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Preface

In this volume of the Advances in Computers we present five chapters on computer
architecture. The chapters discuss both how to develop new computing platforms
that take advantage of new technology and how to evaluate the software that is being
designed on those platforms. This series of books, the present one being volume 61,
dates from 1960 and is the longest continuously published collection that chronicles
the advances and ever changing computer landscape.

In Chapter 1, “Evaluating software architectures,” Roseanne Tesoriero Tvedt, Pa-
tricia Costa, and Mikael Lindvall present a method for evaluating the designs of a
software system. They present a seven-step process for evaluating a design looking
for discrepancies between the abstracted design they develop and the system that has
been implemented. Their process then suggests changes to the source code that will
put the system in compliance with the design they develop. Having both synchro-
nized should greatly aid in maintaining that system in the future. They present two
case studies of using their process on existing products.

Lieven Eeckhout and Koen De Bosschere present “Efficient architectural design
of high performance microprocessors” in Chapter 2. They present a new simulation
methodology for designing high performance microprocessors by combining several
recently proposed techniques, such as statistical simulation, representative workload
design, trace sampling and reduced input sets. They show how simulation of these
new designs can be made efficient by selecting a limited but representative workload,
by applying trace sampling and reduced input sets to limit the simulation time per
benchmark, and by optimizing the architectural simulators.

Chapter 3 contains “Security issues and solutions in distributed heterogeneous
mobile data systems” by A. R. Hurson, J. Ploskonka, Y. Jiao and H. Haridas. With
increased use of mobile computing resources and centralized databases, security of
these systems is of growing importance. When wireless communication links and
mobility are introduced, adapting existing methods may not be satisfactory, espe-
cially where mobile devices are already resource-poor. New techniques are needed
to handle the constraints introduced by mobile systems.

In Chapter 4 “Disruptive technologies and their affect on global telecommunica-
tions” by Stan McClellan, Stephen Low, and Wai-Tian Tan, the authors categorize

xiii



xiv PREFACE

several key technologies, platforms, and services which are affecting the evolution
of telecommunications networks. With much standardization of these hardware, op-
erating systems, and telecommunications services across the industry, they survey
issues related to quality of service in packet-switched networks and some key proto-
cols affecting the structure and operation of telephony networks.

As microprocessors have become faster and smaller, the ultimate size and speed
reduction has been the dream of using atoms and molecules to store information.
This is the realm of quantum computing. In the last chapter of this volume “Ions,
atoms, and bits: An architectural approach to quantum computing,” the authors Dean
Copsey, Mark Oskin, and Frederick T. Chong discuss architectural issues in quan-
tum computing. Unlike classical signals, quantum data cannot be transmitted over a
wire, but must be move step-wise from location to adjacent location. They compare
the swapping channel with a longer-range teleportation channel and discuss error
correction, which is necessary to avoid data corruption.

I hope that you find this volume of use in your work or studies. If you have any
suggestions of topics for future chapters, or if you wish to contribute such a chapter,
I can be reached at mvz@cs.umd.edu

Marvin Zelkowitz
University of Maryland,
College Park, MD, USA
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Abstract

As software systems become increasingly complex, the need to investigate and
evaluate them at high levels of abstraction becomes more important. When sys-
tems are very complex, evaluating the system from an architectural level is neces-
sary in order to understand the structure and interrelationships among the compo-
nents of the system. There are several existing approaches available for software
architecture evaluation. Some of these techniques, pre-implementation software
architectural evaluations, are performed before the system is implemented. Oth-
ers, implementation-oriented software architectural evaluations, are performed
after a version of the system has been implemented. This chapter briefly de-
scribes the concepts of software architecture and software architectural evalu-
ations, describes a new process for software architectural evaluation, provides
results from two case studies where this process was applied, and presents areas
for future work.
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1. Introduction

In the early days of software development, much attention was given to is-
sues related to the design of algorithms and data structures. This emphasis on al-
gorithms and data structures was due in part to the fact that programming lan-
guage features were closely related to the hardware and it was difficult to abstract
and reason about systems at a higher level. As more sophisticated features were
added to programming languages, it became easier to create more complex sys-
tems. As systems became increasingly complex, the ability to reason about sys-
tems at higher levels of abstraction became progressively more important. The
shift in design concerns is evident in an early paper by Deremer and Kron [16]
where the authors describe the difference between programming-in-the-small and
programming-in-the-large and argued for a Module Interconnection Language (MIL)
to help describe a system at an architectural level. Since that time, programming
languages have become even more sophisticated and the use of networked com-
ponents has become more prevalent. With ever increasing system complexity, the
need to examine and evaluate systems at higher levels of abstraction becomes essen-
tial.

Software architectural evaluation techniques provide mechanisms for reasoning
about systems at the architectural level. These techniques examine the structure and
behavior of a system utilizing a high-level view. They are used to identify strengths
and inadequacies in architectural designs.

In Section 2 of this chapter, the main concepts of software architecture are intro-
duced. Section 3 discusses various types of software architectural evaluation tech-
niques. Section 4 presents the details of a new process for software architectural
evaluation. Section 5 describes several case studies where this process was used. Fi-
nally, Section 6 presents a summary and describes several opportunities for future
work.
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2. Software Architecture

Many definitions of software architecture exist; however, there is no universally
accepted definition.1 The lack of a standard definition often leads to confusion mak-
ing a discussion of the definition of software architecture necessary before the topic
of architectural evaluation can be introduced.

2.1 Sample Definitions

Although there are many definitions of software architecture, common themes and
ideas run through these definitions. Many of the definitions include the concept of
components or modules and the communication mechanisms among components.
For example, Perry and Wolf [28] define software architecture by describing three
classes of architectural elements: processing elements, data elements and connection
elements. Data elements contain the information that is processed, used and manipu-
lated by the processing elements. The connection elements are the parts of the system
that connect the pieces of the system together. Bass, Clements, and Kazman [6] de-
scribe software architecture as the structure or structures of the system comprised
components and externally visible properties and relationships among them. This
definition implies that the internals of each component do not play a role in software
architecture. Crispen and Stuckey [15] define software architecture as a partitioning
strategy and a coordination strategy. The partitioning strategy defines how the system
is divided (or composed) of components. The coordination strategy defines how the
components of the system interface with each other. This definition for software ar-
chitecture incorporates the ideas of constraints and rationale for how components are
put together and how the communication should occur. Including the ideas of con-
straints and rationale is common in many definitions of software architecture. The
Bass, Clements, and Kazman definition implies that behavior is part of the architec-
ture. Clements and Kogut [14] include constraints and rationale in their definition of
software architecture. Booch, Rumbaugh and Jacobson [10] also include constraints
in their definition of software architecture. In several definitions, the concept of pa-
rameterized components that can be altered to form new applications is included.
Bhansali [9] calls this type of architecture generic software architecture. The idea of
a generic architecture seems to lead toward the concepts of architectural styles and
design patterns as described in [20] and [19] respectively. Architectural styles and
design patterns are important concepts in the architectural evaluation process that
will be described later.

1The Software Engineering Institute maintains a list of definitions for software architecture and a related
bibliography at http://www.sei.cmu.edu/architecture/definitions.html.
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In some cases, software architecture is viewed from different levels or various per-
spectives. For example, Soni, Nord, and Hofmeister [31] describe four perspectives
of software architecture: the conceptual architecture, the module interconnection ar-
chitecture, the execution architecture, and the code architecture. The conceptual ar-
chitecture describes the major design elements of the system and the relationships
among them. The module interconnection architecture encompasses the functional
decomposition of the system and its layers. The execution architecture describes the
dynamic structure of the system. The code architecture describes how the source
code of the system is organized. Kruchten [23] describes a 4 + 1 (logical, process,
physical, development, and use-case scenarios) view of software architecture. The
views of the Kruchten model of software architecture are similar to those of Soni,
Nord and Hofmeister. However, Kruchten includes use-case scenarios as an addi-
tional view of the software architecture.

2.2 Definitions Used in this Chapter

The definitions used in this chapter are based on common elements from the defi-
nitions of software architecture described in the previous section. Software architec-
ture deals with the structure and interactions of a software system. The most basic
building blocks of the structure of software architecture are components and the in-
terrelationships among the components. In addition to structure, behavior is part of
software architecture. Constraints and rules describe how the architectural compo-
nents communicate with one another. The software architecture of a system may be
viewed at different levels for different purposes.

Even at the conceptual or logical level, architectural components can be viewed at
several different abstraction levels and vary based on the size of the system. At the
highest level, the components are the subsystems, which in the case of a very large
system, can be a complex system and can have subsystems of their own. Subsystems
are often formed by lower level components, which are, in the case of an object-
oriented system, collections of classes. In order for the architectural components to
form a system, they must communicate with each other, creating interrelationships
or connectors. The division of a system into smaller building blocks is based on the
philosophy of “divide and conquer” which lets the implementer divide the problem
into smaller and less complex pieces.

When viewed at the highest levels, a system’s architecture is referred to as the
macro-architecture of the software system. At lower levels of abstraction, it is re-
ferred to as micro-architecture. Architectural styles and design patterns are similar
to what Bhansali [9] describes as generic forms of software architecture. Often ar-
chitectural styles guide the structure and interactions of the system when describing
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the software architecture of a system at the macro-architectural level. When describ-
ing the structure and/or interactions of a system at a micro-architectural level, often
design patterns can be used.

2.2.1 Macro-Architecture—Architectural Styles

In Garlan and Shaw [20], several basic architectural styles are defined. One exam-
ple is a client-server architectural style in which the application is divided into two
major subsystems that communicate with each other. Other examples of architectural
styles include layered and piped architectures. Each architectural style brings not
only certain properties to the system, but also implicit and explicit implications and
tradeoffs that translate into design rules and guidelines. The client-server architec-
tural style, for example, divides the system into a “front-end client” and a “back-end
server” allowing for a separation of concerns on a high level. This style results in a
design guideline that restricts the communication between the client and the server
to a common and narrow interface. The layered architecture has similar properties.
It allows encapsulation of low-level functions and the establishment of an abstract
machine that builds on the services lower layers offer. An implication of a layered
architecture is, for example, that high level layers can only use services of lower level
layers and not vice versa. Restricting communications to the layers directly below is
another example of a rule that might follow from this choice in architectural style.

2.2.2 Micro-Architecture—Design Patterns

Design patterns methodically name, explain, and evaluate important and frequent
designs in object-oriented systems. Design patterns “solve specific design problems
and make object-oriented designs more flexible and elegant, and ultimately reusable.
They help designers reuse successful designs by basing new designs on prior expe-
rience. A designer who is familiar with such patterns can apply them immediately
to design problems without having to rediscover them” [19]. One example of a de-
sign pattern is the mediator that encapsulates how a set of objects interacts. Another
example is the observer that typically is used to provide various views of the same
subject data. The mediator and the observer are described and exemplified respec-
tively in Sections 5.4 and 5.5. Design patterns are sometimes referred to as micro-
architectural styles and contribute to an organized system structure. In each system,
several design patterns can be used, and they can coexist with each other and with dif-
ferent architectural styles. By selecting a design pattern, certain architectural impli-
cations and tradeoffs follow. Some of these tradeoffs and implications are described
at a high level in [19]; however, context-specific implications and tradeoffs may exist
and result in implicit and explicit design rules and guidelines.
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Typically, design patterns are discussed at the class level putting them into the
category of micro-architecture. However, the concepts in some design patterns can
be abstracted to the component level. To incorporate the ideas of design patterns into
this higher-level view of software architecture, the class roles of a design pattern are
abstracted to the component level. For example, in the Observer pattern, the role of
the Subject class can be played by a component of classes representing the subject
data to be observed by Observer components. Similarly, with the Mediator pattern, a
set of classes (i.e., a component) may represent a Colleague in the pattern.

3. Software Architectural Evaluation

Software architectural evaluations are investigations into how a system is struc-
tured and behaves with the purpose of suggesting areas for improvement or under-
standing various aspects of a system (e.g., maintainability, reliability, or security).
In many cases, a software architectural evaluation is performed before a system has
been designed or implemented. Often, this type of architectural evaluation is per-
formed to compare alternatives or to determine whether or not the architecture is
complete or appropriate for the application. In other cases, a software architectural
evaluation is performed after the system has been implemented. This type of architec-
tural evaluation typically is performed to make certain that the actual implementation
of a system matches the planned architectural design.

3.1 Pre-Implementation Software Architectural Evaluations

A software architectural evaluation that occurs prior to the implementation of a
software system is referred to here as pre-implementation software architectural eval-
uation. Pre-implementation software architectural evaluation is used to evaluate one
or more software architectural candidates or to evaluate various properties of an ar-
chitecture. Pre-implementation software architectural evaluations, as described by
Abowd et al. [1] and Avritzer and Weyuker [3], can be based on the description of
the software and other sources of information such as interviews with the designers
of the software architecture. With these methodologies, scenarios are often used to
determine the adequacy of the software architecture. A scenario is a series of steps
that describes the use or a modification to the system from the point of view of differ-
ent stakeholders. Scenarios are used to highlight potential weaknesses and strengths
of the architecture and are useful for concretizing requirements of the system and
understanding non-functional requirements. An example of a scenario is: when a
data exception occurs, all users should be notified by e-mail immediately. This sce-
nario indicates that the system should be reliable. Scenarios like these should be
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taken into account when evaluating the architectures so that the best solutions are
chosen. The methodology proposed by Yacoub and Ammar [34] analyses architec-
tures from a risk perspective early in the life cycle to assess whether the system
will have the desired qualities or quality attributes (e.g., performance, reliability, and
maintainability). Bengtsson and Bosch’s architectural level prediction of software
maintenance is another example of the same kind of analysis [8]. The approach sug-
gested by de Bruijn and van Vliet [11] is based on generating a basic architecture
that is immediately evaluated to identify problems. The cycle of generating and eval-
uating the software architecture is repeated. This iterative approach continues until
the architecture fulfills the software requirements. The Architecture-Level Modifia-
bility Analysis (ALMA) model by Lassing et al. [24] emphasizes that a goal should
govern how the evaluation of the software architecture is carried out. ALMA makes
a distinction between three different goals for evaluation: risk assessment, mainte-
nance cost prediction, and software architecture comparison. Architectural evalua-
tions with the goal of risk assessment focus on finding types of changes for which
the system is inflexible. For maintenance cost prediction, software architectural eval-
uations estimate the cost of maintenance effort for the system during a given period.
When software architecture comparison is the goal of the evaluation, two or more
candidate software architectures are compared to find the most appropriate one. Ad-
ditional software architectural evaluation approaches are described in Dobrica and
Niemela [17].

3.2 Implementation-Oriented Software Architectural
Evaluations

Implementation-oriented software architectural evaluation is a term used to de-
scribe the evaluation of software architecture after a version of the system has been
implemented. Since this type of software architectural evaluation is performed af-
ter a version of the system exists, it can utilize data measured from the actual
source code and associated documentation. Implementation-oriented software ar-
chitectural evaluations can be used for similar goals to pre-implementation soft-
ware architectural evaluations. For example, the source code and associated docu-
mentation can be used to reconstruct the actual software architecture in order to
compare it to the planned or conceptual software architecture. Recovering the ac-
tual architecture of an implemented system can be used for risk assessment and
maintenance cost prediction as well. The analysis of the actual software archi-
tecture can be used to evaluate whether the implemented software architecture
fulfills the planned software architecture and associated goals, rules and guide-
lines.
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A literature survey conducted by Hochstein and Lindvall [21] noted that whereas
there are many pre-implementation software architectural evaluation approaches
available, there are not many implementation-oriented approaches described in the
literature. An early example of an implementation-oriented approach is Schwanke’s
re-engineering tool [29]. The tool uses a concept of similarity based on Parnas’ infor-
mation hiding principle; but is not designed specifically for object-oriented systems.
Murphy et al.’s work with reflexion models [27] is another example of this type of
software architectural evaluation. With reflexion models, the designers of the system
are interviewed to describe the conceptual view of the implemented system. Next,
the actual architecture is recovered to determine if the designer’s conceptual view
matches the implementation.

Implementation-oriented software architectural evaluation can be combined with
pre-implementation software architectural evaluation to achieve different goals. Be-
fore implementation occurs, software architectural evaluation is used to assure that
certain goals are achieved based on the architectural decisions made. However, in
many cases, the implementation of a system differs from the architectural design.
That is, the implementation often does not match the planned design. Software sys-
tems are subject to changes over their lifetime. When time is spent evaluating ar-
chitecture to meet certain criteria and to achieve specific quality attributes prior to
system implementation, there is a need to assure that each new version of the sys-
tem indeed matches the planned architecture to harvest the benefits of the initial
investment in architectural evaluation. Implementation-oriented software architec-
tural evaluations can be used to make certain that the actual architecture stays on the
intended track.

An example of a combination of approaches that would be successful is the
combination of the Architecture Trade-off Analysis Method (ATAM) [13] and an
implementation-oriented approach like the one described later. The ATAM method
uses brainstorming sessions to perform a tradeoff analysis of architectural decisions
based on their impact on different quality attributes that are important for different
classes of stakeholders. The ATAM method is valuable in an early phase of the devel-
opment when the design is being created. Once the architecture is evaluated, design
decisions are made and these decisions are expected to be implemented in the sys-
tem. An implementation-oriented approach such as the one described later could be
used after a version of the system has been developed to (i) make sure the architec-
ture maintains the properties desired to reach a certain quality attribute and (ii) make
sure the implementation conforms to the planned architectural design. Every version
of the system can be assessed and evaluated in order to track the architecture and
keep it aligned with the design goals.



EVALUATING SOFTWARE ARCHITECTURES 9

4. A Process for Implementation-Oriented Software
Architectural Evaluation

The process defined in this chapter is one that evolved over several iterations of
software architecture evaluations. This software architectural evaluation process uti-
lizes the macro-architecture view of a system. The process analyzes the components
and their external interfaces with each other. This process is conducted after an im-
plementation of the system exists.

The process defined here is not a substitute for alternate architectural evaluation
processes that are typically conducted before a system is implemented. Rather, this
process may be used in conjunction with other architectural evaluation techniques to
ensure that the system is being implemented in agreement with the recommendations
resulting from other forms of architectural evaluation. For example, if an architec-
tural evaluation performed before the system is designed results in a suggestion of
a recommended architectural style, the architectural evaluation process described in
this section can be used to confirm that the suggested architectural style has been
implemented correctly in the actual system.

The process was designed to be relatively quick and used repeatedly to keep the
actual implementation of the software architecture consistent with the planned ar-
chitectural design. It does not assume that documentation of the architectural design
exists prior to the evaluation of the system. However, if documentation does not exist
prior to the evaluation, the process requires input from the developers of the system to
recover the planned architectural design of the system. The architectural evaluation
process involves members of the development team and ideally, a separate analysis
team. One of the main objectives of this process is to provide useful feedback to the
development team without extensively disrupting their daily activities. The members
of the development team are used sparingly in this process to confirm the findings of
the analysis team.

4.1 Background

One of Fraunhofer Center for Experimental Software Engineering, Maryland’s
(FC-MD) primary assets is a software system, the Visual Query Interface (VQI) [30],
which manages experience supporting the Experience Factory approach for organi-
zational learning [4]. In 1999, the system had evolved into a difficult state. Both cur-
rent and potential users of the system wanted more functionality, but it was clear that
the current architecture of the system could not withstand additional changes. Each
change to the system became increasingly difficult to make. The effort of adding
new functionality widely exceeded expectations and it had become apparent that the



10 R. TESORIERO TVEDT ET AL.

system had decayed [18] to a point its maintenance had become a problem; making
it clear that the system need to be restructured.

After the investment in restructuring the system was made, it was important to
FC-MD to confirm that the structure of the system had improved and that it had been
implemented as planned. The software architectural evaluation process described in
the next section was developed to assist with this task.

4.2 Definition of the Process Steps

The architectural evaluation process consists of seven process steps. As mentioned
previously, one of the main objectives of this process is to provide quick and useful
feedback to the developers of a project. To minimize negative schedule effects, it is
envisioned that an analysis team, separate from the development team, performs the
majority of the work for the evaluation process. The following description of each
process step contains information regarding the roles of the development and analysis
teams. It is envisioned that this process can be tailored for different contexts using
different metrics and representations of the architecture. This subsection provides
the basic outline of the steps and describes the roles for the analysis team and the
developers. The case studies described in the next section give a more detailed view
of how the process could be applied.

Step 1. Select a Perspective for Evaluation

Architectural evaluations may be conducted with different goals in mind and from
many different perspectives. For example, a system might be evaluated to determine
whether or not the system implements the specified functional requirements or to
determine if it fulfills the non-functional requirements, i.e., the system qualities or
quality attributes. Other examples of perspectives are evaluation for security, reliabil-
ity, performance, and maintainability. Selecting a perspective is important for iden-
tifying appropriate goals and measurements for the evaluation process. The GQM
technique [5] is used in this step to define goal-oriented metrics based on questions
that need to be answered to determine if goals have been achieved. For example, if
the perspective chosen is maintainability, goals based on attributes of maintainability
such as coupling and cohesion might be identified.

The analysis team performs this step with the help of the development team. The
development team provides input on the perspective. The analysis team creates the
goals and defines the metrics following the GQM technique. The development team
provides feedback to the analysis team on the goals and metrics.
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Step 2. Define Planned Architecture and Guidelines

Once a perspective has been chosen and goals have been identified and elabo-
rated with the GQM technique, the planned architecture of the system is identified
and guidelines with associated metrics are defined. These architectural guidelines are
used to validate that the architecture possesses desired properties. Often, these guide-
lines translate into quantitative metrics. For example, if evaluating a system from the
perspective of maintainability, guidelines related to coupling might be established.
Sample guidelines based on coupling might include the following: coupling between
the components should be low; and the extent of the coupling between components
should be low. Quantitative metrics measuring coupling between the components and
the extent of the coupling are derived from these guidelines. In addition to defining
guidelines and metrics based on the perspective of the architectural evaluation, some
guidelines and metrics are defined based on the architectural styles and the design
patterns chosen for the system.

The analysis team works with one or two representatives of the development team
(and/or uses documentation) to identify the planned, high-level architecture of the
system. The planned (or ideal/intended) architecture is defined by architectural re-
quirements, by implicit and explicit architectural guidelines and design rules and
implications stemming from the use of architectural styles and design patterns. The
analysis team needs to recover the different aspects of the planned architecture and
create a model of it that will guide the evaluation. Once the high level architecture
of the system has been defined, the analysis team uses it to derive the implications,
tradeoffs, guidelines, and design rules that result. The analysis team needs to select
and customize the guidelines and metrics for the specific context. The selected set of
metrics must capture the properties that the team finds most important while, at the
same time, being cost-efficient to collect and analyze. As the analysis team learns
more about the planned architecture, these guidelines and metrics are commonly it-
erated and updated during this step.

Step 3. Recover Actual Architecture

The actual architecture is the high-level structure of the implemented system,
its architectural components and their interrelationships, as well as its architectural
styles and design patterns. Studying the implementation of the system, which is, to a
large extent an abstraction obtained from the source code, represents the actual archi-
tecture. It should be noted that this step is not the same as source code analysis, but
it is used to identify the static architectural components of the actual system. To per-
form this step efficiently, the analysis team relies on a set of automated or partially
automated tools that help them with this task. In many cases, the tools have to be
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defined based on programming language, the measurements that are to be collected,
and other factors in the development environment.

Identifying the contents of a component is often one of the key complications in-
volved with the recovery of the high-level architecture of an implemented system. In
some cases, programming language features can be used to reduce some of the dif-
ficulties associated with this task. With Java, for example, the analysis team can use
packages as a way of determining the contents of the system’s components. How-
ever, not all Java developers use packages and even when packages are used, there
is not always a one-to-one correspondence between the packages and the high-level
components of the system.

Identifying architectural styles and design patterns is another complication that
arises with the recovery of the actual architecture. Architectural styles are not al-
ways easy to detect in the actual implementation of a system. Design patterns can be
implemented in different ways and can be difficult to detect.

As part of this step of the process, the design team works with one or two members
of the development team to partition the files containing the actual implementation
of the system into their appropriate components. Then, the analysis team extracts
relevant information and computes metrics from the component files to obtain the
actual architecture of the system.

Step 4. Compare Actual to Planned to Identify Architectural
Deviations

Architectural deviations are differences between the planned architecture and the
actual implemented version of the architecture. These architectural violations are
identified by comparing the planned architectural design defined in step two to the
abstraction of the actual architecture obtained in step three. Deviations can be miss-
ing or extra components, missing or extra connections between components, viola-
tions of architectural guidelines, or values of metrics that exceed or do not match a
certain expected value.

The analysis team compiles a list of these violations and notes the circumstances
under which the violation was detected and the reason the team suspects it is a vio-
lation. If necessary, the analysis team conducts a more detailed analysis of the devi-
ation in order to determine its possible cause and degree of severity. The deviations
are categorized and patterns of violations are identified.

Step 5. Verify Violations

Once the analysis team has composed and characterized the list of architectural
violations, the list is verified during a discussion with one or two members of the
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development team. This step is taken for several reasons. First, it helps to ensure that
the analysis team has not incorrectly identified any violations by a misunderstanding
of how the system was implemented. Secondly, it gives the development team feed-
back on how well the actual implementation matches the planned architecture and
exposes the general types of deviations that have occurred. Additionally, the analysis
team gathers more information on how and why the violations have occurred.

Step 6. Suggest Changes to Planned and/or Actual
Architectures

Based on the results from the previous step, the analysis team formulates high-
level change recommendations that would remove the deviations from the system.
Sometimes, the deviations result in requests for source code changes. In some cases,
the requests are related to changes in the planned architecture or guidelines. It should
be noted that it is not the task of the analysis team to design or implement the change
requests. Rather, this step is a way for the analysis team to contribute to the improve-
ment of the system in a constructive way by giving feedback to the development
team.

Step 7. Repeat Steps 4–6 After Changes Have Been
Implemented

The analysis team discusses the change requests with the development team. It is
the role of the development team to decide which changes to implement and how
the changes will be implemented. Once the changes have been implemented, it is
important to verify that actual architecture complies with the planned one. To verify
that the planned and actual architectures are in alignment, the steps of identifying the
actual architecture and any architectural deviations are repeated. This verification is
done to make sure that the changes have been implemented correctly and that no new
violations have been introduced into the system. The steps of the process are shown
in Fig. 1.

4.3 Use of the Process

The process for software architectural evaluation is designed to be efficient and
conducted at various points over the lifetime of a software system. It is expected that
one iteration of the evaluation process will be run after a new feature or set of features
is implemented. Another important objective in the design of this process was to
provide valuable feedback to the development team with minimal disruption to the
team’s usual activities. The process was designed to fit seamlessly into an existing
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FIG. 1. A diagram of the software architectural evaluation process steps.

development environment. The analysis team should perform the bulk of the work
needed to conduct the evaluation. Members of the development team should be used
to verify the findings of the analysis team in both the definition and recovery of the
architecture and implement the recommended changes.

5. Case Studies

The software architectural evaluation process was created due to a maintainability
problem experienced with a project developed by FC-MD. The architectural evalu-
ation process has been used to analyze several iterations of a FC-MD software tool
(VQI) and with one commercial product prior to its release. The commercial prod-
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uct is a proprietary system that incorporates the design, simulation and analysis of
CAD diagrams. In both of these case studies, the perspective chosen for the evalua-
tion was maintainability, and the metrics and representation of the architecture used
in the evaluation were identical. The case studies are presented here in the order in
which they were performed. The first case study summarizes the results of several
iterations through the evaluation process on the VQI system. The second case study
gives a more in-depth description of a single iteration through the evaluation process
on the commercial product.

5.1 Perspective for Evaluation—Maintainability

With the VQI system, the main goal of the initial re-engineering activity was to
create a system that was easier to maintain than the previous version that had de-
generated into an inflexible state. The initial architectural evaluation was conducted
to recover the actual architecture of the existing decayed system and to verify that
the re-engineered system conformed to the new design plans. For each of the follow-
ing versions, the evaluations were conducted to verify that the changes made to the
system did not deviate from the planned architecture and design guidelines.

With the proprietary commercial product, the architectural evaluation was con-
ducted before the product was released for beta testing. The main objective for this
evaluation was to verify that the system had been implemented according to the plan
and to identify potentially fault-prone components.

In the case study evaluations, coupling was the main characteristic considered for
determining maintainability. In both the VQI and the proprietary commercial sys-
tem, low coupling between components was considered to be desirable. However,
based on component characteristics such as the design patterns chosen, several com-
ponents were expected to have higher coupling than other components of the system.
For example, a distinction is made between components that are library-oriented and
those that are function-oriented. A library-oriented component is one that is made
up of related data structures and routines that are expected to be used by many other
components. A function-oriented component is one that implements a specific func-
tional requirement of an application. Given these definitions, high coupling from
non-library components to library-oriented components is expected while coupling
from library-oriented components to non-library components is undesirable, and the
coupling among function-oriented components should be minimized.

5.2 Definition of Metrics

The metrics used in the evaluations were based on the notion of static couplings
between modules and classes detected in the source code. Essentially, a general de-
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sign goal is to reduce the amount of inter-module coupling without increasing the
amount of intra-module coupling. To measure the degree of inter-module coupling,
two metrics were defined: coupling between modules (CBM) and coupling between
module classes (CBMC). A complete description of these metrics and a discussion
of how they were derived can be found in [25] and [26].

For the definitions of CBM and CBMC, static coupling is considered. A coupling
between two classes occurs when one class uses another class in its implementation.
Coupling occurs when the source code of one class includes the definition of an-
other class (e.g., importing in Java and including in C++), includes a declaration of
a variable or parameter of another class type, or accesses a data member or method
of another class. When the two classes involved in the coupling belong to different
components, the coupling represents a coupling between components (or modules).

The CBM metric was defined to capture the degree of coupling between compo-
nents in a system at a coarse level. This metric is similar to the coupling between
objects (CBO) metric as defined in [12]; however, instead of counting coupling at a
class level, CBM is calculated at the component level. Components with high CBM
values are potential areas for maintenance problems or signs of system degenera-
tion. While having a few components with high CBM values may not represent a
problem and may be desirable, an architecture that contains many components with
high CBM values indicates a poorly structured system. In such a system, the compo-
nents are highly interrelated, and a change to one component likely will affect many
components of the system.

To capture the level of coupling at a finer level, the metric CBMC was defined.
While CBM calculates coupling at the component level, this metric is used to mea-
sure the number of classes involved in the coupling between modules. As with the
CBM metric, a high CBMC value indicates modules that are interdependent and may
represent maintenance problems or system degeneration. The CBMC value gives an
indication of the “width” of the interface between the two components. If a com-
ponent has a high CBM value and a high CBMC value, changes to the component
most likely will be difficult due to its interrelationships with many classes in many
components.

To illustrate how these metrics are calculated, consider the example of the high-
level architecture of a system given in Fig. 2.

When calculating the CBM metric, the coupling among the classes of a single
component is ignored. For example, the couplings between classes Y and X and Y

and Z within component A are ignored in the calculation of the CBM metric value.
Additionally, the direction of the coupling is ignored. Once the intra-module cou-
plings and the direction of the couplings are ignored, the architecture of the system
can be viewed as shown in Fig. 3 and the CBM values for each component can be
calculated.
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FIG. 2. Example diagram of a high level architecture of a system.

FIG. 3. View of example system with intra-module couplings and the direction of the couplings re-
moved.

In this case, the CBM value for component A is 2 and is denoted by CBM(A) = 2.
Likewise, the CBM(B) = 1 and the CBM(C) = 1.

To calculate the CBMC values for each component, the intra-module couplings
are eliminated as shown in Fig. 4. Again, the direction of the arrows is ignored, but
the number of classes involved is not. In this case, the CBMC value for compo-
nent A is 5 and denoted by CBMC(A) = 5. Similarly, the CBMC(B) = 4 and the
CBMC(C) = 2.

Retaining the direction of the coupling arrows provides another useful view of the
coupling between modules and the degree of the coupling between two components
along the direction of the coupling. For this view, the classes are not drawn in the
diagram, but each directed arrow is labeled with the number of classes involved in
the coupling along the direction of the arrow. The example system with labeled di-
rected arrows is depicted in Fig. 5. This view is useful for determining the width
of the interface between two components. In the example system, for instance, the
coupling from component C to component A is narrow since only one class within
component A is being accessed by component C. By looking at this view of the ar-
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FIG. 4. Example system with intra-module couplings eliminated.

FIG. 5. Example system with direction of coupling included. The label represents the number of
classes being accessed in the component at the endpoint of the arrow.

chitecture, components with wide interfaces (i.e., the arrows with large labels) can
be identified easily.

5.3 Representing the Architecture

In both case studies, the same representation was used for the architecture of the
systems. Boxes are used to represent high-level components of the system. Each
high-level component box represents a group of Java classes in these cases. Because
of the metrics used for these studies, arrows are used to represent the coupling rela-
tionships among the components of the system.

For the planned architecture, the boxes and directional arrows are defined based
on the architectural styles, design patterns, and guidelines identified. For example, if
the system used a layered architecture, the representation of the planned architecture
might include component boxes for each layer with arrows going from one layer to
the next.
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Figure 6 shows a simple example of how the guidelines for a layered architecture
might be translated into a representation of the planned architecture. In this example,
there are three components (i.e., TopLayer, MiddleLayer, and BottomLayer). The
classes within each layer are expected to communicate only with those layers that are
immediately adjacent to the layer. For the case studies presented here, this planned
architectural diagram was translated into a text file. The text file representation of
the planned architecture shown in Fig. 6 is shown in Table I. The first line of the text
file gives a name to the diagram. The subsequent lines define a component and the
components that are expected to communicate with the defined component.

The representation of the actual architecture used in the case studies is derived
from the source code. A parser is used to extract static coupling information (as de-
scribed in the previous subsection) from the source code of the system. The output
of the parser is a comma-separated file that is used to create the diagrams represent-
ing the actual architecture of the system. Each line contains coupling information
including the From Subsystem, From Component, From Class, To Subsystem, To
Component, To Class. An example of a subset of the output from the parser is shown
in Table II.

To create the diagrams of the actual architecture from this file, the From Com-
ponent and the To Component fields are used. A box is drawn for each component.
When the From Component field differs from the To Component field, an arrow

FIG. 6. Example representation of a planned architecture.

TABLE I
A TEXT FILE REPRESENTATION OF THE PLANNED

ARCHITECTURE SHOWN IN FIG. 6

Layered;
TopLayer:MiddleLayer;
MiddleLayer:TopLayer,BottomLayer;
BottomLayer:MiddleLayer;
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TABLE II
SAMPLE OUTPUT OF THE ACTUAL ARCHITECTURE FROM THE PARSER

From From From To To To
Subsys- Component Class Subsys- Component Class
tem tem

Client Cache CacheObject Client Mediator Mediator
Client Connector ServletProxy Client Mediator Mediator
Client Editor EditorObject Client Mediator MediatorObject
Client Editor EditorObject Client Mediator Mediator
Client Editor EditorObject Client Editor PackageTypeSetup
Client Editor EditorObject Client Editor Hyperwave
Client Editor PackageTypeSetup Client Editor EditorObject
Client Logger EMSLogger Client Mediator MediatorObject
Client Logger EMSLogger Client Mediator Mediator

FIG. 7. Diagram of actual architecture based on partial subset of data shown in Table II.

is drawn from the box representing the From Component to the box representing
the To Component. The number labels for the edges are computed by counting the
number of distinct classes in the To Component reached from the From Component.
The subset of information shown in Table II would lead to the diagram of the actual
architecture shown in Fig. 7.

5.4 Case Study 1—the VQI

The implementation-oriented software architectural evaluation process was orig-
inally developed and used to evaluate several versions of the FC-MD system as de-
scribed previously. As the VQI system was restructured and evolved, architectural
evaluations were conducted to confirm that the actual system changes had been im-
plemented as planned.
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TABLE III
SIZE CHARACTERISTICS OF VQI

Version Size (LOC including comments)

VQI1 17,522
VQI2 24,269
VQI3 26,915
VQI4 27,072

5.4.1 Background

The architectural evaluation process was used on three iterations of the VQI sys-
tem. The versions of the VQI system are numbered VQI1–VQI4 indicating the order
in which they were developed. Size characteristics for each version are presented in
Table III.

Initially, the VQI was developed by two people and amounted to about 17K lines
of commented source code (LOC) written in Java. VQI2 represents a significant
architectural change from VQI1 due to maintainability problems with the previous
version. The VQI2 system contains over 24K lines of commented Java source code
developed by four local developers plus a team of three developers in Brazil.

VQI3 represents the work done by one developer to implement a specific task.
VQI3 also represents a major change to the system in terms of increased usability and
new capabilities and was released to end-users. Examples of changes in version three
include converting VQI to run as both a desktop and a web application; connecting
and drawing data from several different data sources instead of a single data source;
and adding several advanced graphical and statistical analysis features.

VQI4 is a version of the system that is a result of an effort to eliminate the set of
detected architectural violations in VQI3. The difference between VQI3 and VQI4
is relatively limited. No new features were added to this version of the system. VQI4
represents the system after changes were made specifically to correct architectural
deviations.

5.4.2 Planned Architecture

5.4.2.1 Architectural Style. The overall architectural style of the VQI2–
VQI4 versions is an Internet-based and client-server system with most of the func-
tionality and maintenance efforts residing in the client. The server is responsible only
for handling requests from the client. When the client requests data from the server,
the server connects to a database, retrieves the requested data, processes it and sends
the data back to the client. The client consists of the majority of the code that im-
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FIG. 8. A diagram of the planned architectural design for VQI2.

plements most of the functionality of VQI2–VQI4. Figure 8 shows a diagram of the
planned architecture for VQI2.

5.4.2.2 Design Pattern. The core of the architecture for client of VQI2–
VQI4 is based on the mediator design pattern [19].

The mediator is one of the behavioral patterns described in [19]. The pattern en-
capsulates how a set of objects interact, providing loose coupling among the objects
where the objects do not reference each other explicitly. The pattern consists of a
Mediator object and Colleague objects. The Colleague objects are not aware of each
other and only share information with each other through the Mediator object. The
Mediator object is responsible for coordinating the communications among all of its
Colleagues.

In the client side of VQI2–VQI4, the mediator design pattern is abstracted to a
component level. The Mediator is a component of classes and interfaces related to
controlling the communication among Colleague components. The Colleague com-
ponents implement different functionalities in the client and interact with each other
only through the classes of the Mediator component. In each of the Colleague com-
ponents, only one class is supposed to interact with the Mediator component directly.
The Server Stub component is the Colleague that handles the communication with
the Server. Hence, it has interactions with the Mediator component and the Server
component.

5.4.3 Guidelines

A set of design guidelines for the VQI was derived based on the properties of
intra-module coupling, the client-server architectural style and the mediator design
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pattern. The following guidelines represent sample design guidelines that are specific
to the VQI system:

• [DG2] The Server should contain no references to the Client (since the server
does not initiate communication with the clients).

• [DG6] The Mediator should be coupled with exactly one class per component
and vice versa.

• DG2 is an example of an architectural style guideline, based on the client-server
architectural style. DG6 is an example of a design pattern guideline reflecting
how the mediator design pattern should appear in the implementation. The de-
tails of the metrics defined during these evaluations and a complete set of guide-
lines are described in [6] and [7].

5.4.4 Results from the VQI2 Evaluation

The architectural evaluation of the changes implemented in VQI2 was the first
iteration through the evaluation process. During this iteration, many of the guide-
lines, metrics and tools used in future iterations were developed. Since VQI1 was a
research prototype with no official design document, the existing architecture had to
be recovered and a planned design had to be created before the implementation of
VQI2. When the time came for the analysis team to perform the architectural eval-
uation, the high-level planned design for VQI2 was readily available. Having this
high-level design document allowed for a quicker evaluation. Since members of the
development team were closely involved with the planned architectural design of
VQI2, the expectations were to find no deviations between the planned and actual
architectures.

During this evaluation, a tool was developed to extract from the source code the
interrelationships among components. The tool produced tables that were imported
into Microsoft Excel spreadsheets and diagrams of the actual architecture were con-
structed manually. Figure 8 shows the diagram of the planned design for VQI2. Fig-
ure 9 shows the actual design for VQI2 that was constructed manually based on
the spreadsheets generated by the tool. These diagrams were used to identify viola-
tions of the architectural design guidelines. The first iteration through the evaluation
process took several weeks to conduct because new metrics and guidelines based on
the architectural style and design patterns of the VQI were developed.

Although the expectations were to find no deviations, the architectural evaluation
surprisingly uncovered four architectural violations during the first iteration. Three
of the violations can be seen in comparison diagram (Fig. 9). The fourth violation
was a metric guideline violation. The violation from the PackageEntry component to
the VQI component was a design pattern guideline violation and was considered to
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FIG. 9. A diagram of the actual architecture of VQI2. Extra coupling violations are shown with dotted
lines. Missing coupling violations are shown with dashed lines.

be serious. The other violations were considered to be minor; however, one resulted
in a change to the original metric guidelines.

From this iteration of the evaluation process, several resources were created for
future versions of the VQI and for future iterations through the evaluation process.
These resources include a set of metrics, architectural guidelines, and a diagram of
the planned architecture. In addition to the VQI-specific resources, the first iteration
of the process also resulted in the creation of a tool to extract the static coupling
information from the source code. Although the first evaluation took several weeks
to perform, the metrics, guidelines, and tool support enabled faster evaluations of
new versions of the VQI system.

This first iteration through the evaluation process provided several lessons. Hav-
ing members of the design team participate in the development does not necessarily
prevent the occurrence of serious architectural violations. In this case, the main ob-
jective of the development was to re-engineer the system into a more maintainable
state. Developers actively participated in the re-design of the architecture of the sys-
tem. Architectural mismatches were not expected in the actual implementation, yet
they still occurred.

The experiences from this iteration indicate that implementing design patterns
may not be entirely straightforward. The goals of the architectural design and the
implementation details of the design pattern were explained to the developers. Still,
design pattern violations appeared in the implementation. Although it is believed
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FIG. 10. A diagram of the planned architectural design for VQI3 and VQI4.

that the mediator design pattern has and will continue to make the VQI system easier
to maintain, when new developers are introduced to the concept, understanding the
implementation details of the design pattern has a learning curve.

5.4.5 Results from the VQI3 Evaluation

The evaluation of VQI3 took place after a visiting student had implemented a new
requirement and another student had implemented several additional changes. These
changes involved several adjustments to the high level architectural design of the
VQI system. The planned architectural design for VQI3 is shown in Fig. 10. The
developers that made the changes for VQI3 were not the same as those involved in
the development of VQI2. This iteration of the evaluation made use of many of the
same architectural guidelines and metrics that were used during the first iteration of
the evaluation. However, instead of using the tool developed for the first iteration im-
mediately, a “whiteboard” discussion with the developer was used to reconstruct the
actual architecture of the system. During the course of this discussion, three design
pattern violations were uncovered.

After the discussion with the developer, the static coupling tool developed dur-
ing the previous iteration was used on the source code to confirm the results and
completeness of the “whiteboard” discussion. A diagram showing the structural vi-
olations detected by the tool is shown in Fig. 11. The tool uncovered 15 violations
of architectural guidelines. Ten of the 15 violations were metric guideline violations.
Nine of the violations (including some that were also metric violations) were design
pattern violations. One violation was a violation of a general architectural guideline.

Once again, a misunderstanding of the design pattern implementation details was
the source of many of the uncovered guideline violations. During this iteration, sev-
eral new components were added to the system. However, these components were
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FIG. 11. A diagram of the actual architectural design of VQI3. Extra coupling violations are shown
with dotted lines. Missing coupling violations are shown with dashed lines.

added to the system incorrectly. As with the previous iteration, the new components
were not supposed to communicate with any other components directly. The com-
munications with Colleague components were supposed to be coordinated through
the MainMediator component. However, these new components bypassed the Main-
Mediator component and accessed other Colleague components directly.

Because many guidelines for the VQI system and a tool to extract static couplings
were produced during the first iteration of the evaluation process, the evaluation of
VQI3 took only a few days. A few hours were spent with the developer in the “white-
board” discussion. After running the tool on the source code, it took another day to
investigate and confirm the violations.

During this iteration of the evaluation process, several new lessons about the
process were learned. Once the high-level design and guidelines for a system are
defined, evaluating new versions of the system becomes more efficient. This itera-
tion through the evaluation process also demonstrated that while discussing the ar-
chitecture with the developer is useful in uncovering some architectural problems,
these discussions do not find all of the architectural problems that exist in the ac-
tual implementation of the system. Using tools to support the evaluation process is
necessary.

5.4.6 Results from the VQI4 Evaluation

Since the evaluation of VQI4 was performed after the visiting student had made
revisions to fix the violations uncovered in VQI3, the high-level planned design did
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FIG. 12. A diagram of the actual architectural design of VQI4. Extra coupling violations are shown
with dotted lines. Missing coupling violations are shown with dashed lines.

not change between versions three and four of the VQI. (See Fig. 10.) There were
other minor modifications made to the source code, but nothing that affected the
structure of the high-level design. The metric and design guidelines from the previous
versions were also applicable to this version of the system. For this evaluation, the
tool to extract the interrelationships from the source code was used to obtain an
abstraction of the actual architecture.

The architectural evaluation of VQI4 found 12 architectural guideline violations.
With VQI4, four existing violations were removed from the system while one new vi-
olation was added. The newly added violation was a minor violation. The violations
that were removed were design pattern violations. A diagram showing the structural
violations is shown in Fig. 12.

This iteration of the evaluation process only took a few hours to perform. It is
believed that this iteration reflects the amount of time it would take to evaluate a
typical system once the metric and architectural guidelines have been established.
However, another factor affecting the length of time needed for an evaluation is the
number of violations detected. When more violations are uncovered, more effort is
required to investigate and suggest solutions to eliminate the violations.

5.4.7 Summary of Results for VQI Evaluations

Throughout the three iterations of the architectural evaluation process on the VQI
system, 20 metric and design goal violations were identified. Many of the viola-
tions were ones that were considered to be serious violations that would threaten the
maintainability of the system. A summary of the results from each iteration of the
evaluation process on the VQI is given in Table IV.
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TABLE IV
SUMMARY OF EVALUATION RESULTS

Evaluation version Number of violations Amount of effort

VQI2 4 A few weeks
VQI3 15 A few days
VQI4 12 A few hours

The majority of the violations found during the evaluation were problems re-
lated to the mediator design pattern. When new developers added components to the
system, they did not connect them properly. Other less serious violations included
classes being placed in the wrong package and importing classes that were not used.
Although these violations are not as serious as a design pattern violation, they could
still lead to confusion as the system develops. More information about the software
architectural evaluations for VQI3 and VQI4 can be found in [32].

Although the architectural evaluation process yielded good results for the VQI
system, there were several issues that needed to be addressed to determine the fea-
sibility and applicability to other systems. The architectural evaluation process had
been applied to the VQI system only. The VQI system is relatively small and had
been designed and developed by members of the analysis team. Although a tool had
been developed to support the process, some steps of the process were performed
manually and sometimes resulted in erroneous diagrams. Additional tool support
was necessary to make the process easier to apply.

5.5 Case Study 2—Proprietary Design, Simulation and
Analysis Tool

To address some of the issues associated with the first set of evaluations, an ad-
ditional architectural evaluation was conducted. For this evaluation, additional tool
support was developed. The object of this case study was a system that was not
known to the evaluators. This case study was conducted to determine if the process
could be applied to a larger system that was unknown to the evaluators. Like the
VQI, the perspective of this evaluation was maintainability. The metrics used in this
study were the same as those used in the VQI evaluations.

5.5.1 Background

The subject of this case study was a proprietary computer aided design, simulation
and analysis application. Because of the proprietary nature of the system, many of
the details of the system must be withheld.
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The system had not yet been released when the architectural evaluation was con-
ducted. The system is written in Java and at the time of the evaluation, the system
consisted of nearly 80 KLOC. The system was developed mainly by two develop-
ers. These two developers worked in two different geographic locations and met
weekly to discuss the progress of the product. The system was developed with an
extreme programming-like process. The requirements planning and testing practices
of extreme programming (XP) [7] were the main practices of XP used in this devel-
opment. As such, the developers did not have a true design document from which the
code was developed, although the developers were expected to follow several design
patterns and guidelines. As the system neared release and new programmers were
hired to begin work on the development, the company wanted to conduct the archi-
tectural evaluation to be sure that the system was being implemented according to
the guidelines and to communicate these architectural guidelines and design patterns
to the new developers.

5.5.2 Planned Architecture

As mentioned previously, although there was no design document for the system,
there were several architectural guidelines based on the architectural style and design
patterns in place for the development of the system.

5.5.2.1 Architectural Style. The architectural style of the system under
evaluation is a plug-in architecture. As with many aspects of software architecture,
there is no universally accepted definition for the term plug-in architecture; thus, it
is necessary to explain the definition used in this context. The main objective behind
a plug-in architecture is to facilitate the extension and modification of a system’s
capabilities. To allow for easy adjustments and enhancements to the system with-
out major changes to every component, coupling between the system components is
restricted with this architectural style. The plug-in architecture is broken into three
major component types: plug-in components, a plug-in manager component, and a
component housing the requesting process.

Plug-in: Plug-in components are used to exchange data and control to and from a
requesting process. The plug-in component provides specific services to a requesting
process via a plug-in manager component using a well-defined interface. As long
as a plug-in component implements the well-defined interface, the plug-in manager
component will be able to detect and communicate with it.

Plug-in Manager Component: The plug-in manager component coordinates inter-
actions between plug-in components and a requesting process. When a requesting
process requires a service from a plug-in, it sends a request to the plug-in manager
component, which in turn, communicates with the plug-in to execute the service.
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FIG. 13. High-level design of a plug-in architecture.

Upon completion of the service, the plug-in manager component regains control and
returns the results to the requesting process. If a system is large and contains dif-
ferent types of functionality, there may be multiple plug-in manager components.
In this case, each plug-in manager would be responsible for a subset of the plug-in
components.

Requesting Process: The requesting process is the owner of the plug-in manager
component(s). The process requests services from a specific plug-in or multiple plug-
in components through the plug-in manager component’s interface. Upon completion
of the service, the results are returned to the requesting process through the plug-in
manager component.

In this architectural style, the plug-in manager component and the component that
implements the requesting process do not know the actual implementation of each
plug-in component. The plug-in manager does not know the details of each plug-
in component. It only knows that the plug-in components implement a well-defined
interface. This aspect of the plug-in architectural style facilitates the expansion and
modification of an application’s services. As new functionality is required, a new
plug-in component that implements the well-defined interface is created and be-
comes immediately available to a requesting process through the plug-in manager
component. Likewise, components can be exchanged to adapt the behavior of an
application. A visual representation of the plug-in architecture is shown in Fig. 13.

5.5.2.2 Design Patterns. The Observer design pattern played a major role
in the architectural style of this system. As with the evaluations of the VQI, the
concept of an Observer design pattern had to be abstracted to a component level.
Instead of having classes play the roles in the design pattern, the roles are played by
components that may consist of several classes.
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Observer. The Observer is one of the behavioral design patterns described in
[19]. It is similar to aspects of the model-view controller paradigm [22] and typically
used to provide various views of the same subject data. For example, a data set con-
taining percentages might be viewed in a bar chart, in tabular form, and/or as a pie
chart. The subject data in this example is the data set of percentages. The bar chart,
tabular form, and pie chart represent various views of the subject data.

In the Observer design pattern, there are Subject classes and Observer classes.
Subject classes are the classes that contain the data values that will be observed.
Each Observer class interested in a Subject subscribes to be an observer of the Sub-
ject. A Subject class contains a list of all of the Observers interested in its data.
Whenever the Subject data changes, the Subject class informs all of its Observers
that it has changed. The Observer classes adjust themselves according to the change
in the Subject data. Using the previous example, the bar chart, table, and pie chart
classes would subscribe to be observers of the class containing percentages data. If
a user updates the subject data set in the tabular view, a message would be sent to
each subscriber in the observer list of the class containing the percentages data set.
Upon receipt of the change message, the bar and pie charts would update their views
accordingly.

The Observer design pattern is implemented as part of the Java Software Develop-
ment Kit (SDK). The role of the Subject in the design pattern is implemented in the
Observable class. To create Subject classes, developers create subclasses of the Ob-
servable class. The role of the Observer class in the design pattern is accomplished
through the use of the Observer interface in the Java SDK. Any class that wishes
to be an Observer to an Observable object (i.e., the Subject) must implement the
Observer interface.

5.5.2.3 The System Context. The diagram shown in Fig. 14 represents
the planned architecture of the system under evaluation. The system consists of a
Main component, several plug-in components and several library-oriented compo-
nents. The Main component of the system allows for textual and graphical views
of CAD designs and graphical views of simulation results that are used in analysis.
The plug-in components fall into two main categories: those related to the CAD de-
sign views and those related to the analysis views. The PlugInCommon component
contains classes related to the plug-in architectural style. In terms of the plug-in ar-
chitectural style, the PlugInCommon component is part of the plug-in manager. The
Results component contains the data structures representing the data that is manip-
ulated in the analysis operations of the application. Hence, the Results component
contains classes that participate in the Observer pattern. The classes in this compo-
nent represent Subject components in the terms of the Observer pattern. The Plug-
InMainStructure component contains data structures used in both the textual and
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FIG. 14. The planned architecture of the proprietary system.

graphical views of CAD designs. The DesignCommon component contains addi-
tional data structures used by several plug-in components. The following components
are considered library-oriented components: Results, PlugInMainStructure, and De-
signCommon. These components contain data structures that will be accessed by
several components. However, these library-oriented components should not access
classes in the plug-in components.

The Main component of the planned architecture houses the requesting process for
the plug-in architectural style. The system consists of a single plug-in manager com-
ponent. This plug-in manager component is partially implemented in the PlugInCom-
mon component and partially implemented in the Java SDK. Specifically, as long as a
plug-in component is a Java GUI component or a subclass of a Java GUI component
and implements the Observer interface, it will implement the well-defined interface
required by the plug-in manager component for this system.
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Because part of the architectural style and the design patterns used in this sys-
tem are contained within the implementation of the Java SDK, the diagrams of the
planned and actual architectures will not show the complete architectural style and
design pattern. For example, the connection between the Main component and the
plug-in manager component will not appear in the diagrams. These peculiarities have
to be taken into consideration when determining the architectural and metric guide-
lines for the system.

5.5.3 Guidelines

Several architectural and metric guidelines were developed based on the architec-
tural style and design patterns used in the system.

5.5.3.1 Architectural Guidelines. The architectural guidelines for the
system are broken into guidelines related to each type of component in the architec-
tural style.

Plug-in Component Guidelines:

• A plug-in component cannot access other plug-in components directly. All com-
munication between plug-in components must go through the plug-in manager
component.

• No component (including other plug-in components) should reference plug-in
components. The part of the plug-in manager component that would access the
plug-in components is part of the Java SDK and is not visible in the diagram of
the planned architecture.

Plug-in Manager Component Guidelines:

• In most cases, plug-in components may access the PlugInCommon and the Re-
sults components only. The following components are exceptions to this rule:
DesignPlugIn1 and AnalysisPlugIn2. These plug-in components are allowed
to access the DesignCommon component. DesignPlugIn1 is allowed to access
classes in the PlugInMainStructure component as well.

• Non-plug-in components should not reference the PlugInCommon component.

• The PlugInCommon component should not reference non-common compo-
nents.

• Plug-ins must extend from a class in the PlugInCommon component. In the
diagram of the planned architecture for the system, the PlugInCommon repre-
sents part of the plug-in manager module. It contains the classes and interfaces
needed by plug-in components.
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Component Housing Requesting Process Guidelines:

• The Main component cannot access plug-ins directly. Communication must go
through the plug-in manager component. Since the communication between the
Main component and the plug-in manager module is implemented in Java SDK
classes, there should not be any references from the Main component to the
plug-in or plug-in manager components in the diagrams.

Library-Oriented Component Guidelines:

• Library-oriented components are allowed to access each other, but they are not
allowed to access plug-in components or non-library components. Although
coupling among library-oriented components is allowable, this type of coupling
is sometimes a violation. For example, in the planned architecture, there is no
arrow between the PlugInMainStructure component and the PlugInCommon
component. If classes in the PlugInMainStructure component access classes in
the PlugInCommon component, it would be a violation.

• Library-oriented components are designed to be used by many components;
hence coupling to the library-based components is expected to be high.

5.5.3.2 Metric Guidelines. In addition to the architectural guidelines, the
following metric guidelines were defined for the system:

• The CBM metric of component PlugInCommon should be nine (one for each
of the nine plug-in components). The CBMC metric of PlugInCommon compo-
nent should be high in relative to other components.

• The CBM metrics for most plug-in components should be two. The two excep-
tions are the DesignPlugIn1 and AnalysisPlugIn2 components.

• Communication between the plug-in manager module (PlugInCommon) and
the plug-in components should be through a common, narrow interface. The
CBMC metric for plug-in components should be low and the CBMC metric
for the PlugInCommon should be relatively high since it coordinates all plug-in
components.

• The CBM metric for the Main component should be one due to the fact that
the connection to the plug-in manager module is part of the Java SDK and not
visible in the diagrams. The Main component should have a dependency with
the PluginMainStructure component only.

• The CBM metric of the Results component should be at least nine (one for each
plug-in component).

• The CBMC metric of the library-oriented components should be high relative
to other components.
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5.5.4 Violations Between the Planned and Actual
Architectures

Once the guidelines were established, the comparison between the planned and
actual architectures was conducted. To extract the static couplings and to make the
comparison, a new tool was developed that built on the functionality provided by the
existing tool. This tool is called the architectural evaluation tool. Initially, the tool un-
covered several false positives. In particular, the source code for this system includes
several classes with the same names as classes defined within the Java 3D graph-
ics package. The tool mistakenly detected couplings between components that were
using the Java 3D graphics classes and the component where the identically named
classes were defined. This type of false positive suggests an area of improvement for
the architectural evaluation tool.

The false positive violations were removed and Fig. 15 shows the comparison
between the planned and actual architectures of the system with the remaining vi-
olations highlighted. The missing coupling type violations are depicted with dotted
lines and the extra coupling type violations are shown with dashed lines. In total,
once the false positive violations were removed, there were 24 violations in the com-
parison between the planned and actual architectures. Of the 24 violations, 21 were
extra coupling violations while three were missing coupling violations.

5.5.4.1 Discussion of Types of Violations. Once the false positive
violations were removed, a number of violations remained. The remaining violations
varied in terms of severity. Some were minor violations while others suggested more
serious problems with the system’s actual architecture.

Minor Violations. As with the VQI evaluations, one of the violations uncovered
in this study was due to an unused import statement. Initially, a class was imported
and used within the component. However, the code was changed to no longer rely
on the external class and the import statement was inadvertently left in the code.
Another violation was due to dead code. Apparently, a class that was used in ear-
lier versions of the system remained packaged with the source code. This class was
coupled to a class in an external component. It was not until after the evaluation was
conducted that the developers realized that the class was still included in the source
code.

Medium-Level Violations. Several of the violations uncovered during the evalu-
ation were due to coupling in test methods that were not actually part of the system.
As a way of testing individual classes, often a test main method was included as part
of the class. In several cases, these test methods used classes from external compo-
nents, creating coupling between components. Although these test methods are not
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FIG. 15. The comparison between the planned and actual architectures. Missing coupling violations
are depicted with a dotted line. Extra coupling violations are depicted with a dashed line. The label on
each arc represents the number of classes accessed in the component at the endpoint of the arrow.

part of the actual system, having the dependencies to external components does pose
a potential maintenance problem in the future. Hence, these violations have been
listed as medium-level violations.

Major Violations. The architectural evaluation uncovered several major viola-
tions. A violation was considered to be major if it violated one of the architectural
style or design pattern guidelines due to a misunderstanding of the style or pattern.
As a result of the evaluation, it was discovered that several of the design plug-ins
were not being connected correctly in the application. All plug-in components are
supposed to extend from a class in the PlugInCommon component and utilize data
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structures within the Results component. However, some of the design plug-in com-
ponents were using the wrong data structures (i.e., those from the PlugInMainStruc-
ture component instead of the Results component) and accessing classes in the Main
component directly. Additionally, one of the design plug-in components (Design-
PlugIn2) did not utilize any classes in the PlugInCommon component as expected.
These extra and missing dependencies also indicate a misunderstanding of how plug-
in components are supposed to be connected in the application.

There were fewer, yet still some problems with analysis plug-in components as
well. The extra dependency between the PlugInCommon component and the Analy-
sisPlugIn4 component represents another potentially serious violation. The Plug-
InCommon component is not supposed to access classes in the plug-in compo-
nents. However, the PlugInCommon has a dependency with the AnalysisPlugIn4
component that may cause problems as the development of the product contin-
ues.

5.5.4.2 Metric Analysis. An evaluation of the architecture using the CBM
and CBMC metrics provides additional information about how well the actual ar-
chitecture meets the guidelines of the planned architecture. The CBM and CBMC
metrics for the system under evaluation indicate several problems. The CBM and
CBMC values for the components of the system are shown in Table V. The charts in
Fig. 16 show the distribution of CBM and CBMC values.

TABLE V
THE CBM AND CBMC VALUES

OF THE COMPONENTS OF THE SYSTEM

Module CBM CBMC

DesignPlugIn2 1 2
AnalysisPlugIn3 2 5
AnalysisPlugIn2 2 7
AnalysisPlugIn5 3 7
AnalysisPlugIn4 2 10
DesignPlugIn4 3 10
AnalysisPlugIn1 3 11
DesignCommon 4 11
DesignPlugIn3 4 14
DesignPlugIn1 4 15
Results 9 18
PlugInMainStructure 6 48
PlugInCommon 12 55
Main 7 66
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FIG. 16. The distribution of the CBM values is shown in the chart on the left. The distribution of the
CBMC values is shown in the chart on the right.

The CBM metrics for the plug-in components confirm the discrepancies seen in
the comparison diagram. (See Fig. 16.) Six out of the nine plug-in components vi-
olate the metric guidelines set for the expected CBM values. Five of the six sub-
standard components have a higher CBM value than expected while one has a lower
CBM value than expected. Additionally, the CBM values for the PlugInCommon and
Main components are 12 and 7 respectively, much higher than expected. The high
CBM values indicate that the plug-in components have not been connected to the
application correctly and that there are unwanted dependencies among the plug-in
components as well as with the Main component. In the future, if these violations
are not corrected, there may be maintainability problems due to the higher than ex-
pected coupling between the components.

Looking at the CBMC numbers provides a more detailed view of the architecture
than can be seen in the diagrams or with the CBM numbers alone. Since the CBMC
number reflects the number of classes involved in dependencies with the compo-
nent, it gives a better understanding of the degree of coupling between components.
One of the metric rules states that the plug-in components should have relatively
low CBMC values. Several plug-in components have CBMC values as high as the
library-oriented components where high CBMC values are expected. In many cases,
the contributors to the high values come from dependencies with classes in library-
oriented components. However, after examining the classes involved in the depen-
dencies with plug-in components further, it can be seen that the interface between
the PlugInCommon component and the plug-in components is not as narrow as ex-
pected. Perhaps, the metric guideline needs to be adjusted to take into account the
extra references. Alternatively, narrowing the interface between plug-in components
and the PlugInCommon component should be considered.

The CBM and CBMC numbers for the Main component raise concerns about
the maintainability of this component. At 66, the Main component has the highest
CBMC value and its CBM value of 7 is much higher than the expected value of 1.
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This component clearly violates the planned architecture and should be corrected to
avoid more serious maintenance problems in the future.

5.5.5 Summary of Results

The study was useful on several different levels. The development and analysis
team gained insights during the evaluation. Several issues with the evaluation process
were addressed and validated with this study.

The evaluation provided useful feedback on the status of the software architec-
ture for the development team. The system used in this evaluation was still under
development when the study was conducted. The architectural evaluation process
highlighted several problems that were unknown to the developers of the system
prior to the study. For example, after the evaluation, it was clear that there was a mis-
understanding between the developers regarding the connection of design plug-in
components to the application. The developers of the system found the architectural
evaluation process to be practical and helpful.

The evaluation of the system provided validation for several different aspects of
the software architectural evaluation process. This study represented the first time the
process had been used on software that was not originally known to the evaluators.
In the evaluations of the VQI, some of the evaluators were also responsible for the
design and development of the system. This study validated that it is feasible for the
architectural evaluation process to be used with a system where the evaluators are
not involved with the design or development of the system under study.

The proprietary commercial system was larger than the VQI systems evaluated
previously. There were no difficulties in applying the process and the architectural
evaluation tool to the larger system. This study demonstrated that the architectural
evaluation process could be used on Java software systems with size up to approxi-
mately 100 KLOC. There is no indication that the process and the tool will not work
on larger systems; however, this proprietary system is the largest one to date where
the process and tool have been used.

The system under evaluation used a different architectural style and additional de-
sign patterns from the VQI. The study confirmed that the architectural evaluation
process can be adapted to new architectural styles and design patterns relatively eas-
ily.

In addition to providing validation for several new aspects of the software archi-
tectural evaluation process, this study also provided feedback on the process and the
tools. The system developers were happy with the results of the evaluation. In the
process of evaluating the system, several new features related to the tool support
were discussed. For example, during the evaluation of this system it became clear
how to remove some of the false positive violations.
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6. Summary and Future of Architectural Evaluation

As software systems have become more complex, the need to study and evaluate
these systems at a higher level of abstraction has become more important. View-
ing the high-level architecture of a system allows for an evaluation that focuses on
the components and the interactions between components. Architectural styles are
common, reusable high-level architectural designs. Similarly, at a lower level of ab-
straction, design patterns represent another form of reusable design. By choosing
architectural styles and design patterns, there are several implicit and explicit rules
and guidelines for a system. It is important to understand the implications of se-
lecting a particular architectural style and/or design patterns. In many cases, these
implications are not explicitly stated or documented in the descriptions making these
styles and patterns difficult to implement correctly. To avoid or detect architectural
mismatches, the implications have to be made explicit.

Software architectural evaluation techniques are used to reason about the choices
made for the architecture of a system. There are two main categories of software
architectural evaluations, those that are done before a system has been implemented
and those that are conducted after a version of the system exists. Both forms of
evaluation are useful for similar, but different, reasons. Pre-implementation software
architectural evaluations are useful for choosing an architectural style and evaluating
the adequacy of the architectural choices. Architectural evaluations performed after
a version of the system has been implemented are used to track the actual implemen-
tation of the system. They are useful in determining whether or not the system has
been implemented as planned.

The software architectural evaluation process described in this chapter is an
implementation-oriented approach designed to be efficient. This approach has been
applied successfully to several systems varying in size, architectural styles and de-
sign patterns. The approach has been useful in highlighting architectural mismatches
and in identifying potential problem areas of the software system.

Several tools have been developed specifically to support the process described in
this chapter. However, other existing tools might be used instead of or in combination
with the architectural evaluation tools used to conduct the case studies. For example,
it would be interesting to combine the approach from Antoniol et al. [2] with the
process and tools described in this chapter. The approach described in [2] attempts
to identify design patterns based on metrics of the code. Perhaps using this approach
and tool might improve the process of retrieving the actual architecture from the
code.

Identifying components from the source code and the expected interrelationships
among them is another area for continued effort. With the existing tool set, this part
of the process is done manually. Automating the mapping from source code organi-
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zation to component organization is not a trivial problem. In languages such as Java,
it might be easier to identify components if the code is developed with packages.
However, not all languages have the concept of a package and identifying the pieces
of source code that represents a component becomes more difficult.

The results from using this software architectural evaluation approach have been
encouraging. In every case where the approach has been used, valuable feedback
has been given to the development team. However, in all cases, maintainability was
the perspective chosen for evaluation. It would be interesting to identify metrics and
guidelines from a different perspective. One possible perspective could be security.
Inconsistencies between the planned and actual implementation of software architec-
tures is a source of many security vulnerabilities [33]. Establishing metrics, guide-
lines and rules from a security perspective with the architectural evaluation approach
might be useful in finding these architectural mismatches. As more experience in
software architectural evaluations is gained, more knowledge about software archi-
tecture can be gathered.
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Abstract

Designing a high performance microprocessor is extremely time-consuming tak-
ing at least several years. An important part of this design effort is architectural
simulation which defines the microarchitecture or the organization of the micro-
processor. The reason why these simulations are so time-consuming is fourfold:
(i) the architectural design space is huge, (ii) the number of benchmarks the mi-
croarchitecture needs to be evaluated with, is large, (iii) the number of instruc-
tions that need to be simulated per benchmark is huge as well, and (iv) simulators
are becoming relatively slower due to the increasingly complex designs of cur-
rent high performance microprocessors. In this chapter, we extensively discuss
these issues and for each of them, we propose a solution. As such, we present a
new simulation methodology for designing high performance microprocessors.
This is done by combining several recently proposed techniques, such as statisti-
cal simulation, representative workload design, trace sampling and reduced input
sets. This chapter presents a holistic view on speeding up the architectural de-
sign phase in which the above mentioned techniques are integrated in one single
architectural design framework. In this methodology, we first identify a region
of interest in the huge design space through statistical simulation. Subsequently,
this region is further explored using detailed simulations. Fortunately, these slow
simulations can be sped up: (i) by selecting a limited but representative workload,
(ii) by applying trace sampling and reduced input sets to limit the simulation time
per benchmark, and (iii) by optimizing the architectural simulators. As such, we
can conclude that this methodology can reduce the total simulation time consid-
erably. In addition to presenting this new architectural modeling and simulation
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approach, we present a survey of related work of this important and fast growing
research field.
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1. Introduction

An important phenomenon that can be observed nowadays is the ever increasing
complexity of computer applications. This trend is primarily caused by the high per-
formance of modern computer systems (Moore’s law) and by the high demands of
end users. The increasing performance of computer systems is made possible by a
number of factors. First, today’s chip technologies can integrate several hundreds of
millions of transistors on a single die. In addition, these transistors can be clocked
at ever increasing frequencies. Second, computer architects develop advanced mi-
croarchitectural techniques to take advantage of these huge numbers of transistors.
As such, they push the performance of microprocessors even further. Third, current
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compilers as well as dynamically optimizing environments are capable of generating
highly optimized code.

These observations definitely have their repercussions on the design methodolo-
gies of current and near future microprocessors. Nowadays it is impossible to de-
sign a high performance microprocessor based on intuition, experience and rules of
thumb. Detailed performance evaluations through simulations are required to char-
acterize the performance of a given microarchitecture for a large number of applica-
tions. As a result, the total design time of a complex microprocessor can take up to
seven long years, see for example Mukherjee et al. [59]. During this design process
we can identify several design steps as discussed by Bose and Conte [7], Bose et al.
[8] and Reilly [69]:

(1) the selection of a workload or choosing a number of representative bench-
marks with suitable inputs.

(2) design space exploration or bounding the space of potential designs by us-
ing rough estimates of performance, power consumption, total chip area, chip
packaging cost, pin count, etc.

(3) architectural simulations which define the microarchitecture or the internal
organization of the microprocessor, for example, the number of arithmetic-
logical units (ALUs), the size of the caches, the degree of parallelism in the
processor, etc.

(4) register transfer level (RTL) simulations modeling the microprocessor at a
lower abstraction level which incorporates full function as well as latch-
accurate pipeline flow timing.

(5) logic and gate level simulations in which the functioning of the microarchi-
tecture is modeled at the level of NAND gates and latches.

(6) circuit level simulations which model the microprocessor at the chip layout
level.

(7) and finally, verification, see for example [4].

In this chapter, we will limit ourselves to the first three design steps. These three
steps actually define the optimal microarchitecture for a given set of benchmarks.
Note that although these design steps are done at a high level, they are still extremely
time-consuming, especially step 3, the architectural simulations.

There are four reasons why architectural simulations are so time-consuming. First,
the microprocessor design space is huge but needs to be explored in order to find the
optimal design. Note that the design space is limited due to a number of design
constraints such as maximum chip area, maximum power consumption, maximum
power density, maximum temperature, etc. However, even under these design con-
straints, the microprocessor design space remains huge. Second, the workload space,
i.e., the number of computer programs to be simulated, is large as well. For example,
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the SPEC CPU2000 suite collects 26 CPU-intensive benchmarks. Note that for sev-
eral of these benchmarks several inputs are provided making this number even larger.
Third, the number of instructions that need to be simulated per computer program is
enormous. Evaluating the performance of complex applications requires the simula-
tion of huge numbers of instructions—nowadays, tens or even hundreds of billions of
instructions are simulated per application. Fourth, the simulators themselves are slow
since they need to model complex microarchitectures. For example, SimpleScalar’s
widely used detailed architectural simulator requires on average 300,000 simulator
instructions per simulated instruction, see [1].

In this chapter, we present a new simulation methodology that considerably re-
duces the total architectural simulation time by addressing these four issues. This is
done by first exploring the entire design space and selecting a region with interesting
properties in terms of performance and/or power consumption. Statistical simulation,
which is a fast and quite accurate simulation technique, is well suited for performing
this design step. Subsequently, simulations need to be run on detailed and thus slow
simulators to identify the optimal design within this region of interest. These slow
microarchitecture-level simulations can be sped up (i) by selecting a limited set of
representative benchmarks, (ii) by applying trace sampling and by using reduced in-
put sets to limit the number of instructions per benchmark and (iii) by optimizing the
architectural simulators to increase their instruction throughput. As such, using this
simulation methodology the architectural design phase can be sped up considerably
without losing accuracy, i.e., the same optimal design is identified as would have
been the case through common practice long-running architectural simulations.

This chapter is organized as follows. Section 2 gives a brief introduction to out-
of-order microarchitectures which are commonly used in contemporary general-
purpose microprocessors. Section 3 details on current practice in architectural de-
sign. In Section 4, we discuss why architectural simulations are so extremely time-
consuming. In Section 5, we present our new simulation methodology which reduces
the total architectural simulation time by addressing the following four issues: the
huge design space, the large workload space, the number of instructions per bench-
mark and the simulator slowdown factor. Each of these issues are discusses in the
following sections: 6 through 9. With each of these, we extensively discuss related
work. Finally, we conclude in Section 10.

2. Out-of-Order Architecture

Most contemporary general-purpose microprocessors implement an out-of-order
microarchitectural organization. Examples of commercial out-of-order microproces-
sors are the Alpha 21 264, see [46], the Pentium 4, see [39], and the MIPS R10000,
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see [87]. Many of the basic mechanisms of an out-of-order architecture were pro-
posed by Tomasulo [83] for the design of the IBM 360 model 91 in 1967. This
section gives a brief introduction to out-of-order architectures. For a more elaborate
description we refer the interested reader to [77] and [37]. In an out-of-order archi-
tecture, see Fig. 1, instructions are fetched from the instruction cache (I-cache). In
case branch instructions are fetched, the branch target and/or the branch direction
are predicted so that in the next cycle instructions can be fetched along the predicted
path. Fetched instructions are subsequently renamed by the register renaming unit.
Register renaming eliminates write-after-read (WAR) and write-after-write (WAW)
dependencies from the instruction stream; only real read-after-write (RAW) data de-
pendencies remain. Once the instructions are transformed into a static single assign-
ment form, they are dispatched to the instruction window, where the instructions
wait for their source operands to become available (data-flow execution). Each clock
cycle, ready instructions are selected from the instruction window to be executed on
a functional unit. The number of instructions that can be selected for execution in
one clock cycle, is restricted to the issue width. Further, bypassing is implemented
which means that data-dependent instructions can be executed in consecutive cycles.
Once an instruction is executed, the instruction can be retired or removed from the
processor core. At retirement time, the results of the instructions are written to the
register file or memory. To preserve the semantics of a program trace, the instructions
are retired sequentially as they were fetched. The number of instructions that can be
retired in one clock cycle, is restricted to the reorder width.

FIG. 1. Out-of-order architecture.
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3. Current Practice

Before going into detail on why architectural simulation is so time-consuming, we
first give an overview of current practice. We identify four simulation approaches:
functional simulation, specialized cache and branch predictor simulation, trace-
driven simulation and execution-driven simulation.

Functional simulation is the simplest form of simulation and models the func-
tional behavior of an instruction set architecture (ISA). This means that instructions
are simulated one at a time by taking their input operands and producing output val-
ues. In other words, a functional simulator basically is an ISA emulator. Functional
simulation is extremely useful for determining whether a software program or operat-
ing system is implemented correctly, see for example Simics, a product of Virtutech,
as described by Magnusson et al. [52]. Functional simulators are also extremely use-
ful for architectural simulation since these tools can generate instruction and address
traces which can be used by other tools in the design flow. A trace is a linear se-
quence of instructions that a computer program produces when it gets executed. The
length of such a trace is called the dynamic instruction count of the application.

Specialized cache and branch predictor simulators take instruction and address
traces as input and simulate cache behavior and branch prediction behavior in isola-
tion. The performance metric that these tools typically produce is miss rates, or the
number of cache misses of branch mispredictions per access to the cache and the
branch predictor, respectively. These tools are widely available, for example cheetah

by Sugumar and Abraham [82] and DineroIV by Edler and Hill [20].
Trace-driven simulation also takes as input instruction and address traces but sim-

ulates a complete microarchitecture in detail instead of isolated units. Since the mi-
croarchitecture is modeled in a more or less cycle-accurate way, this kind of sim-
ulation is also referred to as timing simulation. As such, a trace-driven simulation
methodology separates functional simulation from timing simulation. This approach
has the important benefit that functional simulation needs to be done only once
whereas timing simulation has to be done multiple times to evaluate various proces-
sor configurations. This can reduce the total simulation time. An important disad-
vantage is that these traces need to be stored on a disk. These traces can be very
large since the number of instructions that need to be stored in a trace file equals the
dynamic instruction count. For current applications, the dynamic instruction count
can be several hundreds of billions of instructions. Storing these huge trace files
might be impractical in some situations. Another disadvantage is of particular inter-
est when modeling current out-of-order microprocessors. Out-of-order microarchi-
tectures predict the outcome of branches and speculatively execute instructions along
the predicted path. In case of a correct prediction, this will speed up the execution of
the application. In case of a misprediction, these speculatively executed instructions
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need to be nullified. These speculatively executed instructions however, do not show
up in a trace file and as such, do not get simulated in a trace-driven simulator. These
instructions however can have a significant impact on overall performance because
they require resources that need to be shared with instructions along the correct path.
Also, these speculatively executed instructions can result in prefetching effects or
cache contention, see [2].

Execution-driven simulation is similar to trace-driven simulation but combines
functional simulation with timing simulation. As a consequence, trace files do not
need to be stored and speculatively executed instructions get simulated accurately. In
recent years, execution-driven simulation has become the method of choice. A well
known example of an execution-driven simulator is SimpleScalar’s out-of-order sim-
ulator described by Burger and Austin [11], and Austin et al. [1]. This simulator is
widely used in the academia in the field of computer architecture research. Other
simulation tools that were designed in the academia are Rsim at Rice University by
Hughes et al. [41], SimOS at Stanford University by Rosenblum et al. [71], fMW
at Carnegie Mellon University by Bechem et al. [2] and TFsim at the University of
Wisconsin–Madison by Mauer et al. [55]. Companies have similar tools, for example
Asim described by Reilly and Edmondson [70] and Emer et al. [27] and used by the
Compaq design team which is now with Intel, and MET used by IBM and described
by Moudgill [57] and Moudgill et al. [58]. Note that due to the fact that these simu-
lators do model a microarchitecture at a high abstraction level, discrepancies might
occur when their performance results are compared to real hardware, see for example
Black and Shen [3], Gibson et al. [31], Desikan et al. [17].

4. Architectural Simulation

This section discusses why architectural simulations are so time-consuming. Note
that this is irrespective of whether trace-driven simulation or execution-driven simu-
lation is used.

4.1 Design Space

Designing a microprocessor with optimal characteristics can be viewed as eval-
uating all possible configurations and selecting the optimal one. As such, the total
simulation time T is proportional to the number of processor configurations P that
need to be evaluated: T ∼ P . It is interesting to note that the optimal microprocessor
configuration depends on the design criteria. For example, in a workstation, perfor-
mance will obviously be the major concern. On a mobile device on the other hand,
energy consumption will be the key design issue.
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Irrespective of the primary design concern, the design space is obviously huge
since there are typically several dozens or even over one hundred architectural pa-
rameters that need to be tuned. Some examples of architectural parameters are: the
number of ALUs, the types of the ALUs, the latencies of the ALUs, the number of
instructions executed per cycle, the number of memory ports, the configuration of
the memory hierarchy, etc. And since every architectural parameter can take several
values—e.g., the number of ALUs can be varied from 2 up to 8—the total number
of processor configurations that need to be evaluated is exponential in the number of
architectural parameters. For example, if we assume there are 100 architectural pa-
rameters each possibly taking 4 values, the total number of processor configurations
that need to be evaluated is 4100 ≈ 1.6 ·1060. As mentioned in the introduction, some
of these designs cannot be realized due to design constraints, such as maximum chip
area, maximum power consumption, etc. However, even under these constraints, the
search space will still be huge. As such, it is obvious that we need better methods
than enumeration to reduce the total number of processor configurations that need to
be evaluated.

4.2 Workload Space

Evaluating the performance of a microprocessor configuration is done by simu-
lating a collection of computer programs or benchmarks with suitable inputs. This
collection of benchmarks is called the workload.

The composition of a workload requires that benchmarks with suitable inputs are
selected that are representative for the target domain of operation of the microproces-
sor, see [37]. For example, a representative workload for a microprocessor that is
targeted for the desktop market will typically consist of a number of desktop appli-
cations such as a word processor, a spreadsheet, etc. For a workstation aimed at scien-
tific research on the other hand, a representative workload should consist of a number
of applications that are computation intensive, e.g., weather prediction, solving par-
tial differential equations, etc. Embedded microprocessors should be designed with a
workload consisting of digital signal processing (DSP) and multimedia applications.
Note that composing a workload consists of two issues: (i) which benchmarks need
to be chosen and (ii) which input data sets need to be selected. It is important to
realize that the composition of a workload is extremely crucial since the complete
design process will be based on this workload. If the workload is badly composed,
the microprocessor will be optimized for a workload that is not representative for the
real workload. As such, the microprocessor might not attain the optimal performance
in its target domain of operation.

If W is the size of the workload, i.e., the total number of program-input pairs in
the workload, we can state that the total simulation time T is proportional to W , or in
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other words T ∼ W . Since we have to evaluate the performance for each processor
configuration P , see previous section, for each program-input pair in the workload,
the total simulation time becomes proportional to the product of P and W : T ∼
P · W .

4.3 Length of Program Runs

A simulator of a microprocessor needs to simulate every individual instruction of
a program run. As a result, the total simulation time is proportional to the average
number of instructions in a single program run I . Consequently, the total simulation
time is proportional to T ∼ P · W · I .

The number of instructions in a single program run is constantly increasing over
the years. The reason for this phenomenon is the increasing complexity of todays
applications. Indeed, huge numbers of instructions need to be simulated in order to
have a workload that is representative for real applications. For example, the Stan-
dard Performance Evaluation Corporation (SPEC) released the CPU2000 benchmark
suite which replaces the CPU95 benchmark suite, see [38]. The dynamic instruction
count of CPU2000 is much higher than CPU95 which is beneficial for real hardware
evaluations but infeasible for architectural simulations. For example, the dynamic
instruction count of the CPU2000 integer benchmark parser with reference input is
about 500 billion instructions. On the other hand, none of the CPU95 integer bench-
marks has a dynamic instruction count that is larger than 100 billion instructions.

Another way of looking at the same problem, is as follows. Consider for example
one second of execution time on a 2 GHz machine. If we assume that the number of
instructions executed per clock cycle (IPC) varies between 1 or 2 on current micro-
processors, then we can conclude that one second of a real machine corresponds to 2
to 4 billion instructions. In other words, simulating a representative time window in
the order of minutes or hours, requires the simulation of hundreds or even thousands
of billions of instructions. Obviously, simulating these huge numbers of instructions
for a single program-input pair run is impractical, if not impossible.

4.4 Simulation Cost

Architectural simulators, although they model a microarchitecture at a high level,
they are quite slow. Bose [5] reports a simulation cost for the IBM simulation tools
of 50,000 instructions per cycle. Austin et al. [1] report a simulation cost of 300,000
instructions per cycle for SimpleScalar’s most detailed architectural simulator. If we
assume an instruction throughput per cycle (IPC) of 1, we observe that simulation is
a factor 50,000 to 300,000 times slower than real hardware simulation. This means
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that simulating the above mentioned SPEC CPU2000 benchmark parser with a dy-
namic instruction count of 500 billion instructions takes three weeks to nearly four
months for the above mentioned simulation slowdown factors. There is one promi-
nent reason for this phenomenon, namely the ever increasing complexity of current
microprocessor designs. Indeed, computer architects are designing more and more
complex microarchitectures in order to get the highest possible performance in a
given chip technology. A number of important microarchitectural features have been
added to increase performance: branch prediction, speculative execution, memory
disambiguation, prefetching, cache line prediction, trace caches, etc. All these en-
hancements obviously make the simulator run slower, or in other words, more (sim-
ulator) instructions need to be executed per simulated instruction. Note also that a
simulator actually simulates the behavior of a microprocessor in a sequential way
whereas the microprocessor itself executes the computer program in a parallel way
by detecting and exploiting instruction-level parallelism.

If we denote the simulation slowdown factor of a simulator S, then the total sim-
ulation time T becomes proportional to the following product: T ∼ P · W · I · S.

From this section, we conclude that the total simulation time is proportional to the

product of four parameters:

(i) the number of processor configurations P that need to be evaluated,
(ii) the number of benchmarks W in the workload,

(iii) the average length I (dynamic instruction count) for each benchmark, and

(iv) the simulator slowdown factor S.

5. Reducing the Total Simulation Time

Obviously, if we want to reduce the total simulation time, there are four possible
options, namely reducing P , W , I and S. In this chapter, we discuss how we can
reduce all four. This results in a simulation methodology that is more efficient than
current practice. First, we identify an interesting region in the microprocessor de-
sign space through statistical simulation. Statistical simulation is a fast simulation
technique that yields quite accurate power/performance predictions. As such, an in-
teresting region can be identified efficiently. Second, once we have determined this
region, we can run detailed, and thus slow architectural simulations. Fortunately, we
can reduce the total simulation time by the following four techniques: (i) we propose
to reduce the total number of program-input pairs in the workload, (ii) we propose to
use reduced input sets, i.e., inputs that result in smaller dynamic instruction counts
but similar program behavior, (iii) we propose to apply trace sampling, or the selec-
tion of representative slices from a long program run, and (iv) we propose to speed
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up the architectural simulator by applying various optimizations. As such, we have
reduced all four factors:

• the size of the microprocessor design space P by selecting a region of interest
through statistical simulation before proceeding to detailed architectural simu-
lations,

• the size of the workload space W by choosing a limited but representative set
of program-input pairs,

• the length of a program run, or the dynamic instruction count I of a program
run by considering reduced input sets and trace sampling,

• the slowdown factor of the architectural simulator S by optimizing simulators.

The result of this simulation methodology is that the total architectural simulation
time and cost can be reduced compared to current practice with several orders of
magnitude. These four simulation reduction approaches will be described and dis-
cussed in Sections 6, 7, 8 and 9, respectively.

6. Reducing the Design Space

As stated in Section 4.1, the design space that needs to be explored is huge. De-
sign space explorations through enumeration, i.e., by evaluating the performance of
each individual design point through detailed architectural simulations, is obviously
infeasible. As such, we need methods computer architects can use to guide their de-
sign process. These methods should be able to quickly identify a region in the design
space with interesting characteristics. This smaller region can then be further evalu-
ated using more detailed, and thus slower, architectural simulations.

In the following subsection, we briefly discuss a recently introduced technique,
namely statistical simulation. For a more elaborate discussion on statistical simula-
tion, we refer the interested reader to the PhD thesis by Eeckhout [21]. Section 6.2
discusses analytical modeling techniques. In Section 6.3, we enumerate a number of
other approaches that have been reported in the literature.

6.1 Statistical Simulation

The statistical simulation methodology consists of four steps (Fig. 2): program
trace generation, statistical profiling, synthetic trace generation and trace-driven sim-
ulation. Section 3 discussed how program trace files are generated by means of func-
tional simulation. This section deals with the other three steps of the statistical sim-
ulation methodology. First, we discuss statistical profiling. Subsequently, we detail
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FIG. 2. Statistical simulation: framework.

on the synthetic trace generation algorithm and the trace-driven simulation method.
Third, we evaluate the accuracy and the applicability of this methodology. Finally,
we will discuss related work concerning statistical simulation.

6.1.1 Statistical Profiling

During the statistical profiling step, a real program trace—i.e., a stream of in-
structions as they are executed instruction per instruction by a (single-issue in-
order) microprocessor—is analyzed by a microarchitecture-independent profiling
tool and specialized cache and branch predictor simulation tools. The complete set
of statistics collected during statistical profiling is called a statistical profile. The
microarchitecture-independent profiling tool extracts (i) a distribution of the instruc-
tion mix (we identify 19 instruction classes according to their semantics and the
number of source registers), (ii) the distribution of the age of the input register in-
stances (i.e., the number of dynamic instructions between writing and reading a reg-
ister instance; measured per instruction class and per source register; 22 distributions
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in total) and (iii) the age of memory instances (i.e., the number of load instructions
between writing and reading the same memory location). The age distribution of
register and memory instances only captures read-after-write (RAW) dependencies.
Write-after-write (WAW) and write-after-read (WAR) dependencies are not consid-
ered since we assume perfect (hardware supported) register renaming, i.e., there are
enough physical registers to remove all WAW and WAR dependencies dynamically.
Note that this is not unrealistic for contemporary out-of-order architectures since it is
implemented in the Alpha 21 264, see [46]. If measuring performance as a function
of the number of physical registers would be needed, the methodology presented here
can be easily extended for this purpose by modeling WAR and WAW dependencies
as well.

The specialized cache and branch predictor simulators only extract statistics con-
cerning the branch and cache behavior of the program trace for a specific branch
predictor and a specific cache organization. The branch statistics consist of seven
probabilities: (i) the conditional branch target prediction accuracy, (ii) the condi-
tional branch (taken/not-taken) prediction accuracy, (iii) the relative branch target
prediction accuracy, (iv) the relative call target prediction accuracy, (v) the indirect
jump target prediction accuracy, (vi) the indirect call target prediction accuracy and
(vii) the return target prediction accuracy. The reason to distinguish between these
seven probabilities is that the prediction accuracies greatly vary among the various
branch classes. In addition, the penalties introduced by these are completely differ-
ent, see [37]. A misprediction in cases (i), (iii) and (iv) only introduces a few pipeline
bubbles in the pipeline. In case of a simple pipeline, this can even be a single-cycle
bubble. Cases (ii), (v)–(vii) on the other hand, will cause the entire processor pipeline
to be flushed and to be refilled when the mispredicted branch is executed.

The cache statistics include two sets of distributions: the data cache and the in-
struction cache statistics. The data cache statistics contain two probabilities for a
load operation, namely (i) the probability that a load needs to access the level-2 (L2)
cache—as a result of a level-1 (L1) cache miss—and (ii) the probability that main
memory—as a result of a level-2 (L2) cache miss—needs to be accessed to get its
data; idem for the instruction cache statistics.

A statistical profile can be computed from an actual trace but it is more conve-
nient to compute it on-the-fly using a specialized functional simulator, or using an
instrumented version of the benchmark program running on a real system. Both ap-
proaches eliminate the need to store huge traces. A second note is that although
computing a statistical profile might take a long time, it should be done only once for
each benchmark with a given input. And since statistical simulation is a fast analysis
technique, computing a statistical profile will be worthwhile. A third important note
is that measuring microarchitecture-dependent characteristics such as branch predic-
tion accuracy and cache miss rates, implies that statistical simulation cannot be used
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to efficiently study branch predictors or cache organizations. I.e., different statistical
profiles need to be computed for different branch predictors and different cache or-
ganizations. However, we believe this is not a major limitation since, e.g., cache miss
rates for various cache sizes can be computed simultaneously using the cheetah sim-
ulator by Sugumar and Abraham [82]. Other microarchitectural parameters on the
other hand, can be varied freely. Examples of these microarchitectural parameters
are the window size, the fetch width, the dispatch width, the number of functional
units, the reorder width, the instruction execution latencies, the number of pipeline
stages, etc.

6.1.2 Synthetic Trace Generation and Simulation

Once a statistical profile is computed, a synthetic trace is generated by a synthetic
trace generator. This is based on a Monte Carlo method: a random number is gener-
ated between 0 and 1, that will determine a program characteristic using a cumulative
distribution function, see Fig. 3(a).

FIG. 3. (a) determining a program characteristic using random number generation and (b) generating
a synthetic trace.
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The generation of a synthetic trace itself works on an instruction-by-instruction
basis. Consider the generation of instruction x in the synthetic instruction stream,
see Fig. 3(b):

(1) Determine the instruction type using the instruction-mix distribution; e.g., an
add, a store, etc. were generated in Fig. 3(b).

(2) For each source operand, determine the instruction that creates this register
instance using the age of register instances distribution. Notice that when a
dependency is created in this step, the demand of syntactical correctness does
not allow us to assign a destination operand to a store and a conditional branch
instruction.1 For example in Fig. 3(b), the load instruction cannot be made
dependent on the preceding branch. However, using the Monte Carlo method
we cannot assure that the instruction that is the creator of that register instance,
is neither a store nor a conditional branch instruction. This problem is solved
as follows: look for another creator instruction until we get one that is not a
store nor a conditional branch. If after a certain maximum number of trials
still no dependency is found that is not supposedly created by a store or a
conditional branch instruction, the dependency is simply removed.

(3) If instruction x is a load instruction, use the age of memory instances distri-
bution to determine whether a store instruction w (before instruction x in the
trace; i.e., w < x) accesses the same memory address; e.g., a read-after-write
dependency is imposed through memory between the load and the store in
Fig. 3(b). This will have its repercussions when simulating these instructions.
In our simulator we assume speculative out-of-order execution of memory
operations. This means that when a load x that accesses the same memory
location as a previous store w (w < x), is executed earlier than the store, the
load would get the wrong data. To prevent this, a table is kept in the processor
to keep track of memory dependencies. When the store w is executed later, it
will detect in that table that load x has accessed the same memory location.
In that case, the load and all its dependent instructions need to be re-executed.
A possible implementation of such a table is the Address Resolution Buffer
proposed by Franklin and Sohi [30].

(4) If instruction x is a branch, determine whether the branch and its target will be
correctly predicted using the branch statistics. In order to model resource con-
tention due to branch mispredictions, we take the following action while sim-
ulating a synthetically generated trace: when a ‘mispredicted’-labeled branch
is inserted in the processor pipeline, instructions are injected in the pipeline
(also synthetically generated) to model the fetching from a misspeculated con-

1Relative jumps, indirect jumps and returns do not have destination operands either. However, we will
not mention further although we take this into account.



60 L. EECKHOUT AND K. DE BOSSCHERE

trol flow path. These instructions are then marked as coming from a misspecu-
lated path. When the misspeculated branch is executed, the instructions of the
misspeculated path are removed, new instructions are fetched (again synthet-
ically generated) and marked as coming from the correct control flow path.

(5) If instruction x is a load instruction, determine whether the load will cause an
L1 cache hit/miss or L2 cache hit/miss using the data cache statistics. When
an ‘L1 or L2 cache miss’-labeled load instruction is executed in the pipeline,
the simulator assigns an execution latency according to the type of the cache
miss. In case of an L1 cache miss, the L2 cache access time will be assigned;
in case of an L2 cache miss, the memory access time will be assigned.

(6) Determine whether or not instruction x will cause an instruction cache
hit/miss at the L1 or L2 level. In Fig. 3(b), the first and the last instruction
get the label ‘L2 I$ miss’ and ‘L1 I$ miss’, respectively. When a ‘L1 or L2
cache miss’-labeled instruction is inserted into the pipeline, the processor will
stop inserting new instructions in the pipeline during a number of cycles. This
number of cycles is the L2 cache access or the memory access time in case of
L1 cache miss or a L2 cache miss, respectively.

The last phase of the statistical simulation method is the trace-driven simulation
of the synthetic trace which yields estimates of performance and/or power character-
istics. An important performance characteristic is the average number of instructions
executed per cycle (IPC) which can be easily calculated by dividing the number of
instructions simulated by the number of execution cycles. An important power char-
acteristic is the average energy consumption per cycle (EPC).

6.1.3 Evaluation

In this section, we evaluate the applicability of the statistical simulation method-
ology for quickly exploring huge design spaces. First of all, we evaluate the absolute
accuracy which measures how well statistical simulation estimates real performance
in one single design point, see Fig. 4. For example, the instructions executed per cy-
cle (IPC) that is estimated through statistical simulation is compared versus the IPC
that is obtained through detailed simulations using real program traces—in this case
the IBS traces, see [84]—in the left graph of Fig. 4. The right graph presents the
absolute accuracy of statistical simulation concerning the energy that is consumed
per cycle (EPC). For the microarchitecture configurations that were used in Fig. 4
the IPC prediction errors are no larger than 12% with an average error of 8%; for
the energy per cycle estimates, the maximum error is about 5%. As such, we can
conclude that statistical simulation is quite accurate.

Although absolute accuracy is important, we believe that relative accuracy (the re-
lationship between multiple design points) is even more important for the purpose of
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FIG. 4. Absolute accuracy of statistical simulation: instructions executed per cycle or IPC (on the left)
and energy consumption per cycle or EPC (on the right). For three superscalar processor configurations:
on the top, window size equal to 32 and an issue width of 4; in the middle, window size of 64 instructions
and an issue width of 6; and at the bottom, window size of 128 instructions and an issue width of 8.

design space explorations. I.e., when computer architects can make use of accurate
estimations of performance trends as a function of microarchitectural parameters,
appropriate design decisions can be based upon them. For example, when the per-
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formance gain due to increasing a particular hardware resource does not justify the
increased hardware cost, designers will decide not to increase that hardware resource.
Let us now clarify the relationship between absolute and relative accuracy:

• obviously, perfect absolute accuracy implies perfect relative accuracy;

• an absolute prediction accuracy that is constant over the complete design space
still implies a perfect relative accuracy;

• an absolute prediction accuracy that is not constant over the design space might
lead to a relative prediction error. However, if the absolute accuracy does not
vary wildly over the design space, we can still expect to achieve reasonable
relative accuracy.

In case of statistical simulation, the absolute accuracy is not constant over the design
space. As such, a relative prediction error might occur. However, the following ex-
periments show that the relative prediction errors for statistical simulation are small
and that these small prediction errors do not hold us back from taking correct design
decisions.

In Fig. 5, the ‘real’ and the ‘estimated’ energy-delay product (EDP) is shown as a
function of issue width (along the Y -axis) and window size (along the X-axis). The
energy-delay product (EDP) is a fused metric (combining performance as well as en-
ergy consumption in one single metric) that is commonly used to evaluate the energy-
efficiency of general-purpose microprocessors, see [9]. The most energy-efficient
architecture is the one with the lowest energy-delay product, thus maximizing per-
formance with a reasonable energy consumption per cycle. The ‘real’ EDP numbers,
displayed in the left graph of Fig. 5, identify configuration (window size = 48 and
issue width = 6) as the most energy-efficient microarchitecture. These EDP numbers
are obtained through real trace simulation. The same configuration is identified by

FIG. 5. Relative accuracy of statistical simulation for superscalar processors: real EDP (on the left)
versus estimated EDP (on the right) as a function of processor window size and issue width. The optimal
configuration, i.e., with the lowest EDP, is shown through a white bar.
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statistical simulation, see the right graph of Fig. 5. Note that although the predic-
tion error of the energy-delay product is not constant over the design space—it in-
creases for processors with larger resources—a correct design decision is still made.
Although statistical simulation was capable in this experiment to identify the most
energy-efficient architecture, note that it cannot be guaranteed that statistical simula-
tion will always identify the optimal design due to the fact that the absolute accuracy
is not constant over the design space. However, from this experiment we can con-
clude with confidence that statistical simulation is capable of accurately identifying
a region of interest in a huge design space.

Concerning the evaluation speed of statistical simulation we can state that sta-
tistical simulation is a very fast simulation technique. From various experiments as
described in [21], we have concluded that steady state power/performance character-
istics are obtained after simulating only a few hundred thousands or at most 1 million
synthetically generated instructions. The simulation time of 1 million instructions is
in the order of seconds. If we compare this to the simulation time of real program
traces that require the simulation of several billions of instructions, we can con-
clude that statistical simulation indeed is a very fast simulation technique yielding a
speedup of at least a factor one thousand. As such, given its accuracy and its speed,

we can conclude that statistical simulation indeed is a useful technique to quickly

explore huge microprocessor design spaces.

6.1.4 Related Work on Statistical Simulation

Noonburg and Shen [63] presented a framework that models the execution of a
program on a particular architecture as a Markov chain, in which the state space is de-
termined by the microarchitecture and in which the transition probabilities between
the various states are determined by the program execution. Noonburg and Shen re-
port (while considering perfect caches) a maximum IPC prediction error of 1% for a
single-pipeline in-order processor and a maximum IPC prediction error of 10% for a
three-pipe in-order processor. This approach has the major disadvantage of becoming
too complex in case of wide-resource superscalar processors.

Hsien and Pedram [40] present a technique to estimate performance and power
dissipation of a microprocessor by first measuring a characteristic profile of a pro-
gram execution, and by subsequently synthesizing a new, fully functional program
that matches the extracted characteristic profile. The characteristic profile includes
the instruction mix, branch prediction accuracy, cache miss rate, pipeline stall rate
and IPC. The program that is synthesized using this characteristic profile, is then
executed on an execution-driven simulator to estimate performance and power con-
sumption. Since the dynamic instruction count of the synthesized program is smaller
than the dynamic instruction count of the original program, the simulation time is sig-
nificantly reduced. The prediction errors for both power dissipation and IPC are less



64 L. EECKHOUT AND K. DE BOSSCHERE

than 5%. The major drawback of this approach is that no distinction is made between
microarchitecture-independent and microarchitecture-dependent characteristics; all
characteristics are microarchitecture-dependent. Consequently, this approach cannot
be used for architectural design space explorations.

The statistical simulation methodology as it is discussed here, was initially pre-
sented by Carl and Smith [12]. They proposed an approach in which a synthetic
instruction trace is generated based on execution statistics and is subsequently fed
into a trace-driven simulator. Nussbaum and Smith [64] continued this work and
presented a different method for generating inter-operation dependencies. We gen-
erate what they call upstream dependencies, i.e., an instruction is made dependent
on a preceding instruction. Nussbaum and Smith on the other hand, use so called
downstream dependencies, which means that a future instruction is made dependent
on the current instruction. Nussbaum and Smith also present an evaluation of using
various higher-order distributions in which the instruction mix, the inter-operation
dependencies, the cache miss rates and the branch misprediction rates are correlated
to the basic block size. The authors conclude that these higher-order distributions
indeed can lead to higher performance prediction accuracies, e.g., the average IPC
prediction error can be reduced from 15% to 9% for a wide-resource microprocessor
configuration. However, they also report experimental results suggesting that simple
statistical models are accurate enough for doing design space explorations.

Nussbaum and Smith [65] continued their work by evaluating symmetric multi-
processor system (SMP) performance through statistical simulation. They evaluated
multiprogrammed workloads as well as parallel scientific workloads and conclude
that statistical simulation is sufficiently accurate to predict SMP performance trends.

Oskin et al. [68] present the HLS simulation environment which is basically the
same as the statistical simulation methodology presented by Carl and Smith [12]
and the model presented here. The work done by Oskin et al. [68] has two major
contributions. First, they validate the statistical simulation methodology against real
hardware, namely a MIPS R10000 processor, see Yeager [87], and they conclude
that statistical simulation indeed achieves a high performance prediction accuracy
(a maximum error of 7.8% is reported). Second, they evaluate how well statisti-
cal simulation predicts performance under varying branch prediction accuracies, L1
I-cache miss rates, L1 D-cache miss rates and compiler optimization levels. These
experiments are so called single-value correlation studies, i.e., by varying only one
parameter in each experiment. They also performed multi-value correlation studies
by varying several parameters simultaneously. This kind of experiments is extremely
useful for identifying in which area of the design space statistical simulation can be
used with confidence.
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6.2 Analytical Modeling

Instead of, or in addition to the statistical simulation methodology, analytical mod-
eling can also be used for quickly exploring the design space. However, to the best
of our knowledge, there exists no analytical model that is as accurate and as flexible
as statistical simulation. Note that statistical simulation attains accurate performance
predictions and is extremely simple to implement: measuring the statistical profile is
straightforward as well as the generation of a synthetic trace. In addition, the simu-
lator that is used to simulate the synthetic trace is very simple since only a limited
functionality of the microarchitecture needs to be modeled. An analytical model on
the other hand, is harder to develop because of the complex behavior of contemporary
microarchitectures. As such, analytical models typically assume several assumptions
to be true, such as unit execution latencies of instructions, unlimited number of func-
tional units or only one functional unit, memory dependencies not being modeled,
etc. In statistical simulation on the other hand, these assumptions do not need to be
fulfilled.

Noonburg and Shen [62] present an analytical model of the interaction between
program parallelism and machine parallelism. This is done by combining component
functions concerning the program (modeling data and control parallelism) as well as
the machine (modeling branch, fetch and issue parallelism). The program character-
istics are measured only once for each benchmark as it is the case for statistical simu-
lation. The machine characteristics are obtained by analyzing the microarchitecture.
This analytical model attains quite accurate performance predictions. Unfortunately,
unit instruction execution latencies are assumed and memory dependencies are not
modeled.

Dubey et al. [18] propose an analytical performance model on the basis of two
parameters that are extracted from a program trace. The first parameter, the condi-

tional independence probability pδ , is defined as the probability that an instruction x

is independent of instruction x − δ given that x is independent of all instructions in
the trace between x and x − δ. The second parameter pω is defined as the probabil-
ity that an instruction is scheduled with an instruction from ω basic blocks earlier
in the program trace. The main disadvantages of this analytical model are that only
one dependency is considered per instruction and that no differentiation is made be-
tween various instruction classes for pδ , which will lead to inaccurate performance
estimates. In a follow-up research paper, Kamin III et al. [44] propose to approxi-
mate the conditional independence probability pδ using an exponential distribution.
Eeckhout and De Bosschere [22] on the other hand, show that a power law is a better
approximation than the exponential distribution.

Squillante et al. [79] propose analytical models to capture the workload behavior
and to estimate pipeline performance. Their technique was evaluated for a single-
issue pipelined processor.
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Sorin et al. [78] present a performance analysis methodology for shared-memory
systems that combines analytical techniques with traditional simulations to speed up
the design process.

Although current analytical models are not flexible enough or accurate enough
for performing design space explorations of contemporary superscalar processors,
they can be extremely useful to investigate particular parts of a microarchitecture.
As such, simple analytical models are often used to get insight in the impact of
microarchitectural parameters on performance, see for example [28,29,32,56,60].

6.3 Other Approaches

Conte [13] presents an approach that automatically searches near-optimal proces-
sor configurations in a huge design space. His technique is based on simulated an-
nealing. The architectural parameters that are varied in his experiments are the num-
ber of functional units, their types and their execution latencies.

Brooks et al. [10] evaluate the popular abstraction via separable components
method, see for example Emma [28], which considers performance as the summa-
tion of a base performance level (idealized base cycles per instruction or CPI while
assuming perfect caches, perfect branch prediction, etc.) plus additional stall fac-
tors due to conflicts, hazards, cache misses, branch mispredictions, etc. A simulation
speedup is obtained with this technique since the base performance level and the
stall factors can be computed using simple simulators instead of fully-detailed and
thus slower simulators. They conclude that for modeling out-of-order architectures,
this methodology attains, in spite of its poor absolute accuracy, a reasonable relative
accuracy.

7. Reducing the Workload

In Section 4.2, we argued that the selection of a representative workload is ex-
tremely important throughout the entire microprocessor design flow. A representative
workload consists of a selected number of benchmarks with well chosen inputs that
are representative for the target domain of operation of the microprocessor currently
under design. A naive approach to the workload composition problem would be to
select a huge number of benchmarks and for each benchmark a large number of in-
puts. Since the total simulation time is proportional to the number of program-input
pairs in the workload, this approach is infeasible. As such, we propose to chose a se-
lected number of program-input pairs that cover the workload space with confidence,
see [26].
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Conceptually, the complete workload design space can be viewed as a p-dimensio-
nal space with p the number of important program characteristics that affect per-
formance, e.g., branch prediction accuracy, cache miss rates, instruction-level par-
allelism (ILP), etc. Obviously, p will be too large to display the workload design
space understandably. In addition, correlation exists between these variables which
reduces its understandability. As such, it is hard to determine which program charac-
teristics make the diversity in the workload space. In our methodology, we reduce the
p-dimensional workload space to a q-dimensional space with q ≪ p (q = 2 to q = 4
typically) making the visualisation of the workload space possible without losing im-
portant information. This is achieved by using statistical data reduction techniques
such as principal components analysis (PCA) and cluster analysis (CA).

Each benchmark-input pair is a point in this (reduced) q-dimensional space ob-
tained after PCA. We can expect that different benchmarks will be ‘far away’ from
each other while different input data sets for a single benchmark will be clustered
together. This representation gives us an excellent opportunity to measure the impact
of input data sets on program behavior. Weak clustering for various inputs and a sin-
gle benchmark indicates that the input set has a large impact on program behavior;
strong clustering on the other hand, indicates a small impact. This representation can
be helpfully used during workload design. Indeed, strong clustering suggests that a
single or only a few input sets should be selected as a representative for the clus-
ter. This will reduce the total simulation time significantly since the total number of
benchmark-input pairs in the workload is reduced.

Before going into detail on the results that can be obtained using this methodol-
ogy, we will first give a brief explanation of the multivariate statistical data analysis
techniques that we have used. We first discuss principal components analysis. Sub-
sequently, we explain how cluster analysis works. For a more detailed description of
both techniques, we refer the interested reader to [53].

7.1 Principal Components Analysis

Principal components analysis (PCA) is a statistical data analysis technique that
presents a different view on the measured data. It builds on the assumption that
many variables (in our case, workload characteristics) are correlated and hence,
they measure the same or similar properties of the program-input pairs. PCA com-
putes new variables, called principal components, that are linear combinations of
the original variables, such that all principal components are uncorrelated. In other
words, PCA transforms the p variables X1,X2, . . . ,Xp into p principal compo-
nents Z1,Z2, . . . ,Zp with Zi =

∑p

j=1 aijXj . This transformation has the proper-

ties (i) Var[Z1] > Var[Z2] > · · · > Var[Zp] which means that Z1 contains the most
information and Zp the least; and (ii) Cov[Zi,Zj ] = 0, ∀i �= j which means that
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there is no information overlap between the principal components. Note that the to-
tal variance in the data remains the same before and after the transformation, namely
∑p

i=1 Var[Xi ] =
∑p

i=1 Var[Zi].
As stated in the first property in the previous paragraph, some of the principal

components will have a high variance while others will have a small variance. By
removing the components with the lowest variance from the analysis, we can reduce
the number of workload characteristics while controlling the amount of information
that is thrown away. We retain q principal components which is a significant infor-
mation reduction since q ≪ p in most cases, typically q = 2 to q = 4. To measure the
fraction of information retained in this q-dimensional space, we use the amount of
variance (

∑q

i=1 Var[Zi])/(
∑p

i=1 Var[Xi]) accounted for by these q principal com-
ponents.

In this study the p original variables are the workload characteristics. By exam-
ining the most important q principal components, which are linear combinations
of the original workload characteristics, meaningful interpretations can be given to
these principal components in terms of the original workload characteristics. A co-
efficient aij that is close to +1 or −1 implies a strong impact of the original charac-
teristic Xj on the principal component Zi . A coefficient Aij that is close to zero on
the other hand, implies no impact.

The next step in the analysis is to display the various benchmarks as points in the
q-dimensional space built up by the q principal components. This can be done by
computing the values of the q retained principal components for each program-input
pair. This representation gives us an excellent opportunity to visualize the workload
design space understandably. Note that this q-dimensional space will be much easier
to understand than the original p-dimensional space for two reasons: (i) q is much
smaller than p and (ii) the q-dimensional space is uncorrelated.

During principal components analysis, one can either work with normalized or
non-normalized data (the data is normalized when the mean of each variable is zero
and its variance is one). In the case of non-normalized data, a higher weight is given
in the analysis to variables with a higher variance. In our experiments, we have
used normalized data because of our heterogeneous data; e.g., the variance of the
instruction-level parallelism (ILP) is orders of magnitude larger than the variance of
the data cache miss rates.

7.2 Cluster Analysis

Cluster analysis (CA) is a data analysis technique that is aimed at clustering n

cases, in our case program-input pairs, based on the measurements of q variables, in
our case the principal components as obtained from PCA. The final goal is to obtain
a number of clusters, containing program-input pairs that have ‘similar’ behavior.
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There exist two commonly used types of clustering techniques, namely linkage clus-
tering and K-means clustering.

Linkage clustering starts with a matrix of distances between the n cases or
program-input pairs. As a starting point for the algorithm, each program-input pair
is considered as a cluster. In each iteration of the algorithm, the two clusters that
are most close to each other (with the smallest distance, also called the linkage dis-

tance) will be combined to form a new cluster. As such, close clusters are gradually
merged until finally all cases will be in a single cluster. This can be represented in
a so called dendrogram, which graphically represents the linkage distance at each
iteration of the algorithm. Having obtained a dendrogram, it is up to the user to
decide how many clusters to take. This decision can be made based on the link-
age distance. Indeed, small linkage distances imply strong clustering and thus high
similarity, while large linkage distances imply weak clustering or dissimilar behav-
ior.

Cluster analysis is heavily dependent on an appropriate distance measure. In our
analysis, the distance between two program-input pairs is computed as the Euclidean
distance in the transformed q-dimensional space obtained after PCA for the follow-
ing reason. The values along the axes in this space are uncorrelated. The absence of
correlation is important when calculating the Euclidean distance because two corre-
lated variables—that essentially measure the same thing—would contribute a similar
amount to the overall distance as an independent variable; as such, these variables
would be counted twice, which is undesirable.

Next to defining the distance between two program-input pairs, we also need to
define the distance between two clusters of program-input pairs. One way to com-
pute the distance between two clusters is the furthest neighbor strategy or complete

linkage. This means that the distance between two clusters is defined as the largest
distance between two members of each cluster. Another possibility is the weighted

pair-group average strategy in which the distance between two clusters is computed
as the weighted average distance between all the pairs of program-input pairs in the
two different clusters. The weighting of the average is done by considering the cluster
size, i.e., the number of program-input pairs in the cluster.

The second type of clustering techniques is K-means clustering. K-means clus-
tering produces exactly K clusters with the greatest possible distinction. The al-
gorithm works as follows. In each iteration, the distance is calculated for each
program-input pair to the each cluster center. A program-input pair then gets as-
signed to the nearest cluster. As such, the new cluster centers can be computed.
This algorithm is iterated until no more changes are observed in the cluster mem-
bership.
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7.3 Evaluation

In [25], we have shown how to reduce a collection of 79 program-input pairs taken
from the SPEC CPU95 integer benchmark suite2 and the TPC-D queries,3 to only 16
program-input pairs. As such, the total simulation time is reduced by nearly a factor
of 5.

The workload characteristics that were used in this analysis are shown in Table I.
These characteristics are commonly used in the computer architecture literature to
characterize general-purpose applications. Measuring these program characteristics

TABLE I
THE WORKLOAD CHARACTERISTICS USED TO REDUCE THE WORKLOAD

Category No. Description

Instruction mix 1 Percentage integer arithmetic operations
2 Percentage logical operations
3 Percentage shift and byte manipulation operations
4 Percentage load and store operations
5 Percentage control transfer operations (branches, etc.)

Branch prediction behavior 6 Branch prediction accuracy of 16 Kbit bimodal branch predic-
tor

7 Branch prediction accuracy of 16 Kbit gshare branch predictor
8 Branch prediction accuracy of 48 Kbit hybrid branch predictor

consisting of a bimodal and a gshare component

Data cache behavior 9 Cache miss rate of 8 KB direct-mapped cache
10 Cache miss rate of 16 KB direct-mapped cache
11 Cache miss rate of 32 KB 2-way set-associative cache
12 Cache miss rate of 64 KB 2-way set-associative cache
13 Cache miss rate of 128 KB 4-way set-associative cache

Instruction cache behavior 14 Cache miss rate of 8 KB direct-mapped cache
15 Cache miss rate of 16 KB direct-mapped cache
16 Cache miss rate of 32 KB 2-way set-associative cache
17 Cache miss rate of 64 KB 2-way set-associative cache
18 Cache miss rate of 128 KB 4-way set-associative cache

Control flow 19 Number of instructions between two sequential flow breaks,
i.e., number of instructions between two taken branches

Instruction-level parallelism (ILP) 20 Amount of ILP in case of an infinite-resource machine, i.e.,
infinite number of functional units, perfect caches, perfect
branch prediction, etc.

2http://www.spec.org.
3http://www.tpc.org.
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was done using ATOM, a binary instrumentation tool for the Alpha architecture.
ATOM allows the instrumentation of functions, basic blocks and individual instruc-
tions. For more information on this tool, we refer to [80]. As Table I shows, the
total number of characteristics is 20. As such, we have a data matrix of 79 rows (the
program-input pairs) and 20 columns (the workload characteristics). We have used
STATISTICA by StatSoft, Inc. [81], a statistical data analysis software package, to
perform the principal components analysis and the cluster analysis.

The reduced workload space that is obtained after PCA is shown in Fig. 6. The
original workload space, which was 20-dimensional, was reduced through PCA to a
4-dimensional space that is visualized in these graphs: the workload space is shown
as a function of the first and the second dimension in the top graph, and as a function
of the third and the fourth dimension in the bottom graph. These four principal com-
ponents account for 89.5% of the total variance. The first principal component ac-
counts for 29.7% of the total variance and basically quantifies the amount of (taken)
branches and the instruction cache behavior. As such, program-input pairs that are
far away from each other along the first principal component will have a completely
different percentage (taken) branches and a completely different instruction cache
behavior. For example, program-input pairs with a positive value along the first prin-
cipal component show a relatively small amount of control transfer operations and
a small I-cache miss rate. For program-input pairs with a negative value along the
first principal component, the reverse is true. In conclusion, we can state that the
first principal component somehow quantifies the locality in the instruction stream.
The second principal component accounts for 28.0% of the total variance and mea-
sures the amount ILP, branch behavior and percentage logical operations. The third
component accounts for 18.5% of the total variance and quantifies the amount of
arithmetic operations as well as the data cache behavior. The fourth component ac-
count for 13.3% of the total variance and measures the amount of shift and load/store
operations.

As explained previously, the next step in the workload design methodology is
to apply cluster analysis. The dendrogram that is obtained from (linkage distance
based) cluster analysis is shown in Fig. 7. All the 79 program-input pairs included
in the analysis are shown along the Y axis of this graph. Program-input pairs that
are connected through short linkage distances are close to each other in the work-
load space and thus exhibit similar program behavior. Program-input pairs that are
connected through long linkage distances exhibit dissimilar behavior.

How can these results now be applied during workload design? Since the linkage
distance quantifies the (dis)similarity between program-input pairs, we can use this
metric to define the reduced workload. For example, if we allow for 16 program-
input pairs in our reduced workload, we determine the critical linkage distance. In
Fig. 7, this critical linkage distance is slightly greater than 1, as is shown through the
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FIG. 6. The transformed workload space obtained after PCA: the first and the second principal com-
ponent are shown in the top graph; the third and the fourth principal component are shown in the bottom
graph. The program-input pairs that are selected for the reduced workload are shown in a gray circle.

vertical dashed line. All the program-input pairs that are connected through linkage
distances that are smaller than the critical linkage distance are members of the same
cluster. Program-input pairs connected on the other hand, through a linkage distance
that is larger than the critical linkage distances are not members of the same cluster
(by definition of the critical linkage distance, there will be 16 clusters). Now we
can choose a representative program-input pair for each cluster. We have chosen
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FIG. 7. Selecting representative program-input pairs from a dendrogram.

the one with the smallest dynamic instruction count and being close to the center of
the cluster it belongs to. As a result, these representative program-input pairs now
constitute the reduced workload. The program-input pairs that were selected from
our analysis are shown in Fig. 7 with the bold lines and Fig. 6 as gray circles. Note
that the program-input pairs that are selected are more or less uniformly spread over
this workload space. Using this reduced workload instead of the original workload
results in a simulation speedup of a factor 6—the total dynamic instruction count
of the reduced workload is 101 billion instructions whereas the original workload
counts 593 billion dynamic instructions.

Recall that next to linkage based clustering, there exists another clustering tech-
nique which is called K-means clustering. In case we want to select 16 clusters, we
define K = 16. By applying K-means clustering, we obtain a classification that is
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quite consistent with the one obtained through linkage based clustering as discussed
above. The 16 representative benchmark-input pairs are postgres running queries
Q4, Q13, Q3, Q7 and Q8 next to perl.primes, gcc.protoize, gcc.print-tree, gcc.explow,
li.ctak, li.browse, compress.1,000,000, compress.100,000, ijpeg.kitty, go.5stone21

and m88ksim.train.
As such, from this section we can conclude that this methodology which is based

on principal components analysis and cluster analysis, is capable of selecting a re-

duced set of representative program-input pairs that spans the workload space reli-

ably.

7.4 Related Work

The methodology that is presented in the previous sections is built on the idea of
measuring benchmark (dis)similarity. Indeed, program-input pairs that are close to
each other in the workload space are similar. Program-input pairs that are far away
from each other exhibit dissimilar behavior. In the literature there exist only a few
approaches to measuring benchmark similarity. Saavedra and Smith [72] present a
metric that is based on dynamic program characteristics for the Fortran language,
for example the instruction mix, the number of function calls, the number of ad-
dress computations, etc. For measuring the difference between benchmarks they used
the squared Euclidean distance. Our methodology differs from the one presented by
Saavedra and Smith [72] for two reasons. First, the program characteristics used in
our methodology are more suited for performance prediction of contemporary ar-
chitectures since we include branch prediction accuracy, cache miss rates, ILP, etc.
Second, we prefer to work with uncorrelated program characteristics (obtained after
PCA) for quantifying differences between program-input pairs, as extensively argued
above.

Yi et al. [88] propose a technique for classifying benchmarks with similar behav-
ior, i.e., by grouping benchmarks that stress the same processor components to simi-
lar degrees. Their method is based on a Plackett–Burman design. A Plackett–Burman
design is a technique that allows researchers to measure the impact of variables by
making a limited number of measurements. For example, consider the case where
we want to measure the impact of n variables where each variable can have b unique
values. The total number of experiments (or in our case simulations) that need to be
done is bn. This is also called a full multifactorial design. A Plackett–Burman de-
sign on the other hand is a fractional multifactorial design. It is a well established
technique for measuring the impact of n variables and their interactions by doing a
limited number of experiments, namely 2(n + 1). This is done by varying all para-
meters simultaneously in a well chosen ‘foldover’ design.
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8. Reducing the Length of a Program Simulation Run

As discussed in Section 4.3, the total simulation time is also proportional to the dy-
namic instruction count of a program-input pair. Recall there are two reasons for this
phenomenon: (i) the increasing complexity of current computer applications, and (ii)
the increasing performance of computer systems. Both force computer architects to
consider huge numbers of instructions during architectural simulations. Several tens
or even hundreds of billions of instructions are not exceptional nowadays. In this
section, we discuss two approaches to this problem. In the first subsection, we detail
on trace sampling which is a technique that is well known in the domain of computer
architecture for many years now. In the second subsection, we will present and dis-
cuss a recently proposed approach, namely reduced input sets. The final subsection
will compare both approaches and point out the advantages and disadvantages for
each of them.

8.1 Trace Sampling

A sampled trace is obtained from an original program trace by gathering trace

samples from the original trace, the black boxes in Fig. 8—the other details of this
figure will be discussed later on. Since a sampled trace is to be used to estimate
the performance of the original trace, it is very important how to select the trace
samples. In the literature, researchers refer to representative trace samples when the
sampled trace exhibits similar behavior as the original program trace. Clearly, there
are a number of issues that need to be dealt with when selecting representative trace
samples. First, it is unclear how many instructions should be contained in a trace
sample. The trace samples that are used by researchers vary widely between 50,000
to 300 million instructions. Second, it is not obvious how many of these samples need
to be considered in sampled traces. Some researchers report a single sample of 50
million or 300 million instructions. Others take multiple trace samples with a total
sample rate of for example 5%, or the total number of instructions in the sampled

FIG. 8. Trace sampling: basic principles.
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trace being limited to for example 1 billion instructions. Third, several methods exist
to select these trace samples: (pseudo-)random selection, periodic selection, manual
selection, selection through cluster analysis based on some criterion, etc. However,
it is unclear which criterion yields the most representative sampled trace. Fourth,
a correct hardware state at the beginning of each sample needs to be guaranteed
as much as possible. This problem is well known in the literature as the cold-start
problem. These four issues will be discussed in the following subsections.

8.1.1 Size and Number of Trace Samples

Different authors have used different trace sample lengths L as well as differ-
ent numbers of trace samples N per benchmark. Table II gives an overview of val-
ues for L and N as observed in the literature. This table shows that the number of
trace samples per benchmark varies from 1 to 10,000. The trace sample length varies
from 1000 to 100 million instructions. Note that in general a small number of sam-
ples coexists with a large sample length and vice versa. For example, Sherwood et
al. [75] use 1 to 10 samples of 100 million instructions each. Wunderlich et al.[86]
on the other hand, use 10,000 samples of 1000 instructions each. The total length of
the sampled traces varies between 240,000 and 1 billion instructions, see rightmost
column in Table II.

To measure the impact of the size of the trace samples as well as the number of
trace samples on the accuracy of the sampled trace, we have set up the following ex-
periment. We have measured the data cache miss rates for each interval of 1 million

TABLE II
THE NUMBER OF TRACE SAMPLES PER BENCHMARK, THE TRACE SAMPLE LENGTH AND THE

TOTAL LENGTH OF THE SAMPLED TRACE AS OBSERVED IN THE LITERATURE

Paper Number Sample length L Total length
of samples N

[76] 1 50,000,000 50,000,000
[75] 1 to 10 100,000,000 100,000,000 to 1,000,000,000
[85] 19 to 35 10,000 to 5,000,000 19,000 to 175,000,000
[49] 35 60,000 2,100,000
[14] 40 100,000 4,000,000
[35] 50 1,000,000 50,000,000
[61] 8 to 64 30,000 to 380,000 240,000 to 23,520,000
[50] at least 50 250,000 at least 12,500,000
[54] 10 to 100 500,000 5,000,000 to 50,000,000
[45] 20 to 200 100,000 to 1,000,000 2,000,000 to 200,000,000
[16] 20 to 300 500,000 10,000,000 to 150,000,000
[15] 2,000 1,000 to 10,000 2,000,000 to 20,000,000
[86] 10,000 1,000 10,000,000
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instructions for six SPEC CPU2000 integer benchmarks and six SPEC CPU2000
floating-point benchmarks. This was done using the cheetah cache simulation rou-
tines. The actual routines are taken from the SimpleScalar tool set distribution.4 The
cheetah cache simulation routines allow the simulation of multiple cache configura-
tions in parallel. This is achieved by maintaining least-recently used (LRU) stacks
of references, see [82]. The instrumentation itself of the Alpha binaries with these
cache simulation routines is done using ATOM. For the experiments presented in
this section, we instrumented all the memory operations with the cache simulation
routines.

Using the above procedure we obtain data cache miss rates for each interval of 1
million instructions, for each benchmark and for each cache configuration. As such,
we can calculate the cache miss rates of sampled traces under various sampling con-
ditions and compare them to the miss rates of the original benchmark traces. More
in particular, we want to quantify the maximum error for a given sampling scenario.
This is illustrated in Fig. 9 for a periodic sample selection mechanism. At the top of
the figure, we display the original program trace that is divided in a number of con-
tiguous intervals each containing B instructions. In our experiments, we assumed
B = 1,000,000. The three scenarios that are shown in Fig. 9 are obtained by varying
the sample length L and the sample rate. The sample length L is measured in units
of the interval size B . The sample rate is defined as the number of instructions in the
sampled trace versus the total number of instructions in the original trace. The first
scenario assumes L = B and a sample rate of 50%. As such, there are two possible
sampled traces: (i) a sampled trace containing intervals 1, 3, 5, 7, etc., and (ii) a sam-
pled trace containing intervals 2, 4, 6, 8, etc. The second scenario assumes L = B and
a sample rate of 20%. This scenario results in five possible sampled traces: (i) con-
taining intervals 1, 6, 11, etc., (ii) containing intervals 2, 7, 12, etc., . . . , (v) containing
intervals 5, 10, 15, etc. The third scenario assumes L = 2B and a sample rate of 50%.
The first sampled trace then contains intervals 1, 2, 5, 6, 9, 10, etc. The second sam-
pled trace contains intervals 3, 4, 7, 8, 11, 12, etc. For all the sampled traces obtained
from these scenarios we can now calculate the cache miss rates for a number of cache
configurations. As such, for each cache configuration and for each benchmark, we
obtain 2, 5 and 2 cache miss rates for the three scenarios, respectively. As such, we
can calculate the maximum prediction error Emax for a scenario which is defined as
the maximum of the cache miss prediction errors E for each of the sampled traces
associated with that scenario and for each cache configuration. On its turn, the cache
miss prediction error E for one particular trace sampling scenario and one particular
cache configuration is defined as follows:

4http://www.simplescalar.com.
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FIG. 9. Different possibilities for choosing sampled traces under a periodic sampling regime for vari-
ous values of sample length L and sample rate.
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with Ms the cache miss rate for the sampled trace and Mo the cache miss rate for the
original trace. For example, for our experiments with the SPEC CPU2000 benchmark
vortex, the first scenario results in a maximum prediction error of Emax = 0.12%, the
second scenario in Emax = 1.06% and the third scenario in Emax = 0.29%. Note that
in this section, we assume perfect warmup at the beginning of each sample.

For studying the impact of the number of trace samples and their sizes, we have
considered eight cache configurations under various trace sampling scenarios. We
considered the following cache configurations: a 8 KB direct-mapped cache, a 16 KB
direct-mapped cache, a 32 KB 2-way set-associative cache, a 64 KB 2-way set-
associative cache, a 128 KB 4-way set-associative, a 256 KB 4-way set-associative
cache, a 512 KB 8-way set-associative cache and a 1 MB 8-way set-associative
cache. For all these cache configurations, a block size of 32 bytes is assumed. The
various trace sampling scenarios are obtained by choosing three values for L, namely
1 million, 10 million and 100 million instructions. The sample rate is varied be-
tween 50% and 0.1%. The results for six SPEC CPU2000 integer benchmarks and
six SPEC CPU2000 floating-point benchmarks are shown in Figs. 10 and 11, re-
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FIG. 10. The maximum data cache miss rate prediction error versus trace sample rate for six (ran-
domly chosen) SPEC CPU2000 integer benchmarks.

spectively. From these figures we can conclude that small trace samples (containing

fewer instructions) are a better option than large trace samples for the same sam-

ple rate. Indeed, for a given sample rate the maximum prediction error is generally
smaller for a sampled trace containing trace samples of 1 million instructions than
for a sampled trace containing trace samples of 10 million or 100 million instruc-
tions. For example for gcc and a sample rate of 10%, the maximum prediction error
is 1%, 4% and 16% for trace samples containing 1 million, 10 million and 100 mil-
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FIG. 11. The maximum data cache miss rate prediction error versus trace sample rate for six (ran-
domly chosen) SPEC CPU2000 floating-point benchmarks.

lion instructions, respectively. The reverse is also true: a given level of accuracy can

be obtained with a much smaller sample rate for sampled traces with small trace

samples than with large trace samples. Again for gcc, a maximum prediction error
of 10% is obtained for a sample rate of 0.5% when a trace sample contains 1 million
instructions. In case a trace sample contains 10 million instructions, the sample rate
should be 2.5% to obtain the same level of performance prediction accuracy. In case
100 million instruction samples, the sample rate should be 14%.
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These results can be explained intuitively. Assume two trace sampling scenarios:
(i) a first sampled trace consisting of N samples with each sample containing s · B
instructions, and (ii) a second sampled trace consisting of s · N samples with each
sample containing B instructions. Note that both scenarios have the same sample
rate because both sampled traces contain s · N · B instructions. From the literature,
we know that the execution of a computer program typically consists of a number of
program phases each exhibiting their own particular behavior, see for example [74].
As such for a given sample rate, it is more likely that a sampled trace consisting of
many small trace samples, such as scenario (ii), will cover all or at least a large part
of all the program phases. A sampling regime with fewer large trace samples will
probably not cover a large part of the various program phases.

8.1.2 Representative Trace Samples

Obviously, it is very important to select representative samples from a program
trace. For example, samples from the beginning of a program trace will only contain
non-representative initialization code. This is an example of the more general case
that the execution of a computer program consists of a number of program phases, as
described by Sherwood et al. [74]. As such, it is very important to select samples in
such a way that all program phases are present in the sampled trace proportionally.

In the previous section, we used a periodic or systematic sample selection mech-
anism. A periodic selection assumes that the samples are chosen at equidistant in-
tervals, i.e., the number of instructions between two consecutive samples is always
the same. A possible pitfall is that the inter-sample interval equals the frequency of
consecutive program phases or one of its harmonics.

Therefore, some authors have proposed (pseudo-)random sampling by selecting a
number of samples randomly from the complete program trace.

Dubey and Nair [19] propose a profile-driven sampling technique that is based on
basic block execution profiles. A basic block execution profile measures the number
of times each basic block is executed during a program execution. In their approach,
Dubey and Nair first measure the basic block execution profile of the original pro-
gram execution. Subsequently, they scale this basic block execution profile with the
simulation speedup they want to attain through trace sampling. For example, if a
10X simulation speedup is pursued, the basic block execution profile is scaled by a
factor 10. Subsequently, a sampled trace is generated using this rescaled basic block
execution profile, i.e., the occurrence of each basic block in the sampled trace is
a factor 10 smaller as it is in the original program execution. This approach has
two potential shortcomings. First, using the basic block execution profile as a pro-
gram characteristic for selecting representative trace samples will yield a sampled
trace with a representative basic block profile but does not guarantee representa-
tive branch behavior or representative cache behavior. Second, the scaling factor is
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chosen arbitrarily based on the simulation time reduction that researchers want to
achieve. Although this approach is defendable from a simulation time perspective, is
may not be in the perspective of the quality of the sampled trace.

Lauterbach [50] evaluates the representativeness of a sampled trace using the in-
struction mix, the function execution frequency and cache statistics. His approach
works as follows: he starts by taking short trace samples. He subsequently measures
the program characteristics mentioned above to evaluate the quality of the sampled
trace. If the sampled trace is not representative, samples are added to the sampled
trace until the sampled trace is representative.

Iyengar and Trevillyan [42] and Iyengar et al. [43] propose the R-metric to quan-
tify the quality of a sampled trace. The R-metric is based on the notion of fully-
qualified basic blocks. A basic block is fully qualified when the branch behavior
(taken/not-taken) as well as the cache behavior of this basic block as well as the two
or three basic blocks executed before the current is taken into account. The R-metric
can be measured on the original trace as well as on the sampled trace. An R-metric
for the sampled trace that is close to the R-metric of the original trace designates a
representative sampled trace. Iyengar et al. also propose a heuristic algorithm to gen-
erate sampled traces based on this R-metric. The main disadvantage of this method
however is the huge amount of memory that is required to keep track of all the fully-
qualified basic blocks for large applications. The authors report that for gcc they were
unable to keep track of all the fully-qualified basic blocks.

Skadron et al. [76] select a single representative sample of 50 million instruc-
tions for their microarchitectural simulations. To this end, they first measured branch
misprediction rates, data cache miss rates and instruction cache miss rates for each
interval of 1 million instructions. By plotting these measurements as a function of
the number of instructions simulated they observe the periodic behavior as well as
the initialization phase of a program execution. Based on these plots, they manually
select a contiguous trace sample of 50 million instructions for each benchmark. Obvi-
ously, this trace samples were chosen after the initialization phase. The validation of
these 50 million instruction samples was done by comparing the performance charac-
teristics (obtained through detailed microarchitectural simulations) of these sampled
traces to 250 million instruction samples. We believe there are several shortcomings
and potential weaknesses in this approach. First, the selection of a single contigu-
ous sample of 50 million instructions might not be sufficient to represent the various
program phases of a program execution. Second, the size of the sample seems arbi-
trarily chosen; probably to limit to total simulation time. Third, the selection of the
sample was done manually. Fourth, the validation of the sampled trace was done by
comparing the sampled trace with another sampled trace. The latter one might not
be representative for the complete program execution which might compromise the
validation.
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Lafage and Seznec [48] use cluster analysis to detect and select similarly be-
having trace samples. In their approach, they first measure two microarchitecture-
independent metrics for each interval or sample of 1 million instructions. These met-
rics quantify the temporal and spatial behavior of the data reference stream in each
interval. Subsequently, they perform cluster analysis on these data to detect simi-
larly behaving intervals or trace samples. For each cluster, the sample that is closest
to the centre of the cluster is chosen as the representative sample for that cluster.
During sampled trace simulation, the performance characteristics for each represen-
tative sample are then weighted with the number of samples that are contained in
the cluster the sample represents. As said above, the metrics that are used by Lafage
and Seznec measure microarchitecture-independent locality metrics. Although this
approach is appealing, we believe accurate microarchitecture-independent metrics
measuring temporal and spatial program behavior are hard to develop. The tempo-
ral locality metric that was used by Lafage and Seznec for example is based on the
data reuse distance expressed in terms of the number of instructions executed be-
tween two accesses to the same address. Consider the following two data reference
streams: (i) a b a b a b a b a, and (ii) a b a c a d a e a. Both examples will result in the
same locality metric although the first reference stream exhibits significantly more
temporal locality than the second one. From this simple example, we conclude that
this metric may give a distorted view on the temporal locality behavior of a data ref-
erence stream. As such, using this metric for differentiating similarly behaving trace
samples may be risky since the two above mentioned examples would be grouped in
the same cluster although exhibiting a clearly different locality behavior.

Sherwood et al. [75] also use cluster analysis to detect similarly behaving trace
samples. However, the approach taken by Sherwood et al. [75] is different from
the approach discussed above. First, they use trace samples containing 100 million
instructions instead of 1 million instructions. Second, they evaluate their sampled
traces through detailed microarchitecture simulation. Lafage and Seznec on the other
hand only considered the data cache. Third, they limit the total size of the sampled
trace to 1 billion instructions, i.e., maximum 10 samples of 100 million instructions.
Fourth, the program characteristic that is used for discriminating the trace samples
is based on basic block execution profiles. Trace samples executing the same basic
blocks in the same relative proportion are considered to behave similarly. As argued
above, a basic block execution profile might not give an accurate view on other pro-
gram characteristics that really affect performance, such as branch behavior and data
cache behavior. As such, trace samples with a similar basic block execution profile
but with different data cache behavior might be grouped together through cluster
analysis which might compromise the quality of the sampled trace.

Wunderlich et al. [86] use inferential statistics to ensure the quality of the sampled
traces. The quality of the sampled trace is determined by two independent terms,
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namely the confidence level (1 − α) and the confidence interval ±ε · X. If the con-
fidence level or the confidence interval are unacceptable for a given sampled trace,
the number of samples in the sampled trace has to be increased until both terms meet
acceptable levels.

8.1.3 Cold-Start Problem

The fourth major issue that needs to be dealt with for trace sampling, is the correct
hardware state at the beginning of each trace sample. This problem is well known in
the literature as the cold-start problem. The cold-start problem is especially apparent
in the case of hardware structures with a large state, such as caches, branch predic-
tors and other kinds of predictors. One possible way of dealing with the cold-start
problem is to simulate (without computing performance characteristics) additional
references before each sample to warm-up hardware structures. These additional ref-
erences are part of the warm-up. Consequently, simulation using trace samples works
as follows, see also Fig. 8. First, a number of instructions are skipped, which we call
cold simulation. Second, the instructions that are contained in the warm-up are used
to update hardware structures but no performance characteristics, e.g., cache miss
rates and IPC, are being measured. This kind of simulation is called warm simulation.
The hardware structures being updated are typically structures with a large hardware
state, such as cache memories and branch predictors. The third and last step is hot

simulation in which the instructions are simulated and performance characteristics
are computed. The performance metrics obtained from the hot simulations will then
be used for reporting performance results. As such, when representative samples are
chosen and if the warm-up is highly accurate, these performance results will be very
close to the performance results as if we would have simulated the complete original
trace.

Several approaches have been proposed to handle the cold-start problem. In this
paragraph, these methods are discussed within the context of cache simulation. How-
ever, they can be easily generalized for the purpose of full processor simulation.

• The cold scheme or the no warm-up scheme assumes an empty cache at the
beginning of each sample. Obviously, this scheme will overestimate the cache
miss rate. However, the bias can be small for large samples.

• Another option is to checkpoint or to store the hardware state at the beginning
of each sample and impose this state when simulating the sampled trace. This
approach yields a perfect warm-up. However, the storage needed to store these
checkpoints can explode in case of many samples. In addition, the hardware
state of all possible cache configurations needs to be stored. Obviously, the lat-
ter constraint implies that the complete trace needs to be simulated for all pos-
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sible cache configurations. As such, trace sampling is no longer useful in this
scenario.

• A frequently used approach is stitch in which the hardware state at the beginning
of a sample is approximated with the hardware state at the end of the previous
sample. This approach was found to be effective for a suite of Windows NT
desktop applications by Crowley and Baer [16]. However, this approach does
not guarantee accurate warm-up and can therefore lead to significant errors.

• The prime-xx% method assumes an empty cache at the beginning of each sam-
ple and uses xx% of each sample to warm-up the cache. Actual simulation then
starts after these xx% instructions. The warm-up scheme prime-50% is also
called half in the literature. We can make the following considerations. In some
cases the warm-up length can be too short to allow accurate warm-up. In other
cases, the warm-up length could be shortened without compromising accuracy.

• A combination of the two previous approaches was proposed by Conte et al.
[15]: the state of the cache at the beginning of each sample is the state at the
end of the previous sample plus warming-up using a fraction of the sample.

• Another approach proposed by Kessler et al. [45] and Wood et al. [85] is to
assume an empty cache at the beginning of each sample and to estimate which
cold-start misses would have been avoided if the cache state at the beginning of
the sample was known.

• Nguyen et al. [61] use W instructions to warm-up the cache which is calculated
as follows:

W = C/L

m · r ,

with C the cache size, L the line size, m the cache miss rate and r the memory
reference ratio, or in other words the percentage loads and stores in case of a
data cache evaluation. The problem with this approach is that the cache miss
rate m is unknown; this is exactly what we are trying to approximate through
trace sampling. A possible solution is to use the cache miss rate under the no-

warmup scheme. However, this might lead to a warm-up length that is too short
because the miss rate under the no-warmup scenario is generally an overestima-
tion.

• Minimal Subset Evaluation (MSE) proposed by Haskins Jr. and Skadron [33]
determines a minimally sufficient warm-up period. The technique works as fol-
lows. First, the user specifies the probability that the cache state at the beginning
of the sample after warm-up equals the cache state at the beginning of the sam-
ple in case of full trace simulation and thus perfect warm-up. Second, the MSE
formulas are used to determine how many unique references are required dur-
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ing warm-up. Third, using a benchmark profile it is calculated where exactly
the warm-up should be started in order to generate these unique references.

• Haskins Jr. and Skadron [34] continued this research project and proposed
Memory Reference Reuse Latency (MRRL) as a refinement of MSE, i.e., by re-
ducing the total warm-up length without sacrificing accuracy. In this approach,
a histogram of the MRRL, or the number of memory references between two
references to the same memory location, is used to determine when to start the
warm simulation.

• Very recently, Eeckhout et al. [23] proposed yet another warm-up technique
that is similar to the two previous techniques, MSE and MRRL, in that a reli-
able indication should be given beforehand whether the hardware state will be
accurately approximated at the beginning of a sample. However, the mechanism
to achieve this is quite different from the ones employed in MSE and MRRL.
Whereas MSE looks at the references in the pre-sample, and MRRL looks at the
references in the pre-sample and the sample, the approach presented by Eeck-
hout et al. [23] is based on the references in the sample solely. This approach
will be discussed in the following paragraph.

Example of a Warmup Strategy

The rationale behind the approach proposed by Eeckhout et al. [23] is that the
cache memories need only to be warmed-up with memory addresses that are refer-
enced within the sample. For example, consider the case where the working set—
which is defined as the set of unique references—of a sample is very small. In other
words, the number of sets in the cache that will be touched by this working set is
limited. As such, the other sets in the cache need not to be warmed-up since this will
not have any impact on the accuracy of the sample. In addition, keeping this warm-up
as small as possible helps in shortening the total warm-up length and thus the total
simulation time.

The mechanism of our new warm-up technique is explained in Fig. 12: a sam-
ple is presented as well as its pre-sample. Consider the unique memory references
contained in the sample, e.g., a, b, c, d, e and g in Fig. 12. For each unique refer-
ence in the sample, consider the last reference to the same memory address in the
pre-sample. This is shown through the arrows in Fig. 12. For example, there are two
references to a in the sample and four references to a in the pre-sample; the arrow
points to the fourth a in the pre-sample. Consequently, a perfect warm-up is obtained
for the sample by starting the warm simulation phase at the first memory reference
in the pre-sample having an arrow pointing to it. Indeed, all the unique references in
the sample will be touched in the warm-up. In addition, all the memory references
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FIG. 12. Warm-up based on memory reference reuse latencies of unique references within a sample.

potentially conflicting with these warm-up references, e.g., reference f in the pre-
sample in Fig. 12, are included in the warm-up as well. Note also that a reference
in the sample that remains untouched in the pre-sample, e.g., reference g in Fig. 12,
does not affect the warm-up length nor the accuracy.

From experiments as described in [23], a highly accurate warm-up can be obtained
without considering all the unique references in the sample. This can potentially lead
to a higher simulation time reduction without sacrificing too much accuracy. For
example, we could consider only 80% of these unique references. More precisely,
we select 80% of the references in the pre-sample that have an arrow pointing to
them and that are closest to the beginning of the sample. E.g., in Fig. 12, the 80%
scenario starts the warm simulation phase at the last reference to memory address
b yielding a warm-up of 5 instructions; the perfect (100%) scenario starts the warm
simulation phase at the last reference to memory address e yielding a warm-up of
nine instructions.

Evaluation

In Fig. 13, the data cache miss rate is shown as a function of the cache size and as a
function of the warm-up method. These graphs show three example SPEC CPU2000
integer benchmarks, namely vpr, parser and bzip2. The various warm-up methods
that are considered in these graphs are:

• full warm-up: this means that all the instructions in the pre-sample are warm
instructions. As such, the hardware state of the cache at the beginning of the
sample is perfectly warmed up.

• no warm-up: all the instructions in the pre-sample are cold instructions. In ad-
dition, we empty the cache at the beginning of the sample. As can be seen from
Fig. 13, this approach can lead to severe inaccuracies.
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FIG. 13. Dealing with the cold-start problem: (i) full warm-up (no cold instructions), (ii) no warm-up
(no warm instructions and empty cache at beginning of each sample), (iii) stitch (no warm instructions
and stale cache state at beginning of each sample), and (iv) the warm-up method proposed by Eeckhout et
al. [23] that is based on the references in the sample.
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• stitch: all the instructions in the pre-sample are cold instructions. However, the
hardware state of the cache at the beginning of the sample is chosen to be the
same as at the end of the previous sample. This warm-up method is also inac-
curate for the examples mentioned in Fig. 13. However, for some benchmarks
this approach can be highly accurate.

• based on the sample: this warm-up method is based on the memory references
that occur in the sample itself as discussed above. For this curves, 90% of the
unique references in pre-sample are considered. Fig. 13 clearly shows that this
warm-up method attains high accuracies. For a more elaborate evaluation of this
warm-up method, we refer to [23].

The simulation time speedup as a result of trace sampling is the ratio of the total
number of references in the original trace versus the number of warm and hot sim-
ulation references. In other words, if we are able to consider 4% of the instructions
in the original trace as warm or hot simulation instructions, then the simulation time
speedup is a factor 25. Generally, a higher sample rate—the hot simulation parts
versus the complete trace—leads to a higher accuracy at the cost of a longer simula-
tion time. The same can be said about the warm-up length: a larger warm-up length
generally leads to a higher accuracy at the cost of a longer simulation time. This is
illustrated in Fig. 14 where the miss rate is shown under three warmup scenarios:
(i) no warmup, (ii) full warmup and (iii) the warmup mechanism as presented by
Eeckhout et al. [23]. This is done for ten SPEC CPU2000 integer benchmarks and
for a 1 MB eight-way set-associative data cache with a block size of 32 bytes. The
Y axes represent the cache miss rate whereas the X axes represent the simulation
time speedup. The solid lines in these graphs represent the cache miss rates that are
obtained under the full warmup scenario. The dashed lines represent the cache miss
rates under the no warmup scenario. The simulation time speedup that can be ob-
tained using this approach is a factor 500 for our experimental setup. The various
points for the ‘warmup’ curves correspond varying percentages of unique references
considered in the pre-sample, i.e., 50%, 60%, 70%, 80%, 90%, 95% and 99%. Note
that the data are heavily dependent on the chosen benchmark. For example, for bzip2

a simulation time speedup of a factor 9 can be attained while preserving a high pre-
diction accuracy. For twolf on the other hand, the simulation time speedup that can
be attained is much larger, up to a factor 200.

8.2 Reduced Input Sets

Recall that this section deals with reducing the length of a program run. Next to
trace sampling, there exists another approach with the same goal, namely reduced

input sets. KleinOsowski and Lilja [47] propose to reduce the simulation time of the
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FIG. 14. Simulation time speedup versus accuracy for the SPEC CPU2000 integer benchmarks and a
1 MB eight-way set-associative data cache under three warmup scenarios: (i) no warmup, (ii) full warmup
and (iii) warmup as presented by Eeckhout et al. [23].

SPEC 2000 benchmark suite5 by using reduced input data sets, called MinneSPEC.6

5http://www.spec.org.
6http://www-mount.ee.umn.edu/~lilja/spec2000/ .



EFFICIENT ARCHITECTURAL DESIGN 91

FIG. 14. — (Continued)

These reduced input sets are derived from the reference inputs by a number of tech-
niques: modifying inputs (for example, reducing the number of iterations), truncat-
ing inputs, etc. The benefit of these reduced inputs is that the dynamic instruction
count when simulating these inputs can be significantly smaller than the reference
inputs. They propose three reduced inputs: smred for short simulations (100 mil-
lion instructions), mdred for medium length simulations (500 million instructions)
and lgred for full length, reportable simulations (1 billion instructions). For deter-
mining whether two input sets result in more or less the same behavior, they used
the chi-squared statistic based on the function-level execution profiles for each input
set. A function-level profile is nothing more than a distribution that measures what
fraction of the time is spent in each function during the execution of the program.
Measuring these function-level execution profiles was done using the UNIX utility
gprof. Note however that a resemblance of function-level execution profiles does
not necessarily imply a resemblance of other workload characteristics that are prob-
ably more closely related to performance, such as instruction mix, cache behavior,
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branch predictability, etc. For example, consider the case that we would scale down
the number of times a function is executed by a factor S. Obviously, this will result
in the same function-level execution profile. However, a similar function-level exe-
cution profile does not guarantee a similar behavior concerning for example the data
memory. Indeed, reducing the input set often reduces the size of the data the program
is working on while leaving the function-level execution profile untouched. And this
might lead to a significantly different data cache behavior. KleinOsowski and Lilja
[47] also recognized that this is a potential problem.

Eeckhout et al. [24] validated the program behavior similarity of MinneSPEC ver-
sus the reference SPEC benchmark suite using the methodology that is based on
PCA and CA. Recall that this methodology transforms a highly correlated, high di-
mensional workload space into a non-correlated, low dimensional workload space.
In this understandable workload space, program-input pairs that are close to each
other exhibit similar behavior; program-input pairs far away from each other reflect
dissimilar behavior. As such, this methodology can be used to validate reduced input
sets. Indeed, if a reduced input is situated close to its reference counterpart we con-
clude that the reduced input results in similar behavior. The results from the analysis
of MinneSPEC are shown in Table III. In these tables, we verify whether the re-
duced input sets as proposed by MinneSPEC resemble their reference counterparts.
For each SPEC CPU2000 benchmark for which MinneSPEC provides reduced in-
puts, we have compared the program behavior resulting from these reduced inputs
to the reference inputs. More specifically, we identify three possible classifications:
(i) similar behavior (label ‘S’), (ii) more or less similar behavior (label ‘M’) and
(iii) dissimilar behavior (label ‘D’). For example, see Table III, although the lgred

input for parser has a dynamic instruction count that is at least a factor 100 smaller
than the reference input and a data memory footprint that is nearly a factor 2 smaller,
lgred results in a similar program behavior. As such, using the lgred input instead of
the reference input will result a simulation speedup of a factor 100 without losing
accuracy. The smred input for parser on the other hand, yields a program behavior
that is dissimilar to the reference input and should therefore not be considered as a
viable alternative for the reference input.

From Table III, we can make some general conclusions. First, the lgred input is
generally the best input among the inputs proposed in MinneSPEC. In other words,
lgred generally yields (more or less) similar behavior. Unfortunately, there are a few
exceptions, namely mcf, gcc and vortex for which lgred yields dissimilar behavior.
Second, the smallest inputs smred and mdred generally lead to a dissimilar behavior,
except for gzip.source, gzip.random and gzip.log.

If we compare the results by KleinOsowski and Lilja [47] with the results in Ta-
ble III, we observe that in most cases the results agree very well. However, in a num-
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TABLE III
CHARACTERISTICS OF THE BENCHMARKS USED WITH THEIR INPUTS, DYNAMIC INSTRUCTION

COUNT (IN MILLIONS), THE DATA MEMORY FOOTPRINT IN 64-BIT WORDS (IN THOUSANDS) AND

WHETHER THE REDUCED INPUTS ARE SIMILAR TO THE REFERENCE INPUT ACCORDING TO OUR

ANALYSIS: ‘S’ STANDS FOR SIMILAR, ‘M’ STANDS FOR MORE OR LESS SIMILAR, AND ‘D’
STANDS FOR DISSIMILAR

Benchmark Input dyn(M) mem(K) Similar?

vpr.route ref 94,331 6,300
train 10,457 1,277 S
lgred (test) 857 229 S
mdred 92 81 D
smred 6 20 D

vpr.place ref 112,264 376
train 14,009 89 S
lgred (test) 1,566 27 D
mdred 224 16 D
smred 18 12 D

twolf ref 346,485 642
train 13,200 356 S
lgred 973 51 M
mdred (test) 259 20 D
smred 92 15 D

parser ref 546,748 4,770
train 13,433 3,313 S
test 4,203 1,290 M
lgred 4,527 2,814 S
mdred 612 1,289 M
smred 269 738 D

mcf ref 61,867 24,883
train 9,168 24,397 D
lgred 794 24,205 D
mdred (test) 260 24,151 D
smred 189 24,144 D

gcc ref.scilab 62,031 14,774
ref.integrate 13,164 9,328
ref.expr 12,086 6,837
ref.200 108,670 14,254
ref.166 46,918 20,218
test.cccp 2,016 854 D
lgred.cp-decl (train) 5,117 2,185 D
mdred.rtlanal 551 385 D
smred.c-iterate 97 260 D

(continued on next page)
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TABLE III — Continued from previous page

Benchmark Input dyn(M) mem(K) Similar?

bzip2 train 61,128 3,343 S
test 8,822 1,920 D

bzip2.source ref 108,878 10,689
lgred 1,820 1,546 S

bzip2.program ref 124,927 12,288
lgred 2,159 1,575 S

bzip2.graphic ref 143,565 14,608
lgred 2,644 1,626 S

vortex ref1 118,977 9,382
ref2 138,678 7,869
ref3 133,044 9,298
train 17,813 2,734 S
test 9,808 2,893 M
lgred 1,154 1,604 D
mdred 415 1,099 M
smred 88 1,025 D

perlbmk ref.splitmail.957 110,829 13,848
ref.splitmail.850 127,498 17,357
ref.splitmail.704 66,753 9,105
ref.splitmail.535 63,693 9,244
ref.perfect 29,064 56
train.scrabbl 27,648 60 D
train.perfect 17,218 55 D
train.diffmail 35,630 8,748 D
test 5 39 S
lgred (ref.makerand) 2,009 1,058 M
mdred 929 1,058 M
smred 201 1,057 M

gzip.source ref 84,367 10,521
lgred 1,583 234 S
mdred 1,552 219 S
smred 1,486 220 S

gzip.random ref 82,167 15,834
lgred 1,361 297 S
mdred 1,362 297 S
smred 1,362 297 S

gzip.program ref 168,868 11,703
lgred 2,858 234 S
mdred 2,732 209 M
smred 4,025 217 M

(continued on next page)
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TABLE III — Continued from previous page

Benchmark Input dyn(M) mem(K) Similar?

gzip.log ref 39,527 9,071
lgred 593 185 M
mdred 597 185 M
smred 602 188 S

gzip.graphic ref 103,706 15,230
lgred 1,786 272 S
mdred 1,209 223 S
smred 4,984 231 D
train.combined 57,970 7,578 S
test.combined 3,367 560 S

ber of cases there is a difference between the MinneSPEC results and our results,
e.g.,

• the lgred input of vpr.place was found to be similar to the ref input by
KleinOsowski and Lilja [47]; our results on the other hand show a dissimilar
behavior.

• the same is true for vortex.lgred and gcc.lgred.

• the reverse also happens, where the MinneSPEC results suggest a dissimilar
behavior whereas our results reveal a similar behavior: for example, the train

input of bzip2 and the reduced inputs for perlbmk.

As such, we can conclude that comparing input sets based on function profiles is
quite accurate in general. However, in a number of cases similar function profiles
may still result in dissimilar program behavior and vice versa which warns us to be
careful when comparing input sets using function profiles only.

It is also interesting to point to the following particularities that we observed
through our analysis:

• The reference inputs of vortex result in very similar behavior which raises the
question whether it is useful to simulate all the reference inputs during architec-
tural simulations.

• For vpr on the other hand, the place and route reference inputs result in dis-
similar behavior. So, we advise researchers to consider both in architectural
simulations.

• Note that for vortex the mdred is closer to the ref input than the lgred input,
although having a smaller dynamic instruction count. As such, mdred is a better
candidate for architectural simulations than lgred.
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• The reduced inputs for perlbmk are very similar to each other. However, they
are quite different from the reference inputs. The test input on the other hand,
resembles quite well the ref.perfect input.

From this section, we conclude that for most benchmarks it is possible to propose

reduced input sets that result in a much smaller dynamic instruction count but yield

a similar program behavior as the reference input. Evaluating the (dis)similarity

between reduced inputs and reference inputs should be done using characteristics

that reflect real program behavior instead of function-level execution profiles. The

statistical analysis methodology that is based on PCA and CA can be successfully

used for this purpose.

8.3 Comparing Trace Sampling Versus Reduced Input Sets

The previous two sections discussed two techniques to reduce the length of a pro-
gram simulation run, namely trace sampling and reduced input sets. From the results
presented in these sections, we concluded that both techniques can significantly re-
duce the total simulation time and can yield representative program behavior. How-
ever, it is unclear which method is to be preferred. In other words, which method
yields a program behavior that most closely resembles the reference input while
yielding a significant simulation speedup.

To compare trace sampling versus reduced input sets, we can make use of the
methodology presented in Section 7. Using this approach for the purpose of this
section is thus straightforward. If a sampled trace is closer to the reference input
than a reduced input in the design space obtained from the analysis, we can con-
clude that trace sampling results in more representative program behavior than the
reduced input, and vice versa. For this section, we used a number of long running
SPEC CPU95 benchmarks (m88ksim, vortex, go and compress) as well as a data-
base postgres running a decision support TPC-D query, namely query 16. For each
of these benchmarks we have considered three sampled traces: one with a sample rate
of 10%, a second one with a sample rate of 1% and a third one with a sample rate
of 0.1%. These sampled traces were obtained using the reference inputs. We assumed
a periodic sampling regime and samples of 1 million instructions each. Next to these
sampled traces, we also considered a number of reduced input sets. For m88ksim,
vortex and go, we considered the train input. For compress, we generated a number
of reduced inputs by modifying the reference input.

The results from these analyses can be represented in a dendrogram which repre-
sents the (dis)similarity between points in the workload design space. From Fig. 15,
we can make the following conclusions for the various benchmarks:
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FIG. 15. Comparing trace sampling versus reduced inputs for a number of SPEC CPU95 integer
benchmarks and a database postgres running TPC-D query Q16.

• For some benchmarks, trace sampling results in program behavior that is more
similar to the reference input than with reduced inputs. Indeed, for m88ksim

and vortex the linkage distances between the points corresponding to the sam-
pled traces and the reference input are much shorter than between the reduced
inputs and the reference input. As such, for these benchmarks, trace sampling
is definitely a better option than reduced inputs.

• For other benchmarks on the other hand, for example go and compress, reduced
inputs result in program behavior that is more similar to the reference input
than what can be attained through trace sampling. For compress, we used a
variety of reduced inputs. Note however, that not all reduced inputs result in
program behavior that is similar to the reference input. The smallest reduced
input 100,000 e 2231 (which is derived from the reference input 14,000,000 e

2231) results in very dissimilar behavior. The other reduced input sets, varying
from 500,000 e 2231 to 10,000,000 e 2231, yield similar behavior. As such, we
conclude that the reduced input should not be smaller than 500,000 e 2231.
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TABLE IV
COMPARING TRACE SAMPLING VERSUS REDUCED INPUTS: THE METHOD OF CHOICE (SHOWN IN

BOLD) DEPENDS ON THE BENCHMARK

Benchmark Input/sampling regime dyn(M) Speedup

postgres TPC-D query 16 82,228
10%-sampled trace 8,222 10
1%-sampled trace 822 100
0.1%-sampled trace 82 1,000

m88ksim ref 71,161
train 24,959 2.9
10%-sampled trace 7,116 10
1%-sampled trace 711 100
0.1%-sampled trace 71 1,000

vortex ref 92,555
train 3,244 28.5
10%-sampled trace 9,255 10
1%-sampled trace 925 100
0.1%-sampled trace 92 1,000

go ref1 (50 21 9stone21.in) 35,758
10%-sampled ref1 trace 3,575 10
1%-sampled ref1 trace 357 100
0.1%-sampled ref1 trace 35 1,000
ref2 (50 21 5srone21.in) 35,329
10%-sampled ref2 trace 3,532 10
1%-sampled ref2 trace 353 100
0.1%-sampled ref2 trace 35 1,000
train 593 60.3

compress ref (14,000,000 e 2231) 60,102
10%-sampled trace 6,010 10
1%-sampled trace 601 100
0.1%-sampled trace 60 1,000
10,000,000 e 2231 42,936 1.4
5,000,000 e 2231 21,495 2.8
1,000,000 e 2231 4,342 13.8
500,000 e 2231 2,182 27.5

100,000 e 2231 423 142

Table IV summarizes the conclusions from this analysis. The method of choice, trace
sampling versus reduced input sets, is shown in bold for each benchmark. In addition,
the simulation time speedup that is obtained for each method is displayed as well.

As a general conclusion from this section, we can state that for some benchmarks

trace sampling is more accurate than reduced input sets. For other benchmarks, the
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opposite is true. As such, we recommend researchers working with either sampled
traces or reduced input sets to verify whether they are using an approach that yields
representative behavior. The methodology presented here is an excellent tool for this
purpose.

Haskins Jr. et al. [36] also present a comparison between trace sampling and re-
duced input sets. They take the same conclusions, namely that both methods can
result in the most accurate performance predictions. In other words, for some bench-
marks trace sampling is the method of choice whereas for other benchmarks reduced
inputs should be employed. In addition, they argue that both methods come with their
own benefits. Reduced inputs allow the execution of a program from the beginning
to the end. Trace sampling allows flexibility by varying the sample rate, the sample
length, the number of samples, etc.

9. Increasing the Simulation Speed

The fourth and last aspect that contributes to the time-consuming behavior of ar-
chitectural simulations is the slowdown of the simulator itself. As stated in Sec-
tion 4.4, the slowdown factor of an architectural simulator is typically 50,000
to 300,000. Obviously, there is only one solution to this problem, namely to optimize
the simulator. However, there are two possible constraints: (i) without sacrificing ac-
curacy, and (ii) with sacrificing (little) accuracy.

The first approach we discuss does not sacrifice accuracy. Schnarr and Larus [73]
show how to speed up an architectural simulator using memoization. Traditionally,
memoization refers to caching function return values in functional programming lan-
guages. These cached values can then be returned when available during execution
avoiding expensive computations. Schnarr and Larus [73] present a similar technique
that caches microarchitecture states and the resulting simulation actions. When a
cached state is encountered during simulation, the simulation is then fast-forward
by replaying the associated simulation actions at high speed until a previously un-
seen state is reached. They achieve an 8 to 15 times speedup over SimpleScalar’s
out-of-order simulator by Burger and Austin [11], while producing exactly the same
result.

The following three approaches sacrifice little accuracy, i.e., these approaches
model a microarchitecture at a slightly higher abstraction level which obviously
introduce additional modeling errors. Bose [6] proposes to pre-process a program
trace, e.g., by tagging loads and stores with hit/miss information, or by tagging
branches with prediction information (wrong or correct prediction). This tagged pro-
gram trace can then be executed on a simulator that imposes an appropriate penalty
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in the simulator just as is the case with statistical simulation, Section 6.1. The simu-
lator speedup comes from the fact that several hardware structures do not need to be
modeled.

Loh [51] presents a time-stamping algorithm that achieves an average prediction
error of 7.5% with a 2.42X simulation speedup for wide-issue superscalar architec-
tures. This approach is built on the idea that it is sufficient to know when events—
such as the end of an instruction execution or the availability of a resource—occur.
By time-stamping the resources associated with these events, the IPC can be com-
puted by dividing the number of instructions simulated by the highest time stamp.
The inaccuracy comes from making assumptions in the time-stamping algorithm
which make it impossible to accurately model the behavior of a complex out-of-order
architecture such as out-of-order cache accesses, wrong path cache accesses, etc.

Ofelt and Hennessy [67] present a profile-based performance prediction technique
that is an extension of a well known approach consisting of two phases. The first
(instrumentation) phase counts the number of times a basic block is executed. The
second phase then simulates each basic block while measuring the amount of IPC.
This estimated IPC number is multiplied by the number of times the basic block is
executed during a real program execution. The sum over all basic blocks then gives
an estimate of the IPC of program. The approach presented by Ofelt and Hennessy
[67] extends this simple method to enable the modeling of out-of-order architectures,
e.g., by modeling parallelism between instructions from various basic blocks. This
approach achieves a high accuracy (errors of only a few percent are reported) while
assuming perfect branch prediction and perfect caches. However, when a realistic
branch predictor and realistic caches are included in the evaluation, the accuracy
falls short as described by Ofelt [66].

10. Conclusion

The architectural simulations that need to be done during the design of a micro-
processor are extremely time-consuming for a number of reasons. First, the microar-
chitectural design space that needs to be explored is huge. Second, the workload
space or the number of benchmarks (with suitable inputs) is large as well. Third,
the number of instructions that need to be simulated per benchmark is huge. Fourth,
due to the ever increasing complexity of current high performance microprocessors,
simulators are running relatively slower (more simulator instructions per simulated
instruction). As such, computer architects need techniques that could speed up their
design flow. In this chapter, we presented such an architectural design framework.
First, a region of interest is identified in the huge design space. This is done through
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statistical simulation which is a fast and quite accurate simulation technique. Sub-
sequently, this region is further evaluated using detailed architectural simulations.
Fortunately, the duration of these slow simulation runs can be reduced: (i) by select-
ing a limited but representative workload using statistical data analysis techniques,
such as principal components analysis and cluster analysis, (ii) by limiting the num-
ber of instructions that need to be simulated per benchmark in the workload; this can
be done through trace sampling or through the use of reduced input sets, and (iii) by
optimizing the architectural simulations so that the simulator’s instruction through-
put increases. As such, we conclude that this architectural simulation methodology
can reduce the total design time of a microprocessor considerably.
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Abstract

Security continues to be a fundamental requirement of modern computer sys-
tems. As more information is stored electronically, users become more con-
cerned with the security of their information. Designing secure systems is a
difficult problem, complicated by the distributed nature of modern systems—
communication links are now both wired and wireless and information is shared
among autonomous and heterogeneous sources. Once the system is deployed,
security threats and attacks must be evaluated and handled throughout its life cy-
cle, as attackers discover and exploit vulnerabilities. This chapter considers the
security problem within the context of centralized databases and multidatabases
as well as mobile systems. The techniques employed to create a secure central-
ized database system can be extended to meet the security needs of multidatabase
systems. This extension is not trivial, however. Many issues must be considered
so that the needs of each component are met. When wireless communication
links and mobility are introduced, adapting existing methods may not provide
a satisfactory solution. Generally, security is expensive in terms of communi-
cation, processing, and storage overhead, which translates into increased power
consumption. This overhead is unacceptable in mobile systems because mobile
devices are already resource-poor. Therefore, new techniques, which draw from
existing technologies and the lessons learned from their deployment, must be
designed to handle the constraints introduced by mobile systems.
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1. Introduction and Motivation

Users have been demanding information “anytime, anywhere.” The diversity in the
range of information accessible to a user at any time is growing rapidly. Accessing
diverse and autonomous information repositories with different APIs (Application
Program Interfaces) is not accepted since the user has to be retrained to “learn a new

API and its usage on accessing different information sources.” As a result, a need
to integrate diverse information from different sources and provide a user with com-
mon APIs has become a necessity. Adding further complexity, the user mobility and
privacy concerns prevent gaining knowledge about exact user location, which other-
wise could aid in reducing the access latency to the required information repository.
Thus, APIs need to:

• Locate the requested information transparently and intelligently based on the
user’s security level,

• Access, process, and integrate information repository/repositories intelligently
and efficiently based on the user’s access right,
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• Locate the current location of the user efficiently without violating user’s pri-
vacy,

• Reliably transport resultant information to the user efficiently and securely, and

• Display the information to the user according to his/her display category.

It should be reemphasized that the information requested might not be confined to
a single information repository and distributed across numerous repositories at differ-
ent geographic locations. Hence, in some cases, additional phases of decomposition
of requests and integration of intermediate results would be required.

To gain further insight regarding the global information processing, APIs, and lim-
itations of infrastructure several related issues and their possible solutions are stud-
ied. The information repositories could include legacy systems, database systems,
data warehouses, information services (i.e., stock quotes, news, airline information,
weather information, etc.), and the almost limitless information available on the In-
ternet and the World Wide Web [76]. The APIs include traditional systems to access
data in the form of relational, object-oriented, distributed, federated, or multidata-
base management systems. The expanding technology is making available a wide
breadth of devices to use these APIs. Potential devices include desktop computers,
laptops, PDAs (Personal Digital Assistants), and cellular phones. The access mech-
anisms vary according to the access devices and the environments in which data is
being accessed. For example, data can be accessed from a desktop workstation con-
nected to a LAN (Local Area Network), or from a laptop computer via a modem, or
from a PDA via a wireless communication medium. Access devices have different
memory, storage, network, power, and display requirements [76].

Within the scope of traditional multidatabases, as a solution to the integration of
information from a collection of autonomous and heterogeneous sources, researchers
have effectively addressed issues such as local autonomy, heterogeneity, transaction
management, concurrency control, transparency, and query resolution in a “some-
times, somewhere” environment. Consequently, the aforementioned issues and solu-
tions are defined based on fixed clients and servers connected over a reliable network
infrastructure. A mobile data access system (MDAS) relies on the information stored
in multidatabases. A MDAS is distinguished from a multidatabase by the communi-
cation links between nodes. Clients (and possibly even servers) are no longer fixed—
they are mobile and can access data over wireless links. Client mobility may apply
in both idle (not actively accessing the system) and active modes. The concept of
mobility, however, introduces additional complexities and restrictions in multidata-
base systems. A user accessing data through a remote connection with a portable
device has a high probability of facing problems such as reduced capacity network
connections, frequent disconnections, and processing and resource restrictions. Re-
search on providing solutions in a wireless medium is underway. The trade offs are
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being identified gradually and prototypes accordingly are being developed, tested,
and commercialized.

Some current systems have the means to provide timely and reliable access to
remote1 data in wired and wireless media. However, this alone is not sufficient to
ensure content users. Users desire secure communication sessions. Confidentiality,
integrity, and authenticity are required to meet user’s security expectations. Within
the scope of the global information sharing process, the security aspect has received
less attention [66,71,73,75]. Trust is a major factor that needs to be established when
creating a secure environment that allows remote data access to users. Violating trust
would result in havoc in the system. Providing security in distributed systems is,
however, a difficult task. The wireless medium further imposes lower bandwidth,
frequent disconnections, higher error rates, and non-secure links in the face of auton-
omy and heterogeneity [65]. Site autonomy is a measure of enforcing local security
by the local administrator. Whether security is enforced globally and/or locally (due
to local autonomy), a secure global information system must address issues such
as access control, authorizations and counter-measures for inferential security, and
accountability. Users should be given access to information based on their role or ac-
cess rights in the global system. Pervasive computing systems (Section 4.5), which
are just beginning to appear, extend the scope of MDAS. The security issues in both
multidatabases and MDAS still apply, but are further complicated by user privacy
concerns and resource-poor devices.

The remainder of this chapter is organized in the following manner. Section 2
looks at security issues in centralized database systems. This discussion provides the
reader with the necessary background information on security methods, which are
then discussed within the context of multidatabases and Mobile Data Access Sys-
tems (MDAS). Section 3 provides an overview of multidatabase systems in general
before describing security issues and solutions in further detail. The impact mobility
has on these issues is considered in Section 4, which also gives a brief overview of
pervasive computing systems and the security threats that must be considered. Fi-
nally, Section 5 summarizes the key points of this chapter and briefly discusses some
future work in related areas.

2. Security Issues of Centralized Database Systems

Three interrelated technologies are used to achieve information confidentiality and
integrity in traditional DBMSs: authentication, access control, and audit [1]. Figure 1

1Remote access to data refers to both mobile nodes and fixed nodes accessing a variety of data via
network connection characterized by (1) lower bandwidth, (2) frequent disconnection, and (3) higher
error rates [76].
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logically illustrates how these three services interact with each other to ensure the se-
curity of the DBMS. Authentication identifies one party to another and it can be per-
formed in both directions. It ensures the true identity of a user, computer, or process.
Once the identity is established, the party can access data under the guidance of
the access control service. Access control regulations are set by the system security
administrator and define who can access what data with which privileges. However,
authentication and access control do not comprise a complete security solution—they
must be complemented by an auditing service. An auditing service records important
user activities in system logs for real-time or a posteriori analysis. Real-time auditing
is often referred to as intrusion detection. An audit service protects a system in three
ways: detecting actual security violations; assisting the security administrator in dis-
covering attempted attacks by recognizing abnormal activity patterns; and detecting
possible system security flaws.

These three security services support and complement one another. In the follow-
ing subsections we define some important terminology and then discuss authentica-
tion, access control, and auditing in further detail.

2.1 Terminology and Notation

• Plaintext is a message in its unencrypted form, either before the encryption
transformation has been applied, or after the corresponding decryption transfor-
mation is complete [2].

• Ciphertext is the encrypted form of a message—the output of the encryption
transformation [2].

• Encryption is the process of transforming data into a form that cannot be under-
stood without applying a second transformation. The transformation is affected
by an encryption key (EK ) in such a manner that the second transformation can
only be applied by someone in possession of the corresponding decryption key
(DK ) [2].

• A secret-key cryptosystem (or symmetric cryptosystem), such as that defined by
the Data Encryption Standard (DES) [3], uses a single key for both encryp-
tion and decryption (EK = DK ). Such an encryption key is called a secret key

(KA,B).

• A public-key cryptosystem (or asymmetric cryptosystem), such as RSA [4], uses
different keys for encryption and decryption (EK �= DK ). One of the keys in the
pair can be publicly known while the other must be kept private. These keys are
referred to as public and private keys (K+

A and K−
A ), respectively.

• The spoofing attack refers to the situation where one computer masquerades as
another.
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TABLE I
NOTATION USED IN THIS CHAPTER

• The brute force attack (or, exhaustive key space attack) cracks the password by
performing an exhaustive search over the entire key space.

• The dictionary attack tries a list of words, possible weak passwords, and their
simple transformations, such as capitalizing, prefixing, suffixing or reversing a
word, until the hashed value of the candidate matches a password hash [5].

2.2 Authentication

Authentication identifies one party to another, for instance, identifying a user to
a computer system. It serves as the foremost guard of the whole security system.
Without a reliable authentication mechanism, strong access control and intrusion
detection seem pointless. The most commonly deployed authentication mechanism
is password authentication. When a user logs on to a computer system by entering
the user identifier and password, that user is identified to the computer system.

Authentication is often required in both directions. For example, in a peer-to-peer
network, peer computers need to identify each other. In a client-server environment,
the client should identify itself to the server in order to obtain service. Authenticat-
ing the server to the client is also important to prevent spoofing attacks and protect
sensitive client information.

Authentication mechanisms are often based on one or more of the following tech-
niques:

• Knowledge-based authentication,

• Token-based authentication,

• Biometric-based authentication, and

• Recognition-based authentication.
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2.2.1 Knowledge-Based Authentication

Knowledge-based authentications use “something that you know” to identify you.
Because it is easy to implement and has the advantage of low cost, the password is the
most common mechanism used in knowledge-based authentications. However, re-
search has shown that it has significant security deficiencies [1]. Several well-known
problems associated with passwords are as follows:

• Passwords can be discovered by social engineering because users tend to select
passwords that are easy to remember such as birth dates, names, social secu-
rity numbers, phone numbers, etc. Unfortunately, such passwords can be easily
guessed by password crackers. Problems caused by allowing users to choose
passwords without restriction have been discussed in [6,7].

• Passwords can be snooped by observing the user entering it.

• Password sharing is another intrinsic problem of this technique.

• The growing use of Internet applications has led to users having many accounts.
Managing a large number of user ID/password combinations is difficult, causing
users to either use the same password for every account or write them down.

Password management is required to prod users to regularly change their pass-
words, select good ones, and protect them with care. Five basic solutions have been
proposed in the literature: user education, random password generation, reactive
password checking, proactive password checking, and one-time passwords [6,8–11].

2.2.1.1 User Education. This method educates users to choose strong
passwords. However, it is very difficult in environments where there are a signifi-
cant number of novices. First, users might not understand the importance of choos-
ing strong passwords, and novice users are not the best judges of what is strong. For
instance, novice users (mistakenly) may believe that reversing a word, or capitaliz-
ing the last letter makes a password strong. Second, education may backfire. If the
education provides users with a specific way to create passwords, such as using the
first several letters of a favorite phrase, many of the users may use that exact method
and thus, make an attack easier.

2.2.1.2 Random Password Generation. Random password genera-
tion intends to eliminate weak password choices by providing users with randomly
generated passwords from the whole key space [9]. This seems to be a perfect solu-
tion to strengthening passwords, however, it also has flaws. First, the random mech-
anism might not be truly random, and could be analyzed by an attacker. Second, ran-
dom passwords are often difficult to memorize (user-unfriendly). As a result, users
may write the passwords down. This provides attackers an opportunity to obtain
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passwords effortlessly. Furthermore, secure distribution of such passwords is a diffi-
cult task. To make randomly generated passwords more user-friendly, some systems
generate pronounceable passwords for users. However, these systems have also been
shown to be insecure [12].

To overcome the shortcomings of randomly generated passwords, researchers pro-
posed two alternate methods that provide supervision of user-chosen passwords,
namely reactive password checking and proactive password checking. Interestingly,
the basis of current password checkers is their enemy—the dictionary attack. When
cracking passwords, hackers may use the dictionary attack or brute force attack (see
Section 2.1). Hackers usually favor the former over the latter because it can be ac-
complished in hours using commonplace workstations, while the brute force attack
sometimes is computationally infeasible. For the same reason, the current password
checkers are based on the dictionary attack method. The checker compares the user-
chosen password against a dictionary of weak passwords. If a candidate password
matches a dictionary item or its common transformations, the candidate password
will be considered as a weak password. Reactive password checking and proactive
password checking methods invoke the checker at different phases of the authentica-
tion process and therefore, demonstrate different characteristics.

2.2.1.3 Reactive Password Checking. Reactive password checking
prevents poor password choices by performing a posteriori password scan. The algo-
rithm, the scanning program, is the same as the dictionary attackers. If the scanning
program successfully cracked a user’s password, the password is then considered
to be weak and the user will be notified to change his/her password. Systems that
support reactive password checking include deszip [13] and COPS [14]. There are
significant problems with this approach [10].

• The dictionary used by the scanner may not be comprehensive enough to catch
all weak passwords.

• Since the scanning process takes place after passwords have been chosen, a
lucky attacker may be able to crack some weak passwords before the scanning
program detects them. This is especially problematic when the number of users
is large.

• The output of a scanner may be intercepted and used against the system.

• Finding a weak password does not guarantee that it will be replaced by a strong
one.

2.2.1.4 Proactive Password Checking. Proactive password checking
is stemmed from the same idea as the reactive password checking. The major dif-
ference is that the weak password scanning process takes place before a password is
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recorded as legitimate. By disallowing the choice of poor passwords in the first place,
proactive password checking avoids some of the drawbacks that reactive password
checking exhibits.

The proactive password checking, however, also has its difficulties. In particular,
as the size of the dictionary grows, in order to achieve acceptable response time, a
proactive password checker must seek algorithms that support both fast checking and
effective compression. For example, the OPUS system [10] uses Bloom filters [15],
the Bapasswd system [16] uses trigrams and a Markov model, and the ProCheck sys-
tem [17,18] applies a decision-tree technique to achieve high dictionary compression
(up to 1000 : 1) and fast checking speed.

2.2.1.5 One-Time Passwords. As pointed out by [11], the source of
many difficulties in password-based authentication is the fundamental premise—the
reusability of passwords. One-time passwords can substantially reduce the threat of
password crackers. For example, if a password is a six-digit number that changes
randomly minute by minute, the attacker must perform a million login attempts in
a minute to penetrate the security system. This is impossible considering that the
maximum number of login requests a system can handle per minute is a few hun-
dred [11]. Attempts to crack into the system by observing a user keying in the pass-
word will also fail because the system will not accept reused passwords. Because a
new random password must be generated frequently, systems that support one-time
passwords usually need the assistance of extra hardware such as SmartCards (often
referred to as tokens), which we will introduce in the next subsection.

2.2.2 Token-Based Authentication

Token-based authentication use “something that you possess” to identify you, such
as a SmartCard. Technically, SmartCards are credit card-sized cards with more mem-
ory than the traditional magnetic strip and an on-board embedded processor, or smart
chip. Since people in general are used to carrying keys, credit cards, etc., it is ex-
pected that using SmartCards does not introduce significant inconvenience. In this
subsection, we will briefly review the evolution of SmartCards, present an overview
of different types of SmartCard, and finally discuss two SmartCard-based authenti-
cation protocols.

2.2.2.1 A Brief History of the SmartCard. The SmartCard made its
debut in Germany in 1968. Two German inventors patented the idea of embedding
microchips in plastic cards [19]. The Japanese patented another version of the Smart-
Card in 1970 [20]. In 1974, Roland Moreno invented IC card (a type of SmartCard)
in France. Later, he received a patent in France in 1975 and in the US in 1978.
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Even though the idea of the SmartCard originated in the late 1960s, the technology
that could support such an innovative idea was not available until 1976 [19]. In 1977,
Motorola Semiconductor, in conjunction with Bull, a French computer company,
produced the first SmartCard microchip [21]. Since then, the SmartCard has been
deployed in a wide range of applications [22].

2.2.2.2 Types of SmartCards. A SmartCard can be categorized as either
a memory card or a processor-enabled card (see Table II) [22]. A memory card pro-
vides nonvolatile storage of personal information and it does not have data processing
capability. The capacity of memory cards is usually much higher (several KB) than
traditional magnetic strip-based cards (hundreds of bytes). Information stored on a
memory card is read-only: the information flows from the card to the card reader,
but not vice versa. Sometimes memory cards are referred to as “asynchronous cards”
because they are used offline.

As semiconductor technology advances, processor-enabled SmartCards appeared
on the horizon [23]. Compared to memory cards, processor-enabled SmartCards are
equipped not only with read-only memory (ROM), but also with a CPU and ran-
dom access memory (RAM). Data stored on a SmartCard can now be protected by
cryptography technologies. These cards are sometimes referred to as “synchronous
cards” as the data flow is bi-directional: data is read from and written to the card [19].
More advanced processor-enabled SmartCards can even support downloading of new
applications. Theses cards are more expensive and often called “white cards” [24].

2.2.2.3 SmartCard-Based Authentication. We have discussed the
advantages of one-time passwords in the previous section. We also mentioned that
such one-time passwords could be easily implemented on SmartCards. Processor-

TABLE II
MEMORY VS. PROCESSOR-ENABLED SMARTCARDS [22]

aInformation Technology Security Evaluation Certification represents a set of software and hardware security
standards that have been adopted in Europe and Ausralia.
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enabled SmartCard technology is now mature and cheap enough to support one-time
password protocols and strengthen the power of authentication mechanisms.

The challenge-response and time-series authentication protocols are two examples
of token-based authentication schemes [11]. They both rely on the cryptographic ca-
pability of SmartCards. Tokens can use either secret key (e.g., DES) or public key
(e.g., RAS) cryptosystems. Figures 2–5 illustrate these two protocols utilizing dif-
ferent cryptosystems. These figures follow the notation convention shown in Table I
and assume that user A is trying to log on to the system. Please also note that the
following protocols assume a centralized authentication environment and therefore,
information that flows between user A and the AS (Authentication Server) cannot be
eavesdropped by attackers. When moving to a distributed environment, extra mea-
surements must be taken to prevent replay attacks etc. We will consider those issues
in Section 3.

Figure 2 depicts a challenge-response protocol that uses a secret-key cryptosys-
tem: user A and the Authentication Server (AS) share key KA,AS. The assumption
is that the shared key has been securely stored in both A’s token and the AS. When
A sends a log in request to the AS, the AS first looks up its user-key pair table to
find out the shared key KA,AS. It then sends a randomly generated number r (a chal-
lenge) to A and waits for a response. Upon receiving r , A keys the number into the
SmartCard using the keypad. The SmartCard encrypts this number using the shared
key KA,AS. The encryption result is displayed on the SmartCard, 837 269 in this ex-

FIG. 2. Challenge-response protocol using secret-key cryptosystem.



SECURITY ISSUES AND SOLUTIONS 119

FIG. 3. Challenge-response protocol using public-key cryptosystem.

FIG. 4. Time-series protocol using secret-key cryptosystem.

ample. A sends this result to the AS as the response to its challenge. If the response
from A matches the number calculated by the AS using the same shared secret key
and encryption algorithm, user A is authenticated.



120 A.R. HURSON ET AL.

Figure 3 shows a challenge-response protocol that uses a public-key cryptosystem.
User A and the AS know about each other’s public key and their own private keys.
User A initiates a login session by sending his/her user name encrypted by the AS’s
public key. Once this message is decrypted, the AS generates a random number rAS

(a challenge) and a shared session key KA,AS and sends them to the login request
originator A (encrypted by A’s public key). After user A obtains the shared session
key, the response is calculated and verified in the same manner as described in Fig. 2.

A time-series protocol utilizing a secret-key cryptosystem assumes that the AS has
all potential user’s secret keys and each user’s SmartCard has a built-in clock that
is well synchronized with that of the AS. This protocol simplifies the authentication
procedure by applying the synchronized clock time t as the default challenge number
for the user’s token. The time value t is enciphered by using the user’s secret key
KA,AS and displaying it on the SmartCard at a preset frequency, e.g., every minute.
In this approach, all users get the same challenge number because all internal clocks
throughout the system are synchronized. However, the response generated by each
SmartCard is different since different keys encipher the same challenge.

At a particular time if user A wants to login to the system, he/she enters the user
name and the number currently displayed on his/her SmartCard. The AS authenti-
cates the user by comparing the response (53 629 in Fig. 4) entered by the user with
the number generated by enciphering its own clock time with the secret key of that
user. If the two numbers match, the login permission is granted to user A.

Figure 5 illustrates a similar protocol as the one shown in Fig. 4. The difference
is that a public-key cryptosystem is used in this case. The authentication procedure
starts with user A sending his/her user name encrypted by the AS’s public key to
the AS. The AS then generates a shared session key KA,AS and sends it back to
user A. Note that this session key is encrypted by A’s public key K+

A . The rest of the
authentication is the same as we described in Fig. 4, except replacing the secret key
of A in Fig. 4 with the shared session key in Fig. 5.

Tokens that use secret or public key cryptosystems have their own advantages and
disadvantages. Secret-key cryptosystem is much faster than public-key cryptosys-
tem. However, the secret key distribution is problematic. Moreover, the public-key
cryptosystem based authentication systems have better scalability because the au-
thentication server does not need to maintain a key for each potential user as in a
secret key cryptosystem.

Token-based authentication is much stronger than password-based authentication,
and it is often called strong authentication [1]. However, tokens are subject to theft or
sharing. Extra effort must be made to protect tokens. For instance, SmartCards can
be protected by PINs (Personal Identification Numbers): A PIN number is required
to activate the token. If a SmartCard were stolen, it would take more time for a thief
to discover the PIN than for a system administrator to disable the card.
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FIG. 5. Time-series protocol using public-key cryptosystem.

2.2.3 Biometric-Based Authentication

Biometric-based authentication uses “your physiological or behavioral character-
istics” to identify you, such as fingerprint, voice, etc. In general, any physiological or
behavioral characteristic that is universal, unique, permanent, and collectable could
be used as a biometric [25].

One problem that occurs in both knowledge-based and token-based authentication
systems is that the information needed may not be always available: passwords may
be forgotten and tokens may be left at home. In addition, these systems are unable
to differentiate between an authorized person and an impostor who knows the cor-
rect password or possesses the proper token. An alarming number was reported by
the banking industry [26]: The false acceptance rate at Automatic Teller Machines
(ATM) is as high as 30% and results in worldwide financial fraud of $2.98 billion a
year.

Biometric techniques have a long history in criminal identification. As the technol-
ogy rapidly evolves and the price drops, biometric-based authentication is becoming
a powerful tool for a broad range of civilian applications. It can be used for two dif-
ferent purposes: biometric identification and biometric verification [27]. Biometric
identification (recognition) identifies a person from the database of persons known
to the system and answers the question “Who am I?” Biometric verification authen-
ticates a claimed identity and answers the question “Am I who I claim I am?”
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2.2.3.1 Biometric System. A biometric-based authentication system may
deploy one or more of the biometric technologies: voice recognition, fingerprints,
face recognition, iris scan, infrared facial and hand vein thermograms, retinal scan,
hand and finger geometry, signature, gait, and keystroke dynamics [25]. Table III
summarizes the most common biometric systems.

The authentication process is usually performed in two phases:

(1) Enrollment phase. During this phase, the biometric authentication system
scans a user’s biometric information into the system and transforms it into

TABLE III
BIOMETRIC TECHNOLOGIES

(continued on next page)
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TABLE III — Continued from previous page

digital representation (called a template). The digital form of the user’s bio-
metric information is then stored in a database.

(2) Identification phase. In this phase, a user’s biometric information is collected
and digitized in the same way as in the enrollment stage. This digital repre-
sentation of the user is compared to the templates stored in the database to
establish the identity of the user. Depending on the matching result, the user
will be either accepted or rejected.
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2.2.3.2 Performance Measurement. Traditionally, two error statistics
are often used in biometric authentication system evaluation [31]:

• False Accept Rate (FAR) (sometimes called False Match Rate), the percentage
of impostors accepted, and

• False Reject Rate (FRR) (sometimes called False Non-Match Rate), the per-
centage of authorized users rejected.

The performance of a biometric authentication system is measured in terms of the
FRR achieved at a fixed FAR, or vice versa [32]. By varying the FAR value, a so-
called receiver operating characteristic (ROC) curve is obtained. On the ROC curve,
the point where FRR = FAR is called the equal error rate (EER). It is used to describe
the performance of the overall system. The better biometric systems have EERs of
less than 1%.

2.2.3.3 Common Characteristics of Biometric Systems. Ta-
ble IV identifies the major characteristics of a biometric system [27].

2.2.3.4 Privacy Issues. The issue of privacy is controversial and essential
in biometric systems. Because the biometric information gathered by the system is
unique and permanent, users are naturally extremely concerned about the safety and
proper use of such information. Without a guarantee of user privacy, it is hard to
imagine that the public will accept a biometric system.

Many researchers are trying to resolve the privacy problem. In [33], the author
suggests a solution that combines biometric-based authentication and token-based
authentication. The solution is to equip people with personal devices (called wal-

TABLE IV
COMMON CHARACTERISTICS OF BIOMETRIC SYSTEMS
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FIG. 6. Wallet with observer architecture [33].

lets) that can run a trusted local biometric verification process (called observer). The
system is depicted in Fig. 6.

The function of the observer is to verify that the person holding the wallet is the
correct owner. When the wallet is issued, the observer is personalized (and cannot be
re-personalized) for the particular biometric identity. When the issuer wants to au-
thenticate the wallet holder, authentication is based only on the wallet (token-based
approach). However, the wallet is only activated if the observer successfully authen-
ticates the user’s biometric identity. This architecture protects user privacy by pre-
venting inflow and outflow of information from the observer to the issuer.

From the discussion in this section, we conclude that biometric-based authenti-
cation has many unique merits. However, it is not the panacea of authentication.
Table V lists the major advantages and disadvantages of biometric-based authentica-
tion [27].

2.2.3.5 Examples of Biometric Applications. Currently, both the
public and private sectors are making extensive use of biometrics. The following
list of current real world application, though not exhaustive, gives an idea of the
potential of this new approach to identity authentication (see Table VI).

2.2.4 Recognition-Based Authentication

Recognition-based authentication uses “what you can recognize” to identify you.
The foundation of this technique is that studies have shown that it is much easier
to recognize something than to recall the same information from memory without
help [37]. Image recognition is the favored recognition-based authentication system
because classic cognitive science experiments show that humans have a vast, almost
limitless memory for pictures [38,39]. By replacing precise recall of a password with
image recognition, it is expected that the user’s cognitive load will be reduced and
therefore, the system can provide a more pleasant user experience. Much research
and implementation efforts have been reported in the literature.
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TABLE V
ADVANTAGES AND DISADVANTAGES OF BIOMETRIC-BASED AUTHENTICATION

Blonder [40] patented a “graphical password.” This approach requires a user to
touch an image on predetermined regions in a predefined sequence. Only when both
the touched regions and the sequence are correct, the user is said to be authenticated.
As we can see, this method still requires precise recall. Moreover, it is vulnerable to
observer attacks.

Jermyn et al. [41] proposed a graphical password selection and input scheme sim-
ilar to [40], where the password consists of a simple picture drawn on a grid. This
solution removes the need for temporal recall, but still requires users to precisely
recall how to draw their image, rather than relying on recognition.

IDArts [42] designed an authentication system based on recognizing previously
viewed images of faces, called Passfaces. A drawback of the system is that users
choose faces that they are attracted to and therefore, can be easily guessed by attack-
ers.

Rachna Dhamija and Adrian Perrig designed the Déjà Vu authentication system
using random art images [43,44]. The user chooses a set of p images as his/her port-
folio. At the authentication point, the user is presented with a mixture of portfolio
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TABLE VI
EXAMPLES OF BIOMETRIC APPLICATIONS

images and decoy images. The user must recognize all portfolio images to be au-
thenticated. Figure 7 shows an example of the image selection window. This system
resists many potential attacks well. However, it is still hard to justify that the images
cannot be guessed by knowing a specific user’s taste of images.

2.2.5 Summary

Table VII summarizes different authentication methods as discussed in this chap-
ter. As one can conclude, technically the best combination of authentication methods
would be user-to-token biometric authentication, followed by mutual cryptographic
authentication between the token and system services. This combination may emerge
sooner than one might imagine. Deployment of such technology on a large scale is
certain to raise social and political debate.
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FIG. 7. Portfolio selection window [43].

2.3 Access Control

Access control, sometimes referred to as authorization in the literature, is the sec-
ond guard in a secure DBMS. The prerequisite of an access control system is success-
ful user authentication. All the discussion in this section is based on the assumption
of legitimate users. The tasks of an access control system include defining access
policy, determining and granting access rights for a specific user, and enforcing the
execution of those rights.

When applied in different application domains, access control systems are ex-
pected to achieve different confidentiality and integrity objectives. Following similar
ideas used in reusable software, it is necessary to distinguish the access control mech-
anism from the authorization policy. Policies are high-level guidelines that determine
how accesses are controlled and access decisions determined [1]. It is usually the
job of the database security administrator to define such policies. Mechanisms are
low-level software and hardware functions that can be configured to implement a
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TABLE VII
SUMMARY OF AUTHENTICATION METHODS

policy [1]. The choice of different mechanisms is usually made by DBMS designers.
Note that mechanisms should be flexible and comprehensive enough to enforce a
variety of policies.

In this section we first introduce the basic principals in an access control system.
Then we discuss the most common access control mechanism—the access matrix
and its two implementation alternatives. Finally, we summarize three classes of au-
thorization polices proposed in the literature: the discretionary, mandatory, and role-
based access control policies.

2.3.1 Basic Principals

Subjects and objects are the two basic principals in an access control system. Sub-
jects can be users or processes executing on behalf of users [1]. There is a many-
to-many relationship between subjects and users: a user can log on to the system as
different subjects and a subject can represent different users. Subjects are the entities
that initiate activities in the system. Objects are the entities behind the protection of
the system. In a DBMS environment, an object can be a field, a record, a table, a
view, etc.

Subjects initiate actions or operations on objects. Operations that subjects can per-
form on objects (access rights) are usually defined by the security administrator and
represented in the form of an access matrix, or one of its alternatives. For databases,
the typical access rights include own, read, and write. Normally, the owner of a data-
base is authorized to grant and revoke access rights to the database.
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2.3.2 The Access Matrix

An access matrix is a common approach to modeling the access rights of subjects
with respect to objects. Each row in the matrix represents a subject and a column
corresponds to each object. Each entry in this matrix defines the access rights of a
subject over an object. Figure 8 shows an access matrix example, where O represents
ownership, R denotes the read right, and W represents the write right.

In this example, there are three subjects: Alice, Bob, and Cathy. There are four
objects, namely Tables 1–4. Alice is the owner of Table 1 and Table 3, and therefore,
she has the read and write rights to those tables. In addition, the matrix also specifies
that Alice has the read right on Table 4, but she has not have access rights to Table 2.

When a user, say Bob, requests a read operation on Table 3, the request is sent
to a program called the reference monitor. The reference monitor checks the access
matrix to find out whether Bob has the read right to Table 3. In the example shown in
Fig. 8, Bob does not have any access rights to Table 3. Thus, the Bob’s read request
will be rejected. Figure 9 illustrates the general authorization control flow.

It is not difficult to imagine that an access matrix representing a large system
with many subjects and objects would be very sparse: A subject only has access
to very few of the many objects. Storing access information in a matrix with many
empty entries is obviously inefficient. Therefore, the access matrix is mainly used
as a conceptual model, and one of its two alternatives is implemented in practical
systems: the access control list and the capability list.

FIG. 8. An access matrix example.

FIG. 9. General authorization control flow diagram.
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FIG. 10. The ACLs corresponding to the access matrix in Fig. 8.

2.3.2.1 Access Control List. In the Access Control List (ACL) approach,
columns of the access matrix are stored eliminating the empty entries. Each object
is associated with a list of subjects and the access rights to the objects each subject
posses. Figure 10 depicts the ACLs corresponding to the access matrix shown in
Fig. 8.

The major advantages of ACL-based approach are listed as follows:

• ACLs provide a convenient way to find out who can access a specific object
with which privileges.

• Modifying the access rights associated with each object is easy.

• Revoking access to an object from all subjects can be done by simply removing
the existing ACL.

On the other hand, determining the objects that a subject can access becomes very
difficult. It requires a full scan of all ACLs. In practice, if a subject’s access rights
to all objects need to be revoked, the administrator may disable the subject’s account
rather than deleting the subject from each of the ACLs.

2.3.2.2 Capability List. Unlike ACLs, which store the access matrix by
columns, a Capability List (CL) stores the matrix by rows. A CL provides informa-
tion from a subject’s point of view. It is essentially a list of objects that a subject can
operate on. It also defines the access rights associated with each object that subject
has. Figure 11 shows the CLs corresponding to the access matrix of Fig. 8.
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FIG. 11. The CLs corresponding to the access matrix in Fig. 8.

Sometimes the CL-based approach is called a dual approach to the ACL-based
approach [1] indicating that the advantages and disadvantages of the two approaches
are reversed. For instance, it is easy to modify or revoke the access of a subject to
all objects in CL-base systems. However, modifying or revoking the access rights
associated with a particular object requires examination of each CL in the system.

2.3.2.3 A Combinatory Approach. From the discussion in the previous
sections, we have seen that the ACL-base and the CL-base approaches have their
own strengths and deficiencies. One way to take advantage of both approaches is to
represent the access matrix by an authorization relation [1]. In this relation, or table,
each tuple consists of three fields: subject, access right, and object. Figure 12 shows
the authorization relation of the access matrix shown in Fig. 8.

This representation is typical in relational DBMSs [1]. When sorted by subjects,
the authorization relation is essentially a collection of capability lists. When the au-
thorization relation is sorted by objects, we obtain the access control list of each
objects.

2.3.3 Access Control Policies

The enforcement of access control policies relies on the underlying mechanisms
introduced in Section 2.3.2. Generally speaking, there is no “best” policy. The ap-
propriateness of a policy depends on the system security requirements. Three classes
of policies are commonly used:

• Discretionary Access Control (DAC) Policies,

• Mandatory Access Control (MAC) Policies, and

• Role-Based Access Control (RBAC) Policies.
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FIG. 12. The authorization relation corresponding to the access matrix in Fig. 8.

It should be noted that these policies are not mutually exclusive. Instead, a com-
bination of different policies may provide better system protection. When two or
more policies are combined, rules defined by each policy must be satisfied. Some-
times, conflicts are inevitable: An operation considered to be legal in one policy may
be defined as prohibited in another. An appropriate level of management should be
consulted to resolve these discrepancies.

2.3.3.1 Discretionary Access Control Policies. Recall that an ac-
cess matrix stores the access rights that a subject has to an object for all subjects
and all objects in the system. Discretionary access control (DAC) policies use this
information in a straightforward manner: They govern the subject’s access to objects
based on the subject’s identity and authorization rules [1]. These rules can be rep-
resented in ACL or CL format. Figure 9 well illustrates the authorization process.
Each subject’s access request is checked against the authorization rules. If an exist-
ing rule states that the subject can access the object in the requested mode, the access
is granted. Otherwise, it is rejected.

Discretionary access control policies can be further divided into two groups ac-
cording to the choice of the default decision mode [45]: closed discretionary poli-
cies (positive authorization) and open discretionary policies (negative authorization).
Closed discretionary policies assume a denial of access unless specified otherwise by
the authorization rules. In contrast, open discretionary policies assume that an access
request can be granted unless stated explicitly otherwise by the rules.
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Flexibility is the major advantage of discretionary policies. However, they cannot
control the flow of information in a system and therefore, it is easy to bypass the
restrictions defined by the authorization rules. For example (see Fig. 8), Cathy has
the read permission to Table 1, but Bob does not have any access to Table 1. A dis-
cretionary policy cannot prevent Cathy from reading the information of Table 1 and
passing it to Bob. The cause of this problem is that discretionary policies do not im-
pose restrictions on the flow of the information once it is obtained [1]. The class of
access control policies that we will introduce next, mandatory access control poli-
cies, can address this problem and they are often used to augment the discretionary
policies [46].

2.3.3.2 Mandatory Access Control Policies. Mandatory access con-
trol (MAC) policies define authorization rules based on the classification of subjects
and objects in the system [1]. Hierarchical classifications are made within the do-
mains of confidentiality and integrity. System security is achieved by enforcing a set
of read/write rules among the hierarchies. In this subsection, we first use two mod-
els to explain the essence of mandatory access controls with regard to information
confidentiality and integrity: the Bell–LaPadula (BLP) model and the Biba Model.
Then, we discuss a composite model that achieves both information confidentiality
and integrity.

(1) The BLP model. Within the scope of information confidentiality (secrecy),
each subject and object is assigned a security label [47]. A subject’s secu-
rity label, called security clearance, reflects the subject’s trustworthiness not
to disclose information to unauthorized subjects. An object’s security label,
called security classification, reflects the sensitivity of the object. The most
common example of totally ordered security classes are the TS (top secret),
S (secret), C (confidential), and U (unclassified) security levels used in the
military and government systems [47]. In the order of TS, S, C, and U, the
security or sensitivity level of a subject or an object decreases.

The BLP model is one of the earliest models that formalized the concept
of mandatory access controls [47]. The motivation of the BLP model is to
achieve information confidentiality. It combines the discretionary and manda-
tory access control methods. An operation can be carried out only when rules
stated by both methods are satisfied. Let λ denote the security label of a sub-
ject or object. The mandatory access rules specified in the BLP model are as
follows [47]:

• Simple-Security Property (read rule): Subject s can read object o only if
λ(s) � λ(o).

• *-Property (write rule): Subject s can write object o only if λ(s) � λ(o).
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In other words, a subject can only read objects of the same or lower security
level, whereas a subject can only write objects of the same or higher security
level. Enforcing these two rules guarantees that no information flows from a
higher security level (more sensitive) to a lower one and therefore, ensure the
confidentiality of information.

(2) The Biba model. Within the scope of information integrity, each subject and
object is assigned an integrity label [47]. A subject’s integrity level reflects
the subject’s trustworthiness for modifying information. An object’s integrity
level indicates the reliability of the information stored in that object, and the
potential damage that could result from unauthorized modification. One ex-
ample of the integrity hierarchy could be C (crucial), I (important), and U
(unknown) [1].

The Biba model [48] is inspired by the idea of assuring information in-
tegrity. Biba proposed several ways to achieve information integrity. We will
only introduce the most well known one, called strict integrity. Let ω denote
the integrity label of a subject or object. The mandatory access rules specified
in the Biba model are as follows [47]:

• Simple-Integrity Property (read rule): Subject s can read object o only if
ω(s) � ω(o).

• Integrity *-Property (write rule): Subject s can write object o only if
ω(s) � ω(o).

We notice that these properties permit a reversed direction of information
flow from the direction regulated by the BLP model read/write properties. A
subject can read objects of the same or higher integrity level and write objects
of the same or lower integrity level. Satisfying these properties guarantees that
no information of a lower integrity level (less reliable) flows to a higher one
and therefore, ensures the integrity of information.

(3) The composite model. After the discussion of the BLP and Biba models, nat-
urally one would think to build a model that combines the two so that both in-
formation confidentiality and integrity can be achieved. The composite model
introduced in [47] is one such model. In this model, each subject and object
is assigned two labels: a confidentiality label λ and an integrity label ω. The
mandatory access rules can be stated as follows:

• Read Rule: Subject s can read object o only if λ(s) � λ(o) and ω(s) �

ω(o).

• Write Rule: Subject s can write object o only if λ(s) � λ(o) and ω(s) �

ω(o).
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By guaranteeing these properties, we ensure that the system satisfies both
information confidentiality and integrity.

2.3.3.3 Role-Based Policies. Role-based access control (RBAC) poli-
cies establish permissions based on the functional roles in the enterprise [49]. Roles
can represent the tasks and responsibilities within an enterprise. With RBAC, a set
of roles must be identified and users are assigned to an appropriate role or a set of
roles. Instead of defining access rights to all objects for each user, the RBAC policies
specify these rights on a role basis. A role acts as a mediator between a group of
users and a set of tasks/responsibilities associated with them.

Roles in an enterprise are generally persistent and many users can be represented
by a single role. Thus, RBAC approaches can reduce the administration complex-
ity, cost, and potential errors. A number of RBAC models have been proposed and
implemented [50–59]. A study by NIST (National Institute of Standards and Tech-
nology) shows that RBAC approaches are popular in commercial and government
applications [60].

As an effort toward standardizing the RBAC approaches, NIST proposed a se-
quence of four RBAC models in increasing order of functional capabilities [49]:

• Flat RBAC Model,

• Hierarchical RBAC Model,

• Constrained RBAC Model, and

• Symmetric RBAC Model.

The requirements in these models are cumulative in the sense that the requirements
in a more advanced model include all requirements defined in its predecessor. For
instance, requirements in the hierarchical RBAC model embrace all requirements
specified by the flat RBAC model. Moreover, additional conditions must be satisfied
in the hierarchical RBAC model in order to achieve more complex functionalities
than those provided by the flat RBAC. Table VIII summarizes the requirements for
the four models in such cumulative fashion [49].

In [1], the authors summarize several advantages of role-based access controls as
follows:

• Simplified authorization management: When a user’s role changes in an orga-
nization, for instance due to a promotion, the system administrator can simply
change the user to a new role. In contrast, if the access relations are defined
between subjects and objects as in DAC-based approaches, all existing access
rights must be identified and revoked, and new ones need to be assigned.

• Hierarchical Roles: The use of hierarchical roles captures the natural organiza-
tion of an enterprise and is thus easy to understand and manage.
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TABLE VIII
NIST RBAC MODELS

• Least Privilege: Users can take roles that have the least privilege required to
fulfill the current task. This minimizes the damages caused by unintentional
errors.

• Separation of duties (SOD): The SOD method has been widely used in differ-
ent real-world applications for reducing the possibility of fraud and inadvertent
damages. Protection of the system is achieved by spreading responsibilities and
authority for a task over multiple users, thereby raising the difficulty of com-
mitting a fraudulent act by requiring the involvement of more than one individ-
ual [49].

2.4 Auditing and Intrusion Detection

Auditing consists of examining the history of events in a system to determine if
and how security violations have occurred or been attempted [1]. Auditing is required
for all system activities: the subject requesting access, the object to be accessed, the
operation requested, permissions granted or rejected, the resource consumption, the
outcome of the request, etc. Audit data is stored in an audit log.

Depending on the system security requirements, audit data can be collected at dif-
ferent granularities. The finer grain audit data provide more detailed information and
can assist in security violation detection. However, we must note that the volume
of such data grows rapidly and will raise serious storage space concerns. Moreover,
searching for violations among such massive amounts of data is difficult. Sophisti-
cated intruders may spread their activities over a long period of time. As a result,
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TABLE IX
THRESHOLD-BASED INTRUSION DETECTION APPROACHES

TABLE X
RULE-BASED INTRUSION DETECTION APPROACHES
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those violations are embedded in a huge amount of normal audit data. It is almost
impossible to rely solely on the auditors to identify security threats accurately and
quickly. Many automated tools have been developed to help human screening and
analyzing audit information. These tools can be classified into different categories
when viewed from various angles [1].

From the functionality point of view, automated tools can be classified as in-

formation summarizing tools and intrusion detection systems. The former category
processes the raw audit data and generates summaries. The main purpose is to orga-
nize information and reduce the amount of information that human auditors need to
review. These tools do not perform data analysis. The latter category can not only
reduce the volume of data, but also analyze the data and detect intrusions.

Based on when the analysis is performed, intrusion detection systems can be fur-
ther divided into passive and active systems. Passive systems perform a posteriori
analysis and bring security violations to the auditor’s attention. Active systems per-
form analysis in real time. Once a violation is detected or suspected, the intrusion
detection system alerts the auditor and may take immediate measures for system
protection.

From the intrusion detection method’s perspective, intrusion detection systems
may adopt the threshold-based and/or rule-based approaches. When examining these
approaches in scrutiny, we can further identify the predefined threshold-based ap-
proach and the anomaly-based approach. They both belong to the threshold-based
approach family but each has its unique characteristics. As variations of the rule-
based approach, the low-level rule-based, model-based, and state transition-based ap-
proaches each have their pros and cons. Tables IX and X briefly summarize these ap-
proaches and highlight their prominent characteristics. None of the currently known
approaches can provide a complete solution to intrusion detection problems. Thus,
much research still needs to be done on this subject.

3. Security Issues of Multidatabase Systems

3.1 Multidatabase Systems

A multidatabase system is a collection of cooperating autonomous and heteroge-
neous databases. This structure allows one to share information and functionality to
a precisely determined degree and allows more or less uniform access to the infor-
mation sources [63]. Typically, such systems consist of two components: the global
component and the local components. The global component is in charge of coor-
dinating the local data sources (local components) such that they cooperate with
each other and share common resources. Users interact with the global DBMS in a
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TABLE XI
GLOBAL COMPONENT STRUCTURE

uniform manner regardless of the heterogeneity of local DBMSs. The literature has
addressed a wide range of solutions for global information sharing in a distributed
environment. Different metrics can be used to distinguish these solutions from each
other. A distinction can be made based on:

• The structure of the global component, or

• The type of interaction between the global component and the local compo-
nents.

The structure of the global component can be centralized or distributed in na-
ture. The properties of centralized and distributed global components are listed in
Table XI.

The interaction between the global component and local components can be
broadly defined as loosely coupled and tightly coupled. Table XII summarizes the
major characteristics of systems based on this metric.

3.1.1 Loose Coupling

In a loosely coupled system, database can join or leave the system anytime at will.
A local database decides which subset of its data will be contributed to the global
system. The global component has the responsibility of searching for the location of
relevant data with respect to a query. Every Component Database (CDBMS) acts like
a server in this model. Such systems are flexible, but the global system is burdened
with many system management responsibilities.

Based on the coupling relation between the global and local components, an inter-
operable system is at the extreme end of the spectrum for a collection of database ob-
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TABLE XII
INTERACTION BETWEEN LOCAL/GLOBAL COMPONENTS

jects. Dynamic interfaces or common standard APIs need to be developed to process
knowledge structures (heterogeneous databases) in order to transform data to useful
information. This dynamic interface must have the following functions [64]:

• Methods to transform and sub-set databases using view definitions and object
templates;

• Methods to access and fuse data from multiple databases;

• Computations to support abstraction and generalization over underlying data;

• Intelligent directories to information bases, such as library catalogs, indexing
aids, and thesaurus structures; and

• Methods to deal with uncertainty and missing data due to incomplete or miss-
matched sources.

Defining wrappers and mediators in heterogeneous environments provides a fea-
sible implementation of the aforementioned features. These approaches are based on
mediation and do not require the specification and management of global schema or
common language for communication.

Data sharing does not mandate sharing of representation. As long as heteroge-
neous databases can communicate with each other, they can benefit from each other’s
data without being bound by the problem of common representation. Centralized
databases mandate physical database sharing, while distributed databases mandate
logical but not physical database sharing. Federated/multidatabases mandate schema
but not database sharing. This sharing process opens the local system to vulnerabili-
ties and enlarges the space for possible threats to the data and resources it maintains.
The major requirements of integration/mediation efforts with respect to security is-
sues are as follows:
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• Transparent access: Application users should be able to access information
from any or all of the sources in a uniform and consistent way. Specialized
knowledge of individual sources should not be required.

• Autonomy: Application users must be permitted access to information they can
access from any individual source. Furthermore, the sources must continue to
function after integration as they did prior to integration.

• Security: Users of applications must be denied access to any information that
they cannot access from any source individually.

3.1.2 Tight Coupling

Tightly coupled systems provide global services, offered by a global schema, run-
ning on top of the CDBMS. Users submit requests at a single interface. An admin-
istrator manages this tightly coupled system. The administrator also imposes any
security mechanisms on user requests. These mechanisms typically include authen-
tication, authorization, and access control. Users, however, also have the liberty to
request data at any CDBMS. The local administrator in this case needs to provide the
required security mechanisms. Global users in tightly coupled systems are abstracted
from the location of data (location transparency) and resolution of semantic hetero-
geneity. The global security administrator (SA) negotiates with the local SAs about
the security policies to be enforced and sets up a global access control system. A dis-
tributed database system is the most tightly coupled information sharing system [65].
Global and local components share very low level and internal interfaces—there is
little distinction between them. In general, there are two approaches to the design of
a distributed database management system (DDBMS). One approach involves com-
bining existing database management systems [66]. However, DDBMS are typically
designed from scratch in a top down fashion. When a DDBMS is designed from
scratch, the local DBMS are typically homogeneous and the global system has con-
trol over local data and processing. The system maintains a global schema by in-
tegrating the local schemas. Global users access the system by submitting queries
at the global system. Distributed databases have the best performance at the cost of
significant local modification and loss of control.

The coupling degree of the global and local components can be extended, clas-
sifying global information-sharing solutions into six main categories [65] as shown
in Table XIII. Of these solutions, the federated database system is of most interest
to researchers. Sometimes, the terminology multidatabase and federated database
are used interchangeably. Therefore, we will use the federated database as the de-
fault underlying architecture when discussing the security issues in multidatabase
systems (MDBMSs). The term federated database system was coined by Hammer
and McLeod [67] and Heimbigner and McLeod [68]. A federated database system
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TABLE XIII
GLOBAL INFORMATION SHARING ENVIRONMENT [65]

(FDBS) is a collection of cooperating but autonomous component database systems
(CDBSs). The CDBSs are integrated to various degrees. The software that provides
controlled and coordinated manipulation of the component DBSs is called a feder-
ated database management system (FDBMS). The DBMS of a component DBS can
be a centralized or distributed DBMS or another FDBMS.

FDBSs can be characterized along three orthogonal dimensions: distribution, het-
erogeneity, and autonomy [69]. Data may be distributed among multiple databases.
These databases may be stored on a single computer system or multiple computer
systems, co-located or geographically distributed but interconnected by a communi-
cation system. The data may also be distributed in different ways. In relational terms,
these methods include vertical and horizontal database partitions. Multiple copies of
some or all of the data may be maintained. These copies need not be identically
structured. Differences in DBMSs include differences in structure, constraints, and
query languages. These variations lead to the heterogeneity of FDBS. Semantic het-
erogeneity occurs when there is a disagreement about the meaning, interpretation,
or intended use of the same or related data. Veijalainen and Popescu-Zeletin [70]
classified the autonomies into three types: design, communication, and execution.
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Autonomy is the ability of a database system to perform operations independently.
Local autonomy means that the local administrator maintains control over local re-
sources. The requirement for autonomy is two-fold. First, the local components de-
scribed earlier need to “share data” to cooperate and form a coalition. Secondly, these
components also need to maintain authority over local resources to forbid any pol-
icy violations. Table XIV classifies the different types of autonomy and gives a brief
explanation of each.

Association Autonomy can be further classified as shown in Table XV.
Design autonomy refers to the ability of a CDBS to choose its own design with

respect to any matter. Examples of such design considerations include data manage-
ment, the representation and the naming of the data elements, the conceptualization
or semantic interpretation of the data, constraints used to manage the data, the func-
tionality of the system, the association and sharing with other systems, and the im-
plementation. Communication autonomy refers to the ability of a component DBS
to decide whether to communicate with other component DBSs. A component DBS
with communication autonomy is able to decide when and how it responds to a re-
quest from another component DBS. Execution autonomy refers to the ability of a
component DBS to execute local operations without interference from external op-
erations and to decide the order in which to execute external operations. Association

TABLE XIV
AUTONOMY CLASSIFICATION AND EXPLANATION [71]

TABLE XV
ASSOCIATION AUTONOMY CLASSIFICATION [71]
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autonomy implies that a component DBS has the ability to decide whether and how
much to share its functionality and resources with others. This includes the ability
to associate or disassociate itself from the federation and the ability of a component
DBS to participate in one or more federations. Association autonomy may be treated
as part of the design autonomy or as a type of autonomy in its own right. Alonso and
Barbara [72] discuss the issues that are relevant to this type of autonomy.

As can be concluded from Table XIII, multidatabase systems can be elaborated as
co-operations of autonomous and heterogeneous databases. Multidatabase systems
integrate data from pre-existing, heterogeneous local databases in a distributed envi-
ronment and present global users with transparent methods to uniformly access and
manipulate the total information in the system [65,73,74]. A multidatabase system,
generically, can be further classified as: global-schema multidatabase, federated data-
bases, multidatabase language system, and homogeneous multidatabase language
systems [74]. The multidatabase differs from an inter-operable system because it
provides full database functionality to global users. It differs from a distributed data-
base in that the local databases in a multidatabase system preserve full autonomy.

The literature has introduced two general approaches to resolve multidatabase het-
erogeneity, namely, the global schema approach and multidatabase languages. The
first approach is inherited from traditional distributed databases where local schemas
are integrated into a global schema representing common data semantics. This ap-
proach provides a high degree of transparency. However, the schema integration
process is rather complicated and labor intensive. The meta-data, global schema,
is usually maintained at every site to allow simple and fast accesses to the data. Du-
plication of the global schema, however, raises the consistency problem in the case
of updates at local databases.

In the second approach, the integration of local schemas is achieved through a
common multidatabase language that interprets and transforms a query to data rep-
resented and maintained at local databases. There is no global view of shared data.
Multidatabase languages, however, provide many useful features to allow the global
user to formulate a request. Nevertheless, a user must know the location and access
terms of the data being queried. The choice between the global schema paradigm
and the multidatabase language approach is a trade off between efficiency and trans-
parency.

The Summary Schemas Model (SSM) [65] is a compromise between the aforemen-
tioned two approaches; an adjunct to multidatabase language systems that supports
automatic identification of semantically similar/dissimilar data entities. The model
maintains a hierarchical meta-data based on access terms exported from underly-
ing local databases. This meta-data is used to resolve name differences using word
relationships defined in a standard dictionary such as Roget’s Thesaurus.
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FIG. 13. A Summary Schemas Model with M local nodes and N levels.

As depicted in Fig. 13, the SSM consists of three major components: a Thesaurus,
the local nodes, and the summary-schemas nodes. The thesaurus defines a set of
access terms, namely global terms, the semantic categories they belong to, and their
semantic relationships. The thesaurus uses a Semantic-Distance Metric (SDM) to
provide a quantitative measurement of “semantic similarity” between terms [65].

A local node is a physical database containing real data. A summary-schemas
node is a logical database that contains a meta-data called summary schema, which
represents the concise and abstract contents of its children’s schemas. Fewer terms
are used to describe the information in a summary schema than the union of the
terms in the input schemas while capturing the semantic information of the input
terms, and therefore, reducing the schema size at higher SSM levels. Relative to other
multidatabase solutions, the SSM is a robust approach that preserves local autonomy,
provides high performance, and has good scalability.

Research issues in multidatabase systems have been well addressed and docu-
mented in the literature [65,66,71,75,76]: autonomy, data representations, hetero-
geneity, global query processing, global query optimizations, concurrency control,
and consistency. Security, however, has not received enough attention [66,71,73,75].
Security enforcement must take into consideration the protection requirements and
the protection policies of each participating site [71]. The task of enforcing security
is complicated due to the heterogeneity of the participating systems. Moreover, the
integration of data from different sources and replication of the data at the global
level for distribution to users further complicates security enforcement. Integrated
administrative policies need to be sought as agreement of all individual policies.

Table XVI lists some of the security issues that must be considered in multidata-
base systems. Security of information in multidatabase systems is even more im-
portant than in centralized and traditional distributed database systems because the
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TABLE XVI
SECURITY ISSUES AND POSSIBLE SOLUTIONS IN MULTIDATABASES

scale of databases is larger and the number of users involved is greater. However,
the characteristics of multidatabase raise new challenges to this task. In the follow-
ing subsections we will discuss the authentication, access control, and auditing in
multidatabase systems, more specifically, FDBSs.

3.2 Multidatabase Authentication Mechanisms

In Section 2.2 we discussed authentication issues and solutions in centralized
DBMSs. In the context of multidatabase systems (MDBMSs), the goal of authen-
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tication is the same as it is in centralized DBMSs—identifying one party to another.
However, the problem of authentication is far more complex in MDBMSs due to the
distribution of the parties that are involved.

Users, workstations, communication channels, and services are the basic compo-
nents of a distributed system, while users and workstations are the major principals
in a centralized system. We can view the authentication problem in MDBMSs as an
extension of authentication in centralized DBMSs. In a centralized environment, ser-
vices are provided by local workstations. Thus, the authentication is between users
and workstations (Fig. 14). In a distributed system, such as MDBMS, users often log
on to local workstations in order to access services provided by remote workstations.
The user must be authenticated at a local workstation first. Then the local worksta-
tion, acting on the user’s behalf, is mutually authenticated with the remote service
provider (Fig. 15). Because communication links are involved in the authentication
process, countermeasures must be taken to handle eavesdropping, replay attacks,
and masquerading. Without secure communication channels, the authentication sys-
tem can be easily compromised. In the rest of the discussion, we assume that the
local authentication is taken care of. Thus, the local workstation can interact with the
rest of system on behalf of the authenticated user. We use the term “user” and “local
workstation” interchangeably. Moreover, we follow the same notation summarized
in Table I.

Researchers have proposed many authentication protocols for distributed systems.
Based on these techniques, we can classify the protocols as symmetric cryptosystem
based challenge-response authentication, asymmetric cryptosystem based challenge-
response authentication, router-based authentication, and agent & model based au-

FIG. 14. Authentication in centralized DBMS.

FIG. 15. Authentication in distributed DBMS.
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thentication. They can be evaluated based on the following criteria [77]: effective-
ness, granularity, flexibility, and performance.

3.2.1 Symmetric Cryptosystem Based Challenge-Response
Authentication

3.2.1.1 Basic Protocol. Symmetric cryptosystem based challenge-re-
sponse authentication protocols are designed according to the following principle
called SYM [78], “If a principal can correctly encrypt a message using a key that

the verifier believes is known only to a principal with the claimed identity (outside of

the verifier), this act constitutes sufficient proof of identity.”
The success of these protocols relies on two basic assumptions:

• The underlying cryptosystem is strong—one cannot create the encrypted ver-
sion of a message and cannot decrypt an encrypted message without knowing
the secret key.

• Only the two parties involved in the authentication and no one else know the
shared secret key.

Assuming that a user A sends an authentication request to a service provider S,
Fig. 16 depicts the basic symmetric cryptosystem based challenge-response protocol
that mutually authenticates A and S [79]. A first identifies himself/herself by sending
the user ID “A” to the service provider S. S looks up its user-key list and finds the

FIG. 16. Secret key based mutual authentication [79].
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shared key between A and itself, KA,S. S sends a challenge (a randomly generated
number) rS to A. A encrypts rS with the shared key KA,S and sends it to S as the
response. S decrypts A’s response with the shared key to authenticate A. By reversing
the role of A and S, A can authenticate S in a similar way—A sends a challenge to S

and S must respond with the correctly encrypted challenge.
This mechanism has several known disadvantages:

• It has poor scalability because every principal in the system must store the secret
keys for all other principals that it may need to authenticate.

• Secret key distribution is a problem.

• The compromise of one principal could compromise the entire system.

These problems can be significantly alleviated by deploying a centralized authen-
tication server that maintains a secret key shared with every principal in the sys-
tem [80]. This authentication server is often implemented as a Key Distribution Cen-
ter (KDC) in real systems. The well-known Needham–Schroeder authentication pro-
tocol exemplifies the use of a KDC [80]. Figure 17 shows a variation of the original
protocol [79].

The main idea of this protocol is that if A wants to request services from S, he/she
first needs to acquire a service ticket E(KS,KDC, (A,KA,S, rS1)) from the KDC. This
ticket contains the identity of the service requestor (in this case A), a secret key KA,S

that will be used by A and S in the subsequent conversations, and a nonce rS1 to help

FIG. 17. A variation of the Needham–Schroeder authentication protocol [79].
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preventing replay attacks. The ticket is encrypted by the shared key of the service
provider S and the KDC. Thus, after A obtains the ticket, he/she cannot interpret
the content. From the reply of KDC, A also gets a copy of the secret key KA,S.
The interaction between A and S after A receives the KDC’s reply is similar to the
scenario in Fig. 16. Therefore, we do not reiterate the rest of the protocol.

There are two noteworthy points in the protocol presented in Fig. 17:

(1) The use of random numbers (called nonce) rS1, rS2, rA1, and rA2 is essential
to prevent replay attacks. The purpose of a nonce is to uniquely identify a
message and thereby, replayed messages can be immediately recognized. As
a counter example, let’s assume the following:

• Nonces rA1, and rA2 are not in use.

• An intruder T has stolen the old KS,KDC and it also intercepted the old
reply E(KA,KDC, (rA1,S,KA,S,E(KS,KDC, (A,KA,S, rS1)))) sent by the
KDC.

• Once S notices that the old key KS,KDC is compromised, it immediately
renegotiates with the KDC to set up a new KS,KDC.

Since the reply from the KDC to A is intercepted by T, A will try to reissue
a request to the KDC. At this point, T can intercept the request and replay
the old reply. A cannot tell whether the reply received is for an old request
or the latest one. Because T has the old KS,KDC, it can masquerade as the
service provider in the rest of the conversation. On the contrary, if a nonce
is associated with A’s request to the KDC, A will notice right away when T

replays the old KDC’s reply because A’s new request has a different nonce
than the one in the old reply.

Follow the same reasoning, the nonce rS1 used in message 2 is intent to
prevent a intruder T who knows an old shared key KA,S from replaying mes-
sage 5.

(2) The information “S” in message 2 is important to prevent man-in-the-middle
attacks. Let us use a counter example again. Assume the following:

• “S” is not included in message 2.

• An intruder T can intercept all messages sent by A.

T can masquerade S by doing the following:

• Intercept message 1 and replace “S” with “T.” By doing so, T makes the
KDC believe that A wants to request services from T instead of S. Thus,
the KDC will generate a shared key KA,T for the two parties.

• When A receives the reply from the KDC, A cannot tell the shared key
is with T but not S.
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• T can intercept all following messages that A sends to S. Since T has all
the information it needs (KT,KDC and KA,T) to decrypt the messages, it
can act on S’s behalf without being noticed by A.

3.2.1.2 An Example—The Kerberos Authentication Service.
Kerberos is a distributed authentication scheme developed as part of Project Athena,
at the Massachusetts Institute of Technology (MIT) [81]. It uses a variation of the
Needham–Schroeder authentication protocol. Here we mainly focus on the authenti-
cation protocol, not the system itself. Interested readers can find more comprehensive
information on Kerberos in [81–86].

Five principals are involved in the authentication protocol: users, local worksta-
tions, service providers, the centralized Key Distribution Center (KDC), and the cen-
tralized Ticket Granting Service (TGS). Figures 18–20 illustrate the message ex-
changes among the principals during an authentication [2]. Before we elaborate the
procedure, it would be helpful to first highlight several assumptions and notations
used in these figures:

FIG. 18. The user-KDC interaction phase.

FIG. 19. The user-TGS interaction phase.
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FIG. 20. The user-service provider interaction phase.

• User A logs on and is authenticated by the distributed system through his/her
local workstation.

• User passwords are never stored on any of the components of the system.

• The secret key shared by a user and the KDC can be generated by an algorithm
residing on the local workstations. This algorithm takes a user’s password as the
parameter for the secret key generation.

• The KDC maintains a shared key for each user in the system. In other words,
the shared secret key of A and the KDC (KA,KDC) is stored in the KDC.

• Key KKDC,TGS is the secret key shared by the KDC and the TGS.

• Key KA,TGS is a session key generated by the KDC at the time of A’s log in
request.

• Key KA,S is a session key generated by the TGS at the time of A’s service
request.

The authentication process can be divided into three phases: the user-KDC interac-
tion phase, the user-TGS interaction phase, and the user-service provider interaction
phase.

(1) The user-KDC interaction phase

• User A types in a login request at a local workstation by providing his/her
user name. The workstation sends A’s username in plain text to the KDC

(message 2).

• The KDC retrieves the secret key it shares with user A, KA,KDC, from its
local data store, generates a session key for A and the TGS (KA,TGS),
composes a ticket that A can use to request service from the TGS

(E(KKDC,TGS, (A,KA,TGS))), and encrypts the session key and the ticket
using the key KA,KDC (message 3). This message is sent back to A’s local
workstation.

• The local workstation requests A’s password. This password is used to gen-
erate the secrete key KA,KDC. Message 3 is decrypted using the generated
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key. The ticket for A to hand to the TGS and the secret key shared by A and
the TGS are extracted from the deciphered message.

(2) The user-TGS interaction phase

• User A’s workstation packs the ticket for the TGS, the service provider’s
information S, and a timestamp t enciphered by the session key of A and
TGS into message 6. This message is sent to the TGS. The TGS uses the
timestamp t as a guidance to determine whether or not to issue a ticket
for A, and thereby prevents replay attacks. If t is much smaller than the
current time, the TGS will reject A’s request.

• Using its secret key KKDC,TGS, the TGS first decrypts the ticket to obtain
the session key KA,TGS. Then, it generates a session key for A and its ser-
vice provider S, KA,S.

• The TGS composes message 7 which includes a ticket for A to hand over
to the service provider S and the session key of A and S encrypted by the
session key of A and TGS. Message 7 is then sent to A’s workstation.

• After deciphering message 7, A obtains the ticket needed to requesting S’s
service and the session key for A and S subsequent conversation.

(3) The user-service provider interaction phase

• A’s workstation composes message 8 which includes a ticket for S, and a
timestamp encrypted by the session key of A and S.

• After S decrypts message 8 and replies message 9, A and S finish the mutual
authentication process.
One important advantage that the Kerberos system provides is that user

passwords are never stored on any machines or transferred through the net-
work in plaintext. This significantly reduces the chance of stealing passwords
from physical data stores and eavesdropping over the network by attackers.
Nevertheless, Kerberos exhibits the following vulnerabilities [77]:
• The KDC must maintain a secret key for each principal in the system. This

creates a system bottleneck and imposes high requirements on the server.

• The strength of Kerberos relies on strong crypto algorithms.

• Kerberos is vulnerable to Trojan horse software.

3.2.2 Asymmetric Cryptosystem Based Challenge-Response
Authentication

3.2.2.1 Basic Protocol. In an asymmetric (ASYM) cryptosystem, each
principal A possesses a pair of keys: the public key (K+

A ) and the private key (K−
A ).

The public key is known to the public and the private key is kept secret by the prin-
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cipal. Messages encrypted by a private key can be decrypted by the corresponding
public key, and vice versa. The ASYM design principle [78] is as follows: “If a prin-

cipal can correctly sign a message using the private key of the claimed identity, that

act constitutes a sufficient proof of identity.”
In Section 3.2.1 we mentioned that the existence of a centralized online key distri-

bution center (KDC) that maintains the secret keys of all principals in a symmetric
cryptosystem raises storage and single point of failure problems. In an asymmetric
cryptosystem, there is no such central online key storage; instead, the key distribu-
tion occurs offline. A well-known entity called the certification authority (CA) is in
charge of issuing the public-key certificate (a public-key certificate consists of a pub-
lic key and the entity’s ID to which the key is associated) when a principal registers
to the system. To prevent forgery, all public-key certificates are signed by the CA’s
private key. Since the CA is well known, we assume that its public key is also well
known. The certificates are kept by the principals and are forwarded to other prin-
cipals during an authentication exchange. By comparing the ( public key, user ID)
pair provided by an entity with the information recovered from the certificate of that
entity, a principal can be sure that the provided public key does belong to the entity
that claims it [79].

Figure 21 shows a simple protocol (notations follow Table I) that utilizes an asym-
metric cryptosystem [79]. This protocol is based on the assumption that user A and
the service provider S know each other’s public key. User A first challenges S with
a random number rA. This challenge and A’s user ID are encrypted by S’s public
key K+

S (message 1). After decrypting message 1, the service provider generates a
session key KA,S and a challenge rB for A, and then composes message 2. To assure
that only A can read this message, message 2 is encrypted by A’s public key K+

A .
A extracts the session key and the challenge from message 2 and encrypts rB using
the session key. Once S receives message 3, mutual authentication is achieved.

FIG. 21. Mutual authentication using an asymmetric cryptosystem.
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3.2.2.2 An Example—The SPX Authentication Service. SPX is
an authentication service using public-key certificates [87]. It is intended for open
network environments. It is a major component of the Digital Distributed System
Security Architecture [88]. Five principals can be identified in the SPX system [87]:

• Users are those who requests services.

• Service providers provide services to legitimate users.

• Certification Authorities (CAs) are entities that operate offline and are selec-
tively trusted by principals. Their responsibility is to issue public-key certifi-
cates to users.

• The Login Enrollment Agent Facility (LEAF) is used in the credential initial-
ization process. It role corresponds to the KDC in the Kerberos.

• The Certificate Distribution Center (CDC) resembles the TGS in Kerberos. It is
an online depository of public-key certificates for all users, service providers,
and CAs. It also stores encrypted private keys of users and service providers.

Assuming the scenario that user A requests services from service provider S, the
credential initialization phase and subsequent authentication phase are described in
Figs. 22 and 23, respectively [78]. Our purpose of presenting the SPX is to show a
real-world application of the asymmetric cryptosystem based authentication mech-
anism. Thus, we focus on the high level description of the authentication protocol
used by the SPX. For more details about the SPX system, readers can refer to [87].
In these figures, we follow the notation in Table I. In addition, the following notations
are used:

FIG. 22. SPX credential initialization phase.
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FIG. 23. SPX authentication phase.

• “pwd” is user A’s password.

• h1 and h2 are two publicly known one-way hash functions. “h1(x)” means
applying hash function h1 on x .

• L represents the lifetime of a ticket.

• CAA represents the certificate authority trusted by user A.

• (K+
d ,K−

d ) is a pair of public-private key (delegation key) generated by the RSA
algorithm.

• TicketA is a ticket user A needs to hand over to S. TicketA = E(K−
A , (L,A,

K+
d )).

• CertificateA is the public-key certificate of A. It includes A’s public key and A’s
ID. The certificate is signed by one of A’s trusted certificate authorities (K−

CAA).

CertificateA = E(K−
CAA, (A,K+

A )).

In the credential initialization phase, user A logs on to a local workstation by pro-
viding a user ID and password. A’s ID and the encrypted password are sent to the
LEAF in message 2. LEAF then contacts the CDC for A’s private key (K−

A ) infor-
mation. The CDC establishes a session key with the LEAF and sends the encrypted
A’s private key back to the LEAF. The LEAF forwards (message 5) the encrypted
K−

A to the local workstation. The local workstation recovers A’s private key from
message 5. It then generates a pair of delegation key (K+

d ,K−
d ) using the RSA al-
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gorithm, and creates a ticket to be used when acquiring services. Finally, the local
workstation acquires the public key of a CA that user A trusts from the CDC.

During the authentication phase, user A’s workstation uses all the information
obtained from the initialization phase to mutually authenticate a service provider.
First, it requests the public-key certificate of S from the CDC. It then generates a
session key KA,S and encrypts K−

d using it. Message 3, containing A’s ticket, the
session key, the delegation key, and a timestamp, is sent to S. When S receives A’s
service requests, it asks the CDC for A’s public-key certificate. S recovers K+

d and
K−

d from message 3. If it is verified that K+
d and K−

d is from a delegation key pair, S

believes that A is authenticated. To identify itself to A, S responds to A’s challenge
in message 6. At this point, the mutual authentication is achieved.

3.2.3 Router Based Authentication

Router based authentication represents a simple form of an authentication mech-
anism. It is much less common than the previously introduced authentication mech-
anisms. The idea behind this technique is to enforce distributed authentication and
access control through routers by applying routing constraints [77]. In practice, this
is accomplished at three levels:

• At local workstations, users are authenticated by traditional methods such as
password authentication.

• Access to LAN-based resources is controlled by the Network Information Sys-
tem (NIS).

• WAN routers provide protection to different domains based on a requesting
workstation’s address.

Routers recognize packages by senders’ network addresses instead of users’ iden-
tities. This method is only useful in simple environments, because it is difficult to
achieve fine-grain security control.

3.2.4 Agent & Model Based Authentication

Public key cryptography (asymmetric cryptosystem), though very powerful in
concept, raises a crucial issue—the problem of public key distribution. Certificates in
such systems actually acknowledge the relation between the name and the object’s
public key. Unfortunately, many people have the same name. Therefore, only the
certificate authority knows how to associate a name with a key. Many certification
problems stem from misunderstanding the concept of identity and the phenomenon
of trust. Hurton investigated the problem of identification and authentication in dis-
tributed systems from a different perspective and proposed the Agent & Model based
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authentication mechanism in order to cope with the identity-key association problem
[89]. The term “agent” is used to refer to objects that behave differently in different
situations. Agents interact with other agents in a distributed environment in order
to achieve goals. Meanwhile, each agent builds “models” reflecting other agents’
properties. The model helps an agent to divine the outcome of future interactions.
The identification and authentication in an agent & model-based authentication are
defined as follows [89]:

• Identification is a process that selects one or more models from agent’s model
space.

TABLE XVII
SUMMARY OF AUTHENTICATION MECHANISMS
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• Authentication of an object against a selected model is a process that decides
whether the model matches up the object. The model that we authenticate the
object against was chosen from the model space during identification.

An agent can identify a particular model through three different means: names,
associations, and constraints. This authentication method is based on the assumption
that an agent can match objects with models recorded in the model space. However,
problematic scenarios can result if an object matches no model or more than one
model.

A summary of the authentication methods discussed is shown in Table XVII.

3.3 Multidatabase Authentication Policies

In Section 3.2, we discussed the authentication mechanisms commonly used in
distributed systems. On top of each mechanism, multidatabase designers can apply
different policies to satisfy the security needs of a particular system. In this subsec-
tion, we present and compare several multidatabase (federated database) authentica-
tion policies. When discussing the security issues in centralized database systems,
we mentioned that the correct authentication of users is an important task because
it is the necessary prerequisite for access control [1]. The authentication problem is
more complex in multidatabase systems as shown in Table XVIII [91]:

In federated systems, access to data can be seen at two different levels: the fed-
eration level and the local level [71]. At the federation level, users explicitly require
access to the federated data, while at the local level, the local requests corresponding
to the global requests must be processed. With respect to who should enforce au-
thentication, we can distinguish between local and global authentication. Table XIX
summarizes the pros and cons of each approach. In local authentication [90] users
are required to re-authenticate themselves at each local site. Upon reception of a re-
quest by the federation, the local site asks the user to identify himself/herself and,
after authentication, performs access control and possibly returns the data to the fed-
eration. In global authentication [91], a user’s identity is passed to the site by the

TABLE XVIII
ISSUES INCREASING THE COMPLEXITY OF AUTHENTICATION IN MULTIDATABASE SYSTEMS
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TABLE XIX
ADVANTAGES AND DISADVANTAGES OF LOCAL AND GLOBAL AUTHENTICATION

federation along with the request. Authentication at the local level can therefore be
enforced by considering:

• The federation from which the request arrived,

• The identity of the user at the federation, or

• The remote identity of the user at the site from which he/she is connected to.

In the first case, authentication decisions are made only with respect to the federa-
tion. In the latter two cases, the local site makes identity-based access decisions with
respect to the user’s identity.

Jonscher and Dittrich provided three authentication schemata [75] that later on
extended by Hildebrandt and Saake [91]. The authors assume that each local system
associates each of its users with exactly one identity and one identifier. Users can be
classified into three groups:

(1) Local users with one identity per affiliated system,
(2) Global users with one global identity, and
(3) Federated users with local and global identities.

Hildebrandt and Saake proposed three authentication policies: direct, indirect, and
global [91].

Direct Authentication. Direct authentication requires the user to be authen-
ticated by all participating systems that he/she wishes to access. This approach is
suitable under the following situations:
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• High local autonomy and security requirements.

• Low trust between the participating systems.

• Invincible heterogeneity.

In the absence of a global authentication component, users operate only with their
local identities. An application is required on every possible login system to establish
a connection to the authentication components of other systems. Users must directly
log on to all systems where hardware based authentication components are in use.

If a global authentication component is in use, it can authenticate the global iden-
tity of users and pass the authentication information to CDBSs according to an asso-
ciation table that records the mapping between a global identity and all local iden-
tities. This allows a user to first log on to a local system and then receive access to
the others through the global component. A user should not be allowed to operate si-
multaneously at different participating systems without global authentication. In this
approach, global users can only receive local access through the acquisition of local
identities.

Indirect Authentication. The indirect authentication approach delivers the
relevant user information for the local authentication indirectly from a special com-
ponent, not directly from the user. Without a global component, each database stores
not only a user’s identity and identifier used by that database, but also the user’s iden-
tities and identifiers used by all other databases. For example, say a user logs on to
database A and wants to access database B . Database A would then pass the user’s
identity and identifier to database B . The main difficulties of this approach include
managing the trust between the systems to enable the mutual storage of identifiers
and ensuring that the participating systems support the same security standard. In
the presence of a commonly trusted global component, a user can be authenticated
using his/her global identity and identifier. This approach allows the possibility of
granting access to global users without local identities. The local systems provide
some identities to the FDBMS that are attached with different but precisely defined
access rights. The global component can now associate these identities with global
users, giving these users limited and indirect access to local data. Nevertheless, local
administrators have the right to decide which user receives access. There are two
ways to ensure this:

• Local administrators could establish a list of persons who may not access the
system. The FDBMS must abide by this list, alternatively.

• The FDBMS is required to obtain local approval for each decision.

The global component assisted indirect authentication method has the following
requirements:
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• The global management of local identifiers needs the trust of local systems.

• The propagation of local identifiers and their delivery for local authentication
leads to high requirements for a secure data transfer.

• The association of identities needs the agreement of the user and of the relevant
local administrators.

Global Authentication. The global authentication approach allows the
FDBMS to take full control of the authentication process. This approach is only
suitable for special applications since it sacrifices local autonomy.

3.4 Access Control in Multidatabase Systems

Research issues involved in access control in multidatabase system include ad-
ministration of authorization, authorization specification, and access control policy
heterogeneity [71]. In this subsection we will discuss the general issues and then
compare several proposed multidatabase access control models.

3.4.1 Administration of Authorization

In a multidatabase system, there are objects that belong to only CDBMSs, objects
created at the federation level, and objects imported from the CDBMSs to the fed-
eration. For objects created directly by the global component or that belong only to
CDBMSs, classical administrative policies developed for centralized system can be
applied. However, managing authorization for imported objects is more complex. In
practice, three approaches are often considered [71]:

• Delegating the administration of the objects to the federation administrator.

• Leaving the privilege of specifying authorizations to the administrator of the
local object.

• Allowing both the federation administrator and the local administrator to spec-
ify authorizations.

The different approaches imply different degrees of administrative burden on the
user. The authorization mechanism should be able to enforce different policies ac-
cording to application requirements. Table XX classifies and examines the different
levels of authorizations possible in multidatabase systems.
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TABLE XX
AUTHORIZATION LEVELS

3.4.2 Authorization Specification

When forming a multidatabase system, one important decision to make is how to
specify authorization rules at different levels (global level and local level) and how
to resolve the conflicts. Three basic approaches are seen in the literature:

(1) Independent approach. This first approach considers the authorization speci-
fied at the global level and the local level as independent from each other. The
federation administrator and the local administrator specify their rules inde-
pendently on federated data objects and local objects, respectively. However,
the two administrators must cooperate in order to avoid inconsistent specifica-
tions. This approach is unrealistic and against the whole purpose of federation.

(2) Top-down derivation. Access authorizations are specified at the global level
and then derived at the local level [75]. The global administrator specifies the
rules for a user to access global objects. Local data objects involved in the
authorization are determined and the authorization requests are derived from
the global authentication rules. If there is an inconsistency between the autho-
rization specification defined at the local level and the derived authorization
request, the authorization is rejected at the global level. This approach is very
difficult because in many occasions it is impossible to precisely map a global
subject to a set of local identifiers.
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(3) Bottom-up derivation. Authorizations at the global level are derived form au-
thorizations at the local level [92]. In this approach, when an object is im-
ported into the federation, its global authorizations are derived from its local
authorizations. Authorizations defined for an object may differ in different lo-
cal DBMSs. When conflicts arise, no global authorization can be derived for
that object. Mapping subjects at the global level to local level is still a prob-
lem in this approach. Moreover, when changes are made at the local level,
maintaining the consistency between the two levels is problematic.

3.4.3 Access Control Policy Heterogeneity

Access control policy heterogeneity refers to different local sites enforcing differ-
ent access control policies. A local DBMS may adopt one of the variations of the
access control polices we discussed in Section 2: mandatory access control (MAC),
discretionary access control (DAC), or role-based access control (RBAC) policies.
Heterogeneity may arise even if all sites enforce the same type of policy. Table XXI
shows how heterogeneity may occur when using different access control policies.

3.4.4 Various Multidatabase Access Control Models

In this section, we briefly review several access control models proposed over
the years. This will help us understand how different aspects of access control are
handled in different systems. Table XXII compares the advantages and disadvantages
of these models.

Wang and Spooner [94] proposed an approach to enforce content-dependent ac-
cess control in a heterogeneous federated system. In such systems, a user must regis-
ter at every local site that he/she needs to access. Authorizations can be specified at
both the local and global levels through view materialization. As far as the adminis-
tration of authorization is concerned, they enforce ownership-based administration.
Local autonomy is preserved by giving the local administrator the rights to decide
whether a view materialization request from the global level should be granted.

TABLE XXI
ACCESS CONTROL POLICY HETEROGENEITY
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TABLE XXII
SUMMARY OF ACCESS CONTROL POLICIES

In Mermaid [90], a front-end system is used to integrate multiple homogeneous
DBMSs. Authorizations are specified both at the global level and the local level, but
the access control decision is always made locally.

Jonscher and Dittrich [75] proposed a model allowing authorization to be speci-
fied at both the global and local levels. In this model, a global security administrator
specifies the local identities corresponding to each global identifier. A global autho-
rization is generated only if all corresponding local authorizations can be granted.

Blaustein et al. [95] introduced the concept of agreement into control access in
federated database systems. Agreements are rules regulating the access to the coop-
erating database systems by users connected from the different sites. Two kinds of
agreements are considered: action agreements and access agreements. Action agree-
ments describe the action to be taken in response to database requests, while access
agreements allow enforcing exceptions to prohibitions otherwise in effect. The iden-
tity of users at the remote site from which they submit the request is used in access
control.
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Vimercati and Samarati [71] proposed an access control model where both the fed-
eration and local sites are involved. Each request on an imported or composite object
is translated into a request or set of requests on the corresponding local objects. Each
of these requests must be communicated to the appropriate site for access control
because local authorization must be present for the data in the local objects to be
released. Additionally, data is not replicated at the federation so it must be obtained
upon each request. The mapping of operations on federated objects to operations on
the corresponding local objects is enforced by the data management system of the
federation. Then, the federation sends each site storing a local object involved in
the transaction an access request for the groups to which the user belongs and the
remote identity of the user. In the case of local transactions the user will need to
re-authenticate himself/herself at the local site. Each local site will check the local
authorizations and grant or deny the access according to the policy established for
the object. In particular, in the case of site-retained or cooperative policy, access will
be granted if an authorization exists for the access and no negative authorization ex-
ists. In the case of federation-controlled administration, access will be granted if no
negative authorization exists. The final reply of the federation to the user is the result
of the replies to the local requests. In summary, global access is granted if all local
sites accept the local requests; it is denied otherwise.

3.4.5 An Example—Authorization Model for the Summary
Schemas Model (SSM)

A global authorization model for SSM based on Role Based Access Control
(RBAC) paradigm was proposed in [96]. The main idea is to map an individual sub-
ject in local databases to a common role defined at MDBS level and to tag access
terms in the SSM hierarchy with a set of roles allowed to access those terms. Sub-
jects and objects are specified both at local databases and at the MDBS level. At local
databases, there are local subjects and local objects. Local subjects, as the name sug-
gests, are defined locally and manage local databases. Local objects are data sources
created and maintained locally. Each local subject can access local objects accord-
ing to local access control rules independent of other local databases. In addition, no
assumption is made about authorization models used at local databases.

At MDBS level, access terms in the SSM hierarchy are global objects exported
from underlying local schemas. Higher terms are populated in a hierarchical structure
according to their word relationships. Thus, there is no composite object at MDBS
level. Since global subjects are allowed to access objects across multiple local data-
bases, it is natural to assume that only a subset of local subjects is allowed to be
global subjects. However, mapping individual local subjects to global subjects is a
tedious and error prone task. Using roles as global subjects certainly helps simplify
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the task. In addition, local databases are responsible for mapping their local subjects
to corresponding global roles. A local database may maintain a table that keeps track
of which subject is mapped to which global role. If a new role is added or an ex-
isting role is deleted, all local databases will be informed and their local subjects
can be remapped. Nevertheless, frequent changes of global roles are not anticipated.
Moreover, when a user logs in at any node, the authentication can be done at a local
database where a user has an account. Hence, no global authentication is needed.

Imposing authorization information to the SSM adds both space and time overhead
and clearly affects the query resolution of the SSM. The performance of the proposed
model is evaluated and compared with that of the original SSM. The simulation
results showed that the proposed model outperforms the original SSM model since
user queries with insufficient authority are rejected earlier. The early rejection of
unauthorized queries reduces the network traffic and workload at both SSM nodes
and at local databases. Thus, the response time of valid queries in the proposed model
is lower than that of the original SSM.

The SSM platform was extended to include mobility and wireless communication
[76]. A mobile computing environment introduces extra requirements such as dis-
connection and limited bandwidth to the model. In Section 4.4, we consider security
issues in the mobile environment within the scope of the SSM.

3.5 Inferential Security

As noted in the literature, the current developed database frameworks share a sin-
gle trait that is termed as the principle of paranoia [97]—The DBMS must take all
steps necessary to insure that the user u cannot infer any item in a pre-designated
set S(u) of items that are to be kept secret. Thus, it is possible for external users to
infer information in the information repository even when enough access rights are
available. This is a security breach and needs to be addressed as early as possible
when a query is submitted. For example, James may/may not have a criminal record.
This record has restricted access if it exists and information cannot be publicly avail-
able. If an unauthorized person wants to determine if James has a criminal record
and would be happy with a “Yes/No” answer, he/she could query the database for
non-availability of James’ information. The query result would return “True/False”
instead of failing since information about James is not being accessed. Thus, the
unauthorized person can infer that James has/has not a criminal record even though
the details were not retrieved and James’ record was not accessed.

3.6 Integrity Issues

Additional inter-database integrity constraints could be required after integration
of component databases in a federated system. However, a crucial aspect of federated
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database systems known as site autonomy may allow local operations to violate these
global inter-database integrity constraints. These local operations violate global in-
tegrity because they are performed outside the control of the federation layer. Thus,
enforcement of global integrity constraints does not necessarily always guarantee
that the database is consistent or that no integrity violations occur. A federated data-
base is consistent if all global2 integrity constraints as well as all integrated (local)3

integrity constraints hold.
Global integrity constraints are sub-divided into global key constraints, global

referential integrity constraints, and global aggregate constraints. Enforcing these
integrity constraints results in a certain reduction of the local autonomy [98] (Ta-
ble XXIII).

The authors of [98] proposed to integrate active rule paradigm in order to real-
ize the global integrity enforcement in federated4 database systems. Active rules
need to be used to initiate appropriate integrity preservation or restoration operations
when detected or signaled for possible security violations. Possible security viola-
tions could result from violations in transaction5/database6 consistency.

Global integrity constraints and possible integrity restoration actions can be infor-
mally specified as rules as follows:

Define rule Global_Integrity_Rule

On event which potentially violates the integrity of the federated database
If a global condition formulated over the state of the federated database is true
Do global action(s) that restore(s) a consistent federated database state

TABLE XXIII
GLOBAL INTEGRITY CONSTRAINTS

2At federation level, there exist global integrity constraints defined on federated database schemata.
3At the component system level, there exist local integrity constraints defined on the local database

schemata.
4A federated database system integrates heterogeneous component database systems.
5Transaction consistency denotes the correctness of interleaved transactions executions in multi-user

environment.
6Database consistency refers to correctness of data according to the specified semantic-related integrity

constraints. These integrity constraints restrict the possible database states and database state transactions,
respectively, to valid ones.
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The local components can trigger corresponding global integrity constraint rules
as defined above whenever a particular (re)-action is sought to restore consistency of
the database. The format of a local rule is as follows:

Define rule LocalRule

On local event
Do trigger corresponding global rule(s)

4. Mobile Data Management

In Sections 2 and 3, we discussed security issues in traditional databases and mul-
tidatabases, respectively. In this section, we turn our attention to mobile systems. In
mobile systems, the goal is for clients to access data “anytime, anywhere.” Intro-
ducing mobility to a system brings new challenges to the design, but the underlying
security requirements still remain the same. Traditional security solutions from the
“sometime, somewhere” environment must either be extended, taking into account
the limitations imposed by mobility and wireless communication, or new solutions
more suitable for the “anytime, anywhere” environment must be devised. We begin
this section with a description of mobile architectures and discuss data access tech-
niques. Then, we present some of the new constraints introduced by mobility. We
also present an extension to the work described in Section 3.4.5, which adds mobil-
ity to the SSM. Finally, we discuss pervasive computing—its applications and the
security and privacy requirements of these emerging systems.

The design of mobile information systems is complicated by several constraints,
which are intrinsic to mobility [99]. First, mobile elements are resource-poor relative
to static elements. Mobile devices must be small, lightweight and consume limited
amounts of power. These limitations reduce the computational resources (processor
speed, memory size, disk capacity) of mobile elements compared to static elements.
Additionally, the flexibility and ease of use of display modules and input devices are
limited by these constraints. Second, mobile computing devices are more vulnerable
to loss or damage. Third, mobile connectivity varies in performance and reliabil-
ity. Some buildings offer reliable, high-bandwidth wireless connections while others
may only offer low-bandwidth connections. Outdoors, a mobile client may have to
rely on a low-bandwidth network with gaps in coverage. Finally, mobile devices rely
on finite energy sources. Concern for power consumption spans many levels of hard-
ware and software. Wireless communication is characterized by several limitations,
including high error rates, variable delay, and inconsistent performance. These is-
sues must also be considered when designing mobile information systems. Current
mobile network architectures can be categorized as shown in Table XXIV [101].
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TABLE XXIV
MOBILE NETWORK ARCHITECTURES

In a cellular network (Fig. 24), a mobile subscriber’s (MS) service profile, a data-
base entry that includes information about the services the user receives, is stored
at his/her Home Location Register (HLR). The HLR is permanently assigned based
on the user’s mobile telephone number. As the user moves throughout the network,
his/her service profile is downloaded to a Visitor Location Register (VLR), a database
that stores temporary information about MSs. Typically, a VLR is combined with a
Mobile Switching Center (MSC). A MSC performs standard telephony switching
functions as well as functions necessary to handle a MS (registration, authentica-
tion, location updates, etc). The gateway MSC connects the cellular network to some
other type of network (i.e., ISDN or wireline) [102]. When someone places a tele-
phone call to a MS, the gateway MSC asks the HLR to find the MS. In turn, the HLR
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FIG. 24. Cellular network.

asks the MSC/VLR to find the MS. Then, the MSC/VLR contacts the appropriate
Base Station (BS), which pages the MS on a radio interface.

Data can be accessed in a mobile client/server architecture (Fig. 25) or an ad-
hoc network (Fig. 26) [74]. In this chapter, we are primarily concerned with the
mobile client/server architecture. In this paradigm, a small number of trusted server
sites constitute the home of data [99]. A large number of untrusted client sites can
efficiently and safely access this data. Techniques such as caching and read-ahead
can be used to improve performance, while end-to-end authentication and encrypted
transmission can be used to preserve security.

In ad-hoc networks, a collection of wireless mobile nodes form a temporary net-
work without the aid of centralized administration or standard support services. In-
formation is available at many participating nodes and is no longer owned by trusted
servers.

4.1 Mobile Data Access in the Client/Server Architecture

When accessing remote data, mobile clients face widely varying and rapidly
changing network conditions and local resource availability [100]. To allow appli-
cations and systems to continue operating in this dynamic environment, the mobile



SECURITY ISSUES AND SOLUTIONS 173

FIG. 25. Mobile client/server architecture.

FIG. 26. Ad-hoc network.

client/server system must react dynamically and adapt the level of computation be-
tween the mobile and stationary nodes. The resource limitations of clients may re-
quire that certain operations normally performed on clients be performed on a server.



174 A.R. HURSON ET AL.

TABLE XXV
MODES OF DATA ACCESS IN CLIENT/SERVER MODEL [100]

Conversely, because connectivity may be uncertain, clients must sometimes emulate
server functions.

The range of strategies for adaptation is delimited by two extremes—laissez-faire
and application-transparent [99,100]. The laissez-faire adaptation approach lacks a
central arbitrator to resolve incompatible resource demands of different applications
and to enforce limits of resource usage. This approach also makes applications more
difficult to write and fails to amortize the development cost of support for adaptation.
At the other end of the spectrum, the application transparent adaptation approach
is attractive because it is backward compatible with existing applications. The sys-
tem is the central point for resource arbitration and control. There may, however, be
situations where the adaptation may be inadequate or even counterproductive. The
application-aware adaptation approach allows applications to determine how best to
adapt to varying conditions, but also allows the system to monitor resources and
enforce allocation decisions as necessary.

Data access strategies in the mobile client/server model are characterized by de-
livery modes, data organizations, and client cache consistency requirements. Ta-
ble XXV classifies the different delivery modes and briefly describes them.

Data organizations include mobility-specific organizations, including mobile data-
base, fragments in server storage and data multiplexing, and indexing in the server-
push delivery mode [100].

4.2 Limitations of the Wireless and Mobile Environment

In addition to the basic constraints of mobility, there are several other prob-
lems inherent in the mobile environment, including frequent disconnections, limited
communication bandwidth, and heterogeneous and fragmented wireless network in-
frastructures (Table XXVI).
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TABLE XXVI
LIMITATIONS OF A MOBILE ENVIRONMENT [74]

aA handoff blank out happens when a mobile client is crossing a cell and the new cell is not able to accommodate
the client call.

4.2.1 Frequent Disconnections

Different degrees of disconnections, varying from total disconnection to weak dis-
connection, may exist. Weak disconnections, or narrow connections, occur when a
terminal is connected to the rest of the network via a low bandwidth wireless channel
[101]. Caching required files before disconnections is a possible solution; however,
disconnections would need to be predicable. Handoffs can also lead to disconnec-
tions in cellular networks if the destination cell cannot accommodate a new request.
Three strategies exist to detect when a handoff is required as shown in Table XXVII.

In addition, the handoffs can be of two types as examined in Table XXVIII.

4.2.2 Limited Communication Bandwidth

The concept of bandwidth and energy management plays an important role in the
design of wireless information services where mobile clients will query and possibly
update remote databases located on fixed network nodes through a wireless channel.
The cost measures for accessing and updating data are dependent on bandwidth and
energy availability.

Generally, a user queries for information stored in server databases over band-
width limited wireless channels. This information can be supplied to the user in two
different ways as listed in Table XXIX.
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TABLE XXVII
HANDOFF DETECTION TECHNIQUES [128]

TABLE XXVIII
SCENARIOS FOR HANDOFFS [128]

TABLE XXIX
INFORMATION RETRIEVAL METHODS [128]

Query capacity is defined as the number of queries that can be handled by the
server per unit time. To maximize available bandwidth utilization, the query capac-
ity should be increased. However, increasing the number of queries at an individ-
ual mobile unit would result in more energy consumption. Thus, a trade off needs
to be made between increasing query capacity and decreasing energy consumption.
Data broadcasting information frequently accessed by users is a possible solution
that increases query capacity and decreases energy consumption. The server initially



SECURITY ISSUES AND SOLUTIONS 177

broadcasts the directory of information to the clients and then starts the actual broad-
casting of the information. The client thus saves energy by avoiding transmissions
and waking up from suspend modes during a broadcast only when necessary.

To reduce broadcast length, access latency, and power consumption, broadcasting
along parallel air channels is employed [103]. A scheduling algorithm to minimize
response time and power consumption when retrieving objects from indexed parallel
broadcast channels was proposed in [104]. One of the main problems in a parallel
channel environment is the possibility of conflicts while pulling objects from the air
channels. A conflict occurs when more than one requested object is transmitted at
the same point of time on different parallel channels. Since mobile units can only
tune into one channel at a time, the retrieval process has to wait for the next broad-
cast cycle(s) to download the remaining requested objects [105,106]. Conflicts affect
the access latency and hence the response time and power consumption. In order to
predict and analyze the impact of the conflicts, statistical foundations could be used
to calculate the expected number of broadcast cycles required to retrieve a set of ob-
jects. Two heuristics were used to analyze the effect of conflicts on object retrieval
[105,106]. The Next Object heuristic always retrieves the next available object in
the broadcast, while the Row Scan strategy reads all the objects from one channel
in each pass. Previous studies showed that when the number of requested objects
exceeds 45% of the total objects, the Row Scan heuristic provides a better solution;
moreover, it reduces the delay associated with switching between channels.

The retrieval protocol proposed by [104] attempts to produce an ordered access
list of requested objects that reduces:

• The number of passes over the air channels, and

• The number of channel switching.

The retrieval scheme based on a set of heuristics determines the sequence of ob-
jects to be retrieved in each broadcast cycle. It attempts to minimize the energy con-
sumption of the mobile unit and the total number of passes required to satisfy the
user query. The schedule is determined based on the following three prioritized con-
ditions:

(1) Eliminate the number of conflicts.
(2) Retrieve the maximum number of objects.
(3) Minimize the number of channel switching.

Simulations showed that the new scheme reduces both the response time and the
number of passes compared with the Row Scan heuristic. Additionally, this method
reduces energy consumption when a reasonable7 number of objects were requested.

7Less than 5% of the total broadcast data.
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TABLE XXX
GROUPING SECURITY ISSUES

4.3 Security Issues in Mobile Environments

Security issues in mobile systems have been grouped in the literature [107,108]
based on a variety of factors as shown in Table XXX.

4.3.1 Information and Meta-Data Protection

Information is comprised of requests made by mobile clients and the requested
data that is transported back to mobile clients from servers. Meta-data consists of user
profiles, information about the current resource situation, information characteristics,
location, and time. Security needs to be provided to the information and meta-data
during

• Transfer, and

• Management and access.

Some solutions to the problems described in Table XXXI include:

• The database system should be responsible for avoiding loss of data in case of
unexpected disconnections with the help of transaction recovery,

• Cryptography could be used to prevent masquerades or provide identity mask-
ing,

• Use of asymmetric encryption for user authentication and symmetric encryption
for secure communication,
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TABLE XXXI
SECURITY ISSUES OF INFORMATION AND META-DATA [108]

• Register mobile users with their real identity or pseudonyms with that domain’s
authentication server,

• Use of pseudonyms or aliases for maintaining anonymity,
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• Identity of users need to be kept secret from service providers,

• Prevention against traceability of network connections in mobile can be offered
through either MIXes or the Non-Disclosure Method [108], which use cryptog-
raphy.

4.3.2 Hardware Characteristics

The limiting hardware components in a mobile computing environment are the
mobile access devices and the wireless medium. Various limitations and characteris-
tics of these components need to be taken into consideration when providing a secure
wireless transaction. These limitations are [107]:

• Mobile units range from simple PDAs to powerful notebooks. These mobile
units are typically low power units with scarce computing resources. Low power
and scarce computing resources was initially the motivation for making security
optional in wireless environment.

• Wireless media is inherently less secure. It is comparatively easier to snoop or
jam radio signals. This inherent property requires security to be moved to the
lowest communication layer to prevent snooping or eavesdropping. However,
preventing radio signals from being jammed is difficult.

• Wireless bandwidth is typically orders of magnitude less than wired bandwidth.
Hence, providing security requires reducing the number of messages in the net-
work.

In the physical world it is easy to prove payment using cash and credit cards. On
the Internet (via a wired or wireless medium), it becomes harder to confirm the iden-
tity of the person attempting to complete a purchase. One solution may be biomet-
ric identification (Section 2.2.4). For example, a fingerprint scanner could be built
into wireless devices. The scanned image would be transmitted to the merchant who
would check it against a secure database of fingerprints. If the user has registered in
this database and the information matches, the merchant would allow the purchase
to proceed.

Some other authentication techniques implemented in hardware in wireless hand-
sets are described in [109]. The techniques include:

• Security is integrated into terminal hardware.

• Security functionality is installed on SIM cards.

• Additional security chip (dual chip) is provided with SIM card.

• Integrated reader for external SmartCards “dual slots.”

• External reader for external SmartCards.



SECURITY ISSUES AND SOLUTIONS 181

4.3.3 System Characteristics [107]

A number of infrastructure characteristics are important for providing security.
These characteristics include autonomy, mobility, and time stamping. The follow-
ing characteristics need to be taken into consideration while providing security in
wireless mobile environments:

• Autonomy is a critical issue in secure mobile communications. In LANs, as-
sumptions are made that communicating end-points and the intermediate nodes
are all parts of the same organization. Security is thus a relatively simple issue,
given that there is a certifying authority authenticating the nodes. In WANs, this
assumption fails, since frequently the communicating entities belong to differ-
ent organizations, which are autonomously governed. It is possible to extend
the schemes in LANs by providing a set of mutually trusting authorities.

• In the mobile environment, there is a new dimension added by mobility. Mo-
bile units move between cells, and need to be authenticated upon entering each
new cell. Currently, authentication requires communication with the HLR and
this would lead to “across-the-globe” messages being exchanged. This would
increase the network traffic in an already bandwidth scarce medium. A solu-
tion would be to make handoffs as efficient as possible eliminating the need to
communicate with the HLR every time authentication is needed.

• Synchronization is currently employed in available security protocols in wired
media. However, the assumption is invalid in a mobile environment as a mobile
unit may travel across multiple time zones without changing its clock. An im-
plicit form of time stamping needs to be developed in order to allow users to
move between different time zones.

4.3.4 Application Characteristics [107]

As discussed earlier, applications in mobile computing environments may need to
adapt to unstable network conditions. Secure multicast is an indirect consequence of
mobility.

• Nodes in mobile environment can be dynamically addressed in order to protect
location privacy.

• The majority of applications are for indoor wireless LANs. These would typ-
ically include classrooms sessions and meetings where there would be one
speaker and many listeners. Support for a secure multicast would be thus an
important aspect when designing security since we may not allow listeners to
talk or speakers to listen.
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4.4 An Example—Authorization Model for SSM in a Mobile
Environment

The authors of [110] proposed an extension of the work described in Section 3.4.5
that meets the user demand for information to be accessible “anywhere, anytime.”
Broadening the scope of authorized SSM to accommodate mobility and wireless
communication is not a simple task and adds to both time and space overhead. The
main idea is to allow the clients to be mobile in nature and allow the local databases
to be either mobile or stationary in nature.

To provide a secure wireless environment, a secure session must be initially set
up between two parties (a client and base station/access point). The messages trans-
mitted, after a session is set up, needs to be encrypted to prevent a third party from
eavesdropping. Also, steps need to be taken to prevent non-repudiation. Based on
this discussion, security involves the following four topics [111]:

• Confidentiality—transforming data such that it can be decoded only by autho-
rized parties,

• Authentication—proving or disproving someone’s or something’s claimed iden-
tity,

• Integrity checking—ensuring that data cannot be modified without such modi-
fication being detectable, and

• Non-repudiation—proving that a source of some data did in fact send data that
he/she might later deny sending it.

The AES (Rijndael) algorithm allows encryption of data thus verifying confiden-
tiality and allowing integrity check facility. The Diffie–Hellman algorithm allows au-
thentication of clients. Finally, SHA-256 provides for digital signatures in message
exchanges during a session to prevent non-repudiation. These algorithms were used
to set up a secure transmission link, and develop a handshake protocol as follows:

• Authentication or secure session setup is provided by password-based systems
where a user is assigned a username and password to authenticate in the system.
Diffe–Hellman Key Exchange Protocol [112] is used for authentication.

• Confidentiality and integrity checking is provided by encrypting messages dur-
ing message exchange. Advanced Encryption Standard (AES) [113] is used for
encryption of messages in the wireless network.

• Non-repudiation in secret-key algorithms is possible using Digital Signatures.
In order to decide whether a user has sent a message, he/she includes a digi-
tal signature (formed by encrypting identity with the shared key) in the mes-
sage. The digital signature is then decrypted at the receiver using the shared
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secret key. Authorizations through digital signatures (message authentication
code MAC) were provided using SHA-256 hashing utilities [114].

Thus, a completely secure session can be set up with these cryptographic algo-
rithms. Before data transactions can be initiated, the two communicating parties must
exchange messages to set up a secure channel.

• The client initiates the handshake by sending a client_hello message to the
server. This message contains session ID, key refresh rate, private key encryp-
tion algorithm and its mode of operation, message authentication code (MAC)
algorithm and a random number used to generate the encryption, and MAC keys
from the master_secret.

• The server responds with a server_hello message accepting the security as-
sociation proposed by the client, another random number (to be used during
encryption key and MAC key generation), the server_certificate for authenti-
cating itself to the client, its share X = (ga mod n) of the master_secret, where
X is a large random number (server_key_exchange) and a certificate_request

from the client.

• The client replies with its client_certificate, its share Y = (gb mod n) of the
master_secret (client_key_exchange), where Y is a large random number and
a certificate_verify message to verify its certificate.

• Finally, the client and server exchange change_cipher_spec message to activate
the session with the negotiated security association (the encryption algorithm
and its mode of operation, the MAC algorithm, the session id and the key refresh
rate) and a finished message to indicate successful key exchange.

After developing a test bed for the proposed solution, several experiments were
performed to validate the proposed solution. As expected, acceptable performance
degradation in query response time was experienced (Fig. 27). This was due to the
nature of wireless communication and its characteristics—limited bandwidth, fre-
quent disconnections, and unreliable medium of communication.

It was also observed that posting a query at a particular SSM level was a major
factor contributing to the energy consumption during an active session. Energy con-
sumed is mostly governed by number of session refreshes and idle mode time, which
increases as SSM level increases. As a result, the energy consumed increases when
queries are posted at higher SSM levels (Fig. 28).

This work could be extended by including modifications to minimize energy con-
sumption. Also, the SSM could be developed for an ad-hoc network.
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FIG. 27. Query response time.

FIG. 28. Transmission, retransmission and idle mode energy consumed.

4.5 Pervasive Computing Systems

In “The Computer for the 21st Century,” [115] Mark Weiser introduced the con-
cept of pervasive computing as “a new way of thinking about computers in the world,
one that takes into account the natural human environment and allows the computers
themselves to vanish into the background.”

In previous sections, we discussed security issues and solutions in both traditional
databases and multidatabases. We also noted that security in a mobile environment
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is a difficult problem and that many limitations must be overcome in order to design
a secure system. So the reader can gain an appreciation for the security requirements
in pervasive systems, we will begin the section with a brief description of potential
applications. To facilitate the discussion, we begin by defining “smart dust” motes as
self-powered devices with the ability to sense and communicate, which are contained
in a single package [116]. A “smart space” is an area with the computing infrastruc-
ture embedded in the space [117]. For example, a number of intelligent sensors, or
smart dust motes, could be distributed in a building and used to adjust temperature
and lighting conditions in a room based on its occupants.

A sensor network is an ad-hoc network composed of a (potentially) large num-
ber of sensors that typically is connected to another network. Sensor networks have
a wide variety of potential uses. Military applications include gathering battlefield
intelligence, tracking troop movements, and detecting the use of biological or chem-
ical weapons. A sensor’s functionality varies with each application. For example, if a
network was deployed to detect the use of biological or chemical weapons, the indi-
vidual sensors might gather data and process the information before transmitting the
result to a secure workstation. The workstation would then interpret the information
collected within the sensor network and present the results to military officials. In
other applications, sensors may gather and transmit data, but not do any intermedi-
ate processing. Sensor networks could also be used to detect pollution levels along
beaches, to monitor conditions at volcanoes or fault lines, or to locate victims at
disaster sites [118,119].

A second application of pervasive computing is the “smart office.” In this case, the
idea of a “smart space” is extended to an office building or campus and the range
of computing devices includes PDAs, and desktop computers. For example, a user
is preparing to give a presentation in another building on campus, but he/she will
be late if he/she does not leave now. The system copies the file from his/her office
computer to a PDA and then to the projector as the user moves from his/her office
to the presentation room, allowing the user to make final changes to the presentation
while in transit. The user starts presentation on time but as he/she continues, the
system senses that some of the people in the room are unknown and warns the user,
who decides to skip several slides that contain confidential information [120].

4.5.1 Security Issues

In both of these applications, we see that security is a necessary component of
pervasive computing systems. Security must be considered at all levels of design, in-
cluding hardware components, software applications, and communication protocols.
The overall system must be secure. It is useless to protect wireless transmissions if an
attacker could walk in the front door of the building and copy the file to a floppy disk
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without detection. Likewise, developing and installing sophisticated face recognition
systems is useless if wireless transmissions can be intercepted.

With respect to the wireless medium, the security goals include confidentiality,
access control, data freshness, and data integrity [121,122]. Confidentiality seeks to
prevent an eavesdropper from deciphering the message being sent. Access control
aims to only allow authorized users to send and receive messages. Data freshness
ensures that an adversary does not replay old messages and data integrity endeavors
to prevent tampering with transmitted messages. The network itself must be robust
so that the failure of a large number of devices cannot cause the entire network to
fail [119].

Denial of Service (DoS) attacks are a concern in sensor networks because the in-
formation being collected may only be useful for a short period of time [119]. Each
layer of the network is vulnerable to different types of DoS attacks. At the physical
layer, wireless networks are prone to attacks that interfere with the node’s radio fre-
quencies, called jamming attacks. Using spread-spectrum communication is a tradi-
tional solution to minimizing the impact of jamming attacks, but this technique is not
well suited to sensor networks because it requires additional power resources, which
are already limited. If the attack is intermittent, nodes may be able to report the attack
to the base station by sending high-power, high-priority messages. In the case of a
sustained attack, the sensor network may be useless if the data is only meaningful for
a short period of time. If the sensor network is operating over a large geographic area,
a jamming attack across the entire network is unlikely. In this case, the nodes border-
ing the affected area could recognize the jamming attack and alert the base station.
The base station could then use this information to compensate for the reduced func-
tionality of the network. In a sensor network, almost every node will function as a
router, which opens the system to attacks at the network and routing layers, including
“neglectful node,” “greedy node,” and “black hole” attacks. A neglectful node will
not forward messages on a random basis. Greedy nodes are neglectful nodes that
also give priority to its own messages. In networks that use distance-vector-based
routing protocols, black hole attacks are possible. In this scenario, a subverted node
will advertise zero-cost routes to all other nodes, causing traffic to be directed to this
node. To protect against attacks at the network/routing layers, several techniques can
be employed. First, authentication techniques could be used to ensure that only au-
thorized nodes are exchanging routing information. Unfortunately, this approach is
not very practical in sensor networks due to the computational and communication
overhead it incurs. A second technique uses redundancy to reduce the likelihood that
a message will encounter an undermined node. Redundancy can be accomplished by
using multiple paths or by using diversity coding. Diversity coding sends encoded
messages along different paths and has a lower cost than sending multiple copies of
the same message. Finally, nodes could monitor their neighbors for suspicious be-
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havior. This approach matches the nature of sensor networks because the nodes must
cooperate with each other and compensate for failures.

Maintaining the integrity of the mobile devices themselves is also important be-
cause the small size of mobile devices makes them susceptible to misplacement and
theft. Commercial software applications are available from a variety of vendors to
prevent unauthorized users from viewing certain data on a PDA [123]. PDADefense,
for example, is an application that provides data encryption, bit-wiping bombs, de-
cryption on demand, hardware button password entry, password masking, auto lock,
and data transfer disabling. Bit-wiping bombs prevent brute-force attacks by bit-
wiping all RAM locations after a specified number of attempts to unlock the device.
Auto lock forces the user to reenter a password after a specified delay or when turning
the device on. Infrared and hot syncing transfer operations are prohibited with data
transfer disabling. For organizations, a system administrator can apply settings that
meet the security and privacy policies of the organization. In particular, the system
administrator can specify requirements for user passwords and selectively choose
databases or applications to encrypt, preventing employees from modifying the se-
curity settings in a way that conflicts with the security policy of the company. In
sensor networks, we want to prevent an attacker from altering a sensor node or ob-
taining sensitive information. If the node stops communicating with the rest of the
network, it is impossible for the network to determine the cause. A module could
fail entirely, lose power, or be compromised by an enemy. In any case, the module
should erase its memory. The physical package of the module should be tamper re-
sistant. In many cases, the tiny size of a sensor will limit the ability of an enemy to
physically access the device. Camouflaging or hiding modes also provides a certain
level of physical security [119].

4.5.2 Privacy Issues

Privacy is a challenging issue in mobile environments [101]. Users are concerned
with privacy because information is accessible at any time. To protect privacy, it is
necessary to develop sophisticated software to specify and enforce a user’s personal
profile. In this profile, users should be able to specify who is authorized to reach them
and when and where they may be reached. A user may want to restrict the list of
users who may “wake up” a mobile unit because receiving e-mails consumes battery
power. Users who are concerned about privacy should consider the suggestions made
by the Privacy Rights Clearinghouse [124].

In pervasive systems, privacy becomes an even more difficult. Location tracking
is an important part of pervasive systems, but how this information is used must be
carefully considered. Because the amount of data stored in a pervasive system far
exceeds that of current computer systems, users must be able to trust that pervasive
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system will not use the information it gathers in an unacceptable fashion. Similarly,
the system itself must be sure of the user’s identity and his/her privileges before
allowing the user to access the system [117]. Within the context of pervasive sys-
tems, privacy is concerned with both the content and context (time and location) of
information.

The concept of subscriptionless service architecture (SSA) has been proposed
in [125]. It accounts for the instant and short-lived nature of mobile computing and
the mobile user’s interest in anonymity and privacy. The requirements of the SSA
include client mobility, subscriptionless service access, anonymity, privacy, and sev-
eral other traditional security concerns. Client mobility refers to the ability of a client
to communication everywhere that an appropriate communication node is available.
A client should be able to obtain information without a previous subscription; fur-
thermore, a subscription will only be required if higher trust constraints (such as
a credit card transaction) are needed. Anonymity provides that the mobile node will
not expose any information that allows the user’s identity to be determined. The main
idea is to use pseudonyms to describe a user for a specified period of time. For a sin-
gle transaction, a transaction pseudonym is used. Over longer periods of time, person
and relationship pseudonyms are used so that the user can be recognized. Techniques
for achieving privacy in pervasive systems are also discussed in [126,127].

Pervasive computing systems have a great potential to improve the ways in which
we access information. A smart office building would allow employees to perform
their jobs better—by changing the nature of computers, employees would be able
to concentrate on their work rather than their computers. Sensor networks could al-
low rescuers to work efficiently and safely and monitor environmental conditions in
dangerous areas, allowing residents to evacuate areas before a natural disaster oc-
curs. With this new technology comes a responsibility to maintain the security of
the data used in these systems. Security must be considered during the initial de-
sign phase and throughout the system’s life, ensuring integrity in the face of tech-
nology changes and more resourceful attackers. Pervasive computing systems will
include devices from a variety of manufacturers, so security protocols must be open
standards—allowing any device that meets the system requirements to connect to the
system. The future of pervasive computing will depend on the early design of secure
systems—users will only accept new technologies if they trust how their information
is being used.

Developing security solutions for pervasive systems requires modifying current
solutions to take into account the limitations of the mobile and wireless environment.
In some cases, developing new solutions will create more eloquent systems. In any
case, the lessons learned from the design of traditional and multidatabase systems
will be useful.
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5. Conclusions

Security is an essential component of any computer system. In this chapter, our
goal was to outline the issues and some of the solutions to the problem of security
in database systems. We began by focusing on centralized database systems. In this
environment, authentication, authorization, and auditing perform conjoint functions
and form a powerful weapon addressing database security threats. Authentication is
the first gate preventing attackers from penetrating the system. Common authentica-
tion techniques take one or a combination of the four basic forms: knowledge-based,
token-based, biometric-based, and recognition-based authentications. Once a user’s
identity is proved, he/she is allowed to access the system resources under the guid-
ance of a reference monitor, which defines the subject–privilege–object relationship.
An access matrix can be used to represent the relationships. To achieve implementa-
tion efficiency, access control lists or capability lists are usually implemented instead
of an access matrix. Access matrices, access control lists, and capability lists provide
the mechanisms for access control. Access policies use these mechanisms to enforce
security requirements. They can be classified as discretionary, mandatory, and role-
based policies. Generally speaking, there is no “best” policy. The appropriateness of
a policy depends on the system security requirements. During the authentication and
authorization processes, important user and system activities are recorded in audit
logs for real-time or posteriori analysis. A well-designed audit mechanism can pro-
tect a system by detecting security violations, assisting the discovery of attempted
attacks, and examine possible system security flaws.

As database applications grow larger and more complex, geographically distrib-
uted heterogeneous databases are required to cooperate and function as one sys-
tem. A multidatabase system is a widely accepted database organization in this en-
vironment. In such systems, security issues become more difficult. Existing secu-
rity techniques must be extended to handle insecure communication channels and
database heterogeneity. Authentication mechanisms developed for centralized sys-
tem are augmented with countermeasures to deal with insecure communication links.
More specifically, cryptosystem based challenge-response, router-based, and agent &
model based authentications are commonly used in distributed database systems. In
Section 3, we use the Kerberos and SPX systems to exemplify the basic concepts of
distributed authentication. We also discuss that different system designs may apply
direct, indirect, or global authentication policies. Authorizations in multidatabase
systems must cope with the database heterogeneity problem. Many current autho-
rization models derive access control policies at the global level from local policies
using one of the three methods: independent approach, top-down derivation, and
bottom-up derivation. In Section 3, we also review several authorization models in
real systems.
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When multidatabases are extended to mobile environments, many new factors
must be considered as discussed in Section 4. Mobility adds the challenge of locat-
ing users within the service region and creates the possibility of inconsistent network
conditions because users are no longer restricted by location. Wireless communica-
tion links are inherently insecure and steps should be taken to create secure wireless
links. Of course, the low bandwidth of the medium becomes an even larger issue
since security is expensive in terms of communication. Further, mobile devices are
resource limited with respect to power, processing, storage, and memory capabili-
ties. Not surprisingly, security has high costs in each of these areas. A distinction
between information and meta-data can be made, where information is the actual
data requested by a user and meta-data could include a user’s profile or location
information. To ensure user privacy and a secure system, both must be protected.

In mobile database access environments, the conventional client-server program-
ming paradigm exhibits many deficiencies. For instance, it cannot handle the inter-
mittent network connectivity problem adequately. Researchers proposed a new dis-
tributed system design paradigm, agent-based programming, as the remedy for the
challenges imposed by wireless media. Many research projects have demonstrated
the great potential of mobile agents’ application in information retrieval systems
[129,130]. One must note that incorporating mobile agents into mobile data access
systems introduces not only many advantages, but also new security challenges. The
types of potential attacks are often categorized as follows: damage, denial of ser-
vice, breach of privacy, harassment, and social engineering. These attacks may be
launched by mobile agents against hosts, by hosts against mobile agents, and among
mobile agents. Thus, security techniques must be developed to protect them from
each other. Based on the information fortress model [131], the following techniques
are designed to protect hosts [132]: authenticating credentials, access-level monitor-
ing and control, code verification, limitation techniques, and audit logging. Mobile
agent protection techniques can be categorized into two groups: fault tolerance based
and encryption based techniques [132]. Techniques based on fault tolerance aim to
make mobile agents robust in unpredictable environment, thus protecting them from
malfunctioning hosts, intermittent network connectivity, etc. Techniques based on
encryption hide the mobile code or sensitive information so that it cannot be recog-
nized and thus will be less likely to be stolen or misused. Fault-tolerant based tech-
niques include replication and voting, persistence, and redirection. Encryption based
techniques include sliding encryption, trail obscuring, code obfuscation, encrypted
data manipulation, and state appraisal functions. Mobile agent protection techniques
are still in their infancy [132]. A well-defined agent protection model is still missing.
To make matters worse, information-fortress-model-basedhost protection techniques
are in direct conflict with many mobile agent protection techniques. Once a mobile
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agent is within a host it cannot be protected from destruction, denial of service, etc.
Therefore, much research is expected to be done in this area.

Designing and maintaining secure database systems will continue to be a challenge
in the future. As mobile computing becomes widely deployed, system designers must
extend existing security solutions and develop new solutions that better adapt to the
constraints of the mobile environment.
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Abstract

This chapter examines key architectural, marketectural, and technological issues
surrounding “disruptive technologies” which are affecting the structure and op-
eration of global telecommunications. We attempt to categorize and highlight the
several key technologies, platforms, and services which are affecting the evolu-
tion of telecommunications networks. Many of these functional elements have
been driven by consumer demand and a redefinition of “legacy services” in the
context of packet-based capabilities (or limitations). In this context, we survey
issues related to Quality of Service in packet-switched networks, the commodi-
tization of hardware, operating system, and access bandwidth, and some key
protocols affecting the structure and operation of telephony networks.
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1. Background & Motivation

This chapter examines key architectural, marketectural, and technological issues
surrounding “disruptive technologies” which are affecting the structure and operation
of global telecommunications. The trends and technologies discussed here are iden-
tified as “disruptive” because they are representative of the drastic changes occurring
in the field of telecommunications, and they present very different value propositions
than their forbears [1]. As such, they are key contributing factors to the convergence
of telecommunications, computer, and networking technologies.

Some of the most prominent factors affecting telecommunications are related to
the commoditization of hardware, software, and bandwidth. Common among these
factors is the presence and influence of the global Internet as a tool for business, en-
tertainment, and information. As a result of these factors, telecommunications rev-
enue (average revenue per user, ARPU) is steadily declining and data services are
dominating the bandwidth of networks engineered for voice. To compound these is-
sues, wireless connectivity for voice and data is proliferating at astounding rates. The
following sections discuss some of the technologies and issues that are disrupting the
status quo and driving this “convergence revolution.”

As the primary disruptive force, the effect of the Internet and packet-switched
data are discussed in Section 2. This discussion centers on the definition of “Qual-
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ity of Service” and technologies enabling packet-switched networks to adapt to the
requirements of multiservice dataflows. In concert with Internet proliferation, the
commoditization of bandwidth and network access is discussed in Section 3, highly-
available and high-performance operating systems are examined in Section 4, and
powerful, low-cost computing elements are considered in Section 5. In a potent com-
bination of price, performance, and ubiquity, these factors are lowering traditional
barriers for entry into telecommunications, and fanning the flames of the information
(r)evolution. To complete the overview of significant disruptors, Section 6 discusses
a few of the user-level and transport interfaces that are affecting the fundamental
structure and operation of communications networks. Finally, in Section 7 we con-
clude with the observation that a fundamental premise of converged networking is
the migration of enhanced services from centralized facilities toward the open and
distributed “intelligent edge.”

2. Quality of Service: Packet vs. Circuit

The convergence of technology, capabilities, business models, and user expecta-
tions via Internet connectivity has greatly challenged the communications infrastruc-
ture, and “disrupted” the status quo in many ways. As high-performance, low-cost,
communications technology is deployed in consumer-grade devices, the fundamental
task of communication has been undergoing a drastic paradigm shift. This change is
evidenced most clearly and driven most directly by the migration of intelligence (or,
processing power) toward the edge of the network [2]. Accordingly, an important is-
sue in the migration from centralized network control to decentralized or distributed
network control is the complex matter of guarantees on Quality of Service (QoS).

QoS is a vague, all-encompassing term used to describe an environment where the
network provides some type of preferential delivery service or performance guaran-
tees, e.g., guarantees on throughput, maximum loss rates or delay. Network-based
support for QoS can greatly facilitate media communication, as it enables a num-
ber of capabilities including provisioning for media data, prioritizing delay-sensitive
video data relative to other forms of data traffic, and prioritizing among the different
forms of media data that must be communicated. Circuit-switched networks, such
as the legacy wired and wireless telephony networks, are designed specifically to
provide QoS guarantees for transport of a specific class of information (voice). Un-
fortunately, QoS is currently not widely supported in packet-switched networks such
as the Internet.

Specific ways in which streaming media systems can take advantage of a QoS-
enabled Internet is currently an area of active research, because performance op-
timization for complex, IP-based distributed systems is quite difficult. End-to-end



202 S. MCCLELLAN ET AL.

network performance depends on many factors from the digital signal processing
techniques used in media compression to the management, integration, and policy
enforcement technologies for the overall network. Multimedia streams not only de-
mand higher bandwidth but also have peculiar timing requirements such as lower
delay tolerance and higher end-to-end delivery guarantees than other data. In con-
trast, IP network design is based on best-effort packet forwarding, an approach that
doesn’t distinguish explicitly between the needs of particular streams. Some of the
efficiency and scalability of IP networking is based directly on the fact that inter-
mediate forwarding devices don’t need to consider explicit per-packet or per-stream
requirements. Unfortunately, adequate QoS may require some change to this funda-
mental paradigm.

The definition of mechanisms to support QoS in IP-based networks has been an
important area of network research over the past two decades. The resulting IP QoS
framework lets network elements discriminate between particular traffic streams and
then treat those streams in a particular manner, subject to broad constraints on for-
warding performance.

Several Internet Engineering Task Force groups (IETF) [3] have been working on
standardized approaches for IP-based QoS technologies. The IETF approaches of
interest here fall primarily into the following categories:

• prioritization using differentiated services (RFC 2475),

• reservation using integrated services (RFC 2210), and

• multiprotocol label switching (RFC 3031).

The Integrated Services model of the Internet (IntServ, RFC 2210) is an attempt to
define mechanisms for end-to-end QoS guarantees for bandwidth, packet loss rate,
and delay, on a per-flow basis. QoS guarantees are established using explicit resource
allocation based on the Resource Reservation Protocol (RSVP). IntServ emulates the
resource allocation concept of circuit switching to apportion resources according to
requests made by each host. The initiating host sends the upper-bound specifica-
tion of bandwidth, delay, and jitter, and intervening nodes forward that request until
it reaches the receiving host. Two kinds of reservations are defined in the IntServ
model. A guaranteed reservation prescribes firm bounds on delay and jitter, deter-
mined from the network path, and allocates bandwidth as requested by the initiating
host. Controlled-load reservations depend on network congestion, thus they work
only slightly better than best-effort service.

The high complexity and cost of deployment of the IntServ architecture led the
IETF to consider other QoS mechanisms. The Differentiated Services model (Diff-
Serv), in particular, is specifically designed to achieve low complexity and easy de-
ployment at the cost of less stringent QoS guarantees than IntServ. Under DiffServ,
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service differentiation is no longer provided on a per-flow or per-request basis. In-
stead, packets are classified into predefined per-hop behaviors based on a DiffServ

code point (DSCP) or tag attached to the type of service byte in the IP header. The
DiffServ expedited forwarding class (EF) is intended to provide the highest level of
aggregate QoS for streams requiring minimal delay and jitter. Other classes, such as
assured forwarding (AF) and best effort (BE) classes detail coarse loss bounds and
relative prioritization between streams. Unfortunately, the transport effectiveness of
DiffServ-marked packets depends heavily on the per-hop behaviors implemented in
the intervening nodes.

Label switching refers to a type of traffic engineering. With this approach, a router
determines the next hop in a packet’s path without looking at the header of the
packet or referring to routing lookup tables. The IETF’s multiprotocol label switch-
ing (MPLS) architecture assigns short, fixed-length labels to packets as they enter
the network. The network uses these labels to make forwarding decisions, usually
without recourse to the original packet headers. The DiffServ model combined with
MPLS label-switched paths in the core of the network with some implementation
of RSVP in the access networks may be a natural and effective “hybrid” approach
to Internet QoS. However, the issues of end-to-end coordination between the spe-
cific meaning of traffic classifications, the accurate mapping of these classifications
to labels, and the deployment of consistent queuing & forwarding behaviors at inter-
mediate nodes is an extremely complex undertaking.

Table I lists a selection of IP-based QoS mechanisms that pertain primarily to Diff-
Serv and IntServ networks. The table separates these QoS mechanisms into queuing

strategies or reservation, allocation, and policing techniques. Under the proper cir-
cumstances, these mechanisms, which are available in conventional packet forward-
ing systems such as IP routers, can differentiate and appropriately handle isochro-
nous (or time-sensitive) traffic. Following sections discuss some of the key consid-
erations and architectures in the transport of voice and video over IP-based, QoS-
enabled networks. These concepts will be increasingly important as IP networking
continues its “disruption” of legacy telecommunications infrastructure.

2.1 End-to-End QoS for Voice

Studies of voice quality have demonstrated the relative performance of various
QoS implementations under specific but broadly applicable network architectures
and performance conditions [4]. These results reinforce the observation that joint
optimization of network characteristics in the presence of general application-level
traffic is an extremely complex issue. Adequate QoS requires joint optimization of
queuing strategies, call-admission controls, congestion-avoidance mechanisms, and
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TABLE I
IP QOS MECHANISMS

Description Acronym Comment

Queuing

First In First Out FIFO Also known as the Best-Effort (BE) service class, packets are simply
forwarded in the order of their arrival.

Priority Queuing PQ Allows prioritization on pre-defined criteria or policies. Based on the
policies, arriving packets are placed into one of four queues – high,
medium, normal, and low priority. DSCP packet marking can be used
to prioritize such traffic.

Custom Queuing CQ Allows allocating a specific amount of a queue to each class while
leaving the rest of the queue to be filled in round-robin fashion. It
essentially facilitates prioritizing multiple classes in queuing.

Weighted Fair
Queuing

WFQ A queuing strategy which schedules interactive traffic to the front of
the queue to reduce response time, then fairly shares the remaining
bandwidth among high-bandwidth flows.

Class-Based
Weighted Fair
Queuing

CBWFQ Combines custom queuing and weighted fair queuing. CBWFQ gives
higher weight to higher-priority traffic which is defined in classes
using WFQ processing.

Low-Latency
Queuing

LLQ Brings strict priority queuing to CBWFQ. It gives delay-sensitive data
preferential treatment over other traffic.

Reservation, allocation, and policing

Resource
Reservation
Protocol

RSVP A signaling protocol, provides setup and control to enable the resource
reservation that integrated services prescribe. Hosts and routers use
RSVP to deliver QoS requests to routers along data stream paths and
to maintain router and host state to provide the requested service.

Real-Time
Transport
Protocol Queuing

RTPQ RTP queuing offers another way to prioritize media traffic. Media
packets usually rely on the user datagram protocol with RTP headers.
RTPQ treats a range of UDP ports with strict priority.

Committed
Access Rate

CAR A traffic-policing mechanism, CAR allocates bandwidth to traffic
sources and destinations while specifying policies for handling traffic
that exceeds the allocation.

traffic-shaping & policing technologies. Different QoS technologies—each address-
ing different aspects of end-to-end performance and each implemented in particular
ways by equipment vendors—must be carefully evaluated to achieve adequate QoS
for isochronous data, and in particular for Voice over IP (VoIP) deployments. Un-
fortunately, many of the popular remedies for packet-based network issues aren’t
directly applicable to voice-grade transport. Four of the network parameters most
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important in the effective transport of multiservice traffic are bandwidth, delay, jit-
ter, and packet loss. Measuring and validating these parameters is difficult, par-
ticularly in the context of a highly subjective and variable phenomenon such as
voice quality. Thus, VoIP networks may be “optimized” according to ineffective pa-
rameters, or over-engineered to ensure sufficient resources. In particular, the lack
of a dedicated signaling channel in IP networks is problematic, because failure of
call-signaling messages due to network congestion leads to catastrophic failure of
the bearer channel. The complex interrelationships between network configuration,
packet-forwarding technologies, and effective end-to-end results may require indi-
rect optimization. In these cases, the use of subjective voice quality as a performance
metric for network configurations can provide valuable insights.

Formal and informal subjective rankings (Mean Opinion Score, MOS) for voice
transmission quality over a DiffServ-enabled IP network are summarized in Fig. 1.
In situations where a “bottleneck” network architecture similar to Fig. 4 exists, voice
streams can be prioritized using several of the QoS technologies described in Ta-
ble I. When the channel is oversubscribed with a combination of voice, data and

FIG. 1. Subjective (Mean Opinion Score, MOS) rankings for QoS mechanisms in the transport of
voice in a congested DiffServ network. Data labeled “Voice” & “Voice & Video” was compiled from a
group of listeners. Data labeled “Artificial Voice” was taken from commercially-available voice quality
testing products.
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video traffic, these prioritization mechanisms can be effective in preserving the sub-
jective quality of the voice streams in addition to maintaining acceptable video fi-
delity. The clearest observation that can be made with reference to Fig. 1 is that
QoS mechanisms which utilize Weighted Fair Queuing (WFQ) tend to control traffic
throughput in a more deterministic manner than mechanisms based on reservation
(RSVP), port-based treatment (RTPQ), or the default best-effort (FIFO). Addition-
ally, and although Fig. 1 doesn’t explicitly reflect this result, a lack of relative dif-
ferentiation between voice and video in the DiffServ Expedited Forwarding (EF)
class results in heavier video packet losses in the RSVP and RTP-based methods
(alone or in combination) since high-rate video must be “demoted” to an assured-
forwarding (AF) class to preserve voice throughput. Similar mechanisms are at-play
in the case of video transport for the WFQ + RTPQ mechanism. However, in this
case the lack of differentiation between video and voice (both are RTP streams) re-
sults in relatively better-quality transport for video and heavier packet loss for voice
streams. As a result, WFQ + RTPQ produces relatively poor subjective quality when
video (or other RTP-based streams) are present in the network. These effects can be
compensated by implementing QoS schemes with higher effective differentiation
between traffic streams, such as Class-Based Weighted Fair Queuing (CBWFQ).
In CBWFQ, streams are sorted into classes with independent WFQ implementa-
tions, and forwarding mechanisms can be carefully tailored based on classes and
queues within classes. Clearly, the fidelity of CBWFQ performance for a network
requires detailed insight into traffic characterizations as well as significant real-time
processing on packet streams. However, QoS mechanisms which approximate per-
stream assurances through classification and careful forwarding techniques tend to
perform better than mechanisms that simply reserve bandwidth, ensure low latency
for forwarding without classification, or prioritize based on generic traffic classifica-
tions.

2.2 Video over DiffServ Networks

There are a number of ways to exploit service differentiation for video commu-
nication in a DiffServ-enabled Internet. Given a fixed number of traffic classes, one
strategy is to assign different data types to different service classes. For example,
one traffic class may be used for video, one for interactive data applications such
as web browsing, and one for non-interactive data transfer such as email and file
transfer. By providing lowest loss and delay to video followed by interactive data
and non-interactive data respectively, the user expectations for the different appli-
cations can be better met. However, as mentioned previously, if there are multiple
isochronous streams, differentiation between them can be complex and application-
dependent. So, despite the fact that data traffic is loss sensitive, it can be transported
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using higher loss classes because data traffic is insensitive to delay, and the use of
end-to-end IP retransmission protocols such as the Transport Control Protocol (TCP)
can effectively translate loss into additional delay and delay-jitter. Another strategy
for service differentiation is to reduce the average number of playback pauses by
exploiting the behavior of TCP congestion control mechanisms in streaming media
over the Hypertext Transport Protocol (HTTP).

2.2.1 Delay and Loss Differentiation in MPEG Video

A refinement of the multi-class strategy mentioned above is to use multiple traf-
fic classes even within a single video application. This technique is implemented by
decomposing a video bit-stream into multiple sub-streams of different delay or loss
sensitivities, and assigning each sub-stream to a different traffic class with a different
QoS characteristic. This “multi-class” approach generally achieves better utilization
of network resources than the “single-class” approach due to the ability to trans-
mit packets using traffic classes with commensurate QoS. Another advantage of the
multi-class approach is the fine granularity tradeoff between network resources and
reception quality. This results in a spectrum of cost-performance tradeoff in trans-
mitting video over DiffServ networks.

The idea of providing differential treatment to different parts of compressed dig-
ital video is not new. In particular, separating the source material into a base layer
and an enhancement layer and applying priority queuing or different loss probabili-
ties to the layers improves performance for statistically multiplexed networks [5–7].
Two-layer scalable MPEG also outperforms single-rate MPEG with loss prioritiza-
tion [8,9]. For existing content compressed using one-layer MPEG, different pri-
orities can be assigned according to the different I , P , and B frame types, or the
motion information can be prioritized differently than the texture information [10,
11]. An alternate approach to exploiting QoS diversity is to transcode the MPEG
video into formats that can be easily mapped to different network traffic classes.
For instance, transcoding video into a multi-layered representation would allow nat-
ural mapping of layers to traffic classes with increasing loss rates. Unfortunately,
transcoding suffers from implementation issues, including video quality degrada-
tion, high complexity, and increased latency. These issues can be problematic for
real-time transmissions.

A transcoding-free approach to sending video with multiple traffic classes in a
DiffServ network entails splitting an MPEG bit-stream into sub-streams having dif-
ferent delay and loss sensitivities [12]. Via a preprocessing technique, a map of loss-
delay spread is obtained showing the amount of video data with each value of delay
and loss sensitivity, as illustrated in Fig. 2(a). Since the map orders different parts of
an MPEG video according to delay and loss sensitivities, it can be used for packet
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FIG. 2. Using a map of delay-loss spread to classify traffic into low-loss and high-loss classes.

classification and tagging in delay and loss differentiated networks. For example,
Fig. 2(b) illustrates the classification of an MPEG video bit-stream into two traffic
classes with different loss priorities. Such preprocessing techniques are compatible
with the large body of existing, single-layer MPEG sources, and so have wide ap-
plicability. The loss-delay map is also a property of the video content and format,
and so can be computed independently of the network traffic classes prior to trans-
mission.

Structured transmissions which prioritize motion information over texture infor-
mation [11] or assign different priorities to I , P , and B frames [10,13] are effective
in exploiting the loss-sensitivity of MPEG video. These techniques lead to a variety
of algorithms, described in Table II, which produce loss-sensitivity metrics for video
streams. These algorithms can be ranked in terms of effectiveness for transmitting
video over a DiffServ network. In this context, the technique of relative frame pri-
orities can be generalized using the notion of reference counts, in which each video
frame or portion of a frame (“slice”) is assigned importance according to how many
frames or slices are dependent on it, and whether motion information is differentiated
from texture information.

The relative performance characteristics of these techniques can be compared in
the context of a simple loss-differentiated network. Figure 3 shows simulation re-
sults for such a scenario where the network has two traffic classes: low-loss (0.3%
loss rate) and high-loss (3% loss rate). In Fig. 3, 30% of the available bandwidth
is allocated to the low-loss class and distortion is measured in mean square er-
ror (MSE) as a function of time. The MSE induced by packet loss is computed
for every video frame, and an average number is reported for every minute (1800
frames). In the case when a slice is missing due to packet loss, it is approximated
either by the corresponding slice in the previous reconstructed frame, or the previ-
ous slice in the current frame, depending on which is estimated to be more sim-
ilar. From the figure, it is clear that the Uniform scheme, which offers no loss
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TABLE II
MECHANISMS FOR DIFFERENTIATED TRANSMISSION OF DIGITAL VIDEO

Technique Description

Texture-based differentiation

Uniform Treats an MPEG bit-stream as homogeneous and assigns equal importance
to all bits. Doesn’t differentiate between motion information and texture

information.

Frame-Level Reference All slices in frame i have equal importance determined by the number of
other frames that refer to frame i. For example, every B frame has a reference
count of one since no other frames besides itself refers to it. On the other
hand, an I frame followed by 4 P frames and 8 B frames will have a reference
count of 13.

Slice-Level Reference Slices in frame i have unequal importance determined by their use in
predicting subsequent frames. For example, if K 16 × 16 macroblocks in
frame i are used in predicting a macroblock in subsequent frame j , each of
the K macroblocks in frame i will receive a contribution of 1/K to their
reference count. The importance of each slice in frame i is then computed as
the average reference count of its macroblocks.

Motion & Texture-based differentiation

Motion Assigns more importance to motion information than texture.

Motion + Slice-Level
Reference

Motion information is assigned the highest importance, and the importance
of texture information is determined via Slice Level Reference. Differentiates
explicitly between motion and texture information.

differentiation, suffers from the highest distortion because all stream segments are
treated in identical fashion. Additionally, techniques which incorporate Slice Level

Reference to increase loss differentiation consistently outperform other schemes,
but at the expense of increased complexity. However, note that the Motion + Slice

Level Reference technique produces lower average distortion than any of the other
schemes, because loss differentiation based on a combination of motion and tex-
ture information is more effective than differentiation based purely on reference
counts.

While MPEG compression does not make special provisions for transport over
delay-differentiated networks, limited delay separation is achievable by exploiting
the difference between the order in which video frames are stored in the bit-stream,
and the order in which they are displayed. This difference between the bit-stream
and display order of MPEG video means that certain frames can afford to have larger
transmission delays than others. Generally, intra-coded (I ) and predicted (P ) frames
can tolerate more delay (up to a video frame-time) than bi-directionally predicted



210 S. MCCLELLAN ET AL.

FIG. 3. Comparison of several loss differentiation schemes using a two-class (low-loss, high-loss)
network with 30% bandwidth allocated to low-loss traffic. Average MSE and distortion reduction in dB
for each scheme are shown in brackets.

(B) frames. For a full frame rate movie at 30 frames/s, this corresponds to a 33
millisecond difference in delay requirements, which can be significant for network
transmission. Additionally, implementation complexity is extremely low since de-
lay spread is obtained using frame-level information already encoded in the MPEG
picture headers. The delay spread can also be improved by examining the motion
vectors to determine the actual dependence in the video.

For networks that offer differentiation in delay as well as loss, the packet tagging
algorithm is more challenging. Generally, if the available rates for different traffic
classes are known, then a tagging scheme that simultaneously optimizes loss and
delay may not exist. It is possible to construct an aggregate cost as a function of
loss and delay so that the different traffic classes can be ordered in terms of QoS,
and the delay-loss spread map can be ordered in terms of importance. While such
an approach would allow simple mapping of data to different traffic classes, the con-
struction of such a cost function requires a trade-off between delay and loss. Since
delay and loss give rise to different types of degradations in visual communication,
a more natural approach is to optimize first for either loss or delay.
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2.2.2 Reducing Playback Pauses in DiffServ Networks

An approach to compensating for delay sensitivity in network video is to cou-
ple feedback from application-level buffering mechanisms with the priority and for-
warding mechanisms of the network. In streaming media applications, media data
has to be continuously available at the receiving node to avoid playback disruption.
Buffering is normally used at the receiver to reduce the frequency of playback dis-
ruptions, but levels of buffer depletion can vary widely among multiple receivers
using the same link. This implies that playback disruption may be controlled by al-
locating more instantaneous network resources to media sessions experiencing play-
back buffer depletion. To accomplish this instantaneous allocation, application-level
indicators of buffer utilization can be inserted into packet headers, bypassing any
requirement for explicit network reservation. For networks that provide two or more
service classifications, joint prioritization across all streaming sessions can be per-
formed dynamically at resource bottlenecks using the labels in the packets alone.
Since the transport prioritization at the resource bottleneck is based on labels car-
ried in the packet and without any other streaming or transport session information,
the approach can be called Playback-Buffer Equalization using Stateless Transport
Prioritization (PBE-STP) [14]. Specifically, PBE-STP involves inserting a label in
each transmitted packet that corresponds to the buffer occupancy of the streaming
session. In this fashion, streaming sessions experiencing playback buffer depletion
may be transmitted using a higher grade of service. As a result, the end-to-end con-
gestion control mechanisms of the depleted stream are indirectly triggered to operate
at higher throughput at the expense of streaming sessions that already have plenty
of buffer. PBE-STP may be beneficial in practical scenarios involving multiple users
behind a single resource bottleneck. Advantages of PBE-STP include:

• No client or protocol modification—streaming clients and protocols that are
already widely deployed today can be used directly.

• No network modification—no media-specific knowledge is required for the net-
work, so that existing QoS mechanisms such as DiffServ can be employed.

• Multiple sessions may be delivered from multiple servers, and no coordination
among the servers is required.

• No frequent setup/teardown or reconfiguration of the QoS network is required
since prioritization of resources is across all media sessions sharing the bottle-
neck resource.

For example, consider the QoS-enabled network of Fig. 4, consisting of Media

Streaming Servers, Packet Classifiers, and Streaming Clients. In the figure, the net-
work offers at least two service classifications that differ in end-to-end packet loss
rate, delay, or both. The Media Streaming Server implements any congestion control
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FIG. 4. Architecture of a PBE-STP network with Media Streaming Servers, Packet Classifiers, and
Streaming Clients. The network and streaming clients do not require modifications.

algorithm commonly used for streaming media. For each of the streaming sessions,
the streaming servers first derive the client buffer occupancy of each session using
existing knowledge of the start-time and the amount of data transmitted for that ses-
sion. A label representing the time-varying Time-To-Depletion for each session is
then recorded in each IP packet belonging to that session. Time-To-Depletion for a
streaming session is the time for which media playback can be sustained using only
data that has already been buffered (playback buffer occupancy). For each media
stream, the Packet Classifier uses the Time-To-Depletion labels to assign packets to
different available service classes. Specifically, packets with labels corresponding to
a smaller Time-To-Depletion are preferentially given better service. The Streaming

Clients are compatible with the associated Media Streaming Server, and are unaware
of the presence and actions of the Packet Classifier. In this scenario, transmitting
packets of a particular session using a better service classification has a number
of effects in addition to faster delivery or lower loss probability. For instance, the
“upgraded” sessions will effectively observe a “better” channel, and by the virtue of
congestion control, boost their transmission rates. Typical congestion control mecha-
nisms rely on end-to-end measurable quantities such as round-trip propagation delay
and packet loss statistics to infer the level of congestion in the transmission path.
When the congestion level is high, the typical action is to lower the transmission rate
so that through the collective action of all sessions, the level of congestion can be
controlled. So, despite the fact that congestion control mechanisms in the streaming
servers and clients are not aware of the existence of PBE-STP, the preferential trans-
port for sessions experiencing playback buffer depletion will trigger higher trans-
mission rates to those sessions with most need. Additionally, since the assignment
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of packets to service classes is performed locally at the resource bottleneck, global
optimization for all streams across different servers can be achieved.

Figures 5 and 6 show the effect of PBE-STP in an experimental network similar
to Fig. 4. In this case, 9 flows each with constant bit-rate 1.2 Mbps are streamed
from the Media Streaming Servers to the clients through a 10 Mbps bottleneck at the
Packet Classifier. Six of the flows start at time 0 and the remaining three flows starts
at times 60, 120, and 180 seconds, respectively. To effect packet classification, each
of the Media Streaming Servers records a 3-bit label representing the time-varying
Time-To-Depletion for each media session in the Type-Of-Service (TOS) field of
each IP packet. Clearly, this approach is compatible with DiffServ implementations
if the Time-To-Depletion tag is appropriately related to DiffServ DSCP values and
per-hop behaviors. The top graph of Fig. 5 shows the amount of data received by
the different streaming sessions in a typical run of the scenario. The amount of data
is reported in seconds, and is the ratio of the amount of received data in bits to
the bit-rate of the media. Media playback starts five-seconds after streaming starts

FIG. 5. Without hybrid priority queuing, media sessions with later start-times experience playback
buffer depletion, resulting in several playback disruptions.
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FIG. 6. Using hybrid priority queuing, PBE-STP alleviates discrepancies in client buffer occupancy
and minimizes playback disruptions.

(i.e., 5 s pre-roll buffer). The dotted lines show for each stream the amount of data
that needs to be consumed as a function of time to maintain the streaming session
with no playback disruption. In other words, playback disruption occurs when the
solid line crosses the corresponding dotted line, as indicated by triangular markers
in Fig. 5. After a playback disruption, the client pauses and rebuffers for 5 seconds
before resuming playback. The difference between the solid and the dotted lines
of a streaming session is the client buffer occupancy, which is shown in the lower
plot of Fig. 5. There is generally a very large discrepancy in the amount of client
buffer across sessions that start at different times. Between time 0 to 60 seconds, 6
sessions share the bottleneck link, and all sessions are building up their client buffer.
Around 150 seconds, 8 flows are sharing the bottleneck link, and none is gaining
in buffer occupancy. Finally, when the last session start at time 180 seconds, the
throughput that each of the flows receive is lower than the required media rate, so
all clients are draining their playback buffer. The last stream, with the least buffer
build-up, is the first to experience playback disruption, followed by the second to
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last stream. Furthermore, the last two sessions experience playback disruptions while
other sessions have ample amount of buffered data at the client. The goal of PBE-
STP is to exploit such discrepancy to provide higher throughput to sessions with less
buffer at the expense of sessions with more buffer.

An important criterion in selecting the queuing discipline is to avoid starvation of
streams. This is because starvation can trigger congestion control mechanisms (such
as the exponential back-off algorithm of TCP), and subsequently prevent streams
from resuming even when resources become available. An approach to prevent star-
vation is to employ hybrid priority queues that switch between round-robin and prior-
ity queues in a periodic fashion. Specifically in the context of the PBE-STP network
of Fig. 4, Fig. 6 summarizes the resulting playback buffer situation when the Packet

Classifier implements a hybrid queuing discipline with 8 queues corresponding to
8 possible Time-To-Depletion labels. In this case, packets are served according to
two alternating rules: every K packets served according to priority queuing are fol-
lowed by one packet served according to round-robin. The corresponding results for
K = 15 are shown in Fig. 6. Compared to Fig. 5, there are fewer playback disrup-
tions, and the discrepancy in client buffer occupancy between streams is improved.

3. Commodity Bandwidth

In many cases, and despite its obvious advantages, IP-based networking has been
shown to be lacking in performance, manageability, or market penetration. In many
of these cases, the rallying cry of IP afficionados has been “throw more bandwidth
at it.” The following sections discuss technologies which reveal flaws in the “more
bandwidth” argument. In these cases, bandwidth is either already plentiful or it
has very limited prospects for increase. These technologies are “disruptive” in the
telecommunications space because of many factors, including cost and speed of
adoption. For instance, the deployment of secure, robust, and manageable architec-
tures which integrate wireless LAN “hotspots” with existing operator networks has
become an important topic for wireless telephony.

3.1 Wired: “Fiber, Fiber Everywhere but not Enough Apps on
the Link”

Recent investment in optical fiber infrastructure has been significant, particularly
in dense urban areas and along “backbone” data traffic routes. However, the equip-
ment, space, and ongoing maintenance costs for an active network infrastructure far
outweigh the one-time investment of laying cable. As a result, much more “dark



216 S. MCCLELLAN ET AL.

fiber” is deployed than may be used in the near future. For instance, by many esti-
mates less than 5% of deployed fiber in the United States is actively carrying traffic.
Although excess “dark fiber” doesn’t translate directly into excess available band-
width without additional investment in equipment, the relatively anemic usage of de-
ployed transport facilities is still somewhat puzzling. Based on conventional wisdom
(and common sense, e.g., declining bandwidth costs), a reason for the underutiliza-
tion of these facilities may be that mass-consumer need for broadband connectivity is
not (yet) compelling. Combined with the relatively slow rollout and uptake of broad-
band access networks such as cable modem and Digital Subscriber Loop (DSL), a
lack of “killer applications” for bandwidth use has led to an imbalance of supply and
demand.

In similar fashion, although wireless voice telephony remains popular, the delayed
rollout of broadband wireless services may be a moot point unless consumer demand
justifies the up-front capital costs of spectrum licenses and equipment upgrades. In-
dustry uncertainty about the popularity of “3G” applications such as mobile Internet
service will be justified unless the benefit to the consumer outweighs the cost and
wireless data becomes a “must have” service. Additionally, if handheld devices are
too inconvenient to use, or are incapable of a positive “user experience”, the available
bandwidth—and expense of delivering it—will be wasted.

3.2 Wireless: 3G, 4G, and 802.11

Two information services that have experienced tremendous growth in recent years
are on a collision course. As separate entities, wireless telephony and the Internet
have affected personal and business interactions in a profound way. One of the major
disruption fronts in this realm is the melding of conventional wireless telephony with
burgeoning IEEE 802.11 wireless LAN (WLAN).

As a data service, WLAN has many advantages over conventional telephony, in-
cluding low cost, ease of operation, higher throughput and lower latency. For in-
stance, “2.5G” GPRS currently offers less than 128 kbps, with GPRS/EDGE en-
hancements promising less than 384 kbps. The effective bandwidth of “3G” rollouts
will also be substantially less than 1 Mbps. These rates may be inadequate for the
heavy transactions of pseudo-stationary mobile computing applications. So, although
wireless telephony has more seamless coverage and mobility support, an 802.11b
network that can sustain 5 Mbps throughput with negligible delay [15] will be at-
tractive in some cases. However, 3G radio spectrum is licensed and regulated so
that services can be planned and deployed in a more predictable manner. In contrast,
802.11 operates in unlicensed and unregulated spectrum where there are no “rules”
to prevent or limit interference from a neighbor or competitor using the same spec-
trum. Without careful management and network architecture, the net result could
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be relatively unpredictable performance for WLAN users. Although voice transport
will likely continue to be the primary service for wireless telephony networks, mul-
timode WLAN products are emerging that will challenge the throughput and uti-
lization modes of today’s 2.5/3G networks and extend their scope to accommodate
mobile “power users.”

In response to these market dynamics, licensed telephony carriers have begun to
complement their existing network offerings with “hotspot” services based on wire-
less LAN technologies. These hotspots recognize that a large class of mobile users re-
quire broadband connectivity in locations that are semi-static workspaces. Roaming
on a metropolitan scale, with high speeds and dynamic cell handoffs is not required.
Instead, mobility is confined to a large building, conference facility or a relatively
small campus. In this respect, WLAN proliferation can be treated as a different “ra-
dio access network” (RAN) for proposed 3G services. This integration of inherently
insecure WLAN access networks with the billing, authentication, and management
mechanisms of conventional telephony networks raises several issues which require
in-depth discussion and evaluation.

Regardless of the many challenges, wireless LAN (WLAN) technologies are
emerging as a compelling access method for next-generation communications. The
interaction of these technologies with conventional PSTN and wireless telephony
presents a clear disruption in the planned progression of wireless telecommunica-
tions. With appropriate support from network infrastructure, emerging multimode
devices may even enable automatic, transparent roaming between physical net-
works [16]. Such “seamless roaming” may grow increasingly popular as WLAN
hotspots appear in public locations such as airports, malls, and even your local tele-
phone booth.

3.3 Wireless LAN Integration Issues

A simplified wireless telephony architecture is shown in Fig. 7. In this figure, an
802.11 “location area” is depicted as an alternative Radio Access Network (RAN)
for the core provider network. This architecture is applicable to all 802-style WLAN
access networks, including those with different modulation schemes and effective bit
rates (802.11a/b/g/h) as well as those relying on port-based access control through
higher-layer authentication (802.1x).

In comparing the carrier-integrated WLAN architecture with conventional tele-
phony, the Access Point (AP) essentially performs many of the functions of the
Base Station Transciever (BST) or Node B. Additionally, the Access Point Con-
troller (APC) performs many of the functions of a Base Station or Radio Network
Controller (BSC or RNC), and depending on packet forwarding architecture, may
perform many of the functions of a GPRS Service Node (SGSN, GGSN) and/or a
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FIG. 7. Diagram of general wireless telephony network with 802.11-based RAN.

Mobile Switching Center (MSC). This integrated architecture infers some “carrier
grade” requirements on all parts of the heretofore “commercial grade” WLAN in-
frastructure components.

Many challenges lay ahead in the integration of WLAN technology with conven-
tional wireless telephony. These challenges can be loosely classified according to
categories such as User Experience, Security and Access Control, Network Man-
agement, and Billing. Following sections discuss important aspects of each of these
areas.

3.3.1 User Experience

In addition to differing wireless access technologies, wireless telephony and
WLAN networks also have significant differences in user experience. For instance,
the evolution from voice-only networks means that data/content are likely to orig-
inate inside the infrastructure of the network operator. For example, in the highly
successful i-mode service in Japan, most delivered content is hosted by the network
operator. The availability of content inside the infrastructure of an operator and the
hierarchical organization of the network means that access to the public Internet may
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be restricted to a few selected gateways. Nevertheless, at the expense of poorer ser-
vice to data from the public Internet, more predictable service can be expected from
data originating from within the operator’s infrastructure. In contrast, independent
802.11 networks are often setup for the sole purpose of wireless Internet access, and
an experience similar to that of a wired network, with plenty of content and service
variation.

To this point, authentication methods for WLAN hotspots have been primarily
browser-based, which presumes that the user’s main interest in network access is
for web surfing. In fact, industry consortia promoting WLAN usage have recom-
mended this mode of access as the “best common practice” for most roaming WLAN
users [17]. However, browser-based authentication, though convenient and user-
friendly, is vulnerable to relatively simple theft-of-service attacks [18]. Additionally,
as WLAN usage becomes more prevalent and adapts to different usage models, the
user experience will benefit from network-based services such as automatic, trans-
parent login and network selection, dynamic session handoff, and single point of
contact for billing issues.

3.3.2 Network Security and Access Control

Wired LANs, which are typically implemented and managed by enterprise ex-
perts, tend to be physically secured by externally imposed policies and procedures
(security guards, locked wiring closets, etc.). However, this level of physical secu-
rity may not be available at all WLAN hotspots locations. Smaller hotspot locations
where demarcation zones between “the core network” and “the access network” are
not cost-justified may be particularly troublesome. Examples of such locations might
include “Mom & Pop” coffee shops, small business DSL subscriptions, or even tele-
phone booths. In these cases, the absence of physically verifiable access control for
WLAN equipment means that critical WLAN functions must be remotely verifiable
in a reliable, quick, and convenient fashion. Technologies which accomplish these
functions in a cost-effective manner without undue infrastructure requirements have
not yet been implemented in commercial-grade WLAN equipment.

3.3.3 Network Management

In keeping with the general defining characteristics of the IP network, most ar-
chitectures for WLAN hotspots concentrate intelligence at the outer edge of the
provider’s network. In this case, the outer edge can be defined as the antenna itself
(AP), the aggregation point for multiple access points (APC), or some combination
of the above. Regardless of the specific architecture deployed or the configuration
of equipment, the issues of manageability and security for a multiplicity of complex
devices will be crucial for acceptance by network operators.
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To conform to usual requirements, the setup, configuration, and other operational
parameters of the devices must be externally manageable using conventional (indus-
try standard) remote management technologies. Most telephony operators depend on
highly centralized management facilities which seek to minimize “hands on” trou-
bleshooting of deployed equipment. This tendency may be aggravated by the low
cost and potentially low reliability of commercial-grade WLAN equipment.

Additionally, the indeterminate state of IP-based QoS and WLAN MAC-layer QoS
technologies may complicate or defer large-scale rollouts. Complexity in the inter-
working of these disparate standards will certainly increase the difficulty of fielding
relatively reliable, predictable, and autonomous “carrier-grade” solutions.

3.3.4 Billing

A primary hindrance to the integration of WLAN service may be the more pedes-
trian problem of billing. Customers may be impeded from using these services due
to lack of a uniform billing arrangement akin to the familiar calling plans for cell
phones. These cellular plans provide for a fixed usage model for a reasonable cost
or a fixed charge per unit of usage (i.e., per minute charge) no matter where the cus-
tomer is in the calling plan area (nation-wide or regional). It can be argued that the
advent of these uniform predictable-cost plans have contributed to the explosion of
cellular phone use.

Another example of “familiar” billing plans is the calling card model for wired
telephony that enables a roaming user to use a telephony network while being billed
at a fixed rate by a known carrier. This model rapidly replaced the direct-pay calling
card model where the actual cost was determined by the policies of the local network
to which the phone was connected.

The user of WLAN data services is no different. Users are reluctant to provide
carte blanche to a wide variety of independent WLAN hot spots where the billing
may be ambiguous or excessive. The observation follows that a successful WLAN
service should follow a cellular phone billing model where the plan either has fixed
units per month or a well defined, uniform usage cost. In fact, the authentication
and billing infrastructure of the cellular phone provider could be directly used via a
simple calling card model. The user logging onto the network is presented the option
to choose a wireless carrier for billing and to submit a calling card number and PIN.
This information is routed to the appropriate Line Information Database (LIDB) to
provide authentication that is necessary to guarantee billing. With this approach, the
network operator could leverage billing arrangements with local hot-spot operators
similar to wireless telephony models that allow transparent roaming across multiple
independent networks. A reasonable billing model for roaming WLAN data access
might include a slight modification to the traditional provider approach to “off peak”
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and “peak” minutes. In the case where authentication is tunneled or enabled through
a WLAN hotspot, the provider may offer plans which include a large amount of “data
minutes” in addition to the usual voice minutes. For example, a fixed-rate plan might
enable 1000 peak voice minutes, 5000 off-peak voice minutes (nights, weekends),
and 50,000 data minutes.

3.4 Important WLAN Technologies and Trends

Following sections discuss in some detail a few of the technologies and trends
that will affect the integration of WLAN access networks with existing telephony
networks. The capabilities (or limitations) of these technologies will impact the se-
curity, scalability, and QoS capabilities of integrated WLAN networks. In particular,
the WLAN physical and MAC layers (OSI layer 1 and 2) are fraught with a variety
of standards, technologies, and approaches which directly influence the viability of
WLAN as an extension of the telephony network. Some key points of these standards
are referenced heavily in following sections. So, the salient PHY and MAC aspects
are summarized in Table III, and basic trends in the security and access control tech-
nologies are summarized in Fig. 8.

FIG. 8. 802.11 security/interoperability.
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TABLE III
SUMMARY OF 802.11 PHY, MAC, AND ENCRYPTION STANDARDS

IEEE WG Rate, RF Band, Physical Layer Comment
Chanels

a 6–54 Mbps • Uses Orthogonal Frequency Division Multiplexing (OFDM) in
5 GHz UNII band5 GHz UNII band

12 channels • Requires 2–4 times more APs for same coverage footprint as “b”
• Incompatible with TPC/DFS spectrum management techniques

of “h”
b 5.5, 11 Mbps • High-rate enhancement of 1 & 2 Mbps 802.11 Direct Sequence

Spread Spectrum (DSSS) standard2.4 GHz ISM band
11–14 channels • Uses Complementary Code Keying (CCK) to achieve 5.5 &

11 Mbps(3 usable)
• 2.4 GHz ISM band is unlicensed, crowded, & very sensitive to

small changes in local environment
• Only 3 channels are nonoverlapping (i.e., most are

self-interfering)
g 22–54 Mbps • Higher “a” data rates in “b” (ISM) spectrum via use of OFDM

2.4 GHz ISM band • Backward compatibility mode with “b” (using CCK), but
degrades throughput significantly3 channels

• Two optional modulation modes for rates up to 24 Mbps: TI’s
PBCC & Intersil’s CCK-OFDM

IEEE WG Description Media Access Layer Comment

e MAC Layer • Provided at layer 2—compatible with all 802.11 PHY (a,b,g)
Enhancements for • Requires significant inter-working with higher-layer technologies

to be effectiveQuality of Service
• EDCF—Enhanced 802.11 Distributed Coordination Function

(CSMA/CA with subslots & traffic classes)
• HCF—Enhanced 802.11 Point Coordination Function (AP acts as

bus-master, polling EDCF stations)
f Inter Access Point • Inter-Access-Point Protocol (IAPP) enables roaming of 802.11

stations within IP subnetsCommunication
• On roam, new AP retrieves station/subscriber data from RADIUS

server & session context from old AP
h Spectrum Managed • Modifications for “a” to be acceptable in Europe (competes with

HiperLAN2)802.11a
• Frequency-agile “listen before talk” transmit mode (Dynamic

Frequency Selection, DFS)
• Uses minimum necessary power to transmit (Transmit Power

Control, TPC)
i Enhanced Security • TKIP/MIC—Pre-standard WEP enhancement

• AES—Standards-based WEP replacement

(continued on next page)
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TABLE III — Continued

Technology OSI Layer Encryption Scheme Comment

WEP OSI layer 2 • Asymmetric authentication only (mobile device to AP) allows
rogue AP’s

• Serious implementation flaws (common, static key; no key
management protocol; cleartext IV) render WEP almost useless

TKIP/MIC OSI layer 2 • Temporal Key Integrity Protocol (TKIP) uses RC4 to pre-encrypt
complete frames before WEP to obscure the IV. Shared 128-bit
“temporal key” changes periodically; allows for per-user
encryption keys (128-bit key + client’s MAC + 16-octet IV)

• Message Integrity Check (MIC) makes the CRC more robust to
prevent undiscovered tampering

AES OSI layer 2 • Advanced Encryption Standard (AES) replaces DES for
“sensitive, unclassified” federal information (FIPS 197)

• May require hardware refresh at client & AP for encryption
co-processor

IPsec (VPN) OSI layer 3 • Layer 3 implementations can be bandwidth & CPU intensive, and
do not co-exist well with mobility protocols

Notes:
aThe ISM band occupies 83.5 MHz (2.4–2.4835 GHz), and in the U.S. the UNII “lower” & “upper” bands occupy

300 MHz (5.51–5.35 GHz & 5.725–5.825 GHz).
b802.11c (Bridge Procedures) & 802.11d (Global Harmonization) are not particularly relevant here.

3.4.1 PHY Standards

The IEEE 802.11 standards for wireless LAN have evolved quickly to encom-
pass a variety of technology areas as well as to address a plethora of problems. The
WLAN physical layers definitions that are of interest here are 802.11a, b, and g.
These standards specify two separate, unlicensed and unregulated frequency bands
where WLAN equipment can operate. As indicated in Table III, 802.11 “b” and “g”
operate at different effective data rates in the same 2.4 GHz ISM band (Industrial,
Scientific, and Medical), whereas 802.11 “a” operates at up to 54 Mbps in the 5 GHz
UNII band (Unlicensed National Information Infrastructure).

Many of the transmission difficulties encountered in WLAN usage are due to the
fact that the popular 2.4 GHz ISM band is very crowded and sensitive to small
changes in the local environment. As a result, RF interference and multipath dis-
tortion can be quite severe. Additionally, although 802.11b specifies a number of
separate channels, the proximity of these channels combined with the relatively low
quality of the electronics leads to significant interference, and only 3 of the channels
are effectively usable. To combat RF interference and improve response to multi-
path distortion, the higher-rate “a” (5 GHz UNII band) and “g” (2.4 GHz ISM band)
standards use Orthogonal Frequency Division Multiplexing (OFDM). OFDM is a
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spread-spectrum technique where bearer data is distributed and transmitted in par-
allel via several precisely-spaced carriers.1 Sometimes called Discrete Multi-Tone
(DMT) modulation, this technique is also used in Digital Subscriber Loop (DSL)
implementations.

Although “b” and “g” exist in the same RF band, they are not directly compat-
ible since “b” uses Complementary Code Keying (CCK) rather than OFDM. The
specification for “g” describes two required modes: OFDM for higher “a” rates in
the 2.4 GHz ISM band, and CCK for backward-compatibility with “b.” Additionally,
“g” specifies two optional modulation modes to accommodate proprietary imple-
mentations at rates up to 24 Mbps: Intersil’s combined CCK-OFDM, and TI’s Packet
Binary Convolutional Code (PBCC, also called “b+”). Unfortunately, legacy “b” de-
vices will see “g” transmissions as noise, and although a pure “g” environment may
be capable of TCP throughput up to 20 Mbps (4× effective “b” rates), all devices in
a mixed environment may settle to the lowest common denominator. In the case of
environments with “b” devices, this could lead to throughputs of less than 1 Mbps.

In the U.S., recent Federal Communications Commission proposals have recom-
mended the allocation of more spectrum for “a” devices. In the current allocation,
300 MHz is available in the 5 GHz UNII band, with 11 channels split among “lower”
& “upper” subbands. Recent FCC proposals would add 255 MHz in middle band
(5.470 GHz to 5.725 GHz) and increase to 24 the number of available channels. The
proposed allocation would also match the 5 GHz “middle band” allocated in Europe,
resulting in some worldwide commonality in 5 GHz subbands. According to the pro-
posal, transmitters in the new “middle band” would have to use advanced techniques
such as TPC and DFS of “h” (see Table III) to avoid collision with RADAR trans-
missions. A side-effect of the additional channels could be the designation of special
transmission regions for QoS-sensitive streams or out-of-band control information
for bearer data in existing upper/lower UNII subbands.

3.4.2 MAC Standards

IEEE 802.11 Media Access Control (MAC) standards, provided at OSI layer 2,
are compatible with all 802.11 physical layer (PHY) standards which are provided at

1OFDM overlaps each of the carriers in a channel rather than separating them with a guard band. The
precise spacing of the carriers allows some orthogonality between the closely packed signals, thus mini-
mizing intercarrier interference and improving throughput. For instance, 802.11a defines several channels,
each 20 MHz wide. Each “channel” is an OFDM-modulated signal containing 52 overlapping, 312.5 kHz-
wide carriers. Most of the carrier signals transport data, with 4 reserved for pilot signals. Raw data rates
for each carrier can reach over 1 Mbps, if appropriate modulation and error-correction techniques are
used. As a result, the composite (multicarrier) signal in one of the 20 MHz channels can have a data rate
up to 54 Mbps.
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OSI layer 1. Existing 802.11 devices achieve a loose coordination between distrib-
uted wireless nodes via an implementation of the MAC protocol known as Carrier-
Sense Multiple Access with Collision Avoidance (CSMA/CA). Unfortunately, this
loose coordination scheme doesn’t differentiate between data streams or stations, so
specific delay and bandwidth requirements are not supported. To partially address
this issue, IEEE 802.11e specifies MAC-layer enhancements for QoS based on ex-
tensions of existing 802.11 mechanisms. The “e” recommendations may require sig-
nificant inter-working with higher-layer technologies to be effective, particularly for
carrier-integrated WLAN access networks.

3.4.2.1 Distributed Coordination—Contention-Based Access.
The asynchronous, best-effort transfer provided by CSMA/CA is also known as the
802.11 Distributed Coordination Function (DCF), and is the basis of all WLAN me-
dia access schemes. With the CSMA/CA-based DCF, transmitting stations first test
for an idle channel, then wait a random number of slot times before transmission
to avoid collisions.2 With this “listen before talk” scheme, successful transmissions
must be positively acknowledged by the receiver. Without a positive acknowledge-
ment, the transmitting station assumes that a collision has occurred so it enlarges its
range for selecting random slot times (“contention window”) before retransmitting
the frame. With this randomized backoff procedure, the station whose backoff time
happens to expire first during an idle period is allowed to transmit.

To provide differentiated access to the wireless channel, the Enhanced Distributed
Coordination Function (EDCF) of 802.11e generalizes this approach to a hierarchy
of “virtual” and “real” CSMA/CA stations with multiple subslots and traffic classes.
With EDCF, a transmitting station employs a form of Class-Based queuing with a
limited number of Access Categories. Frames from these Access Categories contend
for virtual transmission opportunities using a CSMA/CA “listen before talk” mecha-
nism as if they were independent DCF stations. However, EDCF Access Classes are
assigned different contention windows and minimum interframe spacings so that,
in most cases, backoff timers for frames from “higher priority” classes will expire
sooner than other classes. As a result, “high priority” frames from EDCF stations
will be able to contend for physical medium access with other stations more often
than frames from “lower priority” classes.

3.4.2.2 Point Coordination—Contention-Free Access. Legacy
802.11 MAC standards specify a contention-free mode where privileged stations
are polled for pending data frames. During this Point Coordination Function (PCF)

2WLAN slot times are a function of the physical layer. For instance, an 802.11b slot time is 20 µs, and
an 802.11a slot time is 9 µs. The initial “channel sensing” time (distributed inter-frame spacing, or DIFS)
is also a function of the PHY layer, and is 50 µs for 802.11b and 34 µs for 802.11a.
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mode, which alternates with the purely contention-based DCF mode, stations can
only transmit when they are polled by the access point. Unfortunately, the PCF im-
plementation is optional and built on top of the DCF mechanism, and is unable to
coordinate with the offered load of WLAN stations. As a result, PCF performance for
QoS-sensitive applications is very poor [19]. The 802.11e specification recommends
a “hybrid” PCF mode (HCF) which operates in both contention-based (EDCF) and
contention-free modes to improve polling performance. HCF combines some DCF
and PCF functions with QoS-specific polling and frame subtypes to achieve lim-
ited QoS transfers. With HCF, the WLAN access point has a shorter “listen before
talk” wait-time than the other stations. This results in an effectively higher chan-
nel access priority that can be used to poll stations for QoS requirements or deliver
QoS-sensitive frames. The HCF can also “reserve” follow-on transmission slots to
concatenate contention-free bursts [20].

3.4.3 Access Control and 802.1x

Access control to a managed network is critical to maintaining network stability.
IEEE 802.1x [21] is the “next generation” authentication architecture for WLAN net-
works. In the 802.1x architecture, the user’s network access is limited to rudimentary
functions until the authentication process is completed. With this architecture, user
credentials can be centrally controlled and network access can be gated based on
the result of authentication. There are many forms of authentication used in WLAN
networks today. A few of these technologies are summarized in Fig. 8 and Table IV.

In the 802.1x framework, the Extensible Authentication Protocol (EAP, RFC
2284) is the dominant technology for coordinating the authentication conversation.
EAP is a generalization of IP’s common point-to-point protocol (PPP, RFC 1661)
for basic authentication. As indicated in Fig. 8, protected EAP (PEAP), the combi-
nation of EAP with Transport Layer Security (TLS)3 will likely become the de-facto
authentication scheme for 802.1x. Tunneling legacy authentication methods, such
as those based on username and password, via TLS security associations is impor-
tant for preventing eavesdropping for user credentials as well as for allowing the
client device to reliably authenticate the network. Network authentication via digital
certificates is important in WLAN environments due to the extremely low barrier
against man-in-the-middle attacks where illegitimate access points are used to cap-
ture credentials or hijack sessions. When EAP conversations are tunneled via TLS,
the resulting authentication conversation has two phases. The first phase consists of
establishing an encrypted connection (protective tunnel) where the network is au-
thenticated to the client via digital certificates. The second phase of authentication

3TLS (RFC 2246, 3546) is the official IETF version of the Secure Socket Layer (SSL) protocol for
strong encryption between client/server systems.
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TABLE IV
SUMMARY OF POPULAR EAP TYPES

EAP Type Comments

Message Digest • MD5 hash of username/password handed to RADIUS server
MD5 • No facility for mutual authentication between device & network (rogue access

points possible)
• No management or dynamic generation facilities for WEP keys

Transport Layer • Client & Network Certificates for mutual authentication requires X.509
certificates on all clients (difficult to manage)Security (TLS)

• Some proprietary certificates have “Extended Key Usage” field which may be
incompatible with EAP-TLS components from other vendors

• Certificates can be used to generate dynamic per-user, per-session WEP keys

Tunneled TLS • Mutual authentication using only network-side certificates
(TTLS) • TLS tunnel protects PAP/CHAP-style username/password over EAP or other

EAP methods for user-to-network authentication
• Certificates can be used to generate dynamic per-user, per-session WEP keys

Lightweight EAP • Supports mutual authentication without dual certificates
(LEAP) or • Proprietary; requires end-to-end single-vendor and special client software
EAP-Cisco • Supports dynamic WEP key generation with tunable duration

Protected EAP • Mutual authentication using only network-side certificates
(PEAP) • TLS tunnel protects “inner” EAP conversations for user-to-network

authentication

Subscriber Identity • Mutual authentication via client & network “hardware certificates” (SIM)
Module (SIM) • Requires EAP interface to GSM SIM on client

uses the legacy authentication protocol “inside” the TLS-encrypted tunnel to authen-
ticate the client to the network. As indicated in Table IV, Tunneled TLS (TTLS, [22])
and Protected EAP (PEAP, [23]) are the primary TLS-secured, two-phase authentica-
tion techniques proposed for use in WLAN environments. TTLS and PEAP are very
similar, but TTLS allows a wider variety of “inner” authentication protocols such
as CHAP (RFC 1994), PAP (RFC 1334), MS-CHAP (RFC 2433) and MS-CHAPv2
(RFC 2759), whereas with PEAP, the tunneled protocol must also be an EAP method.
Additional EAP-types are summarized in Table IV.

In 802.1x, the participants in an authentication conversation are the Supplicant,
Authenticator, and Authentication Server. Before the Supplicant is able to use up-
stream network services, it initiates an authentication request via EAPoL (EAP
over LAN), a point-to-point link-layer protocol which encapsulates EAP packets
into 802.11 frames. The Authenticator (usually the 802.11 AP) acts as a blocking
gateway between the Supplicant and the network, only translating between EAPoL
(EAP/802.11) and EAP/RADIUS to enable the authentication conversation with the
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Authentication Server. Prior to successful authentication and authorization, the Sup-

plicant is in an unauthorized state. In this state, the Supplicant node doesn’t have a
valid IP address or a gateway address to which to forward packets, and all IP traffic
is denied by the Authenticator. In this fashion, the authentication process is accom-
plished without dynamic allocation of IP addresses at the WLAN hotspot, which al-
leviates potential security holes. With this architecture, the Authenticator is slaved to
the result of the authentication process, which is handled completely by the upstream
Authentication Server. Since RADIUS (RFC 2865) is the de-facto AAA technology
for ISP’s, the Authentication Server is typically a RADIUS server with subscriber in-
formation in a local database. Additionally, the interworking of EAP with RADIUS
is well-defined (RFC 3579), and several authentication protocols can be mediated
via the EAP/RADIUS combination, including public keys, digital certificates, and
others as indicated in Fig. 8 and Table IV.

Integration with existing telephony authentication infrastructure may impose addi-
tional requirements on WLAN users. For example, wireless telephony networks such
as GSM/GPRS rely on an authentication procedure involving a “Subscriber Identity
Module” (SIM) installed on the mobile handset. An example of signal flow and pro-
tocol stacks for SIM-based authentication in a WLAN access network is shown in
Fig. 9. Note the adaptation of an interface between the WLAN zone, which is strictly
IP-based with 802.1x and EAP, and the operator’s core network, which may use a
combination of IP protocols and SS7-based systems for authentication, subscriber
information, and billing purposes.

In addition to simple authorization (i.e., network access), 802.1x can be used to
provide privileges to users, nodes, and even particular network services. Gated by
the authentication process, 802.1x enables capable network elements to modify ac-
cess privileges according to individual entitlement. Although RADIUS-authenticated
sessions can already provide limited service authorization, 802.1x creates a robust
framework for service configuration, resulting in the potential for fine-grained, dy-
namic privilege authorization.

3.4.4 Over-the-Air Security

Wired-Equivalent Privacy (WEP) is the over-the-air encryption scheme built into
current 802.11-style WLAN networks. The WEP architecture was specified incor-
rectly, and this has led to a rash of security problems in WLAN deployments. The
general WEP architecture is shown in Fig. 10. Note from the figure that the pri-
mary issue with WEP is the use of an unencrypted 24-bit initialization vector (IV)
in the header of each encrypted frame. The per-packet IV is used by the receiver, in
conjunction with the master WEP key (shared secret), to reconstruct the specific key
sequence which was used to encrypt the payload of the frame. The cleartext transmis-
sion of the IV incrementally reveals information about the WEP shared secret. Once
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FIG. 9. Signaling, protocol, and application diagram for 802.1x WLAN authentication process. The
diagram shows signaling flow for the pre-authenticated and post-authenticated states.

the WEP shared secret is known, each subsequent frame can be immediately de-
crypted [24]. The implementation flaw appears when the same WEP shared secret is
used to create encryption keys which encrypt different payload information using the
same IV. This occurrence of “IV reuse” creates a single instance of a compromisable
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FIG. 10. Diagram of WEP usage in 802.11 and 802.1x. Note that cleartext transmission of the 24-bit
IV for each packet, whether chosen randomly or deterministically, can be used to reveal information about
the WEP secret key.

frame. The number of unique IV’s is limited, and leads to a high likelihood that many
compromisable encrypted frames will be produced in a short time period. As a re-
sult, WEP-secured WLANs are vulnerable to attacks which collect frames and cross-
reference their known fields (IP numbers, etc.) based on reused IV’s. WEP-cracking
techniques will become even easier as WLAN air speeds increase to 54 Mbps and be-
yond simply because more encrypted frames, and thus more compromisable frames,
will be available in a shorter period of time.

To address the WEP problem, IEEE 802.11i has recommended more sophisticated
over-the-air encryption methods such as Temporal Key Integrity Protocol (TKIP) and
the Advanced Encryption Standard (AES). Although the technologies summarized in
Table III and discussed in following sections will improve the quality of over-the-air
encryption for WLANs, it is likely that conventional WEP will coexist with these
newer approaches for some time. This is primarily due to the fact that a complete
hardware refresh will be required for full implementation of 802.11i with AES. This
is complicated by the fact that complete ratification of 802.11i may not occur until a
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significant installed base of both WEP-only and TKIP-capable systems has already
been fielded.

3.4.4.1 Temporal Key Integrity Protocol (TKIP). TKIP, the pre-
cursor to complete 802.11i, is an improvement over conventional “static-key” WEP.
In “static key” WEP, a common master key is distributed and changed infrequently,
and is subject to the class of exploits described by Fig. 10. To combat these issues
created by use of common, pre-configured WEP shared secrets for all devices, TKIP
assigns a unique WEP key for each user dynamically at the start or re-authentication
of a session. With this approach, the WEP keys in-use at any time should be unique
for each user on a particular WLAN access point. However, with faster over-the-air
data rates the likelihood of IV reuse can again become a problem. This may lead to
approximately the same collection of compromisable encrypted packets. In addition
to rotating WEP keys, the strengthened Message Integrity Check (MIC) procedure
makes the encrypted frame more robust against undetected tampering.

3.4.4.2 Advanced Encryption Standard (AES). AES is an ap-
proach to encryption of “sensitive, unclassified” information that has been adopted
as a U.S. Federal Information Processing Standard (FIPS 197) [25]. The AES algo-
rithm is a symmetric block cipher for encrypting and decrypting 128-bit data blocks
using cipher keys with lengths of 128 (AES-128), 192 (AES-192), and 256 (AES-
256) bits. AES is based on the Rijndael Block Cipher algorithm, where a state ma-
trix of bytes, or intermediate cipher result, is iteratively processed in “rounds” via
a succession of nonlinear byte substitutions, cyclical row shifts, and linear column
transformations. The number of “rounds” is a function of the input block length and
the size of the cipher key. Rijndael is particularly useful for encryption of layer-2
WLAN transmissions because it is parallel by design, and can lend itself to highly
efficient implementations (minimal code, minimal memory, fast performance) suit-
able for embedded devices. Additionally, the algorithm is “self supporting” in that
it does not borrow sub-algorithms from other cryptographic schemes or procedures,
and it makes no use of arithmetic operations or well-known non-repeating sequences.

3.4.5 Wireless QoS

Wireless multimedia streaming is becoming a reality with high-speed wireless
data connectivity. In fact, multimedia streaming is a key goal of 3G, and handset
specifications for handling streaming media have been developed [26]. Neverthe-
less, challenges still remain in streaming media over intrinsically unreliable wireless
links. Generally, streaming media applications are sensitive to packet losses, delay,
delay-jitter, and throughput—areas that are not well addressed by wireless networks.
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For less demanding streaming applications that can tolerate a few seconds of setup
delay, the challenge of streaming media is reduced to maintaining “good-put.” How-
ever, even in the latter case, additional mechanisms may still be necessary to ensure
positive streaming media experience.

Besides classical techniques involving forward error correction, ARQ, and diver-
sity schemes in the physical and link layers, there are recent works that may en-
able better wireless streaming without violating the lower layers. For instance, in an
802.11b network, getting half the data from two access points can sometimes achieve
better performance than getting all the data from the closer access point due to better
insurance against fast variations in link quality [15]. For 3G networks where the wire-
less link has long latency, an important challenge has been providing fast feedback
to the transmitting end to effect adaptation. To this end, work in network agents at
the interface between wired and wireless network can provide meaningful improve-
ments to streaming quality [27,28]. The purpose of such network agents is to provide
a fast but approximate feedback to the transmitting end to effect adaptation.

Central to media streaming is the requirement of sustained throughput. When fluc-
tuation in available bandwidth is frequent and drastic, e.g., switching to lower mod-
ulation format in response to poor wireless link quality, mechanisms to accordingly
adjust media rate is required. There has been extensive research in methods to pro-
duce rate-scalable representation of video. Nevertheless, commonly deployed media
streaming systems typically employ the more mature non-scalable representation of
video. For instance, both 3GPP and ISMA currently prescribe the use of MPEG-4
for video. The ability to cater to different channel conditions is relegated to switch-
ing between multiple copies of the same content compressed at different bit-rates. In
the future, dynamic adjustment of MPEG encoding properties such as picture size
and bit-rate, coupled with fast feedback, may be a key component to guaranteeing
throughput on a wireless network.

4. Commodity Software

The growth of the Open-Source community development model has “disrupted”
the typical process of development and deployment for many industries, including
telecommunications. This dynamic development model, driven by Internet-based
and Open-Source collaboration tools, allows software projects to be initiated rapidly
and completed efficiently via worldwide teams of developers. In addition to the clear
improvements in process efficiency, this new development paradigm has leveraged
the pipeline of global timezones, transparency of source code, availability of doc-
umentation and support, and real-time technical discussions to produce superior
community-owned products. Examples include world-class software and systems
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such as the Apache web server [29] and the Mozilla web browser [30], as well as
the Linux kernel itself [31].

In the telecommunications sector, the general popularity of Linux has led to a
groundswell of support for “Carrier Grade” extensions to the Linux kernel and op-
erating environment. Following sections discuss some of the most important facets
of Linux and its application in telecommunications. In addition, issues of highly-
available systems (which are critical in telecom applications) are discussed in the
context of Open-Source technologies and initiatives.

4.1 Linux: Open-Source Poster Child

The widespread momentum enjoyed by Open Source technologies is succinctly
expressed in the community development of the Linux operating system. The clear
evidence of support for Linux by most computer industry leaders and at all levels of
the system stack (application software, middleware, kernel modifications, hardware
and systems, etc.) indicates a “flashpoint” of acceptance in the telecommunications
industry. This phenomenon is increasingly true even though there are some subtle
differences between “open source,” as conventionally interpreted and defined, and
“free software,” as defined by the Free Software Foundation (FSF) [32]. In the FSF
definition, access to the source code (“open source”) is a precondition to the four
necessary freedoms4 that define “free software.” Issues are often encountered, how-
ever, with the Copyleft position of the FSF’s “GNU General Public License” (GPL).
In a form of irrevocable inheritance, Copyleft requires that software released under
the GPL (and variants) must be similarly licensed. As a result, all modified and/or
extended versions of “free software” must also be “free software,” which implies
“open source.” This condition is often viewed as being contrary to commercial aims,
where proprietary mechanisms (algorithms, software implementations, etc.) must be
protected or “closed.”

Interestingly, the Linux kernel seems to have a unique position with respect to
these very different perspectives on software licensing. Although most Linux appli-
cations and kernel components are fully licensed under the GPL, the Linux kernel
itself is released under a slightly modified form of GPL which allows any software to
freely use kernel interfaces without being subject to GPL inheritance. So, one of the
most interesting aspects of Linux, which is enabled partially by its “special” licens-
ing considerations under the GPL, is that the kernel is highly modular and designed
for arbitrary extension.

4The FSF “freedoms” are freedom of execution (use), freedom of examination (study), freedom of
endowment (redistribution), and freedom of enhancement (modification).
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4.1.1 Linux Kernel Modules

The widespread popularity of Linux as an alternative operating system for en-
terprise as well as technical computing is well-documented in the trade publications.
One of the fundamental aspects of Linux that makes it amenable to interesting system
architectures and flexible configurations is the use of dynamically loadable kernel
modules. Linux kernel modules (LKM’s) can interface freely with the Linux kernel
due to the loophole explicitly stated in the modified GPL statement issued with the
kernel distribution [31]. As a result, “aftermarket” modules can redefine or extend
particular kernel functions in a proprietary fashion.5

This modular architecture is particularly appealing for device drivers and other
capabilities that may need to be selectively loaded during system operation. How-
ever, because of the close association with the running Linux kernel, an LKM can
be made to do some interesting and potentially dangerous things. For example, the
system write() call can be redefined during module initialization so that all in-
vocations of write() are intercepted, parameters of the invoking process are val-
idated against a simple policy rule, and the buffer of data is modified before being
transferred to the “normal” write() function [34]. Although LKM’s can easily
snoop the current task, filter or override specific system calls, and access user-space
memory, they can also be used to harden kernel behavior by detecting failure modes
and beginning failover procedures, or to trigger special processing on data enter-
ing/leaving the system.

An example of a simple LKM is shown in Fig. 11. When an LKM is loaded into the
running Linux kernel, the kernel invokes the module’s “constructor” function, in this
case via module_init( setHook ) which initializes the module and prepares
it for execution (allocates memory, etc.). Likewise, upon unloading of the module,
the “destructor” function is invoked via module_exit( removeHook ) so the
module can clean up after itself (deallocate memory, reassign functions, etc.). Be-
tween the execution of the “constructor” and “destructor” functions, the body of the
module, including kernel symbols, functions, data, etc. are bound into the running
kernel and accessible by user-space applications and kernel operations. In the case
of Fig. 11, the module registers itself as a callback function in the kernel’s NetFilter
packet-processing subsystem, which is explained in detail below.

4.1.2 Packet Filtering—NetFilter

The NetFilter framework is an example of the flexibility of the modular Linux ker-
nel. NetFilter allows packets traversing the Linux IP stack to be intercepted, snooped,

5Of course, nothing in Open Source software is absolute, particularly when it approaches mixing “closed
source” with GPL-licensed software [33].
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FIG. 11. Example of low-level extension module for Linux NetFilter (derived from various sources at
http://www.netfilter.org).

or otherwise “mangled.” The NetFilter framework is included in the standard Linux
kernel distribution (2.4.x) with several user-space tools for creating arbitrary packet
filters. If further manipulation is necessary, packets can even be diverted to user-
space handlers and then re-inserted into the flow of packet-processing. The NetFilter
framework is activated at five important points in the trajectory of IP packets, in-
cluding the “pre-routing,” “post-routing,” “forwarding,” “input,” and “output” stages.
When packets cross each of the five NetFilter-waypoints, registered callback func-
tions can be invoked against the contents of admissible packets. Several extensions
of the NetFilter framework have already been developed, including the iptables
collection of utilities.
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The approach to creating an LKM with the NetFilter framework is shown in
Fig. 11. The figure contains an explicit (if useless in practice) illustration of a ker-
nel module which uses the NetFilter framework to hook into the Linux IP stack and
discard packets that match certain criteria. As shown in the figure, the “body” of the
module contains two basic items: a hookGuts() function which is invoked in call-
back fashion against packets matching some simple criteria, and a hookObject
structure which creates the context for hookGuts() to be registered as a NetFil-
ter callback function. When the module is loaded, the “constructor” registers the
callback function by passing the hookObject structure to the kernel via the Net-
Filter interface function nf_register_hook(). In addition to a function pointer
to the hookGuts() callback, the hookObject contains initial packet matching
and hook registration information. This information includes the protocol family to
restrict which types of packets will be fed to this hook, the hooknum or traver-
sal point in the IP stack that this hook is to be registered for invocation, and the
relative priority of this hook with respect to other hooks registered at the same tra-
versal point. In this case, the module enables a hookObject to operate on IP-
type packets (PF_INET) during the “post-routing” (final) phase of IP stack traversal
(NF_IP_POST_ROUTING). For packets in this phase, the hookGuts() function
examines the length of each packet and discards or accepts the packet based on a
simple test. The arguments passed to hookGuts() by the kernel include the hook
number or traversal point at which it was invoked, a pointer to the socket buffer
structure which contains the actual packet data and headers, etc., pointers to the de-
vice structures which identify the origination/destination interfaces for the packet,
and a pointer to a user-space function for processing the packet contents. When
the module is removed from the kernel, the “destructor” operation unregisters the
callback function and hookObject structure via the NetFilter interface function
nf_unregister_hook( hookObject ).

One of the main points of interest in the NetFilter framework (not explicitly
shown in Fig. 11) is in the definition of the socket buffer structure sk_buff (de-
fined in <linux/skbuff.h>). The collection of sk_buff structures is a stan-
dard linked list with information about each packet such as when the packet arrived,
which interface and socket it belongs to, the packet headers (transport/network/link-
layer), and some other control information. However, for Linux kernels compiled
with support for the NetFilter framework (with kernel configuration variable CON-
FIG_NETFILTER), the sk_buff structures are “augmented” with a pointer to
other hookObjects. This additional parameter creates the possibility for direct
communication between different hookObjects, which allows for context-based
manipulation of packets. As a result, NetFilter provides the modular Linux kernel
with the sophisticated packet-processing capabilities necessary for next-generation
telecommunications networks.
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4.1.3 Preemption, Latency and Process Scheduling

Among the developments which have influenced the compatibility of Linux with
the rigorous telecommunications environment, recent improvements in preemptibil-
ity and latency are among the most significant. These enhancements were introduced
into the 2.5-series (development) kernels, and will become part of the mainstream
Linux environment starting with the 2.6-series kernels.

Latency in a computer system can be defined by a lack of responsiveness to asyn-
chronous events (interrupts). This is usually a function of several factors, including
interrupt assertion/handling and process scheduling. In the Linux kernel, latency ap-
pears to be dominated by the elapsed time between interrupt service completion and
process scheduler invocation. So, increasing the number of process scheduling op-
portunities during kernel execution (“more scheduling opportunities per unit time”)
is a viable approach to reducing latency. Among Linux kernel developers, two com-
peting methods were proposed for achieving the goal of “more scheduling opportu-
nities per unit time:”

• The “preemption patch,” which sprinkles opportunities for the scheduler around
sections of commonly executed kernel code, and

• The “low-latency patch,” which inserts targeted scheduler opportunities in sec-
tions of kernel code that exhibit high latency.

The two approaches are almost completely complementary because the preemp-
tion patch uses a priori assumptions on kernel execution to increase the likelihood
of scheduling, whereas the low-latency patch uses simulated loads in an iterative,
a-posteriori fashion to custom-tailor the performance of a specific kernel. As a re-
sult, the low-latency patch requires much more effort to maintain. In either case, the
notion of absolute guarantees on actual performance is subject to mismatch between
assumed conditions and actual load. For the preemption patch, the critical assumed
conditions are based on general principles of kernel execution, or probability of en-
countering certain conditions. For the low-latency patch, the critical assumed condi-
tions are based on a likely system environment and simulated load, which drives a
statistical analysis. In particularly sensitive cases where simulated system load mod-
eling is reasonably accurate, a-posteriori techniques such as the low-latency patch
can be used to isolate particularly obvious latency problems. To achieve very small
latency values, confidence intervals/levels, or absolute maximums, it is very likely
that a combination of these approaches would be required.

4.1.3.1 Preemption Patch. The preemption patch approach was intro-
duced by MontaVista Software, and has been supported by kernel developer Robert
Love [35]. With this approach, the Linux kernel is allowed to switch to another ex-
ecution thread if it isn’t executing a “critical” section of code. In other words, the



238 S. MCCLELLAN ET AL.

kernel can be preempted unless preemption has been specifically forbidden. This is
in contrast to the normal Linux kernel which can only be preempted if preemption
has been allowed by certain actions (i.e., a targeted scheduling request, as in the case
of the “low-latency patch”).

The preemption patches, which are part of the 2.5-series kernels, modify the Linux
task structure, scheduler, spinlock primitives, and architecture-specific interrupt re-
turn routines to include a preemption flag. As a result, each time a spinlock is released
or an interrupt routine returns, the kernel has an opportunity to invoke the scheduler.
In the non-preemptible kernel, these opportunities didn’t exist. So, the effect of the
preemption patch modifications is reduced time between a scheduling request and
the servicing of the request by the scheduler because “more scheduling opportunities
per unit time” are available. For an empirical performance example, Williams [36]
achieved better than 1 millisecond response time in 99.99% of scheduling requests,
with a maximum latency of 45.2 milliseconds, and Love [37] achieved multiproces-
sor performance gains on the order of 700%.

4.1.3.2 Low-Latency Patch. The low-latency patches are the result of an
after-the-fact analysis to find critical latencies in a specific kernel and defeat them
by adding targeted preemption points. This is an attempt to approximate the goal of
“more scheduling opportunities per unit time” by carefully picking the low-hanging
fruit. For an empirical example of the effectiveness of these patches on the 2.4.17
kernel, Williams [36] achieved better than 1 millisecond response time in 99.9999%
of scheduling requests.

However, there are a collection of issues with this sort of approach to system op-
timization. In addition to errors of omission that may occur since target latencies are
identified through simulation, the effort to essentially custom-tailor every kernel for
a deployment environment can be prohibitive, especially for telecom applications.
Even in the case where this “bug-tracking” effort may be justified, there are difficul-
ties associated with inserting test and recording mechanisms in the kernel to collect
valid data without perturbing actual running conditions. It is also difficult to ensure
that the test environment is physically & logically identical to the target environment.
In cases where these factors can be isolated and compensated for, the optimized sys-
tem performance can be quite good (if somewhat inflexible). Under the right condi-
tions, the “low-latency patch” can produce much tighter bounds on maximum latency
than the “preemption patch.” For example, Williams recorded maximum latencies of
1.3 milliseconds for the “low-latency patch” versus 45.2 milliseconds for the “pre-
emption patch” during initial testing. However, further testing of the “low latency
patch” revealed spurious outliers of greater than 200 milliseconds [36]. This is evi-
dence of the risk associated with a simulation-based optimization which relies on a
lack of random events.
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4.1.4 Linux Kernel Version 2.6

In addition to the improvements made in preemptibility and latency, starting with
version 2.6 the Linux kernel contains several other improvements which will make
this Open-Source alternative highly competitive in the telecommunications market-
place. These improvements affect the performance of the task scheduler, the block
I/O layer of the kernel, the virtual memory management subsystem, and the ability
of the kernel to handle process threads.

4.1.4.1 Scheduler. The improvements in process scheduling coupled with
the enhanced preemption characteristics of the Linux kernel should result in deter-
ministic environment for demanding applications. In a fashion akin to “per hop be-
haviors” in packet-switched networking, the process scheduler in an operating sys-
tem determines which process will be allowed to use CPU time for the upcoming
time-slice. The simplest approach selects the “best” process from among all available
processes via an exhaustive search. In newer Linux kernels, this nondeterministic or
“O(n)” algorithm has been replaced with a deterministic or “O(1)” approach which
places fairly strict bounds on the execution latency of the scheduler. In other words,
instead of performing an exhaustive search over all candidate processes, the sched-
uler simply selects the “best” process based on some predetermined ranking criteria
such as priority-level and availability. This is similar to having the runnable processes
pre-classified into queues weighted by priority level, and selecting processes from the
highest priority queue first. In multi-processor environments, each processor main-
tains an individual list of prioritized tasks. This approach distributes priority con-
tention over the collection of CPUs and allows for CPU-affinity so that tasks don’t
“bounce” between CPUs. As a result, the system exhibits more graceful multiproces-
sor scaling.

Although the O(1) scheduler is generally an improvement in the Linux kernel, it
is not without some implementation issues related to “starvation.” For example, two
runnable tasks on the same processor with the same dynamic priority should exhibit
approximately the same CPU utilization. However, with the Linux O(1) scheduler
it is possible, under proper conditions, for one task to “starve” the other task by
consuming almost 100% of the CPU time. Additionally, in multiprocessor systems,
tasks maintain affinity to the last-used CPU and can’t be rescheduled to run on an-
other CPU until after this affinity period expires (usually a few milliseconds). As a
result, the too-frequent use of mechanisms such as sched_yield() to manually
achieve application-level fairness or thread synchronization can cause all tasks to
have affinity for the same CPU, and lead to “starvation” between CPUs [38].

4.1.4.2 Block I/O. Improvements in block I/O to extended memory have
also increased performance of Linux systems with appropriate peripherals. Some
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peripheral devices, such as disk drives, transfer information to the operating system
kernel in “chunks” (blocks) that depend on the physical characteristics of the device.
Early versions of the Linux kernel staged these block transfers into an intermediate
buffer before using a memory-to-memory copy to move the block data to its final
target buffer. The block I/O enhancements to the 2.6-series kernels will improve
throughput with block devices by eliminating the need for the intermediate copy
stage. Additionally, improvements to the I/O scheduling process include a weighted-
queueing approach to read/write tasks as well as distributed lock mechanisms for
multiple devices. These enhancements will allow for more efficient multiplexing of
I/O requests as well as more deterministic access to block devices.

4.1.4.3 Threading. Efficient handling of process threads is another signifi-
cant area of improvement for the 2.6-series Linux kernel. Threads (sometimes called
lightweight processes) are independent, sequential streams of execution within a
process. Threads generally share the instruction and data space and file access mech-
anisms of the process, but have separate “execution state” described by a stack and
register contents. Because of the shared context, swapping execution state between
threads in a process is simpler than swapping between processes.

As part of a portable programming model, user-space threads are mapped to kernel
threads by a threading library. In newer Linux kernels, Linux has user-space threads
mapped in a one-to-one fashion onto kernel-space threads by the Native POSIX
Thread Library (NPTL) [39]. NPTL makes threading performance on Linux more ef-
ficient by using existing processor-specific registers for saving thread context (where
available) and leveraging concurrent kernel enhancements relating to synchroniza-
tion (fast user-space locks, or “futexes”). This drastically reduces the overhead re-
quired in switching state context when changing threads. Improved conformance to
current POSIX standards for synchronization as well as signal handling and grouping
of threads has also contributed to improved thread-handling performance in Linux.

4.2 Carrier Grade Linux (CGL)

In addition to Linux kernel enhancements that are being made constantly by the
open-source community, the Open Source Development Lab (OSDL) is hosting the
specification and development of a specialized set of features for “carrier grade” sys-
tems [40]. The focus of the OSDL Carrier Grade Linux working group (CGL) spec-
ifications can be divided into three areas which are critical for telephony systems:
Performance, Standards Compliance, and Reliability, Availability, and Serviceabil-
ity (RAS).

Performance optimization is an important area for telecommunications systems.
From processing real-time data streams to facilities for handling massive numbers
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of events, processes, and data objects, telephony systems are exposed to some of the
most stringent and varied performance requirements of all computing systems. As
a result, many of the performance requirements drafted for CGL seek to optimize
aspects of system behavior related to response time, tunable memory and process
controls, and scalability. CGL specifications in this area are related to preemptibility
and latency for near-real-time systems, improvements to the virtual memory sys-
tem to allow selective control of page faults, CPU/process affinity in multiprocessor
systems, and flexible scheduler policies to enable “tuning” system performance for
processes with known priority characteristics. Fortunately, many of these important
features, such as preemption, latency, and process scheduling are important in many
application areas, and are already being addressed by the larger Linux kernel com-
munity (see Section 4.1.3).

Reliability, availability, and serviceability (RAS) are arguably the premier charac-
teristics for telecommunications systems, which often must operate unattended for
long periods (years) with no provision for failure or upgrade. These overall system
characteristics are dependent on qualities derived from individual components as
well as the interaction between integrated subsystems. As a result, the CGL require-
ments for RAS focus on consistent platform support for hot-swap subsystems (disks,
IO, etc.), definition of remote boot/reboot and diagnostic capabilities (network con-
sole, kernel crash dump, analysis tools, etc.), and techniques for stable unattended
system operation (application hearbeating, watchdog timers, centralized event log-
ging, etc.).

Compliance with standards and a common approach to system construction is also
important for computer systems, particularly in the area of interchangeable hard-
ware subsystems and the portability of software. As a “lightning rod” for open-
source development, Linux is naturally fairly compliant with most current com-
puting standards (in particular, IETF standards). The CGL emphasis on additional
standards focuses on fine-grained requirements for coding habits (avoiding unnec-
essary panic() calls), POSIX compliant interfaces for timers, signals, messaging,
threads, and event logging, and important new IETF protocols such as IP version 6
(IPv6) and the Stream Control Transmission Protocol (SCTP). Additionally, a key
goal of CGL is to promote interoperability between multiple software products, so
compliance with the Linux Standards Base (LSB) [41] and Service Availability Fo-
rum (SAF) [42] specifications is critical for system and middleware interoperability.

4.3 Highly Available Systems

In addition to the basic platform and operating system facilities defined by CGL
participants, telecommunications systems often use “middleware” to achieve ex-
treme high-availability and failover mechanisms between redundant facilities. In
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terms of functional elements in a telecommunications network, highly-available sys-
tems are often based on clusters of computers which perform a specific task.

In general, computer systems are clustered in order to guarantee access to certain
critical services or system components. For example, the Internet is, in a sense, a very
loosely coupled “cluster” of computers designed to distribute the flow of information
and eliminate catastrophic system failure. More commonly, however, clusters are
localized groups of computers designed to optimize a particularly important facet
of a computing task. In this sense, the definition of “important task” might include
the availability of data in a filesystem or database, the state and activity of a critical
process or program, or the distribution of load associated with processing or dataflow.
Clustering technologies can be described using three different perspectives:

• Data availability—Some clustering technologies are designed specifically to
enhance the availability of data storage and retrieval subsystems. These tech-
nologies provide access to mass storage facilities via parallel paths for multiple
computing nodes. Often, the computing nodes in the cluster are connected si-
multaneously to multiple storage devices via a switch fabric or other mesh inter-
connect, and the data on the storage devices is replicated to ensure survivability.
Examples of Data Availability clusters include robust filesystems, storage clus-
ters, storage area networks, and certain types of database middleware.

• Efficiency—Some clustering technologies are designed specifically to increase
processing or data throughput, or to dynamically adjust the utilization of con-
stituent subsystems. These technologies tend to have a strict hierarchy between
computing nodes, and provide feedback mechanisms between master and slave
subsystems to achieve load-balancing for processing, data distribution, or par-
allel operation on a single task. Candidate datastreams or processing tasks that
are well-matched to this type of cluster tend to exhibit a high degree of paral-
lelism, and can be cleanly decomposed into multiple independent sub-tasks or
data elements. Examples of tasks amenable to Efficiency clusters include im-
age processing operations, data mining, and other high-performance computing
tasks. Server farms and other IP-based load-balancing schemes can also be clas-
sified in this way.

• Process or task continuity—Some clustering technologies are designed specif-
ically to maintain the continuity of a process or computing task. These tech-
nologies provide oversight for high-priority tasks as well as the facilities for re-
instantiating these tasks on other nodes (failover) in the event of a software or
hardware failure. To accomplish seamless failover without loss of process state
or internal data, application processes typically participate in a checkpointing
protocol to mirror critical parts of internal data to a backup process in a separate
computing node. The backup process may be idle (active-standby), processing



DISRUPTIVE TECHNOLOGIES 243

data only after a failure signal is given, or the backup process may be dupli-
cating the effort of the primary task (active-active) and producing some output
which is selected based on failure notification. Based on the status of the backup
process, the checkpointing protocol can be executed periodically or on-demand
(i.e., just before process termination), and can result in data transferal to an
external device via a cluster-private network, or to a tightly-coupled ancillary
processor via shared memory.

Clearly, a particular instantiation of a cluster exhibits various levels of Continuity,
Data Availability, and Efficiency depending on the task for which it is optimized. In
telecommunications applications, the importance of each of these factors is derived
largely from the location in the network where the cluster is deployed, the nature and
scale of the network, and the function which the cluster is intended to perform. For
example, a cluster of computers might be involved in performing a call-processing
application in a large call center. In this case, the availability of a process to han-
dle incoming calls would be critically important to prevent “call blocking” or the
appearance of system overload. Additionally, maintaining the processing state and
data associated with each individual accepted call would be critically important to
maintain transaction integrity and avoid re-initialization. As a result, a clustering so-
lution with strengths in Efficiency and Process Continuity could be more appropriate
than a solution with strengths in Data Availability. Regardless of the particular lo-
cation or function, the role of clustering in telecommunications is both critical and
application-specific. As a result, the predominant means of accomplishing highly-
available systems for telecommunications networks has been via proprietary tech-
nologies. Today, the presence of robust Open Source solutions is “disrupting” this
mainstay of telecommunications equipment vendors. In addition to the Linux phe-
nomenon and OSDL Carrier Grade Linux projects, a sampling of other influential
projects or initiatives in this space are outlined in following sections.

4.3.1 Telecom InterProcess Communication (TIPC)

The Telecom Inter Process Communication (TIPC) is a protocol specification and
representative implementation (for Linux) that has been designed for highly-reliable
intra cluster communication [43]. TIPC began as a proprietary high-availability tech-
nology, but has recently been ported to Linux as a loadable kernel module. TIPC was
presented to the CGL community as a toolbox for development of carrier-grade clus-
ters on Linux. Spurred by lobbying and community participation efforts, the TIPC
baseline (concept, specification, implementation) seems to have been adopted as the
primary candidate for CGL clustering.

Leveraging an SS7-like network concept, TIPC provides basic infrastructure for
intra-cluster communications and process management. In TIPC clusters, processors
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are grouped via a hierarchy of full-mesh interconnections which allows for a vari-
ety of architectural simplifications. For example, cluster interconnect networks tend
to have high bandwidth with low message loss (short transfer time, few retransmis-
sions), most messages are relatively short (less than 500 bytes), most communication
is direct rather than routed through multiple hops (complete destination addressing is
unnecessary), and all members of the cluster are trusted (security is unnecessary). As
a result, TIPC proposes a new intra-cluster transport protocol which has been shown
to be 35% more efficient than comparable approaches.

The basic TIPC operational unit (“subnetwork”) is composed of a full-mesh of in-
dividual processors. The next level of aggregation (“zone” or “cluster”) is composed
of a full-mesh of subnetworks. The highest level of aggregation (“supercluster”) is
composed of a full-mesh of zones. The hierarchical structure is very similar to In-
ternet subnetwork classifications (Class B, Class C, and so on), however Internet
subnetworks are routed using fully-specified destination addresses, and not intercon-
nected via a full-mesh. Within a TIPC cluster, individual processors are uniquely
identified by a TIPC address or processor identifier, which is a 32-bit 3-tuple of the
form [zone.subnetwork.processor]. The form and representation of the TIPC address
are very similar in basic structure to an Internet IP address. In a TIPC cluster, well-
behaved applications leverage “location transparency” by referring to service iden-
tifiers or logical addresses rather than the physical address of a node or handler. To
enable location transparency, all processors within a zone maintain a lookup table to
cross-reference between service identifiers and the physical addresses of currently-
active handlers for each service (processor + port). Since all processors are intercon-
nected via a full-mesh, changes in the lookup-table are simply broadcast to all other
processors. This is similar to the Domain-Name system of the Internet where appli-
cations can consistently find a node by referencing its name (i.e., www.hp.com)
and the domain-name lookup process resolves the specific address. The main differ-
ences are that TIPC uses names for “services” rather than “nodes,” and changes in
the name/address mapping are propagated immediately to all nodes.

4.3.2 The Service Availability Forum (SAF)

The SAF is an industry effort to define open interfaces which will enable carrier-
grade platforms, middleware and applications to deliver highly-available services.
To facilitate the transition from proprietary systems to standards-based, modular
systems, the SAF specifications address open interfaces applicable to Commercial
Off-the-Shelf (COTS) devices. SAF goals are to produce specifications which stan-
dardize the Hardware-Platform Interface (HPI), the Application Interface (AIS), and
the System Management interface.
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4.3.2.1 Hardware-Platform Interface Specification (HPI). The
SAF HPI describes a standardized “lower” interface between SAF-compliant mid-
dleware and the operating system/hardware platform. The SAF HPI draws heavily on
the groundwork laid by the Intelligent Platform Management Interface (IPMI) spec-
ification to define platform-independent capabilities and data formats. As such, HPI
is concerned with the hierarchical description of a system in terms of resources and
entities. In the HPI model, resources manage a collection of entities by monitoring
and recording events pertaining to them and managing their configuration data. Enti-

ties can be a variety of platform subsystems, such as fans, disks, peripherals, or other
manageable units which can expose state information or control functions to the man-
aging resources. the HPI specification defines data structures, programming inter-
faces, and callback semantics for functions to interface with these entities using the
resources that are exposed. For instance, an element in a system might have a sensor
to read its current temperature, and a variable-speed fan for cooling it. In this case, an
SAF-compliant platform management application would invoke the function saH-
piSensorReadingGet( session, resource, sensor, reading )
to retrieve the current value (reading) from a particular temperature sensor
(sensor) associated with the element (resource). If the temperature reading
was not desirable, the application could then invoke the function saHpiCon-
trolStateSet( session, resource, control, state ) to change
the speed (state) of a particular cooling fan (resource and control) associ-
ated with the element.

4.3.2.2 Application Interface Specification (AIS). The SAF AIS
describes a standardized “upper” interface between SAF-compliant middleware and
highly-available applications. This interface includes an Availability Management
Framework (AMF), a software entity separate from the operating system of each
clustered node, that coordinates redundant resources within a cluster. In this fash-
ion, the AMF provides a limited “single-system image” view of one logical clus-
ter comprised of several distributed nodes. To effect this coordination function, the
AMF determines the state of an application by invoking standardized callback func-
tions and publishes state variables to registered entities. The “higher layer” func-
tions of the AMF are based on reliable cluster infrastructure services such as Clus-
ter Membership (information about cluster nodes), Checkpointing (cluster-wide data
objects), Messaging and Event Notification (asynchronous publish/subscribe com-
munication), and Distributed Locking (synchronization facility).

The AIS specification defines data structures, programming interfaces, and call-
back semantics for AMF functions as well as the various cluster infrastructure
services. For example, an SAF-compliant application might invoke the function
saClmClusterNodeGet( node, timeout, info ) to retrieve informa-
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tion (info) about a node in the cluster (node). By invoking this function with
node = SA_CLM_LOCAL_NODE_ID, a special pre-defined value for the node
of interest, the application obtains information specific to the local physical node
on which it is executing. The node information (info) is returned by the AMF
Cluster Membership Service into an SAF-defined memory object (structure). This
structure contains basic information such as unique node identifier, node name,
cluster name, membership status, communication address, and last boot-time of the
node.

5. Commodity Computing Elements

The control plane of the global telecommunications infrastructure is a voracious
consumer of compute cycles. It is not surprising that some of the very first digital
computers were in fact the control processors of the first large digital voice circuit
switches. Nor is it surprising that the telecommunications infrastructure has contin-
uously been one of the principal vertical server markets.

The telecommunications infrastructure requires much more than simple computes.
The fundamental importance of human communications has resulted in the market
demand for systems that are “always” available, 7×24, at least 99.999% of the time.
This equates to no more than 2 minutes of downtime for these systems per year.
In addition these systems must continue to operate for a longer period of time than
normal commercial computers under catastrophic conditions such as power outages,
air conditioning failures, earthquakes, fire and so forth.

These requirements originally led most of the major Network Equipment Providers
(NEPs) to design their own compute elements using strict equipment practices. The
original switches developed in the 1970s, such as the AT&T 4ESS and the Ericsson
AXE were among the worlds first commercially deployed digital computers based
on the radically disruptive integrated circuit technology. Consequently the central
processors controlling the switch were completely custom designed and, in these ex-
amples, adopted an instruction lockstep hardware fault tolerance strategy (HWFT)
to achieve the required availability. Other systems such as the Siemens EWSD and
the Alcatel System 12 chose to provide the availability through a clustered design.
As commercial microprocessors emerged, many of these designs abandoned the pro-
prietary processors and incorporated the commercial microprocessors into the NEP-
designed compute elements.

The cost of adding features into the digital switch infrastructure spawned the ad-
vent of the Intelligent Network (IN) in the 1980s that introduced an entirely new
distributed compute model to the telecommunications infrastructure. Service Con-
trol Points (SCP), switching/routing nodes (STP, SSP), and Intelligent Peripherals
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created an explosive demand for highly available compute elements. The distrib-
uted IN model generalized naturally to accommodate the requirements of wireless
telecommunications with the introduction of Home Location Registers (HLRs), Vis-
itor Location Registers (VLRs), Base Station Controllers (BSC), and other network
subsystems.

The scope and growth rate of this vertical market for high availability telecom
compute elements caused major computer companies such as Tandem, Sun, Stratus,
Sequia and Digital to introduce HWFT and clustered telecom servers with equip-
ment building practices to address these markets in the late 1980s and 1990s. Thus,
the commercial computer vendor’s proprietary server architecture now dominates the
control plane of the circuit switched IN infrastructure as well as that of the emerg-
ing IP network. Each of these commercial server offerings had a distinct processor
architecture, proprietary fault tolerant hardware, proprietary UNIXs and other OSs,
as well as high-availability (HA) and management middleware for software fault-
tolerance (SWFT).

The Tandem S5000 is outlined in the following section as an example of such
an implementation. The systems produced by other vendors were correspondingly
unique approaches to addressing the requirements of the “off-switch” telecom mar-
ket. In this era, like the NEP processors that preceded them, very little standardization
existed in the overall architecture of these telecom servers.

During the 1990s a disruptive technology has been steadily gaining force in
the commercial server space, independent of any telecom applications. The Per-
sonal Computer (PC) commoditization model completely revolutionized the low end
processor space in the 1980s. In a natural progression, key elements of these tech-
nologies have been steadily encroaching on the proprietary telecom server market.
This commoditization model is based on the Intel IA64 and IA32 processor archi-
tectures, and is implemented in standard volume servers and a “standard” Linux OS
that has been discussed. This Industry Standard model has already almost completely
dominated the 32-bit processor architectures, and the current prognosis is that, in the
not too distant future, it will also dominate the 64-bit processor architecture. As a
result, proprietary server hardware architectures will be displaced or marginalized
by the wave of low-cost, high-performance commodity technology. This is demon-
strated very clearly by changes in the landscape of server vendors. HP, Compaq,
DEC and Tandem representing the high end processor architectures of PA-RISC, Al-
pha and MIPS have been aggregated into a single company with a strategic high-end
vision based on the Intel IA64 architecture. IBM also has a stated commitment to
IA64, albeit in addition to its own proprietary Power4 architecture. Only Sun is cur-
rently continuing to maintain the proprietary model of the 1980s whereby it produces
the central processor, server architecture, operating system, and associated middle-
ware for high end platforms.
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The corresponding commoditization of telecom computing elements is enabled by
this disruptive technology in the commercial server space. This commoditization is
driven by the need for highly cost-competitive telecom infrastructures. The recent,
dramatic economic downturn in the global telecom market has accelerated many of
these process and business optimizations. Clearly, commoditization of server hard-
ware and software architectures is set to cause yet another far-reaching disruption of
the telecom control plane. This commoditized model is based on Intel architecture
processors, Linux (with Carrier Grade Extensions) and standard High Availability
Software with interfaces such as those specified by the Service Availability Forum
(SAF).

To fully understand the radical simplifications that the standards-based model is
driving into the telecom server, it is interesting to pick an example of a proprietary
telecom server and describe its elements. An interesting case to discuss is the S5000
as it is representative of both a HWFT and clustered architecture. Then, the standard
server is outlined in the current two canonical approaches that are being adopted.
One is a rack-mounted server that uses only standard communication and storage in-
terfaces, and physically requires only conformance to the NEBS2000 standard (i.e.,
19′′ rack with 24′′ depth with 36U vertical dimension). This architecture highly lever-
ages the implementation of the commercial server as well as commoditized, low-cost
components. The other approach is that of a bladed environment. In this area, the Ad-
vanced Telecom Computing Architecture (ATCA) is perhaps the leading standards
based contender.6 Various NEPs and telecom server vendors have proposed alter-
nate, pseudo-proprietary architectures. These approaches require a much more de-
tailed physical and interface specification if chassis, blades and other elements from
various vendors are to successfully interoperate. Both of these cases are surveyed.

Finally, the standardization of the host processors, general purpose processors,
network processors, and special-purpose processors are briefly discussed. It is clear
that the Intel IA32 architecture now completely dominates the realm of 32-bit gen-
eral purpose host processors, and the Itanium family may do the same in the realm
of 64-bit processors. Other special-purpose processors are still in the phase of pro-
prietary implementations but over time these architectures may also become increas-
ingly commoditized.

6ATCA is a specification for next-generation telecommunications equipment, with a new form factor
and based on switched fabric architectures. ATCA has been adopted by the PCI Industrial Computer
Manufacturers Group (PICMG), an industry consortium which develops open specifications for high per-
formance telecommunications and industrial computing applications.
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5.1 Proprietary Systems

As noted above, the first major outsourcing of control plane elements was to pro-
prietary computer vendor platforms tailored for the telecom market. Examples of
such platforms are:

• DEC VaxFT (Vax processor, HWFT, NEBS, VMS), TS series (Alpha 64-bit
processor, Tru64 Unix, NEBS, TruClusters HA clustering),

• HP (PA-RISC 64-bit processor, HP-UX, NEBS),

• Stratus (68000, HWFT, NEBS),

• Sun Netra (Sparc processor, HW and non-HWFT Versions, NEBS, Solaris),

• Tandem S Series Integrity (MIPS processor, HW or non-HWFT version, NEBS,
NonStop UX Unix, DNP Clustering), Himalaya S Series (MIPS processor,
NSK, intrinsically clustered with SWFT check pointing).

Each of these telecom implementations was an original proprietary design. As
noted above, many were HWFT with redundant processors running the same in-
struction stream in order to make the failure of one of the processors essentially
transparent to the application.

To understand further the attributes of this generation of telecom servers, it is
illustrative to look more closely at the Tandem S5000CO system. The system is
illustrated in Fig. 12. The interesting points are the following:

• The system requires a full 36U NEBS frame. For this reason, the individual
elements of the systems, Processors, IO cards, power bulks, disks and so forth
must enable hot plug, online service of these individual elements, called Cus-
tomer Replaceable Units (CRUs).

• The system is what we would now call a “blade” system with dual redun-
dant serial ServerNet System Area Network (SAN)—“a network with bus
semantics”—on the backplanes. This SAN is a precursor of the standardized
Infiniband SAN and influenced its early development. The radial interconnect
of ServerNet facilitated hot-plug and fault isolation while providing a redundant
communications bus. Each CPU and IO controller has a connection into each
of the dual redundant fabrics.

• The system has dedicated redundant service processors that provide system con-
sole functions as well as monitoring and control capability for various power,
thermal and fan functions.

• Each of the host processors is capable of operating in a 4-way symmetric multi-
processing (SMP) configuration. Each processor board is designed with redun-
dant processors on the board running in lockstep and checking each other for
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FIG. 12. This figure illustrates the S5000, an example of a proprietary HA telecom server. Typical of
systems of this generation, the design is a completely proprietary blade system and shown in a HWFT
mode. This system also supports a SW HA mode with proprietary HA middleware as a cluster over the
ServerNet fabric.

failures. This is likewise true of the ASIC support chipset. Memory is protected
by ECC that is encoded and decoded in the self checked domain. The IO from
the board is through ServerNet that is redundant with numerous self-checking
features.

• The CPU boards can optionally be paired into a HWFT configuration where
each separately-serviceable CPU board is running the same instruction stream.
This enables failures of an entire SMP processor complex to be transparent to
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the application. The Service Processor and system firmware have the capabil-
ity of introducing a new or repaired board into service with only sub-second
disruption at the application level for 2 GB memory images.

• The CPU boards can also optionally be run in a simplex mode with single-
system image clustering and SWFT using HA clustering software.

• The OS was a proprietary derivative of UNIX SVR4.2 that incorporated multi-
ple hardening features. The operating system was also modified to support the
platform’s HWFT features, including custom drivers to enable use of ServerNet
for inter-process communication as well as external I/O.

5.2 Industry Standard Systems

Two variations of the industry standard telecom server are emerging that promise
to homogenize telecom network elements around a standard Linux/Intel architecture.
One version is the rack mount server that highly leverages the standard commercial
servers into the telecom space. The other is the blade server for which there is sig-
nificant standards based (PICMG) support around the PICMG 3.x, or ATCA. Each
of these platforms optimizes different physical implementation criteria but presents
a common Linux/Intel programming and operating environment. A diagram of the
industry-standard server is shown in Fig. 13.

5.2.1 Rack-Mount Servers

Telecom-grade rack mount servers take advantage of the fact that many two-CPU-
socket, commercial-grade servers can be readily repackaged into a NEBS compliant
form factor. This repackaging can often be accomplished without modifications to
the logical architecture or the physical implementation of the main CPU boards,
PCI IO subsystem, and storage facilities. This fortunate situation is a by-product
of the fact that two-socket commercial-grade servers using either the IA32 or IA64
processors are typically manufactured in 28–32′′ deep boxes (for an 800 mm rack).
In this configuration, the components are almost universally arranged with the back
third of the box having the main CPU board and PCI IO cage, with connectors on the
back of the box, and with storage and bulk power in the front third of the box with
access from the front. Typically, simple cabling is used to traverse between these
regions for power distribution and peripheral connections.

To leverage this design into a NEBS compliant telecom server, the rack depth
must conform to the 600 mm NEBS2000 rack depth standard. This proves to be one
of the primary problems; however, after replacing the commercial-grade AC power
supplies with telecom-grade DC supplies, the front third of the box can be “folded
under” so that the telecom-grade form-factor actually occupies more height in the
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FIG. 13. Illustration of the industry-standard telecom server.

rack. This physical modification also happens to improve the cooling flow, which is
a significant issue for telecom-grade equipment. These modified units are typically
1–4U in rack height and have moderate weight so that they can be easily serviced
by a single individual. With redundant fans and (hot plug) redundant disks and bulk
power, the effective reliability of this complex, with a compliment of PCI IO, is
comparable to a CPU-only CRU in the proprietary designs. Multi-node configura-
tions interconnected by Ethernet, Infiniband, or other switch fabric can be clustered
into highly-available systems. These HA features take advantage of the standard In-
telligent Platform Management Interface (IPMI) subsystem running on the onboard
“service processor” to monitor various aspects of system health, including power, fan
and thermal conditions. In this model, each simplex server box can be considered as a
“CRU” with power bulks and disks as optional sub-CRUs due to their comparatively
high failure rates.

Notice that in this discussion of commodity computing elements, there is no men-
tion of high data integrity lockstepping between CPUs. Likewise, there is no mention
of HWFT duplex features. The industry has essentially concluded that the level of
integration in these devices (and hence increased reliability) coupled with error con-
trol features (including extended chip spare ECCs protecting against the failure of
an entire memory chip) has eliminated the need for the legacy HWFT features in
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this class of computer for telecom applications. Of course, there are still classes of
applications such as major financial transactions where data integrity remains an ab-
solutely paramount requirement. Almost all the proprietary hardware FT designs are
giving way to software HA designs, driven by the realization that the preponderance
of the faults are now in the software, not the hardware.

This has major advantages in leveraging all the high technology components, hard-
ware and firmware and associated supply chain infrastructure to enable very cost
effective designs. These designs also benefit from the reliability improvements that
a large deployed base drives aggressively. In addition, these systems can leverage
the highly aggressive performance curve (including ×2 or greater SMP designs per
processor socket) that a unique telecom design could not support. Clearly, this needs
to be balanced against the need for longer lifetimes and less churn that the telecom
market requires.

5.2.2 Blade Servers

Blade servers are a more direct generalization of the conventional telephony sys-
tems model where a multipurpose chassis can contain several function-specific cards
for processing or I/O. As an example, the PICMG 2.x Compact PCI (cPCI) standard
for telecom environments enabled up to 21 6U high cards to be hot-inserted into a
backplane in an enclosure with supporting redundant power bulks and fans. Typical
systems are about 9–12U in height, including the power and cooling facilities. CPCI
systems support a PCI multi-drop bus on the backplane, with hot-plug extensions.
There are very difficult fault isolation problems with the PCI multi-drop bus and as
the bus evolved to PCI-X at 100 MHz or 133 MHz the number of supported slots
dropped to less than 4.

To compensate for these bus problems, the PICMG 2.16 extension added redun-
dant Ethernet in the backplane as a radial interconnect with two of the slots desig-
nated for use as Ethernet switches. While this solved many of the fault isolation and
PCI-X bus scaling problems, the 6U form factor and associated card pitch, power
and thermal characteristics became problematic with the newer generation of 32-bit
processors and prohibitive for the IA64 processors.

As a result, the PICMG 3.x ATCA blade has been proposed with a larger form-
factor: 8U in height and 280 mm deep with a 1.2′′ pitch. This pitch supports standard
DIMMs (dual in-line memory modules) and provides more heatsink room for proces-
sors and other hot chips. The ATCA form factor can easily support ×2 or greater
SMP Pentium-4 systems as well as one- or two-socket Itanium solutions, although
in the latter case possibly requiring two card slots. An ATCA chassis supports 14
slots in a standard 19′′ rack. Rather than supporting PCI-X buses on the backplane,
ATCA supports the radial and fully interconnected mesh backplanes for Ethernet,
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Infiniband and other serial interconnects such as PCIExpress. Including power and
cooling enclosure, a typical 14 slot ATCA system is expected to require about 13–
16U of vertical space in a rack.

ATCA servers represent an industry standard evolution of legacy proprietary blade
architectures such as those pioneered by systems like the S5000. In the industry stan-
dard system, the processor technology is driven by Intel and it is expected that multi-
ple vendors will provide inter-operable chassis and blade elements. In addition to the
general purpose processor blades, blade offerings are likely to include specialized
functions such as dedicated network processors and DSP processors as well as IO
cards for network and storage connectivity. Although the blade system architecture
is very compelling for dense computation environments and can be configured for
highly-available purposes, it is unlikely that these elements will be used to imple-
ment HWFT systems such as lockstep CPU architectures. Additionally, as with the
industry-standard rack mount servers, the HA strategy for such systems will rely on
cluster software which interacts with IPMI and OS resources to determine the health
of a node.

5.2.3 Challenges—Standards, Interoperability, Investment

The primary advantage of the blade strategy is that it provides a dense mix-and-
match collection of general purpose and special purpose processing elements in ad-
dition to IO and media interfaces. These standalone elements can then easily share
resources via the substantial bandwidth provided by the mesh interconnect on the
backplane. This becomes very important when the outsourced control and dataplane
elements are implemented in a single infrastructure in the converged network model.
This converged model could prove to be yet another disruptive technology beyond
the standardization of these elements as the evolution of the network drives to a truly
IP based infrastructure.

However, in this picture of the blade strategy, we have failed to mention that there
are several other “standards” competing with ATCA. These architectures are being
proposed by some of the major NEPs and by telecom server vendors. This is causing
the blade market to be fragmented and fraught with ambiguity. As with any “industry
standard,” and with the status of blade architectures in the telecommunications space,
this is the challenge: Everyone has to buy into the standard for it to achieve the
desired cost and interoperability advantages.

Even with broad acceptance of a single standard, the blade strategy, whether
ATCA or otherwise, is less able to directly leverage the economies of scale of hard-
ware from the commercial server space. The primary logic boards, processor, man-
agement, and switch must be developed directly for the ATCA implementation and
cannot simply be leveraged. Furthermore, the ATCA standard has many configurable
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options, starting with the choice of the fabric: star or mesh, Ethernet or Infiniband,
and a host of other variants. These configurations require many combinatorial possi-
bilities for variations of processors, IO blades, and so on. The net effect is to further
fragment the market for a given blade configuration. While the few “best” configura-
tions may eventually emerge from a Darwinian “natural selection,” this process will
take some time and will create a barrier-to-entry for development. Development of
these cards for this class of technology requires a substantial investment and, with
the fragmented state of blade standards, it is not clear whether multiple vendors can
sustain a viable business in the resulting market.

Thus, the definition of a standard telecom server blade is far from complete.
In contrast, the rack-mount server approach has very simple interoperability re-
quirements between vendors because the enclosure and interface standards are rela-
tively mature. These considerations simply require that the server (a) fits within the
NEBS2000 enclosure definition, which is compatible with the standard 19′′ rack, and
(b) uses standard communication and storage interfaces such as Ethernet, SCSI etc.

If the telecom blade definition finally consolidates on a single standard, it could
set the stage for the next disruptive technology of the fully converged network where
data-plane and control-plane functions are fully consolidated onto a single common
infrastructure.

5.3 Industry Standard Processors

The Intel Architecture completely dominates the industry volume for 32-bit gen-
eral purpose host processors, and is supported by most of the major computer and
server vendors. By providing processors to multiple system vendors, Intel and AMD
are able to garner enough market share to support the substantial research, develop-
ment, and manufacturing costs required to remain competitive in the standard proces-
sor market. The recent years have seen the performance of these processors increase
exponentially to the multi-GHz clock rates currently available.

In telecommunications applications, high-speed, large-scale databases and high
throughput for asynchronous events are critical features for network elements. To
support these applications, processors with 64-bit computation and address-space
have significant performance advantages. To date, the high end 64-bit processor mar-
ket has been focused on proprietary processors based on the Reduced Instruction Set
Computer (RISC) architecture. Proprietary architectures include the DEC Alpha, HP
PA RISC, IBM Power4, SGI MIPS (and Tandem), and Sun Sparc. However, Intel,
in collaboration with HP, have introduced the IA-64 architecture with the goal of
driving the highly successful 32-bit industry-standard business model into the 64-
bit space. This objective may have been accelerated by the independent corporate
consolidation that collapsed the DEC Alpha, PA RISC and a major application of
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the MIPS processor onto the IA-64 architecture. AMD is making a similar play with
the Opteron architecture. The remaining proprietary competition in 64-bit processors
are systems based on the Sparc and the Power4, although IBM is also introducing
systems based on IA-64. The IA-64/Itanium architecture is very different from the
IA-32 approach and IA-32 code is not natively executable by Itanium processors.
In contrast, the Opteron processor approach is more evolutionary with a stated goal
to run IA-32 code natively very efficiently while providing the extensions for native
64-bit operation. Regardless, both of these architectures are driving the industry-
standard host processor model into high-end 64-bit systems. Computing elements for
telecommunications may be among the first adopters of this “disruptive” technology.
Following sections briefly review competing industry-standard 64-bit architectures
in the context of telecommunications systems.

5.3.1 IA-64 and Itanium

The IA-64 architecture is a completely new processor design based on the Explic-
itly Parallel Instruction Computing (EPIC) model. This model more effectively uti-
lizes processor resources and minimizes silicon complexity while supporting multi-
ple instructions per cycle. Experience with current processors shows that the proces-
sor resources are idle a substantial percentage of the time waiting on data (from
caches, main memory, etc.) and waiting for branch decisions to be made. The EPIC
approach enables a much higher degree of speculative execution to occur (utilizing
resources that otherwise would be idle) while keeping the complexity manageable.
The key to this optimization is in making the parallelism explicit in the architec-
ture and pushing the complexity into the compile stage, where more resources (time,
memory, etc.) are available and better optimization decisions can be made. With this
approach, the processor can realize a high rate of instructions-per-cycle on real world
workloads while enabling higher frequency designs than the lower complexity (rel-
ative to similar CPU designs without EPIC) would afford. The EPIC designs also
tolerate greater mismatches between the memory and processor speeds due to the
speculative prefetch capabilities which may become more important as the processor
clocks are driven even higher.

With its EPIC architecture, an IA-64 system will allow concurrent execution of
multiple “bundles” of 41-bit instructions, 3 instructions per bundle. To maximize
efficiency, the compiler attaches a header to each bundle indicating which CPU sub-
systems are required by the instructions. The IA-64 architecture maintains 128 64-bit
Integer Registers, with an extra 65th bit per-register for speculative operations. Many
of these registers are reserved for stack manipulations during function calls. IA-64
also has 128 82-bit Floating Point Registers divided into partitions that can be inde-
pendently disabled (masked for access faults) to make some context switching more
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efficient. Multiple Application Registers (AR) are available to hold stack state, en-
able atomic and loop operations, assist in IA-32 emulation, and so on. Some ARs are
also “kernel registers” with asymmetric unprivileged-read/privileged-write modes,
useful for posting non-sensitive kernel state for access by non-kernel processes. Ad-
ditionally, IA-64 uses 64 1-bit Predication Registers to minimize the occurrence of
indeterminate state associated with branch conditions. By prefixing conditional in-
structions with partial comparison results, complex branching logic can be executed
with less ambiguity and minimal clock-cycles [44].

IA-64 also leverages the EPIC architecture to manage 4 types of interrupts: Abort

(internal hardware-triggered), Interrupt (external, asynchronous events triggered by
peripherals, 16 priority classes of 16 vectors each), Fault (execution errors), and Trap

(operations requiring software assist). Interrupts, Faults, and Traps are handled by
an Interrupt Vector Table initialized by the operating system. This table contains In-
terrupt Service Routines with up to 64 bundles of instructions. As a result, many
common interrupt scenarios can be handled inside the table without further branch-
ing.

The Itanium family of processors, which debuted in mid-2002, are a “realization”
of the IA-64 “theory.” As such, Itanium is a 64-bit processor with adequate 32-bit
performance. The IA-32 Execution Layer (IA-32 EL) is a software layer to help han-
dle 32-bit applications on the third-generation Itanium processor at speeds equivalent
to a 1.5 GHz Xeon MP. In this case, the software emulation imposes a significant per-
formance penalty over the native hardware clock speed.

The early-generation Itanium chips also have some important differences with re-
spect to the IA-64 architecture. In the IA-64 model, the processor accesses a flat
64-bit address space, with some caveats to handle efficiency challenges of a single
large, sparse region. The upper 3-bits of the 64-bit address are used to select a “vir-
tual region” via special 24-bit registers which point at unique regions of memory. So,
at any time a program can access up to 8 of the 224 regions, each of which contains
261 bytes. In the Itanium implementation, the processor accesses a 44-bit physical ad-
dress space (with a single-bit cached/uncached indicator) and a 54-bit virtual address
space. In this case, the upper 3-bits of the 54-bit virtual address select the “virtual
region” via 18-bit registers pointing at unique regions of memory. So, at any time,
a program can access up to 8 of the 218 regions, each containing 251 bytes. These
virtual regions enable efficient process management for multi-tasking environments,
and pages can be protected using more than 16 “permission keys” (so, where the
IA-64 model has 24-bit keys, the Itanium processor has 18-bit keys) [44].

5.3.2 Opteron

In contrast with the IA-64 architecture and Itanium implementation, the Opteron
processor from AMD is a native 32-bit processor with performance enhancements
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for 64-bit operations and close coupling with other processors. In effect, the Opteron
extends the legacy ’x86 architecture to be useful with a 64-bit operating system. As
a result, 32-bit ’x86 applications can run at the full clock speed of the hardware (for
example, a 1.8 GHz Opteron could run applications at speeds similar to an IA-32
2 GHz Xeon/MP). In Legacy mode, Opteron can boot directly to DOS or a 32-bit op-
erating system and run 32-bit/16-bit applications just like an IA-32-class processor.
In Long mode, Opteron can boot into a 64-bit OS where its 64-bit registers and 64-bit
memory and disk access will improve data-handling performance significantly over
the pure IA-32 architecture. In this mode, Opteron can address 1 TB (1024 GB) of
physical memory and 256 TB of virtual memory without losing backward compati-
bility for 32-bit/16-bit applications [45].

Although the Opteron has separate, relatively slow 64 kB level-1 instruction
and data caches and a 1 MB level-2 cache, the integrated memory and bus con-
trollers compensate somewhat for the latencies inherent in its non-uniform mem-
ory architecture (NUMA). An interesting feature in the Opteron architecture is
the trio of 6.4 GB/s (full-duplex) HyperTransport buses to link peripheral devices
(other processors, memory, I/O devices, etc.) [46]. Usually in an SMP configura-
tion, NUMA processors have “isolated” memory, which makes cross-processor shar-
ing and memory access relatively slow. Opteron’s high-speed HyperTransport links
mask this effect, more tightly coupling the separate processors [45].

5.3.3 Specialized Processors

Telecom makes considerable use of Digital Signal Processors (DSPs) and more
recently network processors in bearer path processing. DSPs have resources such as
registers specifically for multiply/accumulate which is common in signal processing
(i.e., filtering operations) along with custom opcodes to use them efficiently. Net-
work processors typically have multiple packet-munching FIFO’s that can be pro-
grammed (much like microcode) to perform repetitive packet-specific functions like
header manipulation or payload inspection to offload the host CPU. The application
of these specialized processors can range from traditional applications such as μ-law
and A-law codecs to the more recent network and compute-intensive security appli-
cations such as IPSec. These processors are still further up the proprietary evolution
path but their standardization will surely be a significant disruptive technology in the
converged network.

Architectural trends in future general purpose processors is likely to include mul-
ticore CPU’s with several silicon cores in a single package. In addition to requiring
less electrical power (an issue in dense telecommunications deployments), multicore
CPU packages will enable faster sharing of data between processors (much like the
Opteron HyperTransport bus), including critical memory segments such as first- and
second-level cache.
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6. Protocols of Significance

Technology disruption is usually expressed in the form of a product which dras-
tically and suddenly alters the value proposition for a market [1]. In the context of
IP-based networking and telecommunications, “disruption” also occurs in the form
of important protocols or communication mechanisms that become standardized or
widely adopted to the point of defacto standardization. Three such protocols (or,
protocol families) are discussed in following sections. These IETF-standardized ap-
proaches to Internet networking fundamentals (IPv6), transporting telephony sig-
naling over IP (SIGTRAN and SCTP), and media session control (SIP) are poised
to radically affect the structure and use of next-generation telecommunications net-
works.

6.1 IPv6: The Next Generation Internet

The IP Protocol Version 6 (IPv6, RFC2460–2463, 2402, 2406, 3484, 3513, and
others) is not a disruptive technology in itself; rather, it is a well-designed reaction
to the many disruptions of the “convergence” process. From the telecommunications
perspective, the benefits of IPv6 led to its adoption as the default IP protocol for
all third-generation (3G) mobile networks. IPv6 is designed to address critical areas
such as IP address depletion, efficient packet handling, authentication and security,
and ease of network administration. These benefits can be discussed in terms of three
areas where IPv6 characteristics are potentially the most significant: Flexible, Effi-
cient Headers; Hierarchical Addresses; and Host Autoconfiguration.

6.1.1 Flexible, Efficient Headers

The architecture of packet headers in IPv6 is vastly improved from the case of the
IPv4 header. This structure leverages the hierarchical IPv6 address space and simpli-
fies the forwarding task of core routers. In IPv6, the base header is a 40-byte fixed-
length object with only a few basic fields. This contrasts with the variable-length
IPv4 header, with almost twice as many fields. The base header can be augmented
with an arbitrary number of optional “extension headers” which describe special
routing, handling, or other options for the packet payload.

In addition to its native support for security via the Authentication and Encryption

headers, IPv6 header extensions for packet and session handling may enable some
forms of per-stream Quality of Service (QoS). For example, the Fragmentation and
Source Routing headers can be used in end-to-end path optimization. IPv6 nodes
must adjust their Maximum Transmission Unit (MTU) to optimize fragmentation on
an end-to-end basis (IPv6 routers do not fragment packets). The IPv6 Fragmentation
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header and MTU discovery process allows for specification of fragmentation bound-
aries that is transparent to higher-layer applications and “friendly” to the transport
network. Based on the MTU discovery process, the optional Source Routing header
can be used by the transmitting node to explicitly control the path of packets through
the network. When used for “strict” forwarding, the Source Routing header contains
a list of admissible next-hop forwarding nodes that intervening routers must adhere
to. The Destination Options and Hop-by-Hop Options headers can also be used for
transmitting management information such as RSVP resource reservation to each
forwarding node along the path as well as control or handling information destined
only for “special” nodes, including the destination. Using these extension headers,
conversing IPv6 nodes can conceivably test and select network paths (or use precon-
figured paths) to minimize the latency of multimedia or control streams.

6.1.2 Hierarchical Addresses

As the Internet has grown, the limited, non-hierarchical structure of the IPv4
address space has become problematic. Although Classless Interdomain Routing
(CIDR)7 has compensated for some of the IPv4 addressing weaknesses, the ad-
vanced hierarchical address space of IPv6 will facilitate vastly more efficient rout-
ing and management architectures. In addition to the well-known 128-bit length of
the IPv6 address space—6 × 1023 unique addresses per square meter of the Earth’s
surface—the most significant characteristic of IPv6 addresses is their “aggregation-
based” allocation. With this structured approach, the IPv6 address space has
geography-dependent and provider-dependent components. The result is a separa-
ble “trunk,” “branch” and “leaf” architecture that allows efficient routing and simple
re-attachment of the least-significant bits of the address based on the location and
characteristics of the most-significant bits.

Aggregation-based addressing brings the IP address structure more in-line with ad-
dressing schemes existing in telecommunications networks, where routing decisions
can be made quickly by examining specific segments of the globally-unique network
address. The “phone number” is one component of the network address, which also
includes “country codes,” “area codes,” and so on. In addition to aggregation-based
addresses, IPv6 allocates certain address ranges for multicasting (similar to IPv4) and
for limited-area (“site-local” and “link-local”) use. The “link-local” address plays an
important role in the autoconfiguration process for IPv6 hosts.

7CIDR uses bit-masks to allocate a variable portion of the 32-bit IPv4 address to network, subnet, or
host. This technique allows a single prefix address to refer to a collection of small, plentiful Class C
networks, emulating the larger scope of sparse Class A and Class B networks.
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6.1.3 Host Autoconfiguration

Among the most significant improvements offered by IPv6 is its address autocon-
figuration features. Demand for IP-based networking by mobile users is increasing
rapidly. IPv6 allows mobile devices to easily, automatically, and scalably transition
to new addresses as they move among foreign networks. A fundamental assump-
tion in IPv4 is that each node always has the same point of attachment to the net-
work. As a result, IPv4 addresses essentially identify a static network segment (link)
rather than a node, and support for mobile devices is awkward at best. In contrast,
IPv6 addresses contain information about the network attachment point (“trunk” and
“branch”) as well as the node itself (“leaf”). This characteristic is enabled by the
stateless & stateful address configuration protocols innate to all IPv6 nodes, and it
is efficiently exploited by the Mobility extensions for IPv6 (MIPv6). In particular,
an IPv6 host can statelessly configure its own IPv6 address without human interven-
tion or the help of a network-resident (or, stateful) server. To accomplish stateless
address configuration, the host observes or requests a valid address prefix from its
current network connection, then concatenates a globally unique link-layer address

based on its network adapter identifier. The process is equivalent to dynamically
replacing the most-significant bits of the address with a locally-acquired (network-
specific) identifier, and deriving the least significant bits of the address from a unique
property of the mobile device.

Mobility (and constant connectivity) for IPv6 nodes is enabled by this addressing
scheme in concert with their ability to maintain and prioritize multiple active ad-
dresses for each network interface. For instance, MIPv6 nodes are always identified
by their (static) home address, and packets sent to this address are tunneled to the mo-
bile node in a fashion similar to MIPv4. However, while in a foreign network, MIPv6
nodes can use stateless autoconfiguration to determine a new, globally unique care-

of-address that leverages the hierarchical address structure. Then, the mobile node
can use both addresses to effect a form of automatic packet re-routing. A key com-
ponent in this process is the binding cache kept by all IPv6 nodes. The binding cache
is a lookup table between known, static addresses and temporary, care-of-addresses.
Each packet transmitted by an IPv6 node is cross-referenced against the binding
cache, and if a care-of-address is found, an additional routing header is inserted into
the packet. The effect of this process is route optimization for the “triangle routing”
problem common in mobile IP scenarios. Via binding cache updates, IPv6 nodes are
able to track the network position of other nodes and efficiently re-route transmitted
packets without inefficiencies of IP-in-IP tunneling.
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6.2 SCTP: The Commoditization of SS7

Many desirable features of modern telecommunications depend on efficient, ro-
bust signaling between elements in the network. By physically separating the “con-
trol channel” from the “data channel,” operators of circuit-switched networks have
been able to optimize the performance of both network components for the existing
telephony paradigm. The primary framework for the “control channel” in circuit-
switched telecommunications is Signaling System #7 (SS7). Many of the perfor-
mance benefits derived from SS7 are due directly to the separate optimization of con-
trol and data paths. However, motivated by projections of greater efficiency (mean-
ing “economic advantage”), the trend among next generation network operators is to
combine network control and data channels for transport through a packet-switched
cloud. In this approach, control as well as data packets are exchanged over a common
core network, typically based on the Internet Protocol suite.

In the end-to-end paradigm of the Internet, the core network is essentially a “stupid
bitpipe” and all complexity is “pushed to the edge.” This requires a drastic re-
implementation of the error control, flow control, and management mechanisms of
conventional telephony that had previously been embedded in the SS7 network el-
ements. The architectural concepts for this re-implementation are described in RFC
2719, Framework Architecture for Signaling Transport. The Stream Control Trans-
mission Protocol (SCTP) is a fundamental outcome of these efforts. The purpose of
SCTP is to approximate the robustness of telephony’s separate SS7 control channel
while exploiting the highly desirable flexibility of the Internet’s common, packet-
switched data channel.

The SIGTRAN architecture and SCTP adaptation layers seem grossly overcom-
plicated at first look. However, emulation of multiple types of SS7 functionality re-
quires a certain level of intricacy. In general, an adaptation layer mediates between
application-specific SS7 requirements for a particular SS7 user and the underlying
SCTP transport. As part of this mediation, the “xUA” must expose the API and func-
tionality toward the application (upper layer) that it expects from a “real” SS7 node.
Further, the “xUA” may have to rely on external SS7-based nodes for some things
that aren’t present locally on an IP-based node.

In addition to carrying various SS7-user messages over IP, SCTP is a general trans-
port protocol, and is capable of broader applications. SCTP has been proposed for
use in several applications, including as transport between SIP entities, and in con-
junction with various security and authentication mechanisms, such as IPsec or DI-
AMETER.
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6.2.1 Key Concepts in SCTP

The Stream Control Transmission Protocol (SCTP) is designed to transport PSTN
signaling messages over IP networks. RFC 2960 describes the following key points
of SCTP along with the explicit definition of packet and header fields, required at-
tributes, interface between SCTP and the “upper layer protocol,” and other protocol
details.

• Endpoint: An SCTP endpoint exists at either end of an SCTP session. Usually,
the endpoint is defined by the data structures, socket instances, and other state
information which is specific to SCTP. This information is managed by the op-
erating system of the host computer, and exists between the SCTP user and
the IP network. The “SCTP user” is typically an adaptation layer for higher-
level SS7 entities. Several virtual endpoints can exist per logical node, in the
same way that several IP sockets of the same type can be created on a host.
More specifically, an SCTP endpoint is a collection of transport addresses us-
ing a common IP port number, along with the information needed to manage
the connections. In object-oriented terms, an endpoint is an instance of the class
“SCTP” together with its data and methods.

• Association: The basic service offered by SCTP is the reliable transfer of mes-
sages between peer SCTP users. It performs this service in the context of an
association between two SCTP endpoints. Once the association is established,
unidirectional streams are open for data transfer on both ends. Figure 14 de-
scribes the initialization process for an SCTP association. In the figure, note the
use of various types of “chunks” used in session establishment as well as the ne-
gotiation of other communication parameters. An association must be created
between two SCTP endpoints before they can transfer data. Assocations can
be negotiated explicitly via an ASSOCIATE request from an SCTP user at one
endpoint or implicitly via data transmission with default association parameters.
During initialization, a state-cookie mechanism is used to provide some limited
security. This is illustrated in Fig. 14. Note that no more than one association is
allowed between two SCTP endpoints, and the association is identified by the
IP port number to which it is bound. After initialization, the association assigns
a global Transmission Sequence Number (TSN) to packets as they are trans-
mitted. The TSN is independent of any per-stream sequencing. The association
also keeps track of idle destinations using a heartbeat message which must be
acknowledged within a certain time-period by the receiver via a Heartbeat-
ACK chunk.

• Transport address: Each SCTP endpoint provides the other endpoint with a list
of transport addresses when the association is created. An SCTP endpoint can
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FIG. 14. Association initialization in SCTP.

transmit or receive IP packets from any of the transport addresses that it an-
nounces. A transport address is unique to an SCTP endpoint, and is comprised
of an IP address in combination with an SCTP port (i.e., an Internet “socket”
connection). All transport addresses used by an SCTP endpoint must use the
same port number, but can use multiple IP addresses for failover or parallel
transmission. This is also known as multihoming, and is described in detail be-
low.

• Streams: An SCTP stream is a sequence of user messages (“chunks”) to be
delivered, in correct sequence, to the upper-layer protocol. This contrasts with
the TCP stream which is an ordered sequence of bytes. The number of streams
in an SCTP association is negotiated at startup, and a primary path is designated.
Streams are somewhat analogous to threads in process execution, or “virtual
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channels” in other telecommunications parlance. Streams are numbered, and
have individual 16-bit sequence numbers to ensure ordered transmission.

• Packets and chunks: An SCTP packet is comprised of a header followed by
“chunks” of data. A chunk is a unit of information consisting of a chunk-specific
content, header, and format. Chunks can be CONTROL chunks or user data en-
capsulated within DATA chunks, and may be bundled (multiplexed) in a single
SCTP packet. Each chunk is identified by an 8-bit type-tag in the chunk header.

6.2.2 Path Management

A significant feature of SCTP is its explicit approach to path optimization. SCTP
performs this optimization between destinations independently of any transport or
routing facilities provided by the IP network. The interesting path management fea-
tures of SCTP can be divided into two primary areas: Multi-homing and Congestion
Avoidance.

Multi-homed IP nodes are nodes which can be reached via several different IP
addresses. If an SCTP endpoint is multi-homed, the SCTP instance informs corre-
sponding nodes about all of its IP addresses during association setup (using the INIT
chunk’s address parameters). An SCTP instance regards each IP address of its peer
as one “transmission path” towards this endpoint.

SCTP is unique in its use of multi-homed capabilities because it allows the SCTP
instance on an endpoint to monitor the relative quality of the various paths in the
association and select the “best path” for transmission. This essentially allows the
SCTP instance to participate in routing decisions. As a result, if the IP network(s)
connecting two multi-homed SCTP endpoints are configured so that traffic destined
for different IP numbers travels on physically separate paths, then the SCTP associa-
tion becomes somewhat tolerant to network failures. Multihoming can also be useful
in optimizing throughput and avoiding congestion.

As in TCP, SCTP uses two modes for congestion avoidance, called Slow Start and
Congestion Avoidance. Transition between these modes is determined by a set of
path-specific variables which are dynamically updated based on path performance.
The association begins with the endpoints in Slow Start mode. When data is suc-
cessfully delivered and acknowledged, the Congestion Window variable (CWND) is
increased. Eventually, CWND exceeds the Slow Start Threshold (SSTHRESH) and
the SCTP instance transitions into Congestion Avoidance mode. While in Slow Start

mode, CWND is generally increased quickly (roughly one MTU per received SACK
chunk), whereas in Congestion Avoidance mode, CWND increases by roughly one
MTU per Round Trip Time (RTT). Transmission timeouts or other events that trigger
retransmission cause the SSTHRESH variable to be reduced in addition to resetting
the CWND variable. For example, a timeout event causes the SCTP instance to tran-
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sition back into Slow Start mode with CWND = MTU, and a Fast Retransmit event
sets CWND = SSTHRESH.

Note that since the Maximum Transmission Unit for each path (Path MTU) is
directly related to congestion control, an SCTP instance determines the MTU and
maintains current values of this quantity for each path. Transmissions are also frag-
mented according to the MTU for each path.

6.2.3 Adaptation Layers

The transport of SS7 signaling over an IP network requires the use of applications
that exist at various layers in the SS7 protocol stack. These applications will need
to run without modification on IP-based nodes having no SS7 lower layers. As a
result, the IP-based nodes will have to act like native SS7 nodes even when they
may not (locally) have access to that information or those capabilities. Note that in
SS7, each layer is a user of the supporting layers beneath it. As a result, upper layers
make assumptions about information the lower layers should be able to provide.
This includes information about the network architecture, conditions, paths, etc. as
well as information about the corresponding process at the other end of the channel.
To reproduce this functionality at a specific layer boundary, this behavior must be
completely emulated, and must maintain access to the same capabilities with the
same programmatic interfaces, return values, and other data.

To achieve these performance requirements, the IETF SIGTRAN working group
has defined a collection of adaptation layers for SCTP which emulate specific func-
tionalities found in the various layers of the SS7 stack. Several of the SIGTRAN
adaptation layers are described in following sections.

• M3UA: The MTP3-User Adaptation Layer (M3UA, RFC 3332) supports the
transport of MTP3-User signaling (e.g., messages from ISUP, SCCP, TUP, etc.)
over IP using SCTP. To achieve seamless operation of peer MTP3-Users in
separate IP and SS7 domains, M3UA provides a functional inter-working of
transport functions. This allows an SS7-based MTP3-User (such as found on
a signaling gateway) to communicate “normally” with an IP-based Applica-
tion Server Process, such as a database or media gateway controller. From an
MTP3-User’s perspective, M3UA appears to be MTP3. It responds in the same
fashion to queries and produces the same information about the network or far-
end application. In effect, M3UA extends the MTP3 services of an SS7 node
to remote IP-based applications. M3UA does not itself provide the MTP3 ser-
vices. Instead, it uses SCTP/IP for transport to access MTP3 services at a remote
node. In this fashion, an IP-resident MTP3-User is unaware that the expected
MTP3 services are provided by an MTP3 Layer at a remote signaling gateway,
and not by a local MTP3 layer. The MTP3 layer at the signaling gateway may
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also be unaware that its users are actually remote user parts backhauled over IP
using M3UA/SCTP. M3UA can also be used for point-to-point connections be-
tween IP-resident MTP3-Users. In this case, M3UA emulates a subset of MTP3
services sufficient to manage the connection transparently.

• M2UA: The MTP2-User Adaptation Layer (M2UA, RFC 3331) is responsible
for “backhauling” signaling messages from an MTP2-user (such as MTP3) over
IP using SCTP. As such, M2UA is a remote procedure call mechanism which
uses SCTP for the transport protocol. M2UA allows IP-based nodes without a
local MTP2 implementation to use MTP2 facilities on a remote node. Using
SCTP as its transport across the IP network, M2UA masquerades the remote
MTP2 as a local facility. For example, from the perspective of an MTP3 layer
on an IP-based node, M2UA is MTP2, but it uses SCTP/IP for transport rather
than SS7, and the MTP2 facilities are actually provided by a remote node.

• M2PA: The MTP2 Peer-to-Peer Adaptation Layer (M2PA) [47] adapts MTP3
signaling messages for transport over IP using SCTP. Using SCTP for trans-
port, M2PA masquerades MTP2 between SS7 nodes that have IP connectivity.
In other words, an IP-based node with upper-layer SS7 application processes
can function as a traditional SS7 node using the IP network instead of SS7
links. To accomplish this, the SCTP association acts as an SS7 link between
the communicating endpoints. This allows for full MTP3 message handling and
network management capabilities between any two SS7 nodes communicating
over an IP network.

• SUA: The SCCP-User Adaptation Layer (SUA) [48] supports the transport of
SCCP-User signaling (e.g., MAP and CAP over TCAP, RANAP, etc.) over IP
using SCTP. When SS7 application-level messages are destined for an IP-based
application server, SUA resolves the destination to an SCTP association or IP
address using, for example, techniques such as Global Title Translation. In this
fashion, SUA can be used to carry a protocol that uses the transport services of
SCCP, but takes place between IP-based nodes.

6.3 SIP: Much More Than Voice

The Session Initiation Protocol (SIP, RFC 3261) is a lightweight IP application
protocol which provides call control functionality for IP media sessions. Its capabili-
ties include user location, registration, and basic session signaling. Similar to the Hy-
pertext Transport Protocol (HTTP) of web interactions, SIP leverages the clear-text
communication, object structure, addressing, and other aspects of traditional Internet
protocols.
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A key construct of SIP messages derives from the Multipurpose Internet Mail Ex-
tensions (MIME, RFC 2045-2049). Many Internet protocols, including electronic
mail and web documents also leverage the MIME structure. For instance, when a
web browser (or, “HTTP client”) requests a web page from a server, the server cre-
ates an object with the familiar “header + body + attachment” structure and returns
it via the client/server response. Contained in the “body” of the object are instruc-
tions for onscreen formatting of the object, and contained in the “attachments” of
the object are MIME-encoded, non-text multimedia components such as images, etc.
SIP messages have also adopted this structure. The standard SIP message is com-
posed of a text message in the “header” of a MIME document, with an optional
“body” attached. The text message contains a “command” line (a SIP method) fol-
lowed by several other header lines, some mandatory and some optional. Some ba-
sic SIP methods include REGISTER for registering contact information, INVITE,
ACK, CANCEL and BYE for setting up and terminating sessions, and OPTIONS for
querying capabilities. Each header line in the SIP message conveys a certain class
of information about the call or the command. A single MIME attachment accom-
panies SIP messages to describe session parameters. This attachment is a Session
Description Protocol (SDP, RFC 2327) “object” which contains parameters regard-
ing the IP port number for particular streams, the compression type and rate, and
several other media-specific items. By using the request/response pairs of SIP mes-
sages, arbitrary multimedia calls can be negotiated, created, and effectively managed
between any number of IP-connected endpoints. The popularity of SIP (partially due
to its simplicity and similarity to existing “document object” structures) has given
rise to several extensions of the basic protocol for the purpose of handling various
situations related to call-state management, endpoint control, and other issues.

An example usage of SIP in which user A wants to establish communication with
another user B is shown in Fig. 15. In the first step, the SIP client for A might

FIG. 15. Example usage of SIP involving user location.
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issue an INVITE request to the local SIP proxy of organization-1, where user A

is located. In the request, user B is identified by its SIP URI which might looked
like sip:userB@organization2.com. The request would then be forwarded
to the SIP proxy of organization-2 (step 2). In the example of Fig. 15, user B is
located at organization-3 at the time of call. User B has also issued periodic REG-
ISTER requests to the SIP proxy at organization-2 to update his present location. In
step 3, the present location of user B at organization-3 is returned to the SIP proxy of
organization-1, which subsequently forwards the INVITE request to the SIP proxy
of organization-3 (step 4). The SIP proxy at organization-3 knows where user B is
located, and forwards the request to the SIP agent of user B (step 5). In steps 6–8 of
Fig. 15, user B accepts the call, and a response value of OK is returned. When user A

obtains a response of OK for its INVITE request, an ACK is issued to confirm to B

that an OK has been received, and media communication can proceed. Note that even
when SIP proxies are employed, as in the example of Fig. 15, they are only involved
in the SIP message exchange but not the actual data transport.

Multiple protocols are typically needed in addition to SIP for realizing an actual
call. In particular, SDP is often employed to specify the media types and parameters
for the communication, and can be part of the INVITE message. The Real-time
Transport Protocol (RTP, RFC 3267), may be used for actual media transport after the
initial call setup exchanges. In addition to setup and teardown of a session, some mid-
session management is also possible under SIP. Specifically, the INVITE method
can be used after communication has started to modify the session, e.g., the number
of media streams, media types, and even invite new users to the communication.

6.3.1 Example SIP Usage in 3GPP

There are competing standards, most notably ITU H.323, that address the needs
of call initiation. Nevertheless, SIP has gained acceptance in the telecommunications
environment as 3GPP has specified the use of SIP for its IP Multimedia subsystem.
The advantages of SIP in this case include fewer constraints and less implementation
time for vendors. A more detailed comparison of H.323 and SIP for the purpose
of 3GPP is available in [49], and some example usage of SIP in 3GPP is outlined
in [50].

Figure 16 shows an example in which SIP is used to add an additional user to
an existing conversation in a 3G network. In Fig. 16, a conversation is already in-
progress between a mobile user MS and a user B in the legacy public phone network
(PSTN). The mobile user wants to add an additional regular phone user C to the
conversation, and so issues a single INVITE request as shown in step 1. The Call-
State Control Function (CSCF) forwards the INVITE request to both B and C in
step 2. Since C is not already in the conversation, the Media Gateway Controller
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FIG. 16. Example usage of SIP to add a new user (C) to an existing conversation between two users
MS and B.

(MGC) issues a series of messages connecting to user C while returning a response
of Ringing to the CSCF (steps 3 and 4). Eventually, the MGCF returns OK for
both users B and C for the INVITE request (steps 5 and 6). The OK responses are
forwarded from the CSCF to the mobile user, who can then issue ACK requests to
signal the completion of the call establishment (steps 7 and 8).

7. Conclusion

As telecommunications and computing technologies converge, the architecture
and components of these networks are becoming increasingly commoditized. Fueled
in many ways by regulatory issues and the pervasiveness of computing and network-
ing technologies, the convergence phenomenon is inevitable. Whether commoditi-
zation takes the form of widespread adoption of standard, open communication in-
terfaces, open-source software, or low-cost industry-standard devices, the message
is clear: multi-modal, multi-media communication is a vital part of modern society,
and supporting such communications via an IP-based infrastructure requires highly
distributed computing technologies. This implicit requirement is a common thread
among the technologies that are disrupting conventional telecommunications.
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A fundamental premise of converged networking is the migration of enhanced ser-
vices (customizable behavior, multimedia capabilities, etc.) away from closed, cen-
tralized, and provider-owned facilities. This premise pre-supposes a pervasive, com-
mon, and easily adapted “intelligent edge,” which violates the fundamental assump-
tions of conventional telephony. The resulting phenomenon is an accelerating spiral.
Desire for rapidly evolving services is fueled by the commoditization of network ac-
cess, bandwidth availability, and ubiquitous computing elements. Development and
commoditization of these enabling technologies is driven by demand for ever-more
sophisticated services and endless bandwidth. Unfortunately, effective delivery of
such services pre-supposes sufficient bandwidth and quality of service guarantees
for multimedia and isochronous data streams. Adequate QoS for multimedia streams
is difficult for telephony networks, which are structured for voice transport. Ade-
quate QoS for isochronous streams is difficult for IP networks, which are structured
for best-effort data. Clearly, the increasing demand for mobile wireless voice and In-
ternet access will continue to drive the development of exciting new technologies to
satisfy this need, and the spiral of convergence will continue. From signaling to trans-
port protocols, from processors to system architectures, the end-to-end requirements
of advanced services are driving toward fully distributed, pervasive computing.

This chapter has highlighted and categorized several technologies, trends, and ar-
chitectures which are affecting the structure of telecommunications networks. These
“disruptive technologies” are clear evidence that the information revolution is affect-
ing all facets of modern communications.
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Abstract

Computing with quantum states may be the most efficient approach to solving
some problems that take exponential time on conventional computers. Quantum
states, however, are short-lived without constant error correction. Furthermore,
the classical control required by proposed quantum schemes imposes constraints
on how a quantum computer can be built.

This chapter focuses on a basic architectural requirement for any computa-
tion—communication. Unlike classical signals, quantum data cannot be simply
transmitted over a wire, but must be moved step-wise from location to adjacent
location. We start with a brief overview of quantum computing operations, error
correction, and algorithms. Next we analyze a straightforward communication
mechanism—the swapping channel. We compare the swapping channel with a
longer-range communication mechanism—the teleportation channel. We finish
out the chapter with a discussion of error correction. Error correction is necessary
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to avoid data corruption. We look in detail at its architectural implications and
analyze the associated overhead.
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1. Introduction

Many important problems seem to require exponential resources on a classical
computer. Quantum computers can solve some of these problems with polynomial
resources, which has led a great number of researchers to explore quantum informa-
tion processing technologies [1–7]. Early-stage quantum computers have involved a
small number of components (less than 10) and have utilized molecules in solution
and trapped ions [8–11]. To exploit our tremendous historical investment in silicon,
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however, solid-state silicon quantum computers are desirable. Promising proposals
along these lines have begun to appear [12,13]; these even include ideas which merge
atomic physics and silicon micromachining [14]. However, as the number of com-
ponents grows, quantum computing systems will begin to require the same level of
engineering as current computing systems. The process of architectural design used
for classical silicon-based systems, of building abstractions and optimizing struc-
tures, needs to be applied to quantum technologies.

Even at this early stage, a general architectural study of quantum computation is
important. By investigating the potential costs and fundamental challenges of quan-
tum devices, we can help illuminate pitfalls along the way toward a scalable quan-
tum processor. We may also anticipate and specify important subsystems common to
all implementations, thus fostering interoperability. Identifying these practical chal-
lenges early will help focus the ongoing development of fabrication and device tech-
nology. In particular, we find that transporting quantum data is a critical requirement
for upcoming silicon-based quantum computing technologies.

Quantum information can be encoded in a number of ways, such as the spin com-
ponent of basic particles like protons or electrons, or in the polarization of photons.
Thus, there are several ways in which we might transfer information. First, we might
physically transport particles from one point to another. In a large solid-state sys-
tem, the logical candidate for information carriers would be electrons, since they are
highly mobile. Unfortunately, electrons are also highly interactive with the environ-
ment and hence subject to corruption of their quantum state, a process known as
decoherence. Second, we might consider passing information along a line of quan-
tum devices. This swapping channel is, in fact, a viable option for short distances (as
discussed in Section 9), but tends to accumulate errors over long distances.

Over longer distances, we need something fundamentally different. We propose
to use a technique called teleportation [15] and to call the resulting long-distance
quantum wire a teleportation channel to distinguish from a swapping channel. Tele-
portation uses an unusual quantum property called entanglement, which allows quan-
tum information to be communicated at a distance.1 To understand the mathematical
details and practical implications of teleportation, we will need to cover some back-
ground before returning to the subject in Section 3.3.

A striking example of the importance of quantum communication lies in the im-
plementation of error correction circuits. Quantum computation must make use of
extremely robust error correction techniques to extend the life of quantum data. We
present optimized layouts of quantum error correction circuits based upon quantum
bits embedded in silicon, although other technologies share many of the same fea-
tures and limitations. An overview of quantum technologies my be found in [16,17].

1The speed of this channel is, however, limited by the rate at which two classical bits can be transmitted
from source to destination, without which the quantum information is ambiguous.
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We discover two interesting results from our quantum layouts. First, the recursive
nature of quantum error correction results in a H-tree-structured circuit that requires
long-distance communication to move quantum data as we approach the root. Sec-
ond, the reliability of the quantum SWAP operator is perhaps the most important op-
erator for a technology to implement reliably in order to realize a scalable quantum
computer.

The remainder of this chapter continues with a brief introduction to quantum com-
puting in Section 2. We describe our assumptions about implementation technologies
in Section 4. Next, Section 5 discusses how quantum information can be transported
in solid-state technologies. This includes a discussion of short-distance swapping

channels and the more scalable long-distance teleportation channels. Section 2.2 in-
troduces error correction algorithms for quantum systems and discusses the physical
layout of such algorithms. Then, Section 6 probes details of two important error
correction codes. Following this, in Section 7, we demonstrate the need for telepor-
tation as a long-distance communication mechanism in the layout of recursive error
correction algorithms. Finally, Section 8 discusses system bandwidth issues and in
Section 9 we conclude.

2. Background

While a bit in a classical computer represents either zero or one, a quantum bit can
be thought of as simultaneously representing both states. More precisely, the state of
a qubit is described by probability amplitudes for measuring states representing zero
or one. The amplitudes are complex values, with real and imaginary parts, and only
turn into real probabilities upon external observation. Unlike classical probabilistic
computation, the amplitudes for different computational pathways can cancel each
other out through interference. The actual probabilities are determined by the mod-
ulus of the amplitude, which is the amplitude multiplied by its complex conjugate
(hereafter referred to, somewhat inaccurately, as the square of the amplitude).

The key to exponential speedup is that quantum computers directly and simultane-
ously manipulate probability amplitudes to perform a computation. A system with n

qubits has the ability to be in 2n states simultaneously, each with its own probability
amplitude. For example, two qubits can be in a superposition of the states 00, 01, 10,
and 11. The work of a quantum computer is to manipulate qubits and the associated
amplitude vectors in a useful manner. Any operation on a single qubit can affect all
2n states. This is often called quantum parallelism, and is a useful way to think about
what gives quantum computers such high potential speedups over classical comput-
ers. However, only one of these 2n states can ever be measured.
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More precisely, measuring a qubit vector is equivalent to calculating the squares of
the amplitudes, and probabilistically choosing one state. The amplitude vector then
collapses, with a value of one for the chosen state, and zeroes for all other states. For
this reason, quantum computers are best at NP problems where only a single answer
is needed, and the answer can be verified in P -time.

Designers of quantum algorithms must be very clever about how to get useful
answers out of their computations. One method is to iteratively skew probability
amplitudes in a qubit vector until the probability for the desired value is near 1 and
the probability for other values is close to 0. This is used in Grover’s algorithm for
searching an unordered list of n elements [18] for a key meeting some arbitrary
criteria. The algorithm iterates

√
n times, at which point a qubit vector representing

the keys can be measured. The desired key is found with high probability.
Another option is to arrange the computation such that it does not matter which

one of many highly probable results is measured from a qubit vector. This method
is used in Shor’s algorithm for prime factorization of large numbers [19], building
upon modular exponentiation of all states and the quantum Fourier transform, an ex-
ponentially fast version of the classical discrete Fourier transform. Essentially, the
factorization is encoded within the period of a set of highly probable values, from
which the desired result can be obtained no matter which value is measured. Since
prime factorization of large numbers is the basis of many modern cryptographic se-
curity systems, Shor’s algorithm has received much attention.

Section 6 discusses Shor’s and Grover’s algorithms in more detail.

2.1 Basic Quantum Operations

In general, qubits are denoted in Dirac’s “bra, ket” notation. |0〉 represents a qubit
in the zero state, and is pronounced “ket zero.” A generic qubit, |ψ〉, is represented
by α|0〉 + β|1〉, where ‖α‖2 and ‖β‖2 are the probabilities of measuring 0 or 1,
respectively. |0〉 and |1〉 are also sometimes referred to as the computational basis.

Another useful way of thinking about a qubit is the Bloch sphere (see Fig. 1). |0〉
is up along the ẑ-axis, and |1〉 is down. Generically, |ψ〉 = cos φ

2 |0〉 + sin φ
2 eiθ |1〉.

Operations on a qubit are equivalent to rotations of the Bloch sphere.2

Figure 2 gives a few basic quantum operations that are used in the proposed quan-
tum architecture. These include one-bit operations such as the bit-flip (X), phase-

2It is interesting to note that a vector on the Bloch sphere only has two degrees of freedom. This is
because all operators are unitary—they preserve a total probability of unity. Hence, the phase for |0〉 can
be divided out, and kept as a constant. All operators are multiplicative, so this global constant makes no
difference, and cannot actually be observed. In general, the zero state for any set of qubits can be thought
of having a real, non-negative value. Unfortunately, the Bloch sphere model does not scale to multiple
qubits, but it is useful as a visualization tool for single-qubit operations on sets of qubits.
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FIG. 1. Bloch sphere representation of a qubit.

FIG. 2. Basic quantum operations.
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flip (Z), Hadamard (H ), and “π/8” (T ) gates, as well as the two-bit controlled-not.
These are given in both their circuit representation and their matrix representation.
The matrix representation involves multiplying the operator by the amplitude vec-
tor of the quantum states. The X, Y , and Z operators are equivalent to rotating the
Bloch sphere by π around the x̂-, ŷ-, and ẑ-axes, respectively. The T operator rotates
around the ẑ-axis by π/4 (it is called π/8 for historical reasons). Any n-qubit uni-
tary operator may be composed from single-qubit operators and the CNot operator.
A minimal universal set of operators, able to approximate any unitary operator to
arbitrary precision, is CNot, H , and T .

Another interpretation of the above operators is that the bit-flip exchanges the
probabilities of the two states, while the phase flip changes the sign (phase) between
them. The Hadamard takes the two states and “mixes” them to a “halfway” state. The
controlled-not does a bit-flip if the control qubit is 1: CNOT|xy〉 → |x, x ⊕ y〉, where
⊕ is modulo-2 addition. These basic gates, along with the measurement of qubits,
form the set of operations used for quantum computation.

To illustrate that quantum computation is potentially more powerful than classical
computation, it useful to look at entanglement. If two qubits are joined to form a
system, |x〉|y〉 → |xy〉, the result is the tensor product (denoted by ⊗) of the vector
representations:

(

α|0〉 + β|1〉
)

⊗
(

γ |0〉 + δ|1〉
)

→ αγ |00〉 + αδ|01〉 + βγ |10〉 + βδ|11〉.
Any single-qubit operator, or tensor product of single-qubit operators, may be ap-
plied to the system and the qubits remain independent. However, if one applies a
Hadamard operator to the first qubit, and then uses that qubit as the control in a
CNOT on the second qubit (see Fig. 3), the resulting superposition of states cannot
be split into the tensor product of two qubits. The two qubits share information that
neither qubit has alone, and there is no concept of state for the individual qubits. The
qubits are now tied together, or entangled: whatever value is measured for the first
qubit will also be measured for the second qubit. The amplitudes for |01〉 and |10〉
are zero. This particular state is known as an EPR pair (after Einstein, Podolsky and
Rosen, who were among the first to investigate such states). It is also called a Bell
state, or a “cat” state, after Schrödinger’s infamous thought experiment. Cat states
are very important, and are used extensively in quantum computation.

FIG. 3. Creating a “cat” state.



282 D. COPSEY ET AL.

The group of operators given above are sufficient to approximate an arbitrary n-
qubit unitary operator to any desired accuracy, although for n > 1, the approximation
is not necessarily efficient, and may be exponential in n. That said, a few more op-
erators are generally used for descriptions of computations. They are Rx(θ), Ry(θ),
and Rz(θ), rotations by θ about the x̂-, ŷ-, and ẑ-axes. Rz(π/2) is used often enough
to deserve its own name, S. Any two of the arbitrary-rotation operators can be used
to efficiently implement any single-qubit unitary operator, U :

U = Rx(α)Ry (β)Rx(γ )

for some α, β , and γ .
Much like classical gates, there are some basic relationships between quantum

operators that are important (the † indicates the adjoint, or inverse, of the operator):

X2 = Y 2 = Z2 = H 2 = I,

X = X†,

Y = Y †,

Z = Z†,

XZ = iY,

HZH = X,

HXH = Z,

S2 = Z,

T 2 = S,

SZ = ZS = S†,

SXS† = Y.

There are also several relationships involving CNOT:

(1) X applied to the control input is equivalent to applying X to both outputs.
(2) X applied to the target input is equivalent to applying X to the target output.
(3) Z applied to the control input is equivalent to applying Z to the control output.
(4) Z applied to the target input is equivalent to applying Z to both outputs.
(5) H ’s applied before and after to the target bit converts a CNOT to a controlled-Z

operator.
(6) Two qubits may be swapped with three CNOT’s, with the middle CNOT applied

in the opposite direction (swapping target and control).
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Measurement is the one operation allowed in quantum computation that has no
inverse. As stated above, measurement is equivalent to randomly choosing one of
the states represented by the qubit(s) based on the probabilities determined by the
amplitude vector. Note that measurement destroys the wave function representing
the superposition of states. If a qubit is measured as zero, it will be measured as zero
from then on, unless another operator is applied, or decoherence occurs. If only part
of a set of entangled qubits is measured, the rest of the qubits will be in a super-
position of states consistent with the values measured. In the case of the cat state
above, if the first qubit is measured as a one, the second qubit will be in a pure |1〉
state.

Measurements are possible in something other than the computational basis. In
terms of the Bloch sphere, the measurement operator described really measures zero
for “up” and 1 for “down,” but could just as easily measure “left” and “right” (along
the ŷ-axis). Usually, though, such a measurement is made by rotating the ŷ-axis to
the ẑ-axis (Rx(π/2)), and then using the usual measurement operator.

A useful application of measurements in other bases and partial measurement is
quantum error correction.

2.2 Quantum Error Correction

Quantum phenomena are constantly evolving with time. Atoms decay. Electrons
change orbitals by absorbing or emitting photons. Magnetic spin states of nuclei and
electrons flip due to external magnetic fields. A quantum system cannot be isolated
to the point where it is completely stable. Hence, if two qubits are in an entangled
state, they will eventually decohere due to entanglements with the environment. In
particular, the environment acts on a qubit every time an operator is applied. The
applied operator is a finite approximation implemented by a classical physically
controlled process,3 so the operator itself has a finite chance of introducing an er-
ror.

One way to reduce the effect of decoherence is to encode the state of a single log-
ical qubit over several physical qubits. Peter Shor [20] gave the following example:

Imagine that a logical qubit is encoded as |0L〉 = |000〉 and |1L〉 = |111〉. One can
measure the difference in value between any two qubits using a circuit like the one
in Fig. 4. By performing two such measurements (see Fig. 5) one can determine if a
single qubit’s value is different than the other two, and correct it (see Table I). When
the logical qubit is measured, if one of the qubits is different than the other two, one

3Quantum processes, such as an electron changing states, are inherently probabilistic. This is the reason
for the tension between the classical and quantum domains. The classical scale components must have
enough states to approximate a continuum to a fine enough degree so that errors in the applied operators
are kept below an acceptable threshold.
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FIG. 4. Measuring Z12 , the phase difference between ψ2 and ψ1.

FIG. 5. Syndrome Measurement for 3-bit Code. The meter boxes indicate measurement, and the dou-
ble lines indicate classical communication controlling the application of the Z operator.

TABLE I
PHASE CORRECTION FOR A 3-QUBIT CODE

Z01 Z12 Error type Action

0 0 no error no action
0 1 qubit 3 flipped flip qubit 3
1 0 qubit 1 flipped flip qubit 1
1 1 qubit 2 flipped flip qubit 2

can assume that it was inadvertently flipped along the way. However, it would be
better to determine that a qubit had been flipped without having to measure it, since
measurement destroys the quantum state. Shor noted that a similar circuit (without
the Hadamard gates, and turning the CNOT’s around) could be used to measure the
difference in phase between two qubits. By encoding each of the three qubits in the
phase-flip code with the three-qubit amplitude-flip code (nine qubits total), one could
measure and correct any single phase or amplitude error. Furthermore, the process of
interacting the extra |0〉 ancilla qubits with the encoded qubits produces an entangled
state. After the measurement, the remaining qubits are in a state consistent with the
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measurement. That is, if qubit 2 is out of phase with the others, then applying a Z

gate will exactly fix the error!
The nine-qubit logical codewords for the states |0L〉 and |1L〉 are

|0L〉 = (|000〉 + |111〉) ⊗ (|000〉 + |111〉) ⊗ (|000〉+ |111〉)
2
√

2
,

|1L〉 = (|000〉 − |111〉) ⊗ (|000〉 − |111〉) ⊗ (|000〉− |111〉)
2
√

2
.

The amazing thing about the code is that applying a Z (phase change) operator to
each of the nine qubits takes |0L〉 to |1L〉 and vice versa. It is the same as applying
a X (logical X) operator to the encoded qubit! Similarly, applying a X operator to
each of the physical qubits performs a Z operation.

Shor’s code, based on the classical error correction method of repetition, is termed
a �9,1,3� code—nine physical qubits, encoding one logical qubit, with a Ham-
ming distance of three. A code with a distance d is able to correct (d − 1)/2
errors. The �9,1,3� code contains all of the elements of the quantum error-
correcting codes in this chapter. To avoid actually measuring the state of the in-
dividual qubits, ancilla qubits are used. In addition, the measurement of the an-
cillae determines a unique error syndrome, a mapping from the measured val-
ues to the operations necessary to correct the error(s). Much like classical lin-
ear error codes, measuring the parity of subsets of the bits determines the error
syndrome. The parity measurement tells nothing about the absolute value of the
bits, just the relative value. Unlike a classical code, however, the parity measure-
ments are made in a variety of bases: the parity measurement in the computational
basis tells which bits have amplitude errors, and the parity measurement in the
Hadamard-rotated basis (also called the Bell basis) tells which bits have phase er-
rors.

Shortly after Shor demonstrated the �9,1,3� code, he and Calderbank [21], and
independently Steane [22], showed how to create quantum error correction codes
based on classical linear codes. One important such code is the so-called Steane code
(a �7,1,3� code). Further refinements and generalizations led to stabilizer codes,
such as the �5,1,3� code [23], which is the smallest (densest) known encoding of a
single qubit; the �8,3,3� code [24–26], the densest three-qubit code; the �16,10,3�
code and many others. For more on quantum error-correction codes, the reader is
directed to the literature [16].

To summarize, errors in quantum circuits are not limited to full phase or bit flips,
but can be any complex-valued linear combination of the two. However, when the
error syndrome of an error code is determined, the parity measurements collapse
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the error waveform in the error-measurement basis. Measuring the error effectively
quantizes it so that only X, Y , and Z operators need be applied to correct it.4

2.3 Fault-Tolerant Computation

Qubits are subject to decoherence when they interact with the environment. Apply-
ing an operator to a qubit is just such an interaction. On the other hand, if an operator
could be applied directly to the encoded qubit(s), the qubit could be error-corrected,
and any error detected and corrected. Some stabilizer codes allow easy application
of some logical operators, as the nine-qubit code demonstrated. The Steane �7,1,3�
code is even more amazing, in that X is applied by applying X to all seven encod-
ing qubits. The same is true for the Z, H , Y , and CNOT operators. The S operator
requires applying ZS (= S−1). The last operator required to create a universal set,
the T operator, requires a slightly more complicated procedure. Any logical operator
may be applied in a fault tolerant manner, as long as the probability of an error for a
physical operator, p, is below a certain threshold, 1/c, where c is the number of ways
two errors during the operator application and subsequent error correction can cause
an erroneous result. For the �7,1,3� code, c is about 104. The overall probability of
error for the logical operator is cp2. That is, at some step in the application of the
operator, and subsequent error correction, two errors would have to occur in order
for the logical operator to fail.

If a logical qubit is encoded in n physical qubits, it is possible to encode each of
those n qubits with an m-qubit code to produce an mn encoding. Such concatenation
of codes can reduce the overall probability of error even further. For example, con-
catenating the �7,1,3� with itself gives a �49,1,7� code with an overall probability

of error of c(cp2)2 (see Fig. 6). Concatenating it k times gives (cp)2k
/c, while the

size of the circuit increases by dk and the time complexity increases by tk , where d

is the increase in circuit complexity for a single encoding, and t is the increase in
operation time for a single encoding. For a circuit of size p(n), to achieve an desired
probability of success of 1 − ε, then k must be chosen such that [16]:

(cp)2k

c
�

ε

p(n)
.

The number of gates (operators) to achieve this result is O(poly(logp(n)/ε)p(n)),
provided p is below some threshold.

4This is not entirely true. The measurement and correction will return a valid codeword, or superpo-
sition of codewords. If more than (d − 1)/2 errors occur, where d is the Hamming distance, then the
error syndrome may indicate that no reliable correction is possible. If more than (d + 1)/2 errors occur,
the corrections indicated by the error syndrome may take the code to some erroneous superposition of
codewords.
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FIG. 6. Tree structure of concatenated codes.

The same results hold for codes other than �7,1,3�, although there is no guar-
antee that performing logical operations is efficient. For instance, stabilizer codes,
allow fairly easy application of the operators X, Y , Z, and H to the encoded qubits.
However, for a given stabilizer code, an arbitrary rotation may be difficult to perform
in a fault tolerant manner. If an operator requires the application of a two-qubit op-
erator between physical qubits in the same encoding, then an error before or during
the application of the operator can propagate to multiple qubits. If the code can only
correct a single error, as is the case for all of the distance-three codes discussed, this
is already too many.

3. Quantum Algorithms

3.1 Shor’s Factoring Algorithm

Perhaps the biggest motivation for research into quantum computation is due to
Peter Shor’s algorithm for factoring large numbers. Shor’s algorithm [19] can factor
large numbers in polynomial time on the size of the representation (i.e., the number
of bits), using modular exponentiation and an inverse quantum Fourier transform.
The best classical algorithms known require exponential time in the number of bits.

Factoring is considered to be a “hard” problem. Rivest, Shamir, and Adleman [27]
have used it for the trapdoor function for RSA security.

“A message is encrypted by representing it as a number M , raising M to a
publicly specified power e, and then taking the remainder when the result di-
vided by the publicly specified product, n, of two large secret prime numbers
p and q . Decryption is similar; only a different, secret, power d is used, where
e · d = 1 (mod ((p − 1) · (q − 1))). The security of the system rests in part on
the difficulty of factoring the published divisor, n.”

Clearly, an algorithm that makes factoring exponentially easier is of immense inter-
est.

A brief outline of Shor’s algorithm for factoring n is as follows:
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(1) Test the number for the two cases where the algorithm will always fail:
(a) the number is prime, or
(b) the number is an integer raised to some power.
(Both of these tests can be performed in polynomial time.)

(2) Prepare a quantum register of ⌈log2 n⌉ + ε qubits, |ψ〉, in a superposition of
all 2log2 +ε states. ε determines the precision of s/r below.

(3) Apply the unitary transform, U(x):

U(x)|ψ〉|0 . . .01〉 → |ψ〉
∣

∣xψ (mod n)
〉

for a random x in the interval [2, n − 1]. The second register is the same size
as |ψ〉, but is prepared as a binary 1. Note that the transform is unitary, since
it has an inverse.

(4) Apply the inverse quantum Fourier transform.
(5) Measure |ψ〉, to get an approximation of s/r , where r is periodicity of the

modular exponentiation, i.e., xr = 1 (mod n), and 1 � s < r .
(6) Use Euler’s continued fraction algorithm to determine r . The continued frac-

tion algorithm represents a rational number as

a0 + 1

a1 + 1
a2+···

,

where the ai are integers. It is the unique, reduced representation for that ra-
tional number. If s/r has enough bits, then r is determined uniquely.

xr − 1 = kn, for some integer k. With high probability, one of xr/2 + 1 or xr/2 − 1
has a common factor with n, which can be found by using Euler’s algorithm to find
the greatest common denominator of two integers. Possible reasons for the algorithm
to fail are xr/2 = ±1 (mod n) (probability O(n−1) or inverse exponential in the
number of bits to represent n), or one of xr/2 ± 1 has a common factor with k, also
with a probability of O(n−1).

3.2 Grover’s Search Algorithm

Grover’s search algorithm is used to find a solution set to a NP -decision problem,
given a polynomial time operator to recognize the solution. A familiar example is
3-SAT. 3-SAT is NP complete, so the best known algorithm to find a solution is
exponential in the number of literals. However, given a proposed solution to a 3-SAT
problem, it is simply a matter of verifying that each clause in the expression evaluates
to true, which can be done in polynomial time for a given set of literals.

A unitary operator to evaluate any proposed solution to a 3-SAT problem can be
built with a polynomial number of gates. The same is true of any boolean logic that
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can be performed in polynomial time on a classical computer. Much like the CNOT

gate described above, this operator can be made to flip a single bit if the expression
evaluates to true. If the set of qubits to be operated on starts out as a superposition of
all states, applying the 3-SAT evaluation operator changes the phase of those states
that represent a solution, marking them with a negative phase.

The next operation, G, inverts about the mean:

G
∑

k

αk|k〉 =
∑

k

[

−αk + 2〈α〉
]

|k〉.

The operator G is (2|ψ〉〈ψ| − I),5 where |ψ〉 is the equal superposition of all states.
It is equivalent to H⊗n(2|0〉〈0| − I)H⊗n (n is size of the vector). The expression in
parentheses is an operator that changes the phase of all states but the zero state.

Mathematically, this is the same as rotating in a plane defined by |ψ〉 and |M〉, the
vector of all states that are solutions, by the amount

θ = arcsin

(

2
√

|M|(|N | − |M|)
|N |

)

where |M| is the size of the solution set and |N | is the size of the solution space, i.e.,
2n. If this sequence is iterated

√
|N | times, a solution will be measured with prob-

ability O(1). Unfortunately, this is not P -time solution, as was the case with Shor’s
algorithm. On the other hand, it may make many problems tractable that otherwise
would not have been.

3.3 Teleportation

Although many quantum error correction codes could be used in a quantum com-
puter, converting between them can be problematic. In fact, conversion between
codes can randomly propagate errors across qubits and compromise reliability. For-
tunately, there is a special way to convert between codes that avoids this problem.
This method involves the quantum primitive of teleportation [28]. As it turns out,
teleportation is not only a good way to convert between codes, but it is also a good
way to transport quantum data between the different parts of the system.

Quantum teleportation is the re-creation of a quantum state at a destination using
some classical bits that must be communicated along conventional wires or other
media. In order for this to work, we need to precommunicate an EPR pair, |00〉+|11〉.
We use the information shared by the pair to achieve teleportation.

5The “bra” notation, 〈ψ | is the adjoint (conjunct and transpose) of |ψ〉, the column vector of the wave-
function amplitudes. The notation |0〉〈0| is a matrix with a 1 in the upper left corner, and zeroes everywhere
else.
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FIG. 7. Quantum teleportation.

Figure 7 gives a more precise view of the process. We start with an EPR pair at the
source end of the wire. We separate the pair, keeping one qubit, |b〉, at the source and
transporting the other, |c〉, to the destination. Note that quantum data is denoted by
the single lines, while classical data is represented by double lines. When we want
to send a quantum bit of data, |a〉, we first interact |a〉 with |b〉 using a CNOT and a
Hadamard gate. We then measure the |a〉 and |b〉, and send the two one-bit results to
the destination classically, where the receiver uses them to re-create the correct phase
and amplitude in |c〉 such that it takes on the state of |a〉. The re-creation of phase
and amplitude is done with classically controlled-X and Z gates, which perform the
same function as the gates described in Fig. 2 but contingent on classical control bits,
the measurements of |a〉 and |b〉.

Note that the original state of |a〉 is destroyed once we take our two measure-
ments.6 Intuitively, since |c〉 has a special relationship with |b〉, interacting |a〉 with
|b〉 makes |c〉 resemble |a〉, modulo a phase and/or amplitude error. The two mea-
surements allow us to correct these errors and re-create |a〉 at the destination.

In order to use teleportation to convert between different error coding schemes,
the two halves of our EPR pair are encoded into the source and destination codes.
The source and destination qubits are then interacted bitwise with the respective EPR
halves just as in the basic teleportation algorithm. The result is a “quantum wire” that
gives us a means to both transport quantum data and convert between different error
correction codes.

4. Solid-State Technologies

With some basics of quantum operations in mind, we turn our attention to the tech-
nologies available to implement these operations. Experimentalists have examined
several technologies for quantum computation, including trapped ions [29], photons
[30], bulk spin NMR [31], Josephson junctions [32,13], SQUIDS [33], electron spin

6 This is consistent with the no-cloning theorem, which states that an arbitrary quantum state cannot be
perfectly copied; this is fundamentally because of the unitarity of quantum mechanics.
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resonance transistors [34], and phosphorus nuclei in silicon (the “Kane” model) [12,
35]. Of these proposals, only the last three build upon a solid-state platform; they
are generally expected to provide the scalability required to achieve a truly scalable
computational substrate.

For the purposes of this paper, the key feature of these solid-state platforms are:

(1) Quantum bits are laid out in silicon in a 2D fashion, similar to traditional
CMOS VLSI.

(2) Quantum interactions are near-neighbor between bits.
(3) Quantum bits can not move physically, but quantum data can be swapped

between neighbors.
(4) The control structures necessary to manipulate the bits prevent a dense 2D grid

of bits. Instead, we have linear structures of bits which can cross, but there is
a minimum distance between such intersections that is on the order of 20 bits
for our primary technology model [36]. This restriction is similar to a “design
rule” in traditional CMOS VLSI.

These four assumptions apply to several solid-state technologies. For concreteness,
we will focus upon an updated version of Kane’s phosphorus-in-silicon nuclear-spin
proposal [35]. This scheme will serve as an example for the remainder of the paper,
although we will generalize our results when appropriate.

Figure 8 illustrates important dimensions of the Kane scheme. Shown are two
phosphorus atoms spaced 15–100 nm apart. Quantum states are stored in relatively
stable electron-donor (e−–31P+) spin pairs, where the electron (e) and the donor nu-
cleus (n) have opposite spins. The basis states, |0〉 and |1〉 are defined as the superpo-
sition states |0〉 ≡ |↑e ↓n〉+|↓e ↑n〉 and |1〉 ≡ |↑e ↓n〉−|↓e ↑n〉. Twenty nanometers

FIG. 8. The basic quantum bit technology proposed by Kane [35]. Qubits are embodied by the nuclear
spin of a phosphorus atom coupled with an electron embedded in silicon under high magnetic field at low
temperature.
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above the phosphorus atoms lie three classical control wires, one A gate and two S

gates. Precisely timed pulses on these gates provide arbitrary one- and two-qubit
quantum gates.

Single qubit operators are composed of pulses on the A-gates, modulating the hy-
perfine interaction between electron and nucleus to provide Z axis rotations. A glob-
ally applied static magnetic field provides rotations around the X axis. By chang-
ing the pulse widths, any desired rotational operator may be applied, including the
identity operator. Two-qubit interactions are mediated by S-gates, which move an
electron from one nucleus to the next. The exact details of the pulses and quantum
mechanics of this technique are beyond the scope of this paper and are described
in [35].

Particularly apropos to the next few sections of this paper, however, is the inter-
qubit spacing of 15–100 nm. The exact spacing is currently a topic of debate within
the physics community, with conservative estimates of 15 nm, and more aggressive
estimations of 100 nm. The tradeoff is between noise immunity and difficulty of man-
ufacturing. For our study, we will use a figure (60 nm) that lies between these two.
This choice implies that the A and S gates are spaced 20 nm apart. We parameterize
our work, however, to generalize for changes in the underlying technology.

The Kane proposal, like all quantum computing proposals, uses classical signals
to control the timing and sequence of operations. All known quantum algorithms,
including basic error correction for quantum data, require the determinism and reli-
ability of classical control. Without efficient classical control, fundamental results
demonstrating the feasibility of quantum computation do not apply (such as the
Threshold Theorem used in Section 5.2.3).

Quantum computing systems display a characteristic tension between computa-
tion and communication. Fundamentally, technologies that transport data well do so
because they are resistant to interaction with the environment or other quantum bits;
on the other hand technologies that compute well do so precisely because they do

interact. Thus, computation and communication are somewhat at odds.
In particular, atomic-based solid-state technologies are good at providing scalable

computation but complicate communication, because their information carriers have
nonzero mass. The Kane proposal, for example, represents a quantum bit with the
nuclear spin of a phosphorus atom implanted in silicon. The phosphorus atom does
not move, hence transporting this state to another part of the chip is laborious and
requires carefully controlled swapping of the states of neighboring atoms. In con-
trast, photon-based proposals that use polarization to represent quantum states can
easily transport data over long distances through fiber. It is very difficult, however,
to get photons to interact and achieve any useful computation. Furthermore, trans-
ferring quantum states between atomic and photon-based technologies is currently
extremely difficult.
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Optimizing these tensions, between communication and computation, between
classical control and quantum effects, implies a structure to quantum systems. In
this paper, we begin to examine this optimization by focusing on communication
in solid-state quantum systems. Specifically, we begin by examining the quantum
equivalent of short and long “wires.”

5. Transporting Quantum Information: Wires

In this section, we explore the difficulty of transporting quantum information
within a silicon substrate. Any optimistic view of the future of quantum comput-
ing includes enough interacting devices to introduce a spatial extent to the layout of
those devices. This spatial dimension, in turn, introduces a need for wires. One of
the most important distinctions between quantum and classical wires arises from the
no-cloning theorem [2]: quantum information cannot be copied but must rather be
transported from source to destination (see footnote 6).

Section 5.1 begins with a relatively simple means of moving quantum data via
swap operations, called a swapping channel. Unfortunately, the analysis of Sec-
tion 5.2 indicates that swapping channels do not scale well, leading to an alterna-
tive called a teleportation channel. This long-distance technology is introduced in
Section 5.3 and analyzed in Section 5.4.

5.1 Short Wires: The Swapping Channel

In solid-state technologies, a line of qubits is one plausible approach to transport-
ing quantum data. Figure 9 provides a schematic of a swapping channel in which
information is progressively swapped between pairs of qubits in the quantum data-

path—somewhat like a bubble sort.7 Swapping channels require active control from
classical logic, illustrated by the classical control plane of Fig. 9.

As simple as it might appear, a quantum swapping channel presents significant
technical challenges. The first hurdle is the placement of the phosphorus atoms them-
selves. The leading work in this area has involved precise ion implantation through
masks, and manipulation of single atoms on the surface of silicon [37]. For appli-
cations where only a few trial devices are desired, slowly placing a few hundred
thousand phosphorus atoms with a probe device [38] may be possible. For bulk

7For technologies that do not have an intrinsic swap operation, one can be implemented by three
controlled-not gates performed in succession. This is a widely known result in the quantum computing
field and we refer the interested reader to [2].
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FIG. 9. Short wires are constructed from successive qubits (phosphorus atoms). Information in the
quantum data path is swapped from qubit to qubit under classical control. A single SWAP operator requires

multiple A- and S-gate voltage pulses. The control circuitry is not to scale.

manufacturing the advancement of DNA-based or other chemical self-assembly tech-
niques [39] may need to be developed. Note, while new technologies may be devel-
oped to enable precise placement, the key for our work is only the spacing (60 nm) of
the phosphorus atoms themselves, and the number of control lines (3) per qubit. The
relative scale of quantum interaction and the classical control of these interactions
is what will lead our analysis to the fundamental constraints on quantum computing
architectures.

A second challenge is the scale of classical control. Each control line into the quan-
tum datapath is roughly 10 nm in width. While such wires are difficult to fabricate,
we expect that either electron beam lithography [40], or phase-shifted masks [41]
will make such scales possible.

A remaining challenge is the temperature of the device. In order for the quantum
bits to remain stable for a reasonable period of time the device must be cooled to less
than one degree Kelvin. The cooling itself is straightforward, but the effect of the
cooling on the classical logic is a problem. Two issues arise: first conventional tran-
sistors stop working as the electrons become trapped near their dopant atoms, which
fail to ionize. Second, the 10 nm classical control lines begin to exhibit quantum-
mechanical behavior such as conductance quantization and interference from ballis-
tic transport [42].

Fortunately, many researchers are already working on low-temperature transistors.
For instance, single-electron transistors (SET’s) [43] are the focus of intense research
due to their high density and low power properties. SET’s, however, have been prob-
lematic for conventional computing because they are sensitive to noise and operate
best at low temperatures. For quantum computing, this predilection for low tem-
peratures is exactly what is needed! Tucker and Shen describe this complementary
relationship and propose several fabrication methods in [44].
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On the other hand, the quantum-mechanical behavior of the control lines presents
a subtle challenge that has been mostly ignored to-date. At low temperatures, and in
narrow wires, the quantum nature of electrons begins to dominate over normal clas-
sical behavior. For example, in 100 nm wide polysilicon wires at 100 millikelvin,
electrons propagate ballistically like waves, through only one conductance channel,
which has an impedance given by the quantum of resistance, h/e2 ≈ 25 k. Im-
pedance mismatches to these and similar metallic wires make it impossible to prop-
erly drive the AC current necessary to perform qubit operations, in the absence of
space-consuming impedance matching structures such as adiabatic tapers.

Avoiding such limitations mandates a geometric design constraint: narrow wires
must be short and locally driven by nearby wide wires. Using 100 nm as a rule of
thumb8 for a minimum metallic wire width sufficient to avoid undesired quantum
behavior at these low temperatures, we obtain a control gate structure such as that
depicted in Fig. 10. Here, wide wires terminate in 10 nm vias that act as local gates
above individual phosphorus atoms.

Producing a line of quantum bits that overcomes all of the above challenges is
possible. We illustrate a design in Fig. 11. Note how access lines quickly taper into
upper layers of metal and into control areas of a classical scale. These control areas

FIG. 10. Quantization of electron states overcome by increasing the physical dimension of the con-
trol lines beyond 100 nm. The states propagate quantum-mechanically downward through access vias to
control the magnetic field around the phosphorus atoms.

8This value is based on typical electron mean free path distances, given known scattering rates and the
electron Fermi wavelength in metals.
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FIG. 11. A linear row of quantum bits: In this figure (not drawn to scale) we depict access control for
a line of quantum bits. On the left, we depict a “top down” view. On the right is a vertical cross-section
which more clearly depicts the narrow-tipped control lines that quickly expand to classical dimensions.

can then be routed to access transistors that can gate on and off the frequencies (in
the 10’s to 100’s of MHz) required to apply specific quantum gates.

Of course, any solution for data transport must also support routing. Routing is
not possible without fanout provided by wire intersections. We can extend our linear
row of quantum bits to a four-way intersection capable of supporting sparsely inter-
secting topologies of quantum bits. We illustrate the quantum intersection in Fig. 12.

FIG. 12. Intersection of quantum bits. In this simplified view, we depict a four-way intersection of
quantum bits. An inversely (diamond shaped) organized junction is also needed to densely pack junction
cells.
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This configuration is similar to Fig. 11 except that the intersection creates a more
challenging tapering.

5.2 Analysis of the Swapping Channel

We now analyze our swapping channel to derive two important architectural con-
straints: the classical-quantum interface boundary and the latency/bandwidth char-
acteristics. We strive to achieve a loose lower bound on these constraints for a given
quantum device technology. While future quantum technologies may have different
precise numbers, it is almost certain they will continue to be classically controlled,
and thus also obey similar constraints based upon this classical-quantum interface.

5.2.1 Pitch Matching

Our first constraint is derived from the need to have classical control of our quan-
tum operations. As previously discussed, we need a minimum wire width to avoid
quantum effects in our classical control lines. Referring back to Fig. 12, we can see
that each quadrant of our four-way intersection will need to be some minimum size
to accommodate access to our control signals.

Recall from Fig. 8 that each qubit has three associated control signals (one A and
two S gates). Each of these control lines must expand from a thin 10 nm tip into a
100 nm access point in an upper metal layer to avoid the effects of charge quantiza-
tion at low temperatures (Fig. 10). Given this structure, it is possible to analytically
derive the minimum width of a line of qubits and its control lines, as well as the size
of a four-way intersection. For this minimum size calculation, we assume all classi-
cal control lines are routed in parallel, albeit spread across the various metal layers.
This parallel nature makes this calculation trivial under normal circumstances (suf-
ficiently “large” lithographic feature size λc), with the minimum line segment being
equal in length to twice the classical pitching, 150 nm in our case, and the junction
size equal to four times the classical pitching, 400 nm, in size. However, we illus-
trate the detailed computation to make the description of the generalization clearer.
We begin with a line of qubits.

Let N be the number of qubits along the line segment. Since there are three gates
(an A and two S lines) we need to fit in 3N classical access points of 100 nm in
dimension each, in the line width. We accomplish this by offsetting the access points
in the x and y dimensions (Fig. 11) by 20 nm. The total size of these offsets will
be 100 nm divided by the qubit spacing 60 nm times the number of control lines
per qubit (3), times the offset distance of 20 nm. This number 100 nm/60 nm × 3 ×
20 nm = 100 nm is divided by 2 because the access lines are spread out on each side
of the wire. Hence, the minimum line segment will be 100 nm + 50 nm. Shorter line
segments within larger, more specialized cells are possible.
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Turning our attention to an intersection (Fig. 12), let N be the number of qubits
along each “spoke” of the junction. We need to fit 3N classical access points in
a space of (60 nm × N)2, where each access point is at least 100 nm on a side.
As with the case of a linear row of bits, a 20 nm x and y shift in access point
positioning between layers is used for via access. Starting with a single access
pad of 100 nm, we must fit 100 nm/60 nm × 3 additional pads shifted in x and
y within the single quadrant of our intersection. This leads to a quadrant size of
100 nm + 100 nm/60 nm × 3 × 20 nm = 200 nm. Therefore, the minimum size four
way intersection is 8 (rounding up) qubits in each direction.

In this construction we have assumed a densely packed edge to each spoke; how-
ever, this is easily “unpacked” with a specialized line segment, or by joining to an-
other junction that is constructed inversely from that shown in Fig. 12. Obviously, the
specific sizes will vary according to technological parameters and assumptions about
control logic, but this calculation illustrates the approximate effect of what appears to
be a fundamental tension between quantum operations and the classical signals that
control them. A minimum intersection size implies minimum wire lengths, which
imply a minimum size for computation units.

5.2.2 Technology Independent Limits

Thus far we have focused our discussion on a particular quantum device technol-
ogy. This has been useful to make the calculations concrete. Nevertheless, it is useful
to generalize these calculations to future quantum device technologies. Therefore we
parameterize our discussion based on a few device characteristics:

Assuming two-dimensional devices (i.e., not a cube of quantum bits), let pc be
the classical pitching required, and pq the quantum one. Furthermore, let R be the
ratio pc/pq of the classical to quantum distance for the device technology, m be
the number of classical control lines required per quantum bit, and finally λc be the
feature size of the lithographic technology. We use two separate variables pc and λc

to characterize the “classical” technology because they arise from different physical
constraints. The parameter λc comes from the lithographic feature size, while pc

(which is a function of λc) is related to the charge quantization effect of electrons in
gold. With the Kane technology we assume a spacing pq of 60 nm between qubits,
three control lines per bit of 100 nm (pc) each, and a λc of 5 nm. We can use these
to generalize our pitch matching equations. Here we find that the minimum line
segment is simply equivalent to R(1 + 2λcm/pq) qubits in length.

Examining our junction structure (Fig. 12), we note that it is simply four line
segments, similar to those calculated above, except that the control lines must be
on the same side. Therefore the minimum crossing size of quantum bits in a two-
dimensional device is of size ≈ 2R(1 + 4λcm/pq) on a side.
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5.2.3 Latency and Bandwidth

Calculating the latency and bandwidth of quantum wires is similar to but slightly
different than it is for classical systems. The primary difficulty is decoherence—i.e.,
quantum noise. Unlike classical systems, if you want to perform a quantum com-
putation, you cannot simply re-send quantum information when an error is detected.
The no-cloning theorem prohibits transmission by duplication, thereby making it im-
possible to re-transmit quantum information if it is corrupted. Once the information
is destroyed by the noisy channel, you have to start the entire computation over (“no-
cloning” also implies no checkpointing of intermediate states in a computation). To
avoid this loss, qubits are encoded in a sufficiently strong error-correcting code that,
with high probability, will remain coherent for the entire length of the quantum al-
gorithm. Unfortunately, quantum systems will likely be so error-prone that they will
probably execute right at the limits of their error tolerance [45].

Our goal is to provide a quantum communication layer which sits below higher
level error correction schemes. Later, in Section 8, we discuss the interaction of this
layer with quantum error correction and algorithms. Consequently, we start our cal-
culation by assuming a channel with no error correction. Then we factor in the effects
of decoherence and derive a maximum wire length for our line of qubits.

Recall that data traverses the line of qubits with SWAP gates, each of which takes
approximately 1 µs to execute in the Kane technology. Hence, to move quantum
information over a space of 60 nm requires 0.57 µs. A single row of quantum bits
has latency:

(1)tlatency = dqubits × 1 µs

where dqubits is the distance in qubits, or the physical distance divided by 60 nm. This
latency can be quite large. A short 1 µm has a latency of 17 µs. On the plus side, the
wire can be fully pipelined and has a sustained bandwidth of 1/1 µs = 1 Mqbps (one
million quantum bits per second). This may seem small compared to a classical wire,
but keep in mind that quantum bits can enable algorithms with exponential speedup
over the classical case.

The number of error-free qubits is actually lower than this physical bandwidth.
Noise, or decoherence, degrades quantum states and makes the true bandwidth of
our wire less than the physical quantum bits per second. Bits decohere over time, so
longer wires will have a lower bandwidth than shorter ones.

The stability of a quantum bit decreases with time (much like an uncorrected clas-
sical bit) as a function e−kt . Usually, a normalized form of this equation is used,
e−λt , where t in this new equation is the number of operations and λ is related to the
time per operation and the original k. As quantum bits traverse the wire they arrive
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with a fidelity that varies inversely with latency, namely:

(2)fidelity = e−λtlatency .

The true bandwidth is proportional to the fidelity:

(3)bandwidthtrue = bandwidthphysical × fidelity.

Choosing a reasonable9 value of λ = 10−6, we find the true bandwidth of a wire to
be:

(4)
1

1 µs
e−10−6×dqubits

which for a 1 µm wire is close to the ideal (999,983 qbps).
This does not seem to be a major effect, until you consider an entire quantum al-

gorithm. Data may traverse back and forth across a quantum wire millions of times.
It is currently estimated [47] that a degradation of fidelity more than 10−4 makes
arbitrarily long quantum computation theoretically unsustainable, with the practical
limit being far higher [45]. This limit is derived from the Threshold Theorem, which
relates the decoherence of a quantum bit to the complexity of correcting this deco-
herence (as discussed in detail, in Section 2.2) [48,49,47].10 Given our assumptions
about λ, the maximum theoretical wire distance is about 6 µm.

5.2.4 Technology Independent Metrics

Our latency and bandwidth calculations require slightly more device parameters.
Let tswap be the time per basic SWAP operation. Some technologies will have an in-
trinsic SWAP, and others will require synthesizing the SWAP from 3 CNOT operations.
Let λ be the decoherence rate, which for small λ and tswap is equivalent to the de-
coherence a quantum bit undergoes in a unit of operation time tswap. This makes the
latency of a swapping channel wire equal to:

(5)tlatency = dqubitstswap

where the distance dqubits is expressed in the number of qubits. The bandwidth is
proportional to the fidelity or:

(6)bandwidthtrue = 1

tswap
e−λdqubits .

9This value for λ is calculated from a decoherence rate of 10−6 per operation, where each operation
requires 1 µs. It is aggressive, but potentially achievable with phosphorus atoms in silicon [46,35].
10By “practical” we mean without an undue amount of error correction. The threshold theorem ensures

that theoretically we can compute arbitrarily long quantum computations, but the practical overhead of
error correction makes the real limit 2–3 orders of magnitude higher [45].
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This bandwidth calculation is correct so long as the fidelity remains above the critical
threshold C ≈ 10−4 required for fault tolerant computation. Finally, the maximum
distance of this swapping channel is the distance when the fidelity drops below the
critical threshold:

(7)dqubits,max = ln(1 − C)

−λ
.

No amount of error correction will be robust enough to support a longer wire,
while still supporting arbitrarily long quantum computation. For this we need a more
advanced architecture. One obvious option is to break the wire into segments and
insert “repeaters” in the middle. These quantum repeaters are effectively performing
state restoration (error correction). However, we can do better, which is the subject
of the next section.

5.3 Long Wires: The Teleportation Channel

In this section, we introduce an architecture for quantum communication over
longer distances in solid-state technologies, shown in Fig. 13. This architecture
makes use of the quantum primitive of teleportation (described earlier in Section 3.3).
In the next few sections, we provide a brief introduction to the core components of
this architecture.

Although teleportation and the mechanisms described in this section are known in
the literature, what has been missing is the identification and analysis of which mech-
anisms form fundamental building blocks of a realistic system. In this section, we
highlight three important architectural building blocks: the entropy exchange unit, the

FIG. 13. Architecture for a Quantum Wire: Solid double lines represent classical communication
channels, while chained links represented a quantum swapping channel. Single lines depict the direction
in which the swapping channel is being used for transport.
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EPR generator, and the purification unit. Note that the description of theses blocks
is quasi-classical in that it involves input and output ports. Keep in mind, however,
that all operations (except measurement) are inherently reversible, and the specifi-
cation of input and output ports merely provides a convention for understanding the
forward direction of computation.

5.3.1 Entropy Exchange Unit

The physics of quantum computation requires that operations are reversible and
conserve energy. The initial state of the system, however, must be created somehow.
We need to be able to create |0〉 states. Furthermore, decoherence causes qubits to
become randomized—the entropy of the system increases through qubits coupling
with the external environment.

Where do these zero states come from? The process can be viewed as one of ther-
modynamic cooling. “Cool” qubits are distributed throughout the processor, analo-
gous to a ground plane in a conventional CMOS chip. The “cool” qubits are in a
nearly zero state. They are created by measuring the qubit, and inverting if |1〉. The
measurement process itself requires a source of cold spin-polarized electrons (cre-
ated, for example, using a standard technique known as optical pumping [46,50]).

As with all quantum processes, the measurement operation is subject to failure, but
with high probability leaves the measured qubit in a known state from which |0〉’s
may be obtained. To arbitrarily increase this probability (and make an extremely cold
zero state) we can use a technique called purification. Specifically, one realization
employs an efficient algorithm for data compression [51,52] that gathers entropy
across a number of qubits into a small subset of high-entropy qubits. As a result, the
remaining qubits are reinitialized to the desired pure, |0〉 state.

5.3.2 EPR Generator

Constructing an EPR pair of qubits is straightforward. We start with two |0〉 state
qubits from our entropy exchange unit. A Hadamard gate is applied to the first of
these qubits. We then take this transformed qubit that is in an equal superposition
of a zero and a one state and use it as the control qubit for a CNOT gate. The target
qubit that is to be inverted is the other fresh |0〉 qubit from the entropy exchange unit.
A CNOT gate is a qubit like a classical XOR gate in that the target qubit is inverted
if the control qubit is in the |1〉 state. Using a control qubit of 1√

2
(|0〉 + |1〉) and a

target qubit of |0〉 we end up with a two-qubit entangled state of 1√
2
(|00〉+ |11〉): an

EPR pair.
The overall process of EPR generation is depicted in Fig. 14. Schematically the

EPR generator has a single quantum input and two quantum outputs. The input is
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FIG. 14. Quantum EPR generator: Solid double lines represent classical communication (or control),
while single lines depict quantum wires.

directly piped from the entropy exchange unit and the output is the entangled EPR
pair.

5.3.3 EPR Purification Unit

The final building block we require is the EPR purification unit. This unit takes
as input n EPR pairs which have been partially corrupted by errors, and outputs nE

asymptotically perfect EPR pairs. E is the entropy of entanglement, a measure of the
number of quantum errors which the pairs suffered. The details of this entanglement
purification procedure are beyond the scope of this paper but the interested reader
can see [53–55].

Figure 15 depicts a purification block. The quantum inputs to this block are the
input EPR states and a supply of |0〉 qubits. The outputs are pure EPR states. Note
that the block is carefully designed to correct only up to a certain number of errors; if
more errors than this threshold occur, then the unit fails with increasing probability.

Figure 13 illustrates how we use these basic building blocks and protocols for con-
structing our teleportation channel. The EPR generator is placed in the middle of the
wire and “pumps” entangled qubits to each end (via a pipelined swapping channel).
These qubits are then purified such that only the error-free qubits remain. Purifi-

FIG. 15. Quantum purification unit: EPR states are sufficiently regular that they can be purified at the
ends of a teleportation channel.
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cation and teleportation consume zero-state qubits that are supplied by the entropy
exchange unit. Finally, the coded-teleportation unit transmits quantum data from one
end of the wire to the other using the protocol described in Section 3.3. Our goal now
is to analyze this architecture and derive its bandwidth and latency characteristics.

5.4 Analysis of the Teleportation Channel

The bandwidth of a teleportation channel is proportional to the speed with which
reliable EPR pairs are communicated. Since we are communicating unreliable pairs
we must purify them, so the efficiency of the purification process must be taken
into account. Purification has an efficiency roughly proportional to the fidelity of the
incoming, unpurified qubits [51]:

(8)purificationefficiency ≈ fidelity2.

Entropy exchange is a sufficiently parallel process that we assume enough zero qubits
can always be supplied. Therefore, the overall bandwidth of this long quantum wire
is:

(9)1/1 µs × e−2×10−6×dqubits

which for a 1 µm wire is 999,967 qbps. Note this result is less than for the sim-
ple wiring scheme, but the decoherence introduced on the logical qubits is only
O(e−λ×10). It is this latter number that does not change with wire length which makes
an important difference. In the previous short-wire scheme we could not make a wire
longer than 6 µm. Here we can make a wire of arbitrary length. For example a wire
that is 10 mm long has a bandwidth of 716,531 qbps, while a simple wire has an
effective bandwidth of zero at this length (for computational purposes).

The situation is even better when we consider latency. Unlike the simple wire, the
wire architecture we propose allows for the pre-communication of EPR pairs at the
sustainable bandwidth of the wire. These pre-communicated EPR pairs can then be
used for transmission with a constant latency. This latency is roughly the time it takes
to perform teleportation, or ≈ 20 µs. Note this latency is much improved compared
to the distance-dependent simple wiring scheme.

Using the same constants defined above for the swapping channel, we can gener-
alize our analysis of teleportation channels. The latency is simply:

(10)tlatency ≈ 10 tswap.

The bandwidth is:

(11)bandwidthtrue = 1

tswap
e−2λdqubits.
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Unlike the short wire, this bandwidth is not constrained by a maximum distance
related to the Threshold Theorem since teleportation is unaffected by distance. The
communication of EPR pairs before teleportation, however, can be affected by dis-
tance, but at a very slow rate. While purification must discard more corrupted EPR
pairs as distance increases, this effect is orders-of-magnitude smaller than direct data
transmission over short wires and is not a factor in a practical silicon chip of up to
10’s of millimeters on a side.

5.5 Layout of Error-Correction Circuits

While our high-level analysis shows that recursive error correction has desirable
efficiency properties, we shall see that the details of implementing such schemes will
reveal some key issues. The most important of these issues is the need for reliable,
long-distance communication.

Given the pitch-matching constraints of linearity with infrequent junctions from
Section 5.2.1, there are still several ways to lay out physical and logical qubits. Op-
timally, qubits should be arranged to minimize communication overhead.

In a fault tolerant design, the main activity of a quantum computer is error cor-
rection. To minimize communication costs, qubits in an encoding block should be
in close proximity. Assuming that the distance between junctions is greater than the
number of qubits in the block, the closest the qubits can be is in a straight line.

A concatenated code requires a slightly different layout. Error correction is still the
important operation, but the logical qubits at all but the bottom level of the code are
more complicated. For the second level, the qubits are themselves simple encodings,
and so can be laid out linearly. However, we want these qubits in as close proximity
to each other as possible, for the same reasons we wanted the qubits in the simple
code close. Hence, we need to arrange the bottom level as branches coming off of a
main bus. Similarly, the third level would have second-level branches coming off of
a main trunk, and so on for higher levels.

In the next two sections, we describe a basic error correction algorithm and its
recursive application, focusing on illustrating realistic space and time costs such as
those described above, imposed by two-dimensional implementation technologies.

6. Error Correction Algorithms

6.1 The �7,1,3� Code

Error correcting using the �7,1,3� code consists of measuring the error syndrome
parities of the encoding qubits in various bases, and correcting the codeword based
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FIG. 16. Measuring the error syndrome for the �7,1,3� error-correction code.

on the measured syndrome. As shown in Fig. 16, the qubits are rotated to the dif-
ferent measurement bases with Hadamard gates. Parity is then measured in much
the same way as with a classical code, using two-qubit CNOT operators acting as
XOR’s. Conceptually, the parity can be measured in the same way as the three-qubit
code in Section 2.2, gathering the parity on ancilla |0〉’s. To perform a fault tolerant
measurement, however, a cat state is used in place of a |0〉. Figure 16 shows all six
parity measurements using cat states. Not shown are cat-state creation and cat-state
verification.

A parity measurement consists of the following:

(1) Prepare a cat state from four ancillae, using a Hadamard gate and three CNOT

gates.
(2) Verify the cat state by taking the parity of each pair of qubits. If any pair has

odd parity, return to step 1. This requires six additional ancillae, one for each
pair.

(3) Perform a CNOT between each of the qubits in the cat state and the data qubits
whose parity is to be measured (See Fig. 16).

(4) Uncreate the cat state by applying the same operators used to create it in re-
verse order. After applying the Hadamard gate to the final qubit, |A0〉, that
qubit contains the parity.

(5) Measure |A0〉:
(A) With |A0〉 = α|0〉+β|1〉, create the three-qubit state, α|000〉+β|111〉 by

using |A0〉 as the control for two CNOT gates, and two fresh |0〉 ancillae
as the targets.

(B) Measure each of the three qubits.
(6) Use the majority measured value as the parity of the cat state.

Each parity measurement has a small probability of introducing an error, either in
the measurement, or in the data qubits. Hence, the entire syndrome measurement
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must be repeated until two measurements agree. The resulting syndrome determines
which, if any, qubit has an error, and which X, Z, or Y operator should be applied
to correct the error. After correction, the probability of an error in the encoded data
is O(p2).

For the Steane �7,1,3� code, each parity measurement requires twelve ancillae—
four for the cat state to capture the parity, six to verify the cat state, and two additional
qubits to measure the cat state. The six parity measurements are each performed at
least twice, for a minimum of 144 ancillae to measure the error syndrome!

The minimum number of operations required for an error correction is 38
Hadamards, 288 CNOT’s, and 108 measurements. With parallelization, the time re-
quired for the operations is 24S + 156C + M , where S is the time required for a
single qubit operator, C is the time required for a CNOT, and M is the time required
for a measurement. (We assume all but the last measurement are performed in paral-
lel with other operations.)

6.2 Concatenated Codes

The �7,1,3�× �7,1,3� two-level concatenated code is measured in the same way
as the �7,1,3� code, except the qubits are encoded, and each parity measurement
uses a 12-qubit cat state.11

The error syndrome measurement is analogous to the singly-encoded �7,1,3�
case, except that the lower-level encodings must be error corrected between oper-
ations:

(1) Prepare 12 ancillae in a cat state.
(2) Verify the cat state (66 ancillae for pairwise verification).
(3) Perform CNOT’s between the cat state qubits and the qubits encoding the data

qubits whose parity is to be measured.
(4) Error correct the four logical data qubits.
(5) Uncreate the cat state, and measure the resulting qubit.

As in the singly-encoded case, each syndrome measurement must be repeated,
in this case at least four times. The resulting syndrome determines which, if any,
logical qubit has an error. The appropriate X, Z, or Y operator can be applied to
correct the error. After the correction operator is applied to a logical qubit, that qubit
must be error-corrected. The probability of an error in the encoded data is O(p4)

after correction.

11In the �7,1,3� code, an X consists of an X on each qubit. The parity of the logical qubit is the same
as that of the physical qubits. Since a logical qubit is a valid codeword, a four-qubit subset of the qubits
has even parity, and the remaining three qubits has the same parity as the logical qubit.
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Each parity measurement requires 154 Hadamards, 1307 CNOT’s, and 174 mea-
surements, in time 26S + 201C + M , using the same assumptions as for the non-
concatenated case.

Of course, the �7,1,3� code can be concatenated more than once. The error-
correction procedure for higher levels of concatenation is similar to the above. The

key is that probability of error for each parity measurement must be O(p2k
), for a

code concatenated k − 1 times.

7. Communication Costs and Error Correction

In this section, we model the communication costs of the error correction algo-
rithms of Section 6, under the constraint of having only near neighbor interactions.
While it has previously been proven that under such constraints, the Threshold Theo-
rem can still be made to apply (given suitably reduced failure probability thresholds)
[56], a detailed study was not performed with layout constraints on quantum error
correction circuits. We first study the growth rate of errors when using SWAP opera-
tions. Second, we analyze quantum teleportation as an alternative to SWAP operations
for long-distance communication. Finally, we show that teleportation is preferable
both in terms of distance and in terms of the accumulating probability of correlated
errors between redundant qubits in our codewords.

7.1 Error Correction Costs

The error correction algorithms in the previous section are presented for the ideal
situation, where any qubit can interact with any other qubit. Usually, qubits can only
interact with their near neighbors, so before applying a two-qubit operator, one of
the operand qubits must be moved adjacent to the other.

One of the easiest ways to move quantum data is to use the SWAP operator. By
applying SWAP’s between alternating pairs of qubits, the values of alternating qubits
are propagated in one direction, while the remaining qubit values are propagated in
the reverse direction. This swapping channel can be used to supply |0〉 ancillae for the
purpose of error correction, remove “used” ancillae, and allow for qubit movement.
Figure 17 illustrates this for the three-qubit example, using two columns of qubits,
one for the data and cat-state qubits, and one for communication.

The same layout can be applied to the �7,1,3� code, giving a minimum time for
an error correction parity check of

(12)tecc = 12(tcc + tcv + tp + tcu + tm)

where
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tcc is the time for cat-state creation;

tcv is the time for cat-state verification;

tp is the time to entangle the cat state with the parity qubits;

tcu is the time to uncreate the cat state; and

tm is the time to perform a triply-redundant measurement.

For �7,1,3� in the ideal, parallel, “sea-of-qubits” model, tcc = tsingle +3tcnot, tcv =
6tcnot + tmeas, tp = tcnot, and tcu = 3tcnot + tsingle, where

tsingle is the time required for a single-qubit operator;

tcnot is the time required for a CNOT operator;

tswap is the time required for a SWAP operator; and

tmeas is the time required for redundant measurement.

If communication by swapping is used,

(13)tcc = max(tsingle, tswap) + 6tswap + 3 max(tcnot, tswap),

(14)tcv = max(tsingle, tswap) + 9tswap + 11 max(tcnot, tswap),

(15)tp � 7tswap + 4 max(tcnot, tswap), and

(16)tcu = tswap + 3tcnot + tsingle + tmeas.

In the Kane model, tsingle < tswap < tcnot < tmeas. Including parallelism between
parity measurements, the minimum time for a syndrome measurement is

tecc = 221tswap + 210tcnot + tsingle + tmeas.

Since measurement is fully parallelizable, these times assume that there are
enough measurement units to perform measurement in parallel with the other op-
erations in the error-correction cycle.

7.2 Multilevel Error Correction

For the singly concatenated code, the data movement in the upper level is more
complicated, although Eq. (12) still holds. The first step in the error correction
is creating and verifying the 12-qubit cat state. Figure 18 shows how the ancillae
“branches” are incorporated into the data branches. After verification, the cat state
is moved to the appropriate data branches, where it is CNOT’ed with the data qubits.
The cat state is then moved back and uncreated, while the data branches are error-
corrected. Finally, a Hadamard is applied to the last cat-state ancilla, which is then
redundantly measured. The layout in Fig. 18 is not necessarily optimal.
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FIG. 17. “Two-rail” layout for the three-qubit phase-correction code. The schematic on the left shows qubit placement and communication, where
Di ’s indicate data qubits, and Ai ’s are cat-state ancillae. The column of D′

i
’s and A′

i
’s form a swapping channel, and can also interact with the data

and cat-state ancilla. The open qubit swapping channel at the bottom brings in fresh ancillae, and removes used ancillae. The same layout is shown as
a quantum circuit on the right, with the operations required to create and verify an ancillary cat state, and to measure the parity of a pair of data qubits.
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FIG. 18. Schematic layout of the H-tree structure of a concatenated code. The branches labeled |Di 〉
are for logical data qubits, and consist of two rails of eleven qubits each—seven qubits for data and four
for ancillae. The branch labeled |A1〉 is for creating, verifying, and uncreating the cat state.

For �7,1,3� concatenated with itself k times,

(17)tcc,k≈⌈log2(ak)⌉tcnot +
(

5

2
ak − 3

)

tswap,

(18)tcv,k=2aktcnot +
(

ak(ak − 2) + 2
)

tswap,

(19)tp,k =ak + 3tb,k + 3tb,k−1 + tecc,k−1,

(20)tcu,k=tcc,k + tsingle + tm,

(21)ak =4 × 3k−1, and

(22)tb,k =

⎧

⎪

⎨

⎪

⎩

1, k = 1,

B, k = 2,

tb,k−1 + (n + a1)tb,k−2, k = 3,

tb,k−1 + 2⌈n/2⌉tb,k−2, k > 3,

where the subscript k indicates the level of encoding, ak is the number of qubits in
the cat state at level k, tb,k is the branch distance between logical qubits at level k,
B is the minimum number of qubits between two branches for a given architectural
model, and n is the number of physical qubits in the non-concatenated code.

With communication by swapping channel, the SWAP operator becomes very im-
portant. In the sea-of-qubits model, SWAP’s are not required. In the model described
above, SWAP’s account for over 80% of all operations.

7.3 Avoiding Correlated Errors

An important assumption in quantum error correction is that errors in the redun-
dant qubits of a codeword are uncorrelated. That is, we do not want one error in a
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codeword to make a second error more likely. To avoid such correlation, it is impor-
tant to try not to interact qubits in a codeword with each other.

Unfortunately, we find that a 2D layout cannot avoid indirect interaction of qubits
in a codeword. At some point, all the qubits in a codeword must be brought to the
same physical location in order to calculate error syndromes. In order to do this,
they must pass through the same line of physical locations. Although we can avoid
swapping the codeword qubits with each other, we cannot avoid swapping them with
some of the same qubits that flow in the other direction.

For concreteness, if two qubits of codeword d0 and d1 both swap with an ancilla a0

going in the opposite direction, there is some probability that d0 and d1 will become
correlated with each other through the ancilla. This occurs if both SWAPs experience
a partial failure. In general, if p is the probability of a failure of a SWAP gate, the
probability of an error from swapping a logical qubit is

nkbkp +
(

nk

2

)

bkp
2 +

(

nk

3

)

bkp
3 + · · · ,

where bk is the number of qubits between branches at level k, and the higher or-
der terms are due to correlation between the qubits. From this form, it is clear that
correlated errors are dominated by uncorrelated errors, when nkp ≪ 1.

By calculating the number of basic computation and communication operations
necessary to use teleportation for long-distance communication, we can quantify
when we should switch from swapping to teleportation in our tree structure. Fig-
ure 19 illustrates this tradeoff. We can see that for B = 22, teleportation should be
used when k � 5.

7.4 Teleportation

Table II lists the number of SWAP operations required to move an unencoded qubit
from one level-k codeword to the adjacent codeword for different minimum branch
distances, as well as the total operations to teleport the same qubit. Since a teleporta-
tion channel precommunicates EPR pairs, it has a fixed cost. To use teleportation for
our circuit, we must evaluate the number of computation and communication oper-
ations within the teleportation circuit. By comparing this number of operations with
the swapping costs from the previous section, we can decide at what level k of the
tree to start using teleportation instead of swapping for communication.

Teleportation has another advantage, which is beyond the scope of this study. By
suitably modifying the EPR pairs, teleportation can be used to perform operations
at a distance [28]. It does not eliminate the need for error correction, and correctly
modifying the EPR pairs has its own costs. This is an interesting area for future
research.
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FIG. 19. Cost of teleportation compared to swapping. The B-values chosen illustrate break-even
points for different levels of recursion.

TABLE II
COMPARISON OF THE COST OF SWAPPING AN ENCODED QUBIT TO THE COST OF TELEPORTING IT.

THE B -VALUES ARE THE DISTANCE BETWEEN ADJACENT QUBITS

k Teleportation Swapping, B = 22 Swapping, B = 61 Swapping, B = 285

1 864 1 1 1
2 864 22 61 285
3 864 77 194 866
4 864 363 948 4,308
5 864 1,199 3,032 13,560
6 864 4,543 11,680 52,672

8. System Bandwidth

Our goal has been to design a reliable, scalable quantum communication layer that
will support higher-level quantum error correction and algorithms functioning on top
of this layer. A key issue for future evaluation, however, is that the lower latency of
our teleportation channel actually translates to even higher bandwidth when the upper
layers of a quantum computation are considered. It is for this reason that long wires
should not be constructed from chained swapping-channels and quantum “repeaters.”
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The intuition behind this phenomenon is as follows. Quantum computations are
less reliable than any computation technology that we are accustomed to. In fact,
quantum error correction consumes an enormous amount of overhead both in terms
of redundant qubits and time spent correcting errors. This overhead is so large that
the reliability of a computation must be tailored specifically to the run length of
an algorithm. The key is that, the longer a computation runs, the stronger the error
correction needed to allow the data to survive to the end of the computation. The
stronger the error correction, the more bandwidth consumed transporting redundant
qubits. Thus, lower latency on each quantum wire translates directly into greater
effective bandwidth of logical quantum bits.

9. Conclusion

Quantum computation is in its infancy, but now is the time to evaluate quantum
algorithms under realistic constraints and derive the architectural mechanisms and
reliability targets that we will need to scale quantum computation to its full poten-
tial. Our work has focused upon the spatial and temporal constraints of solid-state
technologies.

Building upon key pieces of quantum technology, we have provided an end-to-end
look at a quantum wire architecture. We have exploited quantum teleportation to en-
able pipelining and flexible error correction. We have shown that our teleportation
channel scales with distance and that swapping channels do not. Finally, we have dis-
covered fundamental architectural pressures not previously considered. These pres-
sures arise from the need to co-locate physical phenomena at both the quantum and
classical scale. Our analysis indicates that these pressures will force architectures
to be sparsely connected, resulting in coarser-grain computational components than
generally assumed by previous quantum computing studies.

At the systems level, the behavior of wires becomes a crucial limiting factor in the
ability to construct a reliable quantum computer from faulty parts. While the Thresh-
old Theorem allows fault-tolerant quantum computers to be realized in principle,
we showed that in practice many assumptions must be carefully scrutinized, partic-
ularly for implementation technologies that force a two-dimensional layout scheme
for qubits and their interconnects. Our analysis suggests that, rather counterintu-
itively, fault-tolerant constructions can be more resource efficient than equivalent
circuits made from more reliable components, when the failure probability is a func-
tion of resources required. And a detailed study of the resources required to imple-
ment recursive quantum error correction circuits highlights the crucial role of qubit
communication, and in particular, the dominant role of SWAP gates. We find that at a
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certain level of recursion, resources are minimized by choosing a teleportation chan-
nel instead of the SWAP. It is likely that the reliability of the quantum SWAP operator
used in short-distance communication will be the dominant factor in future quantum
architecture system reliability.
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