institute of Technology as well as a
lawyer, author of a book on software testing, and consultant. In [29], he states some
of his concerns about SWEBOK from a legal point-of-view:

“The SWEBOK unconditionally endorses the IEEE Standard 829 for software test
documentation. . . We are not aware of scientific research that demonstrates that Stan-
dard 829 is a good method, or a better method than others, or desirable under studied
circumstances. Standard 829 is in the Body of Knowledge because it won a popu-
larity contest—it was endorsed (or not strongly enough opposed) by the authors of
SWEBOK and those relatively few [less than 500 total] people who chose to partici-
pate in the SWEBOK drafting and review process so far. . . What is the consequence?
A software engineer who recommends against the use of Standard 829 puts herself
at [legal] risk. . . An official Body of Knowledge creates an orthodoxy that we do not
have today. If the orthodox practices are not well founded in science, as so much
of SWEBOK seems not to be, the evolution of the field from weak (but orthodox)
practices to better ones will be the subject of lawsuit after lawsuit. And the results of
those suits will be determined by non-engineers who don’t understand the practices.”

Further criticisms of SWEBOK by Dr. Kaner can be found at his web site
http://www.kaner.com.

Although it is clear that SWEBOK does not have the general consensus its spon-
sors have sought, it should also be noted that are also a great number of proponents
of the SWEBOK Guide. Also, ACM’s current record related to body of knowledge
issues for software engineering is not as clear cut as it might seem, as they are work-
ing on a body of education knowledge project which has had some relation to SWE-
BOK (Section 2.3) and are supporting certification exams in software engineering,
which by definition require a body of knowledge (Section 3.1). The fact also re-
mains that despite the opposition of the ACM Council and others, software engineers
are currently being licensed or undergoing national certification in several countries
(or parts thereof), the qualifications for such licensing or comprehensive certifica-
tion must be assessed against a body of knowledge, and that SWEBOK is the most
prominent body of knowledge artifact that currently exists.

2.3 Software Engineering Degree Programs and Accreditation

Accreditation of educational degree programs in a particular country is usually
performed either by organizations in conjunction with professional societies, or di-
rectly by the societies themselves. For instance, engineering degree programs in the

http://www.kaner.com

14 D.J. BAGERT

United States are accredited by the Engineering Accreditation Commission (EAC)
of the Accreditation Board for Engineering and Technology, Inc. (ABET).

The first step in licensing of engineers in a particular jurisdiction is usually the
earning of a baccalaureate engineering degree [8]. In some cases, the same organiza-
tion that oversees licensing also accredits degree programs. So, accreditation criteria
often influences licensing examinations, or vice versa, especially if (as is the case in
the United States) one of those examinations is taken immediately upon graduation.

Undergraduate degree programs in software engineering have been slow to de-
velop in most countries, however, there are now at least 60 currently existing world-
wide, including at least 25 in the United States as of September 2003 (up from
21 the year before). The Working Group on Software Engineering Education and
Training (WGSEET) (http://www.sei.cmu.edu/collaborating/ed/workgroup-ed.html)
has recently begun tracking these programs (and ones in development), and has iden-
tified ones in eight different countries. (WGSEET acknowledges that at this point
their list is incomplete, and that there are likely many more baccalaureate programs
than have currently been identified by them.) Accreditation in some of these coun-
tries is described below.

Starting with the University of Sheffieldin 1988, the first baccalaureate software
engineering programs appeared in the United Kingdom, where the British Computer
Society (BCS) and the Institution of Electrical Engineers (IEE) have worked together
for over a decade to promote software engineering as a discipline;A Report on Un-
dergraduate Curricula for Software Engineering, which was jointly developed and
published in 1989 [16], coincided with the appearance of the first undergraduate pro-
grams in the UK, but was virtually ignored outside of the United Kingdom. National
certification of software engineers through the granting of Chartered Engineer sta-
tus by BCS started shortly thereafter. Asof 2000, there were at least 15 accredited
undergraduate software engineering degree programs in the UK. (For details con-
cerning software engineering in the United Kingdom, please consult Thompson and
Edwards’ excellent article on the subject [37].) Ireland also accredits engineering
programs through a similar process, with the first four schools receiving software
engineering accreditation in 2001.

Australian universities have created a number of bachelor’s degree programs start-
ing in the 1990s. Accreditation of engineering degree programs is granted by IEAust
(Institution of Engineers, Australia), which also does certifies professional engineers
nationwide. When an engineering programis first created, it needs to obtain provi-
sional accreditation, and then seeks full accreditation once the program has gradu-
ates. (This is also the process used by NewZealand, which has accredited software
engineering programs as well.)

By 1997, software engineering undergraduate programs also started to appear in
Canada, with the first programs receiving accreditation in 2001. By the 2002–03

http://www.sei.cmu.edu/collaborating/ed/workgroup-ed.html

LICENSING AND CERTIFICATION OF SOFTWARE PROFESSIONALS 15

school year, there were six accredited programs, and two others being reviewed for
accreditation. Accreditation in that country is done by Canadian Engineering Ac-
creditation Board (CEAB), which is part of the Canadian Council of Professional
Engineers, which is the entity which licenses professional engineers there.

The first undergraduate software engineering program in the United States was
started at the Rochester Institute of Technology in the fall of 1996. In the late 1990s,
ABET approved criteria for accrediting software engineering under its Engineering
Accreditation Commission. The first undergraduate software engineering programs
were considered in the 2002–03 accreditation cycle; at least four schools have pub-
licly stated that they were visited by ABET in the fall of 2002.

It is of interest to look at the ABET/EAC software engineering criteria in more
detail, since (as will be seen) it does not have the close relationship to licensing or
national certification that the other countries mentioned here do. The ABET/EAC
criteria [1] contains eight general criteria, of which Criterion 4 (Professional Com-
ponent) and Criterion 8 (Program Criteria) specific address requirements for specific
curriculum content.

Criterion 4 states that “The professional component must include: (a) one year
of a combination of college level mathematics and basic sciences (some with ex-
perimental experience) appropriate to the discipline; (b) one and one-half years of
engineering topics, consisting of engineering sciences and engineering design ap-
propriate to the student’s field of study. . .” Note that this means that the continuous
mathematical subjects (e.g., calculus anddifferential equations) taken by most engi-
neering disciplines do no necessarily need to be taken by software engineers. Also,
since ABET allows computer science courses to be used as engineering sciences,
software engineering majors are not required to take traditional engineering sciences
such as statics and thermodynamics. (However, as will be seen later, the licensing
examination for graduating engineers in the U.S. still does require continuous math-
ematics and traditional engineering sciences.)

Criterion 8 specifies criteria for each individual engineering discipline. The cur-
riculum section of the software engineering criteria states that “The curriculum must
provide both breadth and depth across the range of engineering and computer sci-
ence topics implied by the title and objectives of the program. The program must
demonstrate that graduates have: the ability to analyze, design, verify, validate, im-
plement, apply, and maintain software systems; the ability to appropriately apply
discrete mathematics, probability and statistics, and relevant topics in computer sci-
ence and supporting disciplines to complex software systems; and the ability to work
in one or more significant application domains.” Note that the “application domain”
section of the criteria addresses one of the concerns expressed by Notkin, Gorlick
and Shaw in their report to ACM concerning SWEBOK.

16 D.J. BAGERT

The lead “society” for accrediting software engineering programs within ABET
is CSAB (http://www.csab.org), a joint ACM/IEEE-CS organization. ACM and the
Computer Society are also collaborating on the development of a curriculum model;
the Computing Curricula-Software Engineering (CCSE) project (which was for-
merly the aforementioned SWEEP) is intended to provide detailed undergraduate
software engineering curriculum guidelines which could serve as a model for higher
education institutions across the world.The first major component of this project
was the development of Software Engineering Education Knowledge (SEEK) [35],
a collection of topics considered important in the education of software engineering
students. SEEK was created and reviewed by volunteers in the software engineering
education community. The SEEK body is a three-level hierarchy, initially divided
into knowledge areas (KAs). Those KAs are then further divided into units, and fi-
nally, those units are divided into topics.

Each topic in SEEK is also categorized for its importance: Essential, Desired, or
Optional. There are currently over 200 essential topics which under a North Amer-
ican educational model. Essential topics are also annotated with indicators from
Bloom’s Taxonomy in the Cognitive Domain [12] to show the level of mastery ex-
pected. SEEK only uses three of the six Bloom Taxonomy values: knowledge, com-
prehension, and application.

SEEK is important in relative to accreditation in that if it is adopted by the ma-
jor computing societies, then an argument can be made that an accredited software
engineering program should be following its guidelines, in the same way that the
SWEBOK Guide might be used in relation to licensing. A worldwide survey of bac-
calaureate software engineering programs [11] revealed that many of them are using
SEEK—even though it is still only in draft form—as an instrument to determine if
the proper core software engineering knowledge is being addressed in their respec-
tive curricula.

In fact, SEEK and SWEBOK share a number of similarities, including a great
deal of overlap in their respective knowledge areas, although they have different
requirements and target audiences. These similarities led to the developers of the
two projects to hold a workshop to suggest improvements to both artifacts at the 2002
Software Technology and Engineering Practice (STEP) conference in Montreal. The
STEP post-conference proceedings contained three papers developed as an outcome
of the workshop, including a preliminary mapping of SWEBOK to SEEK [15]. It is
also interesting to note that ACM (a co-sponsor of SEEK) is still playing an indirect
role in the development of SWEBOK.

There is little controversy today over the concept of software engineering as an
academic discipline, although there are still are some individuals that believe that
having the such degrees only at the graduate level is essential for providing the proper
depth in computer science and other related disciplines. (A panel discussing the rel-

http://www.csab.org

LICENSING AND CERTIFICATION OF SOFTWARE PROFESSIONALS 17

ative merits of undergraduate and graduate software engineering degree programs,
chaired by Dewayne Perry of the University of Texas at Austin, was held at the Inter-
national Conference on Software Engineering in May 2003.) There are also political
issues at many higher education institutions involving the distribution of often-scarce
resources if a new program such as software engineering is established, just as com-
puter science faced these very same issues30–40 years. However, there are already
a number of accredited software engineering degree programs in several countries,
with the United States about to join that group.

A more detailed look at software engineering education and training can be found
in theEncyclopedia of Software Engineeringarticle on the subject [9].

2.4 Legal Issues in Professional Licensing

Licensing has existed for thousands of years. For instance, a farmer might need
a permit from the city to sell wares there. By the 17th century, London required for
various craftsmen such as printers and clockmakers to a serve a seven-year appren-
ticeship before being allowed to ply their trade there. By the 19th century, doctors
and lawyers required aprofessionallicense to practice in most legal jurisdictions.
The primary reason behind professional licensing has been the health, safety and
welfare of the public. For instance, a doctor should be licensed in order to be en-
trusted with a patient’s medical care, while a lawyer’s license attests both knowledge
of the law and an adherence to ethical standards to any prospective clients. By the
20th century, the licensing and registration of professional engineers had emerged.
Ford and Gibbs list manicurists, amateur boxers and embalmers among over 30 pro-
fessions which require licenses in the state of California [21].

Frailey notes that in such cases, the risk to the public is high enough to warrant
professional licensing [23]. It could easily be argued that many of these same risks
are present in software engineering as well; for instance, a software failure can cause
a plane to crash, safety protocols to be compromised, or there could be a miscalcu-
lation of millions of dollars in a banking transaction due to an incorrect algorithm.

So on face value, it would appear that at least three of the four facts that Frailey has
proposed as a requirement to determine the appropriateness of licensing are present:
software engineering is emerging as a discipline, it has been long-established as a
profession, and that there would be a benefit for licensing software engineers, as
long as the fourth criteria—that software engineering is sufficiently established to
justify the effort to establish them—is present. Of course, this is also at the heart of
the discussion related to whether or not there is a body of knowledge for software
engineering (as previously discussed).

If a profession has specific and generally agreed-upon practices, then this provides
a basis for determining whether or not someone licensed in that profession has acted

18 D.J. BAGERT

properly in a particular situation. For instance, if a doctor treats a patient, and the
patient dies, but it is determined that the physician followed established medical
practices in that particular case, then doctor is not legally liable for any actions taken,
despite the patient’s death. Proponents of the SWEBOK Guide claim that it contains
such generally-agreed upon practices for software engineering, while others such as
Notkin, Shaw, and Kaner disagree with that assertion.

The liability issue is one that has caused great concern to some segments of the
computing community. Kaner writes that

“For several years, computer malpractice has been a losing lawsuit because to be
sued for malpractice (professional negligence), you must be (or claim to be) a
member of a profession. Software development and software testing are not pro-
fessionals as this term is usually used in malpractice law. Therefore, malpractice
suits programmers and tester fail. . .

“So why does it matter whether malpractice is a viable type of lawsuit? Mal-
practice suits are more serious thansuits for breach of contract or simple
negligence. . . Licensing [of software engineers] will lead to one thing: malprac-
tice liability. If a state government declares us a profession and starts licensing
us, that state’s courts will accept us as professionals, and that means they will
allow lawsuits for computer malpractice.” [28]

If Kaner’s view is accurate, then the legal shielding provided bylicensing might well
be outweighed by the damage to licensed software engineers that would be caused
through increased liability through now being open to malpractice suits. An ACM
Task Force on safety-critical software chaired by John Knight of the University of
Virginia and Nancy Leveson of MIT (with Kaner as one of its other four members)
addressed additional concerns related to the malpractice issue, stating:

“The process of determining that an act constitutes malpractice is only partially
driven by engineers. In a typical lawsuit for malpractice, an injured or economi-
cally harmed person sues the engineer, often as part of a broader lawsuit. The per-
son will bring evidence that the engineer acted in ways, or made decisions, that
were not up to the professional standards of software engineering. This evidence
will be evaluated by lawyers, liability insurance company staff and lawyers, ju-
rors, and judges. None of these people are engineers. If juries find that certain
conduct is negligent, malpractice insurers will probably advise their insureds
(engineers) against engaging in that conduct and may well provide incentives, in
the form of lower insurance rates, for engineers who adopt recommended prac-
tices or who do not engage in counter-recommended practices. Over time, the
determination of what constitute good engineering practices may be driven more
by the courts and insurance companies than by engineers.” [30]

Still another issue to be considered is what legal obligations an engineering licens-
ing board has as far as regulating the use of the term “engineer”. That is, if the law

LICENSING AND CERTIFICATION OF SOFTWARE PROFESSIONALS 19

requires all individuals using the term “engineer” to be licensed, then the issue be-
comes whether to have a process by which someone can gain the legal right to use
the term “software engineer” when advertising for services, or allow no one to do so.
This was the issue in Texas at the time licensing of software engineers began there.
However, if a particular jurisdiction such as California is only required to license par-
ticular specified engineering disciplines, then the choice is whether to allow anyone
to use the term “software engineer”, or to regulate its use.

In either case, the question for a legal jurisdiction is: should it specify criteria by
which some people can call themselves a software engineer, and some not, and if so,
what that criteria will be.

2.5 Pros and Cons of Licensing Software Engineers

There is probably no issue in the computing field as controversial as the licensing
of software professionals. Without a doubt, it has caused the biggest public disagree-
ment to date between ACM and IEEE-CS, the world’s largest computing societies,
and has left a major scar in the software engineering field that exists to this day.
It is a political, philosophical and emotional issue without equal in the computing
community.

Several well-known software professionals have written in favor of licensing.
David Lorge Parnas of the University of Limerick, one of the pioneers of software
engineering, writes:

In spite of four decades of calls for software development to be viewed as en-
gineering, regulation of software development professionals has been neglected
by both the engineering authorities and the computer science community. . . The
public has suffered from this neglect. There are books full of stories about the
damage caused by software errors. Delayed and canceled projects are rampant.
In most of these cases, the failures can be associated with the failure to apply sim-
ple, well-accepted design principles. In many cases, the programmer had never
heard of those principles and in other cases, they knew the principles but did not
have the discipline to apply them. As long as anyone is free to identify his/herself
as a “software engineer,” these problems will remain [33].

This is from Dennis Frailey, senior fellow at the Raytheon Systems Company and
adjunct Professor of Computer Science at Southern Methodist University, who has
held several different positions in both ACM and IEEE-CS:

[S]oftware is no longer the cocoon it was when I first entered the field in the
1960s. . . Now the world notices us, and, more importantly, it cares about what
we do and expects us to live by certain standards of professional competence, re-
sponsibility, and ethics. . . Licensing will, however, improve our well-being as a
society—if done effectively and properly. It already serves as a catalyst to focus

20 D.J. BAGERT

attention on establishing software engineering as a discipline and profession. . .

Because licensing forces us to define, codify, and organize our field, it might
improve the overall quality of the software engineering discipline. . . it could re-
duce the chances of unqualified, incompetent practitioners building inappropriate
software in systems that could harm people [24].

There are a few people in the computing community that oppose licensing of any
type of professional. Tom DeMarco, another pioneer in the software engineering
field, writes, “I find it morally and ethically repugnant that anyone should prohibit
anyone else from seeking to sell his or her services to those who would willingly
buy them”; he later goes on to include (U.S.) state bar associations (which regulate
lawyers) in that group [19]. However, most people who oppose the licensing of soft-
ware engineers are not against professional licensing in more established professions
such as medicine and law.

As has been previously discussed, there are many legal issues involved in licens-
ing. For instance:

• Some engineering licensing boards are directed to enforce the laws regulating
the use of “engineer” as a job description. With the number of software en-
gineers in the United States alone projected to go over one million sometime
during this decade, this poses a problemwhich some licensing boards can no
longer ignore.

• Some licensed engineers are faced with have to certify an embedded system
where every component of the system has individually been designed by a reg-
istered professional engineer—except the software.

• Some jurisdictions in the U.S. requirethe professors in an accredited engineer-
ing program to themselves be licensed professional engineers, which means
accreditation can depend on licensing.

• There is an expectation by the graduates of an accredited undergraduate en-
gineering program that there is a pathby which they can become licensed; it
is therefore difficult to have numerousaccredited software engineering degree
programs without having a licensing mechanism for the graduates of those pro-
grams.

• The licensing of software engineers canlead to increased software malpractice
suits, and possibly lead to the courts (as opposed to software professionals)
determining what constitutesgood software engineering).

There are also economic concerns. Many software professionals believe that licens-
ing would be seen an unnecessary governmental intrusion that would drive compa-
nies away from any state which required software engineering registration. However,
that does not appear to be the case after several years of licensing in Texas [10].

LICENSING AND CERTIFICATION OF SOFTWARE PROFESSIONALS 21

As previously stated, ACM and IEEE-CS approved the creation of SWECC in
late 1998. However, another important event also occurred during that same time-
frame: the Texas Board of Professional Engineers began licensing software engi-
neers, the first state to do so [5]. Partially in response to the Texas Board’s actions,
Barbara Simons, then president of ACM, appointed in March 1999 an advisory panel
to make recommendations to the ACM regarding the licensing of software engineers.
On 15 May 1999, the ACM passed the following motion based on a report from the
panel:

ACM is opposed to the licensing of software engineers at this time because ACM
believes that it is premature and would not be effective at addressing the prob-
lems of software quality and reliability [2].

Some ACM Council members then provided their viewpoint in the February 2000
issue ofCommunications of the ACM; however, it is interesting that of the four re-
sponses that appeared in the “Forum” section of the May 2000 issue, three took
issue with the ACM Council’s decision, while the fourth supported it, but anony-
mously [7].

Subsequent to their decision on licensing, the ACM Council commissioned two
other reports: the aforementioned one on the body of knowledge, as well as a re-
port focusing on the potential licensing of software engineering working on safety
critical systems (the aforementioned ACM Task Force chaired by Knight and Leve-
son). The latter report [30] recommends that “No attempt should be made to license
software engineers engaged in the development of safety-critical software using the
existing [United States] PE mechanism”, that body of knowledge efforts should not
be pursued, and that instead educational efforts should be increased.

Finally, as a result of these events, the ACM Council passed on 30 June 2000 (the
last day of that Council’s term) a motion to withdraw from SWECC, because, in
the Council’s opinion “SWECC has become so closely identified with licensing of
software engineers under a professional engineer model” [3]. The July 2000 issue of
Forum for Advancing Software engineering Education(FASE) contains several arti-
cles related to the ACM reports and their withdrawal from SWECC, with comments
by several noted computing professionals, including Dennis Frailey, who was one of
the ACM representatives on SWECC. Frailey opposed ACM’s actions in withdraw-
ing from SWECC, stating that:

The work of over 400 volunteers from about 50 countries has been cast in doubt
on the basis of weak and often incorrect rationale. . . I am also disappointed at
the exclusionary process by which this decision was reached. The Council and
its task forces chose not to consider the views and insights of ACM’s appointed
SWEcc representatives and project leads—the people actually doing the work—
even after we offered to provide information and to assist in the discussions and

22 D.J. BAGERT

deliberations. The draft rationale for this decision contains incorrect assumptions
and factual errors that we could easily have corrected and that may well have
influenced the Council’s decision [22].

The September 2000 and September 2001 issues of FASE each had a series of follow-
up articles on the withdrawal; the issues are available through the FASE website
at http://www.cs.ttu.edu/fase. All of the ACM-related documents can be found at
http://www.acm.org/serving/se_policy.Communications of the ACMhad a section
in its November 2002 issue with several articles on the licensing issue.

The joint ACM/IEEE-CS software engineering curriculum effort under SWECC
went forward under the new CCSE acronym, but only after a year’s delay. As has
been discussed, the Computer Society went forward with the SWEBOK Guide as
scheduled following ACM’s withdrawal from the project.

2.6 Examples of Licensing

This section examines how licensing ofengineers has been implemented in
Canada and the United States, and how in some cases, it is been to be applied to
software engineers.

2.6.1 Canada

In Canada, most engineers must be licensed in order to practice engineering.
This licensing of professional engineers is done on the province and territorial
level. The Canadian Council of Professional Engineers, according to its website at
http://www.ccpe.ca, is “the national organization of the 12 provincial and territorial
[bodies] that regulate the practice of engineering in Canada and license the country’s
more than 160,000 professional engineers.”

The first Canadian province to provide licensing guidelines for software engineers
was Professional Engineers Ontario (PEO), in 1999. (Previously, software practi-
tioners had been assessed by PEO on an individual basis to see if they qualified for
a Professional Engineer (PEng) license.) The CCPE has since adopted guidelines
which can be used by each of the twelve licensing bodies within the Council.

TheGuideline on Admission to the Practice of Engineering in Canadaspecifies
the PEng admissions requirements which apply to all of the seventeen engineering
disciplines currently licensed by CCPE. In order to be licensed, applicants must:

• Be academically qualified;

• Have obtained sufficient acceptable engineering work experience in their area
of practice;

• Have an understanding of local practices and conditions;

http://www.cs.ttu.edu/fase
http://www.acm.org/serving/se_policy
http://www.ccpe.ca

LICENSING AND CERTIFICATION OF SOFTWARE PROFESSIONALS 23

• Be competent in the language of their jurisdiction of practice [Canada is bi-
lingual];

• Be of good character; and,

• Demonstrate an understanding of professional practice and ethics issues. ([17],
p. 3)

Academic qualification usually comes from having an engineering degree accredited
the Canadian Engineering Accreditation Board, which is a part of CCPE. For those
not holding such a degree, a series of examinations is required.

Upon graduation, applicants are expected to enroll in the Engineer-In-Training
(EIT) program of the CCPE while fulfilling their work experience requirements,
which takes at least four years to complete. The work experience for each applicant
should provide some general capabilities in areas suchas management and com-
munication skills, and some specific software engineering capabilities from a set of
areas (which perform a similar function to the Knowledge Areas of the SWEBOK
Guide).

At the end of the EIT period, applicants also are required to pass an examination
on ethics and the legal concepts related to professional engineering practice, which
should have also been a part of the applicant’s work experience.

2.6.2 United States
Unlike Canada, in the U.S. engineers working for a corporation are often covered

by an industrial exemption which only requires a license for those engineers who
“sign off” (provide a seal of approval and thus incur legal liability) on projects sold
to the public. Also, the requirement such legal liability is usually limited to those
projects which are for a specific customer. That is, if a software product is mass-
marketed to the public, then a professional engineer is not required to sign off on
the product. However, independent engineering contractors (i.e., consultants) must
be licensed.

This means that the percentage of engineers licensed in the United States is rela-
tively small, and varies from discipline to discipline. Ford and Gibbs [21] state that
the percentage licensed range from less than ten percent for electrical and chemical
engineers to over 40% for civil engineers. Most expert predict that the percentage of
licensed software engineers will be even less—perhaps 5%. Still, with over a million
software engineers expected in the U.S. by 2010, 5% is still a significant number of
people.

Since professional licensing is not delegated to federal government by the United
States Constitution, the each state licenses professional engineers. The scope and
requirements of the licensing boards for the various states can widely vary; how-
ever, the basic format in contained in theModel Lawdocument [31] of the National

24 D.J. BAGERT

Council of Examiners for Engineering and Surveying (NCEES), which creates engi-
neering licensing exams for most of the United States. (The NCEES board consists
of representatives of the various state licensing boards.) The general path to licensure
as a professional engineer (PE) is as follows:

• Obtain a degree from an ABET/EAC accredited program,

• Pass the NCEES Fundamentals of Engineering (FE) examination given to peo-
ple who are about to graduate or have recently graduated with a bachelor’s de-
gree,

• Work a minimum of four years under the supervision of a Professional Engineer,

• Pass the NCEES Principles and Practices of Engineering (P&P) exam most re-
lated to the engineering work being done by the applicant,

• Obtain professional references, and

• Pass an examination of the code of ethics and professional conduct for that
particular state.

The FE exam is divided into morning and afternoon sessions. The morning part of the
FE exam is the same for all applicants and includes mathematics (calculus, differen-
tial equations, linear algebra), lab sciences (chemistry and physics), and engineering
sciences (e.g., statics, materials, and thermodynamics). Note that although there is
an implication is that a student graduating from an accredited engineering program
in the United States should have the educational background sufficient for passing
the FE morning section, although the ABET criteria and the morning section content
may be significantly different—and in thecase of software engineering, they are. It
is not surprising then that unlike the other countries discussed here, there are two
completely independent entities doing the accreditation and the licensing.

The FE afternoon session can be discipline-specific (for a limited number of dis-
ciplines), or the applicant can take a general examination which in many ways is an
extension of the morning session.

NCEES will not offer P&P or FE afternoon examinations for engineering disci-
plines that do not have at least one accredited program in that area, thus there can
be no action until ABET accredits the first software engineering programs (expected
in July 2003). At that time, at least ten state licensing boards would have to request
that NCEES develop an exam in order for such a project to be considered. However,
for at least the time being, all aspects of the NCEES licensing exams are somewhat
divergent from software engineering curriculum content.

Texas is the only state that currently licenses software engineers as PEs. It has
been doing so since 1998. Because there are nosoftware engineering licensing ex-
ams, the Texas Board of Professional Engineers has been using its waiver clause
(which is available for all engineering disciplines licensed by the board) to license

LICENSING AND CERTIFICATION OF SOFTWARE PROFESSIONALS 25

software engineers. In this case, practitioners with 12 years of experience and an
ABET-accredited degree, or 16 years of experience for those with a related degree,
are eligible to be licensed. All applicants in Texas, regardless of waiver status, must
pass an engineering ethics examination [4]. As of 10 July 2003, there were only 48
licensed PEs in software engineering in Texas.

The Illinois legislature has passed legislation requiring that there a P&P examina-
tion in software engineering available to applicants in that state by January 1, 2005
[26]. Since NCEES will undoubtedly not have such an exam available by that time,
it is unclear on what will happen. (Some states do provide their own P&P exams in
certain cases to take in the place of their NCEES equivalents, so this is a possibility.)

2.7 Examples of National Certification

2.7.1 United Kingdom

Note: The information for the United Kingdom is primarily from [37], which in
turn used material from the British Computer Society website http://www.bcs.org.uk.

Technically, the UK certifies engineers through the professional bodies; this is
also the case with other professions such as law and medicine. However, since each
of these bodies has a Royal Charter as a mechanism which is used as a means of
ratifying the professions, and a profession is granted chartered status by the Gov-
ernment on satisfying particular criteria specified in order to protect the public from
unqualified or illegal practices, the professional societies are doing something very
similar to the government-sanctioned licensing of professionals done in the U.S. and
Canada. For people in the computing field (including software engineering), this is
the British Computer Society.

The BCS is licensed by the UK’s Engineering Council to nominate any of its
members that are academically qualified and appropriately experiences to be Char-
tered Engineers (CEng). In the UK, anyone can call themselves an engineer, but can
only use the CEng designation if it granted. BCS actually grants CEng status in In-
formation Systems, which is a broader discipline than software engineering.

To gain admission to the BCS (the first step towards becoming a Chartered Infor-
mation Systems Engineering), the society has a set of examinations and assessments;
however, the BCS gives partial or full exemption from its examinations for additional
academic credentials.

Members registered as Chartered Engineers may also apply for the qualifica-
tion “European Engineer” through Federation Europeene d’Associations Nationales
d’Ingenieurs (FEANI), which has representatives from 22 European countries.

http://www.bcs.org.uk

26 D.J. BAGERT

2.7.2 Australia

The certification of professional engineers in Australia is done through IEAust
http://www.ieaust.org.au, which (as with the British Computer Society) also ac-
credits degree programs. IEAust also has several levels of membership, of which
Chartered Professional Engineer (CPEng) is both the highest possible level and the
one which is analogous to the professional engineer designation in other countries.
However, IEAust does not have the same relationship with its government as BCS
does with the British government, since the Australian government supports self-
regulation of professionals through the professional societies.

As with the BCS, an applicant for a CPEng must first be a member of IEAust
at another grade level [27]. For instance, a Member IEAust (MIEAust) must have
a degree from an accredited engineering program, have a minimum of three years
of professional experience, and have the support of a member at an equivalent of
higher grade. An applicant for a CEng must also submit background information
in the form of an Engineering Practice Report (EPR), which must be verified as
satisfactory by IEAust. Once this is done, the applicant will be invited to a one-hour
professional interview conducted by CPEng members from the applicant’s chosen
engineering discipline. This interview will be a peer review of the competencies that
the applicant has claimed in the EPR, plus test knowledge of the Institution’s Code of
Ethics. Those individuals receiving the CPEng designation can request to be placed
on the National Professional Engineers Register (NPER).

Currently, software engineers are not allowed to receive the CPEng designation
or be placed on the NPER. In 2001, the Australian Computer Society (ACS) and
IEAust formed a Joint Software Engineering Board, and developed a discussion pa-
per on the topic of software engineering as a professional discipline. ACS is currently
petitioning IEAust to allow software engineering to be added to the list of approved
engineering disciplines; [27] lists “Information, Telecommunications and Electron-
ics Engineering” (whose description includes software engineering) as a general area
of engineering practice, but also notes that registration on the NPER under this engi-
neering is not available as of yet.

2.7.3 Ireland

The Institution of Engineers of Ireland certifies its Chartered Engineers in a man-
ner vary similar to that of IEAust. However, unlike Australia, IEI has already started
chartering software engineers during the last few years. Unlike their counterparts in
Australia and the UK, IEI does classify software engineers separately.

http://www.ieaust.org.au

LICENSING AND CERTIFICATION OF SOFTWARE PROFESSIONALS 27

3. The Certification of Software Developers

3.1 Institute-Based Certification Programs

The three examples of “institute-based” certifications here only have one example
that is actually called an institute. However, they all are part of that class of certi-
fication outside of either national or company-based certification, programs that are
either done by a private institute created solely for certification, or a professional
society sponsoring a certification program which is not targeted toward a particular
nation.

3.1.1 ASQ

Founded in 1946, The American Society forQuality (ASQ) provides training and
certification in a variety of quality areas, including one specifically for software pro-
fessionals, the Certified Software Quality Engineer (CSQE). This program, accord-
ing to a page on the ASQ website http://www.asq.org/cert/types/index.html, is “De-
signed for those who have a comprehensive understanding of software quality devel-
opment and implementation; have a thorough understanding of software inspection,
testing, verification, and validation; and can implement software development and
maintenance processes and methods.”

In order to take the CSQE exam, an applicant must have at least eight years of ex-
perience, some of which can be waived due to the person’s educational background.

The CSQE is one of two examples shown here (the other being the Microsoft
Certified Systems Engineer) where the term “engineer” is granted on a certification,
but its use in some jurisdictions (such as certain states or provinces in North Amer-
ica) might be illegal. If intending to practice in such jurisdictions, Kaner suggests
contacting ASQ to see if an alternate name to the certification can be provided [28].

3.1.2 CSDP

The IEEE Computer Society has developed a competency recognition program
for software professionals [38]. During the development, the program was known
as the “Certified Software Engineering Professional Program”, but due to the same
legal issues mentioned above regarding the use of the term “engineer”, the name was
ultimately changed to Certified Software Development Professional (CSDP). Despite
the name change, it is still software engineering knowledge being tested (although
SWEBOK wasnot used for the test specifications).

The overall certification program includes requirements on education, professional
experience, passing an examination, and continuing education. To be eligible to take
the exam, a candidate must have, at minimum, a bachelor’s degree and 9000 hours of

http://www.asq.org/cert/types/index.html

28 D.J. BAGERT

software engineering experience. (Since 9000 hours translates to a person working
45 hours per week, 50 weeks a year for four years, the CSDP can be thought of
as roughly analogous to a P&P exam given in the United States by NCEES.) After
passing the exam, certificate holders will be required to obtain a number of approved
continuing education hours over a three year period to renew their certification.

The initial CSDP examinations were developed from 1999 to 2001, and beta tested
in July 2001. There have since been two years of regular test cycles, and there are now
several hundred CSDP certificate holders. Information concerning training and test
specifications can be found at CSDP websitehttp://www.computer.org/certification.
There is also a well-trafficked (356 members, as of July 2003) Yahoo group
(ieee_csdp) started by the IEEE-CS Seattle chapter. Despite some initial disappoint-
ment that the term “engineer” is not usedin the certification, the CSDP seems to be
gradually gaining momentum.

The IEEE-CS Professional Practices Committee, which created and oversees the
CSDP exam, is currently considering the eventual creation of an entire suite of re-
lated certification exams for software professionals, including an exam for new grad-
uates (roughly analogous to the FE exam). These specialization exams would be tar-
geted towards various job functions (e.g., software project manager), and application
domain specialty (such as for safety-critical systems).

3.1.3 ICCP
The Institute for Certification of Computing Professionals (ICCP) is located in

Des Plaines, Illinois, USA, and is under thedirection of seven constituent societies,
including ACM. ICCP has certified over 55,000 people as Certified Computer Pro-
fessionals over their 30 years of existence. ICCP offers an exam in a number of
software-related areas, including one software engineering which includes the fol-
lowing topics:

• Computer System Engineering

• Software Project Planning

• Software Requirements

• Software Design

• Programming Languages and Coding

• Software Quality Assurance

• Software Testing Techniques

• Software Maintenance and Configuration Management

It is interesting to note the similarities between the Knowledge areas of the SWE-
BOK Guide and the above topics, since ACM has publicly stated it concerns related

http://www.computer.org/certification

LICENSING AND CERTIFICATION OF SOFTWARE PROFESSIONALS 29

its concerns about defining a body of knowledge sufficient for licensing examina-
tions, and yet has continued to offer a certification exam on similar material.

As with the ASQ Certified Software Quality Engineer exam, an applicant must
have work experience, the amount of which can be reduced according to the person’s
educational background.

3.2 Company-Based Certification Programs

There are a number of companies dealing in mass-marketed computer systems that
offer certification programs, including Microsoft, Oracle, Cicso, Novell and Apple.
Most of these software-related certifications actually focus on network or systems
administration rather than on software development. In recent years, the Microsoft
Certified Solution Developer (MCSD) program has emerged as the company-based
certification that has most focused on software life-cycle issues. When migrating
the MCSD program to .NET, Microsoft went even further, separating it into two
programs: MCSD, which focuses on the analysis and design of software for web ap-
plications, windows applications and XMLweb services and servers in ether Visual
Basic or Visual C#, and Microsoft Certified Application Developer (MCAD), which
focuses on coding, testing and maintenance of these same type of applications.

The MCSD requires the passage of four core exams, one each for web applica-
tions, windows applications and XML web services and servers in either Visual Basic
or Visual C#, and a fourth in Solution Architectures, plus one of three elective ex-
ams. No practical experience is required, although two years of experience software
design and analysis is recommended.

As of July 2003, there are almost 45,000 MCSD holders, of which about 1700
were certified after the program migrated to .NET. These are among over 1.5 million
who have earned the title Microsoft Certified Professional (MCP). One of the exams
in this suite, the Microsoft Certified Systems Engineer (MCSE), is another example
of a certification whose use of the term “engineer” may cause a problem in some
jurisdictions. (Many other companies also use engineer in some of their certifica-
tions.) In Canada, the problem was solved when CCPE and Microsoft came to an
agreement where Microsoft would advise their Canadian certificate holders to use
the MCSE acronym rather than the full name of the certification [18].

3.3 Conclusions and Future Directions

The licensing and certification of software engineers by the professional engi-
neering community, either through engineering professional societies or engineering
licensing boards, has become more frequent over the last decade. The United King-
dom, Canada, and Ireland are examples of countries which either perform licensing

30 D.J. BAGERT

through government boards or certification of software engineers through national
professional societies. In the United States, only Texas is currently licensing soft-
ware engineers, with Illinois apparently set to follow suit in 2005.

The formal education for licensing and national certification is often through ac-
credited software engineering undergraduate degree programs. The UK, Canada,
Australia, New Zealand and Ireland are all examples of countries which have accred-
ited software engineering programs, with the United States very likely to join them
in July 2003. The accreditation and licensing bodies in most of these countries are
strongly connected; however, this is not true in the United States, which has caused
some significant differences between the content of the accredited degree programs,
and that of the Fundamentals of Engineering examination given to new graduates of
such programs as the first step towards licensing.

The licensing of software engineers has been very controversial, especially in the
United States. The Association for Computing Machinery has come out strongly
against licensing, citing liability issues, plus the inability to define a body of knowl-
edge; however, at the same time, ACM has supported certification, including an ICCP
software engineering examination implicitcovering a general software engineering
body of knowledge.

Despite ACM’s position, licensing and national certification activities have con-
tinued to progress. Because of these ongoingactivities the author’s personal opinion
has always been that the active involvement of software professionals in the licens-
ing and national certification processes benefits the software engineering community,
and that positive aspects of working with the licensing entities have outweighed the
negative ones [10]. For instance, in Texas, it is likely that without the involvement
of a Software Engineering Advisory Committee, the state licensing board would still
have started licensing individuals in software engineering, but might well have in-
stead treated the discipline as a subarea of electrical engineering.

So, it is the author’s personal hope that ACM will somehow reverse their previ-
ous stance and become involved in the licensing and national certification efforts in
various countries. At the same time, IEEE-CS and others need to acknowledge that
the acceptance of the SWEBOK Guide as a generally-accepted body of knowledge
document will be extremely difficult (although not impossible) without the support
of the ACM Council.

Besides the continuing licensing and national certification efforts, company-based
certification is likely to continue its popularity, especially among those software pro-
fessionals who focus on programming issues. Other certifications (such as CSDP and
Certification Software Quality Engineer) will continue to exist, although the number
of such certifications may in some cases be tied to the progress of licensing efforts.

A hierarchical licensing and certification model for software engineers has been
suggested by several people over the last few years. Frailey [23] compares his ver-

LICENSING AND CERTIFICATION OF SOFTWARE PROFESSIONALS 31

sion of it to the medical model, where doctors must be licensed in order to practice
medicine, and can obtain board certification in specialization areas such as internal
medicine or dermatology. For software engineering, such specialization might in-
clude specific job functions (e.g., software project manager) or specific application
domains such as real-time systems. (The application domain specialization area is
one that is not currently addressed by either the knowledge areas of the SWEBOK
Guide or in current licensing and certification efforts.) Frailey also notes that medical
technician certifications such as for the use of X-Ray machines are roughly equiva-
lent most of the company-based certifications.

This model for licensing is also interesting because it could include most of the li-
censing and certification efforts that currently exist. For example, the Software Qual-
ity Engineer certification could be a specialization area obtained by a licensed soft-
ware engineer. It may be that through the use of such models, which are different
from that used in most engineering disciplines, the unique field of software engineer-
ing can find a method of licensing and certification that can be to the most benefit to
both the software professional community and the public-at-large.

ACKNOWLEDGEMENTS

The author appreciates the invaluable research help provided by the following
individuals: Jocelyn Armarego, David Budgen, Robert Cochran, Ana Moreno, Fred
Otto, Michael Ryan, J. Barrie Thompson and Alan Underwood.

REFERENCES

[1] ABET Engineering Accreditation Commission, “Criteria for accrediting engineering
programs”, http://www.abet.org/images/Criteria/2002-03EACCriteria.pdf, 3 November
2001.

[2] Allen F., Boehm B., Brooks F., Browne J., Farber D., Graham S., Graham G.J.,
Hawthorn P., Kennedy K., Leveson N., Nagel D., Neumann P., Parnas D., Wulf B.,
“ACM panel on professional licensing in software engineering: Report to council”, http://
www.acm.org/serving/se_policy/report.html, 15 May 1999.

[3] Association for Computing Machinery, “A summary of the ACM position on soft-
ware engineering as a licensed engineering profession, final version”, http://www.
acm.org/serving/se_policy/selep_main.html, 17 July 2000.

[4] Bagert D.J., “Texas poised to license professional engineers in software engineering”,
ACM Software Engineering Notes23 (3) (May 1998) 8–10.

[5] Bagert D.J., “Texas board votes to license software engineers”,ACM Software Engineer-
ing Notes23 (5) (September 1998) 7.

http://www.abet.org/images/Criteria/2002-03EACCriteria.pdf
http://www.acm.org/serving/se_policy/report.html
http://www.acm.org/serving/se_policy/report.html
http://www.acm.org/serving/se_policy/report.html
http://www.acm.org/serving/se_policy/selep_main.html
http://www.acm.org/serving/se_policy/selep_main.html
http://www.acm.org/serving/se_policy/selep_main.html

32 D.J. BAGERT

[6] Bagert D.J., “SIGCSE survey, TCEA discussion on company-based certification”,Forum
for Advancing Software engineering Education (FASE)10 (3) (March 2000) (electronic
newsletter), http://www.cs.ttu.edu/fase/v10n03.txt.

[7] Bagert D.J., “Communications of the ACM Forum on Licensing Issue”,Forum for Ad-
vancing Software engineering Education (FASE)10 (5) (May 2000) (electronic newslet-
ter), http://www.cs.ttu.edu/fase/v10n05.txt.

[8] Bagert D.J., Mead N.R., “Software engineering as a professional discipline”,Computer
Science Education11 (1) (March 2001) 73–87.

[9] Bagert D.J., “Education and training in software engineering”, in:Encyclopedia of Soft-
ware Engineering, second ed., John Wiley and Sons, 2002, pp. 452–465.

[10] Bagert D.J., “Texas licensing of software engineers: All’s quiet—for now”,Communi-
cations of the ACM45 (11) (November 2002) 92–94.

[11] Bagert D.J., Ardis M.A., “Software engineering baccalaureate programs in the United
States: An overview”, in:Proceedings of Frontiers in Education Conference, Boulder,
Colorado, USA, 5–8 November 2003, submitted for publication.

[12] Bloom B.J., et al. (Eds.),Taxonomy of Educational Objectives: HandbookI: Cognitive
Domain, first ed., David McKay Co., New York, NY, 1956.

[13] Bourque P., Dupuis R., Abran A., Moore J.W., Tripp L., “The guide to the software
engineering body of knowledge”,IEEE Software16 (6) (November/December 1999)
35–44.

[14] Bourque P., Dupuis R. (Eds.),SWEBOK: A Guide to the Software Engineering Body of
Knowledge (Trial Version 1.00), IEEE Computer Society, Los Alamitos, CA, USA, May
2001.

[15] Bourque P., Robert F., Lavoie J.-M., Lee A., Trudel S., Lethbridge T.C., “Guide to
the software engineering body of knowledge (SWEBOK) and the software engineering
education knowledge (SEEK)—A preliminary mapping”, in:Proceedings of the 10th
International Workshop on Software Technology and Engineering Practice, Montreal,
Canada, 6–8 October 2002, pp. 8–23.

[16] British Computer Society and The Institution of Electrical Engineers,A Report on Un-
dergraduate Curricula for Software Engineering, Institution of Electrical Engineers,
1989.

[17] Canadian Council of Professional Engineers,Guideline on Admission to the Practice of
Engineering in Canada, 2001.

[18] Canadian Council of Professional Engineers, “Canadian Council of Professional Engi-
neers and Microsoft Corp. agree on use of ‘Engineer’title”, news release, 11 May 2001;
Reprinted inForum for Advancing Software engineering Education (FASE)11 (6) (June
2001) (electronic newsletter), http://www.cs.ttu.edu/fase/v11n06.txt.

[19] DeMarco T., “Certification or Decertification?”,Communications of the ACM42 (7)
(July 1999) 10 (letter to the editor).

[20] Douglas P., Cocchi T., “Report on analyses of pilot software engineer survey data”, Joint
Steering Committee of IEEE Computer Society/ACM for Establishment of Software
Engineering as a Profession, http://www.computer.org/tab/seprof/survey.htm, 27 March
1997.

http://www.cs.ttu.edu/fase/v10n03.txt
http://www.cs.ttu.edu/fase/v10n05.txt
http://www.cs.ttu.edu/fase/v11n06.txt
http://www.computer.org/tab/seprof/survey.htm

LICENSING AND CERTIFICATION OF SOFTWARE PROFESSIONALS 33

[21] Ford G., Gibbs N.,A Mature Profession of Software Engineering, Technical Re-
port CMU/SEI-96-TR-004, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 1996.

[22] Frailey D.J., “Statement regarding ACM’s withdrawal from SWEcc”,Forum for Advanc-
ing Software engineering Education (FASE)10 (7) (July 2000) (electronic newsletter),
http://www.cs.ttu.edu/fase/v10n07.txt.

[23] Frailey D.J., “Licensing and certification of software engineering personnel”, in:Ency-
clopedia of Software Engineering, second ed., John Wiley and Sons, 2002, pp. 452–465.

[24] Frailey D.J., “Software engineering grows up”,IEEE Software16 (6) (Novem-
ber/December 1999), pp. 66, 68.

[25] Gotterbarn D., Miller K., Rogerson S., “Software engineering Code of Ethics is ap-
proved”,Communications of the ACM42 (10) (October 1999) 102–107.

[26] “Illinois Compiled Statutes, Professions and Occupations, Professional Engineering
Practice Act of 1989 (amended), amendment effective 1 January 2002, Chapter 225,
Statue 325, Section 9”, http://www.legis.state.il.us/legislation/ilcs/ch225/ch225act325.
htm.

[27] Institution of Engineers, Australia,Chartered Professional Engineers, May 2002.
[28] Kaner C., “Computer Malpractice”, http://www.kaner.com/malprac.htm, 2000. This is

an updated version of a paper withthe same title that appeared inSoftware QA3 (4)
(1996) 23.

[29] Kaner C., “Software engineering as a profession after the withdrawal: One year later”,
Forum for Advancing Software engineering Education (FASE)11 (9) (September 2001)
(electronic newsletter), http://www.cs.ttu.edu/fase/v11n09.txt.

[30] Knight J., Leveson N., DeWalt M., Elliot L., Kaner C., Nissenbaum H.,On Licensing
of Software Engineers Working on Safety-Critical Software, Association for Computing
Machinery, August 2001, http://www.acm.org/serving/se_policy/safety_critical.pdf.

[31] National Council of Examiners for Engineering and Surveying,Model Law, Revised
August 2002.

[32] Notkin D., Gorlick M., Shaw M.,An Assessment of Software Engineering Body of
Knowledge Efforts, Association for Computing Machinery, New York, May 2000,
http://www.acm.org/serving/se_policy/bok_assessment.pdf.

[33] Parnas D.L., “Licensing of software engineers in Canada”,Communications of the
ACM 45 (11) (November 2002) 94–96.

[34] Pressman R.S.,Software Engineering: A Practitioner’s Approach, fifth ed., McGraw-
Hill, Boston, MA, 2001.

[35] Sobel A.E.K. (Ed.),Second Draft of the Software Engineering Education Knowledge, 6
December 2002, http://sites.computer.org/ccse/know/SecondDraft.pdf.

[36] Sommerville I.,Software Engineering, sixth ed., Addison–Wesley, Wokingham, Eng-
land, 2000.

[37] Thompson J.B., Edwards H.M., “Software engineering in the UK 2001”,Forum for Ad-
vancing Software engineering Education (FASE)11 (11) (November 2001) (electronic
newsletter), http://www.cs.ttu.edu/fase/v11n11.txt.

http://www.cs.ttu.edu/fase/v10n07.txt
http://www.legis.state.il.us/legislation/ilcs/ch225/ch225act325.htm
http://www.legis.state.il.us/legislation/ilcs/ch225/ch225act325.htm
http://www.legis.state.il.us/legislation/ilcs/ch225/ch225act325.htm
http://www.kaner.com/malprac.htm
http://www.cs.ttu.edu/fase/v11n09.txt
http://www.acm.org/serving/se_policy/safety_critical.pdf
http://www.acm.org/serving/se_policy/bok_assessment.pdf
http://sites.computer.org/ccse/know/SecondDraft.pdf
http://www.cs.ttu.edu/fase/v11n11.txt

34 D.J. BAGERT

[38] Tockey S., “IEEE Computer Society develops competency recognition program”, Fo-
rum for Advancing Software engineering Education (FASE)11 (9) (September 2001)
(electronic newsletter), http://www.cs.ttu.edu/fase/v11n09.txt.

[39] U.S. Department of Labor, “The 2000–10 job outlook in brief”,Occupational Outlook
Quarterly46 (1) (Spring 2002) 9–43.

http://www.cs.ttu.edu/fase/v11n09.txt

Cognitive Hacking

GEORGE CYBENKO

Thayer School of Engineering
Dartmouth College
8000 Cummings Hall Hanover, NH 03755-8000
USA
george.cybenko@dartmouth.edu

ANNARITA GIANI

Institute for Security Technology Studies
Thayer School of Engineering
Dartmouth College
8000 Cummings Hall Hanover, NH 03755-8000
USA
annarita.giani@dartmouth.edu

PAUL THOMPSON

Institute for Security Technology Studies
Thayer School of Engineering
Dartmouth College
8000 Cummings Hall Hanover, NH 03755-8000
USA
paul.thompson@dartmouth.edu

Abstract
In this chapter, we define and propose countermeasures for a category of com-
puter security exploits which we call “cognitive hacking.” Cognitive hacking
refers to a computer or information system attack that relies on changing human
users’ perceptions and corresponding behaviors in order to be successful. This
is in contrast to denial of service (DOS) and other kinds of well-known attacks
that operate solely within the computer and network infrastructure. Examples are
given of several cognitive hacking techniques, and a taxonomy for these types of

ADVANCES IN COMPUTERS, VOL. 60 35 Copyright © 2004 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(03)60002-1 All rights reserved.

36 G. CYBENKO ET AL.

attacks is developed. Legal, economic, and digital government implications are
discussed.

1. Introduction . 36
1.1. Background . 37
1.2. Perception Management . 39
1.3. Computer Security Taxonomies . 39
1.4. Semantic Attacks and Information Warfare . 41
1.5. Deception Detection . 42
1.6. Cognitive Hacking and Intelligence and Security Informatics 42

2. Examples of Cognitive Hacking . 44
2.1. Internet Examples . 44
2.2. Insider Threat . 51

3. Economic and Digital Government Issues Related to Cognitive Hacking 53
3.1. An Information Theoretic Model of Cognitive Hacking 53
3.2. Theories of the Firm and Cognitive Hacking 56
3.3. Digital Government and Cognitive Hacking . 56

4. Legal Issues Related to Cognitive Hacking . 57
5. Cognitive Hacking Countermeasures . 60

5.1. Single Source Cognitive Hacking . 61
5.2. Multiple Source Cognitive Hacking . 63

6. Future Work . 67
7. Summary and Conclusions . 67

Acknowledgements . 68
References . 68

1. Introduction

Cognitive hacking refers to a computer or information system attack that relies on
changing human users’ perceptions and corresponding behaviors in order to be suc-
cessful [24]. This is in contrast to denial of service (DOS) and other kinds of well-
known attacks that operate solely within the computer and network infrastructure.
With cognitive attacks neither hardware nor software is necessarily corrupted. There
may be no unauthorized access to the computer system or data. Rather the computer
system is used to influence people’s perceptions and behavior through misinforma-
tion. The traditional definition of security is protection of the computer system from
three kinds of threats: unauthorized disclosure of information, unauthorized modifi-
cation of information, and unauthorized withholding of information (denial of ser-
vice). Cognitive attacks, which represent serious breaches of security with significant
economic implications, are not well covered by this definition.

COGNITIVE HACKING 37

FIG. 1.

In face-to-face interaction with other people, there is normally some context in
which to evaluate information being conveyed. We associate certain reliability to in-
formation depending on who the speaker is and on what we know of the person. This
type of evaluation cannot be transferred to the Web [99]. Anyone can post anything
on a Web page with very few limitations. The issue is how to deal with false infor-
mation on the Web and how to decide whether a source is reliable. People use Web
technology for personal and economic reasons, e.g., buying shares or finding a job.
What process takes place if a user makes a decision based on information found on
the Web that turns out to be misinformation?

Consider the graph below. Most analysesof computer security focus on the time
before misinformation is posted, i.e., on preventing unauthorized use of the system.
A cognitive hack takes place when a user’s behavior is influenced by misinforma-
tion. At that point the focus is on detecting that a cognitive hack has occurred and
on possible legal action. Our concern is with developing tools to prevent cognitive
hacking, that is, tools that can recognize and respond to misinformation before a user
acts based on the misinformation, see Fig. 1.

1.1 Background

Computer and network security presentsgreat challenges to our evolving informa-
tion society and economy. The variety and complexity of cybersecurity attacks that
have been developed parallel the variety and complexity of the information tech-
nologies that have been deployed; with no end in sight for either. In this chapter,
we distinguish three classes of information systems attacks:physical, syntactic, and
cognitive. Physical and syntactic attacks can be considered together as autonomous
attacks.

38 G. CYBENKO ET AL.

Autonomous attacks operate totally within the fabric of the computing and net-
working infrastructures. For example, the well-know Unicode attack against older,
unpatched versions of Microsoft’s Internet Information Server (IIS) can lead to
root/administrator access. Once such access is obtained, any number of undesired
activities by the attacker is possible. For example, files containing private informa-
tion such as credit card numbers can be downloaded and used by an attacker. Such
an attack does not require any intervention by users of the attacked system; hence,
we call it an “autonomous” attack.

By contrast, acognitiveattack requires some change in users’ behavior, effected
by manipulating their perceptions of reality. The attack’s desired outcome cannot be
achieved unless human users change their behaviors in some way. Users’ modified
actions are a critical link in a cognitive attack’s sequencing. To illustrate what we
mean by a cognitive attack, consider the following news report [62]:

“Friday morning, just as the trading day began, a shocking company press release
from Emulex (Nasdaq: EMLX) hit the media waves. The release claimed that
Emulex was suffering the corporate version of a nuclear holocaust. It stated that
the most recent quarter’s earnings would be revised from a $0.25 per share gain to
a $0.15 loss in order to comply with Generally Accepted Accounting Principles
(GAAP), and that net earnings from 1998 and 1999 would also be revised. It also
said Emulex’s CEO, Paul Folino, had resigned and that the company was under
investigation by the Securities and Exchange Commission.

Trouble is, none of it was true.

The real trouble was that Emulex shares plummeted from their Thursday close of
$113 per share to $43—a rapid 61% haircut that took more than $2.5 billion off
of the company’s hide—before the shares were halted an hour later. The damage
had been done: More than 3 million shares had traded hands at the artificially
low rates. Emulex vociferously refuted the authenticity of the press release, and
by the end of the day the company’s shares closed within a few percentage points
of where they had opened.”

Mark Jakob, 23 years old, fraudulently posted the bogus release on Internet Wire,
a Los Angeles press-release distribution firm. The release was picked up by several
business news services and widely redistributed scale without independent verifica-
tion. The speed, scale and subtlety with which networked information propagates
have created a new challenge for society,outside the domain of classical computer
security which has traditionally been concerned with ensuring that all use of a com-
puter and network system is authorized.

The use of information to affect the behavior of humans is not new. Language, or
more generally communication, is used by one person to influence another. Propa-
ganda has long been used by governments, or by other groups, particularly in time
of war, to influence populations [19,30,34]. Although the message conveyed by pro-

COGNITIVE HACKING 39

paganda, or other communication intended to influence, may be believed to be true
by the propagator, it usually is presented in a distorted manner, so as to have maxi-
mum persuasive power, and, often, is deliberately misleading, or untrue. Propaganda
is a form of perception management. Other types of perception management include
psychological operations in warfare [47], consumer fraud, and advertising [19,77].
As described in Section 1.5, deception detection has long been a significant area of
research in the disciplines of psychology and communications.

1.2 Perception Management

As noted by many authors, e.g., [19,28,34,76], perception management is per-
vasive in contemporary society. Its manifestation on the Internet is one aspect of the
broader phenomenon. Not all perception management is negative, e.g., education can
be considered a form of perception management; nor is all use of perception man-
agement on the Internet cognitive hacking (see definition in the next section). Clearly
the line between commercial uses of the Internet such as advertising, which would
not be considered cognitive hacking, and manipulation of stock prices by the posting
of misinformation in news groups, which would be so considered, is a difficult one
to distinguish.

1.3 Computer Security Taxonomies

In 1981 Landwehr provided a discussion of computer system security which has
framed subsequent discussion of computer security [55]. His model arose from a
consideration of the requirements of military security as automated systems replaced
paper-based systems. He postulated that:

Information contained in an automated system must be protected from three
kinds of threats: (1) theunauthorized disclosureof information, (2) theunau-
thorized modificationof information, and (3) theunauthorized withholdingof
information (usually calleddenial of service).

He concludes his discussion by stating that “Without a precise definition of what
security means and how a computer can behave, it is meaningless to ask whether
a particular computer system is secure” [56]. If certain uses and sets of data can
be completely isolated, then security modeling is tractable, but often this isolation
is not possible, in part because the use of resources by a computer system conveys
information. Although the analysis Landwehr presented was based on an analysis of
secure military computing, he advises that the designer of an application must state in
advance the security properties desired of the system, recognizing that systems with
different goals and operating in different environments, will have different security
needs.

40 G. CYBENKO ET AL.

Over the last 20 years earlier attempts in computer security research to develop
formal security models designed into the computer system were abandoned as vari-
ous models were shown to be undecidable [29]. As more and more elaborate security
approaches were developed, they were rendered out of date by rapid changes in the
computing environment, in particular, the development of the World Wide Web. In
recent years dramatic and costly computer viruses, denial of service attacks, and
concerns with the security of e-commerce have drawn the attention of researchers
in computer security. Whilethese security breaches are a serious concern, cognitive
hacking is a form of attack that deserves to receive more attention.

Cognitive hacking is defined here as gaining access to, or breaking into, a com-
puter information system for the purpose of modifying certain behaviors of a human
user in a way that violates the integrity of the overall user-information system. The
integrity of such a system would, for example, include correctness or validity of the
information the user gets from such a system. In this context, the integrity of a com-
puter system can be defined more broadly than the definition implicit in Landwehr’s
definition of computer security. Smith [87] refers to breaches in computer security
as violations of the semantics of the computer system, i.e., the intended operation of
the system. Wing argues a similar view [95]. In this sense the World Wide Web itself
can be seen as a computer system used for communication, e-commerce, and so on.
As such, activities conducted over the Web that violate the norms of communication
or commerce, for example, fraud and propaganda, are considered to be instances
of cognitive hacking, even if they do not involve illegitimate access to, or breaking
into, a computer. For example, a person might maintain a website that presents mis-
information with the intent of influencing viewers of the information to engage in
fraudulent commercial transactions with the owner of the website.

Some examples of cognitive hacking, such as the manipulation of a Yahoo news
item [68], are instances of Landwehr’s second threat, theunauthorized modification
of information [55], but there are many other examples that do not fit Landwehr’s
taxonomy. This is not surprising, because, as suggested by Landwehr, new applica-
tions, i.e., in this case Web services, will have new security needs, which must be
understood.

Two broad classes of cognitive hacking can be distinguished: overt and covert.
With overt cognitive hacking no attempt is made to conceal the fact that a cognitive
hack has occurred. For example, website defacement is a type of overt cognitive
hacking. While a website defacer may hopethat the defacement is not noticed for as
long as possible by a Web page administrator, the Web defacer’s modification to the
website is a blatant modification that the intended audience will realize immediately
is not the unmodified website.

It has been estimated that 90% of attacks on Web pages are total page hacks,
where the attacker replaces the entire page of the attacked site [45]. This overt cog-

COGNITIVE HACKING 41

nitive hacking, while much more prevalent than other covert forms discussed in this
chapter, is more of a nuisance to websiteadministrators and an embarrassment to
website owners. Covert cognitive hacking, by contrast, is likely to have more signif-
icant consequences, because it can influence a user’s perceptions and behavior.

Misinformation is often a covert form of cognitive hacking. Misinformation is an
intentional distribution or insertion of false or misleading information intended to
influence reader’s decisions and/or activities. The open nature of the Internet makes
it an ideal arena for the dissemination of misinformation [17].

The distinction between overt and covert cognitive hacking is not necessarily un-
ambiguous. For example, the recent hacking of the Yahoo news story [68] was clearly
not as blatantly overt as a typical Web defacement. On the other hand, the changes
introduced were obvious enough that the suspicions of a careful reader would soon
be aroused. It is possible, though, to imagine subtler modifications that would have
gone undetected by any reader not already familiar with a more reliable account of
the news item.

1.4 Semantic Attacks and Information Warfare

A definition of semantic attacks closely related to our discussion of cognitive
hacking has been described by Schneier [85], who attributes the earliest concep-
tualization of computer system attacks as physical, syntactic, and semantic to Martin
Libicki, who describes semantic attacks in terms of misinformation being inserted
into interactions among intelligent agents on the Internet [60]. Schneier, by contrast,
characterizes semantic attacks as “. . . attacks that target theway we, as humans, as-
sign meaning to content.” He goes on to note, “Semantic attacks directly target the
human/computer interface, the most insecure interface on the Internet” [85].

Denning’s discussion of information warfare [28] overlaps our concept of cogni-
tive hacking. Denning describes information warfare as a struggle over an informa-
tion resource by an offensive and a defensive player. The resource has an exchange
and an operational value. The value of theresource to each player can differ depend-
ing on factors related to each player’s circumstances. The outcomes of offensive
information warfare are: increased availability of the resource to the offense, de-
creased availability to the defense, and decreased integrity of the resource. Applied
to the Emulex example, described below, Jakob is the offensive player and Inter-
net Wire and the other newswire services are the defensive players. The outcome
is decreased integrity of the newswires’ content. From the perspective of cognitive
hacking, while the above analysis would still hold, the main victims of the cognitive
hacking would be the investors who were misled. In addition to the decreased in-
tegrity of the information, an additional outcome would be the money the investors
lost.

42 G. CYBENKO ET AL.

1.5 Deception Detection

Detection of deception in interpersonal communication has long been a topic of
study in the fields of psychology and communications [48,12,21,13]. The majority
of interpersonal communications are found to have involved some level of deception.
Psychology and communications researchers have identified many cues that are char-
acteristic of deceptive interpersonal communication. Most of the this research has fo-
cused on the rich communication medium of face-to-face communication, but more
recently other forms of communication have been studied such as telephone com-
munication and computer-mediated communication [99]. A large study is underway
[14,38] to train people to detect deception in communication. Some of this training is
computer-based. Most recently a study has begun to determine whether psychologi-
cal cues indicative of deception can be automatically detected in computer-mediated
communication, e.g., e-mail, so that anautomated deception detection tool might be
built [98,99].

1.6 Cognitive Hacking and Intelligence and Security
Informatics

Intelligence and security informatics [16] will be supported by data mining, visu-
alization, and link analysis technology, butintelligence and security analysts should
also be provided with an analysis environment supporting mixed-initiative interac-
tion with both raw and aggregated data sets [89]. Since analysts will need to de-
fend against semantic attacks, this environment should include a toolkit of cognitive
hacking countermeasures. For example,if faced with a potentially deceptive news
item from FBIS, an automated countermeasure might provide an alert using adaptive
fraud detection algorithms [36] or through a retrieval mechanism allow the analyst
to quickly assemble and interactively analyze related documents bearing on the po-
tential misinformation. The author is currently developing both of these countermea-
sures.

Information retrieval, or document retrieval, developed historically to serve the
needs of scientists and legalresearchers, among others. Despite occasional hoaxes
and falsifications of data in these domains, the overwhelming expectation is that doc-
uments retrieved are honest representations of attempts to discover scientific truths,
or to make a sound legal argument. This assumption does not hold for intelligence
and security informatics. Most information retrieval systems are based either on:
(a) an exact match Boolean logic by which the system divides the document collec-
tion into those documents matching the logic of the request and those that do not,
or (b) ranked retrieval. With ranked retrieval a score is derived for each document
in the collection based on a measure of similarity between the query and the docu-

COGNITIVE HACKING 43

ment’s representation, as in the vector space model [83], or based on a probability of
relevance [63,82].

Although not implemented in existing systems, a utility theoretic approach to in-
formation retrieval [20] shows promise for a theory of intelligence and security in-
formatics. In information retrieval predicting relevance is hard enough. Predicting
utility, althoughharder, would be more useful. When information contained in, say,
a FBIS document, may be misinformation, then the notion of utility theoretic re-
trieval, becomes more important. The provider of the content may have believed the
information to be true or false, aside from whether it was true or false in some objec-
tive sense. The content may be of great value to the intelligence analyst, whether it is
true or false, but, in general, it would be important to know not only whether it was
true or false, but also whether the provider believed it to be true or false. Current in-
formation retrieval algorithms would nottake any of these complexities into account
in calculating a probability of relevance.

Predictive modeling using the concepts of cognitive hacking and utility-theoretic
information retrieval can be applied in two intelligence and security informatics set-
tings which are mirror images of each other,i.e., the user’s model of the system’s
document content and the systems model of the user as a potential malicious insider.
Consider an environment where an intelligence analyst accesses sensitive and clas-
sified information from intelligence databases. The accessed information itself may
represent cognitive attacks coming from the sources from which it has been gathered,
e.g., FBIS documents. As discussed above, each of these documents will have a cer-
tain utility for the analyst, based on the analyst’s situation, based on whether or not
the documents contain misinformation, and, if the documents do contain misinfor-
mation, whether, or not, the analyst can determine that the misinformation is present.
On the other hand, the analyst might be a malicious insider engaged in espionage.
The document system will need to have a cost model for each of its documents and
will need to build a model of each user, based on the user’s transactions with the
document system and other external actions.

Denning’s theory of information warfare [28] and an information theoretic ap-
proach to the value of information [22,23] can be used to rank potential risks given
the value of each document held by the system. Particular attention should be paid
to deception on the part of the trusted insider to evade detection. Modeling the value
of information to adversaries will enable prediction of which documents are likely
espionage targets and will enable development of hypotheses for opportunistic peri-
ods and scenarios for compromise. These models will be able to detect unauthorized
activity and to predict the course of a multi-stage attack so as to inform appropriate
defensive actions.

Misinformation, or cognitive hacking, plays a much more prominent role in intelli-
gence and security informatics than it has played in traditional scientific informatics.

44 G. CYBENKO ET AL.

The status of content as information, or misinformation, in turn, influences itsutil-
ity for users. Cognitive hacking countermeasures are needed to detect and defend
against cognitive hacking.

2. Examples of Cognitive Hacking

This section summarizes several documented examples of cognitive hacking on
the Internet and provides a more detailed discussion of the problem of the insider
threat.

2.1 Internet Examples

Table I categorizes the types according to mode and goals. The various modes
have been defined above while the goals are self-explanatory and discussed in more
detail in the examples themselves.

2.1.1 NEI Webworld Case
In November 1999 two UCLA graduates students and one of their associates pur-

chased almost all of the shares of the bankrupt company NEI Webworld at a price

TABLE I
HACKING WITH THE GOAL OF MODIFYING USERBEHAVIOR

Goals mode Syntactic Cognitive overt Cognitive covert

Denial of Service
Theft of Services 8 8, 15
Theft of Information 4
Fraud Financial 1, 2, 3, 4, 5
Fraud non-Financial 6, 7
Political 10, 11, 14, 15, 17 17
Commercial or Private 6, 9 6

Perception Management
Self-aggrandizement 12, 13, 15
White Hat Hack 13, 16

1. NEI Webworld pump and dump.
2. Jonathan Lebed case.
3. Fast-trades.com website pump and dump.
4. PayPal.com.
5. EMULEX press release to Internet Wire.
6. Non-financial fraud—searchengine optimization.
7. Non-financial fraud—CartoonNetwork.com.
8. Bogus virus patch report.
9. Usenet perception management.

10. Hamas site.
11. Ariel Sharon site.
12. New York Times site.
13. Yahoo site.
14. Afghanistan related websites.
15. Fluffi Bunni declares Jihad.
16. CNN site.
17. WTO site.

COGNITIVE HACKING 45

ranging from $0.05 to $0.17 per share. They opened many Internet message board
accounts using a computer at the UCLA BioMedical Library and posted more than
500 messages on hot websites to pump up the stock of the company, stating false
information about the company with the purpose of convincing others to buy stock
in the company. They claimed that the company was being taken over and that the
target price per share was between 5 and 10 dollars. Using other accounts they also
pretended to be an imaginary third party, a wireless telecommunications company,
interested in acquiring NEI Webworld. What the three men did not post was the fact
that NEI was bankrupt and had liquidated assets in May 1999. The stock price rose
from $0.13 to $15 in less then one day, and they realized about $364,000 in prof-
its. The men were accused of selling their shares incrementally, setting target prices
along the way as the stock rose. On one day the stock opened at $8 and soared to $15
5/16 a share by 9:45 a.m. ET and by 10:14 a.m. ET, when the men no longer had any
shares, the stock was worth a mere 25 cents a share.

On Wednesday, December 15, 1999, the US Securities and Exchange Commission
(SEC) and the United States Attorney for the Central District of California charged
the three men with manipulating the price of NEI Webworld, Inc. In late January
2001, two of them, agreed to gave up theirillegal trading profits (approximately
$211,000). The Commission also filed a new action naming a fourth individual, as
participating in the NEI Webworld and other Internet manipulations. Two of the men
were sentenced on January 22, 2001 to 15 months incarceration and 10 months in a
community corrections center. In addition to the incarcerations, Judge Feess ordered
the men to pay restitution of between $566,000 and $724,000. The judge was to
hold a hearing on February 26 to set a specific figure [86]. Anyone with access to
a computer can use as many screen names as desired to spread rumors in an effort
to pump up stock prices by posting false information about a particular company so
that they can dump their own shares and give the impression that their own action
has been above board.

2.1.2 The Jonathan Lebed Case

A 15 years old student using only AOL accounts with several fictitious names
was able to change the behavior of many people around the world making them
act to his advantage [58]. In six months he gained between $12,000 and $74,000
daily each time he posted his messages and,according to the US Security Exchange
Commission, he did that 11 times increasing the daily trading volume from 60,000
shares to more that a million. His messages sounded similar to the following one
[59]:

DATE: 2/03/00 3:43pm Pacific Standard Time
FROM: LebedTG1

46 G. CYBENKO ET AL.

FTEC is starting to break out! Next week, this thing will
EXPLODE...
Currently FTEC is trading for just $21/2. I am expect-
ing to see FTEC at $20
VERYSOON...
Let me explain why...
Revenues for the year should very conservatively be around
$20 million. The average company in the industry trades
with a price/sales ratio of 3.45. With 1.57 million shares
outstanding, this will value FTEC at... $44.
It is very possible that FTEC will see $44, but since I
would like to remain very conservative... my short term
price target on FTEC is still
$20!
The FTEC offices are extremely busy... I am hearing that
a number of HUGE deals are being worked on. Once we get
some news from FTEC and the word gets out about the com-
pany... it will take-off to MUCH HIGHER LEVELS!
I see little risk when purchasing FTEC at these DIRT-CHEAP
PRICES. FTEC is making TREMENDOUS PROFITS and is trad-
ing UNDER BOOK VALUE!!!
This is the #1 INDUSTRY you can POSSIBLY be in RIGHT NOW.
There are thousands of schools nationwide who need FTEC
to install security systems... You can’t find a better
positioned company than FTEC!
These prices are GROUND-FLOOR! My prediction is that this
will be the #1 performing stock on the NASDAQ in 2000.
I am loading up with all of the shares of FTEC I possi-
bly can before it makes a run to $20.
Be sure to take the time to do your research on FTEC! You
will probably never come across an opportunity this HUGE
ever again in your entire life.

He sent this kind of message after having bought a block of stocks. The purpose
was to influence people and let them behave to pump up the price by recommending
the stock. The messages looked credible and people did not even think to investigate
the source of the messages before making decisions about their money. Jonathan
gained $800,000 in six months. Initially the SEC forced him to give up everything,
but he fought the ruling and was able to keep part of what he gained. The question
is whether he did something wrong, in which case the SEC should have kept every-
thing. The fact that the SEC allowed Jonathan to keep a certain amount of money
shows that it is not clear whether or not the teenager is guilty from a legal per-

COGNITIVE HACKING 47

spective. Certainly, he made people believe that the same message was post by 200
different people.

Richard Walker, the SEC’s director of enforcement, referring to similar cases,
stated that on the Internet there is no clearly defined border between reliable and
unreliable information, investors must exercise extreme caution when they receive
investment pitches online.

2.1.3 Fast-Trade.com Website Pump and Dump

In February and March 1999, Douglas Colt, a Georgetown University law student,
manipulated four traded stocks using the website Fast-trade.com. Together with a
group of friends he posted hundreds of false or misleading messages on Internet
message boards such as Yahoo! Finance Raging Bull with the purpose of encourag-
ing people to follow Fast-trade.com advice. The site offered a trial subscription and
in less then two months more than 9000 users signed up. The group was able to gain
more than $345,000.

2.1.4 PayPal.com
“We regret to inform you that your username and password have been lost in
our database. To help resolve this matter, we request that you supply your login
information at the following website.”

Many customers of PayPal received this kind of e-mail and subsequently gave per-
sonal information about their PayPal account to the site linked by the message
(http://paypalsecure.com not http://www.paypal.com) [52]. The alleged perpetrators
apparently used their access to PayPal accounts in order to purchase items on eBay.

2.1.5 Emulex Corporation

Mark S. Jakob, after having sold 3000 shares of Emulex Corporation in a “short
sale” at prices of $72 and $92, realized that, since the price rose to $100, he lost
almost $100,000 [62]. This kind of speculation is realized by borrowing shares from
a broker and selling them in hope that the price will fall. Once this happens, the
shares are purchased back and the stock is returned to the broker with the short seller
keeping the difference.

On August 25th 2000, when he realized the loss, he decided to do something
against the company. The easiest and most effective action was to send a false press
release to Internet Wire Inc. with the goal of influencing the stock price. He claimed
that Emulex Corporation was being investigated by the Security and Exchange Com-
mission (SEC) and that the company was forced to restate 1998 and 1999 earnings.
The story quickly spread, and half an hour later other news services such as Dow

http://paypalsecure.com
http://www.paypal.com

48 G. CYBENKO ET AL.

Jones, Bloomberg, and CBS Marketwatch picked up the hoax. Due to this false in-
formation, in a few hours Emulex Corporation lost over $2 billion dollars. After
sending misinformation about the company, Jakob executed trades so that he earned
$236,000. Jakob was arrested and charged with disseminating a false press release
and with security fraud. He is subject to a maximum of 25 years in prison, a maxi-
mum fine of $220 million, two times investorlosses, and an order of restitution up to
$110 million to the victims of his action.

2.1.6 Non-financial Fraud—Web Search Engine Optimization

Con artists have defrauded consumers for many years over the telephone and
via other means of communication, including direct personal interaction. Such
financially-motivated fraud continues over the Internet, as described above. Some
cognitive hacking uses misinformation in a fraudulent way that does not directly
attack the end user.

One such use of misinformation is a practice [61] that has been called “search
engine optimization,” or “index spamming.” Because many users of the Internet find
pages through use of Web search engines, owners of websites seek to trick Web
search engines to rank their sites more highly when searched by Web search engines.
Many techniques, for example, inaccuratemetadata, printing white text on white
background (invisible to a viewer of the page, but not to a search engine) are used.
While this practice does not directly extort money from a user, it does prevent the
user from seeing the search results that the user’s search would have returned based
on the content of the website. Thus the primary attack is on the search engine, but
the ultimate target of the attack is the end user. Developers at Web search engines
are aware of this practice by website promoters and attempt to defeat it, but it is an
on-going skirmish between the two camps.

2.1.7 Non-financial Fraud—CartoonNetwork.com

Another common misinformation practice is to register misleading website names,
e.g., a name that might be expected to belong to a known company, or a close variant
of it, such as a slight misspelling. In October 2001, the FTC [94] sought to close
thousands of websites that allegedly trap Web users after they go to a site with a
misleading name. According to the FTC, John Zuccarini registered slight misspelling
of hundreds of popular Internet domain names. When a user goes to one of these sites
a series of windows advertising various products opens rapidly, despite user attempts
to back out of the original site. Zuccarini allegedly made $800,000 to $1,000,000
annually in advertising fees for such attacks.

COGNITIVE HACKING 49

2.1.8 Bogus Virus Patch Report

Although computer viruses are syntactic attacks, they can be spread through cog-
nitive attacks. The W32/Redesi-B virus [88] is a worm which is spread through Mi-
crosoft Outlook. The worm is contained in an e-mail message that comes with a
subject chosen randomly from 10 possible subjects, e.g., “FW: Security Update by
Microsoft.” The text of the e-mail reads “Just received this in my email I have con-
tacted Microsoft and they say it’s real” and then provides a forwarded message de-
scribing a new e-mail spread virus for which Microsoft has released a security patch
which is to be applied by executing the attached file. The attached file is the virus.
Thus a virus is spread by tricking the user into taking action thought to prevent the
spread of a virus.

2.1.9 Usenet Perception Management

Since the Internet is an open system where everybody can put his or her opinion
and data, it is easy to make this kind of attack. Each user is able to influence the
whole system or only a part of it in many different ways, for example, by building
a personal website or signing up for a newsgroup. Blocking the complete freedom
to do these activities, or even checking what people post on the Web, goes against
the current philosophy of the system. For this reason technologies for preventing,
detecting, and recovering from this kind of attack are difficult to implement [17].

2.1.10 Political Website Defacements—Ariel Sharon Site

Website defacements are usually overt cognitive attacks. For example, in Janu-
ary 2001, during an Israeli election campaign, the website of Likud leader Ariel
Sharon was attacked [8]. In this attack, andin the retaliatory attack described in Sec-
tion 2.1.11, no attempt was made to deceiveviewers into thinking that the real site
was being viewed. Rather the real site was replaced by another site with an oppos-
ing message. The Sharon site had included a service for viewers that allowed them
to determine the location of their voting stations. The replacement site had slogans
opposing Sharon and praising Palestinians. It also had a feature directing viewers to
Hezbollah “polling stations.”

2.1.11 Political Website Defacements—Hamas Site

Following the January attack on the Sharon website, the website of the militant
group Hamas was attacked in March 2001 [7]. When the Hamas website was hacked,
viewers were redirected to a hard-core pornography site.

50 G. CYBENKO ET AL.

2.1.12 New York Times Site

In February 2001 the New York Times website was defaced by a hacker identified
as “splurge” from a group called “Sm0ked Crew,” which had a few days previously
defaced sites belonging to Hewlett-Packard, Compaq, and Intel [79,80]. The New
York Times defacement included html, a .MID audio file, and graphics. The mes-
sage stated, among other things, “Well, admin I’m sorry to say by you have just
got sm0ked by splurge. Don’t be scared though, everything will be all right, first
fire your current security advisor. . . ” Rather than being politically motivated, such
defacements as these appear to be motivated by self-aggrandizement.

2.1.13 Yahoo Site

In September of 2001 Yahoo’s news website was edited by a hacker [68]. This
cognitive hacking episode, unlike the defacements discussed above, was more sub-
tle. While not as covert as hacking with the intent to engage in fraud or perception
management, neither were the changes made to the website as obvious as those of
a typical defacement. A 20-year old researcher confessed that he altered a Reuters
news article about Dmitry Skylarov, a hacker facing criminal charges. The altered
story stated that Skylarov was facing the death penalty and attributed a false quote to
President Bush with respect to the trial.

2.1.14 Website Defacements Since 11 September Terrorist
Incident

Since the 11 September terrorist incident, there have been numerous examples of
website defacements directed against websites related to Afghanistan [57]. While of-
ficial Taliban sites have been defaced, often sites in any way linked with Afghanistan
were defaced indiscriminately, regardless of which sides they represented in the con-
flict.

2.1.15 Fluffi Bunni Declares Jihad

Another type of politically motivated cognitive hacking attack has been perpe-
trated by “Fluffi Bunni,” who has redirected numerous websites to a page in which
Bunni’s opinion on current events is presented. This redirection appears to have
been accomplished through a hacking of the Domain Name System Server of Net-
Names [41].

COGNITIVE HACKING 51

2.1.16 Website Spoofing—CNN Site

On 7 October 2001, the day that the military campaign against Afghanistan began,
the top-ranked news story on CNN’s most popular list was a hoax, “Singer Britney
Spears Killed in Car Accident.” The chain of events which led to this listing started
with a website spoofing of http://CNN.com [75]. Then, due to a bug in CNN’s soft-
ware, when people at the spoofed site clicked on the “E-mail This” link, the real
CNN system distributed a real CNN e-mail to recipients with a link to the spoofed
page. At the same time with each click on “E-mail This” at the bogus site, the real
site’s tally of most popular stories was incremented for the bogus story. Allegedly
this hoax was started by a researcher who sent the spoofed story to three users of
AOL’s Instant Messenger chat software. Within 12 h more than 150,000 people had
viewed the spoofed page.

In 1997 Felton and his colleagues showed that very realistic website spoofings
could be readily made [37]. More recently, Yuan et al. [97] showed that these types
of website spoofs could be done just as easily with more contemporary Web tech-
nologies.

2.1.17 Website Spoofing—WTO Site

Use of misleading domain names can also be political and more covert. Since
1999, a site, http://www.gatt.org, has existed which is a parody of the World Trade
Organization site, http://www.wto.org [73]. Again, as in the case of the spoofing of
the Yahoo new site mentioned above, the parody can be seen through fairly easily,
but still could mislead some viewers.

2.2 Insider Threat

Trusted insiders who have historically caused the most damage to national security
were caught only after prolonged counterintelligence operations. These insiders car-
ried out their illegal activities for many years without raising suspicion. Even when
it was evident that an insider was misusing information, and even when attention
began to focus on the insider in question as a suspect, it took more years before the
insider was caught. Traditionally apprehension of trusted insiders has been possible
only after events in the outside world had taken place, e.g., a high rate of double
agents being apprehended and executed that led to an analysis eventually focusing
on the insider. Once it was clear that there was likely a problem with insider misuse
of information, it was eventually possible to determine the identity of the insiderby
considering who had access to the information and by considering other factors such
as results of polygraph tests.

http://CNN.com
http://www.gatt.org
http://www.wto.org

52 G. CYBENKO ET AL.

The insider threat, is much more pervasive, however, than a small number of high
profile national security cases. It has been estimated that the majority of all computer
security breeches are due to insider attacks, rather than to external hacking [4].

As organizations move to more and more automated information processing en-
vironments, it becomes potentially possible to detect signs of insider misuse much
earlier than has previously been possible. Information systems can be instrumented
to record all uses of the system, down to the monitoring of individual keystrokes and
mouse movements. Commercial organizations have made use of such clickstream
mining, as well as analysis of transactions to build profiles of individual users. Credit
card companies build models of individuals’ purchase patterns to detect fraudulent
usage. Companies such as Amazon.com analyze purchase behavior of individual
users to make recommendations for the purchase of additional products, likely to
match the individual user’s profile.

A technologically adept insider, however, may be aware of countermeasures de-
ployed against him, or her, and operate in such a way as to neutralize the counter-
measures. In other words, an insider canengage in cognitive hacking against the
network and system administrators. A similar situation arises with Web search en-
gines, where what has been referred to as a cold war exists between Web search
engines and search engine optimizers, i.e., marketers who manipulate Web search
engine rankings on behalf of their clients.

Models of insiders can be built based on:

(a) known past examples of insider misuse;
(b) the insider’s work role in the organization;
(c) the insider’s transactions with the information system; and
(d) the content of the insider’s work product.

This approach to the analysis of the behavior of the insider is analogous to that sug-
gested for analyzing the behavior of software programs by Munson and Wimer [70].
One aspect of this approach is to look for known signatures of insider misuse, or for
anomalies in each of the behavioral models individually. Another aspect is to look
for discrepancies among the models. For example, if an insider is disguising the true
intent of his, or her, transactions by making deceptive transactions that disguise the
true nature of what the insider is doing, then this cognitive hacking might be uncov-
ered by comparing the transactions to the other models described above, e.g., to the
insider’s work product.

User models have long been of interest to researchers in artificial intelligence and
in information retrieval [81,26,49]. Several on-going research programs have been
actively involved in user modeling for information retrieval. The Language Model-
ing approach to probabilistic information retrieval has begun to consider query (user)
models [53,54]. The Haystack project at MIT is building models of users based on

COGNITIVE HACKING 53

their interactions with a document retrieval system and the user’s collections of doc-
uments. The current focus of this project, however, seems to be more on overall
system architecture issues, rather than on user modeling as such [46].

The current type of user modeling that might provide the best basis for cognitive
hacking countermeasures is recommender system technology [92,93,44]. One of the
themes of the recommender systems workshop held at the 1999 SIGIR conference
[43] was the concern to make recommender systems applicable to problems of more
importance than selling products. Sincethen, recommender systems technology has
developed, but applications are generally still largely commercial. Researchers are
concerned with developing techniques that work well with sparse amounts of data
[31] and with scaling up to searching tens of millions of potential neighbors, as
opposed to the tens of thousands of today’s commercial systems [84]. Related to this
type of user modeling, Anderson and Khattak [5] described preliminary results with
the use of an information retrieval system to query an indexed audit trail database,
but this work was never completed [3].

3. Economic and Digital Government Issues Related to
Cognitive Hacking

3.1 An Information Theoretic Model of Cognitive Hacking

Information theory has been used to analyze the value of information in horse
races and in optimal portfolio strategies for the stock market [22]. We have begun
to investigate the applicability of this analysis to cognitive hacking. So far we have
considered the simplest case, that of a horse race with two horses. But the analysis
can be easily extended to the case of the stock market.

Sophisticated hackers can use information theoretic models of a system to define a
gain function and conduct a sensitivity analysis of its parameters. The idea is to iden-
tify and target the most sensitive variables of the system, since even slight alterations
of their value may influence people’s behavior. For example, specific information on
the health of a company might help stock brokers predict fluctuations in the value of
its shares. A cognitive hacker manipulates the victim’s perception of the likelihood of
winning a high payoff in a game. Once the victim has decided to play, the cognitive
hacker influences which strategy the victim chooses.

3.1.1 A Horse Race

Here is a simple model illustrating this kind of exploit. A horse race is a system
defined by the following elements [22]:

54 G. CYBENKO ET AL.

• There arem horses running in a race;

• Each horsei is assigned a probabilitypi of winning the race (so{pi}, i =
1, . . . ,m is a probability distribution);

• Each horsei is assigned an oddsoi signifying that a gambler that betbi dollars
on horsei would win bioi dollars in case of victory (and suffer a total loss in
case of defeat).

If we consider a sequence ofn independent races, it can be shown that the average
rate of the wealth gained at each race is given by

W(b,p,o) =
m∑

i=1

pi logbioi,

wherebi is the percentage of the available wealth invested on horsei at each race.
So the betting strategy that maximizes the total wealth gained is obtained by solving
the following optimization problem:

W(p,o) = max
b

W(b,p,o) = max
b

m∑

i=1

pi logbioi

subject to the constraint that thebi ’s add up to 1. It can be shown that this so-
lution turns out to be simplyb = p (proportional betting) and soW(p,o) =∑m

i=1 pi logpioi .
Thus, a hacker can predict the strategy of a systematic gambler and make an attack

with the goal of deluding the gambler on his/her future gains. For example, a hacker
might lure an indecisive gambler to invest money on false prospects. In this case it
would be useful to understand how sensitive the functionW is top ando and tamper
with the data in order to convince a gambler that it is worth playing (becauseW
appears illusionary larger than it actually is).

To study the sensitivity ofW to its domain variables we consider the partial deriv-
atives ofW with respect topi andoi and see where they assume the highest values.
This gives us information on how steep the functionW is on subsets of its domain.

If we consider the special case of races involving only two horses(m = 2), then
we have

W(p,o1, o2) = p logpo1 + (1− p) log(1− p)o2,

• ∂W
∂p

(p, o1, o2) = log
(p

1−p
o1
o2

)
,

• ∂W
∂o1

(p, o1, o2) = p
o1

,

• ∂W
∂o2

(p, o1, o2) = 1−p
o2

.

COGNITIVE HACKING 55

FIG. 2.

Thus, if we fix one of the variables then we can conduct a graphic analysis of those
functions with a 3D plot, see Fig. 2.

CASE 1. o1 is constant. This is the doubling rate function. The most sensitive para-
meter to letW increase iso2. Increasing this variableW grows at a fast rate for low
values ofp and grows with a smaller rate for higher values ofp.

3.1.2 Applying the Horse Race Example to the Internet

Let’s take into consideration the Mark Jakob case discussed earlier. In this exam-
ple the two horses are: horse 1, Emulex stock goes up; and horse 2, Emulex stock
goes down. First, the cognitive hacker makes the victim want to play the game by
making the victim think that he can make a large profit through Emulex stock trans-
actions. This is done by spreading misinformation about Emulex, whether positive or
negative, but news that, if true would likely cause the stock’s value to either sharply
increase, or decrease, respectively. Positive misinformation might be the news that
Emulex had just been granted a patent that could lead to a cure for AIDS. Neg-
ative misinformation might be that Emulex was being investigated by the Securi-
ties and Exchange Commission (SEC) and that the company was forced to restate
1998 and 1999 earnings. This fraudulent negative information was in fact posted by
Jakob.

56 G. CYBENKO ET AL.

3.2 Theories of the Firm and Cognitive Hacking

Much attention in economics has been devoted to theories of the market. The
economic actor has been modeled as enjoying perfect, costless information. Such
analyses, however, are not adequate to explain the operation of firms. Theories of
the firm provide a complementary economic analysis taking into account transac-
tion and organizing costs, hierarchies, and other factors left out of idealized market
models. It has been argued that information technology will transform the firm, such
that “. . . the fundamental building blocks of the new economy will one day be ‘virtual
firms,’ ever-changing networks of subcontractors and freelancers, managed by a core
of people with a good idea” [33]. Others argue that more efficient information flows
not only lower transaction costs, thereby encouraging more outsourcing, but also
lower organization costs, thereby encouraging the growth of larger companies [2].
More efficient information flow implies a more standardized, automated processing
of information, which is susceptible to cognitive attack. In this light Libicki’s char-
acterization of semantic attacks in terms ofmisinformation being inserted into in-
teractions among intelligent software agents [60] can be applied to misinformation’s
potential to disrupt increasingly automated business processes, as well.

3.3 Digital Government and Cognitive Hacking

The National Center for Digital Government is exploring issues related to the tran-
sition from traditional person-to-person provision of government services to the pro-
vision of such services over the Internet. As excerpted from the Center’s mission
statement:

Government has entered a period of deeptransformation heralded by rapid de-
velopments in information technologies. The promise of digital government lies
in the potential of the Internet to connect government actors and the public in
entirely new ways. The outcomes of fundamentally new modes of coordination,
control, and communication in government offer great benefits and equally great
peril [71].

A digital government workshop held in 2003 [72], focused on five scenarios for
future authentication policies with respect to digital identity:

• Adoption of a single national identifier;

• Sets of attributes;

• Business as usual, i.e., continuing growth of the use of ad hoc identifiers;

• Ubiquitous anonymity;

• Ubiquitous identify theft.

COGNITIVE HACKING 57

The underlying technologies considered for authentication were: biometrics; cryp-
tography, with a focus on digital signatures; secure processing/computation; and rep-
utation systems.

Most of the discussion at the workshop focused on issues related to authentication
of users of digital government, but, as the scenario related to ubiquitous identity
theft implies, there was alsoconsideration of problems related to misinformation,
including cognitive hacking.

In the face-to-face interaction with other people associated with traditional pro-
vision of government services, there is normally some context in which to evaluate
the reliability of information being conveyed. As we have seen, this type of evalua-
tion cannot be directly transferred to digital government. The Internet’s open nature
makes it an ideal arena for dissemination of misinformation. What happens if a user
makes a decision based on information found on the Web that turns out to be mis-
information, even if the information appears to come from a government website?
In reality, the information might be coming from a spoofed version of a government
website. Furthermore, the insider threat is a serious concern for digital government.

4. Legal Issues Related to Cognitive Hacking

The Internet is a medium of communication,perception management, advertising
and e-commerce, among other things. Laws that apply to other media related to these
activities also apply to the Internet. However, as stated by Mensik and Fresen [66] of
Baker and McKenzie:

As a new medium, the Internet compels the legal system to reexamine its fun-
damental principles. To accommodate the new medium, the legal system must
adapt traditional doctrines and adopt new concepts in a way that protects rights
and establishes a fair framework for assessing liability. Some say that neither
common law nor civil law jurisdictions are capable of keeping pace with the
rapid development of new technologies. This may be especially true in the global
business arena of the Internet that defies the application of traditional legal prin-
ciples. . . future electronic transactions will be performed solely between com-
puters by electronic agents or “know-bots” and this lack of human involvement
challenges fundamental assumptions of contract law, such as presented in the
Uniform Commercial Code, that are necessarily based upon human interaction
in the contracting process.

From a cognitive hacking perspective this last point about electronic agents is
of interest as it relates this paper’s definition of cognitive hacking as being targeted
against a human user, to Libicki’s [60] original definition of semantic attacks as being
against agents (see below).

58 G. CYBENKO ET AL.

An attorney from Buchanan Ingersoll P.C. [11] provides this additional perspec-
tive:

Content providers, the businesses which hire them, as well as their advertising
agencies and Web site developers, may be liable directly to victims for false or
misleading advertising, copyright and trademark infringement, and possibly for
vicarious infringements. The difference between other forms of media and the
Internet is that the Internet contemplates the publishing and linking of one site
to another, which geometrically multiplies the possibility for exposure to claims.
The electronic benefits of the Internet promotes the linking of information con-
tained in one site to another and creates a higher likelihood of dissemination of
offending material.

The Lanham Act, 15 U.S.C. §1125(a) [65] has been applied to the prosecution of
false advertising on the Web. It provides that any person who“. . . uses in commerce
any word, term, name, symbol, or device. . . false description of origin, false or mis-
leading description of fact. . . which, (A) is likely to cause confusion, or to cause
mistake, or to deceive as to affiliation, connection, or association of such person with
another person, or as to the origin, sponsorship, or approval of his or her goods, ser-
vices, or commercial activities by another person, or (B) in commercial advertising
or promotion misrepresents the nature, characteristics, qualities, or geographic ori-
gin of his or her or another person’s goods, services, or commercial activities, shall
be liable in a civil action by any person who believes that he or she is likely to be
damaged by such an act.”

The Lanham Act, copyright, and trademark law, among other established areas of
the law, are being used to decide cases related to cognitive hacking. For example, in
the area of search engine optimization, if company A’s website uses the trademark of
company B in metatags for company A’s website in order to divert Web searches for
company B to company A’s website, then company A could be liable for trademark
infringement or false advertising under the Lanham Act. On the other hand, company
A could argue that its use of metatags was protected under trademark principles of
fair use or First Amendment principles of free speech. As a more extreme action,
company A might download the entire content of a popular website from company
B and incorporate it into company A’s website with all of the company B content
printed white-on-white background, so that it would be invisible to human viewers,
but visible to Web search engines. This would be a violation of copyright laws and
possibly also be considered unfair competition and trademark dilution [1].

The application of the law to cognitive hacking and other areas related to the Inter-
net is a very volatile area of the law. The events of September 2001 have only made
the situation more volatile as the debate between privacy and security has shifted. It
is to be expected that more legislation affecting this area will be enacted and that the
associated case law will continue to evolve over the coming years.

COGNITIVE HACKING 59

If cognitive hacking challenges securityexperts because it aims at the vulnera-
ble human/computer interface, it challenges legal experts because it both targets and
exploits information, the very lifeblood of free speech and democracy [25]. Crim-
inal prosecution and civil lawsuits may help combat cognitive hacking, but this
will be possible only in compliance withfree speech protection. Laws already ex-
ist that can fight disinformation without violating fundamental rights. But cognitive
hacking introduces new characteristics requiring revised legal doctrines. Ultimately,
confronting cognitive hacking will require integrating legal and technological anti-
hacking tools.

Within the United States, where the US Constitution prevails, legal action seeking
to regulate cognitive hacking can conflict with First Amendment free speech pro-
tection. The First Amendment prohibits government punishment of “false” ideas or
opinions. The competition of ideas, not legislatures or courts, determines what ideas
and opinions society accepts. And while falsefacts lack constitutional protection,
the US Supreme Court has ruled that the news media as well as non-news media
discussion of public issues or persons require some margin of factual error to pre-
vent chilling legitimate debate. “The First Amendment requires that we protect some
falsehood in order to protect speech that matters.” [39]

Punishing Web defacement should present no First Amendment concerns. As with
graffiti in the physical world [74], the First Amendment does not shield unauthorized
damage to property of others. Distribution of false information with an intent to
defraud or manipulate should also require little First Amendment consideration.

However, a regulatory measure aimed at the content of the cognitive hacking, on
what the hackingsays, would likely fail constitutionally unless the state interest were
compelling and no content-neutral alternative were available. Attempts within the
United States to stop a website or metatags or list server postings from expressing
unpopular views would also struggle to pass First Amendment muster [78].

Indeed, many legal avenues already existfor attacking cognitive hacking consis-
tent with First Amendment rights.

Some forms of cognitive hacking are tightly coupled with conduct that has legal
consequences. Web defacement requires breaking into another’s website, and, there-
fore, could be characterized as vandalism, destruction of property, trespassing, or,
under the right circumstances, a violation of the Electronic Communications Privacy
Act of 1986. As described above, manipulating securities markets through cognitive
hacking can trigger prosecution under thesecurities laws. If unauthorized use of a
software robot to harvest information from another’s website can be trespassing [32],
perhaps so is feeding false data into another’s software robot that is harvesting Web
information.

Other forms of cognitive hacking involve incendiary or factually false statements
beyond First Amendment protection. Disseminating false information to secure an

60 G. CYBENKO ET AL.

agreement could be the basis of legal actions for fraud or misrepresentation. Dissemi-
nating false information that damages the reputation of a person, business, or product
could lead to a libel, defamation, or commercial disparagement suit. Incorporating
trademarks of others as metatags that mislead consumers about the origin of goods
or services or reduce the goodwill associated with a mark could be reached through
the legal remedies provided by trademark and trademark antidilution statutes.

The special persuasive powers of computer output create an extra dimension of
legal concern. Humans are quick to believe what they read and see on their computer
screen. Even today, it is common to hear someone say a fact must be true because
they read it on the Web. A website’s anthropomorphic software agent is likely to
enjoy greater credibility than a human, yet no conscience will prevent an anthropo-
morphic agent from saying whatever it has been programmed to say [42]. Cognitive
hackers may, therefore, require new legaldoctrines because their mechanisms appar-
ently bypass normal human critical thinking.

Still more elusive will be identifying and taking meaningful legal action against
the perpetrator. The speed and lack of humanintervention that is typically associated
with cognitive hacking, combined with the lack of definitive identification informa-
tion generally inherent in the Internet’s present architecture, complicate legal proof
of who is the correct culprit. Privacy protection makes the task more difficult. Even
if identified, the individual or entity may disappear or lack the assets to pay fines or
damages.

Attention may, therefore, focus instead on third-party intermediaries, such as In-
ternet service providers, websites, search engines, and so forth, just as it has for
Internet libel, copyright infringement, and pornography. Intermediaries are likely to
have greater visibility and more assets, making legal action easier and more produc-
tive. A cognitive hacking victim might contend that an intermediary or the producer
of Web-related software failed to take reasonable measures to defend against cog-
nitive hacking. An intermediary’s legal responsibility will grow as the technological
means for blocking cognitive hacking become more effective and affordable. Rapid
technological advances with respect to anti-hacking tools would empower raising the
bar for what it considered reasonable care.

The actual application of the law to cognitive hacking is still in formation. It is to
be expected that case law with respect to cognitive hacking will continue to evolve
over the coming years. Enactment of specific legislation is also possible.

5. Cognitive Hacking Countermeasures

Given the variety of approaches documented above and the very nature of cogni-
tive hacking,preventingcognitive hacking reduces either to preventing unauthorized

COGNITIVE HACKING 61

access to information assets (such as in Web defacements) in the first place or detect-
ing posted misinformation before user behavior is affected (that is, before behavior
is changed but possibly after the misinformation has been disseminated). The lat-
ter may not involve unauthorized access to information, as, for instance, in “pump
and dump” schemes that use newsgroups and chat rooms. By definition,detectinga
successful cognitive hack would involve detecting that the user behavior has already
been changed. We are not considering detection in that sense at this time.

Our discussion of methods for preventing cognitive hacking will be restricted to
approaches that could automatically alert users of problems with their information
source or sources (information on a Web page, newsgroup, chat room, and so on).
Techniques for preventing unauthorized access to information assets fall under the
general category of computer and network security and will not be considered here.
Similarly, detecting that users have already modified their behaviors as a result of the
misinformation, namely, that a cognitive hack has been successful, can be reduced to
detecting misinformation and correlating it with user behavior.

The cognitive hacking countermeasures discussed here will be primarily mathe-
matical and linguistic in nature. The use of linguistic techniques in computer se-
curity has been pioneered by Raskin and colleagues at Purdue University’s Center
for Education and Research in Information Assurance and Security [6]. Their work,
however, has not addressed cognitive hacking countermeasures.

5.1 Single Source Cognitive Hacking

In this section, we propose a few possible approaches for the single source prob-
lem. By single source, we mean situations in which redundant, independent sources
of information about the same topic are not available. An authoritative corporate
personnel database would be an example.

5.1.1 Authentication of Source

This technique involves due diligence in authenticating the information source and
ascertaining its reliability. Various relatively mature certification and PKI technolo-
gies can be used to detect spoofing of an information server. Additionally, reliability
metrics can be established for an information server or service by scoring its accuracy
over repeated trials and different users. In this spirit, Lynch [61] describes a frame-
work in which trust can be established on an individual user basis based on both the
identity of a source of information, through PKI techniques for example, and in the
behavior of the source, such as could be determined through rating systems. Such an
approach will take time and social or corporate consensus to evolve.

62 G. CYBENKO ET AL.

5.1.2 Information “Trajectory” Modeling
This approach requires building a model of a source based on statistical historical

data or some sort of analytic understanding of how the information relates to the real
world. For example, weather data coming from a single source (website or environ-
mental sensor) could be calibrated against historical database (from previous years)
or predictive model (extrapolating from previous measurements). A large deviation
would give reason for hesitation before committing to a behavior or response.

As an interesting aside, consider the story lines of many well-scripted mystery
novels or films. We believe that the most satisfying and successful stories involve
s sequence of small deviations from what is expected. Each twist in the story is
believable but when aggregated, the reader or viewer has reached a conclusion quite
far from the truth. In the context of cognitive hacking, this is achieved by making
a sequence of small deviations from the truth, not one of which fails a credibility
test on it own. The accumulated deviations are, however, significant and surprise the
reader or viewer who was not paying much attention to the small deviations one by
one. However, a small number of major “leaps of faith” would be noticed and such
stories are typically not very satisfying. Modeling information sources is something
that can be done on a case-by-case basis as determined by the availability of historical
data and the suitability of analytic modeling.

5.1.3 Ulam Games
Stanislaw Ulam in his autobiographyAdventure of a Mathematicianposed the

following question [91]:

“Someone thinks of a number between one and one million (which is just less
than 220). Another person is allowed to ask up to twenty questions, to which the
first person is supposed to answer only yes or no. Obviously, the number can
be guessed by asking first: “Is the number in the first half-million?” and then
again reduce the reservoir of numbers in the next question by one-half, and so
on. Finally, the number is obtained in less than log2(1000000). Now suppose one
were allowed to lie once or twice, then how many questions would one need to
get the right answer?”

Of course, if an unbounded number of lies are allowed, no finite number of ques-
tions can determine the truth. On the other hand, if sayk lies are allowed, each binary
search question can be repeatedly asked 2k + 1 times which is easily seen to be ex-
tremely inefficient. Several researchers have investigated this problem, using ideas
from error-correcting codes and other areas [18,69].

This framework involves a sequence of questions and a bounded number of lies,
known a priori. For these reasons, we suspect that this kind of model and solution
approach may not be useful in dealing with the kinds of cognitive hacking we have

COGNITIVE HACKING 63

documented, although it will clearly be useful in cognitive hacking applications that
involve a sequence of interactions between a user and an information service, as in a
negotiation or multi-stage handshake protocol.

5.1.4 Linguistic Countermeasures with Single Sources
5.1.4.1 Genre Detection and Authority Analysis. A careful human
reader of some types of misinformation, e.g., exaggerated pump and dump scheme
postings on the Web about a company’s expected stock performance, can often detect
the misinforming posting from other legitimate postings, even if these legitimate
postings are also somewhat hyperbolic. Since Mosteller and Wallace’s seminal work
on authorship attribution in the 1964 [67], statistical linguistics approaches have been
used to recognize the style of different writings. In Mosteller and Wallace’s work
this stylistic analysis was done to determine the true author of anonymous Federalist
papers, where the authorship was disputed. Since then Biber and others [9,10,35,
50] have analyzed the register and genre of linguistic corpora using similar stylistic
analysis. Kessler et al. [51] have developed and tested algorithms based on this work
to automatically detect the genre of text.

5.1.4.2 Psychological Deception Cues. The approach to genre analy-
sis taken, e.g., by Biber and Kessler et al., is within the framework of corpus linguis-
tics, i.e., based on a statistical analysis of general word usage in large bodies of
text. The work on deception detection in the psychology and communications fields
(see Section 1.5) is based on a more fine-grained analysis of linguistic features or
cues. Psychological experiments have been conducted to determine which cues are
indicative of deception. To date this work has not led to the development of software
tools to automatically detect deception in computer-mediated communication, but
researchers see the development of such tools as one of the next steps in this line of
research [99].

5.2 Multiple Source Cognitive Hacking
In this section, we discuss possible approaches to preventing cognitive hacking

when multiple, presumably redundant, sources of information are available about
the same subject of interest. This is clearly the case with financial, political and other
types of current event news coverage.

Several aspects of information dissemination through digital, network media, such
as the Internet and World Wide Web, make cognitive hacking possible and, in fact,
relatively easy to perform. Obviously, there are enormous market pressures on the
news media and on newsgroups to quickly disseminate as much information as pos-
sible. In the area of financial news, in particular, competing news services strive to

64 G. CYBENKO ET AL.

be to the first to give reliable news about breaking stories that impact the business
environment. Such pressures are at odds with the time consuming process of veri-
fying accuracy. A compromise between the need to quicklydisseminate information
and the need to investigate its accuracy is not easy to achieve in general.

Automated software tools could in principle help people make decisions about the
veracity of information they obtain from multiple networked information systems.
A discussion of such tools, which could operate at high speeds compared with human
analysis, follows.

5.2.1 Source Reliability via Collaborative Filtering and
Reliability Reporting

The problem of detecting misinformation on the Internet is much like that of
detecting other forms of misinformation, for example, in newsprint or verbal dis-
cussion. Reliability, redundancy, pedigree and authenticity of the information being
considered are key indicators of the overall “trustworthiness” of the information.
The technologies of collaborative filtering and reputation reporting mechanisms have
been receiving more attention recently, especially in the area of on-line retail sales
[96,27]. This is commonly used by the many on-line price comparison services to in-
form potential customers about vendor reliability. The reliability rating is computed
from customer reports.

Another technology, closely related to reliability reporting is collaborative filter-
ing. This can be useful in cognitive hacking situations that involve opinions rather
than hard objective facts. See [90] for details about collaborative filtering approaches.

Both of these approaches involve user feedback about information that they re-
ceive from a particular information service, building up a community notion of reli-
ability and usefulness of a resource. The automation in this case is in the processing
of the user feedback, not the evaluation of the actual information itself.

5.2.1.1 An Example of a Multiple Source Collaborative Filtering
Model for Multiple News Sources. Consider the following scenario. An
end user is examining a posting to the business section of Google News [40]. The
document purports to provide valuable news about a publicly traded company that the
user would like to act on quickly by purchasing, or selling stock. Although this news
item might be reliable, it might also be misinformation being fed to unwary users
by a cognitive hacker as part of a pump and dump scheme, i.e., a cognitive hacker’s
hyping of a company by the spread of false, or misleading information about the
company and the hacker’s subsequent selling of the stock as the price of its shares
rise, due to the misinformation. The end user would like to act quickly to optimize

COGNITIVE HACKING 65

his or her gains, but could pay a heavy price, if this quick action is taken based on
misinformation.

A cognitive hacking countermeasure is under development which will allow an
end user to effectively retrieve and analyze documents from the Web that are sim-
ilar to the original news item. First, a set of documents retrieved by the Google
News clustering algorithm. The Google News ranking of the clustered documents is
generic, not necessarily optimized as a countermeasure for cognitive attacks. We are
developing a combination process in which several different search engines are used
to provide alternative rankings of the documents initially retrieved by Google News.
The ranked lists from each of these search engines, along with the original rank-
ing from Google News, will be combined using the Combination of Expert Opinion
algorithm [64] to provide a more optimal ranking. Relevance feedback judgments
from the end user will be used to train the constituent search engines. It is expected
that this combination and training process will yield a better ranking than the initial
Google News ranking. This is an important feature in a countermeasure for cognitive
hacking, because a victim of cognitive hacking will want to detect misinformation as
soon as possible in real time.

5.2.2 Byzantine Generals Models

Chandy and Misra [15] define the Byzantine General’s Problem as follows:

A message-communicating system has two kinds of processes,
reliable and unreliable . There is a process, called gen-
eral , that may or may not be reliable. Each process x has
a local variable byz[x]. It is required to design an al-
gorithm, to be followed by all reliable processes, such
that every reliable process x eventually sets its local
variable byz[x], to a common value. Furthermore, if gen-
eral is reliable, this common value is d0[g], the initial
value of one of general ’s variables. The solution is com-
plicated by the fact that unreliable processes send ar-
bitrary messages. Since reliable processes cannot be dis-
tinguished from the unreliable ones, the straightforward
algorithm-- general transmits its initial value to all
processes and every reliable process u assigns this value
to byz[u]--does not work, because general itself may be
unreliable, and hence may transmit different values to
different processes.

This problem models a group of generals plotting a coup. Some generals are reli-
able and intend to go through with the conspiracy while others are feigning support

66 G. CYBENKO ET AL.

and in fact will support the incumbent ruler when the action starts. The problem is to
determine which generals are reliable and which are not.

Just as with the Ulam game model for a single information source, this model
assumes a sequence of interactions according to a protocol, something that is not
presently applicable to the cognitive hacking examples we have considered, although
this model is clearly relevant to the more sophisticated information sources that
might arise in the future.

5.2.3 Detection of Collusion by Information Sources

Collusion between multiple information sources can take several forms. In pump
and dump schemes, a group may hatch a scheme and agree to post-misleading stories
on several websites and newsgroups. In this case, several people are posting infor-
mation that will have common facts or opinions, typically in contradiction to the
consensus.

Automated tools for preventing this form of cognitive hack would require nat-
ural language processing to extract the meaning of the various available information
sources and then compare their statistical distributions in some way. For example,
in stock market discussion groups, a tool would try to estimate the “position” of a
poster, from “strong buy” to “strong sell” and a variety of gradations in between.
Some sort of averaging or weighting could be applied to the various positions to
determine a “mean” or expected value, flagging large deviations from that expected
value as suspicious.

Similarly, the tool could look for tightly clustered groups of messages, which
would suggest some form of collusion. Such a group might be posted by the one
person or by a group in collusion, having agreed to the form of a cognitive hack
beforehand.

Interestingly, there are many statistical tests for detecting outliers but much less
is known about detecting collusion which may not be manifest in outliers but in un-
likely clusters that may not be outliers at all. For example, if too many eyewitnesses
agree to very specific details of a suspect’s appearance (height, weight, and so on),
this might suggest collusion to an investigator. For some interesting technology deal-
ing with corporate insider threats due to collusion, see [100].

Automated software tools that can do natural language analysis of multiple doc-
uments, extract some quantitative representation of a “position” based on that docu-
ment and then perform some sort of statistical analysis of the representations are in
principle possible, but we are not aware of any efforts working at developing such a
capability at this time.

COGNITIVE HACKING 67

5.2.4 Linguistic Countermeasures with Multiple Sources

5.2.4.1 Authorship Attribution. Stylistic techniques from linguistics are
also potential tools for determining thelikelihood of authenticity of multiple docu-
ments being analyzed [67]. Suppose we are given a set of documents authored by one
or more people hiding themselves under possibly multiple pseudonyms. It would be
desirable to group the documents according to the real author; that is, to partition the
documents into subsets of papers all belonging to the same author.

The main idea is to embed the given document into a finite-dimensional linear
feature space of stylistic language usage with some notion of stylistic distance in
that space. By performing cluster and other types of analyses on the writing and
linguistic style of the whole document or sections thereof, it might be possible to
establish which sections of documents are stylistically similar and so, presumably,
authored by the same writer.

This kind of detection cannot be applied to short messages, but for a consistent
length and enough words, it could determine, with high confidence the stylistic char-
acteristic of the author, or source [77].

6. Future Work

In this chapter a variety of cognitive hacking countermeasures have been de-
scribed, but implementation has begun on only a few of them. Our future work lies in
implementation of the remaining countermeasures and in the development of coun-
termeasures that can be used not only against cognitive attacks, but against semantic
attacks more broadly, such as the attacks with misinformation against autonomous
agents, as described in Libicki’s original definition of semantic hacking.

7. Summary and Conclusions

This chapter has defined a new concept in computer network security, cognitive
hacking. Cognitive hacking is related to other concepts, such as semantic hacking, in-
formation warfare, and persuasive technologies, but is unique in its focus on attacks
via a computer network against the mind of a user. Psychology and Communica-
tions researchers have investigated the closely related area of deception and detec-
tion in interpersonal communication, but have not yet begun to develop automated
countermeasures. We have argued that cognitive hacking is one of the main features
which distinguishes intelligence and security informaticsfrom traditional scientific,
medical, or legal informatics. If, as claimed by psychologists studying interpersonal

68 G. CYBENKO ET AL.

deception, most interpersonal communication involves some level of deception, then
perhaps communication via the Internet exhibits a level of deception somewhere be-
tween that of face-to-face interpersonal communication, on the one hand, and scien-
tific communication on the other. As the examples from this chapter show, the level
of deception on the Internet and in other computer networked settings is significant,
and the economic losses due to cognitive hacking are substantial. The development
of countermeasures against cognitive hacking is an important priority.

ACKNOWLEDGEMENTS

Support for this research was provided by a Department of Defense Critical In-
frastructure Protection Fellowship grant with the Air Force Office of Scientific Re-
search, F49620-01-1-0272; Defense Advanced Research Projects Agency Projects
F30602-00-2-0585 and F30602-98-2-0107; and the Office of Justice Programs, Na-
tional Institute of Justice, Departmentof Justice Award 2000-DT-CX-K001 (S-1).
The views in this document are those of the authors and do not necessarily represent
the official position of the sponsoring agencies or of the US Government.

REFERENCES

[1] Abel S., “Trademark issues in cyberspace: The brave new frontier”, http://library.lp.
findlaw.com/scripts/getfile.pl?file=/firms/fenwick/fw000023.html, 1998.

[2] Agre P., “The market logic of information”,Knowledge, Technology, and Policy13 (1)
(2001) 67–77.

[3] Anderson R., Personal communication, 2002.
[4] Anderson R.H., Bozek T., Longstaff T., Meitzler W., Skroch M., Van Wyk K., “Re-

search on mitigating the insider threat to information systems – #2”, in:Proceedings of
a Workshop Held August 2000. RAND Technical Report CF163, RAND, Santa Monica,
CA, 2000.

[5] Anderson R., Khattak A., “The use of information retrieval techniques for intrusion
detection”, in:First International Workshop on Recent Advances in Intrusion Detection
(RAID), Louvain-la-Neuve, Belgium, 1998.

[6] Atallah M.J., McDonough C.J., Raskin V., Nirenburg S., “Natural language processing
for information assurance and security: An overview and implementations”, in:Pro-
ceedings of the 2000 Workshop on New Security Paradigms, 2001.

[7] BBC News Online, “Hamas hit by porn attack”, http://news.bbc.co.uk/low/english/
world/middle_east/newsid_1207000/1207551.stm, 2001.

[8] BBC News Online, “Sharon’s website hacked”, http://news.bbc.co.uk/low/english/
world/middle_east/newsid_1146000/1146436.stm, 2001.

[9] Biber D., Dimensions of Register Variation: A Cross-Linguistic Comparison, Cam-
bridge Univ. Press, Cambridge, UK, 1995.

http://library.lp.findlaw.com/scripts/getfile.pl?file=/firms/fenwick/fw000023.html
http://library.lp.findlaw.com/scripts/getfile.pl?file=/firms/fenwick/fw000023.html
http://library.lp.findlaw.com/scripts/getfile.pl?file=/firms/fenwick/fw000023.html
http://news.bbc.co.uk/low/english/world/middle_east/newsid_1207000/1207551.stm
http://news.bbc.co.uk/low/english/world/middle_east/newsid_1207000/1207551.stm
http://news.bbc.co.uk/low/english/world/middle_east/newsid_1207000/1207551.stm
http://news.bbc.co.uk/low/english/world/middle_east/newsid_1146000/1146436.stm
http://news.bbc.co.uk/low/english/world/middle_east/newsid_1146000/1146436.stm
http://news.bbc.co.uk/low/english/world/middle_east/newsid_1146000/1146436.stm

COGNITIVE HACKING 69

[10] Biber D., “Spoken and written textual dimensions in English: Resolving the contradic-
tory findings”,Language62 (2) (1986) 384–413.

[11] Buchanan Ingersoll P.C., “Avoiding web site liability—online and on the hook?”,
http://library.lp.findlaw.com/scripts/getfile.pl?file=/articles/bipc/bipc000056.html,
2001.

[12] Buller D.B., Burgoon J.K., “Interpersonal deception theory”,Communication The-
ory 6 (3) (1996) 203–242.

[13] Burgoon J.K., Blair J.P., Qin T., Nunamaker J.F., “Detecting deception through linguis-
tic analysis”, in:NSF/NIJ Symposium on Intelligence and Security Informatics, June 1–
3, 2003, Tucson, AZ, in: Lecture Notes in Computer Science, Springer-Verlag, Berlin,
2003, pp. 91–101.

[14] Cao J., Crews J.M., Lin M., Burgoon J.K., Nunamaker J.F., “Designing Agent99
trainer: a learner-centered, Web-based training system for deception detection”, in:
NSF/NIJ Symposium on Intelligence and Security Informatics, June 1–3, 2003, Tucson,
AZ, in: Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2003, pp. 358–
365.

[15] Chandy K.M., Misra J.,Parallel Program Design: A Foundation, Addison–Wesley,
Reading, MA, 1988.

[16] Chen H., Zeng D.D., Schroeder J., Miranda R., Demchak C., Madhusudan T. (Eds.),
Intelligence and Security Informatics: First NSF/NIJ Symposium ISI 2003, Tucson, AZ,
June 2003, Proceedings, Springer-Verlag, Berlin, 2003.

[17] Chez.com, “Disinformation on the Internet”, http://www.chez.com/loran/art_danger/
art_danger_on_internet.htm, 1997.

[18] Cignoli R.L.O., D’Ottaviano I.M.L., Mundici D.,Algebraic Foundations of Many-
Valued Reasoning, Kluwer Academic, Boston, 1999.

[19] Combs J.E., Nimmo D.,The New Propaganda: The Dictatorship of Palaver in Con-
temporary Politics, Longman, New York, 1993.

[20] Cooper W.S., Maron M.E., “Foundations ofprobabilistic and utility-theoretic index-
ing”, Journal of the Association for Computing Machinery25 (1) (1978) 67–80.

[21] Cornetto K.M., “Identity and illusion on the Internet: Interpersonal deception and de-
tection in interactive Internet environments”, PhD thesis, University of Texas at Austin,
2001.

[22] Cover T.A., Thomas J.A.,Elements of Information Theory, Wiley, New York, 1991.
[23] Cybenko G., Giani A., Thompson P., “Cognitive hacking and the value of information”,

in: Workshop on Economics and Information Security, May 16–17, Berkeley, CA, 2002.
[24] Cybenko G., Giani A., Thompson P., “Cognitive hacking: A battle for the mind”, IEEE

Computer35 (8) (2002) 50–56.
[25] Cybenko G., Giani A., Heckman C., Thompson P., “Cognitive hacking: Technological

and legal issues”, in:LawTech 2002, November 7–9, 2002.
[26] Daniels P.J., Brooks H.M., Belkin N.J., “Using problem structures for driving human–

computer dialogues”, in: Sparck Jones K., Willett P. (Eds.),Readings in Informa-
tion Retrieval, Morgan Kaufmann, San Francisco, 1997, pp. 135–142. Reprinted from
RIAO-85 Actes: Recherche d’InformationsAssistee par Ordinateur, France IMAG,
Grenoble, pp. 645–660.

http://library.lp.findlaw.com/scripts/getfile.pl?file=/articles/bipc/bipc000056.html
http://www.chez.com/loran/art_danger/art_danger_on_internet.htm
http://www.chez.com/loran/art_danger/art_danger_on_internet.htm
http://www.chez.com/loran/art_danger/art_danger_on_internet.htm

70 G. CYBENKO ET AL.

[27] Dellarocas C., “Building trust on-line: The design of reliable reputation reporting mech-
anisms for online trading communities”, Center for eBusiness@MIT paper 101, 2001.

[28] Denning D.,Information Warfare and Security, Addison–Wesley, Reading, MA, 1999.
[29] Denning D., “The limits of formal security models”,National Computer Systems Secu-

rity Award Acceptance Speech, 1999.
[30] Doob L.,Propaganda, Its Psychology and Technique, Holt, New York, 1935.
[31] Drineas P., Kerendis I., Raghavan P.,Competitive recommendation systems STOC’02,

May 19–21, 2002.
[32] eBay, Inc. v. Bidder’s Edge, Inc., 100 F. Supp. 2d 1058 (ND Cal., 2000).
[33] “Re-engineering in real time”,Economist(31 January, 2002), http://www.economist.

com/surveys/PrinterFriendly.cfm?Story_ID=949093.
[34] Ellul J., Propaganda, Knopf, New York, 1966, translated from French by Kellen K.,

Lerner L.
[35] Farahat A., Nunberg G., Chen F., “AuGEAS (Authoritativeness Grading, Estimation,

and Sorting)”, in:Proceedings of the International Conference on Knowledge Manage-
ment CIKM’02, 4–9 November, McLean, VA, 2002.

[36] Fawcett T., Provost F., in: Kloesgen W., Zytkow J. (Eds.),Handbook of Data Mining
and Knowledge Discovery, Oxford Univ. Press, 2002.

[37] Felton E.W., Balfanz D., Dean D., Wallach D.,Web spoofing: An Internet con game.
Technical Report 54–96 (revised), Department of Computer Science, Princeton Univer-
sity, 1997.

[38] George J., Biros D.P., Burgoon J.K., Nunamaker Jr. J.F., “Training professionals to
detect deception”, in:NSF/NIJ Symposium on Intelligence and Security Informatics,
June 1–3, 2003, Tucson, AZ, in: Lecture, Notes in Computer Science, Springer-Verlag,
Berlin, 2003, pp. 366–370.

[39] Gertz v. Robert Welch, Inc., 428 US 323, 94 S.Ct. 2997, 41 L.Ed.2d 789 (1974).
[40] “Google News beta”, http://news.google.com/.
[41] “The Hacktivist. Fluffi Bunni hacker declares Jihad”, http://thehacktivist.com/article.

php?sid=40, 2001.
[42] Heckman C.J., Wobbrock J., “Put your best face forward: Anthropomorphic agents,

e-commerce consumers, and the law”, in:Fourth International Conference on Au-
tonomous Agents, June 3–7, Barcelona, Spain, 2000.

[43] Herlocker J. (Ed.),Recommender Systems: Papers and notes from the 2001 workshop,
In conjunction with the ACM SIGIR Conference on Research and Development in In-
formation Retrieval, New Orleans, 2001.

[44] Hofmann T., “What people (don’t) want”, in:European Conference on Machine Learn-
ing (ECML), 2001.

[45] Hunt A.,Web Defacement Analysis, ISTS, 2001.
[46] Huynh D., Karger D., Quan D., “Haystack: A platform for creating, organizing and

visualizing information using RDF”, in:Intelligent User Interfaces (IUI), 2003.
[47] “Information Warfare Site”, http://www.iwar.org.uk/psyops/index.htm, 2001.
[48] Interpersonal Deception: Theory and Critique, Communication Theory6 (3) (1996),

special issue.

http://www.economist.com/surveys/PrinterFriendly.cfm?Story_ID=949093
http://www.economist.com/surveys/PrinterFriendly.cfm?Story_ID=949093
http://www.economist.com/surveys/PrinterFriendly.cfm?Story_ID=949093
http://news.google.com/
http://thehacktivist.com/article.php?sid=40
http://thehacktivist.com/article.php?sid=40
http://thehacktivist.com/article.php?sid=40
http://www.iwar.org.uk/psyops/index.htm

COGNITIVE HACKING 71

[49] Johansson P., “User modeling in dialog systems”, St. Anna Report SAR 02-2, 2002.
[50] Karlgren J., Cutting D.,Recognizing text genres with simple metrics using discriminant

analysis, 1994.
[51] Kessler B., Nunberg G., Schütze H., “Automatic detection of genre”, in:Proceedings

of the Thirty-Fifth Annual Meeting of the Association for Computational Linguistics
and Eighth Conference of the European Chapter of the Association for Computational
Linguistics, 1997.

[52] Krebs B., “E-mail Scam Sought to defraud PayPal customers”,Newsbytes(19 Decem-
ber, 2001), http://www.newsbytes.com/news/01/173120.html.

[53] Lafferty J., Chengxiang Z., “Document language models, query models, and risk mini-
mization for information retrieval”, in:2001 ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), 2001.

[54] Lafferty J., Chengxiang Z., “Probabilistic relevance models based on document and
query generation”, in:Proceedings of the Workshop on Language Modeling and Infor-
mation Retrieval, Carnegie Mellon University, 2001, Kluwer volume PT reviewing, in
press.

[55] Landwehr C.E., “A security model for military message systems”,ACM Transactions
on Computer Systems9 (3) (1984).

[56] Landwehr C.E., “Formal models of computer security”,Computing Surveys13 (3)
(1981).

[57] “Latimes.com., ‘Hacktivists’, caught inWeb of hate, deface Afghan sites”, http://www.
latimes.com/technology/la-000077258sep27.story?coll=la%2Dheadlines%2Dtechnology,
2001.

[58] Lewis M., “Jonathan Lebed: Stock manipulator, S.E.C. Nemesis—and 15”,New York
Times Magazine(25 February, 2001).

[59] Lewis M.,Next: The Future Just Happened, Norton, New York, 2001, pp. 35–36.
[60] Libicki M., “The mesh and the Net: Speculations on armed conflict in an age of

free silicon”, National Defense University, McNair Paper 28, http://www.ndu.edu/ndu/
inss/macnair/mcnair28/m028cont.html, 1994.

[61] Lynch C., “When documents deceive: Trust and provenance as new factors for infor-
mation retrieval in a tangled Web”,Journal of the American Society for Information
Science & Technology52 (1) (2001) 12–17.

[62] Mann B., “Emulex fraud hurts all”, in:The Motley Fool, 2000, http://www.fool.com/
news/foolplate/2000/foolplate000828.htm.

[63] Maron M.E., Kuhns J.L., “On relevance,probabilistic indexing and information re-
trieval”, Journal of the ACM7 (3) (1960) 216–244.

[64] Mateescu G., SosonkinaM., Thompson P., “A new model for probabilistic informa-
tion retrieval on the Web”, in:Second SIAM International Conference on Data Mining
(SDM 2002). Workshop on Web Analytic, 2002.

[65] “Matthew Bender and Company, Title 15. Commerce and Trade. Chapter 22. Trade-
marks general provisions. United States Code Service”, http://web.lexis-nexis.com/
congcomp/document?_m=46a301efb7693acc36c35058bee8e97d&_docnum=1&wchp=
dGLStS-lSlAA&_md5=5929f8114e1a7b40bbe0a7a7ca9d7dea, 2001.

http://www.newsbytes.com/news/01/173120.html
http://www.latimes.com/technology/la-000077258sep27.story?coll=la%2Dheadlines%2Dtechnology
http://www.latimes.com/technology/la-000077258sep27.story?coll=la%2Dheadlines%2Dtechnology
http://www.latimes.com/technology/la-000077258sep27.story?coll=la%2Dheadlines%2Dtechnology
http://www.ndu.edu/ndu/inss/macnair/mcnair28/m028cont.html
http://www.ndu.edu/ndu/inss/macnair/mcnair28/m028cont.html
http://www.ndu.edu/ndu/inss/macnair/mcnair28/m028cont.html
http://www.fool.com/news/foolplate/2000/foolplate000828.htm
http://www.fool.com/news/foolplate/2000/foolplate000828.htm
http://www.fool.com/news/foolplate/2000/foolplate000828.htm
http://web.lexis-nexis.com/congcomp/document?_m=46a301efb7693acc36c35058bee8e97d&_docnum=1&wchp=dGLStS-lSlAA&_md5=5929f8114e1a7b40bbe0a7a7ca9d7dea
http://web.lexis-nexis.com/congcomp/document?_m=46a301efb7693acc36c35058bee8e97d&_docnum=1&wchp=dGLStS-lSlAA&_md5=5929f8114e1a7b40bbe0a7a7ca9d7dea
http://web.lexis-nexis.com/congcomp/document?_m=46a301efb7693acc36c35058bee8e97d&_docnum=1&wchp=dGLStS-lSlAA&_md5=5929f8114e1a7b40bbe0a7a7ca9d7dea
http://web.lexis-nexis.com/congcomp/document?_m=46a301efb7693acc36c35058bee8e97d&_docnum=1&wchp=dGLStS-lSlAA&_md5=5929f8114e1a7b40bbe0a7a7ca9d7dea
http://web.lexis-nexis.com/congcomp/document?_m=46a301efb7693acc36c35058bee8e97d&_docnum=1&wchp=dGLStS-lSlAA&_md5=5929f8114e1a7b40bbe0a7a7ca9d7dea

72 G. CYBENKO ET AL.

[66] Mensik M., Fresen G., “Vulnerabilities of the Internet: An introduction to the ba-
sic legal issues that impact your organization”, http://library.lp.findlaw.com/scripts/
getfile.pl?file=/firms/bm/bm000007.html, 1996.

[67] Mosteller F., Wallace D.L.,Inference and Disputed Authorship: The Federalist,
Addison–Wesley, Reading, MA, 1964.

[68] MSNBC, “Hacker alters news stories on Yahoo”, http://stacks.msnbc.com/news/
631231.asp, 2001.

[69] Mundici D., Trombetta A., “Optimal comparison strategies in Ulam’s searching game
with two errors”,Theoretical Computer Science182(1–2) (1997) (15 August).

[70] Munson J.C., Wimer S., “Watcher: The missing piece of the security puzzle”, in:17th
Annual Computer Security Applications Conference (ACSAC’01), December 10–14,
New Orleans, LA, 2001.

[71] “National Center for Digital Government: Integrating Information and Government
John F. Kennedy School of Government Harvard University”, http://www.ksg.harvard.
edu/digitalcenter/.

[72] “National Center for Digital Government: Integrating Information and Government
“Identity: The Digital Government Civic Scenario Workshop” Cambridge, MA,
April 28–29, 2003, John F. Kennedy School of Government Harvard University”,
http://www.ksg.harvard.edu/digitalcenter/conference/.

[73] NetworkWorldFusion, “Clever fake of WTO web site harvests e-mail addresses”,
http://www.nwfusion.com/news/2001/1031wto.htm, 2001.

[74] New York v. Vinolas, 667 N.Y.S.2d 198 (N.Y. Crim. Ct. 1997).
[75] “Newsbytes. Pop singer’s death a hoax a top story at CNN”, http://www.newsbytes.

com/cgi-bin/udt/im.display.printable?client.id=newsbytes&story.id=170973, 2001.
[76] Pratkanis A.R., Aronson E.,Age of Propaganda: The Everyday Use and Abuse of Per-

suasion, Freeman, New York, 1992.
[77] Rao J.R., Rhatgi P., “Can pseudonymity really guarantee privacy?”, in:Proceedings of

the 9th USENIX Security Symposium, Denver, CO, August 14–17, 2000.
[78] R.A.V. v. City of St. Paul, 505 U.S. 377, 112 S.Ct. 2538, 120 L.Ed.2d 305, 1992.
[79] “The Register. Intel hacker talks to The Reg”, http://www.theregister.co.uk/content/

archive/17000.html, 2001.
[80] “The Register. New York Times web site smoked”, http://www.theregister.co.uk/

content/6/16964.html, 2001.
[81] Rich E., “Users are individuals: Individualizing user models”,International Journal of

Man–Machine Studies18 (3) (1983) 199–214.
[82] Van Rijsbergen C.J.,Information Retrieval, second ed., Buttersworth, London, 1979.
[83] Salton G., McGill M.,Introduction to Modern Information Retrieval, McGraw–Hill,

New York, 1983.
[84] Sarwar B., Karypis G., Konstan J., Reidl J., “Item-based collaborative filtering recom-

mendation algorithms”, in:WWW10, Hong Kong, May 1–5, 2001.
[85] Schneier B., “Semantic attacks: The third wave of network attacks”,Crypto-gram

Newsletter(October 15, 2000), http://www.counterpane.com/crypto-gram-0010.html.
[86] Smith A.K., “Trading in false tips exacts a price”,U.S. News & World Report(February

5, 2001), p. 40.

http://library.lp.findlaw.com/scripts/getfile.pl?file=/firms/bm/bm000007.html
http://library.lp.findlaw.com/scripts/getfile.pl?file=/firms/bm/bm000007.html
http://library.lp.findlaw.com/scripts/getfile.pl?file=/firms/bm/bm000007.html
http://stacks.msnbc.com/news/631231.asp
http://stacks.msnbc.com/news/631231.asp
http://stacks.msnbc.com/news/631231.asp
http://www.ksg.harvard.edu/digitalcenter/
http://www.ksg.harvard.edu/digitalcenter/
http://www.ksg.harvard.edu/digitalcenter/
http://www.ksg.harvard.edu/digitalcenter/conference/
http://www.nwfusion.com/news/2001/1031wto.htm
http://www.newsbytes.com/cgi-bin/udt/im.display.printable?client.id=newsbytes&story.id=170973
http://www.newsbytes.com/cgi-bin/udt/im.display.printable?client.id=newsbytes&story.id=170973
http://www.newsbytes.com/cgi-bin/udt/im.display.printable?client.id=newsbytes&story.id=170973
http://www.theregister.co.uk/content/archive/17000.html
http://www.theregister.co.uk/content/archive/17000.html
http://www.theregister.co.uk/content/archive/17000.html
http://www.theregister.co.uk/content/6/16964.html
http://www.theregister.co.uk/content/6/16964.html
http://www.theregister.co.uk/content/6/16964.html
http://www.counterpane.com/crypto-gram-0010.html

COGNITIVE HACKING 73

[87] Smith S., Personal communication, 2001.
[88] “Sophos. W32/Redesi-B”, http://www.sophos.com/virusinfo/analyses/w32redesib.html,

2001.
[89] Thompson P., “Semantic hacking and intelligence and security informatics”, in:

NSF/NIJ Symposium on Intelligence and Security Informatics, June 1–3, 2003, Tuc-
son, AZ, in: Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2003.

[90] Thornton J., “Collaborative filtering research papers”, http://jamesthornton.com/cf/,
2001.

[91] Ulam S.M.,Adventures of a Mathematician, Univ. of California Press, Berkeley, CA,
1991.

[92] Varian H.R., “Resources on collaborative filtering”, http://www.sims.berkeley.edu/
resources/collab/.

[93] Varian H.R., Resnik P. (Eds.),CACM 40 (3) (1997), special issue on recommender
systems.

[94] “Washtech.com. FTC shuts down thousands of deceptive web sites”, http://www.
washtech.com/news/regulation/12829-1.html, 2001.

[95] Wing J.M., “A symbiotic relationship between formal methods and security”, in:Pro-
ceedings from Workshops on Computer Security, Fault Tolerance, and Software Assur-
ance, 1998.

[96] Yahalom R., Klein B., Beth Th., “Trust relationships in secure systems—a distributed
authentication perspective”, in:Proceedings of the IEEE Symposium on Research in
Security and Privacy, Oakland, 1993.

[97] Yuan Y., Ye E.Z., Smith S., “Web spoofing 2001”, Department of Computer Sci-
ence/Institute for Security TechnologyStudies, TechnicalReport TR2001-409, 2001.

[98] Zhou L., Burgoon J.K., Twitchell D.P., “A longitudinal analysis of language behavior of
deception in e-mail”, in:NSF/NIJ Symposium on Intelligence and Security Informatics,
June 1–3, 2003, Tucson, AZ, in: Lecture Notes in Computer Science, Springer-Verlag,
Berlin, 2003, pp. 102–110.

[99] Zhou L., Twitchell D.P., Qin T., Burgoon J.K., Nunamaker J.F., “An exploratory study
into deception in text-based computer-mediated communications”, in:Proceedings of
the 36th Hawaii International Conference on Systems Science, 2003.

[100] “3D Corporation”, see http://www.the3dcorp.com/ddd/index2.html.

http://www.sophos.com/virusinfo/analyses/w32redesib.html
http://jamesthornton.com/cf/
http://www.sims.berkeley.edu/resources/collab/
http://www.sims.berkeley.edu/resources/collab/
http://www.sims.berkeley.edu/resources/collab/
http://www.washtech.com/news/regulation/12829-1.html
http://www.washtech.com/news/regulation/12829-1.html
http://www.washtech.com/news/regulation/12829-1.html
http://www.the3dcorp.com/ddd/index2.html

This page intentionally left blank

The Digital Detective: An Introduction
to Digital Forensics 1

WARREN HARRISON

Portland State University and
Hillsboro Police Department
High Tech Crime Team
Portland, OR 97207-0751
USA
warren@cs.pdx.edu

Abstract
The use of computers to either directly or indirectly store evidence by criminals
has become more prevalent as society has become increasingly computerized. It
is now routine to find calendars, e-mails, financial account information, detailed
plans of crimes, and other artifacts that can be used as evidence in a criminal
case stored on a computer’s hard drive. Computer forensics is rapidly becoming
an essential part of the investigative process, at both local law enforcement levels
and federal levels. It is estimated that half of all federal criminal cases require
a computer forensics examination. This chapter will address the identification,
extraction, and presentation of evidence from electronic media as it is typically
performed within law enforcement agencies, describe the current state of the
practice, as well as discuss opportunities for new technologies.

1. Introduction . 76
1.1. Computers and Crime . 77

2. Digital Evidence . 78
2.1. Differences From Traditional Evidentiary Sources 79
2.2. Constraints on Technology . 80

3. The Forensics Process . 80
3.1. The Identification Phase . 83
3.2. The Preparation Phase . 84

1The law regarding searching digital devices is complex. This chapter provides an overview of U.S. Fed-
eral rules for searching digital devices but is not intended to provide legal advice. The reader is urged to
seek competent legal counsel for specific questions.

ADVANCES IN COMPUTERS, VOL. 60 75 Copyright © 2004 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(03)60003-3 All rights reserved.

76 W. HARRISON

3.3. The Strategy Phase . 86
3.4. The Preservation Phase . 87
3.5. The Collection Phase . 88
3.6. The Examination and Analysis Phases . 96
3.7. The Presentation Phase . 107

4. An Illustrative Case Study: Credit Card Fraud .. 110
4.1. Alternate Scenario 1 . 111
4.2. Alternate Scenario 2 . 113
4.3. Alternate Scenario 3 . 114

5. Law Enforcement and Digital Forensics . 115
6. Organizational Structures of Digital Forensics Capabilities 116
7. Research Issues in Digital Forensics . 117
8. Conclusions . 118

References . 118

1. Introduction

In September 1998, a 53-year old English physician was arrested for the murders
of at least 15 of his elderly patients by administering fatal doses of diamorphine, an
opiate sometimes used to relieve pain. He would come to be suspected of intention-
ally killing an additional 200 patients over a 23 year period. The case would turn into
the largest serial murder case in UK history.

When investigators searched the offices of the doctor’s practice, they found a net-
work of computers running a commercial medical record management system. This
system contained the medical records of each of his 3100 patients. Included in each
record was a manually entered date and transcription of written notes for every con-
tact the doctor had with each patient. The records of the patients he was suspected of
murdering each indicated a lengthy period of declining health, ultimately culminat-
ing in their death.

Unbeknownst to the doctor, an upgrade to the medical record management system
in October 1996, added an audit trail function. The audit trail recorded every entry
madeas well as the date it was entered based on the computer’s system clock. Upon
forensic analysis of the computer, investigators found that the record for one patient
dated June 23 1997 indicated that she was a chronic morphine abuser. However,
upon examining the audit trail file, investigators found that the June 27, 1997 entry
was actually entered on June 25, 1998. Not only was the date of the entry falsified,
but the patient’s body was discovered on June 24, 1998,the day before the entry was
actually entered into the computer.Similar sorts of entries existed for other patients.

Based partially on the computer evidence as well as other facts and pieces of
evidence the physician was convicted. He was sentenced to 15 life terms.

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 77

1.1 Computers and Crime
This was not the first case in which incriminating evidence was located on a com-

puter’s hard drive, nor will it be the last. Computers have played an increasingly
significant role in many crimes committed in the world today. Past-U.S. Attorney
General Janet Reno acknowledged the role of computers upon the passage of the
U.S. National Information Infrastructure Protection Act of 1996:

“We see criminals use computers in one of three ways: First, computers are
sometimes targeted for theft or destruction of their storeddata. . . Second, com-
puters are used as tools to facilitate traditional offenses. . . Third, computers are
used to store evidence.”
Janet Reno, U.S. Attorney General, Oct 28, 1996

The use of computers to either directly or indirectly store evidence by criminals has
become more prevalent as society has become increasingly computerized.

It is now routine to find calendars, e-mails, financial account information, detailed
plans of crimes, and other artifacts that can be used as evidence in a criminal case
stored on a computer’s hard drive. Classical fraud crimes that may have been prop-
agated through the mails or over the telephone in the past are today just as likely to
be committed over the Internet. Computer forensics is rapidly becoming an essential
part of the investigative process, at both local law enforcement levels and federal
levels. In 2002, the FBI expected half of its cases to require at least one computer
forensics examination [1].

This chapter will address the identification, extraction, and presentation of evi-
dence from electronic media as it is typically performed within law enforcement
agencies, describe the current state of thepractice, as well as discuss opportunities
for new technologies. The evidence may be of crimes involving computers, such as
various forms of identity theft, electronic “stalking” or child pornography, or it may
be evidence of a “traditional crime,” such as murder or theft, in which the computer
is simply a tangential element.

This particular aspect of digital forensics is sometimes known as “media foren-
sics” because it often deals with the extraction of evidence from hard drives or other
storage media [2]. There is a great deal ofoverlap between “media forensics” and
“network forensics” where the goal is to identify and investigate network intrusions
and cyber attacks. However, many of the details differ. Network forensics often deals
with real-time response to network attacks. The goal is usually to determine what
was done as a result of the attack, and the appropriate corrective action to take.

This chapter will focus on the extraction of evidence from digital storage devices
such as computer disks with generalizations to other devices such as:

• memory cards;

• digital cameras;

78 W. HARRISON

• Internet-enabled cell phones;

• PDAs;

• printer or FAX buffers;

• embedded automotive computers.

Usually these examinations would occur well after the fact, and generally there is
little of the urgency one might find in recovering from a network attack.

The broad field of issues that may be addressed within digital forensics, as well as
the potential for societal good, provides a set of rich opportunities for technologists.

2. Digital Evidence

Digital forensics is concerned with obtaining “relevant evidence” from an elec-
tronic medium. “Relevant evidence” is simply any evidence that makes the existence
of a fact that is of consequence to the case either more or less probable than it would
be without the evidence.2 This can be as simple as an innocent e-mail between two
friends, or as sinister as a set of plans detailing the steps to be carried out to perform
a murder.

For instance, assume the defense of a suspect charged with forgery is based on
the premise that the forged documents found on his computer were not his but rather
belonged to his roommate. The probability of this fact is affected by whether or not
the dates and times associated with the last access and/or last modification of those
documents occurred at a time when it could be proven the suspect was somewhere
other than sitting in front of the computer. If the file access times coincided with dates
and times that the suspect was at work, the probability is high that the documents
were not his. Therefore, the dates andtimes of access and modification for a given
file may very well be “relevant evidence.” This also illustrates a key property of
electronic evidence: it has the potential for being both inculpatory (i.e., showing the
suspect is guilty) as well as exculpatory (i.e., showing the suspect is innocent).

Obviously a large number of different sorts of electronic artifacts and “meta-
artifacts” may serve as relevant evidence. As we have seen, an alibi may be sub-
stantiated by time stamped computer logsthat put the accused somewhere other than
the crime scene when the offense was committed. Likewise, a series of e-mails may
indicate a relationship between a victim and a suspect. In fact, just some of the arti-
facts in which the digital investigator may be interested include [3]:

2Strictly speaking an artifact does not become evidence unless its ability to prove a fact has been estab-
lished. Until then, it is “potential evidence.” However, for purposes of convenience, this chapter shall use
the term “evidence” to mean “potential evidence” except in cases where the alternate definition is clearly
intended.

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 79

• e-mail messages;

• chat-room logs;

• ISP records;

• webpages;

• HTTP server logs;

• databases;

• digital directories;

• cookie files;

• word processing documents;

• graphical images;

• spreadsheets;

• address books;

• calendars;

• meta information about files.

Because these artifacts cannot be examineddirectly with the naked eye (they are,
after all, simply electrons recorded onsome sort of electromagnetic device) they
are what is known as “latent evidence”—that is, evidence that requires equipment,
software and/or methods to make it discernable.

2.1 Differences From Traditional Evidentiary Sources

Both the nature and the processing of electronic evidence is dramatically differ-
ent from other sorts of latent evidence. Electronic evidence is infinitely malleable.
While one might destroy other sorts of evidence such as finger prints orthe ballistic
properties of a bullet, it is highly unlikely that they can be successfully altered. For
instance, while a suspect may wear gloves to avoid leaving fingerprints, it is diffi-
cult to imagine a way that he could leave someone else’s fingerprints. Conversely, it
would be equally difficult for an agent of law enforcement to “plant” a suspect’s fin-
gerprints at the scene of a crime. However,electronic evidence can easily be altered,
and thus it requires particular attention to itsauthenticity.

The process that is used to perform a forensic analysis on a computer is by its very
nature different than the nature of the analysis performed by traditional forensic sci-
entists. For instance, a DNA specialist performs basically the same analysis whether
the case involves a rape, a murder or a kidnapping. The tools and techniques are the
same, as is the science. The DNA specialist can be sure that human DNA will not
undergo quarterly upgrades nor that changes in hardware will render DNA obsolete.

80 W. HARRISON

Conversely, the digital forensic specialist will perform a very different analysis
depending upon the crime. For instance, the approach taken to locate child pornog-
raphy on a computer is different than that taken to find evidence of identity theft.
Techniques and skills will also vary between a Windows desktop computer vs a
Linux webserver. Some skills and techniques, such as recovering deleted files from
an Apple II will become obsolete in practice after a relatively short time.

2.2 Constraints on Technology

Digital forensics within a criminal justice context is not simply a technical is-
sue. In fact, it is far from simply beinga problem with a technical solution. The
process used to capture the evidence and the interpretations and conclusions that can
be drawn from the results of a forensics examination are subject to strict rules. These
rules severely constrain the technological solutions and cannot be ignored. In this
chapter we will consider the rules and exclusions in effect in United States Federal
Courts [4,5], but the reader can rest assured that similar sorts of issues arise in other
jurisdictions and countries.

Should relevant evidence be located in the process of performing a forensic exam-
ination of a digital device, the intention is to present that evidence in a trial. However,
this is definitely a situation where the “ends do not justify the means.” Because the
“exclusionary rule” is widely used within the United States legal system, evidence
improperly obtained by the government can be excluded from a trial, and once evi-
dence is excluded, it cannot be reintroduced.

Therefore, the process used to obtain, process, and interpret digital evidence is
highly relevant to a successful forensics effort, and mistakes in this process can very
rarely be undone. These concerns are equallyrelevant to technologists who want to
understand and contribute to the capabilities in this area.

3. The Forensics Process

Reith, Carr, and Gunsch [6] have described a lifecycle model for conducting a dig-
ital forensics investigation. The development of such a model is useful both for those
involved in a digital forensics effort as well as for providing a taxonomy within which
technology and methods can be organized. The Reith, Carr, and Gunsch process
model is partially based on the U.S. Federal Bureau of Investigation’s Handbook of
Forensics Services crime scene search guidelines [7], and extends from the initial
recognition of potential evidence through the presentation of this evidence in a trial
and its return.

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 81

The lifecycle described in this chapter is a slight modification of the one described
by Reith, Carr, and Gunsch, in that our discussion ends at the presentation phase since
the return of evidence has a more administrative rather than technological flavor.
The model described in this chapter also combines the Examination and Analysis
phases since from the view of the technologist, both activities appear to be temporally
intertwined.

The lifecycle model we will be discussing (see Fig. 1) consists of the following
phases:

1. Identification. Investigation of any criminal activity may produce digital ev-
idence. This phase deals with the recognition and identification of potential
digital evidence.

2. Preparation. Once a likely source of digital evidence has been recognized,
planning and various preparatory tasks must be carried out. For example, ac-
quiring permission to search is an extremely important piece of preparatory
work that must be done before digital evidence can be obtained.

3. Strategy. The goal of any effort to collect evidence is to maximize the collection
of untainted evidence while minimizing impact of the collection on the victim.
In this phase, a plan to acquire the evidence must be developed.

4. Preservation. To be useful, the state of physical and digital evidence must be
preserved for collection. This phase deals with securing both the physical area
as well as the contents of the digital device in question.

5. Collection. Ultimately, the digital evidence must be acquired. This is one of the
most critical phases of the entire process since it has the most obvious bearing
on the authenticity of the evidence.

6. Examination and Analysis. Examination involves searching the seized artifacts
for possible evidence, while Analysis involves determining the significance of
the evidence found, usually within the context of a theory of the crime. The two
phases are so intertwined from the technologist’s viewpoint that it is difficult
to discuss them separately. Examination is affected by the Analysis and vice-
versa.

7. Presentation. Ultimately, summarization of the conclusions drawn in the
Analysis phase as well as explanation of the techniques used in the Collec-
tion and Examination activities must be presented to the court. Because jurors
cannot be assumed to have any prior technical understanding of computing or
computers, this can pose a significant challenge.

In spite of increasingly technical demands, only some of the phases in this process
are typically performed by computer specialists. This is especially true for local (i.e.,
city police and county sheriffs) agencies. Often the digital evidence is seized by
personnel from local agencies and then transported to a state or federal agency for

82 W. HARRISON

FIG. 1. The digital forensics process.

the Examination phase. In this case, it is likely all the phases through Collection are
performed by uniformed officers or detectives with little, if any, special training.

The remainder of this section elaboratesupon each of these phases and discusses
important issues pertinent to a law enforcement context. However, these issues are

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 83

equally relevant to researchers and technical personnel, since they severely constrain
the application of both current and future technology.

3.1 The Identification Phase

Investigation of any criminal activity may produce digital evidence. It is important
that law enforcement officers recognize, seize, and search digital devices that may
contain evidence of a crime.

For example, an officer may notice during a raid on a methamphetamine lab that
various state identification cards as well as a computer, color printer and scanner are
present. Based on previous experience and training, the officer knows that many
methamphetamine addicts support their addiction through identity theft, and that
computers and scanners are used to produce false identification. The officer may con-
sider that this computer could potentially contain evidence of the crime of forgery
and/or identify theft.

In identifying potential digital evidence,the U.S. Secret Service’s “Best Practices
for Seizing Electronic Evidence” [8] advises the investigator to determine if:

• The digital artifacts are contraband or fruits of a crime. A computer or digital
device may contain stolen software or data, or it may contain contraband (i.e.,
items prohibited by law) such as child pornography.

• The digital device is an instrumentality of the offense, or in other words, was the
system actively used by the defendant to commit the offense? Computers are
often used in identity theft and forgery by scanning stolen identification cards
and replacing the actual individual’s photo using a product such as Photoshop.

• The computer system is incidental to the offense. That is, rather than being used
to commit a crime, the computer is used to store evidence of the offense. A mur-
derer may commit meticulous details of a planned crime to a spreadsheet. Drug
dealers have been known to maintain digital address books of suppliers and/or
customers.

In the methamphetamine lab example described above, the computer will probably
be considered to be a potential “instrumentality of the offense” since it is allegedly
being using by the suspect to commit the crime of forgery.

Once the digital device’s possible role in a crime is understood the investigator can
establish if there isprobable causeto seize the digital device and/or the information
it contains. Probable cause is necessary in order to obtain a search warrant, and has
several interpretations, depending upon the circumstances.

An interpretation of probable cause that is usually used in connection with search
warrants is known as the “nexus definition.” This interpretation defines probable

84 W. HARRISON

cause as some knowledge or observation that would lead a person of reasonable
caution to believe that something connected with a crime is on the premises of a
person or on person himself. This is augmented by another definition with respect to
Law Enforcement in which probable cause is the sum total of layers of information
and synthesis of what police have heard, know, or observe as trained officers.

If probable cause exists, then considerations such as if the entire computer, its
storage devices, or just the data from the storage devices should be seized. These
considerations have important ramifications on the conduct of the subsequent phases
in this process and the technology brought to bear in order to extract the evidence.
These issues are more fully developed in the next section.

3.2 The Preparation Phase

Once sources of potential digital evidence have been identified, the specifics of
how the digital evidence is stored and organized must be determined, For example,
is the evidence on a Windows or Linux platform? Is the computer networked? If so,
does it entail local or wide area networks? What is the magnitude of the information
to be collected? Are the appropriate forensic examination tools or personnel available
if the evidence collection must occur on-site rather than at a forensics examination
facility?

Even more importantly, the seizure of the evidence must be performed in strict
accordance with constitutional and statutory considerations. In the U.S., evidence
that is seized inappropriately may be excluded from use in a trial. This is called the
“exclusionary rule,” and an “airtight case” may evaporate due to lack of evidence if
mistakes were made during the search or seizure.

In the United States, the ability of law enforcement agents to search personal prop-
erty is primarily regulated by the Fourth Amendment to the United States Constitu-
tion:3

The right of the people to be secure in their persons, houses, papers, and effects,
against unreasonable searches and seizures, shall not be violated, and no War-
rants shall issue, but upon probable cause, supported by Oath or affirmation, and
particularly describing the place to be searched, and the persons or things to be
seized.

3While the Fourth Amendment is the primary regulator of searches by government representatives
within the United States, other statutory mechanisms also constrain the ability for law enforcement to
perform searches. For instance, the Electronic Communications Privacy Act regulates how the govern-
ment can obtain stored account information from network service providers such as ISPs. The “wiretap
statute” and the “the Pen/Trap statute” govern real-time electronic surveillance. A full discussion of these
issues is outside the scope of this chapter.

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 85

The deciding issue with regards to the Fourth Amendment is if an individual has a
reasonable expectation of privacy. If a reasonable expectation of privacy exists, then
either an individual must provide voluntary consent to the search or asearch warrant
must be obtained to allow a law enforcement officer or their agent to search an item.

A search warrant is a document, issued by a magistrate, giving legal authorization
for a search of a container, place or thing. Usually a search warrant narrowly defines
the purpose of the search and the items for which the police are searching.

Computers and other digital devices are generally treated like a closed container
such as a briefcase or file cabinet [5], andaccessing information stored on the device
is similar to opening a closed container. In other words, lacking any action on the
owner’s part minimizing his expectation of privacy this means that law enforcement
generally requires a search warrant in order to access the contents of a digital storage
device.

However, based on the concept of “plain view” (an officer may search an item that
is in “plain view” without consent or a warrant since it is clear that there was no
expectation of privacy), certain actions by the owner of the computer may indicate
that there was no expectation of privacy. For instance, frequently loaning the com-
puter and user account information to others or taking the computer to a repair shop
indicate that the owner did not expect the contents of the computer to remain private.

In general, the courts have ruled that searching files not related to the original war-
rant (e.g., searching for child pornography when the original warrant was issued to
search for evidence of drug sales) exceeds the scope of a warrant.4 This is signifi-
cant from a technological pointof view because if every file is considered a separate
closed container, then all examination of the evidence must be related to the original
search warrant.

To illustrate the idea of the scope of a warrant, consider a search warrant that
says an officer may search for records substantiating a computer was used by “X,”
the search of e-mail may be justifiable to determine if “X” ever used the computer to
send e-mail. On the other hand, opening graphic and audio files would be much more
difficult to justify given the bounds set by this warrant. Likewise, if the computer
were to contain the e-mail accounts of a number of other users, there would be no
authorization to search the e-mail sent or received by users other than “X.”

In order to obtain a search warrant, a sworn statement that explains the basis for
the belief that the search is justified by probable cause (theaffidavit) and the pro-
posed warrant that describes the place to be searched and the things to be seized are
submitted to a magistrate. If the magistrate agrees that probable cause has been es-
tablished and the warrant is not unreasonably broad, they will approve the warrant.

4If in the course of carrying out a search, if the examiner legitimately stumbles across evidence of
another crime, it will usually serve as probable causefor issuing a new warrant authorizing a search for
evidence of that crime.

86 W. HARRISON

Because the warrant must not be unreasonably broad (to prevent “fishing expedi-
tions”), special care must be taken when describing digital information and/or the
hardware that is to be seized.

If the artifacts to be seized relate to information (e.g., lists of drug suppliers or
on-line purchases), it is generally advised that the warrant should describe the infor-
mation rather than the storage devices on which it resides. Unless the computer in
question contains contraband, is an instrumentality or is the fruit of a crime, itis usu-
ally advisable to extract the information and leave the computer if at all possible. This
is especially true if the computer containing the information is used in a legitimate
business or is not owned by the suspect. For instance, it is not at all uncommon for
computers owned by the suspect’s employer or friend to contain potential evidence.
Courts have begun requiring computers seized from third parties and businesses to
be either examined in-place or promptly returned.

The information may be specified in very particular terms (e.g., “the cookies.txt
file”) or may be very broad (e.g., “all evidence of the user visiting a given web site,”
which may include the cookies.txt file, but also the browser cache, and perhaps even
e-mails if use of the site entailed an e-mail confirmation). On the other hand, a request
for permission to search “all files for proof of criminal activity” on the computer
would likely be construed as too broad to obtain a warrant. Further, even if such a
warrant were issued, it is unlikely that evidence collected under the warrant would
be considered admissible by the trial court, or that the warrant would withstand an
appeal.

If the focus of the search is information and not a particular piece of hardware,
specifying information rather than hardware may also allow broader seizure. For
example, seizure of information from all computers at a location the suspect may
have reasonably used to access the given website may be permitted if information
rather than hardware is described. On the other hand, specification of a single desktop
computer may require information from the suspect’s laptop to be left behind.

If the digital device contains contraband, is an instrumentality as in the metham-
phetamine lab example or is the fruit of a crime, the device itself will probably be
seized and the data extracted off-site. If discovery of the computer and/or peripherals
is incidental to a search for a methamphetamine lab and not included in the original
warrant, a new warrant would be required to seize these items.

3.3 The Strategy Phase

The strategy phase overlaps at least partially with the preparation phase. In the
strategy phase, a decision is made on the approach to be taken to seize the evidence
and how it will be carried out.

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 87

If the hardware is an instrumentality, contraband, or fruit of a crime, agents will
usually plan to seize the hardware and search its contents off-site. This is probably
the simplest and most straightforward approach, since it mainly consists of “tagging
and bagging” the various devices to be seized.

This strategy also minimizes the level of special skills necessary to carry it out. The
U.S. Secret Service publishes a very informative guide for officers and detectives
without any special computer knowledge or skills to help them identify and seize
computers and other digital devices [8].

On the other hand, if just the information is needed and the hardware is merely a
storage device for evidence, it is usually considered wise to extract the information
on-site if at all possible. Often times a warrant is served not against a suspect, but
rather against a third party such as an employer, a relative or a friend whose com-
puter the suspect used. Extracting the information on-site avoids depriving a (pos-
sibly innocent) owner of his computer. It also minimizes disruption of operations if
the computer is a business’ file server or a mail server for multiple users.

However, collecting the information (as opposed to the computer) on-site is the
most complex approach and requires the greatest amount of skill and knowledge
by the search and seizure personnel. This approach would probably entail making
duplicates of every hard drive and/or storage device in use. Since current storage
devices often contain hundreds of gigabytes of data (especially servers), this can be
quite time consuming, especially when done on-site. In some cases it may actually
be less disruptive to collect the information from the computer off-site.

In the case of the methamphetamine lab, the computer will be considered an in-
strumentality of a crime. Therefore, the strategy will probably entail labelingand
disconnecting the cables from the computer, scanner and printer, boxing, tagging,
and physically transporting all three devices, any associated cables and documenta-
tion, etc. to the police station or forensics laboratory.

3.4 The Preservation Phase
In order to be useful as evidence, the original state of all digital evidence must be

preserved. Because electronic data is so volatile, digital evidence must be promptly
secured in order to avoid loss of evidence. A few keystrokes can delete or alter valu-
able evidence.

Since digital devices are often taken into custody without the benefit of a computer
expert, the primary goal is to preserve the evidence for later analysis by a digital
forensics expert. TheSecret Service Best Practice Guidelinesinstruct the investigator
faced with seizing potential electronic evidence involving a computer to:

• Secure the scene to preserve the state of all digital evidenceby immediately
restricting access to all computers to prevent data (including meta data such as

88 W. HARRISON

file modification times) from being erased or modified. This includes isolating
computers from phone lines and other network connections to prevent data from
being accessed remotely.

• Secure the computer for evidence retrieval, either by leaving the computer
“OFF” if it is not turned on, or if the computer is “ON,” photographing the
screen and then disconnecting all power sources. This is done by unplugging
the computer power cord from the walland the back of the computer.5 This
advice comes from the concern that a “logic bomb” may exist such that if a cer-
tain shutdown sequence is not followed, all incriminating files are automatically
erased from the computer’s hard drive, much like bookies often record their bets
on flash paper so in the event of a raid, evidence can be obliterated by simply
touching a match to the pages. By simply removing power from the computer
logic bombs that may exist in the computer’s shutdown scripts can be bypassed.

Of course, by turning off a running computer, some fragile, transient data
may be lost. For example, the content of buffers will be lost, and virtual network
drives will be lost. Consequently, some digital forensics experts advise attaching
a SCSI device or using an open network connection to get the results of various
commands and the contents of various environment variables before turning off
a running computer.

In the event the computer being seized is networked or used for business, it is ad-
visable for seizure activities to be assigned to a computer specialist in order to avoid
disrupting legitimate business operations while preserving important evidence.

3.5 The Collection Phase

Only after the computer and its immediate surroundings have been secured, can
the digital evidence be collected. This may entail taking the computer, taking storage
devices connected to it, or in some cases—especially when the computer is used for
business purposes—simply taking a copy of the information stored on the computer.
In the vast majority of the cases, it is actually the information—not the computer
itself or even the storage devices—that is, the evidence in which investigators are
interested.

The overriding goal of all the effort expended to preserve the scene and the digital
device is to ensure the integrity of the digital content that will be used as evidence.
Digital integrity can be defined as, “the property whereby digital data has not been

5This assumes that a computer specialist is not available on the scene. If a computer expert is available,
while their goal will continue to be to preserve all digital evidence, other methods may be employed
depending upon the situation.

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 89

altered in an unauthorized manner since the time it was created, transmitted, or stored
by an authorized source [9].”

The integrity of the digital content may be at risk both before collection and after it
has been collected. In the case of preserving precollection integrity, the investigator
is dependent upon effective practices during the preservation phase. In particular, this
entails preventing both physical access as well as remote access to the computer or
other digital device.

3.5.1 Duplicates vs Copies

Postcollection integrity is assured by creating a duplicate of the original storage
device for use in the investigation. This is distinct from acquiring acopyof the de-
vice. A duplicateis “an accurate digital reproduction of all data objects contained
on an original physical item” where as acopyis “an accurate reproduction of infor-
mation contained on an original physical item, independent of the original physical
item [10].”

To better understand the difference between a duplicate and a copy, it is useful
to understand how files are created. In most common computer operating systems
a disk consists of unallocated space (i.e., space that currently does not contain the
contents of a file) and allocated space (i.e.,space which contains data associated with
a specific file). If the “unallocated” space has been previously allocated, it probably
contains the contents of the file to which the space had most recently been assigned.

In general, files are usually allocated space in fixed sized blocks of memory called
clusters. For instance, in the NTFS file system, clusters range from 512 to 4096
bytes, depending on the size of the disk. For most modern disks (over 2 GB in size)
the default NTFS cluster size is 4096 bytes. Therefore, the actual amount of space
allocated to a file under NTFS will usually be a multiple of 4096 bytes.

Clusters in turn are comprised of sectors, which is the unit of physical transfer
that occurs when NTFS performs a read or write operation. A sector is typically 512
bytes in size. Consequently, when a file is created under NTFS, data is written an
entire sector (512 bytes) at a time regardless if the amount of data to be written is
actually less than 512 bytes.

For example, if an application opens a file for creation, it will initially allocate
4096 bytes (8 sectors) for the file. If the application then writes the string “hello
world” to the file and closes it, 512 bytes (one sector) will be written to the file.
However, since the 512 bytes written to the file contains only 11 characters (“hello
world”), the sector will be padded out over the remaining 501 bytes using random
data taken from the computer’s RAM. This is calledRAM Slackand could contain
any data that had appeared in memory since the computer was last booted, such as
passwords, images, URLs, etc. Likewise, the remaining 7 sectors initially allocated

90 W. HARRISON

when the file was created will be “allocated” (i.e., no other file can occupy these
sectors), but will contain only what was there when the file was initially created.
This is calledFile Slack.

A duplicateof a volume entails a bit-by-bit transfer from one device to another.
Consequently, it will contain the same data, RAM slack and file slack as the original.
Likewise, it will also include the unallocated space from the original. This allows a
forensic analysis to be done as though it were being performed on the original.

On the other hand, acopywill contain the data, but the copy may very well contain
RAM slack and file slack from the computer that did the copying rather than the slack
from the original drive. While a copy may be adequate for file backups and ordinary
file transfers, since evidence can reside infiles, RAM slack, file slack, file meta-data
and erased files, aduplicateof the original storage device is typically preferred over
acopy.

Since creating aduplicateentails a “bit-by-bit transfer” (actually it is more ac-
curate to say a “sector-by-sector transfer”), tools to createduplicatescan ignore the
specifics of different file systems, since partitions, directory structures, etc. are all
copied from the source device to the destination device with no need for interpreta-
tion. On the other hand, creating acopy(sometimes called a “backup copy”) typically
implies interpretation of the original storage device’s file system since file content are
recognized and copied from source to target.

3.5.2 Ensuring Preservation of Evidence During Collection

Obviously it is important to ensure that the duplication procedure does not modify
the original storage device in any way. Therefore, hardware and/or software write-
blockers must be used when dealing with operating systems and/or tools that modify
the source device (for example, by updating logs or other meta-data) whenever it is
accessed.

Creating and using a duplicate of the original storage device ensures that the con-
tents of the original device are not inadvertently changed during the Examination
phase.6 In cases where only the information is seized rather than the storage devices
or computer itself, the “original” may, in fact, itself be aduplicate(or perhaps even a
copy). Nevertheless, it is treated as an “original,” and duplicates for examination are
made from it as if it were actually the original storage device.

It is absolutely vital that when a duplicate of an evidence disk is made, whether
it is in the field or at the forensic lab, the duplicate is a sector-by-sector copy of the
original and can be proven to be so. There are many tools currently used in prac-
tice to perform digital duplication. They range from special-purpose disk duplication

6Because the investigator may be as interested in the meta-data as in the content itself, virtually any
kind of examination prior to imaging will result in some data alteration.

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 91

FIG. 2.

hardware devices designed for use in the field such as the Logicube SF-5000 shown
in Fig. 2 to software tools such as the UNIXdd command used in special controlled
environments.

Unfortunately, while the concept of a bit-by-bit duplicate seems intuitively obvi-
ous, in practice the definition is not so clear. For instance, virtually all disks have
one or more defective sectors when they are shipped from the factory. However, with
99.999999% of the sectors on the disk still usable, there is no reason to discard the
entire drive. These blocks are avoided during use by listing them in a map of bad
sectors. Since the defective sectors are different on each hard drive, even the best
duplication procedure will fail to ensure that every corresponding bit is the same on
both the source and target drives. For instance, Table I indicates sectors containing
data as Di and defective sectors that have been mapped as “X.”

Nevertheless, these two disks would be considered duplicates because each sector
was copied from the source to the target drive. Both the RAM slack and the file slack
would be retained, albeit they may be located in different physical sectors on the two
disks. Other forensically permissible differences also may occur. For instance, unless
exactly the same model hard drives are used, the target drive may be slightly larger
than the source drive, have a different number of cylinders, etc.

TABLE I

Source D1 D2 D3 D4 X D5 D6 D7 X X D8 X D9

Target D1 X D2 D3 D4 D5 X X D6 D7 D8 D9 X

92 W. HARRISON

One approach that several commonly used by forensic tools such as New Tech-
nologies SafeBack [11], Guidance Software’s EnCase [12], and Elliot Spencer’s
iLook [13], which is freely distributed by the Internal Revenue Service to law en-
forcement agencies, is to store the duplicate of the device as a single image file.
Such an image can accurately reflect the various forms of slack and unallocated
space.

Using a disk image as opposed to an actual physical disk to hold the duplicate
requires that specific tools be used to process the image files as well as preventing
the duplicated drive from actually being used (it is considered a bad idea to actually
boot off a drive under examination anyway). However, it allows artifacts such as bad
block maps to be ignored, and allows things like disk compression on the image so a
sparsely populated 80 GB hard drive might have an image that only consumes 10 GB.
Evidence from each of these tools have been admitted as evidence in numerous cases.
Therefore, the technology behind images vs actual duplicate physical disks has been
accepted by the courts.7

A recent project [14] at the National Institute of Standards and Technology (NIST)
led by Jim Lyle undertook an extensive effort to specify the desirable behavior of
forensic disk duplication tools and evaluated the behavior of a number of frequently
used tools against this specification. The specification now provides a formal stan-
dard against which tools can be evaluated.

One of the biggest motivations for insisting on seizing a physical disk rather than
simply creating a duplicate at the scene for analysis is the anticipation of a challenge
in court that the “duplicate” somehow differs from the original. To be safe, many
investigators prefer to seize the physical disk so it can be presented later as proof
that the forensic evidence was not altered.

One approach suggested to address this concern is to create two duplicates of a
hard drive in the presence of the owner or some other disinterested third party. One
of the drives, thecontrol drive, is labeled and sealed. The label is signed by the owner
or third party and is stored in a secure location while the other is used as the original
“evidence disk.” This protects the examiner against a challenge to the authenticity of
the working copy, since the owner’s copy could be unsealed and compared to the one
examined [15].

Regardless of whether an entire computer, the original disk, or a duplicate of the
original disk is obtained from the searchand seizure activity, the examination isonly
performed on a duplicate of whatever was obtained. The items seized are immedi-
ately placed under physical control in order to establish what is known as the “Chain
of Custody.” The Chain of Custody ensures that the evidence is accounted for at all
times; the passage of evidence from one party to the next is documented; as is the

7In most cases, the images are only used for examination anyway. The “best evidence” is still the original
disk seized from the suspect’s computer.

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 93

passage of evidence from one location to the next. The location and possession of
controlled items should be traceable from thetime they are seized until the time they
appear in court as evidence.

3.5.3 Using Cryptographic Hashes to Demonstrate
Preservation

To further ensurance that the original has not changed after it enters the Chain of
Custody, cryptographic one-way hashes of the storage device are used to ensure that
its contents continue to exactly match its original contents. Two devices containing
exactly the same bit patterns (or the same device whose contents have not been al-
tered being evaluated at two different points in time) should hash to the same value.
On the other hand, if the hashes for the devices do not match, then the content of the
devices is not the same.

For instance, upon initially seizing a computer, the investigator may choose to
compute a hash of the computer’s storage device. Later on, a simple rehash of the
device will indicate if the contents of the device have changed at all since entering
custody. In fact, the use of a one-way cryptographic hash can take the place of the
creation of a “control duplicate” as discussed earlier. Rather than signing the sealed
control disk, the owner or disinterested third party can attest that the given one-way
hash was computed in their presence.

The use of a one-way, sector-by-sector cryptographic hash is also often done as
a “sanity check” on the duplicate itself to ensure that the forensic investigation is
working with an accurate and reliable duplicate.

Several one-way cryptographic hash algorithms exist. One of the techniques most
commonly used within digital forensics is the MD5 [16] hashing algorithm. The
MD5 is an algorithm that is used to generate a unique 128-bit fingerprint of a string
of any length, up to and including an entire hard drive. With 2128 different possible
hash values, it is highly unlikely that any two strings would hash to the same value.
Another popular method is the SHA-1 hash [17], though MD5 seems to have more
popularity with the forensics community.

While proof that hashes agree at two different points in time is important, equally
important is that it is computationally infeasible (at least given the resources avail-
able to the average law enforcement agency) to engineer a string that generates a
particular “target” hash value. This provides assurance that evidence was not placed
on the diskafter the MD5 hash has been computed and the disk contents simply
“padded out” to achieve the desired hash value. This can be used to counter claims
by the defense that either improper controls over the evidence or malice on the part
of the examiner led to evidence “appearing” that was not actually on the original
disk.

94 W. HARRISON

Should the case lead to prosecution, another duplicate of the original storage de-
vice is made available to the Defense under the commonly accepted rules of discov-
ery for their use in evaluating the evidence put forth by the government. In such a
situation, the ability to use a digital signature such as an MD5 hash makes it easy to
ensure that everyone (both the Prosecution and the Defense) has access to the same
information and no tampering of evidence has occurred.

3.5.4 Duplication Speed and Personnel Resources

While there is growing pressure to avoid seizing complete computers or physical
devices, as the size of disks in general use increase, the speed of duplicating a target
disk becomes significant. Assuming a typicalrealized transfer rate for consumer IDE
hard drives of 20 MB/s, a 120 GB drive will still take almost two hours to duplicate.
If two duplicates of each disk must be made on-site (one as the evidence disk and
one as a control disk, as discussed earlier) we can expect the process to take over
four hours.

Four hours to complete a duplication may be merely an inconvenience in a lab,
where one can start the process, walk away and return four hours later to retrieve the
duplicate. However, in a seizure situation, the physical location must be secured until
the seizure is complete. This requires officers to secure the site and investigators to
oversee the duplication. Consequently, a four hour disk duplication could translate
into several person days of effort, something most jurisdictions can ill afford.

3.5.5 Preserving Dynamic Data

A running computer stores a wealth of information that is lost as soon as power is
disconnected. The prescribed approach to collecting digital evidence, i.e., “interrupt
power to the machine,” often results in the loss of significant information. There are
basically three types of data that is affected by shutting down or removing power
from a computer [18]:

• Transient data. Information that will be lost at shutdown, such as open network
connections, memory resident programs, etc.

• Fragile data. Data that is stored on the hard disk, but can easily be altered, such
as command histories and log files.

• Temporarily accessible data. Data that is stored on the disk, but that can only be
accessed at certain times. For instance, once an encrypted file system is accessed
using the cryptographic key, all the files are in plain view. However, once the
user logs out or the computer shuts down, the file system reverts to its encrypted
state, and the contents of the disk are for all intents and purposes lost.

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 95

A mechanism to easily capture this sort information prior to shutting a computer
down would acquire a great deal of information that is now usually lost.

Kornblum’s First Responder’s Evidence Disk (FRED) [17] was developed by the
Air Force Office of Special Investigations (AFOSI) to allow a minimally trained First
Responders to collect transient information such as lists of open network connec-
tions, active processes, active DLLs, and open ports from live systems. FRED also
collects fragile data such as MD5 hashes of various system files. FRED consists of
a single floppy disk containing a batch file and a number of COTS tools so the First
Responder can merely insert the floppy into the computer, run the batch file (which
stores its reports back onto the floppy disk), and collect a wide range of data that will
be gone once the computer is shut down.

3.5.6 Minimizing Intrusion During Collection

Currently, when collecting potential evidence from a computer, the standard
method of acquiring the data is by directlyaccessing the computer’s hard disk. This
usually entails disassembling the computer and removing the hard drive even if only
to create a duplicate.

Such an intrusive procedure increases the possibility of destroying data as well
as property. Pins can be bent and cables can be ruined. RAM chips can be fried by
static electricity. Having a mechanism by which the contents of a disk can be reliably
duplicated without removing any panels or disconnecting any wires would be quite
useful. Unfortunately, no universally applicable solution currently exists.

3.5.7 Forensic Challenges of Ubiquitous Computing

As computing becomes ubiquitous, more and more devices will begin to contain
digital evidence, and will pose collection problems, especially to minimally trained
First Responders. Some of these new and/or unusual devices include:

• Dongles and smart cards often include encryption keys, passwords, and/or ac-
cess codes.

• Digital phones, answering machines, and caller ID devices can contain informa-
tion such as the names and/or phone numbersof callers, last number or numbers
called, etc.

• Mobile and cellular telephones can contain a wealth of evidentiary information
including the phone numbers of the last calls made and received, last several
text messages sent or received, and even the last geographical location in which
the phone was used [19].

• PDAs usually contain address books, calendars, and notepads [20].

96 W. HARRISON

• Memory and flash cards that are used in digital cameras will contain pho-
tographs, but they may also be used to store other digital information as well.

• Printers and FAX machines maintain buffers containing the last items printed
or scanned as well as user logs.

Each of these lend themselves to different methods of data capture and different
evidentiary opportunities. Almost every device is different. For instance, accessing
the buffers in a FAX machine is possible, but requires specific knowledge that is not
readily known by the typical forensic analyst.

Developing a generic framework by which various new devices can be examined
forensically can avoid having to develop new expertise on every case that uses a
different device. Some work towards this is being done [21] through attempts to
formalize computer input and output systems using a specification language called
Hadley. If successful this may provide a generic view of traditional access schemes
such as IDE, EIDE, SCSI, etc.

3.5.8 Expertise and Law Enforcement

Quite often potential digital evidence is obtained by the First Responder. Most law
enforcement agencies do not have enough trained computer specialists to adequately
cover every possible seizure. Nevertheless, except in the case of simply “bagging
and tagging” stand alone computer hardware, specially trained technicians should
be used for most collection activities, especially duplication of storage devices and
management of cryptographic hashes.

If digital evidenceis obtained by untrained First Responders, the main goal should
be to preserve the state of the device so evidence can later be extracted. The most
valuable actions that can be taken by a First Responder are [22]:

• Avoid trying to turn on or otherwise access the device.

• Look for and retrieve batteries, power supplies, chargers, etc.

• Record any information shown on the device’s display.

• Ask subject, if possible, for PINs or other codes necessary to access the device.

• Prevent the subject from touching the device for any reason.

3.6 The Examination and Analysis Phases

The goal of the examination phase is to locate relevant evidence. Since relevant
evidence relates to helping prove or disprove some fact, a trained forensic technician
usually carries out the examination under the direction of the investigator who is
responsible for determining what facts are pertinent to the case.

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 97

For instance, in the case of the computer and peripherals found in the metham-
phetamine lab example, the investigator will want to locate evidence that may sup-
port the charge of producing false identification. In this case, the investigator will ask
the examiner to locate files containing forged documents, files containing templates
of ID cards and/or files containing photographs of a variety of individuals suitable
for pasting into a scanned identification card, subject to the constraints of the search
warrant.

3.6.1 The Forensics Environment

The typical digital forensics workbench consists of an Examination Machine
(computer) connected to an external drive bay. The Examination Machine runs the
examination tools. The external drive bay contains the Evidence Disk during the
actual forensic examination. An external drive bay is necessary since a single Exam-
ination Machine may be used to processnumerous unique cases. Being able to com-
pletely remove and replace Evidence Disks without going to the trouble of opening
cases and reconnecting cables ensures that evidence from one case is not contami-
nated by evidence from another. This arrangement can be seen in Fig. 3.

Even though the examination environment should never explicitly write to the
evidence disk, some operating systems will write to a hard drive duringany data
access operation. Because of this, the Evidence Disk should be connected to the
Examination Machine via either a software or hardware write blocker.

On a typical personal computer, hard drive operations are initiated by issuing a
0X13 interrupt. Software write blockers typically operate by replacing the 0X13 in-
terrupt handler with a new handler that monitors the requested operation. If the op-
eration would cause a change in the associated hard drive, it is blocked, otherwise it
is carried out. The National Institute of Standards and Technology has issued a draft
specification and test plan for software write blockers [23].

FIG. 3.

98 W. HARRISON

Hardware write blockers are simply devices that connect a hard drive to the Ex-
amination Machine’s bus. The device accepts ‘write’ commands but fails to act upon
them while reporting an acknowledgment that ithaswritten the requested data. With-
out a “success acknowledgment” many Windows applications will hang if they do
not receive a signal that the ‘write’ was completed successfully.

The examination environment may consist of special-purpose forensic GUI-based
tools such as EnCase or iLook that provide an interface strikingly similar to a
software development IDE (Integrated Development Environment). Consequently,
such forensic environments may be referred to as Integrated Forensic Environments
(IFEs).

Integrated Forensic Environments can manage all electronic evidence for a case
and provide pull-down menus giving access to most of the commonly used forensic
functions. Some of these functions include searching for text strings, searching for
specific classes of text strings (e.g., e-mailaddresses), reconstructing deleted files,
matching and excluding “known good” files, etc.

Conversely, the examination environment may simply be a command line inter-
face that allows the examiner to issue commands. Command line environments such
as Brian Carrier’s @StakeSleuthkit [24] allow extensibility and, as command-line
proponents argue, more control over the use of the tools. For example, Fig. 4 shows
the use of the @Stake environment on a DOS partition. The mmls command displays
the layout of a disk, including the unallocated spaces.

The output of such tools often provide more information to the examiner than
an integrated environment. However, they also tend to be cumbersome to use by
minimally trained personnel. For example, in order to compute an MD5 hash for
a given file, a GUI-based forensic examiner would simply select an option from a
pull-down menu while his command-line counterpart would runmd5sum. As can
be expected, both environments have their (vocal) supporters. However, the GUI-

FIG. 4. @Stake tools.

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 99

based environments have made forensic analysis by non-computer specialists8 more
widespread.

3.6.2 Searching for Evidence

Locating digital evidence typically starts with identifying all computer files or
other digital artifacts that have something to do with the case. For instance, in the
process of investigating a homicide, a warrant may be executed allowing the contents
of a computer disk to be searched for communications between the suspect and the
victim.

Pertinent communications may include e-mail, logs of on-line “chat” sessions, let-
ters prepared using a word processor, and perhaps even address books and calendars
that establish meetings between the two. If the victim’s name is “John Jones,” the
goal usually is to find all occurrences of the string “Jones” or “John” on the disk.9

Often this is an iterative process with control moving back and forth between Exam-
ination and Analysis.

Often forensic tools can preprocess the evidence disk to create an inverted index
in order to speed up searching for single keywords. However, searching for strings
in context is still a difficult process. This is one area where the search technology
developed for Web-wide Internet searches over unstructured text can be productively
brought to bear on the field of digital forensics.

Likewise, even though the examiner knows how to spellmurderwhen formulat-
ing a search query, there is no guarantee that the suspect does. If the suspect has
sent his co-conspirator an e-mail that suggests theymerdurthe victim, the examiner
will never discover it by searching for the stringmurder. Application of phonetic en-
coding techniques such as the Soundex or Double Metaphone [25] algorithms may
help identify and locate electronic evidence, regardless of the spelling ability of ar-
bitrary criminals. For instance, Vogon’s GenTree [26] forensic environment uses the
Soundex algorithm to find strings that “sound like” the string being searched.

The contents of a personal desktop computer may contain thousands of files, and
business systems may contain millions. For example, in 2002, the North Texas Re-
gional Computer Forensics Laboratory which services 137 Texas counties processed
over 14.6 TB of digital evidence in 474 cases, an average of about 34 cases per
examiner and 31 GB of information per case [27].

8This is not to imply that users of GUI-based systems have no training—to the contrary, most of the
major forensic tool vendors provide training on their tools. However, the GUI framework tends to package
the various forensic functions in a manner that is less intimidating to most analysts that come from law
enforcement rather than computing.

9Given the focus of the search warrant, searches for terms such as “ID Theft” or “Kiddie Porn,” would
be outside the scope of the warrant and require a new or amended warrant to pursue.

100 W. HARRISON

Because of the size of today’s digital storage devices, the examiner must use some
systematic approach to search for specific textual strings among the thousands of
files. This usually involves the use of either GUI-based or command line-based soft-
ware tools that do efficient string or pattern matching.

3.6.3 Information Abstraction

Ordinarily, information can be viewed as existing on a digital storage device at
several levels or layers of abstraction [28]:

• The Physical Media Layer: Heads, Cylinders, bytes, etc.

• The Media Management Layer: Partitions and partition tables.

• The File System Layer: Boot sectors, File Allocation Tables, Directories.

• The Application Layer: This usually deals with files stored in some logical con-
tent, such as spreadsheet files, word processor documents, address books, and
calendar files.

A string search could be applied at any of these levels. For instance, the search could
work at the Application, File System or even the Media Management layer. Searches
applied at the Media Management Layer can bypass File System conventions such
as “deleted files.” On the other hand, searches applied at the more abstract level
can provide better context for more accurate search results and more easily link the
search results to an artifact that can be better understood by nontechnical jurors.

More often than not, multiple searches are performed on an evidence drive. For
instance, in the “John Jones Homicide” example one may experiment with several
different search strings: “John Jones,” “J. Jones,” “Jack Jones,” “J.J.,” etc. When
dealing with a few hundred megabytes of files, this is both quick and easy. However,
when searching a 120 GB hard drive, each individual search can require hours of
processing. Consequently, anything that can reduce the amount of data that must be
searched, thereby speeding up the search function, is welcome to both investigators
and technicians alike.

3.6.4 Eliminating Known Good

A “known good” file is one that is received directly from the manufacturer or
author and has not been modified. Usually these are systems files that are installed
when an operating system or other application is installed. Except in rare instances,
the contents of these files will have little evidentiary value since a forensic investiga-
tion is usually looking for a file that the suspect has either created or modified, such
as specific e-mails, spreadsheets, cookies, etc.

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 101

TABLE II

Fields Values for a file from Office 97

File_id 54579
Hashset_id 21
File_name ORDERS.DBF
Directory C:\PROGRA~1\MICROS~2\OFFICE
Hash C5A5113D5493951FE448E8E005A5C136
File_size 989
Date_modified 11/17/96
Time_modified 0:00:00
Time_zone PST
Date_accessed 12/30/99
Time_accessed 0:00:00

Because we know that known good files will not contain evidence, they can be
excluded from string searches. By omitting system and application files from search-
ing, a great deal of time can be saved. For instance, omitting the files installed with
Windows XP from a string search can save up to 1.5 GB of searching. Omitting files
installed with Office XP can save almost 300 MB.

Identifying known good files can be problematic. If files are excluded based on
their file names, it would be an easy job for a criminal to simply rename incriminat-
ing files to the names of files installed with popular applications, minimizing the like-
lihood of a search. The Hashkeeper [29] dataset developed by Brian Deering of the
National Drug Intelligence Center introduced the paradigm of using cryptographic
hashes, such as the MD5, to uniquely identify files to the forensics community.

The Hashkeeper dataset currently contains MD-5 hashes from hundreds of popu-
lar applications that would be expected to be found on most personal user’s computer
hard drives. These range from Operating System installations such asMicrosoft 2000
Serverto computer games such asDiablo II and reference software such asBroder-
bund Click Art 10,000. The dataset accounts for roughly three quarters of a million
hashes. A typical entry in the Hashkeeper dataset contains the following comma-
delimited fields, see Table II.

An alternate dataset is the National Institute of Standards National Reference Data
Library (NRDL) [30]. The NRDL contains MD5 and SHA-1 cryptographic hashes as
well as a 32-bit CRC checksum of files from operating systems, vertical applications,
database management systems, graphics packages, games, etc. Version 1.4 of the
NRDL contains hashes for over 3300 products and over 10,000,000 separate file
entries.

The NRDL provides a more sophisticated dataset organization than the Hash-
keeper dataset with four comma-delimited tables containing information on Oper-

102 W. HARRISON

TABLE III

Fields Values for a file from WordPerfect

SHA-1 00006DB99FED8A329CC81712584F3949147CCB14
MD5 D48BC5EB79A3FAF08E3A119528F55D72
CRC32 A7A335B4
FileName hands003.wpg
FileSize 3846
ProductCode 2524
OpSystemCode WIN

ating Systems, Manufacturers, Products, and of course, the actual file hashes them-
selves, see Table III.

Prior to beginning any string searchesthe appropriate hashes of each file on the
Evidence Disk can be computed and compared to the hashes in the known good
dataset. Files that match the hashes in the known good dataset can be omitted from
subsequent string searches.

As long as the hash matching and searches are performed at the File System or
Application Layers the idea of “known good” files can be used. However, at less
abstract layers, a file is nothing more than a noncontiguous sequence of bits and
bytes. Hashes cannot be used under these circumstances to discard files from analysis
since there is no way to tell when a file begins or ends.

3.6.5 Searching for Images and Sounds

Searches for arbitrary visual or audio data content present special problems, since
there are currently no software tools available to automatically carry out these kinds
of searches. For instance, if the examiner in the “John Jones Homicide” example
wishes to search for a photo of the suspect with the victim every image file would
have to be individually opened and viewed.

To further complicate matters, file names and file-type suffixes are not reliable
indicators of the file’s contents, so a search for a photo with specific content could
potentially entail opening every file on the computer rather than just the ones with
obvious graphic file name extensions such as “.gif” and “.jpg.”

Again, digital fingerprints in the form of MD5 hashes, come to the rescue. While
not every crime has “known bad” files, there are a few that do. In particular, child
pornographers are known to continually exchange the same core set of images. Sim-
ply possessing pornography containing children is considered illegal since even pho-
tographing a child in a sexual context is considered abusive. Because the same set
of images regularly appear on these offenders’ computers, MD5 hashes have been

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 103

developed for a number of well-known images that have been documented to portray
minors in pornographic displays.

The use of “known bad” file hashes is particularly significant because child
pornography represents a very large percentage of all criminal digital forensic
effort—some have estimated as much as 60–70% of the effort expended in exam-
ining digital evidence involves child pornography.

In addition to speeding up the search, the collection of hashed images typically
used by law enforcement have also been documented to contain minors through iden-
tification and interview of the subjects. This is particularly important in the United
States where the Supreme Court has ruled the possession of “synthetic child pornog-
raphy” (the manipulation of nonsexual images of children into images of them engag-
ing in sex acts—for example, by pasting the face of a child onto the body of an adult
using an image manipulation program such as Photoshop) is not a crime.10 Conse-
quently, documentation of images as actually depicting child porn can be very labor
intensive. Once an image is documented, using the MD5 hash to uniquely identify it
provides an additional degree of efficiency when investigating child pornography.

As is the case in identifying “known good,” tools exist that compute and compare
the MD5 hash for every file on a computer against a list of MD5 hashes of docu-
mented images of known child pornography.

The use of cryptographic hashes to represent specific images also circumvents the
problem of maintaining contraband items. By simply maintaining the database of
hashes (as opposed to the images themselves) agencies can determine if a suspect
possesses child porn on his computer whileavoiding the security and control neces-
sary if contraband is maintained on-site.

Unfortunately, even small changes such as cropping can alter the MD5 hash of an
image, so it is quite easy to circumvent “known bad” searches. However, hashing “re-
gions” and comparing those for bit mapped images such as JPEGs may help address
this problem. However, no current “known bad” hash sets have taken this approach.
Further, because most crimes do not lendthemselves to a database of “known bad”
images this technique has limited applicability.

Another common practice among criminals in the possession of incriminating im-
ages (e.g., state identification templatesfor use in identify theft or forgery) is to
change the file name and extension. For instance, the image file “ODL_Template.jpg”
can easily be renamed “OT.doc.” This isfrequently done in the hopes that an exam-
iner may miss the file when manually examining images.

10The 1996 Child Pornography Prevention Act originally had made possession of synthetic child pornog-
raphy illegal, but the U.S. Supreme Court struck this aspect of the law down as a violation of First Amend-
ment rights in April 2002.

104 W. HARRISON

Forensic tools are often used that compare file names with the contents of the file.
A common image format is the JPEG (Joint Picture Expert’s Group File Interchange
Format) format. JPEG image files begin with the following 4 byte header:

• FFD8 (Start Of Image marker);

• FFE0 (JFIF marker).

As files are analyzed by forensic searchtools, the first four bytes of each file can be
compared against the file name extension. Files that present discrepancies, such as a
word processing document that actually begins with a JPEG header can be flagged
specifically for manual examination. Ironically, the very act of attempting to obfus-
cate an incriminating file actually draws attention to it during a forensic examination.

Some forensic applications provide galleries of thumbnails for every image on the
Evidence Disk as can be seen in the accompanying thumbnail screen (see Fig. 5).
The forensic examiner can quickly peruse a screen full of images at a time, looking

FIG. 5.

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 105

for possible evidentiary items. However, Constitutional concerns are an issue, since
examining a large set of thumbnails may exceed the scope of a warrant.

Nevertheless, searching images for evidence can be very time consuming. Evi-
dence Disks with tens of thousands ofdifferent images are not uncommon.

Fortunately, many graphic images are commercial clipart such as the ones that
come with Microsoft Office. Therefore, they may also be omitted from analysis
through the use of known good filtering. This may reduce the number of image files
the examiner must view by hundreds or even thousands.

3.6.6 Recovering Deleted Files

While incriminating evidence is typically found in files to which the examiner
has ready access, often evidence is found in files the user has logically deleted, but
which have not been physically removed from the hard drive. Since many criminals
are technologically naïve, they mistakenly believe that “deleting a file” physically re-
moves its content. Reconstructing deleted files is a common feature of many current
forensic tools, and is relatively easy to do.

For instance, NTFS (Windows NT and Windows 2000)11 uses a Master File Table
(MFT) to keep track of files and directories. The MFT contains an entry of a fixed
size (usually 1024–4096 bytes, depending on the volume’s cluster size) for every file
and directory stored on the volume.

Each MFT entry for a file contains a list ofattributessuch as the MAC times
(Modified/Accessed/Created), the file name, the file state (“1” for in-use and “0” for
deleted) and either the actual file content (if the attributes and content are less than
one cluster in size) or a pointer to the content if it is physically stored elsewhere.
Each attribute has a header and a value. Aresidentattribute stores both the header
and the content in the MFT entry. Anonresidentattribute stores the header in the
MFT entry and the content value is stored in a consecutive group of sectors called a
cluster.

The MFT also includes an entry for every directory on the volume. While the
format is similar to the MFT entry for a file, the “content” of an MFT entry for a
folder contains an index of the files that are contained in the folder.

When a file is deleted by the user, the file’s index in its directory’s MFT entry is
deleted and the indexes below it are moved up, overwriting the index. The file’s MFT
state attribute is changed to “0.” At the same time a new MFT file entry is created
renaming the file to [drive][index][extension] and added to the Recycle Bin folder.

11This is a simplified discussion of the NTFS file system and how file deletions and recoveries are
performed. For a more complete discussion the reader is referred to any of the many books on the subject
of the NTFS file system.

106 W. HARRISON

The date and time of the deletion as well as the original path and naming information
is added to a system file in the Recycle Bin folder called INFO.

Neither the deleted file’s MFT entry nor its content are physically deleted. If new
entries are added to the MFT the deleted MFT entries are overwritten by NTFS
before extending the MFT. However, absent the creation of new files or directories,
a deleted file and all its content will continue to be available via both the MFT and
the Recycle Bin MFT entry. Even if the deleted MFT entry is overwritten, if the data
is nonresident, it will probably still bephysically retained on the volume.

While the file is still in the Recycle Bin, it is fully accessible using the Explorer,
and no special tools or techniques are necessary. Most computer users do not habit-
ually empty their Recycle Bin every day, and deleted files tend to build up.

However, when the user does empty the Recycle Bin, the Recycle Bin indexes are
cleared and the MFT entries for both the files stored in the Recycle Bin and the INFO
system file are marked as deleted by setting the file state attribute to “0.” However,
as with a regular file, the MFT entry for the INFO file will not be overwritten until
new files are added.

Even if the MFT entries are entirely obliterated, the contents of nonresident at-
tributes (e.g., the contents of a file) mayremain accessible at the media management
level for an extended period of time after the file is deleted.

3.6.7 Collecting Evidence from Live Systems
Seizure of a personal computer often results in little, if any,seriousinconvenience

to the owner of the computer. In an optimistic scenario, the disk could be duplicated
and the computer returned in a matter of days, minimizing the inconvenience expe-
rienced by the suspect. During that period, the user may have been prevented from
surfing the Web or playing some games, but the relative harm for the average user is
minimal.

For a computer used in a normal business, even having the computer off-site for
a day can be unworkable. If a company’s records are on the computer, business may
come to a complete stop until the computer is returned. Small businesses could con-
ceivably face bankruptcy if operations are interrupted for more than a few days. In
these circumstances, inconvenience can beminimized by seizing the computer at the
end of the business day, duplicating its disks over night and returning the computer
the next morning.

However, businesses that provide computing services of various kinds to a large
number of users often must have their systems available 24 hours a day, 7 days a
week. For instance, a Web hosting company could suffer irreparable damage if the
service were shut down for the four to eight hours it may take to make duplicates
of its hard drives (actually given the nature of such systems, it would probably take
much longer to duplicate their storage volumes).

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 107

Additionally, such a system may have hundreds of users, all of whom have a rea-
sonable expectation of the privacy of the information they store in “their” directories.
Typically a search warrant would not provide blanket permission to simply snoop
through all these unrelated files, and in fact, special rules exist with respect to “pri-
vate electronic communication” (i.e., e-mail) on “remote computing services” (i.e.,
service providers such as ISPs).

Significant issues exist regarding how one can acquire admissible evidence from
a live, multi-user system without unacceptably degrading performance, while at the
same time avoiding access to “unnecessary information.” Obviously a live system is
continually modifying logs, processes startand stop, files are created, accessed, and
deleted. While the technical aspects of capturing such information is relatively easy,
it may be difficult to demonstrate authenticity when the case comes to trial.

3.7 The Presentation Phase

Once the Examination and Analysis phases have been completed and the case
moves into prosecution, the digital information that has been collected must be ad-
missible to the court in order to have any evidentiary value. The Federal Rules of
Evidence [31] establish guidelines for ruling on the admissibility of a specific piece
of evidence. Normally, in order to admit the content of a written document, an au-
dio recording, or a photograph into evidence, theoriginal written document, audio
recording or photograph is required. This is known as theBest Evidence Rule.

3.7.1 Best Evidence

Obviously the Best Evidence Rule poses a significant problem when introducing
digital evidence into a trial since the evidence itself consist of a collection of elec-
trons that cannot be viewed without some sort of viewing tool. Further, even if one
could visually perceive the electrons, they still must be translated using either a text
interchange code, such as ASCII or Unicode, or an application that interprets their
meaning (e.g., in order for the contents of an ACCESS database to make sense, it
must be viewed using the ACCESS database application).

Fortunately, there is an exception to the Best Evidence Rule that allows a printout
or other sort of output readable by sight and shown to accurately reflect the data to
be considered “Best Evidence” when dealing with data stored on a digital storage
device. In other words, an accurate printoutof digital information always satisfies
the best evidence rule.

108 W. HARRISON

3.7.2 Authenticity

Before specific digital information can be admitted as evidence it must be shown
to be authentic, or in other words, it must be shown to actually be what it is
claimed to be. This is usually done by the testimony of someone that has first-
hand knowledge of the digital information. For example, a police officer can tes-
tify that a hard drive is the same one that was seized from a computer in the
defendant’s residence, or a bank officer can testify to the authenticity of bank
records.

Challenges to the authenticity (and therefore admissibility) of digital information
often take on one of three forms:

1. Digital information can be easily altered, and it can be suggested by the De-
fense that digital information may have been changed or altered (either mali-
ciously or inadvertently) after the information was seized. However, without
specific evidence that tampering occurred such as MD5 hashes that do not
match, the merepossibilityof tampering has been ruled to not affect the au-
thenticity of digital information.

2. If digital information such as logs, meta data, a file’s last modified date, etc. has
been created by a computer program the authenticity of the information hinges
on the reliability of the computer programs that created the data. If the pro-
gram is shown to have programming errors which could lead to its output being
inaccurate the information may not be what it is claimed to be. Because pro-
gramming errors are so prevalent among commercial software this could raise
serious problems when introducingany computer-generated evidence. How-
ever, the courts have indicated that this challenge can be overcome as long as
the information can be considered trustworthy. For instance, the trustworthi-
ness of a computer program can be established by showing that users of the
program rely on it’s output on a regular basis. Once a level of trustworthi-
ness has been established, challenges to the accuracy of the digital informa-
tion generated by the computer program affect only the weight (i.e., degree
to which the jury considers the evidence) of the evidence, not its admissibil-
ity.

3. If the digital information consists of the electronically recorded writings of a
person such as e-mail, instant messages, word processing documents, or chat
room messages, the statements contained in the digital information must be
shown to be truthful and accurate. Theauthenticity of such evidence is usu-
ally challenged by questioning the author’s identity—in other words, how do
we know the person actually is the one that produced the document? Evidence
such as ISP logs or the contents of a user’s “Sent” mail folder may end up being
used to authenticate such evidence.

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 109

Some operations the forensic analyst might perform are fairly straightforward, even
to a layperson with minimal computer knowledge. On the other hand, many activities
the investigator may perform are not so straightforward.

For instance, retrieving deleted files requires a certain level of technical expertise
in order to understand how reliable and valid the technique is. For instance, one
might question the likelihood that a “retrieved” file containing the string “I did it,” is
actually the reconstructed last eight bytes of the string “I agreed to return the money,
I did, and I am glad I did it.” Or, that there were not actually two files, one that
contained “ID” and one that contained “IT?” An examiner must be ready to describe
and defend the actions taken to “reconstruct” a deleted file since a juror is more likely
to have a “reasonable doubt” if they do not understand the procedures undertaken to
collect the evidence.

3.7.3 The Daubert Standard

The 1993Daubert vs. Merrell Dow Pharmaceuticals, Inc.case established the
standard for scientific testimony (including testimony involving digital forensics).
Prior to 1993, the Frye Standard was used to establish admissibility of scientific
evidence based on it’s “acceptance”by the scientific community. UnderDaubert,
this standard was raised by requiring additional factors before scientific testimony is
allowed:

1. Has scientific theory or technique been empirically tested?
2. Has scientific theory or technique been subjected to peer review?
3. What is known regarding potential error rate (both Type I and Type II errors)?
4. What is the expert’s qualifications and stature in the scientific community?
5. Does the technique rely upon the special skills and equipment of one expert, or

can it be replicated by other experts elsewhere?
6. Can the technique and its results be explained with sufficient clarity and sim-

plicity so that the court and the jury can understand its meaning?

Currently, theDaubertruling is used in Federal Courts and in the courts of a num-
ber of states. In 1999,Kumho Tire vs. Carmichael, extendedDaubert to nonscien-
tific expert testimony. Othernon-Daubertstates use a variety of tests in determin-
ing whether expert opinion should be admitted into evidence ornot. In general, the
Daubertstandard is both the most restrictive and has the most general applicability.
Consequently, new techniques should be evaluated under the six rules listed above.

110 W. HARRISON

4. An Illustrative Case Study: Credit Card Fraud

A simple hypothetical case study is provided in this section in order to illustrate
some of the points discussed earlier in this chapter. In this case study, an individual
is suspected of using a stolen credit card to purchase merchandise from an on-line
golfing equipment retailer.

The case begins with an on-line purchase of a set of expensive golf clubs. Order
Number ODL79365 was placed at http://www.pdxGolfing.com. for a $1045 set of
XLNT golf clubs. The order specified it was to be shipped to the address listed for the
credit card using Next Day air delivery by a courier service. Since many merchants
will only ship merchandise to the billing address associated with the credit card,
a common scheme is to specify Next Day delivery so the perpetrator will know when
to expect the merchandise. If the shipment is delivered while the card holder is at
work, it is a simple matter to intercept the delivery on the victim’s front porch.

The day after the order was placed, the suspect was interrupted rifling through
items on the credit card holder’s porch by neighbors minutes after a courier delivery.
An officer was dispatched to the scene. The responding officer completed a report
and issued the suspect a summons for Criminal Mischief III, a relatively minor Class
C Misdemeanor. The case was assigned to a detective for follow-up. Originally con-
sidered a crime of opportunity, when the cardholder returned home from work and
the detective learned the credit card had recently been reported stolen, she immedi-
ately suspected the crime was more serious than originally thought. Upon contacting
http://www.pdxGolfing.com she verified that the order had been placed using the
stolen credit card.

At this point, it is known that the golf clubs had been ordered using the stolen credit
card. It is also known that the suspect was found handling the clubs immediately after
they were delivered to the credit-card holder’s address. However, the credit card itself
was not found. The problem for the detective is to tie the suspect to the order. The
fact to be proven is whether or not the suspect actually placed the order or not.

During an interview with the suspect, the detective noticed a computer connected
to the Internet in the living room. Probable cause was established based on the pres-
ence of a computer connected to the Internet, the fraudulent order being placed over
the Internet, and the suspect’s presence at the cardholder’s home minutes after a Next
Day delivery was made. Therefore, a Magistrate issued a search warrant allowing all
Internet connected computers in the household to be searched for evidence of mak-
ing this particular purchase. In planning the seizure, the investigator described what
the digital forensic expert thought was a Microsoft Windows system.

Uniformed Police Officers and a detective arrived at the house at 9 AM the next
morning with the warrant. The Officers immediately escorted each resident of the
house into the kitchen while the detective searched each room. The only computer

http://www.pdxGolfing.com.
http://www.pdxGolfing.com

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 111

found was in the living room. When located, the computer was already turned off.
Since the forensic technician was not able to accompany them on the seizure, the
detective labeled each cable with a pieceof tape, and carefully disconnected each
from the computer. The computer was placed in the trunk of a patrol car and the
suspect was given a receipt for all items taken.

The computer was taken to the Police Computer Forensic Lab, where it was tagged
and all pertinent serial numbers written down. Afterwards, the forensics technician
removed the seized machine’s 40 GB hard drive and signed it out in order to maintain
the Chain of Custody. The technician selected a disk of comparable size to serve as
the examination disk and verified that the drive had been “scrubbed” to remove any
data that may be on the disk.

The technician first computed the MD5 hash for the evidence disk.
The technician placed both the evidence (source) disk and the examination (target)

disk in a hardware device called a Logicube SF-5000 [32], a special purpose IDE disk
duplication tool. The original hard disk was returned to the Evidence Locker where
it was stored with the rest of the computer.

The detective asked the technician to locate evidence that would tie the suspect to
the order that was placed at http://www.pdxGolfing.com. Upon some investigation,
the technician found that the http://www.pdxGolfing.com retail site uses cookies to
persistently maintain the shopping cart while the customer is shopping.

A cookie is an entry on the user’s hard drive where Internet applications can store
information during a session. Usually the cookie entry includes the name of the do-
main the user was using when the cookie was recorded, as well as selected pieces of
information the Internet application may wish to keep available. A cookie may last
for only while the session is active, or it may be saved for a longer period of time so
the user can come back later and pick up where they left off.

The examination disk was placed in an external drive bay connected to an exami-
nation machine and a quick inventory of the files was made. Noting that the suspect
used the Microsoft Internet Explorer Web browser, the forensic technician examined
the \Documents and Settings\user\Cookies directory. If the user had used Internet
Explorer to place the order, this directory would contain a cookie providing evidence
of this fact.

4.1 Alternate Scenario 1

Occasionally, the forensic investigator gets lucky and the suspect does a poor job
of covering their tracks. Sometimes it is because the criminal does not think they will
ever be caught and other times it is becausethey are too computer naïve to realize
that almost everything a person does on a computer leaves some record behind.

http://www.pdxGolfing.com
http://www.pdxGolfing.com

112 W. HARRISON

FIG. 6.

As soon as the technician opened the Cookies folder, he found a file called
user@www.pdxgolfing.com[2].txt , see Fig. 6.

This file contains the cookies deposited by applications located at the pdxgolf-
ing.com domain. Upon opening the file, the technician saw the following two lines:

ordernumberODL79365www.pdxgolfing.com/
1536242056576029578815146
itemsXLNT_Golf_Clubs-1045www.pdxgolfing.com/
1536242056576029578

These entries immediately show not only that the suspect’s computer had visited this
site before, but that the user had placed order number ODL79365 for a set of XLNT
golf clubs.

After the forensic analysis, the detective has sufficient evidence to link the sus-
pect with the fraudulent order placed on the Internet. This escalates the crimes the
suspect can be charged with from Criminal Mischief III, a Class C Misdemeanor, to
at least three Class C Felonies:12 Computer Crime, Fraudulent Use of a Credit Card

12These crimes are based on Oregon Revised Statutes: ORS 164.377, ORS 165.055 and ORS 165.800,
the specific crimes the suspect may be charged with will vary from state to state.

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 113

(a Class C Felony since the amount is over $750), as well as Identify Theft. This has
dramatically raised the stakes for the suspect from a fine of under $1000 and/or 30
days in the county jail to three counts, each of which could result in a fine of up to
$100,000 and/or 5 years in prison.

4.2 Alternate Scenario 2

Sometimes a suspect will become suspicious or have foreknowledge of a search.
For example, in this case, the suspect already knew that he was under suspicion.
This left him ample time to attempt to get rid of incriminating evidence. While he
was careful to delete incriminating cookies, he failed to realize the cookies were
not actually deleted, but were rather placed into a protected Recycle Bin folder, see
Fig. 7.

Much to the suspect’s chagrin, the incriminating cookie file can be easily recov-
ered from the Recycle Bin.

However, the Recycle Bin not only preserves the file, but it also preserves the
timestamps showing when the file was deleted. If the suspect later claims someone
else used his computer to place the order, the deletion time stamp may be able to be

FIG. 7.

114 W. HARRISON

used to show that he was the only one with access to the computer at this particular
point in time. If this is indeed the case, it would cast serious doubt upon his claim
that he had nothing to do with the on-line purchase.

4.3 Alternate Scenario 3

If the suspect is astute enough to think of deleting the cookie files, he is proba-
bly astute enough to know that deleted files could be recovered from the Recycle
Bin. Therefore, it would be almost certain he would have emptied the Recycle Bin
after deleting the cookie file. However, since the suspect’s computer used Microsoft
Windows 2000, many times even files that are emptied from the Recycle Bin can be
recovered.

If a file is small enough, it is stored as an MFT resident attribute rather than be-
ing stored in a nonresident cluster. Since the MFT entries on this computer’s 40 GB
hard drive are 4096 bytes in size, and the actual data stored in the cookie is less
than 150 bytes, the examiner can count on the file contents to be part of the MFT
entry ($DAT). Therefore, the examiner would likely use one of many available tools
to scan for the stringwww.pdxgolfing.com at the media management level,
ignoring file boundaries and MFT entries. If the sectors containing the MFT en-
try have not yet been overwritten, the cookie will almost certainly be found this
way.

Once the MFT entry is located, the examiner can trace backwards to find the
deletion date. When a file is placed into the Recycle Bin the file name is changed
to [drive][index][extension] . The MFT entry just found will actually
contain a filename of this form (e.g., “C1txt ”) rather than the original file name
user@www.pdxgolfing.com[2].txt . The Recycle Bin’s INFO file lists files
and their deletion times, so a second scan for the file name “C1txt ” will probably
turn up the deleted INFO file that contains the file deletion time. Again, as in Al-
ternate Outcome 2, it can be demonstratedthat the suspect took steps to remove the
evidence of the on-line purchase.

Regardless of which scenario transpires, the forensic examiner still is able to ex-
tract the cookie that links the computer, with the on-line order from http://www.
pdxgolfing.com. However, if the case goes to trial, the examiner will have to
be able to plainly describe the process they used in order to recover the cookie
under Alternate Scenario 3. Even though the text found on the hard drive is
suspicious, there is still can be a margin of doubt that the text found was in
fact deposited as a cookie, unless it can actually be linked to a file named
user@www.pdxgolfing.com[2].txt .

http://www.pdxgolfing.com
http://www.pdxgolfing.com
http://www.pdxgolfing.com

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 115

5. Law Enforcement and Digital Forensics

Most digital forensic investigators come from the ranks of police detectives who
have demonstrated an interest in, and aptitude for, using computers. In a National In-
stitute of Justice sponsored report addressing law enforcement’scapacity for dealing
with electronic crime [33], thetop ten issues identified were:

• Insufficient resources to establish computer crime units, pursue investigations
and prosecutions, and develop tools.

• Lack of knowledge on how to structure a computer crime unit.

• Lack of uniform training for personnel.

• Inability to retain trained personnel.

• Lack of knowledge of existing technical tools or other resources.

• Insufficient technical tools.

• Lack of standards and certification for technical tools.

• Lack of standards and certification for training.

• Need for updated laws and regulations.

• Insufficient cooperation with the private sector and academia.

It is notable that few of these issues relate to “technology gaps.” Many of the issues
are far too fundamental. For example, training and awareness of existing resources
is necessary before new technologies can be brought to bear.

As the initial wave of forensic specialist pioneers of the 1980s and 1990s retire
and the use of digital evidence increases, the make up of the field is changing. For
instance, a Federal Bureau of Investigation Forensic Examiner now requires a bac-
calaureate degree with at least 20 semester hours in computer science, information
systems analysis, science/technology, information management, mathematics, com-
puter engineering, or electrical/electronic engineering. An undergraduate Computer
Science degree may now be used to qualify for consideration as a Special Agent, the
FBI’s front-line law enforcement personnel (until 2002, Special Agents generally
required degrees in either Accounting or Law).

Interest is also growing by many universities in developing computer forensics
curricula at both the graduate and undergraduate level. However, currently there ap-
pears to be relatively little interaction between computer science and criminal justice
departments.

The characteristics of both current and future practitioners is significant from the
perspective of the technologist. The practitioners within a field and their abilities to
utilize advanced technology constrain theuse and nature of tools every much as do
the limitations stemming from the laws on search and seizure.

116 W. HARRISON

6. Organizational Structures of Digital Forensics
Capabilities

Several organizational models exist for a digital forensics capability within Law
Enforcement. There is not currently any one model that has become standardized.
The organizational model is important because it heavily influences the level of ex-
pertise, training and resources that may be brought to bear in creating and using new
technology.

One popular approach is a distributed structure. In this organizational structure,
individual agencies each have their own physical facilities (often just a small room,
a forensics computer and an external drive) and one or two investigators that have
been trained at some level in the technology of digital forensics. In the distributed or-
ganizational model, agencies work on their own cases, sometimes sharing resources
with other nearby agencies as time and circumstances permit.

Another common approach is a cooperative model in which both resources and
personnel are pooled by several agencies to create a regional digital forensics labora-
tory. Usually the laboratory services a relatively limited geographical area—perhaps
adjoining counties for a metropolitan area. Cases are also pooled with no considera-
tion of jurisdiction. For example, if Smallville Police contributes a trained examiner
to the regional laboratory, and later they request services, the case may go to any
of the examiners, and not necessarily the one contributed by Smallville. This is the
model favored by the Federal Bureau of Investigation’s Regional Computer Forensic
Laboratories (RCFLs). The RCFL model has proven quite effective at mobilizing
resources within a geographic area. Currently, eight FBI RCFLs are either in place
or under construction: San Diego, California; Dallas, Texas; Kansas City, Missouri;
Chicago, Illinois; Buffalo, New York; Newark, New Jersey; Portland, Oregon; and
Salt Lake City, Utah.

A very prevalent model is a “service-based” model. In this model, local agencies
do not have any digital forensic capabilities themselves. Rather, they may seize an
entire computer and send it to a centralized facility, often the state crime lab, or the
Federal Bureau of Investigation [34] for analysis.

Each of these different organizational structures has both strong and weak points.
For example, in the distributed structure, individual forensic investigators tend to be
relatively isolated, and lack colleagues to “bounce ideas off.” On the other hand, the
agency has full control over its cases, can track their progress, etc. The cooperative
model may result in an agency’s cases being given lower priority. On the other hand,
investigators from different agencies canwork in a collegial environment and create
a “critical mass” resulting in innovation and growth.

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 117

7. Research Issues in Digital Forensics

Digital forensics has been, up until now, a very practitioner-oriented discipline,
usually with a law enforcement perspective. This is important, and perhaps even
necessary, since digital forensics exists within a very complicated mosaic of factors
that constrain the state of the art. These factors include:

• Externally imposed rules—what is technically feasible is not necessarily legally
possible. For instance, the strict limitations on searching a suspect’s possessions
imposed by the Fourth Amendment and various statutory rules means that not
all technological advances are usable. For instance, it is possible to introduce
Trojans, keystroke loggers, etc. into an unprotected or poorly protected com-
puter over the Internet. Evidence could be easily gathered and crimes could be
stopped as they occur. However, such technology is generally worthless because
evidence collected in this manner would almost be certainly barred from use in
court.

• Available expertise and resources—currently, most digital forensic examiners
have technical training, but few possess the more fundamental knowledge typi-
cally expected from an undergraduate Computer Science major. While sophisti-
cated concepts may be usable, they mustbe presented with an easy-to-use front
end to allow use by examiners. Currently a major debate revolves around the use
of command line forensic tools such as “DD” and Windows-based tools such
as “Encase” and “iLook.” Likewise, the resources and facilities most agencies
have available to deal with digital forensics are minimal. Few law enforcement
agencies have access to supercomputers or satellites (in spite of the image Hol-
lywood presents). Advances that require examiners to have access to advanced
knowledge or computing capabilities will be of little practical assistance.

• Volatility—because Digital Forensics is (at least currently) practice-based, new
advances are often tied closely with specific operating systems or devices. For
instance, the details of the process used to recover deleted files varies from
MacOS to Windows XP. Because of rapid changes in technology, new chal-
lenges and issues are always rising to the surface. Work that was applicable to
MS-DOS systems may be totally irrelevant within a PalmOS environment.

Because of its applied nature, useful research in the field will most certainly manifest
itself as tools that can be ultimately used in forensic investigations. However, some
of the most promising advancements in this area will likely entail adaptation of work
in other fields such as database, algorithms, graphics, and software engineering.

118 W. HARRISON

8. Conclusions

This chapter has provided an introduction to the field of digital forensics and a
brief overview of some of the technology being used. The field has matured greatly
since the 1980s when investigators used Microsoft’s DEBUG to search for deleted
files on MS-DOS machines, and dealt with 5 MB hard drives.

The insular past of the community has restricted participation to practitioners until
very recently. With the increased participation of computer science researchers, new
techniques and capabilities can be expected.

REFERENCES

[1] Flynn M.K., “Computer crime scenes”,PC Magazine(19 February 2002).
[2] Yasinac A., Erbacher R., Marks D., Pollitt M., Sommer P., “Computer forensics educa-

tion”, IEEE Security and Privacy(July/August 2003) 15–23.
[3] Hosmer C., “Proving the integrity of digital evidence with time”,International Journal

of Digital Evidence1 (1) (2002).
[4] U.S. Federal Rules of Evidence, U.S. Government Printing Office, 1 December 2001.
[5] “Searching and seizing computers and obtaining electronic evidence in criminal in-

vestigations, computer crime and intellectual property section, Criminal Division,
United States Department of Justice”. Available at: http://www.usdoj.gov/criminal/
cybercrime/s&smanual2002.htm, July 2002.

[6] Reith M., Carr C., Gunsch G., “An examination of digital forensic models”,International
Journal of Digital Evidence1 (3) (2002).

[7] C. Wade (Ed.),FBI Crime Scene Search, 1999. Available at: http://www.fbi.gov/hq/
lab/handbook/scene1.htm.

[8] “U.S. Secret Service, Best practices for seizing electronic evidence”. Available at: http://
www.secretservice.gov/electronic_evidence.shtml, 2002.

[9] Vanstone S., van Oorschot P., Menezes A.,Handbook of Applied Cryptography, CRC
Press, 1997.

[10] Scientific Working Group on Digital Evidence and International Organization on Digital
Evidence, “Digital Evidence: standards and principles”,Forensic Science Communica-
tions2 (2) (2000).

[11] http://www.forensics-intl.com/safeback.html.
[12] http://www.guidancesoftware.com/.
[13] http://www.ilook-forensics.org/.
[14] Lyle J., “NIST CFTT: testing disk imaging”,International Journal of Digital Evi-

dence1 (4) (2003).
[15] Bates J., “Fundamentals of computer forensics”,International Journal of Foren-

sic Computing(January/February 1997). Available at: http://www.forensic-computing.
com/archives/fundamentals.

http://www.usdoj.gov/criminal/cybercrime/s
http://www.usdoj.gov/criminal/cybercrime/s
http://www.usdoj.gov/criminal/cybercrime/s
http://www.fbi.gov/hq/lab/handbook/scene1.htm
http://www.fbi.gov/hq/lab/handbook/scene1.htm
http://www.fbi.gov/hq/lab/handbook/scene1.htm
http://www.secretservice.gov/electronic_evidence.shtml
http://www.secretservice.gov/electronic_evidence.shtml
http://www.secretservice.gov/electronic_evidence.shtml
http://www.forensics-intl.com/safeback.html
http://www.guidancesoftware.com/
http://www.ilook-forensics.org/
http://www.forensic-computing.com/archives/fundamentals
http://www.forensic-computing.com/archives/fundamentals
http://www.forensic-computing.com/archives/fundamentals

THE DIGITAL DETECTIVE: AN INTRODUCTION TO DIGITAL FORENSICS 119

[16] Rivest R.,The MD5 Message-Digest Algorithm, RFC-1321, MIT LCS and RSA Data
Security, Inc., April 1992.

[17] FIPS Publication 180-1, Secure Hash Standard, April 1995.
[18] Kornblum J., “Preservation of fragile Digital Evidence by first responders”, in:2nd An-

nual Digital Forensics Research Workshop, August 2002.
[19] Willassen S.Y., “Forensics and the GSM mobile telephone system”,International Jour-

nal of Digital Evidence2 (4) (2003).
[20] Grand J., “pdd: memory imaging and forensic analysis of Palm OS devices”, in:Pro-

ceedings of the 14th Annual Computer Security Incident Handling Conference, June
2002.

[21] Gerber M.B., Leeson J.J., “Shrinking the Ocean: formalizing I/O methods in modern
operating systems”,International Journal of Digital Evidence1 (2) (2002).

[22] International Organization on Computer Evidence, “Good practices for seizing elec-
tronic devices”, in:Notes from the International Organization on Computer Evidence
2000 Conference, Rosny sous Bois, France, December 2000.

[23] “Hard Drive Software Write Block Tool Specification and Test Plan”, Draft Version 3.0,
National Institute of Standards and Technology, May 2003.

[24] http://www.sleuthkit.org/sleuthkit/.
[25] Philips L., “The double metaphone search algorithm”,C/C++ Users Journal(June

2000).
[26] http://www.vogon-computer-evidence.us/gentree_software.htm.
[27] NTRCFL website: http://www.ntrcfl.org/.
[28] Carrier B., “Defining digital forensic examination and analysis tools using abstraction

layers”,International Journal of Digital Evidence1 (4) (2003).
[29] http://www.hashkeep.org.
[30] National Institute of Standards, “National Software Reference Library (NSRL)Project

Web Site”. Available at: http://www.nsrl.nist.gov/index.html.
[31] Kerr O.S.,Computer Records and the Federal Rules of Evidence, Computer Crime and

Intellectual Property Section, Criminal Division, United States Department of Justice,
March 2001.

[32] http://www.logicube.com/products/hd_duplication/sf5000.asp.
[33] Stambaugh H., Beaupre D.S., Icove D.J., Baker R., Cassaday W., Williams W.P., “As-

sessment for State and Local Law Enforcement”, U.S. Department of Justice Report,
NCJ 186276, March 2001.

[34] “FBI Handbook of Forensic Services, Computer Examinations”. Available at: http://
www.fbi.gov/hq/lab/handbook/examscmp.htm.

http://www.sleuthkit.org/sleuthkit/
http://www.vogon-computer-evidence.us/gentree_software.htm
http://www.ntrcfl.org/
http://www.hashkeep.org
http://www.nsrl.nist.gov/index.html
http://www.logicube.com/products/hd_duplication/sf5000.asp
http://www.fbi.gov/hq/lab/handbook/examscmp.htm
http://www.fbi.gov/hq/lab/handbook/examscmp.htm
http://www.fbi.gov/hq/lab/handbook/examscmp.htm

This page intentionally left blank

Survivability: Synergizing Security
and Reliability

CRISPIN COWAN

Immunix, Inc.
920 SW 3rd Avenue
Portland, OR 97204
USA
crispin@immunix.com

Abstract
In computer science, reliability is the study of how to build systems that con-
tinue to provide service despite some degree of random failure of the system.
Security is the study of how to build systems that provide privacy, integrity, and
continuation of service. Survivability is a relatively new area of study that seeks
to combine the benefits of security and reliability techniques to enhance system
survivability in the presence of arbitrary failures, including security failures. De-
spite apparent similarities, the combination of techniques is not trivial. Despite
the difficulty, some success has been achieved, surveyed here.

1. Introduction . 122
2. The Problem: Combining Reliability and Security122
3. Survivability Techniques .. 124

3.1. Design Time: Fault Isolation . 125
3.2. Implementation Time: Writing Correct Code 129
3.3. Run Time: Intrusion Prevention . 129
3.4. Recovery Time: Intrusion Tolerance . 133

4. Evaluating Survivability .135
4.1. Formal Methods . 136
4.2. Empirical Methods . 136

5. Related Work . 139
6. Conclusions . 140

References . 141

ADVANCES IN COMPUTERS, VOL. 60 121 Copyright © 2004 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(03)60004-5 All rights reserved.

122 C. COWAN

1. Introduction

At first glance, reliability and security would seem to be closely related.Security
is defined [71] as privacy, integrity, and continuation of service, the latter seeming to
encompass a degree of reliability. Conversely,reliability is defined as systems that
mask faultsto preventfailuresof systems to provide their specified services [70].

The combination reliability and security is a natural fit: both seek to improve sys-
tem availability, both must deal with failures and their consequences. Techniques to
ensure software quality such as source codeauditing, type safe languages, fault iso-
lation, and fault injection all work well for both security and reliability purposes;
improving one tends to improve the other.

However, interpreting security “faults” (vulnerabilities) as failures in the reliability
sense has proven to be problematic.Failure is defined as “deviation from specifica-
tion” which is not helpful if the specification itself is wrong. More over, many real
systems are implemented in type-unsafe languages (especially C) and so correspon-
dence to a formal specification cannot easily be assured. Thus reliable software does
what it is supposed to do, while secure software does what it is supposed to do, and
nothing else[2]. The surprising “something else” behaviors form the crux of the
software vulnerability problem.

So security and reliability cannot be trivially composed to achieve the benefits of
both.Survivabilityis the study of how to combine security and reliability techniques
to actually achieve the combined benefits of both. The intersection of the two is to
be able to survive failures of the security system. The union of the two is to survive
arbitrary failures, including the security system, not just random failures.

The rest of this chapter is organized as follows. Section 2 describes the problem of
composing security and reliability techniques in greater detail. Section 3 surveys and
classifies survivability techniques. Section 4 surveys methods of assessing surviv-
ability. Section 5 describes related work surveying survivability. Section 6 presents
conclusions.

2. The Problem: Combining Reliability and Security

Reliability defines afault to be when something goes wrong, and afailure as when
a fault manifests a consequence to a user, such that the system no longer performs its
required function. Thus the principle approach to building reliable systems isfault
maskingin which some provisions are made to prevent individual faults from produc-
ing failures.Fault tolerancetechniques notably achieve fault masking by providing
redundantcomponents, so that when one component fails, another can take up its
burden.

SURVIVABILITY: SYNERGIZING SECURITY AND RELIABILITY 123

A crucial assumption to fault tolerance is that faults areindependent: that there
is no causal relationship between a fault in one component and a fault in another
component. This assumption breaks down with respect tosecurity faults(vulnera-
bilities) because replication of components replicates the defects. Attackers seeking
to exploit these vulnerabilities can readily compromise all replicas, inducing failure.
Thus survivable systems must provide something more than replication to be able
to survive the design and implementation faults that are at the core of the security
problem.

Reliability also assumes that faults are random, while security cannot make such
an assumption. For instance, a system that depends on random memory accesses not
hitting the address0x12345678 can be highly reliable (assuming no data structures
are adjacent) but is not secure, because the attacker can aim at an address that is
otherwise improbable. In the general case, the attacker can maliciously induce faults
that would otherwise be improbable. Thus the traditional reliability techniques of
redundancy and improbability do not work against security threats.

The traditional security approach to masking security faults is prevention: either
implementwith such a high degree of rigor that vulnerabilities (exploitable bugs) do
not occur, or elsedesignin such a way that any implementation faults that do occur
cannot manifest into failures. Saltzer and Schroeder canonicalized these prevention
techniques in 1975 [71] into the following security principles:

1. Economy of mechanism: designs and implementations should be as small and
simple as possible, to minimize opportunities for security faults, i.e., avoid
bloat.

2. Fail-safe defaults: access decisions should default to “deny” unless explicitly
specified, to prevent faults due to unanticipated cases.

3. Complete mediation: design such thatall possible means of access to an object
are mediated by security mechanisms.

4. Open design: the design should not be secret, and in particular, the design
should notdepend on secrecyfor its security, i.e., no “security through ob-
scurity.”

5. Separation of privilege: if human security decisions require more than one hu-
man to make them, then faults due to malfeasance are less likely.

6. Least privilege: each operation should be performed with the least amount of
privilege necessary to do that operation, minimizing potential failures due to
faults in that privileged process, i.e., don’t do everything asroot or admin-
istrator .

7. Least common mechanism: minimize the amount of mechanism common
across components.

8. Psychological acceptability: security mechanisms mustbe comprehensible and
acceptable to users, or they will be ignored and bypassed.

124 C. COWAN

These principles have held up well overtime, but some more than others. Least
privilege is a spectacular success, while least common mechanism has failed to com-
pete with an alternate approach of enhanced rigor applied to common components
that are then liberally shared.

Unfortunately, these techniques also turn out to be too expensive. They are hard
to apply correctly, succeeding only rarely. When they do succeed in building highly
secure (invulnerable) systems, the result is so restricted and slow that it tends to fail
in the market place, having been eclipsed by less secure but more featureful systems.

So in practice, Saltzer and Schroeder’s techniques fail most of all for lack of being
applied in the first place. Security faults are thus inevitable [26]. Survivability is then
the study of how to mask security faults, and do so such that attackers cannot bypass
the fault masking. Section 3 examines how security faults can be effectively masked.

3. Survivability Techniques

In Section 2 we saw that redundancy and improbability are insufficient to mask
security faults against an intelligent adversary, because the adversary can deliberately
invokecommon mode failures. How then to mask unknown security faults?

Colonel John R. Boyd, USAF, defined a strategy calledOODA: Observe, Orient,
Decide, and Act [42]. These four steps describe specifically how a fighter pilot should
respond to a threat, and the approach generalizes to other fields of conflict, including
computer security, which plays out as follows:

1. Observedata that might indicate a threat.
2. Orient by synthesizing the data into a plausible threat.
3. Decidehow to react to that threat.
4. Act on the decision and fend off the threat.

This strategy is often used in computer survivability research to buildadaptive
intrusion responsesystems. These systems detect intrusions (using IDS/Intrusion
Detection Systems) and take some form ofdynamic action to mitigate the intrusion.
They precisely follow Boyd’s OODA loop.

Survivability techniques vary in thetime framein which the intrusion detection
and response occur. Boyd advocatedtight OODA loops to “get inside” the adver-
sary’s control loop, acting before the adversary can respond. In computer systems,
tight response loops have the distinct advantage of preventing the intrusion from
proceeding very far, and thus prevent most of the consequent damage.

However, larger OODA loops are not without merit. Taking a broader view of
intrusion events enables more synthesis of what the attacker is trying to do, producing
better “orientation” (in Boyd’s terms) and thus presumably better “decisions.”

SURVIVABILITY: SYNERGIZING SECURITY AND RELIABILITY 125

In the following sections, we examine survivability techniques in terms of when
they mitigate potential security faults. Section 3.1 looks at design time mitigation.
Section 3.2 looks at implementation time techniques. Section 3.3 looks at run time
intrusion prevention. Section 3.4 looks at intrusion recovery techniques.

3.1 Design Time: Fault Isolation

Despite the problems described in Section 2, security and reliability techniques do
have overlap, especially in the area of design: to minimize the scope of faults. The
Principle of Least Privilege can be applied in many contexts to enhance both security
and reliability, such as:

• address space protection, which isolate wild pointer process faults to that
process

• microkernels, which further compartmentalize facilities such as file systems
into separate processes, rather than placing them in a single monolithic kernel

• mandatory access controls, which limit the scope of damage if an attacker gains
control of a process

Mandatory access controls were the major security result of the 1970s and 1980s.
Firewalls were the major security result of the late 1980s and early 1990s, in effect
providing mandatory access controls for entire sites at the network layer. This is
a natural consequence of the shift to decentralized computing: mandatory access
controls are effective when all of the users are logged in to a single large time-share
system. Conversely, firewalls are effective if all of the users have their own computer
on the network, and thus access must be controlled at the network level. Section 3.1.1
elaborates on mandatory access controls, andSection 3.1.2 elaborates on firewalls.

3.1.1 Mandatory Access Controls

Access controls have always been a fundamental part of secure operating systems,
but the devil is in the details. One can achieve trueleast privilege[71] operation by
precisely specifying permissions foreveryoperation using Lampson’s access control
matrix [54], in which columns are users (or any active entity) rows are files (or any
entity which may be acted upon) and the cells contain the operations that the user
may perform on the file. Table I shows a simple example of a Lampson access control
matrix, but it is far from complete. Since real systems have many users and hundreds
of thousands of files, a complete application of an access control matrix would lead to
an unmanageably complex access control matrix, leading to errors inauthorization.

Thus the goal in access control is to create anabstractionfor access control that
closely matches the anticipated usage patterns of the system, so that access control

126 C. COWAN

specifications can be created that are bothsuccinct(easy to create and to verify) and
precise(closely approximate least privilege).

Access control schemes originally used an abstraction of controlling interactions
amonguserson a time-share system. But by the mid-1990s, most computers had
become single-user: either single-user workstations, or no-user network servers that
do not let users log in at all and instead justoffer services such as file service (NAS),
web service, DNS, etc., and thus user-based access controls schemes became cum-
bersome. To that end, survivability research has produced several new access control
mechanisms with new abstractions to fit new usage patterns:

• Type enforcement and DTE: Type enforcement introduced the idea of abstract-
ing users into domains, abstracting files into types, and managing access control
in terms of which domains can access which types [11]. DTE (Domain and Type
Enforcement [3,4]) refined this concept.

• Generic Wrappers: This extension of DTE [38] allows small access control
policies, written in a dialect of C++, to be dynamically inserted into a running
kernel. A variation of this concept [5] makes this facility available for Microsoft
Windows systems, but in doing so implements the access controls in the DLLs
(Dynamically Linked Libraries) instead of in the kernel, compromising the non-
bypassability of the mechanism.

• SubDomain: SubDomain is access control streamlined for server appliances
[23]. It ensures that a server appliance does what it is supposed to and nothing
else by enforcing rules that specifywhich files each program may read from,
write to, and execute. In contrast to systems such as DTE and SELinux, SubDo-
main trades expressiveness for simplicity. SELinux can express more sophis-
ticated policies than SubDomain, and should be used to solve complex multi-
user access control problems. On the other hand, SubDomain is easy to manage
and readily applicable. Forinstance, Immunix Inc. entered an Immunix server
(including SubDomain) in the Defcon Capture-the-Flag contest [20] in which

TABLE I
LAMPSON’ S ACCESSCONTROL MATRIX

Alice Bob Carol
(sysadmin) (accounting) (engineering)

/var/spool/mail/alice RW

/usr/bin/login RWX X X

/etc/motd RW R R

/local/personnel/payroll RW

/local/eng/secret-plans RW

SURVIVABILITY: SYNERGIZING SECURITY AND RELIABILITY 127

SubDomain profiles were wrapped around a broad variety of badly vulnerable
software in a period of 10 hours. The resulting system was never penetrated.

An unusual new class of access controls emerging from survivability research is
randomization, in which some aspect of a system is deliberately randomized to make
it difficult for the attacker to read or manipulate. The secret “key” of the current
randomization state is then distributed only to known “good” parties [25]. To be
effective, the system aspect being randomized must be something that the attacker
depends on, and must also be something that can be randomized without breaking
the desired functionality of the system. System aspects that have been randomized
are:

• Address space layout: Forrest et al. [36] introduced address space randomiza-
tion with random amounts of padding on the stack, with limited effectiveness.
The PaX project [82] introduced the ASLR (Address Space Layout Random-
ization) feature, which randomized the location of several key objects that are
often used by buffer overflow andprintf format string exploits. Bhatkar et al.
[10] extended ASLR by randomizing more memory objects, but with a limited
prototype implementation. Xu et al. [95] extended in the other direction, pro-
viding a degree of address space randomization usingonlya modified program
loader.

• Pointers: PointGuard [22] provides the exact dual of address space randomiza-
tion by encrypting pointer values in memory, decrypting pointer values only
when they are loaded into registers for dereferencing. Memory layout is left un-
changed, but pointers (which act as the effectivelensthrough which memory is
viewed) are hashed so that onlybona fidecode generated by the compiler can
effectively dereference a pointer.

• Instruction Sets: Kc et al. [48] provide a mechanism for encrypted instruction
sets. In one instance, they encrypt the representation of CPU instructions to be
locally unique, so that foreign binary instructions are not feasible to inject. In
another instance, they apply similar encryption to PERL keywords, so that script
commands cannot be injected over, e.g., web interfaces. The former is largely
limited to hypothetical CPUs (other than Transmeta, who make CPUs with pro-
grammable instruction sets) while the latter is feasible as a normal feature of
conventional software systems.

• IP Space: Kewley et al. [50] built a system that randomizes the IP addresses
within a LAN. Defenders know the secret pattern of changing IP addresses from
time to time, while attackers have to guess. Defenders reported this technique
as effective, while attackers reported that it was confounding when they did not
know it was being used, but once discovered, the limited address space of IPs
(256 for a small LAN) made the guessing attack relatively easy.

128 C. COWAN

Randomization defenses are effectively cryptographic session keys, applied to im-
plicit interfaces. Some form of defenseis called for when the attacker has access
to one side of the interface, i.e., the attacker supplies data to that interface, making
the software processing that input subject to attack. Randomization is an effective
defense where the defense isimplicit and thus classical encrypted communication
would be difficult to employ, e.g., within an address space.

Randomization is less effective when the interface in question isexplicit because
classical encryption may well be more effective. The singular advantage that network
interface randomization offers over network encryption (Virtual Private Networks) is
resistance to DoS (Denial of Service) attacks: attackers can flood encrypted network
ports with traffic without having any encryption keys, but it is relatively difficult to
flood an unknown IP address.

3.1.2 Firewalls

Initially designed to protect LANs from the outside Internet [19], firewalls pro-
gressed to being deployed within LANs to compartmentalize them, much the way
mandatory access control systems compartmentalized time-share users [8]. In recent
self-identified survivability research, the Secure Computing ADF card [67,65] iso-
lates security breaches insideinsecure PCs by providing an enforcing firewall NIC
managed from somewhere other than the PC itself. Thus compromised machines can
be contained from a management console.

In early 2000, a new class of attacks appeared: DDoS (Distributed Denial-of-
Service) attacks, in which an attacker co-opts a large number of weakly defended
computers around the Internet, and then commands them all to flood a victim’s ma-
chine with traffic. These attacks are very difficult to defend against, especially for
public web sites intended to allow anyone on the Internet to submit requests. De-
fenses against such attacks are either totrace back the origin of the attacks [72]
or to attempt to filter the DDoS traffic from legitimate traffic somewhere in the
network to block the flood [34,66,84]. Work in this area has lead to commercial
ventures such as Arbor Networks (www.arbornetworks.com) and Mazu Networks
(www.mazunetworks.com).

The problem with DDoS defenses is that they are subject to an arms race. The
detection technologies are relying upon synthetic artifacts of the bogus data that the
DDoS agents are generating. As the DDoS agents become more sophisticated, the
data will come to more closely resemble legitimate traffic. In principle, there is no
reason why DDoS traffic cannot be made to look exactly like a heavy load of real
traffic: this is a fundamental difference between DoS attacks and misuse attacks, that
DoS attacks need not deviateat all from real traffic. When faced with DDoS traffic
that is identical to real traffic, filtering will become either ineffective or arbitrary.

http://www.arbornetworks.com
http://www.mazunetworks.com

SURVIVABILITY: SYNERGIZING SECURITY AND RELIABILITY 129

Traceback has a better chance of success in the face of sophisticated attack, but will
be labor-intensive until the Internet itself changes to support effective traceback of
traffic.

3.2 Implementation Time: Writing Correct Code

The least damaging vulnerability is one that never ships at all. To that end, many
tools have been developed to help find and eliminate software vulnerabilities during
the development cycle. Three classes of tools have emerged:

• Syntactic checkers: These tools scan the program source code looking for syn-
tactic patterns associated with vulnerabilities, e.g., calls to unsafe functions like
gets() [87,92].

• Semantic checkers: These tools do deeper analysis of program semantics look-
ing for vulnerabilities such as buffer overflows and TOCTTOU (Time of Check
to Time of Use) vulnerabilities [89,18,75].

• Safer Language Dialects: These are variants of the C programming language
intended to make it safer to write programs by making it more difficult to write
vulnerable code, e.g., by removing dangerous features like pointer arithmetic
[46,64]. Safer C dialects notably donot include C++ [80] which adds many
convenience features of object oriented programming, but does not have a safe
type checking system because it does not remove pointer arithmetic from the
language.

• Safer Languages: Programming languages such as Java [41] and ML [63] that
were designed from the outset to be type safe offer even greater safety and ef-
ficiency. By designing the language to facilitate strong type checking, deeper
semantic analysis of the program is possible, allowing compilers such as Her-
mes [78] to even discover inconsistencies in thestateof some values, precluding
some potential run-time failures [79].

3.3 Run Time: Intrusion Prevention

Regardless of fault containment designs, some code must be trusted, and regard-
less of the implementation techniques used, some vulnerabilities (bugs) will slip
through, and so vulnerabilities are inevitable. Thussomething must be done to de-
tect the exploitation of these vulnerabilities and (hopefully) halt it. The reliability
community calls thisfail-stop behavior (assuming that the failure is detected). The
survivability research community calls itintrusion detectionandadaptive response.
The security commercial sector, which has recently become interested, calls itintru-
sion prevention.

130 C. COWAN

There are several dimensions in which intrusion prevention techniques can be clas-
sified. We present a 3-dimensional view, intended to classify together technologies
that achieve similar goals:

• Network vs. Host: Intrusion prevention can be done either at the network layer
or within the host. Network intrusion detection is much easier to deploy, but
because there is little context in network traffic, it is possible for attackers to
evade network intrusion detection methods [69,76].

• Detection vs. Prevention: Some tools only detect intrusions, while others re-
spond to intrusion events and shut the attackers down (closing the OODA loop).
Prevention is effectively detection+ response.

• Misuse vs. Anomaly: Some systems characterize and arrest known system mis-
use and allow everything else (misuse detection) while others characterize nor-
mal system behavior and characterizeanomalousbehavior as an intrusion. Mis-
use detection is fast and accurate, but fails to detectnovelattacks. Anomaly
detecting can detect novel attacks, but is subject to a highfalse positiverate
(complaints about traffic thatis actually legitimate) [57].

Populating this array of properties, we get:

• Network
– Detection

∗ Misuse: This area is dominated by commercial NIDS (Network Intrusion
Detection) products such as the commercial ISS RealSecure and the open
source SNORT.

∗ Anomaly: The ability to detect novel attacks has generated keen interest in
this area of research [55,86], but little of it has had real-world impact due to
high false positive rates. Industrial applications of intrusion detection de-
mandvery low false-positive rates, because non-trivial false-positive rates
combined with high bandwidth lead to high staffing requirements.

– Prevention
∗ Misuse: Network misuse prevention emerged as a commercial market in

2002, taking the more reliable parts of network intrusion detection sys-
tems and placing themin-line with the network connection, acting much
like an application-level firewall with misuse prevention rules. Example
systems include the Hogwash and Inline-SNORT NIPS (Network Intru-
sion Prevention Systems).

∗ Anomaly: Network anomaly prevention is a new way of looking at clas-
sic firewalls, which permit traffic with specified source and destination IP
addresses, ports, and protocols, and deny all other traffic.

SURVIVABILITY: SYNERGIZING SECURITY AND RELIABILITY 131

• Host
– Detection

∗ Misuse: This area is referred to as HIDS (Host Intrusion Detection System)
typified research projects such as EMERALD [68], STAT [88]. These sys-
tems actually use a combination of misuse and anomaly detection. Com-
mercial HIDS similarly use a combination of anomaly and misuse detec-
tion, and also provide for both detection and prevention, as exemplified by
products such as Zone Alarm and Norton Personal Firewall.

∗ Anomaly: There are a variety of ways to do host anomaly detection, de-
pending on which factors are measured, and how “normal” and “anom-
alous” are characterized. Forrest etal. [35] monitor sequences of system
calls, ignore the arguments to system calls, and look for characteristic
n-grams (sequences of lengthn) to distinguish between “self” (normal)
and “non-self” (anomalous). Eskin et al. [32] generalize this technique to
look at dynamic window sizes, varyingn. Ghosh et al. [40] use machine
learning to characterize anomalous program behavior, looking at BSM log
records instead of system call patterns. Michael [62] presents an algorithm
to find the vocabulary of Program Behavior Data for Anomaly Detection,
so as to substantially reduce the volume of raw, redundant anomaly data to
be considered. Tripwire [51,45] does not look at program behavior at all,
and instead detects changes in files that are not expected to change, based
on a checksum; files are profiled in terms of their probability of change, so
that, e.g., changes in/var/spool/mail/jsmith are ignored (e-mail
has arrived) while changes in/bin/login are considered very signifi-
cant.

– Prevention
∗ Misuse: The most familiar form of host misuse prevention is antivirus soft-

ware that scans newly arrived data for specific signatures of known mali-
cious software. However, this very narrow form of misuse is also very
limited, in that it must be constantly updated with new virus signatures, a
limitation made obvious every time a virus becomes widespread before the
corresponding signature does, causing a viral bloom of Internet mail such
as Melissa [14], “I Love You” [15], or Sobig.F [17]. Host misuse preven-
tion can be either provided by the environment, or compiled in to software
components.
+ Kernel: In the kernel environment, an exemplary system is the Openwall

Linux kernel patch [29] which provides both a non-executable stack seg-
ment to resist buffer overflow attacks, and also prevents two pathological
misuses of hard links and symbolic links. PaX [82] generalizes Open-
wall’s non-executable stack segment to provide non-executable heap

132 C. COWAN

pages by manipulating the TLB, which is otherwise problematic on x86
CPUs. RaceGuard [24] detects violations of the atomicity of temporary
file creation to fend off temporary file race attacks.

+ Library: At the library level, Libsafe [6] provides a version ofglibc
that does plausibility checks on the arguments to string manipulation
functions to ensure that buffer overflows and format string attacks [83]
do not corrupt the caller’s activation records.

+ Compiled In: Compiled into programs, StackGuard [27] and derived
work [33,12] compile C programs to produce executables that detect at-
tempts at “stack smashing” buffer overflow attacks that try to corrupt ac-
tivation records to hijack the victim program, and fail-stop the program
before the attack can take effect. PointGuard [22] generalizes this con-
cept to provide broader coverage by encrypting pointers in memory and
decrypting pointer values only when they are loaded into registers for
dereferencing. FormatGuard [21] provides a similar protection against
printf format string vulnerabilities.

∗ Anomaly: Operating systems can profile user or application behavior, and
arrest anomalous deviations. Similar to network anomaly prevention, this
induces sufficient false positives that it is not often deployed. For instance,
to address the limitations of antivirus filters described above in Host Mis-
use Prevention, various survivability research projects [5,43,73] have built
systems to limit the behavior of workstation applications that process net-
work input (e.g., mail clients and web browsers) to minimize potential
damage if the application is hijacked. Mandatory access controls (MAC)
also fit in here (see Section 3.1.1) by using the MAC system to describe
what applications or users may do, and then prohibit everything else.

Many of the above technologies require modification to the operating system ker-
nel to be effective. Because of that need, the open source license and wide popularity
of the Linux kernel make it a popular target for survivability research. Unfortunately,
the result of a research project that customizes the kernel to include survivability fea-
tures is a “private fork” which is easy enough for researchers to build for their own
use, but not sufficiently convenient for IT workers to deploy.

To address this need, the Linux Security Modules project (LSM [94,93]) was built
to provide a sufficiently richloadable kernel module interface that effective access
control modules could be built without needing to modify the standard Linux kernel.
LSM has now been accepted as a standard feature, first appearing for production in
Linux 2.6. As a result, IT workers should be able to obtain survivability-enhancing
modules, either open source such as SELinux [37,60] or proprietary such as Sub-

SURVIVABILITY: SYNERGIZING SECURITY AND RELIABILITY 133

Domain [23] and load them into the standard kernels they get with commercially
distributed Linux systems.

Finally, we return to Boyd’s OODA Loop. In the above technologies, those marked
as “prevention” provide their own built-in intrusion mitigation mechanisms (usually
fail-stop) and thus provide a very tight OODA loop. Those marked as “detection”
need to be composed with some other form of intrusion mitigation to actually be
able to enhance survivability.

This longer OODA loop sacrifices the responsiveness that Boyd so highly prized,
in favor of more sophisticated analysis of intrusion events, so as to gain greater pre-
cision in discerning actual intrusions from false-alarms due to subtle or ambiguous
intrusion event data. For instance, IDIP [74] provides infrastructure and protocols
for intrusion sensors (network and host IDS) to communicate with analyzers and
mitigators (firewalls embedded throughout the network) to isolate intrusions.

The CIDF (Common Intrusion Detection Framework) project was a consortium-
effort of DARPA-funded intrusion detection teams to build a common network lan-
guage for announcing and processing intrusion events. CIDF tried to provide for
generality using Lisp-based S-expressions to express intrusion events. Unfortunately,
CIDF was not adopted by intrusion detection vendors outside the DARPA research
community. Subsequent attempts to build IETF [9] standards for conveying intrusion
events have yet to achieve significant impact.

3.4 Recovery Time: Intrusion Tolerance

An explicit goal of survivability research is to build systems that areintrusion
tolerant: that an intruder may partially succeed incompromising privacy, integrity,
or continuation of service, and yet the system tolerates this intrusion, carrying on
providing critical services at a possibly reduced rate, rather than catastrophically
failing all at once.

The classic reliability approach tofault tolerance is redundancy, so that when one
replica fails, another can take up its load until repairs are made. However, as dis-
cussed in Section 2, the problem here is that while hardware faults areindependent,
the vulnerabilitiesthat lead to security faults (intrusions) are largelynot indepen-
dent. Thus the attacker can sweep through an array of redundant services, quickly
compromising all replicas.

Therefore, to provide intrusion tolerance, something must be done to prevent the
attacker from quickly compromising all replicas, by ensuring that they do not all
share the same vulnerabilities.N -version programming, where independent teams
are given identical specifications to implement, is a classic fault tolerance technique,
and would seem to provide for sufficiently diverse implementation to prevent com-

134 C. COWAN

mon vulnerabilities. Unfortunately,N -version programming suffers from several se-
vere limitations:

• It is veryexpensive, multiplying software development costs nearly byN .

• Theoretically independent software teams unfortunately tend to make similar
(and wrong) assumptions, leading to common bugs [52]. Independent imple-
mentations of TCP/IP stacks and web browsers have often been shown to have
common security vulnerabilities. For instance, nearly all TCP/IP implementa-
tions crashed when presented with a datagram larger than 64 KB in size (the
“Ping of Death”) because most developers read the IP specification, which
clearly states that all packets have a maximum size of 64 KB, and few thought
to check for over-sized packets.

A related approach is to exploitnatural diversityby deploying a redundant array
comprised of, e.g., a Windows machine,a Linux machine, and a FreeBSD machine.
Natural diversity has the advantages of lower cost (because it leverages existing di-
versity instead of paying for additional redundant effort) and sharing fewer common
design and implementation vulnerabilities, because the independent teams did not
share a specification. Conversely, natural diversity has no design assurance that di-
versity has beendeliveredin key areas, e.g., many naturally diverse systems abruptly
discovered that they depended on the same version ofzlib (a data compression
library) when it was discovered to be vulnerable [16].

Several survivability projects [58,47,65,96] employ the natural diversitydefense.
They share a common architecture, inwhich services are replicated acrosshetero-
geneousservers, e.g., one Linux server, one Windows server, and one BSD server.
A router or load balancer of some kind sits in front of the replicas, routing service
requests to one or more of the replicas. The hope is that while one flavor of server
might be vulnerable, that the vulnerability will not be common to all of the replicas.
The system may use some form of intrusiondetection to detect infected servers and
remove them from the replica pool. The system may use some form of consensus
voting to determine correct results, and to remove minority-view servers from the
pool as infected.

Often omitted from such systems is a mechanism to share dynamic state across the
replicas in a consistent and coherent manner, so that they can provide active content.
This is an important issue, because providing static content in a survivable fashion is
relatively simple: burn it to read-only media, and reboot periodically.

Another problem with natural diversity is that it isexpensive, which is why the IT
industry is moving in the opposite direction, consolidating on as few platforms as
possible to reduce costs. Heterogeneity costs money for several reasons:

SURVIVABILITY: SYNERGIZING SECURITY AND RELIABILITY 135

• The site must employ staff with expertise in each of the heterogeneous systems
present. Many systems administrators know only a few systems, and those that
know many systems tend to be senior and cost more.

• The site must patch each of these systems, and to the extent that vulnerabilities
are not common, the patching effort is multiplied by the number of heteroge-
neous systems present. One study [44] found that a site with an infrastructure
of nine NT servers and eight firewalls, for example, would have needed 1315
updates during the first nine months of 2001.

• Multiple versions of applications must be purchased or developed, incurring
additional capital and support expenses.

So while heterogeneity can be effective at providing survivability, it comes at a
substantial cost. It is not yet clear whether the costs of heterogeneity outweigh the
benefits. However, this problem is not specific to the heterogeneity defense; actual
survivability is difficult to assess regardless of the methods employed. Section 4
looks at survivability evaluation methods.

4. Evaluating Survivability

The security assurance problem is “How can I tell if this system is secure?” To
solve that, one must answer “Will this program do something bad when presented
with ‘interesting’ input?” Unfortunately, to solve that, one must solve Turing’s Halt-
ing Problem [85], and Turing’s theorem proves that you cannot, in general, write a
program that will examine arbitrary other programs and their input and determine
whether or not they will halt.

Thus in the fully general case, the security assurance problem cannot be statically
decided automatically, and so other means must be employed to determine the se-
curity assurance of a system. Because determining theactualsecurity of systems is
so problematic, security standards such as the TCSEC (“Orange Book”) and Com-
mon Criteria turned instead to documentation of how hard the developerstried to
provide security, by verifying the inclusion of security enhancing features (access
controls, audit logs, etc.) and the application of good software engineering practice
(source code control, design documentation, etc.) and at higher levels of certification,
a degree of testing.

The question of “How survivable is this system?” is even more problematic, be-
cause the survivability question entails assuming bugs in the software, further weak-
ening assumptions on which to base assurance arguments. Section 4.1 looks at stud-
ies to evaluate survivability through formal methods, and Section 4.2 looks at empir-
ical evaluations of survivability.

136 C. COWAN

4.1 Formal Methods

Knight et al. [53] investigated the problem of a rigorous definition of “survivabil-
ity.” They concluded a system is “survivable” if it “meets its survivability specifica-
tion.” Since most systems are not formally specified in the first place, and some of
the most pressing survivability problems occur in systems largely written using in-
formal languages such as C [49], Knight’s survivability metric is not yet of practical
use, and there is a great deal of work yet to be done before we can specify just how
“survivable” a given system really is.

Similarly, Dietrich and Ryan [30] find that survivability is, by definition, poorly
defined, and therefore ill-suited to formal methods of evaluation. They observe that
survivability is a relative property, not an absolute, and so must be evaluated in the
context of “more survivable than what?”

Gao et al. [39] propose a survivability assessment method that models dependen-
cies of components on one another, with the mission objective as the root. They can
then determine which component failures will lead to a failure of the mission. The
limitation of this approach, apart from the cost of constructing such a model for large
systems, is that for many practical systems, the model would quickly indicate that ex-
ploiting a failure in a trusted software component can compromise the mission, that a
very large fraction of the software is trusted, and thus the survivability of the system
against security attack reduces to the probability of exploitable vulnerabilities in a
large software base, which is hard to assess.

Many survivability systems depend critically on the quality of intrusion detection.
Tan and Maxion [81] present a thorough statistical analysis that highlights the pitfalls
of statistical anomaly detection, especially with respect to the quality of the “good”
training data. They show that emergent values from previous anomaly training stud-
ies such as Forrest et al.s claim that 4 to 6 events is an optimal window of events to
consider [35] are in fact properties of the training data, and not constants at all. This
brings into question whether such anomaly training can be effective in the face of
intelligent adversaries, as highlighted by Wagner and Soto’s Mimicry attack [90].

4.2 Empirical Methods

The limitations of formal methods of assuring survivability make empirical meth-
ods of measuring survivability attractive. Unfortunately, for reasons similar to Tur-
ing’s Halting problem above making static security assurance problematic, it is also
not possible to purely test for security. Software testing is comprised of testing prob-
able inputs, random inputs, and boundary conditions. This is inadequate for security
testing, becauseobscureinput cases can induce security faults and go undetected for
many years, as exemplified byprintf format string vulnerabilities [21]. Just as

SURVIVABILITY: SYNERGIZING SECURITY AND RELIABILITY 137

Turing shows that you cannot write a static analyzer to determine whether a program
will behave badly when given arbitrary input, you cannot test for whether a program
will behave badly when given arbitrarily bad input.

So rather than attempt to exhaustively test software for vulnerability, security test-
ing takes the form of measuring theattacker’s work factor; how much effort must
the attacker apply to break the system.Red teamexperimentation (also known as
ethical hackers) is where a would-be defender deliberately hires an adversarial team
to attempt to break into the defender’s systems. Red teams and actual attackers use
largely the same methods of attack. The critical differences are:

• That red teams can be given boundaries. Defenders can ask red teams to at-
tack only selected subsets of the actual system (e.g., don’t attack the production
payroll system on payday) and expect these boundaries to be respected.

• That red teams will explain what they have done. Actual attackers may leave
an amusing calling card (web site defacement) but they often do not explain the
exact details of how they succeeded in compromising security, making it rather
expensive to first discover and then repair the holes. Professional red teams, in
contrast, will report in detail what they did, allowing defenders to learn from
the process.

DARPA funded red team experimentation on the effectiveness of the DARPA-
funded survivability technologies. For example, Levin [56] describes several red
team experiments testing the validity of a scientific hypothesis. Ideally the experi-
ment should be repeatable, but that is problematic: Levin found that it is important
to set the goals of the experiment and therules of engagement clearly, because un-
documented claims and attacks cannot be validated.

The results are very sensitive to what the red team knows about the defender’s
system at the time of the experiment: if the defender’s system is obscured, then the
red team will spend most of their time discovering what the system is doing rather
than actually attacking it.While this is arguably similar to the situation faced by
actual attackers, it is an expensive use ofthe red team’s time, because it can be fairly
safely assumed that actual attackers will be able to learn whatever they want about
the defender’s system. The experimental results also depend heavily on the skillsof
the red team, which are hard to reproduce exactly: a different team will assuredly
have a different set of skills, producing different rates of success against various
defenses.

An alternate approach to red team experimentation is symmetric hacker gaming, in
which the individual designated attackerand defender teams of a classical red team
engagement are replaced by a handful of teams that are competitively set to attack
each other while simultaneously defending themselves [20]. Each team is required to

138 C. COWAN

maintain an operational set of network services and applications, and a central score-
keeping server records each team’s success at keeping services functional, as well as
which team actually “owns” a given server orservice. This symmetric threat model
tends to reduce disputes over the rules of engagement, because all teams areequally
subject to those rules. This results is a nearly no-holds-barred test of survivability.

We entered an Immunix server in the Defcon “Root Fu” (nee “Capture the Flag”)
games in 2002 and 2003, with mixed results. In both games, we placed 2nd of
8 teams. In the 2002 game, the Immunix machine was never compromised, but it
did take most of the first day to configure the Immunix secure OS such that it could
earn points, because the required functionality was obscured, being specified only as
a reference server image that did provide the required services, but was also highly
vulnerable. However, the Immunix server was also DoS’d to the point where it no
longer scored points; in retrospect not very surprising, as Immunix was designed to
prevent intrusion, not DoS. The 2003 gameexplicitly prohibited DoS attacks, but
teams deployed DoS attacks anyway. So even in symmetric red teaming, rules of
engagement matter, if the rules are not uniformly enforced.

Another form of empirical testing is to measure the precision of intrusion detec-
tion using a mix of test data known to be either “good” or “bad.” DARPA sponsored
such a study in the 1998 MIT/Lincoln Labs intrusion detection test [57,61]. The
goal of DARPA’s intrusion detection research was to be able to detect 90% of at-
tacks (including especiallynovelattacks) while reducing false positive reports by
an order of magnitude over present intrusion detection methods. Intrusion detection
systems deployed by the US Air Force in the mid-1990s were expensive to oper-
ate because network analysts had to spend many hours investigating false positive
“intrusion events” that were actually benign.

The results were mixed. False positive rates were significantly lowered versus pre-
vious generations of technologies, but were still high enough that intrusion detection
still requires significant human intervention. Worse, the detectors failed to detect a
significant number of novel attacks. Only a few of the tested technologies were able
to detect a few of the novel attacks.

Yet another aspect of empirical measurement is to examine the behavior of attack-
ers. This behavior matters because survivability is essentially fault tolerance against
the faults that attackers will induce, and so expectations of survivability need to be
measured against this threat. Browne, Arbaugh, McHugh and Fithen [13] present a
trend analysis of exploitation, studying the rates at which systems are compromised,
with respect to the date on which the vulnerabilities in question were made public.
This study showed that exploitation spikes not immediately followingdisclosureof
the vulnerability, but rather after the vulnerability isscripted(an automatic exploit is
written and released).

SURVIVABILITY: SYNERGIZING SECURITY AND RELIABILITY 139

Our own subsequent study [7] statistically examined the relative risks of patching
early (risk of self-corruption due to defective patches) versus the risk of patching
later (risk of security attack due to an unpatched vulnerability) and found that ap-
proximately 10 days after a patch is released is the optimal time to patch. However,
the gap between the time a vulnerability is disclosed and when it is scripted appears
to be closing rapidly [91] and so this number is expected to change.

5. Related Work

The field of Information Survivability dates back to the early 1990s, when DARPA
decided to take a fresh approach to the security problem. In a field so young, there
are not many survey papers. In 1997, Ellison et al. [31] surveyed this emerging disci-
pline, which they characterize as the ability of a system to carry out its mission while
connected to anunbounded network. An unbounded network is one with no cen-
tralized administration, and thus attackers are free to connect and present arbitrary
input to the system, exemplified by the Internet. They distinguish survivability from
security in that survivability entails a capacity to recover. Unfortunately, they were
anticipatingthe emergence of recovery capability, and that capability has yet to ef-
fectively emerge from survivability research. Self recovery capacity remains an area
of strong interest [59]. They distinguish survivability from fault tolerance in that fault
tolerant systems make failure statistically improbable in the face of random failures,
but cannot defend against coincident failures contrived by attackers, as described in
Section 2.

Stavridou et al. [77] present an architectural view of how to apply the techniques
of fault tolerance to provide intrusion tolerance. They propose that individual com-
ponents should be sufficiently simple that their security properties can be formally
assured, and that the entire system should be multilevel secure (so security faults are
isolated) as in Section 3.1.

Powell et al. [1] describe the MAFTIA (Malicious- and Accidental-Fault Toler-
ance for Internet Applications) conceptual model and architecture. This is a large
document with 16 authors, describing a long-term project. They definedependabil-
ity as the ability to deliver service that can justifiably be trusted,survivabilityas the
capability of a system to fulfill its mission in a timely manner, andtrustworthiness
as assurance that a system will perform as expected. They conclude that all three of
these concepts are essentially equivalent. Dependability has been studied for the last
thirty years by organizations such as the IFIP working group 10.4, and from this per-
spective, survivability can be viewed as a relatively recent instance of dependability
studies.

140 C. COWAN

In 2000 we surveyedpost hocsecurity enhancement techniques [25] which subse-
quently came to be known as intrusion prevention. This survey consideredadapta-
tions(enhancements) in two dimensions:

• Whatis adapted:
– Interface: the enhancement changes the interface exposed to other compo-

nents.

– Implementation: the enhancement is purely internal, nominally not affecting
how the component interacts with other components.

• How the enhancement is achieved:
– Restriction: the enhancementrestrictsbehavior, either through misuse detec-

tion or anomaly detection (see Section 3.3).

– Randomization: the enhancement uses natural or synthetic diversity to ran-
domize the system so as to make attacks non-portable with respect to the
defender’s system (see Section 3.4).

This two-dimensional space thus forms quadrants. We found that effective tech-
niques exist in all four quadrants, but that in most cases, restriction is morecost-
effectivethan randomization. Interestingly, we found that it is often the case that
when one goes looking for a randomization technique, one finds a restriction tech-
nique sitting conceptually beside the randomization technique that works better: if
a system attribute can be identified as something the attacker depends on, then it is
better to restrict the attacker’s access to that resource than to randomize the resource.

We also conducted a similar study with narrower focus, examining buffer overflow
attacks and defenses [28]. Responsible for over half of all security faults for the
last seven years, buffer overflows require special attention. A buffer overflow attack
must first arrange for malicious code to be present in the victim process’s address
space, and then must induce the victim program to transfer program control to the
malicious code. Our survey categorized attacks in terms of how these objectives can
be achieved, defenses in terms of how they prevent these effects, and summarized
with effective combinations of defenses to maximize coverage.

6. Conclusions

Reliability methods (redundancy, fault injection, etc.) provide protection against
independent faults. Security methods (least privilege, type checking, etc.) defend
against malicious exploitation of software design and implementation defects.

Survivability methods combine these two techniques to provide survivability of
systems against combinations of accidentaland malicious faults, and also to defend

SURVIVABILITY: SYNERGIZING SECURITY AND RELIABILITY 141

against failures in security systems. Survivability techniques defend against security
faults occurring at various times throughout the software life cycle, from design time,
to implementation time, to run time, to recovery time.

REFERENCES

[1] Adelsbach A., Cachin C., Creese S., Deswarte Y., Kursawe K., Laprie J.-C., Powell D.,
Randell B., Riodan J., Ryan P., Simmionds W., Stroud R.J., Verssimo P., Waidner M.,
Wespi A.,Conceptual Model and Architecture of MAFTIA, LAAS-CNRS, Toulouse, and
University of Newcastle upon Tyne, January 31, 2003. Report MAFTIA deliverable D21,
http://www.laas.research.ec.org/maftia/deliverables/D21.pdf.

[2] Arce I., “Woah, please back up for one second”, http://online.securityfocus.com/archive/
98/142495, October 31,2000. Definition of security and reliability.

[3] Badger L., Sterne D.F., et al., “Practical domain and type enforcement for UNIX”, in:
Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA, May 1995.

[4] Badger L., Sterne D.F., Sherman D.L., Walker K.M., Haghighat S.A., “A domain and
type enforcement UNIX prototype”, in:Proceedings of the USENIX Security Confer-
ence, 1995.

[5] Balzer R., “Assuring the safety of opening email attachments”, in:DARPA Information
Survivability Conference and Expo (DISCEX II), Anaheim, CA, June 12–14, 2001.

[6] Baratloo A., Singh N., Tsai T., “Transparent run-time defense against stack smashing
attacks”, in:2000 USENIX Annual Technical Conference, San Diego, CA, June 18–23,
2000.

[7] Beattie S.M., Cowan C., Arnold S., Wagle P., Wright C., Shostack A., “Timing the appli-
cation of security patches for optimal uptime”, in:USENIX 16th Systems Administration
Conference (LISA), Philadelphia, PA, November 2002.

[8] Bellovin S.M., “Distributed firewalls”,;login: 24 (November 1999).
[9] Bester J., Walther A., Erlinger M., Buchheim T., Feinstein B., Mathews G., PollockR.,

Levitt K., “GlobalGuard: Creating the IETF-IDWG Intrusion Alert Protocol (IAP)”, in:
DARPA Information Survivability Conference Expo (DISCEX II), Anaheim, CA, June
12–14, 2001.

[10] Bhatkar S., DuVarney D.C., Sekar R., “Address obfuscation: an approach to combat
buffer overflows, format-string attacks, and more”, in:12th USENIX Security Sympo-
sium, Washington, DC, August 2003.

[11] Bobert W.E., Kain R.Y., “A practical alternative to hierarchical integrity policies”, in:
Proceedings of the 8th National Computer Security Conference, Gaithersburg, MD,
1985.

[12] Bray B., Report,How Visual C++ .Net Can Prevent Buffer Overruns, Microsoft, 2001.
[13] Browne H.K., Arbaugh W.A., McHugh J., Fithen W.L., “A trend analysis of exploita-

tions”, in: Proceedings of the 2001 IEEE Security and Privacy Conference, Oakland,
CA, May 2001, pp. 214–229, http://www.cs.umd.edu/~waa/pubs/CS-TR-4200.pdf.

http://www.laas.research.ec.org/maftia/deliverables/D21.pdf
http://online.securityfocus.com/archive/98/142495
http://online.securityfocus.com/archive/98/142495
http://online.securityfocus.com/archive/98/142495
http://www.cs.umd.edu/~waa/pubs/CS-TR-4200.pdf

142 C. COWAN

[14] CERT Coordination Center, “CERT Advisory CA-1999-04 Melissa Macro Virus”, http://
www.cert.org/advisories/CA-1999-04.html, March 27, 1999.

[15] CERT Coordination Center, “CERT Advisory CA-2000-04 Love Letter Worm”, http://
www.cert.org/advisories/CA-2000-04.html, May 4, 2000.

[16] CERT Coordination Center, “CERT Advisory CA-2002-07 Double Free Bug in
zlib Compression Library”, http://www.cert.org/advisories/CA-2002-07.html, March 12,
2002.

[17] CERT Coordination Center, “CERT Incident Note IN-2003-03”, http://www.cert.org/
incident_notes/IN-2003-03.html, August 22, 2003.

[18] Chen H., Wagner D., “MOPS: an infrastructure for examining security properties of
software”, in:Proceedings of the ACM Conference on Computer and Communications
Security, Washington, DC, November 2002.

[19] Cheswick W.R., Bellovin S.M.,Firewalls and Internet Security: Repelling the Wily
Hacker, Addison-Wesley, 1994.

[20] Cowan C., Arnold S., Beattie S.M., Wright C., “Defcon capture the flag: Defending
vulnerable code from intense attack”, in:DARPA Information Survivability Conference
and Expo (DISCEX III), Washington, DC, April 22–24, 2003.

[21] Cowan C., Barringer M., Beattie S., Kroah-Hartman G., Frantzen M., Lokier J., “For-
matGuard: automatic protection from printf format string vulnerabilities”, in:USENIX
Security Symposium, Washington, DC, August 2001.

[22] Cowan C., Beattie S., Johansen J., Wagle P., “PointGuard: protecting pointers from
buffer overflow vulnerabilities”, in:USENIX Security Symposium, Washington, DC, Au-
gust 2003.

[23] Cowan C., Beattie S., Pu C., Wagle P., Gligor V., “SubDomain: parsimonious server
security”, in: USENIX 14th Systems Administration Conference (LISA), New Orleans,
LA, December 2000.

[24] Cowan C., Beattie S., Wright C., Kroah-Hartman G., “RaceGuard: kernel protection
from temporary file race vulnerabilities”, in:USENIX Security Symposium, Washington,
DC, August 2001.

[25] Cowan C., Hinton H., Pu C., Walpole J., “The cracker patch choice: an analysis of post
hoc security techniques”, in:Proceedings of the 19th National Information Systems Se-
curity Conference (NISSC 2000), Baltimore, MD, October 2000.

[26] Cowan C., Pu C., Hinton H., “Death, taxes, and imperfect software: surviving the in-
evitable”, in: Proceedings of the New Security Paradigms Workshop, Charlottesville,
VA, September 1998.

[27] Cowan C., Pu C., Maier D., Hinton H., Bakke P., Beattie S., Grier A., Wagle P., Zhang Q.,
“StackGuard: automatic adaptive detection and prevention of buffer-overflow attacks”,
in: 7th USENIX Security Conference, San Antonio, TX, January 1998, pp. 63–77.

[28] Cowan C., Wagle P., Pu C., Beattie S., Walpole J., “Buffer overflows: attacks and de-
fenses for the vulnerability of the decade”, in:DARPA Information Survivability Con-
ference and Expo (DISCEX), January 2000. Also presented as an invited talk at SANS
2000, March 23–26, 2000, Orlando, FL, http://schafercorp-ballston.com/discex.

[29] “ “Solar Designer”, Non-Executable User Stack”, http://www.openwall.com/linux/.

http://www.cert.org/advisories/CA-1999-04.html
http://www.cert.org/advisories/CA-1999-04.html
http://www.cert.org/advisories/CA-1999-04.html
http://www.cert.org/advisories/CA-2000-04.html
http://www.cert.org/advisories/CA-2000-04.html
http://www.cert.org/advisories/CA-2000-04.html
http://www.cert.org/advisories/CA-2002-07.html
http://www.cert.org/incident_notes/IN-2003-03.html
http://www.cert.org/incident_notes/IN-2003-03.html
http://www.cert.org/incident_notes/IN-2003-03.html
http://schafercorp-ballston.com/discex
http://www.openwall.com/linux/

SURVIVABILITY: SYNERGIZING SECURITY AND RELIABILITY 143

[30] Dietrich S., Ryan P.Y.A., “The survivability of survivability”, in:Proceedings of the
Information Survivability Workshop (ISW 2002), Vancouver, BC, March 2002.

[31] Ellison R.J., Fisher D.A., Linger R.C., Lipson H.F., Longstaff T., Mead N.R.,Surviv-
able Network Systems: An Emerging Discipline, Report CMU/SEI-97-TR-013, Software
Engineering Institute, November 1997, http://www.cert.org/research/tr13/97tr013title.
html.

[32] Eskin E., Lee W., Stolfo S.J., “Modeling system calls for intrusion detecting with dy-
namic window sizes”, in:DARPA Information Survivability Conference and Expo (DIS-
CEX II), Anaheim, CA, June 12–14, 2001.

[33] Etoh H., “GCC extension for protecting applications from stack-smashing attacks”,
http://www.trl.ibm.com/projects/security/ssp/, November 21, 2000.

[34] Feinstein L., Schnackenberg D., Balupari R., Kindred D., “Statistical approaches to
DDoS attack detection and response”, in:DARPA Information Survivability Conference
and Expo (DISCEX III), Washington, DC, April 22–24, 2003.

[35] Forrest S., Hofmeyr S.A., Somayaji A., Longstaff T.A., “A sense of self for UNIX
processes”, in:Proceedings of the IEEE Symposium on Security Privacy, Oakland, CA,
1996.

[36] Forrest S., Somayaji A., Ackley D.H., “Building diverse computer systems”, in:HotOS-
VI, May 1997.

[37] Fraiser T., Loscocco P., Smalley S., et al., “Security enhanced Linux”, http://www.nsa.
gov/selinux/, January 2, 2001.

[38] Fraser T., Badger L., Feldman M., “Hardening COTS software with generic software
wrappers”, in:Proceedings of the IEEE Symposium on Security and Privacy, Oakland,
CA, May 1999.

[39] Gao Z., Hui Ong C., Kiong Tan W., “Survivability assessment: modelling dependen-
cies in information systems”, in:Proceedings of the Information Survivability Workshop
(ISW 2002), Vancouver, BC, March 2002.

[40] Ghosh A.K., Schwatzbard A., Shatz M., “Learning program behavior profiles for intru-
sion detection”, in:Proceedings of the First USENIX Workshop on Intrusion Detection
and Network Monitoring, Santa Clara, CA, April 1999.

[41] Gosling J., McGilton H., “The Java language environment: A White Paper”, http://www.
javasoft.com/docs/white/langenv/, May 1996.

[42] Hamonds K.H., “The strategy of the Fighter Pilot”,Fast Company59 (June 2002).
[43] Hollebeek T., Berrier D., “Interception, wrapping and analysis framework for Win32

Scripts”, in:DARPA Information Survivability Conference and Expo (DISCEX II), Ana-
heim, CA, June 12–14, 2001.

[44] Hurley E., “Keeping up with patch work near impossible”, SearchSecurity, http://
searchsecurity.techtarget.com/originalContent/0,289142,sid14_gci796744,00.html, Jan-
uary 17, 2002.

[45] “Tripwire Security Incorporated. Tripwire.org: Tripwirefor Linux”, http://www.tripwire.
org/.

[46] Jim T., Morrisett G., Grossman D., Hicks M., Cheney J., Wang Y., “Cyclone: A safe
dialect of C”, in:Proceedings of USENIX Annual Technical Conference, Monteray, CA,
June 2002.

http://www.cert.org/research/tr13/97tr013title.html
http://www.cert.org/research/tr13/97tr013title.html
http://www.cert.org/research/tr13/97tr013title.html
http://www.trl.ibm.com/projects/security/ssp/
http://www.nsa.gov/selinux/
http://www.nsa.gov/selinux/
http://www.nsa.gov/selinux/
http://www.javasoft.com/docs/white/langenv/
http://www.javasoft.com/docs/white/langenv/
http://www.javasoft.com/docs/white/langenv/
http://searchsecurity.techtarget.com/originalContent/0,289142,sid14_gci796744,00.html
http://searchsecurity.techtarget.com/originalContent/0,289142,sid14_gci796744,00.html
http://searchsecurity.techtarget.com/originalContent/0,289142,sid14_gci796744,00.html
http://www.tripwire.org/
http://www.tripwire.org/
http://www.tripwire.org/

144 C. COWAN

[47] Just J.E., Reynolds J.C., “HACQIT: Hierarchical adaptive control of QoS for intrusion
tolerance”, in:Annual Computer Security Applications Conference (ACSAC), New Or-
leans, LA, December 10–14, 2001.

[48] Kc G.S., Keromytis A.D., Prevelakis V., “Countering CodeInjection attacks with Instruc-
tionSet randomization”, in:Proceedings of the 10th ACM Conference on Computer and
Communications Security (CCS 2003), Washington, DC, October 2003.

[49] Kernighan B.W., Ritchie D.M.,The C Programming Language, second ed., Prentice-
Hall, Englewood Cliffs, NJ, 1988.

[50] Kewley D., Fink R., Lowry J., Dean M., “Dynamic approaches to thwart adversary in-
telligence gathering”, in:DARPA Information Survivability Conference and Expo (DIS-
CEX II), Anaheim, CA, June 12–14, 2001.

[51] Kim G.H., Spafford E.H., “Writing, supporting, and evaluating Tripwire: Apublicly
available security tool”, in:Proceedings of the USENIX UNIX Applications Development
Symposium, Toronto, Canada, 1994, pp. 88–107.

[52] Knight J.C., Leveson N.G., “An experimental evaluation of the assumptions of indepen-
dence in multiversion programming”,IEEE Transactions on Software Engineering12(1)
(1986) 96–109.

[53] Knight J.C., Strunk E.A., Sullivan K.J., “Towards a rigorous definition of information
system survivability”, in:DARPA Information Survivability Conference and Expo (DIS-
CEX III), Washington, DC, April 22–24, 2003.

[54] Lampson B.W., “Protection”, in:Proceedings of the 5th Princeton Conference on Infor-
mation Sciences and Systems, Princeton, NJ, 1971. Reprinted inACM Operating Sys-
tems Review8 (1) (January 1974) 18–24.

[55] Lee W., Stoflo S.J., Chan P.K., Eskin E., Fan W., Miller M., Hershkop S., Zhang J.,
“Real time data mining-based intrusion detection”, in:DARPA Information Survivability
Conference and Expo (DISCEX II), Anaheim, CA, June 12–14, 2001.

[56] Levin D., “Lessons learned in using live red teams in IA experiments”, in:DARPA Infor-
mation Survivability Conference and Expo (DISCEX III), Washington, DC, April 22–24,
2003.

[57] Lippmann R., Haines J.W., Fried D.J., Korba J., Das K., “The 1999 DARPA off-line
intrusion detection evaluation”, in:Recent Advances in Intrusion Detection (RAID),
Toulouse, France, October 2–4, 2000.

[58] Liu P., “Engineering a distributed intrusion tolerant database system using COTS compo-
nents”, in:DARPA Information Survivability Conference and Expo (DISCEX III), Wash-
ington, DC, April 22–24, 2003.

[59] Liu P., Pal P.,Workshop on Survivable and Self-Regenerative Systems, October 31, 2003.
In conjunction with the ACM International Conference on Computer and Communica-
tions Security (CCS-10).

[60] Loscocco P., Smalley S., “Integrating flexible support for security policies into the Linux
operating system”, in:Proceedings of theFREENIX Track:2001 USENIX Annual Tech-
nical Conference (FREENIX ’01), June 2001.

[61] McHugh J., “The 1998 Lincoln LabIDS evaluation—a critique”, in:Recent Advances in
Intrusion Detection (RAID), Toulouse, France, October 2–4, 2000.

SURVIVABILITY: SYNERGIZING SECURITY AND RELIABILITY 145

[62] Michael C.C., “Finding the vocabulary of program behavior data for anomaly detection”,
in: DARPA Information Survivability Conference and Expo (DISCEX III), Washington,
DC, April 22–24, 2003.

[63] Milner R., Tofte M., Harper R.,The Definition of Standard ML, The MIT Press, 1990.
[64] Necula G.C., McPeak S., Weimer W., “CCured: type-safe retrofitting of legacy code”,

in: Proceedings of the 29th ACM Symposium on Principles of Programming Languages
(POPL02), London, UK, January 2002. Also available at http://raw.cs.berkeley.edu/
Papers/ccured_popl02.pdf.

[65] O’Brien D., “Intrusion tolerance via network layer controls”, in:DARPA Information
Survivability Conference and Expo (DISCEX III), Washington, DC, April 22–24, 2003.

[66] Papadopoulos C., Lindell R., Mehringer J., Hussain A., Govindan R., “COSSACK: Co-
ordinated Suppression of Simultaneous Attacks”, in:DARPA Information Survivability
Conference and Expo (DISCEX III), Washington, DC, April 22–24, 2003.

[67] Payne C., Markham T., “Architecture and applications for a distributed embedded fire-
wall”, in: Annual Computer Security Applications Conference (ACSAC), New Orleans,
LA, December 10–14, 2001.

[68] Porras P., Neumann P., “EMERALD: Event Monitoring Enabling Responses to Anom-
alous Live Disturbances”, in:Proceedings of the 20th National Information Systems Se-
curity Conference (NISSC 1997), Baltimore, MD, October 1997.

[69] Ptacek T.H., Newsham T.N.,Insertion, Evation, and Denial of Service: Eluding Net-
work Intrusion Detection, Report, Network Associates Inc., January 1998, http://www.
nai.com/products/security/advisory/papers/ids-html/doc001.asp.

[70] Rushby J., “Critical system properties: Survey and taxonomy”,Reliability Engineering
and System Safety43 (2) (1994) 189–219.

[71] Saltzer J.H., Schroeder M.D., “The protection of information in computer systems”,Pro-
ceedings of the IEEE63 (9) (November 1975).

[72] Savage S., Wetherall D., Karlin A., Anderson T., “Network support for IP traceback”,
IEEE/ACM Transactions on Networking9 (3) (June 2001) 226–237.

[73] Schmid M., Hill F., Ghosh A.K., Bloch J.T., “Preventing the execution of unauthorized
Win32 applications”, in:DARPA Information Survivability Conference and Expo (DIS-
CEX II), Anaheim, CA, June 12–14, 2001.

[74] Schnackenberg D., Djahandari K., Sterne D., “Infrastructure for intrusion detection and
response”, in:DARPA Information Survivability Conference and Expo (DISCEX), Janu-
ary 2000.

[75] Secure Software, “RATS: Rough Auditing Tool for Security”, http://www.
securesoftware.com/download_rats.htm, July 2002.

[76] Song D., “Fragroute”, http://monkey.org/~dugsong/fragroute/, May 27, 2002.
[77] Stavridou V., Dutertre B., Riemenschneider R.A., Saldi H., “Intrusion tolerant software

architectures”, in:DARPA Information Survivability Conference and Expo (DISCEX II),
Anaheim, CA, June 12–14, 2001.

[78] Strom R.E., Bacon D.F., Goldberg A., Lowry A., Yellin D., Yemini S.A.,Hermes: A Lan-
guage for Distributed Computing, Prentice-Hall, 1991.

http://raw.cs.berkeley.edu/Papers/ccured_popl02.pdf
http://raw.cs.berkeley.edu/Papers/ccured_popl02.pdf
http://raw.cs.berkeley.edu/Papers/ccured_popl02.pdf
http://www.nai.com/products/security/advisory/papers/ids-html/doc001.asp
http://www.nai.com/products/security/advisory/papers/ids-html/doc001.asp
http://www.nai.com/products/security/advisory/papers/ids-html/doc001.asp
http://www.securesoftware.com/download_rats.htm
http://www.securesoftware.com/download_rats.htm
http://www.securesoftware.com/download_rats.htm
http://monkey.org/~dugsong/fragroute/

146 C. COWAN

[79] Strom R.E., Yemini S.A., “Typestate: A programming language concept for enhancing
software reliability”,IEEE Transactions on Software Engineering12 (1) (January 1986)
157–171.

[80] Stroustrup B.,The C++ Programming Language, Addison-Wesley, Reading, MA, 1987.
[81] Tan K.M.C., Maxion R.A., “ “Why 6?” Defining the operational limits of stide, an

anomaly-based intrusion detector”, in:Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA, May 2002.

[82] “ ‘The PaX Team’. PaX”, http://pageexec.virtualave.net/, May 2003.
[83] “ “tf8”, Wu-Ftpd remote format string stack overwrite vulnerability”, http://www.

securityfocus.com/bid/1387, June 22, 2000.
[84] Thomas R., Mark B., Johnson T., Croall J.,“NetBouncer: client-legitimacy-based high-

performance DDoS filtering”, in:DARPA Information Survivability Conference and
Expo (DISCEX III), Washington, DC, April 22–24, 2003.

[85] Turing A., “On computable numbers with an application to the Entscheidungsproblem”,
Proc. London Math. Society42 (2) (1937) 230–265.

[86] Valdes A., “Detecting novel scans through pattern anomaly detection”, in:DARPA Infor-
mation Survivability Conference and Expo (DISCEX III), Washington, DC, April 22–24,
2003.

[87] Viega J., Bloch J.T., Kohno T., McGraw G., “ITS4: A static vulneability scanner for C
and C++ code”, in:Annual Computer Security Applications Conference (ACSAC), New
Orleans, LA, December 2000, http://www.cigital.com/its4/.

[88] Vigna G., Eckmann S.T., Kemmerer R.A., “The STAT tool suite”, in:DARPA Informa-
tion Survivability Conference and Expo (DISCEX), January 2000.

[89] Wagner D., Foster J.S., Brewer E.A., Aiken A., “A first step towards automateddetection
of buffer overrun vulnerabilities”, in:NDSS (Network and Distributed System Security),
San Diego, CA, February 2000.

[90] Wagner D., Soto P., “Mimicry attacks on HostBased intrusion detection systems”, in:
Proceedings of the 9th ACM Conference on Computer and Communications Security
(CCS 2002), Washington, DC, October 2002.

[91] Walsh L.M., “Window of opportunity closing for patching”,Security Wire Digest5 (66)
(September 4, 2003), http://infosecuritymag.techtarget.com/ss/0,295812,sid6_iss82,00.
html#news2.

[92] Wheeler D., “Flawfinder”, http://www.dwheeler.com/flawfinder/, July 2, 2002.
[93] Wright C., Cowan C., Smalley S., Morris J., Kroah-Hartman G., “Linux security module

framework”, in:Ottawa Linux Symposium, Ottawa, Canada, June 2002.
[94] Wright C., Cowan C., Smalley S., Morris J., Kroah-Hartman G., “Linux security mod-

ules: general security support for the Linux kernel”, in:USENIX Security Symposium,
San Francisco, CA, August 2002, http://lsm.immunix.org.

[95] Xu J., Kalbarczyk Z., Iyer R.K., “Transparent runtime randomization for security”, in:
Proceedings of the 22nd Symposium on Reliable Distributed Systems (SRDS’2003), Flo-
rence, Italy, October 2003.

[96] Zhang Y., Dao S.K., Vin H., Alvisi L., Wenke Lee L.A., “Heterogeneous networking: a
new survivability paradigm”, in:Proceedings of the New Security Paradigms Workshop,
Cloudcroft, NM, September 2001.

http://pageexec.virtualave.net/
http://www.securityfocus.com/bid/1387
http://www.securityfocus.com/bid/1387
http://www.securityfocus.com/bid/1387
http://www.cigital.com/its4/
http://infosecuritymag.techtarget.com/ss/0,295812,sid6_iss82,00.html#news2
http://infosecuritymag.techtarget.com/ss/0,295812,sid6_iss82,00.html#news2
http://infosecuritymag.techtarget.com/ss/0,295812,sid6_iss82,00.html#news2
http://www.dwheeler.com/flawfinder/
http://lsm.immunix.org

Smart Cards

KATHERINE M. SHELFER

Drexel University, Philadelphia, PA, USA
kathy.shelfer@xis.drexel.edu

CHRIS CORUM

Avisian, Corp., Tallahassee, FL, USA
chris@avisian.com

J. DREW PROCACCINO

Rider University, Lawrenceville, NJ, USA
jdproc@aol.com

JOSEPH DIDIER

Infinacard, Inc., St. Petersburg, FL, USA
jdider@infinacard.com

Abstract
This paper presents an overview of the history, commercialization, technology,
standards, and current and future applications of smart cards. Section 1 is an
overview of smart cards, including their current global use inidentification, ver-
ification andauthorizationapplications through their ability to support transac-
tion processing, information management and multiple applications on a single
card. This section also includes a summary of the invention and early develop-
ment and application of smart cards. The second section describes a typical smart
card-based transaction, tracing it from the initial contact between a card and the
card reader through the transaction to termination of the transaction. The third
section describes the physical characteristics of the smart card, and its associated
contact and contactless interfaces, integrated circuit (IC) chip and processor ca-
pacity. Section 4 summarizes the international standards associated with smart
cards, including those related to interoperability among contact and contactless

ADVANCES IN COMPUTERS, VOL. 60 147 Copyright © 2004 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(03)60005-7 All rights reserved.

148 K.M. SHELFER ET AL.

cards, and their respective reading devices. In Section 5, the focus is a high-level
discussion of associated access technologies, including a more detailed look at
magnetic stripe and barcode technologies and standards. This section includes a
very brief mention of the impact of RISC-based technologies and Sun’s Java™

Virtual Machine® . Section 6 discusses smart card security relating to the card’s
ability to authorize and facilitateelectronic, logical andphysical accessto con-
trolled applications and physical locations. Also discussed isphysical security,
which relates to cardholders, environment and cards tampering, anddata secu-
rity, which is related to smart cards ability to support cryptography and cross
validation of data stored on the cards across multiple databases for purposes
of identification verification. Section 7 concludes this paper with a look at the
future of smart card-related developments, including those related to bothtech-
nologyandapplications. Technology-related developments include the support
of more than a single operating system on the processor chip and peripheral card
technologies. Application-related developments include those related to identifi-
cation, information storage and transaction processing.

1. Introduction . 149
1.1. Overview . 149
1.2. The Invention of Smart Cards . 151

2. A Typical Smart Card Transaction . 154
3. Smart Card Technology . 156

3.1. Technology Overview . 156
3.2. Physical Characteristics . 157
3.3. Contact and Contactless Smart Cards . 160
3.4. Physical Characteristics of the Integrated Circuit (IC) Chip160
3.5. Processor Capacity . 162
3.6. Current Specifications . 163

4. Smart Card Standards . 164
4.1. Smart Card Standards Organizations . 164
4.2. Early Smart Card Standards . 166
4.3. Contact Smart Card Standards . 166
4.4. Contactless Smart Cards Standards . 167
4.5. Nonstandard Contactless Technologies . 170
4.6. Comparison of ISO/IEC 14443 and ISO/IEC 15693 170
4.7. The Role of Standards . 173

5. Associated Access Technologies . 173
5.1. Electro-Technology Access: The Magnetic Stripe 174
5.2. RISC-Based Smart Cards and The Java Virtual Machine 178
5.3. Multiple Applications . 179

6. Smart Card Security . 179
6.1. Physical Security . 179
6.2. Data Security . 180

SMART CARDS 149

7. Future Developments . 183
Glossary of Terms . 186
References . 188

1. Introduction

1.1 Overview

At this time, smart card applications are used to (1) encourage and protect lawful
economic activity; (2) ensure the survival of critical infrastructures and (3) protect
individuals and societies from those who would deliberately do them harm. There
are many contributing factors that determine the development and deployment of
smart card systems. Among these are the way in which smart cards were invented
and commercialized; current directions inapplied research and development; the de-
velopment and support of international standards; and the impact of human concerns
about data security and data privacy. Any item with an embedded microprocessor
chip can be considered “smart,” from keychain fobs to cooking utensils [9]. The most
familiar form, however, is a thin plastic card (refer to Section 3, Smart card technol-
ogy) that contains one or more integrated circuit (IC) chips. The microprocessor, or
“smart” chip, interacts either physically with (contact) or in proximity to (contact-
less) a smart card reader, or both. Information on the card interacts with information
in the reader to authorize the requested session (transaction), for which the chip has
been programmed [21,74].

The smart card is designed to store and serve a range of personal data related to the
cardholder that is used to authorize specific transactions. The value of the smart card
is that it can be used to secure digital transactions that rely on personalidentification,
identityverification, and transactionauthorization[40,82].

• Identification. Smart cards store information about the cardholder’s identity in
digital form—bank account numbers, organizational affiliations, personal bio-
metrics, etc.—that is used to secure digital transactions, i.e., ATM transactions
and eCommerce [57,58].

• Verification. The smart card stores a range of personal identity data, i.e., biomet-
rics, that provide means of comparingdigital identities with physical identities
in settings where neither form of identification would be sufficient.

• Authorization.Smart cards are used to electronically authorize the cardholder’s
right to initiate and engage in specific transactions that involve logical, physical
and electronic access controls.

150 K.M. SHELFER ET AL.

Smart cards allow 2-party digital transactions (cardholder and card issuer) to be doc-
umented by a 3rd party—in this case, the smart card system. Smart cards support one
or more of the following applications:

(1) Credit. Smart cards secure merchant transactions and reduce fraud. This al-
lows cardholders to have financial flexibility in the form of pre-approved trans-
border cash advances and loans, initiated at the point-of-sale that are tied di-
rectly to the purchase of specific goods/services. The credit function rarely
requires a personal identification number.

(2) Debit. Smart cards are used to provide electronic direct debit at ATM ma-
chines and at specific points-of-sale.The debit function improves the card-
holder’s access to specific goods and services in locations where the card-
holder’s identify and credit history are unknown, and protects the cardholder’s
banking relationship by allowing a 3rd-party to directly debit the cardholder’s
financial institution for the purchase of specified goods/services at the point
of sale. It should be noted that such transactions in theory—but not always
in practice—require a personal identification number (PIN) as an additional
layer of security. This situation is currently being discussed in contract nego-
tiations and in the courts.

(3) Stored-value. A fixed value is initially encoded and subsequent purchases are
deducted (nominally, but not always, to a “zero” balance). This transaction
does not require access to the cardholder’s personal identity, so no PIN is
required. Two examples of single-function stored-value cards are telephone
cards and retail merchant gift cards. On magnetic stripe cards, this stored
value is placed on a “junk” stripe. On smart cards, this stored value is placed
in one or more electronic “purses.” Stored-value may be disposable (debit
“read-only”) or re-loadable (debit/credit “read-write”). While ownership of
the abandoned value on the card, orescheat, is disputable, it has been treated
as a source of substantial additional revenue in some settings, including the
Olympic games held in Atlanta [30,32,63,72].

(4) Information management. Card issuers provide these cards to individuals in
order to facilitate the portable storage and use of the cardholder’s personal
information, i.e., bank credit/debit accounts, insurance information, medical
history, emergency contact information and travel documents. http://www.
iso.org/iso/en/commcentre/isobulletin/articles/2003/pdf/medicalcard03-06.pdf.
This information is used to verify the cardholder’s identity and authorize spec-
ified digital transactions [8,60,66,69,77–79,91].

(5) Loyalty/affinity. A variety of vendor incentives, recorded at the point of sale,
are tied to the purchase of goods/services. Incentives may include points,
credits, discounts and/or direct delivery of products/services. Since the card-
holder’s identity is known, purchasing patterns can be tracked and loyal cus-

http://www.iso.org/iso/en/commcentre/isobulletin/articles/2003/pdf/medicalcard03-06.pdf
http://www.iso.org/iso/en/commcentre/isobulletin/articles/2003/pdf/medicalcard03-06.pdf
http://www.iso.org/iso/en/commcentre/isobulletin/articles/2003/pdf/medicalcard03-06.pdf

SMART CARDS 151

tomers can select their own rewards (http://www.bai.org/bankingstrategies/
2002-may-jun/smart/). One web site claims that loyalty programs are im-
portant to 64% of USA households, and used by over 50% of Ameri-
cans (http://www.jmac-solutions.com/giftcards/topic_3.asp). Clearly identi-
fiable personal data has been leased/sold to generate additional (cross-
marketing/co-branding) revenue for some time, but smart cards have the po-
tential to make more data available for analysis. It should be noted that own-
ership and use of data that clearly identifies individuals and their behavior
patterns is disputable.

(6) Multi-application. The ability to combine one or more applications on a single
card (some of which are able to share PIN numbers) requires the capabilities
associated with the integrated circuit on the smart card [28]. While forecasts
vary considerably based on the source, shipments of multi-application cards
have increased significantly since 1998, with roughly half of these being Java
cards (http://developers.sun.com/techtopics/mobility/javacard/) [92].

1.2 The Invention of Smart Cards

The earliest smart card patents were mainly theoretical in nature, as the technology
to take advantage of this innovative thinking was not actually available until 1976 and
later. The earliest credit for smart card-relatedpatents should probably be awarded
to Jürgen Dethloff and Helmut Grötrupp, two German inventors who patented the
idea of having plastic cards hold microchips in 1968 [42]. In 1970, Dr. Kunitaka
Arimura, a Japanese inventor, patented concepts related to the IC card [1]. However,
Mr. Roland Moreno, a French finance and technology journalist, is actually credited
with being the “father” of today’s smart card based on his 1974 patent on chip cards
[59].

Dr. Arimura limited his patents to Japan, where he controlled access to that tech-
nology through the Arimura institute. Mr. Moreno, however, founded Innovatron to
exploit his patent on a larger scale. The first Innovatron license, granted in 1976 to
Honeywell Bull, a French computer manufacturer, was worldwide in scope. Bull, a
pioneer in information technology, was the first company in the world to actually
make substantial progress [68]. Bull contracted with a US company, Motorola Semi-
conductor, to develop the necessary microprocessor. This innovation was introduced
in 1977 [34] and a functioning chip card was introduced in 1979. Known as the
CP8, an acronym forPortable Computer for the 80s, the name stuck. The first Bull
smart card division was named CP8 Transac. In 1979, Schlumberger, a French pe-
troleum company, obtained a worldwide license and the Dutch electronics company
Philips obtained rights for France (only). Each company began independent devel-
opment of cards and terminals. The Bull smart card product line generated up to ten

http://www.bai.org/bankingstrategies/2002-may-jun/smart/
http://www.bai.org/bankingstrategies/2002-may-jun/smart/
http://www.bai.org/bankingstrategies/2002-may-jun/smart/
http://www.jmac-solutions.com/giftcards/topic_3.asp
http://developers.sun.com/techtopics/mobility/javacard/

152 K.M. SHELFER ET AL.

percent of Groupe Bull’s revenue prior to its purchase by Schlumberger Limited’s
Test and Transactions division. On its corporate web site (http://www.axalto.com),
Axalto (formerly known as SchlumbergerSema’s smart card division) cites Gartner,
2003 and Frost & Sullivan 2003 in support of its claim to bethe world’s largest sup-
plier and leading innovator, with4500employees in more than100 countries and
worldwide sales of more than2.8 billion smart cards to date.

Credit for the commercial success of thetechnology itself [11]should probably
be awarded to France. Beginning in 1976, France’s Directorate General of Telecom-
munications (DGT) established a five-year initiative, the Telematique Programme, to
rebuild France’s pay telephone infrastructure and encourage growth in the country’s
lagging computer industry. This initiative emphasized two technologies: (1)videotext
(later Minitel, a prophetic forerunner of the Internet); and (2)smart cards, envisioned
even then as an identification and payment tool linked to computer communication.
France Télécom issuedsmart card readers that made it possible to purchase every-
thing from opera tickets to train reservations online—well before anyone had heard
of the Internet[59]. The French government quickly identified additional economic
benefits, such as those associated with the elimination of coins and/or tokens in pub-
lic telephone booths. This led France to introduce smart pre-paid telephone cards in
the 1980s [1]. While Europe continues to hold the lead, today there are other coun-
tries, including the USA, that also offer some form of card-based access to telephone
services.

Smart cards were first considered to be simply a better way to deal with economic
crime, which was one of the driving forces behind the rapid development and launch
of smart cards. Cartes Bancaires, the French banking association, found that crimi-
nals were illegally scanning traditional magnetic stripes, and then copying this data
to counterfeit credit cards [34]. At that time, the regulatory climate favored wireless
telecommunications. As a result, most transactions were processed offline, includ-
ing those in automated teller machines (ATMs). This situation left banks open to
ATM fraud, so France’s major banks created a study group, the Groupement d’Intérêt
Economique (GIE) that was tasked to examine ways to reduce fraud. In 1980, the
group issued a national request for proposal (RFP) for smart card technology and
the banks in France chose to issue smart cards [59]. Each of the three initial smart
card licensees—Bull, Schlumberger, andPhilips—tested their products in a point of
sale (POS) trial in a separate French city. France’s first tests of smart cards in 1980
were not initially successful for several reasons: (1) the card itself was too expen-
sive; (2) card quality was unreliable; and (3) the necessary technical infrastructure to
utilize and integrate with the cards was still not available [75,81].

Unlike Europe, the regulatory climate in the USA favored wired communication,
so there was not the same degree of urgency to adopt more stringent forms of iden-
tity verification. This resulted in a much slower migration to smart cards. In 1982,

http://www.axalto.com

SMART CARDS 153

two small trials were conducted in the US: (1) the First Bank Systems of Minneapo-
lis trial, involving ten (10) North Dakota farmers, and (2) a Department of Defense
(DOD) trial with a few hundred soldiers in Fort Lee, New Jersey. In 1983, Innovatron
awarded development rights for the USA, the UK and Japan to Smart Card Interna-
tional, a USA company. In 1986, MasterCard tested the technology in Columbia,
Maryland and Palm Beach, Florida.

In addition to smart card innovations themselves, universities have also played a
role as early adopters of smart card systems. In the USA, there were a number of
college and university campuses that upgraded from magnetic identification cards
to smart identification cards. Bill Norwood and eight colleagues left The Florida
State University (FSU) to found Cybermark, LLC, a joint venture of Sallie Mae,
The Batelle Memorial Institute, the Huntingdon Bank and the Florida State Univer-
sity. As a result of first-hand knowledge of the needs of the target customer group,
Cybermark had a first-mover advantage in the design and deployment of campus
smart card installations. In May 1999, for example, Cybermark added a credit card
option to the card (http://www.autm.net/pubs/survey/1999/cybermark.html). At one
point, some sixty people (45 in Tallahassee, Florida) processed transactions for over
700,000 issued cards. The number of cards doubled when SchlumbergerSema asked
Cybermark to service its existing campus card installations [17,20,23]. Table I pro-
vides a summary timeline of the early history of smart cards.

By 2002, there were still fewer than 35 (mainly European) companies in control
of 95% of the smart card market. At one point, three of Europe’s top ten high tech-
nology companies had smart card product lines, although most of these products

TABLE I
SMART CARD T IMELINE

Year Event

1968 2 German inventors, Jorgen Dethloff and Helmut Grotrupp, patent the idea of combining micro
chips with plastic cardsa

1970 A Japanese inventor, Kunitaka Arimura receives Japanese (only) patent protectionb

1974 French journalist, Roland Moreno, receives patent in Franceb

1976 French Licenses awarded to Bull (France) as result of DGT initiativeb

1979 Schlumberger (France) and Philips (Netherlands) receive first Innovatron licensesc

1980 GIE sponsors first smart card trials in 3 French citiesb

1982 First USA trials held in North Dakota and New Jerseyb

1996 First USA university campus deploys smart cardsb

1998 Gemplus introduces contactless IC

a[42];
b[81];
c[3].

http://www.autm.net/pubs/survey/1999/cybermark.html

154 K.M. SHELFER ET AL.

TABLE II
SMART CARD SHIPMENTSa BY REGION

Region 1999 2000 2001 2002 2003 2004 Totals Region (%)

North America 21 36 62 117 187 276 699 12
Americas 7 20 39 62 108 151 387 6
Europe 318 398 467 565 687 794 3229 54
Japan 10 23 44 68 103 136 384 6
Asia Pacific 75 121 179 245 313 401 1334 22
Totals 431 598 791 1057 1398 1758 6033 100

aSource: Dataquest [67].

still had limited functionality. The smart identification card market itself, however,
was not living up to its early promise. This changed as a result of the bombing of the
World Trade Center on September 11, 2001. Identity became inextricably linked with
protection of national economies, critical infrastructures, and citizens. At the same
time, quality had improved, costs of smart card systems had plummeted, and there
were many new applications that could take advantage of the chip—most notably,
biometrics. This situation resulted in a race to deploy smart card identification sys-
tems, especially for government, military and law enforcement personnel and transit
authorities [61,64,88]. In addition, there continues to be a growing awareness of tan-
gible and intangible benefits associated with the use of intelligent identification cards
[81,55]. For example, a simple Google® search can return thousands of hits on the
topic.

Today, the market is truly global. Table II shows recent and predicted worldwide
growth of smart card shipments by region [67]. Sadly, like so many other entrepre-
neurial ventures, Cybermark later failed for business reasons. However, it deserves
its place in history as an innovator in multi-application smart card systems. Today,
many companies have entered this market, and there are hundreds of companies, sev-
eral organizations and specialized publications that demonstrate the increasing im-
portance of smart card systems around the world (http://www.smartcardalliance.org;
http://www.eurosmart.com).

2. A Typical Smart Card Transaction

As with magnetic cards, the typical IC card transaction, or “session” typically
includes five stages: (1)Contact; (2)card validation; (3) establishing communication
between card and reader/terminal; (4)transaction; and (5)session termination.These
stages are shown in Fig. 1 and discussed below. A flow diagram of a typical point-
of-sale (POS) transaction between a cardholder and a merchant is shown in Fig. 2.

http://www.smartcardalliance.org
http://www.eurosmart.com

SMART CARDS 155

FIG. 1. Data flow of smart card transaction.

FIG. 2. Typical cardholder—merchant transaction cycle. Source: [85].

(1) Contact.Contact may be direct, proximate to, or in the vicinity of the reader.
This depends on the type of card and the capability of the reader/terminal the
cardholder wishes to use. In the case of a contact smart card, the card must be
physically inserted into a reader/terminal and remain in contact with it during
the session. In the case of contact smart cards, the reader/terminal verifies
that the card is properly situated and that the power supplies of both card and

156 K.M. SHELFER ET AL.

reader are compatible. It then supplies the card with the power necessary to
complete the transaction through the chip’s designated contact point (Cn). In
the case of a contactless smart card, this requirement is eliminated.

(2) Card validation.The card must be validated in order to establish a session.
Some reader/terminals have the ability to retain those cards found on a “hot
list” of unauthorized cards and send a notice of attempted use to the card
issuer. They may also be able to invalidate future use of a card. If the card is
valid, however, the system captures an identification number to establish an
audit trail and process the transaction using the authorized “value” for that
transaction (for example, removingcash from an electronic “purse”) that is
stored on the chip. This activity is handled by a Secure Access Module (SAM)
on a chip housed inside the reader/terminal. The SAM has the electronic keys
necessary to establish communication with the defined operating system (OS)
for the associated reader/terminal. EachOS is associated with a specified card
platform, and the card must be compatible with that OS if it is to communicate
with that particular reader/terminal and engage in a transaction.

(3) Establishing communication. A Resetcommand is then issued to establish
communication between the card and the reader/terminal. Clock speed is es-
tablished to control the session. In the case of both a contact and a contactless
smart card, the reader/terminal obtains the required data from the card and
initiates the requested transaction.

(4) Transaction.Data required for the session is exchanged between the card
and the reader/terminal through the defined Input/Output contact point(s).
A record of the transaction is stored on both card and reader.

(5) Session termination. For contact smart cards, the contacts are set to a stable
level, the Supply Voltage is terminated and the card is then ejected from the
terminal. For contactless cards, a termination protocol ends the session and
resets the reader.

3. Smart Card Technology

3.1 Technology Overview

The growing interest in smart card technology is due to its ability to (1) withstand
tampering and counterfeiting [59,73,97]; and (2) support multiple applications [21,
31,87] that are of growing interest due to the smart card’s physical characteristics,
data formats and information security capabilities. The smart card is a next gen-
eration “smart” identification card that offers the potential for tighter security and
increased functionality, a step up from the earlier magnetic stripe card technology

SMART CARDS 157

FIG. 3. Example of a physical access control system.

still used in most digital financial transactions at this time. This means that logical
and physical access can be controlled from the same card (see Fig. 3).

Card transactions involve two or more parties (refer to Fig. 2 in Section 2 of this
paper); for example, cardholder+ cardholder’s financial institution or [cardholder+
cardholder’s financial institution]↔ [merchant+ merchant’s financial institution]
[21]. The smart card is an improvement over simple magnetic stripe technology in
that it is able to (1) store anddirectly distribute containered data that can represent
more than one affiliated institution; (2) facilitate more than one type of authorized
use; (3) carry substantially larger volumes of data on-board; and (4) process transac-
tions at significantly higher rates of speed.

Today’s smart cards may be either “contact” or “contactless,” but all smart cards
have on-board processing capabilities that require an integrated circuit (IC) chip that
is physically located on the card. Applications may be split between cards and readers
or off-loaded onto the card. Applets and small databases are now being designed to
fit on smart cards.

3.2 Physical Characteristics

The physical size of the smart card is that of the magnetic stripe bank credit/debit
cards in use today. This size is a compromise intended to promote backward com-
patibility with the existing infrastructure of financial transaction processing systems

158 K.M. SHELFER ET AL.

FIG. 4. Smart card physical dimensions.

that were developed prior to the advent of smartchip cards. Currently, international
standards call for an “ID-1” plastic card base. Basic dimensions (not to scale) of a
typical smart card are shown in Fig. 4.

The earliest smart cards were a laminated plastic sandwich. That is, two layers
of plastic were bonded together. The bottom layer was solid and the top layer had a
section cut out for the chip, which was then inserted and wired to the card. One ex-
ample, a side cut-away, is shown in Fig. 5. This technology did not provide adequate
physical protection from cardholder’s “hip pocket” use and abuse. The chip tended
to pop out and the card layers tended to peeland separate. As a result, the data on
the card could not be read.

When a card could not be read, the eCash (stored value) on the chip could not
be verified through an audit trail, so cardholders were victimized twice—first with a
faulty card, and then with loss of the cash (stored value) recorded on the chip. This
situation upset cardholders, the constituency of early adopters in the USA, as most
were students, far from home and on restricted incomes.

In addition, cards and card applications were usually provided by a complex mix
of third parties, so problems were significantly more complicated to resolve than had
been the case with a 2-party identification card. As a result, card issuers, the customer
base, were also unhappy. They had paid significantly more for this technology, yet it

SMART CARDS 159

FIG. 5. Side view of an integrated circuit chip. Source: Gemplus; Campus ID Report.

damaged their relationship with their primary user populations. Solutions needed to
be found, so manufacturers rapidly looked for ways to create a durable plastic card
base.

One type of material, ABS plastic, or acrylonitrile-butadiene, was primarily used
in injection molding. Another plastic, PVC, or polyvinylchloride, was also tried. It
should be noted that there are several factors that impact the cost and quality of
card printers: printing speed, duplexing (the ability to print both sides of the card
in a single pass), encoding, and networking. Manufacturers also tried various print-
ing technologies. They learned that one of the better ones is Dye Diffusion Thermal
Transfer, or D2T2. In the D2T2 process, heat is used to transfer dye from a thin plas-
tic “carrier” ribbon to the surface of the card. ABS plastic was soft and it did not
work well with D2T2 printing technology. However, pure PVC was not much better.
When pure PVC was used, layers separated and peeled and dyes did not adhere to the
surface. Eventually, manufacturers found that they could increase the number of lay-
ers (to, for example, seven) and use thin layers of video grade PVC. To create video
grade PVC, certain polymers/polyesters (polyethylene terephtelates: PETG, PETP,
and PET) are added. This type of plastic works very well [22]. Manufacturers can
also choose from a half dozen processes to cement these layers together.

160 K.M. SHELFER ET AL.

Smart cards often contain a video image of the cardholder. Digital videography
has replaced the tiresome processes of taking pictures, cutting them to fit, positioning
them on a card and them laminating it all together. Images are captured using RGB
(the best and costliest), S-VHS and NTSC video signals. Images are compressed and
stored in formats such as JPEG. Image quality is determined by the size of the orig-
inal image and the compression ratio. In the past decade, card production, products
and processes have all improved. At the same time, costs have dropped dramatically.
As a result, card quality is not the problem that it once was, but customers do need
to become informed about their options. A number of publications, associations and
conferences are now available.

3.3 Contact and Contactless Smart Cards

“True” smart cards may be either “contact” or “contactless” and the differences
are explained below.

• Contact cardsrequire direct contact between the card and the reader [31]. The
smart card is placed into the reader. As aconnection is made between the reader
and the contact points located on the card’s contact plate, an electrical circuit is
completed [15]. Since contact smart cards do not have an on-board power sup-
ply, they must rely on the power supplied by the reader if they are to function.
This is why contact smart cards must be inserted into a reader that makes direct
contact with the chip. (See Section 4, Standards, for a discussion of the contact
points of IC chips.)

• Contactless(also called “proximity” or “prox”) cards are designed to func-
tion without the need for the card to make physical contact with a card reader.
Contactless smart cards do not use the electrical contact points found on the
contact card’s smartchip. Instead, they depend on electrical coupling [15]. The
contactless card contains an on-board chipthat enables the reader/terminal to
(1) interact with the card over greater distances; (2) transmit larger volumes of
data; and (3) transmit data at faster rates of speed. Although other forms of con-
tactless access control technologies do predate the contactless smart card, the
impetus for the development of a contactless smart card, introduced in 1988,
was the perceived need to accelerate the speeds at which physical access trans-
actions were processed and cardholder access approved and recorded.

3.4 Physical Characteristics of the Integrated Circuit (IC) Chip

The smart card, unlike the simple magnetic memory card, contains an on-board
electronic module (‘processor’) and one or more silicon-based IC chips. The IC chips

SMART CARDS 161

used on a smart card are primarily based on (Motorola) semiconductor technology
[33]. These chips contain both short- and long-term memory cells [31] ranging from
a few hundred bytes to several megabytes of random access memory (RAM). RAM
provides a “scratch pad” for processing information. The card controller software is
stored in permanent nonvolatile read-only memory (ROM). Today’s smart cards may
also have special circuitry related to encryption.

There are three varieties of integrated circuit (IC) cards: (1) serial memory,
(2) hardwired, or wired, and (3) the ‘true’ smart card, that contains a microprocessor.

• Serial memory(simple memory; synchronous) cards provide 1–5 Kb of storage
but do not have processing capability. Thememory card stores data in non-
volatile memory and the card contains only sufficient logic circuitry to manage
control and security functions [42,31]. The transaction is simple: a write func-
tion simply transfers the electronic equivalent of cash from the card to the reader
(think of it as a digital “cash register”). The value transferred to the reader is
then transferred to a traditional bank account [31].

• Protected memory(also called “hardwired” or “wire”) cards have two sections
of memory: (1) a read-only (RO) portion that is programmed as part of the man-
ufacturing process; and (2) a read-write (RW) area that is reserved for software
applications. The use of the terms “hardwired” and “wired” are derived from
the wired circuitry that characterizes the memory allocation in the chip (not the
wires that physically link the chip to the card or the antennae in contactless
cards).

• Microprocessorcards are the ‘true’ smart cards because they have on-board
processing capabilities. This provides an additional layer of security, because
the encryption operations can be conducted by the card itself without reliance
on external hardware to determine encryption keys and security.

A cut-away (side, top to bottom) view of the typical stacking order of the
microprocessor-enabled smart card [51] isshown in Fig. 6. This diagram represents

FIG. 6. Architecture of a smart card electronic module. Source: [51].

162 K.M. SHELFER ET AL.

the ‘top’ layer, the electrical components, of an embedded smart card processor chip.
Some chips may not include all possible memory types, and additional nonvolatile
memory type NVM is not represented. Security is increased and card size is mini-
mized through the combining of all of the depicted elements into one integrated chip
[51].

In the case of contact cards, the IC chip must make physical, electrical contact
with a card reader in order to complete the specific transaction(s) for which the chip
is programmed. This is because the chip’s source of electrical power is in the reader
and not on the card. The contactless smart card need not make direct contact with the
card reader, however, because it emits low frequency radio waves that interact with
the reader at varying distances.

3.5 Processor Capacity

Smart cards include an embedded silicon-based processor, and they can also in-
clude a cryptographic chip for data encryption [8]. The first (8-bit) processors were
almost as powerful as the desktop personal computers of the 1980s [34].

Processors have since evolved through 32-bit on-board processors [42] to the still
rare 64 KB CPU. The three primary constraints on processor size today are (1) mar-
ket acceptance based on pricing constraints; (2) lack of useful applications avail-
able to card issuers; and (3) EEPROM memory (http://www.cyberflex.com/Products/
Cyberflex_Access/cyberflex_access.html).

There are three types of card-based contactless technologies: (1) close coupling
(Type A and Type B); (2) proximity cards; and (3) vicinity cards as well as several
nonstandard proprietary systems. Most contactless cards in use today are close cou-
pling, Type A. These do not use a microprocessor. However, Type B close coupling
contactless cards do use microprocessors and new technologies are in development
that will eventually require them. These three types are discussed in more detail in
the section of this paper that addresses smart card standards.

The earliest contactless smart cards were “read only.” This means that the reader
does not send any data to the card. The next step up, the memory cards, were de-
signed to allow readers to both receive and send data (read-write) to the card. This
means that cards could now be updated witheach transaction. Hybrid cards (those
with both contact and contactless IDC chips) use separate chips for these functions,
as contactless cards are designed differently. On some cards, where these chips are
actually connected, the contact interfacedrives both the contact interface and the
contactless interface. Figure 7 represents one of the more sophisticated forms of
contactless smart card designs available today.

Regardless of the actual technology used, the dominant characteristic of all con-
tactless cards is that they can be activated and used at a distance. Cards and card

http://www.cyberflex.com/Products/Cyberflex_Access/cyberflex_access.html
http://www.cyberflex.com/Products/Cyberflex_Access/cyberflex_access.html
http://www.cyberflex.com/Products/Cyberflex_Access/cyberflex_access.html

SMART CARDS 163

FIG. 7. Hybrid contactless cards with connected chips. Source: [65].

readers/terminals transmit radio frequency (RF) emissions that support electrical
coupling between cards and associated readers [73]. The card reader supplies the
card with the power necessary to run the card’s microprocessor [34].

3.6 Current Specifications

According to the corporate web site for Axalto (http://www.axalto.com and
http://www.gemplus.com), typical currentsmart card technical and security speci-
fications include the following:

• Technical. Multi-application capable (4 Kb to 64 Kb and larger) EEPROM, ca-
pable of withstanding 700,000 cycles; capable of retaining data for up to ten
years; an 8-bit CPU microcontroller; global personal identity number (PIN)
capability that includes PIN sharing by applications; interoperable and com-
pliant with international standards, including ISO 7816; (Sun) Java Card 2.1.1
and Open Platform 2.0.1; external clock frequency: 1 to 7.5 MHz; sleep mode
(locks down the card to prevent unauthorized use); and capable of operating in
temperatures that range from−25 to 75◦C.

• Security. Extended support for a variety of encryption and digital signature
standards: DES, T-DES, RSA, SHA-1; fire walled applets; multi-stage up-
date/load/install register for enhanced security; and secure channels for appli-
cation dynamic loading and deletion, data update and card life cycle manage-
ment. Support for long integer modulo arithmetic on RISC-based smart cards
is currently the subject of study as the modulus should have a length of at least
1024 bits, but this is difficult to embed on a card due to software constraints and
clock speed limitations [39,35,52,89].

http://www.axalto.com
http://www.gemplus.com

164 K.M. SHELFER ET AL.

Recent innovations in contactless smart cards appear to target increasing the on-
board memory to absorb additional applications [7,10] and the mini databases being
designed to fit on smart cards. One recent consideration with promise is the notion
of mobile cookies [16] that allow cardholders and/or card issuers portable, personal
access histories that are independent of the computer from which the access was
requested.

4. Smart Card Standards

4.1 Smart Card Standards Organizations

The global nature of digital transaction processing, particularly for financial trans-
actions, mandates some agreement on standards for cards and readers. There are two
organizations involved in the development and issuance of international smart card
standards: the American National Standards Institution (ANSI) and the International
Organization for Standardization (ISO) [2,18].

• ANSI. In the US, the appropriate organizations are the American National Stan-
dards Institution (ANSI), the National Committee for Information Technology
Standards (NCITS), the Cards and Personal Identification Committee (B10) and
its Contactless Technology Subcommittee (B10.5). Publications from this group
are coded ANSI/NCITS/B10/B10.5.

• ISO. The International Organization for Standardization (ISO) (http://www.iso.
ch/), representing some 130-member nations, establishes standards that facil-
itate international manufacturing, commerce, and communication. ISO deter-
mines the international standards for the physical characteristics and data for-
mats of smart cards. The International Electro Technical Committee (IEC) fo-
cuses on electro-technical standards that facilitate the growth of international
manufacturing and support services and the Joint Technical Committee (JCT1)
develops standards for information technology. ISO Subcommittee 17 focuses
on identification technologies, including ID cards and ancillary technologies
and its working group, ISO Working Group 8 (WG8), is the level at which in-
ternational standards for contactless smart cards, the latest evolution in smart
cards, are developed (ISO/IECJTC1/SC17/WG8) [42,3].

For a list of the most relevant smart card standards to date, see Table IIIA: ISO/IEC
Standards and Table IIIB: Contactless Cards. Additional information on magnetic
stripe cards is found in Section 5, Associated Access Technologies. Standards are
available from ISO (http://www.iso.org). ANSI (http://www.ansi.org) and others all
track and report on standards —e.g.,

http://www.iso.ch/
http://www.iso.ch/
http://www.iso.ch/
http://www.iso.org
http://www.ansi.org

SMART CARDS 165

TABLE IIIA
ISO/IEC STANDARDSa (DATE AS OF LATEST FULL /PARTIAL REVISION)

Date Standard Content

2003 7810 Physical characteristics smart card (ID-1 size)
1997 7811 Magnetic stripe data formats
2002 7811-1 Embossing
2001 7811-2 Magnetic stripe—low coercivity
1995 7811-3 Location of embossed characters on ID-1 cards
1995 7811-4 Location of read-only magnetic Tracks I and II
1995 7811-5 Location of read-write magnetic Track III
2001 7811-6 Magnetic stripe—high coercivity
2001 7813 Financial transaction cards
1998b 7816-1 Physical characteristics
1999 7816-2 Location, size of the IC card’s electronic contacts
1997 7816-3 Electrical signals
1995 7816-4 Defines, in part, the structure of stored files
1994 7816-5 High-level application communication protocols

aISO 4909:1987 sets forth the standard for data content for this track. Two related standards, not discussed in this
paper, address optical memory (ISO/IEC 11693 and ISO 11694).

bAmended 2003.

TABLE IIIB
CONTACTLESSCARDS

Latest Standard Content
date

2001 10373 Test Methods—Proximity Cards (Part 6)
Test Methods—Vicinity Cards (Part 7)

2000 10536-1 Close Coupled Cards—Physical Characteristics
2001 10536-2 Close Coupled Cards—Location and Size of Coupled Areas
1996 10536-3 Close Coupled Cards—Electronic Signals, Reset Procedures
2000 14443-1 Proximity Cards—Physical Characteristics
2001 14443-2 Proximity Cards—Radio Frequency (RF) Power, Signal Interface
2001 14443-3 Proximity Cards—Initialization and Anticollision
2001 14443-4 Proximity Cards—Transmission Protocols
2000 15693-1 Vicinity Cards—Physical Characteristics
2000 15693-2 Vicinity Cards—Air Interface and Initialization
2001 15693-3 Vicinity Cards—Anticollision and Transmission Protocols

Source: http://www.iso.ch/iso/en/ISOOnline.frontpage; http://public.ansi.org/; and http://www.cyberd.co.uk/support/
technotes/isocards.htm (among others).

• http://www.cyberd.co.uk/support/technotes/isocards.htm

• http://www.incits.org/scopes/590_1.htm

http://www.iso.ch/iso/en/ISOOnline.frontpage
http://public.ansi.org/
http://www.cyberd.co.uk/support/technotes/isocards.htm
http://www.cyberd.co.uk/support/technotes/isocards.htm
http://www.cyberd.co.uk/support/technotes/isocards.htm
http://www.cyberd.co.uk/support/technotes/isocards.htm
http://www.incits.org/scopes/590_1.htm

166 K.M. SHELFER ET AL.

• http://www.blackmarket-press.net/info/plastic/magstripe/Magstripe_Index.htm

• http://www.cardtest.com/specs.html

• http://www.javacard.org/others/sc_spec.htm

4.2 Early Smart Card Standards

Three standards specifically address the physical and electronic formats of mag-
netic strip cards: ISO 7810 (especially parts 2 and 6), ISO 7811, and ISO 7813.

ISO 7810. The earliest international standard for IC cards, this standard estab-
lished the physical location of the chip on the card (see Fig. 4, above). As previously
explained, the stipulation that dictated the chip’s actual physical placement on the
plastic card base was a result of the demand by financial institutions for maximum
backward compatibility with existing magnetic stripe systems, as well as the desire
to provide maximum protection for the chip (i.e., if the card was bent, for example)
[33].

ISO 7811. This standard specifies card data formats (for example, Farrington 7B
as the specified font). Specific details in the standards address embossing, as well as
the location and data formats of the two read-only tracks (I and II) and the read-write
track (III). For more on magnetic stripes, see Section 5 of this paper.

ISO 7813 sets forth the specifics of financial transaction cards.

4.3 Contact Smart Card Standards

One standard (ISO/IEC 7816) covers integrated circuit cards with contacts (con-
tact smart cards).

ISO 7816. The various sections of this standard describe physical characteris-
tics of the smart card. Figure 8 is an example of the contact configuration of an IC
chip (refer to Table IV). Part 1 covers the physical characteristics of the smart card.
Part 3 specifies electrical signals. Part 4 defines, in part, the structure of stored files.
Part 5 covers High-level application communication protocols. Part 2, which covers
electrical contacts, is described below.

• Part 2. Location and size of the electronic contacts on the smart card. This
standard specifies six (6) contact points, although some chips have more. Each
contact (designated Cn below) has its own defined function:

http://www.blackmarket-press.net/info/plastic/magstripe/Magstripe_Index.htm
http://www.cardtest.com/specs.html
http://www.javacard.org/others/sc_spec.htm

SMART CARDS 167

FIG. 8. IC Chip contacts.

– C1 provides the necessary power—supply voltage (VCC) current (5V± .5V
DC)—required by contact smart cards, as they do not have any power of their
own.

– C2 is the Reset (RST) that establishes communication.

– C3 is the Clock (CLK) that sets the rate of data exchange.

– C4 is not used and need not be present on the chip.

– C5 is the Ground (GND).

– C6 is not used and must be electronically isolated on the chip.

– C7 is the Input/Output (IO). This contact is used to transmit data from the
terminal to the chip or to receive data by the terminal from the chip.

– C8 is not used and need not be present on the chip.

4.4 Contactless Smart Cards Standards

There are three primary standards for contactless smart cards: (1) ISO/IEC 10536,
(2) ISO/IEC 14443 Proximity Cards, and (3) ISO 15693 Vicinity Cards. A compari-
son of their Communications Parameters is shown in Table IV, located at the end of
this section).

ISO/IEC 10536 Close Coupling Cards. The first standard for contact-
less cards required that cards either be inserted into a reader or placed in a very
precise location on the card reader’s surface.The limited distance and the high level
of accuracy required for a “good read” discouraged the use of contactless cards in
controlled environments. This standard has been abandoned as a result of improve-
ments in contactless card technologies.

168 K.M. SHELFER ET AL.

TABLE IV
A COMPARISON OFPARAMETER VALUES FORCONTACTLESSCARDS

Standard: 14443 Proximity Cards

Type Type A (memory; MIFARE®) Type B (microprocessor)

Reader to Card Frequency 13.56 MHz Frequency 13.56 MHz
Modulation 100% ASK Modulation 10% ASK
Bit coding Modified miller Bit coding NRZ
Data rate 106 kb/s Data rate 106 kb/s

Card to Reader Modulation Load Modulation Load
Bit coding 00K Bit coding BPSK
Subcarrier 847 kHz Subcarrier 847 kHz
Bit coding Manchester Bit coding NRZ
Data rate 106 kb/s Data rate 106 kb/s

Standard: 15693 Vicinity Cards

Card to Reader Frequency 13.56 MHz
Modulation 100% ASK or 10% ASK
Data coding 1 of 4 or 1 of 256
Data rate 1.65–26.48 kb/s

Reader to Card Modulation Load
Bit coding Manchester
Subcarriers (1 or 2) Fs1= Fc/32= 423.75 Mz;

Fs2= Fc28= 484.28 MHz
Bit coding Manchester
Data rate Fs1= 6.62–26.48 kb/s;

Fs2= 6.67–26.69 kb/s

Proprietary interfaces

System Cubic Sony

Card to Reader Frequency 13.56 MHz Frequency 13.56 MHz
Modulation 5%–8% ASK Modulation 10% ASK
Bit coding NRZ Bit coding Manchester
Data rate 1l5.8 kb/s Data rate 106 or 212 kb/s

Reader to Card Subcarrier No Subcarrier No
Modulation ASK Load Modulation ASK Load
Bit coding NRZ Bit coding Manchester
Data rate 115.8 kb/s Data rate 106 or 212 kb/s

Source: [3].

SMART CARDS 169

ISO/IEC 14443 Proximity Cards. The large majority of proximity cards
adhere to this standard. ISO 14443-2 has two types of interfaces, referred to as
Type A (memory cards, also called MIFARE® cards) and Type B (microproces-
sor cards). Type A cards are often called MIFARE® cards because the standard,
developed beginning in 1994, includes the MIFARE® technology patented by Mi-
cron, an Austrian company that was purchased by Philips. Micron’s technology
was, as a condition of inclusion in the standard, made available to others via li-
censing. Type B began as a higher-security microprocessor (only) card, but ex-
panded to include both memory and cryptography. Type B card chips have been
mostly provided by STM, lnfineon. Samsung, and Atmel. Initially, Type A and
Type B technologies were complimentary, but with the entry of competing tech-
nologies, they do currently compete. Even so, Type A cards account for roughly
half of all contactless smart cards issued, according to the Philips corporate web
site (http://www.semiconductors.philips.com/news/content/content/file_798.html as
of February 2002). The remaining card base is mostly Type B cards plus two propri-
etary systems: Cubic (GO-Card®) and Sony (FeliCa®). The useful range of connec-
tivity, which is the “read range” for smart cards that adhere to ISO standard 14443, is
up to 10 cm, depending on power requirements, memory size, CPU and co-processor.
There are four parts to this standard:

• Part 1. Physical Characteristics—International Standard IS 4:2000.Card size
is set at 85.6 mm× 54.0 mm× .76 mm. This is the same size as a hank credit
card, so it continues to support backwardcompatibility with the large number
of magnetic stripe systems that support most transaction processes in use at the
present time.

• Part 2. Radio Frequency Power and Signal Interface—IS 7:2001. Both Type A
and Type B interfaces operate at the same frequency and use the same data
transmission rate. They differ only in modulation and bit coding.

• Part 3. Initialization and Anticollision—IS 2:2001.This sets the communication
protocols that establish the initial connection between the card and the reader
when the card enters the reader’s radio frequency (RF) field. Anticollision ad-
dresses situations where more than one card enters the targeted magnetic field
at the same time. This part of the standard system determines which card to
use in the transaction and ensuring that all cards presented are inventoried and
processed.

• Part 4. Transmission Protocols—IS 2:2001. Transmission protocols define the
data format and data elements that enable communication during a transaction.

http://www.semiconductors.philips.com/news/content/content/file_798.html

170 K.M. SHELFER ET AL.

ISO/IEC 15693 Vicinity Cards. The vicinity card has three modes with as-
sociated ranges of operation: (1) read mode (70 cm); (2) authenticate mode (50 cm);
and (3) write mode (35 cm). There are three separate parts to this standard:

• Part 1. Physical Characteristics—IS 7:2004establishes the physical card size
at the ID-I size (145.6 mm× 54.0 mm× .76 mm). This is the same size as a
bank credit card.

• Part 2. Air Interface and Initialization—IS 11:2001defines frequency modula-
tion, data coding and data rate values for both reader-to-card and card-to-reader
communication.

• Part 3. Anticollision and Transmission Protocol—IS 6:2001defines the proto-
col, command set and other parameters required to initialize communication
between a reader and a card. It also defines the anticollision parameters, which
facilitate the selection and appropriate use of a single card when multiple cards
enter the reader’s magnetic field.

4.5 Nonstandard Contactless Technologies
There are also proprietary contactlessinterfaces, mainly variations on ISO 14443,

that use nonstandard bit rates and/or bit encoding methods and lack a subcarrier. Two
examples are Cubic Corporation’s GO-Card (US and England) and Sony’s FeliCa
card (Hong Kong and several Asian countries). Cubic and Sony tried and failed to
obtain standards classification for these products under ISO 14443.

4.6 Comparison of ISO/IEC 14443 and ISO/IEC 15693
Contactless cards differ in several ways,among them transaction speeds, anticol-

lision techniques and data security:

• Transaction speeds.The rate and volume of data exchange involves four events:
(1) Input/Output (I/O), (2) memory access,(3) encryption and (4) processing.
Together, these activities comprise nearly one-quarter of the total time used in
a single session. Sophisticated, highly secured transactions benefit from adher-
ence to the ISO 14443 standard, as ISO 15693 smart cards are much slower
when handling a large volume of data. Where the read range is important, it
should be noted that ISO 14443 microprocessor cards have a shorter read range
than ISO 14443 memory cards and ISO 15693 cards have greater distance. Orig-
inally developed for such functions as inventory control, these cards are consid-
ered less secure for physical access control—the greater the distances involved,
the greater the risk of unintended access authorization. Data collisions are also
more likely at greater distances and slower transaction processing speeds.

SMART CARDS 171

• Anticollision techniques.When multiple cards enter a reader’s range, anticolli-
sion techniques are used. Most ISO 14443 smart cards (both Type A and Type
B) use theBit Collision technique, where the reader sequentially inventories
cards and establishes working sessions. Another option is theTime Slottech-
nique, where cards are polled by the reader after a collision and assigned time-
based response times. ISO 15693 uses theSlot Markeranticollision technique,
where the reader inventories each card in its read range and assigns a speci-
fied slot for the card’s response so that it can locate and work with each card
in its read range. Any of these techniques is sufficient for physical access con-
trol.

• Data security.Authentication and encryption are performed with a key-based
cryptographic function. The keys aregenerated by a random number genera-
tor that is designed as part of the IC. The key (or number) is then incorpo-
rated into an algorithm residing on the 1C. The algorithm function is com-
putationally intensive and should be supported by a dedicated hardware co-
processor. The circuitry involved is specially designed to perform the complex
computation and makes using the supported cryptography viable without af-
fecting transaction time and power consumption. Common examples include
Data Encryption Standard (DES), the Digital Signature Algorithm (DSA) and
RSA (named for Rivest, Shaman and Adleman who developed it in 1977);
DSA is only used for signatures, not encryption. Elliptical Curve Cryptog-
raphy (ECC) has become a popular method and is supported by a number
of 1C providers with dedicated cryptographic engines housed on the chip [3,
62].

• Public key, or symmetric key, cryptography creates uses a single public
key that is traded between sender and recipient, usually over open lines.
DES is a symmetric, or public key, encryption system. For example (see
Fig. 9):

(1) Jean uses the public key directory to encrypt his public key and cre-
ates ahash, or document digest. The information used to create Jean’s
hash generally includes version#; serial#; signature algorithm; card is-
suer’s name; card expiration date; subject name; the cardholder’s pub-
lic key; card issuer unique id; cardholder’s unique id; and extensions
[29]. Both Jean and the Certificate Authority (CA) gets (decrypted)
copy.

(2) Second, Sue acquires Jean’s Public Key from the CA and uses it to
decrypt both his document digest and his document. This lets Sue as-
sume that Jean is really Jean (and not John who is pretending to be
Jean).

172 K.M. SHELFER ET AL.

FIG. 9. Data Encryption Standard (DES): A public key symmetric encryption system.

(3) Sue then encrypts and sends a response to Jean, using Jean’s public key.
This also creates a “hash” or digest.Jean is able to decrypt and read the
response document from Sue. If Jean’s hash matches Sue’s hash, then
Jean can assume that Sue is really Sue (and not Sarah pretending to be
Sue).

• Type 2. Private-key, hidden keyor asymmetric-keycryptography is a scheme in
which each user has both a public key and a private key. The public key is dis-
tributed to others while the private key remains a secret. One key is used for
encryption and the other for decryption. RSA is one example of this type of
encryption system.

• By card cloningand counterfeiting, we mean the unauthorized recording of
a transaction/session that is used to forge a real transaction. Smart cards ad-
dress these problems with a process called dynamic authentication, in which
the challenge and response between reader and card change with each trans-
action. A random number generator must be used for security purposes, as it
generates unique keys for each session. If nonrandom numbers are used, the
encryption scheme develops a pattern. If this pattern is detected, the encryption
codes can be much more easily broken.

Nonrepudiationis achieved through cryptographic methods that prevent an indi-
vidual or entity from denying previous participation in a particular transaction. The

SMART CARDS 173

fact that a third party can verify the transaction prevents repudiation of the transac-
tion by either of the two parties that participated.

4.7 The Role of Standards

Over the past 25 years, there has been an explosive growth of international fi-
nancial transaction processing accompanied by an equally explosive growth in eco-
nomic (and associated violent) crimes. Smart cards could contribute significantly to
reductions in counterfeiting and tampering that are associated with financial fraud,
but they must meet the needs of financial institutions that still have an enormous
investment in the older magnetic stripe technology. Future innovations include a
growing number of truly global applications. Approval and adoption of new stan-
dards is sometimes about first mover advantage. For example, Micron’s patented
Mifare® technology was incorporated, but Sony’s FeliCa® card interface, after much
study, was not. New standards supported by companies and industry associations re-
volve around a Common Access Card (CAC) that would support a wide range of
devices and applications with global reach. The smart card has its limitations, and
the growing number of interested parties is moving to address this issue. (See, for
example, www.globalplatform.org, java.sun.com/products/javacard/specs.html, and
http://www.sun.com/aboutsun/media/presskits/iforce/ActivCard_SP_final.pdf).

Problems do arise, of course. First, governments assign radio frequencies (1) to
prevent conflicts within their borders; and (2) to try to impose their standards on oth-
ers. The radio frequencies for contactless cards in the US are not compatible with
those of other nations. It is likely that international standards will apply. Given that
the read ranges are so small, this conflict should not interfere with anydomesticsys-
tem that might make use of the same radio frequency, but this lack of compatibility
does exist and it should be noted. Second,some locations do not have this capability
while others have run out of it.

5. Associated Access Technologies

The smart card often includes two other technologies: (1) a magnetic stripe that
facilitates backward compatibility with financial (and other) transactions; and (2) the
barcode, that facilitates contactless access for purposes such as inventory control.
These two technologies are still widely used in a range of settings, they are relatively
inexpensive and they are usually less complex to administer than smart cards. They
are often incorporated into applicationson the smart card itself. For this reason, a
brief discussion of two of these associated access technologies is in order.

http://www.globalplatform.org
http://java.sun.com/products/javacard/specs.html
http://www.sun.com/aboutsun/media/presskits/iforce/ActivCard_SP_final.pdf

174 K.M. SHELFER ET AL.

5.1 Electro-Technology Access: The Magnetic Stripe

The cardholder’s personal data is stored on the smart card in electronically
erasable programmable read-only memory (EEPROM) that is an “alterable non-
volatile memory” [31]. Data storage on smart cards varies, depending on the re-
quirements of the application. However,it can all be traced back to the mid-1980s,
when the ISO subcommittee on information processing systems, known as Techni-
cal Committee 97 (TC 97), issued ISO 7812, Identification cards: Numbering system
and registration procedure for issuer identifiers. This standard described a standard-
ized card numbering scheme for transaction routing and control. To ensure that card
readers could find and interpret the number, a magnetic stripe was needed to hold
what came to be known as an “ISO number.” The American Bankers Association
(ABA) magnetic stripe-encoding standard is used on magnetic stripe cards today,
which are discussed below [53,54,94].

The ISO number was a key success factor for smart cards. It encouraged the in-
vention of card readers that could locate and correctly interpret data supplied by
multiple card issuers. This, in turn, led to the development of cost-effective point
of sale (POS) and ATM networks (see Fig. 10 for an example of an ISO num-
ber) [94].

• Major Industry Identifier(MII). The first two digits, the MII, indicate the num-
ber of digits in the Issuer Identifier that immediately follows it. Most cards use
3, 4, 5, 6, or 7 as the MII. With limited exceptions, the Issuer Identifier for all
these MIIs has five prescribed digits following the MII (for a total of six digits).
Each card starts with the same six digits, except for giants and “wastrels” who
run out of numbers and need more. This number indicates the category best
describing the card issuer:

1 = airlines

3 = travel and entertainment

4 = banking/financial

5 = banking/financial

FIG. 10. ISO number.

SMART CARDS 175

6 = merchandizing and banking

7 = petroleum

• Individual Account Identifier. The next nine digits are the unique identifier of
the individual to whom this number has been assigned. In the case of smart
cards, they ‘name’ the cardholder. Issuers may generate these numbers using
any logic they choose. In order to prevent fraud, most issuers use a “skip” to
avoid having sequential valid numbers. The final digit is a check digit, calcu-
lated by applying a simple mathematical formula to the preceding 15 digits.
This check allows a card reader to performthe calculation based on the first 15
digits it read from the “mag” stripe andcheck it against the final digit read. If
they match, it is likely a valid read [4].

The data track standard, formalized inISO 7811, determines the composition and
location of the primary magnetic stripe (sometimes called theABA stripe) as shown
in Fig. 11. This stripe actually consists ofthree separate tracks, each 0.110 inches in
height:

• Track 1supports 79 read-only alphanumeric characters with a compression rate
of 210 bits per inch. It was initially designed by the International Air Trans-
portation Association (IATA) to support passenger ticketing and reservation
data.

FIG. 11. Magnetic stripe characteristics.

176 K.M. SHELFER ET AL.

• Track 2 supports 40 read-only numeric characters that are compressed at 75
bits per inch. It was developed by the American Banking Association (ABA) to
support financial transaction processing, so the first field is typically the card-
holder’s account number.

• Track 3was designed by the Thrift Industry to support a read-write function
that enables this track to be updated with each transaction.

It should be noted that some smart cards also include what is commonly called a
junk stripe.This stripe primarily serves as an anonymous debit (declining balance)
feature where personal identifiers are not required. For this reason, its use is gen-
erally restricted to proprietary closed systems, primarily those involving cash-based
vending, i.e., copiers, laundromats, city transit, telephones, soda machines and snack
machines. This stripe may be located on the front or back of the smart card. If lo-
cated on the back, it is typically positioned slightly above the 3-track magnet stripe
described above.

Utilizing all three tracks, an ABA-compliant magnetic stripe card has a total ca-
pacity that is limited to 226 characters. It should be noted that even the smallest
smart card chips have considerably larger capacity, but the smart card advantage rests
in improved data security and additional functionalities, not in relative data storage
capability.

5.1.1 Coding the Magnetic Stripe
As is true for all magnetic recordings, microscopic ferromagnetic particles, just

millionths of an inch in length, are containered in a resin-based coating that covers
the location of the track. These tiny particles hold their most recent magnetic polarity
when acted upon by an external magnet field. On an un-encoded stripe, all particles
align in the same direction. The coding process uses magnetic “coercivity” to re-
align the magnetic polarity of selected particles located in certain positions on the
coated track. Since only two polar directions exist (north/south, south/north), binary
calculations can be used to record these states as zeros and ones. Tracks may be high
coercivity (HiCo) or low coercivity (LoCo). This characteristic is determined by the
amount of magnetic pull (measured in oersteds) that is required to flip the polarity
of the target particles. HiCo stripes (coded at 1000 oersteds) are typically used to
organize data in fields. LoCo stripes are encoded at 300–1000 oersteds. While LoCo
cards are less costly to produce and encode, they are more susceptible to demagne-
tization and can easily be damaged in certainenvironments (intensive care units of
hospitals, for example).

Two binary data calculation formats that are used to encode data on the magnetic
stripe are the 5-bit ANSI/ISOBCD Data Formatand the 7-bit ANSI/ISOAlpha Data
Format.

SMART CARDS 177

• BCD Data format. 4-bits of data (5-zeros and ones) are used to create a 16-
character set (2× 2 × 2 × 2 = 16) [12] that consists of the ten numeric digits
(0–9), 3 digits for framing and 3 digits for control. The fifth bit is treated as a
check device.

• ANSI/ISO Alpha Data Format.This 7-bit data format generates a sixty-four
character set (ten numeric characters, all 26 letters of the alphabet, 3 framing
characters and 18 control characters) using 6-bits for character generation and
1-bit as a check.

In both formats, there are at least 3 control characters. TheStart Sentinel(SS) signals
the start of meaningful data. This gives the card reader a chance to synchronize and
decode the transmitted data. TheEnd Sentinel(ES) control character is followed by
the Longitudinal Redundancy Check(LRC) character that works as an error check
for the whole line of data.

5.1.2 Barcodes

In 1948, Dr. Joseph Woodland, then a lecturer in mechanical engineering at the
Drexel Institute of Technology (now DrexelUniversity), became interested in the
need for supermarkets to track inventory and automate the checkout process. He
found that the variance in polychromatic systems was too great, but Morse code
lacked enough elements to support the necessary level of detail. By extending those
dots and dashes to create thin and thick lines, he and Bernard Silver, developed a
system to decode the lines that called for the early equivalent of a laser light. They
received US patent 2,612,994 in 1952 for this “Classifying Apparatus and Method.”
In 1973, Woodland’s invention became the basis of the Universal Product Code, or
UPC, an example of which is shown in Fig. 12 (see also Fig. 13).

Today, barcodes are assigned to productsand used to link products to inventory
and sales management systems in every sector of the economy. According to data
compiled by the Uniform Code Council, UPC codes serve over 600,000 manufac-
turing companies and are scanned 5 billion times a day, but this is less than half of
today’s bar code technology. In libraries, for example, barcodes are generated and
used as unique identifiers for both individual library patrons and individual items
such as circulating books. ISO numbers (discussed in Section 5.1) are converted into
barcodes(2 × 2 × 2 × 2 = 16). Today, mini-databases of various types are being
designed to be carried on the smart card itself. ISO numbers and UPC codes are ex-
amples of the types of data stored in these databases (http://www.uc-council.org and
http://www.drexel.edu/coe/news/pubs/coepuzzleranswerinsummer2003.html).

http://www.uc-council.org
http://www.drexel.edu/coe/news/pubs/coepuzzleranswerinsummer2003.html

178 K.M. SHELFER ET AL.

FIG. 12. Uniform product classification codes.

FIG. 13. How to read a bar code. Source: [4,5].

5.2 RISC-Based Smart Cards and The Java Virtual Machine

The earliest Application Data Protocol Units, or ADPU (addressed in ISO/IEC
7816) were developed and used to transfer messages between clients and servers (in
this case, applications/processes split between cards and readers) [16]. Prior to the

SMART CARDS 179

development of the Java card platform, ADPU were awkward, idiosyncratic and took
a long time to write. This made smart card applications proprietary, expensive, and
very slow to develop. The stated purpose of Sun Microsystem’s Java card platform is
to create an open programming architecture so that applications can be written once
to run on all cards. This would make it possible to program a smart card application
“in a day.” To accomplish this goal, Sun posts documentation and provides training
classes that include constructing and parsing ADPU (see http://java.sun.com).

5.3 Multiple Applications

Today, the smart card is able to support multiple functions. Personal, portable
biometrics are an area of growing interest. Examples of biometrics technologies that
are being placed on the card include digital signatures, photographs, fingerprints,
retina and iris scans and special forms of passwords. Some applications share PINs.
Examples of applications that are currently in use include:

• Logical security—email, login,disk encryption, remote access.

• Physical security—facilities, equipment lockers, parking services.

• Electronic security—financial services (eCash, eBanking), employee benefits
(401 K retirement plans, and healthcare).

6. Smart Card Security

6.1 Physical Security

There are several ways in which smart cards can be physically damaged and/or
destroyed: (1) cardholders, (2) the environment, and (3) tampering.

• Cardholders.Individual cardholders do not takespecial precautions with smart
cards, treating them much as they do cash, which can be bent, folded, sta-
pled and mutilated without losing its value. Cardholders can, and do, bend
cards, scratch chips, and break electrical contacts. Educating cardholders is
not the answer. Cardholders should be offered additional—not replacement—
functionalities. Cards should not be harder to maintain than cash. Smart card
technology that does not meet this condition is at risk of substitution and/or
abandonment. Newer manufacturing technologies and the creative use of pro-
tective sleeves (printed with sports schedules, emergency contact numbers, etc.)
are the best defense against cardholder abuse.

http://java.sun.com

180 K.M. SHELFER ET AL.

• Environment.A range of environmental conditions can damage and/or destroy
cards. Examples include voltage, frequency of use, humidity, light and tem-
perature. Not every threat materializes, of course. For example, eelskin wallets
do not destroy the magnetic data on the card; this is an urban myth that de-
veloped because eelskin wallets became popular at the time that smart card
technology was new and often faulty [26]. However, the PVC base of the
card does react to extremes in temperature. Data is certainly damaged and
destroyed in some settings, such as hospital intensive care wards, where a
lot of electrical equipment is in constant use. At this time, the best defense
is not to have the smart card subjected to these conditions. Of course, that
is not always possible, so there are some sleeves that purport to block radio
waves and there are waterproof insulated wallets that can be used as interim
measures until improvements in technology offset these threats. Threats that
involve radiation have implications for data security. These are covered be-
low.

• Tampering.Smart card processors can be physically protected by modifying
the layout of the chip and hiding data pathways. Another option is to hide
the real IC processes inside and throughout random false functions. Cards
that show physical evidence of tampering can be delisted and retained and/or
rendered useless. The use of holographs, hidden characters and other print-
ing technologies can be used to make counterfeiting unprofitable. It should
be noted that contactless smart cardspresent a greater risk than contact
cards, in that wireless signals can be much more easily “bled and read,” and
deliberate jamming and other forms of electrical interference will increas-
ingly be used as a weapon to disable both cards and readers. This activity
could disrupt and destroy a digital economy, so technological solutions are
needed.

6.2 Data Security

Data security involveshot listing, the electronic “recapture” and/or elimination of
on-board encryption keys that authorize access, as well as the physical recovery of
smart cards. The goal is to prevent data piracy, which involves data encryption, data
validation and data theft (electronic trespassing, for example). Each presents its own
challenges [19].

• Hot listing and recovering cards. Cards are generally considered the prop-
erty of the card issuer, not the cardholder. Cards are de-authorized, orhot-
listed, when the cardholder is no longer authorized to possess/use the card.
Electronic hot-lists work, but only if the back office data transfer is timely.

SMART CARDS 181

For example, the card issuer may be slow to identify the new status, slow to
key the status change into the system, or slow to communicate that change
to affiliated networks or to physically transfer the status to offline card read-
ers. If this does not happen, there is a window of opportunity for abuse of
hot-listed smart cards. In the “old days” of contact smart cards, the card had
to be inserted into a slot. Card readers could be programmed to retain the
card; however, this was an unpopular option because cardholders were vic-
timized both when they inadvertently abandoned their cards and when the
card readers “ate” damaged, authorized or re-authorized cards. Contactless
cards must be “de-listed” by readers that have specific read-write function-
alities. It should be pointed out that having a card in a cardholder’s posses-
sion leads to assumptions that it is valid. In addition, de-listing and retain-
ing a card with multiple functionalities not directly associated with the orig-
inal card issuer’s primary reason for issuing the card will need to be ad-
dressed. Today, most readers do not have the capability to retain de-authorized
cards.

• Cryptography and cryptanalysis.The strongest encryption methods available
in the past were “1-time pads” that were randomly generated ciphertexts. For
the message to be decrypted, the sender and the recipient had to have ac-
cess to thesame“1 time pad.” Today’s digital equivalent is the public key.
More secure systems use both a public key and hidden (secret) key. The se-
curity problems with public key systems rest on the need to trade the key,
often over unsecured lines. For this reason, the asymmetric methods are gen-
erally used for sensitive transactions. The security problems associated with
asymmetric encryption systems are caused by conflicts between government
and law enforcement (the need to know what is happening in order to pre-
vent economic crimes such as money laundering (used to fund terrorism and
other violent crimes)) and companies (the need to protect sensitive and pro-
prietary data from global competitors who engage in economic and electronic
espionage) [29]. Humans are eventually able to break most codes designed by
humans, so we can expect that sufficient computing power will eventually be
used to “break” most technology-driven encryption schemes. It is mainly a mat-
ter of resource allocation. For this reason,the security issues with encryption are
aligned with public perception and the degree of acceptable economic/societal
risk involved.

For example, Bellcore Researchers threw the smart card market into disarray
in 1995 when they announced that they had found a (theoretical) way to vio-
late the security of smart card encryption. They claimed that criminals could
heat the smart card (for example, in a microwave oven) or radiate it, thus trick-
ing the smart card into making computational mistakes. By comparing actual

182 K.M. SHELFER ET AL.

with anticipated values, criminals could use these mistakes to identify theuse-
ful patterns on the smart card that provide clues to the encryption keys and
hidden information. They called this method “Cryptanalysis in the Presence
of Hardware Faults” [6]. While subsequent work has not found a way to ac-
tualize this theoretical model, such publicity certainly should trigger industry
concerns.

• Data destruction.A number of technologies could be used to invade sys-
tems and damage, destroy or steal data. These range from relatively low-
technology applications such as visual and/or keystroke surveillance of card-
holders engaged in smart card transactions to far more sophisticated tech-
niques from Van Eck Phreaking to degaussing. Another threat deals with the
common “cookie.” Cookies were introduced by Netscape in 1994to solve
the state retention program by introducing new headers to be carried over
HTTP [16]. Cookies are stored on the client side of memory (the user’s com-
puter), which allows a history of use to be developed and maintained. Cook-
ies have been used to cross over and acquire personal data (a form of elec-
tronic trespassing) without the cardholder’s (or card issuer’s) knowledge. Re-
search is underway to enable servers to track user’s information-seeking be-
haviorsonce they leave the server’s site. There are law enforcement, as well
as marketing, benefits involved in finding ways to facilitate such link and pat-
tern analysis. However, while the card belongs to the issuer, the data has been
considered the property of the cardholder and the right to construct privacy
fences around inquiries is considered a fundamental tenet of a democratic soci-
ety.

• Cross validation. Identification verification is at the heart of the smart card’s
potential worth. Credit scoring systems use multiple databases, and score for
data quality, to verify identity and data association. For this reason, smart card
systems that rely on a single ID verification method, even a biometric one, are
potentially dangerous. It is much easier to erase or change data in a single data-
base than to do it in several dozen databases, especially where ownership of
the databases involves multiple encryption schemes, various data sets and a
number of organizations with competing agendas. While it is potentially ex-
pensive to include multiple biometric data sets, it is a false economy to as-
sume that a single data set is (or will always be) sufficient. The best solution
at this time is personal, portable biometrics where the cardholder’s personal
characteristics are compared to cross-validated data sets on the card and at re-
mote sites at the point of use. This is extremely expensive and resource inten-
sive.

SMART CARDS 183

7. Future Developments

At this time, there are three primary concerns that limit widespread market accep-
tance of the sophisticated features of smart cards: (1) available applications; (2) de-
ployment costs; and (3) public concerns regarding such issues as data security (refer
to the discussion on data security, above) and personal privacy.

• Applications.Applications require processing capability and memory capac-
ity, which has been improved by the move from Assembly to C programming
languages, use of Java, market preference for global standards and open archi-
tecture, and a growing interest in developing mini-databases.

• Deployment costs. While the relatively slow migration from magnetic stripe
cards to smart cards continues to be based on financial factors (e.g., financial
institutions with large investments in magnetic card systems are slow to invest
in the new technology), the migration to more secure transaction processing
systems represents regulatory differences. In countries where online transac-
tion costs are low, online,real-time transactions are commonplace, and there is
little economic incentive to migrate to more secured transactions. In countries
where the cost of online transactions is high, off-line (batch) processing results
in higher rates of card-related economic fraud, and there is more willingness to
migrate to the more secure smart card technology.

The “true” cost of any technology, however, includes both tangible costs and
intangible benefits. Recent improvements in managerial and cost accounting
practices enable decision makers to gain better insights into the return on invest-
ment of more secure access controls. Particularly after the attacks of Septem-
ber 11, 2001, smart card identification systems were investigated and there have
been many new installations of these systems. Returns on investment do not
always appear where they are anticipated. After implementing smart card tech-
nology, universities in the US noticed sharp reductions in armed robberies and
vandalism of vending machines. Financialassistance to students was processed
more quickly and involved fewer staff. American Express issued the Blue
Card®, even though sophisticated applications were not yet in place. The ex-
pectation was that customers would “upgrade” their cards. The company found
that simply having this technology available attracted many new customers [24].

• Personal privacy.Cardholder privacy becomes an issue where new develop-
ments allow applications to share PINs and user access histories become at-
tached to individuals rather than specific terminals (mobile cookies). Economic
conditions have not recently favored such investments. The slow rate of adop-
tion is partly a result of psychologicalobstacles [34]. Research on National
ID card program success/failure [83], for example, found that turf battles be-

184 K.M. SHELFER ET AL.

tween government agencies in Australia over which agencies would have to
migrate (update/replace their existing systems, a major investment) and which
agency(ies) would not be required to make such an investment was sufficient
to delay action until opponents of the card mounted successful opposition cam-
paigns based on individual privacy concerns. The results have blocked issuance
of an Australian National ID card for thirty years [41,93].

Even so, technical innovations continue to be important and new innovations are
being brought to market. Most notably, these deal with (1) faster communication
rates, (2) multiple operating systems on a single chip, and (3) the introduction of
peripheral technologies for contactless cards [3,44,45,47–50,84].

• Faster communication speeds.The current bit rate for communication and an-
ticollision is 106 kb/s. ISO Working Group 8 (WG8) has set a target ceiling of
847 kb/s for ISO 14443 and discussions concerning a related amendment has
begun.

• Multiple operating systems on a single chip. Discussion has already begun re-
garding session-based switching of the chip operating system at the reader in-
terface. This would enable the cardholder to add functionalities not offered by
the card issuer; e.g., accounts with multiple banks and brokerage firms; secured
access to facilities with proprietary operating systems; etc.

• Peripheral card technologies. WG8 is discussing a standard for the placement
of a fingerprint sensor on the smart card, taking careful consideration of the
placement’s impact on the contactless antenna. WG I (Physical Characteristics
and Test Methods for Identification Cards) is addressing additional systems on
the card, including an interface specification for on-card displays, fingerprint
sensors and keypads. Both WG4 (Integrated Circuit Cards with Contacts) and
WG8 are monitoring these initiatives.

There are three general categories of smart card applications that offer sub-
stantial benefits at the present time and/or in the near future: (1)identification,
(2) information storage, and (3)transaction processing.
– Identification. The locus of control that protects the economy, the nation and

the critical infrastructure necessary to society’s well-being is the ability to
“associate a particular individual with an identity” [43] and validate that
individual’s right to engage in the requested transaction at the time, in the
location and in the manner requested. Two specific approaches to identity
verification are knowledge-based (what the individual knows, such as a per-
sonal identification number) and what the individual carries, such as a token
(ID card, bank card or fob). The smart card provides an additional layer of
security, in that personal biometrics (fingerprints, iris scans) can be compared
with the individual who holds the card and knows the PIN.

SMART CARDS 185

Smart card-based identification has the potential to avoid both the fraud
associated with the issue of driving licenses today and to meet the need for
ID verification without offending an individual’s personal beliefs. For exam-
ple, verification of an individual processing a typical US driver’s license is
based on a photograph of the cardholder’s face, but some individuals keep
their faces covered in public. Therefore, photographs show only cloth head
coverings. In addition, the licenses are valid for such extended periods of time
that physical characteristics can change. High-tech, smart card-based driver’s
licenses with personal biometric data could use additional or alternate cri-
teria to verify individual identities. In addition, such licenses could include
relevant data, such as driving records or unpaid traffic fines [56,90].

– Information storage.There is a need to store ever-growing volumes of data,
particularly personal demographic information [21]. The US healthcare in-
dustry is a prime example, where the Federal government has mandated elec-
tronic social benefits transfer and HIPAA compliance. In addition, there is a
push to streamline business operations, including the automation of primar-
ily clerical functions (such as fast admission for emergency room patients
and linking unknown patients to their medical records in order to provide ap-
propriate types and levels of care) [31]. For this reason, medical and health-
care information management systems are being upgraded. At the same time,
there is a need to identify and provide services that attract new sources of
revenue that are not tied to reimbursement schedules [83]. Among the po-
tential applications of smart card technology in healthcare are: (1) automated
hospital admissions; (2) transfer of medical records, drug prescriptions and
insurance authorizations; and (3) technology information, such as individ-
ual kidney dialysis equipment settings [31]. Another new source of revenue
is vending authorization (bedside delivery of upscale meals for those on a
regular diet, for example). Again, there are significant social, political, le-
gal/regulatory and economic issues that must be considered, which are be-
yond the scope of this discussion [76,84].

– Transaction processing. Smart card readers support both traditional and
newer “in-home” ATM transactions and home shopping [80]. As we have
seen with the Euro, currencies are merely points on a scale. The magnetic
card has already proven to be a durable technology for international ATM
transactions. Smart card technology could accelerate the decline of currency
exchange and travelers’ checks because the cards can carry currency in any
foreign denomination and enable the cardholder to segregate both discre-
tionary spending and job-related travel [21,38].

The newer contactless smart cards show great promise for improving the
speed of access, e.g., transit passes and access to restricted facilities, such

186 K.M. SHELFER ET AL.

as military bases and clean rooms. The “smart” nature of the card supports
additional data capture for audit trail and security purposes. Today, smart
cards are integrated into a wide range of telecommunications technologies.
For example, GSM telephones can serve as portable ATM machines as well
as locator beacons [33]. GSM telephones today use smart SIM (Subscriber
Identity Modules) cards that can be encrypted [46,31]. There is a growing
interest in eGovernment services. One possibility is the use of smart cards
for eVoting. There is certainly a possibility that voter fraud could be reduced
by linking the voter’s biometrics with the casting of a ballot [43].

While it was once predicted that multifunction smart cards would dominate the smart
card market in the near future [80], shipment data indicates the multifunction card
has arrived. Standards appear to be relatively stable at the present time [3], but there
are additional external considerations, such as competition for application space on
the card and conflicts over transaction processing revenues. Several of the original
companies involved in smart card innovation have since left all or part of the smart
card industry. As a whole, however, the industry is healthy with many new niche
markets and competitors. Most of the companies currently engaged in the develop-
ment and sale of smart card applications are quickly developing expertise and/or the
resources required [25,27,36,37,70,71,83].

Clearly, there continue to be “software design, economics, liability and privacy
concerns, consumer acceptance and. . . other political and personal issues” [31].
There continue to bevast implications that result from the contribution of smart cards
in the“ integration of commercial transactions, data warehousing and data mining”
[81]. Even so, smart card technologies are being used to improve the security of many
transactions. As a result, smart card applications play an increasingly significant role
in the nature and direction of information exchange [34,95–97].

Glossary of Terms

American National Standards Institute (ANSI) promotes national commerce
in the form of interoperability facilitated through.

EFT—Electronic Funds Transfer. And debit/credit transaction that is proc-
essed by electronic means. ThroughReg E, the Federal Reserve implemented
the 1978 Electronic Funds Transfer Act of 1978.

EMV or VME Standard. Europay/MasterCard/Visa standard for contact smart
cards, beginning with placement of chip on card (upper left) and specifics of the
ABA stripe.

SMART CARDS 187

International Standards Organisation (ISO). Promotes interoperability
through the development of recognized standards in order to improve interna-
tional commercial exchange.

Contact. Smartchip cards that require the smartchip itself to be placed in phys-
ical contact with the reader device in a specific fashion. This contact is required
for authentication/verification/authorization process.

Contactless/proximity. Smartchip cards that rely on a copper loop or other ma-
terial embedded in the card. Readers sync with the low level radio frequency
emissions of the card to facilitate fast authorizations for transactions that do not
require the higher levels of authentication, i.e., inventory control, vehicle transit
passes.

EPROM Electronically Programmable Read-Only Memory. Memory that is
“write-once,” commonly used in non-rechargeable stored value smart cards, i.e.,
prepaid simple memory phone cards.

EEPROM Electronically Erasable Programmable Read-Only Memory.
Memory which can be written and erased multiple times. It is commonly used in
reloadable stored value smart cards.

Farrington 7B. The type face specified in ISO standard 7811 for embossed
characters on ID cards.

Firmware. The software that is written into the read-only memory that specifies
the operation of a hardware component and is not alterable without changes to
hardware configuration.

Hot card. An issued card that is no longer considered legitimate in the system,
i.e., it has been reported lost or stolen, but has not been returned to the issuer.

Lasercard. An ID card technology that utilizes optical recording techniques to
store data. Different from the magnetic recording techniques used on magnetic
stripe cards, these cards are also referred to as optical memory cards.

RFm. An ID card in which the data from the card is transmitted to the reader via
radio frequency emissions. RF cards are a common variety of proximity cards in
that the card need not make physical contact with the reader.

RS232. A standardized interface that supports digital transmission of data be-
tween devices of various types.

Source: [13,14,85,86]

188 K.M. SHELFER ET AL.

REFERENCES

[1] “A brief history of smart card technology: who, what, where, when and why”,Campus
ID Report2 (1) (January 1997) 1, 3–4.

[2] “A reference guide to card-related ISO standards and committees”,Campus ID Re-
port 1 (5) (July 1996).

[3] Avisian, Inc.,Contactless Smart Card Technology for Physical Access Control, 1 April
2002. An Avisian, Inc. Report, Unpublished White Paper.

[4] “Barcode basics: The ins and outs of these little black and white symbols”,Campus ID
Report2 (3) (May 1996) 6–7.

[5] “Bar code basics”,Campus ID Report2 (3) (March/April 1997) 6–7.
[6] “Bellcore’s shaky smart card ‘threat model’ shakes up card industry”,Campus ID Re-

port 1 (3) (May 1996) 6.
[7] Benini L., et al., “Energy-efficient data scrambling on memory processor interfaces”, in:

ISLPED’03, Seoul, South Korea, 25–27 August 2003, pp. 26–29.
[8] Berinato S., “Smart cards: The intelligent way to security”,Network Computing9 (9)

(15 May 1998) 168.
[9] Block V., “Looking beyond chips, Motorola plans full range of smart card products”,

American Banker62 (57) (25 March 1997) 14.
[10] Bolchini C., et al., “Logical and physical design issues for smart card databases”,ACM

Trans. Inform. Systems21 (3) (July 2003) 254–285.
[11] Briney A., “A smart card for everyone?”,Information Security(March 2002).
[12] “Campus ID cards in the library: The land of the sacred bar code”,Campus ID Re-

port 1 (6) (May 1996) 8.
[13] “Card industry lexicon”,Campus ID Report2 (3) (May 1996) 8.
[14] “Card industry lexicon: Understanding your campus card industry lingo”,Campus ID

Report1 (4) (June 1996) 7.
[15] “Card Europe UK—background paper. Card Europe: The association for smart card and

related industries” (online), http://www.cardeurope.demon.co.uk/rep1.htm, 1994. Ac-
cessed 29 April 2000.

[16] Chan A.T., Mobile cookies management on a smart card. Unpublished paper in review,
2003.

[17] Clendening J., “EDS announces US$1 billion in global IT business”,PR Newswire
(3 May 2001).

[18] Costlow T., “Major players bet on new smart card standard”,Electronic Engineering
Times965(4 August 1997) 6.

[19] Craig B., “Resisting electronic payment systems: burning down the house?”Economic
Commentary(July 1999).

[20] Croghan L., “Chase, Citi put their money on smart card pilot program”,Crain’s New
York Business13 (39) (29 September 1997) 1.

[21] Cross R., “Smart cards for the intelligent shopper”,Direct Marketing58 (12) (April
1996) 30–34.

[22] “D2T2: Printing on plastic”,Campus ID Report1 (4) (June 1996) 8–9.

http://www.cardeurope.demon.co.uk/rep1.htm

SMART CARDS 189

[23] Davis D., “Chip cards battle bar codes for big ID project”,Card Technology(March
2002).

[24] Donoghue J.A., “White hats/black hats: A pre-screened group of passengers may make
it easier to concentrate security efforts on the rest, but efforts to construct a ‘trusted trav-
eler’ system are off to a slow, uncoordinated start”,Air Transport World38 (3) (March
2002).

[25] Eedes J., “Growth companies. Leaders of the technology pack”,Financial Mail (26 Oc-
tober 2001).

[26] “Eelskin wallets and other misconceptions about magnetic stripes”,Campus ID Re-
port 1 (8) (September 1996) 1, 5.

[27] “Electronic services use set to explode”,Bank Systems & Technology34 (8) (August
1997) 15.

[28] Elliot J., “The one-card trick—multi-application smart card e-commerce prototypes”,
Comput. Control Engrg. J.10 (3) (June 1999) 121–128.

[29] “Encryption part II: Certificates and certificate authorities”,Campus ID Report1 (6)
(August 1996) 1, 6.

[30] “Evaluating the VISA cash pilot in Atlanta: A campus view”,Campus ID Report1 (6)
(August 1996) 1, 5.

[31] Fancher C.H., “Smart cards”,Scientific American(1 August 1996) (online), http://www.
sciam.com/0896issue/0896fancher.html. Accessed 1 April 2000.

[32] “FDIC examines stores value: Should it be treated as a deposit?”Campus ID Report1 (7)
(September 1996) 1, 5.

[33] Fletcher P., “Europe holds a winning hand with smart cards”,Electronic Design47 (1)
(11 January 1999) 106.

[34] Flohr U., “The smart card invasion”,Byte23 (1) (January 1998) 76.
[35] Ganeson P., et al., “Analyzing and modeling encryption overhead for sensor network

nodes”, in:WSNA’03, San Diego, California, USA, 2003, pp. 151–159.
[36] Gjertsen L.A., “Insurers turn to stored value cards”,American Banker6 (116) (2001).
[37] Goedert J.,Health data management(February 2000).
[38] Gray D.F., “Euro spurs I-commerce uptake”,InfoWorld21 (15) (12 April 1999) 70.
[39] Grossschadl J., “Architectural support for long integer modulo arithmetic on RISC-based

smart cards”,Internat. J. High Performance Comput. Appl.17 (2) (Summer 2003) 135–
146.

[40] Guyon J., “Smart plastic”,Fortune136(7) (13 October 1997) 56.
[41] Hempel C., “National ID card stirs a world of debate”,Knight-Ridder Tribune Business

News(19 December 2001).
[42] Husemann D., “The smart card: don’t leave home without it”,IEEE Concurrency7 (2)

(April–June 1999) 24–27.
[43] Jain A., Hong L., Pankanti S., “Biometric identification”,Communications of The

ACM 43 (2) (February 2000) 90–98.
[44] Kutler J., “Visa-promoted CEPS making inroads in Europe, Asia”,American

Banker163(226) (25 November 1998) 11.
[45] Kutler J., “Cell phone-smart card hookup eyed for US after winning over Europe”,Amer-

ican Banker163(212) (4 November 1998) 1.

http://www.sciam.com/0896issue/0896fancher.html
http://www.sciam.com/0896issue/0896fancher.html
http://www.sciam.com/0896issue/0896fancher.html

190 K.M. SHELFER ET AL.

[46] Kutler J., “Card giants using EMV as a stepping stone”,American Banker164(114) (16
June 1999) 11.

[47] Kutler J., “Java gets pats on back from card businesses in Belgium and France”,Ameri-
can Banker164(61) (31 March 1999) 16.

[48] Kutler J., “Visa regional operation adopts six-year plan for smart card conversion”,
American Banker164(109) (9 June 1999) 13.

[49] Kutler J., “A boost from Europe for card readers”,American Banker164 (197) (13 Oc-
tober 1999) 18.

[50] Ladendorf K., “Americans wishing up to ‘smart card’ technology”,Knight-Ridder Tri-
bune Business News(1 October 2001).

[51] Leung A., “Smart cards seem a sure bet InfoWorld.com” (online), http://unix.idg.net/
crd_smart_69240.html, 8 March 1999. Accessed 29 April 2000.

[52] Lu C., dos Santos A.L.M., Pimental F.R., “Implementation of fast RSA key generation
on smart cards”, in:SAC 2002, Madrid, Spain, 2002, pp. 214–220.

[53] “Magnetic stripes: Track by track”,Campus ID Report1 (1) (March 1996) 6–7.
[54] “Mag stripe stored value”,Campus ID Report1 (10) (November 1996).
[55] Marcial G.G., “From cubic: The ID cards of tomorrow”,Business Week(19 November

2001).
[56] McGregor O., McCance O., “Use of chips smart?; Debate rages oven licenses”, Rich-

mond Times-Dispatch (19 February 2002) inKnight-Rider Tribune Business News.
[57] Moore A., “Highly robust biometric smart card design”, in:IEEE Transactions on Con-

sumer Electronics, vol. 46, 2000.
[58] Morrison D.J., Quella J.A., “Pattern thinking: Cutting through the chaos”,Marketing

Management8 (4) (Winter 1999) 16–22.
[59] Muller H., “Europe’s Hi-Tech edge”,Time(31 January 2000) 28–31.
[60] Nairn G., “Survey—FT-IT: Fragmentation hinders medical market growth”,Financial

Times Surveys Edition(18 April 2001).
[61] Anonymous, “New homeland security department aims for IT compatibility”,Newsbytes

(7 June 2002).
[62] Newman D., “PKI: Build, buy or bust?”,NetworkWorld(10 December 2001).
[63] “Olympic visa cash trial to be the highest profile test of a stored value card to date”,

Campus ID Report1 (4) (June 1996) 11.
[64] Orr T.L., “FEMA responds with technology”,Government Computer News20 (8) (16

April 2001).
[65] OSCIE, Open smart card infrastructure for Europe v 2; Volume 6: Contactless technol-

ogy; Part 1: White paper on requirements forthe interoperability ofcontactless cards.
Issued by eESC TB 8 Contactless Smart Cards, March 2003.

[66] “PAR technology subsidiary awarded $5.1 million government contract”,Business Wire
(31 May 2001).

[67] Phillips A., “Poised to take off”,Electronic Engineering Times Hot Markets Special
Report(October 2000) 22.

[68] Priisalu J., “Frequently asked questions list, Estonian institute of cybernetics” (online),
http://www.ioc.ee/atsc/faq.html, 4 July 1995. Accessed 30 April 2000.

http://unix.idg.net/crd_smart_69240.html
http://unix.idg.net/crd_smart_69240.html
http://unix.idg.net/crd_smart_69240.html
http://www.ioc.ee/atsc/faq.html

SMART CARDS 191

[69] Proffitt D., “Travelers wise up, use smart card”,Business Journal (Phoenix)16 (23)
(5 April 1996) 29–30.

[70] Radice C., “Smart cards hype or solutions?”,Grocery Headquarters68 (1) (January
2002).

[71] Redd L., “Improving your return on IT”,Health Forum(2 July 2002).
[72] “Regulation E and Campus Cards”,Campus ID Report1 (2) (April 1996) 1, 5.
[73] Reid K., “Pass and pay technology”,National Petroleum News92 (2) (February 2000)

32–38.
[74] “RFID cards: How proximity cards operate”,Campus ID Report1 (5) (July 1996) 8.
[75] Rogers E.M.,Diffusion of Innovations, third ed., Free Press, New York, 1983.
[76] Rogers A., “European Parliament gains ground in health”,Lancet347 (9009) (27 April

1996) 1180.
[77] Sanchez-Reillo R., “Securing information and operations in a smart card through bio-

metrics”,IEEE (2000).
[78] Sanchez-Reillo R., “Smart card information and operations using biometrics”,IEEE

Aerospace and Electronic Systems Magazine(April 2001) 52–55.
[79] Sanchez J.S., “Disaster protection for financial data”,Financial Executive17 (9) (De-

cember 2001).
[80] Schacklett M., “These business trends will shape the future of e-commerce”,Union Mag-

azine(January 2000) 14–15.
[81] Shelfer K.M., “Intersection of knowledge management and competitive intelligence:

Smart cards and electronic commerce”, in:Knowledge Management for the Information
Professional, Information Today, Medford, NJ, 1999.

[82] Shelfer K.M., Procaccino J.D.,Communications of the ACM45 (7) (July 2002) 83–88.
[83] Shelfer K.M., Procaccino J.D., National ID card programs: Requirements engineering,

Preliminary results, unpublished paper.
[84] Shelfer K.M., Procaccino J., Smart health cards: Generating new revenues from old ser-

vices, unpublished paper.
[85] “Smart cards 101: Different chips, different terms”,Campus ID Report1 (2) (April 1996)

10–11.
[86] “Smart cards 102: Basic operations of an IC card”,Campus ID Report1 (9) (November

1996) 5.
[87] Spurgeon B., “Big brother aside, smart ID cards are making global converts”,Interna-

tional Herald Tribune(16 November 2001).
[88] Thaddeus J., “Disaster strategy: Bring continuity from calamity”,Computerworld35 (7)

(12 February 2001).
[89] “The ins and outs of encryption”,Campus ID Report1 (5) (May 1996) 1, 4–5.
[90] Thibodeau P., “License bill could create IT headaches”,Computerworld36 (17) (22

April 2002).
[91] Tillett S., “INS to issue digital green card”,Federal Computer Week(8 September 1997).
[92] “Time to get smart. (Smart cards and EMV)”,Cards International14 (7 May 2003).
[93] “Understanding the Buckley amendment: Is your campus card violating privacy laws?”,

Campus ID Report1 (2) (April 1996).

192 K.M. SHELFER ET AL.

[94] “Understanding the 10-digit ISO number”,Campus ID Report2 (2) (February 1997) 1,
5.

[95] Webb C.L., “Tech firms still waiting for floodgates to open”,Newsbytes(15 April 2002).
[96] Weinberg N., “Scare tactics”,Forbes(4 March 2002).
[97] Whitford M., “Unlocking the potential”,Hotel & Motel Management214 (3) (15 Feb-

ruary 1999) 61.

Shotgun Sequence Assembly

MIHAI POP

The Institute for Genomic Research (TIGR)
Rockville, MD 20850
USA
mpop@tigr.org

Abstract
Shotgun sequencing is the most widely used technique for determining the DNA
sequence of organisms. It involves breaking up the DNA into many small pieces
that can be read by automated sequencing machines, then piecing together the
original genome using specialized software programs called assemblers. Due to
the large amounts of data being generated and to the complex structure of most
organisms’ genomes, successful assembly programs rely on sophisticated algo-
rithms based on knowledge from such diverse fields as statistics, graph theory,
computer science, and computer engineering. Throughout this chapter we will
describe the main computational challenges imposed by the shotgun sequencing
method, and survey the most widely used assembly algorithms.

1. Introduction . 194
2. Shotgun Sequencing Overview . 196
3. Assembly Paradigms . 205

3.1. Shortest Superstring . 207
3.2. Overlap-Layout-Consensus . 209
3.3. Sequencing by Hybridization . 211
3.4. Hierarchical Assembly . 214
3.5. Machine Learning . 217

4. Assembly Modules . 217
4.1. Overlap Detection . 217
4.2. Error Correction and Repeat Separation . 222
4.3. Repeat Identification . 226
4.4. Consensus Generation . 228
4.5. Scaffolding . 231
4.6. Assembly Validation . 234

5. Exotic Assembly . 236
5.1. Polymorphism Identification and Haplotype Separation 237

ADVANCES IN COMPUTERS, VOL. 60 193 Copyright © 2004 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(03)60006-9 All rights reserved.

194 M. POP

5.2. Comparative Assembly . 239
5.3. Multiple Organisms . 240
5.4. Heterogeneous Assembly . 241

6. Conclusions . 241
Acknowledgements . 242
References . 242

1. Introduction

In 1982 Fred Sanger developed a new technique calledshotgun sequencingand
proved its worth by sequencing the complete genome of the bacteriophage Lambda
[1]. This technique attempted to overcome the limitations of sequencing technologies
by breaking up the DNA at random. Sequencing techniques were only able to “read”
several hundred nucleotides at atime. The resulting pieces wereassembledtogether
based on the similarity between pieces derived from the same section of the original
DNA molecule. The large amount of data produced by shotgun sequencing made
it necessary to utilize computer programs to assist the assembly [2,3]. Despite con-
tinued improvements in sequencing technology and the development of specialized
assembly programs, it was unclear whether shotgun sequencing could be used to se-
quence genomes larger than those of viruses (typically 5000–100,000 nucleotides).
For larger genomes it was thought that the complexity of the task would pose an
insurmountable challenge to any computer program.

In 1995, however, researchers at The Institute for Genomic Research (TIGR) suc-
cessfully used the shotgun sequencing technique to decipher the complete genome of
the bacteriumHaemophilus influenzae[4]. The sequencing of this 1.83 million base
pair genome required the development of a specialized assembly program [5] as well
as painstaking laboratory efforts to complete those regions that could not correctly
be assembled by the software. The success of theHaemophilusproject started a
genomics revolution with the number of genomes being sequenced every year in-
creasing at an exponential rate. At the moment the genomes of more than 1000
viruses, 100 bacteria, and several eukaryotes have been completed, while multiple
other projects are well on the way to completion. In parallel with the large amounts
of genomic data becoming available, the genomic revolution led to the birth of a new
field—bioinformatics—bringing together an eclectic mix of scientific fields such as
computer science and engineering, mathematics, physics, chemistry, and biology.

Critics of the shotgun sequencing approach continued to question its applicability
to large genomes despite obvious successes in sequencing bacterial genomes. They
argued the technique would be impractical in the case of large eukaryotic genomes
becauserepeats—stretches of DNA that occur in two or more copies within the

SHOTGUN SEQUENCE ASSEMBLY 195

genome—would hopelessly confuse any assembler [6]. The standard procedure for
handling large genomes was a hierarchicalapproach involving breaking up the DNA
into large (50–150 kbp) pieces cloned in bacterial artificial chromosomes (BACs),
and then sequencing each BAC through the shotgun method. Most such criticism was
silenced in 2000 by the successful assembly at Celera of the genome ofDrosophila
melanogaster[7] from whole-genome shotgun (WGS) data. The assembly was per-
formed with a new assembler [8] designed to handle the specific problems involved
in assembling large complex genomes. The researchers from Celera went on to as-
semble the human genome using the same whole-genome shotgun sequencing tech-
nique [9]. Their results were published simultaneously with those from the Interna-
tional Human Genome Sequencing Consortium, who used the traditional hierarchical
method [10]. Independent studies [11,12] later showed that the two assemblies pro-
duced similar results and many of the differences between them could be explained
by the draft-level quality of the data. The applicability of the WGS method to large
genomes was thus proven though some continue to argue the validity of Celera’s
results (some opinions on this topic are presented in [13–17]).

Celera’s success combined with the cost advantages of the WGS technique—
Celera sequenced and assembled the human genome in a little over a year while
the international consortium’s efforts had been going on for more than 10 years—
renewed interest in the WGS method and led to the development of several WGS
assembly programs: Arachne [18,19] at the Whitehead Institute, Phusion [20] at the
Sanger Institute, Atlas [21] at the Baylor Human Genome Sequencing Center, and
Jazz [22] at the DOE Joint Genome Institute. Most current sequencing projects have
opted for a WGS approach instead of the hierarchical approach. For example the se-
quencing of the mouse [23], rat [24], dog [25], puffer fish [22], and sea squirt [26]
all follow the WGS strategy.

The current issue of debate is the suitability of whole-genome shotgun sequencing
as the starting point in the efforts to obtain the complete sequence for a genome. All
sequencing strategies start by building a backbone, or rough draft, of the genome
whose gaps need to be filled in through further laboratory experiments. It is still not
clear which sequencing strategy will ultimately be the most efficient in obtaining the
complete sequence of an organism, especially as none of the large eukaryotic projects
have yet been finished, except for the 100 Mbp genome of the nematodeCaenorhab-
ditis elegans, finished in October 2002. (The genomes ofDrosophila melanogaster
and human are expected to be mostly finished before the end of 2003.)

Despite significant differences in the overall structuring of the sequencing process,
all sequencing strategies rely on shotgun sequencing as a basic component. The
reader is referred to [27,28] for an in-depth discussion of current approaches to se-
quencing. The following sections represent a description of the shotgun sequencing
technique, with a emphasis on the algorithmic challenges imposed by this technique.

196 M. POP

2. Shotgun Sequencing Overview

The process of shotgun sequencing starts by physically breaking up the DNA
molecule into millions of randomfragments. The fragments are then inserted into
cloning vectors1 in order toamplify the DNA to levels needed by the sequencing
reactions. Commonly used cloning vectors areplasmids (circular pieces of DNA)
that are then grown in theEscherichia colibacterium. The plasmids’ DNA sequence
is engineered to enable sequencing reactions to proceed into the inserted fragments.
The ends of each of the original fragments can thus be sequenced as shown in Fig. 1.

The random fragments (also calledinserts) are usually organized into severalli-
braries consisting of fragments of similar size. A typical sequencing project uses
at least two such libraries: a small one (fragments ranging from 2 to 4 kbp) and a
large one (8 to 10 kbp). In addition, large genome projects may also include several
larger libraries such asfosmid2 (40–42 kbp) orBAC3 (50–150 kbp) libraries. Cur-
rent sequencing technologies can only “read” between 600 and 1000 base pairs of

FIG. 1. Shotgun sequencing process.

1cloning vectors—DNA molecule from a specific host (virus, bacterium, or another higher organism)
into which a DNA fragment can be inserted such that it will be replicated by the host organism.

2fosmid—cloning vector that accepts DNA inserts of about 40 kbp with a very tight size distribution.
3bacterial artificial chromosome (BAC)—cloning vector used to clone large DNA fragments (100–

300 kbp).

SHOTGUN SEQUENCE ASSEMBLY 197

DNA, and, therefore, the middle of the fragments remains unsequenced. This leads
to pairs of reads (also calledmate-pairs), obtained from opposite ends of a same
fragment, which are naturally related. Such pairing information is essential to all
modern assembly algorithms.

In the most basic formulation, the task of an assembler is to connect together the
reads produced by the shotgun method in order to recover the original DNA se-
quence in a process not unlike putting together a jigsaw puzzle. The assembler uses
the sequence similarity between two reads to infer that they may originate from the
same region of the genome. This assumption is incorrect in the case ofrepeats—
stretches of DNA that occur in multiple identical or near-identical copies through-
out the genome—where the assembler mayincorrectly combine reads coming from
distinct copies of a particular repeat. The reader familiar with jigsaw puzzles has un-
doubtedly encountered this situation when trying to put together pieces of sky. In the
best case repeats lead the assembler to generate more than one contiguous section of
DNA (called acontig), while in the worst case the assembler may incorrectly recon-
struct the original DNA. For example in Fig. 2 the repeat R tricks the assembler into
swapping the order of sections I and II of the genome. The read pairing information
can help the assembler detect and correct such errors, for example in the previous
example the rearrangement invalidates the link between reads A and B.

Even in the absence of repeats, however, the output of the assembler may consist
of more than one contig. This phenomenon can be explained with a simple analogy.
Imagine a sidewalk as it starts to rain. As droplets fall, the sidewalk becomes in-
creasingly wet, yet many spots remain dryfor a while. Similarly, as the fragments
are being sequenced, the randomness of the shearing process leads to sections of the
original DNA not represented in the collection of reads. Therefore the best possible

FIG. 2. Genome rearrangement around a repeat. The top section of the picture represents the correct
layout. Each copy of repeat R is colored in a different color. The bottom image shows a possible mis-
assembly due to repeat R.

198 M. POP

assembly will consist in a collection of contigs with gaps in between representing
those DNA stretches not present in the reads.

This phenomenon was initially analyzed by Lander and Waterman [29]. They ap-
proximate the “arrival” ofN reads of equal lengthL along a genome of lengthG as
a Poisson process. Considering the reads in order of their arrival along the genome
(from left to right), the number of contigs is the same as the number of reads that
do notoverlap the read immediately following them. The notion of overlap warrants
a further explanation: two reads are said to overlap if their relationship can be de-
tected by an assembler. In the case of most assembly programs the overlap cannot
be detected unless the reads share more than 40 base pairs. Lander and Waterman
model this phenomenon through the parameterθ—the fraction ofL by which two
reads must overlap in order for the overlap to be detected by the program. The num-
ber of contigs can thus be computed by analyzing the probability that a particular
readr occurs at the right end of a contig, i.e., the reads starting to the right ofr do
not overlap it. The probability ofr starting at a particular base along the genome,
assuming a perfectly uniform sampling process, isα = N

G
. Thus the probability of

finding a read that does not overlap any of the reads starting after it (a right-end of a
contig) isα(1 − α)Lσ whereσ is (1− θ)—the fraction of a read not involved in the
minimum detectable overlap. The number of contigs represents the number of times
we can exit such a read without detecting any overlaps and can be approximated by

Ne− NL
G σ . The fractionNL

G
represents the amount of over-sampling of the genome

with reads, a number usually calledcoverage. Figure 3 shows the typical dependency
between the number and length of contigs and coverage. The numbers are based on
a genome of 5 Mbp covered by reads of length 600 bp. The graph matches intuition:
at first the number of contigs increases as most contigs contain one single read. As
the number of sequenced reads increases, so do the chances that reads will overlap to
form larger contigs. After a certain point (1.08×) the increase of coverage leads to a
decrease in the number of contigs, and an increase of the expected contig length.

It is important to note at this point that the shotgun sequencing process is inher-
ently inefficient. Lander–Waterman statistics indicate that in order to almost com-
pletely cover a genome one needs to sequence enough reads to cover the genome
more than 8 times. At this level of coverage 99.9% of all bases are contained in at
least one read. We are thus forced to sample each base 8 times when two separate
sequencing experiments would be sufficient (the two-fold redundancy is necessary
to reduce the effect of sequencing errors). The remaining bases—thegapsbetween
contigs—will need to be determined through targeted sequencing experiments. We
are thus faced with the basic trade-off of any shotgun sequencing project: the proper
ratio between the random and targeted sequencing reactions that minimizes the cost
of sequencing a genome to completion. The random sequencing phase of a project is
highly automated and therefore very efficient in terms of per-read cost (currently less

SHOTGUN SEQUENCE ASSEMBLY 199

FIG. 3. Dependence of number and length of contigs on genome coverage.

than $1.00 per read, and still falling). Targeted sequencing, however, involves direct
human intervention and is therefore much costlier. The genome size is another factor
in this decision: a mammalian genome is 1000 times larger than a bacterial genome,
and correspondingly more expensive. Several attempts [30,31] have been made to
determine the most cost-effective strategy for sequencing a genome to completion,
yet a universally accepted solution is not yet available.

In the previous paragraphs we discussed the situation when the particular genome
being sequenced is considered given and we are attempting to model an idealized
shotgun sequencing experiment. Li and Waterman [32] address the dual question:
given a set of shotgun reads, what conclusions can we draw about the structure of
the genome being sequenced? Specifically, they attempt to determine the length and
repeat content of the original genome that best explains the observed set of shotgun
reads. This problem has great importance in practical applications since the specific

200 M. POP

FIG. 4. Fragment overlaps can only be detected whencorresponding reads (represented by the thick
segments) overlap. The relationship between fragments A and B or fragments A and C cannot be detected.
The overlap between fragments B and C is implied by the overlap of their end-reads.

characteristic of the genome being sequenced are often unknown before sequencing.
Moreover, a solution to this problem can provide an invaluable method forquality
control during the shotgun process, by highlighting discrepancies between the ex-
pected structure of the genome and the information inferred from the shotgun data.
Li and Waterman’s approach is based on analyzing the frequencies of occurrence of
all l-tuples (strings of lengthl) present in the reads then matching the observed dis-
tribution to the expected values using a standard Expectation–Maximization (EM)
algorithm. They also provide an algorithm for characterizing the structure of the re-
peats present in the genome.

The Lander–Waterman statistics described above represent an approximation of
a true sequencing project. They assume all reads have the same lengthL, a case
not encountered in practice. Furthermore, as described above, sequencing reads rep-
resent a fraction of the shotgun fragments, as only the ends of the fragments are
being sequenced. The overlap between two fragments cannot be determined unless
the sequenced ends overlap. An example is shown in Fig. 4. These limitations of
the Lander–Waterman model were addressed by Arratia et al. [33]. They examine
a model where the overlap between two fragments can only be detected at particu-
lar “anchors” distributed along the genome. The concept of anchors is very general.
It may include shortrestriction sites4 commonly used in physical mapping experi-
ments (the original focus of these statistical analyses), however it also encompasses
sequencing reads. Furthermore, the authors address the issue of variable fragment
lengths by assuming a particular distribution of fragment sizes. They obtain an inter-
esting result: if fragment lengths are sampled from a normal distribution, an increase
in the standard deviation for a particular mean leads to three events: (i) the expected
number of contigs decreases; (ii) the expected contig length increases, and (iii) the
expected fraction of the genome covered by contigs increases. Variability in read
length therefore has a beneficial effecton the outcome of a shotgun-sequencing ex-
periment.

Arratia et al.’s main contribution however is to provide a first statistical analysis
of scaffolds,a concept essential to all modern assembly algorithms. The relation-

4restriction sites—short stretches of DNA that are recognized by specialized proteins (restriction en-
zymes) which cut the DNA at these sites.

SHOTGUN SEQUENCE ASSEMBLY 201

FIG. 5. Relationship between contigs as inferred from read pairing information.

ship between the two sequence reads derived from the same fragment can provide
useful linking information between the two contigs containing the reads. The esti-
mated length of the fragment provides an estimate for the size of the gap between
the contigs, while the orientation of the reads within the contigs determines the rel-
ative orientation of the two contigs as shown in Fig. 5. Note that the orientation
attribute of a read or contig is a direct consequence of the double-strand structure of
DNA. Each strand has an implicit orientation determined by the direction in which
DNA is replicated, always from one end (denoted5’) to the other (denoted3’). The
two complementary strands have opposite orientations, however the global orien-
tations defined by the DNA molecule that is being sequenced are lost through the
shearing process. For any particular read itis therefore impossible to determine from
which strand of the original molecule it originated. Assembly programs reconstruct
one of the two strands (the other one is simply the reverse complement of the first)
though not necessarily the same strand for all the contigs. It is therefore important to
determine the relative “orientation” of the contigs, specifically whether two contigs
represent the same DNA strand, or they come from opposite strands. The contigs
thus placed in a consistent order and orientation form ascaffold—term first intro-
duced by Roach et al. in [34]. An extension of the Lander–Waterman statistics in the
case of end-sequenced fragments was presented by Port et al. in [35]. They consid-
ered a collection of fixed-length fragments and analyzed a simplified definition of
scaffolds, specifically scaffolds that can be greedily generated by iteratively attach-
ing fragments to their rightmost end. They ignore the effect of transitively inferred
relationships, i.e., situations when the overlap between two fragments can only be
inferred from their overlaps with a third fragment (see Fig. 6). Yeh et al. (Yeh et al.
manuscript submitted [36]) extended this analysis to the general case.

Our inability to sequence more than just the ends of each fragment leads to an
interesting situation. Scientists must sequence enough fragments to guarantee that
most of the genome will be represented by sequencing reads. As described by the
Lander–Waterman statistics, one needs to sequence roughly 8 times the size of the
genome in order to guarantee that almost all bases (99.9%) are contained in at least
one of the sequencing reads. The reads, however, represent only a fraction of the
fragments. The number of fragments needed to provide the required 8× coverage by
reads, implies a “fragment” or “clone” coverage of the genome greater than that by
reads alone. Intuitively, each fragment contributes to the overall coverage both the

202 M. POP

FIG. 6. The overlap between fragments A and C can be inferred from their overlaps with fragment B
even though none of their reads overlap.

section covered by reads, and the unsequenced portion of the fragment. To clarify
this phenomenon we provide a simple example. Assume a 1 Mbp genome covered
by 2 kbp fragments. Also assume that the sequencing reads are all 500 bp long. Se-
quencing at 8× read coverage requires 16,000 reads, and therefore 8000 fragments.
These fragments cover 16 Mbp, and thus cover the genome 16 times (16× fragment
coverage). This effect is even more pronounced in the case of longer fragments.
Mathematically, the relationship between fragment coverage (fc) and read coverage
(rc) is

fc= rc · flen

2 · rlen

whereflenandrlen are the average fragment and read lengths, respectively. Applying
the Lander–Waterman statistics to the fragments shows that virtually every base of
the genome is contained in at least one fragment. This is a very important fact since
it implies that those bases not represented in the collection of reads will likely be
covered by at least one fragment. The fragments can later be used as a substrate for
specialized sequencing reactions targeting the unsequenced bases.

Port et al. also introduced a statistical framework for handling the case of non-
uniform sampling of the genome, a commonly encountered situation. Often times
certain characteristics of the DNA fragments, such as short stretches of repetitive
DNA, prevent their efficient replication in the cloning vector [37]. As a result, some
sections of the genome are represented poorly or not at all in the fragment collection.
Port et al. [35] were the first to mathematically address these situations by model-
ing the cloning bias as an inhomogeneous Poisson process. It is important to discuss
some of the implications of non-random libraries on assembly software. Let us as-
sume that the genome being sequenced contains a section (marked T in Fig. 7) that is
toxic to the cloning vector, and therefore not present in the collection of sequenced
reads. T’s toxicity implies that the librarydoes not contain any fragment that encom-
passes a significant portion of the region, therefore T remains largely unsequenced,
except for the ends being covered by reads from un-affected fragments. The more
important effect, however, is the absence of linking information across this region,
since the linking data is inferred from the fragments. The toxic region thus prevents
the formation of scaffolds that span it, which in turn means that any assembly will
break at this region.

SHOTGUN SEQUENCE ASSEMBLY 203

FIG. 7. Effect of toxic region on fragment coverage.

FIG. 8. Contig adjacency as inferred from PCR reaction. The length of the product between primers
P1 and P2 provides an estimate on the size of the gap between contigs A and B.

The relative order and orientation of the resulting scaffolds is generally deter-
mined through laborious experimental techniques. The basic idea is to use of the
polymerase chain reaction5 (PCR) [38] technique to amplify DNA directly from
the genome, without using a cloning vector. Scientists design PCRprimers6 (short
stretches of DNA that provide a starting point for the PCR reactions) at the ends of
all scaffolds, then perform a set of PCR reactions in order to find pairs of primers
that are related. The technical issues inrunning PCR reactions are complex, however
the basic idea is that the PCR reaction will amplify the region between two primers if
they are actually adjacent in the genome. The size of thePCR product7 (the ampli-
fied section) provides insight in the actual distance between the primers (see Fig. 8).
In the case of an assembly withN2 scaffolds we need to determine the adjacency
information forN different scaffold ends. In essence we must performN(N − 1)

PCR-comparisons to determine which ends are next to each other. For many bac-
terial genomesN is less than 100, however a typical eukaryotic genome may yield
hundreds or thousands of scaffolds. For simple genomes we need to perform hun-
dreds of PCR reactions, while for large genomes the technique becomes practically
infeasible and we therefore need additional information to order and orient the scaf-
folds. Nonetheless, this experimental technique is widely used in practice and efforts
were made to improve it. A related technique calledmultiplex PCR8 [39] was de-
veloped that allows scientists to pool together several primers (up to about 40) and

5polymerase chain reaction (PCR)—laboratory technique through which a DNA segment is rapidly
replicated.

6PCR primer—short (tens of base pairs) stretch of DNA that provides a starting point for the PCR
reaction.

7PCR product—the DNA segment amplified by the PCR reaction.
8multiplex PCR—technique that allows multiple PCR reactions to be performed at the same time.

204 M. POP

effectively test all possible adjacenciesof the primers in the pool in one step. The
result of this procedure is a certificate that one or more pairs of primers are adja-
cent, unfortunately no information is provided as to which pairs were successfully
tested. Further tests are necessary to determine exactly which primers were adjacent.
Tettelin et al. [40] introduced the following problem: givenN PCR primers, and a
limit K on the number of primers that can beincluded in a single multiplex pool,
determine the minimum number of reactions needed to check all possible primer
adjacencies. The authors provide a solution that requiresP +

√
P reactions where

P is a perfect square with the property thatN
P

< K. The authors notice, however,
that while this solution optimizes the number of reactions, it does not minimize the
number of laboratory operations needed to perform these reactions. For each pool
scientists need to pipette all the primers into a reaction tube. Because this pipetting
operation is the source of most laboratory errors, Tettelin et al. proposed a solution
that attempts to minimize the number of pipetting steps. Their solution, an algorithm
calledPipette Optimized Multiplex-PCR (POMP) requires 2N −

√
N pipetting

operations, however it cannot be proven optimal. After a first step of multiplex-PCR
reactions, the results of the POMP method need to be deconvoluted in order to ob-
tain the actual pairs of adjacent primers, leading to the need for additional reactions.
They do not present a theoretical analysis of the number of such additional reactions
required by the technique. Beigel et al. [41] extended the theoretical framework by
addressing the problem of correctly identifying all primer adjacencies in a reaction-
efficient manner. They prove a lower bound of�(n logn) reactions needed to de-
termine all the adjacenciesand describe a multi-round solution to the problem that
is within a constant factor of the optimal bound. Alon et al. [42] further extend the
analysis and propose a probabilistic non-adaptive solution that matches the lower
bound to within a constant factor. Non-adaptive solutions are useful as they enable
the automation of the procedure.

This scaffold ordering step is part of the final stage of a sequencing project called
gap closure9 or finishing. This labor-intensive stage encompasses a variety of bioin-
formatics and laboratory techniques meant to “fill in” the remaining gaps in the
genome map, as well as to detect and correctmis-assembled repeats. The finishing
stage is one of the most expensive stages of a sequencing project and thus can ben-
efit from the support of specialized software. As an example, we refer the reader to
several papers describing the finishing support tools included in the commonly used
phred-phrap package [43–45]. Furthermore, Czabarka et al. [30] mathematically an-
alyze the closure process and present optimal solutions (in terms of the number of
finishing reactions needed) in the context of several theoretical models of the fin-
ishing stage. It is worth observing the synergy between the development of shotgun

9gap closureor finishing—process through which the gaps between the contigs produced by the as-
sembler are closed through targeted sequencing reactions.

SHOTGUN SEQUENCE ASSEMBLY 205

sequence assembly programs and the experience of human experts involved in the
finishing process. Most modern assemblers include features useful to the finishing
process by providing the types of information needed to guide additional laboratory
experiments. As an example, the Euler package contains a module that designs the
experiments needed to resolve over collapsed repeats [46]. TIGR Assembler [5] is,
at the moment, unique in its ability to allow the users to “freeze” certain assemblies
and thus manually guide the assembly process. At the same time, assembly programs
use criteria developed by finishing experts to detect and correct mis-assemblies. The
Arachne assembler [19] includes such a module.

The following sections will describe in detail the various problems associated with
shotgun sequence assembly. Section 3 is devoted to the discussion of the most com-
mon assembly strategies at a conceptual level. Practical details of implementing spe-
cific tasks required by assembly programare discussed in Section 4. Finally, Sec-
tion 5 will describe several new challenges to assembly programs.

3. Assembly Paradigms

In its most general form the sequence assembly problem involves reconstructing
the genome from the shotgun reads based on sequence similarity alone. This problem
can be further decomposed into two problems: themapping or layout problem, in
which all reads need to be positioned correctly in the genome, and theconsensus
problem, in which the contiguous DNA sequence of the genome is computed. It can
be easily seen that in this formulation the general problem is impossible to solve.
For example, consider a genome of length 20 composed entirely of the character A.
Assume that 8 random fragments of length 5 are sampled from the genome as shown
in Fig. 9. The layout problem clearly has no unique solution—indeed any placement
of the reads along the genome is possible. It can be argued that ultimately it is the
DNA sequence of the original molecule that needs to be reconstructed, the exact
placement of all the reads being irrelevant. This problem (the consensus problem) is,
however, also impossible to solve in this case. The only information we can glean
from the reads is that the genome is at least 5 base pairs long. Any string of As of
at least 5 bases can be explained by the reads, indeed Fig. 9 shows some possible
reconstructions. It is thus clear that in the general case additional information is
required to solve the assembly problem. Please note that the theoretical example
we chose is not entirely unrealistic. By replacing the character A with any other
DNA string, the example becomes the problem of assemblingtandem repeats:short
stretches of DNA that occur in many copies, in tandem, throughout the genome. Such
repeats are very common, for example in the telomeric and centromeric regions of
many eukaryotic chromosomes [47].

206 M. POP

FIG. 9. Possible assemblies of the same set of 8 reads. The string in bold-type represents the supposed
consensus sequence. a) represents the correct layout, b) and c) represent incorrect assemblies.

The assembly problem should thus be more generally defined as:

Given a collection of reads with known DNA sequence together withaddi-
tional constraints on their placement, find the DNA sequence of the original
molecule.

The phrase “additional constraints” is intentionally vague as it encompasses a wide
range of types of information. The constraints generally fall into three categories:

• constraints on the global placement of the fragments—this category refers
to information that links a particular fragment or read to a specific place in the
genome. A typical example is physical map data that assigns a fragment to a
specific chromosome. This type of information is essential for the hierarchical
sequencing strategy described in Section 3.4.

• constraints on the relative placement of fragments or reads—this cate-
gory typically encompasses information that links together groups of reads,
for example all the reads obtained by sequencing a same clone. The “overlap”
constraint—the basis of any assembly program—is the most common constraint
in this class. Another common type is the “mate-pair” relationship between the
two reads sequenced from the opposite ends of a fragment. Clone walking tech-
niques commonly used in finishing yield multiple reads that are all obtained
by sequencing different sections of the same clone, and therefore must be held
together during the assembly process.

• statistical assumptions—this class involves assumptions on the characteristics
of the random process of shearing the DNA into fragments. Referring to the
example at the beginning of this section, knowledge of the estimated length

SHOTGUN SEQUENCE ASSEMBLY 207

of the genome, and the assumption that the fragments were selected through a
uniform random process, allow us to favor the reconstruction in Fig. 9(a) over
that in Fig. 9(c) and thus correctly resolve the repeat without the need to find the
exact location of each read. Statistical methods allow an assembler to validate a
particular layout by estimating the probability that the layout would occur in a
random shotgun experiment. This approach was introduced by Myers [48] and
is described in more detail in Section 4.2 in the context of repeat identification.

In practice, all the data provided to the assembler contain errors, making it difficult
or impossible for the assembler to correctly identify the original DNA sequence. The
assembly problem should thus be restated as having the goal to obtain a sequence that
is “close” to the original sequence. There is, unfortunately, no universally accepted
quality standard, though a widely used measure requires less than 1 difference in
every 10,000 bases between the assembled sequence and the original DNA. This
standard, commonly referred to as theBermuda standard, was developed in the
context of the sequencing of the human genome by an international consortium (for
a summary of this standard see [49]).

3.1 Shortest Superstring

Initial attempts at understanding the assembly problem used a simplified theo-
retical model:the shortest superstring problem. Under this model, given a set of
reads, the problem is to find the shortest string (the superstring) that contains all the
original reads as substrings. Clearly a solution to this problem in the case of the reads
described at the beginning of Section 3 would yield an incorrect assembly by recon-
structing a genome that is 5 bases long (Fig. 9(c)). Furthermore this abstract problem
ignores the presence of sequencing errors, inherent to all current sequencing tech-
nologies. Nonetheless an analysis of error and repeat free cases is an essential step
in understanding the complexity of the general case.

In its general definition, the shortest superstring problem was proven to be NP-
hard [50], and also MAX SNP-hard [51]. In other words the problem cannot be ef-
ficiently solved, neither can an approximate solution be found that produces a string
arbitrarily close to the shortest superstring. Research was therefore devoted to defin-
ing the lowest approximation factor that can be efficiently computed. Most notably
a simple greedy algorithm [52] was proven to yield a solution that is at most 4 times
longer than the shortest superstring [51], though it is conjectured that the greedy al-
gorithm comes within a factor of 2 of the optimal answer. A slightly modified greedy
approach can be shown to come to within a factor of 3 to the optimal solution. Fur-
ther results [53,54] proposed closer approximation schemes, though no approach yet
reached the conjectured two-fold approximation factor.

208 M. POP

The original greedy approach forms the basis of the first assembly algorithms and
thus warrants a more detailed explanation. Its basic structure is:

1. add all the reads to a common store as singleton contigs (contigs with only one
read)

2. find the two contigs with the best overlap, combine the contigs and add the
resulting contig to the store

3. repeat the prior step until no more contigs can be joined.

This algorithm needs to be modified in order to be used in practice. Sequencing reads
usually contain sequencing errors, inherent to all current sequencing technologies.
Some amount of error is also introduced by the cloning technologies. In the presence
of errors, the shortest superstring problem can be formulated as the task of finding the
shortest sequenceS that contains each read as an “approximate” sub-string, that is,
each readr matches a substring ofS with less thane errors, wheree is an estimate of
the error rate. Unsurprisingly, this problem was also shown to be NP-complete [55].

In the presence of errors, the definition of overlap from step 2 of the greedy al-
gorithm needs to be modified to account for these errors. Two reads are said to
overlap if they align such that the only differences between them can be explained
by sequencing or cloning errors. The differences, or the edit-distance between the
reads, are identified through a standard alignment algorithm (e.g., [56]) and only
those alignments with low error rates are used. Assembly algorithms can typically
tolerate alignments with between 2.5% and 6% insertion/deletion rates. Furthermore,
the alignment between the sequences must be “proper”, that is, the alignment must
start and end at sequence ends. This requirement addresses spurious overlaps caused
by repeats (see Fig. 10).

The redefinition of the notion of overlap requires us to reexamine the quality of
an overlap. The “best” overlap is no longer the longest one. Practical implementa-
tions use one or more of the following measures when determining the quality of an
overlap:

• Length of the overlap region;

• Number of differences, or conversely the percentage of bases shared by the two
sequences as a fraction of the length of the overlap;

• Score of the alignment comprising four elements: reward for a good match,
substitution penalty, gap opening penalty, and gap extension penalty;

• Quality adjusted score of the alignment—the four components of the score are
adjusted to take into consideration the quality scores assigned by the base caller;

• Number of mate-pairs confirming (or conflicting with) the overlap.

SHOTGUN SEQUENCE ASSEMBLY 209

FIG. 10. Proper (a) and repeat induced (b) overlap between two reads (caused by repeat R). (c) repre-
sents a proper overlap in the case when errors are present in the reads. The unaligned regions are called
“overhangs”.

3.2 Overlap-Layout-Consensus

The original greedy approach to sequence assembly is inherently local in nature
as only those contigs being merged are examined by the algorithm. Longer range
interactions between reads can be considered, however this information is not easily
incorporated in the standard algorithm, leading to complex implementations. Peltola
et al. [57] and Kececioglu and Myers [48,58]introduced a new theoretical frame-
work that addresses the global nature of the assembly problem: theoverlap-layout-
consensus (OLC)paradigm. They refine the problem by decomposing it into three
distinct sub-problems:

• overlap—find all the overlaps between the reads that satisfy certain quality
criteria.

• layout—given the set of overlap relationships between the reads, determine a
consistent layout of the reads, i.e., find a consistent tiling of all the reads that
preserves most of the overlap constraints.

• consensus—given a tiling of reads determined in thelayout stage, determine
the most likely DNA sequence (the consensus sequence) that can be explained
by the tiling.

It is important to note that the greedy approach is, in some sense, an OLC algorithm,
despite the fact that in many implementationsthe three distinct stages are not clearly
delimited.

The main component of any OLC algorithm is the layout stage, originally for-
mulated in graph theoretic terms. The overlap stage generates a graph whose nodes
represent the reads. Two nodes are connected by an edge if the corresponding reads
are involved in a proper overlap (as defined by preset quality criteria such as those
discussed in Section 3.1). The layout problem can thus be defined as the task of find-
ing an interval sub-graph that maximizes a particular target function. In other words,

210 M. POP

the layout algorithm must find a sub-graph that contains only those edges represent-
ing overlaps consistent with a placement of the reads viewed as intervals along a line.
As an optimization target, Peltola et al. [57] look for a layout that “uses best possible
overlaps” while Kececioglu and Myers [58] attempt to maximize the weight of the
resulting sub-graph, given a set of weights corresponding to the quality of the over-
laps. They also show that, under this definition, the layout problem is NP-complete
and propose a greedy approximation algorithm as well as a method for enumerating
a collection of alternative solutions. Myers [48] further introduces a variant of this
problem that generates the layout that best matches the statistical characteristics of
the fragment shearing process under Kolmogorov–Smirnov statistics.

Layout algorithms operate on huge graphs(from tens of thousands of nodes in the
case of typical bacterial genomes to tens of millions in mammalian-sized genomes)
making the global optimization of the layout practically impossible. Practical imple-
mentations attempt to solve the layout problem in a greedy fashion, by starting with
those regions of the graph that can be resolved unambiguously. Thus Myers [48] pro-
poses a series of transformations that convert the initial overlap graph into achunk
graph, where a chunk is a maximal interval sub-graph. In other words, chunks rep-
resent sections of the genome that can be unambiguously resolved, i.e., the sections
between repeats. Repeats cause branches inthe overlap graph (see Fig. 11) and sig-
nal the end of a chunk. The complexity of the graph is thus greatly reduced allowing
the use of more sophisticated algorithms in order to obtain a consistent layout of the
chunks. Usually at this stage the chunk graph is augmented with additional informa-
tion, such as mate-pair data.

Variants of this idea were used in practical implementations, for example Celera
Assembler [8] (where the chunks are calledunitigs: uniquely assembleable contigs)
and Arachne [18] start the assembly process by identifying the unambiguous sections

FIG. 11. Effect of repeats on overlap graph. a) represents the overlap of three reads in the absence of
repeats. The overlap graph contains an edge for each pair of reads. b) represents the overlap between three
reads at the boundary of a repeat. The overlap graph lacks the edge between A and C.

SHOTGUN SEQUENCE ASSEMBLY 211

FIG. 12. Paired-pair: two fragments whose end-reads overlap.

of the genome then use a scaffolding step to generate the final layout. Arachne uses
the mate-pair information from the beginning of the assembly process by identifying
paired-pairs, that is, pairs of shotgun fragments of similar lengths whose end se-
quences overlap (see Fig. 12). Paired-pairs represent a high confidence structure that
can be used to seed the contig building process. In contrast, Celera Assembler uses
mate-pair information in the later stages of assembly.

3.3 Sequencing by Hybridization

Idury and Waterman [59] proposed an alternative approach to sequence assembly,
that shifts the focus of the algorithm from the reads to the overlaps between the reads.
They break up the shotgun reads to emulate a virtualsequencing by hybridization
(SBH) experiment, and then attempt to solve this latter problem. The sequencing by
hybridization technique involves building an array (in the form of a micro-chip) of
all possiblek-tuple probes. The DNA being sequenced ishybridized10 to the chip in
order to find all thek-tuples present in the DNA sample. The SBH problem can thus
be formulated as: find the DNA strand whosek-tuple spectrum (set of all possible
k-tuples contained in the DNA) is the observed set ofk-tuples. Note that the problem
is different from a standard shotgun sequencing problem with reads of lengthk, since
the tuples represent a uniform sampling of the genome (see Fig. 13). Furthermore,
the information provided is simply the presence or absence of a particulark-tuple
and not the multiplicity of the tuple in the genome. In shotgun sequencing it is often
easy to detect repetitive sections of the genome by identifying DNA strings over-
represented in the read set.

FIG. 13. a) represents the uniform coverage of a genome withk-mers. b) represents the (uneven)
coverage by a randomly sheared set of fragments.

10hybridization —process through which a short single stranded nucleotide string attaches to the com-
plementary string in the DNA strand being analyzed.

212 M. POP

The SBH problem can be represented in graph theoretic terms as follows: given
a set ofk-tuples, we construct a graph whose nodes represent all the(k − 1)-tuples
in the set. Two nodes are connected by an edge if the corresponding(k − 1)-tuples
represent the prefix and the suffix of one of the originalk-tuples. Thus thek-tuples
are implicitly represented by edges in the SBH graph. A solution to the SBH problem
is represented by a path through the graph that visits every single edge (k-tuple). This
problem is related to a classic problem in graph theory—the Eulerian path problem—
that requires finding a path through the graph that uses every single edge exactly
once. Note that in the case of SBH, a particulark-tuple may be used multiple times
if it occurs in a repeat.

The Eulerian path problem is generally easy to solve—if such a path exists it
can be found in linear time with respect to the number of edges in the graph. The in-
stances of the problem induced by SBH experiments, however, limit the applicability
of this approach to sequencing short pieces of DNA. On the one hand, thek-tuple
array must contain all possiblek-tuples, thus physically limiting the size ofk, and
implicitly the size of strings that can be sequenced by SBH. As an example, a 2-tuple
array containing the 16 possible di-mers cannot be used to sequence any DNA string
longer than 17 bases. On the other hand, hybridization errors and repeats contained in
the DNA string complicate the graph. While finding an Eulerian path is easy, the task
of finding the correct path—the path corresponding to the original DNA molecule—
is a much harder problem. For example, the graph in Fig. 14 can explain two different
DNA strings corresponding to reorganizations around repeat R. The graph alone does
not contain the information necessary to make the correct choice. Note however that
the repeat is immediately recognizable in the graph. Figure 15 contains the example
of a tandem repeat and the corresponding structure in the overlap and SBH graphs.
The repeat can be easily identified in the SBH graph, however it is not immediately
obvious in the overlap graph.

Despite the limited applicability of the SBH technique to the actual sequencing of
DNA, its theoretical structure leads to an alternative approach to shotgun sequence

FIG. 14. SBH graph for a 3-copy repeat R. The graphsupports two different reconstructions of the
genome: ARBRCRD and ARCRBRD.

SHOTGUN SEQUENCE ASSEMBLY 213

FIG. 15. Tandem repeat (shaded regions in the top picture) and its representation in the overlap graph
(bottom left) and the SBH graph (bottom right). The numbered lines in the top region represent reads
while the short segments correspond tok-mers. The SBH graph does not contain a representation of all
thek-mers due to lack of space. Thek-mer represented in gray spans the boundary between the two copies
of the repeat and is therefore unique in the genome. The loop in the graph corresponds to thosek-mers
contained in the repeat region.

assembly. Idury and Waterman [59] proposed using the shotgun reads to simulate an
SBH experiment. They break up each read into overlappingk-mers. The combined
k-mer spectra of all the reads correspond to thek-mer spectrum of the original DNA,
and thus solving the SBH problem is equivalent to solving the initial shotgun se-
quence assembly problem. It is important to note that thein-silico SBH experiment
does not impose limitations on the size ofk. The algorithms need only process those
k-mers actually present in the read set. For a genome of sizeG, we expectG− k + 1
suchk-mers, a number that is generally much smaller than 4k(the set of all pos-
sible k-mers). The technique is thus, at least theoretically, applicable to arbitrarily
sized genomes. The authors notice, however, that sequencing errors lead to spurious
k-mers that greatly complicate the graph.

Idury and Waterman’s mainly theoretical work was extended by Pevzner et al.
[60–62] leading to a practical implementation, a software package called Euler. They
addressed several issues of practical nature. First of all, their algorithms depend on an
error correction module, since sequencing errors hopelessly tangle the Euler graph.
A description of this module is provided in Section 4.2. Secondly, they use the initial
reads as a guide in generating the Eulerian path (this idea was introduced by Idury
and Waterman), leading to a new problem—the Eulerian superpath problem: find
an Eulerian path that confirms most reads in the input. The constraints provided
by the reads help resolve most short repeats. Thirdly, the authors use the mate-pair

214 M. POP

information to guide the algorithm in an attempt to resolve longer repeats. Finally,
the remaining repeats that cannot be resolved are identified and reported. This is an
important feature of the program as it allows the users to design further experiments
to resolve the correct structure of the genome [46].

3.4 Hierarchical Assembly

Before the success of theDrosophila sequencing project [7], the assembly of
whole genome shotgun data was considered impossible for any genomes larger than
bacteria (6–8 Mbp). At that time, the most widely used assembly program was phrap,
which was easily confused by repeats (see, for example, analyses presented in [60,
63,64]), an ubiquitous feature of eukaryotic genomes. Other commonly used assem-
blers, such as TIGR Assembler or CAP, required large amounts of memory and were
therefore unable to assemble large data-sets. In order to overcome the limitations
of the available software, scientists followed a hierarchical approach to sequencing
large organisms. They started by breaking up the original DNA into a collection of
large fragments, with sizes between 50 and 200 kbp. Most commonly, these frag-
ments were cloned into aBacterial Artificial Chromosome (BAC) vector, though
some projects usedfosmidsor cosmids. These large DNA fragments offered several
advantages. Firstly, their small size allowed the use of existing assembly programs.
Secondly, they contained few internal repeats. Only those repeats that appear in mul-
tiple copies within the same fragment would confuse the assemblers. The small size
of the fragments guarantees that certain classes of repeats, specifically repeats whose
copies are spatially separated along the genome, would not pose assembly problems.
Thirdly, the fragments were long enough to contain sufficient physical markers that
allow their unambiguous placement along the genome.

The hierarchical sequencing approach proceeds in three steps. In the first step, sci-
entists map each of the fragments to a unique location along the genome. This map
allows them to identify aminimal tiling path , that is, a collection of overlapping
fragments that cover the entire genome. This map is minimal in the sense that we
need to choose such a set of fragments thathave minimal overlap with adjacent frag-
ments. Since each fragment will be individually sequenced, the regions of overlap
will end up being sequenced twice, leading to an increased cost for the procedure. At
the same time the overlaps need to be large enough to allow the researchers to paste
the genome back together. In the second step of this sequencing technique, each of
the individual fragments is sequenced through the shotgun method. Finally, the fin-
ished fragments are assembled together using the overlapping regions as a guide.
Note that the overlaps between fragments are essential in generating the correct se-
quence of the genome since the initial fragment map is inherently imprecise due to
the low resolution of common physical mapping techniques.

SHOTGUN SEQUENCE ASSEMBLY 215

This hierarchical method thus introduces the need for two specialized assembly
programs: one that performs the individual assemblies within each fragment, and one
that pastes together the finished fragments using the overlaps and the initial fragment
map as a guide. For the first task existing assembly program such as phrap and TIGR
Assembler are commonly used, as the small size of the BACs does not impose signif-
icant assembly challenges (though complex repeats remain a problem even in such a
localized context). The latter task is quite easy and, typically, the final assembly step
is performed either manually or through a collection of simple computer programs.
This was the approach used in sequencing the model plant organismArabidopsis
thaliana [65]. The initial assembly of the human genome by the Human Genome
Sequencing Consortium, however, required a much more sophisticated approach,
given the quality of the available data. A special program, called GigAssembler [66],
was used to combine a collection of finished and partially finished BACs, as well as
many individual contigs. The problems were compounded by errors in the physical
mapping data and mis-assemblies of the contigs or BAC sequences. GigAssembler
uses techniques similar to those developed for shotgun-sequence assembly, therefore
some of the technical details of the implementation will be discussed later in that
specific context.

The hierarchical sequencing approach led to active research in the development of
specialized techniques for obtaining the initial BAC map. Such research addresses
both the laboratory technologies involved in physical mapping [67] as well as the
software issues involved in generating and analyzing such maps.

Researchers at the Baylor College of Medicine developed a BAC mapping tech-
nique that combines the cost advantages of shotgun sequencing with the simpler
algorithms required by the hierarchical method. They follow a hybrid approach
wherein the mapping of the BACs alongthe genome is replaced by a low cover-
age “light” shotgun of a collection of BAC clones. At the same time, the genome is
sequenced using the standard shotgun sequencing technique. The last step of their
technique involves mapping the shotgun reads to individual BACs, using the reads
generated through the light shotgun of the BACs as anchors. The BACs thus serve as
a guide to clustering the shotgun reads into more manageable blocks. This technique
represents the basis of the assembly program Atlas. Please note that, in the absence of
an actual BAC map, the final step of joining the individual BAC assemblies together
becomes considerably more difficult. Similar BAC “recruiting” techniques form the
basis of the Phusion [20] and RePS [68] assemblers and was also proposed as an al-
ternative to whole-genome-shotgun in the assembly of the human genome at Celera
[69].

Cai et al. [28] propose a refinement of this hybrid technique, calledClone Array
Pooled Shotgun Strategy (CAPSS). They place each BACs DNA within the cells
of a two-dimensional matrix, then pool the DNA within each row and column of the

216 M. POP

FIG. 16. Clone-Array PooledShotgun Strategy.

matrix as shown in Fig. 16. The light shotgun step is then applied to each pool, thus
reducing the number of libraries created. In the case of a collection ofn BACs, the
initial approach requires the generation ofn libraries, while the pooled DNA method
requires only 2

√
n libraries. Each BAC will thus be represented in the reads from

two different libraries, one from the row, and the other from the column containing
the BAC’s well. In the last step of CAPSS, the shotgun reads are assembled together
and the resulting contigs used to identify the correct mapping of reads to BACs.
The contigs that contain reads from both columni and rowj of the CAPSS array
correspond to reads generated from the BAC clone in well(i, j). Furthermore, this
strategy can be extended to also produce a map of the BAC clones, thus circumvent-
ing the need for an additional mapping step. This technique, calledPooled Genomic
Indexing (PGI) [70] requires two separate arrays for each set of BACs. The place-
ment of BACs in the wells is shuffled between the two arrays so that no two clones
occur within the same row or column in both arrays. As a result, the deconvolution
of the contigs also yields the relative placement of pairs of BACs, information that is
sufficient to generate a map of the genome.

It is important to note that hierarchical approaches are also very important in whole
genome shotgun sequencing. Indeed, such approaches are essential during the fin-
ishing stages of a sequencing project. As an example, the following hierarchical ap-
proach is commonly used to correctly assemble repeats. Clearly repeats are only a
problem if reads corresponding to two or more nearly-identical copies of a repeat are
being assembled at the same time. When faced with a potentially mis-assembled re-
peat, researchers attempt to identify fragments whose ends are anchored in the unique

SHOTGUN SEQUENCE ASSEMBLY 217

areas flanking a particular repeat copy. Note the importance of having libraries of
multiple sizes as they allow the resolution of different classes of repeats. The frag-
ments are then further sequenced, either through directed sequencing or through a
separate shotgun experiment (depending on size). The resulting reads can be safely
assembled together since they represent a single copy of the repeat. The resulting
contig, together with the flanking unique sequence can then be used as a building
block in assembling the rest of the genome, without the risk of mis-assembly. It is
important for the assembly program to allow such a hierarchical approach by provid-
ing a means for “jump-starting” the assembly with the already generated contigs.

3.5 Machine Learning

A discussion of general assembly paradigms would be incomplete without a brief
discussion of approaches based on machine learning techniques [71–73]. In fact an
early approach to the shortest superstring problem phrased it in machine learning
terms as the problem of learning a string from a collection of random substrings
[74].

Parsons et al. [71] explore the applicability of genetic algorithms to the sequence
assembly problem. Genetic algorithms attempt to optimize a target function, in this
case a measure of the errors in the tiling of reads, by maintaining a “population”
of candidate solutions. The population is allowed to “evolve” towards the optimum
through a set of operators (mutation, crossover) imitating the evolution of biological
systems. Their work can best be described as a “proof of concept” as the largest
data-set they analyze contains 177 fragments that cover 34 kbp. They report that the
genetic algorithm is able to out-perform a simple greedy approach for such data-sets.

A more interesting idea is introduced by Goldberg and Lim [72,73] who examine
a different approach to using machine learning techniques. They correctly notice that
assembly algorithms consist of a complex set of inter-connecting modules controlled
by a large number of parameters. They propose the use of a “generic” assembly
algorithm that can learn the best mixture of parameters from a small set of examples
(sequences whose correct assembly is known).

4. Assembly Modules

4.1 Overlap Detection

The basic assumption of shotgun sequencing is that sequence similarity between
two reads is an indication that the reads originate from the same section of the
genome. All assembly algorithms must therefore identify similarities between reads.

218 M. POP

The specific algorithmic approaches to the task have evolved throughout the years,
as increasingly more complex sequencing projects were tackled through the shotgun
method. The earliest algorithms involved either iteratively aligning each read to an
already generated consensus [2] or comparing all the reads against each other [57].
Most recently the detection of read overlaps involves sophisticated techniques meant
to reduce the number of pairs of reads being analyzed. For example in the case of the
human genome, a full pair wise comparison of all 50 million reads from a 5× shot-
gun sequencing experiment would be prohibitive, especially as, at least theoretically,
each read overlaps only a small number of other reads (approximately 5 other reads).
Furthermore, recent algorithms based on the sequencing-by-hybridization paradigm
[59,62], avoid the explicit computation of read overlaps since these are implicitly
represented in the graph constructed by such algorithms.

The overlaps implied by sequence similarity between reads fall in two classes:
“real” overlaps—the reads were obtained from the same region of the genome;
“repeat-induced” overlaps—the reads belong to two distinct repetitive regions of the
genome (see Fig. 10). Ideally, an assembler should only use the “real” overlaps since
“repeat-induced” overlaps lead to ambiguities in the placement of the reads. Such
ambiguities are often hard or impossible to resolve and most assemblers use several
heuristics to reduce the number of repeat-induced overlaps generated.

Two reads are said to overlap only if the overlap isproper, that is either one read
is entirely contained in the other, or the two reads properlydove-tail as shown in
Fig. 10(a). This heuristic avoids considering short repeats by eliminating the overlaps
represented in Fig. 10(b). The unaligned regions in this figure are calledoverhangs.
A second heuristic requires the reads to be highly similar in the region of overlap.
In the absence of sequencing errors, two reads that were generated from the same
region of the genome will have identical sequences, thus any “imperfect” alignment
would indicate an overlap induced by a repeat whose copies have diverged during
evolution. In practice, however, sequencing errors must be taken into account, and
therefore assembly algorithms must tolerate imperfect alignments. One or more of
the following “imperfections” are usually allowed when considering overlaps: base
substitutions, base insertions or deletions, and overhangs. Please note the delicate
balance between the sequencing error tolerated by an assembler, and the ability to
detect repeat induced overlaps. An algorithm that requires perfect overlaps between
reads would only be confused by exact repeats (identical stretches of DNA that oc-
cur in multiple places throughout the genome). Such an algorithm will, however,
only identify a small percentage of all true overlaps due to sequencing errors. An
algorithm tolerating a 3% sequencing error rate (this number corresponds to the esti-
mated error rates at the large sequencing centers) will identify most true overlaps. At
the same time the algorithm will identify more repeat-induced overlaps, specifically
those due to repeats that have less than 3% differences between repeat instances.

SHOTGUN SEQUENCE ASSEMBLY 219

Unfortunately, many classes of repeats exhibit rates of divergence between copies
less than 3% [75]. This correlation between sequencing error rates and the ability
to detect repeat-induced overlaps led to the development of error correction algo-
rithms which will be discussed in the next section. The removal of sequencing errors
allows the overlap algorithm to be more stringent, thereby reducing the number of
repeat-induced overlaps without a decrease in the capacity to identify true overlaps.

In the absence of errors, the overlap problem can be solved in an efficient manner,
for example through the use of suffix trees [76,77] or suffix arrays [78,79]. Suf-
fix trees [80] and arrays [81] are data-structures designed to efficiently store all the
suffixes of a particular string. Both data-structures are space-efficient, requiring an
amount of space proportional to the total size of the string being stored. Suffix arrays
are three to five times more space-efficient [81] than suffix trees, thus being more ap-
pealing when handling large genomes. Furthermore suffix trees can be built in linear
time [80,82,83] while suffix arrays can be built in expected linear time [81]. It is easy
to understand how suffix trees and arrays can be used to solve the overlap problem.
A correct dove-tail overlap implies that a prefix of read A is identical to a suffix of
read B. In order to identify all reads that overlap a particular readr, it is sufficient to
identify the reads whose suffixes match a prefix ofr. Obtaining all overlaps simply
involves querying a database of suffixes with each read in turn, an operation that can
be done in a time- and space-efficient manner. Kosaraju and Delcher [76,77] propose
an elegant extension of this idea, leading to a linear time implementation of the basic
greedy algorithm through the traversal of an augmented suffix tree.

Practical implementations must, however, tolerate sequencing errors and therefore
the algorithms involved are significantly more complex. The overlap between two
reads is generally computed through variations of one of the standard string align-
ment algorithms [56,84]. Such algorithms usually require quadratic space and time,
which represents a considerable computational burden even though the strings in-
volved are short (reads are generally shorter than 1000 base pairs). The space require-
ment can be easily reduced to a size proportional to that of the input sequences (see,
for example, [85]). In the case of shotgun sequence assembly, the difference between
overlapping fragments is relatively small, corresponding to the small sequencing-
error rates (less than 3%) typical of current sequencing technologies. This observa-
tion led to the introduction of bounded-error alignment algorithms (e.g., [86]) whose
running time depends on the tolerated error rate. Such algorithms run in time pro-
portional toε · n whereε is the maximum error rate allowed in the alignment andn

is the length of a sequencing read. The quadratic running time of standard alignment
algorithms stems from the use of a dynamic programming approach that utilizes a
two dimensional alignment matrix. When the error rate is bounded, an alignment
algorithm need only examine a small band (of size proportional to the error rate)
around the diagonal of this matrix, leading to the afore-mentioned speed improve-

220 M. POP

ment. Such algorithms are commonly known asbanded alignment algorithms. For
a more in-depth description of the various string alignment algorithms the reader is
referred to [87].

Besides identifying the specific overlapof two given reads, an overlap algorithm
must also determine which pairs of readsoverlap. This step of the algorithm can also
be more efficiently implemented when theerror rates are small. In the case of un-
bounded error rates an overlapper must examine all possible pairs of reads, leading to
a quadratic number of pair wise comparisons—an inherently inefficient process. The
following observation leads to a more efficient approach in the case when the num-
ber of errors tolerated by the algorithm is small. A low number of errors implies that
two overlapping reads must share several identical stretches of DNA. As described
above, algorithms that identify exact matches are very efficient leading to a two-step
process for identifying read overlaps. First, a set of short identical matches between
the reads is identified, then only those pairs of reads that share the same set of ex-
act matches are considered in more detail. Chen and Skiena [78] estimate that this
simple heuristic reduces by a factor of 1000 the number of pairs of reads that need
to be considered. Furthermore, the exact matches between two reads can be used to
“seed” their alignment, greatly reducing the amount of time required to perform a
detailed alignment. Such techniques are commonly used to speed up database search
algorithms such as BLAST [88] or FASTA [89]. The AMASS assembler [90] further
extends this approach by entirely skipping the detailed alignment step. Thus read
overlaps are identified by examining the pattern of shared exact matches, a detailed
alignment being postponed until the last phase of the assembly—the generation of
the final consensus.

Besides the suffix-tree and suffix-array techniques described above, the detection
of exact matches between pairs of reads is usually performed by building a map (usu-
ally under the form of a hash table) of allk-mers present in the reads, keeping track
of the set of reads that contain eachk-mer. A simple pass through the table is suffi-
cient to identify all pairs of reads that have a particulark-mer in common. Variants
of this simple approach are used by virtually all assemblers used in practice [5,8,18,
20–22,64,66,91,92]. Tammi et al. [93] suggest an extension of this basic approach by
structuring thek-mer database in such a way as to allow querying for inexact word
matches. Specifically, they describe an method for finding allk-mers that have less
thand differences from a given queryk-mer, whered is a parameter corresponding
to the expected sequencing error rate. Using this technique they hope to improve the
sensitivity of the overlap stage of the assembly.

The choice of the length parameterk affects the sensitivity of the overlap detec-
tion algorithm. Shortk-mers occur frequently in the DNA sequence, leading to the
identification of many potential read pairs that need to be evaluated by the algorithm.
The use of longk-mers may cause the algorithm to miss many true overlaps due to

SHOTGUN SEQUENCE ASSEMBLY 221

the effect of sequencing errors. Thek-mer size generally ranges between 10 bp (as
in GigAssembler [66]) and 32 bp (as in TIGR Assembler [5]), the specific choice
depending on the nature of the data processed by the assembler. The GigAssembler
was designed to tolerate the large error rates inherent to the heterogeneous nature of
the Human Genome Project, while TIGR Assembler could afford a more stringent
value due to the high quality of the data generated by shotgun sequencing of bacteria.

In general, assembly programs identify all distinctk-mers present in the reads.
Roberts et al. [94] note that it is sufficient to store only a sub-set of allk-mers there-
fore significantly reducing the time and space requirements of the overlap routine.
For each set ofm consecutivek-mers—consecutive means eachk-mer is shifted
by one base from the previous one—they only store theminimizer , i.e., the small-
estk-mer in terms of a specific lexicographic order. They show that any reads that
share an exact match of more thanm + k − 1 bases must have at least one such
minimizer in common. For appropriately chosen values ofm andk, the minimizer
technique greatly reduces the complexity of the overlap stage without missing true
overlaps. The authors also describe a procedure based on file sorting that allows
them to trade off expensive RAM memory for much cheaper disk space, without a
significant degradation in performance.

The overlap stage of an assembler trivially lends itself to parallelization. A set ofn

reads can be partitioned intoK sub-sets. This leads toK2 distinct overlap tasks that
can be performed in parallel, corresponding to all possible pairings of theK sets. The
overlap task pairing setsi andj leads to the identification of all reads in seti that
overlap reads in setj . This approach was used at Celera in order to take advantage of
their large processor farm [8]. Note, however, that their approach converts a task that
can be solved in linear time into a quadratic process. Their technique can, therefore,
only provide an advantage over the single processor solution for small values ofK.
Parallelization of the overlap stage was also proposed by Huang et al. [95] as a main
component of their assembler (PCAP) specifically designed to handle mammalian-
sized genomes.

The overlaps identified in this stage of assembly provide the input to the lay-
out stage. They are, however, also used toidentify specific features of the genome:
chimeric reads, missed overlaps,repeats, and sequencing errors.

Chimeric reads (see Fig. 17) are an artifact of the sequencing process wherein
two distinct sections of the genome are represented in the same read. Such errors
are ubiquitous in gel-based sequencers though they have become much less common
since capillary-based sequencers have been introduced. They can also be an arti-
fact of the cloning process, due to the recombination of the DNA fragments. Since
chimeric reads do not represent any section of the genome, their overlaps with other
reads can be used to detect the “separation point” that is the place in the read where
the two distinct sections of the genome come together (see Fig. 18). Although rare,

222 M. POP

FIG. 17. Chimeric read. The read contains DNA from two unrelated sections of the genome.

FIG. 18. Identification of chimeric read from overlap with other reads. The breakpoint is not spanned
by any other read in the genome.

chimeric reads can confuse the assembler therefore some assembly packages include
a module that detects and eliminates potential chimeras [5,18,64,92].

Chen and Skiena [78] also propose a method for identifying those overlaps that
might have been missed by a stringent overlap algorithm. They identify the transitive
relationship between three reads whereonly two of the overlaps had been identi-
fied (see Fig. 11(b)). Such a situation, commonly induced by repeats, can also be
caused by sequencing errors, therefore it is useful to attempt to identify such over-
laps missed by a stringent overlap algorithm.Finally, the overlaps between reads can
be used to identify and correct sequencing errors, and to detect repetitive regions that
might confuse the layout stage. These problems will be discussed in detail in the next
section.

4.2 Error Correction and Repeat Separation

The previous section described the interplay between the tolerance of an assembly
algorithm to sequencing errors and its ability to correctly identify and ignore repeat-
induced overlaps. Repeats are probably the biggest challenge to shotgun sequence
assembly inasmuch as some argued that their presence would make impossible a
whole-genome shotgun approach to sequencing the human genome [6]. Sequencing
errors limit the ability of an assembler to detect and correctly resolve such repeats.
Furthermore, their presence leads to more complex graph structures that need to be
handled during the layout phase of assembly algorithms. For example, the Eulerian

SHOTGUN SEQUENCE ASSEMBLY 223

FIG. 19. Correlated “errors” between reads can be evidence of mis-assembled repeats. Columns 1 and
3 represent such evidence. The disagreement in column 2 is most likely an error as it occurs in only one
of the reads.

path approach of Pevzner et al. [60] is affected by sequencing errors to such an extent
that their algorithms depend on an error correction module.

It is therefore not surprising that many of the recent developments in the field
of sequence assembly address specificallythe task of automatically correcting se-
quencing errors during a pre-processing stage of assembly. The basic idea behind all
error correction approaches is statistical in nature. It assumes that sequencing errors
occur in a random fashion within each read, furthermore the distributions of errors
in distinct reads are independent of each other. The probability that two overlapping
reads would contain the same sequencing error at the same exact location is therefore
practically negligible. Within a tiling of reads corresponding to a specific section of
the genome an error at any particular position would occur in only one of thereads
(see Fig. 19). Correlated errors between reads represent strong evidence of either the
presence of multiple distinct copies of a repeat, or the existence of multiple divergent
haplotypes11 in the DNA being sequenced. Please note that this discussion only ap-
plies to sequencing errors which can, in practice, be considered as the outcome of a
random process. Other types of errors occur in shotgun sequencing projects, which
do not have the same random behavior as sequencing errors. For example, the pres-
ence of long stretches of a same repeated nucleotide causes the sequencing reaction
to “slip” leading to errors in all the reads containing the particular sub-sequence.

The most commonly used sequencing technique involves the identification of flu-
orescently tagged DNA as it passes in front of a detection mechanism. The physical
output of a sequencer consists in four signals corresponding to the four different
nucleotides (see Fig. 20). Specialized programs (calledbase-callers) use signal-
processing techniques to identify the individual bases composing the DNA strand

11haplotype—Eukaryotic genomes generally contain two copies of each chromosome. Each copy is
obtained from one of the parents, thus the two copies may differ from each other. Each of the alternative
forms of the genotype (complement of genes) corresponding to the two chromosomes is called haplotype.

224 M. POP

FIG. 20. The four signals, corresponding to each of the four bases, produced by an automated se-
quencer. This diagram is called a chromatogram.

being sequenced [96,97]. These programs also produce an estimate of the quality
of each base, in terms of the log-probability that the particular base is incorrect
(qv = −10 log(perror)). Such error estimates have been shown to be relatively ac-
curate [97].

The first attempts at reducing the effects of sequencing errors used these error-rate
estimates when computing read overlaps, thus allowing mis-matches if one or both of
the bases had low qualities, and penalizing mis-matches between high-quality bases.
Most of the early assembly programs [5,64,79,91,92]used this approach and the sim-
ple idea continues to be used in some of therecently developed assemblers [18,22].
Also note that base quality estimates are used by most assembly programs to roughly
identify the high quality portion of each read (calledclear range) since sequencing
errors are significantly biased towards the ends of each read. Some assemblers (e.g.,
phrap [91]) perform this step internally, while others require specialized “trimming”
software [98] to remove the poor quality ends of the reads.

Huang [92] was, to our knowledge, first to introduce the idea of using the align-
ment of multiple reads to identify the location of sequencing errors. For each read
r he introduces the notion of anerror rate vector which, for each baseb, stores
the largest error rate in a section ofr bases starting atb as defined by alignments
of readr with all the other reads it overlaps.The error rate vectors are then used
to evaluate the overlaps between reads in order to identify chimeric fragments and
repeat-induced overlaps.

Huang [92] and Kececioglu and Yu [99] were first to address the error correction
problem in the context of a multiple alignment of a collection of mutually overlap-
ping reads. They actually solve a complementary problem, that of separating multiple
non-identical copies of a same repeat using correlated mismatches between the reads
of the multiple alignment. The authors attempt to identify columns in the multiple
alignment where reads disagree. If the disagreements between reads are correlated,
i.e., occur in more than one single read, they refer to the columns asseparating
columns(columns 1 and 3 in Fig. 19). The assumption is that if a particular “error”
occurs in a single read it is due to a sequencing error, however, multiple correlated
“errors” indicate the collapse of two or more repeat copies. The assembly algorithm
can thus avoid mis-assembling the repeat byremoving the overlaps between reads

SHOTGUN SEQUENCE ASSEMBLY 225

with conflicting bases in the separating column. A by-product of this approach is
that disagreements between reads that donot occur in separating columns can be cor-
rected as they most likely represent sequencing errors. Kececioglu and Yu attempt to
reduce the number of false positives (columns incorrectly labeled as separating) by
requiring multiple separating columns to confirm each other. Two columns are said
to confirm each other if the corresponding mismatches occur in the same reads. They
further propose a model for computing the probability that a particular set ofc sep-
arating columns represent a false-positive event. Their model takes into account the
sequencing error rate and the difference between repeat copies. Thus they provide a
mechanism for identifying the numberc of correlated separating columns necessary
for separating repeats with a desired confidence level. The problem of correctly sep-
arating two repeat copies is easy if all separating columns support each other. In the
case when the separating columns for a set of reads are not mutually correlated the
authors introduce thepartition problem : given a set of reads that disagree at defined
separating columns, identify a partition of the reads intok classes such that the num-
ber of errors (differences between reads that belong to the same class) is minimized.
The partition problem is equivalent to thek-star problem, a known NP-complete
graph problem. Thek-star problem requires finding a partition of the vertices of a
graph intok stars such that the sum of the weights of the edges is minimized. They
propose an optimal branch-and-bound solution to this problem. Myers [100] exam-
ines a similar problem for the case when there are two repeat copies (k = 2). This
seemingly simpler problem is also NP-hard, thus he suggests a branch-and-bound
algorithm together with a set of lower bound functions that are used to prune the
search tree and greatly speed the algorithm.

A similar approach to repeat separation and error correction was used by Tammi
et al. [101]. The main contribution of their work is the development of a statistical
framework for computing the significance of a separating column (which they call
defined nucleotide positions—DNPs) that takes into account the quality values of the
underlying reads. They further require that each DNP be supported by another one
in order to reduce the number of false positive. The authors show that their approach
can greatly reduce the amount of misassemblies due to repeats by comparing their
algorithm with the commonly used assemblerphrap [102].

Roberts et al. [94] use a method that bypasses the need to compute a multiple align-
ment of all overlapping reads. Thus they notice that instead of correctly separating
a set of reads into classes corresponding to distinct repeat copies it is sufficient to
eliminate the overlaps between reads that appear to belong to different repeat copies.
Once all such repeat-induced overlaps have been removed the assembler will cor-
rectly assemble them together into separate repeat copies. The authors use a heuristic
rule called the4–3 rule, that examines overlapping sets of 4 reads and 3 separating
columns.

226 M. POP

Most assembly algorithms [5,8,18,20–22,64,68,90–92] use a simple heuristic to
reduce the effect of identical repeats withlarge copy numbers. As described in the
previous section, the overlaps betweenreads are usually computed by creating a
map of allk-mers present in the reads. At this stage, the assemblers remove from
consideration thosek-mers that occur too often in the data since they most likely
correspond to short repeats with a large number of instances.

All these error correction and repeat separation algorithms can be performed right
after the overlap stage of an assembler, without requiring any larger structures such
as contigs or scaffolds. In fact error correction can be performed even before overlaps
are computed as shown by Pevzner et al. [60]. In the context of their Eulerian path
approach, the overlaps between reads are not computed, rather they are implicitly
represented in the SBH graph structure. The authors analyze the effect of sequencing
errors on thek-mer spectrum of a reads. The spectrum of a string represents the set
of all k-mers belonging to the read. For a set of reads they identify a set of “solid”k-
mers, specifically those that belong to more than a pre-determined number of reads.
In this context error correction can be performed by solving thespectral alignment
problem [103]: given a strings and a spectrumT (in our case the set of solidk-mers)
find the minimum number of mutations ins such that the spectrum of the resulting
string is contained inT . The authors also propose a simple heuristic approach that
does not require knowledge of the set of solidk-mers and takes advantage of the
fact that errors in each read are relatively rare. Thus they formulate theerror cor-
rection problem: given a set of stringsS and a threshold∆, find a set of fewer than
∆ corrections in each read such that the number ofk-mers in the spectrum ofS is
minimized. The rationale behind this approach is that each sequencing error leads to
k erroneousk-mers therefore increasing the size of the spectrum ofS. Removing a
sequencing error would thus result in a reduction of the size of the spectrum ofS

by k words. Changing a correct base would not decrease the size of the spectrum as
multiple reads contain the same base. The authors estimate that their approach elim-
inates more than 86% of all sequencing errors, though, on occasion, the method also
introduces new errors by incorrectly changingcorrect bases. An attempt at validating
this algorithm was reported by Tammi et al. [93] in the context of a comparison with
their own error correction algorithm.

4.3 Repeat Identification

All methods described so far require that distinct copies of a repeat differ among
each other as the algorithms rely on these differences to separate out the repeat
copies. In the case of exact repeats most assemblers (with the notable exception
of the Euler program [60]) choose to simply remove all overlaps between the reads
belonging to the repeats. Thus the assemblers lose the ability to assemble the repeats,

SHOTGUN SEQUENCE ASSEMBLY 227

however they gain a considerable reduction in the complexity of the assembly prob-
lem. The task of resolving such complex repeats is left to specialized modules that
use additional sources of information.

It is important to discuss at this moment the task of identifying those reads that
belong to repetitive regions. The techniques of Kececioglu and Yu and Tammi et
al. are greatly helped by such information. The most common methods for repeat
identification use the very nature of the shotgun sequencing project. The reader is
reminded that a shotgun sequencing project starts through the random shearing of
the DNA into a collection of fragments whose ends are then sequenced such that
they over-sample the initial DNA to a specified extent (ranging from 5 to 10 times
for typical sequencing projects). For a bacterial genome each base is thus expected
to appear in 8 reads (corresponding to 8× coverage). The DNA of a repeat is over-
sampled in proportion to the number of copies. One can, therefore, expect that each
base of a two copy repeat would occur in approximately 16 reads. This simple idea
is very effective not only in identifying repeats but also in estimating their specific
copy number [104]. From a theoretical standpoint, the random nature of the initial
shearing process allows the development of statistical tests to identify the repetitive
sequences. Kececioglu and Yu [99] identify collapsed repeats by estimating the prob-
ability of observing a certain depth of coverage at a particular point in the genome.
Myers et al. [8] analyze thearrival rate of fragments, i.e., the distribution of the frag-
ment start points. Thus they compute the log-ratio of the probability that the observed
distribution is representative of a unique, versus the probability that it is representa-
tive of a two-copy collapsed repeat. Please note that such statistical approaches rely
on a random distribution of the fragments being generated by the shotgun process.
Achieving such randomness is difficult in practice leading to limitations in the abil-
ity to correctly identify repeats. As an example, during the finishing stages complex
regions of a genome are sequenced to a higher coverage than the rest, causing the
assembler to incorrectly label them as repetitive.

The methods described so far are not fool-proof, leading to mis-assembled repeats
or to the failure to assemble the reads corresponding to large copy-number repeats
(due to thek-mer frequency thresholding method described above). Statistical ap-
proaches are generally poorly suited to identifying the difference between repeats
with low copy numbers and are confused by skewed fragment distributions due to
an imperfect shotgun process. The error correction techniques that rely on a multiple
alignment of reads to identify errors require a certain amount of coverage in order to
correctly distinguish the sequencing errors (generally, 4 reads are required to confi-
dently identify a distinguishing column). Unfortunately certain classes of repetitive
sequences are under-represented in the shotgun libraries [37] thus escaping detection.
It is, therefore, important for assemblers to rely on additional sources of information
when identifying and correctly assembling repeats. The Euler assembler [60] iden-

228 M. POP

tifies the effect of repeats on the structure of the SBH graph, a situation they call a
tangle (Fig. 14). Identifying such regions that cannot be unambiguously resolved by
the assembler allows the design of specific laboratory experiments meant to provide
the additional information needed for “untangling” the graph [46]. Other assemblers
make use of the “mate-pair” information by linking together reads from opposite
ends of the same fragment. The presence of conflicts in the mate-pair data is usually
a good indication for the existence of a repeat [18], even in the cases when statis-
tical tests are inconclusive. Mate-pairs are thus used to guide the assembly process
[5,8,105] or to identify and repair incorrectly assembled contigs [19,20,64]. Arachne
[19] identifies “weak” regions of the contigs, i.e., regions supported only by fragment
overlaps and not mate-pairs, then breaks such contigs in order to avoid the potential
mis-assembly.

Figure 21 highlights three common scenarios for mis-assemblies caused by re-
peats (represented in different shadesof gray in the figure). For each mis-assembly
scenario we indicate in gray those mate-pairrelationships that become invalidated.
These can be used as an indicator of mis-assembly. In the case of collapsed tandem
repeats (Fig. 21(a)) mate pairs linking distinct repeat copies become too short, or
force the reads to be incorrectly oriented with respect to each other. The situation
when a collapsed repeat forces the excision of a contig (Fig. 21(b)) leads to mate-
pair links connecting the middle of a contigwith another one. Such situations are
handled by the “positive breaking” routine of Arachne. Finally, the rearrangement of
the genome around repeats (Fig. 21(c)) may lead to a lengthening of the mate-pairs
(as shown by the mate-pair a in the figure). This last example also shows one of the
possible pitfalls of using mate-pair data to guide the assembly process. The genome
can be mis-assembled in such a way as to preserve all the mate-pair relationships (as
shown by the links drawn in black). An assembler that uses mate-pairs to guide the
placement of reads may thus inadvertentlyre-arrange the genome without providing
any evidence of mis-assembly. Note that the last example is not a purely theoretical
one. Such a situation occurs in the assemblyof bacteria where ribosomal RNA genes
(3–5 kbp repeats) commonly lead to such rearrangements.

4.4 Consensus Generation

The desired output of a shotgun sequence assembler is a tiling of the reads cor-
responding to their correct location along the genome, together with an estimate of
the base composition of the original DNA strand. In the ideal case when the reads
contain no errors, the original DNA sequence is easily inferred from the tiling of
reads. The situation is more complicated when sequencing errors or mis-assembled
reads (errors in the tiling) are present. In this case the problem of identifying the

SHOTGUN SEQUENCE ASSEMBLY 229

FIG. 21. Types of misassembled repeats a) collapsed tandem; b) excision; c) genome rearrangement.

sequence of the DNA molecule correspondsto the well studied problem of multi-
ple sequence alignment (see, for example, [87]). For a set of sequences, the goal is to
identify a “best” multiple alignment under a specified definition of alignment quality.
In the case of sequence assembly the objective function for the multiple alignment in-
volves theconsensus sequence, a representation of the DNA being sequenced. This

230 M. POP

problem requires finding a consensus sequenceS such that the sum of the distances
(in terms of standard edit-distance measures) between all reads andS is minimized.
In the general case there are no known efficient methods to compute the consensus
sequence. In the case of shotgun sequence assembly, however, the low number of
errors in the sequencing reads implies that most heuristics lead to good solutions.

Most assembly algorithms follow an iterative approach to computing the consen-
sus sequence. Such algorithms start withone of the reads as the consensus, then
iteratively refine this consensus by adding the other reads, one by one, to the already
computed alignment. The multiple alignment problem is, in this fashion, reduced to
the computation of several pair wise alignments, a much simpler task. In the case of
algorithms following the greedy paradigm, the order of the addition of fragments is
naturally defined by the order in which the algorithm examines fragment overlaps. In
fact, in most greedy algorithms [3,5,64,79,90,92] the layout and consensus stages of
the assembler are combinedby maintaining a correct consensus for each intermedi-
ate contig. This approach allows the pair wise alignment routine to take into account
the sequence of the already computed consensus. In addition to the consensus, TIGR
Assembler [5] also keeps track of the characteristics of the multiple alignment by
storing for each location in the consensus theprofile [106] of all distinct bases that
align to that consensus location. The profile consists of a list of all distinct bases
occurring at that particular column, together with their multiplicities.

Algorithms following theoverlap-layout-consensusparadigm start the consen-
sus stage with a rough estimate of the location of each read inthe final multiple
alignment. The consensus algorithm can use this information to guide the iterative
alignment procedure [8,18,58,91]. Phrap [91] uses the alignments between reads de-
fined by the greedy stage to define a graph connecting the perfectly matching portions
of these alignments. The final consensus represents a mosaic of the reads obtained
from a maximum weight path in this graph. The algorithm used in AMASS [90]
relies on the low error rates in the fragments to identify columns of the multiple
alignments where all reads agree, then performs a multiple-alignment routine only
in those sections located between exact matches, leading to a very efficient algo-
rithm. Kececioglu and Myers [58] define the consensus computation as themaxi-
mum weight trace problem, by constructing a graph whose edges correspond to
the bases matched by the pair wise overlap stage of the algorithm, and requiring that
the order of the bases, as defined by each individual read, is preserved in the consen-
sus. This problem is NP-complete, thus they propose a sliding window heuristic for
computing the consensus.

These heuristic approaches often produce imperfect alignments, since the quality
of the alignment is affected by the order in which the fragments are added to the
alignment. Anson and Myers [107] propose an iterative algorithm for optimizing
the rough alignments produced by the consensus algorithm. Their approach removes

SHOTGUN SEQUENCE ASSEMBLY 231

one readr at the time from alignmentA then realignsr to A − {r} in an attempt to
decrease the number of errors. A similar technique was also used by Huang [92] as
part of the CAP assembler.

As a final step, most consensus algorithms attempt to determine the quality of the
consensus sequence. Such quality estimates are commonly produced for each read by
the base-calling software [96] and Churchill and Waterman [108] propose a statistical
model that combines these error probabilities into an estimate of consensus quality
in each column of the multiple alignment. Their algorithm also provides a method
for deciding on the specific base-call foreach consensus base. Previously [2], the
consensus base was computed through a simple majority rule. Bonfield and Staden
[109] suggest a parametric approach to consensus computation that can be tuned to
take into account situations encountered in real data.

All these techniques for assessing the quality of the consensus sequence generated
by the assembler make the assumption that each column in the multiple alignment
corresponds to a unique base in the sequenced DNA strand. In other words, all the
bases in a column must be identical with the exception of differences caused by
sequencing errors. Columns that contain a mixture of bases are considered evidence
of mis-assembly and are therefore assigned a low quality. Such low-quality bases are
usually targeted as part of the finishing process [44,45]. In Section 5.1 we will discuss
a situation in which this basic assumption is not true, specifically the case when the
DNA being sequenced consists of a mixture of two or more highly similar molecules.

4.5 Scaffolding

With the exception of very simple data-sets, assembly programs are unable to cor-
rectly reconstruct the genome as a single contig. The output of an assembler usually
consists of a collection of contigs whose placement along the genome is unknown.
There are three main reasons that lead to the inability of an assembler to join together
all the reads into a single contig:

• The random sampling of DNA fragments from the genome naturally leads to
certain sections not sampled by any sequencing reads. Even at the levels of
coverage selected for typical sequencing projects (5–10×), the probability of
observing such gaps is relatively high, especially when considering that short
overlaps between reads (usually less than about 40 bp) cannot be reliably de-
tected by the assembly software.

• Certain regions of the genome are poorly represented in the fragment libraries
due to purely biological reasons.

• The assembler may not be able to correctlyassemble repeats leading to portions
of the genome that either remain un-assembled, or are assembled incorrectly.

232 M. POP

Since the ultimate goal of assembly is to reconstruct, as much as possible, the original
structure of the genome, scientists have developed techniques meant to identify the
correct placement of these genomes along the genome. One such technique, called
scaffolding [34] orders and orients the contigs with respect to each other using the
information contained in the pairing of reads sequenced from opposite ends of a
fragment (see Fig. 5). This technique was used for the first time to guide the assembly
and finishing ofHaemophilus influenzae[4], leading to the first complete sequence
of a free-living organism.

In abstract terms, the mate-pair relationship between reads implies a linking of
two contigs with respect to their relative order and orientation. Scaffolding can thus
be extended to take into account other sources of information defining a particular
relative placement of the contigs. Some such sources of information are:

• contig overlaps—ideally the output of an assembler should consist in a collec-
tion of non-overlapping contigs. Sequencing errors, often situated at the end of
reads, lead to contigs that can not be merged by the assembler. These overlaps
can be identified by less stringent alignment algorithms and provide valuable
scaffolding information.

• physical maps—for many genomes scientists map the locations of known
markers along the genome. This is, for example, an essential step in a hierarchi-
cal BAC-by-BAC sequencing project. The location of these markers in the as-
sembled contigs provides information useful in anchoring the contigs to known
positions along the genome [110].

• alignments to a related genome—an increasing number of finished genomes
is becoming available to the scientific community. Thus for many organisms it
is possible to obtain the complete sequence of a closely related organism. The
alignment of the contigs to this reference can thus be used in those cases when
physical maps are not available. This information should, however, be used with
care since genomic rearrangements may lead to an incorrect reconstruction of
the genome.

• gene synteny data—in many organisms certain genes occur in clusters. This
information can be used for scaffolding by identifying, for example, pairs of
contigs that contain genes belonging to a same cluster. While the orientation of
the contigs cannot generally be determined, their spatial proximity is informa-
tion useful in scaffolding.

Please note that some sources of linking data are inherently erroneous and may only
provide an approximate estimate of contigadjacency. As an example, physical maps
provide only a coarse level of detail as the distances between markers can only be
approximately determined. Similarly, gene synteny data provides little information
about the distance between contigs.

SHOTGUN SEQUENCE ASSEMBLY 233

This variety of sources of information can be used to infer the relative placement
of two contigs, yielding a set of abstractlinks between adjacent contigs. Each link
defines one or more of the following constraints on the relative placement of the two
contigs:

• ordering—one of the contigs occurs “before” the other in the sense of a linear
or circular order corresponding to the location along a linear or circular chro-
mosome;

• orientation—the specification of whether the two contigs represent samples
from the same or from opposite strands of the double-stranded DNA;

• spacing—an indication of the distance between the two contigs.

The scaffolding problem can, therefore, be defined as:

Given a set of contigs and a set of pair wise constraints, identify a linear (circular
in the case of most bacterial genomes) embedding (defining both the order and
the orientation of the contigs along a chromosome) of these contigs such that
most constraints are satisfied.

In the general case this problem is intractable [66,111]. Interestingly, even when re-
laxing the problem by ignoring the ordering of the contigs, the associated contig
orientation problem is also intractable [58], as is the complementary problem of or-
dering the contigs when a proper orientation is given. The orientation problem is
equivalent to finding a maximum bipartite sub-graph, while the ordering problem
is similar to the Optimal Linear Arrangement problem, both of which are NP-hard
[50]. Kececioglu and Myers [58] describea greedy approximation algorithm to the
orientation problem in the context of sequence assembly that achieves a solution at
most twice worse than the optimal.

All constraints defined above can be described in terms of linear inequalities and,
therefore, the scaffolding problem can be formulated as a constraint satisfiability
problem [19,112]. Due to the complexity of solving such problems (typical solutions
involve many iterations of complex relaxation steps) practical implementations of
this approach are limited to local optimization steps within the scaffolder [8,19,66].
As an example, the scaffolder used by Celera Assembler [8] refines the placement
of the contigs by attempting to minimize the “stretch” of the mate-pair relationships
as defined by the sum of the squares of deviations from the mean fragment size. In
many cases this restricted problem can be easily solved as it reduces to a system of
linear equations.

Most practical solutions to the scaffolding problem use a graph-theoretical ap-
proach. With one exception, the Eulerian graph approach of Pevzner et al. [61], all
scaffolding algorithms to date construct a graph whose nodes correspond to contigs

234 M. POP

and whose edges correspond to the presence of contig links between the correspond-
ing contigs. In order to reduce the effect of errors scaffolders require at least two links
between adjacent contigs. They then “bundle”all links between adjacent contigs into
a single contig edge and greedily join the contigs into scaffolds. The path-merging
algorithm of Huson et al. [111] examines the edges in decreasing order of the number
of links in the bundle. Whenever an edge links two distinct scaffolds, the algorithm
attempts to merge the scaffolds together(hence the name: path-merging). Arachne
[18,19] uses edge weights that depend on both the number of links and the size of
the edge, and Phusion [20] examines edges in order of their lengths, from smallest
to largest. The Bambus scaffolder [113] allows the user to specify the order in which
links are considered in terms of both library size and edge weight. Arachne [19] and
Jazz [22] incorporate an iterative error-correction step during which scaffolds may be
broken then re-combined based on links that were not used during the original greedy
step. Note that Bambus is the only scaffolder that can currently use all the types of
linking information described at the beginning of this section. All other scaffolders
use only the mate-pair information.

4.6 Assembly Validation

One of the most important assembly tasks is that of validating the result produced
by the assembler. Well defined methods for assembly validation are important as a
debugging tool during the development of new assembly software [8,18,60,64,79,
90,92]. Such methods are an invaluable resource in comparing the performance of
different assembly algorithms [12,114–117] and are essential to machine-learning
approaches to shotgun-sequence assembly. It is, therefore, surprising that, to our
knowledge, no comprehensive benchmark exists that allow an objective comparison
of assembly programs.

In most cases the validation is performed through the use of artificially generated
data-sets. Such data allow the developers to control the characteristics of the input to
the assembler and also provide a simpleway to assess the accuracy of the assembly
output. The programs used to simulate a shotgun sequencing project [118,119] allow
the users to specify the sequencing error rate, read and fragment sizes, and even allow
the generation of complex repeat structures [119]. These assembly “simulators” can
provide information regarding the placement of the fragments, thus allowing one to
test not only if the consensus sequence produced by the assembler matches that of
the test data-set, but also if the reads are assembled in the correct place. The use of
such artificial data allows a complete verification of the correctness of an assembly
algorithm. The ultimate test, however, requires the use of real data as they contain
features difficult or impossible to emulate in a controlled setting.

SHOTGUN SEQUENCE ASSEMBLY 235

FIG. 22. Possible mis-assemblies identified by alignment to the genome.

When using real data it is difficult to know the correct reconstruction of the
genome, in particular it is generally impossible to know the correct placement of
all reads along the genome. The validation of assemblies based on real shotgun se-
quence data requires one or more of the following types of information:

• an independently verified consensus sequence,

• knowledge of the location of experimentally identified markers,

• the assembly output from a different assembly program,

• high-quality mate-pairing data.

The first two classes of information are useful in the testing of assembly algorithms
during development and in comparing different assembly algorithms. The latter two
classes of information can be used to validate the results ofab-initio sequencing
projects, thus are most useful in the day-to-day use of assembly programs.

When a correct consensus sequence is available, whether artificially generated or
from a finished genome, assessing the quality of an assembly is relatively straight-
forward. Assembly errors manifest themselves as contigs that do not align perfectly
to the consensus (for some examples see Fig. 22). If the reference represents the
sequence of a finished genome it is important to note that the chance exists that the
finished sequence may actually be incorrect.

Certain genetic markers, such assequence tag sites (STS)12 [67] can be used to
validate the global structure of the assembly when no finished reference is available.
The sequences of the markers are known, thus their locations within the assembly can
be easily identified. Thisin silico map of the markers is then compared to the map
obtained through laboratory experiments in order to validate the overall structure of
the assembly [110]. Such an approach was used by both Celera [9] and the Human

12sequence tag sites (STS)—short (200–500 bp) sequences of DNA that occur at a single place within
the genome and whose location in the genome can bemapped experimentally. They serve as landmarks
along the genome.

236 M. POP

Genome Consortium [120] to ascertain the quality of their assemblies of the human
genome. This method provides information only about the large-scale structure of
the assembly and is not able to identify small mis-assemblies. Furthermore, physical
maps often contain errors and should not entirely be relied upon.

The comparison of different assemblies (either different algorithms/programs or
different algorithm parameters) is difficult to interpret. Without additional informa-
tion it is generally difficult to identify which assembly is incorrect, though the com-
parison is an important first-step in identifying regions of the genome that require
further investigation. It is important to note that overall assembly statistics (such as
average and maximum contig and scaffold sizes) are not appropriate measures of
assembly quality. Large contig sizes can easily be achieved at the expense of mis-
assemblies. One should therefore ignore such statistics if not accompanied by an
assessment of the correctness of the assembly.

The validation of assemblies is possible even without independent certificates,
such as mapping data or completed genome sequence. Several characteristics of the
shotgun-sequencing process can be used to detect possible mis-assemblies. In Sec-
tion 4.2 we described how deep fragment coverage can be an indicator of the collapse
of repeats. Conversely, low coverage regions may indicate a mis-assembly due to a
short repeat. These approaches identify deviations from the expected distribution of
fragments produced by a purely random shotgun sequencing process, and are, there-
fore, sensitive to the problems caused by biases in the initial distribution. A more
reliable source of information are the mate-pair relationships between reads. This in-
formation was also recently proposed as a sensitive method of identifying structural
rearrangements in the human genome that are related to various cancers [121]. Note,
however, that many assembly algorithms use the mate-pair information to guide the
assembly process, thus rendering such information of limited use for validation.

An excellent summary of all these methods of assembly validation is presented
by Huson et al. [117] in the context of comparing two assemblies of the same set
of reads. They identify not only tell-tale signs of misassemblies, but also propose
expressive visualization schemes thatallow the inspection of large assemblies.

5. Exotic Assembly

Up to this point we have presented solutions to the most common problems re-
lated to shotgun sequence assembly. These algorithms contributed to the current ge-
nomic revolution leading to an exponentially increasing number of genomes being
sequenced. This increase in the numbers and types of genomes that are analyzed is
uncovering new problems to be solved by assembly programs. In this section we will
briefly discuss a few of the current assembly challenges.

SHOTGUN SEQUENCE ASSEMBLY 237

5.1 Polymorphism Identification and Haplotype Separation
All the algorithms described so far assume that the input to the sequencing process

consists of a single DNA molecule, and the only complexities are introduced by re-
peats and sequencing errors. It is often the case in practice that the source of DNA
consist of two or more highly similar molecules. Such is the situation in most eukary-
otic organisms where each chromosome usually occurs in two copies, one inherited
from each parent. The two copies of each chromosome are often similar enough
that the assembler is not able to separate their corresponding reads. In effect we are
encountering the case of a large over-collapsed repeat that spans an entire chromo-
some. Much like in the case of repeats the two copies of a chromosome contain a
number ofpolymorphisms, sites where the copies differ. Commonly observed dif-
ferences consist of:single nucleotide polymorphisms(SNPs)—single nucleotide
differences between the chromosomes;indels—insertions or deletions of more than
2 base pairs;inversions—sections of DNA that occur in different orientation in the
two chromosomes; andtranslocations—sections of DNA that occur in different or-
ders along the chromosome. These differences, in addition to their effects on assem-
bly, are important to identify since they often represent the genetic elements of many
diseases such as cancers or genetic disorders.

The large scale polymorphisms (large indels, inversions, and translocations) can
be detected by analyzing inconsistencies in mate-pair data [121]. SNPs and short
indels are more easily identified from themultiple alignments produced during the
consensus stage of assembly. Potential SNPs correspond to columns of the multiple
alignment that contain two or more high-quality bases that disagree (see Fig. 23). By
quality we refer to the base-calling error estimates provided by sequencing software.
This approach, suggested by Taillon-Miller et al. [122] was used to identify SNPs
in the recently sequenced human genome [123–125]. In order to reduce the number
of false-positives caused by sequencing errors Altshuller et al. [123] propose to re-
strict their analysis to only those basessurrounded by high-quality sequence. Their
neighborhood quality standard (NQS)requires that both the base defining a SNP

FIG. 23. Column in a multiple-alignment indicating a potential SNP site.

238 M. POP

and the five bases surrounding it on either side be of high quality. They show that
this simple approach greatly reduced the number of false positives. Similarly, the
use of base qualities is suggested by Read et al. [126] in the context of identifying
SNPs between two highly similar strains ofBacillus anthracis, the bacterium caus-
ing anthrax. Their technique provides an estimate of the probability of each SNP
being correct by computing the consensus quality for each of the two variants, then
choosing the lower value as the quality of the SNP.

It is often important not only to identify the polymorphic sites, but also determine
which sites belong to the same chromosome, a process calledhaplotyping. In Sec-
tion 4.2 we discussed how correlated differences between reads can provide enough
information to separate out different copies of a repeat. The same techniques can be
used to separate the two distinct chromosomes, though, in general, the data can only
be partially separated as long regions of similarity between the haplotypes break the
connection between consecutive SNPs. Lancia et al. [127] define this problem in
terms offragment conflict graphs. This graph represents each read as a node, and
connects two nodes if the corresponding reads disagree at one or more SNP sites.
In the absence of sequencing errors, the fragment conflict graph is bipartite, corre-
sponding to the two haplotypes. In the presence of sequencing errors the graph can
be transformed into a bipartite graph (thereby separating the haplotypes) by either
removing a set of reads, or removing a set of SNPs (effectively marking them as
sequencing errors). Thus they define three optimization problems:

Minimum fragment removal—remove the minimum number of fragments such
that the remaining conflict graph is bipartite

Minimum SNP removal—remove the minimum number of SNP sites such that the
remaining graph is bipartite

Longest haplotype reconstruction—remove a set of fragments such that the sum
of the lengths of the derived haplotypes is maximized.

They proceed to show that all these problems are NP-hard in the general case, how-
ever they can be efficiently solved in the case when the reads do not contain any
gaps, the situation often encountered in practice. Lippert et al. [128] further extend
the results of Lancia et al. by examining the complexities introduced by the possibil-
ity of multiple optimal solutions to the problems described above. Thus they suggest
the need for a better formulation of the separation problem that does not depend on
the choice of an optimal solution from among a number of alternatives.

It is important to discuss the effect of haplotypes on the assembly process itself.
Sequencing errors may lead to inconsistencies in the structure of the read overlaps.
Such inconsistencies are only accentuatedby the presence of distinct haplotypes in
the shotgun data, leading to characteristicbubbles(see Fig. 24) in the overlap graph.
Fasulo et al. [129] describe the algorithms used by Celera Assembler that allow the

SHOTGUN SEQUENCE ASSEMBLY 239

FIG. 24. Characteristic “bubble” in the overlap graph (bottom) caused by a SNP. Reads B and C differ
at the SNP location leading to the absence of an overlap edge between them.

assembly of divergent haplotypes into a single consensus sequence. Note that rather
than attempting to separate the different haplotypes they collapse them into a single
multiple alignment, leaving the task of haplotype separation to specialized tools such
as those described above.

Currently there are no widely accepted ways of analyzing and representing haplo-
types other than SNPs. This area of research is of great importance as more organ-
isms are being assembled and we encounter the need to understand complex poly-
morphism events.

5.2 Comparative Assembly

The number of completed genomes is constantly increasing, especially in the case
of bacterial genomes. This information can be used to guide the assembly of re-
lated genomes in a process calledcomparative assembly. In Section 4.5 we already
discussed the use of such information in guiding scaffolding. For many bacterial
genomes such an approach allows the construction of scaffolds that span entire chro-
mosomes [113], thus greatly reducing the amount of work necessary to finish these
genomes.

In addition, it is often the case that multiple closely related strains of the same bac-
terium are sequenced in order to identify polymorphic sites [126]. Read et al. used
sequencing in a forensic setting to identify differences between bacteria formerly
classified within the same strain, however such studies are also essential in iden-
tifying markers for pathogen identification or for short-term evolutionary analyses.
The availability of the complete sequence of a closely related organism also allows a
more efficient design of the shotgun sequencing process. A typical shotgun sequenc-
ing project requires an 8 to 10 over sampling of the DNA in order to minimize the

240 M. POP

number of gaps in the resulting sequence, and to allow the creation of large scaffolds.
However, when a reference genome sequence is available it is conceivable to perform
a considerably lower amount of sequencing (3–5 times over-sampling). The goal in
this case is to generate contigs large enough to allow an unambiguous mapping to
the reference sequence. Not only is the scaffolding problem not an issue in this case,
but also the remaining gaps in the sequence can be quickly closed through direct
sequencing experiments since their location is uniquely identified by the mapping
to the reference. The costs of sequencing a genome can, thus, be greatly reduced,
making feasible the survey sequencing of multiple individuals from the same strain.

To our knowledge, no assembly algorithm fully exploits the comparative informa-
tion, though a few make limited use of this information.

5.3 Multiple Organisms

Section 5.1 discussed the issues involved when sequencing eukaryotic genomes
where each chromosome occurs in two distinct copies. Such assembly problems
can be naturally extended to the problem of assembling data from multiple sim-
ilar, but not identical, organisms. For example, when sequencing non-clonal bac-
terial populations, or when the organism being sequenced contains multiple diver-
gent copies of a same plasmid [130]. Furthermore, sequencing has been proposed
as a method for assessing the diversity of bacterial populations in various environ-
ments [131,132], though, until recently, such surveys performed targeted sequenc-
ing of known markers, such as the16S ribosomal RNA13 subunits. Reductions in
sequencing costs allow wider scale surveys by shotgun-sequencing an entire bacter-
ial population. Such efforts are currently under way at TIGR (http://www.tigr.org)
to sequence the bacteria in the human gastro-intestinal tract [133] and at IBEA
(http://www.bioenergyalts.org) to sequence the bacteria found in the Sargasso sea
[134].

Current assemblers are not well suited to handle the assembly of such mixed popu-
lations. The goal of the assembler is, in this case, a collection of contigs correspond-
ing to each of the individual organisms being assembled. This is not a new problem,
as the shotgun method was applied to the sequencing of whole genomes that contain
multiple chromosomes. While the multiple chromosomes of an organism are gener-
ally equally covered by the set of fragments, bacterial populations generally consist
of an un-even mixture of organisms. Thus a few of the bacteria end up being heavily
sampled, while others are represented in the shotgun library at a very low cover-
age. This fact renders useless any statistical approaches to repeat identification as the

1316S ribosomal RNA subunit—gene encoding a section of the ribosome. This subunit can be selec-
tively amplified in most bacteria thus providing a small sequence (1.5 kb) that can be used in comparative
analyses.

http://www.tigr.org
http://www.bioenergyalts.org

SHOTGUN SEQUENCE ASSEMBLY 241

relative distribution of bacteria can not generally be modeled. The uneven level of
coverage also limits the use of standard procedures for repeat and haplotype separa-
tion since these techniques generally require sufficient sequence coverage from all
organisms in order to be effective. New algorithms are therefore necessary to handle
the correct assembly of mixed populations. Comparative assembly techniques will
also be extremely valuable in making use of the sequence data obtained from the
poorly represented members of the population.

5.4 Heterogeneous Assembly

Most of the currently available assemblers are optimized to assemble shotgun data
alone, making certain assumptions on the characteristics of these data. These assem-
blers usually assume that the reads are generally short (despite dramatic improve-
ments in sequencing technologies read lengths have not increased beyond 2000 base
pairs). The alignment algorithms can thus afford to pre-allocate the required mem-
ory in order to speed up the execution. Furthermore, many assemblers make certain
assumptions on the quality of the data, or the availability of quality estimates for the
reads. K-mer hashing techniques used to compute overlaps rely on the high similarity
between reads, otherwise matchingk-mers could not be found.

Assembly algorithms will need to be designed to take advantage of improvements
to sequencing technologies and the multiple sources of sequence information cur-
rently available in the public databases.New sequencing technologies promise the
ability to obtain the sequence of BACs and even chromosomes in a single step,
though it is expected that these data will be characterized by large error rates. The
availability of such long erroneous reads leads to specific assembly challenges [135].
Furthermore, the data available to the assembler consist not only of shotgun reads,
but also finished BAC sequences, expressed sequence tag (EST) sequences [136] or
contigs produced by draft-sequencing projects. Scientists at University of California
in Santa Cruz had to develop a specialized assembler to use such heterogeneous data
in the assembly of the first draft of the human genome [137].

6. Conclusions

The assembly problem was repeatedly considered solved, first when efficient ap-
proximation algorithms for the shortest superstring problem became available, again
when assembly software was able to routinely assemble entire bacterial genomes,
and recently when software exists that canassemble entire mammalian genomes in
a relatively short time. Continued reductions in sequencing costs have led to a dra-
matic increase in the numbers of genomes being sequenced. A direct effect of this

242 M. POP

genomic revolution is the uncovering of novel uses for assembly programs, leading
to new algorithmic challenges such as those discussed in Section 5. We therefore
hope that this survey will provide an adequate starting point for those interested in
further exploring the algorithmic and practical problems arising in this dynamic field.

ACKNOWLEDGEMENTS

I would like to thank Art Delcher, Adam Phillippy, and Steven Salzberg for their
useful comments and continued support. This work was supported in part by the
National Institutes of Health under grant R01-LM06845.

REFERENCES

[1] Sanger F., et al., “Nucleotide sequence of bacteriophage lambda DNA”,J. Mol.
Biol. 162(4) (1982) 729–773.

[2] Staden R., “Automation of the computer handling of gel reading data produced by the
shotgun method of DNA sequencing”,Nucleic Acids Res.10 (1982) 4731–4751.

[3] Gingeras T.R., et al., “Computer programs for the assembly of DNA sequences”,Nu-
cleic Acids Res.7 (2) (1979) 529–545.

[4] Fleischmann R.D., et al., “Whole-genome random sequencing and assembly of
Haemophilus influenzae Rd”,Science269(5223) (1995) 496–512.

[5] Sutton G.G., et al., “TIGR assembler: A new tool for assembling large shotgun se-
quencing projects”,Genome Science and Technology1 (1995) 9–19.

[6] Green P., “Against a whole-genome shotgun”,Genome Res.7 (5) (1997) 410–417.
[7] Adams M.D., et al., “The genome sequence of Drosophila melanogaster”,Sci-

ence287(5461) (2000) 2185–2195.
[8] Myers E.W., et al., “A whole-genome assembly of Drosophila”,Science287 (5461)

(2000) 2196–2204.
[9] Venter J.C., et al., “The sequence of the human genome”,Science291 (5507) (2001)

1304–1351.
[10] Consortium I.H.G.S., “Initial sequencing and analysis of the human genome”, Na-

ture 409(2001) 860–921.
[11] Semple C.A., et al., “Computational comparison of human genomic sequence assem-

blies for a region of chromosome 4”,Genome Res.12 (3) (2002) 424–429.
[12] Aach J., et al., “Computational comparison of two draft sequences of the human

genome”,Nature409(6822) (2001) 856–859.
[13] Adams M.D., et al., “The independence of our genome assemblies”,Proc. Natl. Acad.

Sci. USA100(6) (2003) 3025–3026.
[14] Waterston R.H., Lander E.S., Sulston J.E., “More on the sequencing of the human

genome”,Proc. Natl. Acad. Sci. USA100 (6) (2003) 3022–3024, author reply 3025–
3026.

SHOTGUN SEQUENCE ASSEMBLY 243

[15] Waterston R.H., Lander E.S., Sulston J.E., “On the sequencing of the human genome”,
Proc. Natl. Acad. Sci. USA99 (6) (2002) 3712–3716.

[16] Green P., “Whole-genome disassembly”,Proc. Natl. Acad. Sci. USA99 (7) (2002)
4143–4144.

[17] Myers E.W., et al., “On the sequencing and assembly of the human genome”,Proc.
Natl. Acad. Sci. USA99 (7) (2002) 4145–4146.

[18] Batzoglou S., et al., “ARACHNE: a whole-genome shotgun assembler”,Genome
Res.12 (1) (2002) 177–189.

[19] Jaffe D.B., et al., “Whole-genome sequence assembly for Mammalian genomes:
arachne 2”,Genome Res.13 (1) (2003) 91–96.

[20] Mullikin J.C., Ning Z., “The phusion assembler”,Genome Res.13 (1) (2003) 81–90.
[21] Havlak P., et al., “The Atlas whole-genome assembler”, in:Currents in Computational

Molecular Biology, Montreal, Canada, 2001.
[22] Aparicio S., et al., “Whole-genome shotgun assembly and analysis of the genome of

Fugu rubripes”,Science297(5585) (2002) 1301–1310.
[23] Waterston R.H., et al., “Initial sequencing and comparative analysis of the mouse

genome”,Nature420(6915) (2002) 520–562.
[24] Consortium R.g.s., “Rat. Genome project”, http://www.hgsc.bcm.tmc.edu/projects/rat.
[25] Kirkness E.F., et al., “The dog genome: survey sequencing and comparative analysis”,

Science301(5641) (2003) 1898–1903.
[26] Dehal P., et al., “The draft genome of Ciona intestinalis: insights into chordate and

vertebrate origins”,Science298(5601) (2002) 2157–2167.
[27] Green E.D., “Strategies for the systematic sequencing of complex genomes”,Nat. Rev.

Genet.2 (8) (2001) 573–583.
[28] Cai W.W., et al., “A clone-array pooled shotgun strategy for sequencing large

genomes”,Genome Res.11 (10) (2001) 1619–1623.
[29] Lander E.S., Waterman M.S., “Genomic mapping by fingerprinting random clones:

A mathematical analysis”,Genomics2 (3) (1988) 231–239.
[30] Czabarka E., et al., “Algorithms for optimizing production DNA sequencing”, in:Pro-

ceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), 2000.
[31] Batzoglou S., et al., “Sequencing a genome by walking with clone-end sequences:

A mathematical analysis”,Genome Res.9 (1999) 1163–1174.
[32] Li X., Waterman M.S., “Estimating the repeat structure and length of DNA sequences

using ell-tuples”,Genome Res.13 (8) (2003) 1916–1922.
[33] Arratia R., et al., “Genomic mapping by anchoring random clones: A mathematical

analysis”,Genomics11 (4) (1991) 806–827.
[34] Roach J.C., et al., “Pairwise end sequencing: A unified approach to genomic mapping

and sequencing”,Genomics26 (1995) 345–353.
[35] Port E., et al., “Genomic mapping by end-characterized random clones: A mathematical

analysis”,Genomics26 (1) (1995) 84–100.
[36] Yeh R.F., et al.,Predicting Progress in Shotgun Sequencing with Paired Ends, 2002.
[37] Chissoe S.L., et al., “Representation of cloned genomic sequences in two sequenc-

ing vectors: correlation of DNA sequence and subclone distribution”,Nucleic Acids
Res.25 (15) (1997) 2960–2966.

http://www.hgsc.bcm.tmc.edu/projects/rat

244 M. POP

[38] Mullis K., et al., “Specific enzymatic amplification of DNA in vitro: the polymerase
chain reaction”,Cold Spring Harb. Symp. Quant. Biol.51 Pt 1(1986) 263–273.

[39] Burgart L.J., et al., “Multiplex polymerase chain reaction”,Mod. Pathol.5 (3) (1992)
320–323.

[40] Tettelin H., et al., “Optimized multiplex PCR: efficiently closing a whole-genome shot-
gun sequencing project”,Genomics62 (3) (1999) 500–507.

[41] Beigel R., et al., “An optimal procedure for gap closing in whole genome shotgun se-
quencing”, in:Proceedings of the FifthAnnual International Conference on Computa-
tional Biology (RECOMB), 2001.

[42] Alon N., et al., “Learning a hidden matching”, in:Proceedings of the IEEE symposium
on Foundations of Computer Science (FOCS), 2002.

[43] Staden R., Judge D.P., Bonfield J.K., “Sequence assembly and finishing methods”,
Methods Biochem. Anal.43 (2001) 303–322.

[44] Gordon D., Desmarais C., Green P., “Automated finishing with autofinish”,Genome
Res.11 (4) (2001) 614–625.

[45] Gordon D., Abajian C., Green P., “Consed: A graphical tool for sequence finishing”,
Genome Res.8 (1998) 195–202.

[46] Mulyukov Z., Pevzner P.A., “EULER-PCR: finishing experiments for repeat resolu-
tion”, Pac. Symp. Biocomput.(2002) 199–210.

[47] Toth G., Gaspari Z., Jurka J., “Microsatellites in different eukaryotic genomes: survey
and analysis”,Genome Res.10 (7) (2000) 967–981.

[48] Myers E.W., “Toward simplifying and accurately formulating fragment assembly”,
J. Comp. Bio.2 (2) (1995) 275–290.

[49] “HUGO, Summary of the report of the secondinternational strategy meeting on human
genome sequencing”, http://www.gene.ucl.ac.uk/hugo/bermuda2.html.

[50] Garey M.R., Johnson D.S.,Computers and Intractability, W.H. Freeman, New York,
1979.

[51] Blum A., et al., “Linear approximation of shortest superstrings”, in:Proc. 23rd Annual
Symposium on the Theory of Computing, New Orleans, LA, 1991.

[52] Peltola H., et al., “Algorithms for some string matching problems arising in molecular
genetics”, in:Proc. Information Processing, 1983.

[53] Teng S., Yao F.F., “Approximating shortest superstrings”,SIAM J. Computing26 (2)
(1997) 410–417.

[54] Armen C., Stein C., “A 2 2/3-approximation algorithm for the shortest superstring prob-
lem”, in: Proc. Combinatorial Pattern Matching, 1996.

[55] Kececioglu J.D.,Exact and Approximation Algorithms for DNA Sequence Reconstruc-
tion, University of Arizona, 1991.

[56] Smith T.F., Waterman M.S., “Identification of common molecular subsequences”,
J. Mol. Biol.147(1) (1981) 195–197.

[57] Peltola H., Soderlund H., Ukkonen E., “SEQAID: a DNA sequence assembling pro-
gram based on a mathematical model”,Nucleic Acids Res.12 (1) (1984) 307–321.

[58] Kececioglu J.D., Myers E.W., “Combinatorial algorithms for DNA sequence assem-
bly”, Algorithmica13 (1995) 7–51.

http://www.gene.ucl.ac.uk/hugo/bermuda2.html

SHOTGUN SEQUENCE ASSEMBLY 245

[59] Idury R.M., Waterman M.S., “A new algorithm for DNA sequence assembly”,J. Comp.
Bio. 2 (2) (1995) 291–306.

[60] Pevzner P.A., Tang H., Waterman M.S., “An Eulerian path approach to DNA fragment
assembly”,Proc. Natl. Acad. Sci. USA98 (17) (2001) 9748–9753.

[61] Pevzner P.A., Tang H., “Fragment assembly with double-barreled data”,Bioinformat-
ics17 (Suppl 1) (2001) S225–S233.

[62] Pevzner P.A., Tang H., Waterman M.S., “A new approach to fragment assembly in
DNA sequencing”, in:Proceedings of the Fifth Annual International Conference on
Computational Biology (RECOMB), 2001.

[63] Pop M., Salzberg S.L., Shumway M., “Genome sequence assembly: algorithms and
issues”,IEEE Computer35 (7) (2002) 47–54.

[64] Huang X., Madan A., “CAP3: A DNA sequence assembly program”,Genome Res.9
(1999) 868–877.

[65] Bevan M., et al., “Sequence and analysis of the Arabidopsis genome”,Curr. Opin.
Plant. Biol.4 (2) (2001) 105–110.

[66] Kent W.J., Haussler D., “Assembly of the working draft of the human genome with
GigAssembler”,Genome Res.11 (9) (2001) 1541–1548.

[67] Olson M., et al., “A common language for physical mapping of the human genome”,
Science245(4925) (1989) 1434–1435.

[68] Wang J., et al., “RePS: a sequence assembler that masks exact repeats identified from
the shotgun data”,Genome Res.12 (5) (2002) 824–831.

[69] Huson D.H., et al., “Design of a compartmentalized shotgun assembler for the human
genome”,Bioinformatics17 (Suppl 1) (2001) S132–S139.

[70] Csuros M., Milosavljevic A., “Pooled genomic indexing (PGI) mathematical analysis
and experiment design”, in:Proceedings of the 2nd International Workshop on Algo-
rithms in Bioinformatics (WABI), Springer-Verlag, 2002.

[71] Parsons R.J., Forrest S., Burks C., “Genetic algorithms, operators, and DNA fragment
assembly”,Machine Learning21 (1995) 11–33.

[72] Goldberg M.K., Lim D.T., “A learning algorithm for the shortest superstring problem”,
in: Proceedings of the Atlantic Symposium on Computational Biology and Genome
Information Systems and Technology, Durham, NC, 2001.

[73] Goldberg M.K., Lim D.T., “Designing and testing a new DNA fragment assembler
VEDA-2”, http://www.cs.rpi.edu/~goldberg/publications/veda-2.pdf.

[74] Jiang T., Li M., “DNA sequencing and string learning”,Math. Sys. Theory29 (1996)
387–405.

[75] King L.M., Cummings M.P., “Satellite DNA repeat sequence variation is low in three
species of burying beetles in the genus Nicrophorus (Coleoptera: Silphidae)”,Mol. Biol.
Evol.14 (11) (1997) 1088–1095.

[76] Kosaraju S.R., Delcher A., “Large-scale assembly of DNA strings and space-efficient
construction of suffix trees(Correction)”, in:Proceedings of the 28th Annual ACM Sym-
posium on Theory of Computing, STOC’96, 1996.

[77] Kosaraju S.R., Delcher A.L., “Large-scale assembly of DNA strings and space-efficient
construction of suffix trees”, in:Proceedings of the ACM Symposium on the Theory of
Computing, STOC’95, 1995.

http://www.cs.rpi.edu/~goldberg/publications/veda-2.pdf

246 M. POP

[78] Chen T., Skiena S.S., “Trie-based data structures for sequence assembly”, in:Proceed-
ings of the Eighth Symposium on Combinatorial Pattern Matching, 1997.

[79] Chen T., Skiena S.S., “A case study in genome-level fragment assembly”,Bioinformat-
ics 16 (2000) 494–500.

[80] Weiner P., “Linear pattern matching algorithms”, in:Proceedings of the 14th IEEE
Symposium on Switching and Automata Theory, 1973.

[81] Manber U., Myers E.W., “Suffix arrays: A new method for on-line string searches”,
SIAM J. Computing22 (1993) 935–948.

[82] Ukkonen E., “On-line construction of suffix-trees”,Algorithmica14 (1995) 249–260.
[83] McCreight E.M., “A space-economical suffix tree construction algorithm”,J. ACM23

(1976) 262–272.
[84] Needleman S.B., Wunsch C.D., “A general method applicable to the search for similar-

ities in the amino acid sequence of two proteins”,J. Mol. Biol.48 (1970) 443–453.
[85] Myers E.W., Miller W., “Optimal alignments in linear space”,CABIOS4 (1988) 11–17.
[86] Myers E.W., “An O(nd) difference algorithm and its variations”,Algorithmica1 (1986)

251–266.
[87] Gusfield D.,Algorithms on Strings, Trees, and Sequences, The Press Syndicate of the

University of Cambridge, 1997.
[88] Altschul S.F., et al., “Basic local alignment search tool”,J. Mol. Biol.215(1990) 403–

410.
[89] Pearson W.R., Lipman D.J., “Improved tools for biological sequence comparison”,

Proc. Natl. Acad. Sci. USA85 (1988) 2444–2448.
[90] Kim S., Segre A.M., “AMASS: A structured pattern matching approach to shotgun

sequence assembly”,J. Comp. Bio.6 (2) (1999) 163–186.
[91] Green P.,PHRAP documentation: ALGORITHMS, 1994.
[92] Huang X., “An improved sequence assembly program”,Genomics33 (1996) 21–31.
[93] Tammi M.T., et al., “Correcting errors in shotgun sequences”,Nucleic Acids

Res.31 (15) (2003) 4663–4672.
[94] Roberts M., Hunt B.R., Yorke J.A., Bolanos R., Delcher A., “A preprocessor for shot-

gun assembly of large genomes”,J. Comp. Bio., submitted for publication.
[95] Huang X., et al., “PCAP: A whole-genome assembly program”,Genome Res.13 (9)

(2003) 2164–2170.
[96] Ewing B., Green P., “Base-calling of automated sequencer traces using phred. II. Error

probabilities”,Genome Res.8 (3) (1998) 186–194.
[97] Ewing B., et al., “Base-calling of automated sequencer traces using phred. I. Accuracy

assessment”,Genome Res.8 (3) (1998) 175–185.
[98] Chou H.H., Holmes M.H., “DNA sequence quality trimming and vector removal”,

Bioinformatics17 (12) (2001) 1093–1104.
[99] Kececioglu J., Yu J., “Separating repeats in DNA sequence assembly”, in:Proceedings

of the Fifth Annual International Conference on Computational Biology (RECOMB),
Montreal, Canada, 2001.

[100] Myers E.W., “Optimally separating sequences”,Genome Informatics12 (2001) 165–
174.

SHOTGUN SEQUENCE ASSEMBLY 247

[101] Tammi M.T., et al., “Separation of nearly identical repeats in shotgun assemblies using
defined nucleotide positions, DNPs”,Bioinformatics18 (3) (2002) 379–388.

[102] Tammi M.T., Arner E., Andersson B., “TRAP: Tandem Repeat Assembly Program pro-
duces improved shotgun assemblies of repetitive sequences”,Comput. Methods Pro-
grams Biomed.70 (1) (2003) 47–59.

[103] Pe’er I., Shamir R., “Spectrum alignment: Efficient resequencing by hybridization”, in:
Proceedings of the Eighth International Conference on Intelligent Systems for Molecu-
lar Biology (ISMB), 2000.

[104] Bailey J.A., et al., “Segmental duplications: organization and impact within the current
human genome project assembly”,Genome Res.11 (2001) 1005–1017.

[105] Pevzner P., Tang H., “Fragment assembly with double barreled data”, in:ISMB’01,
2001.

[106] Gribskov M., McLachlan A.D., Eisenberg D., “Profile analysis: Detection of distantly
related proteins”,Proc. Natl. Acad. Sci. USA84 (1987) 4355–4358.

[107] Anson E.L., Myers E.W., “ReAligner:A program for refining DNA sequence multi-
alignments”, in:RECOMB’97, 1997.

[108] Churchill G.A., Waterman M.S., “The accuracy of DNA sequences: estimating se-
quence quality”,Genomics14 (1) (1992) 89–98.

[109] Bonfield J.K., Staden R., “The application of numerical estimates of base calling accu-
racy to DNA sequencing projects”,Nucleic Acids Res.23 (8) (1995) 1406–1410.

[110] Zhou S., et al., “Whole-genome shotgun optical mapping of rhodobacter sphaeroides
strain 2.4.1 and its use for whole-genome shotgun sequence assembly”,Genome
Res.13 (9) (2003) 2142–2151.

[111] Huson D.H., Reinert K., Myers E., “The greedy path-merging algorithm for sequence
assembly”, in:Proceedings of the FifthAnnual International Conference on Computa-
tional Biology (RECOMB), 2001.

[112] Thayer E.C., Olson M.V., Karp R.M., “Error checking and graphical representation
of multiple-complete-digest (MCD) restriction-fragment maps”,Genome Res.9 (1)
(1999) 79–90.

[113] Pop M., Kosack D., Salzberg S.L., “Hierarchical scaffolding with bambus”,Genome
Res.14 (1) (2004) 149–159.

[114] Kim S., Liao L., Tomb J.F., “A probabilisticapproach to sequence assembly validation”,
in: Workshop on Data Mining in Bioinformatics, 2001.

[115] Seto D., Koop B.F., Hood L., “An experimentally derived data set constructed for test-
ing large-scale DNA sequence assembly algorithms”,Genomics15 (1993) 673–676.

[116] Miller M.J., Powell J.I., “A quantitative comparison of DNA sequence assembly pro-
grams”,J. Comp. Bio.1 (1994) 257–269.

[117] Huson D.H., et al., “Comparing assemblies using fragments and mate-pairs”, in:Work-
shop on Algorithms in Bioinformatics, Springer-Verlag, 2001.

[118] Engle M.L., Burks C., “Artificially generated data sets for testing DNA sequenceas-
sembly algorithms”,Genomics16 (1993) 286–288.

[119] Myers G., “A dataset generator for whole genome shotgun sequencing”, in:Proc. Int.
Conf. Intell. Syst. Mol. Biol., 1999, pp. 202–210.

248 M. POP

[120] Lander E.S., et al., “Initial sequencing and analysis of the human genome”,Na-
ture 409(6822) (2001) 860–921.

[121] Volik S., et al., “End-sequence profiling: Sequence-based analysis of aberrant
genomes”,Proc. Natl. Acad. Sci. USA(2003).

[122] Taillon-Miller P., et al.,“Overlapping genomic sequences: a treasure trove of single-
nucleotide polymorphisms”,Genome Res.8 (7) (1998) 748–754.

[123] Altshuler D., et al., “An SNP map of the human genome generated by reduced repre-
sentation shotgun sequencing”,Nature407(6803) (2000) 513–516.

[124] Mullikin J.C., et al., “An SNP map of human chromosome 22”,Nature 407 (6803)
(2000) 516–520.

[125] Dawson E., et al., “A SNP resource for human chromosome 22: extracting dense clus-
ters of SNPs from the genomic sequence”,Genome Res.11 (1) (2001) 170–178.

[126] Read T.D., et al., “Comparative genome sequencing for discovery of novel polymor-
phisms in Bacillus anthracis”,Science296(5575) (2002) 2028–2033.

[127] Lancia G., et al., “SNPs problems, complexity and algorithms”, in:9th Annual Euro-
pean Symposium on Algorithms (BRICS), University of Aarhus, Denmark, 2001.

[128] Lippert R., et al., “Algorithmic strategies for the single nucleotide polymorphism hap-
lotype assembly problem”,Briefings in Bioinformatics3 (1) (2002) 23–31.

[129] Fasulo D., et al., “Efficiently detecting polymorphisms during the fragment assembly
process”,Bioinformatics18 (Suppl.1) (2002) S294–S302.

[130] Casjens S., et al., “A bacterial genome in flux: the twelve linear and nine circular ex-
trachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia
burgdorferi”,Mol. Microbiol. 35 (3) (2000) 490–516.

[131] Beja O., et al., “Unsuspected diversity among marine aerobic anoxygenic phototrophs”,
Nature415(6872) (2002) 630–633.

[132] Randazzo C.L., et al., “Diversity, dynamics, and activity of bacterial communities dur-
ing production of an artisanal Sicilian cheese as evaluated by 16S rRNA analysis”,
Appl. Environ. Microbiol.68 (4) (2002) 1882–1892.

[133] Pearson H., “Body’s bugs to be sequenced”, in:Nature Science Update, 2003.
[134] Whitfield J., “Genome pioneer sets sights on Sargasso Sea”, in:Nature Science Update,

2003.
[135] Kececioglu J.D., Li M., Tromp J., “Inferring a DNA sequence from erroneous copies”,

Theoretical Computer Science185(1) (1997) 3–13.
[136] Liang F., et al., “An optimized protocol for analysis of EST sequences”,Nucleic Acids

Res.28 (18) (2000) 3657–3665.
[137] Kent W.J., Haussler D.,GigAssembler: An Algorithm for the Initial Assembly of the

Human Genome Draft, University of California Santa Cruz, 2000.

Advances in Large Vocabulary Continuous
Speech Recognition

GEOFFREY ZWEIG AND
MICHAEL PICHENY

IBM T.J. Watson Research Center
Yorktown Heights, NY 10598
USA
gzweig@us.ibm.com
picheny@us.ibm.com

Abstract
The development of robust, accurate and efficient speech recognition systems is
critical to the widespread adoption of a large number of commercial applications.
These include automated customer service, broadcast news transcription and in-
dexing, voice-activated automobile accessories, large-vocabulary voice-activated
cell-phone dialing, and automated directory assistance. This article provides a re-
view of the current state-of-the-art, and the recent research performed in pursuit
of these goals.

1. Introduction . 250
2. Front End Signal Processing . 251

2.1. Mel Frequency Cepstral Coefficients . 252
2.2. Perceptual Linear Predictive Coefficients . 254
2.3. Discriminative Feature Spaces . 255

3. The Acoustic Model . 256
3.1. Hidden Markov Model Framework . 256
3.2. Acoustic Context Models . 257
3.3. Gaussian Mixture State Models . 259
3.4. Maximum Likelihood Training . 260

4. Language Model . 263
4.1. Finite State Grammars . 263
4.2. N -gram Models . 264

5. Search . 272
5.1. The Viterbi Algorithm . 273
5.2. Multipass Lattice Decoding . 275

ADVANCES IN COMPUTERS, VOL. 60 249 Copyright © 2004 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(03)60007-0 All rights reserved.

250 G. ZWEIG AND M. PICHENY

5.3. Consensus Decoding . 276
5.4. System Combination . 277

6. Adaptation . 278
6.1. MAP Adaptation . 278
6.2. Vocal Tract Length Normalization . 279
6.3. MLLR . 281

7. Performance Levels . 284
8. Conclusion . 286

References . 286

1. Introduction

Over the course of the past decade, automatic speech recognition technology has
advanced to the point where a number of commercial applications are now widely
deployed and successful: systems for name-dialing [84,26], travel reservations [11,
72], getting weather-information [97],accessing financial accounts [16], automated
directory assistance [41], and dictation [86,9,78] are all in current use. The fact that
these systems work for thousands of people on a daily basis is an impressive tes-
timony to technological advance in this area, and it is the aim of this article to de-
scribe the technical underpinnings of these systems and the recent advances that have
made them possible. It must be noted, however, that even though the technology
has matured to the point of commercial usefulness, the problem of large vocabulary
continuous speech recognition (LVCSR) isby no means solved: background noise,
corruption by cell-phone or other transmission channels, unexpected shifts in topic,
foreign accents, and overly casual speechcan all cause automated systems to fail.
Thus, where appropriate, we will indicate the shortcomings of current technology,
and suggest areas of future research. Although this article aims for a fairly compre-
hensive coverage of today’s speech recognition systems, a vast amount of work has
been done in this area, and some limitation is necessary. Therefore, this review will
focus primarily on techniques that have proven successful to the point where they
have been widely adopted in competition-grade systems such as [78,36,37,58,27,93].

The cornerstone of all current state-of-the-art speech recognition systems is the
Hidden Markov Model (HMM) [6,43,54,74]. In the context of HMMs, the speech
recognition problem is decomposed as follows. Speech is broken into a sequence
of acoustic observations or frames, eachaccounting for around25 milliseconds of
speech; taken together, these frames comprise the acousticsa associated with an
utterance. The goal of the recognizer is to find the likeliest sequence of wordsw
given the acoustics:

argmax
w

P(w|a).

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 251

This can then be rewritten as:

argmax
w

P(w|a) = argmax
w

P(w)P (a|w)

P (a)
.

Since the prior on the acoustics is independent of any specific word hypothesis, the
denominator can be ignored, leaving the decomposition:

argmax
w

P(w|a) = argmax
w

P(w)P (a|w).

The first factor,P(w), is given by the language model, and sets the prior on word
sequences. The second factor,P(a|w) is given by the acoustic model, and links word
sequences to acoustics, and is described by an HMM.

The breakdown of a system into acoustic and language model components is one
of the main characteristics of current LVCSR systems, and the details of these mod-
els are discussed in Sections 3 and 4. However, even with well-defined acoustic and
language models that allow for the computation ofP(w) andP(a|w) for any given
word and acoustic sequencesw anda, the problem of finding the likeliest single se-
quence of words remains computationallydifficult, and is the subject of a number
of specialized search algorithms. Theseare discussed in Section 5. The final com-
ponent of current LVCSR systems performs the function of speaker adaptation, and
adjusts the acoustic models to match the specifics of an individual voice. These tech-
niques include Maximum A-Posteriori (MAP) adaptation [28], methods that work
by adjusting the acoustic features to more closely match generic acoustic models
[24], and methods that adjust the acoustic models to match the feature vectors [51].
The field of speaker adaptation has evolved quite dramatically over the past decade,
and is currently a key research area; Section 6 covers it in detail. The combination
of acoustic and language models, search, and adaptation that characterize current
systems is illustrated in Fig. 1.

2. Front End Signal Processing

Currently, there are two main ways in which feature vectors are computed, both
motivated by information about human perception. The first of these ways produces
features known asMel Frequency Cepstral Coefficients(MFCCs) [17], and the sec-
ond method is known asPerceptual Linear Prediction(PLP) [38]. In both cases, the
speech signal is broken into a sequence of overlapping frames which serve as the ba-
sis of all further processing. A typical frame-rate is 100 per second, with each frame
having a duration of 20 to 25 milliseconds.

After extraction, the speech frames are subjected to a sequence of operations re-
sulting in a compact representation of the perceptually important information in the

252 G. ZWEIG AND M. PICHENY

FIG. 1. Sample LVCSR architecture.

speech. Algorithmically, the steps involved in both methods are approximately the
same, though the motivations and details are different. In both cases, the algorithmic
process is as follows:

(1) compute the power spectrum of the frame,
(2) warp the frequency range of the spectrum so that the high-frequency range is

compressed,
(3) compress the amplitude of the spectrum,
(4) decorrelate the elements of the spectral representation by performing an in-

verse DFT—resulting in a cepstral representation.

Empirical studies have shown that recognition performance can be further en-
hanced with the inclusion of features computed not just from a single frame, but
from several surrounding frames as well. One way of doing this is to augment the fea-
ture vectors with the first and second temporal derivatives of the cepstral coefficients
[22]. More recently, however, researchers have applied linear discriminant analysis
[19] and related transforms to project a concatenated sequence of feature vectors into
a low-dimensional space in which phonetic classes are well separated. The following
subsections will address MFCCs, PLP features, and discriminant transforms in detail.

2.1 Mel Frequency Cepstral Coefficients

The first step in the MFCC processing of a speech frame is the computation of a
short-term power spectrum [17]. In a typical application in which speech is transmit-
ted by phone, it is sampled at 8000 Hz and bandlimited to roughly 3800 Hz. A 25
millisecond frame is typical, resulting in 200 speech samples.This is zero-padded,

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 253

FIG. 2. Mel frequency filters grow exponentially in size.

windowed with the Hamming function

W(n) = 0.54+ 0.46 cos

(
2πn

N − 1

)

and an FFT is used to compute a 128 point power spectrum.
The next step is to compute a warped representation of the power spectrum in

which a much coarser representation is used for the high frequencies. This mir-
rors psychoacoustic observations that human hearing is less precise as frequency
increases. To do this, the power spectrum is filtered by a sequence of triangularly
shaped filterbanks, whose centers are spaced linearly on the mel scale. The Mel fre-
quency warping [94] is given by

f ′ = 2595 log10

(
1+ f

700

)
,

so the bandwidth increases exponentiallywith frequency. Figure 2 illustrates the
shape of the mel-frequency filters.1 Typical applications use 18 to 24 filterbanks
spaced between 0 and 4000 Hz [78,46]. This mel frequency warping is similar to the
use of critical bands as defined in [100].

After the spectrum is passed through the mel frequency filters, the output of each
filter is compressed through the application of a logarithm, and the cepstrum is com-
puted. WithF filterbank outputsxk , theith MFCC is given by:

MFCCi =
F∑

k=1

xk cos

[
i

(
k − 1

2

)
π

F

]
, i = 1,2, . . . ,F.

In a typical implementation, the first 13cepstral coefficients are retained.
MFCCs have the desirable property that linear channel distortions can to some

extent be removed through mean subtraction. For example, an overall gain applied to

1The original paper [17] used fixed-width filters below 1000 Hz.

254 G. ZWEIG AND M. PICHENY

the original signal will be removed through mean-subtraction, due to the logarithmic
nonlinearity. Therefore, mean-subtraction is standard.

2.2 Perceptual Linear Predictive Coefficients

Perceptual Linear Prediction is similar in implementation to MFCCs, but different
in motivation and detail. In practice, these differences have proved to be important,
both in lowering the overall error rate, and because PLP-based systems tend to make
errors that are somewhat uncorrelated with those in MFCC systems. Therefore, as
discussed later in Section 5.4, multiple systems differing in the front-end and other
details can be combined through voting to reduce the error rate still further.

The principal differences between MFCC and PLP features are:

• The shape of the filterbanks.

• The use of equal-loudness preemphasis to weight the filterbank outputs.

• The use of cube-root compression rather than logarithmic compression.

• The use of a (parametric) linear-predictive model to determine cepstral coeffi-
cients, rather than the use of a (non-parametric) discrete cosine transform.

The first step in PLP analysis is the computation of a short-term spectrum, just
as in MFCC analysis. The speech is then passed through a sequence of filters that
are spaced at approximately one-Bark intervals, with the Bark frequencyΩ being
related to un-warped frequencyω (in rad/s) by:

Ω(ω) = 6 log
{
ω/1200π +

[
(ω/1200π)2 + 1

]0.5}
.

The shape of the filters is trapezoidal, rather than triangular, motivated by psycho-
physical experiments [79,101].

Conceptually, after the filterbank outputs are computed, they are subjected to
equal-loudness preemphasis. A filterbank centered on (unwarped) frequencyω is
modulated by

E(ω) =
[(

ω2 + 56.8× 106)ω4]/[(
ω2 + 6.3× 106)2 ×

(
ω2 + 0.38× 109)].

This reflects psycho-physical experiments indicating how much energy must be
present in sounds at different frequencies in order for them to be perceived as equally
loud. In practice, by appropriately shaping the filters, this step can be done simulta-
neously with the convolution that produces their output. The weighted outputs are
then cube-root compressed,o′ = o0.33.

In the final PLP step, the warped spectrum is represented with the cepstral coef-
ficients of an all-pole linear predictive model [56]. This is similar to the DCT op-
eration in MFCC computation, but the use of an all-pole model makes the results

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 255

more sensitive to spectral peaks, and smooths low-energy regions. In the original
implementation of [38], a fifth-order autoregressive model was used; subsequent im-
plementations use a higher order model, e.g., 12 as in [46].

2.3 Discriminative Feature Spaces

As mentioned earlier, it has been found that improved performance can be ob-
tained by augmenting feature vectors with information from surrounding frames
[22]. One relatively simple way of doing this is to compute the first and second
temporal derivatives of the cepstral coefficients; in practice, this can be done by ap-
pending a number of consecutive frames (nine is typical) and multiplying withan
appropriate matrix.

More recently [35,88], it has been observed that pattern recognition techniques
might be applied to transform the features in a way that is more directly related to
reducing the error rate. In particular, after concatenating a sequence of frames, linear
discriminant analysis can be applied to find a projection that maximally separates the
phonetic classes in the projected space.

Linear discriminant analysis proceeds as follows. We will denote the class asso-
ciated with examplei asc(i). First, the meansµj and covariancesΣj of each class
are computed, along with the overall meanµ and varianceΣ :

µj = 1

Nj

∑

i s.t. c(i)=j

xi, Σj = 1

Nj

∑

i s.t. c(i)=j

(xi − µj)(xi − µj)
T,

µ = 1

N

∑

i

xi, Σ = 1

N

∑

i

(xi − µ)(xi − µ)T.

Next, the total within class varianceW is computed

W = 1

N

∑

j

NjΣj .

Using θ to denote the LDA transformation matrix, the LDA objective function is
given by:

θ̂ = argmax
θ

|θTΣθ |
|θTWθ | ,

and the optimal transform is given by the top eigenvectors ofW−1Σ .
While LDA finds a projection that tends to maximize relative interclass distances,

it makes two questionable assumptions: first, that the classes are modeled by a full
covariance Gaussian in the transformedspace, and second that the covariances of

256 G. ZWEIG AND M. PICHENY

all transformed classes are identical. Thefirst assumption is problematic because, as
discussed in Section 3.3, full covariance Gaussians are rarely used; but the extent
to which the first assumption is violated can be alleviated by applying a subsequent
transformation meant to minimize the loss in likelihood between the use of full and
diagonal covariance Gaussians [31]. The MLLT transform developed in [31] applies
the transformψ that minimizes

∑

j

Nj

(
log

∣∣diag
(
ψΣjψ

T)∣∣ − log
∣∣ψΣj ψT

∣∣)

and has been empirically found to be quite effective in conjunction with LDA [77].
To address the assumption of equal covariances, [77] proposes the maximization

of

∏

j

(|θΣθT|
|θΣjθT|

)Nj

and presents favorable results when usedin combination with MLLT. A closely re-
lated technique, HLDA, [50] relates projective discriminant analysis to maximum
likelihood training, where the unused dimensions are modeled with a shared covari-
ance. This form of analysis may be used both with and without the constraint that
the classes be modeled by a diagonal covariance model in the projected space, and
has also been widely adopted. Combined, LDA and MLLT provide on the order of a
10% relative reduction in word-error rate [77] over simple temporal derivatives.

3. The Acoustic Model

3.1 Hidden Markov Model Framework

The job of the acoustic model is to determine word-conditioned acoustic probabil-
ities,P(a|w). This is done through the use of Hidden Markov Models, which model
speech as being produced by a speaker whose vocal tract configuration proceeds
through a sequence of states, and produces one or more acoustic vectors in each
state. An HMM consists of a set of statesS, a set of acoustic observation probabil-
ities, bj (o), and a set of transition probabilitiesaij . The transition and observation
probabilities have the following meaning:

(1) bj (o) is a function that returns the probability of generating the acoustic vec-
tor o in statej . bj (ot) is the probability of seeing the specific acoustics as-
sociated with timet in statej . The observation probabilities are commonly
modeled with Gaussian mixtures.

(2) aij is the time-invariant probability of transitioning from statei to statej .

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 257

FIG. 3. A simple HMM representing the state sequence of three words. Adding an arc from the final
state back to the start state would allow repetition.

Note that in the HMM framework, each acoustic vector is associated with a spe-
cific state in the HMM. Thus, a sequence ofn acoustic vectors will correspond to
a sequence ofn consecutive states. We will denote a specific sequence of states
s1 = a, s2 = b, s3 = c, . . . , sn = k by s. In addition to normal emitting states, it
is often convenient to use “null” states, which do not emit acoustic observations.
In particular, we will assume that the HMM starts at timet = 0 in a special null
start-stateα, and that all paths must end in a special null final-stateω at t = N + 1.
In general, having a specific word hypothesisw will be compatible with only some
state sequences,s, and not with others. It is necessary, therefore, to constrain sums
over state sequences to those sequences that are compatible with a given word se-
quence; we will not, however, introduce special notation to make this explicit. With
this background, the overall probability is factored as follows:

P(a|w) =
∑

s

P(a|s)P (s|w) =
∑

s

∏

t=1,...,n

bst (ot)ast st−1.

Figure 3 illustrates a simple HMM that represents the state sequences of three
words.

The following sections describe the components of the HMM acoustic model in
more detail. Section 3.2 will focus on the mapping from words to states that is nec-
essary to determineP(s|w). Section 3.3 discusses the Gaussian mixture models that
are typically used to modelbj (o). The transition probabilities can be represented
in a simple table, and no further discussion is warranted. The section closes with a
description of the training algorithms used for parameter estimation.

3.2 Acoustic Context Models

In its simplest form, the mapping from words to states can be made through the
use of a phonetic lexicon that associates one or more sequences of phonemes with
each word in the vocabulary. For example,

258 G. ZWEIG AND M. PICHENY

barge | B AA R JH
tomato | T AH M EY T OW
tomato | T AH M AA T OW

Typically, a set of 40 phonemes is used, and comprehensive dictionaries are available
[14,15].

In practice, coarticulation between phones causes this sort of invariant mapping to
perform poorly, and instead some sort of context-dependent mapping from words to
acoustic units is used [95,5]. This mapping takes each phoneme and the phonemes
that surround it, and maps it into an acoustic unit. Thus, the “AA” in “B AA R
JH” may have a different acoustic model than the “AA” in “T AH M AA T OW.”
Similarly, the “h” in “hammer” may be modeled with a different acoustic unit de-
pending on whether it is seen in the context of “the hammer” or “a hammer.”
The exact amount of context that is used can vary, the following being frequently
used:

(1) Word-internal triphones. A phone and its immediate neighbors to the left and
right. However, special units are used at the beginnings and endings of words
so that context does not persist across word boundaries.

(2) Cross-word triphones. The same as above, except that context persists across
word boundaries, resulting in better coarticulation modeling.

(3) Cross-word quinphones. A phone and its two neighbors to the left and right.
(4) A phone, and all the other phones in the same word.
(5) A phone, all the other phones in the same word, and all phones in the preced-

ing word.

When a significant amount of context is used, the number of potential acoustic
states becomes quite large. For example, with triphones the total number of pos-
sible acoustic models becomes approximately 403 = 64,000. In order to reduce this
number, decision-tree clustering is used to determine equivalence classes of phonetic
contexts [5,95]. A sample tree is shown in Fig. 4. The tree is grown in a top-down
fashion using an algorithm similar to that of Fig. 5. Thresholds on likelihood gain,
frame-counts, or the Bayesian information criterion [10] can be used to determine an
appropriate tree depth.

In a typical large vocabulary recognition system [78], it is customary to have a
vocabulary size between 30 and 60 thousand words and two or three hundred hours
of training data from hundreds of speakers. The resulting decision trees typically
have between 4000 and 12,000 acoustic units [78,46].

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 259

FIG. 4. Decision tree for clustering phonetic contexts.

1. Create a record for each frame that includes the frame and the phonetic context
associated with it.

2. Model the frames associated with a node with a single diagonal-covariance
Gaussian. The frames associated with a node will have a likelihood according to
this model.

3. For each yes/no question based on the context window, compute the likelihood that
would result from partitioning the examples according to the induced split.

4. Split the frames in the node using the question that results in the greatest likelihood
gain, and recursively process the resulting two nodes.

FIG. 5. Decision tree building.

3.3 Gaussian Mixture State Models

The observation probabilitiesbj (o) are most often modeled with mixtures of
Gaussians. The likelihood of thed-dimensional feature vectorx being emitted by
statej is given by:

bj (x) =
∑

k

mjk

(
(2π)d |Σjk|

)−1/2 exp

(
−1

2
(x − µjk)

TΣ−1
jk (x − µjk)

)

where the coefficientsmjk are mixture weights,
∑

k mjk = 1. This can be expressed
more compactly as

bj (x) =
∑

k

mjkN (x;µjk,Σjk).

In order to minimize the amount of computation required to compute observation
probabilities, it is common practice to use diagonal covariance matrices. Between
150,000 and 300,000 Gaussians are typical in current LVCSR systems.

The use of diagonal covariance matriceshas proved adequate, but requires that
the dimensions of the feature vectors be relatively uncorrelated. While the linear
transforms described in Section 2 can beused to do this, recently there has been
a significant amount of work focused on more efficient covariance representations.

260 G. ZWEIG AND M. PICHENY

One example of this is EMLLT [70], in which the inverse covariance matrix of each
Gaussianj is modeled as the sum of basis matrices. First, a set ofd dimensional
basis vectorsal is defined. Then inverse covariances are modeled as:

Σ−1
j =

D∑

l=1

λ
j
l alaT

l .

One of the main contributions of [70] is to describe a maximum-likelihood training
procedure for adjusting the basis vectors. Experimental results are presented that
show improved performance over both diagonal and full-covariance modeling in a
recognition system for in-car commands. In further work [3], this model has been
generalized to model both means and inverse-covariance matrices in terms of basis
expansions (SPAM).

3.4 Maximum Likelihood Training

A principal advantage of HMM-based systems is that it is quite straightforward
to perform maximum likelihood parameter estimation. The main step is to compute
posterior state-occupancy probabilities for the HMM states. To do this, the following
quantities are defined:

• αj (t): the probability of the observation sequence up to timet , and accounting
for ot in statej .

• βj (t): the probability of the observation sequenceot+1 . . . oN given that the
state at timet is j .

• P =
∑

k αk(t)βk(t): the total data likelihood, constant overt .

• γj (t) = αj (t)βj (t)∑
k αk(t)βk(t)

: the posterior probability of being in statej at timet .

• mixjk(t) = mjkN (ot ;µjk ,Σjk)∑
f mjfN (ot ;µjf ,Σjf)

: the probability of mixture componentk given

statej at timet .

Theα andβ quantities can be computed with a simple recursion:

• αj (t) =
∑

i αi(t − 1)aijbj (ot).

• βj (t) =
∑

k ajkbk(ot+1)βk(t + 1).

The recursions are initialized by setting allαs andβs to 0 except:

• αα(0) = 1.

• βω(N + 1) = 1.

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 261

Once the posterior state occupancy probabilities are computed, it is straightfor-
ward to update the model parameters for a diagonal-covariance system [54,94,73].

• âij =
∑

t αi (t)aijbj (ot+1)βj (t+1)∑
t αi(t)βi(t)

.

• µ̂jk =
∑

t γj (t)mixjk(t)ot∑
t γj (t)mixjk(t)

.

• Σ̂jk =
∑

t γj (t)mixjk(t)(ot−µ̂jk)(ot−µ̂jk)
T

∑
t γj (t)mixjk(t)

.

This discussion has avoided a number of subtleties that arise in practice, but are
not central to the ideas. Specifically, when multiple observation streams are avail-
able, an extra summation must be added outside all others in the reestimation for-
mulae. Also, observation probabilities are tied across multiple states—the same “ae”
acoustic model may be used in multiple HMM states. This entails creating summary
statistics for each acoustic model by summing the statistics of all the states that use it.
Finally, in HMMs with extensive null states, the recursions and reestimation formu-
lae must be modified to reflect the spontaneous propagation of probabilities through
chains of null states.

3.4.1 Maximum Mutual Information Training

In standard maximum likelihood training, the model parameters for each class are
adjusted in isolation, so as to maximize the likelihood of the examples of that partic-
ular class. While this approach is optimal in the limit of infinite training data [62], it
has been suggested [63,4] that under more realistic conditions, a better training ob-
jective might be to maximize the amount of mutual information between the acoustic
vectors and the word labels. That is, rather than training so as to maximize

Pθ (w,a) = Pθ (w)Pθ (a|w)

with respect toθ , to train so as to maximize

∑

w,a

Pθ (w,a) log
Pθ (w,a)

Pθ (w)Pθ (a)
.

Using the training dataD to approximate the sum over all words and acoustics, we
can represent the mutual information as

∑

D

log
Pθ (a,w)

Pθ (w)Pθ (a)
=

∑

D

log
Pθ (w)Pθ (a|w)

Pθ (w)Pθ (a)
=

∑

D

log
Pθ (a|w)

Pθ (a)

=
∑

D

log
Pθ (a|w)∑

w′ Pθ (w′)Pθ (a|w′)
.

262 G. ZWEIG AND M. PICHENY

If we assume that the language model determiningPθ (w) is constant (as is the case
in acoustic model training) then this is identical to optimizing the posterior word
probability:

∑

D

logPθ (w|a) =
∑

D

log
Pθ (a|w)Pθ (w)∑
w′ Pθ (w′)Pθ (a|w′)

.

Before describing MMI training in detail, we note that the procedure that will
emerge is not much different from training an ML system. Procedurally, one first
computes the state-occupancy probabilities and first and second order statistics ex-
actly as for a ML system. This involves summing path posteriors over all HMM
paths that are consistent with the known word hypotheses. One then repeats exactly
the same process, but sums over all HMM paths without regard to the transcripts.
The two sets of statistics are then combined in a simple update procedure. For histor-
ical reasons, the first set of statistics is referred to as “numerator” statistics and the
second (unconstrained) set as “denominator” statistics.

An effective method for performing MMI optimization was first developed in [30]
for the case of discrete hidden Markov models. The procedure of [30] works in gen-
eral to improve objective functionsR(θ) that are expressible as

R(θ) = s1(θ)

s2(θ)

with s1 ands2 being polynomials withs2 > 0. Further, for each individual probability
distributionλ under adjustment, it must be the case thatλi � 0 and

∑
i λi = 1. In this

case, it is proved that the parameter update

λ̂i =
λi

(∂ logR(λ)
∂λi

+ D
)

∑
k λk

(∂ logR(λ)
∂λk

+ D
)

is guaranteed to increase the objective function, with a large enough value of the
constantD. In the case of discrete variables, it is shown that

∂ logR(λ)

∂λi
= 1

λi

(
Cnum

λi
− Cden

λi

)

whereλi is probability of event associated withλi being true, andCλi is count of
times this event occurred, as computed from theα–β recursions of the previous
section.

Later work [68,92], extended these updates to Gaussian means and variances, and
[92] did extensive work to determine appropriate values ofD for large vocabulary
speech recognition. For statej , mixture componentm, letS(x) denote the first order
statistics,S(x2) denote the second order statistics, andC denote the count of the

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 263

number of times a mixture component is used. The update derived is

µ̂jm =
Snum

jm (x) − Sden
jm (x) + Dµjm

Cnum
jm − Cden

jm + D
,

σ̂ 2
jm =

Snum
jm (x2) − Sden

jm (x2) + D(σ 2
jm + µ2

jm)

Cnum
jm − Cden

jm + D
− µ̂2

jm.

For the mixture weights, letfjm be the mixture coefficient associated with mixture
componentm of statej . Then

f̂jm =
fjm

(∂ logR(λ)
∂fjm

+ D
)

∑
k fjk

(∂ logR(λ)
∂fjk

+ D
)

with

∂ logR(λ)

∂fjk

= 1

fjk

(
Cnum

jk − Cden
jk

)
.

Several alternative ways for reestimating the mixture weights are given in [92].
MMI has been found to give a 5–10% relative improvement in large vocabulary

tasks [92], though the advantage diminishes as systems with larger numbers of Gaus-
sians are used [58]. The main disadvantage of MMI training is that the denominator
statistics must be computed over all possible paths. This requires either doing a full
decoding of the training data at each iteration, or the computation of lattices (see
Section 5.2). Both options are computationally expensive unless an efficiently writ-
ten decoder is available.

4. Language Model

4.1 Finite State Grammars

Finite state grammars [1,39] are the simplest and in many ways the most conve-
nient way of expressing a language model for speech recognition. The most basic
way of expressing one of these grammars is as an unweighted regular expression
that represents a finite set of recognizable statements. For example, introductions to
phone calls in a three-person company might be represented with the expression

(Hello | Hi) (John | Sally | Sam)? it’s
(John | Sally | Sam)

264 G. ZWEIG AND M. PICHENY

At a slightly higher level, Backus Naur Form [64] is often used for more elaborate
grammars with replacement patterns. For example,

<SENTENCE> ::= Greeting.
Greeting ::= Intro Name? it’s Name.
Intro ::= Hello | Hi.
Name ::= John | Sally | Sam.

In fact, BNF is able to represent context free grammars [13]—a broad class of gram-
mars in which recursive rule definitions allow the recognition of some strings that
cannot be represented with regular expressions. However, in comparison with regu-
lar expressions, context-free grammars have had relatively little affect on ASR, and
will not be discussed further.

Many of the tools and conventions associated with regular expressions were devel-
oped in the context of computer language compilers, in which texts (programs) were
either syntactically correct or not. In this context, there is no need for a notion of
how correct a string is, or alternatively what the probability of it being generated by
a speaker of the language is. Recall, however, that in the context of ASR, we are in-
terested inP(w), the probability of a word sequence. This can easily be incorporated
in to the regular expression framework, simply by assigning costs or probabilities to
the rules in the grammar.

Grammars are frequently used in practical dialog applications, where develop-
ers have the freedom to design system prompts and then specify a grammar that is
expected to handle all reasonable replies. For example, in an airline-reservation ap-
plication the system might ask “Where do you want to fly to?” and then activate
a grammar designed to recognize city names. Due to their simplicity and intuitive
nature, these sorts of grammars are the first choice wherever possible.

4.2 N -gram Models

N -gram language models are currently the most widely used LMs in large vo-
cabulary speech recognition. In anN -gram language model,the probability of each
word is conditioned on then − 1 preceding words:

P(w) = P(w1)P (w2|w1) · · ·P(wn−1|w1 . . .wn−2)

×
i=N∏

i=n

P(wi |wi−1,wi−2, . . . ,wi−n+1).

While in principle this model ignores a vast amount of prior knowledge concerning
linguistic structure—part-of-speech classes, syntactic constraints, semantic coher-

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 265

ence, and pragmatic relevance—in practice, researchers have been unable to signifi-
cantly improve on it.

A typical large vocabulary system will recognize between 30 and 60 thousand
words, and use a 3 or 4-gram language model trained on around 200 million words
[78]. While 200 million words seems at first to be quite large, in fact for a 3-gram LM
with a 30,000 word vocabulary, it is actually quite small compared to the 27× 1012

distinct trigrams that need to be represented. In order to deal with this problem of data
sparsity, a great deal of effort has been spent of developing techniques for reliably
estimating the probabilities of rare events.

4.2.1 Smoothing

Smoothing is perhaps the most important practical detail in buildingN -gram
language models, and these techniques fall broadly into three categories: additive
smoothing, backoff models, and interpolated models. The following sections touch
briefly on each, giving a full description for only interpolated LMs, which have been
empirically found to give good performance on a variety of tasks. The interested
reader can find a full review of all these methods in [12].

4.2.1.1 Additive Smoothing. In the following, we will use the compact
notationw

y
x to refer to the sequence of wordswx,wx+1 . . .wy , andc(w

y
x) to the

number of times (count) that this sequence has been seen in the training data. The
maximum-likelihood estimate ofP(wi |wi−1

i−n+1) is thus given as:

P
(
wi |wi−1

i−n+1

)
=

c(wi
i−n+1)

c(wi−1
i−n+1)

.

The problem, of course, is that for high-orderN -gram models, many of the pos-
sible (and perfectly normal) word sequences in a language will not be seen, and
thus assigned zero-probability. This is extraordinarily harmful to a speech recogni-
tion system, as one that uses such a model will never be able to decode these novel
word sequences. One of the simplest ways of dealing with such a problem is to use
a set of fictitious or imaginary counts to encode our prior knowledge that all word
sequences have some likelihood. In the most basic implementation [42], one simply
adds a constant amountδ to each possible event. For a vocabulary of size|V |, one
then has:

P
(
wi |wi−1

i−n+1

)
=

δ + c(wi
i−n+1)

δ|V | + c(wi−1
i−n+1)

.

266 G. ZWEIG AND M. PICHENY

The optimal value ofδ can be found simply by performing a search so as to maximize
the implied likelihood on a set of held-out data. This scheme, while having the virtue
of simplicity, tends to perform badly in practice [12].

4.2.1.2 Low-Order Backoff. One of the problems of additive smoothing
is that it will assign the same probability to all unseen words that follow a partic-
ular history. Thus for example, it will assign the same probability to the sequence
“spaghetti western” as to “spaghetti hypanthium,” assuming that neither has been
seen in the training data. This violates our prior knowledge that more frequently
occurring words are more likely to occur, even in previously unseen contexts.

One way of dealing with this problem is to use a backoff model in which one
“backs off” to a low order language model estimate to model unseen events. These
models are of the form:

P
(
wi |wi−1

i−n+1

)
=

{
α(wi |wi−1

i−n+1) if c(wi
i−n+1) > 0,

γ (wi−1
i−n+1)P (wi |wi−1

i−n+2) if c(wi
i−n+1) = 0.

One example of this is Katz smoothing [45], which is used, e.g., in the SRI language-
modeling toolkit [83]. However, empirical studies have shown that better smoothing
techniques exist, so we will not present it in detail.

4.2.1.3 Low-Order Interpolation. The weakness of a backoff language
model is that it ignores the low-order language model estimate whenever a high-order
N -gram has been seen. This can lead to anomalies when some high-orderN -grams
are seen, and others with equal (true) probability are not. The most effective type
of N -gram model uses an interpolation between high and low-order estimates under
all conditions. Empirically, the most effective of these is the modified Kneser–Ney
language model [12], which is based on [47].

This model makes use of the concept of the number of unique words that have
been observed to follow a given language model history at leastk times. Define

Nk

(
wi−1

i−n+1•
)
=

∣∣{wi : c
(
wi−1

i−n+1wi

)
= k

}∣∣

and

Nk+
(
wi−1

i−n+1•
)
=

∣∣{wi : c
(
wi−1

i−n+1wi

)
� k

}∣∣.

The modified Kneser Ney estimate is then given as

P
(
wi |wi−1

i−n+1

)
=

c(wi
i−n+1) − D(c(wi

i−n+1))

c(wi−1
i−n+1)

+ γ
(
wi−1

i−n+1

)
P

(
wi |wi−1

i−n+2

)
.

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 267

Defining

Y = n1

n1 + 2n2

wherenr is the number ofn-grams that occur exactlyr times, the discounting factors
are given by

D(c) =

0 if c = 0,

1− 2Y n2
n1

if c = 1,

2− 3Y
n3
n2

if c = 2,

3− 4Y n4
n3

if c � 3.

The backoff weights are determined by

γ
(
wi−1

i−n+1

)
=

D1N1(w
i−1
i−n+1•) + D2N2(w

i−1
i−n+1•) + D3+N3+(wi−1

i−n+1•)

c(wi−1
i−n+1)

.

This model has been found to slightly outperform most other models and is in use
in state-of-the-art systems [78]. BecauseD(0) = 0, this can also be expressed in a
backoff form.

4.2.2 Cross-LM Interpolation
In many cases, several disparate sources of language model training data are avail-

able, and the question arises: what is the best method of combining these sources?
The obvious answer is simply to concatenate all the sources of training data together,
and to build a model. This, however, has some serious drawbacks when the sources
are quite different in size. For example, in many systems used to transcribe telephone
conversations [78,76,93,27], data from television broadcasts is combined with a set
of transcribed phone conversations. However, due to its easy availability, there is
much more broadcast data than conversational data: about 150 million words com-
pared to 3 million. This can have quite negative effects. For example, in the news
broadcast data, the number of times “news” follows the bigram “in the” may be
quite high, whereas in conversations, trigrams like “in the car” or “in the office” are
much likelier. Because of the smaller amount of data, though, these counts will be
completely dwarfed by the broadcast news counts, with the result that the final lan-
guage model will be essentially identical to the broadcast news model. Put another
way, it is often the case that training data for severalstyles of speakingis available,
and that the relative amounts of data ineach category bears no relationship to how
frequently the different styles are expected to be used in real life.

In order to deal with this, it is common to interpolate multiple distinct language
models. For each data sourcek, a separate language model is built that predicts word

268 G. ZWEIG AND M. PICHENY

probabilities:Pk(wi |wi−1
i−n+1). These models are then combined with weighting fac-

torsλk :

P
(
wi |wi−1

i−n+1

)
=

∑

k

Pk

(
wi |wi−1

i−n+1

)
,

∑

k

λk = 1.

For example, in a recent conversational telephony system [78] an interpolation of
data gathered from the web, broadcast news data, and two sources of conversational
data (with weighting factors 0.4, 0.2, 0.2, and 0.2 respectively) resulted in about
a 10% relative improvement over using the largest single source of conversational
training data.

4.2.3 N -gram Models as Finite State Graphs

While N -gram models have traditionally been treated as distinct from recognition
grammars, in fact they are identical, andthis fact has been increasingly exploited.
One simple way of seeing this is to consider a concrete algorithm for constructing a
finite state graph at the HMM state level from anN -gram language model expressed
as a backoff language model. This will make use of two functions that act on a word
sequencewk

j :

(1) head(wk
j) returns the suffixwk

j+1.

(2) tail(wk
j) returns the prefixwk−1

j .

For a state-of-the-art backoff model, one proceeds as follows:

(1) for eachN -gram with historyq and successor wordr make a unique state for
q, head(qr), and tail(q),

(2) for eachN -gram add an arc fromq to head(qr) labeled withr and weighted
by theα probability of the backoff model,

(3) for each uniqueN -gram historyq add an arc fromq to tail(q) with the backoff
γ associated withq.

To accommodate multiple pronunciations of a given word, one then replaces each
word arc with a set of arcs, one labeled with each distinct pronunciation, and mul-
tiplies the associated probability with the probability of that pronunciation. For
acoustic models in which there is no cross word context, each pronunciation can
then be replaced with the actual sequence of HMM states associated with the word;
accommodating cross word context is more complex, but see, e.g., [99]. Figure 6
illustrates a portion of an HMMn-gram graph.

We have described the process of expanding a language model into a finite-state
graph as a sequence of “search and replace” operations acting on a basic represen-
tation at the word level. However, [59,60] have recently argued that the process is

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 269

FIG. 6. HMM state graph illustrating the structure of a backoff language model.

best viewed in terms of a sequence of finite state transductions. In this model, one
begins with a finite state encoding of the language model, but represents the expan-
sion at each level—from word to pronunciation, pronunciation to phone, and phone
to state—as the composition of the previous representation with a finite state trans-
ducer. The potential advantage of this approach is a consistent representation of each
form of expansion, with the actual operations being performed by a single compo-
sition function. In practice, care must be taken to ensure that the composition oper-
ations do not use large amounts of memory, and in some cases, it is inconvenient to
express the acoustic context model in the form of a transducer (e.g., when long span
context models are used).

In some ways, the most important advantage of finite-state representations is that
operations of determinization and minimization were recently developed by [59,60].
Classical algorithms were developed in the 1970s [1] for unweighted graphs as found
in compilers, but the extension to weighted graphs (the weights being the language
model and transition probabilities) has made these techniques relevant to speech
recognition. While it is beyond the scope of this paper to present the algorithms
for determinization and minimization, we briefly describe the properties.

A graph is said to be deterministic if each outgoing arc from a given state has a
unique label. In the context of speech recognition graphs, the arcs are labeled with
either HMM states, or word, pronunciation, or phone labels. While the process of
taking a graph and finding an equivalent deterministic one is well defined, the de-
terministic representation can in pathological cases grow exponentially in the num-
ber of states of the input graph. In practice, this rarely happens, but the graph does

270 G. ZWEIG AND M. PICHENY

grow. The benefit actually derives from the specific procedures used to implement
the Viterbi search described in Section 5.1. Suppose one has identified a fixed num-
berw of states that are reasonably likely at a given timet . Only a small numberk
of HMM states are likely to have good acoustic matches, and thus to lead to likely
states at timet + 1. Thus, if on averagez outgoing arcs per state are labeled with a
given HMM state, the number of likely states att + 1 will be on the order ofzkw.
By using a deterministic graph,z is limited to 1, and thus tends to decrease the num-
ber of states that will ever be deemed likely. In practice, this property can lead to an
order-of-magnitude speedup in search time, and makes determinization critical.

One can also ask, given a deterministic graph, what is the smallest equivalent
deterministic graph. The process of minimization [59] produces such a graph, and in
practice often reduces graph sizes by a factor of two or three.

4.2.4 Pruning

Modern corpus collections [33] often contain an extremely large amount of data—
between 100 million and a billion words. Given thatN -gram language models can
backoff to lower-order statistics when high-order statistics are unavailable, and that
representing extremely large language models can be disadvantageous from the
point-of-view of speed and efficiency, it is natural to ask how one can trade off lan-
guage model size and fidelity. Probably the simplest way of doing this is to impose
a count threshold, and then to use a lower-order backoff estimate for the probability
of thenth word in suchN -grams.

A somewhat more sophisticated approach [80] looks at the loss in likelihood
caused by using the backoff estimate to selectN -grams to prune. UsingP andP ′

to denote the original and backed-off estimates, andN(·) to represent the (possibly
discounted) number of times anN -gram occurs, the loss in log likelihood caused by
the omission of anN -gramwi

i−n+1 is given by:

N
(
wi

i−n+1

)(
logP

(
wi |wi−1

i−n+1

)
− logP

(
wi |wi−1

i−n+2

))
.

In the “Weighted Difference Method” [80], one computes all these differences, and
removes theN -grams whose difference falls below a threshold. A related approach
[82] uses the Kullback–Leibler distance between the original and pruned language
models to decide whichN -grams to prune. The contribution of anN -gram in the
original model to this KL distance is given by:

P
(
wi

i−n+1

)(
logP

(
wi |wi−1

i−n+1

)
− logP

(
wi |wi−1

i−n+2

))

and the total KL distance is found by summing over allN -grams in the original
model. The algorithm of [82] works in batch mode, first computing the change in
relative entropy that would result from removing eachN -gram, and then removing

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 271

all those below a threshold, and recomputing backoff weights. A comparison of the
weighted-difference and relative-entropy approaches shows that the two criteria are
the same in form, and the difference between the two approaches is primarily in the
recomputation of backoff weights that is done in [82]. In practice, LM pruning can
be extremely useful in limiting the size of a language model in compute-intensive
tasks.

4.2.5 Class Language Models

While n-gram language models often work well, they have some obvious draw-
backs, specifically their inability to capture linguistic generalizations. For example,
if one knows that the sentence “I went home to feed my dog” has a certain proba-
bility, then one might also surmise that the sentence “I went home to feed my cat”
is also well-formed, and should have roughly the same probability. There are at least
two forms of knowledge that are brought to bear to make this sort of generalization:
syntactic and semantic. Syntactically,both “dog” and “cat” are nouns, and can there-
fore be expected to be used in the same ways in the same sentence patterns. Further,
we have the semantic information that both are pets, and this further strengthens their
similarity. The importance of the semantic component can be further highlighted by
considering the two sentences, “I went home to walk my dog,” and “I went home to
walk my cat.” Here, although the syntactic structure is the same, the second sentence
seems odd because cats are not walked.

Class-based language models are an attempt to capture the syntactic generaliza-
tions that are inherent in language. The basic idea is to first express a probability
distribution over parts-of-speech (nouns, verbs, pronouns, etc.), and then to specify
the probabilities of specific instances of the parts of speech. In its simplest form [8]
a class based language model postulates that each word maps to a single class, so
that the word streamwk

i induces a sequence of class labelsck
i . The n-gram word

probability is then given by:

P
(
wi |wi−1

i−n+1

)
= P(wi |ci)P

(
ci |ci−1

i−n+1

)
.

Operationally, one builds ann-gram model on word classes, and then combines this
with a unigram model that specifies the probability of a specific word given a class.
This form of model makes the critical assumption that each word maps into a unique
class, which of course is not true for standard parts of speech. (For example, “fly”
has a meaning both in the verb sense of what a bird does, and in the noun sense of
an insect.) However, [8] present an automatic procedure for learning word-classes
of this form. This method greedily assigns words to classes so as to minimize the
perplexity of inducedN -gram model over class sequences. This has the advantage
both of relieving the user from specifying grammatical relationships, and of being

272 G. ZWEIG AND M. PICHENY

able to combine syntactic and semantic information. For example, [8] presents a class
composed offeet miles pounds degrees inches barrels tons acres meters bytesand
many similar classes whose members are similar both syntactically and semantically.

Later work [66] extends the class-based model to the case where a word may
map into multiple classes, and a general mapping functionS(·) is used to map a
word historywi−1

i−n+1 into a specific equivalence classs. Under these more general
assumptions, we have

P
(
wi |wi−1

i−n+1

)
=

∑

ci

P(wi |ci)

[∑

s

P(ci |s)P
(
s|wi−1

i−n+1

)]
.

Due to the complexity of identifying reasonable word-to-class mappings, however,
the class induction procedure presentedassumes an unambiguous mapping for each
word.

This general approach has been further studied in [67], and experimental results
are presented suggesting that automatically derived class labels are superior to the
use of linguistic part-of-speech labels. The process can also be simplified [91] to
using

P
(
wi |c

(
wi−1

i−n+1

))
.

Class language models are now commonly used in state-of-the-art systems, where
their probabilities are interpolated with word-basedN -gram probabilities, e.g., [93].

5. Search

Recall that the objective of a decoder is to find the best word sequencew∗ given
the acoustics:

w∗ = argmax
w

P(w|a) = argmax
w

P(w)P (a|w)

P (a)
.

The crux of this problem is that with a vocabulary sizeV and utterance lengthN ,
the number of possible word-sequences is O(V N), i.e., it grows exponentially in the
utterance length. Over the years, the process of finding this word sequence has been
one of the most studied aspects of speechrecognition with numerous techniques and
variations developed,[29,69,2]. Interestingly, in recent years, there has been a renais-
sance of interest in the simplest of these decoding algorithms: the Viterbi procedure.
The development of better HMM compilation techniques along with faster comput-
ers has made Viterbi applicable to both large vocabulary recognition and constrained
tasks, and therefore this section will focus on Viterbi alone.

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 273

5.1 The Viterbi Algorithm

The Viterbi algorithm operates on an HMM graph in order to find the best align-
ment of a sequence of acoustic frames to the states in the graph. For the purposes of
this discussion, we will define an HMM in the classical sense as consisting of states
with associated acoustic models, and arcs with associated transition costs. A special
non-emitting “start state”α and “final state”ω are specified such that all paths start
at t = 0 in α and end att = N + 1 in ω. Finally, we will associate a string label
(possibly “epsilon” ornull) with each arc. The semantics of Viterbi decoding can
then be very simply stated: the single best alignment of the frames to the states is
identified, and the word labels encountered on the arcs of this path are output. Note
that in the “straight” HMM framework there is no longer any distinction between
acoustic model costs, language model costs, or any other costs. All costs associated
with all sources of information must be incorporated in the transition and emission
costs that define the network:bj (ot) andAij .

A more precise statement of Viterbi decoding is to find the optimal state sequence
S∗ = s1, s2, . . . , sN :

S∗ = argmax
S

∏

t=1,...,n

bst (ot)astst−1.

Remarkably, due to the limited-history property of HMMs, this can be done with an
extremely simple algorithm [54,73]. We define

(1) δt (j): the cost of the best path ending in statej at timet ,
(2) Ψt (j): the state preceding statej on the best path ending in statet at timet ,
(3) pred(s): the set of states that ares ’s immediate predecessors in the HMM

graph.

These quantities can then be computed for all states and all times according to the
recursions

(1) Initialize

• δ0(α) = 1,

• Ψ0(s) = undefined∀s,

• δ0(s) = 0 ∀s 	= α;

(2) Recursion

• δt (s) = maxj∈pred(s) δt−1(j)Ajsbt (s),

• Ψt (s) = argmaxj∈pred(s) δt−1(j)Ajsbt (s).

274 G. ZWEIG AND M. PICHENY

Thus, to perform decoding, one computes theδs and their backpointersΨ , and
then follows the backpointers backwards from the final stateω at timeN + 1. This
produces the best path, from which the arc labels can be read off.

In practice, there are a several issues that must be addressed. The simplest of these
is that the products of probabilities that define theδs will quickly underflow arith-
metic precision. This can be easily dealt with by representing numbers with their log-
arithms instead. A more difficult issue occurs when non-emitting states are present
throughout the graph. The semantics of null states in this case are that spontaneous
transitions are allowed without consuming any acoustic frames. The update for a
given time frame must then proceed in two stages:

(1) Theδs for emitting states are computed in any order by looking at their pre-
decessors.

(2) Theδs for null states are computed by iterating over them in topological order
and looking at their predecessors.

The final practical issue is that in large systems, it may be advantageous to use prun-
ing to limit the number of states that areexamined at each time frame. In this case,
one can maintain a fixed number of “live” states at each time frame. The decoding
must then be modified to “push” theδs of the live states at timet to thesuccessor
states at timet + 1.

An examination of the Viterbi recursions reveals that for an HMM withA arcs and
an utterance ofN frames, the runtime is O(NA) and the space required is O(NS).
However, it is interesting to note that through the use of a divide-and-conquer recur-
sion, the space used can be reduced to O(Sk logk N) at the expense of a runtime of
O(NA logk N) [98]. This is often useful for processing long conversations, messages
or broadcasts. The Viterbi algorithm can be applied to any HMM, and the primary
distinction is whether the HMM is explicitly represented and stored in advance, or
whether it is constructed “on-the-fly.” The following two sections address these ap-
proaches.

5.1.1 Statically Compiled Decoding Graphs (HMMs)

Section 4.2.3 illustrated the conversion of anN -gram based language model into
a statically compiled HMM, and in terms of decoding efficiency, this is probably
the best possible strategy [60,78]. In this case, a large number of optimizations can
be applied to the decoding graph [60] at “compile time” so that a highly efficient
representation is available at decoding time without further processing. Further, it
provides a unified way of treating both large and small vocabulary recognition tasks.

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 275

5.1.2 Dynamically Compiled Decoding Graphs (HMMs)

Unfortunately, under some circumstances it is difficult or impossible to statically
represent the search space. For example, in a cache-LM [48,49] one increases the
probability of recently spoken words. Since it is impossible to know what will be said
at compile-time, this is poorly suited to static compilation. Another example is the
use oftrigger-LMs [75] in which the co-occurrences of words appearing throughout
a sentence are used to determine its probability; in this case,the use of a long-range
word-history makes graph compilation difficult. Or in a dialog application, one may
want to create a grammar that is specialized to information that a user has just pro-
vided; obviously, this cannot be anticipated at compile time. Therefore, despite its
renaissance, the use of static decoding graphs is unlikely to become ubiquitous.

In the cases where dynamic graph compilation is necessary, however, the princi-
ples of Viterbi decoding can still be used. Recall that when pruning is used, theδ

quantities are pushed forward to their successors in the graph. Essentially what is
required for dynamic expansion is to associate enough information with eachδ that
its set of successor states can be computed on demand. This can be done in many
ways, a good example being the strategy presented in [69].

5.2 Multipass Lattice Decoding

Under some circumstances, it is desirable to generate not just a single word hy-
pothesis, but a set of hypotheses, all of which have some reasonable likelihood. There
are a number of ways of doing this [69,90,65,71,98], and all result in a compact rep-
resentation of a set of hypotheses as illustrated in Fig. 7. The states in a word lattice
are annotated with time information, and the arcs with word labels. Additionally, the
arcs may have the acoustic and language model scores associated with the word oc-
currence (note that with ann-gram LM, this implies that all paths of lengthn − 1

FIG. 7. A word lattice. Any path from the leftmost start state to the rightmost final state representsa
possible word sequence.

276 G. ZWEIG AND M. PICHENY

leading into a state must be labeled withthe same word sequence). We note also,
that the posterior probability of a word occurrence in a lattice can be computed as
the ratio of the sum likelihood of all the paths through the lattice that use the lattice
link, to the sum likelihood of all paths entirely. These quantities can be computed
with recursions analogous to the HMMαβ recursions, e.g., as in [98].

Once generated, lattices can be used in a variety of ways. Generally, these involve
recomputing the acoustic and language model scores in the lattice with more sophis-
ticated models, and then finding the best path with respect to these updated scores.
Some specific examples are:

• Lattices are generated with an acousticmodel in which there is no cross-word
acoustic context, and then rescored with a model using cross-word acoustic
context, e.g., [58,46].

• Lattices are generated with a speaker-independent system, and then rescored
using speaker-adapted acoustic models, e.g., [93].

• Lattices are generated with a bigram LM and then rescored with a trigram or
4-gram LM, e.g., [93,55].

The main potential advantage of using lattices is that the rescoring operations can be
faster than decoding from scratch with sophisticated models. With efficient Viterbi
implementations on static decoding graphs, however, it is not clear that this is the
case [78].

5.3 Consensus Decoding

Recall that the decoding procedures thatwe have discussed so far have aimed at
recovering the MAP word hypothesis:

w∗ = argmax
w

P(w|a) = argmax
w

P(w)P (a|w)

P (a)
.

Unfortunately, this is not identical to minimizing the WER metric by which speech
recognizers are scored. The MAP hypothesis will asymptotically minimizesentence
error rate, but not necessarily word error rate. Recent work [81,57] has proposed
that the correct objective function is really the expected word-error rate under the
posterior probability distribution. Denoting the reference or true word sequence byr
and the string edit distance betweenw andr by E(w, r), the expected error is:

EP(r |a)

[
E(w, r)

]
=

∑

r

P(r |a)E(w, r).

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 277

FIG. 8. A word lattice.

Thus, the objective becomes finding

w∗ = argmax
w

∑

r

P(r |a)E(w, r).

There is no known dynamic programming procedure for finding this optimum when
the potential word sequences are represented with a general lattice. Therefore, [57]
proposes instead work with a segmental or sausage-like structure as illustrated in
Fig. 8. To obtain this structure, the links in a lattice are clustered so that temporally
overlapping and phonetically similar word occurrences are grouped together. Often,
multiple occurrences of the same word (differing in time-alignment or linguistic his-
tory) end up together in the same bin, where their posterior probabilities are added
together. Under the assumption of a sausage structure, the expected error can then
be minimized simply by selecting the link with highest posterior probability in each
bin [57]. This procedure has been widely adopted and generally provides a 5 to 10%
relative improvement in large vocabulary recognition performance.

5.4 System Combination

In recent DARPA-sponsored speech recognition competitions, it has become com-
mon practice to improve the word error rate by combining the outputs of multiple
systems. This technique was first developed in [21] where the outputs of multiple
systems are aligned to one another, and a voting process is used to select the final
output. This process bears a strong similarity to the consensus decoding technique, in
that a segmental structure is imposed on the outputs, but differs in its use ofmultiple
systems.

Although the problem of producing an optimal multiple alignment is NP complete
[34,21] presents a practical algorithm for computing a reasonable approximation.
The algorithm works by iteratively merging a sausage structure that represents the
current multiple alignment with a linear word hypothesis. In this algorithm, the sys-
tem outputs are ordered, and then sequentially merged into a sausage structure.

In a typical use [46], multiple systems are built differing in the front-end analy-
sis, type of training (ML vs. MMI) and/or speaker adaptation techniques that are

278 G. ZWEIG AND M. PICHENY

used. The combination of 3 to 5 systems may produce on the order of 10% relative
improvement over the best single system.

6. Adaptation

The goal of speaker adaptation is to modify the acoustic and language models
in light of the data obtained from a specific speaker, so that the models are more
closely tuned to the individual. This field has increased in importance since the early
1990s, has been intensively studied, and isstill the focus of a significant amount of
research. However, since no consensus has emerged on the use of language model
adaptation, and many state-of-the-art systems do not use it, this section will focus
solely on acoustic model adaptation. In this area, there are three main techniques:

• Maximum A Posteriori (MAP) adaptation, which is the simplest form of
acoustic adaptation;

• Vocal Tract Length Normalization (VTLN), which warps the frequency scale to
compensate for vocaltract differences;

• Maximum Likelihood Linear Regression, which adjusts the Gaussians and/or
feature vectors so as to increase the data likelihood according to an initial tran-
scription.

These methods will be discussed in the following sections.

6.1 MAP Adaptation

MAP adaptation is a Bayesian technique applicable when one has some reasonable
expectation as to what appropriate parameter values should be. This priorg(θ) on
the parametersθ is then combined with the likelihood functionf (x|θ) to obtain the
MAP parameter estimates:

θ∗ = argmax
θ

g(θ)f (x|θ).

The principled use of MAP estimation has been thoroughly investigated in [28],
which presents the formulation that appears here.

The most convenient representation of the prior parameters forp-dimensional
Gaussian mixture models is given by Dirichlet priors for the mixture weights
w1, . . . ,wK , and normal-Wishart densities for the Gaussians (parameterized by
meansmi and inverse covariance matricesri). These priors are expressed in terms of
the following parameters:

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 279

• νk ; a countνk > 0,

• τk ; a countτk > 0,

• αk ; a countαk > p − 1,

• µk ; ap dimensional vector,

• uk ; ap × p positive definite matrix.

Other necessary notation is:

• ckt : the posterior probability of Gaussiank at timet ,

• K: the number of Gaussians,

• n: the number of frames.

With this notation, the MAP estimate of the Gaussian mixture parameters are:

w′
k = νk − 1+

∑n
t=1 ckt

n − K +
∑K

k=1 νk

, m′
k = τkµk +

∑n
t=1cktxt

τk +
∑n

t=1ckt

,

r
′−1
k =

uk + τk(µk − m′
k)(µk = m′

k)
T

αk − p +
∑n

t=1 ckt

+
∑n

t=1 ckt (xt − m′
k)(xt = m′

k)
T

αk − p +
∑n

t=1ckt

.

Unfortunately, there are a large number of free parameters in the representation of
the prior, making this formulation somewhat cumbersome in practice. [28] discusses
setting these, but in practice it is often easier to work in terms of fictitious counts.
Recall that in EM, the Gaussian parameters are estimated from first and second-order
sufficient statistics accumulated over the data. One way of obtaining reasonable pri-
ors is simply to compute these over the entire training set without regard to phonetic
state, and then to weight them according to the amount of emphasis that is desired
for the prior. Similarly, statistics computed for one corpus can be downweighted and
added to the statistics from another.

6.2 Vocal Tract Length Normalization

The method of VTLN is motivated by the fact that formants and spectral power
distributions vary in a systematic way from speaker to speaker. In part, this can be
viewed as a side-effect of a speech generation model in which the vocal tract can
be viewed as a simple resonance tube, closed at one end. In this case the first res-
onant frequency is given by 1/L, whereL is the vocal tract length. While such a
model is too crude to be of practical use, it does indicate a qualitative relationship
between vocal tract length and formant frequencies. The idea of adjusting for this on
a speaker-by-speaker basis is old, dating at least to the 1970s [85,7], but was revital-
ized by a CAIP workshop [44], and improved to a fairly standard form in [87]. The

280 G. ZWEIG AND M. PICHENY

basic idea is to warp the frequency scale so that the acoustic vectors of a speaker are
made more similar to a canonical speaker-independent model. (This idea of “canon-
icalizing” the feature vectors will recur in another form in Section 6.3.2.) Figure 9
illustrates the form of one common warping function.

There are a very large number of variations on VTLN, and for illustration we
choose the implementation presented in [87]. In this procedure, the FFT vector as-
sociated with each frame is warped according a warping function like that in Fig. 9.
Ten possible warping scales are considered, ranging in the slope of the initial seg-
ment from 0.88 to 1.2. The key to this technique is to build a simple model of voiced
speech, consisting of a single mixture of Gaussians trained on frames that are iden-
tified as being voiced. (This identification is made on the basis of a cepstral analysis
described in [40].) To train the voicing model, each speaker is assigned an initial
warp scale of 1, and then the following iterative procedure is used:

(1) Using the current warp scales for each speaker, train a GMM for the voiced
frames.

(2) Assign to each speaker the warp scale that maximizes the likelihood of his or
her warped features according to the current voicing model.

(3) Go to 1.

After several iterations, the outcome of this procedure is a voicing scale for each
speaker, and a voicing model. Histograms of the voicing scales are generally bi-
modal, with one peak for men, and one for women. Training of the standard HMM
parameters can then proceed as usual, using the warped or canonicalized features.

The decoding process in similar. For the data associated with a single speaker, the
following procedure is used:

FIG. 9. Two VTLN warping functions.f0 is mapped intof ′
0.

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 281

(1) Select the warp scale that maximizes the likelihood of the warped features
according to the voicing model.

(2) Warp the features and decode as usual.

The results reported in [87] indicate a 12% relative improvement in performance
over unnormalized models, and improvements of this scale are typical [89,96].

As mentioned, a large number of VTLN variants have been explored. [37,61,89]
choose warp scales by maximizing the data likelihood with respect to a full-blown
HMM model, rather than a single GMM for voiced frames, and experiment with
the size of this model. The precise nature of the warping has also been subject to
scrutiny; [37] uses a piecewise linear warp with two discontinuities rather than one;
[61] experiments with a power law warping function of the form

f ′ =
(

f

fN

)β

fN

wherefN is the bandwidth and [96] experiments with bilinear warping functions of
the form

f ′ = f + 2 arctan

(
(1− α)sin(f)

1− (1− α)cos(f)

)
.

Generally, the findings are that piecewise linear models work as well as the more
complex models, and that simple acoustic models can be used to estimate the warp
factors.

The techniques described so far operate by finding a warp scale using the princi-
ples of maximum likelihood estimation. An interesting alternative presented in [20,
32] is based on normalizing formant positions. In [20], a warping function of the
form

f ′ = k
3f/8000
s

is used, whereks is the ratio of the speaker’s third formant to the average frequency
of the third formant. In [32], the speaker’s first, second, and third formants are plotted
against their average values, and the slope of the line fitting these points is used as the
warping scale. These approaches, while nicely motivated, have the drawback that it
is not easy to identify formant positions, and they have not been extensively adopted.

6.3 MLLR

A seminal paper [52] sparked intensive interest in the mid 1990s in techniques for
adapting the means and/or variances ofthe Gaussians in an HMM model. Whereas
VTLN can be thought of as a method for standardizing acoustics across speakers,

282 G. ZWEIG AND M. PICHENY

Maximum Likelihood Linear Regression was first developed as a mechanism for
adapting the acoustic models to the peculiarities of individual speakers. This form
of MLLR is known as “model-space” MLLR, and is discussed in the following sec-
tion. It was soon realized [18,25], however, that one particular form of MLLR has an
equivalent interpretation as on operation on the features, or “feature-space” MLLR.
This technique is described in Section 6.3.2, and can be thought of as another canon-
icalizing operation.

6.3.1 Model Space MLLR
A well defined question first posed in [52] is, suppose the means of the Gaussians

are transformed according to

µ̂ = Aµ + b.

Under the assumption of this form of transform, what matrixA and offset vectorb
will maximize the data probability given an initial transcription of the data? To solve
this, one defines an extended mean vector

ξ = [1µ1µ2 . . .µp]T

and ap × p + 1 matrixW . The likelihood assigned by a Gaussiang is then given by

N(x;Wξg,Σg).

In general, with a limited amount of training data, it may be advantageous to tie the
transforms of many Gaussians, for example all those belonging to a single phone
or phone-group such as vowels. If we defineγg(t) to be the posterior probability
of Gaussiang having generated the observationot at time t , andG to be the set
of Gaussians whose transforms are to be tied, then the matrixW is given by the
following equation [52]

t=N∑

t=1

∑

g∈G
γg(t)Σ

−1
g o(t)ξT

g =
t=N∑

t=1

∑

g∈G
γg(t)Σ

−1
g Wξ gξ

T
g .

Thus, estimating the transforms simply requires accumulating the sufficient statistics
used in ML reestimation, and solving a simple matrix equation. Choosing the sets
of Gaussians to tie can be done simply by clustering the Gaussians according to
pre-defined phonetic criteria, or according to KL divergence [53]. Depending on the
amount of adaptation data available, anywhere from 1 to several hundred transforms
may be used.

A natural extension of mean-adaptation is to apply a linear transformation to the
Gaussian variances as well [25,23]. The form of this transformation is given by

µ̂ = Aµ + b = Wξ

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 283

and

Σ̂ = HΣH T

whereW and H are the matrices to be estimated. A procedure for doing this is
presented in [23].

6.3.2 Feature Space MLLR
Although it is a constrained version of the mean and variance transform described

in the previous section, in some ways the most important form of MLLR applies the
same transform to the means as to the variances:

µ̂ = A′µ − b′, Σ̂ = A′ΣA′T.

Under this constraint, straightforward estimation formulae can be derived, but more
importantly, the transformation can be applied in to the feature vectors rather than
the models, according to:

ô(t) = A′−1o(t) + A′−1b′ = Ao(t) + b.

The likelihoods computed with this feature transformation differ from those com-
puted with the model transform by log(|A|). When, as is often done, a single fMLLR
transform is used, this can be ignored in Viterbi decoding and EM training. This has
two important ramifications. Once the transforms have been estimated,

(1) Transformed features can be written out and the models can be retrained with
the standard EM procedures (speaker-adaptive or SAT training) and

(2) MMI or other discriminative training can be performed with the transformed
features.

Curiously, although multiple MLLR transforms are commonly used, the use of multi-
ple fMLLR transforms has not yet been thoroughly explored. Due to the convenience
of working with transformed or canonicalized features, feature space MLLR has be-
come a common part of modern systems [78,93]. It is often used in conjunction with
VTLN in the following speaker-adaptive or SAT training procedure:

(1) Train a speaker-independent (SI) system.
(2) Estimate VTLN warp scales using the frames that align to voiced phones with

the SI system.
(3) Write out warped features for each speaker.
(4) Train a VTLN-adapted system.
(5) Estimate fMLLR transforms with the VTLN models.
(6) Write out fMLLR-VTLN features.
(7) Train ML and/or MMI systems from the canonical features.

284 G. ZWEIG AND M. PICHENY

7. Performance Levels

In order to illustrate the error rates attainable with today’s technology—and the
relative contribution of the techniques discussed in earlier sections—the following
paragraphs describe the state-of-the-art as embodied by an advanced IBM system
in 2002 [46]. This system was designed to work well across a wide variety of speak-
ers and topics, and is tested on five separate datasets:

(1) Telephone conversations (Swb98).
(2) Meeting recordings (mtg).
(3) Two sets of call center recordings of customers discussing account informa-

tion (cc1 and cc2).
(4) Voicemail recordings (vm).

In this system, the recognition steps are as follows:

P1 Speaker-independentdecoding. The system uses mean-normalized MFCC fea-
tures and an acoustic model with 4078 left context-dependent states and 171K
mixture components.

P2 VTLN decoding. VTLN warp factors are estimated for each speaker using
forced alignments of the data to therecognition hypotheses from P1, then
recognition is performed with a VTLN system that uses mean-normalized
PLP features and an acoustic model with 4440 left context-dependent states
and 163K mixture components.

P3 Lattice generation. Initial word lattices are generated with a SAT system that
uses mean-normalized PLP features and an acoustic model with 3688 word-
internal context-dependent states and 151K mixture components. FMLLR
transforms are computed with the recognition hypotheses from P2.

P4 Acoustic rescoring with large SAT models. The lattices from P3 are rescored
with five different SAT acoustic models and pruned. The acoustic models are
as follows:
A An MMI trained PLP system with 10437 left context-dependent states and

623K mixture components. The maximum value ofc0 is subtracted from
each feature vector, and mean-normalization is performed for the other cep-
stral coefficients.

B An MLE PLP system identical to the system of P4A, except for the use of
MLE training of the acoustic model.

C An MLE PLP system with 10450 left context-dependent states and 589K
mixture components. This system uses mean normalization of all raw fea-
tures includingc0.

D A SPAM MFCC system with 10133 left context-dependent states and 217K
mixture components.

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 285

E An MLE MFCC system with 10441 left context-dependent states and 600K
mixture components. This system uses max.-normalization ofc0 and mean
normalization of all other raw features.

The FMLLR transforms for each of the five acoustic models are computed
from the one-best hypotheses in the lattices from P3.

P5 Acoustic model adaptation. Each of the five acoustic models are adapted
with MLLR using one-best hypotheses from their respective lattices generated
in P4.

P6 4-gram rescoring. Each of the five sets of lattices from P5 are rescored and
pruned using a 4-gram language model.

P7 Confusion network combination. Each of the five sets of lattices from P6 are
processed to generate confusion networks [57], then a final recognition hy-
pothesis is generated by combining theconfusion networks for each utterance.

The performance of the various recognition passes on the test set is summarized in
Table I.

TABLE I
WORD ERRORRATES (%) FOR EACH TEST SET AT EACH PROCESSINGSTAGE AND THE OVERALL ,
AVERAGE ERRORRATE. FOR PASSESWHERE MULTIPLE SYSTEMSARE USED (P4–6),THE BEST

ERRORRATE FOR A TEST COMPONENT ISHIGHLIGHTED

Pass swb98 mtg cc1 cc2 vm All

P1 42.5 62.2 67.8 47.6 35.4 51.1

P2 38.7 53.7 56.9 44.1 31.7 45.0

P3 36.0 44.6 46.6 40.1 28.0 39.1

P4A 31.5 39.4 41.7 38.2 26.7 35.5
P4B 32.3 40.0 41.3 39.0 26.7 35.9
P4C 32.5 40.2 42.1 39.9 27.0 36.3
P4D 31.7 40.3 42.6 37.6 25.8 35.6
P4E 33.0 40.5 43.4 38.8 26.9 36.5

P5A 30.9 38.3 39.4 36.9 26.1 34.3
P5B 31.5 38.5 39.4 37.0 26.5 34.6
P5C 31.6 38.7 41.0 39.4 26.8 35.5
P5D 30.8 39.0 41.1 36.7 25.6 34.6
P5E 32.1 38.9 41.8 36.8 26.4 35.2

P6A 30.4 38.0 38.9 36.5 25.7 33.9
P6B 31.0 38.3 38.9 36.4 25.8 34.1
P6C 31.2 38.4 40.1 38.9 26.3 35.0
P6D 30.4 38.6 40.8 36.3 25.5 34.3
P6E 31.5 38.5 41.6 35.9 25.7 34.6

P7 29.0 35.0 37.9 33.6 24.5 32.0

286 G. ZWEIG AND M. PICHENY

8. Conclusion

Over the past decade, incremental advances in HMM technology have advanced
the state of the art to the point where commercial use is possible. These advances
have occurred in all areas of speech recognition, and include

• LDA and HLDA analysis in feature extraction,

• discriminative training,

• VTLN, MLLR and FMLLR for speaker adaptation,

• the use of determinization and minimization in decoding graph compilation,

• consensus decoding,

• voting and system combination.

Collectively applied, these advances produce impressive results for many speakers
under many conditions. However, under some conditions, such as when background
noise is present or speech is transmittedover a low-quality cell phone or a speaker has
an unusual accent, today’s systems can fail. As the error-rates of Section 7 illustrate,
this happens enough that the average error-rate for numerous tasks across a variety of
conditions is around 30%—far from human levels. Thus, the most critical problem
over the coming decade is develop truly robust techniques that reduce the error rate
by another factor of five.

REFERENCES

[1] Aho A.V., Sethi R., Ullman J.D.,Compilers: Principles, Techniques, and Tools,
Addison–Wesley, Reading, MA, 1986.

[2] Aubert X., “A brief overview of decoding techniques for large vocabulary continuous
speech recognition”, in:Automatic Speech Recognition: Challenges for the New Mil-
lennium, 2000.

[3] Axelrod S., Gopinath R., Olsen P., “Modeling with a subspace constraint on inverse
covariance matrices”, in:ICSLP, 2002.

[4] Bahl L.R., Brown P.F., de Souza P.V., Mercer R.L., “Maximum mutual information
estimation of hidden Markov model parameters for speech recognition”, in:ICASSP,
1986, pp. 49–52.

[5] Bahl L.R., et al., “Context dependent modeling of phones in continuous speech using
decision trees”, in:Proceedings of DARPA Speech and Natural Language Processing
Workshop, 1991.

[6] Baker J., “The Dragon system—an overview”,IEEE Transactions on Acoustics,
Speech, and Signal Processing23 (1975) 24–29.

[7] Bamberg P., “Vocal tract normalization”, Technical report, Verbex, 1981.

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 287

[8] Brown P.F., et al., “Class-basedn-gram models of natural language”,Comput. Lin-
guist.18 (1992).

[9] Chen S., Eide E., Gales M., Gopinath R., Olsen P., “Recent improvements in IBM’s
speech recognition system forautomatic transcription of broadcast speech”, in:Pro-
ceedings of the DARPA Broadcast News Workshop, 1999.

[10] Chen S.S., Gopalakrishnan P.S., “Clustering via the Bayesian information criterion with
applications in speech recognition”, in:ICASSP, 1995, pp. 645–648.

[11] Chen S., et al., “Speech recognition for DARPA communicator”, in:ICASSP, 2001.
[12] Chen S.F., Goodman J., “An empirical study of smoothing techniques for language

modeling”, Technical Report TR-10-98, Harvard University, 1998.
[13] Chomsky N.,Aspects of the Theory of Syntax, MIT Press, Cambridge, MA, 1965.
[14] CMU, The CMU Pronouncing Dictionary, 2003.
[15] Linguistic Data Consortium,Callhome American English lexicon (pronlex), 2003.
[16] Davies K., et al., “The IBM conversational telephony system for financial applications”,

in: Eurospeech, 1999.
[17] Davis S., Mermelstein P., “Comparison of parametric representations for monosyllabic

word recognition in continuously spoken sentences”,IEEE Transactions on Acoustics,
Speech, and Signal Processing28 (1980) 357–366.

[18] Digalakis V.V., Rtischev D., Neumeyer L.G., “Speaker adaptation using constrained
estimation of Gaussian mixtures”,IEEE Transactions on Speech and Audio Processing
(1995) 357–366.

[19] Duda R.O., Hart P.B.,Pattern Classification and Scene Analysis, Wiley, New York,
1973.

[20] Eide E., Gish H., “A parametric approach to vocal tract length normalization”, in:
ICASSP, 1996, pp. 346–348.

[21] Fiscus J.G., “A post-processing system to yield reduced word error rates: Recognizer
output voting error reduction (rover)”, in:IEEE Workshop on Automatic Speech Recog-
nition and Understanding, 1997.

[22] Furui S., “Speaker independent isolated word recognition using dynamic features of
speech spectrum”,IEEE Transactions on Acoustics Speech and Signal Processing34
(1986) 52–59.

[23] Gales M.J.F., “Maximum likelihood linear transformations for HMM-based speech
recognition”, Technical Report CUED-TR-291, Cambridge University, 1997.

[24] Gales M.J.F., “Maximum likelihood linear transformations for HMM-based speech
recognition”,Computer Speech and Language12 (1998).

[25] Gales M.J.F., Woodland P.C., “Mean and variance adaptation within the MLLR frame-
work”, Computer Speech and Language10 (1996) 249–264.

[26] Gao Y., Ramabhadran B., Chen J., Erdogan H., Picheny M., “Innovative approaches for
large vocabulary name recognition”, in:ICASSP, 2001.

[27] Gauvain J.-L., Lamel L., Adda G., “The LIMSI 1999 BN transcription system”, in:
Proceedings 2000 Speech Transcription Workshop, 2000, http://www.nist.gov/speech/
publications/tw00/html/abstract.htm.

http://www.nist.gov/speech/publications/tw00/html/abstract.htm
http://www.nist.gov/speech/publications/tw00/html/abstract.htm
http://www.nist.gov/speech/publications/tw00/html/abstract.htm

288 G. ZWEIG AND M. PICHENY

[28] Gauvain J.-L., Lee C.-H., “Maximum a posteriori estimation for multivariate Gaussian
mixture observations of Markov chains”,IEEE Transactions on Speech and Audio
Processing2 (1994) 291–298.

[29] Gopalakrishnan P.S., Bahl L.R., Mercer R.L., “A tree-search strategy for large vocabu-
lary continuous speech recognition”, in:ICASSP, 1995.

[30] Gopalakrishnan P., Kanevsky D., Nadas A., Nahamoo D., “An inequality for rational
functions with applications to some statistical estimation problems”,IEEE Transactions
on Information Theory37 (1991) 107–113.

[31] Gopinath R., “Maximum likelihood modeling with Gaussian distributions for classifi-
cation”, in: ICASSP, 1998.

[32] Gouvea E.B., Stern R.M., “Speaker normalization through formant-based warping of
the frequency scale”, in:Eurospeech, 1997.

[33] Graff D.,The English Gigaword Corpus, 2003.
[34] Gusfield D.,Algorithms on Strings, Trees and Sequences, Cambridge Univ. Press, Cam-

bridge, UK, 1997.
[35] Haeb-Umbach R., Ney H., “Linear discriminant analysis for improved large vocabulary

continuous speech recognition”, in:ICASSP, 1992.
[36] Hain T., Woodland P.C., Evermann G., Povey D., “The CU-HTK March 2000 HUB5E

transcription system”, in:Proc. Speech Transcription Workshop, 2000.
[37] Hain T., Woodland P.C., Niesler T.R., Whittaker E.W.D., “The 1998 HTK system for

transcription of conversational telephone speech”, in:Eurospeech, 1999.
[38] Hermansky H., “Perceptual linear predictive (PLP) analysis of speech”,J. Acoustical

Society of America87 (1990) 1738–1752.
[39] Hopcroft J.E., Ullman J.D.,Introduction to Automata Theory, Languages and Compu-

tation, Addison–Wesley, Reading, MA, 1979.
[40] Hunt M.J., “A robust method of detecting the presence of voiced speech”, in:ICASSP,

1995.
[41] Jan E., Maison B., Mangu L., Zweig G., “Automatic construction of unique signa-

tures and confusable sets for natural language directory assistance applications”, in:
Eurospeech, 2003.

[42] Jeffreys H.,Theory ofProbability, Clarendon, Oxford, 1948.
[43] Jelinek F., “Continuous speech recognition by statistical methods”,Proceedings of the

IEEE 64 (1976) 532–556.
[44] Kamm T., Andreou A., Cohen J., “Vocaltract normalization in speech recognition:

Compensating for systematic speaker variability”, in:Proceedings of the 15th Annual
Speech Recognition Symposium, Baltimore, MD, 1995, pp. 175–178.

[45] Katz S.M., “Estimation of probabilitiesfrom sparse data for the language model com-
ponent of a speech recognizer”,IEEE Transactions of Acoustics, Speech and Signal
Processing35 (1987) 400–401.

[46] Kingsbury B., Mangu L., Saon G., Zweig G., Axelrod S., Visweswariah K., Picheny M.,
“Towards domain independent conversational speech recognition”, in:Eurospeech,
2003.

[47] Kneser N., Ney H., “Improved backing-off form-gram language modeling”, in:
ICASSP, 1995.

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 289

[48] Kuhn R., “Speech recognition and the frequency of recently used words: A modified
Markov model for natural language”, in:12th International Conference on Computa-
tional Linguistics, Budapest, 1988, pp. 348–350.

[49] Kuhn R., De Mori R., “A cache based natural language model for speech recognition”,
IEEE Transactions on Pattern Analysis and Machine Intelligence12 (1990) 570–583.

[50] Kumar N., Andreou A.G., “Heteroscedastic discriminant analysis and reduced rank
HMMs for improved speech recognition”,Speech Communication(1998) 283–297.

[51] Leggetter C., Woodland P.C., “Flexible speaker adaptation using maximum likelihood
linear regression”, in:Eurospeech, 1995.

[52] Leggetter C., Woodland P.C., “Speaker adaptation of continuous density HMMs using
multivariate linear regression”, in:ICSLP, 1994.

[53] Leggetter C.J., Woodland P.C., “Flexible speaker adaptation using maximum likelihood
linear regression”, in:Eurospeech, 1995.

[54] Levinson S.E., Rabiner L.R., Sondhi M.M., “An introduction to the application of the
theory of probabilistic functions of a Markovprocess to automatic speech recognition”,
The Bell System Technical Journal62 (1983) 1035–1074.

[55] Ljolje A., et al., “The AT&T 2000 LVSCR system”, in:Proceedings 2000 Speech
Transcription Workshop, 2000, http://www.nist.gov/speech/publications/tw00/html/
abstract.htm.

[56] Makhoul J., “Linear prediction: A tutorial review”,Proceedings of the IEEE63 (1975)
561–580.

[57] Mangu L., Brill E., Stolcke A., “Findingconsensus in speech recognition: Word error
minimization and other applications of confusion networks”,Computer Speech and
Language14 (2000) 373–400.

[58] Matsoukas S., et al., “Speech to text research at BBN”, in:Proceedings of January 2003
EARS Midyear Meeting, 2003.

[59] Mohri M., “Finite-state transducers in language and speech processing”,Comput. Lin-
guist.23 (1997).

[60] Mohri M., Riley M., Hindle D., Ljolje A., Pereira F., “Full expansion of context-
dependent networks in large vocabulary speech recognition”, in:ICASSP, 1998.

[61] Molau S., Kanthak S., Ney H., “Efficient vocal tract normalization in automatic speech
recognition”, in:ESSV, 2000, pp. 209–216.

[62] Nadas A., “A decision theoretic formulation of a training problem in speech recognition
and a comparison of training by unconditional versus unconditional maximum likeli-
hood”, IEEE Transactions on Acoustics, Speech, and Signal Processing31 (1983).

[63] Nadas A., Nahamoo D., Picheny M., “On a model-robust training method for speech
recognition”, IEEE Transactions on Acoustics, Speech, and Signal Processing36
(1988).

[64] Naur P., “Revised report on the algorithmic language Algol 60”,Communications of
the Association for Computing Machinery6 (1963) 1–17.

[65] Neukirchen C., Klakow D., Aubert X., “Generation and expansion of word graphs using
long span context information”, in:ICASSP, 2001.

[66] Ney H., Essen U., Kneser R., “On structuring probabilistic dependences in stochastic
language modelling”,Computer Speech and Language(1994) 1–38.

http://www.nist.gov/speech/publications/tw00/html/abstract.htm
http://www.nist.gov/speech/publications/tw00/html/abstract.htm
http://www.nist.gov/speech/publications/tw00/html/abstract.htm

290 G. ZWEIG AND M. PICHENY

[67] Niesler T.R., Whittaker E.W.D., Woodland P.C., “Comparison of part-of-speech and
automatically derived category-based language models for speech recognition”, in:
ICASSP, 1998.

[68] Normandin Y., Regis C., De Mori R., “High-performance connected digit recogni-
tion using maximum mutual information”,IEEE Transactions on Speech and Audio
Processing2 (1994) 299–311.

[69] Odell J.J., “The use of context in largevocabulary speech recognition”, Cambridge
University dissertation, 1995.

[70] Olsen P., Gopinath R., “Extended MLLT for Gaussian mixture models”,IEEE Trans-
actions on Speech and Audio Processing(2001).

[71] Ortmanns S., Ney H., “A word graph algorithm for large vocabulary continuous speech
recognition”,Computer Speech and Language(1997) 43–72.

[72] Pellom B., Ward W., Hansen J., Hacioglu K., Zhang J., Yu X., Pradhan S., “University
of Colorado dialog systems for travel and navigation”, in:Human Language Technolo-
gies, 2001.

[73] Rabiner L.R., Juang B.-H., “An introduction to hidden Markov models”,IEEE ASSP
Magazine(1986) 4–16.

[74] Rabiner L.R., Juang B.-H.,Fundamentals of Speech Recognition, Prentice Hall, New
York, 1993.

[75] Rosenfeld R., “A maximum entropy approach to adaptive statistical language model-
ing”, Computer Speech and Language10 (1996) 187–228.

[76] Sankar A., Gadde V.R.R., Stolcke A., Weng F., “Improved modeling and efficiency for
automatic transcription of broadcast news”,Speech Communication37 (2002) 133–
158.

[77] Saon G., Padmanabhan M., Gopinath R., Chen S., “Maximum likelihood discriminant
feature spaces”, in:ICASSP, 2000.

[78] Saon G., Zweig G., Kingsbury B., Mangu L., Chaudhari U., “An architecture for rapid
decoding of large vocabulary conversational speech”, in:Eurospeech, 2003.

[79] Schroeder M.R., “Recognition of complex acoustic signals”, in: Bullock T.H. (Ed.),
Life Sciences Research Report 5, Abakon Verlag, 1977.

[80] Seymore K., Rosenfeld R., “Scalable backoff language models”, in:ICSLP, 1996.
[81] Stolcke A., Konig Y., Weintraub M., “Explicit word error minimization usingn-best

list rescoring”, in:Eurospeech, 1997.
[82] Stolcke A., “Entropy-based pruning of backoff language models”, in:Proceedings of

DARPA Broadcast News Transcription and Understanding Workshop, 1998, pp. 270–
274.

[83] Stolcke A., “Srilm—an extensible language modeling toolkit”, in:ICSLP, 2002.
[84] Suontausta J., Hakkinen J., Olli V., “Fast decoding in large vocabulary name dialing”,

in: ICASSP, 2000, pp. 1535–1538.
[85] Waitika H., “Normalization of vowels by vocal-tract length and its application to vowel

identification”,IEEE Transactions on Audio Speech and Signal Processing(1977) 183–
192.

LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION 291

[86] Wegmann S., Zhan P., Carp I., Newman M., Yamron J., Gillick L., “Dragon systems’
1998 broadcast news transcription system”, in:Proceedings of the DARPA Broadcast
News Workshop, NIST, 1999.

[87] Wegmann S., McAllaster D., Orloff J., Peskin B., “Speaker normalization on conversa-
tional telephone speech”, in:ICASSP, 1996.

[88] Welling L., Haberland N., Ney H., “Acoustic front-end optimization for large vocabu-
lary speech recognition”, in:Eurospeech, 1997.

[89] Welling R., Haeb-Umbach R., Aubert X., Haberland N., “A study on speaker normaliza-
tion using vocal tract normalization and speaker adaptive training”, in:ICASSP, 1998,
pp. 797–800.

[90] Weng F., Stolcke A., Sankar A., “Efficient lattice representation and generation”, in:
ICSLP, 1998.

[91] Whittaker E.W.D., Woodland P.C., “Efficient class-based language modelling for very
large vocabularies”, in:ICASSP, 2001.

[92] Woodland P.C., Povey D., “Large scale discriminative training for speech recognition”,
in: Automatic Speech Recognition: Challenges for the New Millennium, 2000.

[93] Woodland P., et al., “The CU-HTK April 2002 switchboard system”, in:EARS Rich
Transcription Workshop, 2002.

[94] Young S., Odell J., Ollason D., Valtchev V., Woodland P.,The HTK Book, 2.1 edition,
Entropic Cambridge Research Laboratory, 1997.

[95] Young S.J., Odell J.J., Woodland P.C., “Tree-based tying for high accuracy acoustic
modelling”, in:ARPA Workshop on Human Language Technology, 1994.

[96] Zhan P., Waibel A., “Vocal tract length normalization for large vocabulary continuous
speech recognition”, Technical Report CMU-CS-97-148, School of Computer Science,
Carnegie Mellon University, 1997.

[97] Zue V., et al., “A telephone-based conversational interface for weather information”,
2000.

[98] Zweig G., Padmanabhan M., “Exact alpha–beta computation in logarithmic space with
application to map word graph construction”, in:ICSLP, 2000.

[99] Zweig G., Saon G., Yvon F., “Arc minimization in finite state decoding graphs with
cross-word acoustic context”, in:ICSLP, 2002.

[100] Zwicker E., “Subdivision of the audible frequency range into critical bands”,J. Acousti-
cal Society of America33 (1961) 248.

[101] Zwicker E., “Masking and physiological excitation as consequences of ear’s frequency
analysis”, in: Plomp R., Smoorenburg G.F. (Eds.),Frequency Analysis and Periodicity
Detection in Hearing, 1970.

This page intentionally left blank

Author Index

Numbers initalics indicate the pages on which complete references are given.

A

Aach, J., 195, 234,242
Abajian, C., 204, 231,244
Abel, S., 58,68
ABET Engineering Accreditation

Commission, 15,31
Abran, A., 10,32
Ackley, D.H., 127,143
Adams, M.D., 195, 214,242
Adda, G., 250, 267,287
Adelsbach, A., 139,141
Agre, P., 56,68
Aho, A.V., 263, 269,286
Aiken, A., 129,146
Allen, F., 21,31
Alon, N., 204,244
Altschul, S.F., 220,246
Altshuler, D., 237,248
Alvisi, L., 134, 146
Anderson, R., 52, 53,68
Anderson, T., 128,145
Andersson, B., 225,247
Andreou, A., 256, 279,288, 289
Anonymous, 154,190
Anson, E.L., 230,247
Aparicio, S., 195, 220, 224, 226, 234,243
Arbaugh, W.A., 138,141
Arce, I., 122,141
Ardis, M.A., 16,32
Armen, C., 207,244
Arner, E., 225,247
Arnold, S., 126, 137, 139,141, 142
Aronson, E., 39,72
Arratia, R., 200,243

Association for Computing Machinery, 21,31
Atallah, M.J., 61,68
Aubert, X., 272, 275, 281,286, 289, 291
Avisian, Inc., 153, 164, 168, 171, 184, 186,

188
Axelrod, S., 253, 255, 258, 260, 276, 277, 284,

286, 288

B

Bacon, D.F., 129,145
Badger, L., 126,141, 143
Bagert, D.J., 5, 14, 16, 17, 20, 21, 25, 30,31,

32
Bahl, L.R., 258, 261, 272,286, 288
Bailey, J.A., 227,247
Baker, J., 250,286
Baker, R., 115,119
Bakke, P., 132,142
Balfanz, D., 51,70
Balupari, R., 128,143
Balzer, R., 126, 132,141
Bamberg, P., 279,286
Baratloo, A., 132,141
Barringer, M., 132, 136,142
Bates, J., 92,118
Batzoglou, S., 195, 199, 210, 220, 222, 224,

226, 228, 230, 234,243
BBC News Online, 49,68
Beattie, S., 126, 127, 132, 133, 136, 137, 139,

140,141, 142
Beaupre, D.S., 115,119
Beigel, R., 204,244
Beja, O., 240,248

293

294 AUTHOR INDEX

Belkin, N.J., 52,69
Bellovin, S.M., 128,141, 142
Benini, L., 164,188
Berinato, S., 150, 162,188
Berrier, D., 132,143
Bester, J., 133,141
Beth, Th., 64,73
Bevan, M., 215,245
Bhatkar, S., 127,141
Biber, D., 63,68, 69
Biros, D.P., 42,70
Blair, J.P., 42,69
Bloch, J.T., 129, 132,145, 146
Block, V., 149,188
Bloom, B.J., 16,32
Blum, A., 207,244
Bobert, W.E., 126,141
Boehm, B., 21,31
Bolanos, R., 221, 225,246
Bolchini, C., 164,188
Bonfield, J.K., 204, 231,244, 247
Bourque, P., 10, 16,32
Bozek, T., 52,68
Bray, B., 132,141
Brewer, E.A., 129,146
Brill, E., 276, 277, 285,289
Briney, A., 152,188
British Computer Society and The Institution

of Electrical Engineers, 14,32
Brooks, F., 21,31
Brooks, H.M., 52,69
Brown, P.F., 261, 271, 272,286, 287
Browne, H.K., 138,141
Browne, J., 21,31
Buchanan Ingersoll, P.C., 58,69
Buchheim, T., 133,141
Buller, D.B., 42,69
Burgart, L.J., 203,244
Burgoon, J.K., 37, 42, 63,69, 70, 73
Burks, C., 217, 234,245, 247

C

Cachin, C., 139,141
Cai, W.W., 195, 215,243
Canadian Council of Professional Engineers,

23, 29,32

Cao, J., 42,69
Carp, I., 250,291
Carr, C., 80,118
Carrier, B., 100,119
Casjens, S., 240,248
Cassaday, W., 115,119
CERT Coordination Center, 131, 134,142
Chan, A.T., 164, 178, 182,188
Chan, P.K., 130,144
Chandy, K.M., 65,69
Chaudhari, U., 250, 253, 258, 265, 267, 268,

274, 276, 283,290
Chen, F., 63,70
Chen, H., 42,69, 129,142
Chen, J., 250,287
Chen, S., 250, 256,287, 290
Chen, S.F., 265, 266,287
Chen, S.S., 258,287
Chen, T., 219, 220, 222, 224, 230, 234,246
Cheney, J., 129,143
Chengxiang, Z., 52,71
Cheswick, W.R., 128,142
Chez.com, 41, 49,69
Chissoe, S.L., 202, 227,243
Chomsky, N., 264,287
Chou, H.H., 224,246
Churchill, G.A., 231,247
Cignoli, R.L.O., 62,69
Clendening, J., 153,188
CMU, 258,287
Cocchi, T., 8,32
Cohen, J., 279,288
Combs, J.E., 38, 39,69
Consortium I.H.G.S., 195,242
Consortium R.g.s., 195,243
Cooper, W.S., 43,69
Cornetto, K.M., 42,69
Costlow, T., 164,188
Cover, T.A., 43, 53,69
Cowan, C., 124, 126, 127, 132, 133, 136, 137,

139, 140,141, 142, 146
Craig, B., 180,188
Creese, S., 139,141
Crews, J.M., 42,69
Croall, J., 128,146
Croghan, L., 153,188
Cross, R., 149, 156, 157, 185,188
Csuros, M., 216,245

AUTHOR INDEX 295

Cummings, M.P., 219,245
Cutting, D., 63,71
Cybenko, G., 36, 43, 59,69
Czabarka, E., 199, 204,243

D

Daniels, P.J., 52,69
Dao, S.K., 134,146
Das, K., 130, 138,144
Davies, K., 250,287
Davis, D., 153,189
Davis, S., 251–253,287
Dawson, E., 237,248
De Mori, R., 262, 275,289, 290
de Souza, P.V., 261,286
Dean, D., 51,70
Dean, M., 127,144
Dehal, P., 195,243
Delcher, A.L., 219, 221, 225,245, 246
Dellarocas, C., 64,70
DeMarco, T., 20,32
Demchak, C., 42,69
Denning, D., 39–41, 43,70
Desmarais, C., 204, 231,244
Deswarte, Y., 139,141
DeWalt, M., 18, 21,33
Dietrich, S., 136,143
Digalakis, V.V., 282,287
Djahandari, K., 133,145
Donoghue, J.A., 183,189
Doob, L., 38,70
dos Santos, A.L.M., 163,190
D’Ottaviano, I.M.L., 62,69
Douglas, P., 8,32
Drineas, P., 53,70
Duda, R.O., 252,287
Dupuis, R., 10,32
Dutertre, B., 139,145
DuVarney, D.C., 127,141

E

Eckmann, S.T., 131,146
Edwards, H.M., 14, 25,33
Eedes, J., 186,189
Eide, E., 250, 281,287

Eisenberg, D., 230,247
Elliot, J., 151,189
Elliot, L., 18, 21,33
Ellison, R.J., 139,143
Ellul, J., 38, 39,70
Engle, M.L., 234,247
Erbacher, R., 77,118
Erdogan, H., 250,287
Erlinger, M., 133,141
Eskin, E., 130, 131,143, 144
Essen, U., 272,289
Etoh, H., 132,143
Evermann, G., 250,288
Ewing, B., 224, 231,246

F

Fan, W., 130,144
Fancher, C.H., 156, 160, 161, 174, 185, 186,

189
Farahat, A., 63,70
Farber, D., 21,31
Fasulo, D., 238,248
Fawcett, T., 42,70
Feinstein, B., 133,141
Feinstein, L., 128,143
Feldman, M., 126,143
Felton, E.W., 51,70
Fink, R., 127,144
Fiscus, J.G., 277,287
Fisher, D.A., 139,143
Fithen, W.L., 138,141
Fleischmann, R.D., 194, 232,242
Fletcher, P., 161, 166, 186,189
Flohr, U., 151, 152, 162, 163, 183, 186,189
Flynn, M.K., 77,118
Ford, G., 17, 23,33
Forrest, S., 127, 131, 136,143, 217,245
Foster, J.S., 129,146
Frailey, D.J., 8, 17, 20, 22, 30,33
Fraiser, T., 132,143
Frantzen, M., 132, 136,142
Fraser, T., 126,143
Fresen, G., 57,72
Fried, D.J., 130, 138,144
Furui, S., 252, 255,287

296 AUTHOR INDEX

G

Gadde, V.R.R., 267,290
Gales, M., 250, 251, 282, 283,287
Ganeson, P., 163,189
Gao, Y., 250,287
Gao, Z., 136,143
Garey, M.R., 207, 233,244
Gaspari, Z., 205,244
Gauvain, J.-L., 250, 251, 267, 278, 279,287,

288
George, J., 42,70
Gerber, M.B., 96,119
Ghosh, A.K., 131, 132,143, 145
Giani, A., 36, 43, 59,69
Gibbs, N., 17, 23,33
Gillick, L., 250, 291
Gingeras, T.R., 194, 230,242
Gish, H., 281,287
Gjertsen, L.A., 186,189
Gligor, V., 126, 133,142
Goedert, J., 186,189
Goldberg, A., 129,145
Goldberg, M.K., 217,245
Goodman, J., 265, 266,287
Gopalakrishnan, P., 262,288
Gopalakrishnan, P., 258, 262, 272,287, 288
Gopinath, R., 250, 256, 260,286–288, 290
Gordon, D., 204, 231,244
Gorlick, M., 12,33
Gosling, J., 129,143
Gotterbarn, D., 8,33
Gouvea, E.B., 281,288
Govindan, R., 128,145
Graff, D., 270,288
Graham, G.J., 21,31
Graham, S., 21,31
Grand, J., 95,119
Gray, D.F., 185,189
Green, E.D., 195,243
Green, P., 195, 204, 220, 222, 224, 226, 230,

231,242–244, 246
Gribskov, M., 230,247
Grier, A., 132,142
Grossman, D., 129,143
Grossschadl, J., 163,189
Gunsch, G., 80,118

Gusfield, D., 220, 229,246, 277,288
Guyon, J., 149,189

H

Haberland, N., 255, 281,291
Hacioglu, K., 250,290
Haeb-Umbach, R., 255, 281,288, 291
Haghighat, S.A., 126,141
Hain, T., 250, 281,288
Haines, J.W., 130, 138,144
Hakkinen, J., 250,290
Hamonds, K.H., 124,143
Hansen, J., 250,290
Harper, R., 129,145
Hart, P.B., 252,287
Haussler, D., 215, 220, 221, 233, 241,245, 248
Havlak, P., 195, 220, 226,243
Hawthorn, P., 21,31
Heckman, C., 59,69
Heckman, C.J., 60,70
Hempel, C., 184,189
Herlocker, J., 53,70
Hermansky, H., 251, 255,288
Hershkop, S., 130,144
Hicks, M., 129,143
Hill, F., 132,145
Hindle, D., 268, 269, 274,289
Hinton, H., 124, 127, 132, 140,142
Hofmann, T., 53,70
Hofmeyr, S.A., 131, 136,143
Hollebeek, T., 132,143
Holmes, M.H., 224,246
Hong, L., 184, 186,189
Hood, L., 234,247
Hopcroft, J.E., 263,288
Hosmer, C., 78,118
Huang, X., 214, 220–222, 224, 226, 228, 230,

231, 234,245, 246
Hui Ong, C., 136,143
Hunt, A., 40,70
Hunt, B.R., 221, 225,246
Hunt, M.J., 280,288
Hurley, E., 135,143
Husemann, D., 151, 153, 161, 162, 164,189
Huson, D.H., 215, 233, 234, 236,245, 247
Hussain, A., 128,145
Huynh, D., 53,70

AUTHOR INDEX 297

I

Icove, D.J., 115,119
Idury, R.M., 211, 213, 218,245
International Organization on Computer

Evidence, 96,119
Iyer, R.K., 127,146

J

Jaffe, D.B., 195, 205, 228, 233, 234,243
Jain, A., 184, 186,189
Jan, E., 250,288
Jeffreys, H., 265,288
Jelinek, F., 250,288
Jiang, T., 217,245
Jim, T., 129,143
Johansen, J., 127, 132,142
Johansson, P., 52,71
Johnson, D.S., 207, 233,244
Johnson, T., 128,146
Juang, B.-H., 250, 261, 273,290
Judge, D.P., 204,244
Jurka, J., 205,244
Just, J.E., 134,144

K

Kain, R.Y., 126,141
Kalbarczyk, Z., 127,146
Kamm, T., 279,288
Kaner, C., 13, 18, 21, 27,33
Kanevsky, D., 262,288
Kanthak, S., 281,289
Karger, D., 53,70
Karlgren, J., 63,71
Karlin, A., 128,145
Karp, R.M., 233,247
Karypis, G., 53,72
Katz, S.M., 266,288
Kc, G.S., 127,144
Kececioglu, J., 208–210, 224, 227, 230, 233,

241,244, 246, 248
Kemmerer, R.A., 131,146
Kennedy, K., 21,31
Kent, W.J., 215, 220, 221, 233, 241,245, 248
Kerendis, I., 53,70

Kernighan, B.W., 136,144
Keromytis, A.D., 127,144
Kerr, O.S., 107,119
Kessler, B., 63,71
Kewley, D., 127,144
Khattak, A., 53,68
Kim, G.H., 131,144
Kim, S., 220, 226, 230, 234,246, 247
Kindred, D., 128,143
King, L.M., 219,245
Kingsbury, B., 250, 253, 255, 258, 265, 267,

268, 274, 276, 277, 283, 284,288, 290
Kiong Tan, W., 136,143
Kirkness, E.F., 195,243
Klakow, D., 275,289
Klein, B., 64,73
Kneser, N., 266,288
Kneser, R., 272,289
Knight, J.C., 18, 21,33, 134, 136,144
Kohno, T., 129,146
Konig, Y., 276,290
Konstan, J., 53,72
Koop, B.F., 234,247
Korba, J., 130, 138,144
Kornblum, J., 94,119
Kosack, D., 234, 239,247
Kosaraju, S.R., 219,245
Krebs, B., 47,71
Kroah-Hartman, G., 132, 136,142, 146
Kuhn, R., 275,289
Kuhns, J.L., 43,71
Kumar, N., 256,289
Kursawe, K., 139,141
Kutler, J., 184, 186,189, 190

L

Ladendorf, K., 184,190
Lafferty, J., 52,71
Lamel, L., 250, 267,287
Lampson, B.W., 125,144
Lancia, G., 238,248
Lander, E.S., 195, 198, 236,242, 243, 248
Landwehr, C.E., 39, 40,71
Laprie, J.-C., 139,141
Lavoie, J.-M., 16,32
Lee, A., 16,32

298 AUTHOR INDEX

Lee, C.-H., 251, 278, 279,288
Lee, W., 130, 131,143, 144
Leeson, J.J., 96,119
Leggetter, C., 251, 281, 282,289
Lethbridge, T.C., 16,32
Leung, A., 161, 162,190
Leveson, N.G., 18, 21,31, 33, 134,144
Levin, D., 137,144
Levinson, S.E., 250, 261, 273,289
Levitt, K., 133,141
Lewis, M., 45,71
Li, M., 217, 241,245, 248
Li, X., 199, 243
Liang, F., 241,248
Liao, L., 234,247
Libicki, M., 41, 56, 57,71
Lim, D.T., 217,245
Lin, M., 42, 69
Lindell, R., 128,145
Linger, R.C., 139,143
Linguistic Data Consortium, 258,287
Lipman, D.J., 220,246
Lippert, R., 238,248
Lippmann, R., 130, 138,144
Lipson, H.F., 139,143
Liu, P., 134, 139,144
Ljolje, A., 268, 269, 274, 276,289
Lokier, J., 132, 136,142
Longstaff, T., 52,68, 139,143
Longstaff, T.A., 131, 136,143
Loscocco, P., 132,143, 144
Lowry, A., 129,145
Lowry, J., 127,144
Lu, C., 163,190
Lyle, J., 92,118
Lynch, C., 48, 61,71

M

Madan, A., 214, 220, 222, 224, 226, 228, 230,
234,245

Madhusudan, T., 42,69
Maier, D., 132,142
Maison, B., 250,288
Makhoul, J., 254,289
Manber, U., 219,246

Mangu, L., 250, 253, 255, 258, 265, 267, 268,
274, 276, 277, 283–285,288–290

Mann, B., 38, 47,71
Marcial, G.G., 154,190
Mark, B., 128,146
Markham, T., 128,145
Marks, D., 77,118
Maron, M.E., 43,69, 71
Mateescu, G., 65,71
Mathews, G., 133,141
Matsoukas, S., 250, 263, 276,289
Maxion, R.A., 136,146
McAllaster, D., 279–281,291
McCance, O., 185,190
McCreight, E.M., 219,246
McDonough, C.J., 61,68
McGill, M., 43, 72
McGilton, H., 129,143
McGraw, G., 129,146
McGregor, O., 185,190
McHugh, J., 138,141, 144
McLachlan, A.D., 230,247
McPeak, S., 129,145
Mead, N.R., 14,32, 139,143
Mehringer, J., 128,145
Meitzler, W., 52,68
Menezes, A., 89,118
Mensik, M., 57,72
Mercer, R.L., 261, 272,286, 288
Mermelstein, P., 251–253,287
Michael, C.C., 131,145
Miller, K., 8, 33
Miller, M., 130, 144
Miller, M.J., 234,247
Miller, W., 219,246
Milner, R., 129,145
Milosavljevic, A., 216,245
Miranda, R., 42,69
Misra, J., 65,69
Mohri, M., 268–270, 274,289
Molau, S., 281,289
Moore, A., 149,190
Moore, J.W., 10,32
Morris, J., 132,146
Morrisett, G., 129,143
Morrison, D.J., 149,190
Mosteller, F., 63, 67,72

AUTHOR INDEX 299

MSNBC, 40, 41, 50,72
Muller, H., 151, 152, 156,190
Mullikin, J.C., 195, 215, 220, 226, 228, 234,

237,243, 248
Mullis, K., 203,244
Mulyukov, Z., 205, 214, 228,244
Mundici, D., 62,69, 72
Munson, J.C., 52,72
Myers, E., 195, 207, 209, 210, 219–221,

225–228, 230, 233, 234,242–244, 246, 247
Myers, G., 234,247

N

Nadas, A., 261, 262,288, 289
Nagel, D., 21,31
Nahamoo, D., 261, 262,288, 289
Nairn, G., 150,190
National Institute of Standards, 101,119
Naur, P., 264,289
Necula, G.C., 129,145
Needleman, S.B., 219,246
NetworkWorldFusion, 51,72
Neukirchen, C., 275,289
Neumann, P., 21,31, 131,145
Neumeyer, L.G., 282,287
Newman, D., 171,190
Newman, M., 250,291
Newsham, T.N., 130,145
Ney, H., 255, 266, 272, 275, 281,288–291
Niesler, T.R., 250, 272, 281,288, 290
Nimmo, D., 38, 39,69
Ning, Z., 195, 215, 220, 226, 228, 234,243
Nirenburg, S., 61,68
Nissenbaum, H., 18, 21,33
Normandin, Y., 262,290
Notkin, D., 12,33
Nunamaker Jr., J.F., 37, 42, 63,69, 70, 73
Nunberg, G., 63,70, 71

O

O’Brien, D., 128, 134,145
Odell, J., 253, 258, 261, 272, 275,290, 291
Ollason, D., 253, 261,291
Olli, V., 250, 290
Olsen, P., 250, 260,286, 287, 290

Olson, M., 215, 233, 235,245, 247
Orloff, J., 279–281,291
Orr, T.L., 154,190
Ortmanns, S., 275,290

P

Padmanabhan, M., 256, 274–276,290, 291
Pal, P., 139,144
Pankanti, S., 184, 186,189
Papadopoulos, C., 128,145
Parnas, D., 19, 21,31, 33
Parsons, R.J., 217,245
Payne, C., 128,145
Pearson, H., 240,248
Pearson, W.R., 220,246
Pe’er, I., 226,247
Pellom, B., 250,290
Peltola, H., 207, 209, 210, 218,244
Pereira, F., 268, 269, 274,289
Peskin, B., 279–281,291
Pevzner, P., 205, 213, 214, 218, 223, 226–228,

233, 234,244, 245, 247
Philips, L., 99,119
Phillips, A., 154,190
Picheny, M., 250, 253, 255, 258, 261, 276,

277, 284,287–289
Pimental, F.R., 163,190
Pollitt, M., 77,118
Pollock, R., 133,141
Pop, M., 214, 234, 239,245, 247
Porras, P., 131,145
Port, E., 201, 202,243
Povey, D., 250, 262, 263,288, 291
Powell, D., 139,141
Powell, J.I., 234,247
Pradhan, S., 250,290
Pratkanis, A.R., 39,72
Pressman, R.S., 11,33
Prevelakis, V., 127,144
Priisalu, J., 151,190
Procaccino, J., 149, 183–186,191
Proffitt, D., 150,191
Provost, F., 42,70
Ptacek, T.H., 130,145
Pu, C., 124, 126, 127, 132, 133, 140,142

300 AUTHOR INDEX

Q

Qin, T., 37, 42, 63,69, 73
Quan, D., 53,70
Quella, J.A., 149,190

R

Rabiner, L.R., 250, 261, 273,289, 290
Radice, C., 186,191
Raghavan, P., 53,70
Ramabhadran, B., 250,287
Randazzo, C.L., 240,248
Randell, B., 139,141
Rao, J.R., 39, 67,72
Raskin, V., 61,68
Read, T.D., 238, 239,248
Redd, L., 186,191
Regis, C., 262,290
Reid, K., 156, 163,191
Reidl, J., 53,72
Reinert, K., 233, 234,247
Reith, M., 80,118
Resnik, P., 53,73
Reynolds, J.C., 134,144
Rhatgi, P., 39, 67,72
Rich, E., 52,72
Riemenschneider, R.A., 139,145
Riley, M., 268, 269, 274,289
Riodan, J., 139,141
Ritchie, D.M., 136,144
Rivest, R., 93,119
Roach, J.C., 201, 232,243
Robert, F., 16,32
Roberts, M., 221, 225,246
Rogers, A., 185,191
Rogers, E.M., 152,191
Rogerson, S., 8,33
Rosenfeld, R., 270, 275,290
Rtischev, D., 282,287
Rushby, J., 122,145
Ryan, P., 136, 139,141, 143

S

Saldi, H., 139,145
Salton, G., 43,72

Saltzer, J.H., 122, 123, 125,145
Salzberg, S.L., 214, 234, 239,245, 247
Sanchez, J.S., 150,191
Sanchez-Reillo, R., 150,191
Sanger, F., 194,242
Sankar, A., 267, 275,290, 291
Saon, G., 250, 253, 255, 256, 258, 265, 267,

268, 274, 276, 277, 283, 284,288, 290, 291
Sarwar, B., 53,72
Savage, S., 128,145
Schacklett, M., 185, 186,191
Schmid, M., 132,145
Schnackenberg, D., 128, 133,143, 145
Schneier, B., 41,72
Schroeder, J., 42,69
Schroeder, M.D., 122, 123, 125,145
Schroeder, M.R., 254,290
Schütze, H., 63,71
Schwatzbard, A., 131,143
Scientific Working Groupon Digital Evidence

and International Organization on Digital
Evidence, 89,118

Secure Software, 129,145
Segre, A.M., 220, 226, 230, 234,246
Sekar, R., 127,141
Semple, C.A., 195,242
Sethi, R., 263, 269,286
Seto, D., 234,247
Seymore, K., 270,290
Shamir, R., 226,247
Shatz, M., 131,143
Shaw, M., 12,33
Shelfer, K.M., 149, 152–154, 183–186,191
Sherman, D.L., 126,141
Shostack, A., 139,141
Shumway, M., 214,245
Simmionds, W., 139,141
Singh, N., 132,141
Skiena, S.S., 219, 220, 222, 224, 230, 234,246
Skroch, M., 52,68
Smalley, S., 132,143, 144, 146
Smith, A.K., 45,72
Smith, S., 40, 51,73
Smith, T.F., 208, 219,244
Sobel, A.E.K., 16,33
Soderlund, H., 209, 210, 218,244
Somayaji, A., 127, 131, 136,143
Sommer, P., 77,118

AUTHOR INDEX 301

Sommerville, I., 11,33
Sondhi, M.M., 250, 261, 273,289
Song, D., 130,145
Sosonkina, M., 65,71
Soto, P., 136,146
Spafford, E.H., 131,144
Spurgeon, B., 156,191
Staden, R., 194, 204, 218, 231,242, 244, 247
Stambaugh, H., 115,119
Stavridou, V., 139,145
Stein, C., 207,244
Stern, R.M., 281,288
Sterne, D., 126, 133,141, 145
Stoflo, S.J., 130,144
Stolcke, A., 266, 267, 270, 271, 275–277, 285,

289–291
Stolfo, S.J., 131,143
Strom, R.E., 129,145, 146
Stroud, R.J., 139,141
Stroustrup, B., 129,146
Strunk, E.A., 136,144
Sullivan, K.J., 136,144
Sulston, J.E., 195,242, 243
Suontausta, J., 250,290
Sutton, G.G., 194, 205, 220–222, 224, 226,

228, 230,242

T

Taillon-Miller, P., 237,248
Tammi, M.T., 220, 225, 226,246, 247
Tan, K.M.C., 136,146
Tang, H., 213, 214, 218, 223, 226–228, 233,

234,245, 247
Teng, S., 207,244
Tettelin, H., 204,244
Thaddeus, J., 154,191
Thayer, E.C., 233,247
Thibodeau, P., 185,191
Thomas, J.A., 43, 53,69
Thomas, R., 128,146
Thompson, J.B., 14, 25,33
Thompson, P., 36, 42, 43, 59, 65,69, 71, 73
Thornton, J., 64,73
Tillett, S., 150,191
Tockey, S., 27,34
Tofte, M., 129,145

Tomb, J.F., 234,247
Toth, G., 205,244
Tripp, L., 10,32
Trombetta, A., 62,72
Tromp, J., 241,248
Trudel, S., 16,32
Tsai, T., 132,141
Turing, A., 135,146
Twitchell, D.P., 37, 42, 63,73

U

U.S. Department of Labor, 2,34
Ukkonen, E., 209, 210, 218, 219,244, 246
Ulam, S.M., 62,73
Ullman, J.D., 263, 269,286, 288

V

Valdes, A., 130,146
Valtchev, V., 253, 261,291
van Oorschot, P., 89,118
Van Rijsbergen, C.J., 43,72
Van Wyk, K., 52,68
Vanstone, S., 89,118
Varian, H.R., 53,73
Venter, J.C., 195, 235,242
Verssimo, P., 139,141
Viega, J., 129,146
Vigna, G., 131,146
Vin, H., 134,146
Visweswariah, K., 253, 255, 258, 276, 277,

284,288
Volik, S., 236, 237,248

W

Wade, C., 80,118
Wagle, P., 126, 127, 132, 133, 139, 140,141,

142
Wagner, D., 129, 136,142, 146
Waibel, A., 281,291
Waidner, M., 139,141
Waitika, H., 279,290
Walker, K.M., 126,141
Wallace, D.L., 63, 67,72
Wallach, D., 51,70
Walpole, J., 127, 140,142

302 AUTHOR INDEX

Walsh, L.M., 139,146
Walther, A., 133,141
Wang, J., 215, 226,245
Wang, Y., 129,143
Ward, W., 250,290
Waterman, M.S., 198, 199, 208, 211, 213, 214,

218, 219, 223, 226, 227, 231, 234,243–245,
247

Waterston, R.H., 195,242, 243
Webb, C.L., 186,192
Wegmann, S., 250, 279–281,291
Weimer, W., 129,145
Weinberg, N., 186,192
Weiner, P., 219,246
Weintraub, M., 276,290
Welling, L., 255,291
Welling, R., 281,291
Weng, F., 267, 275,290, 291
Wenke Lee, L.A., 134,146
Wespi, A., 139,141
Wetherall, D., 128,145
Wheeler, D., 129,146
Whitfield, J., 240,248
Whitford, M., 156, 186,192
Whittaker, E.W.D., 250, 272, 281,288, 290,

291
Willassen, S.Y., 95,119
Williams, W.P., 115,119
Wimer, S., 52,72
Wing, J.M., 40,73
Wobbrock, J., 60,70
Woodland, P., 250, 251, 253, 258, 261–263,

267, 272, 276, 281–283,287–291
Wright, C., 126, 132, 137, 139,141, 142, 146
Wulf, B., 21,31
Wunsch, C.D., 219,246

X

Xu, J., 127,146

Y

Yahalom, R., 64,73
Yamron, J., 250,291
Yao, F.F., 207,244
Yasinac, A., 77,118
Ye, E.Z., 51,73
Yeh, R.F., 201,243
Yellin, D., 129,145
Yemini, S.A., 129,145, 146
Yorke, J.A., 221, 225,246
Young, S., 253, 258, 261,291
Yu, J., 224, 227,246
Yu, X., 250,290
Yuan, Y., 51,73
Yvon, F., 268,291

Z

Zeng, D.D., 42,69
Zhan, P., 250, 281,291
Zhang, J., 130,144, 250,290
Zhang, Q., 132,142
Zhang, Y., 134,146
Zhou, L., 37, 42, 63,73
Zhou, S., 232, 235,247
Zue, V., 250,291
Zweig, G., 250, 253, 255, 258, 265, 267, 268,

274–277, 283, 284,288, 290, 291
Zwicker, E., 253, 254,291

Subject Index

@StakeSleuthkit, 98
4–3 rule, 225
16S ribosomal RNA, 240

A

ABET, 14, 15, 24
Abstraction, layers of, 100
Access controls

mandatory, 125–8, 132
DTE, 126
generic wrappers, 126
randomization, 127–8, 140
SubDomain, 126, 132–3
type enforcement, 126

Accreditation Board for Engineering and
Technology,seeABET

ACM, 8, 9, 16, 18, 28, 30
criticism of SWEBOK, 12–13
disagreement with IEEE-CS, 19
withdrawal from SWECC, 21–2

Acoustic context models, 257–9
Adaptation, 278–83, 285

MAP adaptation, 278–9
Maximum Likelihood Linear Regression,

seeMLLR
Vocal Tract Length Normalization (VTLN),

279–81, 283, 284
Adaptive intrusion response systems, 124
Adaptive response, 129
Address space layout randomization, 127
Address space protection, 125
ADPU, 178–9
Advertising, false, 58
Affidavit, 85
Afghanistan, 50, 51
Alpha Data Format, 177
AMASS, 220, 230
American Society of Quality (ASQ), 27

Anchors, 200
Anomaly detection, 130, 131, 132, 136
ANSI, 164, 186
Antivirus software, 131
Application domain specialization, 31
Arabidopsis thaliana, 215
Arachne, 195, 205, 210, 228, 234
Arbor Networks, 128
Arimura, Dr. Kunitaka, 151
ASLR, 127
ASQ, 27
Assembly validation, 234–6

mis-assemblies, 235, 236
Association of Computing Machinery,see

ACM
Atlas, 195, 215
ATM fraud, 152
ATM transactions, international, 185
Attacker’s work factor, 137
Australia

certification of engineers, 26
National ID card, 184
software engineering programs, 14

Australian Computer Society (ACS), 26
Author identity authentication, 108
Authority analysis, 63
Authorization errors, 125
Authorship attribution, 67

B

Bacillus anthracis, 238
Backus Naur Form (BNF), 264
Bacterial artificial chromosomes (BACs), 195,

196, 214, 241
Bambus, 234
Banded alignment algorithms, 220
Barcodes, 177–8
Base-callers, 223–4

303

304 SUBJECT INDEX

BCD Data Format, 177
Bermuda standard, 207
Best Evidence Rule, 107
Bioinformatics, 194
Biometrics, 179, 180, 184, 185
BLAST, 220
Body of knowledge (BOK), 4

see alsoSWEBOK Guide
British Computer Society (BCS), 14, 25
Broadcast data, 267
Bubbles, 238–9
Buffer overflows, 140
Bull, 151–2
Byzantine generals models, 65–6

C

C, 183
safer dialects, 129

C++, 129
Cache-LMs, 275
Caenorhabditis elegans, 195
Canada

licensing of engineers, 22–3
software engineering programs, 14–15

Canadian Council of Professional Engineers
(CCPE), 15, 22–3, 29

Canadian Engineering Accreditation Board
(CEAB), 15

Cancers, 236, 237
CAP, 214, 231
CartoonNetwork.com, 48
CCPE, 15, 22–3, 29
CCSE, 16, 22
Celera Assembler, 210, 233, 238–9
Certification of software engineers, 3

assessment procedure, 5
company-based, 3, 7, 29
future directions, 30–1
institute-based, 3, 7, 27–9
national, 4, 7

examples, 25–6
renewal, 5–6

Certified Software Development Professional
(CSDP), 5, 27–8

Certified Software Quality Engineer (CSQE),
27

Chain of Custody, 92–3

Chartered Engineers (CEng), 8, 25
Chartered Professional Engineers (CPEng), 26
Child pornography, 102–3
Chimeric reads, 210, 221, 222
Chunk graph, 210
CIDF, 133
Clear range, 224
Clone Array Pooled Shotgun Strategy

(CAPSS), 215–17
Cloning vectors, 196
Clusters, 89, 105
CNN, website spoofing, 51
Code of ethics, 5
Code of professional conduct, 5
Cognitive hacking

countermeasures, 60–7
authentication of source, 61
authorship attribution, 67
Byzantine generals models, 65–6
collaborative filtering and reliability

reporting, 64–5
detection of collusion by information

sources, 66
future work, 67
genre detection and authority analysis, 63
information “trajectory” modeling, 62
psychological deception cues, 63
Ulam games, 62–3

covert, 40, 41
definition, 40
digital government and, 56–7
information theoretic model, 53–5
insider threat, 51–3, 66
and intelligence and security informatics,

42–4
internet examples, 44–51

bogus virus patch report, 49
CartoonNetwork.com, 48
Emulex Corporation, 38, 41, 47–8, 55
Fast-trade.com website, 47
“Fluffi Bunni” website redirections, 50
Jonathan Lebed case, 45–7
NEI Webworld case, 44–5
New York Times website defacement, 50
PayPal.com, 47
political website defacements, 49
post-September 11 website defacements,

50

SUBJECT INDEX 305

Usenet perception management, 49
Web search engine optimization, 48
website spoofing, 51
Yahoo website defacement, 50

legal issues, 57–60
overt, 40–1, 49
theories of the firm and, 56

Collaborative filtering, 64–5
Collusion detection, 66
Combination of Expert Opinion algorithm, 65
Common mode failures, 124
Competency area, 4–5
Computer forensics,seeDigital forensics
Computer program, trustworthiness of, 108
Computer security,seeSecurity, computer
Computer system attacks,seeInformation

systems attacks
Computing Curricula-Software Engineering

(CCSE) project, 16, 22
Computing devices, new/unusual, 95–6
Confusion networks, 285
Consensus decoding, 276–7
Consensus problem, 205, 209
Consensus sequence, 229

generation, 229–31
quality, 231

Context-free grammars, 264
Contigs, 197, 231

incorrectly assembled, 228
ordering, 233
orientation, 233
placement of, 232

constraints on, 233
spacing, 233

Control drive, 92
Cookies, 111–14, 182

mobile, 164, 183
Cosmid, 214
Coverage, 198, 199

fragment, 202
read, 202

CP8, 151
Credit card counterfeiting, 152
Credit card fraud case study, 110–14
Crime, computers and, 77–8
Cryptanalysis, 181–2
Cryptographic hashes, 93–4
Cryptography, key-based, 171–3, 181–2

CSAB, 16
CSDP, 5, 27–8
CSQE, 27
Cybermark, 153, 154

D

DARPA
intrusion detection research, 138

red team experimentation, 137
Data Encryption Standard (DES), 171–2
Daubert standard, 109
DD, 117
DDoS attacks, 128
DEBUG, 118
Deception

detection, 39, 42, 63
levels, 68

Defined nucleotide positions (DNP), 225
Denial of service (DoS) attacks, 36, 39, 40,

128
distributed (DDoS), 128

Denominator statistics, 262
Dependability, definition, 139
Determinization, 269–70
Dethloff, Jürgen, 151
Digital duplication, tools, 90–2, 111
Digital evidence, 78–80

artifacts of interest, 78–9
authenticity, 79, 108–9
constraints on technology, 80

Digital forensics, 76–118
collection phase, 81, 88–96

challenges of ubiquitous computing, 95–6
cryptographic hashes use, 93–4
duplicates vs copies, 89–90
duplication speed issues, 94
dynamic data preservation, 94–5
ensuring preservation of evidence, 90–3
expertise and law enforcement, 96
intrusion minimization, 95

constraining factors, 117
credit card fraud case study, 110–14
examination and analysis phases, 81, 96–107

elimination of known good, 100–1
evidence collection from live systems,

106–7
evidence location, 99–100

306 SUBJECT INDEX

forensics environment, 97–9
information abstraction, 100
recovery of deleted files, 105–6, 109
searches for images and sounds, 102–5

identification phase, 81, 83–4
role of digital device in crime, 83

law enforcement and, 115
lifecycle model, 80–3
organizational structures, 116
preparation phase, 81, 84–6
presentation phase, 81, 107–9

authenticity, 108–9
best evidence, 107
Daubert standard, 109

preservation phase, 81, 87–8
securing computer, 88
securing scene, 87–8

qualifications for practitioners, 115
research issues, 117
strategy phase, 81, 86–7

on-site information collection, 87
“tagging and bagging”, 87

see alsoDigital evidence
Digital government, 56–7
Digital integrity, 88–9
Digital Signal Algorithm (DSA), 171
Digital videography, 160
Discriminative feature spaces, 255–6
Disk duplication tools, 90–2, 111
Disk files, creation, 90
Diversity, natural, 134
DoS attacks, 36, 39, 40, 128
Double Metaphone algorithm, 99
Drosophila melanogaster, 195
DTE, 126
Dye Diffusion Thermal Transfer (D2T2), 159
Dynamic data, types, 94

E

eCash, 158, 179
EEPROM, 174, 187
Electronic agents, 57
Electronic Funds Transfer (EFT), 186
Elliptical Curve Cryptography (ECC), 171
EMLLT, 260
Emulex Corporation, 38, 41, 47–8, 55
EMV Standard, 186

EnCase, 92, 98, 117
End Sentinel (ES), 177
Engineering Accreditation Commission

(EAC), 14, 15
English physician case, 76
EPROM, 187
Error correction problem, 226
Error rate vector, 224
Escerichia coli, 196
Escheat, 150
Ethical hackers, 137
Euler (package), 205, 213, 226, 227–8
Eulerian path problem, 212, 222–3, 226, 233
Eulerian superpath problem, 213
Evidence

digital, seeDigital evidence
latent, 79
relevant, 78

Exclusionary rule, 84
Expressed sequence tag (EST) sequences, 241

F

Fail-safe defaults, 123
Fail-stop behavior, 129
Failures

common mode, 124
definition, 122

False positive rates, 130, 132, 138
Farrington 7B, 187
Fast-trade.com website, 47
FASTA, 220
Fault masking, 122
Fault tolerance, 122–3, 133, 139
Faults

definition, 122
independent, 123
random, 123
security, 123, 133

FBI, 116
Forensic Examiners, 115
RCFLs, 116
Special Agents, 115

Federal Rules of Evidence, 107
FeliCa, 169, 170
File attributes, 105
File hashes, “known bad”, 103
File name/extension changes, 103–4

SUBJECT INDEX 307

File Slack, 90
Files, deleted, recovery, 105–6, 109
Financial transaction cards, 166
Finishing, 204–5, 231
Finite state grammars, 263–4
Firewalls, 125, 128–9
Firm, theories of, 56
Firmware, 187
First Amendment, 59
“Fluffi Bunni”, 50
Forgery, 83
FormatGuard, 132
Fosmid, 196, 214
Fourth Amendment, 84–5
Fragile data, 94
Fragment conflict graphs, 238
Fragments, 196

arrival rate of, 227
Frames, 250
France, smart card development, 151–2
Fraud detection algorithms, 42
FRED, 95
Free speech protection, 59
Front end signal processing, 251–6
Frye standard, 109
Fundamentals of Engineering (FE)

examination, 24

G

Gap closure, 204–5
Gaps, 198
Gaussian mixture state models, 259–60
Gene synteny data, 232
Generic wrappers, 126
Genetic algorithms, 217–18
Genome markers, 232
Genre detection, 63
GenTree, 99
GigAssembler, 215, 221
GO-Card, 169, 170
Google News, 64–5
Grötrupp, Helmut, 151

H

Hadley, 96
Haemophilus influenzae, 194, 232

Hamas, website attack, 49
Haplotypes, 223, 238

separation of, 238–9
Hardware write blockers, 98
Hashing algorithms, 93
Hashkeeper dataset, 101
Healthcare, 185
Hermes, 129
Heterogeneity, server, 134–5
Hidden key cryptography, 172, 181
Hidden Markov Models (HMMs), 250, 256–7

discrete, 262
with extensive null states, 261
HMM state graphs, 268–70

HIDS, 131
Hierarchical assembly, 214–17
HLDA, 256
HMMs, seeHidden Markov Models
Horse race, 53–5
Hot card, 187
Human gastro-intestinal tract bacteria, 240
Human genome, 195, 215, 216, 222, 241

Human Genome Project, 221
rearrangements related to cancers, 236
SNPs in, 237

Hybridization, 211

I

ICCP, 28–9
Identification, personal, 149, 184–5
Identity theft, 56–7, 83
IDIP, 133
IEAust, 14, 26
IEEE-CS, 8, 9, 10, 27–8, 30

disagreement with ACM, 19
IETF standards, 133
Illinois, licensing of software engineers in, 25,

30
iLook, 92, 98, 117
Images, searching for, 102–5
Improbability, 123
Indels, 237
Index spamming, 48
Individual Account Identifier, 175
INFO file, 106, 114
Information abstraction, layers of, 100
Information retrieval, 42–3

308 SUBJECT INDEX

exact match Boolean logic, 42
probabilistic, 52
ranked retrieval, 42–3

utility theoretic retrieval, 43
Information systems attacks

autonomous, 37–8
cognitive, 37
physical, 37, 41
semantic, 41, 56, 57, 67
syntactic, 37, 41, 49

Information theory, 53
Information “trajectory” modeling, 62
Information value, 43
Information warfare, 41, 43
Inserts, 196
Insider threat, 51–3, 66
Institute for Certification of Computing

Professionals (ICCP), 28–9
Institute of Electrical and Electronics

Engineers Computer Society,seeIEEE-CS
Institution of Electrical Engineers (IEE), 14
Institution of Engineers, Australia (IEAust),

14, 26
Institution of Engineers of Ireland (IEI), 26
Instruction set encryption, 127
Integrated Forensic Environments (IFEs), 98
Intelligence and security informatics, 42–4
Internet, legal issues, 57–60
Intrusion detection, 129
Intrusion Detection Systems (IDSs), 124
Intrusion prevention, 129–33, 140

adaptations, 140
host

detection, 131
prevention, 131–2

network
detection, 130
prevention, 130

Intrusion tolerance, 133–5, 139
Inversions (DNA), 237
IP address randomization, 127
Ireland, certification of engineers, 26
ISO, 164, 187

smart card standards,seeSmart cards,
standards

ISO numbers, 174–5, 177
ISO 7811 data track standard, 166, 173
ISO 7812 numbering standard, 174

J

Jakob, Mark S., 38, 47–8, 55
Java, 129, 183

smart cards, 151, 179
Jazz, 195, 234
JPEG format, 104
Junk stripe, 176

K

k-mers, map of, 220, 226
k-star problem, 225
k-tuple probes, 211
k-tuple spectrum, 211
Katz smoothing, 266
Kneser–Ney language model, 266
Knowledge, generally accepted, 10–11
Knowledge areas (KAs), 11, 16
Kullback–Leibler (KL) distance, 270

L

Lampson access control matrix, 125
Language models, 52, 263–72

class language models, 271–2
finite state grammars, 263–4
N -gram models,seeN -gram language

models
Lanham Act, 58
Large vocabulary continuous speech

recognition (LVCSR), 250–86
acoustic model, 256–63
adaptation,seeAdaptation
critical problem for future, 286
front end signal processing, 251–6
language model,seeLanguage models
performance levels, 284–5
search,seeWord sequence search

Lasercard, 187
Layout problem, 205, 209–10
Least common mechanism, 123, 124
Lebed, Jonathan, 45–7
Libraries, shotgun, 196, 227, 231
Libsafe, 132
Licensing of software engineers, 3–4, 7

education and training for, 4
examples, 22–5

SUBJECT INDEX 309

future directions, 30–1
legal issues, 17–19, 20
pros and cons, 19–22

Linear discriminant analysis (LDA), 255–6
Linux kernel, 132
Linux Security Modules project (LSM), 132
Logic bombs, 88
Logicube SF-5000, 111
Longest haplotype reconstruction, 238
Longitudinal Redundancy Check (LRC), 177
Loyalty programs, 150–1

M

Machine learning techniques, 217–18
MAFTIA, 139
Magnetic stripe, 174–7

coding, 176–7
tracks, 175–6

Major Industry Identifier (MII), 174
Malpractice liability, 18
MAP Adaptation, 278–9
Master File Table,seeMFT
Mate-pairs, 197, 228, 233, 236, 237
Maximum likelihood training, 260–3

maximum mutual information (MMI)
training, 261–3, 283, 285

Maximum weight trace problem, 230
Mazu Networks, 128
MD5 hashes, 93, 98, 101, 102–3

altered by cropping, 103
Media forensics, 77

see alsoDigital forensics
Mel Frequency Cepstral Coefficients

(MFCCs), 251, 252–4, 284–5
MFT, 105, 114

directory entries, 105
nonresident attributes, 105
resident attributes, 105, 114

Microkernels, 125
Microsoft Certified Application Developer

(MCAD), 29
Microsoft Certified Professional (MCP), 29
Microsoft Certified Solution Developer

(MCSD), 3, 29
Microsoft Certified Systems Engineer

(MCSE), 29
MIFARE cards, 169

Mimicry attack, 136
Minimal tiling path, 214
Minimization, 269, 270
Minimizer, 221
Minimum fragment removal, 238
Minimum SNP removal, 238
Misinformation, 41
Misuse detection, 130, 131
MIT Haystack project, 52–3
ML, 129
MLLR, 281–3

feature space (FMLLR), 283, 284, 285
model space, 282–3

MLLT, 256
MMI training, 261–3, 283, 285
Moreno, Roland, 151
Multipass lattice decoding, 275–6
Multiple sequence alignment, 228–9
Mutual information, 261

N

N -gram language models, 264–72
class language models, 271–2
cross-LM interpolation, 267–8
as finite state graphs, 268–70
pruning, 270–1
smoothing, 265–7

additive smoothing, 265–6
low-order backoff, 266, 270
low-order interpolation, 266–7

N -version programming, 133–4
National Council of Examiners for

Engineering and Surveying (NCEES),
23–5

NEI Webworld, 44–5
Neighborhood quality standard (NQS), 237–8
Network, unbounded, 139
Network forensics, 77
New York Times, website defacement, 50
New Zealand, software engineering programs,

14
NIDS, 130
NIPS, 130
Norton Personal Firewall, 131
NRDL, 101–2
NTFS, 89, 105
Numerator statistics, 262

310 SUBJECT INDEX

O

Observation probabilities, 256
OODA, 124, 133
Openwall, 131
Optimal Linear Arrangement problem, 233
Overhangs, 209, 218
Overlap, 198, 208, 209

bubbles in overlap graph, 238–9
contig, 232
detection of, 217–22

parallelization, 222
sequence error effects, 219

dove-tail, 218, 219
proper, 208, 209, 218
quality of, 208
repeat-induced, 208, 209, 218

Overlap-layout-consensus (OLC) paradigm,
209–11, 230

P

Paired-pairs, 211
Partition problem, 225
Patching, timing of, 139
Path-merging algorithm, 234
Pathogen identification, 239
PaX, 131–2
PayPal.com, 47
PCAP, 221
PCR, 203

multiplex, 203–4
PCR primer, 203
PCR product, 203
Perception management, 39
Perceptual Linear Prediction (PLP), 251,

254–5, 284
Phonetic contexts, 258

decision-tree clustering, 258–9
Phonetic encoding techniques, 99
Phonetic lexicon, 257–8
phrap, 214, 215, 224, 225, 230
Phusion, 195, 215, 234
Pipette Optimized Multiplex-PCR (POMP),

204
Plain view, 85
Plasmids, 196
Pointer encryption, 127

PointGuard, 127, 132
Polymerase chain reaction,seePCR
Polymorphisms, 237–9
Pooled Genomic Indexing (PGI), 216
Principles and Practices of Engineering (P&P)

examination, 24, 25
Private-key cryptography, 172, 181
Privilege

least, 123, 124, 125
separation of, 123

Probable cause, 83–4, 85
nexus definition, 83–4

Profile, 230
Propaganda, 38–9
Proximity cards, 160, 162, 168, 169, 187
Public key cryptography, 171–2, 181

R

RaceGuard, 132
RAM Slack, 89
Randomization, 127–8, 140
Recommender systems, 53
Recovery, self, 139
Recycle Bin, 105–6, 113–14
Red teams, 137
Redundancy, 122, 123, 133
Regional Computer Forensic Laboratories

(RCFLs), 116
Reliability

assumptions, 123
definition, 122
reporting, 64
see alsoSurvivability

Repeats (DNA), 194, 197
assembly of, 217
collapsed tandem, 228, 229
excision, 228, 229
genome-rearrangement, 228, 229
identification of, 226–8
separation of, 222–6
tandem, 205, 212, 213

RePS, 215
Reputation reporting, 64
Restriction, 140
Restriction sites, 200
RFm, 187
RS232, 187
RSA, 171, 172

SUBJECT INDEX 311

S

SafeBack, 92
SBH problem, 211–14, 226
Scaffolding, 200–1, 231–4, 239–40

graph-theoretical approach, 233–4
Scientific testimony, standard for, 109
Search warrant, 85–6
Secret Services Best Practices Guidelines, 83,

87–8
Sectors, 89
Security

computer
assurance problem, 135
definition, 36, 39, 122
linguistic techniques, 61
principles, 123–4
standards, 135
taxonomies, 39–41
testing, 136–7
see alsoSurvivability

smart-card
current specifications, 163
data, 180–2
physical, 179–80

use of smart cards for
electronic security, 179
logical security, 179
physical security, 179

SEEK, 16
SELinux, 126, 132
Semantic attacks, 41, 56, 57, 67
Semantic checkers, 129
Sentence error rate, 276
Separating columns, 224–5
Sequence tag sites (STS), 235
Sequencing by hybridization (SBH) problem,

211–14, 226
SHA-1 hash, 93, 101
Sharon, Ariel, website attack, 49
Shortest superstring problem, 207–9
Shotgun sequencing

assembly modules, 218–36
assembly validation, 234–6
consensus generation, 228–31
error correction and repeat separation,

222–6
overlap detection, 218–22

repeat identification, 226–8
scaffolding, 231–4

assembly paradigms, 205–18
consensus problem, 205
constraints, 206–7
generic, 218
hierarchical assembly, 213–17
machine learning, 217–18
mapping/layout problem, 205, 209–10
overlap-layout-consensus (OLC), 209–11,

230
sequencing by hybridization, 211–14, 226
shortest superstring, 207–9

comparative assembly, 239–40
haplotype separation, 238–9
heterogeneous assembly, 241
multiple organisms, 240–1
overview, 196–205
polymorphism identification, 237–9

Silver, Bernard, 177
Single nucleotide polymorphisms (SNPs),

237–9
Smart cards, 149–87

applications
credit, 150
debit, 150
electronic security, 179
healthcare, 185
information management, 150
logical security, 179
loyalty/affinity, 150–1
multi-application, 151, 179, 186
physical security, 179
stored-value, 150

authorization, 149
barcodes, 177–8
cloning/counterfeiting, 172, 180
close coupling cards

Type A, 162
Type B, 162

contact cards, 160, 166–7, 187
contact points, 166–7

contactless cards, 160, 162–3, 187
anticollision techniques, 171
data security, 171–3
nonrepudiation, 172–3
transaction speeds, 170

cross validation, 182

312 SUBJECT INDEX

data destruction, 182
databases on, 164
future developments, 183–6

applications, 183
deployment costs, 183
faster communication speeds, 184
multiple operating systems on chip, 184
peripheral card technologies, 184–5
personal privacy, 183–4

hardwired cards, 161
hot listing, 180–1
hybrid cards, 162
identification, 149, 184–5
invention, 151–4
magnetic stripe technology,seeMagnetic

stripe
microprocessor cards, 161
protected memory cards, 161
proximity cards, 160, 162, 168, 169, 187
RISC-based, 178–9
security,seeSecurity, smart card
serial memory cards, 161
standards, 164–73

contact smart card, 166–7
contactless smart cards, 165, 167–70
early, 166
ISO/IEC, 165
ISO/IEC 7810, 166
ISO/IEC 7811, 166, 173
ISO/IEC 7813, 166
ISO/IEC 7816, 166–7, 179
ISO/IEC 10536 close coupling cards, 167
ISO/IEC 14443 and ISO/IEC 15693

compared, 170–3
ISO/IEC 14443 Proximity Cards, 168,

169, 184
ISO/IEC 15693 Vicinity Cards, 168, 170
nonstandard contactless technologies, 170
role, 173
standards organizations, 164

technology, 156–64
advantages, 157
current specifications, 163–4
IC chip characteristics, 160–2
physical characteristics, 157–60
processor capacity, 162–3

transaction stages, 154–5
validation, 156

verification, 149
vicinity cards, 162, 168, 170

SNPs, 237–9
Software engineering

degree programs, 13–17
nature and development, 6–9

Software Engineering Coordinating
Committee (SWECC), 9, 21–2

Software Engineering Education Knowledge
(SEEK), 16

Software Engineering Education Project
(SWEEP), 9, 16

Software engineers, licensing,seeLicensing of
software engineers

Software write blockers, 97
Soundex algorithm, 99
SPAM, 260, 284
Speaker adaptation,seeAdaptation
Speaking, styles of, 267
Spectral alignment problem, 226
Speech recognition,seeLarge vocabulary

continuous speech recognition (LVCSR)
SRI language-modeling toolkit, 266
StackGuard, 132
Start Sentinel (SS), 177
State engineering license, 5
String alignment algorithms, 219
String searching, 99–100, 101
SubDomain, 126, 132–3
Suffix arrays, 219
Suffix trees, 219
Survivability, 122–41

combining reliability and security, 122–4
definition, 136, 139
evaluation of, 135–9

empirical methods, 136–9
formal methods, 136

intrusion tolerance, 133–5, 139
related work, 139–40
techniques, 124–35

firewalls, 128–9
intrusion prevention,seeIntrusion

prevention
mandatory access controls,seeAccess

controls, mandatory
safer language dialects, 129
safer languages, 129
semantic checkers, 129

SUBJECT INDEX 313

syntactic checkers, 129
SWEBOK Guide, 9–13, 16

body of knowledge content, 10–11
criticisms, 12–13
knowledge areas, 11
overview, 9–10
related disciplines, 11
similarities with SEEK, 16

SWECC, 9, 21–2
SWEEP, 9, 16
Symmetric hacker gaming, 137–8
Syntactic checkers, 129

T

Tandem repeats, 205, 212, 213
Tangle, 228
Telephone cards, 152
Telephone conversations, 267, 284
Temporarily accessible data, 94
Texas, licensing of software engineers in, 5,

19, 20, 21, 24–5, 30
Theories of the firm, 56
TIGR Assembler, 205, 214, 215, 221, 230
Traceback, 129
Transient data, 94
Transition probabilities, 256, 257
Translocations (DNA), 237
Trespassing, 59
Trigger-LMs, 275
Tripwire, 131
Trustworthiness, 108

definition, 139
Turing’s Halting Problem, 135

U

Ubiquitous computing, forensic challenges,
95–6

Ulam games, 62–3
United Kingdom

certification of engineers, 25
software engineering programs, 14

United States
licensing of engineers, 23–5
software engineering programs, 14

Unitigs, 210
UPC codes, 177–8
Usenet perception management, 49
User modeling, 52–3

V

Videotext, 152
Virtual Private Networks, 128
Virus patch report, bogus, 49
Virus signatures, 131
Viterbi decoding, 270, 272–5, 283

dynamically compiled decoding graphs, 275
statically compiled decoding graphs, 274

Vocal Tract Length Normalization (VTLN),
279–81, 283, 284

Voting, 186
Vulnerabilities

disclosure, 138, 139
prevention, 133–4
scripting, 138–9

W

W32/Redesi-B virus, 49
Warp scales, 280–1
Web search engine optimization, 48, 52, 58
Website defacement, 40, 49–50, 59
Website spoofing, 51
“Weighted Difference Method”, 270
Whole-genome shotgun (WGS) data, 195
Woodland, Dr. Joseph, 177
Word error rate (WER), 276, 277, 285, 286
Word lattices, 275–6, 277, 284
Word sequence search, 272–8

consensus decoding, 276–7
multipass lattice decoding, 275–6
system combination, 277–8
Viterbi decoding,seeViterbi decoding

Working Group on Software Engineering
Education and Training (WGSEET), 14

World Trade Organization, website spoofing,
51

Write blockers, 97–8
hardware, 98
software, 97

Y

Yahoo website defacement, 50

Z

Zone Alarm, 131
Zuccarini, John, 48

This page intentionally left blank

Contents of Volumes in This Series

Volume 40

Program Understanding: Models and Experiments
A. VON MAYRHAUSER AND A. M. VANS

Software Prototyping
ALAN M. DAVIS

Rapid Prototyping of Microelectronic Systems
APOSTOLOSDOLLAS AND J. D. STERLING BABCOCK

Cache Coherence in Multiprocessors: A Survey
MAZIN S. YOUSIF, M. J. THAZHUTHAVEETIL , AND C. R. DAS

The Adequacy of Office Models
CHANDRA S. AMARAVADI , JOEY F. GEORGE, OLIVIA R. LIU SHENG, AND JAY F. NUNAMAKER

Volume 41

Directions in Software Process Research
H. DIETER ROMBACH AND MARTIN VERLAGE

The Experience Factory and Its Relationship to Other Quality Approaches
V ICTOR R. BASILI

CASE Adoption: A Process, Not an Event
JOCK A. RADER

On the Necessary Conditions for the Composition of Integrated Software Engineering Environments
DAVID J. CARNEY AND ALAN W. BROWN

Software Quality, Software Process, and Software Testing
DICK HAMLET

Advances in Benchmarking Techniques: New Standards and Quantitative Metrics
THOMAS CONTE AND WEN-MEI W. HWU

An Evolutionary Path for Transaction Processing Systems
CARLTON PU, AVRAHAM LEFF, AND SHU-WEI F. CHEN

Volume 42

Nonfunctional Requirements of Real-Time Systems
TEREZA G. KIRNER AND ALAN M. DAVIS

A Review of Software Inspections
ADAM PORTER, HARVEY SIY, AND LAWRENCEVOTTA

Advances in Software Reliability Engineering
JOHN D. MUSA AND WILLA EHRLICH

Network Interconnection and Protocol Conversion
M ING T. L IU

A Universal Model of Legged Locomotion Gaits
S. T. VENKATARAMAN

315

316 CONTENTS OF VOLUMES IN THIS SERIES

Volume 43

Program Slicing
DAVID W. BINKLEY AND KEITH BRIAN GALLAGHER

Language Features for the Interconnection of Software Components
RENATE MOTSCHNIG-PITRIK AND ROLAND T. M ITTERMEIR

Using Model Checking to Analyze Requirements and Designs
JOANNE ATLEE, MARSHA CHECHIK, AND JOHN GANNON

Information Technology and Productivity: A Review of the Literature
ERIK BRYNJOLFSSON ANDSHINKYU YANG

The Complexity of Problems
WILLIAM GASARCH

3-D Computer Vision Using Structured Light: Design, Calibration, and Implementation Issues
FRED W. DEPIERO AND MOHAN M. TRIVEDI

Volume 44

Managing the Risks in Information Systems and Technology (IT)
ROBERT N. CHARETTE

Software Cost Estimation: A Review of Models, Process and Practice
FIONA WALKERDEN AND ROSSJEFFERY

Experimentation in Software Engineering
SHARI LAWRENCE PFLEEGER

Parallel Computer Construction Outside the United States
RALPH DUNCAN

Control of Information Distribution and Access
RALF HAUSER

Asynchronous Transfer Mode: An Engineering Network Standard for High Speed Communications
RONALD J. VETTER

Communication Complexity
EYAL KUSHILEVITZ

Volume 45

Control in Multi-threaded Information Systems
PABLO A. STRAUB AND CARLOS A. HURTADO

Parallelization of DOALL and DOACROSS Loops—a Survey
A. R. HURSON, JOFORDT. L IM , KRISHNA M. K AVI , AND BEN LEE

Programming Irregular Applications: Runtime Support, Compilation and Tools
JOEL SALTZ , GAGAN AGRAWAL , CHIALIN CHANG, RAJA DAS, GUY EDJLALI , PAUL

HAVLAK , YUAN-SHIN HWANG, BONGKI MOON, RAVI PONNUSAMY, SHAMIK SHARMA ,
ALAN SUSSMAN, AND MUSTAFA UYSAL

Optimization Via Evolutionary Processes
SRILATA RAMAN AND L. M. PATNAIK

Software Reliability and Readiness Assessment Based on the Non-homogeneous Poisson Process
AMRIT L. GOEL AND KUNE-ZANG YANG

Computer-supported Cooperative Work and Groupware
JONATHAN GRUDIN AND STEVEN E. POLTROCK

Technology and Schools
GLEN L. BULL

CONTENTS OF VOLUMES IN THIS SERIES 317

Volume 46

Software Process Appraisal and Improvement: Models and Standards
MARK C. PAULK

A Software Process Engineering Framework
JYRKI KONTIO

Gaining Business Value from IT Investments
PAMELA SIMMONS

Reliability Measurement, Analysis, and Improvement for Large Software Systems
JEFF T IAN

Role-based Access Control
RAVI SANDHU

Multithreaded Systems
KRISHNA M. K AVI , BEN LEE, AND ALLI R. HURSON

Coordination Models and Language
GEORGEA. PAPADOPOULOS ANDFARHAD ARBAB

Multidisciplinary Problem Solving Environments for Computational Science
ELIAS N. HOUSTIS, JOHN R. RICE, AND NAREN RAMAKRISHNAN

Volume 47

Natural Language Processing: A Human-Computer Interaction Perspective
BILL MANARIS

Cognitive Adaptive Computer Help (COACH): A Case Study
EDWIN J. SELKER

Cellular Automata Models of Self-replicating Systems
JAMES A. REGGIA, HUI -HSIEN CHOU, AND JASON D. LOHN

Ultrasound Visualization
THOMAS R. NELSON

Patterns and System Development
BRANDON GOLDFEDDER

High Performance Digital Video Servers: Storage and Retrieval of Compressed Scalable Video
SEUNGYUP PAEK AND SHIH-FU CHANG

Software Acquisition: The Custom/Package and Insource/Outsource Dimensions
PAUL NELSON, ABRAHAM SEIDMANN , AND WILLIAM RICHMOND

Volume 48

Architectures and Patterns for DevelopingHigh-performance, Real-time ORB Endsystems
DOUGLAS C. SCHMIDT, DAVID L. L EVINE, AND CHRIS CLEELAND

Heterogeneous Data Access in a Mobile Environment – Issues and Solutions
J. B. LIM AND A. R. HURSON

The World Wide Web
HAL BERGHEL AND DOUGLAS BLANK

Progress in Internet Security
RANDALL J. ATKINSON AND J. ERIC KLINKER

Digital Libraries: Social Issues and Technological Advances
HSINCHUN CHEN AND ANDREA L. HOUSTON

Architectures for Mobile Robot Control
JULIO K. ROSENBLATT AND JAMES A. HENDLER

318 CONTENTS OF VOLUMES IN THIS SERIES

Volume 49

A Survey of Current Paradigms in Machine Translation
BONNIE J. DORR, PAMELA W. JORDAN, AND JOHN W. BENOIT

Formality in Specification and Modeling: Developments in Software Engineering Practice
J. S. FITZGERALD

3-D Visualization of Software Structure
MATHEW L. STAPLES AND JAMES M. B IEMAN

Using Domain Models for System Testing
A. VON MAYRHAUSER AND R. MRAZ

Exception-handling Design Patterns
WILLIAM G. BAIL

Managing Control Asynchrony on SIMD Machines—a Survey
NAEL B. ABU-GHAZALEH AND PHILIP A. W ILSEY

A Taxonomy of Distributed Real-time Control Systems
J. R. ACRE, L. P. CLARE, AND S. SASTRY

Volume 50

Index Part I
Subject Index, Volumes 1–49

Volume 51

Index Part II
Author Index
Cumulative list of Titles
Table of Contents, Volumes 1–49

Volume 52

Eras of Business Computing
ALAN R. HEVNER AND DONALD J. BERNDT

Numerical Weather Prediction
FERDINAND BAER

Machine Translation
SERGEI NIRENBURG AND YORICK WILKS

The Games Computers (and People) Play
JONATHAN SCHAEFFER

From Single Word to Natural Dialogue
NEILS OLE BENSON AND LAILA DYBKJAER

Embedded Microprocessors: Evolution, Trends and Challenges
MANFRED SCHLETT

Volume 53

Shared-Memory Multiprocessing: Current State and Future Directions
PER STEUSTRÖM, ERIK HAGERSTEU, DAVID I. L ITA , MARGARET MARTONOSI, AND

MADAN VERNGOPAL

CONTENTS OF VOLUMES IN THIS SERIES 319

Shared Memory and Distributed Shared Memory Systems: A Survey
KRISHNA KAUI , HYONG-SHIK K IM , BEU LEE, AND A. R. HURSON

Resource-Aware Meta Computing
JEFFREYK. HOLLINGSWORTH, PETER J. KELCHER, AND KYUNG D. RYU

Knowledge Management
WILLIAM W. AGRESTI

A Methodology for Evaluating Predictive Metrics
JASRETT ROSENBERG

An Empirical Review of Software Process Assessments
KHALED EL EMAM AND DENNIS R. GOLDENSON

State of the Art in Electronic Payment Systems
N. ASOKAN, P. JANSON, M. STEIVES, AND M. WAIDNES

Defective Software: An Overview of Legal Remedies and Technical Measures Available to Consumers
COLLEEN KOTYK VOSSLER ANDJEFFREYVOAS

Volume 54

An Overview of Components and Component-Based Development
ALAN W. BROWN

Working with UML: A Software Design Process Basedon Inspections for the Unified Modeling Language
GUILHERME H. TRAVASSOS, FORRESTSHULL , AND JEFFREYCARVER

Enterprise JavaBeans and Microsoft Transaction Server: Frameworks for Distributed Enterprise
Components

AVRAHAM LEFF, JOHN PROKOPEK, JAMES T. RAYFIELD , AND IGNACIO SILVA -LEPE

Maintenance Process and Product Evaluation Using Reliability, Risk, and Test Metrics
NORMAN F. SCHNEIDEWIND

Computer Technology Changes and Purchasing Strategies
GERALD V. POST

Secure Outsourcing of Scientific Computations
M IKHAIL J. ATALLAH , K. N. PANTAZOPOULOS, JOHN R. RICE, AND EUGENE SPAFFORD

Volume 55

The Virtual University: A State of the Art
L INDA HARASIM

The Net, the Web and the Children
W. NEVILLE HOLMES

Source Selection and Ranking in the WebSemantics Architecture Using Quality of Data Metadata
GEORGEA. M IHAILA , LOUIQA RASCHID, AND MARIA -ESTERV IDAL

Mining Scientific Data
NAREN RAMAKRISHNAN AND ANANTH Y. GRAMA

History and Contributions of Theoretical Computer Science
JOHN E. SAVAGE , ALAN L. SALEM , AND CARL SMITH

Security Policies
ROSSANDERSON, FRANK STAJANO, AND JONG-HYEON LEE

Transistors and 1C Design
YUAN TAUR

320 CONTENTS OF VOLUMES IN THIS SERIES

Volume 56

Software Evolution and the Staged Model of the Software Lifecycle
KEITH H. BENNETT, VACLAV T. RAJLICH, AND NORMAN WILDE

Embedded Software
EDWARD A. L EE

Empirical Studies of Quality Models in Object-Oriented Systems
L IONEL C. BRIAND AND JÜRGEN WÜST

Software Fault Prevention by Language Choice: Why C Is Not My Favorite Language
RICHARD J. FATEMAN

Quantum Computing and Communication
PAUL E. BLACK , D. RICHARD KUHN, AND CARL J. WILLIAMS

Exception Handling
PETER A. BUHR, ASHIF HARJI, AND W. Y. RUSSELLMOK

Breaking the Robustness Barrier: Recent Progress on the Design of the Robust Multimodal System
SHARON OVIATT

Using Data Mining to Discover the Preferences of Computer Criminals
DONALD E. BROWN AND LOUISEF. GUNDERSON

Volume 57

On the Nature and Importance of Archiving in the Digital Age
HELEN R. TIBBO

Preserving Digital Records and the Life Cycle of Information
SU-SHING CHEN

Managing Historical XML Data
SUDARSHAN S. CHAWATHE

Adding Compression to Next-Generation Text Retrieval Systems
NIVIO Z IVIANI AND EDLENO SILVA DE MOURA

Are Scripting Languages Any Good? A Validation of Perl, Python, Rexx, and Tcl against C, C++, and
Java

LUTZ PRECHELT

Issues and Approaches for Developing Learner-Centered Technology
CHRIS QUINTANA , JOSEPHKRAJCIK, AND ELLIOT SOLOWAY

Personalizing Interactions with Information Systems
SAVERIO PERUGINI AND NAREN RAMAKRISHNAN

Volume 58

Software Development Productivity
KATRINA D. MAXWELL

Transformation-Oriented Programming: A Development Methodology for High Assurance Software
V ICTOR L. W INTER, STEVE ROACH, AND GREG WICKSTROM

Bounded Model Checking
ARMIN BIERE, ALESSANDROCIMATTI , EDMUND M. CLARKE , OFER STRICHMAN , AND

YUNSHAN ZHU

Advances in GUI Testing
ATIF M. M EMON

Software Inspections
MARC ROPER, ALASTAIR DUNSMORE, AND MURRAY WOOD

CONTENTS OF VOLUMES IN THIS SERIES 321

Software Fault Tolerance Forestalls Crashes:To Err Is Human; To Forgive Is Fault Tolerant
LAWRENCEBERNSTEIN

Advances in the Provisions of System and Software Security—Thirty Years of Progress
RAYFORD B. VAUGHN

Volume 59

Collaborative Development Environments
GRADY BOOCH AND ALAN W. BROWN

Tool Support for Experience-Based Software Development Methodologies
SCOTT HENNINGER

Why New Software Processes Are Not Adopted
STAN RIFKIN

Impact Analysis in Software Evolution
M IKAEL L INDVALL

Coherence Protocols for Bus-Based and Scalable Multiprocessors, Internet, and Wireless Distributed
Computing Environments: A Survey

JOHN SUSTERSIC ANDALI HURSON

This page intentionally left blank

