

Advances

in COMPUTERS
VOLUME 65

This page intentionally left blank

Advances in
COMPUTERS

EDITED BY

MARVIN V. ZELKOWITZ
Department of Computer Science
and Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland

VOLUME 65

Amsterdam Boston Heidelberg London New York Oxford
Paris San Diego San Francisco Singapore Sydney Tokyo

ELSEVIER B.V.
Radarweg 29
P.O. Box 211, 1000 AE Amsterdam
The Netherlands

ELSEVIER Inc.
525 B Street, Suite 1900
San Diego, CA 92101-4495
USA

ELSEVIER Ltd
The Boulevard, Langford Lane
Kidlington, Oxford OX5 1GB, UK

ELSEVIER Ltd
84 Theobalds Road
London WC1X 8RR, UK

© 2005 Elsevier Inc. All rights reserved.
This work is protected under copyright by Elsevier Inc., and the following terms and conditions apply to its use:

Photocopying
Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission
of the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying,
copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are available for
educational institutions that wish to make photocopies for non-profit educational classroom use.

Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (+44) 1865 843830, fax
(+44) 1865 853333, e-mail: permissions@elsevier.com. Requests may also be completed on-line via the Elsevier homepage
(http://www.elsevier.com/locate/permissions).

In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923, USA; phone: (+1) (978) 7508400, fax: (+1) (978) 7504744, and in the UK through the Copy-
right Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London W1P 0LP, UK; phone:
(+44) 20 7631 5555, fax: (+44) 20 7631 5500. Other countries may have a local reprographic rights agency for payments.

Derivative Works
Tables of contents may be reproduced for internal circulation, but permission of the Publisher is required for external
resale or distribution of such material. Permission of the Publisher is required for all other derivative works, including
compilations and translations.

Electronic Storage or Usage
Permission of the Publisher is required to store or use electronically any material contained in this work, including any
chapter or part of a chapter.

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the
Publisher.

Address permissions requests to: Elsevier’s Rights Department, at the fax and e-mail addresses noted above.

Notice
No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products
liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in
the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses
and drug dosages should be made.

First edition 2005

Library of Congress Cataloging in Publication Data
A catalog record is available from the Library of Congress.

British Library Cataloguing in Publication Data
A catalogue record is available from the British Library.

ISBN: 0-12-012165-4
ISSN (Series): 0065-2458

©∞ The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper).

Printed in USA.

Contents

Color plate section to be found at the end of this volume

CONTRIBUTORS . ix
PREFACE . xiii

The State of Artificial Intelligence

Adrian A. Hopgood

1. Introduction . 3
2. Rule-Based Systems . 6
3. Moving Beyond Rules . 17
4. Intelligent Agents . 30
5. Genetic Algorithms . 38
6. Neural Networks . 44
7. Hybrid Systems . 57
8. Conclusions . 66

Acknowledgements . 69
References . 70

Software Model Checking with S PIN

Gerard J. Holzmann

1. Introduction . 78
2. Background . 79
3. Finite Automata . 82
4. Temporal Logic . 87
5. LTL Model Checking . 91
6. Model Extraction and Abstraction . 102
7. Perspective . 104

Acknowledgements . 105
References . 105

v

vi CONTENTS

Early Cognitive Computer Vision

Jan-Mark Geusebroek

1. Introduction . 110
2. Visual Measurements . 113
3. Invariance . 123
4. Natural Image Statistics . 134
5. Conclusions . 147

References . 147

Verification and Validation and Artificial Intelligence

Tim Menzies and Charles Pecheur

1. Introduction . 154
2. AI Software Can Be Complex . 157
3. Model-Based AI Systems . 168
4. The Knowledge Level . 175
5. AI Software Can Be Nondeterministic . 178
6. Adaptive AI Systems . 182
7. Conclusion . 192

Acknowledgements . 193
References . 193

Indexing, Learning and Content-Based Retrieval for Special Purpose
Image Databases

Mark J. Huiskes and Eric J. Pauwels

1. Introduction . 204
2. Representation of Image Content: Feature Extraction 211
3. Detection of Salient Design Image Elements by Figure-Ground Segregation 219
4. MPEG-7 Description of Design Images 232
5. Inference and Learning for Relevance Feedback by Examples 238
6. Conclusion and Outlook . 254

Acknowledgements . 255
References . 255

CONTENTS vii

Defect Analysis: Basic Techniques for Management and Learning

David N. Card

1. Introduction . 260
2. Modeling for Quality Management . 261
3. Monitoring Process Performance . 270
4. Learning and Improvement . 281
5. Summary and Conclusions . 292

References . 293

Function Points

Christopher J. Lokan

1. Introduction . 298
2. Albrecht/IFPUG Function Points . 301
3. Experience with IFPUG Function Points 308
4. Mark II Function Points . 319
5. Some Other Early Variations . 323
6. COSMIC . 327
7. Function Points for Object-Oriented Software 333
8. Function Point Standards . 339
9. Conclusions . 341

Acknowledgements . 341
References . 342

The Role of Mathematics in Computer Science and Software
Engineering Education

Peter B. Henderson

1. Introduction . 350
2. Mystery Novels and John Wooden . 351
3. Computer Science and Software Engineering 352
4. Foundational Mathematics . 353
5. Models . 354
6. General Mathematical Reasoning . 356
7. Patterns, It Is All About Patterns . 357

viii CONTENTS

8. Inductive Thinking and Generalization 361
9. Declarative Versus Imperative Reasoning 367

10. Algorithmic Problem Solving . 369
11. Recursive Thinking . 371
12. Mathematical Induction . 373
13. Why Mathematics? . 375
14. Curricula Issues . 377
15. Foundations of Computing—A First Course 380
16. Conclusions . 384

Acknowledgements . 385
Appendix A: CSE-113 Foundations of Computer Science I 385
Appendix B: Butler University, Foundations of Computing I 387
Appendix C: Sample First Exam for Foundations of Computing I (100
minutes) . 388
Appendix D: Representative List Processing Lab Exercises Using Stan-
dard ML . 390
Appendix E: Solutions for Problems Cited 392
References . 393

AUTHOR INDEX . 397
SUBJECT INDEX . 409
CONTENTS OFVOLUMES IN THIS SERIES 425

Contributors

David N. Card is a Fellow of the Software Productivity Consortium, a not-for-
profit technology research and transition organization. During 15 years at Computer
Sciences Corporation, Mr. Card spent six years as the Director of Software Process
and Measurement, one year as a Resident Affiliate at the Software Engineering Insti-
tute, and seven years as a member of the research team supporting the NASA Soft-
ware Engineering Laboratory. Mr. Card is the Editor-In-Chief of theJournal of Sys-
tems and Software. He is the author ofMeasuring Software Design Quality(Prentice
Hall, 1990), co-author ofPractical Software Measurement(Addison–Wesley, 2002),
and co-editor of ISO/IEC Standard 15939:2002,Software Measurement Process.
Mr. Card has been designated a Senior Member of the American Society for Quality.

Dr. Jan-Mark Geusebroek is an assistant professor in the Intelligent Sensory In-
formation Systems (ISIS) group at the University of Amsterdam. He received the
Ph.D. degree in computer sciences from the University of Amsterdam in 2000. His
research interests are in front-end vision, especially color and texture vision. His cur-
rent research concentrates on computational theories for cognitive vision, based on
invariant representations and visual attention.

Dr. Peter B. Henderson is co-founder of the math thinking discussion group
(www.math-in-cs.org) which advocates the importance of mathematics and mathe-
matical reasoning in computer science and software engineering education. He holds
the chair of the Department of Computer Science and Software Engineering at Butler
University and is editor of two educational columns, “Software Engineering Educa-
tion” in the SIGSOFT Software Engineering Notes, and “Math CountS” in SIGCSE
InRoads. In addition, he has conducted workshops and given numerous presentations
on the role of mathematics in computer science and software engineering education,
and has been instrumental in formulating recommendations on the mathematical
needs of undergraduate computer science and software engineering programs for
the Mathematical Association of America’s Committee on the Undergraduate Pro-
gram in Mathematics. He holds a Ph.D. in Electrical Engineering from Princeton

ix

x CONTRIBUTORS

University and has been teaching computer science and software engineering since
1974.

Dr. Gerard J. Holzmann is the principal designer of the widely used formal veri-
fication tool SPIN. Dr. Holzmann received the Ph.D. degree from Delft University
in 1979. Formerly a Director of the Computing Principles Research group at Bell
Labs in Murray Hill, New Jersey, he joined NASA’s Jet Propulsion Laboratory in
Pasadena, California in 2003 to set up a new Laboratory for Reliable Software. In
2001 Dr. Holzmann was the recipient of the prestigious ACM Software Systems
Award for the design of the SPIN system, and in 2002 he received the ACM SIG-
SOFT’s Outstanding Researcher Award.

Adrian A. Hopgood is professor of computing and dean of the School of Computing
and Informatics at Nottingham Trent University in the UK. He has previously worked
for Systems Designers, Telstra, and the Open University, where he remains a visiting
professor. His main research interests are in intelligent systems and their practical
applications. He graduated with a B.Sc. (Hons.) in physics from the University of
Bristol in 1981 and obtained a Ph.D. from the University of Oxford in 1984. He is a
member of the British Computer Society and a committee member for its specialist
group on artificial intelligence.

Dr. Mark Huiskes received his M.S. degree (cum laude) in Technical Mathematics
from Delft University of Technology in 1996 and his Ph.D. degree in Mathemat-
ics from Wageningen University in 2002. In August 2001 he joined the Signals and
Images research group at the Centre for Mathematics and Computer Science (CWI,
Amsterdam). His main research interests are in machine learning and computer vi-
sion.

Chris Lokan is a Senior Lecturer with the School of Information Technology and
Electrical Engineering, UNSW@ADFA, in Canberra, Australia. He received a Ph.D.
in computer science from the Australian National University, and then worked at
CSIRO before joining the University of New South Wales. His research interests
are in software metrics, especially measuring and estimating software size, software
benchmarking, and measuring object-oriented software. He has been the principal
data analyst for the International Software Benchmarking Standards Group since
1996.

Prof. Tim Menzieshas recently been appointed associate research professor at Port-
land State University in the United States, and has been working with NASA on
software quality issues since 1998. He has a CS degree and a Ph.D. from the Univer-

CONTRIBUTORS xi

sity of New South Wales. His recent research concerns modeling and learning with
a particular focus on light-weight modeling methods. His doctoral research is aimed
at improving the validation of possibly inconsistent, knowledge-based systems in the
QMOD specification language. He also has worked as an object-oriented consultant
in industry and has authored over 150 publications and served on numerous confer-
ence and workshop programs and well as guest editor of journal special issues. He
can be reached at tim@menzies.us.

Dr. Eric Pauwels obtained a Ph.D. in Mathematics in 1989, after which he joined
the Computer Vision Group at Leuven University (Belgium) and worked on math-
ematical problems related to computer vision. In 1999 he joined the Signals and
Images research group at the Centre for Mathematics and Computer Science (CWI,
Amsterdam) where he heads the subtheme on Image Understanding, Retrieval and
Indexing. His research interests include segmentation, classification, content-based
image retrieval and visual learning. He coordinates the EU project FOUNDIT and the
FP6 Network of Excellence on Multimedia Understanding through Semantics, Com-
putation and Learning (MUSCLE). He is also the current chairman of the ERCIM
Working Group on Image and Video Understanding.

Prof. Charles Pecheurhas recently been appointed assistant professor at Université
Catholique de Louvain in Belgium, and has been a Staff Scientist for the Research
Institute for Advanced Computer Science (RIACS) at NASA Ames for the last six
years. He has an EE degree and a Ph.D. from the University of Liège, Belgium. His
recent research at NASA concerns the formal verification and validation of NASA’s
critical software systems, with a particular focus on model-based autonomous con-
trollers and diagnosis. His doctoral research aimed at improving data type definitions
in the LOTOS specification language. He also performed a couple of applied formal
verification projects at INRIA Rhône-Alpes in France. He has authored more than
twenty publications and served on several conference and workshop programs. He
can be reached at pecheur@info.ucl.ac.be.

This page intentionally left blank

Preface

Since 1960, “Advances in Computers,” first published by Academic Press and now
by Elsevier, has been at the forefront of publishing articles describing the latest new
technology in the information technology field. In this present volume, the 65th in the
series, we present 8 chapters that focus on the latest advances in artificial intelligence,
databases and software engineering.

Artificial intelligence is one of the oldest application domains for computers, start-
ing in the mid-1950s, and the ability to mimic biological “intelligence” is a long
sought goal. What has happened to AI and what is the current state of the AI world?
In the first chapter Adrian A. Hopgood in “The state of artificial intelligence” dis-
cusses the various approaches to artificial intelligence and explores some of the
current AI applications: intelligent agents, genetic algorithms, neural networks and
hybrid systems.

In Chapter 2, Gerard Holzmann in “Model checking with SPIN” explores the
use of artificial intelligence ideas in the software engineering of correct programs.
SPIN is a well-known program that uses a formal verification approach toward ver-
ifying the specification of a program written using a model-checking specification
language. He describes the process of developing an automated model-checking ver-
ification system and then concludes with a brief comparison of techniques used in
hardware verification and a perspective of likely developments in the near future.

Jan-Mark Geusebroek in “Early Cognitive Computer Vision” explores another
application domain for artificial intelligence—computer vision. He outlines com-
putational models for visual cognition in both biological and technical systems. He
focuses on the physical and statistical constraints in the sensory input, and how this
can be exploited to construct cognitive vision systems.

In Chapter 4, Tim Menzies and Charles Pecheur discuss “Verification and Val-
idation and Artificial Intelligence.” The first three chapters of this book explored
different facets of artificial intelligence. One important concern is how dependable
are the programs that solve the problems discussed in these chapters? AI programs
typically involve searching large numbers of potential solutions. How do you know
the search is choosing the correct choice? So validating an AI program is particularly
difficult. This chapter discusses how one can verify and validate such programs.

“Indexing, learning and content-based retrieval for special purpose image data-
bases” by Mark Huiskes and Eric Pauwels is the subject of Chapter 5. While there

xiii

xiv PREFACE

has been much written about retrieving text from a database, what are the special
issues involved in retrieving non-textual information? In this chapter, the authors
discuss the problems of content-based retrieval in the ability to retrieve images from
a database that have specified properties.

Chapter 6 by David Card is entitled “Defect Analysis: Basic Techniques for Man-
agement and Learning.” It provides an overview of defect analysis in the production
of correct software. The emphasis in this chapter is on the three uses of such collected
defect data: modeling and predicting software quality, monitoring process perfor-
mance, and learning from past mistakes about how to improve process performance
and software quality.

In Chapter 7, Christopher Lokan discusses “Function points.” Function points are
a method for estimating the effort involved and complexity of a software product
from information available during the requirements phase of a project. Whilelines
of codeis a more common estimator of the effort needed to build a product, this
number is not available accurately until the product is completed—too late to make a
prediction. The author discusses the use of function points and the various methods
that have been developed to count them.

In the final chapter, “The Role of Mathematics in Computer Science and Software
Engineering Education,” Peter Henderson discusses an issue often argued by various
factions in the academic world. What is the appropriate background in mathematics
for a software engineer and what mathematical preparation is necessary in order
to design and build complex programs? If you review some of the earlier chapters
in this volume, mathematics plays a heavy role in understanding some of them. In
this chapter, Dr. Henderson provides his views on an appropriate foundation for a
university curriculum.

I hope that you find these articles of interest. If you have any suggestions of topics
for future chapters, or if you wish to contribute such a chapter, I can be reached at
mvz@cs.umd.edu.

Marvin Zelkowitz
College Park, Maryland

mailto:mvz@cs.umd.edu

The State of Artificial Intelligence

ADRIAN A. HOPGOOD

School of Computing & Informatics
Nottingham Trent University
Burton Street, Nottingham, NG1 4BU
UK
adrian.hopgood@ntu.ac.uk

Abstract
Artificial intelligence has been an active branch of research for computer sci-
entists and psychologists for 50 years. The concept of mimicking human in-
telligence in a computer fuels the public imagination and has led to countless
academic papers, news articles and fictional works. However, public expecta-
tions remain largely unfulfilled, owing to the incredible complexity of everyday
human behavior. A wide range of tools and techniques have emerged from the
field of artificial intelligence, many of which are reviewed here. They include
rules, frames, model-based reasoning, case-based reasoning, Bayesian updating,
fuzzy logic, multiagent systems, swarm intelligence, genetic algorithms, neural
networks, and hybrids such as blackboard systems. These are all ingenious, prac-
tical, and useful in various contexts. Some approaches are pre-specified and
structured, while others specify only low-level behavior, leaving the intelligence
to emerge through complex interactions. Some approaches are based on the use
of knowledge expressed in words and symbols, whereas others use only mathe-
matical and numerical constructions. It is proposed that there exists a spectrum
of intelligent behaviors from low-level reactive systems through to high-level
systems that encapsulate specialist expertise. Separate branches of research have
made strides at both ends of the spectrum, but difficulties remain in devising a
system that spans the full spectrum of intelligent behavior, including the diffi-
cult areas in the middle that include common sense and perception. Artificial
intelligence is increasingly appearing in situated systems that interact with their
physical environment. As these systems become more compact they are likely to
become embedded into everyday equipment. As the 50th anniversary approaches
of the Dartmouth conference where the term ‘artificial intelligence’ was first
published, it is concluded that the field is in good shape and has delivered some
great results. Yet human thought processes are incredibly complex, and mimick-
ing them convincingly remains an elusive challenge.

ADVANCES IN COMPUTERS, VOL. 65 1 Copyright © 2005 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(05)65001-2 All rights reserved.

mailto:adrian.hopgood@ntu.ac.uk

2 A.A. HOPGOOD

1. Introduction . 3
1.1. What Is Artificial Intelligence?. 3
1.2. A Spectrum of Intelligent Behavior .. 4
1.3. An Integrated Approach . 5

2. Rule-Based Systems . 6
2.1. Knowledge-Based and Expert Systems . 6
2.2. Rules and Inference . 8
2.3. Deduction, Abduction, and Induction. 10
2.4. Forward Chaining . 11
2.5. Backward Chaining . 14
2.6. A Hybrid Inference Engine . 16

3. Moving Beyond Rules. 17
3.1. The Limitations of Rules . 17
3.2. Frame-Based Systems . 17
3.3. Model-Based Reasoning . 19
3.4. Symbolic Learning . 23
3.5. Case-Based Reasoning . 25
3.6. Dealing with Uncertainty . 26

4. Intelligent Agents. 30
4.1. Characteristics of an Intelligent Agent. 30
4.2. Multiagent Systems. 33
4.3. Swarm Intelligence. 37

5. Genetic Algorithms . 38
5.1. Evolutionary Computation . 38
5.2. Chromosomes . 40
5.3. Crossover . 41
5.4. Mutation . 42
5.5. Validity Check . 42
5.6. Selection . 43
5.7. Selecting GA Parameters . 44

6. Neural Networks . 44
6.1. What Is a Neural Network? . 44
6.2. Neural Network Applications . 46
6.3. Nodes and Networks . 47
6.4. Multilayer Perceptrons. 49

7. Hybrid Systems . 57
7.1. Convergence of Techniques . 57
7.2. Blackboard Systems for Multifaceted Problems. 57
7.3. Parameter Setting. 59
7.4. Capability Enhancement. 61
7.5. Clarification and Verification of Neural Network Outputs 65

8. Conclusions . 66
8.1. Benefits . 66

THE STATE OF ARTIFICIAL INTELLIGENCE 3

8.2. Networked AI . 67
8.3. Ubiquitous AI . 67
8.4. Has AI Delivered? . 69
Acknowledgements . 69
References . 70

1. Introduction

1.1 What Is Artificial Intelligence?

Over many centuries, tools of increasing sophistication have been developed to
serve the human race. Digital computers are, in many respects, just another tool. They
can perform the same sort of numerical and symbolic manipulations that an ordinary
person can, but faster and more reliably. A more intriguing idea is whether we can
build a computer (or a computer program) that canthink. As Penrose[1] has pointed
out, most of us are quite happy with machines that enable us to do physical things
more easily or more quickly, such as digging a hole or traveling along a freeway.
We are also happy to use machines that enable us to do physical things that would
otherwise be impossible, such as flying. However, the idea of a machine that can
think for us is a huge leap forward in our ambitions, and one which raises many
ethical and philosophical questions.

Research in artificial intelligence (or simply AI) is directed toward building such a
machine and improving our understanding of intelligence. Most of the definitions in
the standard texts are over-complex, so here is a simple one that will suffice instead:

Artificial intelligence is the science of mimicking human mental faculties in a
computer.

The ultimate achievement in this field would be to construct a machine that
can mimic or exceed human mental capabilities, including reasoning, understand-
ing, imagination, perception, recognition, creativity, and emotions. We are a long
way from achieving this, but some significant successes have nevertheless been
achieved.

Perhaps more importantly, in achieving these modest successes, research into ar-
tificial intelligence has resulted in the development of a family of extremely useful
computing tools. These tools have enabled a range of problems to be tackled that
were previously considered too difficult, and have enabled a large number of other
problems to be tackled more effectively. From a pragmatic point of view, this in itself
makes them interesting and useful.

The tools of AI can be roughly divided into these broad types:

4 A.A. HOPGOOD

• knowledge-based systems (KBSs), i.e., explicit models using words and sym-
bols;

• computational intelligence (CI), i.e., implicit modeling with numerical tech-
niques;

• hybrids.

The first category includes techniques such as rule-based, model-based, frame-based,
and case-based reasoning. As the knowledge is explicitly modeled in words and sym-
bols, it can be read and understood by a human. Although symbolic techniques have
had undoubted success in their narrow domains, they are intrinsically limited in their
ability to cope only with situations that have been explicitly modeled. Although some
systems allow the model to expand with experience, symbolic models are generally
poor at dealing with the unfamiliar.

Computational intelligence goes some way to overcoming these difficulties by
enabling the computer to build up its own model, based on observations and experi-
ence. Here the knowledge is not explicitly stated but is represented by numbers that
are adjusted as the system improves its accuracy. This category includes neural net-
works, genetic algorithms and other optimization algorithms, as well as techniques
for handling uncertainty, such as fuzzy logic.

Pinpointing the beginning of research into artificial intelligence is tricky. George
Boole (1815–1864) had plenty of ideas on the mathematical analysis of thought
processes, and several of his ideas have been retained in the field of AI today. How-
ever, since he had no computer, the above definition appears to rule him out as the
founder of AI. Just as historians on either side of the Atlantic have different opinions
of who built the first programmable computer, the same divergence of opinion occurs
over the origins of AI. British historians point to Alan Turing’s article in 1950 which
included the so-called Turing test to determine whether a computer displays intelli-
gence[2]. American historians prefer to point to the Dartmouth conference of 1956,
which was explicitly billed as a study of AI and is believed to be the first published
use of the term ‘artificial intelligence’. As the golden jubilee of that historic event
approaches, a review of the field is timely.

1.2 A Spectrum of Intelligent Behavior

The definition of AI presented above leaves the notion of intelligence rather vague.
To explore this further, a spectrum of intelligent behaviors can be drawn, based on the
level of understanding involved[3], as shown inFigure 1. The lowest-level behaviors
include instinctive reactions, such as withdrawing a hand from a hot object or dodg-
ing a projectile. High-level behaviors demand specialist expertise such as in the legal
requirements of company takeovers or the interpretation of mass spectrograms. Such

THE STATE OF ARTIFICIAL INTELLIGENCE 5

FIG. 1. A spectrum of intelligent behavior.

a spectrum of intelligent behaviors is useful for charting the progress of AI, although
it has been criticized for oversimplifying the many dimensions of intelligence[4].

Conventional computing techniques have been developed to handle the low-level
decision-making and control needed at the low end of the spectrum. Highly effective
computer systems have been developed for monitoring and controlling a variety of
equipment. An example of the close regulation and coordination that is possible is
demonstrated by the ASIMO humanoid robot[5] developed by Honda. It has 16 flex-
ible joints, requiring four high-specification computers just to control its balance and
movement. ASIMO shows exceptional human-like mobility, but its behavior is nev-
ertheless anchored at the lower end of the spectrum. Although it has some capabilities
for recognizing speech, faces and gestures, it still lacks any depth of understanding.
Sony’s smaller QRIO robot[6] has similar capabilities, but is claimed to be distin-
guished by its capacity for autonomous decision-making.

Early AI research, on the other hand, focused on the problems at the high-level end
of the spectrum. Two early applications, for example, concerned the specialist areas
of mass spectrometry[7] and bacterial blood infections[8]. These early triumphs
generated great optimism. If a computer could deal with difficult problems that are
beyond the capabilities of most ordinary people, then surely more modest human
reasoning would be straightforward. Unfortunately, this is not so.

The behaviors in the middle of the spectrum, that we all perform with barely a
conscious thought, have proved to be the most difficult to emulate in a computer.
Consider the photograph inFigure 2. Although most of us can spot the rabbit in the
picture, the perception involved is an extremely complex behavior. First, recognizing
the boundary between objects is difficult. Once an object has been delineated, recog-
nition is far from straightforward. For instance, rabbits come in different shapes,
sizes, and colors. They can assume different postures, and they may be partially oc-
cluded, as inFigure 2. Yet a fully sighted human can perform this perception in an
instant, without considering it a particular mark of intelligence. But getting a com-
puter to do it reveals the task’s astonishing complexity.

1.3 An Integrated Approach

As with any other technique, knowledge-based systems and computational intel-
ligence are not suitable for all types of problems. Each problem calls for the most
appropriate tool, but knowledge-based systems and computational intelligence can

6 A.A. HOPGOOD

FIG. 2. Spot the rabbit. (See Color Plate Section, Plate 1.)

be used for many problems that would be impracticable by other means. In fact, this
chapter will propose that no single software technique is capable of emulating the
full spectrum of intelligent behaviors.

Substantial successes have been achieved in specific parts of the spectrum. It is
therefore proposed that the key to achieving an AI system that is truly capable of
mimicking human mental faculties in a computer is to integrate various AI tech-
niques with each other and possibly with conventional programs (Figure 3). The
various techniques do not necessarily represent exclusive alternatives, but can often
be used cooperatively. The blackboard architecture will be proposed as one suitable
way of achieving this.

2. Rule-Based Systems

2.1 Knowledge-Based and Expert Systems

The principal difference between a knowledge-based system and a conventional
program lies in its structure. In a conventional program, domain knowledge is inti-

THE STATE OF ARTIFICIAL INTELLIGENCE 7

FIG. 3. Categories of intelligent system software.

mately intertwined with software for controlling the application of that knowledge.
In a knowledge-based system, the two roles are explicitly separated. In the simplest
case there are two modules—the knowledge module is called the knowledge base,
and the control module is called the inference engine (Figure 4).

Within the knowledge base, the programmer expresses information about the prob-
lem to be solved. Often this information is declarative, i.e., the programmer states
some facts, rules, or relationships without having to be concerned with the detail of
how andwhenthat information should be applied. These details are implicit in the
inference engine. However, the domain expert will often wish to use metaknowledge
(i.e., knowledge about knowledge) to steer the inference engine. For instance, he or
she may know that a plumbing diagnostic system should examine rules about valves
before rules about pipes. In the most complex case, the inference engine can become
a metaknowledge-based system.

As the knowledge is represented explicitly in the knowledge base, rather than im-
plicitly within the structure of a program, it can be entered and updated with relative

8 A.A. HOPGOOD

FIG. 4. The main components of a knowledge-based system.

ease by domain experts who may not have any programming expertise. The inference
engine uses the knowledge base in a manner that can be likened to a conventional pro-
gram using a data file. There is also an analogy with the brain, the control processes
of which are approximately unchanging in their nature (like the inference engine),
even though individual behavior is continually modified by new knowledge and ex-
perience (like updating the knowledge base).

Expert systems are a type of knowledge-based system designed to embody ex-
pertise in a particular specialized domain such as configuring computer networks or
diagnosing faulty equipment. An expert system is intended to act as a human expert
who can be consulted on a range of problems within his or her domain of exper-
tise. Typically, the user of an expert system will enter into a dialogue in which he or
she describes the problem—such as the symptoms of a fault—and the expert system
offers advice, suggestions, or recommendations. It is often proposed that an expert
system must offer certain capabilities that mirror those of a human consultant. In
particular, it is often claimed that an expert system must be capable of justifying its
current line of inquiry and explaining its reasoning in arriving at a conclusion. This
is the purpose of the explanation module inFigure 4.

2.2 Rules and Inference

One of the most straightforward means of representing knowledge in a KBS is as
rules. The simplest type of rule is called a production rule and takes the form:

if <condition> then <conclusion>

THE STATE OF ARTIFICIAL INTELLIGENCE 9

An example production rule about ACME Inc. might be:

rule r1
if the employer of Person is acme then the salary of Person is

large .

Part of the attraction of using production rules is that they can often be written in
a form that closely resembles natural language, as opposed to a computer language.
The use of capitalization indicates that Person is a variable that can be replaced by
a constant value, such asjoe_bloggs or mary_smith . A fact in this KBS
might be:

/* fact f1 */
the employer of joe_bloggs is acme .

Rules like the one above are a useful way of expressing many types of knowledge,
where there is a reasonable level of certainty. This is not always the case, and in this
example uncertainty may arise from three distinct sources:

• uncertain evidence(perhaps we are not certain that Joe Bloggs works for
ACME);

• uncertain link between evidence and conclusion(we cannot be certain that an
ACME employee earns a large salary, we just know that it is likely);

• vague rule(what is a “large” salary anyway?).

The first two sources of uncertainty can be handled by Bayesian updating, or vari-
ants of it, and the third source of uncertainty can be handled by fuzzy logic. Both
techniques are reviewed below.

One or more given facts may satisfy the condition of a rule, resulting in the gen-
eration of a new fact, known as a derived fact. For example, by applying Rule r1 to
Fact f1, we can derive:

/* fact f2 */
the salary of joe_bloggs is large .

The derived fact may satisfy, or partially satisfy, another rule, such as:

rule r2
if the salary of a Person is large or a Person has

job_satisfaction then the Person has
professional_contentment .

10 A.A. HOPGOOD

FIG. 5. An inference network.

This, in turn, may lead to the generation of a new derived fact about a person having
professional contentment. Rules r1 and r2 are interdependent, since the conclusion of
one can satisfy the condition of the other. The interdependencies amongst the rules
define a network, as shown inFigure 5, known as an inference network.

It is the job of the inference engine to traverse the inference network to reach a
conclusion. Two important types of inference engines can be distinguished: forward-
chaining and backward-chaining, also known as data-driven and goal-driven, respec-
tively. A knowledge-based system working in data-driven mode takes the available
information (the “given” facts) and generates as many derived facts as it can. The
output is therefore unpredictable. This may have either the advantage of leading to
unexpected, novel, or innovative solutions to a problem or the disadvantage of wast-
ing time generating irrelevant information. The data-driven approach might typically
be used for problems of interpretation, where we wish to know whatever the sys-
tem can tell us about some data. A goal-driven strategy is appropriate when a more
tightly focused solution is required. For instance, a planning system may be required
to generate a plan for manufacturing a consumer product. Any other plans are irrele-
vant. A backward-chaining system might be presented with the proposition: “a plan
exists for manufacturing a widget”. It will then attempt to ascertain the truth of this
proposition by generating the plan. If it fails, the proposition is assumed to be false
and no plan is possible.

2.3 Deduction, Abduction, and Induction
The rules that make up the inference network inFigure 5, and the network taken

as a whole, are used to link cause and effect:

if <cause> then <effect>

THE STATE OF ARTIFICIAL INTELLIGENCE 11

Using the inference network, we can infer that if Joe Bloggs works for ACME and is
in a stable relationship (the causes) then he is happy (the effect). This is the process
of deduction. Many problems, such as diagnosis, involve reasoning in the reverse
direction, i.e., we wish to ascertain a cause, given an effect. This isabduction. Given
the observation that Joe Bloggs is happy, we can infer by abduction that Joe Bloggs
enjoys domestic bliss and professional contentment. However, this is only a valid
conclusion if the inference network showsall of the ways in which a person can find
happiness. This is the closed-world assumption.

The inference network therefore represents a closed world, where nothing is
known beyond its boundaries. As each node represents a possible state of some as-
pect of the world, a model of the current overall state of the world can be maintained.
Such a model is dependent on the extent of the relationships between the nodes in
the inference network. In particular, if a change occurs in one aspect of the world,
many other nodes could be affected. Determining what else is changed in the world
model as a consequence of changing one item is known as the frame problem. In
the description of Joe Bloggs’ world represented inFigure 5, this is equivalent to
determining the extent of the relationships between the nodes. For example, if the
flexibility of Joe Bloggs’ job were to change,Figure 5suggests that the only direct
change is his job satisfaction, which could change his professional contentment and
happiness. However, in a more complex model of Joe Bloggs’ world, many other
nodes could also be affected.

If we have many examples of cause and effect, we can infer the rule (or inference
network) that links them. For instance, if every employee of ACME Inc. that we have
met earns a large salary, then we might infer Rule r1 above from those examples.
Inferring a rule from a set of example cases of cause and effect is termedinduction.

Deduction, abduction, and induction can be summarized as follows:

• deduction: cause+ rule⇒ effect;

• abduction: effect+ rule⇒ cause;

• induction: cause+ effect⇒ rule.

2.4 Forward Chaining

Consider a rule-based system to monitor the state of a power station boiler and to
advise appropriate actions. Sensors on the boiler monitor:

• the temperature of the steam;

• the voltage output from a transducer, which in turn monitors the level of water;

• the status of pressure release valve (i.e., open or closed);

• the rate of flow of water through the control valve.

12 A.A. HOPGOOD

Using the syntax of the Flex KBS toolkit[9], the following rules could be written
for controlling the boiler:

rule r1
if water_level is low
then report(’** open the control valve! **’) .

rule r2
if temperature is high
and water_level is low
then report(’** open the control valve! **’)
and report(’** shut down the boiler tubes! **’) .

rule r3
if steam_outlet is blocked
then report(’** outlet pipe needs replacing! **’) .

rule r4
if release_valve is stuck
then steam_outlet becomes blocked .

rule r5
if pressure is high
and release_valve is closed
then release_valve becomes stuck .

rule r6
if steam is escaping
then steam_outlet becomes blocked .

rule r7
if temperature is high
and water_level is not low
then pressure becomes high.

rule r8
if transducer_output is low
then water_level becomes low.

rule r9
if release_valve is open
and flow_rate is high
then steam becomes escaping.

rule r10
if flow_rate is low
then control_valve becomes closed .

The conclusions of three of the above rules (r1, r2, and r3) consist of recommen-
dations to the boiler operators. In a fully automated system, such rules would be able

THE STATE OF ARTIFICIAL INTELLIGENCE 13

to perform their recommended actions rather than simply making a recommendation.
The remaining rules all involve taking a low-level fact, such as a transducer reading,
and deriving a higher-level fact, such as the level of water in the boiler. The input
data to the system (sensor readings in our example) are low-level facts; higher-level
facts are facts derived from them.

Most of the rules in this example are specific to one particular boiler arrangement
and would not apply to other situations. These rules could be described asshallow,
because they represent shallow knowledge. On the other hand, Rule r7 is a reformula-
tion of a fundamental rule of physics, namely that the boiling temperature of a liquid
increases with increasing applied pressure. This is valid under any circumstances and
is not specific to a particular boiler. It is an example of adeeprule expressing deep
knowledge.

The distinction between deep and shallow rules should not be confused with the
distinction between high-level and low-level rules. Low-level rules are those that
depend on low-level facts. Rule r8 is a low-level rule since it is dependent on a
transducer reading. High-level rules make use of more abstract information, such as
Rule r3 which relates the occurrence of a steam outlet blockage to a recommendation
to replace a pipe. Higher-level rules are those which are closest to providing a solu-
tion to a problem, while lower-level rules represent the first stages toward reaching a
conclusion.

The task of interpreting and applying the rules belongs to the inference engine. In
a forward-chaining system, the application of rules can be broken down as follows:

(i) selecting rules to examine—these are theavailable rules;
(ii) determining which of these are applicable—these are thetriggeredrules; they

make up theconflict set;
(iii) selecting a rule tofire, i.e., to apply.

Suppose the rule-based system has access to the transducer output and to the tem-
perature readings. A sensible set of rules to examine would be r2, r7, and r8, as these
rules are conditional on the boiler temperature and transducer output. If the trans-
ducer level is found to be low, then Rule r8 is applicable. If it is selected and used to
make the deductionwater_level low , then the rule is said to have fired. If the
rule is examined but cannot fire (because the transducer reading is not low), the rule
is said to fail.

If we do not know that a given proposition is true, most rule-based systems will
assume it to be false. This assumption, known as the closed-world assumption,
simplifies the logic required as all propositions are either TRUE or FALSE. If the
closed-world assumption is not made, then a third category, namely UNKNOWN,
has to be introduced. In the boiler control example, if the water level is unknown or
has not yet been investigated, thenwater_level is low is assumed to be false

14 A.A. HOPGOOD

and hencewater_level is not low is assumed to be true. Thus the condi-
tion part of rule r7 could appear to be satisfied and the rule fire, even though the level
of the water has not been established at all.

There are two approaches that could be taken to avoid this difficulty—to modify
the rules so that they do not contain any negative conditions or to modify the infer-
ence engine so that Rule r8 is always examined before r7. A method for achieving
the latter approach is described in Section2.6below.

2.5 Backward Chaining

Backward-chaining is an inference strategy that assumes the existence of a goal
that needs to be established or refuted. In the boiler control example, the goal might
be to establish whether it is appropriate to replace the outlet pipe, and we may not be
interested in any other deductions that the system is capable of making.

Initially, only those rules that can lead directly to the fulfillment of the goal are
selected for examination. In this example, the only rule that can achieve the goal is
Rule r3. Its condition part is examined but, since no information is yet established
about a steam outlet blockage, Rule r3 cannot be fired. A new goal is then produced,
namely steam outlet blocked, corresponding to the condition part of Rule r3. Two
rules, r4 and r6, are capable of fulfilling this goal and are described asantecedents
of Rule r3. The backward-chaining inference engine then tries to establish the truth
of the condition part of one of these rules by examining its antecedents, and so on
down that branch of the search tree. Eventually it may reach a rule whose condition
is satisfied, in which case the goal has been proven. Otherwise it willbacktrackto
the branch point and try to establish the truth of the other branch—seeFigure 6.
Ultimately, the goal will either be established, with a rule trail to prove it, or the
goal fails to be proven and is assumed to be false under the closed-world assump-
tion.

In some systems, such as Flex, the rule syntax for backward chaining is reversed
compared with forward chaining. The placing of the conclusion before the condition
reflects the fact that in backward-chaining systems it is the conclusion part of a rule
that is assessed first, and only if the conclusion is relevant is the condition examined.
In Flex, backward-chaining rules are called relations, and the boiler control rules
could be re-cast as follows:

relation needs_opening(control_valve)
if low(water_level) .

relation needs_shutting_down(boiler_tubes)
if high(temperature)
and low(water_level) .

THE STATE OF ARTIFICIAL INTELLIGENCE 15

FIG. 6. Backward-chaining applied to the boiler control rules.

relation needs_replacing(outlet_pipe)
if blocked(steam_outlet) .

relation blocked(steam_outlet)
if stuck(release_valve) .

relation stuck(release_valve)
if high(pressure)
and closed(release_valve) .

relation blocked(steam_outlet)
if escaping(steam) .

relation high(pressure)
if high(temperature)
and not low(water_level) .

relation low(water_level)
if low(transducer_output) .

relation escaping(steam)
if open(release_valve)
and high(flow_rate) .

relation closed(control_valve)
if low(flow_rate) .

16 A.A. HOPGOOD

2.6 A Hybrid Inference Engine

In all problems involving data interpretation (such as the boiler control example),
the high-level rules concerning the overall goal can never fire until lower-level rules
for data manipulation have been fired. For example, if Rule r8 fails, then Rule r2
need not be examined as it too will fail. The standard mechanisms for forward- or
backward-chaining do not take this information into account and, therefore, involve
a great deal of redundant rule examination. The hybrid strategy used in ARBS (Al-
gorithmic and Rule-based Blackboard System)[10,11]is a means of eliminating this
source of inefficiency.

Under the hybrid strategy, arule dependence networkis built prior to running the
system. For each rule, the network shows which other rules may enable it, i.e., its an-
tecedents, and which rules it may enable, i.e., its dependants. The rule dependencies
for the boiler control knowledge base are shown inFigure 7. In its data-driven mode,
known asdirected forward-chaining, the hybrid strategy achieves improved effi-
ciency by using the dependence network to select rules for examination. Low-level
rules concerning the sensor data are initially selected for examination. As shown in
Figure 7, only Rules r8, r9, and r10 need be examined initially. Then higher-level

FIG. 7. A rule dependence network.

THE STATE OF ARTIFICIAL INTELLIGENCE 17

rules, leading toward a solution, are selected depending on which rules have actually
fired. So, if Rules r8 and r9 fire successfully, the new set of rules to be examined
becomes r1, r2, and r6. The technique is an effective way of carrying out the first
step of forward chaining, i.e., selecting the rules to examine.

For a given rule base, the dependence network needs to be generated only once,
and is then available to the system at run-time. The same mechanism can easily
be adapted to provide an efficient goal-driven strategy. Given a particular goal, the
control mechanism can select the branch of the dependence network leading to that
goal and then backward-chain through the selected rules.

Rule-dependence networks help to cut down on the number of rules selected for
examination. They are distinct from the more well-known Rete networks that are
intended to help to avoid constantly recreating the conflict set[12]. In most appli-
cations, the firing of a single rule makes only slight changes to the currently known
facts and hence to the membership of the conflict set. The Rete network is con-
structed dynamically to record these changes. After a rule has fired, the conflict set
can be updated rather than created from scratch. In principle, the two types of net-
work could be used together.

3. Moving Beyond Rules

3.1 The Limitations of Rules
When modeling a real system, the amount of knowledge that can be represented in

rules that operate on simple variables is limited. Frames provide a flexible structure
for modeling complex entities, thereby allowing the creation of more flexible and
versatile rules. One key use of frames is in the construction of model-based systems,
which are particularly important for fault diagnosis. The links between symptoms
and diagnosis are not explicitly stated but can be inferred by comparing the charac-
teristics of a model with those of the real system.

This section will also consider symbolic learning, in which rules can be expanded
and altered in the light of experience. An important class of symbolic learning is
case-based reasoning, in which previously encountered cases are stored for possi-
ble future retrieval and re-use. Finally, this section will consider some of the ways
in which rules can be embellished to represent uncertainty and imprecision in the
evidence, the conclusion, or the link between them.

3.2 Frame-Based Systems
Frames are data structures developed by AI researchers as a means of represent-

ing and organizing knowledge. They are similar in concept to objects, which were

18 A.A. HOPGOOD

developed to meet the needs of software engineers. Like object-oriented systems,
frame-based systems contain the ideas of classes, instances, and inheritance. For
example, the class vehicle could be defined, along with subclasses car and truck.
Characteristics of vehicle are inherited by car and truck classes, so that only infor-
mation that is specific to the sub-class, or which overrides the inherited information,
needs to be declared at the subclass level. Specific instances of classes can then be
declared, e.g., my truck can be represented by an instance calledmy_truck . This
instance inherits information from its classtruck , which itself inherits from its
parent classvehicle .

The attributes of a frame are sometimes calledslots, into which valuescan be
inserted. They allow us to put information onto a frame, such as the number of
wheels on my truck. Thusnumber_of_wheels could be a slot associated with
the frame instancemy_truck . This slot could use the default value of 4 inherited
from vehicle or it may be a locally defined value that overrides the default. The
value associated with a slot can be a number, a description, a number range, a pro-
cedure, another frame, or anything allowed by the particular implementation. Some
frame-based systems allow us to place multiple values in a slot. In such systems, the
different pieces of information that we might want to associate with a slot are known
as itsfacets. Each facet can have a value associated with it, as shown inFigure 8. For
example, we may wish to specify limits on the number of wheels, provide a default,
or calculate a value using a function known asan access function. In this example,
an access functioncount_wheels could calculate the number of wheels when a
value is not previously known.

Consider the following example, written using the syntax of Flex:

FIG. 8. An example of a frame-based representation.

THE STATE OF ARTIFICIAL INTELLIGENCE 19

/* define a frame */
frame vehicle;

default location is garage and
default number_of_wheels is 4
and default mass_in_tonnes is 1 .

/* define another frame */
frame truck is a kind of vehicle;

default mass_in_tonnes is 10 .

/* create an instance of frame truck */
instance my_truck is a truck.

/* create another instance of frame truck */
instance your_truck is a truck;

number_of_wheels is my_truck‘s number_of_wheels + 2 .

In this example, the default number of wheels is inherited bymy_truck . The num-
ber of wheels onyour_truck is derived by an access function defined within the
frame.

The termframehas been used so far here to imply a framework onto which infor-
mation can be hung. However, frames are also analogous to the frames of a movie
film or video tape. In associating values with the slots of a frame we are taking a
snapshot of the world at a given instant. At one moment the slotlocation on
my_truck might contain the valuesmallville , while sometime later it might
contain the value largetown.

Frames are so endemic in rule-based systems that they were implicitly included in
the first example of rules and facts introduced in Section2:

/* fact f1 */
the employer of joe_bloggs is acme .

Here,joe_bloggs is an instance of a frame class of person, and employer is a slot
that is set to the value acme when this fact is met.

3.3 Model-Based Reasoning

Fulton and Pepe[13] have highlighted three major inadequacies of a purely rule-
based system in the context of diagnosing faults: (a) building a complete rule set is
a massive task; (b) there is uncertainty arising from whether sensor readings can be
believed; and (c) maintaining the rules is a complex task because of the interdepen-
dence between them. They used these arguments to justify a model-based approach
to fault diagnosis.

20 A.A. HOPGOOD

The principle of model-based reasoning is that, rather than storing a huge collec-
tion of symptom–cause pairs in the form of rules, these pairs can begeneratedby
applying underlying principles to the model. The model, which is often frame-based,
may describe any kind of system, including physical[14,15], software[16], medical
[17], legal [18], and behavioral[19] systems. This review will focus on fault diag-
nosis in physical systems, which are made up of fundamental components such as
tubes, wires, batteries, and valves. As each of these components performs a fairly
simple role, it also has a simple failure mode. For example, a wire may break and
fail to conduct electricity, a tube can spring a leak, a battery can lose its charge, and
a valve may become stuck. Given a model of how these components operate and
interact to form a device, faults can be diagnosed by determining the effects of local
malfunctions on the overall device.

3.3.1 Building the Model

A physical device is made up of a number of components, each of which is rep-
resented as an instance of a class of component. The function of each component
is defined within its class definition. The structure of a device is defined by links
between the instances of components that make up the device. The device may be
in one of several states, for example a refrigerator door may be open or closed, and
the thermostat may have switched the compressor on or off. These states are defined
by setting the values of instance variables. Function, structure, and state are now
described in more detail.

Function. The function of a component is defined by the methods and attributes
of its class. Fink and Lusth[20] define four functional primitives, which are classes of
components. All components are considered to be specializations of one of these four
classes, although Fink and Lusth hint at the possible need to add further functional
primitives in some applications. The four functional primitives are:

• transformer—transforms one substance into another;

• regulator—alters the output of substanceB, based upon changes in the input of
substanceA;

• reservoir—stores a substance for later output;

• conduit—transports substances between other functional primitives.

A fifth class,sensor, that displays the value of its input, may be added to this list.

Structure. Links between component instances can be used to represent their
physical associations, thereby defining the structure of a device. For example, two

THE STATE OF ARTIFICIAL INTELLIGENCE 21

resistors connected in series might be represented as two instances of the classre-
sistor and one instance of the classwire . Each instance ofresistor would
have a link to the instance ofwire , to represent the electrical contact between them.

In a refrigerator, the compressor can be regarded either as a device made up from
several components or as a component of the overall appliance. It is, therefore, an
example of a functional group. In devices where functional groups exist, the device
structure is hierarchical. The hierarchical relationship can be represented by means
of the composition relationship between objects. It is often adequate to consider just
three levels of the structural hierarchy:

device
↓

functional group
↓

component

The application of a three-level hierarchy to the structure of a refrigerator is shown
in Figure 9.

State. A device may be in one of many alternative states. For example, a refrig-
erator door may be open or closed, and the compressor may be running or stopped.
A state can be represented by setting appropriate instance variables on the com-
ponents or functional groups, and transitions between states can be represented by
changes in these parameters.

In a functioning refrigerator, the compressor will be in the staterunning only if
the thermostat is in the stateclosed circuit. The state of the thermostat will alter
according to the cabinet temperature. The cabinet temperature is partially dependent
on an external factor, namely, the room temperature, particularly if the refrigerator
door is open. The components can be modeled as objects. If the thermostat object
changes its state, it would send a message to the compressor, which in turn would
change its state. A map of possible states can be drawn up, with links indicating the
ways in which one state can be changed into another.

3.3.2 Using the Model
The details of how a model can assist in diagnostic tasks vary according to the

specific device and the method of modeling it. In general, three potential uses can be
identified:

• monitoring the device to check for malfunctions;

• finding a suspect component, thereby forming a tentative diagnosis; and

• confirming or refuting the tentative diagnosis by simulation.

22
A

.A
.H

O
P

G
O

O
D

FIG. 9. Structural hierarchy for some components of a refrigerator.

THE STATE OF ARTIFICIAL INTELLIGENCE 23

The diagnostic task is to determine which nonstandard component behavior in the
model could make the output values of the model match those of the physical system.
When a malfunction has been detected, thesingle point of failureassumption is often
made. This is the assumption that the malfunction has only one root cause. Such an
approach is justified by Fulton and Pepe[13] on the basis that no two failures are
truly simultaneous. They argue that one failure will always follow the other either
independently or as a direct result.

In summary, the key advantages of model-based reasoning for fault diagnosis are:

• A model is less cumbersome to maintain than a rule base. Real-world changes
are easily reflected in changes in the model.

• The model need not waste effort looking for sensor verification. Sensors are
treated identically to other components, and therefore a faulty sensor is as likely
to be detected as any other fault.

• Unusual failures are just as easy to diagnose as common ones. This is not the
case in a rule-based system, which is likely to be most comprehensive in the
case of common faults.

• The separation of function, structure, and state may help a diagnostic system to
reason about a problem that is outside its area of expertise.

• The model can simulate a physical system, for the purpose of monitoring or for
verifying a hypothesis.

3.4 Symbolic Learning

The preceding sections have discussed ways of representing knowledge and draw-
ing inferences. It was assumed that the knowledge itself was readily available and
could be expressed explicitly. However, there are many circumstances where this is
not the case, such as those listed below.

• The software engineer may need to obtain the knowledge from a domain expert.
This task of knowledge acquisition is extensively discussed in the literature[21],
often as an exercise in psychology.

• The rules that describe a particular domain may not be known.

• The problem may not be expressible explicitly in terms of rules, facts or rela-
tionships. This category includesskills, such as welding or painting.

One way around these difficulties is to have the system learn for itself from a set
of example solutions. Two approaches can be broadly recognized—symbolic learn-
ing andnumerical learning. Symbolic learning describes systems that formulate and
modify rules, facts, and relationships, explicitly expressed in words and symbols. In

24 A.A. HOPGOOD

other words, they create and modify their own knowledge base. Numerical learning
refers to systems that use numerical models—learning in this context refers to tech-
niques for optimizing the numerical parameters. Numerical learning includes genetic
algorithms (Section5) and artificial neural networks (Section6).

A learning system is usually given some feedback on its performance. The source
of this feedback is called theteacheror theoracle. Often the teacher role is fulfilled
by the environment within which the knowledge-based system is working, i.e., the
reaction of the environment to a decision is sufficient to indicate whether the decision
was right or wrong. Learning with a teacher is sometimes calledsupervisedlearning.
Learning can be classified as follows, where each category involves a different level
of supervision:

(i) Rote learning. The system receives confirmation of correct decisions. When
it produces an incorrect decision it is “spoon-fed” with the correct rule or
relationship that it should have used.

(ii) Learning from advice. Rather than being given a specific rule that should
apply in a given circumstance, the system is given a piece of general advice,
such as “gas is more likely to escape from a valve than from a pipe.” The
system must sort out for itself how to move from this high-level abstract
advice to an immediately usable rule.

(iii) Learning by induction. The system is presented with sets of example data
and is told the correct conclusions that it should draw from each. The system
continually refines its rules and relations so as to correctly handle each new
example.

(iv) Learning by analogy. The system is told the correct response to a similar, but
not identical, task. The system must adapt the previous response to generate
a new rule applicable to the new circumstances.

(v) Explanation-based learning(EBL). The system analyzes a set of example
solutions and their outcomes to determinewhy each one was successful
or otherwise. Explanations are generated, which are used to guide future
problem solving. EBL is incorporated into PRODIGY, a general-purpose
problem-solver[22].

(vi) Case-based reasoning. Any case about which the system has reasoned is
filed away, together with the outcome, whether it be successful or otherwise.
Whenever a new case is encountered, the system adapts its stored behavior
to fit the new circumstances. Case-based reasoning is discussed in further
detail in Section3.5below.

(vii) Explorative or unsupervised learning. Rather than having an explicit goal,
an explorative system continuously searches for patterns and relationships in
the input data, perhaps marking some patterns as interesting and warranting
further investigation. Examples of the use of unsupervised learning include:

THE STATE OF ARTIFICIAL INTELLIGENCE 25

• data mining, where patterns are sought among large or complex data
sets;

• identifyingclusters, possibly for compressing the data;

• learning torecognizefundamental features, such as edges, from pixel
images;

• designingproducts, where innovation is a desirable characteristic.

In rote learning and learning from advice, the sophistication lies in the ability of
the teacher rather than the learning system. If the teacher is a human expert, these
two techniques can provide an interactive means of eliciting the expert’s knowledge
in a suitable form for addition to the knowledge base. However, most of the interest
in symbolic learning has focused on case-based reasoning, described in more detail
below. Reasoning by analogy is similar to case-based reasoning, while many of the
problems and solutions associated with learning by induction also apply to the other
categories of symbolic learning.

3.5 Case-Based Reasoning

A characteristic of human intelligence is the ability to recall previous experi-
ence whenever a similar problem arises. This is the essence of case-based reasoning
(CBR). As Riesbeck and Schank[23] put it,

A case-based reasoner solves new problems by adapting solutions that were used
to solve old problems.

Consider the example of diagnosing a fault in a refrigerator. If an expert system
has made a successful diagnosis of the fault, given a set of symptoms, it can file away
this information for future use. If the expert system is subsequently presented with
details of another faulty refrigerator of exactly the same type, displaying exactly
the same symptoms in exactly the same circumstances, then the diagnosis can be
completed simply by recalling the previous solution. However, a full description of
the symptoms and the environment would need to be very detailed, and it is unlikely
to be reproduced exactly. What we need is the ability to identify a previous case, the
solution of which can be modified to reflect the slightly altered circumstances, and
then saved for future use. Aamodt and Plaza[24] have therefore proposed that CBR
can be described by a four-stage cycle:

• retrievethe most similar case(s);

• reusethe case(s) to attempt to solve the problem;

• revisethe proposed solution if necessary;

• retain the new solution as a part of a new case.

26 A.A. HOPGOOD

Such an approach is arguably a good model of human reasoning. Indeed case-based
reasoning is often used in a semi-automated manner, where a human can intervene
at any stage in the cycle.

3.6 Dealing with Uncertainty

3.6.1 Sources of Uncertainty

The discussion of rule-based systems in Section2 above assumed that we live in
a clear-cut world, where every hypothesis is either true, false, or unknown. Further-
more, it was pointed out that many systems make use of the closed-world assumption,
whereby any hypothesis that is unknown is assumed to be false. We were then left
with a binary system, where everything is either true or false. While this model of
reality is useful in many applications, real reasoning processes are rarely so clear-cut.
Referring to the example of the control of a power station boiler, we made use of the
following rule:

IF transducer output is low THEN water level is low

There are three distinct forms of uncertainty that might be associated with this rule:

• Uncertainty in the rule itself. A low level of water in the boiler is not the only
possible explanation for a low transducer output. Another possible cause could
be that the float attached to the transducer is stuck. What we really mean by this
rule is that if the transducer output is low then the water level isprobablylow.

• Uncertainty in the evidence. The evidence upon which the rule is based may be
uncertain. There are two possible reasons for this uncertainty. First, the evidence
may come from a source that is not totally reliable. For instance, we may not
be absolutely certain that the transducer output is low, as this information relies
upon a meter to measure the voltage. Second, the evidence itself may have been
derived by a rule whose conclusion was probable rather than certain.

• Use of vague language. The above rule is based around the notion of a “low”
transducer output. Assuming that the output is a voltage, we must consider
whether “low” corresponds to 1 mV, 1 V or 1 kV.

Two popular techniques for handling the first two sources of uncertainty are
Bayesian updating and certainty theory. Bayesian updating has a rigorous derivation
based upon probability theory, but its underlying assumptions, e.g., the statistical in-
dependence of multiple pieces of evidence, may not be true in practical situations.
Certainty theory[25] does not have a rigorous mathematical basis, but has been de-
vised as a practical and pragmatic way of overcoming some of the limitations of

THE STATE OF ARTIFICIAL INTELLIGENCE 27

Bayesian updating. It was first used in the classic MYCIN[8,26] system for diag-
nosing infectious diseases. Possibility theory, or fuzzy logic, allows the third form of
uncertainty, i.e., vague language, to be used in a precise manner.

Bayesian updating and fuzzy logic are explained in more detail below, but many
other approaches to handling uncertainty have also been proposed. Some, such as
the Dempster–Shafer theory of evidence[27,28]and Inferno[29], attempt to build in
greater sophistication. The assumptions and arbitrariness of some of these techniques
have meant that reasoning under uncertainty remains a controversial issue. There are
also other non-numerical approaches, such as rules that hypothesize and then test for
supporting evidence[30].

3.6.2 Bayesian Updating

The technique of Bayesian updating provides a mechanism for updating the prob-
ability of a hypothesisP(H) in the presence of evidenceE. Often the evidence is
a symptom and the hypothesis is a diagnosis. Each hypothesis is allocated an initial
likelihood, in the absence of any evidence for or against, known as its prior proba-
bility. This probability is then updated by taking into account the available evidence,
expressed as rules with an especially extended syntax.

The technique is based upon the application of Bayes’ theorem. Bayes’ theorem
provides an expression for the conditional probabilityP(H |E) of a hypothesisH
given some evidenceE, in terms ofP(E|H), i.e., the conditional probability ofE
givenH :

(1)P(H |E) = P(H) × P(E|H)

P (E)
.

A little mathematics allows this relationship to be reformulated as

(2)O(H |E) = A× O(H)

where:

(3)A = P(E|H)

P (E|∼H)

and “∼H ” means “notH ”. The oddsO(H) of a given hypothesisH are related to
its probabilityP(H) by the relation:

(4)O(H) = P(H)

P (∼H)
= P(H)

1− P(H)
.

O(H |E) is the updated odds ofH , given the presence of evidenceE, andA is
theaffirmsweight of evidenceE. It is one of two likelihood ratios. The other is the
deniesweightD of evidenceE. Thedeniesweight can be obtained by considering

28 A.A. HOPGOOD

the absence of evidence, i.e.,∼E:

(5)O(H |∼E) = D × O(H)

where:

(6)D = P(∼E|H)

P (∼E|∼H)
= 1− P(E|H)

1− P(E|∼H)
.

Using these equations, theaffirms and deniesweightings can be derived from
probability estimates. However, a more pragmatic approach is frequently adopted,
namely, to choose values that produce the right sort of results, even though the val-
ues cannot be theoretically justified.

Rule r7 above could be replaced by the following Bayesian updating rule, shown
here in Flex syntax:

uncertainty_rule r7b
if the temperature is high (affirms 18.0; denies 0.11)
and the water_level is low (affirms 0.10; denies 1.90)
then the pressure is high.

Although Bayesian updating is soundly based on probability theory, it is typically
used in anad hocand imprecise manner because:

• linear interpolation of theaffirmsanddeniesweighting is frequently used as a
convenient means of compensating for uncertainty in the evidence;

• the likelihood ratios (or the probabilities from which they are derived) and prior
probabilities are often based on estimates rather than statistical analysis;

• separate items of evidence that support a single assertion are assumed to be
statistically independent, although this may not be the case in reality.

3.6.3 Fuzzy Logic

Fuzzy logic provides a precise way of handling vague terms such as low, medium
and high. It does this by replacing simple Boolean logic, based on propositions being
true or false, with varying degrees of truth. Thus a fuzzy variable such as temperature
may have, perhaps, three fuzzy sets—low medium and high. For a temperature of,
for example, 90◦C, the proposition “temperature is high” may have a membership
value of 0.6 while the propositions “temperature is medium” and “temperature is
low” may have memberships of 0.4 and 0 respectively.

One of the key features of fuzzy logic systems is that a small set of rules can
produce output values that change smoothly as the input values change. They are
therefore particularly well suited to control decisions, where the control actions

THE STATE OF ARTIFICIAL INTELLIGENCE 29

need to be smoothly scaled as input measurements change. Control decisions can
be thought of as a transformation from state variables to action variables. State vari-
ables describe the current state of the physical plant and the desired state. Action
variables are those that can be directly altered by the controller, such as the electrical
current sent to a furnace, or the flow rate through a gas valve. In high-level control,
analytical functions to link state variables to action variables are rarely available, and
this provides a strong incentive for using fuzzy logic instead.

A small number of fuzzy rules can produce smooth changes in the action vari-
ables as the state variables change. The number of rules required is dependent on the
number of state variables, the number of fuzzy sets, and the ways in which the state
variables are combined in rule conditions. It could be said that numerical information
is explicit in crisp rules, but in fuzzy rules it becomes implicit in the chosen shape of
the fuzzy membership functions. In Flex, fuzzy rules look like this

fuzzy_rule r1f
if the temperature is high
then the pressure is high.

fuzzy_rule r2f
if the temperature is medium
then the pressure is medium.

fuzzy_rule r3f
if the temperature is low
then the pressure is low.

The fuzzy sets associated with the fuzzy variables have to be defined. In Flex, this
can be done either through a graphical user interface or by coding:

fuzzy_variable temperature;
ranges from 0 to 400;
fuzzy_set low is \ shaped and linear at 0, 200;
fuzzy_set medium is / \ shaped and linear at 0, 200, 400;
fuzzy_set high is / shaped and linear at 200, 400 .

fuzzy_variable pressure;
ranges from 0.1 to 0.7;
fuzzy_set low is \ shaped and linear at 0.1, 0.4;
fuzzy_set medium is / \ shaped and linear at 0.1, 0.4, 0.7;
fuzzy_set high is / shaped and linear at 0.4, 0.7;
defuzzify using

all memberships
and mirror rule
and shrinking .

30 A.A. HOPGOOD

relation fuzzy_boiler(Temperature, Pressure)
if reset all fuzzy values
and fuzzify temperature from Temperature
and propagate boiler_rules fuzzy rules
and defuzzify pressure to Pressure .

There is insufficient space in this chapter for a full review of fuzzy logic, though
the subject is well reviewed elsewhere[31]. Inevitably, the effectiveness of a fuzzy
logic system lies in its details, and particularly the definitions of the fuzzy sets.

4. Intelligent Agents

4.1 Characteristics of an Intelligent Agent

Agent-based technologies have been growing apace, both within the world of AI
and in more general software engineering. One motivation has been the rapid esca-
lation in the quantity of information available. Software assistants—or agents—are
needed to take care of specific tasks for us. For example, much of the trading on the
world’s stock exchanges is performed by agents that can react quickly to minor price
fluctuations.

While noting that not all agents are intelligent, Wooldridge[32] gives the follow-
ing definition for an agent:

An agent is an encapsulated computer system that is situated in some environ-
ment, and that is capable of flexible, autonomous action in that environment in
order to meet its design objectives.

From this definition we can see that the three key characteristics of an agent are
autonomy, persistence, and the ability to interact with its environment. Autonomy
refers to an agent’s ability to make its own decisions based on its own expertise
and circumstances, and to control its own internal state and behavior. The definition
implies that an agent functions continuously within its environment, i.e., it is per-
sistent over time. Agents are also said to be situated, i.e., they are responsive to the
demands of their environment and are capable of acting upon it. Interaction with a
physical environment requires perception through sensors, and action through actua-
tors or effectors. Interaction with a purely software environment requires only access
to and manipulation of data and programs.

We might reasonably expect anintelligentagent to be all of the following:

• reactive,

• goal-directed,

THE STATE OF ARTIFICIAL INTELLIGENCE 31

• adaptable,

• socially capable.

Social capability refers to the ability to cooperate and negotiate with other agents (or
humans). It is quite easy to envisage an agent that is purely reactive, e.g., one whose
only role is to place a warning on your computer screen when the printer has run
out of paper. Likewise, modules of conventional computer code can be thought of
as goal-directed in the limited sense that they have been programmed to perform a
specific task regardless of their environment. Since it is autonomous, an intelligent
agent can decide its own goals and choose its own actions in pursuit of those goals.
At the same time, it must also be able to respond to unexpected changes in its envi-
ronment. It, therefore, has to balance reactive and goal-directed behavior, typically
through a mixture of problem solving, planning, searching, decision making, and
learning through experience.

There are at least four different schools of thought about how to achieve an ap-
propriate balance between reactive and goal-directed behavior. These are reviewed
below.

4.1.1 Logic-Based Architectures

At one extreme, the purists favor logical deduction based on a symbolic repre-
sentation of the environment[33,34]. This approach is elegant and rigorous, but it
relies on the environment remaining unchanged during the reasoning process. It also
presents particular difficulties in symbolically representing the environment and rea-
soning about it.

4.1.2 Emergent Behavior Architectures

In contrast, other researchers propose that logical deduction about the environ-
ment is inappropriately detailed and time-consuming. For instance, if a heavy object
is falling toward you, the priority should be to move out of the way rather than to
analyze and prove the observation. These researchers suggest that agents need only a
set of reactive responses to circumstances, and that intelligent behavior will emerge
from the combination of such responses. This kind of architecture is based onreac-
tive agents, i.e., agents that include neither a symbolic world model nor the ability to
perform complex symbolic reasoning[35]. A well-known example of this approach
is Brooks’subsumption architecture[36], containing behavior modules that link ac-
tions to observed situations without any reasoning at all. The behaviors are arranged
into asubsumption hierarchy, where low-level behavior such as “avoid object” has
precedence over higher-level goal-oriented behaviors such as “move across room.”
This simple and practical approach can be highly effective. Its chief drawback is that

32 A.A. HOPGOOD

the emphasis placed on the local environment can lead to a lack of awareness of the
bigger picture.

4.1.3 Knowledge-Level Architectures
A third type of architecture, based onknowledge-levelagents, treats each intelli-

gent agent as a knowledge-based system in microcosm. Such agents are said to be
deliberative. They are the antithesis of reactive agents, since they explicitly represent
a symbolic model of the world and make decisions via logical reasoning based on
pattern matching and symbolic manipulation[35]. A deliberative agent’s knowledge
determines its behavior in accordance with Newell’s Principle of Rationality[37],
which states that:

if an agent has knowledge that one of its actions will lead to one of its goals, then
the agent will select that action.

One of the most important manifestations of this approach is known as the beliefs–
desires–intentions (BDI) architecture[38]. Here, knowledge of the environment
is held as “beliefs” and the overall goals are “desires.” Together, these shape the
“intentions,” i.e., selected options that the system commits itself toward achieving
(Figure 10). The intentions stay in place only so long as they remain both consistent
with the desires and achievable according to the beliefs. The process of determining
what to do, i.e., the desires or goals, isdeliberation[39]. The process of determining
how to do it, i.e., the plan or intentions, ismeans–ends analysis. In this architecture,
the balance between reactivity and goal-directedness can be restated as one between
reconsidering intentions frequently (as a cautious agent might) and infrequently (as
a bold or cavalier agent might). Unsurprisingly, Kinny and Georgeff[40] found that
the cautious approach works best in a rapidly changing environment and the bold
approach works best in a slowly changing environment.

FIG. 10. BDI architecture.

THE STATE OF ARTIFICIAL INTELLIGENCE 33

4.1.4 Layered Architectures
The final approach to the balancing of reactive and goal-directed behavior is to mix

modules which adopt the two different stances. This is the basis of the layered archi-
tecture of Touring Machines[41], so-called because their original application was as
autonomous drivers for vehicles negotiating crowded streets. In fact, these agents
contain three specific layers: a reactive layer, a planning layer for goal-directed
behavior, and a modeling layer for modeling the environment. The problem of bal-
ancing the layers remains; in this case an intelligent control subsystem ensures that
each layer has an appropriate share of power.

4.2 Multiagent Systems

Adding intelligence to an agent, so that it can mimic human capabilities, is inter-
esting enough, but things get particularly exciting when we consider the possibilities
of multiple interacting intelligent agents. This gives us the possibility not just of
mimicking the behavior of individual humans, but of mimicking human organiza-
tions and societies containing individuals with their own personalities. The agents
need not run on a single computer—a distributed AI system is one in which they run
on separate networked computers.

4.2.1 Benefits of a Multiagent System
There are two broad classes of problems for which multiagent systems offer the

only practicable approach:

• Inherently complex problems: Such problems are simply too large to be solved
by a single hardware or software system. As the agents are provided with the
intelligence to handle a variety of circumstances, there is some uncertainty as
to exactly how an agent system will perform in a specific situation. Neverthe-
less, well-designed agents will ensure that every circumstance is handled in an
appropriate manner even though it may not have been explicitly anticipated.

• Inherently distributed problems: Here the data and information may exist in dif-
ferent physical locations, or at different times, or may be clustered into groups
requiring different processing methods or semantics. These types of problems
require a distributed solution, which can be provided by agents running in par-
allel on distributed processors.

However, Jennings has argued that multiagent systems are not just suited to com-
plex and distributed problems, but are also applicable to the design and construction
of mainstream software[42]. His argument is that multiagent systems offer the fol-
lowing general benefits: a more natural view of intelligence, speed and efficiency,

34 A.A. HOPGOOD

robustness and reliability, scalability, ease of development, and reduced cost. He
also points out the benefits of granularity, i.e., that agents can be designed to op-
erate at an appropriate level of detail. Many “fine-grained” agents may be required
to work on separate small details of a problem, while a few “coarse-grained” agents
can concentrate on higher-level strategy.

4.2.2 Building a Multiagent System
A multiagent system is dependent on interactions between intelligent agents.

There are, therefore, some key design decisions to be made, e.g., when, how, and
with whom should agents interact? In cooperative models, several agents try to com-
bine their efforts to accomplish as a group what the individuals cannot. In competitive
models, each agent tries to get what only some of them can have. In either type of
model, agents are generally assumed to be honest.

Multiagent systems are often designed as computer models of human functional
roles. For example, in a hierarchical control structure, one agent is the superior of
other subordinate agents. Peer group relations, such as may exist in a team-based
organization, are also possible. This section will address three models for managing
agent interaction, known as contract nets[43], cooperative problem solving (CPS)
[44,45] and shifting matrix management (SMM)[46]. The semantics of communi-
cation between agents will also be briefly addressed.

Contract Nets. Imagine that you have decided to build your own house. You
are unlikely to undertake all the work yourself. You will probably employ special-
ists to draw up the architectural plans, obtain statutory planning permission, lay the
foundations, build the walls, install the floors, build the roof, and connect the various
utilities. Each of these specialists may in turn use a subcontractor for some aspect
of the work. This arrangement is akin to the contract net framework[43] for agent
cooperation. Here, a manager agent generates tasks and is responsible for monitoring
their execution. The manager enters into explicit agreements with contractor agents
willing to execute the tasks. Individual agents may take on manager or contractor
roles dynamically during problem solving.

To establish a contract, the manager agent advertises the existence of the tasks to
other agents. Agents that are potential contractors evaluate the task announcements
and submit bids for those to which they are suited. The manager evaluates the bids
and awards contracts for execution of the task to the agents it determines to be the
most appropriate. The negotiation process may recur if a contractor subdivides its
task and awards contracts to other agents, for which it is the manager.

CPS Framework. The cooperative problem-solving (CPS) framework is a top-
down model for agent cooperation. As in the BDI model, an agent’s intentions play

THE STATE OF ARTIFICIAL INTELLIGENCE 35

a key role. They determine the agent’s personal behavior at any instant, while joint
intentions control its social behavior[47]. The framework comprises the following
four stages, after which the team disbands and Stage 1 begins again:

Stage1: recognition. Some agents recognize the potential for cooperation with an
agent that is seeking assistance, possibly because it has a goal it cannot achieve in
isolation.

Stage2: team formation. An agent that recognized the potential for cooperative
action at Stage 1 solicits further assistance. If successful, this stage ends with a group
having a joint commitment to collective action.

Stage3: plan formation. The agents attempt to negotiate a joint plan that they
believe will achieve the desired goal.

Stage4: team action. The newly agreed plan of joint action is executed. By ad-
hering to an agreed social convention, the agents maintain a close-knit relationship
throughout.

Shifting Matrix Management (SMM). SMM [46] is a model of agent co-
ordination that has been inspired by Mintzberg’s Shifting Matrix Management model
of organizational structures[48]. Unlike the traditional management hierarchy, ma-
trix management allows multiple lines of authority, reflecting the multiple functions
expected of a flexible workforce.Shiftingmatrix management takes this idea a stage
further by regarding the lines of authority as temporary, typically changing as dif-
ferent projects start and finish. In order to apply these ideas to agent cooperation, a
cyclical six-stage framework has been devised, as outlined below[46]:

Stage1: goal selection. Agents select the tasks they want to perform, based on
their initial mental states.

Stage2: action selection. Agents select a way to achieve their goals. In particular,
an agent that recognizes its intended goal is common to other agents would have to
decide whether to pursue the goal in isolation or in collaboration with other agents.

Stage3: team formation. Agents that are seeking cooperation attempt to organize
themselves into a team. The establishment of a team requires an agreed code of
conduct, a basis for sharing resources, and a common measure of performance.

Stage4: team planning. The workload is distributed among team members.
Stage5: team action. The team plan is executed by the members under the team’s

code of conduct.
Stage6: shifting. The last stage of the cooperation process, which marks the dis-

banding of the team, involves shifting agents’ goals, positions, and roles. Each agent
updates its probability of team-working with other agents, depending on whether or
not the completed team-working experience with that agent was successful. This up-
dated knowledge is important, as iteration through the six stages takes place until all
the tasks are accomplished.

36 A.A. HOPGOOD

4.2.3 Comparison of Cooperative Models

Li et al. [46] have implemented all three cooperative models using a blackboard
architecture (see Section7.2). In a series of tests, the three different models of agent
cooperation were used to control two robots that were required to work together
to complete a variety of tasks. A total of 50 different tasks were generated, each
of which was presented twice, creating a set of 100 tasks that were presented in
random order.Figure 11shows the number of tasks completed for the three models
as a function of time. The data are an average over four rounds of tests, where the
tasks were presented in a different random order for each round. For these tasks
and conditions, the SMM model achieves an average task completion time of 5.0 s,
compared with 6.03 s for the CPS model and 7.04 s for the Contract Net model.
Not only is the task completion rate greatest for SMM, so too is the total number
of completed tasks. All 100 tasks were completed under the SMM model, compared
with 71 for Contract Nets and 84 for the CPS model.

As the SMM model requires predominantly deliberative behaviors from the agents
rather than simple reactive behaviors, it might be argued that it is inappropriate in a
time-critical environment. However, in the domain of cooperation between multiple
robots, the agents’ computation is much faster than the robots’ physical movements.
Thus Li et al. propose that the SMM model is appropriate because it emphasizes the
avoidance of mistakes by reasoning before acting. If a mistake is make, actions are
stopped sooner rather than later.

FIG. 11. Task completion, averaged over four test runs.

THE STATE OF ARTIFICIAL INTELLIGENCE 37

4.2.4 Communication Between Agents

Agents need to communicate, either synchronously or asynchronously. Synchro-
nous communication is rather like a conversation—after sending a message, the
sending agent awaits a reply from the recipient. Asynchronous communication is
more akin to sending an email or a letter—although you might expect a reply at
some future time, you do not expect the recipient to read or act upon the message
immediately.

Agents may be implemented by different people at different times on different
computers, yet still be expected to communicate with each other. Consequently, there
has been a drive to standardize the structure of messages between agents, regardless
of the domain in which they are operating. A generally accepted premise is that
the form of the message should be understandable by all agents regardless of their
domain, even if they do not understand its content. Thus, the structure needs to be
standardized in such a way that the domain-specific content is self-contained within
it. Only specialist agents need to understand the content, but all agents need to be
able to understand the form of the message. Structures for achieving this are called
agent communication languages (ACLs), which include Knowledge Query and Ma-
nipulation Language (KQML)[49].

To make KQML as general a communication language as possible, it is defined
without reference to the content of the body of the messages it transports. However,
each KQML message does say something about the meaning of the message—for in-
stance, it may be a question, or it may be a statement of fact. In KQML, the structure
contains at least the following components:

• A performative. This is a single word that describes the purpose of the message,
e.g., tell, cancel, evaluate, advertise, ask-one, register, reply.

• The identity of thesenderagent.

• The identity of thereceiveragent.

• The languageused in the content of the message. Any programming language
can be used for the domain-specific content.

• Theontology, or vocabulary, of the message. This provides the context within
which the message content is to be interpreted.

• The messagecontent.

4.3 Swarm Intelligence

Brookes’ subsumption architecture[36] has already been mentioned as a model
that does not attempt to build intelligence into individual agents, and yet intelligent

38 A.A. HOPGOOD

behavior emerges from the combined behavior of several agents. This is the princi-
ple behind the growing area of swarm intelligence[50,51]. It contrasts starkly with
cooperative multiagent models such as SMM, in which agents deliberate at length
about their individual contributions to the overall task.

Much of the work on swarm intelligence has been inspired by the behavior of
ant colonies, although other analogies exist such as worker bees, birds, and spi-
ders. One commonly-cited example is the traveling salesperson example, in which
the shortest route between sites is sought. The problem is identical in principle to
that encountered in optimizing the layout of printed circuit boards or routing traf-
fic on a telecommunications network. Ants tackle this problem by leaving a trail
of pheromone as they travel, which encourages other ants to follow. Ants that have
found the shortest route to a food source are the first to reinforce their route with
pheromone as they return to the nest. The shortest route then becomes the preferred
one for other members of the colony. This behavior is easily mimicked with simple
agents, and the modeled pheromone can be given a degree of volatility, allowing the
pheromone to evaporate and hence the swarm to change behavior as the environment
changes[52].

Other behaviors have also been successfully modeled using swarm intelligence.
For instance, data-mining of bank records has been achieved by clustering customers
with similar characteristics using swarm intelligence that mimics ant colonies’ abil-
ity to cluster corpses and thereby clean their nest[53]. The ability to perceive a visual
image has been modeled by simulating colonies of ants that swarm across a printed
image. By reinforcing paths across the image, it can be transformed from a photo-
graphic image to an outline map[54].

5. Genetic Algorithms

5.1 Evolutionary Computation

Like swarm intelligence, evolutionary computation mimics nature and relies on an
emergent solution from the combined effect of many individuals. Genetic algorithms
(GAs) have been inspired by natural evolution, the process by which successive gen-
erations of animals and plants are modified so as to approach an optimum form. Each
offspring has different features from its parents, i.e., it is not a perfect copy. If the
new characteristics are favorable, the offspring is more likely to flourish and pass its
characteristics to the next generation. However, an offspring with unfavorable char-
acteristics is likely to die without reproducing.

These ideas have been applied to mathematical optimization, where a population
of candidate solutions “evolves” toward an optimum[55]. Often the optimization

THE STATE OF ARTIFICIAL INTELLIGENCE 39

problem is one of determining a minimum, where the function that is being min-
imized is referred to as a cost function. The cost function might typically be the
difference, or error, between a desired output and the actual output. Alternatively,
optimization is sometimes viewed as maximizing the value of a function, known
then as a fitness function. In fact the two approaches are equivalent, because the
fitness can simply be taken to be the negation of the cost and vice versa, with the
optional addition of a constant value to keep both cost and fitness positive. Similarly,
fitness and cost are sometimes taken as the reciprocals of each other.

Other simpler numerical optimization techniques, such as hill-climbing, store just
one “best so far” candidate solution, and new trial solutions are generated by taking
a small step in a chosen direction. Genetic algorithms are different in both respects.
First, a population of several candidate solutions is maintained. Second, the mem-
bers of one generation can be a considerable distance in the search space from the
previous generation.

Each individual in the population of candidate solutions is graded according to its
fitness. The higher the fitness of a candidate solution, the greater are its chances of
reproducing and passing its characteristics to the next generation. In order to imple-
ment a GA, the following design decisions need to be made:

• how to use sequences of numbers, known as chromosomes, to represent the
candidate solutions;

• the size of the population;

• how to evaluate the fitness of each member of the population;

• how to select individuals for reproduction using fitness information (conversely,
how to determine which less-fit individuals will not reproduce);

• how to reproduce candidates, i.e., how to create a new generation of candidate
solutions from the existing population;

• when to stop the evolutionary process.

A flow chart for the basic GA is shown inFigure 12. In the basic algorithm, the
following assumptions have been made:

• The initial population is randomly generated.

• Individuals are evaluated according to the fitness function.

• Individuals are selected for reproduction on the basis of fitness; the fitter an
individual, the more likely it is to be selected. Further details are given in Sec-
tion 5.6below.

• Reproduction of chromosomes to produce the next generation is achieved by
“breeding” between pairs of chromosomes using the crossover operator and
then applying a mutation operator to each of the offspring. The crossover and

40 A.A. HOPGOOD

FIG. 12. The basic genetic algorithm.

mutation operators are described below; the balance between them is yet an-
other decision that the GA designer faces.

5.2 Chromosomes

Each point in the search space can be represented as a unique chromosome, made
up of genes. Suppose, for example, we are trying to find the maximum value of
a fitness function,f (x, y). In this example, the search space variables,x andy, are
constrained to the 16 integer values in the range 0–15. A chromosome corresponding
to any point in the search space can be represented by two genes:

x y

Thus the point (2, 6) in search space would be represented by the following chromo-
some:

2 6

THE STATE OF ARTIFICIAL INTELLIGENCE 41

The possible values for the genes are calledalleles, so there are 16 alleles for each
gene in this example. Each position along the chromosome is known as alocus;
there are two loci in the above example. The loci are usually constrained to hold only
binary values. (The termevolutionary algorithmdescribes the more general case
where this constraint is relaxed.) The chromosome could therefore be represented by
eight loci comprising the binary numbers 0010 and 0110, which represent the two
genes:

0 0 1 0 0 1 1 0

Although there are still 16 alleles for the genes, there are now only two possible
values (0 and 1) for the loci. The chromosome can be made as long as necessary
for problems involving many variables, or where many loci are required for a single
gene. In general, there are 2N alleles for a binary-encoded gene that isN bits wide.

5.3 Crossover

Crossover (and mutation, below) are used to introduce the diversity in the pop-
ulation so that the algorithm can explore the search space. Child chromosomes are
produced by aligning two parents, picking a random position along their length, and
swapping the tails with a probabilityPc, known as the crossover probability. An
example for an eight-loci chromosome, where the mother and father genes are rep-
resented by mi and fi respectively, would be:

This is known as single-point crossover, as only one position is specified for sep-
arating the swapped and unswapped loci. In fact this is a misnomer, as a second
cross-over position is always required. In single-point crossover the second crossover
position is assumed to be the end of the chromosome. This can be made clearer by
considering two-point crossover, where the chromosomes are treated as though they
were circular, i.e., m1 and m8 are neighboring loci:

42 A.A. HOPGOOD

In general, multipoint crossover is also possible, provided there are an even number
of crossover points:

In the extreme case, each locus is considered for crossover, independently of the rest,
with crossover probabilityPc. This is known asuniform crossover[56].

5.4 Mutation

Unlike crossover, mutation involves altering the values of one or more loci. This
creates new possibilities for gene combinations that can be generated by crossover. In
a binary chromosome, randomly selected loci can be toggled, i.e., 1 becomes 0 and
0 becomes 1. In non-binary chromosomes, a randomly selected gene can be replaced
by a randomly generated valid value. Loci are mutated randomly with a probabil-
ity Pm. The main advantage of mutation is that it puts variety into the gene pool,
enabling the GA to explore potentially beneficial regions of the search space that
might otherwise be missed. This helps to counter premature convergence, described
below.

5.5 Validity Check

Depending on the optimization problem, an additional check may be required to
ensure that the chromosomes in the new generation represent valid points in the
search space. Consider, for example, a chromosome comprising four genes, each of
which can take three possible values:A, B, or C. The binary representation for each
gene would require two bits, where each gene has redundant capacity of one extra
value. In general, binary encoding of a gene withn alleles requiresX bits, where
X is log2 n rounded up to the nearest integer. Thus there is redundant capacity of
2X − n values per gene. Using the binary codingA = 01,B = 10,C = 11, a binary
chromosome to represent the gene combination BACA would look like this:

1 0 0 1 1 1 0 1

A mutation that toggled the last locus would generate an invalid chromosome, since
a gene value of 00 is undefined:

1 0 0 1 1 1 0 0

THE STATE OF ARTIFICIAL INTELLIGENCE 43

Similarly defective chromosomes can also be generated by crossover. In each case
the problem can be avoided by usingstructuredoperators, i.e., requiring crossover
and mutation to operate at the level of genes rather than loci. Thus, crossover points
could be forced to coincide with gene boundaries and mutation could randomly select
new values for whole genes.

An alternative approach is to detect and repair invalid chromosomes. Once a defec-
tive chromosome has been detected, a variety of ways exist to repair it. One approach
is to generate “spare” chromosomes in each generation, which can then be randomly
selected as replacements for any defective ones.

5.6 Selection

It has already been stated that individuals are selected for reproduction on the basis
of their fitness, i.e., the fittest chromosomes have the highest likelihood of reproduc-
ing. Selection determines not only which individuals will reproduce, but how many
offspring they will have. The selection method can have an important impact on the
effectiveness of a GA.

Selection is said to be strong if the fittest individuals have a much greater prob-
ability of reproducing than less fit ones. Selection is said to be weak if the fittest
individuals have only a slightly greater probability of reproducing than the less fit
ones. If the selection method is too strong, the genes of the fittest individuals may
dominate the next generation population even though they may be suboptimal. This
is known as premature convergence, i.e., the exploitation of a small region of the
search space before a thorough exploration of the whole space has been achieved.

On the other hand, if the selection method is too weak, less fit individuals are given
too much opportunity to reproduce and evolution may become too slow. This can be
a particular problem during the latter stages of evolution, when the whole population
may have congregated within a smooth and fairly flat region of the search space. All
individuals in such a region would have similar, relatively high, fitnesses and, thus, it
may be difficult to select among them. This can result in stalled evolution, i.e., there
is insufficient variance in fitness across the population to drive further evolution.

A range of alternative methods of selection exist. The method originally proposed
by Holland [55], is roulette wheel selection with replacement. This is a random
process in which individuals have a probability of selection that is proportional to
their fitness. A refinement of this approach that overcomes statistical variability is
stochastic universal selection. Various refinements and alternatives exist, all of which
are intended to counter premature convergence by slowing evolution and maintaining
diversity in the early generations, and to counter stalled evolution by spreading out
the selection rates for the population in the later stages. These approaches include

44 A.A. HOPGOOD

linear fitness scaling, Boltzmann fitness scaling, rank selection, truncation selection,
and tournament selection[11,57].

A further refinement of the selection process is elitism, whereby one or more of the
fittest individuals pass unchanged through to the next generation. The fittest solutions
found so far are, therefore, preserved within the population. Elitism can be thought
of as the allowance of cloning alongside reproduction.

5.7 Selecting GA Parameters

One of the main difficulties in building a practical GA is choosing suitable values
for parameters such as population size, mutation rate, and crossover rate. De Jong’s
guidelines, as cited in[57], are still widely followed, namely, to start with:

• a relatively high crossover probability (0.6–0.7);

• a relatively low mutation probability (typically set to 1/l for chromosomes of
lengthl);

• a moderately sized (50–500) population.

Some of the parameters can be allowed to vary. For example, the crossover rate
may be started at an initially high level and then progressively reduced with each
generation or in response to particular performance measures.

Given the difficulties in setting the GA parameters, it is unsurprising that many
researchers have tried encoding them so that they too might evolve toward optimum
values. These self-adaptive parameters can be encoded in individual chromosomes,
providing values that adapt specifically to the characteristics of the chromosome.
Typically, a minimal background mutation rate applies to the population as a whole,
and each chromosome includes a gene that encodes a mutation rate to apply to
the remaining genes on that chromosome. Self-adaptive parameters do not com-
pletely remove the difficulties in choosing parameters, but by deferring the choice
to the level of metaparameters, i.e., parameters’ parameters, it may become less crit-
ical.

6. Neural Networks

6.1 What Is a Neural Network?

Artificial neural networks are a family of techniques for numerical learning, like
genetic algorithms, but in contrast to the symbolic techniques reviewed in the pre-
vious sections. They consist of many nonlinear computational elements which form

THE STATE OF ARTIFICIAL INTELLIGENCE 45

the network nodes or neurons, linked by weighted interconnections. They are anal-
ogous in structure to the neurological system in animals, which is made up of real
rather than artificial neural networks. Artificial neural networks have, perhaps, been
the subject of more hype than any other aspect of artificial intelligence because their
name conjures up unrealistic notions of an artificial brain. Practical artificial neural
networks are much simpler than biological ones, so it is unrealistic to expect them to
produce the sophisticated behavior of humans or animals. Nevertheless, they can per-
form certain tasks, particularly classification, most effectively. Throughout the rest
of this chapter, the expression ‘neural network’ will be taken to mean an artificial
neural network. The technique of using neural networks is described as connection-
ism.

Each node in a neural network may have several inputs, each of which has an
associated weighting. The node performs a simple computation on its input values,
which are single integers or real numbers, to produce a single numerical value as its
output. The output from a node can either form an input to other nodes or be part of
the output from the network as a whole. The overall effect is that a neural network
generates a pattern of numbers at its outputs in response to a pattern of numbers at
its inputs. These patterns are treated as vectors, e.g., (0.1, 1.0, 0.2).

The weights on the node interconnections, together with the overall topology, de-
fine the output vector that is derived by the network from a given input vector. The
weights do not need to be known in advance, but can be learned by adjusting them au-
tomatically using a training algorithm. In the case of supervised learning, the weights
are derived by repeatedly presenting to the network a set of example input vectors
along with the corresponding desired output vector for each of them. The weights
are adjusted with each iteration until the actual output for each input is close to the
desired vector. In the case of unsupervised learning, the examples are presented with-
out any corresponding desired output vectors. With a suitable training algorithm, the
network adjusts its weights in accordance with naturally occurring patterns in the
data. The output vector then represents the position of the input vector within the
discovered patterns of the data.

Part of the appeal of neural networks is that when presented with noisy or in-
complete data, they will produce an approximate answer rather than one that is
incorrect. Similarly, when presented with unfamiliar data that lie within the range
of its previously seen examples, the network will generally produce an output that is
a reasonable interpolation between the example outputs. Neural networks are, how-
ever, unable to extrapolate reliably beyond the range of the previously seen examples.
Interpolation can also be achieved by fuzzy logic (see Section3.6). Thus, neural net-
works and fuzzy logic often represent alternative solutions to a particular engineering
problem and may be combined in a hybrid system (see Section7.4.1).

46 A.A. HOPGOOD

6.2 Neural Network Applications

Neural networks can be applied to a diversity of tasks. In general, the net-
work associates a given input vector (x1, x2, . . . , xn) with a particular output vector
(y1, y2, . . . , ym), although the function linking the two may be unknown and may be
highly nonlinear.

6.2.1 Nonlinear Estimation
Neural networks provide a useful technique for determining the values of variables

that cannot be measured easily, but which are known to depend in some complex way
on other more accessible variables. The measurable variables form the network in-
put vector and the unknown variables constitute the output vector. This is nonlinear
estimation. Supervised learning is used, so each example in the training data com-
prises two vectors: an input vector and its corresponding desired output vector. (This
assumes that some values for the less accessible variable have been obtained to form
the desired outputs.) During training, the network learns to associate the example in-
put vectors with their desired output vectors. When it is subsequently presented with
a previously unseen input vector, the network is able to interpolate between similar
examples in the training data to generate an output vector.

6.2.2 Classification
Often the output vector from a neural network is used to represent one of a set of

known possible outcomes, i.e., the network acts as a classifier. For example, a speech
recognition system could be devised to recognize three different words:yes, no, and
maybe. The digitized sound of the words would be preprocessed in some way to form
the input vector. The desired output vector would then be either (0, 0, 1), (0, 1, 0), or
(1, 0, 0), representing the three classes of word.

Each example in the training data set would comprise a digitized utterance of one
of the words as the input vector, using a range of different voices, together with the
corresponding desired output vector. During training, the network learns to associate
similar input vectors with a particular output vector. When it is subsequently pre-
sented with a previously unseen input vector, the network selects the output vector
that offers the closest match. This type of classification would not be straightforward
using non-connectionist techniques, as the input data rarely correspond exactly to
any one example in the training data.

6.2.3 Clustering
Clustering is a form of unsupervised learning, i.e., the training data comprise a

set of example input vectors without any corresponding desired output vectors. As

THE STATE OF ARTIFICIAL INTELLIGENCE 47

successive input vectors are presented, they are clustered intoN groups, where the
integerN may be pre-specified or may be allowed to grow according to the diversity
of the data. For instance, digitized preprocessed spoken words could be presented
to the network. The network would learn to cluster together the examples that it
considered to be in some sense similar to each other. In this example, the clusters
might correspond to different words or different voices.

Once the clusters have formed, a second neural network can be trained to associate
each cluster with a particular desired output. The overall system then becomes a
classifier, where the first network is unsupervised and the second one is supervised.
Clustering is useful for data compression and is an important aspect of data mining,
i.e., finding patterns in complex data.

6.2.4 Content-Addressable Memory
The use of a neural network as a content-addressable memory involves a form of

supervised learning. During training, each example input vector becomes stored in
a dispersed form through the network. There are no separate desired output vectors
associated with the training data, as the training data represent both the inputs and
the desired outputs.

When a previously unseen vector is subsequently presented to the network, it is
treated as though it were an incomplete or error-ridden version of one of the stored
examples. So the network regenerates the stored example that most closely resembles
the presented vector. This can be thought of as a type of classification, where each of
the examples in the training data belongs to a separate class, and each represents the
ideal vector for that class. It is useful when classes can be characterized by an ideal
or perfect example. For example, printed text that is subsequently scanned to form a
digitized image will contain noisy and imperfect examples of printed characters. For
a given font, an ideal version of each character can be stored in a content-addressable
memory and produced as its output whenever an imperfect version is presented as its
input.

6.3 Nodes and Networks
Each node, or neuron, in a neural network is a simple computing element having

an input side and an output side. Each node may have directional connections to
many other nodes at both its input and output sides. Each inputxi is multiplied by
its associated weightwi . Typically, the node’s role is to sum each of its weighted
inputs and add a bias termw0 to form an intermediate quantity called the activa-
tion, a. It then passes the activation through a nonlinear functionft known as the
transfer function or activation function.Figure 13shows the function of a single
neuron.

48 A.A. HOPGOOD

FIG. 13. A single neuron.

The behavior of a neural network depends on its topology, the weights, the bias
terms, and the transfer function. The weights and biases can be learned, and the
learning behavior of a network depends on the chosen training algorithm. Typically
a sigmoid function is used as the transfer function, given by:

(7)ft (a) = 1

1+ e−a
.

For a single neuron, the activationa is given by:

(8)a =
(

n∑

i=1

wixi

)
+ w0

wheren is the number of inputs and the bias termw0 is defined separately for each
node.

Many network topologies are possible, but by far the most popular is the multi-
layer perceptron (MLP), sometimes called a back-propagation network, which can be
used for categorization or, more generally, for nonlinear mapping. However, many
other architectures have been proposed, and refinements of them regularly appear
in the literature. These include the Hopfield network[58,59], which is used as a
content-addressable memory, and support-vector machines[60], which provide a
means of reducing the number of training examples required for supervised learning.
Popular network architectures for unsupervised clustering include the radial basis

THE STATE OF ARTIFICIAL INTELLIGENCE 49

function network[61,62], Kohonen self-organizing network[63–66], and ART-2 net-
work [67,68].

Another class of networks that are growing in importance are recurrent networks
[69,70], where the input includes not only the current data, but also the output arising
from previous data. In this way, recurrent networks can take account of the temporal
relationships between the input data. This is particularly important for data whose
interpretation is dependent on context, i.e., previous or future data. Such situations
are commonplace, e.g., in trend-based diagnosis, the recognition of natural-language
words, and forecasting.

6.4 Multilayer Perceptrons

6.4.1 Network Topology

The topology of a multilayer perceptron (MLP) is shown inFigure 14. The neurons
are organized in layers, such that each neuron is totally connected to the neurons in
the layers above and below, but not to the neurons in the same layer. These networks
are also called feedforward networks, although this term could be applied more gen-
erally to any network where the direction of data flow is always “forwards,” i.e.,
toward the output. MLPs can be used either for classification or as nonlinear estima-

FIG. 14. A multi-layered perceptron.

50 A.A. HOPGOOD

tors. The number of nodes in each layer and the number of layers are determined by
the network builder, often on a trial-and-error basis. There is always an input layer
and an output layer; the number of nodes in each is determined by the size of the in-
put and output vectors being considered. There may be any number of layers between
these two layers. Unlike the input and output layers, the layers between often have
no obvious interpretation associated with them, and they are known as hidden lay-
ers. The network shown inFigure 14has six input nodes, one hidden layer with ten
nodes, and an output layer of five nodes. It can, therefore, be described as a 6–10–5
MLP.

An MLP operates by feeding data forwards along the interconnections from the
input layer, through the hidden layers, to the output layer. With the exception of
the nodes in the input layer, the inputs to a node are the outputs from each node
in the previous layer. At each node apart from those in the input layer, the data are
weighted, summed, added to the bias, and then passed through the transfer func-
tion.

There is some inconsistency in the literature over the counting of layers, arising
from the fact that the input nodes do not perform any processing, but simply feed the
input data into the nodes above. Thus although the network inFigure 14is clearly
a three-layer network, it only has two processing layers. A so-called single-layered
perceptron (SLP) has two layers (the input and output layers) but only one processing
layer, namely the output layer. It has no hidden layers.

6.4.2 Perceptrons as Classifiers

In general, neural networks are designed so that there is one input node for each
element of the input vector and one output node for each element of the output vec-
tor. Thus in a classification application, each output node would usually represent a
particular class. A typical representation for a class would be for a value close to 1 to
appear at the corresponding output node, with the remaining output nodes generating
a value close to 0. A simple decision rule is needed in conjunction with the network,
e.g., thewinner takes allrule selects the class corresponding to the node with the
highest output. If the input vector does not fall into any of the classes, none of the
output values may be very high. For this reason, a more sophisticated decision rule
might be used, e.g., one that specifies that the output from the winning node must
also exceed a predetermined threshold such as 0.5.

Consider the practical example of an MLP for interpreting satellite images of the
Earth in order to recognize different forms of land use.Figure 15shows a region of
the Mississippi Delta, imaged at six different wavebands. The MLP shown inFig-
ure 14was trained to associate the six waveband images with the corresponding land
use. The pixels of the waveband images constitute the inputs and the five categories

THE STATE OF ARTIFICIAL INTELLIGENCE 51

FIG. 15. Portion of a Landsat-4 TM satellite image of an area just to the south of Memphis, Tennessee,
taken in six different wavebands. (Source: NASA, with permission.) (See Color Plate Section, Plate 2.)

of land use (water, trees, cultivated, soil/rock, swamp) constitute the outputs. The
network was trained pixel-by-pixel on just the top 1/16 of these images and tested
against the whole images, 15/16 of which were previously unseen. The results are
shown inFigure 16. The classification is mostly correct, although some differences
between the results and the actual land use can be seen. The neural network perfor-
mance could certainly be improved with a little refinement, but it has deliberately
been left unrefined so that these discrepancies can be seen. Nevertheless, the net-
work’s ability to generalize from a limited set of examples is clearly demonstrated.

Instead of having one output node per class, more compact representations are also
possible. Hallam et al.[71] have used just two output nodes to represent four classes.
This was achieved by treating both outputs together, so that the four possibilities
corresponding to four classes are (0, 0), (0, 1), (1, 0), and (1, 1).

52 A.A. HOPGOOD

FIG. 16. (a) Actual land use map; (b) portion used for training; (c) Land use map from neural network
outputs. (See Color Plate Section, Plate 3.)

FIG. 17. Dividing up the pattern space: (a) linearly separable classes; (b) nonlinearly separable
classes. Data points belonging to classes 1, 2, and 3 are respectively represented by�, •, and+.

If the input vector has two elements, it can be represented as a point in two-
dimensional state space, sometimes called the pattern space. The process of clas-
sification is then one of drawing dividing lines between regions. A single-layered
perceptron, with two neurons in the input layer and the same number of neurons in
the output layer as there are classes, can associate with each class a single straight
dividing line, as shown inFigure 17(a). Classes that can be separated in this way are
said to be linearly separable. More generally,n-dimensional input vectors are points

THE STATE OF ARTIFICIAL INTELLIGENCE 53

in n-dimensional hyperspace. If the classes can be separated by (n− 1)-dimensional
hyperplanes, they are linearly separable.

To see how an SLP divides up the pattern space with hyperplanes, consider a single
processing neuron of an SLP. Its output, prior to application of the transfer function,
is a real number given by Equation(8). Regions of the pattern space that clearly
belong to the class represented by the neuron will produce a strong positive value,
and regions that clearly do not belong to the class will produce a strong negative
value. The classification becomes increasingly uncertain as the activationa becomes
close to zero, and the dividing criterion is usually assumed to bea = 0. This would
correspond to an output of 0.5 after the application of the sigmoid transfer function.
Thus the hyperplane that separates the two regions is given by:

(9)

(
n∑

i=1

wixi

)
+ w0 = 0.

In the case of two inputs, Equation (9) becomes simply the equation of a straight
line, since it can be rearranged as:

(10)x2 =
−w1

w2
x1 −

w0

w2

where−w1/w2 is the gradient and−w0/w2 is the intercept on thex2 axis.
For problems that are not linearly separable, as inFigure 17(b), regions of arbi-

trary complexity can be drawn in the state space by a multilayer perceptron with one
hidden layer and a differentiable transfer function such as the sigmoid function. The
first processing layer of the MLP can be thought of as dividing up the state space with
straight lines (or hyperplanes), and the second processing layer forms multifaceted
regions by Boolean combinations (AND, OR, and NOT) of the linearly separated
regions. It is therefore generally accepted that only one hidden layer is necessary
to perform any nonlinear mapping or classification with an MLP that uses a sigmoid
transfer function. This conclusion stems fromKolmogorov’s Existence Theorem[72].
However, the ability to learn from a set of examples cannot be guaranteed and, there-
fore, the detailed topology of a network inevitably involves a certain amount of trial
and error. A pragmatic approach to network design is to start with a small network
and expand the number of nodes or layers as necessary.

6.4.3 Training a Perceptron

During training, a multilayer perceptron learns to separate the regions in state
space by adjusting its weights and bias terms. Appropriate values are learned from
a set of examples comprising input vectors and their corresponding desired output
vectors. An input vector is applied to the input layer, and the output vector produced

54 A.A. HOPGOOD

at the output layer is compared with the desired output. For each neuron in the output
layer, the difference between the generated value and the desired value is theerror.
The overall error for the neural network is expressed as the square root of the mean
of the squares of the errors. This is the root-mean-squared (RMS) value, designed to
take equal account of both negative and positive errors. The RMS error is minimized
by altering the weights and bias terms, which may take many passes through the
training data. The search for the combination of weights and biases that produces the
minimum RMS error is an optimization problem. When the RMS error has become
acceptably low for each example vector, the network is said to haveconvergedand
the weights and bias terms are retained for application of the network to new input
data.

One of the most commonly used training algorithms is the back-error propaga-
tion algorithm, sometimes called the generalized delta rule[73,74]. It relies upon
the transfer function being continuous and differentiable. The sigmoid function is a
particularly suitable choice since its derivative is simply given by:

(11)f ′
t (a) = ft (a)

(
1− ft (a)

)
.

At the core of the algorithm is the delta rule that determines the modifications to
the weights,�wBij :

(12)�wBij = ηδBiyAj + α(�wBij)

for all nodesj in layerA and all nodesi in layerB, whereA = B − 1. Neurons in
the output layer and in the hidden layers have an associated error term,δ. When the
sigmoid transfer function is used,δAi for the output layer is given by:

(13)δAi = f ′
t (yAi)(di − yAi) = yAi(1− yAi)(di − yAi)

while δAj for the hidden layers is given by:

(14)δAj = f ′
t (yAj)

∑

i

δBiwBij = yAj (1− yAj)
∑

i

δBiwBij .

The learning rate,η, is applied to the calculated values forδAj . Knight [75]
suggests a value forη of about 0.35. As written in Equation(12), the delta rule
includes a momentum coefficient,α, although this term is sometimes omitted, i.e.,α

is sometimes set to zero. Gradient-proportional descent techniques can be inefficient,
especially close to a minimum in the cost function, which in this case is the RMS
error of the output. To address this, a momentum term forces changes in weight to
be dependent on previous weight changes. The value of the momentum coefficient
must be in the range 0–1. Knight[75] suggests thatα be set to 0.0 for the first few
training passes and then increased to 0.9.

THE STATE OF ARTIFICIAL INTELLIGENCE 55

6.4.4 Some Practical Considerations

Sometimes it is appropriate to stop the training process before the point where no
further reductions in the RMS error are possible. This is because it is possible to
over-train the network, so that it becomes expert at giving the correct output for the
training data, but less expert at dealing with new data. This is likely to be a problem
if the network has been trained for too many cycles or if the network is over-complex
for the task in hand. For instance, the inclusion of additional hidden layers or large
numbers of neurons within the hidden layers will tend to promote over-training. The
effect of over-training is shown inFigure 18(a) for a nonlinear mapping of a single
input parameter onto a single output parameter, andFigure 18(b) shows the effect of
over-training using the nonlinearly separable classification data fromFigure 17(b).

One way of avoiding over-training is to divide the data into three sets, known as
the training, testing, and validation data. Training takes place using the training data,
and the RMS error with these data is monitored. However, at predetermined intervals
the training is paused and the current weights saved. At these points, before training
resumes, the network is presented with the test data and an RMS error calculated.
The RMS error for the training data decreases steadily until it stabilizes. However,
the RMS error for the test data may pass through a minimum and then start to in-
crease again because of the effect of over-training, as shown inFigure 19. As soon
as the RMS error for the test data starts to increase, the network is over-trained, but
the previously stored set of weights would be close to the optimum. Finally, the per-
formance of the network can be evaluated by testing it using the previously unseen
validation data.

FIG. 18. The effect of over-training: (a) nonlinear estimation; (b) classification (•, �, and+ are data
points used for training).

56 A.A. HOPGOOD

FIG. 19. RMS error during training.

A problem that is frequently encountered in real applications is a shortage of suit-
able data for training and testing a neural network. In one classification problem
[30], there were only 20 suitable examples, which needed to be shared between the
training and testing data. The authors used a technique calledleave-one-outas a way
of reducing the effect of this problem. The technique involves repeatedly training
on all but one of the examples and testing on the missing one. So, in this case, the
network would initially be trained on 19 of the examples and tested on the remain-
ing one. This procedure is repeated a further 19 times: omitting a different example
each time from the training data, resetting the weights to random values, retrain-
ing, and then testing on the omitted example. The leave-one-out technique is clearly
time-consuming as it involves resetting the weights, training, testing, and scoring
the network many times—20 times in this example. Its advantage is that the perfor-
mance of the network can be evaluated using every available example as though it
were previously unseen test data.

Neural networks that accept real numbers are only effective if the input values are
constrained to suitable ranges, typically between 0 and 1 or between−1 and 1. The
range of the outputs depends on the chosen transfer function, e.g., the output range
is between 0 and 1 if the sigmoid function is used. In real applications, the actual
input and output values may fall outside these ranges or may be constrained to a
narrow band within them. In either case the data will need to be scaled before being
presented to the neural network.

THE STATE OF ARTIFICIAL INTELLIGENCE 57

7. Hybrid Systems

7.1 Convergence of Techniques

One of the aims of this chapter is to demonstrate that there are a wide variety of
computing techniques that can be applied to particular problems. These include con-
ventional programs as well as symbolic representations, such as knowledge-based
systems, and computational intelligence methods. In many cases the techniques need
not be exclusive alternatives to each other but can be seen as complementary tools
that can be brought together within a hybrid system. There are several ways in which
different computational techniques can be complementary: dealing with multifaceted
problems, parameter setting, capability enhancement, and clarification and verifica-
tion.

7.2 Blackboard Systems for Multifaceted Problems

Most real-life problems are complex and have many facets, where each facet or
sub-task may be best suited to a different technique. Therefore, many practical sys-
tems are designed as hybrids, incorporating several specialized modules, each of
which uses the most suitable tools for its specific task. The blackboard system, shown
in Figure 20, provides a software structure that is well-suited to multifaceted tasks.
The first published application of a blackboard system was Hearsay-II for speech un-
derstanding in 1975[76,77]. Further developments took place during the 1980s[78]
and the blackboard model is now seen as a key technology for the burgeoning area
of multiagent systems[79].

FIG. 20. A blackboard system.

58 A.A. HOPGOOD

In a blackboard system, knowledge of the application domain is divided into mod-
ules. These modules were formerly referred to as knowledge sources but, as they
are independent and autonomous, they are now commonly regarded as agents. Each
agent is designed to tackle a particular subtask. Agents can communicate only by
reading from or writing to the blackboard, a globally accessible working memory
where the current state of understanding is represented. Agents can also delete un-
wanted information from the blackboard.

A blackboard system is analogous to a team of experts who communicate their
ideas via a physical blackboard, by adding or deleting items in response to the infor-
mation that they find there. Each agent represents such an expert having a specialized
area of knowledge. As each agent can be encoded in the most suitable form for
its particular task, blackboard systems offer a mechanism for the collaborative use
of different computational techniques such as rules, neural networks, genetic algo-
rithms, and fuzzy logic. Each rule-based agent can use a suitable reasoning strategy
for its particular task, e.g., backward- or forward-chaining, and can be thought of as
a rule-based system in microcosm.

In the late 1980s, the Algorithmic and Rule-Based Blackboard System (ARBS)
was developed and subsequently applied to diverse problems including the interpre-
tation of ultrasonic images[30], the management of telecommunications networks
[10], and the control of plasma deposition processes[80]. More recently, ARBS was
redesigned as a distributed system, DARBS, in which the software modules run in
parallel, possibly on separate computers connected via the Internet[81].

Agents are applied in response to information on the blackboard, when they
have some contribution to make. This leads to increased efficiency since the de-
tailed knowledge within an agent is only applied when that agent becomes relevant.
The agents are said to be opportunistic, activating themselves whenever they can
contribute to the global solution. In early, non-distributed backboard systems, true
opportunism was difficult to achieve as it required explicit scheduling and could in-
volve interrupting an agent that was currently active. In modern blackboard systems,
each agent is its own process, either in parallel on multiple processors or concurrently
on a single processor, so no explicit scheduling is required.

In the interests of efficiency and clarity, some degree of structure is usually im-
posed on the blackboard by dividing it into partitions. An agent then only needs to
look at a partition rather than the whole blackboard. Typically the blackboard par-
titions correspond to different levels of analysis of the problem, progressing from
detailed information to more abstract concepts. In the Hearsay-II blackboard system
for computerized understanding of natural speech, the levels of analysis include those
of syllable, word, and phrase[77]. In ultrasonic image interpretation using ARBS,
the levels progress from raw signal data, via a description of the significant image
features, to a description of the defects in the component[30].

THE STATE OF ARTIFICIAL INTELLIGENCE 59

The key advantages of the blackboard architecture, adapted from Feigenbaum[82]
can be summarized as follows:

(i) Many and varied sources of knowledge can participate in the development of
a solution to a problem.

(ii) Since each agent has access to the blackboard, each can be applied as soon
as it becomes appropriate. This is opportunism, i.e., application of the right
knowledge at the right time.

(iii) For many types of problem, especially those involving large amounts of
numerical processing, the characteristic style of incremental solution devel-
opment is particularly efficient.

(iv) Different types of reasoning strategy (e.g., data- and goal-driven) can be
mixed as appropriate in order to reach a solution.

(v) Hypotheses can be posted onto the blackboard for testing by other agents.
A complete test solution does not have to be built before deciding to modify
or abandon the underlying hypothesis.

(vi) In the event that the system is unable to arrive at a complete solution to a
problem, the partial solutions appearing on the blackboard are available and
may be of some value.

7.3 Parameter Setting

Designing a suitable computational intelligence solution for a given application
can involve a large amount of trial and error. Although the “knowledge acquisition
bottleneck” associated with knowledge-based systems is avoided, a “parameter-
setting bottleneck” may be introduced instead. The techniques described here are
intended to avoid this bottleneck by using one computational intelligence technique
to set the parameters of another.

7.3.1 Genetic-Neural Systems

Neural networks can suffer from the parameter-setting bottleneck as the developer
struggles to configure a network for a particular problem. Whether a network will
converge, i.e., learn suitable weightings, will depend on the topology, the transfer
function of the nodes, the values of the parameters in the training algorithm, and the
training data. It may even depend on the order in which the training data are pre-
sented. Although Kolmogorov’s Existence Theorem leads to the conclusion that a
three-layered perceptron, with the sigmoid transfer function, can perform any map-
ping from a set of inputs to the desired outputs, the theorem tells us nothing about the
learning parameters, the necessary number of neurons, or whether additional layers
would be beneficial. It is, however, possible to use a genetic algorithm to optimize

60 A.A. HOPGOOD

the network configuration[83]. A suitable cost function might combine the RMS
error with duration of training.

Supervised training of a neural network involves adjusting its weights until the
output patterns obtained for a range of input patterns are as close as possible to the
desired patterns. The different network topologies use different training algorithms
for achieving this weight adjustment, typically through back-propagation of errors.
Just as it is possible for a genetic algorithm to configure a network, it is also possible
to use a genetic algorithm to train the network[83]. This can be achieved by letting
each gene represent a network weight, so that a complete set of network weights is
mapped onto an individual chromosome. Each chromosome can be evaluated by test-
ing a neural network with the corresponding weights against a series of test patterns.
A fitness value can be assigned according to the error, so that the weights represented
by the fittest generated individual correspond to a trained neural network.

7.3.2 Genetic-Fuzzy Systems
The performance of a fuzzy system depends on the definitions of the fuzzy sets

and on the fuzzy rules. As these parameters can all be expressed numerically, it is
possible to devise a system whereby they are learned automatically using genetic
algorithms. A chromosome can be devised that represents the complete set of pa-
rameters for a given fuzzy system. The cost function could then be defined as the
total error when the fuzzy system is presented with a number of different inputs with
known desired outputs.

Often, a set of fuzzy rules for a given problem can be drawn up fairly easily,
but defining the most suitable membership functions remains a difficult task. Karr
[84,85] has performed a series of experiments to demonstrate the viability of using
genetic algorithms to specify the membership functions. In Karr’s scheme, all mem-
bership functions are triangular. The variables are constrained to lie within a fixed
range, so the fuzzy sets low and high are both right-angle triangles (Figure 21). The

FIG. 21. Defining triangular membership functions by their intercepts on the abscissa.

THE STATE OF ARTIFICIAL INTELLIGENCE 61

slope of these triangles can be altered by moving their intercepts on the abscissa,
markedmax1 andmin4 in Figure 21. All intermediate fuzzy sets are assumed to have
membership functions that are isosceles triangles. Each is defined by two points,
maxi andmini , wherei labels the fuzzy set. The chromosome is then a list of all the
pointsmaxi andmini that determine the complete set of membership functions. In
several demonstrator systems, Karr’s GA-modified fuzzy controller outperformed a
fuzzy controller whose membership functions had been set manually.

7.4 Capability Enhancement

One technique may be used within another to enhance the latter’s capabilities.
Here, three examples are described: neuro-fuzzy systems which combine the bene-
fits of neural networks and fuzzy logic; Lamarckian and Baldwinian inheritance for
enhancing the performance of a genetic algorithm with local search around individ-
uals in the population; and learning classifier systems that use genetic algorithms to
discover rules.

7.4.1 Neuro-Fuzzy Systems

Section7.3.2above shows how a genetic algorithm can be used to optimize the
parameters of a fuzzy system. In such a scheme, the genetic algorithm for parameter
setting and the fuzzy system that uses those parameters are distinct and separate. The
parameters for a fuzzy system can also be learned using neural networks, but here
much closer integration is possible between the neural network and the fuzzy system
that it represents. A neuro-fuzzy system is a fuzzy system, the parameters of which
are derived by a neural network learning technique. It can equally be viewed as a
neural network that represents a fuzzy system. The two views are equivalent and it is
possible to express a neuro-fuzzy system in either form.

Consider the following fuzzy rules, in Flex format:

fuzzy_rule r4f
if the temperature is high or the water level is high
then the pressure is high.

fuzzy_rule r5f
if the temperature is medium or the water level is medium
then the pressure is medium.

fuzzy_rule r6f
if the temperature is low or the water level is low
then the pressure is low.

62 A.A. HOPGOOD

FIG. 22. A neuro-fuzzy network.

These fuzzy rules and the corresponding membership functions can be represented
by the neural network shown inFigure 22. The first stage is fuzzification, in which
any given input value fortemperature is given a membership value forlow ,
medium, andhigh . A single layer perceptron, designated level 1 inFigure 22, can
achieve this because it is a linear classification task. The only difference from other
classifications met previously is that the target output values are not just 0 and 1, but
any value in-between. A similar network is required at level 1 for the other input vari-
able,water level . The neurons whose outputs correspond to thelow , medium,
andhigh memberships are marked L, M, and H, respectively, inFigure 22.

Level 2 of the neuro-fuzzy network performs the role of the fuzzy rules, taking the
six membership values as its inputs and generating as its outputs the memberships
for low , medium, andhigh of the fuzzy variablepressure . The final stage, at
level 3, involves combining these membership values to produce a defuzzified value
for the output variable.

The definitions of the fuzzy sets and the fuzzy rules are implicit in the connections
and weights of the neuro-fuzzy network. Using a suitable learning mechanism, the
weights can be learned from a series of examples. The network can then be used
on previously unseen inputs to generate defuzzified output values. In principle, the
fuzzy sets and rules can be inferred from the network and run as a fuzzy rule-based
system to produce identical results[86,87].

THE STATE OF ARTIFICIAL INTELLIGENCE 63

7.4.2 Lamarckian and Baldwinian Inheritance

Capability enhancement of a genetic algorithm can be achieved by hybridizing
it with local search procedures. This can help the genetic algorithm to optimize in-
dividuals within the population, while maintaining its ability to explore the search
space. The aim would be either to increase the quality of the solutions, so they are
closer to the global optimum, or to increase the efficiency, i.e., the speed at which the
optimum is found. One approach is to introduce an extra step involving local search
around each chromosome in the population, to see whether any of its neighbors offers
a fitter solution.

A commonly used, if rather artificial, example is to suppose that the task is to
find the maximum denary integer represented by a 7-bit binary-encoded chromo-
some. The optimum is clearly 1111111. A chromosome’s fitness could be taken as
the highest integer represented either by itself or by any of its near neighbors found
by local search. A near neighbor of an individual might typically be defined as one
that has a Hamming separation of 1 from it, i.e., one bit is different. For example,
the chromosome 0101100 (denary value 44) would have a fitness of 108, since it
has a nearest neighbor 1101100 (denary value 108). The chromosome could be ei-
ther:

(a) left unchanged while retaining the fitness value of its fittest neighbor—this is
Baldwinian inheritance; or

(b) replaced by the higher scoring neighbor, in this case 1101100—this is Lamar-
ckian inheritance.

Baldwinian inheritance is analogous to Baldwin’s discredited proposal that, in
nature, offspring can inherit their parents’ learned characteristics. Lamarckian inheri-
tance is analogous to Lamarck’s generally accepted proposal that, in nature, offspring
can inherit their parents’ capacity for learning. Although only one of the two types
of inheritance is considered credible biologically, both are useful in genetic algo-
rithms.

El Mihoub et al.[88] have set out to establish the relative benefits of the two forms
of inheritance. In a series of experiments, they have adjusted the relative proportions
of Lamarckian and Baldwinian inheritance, and the probability of applying a local
search to any individual in the population. Their previously unpublished results for
one fitness landscape—a four-dimensional Shwefel function[89]—are summarized
in Figure 23. They have shown that the optimal balance depends on the population
size, the probability of local search and the nature of the fitness landscape. With this
in mind, they have also experimented with making these parameters self-adaptive
by coding them within the chromosomes. Taking this idea to its logical conclusion,

64 A.A. HOPGOOD

FIG. 23. Effects of probability of local search and relative proportions of Lamarckian and Baldwinian
inheritance for a four-dimensional Schwefel test function. (Data courtesy of Tarek El-Mihoub.)

a completely self-adapting genetic algorithm could be envisaged where no parame-
ters at all need to be specified by the user.

7.4.3 Learning Classifier Systems
Holland’s learning classifier systems (LCSs) combine genetic algorithms with

rule-based systems to provide a mechanism for rule discovery[90,91]. The rules
are simple production rules, coded as a fixed-length mixture of binary numbers and
wild-card, i.e., “don’t care,” characters. Their simple structure makes it possible to
generate new rules by means of a genetic algorithm.

The overall LCS is illustrated inFigure 24. At the heart of the system is the
message list, which fulfils a similar role to the blackboard in a blackboard system.
Information from the environment is placed here, along with rule deductions and
instructions for the actuators, which act on the environment.

A credit-apportionment system, known as the bucket-brigade algorithm, is used
to maintain a credit balance for each rule. The genetic algorithm uses a rule’s credit
balance as the measure of its fitness. Conflict resolution between rules in the conflict
set is achieved via an auction, in which the rule with the most credits is chosen to
fire. In doing so, it must pay some of its credits to the rules that led to its conditions
being satisfied. If the fired rule leads to some benefit in the environment, it receives
additional credits.

THE STATE OF ARTIFICIAL INTELLIGENCE 65

FIG. 24. Learning classifier system.

7.5 Clarification and Verification of Neural Network Outputs

Neural networks have the ability to learn associations between input vectors and
their associated outputs. However, the underlying reasons for the associations may
be opaque, as they are effectively encoded in the weightings on the interconnections
between the neurons. Thus, neural networks are often regarded as “black boxes” that
simply generate an output from a given input, but whose internal state conveys no
readily useful information to an observer. This contrasts with a transparent system,
such as a KBS, where the internal state, e.g., the value of a variable, does have mean-
ing for an observer.

There has been a considerable research effort into rule extraction to automatically
produce intelligible rules that are equivalent to the trained neural network from which
they have been extracted[92]. A variety of methods have been reported for extracting
different types of rules, including production rules and fuzzy rules.

In safety-critical systems, reliance on the output from a neural network without
any means of verification is not acceptable. It has, therefore, been proposed that
rules be used to verify that the neural network output is consistent with its input[93].
The use of rules for verification implies that at least some of the domain knowledge
can be expressed in rule form. Johnson et al.[94] suggest that an adjudicator module
be used to decide whether a set of rules or a neural network is likely to provide the
more reliable output for a given input. The adjudicator would have access to informa-
tion relating to the extent of the neural network’s training data and could determine
whether a neural network would have to interpolate between, or extrapolate from,
examples in the training set. (Neural networks are good at interpolation but poor at
extrapolation.) The adjudicator may, for example, call upon rules to handle the ex-

66 A.A. HOPGOOD

ceptional cases which would otherwise require a neural network to extrapolate from
its training data. If heuristic rules are also available for the less exceptional cases,
then they could be used to provide an explanation for the neural network’s findings.
A supervisory rule-based module could dictate the training of a neural network, de-
ciding how many nodes are required, adjusting the learning rate as training proceeds,
and deciding when training should terminate.

8. Conclusions

8.1 Benefits

This chapter has reviewed a range of AI techniques. Whether the resultant systems
display true intelligence remains questionable. Nevertheless, the following practical
benefits have stemmed from the development of AI techniques:

Reliability and Consistency. An AI system makes decisions that are con-
sistent with its input data and its knowledge base (for a knowledge-based system) or
numerical parameters (for a computational intelligence technique). It may, therefore,
be more reliable than a person, particularly where repetitive mundane judgments
have to be made.

Automation. In many applications, such as visual inspection on a production
line, judgmental decision-making has to be performed repeatedly. A well-designed
AI system ought to be able to deal with the majority of such cases, while highlighting
any that lie beyond the scope of its capabilities. Therefore, only the most difficult
cases, which are normally the most interesting, are deferred to a person.

Speed. AI systems are designed to automatically make decisions that would oth-
erwise require human reasoning, judgment, expertise, or common sense. Any lack of
true intelligence is compensated by the system’s processing speed. An AI system can
make decisions informed by a wealth of data and information that a person would
have insufficient time to assimilate.

Improved Domain Understanding. The process of constructing a know-
ledge-based system requires the decision-making criteria to be clearly identified and
assessed. This process frequently leads to a better understanding of the problem be-
ing tackled. Similar benefits can be obtained by investigating the decision-making
criteria used by the computational intelligence techniques.

THE STATE OF ARTIFICIAL INTELLIGENCE 67

Knowledge Archiving. The knowledge base is a repository for the knowledge
of one or more people. When these people move on to new jobs, some of their expert
knowledge is saved in the knowledge base, which continues to evolve after their
departure.

New Approaches to Software Engineering. Since AI systems are sup-
posed to be flexible and adaptable, development is usually based upon continuous
refinements of an initial prototype. This is theprototype–test–refinecycle, which ap-
plies to both knowledge-based systems and computational intelligence techniques.
The key stages in the development of a system are:

• decide the requirements;

• design and implement a prototype;

• continuously test and refine the prototype.

Rapid prototyping and iterative development have gained respectability across most
areas of software engineering in recent years, replacing the traditional linear “wa-
terfall process” of meticulous specification, analysis, and design phases prior to
implementation and testing.

8.2 Networked AI
The widespread availability of the Internet is helping to shape the development

of modern AI. This chapter has highlighted multiagent systems, and the blackboard
architecture for dividing problems into subtasks that can be shared among specialized
agents so that the right software tool can be used for each job. The growth in the use
of the Internet is likely to see AI become increasingly distributed as agents reside on
separate computers, and mobile agents travel over the net in search of information.

Paradoxically, there is also a sense in which the Internet is making AI more inte-
grated. Watson and Gardingen describe a sales support application that has become
integrated by use of the World Wide Web, as a single definitive copy of the soft-
ware accessible via the web has replaced distributed copies[95]. In commercial
decision-making, separate distributed functions are becoming integrated by the need
for communication between them. For example, production decisions need to take
into account and influence design, marketing, personnel, sales, materials stocks, and
product stocks.

8.3 Ubiquitous AI
Early AI systems were mostly consultative in nature, e.g., diagnostic expert sys-

tems that reached a conclusion following dialogue with a human, or neural networks

68 A.A. HOPGOOD

FIG. 25. Interaction with plasma deposition equipment through sensors and actuators. (Photo by Lars
Nolle.) (See Color Plate Section, Plate 4.)

that produced classifications from data stored in a file. Many of the more modern AI
systems reviewed in this chapter aresituated—i.e., they interact with their environ-
ment through sensors that detect the environment and actuators that operate upon it
in real time. This is demonstrated by a recent application of DARBS, which involves
monitoring and controlling plasma deposition equipment used in semiconductor de-
vice manufacture[96]. As Figure 25graphically illustrates, the computer system in
this application is indeed situated within its environment with a wealth of devices for
interacting with the environment.

If AI is to become more widely situated into everyday environments, it needs to
become smaller, cheaper, and more reliable. The next key stage in the development
of AI is likely to be a move towardsembeddedAI, i.e., AI systems that are embedded
in machines, devices, and appliances. The work of Choy et al.[97] is significant in
this respect, in that they have demonstrated that the DARBS blackboard system can
be ported to a compact platform of parallel low-cost processors.

Increasingly, we are likely to see intelligent agents that serve as personal consul-
tants to advise and inform us, and others that function silently and anonymously
while performing tasks such as data interpretation, monitoring, and control. We
are therefore relatively close to the possibility of intelligent behavior, based on the

THE STATE OF ARTIFICIAL INTELLIGENCE 69

techniques reviewed in this chapter, in everyday domestic, workplace, and public
environments. Examples that have already appeared include washing machines that
incorporate knowledge-based control systems, elevators that use fuzzy logic to de-
cide at which floor to wait for the next passenger, robotic vacuum cleaners that
incorporate the BDI model of intelligent agents, and personal organizers that use
neural networks to learn the characteristics of their owner’s handwriting. It is surely
only a matter of time before AI becomes truly ubiquitous.

8.4 Has AI Delivered?

The introduction to this chapter proposed a simple definition of artificial intel-
ligence, i.e., the science of mimicking human mental faculties in a computer. The
subsequent sections have reviewed a wide range of techniques. Some approaches are
pre-specified and structured, while others specify only low-level behavior, leaving
the intelligence to emerge through complex interactions. Some approaches are based
on the use of knowledge expressed in words and symbols, whereas others use only
mathematical and numerical constructions.

Overall, the tools and techniques of AI are ingenious, practical, and useful. If these
were the criteria by which the success of AI were measured, it would be heralded as
one of the most accomplished technological fields. However, human mental faculties
are incredibly complex and have proved to be extremely difficult to mimic.

Nevertheless, the techniques presented here have undoubtedly advanced hu-
mankind’s progress towards the construction of an intelligent machine. AI research
has made significant advances from both ends of the intelligence spectrum shown in
Figure 1, but a gap still exists in the middle. Building a system that can make sensible
decisions about unfamiliar situations in everyday, non-specialist domains remains
difficult. This development requires progress in simulating behaviors that humans
take for granted—specifically perception, language, common sense, and adaptabil-
ity.

ACKNOWLEDGEMENTS

This chapter is based in part on my bookIntelligent Systems for Engineers and
Scientists[11], from which several of the figures are taken. Some parts are also de-
rived from an article inIEEE Computer[3]. The demonstration of a neural network
for interpreting satellite images is based on a project originally devised in collabo-
ration with Tony Hirst and Hywel Evans, using data supplied by Paul Mather. I am
indebted to my research students, past and present, for several of the developments
presented here.

70 A.A. HOPGOOD

REFERENCES

[1] Penrose R.,The Emperor’s New Mind, Oxford University Press, London, 1989.
[2] Turing A.M., “Computing machinery and intelligence”,Mind 59 (1950) 433–460.
[3] Hopgood A.A., “Artificial intelligence: hype or reality?”IEEE Computer6 (2003) 24–28.
[4] Holmes N., “Artificial intelligence: arrogance or ignorance?”IEEE Computer36 (2003)

118–120.
[5] http://asimo.honda.com.
[6] http://www.sony.net/SonyInfo/QRIO.
[7] Buchanan B.G., Sutherland G.L., Feigenbaum E.A., “Heuristic DENDRAL: a program

for generating explanatory hypotheses in organic chemistry”,Machine Intelligence4
(1969) 209–254.

[8] Shortliffe E.H.,Computer-Based Medical Consultations: MYCIN, Elsevier, Amsterdam,
1976.

[9] http://www.lpa.co.uk.
[10] Hopgood A.A., “Rule-based control of a telecommunications network using the black-

board model”,Artificial Intelligence in Engineering9 (1994) 29–38.
[11] Hopgood A.A.,Intelligent Systems for Engineers and Scientists, second ed., CRC Press,

Boca Raton, FL, 2001.
[12] Forgy C.L., “Rete: a fast algorithm for the many-pattern/many-object-pattern match prob-

lem”, Artificial Intelligence19 (1982) 17–37.
[13] Fulton S.L., Pepe C.O., “An introduction to model-based reasoning”,AI Expert(January

1990) 48–55.
[14] Fenton W.G., Mcginnity T.M., Maguire L.P., “Fault diagnosis of electronic systems using

intelligent techniques: a review”,IEEE Transactions on Systems Man and Cybernetics
Part C—Applications and Reviews31 (2001) 269–281.

[15] Wotawa F., “Debugging VHDL designs using model-based reasoning”,Artificial Intelli-
gence in Engineering14 (2000) 331–351.

[16] Mateis C., Stumptner M., Wotawa F., “Locating bugs in Java programs—first results
of the Java diagnosis experiments project”, in:Lecture Notes in Artificial Intelligence,
vol. 1821, Springer-Verlag, Berlin/New York, 2000, pp. 174–183.

[17] Montani S., Magni P., Bellazzi R., Larizza C., Roudsari A.V., Carson E.R., “Integrating
model-based decision support in a multi-modal reasoning system for managing type 1
diabetic patients”,Artificial Intelligence in Medicine29 (2003) 131–151.

[18] Bruninghaus S., Ashley K.D.,Combining case-based and model-based reasoning for
predicting the outcome of legal cases, in: Lecture Notes in Artificial Intelligence,
vol. 2689, Springer-Verlag, Berlin/New York, 2003, pp. 65–79.

[19] De Koning K., Bredeweg B., Breuker J., Wielinga B., “Model-based reasoning about
learner behaviour”,Artificial Intelligence117(2000) 173–229.

[20] Fink P.K., Lusth J.C., “Expert systems and diagnostic expertise in the mechanical and
electrical domains”,IEEE Transactions on Systems, Man, and Cybernetics17 (1987)
340–349.

http://asimo.honda.com
http://www.sony.net/SonyInfo/QRIO
http://www.lpa.co.uk

THE STATE OF ARTIFICIAL INTELLIGENCE 71

[21] Xing H., Huang S.H., Shi J., “Rapid development of knowledge-based systems via in-
tegrated knowledge acquisition”,Artificial Intelligence for Engineering Design Analysis
and Manufacturing17 (2003) 221–234.

[22] Minton S., Carbonell J.G., Knoblock C.A., Kuokka D.R., Etzioni O., Gil Y.,
“Explanation-based learning: a problem-solving perspective”,Artificial Intelligence40
(1989) 63–118.

[23] Riesbeck C.K., Schank R.C.,Inside Case-based Reasoning, Lawrence Erlbaum Asso-
ciates, Hillsdale, NJ, 1989.

[24] Aamodt A., Plaza E., “Case-based reasoning—foundational issues, methodological vari-
ations, and system approaches”,AI Communications7 (1994) 39–59.

[25] Shortliffe E.H., Buchanan B.G., “A model of inexact reasoning in medicine”,Mathemat-
ical Biosciences23 (1975) 351–379.

[26] Buchanan B.G., Shortliffe E.H. (Eds.),Rule-Based Expert Systems: The MYCIN Exper-
iments of the Stanford Heuristic Programming Project, Addison–Wesley, Reading, MA,
1984.

[27] Barnett J.A., “Computational methods for a mathematical theory of evidence”, in:7th
International Joint Conference on Artificial Intelligence (IJCAI’81), Vancouver, 1981,
pp. 868–875.

[28] Schafer G.,A Mathematical Theory of Evidence, Princeton University Press, Princeton,
NJ, 1976.

[29] Quinlan J.R., “Inferno: a cautious approach to uncertain inference”,The Computer Jour-
nal 26 (1983) 255–269.

[30] Hopgood A.A., Woodcock N., Hallam N.J., Picton P.D., “Interpreting ultrasonic images
using rules, algorithms and neural networks”,European Journal of Nondestructive Test-
ing 2 (1993) 135–149.

[31] Li H.X., Yen V.C.,Fuzzy Sets and Fuzzy Decision-Making, CRC Press, Boca Raton, FL,
1995.

[32] Wooldridge M.J., “Agent-based software engineering”,IEE Proc. Software Engineer-
ing 144(1997) 26–37.

[33] Ulrich I., Mondada F., Nicoud J.D., “Autonomous vacuum cleaner”,Robotics and Au-
tonomous Systems19 (1997) 233–245.

[34] Russell S., Norvig P.,Artificial Intelligence: A Modern Approach, Prentice Hall, New
York, 1995.

[35] Wooldridge M.J., Jennings N.R., “Intelligent agents: theory and practice”,Knowledge
Engineering Review10 (1995) 115–152.

[36] Brooks R.A., “Intelligence without reason”, in:12th International Joint Conference on
Artificial Intelligence (IJCAI’91), Sydney, 1991, pp. 569–595.

[37] Newell A., “The knowledge level”,Artificial Intelligence18 (1982) 87–127.
[38] Bratman M.E., Israel D.J., Pollack M.E., “Plans and resource-bounded practical reason-

ing”, Computational Intelligence4 (1988) 349–355.
[39] Wooldridge M.J., “Intelligent agents”, in: Weiss G. (Ed.),Multiagent Systems: A Mod-

ern Approach to Distributed Artificial Intelligence, MIT Press, Cambridge, MA, 1999,
pp. 27–77.

72 A.A. HOPGOOD

[40] Kinny D., Georgeff M. “Commitment and effectiveness in situated agents”, in:12th Inter-
national Joint Conference on Artificial Intelligence (IJCAI’91), Sydney, 1991, pp. 82–88.

[41] Ferguson I.A., “Integrated control and coordinated behaviour: a case for agent mod-
els”, in: Wooldridge M., Jennings N.R. (Eds.),Intelligent Agents: Theories, Architectures
and Languages, in: Lecture Notes in Artificial Intelligence, vol. 890, Springer-Verlag,
Berlin/New York, 1995, pp. 203–218.

[42] Jennings N.R., “On agent-based software engineering”,Artificial Intelligence117(2000)
277–296.

[43] Smith R.G., Davis R., “Frameworks for cooperation in distributed problem solving”,
IEEE Transactions on Systems, Man, and Cybernetics11 (1981) 61–70.

[44] Wooldridge M.J., Jennings N.R., “Formalising the cooperative problem solving process”,
in: 13th International Workshop on Distributed Artificial Intelligence (IWDAI’94), Lake
Quinalt, WA, 1994, pp. 403–417.

[45] Wooldridge M.J., Jennings N.R., “Towards a theory of cooperative problem solving”,
in: 6th European Conference on Modelling Autonomous Agents in a Multi-Agent World
(MAAMAW’94), Odense, Denmark, 1994, pp. 15–26.

[46] Li G., Hopgood A.A., Weller M.J., “Shifting matrix management: a model for multi-
agent cooperation”,Engineering Applications of Artificial Intelligence16 (2003) 191–
201.

[47] Bratman M.E.,Intentions, Plans, and Practical Reason, Harvard University Press, Cam-
bridge, MA, 1987.

[48] Mintzberg H.,The Structuring of Organizations, Prentice Hall, New York, 1979.
[49] Finin T., Labrou Y., Mayfield J., “KQML as an agent communication language”, in:

Bradshaw J.M. (Ed.),Software Agents, MIT Press, Cambridge, MA, 1997, pp. 291–316.
[50] Bonabeau E., Dorigo M., Théraulaz G.,Swarm Intelligence: From Natural to Artificial

Systems, Oxford University Press, London, 1999.
[51] Dorigo M., Stützle T.,Ant Colony Optimization, MIT Press, Cambridge, MA, 2004.
[52] Dorigo M., “Ant algorithms solve difficult optimization problems”, in:Lecture Notes in

Artificial Intelligence, vol. 2159, Springer-Verlag, Berlin/New York, 2001, pp. 11–22.
[53] Lumer E.D., Faieta B., “Diversity and adaptation in populations of clustering ants”, in:

Cliff D., Husbands P., Meyer J., Wilson S. (Eds.),Proc. 3rd Internat. Conf. on Simula-
tion of Adaptive Behavior: From Animal to Animats, The MIT Press/Bradford Books,
Cambridge, MA, 1994.

[54] Ramos V., Almeida F., “Artificial ant colonies in digital image habitats—a mass behav-
iour effect study on pattern recognition”, in: Dorigo M., Middendorf M., Stüzle T. (Eds.),
in: Proc. 2nd Internat. Workshop on Ant Algorithms: From Ant Colonies to Artificial Ants,
Brussels, Belgium, 2000, pp. 113–116.

[55] Holland J.H.,Adaptation in Natural and Artificial Systems, University of Michigan Press,
Ann Harbor, 1975.

[56] Syswerda G., “Uniform crossover in genetic algorithms”, in: Schaffer J.D. (Ed.),4th
International Conference on Genetic Algorithms, Morgan Kaufmann, San Francisco, CA,
1989.

[57] Mitchell M., An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA, 1996.

THE STATE OF ARTIFICIAL INTELLIGENCE 73

[58] Hopfield J.J., “Neural networks and physical systems with emergent collective computa-
tional abilities”, in:Proc. National Academy of Science, USA, vol. 79, 1982, pp. 2554–
2558.

[59] Muezzinoglu M.K., Guzelis C., Zurada J.M., “A new design method for the complex-
valued multistate Hopfield associative memory”,IEEE Transactions on Neural Net-
works14 (2003) 891–899.

[60] Tong S., Koller D., “Support vector machine active learning with applications to text
classification”,Journal of Machine Learning Research2 (2001) 45–66.

[61] Broomhead D.S., Lowe D., “Multivariable functional interpolation and adaptive net-
works”, Complex Systems2 (1988) 321–355.

[62] Peng H., Ozaki T., Haggan-Ozaki V., Toyoda Y., “A parameter optimization method for
radial basis function type models”,IEEE Transactions on Neural Networks14 (2003).

[63] Kohonen T., “Adaptive, associative, and self-organising functions in neural computing”,
Applied Optics26 (1987) 4910–4918.

[64] Kohonen T.,Self-Organization and Associative Memory, second ed., Springer-Verlag,
Berlin/New York, 1988.

[65] Germen E., “Increasing the topological quality of Kohonen’s self organising map by
using a hit term”, in:ICONIP ’02: 9th International Conference on Neural Information
Processing, vol. 2, 2002, pp. 930–934.

[66] Yin H., Allinson N.M., “Interpolating self-organising map (iSOM)”,Electronics Let-
ters35 (1999) 1649–1650.

[67] Carpenter G.A., Grossberg S., “ART2: Self-organization of stable category recognition
codes for analog input patterns”,Applied Optics26 (1987) 4919–4930.

[68] Davenport M.P., Titus A.H., “Multilevel category structure in the ART-2 network”,IEEE
Transactions on Neural Networks15 (2004) 145–158.

[69] Baretto G., Arajo A., “Time in self-organizing map: an overview of models”,Interna-
tional Journal of Computer Research10 (2001) 139–179.

[70] Voegtlin T., “Recursive self-organizing maps”,Neural Networks15 (2002) 979–991.
[71] Hallam N.J., Hopgood A.A., Woodcock N., “Defect classification in welds using a feed-

forward network within a blackboard system”, in:International Neural Network Confer-
ence (INNC’90), Paris, vol. 1, 1990, pp. 353–356.

[72] Hornick K., Stinchcombe M., White H., “Multilayer feedforward networks are universal
approximators”,Neural Networks2 (1989) 359–366.

[73] Rumelhart D.E., Hinton G.E., Williams R.J., “Learning representations by back-
propagating errors”,Nature323(1986) 533–536.

[74] Rumelhart D.E., Hinton G.E., Williams R.J., “Learning internal representations by error
propagation”, in: Rumelhart D.E., McClelland J.L. (Eds.),Parallel Distributed Process-
ing: Explorations in the Microstructures of Cognition, vol. 1, MIT Press, Cambridge,
MA, 1986.

[75] Knight K., “Connectionist ideas and algorithms”,Communications of the ACM33 (11)
(November 1990) 59–74.

[76] Lesser V.R., Fennell R.D., Erman L.D., Reddy D.R., “Organization of the Hearsay-
II speech understanding system”,IEEE Transactions on Acoustics, Speech, and Signal
Processing23 (1975) 11–23.

74 A.A. HOPGOOD

[77] Erman L.D., Hayes-Roth F., Lesser V.R., Reddy D.R., “The Hearsay-II speech under-
standing system: integrating knowledge to resolve uncertainty”,ACM Computing Sur-
veys12 (1980) 213–253.

[78] Nii H.P., “Blackboard systems, part one: the blackboard model of problem solving and
the evolution of blackboard architectures”,AI Magazine7 (1986) 38–53.

[79] Brzykcy G., Martinek J., Meissner A., Skrzypczynski P., “Multi-agent blackboard archi-
tecture for a mobile robot”, in:Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems, vol. 4, IEEE Press, New York, 2001, pp. 2369–2374.

[80] Hopgood A.A., Phillips H.J., Picton P.D., Braithwaite N.S.J., “Fuzzy logic in a black-
board system for controlling plasma deposition processes”,Artificial Intelligence in En-
gineering12 (1998) 253–260.

[81] Nolle L., Wong K.C.P., Hopgood A.A., “DARBS: a distributed blackboard system”, in:
Bramer M., Coenen F., Preece A. (Eds.),Research and Development in Intelligent Sys-
tems, XVIII, Springer-Verlag, Berlin/New York, 2001, pp. 161–170.

[82] Feigenbaum E.A., in: Englemore R.S., Morgan A.J. (Eds.),Blackboard Systems,
Addison–Wesley, Reading, MA, 1988.

[83] Yao X., “Evolving artificial neural networks”,Proceedings of the IEEE87 (1999) 1423–
1447.

[84] Karr C.L., “Genetic algorithms for fuzzy controllers”,AI Expert(February 1991) 26–33.
[85] Karr C.L., “Applying genetics to fuzzy logic”,AI Expert(March 1991) 38–43.
[86] Altug S., Chow M.Y., Trussell H.J., “Heuristic constraints enforcement for training of

and rule extraction from a fuzzy/neural architecture—part II: Implementation and appli-
cation”, IEEE Transactions on Fuzzy Systems7 (1999) 151–159.

[87] Chow M.Y., Altug S., Trussell H.J., “Heuristic constraints enforcement for training of
and knowledge extraction from a fuzzy/neural architecture—part I: Foundation”,IEEE
Transactions on Fuzzy Systems7 (1999) 143–150.

[88] El Mihoub T., Hopgood A.A., Nolle L., Battersby A., “Performance of hybrid genetic al-
gorithms incorporating local search”, in: Horton G. (Ed.),Proceedings of 18th European
Simulation Multiconference, 2004, pp. 154–160.

[89] Schwefel H.P.,Numerical Optimization of Computer Models, Wiley, New York, 1981.
[90] Holland J.H., Reitman J.S., “Cognitive systems based on adaptive algorithms”, in: Wa-

terman D.A., Hayes-Roth F. (Eds.),Pattern-Directed Inference Systems, Academic Press,
San Diego, CA, 1978, pp. 313–329.

[91] Goldberg D.E.,Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison–Wesley, Reading, MA, 1989.

[92] Tsukimoto H., “Extracting rules from trained neural networks”,IEEE Transactions on
Neural Networks11 (2000) 377–389.

[93] Picton P.D., Johnson J.H., Hallam N.J., “Neural networks in safety-critical systems”,
in: 3rd International Congress on Condition Monitoring and Diagnostic Engineering
Management, Southampton, UK, 1991.

[94] Johnson J.H., Hallam N.J., Picton P.D., “Safety critical neurocomputing: explanation
and verification in knowledge augmented neural networks”, in:Colloquium on Human–
Computer Interaction, IEE, London, 1990.

THE STATE OF ARTIFICIAL INTELLIGENCE 75

[95] Watson I., Gardingen D., “A distributed case-based reasoning application for engineer-
ing sales support”, in:16th International Joint Conference on Artificial Intelligence
(IJCAI’99), Stockholm, Sweden, vol. 1, Morgan Kaufmann, San Mateo, CA, 1999,
pp. 600–605.

[96] Al-Kuzee J., Matsuura T., Goodyear A., Nolle L., Hopgood A.A., Picton P.D., Braith-
waite N.S.J., “Intelligent control of low pressure plasma processing”, in:IEEE Industrial
Electronics Society Conference (ICON03), 2003.

[97] Choy K.W., Hopgood A.A., Nolle L., O’Neill B.C., “Design and implementation of an
inter-process communication model for an embedded distributed processing network”,
in: International Conference on Software Engineering Research and Practice (SERP’03),
Las Vegas, 2003, pp. 239–245.

This page intentionally left blank

Software Model Checking with S PIN

GERARD J. HOLZMANN

Laboratory for Reliable Software
NASA/JPL, Pasadena, CA 91109
USA
gholzmann@acm.org

Abstract
The aim of this chapter is to give an overview of the theoretical foundation and
the practical application of logic model checking techniques for the verifica-
tion of multi-threadedsoftware(rather than hardware) systems. The treatment
is focused on the logic model checker SPIN, which was designed for this spe-
cific domain of application. SPIN implements an automata-theoretic method of
verification. Although the tool has been available for over 15 years, it contin-
ues to evolve, adopting new optimization strategies from time to time to help
it tackle larger verification problems. This chapter explains how the tool works,
and which types of software verification problems it is designed to handle.

1. Introduction . 78
2. Background. 79
3. Finite Automata . 82

3.1. Automaton Runs . 84
3.2. Omega Acceptance. 84
3.3. Asynchronous Product. 85
3.4. Automata Expansion . 86

4. Temporal Logic . 87
4.1. Standard Formulae . 88
4.2. Synchronous Product. 90

5. LTL Model Checking . 91
5.1. Depth-First Search . 92
5.2. Nested Depth-First Search . 93
5.3. Adding Fairness . 98
5.4. SPIN’s On-the-Fly Implementation . 99
5.5. Partial Order Reduction . 99
5.6. Compression Techniques . 100

ADVANCES IN COMPUTERS, VOL. 65 77 Copyright © 2005 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(05)65002-4 All rights reserved.

mailto:gholzmann@acm.org

78 G.J. HOLZMANN

5.7. Bitstate Hashing . 100
6. Model Extraction and Abstraction . 102

6.1. Other Uses of Abstraction . 104
7. Perspective . 104

Acknowledgements . 105
References . 105

1. Introduction

This chapter is concerned with the development of automated procedures for the
verification of software systems, with particular emphasis on the verification of
process interactions in either logically or physically distributed software systems.
Several verification tools are available today that can prove interesting facts for a
significant class of such systems. An up to date overview can be found on the web.1

In this description we will focus on SPIN [36] as one of the leading tools in this class.
SPIN is distributed freely in source form.2

Two notable trends have contributed to the recent successes of logic model check-
ers in the verification of distributed software systems. The first trend is the continuing
improvement in algorithms and tool design in this area, which make it possible to
handle ever larger and more complex verification problems. We will review the main
improvements of this type in this chapter. A second significant trend is the steady
increase in basic compute power, which continues to follow the curve that was ten-
tatively suggested by Gordon Moore nearly forty years ago[42].

The trends that have turned software verification from a theoretical curiosity into a
practical reality are paralleled by similar trends in hardware verification. The differ-
ence in the nature of hardware and software, though, makes that there is surprisingly
little overlap in the algorithms, data structures, and specific logics that are used in
these two fields. We will discuss some of the main reasons for these differences to-
wards the end of this chapter.

The most commonly used method to validate software systems today remains test-
ing. In a unit test, a single process or module of the system is placed in isolation and
probed on its functional correctness. Once successful, a series of unit tests is fol-
lowed by a system integration test. In an integration test multiple units are linked
together to form part or all of the envisioned system. The limitations of this method
of system validation are as well known as its benefits. For sequential software sys-
tems, where one is primarily interested in verifying the computational aspects of a
system, the classical testing techniques still have few competitors, even though much

1 http://archive.comlab.ox.ac.uk/comp/formal-methods.html.
2 http://spinroot.com/whatispin.html.

http://archive.comlab.ox.ac.uk/comp/formal-methods.html
http://spinroot.com/whatispin.html

SOFTWARE MODEL CHECKING WITH SPIN 79

could be done to improve precision and coverage by a more aggressive use of formal
methods based approaches. In distributed software systems, the verification task is
larger, since now we do not just need to worry about computational correctness but
also about a range of concurrency related problems that can prevent proper execu-
tion. Concurrency does not just increase the obligations of the tester or verifier, it
also significantly complicates the already existing obligations for demonstrating the
correctness of sequential computations. Concurrency can introduce race conditions,
data corruption, delay, process or thread starvation, or even system-wide deadlock.

The unpredictable nature of the interleaving of process executions in distributed
systems makes that test executions are not always reproducible. Each single execu-
tion is typically only one of a virtually unimaginably large set of possible interleaved
executions. What is needed to address these problems is an effective method for
probing the system for conveniently definedclasses of behavior, rather than isolated
instances of behavior. Logic model checkers promise to provide such a technique,
but they too come with some limitations. The current limitations of model checking
are of two kinds: computational complexity and user friendliness. In this chapter we
provide a synopsis of the model checking procedure as it applies to the verification
of distributed software systems, and summarize the progress that has been made in
diminishing the effects of these last two limitations.

We will begin by sketching the development of automated verification systems
since the late seventies. We then introduce the main building blocks of the software
model checking procedure. We define what a formal model is, and how we can for-
mally state the logic properties of a model, using a standard definition of automata
on infinite words. Next we discuss the automata theoretic verification procedure, as
defined by Vardi and Wolper[52], and show how it can be implemented efficiently,
following the methodology that was used in the design of the SPIN model checker.

We then move to some more practical considerations: the problem of semi-
automatically extracting models from software applications, to enable us to apply
the model checking procedure. Systematic abstraction techniques play a central role
in this area. We discuss abstraction techniques and give examples of significant ap-
plications of software model checking in practice. We conclude the chapter with a
brief comparison of software model checking with techniques used in hardware ver-
ification and a perspective of likely developments in this field in the near future.

2. Background

The first attempts to built automated verification systems targeted formal defi-
nitions of communication protocols. In 1979, Jan Hajek used a graph exploration

80 G.J. HOLZMANN

tool, called Approver[21], to formally verify basic correctness properties of the pro-
tocols in Tanenbaum’s primer on computer networks[47]. The details of Hajek’s
system were documented only fairly recently,3 but remained unknown at the time.
Unfortunately, this limited the influence that the Approver system could have on later
developments. Independently, Colin West developed a different protocol validation
procedure[53], triggered by a collaboration with Pitro Zafiropulo on the validation
of a CCITT recommendation[54]. Initially unaware of this earlier work, I developed
and implemented yet another protocol verification procedure in 1980 at Bell Labs,
initially based on the definition of a process algebra[22,23].

Communications protocols were a convenient target for the early work since their
behavior could fairly easily be formalized in terms of automata. A well-known ex-
ample of this type, that served as a litmus test for early validation systems throughout
the eighties, is the definition of the alternating bit protocol as two communicating fi-
nite state machines. The protocol is illustrated inFigure 1as it was first defined in
1969[3].

Two state machines are defined inFigure 1, formalizing a sender process and a
receiver process. The edge labels specify message exchanges. Each label consists of
two characters: the first specifies the origin of the message being sent or received
and the second specifies a sequence number for the message. This sequence number,
termed thealternation bitin [3], is either zero or one, and is toggled between the two
values on each successful transmission. Underlined names represent send actions;
the other names represent receives. The double arrows, finally, indicate the states
where new data is to be fetched for transmission by the sender, or received data is to

FIG. 1. Alternating Bit Protocol.

3 http://www.matheory.info/hajekit/approver.txt.

http://www.matheory.info/hajekit/approver.txt

SOFTWARE MODEL CHECKING WITH SPIN 81

be stored by the receiver. The protocol starts with sender and receiver in the states
labeleds0. The sender will then transmit a message with sequence number zero(A0)

to the receiver. If all is well, the receiver will receive the message(A0) and both
processes will move to the states labeleds1. The receiver will now acknowledge
receipt by transmittingB0, and both processes move to the states labeleds2. The
same sequence now repeats with the sequence number toggled from zero to one. If
for some reason, e.g., the loss or duplication of a message, the receiver process sees
a data message with the wrong sequence number, it will reply with the matching
acknowledgment but not proceed. If the sender receives an acknowledgement with a
wrong sequence number it will repeat the last transmission and hope for the best.

If we abstract from the data being transmitted, we can see that each process in
this system can be in no more than six distinct states. The combination of sender
and receiver, therefore, can be in no more than 6× 6 or 36 distinct system states. In
this simple case, a brute force exhaustive enumeration of all reachable states of the
system will suffice to establish most of its logical properties. The combined behavior
of the system defines a new finite state automaton, and can similarly toFigure 1be
formalized as a graph. This graph can be constructed and analyzed with a standard
depth-first search procedure[48] at a cost that is linear in the size of the graph.

Manual techniques for the analysis of state machine models of protocols had been
pioneered in the early seventies, e.g.,[5], but not surprisingly these methods quickly
proved too cumbersome and too errorprone, as demonstrated in[21]. Although the
first automated systems had greater potential, they were mostly restricted to proving
only a small set of mostly predefined properties, and would quickly run into seem-
ingly unsurmountable barriers of computational complexity. The types of properties
that could be demonstrated for small protocol models included absence of deadlock
(i.e., the absence of reachable states in the global execution graph without succes-
sors) and the preservation of system invariants on system states (i.e., the absence of
reachable states in which one or more of the required invariants would evaluate to
false). In the eighties a more general framework for proving logic properties of finite
state models took shape and found general acceptance.

The development of automated verification systems has taken a somewhat differ-
ent path for hardware and for software applications, leading to two different sets of
verification tools that are based on different logics and that exploit different types
of search and optimization algorithms. The dominant techniques in formal hardware
verification, e.g.,[13,41], are founded on the early work of Clarke and Emerson in
the U.S.[11], and of work by Queille and Sifakis in France[45]. In software model
checking, the development can be traced through the early work of Pnueli[44] on
temporal logic, to the development of theautomata theoretic verification methodby
Vardi and Wolper in the mid eighties[52,55]. It should be noted, though, that the new
theories were not immediately of practical use. It took a while for algorithms to be

82 G.J. HOLZMANN

developed that could be implemented efficiently, and for desktop machines to pro-
vide the required compute power to execute them. It appears now generally agreed
that this turning point was reached in the mid to late nineties.

With improved algorithms and ever increasing compute power, the attention in
recent years has shifted from the development of the basic capability to perform logic
model checking on hand-built system models towards the automated extraction of
verification models from implementation level source code. Before discussing these
methods, though, we will first cover the basic theoretical framework that underlies
specifically the SPIN model checking system.

3. Finite Automata

In this section we introduce the notion of an automaton and ofω-acceptance,
which we use to develop the automata theoretic verification method in subsequent
sections. We begin with the definition of an extended finite state automaton.

Definition 3.1. An extended finite state automatonA is a tuple{S, s0,D,L, T , F },
with S a finite set of ‘states,’s0 ∈ S, called the ‘initial state,’D a finite set of named
‘data objects’,L a finite set of named ‘actions’ on objects inD, T ⊆ S × L × S,
called the ‘transition relation,’ andF ⊆ S, called the set of ‘final’ states.

We will be brief here about the definition of ‘data objects’ and ‘actions.’ Model
checking languages such as PROMELA [27,30,36]give precise semantics to these
notions, which guides the operation of the model checker. For our purposes here,
it will suffice to assume that each data object has a unique name and finitely many
possible ‘values’ of arbitrary type. One value in the domain of each object is always
tagged as the initial value of an object of that type. Each data object also has a
‘current value’ that can only be changed through the application (or ‘execution’) of
‘actions’ from setL.

Definition 3.2. An actionon set of data objectsD consists of two parts: a guard and
an effect. The ‘guard’ is a boolean expression on the values of elements inD. The
‘effect’ can change the values of elements inD as a function of the current values of
all elements.

The intuition is that (the effect part of) an action can only be applied when the
guard condition is true. Every transition in the automaton is labeled with an action,
which blocks the transition until the guard condition is satisfied and applies the effect
when the guard condition is true and the transition is executed.

SOFTWARE MODEL CHECKING WITH SPIN 83

Definition 3.3. A transition is said to beexecutableif and only if the guard ex-
pression from the corresponding action evaluates totrue, otherwise it is said to be
‘unexecutable’ or ‘blocking.’

We will use this notion of ‘executable’ and ‘unexecutable’ actions below in the
definition of the ‘runs’ of a system.

As examples of useful data objects, consider the following PROMELA message
channel structures.

chan s2r = [1] of { mtype, bit };
chan r2s = [1] of { mtype, bit };

According to PROMELA semantics, these channels are initially empty and can each
store one message consisting of two typed fields[36]. Some actions from PROMELA

on the channels2r are:
full(s2r)
s2r!A,0
r2s?B,1

The first action has a guard that returnstrue only when the channel currently stores
one message and is thereby filled to capacity. The effect part of the first action isskip,
a null-operation that has no effect. That is: the actions acts as a condition without
side-effects. The second action has a guard that returnstrue only when the channel
is non-full. Its effect changes the value of the data objects2r by appending the
messageA, 0, with A of typemtype , and0 of type bit. The third action has a guard
that returnstrue only when the channel holds a message with the fieldsB, 1 ; its
effect part deletes that message from the channel.

An extended finite state automaton, as defined, can be represented conveniently
by a directed graph with the nodes representing states and the edges representing the
transition relationT . The edges are labeled with actions fromL. A system like this
is therefore also known as a ‘labeled transition system.’ Our aim is to use extended
finite state automata to represent process behavior in a distributed system. SetF can
be used to mark the normal termination points of a process, or they can be used to
mark special acceptance nodes in the graph that can serve to define and check the
liveness properties or a system, as we shall describe shortly.

The two state machines inFigure 1can also be defined as extended finite state
automata. The automaton for the sender (on the left side inFigure 1), for instance, can
be defined as follows, using the two data objects that we introduced in the example
above and PROMELA syntax for the actions

S = {s0, s1, s2, s3, s4, s5},
s = s0,

D = {s2r, r2s},

84 G.J. HOLZMANN

L = {r2s?B, 0, r2s?B, 1, s2r!A, 0, s2r!A, 1},
T =

{
(s0, s2r!A, 0, s1), (s1, r2s?B, 1, s4), (s1; r2s?B, 0, s2), (s4, s2r!A, 0, st),

(s2, s2r!A, 1, s3), (s3, r2s?B, 1, s0), (s3, r2s?B, 0, s5), (s5, s2r!A, 1, s3)
}
,

F = {s0, s2}.
In general, the finite state automata that we will consider can be non-deterministic,
e.g., we allow transitions such that:(v, a,w) ∈ T , (v, a,w′) ∈ T , with w
= w′.
Non-determinism is an important mechanism for building an abstract model of a dis-
tributed system. It can be used to generalize a model and to remove implementation
level detail[32,36].

3.1 Automaton Runs

A run σ = t0, t1, t2, . . . , tk of automatonA is a sequence of transitions that satis-
fies the following conditions:

• the source state fort0, the first transition inσ , is alwayss0, i.e., the initial state
of the automaton,

• ∀i, 0 � i � k: ti ∈ T ,

• ∀i, 0 � i < k: ti ≡ {a, b, c}, andti+1 ≡ {d, e, f } → c ≡ d,

that is, the run defines a path in the graph ofA. Note that a ‘run’ only defines unin-
terpreted potential executions of a system, it does not take the manipulation of data
objects through actions into account just yet. We will distinguish between ‘valid’ and
‘invalid’ runs in an expanded finite state automaton shortly.

According to the classic definition of acceptance afinite run is said to beaccepted
by A if its final state is in setF , i.e., for runσ with final transitiontk ≡ {a, b, c} if
c ∈ F . If setF is used to mark the normal termination points of a process then a run
will not be accepted by the automaton unless it terminates at such a marked state.

3.2 Omega Acceptance

The classic notion of acceptance given above applies only to finite runs, i.e., to
terminating executions. Looking at the automata inFigure 1, though, it is unclear
if termination should be considered proper behavior or an error. As long as data is
available from the unspecified source, the sender process should continue to transmit
it to the receiver. If the protocol terminates, we would like it to terminate in either
states0 or s2, with the last data message properly acknowledged, but it need not ter-
minate at all. We will therefore define a notion ofω-acceptance that can be applied to

SOFTWARE MODEL CHECKING WITH SPIN 85

both theinfiniteand thefinite runs of an automaton. An infinite run of an automaton
is called anω-run.

Definition 3.4. An ω-run σ is acceptedby extended finite state automatonA if it
contains at least one state from setF infinitely often.

The above notion of acceptance is known as Büchi acceptance[8,50]. For the
automata definition we gave for the processes inFigure 1it would suffice to limit
the set of accepting states to one of the two statess0 ands2, since clearly neither can
be visited infinitely often unless the other is too. It is also clear that anyω-run for a
finite state automaton will have to repeat states, i.e., it will necessarily be cyclic.

We now define the ‘stutter-extension’ of a finite run to make sure that the rules of
ω-acceptance can be applied equally to infinite and finite runs of an automaton.

Definition 3.5. The stutter-extensionof a finite runσ of finite state automatonA
is theω-run that is derived fromσ by appending an infinite number of nil-actions
{sk, nil, sk} to it, wheresk is the final state that is reached inσ , andnil is an action
with guardtrueand effectskip.

3.3 Asynchronous Product

The combined behavior of asynchronously executing processes in a distributed
system can be formalized as a simple product of automata.

Definition 3.6. The asynchronous productof the extended finite automataA =
{S, s,D,L, T , F } andB = {S′, s′,D,L′, T ′, F ′} is another extended finite automa-
ton {S′′, s′′,D′′, L′′, T ′′, F ′′} such thatS′′ = S × S′, s′′ = (s, s′), D′′ = D ∪ D′,
L′′ = L ∪ L′, T ′′ ⊆ S′′ × L′′ × S′′, F ′′ = F × F ′, and

∀
(
(n, n′), l, (m,m′)

)
∈ T ′′:

(
l ∈ L ∧ (n, l,m)

)
∨
(
l ∈ L′ ∧ (n′, l, m′)

)
.

That is, the states of the asynchronous product define combinations of states in the
individual automata, but the edges correspond to the individual transitions of the two
automata: the transitions are interleaved.

As an example, the asynchronous product of the two automata fromFigure 1has
6 × 6 or 36 states. The initial state of that automaton is(s0, s0). SetF has four
states. SetD contains two data objects{s2r, r2s}, and setL contains the eight actions
{r2s!B, 0, r2s!B, 1, r2s?B, 0, r2s?B, 1, s2r!A, 0, s2r!A, 1, s2r?A, 0, s2r?A, 1}.

86 G.J. HOLZMANN

3.4 Automata Expansion

Clearly the data objects in an extended finite state automaton also carry state
information. We can map an extended finite state automaton to apure finite state
automaton by moving the state information from setD into setS. In effect, this ex-
pansion multiplies setS with the set of values of all data objects. To construct a pure
automaton we can replicate each state inS, except the initial state, as many times
as there are distinct combinations of values for all data objects inD. For the initial
state, the initial value for each data object is used. Each copy ofs ∈ S has a copy of
all incoming and outgoing transitions ofs in the original automaton.

Next, we can mark the transitions in this new automaton as eithervalid or invalid,
depending on whether the corresponding action fromL is executable in that state.
Since data values are now explicit, the validity of each transition can be determined
unambiguously.

Let µ(n) be the valuation of all data objects in staten, i.e., a finite and ordered set
of values, and letγ (l, n) be the valuation of all data objects in staten after the effect
part of actionl is applied.

Definition 3.7. A transition{n, l,m} from the set of transitions of an expanded finite
state automaton isvalid if the guard of actionl is true for µ(n), andµ(m) ≡ γ (l, n).

The expansion process of an automaton is completed by first omitting all transi-
tions that are not valid, and next omitting all states that are no longer reachable from
the initial state.

FIG. 2. Expanded asynchronous product of automata inFigure 1. Accepting states have double circles.

SOFTWARE MODEL CHECKING WITH SPIN 87

For the automata inFigure 1the full set of actions is, assumingideal full-duplex
communication between sender and receiver:

A0: s2r !A, 0 A0: s2r ?A, 0

A1: s2r !A, 1 A1: s2r ?A, 1

B0: r2s !B, 0 B0: r2s ?B, 0

B1: r2s !B, 1 B1: r2s ?B, 1

The complete expansion of the asynchronous product of the two automata, after
deleting invalid transitions and unreachable states, has eight states, and permits just
oneω-run, as illustrated inFigure 2. In the product automaton inFigure 2we can
now easily annotate each staten with its valuationµ(n), giving the explicit value of
each data object.

4. Temporal Logic

The correctness properties of a distributed system can be formalized in linear tem-
poral logic (LTL), as first proposed by Pnueli in[44]. Any boolean expression over
the state of a system and its associated data values will be called astate formula.
Every guard from a action in an automaton definition, for instance, is defined by a
state formula. In the following, the lower case symbolsp, q, r represent state formu-
lae andf, q, h represent temporal formulae, which are defined as follows.

Definition 4.1. Every state formulap is also atemporal formula.
If f is a temporal formula, then so are¬f , (f), andXf .
If f andg are temporal formulae, then so aref ∧ g, f ∨ g, andf Ug.

The temporal operatorX is pronounced ‘next,’ and the temporal operatorU is
pronounced ‘until.’

We writev(f, si) ≡ true to express that temporal formulaf holds at statesi . We
can then define the standard Boolean operators as follows:

v(f ∨ g, si) ⇔ v(f, si) ∨ v(g, si),

v(f ∧ g, si) ⇔ v(f, si) ∧ v(g, si),

v(¬f, si) ⇔ ¬v(f, si).

The semantics ofX andU are defined over anω-run σ . Let s0, s1, s2, . . . , si, si+1,

. . . , be the set of states that is traversed inσ . We can then define:

v(Xf, si) ⇔ v(f, si+1),

88 G.J. HOLZMANN

v(f Ug, si) ⇔ v(g, si) ∨
(
v(f, si) ∧ v(f Ug, si+1)

)
.

The definition ofU requires that eitherg is true now or thatf remain true until
g becomestrue. If, however,f remainstrue invariantly theng is not required to
becometrue. The operatorU is therefore called a ’weak until’ operator. There is also
a ‘strong until’ operatorU , which can be defined as follows.

v(f Ug, si) ⇔ v(f Ug, si) ∧ ∃j, j � i: v(g, sj).

Two other frequently used temporal operators can be defined in terms of the oper-
ators we have defined so far. They are the�, or ‘always’ operator, and the♦, or
‘eventually’ operator:

v(�f, si) ⇔ (f U false),

v(♦f, si) ⇔ (trueU f).

4.1 Standard Formulae

Many standard types of correctness requirements can be expressed with the tem-
poral operators we have defined here. We give two examples of commonly used
patterns.

A progressproperty is a temporal formula that can be written in the form�♦p.
This formula states that at any point in an execution the state formulap is either true
or it will become true at some point in the future.

A guaranteeproperty is a temporal formula that can be written in the form♦�p.
This formula states that the state formulap is guaranteed to become invariantly true
at some point in the future.

Progress and guarantee are in many ways dual properties. It is, for instance, not
hard to show that¬�♦f ⇔ ♦�¬f .

Some other equivalences[40] are:

¬�f ⇔ ♦¬f,

¬♦f ⇔ �¬f,

�(f ∧ g) ⇔ �f ∧ �g,

♦(f ∨ g) ⇔ ♦f ∨ ♦g,

�♦(f ∨ g) ⇔ �♦f ∨ �♦,

♦�(f ∧ g) ⇔ ♦�f ∧ ♦�g,

f U(g ∨ h) ⇔ (f Ug) ∨ (f Uh),

(f ∧ g) Uh ⇔ (f Uh) ∧ (g Uh),

SOFTWARE MODEL CHECKING WITH SPIN 89

f U (g ∨ h) ⇔ (f U g) ∨ (f U h),

(f ∧ g) U h ⇔ (f U h) ∧ (g U h),

¬(f U g) ⇔ (¬g) U(¬f ∧ ¬g),

¬(f Ug) ⇔ (¬g) U (¬f ∧ ¬g).

So far we have defined the evaluation of temporal formulae for specificω-runs. We
will be interested in proving properties of a system forall possible executions starting
from its initial system state. When we say thatf holds for finite state automatonA
we mean that it holds forall ω-runs that start fromA’s initial state. We may, for
instance, want to prove that�(p → ♦q) for the automaton inFigure 2, with p and
q defined as state properties:

p ≡ empty (s2r), q ≡ empty (r2s).

Equivalently, we may want to prove that the negation of this formula isnot satisfied.
Using the equivalences and the definition of logical implication(p → q ⇔ ¬p∨ q)

we can write the negation as:

¬�(p → ♦q) ⇔ ♦¬(¬p ∨ ♦q) ⇔ ♦(p ∧ ¬♦q)

⇔ ♦(p ∧ �¬q)

This formula is satisfied if at some point in an execution the state formulap becomes
true while q is falseand remainsfalseforever thereafter. Note that this indeed cap-
tures the violation of the formula�(p → ♦q) that we started with. Now consider
the automaton inFigure 3.

This automaton has two statess0 ands1, with s0 the initial state. SetD is identical
to those of the automata inFigures 1 and 2, D = {s2r , r2s }. SetL has three
elements:

FIG. 3. Non-deterministic automaton for♦(p ∧ �¬q), with initial states0 and accepting states1.

90 G.J. HOLZMANN

• truewhich is an action with guard (true) and effectskip,

• p ∧ ¬q which is an action with guard(p ∧ ¬q) and effectskip, and

• ¬q which is an action with guard(¬q) and effectskip.

SetF , finally, has one element:s1.
The accepting runs of this automaton have the following form, written as a se-

quence of transitions:

(true)+ ; (p ∧ ¬q) ; (¬q)ω

where ; indicates concatenation,+ indicates finitely many repetitions, andω in-
dicates infinitely many repetitions. Note that this matches the semantics of♦(p ∧
�¬q), and could be useful in automating the verification process. The automaton in
Figure 3need not be discovered by trial and error: there are efficient algorithms for
constructing it mechanically from the LTL formula[19,17,18,52].

4.2 Synchronous Product
How can we use the automaton fromFigure 3to prove our sample property for the

alternating bit protocol, i.e., for the automaton fromFigure 2? Somehow we must
‘match’ the runs of the automaton inFigure 3with the runs of the automaton in
Figure 2. We can do precisely this by computing the synchronous product of these
two automata.

Definition 4.2. The synchronous productof the extended finite automataA =
{S, s,D,L, T , F } andB = {S′, s′,D′, L′, T ′, F ′} is an extended finite automaton
{S′′, s′′,D′′, L′′, T ′′, F ′′} identical to the asynchronous product except for the defin-
itions of L′′ andT ′′. L′′ is a set oforderedpairsL × L′, andT ′′ ⊆ S′′ × L′′ × S′′

with ∀((n, n′), (l, l′), (m,m′)) ∈ T ′′: (l ∈ L ∧ (n, l,m)) ∧ (l ∈ L′ ∧ (n′, l′,m′)).

That is, the edges of the synchronous product of the automata correspond tojoint
transitions of the automata. Since every transition now carries two actions, the guards
of both actions must evaluate to true for the transition to be valid. For a property
automaton that is derived from a temporal formula (like the one inFigure 3) the
effect part on each action will always beskip, so the order in which the effects are
executed is unimportant. (In general this order will matter, so that the synchronous
productA× B may be different fromB × A.)

The synchronous product of the automata inFigures 2 and 3is shown inFigure 4.
Valid transitions are drawn solid and invalid transitions are dashed. The only valid
ω-run in the automaton fromFigure 4contains no accepting states. We can conclude
that formula♦(p ∧ �¬q) cannot be satisfied in the automaton fromFigure 2, and
therefore that formula�(p → ♦q) cannot be violated.

SOFTWARE MODEL CHECKING WITH SPIN 91

FIG. 4. Synchronous product of the automata inFigures 2 and 3.

5. LTL Model Checking

The set of allω-runsthat an automaton accepts is often referred to as thelanguage
that is recognized by the automaton. LetL(M) be the language recognized by the
automaton that represents the system behavior we are studying, and letf be a tem-
poral logic formula that is required to be satisfied by the system. The verification
proceeds in four steps:

(1) Mark all states inM as accepting states, to make sure that allω-runs ofM are
considered.

(2) Compute a Büchi automatonB for ¬f (the negation off , capturing all pos-
sible ways in whichf might be violated).

(3) Compute the language intersection ofL(B) andL(M), by computing the syn-
chronous product ofB andM.

(4) If the intersection is empty, i.e., if the product automaton accepts noω-runs at
all, M cannot violatef and therefore propertyf is satisfied.

92 G.J. HOLZMANN

If the intersection is non-empty, there is at least oneω-run that is accepted
by bothM andB. Because it is accepted byB it constitutes a violation of
propertyf . The run can be used as concrete evidence thatf is not satisfied
by M.

In this section we will consider how this automata theoretic method for the verifica-
tion of LTL formulae can be implemented efficiently.

5.1 Depth-First Search

For an acceptingω-run to exist, there must be at least one execution of the prod-
uct automaton defined above that traverses an accepting state infinitely often. This
means that there must exist at least one accepting state in the product automaton
that is both reachable from the initial state of that automatonand that is reachable
from itself. For this to be true the reachability graph for the product automaton must
have at least one strongly connected component with an accepting state. The strongly
connected components in a graph can be computed in linear time with Tarjan’s algo-
rithm [48]. The product ofM andB also depends linearly on the numbers of states
in the automataM andB.

More problematic is, though, that the sizes ofM andB can depend exponentially
on the problem size.M is generally given as an asynchronous interleaving product of
automata. This means that the size ofM can increase exponentially with the number
of automata (asynchronous processes) that we consider.B is extracted from an LTL
automata, and in the worst case the size ofB can also be exponentially larger than the
size of the formula, measured by the number of state subformulae in the formula[52].

Fortunately, in practice things are not quite this bad. LTL formulae of practical
interest rarely contain more than two or three temporal operators, and the automata
generated from them have rarely more than five or six states[18]. The reason is sim-
ple: the precise meaning of formulae with more than three temporal operators can
be hard to determine. The chains of reasoning required to interpret such a require-
ment quickly becomes too long to be meaningful in systems verification. In almost
all cases of interest, a more complex system requirement can be broken down into
smaller steps of just a few basic types: invariance (expressed as�p), inevitability
(♦p), progress(�♦p), and conditional response(�(p → (q Ur))) [39,43].

The size of the synchronous product ofM andB is almost completely determined
by the size ofM, which can indeed be large. Contributing factors to the size ofM

can be the number of asynchronous processes, and the number and the value ranges
of data objects used. A number of techniques have been developed to reduce the
size ofM, and the cost (in time and memory) of analyzing it. We will review the
most important of these here. The most frequently used techniques include model

SOFTWARE MODEL CHECKING WITH SPIN 93

reduction and abstraction, partial order reduction, symmetry reduction, on-the-fly
verification, state compression, machine minimization, and proof approximation.

5.2 Nested Depth-First Search

First let us briefly revisit the central problem in LTL model checking: detecting
the existence of at least one cycle through an accepting state, in a finite graph. In the
worst case the algorithm must visit every node in the graph, therefore the complexity
cannot be less than linear in the size of the graph. But if the construction of the
strongly connected components can be avoided, this problem may be solved with
lower overhead than Tarjan’s algorithm.

Tarjan’s algorithm stores the nodes of a graph in a single depth-first traversal.
Each node is typically annotated with two integer numbers, alowlink and adepth-
first number, e.g.,[2]. This requires storing with each node 2 log(R) additional bits
of information, to represent the lowlink and the depth-first number of a node, ifR is
the number of nodes in the graph. In practice, withR unknown, one typically uses
two 32-bit integers to store this information. We will explore an alternative method
that allows us to solve the cycle detection problem while adding just two bits of
information to each node.

We begin by discussing a simple algorithm for a restricted class ofω-properties,
i.e., proving the absence or existence of non-progress cycles in a finite graph[26,27].
The algorithm works by splitting the depth-first search into two phases with the help
of a two-state demon automaton. We then continue with a discussion of a similar
but stronger two-phase search algorithm that can be used to prove the absence or
existence of acceptance cycles (acceptedω-runs), so that it can be used to perform
LTL model checking[14,29].

This is done by the addition of a two-state demonD, as illustrated inFigure 5.
The demon can non-deterministically decide to move from its initial states0 into
an alternate states1, where it will then stay forever. The label on this transition has
guardtrue and effectskip. We assume that some of the states in the automatonM to
be analyzed are marked ‘progress’ states. We will be interested in finding anyω-run
that contains only finitely many such progress states. This corresponds to solving the
model checking problem for LTL properties of the type♦�np, with np a predefined
state property that istrue if and only if the system is not in a progress state.

FIG. 5. Two-state non-deterministic demon automaton for detecting non-progress cycles.

94 G.J. HOLZMANN

We compute the asynchronous product ofM andD, and perform a slightly modi-
fied depth-first search in the reachability graph for that product. The product machine
will be at most twice the size of the originalM, containing one copy of each state
with the demon in states0, and possibly one more copy with the demon in states1.

Recall that each states is a tuple consisting of a state of the demon and a state
of M. Let dm(s) betrue if the demon machine is in states0, and let np(s) betrue if s

is not marked as a progress state. The non-progress cycle detection algorithm is then
as follows. The search starts from the initial state of the product ofM andD, with
the demon in states0.

dfs_A(s)
{ add s to visited

if dm(s) or np(s)
{ push s onto stack

for each successor s’ of s
{ if s’ not in visited

{ dfs_A(s’)
} else if s’ in stack and
¬ dm(s’)

{ report non-progress
cycle
stop

} }
pop s from stack

} }
Note that we do not consider any successors of progress states when the demon is in
states1. Every cycle in the second state space (with the demon in states1) is therefore
necessarily a non-progress cycle.

Property 5.1. If non-progress cycles exist,dfs_A() will report at least one of
these.

Proof. Suppose there exists a reachable state that is part of a non-progress cycle,
i.e., it can be reached from itself without passing through progress states. Consider
thefirst such state that is entered into the second state space (upon the transition of
the demon automaton into its alternate state), and call itr.

Stater is reachable from itself in the second state space and must find itself in the
depth-first search belowr unless that search truncates at a previously visited state
outside the current search stack. Call that statev. We know thatr is reachable fromv
(or else it would not blockr from reaching itself) and thatv is reachable fromr. This
means thatv is reachable from itself in the second statespace viar. This, however,

SOFTWARE MODEL CHECKING WITH SPIN 95

contradicts the assumption thatr was the first state such state entered into the second
state space. This means thatr either revisits itself or a successor ofr revisits itself
before that happens. In both cases the existence of a non-progress cycle is reported.�

Whenever a cycle is detected, the correspondingω-run can be reproduced exactly
from the contents of the stack: it will contain a finite prefix of non-repeated states,
and a finite suffix, starting at the state within the stack that was revisited, with only
non-progress states.

To implement the algorithm it is not necessary to store two full copies of each
reachable state. It suffices to store the states once with the addition of two bits[20].
The first of the two bits records if the state was encountered in the first statespace,
and the second bit records if the state was encountered in the second statespace.
Initially both bits are off. We can encounter only the bit combinations 01, 10, and 11,
but not 00. (Note that the state is neither present in the first nor the second statespace
when the bit combination is 00.) Note that states may be either encountered first in
the second statespace, and later in the first statespace, or vice versa. One bit, e.g.,
to record only the state of the demon automaton, therefore would not suffice. The
second of the two bits is always equal to the state of the demon automaton, which
therefore need not be stored separately.

This non-progress cycle detection algorithm was first implemented in 1988 in the
tool sdlvalid , the immediate predecessor of the SPIN model checker[25], and
later incorporated also in SPIN [26,27]. A stronger version of this type of two-phase
search algorithm was introduced in[14], and can be used to solve the general LTL
model checking problem. This algorithm is known as thenested depth-first search.

This time the transitions of the demon automatonD are placed under the control
of the search algorithm. The calldfs_B (s, d) performs a depth-first search from
states in M and stated in D. Let acc(s) betrue if and only if states is accepting.
The search starts with the calldfs_B (s0, s0)

dfs_B(s, d)
{ add s to visited

push s onto stack
for each successor s’ of s
{ if s’ not in visited

{ dfs_B(s’, d)
} else if s’ ≡ seed and d ≡ st
{ report acceptance cycle

stop
} }
if d ≡ s0 and acc(s)

96 G.J. HOLZMANN

{ // remember the root of the
second search
seed = s
// perform second search in
postorder
// with demon moved to
state s1
dfs_B (s, s1)

}
pop s from stack

}

The search tries to locate at least one accepting state that is reachable from itself.
The demon machine moves only from accepting states and the move is explored only
after all successors of the accepting state have been explored (i.e., in postorder). It is
now no longer sufficient for the second search to find any state within the depth-first
search stack, we must require that the seed state from which the second search was
initiated itself is revisited. The proof of correctness for this version of the algorithm
is as follows[14].

Property 5.2. If acceptance cycles exist,dfs_B() will report at least one of these.

Proof. Let r be the first accepting state reachable from itself for which the second
search is initiated. Stater cannot be reachable from any state that was previously
entered into the second state space.

Suppose there was such a statew. To be in the second state spacew either is an
accepting state, or it is reachable from an accepting state. Call that accepting statev.
If r is reachable fromw in the second state space it is also reachable fromv. But,
if r is reachable fromv in the second state space, it is also reachable fromv is the
first state space. There are now two cases to consider. Either (a)r is reachable from
v in the first state space without visiting states on the depth first search stack, or (b)
it is reachable only by traversing at least one statex (cf. Figure 6) that is on the
depth first search stack. In case (a),r would have been entered into the second state
space beforev, due to the postorder discipline, contradicting the assumption thatv

is entered beforer. In case (b),v is necessarily an accepting state that is reachable
from itself, which contradicts the assumption thatr is the first such state entered into
the second state space.

Stater is reachable from all states on the path fromr back to itself, and there-
fore none of those states can already be in the second statespace when this search
begins. The path therefore cannot be truncated andr is guaranteed to find itself in
the successor tree. �

SOFTWARE MODEL CHECKING WITH SPIN 97

FIG. 6. Statesv, w andr.

Like dfs_A , this algorithm requires no more than two bits to be added to every
reachable state inM, so the overhead remains minimal. A significant advantage of
this method of model checking is also that the entire verification procedure can be
performedon-the-fly: errors are detected during the exploration of the search space,
and the search process can be cut short as soon as the first error is found. It is not
necessary to first construct an annotated search space before the analysis itself can
begin.

We can check non-progress properties with algorithmdfs_B by defining the tem-
poral logic formula♦�np, with np equal totrue if and only if the system is in a
non-progress state. The automaton that corresponds to this formula is a two-state
automaton shown inFigure 7.

To perform model checking we can now take the synchronous product of the
automaton inFigure 7with a systemM, and use algorithmdfs_B to detect the
acceptingω-runs. We thus potentially incur two doublings of the search space: one
due to the nested search inherent indfs_B and one due to the product with the
property automaton fromFigure 7. The earlier algorithmdfs_A solves this specific

FIG. 7. Two-state automaton for♦�np.

98 G.J. HOLZMANN

problem more efficiently by incurring only the doubling from the demon automaton.
The advantage ofdfs_B is that it can handle any type of LTL property, not just
non-progress properties.

5.3 Adding Fairness

LTL is rich enough to express many fairness constraints directly, e.g., in proper-
ties of the form(�trigger) → (♦response) or (�guard(t) ≡ true) → (♦ effect(t)),
wheret is a transition. More specific types of process fairness can also be predefined
and incorporated into a model checking algorithm. Recall that the asynchronous
product of finite automata that is the ultimate subject of LTL model checking is built
as an interleaving of transitions from smaller automata,M = M1×M2 · · ·Mk. Each
of the automataM1×M2 · · ·Mk contributes transitions to the runs ofM. Component
automatonMi , is said to be ‘enabled’ at states of the global automatonM if s has at
least one valid outgoing transition fromMi . We can now define two fairly standard
notions of fairness.

Definition 5.1. Weak fairness:An ω-run σ is weakly fair if every component au-
tomaton that is enabled infinitely often contributes at least one transition infinitely
often toσ .

Definition 5.2. Strong fairness:An ω-run σ is strongly fair if every component au-
tomaton that is enabled infinitely long contributes at least one transition infinitely
often toσ .

We can include weak fairness into the nested depth-first search algorithm by us-
ing Choueka’s flag construction method[10]. The following informally describes the
method that is implemented in the SPIN system[30,36]. We multiply the state space
k+1 times, withk the number of component automata in the asynchronous product.
Only the first copy of the state space retains its acceptance states; the corresponding
states in thek additional copies are made non-accepting. Next we change every tran-
sition contributed by componenti in the original product into a transition from the
source state of that transition in copyi of the new product to the destination state of
the transition in copyi + 1. For the last copy,k + 1 all transitions move back to the
first copy of the state space. Any acceptedω-run in the new unfolded state space now
necessarily includes transitions from each of thek component automata. We have to
make one further adjustment to this procedure to account for the fact that a compo-
nent automaton that is permanently not enabled after some point in the run (strong
fairness) or a component automaton that is repeatedly not enabled (weak fairness)
need not participate in the run. To implement weak fairness, for instance, we can add

SOFTWARE MODEL CHECKING WITH SPIN 99

a null transition from every states in copyi to states in copyi + 1 if componenti is
not enabled ats.

Unfolding the state spacek times can be costly, but we can reduce the memory
cost to a minimum by storing each copy of a state just once, and annotating it with
k + 1 bits to record in which copy of the state space the state has been encountered.
If we use the cycle detection method from algorithmdfs_A or dfs_B the memory
overhead per reachable state remains limited to 2(k + 1) bits.

5.4 SPIN’s On-the-Fly Implementation

The model checker SPIN performs the LTL model checking procedure on-the-fly,
applying the nested depth first search algorithmdfs_B during the construction in a
single pass of the productB x (M1×M2 · · ·Mk) whereB is the property automaton
for the negation of an LTL formula that should be satisfied, and wherex indicates
synchronous product, and× asynchronous product. The construction is optionally
modified for Choueka’s flag construction to enforce weak fairness. SPIN derives the
automatonB from an LTL formula using the algorithm from[19] with some opti-
mizations from[18]. Optionally, the user can also specifyB manually, and thus gain
an increase in expressive power to the full range ofω regular properties. Alterna-
tively, SPIN also allows the use of the conversion procedure from[18], which adds
existential quantification to LTL and thereby also extends the expressive power to
theω regular properties.

The advantage of the on-the-fly procedure is that the construction of the prod-
uct automaton can stop as soon as an acceptingω-run is found, having delivered
proof that the system can violate the requirement. If a system contains an error it
usually suffices to construct only a small portion of the product automaton. If the
system satisfies the requirement the complete product must be computed. In many
cases, though, the property automatonB acts as a constraint on the system, limit-
ing the synchronous product to the executions that are relevant to the property being
proven. Therefore, in those cases computing the productB x (M1 ×M2 · · ·Mk) will
be cheaper than computing(M1 ×M2 · · ·Mk).

5.5 Partial Order Reduction

The validity of an LTL formula is insensitive to the precise order in which inde-
pendent transitions from different component automata are interleaved in any given
ω-run of the global automaton. SPIN uses partial order reduction to exploit this fact
and to reduce the cost of a typical verification. Instead of generating a full asyn-
chronous product that captures all possible interleavings of transitions, the model
checker generates a reduced product, with only a few representatives from each class

100 G.J. HOLZMANN

of ω runs that are indistinguishable for a given LTL formula[28,29]. This reduc-
tion can, in the best case, reduce the cost of a verification by a factor that grows
exponentially with the number of component automata that are used to construct the
asynchronous product. In effect, by applying partial order reduction rules one can
achieve that everyω-run that is inspected by the model checker represents a large
class of equivalent runs. If at least one run from each equivalence class is consid-
ered, all other runs can be ignored. The correctness of the reduction algorithm used
in SPIN was verified independently with a theorem prover[9].

Partial order reduction can also be combined with other types of reduction to in-
crease the benefits in some cases, for instance by exploiting possible symmetries in
a model, e.g.,[16].

5.6 Compression Techniques

Memory and time are bounded resources. The challenge in the construction of
practical model checking tools is to economize the memory requirementswithout
incurring unrealistic increases in runtime requirements. The model checker must be
able to determine at each newly generated state from the global product automaton
whether or not the state already appears in the state space (named the setvisited
in algorithmsdfs_A anddfs_B above). To do so one typically stores the states
in a hash-table and compares the memory image of the new state against that of
previously visited states with the same hash-value. We can reduce memory use by
storing all states in compressed form. The comparisons can similarly be done on the
compressed memory images of the state. Better still, the compression need not be
reversible. The model checker SPIN includes a number of optional lossless compres-
sion techniques, allowing for user defined trade-offs between reducing running time
and increasing memory savings.

The most effective compression method SPIN supports avoids storing the set
visited completely, and instead computes a minimized finite automaton that can
recognize (optionally compressed) memory images of states as finite words over a
predefined alphabet. To add a state, the automaton is updated in a way that secures its
continued minimality[35]. The technique is comparable to techniques based on the
use of binary decision diagrams that have proven effective in applications of model
checking in hardware circuit verification, e.g.,[7,13].

5.7 Bitstate Hashing

Model checking can be computationally expensive, even with aggressive use of
compression and reduction techniques. Large problem sizes can easily defeat the
available bounds on memory use and compute time. In cases like these it can be of

SOFTWARE MODEL CHECKING WITH SPIN 101

great value to be able to approximate the answer to a verification problem with an
accuracy that depends on the ratio by which the problem size exceeds the available
resources. We can use lossy compression methods to address this problem. A good
example of such a method is the bitstate hashing, orsupertracealgorithm[24,31,36,
56]. This algorithm uses a fixed number of bits of memory per reachable state. The
addresses for each of these bits are computed as hash values from the full memory
image of a state, with statistically independent hash functions. In the current versions
of SPIN the number of bits used can be chosen arbitrarily by the user, but it defaults
to two. An elegant theoretical explanation of the working of bitstate hashing can
be based on the theory of Bloom filters[4]. A short description will suffice for the
purposes of this chapter. A more detailed account can be found in[15,36].

SupposeM bytes of main memory is available to store the set ofvisited states.
On average workstationsM is typically 230 bytes, and likely to increase in coming
years. We now computeN independent hash values of log2 8M bits for each state
(assuming 8 bits per byte). Instead of storingN log2 8M bits, though, we interpret
theN hash-values as a bit-address inM, and store only one single bit at each address
(by changing that bit from 0 to 1). If the (compressed) memory image of a state is
longer thanN log2 8M bits, this method will lose information. It is now possible that
two different states generate the sameN bit addresses. The model checker will then
assume that a newly generated state matches a previously visited state and fail to
generate the successors of the new state. Because onlyvisitedstates are stored in this
way, and not state information from the depth-first search stack (sometimes called
openstates orstackstates), the omissions due to hash-collisions can cause the model
checker to miss error states, but it cannot cause it to generate false error reports.

By virtue of the accuracy of all information saved on the depth-first search stack,
the depth-first search is guaranteed to proceed correctly, generating only accurate
complete execution sequences, though perhaps not all of them in the presence of
bitstate hash collisions. The coverage of the search is truncatedrandomly, by a factor
that depends on the amount of information that is lost in the hashing.

Because it is impossible to predict systematically which execution sequences of a
model might lead to error, an unbiased random truncation of the search space turns
out to be a desirable feature of this search process.

Trivially, if the minimum amount of memory to store one reachable system state
without loss of information requiresS bytes of memory, and if our machine hasM

bytes of memory available, the model checker exhausts memory after generating
M/S states. If the true number of reachable statesR exceedsM/S, then theproblem
coverageof that verification run isM/(R × S). If, for example,M is 108 bytes,S
is 103 bytes, andR is 106 states, then the problem coverage can be no more than
0.1, meaning that no more than 10% of the reachable states are visited. Under the
same system constraints, the bitstate hashing algorithm, storing 2 bits per state, can

102 G.J. HOLZMANN

record up to 4 states per byte and could still achieve close to 100% coverage, given
thatM/R ≫ 4. In general, whenM < R × S, a bitstate hashing technique almost
always realizes greater problem coverage than a standard model checking run[31].
Since its first introduction in 1987 the bitstate hashing method has become a trusted
technique that was adopted in almost all academic and commercial verification tools
to deal with problems that exceed the normal bounds for exhaustive verification.

The bitstate hashing technique allows the user to set the range of bit addresses that
can be used, typically matching the maximum amount of memory that is available
for a verification run. Clearly, the larger this hash-array, the more states can be stored
in it, the larger the coverage will be, and the longer it may take to complete the veri-
fication. This gives the user additional control over the search process: by artificially
limiting the available hash-array, the user can obtain a very fast and very coarse ap-
proximation. By slowly increasing the size of the hash-array, the coverage and the
runtime expense can be increased in a controlled manner. Each increase in coverage
that fails to locate errors also increases our confidence in the likely correctness of
the system. When the system contains errors, it usually takes only a small number
of approximations to locate representative samples. Only when the system is correct,
in the last phase of a design, more significant resources need to be invested to prove
it. This iterative search refinementtechnique was used in the verification of the call
processing software for a telephone switch[34].

6. Model Extraction and Abstraction

The construction of models of real-world applications for the purposes of verifi-
cation is hardly novel and assuredly not restricted to the field of distributed software.
There is a long tradition of the use of physical and mathematical models in civil
engineering, and scientific disciplines like physics or chemistry would be almost
unthinkable without theoretical models that attempt to capture aspects of nature.
A model is always an abstraction: by abstracting from detail deemed immaterial
to properties of interest we lose scope but gain analytical power.

It is well known that even simple properties of arbitrary software are undecidable
or only semi-decidable[51]. This means that model construction for the verification
of distributed software is not just an option: it is a necessary step. By defining an
abstraction we can reduce a given software application to a finite model, consisting
of finite state automata, that can be analyzed with the procedures outlined in this
chapter. This reduction will bring a loss of information, so it has to be chosen in such
a way that relevant information is preserved and irrelevant detail removed. What is
relevantand what is not depends on the properties that we are interested in proving.

SOFTWARE MODEL CHECKING WITH SPIN 103

We can remove the detail in such a way that the soundness of the model checking
procedure itself is not endangered[1,6,12,38]. This means that if the model checker
indicates that a model satisfies a property, the original software necessarily also sat-
isfies the property. Conversely, if the model checker generates an error, the error
sequence can be checked against the original software to determine its validity. If it
is valid, an error in the application has been exposed. If it is not valid, we have ob-
tained proof that the abstraction was chosen incorrectly, and the error sequence itself
can be used to determine unambiguously how the abstraction should be revised.

A simple abstraction method of this type was used in the application of the SPIN

model checker to complex call processing software for a commercial telephone
switch, e.g.,[33,34]. With this method, a parser automaticallyextractsan annotated
control flow skeleton from the source code of the application. A lookup table defines
precisely which statements from the program should be omitted from the model (i.e.,
replaced withskip statements), which should be abstracted with user-defined func-
tions, and which should be preserved within the model. Within the model, every
statement from the original source code of the application is mapped into a finite do-
main and represented as a transition in an extended finite state automaton, expressed
in guards and effects that operate on finite data objects, often with a reduced range
of possible values.

Function calls have to be treated with some care, in the interest of controlling the
complexity of a model. The very presence of a function call, however, can be taken
as a hint from the programmer that an abstraction can be made. In the call processing
application function calls were treated like statements: they were either omitted if
the functionality provided was outside the scope of the verification, or they were
abstracted, either with a small inline routine or with a non-deterministic choice of
the possible return values. As an example, a routine that determines the availability
of a resource, like a tone circuit, is best abstracted with a non-deterministic choice
between the two possible result values: available or not-available. No useful gain is
made if we were to include more detail than this. As another example, the call of a
routine that issues billing records can be omitted from the model if billing is not the
focus of the verification.

In the call processing application the focus was on the verification of correct
feature behavior for the telephone switch. Requirements for over twenty different
feature packages, such as call waiting, call forwarding, call screening, conference
calling, etc., are specified in Telcordia standards for call processing[49]. Each rel-
evant property was formalized in linear temporal logic. Aspects of the system that
were outside the scope of our verification effort (e.g., billing, process management,
memory management, device driver code) was mechanically omitted from the model,
and helped to reduce the cost of the verification of the remaining aspects of the code.

104 G.J. HOLZMANN

The advantage of this method is that it can be almost completely automated. When
a new version of the source code is prepared, the model extraction program can
prompt the user to provide missing and redundant entries in the lookup table. Once
the lookup table has been updated, the model checking process can be repeated with
a new accurate model being extracted from the source code of the application me-
chanically, typically in a fraction of a second.

The verification method allowed us to track the evolution of the call processing
code for this application over a period of 18 months. The source code for the ap-
plication grew fivefold in size in this period, and went through approximately 300
different versions, often changing daily. Approximately 75 critical errors were in-
tercepted with the model checking technique we have outlined, at an early stage of
the design, giving a clear indication of the considerable power and value of software
model checking techniques. Many of the errors found involved subtle race condi-
tions in the code that could disturb required functionality. Such errors are virtually
impossible to find with conventional testing techniques.

6.1 Other Uses of Abstraction

The model extraction method sketched above was greatly facilitated by a relatively
recent extension of the SPIN model checker that allows for the inclusion ofembed-
ded C codeinside higher level verification models[36]. This capability to use verify
embedded C code fragments can be used in a number of other ways to increase the
power of the model checking approach. In[37] a method is described that allow SPIN

to verify a code module at implementation level, by compiling it with, and linking
it to the model checker. The model checker now generates the non-deterministic in-
put sequences for the code module and keeps track of the code’s state. To achieve
this, the user identifies the concrete data objects inside the code module that contain
state information. The user can at this point also define an abstraction function, in
C code, that takes the concrete representation of the state information and abstracts
it for use by the model checker. In this way we can use SPIN to combine model ab-
straction without model extraction, which may prove to be a very effective technique
for handling large verification problems in years to come.

7. Perspective

The software model checking techniques that we have reviewed in this chapter are
based on finite automata, linear temporal logic, depth-first search, partial order reduc-
tion, and explicit state representation combined with powerful memory management

SOFTWARE MODEL CHECKING WITH SPIN 105

techniques. It has been successfully applied in many domains, but typically to ver-
ification problems that involve asynchronous threads of computation from software
systems e.g.,[46]. An overview of applications can also be found in[30].

It is interesting to compare the general framework used in SPIN with the one that
has been developed for hardware circuit verification. The most commonly used logic
in hardware verification is the branching time logic CTL[11], the search strategy is
often breadth-first, instead of partial order reduction techniques one uses BDD based
algorithms[7], and instead of explicit state representation one uses symbolic model
checking[41]. These differences in approach to the verification problem can be un-
derstood better if we look at some of the differences between the two domains of
application. Hardware is typically clock-driven, operating in a synchronous fashion,
while the processes in a distributed system are necessarily asynchronous. At the hard-
ware level information travels as signals, in software applications the information is
represented, manipulated, and moved in composite data structures. A bit level repre-
sentation is clearly not helpful for these types of objects. The structure of a hardware
system, finally, can often be defined statically, while in a software system one must
deal with dynamically growing and shrinking numbers of asynchronous processes
and data objects. These differences mean that few of the reduction techniques that
work well in software model checkers show benefit when used in hardware model
checkers, and vice versa.

ACKNOWLEDGEMENTS

The research described in this chapter was carried out at the Jet Propulsion Labo-
ratory, California Institute of Technology, under a contract with the National Aero-
nautics and Space Administration.

REFERENCES

[1] Abadi M., Lamport L., “The existence of refinement mappings”,Theoretical Computer
Science82 (2) (May 1991) 253–284.

[2] Aho A.V., Hopcroft J.E., Ullman J.D.,The Design and Analysis of Computer Algorithms,
Addison–Wesley, Reading, MA, 1974.

[3] Bartlett K.A., Scantlebury R.A., Wilkinson P.T., “A note on reliable full-duplex transmis-
sion over half-duplex lines”,Comm. of the ACM12 (5) (1969) 260–265.

[4] Bloom B.H., “Spacetime trade-offs in hash coding with allowable errors”,Comm. of the
ACM 13 (7) (2004) 422–426.

[5] Bochmann G.V., “Finite state description of communications protocols”, Publication
No. 236, Département d’informatique, Université de Montreal, July 1976.

106 G.J. HOLZMANN

[6] Bozga D.M., “Verification symbolique pour les protocoles de communication”, PhD The-
sis (in French), University of Grenoble, France, December 1999, Chapter 4.

[7] Bryant E., “Graph-based algorithms for Boolean function manipulation”,IEEE Trans. on
ComputersC-35 (8) (August 1986) 677–691.

[8] Büchi J.R., “On a decision method in restricted second order arithmetic”, in:Proc. In-
ternat. Congr. on Logic, Methodology and Philosophy of Science, Stanford Univ. Press,
Stanford, CA, 1960, pp. 1–11.

[9] Chou C.-T., Peled D., “Verifying a model-checking algorithm”, in:Proc. Tools and Al-
gorithms for the Construction and Analysis of Systems, TACAS, March 1996, Passau,
Germany, in: Lecture Notes in Comput. Sci., vol. 1055, Springer-Verlag, Berlin/New
York, 1996, pp. 241–257.

[10] Choueka Y., “Theories of automata onω-tapes: a simplified approach”,Journal of Com-
puter and System Science8 (1974) 117–141.

[11] Clarke E.M., Emerson E.A., “Synthesis of synchronization skeletons for branching time
temporal logic”, in:Workshop on Logic of Programs, Yorktown Heights, NY, May 1981,
in: Lecture Notes in Comput. Sci., vol. 131, Springer-Verlag, Berlin/New York, 1982.

[12] Clarke E.M., Grumberg O., Long D.E., “Model checking and abstraction”,ACM-
TOPLAS16 (5) (September 1994) 1512–1542.

[13] Clarke E.M., Grumberg O., Peled D.,Model Checking, MIT Press, Cambridge, MA,
1999.

[14] Courcoubetis C., Vardi M.Y., Wolper P., Yannakakis M., “Memory efficient algorithms
for the verification of temporal properties”, in:Formal Methods in Systems Design, vol. I,
1992, pp. 275–288. First published in:Proc. 2nd Conference on Computer Aided Verifi-
cation, Rutgers University, New Jersey, June 1990.

[15] Dillinger P.C., Manolios P., “Fast and accurate bitstate verification for SPIN”, in:Proc.
11th SPIN Workshop, Barcelona, Spain, in: Lecture Notes in Comput. Sci., vol. 2989,
Springer-Verlag, Berlin/New York, April 2004.

[16] Emerson E.A., Jha S., Peled D., “Combining partial order reduction and symmetry re-
duction”, in: Proc. Tools and Algorithms for the Construction and Analysis of Systems,
TACAS, Enschede, The Netherlands, 1997, in: Lecture Notes in Comput. Sci., vol. 1217,
Springer-Verlag, Berlin/New York, 1997, pp. 19–34.

[17] Etessami K., “Stutter-invariant languages,ω-automata, and temporal logic”, in:Proc.
Conf. on Computer Aided Verification, CAV, 1999, pp. 236–248.

[18] Etessami K., Holzmann G.J., “Optimizing Büchi automata”, in:Proc. CONCUR2000,
in: Lecture Notes in Comput. Sci., vol. 1877, Springer-Verlag, Berlin/New York, August
2000, pp. 153–167.

[19] Gerth R., Peled D., Vardi M., Wolper P., “Simple on-the-fly automatic verification of lin-
ear temporal logic”, in:Proc. Symp. on Protocol Specification, Testing, and Verification,
Warsaw, Poland, 1995, Chapman and Hall, London, 1995, pp. 3–18.

[20] Godefroid P., Holzmann G.J., “On the verification of temporal properties”, in:Proc. In-
ternat. Conf. on Protocol Specification, Testing, and Verification, Liege, Belgium, May
1993, pp. 109–124.

[21] Hajek J., “Automatically verified data transfer protocols”, in:Proc. 4th ICCC, Kyoto,
1978, pp. 749–756.

SOFTWARE MODEL CHECKING WITH SPIN 107

[22] Holzmann G.J., “PAN: a protocol specification analyzer”, Technical Report TM81-
11271-5, AT&T Bell Laboratories, March 1981.

[23] Holzmann G.J., “A theory for protocol validation”,IEEE Trans. on ComputersC-31 (8)
(1982) 730–738.

[24] Holzmann G.J., “An improved protocol reachability analysis technique”,Software, Prac-
tice and Experience18 (2) (February 1988) 137–161.

[25] Holzmann G.J., Patti J., “Validating SDL specifications: an experiment”, in:Proc. Inter-
nat Conf. on Protocol Specification, Testing, and Verification, Twente, Netherlands, June
1989, pp. 317–326.

[26] Holzmann G.J., “SPIN—A protocol analyzer”, in:Unix Research System, vol. II, Papers,
tenth ed., Saunders College Publ., January 1990, pp. 423–429.

[27] Holzmann G.J.,Design and Validation of Computer Protocols, Prentice Hall, Englewood
Cliffs, NJ, 1991.

[28] Holzmann G.J., Peled D., “An improvement in formal verification”, in:Proc. Conf. on
Formal Description Techniques, FORTE, Bern, Switzerland, October 1994, pp. 177–194.

[29] Holzmann G.J., Peled D., Yannakakis M., “On nested depth-first search”, in:Proc. 2nd
Spin Workshop, Rutgers Univ., New Brunswick, NJ, August 1996, in: DIMACS, vol. 32,
American Mathematical Society, Providence, RI, 1996.

[30] Holzmann G.J., “The model checker SPIN”, IEEE Trans. on Software Engineering23 (5)
(May 1997) 279–295.

[31] Holzmann G.J., “An analysis of bitstate hashing”,Formal Methods in System De-
sign13 (3) (November 1998) 287–305.

[32] Holzmann G.J., “Designing executable abstractions”, in:Proc. Formal Methods in Soft-
ware Practice, Clearwater Beach, FL, ACM Press, March 1998.

[33] Holzmann G.J., Smith M.H., “A practical method for the verification of event driven
systems”, in:Proc. Internat. Conf. on Software Engineering, ICSE99, Los Angeles, May
1999, pp. 597–608.

[34] Holzmann G.J., Smith M.H., “Software model checking—extracting verification mod-
els from source code”, in:Formal Methods for Protocol Engineering and Distributed
Systems, Kluwer Academic, Dordrecht/Norwell, MA, 1999, pp. 481–497.

[35] Holzmann G.J., Puri A., “A minimized automaton representation of reachable states”,
Software Tools for Technology Transfer2 (3) (November 1999) 270–278.

[36] Holzmann G.J.,The SPIN Model Checker—Primer and Reference Manual, Addison–
Wesley, Boston, MA, 2004.

[37] Holzmann G.J., Joshi R., “Model-driven software verification”, in:Proc. 11th SPIN

Workshop, Barcelona, Spain, April 2004, in: Lecture Notes in Comput. Sci., vol. 2989,
Springer-Verlag, Berlin/New York, 2004, pp. 77–92.

[38] Kurshan R.P., “Homomorphic reduction of coordination analysis”, in:Mathematics and
Applications, in: IMA Series, vol. 73, Springer-Verlag, Berlin/New York, 1995, pp. 105–
147.

[39] Manna Z., Pnueli A., “Tools and rules for the practicing verifier”, Stanford University,
Report STAN-CS-90-1321, July 1990, 34 p.

[40] Manna Z., Pnueli A.,The Temporal Logic of Reactive and Concurrent Systems: Specifi-
cation, Springer-Verlag, Berlin/New York, 1991.

108 G.J. HOLZMANN

[41] McMillan K.L., Symbolic Model Checking, Kluwer Academic, Boston, 1993.
[42] Moore G.E., “Cramming more components onto integrated circuits”,Electronics19

(April 1965).
[43] Peled D., “On projective and separable properties”, in:Colloquium on Trees in Alge-

bra and Programming, Edinburgh, Scotland, 1994, in: Lecture Notes in Comput. Sci.,
vol. 787, Springer-Verlag, Berlin/New York, 1994, pp. 291–307.

[44] Pnueli A., “The temporal logic of programs”, in:Proc. 18th IEEE Symposium on Foun-
dations of Computer Science, 1977, Providence, RI, pp. 46–57.

[45] Queille J.P., Sifakis J., “Specification and verification of concurrent systems in Cesar”,
in: Proc. of Fifth Internat. Symp. on Programming, 1981, pp. 337–350.

[46] Schneider F., Easterbrook S.M., Callahan J.R., Holzmann G.J., “Validating requirements
for fault tolerant systems using model checking”, in:Proc. Internat. Conf. on Require-
ments Engineering, ICRE, Colorado Springs, CO, IEEE, April 1998, pp. 4–14.

[47] Tanenbaum A.S.,Computer Networks, first ed., Prentice Hall, Englewood Cliffs, NJ,
1981 (second edition 1988).

[48] Tarjan R.E., “Depth first search and linear graph algorithms”,SIAM J. Computing1 (2)
(1972) 146–160.

[49] LATA Switching Systems Generic Requirements (LSSGR), FR-NWT-000064, 1992 edi-
tion. Feature requirements, including:SPCS Capabilities and Features, SR-504, Issue 1,
March 1996. Telcordia/Bellcore.

[50] Thomas W., “Automata on infinite objects”, in: Van Leeuwen J. (Ed.),Handbook of The-
oretical Computer Science, vol. B, Elsevier, Amsterdam, 1990, pp. 133–187.

[51] Turing A.M., “On computable numbers, with an application to the Entscheidungsprob-
lem”, Proc. London Math. Soc. Ser. 242 (1936) 230–265, see p. 247.

[52] Vardi M.Y., Wolper P., “An automata-theoretic approach to automatic program verifica-
tion”, in: Proc. Symp. on Logic in Comput. Sci., Cambridge, June 1986, pp. 322–331.

[53] West C.H., “General technique for communications protocol validation”,IBM J. Res.
Develop.22 (3) (1978) 393–404.

[54] West C.H., Zafiropulo P., “Automated validation of a communications protocol: the
CCITT X. 21 recommendation”,IBM J. Res. Develop.22 (1) (1978) 60–71.

[55] Wolper P., Vardi M.Y., Sistla A.P., “Reasoning about infinite computation paths”, in:
Proc. 24th IEEE Symp. on Foundations of Comput. Sci., Tucson, 1983, pp. 185–194.

[56] Wolper P., Leroy D., “Reliable hashing without collision detection”, in:Proc. Conf.
on Computer Aided Verification, Crete, June 1993, in: Lecture Notes in Comput. Sci.,
vol. 697, Springer-Verlag, Berlin/New York, 1993, pp. 59–70.

Early Cognitive Computer Vision 1

JAN-MARK GEUSEBROEK

Intelligent Systems Lab Amsterdam, Informatics Institute
Faculty of Science, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam
The Netherlands
mark@science.uva.nl

Abstract
This chapter outlines computational models for the first stages of visual cogni-
tion. For both biological and technical systems, we are examining which archi-
tectural components are necessary in such systems, and how experience can be
acquired and used to steer perceptual interpretation. Since human perception has
evolved to interpret the structure of the world around us, a necessary boundary
condition of the vision system must be the common statistics of natural images.
Searching for generality, it is observed that a limited set of physical laws of im-
age formation will impress common statistics on the images offered to the eye as
sensory input. The physical laws are largely scene and domain independent, as
they cover the universally applicable laws of light reflectance from materials.

The chapter focuses on the physical and statistical constrains in the sensory
input, and how this can be exploited to construct cognitive vision systems. Visual
cognition may be based on a weak description of the important features in the
scene, as long as mutual correspondence between observation and objects in the
world is maintained. For such a computational theory, the first few steps will be
outlined: visual measurement, invariant representation, and focal attention.

1. Introduction . 110
1.1. Visual Measurements . 111
1.2. Physical Constraints: Invariance . 111
1.3. Statistical Constraints: Natural Image Statistics and Focal Attention 112

2. Visual Measurements . 113
2.1. Opponent Color Receptive Fields. 115
2.2. Anisotropic Receptive Fields: Edge and Line Detection. 118
2.3. Texture Analysis . 121

1This work is sponsored by the Netherlands Organization for Scientific Research (NWO).

ADVANCES IN COMPUTERS, VOL. 65 109 Copyright © 2005 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(05)65003-6 All rights reserved.

mailto:mark@science.uva.nl

110 J.-M. GEUSEBROEK

3. Invariance . 123
3.1. Color Invariance . 124
3.2. Invariant Image Interpretation . 134

4. Natural Image Statistics . 134
4.1. Sequential Fragmentation Theory . 137
4.2. Consequences for Natural Image Statistics . 139
4.3. Experiment on Corel Image Collection . 140

5. Conclusions . 147
References . 147

1. Introduction

Cognitive vision is the processing of visual sensory information in order to act
and react in a dynamic environment. The human visual system is an example of a
very well-adapted cognitive system, shaped by millions of years of evolution. Vision
dominates our senses for personal observation, societal interaction, and cognitive
skill acquisition. Understanding visual perception to such a level of detail that a ma-
chine could be designed to mimic it is a long-term goal, and one which is unlikely
to be achieved within the next few decades. Since vision requires 30% of our brain
capacity, and what is known about it points to it being a highly distributed task inter-
woven with many other modules, it is clear that modelling human vision—let alone
understanding it—is still a long way off. However, as computers are expected in the
next twenty years to reach the capacity of the human brain, now is the time to start
thinking about methods of constructing modules for cognitive vision systems.

This chapter outlines computational models for visual cognition. For both biolog-
ical and technical systems, we are examining which architectural components are
necessary in such systems, and how experience can be acquired and used to steer
perceptual interpretation. Since human perception has evolved to interpret the struc-
ture of the world around us, a necessary boundary condition of the vision system
must be the common statistics of natural images. As such, a cognitive sensory sys-
tem will adapt itself to the outside world, specifically to the stochastics of the input
signals[1]. When that point of departure is accepted, we note that the statistics of the
sensory input are dominated by physical laws of image formation[17,26,21].

Searching for generality, it is observed that a limited set of physical laws of im-
age formation will impress common statistics on the images offered to the eye as
sensory input. The physical laws are largely scene and domain independent, as they
cover the universally applicable laws of light reflectance from materials. The chap-
ter focuses on the physical and statistical constraints in the sensory input, and how
this can be exploited to construct cognitive vision systems. Visual cognition may be

EARLY COGNITIVE COMPUTER VISION 111

based on a weak description of the important features in the scene, as long as mu-
tual correspondence between observation and objects in the world is maintained. For
such a computational theory, the first few steps will be outlined: visual measurement,
invariant representation, and focal attention.

1.1 Visual Measurements

Equipped with a hypothetical infinitely precise sensor we would see the world
around us up to the microscopic level of detail. This view in all its full complexity
is useless to the observer as it would swamp the perceptual processing system. To
escape the influx of so much information, a large reduction in information is im-
plemented at the retina where the outside world is integrated over discrete sensory
receptive fields. The observation by receptors of finite size imposes spatial coherence
to the picture while reducing the complexity of the observed scene.

There is only a limited set of measurements that are sensibly calculated from vi-
sual input. The set must be derived from the signs to be probed in visual data by
integration over receptive fields, be it a spatial area, or a spectral bandwidth, or
an interval in time. The integration over the visual input is weighted by a sensi-
tivity curve, effectuated by a receptive field, thereby emphasizing various aspects
of the stimulus. The integration sensitivity determines which physical parameter is
probed.

Neurobiological studies have found a dozen or so different types of receptive fields
in the visual system of primates. As the receptive fields have evolved to capture
the world around us, they are likely to be dual to our physical surrounding. These
fields must be derived from the statistical structures that are probed in visual data. In
Section2, we have initially derived several receptive field assemblies, each charac-
terizing a physical quantity from the visual stimulus.

1.2 Physical Constraints: Invariance

As the visual stimulus involves a very reductive projection of the physical world
onto a limited set of visual measurements, only correlates to relevant entities can be
measured directly. Invariants transform visual measurements to true physical quanti-
ties, thereby removing those degrees of freedom not relevant for the observer. Hence,
a first source of knowledge involved in visual interpretation is the incorporation of
physical laws. In Section3, we have used color invariance as a well-founded princi-
ple to separate color into its correlates of material reflection, being illuminant color,
highlights, shadows, shading components and the true object reflectance. Such in-

112 J.-M. GEUSEBROEK

variants allow a system to be sensitive to obstacles, while at the same time being
insensitive to shadows. The representation of the visual input into a plurality of in-
variant representations is a necessary information-reduction stage in any cognitive
vision system.

1.3 Statistical Constraints: Natural Image Statistics and Focal
Attention

Natural images are highly structured in their spatial configuration. Where one
would expect a different spatial distribution for every image, as each image has a
different spatial layout, Section4 shows that the spatial statistics of recorded images
can be explained by a single process of sequential fragmentation.

The statistical structure of the world introduces subjective perception of our en-
vironment. For example, the a-priori occurrence of objects at certain distances de-
termines our subjective estimation of distances in the world[71]. Furthermore, parts
of an image which deviate from the common statistics around us are likely to con-
tain perceptually salient details, leading to focal attention mechanisms. Hence, our
motivation to study the statistical regularities in natural images as it implies a better
understanding of cognitive vision systems.

The spatial statistics of large ensembles of natural images are known to be scale
invariant[11,55]. That is, when examining the marginal distribution of derivative fil-
ters or gradient magnitude, an inverse power-law distribution is found in the Fourier
domain. However, the statistics of individual images may vary across scale. Con-
sequently the statistical properties for individual images may be affected by the
observation at finite resolution.

To limit the enormous computational burden arising from the complex task of in-
terpretation and learning, any efficient general vision system will ignore the common
statistics in its input signals. Hence, the apparent occurrence of invariant representa-
tions decides what is salient and therefore requires attention. Such focal attention is
a necessary selection mechanism in any cognitive vision system, critically reducing
both the processing requirements and the complexity of the visual learning space,
and effectively limiting the interpretation task.

Expectation about the scene is then inevitably used to steer attention selection.
Hence, focal attention is not only triggered by visual stimuli, but is affected by
knowledge about the scene, initiating conscious behavior. In this principled way,
knowledge and expectation may be included at an early stage in cognitive vision,
seeFigure 1. In the following sections, we discuss the main building blocks of this
scheme in more detail.

EARLY COGNITIVE COMPUTER VISION 113

FIG. 1. Early cognitive vision system overview. (See Color Plate Section, Plate 5.)

2. Visual Measurements

Images are only defined in terms of observations. An image is observed by inte-
grating for a certain time over some spatial extent and over a spectral bandwidth.
Hence, physical realizable measurements inherently imply integration over spec-
tral and spatial dimensions. Before observation, a color image may be regarded as
a three dimensional energy density functionE(x, y, λ), where(x, y) denotes the
spatial coordinate andλ denotes the wavelength. Observation of the energy den-
sity E(x, y, λ) boils down to correlation of the incoming signal with a measurement
probep(x, y, λ) (seeFigure 2),

(1)Ê(x, y, λ) =
∫∫∫

E(x, y, λ)p(x, y, λ) dx dy dλ.

Note that for a linear spatially shift invariant imaging system, correlation boils down
to convolution. Furthermore, for a system probing the spatial, temporal, and spec-
tral dimensions simultaneously, the measurement function should be separable per
dimension,p(x, y, λ) = pxy(x, y)pλ(λ). The yet unknown measurement function
p(x, y, λ) estimates quantities of the energy densityE(x, y, λ). Such a measurement
function is referred to as “receptive field.”

114 J.-M. GEUSEBROEK

FIG. 2. The probes for spatial color consists of probing the product of the spatial and the spectral
energy space with a given aperture. (See Color Plate Section, Plate 6.)

The theory of scale-space[39,69,64,47]adheres to the fact that observation and
scale are intervened; a measurement is performed at a certain resolution. Scale-space
theory formalizes the fact that the probe needs to have a finite resolution. Further-
more, common image processing sense tells us that the grey-value of a particular
pixel is not a meaningful entity. The value 42 by itself tells us little about the mean-
ing of the pixel in its environment. It is the local spatial structure of an image that has
a close geometrical interpretation[39]. The difference between neighboring pixels
exhibit this structure. Differentiation is one of the fundamental operations in image
processing, and one which is nicely defined[16] in the context of scale-space.

Modern analysis of color observation has started in colorimetry where the spectral
content of tri-chromatic stimuli are matched by a human, resulting in the well-known
XYZ color matching functions[70]. However, from the pioneering work of Land
[45] we know that a perceived color does not directly correspond to the spectral con-
tent of the stimulus; there is no one-to-one mapping of spectral content to perceived
color. For example, a colorimetry purist will not consider brown to be a color, but as
computer vision practisers would like to be able to define brown in an image when
searching on colors. Hence, it is not only the spectral energy distribution coding color
information, but also the spatial configuration of colors.

In this section, we outline several receptive field measurements to extract the
spatial structure of color and grey value images. Scale space theory suggests that
receptive fields should have a Gaussian shape in order to prevent the probe from
adding extra details to the function when observed at a coarser scale[39], in one

EARLY COGNITIVE COMPUTER VISION 115

dimension given by

(2)G(x; x0, σx) =
1√
2πσ

exp

{
−1

2

(x − x0)
2

σ 2
x

}
.

We consider the Gaussian as a general probe for the measurement of spatio-spectral
differential quotients.

2.1 Opponent Color Receptive Fields

Measurement of the spectral energy distribution with a Gaussian aperture yields a
weighted integration over the spectrum. The observed energy in the Gaussian color
model, at infinitely small spatial resolution, approaches in second order to

(3)Êσλ(λ) = Êλ0,σλ + λÊ
λ0,σλ

λ + 1

2
λ2Ê

λ0,σλ

λλ + · · ·

where

(4)Êλ0,σλ =
∫

E(λ)G(λ; λ0, σλ) dλ

measures the spectral intensity,

(5)Ê
λ0,σλ

λ =
∫

E(λ)Gλ(λ; λ0, σλ) dλ

measures the first order spectral derivative, and

(6)Ê
λ0,σλ

λλ =
∫

E(λ)Gλλ(λ; λ0, σλ) dλ

measures the second order spectral derivative. Further,Gλ andGλλ denote deriva-
tives of the Gaussian with respect toλ. Note that, throughout the thesis, we assume
scale normalized Gaussian derivatives to probe the spectral energy distribution (see
Figure 3).

Definition 1 (Gaussian color model). The Gaussian color model measures the coef-
ficientsÊλ0,σλ , Ê

λ0,σλ

λ , Ê
λ0,σλ

λλ , . . . of the Taylor expansion of the Gaussian weighted
spectral energy distribution atλ0 and scaleσλ.

One might be tempted to consider a higher, larger than two, order structure of the
smoothed spectrum. However, the subspace spanned by the human visual system is
of dimension 3, and hence higher order spectral structure cannot be observed by the
human visual system.

116 J.-M. GEUSEBROEK

FIG. 3. The Gaussian color sensitivities as function of wavelength. Three-stimulus values are obtained
by correlating the sensitivities with the incoming spectral energy distribution. (See Color Plate Section,
Plate 7.)

Introduction of spatial extent in the Gaussian color model yields a local Taylor
expansion at wavelengthλ0 and position�x0. Each measurement of a spatio-spectral
energy distribution has a spatial as well as spectral resolution. The measurement is
obtained by probing an energy density volume in a three-dimensional spatio-spectral
space, where the size of the probe is determined by the observation scaleσλ and
σx (recall Figure 2). It is directly clear that we do not separately consider spatial
scale and spectral scale, but actually probe an energy density volume in the three-
dimensional spectral-spatial space where the “size” of the volume is specified by the
observation scales.

We can describe the observed spatial-spectral energy densityÊ(λ, �x) of light as
a Taylor series for which the coefficients are given by the energy convolved with
Gaussian derivatives:

(7)Ê(λ, �x) = Ê +
(�x

λ

)T [
Ê�x
Êλ

]
+ 1

2

(�x
λ

)T [
Ê�x �x Ê�xλ

Êλ�x Êλλ

](�x
λ

)
+ · · ·

where

(8)Ê�xiλj (λ, �x) = E(λ, �x) ∗G�xiλj (λ, �x; σλ, σx).

Here,G�xiλj (λ, �x; σλ, σx) are the spatio-spectral probes, or color receptive fields. The
coefficients of the Taylor expansion of̂E(λ, �x) represent the local image structure
completely. Truncation of the Taylor expansion results in an approximate represen-
tation, optimal in least squares sense.

EARLY COGNITIVE COMPUTER VISION 117

FIG. 4. The color receptive fields up to second spatial derivative order (polar axes system). Note
that the luminance receptive fields are compatible with the well-known Gaussian intensity scale-space
operators. The yellow–blue and red–green receptive fields extent this scale-space and represent the Hering
opponent color receptive fields. (See Color Plate Section, Plate 8.)

For human vision, it is known that the Taylor expansion is spectrally truncated at
second order. Hence, higher order derivatives do not affect color as observed by the
human visual system. Therefore, three receptive field families should be considered;
the luminance receptive fields as known from intensity scale-space[40] extended
with a yellow–blue receptive field family measuring the first order spectral derivative,
and a red–green receptive field family probing the second order spectral derivative.
When centering the spectral Gaussians atλ0 ≃ 520 nm and choosing a bandwidth
of σλ ≃ 55 nm, the Gaussian color model closely resembles[25,27] the Hering
opponent color model[33]. For human vision, the Taylor expansion for luminance is
spatially truncated somewhere around the fourth order[72]. The combined color and
spatial receptive fields are illustrated inFigure 4.

In practise, spectral differential quotients are obtained by a linear combination
of given (RGB) sensitivities, whereas spatial differential quotients are obtained by
convolution with Gaussian derivative filters. When camera response is linearized, a
RGB-camera approximates the CIE 1964 XYZ basis for colorimetry by the linear
transform[34]

(9)

[
X̂

Ŷ

Ẑ

]
=
(0.62 0.11 0.19

0.3 0.56 0.05
−0.01 0.03 1.11

)[
R

G

B

]
.

The best linear transform from XYZ values to the Gaussian color model is given by
Geusebroek et al.[25]

(10)

[
Ê

Êλ

Êλλ

]
=
(−0.48 1.2 0.28

0.48 0 −0.4
1.18 −1.3 0

)[
X̂

Ŷ

Ẑ

]
.

118 J.-M. GEUSEBROEK

The product of Equations(9) and (10) gives the desired implementation of the
Gaussian color model in RGB terms,

(11)

[
Ê

Êλ

Êλλ

]
=
(0.06 0.63 0.27

0.3 0.04 −0.35
0.34 −0.6 0.17

)[
R

G

B

]
.

Note that we try to achieve derivative filters in the spectral domain by transforming
the spectral responses as given by the RGB-filters. The transformed filters may be
imperfect, but are likely to offer accurate estimates of differential measurements.
When the spectral responses of the RGB-filters are known, a better transform can be
obtained.

2.2 Anisotropic Receptive Fields: Edge and Line Detection

One of the most important tasks in computer vision is edge and line detection.
The detection and orientation analysis of such oriented structures is considered non
trivial when disturbing influences have to be ignored, like gaps in dashed lines, weak
(local) image contrast or heavy corruption by noise, or clutter in the background. In
these cases, one would like to have a detection method which ignores the distorting
data next to the edge or line, while accumulating evidence of the line data along its
orientation. Hence, taking advantage of the anisotropic nature of lines.

Orientation analysis is often approached by steerable filters. Freeman and Adel-
son[18] put forward the conditions under which a filter can be tuned to a specific
orientation by making a linear combination of basis filters. Their analysis included
orientation tuning of thexy-separable first order isotropic Gaussian derivative filter.

Line detection is particularly difficult when lines run close together or cross each
other, as is the case in engineering drawings. Under these circumstances, isotropic
filtering strategies as used in, e.g.,[3,38,62]are not sufficient. Isotropic smoothing
causes parallel lines to be blurred into one single line. Crossing lines are not well
detected due to the marginal orientation selectivity of the Gaussian filter[52]. The
use of anisotropic Gaussian filters yields superior orientation selectivity, and superior
discrimination between thin and thick lines.

For historical reasons, linear scale-space is often put forward as dealing with
isotropic Gaussian’s, imposed by simplicity of derivation and efficiency in compu-
tation [39]. The assumption of isotropy for front-end vision[15,39,47,64]does not
imply the scale-space operator to be isotropic, rather imposes the complete sampling
of all possible orientations of the scene. The notion of orientation sampling suggests
a combined scale and orientation space[40,38,65]. The problem of line detection is
clearly anisotropic in nature. The use of anisotropic Gaussian filters yields superior
orientation selectivity, and superior discrimination between thin and thick lines. The

EARLY COGNITIVE COMPUTER VISION 119

huge computational burden involved in exhaustive filtering until now has prohibited
application of orientation scale-space analysis. Hence, it is important to consider the
computational efficiency of anisotropic Gauss filtering.

An orientation scale-spaceF(x, y, σu, σv, θ) of an imagef is obtained by apply-
ing an anisotropic Gaussian filter bank to the imagef containing all orientationsθ
and scalesσu, σv of interest,

(12)F = f (x, y) ∗G(x, y; σu, σv, θ).

The Gaussian anisotropic filter is given by

G(x, y; σu, σv, θ) = 1

2πσuσv

exp

{
−1

2

(
(x cosθ + y sinθ)2

σ 2
u

(13)+ (−x sinθ + y cosθ)2

σ 2
v

)}

whereσu represents the scale in the direction ofθ , andσv orthogonal toθ (seeFig-
ure 5).

Theoretically, in two-dimensions, line points are detected by considering the sec-
ond order directional derivative in the gradient direction[62]. For a line point, the
first order directional derivative perpendicular to the line vanishes, where the second
order directional derivative exhibits an extremum. Hence, the second order direc-
tional derivative perpendicular to the line, normalized by the line brightness is a
measure of line contrast[23],

(14)λ(x, y, σu, σv, θ) = f (x, y) ∗ Gvv(x, y; σu, σv, θ)
σ 2

v

b

FIG. 5. Coordinate system for directional filtering for line detection.

120 J.-M. GEUSEBROEK

where line brightnessb is given by

(15)b = f (x, y) ∗G(x, y; σu, σv, θ).

Bright lines are observed whenλ(.) < 0 and dark lines whenλ(.) > 0. For both types
of lines, the magnitude|λ(.)| indicates line contrast. Note that this formulation is
free of parameters. The differential measurement is of dimension [intensity/pixel2].
Multiplication byσ 2

v , which is of dimension [pixel2], normalizes line contrast Equa-
tion (14) for the differential scale. Normalization by line brightnessb results in a
dimensionless quantity. As a consequence, the value ofλ(.) is within [0 . . . 1].

The differential equation(14) is a point measure, indicating whether a given pixel
belongs to a line structure or not. The result is not the line structure itself, but a set of
points in a 5-dimensional parameter space(x, y, σu, σv, θ) accumulating evidence
for a line. Maxima in the parameter space indicate line points. Hence, the parameter
space can be projected onto a two-dimensional angular parameter imageΘ(x, y), a
line width imageΣv(x, y), and the maximum magnitudeΛ(x, y),

Θ(x, y),Σv(x, y) = argmax
σv,θ

∣∣λ(x, y, σu, σv, θ)
∣∣,

(16)Λ(x, y) = max
σu,σv,θ

∣∣λ(x, y, σu, σv, θ)
∣∣.

Note that the value ofσu at maximum response is less useful as it is affected by both
local line curvature and intensity variations over the line, e.g., gaps.

Non-maxima suppression can be applied by evaluating the intensity profile for
Λ(x, y) in the direction ofΘ(x, y) [7]. If the value ofΛ(x, y) is larger than its two
neighboring pixels in theΘ(x, y) andΘ(x, y) + π direction,(x, y) is a local max-
ima. Otherwise, the pixel is suppressed in theΛ(x, y),Θ(x, y),Σv(x, y) images.

Grouping of line points is now achieved by labelling points with similar orienta-
tion and scale parameters within an eight-connected neighborhood. Note that a more
robust algorithm is obtained by considering a larger neighborhood.

The algorithm is illustrated inFigure 6by an example of a line drawing. Orien-
tation scale-space is calculated according to Equation(14). The resulting imagesΘ,
Λ, and the non-maxima suppressed image are shown inFigure 6(c), (d), (e), respec-
tively. Most of the lines are correctly detected, including dashed lines. The fan-shapes
at line-endpoints are caused by various thin filters at slightly different angle which
fit the line-width.

Although it is trivial that the anisotropic Gaussian filter is separable in its coor-
dinate systemu, v, doing so is computationally expensive due to the misalignment
between the image in memory and the direction of filtering. An efficient algorithm,
by separating the filter along thex-axis and an axist , where the directiont depends
on the filter parametersθ, σu, σv, is given in Geusebroek et al.[24]. Inspired by the

EARLY COGNITIVE COMPUTER VISION 121

FIG. 6. Example orientation scale-space filtering on a line drawing (a). The response forλ(.) Equa-
tion (14) for θ = −15◦ (b). The orientationΘ (c) at the maximum responseΛ (d), combined in the
non-maxima suppressed result (e). Thresholding and line orientation evaluation (f) results in clustering.
Image courtesy of NASA History Office.

FIG. 7. Execution time as function of the number of processors. Exact timings depend on image size,
parameter space, and processor speed. For details, see Seinstra et al.[57], Seinstra and Koelma[58].

human visual front-end, one could use a parallel computer system to further increase
performance[57,58]. Figure 7indicates the gain in computation time as function of
the number of processors that can be achieved in this case.

2.3 Texture Analysis

In the case of texture, we are interested in the local spatial frequency character-
istics ofE(x, y, λ). These properties are best investigated in the domain of spatial

122 J.-M. GEUSEBROEK

frequency. This leads to the use of Gabor filter[4] on the opponent color repre-
sentation, as empirically derived by[35]. Thus, it is appropriate to represent the joint
color-texture properties in a combinedwavelength-FourierdomainE(u, v, λ), where
λ remains the wavelength of the light energy, and(u, v) denotes the spatial frequency,

(17)Ê(u, v, λ) =
∫

E(u, v, λ)P(u, v, λ) dλ.

The measurement of the signalE(u, v, λ) at a given spatial frequency(u0, v0) and
wavelengthλ0 is obtained by a 3D Gaussian probe centered at(u0, v0, λ0) at a fre-
quency scaleσf and wavelength scaleσλ,

(18)M̂(u, v, λ) =
∫

E(u, v, λ)G(u − u0, v − v0, λ − λ0; σf , σλ) dλ.

Note that the Gaussian probe is a separable function, we can rewrite Equation(18)
as,

(19)M̂(u, v, λ) =
∫

E(u, v, λ)G(u − u0, v − v0; σf)G(λ − λ0; σλ) dλ.

Frequency selection is achieved by tuning the parametersu0, v0, andσf , and color
information is captured by the Gaussian specified byλ0 andσλ.

We now transform Equation(19)back to the wavelength-spatial domain(x, y, λ),
taking the Gaussian derivative probes into account. The multiplication with the
shifted GaussianG(u − u0, v − v0; σf) in Equation(19) is equivalent to the con-
volution with a Gabor filter in the spatial domain[4]. Therefore, the combined
color-texture measurement in the(x, y, λ) domain at wavelengthλ0 is:

(20)M̂(x, y, λ) = h(x, y) ∗
∫

E(x, y, λ)Gn(λ − λ0; σλ) dλ,

or for short

(21)M̂(x, y, λ) = h(x, y) ∗ Êλ(n)(x, y),

where:

(22)h(x, y) = 1

2πσ 2
s

e
− x2+y2

2σ2
s e2πj (Ux+Vy),

is the 2D Gabor function at the radial center frequencyF =
√

U2 + V 2 (cy-
cles/pixel) and the filter orientation tan(θ) = V/U , andj2 = −1. Furthermore,
the color probes are given by the Gaussian derivatives,

(23)Gn(λ − λ0; σλ) =
σ n

λ√
2πσλ

∂n

∂λn
e
− (λ−λ0)2

2σ2
λ .

Application of the filter is illustrated inFigure 8.

EARLY COGNITIVE COMPUTER VISION 123

FIG. 8. Example of texture segmentation by the combined color-spatial Gabor filter set. Segmentation
is achieved by applying a color Gabor filter set, followed by clustering. Note that the algorithm is capable
of distinguishing both differences in color and in texture. (See Color Plate Section, Plate 9.)

3. Invariance

From a computer vision perspective, a fundamental question ishow to integrate
the physical laws of light reflection into receptive field measurements? The ques-
tion boils down to deriving the invariant properties of color vision. Withinvariance
we mean a propertyf of object t which receives valuef (t) regardless unwanted
conditionsW in the appearance oft . For human color vision, the group of disturb-
ing conditionsW ′ are categorized byshadow, highlights, light source, andscene
geometry. Scene geometry is determined by the number of light sources, light source
directions, viewing direction, and object shape. The invariant classW ′ is referred
to asphotometric invariance. For observation of images,geometric invarianceis of
importance[14,31,39,47,64]. The group of spatial disturbing conditions is given by
translation, rotation, andobservation scale. Since the human eye projects the three-
dimensional world onto a two-dimensional image, the group may be extended with
projectioninvariance.

Rotational invariance aims at keeping values constant when rotating the image
under the camera. For spatial observations, derivatives are taken in the(x, y)-
coordinates of the camera. Hence, when rotating the object viewed by the camera, the
values of the derivatives in the image change, while the local image structure remains
constant. In order to deal with this variation, we rotate the derivatives of each pixel
to the gradient direction, a well known technique to obtain rotational invariance[16].
Rotating derivatives to the direction of the gradient yields thegradient gauge, given
for thenth derivative in thex-direction and themth derivative in they-direction by

(24)∂vn∂wm =
(

sinθ
∂

∂x
− cosθ

∂

∂y

)m(
cosθ

∂

∂x
+ sinθ

∂

∂y

)n

, n,m � 0,

124 J.-M. GEUSEBROEK

whereθ is the angle of the gradient, tanθ = Ey/Ex . Hence, the first order gradient
gauge is given by

(25)Ew =
√

Ex
2 + Ey

2,

(26)Ev = 0

yielding the gradient magnitude. The second order gradient gauge,

(27)Evv =
E2

xEyy − 2ExEyExy + E2
yExx

E2
w

,

(28)Evw =
ExEy(Exx − Eyy) − (E2

x − E2
y)Exy

E2
w

,

(29)Eww =
E2

xExx + 2ExEyExy + E2
yEyy

E2
w

.

Note that the Laplacian is obtained byEvv + Eww = Exx + Eyy .
Both photometric and geometric invariance are required for a cognitive vision sys-

tem to reduce the complexity intrinsic to images[26]. In this chapter we emphasize
on photometric invariance, and put this into geometrical context. The effect of light-
ing conditions on the value of a pixel is investigated[26], resulting in local color
invariance. From an analytical point of view this effectively separates scene acciden-
tal conditions from the true object characteristics. When seen from a reverse point of
view, this constraints the probability of a pixel color by the light reflectance charac-
teristics and the local coherence with neighboring pixels.

3.1 Color Invariance

Modelling the physical process of spectral image formation provides insight into
the effect of different parameters on object reflectance[13,17,19,20,27,28,56,10].
The problem, known as color constancy is easily explained by considering the phys-
ical process of image formation (seeFigure 9).

Object reflectance is well modelled by Shafer[59], based on the older Kubelka–
Munk theory[43,44]. The Kubelka–Munk theory models the reflected and trans-
mitted spectrum of a colored layer, based on a material dependent scattering and
absorption function, under the assumption that light is isotropically scattered within
the material. The theory has proven to be successful for a wide variety of materials
and applications[37,70]. The theory unites spectral color formation for both reflect-
ing materials as well as transparent materials into one photometric model. Therefore,
the Kubelka–Munk theory is well suited for determining material properties from
color measurements. In an earlier paper[26], the author demonstrates the use of the

EARLY COGNITIVE COMPUTER VISION 125

FIG. 9. The problem of color constancy. The light emitted by the lamp is reflected by the (yellow)
car, causing a color sensation in the brain of the observers. The physical composition of the reflected light
depends on the color of the light source. However, this effect is compensated for by the visual system.
Hence, regardless the color of the light source, we will see a yellow car. This light source compensation
is not trivial to obtain with a color camera in an unconstrained scene. (See Color Plate Section, Plate 10.)

Kubelka–Munk model to measure object reflectance from color images, under vari-
ous general assumptions regarding imaging conditions. This section concentrates on
color constant measurement of object color under both reflectance of light as well as
light transmission.

When considering the estimation of material properties on the basis of local mea-
surements, differential equations constitute a natural framework to describe the phys-
ical process of image formation. The color receptive fields as outlined earlier in this
chapter provide a physical basis, which is compatible with colorimetry, for the mea-
surement of color constant object properties.

3.1.1 Color Formation for Reflection of Light

Consider a homogeneously colored material patch of uniform thicknessd and
infinitesimal area, characterized by its absorption coefficientk(λ) and scatter coeffi-
cient s(λ). When illuminated by incident light with spectral distributione(λ), light
scattering within the material causes diffuse body reflection (Figure 10), while Fres-
nel interface reflectance occurs at the surface boundaries.

When the thickness of the layer is such that further increase in thickness does not
affect the reflected color, Fresnel reflectance at the back surface may be neglected.
The incident light is partly reflected at the front surface, and partly enters the ma-
terial, is isotropically scattered, and a part again passes the front-surface boundary.
The reflected spectrum in the viewing direction�v, ignoring secondary scattering after

126 J.-M. GEUSEBROEK

FIG. 10. Illustration of the photometric model. The object, refractive indexn2, is illuminated bye(λ)

(medium refractive indexn1), and light is reflected and scattered in the viewing direction.

internal boundary reflection, is given by[37,70]:

(30)ER(λ) = e(λ)
(
1− ρf(λ, �n, �s, �v)

)2
R∞(λ) + e(λ)ρf(λ, �n, �s, �v)

where�n is the surface patch normal and�s the direction of the illumination source,
andρf the Fresnel front surface reflectance coefficient in the viewing direction. The
body reflectance

(31)R∞(λ) = a(λ)− b(λ)

depends on the absorption and scattering coefficient by

(32)a(λ) = 1+ k(λ)

s(λ)
, b(λ) =

√
a(λ)2 − 1.

Simplification is obtained by considering neutral interface reflection, assuming
that the Fresnel reflectance coefficient has a constant value over the spectrum. For
commonly used materials, interface reflection is constant with respect to wavelength
within a few percent across the visible spectrum[37,53]. Equation(30) reduces to

(33)ER(λ) = e(λ)
(
1− ρf(�n, �s, �v)

)2
R∞(λ)+ e(λ)ρf(�n, �s, �v).

The influence of the Fresnel reflectance varies from perfectly diffuse body reflectance
ρf = 0, or Lambertian reflection, to total mirroring of the illuminating source (ρf =
1). Hence, the spectral color ofER is an additive mixture of the color of the light
source and the perfectly diffuse body reflectance color.

EARLY COGNITIVE COMPUTER VISION 127

Because of projection of the energy distribution on the image plane, vectors�n, �s
and�v will depend on the position at the imaging plane. The energy of the incoming
spectrum at a point�x on the image plane is then related to

(34)ER(λ, �x) = e(λ, �x)
(
1− ρf(�x)

)2
R∞(λ, �x) + e(λ, �x)ρf(�x)

where the spectral distribution at each pointx is generated off a specific material
patch.

The major assumption made for the model of Equation(34) is that locally pla-
nar surface patches are examined, for which the material is homogeneously colored.
These constraints are imposed by the Kubelka–Munk theory, resulting in isotropic
scattering of light within the material. The assumption is valid when the resolution
is fine enough to consider locally uniform colored patches, whereas individual stain-
ing particles are not resolved. Further, the thickness of the layer is assumed to be
such that no light reaches the other side of the material. For every day scenes, these
assumptions seems to be justified. Concerning the Fresnel reflectance, the photomet-
ric model assumes a neutral interface at the surface patch. As discussed in[53,59],
deviations ofρf over the visible spectrum are small for commonly used materials,
therefore the Fresnel reflectance coefficient may be considered constant. The inter-
nally Fresnel reflected light contributes little in many cases[70], and is ignored in
the model.

3.1.2 Color Formation for Transmission of Light
Consider a homogeneously colored material patch of uniform thicknessd and

infinitesimal area, characterized by its absorption coefficientk(λ) and scatter co-
efficient s(λ). When illuminated by incident light with spectral distributione(λ),
absorption and scattering by the material determines its transmission color (Fig-
ure 11), while Fresnel interface reflectance occurs at both the front and back surface
boundaries.

When the layer is thin, such that the material is transparent, the transmitted spec-
trum through the layer in the viewing direction�v, ignoring the effect of interreflec-
tions between the material surfaces, is given by[37,70]:

(35)

ET (λ) = e(λ)(1− ρf(λ, �n, �s, �v))(1− ρb(λ, �n, �s, �v))b(λ)

a(λ) sinh[b(λ)s(λ)l(�n, �s, �v)c] + b(λ) cosh[b(λ)s(λ)l(�n, �s, �v)c]

where again�n is the material patch normal and�s is the direction of the illumination
source. Further,c is the staining concentration andl the distance traveled by the light
through the material. The termsρf andρb denote the Fresnel front and back surface
reflectance coefficient, respectively. The factorsa andb depend on the absorption
and scattering coefficients as given by Equation(32).

128 J.-M. GEUSEBROEK

FIG. 11. Illustration of the photometric model. The object, refractive indexn2, is illuminated bye(λ)

(medium refractive indexn1). When the material is transparent, light is transmitted through the material,
enters mediumn3, and is observed.

Simplification is obtained by considering neutral interface reflection, assuming
that the Fresnel reflectance coefficients have a constant value over the spectrum. In
that case, the Fresnel reflectance affects the intensity of the transmitted light only.
Further, by considering a small angle of incidence at the transparent layer, the path
lengthl(�n, �s, �v) = d. Equation(35) reduces to

(36)ET (λ) = e(λ)(1− ρf(�n, �s, �v))(1− ρb(�n, �s, �v))b(λ)

a(λ) sinh[b(λ)s(λ)dc] + b(λ) cosh[b(λ)s(λ)dc] .

Because of projection of the energy distribution on the image plane, vectors�n, �s
and�v will depend on the position�x at the imaging plane,

ET (λ, �x) = e(λ, �x)
(
1− ρf(�x)

)(
1− ρb(�x)

)
b(λ, �x)

/
(
a(λ, �x) sinh

[
b(λ, �x)s(λ, �x)d(�x)c(�x)

]

(37)+ b(λ, �x) cosh
[
b(λ, �x)s(λ, �x)d(�x)c(�x)

])

where the spectral distribution at each pointx is generated off a specific transparent
patch.

One of the assumptions made for the model of Equation(37) is that locally planar
material patches are examined, with parallel sides, for which the material is homo-
geneously colored. The assumption is valid when the material is non-fluorescent nor
in any sense optically active, and the resolution is fine enough to consider locally

EARLY COGNITIVE COMPUTER VISION 129

uniform colored patches, while individual stain particles are not resolved. Again,
these constraints are imposed by the Kubelka–Munk theory. Further, normal inci-
dence of light at the layer is assumed, so that the optical path length through the
layer approximates its thickness. In transmission light microscopy, the preparation
and observation conditions fairly justify these assumptions. Concerning the Fres-
nel reflectance, the photometric model assumes a neutral interface at the transparent
patch. As discussed in Pluta[53], deviations ofρf, ρb over the visible spectrum are
small for commonly used materials. For example, the refractive index of immersion
oil often used in microscopy only varies 3.3% over the visible spectrum. Therefore,
the Fresnel reflectance coefficientsρf andρb may be considered constant over the
spectrum. The contribution of internally Fresnel reflected light is small in many cases
[70], and is therefore ignored in the model.

3.1.3 Special Cases

Thus far, we have achieved a photometric model for spectral color formation,
which is applicable for both reflecting and transmitting materials, and valid under
a wide variety of circumstances and materials. The following special cases can be
derived.

For matte, dull surfaces, the Fresnel coefficient can be considered neglectable,
ρf(�x) ≈ 0, for whichER Equation(34) reduces to the Lambertian model for diffuse
body reflection,

(38)ER(λ, �x) = e(λ, �x)R∞(λ, �x)

as expected.
By introducing cb(λ) = e(λ)R∞(λ), ci(λ) = e(λ), mb(�n, �s, �v) = (1 −

ρf(�n, �s, �v))2 andmi(�n, �s, �v) = ρf(�n, �s, �v), Equation(33)may be reformulated as

(39)ER(λ) = mb(�n, �s, �v)cb(λ) +mi(�n, �s, �v)ci(λ)

which corresponds to the dichromatic reflection model proposed by Shafer[59].
For light transmission, when the scattering coefficient is low compared to the

absorption coefficient,s(λ) ≪ k(λ), ET Equation(37) reduces to Bouguer’s or
Lambert–Beer’s law for absorption[70],

(40)ET (λ, �x) = e(λ, �x)
(
1− ρf(�x)

)(
1− ρb(�x)

)
exp

(
−k(λ, �x)d(�x)c(�x)

)

as expected.
Further, a unified model for both reflection and transmission of light is obtained

when considering Lambertian reflection and a uniform illumination for both cases.

130 J.-M. GEUSEBROEK

For matte, dull surfaces, and a uniform illumination affected by shading,ER Equa-
tion (34) reduces to a multiplicative (Lambertian) model for body reflection,

(41)ER(λ, �x) = e(λ)i(�x)R∞(λ, �x)

wheree(λ) is the colored but spatially uniform illumination andi(�x) denotes the
intensity distribution due to the surface geometry. Similar, for a uniform illuminated
transparent material, intensity affected by shading and Fresnel reflectance,ET Equa-
tion (37)may be rewritten as

(42)ET (λ, �x) = e(λ)i(�x)C(λ, �x)

wheree(λ) is the uniform illumination,i(�x) denotes the intensity distribution, in-
cluding Fresnel reflectance at front and back surface, andC(λ, �x) represents the total
extinction coefficient, that is the total absorption—and scattering coefficient, within
the transparent layer. A general model for spectral image formation useful in both
reflectance and transmission of light may now be written as a multiplicative model,

(43)E(λ, �x) = e(λ)i(�x)m(λ, �x)

wherem(λ, �x) denotes the material transmittance or reflectance function. Again,
e(λ) is the colored but spatially uniform illumination andi(�x) denotes the intensity
distribution. The validness of the model may be derived from models Equations(34)
and (37). For reflectance of light, the model is valid for matte, dull surfaces, for
which the Fresnel reflectance is neglectable, and for isotropic light scattering within
the material. For light transmission, the model is valid for neutral interface reflection,
small angle of incidence to the surface normal, and isotropic light scattering within
the material. The model as such is used in the next sections to derive color invariant
material properties.

3.1.4 Invariants for Object Reflectance or Transmittance

Any method for finding invariant color properties relies on a photometric model
and on assumptions about the physical variables involved. For example, hue is known
to be insensitive to surface orientation, illumination direction, intensity and high-
lights, under a white illumination[28]. Normalizedrgb is an object property for
matte, dull surfaces illuminated by white light. When the illumination color varies or
is not white, other object properties which are related to constant physical parameters
should be measured. In this section, expressions for determining material changes in
images will be derived, robust to a change in illumination color over time. Therefore,
the photometric model derived above are taken into account.

EARLY COGNITIVE COMPUTER VISION 131

Consider the photometric reflection model Equation(43)and an illumination with
locally constant color,

(44)E(λ, �x) = e(λ)i(�x)m(λ, �x)

wheree(λ) represents the illumination spectrum. The assumption allows for the ex-
traction of expressions describing material changes independent of the illumination.
Without loss of generality, we restrict ourselves to the one dimensional case; two
dimensional expressions may be derived according to[26]. Differentiation of Equa-
tion (44)with respect toλ results in

(45)
∂E

∂λ
= i(x)m(λ, x)

∂e

∂λ
+ i(x)e(λ)

∂m

∂λ
.

Dividing Equation(45)by Equation(44)gives the relative differential,

(46)
1

E(λ, x)

∂E

∂λ
= 1

e(λ)

∂e

∂λ
+ 1

m(λ, x)

∂m

∂λ
.

The result consists of two terms, the former depending on the illumination color and
the latter depending on material properties. Since the illumination color is constant
with respect tox, differentiation tox yields a material property only,

(47)
∂

∂x

{
1

E(λ, x)

∂E

∂λ

}
= ∂

∂x

{
1

m(λ, x)

∂m

∂λ

}
.

Within the Kubelka–Munk model, assuming matte, dull surfaces or transparent
layers, and assuming a single light source,Nλx determines changes in object re-
flectance or transmittance,

(48)Nλx =
1

E(λ, x)

∂2E

∂λ∂x
− 1

E(λ, x)2

∂E

∂λ

∂E

∂x

which determines material changes independent of the viewpoint, surface orienta-
tion, illumination direction, illumination intensity and illumination color. The ex-
pression results from differentiation of Equation(47).

The expression given by Equation(48) is the fundamental lowest order illumina-
tion invariant. Any spatio-spectral derivative of Equation(48) inherently depends on
the body reflectance or object transmittance only. According to Olver et al.[49], a
complete and irreducible set of differential invariants is obtained by taking all higher
order derivatives of the fundamental invariant,

(49)Nλxλmxn = ∂m+n

∂λm∂xn

{
1

E(λ, x)

∂2E

∂λ∂x
− 1

E(λ, x)2

∂E

∂λ

∂E

∂x

}

for m � 0, n � 0.

132 J.-M. GEUSEBROEK

Application of the chain rule for differentiation yields the higher order expres-
sions in terms of the spatio-spectral energy distribution. For instance, the spectral
derivative ofNλx is given by

(50)Nλλx =
EλλxE

2 − EλλExE − 2EλxEλE + 2E2
λEx

E3

whereE(λ, x) is written asE for simplicity and indices denote differentiation. Note
that these expressions are valid everywhereE(λ, x) > 0. These invariants may be
interpreted as the spatial derivative of the normalized spectral slopeNλ and curvature
Nλλ of the reflectance functionR∞. Expressions for higher order derivatives are
straightforward.

A special case of Equation(49) is for Lambert–Beer absorption Equation(40)and
slices of locally constant thickness. Under these circumstances, ratios of invariants
from setN ,

(51)N ′ = Nm,n

Np,q

for m,p � 1 andn, q � 0, are independent of the slice thickness. The property is
proven by considering differentiation with respect toλ of Equation(40), and division
by Equation(40), which results in

(52)
1

ET (λ, x)

∂ET

∂λ
= 1

e(λ)

∂e

∂λ
− dc(x)

∂k

∂λ
.

Differentiation of the expression with respect tox yields

(53)
∂

∂x

{
1

ET (λ, x)

∂ET

∂λ

}
= −dc(x)

∂2k

∂λ∂x
− d

∂k

∂λ

∂c

∂x
.

By taking ratios of higher order derivatives, the constant thicknessd is eliminated.
Summarizing, we have derived a complete set of color constant expressions de-

termining object reflectance or transmittance. The expressions are invariant for a
change of illumination over time. The major assumption underlying the proposed
invariants is a single colored illumination, effectuating a spatially constant illumina-
tion spectrum. For an illumination color varying slowly over the scene with respect
to the spatial variation of the object reflectance or transmittance, simultaneous color
constancy is achieved by the proposed invariant.

We have proven that spatial differentiation is necessary to achieve color constancy
when pre-knowledge about the illuminant is not available. Hence, any color constant
system should perform both spectral as well as spatial comparison in order to be
invariant against illumination changes, which confirms the theory of relational color
constancy as proposed by Foster and Nascimento[17].

EARLY COGNITIVE COMPUTER VISION 133

3.1.5 Invariants for Specular Reflection
Consider the photometric reflection model Equation(34). For white illumination,

the spectral components of the source are approximately constant over the wave-
lengths. Hence, a spatial componenti(x) denotes intensity variations, resulting in

(54)E(λ, x) = i(x)
{
ρf(x) +

(
1− ρf(x)

)2
R∞(λ, x)

}
.

The assumption allows the extraction of expressions describing object reflectance
independent of the Fresnel reflectance. Differentiating Equation(54) with respect to
λ results in

∂nE

∂λn
= i(x)

(
1− ρf(x)

)2∂nR∞
∂λn

.

Hence, ratio of derivatives depend on derivatives of the object reflectance functions
R∞ only,

(55)H =
∂E
∂λ

∂2E

∂λ2

independent of viewpoint, surface orientation, illumination direction, illumination
intensity and Fresnel reflectance coefficient.

The propertyH describes the hue= arctan(λmax) of the material. The expression
given by Equation(55) is a fundamental lowest order invariant. Any spatio-spectral
derivative of the fundamental invariant is an invariant under the same imaging con-
ditions according to Olver et al.[49]. As a result, differentiation of the expression
for H with respect tox results in object reflectance properties under a white illumi-
nation. Note thatH is ill-defined when the second order spectral derivative vanishes.
We prefer to compute the arctan(H), for which the spatial derivatives yield better
numerical stability.

In conclusion, within the Kubelka–Munk model, a complete and irreducible set of
invariants for dichromatic reflection and a white illumination is given by

(56)Hxn = ∂n

∂xn

{
arctan

(∂E
∂λ

∂2E

∂λ2

)}

for n � 0.
Application of the chain rule for differentiation yields the higher order expressions

in terms of the spatio-spectral energy distribution. For illustration, the hue spatial
derivative is given by

(57)Hx =
EλλEλx − EλEλλx

E2
λ + E2

λλ

whereE(λ, x) is written asE for simplicity, admissible forE2
λ + E2

λλ > 0.

134 J.-M. GEUSEBROEK

3.2 Invariant Image Interpretation

An interesting problem in the segmentation of man made objects is the segmen-
tation of edges into the “real” object edges, or “artificial” edges caused by shadow
boundaries or highlights[29]. Consider an image captured under white illumination.
A common model for the reflection of light by an object to the camera is given by the
Kubelka–Munk theory Equation(34). Edges may occur under three circumstances:

• shadow boundaries due to edges ini(�x);

• highlight boundaries due to edges inρf(�x);

• material boundaries due to edges inR∞(λ, �x).

For the model given by Equation(34), material edges are detected by considering
the ratio between the first and second order derivative with respect toλ, or

∂

∂x

{
Eλ

Eλλ

}

whereE representsE(λ, �x) and indices denote differentiation. Further, the ratio be-
tweenE(λ, �x) and its spectral derivative are independent of the spatial intensity
distribution. Hence, the spatial derivatives

(58)
∂

∂x

{
Eλ

E

}
,

∂

∂x

{
Eλλ

E

}

depend on Fresnel and material edges. Finally, the spatial derivatives ofE, Eλ, and
Eλλ depend on intensity, Fresnel, and material edges.

In order to measure the invariant properties, the partial derivative operator is re-
placed by Gaussian derivative convolutions. Hence, the incoming spatio-spectral
energy density function is probed with Gaussian and Gaussian derivative functions.
These measurements approximate the differential expressions derived above. Hence,
measurement of the above expressions is obtained by substitution ofE, Eλ, andEλλ

for the measured valueŝE, Êλ, andÊλλ Equation(10) smoothed at scaleσx . For
the spatial derivatives, convolution with a Gaussian derivative function at scaleσx

yields the correct approximation. Combining these expressions in gradient magni-
tudes yieldsFigure 12.

4. Natural Image Statistics

An image typically consists of a million of pixels, each pixel being one value out of
millions. Despite this overwhelming amount of choices to generate an image, there
is a limited amount of configurations that represent a natural scene. Investigation

EARLY COGNITIVE COMPUTER VISION 135

FIG. 12. Photometric interpretation of edges in a toy example. Top right shows all edges by com-
bining the spatial derivatives ofE, Eλ, Eλλ. Bottom left shows edges due to object reflectance and
Fresnel reflectance (specularities). Note the suppression of shading edges in the blocks. Further, notice
that highlights are still detected in the red ball. Bottom right shows the case of shadow, shading and high-
light invariant edge detection. Note that the highlights on the ball’s surface are suppressed, together with
shadow and shading edges. Only edges caused by true changes in object surface color are detected. Com-
parison between these invariants allows the interpretation of photometric edges. (See Color Plate Section,
Plate 11.)

of the statistics of natural images is an important topic for texture synthesis and
recognition. Empirical studies[36,60,67]concentrate on the fitting of distributions
to the response of linear operators for (large) sets of images. Empirical methods lack
a physical basis, hence are difficult to interpret. The distributions determined are
not easily proven to be the correct ones. Especially when the marginal statistics are
considered important, as is often the case for reasoning in knowledge, finding the
correct distribution is crucial.

136 J.-M. GEUSEBROEK

FIG. 13. An opaque object fragments the scene into stochastic patches of foreground and back-
ground (a). When more and more details are added (b), the background is sequentially fragmented, until
detail size is beyond the visual resolution (c).

Theoretical studies based on the statistics of surface reflectance properties in-
clude[8,41,42,66]. These methods consider the physics of reflection to derive image
statistics. Knowledge about the characteristics of the reflecting surface is explic-
itly assumed, for instance the slope distribution at the surface is Gaussian. Hence,
there is a physical ground and a sufficient explanation of the parameters of the
model. However, the model is only valid for a limited amount of natural im-
ages.

In this section, a physical explanation is given for the statistics of local image
structure of natural images. The analysis is started by introducing the Weibull dis-
tribution from the field of sequential fragmentation. The distribution originates from
the study of particle distributions after milling. The Weibull distribution describes
the number of particles as function of particle size or mass, hence the result of siev-
ing processes. A picture is composed of many details of larger and smaller size,
which in turn are composed of even smaller details (Figure 13). In the projection
of the details onto the receptive fields in the retina, some of the detail is larger than
the scale of resolution, whereas other details are smaller and effectively integrated
in the response of one receptive field. The size distribution of the details may be
inferred from the contours of the details and their shadows. The projection of the
contours is a linear transform of the three-dimensional detail shape. Hence, the in-
tensity differences in a view are indicative for the size distribution of the details in
the scene[50].

EARLY COGNITIVE COMPUTER VISION 137

4.1 Sequential Fragmentation Theory
Local image structure is completely determined by the Taylor expansion of the

image at a given point(x, y),

(59)Ê(x, y) = Ê +
(

x

y

)T [
Êx

Êy

]
+ 1

2

(
x

y

)T [
Êxx Êxy

Êxy Êyy

](
x

y

)
+ · · · .

The measurement is obtained by integrating over a certain spatial extent, the obser-
vation scaleσ . Differentiation may be transported using Gaussian derivative filters,

(60)Êxnym(x, y) = E(x, y) ∗Gxnym(x, y; σ)

which results in the well-known N-Jet[15]. The coefficients of the Taylor expan-
sion ofÊ(x, y) together form a complete representation of the local image structure.
Truncation of the Taylor expansion results in an approximate representation, the local
equivalence class.

The respective statistics of each of the N-Jet components reflect the dependence
between neighboring pixels. For the zeroth order measurement, the statistics are rep-
resented by the histogram of the Gaussian smoothed image intensity. The histogram
is, neglecting smoothing effects, invariant under permutations of the pixels. Hence,
the zeroth order statistics do not include joined statistics, and are irrelevant when
considering pixel dependence.

Of considerable importance is the statistics of the first order derivatives,

(61)Êx ≡
∂E

∂x

[
intensity

length

]
.

For construction of the response probability density function one takes a given re-
sponse interval and sums over its spatial occurrences. When considering a unity step
along the response∂Êx , one considers a certain variable distance∂x in the spatial
domain. This distance depends on the local slope in the image functionÊ.

As a result from scale-space theory, we consider that small details are occurring
more often than large structures[39]. This is a direct implication of causality. Dif-
fusion of numerous small structures will result in fewer large structures. Inversely,
increasing magnification at large structures will resolve many smaller structures One
may rephrase the statement in that, when resolving power increases, large structures
will break-up into new structures, of which some of them are relatively large, but
most of them will be small details.

Consider the response of an edge detector to an image containing one dominant
edge. The edge detector will respond strongly to the edge, and yield smaller values
elsewhere. The histogram of responses typically shows a power-law distribution,

(62)f (x) =
(

x

β

)γ−1

.

138 J.-M. GEUSEBROEK

FIG. 14. Illustration of the Weibull distributionp(r) for various values ofγ .

When more objects are added to the scene, the image will be fragmented into various
patches, each giving rise to an edge of varying contrast. The histogram over the
various edges is the results of integrating over the various power-laws caused by
every edge,

(63)n(x) = c

∞∫

x

n(x′)f (x) dx′

wheren(x) indicates the number of pixels with response magnitude betweenx and
x + dx, contributed by all edges with contrastx′ > x. The integration over a suffi-
cient number of power-laws yields a Weibull distribution (Figure 14),

(64)n(x) = 1

β

(
x

β

)γ−1

e−
1
γ

(x
β
)γ

.

In integral form, the Weibull distribution given by

(65)N(> x) =
∞∫

x

n(x) dx = e−
1
γ
| x
β
|γ

indicates the relative amount of edges of (positive or negative) contrast larger thanx.
A similar reasoning is known in the sequential fragmentation of particles by

milling [5,6], which shows much resemblance with the present theory. Brown and
Wohletz[6] theoretically derived the power-law process to describe the particle size
distribution for the crushing of particles in a mill, providing a solid physical basis

EARLY COGNITIVE COMPUTER VISION 139

for the distributions in Equations(64) and (65)with the shape parameterγ related to
fractal dimension.

Simoncelli[60] empirically found the generalized Laplacian,

(66)P(c) = z e−|
c
s
|p

to fit to the marginal statistics of wavelet coefficients. Here,c indicates the wavelet
coefficient, ands indicates the variance. The exponentp is related toγ in Equa-
tion (65). The generalized Laplacian is the integral form Equation(65)of the Weibull
distribution. We have given a physical explanation for the empirical results as ob-
tained by Simoncelli[60].

The Weibull shape parameterγ is related to the fractal dimension of the image
[21]. Note that fractal dimension is a strictly spatial property of an image.

The parameters of the Weibull distribution completely characterize the spatial lay-
out of stochastically ergodic textures. Furthermore, the Weibull parameters generate
a complete orthogonal basis for stochastic textures. The parameters of the Weibull
distribution indicate the contrast in the image (β), the grain size (γ) relative to re-
solving power, and the global shape of the object (µ) as can be derived from shape
from shading[51].

4.2 Consequences for Natural Image Statistics

As a consequence of the sequential fragmentation theory, spatial image statistics
are limited to conform to one out of five options:

Power-law: When resolution is extremely fine compared to detail size, spatial lay-
out follows a power-law distribution, being the result of a single fragmentation
event, or foreground-background. This is the case when we examine a single
object against a highly contrasting background. When contrast is reduced by
local normalization, a power-law is no longer observed.

Normal: When resolution is too coarse to resolve the details, spatial layout be-
comes normal distributed. This is the case when we look at sand, or at hairs. On
closer inspection with higher resolution, we may resolve the details and spatial
statistics convert to Weibull again.

Weibull: In general, with the fine but limited resolution used for the vast major-
ity of scenes we encounter, views we observe are fragmented and their details
therefore Weibull distributed. Spatial detail statistics deform from power-law
to normal through the Weibull type distribution as resolving power decreases,
while the field of view enlarges.

Composition: When the scene is composed of a few fragmentations, the Weibull
distribution will not appear. In this case, individual parts of the scene may

140 J.-M. GEUSEBROEK

conform to the Weibull distribution with varying parameters. However, the
composition of the scene results in the addition of Weibull distributions of dif-
ferent parameters, resulting in a non-Weibull distribution. This is often the case
for a scene composed of two or three objects, or scenes with sharply distinct
distances. As the Weibull distribution describes sequential fragmentation, a re-
quirement for the Weibull distribution is that the composition of the scene is
sufficiently complex.

Regular: For repetitive patterns, the visual responses interfere with the repetition
in the sensing field, in which case any distribution may describe spatial statis-
tics. Hence, the proposed fragmentation theory breaks for regular textures.

4.3 Experiment on Corel Image Collection

We experimentally investigated the statistics of spatial detail on the Corel1 photo
collection[22]. The collection consists of 46,695 images covering a broad class of
general pictures. As edge information is of crucial importance in the coding of im-
ages, we expect the sequential fragmentation process so dominantly present in image
statistics that it will be preserved by any compression method. The large and diverse
collection is used to provide evidence for the sequential fragmentation theory to be
present in a broad imaging domain, much broader than only dead-leaves occlusion
processes, as in Lee et al.[46], or only transparent (additive) image formation, as
in Grenander and Srivastava[32]; Srivastava et al.[61]. The collection is originally
compressed by a wavelet compression technique. For processing purposes, we con-
verted the whole collection to JPEG compressed images, compression factor 0.7.

A detailed study was performed on views of material textures in the Curet collec-
tion [9]. The image collection is calibrated and uncompressed, image size 768×576.
The collection consists of 61 materials, each taken under various illumination and
viewing directions. The sample contains a diverse collection of materials, including
plaster, styrofoam, straw, corduroy, paper, brick, fur, and so on, effectively covering
a range of Lambertian reflection, polarized reflection with highlights, to the mirror
reflection of Aluminum foil. We will use this database mainly for illustration pur-
poses.

4.3.1 Experimental Setup

Edge strength is accessed by Gaussian derivative filters measured in 72 directions
by steering thex, y-derivative filters. The effective resolution of the system is given
by the spatial width of the filter, here set to correspond to a standard deviation of 3

1 Corel Gallery, seehttp://www.corel.com.

http://www.corel.com

EARLY COGNITIVE COMPUTER VISION 141

pixels in all experiments. Note that changing the width to another constant will not
change the major results of this paper (data not shown). Further note that applying
any alternative zero-average filter will not affect the major results (data not shown).
Responses per image were accumulated into histograms, and three distributions were
fitted to each histogram. They are a power-law distribution, a Weibull distribution,
and a normal distribution. As the histogram contains both positive and negative edge
responses, we used the symmetrical versions of the Weibull and power-law distribu-
tion.

For filter responses, high values indicate strong correlation between image con-
tent and filter shape. Hence the tails of the distribution are much more important in
terms of image content[2] than low values, representing uniform areas and noise.
Where most hypothesis tests, including the Kullback–Leibler divergence, assign
more weight to the often occurring values, we put our emphasis in the tails of the
distribution. As the Anderson–Darling test is sensitive to the tails, goodness-of-fit
was evaluated by this hypothesis test[12]. Note that this test is commonly used in
statistics when accessing goodness-of-fit for both power-law and Weibull distribu-
tions. A second important characteristic of the Anderson–Darling test is that critical
values are tuned to the distribution at hand, including the free parameters. Models
of different complexity –with different degrees of freedom—may be compared at
similar confidence levels. Hence, the Anderson–Darling test allows fair comparison
between power—law, Gaussian, and Weibull distributed portion of a database, de-
spite the different number of parameters of these models.

The Weibull distribution symmetric integral form is given by

(67)f (x) = C exp

(
− 1

γ

∣∣∣∣
(x − µ)

β

∣∣∣∣
γ)

,

the parametersµ, β, andγ representing the center, width, and shape of the distrib-
ution, andC being a normalization constant. The shape parameter,γ , ranges from
0 to 2 [30]. For γ = 2 the Weibull distribution is equivalent to the normal distrib-
ution, and forγ = 1 it is a double exponential. The distribution is also known as
the generalized Laplacian[48,60]. Brown [5] showed the close connection of this
integral form to the original distribution proposed by Weibull[68]. For our exper-
iments, the values of the Weibull parameters were estimated using the maximum
likelihood method. Goodness-of-fit was evaluated at a significance levelα = 0.05
(A2 < 0.757) [12] for all cases. Furthermore, we rejected the Weibull distribution
for an estimation ofγ > 2.2, resulting in a value ofγ too far out of range to yield a
stable statistical process[30].

We consider the symmetric form of the power-law,

(68)f (x) = 1

2
δ|x|−δ−1.

142 J.-M. GEUSEBROEK

The parameterδ was estimated by the maximum likelihood method, and goodness-
of-fit was evaluated by the Anderson–Darling statistic[54] at a significance level of
α = 0.05 (A2 < 1.341)[63].

The parameters for the normal distribution were obtained by maximum likelihood
estimation, and goodness-of-fit was evaluated by the Anderson–Darling statistic at a
significance level ofα = 0.05 (A2 < 0.787)[63].

4.3.2 Results
For the Corel general photo stock, the Anderson–Darling test indicated 48% of

the pictures to be Weibull distributed. This is a remarkable result given the variety of
generating processes for the pictures in the collection, and the compression of the im-
ages. The Weibull distribution apparently describes the spatial statistics for outdoor
scenes, indoor scenes, close-ups, and materials of various kinds. Approximately 1%
of the Corel collection is normally distributed. Note that these pictures are included
in the Weibull distributed part of the collection, the normal distribution being an
extreme case withγ = 2. An additional 9% of the Corel collection is distributed
according to a power-law, while being rejected as a Weibull distribution. A portion
of 4% is accepted as both power-law distributed and Weibull distributed, the fraction
being included in the reported 48%.

For the uncompressed images in the van Hateren collection, similar results are
obtained. For this collection, a Weibull distribution is present in 54% of the images.
A neglectable amount of images is normally distributed, which can be explained by
the high resolution at which these outdoor images are taken. Furthermore, 28% of
the images is power-law distributed, indicating that much of the images consist of a
high contrasting object against a more or less uniform background. A portion of 5%
is accepted as both power-law distributed and Weibull distributed, the fraction being
included in the 54% Weibull distributed.

To understand this widespread presence of the Weibull distribution, a detailed
study was performed on views of material textures in the Curet collection[9]. It
appeared that 54 materials out of 61 (88%) consistently render a Weibull distribu-
tion. The estimated Weibull parameter values varied with illumination and viewing
direction, consistently rendering a Weibull distribution over all imaging conditions.
Note that in the continuing report of our result, examples of the Curet database do
not provide anecdotal evidence for our theory, rather yields detailed illustrations of
the different stages of the fragmentation process.

As an explanation for a normal distribution of filter responses consider an infi-
nitely precise sensor. We would see the details around us at infinitely many scales.
Increasing the size of the sensor to a finite extent imposes spatial coherence and a
limited local scale of detail. When the sensor resolution is much larger than the com-
mon size of the random details in the field of view, each sensor response is an average

EARLY COGNITIVE COMPUTER VISION 143

over many impulses. From the central limit theorem, local intensity differences will
be normally distributed as is observed in the rabbit fur of the Curet collection (Fig-
ure 15(a)), with individual hairs as the random details, each much smaller than the
resolution of observation.

For the power-law distributed images, visual inspection showed much of these
pictures to contain an exhibited item, or to display land-sky, thereby fragmenting
the scene into a foreground and a background region, while details of intermediate
size are missing. When the shape of the foreground figure is sufficiently fractal, the
distribution of intensity differences will follow a power-law. See the orange peel in
the Curet collection (Figure 15(b)) as an example.

Between these two extremes, the Weibull distribution occurs. It arises when the
scene is progressively fragmented by the addition of objects or detail. Such a process
of sequential fragmentation results in a Weibull size distribution[5,6], where the
power-law describes a single fragmentation event. Material textures, with small de-
tails extending over a limited depth range, as well as everyday scenes and even
mountain views extending over considerable depth, all follow a Weibull sequential
fragmentation process. When the size of the details underlying the texture is such that
a receptive field typically covers part of a structure, the observed distribution follows
Weibull, illustrated by the aluminum foil in the Curet collection (Figure 15(c)). The
power-law process gives the extreme case for a single fragmentation, segmenting
the field of view into foreground and background. On the other end of the spectra
of size distributions, we have the normal distribution, representing the extreme of
fragmentation beyond the visual resolution.

When the spatial detail is not randomly distributed but regular, such that there is
repetition between the responses in an image, a Weibull distribution will no longer be
found. For the Curet collection, ribbed paper, straw, corduroy, and corn husk break
the distribution in the direction of orientation (Figure 15(d)). In these examples, how-
ever, a Weibull distribution reappears when measuring the receptive field response in
the perpendicular direction. For the rug and the painted spheres in the Curet collec-
tion, the specular reflectance of the material causes a regular pattern of highlights,
breaking the standard distribution in any direction.

The distribution of the fragmentation exponentγ as given inFigure 16indicates
the relative importance of the power-law process and the resolution limited case of
the normal distribution. Note that theγ values inherently depend on the observation
resolution, hence on the pixel resolution and filter size. For high resolution images
observed at small scale, power-law will be dominant. For a low resolution collection
or a large observation scale, the distribution ofγ -values will shift toward the normal
extreme. This scaling behavior is illustrated inFigure 16. For a general vision system,
observing at a variety of scales, spatial statistics will cover the complete spectrum of
γ -values.

144 J.-M. GEUSEBROEK

(a)

(b)

(c)

FIG. 15. Histograms of intensity differences in thex-direction for images from[9]. The rabbit fur (a)
demonstrates the resolution limiting case, for which the Weibull distribution withγx = 1.94 approaches
the normal distribution. Orange peel (b) is an example of a single object fragmentation, for which the
histogram follows a power-law distribution (δx = 2.54). The aluminum foil (c) shows a Weibull distri-
bution withγx = 1.27. Ribbed paper (d) with its regular structure has a non-Weibull distribution in the
x-direction, but shows a Weibull distribution for they-direction. (Continued on next page.)

EARLY COGNITIVE COMPUTER VISION 145

(d)

FIG. 15. Continued.

FIG. 16. Distribution of the values ofγ for the Weibull distribution as estimated for the Corel collec-
tion at spatial filter sizesσ = {1.5, 3, 6}.

For the gradient magnitude,fw =
√

fx
2 + fy

2, which represents a rotationally
invariant filter, 32% of the Corel collection conforms to the Weibull distribution.
In this case, we tested for the true Weibull distribution, as magnitude is a strictly
positive entity. Furthermore, a photometric invariantfn = fx/f is tested. In that
case, 45% of the collection is Weibull distributed, whereas the power-law is no longer

146 J.-M. GEUSEBROEK

present. Hence, non-linear sensory combinations still result in a Weibull distribution
of observed spatial detail.

The Weibull or power-law distribution is not observed when the image exhibits
large uniform regions. Visual inspection of some of the Corel images not conform-
ing to the three distributions revealed these images to show a composition of a few
objects. Typical examples are objects exposed against a uniform background, and
landscape images under a uniform sky. In such cases, the histogram of the filter re-
sponses consists of an addition of two Weibull distributions, with large differences
between the parameters. Note that such compositions are not observed in the Curet
database, which contains homogeneous textured materials.

4.3.3 Summary of Experimental Results

In conclusion, in a world full of fractal objects, with infinite observation resolu-
tion, the dominant distribution of spatial detail size would be the power-law, seen
in 9% in the Corel photo stock. When the resolution is coarse, that distribution is
normal, seen in 1% of the stock. The extreme cases explain just a small part of
all scenes. In general, with the fine but limited resolution used for the vast ma-
jority of scenes we encounter, views we observe are fragmented and their details
therefore Weibull distributed, seen in 47% of the stock and in 97% of at least one-
ninth of the image. The fragmentation process breaks for repetitive patterns, causing
interference between the receptive field responses. Regions where statistics break
with the common statistics of natural images are likely to attract attention, seeFig-
ure 17.

FIG. 17. Focal attention at regions where spatial statistics break with the generally observed Weibull
statistics in natural scenes, that is, at regular patterns. (See Color Plate Section, Plate 12.)

EARLY COGNITIVE COMPUTER VISION 147

5. Conclusions

It is an important research question is in which way knowledge and expectation
steer focal attention to yield an efficient vision system:

• Knowledge and expectation—given a recognized phenomenon in the field of
view, adaptation of the remaining statistical structure implies the tuning to its
a-priori occurrences imposing new constrains on the visual input. Expectation
about the scene is then inevitably used to steer attention selection. Hence, focal
attention is not only triggered by visual stimuli, but is affected by knowledge
about the scene, initiating conscious behavior. In this principled way, knowledge
and expectation may be included at an early stage in cognitive vision.

• Learning of semantics—semantic information starts playing a role as soon as
we pay attention to the visual stimulus. The selection of statistical descriptive
properties by focus of attention mechanisms limits the dimensionality of the
learning space drastically. Visual learning may be considered as the connection
with the lingual system of denomination, language taken the carrier of seman-
tics of information.

A long tradition in philosophy predicts or prescribes one specific module for the
translation of visual impressions to linguistically formulated thoughts. However,
when visual information enters the brain it is redirected to dozens of cognitive
modules in the brain, interconnected by various visual pathways. That fact will com-
plicate the model considerably, as dozens of modules are expected to be involved in
the generation of linguistic information, each module contributing to a more complex
description of the observed phenomena. Learning the fact that all balls are round is
a task easily derived from visual evidence, which may be accomplished at a rudi-
mentary form of cognitive vision. However, gathering visual evidence and extracting
general rules to recognize memorial meetings is likely to be a much more complex
task, which may be solved at completely different levels of consciousness.

REFERENCES

[1] Barlow H.B., “Possible principles underlying the transformation of sensory messages”,
in: W. Rosenblith (Ed.),Sensory Communication, MIT Press, Cambridge, MA, 1961,
p. 217.

[2] Bell A.J., Sejnowski T.J., “The independent components of natural scenes are edge fil-
ters”,Vision Res.37 (1997) 3327–3338.

[3] Bigün J., Granlund G.H., Wiklund J., “Multidimensional orientation estimation with
applications to texture analysis and optic flow”,IEEE Trans. Pattern Anal. Machine In-
telligence13 (1991) 775–790.

148 J.-M. GEUSEBROEK

[4] Bovik A., Clark M., Geisler W., “Multichannel texture analysis using localized spatial
filters”, IEEE Trans. Pattern Anal. Machine Intelligence12 (1) (1990) 55–73.

[5] Brown W.K., “A theory of sequential fragmentation and its astronomical applications”,
J. Astrophys. Astr.10 (1989) 89–112.

[6] Brown W.K., Wohletz K.H., “Derivation of the Weibull distribution based on physi-
cal principles and its connection to the Rosin–Rammler and lognormal distributions”,
J. Appl. Phys.78 (1995) 2758–2763.

[7] Canny F.J., “A computational approach to edge detection”,IEEE Trans. Pattern Anal.
Machine Intelligence8 (1986) 679–698.

[8] Dana K.J., Nayar S.K., “Histogram model for 3d textures”, in:Proc. CVPR., IEEE Com-
puter Society, Los Alamitos, CA, 1998.

[9] Dana K.J., van Ginneken B., Nayar S.K., Koenderink J.J., “Reflectance and texture of
real world surfaces”,ACM Trans. Graphics18 (1999) 1–34.

[10] D’Zmura M., Lennie P., “Mechanisms of color constancy”,J. Opt. Soc. Amer. A3 (10)
(1986) 1662–1672.

[11] Field D.J., “Relations between the statistics of natural images and the response properties
of cortical cells”,J. Opt. Soc. Amer. A4 (1987) 2370–2393.

[12] Filliben J.J., et al.,NIST/SEMTECH Engineering Statistics Handbook, NIST, Gaithers-
burg, 2002,http://www.itl.nist.gov/div898/handbook.

[13] Finlayson G.D., “Color in perspective”,IEEE Trans. Pattern Anal. Machine Intelli-
gence18 (10) (1996) 1034–1038.

[14] Florack L.,Image Structure, Kluwer Academic Publishers, Dordrecht, 1997.
[15] Florack L.M.J., Romeny B.M.t.H., Koenderink J.J., Viergever M.A., “Scale and the dif-

ferential structure of images”,Image Vision Comput.10 (6) (1992) 376–388.
[16] Florack L.M.J., Romeny B.M.t.H., Koenderink J.J., Viergever M.A., “Cartesian differen-

tial invariants in scale-space”,J. Math. Imaging Vision3 (4) (1993) 327–348.
[17] Foster D.H., Nascimento S.M.C., “Relational colour constancy from invariant cone-

excitation ratios”,Proc. R. Soc. London B257(1994) 115–121.
[18] Freeman W.T., Adelson E.H., “The design and use of steerable filters”,IEEE Trans. Pat-

tern Anal. Machine Intelligence13 (1991) 891–906.
[19] Funt B.V., Finlayson G.D., “Color constant color indexing”,IEEE Trans. Pattern Anal.

Machine Intelligence17 (5) (1995) 522–529.
[20] Geusebroek J.M., Dev A., van den Boomgaard R., Smeulders A.W.M., Cornelissen F.,

Geerts H., “Color invariant edge detection”, in:Scale-Space Theories in Computer Vi-
sion, in: Lecture Notes in Comput. Sci., vol. 1682, Springer-Verlag, Berlin/New York,
1999, pp. 459–464.

[21] Geusebroek J.M., Smeulders A.W.M., “A physical explanation for natural image statis-
tics”, in: Chantler M. (Ed.),Proceedings of the 2nd International Workshop on Texture
Analysis and Synthesis (Texture 2002), Heriot–Watt University, Berlin/New York, 2002,
pp. 47–52.

[22] Geusebroek J.M., Smeulders A.W.M., “Fragmentation in the vision of scenes”, in:Proc.
9th Internat. Conf. Comput. Vision, vol. 1, IEEE Computer Society, Los Alamitos, CA,
2003, pp. 130–135.

http://www.itl.nist.gov/div898/handbook

EARLY COGNITIVE COMPUTER VISION 149

[23] Geusebroek J.M., Smeulders A.W.M., Geerts H., “A minimum cost approach for seg-
menting networks of lines”,Internat. J. Comput. Vision43 (2) (2001) 99–111.

[24] Geusebroek J.M., Smeulders A.W.M., van de Weijer J., “Fast anisotropic Gauss filtering”,
IEEE Trans. Image Processing12 (8) (2003) 938–943.

[25] Geusebroek J.M., van den Boomgaard R., Smeulders A.W.M., Dev A., “Color and scale:
The spatial structure of color images”, in: Vernon D. (Ed.),Sixth European Conference on
Computer Vision (ECCV), vol. 1, in: Lecture Notes in Comput. Sci., vol. 1842, Springer-
Verlag, Berlin/New York, 2000, pp. 331–341.

[26] Geusebroek J.M., van den Boomgaard R., Smeulders A.W.M., Geerts H., “Color invari-
ance”,IEEE Trans. Pattern Anal. Machine Intelligence23 (12) (2001) 1338–1350.

[27] Geusebroek J.M., van den Boomgaard R., Smeulders A.W.M., Gevers T., “Color con-
stancy from physical principles”,Pattern Recognition Lett.24 (11) (2003) 1653–1662.

[28] Gevers T., Smeulders A.W.M., “Color based object recognition”,Pattern Recognition32
(1999) 453–464.

[29] Gevers T., Stokman H.M.G., “Classification of color edges in video into shadow-
geometry, highlight, or material transitions”,IEEE Trans. Multimedia5 (2003) 237–244.

[30] Gnedenko B.V., Kolmogorov A.N.,Limit Distributions for Sums of Independent Random
Variables, Addison–Wesley, Boston, 1968.

[31] Gool L.J.V., Moons T., Pauwels E.J., Oosterlinck A., “Vision and Lie’s approach to in-
variance”,Image Vision Comput.13 (4) (1995) 259–277.

[32] Grenander U., Srivastava A., “Probability models for clutter in natural images”,IEEE
Trans. Pattern Anal. Machine Intelligence23 (4) (2001) 424–429.

[33] Hering E.,Outlines of a Theory of the Light Sense, Harvard University Press, Cambridge,
MA, 1964.

[34] “ITU-R Recommendation BT. 709, Basic parameter values for the HDTV standard for
the studio and for international programme exchange”, Tech. Rep. BT. 709 (formerly
CCIR Rec. 709), ITU, 1211 Geneva 20, Switzerland, 1990.

[35] Jain A., Healey G., “A multiscale representation including opponent color features for
texture recognition”,IEEE Trans. Image Processing7 (1) (January 1998) 124–128.

[36] Jolion J.M., “Image and the Benford’s law”,J. Math. Imaging Vision14 (2001) 73–81.
[37] Judd D.B., Wyszecki G.,Color in Business, Science, and Industry, Wiley, New York,

1975.
[38] Kalitzin S., ter Haar Romeny B., Viergever M., “Invertible orientation bundles on

2d scalar images”, in:Scale-Space Theories in Computer Vision, Springer-Verlag,
Berlin/New York, 1997, pp. 77–88.

[39] Koenderink J.J., “The structure of images”,Biol. Cybern.50 (1984) 363–370.
[40] Koenderink J.J., van Doorn A.J., “Receptive field families”,Biol. Cybern.63(1990) 291–

297.
[41] Koenderink J.J., van Doorn A.J., “Illuminance texture due to surface mesostructure”,

J. Opt. Soc. Amer. A13 (3) (1996) 452–463.
[42] Koenderink J.J., van Doorn A.J., Dana K.J., Nayar S., “Bidirectional reflection distri-

bution function of thoroughly pitted surfaces”,Internat. J. Comput. Vision31 (1999)
129–144.

150 J.-M. GEUSEBROEK

[43] Kubelka P., “New contribution to the optics of intensely light-scattering materials, Part I”,
J. Opt. Soc. Amer.38 (5) (1948) 448–457.

[44] Kubelka P., Munk F., “Ein beitrag zur optik der farbanstriche”,Z. Techn. Physik12(1931)
593.

[45] Land E.H., “The retinex theory of color vision”,Sci. Amer.237(1977) 108–128.
[46] Lee A.B., Mumford D., Huang J., “Occlusion models for natural images: A statistical

study of a scale-invariant dead leaves model”,Internat. J. Comput. Vision41 (2001) 35–
59.

[47] Lindeberg T.,Scale-Space Theory in Computer Vision, Kluwer Academic Publishers,
Boston, 1994.

[48] Mallat S.G., “A theory for multiresolution signal decomposition: The wavelet represen-
tation”, IEEE Trans. Pattern Anal. Machine Intelligence11 (1989) 674–693.

[49] Olver P., Sapiro G., Tannenbaum A., “Differential invariant signatures and flows in com-
puter vision: A symmetry group approach”, in: ter Haar Romeny B.M. (Ed.),Geometry-
Driven Diffusion in Computer Vision, Kluwer Academic Publishers, Boston, 1994.

[50] Pentland A.P., “Fractal-based description of natural scenes”,IEEE Trans. Pattern Anal.
Machine Intelligence6 (1984) 661–674.

[51] Pentland A.P., “Linear shape from shading”,Internat. J. Comput. Vision4 (1990) 153–
163.

[52] Perona P., “Steerable-scalable kernels for edge detection and junction analysis”,Image
Vision Comput.10 (1992) 663–672.

[53] Pluta M.,Advanced Light Microscopy, vol. 1, Elsevier, Amsterdam, 1988.
[54] Rigdon S.E., “Testing goodness-of-fit for the power law process”,Commun. Statist. The-

ory Methods18 (1989) 4665–4676.
[55] Ruderman D.L., Bialek W., “Statistics of natural images: Scaling in the woods”,Phys.

Rev. Lett.73 (1994) 814–817.
[56] Sapiro G., “Color and illuminant voting”,IEEE Trans. Pattern Anal. Machine Intelli-

gence21 (11) (1999) 1210–1215.
[57] Seinstra F., Koelma D., Geusebroek J., “A software architecture for user transparent par-

allel image processing”,Parallel Comput.28 (7–8) (2002) 967–993.
[58] Seinstra F.J., Koelma D., “User transparency: A fully sequential programming model for

efficient data parallel image processing”,Concurrency Comput.16 (6) (2004) 611–644.
[59] Shafer S.A., “Using color to separate reflection components”,Color Res. Appl.10 (4)

(1985) 210–218.
[60] Simoncelli E.P., “Modeling the joint statistics of images in the wavelet domain”, in:Proc.

SPIE, vol. 3813, SPIE, Bellingham, WA, 1999, pp. 188–195.
[61] Srivastava A., Liu X., Grenander U., “Universal analytical forms for modeling image

probabilities”,IEEE Trans. Pattern Anal. Machine Intelligence24 (9) (2002) 1200–1214.
[62] Steger C., “An unbiased detector of curvilinear structures”,IEEE Trans. Pattern Anal.

Machine Intelligence20 (1998) 113–125.
[63] Stephens M.A., “EDF statistics for goodness of fit and some comparisons”,J. Amer.

Statist. Assoc.69 (1974) 730–737.
[64] ter Haar Romeny B.M. (Ed.),Geometry-Driven Diffusion in Computer Vision, Kluwer

Academic Publishers, Boston, 1994.

EARLY COGNITIVE COMPUTER VISION 151

[65] van Ginkel M., Verbeek P.W., van Vliet L.J., “Improved orientation selectivity for orien-
tation estimation”, in: Frydrych M., Parkkinen J., Visa A. (Eds.),Proceedings of the 10th
Scandinavian Conference on Image Analysis, 1997, pp. 533–537.

[66] van Ginneken B., Koenderink J.J., Dana K.J., “Texture histograms as a function of irra-
diation and viewing direction”,Internat. J. Comput. Vision31 (1999) 169–184.

[67] van Hateren J.H., van der Schaaf A., “Independent component filters of natural images
compared with simple cells in primary visual cortex”,Proc. R. Soc. London B265(1998)
359–366.

[68] Weibull W., “A statistical distribution function of wide applicability”,J. Appl. Mech.18
(1951) 293–297.

[69] Witkin A.P., “Scale-space filtering”, in:Proc. Image Understanding, 1984, pp. 79–95.
[70] Wyszecki G., Stiles W.S.,Color Science: Concepts and Methods, Quantitative Data and

Formulae, Wiley, New York, 1982.
[71] Yang Z., Purves D., “A statistical explanation of visual space”,Nature Neurosci.6 (2003)

632–640.
[72] Young R.A., “The Gaussian derivative theory of spatial vision: Analysis of cortical cell

receptive field line-weighting profiles”, Tech. Rep. GMR-4920, General Motors Research
Center, Warren, MI, 1985.

This page intentionally left blank

Verification and Validation and Artificial
Intelligence

TIM MENZIES

Computer Science
Portland State University
Oregon
USA
tim@menzies.us

CHARLES PECHEUR

Université Catholique de Louvain
Dept. of Computer & Software Engineering
2 Place Sainte-Barbe
B-1348 Louvain-la-Neuve
Belgium
pecheur@info.ucl.ac.be

Abstract
Artificial Intelligence (AI) is useful. AI can deliver more functionality for re-
duced cost. AI should be used more widely but won’t be unless developers can
trust adaptive, nondeterministic, or complex AI systems.

Verification and validation is one method used by software analysts to gain
that trust. AI systems have features that make them hard to check using conven-
tional V&V methods. Nevertheless, as we show in this chapter, there are enough
alternative readily-available methods that enable the V&V of AI software.

1. Introduction . 154
2. AI Software Can Be Complex . 157

2.1. Testing . 158
2.2. Run-Time Monitoring . 159
2.3. Static Analysis . 160
2.4. Model Checking . 162
2.5. Theorem Proving . 167

ADVANCES IN COMPUTERS, VOL. 65 153 Copyright © 2005 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(05)65004-8 All rights reserved.

mailto:tim@menzies.us
mailto:pecheur@info.ucl.ac.be

154 T. MENZIES AND C. PECHEUR

3. Model-Based AI Systems . 168
3.1. About Declarative Knowledge. 169
3.2. Declarative Models and V&V . 171

4. The Knowledge Level . 175
5. AI Software Can Be Nondeterministic . .. 178

5.1. Environmental Nondeterminism 179
5.2. Stochastic Nondeterminism. 181
5.3. Concurrency Nondeterminism. 182

6. Adaptive AI Systems . 182
6.1. External Validity . 183
6.2. Learning Rates . 185
6.3. Data Anomaly Detectors . 187
6.4. Stability . 189
6.5. Readability. 190

7. Conclusion . 192
Acknowledgements . 193
References . 193

1. Introduction

Artificial Intelligence (AI) is no longer some bleeding technology that is hyped by
its proponents and mistrusted by the mainstream. In the 21st century, AI is not nec-
essarily amazing. Rather, it is oftenroutine. Evidence for the routine and dependable
nature of AI technology is everywhere (see the list of applications in[1]).

The AI approach has always been at the forefront of computer science research.
Many hard tasks were first tackled and solved by AI researchers before they transi-
tioned to standard practice. Those examples include time-sharing operating systems,
automatic garbage collection, distributed processing, automatic programming, agent
systems, reflective programming and object-oriented programming.

This tradition of AI leading the charge and solving the hard problems continues to
this day. AI offers improved capabilities at a reduced operational cost. For example,
Figure 1describes the AI used in NASA’s Remote Agent Experiment (RAX)[2].
For over a day, this system ran a deep-space probe without any help from mission
control. Such AI-based autonomy is essential to future deep space missions. NASA
needs such autonomous software so that deep space probes can handle unexpected or
important events billions of miles away from earth when they are hours away from
assistance by mission control.

AI software can be complex and thebenefitsof complexity are clear. Some appli-
cations such as the RAX described inFigure 1are inherently complex and require
an extension to existing technology.

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 155

156 T. MENZIES AND C. PECHEUR

FIG. 1. The Remote Agent Experiment, fromhttp://cmex-www.arc.nasa.gov/CMEX/RemoteAgent.
html. NASA’s deep space missions requireautonomous spacecraftsthat don’t rely on ground control.
The Remote Agent Experiment (RAX) was an experiment in autonomy technology: for two days, RAX
provided on-board AI control for the Deep Space One probe, while it was 60,000,000 miles from Earth.
RAX had three main components. ThePlanner & Scheduler(PS) took general goals and determined de-
tailed activities needed to achieve the goals. If a hardware problem developed that prevents execution of
the plan, the planner made a new plan, taking into account degraded capabilities. TheSmart Executive
(EXEC) interpreted the plans and added more detail to them, then issued commands to rest of the satellite.
Lastly, theMode Identification and Recovery(MIR) component (based on the Livingstone diagnosis sys-
tem) acted like a doctor, monitoring the spacecraft’s health. If something went wrong, MIR would detect
it and report it to EXEC. Exec could then consult the “doctor” for simple procedures that may quickly
remedy the problem. If those simple procedures could not resolve the problem, EXEC asked PS for a new
plan that still achieved the mission goals while accounting for the degraded capabilities. (See Color Plate
Section, Plate 13.)

However, thecostof complexity is that complex systems are harder to understand
and hence harder to test. Complex systems like can hide intricate interactions which,
if they happen during flight, could compromise the mission. For example, despite
a year of extensive testing, when Remote Agent was first put in control of NASA’s
Deep Space One mission, it froze because of a software deadlock problem (RAX
was re-activated two days later and successfully completed all its mission objec-
tives). After analysis, it turns out that the deadlock was caused by a highly unlikely
race condition between two concurrent threads inside Remote Agent’s executive. The
scheduling conditions that caused the problem to manifest never happened during
testing but indeed showed up in flight[2].

Hardware engineers solve such problems with hardware redundancy (when one
component fails, its back-up wakes up and takes over). However, redundancy may
not solve software reliability problems. Hardware components fail statistically be-
cause of wear or external damage. Software components programs fail almost exclu-
sively due to latent design errors. Failure of an active system is thus highly correlated
with failure of a duplicate back-up system (unless the systems use different soft-
ware designs, as in the Space Shuttle’s on-board computers). The classic example of
how redundancy does not solve reliability is the infamous Ariane 5 rocket explosion
where the backup Internal Reference system failed on the same software bug several
milliseconds before the primary system failed.1

If redundancy may not increase the reliability of AI software, what else should we
do to check our AI software? How should standard verification and validation (V&V)
be modified to handle AI systems? What are the traps of V&V of AI software? What
leverage for V&V can be gained from the nature of AI software? This chapter offers

1 Seehttp://sunnyday.mit.edu/accidents/Ariane5accidentreport.html.

http://cmex-www.arc.nasa.gov/CMEX/RemoteAgent.html
http://cmex-www.arc.nasa.gov/CMEX/RemoteAgent.html
http://cmex-www.arc.nasa.gov/CMEX/RemoteAgent.html
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 157

an overview of the six features of AI systems that a V&V analysts must understand.
An AI system may be:

(1) complexsoftware;
(2) declarativeandmodel-based, and sometimesknowledge-levelsoftware;
(3) nondeterministicor evenadaptivesoftware.

Fortunately, not all AI systems have all the above features since each can come with
asignificant cost. However, each of these features grantssignificant benefitsthat can
make the costs acceptable.

The rest of this chapter is structured around this list of features of an AI system.
Each feature will be defined and their associated cost and benefits will be discussed.
To help the reader who is a not an AI specialist, many of our sections start with short
tutorials.

Note that the approach of this chapter is different to the traditional reviews of AI
verification (e.g.,[3–15]) or AI (e.g.,[16–24]). To some extent, this difference is due
to the domain within which we work. The first generation of expert system valida-
tion tools worked mostly on the rule-based or frame-based representations that were
common in the 1980s and 1990s. Since then, much has changed. We work with com-
plex model-based autonomous vehicles of the kind flown by NASA. Hence, while
other articles offer success stories with rule-based or frame-based representations
(e.g.,[25–28]and Chapters 8, 30, 31, 34 in[29]), this chapter focuses more on the
features of modern AI that distinguishes it from conventional procedural software;
e.g., nondeterministic adaptive knowledge-level systems.

If the reader is interested in that traditional view, then they might care to read the
references in this paragraph (in particular[24,4,28,29]) or one of the many excellent
on-line bibliographies on V&V of AI systems.2

2. AI Software Can Be Complex

The rest of this chapter stresses what isdifferentabout AI systems and how those
differences affect V&V for AI. Before moving on to that material, this section ob-
serves that AI software is still software, albeit sometimes quite complex software.
Hence, methods developed for assessing normal software systems still apply to AI
systems. V&V analysts should view this chapter as techniques thataugment, not
replacetheir standard V&V methods such as peer reviews, automated test suites,
etc.[30–32].

2 E.g.,http://www.csd.abdn.ac.uk/~apreece/Research/vvbiblio.html.

http://www.csd.abdn.ac.uk/~apreece/Research/vvbiblio.html

158 T. MENZIES AND C. PECHEUR

FIG. 2. The verification methods spectrum. (See Color Plate Section, Plate 14.)

In this section, we review the state-of-the-art in verifying complex software. Many
of these techniques are routinely applied at NASA when verifying complex AI sys-
tems such as RAX.

We start with conventionaltestingas a baseline, then introduce more advanced
formal methods:run-time monitoring, static analysis, model checkingandtheorem
proving. Those methods vary in the strength of the verdicts they provide, as well as
the level of expertise they require—generally speaking, more thorough approaches
require more expertise. This can be laid out as the “verification methods spectrum”
shown inFigure 2.3

2.1 Testing

Traditionally, software verification is done using scenario-based testing. The sys-
tem to be verified is embedded into a test harness that connects to the inputs and
outputs of that component, and drives it through a suite of test runs. Each test run
is an alternated sequence of provided inputs and expected outputs, corresponding to
one scenario of execution of the tested component. An error is signaled when the
received output does not meet the expected one.

Even for simple systems, the design and maintenance of test suites is a difficult
and expensive process. It requires a good understanding of the system to be tested, to
ensure that a maximum number of different situations are covered using a minimum
number of test cases. Running the tests is also a time-consuming task, because the

3 Adapted from John Rushby, in slides of[33]. This spectrum is notional and expresses trends rather
than absolute truths. In particular, a comparative experimental evaluation conducted at NASA[34] con-
cluded that static analysis may require a deep understanding of its underlying algorithms to be used
effectively.

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 159

whole program code has to be executed and everything must be re-initialized before
each test run. In the development of complex systems, it is quite common that testing
the software actually takes more resources than developing it.

While traditional testing may be enough for more conventional software, it falls
short for complex AI software, mainly because the range of situations to be tested is
incomparably larger. A typical intelligent program implicitly incorporates responses
to a very large space of possible inputs (for example, consider the possible interaction
sequences that an autonomous agent like RAX may face). The internal state of the
program is typically huge, dynamically allocated (heap memory, garbage collection)
and may involve complex data structures (knowledge, rules, theories). It depends
on the past history of the system in intricate ways. AI systems may involve several
concurrent components, or other sources of nondeterminism.

Because of all these factors, a test suite can only exercise a very limited portion of
the possible configurations, and it is very hard to assess how much has been covered
and therefore measure the residual risk of errors.

2.2 Run-Time Monitoring

Run-time monitoring, or run-time verification, refers to advanced techniques for
scrutinizing artifacts from an executing program (variables, events, typically made
available through program instrumentation), in order to detect effective or potential
misbehaviors or other useful information.

Simple runtime monitoring methods have been used for decades. For example,
it is standard practice for programmers to add conditionals to their code that print
warning messages if some error condition is satisfied, or to generate and scan ad-
ditional logging messages for debugging purposes. In essence, run-time verification
automates the otherwise strenuous and error-prone task of reviewing these logs man-
ually.

This analysis can be conducted after-the-fact on stored execution traces, but also
on-the-fly while the program is executing. In this latter case, the need to store the
execution trace is alleviated, and the monitor can also trigger recovery mechanisms
as part of a software fault protection scheme.

Recently, the sophistication of runtime monitoring methods has dramatically in-
creased. Commercial tools such as Temporal Rover[35] can instrument a program to
execute inserted code fragments based on complex conditions expressed astemporal
logic formulae(seeFigure 3). New algorithms can detect suspicious concurrent pro-
gramming patterns (data races[36], deadlocks[37]) that are likely to cause an error,
even if no error occurs on the observed trace.

Runtime monitoring typically requires little computing resources and therefore
scales up well to very large systems. On the other hand, it will only observe a limited

160 T. MENZIES AND C. PECHEUR

A temporal logic is a classical logic augmented with operators to reason about the evolution of the
model over time. Temporal logic allows to express conditions over time, such as “any request is always
eventually fulfilled.” For example, (propositional)linear temporal logic, or LTL uses the following
operators:
Property Reads Meansp holds . . .

◦p “next p” . . . in the next state
�p “henceforthp” . . . in all future states
♦p “eventuallyp” . . . in some future state
p U q “p until q” . . . in all states untilq holds

FIG. 3. About temporal logic.

number of executions and thus gives only uncertain results. In the case of error pre-
dictions, it can also give false negatives, i.e., flag potential errors that cannot actually
occur.

One example of a runtime monitoring system is Java Path Explorer (JPaX)[37].
Given a specification of properties to be monitored, JPaX instruments a Java pro-
gram to generate a trace of relevant events. JPaX also produces an observer program
that reads that trace and verifies the properties. The trace can be streamed through a
socket, to allow local or remote on-the-fly monitoring. Both user-provided temporal
logic conditions and generic deadlock and data race conditions can be monitored.

In [38], run-time monitoring is applied (in conjunction with automated test-case
generation) to verify the controller of the K9 planetary rover. The controller is a large
multi-threaded program (35,000 lines of C++) that controls the rover according to a
flexible plan generated by a planning program. Each test case amounts to a plan,
for which a set of temporal properties are derived, according to the semantics of the
plan. The EAGLE system[39] is then used to monitor this properties. This system
is fully automated and unveiled a flaw in plan interpretation, that indeed occurred
during field tests before it was fixed in the controller. A potential deadlock and a data
race were also uncovered.

2.3 Static Analysis

Static Analysis consists in exploring the structure of the source code of a program
without executing it. It is an important aspect of compiler technology, supporting
type analysis and compiler optimizations. A good reference textbook on the topic
can be found in[40]. Static analysis includes such aspects ascontrol- and data-flow
analysis(tracking the flows of execution and the propagation of data in the code),
abstract interpretation(computing abstract approximations of the allowed ranges of
program variables) andprogram slicing(capturing the code portions that are relevant
to a particular set of variables or a function).

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 161

In principle, static analysis can be applied to source code early in the development
and is totally automatic. There is, however, a trade-off between the cost and the pre-
cision of the analysis, as the most precise algorithms have a prohibitive complexity.
More efficient algorithms make approximations that can result in a large number of
false positives, i.e., spurious error or warning messages.

Two commercial static analysis tools are Grammatech’s CodeSurfer and the
PolySpace Verifier[41]. Figure 4shows CodeSurfer using a static control flow analy-
sis to find the codenotreachable from themain function. Such code is dead code and
represents either over-specification (i.e., analysts exploring too many special cases)
or code defects (e.g., the wrong items are present in a conditional). InFigure 4the
code sections reached frommain are shown with dark colored marks in the right-
hand-side of the display. Note that in this case, most of the code isnot reachable
from themain program.

PolySpace uses abstract interpretation to find potential run-time errors in (C or
Ada) programs such as:

• access to non-initialized variables,

• unprotected shared variables in concurrent programs,

• invalid pointer references,

• array bound errors,

• illegal type conversions,

• arithmetic errors (overflow, underflow, division by zero,. . .),

• unreachable code.

The output of the tool consists of a color-coded version of the program source code,
as shown onFigure 5. Green code is guaranteed free from errors, red code is sure to
cause errors, orange code may cause errors (depending on execution paths or because
the analysis was inconclusive), and grey code is unreachable.

Once the code to be analyzed has been identified, static analysis tools such as
CodeSurfer and PolySpace are fully automatic. However, the experiment reported
in [34] concludes that their use can be a labor-intensive, highly iterative process, in
order to: (i) isolate a proper self-standing code set to be analyzed, (ii) understand and
fix the reported red errors, (iii) adjust analysis parameters to reduce the number of
false alarms. The last point can be very detrimental, as the analysis tends to return
a very large number of mostly spurious “orange” warnings, making it very hard to
identify real errors. The C Global Surveyor tool (CGS), currently under development
at NASA, drastically reduces this problem by specializing the analysis algorithms to
the coding practices of a specific class of applications[42].

162 T. MENZIES AND C. PECHEUR

FIG. 4. Slicing in Grammatech’s CodeSurfer tool (seehttp://www.grammatech.com/products/
codesurfer/example.html). (See Color Plate Section, Plate 15.)

2.4 Model Checking

Model Checking consists in verifying that a system (or a model thereof) satis-
fies a property by exhaustively exploring all its reachable states. Model checking
was invented in the 1980s to analyze communication protocols[43,44], and is now
routinely employed in verification of digital hardware. Several mature and powerful
model checkers are available and widely used in the research community; SPIN[45,
46] and SMV[47,48] are probably the best known. See[49] for a comprehensive
theoretical presentation, and[50] for a more practical introduction.

A model checker searches all pathways of the system looking for ways to violate
the property. This requires that this state space be finite and tractable: model checking

http://www.grammatech.com/products/codesurfer/example.html
http://www.grammatech.com/products/codesurfer/example.html
http://www.grammatech.com/products/codesurfer/example.html

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 163

FIG. 5. An example of color-coded source code produced by the PolySpace Verifier. Fromhttp://www.
polyspace.com/datasheets/c_psde.htm(callouts added). (See Color Plate Section, Plate 16.)

is limited by the state space explosion problem, where the number of states can
grow exponentially with the size of the system.4 Tractability is generally achieved
by abstracting away from irrelevant details of the system. If a violation is found, the
model checker returns the counter examples showing exactly how the property is
violated. Such counter examples are useful in localizing and repairing the source of
the violation.

Model checking requires the construction of two models:

• Thesystems modelis an abstract description of the dynamic, generally concur-
rent behavior of a program or system. For tractability reasons, it is usually not

4 When the state space is too large or even infinite, model checking can still be applied: it will not be
able to prove that a property is satisfied, but can still be a very powerful error-finding tool.

http://www.polyspace.com/datasheets/c_psde.htm
http://www.polyspace.com/datasheets/c_psde.htm
http://www.polyspace.com/datasheets/c_psde.htm

164 T. MENZIES AND C. PECHEUR

the complete code from the implementation but rather some abstract verification
model of the application, capturing only the essential features that are relevant
to the properties to be checked.

• The properties modelis a specification of the requirements that should hold
across the systems model. The properties model is often expressed as a temporal
logic constraint.5

Model checkers often impose their own modeling language for both the systems
and the properties, though more and more tools now apply directly to common design
and programming languages (UML, Java), either natively or through translation.

Although model checkers are automatic tools, the benefits of model checking
come at a cost that is often very significant. That cost can be divided into three
components:

• writing cost: the initial cost of developing the systems model and the properties
model, in a form accepted by the model checker;

• running cost: the cost of actually performing the model checking, as many times
as necessary; and

• re-writing cost: the cost of iteratively modifying the models until model check-
ing can complete successfully and provide acceptable results.

With traditional model checking tools, both the systems model and the properties
model have to be written in their own tool-specific language, which often results in
highwriting cost. In particular, scarce and expensive PhD-level mathematical exper-
tise may be required to properly encode properties in formal temporal logic.

Once models have been completed, the model checker explores all the interactions
within the program. In the worst case, the number of such interactions is exponen-
tial on the number of different assignments to variables in the system. Hence, the
running costof this query can be excessive. This large running cost generally forces
analysts to simplify the formal models, for example by removing parts or functions,
abstracting away some details, or restricting the scope of the analysis. Such a rewrite
incurs therewrite cost. On the other hand, simplification may take away elements
that are relevant to the properties being verified, so a balance must be found between
tractability and accuracy of the analysis. This typically requires several iterations and
a significant amount of expertise in both the tools and the application being verified.

Much research has tried to reduce these costs. The writing of systems models can
be avoided by applying model checkers directly to readily available representations,

5 Depending on the model checker being used, properties are sometimes expressed in other forms,
such as invariants that must hold in every state, regular expressions that execution traces must match, or
other dynamic system models whose executions must agree (in some precisely defined sense) with those
of the verified system (see, e.g.,[51]).

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 165

such as design models or program code. For example, the BANDERA system ex-
tracts systems models from JAVA source code and feeds them into SMV or SPIN
machine[52]. Java PathFinder applies model checking directly to Java bytecode, us-
ing its own custom Java virtual machine[53]. Other approaches such as SCR[54–56]
or simple influence diagrams[57] propose simplified modeling environments where
users can express their models in a simple and intuitive framework, and then map
them into model checkers such as SPIN.

Interestingly enough, AI software can offer good opportunities for model check-
ing, as a consequence of using model-based or knowledge-based approaches. This
aspect is discussed in detail in Section3; for now let us point out that the models that
are interpreted in AI systems tend to be abstract enough to be readily amenable to
model checking, with only minor adaptation writing costs. Pecheur and Simmons’
verification of models used for autonomous diagnosis using the SMV symbolic
model checker is a good example[58].

On the properties side, Dwyer, Avrunin and Corbett[59,60] have developed a
taxonomy oftemporal logic patternsthat covers most of the properties observed in
real-world applications. For each pattern, they have defined an expansion from the in-
tuitive pseudo-English form of the pattern to a formal temporal logic formula.6 These
patterns are simpler and more intuitive than their logical counterpart, and shield the
analysts away from the complexity of formal logics. For example, consider the fol-
lowing property on an elevator:

Always, the elevator door never opens more than twice between the source floor
and the destination floor.

If P is the elevator doors opening andQ is the arrival at the source floor andR
arrival at the destination floor, then the temporal logic formula for this property is:

�
(
(Q ∧ ♦R) →

(
(¬P ∧ ¬R) U

(
R ∨

(
(P ∧ ¬R) U

(
R ∨

(
(¬P ∧ ¬R)

U
(
R ∨

(
(P ∧ ¬R) U

(
R ∨ (¬P ∨ R)

)))))))))
.

In contrast, this property can be expressed using the “bounded existence” temporal
logic pattern as “transitions toP -states occur at most2 times betweenQ and R,”
and then be automatically translated to the form above. The translator in[58] offers
a similar facility, though focused on more specific property classes.

These tools reduce thewriting costbut don’t necessary reduce therunning cost
or therewriting cost. The rewriting costis incurred only when therunning costis
too high and the models or constraints must be abbreviated. There is no guarantee
that model checking is tractable over the constraints and models built quickly using

6 Actually, to several logic variants, including Linear Temporal Logic (LTL), Computation Tree Logic
(CTL), Graphical Interval Logic (GIL), Quantified Regular Expressions (QRE) and INCA Queries.

166 T. MENZIES AND C. PECHEUR

temporal logic patterns and tools like SCR. Restricted modeling languagesmaygen-
erate models simple enough to be explored with model checking-like approaches,
but the restrictions on the language can be excessive. For example, checking tem-
poral properties within simple influence diagrams can take merely linear time[57],
but such a language can’t model common constructs such sequences of actions or re-
cursion. Hence, analysts may be forced back to using more general model checking
languages.

Despite decades of work and ever-increasing computing power, the highrunning
costof such general model checking remains a major challenge. Different techniques
have proven to be useful in reducing the running cost of model checking:

• Symbolic Methodsrepresent and process parts of the state symbolically to avoid
enumerating each individual value that they can take. This can be done at the
level of individual model variables[61] or over the model as a whole, using
boolean encodings such as binary decision diagrams[47] or propositional sat-
isfiability solvers[62].

• Abstractioncan be applied in a principled way to map large or infinite concrete
spaces into small abstract domains.Data abstractionapplies to individual vari-
ables (e.g., abstracting an integer to its sign)[63], while predicate abstraction
uses the values of predicates obtained from the model[64]. In either case, the
abstraction is usually not exact and produces spurious traces (i.e., for which no
concrete trace exists in the original model).

• Partial Order Reductionanalyzes dependency between concurrent operations
to avoid exploring multiple equivalent permutations of independent operations.
This is further discussed in Section5.3.

• Symmetry Reductionuses symmetry in the system (e.g., identical agents) to
avoid exploring multiple symmetrical states or paths[65,66].

• Compositional Reasoningdivides the systems model into separate components,
which can be reasoned about separately[67–69]. This generally involves some
form of assume/guarantee reasoning, to capture the interdependency between
the different components.

• Model Reductionreplaces the systems model by a reduced, simpler model
that is equivalent with respect to the property being verified. For example, the
BANDERA system[52] can automatically extract (slice) the minimum portions
of a JAVA program’s byte codes which are relevant to particular properties mod-
els.

While the above techniques have all been useful in their test domains, not all of them
are universally applicable. Certain optimizations require expensive pre-processing,
or rely on certain features of the system being studied. Not all systems exhibit

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 167

reducible symmetry or concurrency that is amenable to partial order reduction. Com-
positional analysis is hard for tightly connected models. In the general case, model
checking techniques are still limited to models of modest size, and obtaining these
models from real applications requires significant work and expertise.

Despite these limitations, model checking is a widely used tool for AI systems at
institutions like NASA. For example, in 1997, a team at NASA Ames used the Spin
model checker to verify parts of the RAX Executive and found five concurrency
bugs[70]. Although it took less than a week to carry out the verification activities,
it took about 1.5 work-months to manually construct a model that could be run by
Spin in a reasonable length of time, starting from the Lisp code of the executive. The
errors found were acknowledged and fixed by the developers of the executive. As
it turns out, the deadlock that occurred during the in-flight experiment in 1999 was
caused by an improper synchronization in another part of the Executive, but was ex-
actly of the same nature as one of the five bugs detected with Spin two years before.
This demonstrates how this kind of concurrency bug can indeed pass through heavy
test screens and compromise a mission, but can be found using more advanced tech-
niques such as model checking. In the same vein, compositional verification has been
applied to the K9 Rover executive[71]. Further examples can be found in the Pro-
ceedings of the recent AAAI 2001 Spring Symposium on Model-Based Validation
of Intelligence.7

2.5 Theorem Proving

Theorem provers build a computer-supported proof of the requirement by logical
induction over the structure of the program. In principle, theorem provers can use the
full power of mathematical logic to analyze and prove properties of any design in its
full generality. For example, the PVS system[72] has been applied to many NASA
applications (e.g.,[73]). However, these provers require a lot of efforts and skills
from their users to drive the proof, making them suitable for analysis of small-scale
designs by verification experts only. In contrast, the other methods discussed in the
previous sections are largely automated, and thus more convenient for verification
as part of a software development process. For this reason, theorem proving is still
mostly limited to a few academic studies and regarded as inapplicable in an industrial
setting.

This view may change, however, as proof systems feature increasingly powerful
proof strategies, that can automatically reduce most of the simpler proof obligations.
Also note that recent developments in formal verification are blurring this distinction
between proof-based and state-based approaches: on one side, proof systems are

7 http://ase.arc.nasa.gov/mvi/.

http://ase.arc.nasa.gov/mvi/

168 T. MENZIES AND C. PECHEUR

extended with model checkers that can be used as decision procedures inside larger
proofs[74]; on the other side, novel symbolic model checking approaches use proof-
based solvers to prune out impossible paths in the symbolic state space[75,61].

3. Model-Based AI Systems

Having discussed how V&V AI can leverage techniques developed for software
engineering problems, we now turn to the special features of AI that change the
V&V task. This section discussesmodel-based. Subsequent sections will discuss
knowledge-levelsystems, nondeterminism, adaptation, and their implications for
V&V.

Every V&V analyst knows that reading and understanding code is much harder
than reading and understanding high-level descriptions of a system. For example,
before reading the “C” code, an analyst might first study some high-level design
documents. The problem with conventional software is that there is no guarantee
that the high-level description actually corresponds to the low-level details of the
system. For example,after the high-level block diagram is designed, a programmer
might add a call between blocks and forget to update the high-level block diagram.

This disconnect between the specification and the implementation raises signif-
icant issues for formal verification. Often, formal verification techniques based on
model checking (as opposed to those based on proof systems8) are able to efficiently
check all possible execution traces of a software system in a fully automatic way.
However, the system typically has to be manually converted beforehand into the
syntax accepted by the model checker. This is a tedious and complex process, that
requires a good knowledge of the model checker, and is therefore usually carried ex-
ternally by a formal methods expert, rather than by the system designer themselves.

A distinct advantage of model-based AI systems is that the high-level description
is the system. A common technique used in AI is to define a specialized, succinct,
high-level modeling language for some domain. This high-level language is then
used to model the domain. If another automatic tool is used to directly execute that
notation, then we canguaranteethat the high-level model has a correspondence to
the low-level execution details.9

These models are oftendeclarativeand V&V analysts can exploit such declarative
knowledge for their analysis.

8 Which can provide even more general results but require an even more involved and skilled guidance.
9 This chapter defines the term “model” in its most common usage; i.e., the thing that is generated by

analysts when they record information about their domain. Logic programming theorists prefer the term
“theory.” In logic, a “model” is someinstanceof a “theory” and is generated automatically at runtime.

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 169

3.1 About Declarative Knowledge

Declarative representations can best be understood by comparing them toproce-
dural representationsused in standard procedural languages such as “C.” Procedural
representations list the ordering of activities require to complete some task. Proce-
dural knowledge often manifests itself in thedoing of somethingand may be hard to
share with others except in the specific context where the procedural knowledge was
developed.

V&V analysts know how hard it can be to un-tangle procedural knowledge such
as a “C” program. Declarative knowledge describes facts and relationships within a
domain. Declarative knowledge can be easier to understand than procedural knowl-
edge; it can be easier to modify, easier to communicate to others, and easier to reuse
for different purposes.

While procedural knowledge is abouthow, declarative knowledge is often state-
ments aboutwhat is true in a domain. For example, consider the following piece of
procedural knowledge. This implementation reports that you have “X” if it finds any
evidence for any of the sub-types of “X.” Note that this is knowledge abouthow to
navigate a hierarchy ofdisease s, and theirsymptom s.

if ((record.disease(X)==found) &&
(diseases = record.disease(X).subtypes))

for(disease in diseases)
for(symptom in disease.symptoms)

for (observation in observations)
if symptom == observation

printf("You have %s which is a type of %s!", disease, X);

return 1

Suppose we wanted to report thedisease that we have themostevidence for;
i.e., thedisease that has the mostsymptoms amongst the availableobser-
vations . In this procedural representation, this change would imply extensive
modification to the code. An alternate approach would be to use declarative rep-
resentations that queried the following facts:

subtype(bacterial, measles). symptom(measles, temperature).
subtype(injury, carAccident). symptom(measles, spots).
subtype(bacterial, gastro). symptom(gastro, temperature).
symptom(gastro, dehydration).
symptom(carAccident, wounds).

Declarative representations free the analyst from specifying tedious procedural
details. For example, the core logic of the above procedural code is that we have
evidence for adisease is we have anyobservation s consistent withsubtyes
of thatdisease . This can be expressed directly and declaratively as follows:

170 T. MENZIES AND C. PECHEUR

% comments start with a percent sign
evidence(Disease,SubType,Evidence):- % we have evidence if..

subtype(Disease,SubType), % we can find a subtype AND
symptom(SubType,Evidence), % AND that subtype has symptoms
observation(Evidence). % AND we can observe those symptoms

This declarative representation is useless without some interpreter that can ex-
ercise it. Our example here uses the syntax of the Prolog logic programming lan-
guage[76]. In that language, upper case words are variables and lower case words
are constants.

The major disadvantage of procedural knowledge is that it can be opaque and
inflexible. Declarative knowledge, on the other hand, is far more flexible since the
knowledge ofwhat is separated from thehow, This means that thewhatcan be used
in many ways.

For example, suppose we want to drive the diagnosisbackwardsand find what
might cause spots. To do this, we first must fool Prolog into believing that all obser-
vations are possible. Since we are using declarative representations, this is simple to
do: we just make an “anything goes” assertion:

observation(_).

Here, the “_” is ananonymous variablethat matches anything at all. In the lan-
guage of Prolog, this means that we will assume any observation at all. With this
“anything goes” in place, we can now drive theevidence rule backwards to find
thatspots can be explained via abacterial infection.

?- evidence(Disease,SubType,spots).

Disease = bacterial
SubType = measles

A more complicated query might be to find evidence thatdisprovessome current
hypothesis. For example, suppose we believe the last query; i.e., the observedspots
can be explained via abacterial infection. Before we commence treatment, how-
ever, it might be wise to first check for evidence of other diseases that share some
of theevidence for measles . Since our knowledge is declarative, we need not
change any of the aboveevidence rule. Instead, we just reuse it in a special way:

differentialDiagnosis(Disease,Old,Since,New,If) :-
evidence(Disease,Old,Since),
evidence(Disease,New,Since), % Old and New share some evidence
evidence(Disease,New,If),
not evidence(Disease,Old,If). % New has some evidence not seen

% in Old

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 171

With this in place, we can run the following query to learn thatmeasles can be
distinguished fromgastro if dehydration can be detected:

?- differentialDiagnosis(bacterial,Old,Since,New,If).

Old = measles
Since = temperature
New = gastro
If = dehydration

While the declarative version of knowledge might be faster to write and change,
it may be slower to run. Procedural knowledge can be highly optimized to take ad-
vantage of low-level details of a system. In the 1970s, this was taken to be a major
disadvantage of declarative knowledge. In the 21st century, this is much less of an
issue. Not only are computers much faster now, but so are the interpreters for our
declarative systems (e.g.,[77,78]), particularly when the representation can be re-
stricted to some subset of full logic (e.g.,[79,80]).

3.2 Declarative Models and V&V

The ability to build simple queries for a declarative model greatly reduces the
effort required for V&V. For example, one method for V&V of model-based systems
is to build a profile of anaverage model. The TEIREISIAS[81] rule editor applied
a clustering analysis to its models to determine what parameters wererelated; i.e.,
are often mentioned together. If proposed rules referred to a parameter, but not its
related parameters, then TEIREISIAS would point out a possible error.

Declarative modeling tend to only use a small number of modeling constructs. This
simplifies the construction of translators from one modeling language to another, and
in particular from AI modeling languages to verification modeling languages such as
those used by model checkers (as discussed in Section2.4). Moreover, the reason-
ing algorithms used in AI typically suffer from similarly high complexity metrics
as model checking, and therefore the size and complexity of AI models is already
limited by the scalability of their intended usage. Indeed, AI fields such as planning
and scheduling have much in common with model checking, in the way they both
explore a state space described by a model. This similarity has lead to some cross-
fertilization between the two fields in the recent years, with verification adopting
search heuristics from planning on one hand[82] and planners based on verification
technology such as BDDs on the other hand[83].

For example, Pecheur and Simmons have developed a translator to convert Living-
stone models to SMV[58]. Livingstone is a model-based health monitoring system
developed at NASA[84]. It tracks the commands issued to the device and monitors
device sensors to detect and diagnose failures. To achieve this, Livingstone relies on

172 T. MENZIES AND C. PECHEUR

a model of the device that describes, for each component, the normal and abnormal
functioning modes, how these modes are affected by commands and how they af-
fect sensors. The translator enables exhaustive analysis of those models using the
powerful SMV model checker. The essence of the translation is fairly straightfor-
ward, thanks to the similar semantics framework used in both Livingstone and SMV.
The translator also supports user-oriented specification patterns and variables to ex-
press common classes of properties such as consistency or existence of a broken
component. These declarations are captured and converted into the core temporal
logic syntax accepted by SMV. Finally, the execution traces returned by SMV can
be converted back into Livingstone syntax. Together, these three translation capa-
bilities (model, properties, trace) isolate the Livingstone application developer from
the peculiarities of SMV and provide the functional equivalent of a symbolic model
checker for Livingstone, as depicted ifFigure 6.

The translator has been used at NASA Kennedy Space Center by the developers of
a Livingstone model for the In-Situ Propellant Production (ISPP), a system that will
produce spacecraft propellant using the atmosphere of Mars[85]. The latest version
of the ISPP model, with 1050 states, could still be processed in less than a minute
using SMV optimizations (re-ordering of variables). The Livingstone model of ISPP
features a huge state space but little depth (all states can be reached within at most
three transitions), for which the symbolic processing of SMV is very appropriate.

This tool can be used to check general sanity properties (e.g., consistency, ab-
sence of ambiguity, no conflicting transitions) or specific expected properties of the
modeled device (e.g., flow conservation, functional dependency between variables).
More recently, the technique has been extended to verifydiagnosability properties,
i.e., the possibility for an ideal diagnosis system to infer accurate and sufficient in-
formation on the state of the device from its observed behavior[86]. Diagnosability
amounts to the absence of certain pair of traces with identical observations, which

FIG. 6. Translator from Livingstone to SMV (MPL is Livingstone’s modeling language).

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 173

can be turned into a simple model checking problem over a duplicated version of the
original model.

Model checking is powerful, but can be complicated. Feather and Smith report
that a much simpler model-based technique can still be very insightful[87]. When
asked to check the planner module of NASA’s Remote Agent Experiment (RAX;
seeFigure 1and [88]), they developed the architecture ofFigure 7. RAX’s plan-
ner automatically generated plans that responded to environmental conditions while
maintaining the constraints and type rules specified by human analysts. An impor-
tant feature of the planner was the declarative nature of the constraints being fed
into the plannerand the plans being generated. Feather and Smith found these plans
could be easily and automatically converted into the rows of a database. Further, the
constraints could also be easily and automatically converted to queries over the data-
base. As a result, given the same input as the planner, they could build a simple test
oracle that could check if the planner was building faulty plans. Note that, formally,
the Feather and Smith method can be considered as an example of (after-the-fact)
run-time monitoring (which was discussed above in Section2.2).

The Feather and Smith method can be very cost-effective and applied quite widely:

FIG. 7. A framework for model-based V&V.

174 T. MENZIES AND C. PECHEUR

• The rectangles inFigure 7denoting the sections that must be built manually.
Once these sections are built, they can be reused to check any number of plans.

• The architecture ofFigure 7could be generalized to any device that accepts
declarative constraints as inputs and generates declarative structures as output.

Preece reports other simple but effective V&V tools that utilize the model-based na-
ture of AI systems[4]. Preece studied rule-based models which are lists of statements
of the following form:

if

premise︷ ︸︸ ︷
La ∧ Lb ∧ Lc ∧ · · · then

conclusion︷ ︸︸ ︷
Lx ∧ Ly ∧ Lz ∧ · · · .

The Preece analysis defined a taxonomy of verification issues for rule-based models
(seeFigure 8) and argued that a variety of AI model-based verification tools target
different subsets of these issues (perhaps using different terminology).

The Preece taxonomy require meta-knowledge about the terms found within a
knowledge base (which Preece et al. callliterals):

• A literal Li is askableif it represents a datum that the rule-base can request
from the outside world.

• A literal Li is afinal hypothesisif it is declared to be so by the rule-base’s author
and only appears in a rule conclusion.

• A rule isredundantif the same final hypotheses are reachable if that rule was re-
moved. Anunusableredundant rule has some impossible premise. A rule-base
is deficientif a consistent subset ofaskablesleads to no final hypotheses. Adu-
plicate redundant rulehas a premise that is a subset of another rule premise.

• Preece definedduplicate rulesfor the propositional case andsubsumed redun-
dant rulesfor the first-order case. In the first-order case, instantiations have to
be made to rule premise variables prior to testing for subsets.

Anomaly←

Redundant←
{

Unusable
Redundant←

{
Duplicate
Subsumed

Ambivalence← Conflict
Circularity

Deficiency←
{

Missing rules
Missing values

FIG. 8. The Preece hierarchy of verification errors.

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 175

TABLE I
RATIO OF ERRORS/ANOMALIES SEEN IN REAL-WORLD EXPERT SYSTEMS

Application

mmu tapes neuron displan dms1 errors/anomalies

subsumed 0 5/5 0 4/9 5/59 14/73= 19%

missing rules 0 16/16 0 17/59 0 33/75= 44%

circularity 0 0 0 20/24 0 20/24= 83%

From[7]. “Subsumed” reports repeated rule conditions. “Missing rules” denote combination of attribute
ranges not seen in any rule. “Circularity” reports loops found in the dependency graph between variables
in the system.

• Preece definedambivalenceas the case where, given different consistent subset
of askables, a rule-base can infer the same final hypotheses.

Preece stresses that the entries in their taxonomy of rule-base anomalies may not
be true errors. For example, the dependency network from a rule-base may show
a circularity anomaly between literals. However, this may not be a true error. Such
circularities occur in (e.g.) user input routines that only terminate after the user has
supplied valid input.

More generally, Preece argued convincingly that automatic verification tools can
never find “errors.” Instead, they can only find “anomalies” which must be checked
manually. The percentage of true errors, i.e., errors/anomalies can be quite small. For
example,Table Ishows the errors/anomalies ratios seen in five KBSs. Note that not
all anomalies are errors.

4. The Knowledge Level

After decades of model-based programming, certain common model-based tasks
were identified. That is, model-based programming became viewed like assembler
code on top of which a range ofknowledge-level problem solving methods(PSMs)
are implemented.

A standard hierarchy of PSMs is shown inFigure 9. In this view, RAX’s MIR (di-
agnosis) component (described inFigure 1) is one kind of diagnosis PSM. Another
diagnosis PSM is shown inFigure 10. In that figure ovals denote functions and rec-
tangles denote data structures. Formally, that figure represents a mapping from data
d to an hypothesish via intermediariesZ and other dataRi :

abstract
(
data(d), R1, obs(Z)

)
∧ hypothesis

(
obs(Z), R2, hyp(h)

)

176 T. MENZIES AND C. PECHEUR

FIG. 9. A hierarchy of problem solving methods.

FIG. 10. Explicit problem solving (PSM) meta-knowledge: A simple KADS-style PSM for diagnosis.
Abstract andhypothesis are primitive inferences which may appear in other PSMs. From[89].

Various design and code libraries were built around these knowledge-level PSMs,
e.g., cognitive patterns[90]; CommonKADS[91–93]; configurable role-limiting
methods[94,95]; MIKE [96]; the Method-To-Task approach[97]; generic tasks[98];
SPARK/BURN/FIREFIGHTER[99]; model construction operators[100]; compo-
nents of expertise[101]; and the systems described in[102,103,98,104,105,93,90].
The advantage of these PSMs is that they offer an organizational layer on top of
model-based methods. V&V analysts can use this layer as an indexing method for
their evaluation techniques.

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 177

For example, van Harmelen and Aben[89] discuss formal methods for repairing
the diagnosis PSMs ofFigure 10. V&V analysts can restrict their analysis of this
model to the three ways this process can fail:

(1) It can fail to proveabstract(data(d), R1, obs(Z)); i.e., it is missing abstraction
rules that mapd to observations.

(2) It can fail to provehypothesize(obs(Z′), R2, hyp(h)); i.e., it is missing causal
rules that mapZ′ to an hypothesish.

(3) It can prove either subgoal of the above process, but not the entire conjunction;
i.e., there is no overlap in the vocabulary ofZ andZ′ such thatZ = Z′.

Case #1 and #2 can be fixed by adding rules of the missing type. Case #3 can be fixed
by adding rules which contain the overlap of the vocabulary of the possibleZ values
and the possibleZ′ values. More generally, given a conjunction of more than one
sub-goal representing a PSM, fixes can be proposed for any sub-goal or any variable
that is used by> 1 sub-goal.

Another knowledge-level V&V technique is to audit how the PSMs are built.
Knowledge not required for the PSM of the application is superfluous and can be
rejected. In fact, numerous AI editors arePSM-awareand auto-configure their input
screens from the PSM such that only PSM-relevant knowledge can be entered by the
user. For example:

• RIME’s rule editor [106,25] acquired parts of the KB minority-type meta-
knowledge for the XCON computer configuration system[28]. RIME assumed
that the KB comprised operator selection knowledge which controlled the ex-
ploration of a set of problem spaces. After asking a few questions, RIME could
auto-generate complex executable rules.

• SALT’s rule editor interface only collected information relating directly to its
propose-and-revise inference strategy. Most of the SALT rules(2130/3062≈
70%) were auto-generated by SALT.

• Users of the SPARK/BURN/FIREFIGHTER (SBF)[99] can enter their knowl-
edge of computer hardware configuration via a click-and-point editor of busi-
ness process graphs. SBF reflects over this entered knowledge, then reflects over
its library of PSMs. When more than one PSM can be selected by the entered
knowledge, SBF automatically generates and asks a question that most differ-
entiates competing PSMs.

PSM-aware editors can not only assist in entering knowledge, but also in testing
and automatically fixing the entered data. For example, in the case where numerous
changes have to be made to a PSM, if the user does not complete all those changes,
then the PSM may be broken. Gil and Tallis[107] use a scripting language to con-
trol the modification of a multi-PSM to prevent broken knowledge. TheseKA scripts

178 T. MENZIES AND C. PECHEUR

TABLE II
CHANGE TIMES FORETM WITH FOUR SUBJECTS: S1. . . S4. FROM [107]

Simple task #1 Harder task #2

No ETM With ETM No ETM With ETM

S4 S1 S2 S3 S2 S3 S1 S2

Time completing transactions 16 11 9 9 53 32 17 20
Total changes 3 3 3 3 7 8 10 9
Changes made automatically n/a n/a 2 2 n/a n/a 7 8

are controlled by the EXPECT TRANSACTION MANAGER (ETM) which is trig-
gered when EXPECT’s partial evaluation strategy detects a fault.Table II shows
some speed up in maintenance times for two change tasks for EXPECT KBS, with
and without ETM. Note that ETM performed some automatic changes (last row of
Table II).

5. AI Software Can Be Nondeterministic

The main challenge in verifying AI software (or, for that matter, any kind of com-
plex system) comes from the number of different possible executions that have to be
taken into account. We refer broadly to this uncertainty on a system’s future behavior
asnondeterminism. Nondeterministic choices come from incoming external events,
scheduling of concurrent tasks, or even intentional random choices in the program,
to name a few. Every choice point in the execution results in as many possible sub-
sequent execution branches. Typically, those choices compound into exponentially
many possible executions. This is known as thestate space explosionphenomenon.

Nondeterminism can be eitherexternalor internal:

• External nondeterminismresults from input or events coming from theenvi-
ronment. Examples include system configuration and initialization, invocation
parameters, messages, discrete events, continuous data streams. In the case of
model-based systems, the models themselves constitute a huge choice space, as
far as the interpreter is concerned.

• Internal nondeterminismresult from the system itself. A common source iscon-
currency, where scheduling choices are made between concurrent executions
(for example, a knowledge system that processes knowledge updates concur-
rently). Another case isstochastic, where the system itself is deliberately mak-
ing random (or pseudo-random) choices.

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 179

The important distinction between these two is that while external nondeterminism
is controllable(and therefore can, in principle, be tested), internal nondeterminism
is not, which poses an additional problem to the verifier: the same test case may
produce different results when run several times, and it is hard to measure or control
the coverage of internal nondeterministic choices.

Conventional sequential programs are usually (internally) deterministic, in that
they contain hard-wired decision paths that result in a functional mapping from in-
puts to outputs. The same is true of many applicative AI algorithms taken in isolation.
However, as these algorithms get implemented and assembled together to build com-
plex intelligent software, additional nondeterminism is introduced in the form of
concurrent components executing asynchronously. This is particularly the case for
reactive systems such as robotic controllers, that have to react in a timely manner
to external stimuli occurring at unpredictable times. These systems can resort to
anytimealgorithms, whose output depends on how long they are allowed to run.
In typical concrete cases, nondeterminism is thus an issue that V&V analysts of AI
systems have to face.

The rest of this section discusses V&V and these different types of nondetermin-
ism.

5.1 Environmental Nondeterminism

The standard method of managing environmental nondeterminism is to build a
operational profilemodeling the probability that a certain variable setting will appear
at runtime[108]. The range of possible inputs can now be sampled via the operational
profile. The operational profile can be used to generate representative nominal inputs.
Also, by inverting the profile, unlikely off-nominal test cases can also be generated.

In the case of AI agents performing tasks in dynamic environments for deep space
missions, building an accurate operational profile is a very difficult task. In turns out
that operational profile errors can be compensated by increasing the number of tests.
Figure 11shows Pasquini’s study where the original operational profileOPe was
compared to three profiles containing an increasing number of errors. The mutants
were called (in order of increasing errors)OP1, OP2, OP3. The inaccuracies in the
operational profiles were very apparent after a small number of tests. However, above
100 tests randomly selected from each profile, the errors of the different profiles
converged and after a 1000 tests, the effects of those errors were negligible.

The system studied by Pasquini was not a complex AI system. It is reasonable to
assume that more complex systems would require exponentially more tests to com-
pensate for errors in the operational profile. In many real-world situations, it is not
practical to run a very large number of tests.Table III shows the pre-launch test
regime for the remote agent. The testing team had to share certain test rigs with

180 T. MENZIES AND C. PECHEUR

FIG. 11. Sensitivity of reliability-growth models to operational profile errors vs testing accuracy.
Hand-translated from[109].

numerous other development teams. As those test rigs got more elaborate (e.g., in-
creasing fidelity to the actual in-flight software/hardware combination), they were
slower to run and all the development teams, including the testers, got less and less
access.Table III shows that Remote Agent launched after 610 tests. Therefore, mere
operational profile sampling may be inadequate for AI systems.

Various researchers have explored intelligent methods for sampling a program’s
input space. For example, Smith et al.[111] characterized the inputs to the RAX
planner as ann-dimensional parameter space and used orthogonal arrays to select a
manageable number of cases that exercises all pair-wise combinations of parameter
values. In this rig, an intelligent sample of RAX’s input space required a number of
tests that is logarithmic on the number of RAX’s input parameters.

TABLE III
NUMBER OF DOCUMENTED PRE-LAUNCH TESTS FORTHAT RAX NASA SATELLITE AS IT MOVED

FROM SOFTWARE SIMULATIONS (IN PHASE 1) TO SOME HARDWARE TEST BENCHES(PHASE 5
AND 6), THE FINALLY TO THE ACTUAL M ISSION (PHASE 7). FROM [110]

Test platform Speed

Phase Hardware Flight software Test:real # tests

1 nil some 35:1 269
2 nil some 7:1 ≈ 300
3 nil some 1:1 ≈ 20
4 nil all 1:1 10
5 flight spare all 1:1 10
6 flight spare all 1:1 1
7 actual satellite all 1:1 1

total: ≈ 611

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 181

5.2 Stochastic Nondeterminism

Often, AI algorithms use some internal random choice to break out of dead-ends
or to explore their models. Such stochastic methods can be remarkably effective. For
example, stochastic choice has been observed to generate plans in AI systems one
to two orders of magnitude bigger than ever done before with complete search[79,
112]. Yet another source of stochastic nondeterminism isadaptationwhen a system’s
behavior changes as a result of new experience. Adaptation is discussed later (see
Section6).

A concern with stochastic nondeterminism is that the variance in the system’s
output will be so wild that little can be predicted or guaranteed about the system’s
performance at runtime. Before a V&V analyst can certify such a wildly varying
system, they might first need toconstrainit to the point where definite predictions
can be made about the system’s behavior. A typical way to find these controlling
constraints is to instrument the system so that internal choices become visible and
controllable, effectively turning them into external choices.

Some empirical results suggest that if instrumentation is successful, then the sub-
sequent learning of controllers may be quite simple. Thefunnelassumption is that
within a nondeterministic program there exists a small number of assumptions that
control which nondeterministic option the program will take[113]. This assumption
appears in multiple domains, albeit using different terminology:master-variables
in scheduling[114]; prime-implicantsin model-based diagnosis[115] or machine
learning[116], or fault-tree analysis[117]; backbonesor back doors in satisfiabil-
ity [118–120]; dominance filteringused in Pareto optimization of designs[121]; and
the minimal environmentsin the ATMS [122]. Whatever the name, the intuition is
the same: whatever happens in the larger space of the program is controlled by a few
variables.

There is much empirical and analytical evidence that narrow funnels are found
in many models. Menzies and Singh argue that the whole field of soft computing
utilizes that assumption[113]. Later in this chapter, in Section6.5, we will discuss
the TAR3 learner. TAR3 was built as a test of the narrow funnel assumption. If such
funnels exist, they would appear as variable bindings with a much higher frequency
in preferred situations. TAR3 collects such frequency counts, normalizes and accu-
mulates them. When applied to models with stochastic nondeterminism, TAR3 can
find a very small set of treatments that constrain the nondeterminism, while selecting
for better overall system behavior (see the examples in[123,124]).

The caveat here is that the nondeterministic system must be exercised sufficiently
to give TAR3 enough data to learn the funnels. For more on that issue, see Sec-
tion 6.2.

182 T. MENZIES AND C. PECHEUR

5.3 Concurrency Nondeterminism

At the conceptual level, AI algorithms are typically sequential (though possibly
nondeterministic). In real applications, though, concurrency is often present. For ex-
ample:

• A knowledge base receives and processes queries and updates concurrently.

• An intelligent robot controller responds to physical stimuli occurring at unpre-
dictable times.

• A chess playing program is distributed over many processors for improving
performance.

• Intelligent web services communicate with each other to negotiate some busi-
ness contract.

Concurrency errors have been known to cause trouble in AI software. As we men-
tioned in the introduction, the error that caused a deadlock during the RAX experi-
ment on-board Deep Space One was a typical concurrency error.

Concurrency is a particular form of nondeterminism, and thus a major source
of concern for V&V. Concurrency-related flaws typically result inrace conditions,
which manifest themselves only under specific timings of events and are very hard to
detect and reproduce. This leads to critical systems being designed to minimize con-
currency risks, using strictly sequenced chains or cycles of execution, or with tightly
isolated concurrent components.

Model checking is well suited to verifying concurrent systems, and has been orig-
inally developed in that domain. As opposed to a conventional test-bed, the model
checker has full control over the scheduling of concurrent executions and can there-
fore explore all nondeterministic alternatives.

Concurrency-related state-space explosion can be addressed using a particular
class of optimization calledpartial-order reduction(POR). This is based on the
“diamond” principle(

ւց
ցւ): if two concurrent operations are independent, then it

does not matter in which order they are executed. This can be used to dramatically
cut down the search space, provided that (sufficient conditions for) independence
between operations can be asserted[125,126]. Implementations exploiting this tech-
nique can constrain how the space is traversed[127], or constructed in the first
place[128].

6. Adaptive AI Systems

In the language of the previous section, adaptation is another source of nondeter-
minism. Depending on the learning method, adaptation can either be:

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 183

• Stochastic nondeterminismwhen some random choice is used in the learning,
e.g., in genetic algorithms;

• Environmental nondeterminismwhen the learning changes according to the data
passed into the system from the outside.

Regardless of the source of nondeterminism, the net result is that adaptive systems
can adjust their own internal logic at runtime. Adaptive systems have the benefit that
the software can fix itself. For example, a planning system might find a new method
to generate better plans in less time. The problem with adaptive systems is that the
adaption might render obsolete any pre-adaption certification.

There are many different adaptive systems such as decision explanation-based
generalization[129,130], chunking[129,130], genetic algorithms[131], simulated
annealing[132], tree learners[133], just to name a few. An example of decision tree
adaptation is shown inFigure 12. In that figure, the decision tree on the right was
generated from the data on the left. We see that we do not play golf on high-wind
days when it might rain.

Despite there being many different learning methods, there exist several adaptive
V&V criteria that can be applied to all learners: external validity, learning rates, data
anomaly detectors, stability, and readability. These are discussed below.

6.1 External Validity

While themethodof adaptation can vary thegoalof the different methods is sim-
ilar. Adaptation builds or tune some theory according to a set of new examples.
Therefore, to validate any adaptive system, it is useful to start with validating that
enough examples are available to support adequate adaptation.

When checking that enough data was available for the adaptation, good experi-
mental technique is important. If the goal of adaptation is to generate models that
have some useful future validity, then the learnt theory should be tested on data not
used to build it. Failing to do so can result in a excessive over-estimate of the learnt
model. For example, Srinivasan and Fisher report an 0.82 correlation(R2) between
the predictions generated by their learnt decision tree and the actual software devel-
opment effort seen in their training set[134]. However, when that data was applied
to data from another project, that correlation fell to under 0.25. The conclusion from
their work is that a learnt model that works fine in one domain may not apply to
another.

One standard method for testing how widely we might apply a learnt model is
N-way cross validation:

• The training set is divided intoN buckets. Often,N = 10.

184
T.M

E
N

Z
IE

S
A

N
D

C
.P

E
C

H
E

U
R

Data Learnt theory

#outlook, temp, humidity, windy, class
#------- ---- -------- ----- -----
sunny, 85, 85, false, dont_play
sunny, 80, 90, true, dont_play
overcast, 83, 88, false, play
rain, 70, 96, false, play
rain, 68, 80, false, play
rain, 65, 70, true, dont_play
overcast, 64, 65, true, play
sunny, 72, 95, false, dont_play
sunny, 69, 70, false, play
rain, 75, 80, false, play
sunny, 75, 70, true, play
overcast, 72, 90, true, play
overcast, 81, 75, false, play
rain, 71, 96, true, dont_play

FIG. 12. Decision-tree learning. Classified examples (left) generate the decision tree (right).

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 185

• For each bucket in turn, a treatment is learned on the otherN − 1 buckets then
tested on the bucket put aside.

• The prediction for the error rate of the learnt model is theaverageof the classi-
fication accuracy seen during theN -way study.

In essence,N -way cross validation is orchestrating experiments in which the learnt
model is tested ten times against data not seen during training.

When assessingdifferent adaptation mechanisms, theN -ways are repeatedM
times. In a 10-by-10 cross-validation study, the ordering of examples in a data set
is randomized 10 times and a separate 10-way study is conducted for each of the
ten random orderings. Such 10-by-10 study generates 100 training and 100 test sets
and each of these should be passed to the different learners being studied. This will
generate a mean and standard deviation on the classification accuracy for the learners
being studied and these should be compared with a t-test with 10 degrees of freedom
(and not 99, see[135]).

6.2 Learning Rates
Another important criteria for any learning is that oflearning rates; i.e., how does

the learnt theory change over time as more data is processed.
One way to study learning rates is via asequence study. This is a variant on a 10-

way study but this time training occurs on an increasing percentage of the available
data. More precisely:

• The data is divided intoN buckets.

• X
N

th of the data forX ∈ {1, 2, . . . N − 1} is used for training;

• The remainingN−X
N

of the data is used for testing.

Note that the sequence stops atN − 1 since training onN
N

of the data would leave
nothing for the test suite(1− N

N
= 0). In aM-by-N sequencestudy, the above process

is repeatedM times with the ordering of the example data randomized before each
N -sequence study. The mean and standard deviation of the accuracy at eachN value
is reported.M-by-N sequence studies let us check how early learning stabilizes as
more data is used in the training.

Figure 13show results of aM-by-N sequence study for six data sets using〈M =
N = 20〉. In this study, the same decision tree learner was used as seen inFigure 12.
The vertical-axis ranges from zero to 100% accuracy. The horizontal-axis shows the
training set growing in size. The whiskers inFigure 13show±1 standard deviation
of the 20 experiments conducted at a particularN value.

Figure 13is divided into three groups. On the left-hand column are data sets where
the adaptation needs more examples than what is currently available:

186
T.M

E
N

Z
IE

S
A

N
D

C
.P

E
C

H
E

U
R

need more data enough data more data not useful

FIG. 13. M-by-N sequences studies on six data sets.

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 187

• The standard deviation in the classification accuracies of the top-left are very
large. Clearly, in that data set, training is insufficient for stable future predic-
tions.

• The mean classification of the bottom-left plot is very low (less than 40%), even
though all the available training data has been passed to the learner. The accu-
racy improves as the training set grows but much more data would be required
before a V&V analyst could check if adaptation is performing adequately in
that domain.

The middle column ofFigure 13shows examples were the learning improves dra-
matically during the sequence, rises to medium or high level accuracies, then plateaus
beforewe exhaust all the data in this domain. The conclusion from these two plots
would be that we are collecting adequate amounts of data in this domain and that the
benefits of further data collection might be quite low.

The right-hand column ofFigure 13shows examples where, very early in the
sequence, the adaption reaches medium to high levels and does not improve as more
data is supplied. For these domains, a V&V analyst would conclude thattoo much
data was collected in this domain.

Note that the learning never achieves 100% accuracy. Making some errors is fun-
damental to the learning task. If something adapts perfectly to past example, then it
canover-fit to the data. Such over-fitted adaption can obsess on minor details in the
training data and can perform poorly on future examples if those future examples
contain trivial differences to the training example.

Studying the shape of these sequence learning curves is an important V&V tech-
nique for adaptive real-time systems. Consider a real-time controller that must adapt
to sudden changes to an aircraft; e.g., the flaps on the left wing have suddenly frozen.
The V&V task here would be to predict the shape of these curves in the space of pos-
sible future input examples. Such predictions would inform questions such as “would
the controller adapt fast enough to save the plane?”

There are many ways to explore the space of possible future input examples. One
way is the sequence study shown above: the ordering of existing data is randomized
many times and, each time, the learner learns for that sequence of data. Another
way would be to generate artificial examples from distributions seen in current data
or from known distributions in the environment. Yet another way is to define an
anomaly detectorwhich triggers if newly arriving data is different to data which the
learner has previously managed[136,137].

6.3 Data Anomaly Detectors
Figure 14shows a general framework for wrapping a learner in anomaly detectors.

When new data arrives apre-filter could reject the new input if it is too anomalous.

188 T. MENZIES AND C. PECHEUR

FIG. 14. Applications of anomaly detection. From[138].

Any accepted data is then passed to the adaptive module. This module offers some
conclusion; e.g., adds a classification tag. The output of the adaption module there-
fore contains more structure than the input example so a secondpost-filteranomaly
detector might be able to recognize unusual output from the learner. If so, then some
repair action might be taken to (e.g.) stop the output from the learner effecting the rest
of the system. In effect,Figure 14is like an automated V&V analyst on permanent
assignment, watching over the adaptive device.

Figure 15shows an example of a pre-filter anomaly detector. That figure is a rep-
resentation of high dimensional data collected from nominal and five off-nominal
modes from a flight simulator passed through asupport vector machine. Support
vector machinesrecognizing the borderline examples that distinguish between dif-
ferent classes of data. Such machines run very quickly and scale very well to data
sets with many attributes. The crosses inFigure 15show training examples and the
closed lines around the circles represent the border between “familiar” and “anom-
alous” data. Our learner should be able to handle failure mode 5 since data from that
mode falls mostly in the “familiar” zone. However, Failure Mode 2 worries us the
most since much of the data from that mode falls well outside the “familiar” zone.

Figure 15only shows anomalydetection. After detection, some repair action is
required. The precise nature of the repair action is domain-specific. For example, in
the case of automatic flight guidance systems, the repair action might be either “pass
control to the human pilot” or, in critical flight situations, “hit the eject button.”

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 189

FIG. 15. Identifying anomalous data. From[138].

6.4 Stability

Apart from studying the above, a V&V analyst for an adaptive system might also
care to review theresultsof the learning. When a V&V analyst is reading the output
of a learner, one important property of the learning isstability; i.e., the output theory
is the same after different runs of the learner.

Not all learners are stable. For example, decision tree learners like the one used
in Figure 12arebrittle; i.e., minor changes to the input examples can result in very
different trees being generated[139]. Also, learners that use random search can leap
around within the learning process. For example, genetic programming methods
randomlymutatea small portion of each generation of their models. Such random
mutations may generate different theories on different runs. Therefore, if an output
theory is to be manually inspected, it is wise to select learners that generatestable
conclusions. For example, Burgess and Lefley report[140] that in ten runs of a neural
net and genetic programming system trying to learn software cost estimation models,

190 T. MENZIES AND C. PECHEUR

the former usually converged to the same conclusion while the latter could generate
different answers with each run.

6.5 Readability

Lastly, another interesting V&V criteria for a learner isreadability; i.e., assessing
if the output from the learner is clear and succinct.

Not all learners generate readable output. For example, neural net and Bayes clas-
sifiers store their knowledge numerical as a set of internal weights or table values that
are opaque to the human reader. Research in neural net validation often translate the
neural net into some other form to enable visualization and inspection (e.g.,[141]).
Even learners that use symbolic, not numeric, representations can generate unread-
able output. For example,Figure 16was learnt from 506 examples of low, medium
low, medium high, and high quality houses in Boston. While a computer program
could apply the learnt knowledge, it is virtually unreadable by a human.

Some learners are specifically designed to generate succinct, simple, readable out-
put. The TAR3treatment learner[142–146,123,124,147]seek thesmallestnumber
of attribute ranges thatmostselect for preferred classes andleastselect for undesired
classes. Treatments are like constraints which, if applied to the test set, selects a sub-
set of the training examples. A treatment isbestif it most improvesthe distribution
of classes seen in the selected examples. From the same data as used inFigure 16,
TAR3 learns Eq.(1):

(1)best= (6.7 � RM < 9.8) ∧ (12.6 � PTRATION< 15.9)

That is, good houses can be found by favoring houses with 7 to 9 rooms in suburbs
with a parent-teacher ratio in the local schools of 12.6 to 15.9; The effects on the
distribution of selected houses by Eq.(1) are shown inFigure 17. In the raw data,
the quality of houses was evenly distributed. In the treated data, most of the selected
houses (97%) are now high quality.

Which is a better representation of the data? The details ofFigure 16or the high-
level summary of Eq.(1)? That choice is up to the reader but if they are a busy V&V
analyst struggling to understand an adaptive system, they might be attracted to the
succinctness of Eq.(1).

FIG. 16. A learnt decision tree. Classes (right-hand side), top-to-bottom, are “high,” “med-
high,” “medlow,” and “low” This indicates median value of owner-occupied homes in $1000’s. De-
cision tree learnt from the 506 cases in HOUSING example set from the UC Irvine repository
(http://www.ics.uci.edu/~mlearn/).

http://www.ics.uci.edu/~mlearn/

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 191

192 T. MENZIES AND C. PECHEUR

FIG. 17. Treatments learnt by TAR3 from the data used inFigure 16. That dataset had the class
distribution shown left-hand side. Actions that most increase housing values are shown in the right column.

7. Conclusion

This chapter offers a diverse set of technologies to support the V&V of adaptive
systems. If there is a single conclusion from such a diverse survey is that developers
should not be afraid of AI. AI is useful. AI can deliver more functionality for reduced
cost. AI should and will be used more widely.

On the other hand, AI systems have features that make them hard to check using
conventional methods. Nevertheless, there are enough alternative readily-available
methods that enable the V&V of AI software:

• AI software can becomplex. Powerful methods like model checkers and static
analysis tools has evolved in the software engineering area to simplify the task
of checking such complex systems. Many of those methods can be applied to
AI systems.

• The model-basednature of AI systems makes it easier for V&V analysts to
extract features from a system and this can be exploited in several ways.

• Sometimes, the inference associated with those models falls into one of a small
set of commonly-usedknowledge-levelproblem solving methods and special-
ized V&V techniques are appropriate for different problem solving methods.

• AI systems can benondeterministic. Different methods apply for the V&V of
nondeterministic systems depending on the nature of the nondeterminism (en-
vironmental, concurrent, stochastic).

• Adaptive systems are an extreme for of stochastic nondeterministic systems.
The V&V of adaptive systems can apply such criteria like external validity,
learning rate, stability, etc.

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 193

ACKNOWLEDGEMENTS

On a previous version of this chapter, Dale Pace and Steve Stevenson[148] of-
fered some excellent guidance and Lisa Montgomery provided invaluable editorial
advice. The work was partially sponsored by the NASA Office of Safety and Mission
Assurance under the Software Assurance Research Program led by the NASA IV&V
Facility, and by the NASA Engineering for Complex Systems Program. Reference
herein to any specific commercial product, process, or service by trade name, trade-
mark, manufacturer, or otherwise does not constitute nor imply its endorsement by
the Authors or the United States Government.

REFERENCES

[1] Menzies T., “21st century AI: proud, not smug”, Editorial, IEEE Intelligent Systems,
Special Issue on AI Pride. Available fromhttp://menzies.us/pdf/03aipride.pdf.

[2] Bernard D., et al., “Spacecraft autonomy flight experience: The DS1 Remote Agent
experiment”, in:Proceedings of the AIAA, 1999, Albuquerque, NM, 1999.

[3] Suwa M., Scott A., Shortliffe E., “Completeness and consistency in rule-based expert
systems”,AI Magazine3 (4) (1982) 16–21.

[4] Preece A., “Principles and practice in verifying rule-based systems”,The Knowledge
Engineering Review7 (1992) 115–141.

[5] Rousset M., “On the consistency of knowledge bases: the COVADIS system”, in:Pro-
ceedings of the 8th European Conference on Artificial Intelligence (ECAI’88), 1988,
pp. 79–84.

[6] Preece A., Shinghal R., Batarekh A., “Verifying expert systems: A logical framework
and a practical tool”,Expert Systems with Applications5 (2) (1992) 421–436.

[7] Preece A., Shinghal R., “Verifying knowledge bases by anomaly detection: An experi-
ence report”, in:ECAI ’92, 1992.

[8] Prakash G., Subramanian E., Mahabala H., “A methodology for systematic verification
of ops5-based AI applications”, in:Proceedings of the 12th International Joint Confer-
ence on Artificial Intelligence (IJCAI’91), 1991, pp. 3–8.

[9] Nguyen T., Perkins W., Laffey T., Pecora D., “Knowledge base verification”,AI Maga-
zine8 (2) (1987) 69–75.

[10] Meseguer P., “Incremental verification of rule-based expert systems”, in:Proceedings of
the 10th European Conference on Artificial Intelligence, ECAI-92, 1992, pp. 840–844.

[11] Meseguer P., “Verification of multi-level rule-based expert systems”, in:Proceedings of
the 9th National Conference on Artificial Intelligence, 1991, pp. 323–328.

[12] Ginsberg A., Weiss S., Politakis P., “Automatic knowledge base refinement for classifi-
cation systems”,Artificial Intelligence35 (1988) 197–226.

[13] Evertsz R., “The automatic analysis of rule-based system based on their procedural
semantics”, in:Proceedings of the 12th International Joint Conference on Artificial In-
telligence (IJCAI’91), 1991, pp. 22–27.

[14] Chang C., Combs J., Stachowitz R., “Report on the expert systems validation associate
(EVA)”, Expert Systems with Applications1 (3) (1990) 217–230.

http://menzies.us/pdf/03aipride.pdf

194 T. MENZIES AND C. PECHEUR

[15] Ayel M., “Protocols for consistency checking in expert system knowledge bases”, in:
Proceedings of the 8th European Conference on Artificial Intelligence (ECAI’88), 1988,
pp. 220–225.

[16] Grogono P., Batarekh A., Preece A., Shinghal R., Suen C., “Expert system evaluation
techniques: A selected bibliography”,Expert Systems(1992) 227–239.

[17] Hoppe P.M.T., “Vvt terminology: A proposal”,IEEE Expert8 (3) (1993) 48–55.
[18] Laurent J., “Proposals for a valid terminology in KBS validation”, in:Proceedings of the

10th European Conference on Artificial Intelligence, ECAI-92, Vienna, Austria, 1992,
pp. 829–834.

[19] Lopez E.P.B., Meseguer P., “Knowledge based systems validation: A state of the art”,
Artificial Intelligence Communications5 (3) (1990) 119–135.

[20] Meseguer P., “Towards a conceptual framework for expert system validation”,Artificial
Intelligence Communications5 (3) (1992) 119–135.

[21] O’Keefe R., O’Leary D., “Expert system verification and validation: A survey and tuto-
rial”, Artificial Intelligence Review7 (1993) 3–42.

[22] R.O.R.M., Balci O., Smith E., “Validating expert system performance”,IEEE Expert87
(1987) 81–89.

[23] Rushby J., “Quality measures and assurance for AI software”, sRI-CSL-88-7R, SRI
Project 4616 (1988).

[24] Zlatereva N., Preece A., “State of the art in automated validation of knowledge-based
systems”,Expert Systems with Applications7 (1994) 151–167.

[25] Soloway E., Bachant J., Jensen K., “Assessing the maintainability of XCON-in-rime:
Coping with the problems of a very large rule-base”, in:AAAI ’87, 1987, pp. 824–829.

[26] McDermott J., “R1’s formative years”,AI Magazine2 (2) (1981) 21–29.
[27] Hamilton C.C.D., Kelley K., “State-of-the-practice in knowledge-based system verifi-

cation and validation”,Expert Systems with Applications3 (1991) 403–410.
[28] Bachant J., McDermott J., “R1 Revisited: Four years in the trenches”,AI Magazine

(1984) 21–32.
[29] Buchanan B., Shortliffe E.,Rule-Based Expert Systems: The MYCIN Experiments of the

Stanford Heuristic Programming Project, Addison–Wesley, Reading, MA, 1984.
[30] McConnell S., “The best influences on software engineering”, IEEE Software. Available

from http://www.computer.org/software/so2000/pdf/s1010.pdf.
[31] Boehm B., “Safe and simple software cost analysis”,IEEE Software(2000) 14–17.

Available fromhttp://www.computer.org/certification/beta/Boehm_Safe.pdf.
[32] Shull F., Basili V., Boehm B., Brown A., Costa P., Lindvall M., Port D., Rus I.,

Tesoriero R., Zelkowitz M., “What we have learned about fighting defects”, in:Pro-
ceedings of 8th International Software Metrics Symposium, Ottawa, Canada, 2002,
pp. 249–258. Available fromhttp://fc-md.umd.edu/fcmd/Papers/shull_defects.ps.

[33] Rushby J., “Disappearing formal methods”, in:High-Assurance Systems Engineering
Symposium, Association for Computing Machinery, Albuquerque, NM, 2000, pp. 95–
96,http://www.csl.sri.com/~rushby/hase00.html.

[34] Brat G., Giannakopoulou D., Goldberg A., Havelund K., Lowry M., Pasareanu C.,
Venet A., Visser W., “Experimental evaluation of verification and validation tools on

http://www.computer.org/software/so2000/pdf/s1010.pdf
http://www.computer.org/certification/beta/Boehm_Safe.pdf
http://fc-md.umd.edu/fcmd/Papers/shull_defects.ps
http://www.csl.sri.com/~rushby/hase00.html

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 195

Martian rover software”, in:CMU/SEI Software Model Checking Workshop, Pittsburg,
USA, 2003; extended version to appear inFormal Methods in System Design.

[35] Drusinsky D., “The temporal rover and the ATG rover”, in:SPIN Model Checking
and Software Verification, in: Lecture Notes in Computer Science, vol. 1885, Springer-
Verlag, Berlin/New York, 2000, pp. 323–330.

[36] Savage S., Burrows M., Nelson G., Sobalvarro P., Anderson T., “Eraser: A dynamic
data race detector for multithreaded programs”,ACM Transactions on Computer Sys-
tems15 (4) (1997) 391–411.

[37] Havelund K., Ro¸su G., “Monitoring Java programs with Java PathExplorer”, in: 1st
Workshop on Runtime Verification (RV’01), Paris, France,Electronic Notes in Theoret-
ical Computer Science55 (2001).

[38] Artho C., Drusinsky D., Goldberg A., Havelund K., Lowry M., Pasareanu C., Ro¸su G.,
Visser W., “Experiments with test case generation and runtime analysis”, in: Börger E.,
Gargantini A., Riccobene E. (Eds.),Abstract State Machines (ASM’03), in: Lecture
Notes in Computer Science, vol. 2589, Springer-Verlag, Berlin/New York, 2003, pp. 87–
107, version to appear in the journal of Theoretical Computer Science.

[39] Barringer H., Goldberg A., Havelund K., Sen K., “Rule-based runtime verification”, in:
5th International Conference on Verification, Model Checking and Abstract Interpreta-
tion (VMCAI’04), Venice, Italy, 2004.

[40] Nielson F., Nielson H.R., Hankin C.,Principles of Program Analysis, Springer-Verlag,
Berlin/New York, 1999.

[41] Deutsch A., “Next generation testing tools for embedded applications”, white paper,
PolySpace Technologies,http://www.polyspace.com/docs/Static_Verification_paper.
pdf.

[42] Venet A., Brat G., “Precise and efficient static array bound checking for large embed-
ded C programs”, in:Proceedings of the International Conference on Programming
Language Design and Implementation (PLDI04), ACM Press, Washington DC, USA,
2004, pp. 231–242.

[43] Queille J.-P., Sifakis J., “Specification and verification of concurrent systems is
CESAR”, in:International Symposium on Programming, in: Lecture Notes in Computer
Science, vol. 137, Springer-Verlag, Berlin/New York, 1982, pp. 337–351.

[44] Clarke E., Emerson E., Sistla A., “Automatic verification of finite-state concurrent
systems using temporal logic specifications”,ACM Transactions on Programming Lan-
guages and Systems8 (2) (1986) 244–263.

[45] Holzmann G., “Software model checking with SPIN”, in: Zelkowitz M.V. (Ed.), Ad-
vances in Computers, vol. 65, Elsevier, Amsterdam, 2005, pp. 77–108 (this volume).

[46] Holzmann G.J., “The model checker SPIN”,IEEE Transactions on Software Engineer-
ing 23 (5) (1997).

[47] Burch J.R., Clarke E.M., McMillan K.L., Dill D.L., Hwang J., “Symbolic model check-
ing: 1020 states and beyond”,Information and Computation98 (2) (1992) 142–170.

[48] Cimatti A., Clarke E., Giunchiglia F., Roveri M., “NuSMV: A new symbolic model
verifier”, in: Proceedings of International Conference on Computer-Aided Verification,
1999.

http://www.polyspace.com/docs/Static_Verification_paper.pdf
http://www.polyspace.com/docs/Static_Verification_paper.pdf
http://www.polyspace.com/docs/Static_Verification_paper.pdf

196 T. MENZIES AND C. PECHEUR

[49] Clarke E.M., Grumberg O., Peled D.,Model Checking, MIT Press, Cambridge, MA,
1999.

[50] Bérard B., Bidoit M., Finkel A., Laroussinie F., Petit A., Petrucci L., Schnoebelen P.,
Systems and Software Verification: Model-Checking Techniques and Tools, Springer-
Verlag, Berlin/New York, 2001.

[51] Garavel H., Jorgensen M., Mateescu R., Pecheur C., Sighireanu M., Vivien B.,
“Cadp’97—status, applications and perspectives”, in: Lovrek I. (Ed.),Proceedings of
the 2nd COST 247 International Workshop on Applied Formal Methods in System De-
sign (Zagreb, Croatia), 1997.

[52] Corbett J., Dwyer M., Hatcliff J., Laubach S., Pasareanu C., “Bandera: Extracting finite-
state models from Java source code”, in:Proceedings ICSE2000, Limerick, Ireland,
2000, pp. 439–448.

[53] Visser W., Havelund K., Brat G., Park S., “Model checking programs”, in:Proceedings
of the IEEE International Conference on Automated Software Engineering, 2000, pp. 3–
12.

[54] Heitmeyer C., “Software cost reduction”, in: Marciniak J.J. (Ed.),Encyclopedia of Soft-
ware Engineering, 2002. Available fromhttp://chacs.nrl.navy.mil/publications/CHACS/
2002/2002heitmeyer-encse.pdf.

[55] Heitmeyer C., Jeffords R., Labaw B., “Automated consistency checking of requirements
specifications”,ACM Transactions on Software Engineering and Methodology5 (3)
(1996) 231–261. Available fromhttp://citeseer.nj.nec.com/heitmeyer96automated.html.

[56] Heitmeyer C., Labaw B., Kiskis D., “Consistency checking of SCR-style requirements
specifications”, in:International Symposium on Requirements Engineering, York, Eng-
land, March 26–27, 1995.

[57] Menzies T., Powell J., Houle M.E., “Fast formal analysis of requirements via ‘topoi
diagrams’ ”, in:ICSE, 2001, 2001. Available fromhttp://menzies.us/pdf/00fastre.pdf.

[58] Pecheur C., Simmons R., “From Livingstone to SMV: Formal verification for au-
tonomous spacecrafts”, in: Verlag S. (Ed.),Proceedings of 1st Goddard Workshop on
Formal Approaches to Agent-Based Systems, in: Lecture Notes in Computer Science,
vol. 1871, NASA Goddard, 2000.

[59] Dwyer M.B., Avrunin G.S., Corbett J., “A system specification of patterns”,http://www.
cis.ksu.edu/santos/spec-patterns/.

[60] Dwyer M., Avrunin G., Corbett J., “Patterns in property specifications for finite-state
verification”, in:ICSE98: Proceedings of the 21st International Conference on Software
Engineering, 1998.

[61] Pasareanu C., Visser W., “Verification of java programs using symbolic execution and
invariant generation”, in:Proceedings of SPIN 2004, Barcelona, Spain, in: Lecture
Notes in Computer Science, vol. 2989, Springer-Verlag, Berlin/New York, 2004.

[62] Biere A., Cimatti A., Clarke E.M., Zhu Y., “Symbolic model checking without BDDs”,
in: Cleaveland R. (Ed.),Proceedings of the 5th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS ’99), in: Lecture Notes
in Computer Science, vol. 1579, Springer-Verlag, Berlin/New York, 1999, pp. 193–207.

[63] Clarke E.M., Grumberg O., Long D.E., “Model checking and abstraction”,ACM Trans-
actions on Programming Languages Systems16 (5) (1994) 1512–1542.

http://chacs.nrl.navy.mil/publications/CHACS/2002/2002heitmeyer-encse.pdf
http://chacs.nrl.navy.mil/publications/CHACS/2002/2002heitmeyer-encse.pdf
http://chacs.nrl.navy.mil/publications/CHACS/2002/2002heitmeyer-encse.pdf
http://citeseer.nj.nec.com/heitmeyer96automated.html
http://menzies.us/pdf/00fastre.pdf
http://www.cis.ksu.edu/santos/spec-patterns/
http://www.cis.ksu.edu/santos/spec-patterns/
http://www.cis.ksu.edu/santos/spec-patterns/

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 197

[64] Graf S., Saidi H., “Verifying invariants using theorem proving”, in:Conference on Com-
puter Aided Verification CAV’96, in: Lecture Notes in Computer Science, vol. 1102,
Springer-Verlag, Berlin/New York, 1996.

[65] Clarke E., Filkorn T., “Exploiting symmetry in temporal logic model checking”, in:Fifth
International Conference on Computer Aided Verification, Springer-Verlag, Berlin/New
York, 1993.

[66] Ip C., Dill D., “Better verification through symmetry”,Formal Methods in System De-
sign9 (1/2) (1996) 41–75.

[67] Clarke E., Long D.E., “Compositional model checking”, in:4th Annual Symposium on
Logic in Computer Science, 1989.

[68] Clancy D., Kuipers B., “Model decomposition and simulation: A component based
qualitative simulation algorithm”, in:AAAI-97, 1997.

[69] Giannakopoulou D., Pasareanu C., Barringer H., “Assumption generation for software
component verification”, in:Proceedings of the 17th IEEE International Conference on
Automated Software Engineering (ASE 2002), Edinburgh, UK, 2002.

[70] Havelund K., Lowry M., Park S., Pecheur C., Penix J., Visser W., White J.L., “For-
mal analysis of the remote agent before and after flight”, in:Proceedings of 5th NASA
Langley Formal Methods Workshop, Williamsburg, Virginia, 2000.

[71] Giannakopoulou D., Pasareanu C., Barringer H., “Assumption generation for software
component verification”, in:Proceedings of the 17th IEEE International Conference on
Automated Software Engineering (ASE 2002), Edinburgh, UK, 2002.

[72] Owre S., Rajan S., Rushby J.M., Shankar N., Srivas M.K., “PVS: Combining specifi-
cation, proof checking, and model checking”, in:Proceedings of the 8th International
Conference on Computer Aided Verification, Springer-Verlag, Berlin/New York, 1996,
pp. 411–414.

[73] Crow J., Di Vito B., “Formalizing space shuttle software requirements: four case stud-
ies”, ACM Transactions Software Engineering Methodology7 (3) (1998) 296–332.

[74] Owre S., Rushby J., Shankar N., “Integration in PVS: tables, types, and model check-
ing”, in: Brinksma E. (Ed.),Tools and Algorithms for the Construction and Analysis of
Systems TACAS ’97, Enschede, The Netherlands, in: Lecture Notes in Computer Sci-
ence, vol. 1217, Springer-Verlag, Berlin, 1997, pp. 366–383,http://www.csl.sri.com/
papers/tacas97/.

[75] de Moura L., Owre S., Ruess H., Rushby J., Shankar N., “The ICS decision procedures
for embedded deduction”, July 2004.

[76] Bratko I., Prolog Programming for Artificial Intelligence, third ed., Addison–Wesley,
Reading, MA, 2001.

[77] Kalman J.A.,Automated Reasoning with OTTER, Rinton Press, Reading, MA, 2002.
[78] Stickel M., “A Prolog technology theorem prover: A new exposition and implementation

in Prolog”,Theoretical Computer Science104(1992) 109–128.
[79] Kautz H., Selman B., “Pushing the envelope: Planning, propositional logic and sto-

chastic search”, in:Proceedings of the Thirteenth National Conference on Artificial
Intelligence and the Eighth Innovative Applications of Artificial Intelligence Con-
ference, AAAI Press/MIT Press, Menlo Park, 1996, pp. 1194–1201. Available from
http://www.cc.gatech.edu/~jimmyd/summaries/kautz1996.ps.

http://www.csl.sri.com/papers/tacas97/
http://www.csl.sri.com/papers/tacas97/
http://www.csl.sri.com/papers/tacas97/
http://www.cc.gatech.edu/~jimmyd/summaries/kautz1996.ps

198 T. MENZIES AND C. PECHEUR

[80] Nayak P.P., Williams B.C., “Fast context switching in real-time propositional reason-
ing”, in: Proceedings of AAAI-97, 1997. Available fromhttp://ack.arc.nasa.gov:80/ic/
projects/mba/papers/aaai97.ps.

[81] Davis R., “Interactive transfer of expertise: Acquisition of new inference rules”,Artifi-
cial Intelligence12 (2) (1979) 121–157.

[82] Groce A., Visser W., “Heuristic model checking for Java programs”, in:Proceedings of
SPIN 2002, Grenoble, France, 2002.

[83] Cimatti A., Roveri M., “Conformant planning via symbolic model checking”,Journal
of Artificial Intelligence Research13 (2000) 305–338.

[84] Williams B.C., Nayak P.P., “A model-based approach to reactive self-configuring sys-
tems”, in:Proceedings of AAAI-96, 1996.

[85] Clancy D., Larson W., Pecheur C., Engrand P., Goodrich C., “Autonomous control of an
in-situ propellant production plant”, in:Proceedings of Technology 2009 Conference,
Miami, 1999.

[86] Cimatti A., Pecheur C., Cavada R., “Formal verification of diagnosability via symbolic
model checking”, in:Proceedings of IJCAI’03, Acapulco, Mexico, 2003.

[87] Feather M., Smith B., “Automatic generation of test oracles: From pilot studies to
applications”, in:Proceedings of the Fourteenth IEEE International Conference on
Automated Software Engineering (ASE-99), Cocoa Beach, Florida, 1999, pp. 63–72.
Available fromhttp://www-aig.jpl.nasa.gov/public/planning/papers/oracles-ase.pdf.

[88] Muscettola N., Nayak P.P., Pell B., Williams B., “Remote agent: To boldly go where no
AI system has gone before”,Artificial Intelligence103(1–2) (1998) 5–48.

[89] van Harmelen F., Aben M., “Structure-preserving specification languages for
knowledge-based systems”,International Journal of Human–Computer Studies44
(1996) 187–212.

[90] Gardner K.M., Rush A.R., Crist M., Konitzer R., Odell J.J., Teegarden B., Konitzer R.,
Cognitive Patterns: Problem-Solving Frameworks for Object Technology, Cambridge
University Press, Cambridge, UK, 1998.

[91] Wielinga B., Schreiber A., Breuker J., “KADS: a modeling approach to knowledge en-
gineering”,Knowledge Acquisition4 (1992) 1–162.

[92] Schreiber A.T., Wielinga B., Akkermans J.M., Velde W.V.D., de Hoog R., “Com-
monKADS: a comprehensive methodology for KBS development”,IEEE Expert9 (6)
(1994) 28–37.

[93] Schreiber G. (Ed.),Knowledge Engineering and Management: The CommonKADS
Methodology, MIT Press, Cambridge, MA, 1999.

[94] Swartout B., Gill Y., “Flexible knowledge acquisition through explicit representation
of knowledge roles”, in:1996 AAAI Spring Symposium on Acquisition, Learning, and
Demonstration: Automating Tasks for Users, 1996.

[95] Gil Y., Melz E., “Explicit representations of problem-solving strategies to support
knowledge acquisition”, in:Proceedings AAAI’ 96, 1996.

[96] Angele J., Fensel D., Studer R., “Domain and task modelling in MIKE”, in: A.G. Sut-
cliffe, et al. (Eds.),Domain Knowledge for Interactive System Design, Chapman & Hall,
London/New York, 1996.

http://ack.arc.nasa.gov:80/ic/projects/mba/papers/aaai97.ps
http://ack.arc.nasa.gov:80/ic/projects/mba/papers/aaai97.ps
http://ack.arc.nasa.gov:80/ic/projects/mba/papers/aaai97.ps
http://www-aig.jpl.nasa.gov/public/planning/papers/oracles-ase.pdf

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 199

[97] Eriksson H., Shahar Y., Tu S.W., Puerta A.R., Musen M.A., “Task modeling with
reusable problem-solving methods”,Artificial Intelligence79 (2) (1995) 293–326.

[98] Chandrasekaran B., Johnson T., Smith J.W., “Task structure analysis for knowledge
modeling”,Communications of the ACM35 (9) (1992) 124–137.

[99] Marques D., Dallemagne G., Kliner G., McDermott J., Tung D., “Easy programming:
Empowering people to build their own applications”,IEEE Expert(1992) 16–29.

[100] Clancey W., “Model construction operators”,Artificial Intelligence53 (1992) 1–115.
[101] Steels L., “Components of expertise”,AI Magazine11 (1990) 29–49.
[102] Benjamins R., “Problem-solving methods for diagnosis and their role in knowledge

acquisition”,International Journal of Expert Systems: Research and Applications8 (2)
(1995) 93–120.

[103] Breuker J., de Velde W.V. (Eds.),The CommonKADS Library for Expertise Modelling,
IOS Press, Netherlands, 1994.

[104] Motta E., Zdrahal Z., “Parametric design problem solving”, in:Proceedings of the 10th
Banff Knowledge Acquisition for Knowledge-Based System Workshop, 1996.

[105] Tansley D., Hayball C.,Knowledge-Based Systems Analysis and Design, Prentice Hall,
New York, 1993.

[106] de Brug A.V., Bachant J., McDermott J., “The taming of R1”,IEEE Expert(1986) 33–
39.

[107] Gil Y., Tallis M., “A script-based approach to modifying knowledge bases”, in:Pro-
ceedings of the 14th National Conference on Artificial Intelligence (AAAI-97), 1997.

[108] Musa J., Iannino A., Okumoto K.,Software Reliability: Measurement, Prediction, Ap-
plication, McGraw–Hill, New York, 1987.

[109] Pasquini A., Crespo A.N., Matrella P., “Sensitivity of reliability-growth models to op-
erational profile errors vs testing accuracy”,IEEE Transactions on Reliability45 (4)
(1996) 531–540.

[110] Muscettola N.A.R.C.N., Personal communication (2000).
[111] Smith B., Feather M., Muscettola N., “Challenges and methods in validating the re-

mote agent planner”, in:Proceedings of the Fifth International Conference on Artifi-
cial Intelligence Planning Systems (AIPS-2000), 2000. Available fromhttp://www-aig.
jpl.nasa.gov/public/home/smith/publications.html.

[112] Selman B., Levesque H., Mitchell D., “A new method for solving hard satisfiability
problems”, in:AAAI ’92, 1992, pp. 440–446.

[113] Menzies T., Singh H., “Many maybes mean (mostly) the same thing”, in: Madravio M.
(Ed.), Soft Computing in Software Engineering, Springer-Verlag, Berlin/New York,
2003. Available fromhttp://menzies.us/pdf/03maybe.pdf.

[114] Crawford J., Baker A., “Experimental results on the application of satisfiability algo-
rithms to scheduling problems”, in:AAAI ’94, 1994.

[115] Rymon R., “An se-tree-based prime implicant generation algorithm”,Annals of Math-
ematics and Artificial Intelligence11 (1994) (special issue on model-based diagnosis).
Available fromhttp://citeseer.nj.nec.com/193704.html.

[116] Rymon R., “An SE-tree based characterization of the induction problem”, in:Interna-
tional Conference on Machine Learning, 1993, pp. 268–275.

http://www-aig.jpl.nasa.gov/public/home/smith/publications.html
http://www-aig.jpl.nasa.gov/public/home/smith/publications.html
http://www-aig.jpl.nasa.gov/public/home/smith/publications.html
http://menzies.us/pdf/03maybe.pdf
http://citeseer.nj.nec.com/193704.html

200 T. MENZIES AND C. PECHEUR

[117] Lutz R., Woodhouse R., “Bi-directional analysis for certification of safety-critical soft-
ware”, in: 1st International Software Assurance Certification Conference (ISACC’99),
1999. Available fromhttp://www.cs.iastate.edu/~rlutz/publications/isacc99.ps.

[118] Parkes A., “Lifted search engines for satisfiability”,http://citeseer.nj.nec.com/
parkes99lifted.html, 1999.

[119] Singer J., Gent I.P., Smaill A., “Backbone fragility and the local search cost peak”,Jour-
nal of Artificial Intelligence Research12 (2000) 235–270,http://citeseer.nj.nec.com/
singer00backbone.html.

[120] Williams R., Gomes C., Selman B., “Backdoors to typical case complexity”, in:Pro-
ceedings of IJCAI, 2003, 2003,http://www.cs.cornell.edu/gomes/FILES/backdoors.pdf.

[121] Josephson J., Chandrasekaran B., Carroll M., Iyer N., Wasacz B., Rizzoni G., “Explo-
ration of large design spaces: an architecture and preliminary results”, in:AAAI ’98,
1998. Available fromhttp://www.cis.ohio-state.edu/~jj/Explore.ps.

[122] DeKleer J., “An assumption-based TMS”,Artificial Intelligence28 (1986) 163–196.
[123] Feather M., Menzies T., “Converging on the optimal attainment of requirements”,

in: IEEE Joint Conference On Requirements Engineering ICRE’02 and RE’02, 9–13
September, University of Essen, Germany, 2002. Available fromhttp://menzies.us/
pdf/02re02.pdf.

[124] Menzies T., Chiang E., Feather M., Hu Y., Kiper J., “Condensing uncertainty via incre-
mental treatment learning”, in: Khoshgoftaar T.M. (Ed.),Software Engineering with
Computational Intelligence, Kluwer, Dordrecht/Norwell, MA, 2003. Available from
http://menzies.us/pdf/02itar2.pdf.

[125] Valmari A., “A stubborn attack on state explosion”, in: Kurshan R.P., Clarke E.M.
(Eds.),Proceedings of the 2nd Workshop on Computer-Aided Verification (Rutgers, New
Jersey, USA), in: DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 3, AMS–ACM, 1990, pp. 25–42.

[126] Godefroid P.,Partial-Order Methods for the Verification of Concurrent Systems—
An Approach to the State-Explosion Problem, Lecture Notes in Computer Science,
vol. 1032, Springer-Verlag, Berlin/New York, 1996.

[127] Godefroid P., “On the costs and benefits of using partial-order methods for the veri-
fication of concurrent systems (invited papers)”, in:The 1996 DIMACS Workshop on
Partial Order Methods in Verification, July 24–26, 1996, 1997, pp. 289–303.

[128] Schneider F., Easterbrook S., Callahan J., Holzmann G., “Validating requirements for
fault tolerant systems using model checking”, in:3rd IEEE International Conference
On Requirements Engineering, 1998.

[129] van Harmelen F., Bundy A., “Explanation-based generalisation= partial evaluation”,
Artificial Intelligence(1988) 401–412.

[130] Mitchell T., Keller R., Kedar-Cabelli S.T., “Explanation-based generalization: A unify-
ing view”, Machine Learning1 (1986) 47–80.

[131] Goldberg D.,Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison–Wesley, Reading, MA, 1989.

[132] Kirkpatrick S., Gelatt C.D., Vecchi M.P., “Optimization by simulated annealing”,
Science4598 (13 May 1983) 220;Science4598 (1983) 671–680;http://citeseer.
nj.nec.com/kirkpatrick83optimization.html.

http://www.cs.iastate.edu/~rlutz/publications/isacc99.ps
http://citeseer.nj.nec.com/parkes99lifted.html
http://citeseer.nj.nec.com/parkes99lifted.html
http://citeseer.nj.nec.com/parkes99lifted.html
http://citeseer.nj.nec.com/singer00backbone.html
http://citeseer.nj.nec.com/singer00backbone.html
http://citeseer.nj.nec.com/singer00backbone.html
http://www.cs.cornell.edu/gomes/FILES/backdoors.pdf
http://www.cis.ohio-state.edu/~jj/Explore.ps
http://menzies.us/pdf/02re02.pdf
http://menzies.us/pdf/02re02.pdf
http://menzies.us/pdf/02re02.pdf
http://menzies.us/pdf/02itar2.pdf
http://citeseer.nj.nec.com/kirkpatrick83optimization.html
http://citeseer.nj.nec.com/kirkpatrick83optimization.html
http://citeseer.nj.nec.com/kirkpatrick83optimization.html

VERIFICATION AND VALIDATION AND ARTIFICIAL INTELLIGENCE 201

[133] Quinlan R.,C4.5: Programs for Machine Learning, Morgan Kaufman, San Mateo, CA,
ISBN: 1-55860-238-0, 1992.

[134] Srinivasan K., Fisher D., “Machine learning approaches to estimating software devel-
opment effort”,IEEE Transactions on Software Engineering(1995) 126–137.

[135] Bouckaert R., “Choosing between two learning algorithms based on calibrated tests”.
Available fromhttp://www.cs.pdx.edu/~timm/dm/10x10way, 2003.

[136] Liu Y., Menzies T., Cukic B., “Data sniffing—monitoring of machine learning for
online adaptive systems”, in:IEEE Tools with AI, 2002. Available fromhttp://
menzies.us/pdf/03datasniffing.pdf.

[137] Liu Y., Menzies T., Cukic B., “Detecting novelties by mining association rules”. Avail-
able fromhttp://menzies.us/pdf/03novelty.pdf, 2003.

[138] Liu Y., Gururajan S., Cukic B., Menzies T., Napolitano M., “Validating an on-
line adaptive system using SVDD”, in:IEEE Tools with AI, 2003. Available from
http://menzies.us/pdf/03svdd.pdf.

[139] Witten I.H., Frank E.,Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations, Morgan Kaufmann, San Mateo, CA, 1999.

[140] Burgess C., Lefley M., “Can genetic programming improve software effort estimation?
A comparative evaluation”,Information and Software Technology43 (14) (2001) 863–
873.

[141] Taylor B., “Development of methodologies for iv&v neural networks: Literature
survey of current v&v technology”. Available fromhttp://sarpresults.ivv.nasa.gov/
ViewResearch/914/11.jsp, 2004.

[142] Hu Y., “Treatment learning: Implementation and application”, Masters Thesis, Depart-
ment of Electrical Engineering, University of British Columbia, 2003.

[143] Menzies T., Hu Y., “Reusing models for requirements engineering”, in:1st Interna-
tional Workshop on Model-based Requirements Engineering, 2001. Available from
http://menzies.us/pdf/01reusere.pdf.

[144] Menzies T., Hu Y., “Constraining discussions in requirements engineering”, in:1st In-
ternational Workshop on Model-based Requirements Engineering, 2001. Available from
http://menzies.us/pdf/01lesstalk.pdf.

[145] Menzies T., Hu Y., “Agents in a wild world”, in: Rouff C. (Ed.),Formal Approaches to
Agent-Based Systems, 2002. Available fromhttp://menzies.us/pdf/01agents.pdf.

[146] Menzies T., Hu Y., “Just enough learning (of association rules): The TAR2 treat-
ment learner”,Artificial Intelligence Review(2004). Available fromhttp://menzies.us/
pdf/02tar2.pdf.

[147] Menzies T., Hu Y., “Data mining for very busy people”,IEEE Computer(2003). Avail-
able fromhttp://menzies.us/pdf/03tar2.pdf.

[148] Menzies T., Sinsel E., Kurtz T., “Learning to reduce risks with cocomo-ii”, in:Work-
shop on Intelligent Software Engineering, An ICSE 2000 Workshop, and NASA/WVU
Software Research Lab, Fairmont, WV, Tech. report # NASA-IVV-99-027, 1999, 2000.
Available fromhttp://menzies.us/pdf/00wise.pdf.

http://www.cs.pdx.edu/~timm/dm/10x10way
http://menzies.us/pdf/03datasniffing.pdf
http://menzies.us/pdf/03datasniffing.pdf
http://menzies.us/pdf/03datasniffing.pdf
http://menzies.us/pdf/03novelty.pdf
http://menzies.us/pdf/03svdd.pdf
http://sarpresults.ivv.nasa.gov/ViewResearch/914/11.jsp
http://sarpresults.ivv.nasa.gov/ViewResearch/914/11.jsp
http://sarpresults.ivv.nasa.gov/ViewResearch/914/11.jsp
http://menzies.us/pdf/01reusere.pdf
http://menzies.us/pdf/01lesstalk.pdf
http://menzies.us/pdf/01agents.pdf
http://menzies.us/pdf/02tar2.pdf
http://menzies.us/pdf/02tar2.pdf
http://menzies.us/pdf/02tar2.pdf
http://menzies.us/pdf/03tar2.pdf
http://menzies.us/pdf/00wise.pdf

This page intentionally left blank

Indexing, Learning and Content-Based
Retrieval for Special Purpose Image
Databases

MARK J. HUISKES

Centre for Mathematics and Computer Science
Kruislaan 413, 1098SJ Amsterdam
The Netherlands
Mark.Huiskes@cwi.nl

ERIC J. PAUWELS

Centre for Mathematics and Computer Science
PNA4 (Signals and Images)
Kruislaan 413, 1090GB Amsterdam
The Netherlands
Eric.Pauwels@cwi.nl

Abstract
This chapter deals with content-based image retrieval in special purpose image
databases. As image data is amassed ever more effortlessly, building efficient
systems for searching and browsing of image databases becomes increasingly ur-
gent. We provide an overview of the current state-of-the art by taking a tour along
the entire “image retrieval chain”—from processing raw image data, through var-
ious methods of machine learning, to the interactive presentation of query results.

As it often constitutes the key to building successful retrieval systems, we first
discuss the issue of content representation and indexing. Here both the computa-
tion of global and local characteristics based on image segmentations is reviewed
in some detail in the context of interior design images. Also the representation
of content by means of MPEG-7 standard metadata is introduced.

In regard to the search system itself, we focus particularly on interfaces and
learning algorithms which facilitate relevance feedback, i.e., on systems that al-
low for natural interaction with the user in refining queries by means of feedback
directly in terms of example images. To this end the literature on this subject is
reviewed, and an outline is provided of the special structure of the relevance feed-

ADVANCES IN COMPUTERS, VOL. 65 203 Copyright © 2005 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(05)65005-X All rights reserved.

mailto:Mark.Huiskes@cwi.nl
mailto:Eric.Pauwels@cwi.nl

204 M.J. HUISKES AND E.J. PAUWELS

back learning problem. Finally we present a probabilistic approach to relevance
feedback that addresses this special structure.

1. Introduction . 204
1.1. The FOUNDIT CBIR System. 207
1.2. Outline of the Chapter. 210

2. Representation of Image Content: Feature Extraction 211
2.1. Introduction . 211
2.2. Global Characterization . 212
2.3. Representation of Region Properties and Relations 217

3. Detection of Salient Design Image Elements by Figure-Ground Segregation. . . . 219
3.1. Detection of Color Coalitions. 224
3.2. Classification . 227
3.3. Synthesis . 228
3.4. Results . 229

4. MPEG-7 Description of Design Images . 232
4.1. Structure of MPEG-7 Descriptions . 233
4.2. Description Schemes . 233
4.3. High-Level Design Description and Retrieval 237

5. Inference and Learning for Relevance Feedback by Examples 238
5.1. Introduction . 238
5.2. Aspect-Based Image Search . 239
5.3. Aspects and Feature Types . 241
5.4. Special Structure of the Relevance Feedback Learning Problem 242
5.5. Measuring Evidential Support by Likelihood Ratios. 245
5.6. An Evidential Approach to Relevance Feedback by Examples 247

6. Conclusion and Outlook . 254
Acknowledgements . 255
References . 255

1. Introduction

In this chapter we are concerned withcontent-basedretrieval inspecial purpose
image databases. In this context, “content-based” means that we aim to characterize
images primarily by analyzing their intrinsic visual content by machine rather than
by relying on “external” descriptions. So we let our systems derive descriptions based
on the analysis of the image itself, instead of using manually annotated keywords, or
as in the case of for instance Google’s image search, using the image caption or text
on the webpage adjacent to the image. With “special purpose” we indicate that we
restrict ourselves to domains where queries are limited in the terms by which they

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 205

are formulated and specialized domain knowledge can help us in modeling these
terms. Particular examples of such databases occur in domains such as forensics
(e.g., fingerprints or mug shot databases), trademark protection (e.g.,[10]), medicine,
biomonitoring (e.g.,[45]), and interior design (discussed below).

To realize the promise of content-based browsing and searching in image data-
bases, the main obstacle remains the well-known semantic gap. In[55] it is defined
as “the lack of coincidence between the information that one can extract from the vi-
sual data and the interpretation that the same data have for a user in a given situation.”
The automatically obtained visual measures, orfeatures, are typically low-level and
often fall short of the semantics of human subjectivity.

Additionally, we must deal with the fact that people often have different inter-
pretations of the same image, or worse, that one and the same person has different
perceptions in different situations.

Relevance feedbackhas often been suggested as a (partial) solution to these formi-
dable problems, in particular to dealing with the user- and task-dependence of image
interpretation. The most natural way to provide such feedback is, arguably, by letting
the user select both positive and negative examples to indicate his respective prefer-
ences and dislikes. This allows the system to extract which features are important for
the query at hand.

Even when using relevance feedback, however, ultimate success will still depend
on the richness and accuracy of therepresentationswe construct of our images.
In this chapter we will discuss both the construction of such representations, as a
combination of modeling and learning, and the inference techniques to use the rep-
resentations in transforming the feedback into image relevance measures. Machine
learning will play an important role throughout, both for building a higher level
understanding of the designs using lower-level building blocks, and in the task of
identifying implied preferences from user feedback.

The methods we discuss here will to a large extent apply to the development of
content-based retrieval systems for any type of specialized image database. As a real-
life example of a system we describe one for the subdomain of decoration design
images.

Decoration design images form a class of images consisting of patterns used in, for
instance, various types of textile products (clothes, curtains, carpets) and wallpaper.
Figure 1shows a number of typical examples. Because of the widespread use of
images in the textile, fashion and interior decoration industries, the development of
retrieval methods for this economically important domain is also valuable in its own
right.

As an introduction, we will take a short tour along the main components of the
content-based retrieval system developed in the FOUNDIT project[41].

206
M

.J.H
U

IS
K

E
S

A
N

D
E

.J.PA
U

W
E

LS

FIG. 1. Examples of design images as used in the textile industry. (See Color Plate Section, Plate 17.)

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 207

1.1 The FOUNDIT CBIR System

The European IST project FOUNDIT aims to develop content-based retrieval sys-
tems that are particularly geared towards requirements for searching and browsing
digital decoration designs. The definition of requirements of the search system has
taken place in close collaboration with the textile industry. Scenarios of use include
both customer browsing through design collections, and expert search by designers
for, among others, re-purposing.

A guiding principle in the design of the search system has been that the only way
to elucidate the user’s subjective appreciation and preferences, is by continuously
soliciting his or her feedback. This feedback is then harnessed to estimate for each
image in the database the likelihood of its relevance with respect to the user’s goals
whereupon the most promising candidates are displayed for further inspection and
feedback.

Figure 2illustrates the main components of the system:

• The graphical user interfacedisplays a selection of images from the image
database and allows the user to provide the system with relevance feedback by
selecting examples and counterexamples.

• The inference enginetransforms this qualitative feedback into a probabilistic
relevance measure for each image by analyzing it in terms of the image features.

• Thefeature extraction engine, or feature factory, generates a feature database of
visual characteristics by analyzing the content of the images. Unlike the previ-
ous components the feature extraction engine operates off-line.

FIG. 2. Main architecture of the FOUNDIT system for content-based image retrieval.

208 M.J. HUISKES AND E.J. PAUWELS

FIG. 3. Collection box of positive and negative examples. In this example the user has selected two
images with horizontal stripes as positive examples (top row). Additionally 3 images were selected as
negative examples (bottom row). (See Color Plate Section, Plate 18.)

A typical query then starts by displaying a random selection of images from the
database. The user indicates his preferences by clicking the images, once for images
he finds relevant, twice for images that are very dissimilar to what he has in mind.
These choices are collected in separate bins of the so-called collection box, as illus-
trated inFigure 3. Note that for images on which the user has no strong opinion one
way or the other, no feedback is provided.

Next, the inference engine is put to work to determine those features or feature
combinations that best explain the feedback given. Using a relevance model, this
then leads to a ranking of the database images by their predicted relevance which
may be used to display the next selection of images (Figure 4).

In the next cycle the user can add further example images to the collection box, or
if desired, remove example images if this better represents his wishes. Additionally
we have experimented with showing a list of the most promising individual features

IN
D

E
X

IN
G

,LE
A

R
N

IN
G

A
N

D
C

O
N

T
E

N
T-B

A
S

E
D

R
E

T
R

IE
V

A
L

209

FIG. 4. Relevance ranking of database image based on inference engine analysis. Shown are the 30 top ranked database designs that were found
based on the collection box ofFigure 3. As expected the selection consists of horizontal stripes; subsequent relevance feedback can now be used for
searching on additional properties such as color and number of stripes. (See Color Plate Section, Plate 19.)

210 M.J. HUISKES AND E.J. PAUWELS

FIG. 5. Screenshot of thelearning assistantinterface. On the left the system displays a list of features
the inference engine considers particularly important in view of the feedback provided by the user. The
user is now free to confirm or reject each of these suggestions. (See Color Plate Section, Plate 20.)

in determining relevance, allowing for a very direct type of feedback in terms of
feature names. This type of feedback is expected to be useful mainly for expert users.
SeeFigure 5.

1.2 Outline of the Chapter

The remaining sections of this chapter are largely independent and can be read
according the reader’s interest.

Section2: Presents an overview of methods for feature extraction and the represen-
tation of image content.

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 211

Section3: Discusses the detection of salient elements in design images.
Section4: Provides a short introduction to the MPEG-7 standard for multimedia

content description, in particular in the context of design images.
Section5: Gives an overview of inference and learning techniques for relevance

feedback, and focuses on one method specifically aimed at the special
structure of feedback data.

Section6: Conclusion and outlook.

2. Representation of Image Content: Feature Extraction

2.1 Introduction

As indicated above the rich and accurate representation of image content is crucial
to the success of any search system. If representation of certain image features is
neglected, generally no searching with respect to such feature will be possible other
than through accidental correlations with other features.

As generation of features on the fly is generally computationally not feasible with
current technology, image representation by features is predominantly a one way
street: the full image content is reduced to a single set of fixed, rather inflexible, fea-
tures. Admittedly, some combination of these features into new features is possible
(see, for example,[33]), but this can help us only to a limited extent, i.e., choosing a
fixed set of initial features, irrevocably leads to a substantial loss of information. This
is in stark contrast to how humans may interpret and re-interpret images depending
on different contexts.

Figure 6provides an illustration of a typical discrepancy between low-level fea-
tures and high-level perception occurring in the domain of decoration design images.

Another issue in feature extraction is its, often unexpectedly, high level of diffi-
culty. Even in cases where we have sufficient domain knowledge to model all or most
features that are expected to be of importance in a search, the abundance of possible
variations and special cases we may encounter is often rather stunning. In particular
the idiosyncracies of the human attentional system are a great source of problems
and ambiguities. To give a simple example: an image could consist almost entirely
of small diagonal stripes whereas its predominant perception is horizontal, e.g., the
stripes may be grouped in such a way they form a horizontal bar in the foreground. It
is, however, of paramount importance that features measure characteristics that are
perceptually relevant to the user.

Also note that as an erroneous representation generally leads to correspondingly
erroneous behavior in the search system, there is a great need for feature extraction
methods that have at least some sort of self- or cross-checking included, such that

212 M.J. HUISKES AND E.J. PAUWELS

FIG. 6. Illustration of the semantic gap for design images. Both image pairs are similar in terms of
low-level features, particularly in their color distributions. However, expert designers do not perceive the
designs as similar as they are from different “design classes:” they would classify image (a) as “optical”
and (b) as “texture.”

uncertain cases may be treated as such by the search system or, alternatively, be
presented for additional supervised evaluation.

We have found it useful to make a distinction between features based on the overall
appearance of an image, and features based on the elements occurring in the image.
The former will be discussed in Section2.2, the latter in Section2.3. The detection
of design elements is a topic in itself that will be treated in Section3. Organization
of feature data by means of the MPEG-7 metadata is discussed in Section4.

2.2 Global Characterization

We start the overview of design image characterization by a discussion of fea-
tures designed to capture the overall appearance of an image. We expect the features
described here to be useful for general images as well. Features are described for
overall appearance with respect to color, texture, complexity and periodicity. Most
of the features considered may also be used to describe the appearance of a single
image region.

2.2.1 Color

Color is a powerful visual attribute in the perception of similarity between im-
ages and, as such, has often served as a key source of features in image retrieval
systems (e.g.,[8,11,58]). Many features have been described in literature for the
characterization of color distribution and spatial layout. For the characterization of
the global color appearance the challenge lies in the extraction of the perceptually
important colors based on their relative occurrence and spatial interactions. See for

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 213

instance[34] and [40]. Also for decoration designs color may play an important
role in determining relevance in a search, both with respect to dominant impression
and very specific structural wishes (e.g., a customer wishes the motifs in a certain
color). We must note however that in many retrieval applications, it is relatively sim-
ple to re-color designs after retrieval (e.g., designs are represented in pseudo-color,
and color maps may be modified). For expert users color is thus often of little con-
cern.

For the FOUNDIT system we relied primarily on simple code book histogram
approaches. Both data-driven and fixed code books were used. For the data-driven
code book pixels are sampled from images in the database andK-means clustering is
used to determine a set of representative colors. For the fixed code book we use a list
of named colors and associated RGB values covering most of the colors generally
used in the decorative designs.

For both code book types a pixel is assigned either fully or partially to a bin
weighted by its distance to the color associated with the bin. To determine distances
between colors we use the Euclidian metric in CIE Lab space. The features consist
of the relative contributions of the image to each bin, using thresholds to prevent the
contribution of perceptually irrelevant colors.

Additional features are obtained by adding contributions of color bins that can
be associated with a single color name, e.g., all blue-ish colors. These metacolor
features show very satisfactory performance with regard to capturing subjective ex-
perience of dominant color.

In addition we used a number of the color descriptors defined in the MPEG-7
standard, described in detail in[37]. For the decoration design images we found the
following descriptors to be useful:

• The Dominant Color Descriptor (DCD), which provides a very compact de-
scription of the dominant colors in an image. Unlike the traditional histogram-
based methods, this descriptor computes a small sequence of representative
colors in the image with associated area percentages and measures of color vari-
ance. Additionally an overall spatial homogeneity coefficient of the dominant
colors in the image is computed.

• The Scalable Color Descriptor (SCD), which applies a Haar transform-based
encoding scheme across values of a color histogram in HSV color space.

• The Color Structure Descriptor (CSD), which takes into account not only the
color distribution of the image, but also the local spatial structure of the colors.

Finally, simple features based on saturation and value from the HSV color space
are used as well since we found they correlate well with the experienced degree of
“liveliness” and brightness.

214 M.J. HUISKES AND E.J. PAUWELS

2.2.2 Direction and Texture

In design images global and local directions of design patterns are often central to
the design, think for instance of striped patterns, or tartans. It is thus important to be
able to identify those orientations in an image that are perceived as dominant.

Many methods are available to assess typical line or stripe pattern angles (e.g.,
[2,12,21]). In the FOUNDIT system we have implemented a method based on the
Radon transform of an edge map for detection of horizontal, vertical and diago-
nal dominant directions. Additionally we use pooled bins of the MPEG-7 Edge
Histogram Descriptor. The first method counts edges occurring on lines of certain
orientation, the second method is complementary in the sense that it counts edges of
certain orientation. Note that these simple features often fail for curves that are not
sufficiently straight, e.g., for patterns of horizontal waves. For such cases we must
first detect the respective design elements after which we may establish their orien-
tation. Another issue that supports this latter approach is that the features often react
to edges that are not relevant, e.g., a design with a vertically oriented texture ground
with a horizontal stripe, will often be quantified as predominantly vertical whereas
subjective experience would usually favor a horizontal interpretation (rememberFig-
ure 7).

The occurrence of stripes in designs is so common that we have developed a
template-based method for their detection. This method is based both on grouping of
edges and evaluation of homogeneity within the stripe.

A stripe is considered to constitute a region in an image which (i) is bounded by
two relatively straight lines spanning the image, and (ii) has a relative homogeneous
appearance in between those lines, which differs from the appearance outside these

FIG. 7. Examples of design images with conflicting direction features and directional perception. In
(a) we see strong perceptual evidence for horizontal (and to lesser extent, vertical) lines, whereas strictly
numerically the diagonal lines outnumber these by far. Similarly, in (b) we have many diagonal lines
and hardly have any horizontal lines or edges at all; still our perception of this design is predominantly
horizontal because of the arrangement of the small motifs. (See Color Plate Section, Plate 21.)

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 215

lines. The sense in which the homogeneity is to be understood is not defined in
the algorithm. In practice this means we assume that the user provides an indexed
image in which each index represents a certain homogeneity type. One can think
for instance of an image resulting from a color or texture segmentation (or from a
combination of both).

Several aspects with regard to stripes may play a role in perceived similarity of
designs. Think of the occurrence and location of stripes, their orientation, the width
of the stripes, variation in the stripe widths and color and texture of the stripes. Useful
features quantifying such properties are extracted at various stages of the algorithm.
For instance after the edge line detection, we count the number of edge lines in an
image, or consider the relative number of edge lines. Once stripes have been detected,
we compute the density of the stripes in the image; additionally, we compute the
average distance between the stripes.

A number of composite features were computed as well, e.g., a feature measuring
the occurrence of both horizontal and vertical or two diagonal directions of (thin)
stripes simultaneously, for the detection of tartan images; and features assessing the
possibility that the background of an image consists of stripes.

Many methods are also available for characterizing image texture (e.g.,[5,14,16,
24,25,27,30,31,44,47]). From the MPEG-7 texture descriptors (see[6]), we have
used the following descriptors:

• The Homogeneous Texture Descriptor (HTD), which characterizes texture us-
ing the mean energy and the energy deviation from a set of 30 frequency chan-
nels. The frequency plane partitioning is uniform along the angular direction
(equal steps of 30 degrees), but not uniform along the radial direction (which is
on an octave scale). There is some evidence that the early visual processing in
the human visual cortex can be modelled well using a similar frequency layout.

• The Texture Browsing Descriptor (TBD), which specifies the perceptual char-
acterization of a texture in terms of regularity (4 levels), coarseness (2 quantized
scales) and directionality (2 quantized directions). The filtering is performed us-
ing a Gabor filter extraction method with a similar frequency layout as in the
HTD.

• The Edge Histogram Descriptor (EHD), which describes the spatial distribution
of the edges in an image.

2.2.3 Complexity

For designers overall complexity is an influential factor in the perception of design
similarity. Of course, complexity is not a well-defined quantity that can be deter-
mined objectively. Rather we observe that a number of design features correlate well

216 M.J. HUISKES AND E.J. PAUWELS

with subjectively perceived design complexity, e.g., the number of colors occurring
in the design, the “amount of discontinuity,” its “crowdedness” or its “level of detail.”

We modeled the level of detail by means of a summarizing feature resulting from
a multiresolution analysis, along the lines of for instance[4], where the image is
decomposed into terms representing contributions at different levels of scale.

To this end we use a grayscale image of the original (with 64 levels). Its wavelet
decomposition using the Daubechies-6 wavelet family type is computed and features
are determined by taking the maximum absolute deviation of the coefficients for
the approximation and the levels of detail (horizontal, vertical and diagonal) at 4
different scales. The summarizing quantity takes a ratio of energy in the lower scales
to energy in the higher scales.

A reasonable correlation with perceived overall complexity was obtained by taking
a weighted sum of this quantity and the total number of edges found by the Edge
Histogram Descriptor (Section2.2.2) and the number of colors in the image. The
weights were chosen to optimize performance on an annotated test set.

2.2.4 Periodicity
Many images contain patterns which are periodic, i.e., patterns that are invariant

to certain translations. In images we may have periodicity in one direction (so-called
“friezes”) and periodicity in two independent directions (so-called “wallpapers”).
The repeating elements can be extracted by means of autocorrelation analysis or
Fourier approaches. See for instance[26,52].

General symmetries (i.e., rigid transformations that keep the pattern invariant) of
the plane are compositions of translations, rotations and reflections. In[54] a detailed
analysis of plane isometries and plane symmetry groups is presented. It is shown that
for two dimensional designs there are 7 frieze groups describing patterns that repeat
along one direction and 17 wallpaper groups for patterns that repeat along two lin-
early independent directions to tile the plane. The groups vary in which additional
symmetry types are present. Liu et al.[28] provides a computational model for peri-
odic pattern classification based on these groups. Using this model one can identify
the symmetry group of the pattern and extract a representative motif.

For extracting the translation lattice, we have used an autocorrelation approach
along the lines of Liu et al.[26]. The maxima of the autocorrelation function give a
set of candidate lattice points. The task is then to find the shortest linearly indepen-
dent translation vectors that generate this lattice. For the frieze patterns this is a single
vector, for the wallpaper patterns two vectors are needed. Liu et al.[28] introduce a
method based regions of dominance to robustly determine these translation vectors.

An additional method to investigate periodicity is by extracting the motifs by
means of figure-ground segregation, followed by an analysis of their arrangement
and variation (see Section2.3.3).

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 217

2.3 Representation of Region Properties and Relations

Once design elements have been identified, more detailed characterization of de-
signs becomes possible. Procedures to determine such elements are discussed in
Section3.

2.3.1 Region Properties

For a given connected image region, representing for instance a design motif, we
may compute various elementary properties. We mention for example: size (e.g.,
relative area, extent, equivalent diameter, perimeter, length of major and minor axis);
orientation (based on for instance bounding box or fitted ellipse); eccentricity (or
elongation, circularity, rectangularity); convexity (or solidity, compactness); color
and texture; central and invariant moments; curvature (e.g., total absolute curvature,
bending energy); contrast with ground; number of holes; fractal dimension (rate at
which the perimeter of an object increases as the measurement scale is reduced).
For definitions and formulas of these properties we refer to elementary textbooks on
image processing such as[52] and[43]. When a design consists of only one type
of motif, we may use these quantities directly as features. In case there are different
types of motifs, we detect common properties and properties that show variation.

Of course, similar properties may also be computed for the design ground. Par-
ticularly interesting here is ground texture that may correlate with various kind of
textile treatments, such as batik, chiné, dots and fine lines. To this end we may use
the general texture features discussed in Section2.2.2.

2.3.2 Shape

Many of the region properties discussed before are related to region shape. The
property of shape is very active subject of research and warrants some further dis-
cussion. Next to the mentioned simple properties, various shape similarity metrics
with associated feature space have been developed. See for instance[63] and[3] for
an overview.

We have used the MPEG-7 visual shape descriptors (see[3]):

• The Region Shape Descriptor (RSD), which quantifies the pixel distribution
within a 2-D object or region. It is based on both boundary and internal pictures,
and it can describe complex objects consisting of multiple disconnected regions
as well as simple objects with or without holes. It uses a complex angular radial
transform (ART) defined on a unit disk in polar coordinates.

• The Contour Shape Descriptor (CSD), which is based on the curvature scale
space (CSS) representation of the contour.

218
M

.J.H
U

IS
K

E
S

A
N

D
E

.J.PA
U

W
E

LS

FIG. 8. Examples of shape categories important for designs: (a) diamonds, (b) pied-de-poule, (c) paisley, (d) stripe, (e) pois (circles), (f) chevron,
(g) movement (waves), (h) leaves. (See Color Plate Section, Plate 22.)

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 219

Based on the shape descriptors we can construct shape features measuring mem-
bership to certain shape categories. A few example categories are shown inFigure 8.

For the category modeling we have taken a case-based approach using exemplars,
which is a convenient method to develop useful features from high-dimensional fea-
ture spaces.

For each shape category we have taken a number of representative cases (e.g.,
seeFigure 9(a)). These are called the exemplars; the shape category feature a given
shape is then based on the minimum distance to the exemplars shape.Figure 9(b)
shows distances for a few shapes to the paisley exemplar ofFigure 9(a) based on the
contour shape descriptor.

2.3.3 Object Variation and Spatial Organization

Once the salient elements in an image have been determined it becomes interest-
ing not only to look at their intrinsic properties, but also to consider the relations
between such elements. In particular, we are interested in the similarities and differ-
ences between the various elements, and in their spatial organization.

Variation between the intrinsic properties can be measured directly, e.g., by us-
ing the median absolute deviation (MAD). Using such features we can detect, for
instance, if the motifs in a design possess similar shape but differ in orientation.

Further features are based on the distances between the elements (design spacing)
and measure if and how they are organized in a grid pattern.

3. Detection of Salient Design Image Elements by
Figure-Ground Segregation

As mentioned the performance of the CBIR system relies to an important extent
on the quality of the chosen design representations. Additionally we have seen that
for meaningful searching and browsing through design collections higher-level char-
acterizations based on the individual elements in the design are essential. Only then,
if such elements can be identified, it becomes feasible to quantify visual properties
such as shape, spatial pattern and organization, and variation in for instance color,
shape and orientation among the elements.

In an important subset of the decoration designs the identification of individual
design elements can take place by figure-ground segregation. The definition of the
figure-ground segregation problem is, however, by no means trivial. Design elements
may be arranged in a large variety of ways: they may be overlaid, may fade over into
each other, or may form tilings of the image plane. Furthermore the elements may

220
M

.J.H
U

IS
K

E
S

A
N

D
E

.J.PA
U

W
E

LS

FIG. 9. (a) Exemplar contour for the paisley shape; (b) Contour distance to the paisley exemplar shape as measured by the MPEG-7 Contour Shape
Descriptor.

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 221

take part in many types of spatial patterns and groupings. Within such arrangements
the design elements vary in their level ofsalience, i.e., by the extent to which ‘they
stand out.’ For figure-ground segregation we are interested in those cases where de-
sign elements are arranged on a ground, i.e., the case where a number of, usually
isolated, salient elements stand out on a non-salient ground. Clearly not all designs
possess such ground structure, see for instanceFigure 1(a).

Occurrence of ground structure is often not clear due to the situation that the or-
dering among the design elements in terms of their salience is not clear. In other
cases several figure-ground interpretations are possible simultaneously. An example
is shown inFigure 10(c). The image can be interpreted as black on white, or as white
on black. In some cases the occurrence of ground structure is clear, but it is still hard
to determine the ground accurately (Figure 10(d)). The latter two effects are referred
to as groundinstability.

As a final issue we mention the occurrence of nested grounds. An example to this
effect is shown inFigure 11(a). The image can be interpreted to consist of three
layers: a plain green layer, a layer of heart motifs and four angels. The background
can thus be either the plain layer, or this layer together with the hearts. A special
case of this problem occurs in relation to designs consisting entirely of texture where
the entire image may be taken to consist of background. In such cases it is often still
useful to analyze the texture additionally in terms of its figure-ground structure, see
Figure 11(b).

In the following we give a concise description of a method for figure-ground segre-
gation based on the identification of salient color-patterns, the color coalitions, which
is described in more detail in[19].

Patterns of color and regions of color texture play an important role in the visual
structure of decoration designs. Consequently many pixels in design images can be
naturally interpreted to take part in various color combinations. As an example con-
sider the design image ofFigure 12(a). The background in this image consists of
pixels of two colors: red and black. Rather than viewing such pixels as either red
or black it is more natural to view both types of pixels as part of a red-and-black
region. Moreover, pixels are often part of a nested sequence of such color combi-
nations. This may be seen by repeating the original design to arrive at the image of
Figure 12(b). The original background pixels are now part of a larger pattern also
including the so-called pied-de-poule motifs, which are yellow. Depending upon the
scale at which a design is perceived the red and black pixels may thus also take part
in a red–black–yellow combination.

We have set out to explore methods for color texture segmentation by direct analy-
sis of the color combinations occurring in an image, i.e., we intend to find the natural
color combinations which we shall then call color coalitions.

222 M.J. HUISKES AND E.J. PAUWELS

FIG. 10. Examples of design images: (a) images without background; (b) images with background;
(c) and (d) images for which the background-foreground structure is unclear. (See Color Plate Section,
Plate 23.)

In Section3.1we introduce the color coalition labeling and describe its application
to the detection of regions of color texture at various scales. Next we discuss its
application to figure-ground segregation. We propose a strategy consisting of three
main steps:

(1) Obtain initial candidates for the background by multi-scale detection of color
texture regions (Section3.1).

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 223

FIG. 11. Examples of design images for which the figure-ground structure consists of multiple levels.
(See Color Plate Section, Plate 24.)

FIG. 12. (a) An example design image. (b) The same design image repeated 9 times and resized to its
original size. (See Color Plate Section, Plate 25.)

(2) Assess the appropriateness of the individual candidates by anN -nearest
neighbor classification algorithm based on visual cues such as relative size,
connectedness and massiveness (Section3.2).

(3) Integrate the results of the previous steps to produce a hierarchical description
of the figure-ground structure of the design (Section3.3).

The algorithms are tested by application to images from two decoration design
databases. One is a database of tie designs from an Italian designer company. The
other database has been provided by a manufacturer of CAD/CAM systems for the
textile industry and includes a wide range of decoration design types.

In Section3.4 we list the results obtained for the two test sets and discuss the
general performance of the approach.

224 M.J. HUISKES AND E.J. PAUWELS

3.1 Detection of Color Coalitions

The task of finding color texture regions is closely related to general image seg-
mentation. As any segmentation problem it is about the grouping of pixels that, in
some sense, belong together. The approach we take here is based on direct analysis
of the color combinations occurring in the image. As the level of homogeneity of a
region depends on the scale under consideration, we must investigate the occurrence
of color combinations at various scales. For each scale we then define a color coali-
tion labeling that provides each pixel with a label uniquely identifying the colors
occurring in a structuring element around the pixel.

We restrict ourselves to generate candidate regions for the image background and
will not attempt a full bottom-up segmentation here. Moreover unlike in most seg-
mentation methods we will not demand texture regions to be connected, nor will we
attempt to assign every pixel to a segment region.

The algorithm for the construction of color texture regions for a fixed scale is
divided in the following main stages:

(1) construct color coalition labeling;
(2) erode label image and analyze homogeneity of remaining color combinations;
(3) grow the resulting color coalitions into color texture regions.

These stages are outlined inFigure 13and will be further detailed below.

3.1.1 Color Coalition Labeling

In the following we consider indexed images where each pixel has an associated
integer value that either refers to a color in a colormap or is equal to zero, indicating
that the color of the pixel is to be ignored by the algorithm. More formally, we define
an imagef as a mapping of a subsetDf of the discrete spaceZ2, called the definition
domain of the image, into the set of indices:

(1)f :Df ⊂ Z
2 → {0} ∪ Cf = {0, 1, . . . , N},

whereCf = {1, . . . , N} is the set of color indices of the image. In practice the
definition domain is usually a rectangular frame referred to as the image plane of
pixels.

For indexed images we define theindexor color setcsc(f) of indexc as the set of
pixels with indexc: csc(f) = {x | f (x) = c}, or as binary image:

(2)
[
csc(f)

]
(x) =

{
1 if f (x) = c,

0 otherwise.

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 225

FIG. 13. Main stages in construction of color texture regions: (a) test image of 256 by 256 pixels
consisting of two regions of color texture; (b) based on a rectangular window of 13 by 13 pixels structuring
element the image has 7 distinct color sets; (c) after erosion and homogeneity checking two color sets
remain; white pixels in this image have index 0 and do not correspond to a color combination; (d) growing
leads to two regions of color texture. (See Color Plate Section, Plate 26.)

We further define the erosion of an indexed image as the summation of binary ero-
sions performed on the individual color sets while keeping the original indices:

(3)εB(f) =
∑

c

cεB

(
csc(f)

)
,

whereB is the structuring element and summation and scalar multiplication are
pixel-wise.

For each pixelx we consider the set of colorsωBs (x) occurring in a structuring
elementBx

s of scales:

(4)ωBs (x) =
{
c ∈ Cf | ∃y ∈ Bx

s : f (y) = c}.
Each such subset ofCf is referred to as acolor combination, andωBs (x) is called

the color combination associated with pixelx at scales. For the structuring element
we will usually take a rectangular window with the centre pixel as element origin.

226 M.J. HUISKES AND E.J. PAUWELS

We define the color coalition labeling off as follows. LetΩBs be the set of all
color combinations occurring in the image at scales, then we associate with each
combinationω in ΩBs a labelλBs (ω) in the order of encounter of such combinations
in a forward scan of the image. The color coalition labelingΛBs (f) of f is then
defined by

(5)
[
ΛBs (f)

]
(x) = λBs

(
ωBs (x)

)
.

An example of a color coalition labeling is shown inFigure 13(b).

3.1.2 Color Coalition Selection

Our aim is to select the principal color combinations of the image, i.e., those color
combinations that are most appropriate to extend to full color texture regions for
a given scale. To this end we erode each of the index sets of the color coalition
labeling under the tentative assumption that the color combinations occurring at the
boundaries of regions of color texture are generally thinner than the interiors of such
regions. For the erosion we use a structuring elementBt of scalet , i.e., we construct
εBt (ΛBs (f)). We denote an eroded set associated withω by R(ω), i.e., we take

(6)R(ω) = εBt (csλBs (ω)).

As we are interested in finding regions of homogeneous color texture we further
investigate homogeneity statistics for color combinationsω for which R(ω) is non-
empty. Note that if statistics are computed based on a structuring element of scales,
taking t � s ensures that colors surrounding a region of color texture cannot affect
the homogeneity of the statistics in an eroded color set.

So letSBs (x) be the local statistics at pixelx taken over pixels in a structuring
elementBs , and consider a surviving color combinationω: R(ω)
= ∅. We acceptω
as a color coalition if the following two conditions hold:

(1) R(ω) still contains all colors of the color combinationω.
(2) The coefficients of variation ofSBs onR(ω) are smaller than a given threshold.

Both the choice of statistics and of the scale for the erosion structuring elementt are
subject to a trade-off between the aims of suppression of boundary color combina-
tions and still being able to detect color texture regions that have a relatively large
interior1 scale relative to their exterior scale. We obtained best results by using the
erosion as the main mechanism in reducing the number of candidate color combi-
nations (we sett = 1.5s), and kept the statistics as simple as possible to allow for
maximum detection of color textures. In fact, we take only the relative number of

1 We define the interior scale of a set as the smallest scale at which a set is homogeneous; the exterior
scale as the smallest scale at which the erosion of the set is empty.

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 227

pixels of the dominant color in the structuring element as a statistic. The computa-
tion of the coalition labeling and the local statistic can both be implemented taking a
single forward scan and a moving histograms approach (see[61]).

3.1.3 Region Growing Strategies

Next the color texture regions associated with the principal color combinations are
determined by region growing of the eroded color sets. If we denote the final color
texture region byG(ω) = G(R(ω)) then for a pixelx to be assigned toG(ω) it
should satisfy at least the following conditions:

(1) The pixel must have a color index belonging to the color combination:
f (x) ∈ ω.

(2) the pixel must have the remaining colors of the color combination in its struc-
turing element:ω ⊂ ωBs (x).

The pixels inR(ω) satisfy both conditions; also note that the conditions allow pixels
at boundaries of texture regions to have additional colors in their structuring element.

This still leaves the important issue of how to assign pixels for which more than
one color combination is feasible. Several strategies are possible such as assigning to
the closest or the largest feasible eroded set. In our application we have obtained best
results so far by assigning to the color combination for which the associated eroded
region has an average color histogram that is closest to the color histogram of the
structuring element of the pixel.

For each scale we thus get a segmentation of the image in regions corresponding
to the principal color combinations and a set of pixels with label zero that are not
assigned to any color combination.

3.2 Classification

To determine the background quality of color texture regions, we take a simple
yet effective approach based on weightedN -nearest neighbor classification. Based
on a number of property variables or features of the region theground probabilityis
estimated that the region is suitable to serve as a background region.

Classification takes place by using a training set of sample regions with featuresxi ,
i = 1, . . . , n, that have been assigned a ground probabilityp(xi) by manual anno-
tation. The probabilityp(x) of a region with featuresx is determined by taking a
weighted average of the probabilities of itsN nearest neighbors in feature space, see
for instance[9].

The feature variables were chosen by experimentation with the aim of reaching a
high level of consistency and a low level of ambiguity:

228 M.J. HUISKES AND E.J. PAUWELS

• Relative area: the region area relative to the total image area.

• Filling coefficient: background regions often possess a complement consisting
of components that are not connected to the border and which are removed after
filling the background region (see for instance[56] for morphological opera-
tions such as hole removal). LetX be the background region,Xc its complement
and X̄ the background region after hole removal, then the filling coefficient
fc(X) is defined as

(7)fc(X) =
{

1− A([X̄]c)/A(Xc) if Xc
= ∅,

1 if Xc = ∅,

whereA(X) is the area in pixels of regionX.

• Spatial reach: measures if the region occurs only in certain parts of the image
or all over the image; the image is covered by a grid of boxes and spatial reach
is measured by counting the relative number of boxes that are occupied by the
region.

• Connectedness: the area of the largest connected component of the region rela-
tive to the region area (computed after closing with a small structuring element).

• Massiveness: the median distance of the region pixels to the region boundary.

TheN -nearest neighbor approach allows for straightforward evaluation of incon-
sistencies and ambiguities. Consistency of the samples can be analyzed by comparing
the ground probability of a sample region obtained by classification leaving that ex-
ample out to the probability obtained by manual annotation. Letp−i be the ground
probability obtained by classification using all samples except samplei, then we de-
fine the consistency for samplei asρi = |p−i − p(xi)|. In our study we took 350
samples of which only 8 had a consistency smaller than 0.75. It is also simple to
assess if examples are sufficiently nearby for reliable classification: for instance by
comparing distances of examples to new cases to be classified to the average of such
distances occurring for the samples in the sample set. If relatively empty regions or
problem cases are encountered additional samples may be added.

3.3 Synthesis

Using the color coalition labeling approach of Section3.1 we obtain color coali-
tions for a sequence of scales. In this study we took 8 scales that were equally
distributed over a range from a smallest window of 3 by 3 pixels to a rectangular
window of about 30% of the image size. All resulting regions were classified using
the method of Section3.2. Each region with a ground probability greater than 0.5
is accepted as a potential ground (although ground probabilities are generally found

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 229

to be either 0.0 or 1.0). If a color combination is found to be feasible for serving as
ground at more than one scale, we take two criteria into account to decide on the
most appropriate region: (i) the simplicity of the region; (ii) the number of scales at
which the particular region, or a region very similar to that region, is found (scale
robustness). For the simplicity measure of the region we have taken, rather ad hoc,
the sum of the number of connected regions in the background and the foreground
(after opening each with a small structuring element; see[56]).

Next we further analyze the determined grounds and their associated color com-
binations. Every pair of combinations is assigned as either: nested, partially over-
lapping or disjoint. Large disjoint regions often indicate flipping behavior as in
Figure 10(c). Apart from the analysis of such relations that also includes checking
the hypothesis that the entire image consists of a single color texture, for every de-
sign a highest quality background is determined using the simplicity and robustness
criteria. Based on these results each of the images is automatically assigned to one
of four distinct categories orstreams:

I: no figure-ground structure;

II: figure-ground structure;

III: consists entirely of one color texture, which itself possesses figure-ground
structure;

IV: consists entirely of one color texture, and does not possess further figure-
ground structure.

Note that such automatic stream assignment allows for data driven feature computa-
tions. For example texture features can be computed for the background regions and
full texture images, whereas shape features are computed for foreground elements.

3.4 Results

Benchmarking figure-ground segregation algorithms for designs is generally dif-
ficult for the reasons sketched in the introduction: even for humans identification of
figure-ground structure is often not unambiguous. We thus choose to restrict our-
selves to cases where we clearly have a ground or we clearly do not, and check if
the algorithm output aligns with human perception for the cases where occurrence
of figure-ground structure is clear and stable. This approach recognizes the notion
that strict bottom-up processing is generally infeasible, unless some sort of context
is assumed: in this case we assume that we are dealing with images where a ground
is to be identified.

For testing we take three sets of images:

230 M.J. HUISKES AND E.J. PAUWELS

(i) Collection 1: 500 images from a specialized database of tie designs, used for
training the background detection algorithms;

(ii) Collection 2: another 500 images from the same database;
(iii) Collection 3: 500 images from a database containing a wide range of decora-

tion designs from the textile industry.

As such this database provides a representative test set for images the algorithm is
likely to encounter in practice. The images of Collections 2 and 3 have not been used
in any way to calibrate the algorithms.

We assigned each of the images in the test sets by manual annotation to either one
of the four streams discussed in Section3.3or to stream

V: occurrence of structure not clear or instable.

Rates of correct performance are reported inTable I.
Example images from stream II with results are shown inFigure 14. Errors can

largely be attributed to the following types of designs:

TABLE I
CORRECTPERFORMANCERATES FORIMAGES ASSIGNED BYMANUAL ANNOTATION TO STREAM I

THROUGH IV

Collection Stream I Stream II Stream III Stream IV

1 89% 90% 85% 82%
2 92% 91% 77% 90%
3 100% 88% 78% 81%

FIG. 14. Results of the figure-ground segregation algorithm for the images ofFigure 10(b). (See Color
Plate Section, Plate 27.)

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 231

FIG. 15. Examples of design images with (main) elements that cannot be found by figure-ground
segregation. (See Color Plate Section, Plate 28.)

• Designs where all colors in the foreground object also occur in the background,
and the foreground objects do not disrupt the homogeneity of the background
region. An example is shown inFigure 15(a). Other methods must be used to
find such additional structure in the ground.

• Cases where the background consists of a composition of regions, see for in-
stanceFigure 15(b). Currently no combinations of regions are tested for their
suitability to serve as ground.

• Cases for which classification is ambiguous, e.g., in images for which the back-
ground consists of small isolated patches, that by their shape and layout would
rather be expected to be of foreground type. This type of background is hard to
detect automatically and generally requires a higher level of design understand-
ing.

• Cases where the choice of simplicity measure leads inappropriate candidates to
be accepted. Occurs very rarely.

• Designs with illumination effects, gradients and special types of noise. Main
problem here is the occurrence of noise that is not removed by preprocessing
and occurs in only part of a color texture.

• Designs where the interior scale of a background region is large in comparison
to its exterior scale. Sometimes the region is not found as a candidate since the
color combination region disappears by erosion before it is accepted as homo-
geneous.

Correct performance is directly related to the occurrence of such types of images in
the database. For example the mistakes for Collection 3 are mainly of the first type as
the set has a relatively high number of binary images with additional fine structure.

The general conclusion is that the method discussed here works well for a large
class of decoration design images. There is, however, a class of designs without

232 M.J. HUISKES AND E.J. PAUWELS

figure-ground structure that still contain interesting elements relevant to design re-
trieval. Images in this class include for example geometric mosaics and designs with
overlapping elements. Two few examples are shown inFigure 15.

Detection of such objects is possible to some extent with general segmentation
methods[13,39,47]. These methods lead to partitions of the images in homoge-
neous regions such that the unions of such regions are not homogeneous. However,
we have found that individual segmentation methods are often not able to deliver
the regions that are of interest from the design interpretation perspective. Among
other reasons, this is due to the intricate interplay of the Gestalt grouping principles
(see, e.g., similarity, proximity, goodness-of-curve[64]). Currently we are working
towards increased robustness by exploiting both redundancy (i.e., using results of
complementary segmentation approaches) and non-accidentality (i.e., by detecting
an unexpectedly high degree of ordering in terms of the Gestalt principles).

4. MPEG-7 Description of Design Images

As we are working towards “content-based” image retrieval it is natural to inves-
tigate the potential of the MPEG-7 metadata system for content description.

MPEG-7, formally named “Multimedia Content Description Interface”[35], is an
ISO/IEC standard for describing various types of multimedia information developed
by MPEG (Moving Picture Experts Group). Whereas the MPEG-1 through MPEG-4
standards are aimed at representing the content itself, MPEG-7 represents informa-
tion about the content: “the bits about the bits” so to speak.

There are many types of audiovisual data content that may have associated
MPEG-7 descriptions. These include: still pictures, graphics, 3D models, audio,
speech, video, and composition information about how these elements are combined
in a multimedia presentation (scenarios). The following is based on[20] and will
focus on those parts of the standards that are of interest in the context of retrieval of
still pictures in general, and of decoration design images in particular.

In these contexts we found that the main purpose of use can be summarized as
twofold:

(1) Organization of image description data: as discussed in Section2 many types
of design features are computed; in this process a large variety of data is gen-
erated, consisting not only of the numerical values of the features, but also of
intermediate results such as image segmentations for which the computation
may be time-consuming and which are therefore worth storing. MPEG-7 de-
scriptions can be used to organize all this data in relation to the structure of
the image and to provide bookkeeping with respect to, for instance, algorithm
version information and chosen parameter settings.

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 233

(2) Structural and semantical image content description to facilitate the quick and
efficient identification of interesting and relevant information

This will be explained in more detail below; additionally, we shortly discuss the
potential of using the MPEG-7 standard in combination with ontology definitions.

4.1 Structure of MPEG-7 Descriptions

MPEG-7 descriptions are defined in terms ofdescriptorsanddescription schemes.
A descriptor is a feature representation, i.e., the descriptor defines the syntax and

the semantics for the representation of a perceptual feature. Descriptors may be both
textual and non-textual and some can be computed automatically whereas others are
typically obtained by manual annotation.

Description schemes (DSs) expand on the MPEG-7 descriptors by combining in-
dividual descriptors and other description schemes into more complex structures by
defining the relationships between its components (which may be both descriptors
and description schemes). Description schemes are defined following the MPEG-7
Description Definition Language (DDL), which can also be used to define new de-
scription schemes.

In practice one may think of an MPEG-7 description as a (possibly compressed)
XML file, and of the description schemes as XML schemas (see for instance[15]).
A description always consists of an MPEG-7 top element. It may contain either a
partial description consisting of any MPEG-7 description unit desired for a particular
application, or a description that is complete in the sense that it follows a pre-defined
hierarchy of description units. For an overview of this hierarchy, see[53].

An illustrative snippet from an MPEG-7 description is shown inFigure 16.

4.2 Description Schemes

The following is a concise introduction to the various description schemes pro-
vided by the MPEG-7 standard that are most useful for decorative design description.

4.2.1 Content Management

MPEG-7 offers description schemes for creation information, usage information
and media description. TheCreationInformation DSprovides functionality to de-
scribe the creation and production of the design, e.g., a title of the design, its creator,
creation locations and dates. TheUsageInformation DSdescribes information re-
lated to the usage rights management and protection, usage records and financial
information.

234 M.J. HUISKES AND E.J. PAUWELS

<CreationInformation>
<Creation>

<Creator>
<Role><Name xml:lang="en">Main designer</Name></Role>
<Agent xsi:type="PersonType">

<Name>
<GivenName>Mark</GivenName>

</Name>
</Agent>

</Creator>
<CreationCoordinates>

<Location>
<Name xml:lang="en">Amsterdam Design</Name>
<Region>nl</Region>

</Location>
<Date>

<TimePoint>2003-03-27</TimePoint>
</Date>

</CreationCoordinates>
</Creation>

</CreationInformation>

FIG. 16. Snippet of an MPEG-7 description.

TheMediaInformation DSdescribes the location, and coding and storage format
of various possible instances of a described design, e.g., of the master copy and
various compressed versions.

Additionally aDescriptionMetadata DSis available to provide metadata about the
descriptors themselves. It allows for description of the creation of the description,
e.g., which algorithm version is used, where is it located and on which parameter
settings is it based.

4.2.2 Content Structure

The content structure description schemes allow for detailed description of the
design structure in terms of its constituent regions and moreover provide a framework
for organizing the various types of visual descriptors.

Regions or elements of a design are described by means of theSegment DS, or
more in particular for design images by theStillRegion DS. Hierarchical descriptions
are possible: segments may be further divided into sub-segments. Decompositions
are described by means of theSegmentDecomposition DS. An example of the use of
these schemes is shown inFigure 17. The original image is denoted by SR0. After
preprocessing (e.g., resizing, color quantization) we obtain a simplified image, which
we denote by SR1. This region may be decomposed in a striped (background) region

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 235

FIG. 17. Example of a design segment decomposition using theStillRegion DSandSegmentDecom-
position DS. SR denotes aStillRegion, SD aSegmentDecomposition. (See Color Plate Section, Plate 29.)

SR2 and a region consisting of 4 little objects (SR3). If required, SR3 may be further
divided into its connected components: SR4 to SR7.

Generally, segments are allowed to overlap, and the union of the segments is not
required to cover the full design. For further characterization of the organization of
the segments several schemes are available to describe relations between the design
regions. As such relations constitute a subset of the semantic relations, they will be
discussed in the next section.

Segments may have several types of attributes, most notably the visual descriptors
regarding for instance color, shape and texture of the region. The segments and their
decompositions thus provide a natural framework for structuring the organization of
the various types of perceptual features. In the previous example features regarding
the stripes would be associated with SR3, whereas shape information can be stored
as attributes of the regions corresponding to the objects. Also color information can
be stored for both the entire design and the several regions separately.

Another important type of segment attribute in the context of design structure
is element saliency, i.e., the extent to which an elements in a design “stands out.”
A mechanism to this end is provided by means of theMatchingHintdescriptors.

4.2.3 Content Semantics
Just as the content structure schemes provide a convenient framework for the

low-level description of a design in terms of its regions, the content semantics de-
scription schemes provide a rich set of tools for high-level descriptions of a design in
terms of its elements. The elements, the properties of the elements and the relation-
ships between the elements are described by semantic entities, semantic attributes
and semantic relations, respectively. Generally, close links exist between the regions
described in the content structure schemes and the entities used in the semantic de-
scription, but the semantic content description allows various other abstract concepts
to be defined as well.

236 M.J. HUISKES AND E.J. PAUWELS

Several schemes are available for the description of abstract entities of which the
most relevant are theObject, SemanticStateandConceptDSs, e.g., theObjectDS
describes perceivable semantic entities.

Semantic attributes are used to describe the semantic entities by means of labels,
a textual definition, properties and for instance a link to a region in the actual design
(a so-calledMediaOccurrenceattribute). Other attributes allow for the specification
of the abstraction level of a given entity. This can be used for searching designs and
will be discussed in more detail in the next section.

Semantic relation types are defined by means ofclassification schemes(CSs).
These are provided by MPEG-7 for the definition of vocabularies for use inside de-
scriptions. Several such schemes are already available: relations may describe for
example how entities relate in a narrative (e.g., agent, patient, instrument, benefi-
ciary), how their definitions relate to each other (e.g., generalizes, componentOf,
propertyOf) or how the entities are organized with respect to spatial structure (e.g.,
above, left).

An example of a semantic content description is shown inFigure 18for the deco-
rative design ofFigure 17. The decorative design is shown to consist of a background
and a foreground entity. The background is associated with the abstract concept of
‘striped-ness.’ Two state entities further specify the quality of the stripes (their orien-
tation, and their size). The foreground consists of a set of motifs. The type of motif
set may be further clarified by for instance a variation state (indicating to what extent

FIG. 18. Example of a semantic content description of the design shown inFigure 17. The boxes
represent semantical entities, the arrows semantical relations. Attributes providing links to associated
segments are not shown.

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 237

the motifs are varying within the set). The motifs that occur in the set, in this case
so-called paisley motifs, may be described independently.

Many other schemes are available which have not been mentioned yet, for instance
schemes for description of design collections, user interaction or usage histories.
See[1] for an overview.

4.3 High-Level Design Description and Retrieval

As shown the MPEG-7 descriptors and content structure description scheme pro-
vide a convenient framework for organizing the design metadata obtained by the
various design representation methods discussed in Section2.

Ideally one would also like to be able to automatically generate high-level descrip-
tions of the type discussed in the previous section as this level of content description
is ultimately most meaningful for design retrieval. Design retrieval by semantic de-
scriptions can then for instance take the form of listing all images that possess “at
least one paisley motif,” or of listing those images for which the background texture
has a certain quality.

To define an efficient language for design description and query formulation the
main challenge is to provide a set of well-founded constructs to describe the seman-
tics of decorative designs. As we have already seen, entities should include

(i) objects such as foreground, motif set;
(ii) concepts, such as texture, variation, pattern types (e.g., halfdrop, horizontal),

and style types (e.g., ethnic, tropical, skin);
(iii) states, e.g., variation, spacing, complexity.

Basic capabilities for such description of a vocabulary of terms, the relationships that
can exist between terms and the properties that such terms may have, is provided by
the Resource Description Framework (RDF) Schema language (RDF,[46]). For more
extensive capabilities one may also use an ontology language such as Web Ontology
Language (OWL,[38])

The specification of a decorative design ontology provides the opportunity to
reason about the concepts defined. Consider for example the case that Geometric,
Square and Circle are classes defined in a decorative design taxonomy, and that
Square and Circle are both indicated as subclasses of the Geometric class. A search
based on a semantic description containing a Geometric object can then be inferred
to match descriptions containing Circle or Square objects. An additional use of on-
tologies is the support for the representation of common knowledge. An example of
such knowledge would be that tropical designs typically contain a number of bright
colors.

238 M.J. HUISKES AND E.J. PAUWELS

MPEG-7 provides abstraction mechanisms that support reasoning by ontology.
The most relevant is formal abstraction which describes patterns that are common
to a set of examples. Formal abstractions are created by taking a specific seman-
tic description and by replacing one or more of the entities in the description by
variables using theAbstractionLevelattribute. In the example above we could for in-
stance replace the paisley concept by a Curved Shape entity ofAbstractionLevelone
(level zero denotes concrete instance; levels higher than one provide abstractions of
abstractions). Such description would then match any design with a certain type of
striped background for which the motifs exemplify curved shapes (and for which the
motifs in the set are varying by orientation).

As a final opportunity we mention the definition of a classification scheme in
combination with theAffective DS. This provides a means to describe the esthetic
appreciation of designs and allows description of measurements of affective re-
sponse to variables such as balance, ratio, juxtaposition, repetition, variation, pattern,
rhythm/tempo, emphasis, contrast, harmony and unity.

We conclude that MPEG-7 semantic descriptions show great promise in organiz-
ing high-level design interpretations for meaningful searching, but must note that
given the current state-of-the-art fully automatic description is possible only to a
limited extent, primarily as reliable recognition of meaningful objects remains a task
yet to be solved.

5. Inference and Learning for Relevance Feedback by
Examples

5.1 Introduction

Content-based image retrieval revolves to an important extent around the task of
interactivelyandadaptivelyreaching an understanding of what the user is looking
for. As discussed in the introduction, using relevance feedback may help us deal
in particular with the fact that interpretation of image content is user- and task-
dependent. An overview of approaches is presented in[68]; in many cases substantial
gains in retrieval performances through the use of relevance feedback have been re-
ported (e.g.,[7,8,32,51,67]).

In the following we focus on feedback in terms of example images. With this type
of feedback the user is presented with a selection of images from the database; he
indicates which images he considers relevant examples (positives) and which he con-
siders to be counterexamples (negatives); next, a new selection of images based on
the estimated relevance ranking is presented and the cycle may be repeated. This type
of interaction is particularly natural for images: unlike for text documents, relevance
of images can really be determined “at a glance.”

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 239

Many approaches to relevance feedback are based on adaptively re-weighting of
feature dimensions, both for query point movement (e.g.,[48,51]) and in similar-
ity and relevance measures. In both cases feature variables or feature classes are
assigned weights based on the feedback data. The weights should be chosen in ac-
cordance with the importance of the associated features to the user. For example,
Rui et al.[51] update weights of different feature classes by using the inverse vari-
ance of the positive examples, thereby giving higher weights to features for which
the positives are close to each other. Many variants of this idea have been developed
(e.g.,[7,42]) but generally are heuristic in nature: feature weights are assigned such
that positives cluster, while negatives stay separated.

In [8] a framework for Bayesian interpretation of relevance feedback data is de-
scribed. At the heart of this approach lies the probabilistic modeling of the feedback
data given that the user has a target image in mind and a certain selection of images
is available to the user to choose from. It is assumed there that the user will pick
images based on their similarity to the target, but no explicit effort is taken to find
out which features are most important in the similarity measure.

Many recent approaches treat the estimation of image relevance based on the rel-
evance feedback by examples as a machine learning or classification problem. The
feedback images are taken as training samples and used to train a classifier or other
learner that can be used to predict the relevance of the database images. As we have
seen, typically two classes or levels of relevance are assumed. Extensions to more
levels are usually straightforward (e.g.,[51]), but may incur the cost of a less natural
interaction with the user. Examples of learning approaches to relevance feedback
are: MacArthur et al.[29] (decision trees), Laaksonen et al.[23] (neural networks
and self-organizing maps), Vasconcelos and Lippman[62] (Bayesian), Tong and
Chang[60] (support vector machines), Wu and Manjunath[65] (nearest neighbors),
Wu et al.[66] (linear discriminants) and Tieu and Viola[59] (boosting).

In the following we discuss the special structure of the relevance feedback learning
problem that leads to difficulties for many of the methods mentioned earlier; we also
describe a new approach which deals naturally with the fact that feedback images are
typically selected based of a small set of salient properties. To be able to discuss this
more clearly we first introduce the notion ofaspects.

5.2 Aspect-Based Image Search

As we have seen in Section2 features measure image quantities; some of these
quantities will matter to image relevance and some will not (neutral features). When
a feature matters we should find out which featurevaluesinfluence relevance posi-
tively, and which negatively. Note that only for neutral features, any feature value has

240 M.J. HUISKES AND E.J. PAUWELS

(approximately) the same effect on image relevance, i.e., no effect. For “relevant fea-
tures,” not only will there be feature values that lead to higher perceived relevance,
but there must always also be feature values that make imageslessrelevant.

In our approach we will not analyze the relevance of features as a whole, but rather
the relevance of an image having feature values satisfying certain conditions or be-
longing to a certain set. We consider for instance the influence of “high complexity,”
where “high” is defined as a range of complexity feature values. We will refer to
such derived binary features which model a specific perceptual quality, and which an
image either has or has not, as aspects. To be more precise, we will understand an
aspectas:

a proposition with predicate in terms of a feature or set of features variables
(which for a given image is either true false), for which we intend to resolve its
effect on image relevance as a unit.

When the image features satisfy the aspect predicate we say the imagepossesses,
or simplyhas, the aspect.

As mentioned, even though any constraint on feature values can be used, in prac-
tice the proposition will usually state that the image has a feature value in a certain
natural range or interval. We will refer to such range or interval as the aspectcell.
Such cells can be fixed beforehand, allowing for very fast feedback processing as
we shall see later on, or be determined adaptively. The construction of aspects for
different feature types is discussed in Section5.3.

We believe that when a user is searching in an image database, he does so, con-
sciously or unconsciously, in terms of aspects. The aspects he wishes the images
to possess, and which make an image at least partially relevant, we callrelevance
enhancing, or simplyrelevant, aspects. Similarly we haveneutralandrelevance in-
hibiting aspects.

As an illustrative example, suppose a user is interested in finding designs that:

(i) have a blue background;
(ii) have simple round motifs that are relatively far apart; and

(iii) have a high contrast between motifs and ground.

Depending on the available features, we can translate this to requirements in terms
of aspects. Some aspects are clearly relevant, e.g., the blue-ness of the ground should
be high, dominant motif shape should be round, and relative amount of background
should be high. Aspects that are in opposition to the relevant aspects are relevance
inhibiting, e.g., the user does not want closely spaced motifs, a ground that is red or a
dominant motif shape that is square. Additional inhibiting aspects may be discovered
during the feedback process, e.g., a user may decide that he is in fact not interested
in yellow motifs. Other aspects are neutral as the user does not care whether images

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 241

possess these. For example we may not care about the pattern in the ground: it may
be plain or have some texture.

In the following we discuss the implications of feedback examples being chosen
based onpartial relevance, i.e., based solely on one or a fewsalientaspects. To this
end it will be useful to quantify the saliency or importance of an aspect by measuring
how often, or rather how rarely, the aspect occurs in the database. In practice we will
mainly need the fractionpdb(a) of images in the database that possess a given aspect
a, which in analogy to the information retrieval term of “document frequency” could
also be referred to as the “image frequency” of the aspect. A natural definition of
aspect saliency, in this narrow sense, can then be based directly on the definition
of inverse document frequency (see, for example,[57]), giving the inverse image
frequencyiif (a) = log(1/pdb(a)).

5.3 Aspects and Feature Types

More and more methods for image feature extraction become available and there
is a correspondingly large heterogeneity in feature types. Several divisions of feature
types can be made. Feature values may be continuous or discrete. Within the discrete,
or categorical, features we have ordered (ordinal) and unordered features. An exam-
ple of an ordered feature is a complexity feature divided into five levels, e.g., very
simple, simple, medium, complex and very complex. An unordered feature is, for in-
stance, “direction type” (horizontal, vertical, “diagonal grid” etc.). We may also have
to deal with feature spaces. As mentioned the MPEG-7 standard defines a number
of visual descriptors for color, texture and local shape, where each of such descrip-
tors consists of a feature space and a predefined similarity metric. In some cases the
similarity metric consists of a complicated algorithm, for instance in the case of the
MPEG-7 contour shape descriptor based on a curvature scale space approach.

In many databases manually annotated labels are available, typically of the dis-
crete type, that have high semantic value and can be used with high reliability. Such
labels may be used in hybrid systems that allow for direct selection of image sub-
sets, but it may also be useful to let the system determine their relevance based on
feedback by examples. At the other end of the spectrum we may have features that
hardly have any semantic interpretation at all; such features may for instance be ob-
tained through dimension reduction techniques such as principal component analysis
or the like. Features may also be learned through interaction with the user (see, for
instance,[33]).

We finally observe that several features or feature spaces may be available for
the characterization of more or less the same higher-order aspects, e.g., we may
have several different implementations of color similarity. Which of these is most
appropriate may vary and depend on the given situation.

242 M.J. HUISKES AND E.J. PAUWELS

For discrete feature types associated aspects naturally follow from the available
levels. Also for single dimensional continuous features it is usually straightforward to
quantize the feature, either automatically or by inspection, into a number of meaning-
ful classes. High-dimensional feature spaces are the most interesting in this respect.
Our preferred solution is to use derived features obtained by an exemplar or case-
based approach. For instance, we may select a number of red example images,
determine a prototype or set of prototypes (e.g., by means of LVQ, see[22]), and
define a derived red-ness feature based on the distances to one or more prototypes.
Another approach constructs data-driven aspects by mining for clusters of images in
the given space. Aspects then follow from cluster membership.

Using the evidential aspect-based approach detailed below, we can treat all fea-
ture types in a unified way, and use the feedback data to establish which aspects
are most promising in determining image relevance. More importantly however, it
directly confronts a number of issues concerning the structure of the relevance feed-
back learning problem.

5.4 Special Structure of the Relevance Feedback Learning
Problem

The number of training samples obtained as a result of the relevance feedback
process is usually small, whereas the dimension of feature space is large (typically
more than 100). This makes many of the standard learning methods unsuitable for
the task of relevance prediction.

Apart from this difficulty many of the learning methods do not take the special
structure of the relevance feedback problem into account. We mention three issues:

(i) feature value distributions are often highly skewed;
(ii) the selection of examples is usually based on partial relevance;

(iii) there is a lack of symmetry between positive and negative examples.

Features often have value distributions that are highly skewed. This is particu-
larly the case for features, common for special purpose databases, measuring detailed
salient properties. As examples one may think of binary features such as “contains-
a-paisley,” “has-colored-stripes” or “is-a-tartan.” For many such features, the great
majority of images will not possess the aspect thus leading to a highly skewed value
distribution. Also, if we take a feature measuring yellow-ness, say divided into three
classes: “no yellow,” “some yellow” and “very yellow,” then by far most of the data-
base images will be in the first class, and very few will be in the last. In combination
with the next issue, this skewness in the population distributions leads to a tendency
for feedback data to be misleading.

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 243

FIG. 19. Bars in the diagram indicate the population probabilities of feature values in the database for
three distinct featuresa, b andc. The plus sign indicates the feature values (fora, b, c) for an image which
is selected as an example because ofa = 1 (i.e., for having a relevant aspecta = 1). We supposeb is a
neutral feature, andc is a feature wherec = 1 represents another relevant aspect, which in this case does
not happen to be present in the feedback example. Since the selection is based thea-value, for both cases
theb andc values of this example will be (approximately) random draws from theb andc populations.
Because of the skewness they seem to favorb = 0 andc = 0 consistently, which is misleading in both
cases.

When a user selects an image as feedback he generally does so based onpartial
relevance of the image. This means that he finds one or a few aspects in that image
relevant; however, not all salient aspects present in the image need to be relevant,
nor need all aspects of interest be present in the image. For features other than the
ones by which the image was chosen, the feedback is more or less random: positive
feedback is given for a certain value of the feature, where no such feedback was
intended. Such examples will tend to cluster at those feature values that are most
common in the database: this seems to indicate the user is interested in such values,
whereas in fact he is not, thus interfering with the identification of the proper regions
of relevance. SeeFigure 19.

For negative feedback the situation is similar. The user indicates a negative exam-
ple based on one or more aspects he finds undesirable. Generally we may expect he
will avoid selecting images with relevant aspects to some extent, but for neutral and
other relevance inhibiting aspects the feedback information is, again, often mislead-
ing.

Considering all feedback images, we can expect to encounter situations as
sketched inFigure 20. Different feature types are shown (binary, ordinal, continu-
ous); for each case we show a situation where two of the example images possess a
relevant aspect in the feature under study, whereas the other four are chosen based
on other relevant aspects. Note that negatives counteract the misleading clustering of

244 M.J. HUISKES AND E.J. PAUWELS

FIG. 20. Diagram shows examples of the population probability (mass/density) and potential feedback
for (a) a binary feature; (b) a discrete feature; and (c) a continuous feature. For each case, two positive
examples are chosen based on the feature shown; the remaining examples are chosen based on other
aspects.

positives, but most learning methods will be influenced by the unintended concen-
tration of positives.

A final issue is the lack of symmetry between positive and negative exam-
ples.Huang and Zhou[18] state as an intuition that “the positive examples are all
good in the same way, but bad examples are bad in their own ways.” Though this
statement may not be strictly correct in the light of the partial relevance issue dis-
cussed earlier, it is clear that the few selected negative examples are generally a very
poor representation of the distribution of all negative examples. In our view no de-
scription of the class of negatives need be attempted, and examples should rather
be used to purposely counteract slips of the system in seeking positive examples in
misguided regions of feature space.

A useful distinction in aspects we can make in this context is that betweenactive
andpassiveaspects. Active aspects are aspects that the user uses explicitly in telling
the system about his preferences and dislikes. What the user is looking for generally
follows from a relatively small number of active enhancing aspects. Next to those
there are also passive enhancing aspects, which are typically non-salient: if a user is
looking for very yellow images then a “little-or-no-red” aspect would be enhancing
but only in a passive sense. As follows from the lack of symmetry in positive and
negative aspects, the number of inhibiting (salient) aspects is usually larger than the
number of salient enhancing aspects. However, most inhibiting aspects tend to be
passive. Which of the inhibiting aspects become active is not only be determined
by explicit wishes of the user but also to some extent by chance, e.g., a group of

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 245

red images shows up in the selection, at which the user decides to indicate he is not
interested in this color.

In the following we will describe our approach to the interpretation of feedback
data. We will use the feedback data first and foremost to establish which aspects
matter most to the perceived relevance. For each available aspect we determine the
likelihood ratio of the hypothesis that the aspect enhances relevance, relative to the
hypothesis that relevance is independent of the aspect. Taking this approach has the
benefit that relevance assignment is based not only on clustering behavior of posi-
tives and negatives, but is also compared to clustering behavior of random database
images. This leads to a natural emphasis on salient aspects thereby solving the prob-
lems of partial relevance discussed earlier.

In addition, by taking into account the population distribution, we are not depen-
dent on negative examples to down-weight positives that cluster at aspects with low
saliency. This means negatives can be used to indicate which aspects are not desired,
but are not required for the sole purpose of getting sufficient data for classification.

Finally, the use of the likelihood ratio for the evaluation of relative evidential sup-
port has a strong foundation in statistics, and allows for detailed modeling of the
user’s behavior in providing feedback. This, in turn, allows for inference solutions
that are tailored to the needs of particular interaction schemes.

5.5 Measuring Evidential Support by Likelihood Ratios

In the following we are interested in analyzing the evidential support offered
by data in comparing hypotheses. Rather than stating the problem in terms of the
standard Neyman–Pearson approach in deciding between hypotheses using the like-
lihood ratio as a test statistic, we here emphasize a direct evidential interpretation of
the likelihood ratio.

Royal [49] and Royal[50] make a strong case for the view that evidential sup-
port should not be measured for a hypothesis in isolation, but should preferably be
considered relative to other hypotheses. The strength of such relative evidential sup-
port is quantified by the likelihood ratio. Hacking[17] states this so-calledLaw of
Likelihoodas follows:

If hypothesisA implies that the probability that a random variableX takes the
valuex is pA(x), while hypothesisB implies that the probability ispB (x), then
the observationX = x is evidence supportingA over B if only if pA(x) >

pB (x), and the likelihood ratio,pA(x)/pB (x), measures the strength of that
evidence.

If we have a parameterized probability model forX with distributions indexed
by a parameterθ , then an observationX = x generates a likelihood functionL(θ).

246 M.J. HUISKES AND E.J. PAUWELS

The law of likelihood then explains how to use this function: for any two parameter
valuesθ1 andθ2, the ratioL(θ1)/L(θ2) measures the strength of evidence,X = x in
support ofθ1 vis-à-visθ2.

In this article we propose to use feedback data (the positive and negative example
images) in this way by comparing a number of hypotheses on the relation between
a given aspect and image relevance. These hypotheses basically state either that an
aspect is independent of image relevance (i.e., the aspect is neutral), or that the aspect
is relevance enhancing or inhibiting in a certain way. Each of the hypotheses leads to
a likelihood value for the feedback data. The law of likelihood quantifies the relative
evidential support for anypair of hypotheses; in particular we will be interested
if the maximum likelihood hypothesis stands out sufficiently from the alternative
hypotheses.

An important question is how to interpret the likelihood ratio values. For instance,
which ratios can be said to provide only weak evidence, and which strong evidence.
As discussed in[49] there are various ways to develop a quantitative understanding
of likelihood ratios.

The first is to compare ratios to ones obtained in canonical experiments where
intuition is strong. As an example of such an experiment, suppose we have two iden-
tical urns, one containing only white balls, the other containing equal numbers of
black and white balls. One urn is chosen and we draw a succession of balls from it,
after each draw returning the ball to the urn and thoroughly mixing its contents. We
then have two hypotheses about the contents of the urn, and the observations are the
evidence.

Suppose we draw 3 balls in succession which are all white, then the likelihood
ratio is 23 = 8 favoring the all-white-ball hypothesis over the mixed-balls hypoth-
esis. Similarly, if we drawn balls in succession which are all white, the likelihood
ratio is 2n. Of course there is no sharp transition between weak and strong evidence,
but one may use such experiments to agree on certain benchmarks: Royall[49] pro-
poses to use a likelihood ratio of 8 as representing “fairly strong” evidence and 32 as
“strong” evidence favoring one hypothesis over the other. Note that a likelihood ratio
of 32 corresponds to drawing 5 successive white balls in the canonical experiment.
Similarly likelihood ratios around 1 represent “weak” evidence.

A second way of understanding likelihood ratios is by considering their effect in
transforming prior into posterior odds ratios. We have

(8)
Pr(A|X = x)

Pr(B|X = x)
= pA(x)

pB(x)

Pr(A)

Pr(B)
,

where Pr(A) is the prior probability that hypothesisA is true; Pr(A|X = x) the
posterior, andpA(x) is the likelihood of the datax under hypothesisA.

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 247

So for each prior probability ratioPr(A)
Pr(B)

, the likelihood ratiopA(x)
pB (x)

tells us how the
probability ratio changes after observing the data. For instance a likelihood ratio of
4 always produces a fourfold increase in the probability ratio.

Finally we mention a re-interpretation of likelihood values based on the observa-
tion that evidence may bemisleading, i.e., it may happen that data represents strong
evidence in favor of one hypothesis whereas, in fact, another hypothesis is true. Gen-
erally this cannot occur very often as is shown in[50] and below we will compute
exact probabilities for events such as obtaining strong evidence for neutral aspects
being enhancing. The expressions discussed there have strong links to standard levels
of significance and hypothesis test power.

To summarize, we compare hypotheses based on their likelihood values; in the
case of analyzing the partial relevance of aspects given the feedback data we com-
pare hypotheses that the aspect is enhancing, neutral or inhibiting. Ideally we will
be able to accurately model the probability of a stochastic variable representing the
feedback data for each of the hypotheses, such that its measurement will provide
strong evidence for one of the hypotheses most of the time. The design of such vari-
ables and models is not trivial, and will be taken up in the next section.

5.6 An Evidential Approach to Relevance Feedback by
Examples

As explained, the basic setup in relevance feedback is such that a user selects
images from the database to indicate his preferences and dislikes. Selection is facili-
tated by presenting the images in clickable selection screens each consisting of a grid
of a fixed number of, say 30, thumbnail images. The number of images inspected
may be larger as the user can leaf through the selection screens. Also additional
selection screens may be available, for instance offering ‘informative images,’ see
Section5.6.4. The sequential ordering of the images is either random in the first
cycle, or based on the relevance ranking in the subsequent cycles. The positive ex-
amples and (negative) counterexamples are collected in the collection box, consisting
of the positive and negativefeedback image sets.

At each cycle of the feedback process the user updates the examples in the feed-
back image sets by either:

(i) selecting new images as positive or negative examples adding them to their
respective sets;

(ii) by removing images from the feedback image sets, i.e., the sets are preserved
unless specific images are no longer deemed representative enough and are
deleted explicitly.

248 M.J. HUISKES AND E.J. PAUWELS

As the user selects the example images based on partial relevance, i.e., based on
one or a few enhancing or inhibiting aspects, it is natural to use the feedback data
foremost to establish the relevance effect of the various aspects (i.e., as either en-
hancing, inhibiting or neutral). At the end of each cycle we thus analyze the relation
between aspects and relevance by using models for the three types of effects.

The construction of the models will be based mainly on the following idea: as
the user selects an image as feedback example based on one or a few enhancing or
inhibiting aspects, possession of the remaining aspects will approximately follow the
distribution (of aspect possession) in the database. Corresponding to the models, we
formulate the following hypotheses to explain the occurrence of each of the aspects
in the feedback images:

(1) the independence-hypothesis, orH0-hypothesis: whether the image has the
aspect is independent of whether the image is relevant;

(2) therelevance enhancing-hypotheses, denoted byHK : possession of the aspect
enhances image relevance;

(3) the relevance inhibiting-hypotheses, denoted byH−K : possession of the as-
pect inhibits image relevance.

K denotes the number of images in the positive (enhancing case) or negative feed-
back image set (inhibiting case) for which the user’s selection was directly influenced
by the aspect under study. This means we will consider a sequence of hypotheses
. . . , H−1,H0,H1,H2, . . . where the actual number of hypotheses to be analyzed de-
pends on the number of images in the feedback image set actually possessing the
aspect under study. This will be explained in more detail below by discussing the
models for each of the effects in turn.

5.6.1 Modeling Feedback Under the Independence
Hypothesis

TheH0-hypothesis states that the relevance of the image and the aspect predicate
areindependent. In this case all feedback images have been chosen based on aspects
other than the aspect under consideration, and this means that for all feedback images
possession of this aspect will be distributed approximately as for a random image
from the database. We thus model feedback image possession of the aspect as a
Bernoulli variable with probabilitypdb, the fraction of images in the database which
have the aspect.

In the following we will assume the number of positive and negative images se-
lected to be given, and consider for each of these images if they possess the aspect or
not, i.e., whether or not the associated feature values of the example images satisfy
the aspect condition.

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 249

Let n+ (n−) be the total number of positive (negative) images selected, andN+

(N−) be the number of positives (negatives) that possess the aspect.
We then model both the number of positives and negatives occurring in the cell as

binomial variables with probability parameterpdb:

(9)N+ ∼ B(n+, pdb) and N− ∼ B(n−, pdb).

To see this, imagine a large urn containing a ball for each image of the database.
White balls represent images which have the aspect, and black balls images which
don’t; the urn will then have a fractionpdb of white balls. If we now drawn+ balls,
the number of ballsN+ that is white is modeled well by the binomial distribution
B(n+, pdb).

The total probability mass functionp0(x) for the feedback datax = (N+, N−) is
the product of the probabilities forN+ andN−.

5.6.2 Modeling Feedback Under Partial Relevance:
Enhancing and Inhibiting Hypotheses

Relevance Enhancing Hypotheses. The total numbers of positives (n+),
negatives (n−) are again taken to be fixed. Given that an aspect is relevant, we expect
that a few, saỹN+, of then+ selected positive images have been chosen based to
some extent on this aspect. As the remaining positives are selected because of other
relevant aspects, their aspect possession will then be distributed similar as under the
independence hypothesis.

The HK hypothesis now states that the aspect is relevance enhancing, and that
Ñ+ = K of the feedback images have been selected, at least partially, based on
this aspect. The(n+ − Ñ+) remaining positives are chosen independently from the
aspect, so we have

(10)(N+ − K) ∼ B(n+ − K,pdb),

or

(11)p(N+|Ñ+ = K) =
(

n+ − K

N+ − K

)
p

(N+−K)
db (1− pdb)

(n+−N+),

for N+ � K, andp(N+|Ñ+ = K) = 0 for N+ < K.
To obtain a model for the probability distribution ofN− we assume that nega-

tive examples have a probability to possess the aspect as under the independence
hypothesis, i.e.,

(12)N− ∼ B(n−, pdb).

The total probability mass functionpK(x) for the feedback datax = (N+, N−)

under hypothesisHK is again the product of the probabilities forN+ andN−.

250 M.J. HUISKES AND E.J. PAUWELS

Relevance Inhibiting Hypotheses. The model for relevance inhibiting
hypotheses is derived analogously to the enhancing case. ForH−K we assume that
Ñ− = K of the negative images were chosen based on the aspect, giving that

(13)(N− − K) ∼ B(n− −K,pdb).

Assuming aspect possession for the positives as under independence leads to
p−K(x).

5.6.3 Estimation of Relevance
Aspect Selection. Before we can estimate relevance of images in the database
based on the feedback data obtained, we must first decide which aspects to take into
account.

In our approach we take only those aspects for which either a relevance enhancing
or a relevance inhibiting aspect is sufficiently well supported in comparison to the
independence hypothesis. Here evidential support will be taken in the sense of Sec-
tion 5.5, i.e., measured by means of the likelihood ratio of the respective hypotheses.

Let p0(x) be the likelihood of the feedback data under the independence hypoth-
esis, andp+(x) andp−(x) the maximum likelihood values of the data under the
enhancing and inhibiting hypotheses respectively, i.e.,

(14)p+(x) = max
K>0

pK(x) and p−(x) = max
K<0

pK(x).

We takeT to be our main decision threshold variable. If eitherp+(x)/p0(x) � T

or p−(x)/p0(x) � T we accept the aspect as enhancing or inhibiting, respectively,
i.e., we select such aspects to be taken into account in the relevance estimation. Note
that the first likelihood ratio basically measures if the number of positives with the
aspect is unexpectedly high, and the second ratio whether the number of negatives
with the aspect is unexpectedly high. It may sometimes happen that both are the case;
this special case will be further discussed below. Also note that the enhancing and
inhibiting hypotheses modelactiveaspects. Passive enhancing or inhibiting aspects
will behave as neutral aspects and will thus, as intended, not be selected.

The thresholdT can be directly interpreted in the sense described in Section5.5.
For instance if we have an aspect with image frequencypdb = 0.5 and takeT = 8,
one way to get the aspect to be accepted would be to select 3 out of 3 images with
this aspect, i.e., by taking three positive examples each having the aspect. For more
salient aspects fewer positives and a lower fraction of aspects having the aspect are
required.

A more quantitative approach is to analyze probabilities of obtaining misleading
evidence. In the following we discuss the comparison between neutral and enhancing
aspects, but the same results apply to the neutral-inhibiting comparison.

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 251

We can compute the probability of accepting an aspect as enhancing, when the
aspect is, in fact, neutral. To this end, we first note that for given(n+, n−) andpdb,
each combinationX = (N+, N−) leads to a fixed likelihood ratio

(15)LR+(X) = p+(X)

p0(X)
.

Now assuming that an aspect is neutral means that we know the distribution ofX =
(N+, N−), asX ∼ p0. The probability of obtaining misleading evidence indicating
the aspect is enhancing for a thresholdT is thus given by Pr(LR(X) � T) given
thatX has distributionp0. As an example, for an aspect with image frequency 0.1
(i.e., representing a quality that occurs once every 10 images), withn+ = 7 we
find that the probability of obtaining this type of misleading evidence is equal to
0.026 (forT = 8 andT = 16) and equal to 0.0027 forT = 32. This is, of course, a
general pattern: when we increaseT the probability of mistakenly deciding an aspect
is enhancing decreases. However, there is a trade-off as increasingT also leads to an
increased probability of obtaining evidence not sufficiently supporting an enhancing
aspect to be enhancing. For instance, it turns out that the probability of mistakenly
treating an enhancing aspect in this setup as neutral is zero forT = 8, or T = 16,
but is equal to a large 0.64 forT = 32.

It is interesting to note that the Neyman–Pearson theorem[36] guarantees that for
a given probability of falsely rejecting the neutral hypothesis, the decision based on
the likelihood ratio has optimal power in deciding between the neutral hypothesis
and any of the individual alternative hypotheses.

Further analysis has shown that:

• Very non-salient aspects (withpdb > 0.5 say) are generally hard to discern
from neutral, i.e., there is a large probability that evidence will be found for
these aspects to be neutral even when they are not. These aspects might thus as
well be ignored.

• T = 8 is a good general purpose value for the threshold.

• For very salient aspects (withpdb < 0.01 say) it is possible to raise the thresh-
olds, thereby reducing chances of mistaking neutral aspects for enhancing as-
pects, without running the risk of missing relevant aspects.

Of course we could also optimize the threshold for every given configuration in
terms of(n+, n−), andpdb. Note however, that whether an aspect is enhancing does
not correspond to a unique hypothesis. We thus need to make an additional assump-
tion on whichK-value or combination ofK-values to base our distribution ofX.
For the experiment described above we have used the assumption that theX is dis-
tributed according to aK-value that is 2 higher than the expected number under the

252 M.J. HUISKES AND E.J. PAUWELS

independence hypothesis. Using simulation studies we intend to further analyze this
issue and also explore the effects of the aspect correlations mentioned below.

As a final issue it was mentioned that it may happen that both the enhancing and
inhibiting hypotheses receive strong support relative to the independence hypothesis,
giving a so-calledentangledaspect. Two conflicting explanations for this state of
affairs are possible:

(i) the user has strongly emphasized an aspect with his positive images without
intending to do so (the aspect is neutral or inhibiting); as a reaction he has
chosen an approximately equal fraction of negatives to undo this;

(ii) the user actually finds the aspect relevant, but has nevertheless selected a num-
ber of negative images with this aspect (for example because he had no other
choice).

Note that this issue is not unique to our approach, but is a general problem in rel-
evance feedback analysis. In our implementation we currently solve the problem
using two strategies. The first is to demand not only sufficient support relative to
the independence hypothesis but also relative to the opposing hypothesis. The sec-
ond strategy is to use the direct feedback approach described in the introduction.
This consists in presenting the user, at his request, with an overview of selected en-
hancing, inhibiting and entangled aspects. In this overview the user may confirm or
reject the presented results. For each aspect he may indicate whether he considers
it enhancing, inhibiting, or neutral. For enhancing and inhibiting aspects two levels
of acceptance can be indicated: either selection in an AND-sense, or selection in an
OR-sense. When an aspect is selected in an AND-sense this means that from then
on only images will be considered (and shown) that possess that particular aspect,
and images without it are no longer taken into account. The OR-sense means that the
aspect is treated as any other aspect that is selected based on the statistical analysis:
it will provide a contribution to the relevance as will be discussed below, but is not
strictly required for an image to be considered relevant.

Relevance Estimation. For fixed aspect cells we use a matrixM with
columns of boolean variables to indicate whether images have a given aspect or not.
FromM we computepdb for each aspect as the ratio of ones in each column.

We can determineN+
j andN−

j from the image index setsS+ andS− of positive

and negative examples, using sums
∑n+

i=1 M(S+i , j) and
∑n−

i=1 M(S−i , j) respec-
tively. Computing likelihood ratios LR+j and LR−j for each aspect is a simple matter

of substituting the values forN+
j , N−

j in the formulas forp+(x), p−(x) andp0(x).
Also note that analyzing a number of enhancing and inhibiting hypotheses does not
lead to any substantial additional computational expense, as we can compute associ-

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 253

ated likelihood values sequentially (for instance for positiveK) by

(16)pK(x) = (N+ − K + 1)

(n+ − K + 1)

pK−1(x)

pdb
, 1 � K � N+.

To obtain a prediction of image relevance to get a new selection of most relevant
images we consider only the aspects that receive strongest support. Motivated by
the results discussed above, we demand a likelihood ratio greater than 8. LetA+ be
the index set of accepted enhancing aspects, andA− be the index set of accepted
inhibiting aspects, then the predicted image relevance reli for imagei is given by
reli =

∑
j M(i,A+

j)−∑
j M(i,A−

j).
Note that, of course, the decision of taking into account an aspect need not so

black-and-white; for instance we may down-weight the effect of aspects that show
promise but for which the evidence is just not strong enough. On the other hand, one
should take into consideration that the strength of evidence cannot be used directly as
weighting factor in relevance prediction as for aspects receiving strong evidence for
their relevance their precise strength of evidence no longer matters; in other words,
weighting factors should saturate for high evidence ratios. A saturating weighting
function that could be used to this end is for instancew(LR) = 1 − exp(−αLR),
whereα determines the saturation rate.

Perhaps even more importantly, however, given that typically we have a very large
number of aspects, mixing the effect of many uncertain aspects may drastically de-
teriorate performance as the many aspect that are of no particular relevance will
dominate the effect of the few truly relevant aspects. We thus choose to include only
those aspects for which the evidence is sufficiently strong. Also various types of cor-
rections for correlations between aspects are possible, (e.g., by aspect grouping, or
shared scoring) these are, however, beyond the scope of this chapter.

5.6.4 Selection of Informative Images

An infamous issue in content-based image retrieval is the “page-zero problem:”
a user has a certain image or class of images in mind, but due to the relative small
fraction of the database shown he cannot find images to get him started. We can aid
in this situation by showing the user not only a selection of images based on ranking
by relevance, but additionally provide images with aspects the user has not yet seen
up to that point. Such images are also informative from the inference perspective as
the system cannot determine the relevance of aspects for which the user has had no
chance to provide feedback.

Let S be the index set ofnS images shown up until that point from which the user
has been allowed to make his selection, of whichNS images have the aspect.

254 M.J. HUISKES AND E.J. PAUWELS

To construct an informative selection, we sort the aspects based on their associated
NS value, i.e., the number of images shown to the user that possess the aspect. From
this ranking we determine a setÃ of most informative aspects.

Next, we rank the images that satisfy at least one of these aspects by increasing
value of the total number of such aspects they have. This allows the user to provide
partial relevance feedback on informative aspects, while minimizing the risk that he
provides misleading feedback on other aspects.

6. Conclusion and Outlook

With the current state-of-the-art in image content description and feature ex-
traction, meaningful retrieval in specialized image databases still depends to an
important extent on explicit modeling of domain knowledge. For many low-level
perceptual characteristics, e.g., with respect to color and texture, standard solutions
are available. However, as the user generally thinks in terms of high level concepts,
such characterizations are generally insufficient in satisfying his wishes.

Features are required that characterize the structure of the image in terms of prop-
erties and relations between the elements in the images. For instance, we have seen
that for decoration designs, users may wish to find designs with certain specific types
of objects, of a certain size etc. Modeling of domain knowledge should be done as
generically as possible in order to avoid re-inventing the wheel for every single aspect
that may play a role in the user’s perception. Research is thus needed in developing
flexible representations that may be re-used for various characterization tasks. In
our view, a key requirement to this end is a robust system of object detection and
recognition. By exploiting domain knowledge it is sometimes possible to achieve a
satisfactory performance in this respect as we have seen in the example of the figure-
ground segregation approach. However, further work remains to be done in particular
in coping with the intricate interactions of various grouping principles and in being
able to deal with the most unambiguous clues first.

Given the flexible representations, machine learning techniques can establish the
precise relations required for the characterization task at hand.

Ontologies facilitate standardization by providing a vocabulary of shared terms
together with a structure of feasible properties and relations by which images in a
domain are described. The development of such description ontologies is also a very
useful exercise in gaining insight into which aspects need to be captured automati-
cally.

Once images can be described in terms of higher level aspects, we must still
face the fact that which of these aspects matters most is generally user- and task-
dependent. Using relevance feedback techniques this issue may be resolved through

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 255

natural interaction with the system. To this end we described a statistically princi-
pled approach, which is directly aimed at assessing which image aspects determine
relevance, and which takes into account the special structure of feedback data.

ACKNOWLEDGEMENTS

This work has been partially funded by the European Commission under the IST
Programme of the Fifth Framework (Project nr. IST-2000-28427). We thank Sophis
Systems NV and Pianezza Srl for supplying the decoration design test collections.

REFERENCES

[1] Benitez A.B., Martinez J.M., Rising H., Salembier P., “Description of a single mul-
timedia document”, in: Manjunath B., Salembier P., Sikora T. (Eds.),Introduction to
MPEG-7—Multimedia Content Description Interface, John Wiley and Sons, Ltd., Chich-
ester, England, 2002, pp. 111–138.

[2] Bigün J., Granlund G., “Optimal orientation detection of linear symmetry”, in:Proc. 1st
Internat. Conf. Computer Vision, 1987, pp. 433–438.

[3] Bober M., Preteux F., Kim W.-Y.Y., “Shape descriptors”, in: Manjunath B., Salembier P.,
Sikora T. (Eds.),Introduction to MPEG-7—Multimedia Content Description Interface,
John Wiley and Sons, Ltd., Chichester, England, 2002, pp. 231–260.

[4] Boggess A., Narcowich F.J.,A First Course in Wavelets with Fourier Analysis, Prentice
Hall, Upper Saddle River, NJ, 07458, 2001.

[5] Bovik A., Clark M., Geisler W., “Multichannel texture analysis using localized spatial
filters”, IEEE Trans. on Pattern Analysis and Machine Intelligence12 (12) (1990) 55–
73.

[6] Choi Y., Won C.S., Ro Y.M., Manjunath B., “Texture descriptors”, in: Manjunath B.,
Salembier P., Sikora T. (Eds.),Introduction to MPEG-7—Multimedia Content Descrip-
tion Interface, John Wiley and Sons, Ltd., Chichester, England, 2002, pp. 213–230.

[7] Ciocca G., Schettini R., “Using a relevance feedback mechanism to improve content-
based image retrieval”, in: Huijsmans D., Smeulders A. (Eds.),Visual Information and
Information Systems, Springer-Verlag, Berlin/New York, 1999, pp. 107–114.

[8] Cox I., Miller M., Minka T., Papathomas T., “The Bayesian image retrieval system,
PicHunter: Theory, implementation, and psychophysical experiments”,IEEE Trans. Im-
age Processing9 (1) (2000) 20–37.

[9] Duda R., Hart P.,Pattern Classification and Scene Analysis, John Wiley and Sons, Inc.,
New York, USA, 1973.

[10] Eakins J., Boardman J., Graham M., “Trademark image retrieval by shape similarity”,
IEEE Multimedia5 (2) (1998) 53–63.

[11] Flickner M., Sawhney H., Niblack W., Ashley J., Huang Q., Dom B., Gorkani M., Haf-
ner J., Lee D., Petkovic D., Steele D., Yanker P., “Query by image and video content: The
QBIC system”,IEEE Computer28 (9) (1995) 23–32.

256 M.J. HUISKES AND E.J. PAUWELS

[12] Freeman W., Adelson E., “The design and use of steerable filters”,IEEE Trans. on Pattern
Analysis and Machine Intelligence13 (9) (1991) 891–906.

[13] Freixenet J., Munoz X., Raba D., Marti J., Cufi X., “Yet another survey on image seg-
mentation: Region and boundary information integration,” in:Proceedings ECCV 2002
III , 2002, pp. 408–422.

[14] Gimel’farb G., Jain A., “On retrieving textured images from an image database”,Pattern
Recognition29 (9) (1996) 1461–1483.

[15] Goldfarb P., Prescod P.,The XML Handbook, third ed., Prentice Hall, NJ, 2001.
[16] Gotlieb C., Kreyszig H., “Texture descriptors based on co-occurrence matrices”,Com-

puter Vision, Graphics, and Image Processing51 (1) (1990) 70–86.
[17] Hacking I.,Logic of Statistical Inference, Cambridge University Press, New York, 1965.
[18] Huang T., Zhou S., “Image retrieval with relevance feedback: From heuristic weight ad-

justment to optimal learning methods,” in:Proc. IEEE Internat. Conf. on Image Process-
ing (ICIP), October 2001.

[19] Huiskes M., Pauwels E., “Segmentation by color coalition labeling for figure-ground
segregation in decoration designs,” in:Proceedings of the 3rd International Symposium
on Image and Signal Processing and Analysis (ISPA), 2003, pp. 84–90.

[20] Huiskes M., Pauwels E., Bernard P., Derumeaux H., Vandenborre P., Van Langenhove L.,
Sette S., “Metadata for decorative designs: Application of MPEG-7 in automatic design
interpretation,” in:Proceedings of the World Textile Conference and third Autex Confer-
ence, June 2003, pp. 502–506.

[21] Kass M., Witkin A., “Analyzing oriented patterns”, in: Fischler M., Firschein O. (Eds.),
Readings in Computer Vision, Morgan Kaufmann, Los Altos, CA, 1987, pp. 268–276.

[22] Kohonen T.,Self-Organization and Associative Memory, third ed., Springer-Verlag,
Berlin, 1989.

[23] Laaksonen J., Koskela M., Oja E., “PicSOM: Self-organizing maps for content-based
image retrieval”,Pattern Recognition Letters27 (13/14) (December 2000) 1199–1207.

[24] Laine A., Fan J., “Texture classification by wavelet packet signature”,IEEE Trans. on
Pattern Analysis and Machine Intelligence15 (11) (1993) 1186–1191.

[25] Lin H., Wang L., Yang S., “Color image retrieval based on hidden Markov models”,IEEE
Trans. Image Processing6 (2) (1997) 332–339.

[26] Lin H., Wang L., Yang S., “Extracting periodicity of a regular texture based on autocor-
relation functions”,Pattern Recognition Letters18 (1997) 433–443.

[27] Liu F., Picard R., “Periodicity, directionality, and randomness: Wold features for image
modeling and retrieval”,IEEE Trans. Pattern Analysis and Machine Intelligence18 (7)
(1996) 517–549.

[28] Liu Y., Collins R., Tsin Y., “A computational model for periodic pattern perception based
on frieze and wallpaper groups”,IEEE Trans. Pattern Analysis and Machine Intelli-
gence26 (3) (2004) 354–371.

[29] MacArthur S., Brodley C., Shyu C., “Relevance feedback decision trees in content-based
image retrieval,” in:IEEE Workshop on Content-Based Access of Image and Video Li-
braries, 2000, pp. 68–72.

[30] Manjunath B., Ma W., “Texture features for browsing and retrieval of image data”,IEEE
Trans. on Pattern Analysis and Machine Intelligence18 (8) (1996) 837–842.

INDEXING, LEARNING AND CONTENT-BASED RETRIEVAL 257

[31] Mao J., Jain A., “Texture classification and segmentation using multiresolution simulta-
neous autoregressive models”,Pattern Recognition25 (2) (1992) 173–188.

[32] Meilhac C., Nastar C., “Relevance feedback and category search in image databases,” in:
Proc. Internat. Conf. Multimedia Computing and Systems, 1999, pp. 512–517.

[33] Minka T., Picard R., “Interactive learning using a “society of models” ”,Pattern Recog-
nition 30 (4) (1997) 565–581.

[34] Mojsilovic A., Hu J., Soljanin E., “Extraction of perceptually important colors and sim-
ilarity measurement for image matching, retrieval, and analysis”,IEEE Trans. on Image
Processing11 (11) (November 2002) 1238–1248.

[35] MPEG7, Multimedia content description interface,http://www.chiariglione.org/mpeg/,
2003.

[36] Neyman J., Pearson E., “On the problem of the most efficient tests of statistical hypothe-
ses”,Philosophical Trans. of the Royal Society, Series A231(1933) 289–337.

[37] Ohm J.-R., Cieplinski L., Kim H.J., Krishnamachari S., Manjunath B., Messing D.S.,
Yamada A., “Color descriptors”, in: Manjunath B., Salembier P., Sikora T. (Eds.),Intro-
duction to MPEG-7—Multimedia Content Description Interface, John Wiley and Sons,
Ltd., Chichester, England, 2002, pp. 187–212.

[38] “OWL, Web ontology language”,http://www.w3.org/2001/sw/WebOnt/, 2003.
[39] Pal N., Pal S., “A review on image segmentation techniques”,Pattern Recognition26 (9)

(1993) 1277–1294.
[40] Pass G., Zabih R., Miller J., “Comparing images using color coherence vectors,” in:4th

ACM Conference on Multimedia, November 1996, pp. 65–73.
[41] Pauwels E., Huiskes M., Bernard P., Noonan K., Vandenborre P., Pianezza P., De Mad-

delena M., “FOUNDIT: Searching for decoration designs in digital catalogues,” in:Pro-
ceedings of the 4th European Workshop on Image Analysis for Multimedia Interactive
Services, 2003, pp. 541–544.

[42] Peng J., Bhanu B., Qing S., “Probabilistic feature relevance learning for content-based
image retrieval”,Computer Vision and Image Understanding75 (1/2) (1999) 150–164.

[43] Pratt W.,Digital Image Processing, second ed., John Wiley and Sons, New York, 1991.
[44] Randen T., Husoy J., “Filtering for texture classification: a comparative study”,IEEE

Trans. Pattern Analysis and Machine Intelligence21 (4) (1999) 291–310.
[45] Ranguelova E., Huiskes M., Pauwels E., “Towards computer-assisted photo-identification

of humpback whales,” in:Proceedings of ICIP 2004, 2004.
[46] “RDF—Resource Description Frameworks”,http://www.w3.org/RDF/, 2003.
[47] Reed T., Du Buf J., “A review of recent texture segmentation and feature extraction tech-

niques”,Source CVGIP: Image Understanding Archive57 (3) (May 1993) 359–372.
[48] Rocchio J. Jr., “Relevance feedback in information retrieval”, in: Salton G. (Ed.),The

SMART Retrieval System: Experiments in Automatic Document Processing, Prentice
Hall, New York, 1971, pp. 313–323.

[49] Royall R.,Statistical Evidence: A Likelihood Paradigm, Monographs on Statistics and
Probability, Chapman and Hall, London, 1997.

[50] Royall R., “On the probability of observing misleading statistical evidence”,Journal of
the American Statistical Association95 (451) (2000) 760–780.

http://www.chiariglione.org/mpeg/
http://www.w3.org/2001/sw/WebOnt/
http://www.w3.org/RDF/

258 M.J. HUISKES AND E.J. PAUWELS

[51] Rui Y., Huang T., Ortega M., Mehrotra S., “Relevance feedback: A power tool for in-
teractive content-based image retrieval”,IEEE Trans. Circuits and Systems for Video
Technology8 (5) (1998) 644–655.

[52] Russ J.,The Image Processing Handbook, second ed., CRC Press, Boca Raton, FL, 1995.
[53] Salembier P., Smith J.R., “Overview of multimedia description schemes and schema

tools”, in: Manjunath B., Salembier P., Sikora T. (Eds.),Introduction to MPEG-7—
Multimedia Content Description Interface, John Wiley and Sons, Ltd., Chichester, UK,
2002, pp. 83–94.

[54] Schattschneider D., “The plane symmetry groups: their recognition and notation”,Amer-
ican Mathematical Monthly85 (1978) 439–450.

[55] Smeulders A., Worring M., Santini S., Jain R., “Content-based image retrieval at the end
of the early years”,IEEE Trans. on Pattern Analysis and Machine Intelligence22 (12)
(2000) 20–37.

[56] Soille P.,Morphological Image Analysis, Springer-Verlag, Berlin, 1999.
[57] Sparck Jones K., “A statistical interpretation of term specificity and its application in

retrieval”,Journal of Documentation28 (1) (1972) 11–21.
[58] Swain M., Ballard D., “Color indexing”,International Journal of Computer Vision7 (1)

(1991) 11–32.
[59] Tieu K., Viola P., “Boosting image retrieval”,International Journal of Computer Vi-

sion56 (1/2) (2004) 17–36.
[60] Tong S., Chang E., “Support vector machine active learning for image retrieval,” in:Proc.

of 9th ACM Internat. Conf. on Multimedia, 2001, pp. 107–118.
[61] Van Droogenbroeck M., Talbot H., “Fast computation of morphological operations with

arbitrary structuring elements”,Pattern Recognition Letters77 (14) (1996) 1451–1460.
[62] Vasconcelos N., Lippman A., “Learning from user feedback in image retrieval,” in:NIPS

99, 1999, pp. 977–986.
[63] Veltkamp R., Hagedoorn M., “State-of-the-art in shape matching”, in: Lew M. (Ed.),

Principles of Visual Information Retrieval, Springer-Verlag, Berlin/New York, 2001,
pp. 87–119.

[64] Wertheimer M., “Untersuchungen zur Lehre von der Gestalt. II”,Psychologische
Forschung4 (1923) 301–350.

[65] Wu P., Manjunath B., “Adaptive nearest neighbor search for relevance feedback in large
image databases,” in:Proc. of 9th ACM Internat. Conf. on Multimedia, 2001, pp. 89–97.

[66] Wu Y., Tian Q., Huang T., “Discriminant EM algorithm with application to image re-
trieval,” in: IEEE CVPR, 2000, pp. 1222–1227.

[67] Zhang H., Su Z., “Relevance feedback in CBTR”, in: Zhou X., Pu P. (Eds.),Visual and
Multimedia Information Systems, Kluwer Academic Publishers, Dordrecht/Norwell, MA,
2002, pp. 21–35.

[68] Zhou X., Huang T., “Relevance feedback in image retrieval: a comprehensive review”,
ACM Multimedia Systems Journal8 (6) (April 2003) 536–544.

Defect Analysis: Basic Techniques
for Management and Learning

DAVID N. CARD

Q-Labs
115 Windward Way
Indian Harbour, FL 32937
USA
card@computer.org

Abstract
This chapter provides an overview of both the state of the art and the state of
the practice of defect analysis, with an emphasis on the latter. Defect analysis is
defined as the study of the properties of defects themselves, as opposed to meth-
ods for predicting the number and nature of defects based on other properties of
software, such as complexity models. Defect data often is one of the first types
of data that software organizations collect. Success in analyzing defect data of-
ten determines whether or not a software organization’s measurement program
flourishes or withers. This chapter discusses three practical purposes of defect
analysis: modeling/predicting software quality, monitoring process performance,
and learning from past mistakes about how to improve process performance and
software quality. The techniques supporting these purposes range from sim-
ple arithmetic to complex statistical analysis. While this chapter provides an
overview of many defect analysis approaches, it focuses on the simplest, those
that are most readily applied in practice.

1. Introduction . 260
2. Modeling for Quality Management. 261

2.1. Life Cycle Defect Profiles . 262
2.2. Capture/Recapture. 269

3. Monitoring Process Performance . 270
3.1. SPC Concepts . 270
3.2. Does SPC Apply to Software Processes? . 273
3.3. Control Charting Techniques . 273
3.4. Issues in Control Chart Application . 276
3.5. Common Mistakes in Control Charting . 279

4. Learning and Improvement . 281

ADVANCES IN COMPUTERS, VOL. 65 259 Copyright © 2005 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(05)65006-1 All rights reserved.

mailto:card@computer.org

260 D.N. CARD

4.1. Causal Systems . 281
4.2. Defect Causal Analysis . 286

5. Summary and Conclusions . 292
References . 293

1. Introduction

There are many different notions of software quality. ISO/IEC Standard 9126[26]
defines six: reliability, maintainability, portability, functionality, efficiency, and us-
ability. Many of these are difficult to measure directly. Regardless of the notion of
quality that a project or organization adopts, most practitioners would agree that the
presence of defects indicates a lack of quality, whatever it is. Consequently, manag-
ing and learning from defects is profoundly important to software practitioners. This
chapter provides an overview of the techniques that are commonly used in defect
analysis.

Defect analysis is defined as the investigation of the properties of defects them-
selves, usually with the aim of minimizing them or managing their consequences.
Historically, academic researchers have focused relatively more attention on pre-
dicting defects from other properties of software, such as complexity and structure,
rather than on the direct analysis of defects. The related field of reliability modeling
has a long history of both academic research and practical application. It deals with
“failures,” a behavior of software closely related to defects. While the study of fail-
ures gives us approximate information about the defectiveness of software, it is not
a direct analysis of defects.

For purposes of this chapter we define a defect to be a segment of software or doc-
umentation that must be changed in order to satisfy the project requirements. Usually
defects are the consequence of mistakes or omissions by human beings during the
course of developing the software or documentation. Defects may be found in in-
spections or reviews as well as resulting from the debugging of failures detected in
testing. Sometimes failures are equated with defects. However, a failure may be the
consequence of more than one defect. The kind of information typically recorded
about defects includes:

• Type of defect.

• Phase/activity in which inserted.

• Phase/activity in which detected.

• Effort to fix.

Defect analysis has become important to software practitioners because defects are
both a convenient source of information and a significant impact to project success.

DEFECT ANALYSIS 261

They are convenient in the sense that they are abundant and easily counted. They
are significant in that more defects means lower customer satisfaction, more rework
effort/cost, and potential delays while repairs are made. Consequently minimizing,
or at least managing, defects is a basic concern of software managers.

This chapter discusses three basic purposes of defect analysis:

• Modeling (or predicting) software quality—to determine whether or not an ac-
ceptable level of quality will be achieved at delivery. This involves developing
a plan for quality.

• Monitoring process performance—to recognize when process performance de-
parts from expectations with respect to defectiveness. Changes in process per-
formance may threaten the achievement of the quality plan.

• Learning from past mistakes—to figure out how to improve process perfor-
mance and software quality. The need or opportunity to learn often is signaled
by the results of quality modeling and process monitoring.

Together, the techniques that implement these objectives define a feedback system
that helps to control and improve an industrial software engineering process.

Defects also represent work items from a project management perspective. That is,
the effort to fix defects must be considered in project planning and tracking. More-
over, the number of defects outstanding may be a factor in the acceptance of the
software by the customer. These issues are briefly discussed along with the defect-
based models of software quality. However, a thorough treatment of defects as work
items falls outside the scope of this chapter.

The techniques supporting these three basic purposes of defect analysis range from
simple arithmetic to complex statistical computations. While this chapter provides an
overview of many defect analysis approaches, it focuses on the simplest, those that
are most readily applied in practice.

The next three sections (2 through4) review techniques appropriate for each of
the three purposes of defect analysis. Section5 discusses the relationship of these
techniques to some of the popular software process improvement paradigms. Finally,
Section5 provides the summary and conclusions.

2. Modeling for Quality Management

The practical purpose of modeling software quality with defects is to determine
whether or not the level of defects in the software at different stages of development
is acceptable and consistent with project plans. This involves developing a plan for
quality. There are two general approaches to modeling software quality with defects.

262 D.N. CARD

One involves the analysis of defect levels across the project lifecycle. The other com-
pares defect discoveries by multiple agents, perhaps within the same lifecycle phase.
The following sections describe several techniques supporting each approach.

2.1 Life Cycle Defect Profiles

Remus and Ziles[45] proposed a simple two phase model of defect discovery
in projects. However, that approach only supports estimation late in the project’s
life. This section discusses developing a similar, but more detailed, life-cycle defect
profile as described in[10]. A defect profile serves as a “quality budget.” It describes
planned quality levels at each phase of development, just as a budget shows planned
effort (or cost) levels. Actual defect levels can be measured and compared to the plan,
just as actual effort (or cost) is compared to planned effort (or cost). Investigating
departures from the plan leads to corrective actions that optimize project outcomes.

Software development is made up of a set of processes, usually organized into
sequenced phases, each of which has some ability to insert and detect defects. The
quality plan is an estimate of the number of defects expected to be inserted and
detected in each phase. However, only the number of detected defects in any phase
can be known with confidence prior to the completion of the project. The number of
defects inserted in each phase cannot be known until all defects have been found. We
approach that number after the system has been fielded. Consequently, this approach
focuses on defects detected as the knowable quantity.

The techniques presented here depend on two key assumptions:

• Size is the easily quantifiable attribute of software that is most closely associated
with the number of defects[17]. The basic test of the effectiveness of complex-
ity models and other indicators of defect-proneness is “Does this model show
a significantly higher correlation with defects than just size (e.g., lines of code)
alone?”[11].

• Defect insertion and detection rates tend to remain within relatively consistent
ranges as long as the software processes of the project remain stable. They are
not exactly constant, but they perform within a recognizable range.

The first assumption appears to be inherent to the nature of software. High maturity
organizations actively work to make the second assumption come true. That is, they
are acting to bring their processes under control. However, that assumption does not
require the demonstration of statistically stable processes, just repeatable processes
that are consistently performed.

Either of two strategies may be adopted in developing a defect profile: analysis
of empirical data or reliance on an analytical model[10]. The following subsections
discuss these strategies.

DEFECT ANALYSIS 263

2.1.1 An Empirical Model
The simplest approach to generating a defect profile is to collect actual data about

the insertion and detection rates in each phase from projects within the organization
to which the defect profile is intended to apply. The development of an empirical
profile can be accomplished in four steps, as follows:

• Historical data are collected.Table I shows a simple spreadsheet used to tab-
ulate defect discovery and detection data using example data. In addition the
size of the project from which the defect data is collected must be known. The
selected size measure must be applied consistently, but it this approach does not
require the use of any specific measure. Lines of code, function points, number
of classes, etc., may be used as appropriate. (The data inTable I is simulated,
not real.)

• An initial profile of the number of defects found in each phase is generated as
shown inFigure 1. The bars in that figure represent the row totals found in the
last column ofTable I.

• This initial profile is scaled to account for differences between the size of the
project(s) from which the profile was developed and the size of the project to
which it is applied. This is accomplished by multiplying by the ratio of the
project sizes. For example, if the defect profile inFigure 1were to be used to
develop a defect profile for a project twice the size of the project providing the
data that went intoFigure 1, then the bars of the profile representing the new
project would be twice the size of those inFigure 1. This implies that twice as
many defects are likely to be found in each phase of the new project.

• The scaled defect profile is adjusted further to reflect the planned performance
of the project. For example, if the project plan called for the automatic gen-
eration of code from design instead of hand coding as previously done, then

TABLE I
EXAMPLE OF EMPIRICAL DEFECTPROFILE (SIMULATED DATA)

Phase
detected

Phase inserted

Analysis Design Code Developer test System test Total

Analysis 0 0
Design 50 200 250
Code 50 100 300 450
Developer test 25 50 150 0 225
System test 18 38 113 0 0 169
Operation 7 12 37 0 0 56

Total 150 400 600 0 0 1150

264 D.N. CARD

FIG. 1. Example of defect profile with data fromTable I.

the number of defects inserted in the implementation phase would be adjusted
downwards to reflect this change in the coding process. Also, changes in the
project’s process (such as increased or improved inspections) may be induced
in order to reach a specified target in terms of delivered quality, if previous per-
formance did not yield the required level of quality, as specified by a customer
requirement or an organizational goal.

Actual defect counts can then be compared with this final plan (defect profile) as the
project progresses. Suggestions for this activity are provided later in this article. Note
that the defect profile does not address defect status (i.e., “open” versus “closed”
problems/defects). All defects detected, regardless of whether or not they ever get
resolved, are included in the defect counts.

Figure 2shows as actual defect profile as prepared two-thirds of the way through
software integration testing. About two-thirds of the predicted number of defects
actually have been detected. This illustrates that the real value of the defect profile
lies in its ability to make quality visible during development, not as a post-mortem
analysis technique.

Figure 2shows an example of a defect profile developed empirically for an actual
military project[9]. This figure shows the predicted number of defects to be injected
and detected in each phase, based on previous projects. However, only actual counts
are shown for the number of detected is shown, because the actual number injected
can’t be determined with any confidence until after delivery of the software.

The project inFigure 2actually was completed after this graph was prepared. The
planned and actual defect levels never differed by more than 10 percent. The project

DEFECT ANALYSIS 265

FIG. 2. Example of empirical defect profile (actual project data). (See Color Plate Section, Plate 30.)

team handed their product over to the customer with a high degree of confidence that
it met the targeted level of quality.

Weller [49] provides a case study of successfully applying this approach to a large
commercial software system. Again, the defect profile provided useful insight into
the quality of the developing software system.

2.1.2 An Analytical Model
Defect profiles may also be generated using mathematical models. Many early

studies of defect occurrence suggested that it followed a Rayleigh curve, roughly
proportional to project staffing. The underlying assumption is that the more effort
expended, the more mistakes that are made and found. Putnam[42] described the
implications of the Rayleigh curve for estimating project effort.

Gaffney[21] developed a similar model for defects:

Vt = E
(
1− e−Bt2)

where:

• Vt = Number of defects discovered by timet ;

266 D.N. CARD

• E = Total number of defects inserted;

• B = Location parameter for peak.

The time periodst can be assumed to be equal to life-cycle phase transition bound-
aries in order to apply the model to project phases rather than elapsed time. The
location parameterB fixes the time of the maximum (or peak) of the distribution
(discovery of defects). For example,B = 1 means that the peak occurs att = 1.

The analytical approach involves applying regression analysis to actual phase-by-
phase defect data to determine the values ofB andE that produce a curve most
like the input data. While specialized tools are available, e.g., SWEEP[48], to per-
form this analysis—it can easily be implemented in Microsoft Excel using the Data
Analysis Add-Ins.

The effectiveness of the analytical approach using the Rayleigh model depends on
the satisfaction of additional assumptions, including:

• Unimodal staffing profile.

• Life-cycle phases of similar (not exactly equal) duration (not effort).

• Reasonably complete reporting of defects.

• Use of observable/operational defects only.

To the extent that these assumptions are satisfied, this model gives better results.
Analytical models such as this are useful when the organization lacks complete life-
cycle defect data or desires to smooth existing data to provide an initial solution for
new projects without prior historical data. The defect profile obtained from the actual
data can be easily adjusted to fit projects with different numbers of life cycle phases
and varying process performance by selecting appropriate values ofE andB.

Figure 3provides an example of a defect profile for another actual military project
generated by SWEEP. The light bars inFigure 2represent the expected number
of defects for each phase, based on the model. For this specific project, the actual
number of defects discovered is substantially lower than planned during Design.
Consequently, additional emphasis was placed on performing rigorous inspections
during Code, with the result that more defects than originally anticipated were cap-
tured during Code, putting the project back on track to deliver a quality project as
shown at Post Release.

Harbaugh[23] provides a detailed analysis of applying the Rayleigh model to a
large software project. Kan[33] presents some similar approaches to analytical de-
fect modeling. Rallis and Lansdowne[44] have developed a very different analytical
modeling approach that uses data from sequential independent reviews to estimate
the number of defects remaining and eventual reliability. However, this approach
does not appear to have been tried out in industry, yet.

DEFECT ANALYSIS 267

FIG. 3. Example of analytical defect profile (actual project data). (See Color Plate Section, Plate 31.)

2.1.3 Interpreting Differences

During project execution planned defect levels are compared to actual defect lev-
els. Typically, this occurs at major phase transitions (milestones). However, if a phase
extends over more than six months, then additional checkpoints may be inserted into
some phases (as in the example ofFigure 2where analyses were conducted at the
completion of each third of integration testing). Analyzing the performance of the
project relative to the planned defect profile involves three steps:

• Determine if the differences are significant and/or substantive. (We never get
exactly what we plan in the real world.) Assessment of the magnitude of the
differences might be accomplished by seeking visually large differences, estab-
lishing thresholds based on experience, or applying statistical tests such as the
Chi-Square[25].

• Determine the underlying cause of the difference. This may require an exami-
nation of other types and sources of data, such as process audit results as well

268 D.N. CARD

as effort and schedule data. Techniques for causal analysis are discussed in Sec-
tion 4.

• Take action as appropriate. This includes corrective actions to address problems
identified in the preceding step, as well updates to the defect profile to reflect
anticipated future performance.

Differences between planned and actual defect levels do not always represent quality
problems. Potential explanations of departures from the plan (defect profile) include:

• Bad initial plan (assumptions not satisfied, incomplete or inappropriate data).

• Wrong software size (more or less than initial estimate).

• Change in process performance (better or worse than planned).

• Greater or lesser complexity of software than initially assumed.

• Inspection and/or test coverage not as complete as planned.

Analyzing departures from the defect profile early in the lifecycle gives us feedback
on our understanding of the size and complexity of the software engineering task
while there is still time to react. Phan et al.[41] showed that the costs of removing
defects increase as the project moves through its lifecycle. Westland[50] also argued
the cost benefits of early defect detection and removal. Defects represent rework
that must eventually be accomplished in order to make the software acceptable for
delivery. Consequently, understanding the defect content of the software early in
the life cycle has important business consequences. The defect profile makes those
defects visible to management.

2.1.4 Orthogonal Defect Classification
Defect models can become very rich. Chillarge[13], for example, developed an ap-

proach called Orthogonal Defect Classification that involves tracking and analyzing
many attributes of defects. These attributes include type of defect, detecting activity,
and inserting activity. Eight types of defects are defined within ODC:

• Interface;

• Function;

• Build/package/merge;

• Assignment;

• Documentation;

• Checking;

• Algorithm;

• Timing/Serialization.

DEFECT ANALYSIS 269

Different types of defects tend to be found at different stages of development. For
example, function defects are relatively easy to find during inspections, so they tend
to be found and removed early. Timing/serialization defects, on the other hand, are
difficult to find during inspections, so they tend to turn up during testing. A separate
defect profile can be developed for each type of defect to reflect its propensity for
detection during each phase. These defect classifications and profiles also facilitate
the causal analysis process when potential problems are identified.

Bhandari[3] reports on the successful application of ODC to three different kinds
of projects. Bridge et al.[4] describe the application of ODC to a mobile telephone
project. In this case the categories of the existing defect classification system were
mapped to the ODC structure, resulting in a somewhat smaller set of categories. The
feedback on occurrences of defect types was used to guide process improvement and
monitor quality progress.

This discussion has shown that relatively simple models of software quality based
on defect profiles are becoming increasingly popular in the software industry as or-
ganizations mature. These models establish a “quality budget” that helps to make
tradeoffs among cost, schedule, and quality visible and reasoned, rather than choices
by default. Defect profiles present quality performance to the project manager in a
form that he/she understands. Thus, the consequences of a decision such as “reduc-
ing inspection and testing effort to accelerate progress” can be predicted. Unintended
departures from planned quality activities can be detected and addressed.

2.2 Capture/Recapture

Another way of estimating defect content from observed defects involves compar-
ing the results of different inspectors operating in parallel. Capture–recapture models
are well-established as methods of estimating animal populations in biological field
studies. This approach involves capturing animals in the wild, tagging them, and then
releasing them. The proportion of tagged animals subsequently recaptured gives in-
sight into the size of the total population. If a high percentage of animals captured in
the second pass are tagged, then the captured animals represent a larger proportion
of the total population than if a small proportion of recaptures are tagged.

Eick et al.[16] first proposed applying capture-recapture methods to software en-
gineering. Petersson et al.[40] summarize ten year’s of research and experience
with applying capture-recapture methods to software inspections. Here the defects
captured by independent inspectors are compared. Many different algorithms have
been proposed during this time. El Emam and Laitenberger[18] performed an ex-
tensive simulation study of capture-recapture models attempting to identify the best
algorithms and assumptions. Probably the most enduring criticism of the capture-
recapture approach has been that the number of defects associated with any particular

270 D.N. CARD

software artifact is so low that the resulting confidence intervals for the estimates of
the number of defects are very wide[29]. Petersson et al.[40], report only a single
published industrial case study of the application of capture/recapture models. Most
work thus far has been carried out with student-based experiments.

Both defect profiling and capture-recapture techniques use information about the
defects that have been discovered to assess the current level of quality, so that appro-
priate action can be taken. The appropriate action to be taken is decided upon via the
defect causal analysis techniques discussed in Section4.

3. Monitoring Process Performance

The defect estimation methods described earlier work best when the underlying
processes that insert and detect defects are performed consistently. Good process
definitions, quality assurance, and other regulatory mechanisms help to ensure that
happens. However, process performance also can be monitored directly to determine
if processes are stable. Statistical Process Control (SPC) was developed by She-
whart [47] to manage manufacturing processes. Many good textbooks (e.g.,[51])
explain the principles and techniques of SPC. Recently, textbooks have appeared
that discuss the application of SPC techniques[19], and statistics in general[5], to
software.

3.1 SPC Concepts

SPC is a problem-solving approach and a set of supporting techniques. It focuses
on managing the variation inherent in all processes. Controlling variation results in
processes that are stable and predictable. The SPC toolkit includes run charts, control
charts, histograms, Pareto charts, scatter diagrams, and more. The SPC problem-
solving approach involves four steps:

(1) develop a “control” plan,
(2) perform a process as defined,
(3) measure the results, and
(4) use the results to stabilize and, then, improve the process.

Stability is the result of control. Achieving control requires real-time feedback on
process performance. This means that the performance of the process must be eval-
uated as it is being executed, not just at the end. For example, controlling software
or systems design means recognizing whether or not that design subprocess (or key
process elements within it) is performing as expected before all executions of the
subprocess (or process element) have been completed, so that appropriate action can

DEFECT ANALYSIS 271

be taken. Put in other terms, process control requires in-phase monitoring of the per-
formance of design activities, not just an end-of-phase review of design performance.

Software and systems engineering processes are composed of many subprocesses
and process elements. It is impractical to attempt to control all those components of
the process. However, the stability of the overall end-to-end process can be promoted
by focusing attention on key process elements.

Each time a process is repeated, a slightly different result is obtained. Regardless
of how hard one tries to repeat the process exactly as intended, the output is, at
least, slightly different. This is due to variations in the input as well as other factors
influencing process performance. Variations in performance may be described as due
to one of two types of causes (or factors):

Special Cause. These are factors that affect a specific execution of a process el-
ement. Often, they result from failing to execute the process element as intended.
Dealing with special causes is a control and stability issue. Special causes also may
be referred to as “assignable causes.”

Common Cause. These are the factors that operate continually. Every time the
process element is executed, these factors affect it. Dealing with common causes is
an improvement issue.

Whether a cause is “special” or “common” cannot be determined until the cause
has been found. Consequently, even when focusing on control, opportunities for im-
provement will be encountered.

To help illustrate the difference between special and common causes, consider
the following example. The definition of a project’s inspection process states that
at least two (working) days prior to holding an inspection meeting, the inspection
materials must be sent to inspection participants; within 2 weeks (10 working days)
after holding an inspection, all actions (including resolving problems and filling out
the inspection report) must be completed. Based on this definition and knowledge of
human nature, the typical time required for one execution of the inspection process
element will be 12 working days. Most people tend to get things done around the
deadline. Thus, they are likely to send out the inspection materials only 2 days in
advance and take the full 2 weeks to close out the inspection. The process definition
and human nature are both examples of “common causes.” They operate every time
you execute this process element. Both could be changed,if that were judged likely to
lead to improved performance: staff could be incentivized to finish early; the process
definition could be rewritten to allow more or less time.

Now, imagine that during an inspection of a design unit, an inconsistency was
discovered in an interface specification. In order to get the design unit right, the
interface specification has to be corrected first. That could easily take more than the
2 weeks typically required for closing an inspection. This is an example of a “special
cause.” It affects only this particular execution of the instantiated process element.

272 D.N. CARD

FIG. 4. Illustration of common and special causes. (See Color Plate Section, Plate 32.)

The process manager needs to recognize that this situation has occurred and take
additional steps to resolve the situation in a timely manner.

Figure 4illustrates these concepts. Measuring the “days to complete” for a se-
quence of design inspections might yield the data plotted in the figure. This data
could be used to develop a statistical model of the performance of this process ele-
ment. For this data, assume a normal distribution. Then,X ands are the average and
the standard deviation, respectively, computed from the data using an appropriate
technique. More than 99% of values from a normal distribution fall within three stan-
dard deviations of the mean, so data within this range represents normal variability,
or common causes and random error. The last point plotted falls outside this range,
indicating an unusual source of variation, or a special cause. The analysis technique
represented byFigure 4is called a control chart. It provides a graphical mechanism
for studying process variation. The points that are plotted represent subgroups. Each
subgroup may contain multiple observations.

Efforts to stabilize and control processes typically depend on “small-scale” stud-
ies. They focus at the level of process elements, employing one or two key measures
per process element. An individual statistical model is developed for each perfor-
mance measure. However, the results of these individual analyses are considered
together in deciding on theneedfor corrective or improvement action. Because con-
trol studies typically involve only one or a few measures, they do not provide enough
information to decidehowa process should be corrected or improved. Control stud-
ies depend on subsequent causal analysis (see Section4) to define appropriate actions
once the need for action has been identified.

DEFECT ANALYSIS 273

3.2 Does SPC Apply to Software Processes?

When modeling the performance of a complex system, the analyst has a choice
between

(1) developing a comprehensive multi-factor model that encompasses all the im-
portant performance parameters, or,

(2) isolating individual factors for study separately.

The first choice may be implemented via analysis of variance or regression. The
second choice may be accomplished via rational subgrouping and control charting
(i.e., SPC). The SPC approach has the advantages of conceptual and mathematical
simplicity. However, that does not mean that SPC is the best approach to all process
analysis problems.

Some critics have argued that the appropriate conditions for applying SPC never
obtain in software, especially due to the small quantities and human factors involved.
Nevertheless, there are many examples of success, e.g.,[20] and[49]. Pyzdek[43,
p. 660]explains the issue as follows:

Another example of a single-piece run is software development. The “part” is
this case is the working copy of the software delivered to the customer. Only a
single unit of product is involved. How can we use SPC here?
Again, the answer comes when we direct our attention to the underlying process.
Any marketable software product will consist of thousands, perhaps millions of
bytes of finished machine code. This code will be compiled from thousands of
lines of source code. The source code will be arranged in modules; the mod-
ules will contain procedures; the procedures will contain functions; and so on.
Computer science has developed a number of ways of measuring the quality
of computer code. The resulting numbers, called computer metrics, can be ana-
lyzed using SPC tools just like any other numbers. The processes that produced
the code can thus be measured, controlled, and improved. If the process is in sta-
tistical control, the process elements, such as programmer selection and training,
coding style, planning, procedures, etc., must be examined. If the process is not
in statistical control, the special cause of the problem must be identified.

Clearly, SPC can be applied effectively to some software processes, even if it is not
appropriate for analyzing all software process problems. Given that, let’s discuss
some common control charting techniques and, then, consider the kinds of things
that can go wrong in implementing SPC for software.

3.3 Control Charting Techniques

A control chart is a model of the expected performance of a subprocess or process
element. A statistical model of data is called a probability distribution. Thus, control

274 D.N. CARD

FIG. 5. Generation of a control chart from a probability distribution. (See Color Plate Section,
Plate 33.)

charting involves defining a probability distribution from a baseline set of data that
can be used to predict and evaluate future performance of a subprocess (or process
element).Figure 5shows how a probability distribution is transformed into a control
chart for monitoring successive executions of a subprocess.

The two most common methods of control charting defect data (e.g., defects, de-
fects per line, defects per hour) are the “U” chart and the “XmR” chart. These control
charting techniques assume different underlying distributions. Often, the nature of
the data distribution can be discovered by examining a histogram of the data. When
significant amounts of the data generated by a process hover around some natural
limit (e.g., defect rate can’t be less than zero), that usually is an indication of a Pois-
son (or related) probability distribution. In comparison, the Normal distribution is
unimodal and symmetric.

3.3.1 U Chart

The “U” chart applies to Poisson-distributed data, with a potentially varying area
of opportunity for the subject event (i.e., defect detection) to occur. Each execution of
the process element under study results in some number of observations of an event
or characteristic of interest (e.g., defect). The area of opportunity is a measure of the
amount that the process has been exercised in order to observe the corresponding

DEFECT ANALYSIS 275

events (e.g., hours spent inspecting or lines inspected). The “U” chart tracks the rate
of occurrence of the events from subgroup to subgroup.

The first step in building a “U” chart is to compute the centerline,ū, the average
rate of occurrence across all the subgroups in the baseline data. The centerline is
calculated as follows (whereC is the number of occurrences andN is the area of
opportunity in the baseline):

ū = C

N
.

This estimate of̄u is the control parameter for the control chart. The standard devia-
tion (si) of a sample with area of opportunity,ni , drawn from a Poisson distribution
with a mean of̄u is a function ofū, as follows:

si =
√

ū

n i
.

Because the standard deviation is a function of the mean, onlyū needs to be
control-charted. This standard deviation is used to compute the control limits around
the process center. The formulas for the control limits follow:

UCLi = ū+ 3si, LCLi = ū− 3si .

The rate of occurrence for each subgroup(ui) is plotted against this process center
and control limits. Note that separate control limits must be computed for each sub-
group (denoted byi). The process center and standard deviation are used to evaluate
the stability of the process (using the baseline data from which they were calculated),
as well as to determine whether the process element remains in control as it continues
to be executed.

Managing processes that exhibit Poisson behavior poses some special challenges.
Changing the mean changes the variation in the process. In particular, reducing the
mean requires reducing the variability in the process. Because it seems more conve-
nient to seek process improvements that adjust only the mean, analysts sometimes
are tempted to substitute a technique based on the Normal distribution (i.e., “XmR”
charts) to compute a standard deviation that appears to be independent of the mean.
As a physical fact, whenever the measure of process performance involves a natural
lower limit (e.g., zero defects), the standard deviation must be reduced in order to
reduce the mean. Changing the statistical model does not change actual process be-
havior. The choice of statistical model (and control chart) should be driven by the
nature of the data, not the preferences of the analyst.

3.3.2 XmR Charts
The Individuals and Moving Range (“XmR”) charts apply to normally distributed

data when each subgroup represents a single observation. Thus, the individual obser-

276 D.N. CARD

vations must be organized into time order. Periodic data often is a good candidate for
analysis with the “XmR” charts. Because a Normal distribution is assumed, two con-
trol charts are required: one for the mean and one for the standard deviation, as both
may vary over time. The average of the individual observations defines the process
center for the first control chart. It is defined as follows:

X̄ =
∑k

1 Xi

k
.

In order to calculate control limits, the standard deviation must be estimated. The
population standard deviation cannot be estimated from a single observation, so the
variation between successive observations is used. This is called the “moving range.”
The most common approach (the one discussed here) considers the variation between
two successive observations, although calculations incorporating additional adjacent
points can be used. The moving range based on two successive observations is cal-
culated as follows:

R̄∗ =
∑k

2 |Xi−1 − Xi |
k − 1

.

The control limits for the mean depend on the calculatedR̄∗. However,R̄∗ is a biased
estimator of the population standard deviation. The following formulas for comput-
ing control limits include a bias adjustment factor:

UCL = X̄ + 2.66R̄∗, LCL = X̄ − 2.66R̄∗.

The second control chart has the estimate of the standard deviation,R̄∗, at its center.
The control limits around̄R∗, based on two observations, are computed as follows:

UCL = 3.27R̄∗, LCL = 0.

The coefficients given in the formulas for computing control limits aroundX̄ andR̄∗

assume that the moving range is computed from two consecutive observations.
Kan[33] suggests that because of the limited amounts of data and time pressure of

software projects, control charts often cannot be used in the real-time mode of opera-
tion for which they are intended, but often must be used somewhat retrospectively—
to analyze what has recently happened rather than what is happening at this moment.

3.4 Issues in Control Chart Application

Three basic issues confront the practitioner attempting to apply control charts to
defect data:

(1) where to get the data,

DEFECT ANALYSIS 277

(2) what data to analyze, and
(3) which chart to use in the analysis.

This section discusses those issues. For most software engineering organizations, the
inspection (or peer review) process best meets the criteria for application of SPC. It
is a relatively small subprocess that gets executed repeatedly and is relatively easy to
instrument with data collection. Moreover, inspections can be implemented relatively
early in the life cycle when measurement often is most difficult.

Because inspection events usually are not directly comparable (involving differ-
ent amounts of effort and review material) simply charting the number of defects
from inspections could be misleading. Consequently, the number of defects usually
is normalized by dividing it either by the number of preparation/review hours or the
size of the review package (e.g., lines or pages). The variable,defects per hour, has
an important advantage. It applies universally—regardless of the artifact being in-
spected the hours can be counted in the same way. On the other hand,defects per
unit of sizerequires the definition of a different size measure for each artifact type.
Often getting these different definitions understood and applied consistently in prac-
tice becomes a challenge. Some organizations use “estimated lines of code” so that
the same normalization factor can be applied across the life cycle. The problem here
is that another source of uncertainty or variability (the estimation process) has been
introduced into our data by using this estimate. Now, out of control situations can
result from poor size estimates, as well as changes in defect insertion and detection
performance. When size measures are used as the basis of normalization or inspec-
tion results, they should be measures of the actual artifacts being inspected (e.g., lines
of text for requirements documents) rather than estimates of the completed software
size.

Both the “U” chart and “XmR” charts have been applied to defect data from
software inspections. The choice of control chart should depend on the underly-
ing distribution of the data and its organization into subgroups[51]. It has been
established for quite some time that software defects and failures exhibit Poisson
behavior. That is the basis for most efforts at modeling software reliability, see for
example[35]. Consequently, the earliest efforts to apply control charts to software,
i.e.,[22] and[12], made use of “U” charts. More recently, Weller[49] employed “U”
charts in his analysis of data from a large commercial software project. Nevertheless,
some recent work has applied the “XmR” method to defect data, e.g.,[30] and[20].

Jalote and Saxena[31] argue that the control limits for defect rates produced by the
“XmR” method are too wide. He suggests using control limits set to less than three
standard deviations. The other obvious alternative is to use the “U” chart, which pro-
duces narrower limits for Poisson distributed data with a low rate of occurrence. For
those processes with a high rate of occurrence, the Poisson and Normal distributions
appear similar.

278 D.N. CARD

FIG. 6. U chart applied to defect data. (See Color Plate Section, Plate 34.)

The difference between the results of the two methods is illustrated inFigures 6
and 7. The same set of data from a real industry project is plotted in both figures.
Each point plotted represents data from one inspection (or peer review), referred to as
SPEs by this organization. The “U” chart (Figure 6) produces different control limits
for each inspection, because the area of opportunity for finding defects (labor hours)
can be different for each inspection. The result is control limits that are generally
narrower than the limits inFigure 7. Note that some points fall out of control both
above and below the limits inFigure 6. Thus, an inspection that consumed a lot of
effort, but did not find any (or very few defects) could be considered out of control
(on the low side). From a practical viewpoint, an inspection that found no defects
sounds like an anomaly that deserves investigation, regardless of the statistics.

In contrast,Figure 7only flags the single largest spike in the upper direction as
out of control. Those situations in which significant amounts of effort were expended
and no defects were found are omitted from further consideration. This is desirable
if your goal is not to gain control of your process and reduce variability, but rather
to demonstrate that your process is stable and that no further work is required. (This
is a temptation for those whose efforts to apply SPC are driven primarily by a desire
to achieve an external certification.) As Jalote and Saxena[31] point out, the cost of

DEFECT ANALYSIS 279

FIG. 7. Individuals chart applied to defect data. (See Color Plate Section, Plate 35.)

allowing a software process run out of control is so much greater than the effort to
investigate problems and gain control, that the process manager should move towards
tighter limits. The “U” chart accomplishes this in most practical situations.

Note thatFigure 7only shows the “individuals” chart of the “XmR” pair of charts.
The “moving range” chart also should be constructed and analyzed for out of control
situations. Those who are interested indemonstratingcontrol, rather thanachieving
real control and reducing variability often just work with the individuals chart.

3.5 Common Mistakes in Control Charting

Two mistakes are commonly made in control charting. The first is combining data
from multiple projects into the same control chart. The second is mixing different
instantiations of the same defined process on the same control chart.

3.5.1 Control Charts at the Organizational Level
The term “organizational baseline” in the CMM and CMMI frequently is mis-

understood to imply that data from multiple projects should be combined into one
control chart to establish a common process performance baseline. The real intent is
to develop a process performance summary, not to control process execution. Typi-
cally, this includes project process performance baselines, as well as other summary

280 D.N. CARD

statistics. The organizational baseline is intended to support planning, not control of
processes. Naively combining data from disparate projects does not facilitate effec-
tive planning.

Control charts based on multiproject data at the organizational level violate the
rules of rational subgrouping as defined by Nelson[36]. Some of the specific reasons
why this is not appropriate are as follows:

• This data is not available in real time so it cannot really be used to “control”
anything. Communicating data from the projects to the organization and then
returning the analysis results typically involves a substantial delay.

• If there is an out-of-control signal, it is difficult to identify its source because
each project’s process may be tailored and instantiated uniquely.

• Projects are not comparable to the degree that successive executions of a process
element within a project are comparable. Different types of projects may exhibit
substantial differences in performance in terms of productivity and quality, for
example. A result that is unusual for one project may not be unusual for another
project.

• Changes in the process of one project do not affect the results of other projects.
Thus signals may be hidden by project results that cancel each other out or
created by accidentally re-enforcing trends among different projects.

• The order of execution of activities among projects often cannot be deter-
mined unambiguously (a basic assumption of control charting) because they
often overlap in time. Moreover, there often is little communication among the
processes of different projects, so changes in one subprocess do not affect the
coincident observations (a criteria for rational subgrouping).

The use of control charts to establish organizational process baselines for project
processes is misleading and generally should be discouraged.

However, there are two situations in which organizational control charts make
sense. First, organization-wide processes (e.g., training, quality assurance, and
process definition maintenance) may be candidates for SPC; these are individual
processes that are applied across multiple projects. Second, an organization that con-
sists of many small projects working in the same application domain, and using the
same personnel, methods, and tools often may be treated as one large project.

3.5.2 Different Instantiations of a Process
Process instantiations often are not distinguished from process descriptions. Only

the performance of executing processes (instantiations) can be controlled and im-
proved. “Improving” the clarity and consistency, for example, of the process defin-
ition may be a means of improving the performance of its instantiations. However,

DEFECT ANALYSIS 281

each different instantiation may lead to a different level of performance. Data from
different instantiations of process elements should not be combined into one control
chart. When performing optimization studies, use an analysis technique that allows
for multiple instantiations (or levels of factors), for example, Analysis of Variance.

One problematic situation involves combining data from multiple types of inspec-
tions onto one control chart, even if all the inspections pertain to the same project.
(Combining data from multiple projects only compounds the problem, as discussed
earlier.) All these inspections may follow the same process definition (e.g., docu-
mented procedure). However, their performance may be very different because of
differences in the teams (e.g., systems engineers, software engineers), artifacts in-
spected (e.g., requirements, design diagrams, code) and practice of inspection (e.g.,
amount of preparation, degree of training). Analyze each instantiation of the inspec-
tion process separately, unless the data indicates otherwise.

4. Learning and Improvement

The techniques of quality modeling and process control discussed in the previous
sections help to predict quality performance within an activity or across the life cy-
cle, and to recognize when anomalies have occurred that require further investigation.
This section explains how defect information is used to understand the factors that
determine the performance of a process and change that performance in the desired
direction, either in an attempt to gain control of a process or to improve the perfor-
mance of a stable process. Defect analysis helps an organization to learn from its
past performance (especially mistakes), so that its performance can be improved[6].
One of the first systematic investigations of this type was undertaken by Basili and
Weiss[1]. However, they focused on the problem of measuring defects rather than
the nature of causal systems and the process of causal analysis.

4.1 Causal Systems

Searching for the cause of a problem (“laying the blame”) is a common human
endeavor that wouldn’t seem to require much formalism. However, causal investiga-
tions often go wrong—beginning with a misunderstanding of the nature of causality.
A causal system is an interacting set of events and conditions that produces recogniz-
able consequences. Causal analysis is the systematic investigation of a causal system
in order to identify actions that influence a causal system, usually in order to min-
imize undesirable consequences. Causal analysis may sometimes be referred to as
root cause analysis or defect prevention. Causal analysis focuses on understanding
cause-effect relationships.

282 D.N. CARD

Regardless of the specific terms and techniques employed causal analysis is likely
to fail if the underlying concept of causality is not understood. Three conditions must
be established in order to demonstrate a causal relationship (following Babbie[2]):

• First, there must be a correlation or association between the hypothesized cause
and effect.

• Second, the cause must precede the effect in time.

• Third, the mechanism linking the cause to the effect must be identified.

The first condition implies that when the cause occurs, the effect is also likely to be
observed. Often, this is demonstrated through statistical correlation and regression.
While the second condition seems obvious, a common mistake in the practice of
causal analysis is to hypothesize cause-effect relationships between factors that occur
simultaneously. This is an over-interpretation of correlational analysis.

Figure 8shows a scatter diagram of two variables measuring inspection (or peer
review) performance. These two variables frequently demonstrate significant cor-
relations. This diagram and a correlation coefficient computed from the data often
are taken as evidence that preparation causes detection. (Preparation includes the
effort spent reviewing and red-lining materials prior to the actual inspection meet-
ing.)

However, most inspection defects are discoveredduring preparation. Both meters
are running simultaneously. Thus, preparation performance cannot substantially in-
fluence detection performance. They are measures of the same activity. Rather, the

FIG. 8. Example of correlation between variables. (See Color Plate Section, Plate 36.)

DEFECT ANALYSIS 283

correlation suggests that some other factor affects both preparation and detection. Is-
suing a mandate (as a corrective action) to spend more time in preparation may result
in more time being charged to inspections, but it isn’t likely to increase the defect
detection rate. The underlying cause of low preparation and detection rates may be a
lack of understanding of how to review, schedule pressure, or other factors that affect
both measures. That underlying cause must be addressed to increase both the amount
of preparation and detection rate. Recognition of the correlation relationship helps to
narrow the set of potential causes to things that affect both preparation and detection
performance. It does not demonstrate a causal relationship.

The relationship between the height and weight of adult human beings provides
a good analogy to the situation described inFigure 8. Taller people tend to weigh
more than shorter people. (Obviously, other factors intervene, as well.) While this
is a necessary relationship, it is not a causal relationship. It would be a mistake to
assume that increasing someone’s weight would also increase his/her height. Both
variables are determined by other causes (for example, genetics and childhood nutri-
tion). Those underlying causes are the ones that need to be identified and manipulated
in this causal system.

Some of the responsibility for this kind of misinterpretation can be attributed to
statisticians. The horizontal and vertical axes ofFigure 8are typically referred to
as the “independent” and “dependent” variables respectively. While these terms are
simple labels, not intended to imply a causal relationship, the terminology is often
misunderstood. Pearl[39] discusses the mathematical and statistical aspects of causal
modeling in more detail.

Satisfying the third condition requires investigating the causal system. Many good
examples of causal analysis efforts in software engineering have been published (e.g.,
[34,15,52,32]). However, these efforts have adopted different terminology and ap-
proaches. In particular, the elements of a “causal system” have not been defined in a
consistent way. The differences between these analyses obscure the commonality in
the subject matter to which the procedures are applied.

One of the consequences of a poor understanding of the nature of causal systems
and causal analysis is that causal analysis sessions become superficial exercises that
don’t look deeply enough to find the important causes and potential actions that
offer real leverage in changing performance. This reduces the cost-benefit of the in-
vestment in causal analysis expected of mature software organizations. This section
describes a model of causal analysis and a set of supporting terms that has evolved
from extensive experience with the software industry. Some of these experiences
with causal analysis were summarized in[7]. This experience encompasses scien-
tific data processing software, configuration management, and other software-related
processes.

284 D.N. CARD

4.1.1 Elements of a Causal System

A cause-effect relationship may be one link in an effectively infinite network of
causes and effects. A richer vocabulary than just “causes” and “effects” is needed to
help us determine appropriate starting and stopping points for causal analysis. The
model and terminology described in this section facilitate reasoning about causal
systems and planning for causal analysis.Figure 9describes the key elements of
a causal system. Most of the approaches to causal analysis previously cited don’t
explicitly address all these elements of a causal system.

As indicated in the figure, an investigation of a causal systems include three classes
of elements:

• Objectives—our purposes in investigating the causal system.

• Observations—the events and conditions that comprise the causal system.

• Actions—our efforts to influence the behavior of the causal system.

Observations are events and conditions that may be detected. Building an under-
standing of a causal system requires identifying these events and conditions, as well
as discovering the relationships among them. Observations include:

• Symptoms—these are undesirable consequences of the problem. Treating them
does not make the problem go away, but may minimize the damage.

• Problem—this is the specific situation that, if corrected, results in the disappear-
ance of further symptoms.

FIG. 9. Elements of a causal system. (See Color Plate Section, Plate 37.)

DEFECT ANALYSIS 285

• Causes—these are the events and conditions that contribute to the occurrence
of the problem. Addressing them helps prevent future similar problems.

Note that both problems and symptoms are effects of one or more underlying causes.
Once a causal system is understood, action can be take to change its behavior and/or
impact on the organization. Actions may be of three types:

• Preventive—reducing the chances that similar problems will occur again.

• Corrective—fixing problems directly.

• Mitigating—countering the adverse consequences (symptoms) of problems.

The corrective type usually includes actions to detect problems earlier, so that they
can be corrected before they produce symptoms. The optimum mix of preventive,
corrective, and mitigating actions to be applied to a causal system depends on the
cost of taking the actions as well as the magnitude of symptoms produced. Attacking
the cause, itself, may not be the course of action that produces the maximum cost-
benefit in all situations. Potential symptoms and mitigations may be addressed as
part of risk management activity.

Three objectives or motivations for undertaking causal analysis are common:

• Improvement—triggered by recognition of an opportunity or identification of a
performance improvement goals.

• Control—triggered by an outlier or usual result relative to past performance
(e.g., out of control situation from a control chart, as discussed previously).

• Management—triggered by a departure from plans or targets (e.g., analysis of
defect profile, as previously discussed).

Regardless of the motivation for causal analysis, all elements of the causal system
(as described above) should be considered.

Most real causal systems are more complex thanFigure 8suggests. That is, a
specific problem may produce multiple symptoms. Moreover, many causes may con-
tribute to the problem. Consequently, many different actions of all types may be
possible. The “fish bone” diagram[28] is a popular tool for describing and reasoning
about causal systems.

These general concepts of causal systems can be applied to the investigation of
any undesirable situation, not just to the investigation of defects. A good understand-
ing of the basic concepts and terminology of causal systems helps to overcome the
difficulties inherent in implementing a practice that seems “obvious.”

Effective causal analysis is becoming ever more important to the software in-
dustry as process maturity increases and new forces, such as Six Sigma[24] focus
increasing attention on quality improvement. Academic researchers, especially those

286 D.N. CARD

conducting empirical studies, also may benefit from thinking a little more systemat-
ically about causal systems. Application of the concepts and terminology presented
here help ensure that causal systems get fully investigated and effective actions are
taken.

4.2 Defect Causal Analysis

As stated previously many different approaches to causal analysis have been ap-
plied to software defects. Mays et al.[34] published one of the first approaches.
Card[7] elaborated on the Mays approach. More recently, Rooney and Heuvel[46]
described a generic method of causal analysis, based on experience in the nuclear
power industry. The Mays and Card procedures are similar to the Rooney and Heuvel
procedure. Yu[52] and Leszak[32] published results of causal analyses of industry
data, but did not describe re-useable procedures in any detail.

This section summarizes the basic concepts of causal analysis as applied to de-
fects, based on the procedures of Mays, Card, and Rooney and Heuvel. Three com-
mon principles drive these DCA-based approaches to quality improvement:

• Reduce defects to improve quality—while there are many different ideas about
what quality is, or which “-ility” is more important (e.g., reliability, portabil-
ity), everyone can probably agree that if there are lots of defects, then there is
probably a lack of quality—whatever that is. Thus, we can improve software
quality by focusing on the prevention and early detection of defects, a readily
measureable attribute of software.

• Apply local expertise—the people who really understand what went wrong are
the people who were present when the defects were inserted—the software en-
gineering team. While causal analysis can be performed by outside groups such
as quality assurance, researchers, or a software engineering process group, those
people generally don’t know the detailed circumstances that lead to the mistake
or how to prevent it in the future.

• Focus on systematic errors—most projects have too many defects to even con-
sider conducting a causal analysis of all of them. However, some mistakes tend
to get repeated. These “systematic errors” account for a large portion of the
defects found in the typical software project. Identifying and preventing system-
atic errors can have a big impact on quality (in terms of defects) for a relatively
small investment.

There are relatively few pre-requisites for implementing DCA. They include the fol-
lowing:

DEFECT ANALYSIS 287

• Mistakes must have been made (this is not usually a difficult pre-requisite to
satisfy).

• Mistakes must have been documented through problem reports, inspection re-
sults, etc.

• Desire must exist to avoid mistakes (or at least avoid the negative feedback
associated with mistakes).

• Basic software process must be defined to provide a framework for effective
actions.

As will be discussed later, the software engineering process does not have to be fully
defined in detail in order for DCA to provide value. However, without at least a basic
process framework it becomes very difficult to understand where and how defects
enter the software and which actions are most likely to prevent them or find them
earlier.

4.2.1 Overview of DCA Procedure

The usual approach to software defects is to fix them and then forget them. DCA
provides a mechanism for learning from them. DCA may be triggered by an anom-
aly in a defect profile or an out of control situation on a control chart. In these
cases, the data associated with the anomaly becomes the subject of the causal analy-
sis. When the objective is continuous process improvement, samples of defects are
drawn, periodically, for periodic causal analysis meetings. The meetings produce rec-
ommendations for an action team. The proposals may be either short-term (i.e., for
immediate action by the project) or long-term (i.e., for the benefit of future projects).
The longer-term proposed action should be integrated into the organization’s other
process improvement efforts. Usually, the impacts of causal analysis and resulting
actions can be measured within a few months of start.

The Causal Analysis Team is the focus of the DCA process. Most of its work is
performed during a causal analysis meeting. During this activity the software team
analyzes problems and makes recommendations for improvements that will prevent
defects or detect defects earlier in the process. The causal analysis team should be
made up of the software producers (developer and maintainers) who have the great-
est intimacy with the product and process. Meetings typically last about two hours.
The causal analysis meeting should be lead by a designated moderator or facilitator.
The role of the facilitator is to hold the team to its agenda while preserving group
integrity. The facilitator could be a respected member of the team, a member of the
software engineering process group, a tester, or a member of another causal analysis
team.

The typical agenda for a DCA meeting includes six steps:

288 D.N. CARD

1. Select problem sample—When DCA is triggered by an anomaly in a defect
profile or an out of control situation on a control chart, the data associated with the
anomaly becomes the subject of the causal analysis. Causal analysis for continuous
improvement should consider the general population of defects. Since most projects
have more problems than they can afford to analyze, a sample must be selected for
consideration during the causal analysis meeting. Few teams can handle more than
20 problems in a two hour meeting. The problems should be as representative of the
team’s work as possible.

2. Classify selected problems—Classifying or grouping problems helps to iden-
tify clusters in which systematic errors are likely to be found. Three dimensions are
especially useful for classifying problems:

• When was the defect that caused the problem inserted into the software?

• When was the problem detected?

• What type of mistake was made or defect was introduced?

The first two classification dimensions correspond to activities or phases in the soft-
ware process. The last dimension reflects the nature of the work performed and the
opportunities for making mistakes. Some commonly used types of errors include in-
terface, computational, logical, initialization, and data structure. Depending on the
nature of the project, additional classes such as documentation and user interface
may be added. ODC[13] offers a comprehensive classification scheme for DCA pur-
poses. Tables or Pareto charts may be produced to help identify clusters of problems.
Systematic errors are likely to be found in the most common defect types.

3. Identify systematic errors—A systematic error results in the same or similar de-
fects being repeated on different occasions. Usually systematic errors are associated
with a specific activity or part of the product. Ignore the effects of individual defects
in seeking out systematic errors. Card[7] showed several examples of actual sys-
tematic errors. In each of these cases, 20 to 40 percent of the defects in the samples
examined during the causal analysis meeting were associated with the systematic er-
ror. The fact that large numbers of defects result from these mistakes provides the
motivation for changing the process.

4. Determine principal cause—Many factors may contribute to a systematic error.
Usually it is uneconomical to attempt to address them all, so attention must be con-
centrated on the principal cause. It is during this stage that mastery of the concepts
of causality described in Section4.1 becomes essential to success. “Fish bone” (or
Ishikawa) diagrams may be developed at this stage. Causes usually fall into one of
four categories[28]:

DEFECT ANALYSIS 289

• Methods(may be incomplete, ambiguous, wrong, or unenforced).

• Tools/environment(may be clumsy, unreliable, or defective).

• People(may lack adequate training or understanding).

• Input/requirements(may be incomplete, ambiguous, or defective).

The causal categories help to group related items, as well as to identify general areas
of the software process that may need attention. Like the defect classification scheme,
the causal categories should be adapted as necessary to support the analysis and
reporting needs of the organization implementing DCA.

5. Develop action proposals—Once the principal cause of a systematic defect has
been found, action proposals must be developed that will promote either prevention
or earlier detection of the systematic defect. Only a small number of relevant actions
is needed. Too many actions can overwhelm management’s ability to process them.
One good action proposal that gets implemented is worth more than any number
waiting in a queue. Action proposals should be specific and address the systematic
error. DCA differs from generic process assessment methods in that its focus is on
identifying specific actions rather than suggesting broad areas for increased process
improvement attention.

6. Document meeting results—Records of meeting results are necessary to ensure
that actions get implemented. In most cases a simple form-based report will suffice.
The causal analysis results are provided to an action team.

Most recommendations produced by the causal analysis team can’t be imple-
mented without management support. To get any benefit from DCA, an action team
must be formed that meets regularly to consider proposed actions. Multiple causal
analysis teams may feed into one action team. The role of the action team includes:

• Prioritizing action proposals. (Few organizations can afford to implement all
proposals at once.)

• Resolving conflicts and combining related proposals (especially if multiple
causal analysis teams are operating).

• Planning and scheduling the implementation of proposals.

• Allocating resources and assigning responsibility for implementation of propos-
als.

• Monitoring the progress of implementation and effectiveness of actions.

• Communicating actions and status to the causal analysis teams.

The benefits of DCA are lost without timely action. It’s usually advisable to identify
the members of the action team before conducting any causal analysis meetings.

290 D.N. CARD

Because DCA is a commonsense idea, organizations sometimes attempt to “just
do it,” without adequate preparation. Card[7] provides a more detailed description
of the causal analysis procedure, as well as recommendations for successfully imple-
menting it.

4.2.2 Benefits of DCA

Defect causal analysis links the analysis of defect profiles and control charts to
actions. Only actions produce benefits. Measuring and analyzing seldom produce
improvement by themselves. Thus the benefits of defect analysis, in general, must
be viewed in terms of the actions resulting from causal analysis. The simplest ways
of determining the effectiveness of improvement actions on quality are to track the
overall defect rate and the distribution of error types.

Mays et al.[34] and Leszak et al.[32] described the application of DCA to projects
involving hundreds of staff. Dangerfield et al.[15] and Yu [52] described experi-
ences with smaller projects. In all cases, defect rates declined substantially, often by
as much as 50 percent over a two-year period. Of course, not all defects are equal
in terms of their impact on the user and the success of the software product. For
example, certain parts of a system may be more critical to its operation. Neverthe-
less, reducing defects in general reduces critical defects, too. Moreover, reducing
systematic sources of defects usually also provides benefits in terms of reducing de-
velopment cost and cycle time.

The distribution of error types may be a more sensitive indicator of process
changes in the short-term than the overall defect rate. For example, if a systematic
error had been found among problems classified as “interface,” and an effective ac-
tion for preventing this systematic error had been implemented, then the proportion
of problems in this class should go down over time. This change in distribution often
can be detected earlier than the change in defect rate.

Other, more subjective, benefits of DCA include the following:

• An awareness of quality. Participating in causal analysis and action meetings
makes software quality tangible to managers and producers alike. They gain a
practical understanding of the consequences of quality.

• A commitment to the process. Evidence accumulated through DCA helps show
producers the value of conforming to the process. For example, Dangerfield
et al. [15] reported that about two-thirds of all systematic errors were associ-
ated with software methods. Moreover, the majority of this problem type were
caused by a failure to follow some element of the defined process or to commu-
nicate important information. Conducting DCA convinces the producers of the
value of an effective process.

DEFECT ANALYSIS 291

• An understanding of quality measurement. When producers begin analyzing
problems and implementing improvements via DCA, they begin to understand
the value of quality data. Their fears about misuse of data decline, because they
are users.

DCA isn’t expensive, but it does require some investment. The cost of operating a
DCA program, from causal analysis through implementing actions, ranges from 0.5
percent[34] to 1.5 percent[15] of the software budget. In addition to this operational
cost, investment must be made to start up the DCA program. This includes provid-
ing training, defining classification schemes, setting up procedures, and establishing
mechanisms for data collection. This implementation cost depends on what relevant
resources the organization already possesses as well as how widely DCA is to be im-
plemented. Nevertheless, the experiences cited here show that if quality is important
to your organization, then DCA is well worth the investment.

DCA is a low cost strategy for improving software quality. It has proven itself ef-
fective in many different organizational settings. While the benefits of DCA take
time to realize, implementing the project-level approach described here typically
produces measureable results within a matter of months. Of course, without timely
follow through by the action team, no benefits will be obtained at all.

Remember that this approach to DCA is based on sampling, not an exhaustive
analysis of all problems reported. A systematic error is likely to be represented in this
sample, or the next. Actions should focus on the systematic errors—a subset of the
sample. There are examples of organizations that have conducted causal analyses of
200 problems and produced 500 proposed actions. That quantity of recommendations
is likely to overwhelm management’s ability to react. Action is more likely if fewer
high-leverage actions are proposed.

DCA is readily adapted to other tasks besides software production. For example,
the goal of testers is to find all defects before the system gets fielded. Any problem
reported from the field represents a defect for the testers. This information can be
used in the DCA process to identify improvements to the testing process that could
find those defects before they get fielded.

Many of the actions proposed by the DCA teams will be small incremental im-
provements rather than revolutionary ideas. Unfortunately, much of our professional
lives are occupied in dealing with problematic trivia—small things that go wrong,
but that take up lots of time. Reducing these hindrances allows an organization to
perform at its true potential.

292 D.N. CARD

5. Summary and Conclusions

Recent industry trends are promoting the increasing use of defect analysis and
statistical methods, to industrial software processes[8]. These trends include the
adoption of the Capability Maturity Model for Software[37], Capability Maturity
Model—Integrated[14], Six Sigma[24], and ISO Standard 9001[27]. The tech-
niques that have proven important to industry in this context include defect profiles,
statistical process control, and defect causal analysis. The preceding discussion iden-
tified numerous successful examples of the application of each. Together, these
techniques provide a feedback system that helps to control and improve an indus-
trial software engineering process.

Table II summarizes the state of industry adoption and the level of research activ-
ity for the defect analysis techniques discussed earlier in this chapter. The segment
of industry considered for this comparison does not include all software engineering
organizations, only mature organizations that are actively trying to perform defect
analysis. Recent data from the Software Engineering Institute suggest that about 20
percent of organizations pursuing CMM or CMMI-based process improvement fall
into the high maturity category, and of these, 100 percent are measuring and analyz-
ing defects[38].

Despite this industry interest, the background research for this chapter identified
much less published academic research activity in defect analysis techniques than in
other techniques such as software reliability or complexity modeling. Many of the
references cited for this chapter are industry case studies, rather than true research
efforts.Table II shows the author’s assessment of the level of research in the topics
discussed in this chapter. One of the difficulties of summarizing the status of defect
analysis is that much of the work is being done in industry where it is less likely to
get published and formally critiqued.

While this chapter is intended to provide an overview of the concepts and a guide
to the literature for those interested in applying defect analysis in industry, it may also
help researchers to identify important new areas of focus. Because of its economic

TABLE II
RESEARCH ANDAPPLICATION OFDEFECTANALYSIS TECHNIQUES

Technique Industry adoption Research activity

Empirical defect profiles Wide Nearly none
Analytic defect profiles Limited Low
Orthogonal defect classification Limited Low
Capture-recapture models None Moderate
Control charts Wide Low
Causal analysis methods Wide Nearly none

DEFECT ANALYSIS 293

importance, defect analysis needs to be approached more rigorously and objectively
than it often has been in practice. Academic researchers can help to fill that gap
by studying the underlying principles and evaluating the statistical techniques of
defect analysis in the software engineering context. The industrial feedback process
described in this chapter offers many opportunities for further research.

REFERENCES

[1] Basili V.R., Weiss D.M., “A methodology for collecting valid software engineering data”,
IEEE Transactions on Software Engineering10 (6) (1984).

[2] Babbie E.,The Practice of Social Research, Wadsworth Publishing, Belmont, CA, 1986.
[3] Bhandari I., “In-process improvement through defect data interpretation”,IBM Systems

Journal33 (1) (1994).
[4] Bridge N., et al., “Orthogonal defect classification using defect data to improve software

development”,ASQ Software Quality Newsletter(March 1998).
[5] Burr A., Owen M., Statistical Methods for Software Quality, International Thompson

Computer Press, 1996.
[6] Card D., “Defect causal analysis drives down error rates”,IEEE Software(July 1993).
[7] Card D., “Learning from our mistakes with defect causal analysis”,IEEE Software(Jan-

uary 1998).
[8] Card D., “Sorting out six sigma and the CMM”,IEEE Software(July 2000).
[9] Card D., “Quantitatively managing the object-oriented design process”, in:Canadian Na-

tional Research Council Conference on Quality Assurance of Object-Oriented Software,
2000.

[10] Card D., “Managing software quality with defects”,Crosstalk(March 2003).
[11] Card D., Agresti W., “Resolving the software science anomaly”,Journal of Systems and

Software(1990).
[12] Card D., Berg R.A., “An industrial engineering approach to software development”,Jour-

nal of Systems and Software(October 1989).
[13] Chillarge R., et al., “Orthogonal defect classification”,IEEE Transactions on Software

Engineering(November 1992).
[14] Chrissis M.B., et al.,CMMI—Guidelines for Process Integration and Product Improve-

ment, Addison–Wesley, Reading, MA, 2003.
[15] Dangerfield O., et al., “Defect causal analysis—a report from the field”, in:ASQC Inter-

national Conference on Software Quality, 1992.
[16] Eick S.G., Loader S.R., Long M.D., Votta L.G., Vander Wiel S.A., “Estimating software

fault content before coding”, in:Proceedings of IEEE 14th International Conference on
Software Engineering, 1992.

[17] El Emam K., “The confounding effect of class size on the validity of object oriented
metrics”,IEEE Transactions on Software Engineering(2001).

[18] El Emam K., Laitenberger O., “Evaluating capture–recapture models with two inspec-
tors”, IEEE Transactions on Software Engineering(September 2001).

294 D.N. CARD

[19] Florac W., Carleton A.,Measuring the Software Process: Statistical Process Control for
Software Process Improvement, Addison–Wesley, Reading, MA, 1999.

[20] Florac W., et al., “Statistical process control: Analyzing a space shuttle onboard software
process”,IEEE Software(July 2000).

[21] Gaffney J., “On prediction of software-related performance of large-scale systems”, in:
CMG XV, 1984.

[22] Gardiner J.S., Montgomery D.C., “Using statistical control charts for software quality
control”, Quality and Reliability Engineering International(1987).

[23] Harbaugh S., “Crusader software quality assurance process improvement”, Integrated
Software, Inc., Technical Report, 2002.

[24] Harry M., Schroeder R.,Six Sigma, Doubleday, New York, 2000.
[25] Hays W., Walker R.,Statistics: Probability, Inference, and Decision, Holt, Rinehart, and

Winston, New York, 1970.
[26] International Organization for Standardization, “ISO/IEC Standard 9126, Information

Technology—Software Quality, Part 1”, 1995.
[27] International Organization for Standardization, “ISO Standard 9001: Quality Manage-

ment Systems”, 2000.
[28] Ishikawa K.,Guide to Quality Control, Asian Productivity Organization Press, 1986.
[29] Isoda S., “A criticism on the capture-and-recapture method for software reliability assur-

ance”,Journal of Systems and Software43 (1998).
[30] Jacob A.L., Pillal S.K., “Statistical process control to improve coding and code review”,

IEEE Software(May 2003).
[31] Jalote P., Saxena A.,IEEE Transactions on Software Engineering(December 2002).
[32] Leszak M., et al., “Classification and evaluation of defects in a project perspective”,Jour-

nal of Systems and Software(April 2002).
[33] Kan S.H.,Models and Metrics in Software Quality Engineering, Addison–Wesley, Read-

ing, MA, 1995.
[34] Mays R., et al., “Experiences with defect prevention”,IBM Systems Journal(January

1990).
[35] Musa J.D., Iannino A., Okumoto K.,Software Reliability, Measurement Prediction and

Application, McGraw–Hill, New York, 1987.
[36] Nelson L.S., “Control charts: Rational subgroups and effective applications”,Journal of

Quality Technology(January 1988).
[37] Paulk M., et al.,Capability Maturity Model, Addison–Wesley, Reading, MA, 1994.
[38] Paulk M., Goldensen D., White D.,The 1999 Survey of High maturity Organizations,

Software Engineering Institute, 2002.
[39] Pearl J.,Causality: Models, Reasoning, and Inference, Cambridge University Press,

Cambridge, UK, 2000.
[40] Petersson H., et al., “Capture–recapture in software inspections after 10 years research—

theory, evaluation, and application”,Journal of Systems and Software72 (2004).
[41] Phan D.D., et al., “Managing software quality in a very large software project”,Informa-

tion and Management29 (1995).
[42] Putnam L.H., “A generic empirical solution to the macro sizing and estimation problem”,

IEEE Transactions on Software Engineering4 (4) (1978).

DEFECT ANALYSIS 295

[43] Pyzdek T., “The Six Sigma Handbook”, McGraw–Hill, New York, 2003.
[44] Rallis N.E., Lansdowne Z.F., “Reliability estimation for a software system with se-

quential independent reviews”,IEEE Transactions on Software Engineering(December
2001).

[45] Remus H., Ziles S., “Prediction and management of program quality”, in:Proceedings of
IEEE Fourth International Conference on Software Engineering, 1979.

[46] Rooney J.J., Vanden Heuval L.N., “Root cause analysis for beginners”,ASQ Quality
Progress(July 2004).

[47] Shewhart W.A.,Economic Control of Manufactured Product, 1931.
[48] Software Productivity Consortium, “SWEEP users’ guide, SPC-98030-MC”, 1997.
[49] Weller E.F., “Practical applications of statistical process control”,IEEE Software(June

2000).
[50] Westland J.C., “The cost behavior of software defects”,Decision Support Systems37

(2004).
[51] Wheeler D., Chambers D.S.,Understanding Statistical Process Control, SPC Press,

1992.
[52] Yu W., “A software fault prevention approach in coding and root cause analysis”,Bell

Labs Technical Journal(April 1998).

This page intentionally left blank

Function Points

CHRISTOPHER J. LOKAN

School of Information Technology and Electrical Engineering
UNSW@ADFA
Northcott Drive
Canberra ACT 2600
Australia
c.lokan@adfa.edu.au

Abstract
Functional size measurement—measuring the functionality delivered by a soft-
ware application to its users—is vital to software project managers. Its uses
include estimation, managing scope in project planning and tracking, and mea-
suring productivity.

There is no direct scale for measuring software functionality. One must instead
decide which aspects of software to measure, that seem to capture functionality;
how to measure those aspects; and how to combine the measurements into an
overall measure of application size.

Many methods for how to do this have been proposed, beginning with Allan
Albrecht’s invention of Function Point Analysis in 1979. The methods vary in
what things are measured and how the measuring is done; and also in usefulness,
applicability, and industry acceptance. Two methods have achieved significant
industry acceptance, and a third is on its way.

In this chapter we trace the evolution of functional size measurement, from
Albrecht’s original ideas through to the recent development of ISO standards.
We describe Albrecht’s method, and what has been learned about it through ex-
tensive experience and empirical research. We present some interesting variants
on Albrecht’s method that did not achieve widespread success, as well as the two
other methods that can now be described as mainstream. We describe research
concerning function points, and conclude with thoughts on the current status of
functional size measurement and some expectations for future work.

1. Introduction . 298
1.1. Length vs. Functionality. 299
1.2. Outline of this Chapter. 301

ADVANCES IN COMPUTERS, VOL. 65 297 Copyright © 2005 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(05)65007-3 All rights reserved.

mailto:c.lokan@adfa.edu.au

298 C.J. LOKAN

2. Albrecht/IFPUG Function Points . 301
2.1. The 1979 Definition. 302
2.2. The 1984 Revision. 303
2.3. IFPUG . 307

3. Experience with IFPUG Function Points . 308
3.1. Success of Function Points. 308
3.2. Theoretical Problems of Construction . 309
3.3. Weighting the Components. 310
3.4. What Is Actually Measured? . 311
3.5. Subjectivity . 312
3.6. What Is Missed Out? . 312
3.7. The General Systems Characteristics and VAF 313
3.8. Relationships Between FP Component Types. 315
3.9. Backfiring . 317

3.10. Summary . 319
4. Mark II Function Points . 319

4.1. Symons’ Criticisms. 320
4.2. Mark II Function Points . 321
4.3. Experience with Mark II Function Points . 322

5. Some Other Early Variations . 323
5.1. DeMarco’s Function Weight . 323
5.2. 3D Function Points . 325
5.3. Feature Points . 326
5.4. Summary . 327

6. COSMIC . 327
6.1. Full Function Points . 328
6.2. COSMIC Full Function Points . 329
6.3. Experience with COSMIC . 332

7. Function Points for Object-Oriented Software . 333
7.1. Mapping OO Concepts to Function Points . 333
7.2. Function Point-Like Measures for OO . 335
7.3. Summary . 338

8. Function Point Standards . 339
9. Conclusions . 341

Acknowledgements . 341
References . 342

1. Introduction

Throughout the history of software measurement, one attribute of computer soft-
ware has always been seen as fundamental: its size.

FUNCTION POINTS 299

Software is written to solve problems. Size measurement can focus on either the
problem, or the program:

• The problem is expressed in the Software Requirements Specification. This doc-
ument states the requirements that the delivered software must satisfy. It defines
thefunctionalityto be delivered by the software to the user.

Problem size can be interpreted as the amount of functionality delivered by
the software. Intuitively, software that lets the user do more things has greater
functionality, and solves a larger problem.

• The program that solves the problem has a physical size. Various measures of
programlengthcapture this aspect of size.

Length and functionality are different aspects of size (although they tend to in-
crease together). Programs with the same functionality can differ widely in length,
and programs of the same length can deliver very different functionality.

Measuring length is easy (though there are issues to be careful of). Measuring
functionality is harder. This chapter aims to give the reader an understanding of how
software functionality is measured. We begin with a brief comparison of length and
functionality measures, to demonstrate the need for measures of functionality.

1.1 Length vs. Functionality

The oldest measure of software size is simply the number of lines of code
(“LOC”).

Which lines to count (all lines? executable lines only? should comments be in-
cluded?) is a matter of argument. The definition most commonly adopted is

any line of program text that is not a blank line or comment, regardless of the
number of statements or fragments of statements on the line. This specifically in-
cludes all lines containing program headers, and executable and non-executable
statements[18].

This is simply the physical length of the program, as a compiler sees it.
Physical LOC is determined by program layout, which can be arbitrary in many

languages. Other measures have been proposed that appear less arbitrary. The main
ones are the number of tokens that make up the program text, and the number of
statements, or logical lines, in the program. In principle, these are much better mea-
sures of length: they measure the semantic units in the program, and are less prone
to the vagaries of individual programming styles. In practice, these measures are all
highly correlated with each other, and with physical LOC. The theoretical deficien-
cies of physical LOC are not such a problem in practice, with respect to other length
measures.

300 C.J. LOKAN

Length measures are valuable to developers. There is a long history of using them
to predict things of interest about a software development project (like number of
errors, development effort, maintenance effort, etc.). They are genuine measures
of packaging requirements for finished software[33], and the storage required for
source code[25]. Finally, they are easy to measure: many tools exist to count pro-
gram length.

Length measures have been widely criticized (see for example Jones[58]). Criti-
cisms include:

• sensitivity to individual programming style;

• lack of standard definitions;

• language dependent;

• difficult to apply to 4GLs, spreadsheets, application generators, etc.;

• difficulty of dealing with multiple languages;

• inability to measure specifications;

• not available until late in the life cycle, and difficult to estimate earlier;

• not relevant to users.

These criticisms are all well founded, to differing degrees. The first turns out not
to matter so much in practice: in programming teams, individual variations tend to
average out, and coding standards and pretty-printing software can also reduce vari-
ation. The next four can be largely overcome by applying some common sense. But
the last three represent a real problem, corresponding to a shift in perspective from
that of the programmer to that of the user. Program length means nothing to users.

The alternative is to try to define “functional measures” that measure the func-
tionality of software, from a user’s point of view. This involves identifying things in
the problem specification that represent functionality, and somehow measuring those
things.

If successful in their aims, functional measures bring several benefits[58]:

• understandable to users, and based on things that users care about;

• available early, at the specification stage;

• independent of programming language and development technology;

• reflective of real economic productivity.

Effective functional measures provide a more meaningful basis than length mea-
sures for things like measuring or benchmarking software development productivity,
and quantifying an organization’s software portfolio. They are also used effectively
in software acquisition contracts, enabling the scope of a requirement—or change to
a requirement—to be properly assessed.

FUNCTION POINTS 301

Numerous functional size measures have been proposed, varying in what things
are measured and how they are measured. The rest of this chapter describes the most
important of those proposals.

1.2 Outline of this Chapter

When people talk about functional size measures, they usually mean “function
points”—more specifically, “IFPUG function points” (“IFPUG” stands for Interna-
tional Function Point Users Group). Section2 describes IFPUG function points and
their evolution.

Section3 describes what has been learned, through experience and empirical
research, about IFPUG function points. This section identifies the strengths, weak-
nesses, and limitations of IFPUG function points. It sets the scene for following
sections that describe other proposals for functional size measurement.

Section4 describes Mark II Function Points—until recently, the only alternative to
IFPUG function points with significant industry acceptance. Section5 presents a few
other proposals, which featured important ideas but for one reason or another never
achieved wide usage. Section6 describes COSMIC Full Function Points, emerging
now as a significant alternative.

Object orientation is important in today’s software development world. Applying
function points to object oriented software is an area of current research interest.
Section7 describes the main activity in this area.

Section8 looks briefly at recently-approved ISO standards for functional size mea-
surement in general, and some function point approaches in particular.

Section9 draws everything together and presents some thoughts on future direc-
tions.

2. Albrecht/IFPUG Function Points

Function points were introduced by Allan Albrecht, of IBM.
Albrecht’s aim was to measure application development productivity in IBM’s DP

Services organization. His landmark paper from 1979[8] is really about measuring
productivity. He begins with a description of the application development process
used by the DP Services organization. He comments on why to measure productiv-
ity, and some things to be careful about when measuring productivity. He describes
the measures he uses for product and cost. He presents and interprets trends in pro-
ductivity in IBM’s environment.

It is a good paper about measuring productivity. But it is remembered for one of
the measures he used. He states:

302 C.J. LOKAN

To measure productivity we had to define and measure a product and a cost. The
product that was analyzed was function value delivered. . . The cost used was
the work-hours contributed.

For the product measure, Albrecht wanted to avoid measures “such as lines of
code that can have widely differing values depending on the technology used.” His
objective was

to develop a relative measure of function value delivered to the user that was
independent of the particular technology or approach used.

He explained how his measure of function value was constructed, and gave it a name:
function points.

2.1 The 1979 Definition

Albrecht defined a two-stage process for calculating function points.

1. Count certain factors that are the outward manifestations of an application, and
weight those counts by numbers designed to reflect the function value to the
customer.

2. Adjust that result for the effect of other factors relating to the technical com-
plexity of the application.

The result is labelled as “function points.”
The keys to this process are: which factors are considered to represent the outward

manifestations of the application; and what weights to give to each factor.
Albrecht listed four factors, or types of component: external user inputs, outputs,

inquiries, and master files. These four component types were identified from five
years of experience with projects in IBM’s systems development environment.

The relative weights given to inputs, outputs, inquiries, and master files were 4, 5,
4, and 10 respectively. These weights were determined “by debate and trial.”

For the technical complexity adjustment phase, ten factors were identified. These
were the extent to which the design or implementation of the application involved:
reliable backup, data communications, distributed processing functions, performance
considerations, a heavily used operational configuration, online data entry, data en-
try involving complex transactions, online update of master files, complex data and
transaction components, and complex internal processing. Each of these ten factors
could affect the function point value by 5%. The maximum possible adjustment was
50%, expressed as plus or minus 25% so that average technical complexity resulted
in no change to the original function point value.

Validation of function points took the form of showing empirical relationships
between function points and other measures of interest. Relationships were demon-

FUNCTION POINTS 303

strated between function points and effort, and between function points and LOC for
three languages[8,10].

Some essential features, common to all function point approaches since, are visi-
ble here. The focus is on externally-visible aspects of an application, that a user can
see. A measure is sought that is independent of the technology or approach used for
implementation. The structure involves identifying, counting, and weighting impor-
tant elements.

Note also that this definition of function points is oriented towards file-oriented
data processing; and that there are several subjective aspects involved in the calcula-
tion.

2.2 The 1984 Revision

Function points did not last long in the form that Albrecht initially defined them.
Albrecht’s 1983 paper with Gaffney[10] described a revised structure, which was
documented fully in an IBM report published in November 1984[9].

This revised formulation of function points is much more elaborate than the 1979
definition. It still has subjective aspects, though guidelines were provided to try to
reduce this. The method is still geared towards file-oriented data processing.

There are three main changes from 1979:

• There are five component types, not four, as “Master files” are separated into
internal and external files.

• Instead of a single overall variation of plus or minus 2.5% to recognize simple
or complex files and transactions, each component of the application is clas-
sified individually as having low, average or high functional complexity. The
classification is based on numbers of file types, record types, and data element
types involved.

• The technical complexity adjustment factor, previously plus or minus 25%, be-
came plus or minus 35% based on a different set of adjustment factors (three
were removed, and seven added). Guidelines were defined to reduce the subjec-
tivity in scoring the adjustment factors.

Since this definition is still at the core of “Albrecht/IFPUG function points,” the
most widely-used function point approach today, it is worth presenting it now in
detail.

2.2.1 Unadjusted Function Points
The first (and most important) phase of Function Point Analysis (“FPA”) involves

identifying certain components of the system that provide functionality to the user.

304 C.J. LOKAN

Functionality is defined with reference to the “system boundary:” the interface be-
tween the external user and the application.

Albrecht defined the five component types as follows[9]:

• External inputs: “data or user control input. . . that enters the external boundary
of the application being measured, and adds or changes data in a logical internal
file type.”

• External outputs: “data or control output. . . that leaves the external boundary
of the application being measured.”

• External inquiries: “unique input/output combination, where an input causes
and generates an immediate output.”

• Internal logical files: “logical group of user data or control information in the
application. . . from the viewpoint of the user, that is generated, used, and main-
tained by the application.”

• External interface files: “files passed or shared between applications . . . logical
group of user or control information that enters or leaves the application.”

Figure 1depicts the five components.

FIG. 1. Components in Albrecht function points.

FUNCTION POINTS 305

The number of function points awarded to a component depends on its “functional
complexity.” This is determined from the numbers of file types, record types, and
data element types involved.Tables I, II and IIIrespectively show how to determine
the functional complexity of an input, output or inquiry, and internal or external file.
Table IV shows the number of function points awarded for each type of component
and each functional complexity level.

To recap, the first phase of FPA involves defining the system boundary; identifying
the inputs, outputs, inquiries, internal logical files, and external interface files; award-

TABLE I
FUNCTIONAL COMPLEXITY OF EXTERNAL INPUTS

File types Data element types

referenced 1–4 5–15 16+
0–1 Low Low Average
2 Low Average High
3+ Average High High

TABLE II
FUNCTIONAL COMPLEXITY OF EXTERNAL OUTPUTS, INQUIRIES

File types Data element types

referenced 1–5 6–19 20+
< 2 Low Low Average
2–3 Low Average High
4+ Average High High

TABLE III
FUNCTIONAL COMPLEXITY OF FILES

Record Data element types

types 1–19 20–50 51+
0–1 Low Low Average
2–5 Low Average High
6+ Average High High

TABLE IV
FUNCTION POINTS PERCOMPONENT

Functional complexity

Component Low Average High

Input 3 4 6
Output 4 5 7
Inquiry 3 4 6
Internal file 7 10 15
External file 5 7 10

306 C.J. LOKAN

ing a number of function points to each individual input, output, inquiry, internal file
and external file according to its functional complexity; and summing all of those
function point values. This results in a total unadjusted function point (“UFP”) value,
which is seen as capturing the user-oriented functionality inherent in the system.

2.2.2 Adjusted Function Points
The second phase of FPA involves calculating a Value Adjustment Factor (“VAF”),

based on fourteen general system characteristics (“GSCs”), and using it to adjust the
UFP value.

The general system characteristics are supposed to capture other aspects of the
functionality of the system: “pervasive general factors that are not sufficiently repre-
sented by the previously discussed transactional and data functions”[30]. They are
evaluated for the system as a whole, rather than applying to individual elements.

The fourteen characteristics are:

• Data communications: the degree to which the application communicates di-
rectly with the processor. (Batch applications are at one extreme; real-time,
telecommunication, or process control systems at the other.)

• Distributed data processing: the degree to which distributed data or processing
functions are a characteristic of the application, within the application boundary.

• Performance: the degree to which response time and throughput performance
must be considered in developing the application.

• Heavily used configuration: a heavily used operational configuration requires
special design considerations.

• Transaction rate: a high transaction rate influences the design, development,
installation and support of the system.

• Online data entry: online data entry and control functions are provided in the
application.

• End user efficiency: the degree to which online functions emphasize a design
for end user efficiency.

• Online update: the application involves online update of internal files.

• Complex processing: the degree to which processing logic influenced the devel-
opment of the application.

• Reusability: the degree to which the application and the code in the application
have been specifically designed, developed, and supported to be reusable.

• Ease of installation: the degree to which conversion from previous environ-
ments influenced the development of the application; conversion and installa-
tion ease are characteristics of the application.

FUNCTION POINTS 307

• Ease of operation: the degree to which the application attends to operational as-
pects, such as startup, backup and recovery processes, without requiring manual
intervention.

• Multiple sites: the degree to which the application is designed, developed and
supported to be installed at multiple sites for multiple organizations.

• Facilitate change: the degree to which the application is designed, developed
and supported for easy modification of processing logic or data structure.

Seven of these characteristics were present in Albrecht’s initial formulation of
function points. Three of the original ten were dropped (element complexity—now
assessed separately for each element; reliable backup; and whether online data entry
involves complex transactions). Seven characteristics were added: transaction rate,
end user efficiency, reuse, ease of installation, ease of operation, multiple sites, facil-
itate change.

The GSCs are used to adjust the UFP value as follows. The degree of influence
of each characteristic is scored on a scale from 0 to 5; the sum of fourteen scores
is a result from 0 to 70; this is converted linearly to a value from 0.65 to 1.35. That
value (the VAF) is multiplied by the UFP to give the adjusted function point (“AFP”)
value.

2.3 IFPUG

In 1986, several users of function points formed a non-profit organization called
the International Function Point Users Group (“IFPUG”).

IFPUG’s aims are to spread the use of function points, and to standardize the way
people count and use function points. It does this by holding regular conferences,
publishing guides and manuals, and running exams (people who pass IFPUG’s exam
are styled “Certified Function Point Specialists”).

IFPUG has made minor changes to terminology, but the basic structure of function
points has remained essentially unchanged since 1984.

IFPUG has several committees, the most important being the Counting Practices
Committee. This committee defines how function points should be counted in various
situations—creating standard guidelines and resolving inconsistencies. The results
are published in the Counting Practices Manual. This document has gone through
several Releases, including 3.0[34] in 1990, 4.0[36] in 1994, 4.1[40] in 1999, and
4.2[41] in 2004.

Another part of IFPUG’s activity is to make recommendations on how types of
software and aspects of software that were not considered in 1984 can be mapped
into the original function point structure[35,37–39].

308 C.J. LOKAN

Function points as Albrecht defined them and IFPUG maintains them are referred
to hereafter as “IFPUG function points.” Where “function points” are referred to
without qualification, it is IFPUG function points we mean.

3. Experience with IFPUG Function Points

Much has been learned over the years about the strengths and weaknesses of func-
tion points.

The strength of IFPUG function points is pragmatic: they have been used success-
fully in practice for many years.

But they have been criticized on several grounds. These include theoretical prob-
lems concerning their construction; doubts about the detail of various steps; dis-
agreements about exactly what they measure; subjectivity of measurement; some
important aspects of software or types of software are not measured.

This section describes some of the experience and knowledge gained about func-
tion points. We begin with their successful use in practice, and then look at their
problems and limitations.

3.1 Success of Function Points

We have seen that function points were developed in the context of application
development in IBM in the 1970s and early 1980s. They are geared towards data-
rich business applications, a dominant application domain in IBM then.

Functional size measurement has some key characteristics that are easy to pro-
mote. The orientation towards users, and early availability (measurable at the speci-
fication stage) are genuinely important and attractive features.

Albrecht/IFPUG function points “got in early,” at a time when the need for func-
tional size measurement was beginning to be appreciated and there was nothing much
else around in the area. Since they were indeed found to be a useful measure for MIS
software, they became a pragmatic success.

Function points were marketed heavily by IBM, IFPUG, and several consultants.
Estimation tools based on function points were developed successfully. Books were
written describing FPA (e.g.,[23,29,30,58]) and experience with it in different in-
dustry sectors (e.g.,[58]), and many articles written promoting its use (e.g.,[28]).

By the mid-1990s, it was forecast that “function points would become the primary
means for measuring application size, reaching a penetration of approximately 50
percent of development organizations by the year 2000”[32] (quoted in[28]). FPA
was probably used to some extent by the information systems departments of most

FUNCTION POINTS 309

major companies and government departments in North America, much of Western
Europe, and other parts of the world[98].

Though their use may have declined[98], IFPUG function points are still very
much the dominant functional size measure in the world today. They have almost
complete hold of the functional sizing market everywhere except the UK, where
IFPUG function points and Mark II function points (described in Section4) have
about half the market each. COSMIC-FFP (described in Section6) is gaining indus-
try acceptance, but is still in its early days.

The key word is “pragmatic.” Practitioners have found function points to be a
useful measure, even while recognizing some of the criticisms. “Are function points
a perfect metric? No. Are they a useful metric? In my experience, yes”[28]. “If [a
measure] proves to be empirically correlated to some software phenomena we wish
to forecast and control. . . why should we refuse it only because the measure is not
formally validated?”[79].

A considerable body of knowledge and experience has accumulated. Practition-
ers have learned how to use function points effectively, what variations to expect
between different industry sectors, and even how to exploit some of the structural
characteristics of function points that worry researchers. This is most true in the MIS
domain; function points are used much less in real-time software and communica-
tions software.

3.2 Theoretical Problems of Construction

Abran and Robillard investigated the whole underlying structure of function point
analysis, considering all the measurement scales and mathematical operations used
throughout the process[5,6].

They observe that the process begins with measurement on an absolute scale (iden-
tifying components, recognizing their types, counting the data and record types they
involve). Abran called the collection of operations to this point the Function Point
Measurement Model (“FPMM”)[3]; the rest of the process he called the Function
Point Productivity Model (“FPPM”).

The process then moves to ordinal scales (classifying components into three levels
of functional complexity), losing information in the process but still a valid operation
according to measurement theory. Thereafter, things go awry. The assignment of
points to components of different levels takes measurement from the ordinal scale
back to the ratio scale—adding information, but without a theoretical underpinning.

Calculation of the VAF is similarly flawed. Invalid operations are performed, as
ordinal scale measurements are converted to absolute scale values with no underpin-
ning theory to justify the conversion. Effectively, arithmetic is performed on ordinal
scale values as though they were measured on a ratio scale.

310 C.J. LOKAN

Hence, from a theoretical point of view function points cannot be considered a
proper measure according to measurement theory. “The mapping, or measurement
space, of FPA undoubtedly needs to be clarified if it is to be trusted as a valid mea-
surement system”[6].

Empirical research showed that for the purposes of understanding productivity—
the original purpose of function points, after all—none of the steps of the FPPM
added significant information. Effort could be explained as well from the elementary
measurements from the FPMM as from the final function point value resulting from
the full process[6].

Kitchenham et al. proposed a framework for software measurement validation in
1995[67]. They too were critical of the construction of IFPUG function points. They
noted the scale transformations, and invalid operations performed on measurements
from different scales. Further criticisms were that function points are discontinuous
(no value of 1 or 2 FPs is possible), and there is no “unit” value. They are not fully
based on a ratio scale. The result is a measure that is not valid in various ways. The
risk is that it may behave in unexpected ways, for example asserting incorrectly that
one program is larger than another[64].

3.3 Weighting the Components

The origin, validity and objectivity of the weights (function points per component
type) have long been questioned.

Albrecht saw the weights as measures of the relative value of the function to the
user/customer. They were chosen by debate and trial within IBM.

Symons published the first criticisms of function points[99]. He had several
concerns about the weights. He questioned whether they would be valid in all cir-
cumstances. He felt that they contained some anomalies: components containing
very many data elements receive at most twice the function points of a component
containing only one data element. He desired some more objective assessment of the
weights.

The concept of function value to the user has troubled others as well. Skeptics of
this subjective concept view the weights as being really related to effort. For example:

in the absence of any convincingly objective measure of user function or value
of a transaction. . . independent of the cost of implementation, we are forced to
relate function or value to some cost-related reference measure[106].

In devising Mark II function points (Section4), Symons equated value with produc-
tion effort.

Symons has reported Albrecht as saying the weights were chosen “on the basis
of the relative numbers of data elements appearing on each of these four component

FUNCTION POINTS 311

TABLE V
WEIGHTS DERIVED BY WITTIG

Functional complexity

Component Low Average High

Input 4 7 13
Output 3 5 10
Inquiry 3 5 9
Internal file 3 5 12
External file 2 5 9

types, based on an examination of a number of systems which were being studied
at that time in IBM” [100]. If the weights reflect the amount of data present in a
component, there is some link with effort: programming effort is required to validate
input data elements, and generate and format output elements.

There has been one attempt to derive weights that really do reflect perceived value
to the user. Wittig et al. asked users to give their perceptions of amount of function-
ality provided by various FPA components. Numerous pairwise comparisons were
made in which users assessed which of two components was larger, and by how
much. With sufficient samples of all combinations of component types and func-
tional complexity levels, it becomes possible to develop a set of weights empirically
(using the Analytic Hierarchy Process[92] process) that reflect the users’ perceptions
of relative functionality. Initial results from a pilot study of 23 projects[111] were
confirmed by further study of another 22 projects[90]. They are presented inTable V.

These differ from Albrecht’s weights in several respects. Albrecht weights files
more heavily than transactions, but here it is generally the other way around. With
Albrecht’s weights, the maximum weight for a component type is always about twice
the minimum; here the maximum is about three times the minimum for transaction
types, and four times the minimum for file types. Inputs have the least weight under
Albrecht, and the most weight here.

Wittig’s results provide an empirical basis for changing the weights in FPA so that
function points really do reflect functionality to the user. The research has gone no
further, though, and the new weights have not been adopted by IFPUG.

3.4 What Is Actually Measured?

Kitchenham et al. noted that it is not clear what function points actually measure:
functionality is one concept, product size as perceived by a user is a different con-
cept[67].

Whether IFPUG function points measure size alone is a point of strong debate. The
aim is to measure the problem, independent of the technology used to implement the

312 C.J. LOKAN

solution. Critics argue that function points don’t actually work that way. Technology
dependence is implicit in the choice of weights for function point components[99].
Technology dependencies can occur in all aspects of the FPA approach[106].

Further, several of the characteristics measured in the adjustment phase of FPA
are really effort drivers, not size drivers[72]. Including them in the sizing process
corrupts function points as a “pure” measure of size.

The problem is that organizations use size measures for more than just sizing
the problem. They are also used for estimating effort, a task requiring technology
dependence. A size measure that is truly unrelated to technology is no help for es-
timation[80]. Right from Albrecht’s initial papers, validation of function points has
commonly been done by relating size in FPs to size in LOC or to development effort,
thus relating functional measurement to technical measurement.

Proponents of FPA (e.g.,[28,30,58]) assert that function pointsare purely a mea-
sure of functionality, independent of technology, unrelated to effort. The argument
amounts to a philosophical divide.

3.5 Subjectivity

IFPUG’s work in developing successive releases of the Counting Practices Manual
is aimed at standardizing function point counting and reducing subjectivity. Even so,
counting function points is a subjective task, involving judgements by the person
doing the count. This means that two analysts counting the same specification are
unlikely to arrive at the same answer.

Early studies showed that within organizations, the variation between different
function point counters was up to 30%; between organizations, it exceeded 30%[77].
Later studies showed the variation between counters to be about 12%[63], or “as
little as plus or minus 11 percent”[28].

Training and experience is the key. Rule reports that the variation between re-
cently trained project staff is typically around 23%[91]. For experienced specialists,
following rigorous standards, the variation can be less than 5%[15,91].

This does not necessarily mean that counters will agree with each other to within
a few percent on all aspects of a function point count. In practice there can be many
differences in identifying and counting individual components, but they often cancel
each other out when they are aggregated[83].

3.6 What Is Missed Out?

Function points are oriented towards data-strong systems, typified by business
software. Processing in these systems is simple. Most effort goes into defining data
structures.

FUNCTION POINTS 313

Not all systems fit this pattern. Scientific and engineering software is often
function-strong: dominated by the internal processing required to transform inputs
to outputs. Real-time software is often control-strong: dominated by behavioural or
control issues. Hybrid systems have elements of each of these types of software.

Traditional function points are less effective for software from these other do-
mains.

Further, software development is very different now to when function points were
first proposed. Then, bespoke MIS software was much more important. Now, soft-
ware development is much more likely to involve package customization. The nature
of software is often different: real-time, multi-layer, client-server software, rather
than mainframe- and database-oriented software.

Although IFPUG has developed guidelines to help in several situations (e.g.,[24,
73]), it can take some effort to relate the five component types that suit data-strong
software to other types of software.

This is the prime motivation behind most alternatives to IFPUG function points.

3.7 The General Systems Characteristics and VAF

The adjustment phase of FPA is widely used by practitioners within the IFPUG
world. This is partly because of a view that the general systems characteristics are
genuinely important aspects of software projects, and partly for compatibility with
the large number of past FP measurements that used it.

However, the GSC’s and (especially) the VAF are probably the most criticized
aspects of function points.

3.7.1 General Systems Characteristics

Symons observed that it is confusing to consider internal processing complexity as
one of the GSCs, and also to give it a role in allocating function points to a component
according to the numbers of file and element types referred to in the component[99].

Symons also felt that the 14 specific characteristics were unlikely to be satisfactory
for all time. He felt that more than 14 were needed (in Mark II function points he
extended it to 19), and that the particular set of 14 might need to change over time.
This last point is supported by empirical evidence that two characteristics (online
entry, and data communications) are inevitably scored as 5 in today’s online world.
They should be redefined if they are to keep any discriminative value[71].

Empirical study has also shown that patterns can be observed in the GSCs for dif-
ferent types of software[29,71]. For example, management information systems and
decision support systems tend to be low in complexity, and place high importance
on facilitating change by the user. Transaction/production systems and office infor-

314 C.J. LOKAN

mation systems have more constraints on performance, and are less concerned with
facilitating change by the user.

The definitions of some GSCs overlap. Relationships between them have been
studied several times, invariably finding that several GSCs tend to vary together:
they tend to be either low together or high together. This suggests that instead of
14 separate things being captured by the GSCs, a smaller number of underlying
dimensions is involved, with some being captured several times over by different
GSCs. The number of underlying dimensions might be 5[71], 6 [66] or 7 [21],
depending on the data set, but it is clear that there are not 14 independent factors.

As noted above, several GSCs (for example, performance requirements, reusabil-
ity, heavily used configuration) really do not belong in a size measure. They are effort
drivers, not size drivers[72]. Including them in the sizing process corrupts function
points as a size measure.

3.7.2 Value Adjustment Factor

The VAF has received heavy criticism.
It involves inadmissible transformations according to measurement theory: arith-

metic should not be performed on ordinal scale values[67].
Other criticisms are that it is not right to give all adjustment factors the same

weight [21,99]; a multiplicative model would make more sense than an additive
model, and the range of possible technical complexity adjustments is too narrow[21].

Tellingly, the VAF turns out not to provide any significant value. It makes no differ-
ence to the accuracy of effort estimates. The relationship between adjusted function
points and development effort is no stronger than that between unadjusted function
points and development effort[3,54,66,71]. This is probably because in most sys-
tems the VAF turns out to be very close to 1.0[71]. The VAF is not even reliable as
a simple indicator of whether effort is likely to be more or less than “average” for a
given UFP[71].

Outside the IFPUG community, use of the VAF is declining. An adjustment phase
is no longer a recommended part of Mark II function points, it has never been part of
COSMIC-FFP, and it is not part of the recently-adopted standards for functional size
measurement. Symons describes the VAF as “totally irrelevant to modern software
development”[98].

For a while IFPUG described the VAF as an optional part of the process, in
“Release 4.1 Unadjusted” of the Counting Practices Manual[40]. This meant that
Release 4.1 Unadjusted was able to comply with the new ISO standard for func-
tional size measurement[44], and could itself be approved as a standard[48]. But
the latest Release (4.2[41]) of the IFPUG Counting Practices Manual no longer de-
scribes the VAF as optional, and Release 4.1 is no longer marketed on IFPUG’s web

FUNCTION POINTS 315

site. It is clear that in IFPUG’s eyes the VAF is still an integral part of Function Point
Analysis.

3.8 Relationships Between FP Component Types

The relative proportions of each of the five component types, and the three levels
within each component type, turn out to be remarkably stable.

This is worrying to researchers, concerned about the validity of the internal struc-
ture of function points: strong correlations between the different component types
suggests that some things are effectively counted more than once. On the other hand,
there are advantages for practitioners, who can make use of this knowledge in several
ways.

3.8.1 Function Point Breakdown

Bock and Klepper[15] observed that the proportion of low, average and high com-
ponents of each type was stable in their environment. They used this knowledge to
simplify the function point counting process. Instead of separately determining the
functional complexity of each individual component, they simply gave each compo-
nent the average number of function points (determined by multiple regression) for
that component type in their environment. Those averages are shown inTable VI.

Similar results (also shown inTable VI) have been found by the International
Software Benchmarking Standards Group (ISBSG)[42].

The most time-consuming aspect of function point analysis is counting all the
element types and file types referenced in a function point component, in order to
determine whether the component has low, average or high functional complexity.
Assigning average numbers of function points has the potential to speed up the count-
ing process, “with no significant reduction in accuracy”[15].

We can compare the averages inTable VI with Albrecht’s weights. For example,
Albrecht’s gives an output 4, 5, or 7 function points respectively for low, average and

TABLE VI
AVERAGE FUNCTION POINTS PERCOMPONENT

Component Bock and Klepper ISBSG

Input 3.18 4.3
Output 5.33 5.4
Inquiry 3.92 3.8
Internal file 8.41 7.4
External file 5.54 5.5

316 C.J. LOKAN

TABLE VII
CONTRIBUTION OF COMPONENTTYPES TOTOTAL UFP

Component New Enhance

Input 37% 36%
Output 24% 32%
Inquiry 13% 12%
Internal file 22% 15%
External file 4% 5%

high functional complexity. As the average is about 5.3 to 5.4, outputs tend to be “av-
erage.” Other transactional components (inputs and inquiries) also tend to have low to
average functional complexity. Data components (internal logical files, and external
interface files) tend to have low functional complexity. High functional complexity
is rare. These observations suggest there could be some benefit in recalibrating the
tables used to determine functional complexity, particularly for files.

The relative contribution to total FP from each of the component types has also
been analyzed by ISBSG[42]. For new developments there tends to be about 3 in-
puts, 1.5 outputs, and 1 inquiry per internal logical file. For enhancement projects
there tends to be about 4 inputs, 3 outputs, and 1.4 inquiries per internal logical file.

The contribution of each component type to overall FP is shown inTable VII. New
developments and enhancement projects are tabulated separately, because there are
statistically significant differences in their breakdowns. Not surprisingly, enhance-
ment projects involve less change to data and more creation of extra outputs.

Knowing the typical breakdown of FP components can be helpful early in a
project, when a quick estimate of the total size in function points can be very useful.
If one of the five component types can be counted early, and the relationship between
that component and total function points is stable enough, an early estimate of total
function points might be possible.

In many projects, a data model is available right from the start, or is the first part of
the system to be documented. This means that the number of internal logical files can
often be counted very early. Strong linear relationships have repeatedly been found
between the number of internal files and total UFP, with approximately 30 UFP per
file [70]. In the ISBSG data set, even stronger relationships have been found between
the number of inputs and total function points. This is less useful to an estimator,
though, because the number of inputs is not usually known as early in a project.

Knowing the typical breakdown of FP components can also be useful for valida-
tion of a function point count. One form of validation can be to check that the FP
breakdown is close to that expected[85]. While any given project may well vary
from the average, large departures from expectation can indicate that a counting er-
ror has been made. Things to check include the relationship between internal logical

FUNCTION POINTS 317

files and UFP; the ratios of numbers of component types to each other; the percentage
contribution of each component type to total UFP; and the average functional com-
plexity of each function type. Checklists can indicate errors that might have been
made if particular deviations from average are seen.

3.8.2 Correlations Between Component Types
Three studies have been made into the correlations between the five component

types. The first two agreed on some findings and disagreed on others[54,65]. The
third confirmed the agreements of the previous two, and suggested explanations for
the disagreements[69].

It is clear that correlations between the five component types are inherent in FPA.
Although the strengths of the correlations might vary from one data set to another,
some common patterns are observed:

• Inputs, inquiries, and internal files are always correlated.

• External files are rarely correlated with the other components.

• Most correlations are weak, but some are strong enough (0.7 or greater) to in-
dicate that some things are effectively counted more than once in FPA.

The strength and statistical significance of correlations between the components
are greater for projects developed using 4GLs and application generators. They are
weaker and vary more in projects developed using 3GLs. The correlations are also
stronger in new developments than in maintenance projects[69].

Since 4GLs are most used in the domain where FPA is most widely accepted,
this might imply that some simplification of the FPA process is possible in the areas
where it works.

3.9 Backfiring

One aspect of function points that has been studied empirically from the very
beginning—even by proponents of function points—is the relationship between
function points and lines of code. This relationship is an interesting one. Function
points and LOC are supposed to measure different things: respectively, the size of
the problem independent of any solution technology, and the size of the solution.

But from the beginning, strong correlations have been observed between function
points and lines of code for a given language[10]. Albrecht and Gaffney suggested
this as the basis of a two-step process for estimating effort, using observed linear rela-
tionships to estimate lines of code from function points, and then effort from lines of
code. A different formula was needed for each different language, but the correlation
between lines of code and function points was very strong for each language.

318 C.J. LOKAN

Many thousands of projects have been sized now with both lines of code and
function points. Formulas relating function points and program length are built into
several commercial software estimation tools.

The concept of “backfiring” is simply the reverse of estimating length from func-
tion points: function points are estimated for an application by dividing its length by
the average number of statements per function point for the language concerned[57].
The value of backfiring lies in providing a quick way to estimate the total size in
function points of an organization’s software portfolio, as a step in planning the
maintenance of that portfolio[30]. Backfiring too is supported by commercial es-
timation tools.

In 1995 Capers Jones described backfiring as a “useful technique,” that provides
“a powerful way of sizing, or predicting, source-code volume for any known pro-
gramming language or combination of languages”[57]. He noted that “the margin of
error in converting LOC data into function points or back is high, but it’s improving
in both directions as more data becomes available.”

In 1996, the second edition of Jones’s bookApplied Software Measurement[58]
included a table identifying the number of logical source statements needed on aver-
age to encode one function point in each of 464 programming languages. He noted
that code complexity could affect the relationship for any given program, but wrote
about backfiring in matter-of-fact terms as a practical thing to do.

Backfiring presents an ironic problem. A basic tenet is that functionality and length
aredifferent; and that function points, being user-oriented, are a much better mea-
sure than lines of code, which are subject to variations between programmers and
languages. From this viewpoint, Jones has written famously that using lines of code
as a software size measure should be considered professional malpractice[59]. The
argument is undermined if it turns out that function points and length are strongly
related.

Jones is now much less positive about backfiring. His advice is to “strongly dis-
courage its use in virtually every conceivable circumstance,” and that “if it seems
too good to be true, it probably is. Sooner or later, real counting will need to be
done” [61]. Nevertheless, the “Programming Languages Table” is still maintained
and is still available for purchase from Jones’s company[61], albeit with warnings
about its use.

Fundamentally, backfiring probably can be used effectively to estimate function
points from program length or vice versa. The correlations between function points
and length are undeniable. But two important qualifications must be noted.

First, as Jones points out, “local development practices and the way languages de-
liver functionality differently will always make backfiring a troublesome, dangerous
exercise—especially if the backfiring is not meticulously calibrated to local condi-
tions.” In other words, knowledge is needed of relationships between function points

FUNCTION POINTS 319

and length in one’s own environment; generic tables such as Jones’s Programming
Languages Table should not be relied on.

Second, backfiring should only be used to estimate portfolios of multiple projects.
For a single project, the risk of an inaccurate estimate is high. Across a set of projects,
there is some chance that individual errors will even out and averages will be reason-
able.

3.10 Summary

The section has presented criticisms and research that suggest the need for other
approaches to functional size measurement. Indeed, the rest of this chapter describes
the evolution of several other approaches.

The criticisms and research findings described above have met with various re-
sponses.

Some have been disputed or ignored. Challenges to function points as purely a
sizemeasure are disputed on philosophical grounds. Problems of construction are
overlooked, because function points have been found to be useful despite them.

Others have led to some evolution of how IFPUG function points are counted.
Successive releases of IFPUG’s Counting Practices Manual aim to improve standard-
ization, reduce subjectivity, and indicate how things that were not initially considered
should be counted within the core FP structure. IFPUG works hard to ensure the rel-
evance of function points in a changing software world.

IFPUG’s changes are all concerned with how to make counting decisions. The un-
derlying structure of function points, and the process of calculating function points,
has remained unchanged.

Several people have attempted to overcome perceived problems with IFPUG func-
tion points, by proposing extensions, or alternatives, to them. We turn now to the
most significant of those other proposals.

4. Mark II Function Points

The first significant alternative to Albrecht’s function points was put forward in
the late 1980s by Charles Symons, from the United Kingdom.

While praising Albrecht for breaking important ground, Symons saw several
weaknesses in Albrecht’s approach. Symons’ criticisms were published in 1988[99],
along with an outline of an alternative formulation for function points: dubbed
“Mark II Function Points.” Full details of the new approach were set out in a book,
published in 1991[100].

Although Symons described Mark II function points as an evolutionary step, the
aims and approach are quite different to Albrecht function points.

320 C.J. LOKAN

Mark II function points gained sufficient industry acceptance (though scarcely
used outside the UK) to join IFPUG function points as a mainstream function point
approach.

4.1 Symons’ Criticisms

Symons criticized several aspects of Albrecht function points (most of these have
been discussed in Section3):

• Classifying each component as having low, average or high functional complex-
ity was too much of a simplification.

• The origin, validity and objectivity of the weights (function points per compo-
nent type) were doubtful.

• The treatment of internal processing complexity was confusing.

• The general systems characteristics had several flaws.

• Function points are not summable in the way one would expect. If several sepa-
rate collaborating systems are replaced by one integrated system, the integrated
system has fewer function points than the component systems. In effect, the
whole is less than the sum of the parts.

Symons’ main point was that Albrecht’s approach was developed in a particular
environment; Symons questioned the suitability of the method, and particularly the
weights, for general application.

In 1991 Symons added two more criticisms[100]. First, some types of software
cannot be sized reliably using Albrecht function points. Examples are expert systems
and system software: software that features complex internal processing, or complex
algorithmic processing. Second, the count of files should be weighted by usage. A file
that is used in many transactions should be counted multiple times, not just once.

The latter point reflects a crucial change in philosophy, that informed Symons’ new
formulation of Mark II function points. Albrecht sought to measure things of value
to the user, and measured them once each. Symons retained the aims of technology
independence and user focus, but moved away from the subjective concept of value
to the user. Instead he sought explicitly to relate the system size measure to the effort
involved in developing the system. This was more objective than trying to measure
value to the user, and directly suits the aims of having a size measure suitable for
measuring productivity and estimating effort. From this point of view, “The size of
the databases, measured in function points. . . is not directly relevant to the size of
the applications. . . What matters in measuring the size of systems for performance
measurement and estimating purposes, is the usage of the files by the transactions
within the applications”[100].

FUNCTION POINTS 321

Symons took most of these observations into account when formulating Mark II
function points. He did away with the low/average/high classification, and simply
counted the numbers of data elements. He preferred the relational database concept
of “entity” to the ambiguous concept of “logical file,” and changed the basic com-
ponents to be counted in a way that meant files were counted as many times as they
were used. He determined the weights for different element types through a cali-
bration process relating specifically to project effort, and proposed that the weights
might change over time to retain the relationship with effort. He modified the adjust-
ment process based on the general systems characteristics.

The one thing he did not try to do was measure the size of an “algorithm,” regard-
ing that as a problem for the future. Thus, Mark II function points have the same
problems as IFPUG function points in terms of range of applicability. They are still
geared towards file-oriented business systems.

4.2 Mark II Function Points

In Mark II function points, the system is regarded as consisting of a collection of
“logical transactions.” Each has input, processing, and output components. The size
of a logical transaction is the sum of the sizes of the input, processing, and output
components. The size of the system is the sum of the sizes of the logical transactions.

The sizes of the input and output components of a logical transaction are propor-
tional to the numbers of data element types they involve. As the number of element
types goes up, the size goes up; there is no simplification to just low, average or high.
The idea is that the effort to format and validate an input, and to format an output, is
proportional to the number of elements involved.

For the size of the processing component of a transaction, Symons looked to
McCabe’s cyclomatic complexity[78] and Jackson’s mapping of data structure to
code logic[53]. Symons proposed that a measure of processing complexity is to
count the number of data entity types (data entity types are the same as entities in
relational data modelling) referenced (created, read, updated, deleted) by the trans-
action.

The size of a logical transaction, expressed in Unadjusted Function Points, is thus:

UFP= NiWi + NeWe + NoWo

where

Ni = number of input data element types,

Wi = weight of an input data element type,

Ne = number of entity types referenced,

322 C.J. LOKAN

We = weight of an entity type,

No = number of output data element types,

Wo = weight of an output data element type.

In 1988 Symons’ initial calibration yielded weights ofWi = 0.44, We = 1.67,
Wo = 0.38. By 1991 they had become 0.58, 1.66, and 0.26 respectively. The weights
have not changed since 1991.

Mark II function points include an adjustment phase based on some general sys-
tems characteristics. The final calculation of the adjustment factor is similar to
IFPUG: scoring the characteristics on a scale of 0 to 5, adding the scores, scaling the
result, and adding it to 0.65 to produce a Technical Complexity Adjustment factor.
The unadjusted size is multiplied by the TCA to produce the system size in adjusted
function points.

There are two differences between the IFPUG and Mark II calculations of the
TCA. First, the impact of each factor is halved in Mark II when calculating the
TCA. Second, Mark II adds five extra system characteristics (interfaces to other ap-
plications, special security features, direct access for third parties, documentation
requirements, special user training facilities) to the 14 of IFPUG, making 19 in total.
The possibility of adding further client-defined characteristics was also envisaged.

Symons saw little incentive to put much work into redefining the adjustment
process. He observed that the range of TCA values was small in practice, and seemed
already to be smaller than in 1984. He expected the TCA to continue to decline
in significance. Although it still appears in the Mark II FPA Counting Practices
Manual [104] as an optional part of the Mark II FPA process, its use is no longer
recommended.

4.3 Experience with Mark II Function Points

Kitchenham et al. consider that Mark II function points satisfy the properties of
a valid measure, but only if they are regarded as an effort measure, not a size mea-
sure[67].

A natural question is whether or not there is a relationship between IFPUG func-
tion points and Mark II function points. Symons reported initially that they did not
correlate well, and the scatter was random, so it would not be possible to predict
Mark II size from IFPUG size; this implies that they measure different aspects of
size [100]. He found that the Mark II method gives a higher UFP score than the
IFPUG method as system size increased.

Dolado[22] found the opposite. He found a strong correlation between IFPUG
and Mark II function points. In his data set, the IFPUG method gave a higher UFP
score than the Mark II method on all projects but one.

FUNCTION POINTS 323

Symons later reported conversion formulas between IFPUG function points and
Mark II function points, for new developments, for two ranges of project size[101].
He noted again that the Mark II method gives a higher UFP score than the IFPUG
method as system size increased, as expected since files may be counted multiple
times. Up to 1500 IFPUG UFP’s, a quadratic formula relates the two sizes.

MkII = 0.9× IFPUG+ 0.0005× IFPUG2.

This formula was derived empirically, from a collection of systems counted with
both methods. Above 1500 IFPUG UPFs, no empirical data was available. Some
approximate MkII/IFPUG ratios were derived by extrapolation.

The UK Software Metrics Association maintains the Mark II FPA Counting Prac-
tices Manual. Mark II function points have achieved a strong share of the function
point market in the UK, but are little used elsewhere.

5. Some Other Early Variations

Mark II function points are by no means the only alternative proposed to IFPUG
function points. Many variants exist in the literature (see[76] for a broader survey
than is presented here). Apart from the main approaches identified in this chapter,
none has achieved much currency.

Most have been proposed because someone thought something was missing from
IFPUG FPA, and thought they knew how to fill the gap.

Three early alternatives or variations to function points are described now. The
first is interesting because it appeared at about the same time as function points. The
others extend function points in different ways, attempting to improve the measure-
ment of different types of software.

5.1 DeMarco’s Function Weight

A proposal with similar aims to function points, called “System Bang,” was
published in 1982 by DeMarco[19]. It too was proposed as an implementation-
independent indication of the function to be delivered, as perceived by the user.

DeMarco based his measure on things that can be counted from a specification
model: the function, data and state models of the Structured Analysis and Design
Technique. He identified twelve primitive things that should be counted as soon as
the specification model was complete. The primitives included processes on data
flow diagrams, objects and relationships on entity-relationship diagrams, and states
and transitions on state-transition diagrams.

324 C.J. LOKAN

DeMarco did not suggest calculating Bang as a weighted sum of all twelve prim-
itives. He suggested instead that projects should be divided into a small number of
domains, and a different formulation of Bang should be developed for each domain.

His main classification of systems was function strong, data strong, and hybrid.
Function strong systems “can be thought of almost entirely in terms of the oper-

ations they perform upon data.” It is the internal processing required to transform
inputs into outputs that matters, and the data is fairly simple. For a function strong
system, DeMarco suggested that the principal component of Bang is Functional
Primitives (lowest level pieces on data flow diagrams). Each functional primitive
was given a weight depending on the number of input and output “tokens” (data
items that need not be subdivided) it worked with. The weighted sum of Functional
Primitives was called “Function Bang” (since renamed “Function Weight”).

A data strong system “is one with a significant database, and most of the effort for
this system is allocable to tasks having to do with implementing the database itself.”
For such a system, the principal component of Bang is the number of objects in the
data model. Each object receives a weight depending on the number of relationships
it participates in. “Data Bang” is the weighted sum of objects.

Hybrid systems fall between function strong and data strong systems. DeMarco
suggested calculating both Function Bang and Data Bang for such systems, and using
the two values separately as predictors when forecasting cost.

DeMarco also classified systems on a second dimension, based on the relative
importance of data movement compared to computation. Commercial systems have
more data movement, and scientific systems more computation. This classification
did not affect how Bang was computed, but rather how the value was used. Bang
was intended to be a predictor of project cost, and DeMarco warned that different
projections should be used for projects from different domains.

It is interesting to draw some comparisons between function points and Bang.
Data is essentially measured the same way: DeMarco’s objects correspond to files
in function points. Processing is counted differently: Bang counts processes on data
flow diagrams, which is a low-level unit, while function points count flows across
the system boundary. Function points are geared towards data strong systems, while
Bang recognizes function-strong systems as needing to be counted differently. Nei-
ther approach considers systems where states and transitions are significant. Function
points do not consider them at all; DeMarco identifies states and transitions as things
to count, but then gives them no further consideration.

DeMarco has cited anecdotal evidence of the usefulness of his method for estimat-
ing effort [20]. No formal validations have been published. Its only other appearance
in the literature is in a simulation study from 1993[87]. Bang never achieved the
critical mass of users to become a mainstream functional sizing method.

FUNCTION POINTS 325

5.2 3D Function Points

3D function points were developed by Whitmire at Boeing in the early 1990s[108,
110]. The motivation was his perception that traditional function points did not prop-
erly measure scientific and real-time software.

3D function points follow DeMarco in regarding all applications as having three
dimensions: data, function, and control. “Each dimension contains characteristics
that contribute to overall problem complexity or size, and these characteristics can
be measured directly”[108].

Traditional function points were accepted as capturing the data dimension. They
are incorporated directly into 3D function points to measure that dimension.

Like DeMarco, Whitmire viewed function strong systems as being dominated by
the processing required to transform inputs into outputs. But where DeMarco counts
processes, weighted according to the number of input and output tokens they work
with, 3D function points measure processing differently.

A “transformation” is defined to be “the set of process steps and governing se-
mantic statements [predicates that must remain invariant throughout the sequence of
operations, or the pre- and post-conditions defined for each operation] required to
transform one set of input data to output data”[108]. Depending on the number of
processing steps and the number of semantic statements involved, a transformation
is classed as having low, average or high functional complexity (seeTable VIII), and
then receives 7, 10 or 15 3D function points respectively.

The third dimension is control. This dimension is measured by counting the states
and transitions on a Finite State Machine. Initial and terminal states are not counted,
and the transition count is reduced by the number of states so that only multiple paths
leading out of a state are counted. The resulting number of transitions is added to the
3D function points (i.e., each transition is counted separately, with a weight of 1 3D
function point).

Whitmire recommended representing the 3D function points of an application as
a triple (data, function, control) rather than just adding them together. The single
combined value is also useful, but considering the three values separately helps spot
characteristics of an application that are hidden by a single value[107].

TABLE VIII
FUNCTIONAL COMPLEXITY OF TRANSFORMATIONS IN3D FP

Processing Semantic statements

steps 1–4 5–15 16+
0–1 Low Low Average
2 Low Average High
3+ Average High High

326 C.J. LOKAN

DeMarco suggested counting the control dimension of an application, but didn’t
actually do it. 3D function points were the first proposal to include all three dimen-
sions. They have never become a mainstream sizing method though. Symons[98]
reported in 2001 that 3D function points were still used successfully within Boeing,
but no further information has been published outside Boeing.

5.3 Feature Points
Feature Points are an extension of Albrecht’s 1984 definition of function points.

They were proposed by Capers Jones in 1986, in an attempt to measure software that
is high in algorithmic complexity (for example systems software, real-time software)
[56,58].

A sixth component was added to the five standard function point component types.
An “algorithm” was defined as “the set of rules which must be completely expressed
in order to solve a significant computational problem”[58]. Examples are a square
root extraction routine or a Julian date conversion routine.

Algorithms receive 3 points each in the feature points method. There is no classi-
fication of low, average and high functional complexity for any type of component
(continuing with a change to the function point approach that Jones had already
made, in an attempt to simplify the process, in his SPQR/20 estimation model). The
weight given to internal logical files is reduced from 10 points to 7, to reflect the
reduced significance of data files in systems software.

Jones reported that for classical MIS projects—the natural domain of IFPUG func-
tion points—feature points and function points often gave almost identical results.
But for harder forms of systems software, feature point counts were significantly
higher.

Feature points were the first attempt to capture the processing aspects of an ap-
plication in a tool and method that was marketed for widespread use. Although they
were supported in the SPQR/20 estimation tool, they were still described as “ex-
perimental” in 1996[58]. They never got beyond that stage. Although they are still
documented on SPR’s web site[56], they are no longer supported by SPR.

5.3.1 How to Count Algorithms?
The significant contribution of feature points was the idea of counting algorithms.

But that was also its weakness. Whitmire felt that the definition of algorithms was
not sufficient for counting purposes[108], and that they were deficient in considering
processing steps but not semantic statements. Symons noted the “inherent difficulty
of agreeing standard ways of defining and assigning a weight to algorithms of in-
creasing size and complexity”[98], and considers that no functional sizing method
has made any progress towards handling algorithmic complexity[97].

FUNCTION POINTS 327

One recent proposal[88,89] involves sizing an algorithm by regarding it as con-
sisting of data to be operated on (an input), a local storage area to hold intermediate
results (one or more internal logical files), and a result (an output). Their functional
complexity is determined using normal IFPUG methods; a design aim of the ap-
proach is that it should fit directly within IFPUG methods. The function point value
for the algorithm is the sum of the values for the input, storage, and output. The ap-
proach has been demonstrated on two examples. Whether this approach scales up has
yet to be seen, and there remains the crucial question of deciding which algorithms
to count.

5.4 Summary

Each of the three variants discussed in this section has interesting aspects. But
none has achieved widespread success.

Bang and feature points were proposed by consultants, who used them in their
own practices. Neither supports them any more. Presumably the methods were not
successful enough or promoted enough to provide sufficient business value to their
creators. 3D function points have only ever been used within Boeing, and have not
been promoted in the literature for over 10 years. With no promotion outside Boeing,
they have always been noted as an important but localized idea.

The problem that these three approaches tried to address was measuring real-time
software and measuring algorithms. Measuring algorithms is still an unsolved prob-
lem. Measuring real-time software may have been solved: we turn now to COSMIC-
FFP.

6. COSMIC

All of the function point approaches discussed above were the ideas of individuals.
COSMIC is different.

COSMIC stands for Common Software Measurement International Consortium.
Established in 1998, it is a consortium of academics and practitioners with an interest
in functional sizing of software. Alain Abran and Charles Symons were (and remain)
joint project leaders. The original participants came from Canada, Europe and Aus-
tralia. Most were participants in the ISO Working Group that was then engaged in
developing a standard for functional size measurement.

COSMIC’s aim was to develop and promote a new approach to functional size,
useable for performance measurement and estimation, applicable to as wide a range
of software domains as possible. Priority was given to business software, real-time
software, and hybrids of the two, but not software of high algorithmic complexity.

328 C.J. LOKAN

The resulting measure built on work that was already under way on “Full Function
Points.”

6.1 Full Function Points

In 1997, Abran and his colleagues proposed an extension to IFPUG function
points, with the aim of better measuring real-time software[96].

They felt that an extension to IFPUG function points was needed, because IFPUG
function points had two problems when dealing with the control aspect of real-time
software. First, real-time software frequently involved single-occurrence groups of
data; these are difficult to map to internal logical files and external interface files.
Second, real-time processes varied widely in their number of sub-processes; this
could not be captured properly by measurement at the process level which can only
give a narrow range of function points (e.g., 3 to 6 points for an input).

They proposed that the functional user requirements of real-time software included
data-rich files and transactions, plus control data and control transactions. The data-
rich aspects could be measured using IFPUG function points. The control aspects
needed to be measured separately, for which they defined new control data and trans-
action types.

The sum of the two measurements represented the total system size, measured in
Full Function Points (“FFP”).

For control data they defined control groups. A control group is a group of control
data used by the application, identified from a functional perspective; it exists for
more than one transaction. They drew a distinction between read-only control groups,
that are used but not changed by the application, and updated control groups that do
get changed.

For control transactions, they defined four function types. Each represents a type
of data movement. An external controlentryrepresents a group of control data com-
ing in from outside the application boundary. An external controlexit represents a
group of control data going outside the application boundary. An internal control
read represents a group of control data being read from internal storage. An internal
controlwrite represents a group of control data being written to internal storage.

The principle behind measuring a process is that it has a separate sub-process for
each data movement, and the functional size is directly proportional to the number
of sub-processes. Control groups are not sized directly; only the data movements
contribute to the functional size.

There is a very different measurement perspective involved here, compared to the
IFPUG process. IFPUG sizes a transaction by counting the data elements involved,
converting that to one of three functional complexity levels, and giving a consequent
number of between 3 and 7 function points. Files are also sized, once each, using

FUNCTION POINTS 329

a similar procedure that gives each file between 5 and 15 function points. FFP also
measures size by counting data, but it is data movement rather than static data struc-
ture that is measured. Moreover, FFP sizes a control process by simply counting the
data movements, which can be anything from 2 upwards with no upper limit.

The two measurement methods are different enough that it was necessary to justify
the validity of adding the two results to give a single number[86].

Validation of FFP took the form of industrial field trials, to check the relevance
and useability of the approach and to compare the results from IFPUG and FFP mea-
surement. Early trials showed that for MIS software, IFPUG and FFP measurements
were similar, while for real-time software FFP measurements were much higher.

By the time version 2.0 of the FFP measurement manual was issued in July
1999 [105], FFP had dropped the IFPUG part of the process.All data and trans-
actions, not just control data and transactions, were measured in terms of entry, exit,
read and write sub-processes. (Simpler terminology was possible as a result: for ex-
ample, “entry” was now used, instead of “external control entry.”)

Another fundamental difference from the IFPUG point of view had emerged by
then: “layers” were being considered[84]. IFPUG views functionality as entirely
based on business functions seen by external users. The developers of FFP consid-
ered that other aspects of software should be included as well, perhaps involving
different layers of functionality.

FFP and IFPUG function points were now entirely different measures.

6.2 COSMIC Full Function Points

By the end of 1998, COSMIC had been formed. The aim was to develop, and gain
acceptance as an industry standard, a new approach to functional size measurement.

COSMIC sought to develop a measure that should: be useful to software project
managers; be widely applicable, with priority given to business and real-time do-
mains; conform to the emerging ISO standard for functional size measurement. They
began by reviewing the main existing function point methods, and came up with a
set of principles. They moved on to defining their own functional size measure.

The resulting measure drew heavily on ideas from Mark II and FFP. FFP ver-
sion 2.0 was adapted to suit COSMIC’s measurement principles, and rebadged as
COSMIC Full Function Points (“COSMIC-FFP”). The first Measurement Manual
was issued in October 1999. The most recent version is dated January 2003[4].

The principles behind COSMIC-FFP are that:

• The functional user requirements of software are defined as a set offunctional
processes. A functional process is “an elementary component of a set of Func-
tional User Requirements comprising a unique cohesive and independently

330 C.J. LOKAN

FIG. 2. Data movements in COSMIC-FFP.

executable set of data movements. It is triggered by one or more triggering
events. . . It is complete when it has executed all that is required to be done in
response to the triggering event”[4]. Triggering events occur outside the soft-
ware boundary.

• Software manipulates pieces of information, designated as data groups, which
consist of data attributes.Figure 2depicts the flow of data groups.1

• Functional processes involve sub-processes, concerned with movement (entries,
exits, reads and writes) and transformation of data groups.

• The functional size of a functional process is directly proportional to its number
of data movements.

• The functional size of an application is the sum of the sizes of its functional
processes.

At heart, sizing an application with COSMIC-FFP involves identifying the func-
tional processes; identifying data groups; and identifying and counting the move-
ments of data groups.

Note that data transformations are not considered. Some processing is assumed
to be associated with each data movement (validating inputs, formatting outputs,
etc.). The processing involved in data transformations is assumed to be covered
by, or at least proportional to, this baseline processing. That won’t be true for soft-

1 Figure 2is a reproduction of Figure 2.4.1.1 from[4, p. 9]. Reproduced with permission.

FUNCTION POINTS 331

ware involving complex algorithmic transformations; COSMIC does not claim that
COSMIC-FFP applies to such software.

Each functional process involves at least two data movements. There must be at
least one entry, and one exit or write. There is no upper limit on data movements;
instances of functional processes with over 100 data movements have been observed.

The unit of measurement in COSMIC-FFP is not called a “function point.” It is
the “COSMIC functional size unit,” or “Cfsu.” It is defined to be equivalent to one
single data movement type at the sub-process level.

COSMIC-FFP excludes a technical complexity adjustment. It does not attempt to
take into account the effect on size of technical or quality requirements. Those are
recognized as important in a project, but should not be included when measuring
functional size.

COSMIC-FFP has two important innovations: layers, and measurement view-
points.

Layers. The concept of layers in COSMIC-FFP is similar to the concept of a lay-
ered software architecture. A layer is the result of functional partitioning, such that
all included functional processes perform at the same level of abstraction. A layer
provides functional services to its users; subordinate layers provide services to soft-
ware in higher layers; software in a subordinate layer can perform without assistance
from software in layers that use its services.

The point is that functional user requirements may be assigned to multiple layers in
an application. This matters from a sizing point of view. If just the external behaviour
is measured, the allocation of functionality to layers is not relevant. If layers are
measured separately, overall functional size goes up, as inter-process communication
is measured. For example, in a non-layered view, reads and writes are only measured
once as internal operations. If they are delegated to a subordinate layer in a layered
model, an extra level of entry/write and exit/read is measured. Writes from layer 1
become entries in layer 2, exits from layer 2 become reads in layer 1, and all are
measured. Communication between peers in the same layer can also be measured.

Measurement Viewpoints. Regarding software as a black box, with only
externally visible behaviour, is one viewpoint: suited to an end user, who cares only
about what they may do with the software. This is the “end user measurement view-
point.” Regarding software as a collection of functions, spread across different layers,
each providing separate functionality to the user, is a different viewpoint: suited to a
developer, who cares about the totality of the software that they must write to meet
the user’s needs. This is the “developer measurement viewpoint.” The contrast be-
tween these viewpoints looks a lot like the functionality/length difference—except

332 C.J. LOKAN

that layers in COSMIC-FFP still represent functionality that must be provided, rather
than lines of code that must be written.

The difference between viewpoints is important. Different viewpoints lead to dif-
ferent sizes being measured. The end user viewpoint corresponds to the IFPUG view
of functionality. End users are not interested in a layered view, for example. Devel-
opers, and managers of development projects, are concerned more with the major
components to be developed: these might reflect different layers, or peers within the
same layer.

It is important to identify the viewpoint for measurement, if comparisons are to be
attempted between developments.

6.3 Experience with COSMIC

COSMIC-FFP were tested in industrial field trials[7], to test that the documenta-
tion about COSMIC-FFP is understandable across different domains; that the method
can be applied with reasonable effort; and that the sizes reflected the functionality as
perceived by experts.

Results showed that experience with both COSMIC-FFP and the application do-
main was required to ensure repeatability. The COSMIC-FFP approach was seen as
easy to apply. The effort involved was comparable to that for other functional sizing
methods (though if only poor or incomplete documentation is available, IFPUG is
probably slightly easier to apply than COSMIC).

The field trials also produced some data about the relationship between Cfsu and
effort. The initial data set was small, so the results were not definitive, but strong
relationships were observed.

The COSMIC Measurement Manual comments on conversions between COSMIC-
FFP and other function point measures. There are few projects yet that have been
sized with both COSMIC-FFP and another method (though one case study exists
in which the same system was measured with five different approaches[26]), so
most of the comments are based on theory and impressions rather than statistics.
A small number of projects have been sized with both IFPUG and COSMIC FFPs.
It seems that, on average, IFPUG and COSMIC sizes (if both are measured from
the same end-user viewpoint) are roughly similar for new development projects of
over about 100 Cfsu. For enhancement projects, and projects measured from differ-
ent viewpoints, poorer correlations are expected. Direct data is not available relating
COSMIC sizes to Mark II or early FFP sizes, but it is expected that on average they
should all give roughly similar sizes.

In Section3.8 we saw that in the IFPUG world, knowing the balance to expect
between the five component types is useful for early estimation and for validating
a count. Similar value can be expected in the COSMIC world. Study of 52 projects

FUNCTION POINTS 333

from the ISBSG Data Repository found the proportions of the four data movement
types (entries, exits, reads, writes) to total functional size to be 33%, 35%, 19% and
13% respectively. Entries and exits contribute about equally, with a big drop to reads
and a further drop to writes[43].

The use of COSMIC-FFP is increasing, particularly for real-time software, though
its take-up is slower in the USA where IFPUG holds sway.

7. Function Points for Object-Oriented Software

From a user’s point of view, object oriented software development is an imple-
mentation approach. In principle, it should be possible to apply function points as
readily to OO software as to software developed using any other technology.

Specification documents include some form of model of the system, from which
function points are counted. Traditional function points are counted from a data
model and descriptions of the transactions. Those items may not be represented
directly in an object oriented development, where the system model is probably ex-
pressed in UML. If function points are to be counted for an OO system, the issue
is how to relate things in a UML model to the files and transactions required for a
function point count.

Garmus and Herron[30] include a chapter on counting an object-oriented appli-
cation. But there is almost nothing OO-specific in the chapter, beyond noting that a
different approach is often needed because the documents are different. Their advice
is to first become familiar with the entire system model, including functional de-
scription, object models and system diagrams. Once you understand what the system
provides for the user, you can then count function points normally.

Several authors have proposed methods for adapting function points to object ori-
ented software. Some retain a focus on traditional function points as the output from
a count. They concentrate on relating OO concepts to FP components. Others de-
velop new measures, tailored to OO software but analogous to FPs in some aspects
of their construction.

In contrast to traditional methods, where IFPUG, Mark II and COSMIC dominate,
the range of proposals for OO software is wide. None has yet achieved broad recog-
nition. This indicates that measurement in the OO domain is not as well understood.

7.1 Mapping OO Concepts to Function Points

If traditional function points are to be counted from a UML model, the issue is
how to relate OO concepts to FP components.

334 C.J. LOKAN

Most proposals are based on class diagrams. A draft proposal[38] by IFPUG
treats classes as files, and methods as transactions. Longstreet[75] treats classes that
represent non-transient data as files, and describes sending and receiving messages
as outputs and inputs respectively.

Longstreet[74] also sees a natural link between use cases and FPA. He gives some
small examples but not much other detail.

There are four main proposals for identifying IFPUG function point components
from UML models. Three give particular sets of rules and guidelines. The fourth
draws on the others, seeking to determine empirically how best to make various
counting decisions. All of these proposals aim to replicate (in most cases automat-
ically) the result that would be produced by an expert human counter of IFPUG
function points.

Fetcke[27] defined a set of rules for mapping a use case model and class model to
concepts from the IFPUG Counting Practices Manual[36]. Some actors are iden-
tified as users or external systems. Use cases that interact directly with users or
external systems, and other use cases that extend those with direct external inter-
action, are candidates for transactional components. Domain objects (specifically,
entity objects, if that level of analysis is provided) correspond to files. Rules for han-
dling aggregation and inheritance are given. Fetcke concentrated on demonstrating
that his method was unambiguous enough to be applied in practice; how close the
results were to a normal FP count was not studied.

Uemura et al.[103] considered class diagrams and sequence diagrams, obtaining
most information from sequence diagrams. Classes that might represent data files are
identified from the full set of sequence diagrams. Those whose data are changed by
at least one transaction are internal files, the others are external files. Class attributes
map to DETs, and RETs are essentially ignored (assumed always to be 1). Transac-
tional components are identified from sequences of messages, initiated by external
actors. Rules are given to decide the type of transactional component (input, output,
inquiry). Message arguments map to DETs, and the number of FTRs is 1 or 2 de-
pending on which rule is applied. Provided the class and sequence diagrams meet
certain conditions, these rules can all be automated; their paper reports early success
with a tool they have developed.

Abrahão et al.[2] use yet another combination of UML diagrams. They con-
sider that an OO conceptual model has four aspects: data (object model: class
diagram), behaviour (dynamic model: state transition diagrams and interaction dia-
grams), process (functional model: describing the semantics of changes to an object’s
state), and presentation (presentation model: describing user interaction with the sys-
tem). Classes and legacy views correspond to internal and external files. Services that
change the state of a file correspond to inputs. Outputs and inquiries are recognized
from the presentation model. Rules are given for identifying and counting each type

FUNCTION POINTS 335

of function point component, and the final result is intended to match an IFPUG
function point count. Results from a case study are promising[1], and they too have
built a tool to automate their process.

Cantone et al.[16] are building on the work of Fetcke, Uemura, and also Antoniol
et al.[14]. They consider class diagrams, use case diagrams, and sequence diagrams.
They do not specify a particular set of rules for what to count and how. They pro-
vide some guidelines and heuristics, and give their comments on the appropriateness
of rules proposed by earlier researchers. They have also identified many situations
where different decisions can be made on how to treat certain aspects of an OO
model. They are conducting empirical work to see how different decisions affect the
outcome. The aim is to develop a tool that can automatically analyze a UML model
and generate a function point count that is as close as possible to that given by an
expert in FPA.

Jenner has initiated work on mapping UML concepts to the data movement sub-
processes in COSMIC-FFP[55]. The main resource is the sequence diagram. Dis-
crete interactions between actors and the system correspond to functional processes;
messages that cross the system boundary correspond to entries and exits; messages
sent to objects correspond to reads or writes. The method can be automated if the se-
quence diagrams are fully specified and optional return arrows from read processes
are not included in the diagram.

7.2 Function Point-Like Measures for OO

Another set of proposals is somewhat different. Measures are defined that are tai-
lored to OO software, and are analogous to function points in some aspects of their
construction. In most cases the same sorts of things are counted: objects for files,
and methods or messages for transactions. But there is no expectation that the result
would closely match an IFPUG FPA count.

Whitmire [109] considered each class as an internal file; messages sent across the
system boundary were treated as transactions.

Schooneveldt[94] treated classes as files, and considered services delivered by
objects to clients as transactions.

Sneed[95] proposedobject pointsas a measure of size for OO software. Object
points are derived from the class structures, the messages, and the processes or use
cases, weighted by complexity adjustment factors.

Predictive Object Points(POPs)[82] are based on counts of classes and weighted
methods per class, with adjustments for the average depth of the inheritance tree
and the average number of children per class. Methods are weighted by considering
their type (constructor, destructor, modifier, selector, iterator) and complexity (low,
average, high), giving a number of POPs in a way analogous to traditional FPs.

336 C.J. LOKAN

Graham[31] proposedtask pointsas a size measure that can be computed at the
requirements analysis stage. A task point is an atomic task that the system will carry
out in support of user requirements. Task points are equivalent to the leaf nodes in
the Task Object Model—a hierarchical model of the business tasks to be supported
by the system.

Two proposals are worth a slightly more detailed look, because they have more
presence in the literature.

7.2.1 Object Oriented Function Points

Antoniol et al.[14] introducedObject Oriented Function Points(“OOFPs”). All
measurement was based on the class diagram.

Though drawing heavily on IFPUG function points for inspiration, the philosophy
behind OOFPs was not to find a way to count IFPUG function points. It was to de-
velop a measure based on OO concepts that is useful for estimating project attributes
such as LOC and effort.

OOFPs map classes to files, and methods to transactions. No attempt was made
to distinguish between inputs, outputs and inquiries: all were simply regarded as
“service requests.” For classes, attributes and associations were mapped to DETs, and
multi-valued attributes/associations to RETs. For methods, simple and compound
arguments were mapped to DETs and RETs respectively.

Each class and method was given a number of points, based on the numbers of
DETs and RETs, in the same way as traditional function points. As an initial formu-
lation, OOFPs adopted the classification and weighting tables from the traditional FP
method.

OOFPs are similar in structure to most other approaches, in mapping classes to
files and services or messages to transactions. But OOFPs had the advantage that
they could be counted automatically. Some design decisions were made to ensure
that was the case. Tools were constructed to automate the process.

Pilot studies indicated that OOFPs were good predictors of size in LOC[13],
though other primitive OO measures did as well.

An interesting outcome from the empirical research conducted with OOFPs was
concerned with different ways to handle generalization and aggregation. With ag-
gregation, is it best to count an entire aggregation structure as a single logical file,
recursively joining lower level aggregations, or should the classes stay separate?
With generalization, is it best to count each individual class with only its own at-
tributes and associations, or should one consider as a different logical file the whole
collection of classes comprised in the entire path from the root superclass to each
leaf subclass? These decisions affect the number of classes counted, and the num-
ber of attributes within each class. The best approach, judging by how accurately

FUNCTION POINTS 337

OOFPs predicted LOC, was to perform full inheritance before counting files (so all
inherited attributes are counted for a file, and only leaf classes are counted), but not
to aggregate classes (so just treat aggregation as equivalent to association),

Development of OOFPs has lapsed. Some of the ideas in OOFPs have fed into
current work by Cantone et al.[16].

7.2.2 Use Case Points

Use case points have been proposed as an early predictor of software development
effort. They are calculated from a use case model.

The components that are measured are different to the components of FPA (actors
and use cases, rather than data and transactions). Another key difference from FPA
is that the resulting number is seen as an indicator of effort, not size. But the stages
involved in calculating use case points are modelled on the calculation of IFPUG
function points.

The method was proposed by Karner in 1993[62] (accessible descriptions are
in [93] and[68]).

The method is based on identifying and classifying actors and use cases, and then
adjusting for various technical and environmental factors that would influence devel-
opment effort.

There are three stages to the process.

1. Each actor in the use case model is classified as simple, average, or complex.
The classification is based on the nature of the interface between the actor and
the application. The idea is that more complex interfaces involve more pro-
gramming effort, so more use case points are given to them. Simple, average,
and complex actors receive 1, 2 and 3 points respectively.

2. Each use case in the model is classified as simple, average, or complex. The
classification is based on the number of “transactions” involved in the use case.
A transaction is an atomic set of activities occurring between an actor and the
system, occurring entirely or not at all. Again, the idea is that the more tasks
that are involved in a use case the more programming effort there will be, so
more use case points are awarded to use cases with more transactions. Simple,
average, and complex use cases receive 5, 10 and 15 points respectively.

The total number of points for all use cases and actors is summed, giving
Unadjusted Use Case Points (“UUCP”). UUCP are meant to account for effort
that is related to the inherent size of the task.

3. The use case points are adjusted to take into account 13 technical factors and
8 environmental factors that are expected to influence effort. Technical factors
relate to aspects of the application itself. Environmental factors relate to the
development team and environment.

338 C.J. LOKAN

Each of these 21 factors is scored from 0 to 5: 0 means the factor is irrelevant
for the project; 5 means the factor is essential. The scores for the technical fac-
tors are used to compute the Technical Complexity Factor (“TCF”), a number
ranging from 0.6 to 1.35. The scores for the environmental factors are used to
compute the Environment Factor (“EF”), a number ranging from 0.425 to 1.7.

The UUCP is multiplied by both of the adjustment factors to give Adjusted
Use Case Points (“UCP”).

The analogies with IFPUG function points are obvious. Relevant components are
classified to one of three levels and given use case points according to level; adjust-
ment factors are calculated and applied in a manner similar to FPA; several of the
technical adjustment factors are even the same as in FPA.

A difference is that the adjustment factors do not all have the same weights. The
Environmental Factor is also new. It would be clearly inappropriate in a purported
size measure, but it makes sense for an indicator of effort.

All the criticisms about inappropriate scale transformations and operations that
apply to IFPUG FPA apply to use case points too. But the criticism that adjustment
factors are effort drivers, not size drivers, no longer matters. Uncertainty about what
the component weights represent is also removed: use case points are unequivocally
intended to predict effort.

Some case studies (e.g.,[12]) have found use case points to be good predictors
of effort; about 15 to 30 staff-hours per use case point seems typical. How use case
points compare with other estimation approaches has not been evaluated though,
apart from a study in which they outperformed expert judgement[11].

Use case points are sensitive to an issue which is common in the world of use case
modelling: writing the use cases and their constituent transactions at a standard level
of granularity. Standards are needed on how to write use cases if comparisons across
organizations are to be attempted. This is improving, with the publication of books
like [17].

As with any other approach of this sort, manual counting of use case points is
undesirable. It is time-consuming, and there is some subjectivity. Tools exist to iden-
tify actors and use cases, and to handle the calculation steps, but there remains the
problem of classifying actors and use cases. Kusumoto et al.[68] have proposed
heuristics for doing this automatically, and have developed a prototype tool.

7.3 Summary
Several proposals have been described above. The various methods may be com-

pared on several criteria, including structure, how much information is considered,
and when the information is available; objectivity and the potential for automation;
and value to a user.

FUNCTION POINTS 339

There is a trend towards considering ever more information from a UML model in
order to come up with a size measure. This may give more useful results. It is also
likely to improve the identification of FP component types, if that is the aim, as more
information is available. The down-side is that some methods can only be applied
later in the life cycle, perhaps well into the design stage.

In the end, the value of each method depends on how useful the measures turn out
to be for project management. This is difficult to judge from the literature, because
the proposals have been validated in different ways. For example, Fetcke concen-
trated on demonstrating that his method was unambiguous enough to be applied in
practice. Schooneveldt showed in a case study that his method gave a result similar to
a traditional FP count. Graham developed a tool to estimate effort from task points,
but its accuracy is not reported in the literature. OOFPs were compared with LOC,
not function points or effort. Use case points are validated by relating them to effort.

This is an area of active research. Among current activity, the work of Abrahão’s
group and Cantone’s group look most promising, along with development of use
case points. We can expect new proposals for mapping UML concepts to IFPUG and
COSMIC components, and new FPA-like proposals for OO and other software. We
can also expect more work on validation of different proposals, including compara-
tive evaluations.

8. Function Point Standards

Different functional sizing methods take different interpretations on the concepts
of software functionality. This leads to inconsistencies between methods, and also
between different counters using the same method.

To resolve these inconsistencies, and define more rigorously what functional size
measurement means, a standardization project was established within ISO/IEC.
A working group (WG12) was put together in 1993, under ISO/IEC JTC1 Sub-
committee 7 (whose area of work is software and systems engineering). ISO/IEC
JTC1/SC7/WG12 had representatives from 12 countries, and also from the main
function point users groups. Its task was to develop standards for functional size
measurement.

The first task was to define standards for functional size measurement as a general
concept. It was 10 years before a series of five standards were all approved, that
collectively make up ISO/IEC 14143Functional Size Measurement:

1. Definition of concepts(1998)[44]. This part identifies the common fundamen-
tal characteristics of functional size measurement methods, and defines a set
of generic mandatory requirements for a method to be called a Functional Size
Measurement Method (“FSMM”).

340 C.J. LOKAN

2. Conformity evaluation of software size measurement methods to ISO/IEC
14143-1:1998(2002)[45]. This part is used by people needing to verify that a
given software FSMM complies with the requirements of 14143-1.

3. Verification of functional size measurement methods(2003)[50]. This part is
used by people needing to check the effectiveness of a particular FSMM as a
measurement technique.

4. Reference model(2003)[51]. This provides a collection of reference user re-
quirements, that can be used to test the effectiveness of a particular FSMM for
different software types in different environments. It also provides the means
to compare measurement results between FSMMs. methods.

5. Determination of functional domains for use with functional size measurement
(2004)[52]. An important issue with FSMMs is their applicability to the func-
tional domain of the software they are measuring. This part describes how to
define functional domains, and provides guidance for classifying functional re-
quirements over functional domains.

A sixth part (Guide for the use of ISO/IEC 14143 series and related international
standards) provides guidance on how to select a suitable functional size measure-
ment method. This part is presently at the balloting stage of the approval process.

Following the publication of the ISO/IEC 14143 series, four major function point
approaches have been evaluated against that series and have gained recognition as
ISO/IEC standards themselves:

• IFPUG’s Counting Practices version 4.1[40] unadjusted (i.e., without the VAF)
is published as ISO/IEC 20926[48].

• Mark II function points[104] is published as ISO/IEC 20968[46].

• The Netherlands Software Metrics Association’s variant of IFPUG function
points is published as ISO/IEC 24570[49].

• The COSMIC-FFP method is published as ISO/IEC 19761[47].

It is important to note that a Value Adjustment Factor is not part of functional
size measurement as defined by ISO/IEC 14143-1. COSMIC-FFP never included an
adjustment phase anyway. The others have had to drop that component in order to
conform to ISO/IEC 14143-1. Many people may still use a VAF, but that part of
their counting does not comply with ISO/IEC’s standard definitions. For example,
Release 4.2 of IFPUG’s Counting Practices Manual reinstates the VAF that had been
optional in Release 4.1 Unadjusted, and so does not comply with ISO/IEC 14143-1.

ISO/IEC has not attempted to decide between the relative merits of different sizing
methods. It is up to the market to decide.

FUNCTION POINTS 341

9. Conclusions

Many approaches to functional size measurement have been proposed over the 25
years since function points were first described. We have described the main propos-
als and a few other variants.

There are now three major methods in use: IFPUG function points, 25 years old;
Mark II function points, 15 years old; and COSMIC-FFP, 5 years old.

IFPUG has history and marketing behind it. A large base of experience permits
benchmarking in many industry sectors. IFPUG holds the dominant share of the
functional sizing market today, and will for some time.

IFPUG function points are not likely to develop further. Though IFPUG considers
possible research areas (see, for example,[102]), it is a basic tenet that new ideas
must require no change to the basic IFPUG structure.

Mark II is in a similar, though less dominant, position. Further development is
unlikely, because Mark II is essentially considered to be replaced by COSMIC-FFP.

COSMIC-FFP is likely to increase its share of the functional sizing market, par-
ticularly in the real-time domain where other approaches have never been very
successful.

With all of these approaches, we can expect to see continued refinement of guide-
lines, to reduce subjectivity and improve consistency between counters. There will
also be some interest in mappings between other software models (such as UML)
and the components counted in these approaches.

With IFPUG and Mark II, most work is likely to be based around exploiting
the large experience base that has accumulated: for example, in benchmarking[42,
60], and development of estimation techniques[81]. The sizing methods are mature
(COSMIC would say dated), so emphasis will be on using the measurements rather
than developing the measure and developing the experience base.

Work on COSMIC-FFP will also involve refinement of measurement guidelines
(for example, the definition of “layers” was updated in August 2004). The main effort
in the short term will be based on promoting and expanding its use, developing tools
to support its use, and building an experience base.

Business software and real-time software are now well addressed by functional
sizing methods. The problem of how to size scientific software, featuring complex
algorithms, remains.

ACKNOWLEDGEMENTS

Thanks to Alain Abran and Pam Morris for their reviews of an earlier version of
this chapter.

342 C.J. LOKAN

REFERENCES

[1] Abrahão S., Poels G., Pastor O., “Comparative evaluation of functional size measure-
ment methods: An experimental analysis”, Technical Report Working Paper 2004/234,
Ghent University, March 2004.

[2] Abrahão S., Poels G., Pastor O., “Functional size measurement method for object-
oriented conceptual schemas: Design and evaluation issues”, Technical Report Working
Paper 2004/233, Ghent University, March 2004.

[3] Abran A., “Analysis of the measurement process of function point analysis”, PhD thesis,
École Polytechnique de Montréal, March 1994.

[4] Abran A., Desharnais J.-M., Oligny S., St-Pierre D., Symons C.,COSMIC-FFP Mea-
surement Manual, Version 2.2, The COSMIC Implementation Guide for ISO/IEC
19761:2003, École de technologie supérieure, Université du Québec, Montréal, 2003,
http://www.lrgl.uqam.ca/cosmic-ffp/manual.jsp.

[5] Abran A., Robillard P.N., “Function points: A study of their measurement processes and
scale transformations”,Journal of Systems and Software25 (2) (May 1994) 171–184.

[6] Abran A., Robillard P.N., “Function points analysis: An empirical study of its measure-
ment processes”,IEEE Transactions on Software Engineering22(12) (December 1996)
895–910.

[7] Abran A., Symons C., Oligny S., “An overview of COSMIC-FFP field trial results”, in:
Proc. ESCOM 2001, London, April 2001.

[8] Albrecht A.J., “Measuring application development productivity”, in:Proc. IBM Ap-
plications Development Symposium, IBM, October 1979, pp. 83–92. Reprinted inPro-
gramming Productivity: Issues for the Eighties, second ed., IEEE Computer Society,
Los Alamitos, CA, 1986.

[9] Albrecht A.J., “AD/M productivity measurement and estimate validation”, Technical
Report CIS & A Guideline 313, IBM, November 1984.

[10] Albrecht A.J., Gaffney J., “Software function, source lines of code and development
effort prediction: A software science validation”,IEEE Transactions on Software Engi-
neering9 (6) (June 1983) 639–648.

[11] Anda B., “Comparing effort estimates based on use case points with expert estimates”,
in: Proc. EASE2002 (Empirical Assessment in Software Engineering), Keele, UK, April
2002.

[12] Anda B., Dreiem H., Sjøberg D.I.K., Jørgensen M., “Estimating software development
effort based on use cases—experiences from industry”, in: Gogolla M., Kobryn C.
(Eds.),UML 2001—Proc. 4th International Conference on the UML, in: Lecture Notes
in Computer Science, vol. 2185, Springer-Verlag, Berlin/New York, October 2001,
pp. 487–504.

[13] Antoniol G., Fiutem R., Lokan C., “Object-oriented function points: An empirical vali-
dation”,Empirical Software Engineering8 (3) (September 2003) 225–547.

[14] Antoniol G., Lokan C., Caldiera G., Fiutem R., “A function-point like measure for object
oriented software”,Empirical Software Engineering4 (3) (September 1999) 263–287.

[15] Bock D.B., Klepper R., “FP-S: A simplified function point counting method”,Journal
of Systems and Software18 (3) (July 1992) 245–254.

http://www.lrgl.uqam.ca/cosmic-ffp/manual.jsp

FUNCTION POINTS 343

[16] Cantone G., Pace D., Calavaro G., “Applying function point to Unified Modeling Lan-
guage: Conversion model and pilot study”, in:Proc. 10th International Symposium on
Software Metrics, IEEE, September 2004.

[17] Cockburn A.,Writing Effective Use Cases, Addison–Wesley, Reading, MA, 2000.
[18] Conte S.D., Dunsmore H.E., Shen V.Y.,Software Engineering Metrics and Models,

Benjamin–Cummings, Redwood City, CA, 1986.
[19] DeMarco T.,Controlling Software Projects, Yourdon Press, 1982.
[20] DeMarco T., “An algorithm for sizing software products”,Performance Evaluation Re-

view12 (2) (1984) 13–22.
[21] Desharnais J.-M., Hudon G., “Adjustment model for function point scope factors—

a statistical study”, in:Proc. Spring Conference, Florida, IFPUG, 1990.
[22] Dolado J.J., “A study of the relationships among Albrecht and Mark II function points,

lines of code 4GL and effort”,Journal of Systems and Software37 (2) (May 1997)
161–173.

[23] Dreger J.B.,Function Point Analysis, Prentice Hall, New York, 1989.
[24] European Function Point Users Group, “Function point counting practices for highly

constrained systems”, 1993.
[25] Fenton N.E., Pfleeger S.L.,Software Metrics: A Rigorous and Practical Approach, sec-

ond ed., Thomson, Washington, DC, 1997.
[26] Fetcke T., “The warehouse software portfolio—a case study in functional size measure-

ment”, Technical Report Research Report 1999-20, TU Berlin, 1999.
[27] Fetcke T., Abran A., Nguyen T.-H., “Mapping the OO-Jacobson approach into function

point analysis”, in:Proc. TOOLS-23’97, IEEE, August 1997.
[28] Furey S., “Why we should use function points”,IEEE Software14 (2) (March/April

1997) 28–30.
[29] Garmus D., Herron D.,Measuring the Software Process—A Practical Guide to Func-

tional Measurements, Prentice Hall, New York, 1996.
[30] Garmus D., Herron D.,Function Point Analysis: Measurement Practices for Successful

Software Projects, Addison–Wesley, Reading, MA, 2001.
[31] Graham I., “Making progress in metrics”,Object Magazine6 (8) (1996) 68–73.
[32] Hotle M., “Understanding and improving the AD estimating process”, Technical report,

Gartner Group, November 1996.
[33] Humphrey W.S.,A Discipline for Software Engineering, Addison–Wesley, Reading,

MA, 1995.
[34] IFPUG,Function Point Counting Practices Manual, Release 3.0, International Function

Point Users Group, Westerville, Ohio, 1990.
[35] IFPUG, Function Point Counting Practices: Case Study 2 (Analysis—ERD, DFD

Construction—DB2 Data Base, Graphical User Interface GUI Windows), International
Function Point Users Group, Westerville, Ohio, 1994.

[36] IFPUG,Function Point Counting Practices Manual, Release 4.0, International Function
Point Users Group, Westerville, Ohio, 1994.

[37] IFPUG, Function Point Counting Practices: Case Study 1 (Analysis—ERD, Process
hierarchical model Construction—IMS data base, Text Base Screen Implementation),
International Function Point Users Group, Westerville, Ohio, 1996.

344 C.J. LOKAN

[38] IFPUG,Function Point Counting Practices: Case Study 3 (Object-Oriented Analysis,
Object-Oriented Design), International Function Point Users Group, Westerville, Ohio,
1996.

[39] IFPUG,Function Point Counting Practices: Case Study 4 (TRACS—A Traffic Control
System with Real-Time Components), International Function Point Users Group, West-
erville, Ohio, 1998.

[40] IFPUG,Function Point Counting Practices Manual, Release 4.1, International Function
Point Users Group, Westerville, Ohio, 1999.

[41] IFPUG,Function Point Counting Practices Manual, Release 4.2, International Function
Point Users Group, Princeton Junction, New Jersey, 2004.

[42] ISBSG, Worldwide Software Development—the Benchmark. Release 5, International
Software Benchmarking Standards Group, 1998.

[43] ISBSG, “Projects sized using COSMIC full function points”, in:The Benchmark. Re-
lease 8, International Software Benchmarking Standards Group, 2004, Chapter 8.

[44] SO/IEC, “14143-1:1998, Functional size measurement—part 1: Definition of concepts”,
1998.

[45] ISO/IEC, “14143-2:2002, Functional size measurement—part 2: Conformity evaluation
of software size measurement methods to ISO/IEC 14143-1:1998”, 2002.

[46] ISO/IEC, “20968:2002, Mk II function point analysis—counting practices manual”,
2002.

[47] ISO/IEC, “19761:2003, COSMIC-FFP—a functional size measurement method”, 2003.
[48] ISO/IEC, “20926:2003, IFPUG 4.1, unadjusted functional size measurement method—

counting practices manual”, 2003.
[49] ISO/IEC, “24570:2003, NESMA functional size measurement method version 2.1”,

2003.
[50] ISO/IEC, “TR 14143-3:2003, Functional size measurement—part 3: Verification of

functional size measurement methods”, 2003.
[51] ISO/IEC, “TR 14143-4:2003, Functional size measurement—part 4: Reference model”,

2003.
[52] ISO/IEC, “TR 14143-5:2004, Functional size measurement—part 5: Determination of

functional domains for use with functional size measurement”, 2004.
[53] Jackson M.,Principles of Program Design, Academic Press, San Diego, CA, 1975.
[54] Jeffery D.R., Stathis J., “Function point sizing: Structure, validity and applicability”,

Empirical Software Engineering1 (1) (March 1996) 11–30.
[55] Jenner M.S., “Automation of counting of functional size using COSMIC-FFP in UML”,

in: Proc. 2002 International Workshop on Software Measurement, Magdeburg, Ger-
many, October 2002.

[56] Jones C., “What are feature points?”, Software Productivity Research, 1992.
[57] Jones C., “Backfiring: Converting lines of code to function points”,Computer28 (11)

(November 1995) 87–88.
[58] Jones C.,Applied Software Measurement, second ed., McGraw–Hill, New York, 1996.
[59] Jones C., “Should the ‘lines of code’ metric be viewed as professional malpractice?”,

Voice1 (2) (1997) 10–14.

FUNCTION POINTS 345

[60] Jones C.,Software Assessments, Benchmarks, and Best Practices, Addison–Wesley,
Reading, MA, 2000.

[61] Jones C., “Programming languages table”,http://www.spr.com/products/programming.
htm, August 2003.

[62] Karner G., “Metrics for objectory”, Diploma thesis, University of Linköping, Sweden,
No. LiTH-IDA-Ex-9344:21, December 1993.

[63] Kemerer C.F., “Reliability of Function Points measurement: A field experiment”,Com-
munications of the ACM36 (2) (February 1993) 85–97.

[64] Kitchenham B., “The problem with function points”,IEEE Software 14 (2)
(March/April 1997) 29–31.

[65] Kitchenham B., Känsälä K., “Inter-item correlations among function points”, in:Proc.
15th International Conference on Software Engineering, IEEE, May 1993, pp. 477–480.

[66] Kitchenham B.A., “Empirical studies of assumptions that underlie software cost-
estimation models”,Information and Software Technology34(4) (April 1992) 211–218.

[67] Kitchenham B.A., Pfleeger S.L., Fenton N., “Towards a framework for software mea-
surement validation”,IEEE Transactions on Software Engineering12 (12) (December
1992) 929–944.

[68] Kusumoto S., Matukawa F., Inoue K., Hanabasa S., Maegawa Y., “Effort estimation tool
based on use case points method”, in:Proc. 10th International Symposium on Software
Metrics, IEEE, September 2004.

[69] Lokan C.J., “An empirical study of the correlations between function point elements”,
in: Proc. 6th International Symposium on Software Metrics, IEEE, November 1999,
pp. 200–206.

[70] Lokan C.J., “Statistical analysis of ISBSG data and function point analysis”, in:Proc.
Australian Software Metrics Conference, Australian Software Metrics Association, No-
vember 1999.

[71] Lokan C.J., “An empirical analysis of function point adjustment factors”,Information
and Software Technology42 (9) (June 2000) 649–659.

[72] Lokan C.J., Abran A., “Multiple viewpoints in functional size measurement”, in:
Proc. 1999 International Workshop on Software Measurement, Lac Superieur, Quebec,
Canada, September 1999, pp. 121–131.

[73] Longstreet D., “Function points applied to new and emerging technologies”,http://
www.softwaremetrics.com, 2000.

[74] Longstreet D., “Use cases and function points”,http://www.softwaremetrics.com, 2000.
[75] Longstreet D., “OO and function points”,http://www.softwaremetrics.com, 2001.
[76] Lother M., Dumke R., “Points metrics—comparison and analysis”, in:Current Trends

in Software Measurement, Aachen, Germany, Shaker Publishing, 2001, pp. 228–267.
[77] Low G.C., Jeffery D.R., “Function points in the estimation and evaluation of the soft-

ware process”,IEEE Transactions on Software Engineering16 (1) (January 1990)
64–71.

[78] McCabe T.J., “A complexity measure”,IEEE Transactions on Software Engineer-
ing 2 (4) (1976) 308–320.

[79] Meli R., “Functional metrics: Problems and possible solutions”, in:Proc. FESMA’98,
Antwerp, 1998, pp. 503–514.

http://www.spr.com/products/programming.htm
http://www.spr.com/products/programming.htm
http://www.spr.com/products/programming.htm
http://www.softwaremetrics.com
http://www.softwaremetrics.com
http://www.softwaremetrics.com
http://www.softwaremetrics.com
http://www.softwaremetrics.com

346 C.J. LOKAN

[80] Meli R., “Functional and technical software measurement: Conflict or integration”, in:
Proc. FESMA 2000, 2000.

[81] Meli R., Santillo L., “Function point estimation methods: A comparative overview”, in:
Proc. FESMA’99, Amsterdam, 1999, pp. 271–286.

[82] Minkiewicz A., “Measuring object-oriented software with predictive object points”, in:
Proc. ASM’97—Applications in Software Measurement, Atlanta, October 1997.

[83] Morris P., “Function point audits”, in:Proc. Australian Software Metrics Conference,
Australian Software Metrics Association, September 2004.

[84] Morris P., Desharnais J.-M., “Measuring ALL the software not just what the business
uses”, in:Proc. Fall Conference, Orlando, IFPUG, September 1998.

[85] Morris P., Desharnais J.-M., “Function point analysis: Validating the result”, Technical
Report Version 1.3, Total Metrics Pty Ltd, February 1999.

[86] Oligny S., Abran A., “On the compatibility between full function points and IFPUG
function points”, in: Kusters R., Cowderoy A., Heemstra F., van Veenendaal E. (Eds.),
Project Control for Software Quality (Proc. ESCOM’99), Shaker Publishing, 1999.

[87] Rask R., Laamanen P., Lyytinen K., “Simulation and comparison of Albrecht’s function
points and DeMarco’s function bang metrics in a CASE environment”,IEEE Transac-
tions on Software Engineering19 (7) (July 1993) 661–671.

[88] Redgate N., Tichenor C.B., “Measure size, complexity of algorithms using function
points”,Crosstalk(February 2001) 12–15,http://www.stsc.hill.af.mil/crosstalk/.

[89] Redgate N., Tichenor C.B., “Measuring calculus integration formulas using function
point analysis”,Crosstalk(June 2002) 24–27,http://www.stsc.hill.af.mil/crosstalk/.

[90] Rudolph E.E., Wittig G.E., Finnie G.R., Morris P.M., “Verifying function point values”,
in: Proc. FESMA’98, Antwerp, 1998.

[91] Rule P.G., “The importance of the size of software requirements”, in:Proc. NASSCOM
Conference, Mumbai, India, February 2001.

[92] Saaty T.L.,The Analytic Hierarchy Process, McGraw–Hill, New York, 1980.
[93] Schneider G., Winters J.P.,Applying Use Cases, second ed., Addison–Wesley, Reading,

MA, 2001.
[94] Schooneveldt M., Hastings T., Mocek J., Fountain R., “Measuring the size of object-

oriented systems”, in:Proc. 2nd Australian Conference on Software Metrics, Australian
Software Metrics Association, November 1995, pp. 83–93.

[95] Sneed H., “Estimating the development costs of object-oriented software”, in:Proceed-
ings of 7th European Software Control and Metrics Conference, Wilmslow, UK, May
1996.

[96] St-Pierre D., Maya M., Abran A., Desharnais J.-M., “Adapting function points to real-
time software”, in:Proc. Fall Conference, Scottsdale, IFPUG, 1997.

[97] Symons C., Personal communication. December 2003.
[98] Symons C., “Come back function point analysis (modernised)—all is forgiven!”, in:

Proc. 4th European Conference on Software Measurement and ICT Control, Heidelberg,
Germany, FESMA–DASMA, May 2001, pp. 413–426.

[99] Symons C.R., “Function point analysis: Difficulties and improvements”,IEEE Trans-
actions on Software Engineering14 (1) (January 1988) 2–11.

[100] Symons C.R.,Software Sizing and Estimating: Mk II FPA, Wiley, New York, 1991.

http://www.stsc.hill.af.mil/crosstalk/
http://www.stsc.hill.af.mil/crosstalk/

FUNCTION POINTS 347

[101] Symons C.R., “Conversion between IFPUG 4.0 and MkII function points, version 3.0.
Software Measurement Services”,http://www.gifpa.co.uk, 1999.

[102] Tichenor C.B., “Recommendations for further function point research”,http://www.
softwaremetrics.com, 2000.

[103] Uemura T., Kusumoto S., Inoue K., “Function-point analysis using design specifications
based on the Unified Modelling Language”,Software Maintenance and Evolution: Re-
search and Practice13 (4) (July/August 2001) 223–243.

[104] UK Software Metrics Association, “MkII FPA counting practices manual version 1.3.1”,
http://www.gifpa.co.uk, October 1998.

[105] UQAM Software Engineering Management Research Laboratory, “Full function points
measurement manual version 2.0”, 1999.

[106] Verner J.M., Tate G., Jackson B., Hayward R.G., “Technology dependence in function
point analysis: A case study and critical review”, in:Proc. 11th International Confer-
ence on Software Engineering, IEEE, 1989, pp. 375–382.

[107] Whitmire S.A., “Posting to function point mailing list”, 21 September 1995.
[108] Whitmire S.A., “3D function points: Scientific and real-time extensions to function

points”, in: Proc. 10th Pacific Northwest Software Quality Conference, Portland, Ore-
gon, 1992, Pacific Agenda.

[109] Whitmire S.A., “Applying function points to object oriented software”, in: Keyes J.
(Ed.), Software Engineering Productivity Handbook, McGraw–Hill, New York, 1993,
pp. 229–244, Chapter 13.

[110] Whitmire S.A., “An introduction to 3D function points”,Software Development(April
1995) 43–53.

[111] Wittig G.E., Finnie G.R., Rudolph E.E., Morris P.M., “Project research design to val-
idate FPA coefficients using AHP”, in:Proc. 3rd Australian Software Metrics Confer-
ence, Australian Software Metrics Association, November 1996.

http://www.gifpa.co.uk
http://www.softwaremetrics.com
http://www.softwaremetrics.com
http://www.softwaremetrics.com
http://www.gifpa.co.uk

This page intentionally left blank

The Role of Mathematics in Computer
Science and Software Engineering
Education

PETER B. HENDERSON

Department of Computer Science and Software Engineering
Butler University
Indianapolis, IN
USA
phenders@butler.edu

Abstract
Continuous mathematics is an important foundation for many science and en-
gineering disciplines. Similarly, discrete mathematics and logic are foundations
for computer based disciplines such as computer science, software engineering
and information systems. However, these essential foundations are often taught
independently and relevant connections to computing, required to motivate the
mathematics, are usually not made.

Mathematics is a natural complementary discipline for learning, understand-
ing and appreciating many fundamental computer science concepts. Accord-
ingly, for the students benefit, foundational mathematics should be introduced
early and integrated throughout the curriculum. This chapter provides motiva-
tion, specific and general guidelines, curriculum structures and a representative
first course for significantly enhancing the mathematical reasoning skills of com-
puter science and software engineering graduates. Over twenty years teaching
foundational computing, talking to and surveying students, alumni, educators
and corporate people have convinced the author that graduates of mathematically
oriented programs will be better general problem solvers and software practition-
ers.

1. Introduction . 350
2. Mystery Novels and John Wooden. 351
3. Computer Science and Software Engineering . 352
4. Foundational Mathematics. 353
5. Models . 354

ADVANCES IN COMPUTERS, VOL. 65 349 Copyright © 2005 Elsevier Inc.
ISSN: 0065-2458/DOI 10.1016/S0065-2458(05)65008-5 All rights reserved.

mailto:phenders@butler.edu

350 P.B. HENDERSON

6. General Mathematical Reasoning . 356
7. Patterns, It Is All About Patterns. 357
8. Inductive Thinking and Generalization .. 361
9. Declarative Versus Imperative Reasoning . 367

10. Algorithmic Problem Solving . 369
11. Recursive Thinking . 371
12. Mathematical Induction. 373
13. Why Mathematics? . 375
14. Curricula Issues . 377
15. Foundations of Computing—A First Course. 380
16. Conclusions . 384

Acknowledgements . 385
Appendix A: CSE-113 Foundations of Computer Science I. 385
Appendix B: Butler University, Foundations of Computing I. 387
Appendix C: Sample First Exam for Foundations of Computing I (100 minutes) . . 388
Appendix D: Representative List Processing Lab Exercises Using Standard ML . . 390
Appendix E: Solutions for Problems Cited . 392
References . 393

1. Introduction

Based on my 35 years of experience teaching electrical engineering, computer
science and software engineering, I would affirm that “Mathematics and logical rea-
soning are important for success in almost all disciplines, but especially quantitative
areas such as the sciences and engineering.” I could simply stop here, claiming I have
stated my position, but the editors wish more, and I should make a strong case for
this position. You may agree, disagree, or be tentative about this statement. If you
agree, I hope further reading will help you to crystallize your thinking and provide
solid arguments for discussions with others. If you disagree or are unsure, I hope
further reading will help open your mind to thinking carefully about these issues.

Too often in the education of computer science and software engineering under-
graduate students mathematics is relegated to the background. This is particularly
true in the United States[48], the educational system with which I am most familiar.
The foundational mathematics for computer science and software engineering is fre-
quently introduced too late in the curriculum and important connections with relevant
CS/SE concepts are not made. Ideally, mathematics should be integrated throughout
the CS/SE curriculum[25]. I would like to claim I have solved this problem and
can provide empirical evidence supporting this claim. I have not. However, what I
attempt to offer is a seed for change in educational philosophy with the realization

THE ROLE OF MATHEMATICS 351

that this will take time. With this in mind, I hope you will continue reading and will
not be disappointed.

In this chapter I provide motivation, specific and general guidelines, curriculum
structures and a representative first course for significantly enhancing the mathe-
matical reasoning skills of computer science and software engineering graduates.
Mathematics is a natural complementary discipline for learning, understanding and
appreciating many fundamental computer science concepts.

2. Mystery Novels and John Wooden

I like to think that this chapter will be crisp and sharp, leading you along a carefully
orchestrated journey of understanding. But I fear it might be more like a mystery
novel where various pieces of a puzzle are presented and you must draw your own
conclusions. Those preferring the abbreviated version can skip to the conclusions,
but will miss many of the key ideas.

As educators, we should always be seeking role models. One of the best, in my
opinion, is John Wooden, the former basketball coach of the University of California
at Los Angeles (UCLA). I have watched his TV show “The Pyramid of Success,”
read his book[49], and try to use his philosophy of life in my classrooms and in-
teractions with students. Education is about life, not just the pursuit of knowledge.
My favorite adaptation of Wooden’s philosophy is “Success is the peace of mind that
comes from striving to do your best.” You will see similar expositions of this ex-
ceptional educational philosophy sprinkled throughout this chapter. I hope you find
them as useful as I have.

To begin the journey, let me share with you an email I recently received from a
former student who took my freshmen foundations of computer science course in
1997.

“Dear Prof. Henderson, It’s been a while since I’ve taken your discrete mathe-
matics course (CSE 113) at {SUNY} Stony Brook, and I wanted to track you
down to say thank you! That class, although I failed it as a freshman, was one of
the most important and useful classes I have ever taken.
I am no longer studying comp. sci. academically but am currently completing a
double masters program in business and finance. But your class has provided me
tools that have not only been beneficial for computers, but for every aspect of my
life. I actually believe that everyone regardless of their major should be forced to
take a discrete mathematics/logic course as a freshman.”

Most educators have received similar complements from former students, but what
struck me about this one is that this student came to understand, even after failing
the class, the fundamental educational lessons I had intended to convey.

352 P.B. HENDERSON

3. Computer Science and Software Engineering

To appreciate the role of mathematics for students studying computer science (CS)
and software engineering (SE), it is necessary to understand the relationship between
these two disciplines. Basically this reduces to the distinction between science and
engineering[44]. Most people understand the differences and relationships between
chemistry and chemical engineering, or between physics and electrical or mechan-
ical engineering. One is science, primarily advancing knowledge of the discipline,
and the other engineering, which is primarily the application of this knowledge to
achieving the technological needs of mankind.

As currently taught, it might be difficult to distinguish the attributes of a computer
science graduate from those of a software engineering graduate. The latter might
have a few extra courses designated software engineering; however, both are pri-
marily educated for entry level programming positions. In my mind, this is neither
science nor engineering.

In the United States accreditation of computer science and software engineering
undergraduate programs is under the preview of ABET, the Accreditation Board for
Engineering and Technology[1]. Below is the definition of engineering from the
Accreditation Board for Engineering and Technology in the U.S.[1]:

“Engineering is the profession in which a knowledge of the mathematical and
natural sciences, gained by study, experience, and practice, is applied with judg-
ment to develop ways to utilize, economically, the materials and forces of nature
for the benefit of mankind.”

Software engineering does not fit this definition very well. What is the correspond-
ing “natural science,” or “materials and forces of nature?” I believe that computer
science, a man made science, is the foundational science for software engineering,
that the “materials” are mainly conceptual rather than physical, and the “forces of na-
ture” are really “laws of the universe.” Accordingly, I offer the following alternative
definition:

“Engineering is the profession in which knowledge of the foundational mathe-
matics and sciences, gained by study, experience, and practice, are applied with
judgment to develop ways to utilize, economically, the materials, concepts and
laws of the universe for the benefit of mankind.”

“Foundational mathematics and sciences” seems to be a better, more general way
to express these relationships and dependencies. For software engineering, they
might be roughly illustrated by the following picture with the foundational math-
ematics being discrete mathematics including logic. The view I see evolving is
undergraduate computer science primarily as preparation for graduate studies for
advancing knowledge, and software engineering as the professional track for the

THE ROLE OF MATHEMATICS 353

design/development of software systems. Graduates of both programs should be
competent programmers, but this would not be their primary career path. Program-
mers are fundamentally technicians, professionals who know how to achieve a goal
without comprehensive knowledge of the underlying foundational mathematics or
science.

4. Foundational Mathematics

“The person who knowsHOW will always have a job, but the person who knows
WHYwill always be his/her boss[42].” Training versus education! In my experience
most students are striving to get the knowledge they need to get a job (HOW) rather
than to understand the foundations of that knowledge (WHY). This is the “filling a
vessel” view of education[12] which is also one feature of the knowledge survey of
software practitioners[34].

Knowledge, rather than understanding, is often the driving force behind curricu-
lum development for many disciplines, primarily due to pressure from employers,
administrators, and students. Also, knowledge based courses are easier to teach and
to assess student performance (e.g., “What year was the war of 1812 fought?”).

How does this relate to mathematics? For the sciences and engineering, mathe-
matics is a prerequisite for understanding. A personal example will help to make the
connection. I was an amateur radio operator at age 12. This required a broad range of
knowledge of electronics. Iknewbut did notunderstandthe required knowledge such
as ohms laws, standing wave ratio, voltage decay of a resistor–capacitor circuit, etc.
The “understanding” came in my first electronic circuits course which I took in the
fourth semester of my undergraduate electrical engineering program, after Calculus I,
Calculus II, Differential Equations, Physics I, Physics II, Chemistry I, Chemistry II
and other foundational engineering courses. For instance, the formula that models the
behavior of voltage decay of a resistor–capacitor (RC) circuit is derived from calcu-

354 P.B. HENDERSON

lus and differential equations. Electronic technicians, hobbyists and amateur radio
operators know HOW to use such formulas, electrical engineers understand WHY
they apply because these foundational principles are used, reinforced and expanded
upon in all technical courses in the curriculum. They are an integral component of
engineering courses; upon graduation, mathematical and scientific foundations are
intrinsic in an engineers reasoning.

Personally, I have always found this “grounding” very comforting because I felt
I could understand something from fundamental principles when necessary. This is
the same feeling I would like my CS and SE students to acquire. However, “job”
translates to “knowledge (HOW)” rather than “understanding (WHY).” (“Teach me
how to program, not the principles underlying why a concept works!”) Students learn
to develop algorithms, to trace them, to develop test scenarios, and to implement,
test and debug them. They may be introduced to formal techniques, but are rarely
required to use them extensively. Indeed, most CS/SE graduates are unable to give
a coherent argument that a simple algorithm/program works correctly based upon a
set of specifications. Contrast this with engineering graduates who have learned to
reason from first principles. Of course, this raises the question “What are the first
principles of CS/SE?” I claim they are mathematics, primarily discrete, and logic.

5. Models

Webster’s dictionary defines a model as “a miniature representation of something;
or a pattern of something to be made.” Engineering employs both physical models
and mathematical models, often comparing one to the other as a method of checking
consistency during early stages of analysis and development. Indeed, the discipline
of mathematics evolved from mankind’s need to create models of nature and hence
is a key tool for modeling in most disciplines. Evidence of this in undergraduate
education comes from the Mathematics Association of America CUPM Curricu-
lum Foundations Project[10] in which only one topic, ‘modeling,’ was found to be
universally significant for all client disciplines—engineering, economics, computer
science, physics, chemistry, biology, business, manufacturing, statistics, mathemat-
ics, etc. Because of software’s abstract nature, tangible models are impossible or
difficult to construct; accordingly, software engineers are constrained to mathemati-
cal models. Also, there are few good tools for building models of software systems,
the mathematical backgrounds required for modeling is often weak, and deadline and
economic pressure frequently preclude building and checking viable system models.

It is impossible to develop a correct software system without an accurate model.
There must be something guiding the development process. In contrast to traditional
practicing engineers, however, software practitioners don’t usually construct formal

THE ROLE OF MATHEMATICS 355

models for checking system specifications and constraints. The model usually used is
an unchecked, unverified mental model often expressed as a set of requirements and
specifications. The resulting software system is usually the first complete checkable
“model” of the desired artifact. Only now can it be validated against the desired men-
tal model, the potentially inaccurate requirements/specifications, etc. using extensive
testing. This deviates significantly from the traditional engineering process where
the model is constructed and validated during the early stages. Could this be a reason
why software systems are so susceptible to errors and problems? As with traditional
engineering, mathematics is an important tool for modeling software systems.

Until recently, automated tools for modeling and checking software systems were
unavailable or complex[9,29–31,33]. Now, however, undergraduate courses are de-
veloping around these concepts[37,24].

A significant component of undergraduate CS and SE education is devoted to
implementing software systems rather than learning and applying fundamental math-
ematics. The picture below shows how students learned to use algebra as a basic
mathematical modeling tool:

Problem domain Algebraic model

Solving

Problem domain Algebraic model solution

The terms “Algebraic model,” “Solving” and “Algebraic model solution” can be
replaced with any meaningful context. When teaching logic, I tell students that devel-
oping a precise logical expression for a logical word problem is modeling, or when
arguing a logical conclusion for word problems the following modeling diagram is
representative:

Problem domain Math logic model

Argument

Problem domain Logical conclusion

There are several points I wish to make here regarding the education of CS and SE
students; each of these points will be presented and discussed in more detail subse-
quently. First, mathematics should be presented as a tool for building and reasoning
about models, including numerous examples. Second, every algorithm, structure,
computer program, and/or software system is simply a ‘model’ of a process—an exe-
cutable model. Third, a good grasp of logic and discrete mathematics is fundamental
for constructing and reasoning about such models. And, last, but most important, all
these ideas should be introduced as early as possible, ideally during the first semester

356 P.B. HENDERSON

of the freshman year or preferably before. In traditional engineering education, con-
tinuous mathematics is required early, and a significant component of pre-college
mathematics throughout the world is focused on preparing students for calculus.1

6. General Mathematical Reasoning

The concepts of mathematical/abstract reasoning developed when our ancestors
started counting stones and fashioning tools. Books and articles have been writ-
ten about the relevance of mathematical reasoning for the general population[15].
The Working Group on Integrating Mathematical Reasoning into Computer Science
Curricula defines mathematical reasoning as “Applying mathematical techniques,
concepts and processes, either explicitly or implicitly, in the solution of problems—
in other words, mathematical modes of thought that help us to solve problems in any
domain. In its most general interpretation, every problem-solving activity requires
mathematical thinking. For example, basic logic, be it used explicitly or implicitly is
required for all problem-solving activities”[50].

One of the best expositions on the importance of mathematics for computer sci-
entists and software engineers was written by Keith Devlin in two viewpoint articles
“Do software engineers need mathematics?”[12] and “The real reason why software
engineers need math”[13]. Here is one quote from the first article:

“ . . . software engineering is all about abstraction. Every single concept, con-
struct, and method is entirely abstract. Of course, it doesn’t feel that way to most
software engineers. But that’s my point. The main benefit they got from the math-
ematics they learned in school and at university was the experience of rigorous
reasoning with purely abstract objects and structures.
Moreover, mathematics was the only subject that gave them that experience. It’s
not what was taught in the mathematics class that was important; it’s the fact that
it was mathematical. In everyday life, familiarity breeds contempt. But when it
comes to learning how to work in a highly abstract realm, familiarity breeds a
sense of, well, familiarity—meaning that what once seemed abstract starts to feel
concrete, and thus more manageable.”

This message is reinforced by many students and graduates with whom I have
communicated. It is not the explicit knowledge or facts they recall and use every day,
but rather the general mathematical way of thinking. This view is not universally held
by software professionals. My good friend Bob Glass, author of “A New Answer to
‘How Important is Mathematics to the Software Practitioner?’ ”[22], and I have
had numerous personal and public discussions regarding these issues[5]. Indeed,

1 We should strive for more balance between continuous and discrete mathematics in pre-college.

THE ROLE OF MATHEMATICS 357

the study “What Knowledge is Important to a Software Professional?”[34] he cites
supports this view. This study measures mathematical knowledge, not reasoning, and
I do agree that there are good software engineers who are not good at math; however,
in general, they must be good abstract thinkers.

Here is a simple example of general mathematical thinking I use in my foundations
of computing course. To the untrained eye, this has little to do with mathematics or
computing.

One morning, exactly at sunrise, a Buddhist monk began to climb a tall mountain.
The narrow path, no more that a foot or two wide, spiraled around the mountain
to a temple at the summit. The monk ascended the path at various rates of speed,
stopping many times along the way to rest and to eat. He reached the temple
shortly after sunset. The next day be began his journey back along the same
path, starting at sunrise and again walking at various speeds with many pauses
along the way. His average speed descending was, of course, greater than his
average climbing speed. Show there is a spot along the path that the monk will
occupy on both trips at precisely the same time of day.

Verbal arguments often fall short whereasgraphicalviews (plotting distance versus
time) or abstractviews (envisioning a monk and his clone on the same day) pro-
vide a representation/context for the argument others can more readily understand.
Important problem solving techniques also manifest themselves in this example. For
instance, students should learn to ignore irrelevant details such as the width of the
path, rates of ascent and descent, etc. given in the problem statement. Educators of-
ten underestimate how much such irrelevant details inhibit student’s problem solving
abilities.

Another simple example is having students solve such problems as: What is the
next number in each of the following sequences?

(a) 1, 2, 4, 7, 11, 16, ? (b) 1, 1, 2, 3, 5, 8, 13, ? (c) 1, 3, 7, 15, 31, ?

7. Patterns, It Is All About Patterns

In the preceding problem, the astute reader will see a closer connection be-
tween mathematics and computing. But what is the lesson students learn from such
problems? Hint: Patterns—indeed one definition of mathematics is that it is “the
study of patterns”—patterns of life, nature and the universe[15]. Engineering is
the application of patterns to solving problems—hence another connection between
mathematics and engineering. In this section we will explore some of the earlier
themes—foundational math, models, general mathematical thinking, declarative ver-
sus imperative reasoning—in this context. In subsequent sections, the influences on

358 P.B. HENDERSON

and relationships to computer science and software engineering undergraduate cur-
ricula will be made.

Finding the next number in a sequence such as 1, 1, 2, 3, 5, 8, 13, ? is one example
of discovering a pattern and applying it. Specifying the pattern discovered is mathe-
matical:

f (1) = 1,

f (2) = 1,

f (n) = f (n − 1)+ f (n − 2) for n > 2.

Evaluatingf (n) for specified values ofn is computational in nature. Even for this
simple evaluation there are numerous computational approaches, or algorithms. One
is recursive, applying the definition directly, another is iterative, compute the se-
quencef (1), f (2), . . . , f (n).

A simplistic view of developing software to solve a given problem involves dis-
covering pattern(s), specifying and checking the pattern(s) discovered, creating a
computational process (e.g., algorithm), and encoding/testing this process. One ap-
proach to educating CS and SE students is to give them lots of patterns, each with
corresponding algorithmic templates, and numerous practice problems. This is the
way many of our students learn to develop software, and it is also the way prac-
ticing engineers work most of the time. However, engineers have the advantage of
understanding the “patterns” based upon foundational mathematical and scientific
principles, and this helps them to be creative problem solvers, especially when there
is no known or familiar “pattern.”

Pattern discovery requires matching (have you seen this or a similar pattern be-
fore) or inductive reasoning (finding a pattern from examples). Completely and
accurately specifying a pattern requires mathematics as does checking/validating the
pattern. Composing a useful algorithm from these pattern(s) is not always a direct
encoding. This requires logical reasoning, familiarity with numerous similar algo-
rithms/software components, knowledge of the application domain, and a puzzle
solving mentality. General mathematical reasoning skills will help with all of these
aspects.

Here is a simple problem illustrating pattern discovery:

Eight people meet in a room. Each shakes hands with every other person once.
How many total handshakes are there? Ifn > 1 people met, how many hand-
shakes would there be?

One concrete approach a student might use to answer the first question is to perform
an experiment using 8 people. This is one “brute force” approach. A second might be

THE ROLE OF MATHEMATICS 359

to create an abstract representation of the problem (recall the monk problem) perhaps
by drawing 8 circles connected by straight lines and counting the lines.

Computer scientists and software engineers are usually seeking solutions for general
problems (e.g., “Ifn > 1 people met,. . .”). Accordingly, a third approach would
be to find a general pattern. Students are encouraged to construct a table starting
with small values ofn and look for patterns; for example, if one knows the number
of handshakes forn − 1 people how can the number forn people be determined?
Note that this simple observation constitutes the conceptual basis for recursive and
iterative problem solving.

The key observation fromTable I is that #shakes(n) − #shakes(n − 1) = n − 1,
which students discover after careful thought and perhaps some hints. An alternate
discovery approach is to “abstractly” drawn−1 circles. Then add annth circle noting
thatn−1 lines, each representing one handshake, must be drawn to the existingn−1
circles. The result can be expressed

#shakes(2) = 1,

#shakes(n) = #shakes(n − 1)+ (n − 1) for n > 2.

From this general mathematical solution, students could compose a computational
solution by programming this, either recursively or iteratively. The connection be-
tween the mathematical specification and the algorithmic solution is important and
will be discussed subsequently.

TABLE I

n #shakes

2 1
3 3
4 6
5 10
6 15

360 P.B. HENDERSON

The astute student will note that this computation is inefficient for larger values
of n. Ideally, we seek an expression directly relating #shakes(n) with n which does
not require computing intermediate values. With some hints students can find the
relationship

#shakes(n) = 1+ 2+ 3+ · · · + (n − 1)

and ultimately the efficient “closed form” expression

#shakes(n) = n(n − 1)/2.

Here, students used inductive reasoning to discover the relationship

1+ 2+ 3+ · · · + (n − 1) = n(n − 1)/2 for all n > 1.

Students who are familiar with such relationships might use the “have seen this pat-
tern before” approach. However, I feel it is important that all students be able to
apply fundamental principles to discover such patterns. This is not just for those
special cases where they can’t identify a familiar pattern, but such mathematical rea-
soning skills are important for developing, verifying and debugging computational
solutions.

I believe current CS and SE graduates are generally not proficient with this kind
of reasoning. This comes back to the “how” and “why,” and the expectations CS
and SE educators have of their graduates. There is a tendency to equate good soft-
ware development skills with good reasoning skills.2 I don’t believe this inference
is necessarily valid and hence is one of the key reasons students should learn fun-
damental, general, math based reasoning skills early—not just algorithmic problem
solving.

For the handshaking problem the lesson does not end here. Discovering a po-
tential relationship is just the beginning—indeed, it may not be valid for all cases.
A good example is the polynomialn2 + n + 41 which Euler found is prime for
n = 0, 1, 2, . . . , 39. Thus, checking or verifying the relationship discovered is ex-
tremely important. This is where proof techniques, such as mathematical induction,
come into play. As noted earlier, discrete mathematics courses are often viewed by
students as a collection of topics with little or no connection to computer science.
Mathematical induction is hard, and without a motivation for learning it, students
don’t take it seriously.

Below is an interesting variation of this handshaking problem which could be used
as a follow up:

A social psychologist was interested in the custom of handshaking. He noticed
that some people are more inclined than others to shake hands when they are

2 Recall the debate regarding “programming= computer science.”

THE ROLE OF MATHEMATICS 361

introduced. One evening when he and his wife had joined four other married
couples at a party, he took advantage of the occasion to collect data. He asked
each of the other nine people at the party how many people they had shaken
hands with during the introductions. He received a different answer, zero through
eight, from each of the nine people. You can assume that husbands and wives
don’t shake hands with each other during introductions, and of course, people
don’t shake hands with themselves. Given this information, find out how often
the psychologist’s wife shook hands.3 (Note: At first it may seem that you do not
have sufficient information to solve this problem. You do!! One key is finding a
good scheme for representing all the information given.)

8. Inductive Thinking and Generalization

The concept of inductive thinking was introduced in the previous section. One dic-
tionary definition of the noun ‘induction’ is: “reasoning from detailed facts to general
principles.” An associated noun and noun phrase are: ‘generalization’ and ‘inductive
reasoning.’ In the latter, ‘inductive’ is an adjective. ‘Inductively’ would be the ad-
verb. “Induction is an inference drawn from all the particulars.”—Sir W. Hamilton.
What is the next symbol in the following sequence?

The detailed facts (observations) are presented, the general principles is a pattern
discovered (expressed as a hypothesis), and the answer is obtained by applying the
general principles. Once the general principle (hypothesis) is confirmed and “math-
ematically” specified, more general questions can be answered. In computer-based
problem solving, the process of discovering the general principles is the challenging,
and the most interesting and creative, aspect.

Students are usually introduced to the terminductionin the context of mathemati-
cal induction4 or inductive proofs. Here a collection of examples and exercises such
as “prove that 2+4+6+· · ·+2n = n(n+1) for all n � 0” are used. The important
concept of inductive reasoning is lost and its relevant connections with computer sci-
ence, such as discovering and reasoning about algorithms, developing test cases, and
debugging are missed.

Inductive reasoning (generalization) is an important part of the discovery process
for general algorithmic solutions. Novice students can usually solve specific in-

3 SeeAppendix Efor a reference to a solution.
4 Mathematical induction is simply a tool for confirming (proving) that a general principle is true.

362 P.B. HENDERSON

stances of problems (e.g., find the sum 4+ 6+ (−3)+ 18), but experience difficulty
generalizing5 (e.g., give an algorithm for finding the sum of any given sequence of
numbers). They learn to generalize by seeing/solving many similar programming
problems.

I believe that this is rote learning, and that students educated this way tend to be
limited thinkers. Why? Because they don’t understand or appreciate the fundamental
underlying principles of inductive reasoning based problem solving. They learn to
use a limited form of inductive reasoning in a very limited context: writing computer
programs.

By introducing students to general forms of inductive reasoning early, I believe
they will become more general thinkers, better algorithmic problem solvers, and
hence, better software developers. In computer-based problem solving, inductive rea-
soning leads to the discovery of patterns. Mathematics can be used to describe and
confirm the patterns discovered. Accordingly, mathematics is a natural complemen-
tary discipline for introducing and reinforcing inductive reasoning.

Sequences of numbers, symbols, pictures, etc. are good primers for getting stu-
dents’ inductive reasoning “mental juices” flowing. Have students informally specify
the pattern they discover and use it to solve “what are the nextn (numbers, symbols,
pictures, etc.) questions.” Then, simple inductive reasoning exercises such as the fol-
lowing can be presented.

Four match sticks can be used to make a square (Figure 1), seven to make a row of
two squares (Figure 2), ten to make a row of three squares, and so on and so on. . .6

(a) How many match sticks are required to make a row of 12 squares? How about
37? Now try 679?

(b) In general, to make a row ofN � 1 squares, how many match sticks are
required? Express your answer in terms ofN .

FIG. 1. FIG. 2.

5 One of my favorite examples of this cognitive mental block is the card stacking game (see
http://www.math-in-cs.org/examples.html) where students can easily solve specific problem instances,
but find it difficult to discover a general algorithmic solution.

6 SeeAppendix Efor solutions to parts (b), (d) and (e) below.

http://www.math-in-cs.org/examples.html

THE ROLE OF MATHEMATICS 363

(c) We define ajoint to be a point where two or more match sticks touch. For
example, there are 4 joints in a single square, and 6 joints in a row of two
squares. How many joints are there in a row of 6 squares? How about 22? Try
65?

(d) In general, how many joints are there in a row ofN � 1 squares? Express
your answer in terms ofN .

(a) Given a row ofN � 1 squares, letM be the number of match sticks, andJ

the number of joints. What is the mathematical relationship, if any, between
the values ofN , M andJ? Note the relationship to Euler’s formula on planar
graphs.

A subsequent exercise could be a generalization to anN byN grid of such squares,
with similar questions. There are many such mathematical inductive reasoning ex-
ercises, and recreational mathematics provides a rich source of these[4,32]. With
a basic understanding of inductive reasoning, students will become more effective
problem solvers and will more easily grasp important principles such as of math-
ematical induction, iteration invariants, algorithm correctness, formal specification,
etc.

Recall induction is “reasoning from detailed facts to general principles.” Since
software systems usually solve problems based upon general principles, inductive
reasoning plays a very important role in understanding, specifying, designing, im-
plementing, testing, debugging and validating software.

For instance, consider the algorithm below. Inductive reasoning questions appro-
priate for an introductory computer science course might involve finding the values
of ‘j ’ and ‘k’ after the 1st, 2nd, 9th, 50th and 479th iterations and, upon termina-
tion, to give a general expression relating these values to the number of iterations,
and finally to identify the total number of iterations. This is one form of algorithm
analysis.

j ← 0
k ← 2
WHILE j < 1000 DO∣∣∣∣

j ← j + 2
k ← k + j

Now let’s examine the role of inductive reasoning in the development of an algo-
rithm from first principles.7 This problem would be appropriate for an introductory
computer science course, especially one requiring a discrete mathematics course as
a prerequisite.

7 Rather than the traditional rote ‘template matching’ approach many students try to use.

364 P.B. HENDERSON

Problem: Consider a sequence ofn > 0 integersi1, i2, i3, . . . , in for which we
wish to find the maximum value.

Understanding the Problem: Have students complete some examples to
ensure an accurate understanding of the problem. For instance,

3, 4, 2 maxValue= 4
8 maxValue= ?
−6,−3 maxValue= ?
−4, 0 maxValue= ?
−3, 11, 2 maxValue= ?
3, 2, 3 maxValue= ?
empty maxValue= ?

Inductive Reasoning from an Example: Consider the sequence 8, 3,

−4, 16, 10, 34, 67,−3, 59. One pedagogical aid I have students use is to think of a
window through which only one element in the sequence can be viewed at a time.
With a sequence the order of viewing the elements is predetermined.8 The first ele-
ment viewed9 is 8 .

Continuing this leads naturally to the table below, which students complete.

Window maximum value seen so far
8 8
3 8

−4 ?
16 ?
10 ?
34 ?
: :

59 ?

Students begin to see the pattern of information being gathered at each step, that is,
the ‘maximum value seen so far.’

Generalized Inductive Reasoning: Repeat the above reasoning for a gen-
eral sequencei1, i2, i3, . . . , in, n > 0. Identify and specify the pattern of information
gathered at each step as shown below. Here ‘max : int× int → int’ is a function that
returns the maximum value of two integer arguments.

8 One of several advantages of a sequence “structure” over a random access array “structure.”
9 There must always be such a first element since the sequence in non-empty.

THE ROLE OF MATHEMATICS 365

Window maximum value seen so far
i1 i1

i2 max(i1, i2)

i3 max
(
max(i1, i2), i3

)

i4 max
(
max

(
max(i1, i2), i3

)
, i4
)

: :
etc. etc.

Give this table to students and ask them to identify all occurrences of the same sub-
expression (e.g., max(i1, i2), max(max(i1, i2), i3), etc.). Using different highlighting
colors for this task is ideal. Now ask students to express in writing insights gained
from this activity. They should identify the pattern for computing the current max-
imum value of the sequence from the previous one—the generalized pattern which
is, informally,

max(previous maximum value seen so far, current value in window).

Generalized Pattern: Having computed the maximum of the firstk − 1
integers in the sequencei1, i2, i3, . . . , ik−1 how is the maximum of the sequence
i1, i2, i3, . . . , ik computed? This is the essence of a solution based upon inductive
reasoning. To proceed, let maxOfSeq : integer sequence→ int be a function repre-
senting a solution to the problem, and ask students to complete the following equality
which is valid for eachk > 1

maxOfSeq(i1, i2, i3, . . . , ik) = max
(
maxOfSeq(_______), ik

)
.

The answer students discover is:

maxOfSeq(i1, i2, i3, . . . , ik) = max
(
maxOfSeq(i1, i2, i3, . . . , ik−1), ik

)
,

k > 1.

with the initial “base” case:

maxOfSeq(i1) = i1, k = 1.

In other words, the next maximum value is the maximum of the current maximum
value and the current value (e.g.,ik). This may seem like an arduous set of activi-
ties, but with sufficient practice students will learn to be more precise when solving
algorithmic problems. Notice that we have not precisely specified pre and post con-
ditions for this problem. Nor have we identified candidate iteration invariants, or
written down any part of the algorithm yet. But with the understanding gained, these
should be relatively easy. Also, observe that this equality represents the foundations
for both recursive and iterative solutions. The alternative view below leads directly

366 P.B. HENDERSON

to a recursive solution

maxOfSeq(i1) = i1, k = 1,

maxOfSeq(i1, i2, i3, . . . , ik) = max
(
i1, maxOfSeq(i2, i3, . . . , ik)

)
, k > 1.

Below a simple recursive solution is presented using the pattern matching features
of the functional language Standard ML. Here [] is the empty list, [i] a list of one
integer valuei, and for the nonempty list [i1, i2, i3, . . . , in] and the patternfirst::rest,
first = i1 and rest = [i2, i3, . . . , in]. That is, identifierfirst is bound to integer
valuei1 and identifierrest is bound to the integer list [i2, i3, . . . , in]. This function
definition is declarative and can be viewed as an executable model for this problem.

(* precondition: [i1, i2, i3, . . . , in], n > 0 is a list of integers *)

fun maxOfSeq([])= raise maxException (* empty sequence has no max value *)
| maxOfSeq([i])= i (* sequence with one int valuei *)
| maxOfSeq(first::rest)= max(first, maxOfSeq(rest));

(* postcondition: Let max= maxOfSeq([i1, i2, i3, . . . , in]), then
for all k = 1, 2, . . . , n, max� ik and there existsk = 1, 2, . . . , n, max= ik *)

Please note that no variables are used, and that this function definition is in one-to-
one correspondence with the solution developed above. The latter point is extremely
important, since we should strive to minimize the “semantic gap” between an abstract
solution and its implementation. Unfortunately, modern introductory programming
languages do just the opposite, forcing students to understand, create and use unnec-
essary artifacts to fill this semantic gap. Simple conceptual ideas get lost a mid all
the additional baggage/notation/jargon/constraints—learning these seem to be part
of the attraction of programming. Unfortunately this also distracts students from un-
derstanding the important fundamental concepts.

A final very important point is that the correctness of this function definition can
be argued directly using the principle of mathematical induction. That is, the function
works correctly for a list with one element since the valuei is returned for the “base”
case maxOfSeq([i]). Also, if the function works correctly for the list [i2, i3, . . . , in],
then it is easy to see that it works correctly for the list [i1, i2, i3, . . . , in] since for this
“inductive” case the value returned is max(i1, maxOfSeq([i2, i3, . . . , in])). A sym-
metric inductive argument works to demonstrate the validity of the original derived
view

maxOfSeq(i1) = i1, k = 1,

maxOfSeq(i1, i2, i3, . . . , ik)

= max
(
maxOfSeq(i1, i2, i3, . . . , ik−1), ik

)
, k > 1,

THE ROLE OF MATHEMATICS 367

which is the basis for the traditional iterative algorithm. More about mathematical
induction later.

9. Declarative Versus Imperative Reasoning

CS/SE graduates are trained and learn the tools necessary to be good software
developers. This is primarily imperative or operational reasoning. However, gradu-
ates generally don’t learn, or appreciate, the tools necessary to reason about software
systems. This requires declarative or assertive reasoning. I hope to convince you that
one can’t be a good software developer without good declarative reasoning skills,
and that most programmers use such skills extensively, but, not usually in a concise
manner. In other words, it is impossible to specify, design, compose, test, and debug
a software system without thinking declaratively.

To clarify this point, let me continue the example from the previous section. We
will develop an imperative solution to the problem of computing the maximum value
of a sequencei1, i2, i3, . . . , in, n > 0. “Abstracting” towards an algorithmic solution
let’s introduce the variablemaxValue10

maxValue= maxOfSeq(i1, i2, i3, . . . , ik).

The meaning of the variablemaxValue is precisely definedbeforecomposing an
algorithm. Contrast this with the “shotgun” approach to “creating” variables which
students habitually learn to use. Now, clearly,

maxValue= max
(
maxOfSeq(i1, i2, i3, . . . , ik−1), ik

)
or

maxValue= max(maxValue′, ik) where

maxValue′ = maxOfSeq(i1, i2, i3, . . . , ik−1).

Here, the meta variablemaxValue′ is introduced for explanatory purposes only and
will not be used in the algorithm. Recall that the key insight is “the next maximum
value is the maximum of the current maximum value and the current value.” At first
glance this statement is imperative—“how” to compute the next value. However, in
its original forms

maxOfSeq(i1) = i1, k = 1,

maxOfSeq(i1, i2, i3, . . . , ik)

= max
(
maxOfSeq(i1, i2, i3, . . . , ik−1), ik

)
, k > 1,

maxOfSeq(i1, i2, i3, . . . , ik) = max
(
i1, maxOfSeq(i2, i3, . . . , ik)

)
, k > 1,

10 Variables were not required in the recursive solution thus reducing its cognitive complexity.

368 P.B. HENDERSON

it can be viewed declaratively as an equality relationship between functions of two
sequences and the valueik or i1. This declarative view was implemented by the
function maxOfSeq in the previous section.

The preconditions, post conditions and iteration invariant are illustrated in {. . .} in
the algorithm below. To specify the predicate corresponding to the iteration invariant
I (k) the function maxOfSeq : integer sequence→ int is used

I (k) ≡ maxValue= maxOfSeq(i1, i2, i3, . . . , ik).

Note that this predicate is declarative, and corresponds with the well defined meaning
of the variablemaxValue which was derived directly from the preceding inductive
analysis.

{pre-condition: integer sequencei1, i2, i3, . . . , in, n > 0}

maxValue← i1
k ← 1
{ I (k) is true}
while k < n do

{I (k) andk < n are true}
k ← k + 1
maxValue← max(maxValue, ik)
{I (k) is true}

{post-condition:I (k) andk = n → maxValue= maxOfSeq(i1, i2, i3, . . . , in)}

Note that the iteration invariant is true before and after the iteration, and that the
body of the iteration maintains the validity of the invariant. Hopefully you see that
the assertions—the stuff within the braces in this algorithm—are required to derive
this algorithm, and that a purely operational view is insufficient to capture the pattern
of information valid for all possible sequences.

Much of mathematics is declarative in nature. For example, basic algebra is an
equality declaration between two expressions. However, most of the mathemat-
ics pre-college students are expected to know is operational in nature (e.g., how
to manipulate algebraic expressions). In addition, it focuses on preparing students
for continuous rather than discrete mathematics. The latter fails to prepare students
properly for undergraduate CS and SE studies, and the former provides the wrong
mindset. I also believe that the overemphasis on imperative thinking of current curric-
ula actually narrows the reasoning skills of graduates. This is directly and indirectly
supported by a number of studies cited and discussed in the subsequent sections.

Until pre-college mathematics preparation, and its focus on operational tech-
niques, changes CS/SE programs must adapt to establish a more declaratively fo-

THE ROLE OF MATHEMATICS 369

cused curriculum, starting with the first course. Ways for achieving this will also be
presented in subsequent sections.

10. Algorithmic Problem Solving

Most introductory CS courses expose students to algorithmic problem solving
via programming. The approaches used generally reinforce operational/imperative
thinking and deemphasize declarative thinking and mathematics as problem solving
tools. Although the objectives of the course are usually achieved, the residual impact
on student perceptions of the discipline are further solidified—mathematics and as-
sertive reasoning are not relevant, and computer programming is basically translating
word problems to programs.

In the paper “Embedding Instructive Assertions in Program Design”[20] David Gi-
nat addresses this issue by proposing an approach using informal assertions. The
paper starts by observing that most programmers employ an operational perspective
for algorithmic problem solving and that this can lead to incorrect or inefficient solu-
tions. Numerous examples are presented using assertive reasoning to derive correct,
efficient solutions. His conclusion provides the following insight:

“ . . . while the role of the operational way is fundamental, it is insufficient by
itself and should be combined with an assertional perspective.”

When solving problems,11 there are very important synergistic relationships be-
tween the operational and declarative perspectives. Both are usually required. Two
characteristics of an expert problem solver are the ability to know when to use the
proper perspective and how to effectively switch between perspectives. David’s pa-
per illustrates the seeds for conveying this in an introductory CS course.

Most introductory computer science text books and courses convey an informal,
superficial view of algorithmic problem solving. This is appealing to students’ in-
tuition and educators who don’t fully appreciate mathematically based approaches.
This usually sets the tone for the entire curriculum making it difficult to motivate
more formal mathematics based methodologies and problem solving views.

A deeper view of algorithmic problem solving requires mathematical thinking.
That is, the ability to first understand a problem, to precisely identify the key con-
cepts, to specify these concepts unambiguously and to use them to develop an al-
gorithmic solution. We have already seen how careful inductive reasoning leads to

11 Not necessarily algorithmic ones.

370 P.B. HENDERSON

identifying patterns. Two other central aspects are abstraction, hiding unimportant
details, and case analysis, identifying precisely all relevant cases. Case analysis in-
cludes situations leading to invalid results (i.e., exceptions) and breaking the problem
into basic computationally identifiable cases (e.g., special, base, inductive, etc.). For
example, when searching a list the current item is either the desired one or it is not.
Students usually learn to implement this using sequential control features such as
“if–then,” “if–then–else,” “case,” “switch,” etc. In fact, implementing an algorithm
in an imperative programming language requires additional programming language
artifacts, further widening the semantic gap for students and thus reducing the possi-
bility of getting the implementation correct initially.

Motivated by the maximum of a sequence example and using the terminology
already introduced, the algorithmic problem solving process using these two views
might be further decomposed:

• Pattern & Case discovery: is primarily operational;

• Pattern & Case specification: is primarily declarative;

• Functional/recursive model: is primarily declarative;

• Identify variables: both operational & declarative;

• Specify invariants: is primarily declarative;

• Identify constructs: is primarily operational;

• Complete constructs: both operational & declarative;

• Compose constructs: both operational & declarative;

• Testing: both operational & declarative.

Indeed, when developing imperative algorithms/computer programs for problems
with which I am unfamiliar, I first develop understanding and declarative relation-
ships using inductive reasoning and case analysis, and then implement/verify/test
these by building a model—often an executable one using a recursive functional
language which supports pattern matching. Creating a model first leads to a more
precise understanding of the problem (i.e., exceptions, pre and post conditions, etc.)
and potential correct algorithmic solutions (i.e., cases, invariants, etc.). Contrast this
process with the way most students learn to program—imprecise problem under-
standing, a vague mental model, artifact heavy implementation language, extensive
program/debug/test cycles. Structured programming, patterns, object oriented meth-
ods, etc. help somewhat to ease the chaos for students, but the underlying mathemat-
ical reasoning is lost as depicted by the picture below:

THE ROLE OF MATHEMATICS 371

Operational reasoning alone will not suffice.
After reading this section, I believe some readers will feel I am missing the point

because it narrowly focuses on basic algorithms and doesn’t address data structures,
objects, UML, events, parallelism or other models of computation. One of the pri-
mary concerns I often hear is that such mathematically based techniques are simply
toys and don’t scale up to real systems. In response, I have several comments. First,
and most important, if graduates are not able to think this way using fundamental
principles, then I don’t see how they will mature to become effective, general, cre-
ative problem solvers. Second, these techniques do work well at the component, or
small scale, level. Third, the field is maturing rapidly with the development of new
and more powerful formal tools which graduates will have to use at some time in the
future. These include evolving modeling and model checking tools such as Alloy,
formal specification languages—Z, etc., and compilers for languages like Eiffel and
SPARK Ada[7] supporting formal assertions which can be analyzed and checked.
Indeed, I predict that future software development environments will provide a so-
phisticated artificial intelligence-theorem prover based assistant which will look for
logic errors based upon formal assertions and provide suggestions to the developer.
Simplified versions of such a tool could be developed for teaching programming.

11. Recursive Thinking

One of my recent Butler graduates was discussing a data organization problem
with his co-workers, who could not find a good solution. He went to his office and
after 15 minutes returned with a simple, clean, recursive programmed solution. They
were astounded. He had been exposed to recursive programming his first two years
at the University of Arizona and extensively to recursive thinking/problem solving
in our Foundations of Computing I and II courses upon transferring to Butler for his
final two years.

Many graduates don’t feel comfortable with this level of recursive think-
ing/problem solving. A study by David Ginat “Do Senior Students Capitalize on
Recursion?”[21] confirms this. He states,

“The student solutions and explanations demonstrate very limited capitalization
on recursion as a problem solving means.”

I would be so bold as to claim that this evidence generalizes to other important math-
ematical concepts. Below are a few potential titles for future papers:

• “Do Senior Students Capitalize on Logic?”

• “Do CS Graduates use Mathematical Induction?”

372 P.B. HENDERSON

• “Do Senior Students Understand Functions?”

• “Sets as Foreign Objects”

Of course I am being partly facetious here to make my point. Recursive thinking,
like other mathematically based concepts, must be introduced early and conceptu-
ally, and be continually reinforced, both conceptually and in practice, throughout
the entire curriculum. Immersion is important! With respect to mathematics and its
role, CS and SE educators need to further appreciate the importance of mathematics
and mathematical reasoning, better understand the mathematical foundations of CS
and SE, and learn how to integrate mathematically based concepts into courses. The
journey is just beginning.

Now, back to recursion. Composing several recursive programs in languages
which “indirectly” support recursion12 does not suffice for students to learn recursive
problem solving. This “operational” approach to teaching recursion fails to ensure
that students understand the concept of recursion and its important relationships with
inductive thinking and mathematical induction. In addition, some CS and SE educa-
tors believe that recursion, as an implementation tool, is inefficient and hence should
not be emphasized. I maintain that students should learn, understand and appreciate
the concept of recursion, and be able to use it as a problem solving and reasoning
tool. Fortunately, there has been significant interest and progress in this endeavor to
which I hope this chapter contributes.

Eric Roberts book “Thinking Recursively[45],” early functional languages such
as LISP and Scheme, and the seminal text “The Structure and Interpretation of
Computer Programs[2],” along with many other texts, materials, languages, inno-
vative courses, etc. have helped pave the way for more mathematical approaches to
teaching recursive reasoning. But there is still a long way to go as many graduates
view key concepts such as recursion and mathematical induction as “magical in-
cantations.” With respect to recursive problem solving, David Ginat’s article[21]
provides reasons for this and some specific guidelines for improvements—many
of which can be adapted for other mathematically based concepts. In this chap-
ter, I will provide general guidelines, curriculum structures and introductory level
courses for significantly enhancing the mathematical reasoning skills of CS and SE
graduates.

To extend these ideas further it is important to note the connections between
research in mathematics education and computer science education[3]. Here is a
relevant quote from the abstract of the paper “Mathematical reasoning in task solv-
ing” [36]:

12 C, C++, Ada, Pascal, Java, C#,. . . . Functional languages such as Standard ML and Haskel more
directly support recursive reasoning IMHO.

THE ROLE OF MATHEMATICS 373

The results indicate that focusing on what is familiar and remembered at a super-
ficial level is dominant over reasoning based on mathematical properties of the
components involved, even when the latter could lead to considerable progress.

This is one reason David Ginat points out why senior students have difficulty
with recursive problem solving. It also helps to clarify why my graduate could use
recursion effectively. But more importantly, it is a statement about the deficiency
of the education of CS and SE students as supported by several studies regarding
students’ mathematical abilities and perceptions[48,34].

Continuing on this theme, the “languages” one thinks and solves problems in are
the ones someone is most familiar with. If a CS/SE graduate only learns C++ and
Java, these are the “languages” they will think in. Learning a new language or para-
digm is primarily based upon conceptual knowledge rather than specific knowledge
of other languages. Indeed, previous knowledge often constrains learning as evi-
denced by a software professional’s difficulty to learn a new paradigm—for example,
procedural to object oriented. I would argue that much of this conceptual knowledge
is based on mathematics. A review of topics in text books for programming language
courses helps to support this, and at least one embraces a more mathematically rig-
orous perspective[43]. These are all steps in the right direction, but there is still a
long way to go, especially in the area of teaching mathematical foundations early
and integrating mathematics throughout the curriculum.

12. Mathematical Induction

Students are usually introduced to the principle of mathematical induction in their
first discrete mathematics course. Recursion and iteration are fundamental concep-
tual and implementation ideas in computer science. Yet most graduates don’t have a
good grasp of the relationships between mathematical induction, recursion and itera-
tion. A majority of the introductory CS textbooks and data structures/algorithms texts
provide minimal coverage of mathematical induction[48] primarily because discrete
mathematics is not typically a prerequisite for these courses. To help make these
essential connections, some curricula require discrete mathematics as a corequisite
with the data structures course. To be successful, this requires careful, deliberate
coordination between the instructors of these two courses.

Discrete mathematics courses for CS/SE students are often taught by mathemat-
ics faculty, who may not have a good understanding of the connections, and/or may
believe that discrete mathematics is an advanced topic requiring several prerequi-
site courses. For CS/SE students already a bit math phobic this creates an even
deeper chasm. These issues have been recognized by the Mathematical Association
of America (MAA) and addressed in their 2004 curriculum guidelines[38].

374 P.B. HENDERSON

Mathematical induction has been mentioned in previous sections of this paper
in the context of arguing the validity of a recursive or iterative pattern discovered.
I believe that such links to fundamental computer science principles are crucial for
motivating students and that they can and must be made in the first year.

It is generally agreed that mathematical induction is a difficult concept for stu-
dents. This has been studied by math educational researchers[16]. The traditional
approach to teaching mathematical induction is to introduce it as a modular unit
in the first discrete mathematics course using numerous numerical examples and
exercises, and then reinforce these ideas in the context of other concepts in the
course, such as binary trees, etc. For CS/SE majors mathematical induction is usually
touched on in other courses (e.g., algorithm analysis, theory of computation, etc.).
I believe this is insufficient for students to understand and be able to use induction,
and to make the necessary links with CS.

Besides the links, motivation and continued reinforcement, “setting the students’
mental stage” before formally introducing mathematical induction is very impor-
tant. In many text books and courses the topic “pops up” with little preparation or
forethought. To “get the inductive mental juices flowing” I have students solve nu-
merous simple inductive reasoning and generalization problems, such as presented
in Section8, starting at the beginning of the course. Many of these require pattern
identification and specification, and are of the general form: “If you are given that
predicateP(n− 1) is true forn− 1 items, findP(n) for n items.” For example, con-
sider a polygon withn sides (3, 4 and 6 sided polygons are shown below. Diagonals
are illustrated as dotted lines).

(a) How many diagonals are there in a 7 sided polygon?
(b) How many diagonals are there in an 11 sided polygon?
(c) How many diagonals are there in an 44 sided polygon?
(d) If there arek diagonals in an (n−1)-sided polygon, then how many diagonals

are there in ann-sided polygon? Give your answer in terms ofk andn.
(e) Give an expression, in terms ofn, for the number of diagonals in ann-sided

polygon.

THE ROLE OF MATHEMATICS 375

This way, the ideas underlying mathematical induction don’t suddenly “pop up.”
Indeed, I have found that after the course, most students have a good grasp of the
concept of induction. This is verified by the collective responses over the past 15
years to the following question on my post course survey “This course has increased
my understanding of induction[1–5]” (where 1= Strongly Agree to 5= Strongly
Disagree). The average response is about 2.1, slightly below “Agree.”

Unfortunately understanding induction and being able to use it are different. Many
students understand the concept but have difficulty applying it to solve problems
and doing inductive arguments. This is often due to a lack of understanding of the
application domain and/or weak mathematical skills. For example, students struggle
with the following numeric inductive argument primarily due to faltering algebraic
skills.

1+ 4+ 9+ · · · + n2 = n(n + 1)(2n + 1)/6 for all n � 0.

Continual reinforcement, motivation and connections are all extremely important. In
CS/SE courses, recursion and iteration are rich pedagogical sources for reinforcing
arguments based upon mathematical induction. Again, this mathematical based way
of thinking must be established as early as possible, preferably upon entry. The seeds
can be planted in introductory computer science courses through inductive reasoning
discussion and exercises. The second best option would be a first course emphasiz-
ing recursive thinking, perhaps using a functional based language such as Scheme,
Standard ML, Miranda or Haskel. The best choice is requiring students to take the
introductory discrete mathematics or a foundations of computing course upon entry.
A prototype entry level foundations course is presented in Section15. This course
includes hands on computer based problem solving exercises which strengthen key
mathematical concepts such as mathematical induction. One way the latter can be
achieved is with structural induction—using induction to argue the correctness of
recursively function definitions on recursive structures such as lists and binary trees.
FunctionmaxOfSeq presented at the end of the “Inductive Thinking and General-
ization” section is a representative example. The objective is to ensure graduates can
effectively use induction as a reasoning and checking tool.

13. Why Mathematics?

Until now, I have presented general beliefs, topic heading and examples attempt-
ing to build motivation for mathematics in the education of CS and SE students.
Now it is time to make these points more concrete. The section is the title of a paper
from the Communications of the ACM dedicated to the reasons why CS and SE stu-
dents need math[14]. Many of the items below appeared in my paper “Mathematical

376 P.B. HENDERSON

Reasoning in Software Engineering Education” in this issue[23]. They are included
here for completeness with expanded justifications. I would like to think they are
comprehensive, but realize there are numerous views regarding these issues.

(1) Software is abstract.
(2) Notations, symbols, abstractions, and precision are features common to both

mathematics and software engineering.
(3) Mathematics is important for modeling and specifying software system be-

havior.
(4) Many application domains (engineering, science, economics, etc.) are mathe-

matically based.
(5) Mathematical reasoning is important for most problem solving, especially

software systems development.

(1) Software is abstract: One of the first abstractions our ancestors developed
was counting, a basic form of mathematics. From this start, mathematics has
become the primary tool mankind uses to deal with abstractions. Construct-
ing non-physical artifacts, like software, requires abstract reasoning for which
there is no better tool than mathematics. Accordingly, a software system can
be viewed as a mathematically precise model of some desired process or com-
putation. Software practitioners generally agree that software is abstract, but
seem to prefer using alternative, non-mathematical tools for specifying, de-
signing, implementing, testing, debugging and maintaining software systems.
I believe this will slowly change as systems become larger and more complex,
more mathematically based tools become available (e.g., modeling and model
checking), and graduates are more mathematically savvy and have a better
appreciation for the power of mathematics as a reasoning tool.

(2) Notations, symbols, abstractions, precision: Software relies heavily upon all
four of these. Notations and symbols are abstractions for common objects and
concepts. This is whyy = ax + b is familiar from algebra, andcount == 0
from programming. Both are well understood and precise in their context of
use. Students are motivated to learn the notations, symbols, and precise syntax
and semantics of a programming language. In reality, this is no different than
learning these for mathematics, which is often easier. However, students per-
ceive mathematics as static and rote. Programming is perceived as dynamic
and exhilarating, appealing to our operational oriented minds. There are more
mathematically based computer languages and tools which provide similar
levels of exhilaration if educators will discover and embrace them. These in-
clude functional languages such as Standard ML, Miranda and Haskel, model
building and checking languages, and mathematics programming languages
such as Maple, Mathematica and Axiom. All make extensive use of notations,

THE ROLE OF MATHEMATICS 377

symbols, abstractions and precision and are more suited to students learning a
declarative style of thinking.

(3) Modeling software systems: As discussed in Section5, a model, even a men-
tal one, must be created before beginning construction of any artifact. Today,
software development is more of an art where an initial vision slowly takes
form—like molding a chunk of clay, and this is part of its attraction. However,
such ad hoc methods are not acceptable for projects where a more precise
understanding of the desired artifact is required before construction. Build-
ing, analyzing, and checking a “mathematical” model first is one solution.
New software system modeling tools, languages, and techniques are evolving
whose use will one day become the norm[9,29,31,33,24]. Currently, system
specification languages such as Z, Larch, etc. are available to more precisely
specify the desired behavior[27].

(4) Application domains: Mathematics is a rich, inclusive, universal language
for communication between diverse groups. Accordingly it provides soft-
ware practitioners with a tool for communicating effectively with clients and
colleagues from any discipline (engineers, scientists, mathematicians, statisti-
cians, actuaries, and economists) with mathematical foundations.

(5) Mathematical reasoning: This topic has been addressed in other sections of
this chapter.

14. Curricula Issues

Computer science and software engineering are young, maturing disciplines.
Guidance for education in these disciplines comes from a variety of sources, pri-
marily the professional organizations, in particular the ACM and IEEE. Computer
science has had a long history of curricula recommendations[46] and the first “of-
ficial” recommendation for software engineering was in 2004[47]. Both current
recommendations[46,47] include requirements for computer based mathematics in
the form of discrete mathematics/structures topics and suggest early introduction of
these topics. This is a good start to ensuring mathematics proficiency of our grad-
uates. But there are many holes yet to be filled, specifically making mathematics
more pervasive by integrating and using fundamental concepts throughout the entire
curriculum. This will help to ensure mathematical maturity, proficiency and use of
mathematics as a problem solving tool.

A mathematically based curriculum must start with a mathematically based
course. In Section15“Foundations of Computing—a First Course,” details of such a
course for CS/SE majors which I have developed over 20+ years, are presented. One
graduate commented that: “{this course} is a lot closer to the ideal {first CS course}
than any introductory programming course could be.” However, this is only one po-

378 P.B. HENDERSON

tential model for a first course. In due time, I believe that Discrete Mathematics I
and II, offered by the mathematics department, will become the standard freshman
sequence, similar to the way Calculus I and II are for most science and engineering
majors. In other words, discrete mathematics will acquire equal stature with calculus
for entering students. Progress toward this is offered by: (1) discrete mathematics
being recommended earlier with almost 40% of the CS/SE programs requiring it in
the freshman year in 2001[28], and (2) the recent curriculum recommendations of
the Mathematics Association of America[38].

Instead of independent discrete mathematics courses, some educators suggest
integrating these topics and concepts into existing introductory computer courses,
perhaps using a just-in-time pedagogy to motivate pertinent connections. In theory,
this approach makes sense and has merits, but I don’t think it is viable as an expedient
way to promote change. Instructors would be reluctant to make room for additional
material and would have little motivation to change their way of covering the mater-
ial. Students would direct the course toward HOW and discourage the WHY. Indeed,
at several institutions I have visited over the past several years, students have been
successful in deferring planned changes toward a more mathematically (WHY) ori-
ented curriculum. In my opinion, this is very short sighted on the part of the students,
their parents and the administration. Interestingly, the current downturn in computer
science studies provides a good climate for change since students might conceivably
be more interested in learning the WHY than the HOW, to improve their employment
marketability.

An entry level discrete mathematics course follows the successful engineering
model, makes effective use of faculty resources, is therefore attractive to adminis-
trators, and addresses the emerging need for discrete concepts in other disciplines
such as engineering, biology, economics, media arts, etc.

The ultimate goal is a curriculum in which foundational mathematical concepts
become pervasive throughout all courses. Here is one potential model for the first
three semesters:

CS 0

CS I CS II

DM I DM II

CS 0 is an overview of the discipline with an introduction to programming, and
would be taken by students with no programming experience or who wish to refresh
their knowledge. Such an Introduction to Computer Science course is often required
by other majors, so it can serve multiple purposes.

Another recent trend is the introduction of CS III to ensure programming compe-
tency and breadth of knowledge before advanced courses. One concern here, as in

THE ROLE OF MATHEMATICS 379

the above model, is the length of the pre-requisite chain. On the surface this seems to
be an issue, but in practice more material can be covered with a deeper level of un-
derstanding using the model above rather than the traditional CS I→ CS II followed
by CS III sequence, with DM I and II intermixed somewhere.

First, CS I is supercharged by CS 0 and DM I. This means the instructor does not
have to start from scratch. Second, CS 0 and DM I provide a “reality check” for stu-
dents so the overall quality/maturity of students in CS I is significantly higher. Third,
the overall logic, mathematical foundations, problem solving, conceptual (e.g., re-
cursion, induction) and abstract reasoning skills of the CS I students are significantly
enhanced. For example, students don’t struggle with negating a Boolean conditional
since they know and can apply DeMorgan’s Laws.

What are these enhanced CS I and CS II courses? I don’t have a definitive answer.
However, from 1996 to 1998 I developed and taught at SUNY Stony Brook a math-
ematically oriented CS I course following the foundations course. It made extensive
use of the mathematical foundations, especially predicate logic and mathematical
induction. These included formal pre and post conditions, assertions (especially iter-
ation and class invariants), and formal arguments of the correctness of imperative and
recursive algorithms. Object oriented software development using Bertrand Meyers’
“successive opening of black boxes” pedagogical approach[40] and “programming
by contract”[41] in Modula 3 was used, and students were required to provide ex-
tensive semi-formal heading comments for object classes and methods. A significant
amount of exemplarity Modula-3 software was written and provided for learning
and completing projects. Unfortunately, the course was not a resounding success—
the “WHY” students really liked it and the “HOW” students didn’t. I felt it was
headed in the right direction but would have taken several more years to develop.13

With respect to curriculum reform, in my opinion, the two most important as-
pects are introducing mathematical foundations early and integrating/reinforcing/
enhancing these foundations in all courses. Progress has been made on the former
and in identifying the foundational mathematics. This will eventually precipitate the
latter as educators learn to effectively use the mathematical preparation of students
and new text books evolve. Doug Baldwin and Greg Scragg’s new book “Algorithms
and Data Structures: The Science of Computing” is a representative CS II text[6].

One impediment to integration is the prerequisite mathematics instructors pre-
sume. Currently for many CS/SE courses, it is very little, so if an instructor wishes
to use mathematical concepts they reserve course time to teach these. For example,
when teaching a course on formal specifications or modeling, they would cover the
basic principles of propositional and predicate logic first, or logic and relations are
often taught before introducing relational algebra in a database course. With a consis-
tent math early prerequisite structure, review, rather than (re)teaching would become

13 A one year leave of absence and my move to Butler impeded further development.

380 P.B. HENDERSON

the norm and more relevant course material and reinforcement of key mathematics
and computer science concepts could be achieved.

15. Foundations of Computing—A First Course

One of the fundamental themes echoed through this chapter is the need for an
early introduction to the mathematics of computing and its continual reinforcement
throughout the curriculum. I believe that if students are properly prepared with strong
foundations, the rest of their academic career will be significantly easier. The en-
try level course for CS/SE students should be more mathematically based than the
traditional CS-I course. This might be achieved by requiring more rigorous and pre-
cise reasoning, or using more mathematically oriented declarative logic or functional
languages. As mentioned in the preceding section, I think that eventually entering
CS/SE students with proper preparation will take discrete mathematics. This math
early model has withstood the test of time in science and engineering disciplines.

To support my position, I offer as an example the foundations of computing course
that I developed. This course has evolved over the past 20+ years at SUNY Stony
Brook and Butler University as the first course for majors. My objectives for this
course include

• Logic and discrete mathematics;

• Math maturity and math thinking;

• General Problem solving skills;

• Appreciation for mathematics and math based reasoning;

• Declarative reasoning;

• Inductive reasoning, recursion, mathematical induction;

• Connections to fundamental computer science concepts;

• Hands on activities to reinforce concepts;

• Cooperative and communication skills.

The results of a 1999 alumni satisfaction survey for this course, CSE-113 at SUNY
Stony Brook, are presented inAppendix A. More details can be found at[26]. Below
is one representative alumni quote:

“Not only did the course {CSE-113} help me to refine my problem solving skills,
but it also provided a fantastic preview for all the material I studied in subse-
quent courses. In fact, during every other computer science class I took, there
were always references back to material that was introduced in CSE-113. More
importantly, however, the skills which are developed in CSE-113 help students
tackle real world programming problems.”

THE ROLE OF MATHEMATICS 381

A course description and syllabus for this course in its current form at Butler Uni-
versity are presented inAppendix B. This is a two dimensional view of a multi-
dimensional course. The two text books currently used are “Discrete Mathematics
with Applications, third ed.” by Susanna Epp[17] and “Effective Problem Solving,
second ed.” by Marvin Levine[35]. Some of the main themes are:

• Logic is the foundational glue for all topics;14

• General problem solving skills are built;

• Power of arguments;

• Deemphasize terminology, definitions and rote learning;

• Emphasize conceptual understanding;

• Difficult concepts and topics are introduced informally or through examples
and are presented from numerous perspectives throughout the course (spiral
approach);

• Zingers and chaos;

• Hands on, laboratory component;

• A relatively small number of topics are covered;

• Challenge.

The need for a foundational theme for introductory level discrete mathematics
courses has lead to logic. Text books are introducing logic first and using it as the
foundation for subsequent topics[17,19,18]. In addition, logic is the basis for formal
techniques—specifications, modeling, model checking, program verification, etc.

“Effective Problem Solving” helps students gain the skills and confidence to tackle
problems. One of the most important problem solving strategies students learn is en-
gagement, do something, anything to get started. For example, a student who had just
completed this course told me he gained the confidence to try to fix a malfunctioning
television set at his girlfriend’s house.

Most CS/SE graduates are good algorithmic problem solvers, but extensive focus
on the imperative approach cognitively narrows a students’ general problem solving
skills [39]. Students can only learn problem solving by solving a variety of “chal-
lenging” problems which often require extensive trial and error. It is important to
include problems with no solution and multiple solutions; ones requiring different
abstract representations and solution strategies. Given only one semester, the level
and focus of the problem solving aspects of the course are unfortunately restricted
with more attention to case analysis and inductive/recursive pattern discovery.

For traditional engineering, the focus is primarily on computational mathematics—
using mathematics to compute the voltage at a point in a circuit or the stress on a

14 Recall many discrete mathematics courses are perceived as a collection of disjoint topics.

382 P.B. HENDERSON

bridge component. In contrast, CS/SE principally centers on logical reasoning based
mathematics—e.g., precisely specifying the behavior of a system, arguing the cor-
rectness of an algorithm, or reversing engineering logic when maintaining or debug-
ging a software system. This is the motivation CS/SE educators give as to why stu-
dents need to learn logic and understand basic proof techniques. Discrete mathemat-
ics is ideally suited to this, and freshman, or even pre-college students, can learn basic
proof techniques. However, there are two points I would like to make in this regard.

(1) I find that using the term “argument” rather than “proof” is conceptually less
intimidating for students. For example, when demonstrating the correctness
of a recursively defined list processing function, I ask students to do a mathe-
matical induction argument.

(2) Becoming proficient with logic and using argument/proof techniques takes a
long time. It requires continual use and reinforcement throughout the curricu-
lum. One or two courses alone will not suffice.

Bloom’s cognitive learning taxonomy[8] specifies five levels: knowledge/recall,
comprehension, application, analysis, synthesis and evaluation. Ensuring that CS/SE
graduates become critical thinkers starts with conceptual understanding, applying
concepts to solve problems, and basic analysis and synthesis skills. However, the
focal point of courses and text books is too often knowledge (definitions, termi-
nology, etc.) rather than comprehension/application. Creative assignments and open
book/notes exams are ways to help correct this. A representative first exam is pre-
sented inAppendix C.

There are numerous topics and concepts with which students struggle. These in-
clude, among others, basic propositional logic (e.g., implication and arguments),
predicate logic (e.g., quantifiers, negation, vacuous truth, arguments), recursion,
inductive reasoning, and mathematical induction. Some topics such as sets and func-
tions are familiar, but from a limited context. To ensure understanding of concep-
tually difficult topics they must be introduced early, intuitively, slowly and must be
continually reinforced. As mentioned earlier, mathematical induction is introduced
after students have devoted 6–8 weeks solving numerous inductive reasoning prob-
lems. Students are then required to use it to argue the correctness of various recursive
function definitions developed in the laboratory component of the course.

Students like predictable rote learning courses (i.e., comfort zones), but these are
not always conducive to learning. I use zingers, problems with a twist, frequently in
class, and on assignments, quizzes and exams to make or reinforce important points
and to help break the student’s reliance on intuition. My favorite zingers deal with
difficult concepts such as vacuous truth. Some chaos, or doing the unexpected, helps
to keep students alert and prepare them for the enviable confusion of life.

THE ROLE OF MATHEMATICS 383

Of course there are complaints from students who feel they are not learning “pro-
gramming.” A very general definition of programming is “creating a sequence of
instructions to enable the computer to do something.” “Instructions” can beimper-
ative, a students’ typical perception,15 or declarative. Asking a student to create a
sequence(set) of logically precise statements and a conclusion from a logical word
problem, and presenting these to a theorem prover to determine if the conclusion is
true, is “programming.” So is having students define relationships such as ancestor,
sibling, uncle, etc. in ProLog or defining recursive functions such as maxOfSeq in
Standard ML. This helps to correct student misconceptions about “programming”
and at the same time provides them with a level intellectual playing field.16

Some examples laboratory exercises in support of these objectives are presented
in Appendix D. These include:

• Propositional logic resolution theorem prover for logic word problems.

• Predicate logic resolution theorem prover for logic word problems.

• Prolog for solving problems.

• Introduction to basic functional problem solving using Standard ML.

• Recursive list processing using Standard ML.

Such hands-on computer experiences are extremely important for reinforcing key
concepts and making connections between mathematics and computer science.
Here minimizing the “semantic gap” between the concept and the implementation
tool/language is extremely important for maximizing student learning. Straightfor-
ward theorem provers with a natural interface and logical expression language are
a nice match for reinforcing propositional and predicate logic. Prolog expands these
ideas further supporting a more powerful query language and recursion, and contrast-
ing a pure logical solution strategy with a goal directed problem-solving strategy,
both employing backtracking. Functional languages such as Standard ML are ideal
for reinforcing the mathematical concept of a function, developing problem analysis,
decomposition and synthesis skills, and promoting recursive problem solving. These
laboratories are completed by the students in groups of 2 or 3. Each group submits
an extensive laboratory report following a prescribed format with individual discus-
sion and conclusion sections worth about 1/3 of the report grade. One key to the
success of these hands-on laboratories is a well orchestrated sequence of activities
building from basic tutorials and simple canned exercises through to more creative,
challenging ones.

Reviewing the syllabus of a typical introductory discrete mathematics course often
reveals a long list of topics such as propositional and predicate logic, sets, sequences,

15 The word “sequence” seems to imply the imperative interpretation.
16 Students with programming background versus those with little or no background.

384 P.B. HENDERSON

proof techniques, functions, number theory, mathematical induction, counting, com-
binatorics, relations, graphs and trees, algorithms, etc. Many include explicit applica-
tion areas such as digital logic circuits, algorithm correctness and analysis, etc. This
is frequently necessary since the CS curriculum, especially at many liberal arts col-
leges, only has room for one discrete mathematics course. Unfortunately this tight
packing of concepts is not a productive learning environment for many students.
My preference and experience is to reduce the number of topics in favor of under-
standing. Also, I strongly believe that either two discrete or foundation of computing
courses are required or lacking that, that one course followed by a rigorous introduc-
tion of additional topics in computer science courses is needed.

Students need to be challenged to achieve their full potential. I find this course is a
good reality check for students planning on studying CS or SE. In particular, students
who enjoy intellectual challenges are encouraged to major in CS/SE. Perhaps, this is
one reason women are attracted to the course and another might be the emphasis on
concepts rather than programming applications and hacking[11]. The results of my
unpublished studies over the five year period 1990–1995 shows that women worked
longer (43 more average minutes per week), smarter (77% versus 64% participated
in study groups), and performed better (cumulative grade point average17 of 2.67
versus 2.59) than men in this course. At Butler, the course has also become popular
as preparation for the logical/analytical components of the Law School Admissions
Test (LSAT).

Using the model described in Section14, Foundations of Computing I is followed
by Foundations of Computing II. This course covers relations, trees, graphs, count-
ing, finite state machines, algorithm correctness, and further reinforces inductive
reasoning, recursive problem solving and mathematical induction with a sequence
of laboratory assignments which includes developing a simple propositional logic
theorem prover, arithmetic expression evaluator, and a finite state machine guessing
game.

16. Conclusions

Mathematics is a natural complementary discipline for learning, understanding
and appreciating many fundamental computer science concepts, and mathematical
reasoning is intrinsic to computer science and software engineering. Accordingly, it
should become integral to both curricula. Progress in this direction has been made
in recent curricula recommendations and in understanding/appreciating the role of
mathematics. However, there is still a long way to go to before all CS/SE graduates
can reason clearly and precisely about algorithms and software systems.

17 A = 4, B = 3, C = 2, D = 1, F = 0.

THE ROLE OF MATHEMATICS 385

Computer based disciplines use discrete mathematics and logic mainly in a declar-
ative mode, whereas traditional science and engineering disciplines primarily employ
continuous mathematics in a calculational mode. Pre-college mathematics primarily
focuses on the preparation for the latter, often setting the wrong mindset for entering
CS/SE students. This mindset is further reinforced by the operational emphasis of
current CS/SE curricula. I believe in time the continuous and discrete mathematical
emphasis of pre-college will reach a natural balance as discrete and logical think-
ing become more pervasive in other disciplines such as the science, economics and
engineering.

There may be some concern that this chapter is too superficial, or that it didn’t go
deep enough or lay out an aggressive, specific strategy for advancing the role of math-
ematics in CS/SE undergraduate education. There are several reasons for this. First,
I have presented, for the most part, what I have had experience and feel comfortable
with. Second, curricula transformations are often slow in educational disciplines, so
presenting the seeds for change (with which everyone may not agree) will hopefully
have more immediate impact. Grand visions rarely do. Third, I strongly believe that
mathematically oriented SE/CS curriculum can and will be achieved. This evolution
will take time as mathematics and CS/SE educators gradually gain an understanding,
and an appreciation for, the role of mathematics. Also, I firmly believe that graduates
of mathematically oriented curricula will be significantly better computer scientists
and practicing software engineers.

ACKNOWLEDGEMENTS

I would like to thank the reviewers and in particular Judy Gersting for comments
and suggestions which greatly improved the readability and quality of this chapter.

Appendix A: CSE-113 Foundations of Computer Science I

Stony Brook Alumni Survey Summary (Spring 1999)

(121 respondents - 86 male, 35 female)

CSE-113 was good preparation for computer science courses.
All Male Female

Strongly Agree 94% 91% 100%
Agree 6% 9% -
Neutral - - -
Disagree - - -
Strongly Disagree - - -

386 P.B. HENDERSON

CSE-113 was good preparation for math courses.
All Male Female

Strongly Agree 74% 72% 77%
Agree 23% 23% 23%
Neutral 3% 5% -
Disagree - - -
Strongly Disagree - - -

CSE-113 was good preparation for my other courses.
All Male Female

Strongly Agree 62% 57% 74%
Agree 34% 37% 26%
Neutral 3% 3% -
Disagree 1% 1% -
Strongly Disagree - - -

CSE-113 was one of the most important courses I took at Stony Brook.
All Male Female

Strongly Agree 77% 74% 83%
Agree 19% 21% 14%
Neutral 3% 4% 3%
Disagree 1% 1% -
Strongly Disagree - - -

CSE-113 should be kept as the first course for CS majors at
Stony Brook.

All Male Female
Strongly Agree 96% 94% 100%
Agree 4% 6% -
Neutral - - -
Disagree - - -
Strongly Disagree - - -

CSE-113 should be replaced with a more programming oriented course.
All Male Female

Strongly Agree - - -
Agree - - -
Neutral 7% 9% 3%
Disagree 24% 19% 34%
Strongly Disagree 69% 71% 63%

CSE-113 helped me improve my general problem solving skills.
All Male Female

Strongly Agree 92% 89% 100%
Agree 8% 10% -
Neutral 1% 1% -
Disagree - - -
Strongly Disagree - - -

CSE-113 helped me improve my logical thinking skills.
All Male Female

Strongly Agree 88% 84% 97%

THE ROLE OF MATHEMATICS 387

Agree 12% 16% 3%
Neutral - - -
Disagree - - -
Strongly Disagree - - -

CSE-113 helped me improve my ability to communicate with others.
All Male Female

Strongly Agree 22% 19% 32%
Agree 44% 39% 57%
Neutral 29% 38% 11%
Disagree 5% 4% -
Strongly Disagree - - -

CSE-113 helped me improve my confidence to overcome a challenge.
All Male Female

Strongly Agree 69% 66% 80%
Agree 27% 30% 17%
Neutral 3% 3% 3%
Disagree 1% 1% -
Strongly Disagree - - -

Appendix B: Butler University, Foundations of Computing I

CS151. Foundations of Computing 1 (3 credit hours): Introduc-
tion to mathematical problem-solving, with emphasis on techniques for designing
computer-based solutions. Concepts include problem solving principles, logic, proof
techniques, sets, sequences, functions, and inductive and recursive thinking.

Syllabus:
Prepositional Logic

1. Propositions and Statements
2. Truth Tables
3. Logical Operators
4. Logical Implication and Equivalence
5. Logical Proof Techniques
6. Computer Modeling of Logical Reasoning

a. Propositional Logic Theorem Prover

Predicate Logic

1. Predicate Variables, Quantifiers
2. Inference and Methods of Proof
3. Computer Modeling of Logical Reasoning
4. Logic Programming Paradigms

a. Predicate Logic Theorem Prover
b. Prolog

388 P.B. HENDERSON

Sets

1. Representation
2. Subsets
3. Set Operations
4. Power Sets and Counting

Functions, Recursion, and Mathematical Induction

1. Function Mappings
2. Function Composition
3. Recursively Defined Functions
4. Mathematical Induction
5. Functional Programming Paradigms

a. Standard ML
b. Recursive Problem Solving—Lists

General Problem Solving

1. Goals, Givens, and Rules
2. Inference and States
3. Action Sequences
4. Subgoals, Divide and Conquer
5. Contradiction and Working Backward
6. Backtracking

Computer Based Problem Solving

1. Problem Decomposition
2. Effective use of Abstraction
3. Information Structures
4. Programming Paradigms (Logic and Functional Programming)
5. Expressive Power of Languages

Appendix C: Sample First Exam for Foundations of
Computing I (100 minutes)

1. (5 pts) What is the next number in the following sequence?
4, 5, 7, 11, ?? Answer:

2. (5 pts) Construct the truth table for the following logical expression(p∨q) →
∼p).

THE ROLE OF MATHEMATICS 389

3. (9 pts) In English, give the converse, inverse, and contra positive of the follow-
ing statement.

“A positive integerx is divisible by 10 implies it is divisible by 2.”
4. (10 pts) Is the following argument valid? If so, give the steps of the argument.

If not, explain why.

P → Q, ∼P →∼R, R ∨∼R.

Therefore we can concludeQ is true.
5. (5 pts) Is the following argument valid? Explain your answer. “If John gets a

great job he can buy a new car. John gets a job. Therefore, John can buy a new
car.”

6. (8 pts) One end of an elastic string that is four inches long is connected to a
wall, and a ladybug is at the middle of this string. It begins crawling towards
the wall, and after the ladybug travels an inch, the string is pulled to stretch
to double its length, to 8 inches. After the ladybug travels another inch toward
the wall, the string again stretches to double its length. Each time the ladybug
travels one inch, the string doubles in length. After the string stretches for the
37th time, where is the ladybug? Answer:

7. (10 pts) If Lisa plays golf and Lynn plays tennis, then the kids will not go
swimming.

Either Lynn plays tennis or she makes dinner for the kids.
If the temperature is over 90 degrees, then the kids go swimming.
Lisa plays golf.
The temperature is over 90 degrees.
Conclusion: Lynn makes dinner for the kids.
Let G represent: “Lisa plays golf.” LetT represent: “Lynn plays tennis.”

Let S represent: “The kids will go swimming.” LetD represent: “Lynn makes
dinner for the kids.” LetN represent: “The temperature is over 90 degrees.”
(a) Express these statements in prepositional logic.
(b) Give a proof by contradiction to show the conclusion is true.

8. (12 pts) Let male(p) be a predicate true if personp is male, and let eats(p, f)

be a binary predicate over people and food (true if personp eats foodf). For
each of the following sentences, give a predicate logic expression that repre-
sents its meaning:
(a) Fred eats apples.
(b) All people eat fruit.
(c) Someone doesn’t eat liver.
(d) Some men eat quiche.
(e) Not every man eats quiche.
(f) Some man who eats pizza also eats apples.

390 P.B. HENDERSON

9. (6 pts) “There are two bugs in a gallon jar. Every minute, the number of bugs
doubles. If the jar is filled in 30 minutes, how long will does it take for the jar
to become half filled with bugs?” Answer:

Consider this same problem, but starting with four bugs instead of two. How long
will does it take for the jar to become half filled with bugs? Answer:

10. (15 pts) Consider the following clauses and conclusion.

Q ∨ P, Q ∨ R ∨∼W, P ∨ R, ∼R, W.

Conclusion: Q andP .
(a) Draw a resolution tree to demonstrate the conclusion is true.
(b) How many total resolutions are required for this proof? Answer:
(c) Is any backtracking required in this proof? Explain your answer.

11. (15 pts) AnN -bit “Gray Code” is a sequence of all theN -bit binary numbers,
ordered in such a way that each binary number differs from its predecessor
and its successor by exactly 1 bit (and the first and last differ by 1 bit also).
For example:

1-bit Gray Code: 0, 1,
3-bit Gray Code: 000, 001, 011, 010, 110, 111, 101, 100 (differs from 000

by 1 bit).
However, the sequence 00, 11, 01, 10 is not a 2-bit Gray code since the

first and second elements differ by two bits.
(a) Give a 2 bit Grey Code sequence.
(b) In terms ofN , give an expression for the number of binary numbers in

anN -bit Gray Code sequence.
(c) If you were given a Gray Code sequence forN −1 bits, explain how you

could construct a Gray Code sequence forN bits from it.

Appendix D: Representative List Processing Lab Exercises
Using Standard ML

1. Complete the definition of the functionsum: real list → real that returns
the sum of all the elements in the argument list. It should return zero if the
list is empty. Rewrite this definition usingif–then–elserather than pattern
matching.

fun sum([]) = 0.0
|sum(fst::rst) = fst + ______ :

THE ROLE OF MATHEMATICS 391

Create a functionreverse: ′a list →
′a list that reverses the elements of its

argument list. Use wishful thinking by assuming you are given the reverse of
the rest of the list.

****** Use induction to prove that your definition of this function works
as specified.

2. Compose a function that counts the number of occurrences of a specified item
in the list. For example, 2 appears twice in the list [2, 5, 6, 8, 2, 8, 9] andtrue
appears 0 times in the list[false, false]. Make up a meaningful name for this
function.

****** Use induction to prove that your definition of this function works
as specified.

3. Define a functionfind: ′a list * ′a 391 → int that takes argumentslist and
an elementelt, and returns the position of the first (reading from left to right)
occurrence ofelt in list. For example, iflist = [5, 3, 7, 3, 4] andelt = 3, then
find(list, elt) should return 2. If the element does not occur in the list, then
functionfind should return zero.

4. Develop a functionselect: int * ′a list →
′a that returns the element in spec-

ified integer position of the list. For example, select(2, [3.4, 6.2, 1.7]) = 6.2.
Frequently a function cannot be defined for all possible argument values (i.e.,
it is a partial function). For functionselect, if the integer argument does not
correspond to the position of any element in the list you should indicate an
exceptional condition which forces the function to fail. We have predefined
such an exceptional condition and named it SelectError. The statement raise
SelectError will force a failure with the SelectError message.

5. Develop a functionfirstN: int * ′a list →
′a list which returns the firstn

elements of the argument list. Ifn � 0, then the empty list is returned, and
if n is greater than or equal to the length of the argument list, then the entire
argument list is returned. For instance,

firstN(4, [2, 4, 13, 5, 8, 10, 13]) returns[2, 4, 13, 5]

****** Use induction to prove that your definition of this function works
as specified.

6. Use functionsreverseandfirstN to define the functionlastN, which returns
the lastn elements of the argument list.

7. Define a functionordered: int list → booleanwhich returns true if the in-
teger list is in ascending order and false otherwise (e.g.,ordered([2,4,6])
returns true, butordered([2,6,4])returns false).

Vacuously, the empty list is ordered because there is nothing to keep it from
being ordered.

392 P.B. HENDERSON

****** Use induction to prove that your definition of this function works
as specified.

8. Develop a functionmerge: int list * int list → int list which merges two
ordered (sorted) integer lists into a single ordered integer list. For instance,

merge([2, 4, 5, 8, 10, 13], [1, 2, 3, 6, 9, 11, 13, 15, 16, 20])
returns the list[1, 2, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 13, 15, 16, 20]

9. Compose a function that determines the count of all clusters in an integer
list. A cluster is a sequence of one or more non-zero values. In the list
[0, 0, 3, 4, 12, 0, 0, 0, 0] the subsequence 3, 4, 12 is a cluster of three non-
zero elements. If your function is applied to this list it would return the
list [3], indicating a single cluster with three non-zero elements. For the list
[0, 0, 4, 0, 3, 4, 0, 0, 0,∼7, 8,∼10, 12, 0, 0, 0, 4, 0, 0] your function should
return the list [1, 2, 4, 1] specifying the size of each of the four clusters when
scanning the list from left to right. (Note: this is a challenging problem so
think carefully.∼ is unary minus in Standard ML.)

10. Create a functionExists: (′a→ boolean) * ′a list → booleanwhich takes a
boolean valued function (a predicate) and a list, and returns true if the predi-
cate argument is true for at least one element in the list, and false otherwise.
For example, leteven: int → bool be a function that returns true if the argu-
ment is an even integer. Now, Exists(even, [3, 7, 13, 12, 15, 5, 7, 4]) returns
true since at least one integer in the list is even.

Appendix E: Solutions for Problems Cited

1. “A social psychologist was interested in the custom of handshaking,. . .” A so-
lution is presented in the Ask Marilyn column in Parade Magazine, August
28, 2004 (http://archive.parade.com/askmarilyn_archive/2004/0829.html) for
the following equivalent problem:

A woman and her husband hosted a party for four other couples. The host-
ess asked everyone to shake hands and introduce themselves to each other. Of
course, no one shook hands with his or her spouse. At some point, the hostess
stopped them and asked each person how many hands he or she had shaken.
Each person gave a different response. What was the response of her husband?

2. Match Stick Problem
(b) Number of Match Sticks(N squares) = N + 3;
(d) Number of Joints(N squares) = 3N − 1;
(e) Constructing a table helps students identify the pattern

N = M − J + 1.

http://archive.parade.com/askmarilyn_archive/2004/0829.html

THE ROLE OF MATHEMATICS 393

REFERENCES

[1] Accreditation Board for Engineering and Technology, Inc.,http://www.abet.org/.
[2] Ableson H., Sussman G.J., Sussman J.,The Structure and Interpretation of Computer

Programs, second ed., MIT Press, Cambridge, MA, 1996.
[3] Almstrum V., “Import and export to/from computing science education: The case of

mathematics education research”, Panel presentation, ITiCSE 2002, Aarhus, Denmark.
[4] Averbach B., Chein O.,Problem Solving Through Recreational Mathematics, Freeman,

New York, 1980.
[5] Baldwin D., Henderson P.B., “The importance of mathematics to the software practi-

tioner”, IEEE Software(March–April 2002) 112, 110, 111.
[6] Baldwin D., Scragg G.W.,Algorithms and Data Structures: The Science of Computing,

Charles River Media, 2004.
[7] Barnes J.,High Integrity Software: The SPARK Approach to Safety and Security,

Addison–Wesley, Reading, MA, 2004.
[8] Bloom B., et al.,Bloom’s Taxonomy of the Cognitive Domain, 1956.
[9] Clarke E.M., Grumberg O., Peled D.,Model Checking, MIT Press, Cambridge, MA,

1999.
[10] “MAA CUPM—CRAFTY Curriculum Foundations Project”,http://www.mathsci.

appstate.edu/~wmcb/CFF/.
[11] De Palma P., “Why women avoid computer science”,Communications of the ACM44 (6)

(June 2001) 27–29.
[12] Devlin K., “Do software engineers need mathematics?”, MAA OnLine,http://www.maa.

org/devlin/devlin_10_00.html, October 2000.
[13] Devlin K., “The real reason why software engineers need math”,Communications of the

ACM 44 (10) (October 2001) 21–22.
[14] Devlin K. (Ed.), Special issue on “Why universities require computer science students to

take math”,Communications of the ACM46 (9) (September 2003).
[15] Devlin K., Mathematics: The Science of Patterns, Freeman, New York, 1994.
[16] Dubinsky E., “Teaching mathematical induction I”,Journal of Mathematical Behav-

ior 6 (1) (1987) 305–317.
[17] Epp S.,Discrete Mathematics with Applications, third ed., Brooks/Cole Publishing, 2004.
[18] Epp S., “The role of logic in teaching proof”,American Mathematical Monthly110(10)

(December 2003) 886–899.
[19] Gersting J.L.,Mathematical Structures for Computer Science, fifth ed., Freeman, New

York, 2003.
[20] Ginat D., “Embedding instructive assertions in program design”, ITiCSE 2004, Leeds,

UK.
[21] Ginat D., “Do senior students capitalize on recursion?”, ITiCSE 2004, Leeds, UK.
[22] Glass R.L., “A new answer to ‘How important is mathematics to the software practi-

tioner’?”, IEEE Software(November/December 2000) 135–136.
[23] Henderson P.B., “Mathematical reasoning in software engineering education”,Commu-

nications of the ACM46 (9) (September 2003) 45–50.

http://www.abet.org/
http://www.mathsci.appstate.edu/~wmcb/CFF/
http://www.mathsci.appstate.edu/~wmcb/CFF/
http://www.mathsci.appstate.edu/~wmcb/CFF/
http://www.maa.org/devlin/devlin_10_00.html
http://www.maa.org/devlin/devlin_10_00.html
http://www.maa.org/devlin/devlin_10_00.html

394 P.B. HENDERSON

[24] Henderson P.B., “The role of modeling in software engineering education”, in:Proceed-
ing of the Frontiers in Education Conference, Boulder, CO, 2003.

[25] Henderson P.B., et al., “Striving for mathematical thinking”,SIGCSE Bulletin—
Inroads33 (4) (December 2001) 114–124.

[26] Henderson P.B., “Foundations of CS I Stony Brook alumni survey”,http://www.ic.
sunysb.edu/cse113/survey/.

[27] Hinchey M.G., Bowen J.P. (Eds.),Applications of Formal Methods, Prentice Hall, New
York, 1995.

[28] Hitchner L., “Survey of discrete structures/discrete math courses”,http://blue.butler.edu/
~phenders/WP2002/HitchnerStudy.txt, 2001.

[29] Huth M., Ryan M.,Logic in Computer Science: Modeling and Reasoning about Systems,
Cambridge University Press, Cambridge, UK, 2001.

[30] Huth M., “Mathematics for the exploration of requirements”,ACM SIGCSE Bulletin In-
roads36 (2) (June 2004).

[31] Jackson D., “The alloy analyzer”,http://alloy.mit.edu/.
[32] Ashbacher C. (Ed.),Journal of Recreational Mathematics, Baywood Publishing.
[33] Lamport L.,Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-

ware Engineers, Addison–Wesley, Reading, MA, 2002.
[34] Lethbridge T., “What knowledge is important to a software professional?”,IEEE Com-

puter33 (5) (May 2000) 44–50.
[35] Levine M.,Effective Problem Solving, second ed., Prentice Hall, New York, 1994.
[36] Lithner J., “Mathematical reasoning in task solving”,Educational Studies in Mathemat-

ics 41 (2000) 165–190.
[37] Liu H., Gluch D.P., “A proposal for introducing model checking into an undergraduate

software engineering curriculum”, in:16th Southeastern Small College Computing Con-
ference, November 2002.

[38] Undergraduate Programs and Courses in the Mathematical Sciences: CUPM Curricu-
lum Guide 2004, The Mathematics Association of America, 2004.

[39] Mayer R.E., Dyck J.L., Vilbert W., “Learning to program and learning to think: What’s
the connection?”,Communications of the ACM29 (7) (July 1986) 605–610.

[40] Meyer B., “Toward an object oriented curriculum”,The Journal of Object Oriented Pro-
gramming6 (2) (May 1993) 76–81.

[41] Meyer B.,Object Oriented Software Construction, Prentice Hall, New York, 1997.
[42] Morissette A. (Canadian singer) Quote.
[43] Noonan R., Tucker A.,Programming Languages: Principles and Paradigms, McGraw–

Hill, New York, 2002.
[44] Parnas D.L., “Software engineering programmes are not computer science programmes”,

Annals of Software Engineering6 (1–4) (1998) 19–37.
[45] Roberts E.,Thinking Recursively, Wiley, New York, 1986.
[46] Roberts E., Shackelford R., et al., “Computing curricula 2001: Computer science vol-

ume”,http://www.acm.org/sigcse/cc2001/, December 15, 2001.
[47] Sobel A. (Ed.), “Computing Curricula Software Engineering Volume”,http://sites.

computer.org/ccse/, May 24, 2004.

http://www.ic.sunysb.edu/cse113/survey/
http://www.ic.sunysb.edu/cse113/survey/
http://www.ic.sunysb.edu/cse113/survey/
http://blue.butler.edu/~phenders/WP2002/HitchnerStudy.txt
http://blue.butler.edu/~phenders/WP2002/HitchnerStudy.txt
http://blue.butler.edu/~phenders/WP2002/HitchnerStudy.txt
http://alloy.mit.edu/
http://www.acm.org/sigcse/cc2001/
http://sites.computer.org/ccse/
http://sites.computer.org/ccse/
http://sites.computer.org/ccse/

THE ROLE OF MATHEMATICS 395

[48] Tucker A.B., Kelemen C.F., Bruce K.B., “Our curriculum has become math-phobic!”, in:
Proceedings of the 32nd SIGCSE Technical Symposium on Computer Science Education,
February 2001, pp. 243–247.

[49] Wooden J., Jamison S.,Wooden, Contemporary Books, 1997.
[50] The Working Group on Integrating Mathematical Reasoning into Computer Science Cur-

ricula,http://www.math-in-cs.org.

http://www.math-in-cs.org

This page intentionally left blank

Author Index

Numbers initalics indicate the pages on which complete references are given.

A

Aamodt, A., 25,71
Abadi, M., 103,105
Aben, M., 176, 177,198
Ableson, H., 372, 375,393
Abrahão, S., 334, 335,342
Abran, A., 309, 310, 312, 314, 328–330, 332,

334,342, 343, 345, 346
Accreditation Board for Engineering and

Technology, Inc., 352, 375,393
Adelson, E.H., 118,148, 214,256
Agresti, W., 262,293
Aho, A.V., 93,105
Akkermans, J.M., 176,198
Al-Kuzee, J., 68,75
Albrecht, A.J., 301, 303, 304, 317,342
Allinson, N.M., 49,73
Almeida, F., 38,72
Almstrum, V., 372, 375,393
Altug, S., 62,74
Anda, B., 338,342
Anderson, T., 159,195
Angele, J., 176,198
Antoniol, G., 335, 336,342
Arajo, A., 49,73
Artho, C., 160,195
Ashbacher, C., 363,394
Ashley, J., 212,255
Ashley, K.D., 20,70
Averbach, B., 363, 375,393
Avrunin, G., 165,196
Avrunin, G.S., 165,196
Ayel, M., 157,194

B

Babbie, E., 282,293
Bachant, J., 157, 177,194, 199
Baker, A., 181,199
Balci, O., 157,194
Baldwin, D., 356, 375, 379,393
Ballard, D., 212,258
Baretto, G., 49,73
Barlow, H.B., 110,147
Barnes, J., 371,393
Barnett, J.A., 27,71
Barringer, H., 160, 166, 167,195, 197
Bartlett, K.A., 80,105
Basili, V.R., 157,194, 281,293
Batarekh, A., 157,193, 194
Battersby, A., 63,74
Bell, A.J., 141,147
Bellazzi, R., 20,70
Benitez, A.B., 237,255
Benjamins, R., 176,199
Bérard, B., 162,196
Berg, R.A., 277,293
Bernard, D., 154, 156,193
Bernard, P., 205, 232,256, 257
Bhandari, I., 269,293
Bhanu, B., 239,257
Bialek, W., 112,150
Bidoit, M., 162,196
Biere, A., 166,196
Bigün, J., 118,147, 214,255
Bloom, B., 382,393
Bloom, B.H., 101,105
Boardman, J., 205,255
Bober, M., 217,255

397

398 AUTHOR INDEX

Bochmann, G.V., 81,105
Bock, D.B., 312, 315,342
Boehm, B., 157,194
Boggess, A., 216,255
Bonabeau, E., 38,72
Bouckaert, R., 185,201
Bovik, A., 122,148, 215,255
Bowen, J.P., 377,394
Bozga, D.M., 103,106
Braithwaite, N.S.J., 58, 68,74, 75
Brat, G., 158, 161, 165,194–196
Bratko, I., 170,197
Bratman, M.E., 32, 35,71, 72
Bredeweg, B., 20,70
Breuker, J., 20,70, 176,198, 199
Bridge, N., 269,293
Brodley, C., 239,256
Brooks, R.A., 31, 37,71
Broomhead, D.S., 49,73
Brown, A., 157,194
Brown, W.K., 138, 141, 143,148
Bruce, K.B., 350, 373,395
Bruninghaus, S., 20,70
Bryant, E., 100, 105,106
Brzykcy, G., 57,74
Buchanan, B., 157,194
Buchanan, B.G., 5, 26, 27,70, 71
Büchi, J.R., 85,106
Bundy, A., 183,200
Burch, J.R., 162, 166,195
Burgess, C., 189,201
Burr, A., 270,293
Burrows, M., 159,195

C

Calavaro, G., 335, 337,343
Caldiera, G., 335, 336,342
Callahan, J.R., 105,108, 182,200
Canny, F.J., 120,148
Cantone, G., 335, 337,343
Carbonell, J.G., 24,71
Card, D., 262, 264, 277, 281, 283, 286, 288,

290, 292,293
Carleton, A., 270,294
Carpenter, G.A., 49,73
Carroll, M., 181,200
Carson, E.R., 20,70

Cavada, R., 172,198
Chambers, D.S., 270, 277,295
Chandrasekaran, B., 176, 181,199, 200
Chang, C., 157,193
Chang, E., 239,258
Chein, O., 363, 375,393
Chiang, E., 181, 190,200
Chillarge, R., 268, 288,293
Choi, Y., 215,255
Chou, C.-T., 100,106
Choueka, Y., 98,106
Chow, M.Y., 62,74
Choy, K.W., 68,75
Chrissis, M.B., 292,293
Cieplinski, L., 213,257
Cimatti, A., 162, 166, 171, 172,195, 196, 198
Ciocca, G., 238, 239,255
Clancey, W., 176,199
Clancy, D., 166, 172,197, 198
Clark, M., 122,148, 215,255
Clarke, E.M., 81, 100, 103, 105,106, 162,

166,195–197, 355, 377,393
Cockburn, A., 338,343
Collins, R., 216,256
Combs, J., 157,193
Conte, S.D., 299,343
Corbett, J., 165, 166,196
Cornelissen, F., 124,148
Costa, P., 157,194
Courcoubetis, C., 93, 95, 96,106
Cox, I., 212, 238, 239,255
Crawford, J., 181,199
Crespo, A.N., 180,199
Crist, M., 176,198
Crow, J., 167,197
Cufi, X., 232,256
Cukic, B., 187–189,201

D

Dallemagne, G., 176, 177,199
Dana, K.J., 136, 140, 142, 144,148, 149, 151
Dangerfield, O., 283, 290, 291,293
Davenport, M.P., 49,73
Davis, R., 34,72, 171,198
de Brug, A.V., 177,199
de Hoog, R., 176,198
De Koning, K., 20,70

AUTHOR INDEX 399

De Maddelena, M., 205,257
de Moura, L., 168,197
De Palma, P., 384,393
de Velde, W.V., 176,199
DeKleer, J., 181,200
DeMarco, T., 323, 324,343
Derumeaux, H., 232,256
Desharnais, J.-M., 314, 316, 328–330,342,

343, 346
Deutsch, A., 161,195
Dev, A., 117, 124,148, 149
Devlin, K., 353, 356, 357, 375,393
Di Vito, B., 167,197
Dill, D.L., 162, 166,195, 197
Dillinger, P.C., 101,106
Dolado, J.J., 322,343
Dom, B., 212,255
Dorigo, M., 38,72
Dreger, J.B., 308,343
Dreiem, H., 338,342
Drusinsky, D., 159, 160,195
Du Buf, J., 215, 232,257
Dubinsky, E., 374,393
Duda, R., 227,255
Dumke, R., 323,345
Dunsmore, H.E., 299,343
Dwyer, M.B., 165, 166,196
Dyck, J.L., 381,394
D’Zmura, M., 124,148

E

Eakins, J., 205,255
Easterbrook, S.M., 105,108, 182,200
Eick, S.G., 269,293
El Emam, K., 262, 269,293
El Mihoub, T., 63,74
Emerson, E.A., 81, 100, 105,106, 162,195
Engrand, P., 172,198
Epp, S., 381,393
Eriksson, H., 176,199
Erman, L.D., 57, 58,73, 74
Etessami, K., 90, 92, 99,106
Etzioni, O., 24,71
European Function Point Users Group, 313,

343
Evertsz, R., 157,193

F

Faieta, B., 38,72
Fan, J., 215,256
Feather, M., 173, 180, 181, 190,198–200
Feigenbaum, E.A., 5, 59,70, 74
Fennell, R.D., 57,73
Fensel, D., 176,198
Fenton, N., 310, 311, 314, 322,345
Fenton, N.E., 300,343
Fenton, W.G., 20,70
Ferguson, I.A., 33,72
Fetcke, T., 332, 334,343
Field, D.J., 112,148
Filkorn, T., 166,197
Filliben, J.J., 141,148
Finin, T., 37,72
Fink, P.K., 20,70
Finkel, A., 162,196
Finlayson, G.D., 124,148
Finnie, G.R., 311,346, 347
Fisher, D., 183,201
Fiutem, R., 335, 336,342
Flickner, M., 212,255
Florac, W., 270, 273, 277,294
Florack, L.M.J., 114, 118, 123, 137,148
Forgy, C.L., 17,70
Foster, D.H., 110, 124, 132,148
Fountain, R., 335,346
Frank, E., 189,201
Freeman, W.T., 118,148, 214,256
Freixenet, J., 232,256
Fulton, S.L., 19, 23,70
Funt, B.V., 124,148
Furey, S., 308, 309, 312,343

G

Gaffney, J., 265,294, 303, 317,342
Garavel, H., 164,196
Gardiner, J.S., 277,294
Gardingen, D., 67,75
Gardner, K.M., 176,198
Garmus, D., 306, 308, 312, 313, 318, 333,343
Geerts, H., 110, 119, 124, 131,148, 149
Geisler, W., 122,148, 215,255
Gelatt, C.D., 183,200
Gent, I.P., 181,200

400 AUTHOR INDEX

Georgeff, M., 32,72
Germen, E., 49,73
Gersting, J.L., 381,393
Gerth, R., 90, 99,106
Geusebroek, J.M., 110, 117, 119–121, 124,

131, 139, 140,148–150
Gevers, T., 117, 124, 130, 134,149
Giannakopoulou, D., 158, 161, 166, 167,194,

197
Gil, Y., 24, 71, 176–178,198, 199
Gill, Y., 176, 198
Gimel’farb, G., 215,256
Ginat, D., 369, 371, 372,393
Ginsberg, A., 157,193
Giunchiglia, F., 162,195
Glass, R.L., 356,393
Gluch, D.P., 355,394
Gnedenko, B.V., 141,149
Godefroid, P., 95,106, 182,200
Goldberg, A., 158, 160, 161,194, 195
Goldberg, D.E., 64,74, 183,200
Goldensen, D., 292,294
Goldfarb, P., 233,256
Gomes, C., 181,200
Goodrich, C., 172,198
Goodyear, A., 68,75
Gool, L.J.V., 123,149
Gorkani, M., 212,255
Gotlieb, C., 215,256
Graf, S., 166,197
Graham, I., 336,343
Graham, M., 205,255
Granlund, G.H., 118,147, 214,255
Grenander, U., 140,149, 150
Groce, A., 171,198
Grogono, P., 157,194
Grossberg, S., 49,73
Grumberg, O., 81, 100, 103,106, 162, 166,

196, 355, 377,393
Gururajan, S., 188, 189,201
Guzelis, C., 48,73

H

Hacking, I., 245,256
Hafner, J., 212,255
Hagedoorn, M., 217,258
Haggan-Ozaki, V., 49,73

Hajek, J., 80, 81,106
Hallam, N.J., 27, 51, 56, 58, 65,71, 73, 74
Hamilton, C.C.D., 157,194
Hanabasa, S., 337, 338,345
Hankin, C., 160,195
Harbaugh, S., 266,294
Harry, M., 285, 292,294
Hart, P., 227,255
Hastings, T., 335,346
Hatcliff, J., 165, 166,196
Havelund, K., 158–161, 165, 167,194–197
Hayball, C., 176,199
Hayes-Roth, F., 57, 58,74
Hays, W., 267,294
Hayward, R.G., 310, 312,347
Healey, G., 122,149
Heitmeyer, C., 165,196
Henderson, P.B., 350, 355, 356, 375–377, 380,

393, 394
Hering, E., 117,149
Herron, D., 306, 308, 312, 313, 318, 333,343
Hinchey, M.G., 377,394
Hinton, G.E., 54,73
Hitchner, L., 378,394
Holland, J.H., 38, 43, 64,72, 74
Holmes, N., 5,70
Holzmann, G.J., 78, 80, 82–84, 90, 92, 93, 95,

98–105,106–108, 162, 182,195, 200
Hopcroft, J.E., 93,105
Hopfield, J.J., 48,73
Hopgood, A.A., 4, 16, 27, 34–36, 44, 51, 56,

58, 63, 68, 69,70–75
Hoppe, P.M.T., 157,194
Hornick, K., 53,73
Hotle, M., 308,343
Houle, M.E., 165, 166,196
Hu, J., 213,257
Hu, Y., 181, 190,200, 201
Huang, J., 140,150
Huang, Q., 212,255
Huang, S.H., 23,71
Huang, T., 238, 239, 244,256, 258
Hudon, G., 314,343
Huiskes, M., 205, 221, 232,256, 257
Humphrey, W.S., 300,343
Husoy, J., 215,257
Huth, M., 355, 377,394
Hwang, J., 162, 166,195

AUTHOR INDEX 401

I

Iannino, A., 179,199, 277,294
IFPUG, 307, 314, 334, 340,343, 344
Inoue, K., 334, 337, 338,345, 347
Ip, C., 166,197
ISBSG, 315, 316, 333, 341,344
Ishikawa, K., 285, 288,294
ISO/IEC, 314, 340,344
Isoda, S., 270,294
Israel, D.J., 32,71
Iyer, N., 181,200

J

Jackson, B., 310, 312,347
Jackson, D., 355, 377,394
Jackson, M., 321,344
Jacob, A.L., 277,294
Jain, A., 122,149, 215,256, 257
Jain, R., 205,258
Jalote, P., 277, 278,294
Jamison, S., 351,395
Jeffery, D.R., 312, 314, 317,344, 345
Jeffords, R., 165,196
Jenner, M.S., 335,344
Jennings, N.R., 31–34,71, 72
Jensen, K., 157, 177,194
Jha, S., 100,106
Johnson, J.H., 65,74
Johnson, T., 176,199
Jolion, J.M., 135,149
Jones, C., 300, 308, 312, 318, 326, 341,344,

345
Jorgensen, M., 164,196
Jørgensen, M., 338,342
Josephson, J., 181,200
Joshi, R., 104,107
Judd, D.B., 124, 126, 127,149

K

Kalitzin, S., 118,149
Kalman, J.A., 171,197
Kan, S.H., 266, 276,294
Känsälä, K., 317,345
Karner, G., 337,345
Karr, C.L., 60,74

Kass, M., 214,256
Kautz, H., 171, 181,197
Kedar-Cabelli, S.T., 183,200
Kelemen, C.F., 350, 373,395
Keller, R., 183,200
Kelley, K., 157,194
Kemerer, C.F., 312,345
Kim, H.J., 213,257
Kim, W.-Y.Y., 217,255
Kinny, D., 32,72
Kiper, J., 181, 190,200
Kirkpatrick, S., 183,200
Kiskis, D., 165,196
Kitchenham, B.A., 310, 311, 314, 317, 322,

345
Klepper, R., 312, 315,342
Kliner, G., 176, 177,199
Knight, K., 54,73
Knoblock, C.A., 24,71
Koelma, D., 121,150
Koenderink, J.J., 114, 117, 118, 123, 136, 137,

140, 142, 144,148, 149, 151
Kohonen, T., 49,73, 242,256
Koller, D., 48,73
Kolmogorov, A.N., 141,149
Konitzer, R., 176,198
Koskela, M., 239,256
Kreyszig, H., 215,256
Krishnamachari, S., 213,257
Kubelka, P., 124,150
Kuipers, B., 166,197
Kuokka, D.R., 24,71
Kurshan, R.P., 103,107
Kurtz, T., 193,201
Kusumoto, S., 334, 337, 338,345, 347

L

Laaksonen, J., 239,256
Laamanen, P., 324,346
Labaw, B., 165,196
Labrou, Y., 37,72
Laffey, T., 157,193
Laine, A., 215,256
Laitenberger, O., 269,293
Lamport, L., 103,105, 355, 377,394
Land, E.H., 114,150
Lansdowne, Z.F., 266,295

402 AUTHOR INDEX

Larizza, C., 20,70
Laroussinie, F., 162,196
Larson, W., 172,198
Laubach, S., 165, 166,196
Laurent, J., 157,194
Lee, A.B., 140,150
Lee, D., 212,255
Lefley, M., 189,201
Lennie, P., 124,148
Leroy, D., 101,108
Lesser, V.R., 57, 58,73, 74
Leszak, M., 283, 286, 290,294
Lethbridge, T., 353, 357, 373,394
Levesque, H., 181,199
Levine, M., 381,394
Li, G., 34–36,72
Li, H.X., 30, 71
Lin, H., 215, 216,256
Lindeberg, T., 114, 118, 123,150
Lindvall, M., 157,194
Lippman, A., 239,258
Lithner, J., 372,394
Liu, F., 215,256
Liu, H., 355,394
Liu, X., 140,150
Liu, Y., 187–189,201, 216,256
Loader, S.R., 269,293
Lokan, C.J., 312–314, 316, 317, 335, 336,342,

345
Long, D.E., 103,106, 166,196, 197
Long, M.D., 269,293
Longstreet, D., 313, 334,345
Lopez, E.P.B., 157,194
Lother, M., 323,345
Low, G.C., 312,345
Lowe, D., 49,73
Lowry, M., 158, 160, 161, 167,194, 195, 197
Lumer, E.D., 38,72
Lusth, J.C., 20,70
Lutz, R., 181,200
Lyytinen, K., 324,346

M

Ma, W., 215,256
MacArthur, S., 239,256
Maegawa, Y., 337, 338,345
Magni, P., 20,70

Maguire, L.P., 20,70
Mahabala, H., 157,193
Mallat, S.G., 141,150
Manjunath, B., 213, 215, 239,255–258
Manna, Z., 88, 92,107
Manolios, P., 101,106
Mao, J., 215,257
Marques, D., 176, 177,199
Marti, J., 232,256
Martinek, J., 57,74
Martinez, J.M., 237,255
Mateescu, R., 164,196
Mateis, C., 20,70
Matrella, P., 180,199
Matsuura, T., 68,75
Matukawa, F., 337, 338,345
Maya, M., 328,346
Mayer, R.E., 381,394
Mayfield, J., 37,72
Mays, R., 283, 286, 290, 291,294
McCabe, T.J., 321,345
McConnell, S., 157,194
McDermott, J., 157, 176, 177,194, 199
Mcginnity, T.M., 20,70
McMillan, K.L., 81, 105,108, 162, 166,195
Mehrotra, S., 238, 239,258
Meilhac, C., 238,257
Meissner, A., 57,74
Meli, R., 309, 312, 341,345, 346
Melz, E., 176,198
Menzies, T., 154, 165, 166, 181, 187–190,

193,193, 196, 199–201
Meseguer, P., 157,193, 194
Messing, D.S., 213,257
Meyer, B., 379,394
Miller, J., 213,257
Miller, M., 212, 238, 239,255
Minka, T., 211, 212, 238, 239, 241,255, 257
Minkiewicz, A., 335,346
Minton, S., 24,71
Mintzberg, H., 35,72
Mitchell, D., 181,199
Mitchell, M., 44,72
Mitchell, T., 183,200
Mocek, J., 335,346
Mojsilovic, A., 213,257
Mondada, F., 31,71
Montani, S., 20,70

AUTHOR INDEX 403

Montgomery, D.C., 277,294
Moons, T., 123,149
Moore, G.E., 78,108
Morissette, A., 353,394
Morris, P.M., 311, 312, 316, 329,346, 347
Motta, E., 176,199
Muezzinoglu, M.K., 48,73
Mumford, D., 140,150
Munk, F., 124,150
Munoz, X., 232,256
Musa, J.D., 179,199, 277,294
Muscettola, N., 173, 180,198, 199
Muscettola, N.A.R.C.N., 180,199
Musen, M.A., 176,199

N

Napolitano, M., 188, 189,201
Narcowich, F.J., 216,255
Nascimento, S.M.C., 110, 124, 132,148
Nastar, C., 238,257
Nayak, P.P., 171, 173,198
Nayar, S.K., 136, 140, 142, 144,148, 149
Nelson, G., 159,195
Nelson, L.S., 280,294
Newell, A., 32,71
Neyman, J., 251,257
Nguyen, T., 157,193
Nguyen, T.-H., 334,343
Niblack, W., 212,255
Nicoud, J.D., 31,71
Nielson, F., 160,195
Nielson, H.R., 160,195
Nii, H.P., 57,74
Nolle, L., 58, 63, 68,74, 75
Noonan, K., 205,257
Noonan, R., 373,394
Norvig, P., 31,71

O

Odell, J.J., 176,198
Ohm, J.-R., 213,257
Oja, E., 239,256
O’Keefe, R., 157,194
Okumoto, K., 179,199, 277,294
O’Leary, D., 157,194
Oligny, S., 329, 330, 332,342, 346

Olver, P., 131, 133,150
O’Neill, B.C., 68,75
Oosterlinck, A., 123,149
Ortega, M., 238, 239,258
Owen, M., 270,293
Owre, S., 167, 168,197
Ozaki, T., 49,73

P

Pace, D., 335, 337,343
Pal, N., 232,257
Pal, S., 232,257
Papathomas, T., 212, 238, 239,255
Park, S., 165, 167,196, 197
Parkes, A., 181,200
Parnas, D.L., 352,394
Pasareanu, C., 158, 160, 161, 165–168,

194–197
Pasquini, A., 180,199
Pass, G., 213,257
Pastor, O., 334, 335,342
Patti, J., 95,107
Paulk, M., 292,294
Pauwels, E.J., 123,149, 205, 221, 232,256,

257
Pearl, J., 283,294
Pearson, E., 251,257
Pecheur, C., 164, 165, 167, 171, 172,196–198
Pecora, D., 157,193
Peled, D., 81, 90, 92, 93, 99, 100,106–108,

162,196, 355, 377,393
Pell, B., 173,198
Peng, H., 49,73
Peng, J., 239,257
Penix, J., 167,197
Penrose, R., 3,70
Pentland, A.P., 136, 139,150
Pepe, C.O., 19, 23,70
Perkins, W., 157,193
Perona, P., 118,150
Petersson, H., 269, 270,294
Petit, A., 162,196
Petkovic, D., 212,255
Petrucci, L., 162,196
Pfleeger, S.L., 300, 310, 311, 314, 322,343,

345
Phan, D.D., 268,294

404 AUTHOR INDEX

Phillips, H.J., 58,74
Pianezza, P., 205,257
Picard, R., 211, 215, 241,256, 257
Picton, P.D., 27, 56, 58, 65, 68,71, 74, 75
Pillal, S.K., 277,294
Plaza, E., 25,71
Pluta, M., 126, 127, 129,150
Pnueli, A., 81, 87, 88, 92,107, 108
Poels, G., 334, 335,342
Politakis, P., 157,193
Pollack, M.E., 32,71
Port, D., 157,194
Powell, J., 165, 166,196
Prakash, G., 157,193
Pratt, W., 217,257
Preece, A., 157, 174, 175,193, 194
Prescod, P., 233,256
Preteux, F., 217,255
Puerta, A.R., 176,199
Puri, A., 100,107
Purves, D., 112,151
Putnam, L.H., 265,294
Pyzdek, T., 273,295

Q

Qing, S., 239,257
Queille, J.P., 81,108, 162,195
Quinlan, J.R., 27,71
Quinlan, R., 183,201

R

R.O.R.M., 157,194
Raba, D., 232,256
Rajan, S., 167,197
Rallis, N.E., 266,295
Ramos, V., 38,72
Randen, T., 215,257
Ranguelova, E., 205,257
Rask, R., 324,346
Reddy, D.R., 57, 58,73, 74
Redgate, N., 327,346
Reed, T., 215, 232,257
Reitman, J.S., 64,74
Remus, H., 262,295
Riesbeck, C.K., 25,71
Rigdon, S.E., 142,150

Rising, H., 237,255
Rizzoni, G., 181,200
Ro, Y.M., 215,255
Roberts, E., 372, 377,394
Robillard, P.N., 309, 310,342
Rocchio Jr., J., 239,257
Romeny, B.M.t.H., 114, 118, 123, 137,148
Rooney, J.J., 286,295
Roşu, G., 159, 160,195
Roudsari, A.V., 20,70
Rousset, M., 157,193
Roveri, M., 162, 171,195, 198
Royall, R., 245–247,257
Ruderman, D.L., 112,150
Rudolph, E.E., 311,346, 347
Ruess, H., 168,197
Rui, Y., 238, 239,258
Rule, P.G., 312,346
Rumelhart, D.E., 54,73
Rus, I., 157,194
Rush, A.R., 176,198
Rushby, J.M., 157, 158, 167, 168,194, 197
Russ, J., 216, 217,258
Russell, S., 31,71
Ryan, M., 355, 377,394
Rymon, R., 181,199

S

Saaty, T.L., 311,346
Saidi, H., 166,197
Salembier, P., 233, 237,255, 258
Santillo, L., 341,346
Santini, S., 205,258
Sapiro, G., 124, 131, 133,150
Savage, S., 159,195
Sawhney, H., 212,255
Saxena, A., 277, 278,294
Scantlebury, R.A., 80,105
Schafer, G., 27,71
Schank, R.C., 25,71
Schattschneider, D., 216,258
Schettini, R., 238, 239,255
Schneider, F., 105,108, 182,200
Schneider, G., 337,346
Schnoebelen, P., 162,196
Schooneveldt, M., 335,346
Schreiber, A.T., 176,198

AUTHOR INDEX 405

Schreiber, G., 176,198
Schroeder, R., 285, 292,294
Schwefel, H.P., 63,74
Scott, A., 157,193
Scragg, G.W., 379,393
Seinstra, F.J., 121,150
Sejnowski, T.J., 141,147
Selman, B., 171, 181,197, 199, 200
Sen, K., 160,195
Sette, S., 232,256
Shackelford, R., 377,394
Shafer, S.A., 124, 127, 129,150
Shahar, Y., 176,199
Shankar, N., 167, 168,197
Shen, V.Y., 299,343
Shewhart, W.A., 270,295
Shi, J., 23,71
Shinghal, R., 157, 175,193, 194
Shortliffe, E.H., 5, 26, 27,70, 71, 157,193,

194
Shull, F., 157,194
Shyu, C., 239,256
Sifakis, J., 81,108, 162,195
Sighireanu, M., 164,196
Simmons, R., 165, 171,196
Simoncelli, E.P., 135, 139, 141,150
Singer, J., 181,200
Singh, H., 181,199
Sinsel, E., 193,201
Sistla, A.P., 81,108, 162,195
Sjøberg, D.I.K., 338,342
Skrzypczynski, P., 57,74
Smaill, A., 181,200
Smeulders, A.W.M., 110, 117, 119, 120, 124,

130, 131, 139, 140,148, 149, 205,258
Smith, B., 173, 180,198, 199
Smith, E., 157,194
Smith, J.R., 233,258
Smith, J.W., 176,199
Smith, M.H., 102, 103,107
Smith, R.G., 34,72
Sneed, H., 335,346
SO/IEC, 314, 339,344
Sobalvarro, P., 159,195
Sobel, A., 377,394
Soille, P., 228, 229,258
Soljanin, E., 213,257
Soloway, E., 157, 177,194

Sparck Jones, K., 241,258
Srinivasan, K., 183,201
Srivas, M.K., 167,197
Srivastava, A., 140,149, 150
St-Pierre, D., 328–330,342, 346
Stachowitz, R., 157,193
Stathis, J., 314, 317,344
Steele, D., 212,255
Steels, L., 176,199
Steger, C., 118, 119,150
Stephens, M.A., 142,150
Stickel, M., 171,197
Stiles, W.S., 114, 124, 126, 127, 129,151
Stinchcombe, M., 53,73
Stokman, H.M.G., 134,149
Studer, R., 176,198
Stumptner, M., 20,70
Stützle, T., 38,72
Su, Z., 238,258
Subramanian, E., 157,193
Suen, C., 157,194
Sussman, G.J., 372, 375,393
Sussman, J., 372, 375,393
Sutherland, G.L., 5,70
Suwa, M., 157,193
Swain, M., 212,258
Swartout, B., 176,198
Symons, C.R., 309–314, 319, 320, 322, 323,

326, 329, 330, 332,342, 346, 347
Syswerda, G., 42,72

T

Talbot, H., 227,258
Tallis, M., 177, 178,199
Tanenbaum, A.S., 80,108
Tannenbaum, A., 131, 133,150
Tansley, D., 176,199
Tarjan, R.E., 81, 92,108
Tate, G., 310, 312,347
Taylor, B., 190,201
Teegarden, B., 176,198
ter Haar Romeny, B.M., 114, 118, 123,149,

150
Tesoriero, R., 157,194
The Working Group on Integrating

Mathematical Reasoning into Computer
Science Curricula, 356,395

406 AUTHOR INDEX

Théraulaz, G., 38,72
Thomas, W., 85,108
Tian, Q., 239,258
Tichenor, C.B., 327, 341,346, 347
Tieu, K., 239,258
Titus, A.H., 49,73
Tong, S., 48,73, 239,258
Toyoda, Y., 49,73
Trussell, H.J., 62,74
Tsin, Y., 216,256
Tsukimoto, H., 65,74
Tu, S.W., 176,199
Tucker, A.B., 350, 373,395
Tung, D., 176, 177,199
Turing, A.M., 4,70, 102,108

U

Uemura, T., 334,347
UK Software Metrics Association, 322, 340,

347
Ullman, J.D., 93,105
Ulrich, I., 31,71
UQAM Software Engineering Management

Research Laboratory, 329,347

V

Valmari, A., 182,200
van de Weijer, J., 120,149
van den Boomgaard, R., 110, 117, 124, 131,

148, 149
van der Schaaf, A., 135,151
van Doorn, A.J., 117, 118, 136,149
Van Droogenbroeck, M., 227,258
van Ginkel, M., 118,151
van Ginneken, B., 136, 140, 142, 144,148, 151
van Harmelen, F., 176, 177, 183,198, 200
van Hateren, J.H., 135,151
Van Langenhove, L., 232,256
van Vliet, L.J., 118,151
Vanden Heuval, L.N., 286,295
Vandenborre, P., 205, 232,256, 257
Vander Wiel, S.A., 269,293
Vardi, M.Y., 79, 81, 90, 92, 93, 95, 96, 99,106,

108
Vasconcelos, N., 239,258
Vecchi, M.P., 183,200

Velde, W.V.D., 176,198
Veltkamp, R., 217,258
Venet, A., 158, 161,194, 195
Verbeek, P.W., 118,151
Verner, J.M., 310, 312,347
Viergever, M.A., 114, 118, 123, 137,148, 149
Vilbert, W., 381,394
Viola, P., 239,258
Visser, W., 158, 160, 161, 165–168, 171,

194–198
Vivien, B., 164,196
Voegtlin, T., 49,73
Votta, L.G., 269,293

W

Walker, R., 267,294
Wang, L., 215, 216,256
Wasacz, B., 181,200
Watson, I., 67,75
Weibull, W., 141,151
Weiss, D.M., 281,293
Weiss, S., 157,193
Weller, E.F., 265, 273, 277,295
Weller, M.J., 34–36,72
Wertheimer, M., 232,258
West, C.H., 80,108
Westland, J.C., 268,295
Wheeler, D., 270, 277,295
White, D., 292,294
White, H., 53,73
White, J.L., 167,197
Whitmire, S.A., 325, 326, 335,347
Wielinga, B., 20,70, 176,198
Wiklund, J., 118,147
Wilkinson, P.T., 80,105
Williams, B.C., 171, 173,198
Williams, R., 181,200
Williams, R.J., 54,73
Winters, J.P., 337,346
Witkin, A., 214,256
Witkin, A.P., 114,151
Witten, I.H., 189,201
Wittig, G.E., 311,346, 347
Wohletz, K.H., 138, 143,148
Wolper, P., 79, 81, 90, 92, 93, 95, 96, 99, 101,

106, 108
Won, C.S., 215,255

AUTHOR INDEX 407

Wong, K.C.P., 58,74
Woodcock, N., 27, 51, 56, 58,71, 73
Wooden, J., 351,395
Woodhouse, R., 181,200
Wooldridge, M.J., 30–32, 34,71, 72
Worring, M., 205,258
Wotawa, F., 20,70
Wu, P., 239,258
Wu, Y., 239,258
Wyszecki, G., 114, 124, 126, 127, 129,149,

151

X

Xing, H., 23,71

Y

Yamada, A., 213,257
Yang, S., 215, 216,256
Yang, Z., 112,151

Yanker, P., 212,255
Yannakakis, M., 93, 95, 96, 100,106, 107
Yao, X., 60,74
Yen, V.C., 30,71
Yin, H., 49,73
Young, R.A., 117,151
Yu, W., 283, 286, 290,295

Z

Zabih, R., 213,257
Zafiropulo, P., 80,108
Zdrahal, Z., 176,199
Zelkowitz, M., 157,194
Zhang, H., 238,258
Zhou, S., 244,256
Zhou, X., 238,258
Zhu, Y., 166,196
Ziles, S., 262,295
Zlatereva, N., 157,194
Zurada, J.M., 48,73

This page intentionally left blank

Subject Index

3D function points, 325–6

A

Abduction, 11
Abran, Alain, 327
Abstract interpretation, 160
Abstraction, 166, 370, 376
Acceptance, 84

Büchi, 85
Access function, 18
Accreditation Board for Engineering and

Technology (ABET), 352
Action variables, 29
Actions, definition, 82
Actors, 337
Adaptation, 181, 182–3
Adaptive AI systems, 182–92

data anomaly detectors, 187–9
external validity, 183–5
learning rates, 185–7
readability, 190
stability, 189–90

Adjudicator module, 65
Adjusted function points (AFPs), 307
Adjusted Use Case Points, 338
Agent communication languages (ACLs), 37
Agents

definition, 30
intelligentseeIntelligent agents

Aggregation, 336
AI seeArtificial intelligence
Albrecht, Allan, 301–4, 310, 319, 320
Albrecht function points

1979 definition, 302–3
1984 revision, 303–7

adjusted function points, 306–7
component types, 304
unadjusted function points, 303–6

criticisms of, 320
see alsoIFPUG function points

Algebra, 355
Algorithmic problem solving, 369–71, 381
Algorithmic and Rule-Based Blackboard

System (ARBS), 58
Algorithms, 326–7

analysis of, 363
composing from patterns, 358
correctness of, 379

Alleles, 41
Alloy, 371
Alternating bit protocol, 80–1
Aluminum foil, 143, 144
‘Always’ operator, 88
Ambivalence, 175
Analytic Hierarchy Process, 311
Andersen–Darling test, 141, 142
Angular radial transform (ART), 217
Anomaly detectors, 187–9
Antecedents, 14
Anytime algorithms, 179
Approver, 80
ARBS, 58
ART-2 network, 49
Artificial intelligence, 3–69, 154

advances, 69
benefits, 66–7
definition, 3
embedded, 68
features of systems, 157
networked, 67
situated, 67–9
tools, types, 3–4
verification and validation inseeSoftware

verification
see alsoGenetic algorithms; Hybrid systems;

Intelligent agents; Neural networks;
Rule-based systems

409

410 SUBJECT INDEX

ASIMO humanoid robot, 5
Askables, 174
Aspects

active, 244, 250
correlations between, 253
definition, 240
entangled, 252
and feature types, 241–2
informative, 253–4
neutral, 240
passive, 244, 250
relevance enhancing (relevant), 240, 244, 250
relevance inhibiting, 240, 244, 250
salient, 241, 245
selection, 250–2

AND-sense, 252
OR-sense, 252

Assertions, 379
Assertive reasoningseeDeclarative/assertive

reasoning
Audiovisual data content types, 232
Automata, finiteseeFinite automata
Automata theoretic verification method, 81
Automation, 66
Autonomy, 30
Axiom, 376

B

Back-error propagation algorithm, 54
Back-propagation networkseeMultilayer

perceptrons (MLPs)
Backbones, 181
Backfiring, 317–19
Backtracking, 14
Backward-chaining, 10, 14–15
Baldwinian inheritance, 63–4
BANDERA, 165, 166
Bang, 323–4
Bayes’ theorem, 27
Bayesian updating, 26, 27–8
Behavior

classes of, 79
instances of, 79

Beliefs–desires–intentions (BDI) architecture,
32, 69

Bitstate hashing, 100–2

Blackboard systems, 57–9
Body reflectance, 126
Boeing, 325–6
Bouguer’s law for absorption, 129
Büchi acceptance, 85
Bucket-brigade algorithm, 64

C

C Global Surveyor (CGS), 161
Call processing software, 102, 103–4
Capability Maturity Model—Integrated

(CMMI), 279, 292
Capability Maturity Model for Software

(CMM), 279, 292
Capture–recapture methods, 269–70
Case analysis, 370, 381
Case-based reasoning (CBR), 24, 25–6
Causal analysis team, 287
Causal systems, 281–6

elements, 284–6
actions, 284, 285
objectives, 284–5
observations, 284, 285

Causality, 282
Certainty theory, 26–7
Certified Function Point Specialists, 307
Choueka’s flag construction, 98, 99
Chromosomes, 40–1, 60, 61
Circularities, 175
Class diagrams, 334, 335, 336
Classes, 18
Classification, 46, 50–3, 62
Closed-world assumption, 11, 13
Clustering, 46–7
CMM, 279, 292
CMMI, 279, 292
CodeSurfer, 161, 162
Cognitive learning, 382
Cognitive patterns, 176
Cognitive vision, 110–47

expectation in, 112, 147
introduction, 110–13
knowledge in, 112, 147
semantics in, 147
see alsoInvariance; Natural image statistics;

Visual measurements
Color, 212–13

SUBJECT INDEX 411

perceived, 114
Color coalitions, 221–2, 224–7

labeling, 224–5
region growing strategies, 227
selection, 226–7

Color combinations, 225
Color constancy, 124
Color indices, 224
Color invariance, 124–34

color formation
for light reflection, 125–7
for light transmission, 127–9

invariants for object reflectance or
transmittance, 130–4

invariants for specular reflection, 133
special cases, 129–30

Color set, 224
Color Structure Descriptor (CSD), 213
Colorimetry, 114

CIE 1964 XYZ basis, 117
Commercial systems, 324
Common Software Measurement International

ConsortiumseeCOSMIC
CommonKADS, 176
Communication protocols, 79–81, 162
Competitive models, 34
Complex processing, 306
Complexity feature, 241
Components of expertise, 176
Compositional reasoning, 166
Computational intelligence (CI), 4
Computer science (CS)

mathematics in educationseeMathematics,
in CS and SE education

vs. software engineering, 352–3
Concurrency, 79, 178
Concurrency nondeterminism, 178, 182
Conditional response, 92
Configurable role-limiting methods, 176
Conflict set, 13, 17
Connectedness, 228
Connectionism, 45
Content based image retrieval, 204–55

image content representationseeImage
features, extraction

MPEG-7 description of design imagessee
MPEG-7

outlook, 254

see alsoFigure-ground segregation;
FOUNDIT CBIR system; Relevance
feedback

Continuous mathematics, 385
Contour Shape Descriptor (CSD), 217
Contract nets, 34, 36
Contrast

edge, 138
image, 139
line, 119–20

Control charts, 272
at organizational level, 279–80
common mistakes, 279–81
different process instantiations, 280–1
issues in application, 276–9
techniques, 273–6
U chart, 274–5, 277–9
XmR charts, 275–6, 277, 279

Control decisions, 28–9
Control-flow analysis, 160
Control groups, 328
Control transactions, 328
Cooperative models, 34–5

comparison of, 36
Cooperative problem-solving framework,

34–5, 36
Corel image collection experiment, 140–6
COSMIC, 327–33
COSMIC-FFP, 314, 329–32

experience with, 332–3
future work, 341
ISO/IEC 19761 standard, 340
layers, 331
measurement viewpoints, 331–2
and UML, 335

COSMIC functional size unit (Cfsu), 331
Cost functions, 39, 60
Counting Practices Manual

IFPUG, 307, 312, 314, 334, 340
Mark II FPA, 322, 323

CPS framework, 34–5, 36
Critical systems, 182
Cross-validation,N -way, 183–5
Crossover, 41–2

uniform, 42
CTL, 105
Curet collection, 140, 142, 143, 144

412 SUBJECT INDEX

Curvature scale space (CSS), 217
Cyclomatic complexity, 321

D

DARBS, 58, 68
Dartmouth conference (1956), 4
Data abstraction, 166
Data anomaly detectors, 187–9
Data Bang, 324
Data communications, 306, 313
Data entity types, 321
Data-flow analysis, 160
Data groups, 330
Data mining, 25, 47
Data objects, definition, 82
Data races, 159
Data strong systems, 324
DCA seeDefect Causal Analysis
Dead-leaves occlusion, 140
Deadlocks, 159
Decision support systems, 313
Decision-tree learning, 183, 184
Declarative/assertive reasoning, 367–9, 370

vs. imperative/operational reasoning, 367–8
Decoration design images, 205
Deduction, 11
Defect analysis, 260–93

definition, 260
industry adoption, 292
learning and improvement, 281–91

causal systems, 281–6
see alsoDefect Causal Analysis

modeling for quality managementsee
Software quality modeling

process performance monitoring, 270–81
see alsoSPC

purposes, 261
research activity, 292–3

Defect Causal Analysis (DCA), 286–91
benefits, 290–1
costs, 291
overview of procedure, 287–90
pre-requisites, 286–7
principles, 286

Defects
costs of removing, 268

definition, 260
information recorded about, 260
types, 268–9

Deliberation, 32
DeMarco’s Function Weight, 324
Demon, two-state non-deterministic, 93
Dempster–Shafer theory of evidence, 27
Depth-first numbers, 93
Description Definition Language (DDL), 233
Design spacing, 219
DETs, 336
Developer measurement viewpoint, 331–2
Diagnosability properties, 172
“Diamond” principle, 182
Dichromatic reflection model, 129
Discrete mathematics, 373–4, 375, 378, 380,

382, 385
course syllabus, 383–4

Distributed data processing, 306
Distributed software systems, 79

see alsoSoftware model checking
Domain understanding, 66
Dominance filtering, 181
Dominant Color Descriptor (DCD), 213

E

EAGLE system, 160
Ease of installation, 306
Ease of operation, 307
Edge Histogram Descriptor (EHD), 214, 215,

216
Edges

contrast, 138
detection, 118–21, 134, 135, 137–8
strength, 140

Effort
and Bang, 324
and Cfsu, 332
and IFPUG function points, 303, 310–11,

312, 314, 317
and Mark II function points, 320, 321, 322
object-oriented software, 336, 337, 338

Eiffel, 371
Elitism, 44
End user efficiency, 306
End user measurement viewpoint, 331–2
Energy density function, 113

SUBJECT INDEX 413

spatio-spectral, 116
Engineering, 352, 357
Engineering software, 313
Environment Factor (EF), 338
Environmental (external) determinism, 178,

179–80, 183
Erosion, 225, 226
‘Eventually’ operator, 88
Evolutionary algorithm, 41
Evolutionary computation, 38–40
Exemplars, 219
EXPECT, 178
Expectation, in cognitive vision, 112, 147
Expert systems, 8, 320
Explanation-based learning(EBL), 24
Explanation module, 8
Extended finite state automataseeFinite

automata, extended
External inputs, 304
External inquiries, 304
External interface files, 304
External outputs, 304

F

Facets, 18
Facilitate change, as general system

characteristic, 307
Facts, derived, 9–10
Fairness, 98–9

strong, 98
weak, 98

False negatives, 160
False positives, 161
Fault diagnosis, 19–23
Feature Points, 326–7
Features, imageseeImage features
Feedback image sets, 247
Feedforward networks, 49
Figure-ground segregation, 219–32

classification, 227–8
color coalition detection, 224–7
results, 229–32
synthesis, 228–9

Filling coefficient, 228
Final hypothesis, 174
Finite automata, 82–7

expansion of, 86–7
extended

asynchronous product, 85
definition, 82
synchronous product, 90–1

pure, 86
Finite State Machine, 325
“Fish bone” diagrams, 285, 288
Fitness functions, 39
Flex KBS toolkit, 12
Focal attention, 112, 147
Forward-chaining, 10, 11–14

directed, 16
Foundations of computing courses, 380–4

alumni survey, 385–7
list processing lab exercises, 390–2
sample first exam, 388–90
syllabus, 387–8

FOUNDIT CBIR system, 207–10
collection box, 208
color code books, 213
feature extraction engine, 207
graphical user interface, 207
inference engine, 207, 208
learning assistant, 210
relevance model, 208

FPA seeFunction Point Analysis
Fractal dimension, 139
Frame-based systems, 17–19, 157
Frames, 17, 19
Fresnel reflectance, 125–6, 127, 128, 129
Friezes, 216
Full Function Points (FFP), 328–9

COSMICseeCOSMIC-FFP
Function, component, 20
Function Bang, 324
Function calls, 103
Function Point Analysis (FPA), 308, 312

first phase, 303
Mark II, 322
second phase, 306

Function Point Measurement Model (FPMM),
309, 310

Function Point Productivity Model (FPPM),
309, 310

Function points
3D, 325–6
adjusted (AFPs), 307

414 SUBJECT INDEX

Object Oriented (OOFPs), 336–7
standards, 339–40
unadjusted (UFPs), 306, 316, 321, 322–3
see alsoAlbrecht function points;

COSMIC-FFP; Full Function Points;
IFPUG function points; Mark II
function points

Function strong systems, 324, 325
Function Weight, 324
Functional complexity, 305, 325
Functional processes, 329–30
Functional Size Measurement Methods

(FSMMs), 339–40
Functionality, 299, 311, 312

layers of, 329
length vs., 299–300

Funnel assumption, 181
Fuzzy logic, 27, 28–30, 45

genetic-fuzzy systems, 60–1
neuro-fuzzy systems, 61–2

G

Gabor filter, 122–3
Gaussian color model, 115
General systems characteristics (GSCs),

306–7, 313–14
Generalization, 336, 361

see alsoInduction, mathematical
Generalized delta rule, 54
Generic tasks, 176
Genes, 40
Genetic algorithms (GAs), 38–44, 183

chromosomes, 40–1, 60, 61
crossover, 41–2
evolutionary computation, 38–40
mutation, 42, 189
parameter selection, 44
selection, 43–4
validity check, 42–3

Genetic-fuzzy systems, 60–1
Genetic-neural systems, 59–60
Geometric invariance, 123, 124
Geometric mosaics, 232
Gestalt grouping principles, 232
Gradient gauge, 123
Gradient magnitude, 145

Grain size, 139
Ground instability, 221
Ground probability, 227, 228
Grounds, nested, 221
Guarantee property, 88

H

Handshake problem, 358–60
variation, 360–1, 392

Hardware redundancy, 156
Hardware verification, 81, 105
Haskel, 372, 375, 376
Hearsay-II blackboard system, 57, 58
Heavily used configuration, 306, 314
Highlights, 123

boundaries, 134
Homogeneous Texture Descriptor (HTD), 215
Hopfield network, 48
Hue, 130, 133

spatial derivative, 133
Human vision, 117
Hybrid systems, 57–66, 313, 324

blackboard systems for multifaceted
problems, 57–9

capability enhancement, 61–5
convergence of techniques, 57
parameter setting, 59–61
rule extraction, 65–6

I

IBM, applications development, 301, 302, 309
IFPUG, 307–8

Counting Practices Committee, 307
Counting Practices Manual, 307, 312, 314,

334, 340
IFPUG function points

backfiring, 317–19
and BANG, 324
component types, 304

correlations between, 317
and COSMIC, 332
function point breakdown, 315–17
future work, 341
general systems characteristics (GSCs),

306–7, 313–14
ISO/IEC 20926 standard, 340

SUBJECT INDEX 415

ISO/IEC 24570 standard, 340
prevalence, 309
relationship with Mark II function points,

322–3
subjectivity, 312
success, 308–9
theoretical construction problems, 309–10
validation of count, 316–17
Value Adjustment Factor (VAF), 306,

314–15, 340
weighting of components, 310
what is measured, 311–12
what is missed out, 312–13
see alsoAlbrecht function points

Image categoriesseeStreams
Image databases, special purpose, 204–5
Image definition domain, 224
Image features

complexity, 241
“direction-type”, 241
extraction, 211–19

checking in, 211–12
color, 212–13
complexity, 215–16
direction, 214–15
global characterization, 212–16
object variation, 219
periodicity, 216
region properties, 217
shape, 217–19
spatial organization, 219
texture, 215

ordered, 241
types, 241–2
unordered, 241
value distributions, 242
weights, 239

Image perception, 38
Imperative/operational reasoning, 367, 370

vs. declarative/assertive reasoning, 367–8
In-Situ Propellant Production (ISPP), 172
Induction, 11

definition, 361
mathematical, 360, 361, 373–5, 379, 382,

384
structural, 375

Inductive reasoning, 358, 361–7, 369–70, 384
Inevitability, 92

Inference engines, 7–8, 10
data-drivenseeForward-chaining
goal-drivenseeBackward-chaining
hybrid, 16–17

Inference network, 10
Inferno, 27
Inheritance, 63–4
Inspections, software, 277
Installation, ease of, 306
Instructions

declarative, 383
imperative, 383

Intelligent agents, 30–8
architectures

emergent behavior, 31–2
knowledge-level, 32
layered, 33
logic-based, 31

characteristics, 30–3
deliberative, 32
multiagent systems, 33–7

benefits, 33–4
building, 34–5
communication between agents, 37
comparison of cooperative models, 36

reactive, 31
situated, 30
swarm intelligence, 37–8

Intelligent behavior, spectrum of, 4–5
Internal logical files, 304, 316
International Function Point Users Groupsee

IFPUG
International Software Benchmarking

Standards Group (ISBSG), 315, 316,
333

Invariance, 92, 111–12, 123–34
colorseeColor invariance
geometric, 123, 124
invariant image interpretation, 134
photometric, 123, 124
projection, 123
rotational, 123

ISO Standard 9001, 292
ISO/IEC 14143 Functional Size Measurement,

339–40
Iteration, 373, 375

416 SUBJECT INDEX

Iterative problem solving, 359
Iterative search refinement, 102

J

Java Path Explorer (JPaX), 160
Java PathFinder, 165

K

K9 planetary rover, 160, 167
KA scripts, 177–8
Knowledge

in cognitive vision, 112, 147
common, representation of, 237

Knowledge acquisition, 23
Knowledge archiving, 67
Knowledge base, 7–8
Knowledge level, 175–8
Knowledge Query and Manipulation

Language (KQML), 37
Knowledge-based systems (KBSs), 4, 6–8
Kohonen self-organizing network, 49
Kolmogorov’s Existence Theorem, 53, 59
KQML, 37
Kubelka–Munk theory, 124–5, 127, 129, 131,

133, 134
Kullback–Leibler divergence, 141

L

Labeled transition systems, 83
Lamarckian inheritance, 63–4
Lambert–Beer’s law for absorption, 129
Lambertian reflection, 126, 129–30, 140
Language, 91
Larch, 377
Layers, 331
LCSs, 64–5
Learners

brittle, 189
stable, 189–90

Learning
by analogy, 24
by induction, 24
explanation-based (EBL), 24
explorative/unsupervised, 24–5

from advice, 24, 25
rote, 24, 25
supervised, 24, 46, 48
unsupervised, 46

Learning classifier systems (LCSs), 64–5
Learning rates, 54, 185–7
Leave-one-out technique, 56
Length, programseeProgram length
Life-cycle defect profiles, 262–9

analytical model, 265–7
assumptions, 262
empirical model, 263–5
interpreting differences, 267–8
Orthogonal Defect Classification (ODC),

268–9
Light source, 123
Likelihood, law of, 245–6
Likelihood ratios, 245–7
Linear temporal logic (LTL), 87–91

model checking, 91–102
bitstate hashing, 100–2
compression techniques, 100
depth-first search, 92–3
nested depth-first search, 93–8
on-the-fly procedure, 99
partial order reduction, 99–100
process fairness, 98–9

standard formulae, 88–90
synchronous product, 90–1

Lines
brightness, 120
contrast, 119–20
detection, 118–21

Lines of code (LOC), 299, 336–7
and function points, 303, 317–19

LISP, 372
Literals, 174
Livingstone, 171–2
LOC seeLines of code
Local expertise, in causal analysis, 286
Loci, 41
Logic, 355, 381, 382

predicate, 379, 382
propositional, 382
see alsoFuzzy logic

Lowlinks, 93

SUBJECT INDEX 417

LTL seeLinear temporal logic
LVQ, 242

M

Management information systems, 313
Maple, 376
Mark II function points, 319–23

adjustment phase, 314
FPA Counting Practices Manual, 322, 323
future work, 341
ISO/IEC 20968 standard, 340
logical transactions, 321
prevalence in UK, 309
relationship with IFPUG function points,

322–3
system characteristics, 322

Massiveness, 228
Master-variables, 181
Match stick squares problems, 362–3, 392
Matching, 358
Material boundaries, 134
Mathematica, 376
Mathematical Association of America (MAA),

373
Mathematical inductionseeInduction,

mathematical
Mathematical reasoning, 356–7, 376, 377
Mathematics

application domains, 376, 377
continuous, 385
in CS and SE education, 350–84

curricula issues, 377–80
motivation for, 375–7
see alsoFoundations of computing

courses
definition, 357
discrete, 373–4, 375, 378, 380, 382, 385

course syllabus, 383–4
foundational, 353–4

Matte, dull surfaces, 129, 130, 131
Maximum of sequence problem, 364–7
Means–ends analysis, 32
Measurement viewpoints, 331–2
Median absolute deviation (MAD), 219
Message structures, 37
Method-To-Task approach, 176

MIKE, 176
Milling, 136, 138–9
Minimal environments, 181
Miranda, 375, 376
Mirror reflection, 140
MIS software, 329
MLPsseeMultilayer perceptrons
Mobile telephone project, 269
Model checkingseeSoftware model checking
Model construction operators, 176
Model reduction, 166
Model-based AI systems, 168–75

declarative knowledge, 169–71
verification and validation, 171–5

Model-based reasoning, 19–23
building model, 20–1
using model, 21–3

Models, 354–6, 370, 377
Modula 3, 379
Momentum coefficient, 54
Moving range, 276, 279
MPEG-7, 232–8

abstraction mechanisms, 238
AbstractionLevelattribute, 238
classification schemes (CSs), 236
description schemes (DSs), 233–7

Affective, 238
Concept, 236
content management, 233–4
content semantics, 235–7
content structure, 234–5
CreationInformation, 233
DescriptionMetadata, 234
MatchingHint, 235
MediaInformation, 234
Object, 236
Segment, 234
SegmentDecomposition, 234
SemanticState, 236
StillRegion, 234
UsageInformation, 233

descriptors, 233
color, 213
texture, 215
visual shape, 217

feature spaces, 241
high-level design description, 237–8

Multilayer perceptrons (MLPs), 48, 49–56

418 SUBJECT INDEX

as classifiers, 50–3
network topology, 49–50
practical considerations, 55–6
training, 53–4

Multimedia Content Description Interfacesee
MPEG-7

Multiple sites, as general system characteristic,
307

Mutation, 42, 189
MYCIN, 27

N

N-Jet, 137
N -nearest neighbor classification, 227, 228
N -way cross-validation, 183–5
Natural image statistics, 112, 134–46

composition, 139–40
experiment on Corel image collection, 140–6

results, 142–6
setup, 140–2
summary of results, 146

normal distribution, 139
power-law distribution, 139

symmetric form, 141–2
regular textures, 140
scale invariance, 112
sequential fragmentation theory, 137–9

consequences, 139–40
Weibull distribution, 139, 140

Nested depth-first search, 93–8
Netherlands Software Metrics Association,

IFPUG function points variation, 340
Neural networks, 44–56, 189, 190

applications, 46–7
converged, 54
description, 44–5
nodes, 47–8
output clarification and verification, 65–6
over-trained, 55
recurrent, 49
root-mean-squared (RMS) error, 54, 55
topologies, 48–9
see alsoMultilayer perceptrons

Neuro-fuzzy systems, 61–2
Neyman–Pearson theorem, 251
Nil-actions, 85
Nodes, network, 47–8

Noise, in image designs, 231
Non-accidentality, in segmentation, 232
Non-progress cycle detection, 94–5
Nondeterminism, 178–82

concurrency, 178, 182
external/environmental, 178, 179–80, 183
internal, 178, 179
stochastic, 178, 180, 183

Nonlinear estimation, 46
Normal distribution

spatial layout, 139
for Corel collection, 141, 142, 143

Notations, 376
Numerical learning, 23–4

O

Object Oriented Function Points (OOFPs),
336–7

Object-oriented software, 333–9
development, 379
function point-like measures for OO, 335–8
mapping OO concepts to function points,

333–5
Object points, 335
Object reflectance, 124
Observation scale, 123
Office information systems, 313–14
ω-acceptance, 84–5

definition, 85
ω-runs, 85
Online data entry, 306, 313
Online update, 306
Ontologies, 237, 254
OO softwareseeObject-oriented software
Operation, ease of, 307
Operational profile, 179
Operational reasoningsee

Imperative/operational reasoning
Opportunism, 58, 59
Optimization, mathematical, 38–9
Oracle, 24
Orange peel, 143, 144
Organizational baseline, 279
Orientation analysis, 118
Orthogonal Defect Classification (ODC),

268–9
Over-training, 55

SUBJECT INDEX 419

P

Paper, ribbed, 143, 144
Partial-order reduction (POR), 166, 182
Pattern space, 52
Patterns, 357–61, 374, 381
Perception, 5

image, 38
subjective, 112

Perceptrons
multilayerseeMultilayer perceptrons

single-layered (SLPs), 50, 53
Performance, as general system

characteristic, 306, 314
Photometric invariance, 123, 124
Polarized reflection, 140
Polygon diagonals problem, 374
PolySpace Verifier, 161, 163
Possibility theoryseeFuzzy logic
Post-filter anomaly detectors, 188
Power-law distribution

spatial layout, 139
for Corel collection, 141–2, 143, 146
symmetric form, 141–2

Pre-filter anomaly detectors, 187, 188
Precision, 376–7
Predicate abstraction, 166
Predicate logic, 379, 382
Predictive Object Points (POPs), 335
Prime-implicants, 181
Probability

posterior, 246
prior, 246–7

Probability distributions, 273–4
Normal, 274, 275–6, 277
Poisson, 274–5, 277

Problem coverage, 101–2
Problem size, 299
Problem solving

algorithmic, 369–71, 381
effective, 381
methods (PSMs), 175–8
recursive, 383, 384

Procedural knowledge, 169–71
Process instantiations, 280–1
Processing complexity, 321
PRODIGY, 24
Production rules, 8–9

Productivity measurement, 301–2
Program length, 299

criticisms of measures, 300
vs. functionality, 299–300

Program slicing, 160
Programming

by contract, 379
definition, 383

Programming languages, 373
Programming Languages Table, 318, 319
Progress property, 88, 92
Projection invariance, 123
Prolog, 170, 383
PROMELA, 82, 83
Properties model, 164
Propositional logic, 382
Prototype–test–refine cycle, 67
PVS system, 167

Q

QRIO robot, 5

R

Rabbit fur, 143, 144
Race conditions, 79, 104, 156, 182
Radial basis function network, 48–9
Rational subgrouping, 280
Rationality, Principle of, 32
RAX seeRemote Agent Experiment
Rayleigh model, 265–7
Reactive systems, 179
Real-time software, 313, 325, 326, 328, 329,

333
Receptive fields, 113

anisotropic, 118–21
luminance, 117
opponent color, 115–18
red–green, 117
yellow–blue, 117

Recurrent networks, 49
Recursion, 372, 373, 375
Recursive thinking/problem solving, 359,

371–3
Redundancy, in segmentation, 232
Region Shape Descriptor (RSD), 217

420 SUBJECT INDEX

Relevance feedback, 205, 238–54
aspect-based image search, 239–41
Bayesian interpretation, 239
direct feedback approach, 207, 252
evidential approach, 247–54

aspect selection, 250–2
independence hypothesis, 248–9
informative image selection, 253–4
relevance enhancing hypotheses, 249
relevance estimation, 252–3
relevance inhibiting hypotheses, 250

evidential support measurement by
likelihood ratios, 245–7

features
complexity, 241
“direction-type”, 241
ordered, 241
types, 241–2
unordered, 241
value distributions, 242
weights, 239

learning approaches, 239
learning problem structure, 242–5
partial relevance, 243

Reliability modeling, 260
Remote Agent Experiment (RAX), 154–6

concurrency errors, 167, 182
input space, 180
MIR diagnosis component, 155–6, 175
planner module checking, 173

Resource Description Framework (RDF), 237
Response probability density function, 137
Rete networks, 17
RETs, 336
Reusability, 306, 314
RGB-filters, 118
RIME, 177
Robustness, scale, 229, 232
Root-mean-squared (RMS) error, 54, 55
Rotation, 123
Rule-based systems, 6–17, 157, 174
Rule dependence network, 16
Rule extraction, 65–6
Rules, 8–10

available, 13
deep, 13
duplicate, 174
firing of, 13

high-level, 13
limitations, 17
low-level, 13
redundant, 174

duplicate, 174
subsumed, 174
unusable, 174

shallow, 13
triggered, 13

Runs, automaton, 84
finite, 84, 85
infinite seeω-runs

Runtime monitoring, 159–60

S

Safety-critical systems, 65
Salience, 221
Saliency, aspect, 241
SALT, 177
Scalable Color Descriptor (SCD), 213
Scale robustness, 229, 232
Scale-space theory, 114, 137
Scenario-based testing, 158–9
Scene geometry, 123
Scheme, 372, 375
Science, 352
Scientific software, 313, 324, 325
SCR, 165, 166
sdlvalid , 95
Segmentation methods

color texture, 221, 224
figure-groundseeFigure-ground segregation

general, 224, 232
Selection, 43–4

roulette wheel, 43
stochastic universal, 43

Semantic attributes, 235, 236
Semantic content description, 237
Semantic entities, 235–6
Semantic gap, 205

for design images, 212
Semantic relations, 235, 236
Semantics, in visual learning, 147
Sequence diagrams, 334, 335
Sequence studies, 185
Sequential fragmentation, 136

SUBJECT INDEX 421

consequences for natural image statistics,
139–40

theory, 137–9
Shadows, 123

boundaries, 134
Shape, 217–19

categories, 218, 219
Shifting Matrix Management (SMM), 35, 36
Sigmoid function, 48, 53, 54, 56
Single-layered perceptrons (SLPs), 50, 53
Single point of failure assumption, 23
Six Sigma, 285, 292
Skills, 23
Slots, 18
SLPsseeSingle-layered perceptrons
SMV, 162, 165, 171–2
Software engineering (SE)

mathematics in educationseeMathematics,
in CS and SE education

new approaches, 67
vs. computer science, 352–3

Software inspections, 277
Software model checking, 78–105, 162–7

background, 79–82
of concurrent systems, 182
costs

rewriting, 164, 165
running, 164, 165, 166
writing, 164, 165

limitations, 79
model extraction and abstraction, 102–4
perspective, 104–5
tools, 371
see alsoFinite automata; Linear temporal

logic
Software quality

awareness of, 290
improving, 286
notions of, 260
understanding of measurement, 291

Software quality modeling, 261–70
capture–recapture methods, 269–70
life-cycle defect profiles, 262–9

analytical model, 265–7
assumptions, 262
empirical model, 263–5
interpreting differences, 267–8

Orthogonal Defect Classification (ODC),
268–9

Software redundancy, 156
Software Requirements Specification, 299
Software systems modeling, 376, 377

see alsoSoftware model checking
Software verification, 154–92

model checkingseeSoftware model
checking

runtime monitoring, 159–60
scenario-based testing, 158–9
static analysis, 160–2
theorem proving, 167–8, 383, 384
see alsoAdaptive AI systems; Knowledge

level; Model-based AI systems;
Nondeterminism

Space probes, 154–6
SPARK Ada, 371
SPARK/BURN/FIREFIGHTER (SBF), 176,

177
Spatial reach, 228
SPC, 270–81

applicability to software processes, 273
concepts, 270–2
control charts, 272

at organizational level, 279–80
common mistakes, 279–81
different process instantiations, 280–1
issues in application, 276–9
techniques, 273–6
U chart, 274–5, 277–9
XmR charts, 275–6, 277, 279

performance variation causes
common, 271, 272
special, 271, 272

Specification languages, formal, 371, 377
Spectral intensity, 115
SPIN, 78, 162

bitstate hashing, 100–2
comparison with hardware verification, 105
compression techniques, 100
embedded C code in, 104
non-progress cycle detection, 95
on-the-fly implementation, 99
partial order reduction, 99–100
RAX Executive verification by, 167
weak fairness inclusion, 98–9

SPQR/20 estimation model, 326

422 SUBJECT INDEX

Standard ML, 366, 372, 375, 376, 383
list processing lab exercises using, 390–2

State formulae, 87
State machine models, 80–1
State space explosion, 163, 178, 182
State variables, 29
States, 21, 324, 325
Static analysis, 160–2
Statistical Process ControlseeSPC
Stochastic, nondeterminism, 178, 180, 183
Streams, 229, 230
Stripes, 214–15
‘Strong until’ operator, 88
Structure, device, 20–1
Structured Analysis and Design technique, 323
Stutter-extension, 85
Subsumption architecture, 31
Subsumption hierarchy, 31
Supertrace algorithm, 101
Supervised learning, 24, 46, 48
Support vector machines, 48, 188
Swarm intelligence, 37–8
SWEEP, 266
Symbolic learning, 23–5
Symbolic methods, 166
Symbols, 376
Symmetry reduction, 166
Symons, Charles, 319–23, 326, 327

criticisms of Albrecht function points, 320
System Bang, 323–4
System boundary, 304
Systematic errors, 286, 291

identification, 288
Systems model, 163–4
Systems software, 320, 326

T

TAR3, 181, 190, 192
Tarjan’s algorithm, 92, 93
Tartan images, detection, 215
Task Object Model, 336
Task points, 336
Taylor expansion, of image, 137
Teacher, 24
Technical Complexity Adjustment (TCA)

factor, 322

Technical Complexity Factor (TCF), 338
TEIREISIAS, 171
Template matching, 363
Temporal formulae, 87
Temporal logic

formulae, 159, 165
patterns, 165
see alsoLinear temporal logic

Temporal Rover, 159
Texture analysis, 121–3
Texture Browsing Descriptor (TBD), 215
Theorem proving, 167–8, 383, 384
Touring Machines, 33
Transaction rate, 306
Transaction/production systems, 313–14
Transfer functions, 47–8
Transformations, 325, 330
Transitions, 324, 325

executable, 83
joint, 90
unexecutable, 83
valid, 86

Translation, 123
Translation lattices, 216
Transparent image formation, 140
Treatment learners, 190–2
Turing test, 4

U

U chart, 274–5, 277–9
UML, 333–5, 339
Unadjusted function points (UFPs), 306, 316,

321, 322–3
Unadjusted Use Case Points (UUCPs), 337
Uncertainty, 9

forms, 26
sources, 26–7

Use case diagrams, 335
Use case points, 337–8
Use cases, 337

V

Value Adjustment Factor (VAF), 306, 314–15,
340

Values, 18
van Hateren collection, 142

SUBJECT INDEX 423

VerificationseeHardware verification;
Software verification

Vision
computerseeCognitive vision
human, 117

Visual measurements, 111, 113–23
edge and line detection, 118–21
opponent color receptive fields, 115–18
texture analysis, 121–3

W

Wallpapers, 216
Wavelength-Fourier domain, 122
Wavelet coefficient, 139
‘Weak until’ operator, 88

Web Ontology Language (OWL), 237
Weibull distribution, 136, 138

spatial layout, 139, 140
for Corel collection, 142–6

symmetric integral form, 141
Wooden, John, 351

X

XCON computer configuration system, 177
XmR charts, 275–6, 277, 279
XYZ color matching functions, 114

Z

Z, 371, 377

This page intentionally left blank

Contents of Volumes in This Series

Volume 42

Nonfunctional Requirements of Real-Time Systems
TEREZA G. KIRNER AND ALAN M. DAVIS

A Review of Software Inspections
ADAM PORTER, HARVEY SIY, AND LAWRENCE VOTTA

Advances in Software Reliability Engineering
JOHN D. MUSA AND WILLA EHRLICH

Network Interconnection and Protocol Conversion
M ING T. L IU

A Universal Model of Legged Locomotion Gaits
S. T. VENKATARAMAN

Volume 43

Program Slicing
DAVID W. BINKLEY AND KEITH BRIAN GALLAGHER

Language Features for the Interconnection of Software Components
RENATE MOTSCHNIG-PITRIK AND ROLAND T. M ITTERMEIR

Using Model Checking to Analyze Requirements and Designs
JOANNE ATLEE, MARSHA CHECHIK, AND JOHN GANNON

Information Technology and Productivity: A Review of the Literature
ERIK BRYNJOLFSSON ANDSHINKYU YANG

The Complexity of Problems
WILLIAM GASARCH

3-D Computer Vision Using Structured Light: Design, Calibration, and Implementation Issues
FRED W. DEPIERO AND MOHAN M. TRIVEDI

Volume 44

Managing the Risks in Information Systems and Technology (IT)
ROBERT N. CHARETTE

Software Cost Estimation: A Review of Models, Process and Practice
FIONA WALKERDEN AND ROSSJEFFERY

Experimentation in Software Engineering
SHARI LAWRENCE PFLEEGER

Parallel Computer Construction Outside the United States
RALPH DUNCAN

Control of Information Distribution and Access
RALF HAUSER

Asynchronous Transfer Mode: An Engineering Network Standard for High Speed Communications
RONALD J. VETTER

425

426 CONTENTS OF VOLUMES IN THIS SERIES

Communication Complexity
EYAL KUSHILEVITZ

Volume 45

Control in Multi-threaded Information Systems
PABLO A. STRAUB AND CARLOS A. HURTADO

Parallelization of DOALL and DOACROSS Loops—a Survey
A. R. HURSON, JOFORDT. L IM , KRISHNA M. K AVI , AND BEN LEE

Programming Irregular Applications: Runtime Support, Compilation and Tools
JOEL SALTZ , GAGAN AGRAWAL , CHIALIN CHANG, RAJA DAS, GUY EDJLALI , PAUL

HAVLAK , YUAN-SHIN HWANG, BONGKI MOON, RAVI PONNUSAMY, SHAMIK SHARMA ,
ALAN SUSSMAN, AND MUSTAFA UYSAL

Optimization Via Evolutionary Processes
SRILATA RAMAN AND L. M. PATNAIK

Software Reliability and Readiness Assessment Based on the Non-homogeneous Poisson Process
AMRIT L. GOEL AND KUNE-ZANG YANG

Computer-supported Cooperative Work and Groupware
JONATHAN GRUDIN AND STEVEN E. POLTROCK

Technology and Schools
GLEN L. BULL

Volume 46

Software Process Appraisal and Improvement: Models and Standards
MARK C. PAULK

A Software Process Engineering Framework
JYRKI KONTIO

Gaining Business Value from IT Investments
PAMELA SIMMONS

Reliability Measurement, Analysis, and Improvement for Large Software Systems
JEFF TIAN

Role-based Access Control
RAVI SANDHU

Multithreaded Systems
KRISHNA M. K AVI , BEN LEE, AND ALLI R. HURSON

Coordination Models and Language
GEORGEA. PAPADOPOULOS ANDFARHAD ARBAB

Multidisciplinary Problem Solving Environments for Computational Science
ELIAS N. HOUSTIS, JOHN R. RICE, AND NAREN RAMAKRISHNAN

Volume 47

Natural Language Processing: A Human-Computer Interaction Perspective
BILL MANARIS

Cognitive Adaptive Computer Help (COACH): A Case Study
EDWIN J. SELKER

Cellular Automata Models of Self-replicating Systems
JAMES A. REGGIA, HUI-HSIEN CHOU, AND JASON D. LOHN

Ultrasound Visualization
THOMAS R. NELSON

CONTENTS OF VOLUMES IN THIS SERIES 427

Patterns and System Development
BRANDON GOLDFEDDER

High Performance Digital Video Servers: Storage and Retrieval of Compressed Scalable Video
SEUNGYUP PAEK AND SHIH-FU CHANG

Software Acquisition: The Custom/Package and Insource/Outsource Dimensions
PAUL NELSON, ABRAHAM SEIDMANN , AND WILLIAM RICHMOND

Volume 48

Architectures and Patterns for Developing High-performance, Real-time ORB Endsystems
DOUGLAS C. SCHMIDT, DAVID L. L EVINE, AND CHRIS CLEELAND

Heterogeneous Data Access in a Mobile Environment – Issues and Solutions
J. B. LIM AND A. R. HURSON

The World Wide Web
HAL BERGHEL AND DOUGLAS BLANK

Progress in Internet Security
RANDALL J. ATKINSON AND J. ERIC KLINKER

Digital Libraries: Social Issues and Technological Advances
HSINCHUN CHEN AND ANDREA L. HOUSTON

Architectures for Mobile Robot Control
JULIO K. ROSENBLATT AND JAMES A. HENDLER

Volume 49

A Survey of Current Paradigms in Machine Translation
BONNIE J. DORR, PAMELA W. JORDAN, AND JOHN W. BENOIT

Formality in Specification and Modeling: Developments in Software Engineering Practice
J. S. FITZGERALD

3-D Visualization of Software Structure
MATHEW L. STAPLES AND JAMES M. B IEMAN

Using Domain Models for System Testing
A. VON MAYRHAUSER AND R. MRAZ

Exception-handling Design Patterns
WILLIAM G. BAIL

Managing Control Asynchrony on SIMD Machines—a Survey
NAEL B. ABU-GHAZALEH AND PHILIP A. W ILSEY

A Taxonomy of Distributed Real-time Control Systems
J. R. ACRE, L. P. CLARE, AND S. SASTRY

Volume 50

Index Part I
Subject Index, Volumes 1–49

Volume 51

Index Part II
Author Index
Cumulative list of Titles
Table of Contents, Volumes 1–49

428 CONTENTS OF VOLUMES IN THIS SERIES

Volume 52

Eras of Business Computing
ALAN R. HEVNER AND DONALD J. BERNDT

Numerical Weather Prediction
FERDINAND BAER

Machine Translation
SERGEI NIRENBURG AND YORICK WILKS

The Games Computers (and People) Play
JONATHAN SCHAEFFER

From Single Word to Natural Dialogue
NEILS OLE BENSON AND LAILA DYBKJAER

Embedded Microprocessors: Evolution, Trends and Challenges
MANFRED SCHLETT

Volume 53

Shared-Memory Multiprocessing: Current State and Future Directions
PER STEUSTRÖM, ERIK HAGERSTEU, DAVID I. L ITA , MARGARET MARTONOSI, AND

MADAN VERNGOPAL

Shared Memory and Distributed Shared Memory Systems: A Survey
KRISHNA KAUI , HYONG-SHIK K IM , BEU LEE, AND A. R. HURSON

Resource-Aware Meta Computing
JEFFREYK. HOLLINGSWORTH, PETER J. KELCHER, AND KYUNG D. RYU

Knowledge Management
WILLIAM W. AGRESTI

A Methodology for Evaluating Predictive Metrics
JASRETT ROSENBERG

An Empirical Review of Software Process Assessments
KHALED EL EMAM AND DENNIS R. GOLDENSON

State of the Art in Electronic Payment Systems
N. ASOKAN, P. JANSON, M. STEIVES, AND M. WAIDNES

Defective Software: An Overview of Legal Remedies and Technical Measures Available to Consumers
COLLEEN KOTYK VOSSLER ANDJEFFREYVOAS

Volume 54

An Overview of Components and Component-Based Development
ALAN W. BROWN

Working with UML: A Software Design Process Based on Inspections for the Unified Modeling Language
GUILHERME H. TRAVASSOS, FORRESTSHULL , AND JEFFREYCARVER

Enterprise JavaBeans and Microsoft Transaction Server: Frameworks for Distributed Enterprise
Components

AVRAHAM LEFF, JOHN PROKOPEK, JAMES T. RAYFIELD , AND IGNACIO SILVA -LEPE

Maintenance Process and Product Evaluation Using Reliability, Risk, and Test Metrics
NORMAN F. SCHNEIDEWIND

Computer Technology Changes and Purchasing Strategies
GERALD V. POST

Secure Outsourcing of Scientific Computations
M IKHAIL J. ATALLAH , K. N. PANTAZOPOULOS, JOHN R. RICE, AND EUGENE SPAFFORD

CONTENTS OF VOLUMES IN THIS SERIES 429

Volume 55

The Virtual University: A State of the Art
L INDA HARASIM

The Net, the Web and the Children
W. NEVILLE HOLMES

Source Selection and Ranking in the WebSemantics Architecture Using Quality of Data Metadata
GEORGEA. M IHAILA , LOUIQA RASCHID, AND MARIA -ESTERV IDAL

Mining Scientific Data
NAREN RAMAKRISHNAN AND ANANTH Y. GRAMA

History and Contributions of Theoretical Computer Science
JOHN E. SAVAGE , ALAN L. SALEM , AND CARL SMITH

Security Policies
ROSSANDERSON, FRANK STAJANO, AND JONG-HYEON LEE

Transistors and 1C Design
YUAN TAUR

Volume 56

Software Evolution and the Staged Model of the Software Lifecycle
KEITH H. BENNETT, VACLAV T. RAJLICH, AND NORMAN WILDE

Embedded Software
EDWARD A. L EE

Empirical Studies of Quality Models in Object-Oriented Systems
L IONEL C. BRIAND AND JÜRGEN WÜST

Software Fault Prevention by Language Choice: Why C Is Not My Favorite Language
RICHARD J. FATEMAN

Quantum Computing and Communication
PAUL E. BLACK , D. RICHARD KUHN, AND CARL J. WILLIAMS

Exception Handling
PETER A. BUHR, ASHIF HARJI, AND W. Y. RUSSELL MOK

Breaking the Robustness Barrier: Recent Progress on the Design of the Robust Multimodal System
SHARON OVIATT

Using Data Mining to Discover the Preferences of Computer Criminals
DONALD E. BROWN AND LOUISE F. GUNDERSON

Volume 57

On the Nature and Importance of Archiving in the Digital Age
HELEN R. TIBBO

Preserving Digital Records and the Life Cycle of Information
SU-SHING CHEN

Managing Historical XML Data
SUDARSHAN S. CHAWATHE

Adding Compression to Next-Generation Text Retrieval Systems
NIVIO ZIVIANI AND EDLENO SILVA DE MOURA

Are Scripting Languages Any Good? A Validation of Perl, Python, Rexx, and Tcl against C, C++, and
Java

LUTZ PRECHELT

430 CONTENTS OF VOLUMES IN THIS SERIES

Issues and Approaches for Developing Learner-Centered Technology
CHRIS QUINTANA , JOSEPHKRAJCIK, AND ELLIOT SOLOWAY

Personalizing Interactions with Information Systems
SAVERIO PERUGINI AND NAREN RAMAKRISHNAN

Volume 58

Software Development Productivity
KATRINA D. MAXWELL

Transformation-Oriented Programming: A Development Methodology for High Assurance Software
V ICTOR L. W INTER, STEVE ROACH, AND GREG WICKSTROM

Bounded Model Checking
ARMIN BIERE, ALESSANDROCIMATTI , EDMUND M. CLARKE , OFER STRICHMAN , AND

YUNSHAN ZHU

Advances in GUI Testing
ATIF M. M EMON

Software Inspections
MARC ROPER, ALASTAIR DUNSMORE, AND MURRAY WOOD

Software Fault Tolerance Forestalls Crashes: To Err Is Human; To Forgive Is Fault Tolerant
LAWRENCE BERNSTEIN

Advances in the Provisions of System and Software Security—Thirty Years of Progress
RAYFORD B. VAUGHN

Volume 59

Collaborative Development Environments
GRADY BOOCH AND ALAN W. BROWN

Tool Support for Experience-Based Software Development Methodologies
SCOTT HENNINGER

Why New Software Processes Are Not Adopted
STAN RIFKIN

Impact Analysis in Software Evolution
M IKAEL L INDVALL

Coherence Protocols for Bus-Based and Scalable Multiprocessors, Internet, and Wireless Distributed
Computing Environments: A Survey

JOHN SUSTERSIC ANDALI HURSON

Volume 60

Licensing and Certification of Software Professionals
DONALD J. BAGERT

Cognitive Hacking
GEORGECYBENKO, ANNARITA GIANI , AND PAUL THOMPSON

The Digital Detective: An Introduction to Digital Forensics
WARREN HARRISON

Survivability: Synergizing Security and Reliability
CRISPIN COWAN

Smart Cards
KATHERINE M. SHELFER, CHRIS CORUM, J. DREW PROCACCINO, AND JOSEPHDIDIER

CONTENTS OF VOLUMES IN THIS SERIES 431

Shotgun Sequence Assembly
M IHAI POP

Advances in Large Vocabulary Continuous Speech Recognition
GEOFFREYZWEIG AND M ICHAEL PICHENY

Volume 61

Evaluating Software Architectures
ROSEANNETESORIEROTVEDT, PATRICIA COSTA, AND M IKAEL L INDVALL

Efficient Architectural Design of High Performance Microprocessors
L IEVEN EECKHOUT AND KOEN DE BOSSCHERE

Security Issues and Solutions in Distributed Heterogeneous Mobile Database Systems
A. R. HURSON, J. PLOSKONKA, Y. JIAO , AND H. HARIDAS

Disruptive Technologies and Their Affect on Global Telecommunications
STAN MCCLELLAN , STEPHENLOW, AND WAI -TIAN TAN

Ions, Atoms, and Bits: An Architectural Approach to Quantum Computing
DEAN COPSEY, MARK OSKIN, AND FREDERICT. CHONG

Volume 62

An Introduction to Agile Methods
DAVID COHEN, M IKAEL L INDVALL , AND PATRICIA COSTA

The Timeboxing Process Model for Iterative Software Development
PANKAJ JALOTE, AVEEJEETPALIT , AND PRIYA KURIEN

A Survey of Empirical Results on Program Slicing
DAVID BINKLEY AND MARK HARMAN

Challenges in Design and Software Infrastructure for Ubiquitous Computing Applications
GURUDUTH BANAVAR AND ABRAHAM BERNSTEIN

Introduction to MBASE (Model-Based (System) Architecting and Software Engineering)
DAVID KLAPPHOLZ AND DANIEL PORT

Software Quality Estimation with Case-Based Reasoning
TAGHI M. K HOSHGOFTAAR ANDNAEEM SELIYA

Data Management Technology for Decision Support Systems
SURAJIT CHAUDHURI , UMESHWAR DAYAL , AND VENKATESH GANTI

Volume 63

Techniques to Improve Performance Beyond Pipelining: Superpipelining, Superscalar, and VLIW
JEAN-LUC GAUDIOT, JUNG-YUP KANG, AND WON WOO RO

Networks on Chip (NoC): Interconnects of Next Generation Systems on Chip
THEOCHARIS THEOCHARIDES, GREGORY M. L INK , NARAYANAN V IJAYKRISHNAN , AND

MARY JANE IRWIN

Characterizing Resource Allocation Heuristics for Heterogeneous Computing Systems
SHOUKAT ALI , TRACY D. BRAUN, HOWARD JAY SIEGEL, ANTHONY A. M ACIEJEWSKI,

NOAH BECK, LADISLAU BÖLÖNI, MUTHUCUMARU MAHESWARAN, ALBERT I. REUTHER,
JAMES P. ROBERTSON, M ITCHELL D. THEYS, AND BIN YAO

Power Analysis and Optimization Techniques for Energy Efficient Computer Systems
WISSAM CHEDID, CHANSU YU, AND BEN LEE

Flexible and Adaptive Services in Pervasive Computing
BYUNG Y. SUNG, MOHAN KUMAR , AND BEHROOZSHIRAZI

432 CONTENTS OF VOLUMES IN THIS SERIES

Search and Retrieval of Compressed Text
AMAR MUKHERJEE, NAN ZHANG, TAO TAO, RAVI V IJAYA SATYA , AND WEIFENG SUN

Volume 64

Automatic Evaluation of Web Search Services
ABDUR CHOWDHURY

Web Services
SANG SHIN

A Protocol Layer Survey of Network Security
JOHN V. HARRISON AND HAL BERGHEL

E-Service: The Revenue Expansion Path to E-Commerce Profitability
ROLAND T. RUST, P.K. KANNAN , AND ANUPAMA D. RAMACHANDRAN

Pervasive Computing: A Vision to Realize
DEBASHIS SAHA

Open Source Software Development:Structural Tension in the American Experiment
COSKUN BAYRAK AND CHAD DAVIS

Disability and Technology: Building Barriers or Creating Opportunities?
PETER GREGOR, DAVID SLOAN , AND ALAN F. NEWELL

