


Advances in

COMPUTERS

VOLUME 70



This page intentionally left blank



Advances in

COMPUTERS

EDITED BY

MARVIN V. ZELKOWITZ
Department of Computer Science
and Institute for Advanced Computer Studies
University of Maryland
College Park, Maryland

VOLUME 70

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD
PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier



Academic Press is an imprint of Elsevier
84 Theobald’s Road, London WC1X 8RR, UK
Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
525 B Street, Suite 1900, San Diego, CA 92101-4495, USA

First edition 2007

Copyright © 2007 Elsevier Inc. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written
permission of the publisher

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alter-
natively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/
permissions, and selecting Obtaining permission to use Elsevier material

Notice
No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a
matter of products liability, negligence or otherwise, or from any use or operation of any methods, products,
instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in
particular, independent verification of diagnoses and drug dosages should be made

ISBN-13: 978-0-12-373747-2

ISSN: 0065-2458

For information on all Academic Press publications
visit our website at books.elsevier.com

Printed and bound in USA

07 08 09 10 11 10 9 8 7 6 5 4 3 2 1



Contents

CONTRIBUTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Designing Networked Handheld Devices to Enhance School Learning

Jeremy Roschelle, Charles Patton, and Deborah Tatar

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Historical Large Scale Successes . . . . . . . . . . . . . . . . . . . . . . . 6
3. Technology Context for Learning Applications . . . . . . . . . . . . . . . . 20
4. Overarching Ideas from the Learning Sciences . . . . . . . . . . . . . . . . 32
5. Design of Instructional Technologies . . . . . . . . . . . . . . . . . . . . . 43
6. Looking Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Interactive Explanatory and Descriptive Natural-Language Based
Dialogue for Intelligent Information Filtering

John Atkinson and Anita Ferreira

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3. A Model for Interactive Web-Driven and Dialogue-Based Search . . . . . . 73
4. Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

v



vi CONTENTS

A Tour of Language Customization Concepts

Colin Atkinson and Thomas Kühne

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
2. Languages, Abstraction and Domain-Specificity . . . . . . . . . . . . . . 107
3. Derivation Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4. Lightweight Language Customization . . . . . . . . . . . . . . . . . . . . 127
5. Customization Support Environments . . . . . . . . . . . . . . . . . . . . 133
6. Ontological Metalevels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7. Orthogonal Classification Architecture . . . . . . . . . . . . . . . . . . . 148
8. Languages versus Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . 150
9. Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

10. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Advances in Business Transformation Technologies

Juhnyoung Lee

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
2. Value-Oriented, Model-Driven Business Transformation . . . . . . . . . . 169
3. Model-Driven Ontology Engineering . . . . . . . . . . . . . . . . . . . . 187
4. Business Process Composition with Web Services . . . . . . . . . . . . . 203

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Appendix A: Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Phish Phactors: Offensive and Defensive Strategies

Hal Berghel, James Carpinter, and Ju-Yeon Jo

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
2. Core Phishing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 233
3. Advanced Phishing Techniques . . . . . . . . . . . . . . . . . . . . . . . . 242
4. Anti-Phishing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
5. Comprehensive Anti-Phishing Efforts . . . . . . . . . . . . . . . . . . . . 261
6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265



CONTENTS vii

Reflections on System Trustworthiness

Peter G. Neumann

1. A Total-System Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 270
2. Anticipating Disasters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
3. Trustworthiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
4. Risks in Trusting Untrustworthiness . . . . . . . . . . . . . . . . . . . . . 275
5. Principles for Developing Trustworthy Systems . . . . . . . . . . . . . . . 277
6. System Composition: Problems and Potentials . . . . . . . . . . . . . . . 285
7. A Crisis in Information System Security . . . . . . . . . . . . . . . . . . . 294
8. Optimistic Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
9. An Example: Risks in Electronic Voting Systems . . . . . . . . . . . . . . 297

10. The Need for Risk Awareness . . . . . . . . . . . . . . . . . . . . . . . . 300
11. Risks of Misinformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
12. Boon or Bane? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

AUTHOR INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
SUBJECT INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
CONTENTS OF VOLUMES IN THIS SERIES . . . . . . . . . . . . . . . . . . 335



This page intentionally left blank



Contributors

Prof. Colin Atkinson heads the chair of Software Engineering at the University of
Mannheim in Germany. Prior to that he was an associate professor at the University
of Kaiserslautern and project leader at the affiliated Fraunhofer Institute for Experi-
mental Software Engineering. From 1991 until 1997 he was an Assistant Professor
of Software Engineering at the University of Houston – Clear Lake. His research
interests are focused on the use of model-driven and component based approaches
in the development of dependable computing systems. He received a PhD and MSc
in computer science from Imperial College, London, in 1990 and 1985 respectively,
and his BSc in Mathematical Physics from the University of Nottingham in 1983.

Prof. John Atkinson is an associate professor in the Department of Computer Sci-
ence at the Universidad de Concepcion, Chile. His research topics focus on Natural-
Language Processing, Text Mining and Intelligent Agents. Atkinson received a PhD
in Artificial Intelligence from the University of Edinburgh, Scotland, UK. He is a
member of the American Association for Artificial Intelligence (AAAI), Associa-
tion for Computer Machinery (ACM), and the IEEE Computer Society. Dr. Atkinson
is also Vice President of the Chilean Computer Science Society. Contact him at
atkinson@inf.udec.cl.

Prof. Hal Berghel is currently Associate Dean of the Howard R. Hughes College of
Engineering at the University of Nevada, Las Vegas and founding Director of both
the Center for Cybermedia Research and Identity Theft and Financial Fraud Re-
search and Operations Center. He has held a variety of research and administrative
positions in industry and academia during his twenty-five year career in computing.
His current research focuses on computing and network security and forensics, dig-
ital crime, and technologies to anticipate network security events-of-interest. He is
also a popular columnist, author, keynote speaker and frequent talk show guest in
the network and security areas. He is a Fellow of both the IEEE Computer Society
and Association for Computing Machinery, has been both an ACM Distinguished
Lecturer and an IEEE Computer Society Distinguished Visitor several times over
the past two decades. He has received the ACM Outstanding Lecturer of the Year

ix



x CONTRIBUTORS

Award four times and was recognized for Lifetime Achievement in 2004. He has
also received the ACM Outstanding Contribution and Distinguished Service awards.
He is also the founder and owner of Berghel.Net, a full-service information, com-
puting and security consultancy. He is also Founding Director of UNLV School of
Informatics.

James Carpinter completed his honours degree in computer science at the Univer-
sity of Canterbury in 2005 and now works as a software engineer for Unisys New
Zealand. His research interests include machine learning and internet security.

Prof. Anita Ferreira is an associate professor in the Department of Linguistics
(Spanish) at the Universidad de Concepcion, Chile. Her main research topics include
Natural-Language Processing, Intelligent Tutorial Systems, and Computer-Assisted
Language Learning. Ferreira received a PhD in Artificial Intelligence from the Uni-
versity of Edinburgh, Scotland, UK. She also received a PhD in Linguistics from
Catholic University of Valparaiso, Chile. She is a member of CALICO and EURO-
CALL. Contact her at aferreir@udec.cl.

Prof. Ju-Yeon Jo received the PhD degree in Computer Science from Case Western
Reserve University, Cleveland, Ohio. She is an assistant professor in the School of
Informatics at the University of Nevada, Las Vegas, which she joined in August 2006.
From 2003 to 2006, she was an assistant professor of computer science department
at California State University, Sacramento. Prior to that, she spent several years in
the communication, networking, and software industry. She was a member of the
technical staff at Lucent Technologies, Bell Labs, in Holmdel, New Jersey, and a
software engineer at Coree Networks, a New Jersey based start-up company. Her
current research interests include information security, network security, networking
protocol design and performance analysis, and Internet traffic characterization.

Prof. Thomas Kühne is an Assistant Professor at the Darmstadt University of Tech-
nology in Germany. Prior to that he was an Acting Professor at the University of
Mannheim (Germany) and a Lecturer at Staffordshire University (UK). His inter-
ests are centered on object technology, programming language design, model-driven
development, component architectures, and metamodeling. He received a PhD and
MSc from the Darmstadt University of Technology, Germany in 1998 and 1992, re-
spectively.

Dr. Juhnyoung Lee is a Research Staff Member at the IBM T. J. Watson Research
Center in New York. He is currently working in the Business Informatics group. He
finished his PhD at the Department of Computer Science in the University of Virginia



CONTRIBUTORS xi

at Charlottesville in 1994. He received his BS and MS in Computer Science from
Seoul National University in 1985 and 1987, respectively. Since joining IBM Re-
search in 1997, he has worked on e-commerce intelligence, electronic marketplaces,
decision support systems, semantic Web technologies, and ontology management
systems. Before joining IBM, he was a researcher at Los Alamos National Lab in
New Mexico and at Lexis-Nexis in Ohio. His current research interests include cost
and value estimation for service engineering and management, business and IT mod-
eling, model-driven business transformation, and semantic Web.

Dr. Peter Neumann is Principal Scientist in the Principled Systems Group of the
Computer Science Laboratory at SRI International, where he has been since 1971.
He was at Bell Telephone Laboratories in Murray Hill, NJ throughout the 1960s,
participating in computer-communication system research and in the design and de-
velopment of Multics. He has doctorates from Harvard and Darmstadt, and taught
courses at Darmstadt, Stanford, U.C. Berkeley, and the University of Maryland. His
website (http://www.csl.sri.com/neumann) contains papers, reports, and federal/state
testimonies relating to trustworthy computer systems, networks, security, reliability,
survivability, safety, voting-system integrity, cryptographic policy, social implica-
tions, and privacy. He is a Fellow of the ACM, IEEE, and AAAS, and is also an SRI
Fellow. He received the National Computer System Security Award in 2002 and the
ACM SIGSAC Outstanding Contributions Award in 2005.

Dr. Charles M. Patton, a mathematician and senior researcher at SRI Interna-
tional, focuses on enabling technologies for mathematics teaching, learning, and
exploration. Prior to joining SRI, Dr. Patton pioneered the concept of handheld sym-
bolic/graphical/numeric computation, coauthored an NSF-sponsored calculus reform
text widely used in AP Calculus, and initiated the idea of a wireless networked class-
room. At SRI, Dr. Patton’s projects include incorporating mathematics into curricula
via student engagement with data, designing cell-phone-based supports for students
with learning disabilities and tuplespace-based systems for social coordination, and
creating the Group Scribbles collaborative learning system. Dr. Patton received a
PhD in mathematics from SUNY Stony Brook, the first American Mathematical
Society Post-Doctoral Research Fellowship, and a membership at the Institute for
Advanced Study in Princeton.

Dr. Jeremy Roschelle, Director of the Center for Technology in Learning at SRI
International, conducts research examining the design and classroom use of inno-
vations that enhance learning of complex and conceptually difficult ideas in mathe-
matics and science. Through cognitive science-based research on the “Envisioning
Machine” and later “SimCalc,” he has explored how computer-based representations



xii CONTRIBUTORS

can make the mathematics of change and the related physics of motion accessible
to many more students. Two running themes in his work are the study of collabo-
ration in learning and the appropriate use of advanced or emerging technologies in
education.

Prof. Deborah Tatar is currently an Associate Professor of Computer Science and,
by courtesy, Psychology at Virginia Tech. Her work falls into three categories: Mak-
ing Mechanisms (designing new ways to do things with technology), Making Mean-
ing (analyzing complex new systems), and Making Methods (creating new ways of
coming to know about phenomena of interest). Recent mechanisms explore the po-
tential of handheld connectivity to help classroom learning. Recent meaning includes
the analysis of mediated argumentation, unlocking the concept of “place” in design,
and exploring the scaling up educational technology to real world conditions. Re-
cent mechanisms focus on Design Tensions as an analytic frame, and sophisticated
conceptualization of the Third Paradigm in HCI. She received the PhD degree in
Psychology from Stanford University.



Preface

This is volume 70 in the Advances in Computers series of books. This series that
began in 1960 is the longest continuing series of volumes that covers developments
in the information technology field. Annually we present three volumes that offer
18 to 20 chapters that describe the latest technology in the use of computers today.
This present volume contains six chapters covering a wide variety of topics in the
ever-changing landscape of information technology.

New technology has often promised to revolutionize the way education is deliv-
ered to students, but just as often has failed to live up to that promise. Computers in
the classroom were touted as ways to vastly improve the delivery of instruction to
children, but such machines have had little impact to date. But the situation may be
changing with the advent of new inexpensive powerful ubiquitous handheld devices,
connected wirelessly to the Internet. In Chapter 1, “Designing Networked Hand-
held Devices to Enhance School Learning,” Jeremy Roschelle, Charles Patton, and
Deborah Tatar explore this new technology and present details of new hardware and
software developments which should have a major impact on the public school cur-
riculum in the years to come.

In Chapter 2, “Interactive Explanatory and Descriptive Natural-Language Based
Dialogue for Intelligent Information Filtering” by John Atkinson and Anita Ferreira,
the authors address Internet web searching. What has made the Internet so important
today is the ability to find websites containing the information you need. This is
made possible by the many search engines, where you type in a query, and they
return the set of web pages, out of the billions they have indexed, that probably
contains the information you need. For example, I just typed “web searching” into
one such search engine, and it responded saying there were about 842,000 web pages
that were relevant. How can I intelligently narrow this search in order to reduce this
number to a more meaningful number? That is the theme of this present chapter,
which uses a natural language dialogue to filter the information.

“A Tour of Language Customization Concepts” by Colin Atkinson and Thomas
Kühne is the title of Chapter 3. Computer languages have been classified as general
purpose or domain specific. A language like FORTRAN or C++ is considered general
purpose since it can be used to solve a wide variety of problems. But we can also
extend the design of a language with domain specific features, a domain-customized

xiii



xiv PREFACE

language, in order to solve specific problems. As the authors state “Typically, the
base language will be a widely-known standard and the amount of customization will
be minimized in the sense that as much as possible of the base language will be left
unaltered.” This chapter explores the world of such domain customized languages.

In Chapter 4, Juhnyoung Lee discusses “Advances in Business Transformation
Technologies.” Similar to the domain customized languages of Chapter 3, this chap-
ter discusses domain specific languages in the realm of business applications. The
general approach of this chapter, as stated by the author, is “Business transformation
is a key executive management initiative that attempts to align the technology ini-
tiatives of a company closely with its business strategy and vision, and is achieved
through efforts from both the business and IT sides of the company.” The author
presents a series of technologies that implements this vision.

The last two chapters unfortunately present technology that was not foreseen dur-
ing the formative years of the computer, some 50 to 60 years ago. Early computer
pioneers were mostly altruistic and the needs for security in such systems was not
an important requirement. Today we are all too aware of hackers, email viruses, spy-
ware, and other malicious software invading our cyberspace. In Chapter 5, “Phish
Phactors: Offensive and Defensive Strategies” by Hal Berghel, James Carpinter, and
Ju-Yeon Jo, the authors discuss the relatively recent phenomenon of Phishing, or the
masquerading by an illegal website to look like a valid website in order to get the
user to reveal personal information, such as passwords, social security numbers, and
other private information. Various phishing methods and protection against them is
the theme of this chapter.

In the final chapter by Peter G. Neumann “Reflections on Systems Trustworthi-
ness” (Chapter 6), Dr. Neumann presents an overview of his many years of collecting
information on computer-based risks. How has the computer been misused and what
protections should we be placing on such software and hardware to ensure that the
issues of the previous chapter, as well as many other problems, do not occur? What
makes a system untrustworthy and what can we do to avoid such risks and increase
system trustworthiness? He gives several examples of good design rules that help
increase security and trustworthiness of systems.

I hope that you find these chapters to be of value to you. I am always looking
for new material to present. If we have not covered an important area for several
years, or if you wish to contribute a chapter, please let me know. I can be reached at
mvz@cs.umd.edu. Draft chapters are due June 30 of each year, with final versions
submitted during October, for publication generally the following spring.

Marvin Zelkowitz
University of Maryland and Fraunhofer Center, Maryland

College Park, Maryland



Designing Networked Handheld Devices
to Enhance School Learning

JEREMY ROSCHELLE AND CHARLES PATTON

SRI International
USA

DEBORAH TATAR

Virginia Tech
USA

Abstract
Handheld devices, especially networked handheld devices, are growing in im-
portance in education, largely because their affordability and accessibility create
an opportunity for educators to transition from occasional, supplemental use of
computers, to frequent and integral use of portable computational technology.
Why and how might these new devices enhance school learning? We begin by
discussing a simple but important factor: networked handhelds can allow a 1:1
student:device ratio for the first time, enabling ready-at-hand access to technol-
ogy throughout the school day and throughout the learner’s personal life. We
argue that designers need to understand the capabilities of the new generation of
handheld computers and wireless networks that are most relevant for learning.
We follow this with a discussion of Learning Science theories that connect those
capabilities to enhanced learning. The capabilities and features feed into design
practices. We describe a set of example applications that are arising from the ca-
pabilities, theories and design practices previously described. Finally, we close
with a discussion of the challenge of scale.

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Increased Access Enables Frequent, Integral Use . . . . . . . . . . . . . . . . . 4

2. Historical Large Scale Successes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1. Graphing Calculators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. Classroom Response Systems (Feedback) . . . . . . . . . . . . . . . . . . . . . 10
2.3. Probeware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

ADVANCES IN COMPUTERS, VOL. 70 1 Copyright © 2007 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(06)70001-8 All rights reserved.



2 J. ROSCHELLE ET AL.

2.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3. Technology Context for Learning Applications . . . . . . . . . . . . . . . . . . . . . 20

3.1. Market Dominance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2. Physical Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3. Connections to the Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4. Emergent Classroom Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5. Discussion: Capabilities, Tensions, Potential Resolutions . . . . . . . . . . . . 31

4. Overarching Ideas from the Learning Sciences . . . . . . . . . . . . . . . . . . . . . 32
4.1. Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2. A Learning Sciences Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5. Design of Instructional Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1. Design Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2. Design Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6. Looking Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1. I-Pods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2. Gaming Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3. Mobile Phones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.4. Projectors, SmartBoards, and Other Large Format Displays . . . . . . . . . . . 48
6.5. Laptops and Tablet PCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.6. The $100 Laptop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1. Introduction

Handheld devices, especially networked handheld devices, are growing in impor-
tance in education, largely because their affordability and accessibility create an
opportunity for educators to transition from occasional, supplemental use of com-
puters, to frequent and integral use of portable computational technology [110,118].
Yet educators have been excited about many waves of technology, from film projec-
tors to audio tapes to personal computers and most waves of technology have failed
to make a substantial impact in school learning [24]. Given the disappointing history
of technology in education, why should we expect networked, handheld devices to
be different?

We begin by discussing a simple but important factor: networked handhelds can
allow a 1:1 student:device ratio for the first time, enabling ready-at-hand access to
technology throughout the school day and throughout the learner’s personal life [17].
However, we will argue that merely increasing access to technology in schools and in
students’ lives is not enough. Time and time again, educational studies have shown



DESIGNING NETWORKED HANDHELD DEVICES 3

that those technologies that make an impact in learning do so by changing how and
what students learn [101]. Further, successful technologies must be integrated into
the social practices of schools, which requires integration with teaching practices,
curricula, assessments and school leadership. This is a difficult but very important
challenge. It is difficult because schools are complex institutions with a dynamic of
technology adoption that is quite different from enterprise or consumer markets. It
is very important because 21st century societies are increasingly organized around
knowledge work and innovation, both of which depend mightily on the high quality
of school learning. Without utilizing technology in learning, it is hard to imagine how
societies might produce sufficient gains in student learning to continue on successful
paths of innovation and improvement in quality of life.

A rather large community of research has grown around this challenge, most
recently calling itself the “Learning Sciences” [103]. While networked handhelds
present opportunities for learners of all ages, we focus here on the experiences,
opportunities, and challenges of using handheld technology in K-12 education. To
introduce readers to the broad scope of research relating to networked, handheld
computers in K-12 education and falling under the rubric of the Learning Sciences,
our article takes the following approach. First, we describe how a new genera-
tion of networked handheld technology is enabling students to have greater access
to technology in their everyday lives, including school learning. We next review
three historical examples of learning success utilizing high levels of access to hand-
held and/or networked technology. From this review, we draw the conclusion that
handhelds can (and actually are already) making a huge difference in student learn-
ing. In addition, we observe that handhelds are not simply smaller personal com-
puters. Indeed, these successful examples of technology-enhanced learning drew
upon properties of networked handhelds that do not particularly characterize per-
sonal computers. Further, the historical success stories drew upon rich integration
with social practices, suggesting that successful designers must think about more
than the technology—they must understand how people learn and how schools
work.

Having set this stage, our logic flows as follows. We argue that designers need to
understand the capabilities of the new generation of handheld computers and wire-
less networks that are most relevant for learning. We follow this with a discussion of
Learning Science theories that connect those capabilities to enhanced learning. The
capabilities and features feed into design practices. We describe a set of example
applications that are arising from the capabilities, theories and design practices pre-
viously described. Finally, we close with a discussion of the challenge of scale. Can
new designs for technology-enhanced learning surpass the level of success already
experienced with the three historical cases?



4 J. ROSCHELLE ET AL.

1.1 Increased Access Enables Frequent, Integral Use

Traditional desktop technology is expensive, and as a result, limited computer
resources must be shared amongst many teachers and students. Today the typical
student–computer ratio is 5:1, and computers are most often located in special com-
puter labs rather than in ordinary classrooms [16]. The logistics of scheduling class
time at the lab—and the time required to move students between rooms—greatly
interferes with teachers’ abilities to integrate computers into regular learning prac-
tices [5]. Thus, despite school’s enormous effort to acquire computer resources,
there is often a gap between a school’s advertised computational facilities and those
that a teacher can realistically access [5]. This situation supports occasional, sup-
plemental computer use at best and presents a challenge to integrating technology
with other learning materials and activities in the classroom. Further, perfunctory
use of technology limits the overall possible impact of computing in education:
if an instructional resource is used infrequently, it is unlikely to have a large ef-
fect.

In contrast to traditional desktop computers, handheld devices are relatively in-
expensive, allowing for each student to own a device or for teachers to have a
classroom set with enough for every child. In addition, handhelds are mobile and
flexible, allowing for easy use in and across classrooms, field sites, and home en-
vironments. Because of these unique characteristics, handhelds hold the promise
of enabling many more students to experience integral uses of learning technolo-
gies. Indeed, graphing calculators—which are a well-established and effective hand-
held device—have reached far more K-12 learners than computers. Approximately
40% of high school mathematics classrooms use graphing calculators, whereas only
11% of mathematics classrooms use computers [79]. Finally, because handhelds can
be used much more frequently than traditional computer labs, they drastically in-
crease the potential of computational technologies to positively impact the learning
process [19].

Importantly, two qualities that have been most associated with successful learn-
ing through technology are frequency of use and integration of the technology into
the classroom teaching experience. Wirelessly interconnected handhelds provide a
unique opportunity to create a learning environment where technology is a transpar-
ent, non-invasive support to group learning [21]. Use of technology in the classroom
should ideally extend beyond productivity tools and web browsing, to tools that al-
low more learners to master difficult concepts as they explore and interact with data
and ideas. For example, computer simulations can enable 6th grade students to mas-
ter Newtonian physics concepts at level that surpasses ordinary 12th graders [125].
Early evaluations suggest teachers and students respond to handhelds favourably. In
a study of 100 Palm-equipped classrooms, 90% of teachers reported that handhelds



DESIGNING NETWORKED HANDHELD DEVICES 5

were effective instructional tools with the potential to impact student learning posi-
tively across curricular topics and instructional activities [22,120].

Researchers have used a variety of synonymous terms in referring to the use of
digital technologies to support human learning. Terms used in the literature include:
computer-assisted instruction, educational technology, educational computing, infor-
mation and communication technology in education, and more recently, e-learning,
distributed learning, asynchronous learning, and networked learning. In this chap-
ter, we use the term technology-enhanced learning (TEL), where technology refers
specifically to digital technology with graphic displays and keyboards, styluses, but-
tons or other affordances for hands-on input.

The notion of one-to-one computing (a ratio of at least one computing device for
each student) was coined by Elliot Soloway and Cathie Norris. In their keynotes ad-
dressed in the IEEE International Workshop on Wireless and Mobile Technologies in
Education (WMTE2002) and International Conference on Intelligent Tutoring Sys-
tems (ITS2004), they argued that today’s “personal computer” is not personal to
students at school, since students most often have to share with others at a computer
lab. The researchers also pointed out that the process of learning changed when all
students were able to afford a pencil and again when all students obtained their own
books [85]. A similar change can happen if everyone owns and regularly uses a per-
sonal computing device as an integral aspect of their learning experience.

Over the next 10 years, we anticipate that personal, portable, wirelessly-networked
technologies will become ubiquitous and pervasive in the lives of learners, both in
and out of school. The rapid advancement of these technologies is already chang-
ing the lives of students outside of school [30,115,54,60,83,96]. Indeed, in many
countries, devices like mobile phones or graphing calculators already have a high
adoption rate among school-aged children.

As these devices become affordable for the majority of parents and college stu-
dents, mobile, connected, and personal devices will increasingly come to the atten-
tion of educational institutions. For example, the Massachusetts Institute of Technol-
ogy (MIT) has proposed that $100 laptop computers be purchased for school-aged
children by states [12]. At the same time, wireless services and Internet access in
many countries will become available in most schools and universities and in public
areas, from coffee shops to libraries. For example, Google has offered to bring free
wireless access to the entire city of San Francisco.

While the expanded presence of mobile technologies is widely accepted, the spe-
cific form of personal, educational computing that will become most available to
students is still controversial. Educators today talk about everything from mobile
phones and notebook computers to Tablet PCs and personal digital assistants (PDAs).
In addition to these general-purpose computing devices, many researchers advo-
cate specialized designed-for-learning devices. For example, graphing calculators



6 J. ROSCHELLE ET AL.

are commonly used in high schools in North America and many European coun-
tries. Electronic English dictionaries are commonly used throughout Asia (upgraded
with wireless communication capability). With growing interest in the relationships
between gaming and learning, students will also be able to use portable gaming de-
vices for learning [42,111]. In the near future, we can expect to see new types of
devices emerging as well. The prices of these computing devices and network access
will drop, according to Moore’s Law and its corollaries [75].

As students increasingly use personal devices for learning outside of school, a new
pressure in the adoption of learning devices in schools will emerge. Will students
who come to expect mobile, connected, personal devices outside of school demand
to use them within school? How will learning in classrooms and everyday life be
transformed?

2. Historical Large Scale Successes

It is always difficult to predict how an emerging technology will take shape in a
new area of application. Prediction is especially difficult without a sense of history.
The biggest misconception about handheld, networked technologies in education is
that they are new. To the contrary, at least three handheld and/or networked technolo-
gies are already in successful, widespread use. To design for the future, we ought to
begin by understanding the past. Hence, we begin with a review of three historical
successes: graphing calculators, classroom networks, and probeware.

2.1 Graphing Calculators

Graphing calculators have become one of the most widely adopted handheld tech-
nologies in education. In the United States, for example, about 40% of high school
students own graphing calculators, and even higher percentages use school-owned
devices in the classroom [79]. Graphing products are now integrated with national
and state standards (e.g., National Council of Teachers of Mathematics [80]) and they
are supported in some curricula. Furthermore, best practices of instruction are well
documented [14,107] and teacher professional development offerings are widely
available.

2.1.1 Pedagogical Affordances of Graphing Calculators

Like other hand-held instructional technologies, graphing calculators are inexpen-
sive, mobile, and readily adaptable to existing classroom practices. These qualities—
combined with the instructional affordances of the technology itself—mean that



DESIGNING NETWORKED HANDHELD DEVICES 7

graphing calculators have a powerful potential to help students master important con-
cepts in mathematics. Employed as an instructional technology, graphing calculators
can enable teachers to foster a problem solving approach to mathematics and help
students to reason mathematically. The unique contributions of graphing calculators
to problem solving and reasoning include:

• increasing attention to conceptual understanding and problem solving strategies
by offloading laborious computations;

• examining the related meanings of a concept through the display of multiple
representations, such as exploring rate of change (i.e. slope) in a graph and
table;

• engaging students with interactive explorations, real world data collection, and
more authentic data sets;

• giving students more responsibility for checking their work and justifying their
solutions;

• introducing topics that were previously too difficult for many students (e.g.
modeling); and

• providing a supportive context for productive mathematical thinking.

Students with calculators can take on traditional tasks in new ways and also tackle
new topics that would otherwise be inaccessible. Rather than laboring over tedious
calculations, classes that use calculators can devote more time to developing stu-
dents’ mathematical understanding, their number sense, and their ability to evaluate
the reasonableness of proposed solutions. Students can also use calculators to ex-
plore concepts and data sets that would otherwise be too complex or cumbersome.
For example, students can easily investigate the effects of changing a, b, and c on the
graph of ax2 + bx + c, which can be quite tedious using paper and pencil graphing
techniques.

Research has also shown that students can often reason best when they expe-
rience mathematics through related representations, such as equations, tables, and
graphs [35,61]. Graphing calculators can make constructing and using multiple rep-
resentations easier, allowing students to spend more of their time and intellectual
energy exploring the underlying concepts. In addition, technology can link the repre-
sentations, enabling students to make conceptual connections, such as understanding
how a change in an equation links to a change in a graph. Standard mathematical
representations can also be linked to other visualization aids, fostering further con-
ceptual understanding.

Research has also shown that students using graphing calculators change their
approaches to problem solving: they explore more and their attempted solution



8 J. ROSCHELLE ET AL.

strategies are more flexible [35,61]. In general, students who use calculators bet-
ter understand variables and functions and are better able to solve algebra problems
in applied contexts than students who do not use calculators. Similarly, students
who use calculators use graphs more often and interpret graphs better than students
who do not regularly use the technology. Finally, students who use calculators are
better able to move among varied representations—that is from graphs to table to
equations—than students who do not have access to the technology. Clearly, students
who regularly use calculators have an advantage over those who do not.

2.1.2 Research on Graphing Calculators

When it comes to instructional technologies, educators and policymakers want
to do more than merely identify potentially beneficial tools. In addition, they want
concrete guidance on how to achieve an effective implementation and confidence
that large-scale implementations will also be successful. Fortunately, strong graphing
calculator research is available to address these concerns.

In the United States, the National Assessment of Education Progress (NAEP)
samples both 4th and 8th graders throughout the country and measures how many
students perform at proficient and advanced levels in mathematics. This research has
consistently shown that frequent use of calculators at the eighth grade level (but not
at the fourth grade level) is associated with greater mathematics achievement, stat-
ing:

Eighth-graders whose teachers reported that calculators were used almost every
day scored highest. Weekly use was also associated with higher average scores
than less frequent use. In addition, teachers who permitted unrestricted use of
calculators and those who permitted calculator use on tests had eighth-graders
with higher average scores than did teachers who did not indicate such use of
calculators in their classrooms. The association between frequent graphing cal-
culator use and high achievement holds for both richer and poorer students, for
both girls and boys, for varied students with varied race and ethnicity, and across
states with varied policies and curricula [79, p. 144].

A study by Heller et al. [50] corroborates the NAEP findings. Heller examined
a model implementation, which included a new textbook, teacher professional de-
velopment, and assessment tools—all aligned with the graphing technology by the
theme of Dynamic Algebra. This study shows that daily use of graphing calculators
is generally more effective than infrequent use, and establishes that the teachers and
students who used graphing calculators most frequently learned the most.



DESIGNING NETWORKED HANDHELD DEVICES 9

2.1.3 An Example from New Zealand

Researchers in different settings have investigated the effectiveness of graphing
calculators in relation to students, teachers, and schools with diverse characteris-
tics. Alan Graham and Michael Thomas, for example, examined the effectiveness of
graphing calculators in algebra classrooms in New Zealand [44]. The study compared
pretest and posttest scores for students in treatment and control group classrooms
in two schools. In all of the classrooms, the regular classroom teacher taught the
“Tapping into Algebra” curriculum module. In treatment group classrooms, each of
the students received a graphing calculator to use throughout the module; in con-
trol group classrooms, students did not use graphing calculators. Students in all
classrooms had similar background characteristics and math abilities. Graham and
Thomas found that students in the treatment groups performed significantly better
than students in the control groups on the post-test examination.

2.1.4 Meta-Analyses Show the Effectiveness of Graphing
Calculators

Meta-analysis is a technique that enables researchers to statistically summarize
the results of a large body of experimental studies, yielding a robust estimate of
true effectiveness. A meta-analysis by Ellington [35] summarized 54 classroom ex-
periments, of which 80% employed some form of random assignment of students
to experimental groups (using calculators) and control groups (not using calcula-
tors). Random assignment is a key component of true experimental studies, as it
allows social scientists to make strong causal inferences with the fewest threats to
experimental validity [20]. Ellington’s analysis shows a positive effect of graph-
ing calculator-based interventions on student achievement. The effects are sub-
stantial, often increasing an average student’s achievement by 10 to 20 percentile
points [35]. In addition, the studies suggest that when graphing calculators are
allowed on tests, gains extend from calculations and operations to conceptual un-
derstanding and problem solving. Ellington’s summary includes a wide variety of
grade levels, socio-economic backgrounds, geographic locations, and mathematical
topics, suggesting that the effectiveness of calculators holds true in a variety of con-
texts.

A second meta-analysis looked specifically at Algebra. Khoju et al. [61] screened
available research using stringent quality-control criteria published by the US De-
partment of Education’s What Works Clearinghouse. They found four suitable stud-
ies that examined the impact of graphing calculators on Algebra learning. Across a
wide variety of student populations and teaching conditions, use of graphing calcu-
lators with aligned instructional materials was shown to have a strong, positive effect
on Algebra achievement.



10 J. ROSCHELLE ET AL.

2.1.5 Why have calculators been so successful?

A number of key features contribute to the success of graphing calculators in
bolstering math learning. Graphing calculators are relatively simple, robust and
cheap; they are also remarkably free of much of the complexity that accompanies
full-featured computers. More importantly, there is a deep scientific linkage be-
tween the capabilities of the technology and how people learn. Students learn best
with increased learning time, scaffolding, formative assessment, and opportunities
for reflection and revision—qualities that can be achieved with graphing technol-
ogy.

Two less readily obvious factors also contribute to the success of graphing calcu-
lators. First, the adoption of the technology has been led by practicing teachers, who
function as the key champions and influencers in a professional community [38].
Second, efforts to integrate graphing calculators into classrooms did not begin with
the expectation of a rapidly transformed classroom, but rather provided a context
to support a long, steady trajectory of continuous improvement [31]. In this way,
teachers can begin with one or two relatively simple applications of the technology,
and gradually increase the depth and breadth of their calculator integration as they
grow more comfortable with the technology. At each stage, graphing calculators can
provide concrete enhancements for teaching and learning math.

In summary, the evidence for the impact of calculator use on student achieve-
ment is robust and consistent. Graphing calculators are inexpensive and can align
with curricula, instructional practices, and assessments. In addition, teacher profes-
sional development for integrating graphing calculators into classroom practices is
widely available. Collectively, the combination of curricula, pedagogy, assessment,
and technology—aligned through professional development—creates the circum-
stances for sustained improvement in deep conceptual learning.

2.2 Classroom Response Systems (Feedback)

A second effective handheld learning technology is the networked response sys-
tem. The first notably successful classroom response system, Classtalk, was patented
in 1989 [2], and similar product concepts have since been re-implemented many
times.1 A major benefit of these networked response systems is that they have en-
hanced classroom communication between the teacher and the students. Employing
a combination of networking hardware and software, networked response systems
provide displays that reveal what students are doing, thinking, and understanding.

1 Eleven current commercial products have been identified. Examples include: eInstruction (http://www.
eInstruction.com), TI-Navigator (http://education.ti.com/us/product/tech/navigator/features/features.html),
and Discourse (http://www.ets.org/discourse/).



DESIGNING NETWORKED HANDHELD DEVICES 11

Teachers can use the information provided through classroom networks to augment
the natural communication flow of the classroom.

2.2.1 Instructional Processes Using Networked Response
Systems

From a technological viewpoint, a classroom network can be thought of as a tool to
augment the interaction loop between teacher and students. The concept of interac-
tion loops builds upon Weiner’s pioneering work in cybernetics [124]. A traditional
loop opens when the teacher assigns an activity to a student and continues when the
student turns in the assigned work to the teacher. The loop is completed days later
when the teacher returns the graded assignment to the student. In this model, only
a few students are involved in the process of sharing their work, there is very little
discussion after a question has been answered, and for the majority of students there
is a long delay before they receive any response from the teacher.

In contrast, the networked loop demonstrates classroom interaction occurring
much more rapidly and with a smaller-sized task. In this context, an activity might be
a request to answer a question, solve a problem, state a position, write an equation,
or give a reason. Students provide their responses as input into a personal computing
device, such as a graphing calculator, palm-sized computer, laptop, or even a special-
purpose device similar to a TV remote. Then, the teacher’s desktop machine collects
and aggregates the student work, and presents it in a meaningful graphic that teachers
and students can interpret quickly.

2.2.2 Pedagogical Affordances of Networked Response
Systems

Teachers and researchers have found that the ability to harvest students’ work
immediately has a range of applications. In the simplest case, a teacher poses a
multiple-choice question, and the classroom network rapidly produces a histogram
showing the distribution of responses in the classroom. Seeing the histogram makes
it easier for both teachers and students to focus on what needs to be learned and to
engage in discussion around those topics. In slightly more sophisticated cases, stu-
dents mark a point on an image or show the line they graphed. These points, lines,
or even motions can be aggregated instantly to reveal higher-order patterns [48]. In
some of the most advanced uses of networked response systems to date, students en-
gage in a participatory simulation (“part-sim”). For example, each student controls a
traffic light in a classroom simulation of traffic patterns shown on the public display.
Then the class collaborates to identify some of the principles of operation that would
allow traffic to flow smoothly [127].



12 J. ROSCHELLE ET AL.

Even the most basic usages of networked response systems can profoundly im-
pact teaching and learning in the classroom setting. Teachers and students can use
the readily interpretable data generated by the network to observe patterns and dif-
ferences among student responses. By revealing how students are thinking, the re-
sponse comparisons also enable teachers to drive all students to explain their thought
processes more thoroughly. The shared points of reference provided by the system, in
conjunction with inquiries from the teacher, can in turn catalyze class discussions of
complex concepts. Harvard’s Eric Mazur, an early leader in developing the pedagog-
ical use of networked response systems, calls this approach “Peer Instruction” [70],
suggesting that the real heart of the learning occurs when students engage with each
other conversationally on the basis of the dissonances revealed by the shared dis-
play.

In spite of the fact that networked response systems execute a fairly simple func-
tion, early adopters have consistently described the technology as a catalyst for a sig-
nificant, powerful shift in the classroom climate, pedagogy, and resulting learning [3,
28,34,84]. Formative assessment is known to be a very powerful intervention [7] and
these systems enable students to receive much more feedback than normal. In addi-
tion, students can see where classmates share their misunderstandings and recognize
that they are not alone. It is important to note that the overall impact of the les-
son need not be at all test-like. Student work can be displayed anonymously, so that
embarrassment is essentially eliminated [84]. Finally, real-time information about
students’ comprehension enables teachers to modify instruction to meet the needs of
learners.

The above discussion suggests that effective implementation of networked re-
sponse systems requires integrated roles for the teacher and the technology, as well
as a combination of pedagogical technique and computational capability. The role of
the technology in transforming classroom learning is small but extremely valuable.
In particular, the technology provides anonymity, speed of response collection, and
the ability to produce a shared visualization that enhances mutual pattern recognition.
But non-technological social processes still carry much of the burden of teaching and
learning: asking questions, explaining, clarifying, summarizing, etc.

The most recent and thorough examinations of this technology (using Texas In-
struments graphing calculators and a supplementary networking product) emphasize
a virtuous cycle of changes that result in a classroom that uses the system [28,
84]. The cycle maps onto the four factors of successful classrooms identified in a
groundbreaking summary of learning science research [33]. The classroom becomes
more learner-centered, assessment-centered, knowledge-centered, and community-
centered. These are powerful and apparently robust effects from a fairly simple use
of networked response technology. Further they do not appear to be limited by sub-
ject matter, and can be significantly extended beyond the range of multiple choice



DESIGNING NETWORKED HANDHELD DEVICES 13

and short answer questioning. For example, ‘image map assessments’ have been pro-
posed in which students’ marks on images are aggregated [100]. Others are working
at Cartesian aggregation spaces of contributed mathematical functions [58]. Many
more kinds of classroom response aggregation are possible. Clearly, pedagogical
application underlying networked response systems deserves much more research
attention in the coming years.

2.2.3 Mazur’s Peer Instruction

In an effort to improve his students’ gains-scores on an introductory physics
assessment, Mazur pioneered a new style of classroom practice that relied on
augmented teacher-student communication and increased classroom discussion
around important concepts. Mazur’s new practice began with what he termed a
“ConcepTest”—a challenging question designed to foster thinking and discussion
that gets at the heart of the target concept. Mazur would pose a ConcepTest to his
students, allow them to ponder the answer, and have them submit a response via
the classroom network. Based on the percentage of students who answered cor-
rectly, Mazur adapted his subsequent instruction by moving on to the next topic,
or by spending more time on the subject until mastery was achieved. If a question
uncovered lots of misconceptions, Mazur would facilitate discussion, encouraging
students to explain and debate their understandings. These kinds of discussions fo-
cus on understanding the correct conceptual structure because, while the questions
are superficially simple, they are laser-like in their ability to demarcate misconcep-
tions and stimulate valid reasoning.

The process of discussing possible responses, misconceptions, and conceptual
understandings amongst peers, through ConcepTests and networked response tech-
nology, lies at the crux of Mazur’s pedagogical approach. He calls this process
Peer Instruction. In his written work on this topic, Mazur emphasizes the strategic
planning and classroom practice that are required for a teacher to implement Peer In-
struction. As with other instructional technologies, classroom networks can provide
critical enablers for enhanced teaching and learning, but it is pedagogical talents that
make the innovation successful.

Mazur shows that in the year he first implemented his Peer Instruction methods,
the distribution of scores on the Force Concept Inventory (a standard assessment of
student understanding in Physics) shifted markedly from pretest to posttest, suggest-
ing that his new approach was effective [70]. Impressively, after the posttest only 4%
of students were below the threshold of mastery as defined by the Force Concept
Inventory (FCI). There was a steady improvement in scores in each subsequent year
over a decade, even though students’ incoming scores did not change [23]. Mazur
also compared the scores of his 1985 class with those of the 1991 class by giving



14 J. ROSCHELLE ET AL.

them the same final exam. He found that the scores shifted upwards about 10% and
manifested a much narrower distribution, showing that he had achieved an important
impact on his students’ conceptual understanding [70]. He also examined students’
responses to more conventional physics problems (stressing mathematical manipu-
lations) versus conceptual problems and argued that while conceptual understanding
improved, students’ ability to solve the more conventional problems was not com-
promised [70].

TABLE I
REPORTED BENEFITS OF NETWORKED RESPONSE SYSTEMS

Claimed benefit Research studies citing benefit

Promotes greater student
engagement (16)

Boyle and Nicol [10], Burnstein and Lederman [13], Crouch and
Mazur [23], Cue [25], Dufresne et al. [34], Fagen et al. [37],
Kaput and Hegedus [59], Horowitz [53], MacDonald [69], Poulis
et al. [90], Ratto et al. [93], Robinson [98], Scheele et al. [104],
Webking [123], Wilder Foundation [126], Woods and Chiu [128]

Increases understanding of
complex subject matter (11)

Abrahamson [1], Boyle and Nicol [10], Crouch and Mazur [23],
Fagen et al. [37], Hake [45], Hartline [46], Kaput and
Hegedus [59], Poulis et al. [90], Sokoloff and Thornton [108],
Wilder Foundation [126], Woods and Chiu [128]

Increases interest and
enjoyment of class (7)

Abrahamson [1], Boyle [9]; Boyle and Nicol [10], Burnstein and
Lederman [13], Cue [25], Dufresne et al. [34], Woods and
Chiu [128]

Promotes discussion and
interactivity (6)

Boyle and Nicol [10], MacDonald [69], Robinson [98], Scheele et
al. [104], VanDeGrift et al. [121], Woods and Chiu [128]

Helps students gauge their
own level of understanding (5)

Dufresne et al. [34], Ganger and Jackson [41], Piazza [89],
Robinson [98], Webking [123]

Teachers have better awareness
of student difficulties (4)

Abrahamson [1], MacDonald [69], McNairy [71], Robinson [98]

Extending material can be
covered beyond class time (2)

Ratto et al. [93], Truong et al. [119]

Students do more thinking in
classrooms (2)

Boyle and Nicol [10], Cue [25]

Improves quality of questions
asked (1)

Ratto et al. [93]

Overcomes shyness (1) Truong et al. [119]

Saves time (1) Boyle [9]

Simplifies record keeping (1) Webking [123]



DESIGNING NETWORKED HANDHELD DEVICES 15

2.2.4 A Review of the Effects of Networked Response
Systems

Table I illustrates the primary impacts of networked response systems, with the
most frequent findings listed first. As the table indicates, the two most commonly
reported effects are increased student engagement and improved conceptual under-
standing. More than half of the studies reported that students were more engaged—as
evidenced by their attention and attendance in class—in classes where networked re-
sponse systems were used. Another eight studies reported increased student interest
and enjoyment in these classes, which in turn probably contributed to higher levels of
engagement. Just under half of the studies also reported gains on learning outcomes,
as measured by end-of-course objective tests and standardized achievement tests. Al-
though few of these studies used any comparison group and none placed statistical
controls on comparison groups, increased student understanding of complex subject
matter was widely reported. Other commonly reported outcomes included increased
“interactivity” and group discussion, as well as increased awareness among teachers
and students of the difficulties students faced in mastering subject matter. In addi-
tion to the impacts highlighted in this chart, a handful of studies also reported “more
pressure on students to think” [3], students coming to class more often [70,27], and
reduction in student anxiety [27].

2.2.5 Why Have Networked Response Systems Been so
Successful?

A number of key features contribute to the success of networked response systems
in bolstering learning. Importantly, classroom response technology accommodates
common teaching practices while also offering new enhancements for classroom
teaching. Like graphing calculators, response systems are also relatively simple,
robust, and cheap, and there are purposeful linkages between the technology and in-
sights from the learning sciences. In addition, response systems address a specific
classroom need—namely, enhanced communication and feedback among teacher
and students. Of course, effective teacher implementation of classroom communica-
tion practices is a critical component of improved student performance. Yet network
technology can be a key enabler of this improved communication and feedback by
facilitating rapid cycles of assigning, collecting, interpreting, and discussing student
work.



16 J. ROSCHELLE ET AL.

2.3 Probeware

Of all the instructional technologies for science classes, the technology with the
longest track record is that of electronic probes and sensors and associated soft-
ware (hereafter, “probeware”). Used in classrooms, probes instantaneously gather
and graph data from live experiments [74,78]. It is hard to overstate how important
this is in classroom learning. Before probes were readily available, students typically
gathered data in class, graphed it at night, and analyzed it the next day. An enormous
“gulf of evaluation” [82] thus lay between collecting the data and making sense of
it. By the time students were interpreting data, they often could barely remember
what it was about. Further, students are often careless in collecting data, leading to
a ‘garbage in, garbage out’ problem. Because of the pace of school, teachers must
often ignore these bad data sets and simply move on to the next topic. This sends
students a very poor message about the nature of scientific inquiry. Consequently,
the ability to collect, graph, and analyze a whole series of experiments in one class
period is a radical innovation. By closing the gulf of evaluation, probes support the
long-term pedagogical drive towards ‘inquiry-centred’ science classrooms [118].

Teachers can now purchase a variety of kits that enable students to collect data
from experiments using a computer or graphing calculator with attached probes or
sensors. Probeware can be used in all areas of science: pH sensors in Biology, pres-
sure probes in Chemistry, and motion recorders in Physics. They can be used in the
classroom, but are also commonly used in the field. A very popular scenario for using
handheld probes is water quality evaluation [120]. Students take their handhelds and
probes to a nearby stream and each student takes measurements at different points
along the streambed. The students combine their data by beaming or aggregating
onto a common teacher machine. Back in the classroom, students use their hand-
helds to graph and analyze the combined data set.

Thus, the major benefits of probeware include:

• ease of collecting and recording accurate data;

• ability to collect time series data;

• use of the computer or calculator for instant graphing and analysis of data;

• possibility of exchanging or pooling data sets among students.

Probeware, used well, can open avenues of exploration for students as they use it to
experiment with phenomena of their choosing. Students using probeware experience
less tedium in setting up their experiments and focus more on the research ques-
tions and the data. This can focus students on the science meaning behind the data
instead of the rote procedures for collecting data in a valid way. Students can also



DESIGNING NETWORKED HANDHELD DEVICES 17

collect more observations than manual methods allow, permitting more comparisons
and hence, better generalizations. Through the immediacy of data collection and data
display, probeware directly connects observation in the real world to abstract repre-
sentations and allows for the investigation, variation, and play that provide better
understanding of important scientific concepts.

Probeware has also been shown to support data collection by students for scien-
tific research at a world-wide scale. The GLOBE environmental monitoring program
teams scientific researchers studying local, regional, or global questions with stu-
dents and community groups who provide on-the-ground data collection in a scien-
tifically valid way. Data is reported to a central database and can be analyzed by both
students and scientists for their own investigations.

Studies [118] indicate that students who learn with curricula that include probe-
ware take a more active role in their learning and are taught to use skills of observa-
tion. Collaborative learning is naturally supported by the ability to share displays of
data and integrate others’ findings. Finally, students who learn with these manipula-
tives show better retention of concepts than those taught in a lecture format.

2.3.1 Research

While there has been a significant volume of research showing that probeware can
help students learn to do inquiry, there has been much less research documenting
the impact of probeware on science content learning. In their study of a probeware-
supported inquiry unit on water-quality, Krajcik and Starr (in [118]) aimed to exam-
ine the impact of project-based learning and probeware on science content learning.
The water-quality unit was taught by two science teachers, to about seventy 7th grade
students in four classes at Greenhills Middle School. The Greenhills School devotes
ample attention to integrating innovative teaching methods, through professional de-
velopment, technology and curricula—thus making them distinct from other schools
and teachers. As a result, the researchers decided that control classrooms, either out-
side the school or with different teachers at the same school, would not provide
a valid comparison group for the study. Instead, the researchers used assessments
aligned with national standards in order to show that an innovative learning envi-
ronment employing project-based learning and probeware technology can result in
important learning outcomes for students [118].

In order to get an understanding of student learning, the researchers used three
tools to assess students’ content knowledge and their ability to apply target concepts
to new and unique situations. The first tool was a test consisting of multiple-choice,
short-answer, and extended-answer items which students took before and after the
unit. Students were also required to draw pre- and post-unit ‘concept maps’ illustrat-
ing their understanding of the factors and linkages related to water-quality. Finally,



18 J. ROSCHELLE ET AL.

students created booklets, which they added to at each of three visits to the field. The
extended-answer questions, as well as the concept maps and science booklets, were
evaluated using precisely defined assessment rubrics.

Statistical analyses comparing the pre- and post-test results for each of the vari-
ous types of assessments revealed that students made significant gains in both basic
content knowledge and deeper conceptual and analytic understandings of water qual-
ity [118]. Furthermore, large effect sizes associated with the mean-score increase
from pre- to post- measure indicate that the scores were not only statistically dif-
ferent from one another, but that the gains themselves were substantial. Because
students were not concurrently participating in other related science interventions, it
can be surmised that the project-based, probe-ware program was responsible for the
student gains.

The two teachers who implemented this science curriculum wrote about their per-
spectives on the benefits to students of using probe-ware in a project-based learning
environment. First of all, teachers felt that students’ relationship with the technology
improved over time: students learned to trouble-shoot problems on their own; they
began to understand instrument calibration; and they learned to properly care for
and maintain their tools. In addition, use of the technology benefited students’ atti-
tude toward science learning. Because the project was rooted in students’ real-world
environment, they viewed the process and the data as meaningful. In turn, students
felt ownership in their own work, were excited to interpret their data, and were in-
tent on finding ways to support their research and findings. Finally, teachers felt that
the experience also had a positive impact on students’ in-depth understanding of
water quality, and on their thinking and learning skills in general. Teachers found
that students improved in their ability to analyze and synthesize data, to understand
the implications of data, to create more comprehensive pictures of the situation un-
der investigation, to make connections between data and key environmental factors,
to identify patterns and trends in data, and to understand relationships in the field
(in [118]).

2.4 Discussion

The three historical examples presented above are important, in part, because
they demonstrate that networked handhelds have produced worthwhile improve-
ments in school learning. In the case of graphing calculators, the improvements
have occurred at a scale seldom seen in educational technology: around 40% of
high school students have a graphing calculator and the data from numerous stud-
ies is consistent and positive. We see graphing calculators as representational tools;
they allow students to engage with mathematics in both linguistic (e.g. algebraic
symbols) and graphic ways. Research shows that providing students with multi-



DESIGNING NETWORKED HANDHELD DEVICES 19

ple, linked representations—and especially a combination of linguistic and graphical
representations—can produce powerful learning gains. Networked response systems,
on the other hand, work through a different mechanism. They are participatory and
feedback tools, which in the presence of a capable teacher can transform classroom
dynamics to increase student engagement in learning. Probeware incorporates ele-
ments of representation (instantly graphing data) and feedback (students can quickly
see if they are getting bad data) but also change how students experience physical
place—students can more easily measure and quantify their world and can thus more
readily engage in scientific inquiry. In the sections that follow, we will continue to
build upon these aspects of historical success.

We draw a second important set of conclusions from these examples as well—
namely, that our imagination of the meaning of networked handheld devices should
not be overly constrained by a vision of anytime/anywhere access to school infor-
mation or a vision of handhelds as small computers. Some researchers are drawn
to thinking about how school information could be made available anywhere. They
imagine how learning might be improved if students could see their class schedules
online, review their grades, retrieve homework, submit assignments, ask questions of
their instructor, and so on . . . all with a personal, low-cost, mobile, wireless handheld
device. There are two problems with this vision. First, it relies on placing an inter-
face to instructional management and learning tools on a small screen with limited
input possibilities. Second, access to administrative information is unlikely to have
an impact on how students learn.

Other researchers imagine handhelds as small, inexpensive computers. They seek
to package all of the complexity found in computer applications into a handheld
format. It is important to note, however, that the most successful historical exam-
ples involve rich social practices built around rather simple (but uniquely functional
and reliable) technology. A number of important lessons emerge from the realization
that instructional technologies tend to be most effective when simple and efficient
technologies are combined with sound pedagogical techniques [15]. This finding in-
dicates, for instance, that restraint is a valuable quality when designing instructional
technologies. Rather than trying to create an all-encompassing system, we utilize
technology for specific, targeted affordances for tasks that are not well served with
the process and pattern already in place in the classroom. Talking and passing out
papers are integral parts of handheld-based activity. Students should not struggle to
read instructions about an activity on the same tiny screen on which they are conduct-
ing the activity when paper-based or white-board based instructions work very well.
Furthermore, teachers we have studied prefer students handing in work on paper, for
later grading in their easy chair.

The examples of graphing calculators, networked response systems, and probe-
ware emphasize this direction towards simple, well-honed technology and rich, ped-



20 J. ROSCHELLE ET AL.

agogically developed social practices. In each case, the technology performs a small,
precisely-defined function uniquely well, but much of the rest of teaching and learn-
ing is left to social practice. Probeware excels at collecting and sharing data, and
little else. Yet it supports a transition from routine, unexamined scientific practice to
inquiry-based practice in the classroom. In networked response systems, the ques-
tions are often authored and posed to the class offline, and the technology performs
only the essential functions of gathering responses anonymously and instantly sum-
marizing them in a publicly displayed histogram. Yet the system promotes critical
thinking as students and teachers compare, elaborate, explain, critique, and debate
about the patterns of response. The participatory simulation variants of networked
response systems excel at exchanging small, extremely simple data messages among
spatial neighbors. Yet students can readily become socially involved in designing
experiments. For example, they can try to slow the spread of disease by quickly as-
signing those infected to quarantine, or by having fewer social partners. As evidenced
in all of these examples, the technology serves to enable new types of instruction, yet
much of the actual learning occurs in lesson-design and debriefing phases that are not
mediated directly by the technology.

This fairly weak coupling of informatics and social practice results in many
seemingly ironic outcomes. For example, the essential pattern of the classroom can
become one of ‘peer learning’ despite a technology that has no peer-to-peer commu-
nication capabilities (such as Classtalk). The sense of community in the classroom
can evolve rapidly, despite the lack of any ‘online community’ tools. Students be-
come more involved in designing and interpreting controlled experiments, despite
software that has no sense of variation in parameters. (To perform an experiment with
participatory simulations, students only change their spatial movement; the software
has no knowledge that it is involved in a ‘different’ experiment. The parameters are
embodied by the students and are not explicit constructs in the software.) Students
can perceive receiving much more individualized assessment feedback, despite the
fact that all they ever see is a shared, anonymous public representation of the group’s
thinking. As these apparent ironies indicate, the causal arrow from technology af-
fordances to social practice is often quite crooked. Consequently, research attention
should be directed at identifying those learning niches in which simple technology
could fit in extremely and uniquely well and to understanding the social practices by
which those new affordances become powerful.

3. Technology Context for Learning Applications

The world of new hardware and networking capabilities deployed beyond the
classroom is constantly expanding. With each new capability the realm of potential



DESIGNING NETWORKED HANDHELD DEVICES 21

learning opportunities also widens. New computational functions, graphs, anima-
tions, and other representational capabilities can potentially augment the ways in
which information can be presented to students, thereby creating opportunities for
more students to grasp complex concepts in math and science. Similarly, these new
representational and networking functions can potentially expand the variety of ways
in which students can express, share, and demonstrate their knowledge. Together,
these capabilities could potentially increase opportunity for peer-to-peer learning,
and improve teachers’ capacity to assess their students’ understanding and tailor
instruction accordingly. To better understand these prospects we examine some im-
portant technology developments from the perspective of their potential fit with
classroom practice and their potential uses to improve learning.

As we move into this future of new capabilities and new opportunities, a number of
important realities and choices will shape the potential for learning devices to make a
difference in education. First, the success or failure of particular classes of devices to
attain market dominance may affect viable choices for the classroom. Second, details
of the physical network infrastructure and of the communication protocols enforced
between machines have huge implications for classroom potential. Third, the stance
that designers take about the relationship between systems affordances and the In-
ternet has implications for the complexity, or “weight,” of the system, and therefore
its flexibility and how often it gets used. Finally, in spite of efforts to use inexpen-
sive devices such as cell phones, or to create inexpensive versions of more pricey
devices (as with the $100 laptop), the cost of technology is still a significant hurdle
for many schools. As technological innovation and learning-science insights create
momentum and a strong rational for the use of educational technology in schools,
cost remains as a social brake on technology adoption in education.

3.1 Market Dominance

The question of general versus specific functionality will be paramount in the
evolution of educational technologies. Until recently, it has been taken for granted
that handheld devices and computers are the same, learning-wise, and that therefore
general-purpose functionality would be most useful. Yet the body of research on
specific-use devices (like graphing calculators) paints a drastically different picture.
Experience has shown that devices with specific, targeted applications can integrate
smoothly with existing classroom practices and effectively enhance classroom learn-
ing. We have argued that this capacity is crucial for use and success in the classroom.
The question remains, though, of whether design-intensive point products can pros-
per or even survive in the new economic environment. In the larger market for small
devices, for example, there is a movement towards internetworking. Internetwork-
ing is when the functional usages and adaptations of devices are inter-related and



22 J. ROSCHELLE ET AL.

inter-dependent, for example, when a PDA is also a cell phone. The fit of seamlessly
inter-networked devices into classroom practice is, at best, unclear at this time. Thus,
on one hand, we have products that have demonstrated educational effectiveness, but
may not have broad market viability. On the other, while there is great hope for gen-
eral multi-purpose devices, the educational effectiveness of such general-purpose
devices has yet to be documented.

3.2 Physical Networks

One arena in which these larger economic issues will play out and overlap with
technical and design issues is in the infrastructure and topology of the network—
characteristics that are fundamental in determining how easily and effectively net-
worked handhelds can be used in classrooms. A major choice is between infrared
(IR) based beaming and radio-frequency (RF) connectivity. Our primary work has
been with machines that use infrared (IR) beaming, affording spatially-directed,
point-to-point communication.

Infrared technology has some strong advantages in classrooms. First, IR requires
no fixed infrastructure and no configuration, which allows teachers to adopt the
technology without becoming or employing network administrators. It avoids de-
pendencies on the uptime of other network components.

Second, IR simplifies the designation of communication targets: users spatially
specify to whom they are beaming, and thus do not need to pick user names from
lists. The appropriateness and timing of a particular beam is negotiated in the social
realm with little technical overhead.

Indeed, IR fits ad hoc ensembles of students that frequently occur in classrooms:
Teachers expect to be able to say “Everyone who is done, come to the front of the
class and bring your Handhelds” and then create pairs from the students who are
ready for the next task. Teachers may design tasks for pairs, but when there are an
uneven number of students in the class, they expect the students to form trios. Finally,
students do not lose communication functionality when on a field trip.

Furthermore, because of its punctuated nature, IR does not create as substantial
a need for power as does radio-frequency communication. Special purpose devices
provide far more opportunities than general purpose ones to optimize power con-
sumption without compromising performance.

These issues that promote infrared connectivity turn out to be very important in
practice in the classroom. However, radio-frequency communication is coming to
dominate the market and it too has advantages. It can, in theory, create simple mech-
anisms for a teacher to get everyone’s device to a particular state, or to collect work
from all students simultaneously. It can support in a straightforward fashion the pow-
erful image map assessment and aggregation activities we listed above. It can support



DESIGNING NETWORKED HANDHELD DEVICES 23

access to the Internet. Hence, we predict great interest in radio-frequency networking
in classrooms in the future.

3.3 Connections to the Internet
However, radio-frequency connectivity is not itself a full classroom solution. In

practice, wireless Internet use on small handheld screens has been problematic. De-
spite intensive design and strong hype, Wireless Application Protocol (WAP) has
been a spectacular failure [62]. Equally surprising, Short Messaging System (SMS)
has succeeded beyond anyone’s expectations [96]. However, even common Inter-
net applications can be quite problematic in classrooms. Schools, for example, have
been tempted to ban instant messaging because it enables cheating and disruptive
behavior [91]. Further, attention is a teacher’s most precious commodity, and no
teacher wants her students’ attention focused on messaging with friends outside of
class [106].

There are other reasons we may not want the most general form of radio-frequency
Internet connectivity as currently conceived for classroom-based applications. For
moderately loaded shared media networks, contention-based access to the medium
by individual nodes is typically most efficient. In systems where collisions can be
detected by the sender (such as in wired Ethernet) this efficiency holds up even to
highly loaded situations. However, in wireless networks, nodes cannot both send and
receive simultaneously. Consequently, collisions between senders cannot be directly
detected. Connectivity may degrade disastrously as more users attempt to share the
medium. The sudden and apparently unpredictable loss of connectivity due, perhaps,
to users in a neighboring classroom beginning to access their own wireless access
point, creates a lack of trust in the reliability of wireless and consequently less than
full-scale adoption.

In classrooms and other situations where proximal social interaction is a key com-
ponent of communication, wireless range beyond perhaps a decameter ceases to be a
benefit and is, instead, a liability. In addition, physical proximity to other users and to
network resources such as access points provides an opportunity to greatly simplify
the usually daunting process of configuring. Combining the use of point-to-point
communications for selection (“this is the access point I want to connect with”) and
automated configuration, with the use of short-range, high-bandwidth radio commu-
nications would appear to provide much higher reliability as well as greater ease of
use in classroom-like situations.

In other words, the notions of RF communication, and “connection to the Internet”
turn out to need much more definition and elaboration as a concept in order to be
useful in a classroom context. Any design wants the benefits of all choices and the
costs of none. What makes this more challenging is that many features that are clear
benefits in non-educational situations are not really benefits in the classroom.



24 J. ROSCHELLE ET AL.

TABLE II
A PARTIAL LIST OF HANDHELD PROJECTS CLASSIFIED BY CLASSROOM FUNCTIONALITY AND

TECHNOLOGICAL STATUS

Personal/
background
tools

Central
representation
devices

Controllers of
other devices

Communica-
tors

Teacher
management
devices

Clicker
systems

Boomerang
(Tatar et
al. [116])

ClassTalk
(Dufresne et
al. [34])

PUC, CPoF
(Myers et al.
[77])

I-Guides (Hsi
[55])

EduClick (Liu
et al. [67])

Graphing
calculators

PIGMI
(Hennessy
[51])

Gridlock
(Wilensky and
Stroup [127])

LabWorks
(Morgan and
Amend [76])

Match-My-
Graph, Slot
Machine (Tatar
et al. [116])

HubNet
(Wilensky and
Stroup [127])

PartSims Cooties
(Soloway et
al. [110])

Chemation
(Bobrowsky et
al. [8])

Thinking Tags
(Colella et al.
[18])

HEARTS
(Jipping et al.
[57]), Geney
(Danesh et al.
[26])

MathWorlds
(Hegedus and
Kaput [47])

System sims CritterVille
(Soloway et
al. [110])

NetCalc
(Tatar et
al. [116])

MRSCL
(Mitnik et al.
[72])

Sketchy
(Bobrowsky et
al. [8])

Environmental
Detectives
(Klopfer et al.
[64])

Awareness
devices

StudySpace
(Schnase et al.
[105])

Data Doers
(Tatar et
al. [116])

Symbiotic
Environment
(Raghunath et
al. [92])

Awarenex
(Tang et al.
[114])

Information
Aware System
(Wang et al.
[122])

Focused
practice

VeGame
(Belloti et al.
[6])

Who’s who?
(Moher et al.
[73])

Probeware
(Tinker and
Krajcik [118])

Electronic
Guidebook
(Bannasch [4])

Code It!
(Goldman et
al. [43])

Active
document
exchangers

FreeWrite
(Bobrowsky et
al. [8])

Plantations
Pathfinder
(Rieger and
Gay [97])

Campus
Mobile
(Demeure et
al. [32])

NERTS
(Jipping et al.
[57])

Quizzler
(Penuel and
Yarnall [87])

Formative
assessment

WHIRL
project
(Roschelle et
al. [102])

Palm sheets
(Soloway et
al. [110])

SLiC project
(Soloway et
al. [109])

ImageMap
(Roschelle and
Pea [100])

Gradebook
(Penuel and
Yarnall [87])

Information
delivery/
storage

Fling-It
(Soloway et
al. [110])

MCSCL
(Zurita and
Nuss-
baum [129])

Cornucopia
(Rieger and
Gay [97])

PiCoMap
(Luchini
et al.[68])

NotePals
(Davis et al.
[29])

Notes. Citations may be found at http://www.manleyhopkins.cs.vt.edu/handheldlist.pdf (reprinted from
Kim and Tatar [63]).



DESIGNING NETWORKED HANDHELD DEVICES 25

In this section, we have discussed background properties of existing handheld con-
nected technologies that condition the design of learning activities. A great deal of
research, as mentioned in Table II, has attempted to utilize different aspects and
properties of these systems. In the next few sections, we will present some exam-
ples of the many kinds of promising connected classroom programs and projects that
are currently under investigation. Although some are currently downloadable, each
should be taken as an indicator of what may come in the future rather than a plan, as
none of them rise to the level of influence attained by our earlier examples. We will
then use these examples to return to the importance of guidance from the learning
sciences in creating handheld, wirelessly connected classrooms and discuss some of
the implications of this on-going work for designers of the future.

3.4 Emergent Classroom Connectivity

3.4.1 SimCalc: Connectivity and Dynamic Representation

The SimCalc project is investigating new applications for graphing technology
that will enable more students to develop a conceptual understanding of key con-
cepts in the mathematics of change and variation. SimCalc builds on the strengths
of graphing calculators by using robust and inexpensive handheld devices, enabled
with connectivity and animation. However, compared to the normal use of graphing
calculators, SimCalc substantially increases the student’s interaction with multiple,
linked, dynamic representations. That is, the student’s focus is brought to bear on
the relationship between behavior in the simulated world of cars, elevators, or dots,
and of the position or velocity graphs that describe their motion as the different rep-
resentations are animated. Networking capabilities allow teachers to deepen math
content and increase student participation in their classrooms by permitting the fo-
cused and mathematically relevant contrast between what individual students see on
their own screens and the aggregated behaviours on the large screen at the front of
the classroom. Thus, students might “count off” so that each student has a unique
ordered pair of his/her table and individual number, then create a “car ride” that
reflects those parameters (e.g. the student from Table 1, position 4 would create a
car ride in which y = 1x + 4; the student from Table 4, position 1, would create
y = 4x + 1), then aggregate the “rides” at the front of the room. Visible patterns
emerge. SimCalc researchers Hegedus and Kaput are excited about more than test
scores: “classrooms that integrate dynamic software environments with connectivity
can dramatically enhance students’ engagement with core mathematics beyond what
we thought possible . . .” [48, p. 54].

Under these conditions, technology becomes a pervasive medium in which teach-
ing and learning take place in the social space of the classroom. Thus, as more work



26 J. ROSCHELLE ET AL.

happens through collaborative interaction, learning increasingly occurs in the social
space [113]. This collaborative learning drastically augments the learning that occurs
through individual interaction with technology devices. With careful pedagogical
guidance by teachers, students can progress through a trajectory of understanding in
which their focus advances “from static, inert representations, to dynamic personally
indexed constructions in the SimCalc environment on their own device, to paramet-
rically defined aggregations of functions, organized and displayed for discussion in
the public workspace” [49, p. 135].

3.4.2 ImageMap: Aggregating and Presenting Student
Responses to Enhance Learning

ImageMap is an assessment feedback system for supporting media-rich learning
conversations. In a classroom lesson using ImageMap, an image (e.g. graph, map,
photo) is distributed to each student with a handheld, networked device; the teacher
poses a question about the representation; and each student annotates the image
with a response. Next, a server receives the responses from the pool of students,
aggregates the responses by superimposing the student annotations on the image that
was distributed, and projects the aggregated responses on a public display, allow-
ing students and teachers to see the distribution pattern of different answers. Thus,
students might mark the Confederate States during the Civil War on a map of the
United States. Many might choose Alabama or Georgia, but fewer would hazard
guesses about Delaware or Maryland. In this way, the ImageMap assessment repre-
sents degrees of student understanding through a direct spatial mapping of individual
contributions to an aggregate representation.

In planned extensions to the ImageMap, developers are extending the strategy of
aggregating individual responses so that an exploration can occur simultaneously
with all students participating. The idea is that an unknown shape (perhaps a phase
plot of a chaotic motion) can be generated by having many students each exploring
different portions of the parameter space. As the plot fills in with different con-
tributions, students can start to see regions that have not been explored and ones
where something interesting might be happening. This intermediate representation
can then direct students’ continued exploration, as they see what they are building
together [86].

As is the case with a number of networked handheld applications, the teacher role
during ImageMap engagements is like that of a “conductor of performances” for
an orchestra, with the students contributing to an overall performance. In the Im-
ageMap application (and especially the extended version described above), students
contribute to a joint performance, verbally and with input technology, generating
an overall aggregate representation, with a coherent visual gestalt. The teacher at-



DESIGNING NETWORKED HANDHELD DEVICES 27

tends primarily to group performance, not to each individual student. Moreover,
the teacher, like the conductor, has responsibility for choosing and sequencing the
material to be performed (the curricular activities), interpreting the performance,
and guiding it toward its desired forms. As in rehearsal, the conductor might di-
rect groups of students to practice something alone, or in small groups. During
performance, the teacher will work to ensure that all parts are heard and that every-
one gives their best performance—directing attention towards the students who
need the most encouragement while keeping the overall performance moving for-
ward.

3.4.3 Classroom Presenter: Flexible Presentations using
Digital Ink

In moving from manual presentation systems (such as overhead projectors) to
computer-based presentation systems (such as power-point slides), instructors saw
some benefits and some losses. Computer based systems offer many conveniences:
instructors can easily prepare their lectures in advance, switch back and forth be-
tween the presentation and other computer-based tools (including web applications),
and save, re-use, and share their classroom materials. The trade-off, however, was a
drastic loss of flexibility, as instructors could no longer annotate their presentations
in writing to correspond with real-time events throughout lecture and discussion.
Classroom Presenter is a tablet-PC-based application that combines the advantages
of computer based presentation tools with the flexibility afforded by traditional sys-
tems. By using tablet-PCs as a platform for lecture presentations, teachers can use
digital ink to write directly on their slides. In addition, Classroom Presenter supports
multiple separate—but linked—views of the presentation: the teacher view, the pro-
jector view, and the students’ views. This structure enables all students to have access
to the instructors notes, enables students to beam their markings to the teacher and/or
the projector, and also provides “private” annotation space for both students and the
instructor on their own respective devices.

The affordances of the Classroom Presenter system support active and collabora-
tive learning, student engagement, real-time feedback for the instructor of students’
understanding, and the integration of student materials into classroom discussions.
Thus far, reactions to the system have been highly positive: in a survey of students
from over 200 science and engineering courses in which the instructor used Class-
room Presenter, 55% of students said that the use of the system positively impacted
their understanding of lecture material, and 69% of students would encourage other
professors to use the system as well.



28 J. ROSCHELLE ET AL.

3.4.4 Boomerang: Capturing Student Generated Questions

Often when we approach learning, we think about teachers quizzing or asking
questions of students. This activity orients students and teachers towards the body
of knowledge for which the student is accountable. Student generated questions are
also valuable for learning. However, standard classroom practice may permit only
a small number of student questions, students with good questions often feel dis-
couraged because other people’s questions are so different from theirs and students
often are discouraged by teachers who do not recognize the importance of question
asking.

Boomerang is a tool designed to support students asking questions. It allows all
students to submit questions privately which can then be posted and discussed by the
group as a whole. When students ask questions in their own words, they reveal gaps
in understanding that may not be elicited by the teachers’ use of standard terminology
and phrases. By asking questions, students not only fill in gaps in their knowledge
base, but they also open up possibilities for wonderment.

3.4.5 Match My Graph: Language Games for Math Learning

One of the reasons that graphing calculators and SimCalc are so important is that
middle school math students typically have difficulty remembering the meaning rep-

FIG. 1. Activity sequence in Match-My-Graph (reprinted from Tatar et al. [116]).



DESIGNING NETWORKED HANDHELD DEVICES 29

resented by a graph. Indeed, students may interpret a position graph that shows a
line with an upward slope (see Fig. 1) as a representation of a car going up a hill.
Another SimCalc variant, Match-My-Graph, targets the meaning of the graph by
asking students to put it into words. Students work in pairs. One student, the grapher,
draws a function over a domain. Only they can see their graph and its relationship
to the motion of the car. The other student, the matcher, has the job of creating the
same function over the same domain, by making successive guesses and interpreting
hints. The matcher must use math language with sufficient care to convey precise
meaning to the grapher. Over multiple rounds, each student takes turns as grapher
and matcher. Several metrics of student engagement—including impermeability to
distraction—confirm that students involved in Match My Graph activities are very
focused on the task at hand.

An important part of Match-My-Graph is running the animation to understand
whether a steeper graph represents a faster or slower car. What does an increase in
the slope of the line mean for the animation? Four variations of this task stress the
student’s ability to create and interpret mathematical language. In the most complex
version, a student looking at two velocity functions and no representation of the car
motion must give hints to a student looking at a position graph.

Note that the teacher in this case is “untethered,” roaming the classroom. She often
observes groups and makes a decision about whether to engage with them more
actively. Yet a challenge to this is her lack of direct access to the screen states of
the participants. Sometimes students fail to realize what is important about their own
activity, and therefore give accounts that ignore important phenomena. To support
the teacher’s observation, in the context of untethered teaching, work has been done
exploring the parameters of sharing necessary to support a networked functionality
“Look” which allows the teacher to gain a lightweight snapshot of a student’s screen.
In contrast to much work in Computer Supported Cooperative Work (CSCW) on the
importance of shared screens, this work asks “how little knowledge of the visual
workspace can still be useful to resolve differences?”

3.4.6 Data-Doers: Helping Students to be “Minds-on” During
Hands-on Science Activities

In science classes, students face a number of difficulties in grasping scientific con-
cepts and understanding hands-on demonstrations. Data-doers is a tool that aims to
facilitate science learning by supporting students in being “minds-on when they are
hands-on”. Even though many teachers have near miraculous powers of knowing
what is going on behind their heads, they cannot be everywhere in the classroom at
once. Consequently, students engaged in hands-on work may sometimes become dis-
tracted or confused about the tasks at hand and their relationship to the larger point



30 J. ROSCHELLE ET AL.

of the lab experience. “What were those numbers?” “What was I supposed to do with
them?” “What are we doing anyway?” Their confusion may last only a few minutes,
and yet in the fast-paced world of the classroom, those few minutes can put them at
a disadvantage.

Data Doers allows teachers to create handheld-based worksheets for labs or
demonstrations to help students with data collection activities. Students can then
work individually or in small groups, preparing materials that may eventually be
shared in a class discussion. Data Doers reminds students to think about what they
are doing in two direct ways:

(1) Based on teacher-set upper and lower bounds for measurements, it gives stu-
dents feedback about when a result that they report is not plausible and needs
to be reconsidered and possibly re-measured.

(2) It allows students to beam to their data, thus enabling them to make compar-
isons and contrasts more quickly.

It also provides more occasions for student thought in a three indirect ways:

(1) Teachers can collect student values and respond in a more timely fashion.
(2) Students will not be copying over data tables during class discussion, because

they will either take the Handhelds home or take printouts home.
(3) Teachers can use the presentation of the Data Doers spreadsheet for a lab as

a means of “pre-flecting,” creating classroom discussion about the lab and its
goals before it starts.

3.4.7 eXspot: Using RFID Technology to Enhance and Extend
Museum-based Learning

Although the learning that takes places at science museums is typically highly
motivating, it is also unstructured and unsystematic, and occurs in short spurts of
engagement. Studies have shown that at museums such as the Exploratorium—an
interactive, hands-on museum in San Francisco with over 100 exhibits covering a
wide variety of topics—visitors typically spend only about 30 seconds at any given
exhibit [56]. The key challenge for museum educators, then, is to find ways to deepen
visitors’ learning and extend their experiences, without shattering the motivation that
comes from un-structured, self-directed exploration.

Researchers at the Exploratorium have been working on a new application called
eXspot that uses RFID technology to support, record, and extend exhibit-based in-
formal science-learning experiences. The eXspot system is supported by a wireless
network linking stationary RFID readers to portable, individual RF tags. Visitors
to a museum each receive an RF tag, which they first register (using an ID num-
ber and email address) at a registration kiosk. As visitors progress through the



DESIGNING NETWORKED HANDHELD DEVICES 31

museum, RFID readers stationed at each exhibit read RF tags that come within a
certain range. Visitors can then use their ID information at museum kiosks or on
home computers to login to personalized web-pages that capture their museum ex-
perience. Each visitor’s museum trajectory, as well as photographs taken at various
exhibits and links to additional resources and activities, appears on the personalized
sites.

A bonus application of the eXspot system is that it can serve as an embedded
evaluation tool for museum research. Information captured from RF tags as the vis-
itors progress through a museum can provide valuable information regarding exhibit
interaction patterns, use of RFID-supported exhibits, preferences for online content
and learning activities, and repeat-visit information. All of this data serves to inform
museum strategies and strengthen the learning value of community science muse-
ums.

3.4.8 Crickets

Crickets are tiny programmable devices that students can embed in their own
physical creations. Using sensors and actuators, students can write simple programs
telling Crickets how to behave. In this way, Crickets make it possible for students to
control both the physical design for the structures and mechanisms of a creation as
well as the computational design of behaviors [94]. In particular, they build on the
notion of physical design (with blocks, tiles, Lego© parts, etc.) as a learning domain
in which the consequences of design decisions and explorations are immediate and
transparent. They then add to that context the ability to explore behavioral design in
a similarly transparent fashion [95].

3.5 Discussion: Capabilities, Tensions, Potential Resolutions

Certain features emerge from this discussion: a local messaging topology among
participants in mostly face-to-face settings; variations in teacher control and expec-
tations for teacher behavior; the potential of spatially directed communications, for
example, in beaming in Match-My-Graph, in the placement of probes in particular
spatial locations in the stream, and implicitly by posting a mark in a certain place
in image map assessment; in the predominance of short, asynchronous structured
data over long general purpose text messages (such as in email) or long-term con-
versations (such as telnet or Napster); and in aggregation of data and experience
by student and teacher. Finally, a shared public display is often important in mak-
ing these aggregates available for discussion. We ask next how best to think about
the status of each of these features. What factors, if any, should be treated as de-



32 J. ROSCHELLE ET AL.

sign principles? What factors are necessary for learning success and success in the
world?

4. Overarching Ideas from the Learning Sciences

In discussing historical successes, we noted that successful applications of learn-
ing technology do not insert technology into schools in isolation from other factors.
To the contrary, behind every successful learning technology we described an in-
tegration of simple, focused technologies and transformed teaching practices. We
next considered emergent technological capabilities and applications. Describing the
technology features of these examples is not enough because the designs have been
informed by dual technological and learning perspectives. Readers would be unlikely
to be able to generalize to powerful new designs of their own without also under-
standing the learning theories that informed each design. Therefore, in this section,
we discuss recent advances in learning theory that have been most closely associated
with design of networked, handheld learning technologies.

Recall from the historical examples that they drew upon the capabilities of net-
worked computers to represent scientific and mathematical ideas in profoundly new
ways, to provide enhanced feedback to teachers and students, and to enable stu-
dents to engage in inquiry that is more aligned with scientific practice. The field
of empirical research and theory that has been most closely associated with rep-
resentational, feedback and inquiry approaches is called the “Learning Sciences.”
Although researchers have been active in this field for 20 years, they have only re-
cently pulled together to form a society (the International Society of the Learning
Sciences, http://www.isls.org) with two journals (Journal of the Learning Sciences,
International Journal of Computer-Supported Collaborative Learning), and two im-
portant reference works (How People Learn and The Cambridge Handbook of the
Learning Sciences).

In this section, we selectively highlight aspects of the Learning Sciences that we
have found to be most relevant to the issue at hand: the design of handheld and
wireless learning technologies to enhance school learning. We approach this task in
three stages. First, we describe two overarching perspectives in the Learning Sci-
ences, one that emphasizes cognitive augmentation and the other that emphasizes
social participation. Many successful projects draw upon the tensions that lie be-
tween these perspectives. Second, we discuss a set of design factors that link with
Learning Science theories and cut across many example applications. Third, we note
that the Learning Sciences has been concerned not only with theory and results, but
also with the practice of design. Hence our third section discusses the technology
design practices emerging in this field.



DESIGNING NETWORKED HANDHELD DEVICES 33

4.1 Perspectives

4.1.1 Cognitive Augmentation
Inspired by Vannevar Bush’s classic essay, “As We May Think”,2 Douglas Engel-

bart defined a program of research that linked advances in computing to a vision of
augmenting human intelligence [36]. Engelbart’s innovations—including the mouse,
the use of graphical user interfaces to communicate ideas, and collaboration across
a network—have become commonplace affordances of personal computing tech-
nology over the past 30 years. The power of cognitive augmentation is so strong
that many of us would feel unable to work without our accustomed computational
tools.

Engelbart’s innovations also occurred in the midst of a cognitive revolution in psy-
chology, which moved beyond earlier stimulus-response theories to focus on human
problem solving as mediated by representations [81]. These mediating representa-
tions could be both knowledge within the mind and cultural symbol systems outside
the mind, such as notations, diagrams, and visualizations. Computers turned out to
be good both for testing theories of cognition (e.g. the field of Artificial Intelligence)
and for creating novel symbol systems that could better mediate human problem
solving performance.

The joint onset of the augmentive and cognitive revolutions had powerful effects
on theories of learning. Before this time, learning was largely seen as a matter of
applying effort to forming the right stimulus-response bonds (a theory called “be-
haviorism”). A student had learned something when they could quickly answer a
question correctly. Many applications of computer technology in learning still build
upon this old way of looking at things; these applications try to motivate students
to put more effort into question-answering by making it more fun (e.g. by intro-
ducing a game-like reward structure). Applications of computer technology learning
also reflect this old way of looking at learning when they see “interactivity” as a
stimulus-response cycle: the student does something and the computer responds (or
visa versa).

After the cognitive revolution, learning was seen as a process of transformation
of a student’s knowledge that is highly related to problem solving. A student now
had to use knowledge in solving a complex problem to demonstrate learning. Fur-
ther, “interactivity” now was described in reference to an extended problem solving
process: how could “interacting” with a computer-based model or simulation (that
itself was a dynamic system of symbols) be a powerful resource for a student to
re-think their ideas about physics, for example? Computers now were seen as tools
that could augment learning and problem solving processes by providing conceptual
tools that were more appropriate to the learner’s challenge [65].

2 http://www.theatlantic.com/doc/194507/bush.



34 J. ROSCHELLE ET AL.

Arising within this history, key innovations in the learning sciences were cog-
nitive tools that augmented the learning process. The programming language Logo
provided “gears for the mind” ([85] which could make abstract geometric ideas more
concrete (as instructions to a “turtle” to draw graphics) and help students learn new
ways of thinking mathematically (such as recursion). At Xerox PARC (an institution
that hired many people from Engelbart’s lab), Alan Kay imagined a “Dynabook”
which would enable students to manipulate scientific models and instantly see the
consequences. Knowledge Forum, a collaborative learning tool for science class-
rooms, helped students to visualize and improve the structure of their ideas about a
scientific phenomena. This transformed science classrooms from being more about
memorizing facts (per earlier behaviorist theories) to being about scientific inquiry.
Similarly, “The Adventures of Jasper Woodbury”—an early expression of Learning
Science theories in multimedia format provided an extended context in which stu-
dents could learn mathematical concepts while using those concepts to solve realistic
problems.

As the cognitive revolution continued, much more was learned about representa-
tion. Of particular importance to learning is the transition from emphasizing general
problem solving abilities to discovering that expertise depended on domain-specific
knowledge and skills. Hence, a mathematician does not solve problems using the
same representations or approaches as a biologist. Each field of inquiry has its own
cultural tools and problem solving approaches that are particularly tuned to its sub-
ject matter. In Learning Sciences, this insight led to a search for ways of using
computers to produce new ways of representing knowledge so that students might
learn more easily. Many of the representations took advantage of the graphical,
manipulable and dynamic aspects of modern computer technology, resulting in mod-
eling, simulation, and visualization tools appropriate for learning a range of topics in
mathematics, science and other subjects.

This history underlies the cases of handheld learning technology we have drawn
out for consideration in this review. Graphing calculators, for example, provide stu-
dents with a visual representation of functions that makes mathematical reasoning
more fruitful for most students. A “killer application” of graphing calculators occurs
in a typical calculus sequence when students need to understand that functions ap-
pear locally linear. By zooming in progressively closer in the graph of a function,
students can experience local linearity in a way to that leads to great understand-
ing of this fundamental idea within calculus. Simultaneously, graphing calculators
offload laborious calculations, thus enabling teachers and students to allocate their
cognitive resources to the more important aspects of the mathematics at hand. Within
the newer applications we discussed, we also see a focus on handheld devices as rep-
resentational tools that augment students’ capabilities as they learn.



DESIGNING NETWORKED HANDHELD DEVICES 35

TABLE III
PRECOGNITIVE AND COGNITIVE PERSPECTIVES ON LEARNING TECHNOLOGY

Precognitive perspective Cognitive perspective

View of learning Acquiring correct associations
between a stimulus and a response

Transforming prior knowledge to be
able to solve authentic problems in a
domain of expertise

View of interactivity Receiving quick and informative
responses to each action can
accelerate students’ acquisition of
appropriate associations

Interacting with a dynamic notation
or simulation model during problem
solving can lead students to transform
their knowledge

Role of technology Motivating students to apply more
time and effort to learning through
entertaining reward structures

Providing representations that are
especially conducive to building a
conceptual model of a particular area
of mathematical or scientific
investigation

Key features of
technology

Allows designers to create a
controlled sequence of interactions
that optimizes formation of correct
associations and motivation to apply
effort to learning

Allows designers to create new forms
of representation, using dynamic,
manipulable graphic notations and
models

Prototypical handheld
example

Flashcards on a handheld allow
students to practice associations
anytime and anywhere

Graphing calculators enable students
to explore local linearity of a function

Although we have been drawing a somewhat strict line between precognitive and
cognitive approaches (see Table III for a summary), we should acknowledge that
this is an oversimplification. The view of learning as embedded in problem solving
and the role of technology as supplying cognitive tools for inquiry also goes back
to seminal 20th century thinkers such as Dewey, Piaget, and Vygotsky—and these
thinkers have figured large in the Learning Science approach to supporting learning
through cognitive augmentation. Dewey, for instance, offers a clear philosophical
account of what problem solving looks like. His account is helpful in distinguishing
superficial problem solving (e.g. where a multiple choice test question is termed
a “problem” if it contains a framing story) from inquiry-oriented problem solving.
Dewey described the inquiry as being rooted in students’ feelings of confusion and
frustration with an inability to make something work, involving the application of
both conceptual and physical tools over time to transform the students relationship to
the situation, with a resulting cathartic realization of a new approach to the situation
that removes the confusion and results in ability to work effectively in a range of
similar situations. Hickman [52] gives a compelling account of Dewey as having
foreseen the cognitive augmentation view of cultural tools. In learning, one role of



36 J. ROSCHELLE ET AL.

cognitive tools is to extend the time and intensity with which teachers and students
are able to engage with complex and extended problem solving before frustration or
confusion blocks progress.

Piaget also figures large in the cognitive augmentation view of tools for learning.
In Piaget’s theory, one important line of child development is from more embodied
to more concrete to more abstract ways of solving problems. Learning technologists
often look at this not as a fixed sequence but instead as a map of children’s resources
for learning; children have relatively few and fragile resources for learning through
a purely abstract modality but relatively robust resources for learning through em-
bodied and concrete experiences. Hence, one way to enable children to work more
productively with abstract ideas (such as mathematical or scientific concepts) is to
provide a range of well-designed concrete embodiments that bridge to the abstrac-
tions. The historical success of probeware, for example, can be seen as enabling
students to participate in scientific inquiry by connecting to their ability to engage
in embodied sensory exploration of the world. Likewise, cognitive tools running on
handhelds (such as mathematical models) give students an opportunity to interact
with a more concrete realization of abstract theoretical concepts.

We also note continuity from precognitive to cognitive perspectives. For exam-
ple, our introduction emphasized the importance of frequent and integral access to
technology. The theoretical roots of this concern reside in the concept of “time on
task.” Students learn more when they spend more time learning; Learning Scien-
tists agree that arranging for teachers and students to spend more time engaged in
learning is really important. Indeed, one of the drivers towards simpler technology
is a desire to avoid introducing complexities (and logistic problems like running
out of batteries) that steal precious minutes from engaged learning. Another area of
continuity regards the importance of feedback. Both precognitive learning and cog-
nitive augmentation perspectives highlight the importance of giving students timely
and supportive feedback as they learn. The main difference, as would be expected,
is whether the feedback is on the correctness of associations or related to a more
extended problem solving process. In a learning sciences approach, “formative as-
sessment” (the technical term for feedback) is often directed at helping students
understand how experts judge the quality of explanations and problem solutions and
at giving guidance to students on the fruitfulness of particular problem solving ap-
proaches.

4.1.2 Social Mediation of Participation

Like all revolutions, the cognitive revolution also had its excesses. Approximately
midway in our timeline running from Engelbart’s 1968 demonstration to the present,
scholarly concern with the excesses of the cognitive revolution culminated in a



DESIGNING NETWORKED HANDHELD DEVICES 37

counter-revolution that stressed a more social and contextual view of learning. Some
of the excesses that scholars raised included:

• A emphasis on problem solving in overly logical situations, like playing chess,
rather than more common but fuzzy practical situations, like doubling a recipe.

• A tendency to treat context as yet more information to be represented, rather
than a more phenomenological, embodied, situated account of context as cul-
tural, historical and physical.

• A neglect of the social and collaborative dimensions of learning and an overem-
phasis on learners as isolated individuals.

In one way of viewing this history, the cognitive revolution supplied a thesis (the
problem solving view of learning), which was then countered with an antithesis (a
more social, cultural and situated view of problem solving). One can see the field
of the Learning Sciences as the emerging synthesis which brought together these
tensions, especially as applied to the design of learning technology. Therefore our
narrative below explores the consequences of a social participation view of learning
for the design of networked handheld applications.

One early and important center in which the social participation view of learning
technology developed a particularly full theoretical and practical realization was the
Laboratory of Comparative Human Cognition at the University of California, San
Diego. Here, in work that started in 1972, Mike Cole and colleagues began attending
to the problems students had learning school subjects in particular cultural settings,
such as the problems Liberian students experienced in learning mathematics. But
rather than developing a “deficit” view that emphasized cultural impoverishment,
the social participation view often undertook anthropological studies to understand
how children (or adult workers) in cultural settings develop powerful mathematical
competence. This led to a long-term experiment in the development of after-school
settings in which students use technology in support of learning, called the “Fifth
Dimension.” In parallel with the development of this technology-enriched setting,
researchers developed a cultural–historical view of learning that drew upon Dewey,
developmental psychology and especially the work of Russian psychologists such
as Vygotsky. Below we describe some key features of the Fifth Dimension design
and theory, especially as these features contrast with the cognitive augmentation
perspective and lead to a broader Learning Sciences perspective (Fifth Dimension
Clearinghouse website).

The Fifth Dimension was designed as an after-school setting for learning within
community centers such as Boys’ and Girls’ Clubs, YMCAs, recreation centers, li-
braries, and public schools. A central element of the design was play; whereas most
school settings beyond Kindergarten contain learning in a very formal structure, the



38 J. ROSCHELLE ET AL.

Fifth Dimension uses play as a primary activity system for developing mastery of a
subject.

The heart of the Fifth Dimension is a wooden Maze divided into twenty rooms.
Each room provides access to two kinds of activities, computer and non-computer.
About seventy-five percent of the activities utilize educational software and com-
puter games. Included are telecommunications activities for searching the Internet,
and tools for computer-mediated, and video-mediated conferencing. The remain-
ing activities are non-electronic and include board games and arts and crafts. The
software represents the curricular content of the Fifth Dimension. Subject matter
includes social development, communications, reading, writing, math, geography,
social studies, health, technology, language, and problem solving. In all, the Maze
contains over 120 educational and computer games and non-electronic activities
(from http://www.education.miami.edu/blantonw/5dClhse/childs.html).

In addition to play, another critical aspect of the design was a sense of place. While
the Fifth Dimension did not design for learning in formal school settings, it also did
not design for learning in complete ad hoc settings either (as some researchers in
handheld and networked learning do when they emphasize learning “on the bus” or
“in the park”). The cultural and historical location of their design in places that were
organized and designed for learning is critical to their successful design. Below we
draw out three additional aspects of the Fifth Dimension that are central to the social
participation perspective on the design of learning technology.

First, the Fifth Dimension was conceptualized as a set of activities in which stu-
dents participate. This may seem superficial but is actually a deep point. The cogni-
tive augmentation perspective often did not question the school-like nature of many
of the tasks students were asked to do, and how that artificiality of school-like tasks
prevents students from gaining a deeper appreciation and understanding of a subject.
The point is theoretically deep because activity is a central construct in Russian psy-
chology and a hinge-point in linking that theory to design. Activities are theorized
as the minimal unit of meaningful engagement in a cultural practice, and include an
analysis of goals, mediating tools, roles, and involvement of a community. Likewise,
when Learning Scientists design applications of technology to learning, they do not
merely design cognitive tools, but rather design coherent activities in which those
technologies are used in social practice.

Second, the Fifth Dimension conceptualized a new role for a leader often called
“the Wizard.” In an allusion to the Wizard of Oz, the wizard only appears through the
technology (and is a role often played by a group of people in a backroom). The wiz-
ard may act as a knowledge expert but may also be a prankster or curmudgeon who
prods students’ development forward. Theoretically, the wizard relates cultural pro-
totypes of adults who guide and support learning but not merely through the narrow
role that teachers often take, the role of a “sage on the stage.” Likewise, in many de-



DESIGNING NETWORKED HANDHELD DEVICES 39

signs for the use of networked handheld in learning, the teacher is no longer expected
to simply be the expert who delivers correct knowledge, nor is the device seen as an
anytime/anyplace gateway to authoritative knowledge. In many successful designs of
networked handhelds for learning, teachers are expected to prod students into more
active roles in learning and the network enables students and teachers to enact rich
social forms of participation in learning that go far beyond accessing “learning ob-
jects” on the web.

This brings us to a third point: the Fifth Dimension emphasized social partic-
ipation of learners in activities. In particular, learners were expected to establish
goals and strategies for their own participation, to collaborate in small groups, to
reflect and communicate their emerging understandings, and to transition from roles
as novices to roles as masters of their environment who could help others. Peer inter-
action was considered especially critical. Theoretically, this relates to the perspective
that learning involves a transformation of participation in a community of practice.
Complementing a knowledge-centered view, this view sees learners progress from
“legitimate peripheral participation” in a cultural practice (such as making scientific
arguments) to become more central participants in the real work of science and even-
tually to becoming masters who organize the learning environment for new students
to sustain and grow the practice.

Drawing upon the work of Vygotsky, Learning Science researchers and technol-
ogy designers often build on the idea that learners often first enact complex new
practices in a social group and only later internalize the social performance as a
cognitive capacity. In comparison to the cognitive view, in which cultural symbol
systems primarily mediate thinking within an individual mind, the Vygotskian view
sees the same cultural symbol systems as primarily mediating social practices of
thinking—by allowing practitioners to think together more effectively. With respect
to learners, Vygotsky conceptualized a “zone of proximal development” that was the
conceptual area that lay between what a child could do individually and what they
could do in a social group. Researchers could design mediating tools for the zone
of proximal development to extend and deepen this zone to enable more fruitful so-
cial interaction around complex problems. Through social use of powerful mediating
symbol systems, students could come to internalize expert use of those symbol sys-
tems and move along the trajectory toward expertise.

The contrast between the cognitive augmentation and social participation views
of learning technology can clearly be seen in work around a modeling tool called
the Envisioning Machine [99]. The Envisioning Machine provided a simulation en-
vironment in which students could learn Physics concepts by manipulating objects in
a “Newtonian World” to match the motion of a ball in an “Observable World.” Stu-
dents used a mouse to drag velocity and acceleration vectors in the Newtonian World;
when they started the simulation, the corresponding motion would be produced in-



40 J. ROSCHELLE ET AL.

cluding a display of the changing velocity vector over time. As a tool for cognitive
augmentation, the Envisioning Machine was carefully designed to suggest and con-
strain students’ thinking towards a vector addition model of kinematics—a powerful
symbol system for reasoning about motion that is abstract and non-intuitive for most
students. However, the eventual analysis of how students learned with the Envision-
ing Machine came to emphasize a social participation perspective. Students found
the Envisioning Machine engaging because it encouraged a playful engagement with
a core physics challenge—modeling the real world with theoretical concepts. As stu-
dents participated in this activity, they initially could not see the symbol systems
of the Newtonian World in the way an expert physicist does. However, the symbols
mediated their use of language and enabled them to use available metaphors such
as “pulling” to gradually construct a shared understanding of how the Newtonian
World worked. This understanding was not identical to an expert view but consti-
tuted progress from very peripheral understanding of what physicists do and how
they think towards a greater ability to participate in conversations with scientists
about motion. One can see the Envisioning Machine not just as augmented cogni-
tion but also as mediating students’ collaborative participation in scientific modeling
practices—enabling them to engage in scientific modeling for a longer time period
than they might have without the mediating tool and without each other.

Within the historical examples of networked handhelds introduced earlier, the case
of networked response systems is the best fit to a social mediation perspective [88].
One can look at these systems merely in terms of providing more feedback to teach-
ers and students. However, doing so misses a great deal of the action in successful
classroom implementations. Students and teachers both report that the use of these
systems changes how they participate in class. On the good side, students report less
anxiety in sharing ideas in class; on the bad side, some students resent that their
participation in class can now be measured by the teacher and adopt positions of
resistance. Either way, these systems evoke strong feelings from the students about
participation.

Penuel and his colleagues propose that concepts from the sociocultural theory
of learning can explain how, when, and why audience response systems effectively
transform and enhance learning [88]. First, the sociocultural perspective of learning
posits that people learn when they practice using the tools of a given discipline, with
the guidance of an expert. As people become more comfortable with these tools,
their participation within the community of learning transforms, resulting in a trans-
formation, too, of the interpersonal and group interactions that take place within
the community of learners. Second, the sociocultural perspective argues that actions
are mediated by discourse and symbolic representations. Extended practice at using
the discourse of a discipline and at conceptualizing and communicating answers to
open-ended questions aids students in developing deeper understandings of science



DESIGNING NETWORKED HANDHELD DEVICES 41

concepts. This emphasis on the importance of discourse provides an understanding
of how and why the discussions resulting from the use of audience response systems
are so influential in fostering increased conceptual understanding among students.
Finally, a sociocultural perspective on student interest, motivation, and identity il-
luminates the ways in which audience response systems—and the features of the
tasks and classroom dynamics associated with their use—might influence student
engagement and student participation. Taken together, ideas from the sociocultural
perspective of learning shed light on the mechanics of change taking place in class-
rooms that implement audience response systems.

4.2 A Learning Sciences Synthesis

Both cognitive augmentation and social mediation moved beyond the view of
learning as mastery of a simple association of stimulus with response and the view
of motivation as a simple impetus to put in enough effort to master the associations.
Between stimulus and response, the cognitive revolution inserted mental representa-
tions. The social mediation view instead inserted cultural tools. While the theoretical
differences between these moves is huge, the resulting learning technologies can look
quite similar: a representational tool for augmenting mathematical cognition looks
pretty much the same as a mediational tool for social participation in mathematical
practices. Hence rapprochement and synthesis is achievable.

As one simple starting point, we can synthesize across settings. Researchers in
the cognitive augmentation perspective have been more attuned to design tools for
formal learning settings. Researchers in the social mediation perspective have been
more attuned to the use of learning technology outside the formal school day. With
the advent of handheld and networked technology, there seems to be little reason to
make a sharp distinction between these two settings. Students will be able to carry
their handhelds between formal classroom settings and settings in clubs, museums,
and homes. In place of sharp distinctions, networked handhelds will likely encourage
a sense of “seamless learning spaces” [17] that enable learning to move among and
across different settings.

A synthesis can start with the view that the purpose of technologies in learning
is to provide symbolic tools that enable students to engage effectively in extended
episodes of thinking, communicating, and reflecting—not simply to make the mas-
tery of simple associations more fun (see Table IV). A more cognitive view is often
helpful in analyzing the relationship of a proposed tool to disciplinary knowledge:
how does this tool embody or distort the ways in which mathematicians think about
mathematics? A more mediational view is often helpful in analyzing the relation-
ship of a proposed tool to disciplinary practices: how does this tool enable or block



42 J. ROSCHELLE ET AL.

TABLE IV
COMPARISON OF PERSPECTIVES ON LEARNING

Cognitive augmentation
perspective

Social mediation perspective Learning sciences perspective

Formal learning Informal learning Linking formal and informal
learning

Symbolic tools
(representations) mediate
mental operations

Symbolic tools
(representations) mediate
social practice

Symbolic tools
(representations) can fruitfully
link cognitive and social
dimensions of learning

Symbolic systems as the unit
of design

Activities as the unit of design Activities with symbolic
systems as the unit of design

Successful learners are able to
solve complex problems and
undertake scientific inquiries

Successful learners are able to
participate in disciplinary
community of practice

Successful learners can
participate in collaborative
inquiry in a domain

students from participating in social practices which successfully approximate the
practices of real scientists?

When designing a learning tool, designers working from a cognitive augmentation
point of view often start by thinking about the symbol system that expert mathemati-
cians or scientists use to solve problems. How could abstractions in the mind of
experts become more tangible and concrete in the hands of learners? How could the
abstract concepts be represented in a way that directs and constrains student thinking
towards the ways in which experts think about the concepts? How could students
attention be focused on the really important aspects of thinking in this domain, of-
floading less important, distracting parts to automation?

Designers working from a social mediation point of view start by thinking about
designing an activity system that engages students in an approximation of the social
practices of actual scientists and mathematicians. Designers think about appropriate
goals for the activity and how technology can mediate students’ involvement in it.
What roles and rules will be necessary to structure playful engagement so as to en-
hance the learning potential of the activity? What new roles will teachers and other
adults take? How does this activity fit as a transition between the cultural practices of
childhood and the cultural practices of a specific discipline? How will it build chil-
dren’s affiliation with each other and enable them to see themselves moving along a
trajectory towards greater participation in a community of practice?

In the Learning Sciences, these two design points of view come together by think-
ing about activities with domain-specific symbol systems as the fundamental unit of
design. This synthesis balances the need to think about how technology can make
an expert’s abstract operations on symbols more tangible for learners and with the



DESIGNING NETWORKED HANDHELD DEVICES 43

recognition that the smallest meaningful chunk of social practice that can be designed
is an activity.

Finally, each perspective offers a slightly different view of what success looks like.
In the cognitive augmentation perspective, researchers celebrate success when stu-
dents can solve complex problems or undertake scientific inquiries that reflect deep
understandings of a particular domain of expertise. In the social mediation perspec-
tive, researchers see success more in terms of increasing ability to participate in the
core practices of a professional community. A Learning Sciences synergy suggests
seeing successful learning as an ability to participate in collaborative inquiry in a
particular mathematical or scientific domain.

5. Design of Instructional Technologies

5.1 Design Factors

When discussing themes in the creation of historical and new handheld, connected
activities, we identified local messaging, teacher-control, spatially-directed commu-
nication, short, asynchronous data messages and aggregation as factors. The crucial
issue for computer scientists to bear in mind when designing handheld-based, wire-
lessly connected systems for learning is that, ultimately, nothing is more important
than the learning. As in medicine, failure is a tragedy in the context of educa-
tion, a waste of society’s resources in general but a loss to every child who fails
to learn what he or she ought. And the key to success in education is maintaining
the primacy of the meaning of the experience to the learner over the design princi-
ple.

If we re-examine the technological features that we drew out as important before
in the light of the knowledge of the Learning Sciences just presented, we see that four
themes provide underlying causes for those features to attain importance: shared at-
tention, rich representation, the role of public and private work, and the importance
of control. Importantly, for example, local messaging is not significant in itself but
rather because of the situation it creates in the design context. Local messaging is an
important technique to consider insofar as it helps maintain shared attention among
relevant participants and therefore promotes deeper interaction between peers or be-
tween student and teacher.

5.2 Design Practices

In designing handheld-based, wirelessly connected activities for the classroom, we
must balance the considerations of producing an entire system, emphasizing user or



44 J. ROSCHELLE ET AL.

user group experience [117]. Stroup and Petrosino [112] characterize the classroom
as an eco-system, and they rightly emphasize the limitation on and inter-dependence
of resources.

Our goals as engineers must be not to set immediate boundaries nor to simplify the
problem at all costs, but rather provide a “space of relevance,” that is, a framework
in which to think about the tradeoffs. Earlier, in discussing the technological context,
we talked about the relationship between RF, IR, the market place, power usage,
teacher control, connections to the Internet, and aspects of network performance at
small scales. These are fundamentally incommensurate considerations. There may
develop a societal consensus about how to handle them, but that consensus will just
be another factor to take into account in the decision process that any project goes
through.

This kind of design calls for a new paradigm for proceeding, a design tensions
paradigm [117]. Like design rationale (Carroll; McLean) or scenario based design
(Carroll and Rosson), design tensions focuses on reflection. However, unlike these
paradigms, it does not carry the weight of capturing reflection in a form of interest
to all subsequent designers. It attempts to assess the issues for the current design in
situ. Our goals guide us through the design of handheld-based wirelessly connected
systems, but we may not fully understand our goals until they run into conflict dur-
ing the process of design. Thus we might hazard a guess that most designers have the
twin goals of producing something useful in learning and having it adopted widely.
Both of these goals might appear to converge on the choice of a particular platform
for delivery because of its potential for widespread frequent integral use. However,
if it turns out that the devices cannot be recharged in time to use in class after class,
suddenly the creators must choose or find a third option. This approach to design
differs from the usual engineering problem-solving in two small but highly signif-
icant ways. First, it emphasizes the integration rather than the separation of design
decisions, suggesting that design decisions must be revisited during the design and
building process in the light of subsequent discoveries. Second, as called for in the
Value Sensitive Design movement [39,40], it focuses us on the values inherent in the
design decision. The design of learning technologies is a high stakes, value laden
enterprise.

One useful way of categorizing classroom systems is via the dichotomy of ver-
tical vs. horizontal technology (Table V, adapted from [112]): tightly focused use
(vertical) or general purpose use (horizontal). Other characteristics that appear to be
tightly clustered with this characterization include whether it is designed primarily
in reference to a teacher’s pedagogical needs (vertical) or a student’s personal needs
(horizontal), whether it is designed to be a fixture of a classroom (vertical) or travel
with the student from class to class (horizontal).



DESIGNING NETWORKED HANDHELD DEVICES 45

TABLE V
CATEGORIZATION OF CLASSROOM TECHNOLOGIES

Characteristic Horizontal technology Vertical technology

Designed for whom Student Teacher
Focus of functionality Just-in-case Just-enough
Physical movement between
contexts

Portable across physical
contexts

Fixed within use context (e.g.
math classes)

Inter-device communication Peer-to-peer/neighbor Networked/flexible group
Content domain interaction Interdisciplinary by nature Domain-focused

However, while this table characterizes some portion of a state of affairs in the
world, note that it does describe potential for new designs to solve the problem of
what “good” is in the context of a particular project. Yet we have argued that values
are central to the design process. Let us return to the examples of connected SimCalc
and Match-My-Graph/NetCalc to illustrate how a designer might think about the dif-
ferent levels of decisions and goals in the system within the same project. Both the
connected SimCalc and the Match-my-graph projects started with desktop SimCalc
and its benefits. Indeed, they were funded by the same grant. As summarized in Ta-
ble V, in other words, the projects had deep and broad agreement at the vision level.
Project personnel agreed that the current state-of-affairs in the world was that desk-
top SimCalc was highly successful, that it could promote both excellence and equity
in math knowledge by giving students a better grasp of the math of change and vari-
ation. They also agreed, at the vision level, that it ought to be cheaply available in a
form that would get it to more students. The project approach, also agreed upon, was
to utilize inexpensive networked, handheld computers, building on the example of
graphing calculators. Furthermore, they agreed in their pedagogical commitment to
designing for learning through supporting the use of multiple, linked representations
and through promoting participation and feedback. These agreements have consider-
able consequence. For example, they suggest that there might be a minimum capacity
for the display of representations. Cell phones, for example, fall under the “inexpen-
sive” and “wide spread” criteria, but perhaps not the strong representation. I-pods
(which were not yet known quantities) may have sufficient representational power,
but not sufficient manipulation.

However, when it came to the level of project tensions, of what goals really to sup-
port, the project agreed to diverge (see Table VI). One portion of the project chose
to emphasize an approach that maximized the installed base of particular technology
(graphing calculators) over its display and manipulation capacities. The other por-
tion chose to emphasize the display and manipulation capacities over the installed
base by choosing PDA’s. Both attempted to have some elements of the other. That
is, the graphing calculator based portion of the project choose to work with high-end



46 J. ROSCHELLE ET AL.

TABLE VI
DIVERGENT APPROACHES TO SIMCALC RESULTING FROM PROJECT TENSIONS

Vision Is: “SimCalc, when used well, teaches the
math of change and variation, in a way
that promotes both excellence and equity
in math knowledge”

Ought: “It ought to be cheaply
available to more students”

Approach Project drivers: The state of cheap
handheld devices; the prevalence of
graphing calculators in schools already.

Values: Pedagogical commitments
to multiple, linked representations;
participatory and feedback tools;
HCIcommitments to
graphical-user-interfaces (GUI’s).

Project tensions Use PDA’s with their larger screens and flexible input devices vs. use graphing
calculators with their wide-spread prevalence.

As created
dilemmas

On-going usability challenges vs. a longer lead-time to demonstrations of
effectiveness.

Tailoring of success to teacher controlled vs. student-controlled classrooms.

calculators not currently possessed by every student. The PDA based portion of the
project chose to go with low end IR PDA’s, the least expensive on the market. While
the power utilization of graphing calculators cannot be beat, the Palm IIIc used less
power and lasted longer (more than 90 minutes of active use) than many of the alter-
natives.

Ultimately, both ends of the project were successful in developing usable learning
systems. Neither was a waste of time nor bad. Both advanced the field. However,
they were different in ways that must be anticipated and understood during the design
process.

Working with SimCalc on a graphing calculator, with its small, low-resolution
screen and repurposed buttons, presents on-going usability challenges. In part for
reasons of pedagogical commitment by Hegedus and Kaput, in part because of the
kinds of classrooms in which the graphing calculator version of SimCalc has been
used, and in part because of these UI drawbacks, the graphing calculator version
of SimCalc has emphasized the relationship between the individual and whole class
activities. At the same time, the capacity to continue the research and for it to spread
spontaneously by teacher downloading is a substantial advantage.

Working with PDA’s led to the exploration of more forms of networked connec-
tivity, of which Match-my-graph is one example. It led to a more attractive and
more usable interface. It led to a focus on peer-learning, and to a different image
of student-teacher relationships, the “untethered” teacher model. It also led to sub-
sequent on-going research on the architecture of connectivity [66,11] and may in the
long run feed back into the push into the classroom of devices that are more user
friendly than graphing calculators.



DESIGNING NETWORKED HANDHELD DEVICES 47

6. Looking Forward

In this section, we examine some examples of devices that are not yet widely and
effectively integrated into classroom learning. With respect to both meshing well
with current practice and incorporating key lessons from the Learning Sciences,
we consider the potential for new constellations of technology-enhanced learning
to meet or surpass the level of success already experienced with the three historical
cases.

6.1 I-Pods
Apple Computer’s iPod digital music player, though it is early in its evolutionary

sequence, illustrates the way in which changes in the technology ecosystem open
niches for new species of technology. If the PalmPilot enables users to “break off a
piece of their personal computer and take it with them in a very usable form,” then
the iPod enables users to “break off a piece of the Internet and take it with them
in very usable form.” In this case, the piece of the Internet in question is access to
digital audio resources, such as mp3 files. The iPod is typically characterized as a
personal device, and can be said to be very special purpose (in that its core function
is centered on doing one thing: playing media). However, the fact that media are
domain context neutral (an iPod plays pop music and recorded lectures on quantum
physics equally well) opens the possibility that the iPod may expand to be a much
more general purpose device than originally imagined.

Viewed with an eye toward its potential integration with existing practice in such
a way as to incorporate learning science principles, there are a number of intriguing
potential iPod applications to explore. In particular, modelling inquiry at the point
of instruction both meshes well with current practice and has the potential of trans-
forming practice through incorporating a rich, shared representation. For example,
providing video snippets illustrating data collection procedures and issues in situ at
the field site of a water quality experiment may be as convenient as providing written
or oral directions but may also be far more effective in focusing discussion on the
key inquiry issues of the experimental process.

6.2 Gaming Devices
In contrast to the I-pod trajectory, gaming devices such as Gameboy, PlayStation,

Nintendo, Xbox, etc. are continuing to evolve toward extreme specialization. Many
of these devices have hardware facilities that far exceed those of typical “horizontal”
devices (such as laptops or personal computers), facilities that could, in principle, be
employed in a much more general purpose way. However, the well-defined, but very



48 J. ROSCHELLE ET AL.

large, niche these devices occupy (and battle for dominance in) tends to preclude
trading off any aspect of gameplay performance for either adaptation to current prac-
tice or incorporation of learning science results.

6.3 Mobile Phones

The evolution of mobile (cellular) phones is greatly complicated by the regulatory
and infrastructure constraints of their ecosystem. Though they are clearly personal
devices and could, in principle, be useful in a broad range of contexts, the support-
ing service model militates against their evolution toward utility in classrooms and
other face-to-face contexts (since those uses would, sensibly, skip the trip to the cell
tower and back.) But especially, the current inability of local institutions (such as
schools) to control their usage in any kind of fine-grained way (the most common
current control is to outlaw their use in classrooms) militates against any integration
with current practice. The emergence of Wi-Fi-based mobile phones, for which the
local wireless network infrastructure can be used as an alternative to carrier-provided
infrastructure, could significantly alter this situation. Given that many of the appli-
cations described here might provide as much or more utility when implemented on
mobile phones as on other classes of handheld devices, and that mobile phones are
rapidly becoming the most ubiquitous of networked handheld devices, the emergence
of locally controllable mobile phones could occasion a broad class of new, widely
deployed, learning applications.

6.4 Projectors, SmartBoards, and Other Large Format
Displays

In the context of technology for teaching and learning, a very interesting emerging
genus of devices comprises stationary, shared, interactive displays such as projec-
tors, SmartBoards, and wall-mounted display panels. In classrooms today, the image
source for these displays is typically a laptop or personal computer and they are used
as the shared focus of attention for the entire class. In this sense, they become a gen-
eral purpose, hybrid system with a classroom, rather than personal, focus. Clearly,
this breed of technology is not simply adapting to a pre-existing niche but also al-
tering the ecosystem in a way that may allow novel hybrids to flourish (personal
special-purpose devices sourcing the displays in aggregate; special purpose func-
tionality like graphing built into the displays; etc.).



DESIGNING NETWORKED HANDHELD DEVICES 49

6.5 Laptops and Tablet PCs

Laptop computers and their Tablet PC variants provide an illuminating contrast
with the other networked handheld devices considered here. In contrast to the ver-
tical, special-purpose nature of the devices described above, laptops and tablets are
archetypical general purpose, “horizontal” devices. In addition, rather than the de-
vice application evolving to meet a learning need, current educational practice is
evolving in response to the inclusion of laptops in the classroom context (“now that
every student has a laptop, what do we do with them?”).

Except for the specific instance of enabling more, and more frequent, re-writing
and re-visioning (for which there are successful, more “vertical” alternatives such
as the popular AlphaSmart devices), effective learning applications of such general-
purpose devices are not as well established as effective learning applications of more
specific-use devices. That said, the direct and natural interaction through stylus draw-
ing provided by Tablet PCs strongly suggests a rich realm for exploration of potential
linkages with powerful learning experiences and careful meshing with current—and
emerging—practice.

6.6 The $100 Laptop

The $100 laptop, devised by Nicholas Negroponte and his colleagues at MIT, is a
response to concerns that technology is too often prohibitively expensive for wide-
spread use in schools. Because it is still fundamentally a general-purpose, horizontal
device, the $100 laptop fills a niche in the learning and technology ecosystem similar
to that of regular laptops and tablet PCs. However, some important differences derive
from the relative low-cost and enhanced durability of the $100 laptop. In particular,
$100 laptops make it possible for students to not only work with technology on a 1 to
1 basis, but also to be in sole possession of the device, keeping the laptop with them
at all times, both at school and at home. As a result, the $100 laptop has the potential
to drive a rapid evolution of practices that capitalize on a strengthened home/school
connection and a new bridge between informal and formal learning.

7. Conclusion

Handheld devices, especially networked handheld devices, are growing in impor-
tance in education, largely because their affordability and accessibility create an
opportunity for educators to transition from occasional, supplemental use of com-
puters, to frequent and integral use of portable computational technology. We have
offered a view of this trend that is grounded in historical examples of success,



50 J. ROSCHELLE ET AL.

learning theory, an analysis of design tradeoffs and a discussion of design prac-
tices.

Our historical review highlighted three examples of handheld and wireless tech-
nologies that already have made a significant impact in school learning: graphing
calculators, classroom response systems, and probes for collecting scientific data.
Each of these has amassed a research literature providing evidence of a positive
impact in education and detail on the factors contributing to implementation suc-
cess.

The review and synthesis of learning theory highlighted two perspectives that can
guide successful design of transformed classrooms, a cognitive augmentation per-
spective and a social participation perspective. We suggested that transformative uses
of networked handheld devices will link in-school and out-of-school uses of technol-
ogy for learning. Transformative uses will position the devices as a symbolic tool
that fruitfully links social and cognitive dimensions of learning. To realize this po-
tential, educators will design new forms of learning activity in which learners use
symbol systems to participate in collaborative inquiry in a particular academic disci-
pline.

Our analysis of tradeoffs argued that education has different requirements from
consumer or enterprise markets and thus technologies that are successful in con-
sumer or enterprise markets may not be a good fit to school markets. We note that
all three historical examples of success were not consumer or enterprise products,
but rather were specifically designed for the education market. Therefore, innovators
should not think of educational handhelds as scaled-down computers but rather as
specific appliances designed for a unique ecological niche. We called for designs of
new ICT infrastructures that fit the needs of school. Some of these needs include:
a local messaging topology among participants in mostly face-to-face settings; vari-
ations in teacher control and expectations for teacher behavior; the desirability of
spatially directed communications; the predominance of short, asynchronous struc-
tured data over long general purpose text messages or long-term conversations; and
aggregation of data and experience by student and teacher. A shared public display
is often important in making these aggregates available for discussion. As there are
no easy solutions, we suggested that a design tensions framework will be useful as
designers work to realize the potential of new devices in enhancing the classroom
experience.

We now conclude with a few comments on the challenge of scale. In nearly every
country, improving the quality of education is seen as deeply linked to improving
economic growth and the quality of life. Education, however, is a large-scale system
which is slow and difficult to change. Furthermore, the history of attempts to use
technology in the service of improving education is not a happy one. Simply put,
most technologies have failed to make a noticeable impact in educational quality. Yet,



DESIGNING NETWORKED HANDHELD DEVICES 51

a few handheld technologies, such as the graphing calculator, are making a positive
impact at scale (as affirmed by the correlation between graphing calculator use and
mathematics achievement on the National Assessment of Educational Progress). We
can make a difference with technology but it is never easy.

Here are a few ways in which handheld and networked technology could fail to
enhance education. Wireless networks could prove too complex for schools to main-
tain or could fail to perform gracefully in conditions where 30 students suddenly
ask for the same piece of data. New handheld devices could usher in a new age
of incompatible operating systems (how will that iPod interoperate with that PDA
and that graphing calculator) leading to a nightmare of system incompatibilities. The
antisocial affordances of new technologies—allowing cheating, disruptive behavior,
increasing student inattention to school tasks, or access to illicit materials—could
outweigh the benefits in the eyes of parents, administrators and other school stake-
holders. Purchasers could fail to demand integration of curriculum, assessment and
teacher professional development with new technologies, and thus ignore the most
important lesson of the past: that no technology improves learning in schools without
substantial attention to these complementary components. Case studies could ignore
the unusual extra resources made available in a school testbed and attempts to repli-
cate and scale could fall apart in new locations that do not have these unique or extra
resources.

We believe that networked handheld technology can overcome these potential
downsides, but only if innovators keep the challenges of scale in mind as they de-
sign new technologies, activities, and school improvement plans. For a technology
to work at scale, it must be quite simple and robust; it must tap complementary tech-
nical and social forces in learning; it must integrate with other drivers of school
improvement (such as curriculum, assessment, and teacher professional develop-
ment), it must make low demands on already over-taxed school resources and be
effective despite variability among schools, teachers, and students. Interdisciplinary
teams will be crucial to overcoming these obstacles and thus we invite technologists
to join hands with educators and learning scientists in the quest for applications of
handheld and networked technologies that can have a positive impact at necessary
scale to improve the lives of children and teachers throughout our vast educational
systems.

ACKNOWLEDGEMENTS

Special thanks to Corinne Singleton for her tremendous support in writing this
article. This material is based in part upon work supported by the National Science
Foundation under Grant Numbers #0205625 and #0427783. Any opinions, findings,



52 J. ROSCHELLE ET AL.

and conclusions or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

[1] Abrahamson L., “An overview of teaching and learning research with classroom com-
munication systems (CCSs)”, in: Samos International Conference on the Teaching of
Mathematics, Village of Pythagorion, Samos, Greece, 1998.

[2] Abrahamson L.A., Hantline F., et al., Electronic classroom system enabling interactive
self-paced learning [patent #5002491], Patent and Trademark Office, United States of
America, 1989.

[3] Abrahamson L.A., Davidian A., et al., “Wireless calculator networks: Where they came
from, why they work, and where they’re going”, in: 13th Annual International Confer-
ence on Technology in Collegiate Mathematics, Atlanta, GA, 2000.

[4] Bannasch S., “The electronic curator: Using a handheld computer at the Explorato-
rium”, retrieved December 10, 2005, from Concord Consortium Newsletter. Web site:
http://www.concord.org/library/1999fall/electronic-curator.html.

[5] Becker H.J., Internet Use by Teachers: Conditions of Professional Use and Teacher-
Directed Student Use, Center for Research on Information Technology and Organiza-
tions, Irvine, CA, 1999.

[6] Belloti F., Barta R., De Gloria A., Ferreti E., Margarone M., “VeGame: Exploring art
and history in Venice”, IEEE Computer 36 (9) (2003) 48–55.

[7] Black P., Wiliam D., Inside the Black Box: Raising Standards Through Classroom As-
sessment, King’s College London, London, 1998.

[8] Bobrowsky W., Vath R., Soloway E., “The Palm project: The impact of handhelds on
science learning in the 7th grade”, retrieved December 10, 2005, from the Center for
Highly Interactive Computing in Education University of Michigan. Web site: http://hi-
ce.org/aera2004.html.

[9] Boyle J., “Using classroom communication systems with large classes”, in: Taking Ad-
vantage of Hand Held Technology and Calculator Network Workshop, University of
Strathclyde, 1999.

[10] Boyle J., Nicol D.J., The Interactive Classroom and Studio (Powerpoint document),
Strathclyde University, Glasgow, Scotland, 2002.

[11] Brecht J., Chaudhury R., Davis K., Digiano C., Patton C., Roschelle J., “Coordinat-
ing networked learning activities with a general purpose interface”, paper presented at
mLearn 2006, Banff, Canada, October 22, 2006.

[12] Bullis K., “A hundred-dollar laptop for hungry minds”, Technology Review (2005, Sep-
tember 28), Retrieved from http://www.technologyreview.com/Infotech/14793.

[13] Burnstein R.A., Lederman L.M., “Using wireless keypads in lecture classes”, The
Physics Teacher 39 (2001) 8–11.

[14] Burrill G., Allison J., et al., Handheld Graphing Technology in Secondary Mathematics:
Research Findings and Implications for Classroom Practice, Texas Instruments, Dallas,
TX, 2002.



DESIGNING NETWORKED HANDHELD DEVICES 53

[15] Carroll J.M. (Ed.), Minimalism Beyond the Nurnberg Funnel, MIT Press, Cambridge,
MA, 1998.

[16] Cattagni A., Farris E., “Internet access in US public schools and classrooms:
1994–2000”, 2001. Retrieved July 15, 2006, from http://www.usdla.org/html/
journal/JUN01_Issue/article04.html.

[17] Chan T., Roschelle J., Hsi S., Kinshuk, Sharples M., Brown T., Patton C., Cherniavsky
J., Pea R., Norris C., Soloway E., Balacheff N., Scardamalia M., Dillenbourg P., Looi C.,
Milrad M., Hoppe U., “One-to-one technology-enhanced learning: An opportunity for
global research collaboration”, Research and Practice in Technology Enhanced Learn-
ing 1 (1) (2006) 3–29.

[18] Colella V., Borovoy R., Resnick M., “Participatory simulations: Using computational
objects to learn about dynamic systems”, in: Human Factors in Computing Systems
(extended abstracts), CHI ‘98, Los Angeles, CA, USA, April 18–23, 1998, ACM Press,
New York, NY, 1998, pp. 9–10.

[19] Consortium for School Networking, A Guide to Handheld Computing in K-12 Schools,
Consortium for School Networking, Washington, DC, 2004.

[20] Cook T.D., Shadish W.R., “Program evaluation: The worldly science”, Annual Review
of Psychology 37 (1986) 193–232.

[21] Cortez C., Nussbaum M., et al., “Teachers’ support with ad-hoc collaborative networks”,
J. Computer Assisted Learning 21 (3) (2005) 171–180.

[22] Crawford V., Vahey P., “Palm Education Pioneers Program: March 2002 evaluation re-
port”, SRI International, Menlo Park CA, 2002.

[23] Crouch C.H., Mazur E., “Peer instruction: Ten years of experience and results”, The
Physics Teacher 69 (9) (2001) 970–977.

[24] Cuban L., Oversold and Underused: Computers in the Classroom, Harvard University
Press, Cambridge, MA, 2003.

[25] Cue N., “A universal learning tool for classrooms?”, in: First Quality in Teaching and
Learning Conference, Hong Kong International Trade and Exhibition Center, HITEC,
Hong Kong SAR, China, 1998.

[26] Danesh A., Inkpen K.M., Lau F.W., Shu K.S., Booth K.S., “Geney: Designing a collab-
orative activity for the Palm handheld computer”, in: Proc. of the SIGCHI Conference
on Human Factors in Computing, Systems, CHI ’01, Seattle, WA, April 20–25, 2001,
ACM Press, New York, NY, 2001, pp. 388–395.

[27] Davis S., “Research to industry: Four years of observations in classrooms using a net-
work of handheld devices”, in: IEEE International Workshop on Wireless and Mobile
Technologies in Education, Växjö, Sweden, IEEE Computer Society, 2002.

[28] Davis S., “Observations in classrooms using a network of handheld devices”, J. Com-
puter Assisted Learning 19 (3) (2003) 298–307.

[29] Davis R., Landay J., Chen V., Huang J., Lee R., Li F., Lin J., Morrey C., Schleimer B.,
Price M., Schilit B., “NotePals: Lightweight note sharing by the group, for the group”,
in: Proc. of the Conference on Human Factors in Computing Systems, CHI ‘99, Pitts-
burgh, PA, May 15–20, 1999, ACM Press, New York, NY, 1999, pp. 338–345.

[30] Dede C., “Planning for neomillennial learning styles”, Educause Quarterly 28 (1)
(2005) 7–12.



54 J. ROSCHELLE ET AL.

[31] Demana F., Waits B.K., “The evolution of instructional use of hand held technology.
What we wanted? What we got!” in: Proc. of the Technology Transitions Calculus Con-
ference, October, 1997.

[32] Demeure I., Faure C., Lecolinet E., Moissinac J.C., Pook S., “Mobile computing to fa-
cilitate interaction in lectures and meetings”, in: Proc. of First International Conference
on Distributed Frameworks for Multimedia Applications, 2005, DFMA ’05, Besancon,
France, February 6–9, 2005, 2005, pp. 359–366.

[33] Donovan M.S., Bransford J.D., Pellegrino J.W. (Eds.), How People Learn: Bridging
Research and Practice, National Academy Press, Washington, DC, 1999.

[34] Dufresne R.J., Gerace W.J., Leonard W.J., Mestre J.P., Wenk L., “Classtalk: A class-
room communication system for active learning”, J. Computing in Higher Education 7
(1996) 3–47.

[35] Ellington A.J., “A meta-analysis of the effects of calculators on students’ achievement
and attitude levels in pre-college mathematics classes”, J. Research in Mathematics Ed-
ucation 34 (5) (2003) 433–463.

[36] Engelbart D.C., A Conceptual Framework for Augmenting Human Intellect, SRI Inter-
national, Menlo Park, CA, 1962.

[37] Fagen A.P., Crouch C.H., et al., “Peer instruction: Results from a range of classrooms”,
The Physics Teacher 40 (4) (2002) 206–207.

[38] Ferrio T., “What year did the graphing calculator get to scale?”, 2004 (email correspon-
dence).

[39] Friedman B., Kahn P.H., Jr., “New directions: A value-sensitive design approach to
augmented reality”, paper presented at the DARE 2000.

[40] Friedman B., Kahn P., Borning A., Value Sensitive Design: Theory and Method, Uni-
versity of Washington, Seattle, WA, 2002.

[41] Ganger A.C., Jackson M., “Wireless handheld computers in the preclinical undergradu-
ate curriculum”, Medical Education Online 8 (2003), art. no. 3.

[42] Gee J.P., What Video Games Have to Teach us About Learning and Literacy, Palgrave
Macmillan, New York, 2003.

[43] Goldman S., Pea R., Maldonado H., “Emerging social engineering in the wireless class-
room”, in: Kafai Y., Saldoval W., Enyedy N., Nixon A.S., Herrera F. (Eds.), Embracing
Diversity in the Learning Sciences: Proceedings of the Sixth International Conference of
the Learning Sciences, ICLS 2004, Lawrence Erlbaum Associates, Mahwah, NJ, 2004,
pp. 222–230.

[44] Graham A.T., Thomas M.O.J., “Building a versatile understanding of algebraic vari-
ables with a graphic calculator”, Educational Studies in Mathematics 41 (3) (2000)
265–282.

[45] Hake R.R., “Interactive-engagement vs. traditional methods: A six-thousand-student
survey of mechanics test data for introductory physics courses”, Amer. J. Phys. 66
(1998) 64–74.

[46] Hartline F., Analysis of 1st Semester of Classtalk Use at McIntosh Elementary School,
bE Inc., 1997.

[47] Hegedus S., Kaput J., “Exploring the phenomena of classroom connectivity”, in: Mew-
born D., et al. (Eds.), Proc. of the 24th Annual Meeting of the North American Chapter



DESIGNING NETWORKED HANDHELD DEVICES 55

of the International Group for the Psychology of Mathematics Education, 1, 2002, ERIC
Clearinghouse, Columbus, OH, 2002, pp. 422–432.

[48] Hegedus S.J., Kaput J., “The effect of a SimCalc connected classroom on students’
algebraic thinking”, in: Psychology in Mathematics Education Conference, Honolulu,
HI, 2003.

[49] Hegedus S.J., Kaput J., “An introduction to the profound potential of connected algebra
activities: Issues of representation, engagement and pedagogy”, in: Proc. of the 28th
Conference of the International Group for the Psychology of Mathematics Education,
vol. 3, 2004, pp. 129–136.

[50] Heller J.L., Curtis D.A., et al., Impact of Handheld Graphing Calculator Use on Student
Achievement in Algebra 1, Heller Research Associates, Oakland, CA, 2005.

[51] Hennessy S., “The potential of portable technologies for supporting graphing investiga-
tions”, British Journal of Educational Technology 30 (1) (1999) 57–60.

[52] Hickman L.A., John Dewey’s Pragmatic Technology, Indiana University Press, Indi-
anapolis, IN, 1990.

[53] Horowitz H.M., “Student response systems: Interactivity in a classroom environ-
ment”, retrieved 3/17, 2003, from http://www.qwizdom.com/software/interactivity_
in_classrooms.pdf, 1988.

[54] Howe N., Strauss W., Millennials Rising: The Next Great Generation, Vintage, New
York, 2000.

[55] Hsi S., “I-Guides in progress: Two prototype applications for museum educators and
visitors using wireless technologies to support informal science learning”, in: Proc.
of IEEE International Workshop on Wireless and Mobile Technologies in Education,
WMTE ’02, Vaxjo, Sweden, August 29–30, 2002, IEEE Computer Society, Washington,
DC, 2002, pp. 187–192.

[56] Hsi S., Fait H., “RFID enhances museum visitors’ experiences at the exploratorium”,
Commun. ACM 48 (9) (2005) 60–65 (Special Issue on RFID).

[57] Jipping M., Dieter S., Krikke J., Sandro S., “Using handheld computers in the class-
room: Laboratories and collaboration on handheld machines”, in: Proc. of the 2001
SIGCSE Technical Symposium, Charlotte, NC, February 21–25, 2001, SIGCSE Tech-
nical Bulletin 33 (2001) 169–173.

[58] Kaput J., “Implications of the shift from isolated, expensive technology to connected,
inexpensive, diverse and ubiquitous technologies”, in: Hitt F. (Ed.), Representations
and Mathematical Visualization, Departamento de Matematica Educativa del Cinvestav,
IPN, Mexico, 2002.

[59] Kaput J., Hegedus S.J., “Exploiting classroom connectivity by aggregating student con-
structions to create new learning opportunities”, in: 26th Conference of the International
Group for the Psychology of Mathematics Education, Norwich, UK, 2002.

[60] Kasesniemi E.L., Rautiainen P., “Mobile culture of children and teenagers in Finland”,
in: Katz J.E., Aakhus M. (Eds.), Perpetual Contact: Mobile Communication, Private
Talk and Public Performance, Cambridge University Press, Cambridge, 2002, pp. 170–
192.

[61] Khoju M., Jaciw A., et al., Effectiveness of Graphing Calculators in K-12 Mathematics
Achievement: A Systematic Review, Empirical Education, Inc., Palo Alto, CA, 2005.



56 J. ROSCHELLE ET AL.

[62] Kiili K., “Evaluating WAP usability: What usability?”, in: IEEE International Workshop
on Wireless and Mobile Technologies in Education, Växjö, Sweden, IEEE Computer
Society, 2002.

[63] Kim K., Tatar D., Harrison S., “Handheld-mediated communication to support the effec-
tive sharing of meaning in joint activity”, in: WMUTE 2006, The 4th IEEE International
Conference on Advanced Learning Technologies, Athens Greece, November 17–18.

[64] Klopfer E., Squire K., Jenkins H., “Environmental detectives PDAs as a window into
a virtual simulated world”, in: Proc. of IEEE International Workshop on Wireless and
Mobile Technologies in Education, WMTE ’02, Vaxjo, Sweden, August 29–30, 2002,
IEEE Computer Society, Washington, DC, 2002, pp. 95–98.

[65] Lajoie S.P., Derry S.J. (Eds.), Computers as Cognitive Tools, Lawrence Erlbaum Asso-
ciates, Hillsdale, NJ, 1993.

[66] Lin Y.-M., Laffey J., “Exploring the relationship between mediating tools and student
perception of interdependence in a CSCL environment”, J. Interactive Learning Re-
search 17 (4) (2006) 385–400.

[67] Liu T.C., Kiang J.K., Wang H.Y., Chan T.W., Wei L.H., “Embedding EduClick in class-
room to enhance interaction”, in: Proc. of the International Conference on Computers
in Education, ICCE ’03, Hong Kong, China, December 2003, 2003, pp. 117–125.

[68] Luchini K., Quintana C., Krajcik J., Farah C., Nandihalli N., Reese K., Wieczorek
A., Soloway E., “Scaffolding in the small: Designing educational supports for concept
mapping on handheld computers”, in: Human Factors in Computing Systems (extended
abstracts), CHI ‘02, Minneapolis, MN, April 20–25, 2002, ACM Press, New York, NY,
2002, pp. 792–793.

[69] MacDonald M., Using Technology to Assist Facilitation, International Association of
Facilitators, Williamsburg, Virginia, 1999.

[70] Mazur E., Peer Instruction: A User’s Manual, Prentice Hall, Englewood Cliffs, NJ,
1997.

[71] McNairy W.W., “PRS in the physics classroom: Implementation and course assessment
correlations”, paper presented at the American Association of Physics Teachers, San
Antonio TX, 2002.

[72] Mitnik R., Nussbaum M., Soto A., Mobile Robotic Supported Collaborative Learning
(MRSCL), Lecture Notes in Comput. Sci., vol. 3315, November 2004, pp. 912–919.

[73] Moher T., Ding X., Wiley J., Hussain S., Singh P., Srinivasan V., Conmy D., “Combining
handhelds with a whole-class display to support the learning of scientific control”, in:
Human Factors in Computing Systems (extended abstracts), CHI ‘03, Ft. Lauderdale,
FL, April 5–10, 2003, ACM Press, New York, NY, 2003, pp. 882–883.

[74] Mokros J.R., Tinker R.F., “The impact of microcomputer-based labs on children’s abil-
ity to interpret graphs”, J. Research in Science Teaching 24 (5) (1987) 369–383.

[75] Moore G., “Electronics”, April 19, 1965.
[76] Morgan M.E., Amend J.R., “Making chemical measurements using the lab works inter-

face and a handheld graphing calculator”, The Chemical Educator 3 (5) (October 1998)
1–7.

[77] Myers B.A., Nichols J., Wobbrock J.O., Miller R.C., “Taking handheld devices to the
next level”, IEEE Computer 37 (12) (December 2004) 36–43.



DESIGNING NETWORKED HANDHELD DEVICES 57

[78] Nachmias R., Linn M., “Evaluations of science laboratory data: The role of computer-
presented information”, J. Research in Science Teaching 24 (1987) 491–506.

[79] National Center for Education Statistics, The Nation’s Report Card: Mathematics 2000,
US Department of Education, Washington, DC, 2001.

[80] National Council of Teachers of Mathematics, Principles and Standards for School
Mathematics, National Council of Teachers of Mathematics, Reston, VA, 2000.

[81] Newell A., Simon H., “GPS, a program that stimulates human thought”, in: Feigen-
baum E., Feldman J. (Eds.), Computers and Thought, McGraw–Hill, New York, 1963,
pp. 279–293.

[82] Norman D.A., The Design of Everyday Things, Doubleday, New York, 1990 (paperback
version of The psychology of everyday things, unchanged except for title).

[83] Oblinger D., “Boomers, Gen-Xers, & Millennials: Understanding the new students”,
Educause Review 38 (4) (2003) 37–47.

[84] Owens D.T., Demana F., et al., “Developing pedagogy for wireless calculator networks:
Report on grants ESI 01-23391 & ESI 01-23284”, The Ohio State University Research
Foundation, Columbus, OH; Developing Pedagogy for Wireless Calculator Networks,
The National Science Foundation, 4201 Wilson Blvd., Arlington, Virginia 22230, 2002.

[85] Papert S., Mindstorms: Computers, Children, and Powerful Ideas, Basic Books, New
York, 1980.

[86] Pea R.D., “Seeing what we build together: Distributed multimedia learning environ-
ments for transformative communications”, J. Learning Sciences 3 (3) (1994) 283–298.

[87] Penuel W.R., Yarnall L., “Designing handheld software to support classroom assess-
ment: An analysis of conditions for teacher adoption”, J. Technology, Learning, and
Assessment 3 (5) (2005) 1–46.

[88] Penuel W.R., Abrahamson A.L., Roschelle J., “Theorizing the transformed classroom:
A sociocultural interpretation of the effects of audience response systems in higher
education”, in: Banks D. (Ed.), Audience Response Systems in Higher Education: Ap-
plications and Cases, Information Science Publishing, Hershey, PA, 2006, pp. 187–208.

[89] Piazza S., “Peer instruction using an electronic response system in large lecture classes”,
Presentation document presented at the Pennsylvania State University Center for Edu-
cation Technology Services “Teaching with Technology” series, Departments of Ki-
nesiology, Mechanical Engineering, and Orthopaedics and Rehabilitation Center for
Locomotion Studies, 2002.

[90] Poulis C., Massen C., et al., “Physics learning with audience paced feedback,”, Ameri-
can Journal of Physics 66 (1998) 439–441.

[91] Pownell D., Bailey G.D., “Getting a handle on handhelds: What to consider before you
introduce handhelds into your schools”, Electronic School.com, 2001.

[92] Raghunath M., Narayanaswami C., Pinhanez C., “Fostering a symbiotic handheld envi-
ronment”, IEEE Computer 36 (9) (September 2003) 56–65.

[93] Ratto M., Shapiro B.R., et al., “The activeclass project: Experiments in encouraging
classroom participation”, 2002.

[94] Resnick M., “Computer as paint brush: Technology, play, and the creative society”, in:
Singer D., Golikoff R., Hirsh-Pasek K. (Eds.), Play = Learning: How Play Motivates



58 J. ROSCHELLE ET AL.

and Enhances Children’s Cognitive and Social–Emotional Growth, Oxford University
Press, 2006.

[95] Resnick M., Berg R., Eisenberg M., “Beyond black boxes: Bringing transparency and
aesthetics back to scientific investigation”, J. Learning Sciences 9 (1) (2000) 7–30.

[96] Rheingold H., Smart Mobs: The Next Social Revolution, Perseus Book Group, Cam-
bridge MA, 2002.

[97] Rieger R., Gay G., “Using mobile computing to enhance field study”, in: Hall R.,
Miyake N., Enyedy N. (Eds.), Proc. of CSCL 1997, Toronto, Ontario, Canada, De-
cember 10–14, 1997, L. Erlbaum & Assoc., Mahwah, NJ, 1997, pp. 215–223.

[98] Robinson S., Discourse: Decades of Achievement Results, Educational Testing Service,
Princeton, NJ, 2002.

[99] Roschelle J., Students’ Construction of Qualitative Physics Knowledge: Learning About
Velocity and Acceleration in a Computer Microworld, University of California, Berke-
ley, CA, 1991.

[100] Roschelle J., Pea R., “A walk on the WILD side: How wireless handhelds may change
computer-supported collaborative learning”, Internat. J. Cognition and Technology 1 (1)
(2002) 145–168.

[101] Roschelle J., Pea R., Hoadley C., Gordin D., Means B., “Changing how and what chil-
dren learn in school with computer-based technologies”, The Future of Children 10 (2)
(2001) 76–101, Packard Foundation, Los Altos, CA.

[102] Roschelle J., Penuel W.R., Yarnall L., Tatar D., “Handheld tools that “informate” as-
sessment of student learning in science: A requirements analysis”, in: Proc. of IEEE
International Workshop on Wireless and Mobile Technologies in Education, WMTE ’04,
Taoyuan, Taiwan, March 23–25, 2004, IEEE Computer Society, Washington, DC, 2004,
pp. 149–153.

[103] K. Sawyer (Ed.), The Cambridge Handbook of the Learning Sciences, Cambridge Uni-
versity Press, New York, 2006.

[104] Scheele N., Mauve M., Effelsberg W., Wessels A., Horz H., Fries S., “The interactive
lecture: A new teaching paradigm based upon ubiquitous computing”, in: Poster Pro-
ceeding of the CSCL 2003, Bergen, Norway, June 2003, pp. 135–137.

[105] Schnase J., Cunnius E., Dowton S., “The StudySpace project: Collaborative hypermedia
in nomadic computing environments”, Commun. ACM 38 (8) (August 1995) 72–73.

[106] Schwartz J., “Professors vie with web for class’s attention”, New York Times, New
York, 2003.

[107] Seeley C., “Technology is a tool: President’s message”, NCTM News Bull. 42 (7) (2006)
3.

[108] Sokoloff D.R., Thornton R.K., “Using interactive lecture demonstrations to create an
active learning environment”, in: Redish E.F., Rigden J.S. (Eds.), The Changing Role
of Physics Departments in Modern Universities: Proceedings of ICUPE, The American
Institute of Physics, College Park, MD, 1997.

[109] Soloway E., Grant W., Tinker R., Roschelle J., Mills M., Resnick M., Berg R., Eisenberg
M., “Science in the palms of their hands”, Commun. ACM 42 (8) (August 1999) 21–27.

[110] Soloway E., Norris C., Blumenfeld P., Fishman B., Krajcik J., Marx R., “Log on educa-
tion: Handheld devices are ready-at-hand”, Commun. ACM, 44 (6) (June 2001) 15–20.



DESIGNING NETWORKED HANDHELD DEVICES 59

[111] Steinkuehler C., “Learning in massively multi-player online games”, in: Proc. of the
Sixth International Conference on Learning Sciences, Lawrence Erlbaum, Mahweh, NJ,
2004, pp. 521–528.

[112] Stroup W.M., Petrosino A.J., “An analysis of horizontal and vertical device design for
school-related teaching and learning”, Education, Communication & Information 3 (3)
(2003) 327–345.

[113] Stroup W.M., Kaput J., et al., “The nature and future of classroom connectivity: The
dialectics of mathematics in the social space”, in: Psychology and Mathematics Educa-
tion North America Conference, Athens, GA, Educational Resources Information Center
(ERIC), 2002.

[114] Tang J.C., Yankelovich N., Begole J.B., Van Kleek M., Li F., Bhalodia J., “ConNexus
to Awarenex: Extending awareness to mobile users”, in: Proc. of Conference on Human
Factors in Computing Systems, CHI ’01, Seattle, WA, April 20–25, 2001, ACM Press,
New York, NY, 2001, pp. 221–228.

[115] Tapscott D., Growing up Digital: The Rise of the Net Generation, McGraw–Hill,
New York, 1998.

[116] Tatar D., Roschelle J., Vahey P., Penuel W.R., “Handhelds go to school: Lessons
learned”, IEEE Computer 36 (9) (2003) 30–37.

[117] Tatar D., Vahey P., Roschelle J., “Design tensions in the creation of a handheld, net-
worked application for teaching math”, J. Human–Computer Interaction, 2006, submit-
ted for publication.

[118] Tinker R., Krajcik J. (Eds.), Portable Technologies: Science Learning in Context,
Kluwer Academic/Plenum Publishers, New York, 2001.

[119] Truong T.M., Griswold W.G., et al., The ActiveClass Project: Experiments in Encour-
aging Classroom Participation, University of California, San Diego, CA, 2002.

[120] Vahey P., Crawford V., Palm Education Pioneers Program: Final Evaluation Report,
SRI International, Menlo Park, CA, 2002.

[121] VanDeGrift T., Wolfman S.A., et al., “Promoting interaction in large classes with
a computer-mediated feedback system”, retrieved 2/19, 2003, from http://www.cs.
washington.edu/research/edtech/publications/aavwy02-cfs.pdf.

[122] Wang C.Y., Liu B.J., Chang K.E., Horng J.T., Chen G.D., “Using mobile techniques
in improving information awareness to promote learning performance”, in: Proc. of
Third IEEE International Conference on Advanced Learning Technologies, ICALT ’03,
Athens, Greece, July 9–11, 2003, IEEE Computer Society, Washington, DC, 2003,
pp. 106–109.

[123] Webking R., Classtalk in Two Distinctly Different Settings, University of Texas-El Paso,
El Paso, TX, 1998.

[124] Weiner N., Cybernetics, or Control and Communication in the Animal and the Machine,
MIT Press, Cambridge, MA, 1948.

[125] White B., “ThinkerTools: Causal models, conceptual change, and science education”,
Cognition and Instruction 10 (1) (1993) 1–100.

[126] Wilder Foundation, Evaluation of Discourse in Saint Paul Public Schools, Saint Paul,
MN: Author (no date).



60 J. ROSCHELLE ET AL.

[127] Wilensky U., Stroup W.M., “Networked gridlock: Students enacting complex dynamic
phenomena with the HubNet architecture”, in: Fishman B., O’Connor-Divelbiss S.
(Eds.), Fourth International Conference of the Learning Sciences, Ann Arbor, MI, June
14–17, 2000, Lawrence Erlbaum Associates, Mahwah, NJ, 2000, pp. 282–289.

[128] Woods H.A., Chiu C., “Wireless response technology in college classrooms”, The Tech-
nology Source (September/October 2004).

[129] Zurita G., Nussbaum M., “Computer supported collaborative learning using wirelessly
interconnected handheld computers”, Computers & Education 42 (3) (April 2004) 289–
314.



Interactive Explanatory and Descriptive
Natural-Language Based Dialogue
for Intelligent Information Filtering

JOHN ATKINSON AND ANITA FERREIRA

Department of Computer Sciences and Department of Linguistics
Universidad de Concepcion
Concepcion
Chile
atkinson@inf.udec.cl
aferreir@udec.cl

Abstract
Filtering systems and search engines have traditionally been used in a one-shot
mode—the user types a query, a ranking algorithm returns the results, and the
interaction ends. However, the input query is at best an imprecise description
of the user’s information need and that we must engage the user in a dialog to
encourage an evolving understanding of what the user was looking for. In this
work, a computational linguistics approach for interactive Web-based dialogue
interactions aiming at intelligent web search and filtering is proposed.

The model focuses on the user’s requests by automatically generating
language-driven interactions which take into account the context, user’s feed-
back and the initial web search’s results. The different components for natural-
language processing in the context of dialogue discourse interactions are de-
scribed. The main results of a working prototype aiming to decrease both the
number of conversational turns and the information overload are finally dis-
cussed.

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.1. Natural-Language Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.2. Interactive Discourse Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3. A Model for Interactive Web-driven and Dialogue-based Search . . . . . . . . . . . 73
3.1. Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2. Interactive Natural-Language Dialogue Generation . . . . . . . . . . . . . . . . 78

ADVANCES IN COMPUTERS, VOL. 70 61 Copyright © 2007 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(06)70002-X All rights reserved.



62 J. ATKINSON AND A. FERREIRA

3.3. Linguistic Elements for Interactive Dialogues . . . . . . . . . . . . . . . . . . . 83
3.4. Adaptive Search Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4. Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

1. Introduction

Users are usually confronted with rapidly increasing amounts of information as
epitomized by the buzzword “information overload”. While skills necessary for
browsing individual websites seem to be available to users after only minimal train-
ing, considerably more experience is required for query-based searching and intersite
navigation [24].

Much of the information on the Internet today consists of documents made avail-
able to many recipients through mailing lists, distribution lists, newsgroups, and the
World Wide Web. Common to mailing lists and forums is that the originator of a
message need only give the name of one recipient, the name of the group. The mes-
saging network will then distribute the message to each of the members of the group,
with no extra effort for the originator. The average effort of writing a simple mes-
sage is about four minutes, and the average effort of reading a message is about half
a minute, so if there are more than about eight recipients to a message, the total read-
ing time is larger than the total writing time, and if there are hundreds or thousands
of recipients, the total reading time caused by the originator is many times larger
than his effort in writing the message. Because of this, Internet users will easily be-
come overloaded with messages, documents, etc. This issue can also be seen as a
quality problem: people want to read the most interesting documents, and want to
avoid having to read low-quality or uninteresting messages. Filtering is tools to help
people find the most valuable information, so that the limited time spent on read-
ing/listening/viewing can be spent on the most interesting and valuable documents.
Filters are also used to organize and structure information.

Future software for the Internet can be expected to employ more advanced
and user-friendly filtering functions than today, in order to support less computer-
specialist users. Since people download millions of web documents every day, and
very often do not immediately get what they would mostly like to get, the gains
through better filtering are enormous. Even a filter with a 10% efficiency gain, the
gain would be worth billions of dollar a year.

However, filtering is not possible without having suitable search facilities hence
search engines are a central part of information access on the Internet. Their efficient



WEB INTERACTIVE DIALOGUE 63

use requires sophisticated knowledge. Investigations on the search behavior of both
expert and novice Web users have several practical applications. First and foremost,
a model of search behavior can serve as the basis for improving interfaces and func-
tionality of existing search systems. The varied needs of experts and novices can be
identified and considered by more sophisticated future systems. Also, help-systems
and Internet education can also benefit from a better understanding of users’ difficul-
ties with the search process [23].

State-of-the-art keywords-based information search systems can provide us with
a fair first approach to efficiently searching on the Web. However, a major challenge
is how to perform this kind of tasks accurately and smarter in order to make good
use of user’s knowledge (i.e., intentions, goals). This aims to improve the searching
capabilities with a minimum of user–system interactions.

In order to address some of these problems, this work explores the generation
of natural-language interactive dialogues for bibliographical searching on the Web
aiming to assist the searching/filtering process with minimum user exchanges. The
approach focuses on enhancing the whole information searching paradigm with both
a computational linguistics model and a more suitable search agent to filtering. Ac-
cordingly, the following issues are addressed:

• Decreasing information overload in searching for information involves “filter-
ing” it in an intelligent way in terms of the context and the user’s underlying
knowledge.

• Making good use of the user’s feedback/knowledge can provide us with more
accurate information being delivered.

• Taking into account the linguistic knowledge as main working support can assist
us in specifying and restricting the real user’s requirements and so capturing
user knowledge which is unlikely to be obtained by other means.

Our approach’s backbone is made of task-dependent discourse and dialogue analy-
sis capabilities as a part of a major interactive searching system which a user inter-
acts with. While the original approach and its implementation was carried out to
deal with Spanish dialogues, we provide a model which can easily be adapted to
other languages providing that right grammars and pragmatic constraints are consid-
ered.

Our experiments, conducted in the context of a filtering system for Web docu-
ments, demonstrate the promise of combining Natural Language Processing (NLP)
techniques with simple inference methods to address the information overload prob-
lem [15].

In what follows, we first motivate our work by discussing previous related work.
Next, the novel features of our model for intelligent search and filtering along with
the analysis methods and used representation are described. Finally, an analysis of



64 J. ATKINSON AND A. FERREIRA

some experiments in the context of web-based natural-language search and filtering
is discussed.

2. Related Work

In the user modeling community, the behavior of Web users has attracted some
attention. In [28], for example, Bayesian networks are constructed to model the suc-
cessive search queries issued by users of a search engine. Augmenting the search
engine logfile with manually assigned categories of presumed information goals they
are able to predict query modifications. Similarly, [53] propose the use of Markov
models to predict a Web user’s next request based on the timing and location of past
requests. However, these studies do not address personal characteristics of a user’s
level of expertise.

Many current search engines use automated software which goes out onto the
web and obtains the contents of each server it encounters, indexing documents as it
finds them. This approach results in the kind of databases maintained and indexed by
search services such as Google. However, the problems which users can face when
using such databases are beginning to be well documented:

• Relevant Information: from the retrieved information (i.e. references to doc-
uments, snipets), users can spend a long time trying to check whether these
results contain what they have been looking for.

• Information Overload: the amount of information and wide coverage is often
so huge that most of it is usually abandoned.

• Representation: the information search is based on documents being repre-
sented as “bag of words” and consequently all the further similarity compu-
tations are restricted to this kind of user’s query.

• User’s Feedback: there is no interaction with the user in the searching process
in order to check whether her/his requirements have been fulfilled. It is assumed
that all the information is useful, but it is unclear how.

It seems clear then that users are constantly facing a lot of obstacles in order to
effectively search for and filter information on the Web. An analysis of the main is-
sues ranging from experience-related problems (i.e., “how do I retrieve an existing
page” ’) to design issues (i.e., “the browser is either poorly designed or difficult to
effectively use”) can be seen in graph of Fig. 1. Here it can be observed that a sig-
nificant proportion of web users takes a long time to search for relevant information
(documents, webpages, etc.).

Issues in the second and third place in the graph, are directly related with the
difficulty to retrieve useful and understandable information. In order to address this,



WEB INTERACTIVE DIALOGUE 65

FIG. 1. Web search users’ main issues.

two specific problems can be identified:

1. Current search systems are not capable of understanding a web user’s behavior,
intentions and/or profiles so as to learn from it.

2. A bag-of-words representation used by current search engines seems rather
restrictive. Many search systems are unable to capture further underlying rel-
evant information. Users often communicate through implicit discourse-level
knowledge which is not actually plausible to be acquired by traditional search
systems [4,25].

The first problem is related to adaptation capabilities of a search system, whereas
the second one involves the query representation, the interaction with the users and
the ability of the system to capture underlying (and implicit) information expressed
in natural language.

Intelligent searching agents have been developed in order to address some of the
issues above [29]. These agents can use the spider technology, and employ this in
new kinds of ways. Usually, these tools are “robots” that can be trained by the user



66 J. ATKINSON AND A. FERREIRA

to search the web for specific types of information resources. The agent can be per-
sonalized by its owner so that it can build up a picture of individual profiles or precise
information needs. An intelligent agent can also be autonomous—so that it is capable
of making judgments about the likely relevance of the material. Another key feature
is that their usefulness as searching tools should increase the more frequently they
are used. It will learn from past experiences, as a user will have the option of review-
ing search results and rejecting any information sources which are neither relevant
nor useful. This information will be stored in a user profile which the agent uses
when performing a search, and enable the agent to learn from its initial forays into
the web, and return with a more tightly defined searching agenda if requested.

Many search systems lack a deeper linguistic analysis of the user’s requirements
and context to assist him/her in getting a more specific view about what he/she really
wants. In order to select and reduce the number of relevant documents obtained from
an Information Retrieval (IR) system, Information Filtering (IF) techniques come to
place [48]. These can usually be divided into two groups:

1. Automatic filtering is where the computer evaluates what is of value for you.
2. Social filtering (also known as collaborative filtering) is tools where other peo-

ple help you evaluate what is of most value to read. Just like the publishers and
organizations did in society before the Internet.

The most successful social filtering system is Yahoo which employs humans to
evaluate documents, and puts documents, which are interesting into its structured
information database.

The simplest and most common filtering is by organizing documents into groups
(newsgroups, mailing lists, forums, etc.) Each group has a topic, and wants only
contributions within that topic.

In general, filtering is done by applying rules to attributes of the documents to be
filtered. Filtering rules are usually Boolean conditions and often put in an ordered
list, which is scanned for each item to be filtered. The order of the items in the list
can sometimes influence the outcome of the filtering, in ways, which the user does
not understand well. The attributes of documents, to be used in filtering, are words
in the titles, abstracts or the whole document, name of author, and ratings on the
documents supplied by its author or by other people.

The most common way of delivery of filtering results is that documents are filtered
into different folders. Users choose to read new items one folder at a time. Thus, the
filter helps users read messages on the same topic at the same time. The user can also
have a personal priority on the order of reading documents in different folders. Most
filtering services deliver new documents with a list, from which the user can select
which items to read or not to read. The user act of selecting what to read from such
a list can also be seen as a kind of filtering.



WEB INTERACTIVE DIALOGUE 67

Automatic filtering has been successful only with very simple filters (i.e., spam
filters in which a system discovers attributes of an email message and determine
relevant messages from spam). Advanced methods for “intelligent” filtering have
in general not been very successful. Intelligent filtering is a complex task requiring
intelligence which computers are maybe not yet capable of. By intelligent filtering is
meant use of Artificial Intelligence (AI) methods [7] to enhance filtering. This can be
done in different ways: AI software can be used to derive attributes for documents,
which are then used for filtering, it can be used to derive filtering rules, or it can be
used for the filtering process itself. With the machine learning approach, the filter
will take as input information from the user about which documents the user likes,
and will then look at these messages and try to derive common features of them to
be used in future filtering.

Such filtering can be done in the background, behind the scenes, with little or
no interaction with the user, or it can be done in a way where a user can interact
with the filter and help the filter understand why the user likes certain messages.
A disadvantage with much user interaction is that it takes user time, and the whole
idea of filtering is to save user time. A disadvantage with very automatic filter-
ing is that the user may not trust a filter if the user does not understand how it
works.

Several approaches to filtering have been proposed by understanding the docu-
ments and their semantics, including Oval which uses a keyword-based strategy,
Foltz which uses Latent Semantic Analysis [27] and collaborative recommenders
[22] to filter news articles, INFOSCOPE which uses rule-based agents to watch the
user’s behavior and then to make suggestions, MAXIMS, for collaborative elec-
tronic filtering [31,32], WebWatcher, for Web filtering system which learns user’s
preferences and highlights interesting links on web pages that it visits, and Cin-
emaScreen, for collaborative and content-based filtering [41]. Both cognitive and
social approaches are suitable approaches to extract documents. Whereas a social fil-
tering is more appropriate when the information obtained is used to keep it updated
in some environment, a cognitive approach is better when the gathered information
is based on some specific topic, regardless who the users are. Accordingly, learn-
ing and adaptation capabilities become more important on an IF context rather than
IR because of the underlying environment’s features: IF systems are used by huge
groups of users, most of who are not motivated information searchers, and so their
interests are often weakly defined and understated [38,29].

In order to acquire suitable profiles, current IF systems allow users to specify one
or more sample documents as reflective of his/her interests [47], instead of requiring
direct explicit definition of interest, whereas others attempt to learn the profiles from
the user’s behavior. Note that this approach may not be very practical as users do not
often focus on their real goals.



68 J. ATKINSON AND A. FERREIRA

As users struggle to navigate the wealth of on-line information now available, the
need for automated Question–Answering (QA) systems becomes more urgent. We
need systems that allow a user to ask a question in everyday language and receive
an answer quickly and succinctly, with sufficient context to validate the answer. As
previously discussed, current search engines can return ranked lists of documents,
but they do not deliver answers to the user. Question–Answering systems address
this problem. Recent successes have been reported in a series of question–answering
evaluations that started in 1999 as part of the Text Retrieval Conference (TREC)
[21,50]. The best systems are now able to answer more than two thirds of factual
questions in this evaluation.

Question answering has many applications. We can subdivide these applications
based on the source of the answers: structured data (databases), semi-structured data
(for example, comment fields in databases) or free text. QA systems address the
problem of using linguistic processing into different levels to assist the answer re-
trieval. However, there is no dialogue at all and the effort focuses on getting precise
documents rather than capturing the user’s needs.

While the main purpose of QA systems is to extract the correct answer for a ques-
tion, a lot of sample information needs to be provided in advance. In addition, QA
systems know the kind of questions the user can make, there is a predefined set of
target documents where the answers are supposed to lie, there is a few constraints
which restrict the scope of the likely questions, etc.

Since most of the QA task is fixed, there is only one possible answer for every
question and there is no feedback at all. That is, one question must get one likely
answer, so one can not go back to refine the Natural-Language (NL) question.

To some extent, QA systems succeed to extract “deeper” knowledge from user
questions. However, there are no facilities to interactively generate explanatory
requests to have users more focused on their interests [36,3]. Although some re-
search has been carried out using NLP technology to capture user’s profiles, it
has only been in very restricted domains which use WordNet or more primitive re-
sources [5].

In other dialogue-related approaches using NLP such as PIES [39], a user’s in-
terests and goals are obtained by providing relevance feedback. However, unlike
natural-language interaction systems [20], the aim of PIES is to analyze the user’s
profile to prune part of some “story” in order to reach a final answer.

Approaches making further use of the user’s knowledge can be used by enabling
other NLP tasks. In particular, Natural Language Generation techniques can be used
to allow the system to produce good and useful “dialogue” with the user [34,35]. An
important aim at this stage is to decrease the number of generated conversation turns
in order for the user to obtain the information (i.e., references to documents) the user
is looking for. Some research approaches involve producing some kind of dialogue



WEB INTERACTIVE DIALOGUE 69

interaction as a whole structured into different levels [40] in which communication
constitutes an indirect action to accomplish the goals.

2.1 Natural-Language Generation

Over the last years, research and practice of Natural-Language Generation (NLG)
systems has strongly evolved towards discourse processing and establishment [40].
Generally speaking, NLG research has traditionally been divided into two levels:
content generation and surface generation. A clear problem with this is that for the
same high-level proposition, different sequential realisations can be performed. In
addition, selecting a particular choice is often dependent on the global structure of
discourse. Reiter [40] addresses this kind of problem by establishing an intermediate
level called Sentence Planning. Furthermore, a three-level architecture (see Fig. 2) is
suggested to describe properly the entire process of NLG, in which:

• Content generation (also known as content determination) is responsible to de-
termine the content and the rhetorical planning tasks (i.e., the way the content
of appropriate referring expressions can be worked out).

• Sentence Planning (also known as text structuring) involves designing suitable
strategies to transform abstract semantic representations into constraints on can-
didate sentences.

FIG. 2. Typical architecture for NLG.



70 J. ATKINSON AND A. FERREIRA

• Surface Generation (also known as realization) produces (realizes) a sequence
of words representing the surface structure of the utterance from the determined
content of the sentences.

Note that in this model, content generation and sentence planning levels share
knowledge about the domain and the discourse structure. Accordingly, actual devel-
opments of NLG systems include these elements focused on three dimensions:

1. Generation tasks: these involve grammar issues to determine how to say some-
thing, what to say (content selection) and why to say something (the motivation
driving the decisions).

2. Generation methods: these have traditionally focused on four different modes:
selecting predefined sentences with no changes, selecting predefined items to
allow some variation (i.e., templates), selecting patterns that are gradually in-
stantiated until the full text is produced, and selecting individual features from
the target text which are combined together to build an specification for the
generated text.

3. Generation Records: these represent and record the sensibility of an NLG sys-
tem based on the topic, the interpersonal roles and relations, and the situation
of the communication.

One of the most important NLG tasks, Text Planning, is based on the fact that
human beings “plan” their utterances before saying them. Planning is strongly moti-
vated by the Speech Acts Theory [2] which has been widely introduced to describe
a computer system which produces a plan containing a sequence of Speech Acts [8,
9,46].

Components of planning tasks usually consider the state of the world, beliefs, do-
main actions, communicating actions, direct speech acts, goals, and operators [40].
Several successful NLG systems have been built using plan-based strategies [1].
However, the different actions to meet the communicating goals of a NLG system
can be realised into different ways ranging from hierarchical planning to reactive
planning [36].

Text planning on dialogue contexts has traditionally been tackled from two per-
spectives. Firstly, a dialogue theory has been developed to include computational and
linguistic foundations for goal-oriented dialogues [45] in which participants com-
municate based on some goal-driven tasks. Secondly, the planner focuses on the
participants’ mental states and the context required to enable a cooperative dialog
[10,3].

Despite the successes, computational processing of dialogues has proven to barely
be driven by a similarity with human dialog. For instance, question–answering sys-
tems and frame-filling dialogues are just simplifications for human dialogue in which
a user makes guided questions and the system generates short answers. Dialogues



WEB INTERACTIVE DIALOGUE 71

between humans are known to be wider and include clarifications, confirmations,
reformulations and other communicating actions [14]. Thus, computer modelling of
dialogue [52,30] has usually been approached as follows:

1. Dialogue Grammars use finite-state phrase-structure grammars on which di-
alogues are seen as a sequence of adjacent speech acts.

2. Dialogue Plans are based on the underlying assumption that utterances are not
only word sequences but also speech acts update actions, such as illocutionary
acts (i.e., request, inform, suggest, etc). These communicating actions are part
of a plan aiming to change the hearers’ mental states. Thus, it is the speaker’s
responsibility to uncover and respond to this plan.

3. Dialogue as Cooperation involves shared tasks to be carried out by interact-
ing agents [17,26,35] rather than the effect of interacting plan generators in
harmony. At the very least, dialogue participants are required to commit them-
selves so as to understand each other.

Dialogue discourse is commonly described following a Communication-based
Approach. Here, the discourse’s structural components are established from com-
municating goals. The focus here is on identifying interrelations between specific
components and their uses as planning operators. This approach is strongly due to
Mann’s early work on the Rhetorical Structure Theory (RST) [33,45] being one of
the most influential approaches for NLG over the last decade.

Typical interactive cooperative dialogue systems provide general, descriptive an-
swers along with explanations about their answers. Grice’s maxims of conversation
namely the quality, quantity, relation and style maxims [16] are frequently used as
a basis for designing cooperative answering systems. To address these behaviours,
specific cooperative techniques have been developed to identify and to explain false
presuppositions or various types of misunderstandings found in questions.

Agents participating in a cooperative dialogue share information about the dis-
course’s status, this is, the situation in which the agents themselves are situated. This
status usually includes actions performed by the agents [51], the conversation’s top-
ics, and their mental states (i.e., beliefs, intentions) [26]. Cooperative collaboration
between dialogue agents can involve simultaneous, joint or sequential execution of
actions [17]. For this, each agent must be provided with mutual beliefs about others’
intentions and capabilities and the way these intentions and actions support the over-
all goal. Plan representation containing this information is referred to as a Shared
Plan [26].

NL systems have a passive role in a user-oriented dialogue so these must recognise
the user’s plans in order to provide answers from a databases or knowledge-based
system. However, in recent experimental studies, NLG systems are seen as those
having the control of the conversation (i.e., system-oriented dialogue). Thus, when-



72 J. ATKINSON AND A. FERREIRA

ever the system is acting as an expert advisor, it should provide explanations in order
for the user to understand and accept the system’s advice. In this kind of scenario,
a user has (almost) no knowledge on how to carry out the task, so consequently
the user communicates her/his plans and the system drives the conversation. On the
other hand, in mixed-initiative dialogues [6] the tasks are assumed broad and with
no structure. For instance, in air ticket reservation, system-oriented dialogues are not
suitable as there is no schemata to suggest the system the sub-tasks a user want to
perform and the sequence of these.

2.2 Interactive Discourse Planning

Unlike the traditional discourse models [17], Haller [20] proposes a model for
Interactive Discourse Planning (IDP) in which a plan captures the discourse’s in-
tentional and attentional structure. In addition, information on the relevant objects,
properties and relationships at each stage of the discourse plan execution is obtained.
Because of its nature, IDP represents the discourse as a structure of events and dis-
tinguishes two different rhetorical relations for two kinds of text acts. These can then
be used to achieve the discourse’s goals as follows:

1. Discourse Text Acts (DTA): define both rhetorical relations for presentation and
Searle’s Speech Acts. DTA are executed to get into a state in which the hearer
has an attitude (or capability) as defined by the system’s discourse goal. Usual
implementations of IDP consider four DTAs: recommendation, advice, moti-
vation and granting.

2. Content-Selection Text Acts (CTA): define operators for content-selection text
acts with two types of constraints: constraints on active content’s goals and
constraints on the domain. The first type restricts the plan and effects deduction
of the CTS to those cases in which there is an active content’s goal (i.e., the
effect of the CTA). The second one involves restrictions on the domain which
in turn are satisfied by the IDP planner by applying domain rules. These rules
ties the “topic” rhetoric relation to the domain’s beliefs.

Recent efforts for implementing IDP strategies include a modified version of
SNePS (Semantic Network Processing System) [44], an integrated approach for in-
ference and acting that uses a common representation for beliefs, plans and acts, all
of which are thought of as entities structured in a semantic net.

A first major modification aims to select criteria for generating a text plan from
specific text acts. In SNePS, the plan satisfying the higher number of content’s goals
is selected. A second feature involves looking ahead for the effect that each text
plan will have on the hearer’s knowledge so to use it for identifying candidates for a
hearer’s future implicit questions. IDP also makes use of the user’s feedback to guide



WEB INTERACTIVE DIALOGUE 73

further discourse plan expansions based on the success or failure of the speaker’s
communicating plan.

3. A Model for Interactive Web-driven and Dialogue-based
Search

In this section, a novel approach to intelligent search and filtering on the web
using natural-language feedback is described. For this, some of the previously dis-
cussed issues are addressed and suitable strategies are designed in order to capture
underlying knowledge from a web user and from the search system. The approach
incorporates intelligent agent technology and NLP methods to exploit knowledge re-
garding the context, interests and goals, and the user’s behavior along an adaptive
dialogue. The model’s backbone is made of task-dependent discourse and dialogue
analysis capabilities as a part of a major interactive searching system which user
interacts with.

Instead of providing samples or going through the Web looking for the informa-
tion, search requirements are focused by using a dialog-based search system to learn
a user’s specific interests. This allows the search system to obtain implicit knowledge
so as to refine and filter the search results as the dialogue goes on.

Our model is designed to meet a variety of requirements. This may be scalable
to large collections of documents. A system using this approach should be able to
quickly determine the user’s needs through a combination of user provided informa-
tion and feedback [11], all of these based on NL interactions.

The overall approach to searching and filtering using NL feedback is shown in
Fig. 3. The operation starts from NL questions provided by the user and then passed
on to a discourse processing phase which generates the corresponding interaction
exchanges (turns) using NL utterances. As the dialogue goes on, the system generates
a more refined question which finally is sent to a search agent. The search results are
delivered to the user providing that these have been appropriately filtered. This will
depend on the previous interactions, the user’s context and the features extracted
from the queries.

3.1 Experimental Methodology
In order to gather linguistic data so as to build a dialogue model, an experimental

technique called Wizard of Oz (WOZ) was used [25].
During each interaction, a human (the Wizard) simulates a system interacting with

the users. We make them believe that they are interacting with a system which han-
dles natural language in a real way. Then, the dialogues are recorded, annotated and



74 J. ATKINSON AND A. FERREIRA

FIG. 3. The overall search-driven NL dialogue agent.

analyzed with the ultimate goal of improving the initial dialogue model and there-
fore, the interaction. The interactive process continues until the model meets the
expectations and the design requirements.

In the actual experiments, WOZ has been used to get a significant dialogue corpus
which allowed us to analyze the transcriptions and to establish a dialogue structure
based model that will support the planning and generation of interactive explanatory
and descriptive discourse [12,18].

A WOZ simulator with search capabilities was implemented and used by a group
of human subjects who were required to search for information on the Web. The
interactions between users and system (actually, the hidden expert who interacts with
the users) were automatically recorded and used for linguistic analysis purposes.
A group of subjects was then required to search for information on the Web using
this tool. Thus, the communicating situation using the simulator becomes a three-step
activity:

1. A user gets involved in a dialogue with the computer in order to make her/his
NL question more refined.

2. The dialogue is monitored by the human expert, and as the dialogue proceeds,
the answers are manually built.

3. The answer is sent to the user.



WEB INTERACTIVE DIALOGUE 75

Based on the available information, user and system are able to continue the re-
fining process until the user’s need is met or the user retracts from searching any
longer.

In practice, a threshold of 20 minutes was considered to check for the user’s
communicating goal accomplishment with a total number of 20 non-expert sample
subjects being involved. The sample was then divided into four groups, in which the
first three groups were randomly selected whereas the fourth one was constituted by
graduate students of linguistics. Furthermore, they had to perform the search and then
to provide definitions for “explanation” and “description” of what users are reading,
based on the obtained search results. The aim of the model to be built is to be capable
of generating either descriptive and explanatory discourse depending on the context,
situation, and search’s results.

To this end, the groups were requested to perform the following tasks:

• The first group was required to “talk about” the search’s results (i.e., Could you
talk about your search’s results?).

• The second group was required to “describe” the search’s results (i.e., Could
you describe your search’s results?).

• The third group was required to “explain” the search’s results (i.e., Could you
explain your search’s results?).

• The fourth group was required to do the three above tasks and to answer some
questions stated by the system, including:
– What do you understand by explaining or describing? Give me an example.

– What do you understand by describing the search’s results?

– What do you understand by explaining the search’s results?

– What is the difference between describing and explaining the results?

In order to finally validate whether the subjects were able to establish differences
in producing their discourses (i.e. explaining, describing), some few advanced stu-
dents of linguistics were requested to perform the different tasks but for the same
session (full details of the experiments can be found in [13]).

In addition to the transcriptions and the produced dialogue structures, several pa-
rameters which guide both explanatory and descriptive discourse about the search
were produced. These included documents’ date, language, source place, kind of
WWW page (i.e., research, business, etc.) which were also used in developing the
NL generation module.

Descriptive texts were usually located at the beginning of a narration and they are
organised into four dimensions: spatial, sensorial, scientific and formal:



76 J. ATKINSON AND A. FERREIRA

• Spatial: objects are localised up, down, from inside to outside, or vice versa,
from global to details, etc.

• Sensorial: different sensations are provided: what is seen, what is heard, what
is touched, etc.

• Scientific: each human expert has a descriptive schemata of objects in his/her
domain (i.e., a plant is not described as a rock).

• Formal: a description can be organised according to objects, classes and prop-
erties.

In the context of NLG, descriptive texts bring different definition processes into
scene aiming to characterise actors, places or processes. In our model, a formal
schemata was used to represent descriptive discourse texts (Fig. 4) which is com-
posed of a topic, its parts and its properties. This assumes that it is possible to find
sequences of descriptive parts in a narrative text. For instance, there is a huge number
of texts on the Internet, whose global function is to describe something so we have a
descriptive text or discourse.

The strategy for constructing descriptive propositions can be seen in Fig. 5. An-
choring techniques generate individual-argument ties for predicates obtained either
from verb aspectualisation (Pd.PROPerty and Pd.PART), or from association assign-
ment (Pd.SITuation and Pd.ASSociation).

FIG. 4. Formal schemata for descriptive texts.



WEB INTERACTIVE DIALOGUE 77

FIG. 5. Macro-structure for descriptive texts.

A descriptive macro-proposition (Pd) defines a direct relationship between topic
and title which is taken as the macro-proposition’s individual-argument. The selected
individual’s property (i.e., predicate) can usually be due to:

• Quality properties: Pd.PROP which can be spatial (SIT.Location), temporal
(SIT.Temp), etc.

• Parts or relationships with the whole (Pd.PART)

• A situated event: Pd.SIT which can be comparative (Comp), metaphoric (Meta),
or reformulation (Ref ).

• An assimilation or association (Pd.ASS).

Based on these features of a descriptive narration, four underlying operations can
be identified for the description’s structure:

1. Detecting the subject of the description’s topic (i.e., hyperonym): the topic is
usually located either at the beginning of the text (i.e., title), or at the end of the
text expressing a problem’s solution.

2. Enumerating the parts or aspects of an object.
3. Characterising the parts and the object itself.
4. Expanding characterisation by comparing, metaphoring or reformulating.



78 J. ATKINSON AND A. FERREIRA

On the other hand, in order to give account for the generation of explanatory texts,
our model is strongly based on Moore’s approach to explanatory dialogues [37,36].
Moore focuses on textual explanations given by expert and advisory systems, and
she discusses the explanation component of an expert system that advises the user
on how to improve their programming skills. However, it is clear how the basic ideas
and techniques presented apply to a wide range of applications in which explanations
need to be provided, such as help systems, online documentation systems, tutorial
systems, and so on.

In our model, explanatory text generation is an essentially interactive process, re-
quiring a dialogue between the system giving the explanation and the user receiving
the explanation. Without such a dialogue the chances of the advisee obtaining the
information required, and in a form they understand, are much reduced. In order to
participate effectively in such a dialogue the system is able to respond appropriately
to some follow-up questions after the initial explanation is given. This requires that
the system understands the context of these questions, and in particular the context
created by the system’s previous responses. Accordingly, explanatory text generation
has knowledge of how to explain. This includes knowledge of how explanations are
structured (discourse structure) and how particular explanation strategies are used
to achieve communicative goals. Thus, the main focus here is on how communica-
tive goals can be linked to rhetorical or coherence relations, and how that provides
the basis for a principled approach to the planning of coherent texts to address our
particular communicative goal.

The developed explanation generation system uses an RST-based text planner to
construct explanatory texts, given a particular communicative goal and assumptions
about the user. The text plan makes explicit the goal behind the explanation (and the
subgoals behind its different parts), the way the different parts of the explanation are
related (by rhetorical relations), and any assumptions about the user that are made
when planning the explanation.

3.2 Interactive Natural-Language Dialogue Generation

The descriptive and explanatory dialogue generator is based on a number of stages
which define the context, the participants’ knowledge (user and system) and the sit-
uation in which the analyzed dialogue is being conceived (i.e., interaction to search
for information on the Web). This also considers a set of components which input
and output is based on different stages of linguistic and non-linguistic information
processing tasks established from the dialogue.

This phase is strongly motivated by a linguistic model for discourse processing
proposed by [49,42] regarding the design of components of interaction and action.



WEB INTERACTIVE DIALOGUE 79

FIG. 6. The interactive natural-language dialogue processor.

In Fig. 6, the design for the proposed Web-based natural-language dialogue model
is shown. This generates discourse outputs from the results of a bibliographic search
so as to guide further dialogue interactions [13,11,19]. This starts with the user’s NL
question and produces either an output consisting on a NL conversation exchange to
guide the dialogue or a search request being passed on to the search agent.

In order to better understand the approach, the underlying generation model has
been divided into different components (Fig. 6) and described as follows:

• The Context Model deals with the information regarding the dialogue’s par-
ticipants, this is, the user who needs information from the Web and the system
which performs the search. The model states the kind of social situation called
“bibliographical queries on the Web” and the participants’ goals: “find out in-
formation about some topic” (user) and “assist the user to achieve her/his goal
through searching and collaborative dialogue” (the search system). The User
Model includes knowledge about the user with whom the system interacts. The
user model’s outcome will become the type of question which the system ex-
pects as input (i.e., a kind of bibliographical NL “query” on the WWW).

Information regarding the communicative situation’s characteristics in which
the dialogue discourse is embedded, is established on the Situation Model. Due
to the nature of the model (i.e., enabling communicating interaction), conver-
sations are restricted to requirements and constraints requested by the search
agent. This involves using both some dialogue state records and utterance struc-



80 J. ATKINSON AND A. FERREIRA

tures (lexical, syntactic, semantics, pragmatics) so to have the dialogue repre-
sented.

• The Interaction Module is based on Grice’s cooperative principle and col-
laborative maxims [16] and involves two-position exchange structures such as
question/answer, greeting/greeting, etc. These exchange structures are subject to
constraints on the system’s conversation, regarding a two-way ability to transmit
through the keyboard, suitable and understandable messages as confirmation
acts. Constraints have also to do with the Speech Acts chosen at some time
given of the dialogue process.

All this information and that related to the different interactions between sys-
tem and user during the dialogue is stored by a Dialogue Recording Module
aiming to keep the dialogue coherence between the system and the user’s input.

• The Dialogue Discourse Analyzer receives the user’s question and analyses
the information contained in order to define the conditions which can address
the system’s response generation. This module’s outcome is the NL question
both recognized and analyzed by the system. Furthermore, recognition and
interpretation is controlled by two main analysis modules which process the
linguistic knowledge and interact with each other: semantics and pragmatics
analyzers.

Semantic macro-structures (see Fig. 5), which constitute the semantic mod-
ule, allows for the selection of an argument from some property or action
associated to them. Thus, defining the propositions is guided by the mod-
ules of interaction and action, and so its outcome is an appropriate seman-
tic proposition for a given Speech Act generated from the pragmatic analysis
stage.

An embedded Pragmatic Analyzer establishes a Speech Act suitable to both
the dialogue structure’s component and the stated constraints. This concerns
the information coming from the situation model and the Context Model. In
addition, it involves the semantic content suggested by the Semantic Analyzer
and the discourse coherence based on the Interaction Control, so its outcome
is the previously defined speech act suitable for the current communicating
goal.

Each obtained pragmatic function makes explicit some specific Speech Act.
In addition, each semantic proposition defines the speech act’s semantic con-
tent. This content is expressed as a set of semantic functions such as agent,
event, object, instrument, etc. (see ontology in Fig. 4).

• The Dialogue Generator involves the information from the search agent’s
information recording module and that coming from the dialogue recording
module to produce a coherent utterance on the current dialogue sequence. As a



WEB INTERACTIVE DIALOGUE 81

first output, the module generates a question to the user about the information
needed to produce the corresponding utterance to the dialog’s conversational
turn.

Dialogue begins by generating the kind of utterance “query about information re-
quested by the user” (very general at the beginning). Next, the system considers two
possible NLG outputs: an specific question for the communicating situation (what
topic do you want to search for?) and a general one on the context
of the different kinds of information available on the Web (what kind of in-
formation do you need?). The different kinds of user’s requests can then be
divided into four general groups: requests for information, positive/negative confir-
mation, specification of features, specification of topic.

The discourse analyzer processes the user’s NL input and gets the information
needed for a search agent. From the obtained information (i.e., references to docu-
ments), the NLG task is capable of guiding the dialogue towards an explanatory NL
generation based on basic criteria identified in preliminary experiments.

As the dialogue goes on, the discourse generator produces its output (NL sen-
tences) based on the results of the search, context information, and the user’s feed-
back. In order to establish the starting point for the NL generation process, high-level
goals have been identified. However, since the generation is fully unstructured and
too wide, some decisions must be made to better guide the generator from pragmatic
levels down to lexical levels. Accordingly, the search agent’s actions depend on the
results of the search:

1. More than 100 documents were found (i.e., the NL question is too broad).
2. Less than 100 documents were found.
3. Different languages were detected in the retrieved documents.
4. More than 30 and less than 100 documents were found.
5. Less than 30 documents were found (i.e., right enough to display the results to

the user).

Next, the discourse analyzer makes some single decisions based on the number of
keywords which express the user’s topic of interest and their context, among other
issues. Then, the NL generator can guide the dialogue towards an explanatory gen-
eration or descriptive generation according to the following two simple criteria:

1. If the search agent retrieves more than 100 documents, the system should an-
swer the user question by using the explanatory generation task.

2. If the search agent retrieves less than 100 documents, the system should gener-
ate a descriptive utterance.

Explanatory utterance generation aims to get the user more focused either by re-
questing a more detailed specification of the question (“Your question is too general,



82 J. ATKINSON AND A. FERREIRA

could you be more specific?”) or by requiring the user to specify some feature of the
topic being consulted (“I found N references to documents about that topic, in which
one are you most interested?”).

The discourse analyzer again performs the analysis on the user’s specific input in
order for the agent to perform the search. In doing this, the information recording
module stores the question specification or the thematic topic provided by the user.
Then, the agent locally searches again for the information on the requested topic.
Now, the generation leads to descriptive sentences. From the information obtained
from the intermediate search results and the user’s context (confirmation, negation,
request, etc), the discourse generator produces three kinds of descriptive utterances
providing different choices to the user, including:

1. Providing the results in a specific language. For example: “the information is
written in different languages, do you prefer them in English?”,

2. Displaying all the obtained documents. For example: “There are twenty items
about this topic, do you want to check all of them?”,

3. Displaying the results according to some frequent parameter. For example:
“I found information about research groups, courses and personal pages, are
you interested in something specific?”.

The corresponding search action is performed by the Action Module in Fig. 6
(also known as Action Selection Component) which receives the information ana-
lyzed by the dialogue analyzer, so the recording module stores the response provided
by the user. This allows the system to perform the corresponding action and to keep
the dialogue coherence.

At this point, the (discourse) analyzer processes the user’s response in order for the
NLG task to produce an output confirming or expressing the action being performed
(i.e., “Did you find what you were looking for?”).

In order to verify whether the communicating goal has been achieved, the ana-
lyzer processes and analyses the input. If a positive response is obtained, the system
generates a sentence to give the user the opportunity to choose another topic so to
perform a new search. Otherwise, the option of searching for another topic related to
the recently found one is produced, starting from the highest pragmatic level.

The overall process starts by establishing a top goal to built down the full struc-
ture in the sentence level. The discourse generation carried out by the model is a
task driven by several linguistic elements from high-level goals to sentences. Ac-
tual elements include linguistic functions, conversation turns, speech acts, semantic
propositions and syntactic structures. The linguistic functions are the as discussed in
the next sections.



WEB INTERACTIVE DIALOGUE 83

3.3 Linguistic Elements for Interactive Dialogues
Discourse generation starts from a set of linguistic functions associated with the

different components of the dialogue structure including linguistic functions for ini-
tiating the dialogue (FID), answering a question (FRC), determining whether the
discourse goal has been met (FPM), requiring a new dialogue topic (RNT), and fin-
ishing the dialogue (FD). Each function is defined by a set of conversation turns as
follows:

• Initiating Dialogue (FID) includes two kind of (conversation) turns: specific and
general questions.

• Answering Question (FRC) considers five types of turns depending on the in-
formation obtained from the search agent:
– Answering by prompting the detection of different languages in documents.

– Answering by prompting the number of references to documents.

– Answering by prompting the most frequent search’s features (i.e., type of
webpage, language, etc.).

– Answering by prompting the huge amount of information available for the
requested topic.

– Answering by prompting a very general question.

• Determining whether the discourse goal has been met (FPM) considers a turn
for “Confirm the usefulness of the provided information”.

• Requiring a dialogue’s new topic (RNT) is composed of two turns: requiring a
topic about the same theme or requiring a topic about a new theme.

• Finishing the dialogue (FD) considers three kind of turns: gratitude, usefulness
of the search and apologies for the results.

Each conversation turn involves specific speech acts from which the NLG genera-
tion task starts, including:

• Speech Act for initiating the dialogue:

SPEECH_ACT → ASK_ACTION.

• Speech Act for a descriptive sentence and a request:

SPEECH_ACT → DESCRIPTIVE_ACT REQUEST_ACT

(i.e., “Twenty retrieved documents are written in different languages, do you
prefer those in English?”).

• Speech Act for an explanatory sentence and request:

SPEECH_ACT → EXPLANATORY_ACT REQUEST_ACT.



84 J. ATKINSON AND A. FERREIRA

• Speech Act for finishing the dialogue:

SPEECH_ACT → CONCLUSION_ACT.

• Etc.

Each speech act is associated with a specific propositional structure to be gener-
ated. For example:

DESCRIPTIVE_ACT → DESCRIP_PROP REQUEST_PROP,

EXPLANATORY_ACT → EXPLAN_PROP REQUEST_PROP.

Furthermore, each propositional structure is built up from semantic functions (also
known as cases), including:

• AGENT: defines a function which features are attributed to. Example: “Your
question is too general”.

• ATTRIBUTE: involves the features assigned to an object or agent. Example:
“.. documents are written in English..”.

• EVENT: defines either an action or a significant process. Example: “What
theme do you want to search forotherref?”.

• OBJECT: adds information to the event’s features. Example: “Can you
question be more specific so that I can assist you?”.

• GENITIVE_OBJECT: involves objects defined by their extension. Example:
“I found information on research groups...”.

• INFINITIVE_OBJECT: adds information to a verb action. Example: “Do you
need to find out about any other topic?”.

• MEAN_INSTRUMENT: defines a means by which an event is established. Ex-
ample: “the retrieved information is written in differ-
ent languages..”

• USEFULNESS: expresses the usefulness of the performed task. Example:
“I hope I was useful in your search requests..”.

• Etc.

Semantic propositions are then defined by using semantic rules as follows:

ASK_PROPOSITION
-> INTERROGATIVE-OBJECT TOPIC EVENT INFINITIVE-OBJECT
| INTERROGATIVE-OBJECT EVENT

DESCRIPTIVE_PROPOSITION -> AGENT EVENT MEAN-INSTRUMENT |
EVENT GENITIVE-OBJECT



WEB INTERACTIVE DIALOGUE 85

DESCRIPTIVE_REQUEST_PROPOSITION
-> OBJECT EVENT MEAN-INSTRUMENT

INTERROGATIVE_REQUEST_PROPOSITION
-> OBJECT EVENT INFINITIVE-OBJECT |

INTERROGATIVE-OBJECT DATIVE EVENT |
EVENT QUANTITY OBJECT GOAL

EXPLANATORY-PROPOSITION -> EVENT GENITIVE-OBJECT
...

Next, the corresponding syntactical structures must be generated. These consider
usual types of groups such as Noun Phrases (NP), Prepositional Phrases (PP), Ad-
jective Phrases (ADJP). Note that each semantic function can enable one or more
different syntactical structures. A typical set of grammar rules (according to their
semantic cases) for the generation task include:

AGENT -> NP
ATTRIBUTE -> ADJP
EVENT -> V | Vcop | VIMP | VP
OBJECT -> NP
GENITIVE-OBJECT -> NP
INTERROGATIVE-OBJECT -> NP
INFINITIVE-OBJECT -> NP
INTERROGATIVE-THEME -> PP
MEAN-INSTRUMENT -> PP
...

Each grammar phrase (i.e., syntactical structure) is composed of different gram-
mar categories such as determiners (det), articles (artdef ), determining adjectives
(adjdet), nouns (n), adjectives (adj), prepositions (prep), verbs (v, Vcop, Vimp), pro-
nouns (proper, pro), etc. Accordingly, examples of defined grammar rules look as
follows:

NP -> DET n |
adj n |
n |
det n PP |
proper |
prop |
n PP NP CONJ NP



86 J. ATKINSON AND A. FERREIRA

DET -> ARTDEF |
ADJDET |

ADJINT

ADJP -> INT adj

PP -> prep NP

ADV -> QUANTITY
...

Finally, the generation lexicon is defined to include words and features extracted
from the experiments’ transcriptions. Each lexical entry is specified by its gram-
mar category and the corresponding morphological features. Discourse generation
matches the lexical information for each rule and the words in the dictionary so as to
select those corresponding to the specified constraint. Different morphological fea-
tures were considered and included genre (male, female), number (singular, plural),
and type (i.e., groupings or semantic fields which specify syntactical-semantics be-
haviors. For instance, a type-B noun indicates a noun that designates information.
Lexical items used for the generation included entries as follows:

ARTDEF : articles

a (artdef,fem,sing)

ADJDET : quantifiers

Type-A1 ADJDET: Quantity that meets requirement

much (adjdet,typeA1,fem,sing)
huge (adjdet,typeA1,fem,sing)

Type-A2 ADJDET : Quantity that meets requirement
...
sufficient (adjdet,typeA2,inva,sing)
...
Type-A NOUN: nouns on information

theme (typeA,np,masc,sing)
information (typeA,np,quantifiable,fem,sing)



WEB INTERACTIVE DIALOGUE 87

topic (typeA,np, masc, sing)
reference to document (typeA,hiper, fem, sing)
topic (typeA,np, masc,sing)
...

Type-B Noun : on language

language (n,typeB,hyper,fem,sing)
languages (n,typeB,hyper,fem,sing)
spanish (n,typeB,native,male,sing)
english (n,typeB,extra,male,sing)
..

Type-A ADJ : denotes a different feature

different (adj,typeA,inva,plu)
diverse (adj,typeA,fem,plu)
distinct (adj,typeA,fem,pl)
..

VERBS

Type-A Verb : on wishes

prefer (v,typeA,2ps,pre)
want (v,typeA,2ps,pre)
wish (v,typeA,2ps,pre)
..

Once all the previous elements are put together, the NLG task can be performed
from high-level goals to instantiated utterances. Thus, the overall process of NL sen-
tences generation is guided by the selected turns as follows:

CONVERSATION_TURN_1 -> SPEECH_ACT_1 ...
CONVERSATION_TURN_2 -> SPEECH_ACT_2
...
SPEECH_ACT_1 -> INTERROGATION_ACT_1
...
INTERROGATION_ACT_1 -> PROPOSITION_QUESTION_9
...



88 J. ATKINSON AND A. FERREIRA

PROPOSITION_QUESTION_9 -> REQUEST_FOR_OBJECT + EVENT
...
DESCRIPTIVE_PROPOSITION -> AGENT + EVENT + MEANS
...
AGENT -> NP
(surface generation starts at this point)
...
MEANS -> NP | NP OBJECT ...
EVENT -> VERB VP
(further linguistic features and constraints, lexicon,
etc).

3.4 Adaptive Search Agent

Unlike traditional search engines or IR systems, we have designed a search agent
which does not deliver all the obtained information from web search results to the
user. Instead, the agent waits until sufficient knowledge about the user’s feedback,
goals, etc. is acquired. As the interaction goes on, the agent refines the requests
and filters the initial information obtained from the user’s feedback and the search
process, until a proper amount of information can be displayed.

The search agent is composed of three components: the search engine itself, the
criteria analyzer which processes the obtained information based on the user’s feed-
back and current context knowledge, and the information status record which man-
ages the obtained information and the knowledge acquired from previous dialogues
with the user. The results produced by the agent are later used by the NL genera-
tor to produce adaptive utterances which match the current conversation status and
constraints.

By “criteria,” it is meant the kind of underlying representation stated for the doc-
uments and the user’s profile which is similar to that used in IR but it has been
augmented with vector-based specific purpose features to support the needed expres-
siveness. Both documents and user’s queries are represented in a multidimensional
space so that once a question is processed it is then translated into a pattern repre-
senting a criteria vector. By using distance metrics and some combination of existing
search engines, the appropriate documents are retrieved. A document D so structured
is represented as a vector i: Vd = X0X1 . . . Xn where Xi states the value extracted
from the users or the search results for the ith criterion of the documents being ob-
tained.

These criteria represent relevant context information related to web pages which
can be useful in training the patterns and filtering the search results. Initially, criterion



WEB INTERACTIVE DIALOGUE 89

X0 will concern the main theme and the rest of the vector will remain empty. As the
dialogue proceeds and new search results are obtained, these slots become filled.

Using the information provided by the criteria above, the dialogue samples and
the current context information, it was possible to extract and synthesize the most
frequent search patterns, some of which involve URL Address of the Web page be-
ing selected, Documents’ author, Language in which the document is written in,
Document’s source country, Type of document/page (commercial, education, etc.),
documents related to events, Technical documentation, Research groups, Products
and Services, etc.

For example, slot X4 can store the criterion “language.” Thus, if a further inter-
action learns that the user is interested in getting documents in Spanish language,
the slot X4 will be filled with the value Spanish, so to take part of the next search
attempts. Each criterion has also a weight which represents its “contribution” to a
retrieved document.

Whether the criteria are filled with information from the dialogue or from the
current intermediate search, the previously trained agent takes the matching vectors
and performs the search request onto the Web. If no further filtering can be done, the
results are showed, otherwise, new requests from the dialog context are issued to the
agent.

When information in the vectors and the user feedback provided is not enough
or unavailable, the agent is still capable of making simple decisions by predicting
the most likely actions to perform. That is, given some context information, the
agent tries to determine the bets action to perform. For this, the agent is provided
with a simple trainable Bayesian inference strategy. Its outcome has two basic con-
sequences: one affecting the information filtered and other assisting the sentence
generation to look for criteria missed or incomplete. The general strategy to decide
the next likely action based on the confidence levels is shown in Fig. 7.

In practice, these actions are translated into high-level goals of pragmatic con-
straints which cause a particular kind of NL dialogue to be generated (i.e., question,
request, feedback, etc.).

4. Analysis and Results

A search model which uses intelligent agent technology and NLP techniques was
designed and implemented in order to investigate the extent to which information
overloading and intelligent search capabilities can be effective for web search and
filtering.

The results produced by a prototype system are defined in terms of two previously
discussed issues: one regarding the kind of NL utterance automatically generated by



90 J. ATKINSON AND A. FERREIRA

FIG. 7. The strategy for action selection.

the system which suggests that the search-driven discourse generation may indeed
be plausible. A second issue concerns the benefits of using this kind of interaction
to decrease information overloading and so the time spent by users searching on the
web.

For the dialogue component, a discourse generator was implemented using the
SnePS framework [43] which provides NL facilities and knowledge representation
tools (i.e., semantic nets, etc.), and medium-size NL interfaces.

The analysis of results was based on the automatic generation of 1000 dialogue
structure samples obtained from the discourse processing task performed by the sys-
tem (original dialogues were allowed in Spanish so some English translations are
provided). The discourse processor was able to produce dialogue structures that look
like this:

Input sentence to nlip: ("hola" ".")
Resulting parse: ("sobre" "que" "topico" "deseas"

"revisar" "?")
(What topic do you want to search for)

Input sentence to nlip: ("sobre" "linguistica"".")



WEB INTERACTIVE DIALOGUE 91

(on linguistics)
Resulting parse: ("tu" "consulta" "es" "muy" "amplia"

"puedes" "delimitar" "la" "mas"
"por favor" "?")

(your question is too broad, could you please be more
specific?)

Input sentence to nlip: ("bueno")
(fine)
Resulting parse: ("averiguaste" "lo que"

"necesitabas" "?")
(Did you find what you were looking for?)

...
Input sentence to nlip ("no" ".")
Resulting parse: ("necesitas" "otra" "informacion"

"sobre" "este" "tema" "?")
(Do you need further information about this topic?)

...
Input sentence to nlip: ("bueno")
(yes)
Resulting parse: ("hallaste" "lo que"

"necesitabas" "?")
(Did you find what you were looking for?)

Input sentence to nlip ("no" "realmente" ".")
(not really)
Resulting parse: ("lo siento" "para" "otra" "vez"

"sera" "hasta" "pronto!!")
(I’m sorry, see you next time)

Conversation turns selected for the NLG task use the linguistic functions previ-
ously defined for each component of the dialogue structure as follows:

1. Delimiting the question concerns the dialogue initiation linguistic function
(FID). Generation of utterance-question is performed on the theme the user
requires to search for:

Input sentence to nlip: ("hola" ".")
Resulting parse: ("sobre" "que" "topico"



92 J. ATKINSON AND A. FERREIRA

"deseas" "revisar" "?")
Input sentence to nlip: ("sobre" "linguistica" ".")

2. Specifying the results of the web search concerns generating the user’s utterance
as answer to the system’s request so as to further specify the topic:

Resulting parse: ("tu" "consulta" "es" "muy"
"amplia" "puedes" "delimitar" "la"
"mas" "por favor" "?")

Input sentence to nlip: ("bueno" ".")

3. Specifying the achievement of the discourse goal in which the user’s utterance is
produced as an answer to the system’s question regarding the accomplishment
of the searched topic:

Resulting parse: ("averiguaste" "lo que"
"necesitabas" "?")

Input sentence to nlip: ("no" ".")

4. User’s answer is generated from a system’s generated question about the re-
quest for additional information on the topic:

Resulting parse: ("necesitas" "otra" "informacion"
"sobre" "este" "tema" "?")

Input sentence to nlip: ("bueno" ".")

5. Finishing the dialogue is carried out from a question on the discourse goal’s
accomplishment:

Resulting parse: ("hallaste" "lo que"
"necesitabas" "?")

Input sentence to nlip: ("no" "realmente" ".")

Resulting parse:("lo siento" "para" "otra" "vez"
"sera" "hasta pronto!!")

In order to generate different explanatory and descriptive discourse utterances aim-
ing to refine the results of the topic search, a prototype search agent was designed for
simulation and testing purposes. Generating this kind of discourse is then carried out
using information form the user’s feedback and the search’s previous results. Trig-
gering the different implemented rules and associated actions were simulated from
five types of user’s discourse inputs as follows:

• Case 1:
Generating explanatory answers for which the system requires the user to

provide further specification on the requested theme. This involved dealing



WEB INTERACTIVE DIALOGUE 93

with the user’s answer “on linguistics”. Next, the search agent finds too much
information about the topic which may be due to a too broad question (i.e.,
that containing a one-word topic). This behavior is exhibited in some of the
processed samples as follows:

Sample No. 26:

Input sentence to nlip: ("hola" ".")
Resulting parse: ("sobre" "que" "asunto" "quieres"

"consultar" "?")
(What theme do you want to find?)

Input sentence to nlip: ("sobre" "linguistica" ".")
Resulting parse: ("tu" "consulta" "es" "muy"

"amplia" "debes" "delimitar" "la"
"mas""por favor")

(your question is too broad, could you please be
more specific?)

Input sentence to nlip: ("bueno" ".")
Resulting parse: ("hallaste" "lo que" "necesitabas"

"?")

Input sentence to nlip: ("no" ".")
Resulting parse: ("necesitas" "otra" "informacion"

"en relacion con" "este" "topico"
"?")

Input sentence to nlip: ("bueno" ".")
Resulting parse: ("encontraste" "lo que" "buscabas"

"?")
Input sentence to nlip: ("si" "gracias" ".")
Resulting parse: ("gracias por consultarme!!"

"nos vemos!!")

• Case 2:
Generating explanatory utterances providing that too much information is

found, requires delimiting the user’s general question. For example, by process-
ing answers such as “on Latin”, “on English” in the following sample dia-
logues:

Sample No. 8: (question on Latin)

Input sentence to nlip: ("hola" ".")



94 J. ATKINSON AND A. FERREIRA

Resulting parse: ("en relacion con" "que" "tema"
"deseas" "revisar" "?")

Input sentence to nlip: ("sobre" "latin" ".")
Resulting parse: ("halle" "bastante" "informacion"

"acerca de" "este" "asunto" "que"
"rasgo" "mas" "preciso" "prefieres"
"revisar" "?")

(I found too much information about it,
what specific issue do you want to check?)

Input sentence to nlip: ("bueno" ".")
Resulting parse: ("encontraste" "lo que" "buscabas"

"?")

Input sentence to nlip: ("si" ".")
Resulting parse: ("necesitas" "revisar" "acerca de"

"otro" "asunto" "?")

Input sentence to nlip: ("bueno" ".")
Resulting parse: ("encontraste" "lo que"

"necesitabas" "?")

Input sentence to nlip: ("si" "gracias" ".")
Resulting parse: ("gracias por consultarme!!"

"nos vemos!!")

Sample No. 11: (question on English)

Input sentence to nlip: ("hola" ".")
Resulting parse: ("acerca de" "que" "topico"

"quieres" "consultar" "?")

Input sentence to nlip: ("sobre" "ingles" ".")
Resulting parse: ("hay" "mucha" "informacion"

"en relacion con" "este" "tema"
"puedes" "acotar""mas" "tu"
"consulta" "para" "ayudar" "te"
"bien" "?")

Input sentence to nlip: ("bueno" ".")



WEB INTERACTIVE DIALOGUE 95

Resulting parse: ("hallaste" "lo que"
"necesitabas" "?")

Input sentence to nlip: ("no" ".")
Resulting parse: ("necesitas" "otra" "informacion"

"acerca de" "este" "topico" "?")

Input sentence to nlip: ("bueno" ".")
Resulting parse: ("averiguaste" "lo que"

"necesitabas")

Input sentence to nlip: ("si" "gracias" ".")
Resulting parse: ("espero" "haber sido" "util"

"chao!!")

• Case 3:
Generating descriptive discourse to express the different languages of the re-

trieved documents. This allows the discourse generator to produce suggestions
on the desired features of the retrieved documents:

Sample No. 9:

Input sentence to nlip: ("hola" ".")
Resulting parse: ("sobre" "que" "topico" "quieres"

"consultar" "?")
(what topic do you want to search for?)

Input sentence to nlip: ("sobre" "aleman" ".")
Resulting parse: ("la" "informacion" "esta" "en"

"distintas" "lenguas" "la"
"prefieres" "en" "espanol" "?")

(I found information in different language, do you
prefer them in Spanish?)
...
Input sentence to nlip: ("bueno" ".")
Resulting parse: ("averiguaste" "lo que"

"necesitabas")

Input sentence to nlip: ("no" ".")
Resulting parse: ("necesitas" "otra" "informacion"

"en relacion con" "este"
"topico" "?")



96 J. ATKINSON AND A. FERREIRA

Input sentence to nlip: ("bueno" ".")
Resulting parse: ("hallaste" "lo que" "buscabas" "?")

Input sentence to nlip: ("si" "gracias" ".")
Resulting parse: ("espero" "haber sido" "util"

"hasta la proxima!!")

• Case 4:
Simulating the user’s answer for “on Spanish” requires the system to generate

a descriptive sentence involving an exact number of references to documents be-
ing found (i.e., expressing that less than 50 references were found) by the search
agent:

Input sentence to nlip: ("hola" ".")
Resulting parse: ("acerca de" "que" "tema" "deseas"

"revisar" "?")

Input sentence to nlip: ("sobre" "castellano" ".")
Resulting parse: ("hay" "veinte" "referencias"

"sobre" "este" "asunto" "las"
"quieres" "revisar" "todas" "?")

Input sentence to nlip: ("bueno" ".")
Resulting parse: ("averiguaste" "lo que"

"necesitabas","?")

Input sentence to nlip: ("si" ".")
Resulting parse: ("necesitas" "otra" informacion"

"en relacion con" "este"
"asunto" "?")

Input sentence to nlip: ("bueno" ".")
Resulting parse: ("averiguaste" "lo que" "buscabas"

"?")

Input sentence to nlip: ("no" "realmente" ".")
Resulting parse: ("lo siento" "para" "otra" "vez"

"sera" "chao!!")

• Case 5:
Generating descriptive discourse to express the three most frequent features

found by the agent in the documents. This requires for the user to further specify



WEB INTERACTIVE DIALOGUE 97

an specific criterion (i.e., “on French”). By producing this utterance, the user is
informed the condition that “more than 50 references and less than 100 were
found”:

Sample no. 3:

Input sentence to nlip: ("hola" ".")
Resulting parse: ("acerca de" "que" "tema"

"prefieres" "consultar" "?")

Input sentence to nlip: ("sobre" "frances" ".")
Resulting parse : ("halle" "informacion" "sobre"

"grupos de investigacion"
"cursos y departamentos" "que"
"aspecto" "te interesa" "?")

Input sentence to nlip: ("bueno" ".")
...
Resulting parse: ("encontraste" "lo que" "buscabas"

"?")

Input sentence to nlip: ("no" ".")
Resulting parse: ("necesitas" "otra" "informacion"

"en relacion con" "este"
"topico" "?")

Input sentence to nlip: ("bueno" ".")
Resulting parse: ("averiguaste" "lo que"

"necesitabas" "?")

Input sentence to nlip: ("no" "realmente" ".")
Resulting parse: ("lo siento" "para otra" "vez"

"sera" "hasta la proxima!!")

As for the filtering issue, the model performance was analyzed regarding the ex-
periments evaluating the number of conversational turns in the dialogue necessary
to get a more precise requirement and filtered information against the number of
references/documents which matched these requirements. Initially, the set of pos-
sible candidate documents became more than 30 000 documents references but for
simplicity’s sake, the scope has been reduced to no more than 100 references.

Three experiments were carried out and can be seen in Figs. 8, 9 and 10. These
involved dialogue interaction on the focus topic Java, Computer Networks and



98 J. ATKINSON AND A. FERREIRA

FIG. 8. Interactive dialogue-based search for Java.

FIG. 9. Interactive dialogue-based search for Computer Networks.

Cartoons. To better understand the analysis, each interaction is defined by one or
more dialogue interactions (also known as exchanges or turns) between a web user
and the dialogue-based search system.

Dialogue interactions for experiment on Java (Fig. 8) showed an increase in the
number of documents matched as more than three turns are exchanged. It does not
come up by a chance: for the same number of interactions (five), different results are
showed mainly due to the adaptive way how the dialog goes on. This is, the context
and kind questions made by the agent are changing depending on the situation and
the document’s contents. Different results were obtained for the same number of
interactions because the type of document searched for was changed as other features
were restricted on the dialogue. A similar situation occurs as the dialog specifies a



WEB INTERACTIVE DIALOGUE 99

FIG. 10. Interactive dialogue-based search for Cartoons.

TABLE I
OVERALL RESULTS FOR FILTERING

Theme Average

Interactions Documents Reduction (%)

Java 3.6 9.8 72.0
Cartoons 3.7 11.5 67.2
Computer Networks 3.5 7.5 78.5

Average 3.6 9.6 72.6

constraint on the language, in which case, most of the original document references
were not matched.

For the interactions on Computer Networks, Fig. 9 shows a higher number of
retrieved relevant documents than for the experiments on Java. Even so, the filtering
at the end of this dialogue is better than for the previous experiments: the maximum
number of obtained documents is less than for interactions on Java, and the drop
on the filtered documents is better for 3-interaction dialogues.

In the experiments on Cartoons, a similar behavior to interactions on Java is
observed. Even in dialogues with three exchanges, sudden increments were observed,
going up from 1 to nearly 35 resulting references. This change is due to an inference
drawn by the agent and a user’s restriction related to the document type.

From all the experiments, it can be seen that there is an important drop in the re-
sults obtained with a minimum of conversation turns due to constraints on the nature
of the information finally delivered. Overall, the average interactions and filtering re-
sults required to meet the goal for each experiment are shown in Table I. A filtering
of almost 73% is achieved with an average number of 3.6 dialogue interactions, this
is, in average, less that 27% of the initially-retrieved documents are actually showed



100 J. ATKINSON AND A. FERREIRA

to the user. It is also important to highlight that all the experiments required no more
than four conversation turns to filter at least 67.2% of the documents.

5. Conclusions

In this work, a new approach to collaborative web-driven search strategy is pro-
posed in order to deal with the problem of information overloading and filtering. The
model can recognize and exploit context and accommodate user feedback through a
minimum number of dialogue interactions.

Experiments, conducted in the context of a filtering system for Web documents,
highlight the promise of combining NLP methods and intelligent agents technology
for an information access problem.

Experiments suggest that a lot of time may be saved if we are provided with the
weighted features usually presented on the retrieved information depending on its
importance degree or usage. In any case, interactions (form and content) will strongly
rely on these factors. However, it should not leave user’s contributions apart from the
decisions being made by the system.

Despite the moderated complexity of the experiments and the design constraints,
the issues which have been identified should not drastically change through more ad-
vanced requirements and implementations (i.e., different languages, different search
capabilities, etc.).

From a language-centered viewpoint, the current model based on dialogue inter-
actions shows promise to be a novel and interesting work strategy to deal with more
specific information searching requirements. Here both designing and implementing
a NLG system can easily be adapted to tailored communicating situations. Even al-
though there is a lot of NLG systems, as far as we know, this is the first attempt to
integrate these technologies to address the problem of searching and filtering on the
Web effectively.

Compared to other approaches using NLP to tackle similar problems, in the pro-
posed model the web user’s interests and goals are obtained as the dialogue proceeds
whereas in other approaches this kind of information (i.e., interestingness and rel-
evance) is established in advance by providing different parameter values. On the
other hand, the underlying working assumption in some search models using NLP is
that a user’s profile must be analyzed in order so to prune part of some “story” and
so to reach a final answer. Since our “stories” are real documents extracted from the
Web, we can not afford understanding the complete set of texts. Instead, the model
deals with the dialogue as a way to extract important knowledge from the user and
then properly filtering the obtained documents.



WEB INTERACTIVE DIALOGUE 101

ACKNOWLEDGEMENTS

This research is sponsored by the National Council for Scientific and Technolog-
ical Research (FONDECYT, Chile) under grant number 1070714 “An Interactive
Natural-Language Dialogue Model for Intelligent Filtering based on Patterns Dis-
covered from Text Documents.”

REFERENCES

[1] Ardissono L., Boella G., Lesmo L., “Plan based agent architecture for interpreting natural
language dialogue”, Internat. J. Human–Computer Stud. 52 (2000) 583–636.

[2] Austin J., How to do Things with Words, Oxford University Press, A Galaxy Book, New
York, 1970.

[3] Benamara F., Dizier P., “Dynamic generation of cooperative natural language responses
in webcoop”, in: Ninth European Workshop on Natural Language Generation, EACL,
Budapest, Hungry, 2003.

[4] Berry M., Browne M., Understanding Search Engines: Mathematical Modeling and Text
Retrieval, SIAM, 1999.

[5] Bloedorn E., Mani I., “Using NLP for machine learning of user profiles”, Intell. Data
Anal. 2 (1–4) (1998) 3–18.

[6] Burstein M., Ferguson G., Allen J., “Integrating agent-based mixed-initiative control with
an existing multi-agent planning system”, Technical Report 729, Computer Science De-
partment, University of Rochester, May, 2000.

[7] Callan J., Artificial Intelligence, Palgrave–MacMillan, 2003.
[8] Cohen P., Levesque H., “Performatives in a rationally based speech act theory”, Technical

Note 486, SRI International, 1990.
[9] Cohen P., McGee D., Clow J., “The efficiency of multimodal interaction for a map-based

task”, in: Proc. of the 6th Conference on Applied Natural Language Processing, Seattle,
USA, 2000.

[10] Hermjakob E., Hovy U., Gerber L., Junk M., “Question answering in webclopedia”, in:
Proc. of the TREC-9 Conference, NIST, Gaithersburg, MD, 2000.

[11] Di Eugenio B., Fossati D., Yu D., Haller S., “Aggregation improves learning: experiments
in natural language generation for intelligent tutoring systems”, in: ACL05, 43rd Meeting
of the Association for Computational Linguistics, Ann Arbor, MI, USA, June 2005.

[12] Di Eugenio B., Glass M., Haller S., “Simple natural language generation and intelligent
tutoring systems”, in: The AIED 2001 Workshop on Tutorial Dialog Systems, San Anto-
nio, TX, May 2002.

[13] Ferreira A., “Generating descriptive and explanatory discourse based on a computational
linguistics model”, PhD thesis, Catholic University of Valparaiso, Chile, 1998.

[14] Ferreira A., “Feedback strategies for second language teaching with implications for in-
telligent tutorial systems”, PhD thesis, Division of Informatics, University of Edinburgh,
Edinburgh, Scotland, 2003.



102 J. ATKINSON AND A. FERREIRA

[15] Ferreira A., Atkinson J., “Intelligent search agents using web-driven natural-language
explanatory dialogs”, IEEE Computer 38 (10) (2005) 44–52.

[16] Grice H., “Logic and conversation”, in: Cole R., Morgan (Eds.), Syntax and Semantic,
Academic Press, 1990.

[17] Grosz B., Hunsberger L., Kraus S., “Planning and acting together”, AI Magazine 20 (4)
(1999) 23–34.

[18] Haller S., Di Eugenio B., “Minimal text structuring to improve the generation of feedback
in intelligent tutoring systems”, in: Proc. of the Sixteenth Florida Artificial Intelligence
Research Conference, St. Augustine, FL, May 2003.

[19] Haller S., Di Eugenio B., Trolio M., “Generating natural language aggregations using a
propositional representation of sets”, in: Proc. of the Fifteenth Florida Artificial Intelli-
gence Research Conference, Pensacola, FL, May 2002, pp. 365–369.

[20] Haller S., “An introduction to interactive discourse processing from the perspective of
plan recognition and text planning”, Artif. Intell. Rev. 13 (4) (1999) 259–311.

[21] Harabagiu S., Pasca M., Maioramo S., “Experiments with open-domain textual question-
answering”, in: Proc. of COLING 2000, 2000, pp. 292–298.

[22] Hofmann T., “Latent semantic models for collaborative filtering”, ACM Trans. Inform.
Systems 22 (1) (2004) 89–115.

[23] Holscher C., Strube G., “Web search behavior of internet experts and newbies”, in: 9th
International World Wide Web Conference, Amsterdam, May 2000.

[24] Jansen B., Spink A., “Real life, real users, and real needs: A study and analysis of user
queries on the web”, Inform. Process. Manag. 36 (2) (2000) 207–227.

[25] Jurafsky D., Martin J., An Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition, Prentice Hall, 2000.

[26] Kraus S., Strategic Negotiation in Multiagent Environments, MIT Press, 2001.
[27] Landauer T., Foltz P., Laham D., “An introduction to latent semantic analysis”, Discourse

Processes 10 (25) (1998) 259–284.
[28] Lau T., Horvitz E., “Patterns of search: Analyzing and modeling web query refinement”,

in: Proc. of the Seventh International Conference on User Modeling, ACM Press, 1999.
[29] Levy A., Weld D., “Intelligent internet systems”, Artificial Intelligence 11 (8) (2000)

1–14.
[30] Lochbaum K., Grosz B., Sidner C., “Models of plans to support communication: An

initial report”, in: Proc. of AAAI-90, Boston, 1990.
[31] Maes P., “Evolving agents for personalized information filtering”, in: Proc. of the Ninth

Conference on Artificial Intelligence for Applications ’93, Orlando, FL, USA, March
1993.

[32] Maes P., “Agents that reduce work and information overload”, Commun. ACM (1994)
31–40.

[33] Mann W., Thompson S., “Rhetorical structure theory: A theory of text organisation”, in:
L. Polanyi (Ed.), The Structure of Discourse, Ablex, Norwood, NJ, June 1987.

[34] Marcu D., “The rhetorical parsing, summarization, and generation of natural language
texts”, PhD thesis, Department of Computer Science, University of Toronto, June 1997.

[35] Marcu D., “A formal and computational synthesis of Grosz–Sidner and Mann–Thompson
theories”, in: Workshop on Levels of Representation in Discourse, Edinburgh, Scotland,
June 1999.



WEB INTERACTIVE DIALOGUE 103

[36] Moore J., Participating in Explanatory Dialogues: Interpreting and Responding to Ques-
tions in Context, MIT Press, Cambridge, MA, 1995.

[37] Moore J., Foster M., Lemon O., White M., “Generating tailored comparative descriptions
in spoken dialogue”, in: FLAIRS Conference, Florida, USA, 2004.

[38] Ram A., “Interest-based information filtering and extraction in natural language under-
standing systems”, in: Bellcore Workshop on High-performance Information Filtering,
November 1991.

[39] Ram A., “Natural language understanding for information filtering systems”, Commun.
ACM 35 (12) (1992) 80–82.

[40] Reiter E., Dale R., Building Natural Language Generation Systems, Cambridge Univer-
sity Press, 2000.

[41] Salter J., Antonopoulos N., “Cinemascreen recommender agent: Combining collabora-
tive and content-based filtering”, IEEE Intelligent Systems Appl. 21 (1) (2006) 35–41.

[42] Schiffrin D., Discourse Analysis, Cambridge University Press, England, 1987.
[43] Shapiro S., “Sneps 2.3. user’s manual”, Technical report, Department of Computer Sci-

ence, SUNY at Buffalo, NY, USA, 1995.
[44] Shapiro S., “Conditional snere policies, snerg technical note 39”, Technical report, De-

partment of Computer Science and Engineering, University at Buffalo, The State Univer-
sity of New York, Buffalo, NY, December 2005.

[45] Stent A., “Rhetorical structure in dialog”, in: Proc. of the 2nd International Natural Lan-
guage Generation Conference (INLG’2000), June 2000.

[46] Stone M., Webber B., “Textual economy through close coupling of syntax and seman-
tics”, in: Proc. 1998 Internat. Workshop on Natural Language Generation, Niagara-on-
the-Lake, Canada, August 1998.

[47] Tong L., Changjie T., Jie Z., “Web document filtering technique based on natural lan-
guage understanding”, Internat. J. Comput. Processing of Oriental Languages 14 (3)
(2001) 279–291.

[48] Ungar L., Foster D., “A formal statistical approach to collaborative filtering”, in: Confer-
ence on Automated Learning and Discovery (CONALD), 1998.

[49] Van Dijk T., “Principles of critical discourse analysis”, in: Wetherell E. (Ed.), Discourse
Theory and Practice, Sage, London, 2001.

[50] Voorhees E., “Natural language processing and information retrieval”, SCIE (2001) 32–
48.

[51] Wooldridge M., Reasoning about Rational Agents, MIT Press, 2000.
[52] Wright H., Poesio M., Isard S., “Using high level dialogue information for dialogue act

recognition using prosodic features”, in: Proc. of the ESCA Workshop on Prosody and
Dialogue, Eindhoven, 1999.

[53] Zukerman I., Albrecht D., Nicholson A., “Predicting users’ requests on the www”, in:
Proc. of the Seventh International Conference on User Modeling, 1999.



This page intentionally left blank



A Tour of Language Customization
Concepts

COLIN ATKINSON

University of Mannheim
68161 Mannheim
Germany

THOMAS KÜHNE

Darmstadt University of Technology
64289 Darmstadt
Germany

Abstract
Although the UML is often perceived as a universal modeling language it was
not designed to fulfill this goal. Rather, the primary goal of the designers was
to provide a unified modeling language. Because the applicability of the core
language is limited, the UML has always offered mechanisms to enable it to
be adapted to the needs of different users and applications. Over the years, a
wide variety of different language customization mechanisms have been pro-
posed, ranging from stereotypes, profiles, and metamodeling to domain-specific
languages. However, the relationships between these different approaches and
the different capabilities and options that they provide to users have never been
clearly elaborated. In this chapter we provide a tour of the most important lan-
guage customization mechanisms and by means of a unified case study we
compare and contrast their pros and cons. We also review the current “state of the
art” and present our view of how the “domain-customized language” approach
to software engineering can best be supported in the future.

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
2. Languages, Abstraction and Domain-Specificity . . . . . . . . . . . . . . . . . . . 107

2.1. Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
2.2. Abstraction and Domain-specificity . . . . . . . . . . . . . . . . . . . . . . . 111
2.3. Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

ADVANCES IN COMPUTERS, VOL. 70 105 Copyright © 2007 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(06)70003-1 All rights reserved.



106 C. ATKINSON AND T. KÜHNE

3. Derivation Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.1. Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.2. Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.3. Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4. Lightweight Language Customization . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.1. Extension Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.2. Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.3. Lightweight Extension: Pros and Cons . . . . . . . . . . . . . . . . . . . . . . 131

5. Customization Support Environments . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.1. Multiple Modeling Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2. Two-Level Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.3. Flattened Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6. Ontological Metalevels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.1. Ontological Metatypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.2. The Dual Facet Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3. The Item-Descriptor Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.4. Powertypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.5. Deep Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7. Orthogonal Classification Architecture . . . . . . . . . . . . . . . . . . . . . . . . 148
7.1. Strict Metamodeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.2. Ontological versus Linguistic Dimensions . . . . . . . . . . . . . . . . . . . . 149

8. Languages versus Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.1. Class Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.2. Library Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9. Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.1. Model Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.2. DSL/DSM Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.3. OMG Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.4. Library Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

1. Introduction

Software engineering involves the creation of many artifacts which may be de-
scribed using a variety of languages. However, choosing the optimal language for
each artifact is not easy. One of the most important issues is the tension between
the goal of widespread communication and the goal of using the most appropriate
language for each specific task. With respect to modeling, a standard like the UML
(Unified Modeling Language) [16,17] which has unified and replaced a large number
of similar object-oriented modeling notations, is an ideal facilitator of world-wide



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 107

communication. It has, however, been criticized as promoting a “one size fits all”
approach that provides suboptimal abstractions for the majority of applications. This
is not surprising since the “U” in “UML” was never meant to mean “universal”, i.e.,
the UML is useful in a broad range of applications, but certainly not all. Domain-
Specific Languages (DSLs), on the other hand, provide the best possible fit for a
particular task but create communication chasms since their concepts and notations
are often only known to a small team of language designers and users. In the worst
case, domain-specific languages can be conceptually very similar, but vary consid-
erably in terms of their notation, thus creating an unnecessary Tower of Babel and
undoing the consolidation achievement of the UML.

Fortunately, there is some useful middle-ground between a fixed language stan-
dard and an uncompromisingly adapted, one-off language design which we refer
to as a domain-customized language (DCL). A domain-customized language is a
derived language whose definition is based on some existing base language. It cus-
tomizes that language for some specific purpose using such operations as reduction,
modification, and extension. Domain-customized languages are therefore a subclass
of domain-specific languages whose members have carefully defined relationships
to their respective base languages. Typically, the base language will be a widely-
known standard and the amount of customization will be minimized in the sense that
as much as possible of the base language will be left unaltered. The use of a DCL
thus allows maximum communication while still being tailored to a specific task. The
OMG’s (Object Management Group) approach of regarding the “UML as a family of
languages” [5] and supporting the customization of the UML with so-called profiles
may be regarded as promoting the DCL concept.

However, a DCL approach will only be economically viable if the cost of creating
a DCL—which involves the adaptation of the syntax and semantics of a language—
does not exceed the return on investment, i.e., the productivity gains. A DCL ap-
proach therefore needs to make the definition and derivation of languages as simple
and intuitive as possible. As well as providing a chronological overview of the main
concepts and technologies involved in defining and using DCLs, this chapter will
therefore have a particular focus on the relative ease with which DCLs may be
derived from base languages. Only language customization approaches and tech-
nologies that manage to minimize the cost of creating a DCL will have a long term
future in software engineering.

2. Languages, Abstraction and Domain-Specificity

To set the scene for the tour of language customization technologies that follows,
we use this section to explain some basic concepts and to introduce the case study
that we use in the rest of the chapter.



108 C. ATKINSON AND T. KÜHNE

2.1 Languages

In the following we do not distinguish between the traditional categories of model-
ing languages and programming languages, whose distinction has been considerably
blurred by model-driven development approaches. Even though our examples are ex-
clusively from the area of modeling, all observations and conclusions also apply to
programming languages.

The task of a modeling language is to provide a set of concepts and an associated
notation that allows the description of subjects of interest. In the case of software
engineering, models are frequently used as construction plans, i.e., as descriptive
models. In this case the subject is typically a software system to be built and some-
times includes the environment with which it interacts. The OMG’s MDA Guide
consequently defines the term “model” as follows:

“A model of a system is a description or specification of that system and its
environment for some certain purpose” [11].

It is, however, important to realize that “description” may refer to either of two
modes of description: either one describes singular aspects of one particular incar-
nation of a system kind, i.e., one creates system snapshots, or one describes the
universal aspects of all systems of a particular kind. Models using the singular de-
scription mode are token models [9] and represent the original subject. They are often
expressed using UML object diagrams when referring to structural aspects of a sys-
tem. Models using the universal description mode are type models and classify the
original subject. They are often expressed using UML class diagrams when referring
to structural aspects of the system. Although the description mode of a model is sub-
ject to interpretation—i.e., a class diagram may play the role of a type model (with
respect to the described domain) but may at the same time also play the role of a token
model (with respect to the implementation classes to be generated from it)—it can
be useful to have a dedicated notation for each purpose. Some modeling languages,
in particular domain-specific ones, only support one description mode explicitly. The
UML supports dedicated notations for both token-level modeling (→ user instances)
and type-level modeling (→ user types).

In order to be able to discuss the customization of modeling languages, we need
to briefly introduce the fundamental ingredients of a language.

2.1.1 Abstract Syntax

The abstract syntax defines the basic set of concepts that can be used to make
statements in the language together with rules for using them correctly. One partic-
ular useful way to specify the abstract syntax of a modeling language is to create a



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 109

FIG. 1. Simplified UML metamodel.

model of the abstract syntax using the notation of the modeling language to be de-
fined. This approach has been coined metamodeling since an (abstract syntax-) model
is used to define the shape of other (user-) models. Metamodeling in this sense1 is
useful to minimize the intellectual burden on language designers, since it does not
require knowledge of a dedicated formalism such as (E)BNF, but lets language de-
signers work with a familiar notation.

Figure 1 shows a simple model of the abstract syntax of the core parts of a MOF-
like [13] modeling language expressed in the notation of that same language. The
UML and the MOF share a common core which can be used to describe the abstract
syntax of other languages, including UML and MOF themselves.

2.1.2 Well-formedness Rules

By analogy to programming languages, modeling languages typically involve a
number of rules which cannot be enforced by the abstract syntax definition. Also
known as static semantics in the area of programming language definition, well-
formedness rules thus complement the restrictions introduced by the abstract syntax

1 This is, however, just one way to understand the term “metamodeling” [9]. We will discuss another
interpretation in Section 6.



110 C. ATKINSON AND T. KÜHNE

with further constraints which cannot be expressed using the metamodeling notation.
For instance, the fact that identifiers are required to be unique within a namespace
is a constraint that needs to be defined on top of the abstract syntax. Constraint lan-
guages such as OCL [18] can be used to formulate such constraints and attach them
to the abstract syntax definition. Note that in contrast to grammars, metamodels may
capture some well-formedness rules even without resorting to constraints, e.g., by
using multiplicities.

2.1.3 Concrete Syntax

The concrete syntax defines the notation to be used to present structures which are
represented using the abstract syntax. Textual languages also use the concrete syntax
as a basis to generate import tools (i.e., parsers), but most modeling languages have
a visual notation and only use the concrete syntax for displaying models.

2.1.4 Semantics

The final element of a language is its semantics which defines the interpretation
given to sentences in that language, i.e., to expressions represented with the abstract
syntax. Well-known ways of defining this interpretation include:

informal semantics: in terms of natural language descriptions;
operational semantics: in terms of relating abstract syntax concepts to execution

machinery;
denotational semantics: in terms of mathematical mappings to known semantic

domains;
translational semantics: in terms of mapping the language to a target language.

In all cases, the semantics are defined in terms of relationships to existing, ac-
cepted targets. In the context of tool-supported semantic definitions the translational
semantics approach is the most common as it, in essence, corresponds to providing
a compiler for a language. An operational semantics may be used to define an inter-
preter for a modeling language but then requires the additional specification of the
execution machinery.

The economics of defining a DCL therefore depends on the ease with which the
abstract syntax of a language, its well-formedness rules, concrete syntax, and its
semantics can be defined and/or derived. Due to space constraints we will focus on
the abstract syntax (see Sections 3–8) and only briefly touch upon the semantics (see
Section 9). Before doing this, however, we need to clarify exactly what the term
“domain-specific” entails.



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 111

2.2 Abstraction and Domain-specificity

Domain-specific approaches are often advertised as “raising the level of abstrac-
tion” and indeed many of their typical usage scenarios enable the specification of
software at higher levels of abstraction. However, on closer inspection one ob-
serves that domain-specificity and abstraction level are in principle uncoupled and
may be freely combined. We will briefly investigate the relationship between these
two dimensions since it is instructive to see what choices are available in the two-
dimensional design space and what role they play in typical development scenarios.

2.2.1 Abstraction

In the context of this chapter we use the term “abstraction” to be a measure of the
extent to which a model or modeling language is geared toward solution technology.
Thus, a model or language with a low degree of abstraction can be characterized
as solution-oriented while a model or language with a high degree of abstraction
can be regarded as problem-oriented. Notice that we are assuming that a model is a
specification of a software system to be built and that the software is going to be exe-
cutable. The ultimate “solution” technology from a software engineer’s point of view
is therefore binary machine code. However, several levels of abstraction exist on top
of this, such as assembly language, C, operating systems, libraries, virtual machines,
object-oriented languages, middleware platforms, etc. The more “problem-oriented”
a model or modeling language is, the more it will address the question of “what”
is done by the system and the more it will abstract away from the properties of the
ultimate solution technology. The more solution-oriented it is, the more it will ad-
dress the question of “how” it is done in terms of the ultimate solution technology.
A solution-oriented language thus requires or allows—depending on whether one
regards that as a necessity or a feature—a high degree of control over the realization
aspects of a system. In contrast, a problem-oriented language focuses on the pure
functional specification of a system without concern for realization aspects. The am-
bitious goal of domain-specific modeling—and of course model-driven development
in general—is to allow the creation of models whose degree of abstraction is as close
to the problem as possible, while still having a defined and automatic translation
chain to the ultimate solution technology.

Of course, even without an automatic transformation chain, software engineering
has been making use of different abstraction levels in the development process for
a long time. A traditional waterfall process starts with highly abstract models in the
analysis phase, progressing to a design phase with more solution-oriented models,
and eventually ending up with very concrete and solution-specific descriptions of the
system.



112 C. ATKINSON AND T. KÜHNE

2.2.2 Domain-specificity

In the context of this chapter we use the term domain-specificity as a measure
of the extent to which a modeling language is tailored to a certain application do-
main. A modeling language tailored to an application domain will directly support
concepts which are naturally found in this application domain. A language with a
low degree of domain-specificity contains general concepts which span multiple do-
mains and is widely applicable (i.e., general-purpose), while a language with a high
degree of domain-specificity contains concepts that are natural and well-suited for
a particular domain and has a relatively narrow application domain in comparison.
Domain-specific modeling languages therefore trade wide applicability for a mini-
mum impedance mismatch which results in very intuitive and concise models.

Obviously, domain-specific approaches—such as Csound [4], a language dedi-
cated to the creation of sounds and music, or Simulink [1], a language dedicated to
simulation—have existed for a long time. However, the supporting tools and envi-
ronment for such language were essentially developed “by hand” by the vendors that
sell these systems, and users had to use the languages as they were delivered “out of
the box”. The new interest in DSL’s stems from the fact that the definition of DSLs
and their supporting tools is now a much less laborious task. As a result, they are
now more frequently considered as a serious alternative or complement to regular
software engineering practices.

2.2.3 Relationship between Abstraction and
Domain-specificity

As illustrated in Fig. 2, abstraction and domain-specificity can be regarded as two
orthogonal dimensions. The many ellipses in Fig. 2 indicate choices within the two-
dimensional spectrum and therefore define the relative positions of the four displayed
samples.

Figure 2 illustrates the fact that a modeling language has two properties—
abstraction level and domain-specificity—which may occur in arbitrary combina-
tions. For instance, the language in the bottom left-hand side corner of Fig. 2 is a
highly general language, applicable to a wide range of application domains and a
highly problem-oriented language, having very little concern for the realization of
a solution. Such a language would typically be used in the “analysis” phase of a
traditional software development project. Figure 3 shows GRL (Goal-Oriented Re-
quirement Language) as a concrete example.

The bottom right-hand corner of our two-dimensional space features languages
which are also general-purpose with respect to the application domain, but have a
high-degree of solution-orientation. Java is an example of a widely-applicable lan-
guage that requires/allows the specification of many implementation details.



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 113

FIG. 2. Abstraction and customization dimensions.

The top right-hand corner features languages which are both highly customized
to a certain application domain, such as e-commerce or gaming, and are designed
to require/allow the specification of many realization details. It is fair to call these
DSLs, however, the term DSM (Domain-Specific Modeling) is typically reserved for
modeling languages in the top left hand corner of our two-dimensional spectrum.
Such languages also focus on specific application domains, but they try to abstract
away as much as possible from any realization concerns. An example might be a
language for the specification of traffic light control systems offering concepts from
that domain, such as cars, traffic lights, crossing etc. In contrast to a language with the
same level of domain-specificity but a higher degree of solution-orientation, many
realization aspects will be implicit and be either fixed or deferred to interpretation
choices, such as various transformations employing different strategies for realizing
control algorithms.

Figure 3, showing samples in the two-dimensional design space, points out that
becoming more application domain-specific does not necessarily imply a higher
level of abstraction. Likewise, a level of abstraction similar to that addressed by
a dedicated “Pet Store” language may also be achieved with a general-purpose
requirements language. The virtue of domain-specificity is the focus on a partic-



114 C. ATKINSON AND T. KÜHNE

FIG. 3. Some samples in the language design space.

ular application area, allowing the models to be expressed using natural domain
terms.

Although the two dimensions are theoretically independent, in practice there are
correlations between them. Since typically the underlying goal of domain-specific
languages is to provide a way for domain experts (but not computer scientists) to
describe what they want, as opposed to how a system is going to be realized, most
DSLs tend to be problem-oriented as well as domain-specific. In other words, most
practical DSLs occupy the top left hand corner of the customization space. This
frees developers from the need to work with solution-oriented concepts and allows
them to write their high-level solutions using concepts natural to the domain in
hand.

A common misconception with DSLs is that they always raise the level of abstrac-
tion at which applications are written beyond that of general purpose language such
as the UML. This is because, like general purpose languages, they reduce the need
for the human engineer to worry about the idiosyncrasies and properties of the un-
derlying execution technology. However, this should not be confused with “raising
the level of abstraction” relating to language concepts. What DSLs in fact do is to



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 115

provide the “right”, or the “best” abstractions for the problem in hand rather than
the most abstract. Using concepts that are too abstract for a particular topic can be
just as problematic as using concepts that are too concrete. In both cases the existing
abstractions have to be constrained or generalized to the required concepts which can
involve just as much effort. DSLs avoid this problem by providing exactly the right
abstractions for the problem in hand.

2.2.4 Abstraction and Domain-Specificity in the Development
Process

Even though Figs. 2 and 3 suggest an orthogonal and free combination of abstrac-
tion and domain-specificity there are of course combinations which are more useful
and popular. Figure 4 shows a number of models expressed using different model-
ing languages and highlights the typical location of primary artifacts within a given
development style.

In Fig. 4 the bottom row corresponds to typical mainstream development prac-
tices, using general-purpose languages. The shaded area in the bottom row indi-
cates how the effort of human engineers is typically distributed in most mainstream

FIG. 4. Typical location of primary artifacts.



116 C. ATKINSON AND T. KÜHNE

projects today. Generally speaking, the amount of effort spent on developing artifacts
in traditional development is much greater at the solution-oriented end of the abstrac-
tion spectrum. This reflects the fact that the primary artifact is executable code (or
something very close to it), with more high-level models playing only a supporting,
but definitely secondary, role.

In contrast, the top row of the diagram represents the opposite end of the domain-
specificity spectrum in which highly application domain-specific languages are used
to develop software for very narrow domains. As shown by the shaded area in the
top row, this has the very distinct effect of shifting the position of the primary ar-
tifacts. Two observations explain this phenomenon: First, truly domain-specific and
solution-oriented languages—of the kind needed to operate in the top right hand
side of the diagram—are today few and far between. Thus, in most domains it is
simply not economically viable to develop software in a highly domain-specific but
solution-oriented way. Second, even if such languages were more widely available
there would often be little incentive to use them. That is to say, it is much easier to
define automated transformations from problem-oriented to solution-oriented mod-
els in very specialized domains than it is in general purpose domains. For instance,
it is much easier to define a transformation for a tailored version of “Class” (e.g.,
“ShoppingCart”) compared to the general, underconstrained case where all is known
about the source element that it is a “Class”. Therefore, there is rarely a need to use
a solution-oriented, domain-specific language since the desired executable system
may be generated from a problem-oriented model just as well, with any realization
decisions deferred to the transformation.

Finally, the middle row shown in Fig. 4 is characteristic of “model-driven devel-
opment”. The focus on solution-oriented modeling (i.e., coding) is much less than
in the general purpose case, but higher than in the highly application specific case.
The middle row also shows that the UML is not only “general-purpose” with respect
to the application domain, it is also widely applicable with respect to the abstrac-
tion level targeted by corresponding models. Hence, in a transformation chain from
problem-oriented to solution-oriented models using relatively small transformation
steps between models, UML (often customized using profiles) may be used multiple
times.

2.2.5 Orphan DSLs versus DCLs
As illustrated in Fig. 2, domain-specificity is a relative concept rather than an

absolute concept. Certainly, there is no absolute threshold beyond which a language
deserves the label “domain-specific” and below which it does not. However, although
we do not provide any objective criteria here—and these may be hard to define—
judging whether one language is more or less domain-specific than another is fairly
intuitive.



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 117

In practice the label “domain-specific language” is used in a loose way to refer
to any language which was designed with the deliberate intention of being more
domain-specific than general, mainstream languages widely used for software de-
velopment. The term “domain-specific language” is thus in practice often used to
designate a language as being much more domain-specific than UML or Java, which
are thought of as general-purpose languages.

We retain and use this loose meaning for the notion of a DSL. However, there is an
important dichotomy which has a fundamental bearing on the topics we will discuss
in the rest of the chapter: It is the difference between orphan DSLs and customized
DSLs:

An orphan language is a language that is defined without any formal or ex-
plicit reference to an existing language. The language therefore exists indepen-
dently in the customization space (as illustrated in Fig. 2) and is not regarded
as being part of a family of languages. An orphan language might be the result
of reusing an existing language in its development, but as long as the reuse
was done in an ad-hoc way, the result remains an orphan language. An orphan
language which is domain-specific is known as an orphan DSL.

A customized language is a language that is explicitly derived from and related
to another language with the goal of supporting a different level of domain-
specificity and/or abstraction. Such a language always exists in relation to
another language. A customized language which is also a domain-specific lan-
guage is referred to as a “domain-customized language” or DCL.

The notions of “orphan DSL” and “DCL” are thus disjoint and partition the set
of DSLs. All DCLs are DSLs, but not all DSLs are DCLs. Formally, SDCL ⊂ SDSL
and SODSL = SDSL\SDCL. The basic premise of DCL-based development is that
the effort involved in creating a DCL (and supporting environment) from a general
purpose language like UML is lower than that involved in creating an orphan DSL.
Furthermore, DCL-based development aims to draw on the familiarity of developers
with the base language, requiring them to learn only the new, customized concepts.

2.3 Case Study

An important goal of this chapter is to present the ideas and technologies of DCL-
based software engineering in terms of a single unified case study. We chose to use
an electronic Pet Store system because even though it relatively simple, it is rich
enough to exercise all the key issues in DCL-based development.

To help illustrate how DCL based development works and to provide various ref-
erence points along the customization and abstraction axes we will start by showing



118 C. ATKINSON AND T. KÜHNE

three different kinds of models which occupy three different locations in the 2D cus-
tomization space.

2.3.1 UML Analysis Model

Figure 5 shows a model that corresponds to the bottom-middle entry in Fig. 4. Due
to space constraints we only show a rather reduced model, focusing on a few of the
key abstractions in the Pet Store problem space. A comprehensive model for the Pet
Store would be much larger, but including all this additional information would serve
no didactic purpose. On the contrary, important phenomena would be more difficult
to spot.

Note that all the elements in Fig. 5 are expressed using standard UML modeling
element types, such as classes, attributes, associations etc. As long as the semantics
of these match the modeled domain, the use of UML works well, without any im-
pedance mismatch. Since the UML is not a universal modeling language this will
not always be the case. Even when it is a good fit, though, it is important to note that
there is more freedom in editing the UML diagram of Fig. 5 then one may desire.
Let us assume the job of an application developer is to adapt the design to include
two kinds of shopping carts, e.g., using different payment methods: He may choose
to include a “contains” aggregation relationship between the new “ShoppingCart”
element and “User”, even though this does not make sense in the Pet Store appli-

FIG. 5. Pet store analysis model.



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 119

cation domain. Generally speaking, whatever domain-specific rules may exist, they
cannot be enforced by a plain UML diagram.

Figure 5 makes use of a so-called powertype in order to support the assignment
of an individual “taxRate” to subclasses of “Product”, and to make sure the latter
have a “price” attribute, which they must inherit from “Product” by virtue of being
an instance of powertype “ProductType” [14]. We will see how this design detail is
treated differently in each of the following variants.

2.3.2 Domain-Specific Model

Figure 6 shows the model that corresponds to the top left-hand entry of Fig. 4,
using a language specialized for the design of Pet Stores, a subclass of electronic
retailing applications. As is typical for such a DSL, a dedicated, intuitive notation is
used to depict the concepts from the application domain.

Note that the model using domain-specific notation needs less labels, since each
of the connectors has a dedicated meaning and can be distinguished from others by
shape, color, or what element types it connects. Also note that there is no explicit
mentioning of a “ProductType”. The Pet Store DSL may simply specify that all in-
stances of product types (such as “Animal” or “Food”) will automatically have a
“taxRate” slot and a “price” attribute.

FIG. 6. Domain-specific pet store model.



120 C. ATKINSON AND T. KÜHNE

FIG. 7. Solution-oriented pet store model for the EJB solution domain.

2.3.3 UML Solution-Oriented Model

Figure 7 shows the model that corresponds to the entry at the center of Fig. 4. It
features concepts similar to those of Fig. 5, but these are now more solution-oriented
because they refer to J2EE and EJB (Entity Java Bean) middleware technology. The
model of Fig. 7 actually uses UML’s profiling mechanism (see also Section 3) to
label the model elements in order to convey their mapping to different kinds of im-
plementation concepts. The combination of UML + EJB profile can be considered
to be a DCL.

In comparison to the model of Fig. 5 one may observe that the model of Fig. 7 not
only adds mapping information, but also documents further realization choices. The
“ProductType” concept has been realized as a reference from products to an object
that both indicates the type of a product and contains a respective tax rate value.
This reflects the fact that the intended solution technology for the EJB design only
assumes an object level at runtime without the ability to attach values to classes,
inquire about the type of objects and/or add new product types at runtime.

3. Derivation Types

In this section we consider the different kinds of derivations of a general-purpose
modeling language that might be sensible from a language user’s point of view. In
other words, we consider what is the available range of options for creating one lan-
guage by derivation from another base language and what their associated properties
are. We are not so much interested in how the base languages or derivations are de-
fined, but in the logical effect of the derivation in terms of the modeling capabilities it



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 121

offers to users and the extent to which it enables backward and upward-compatibility
of models.

In general, all derived languages are created from a base language by applying
some derivation specification to it. We can represent this formally as follows:

Ld = LbΦD,

where Ld is the new language, Lb the base language, Φ the derivation operator,
and D the derivation description. A derivation description, D, is composed of one
or more primitive transformation operations, such as removing a language element,
adding a language element, etc.

If a language is derived from a base language with some customization goal,
i.e., the intention to place it at a different location in the customization space (see
Fig. 3) we refer to it as a customized language. Customization therefore may in-
volve a change to the domain-specificity and/or the targeted abstraction level of the
language. There are a number of derivation descriptions which do not change a lan-
guage’s position in the customization space, e.g., renaming of concepts or replacing
one paradigm with another without changing the domain-specificity or abstraction
level. Such derivation descriptions then lead to purely derived languages as they have
no customization goal in the sense of our coordinate system.

Obviously, one point in our customization coordinate system can be occupied by
many languages, i.e., by languages addressing the same customization goal but us-
ing different means, such as different terminology, basic paradigm, etc. While they
are equivalent in terms of reaching a customization goal, they will differ in terms
of compatibility to the base language. A language that manages to attain a certain
customization goal while maintaining a maximum level of compatibility (see below)
to the base language we refer to as an essentially-customized language (ECL).

Essentially-customized languages are very useful because they define the optimal
compromise between being widely understood as represented by modeling standards
(by maintaining maximum base language compatibility) and being the best possible
fit for an application domain as represented by DSLs (by being customized to the
desired level).

When a new language has been derived from a base language it is important to
determine which of the following relationships hold between the two languages, if
Ld = LbΦD:

(1)non-conformant derivation ¬∃mb ∈ Lb: mb ∈ Ld,

(2)partially-conformant derivation ∃mb ∈ Lb: mb ∈ Ld,

(3)fully-conformant derivation ∀mb ∈ Lb: mb ∈ Ld (≡ Lb ⊆ Ld).



122 C. ATKINSON AND T. KÜHNE

If a derivation yields property (1) then no model that can be created with the base
language is a valid model of the new language. This implies rather radical reduc-
tions and modifications to the base language. In practice, this will rarely occur, as
it strongly questions the choice of the base language to start with. If property (2)
applies, at least one or more of the models created with the base language are also
valid instances of the new language. However, unless the property (3) also applies,
it means some models are not. This has important consequences for the upward-
compatibility of an organization’s model base. If property (3) does not apply, then
steps may have to be taken to ensure that an organization’s existing model base does
not fall out of date. Note that a derived language with property (3) is known to be
an essentially-customized language, since it achieves an optimal result regarding the
upward-compatibility of models in the base language.

In the following subsections we discuss three different kinds of language deriva-
tions that may occur in practice. Note that we will often use the term “language” to
refer to the set of all instances that may be created with a given language definition,
i.e., to the set of all conformant models of a language definition.

3.1 Reduction

Reduction is the simplest kind of derivation. A reduction does not make any new
modeling constructs available to modelers—on the contrary, it takes them away. The
reduced language thus offers a subset of the features of the base language. Two ways
of creating a language subset in this way may be distinguished.

3.1.1 Destructive

A destructive reduction may make any change to the base language other than add
new features. The result will be a language that is less expressive than the base lan-
guage. However, because it is possible to remove features which were regarded as
mandatory in the base language there can be cases in which a model of the reduced
language will not be an instance of the base language. The right-hand side of Fig. 8

FIG. 8. Destructive reduction.



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 123

FIG. 9. Conformant reduction.

shows a change to the metamodel of Fig. 1 that illustrates this situation. If one re-
moves concepts from a language that other concepts refer to in a mandatory manner,
then models of the new language will not be conformant to the base language.

One strategy to gradually remove features without immediately invalidating mod-
els that use them is “deprecation” as known from Java. At first sight there might
seem little use for reducing a language, but it can be quite useful to enforce com-
pany wide standards and modeling/programming practices. For example, a company
might want to make sure that its modelers do not use “goto”-statements when mod-
eling C programs or refrain from using powertypes in modeling.

3.1.2 Conformant

As illustrated in Fig. 9, a conformant reduction creates a new language (“lan-
guage” here in the sense of the set of all conformant models) which is a proper
subset of the base language, implying that only optional parts of the base language
are removed. The right-hand side of Fig. 9 shows how a conformant reduction of the
simplified metamodel in Fig. 1 could be achieved by removing the element “Gener-
alizableElement” from the metamodel.

On a technical level, the constraints of the new language must be within (i.e.,
stronger than) the constraints of the base language. This does not ensure that prop-
erty (3) will apply after a conformant reduction, since a base language model may
use optional features, but it ensures that every model of the derived language is a
model of the base language.

3.2 Extension

Extension is the opposite of reduction. When a base language is extended, new
modeling features are added and none are removed. However, there are two basic
ways in which this can be done, resulting in two basic subcategories of extension.



124 C. ATKINSON AND T. KÜHNE

FIG. 10. Generalization extension.

3.2.1 Generalization

In generalization extensions, the new language is a superset of a number of base
languages (see Fig. 10). Generalization extensions are a popular means to join
hitherto independent base languages together in a unified extended language. As
a consequence, a generalization extension satisfies the property (3) above—every
model expressed in one of the base languages is also an instance of the new lan-
guage. Apart from extending the notion of derivation to more than just a single base
language, though, generalization extensions have the same subcategories as special-
ization extensions (see below). We will therefore treat them as a special case of
disjoint specialization extensions that just feature more than one base language.

3.2.2 Specialization

In specialization extensions, the new language is a superset of the base language.
As a result, property (3) applies and the new language is known to be a customized
language. However, three different subcategories of specialization can be identified
depending on whether or not the new language constructs can be understood in terms
of the base language. Intuitively, we introduce a base language view on models cre-
ated in the new language. If a new modeling concept can be seen using such a base
language view then a new language construct is either a copy or a refinement of a
base language construct. Technically, a parser for the base language will be able to
read the new language construct, but will lose any additional information carried by
the new construct. Intuitively, this is the case when a model expressed using the de-
rived language can be regarded as being a direct instance of the derived language and
an indirect instance of the base language. This is analogous to looking at an object
through the interface of one of its class’s superclasses.

3.2.2.1 Disjoint. A disjoint extension creates new modeling constructs
which are entirely unrelated to the modeling constructs of the base language
(Fig. 11). Hence the only modeling constructs which can be understood in terms



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 125

FIG. 11. Disjoint specialization extension.

of the base language are the base language constructs themselves:

¬∃md ∈ Ld\Lb: md ∈p
2Lb.

Since such an extension results in a new language that is essentially the union of
the base language plus an additional extension language, one may regard generaliza-
tion extension as a special case of disjoint specialization, which happens to involve
multiple base languages.

3.2.2.2 Conservative. A conservative extension does not introduce any
entirely new modeling constructs but just refinements of existing ones (Fig. 12).
Assuming that conservative extensions adhere to the Liskov Substitution Principle
[10], all models expressed in the new language are therefore also indirect instances
of the base language, i.e., the constructs of the new language can be understood in

FIG. 12. Conservative specialization extension.

2 “∈p” means “element of, with respect to a base language view”, i.e., a member test involving a pro-
jection of the element with respect to the base language.



126 C. ATKINSON AND T. KÜHNE

FIG. 13. Additive specialization extension.

terms of the base language,

∀md ∈ Ld: md ∈p Lb.

Consequently, there is a projection p which can turn every model of the new language
into a model of the base language, albeit typically implying information loss.

3.2.2.3 Additive. An additive extension (Fig. 13) lies between the two ex-
tremes represented by the previous two alternatives. Some new language constructs
from the extension are refinements of the base language; others are unrelated to the
base language,

∃md ∈ Ld\Lb: md ∈p Lb.

This results in a new language that may instantiate some models featuring new lan-
guage constructs which will be indirect instances of the base language, i.e., can be
entirely understood using a base language view, whereas the rest of the models fea-
turing new language constructs cannot be understood using a base language view.
Property (3) still applies, of course.

3.3 Modification
Modifications neither purely remove nor purely add modeling constructs, they

may change existing ones and/or involve a combination of reduction and extension
(Fig. 14). Since modifications involve reduction and extension (otherwise they would
be plain extensions or reductions respectively), the corresponding number and kinds
of subcategories exist (conformant/destructive × disjoint/conservative/additive), i.e.,
six in total. The resulting properties (1)–(3) can be calculated for modifications by
simply combining the individual reduction and extension properties, with the weak-
est (strength increasing in the order of (1)–(3)) always taking precedence.



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 127

FIG. 14. Modification variant.

Note that a destructive reduction may be complete, so if all of the base language is
removed prior to adding different, unrelated language concepts (disjoint extension)
then property (1) applies, strongly questioning the choice of the base language which
is not reused at all.

4. Lightweight Language Customization

Of all the customization types discussed in the previous section, “Conservative
Specialization Extension” has the nicest properties. Not only does it ensure that all
models expressed in the base language are expressible with the customized language
(→ upward-compatibility of models) but also that all models expressed using the
customized language are understandable (albeit with some information loss) through
a base language view (→ backward-compatibility of models). Obviously, restricting
oneself to just “Conservative Specialization Extension” is quite limiting, since then
it is neither possible to remove concepts from the base language nor to introduce
completely new ones that go beyond specializations of existing ones. Nevertheless,
as it is an extension type that ensures maximum compatibility in both upward- and
backward directions, it is an attractive option when customizing a language.

The so-called “Lightweight Extension” mechanism associated with the UML di-
rectly supports the “Conservative Specialization Extension” form of customization
provided that one refrains from using constraints to remove features from the base
language. The primary reason why this form was chosen for the UML, however, was
the fact that the first generation of modeling tools that existed at the time had the
UML language definition hardwired into their code. In other words, it was not possi-
ble to change the language supported by a tool without changing its source code. To
get around this problem a so-called “Lightweight Extension” mechanism was intro-
duced which allowed changes to the UML metamodel to be simulated within what



128 C. ATKINSON AND T. KÜHNE

FIG. 15. Lightweight extension example.

is otherwise a normal model. In this section we give an overview of the UML 2.1
lightweight extension mechanism and illustrate how it can be used.

4.1 Extension Concepts
Lightweight extensions are defined using a combination of three distinct concepts:

stereotypes, stereotype properties (also known as tag definitions) and constraints.
These are illustrated in Fig. 15.

4.1.1 Stereotypes

Stereotypes are the core of the extension mechanism. A stereotype essentially
has the effect of defining a specialization of an element in the metamodel of the
base language. Every stereotype must therefore be defined with respect to at least
one base element. To reflect the conceptual similarity to the specialization relation-
ship, the extension relationship between a stereotypes and its base class has a very
similar form. The only difference is that the triangle at the head of the extension
relationship is solid (black) while the triangle at the head of the specialization re-
lationship is empty (white). The left-hand side of Fig. 15 shows an example of a
stereotype definition. Here “EJB session” is defined as an extension to the base ab-
straction “class” from the core UML metamodel in Fig. 1. This has the logical effect
of defining a new virtual metaclass which represents a concept in a specific domain.
The right-hand side of Fig. 15 is similar but illustrates the use of a required stereo-
type. It introduces the abstraction “OCL Constraint” as a mandatory specialization
of the class “Constraint” from the core UML metamodel, that is, models using a
profile (see below) containing this stereotype definition must only use “OCL Con-
straints”.

From the language user’s point of view the effect of attaching a stereotype to
a base class in the metamodel is to allow instances of that class to be “branded”



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 129

FIG. 16. Stereotype application example.

(i.e., marked) with the name of the stereotype. This marking is performed using the
guillemot notation as shown in Fig. 16.

In this figure, “ShoppingCart” is a class that has been branded with the stereotype
“EJB Session”. This means that it is no ordinary class, but a class representing the
notion of “EJB Session” (-bean) which is of importance in the domain of building
EJB applications. To a layman such a branding adds little value, but to an expert in the
domain branding a class with a domain concept such as “EJB Session” adds a lot of
extra information to the model. Model element branding is therefore a good example
of “Customized Modeling”—the idea that base language concepts are adapted to
make the language more specific and expressive for a certain purpose.

4.1.2 Stereotype Properties

Stereotypes can be used to effectively add specializations of the classes in the
metamodel of the base language. However, on their own they cannot add new at-
tributes to the specializations. To do this stereotype properties, also known as tag
definitions, must be used. A stereotype property is essentially a new attribute at-
tached to the new conceptual metamodel element represented by the stereotype. The
definition of the stereotype “EJB Session” in Fig. 15 includes the definition of two
properties “state” and “maxSessionTimeout”. These can be defined using all the nor-
mal types for attributes, including the values of an enumeration type as illustrated
in Fig. 15. “StateKind” is an enumeration class which defines the values that the
property “state” can assume.

The values of stereotype properties at the stereotype usage level are also known
as tagged values. They effectively correspond to slots in normal class instances.
The difference, as shown in Fig. 16, is that tagged values are defined in a sepa-
rate model element. Fig. 16 shows the stereotype class “ShoppingCart” with tagged
values “stateful” and “600” for its “state” and “maxSessionTimeout” properties re-
spectively. The new UML 2 terminology—“stereotype property” instead of “tag
definition”—is a sign of the growing recognition that tag definitions and tagged
values are effectively nothing more than attributes and slots, but at the level of the
metamodel and model respectively. However, semantically they are still a special ex-
tension concept that cannot be fully explained using the attribute/slot analogy. For
example, instances of stereotyped classes can not refer to stereotype properties.



130 C. ATKINSON AND T. KÜHNE

4.1.3 Constraints

When used in a lightweight extension, constraints typically define well-formedness
rules for model elements branded with stereotypes. The stereotype definition “EJB
Session” on the LHS of Fig. 15 features such a constraint definition. It serves to in-
dicate that a well-formed model element branded with this stereotype must not have
a tagged value for its “maxSessionTimeOut” tag that exceeds “3599”.

4.2 Profiles

Although all parts of the lightweight extension mechanism can be used individu-
ally the intention is that they be used collectively to define a coherent customization
for a specific purpose. Such a coherent set of extensions is known as a profile and
as with all logically related sets of model elements in the UML they are usually col-
lected into a common package. Figure 17 shows an example of how some of the
extensions from Fig. 15 can be combined together into a profile package.

As illustrated in Fig. 17, a profile is always related to a base metamodel which
it gains access to by means of the “imports” dependency. As can been seen from
Fig. 17, profiles possess both of the key elements of a customized language: they

FIG. 17. J2EE profile.



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 131

FIG. 18. Profile application.

define new abstractions which have a special meaning and thus can be used to create
more expressive models, and they are explicitly customized from a base language.

In order to make the extension available for use in a new model it is necessary
to “apply” that profile to that model. Figure 18 illustrates how the extensions in a
profile are applied to another model using the “apply” dependency.

This effectively makes the customization available for use in the creation of a
model, in this case the EJB-specific implementation of the Pet Store example illus-
trated in Fig. 7.

4.3 Lightweight Extension: Pros and Cons
The lightweight extension mechanism offered by the UML has some advantages

and disadvantages compared to a heavyweight approach allowing liberal manipula-
tion of the UML language definition.

4.3.1 Advantages

First, unless a profile selects a subset of the base language or constraints are used
to effectively limit or remove the applicability of existing modeling elements, the
defined customization will always be a “Conservative Specialization Extension” en-
suring maximum upward- and backward-compatibility.

Second, stereotypes can be added and removed from model elements dynamically.
Since stereotype applications are treated like annotations of regular model elements



132 C. ATKINSON AND T. KÜHNE

it is possible to change the branding (i.e., stereotypes) of model elements just as
easily as it is to change their links and their attribute values. The stereotyped element
is unaware whether a particular stereotype is applied to it. In other words, stereotypes
represent an implementation strategy for dynamically reclassifying model elements,
including the addition/removal of properties.

Third, the profile mechanism allows a model element to be branded by multi-
ple stereotypes, which is equivalent to it having multiple types. The corresponding
heavyweight equivalent would be an explicitly defined metaclass which is a spe-
cialization of all of the base element classes which the branded model element is
intended to be an instance of. While such an explicit combination could be used to
resolve any conflicts arising from the combination of various stereotypes, one would
have to create one explicit combination class for all possible stereotype combina-
tions and for all base classes to which the stereotype is applicable. In this basic
form, this would not be a viable approach because of the combinatorial explosion of
cases.

4.3.2 Disadvantages

First, even if used to their maximum effect profiles can only support a combina-
tion of destructive reduction (through selecting a subset of the metamodel to modify
and constrain) and conservative specialization extension (through stereotypes and
stereotype properties). The important need to extend the base language with com-
pletely new concepts that cannot be explained as specializations of existing ones is
not supported. This limits the range of customized languages which may be defined
through profiles.

Second, stereotypes and stereotype properties are additional concepts which could
often be replaced with metaclasses and their attributes with an additional degree of
expressiveness. Metaclasses may inherit from each other and may have associations.
Attributes of metaclasses could be specified just like slot values for objects. Apart
from the above mentioned dynamic properties and multiple applicability of stereo-
types they just represent a lightweight way of metamodeling. The latter could be
offered in various forms, allowing various kinds of modifications that yield the same
guarantees for extensions as featured by stereotypes.

Third, since stereotype-based branding offers such a handy means of assigning
a special status to a model element there is a great deal of confusion in the gen-
eral modeling community over how exactly they should be used. In fact, as reported
in [2], three different usage patterns can be observed in practice. Figure 19(a) illus-
trates the “official” usage mode in which the stereotype is used to classify the class
it stereotypes. Here the concept “taxed” is correctly being used to brand a model
element “Animal” as being conceptually of the type “taxed”, i.e., this particular pet



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 133

FIG. 19. Stereotype usage patterns.

store product kind is associated with a tax rate, not any individual product such as
“polly”.

However, an equally frequent usage in practice is to use the guillemot notation
to name a generalization (supertype) of the branded class (see Fig. 19(b)). Here the
intent of applying the stereotype “priced” to “Animal” is not to define additional
properties for “Animal” but to define additional properties for instances of “Animal”
such as “polly”, e.g., that they have a “price” slot. Even though stereotypes are not
designed for doing this, they are nevertheless often (mis-)used for exactly this pur-
pose. A shorthand notation for specifying supertypes [3], e.g., “〈priced〉 Animal”
would probably reduce the amount of improper stereotype uses of this form.

The third from, which is less frequent, is a mixture of the first two and uses
stereotypes for both type and instance classification. Currently, the UML has just
one official interpretation for stereotype applications and consequently offers only
one notation. In practice, modelers find the need to cover all three cases shown in
Fig. 19 and some notational means to distinguish them [2] would greatly reduce the
confusion experienced by modelers.

5. Customization Support Environments

In Section 3 we described the different forms of language customizations that
make sense from a theoretical point of view, and in Section 4 we discussed a way
of supporting one of them—namely, the “lightweight extension” approach. How-



134 C. ATKINSON AND T. KÜHNE

ever, we have not yet discussed the issues involved in supporting the others using
a “heavyweight” approach. The goal of this section is to address the architecture of
tools supporting “heavyweight” modeling and language customizations.

5.1 Multiple Modeling Levels

The first generation of modeling tools was only capable of supporting modeling in
one fixed language. An environment intended to support modifications to the mod-
eling language and/or support modeling in completely different modeling languages
has to deal with at least three modeling levels, shown in Fig. 20.

The middle level shown in Fig. 20 contains the language definition which can be
used to create user models at the bottom level. To support its modification or replace-
ment this level must be user modifiable. As long as modeling environments treated
the language as being fixed there was no need to represent the language definition
in a modifiable way; the tool builders just chose on arbitrary approach and hard-
wired it into the tool. A flexible tool, however, has to support a further level (labeled
“meta-language” in Fig. 20) to determine how language definitions may be speci-
fied. We have already mentioned that it is beneficial to define a language by using
a metamodel. The level labeled “meta-language” contains a model that defines the
concepts that can be used to define a language, the MOF being a concrete example.
The UML superstructure [17] in turn is an example of content that may reside at the
“language” level.

Note that there are two ways of looking at the middle “language” level, depending
on whether one regards its contents as instances of the level above or as types for the
level below. Figure 21 depicts both viewpoints within the middle level.

The left-hand side of Fig. 21 shows a language definition as an instance of the
meta-language and the right-hand side shows the same language definition using the
usual notation, i.e., as a number of types describing the contents of the level below.
While both views are just different interpretations of the same set of concepts (the
language definition) they flag an important issue: can the language definition data (as

FIG. 20. Three-level language definition stack.



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 135

FIG. 21. Instance versus type view on middle model.

seen through the left-hand side view) be directly used to control (model-)data at the
level below or is it necessary to promote the instances to types before they can fulfill
this function?

5.2 Two-Level Architectures

The above mentioned “promotion step” is often used in today’s tools since they
are often implemented using only two levels (i.e., a type level and an instance level).
Consider implementing the three levels shown in Fig. 21 using a typical object-
oriented language like Java. The classic approach is to define Java classes for each
of the elements in the top level, and to use Java objects to represent the language
definition data in the middle level (see Fig. 22(a)).

However, these objects may not be directly used in the style just described to
represent and control the data at the “user models” level. This is possible only if
the language definition is available as types, i.e., classes (see Fig. 22(b)). To achieve
this, the objects need to be “promoted” to types. Figure 23 explicitly illustrates the
“promotion step” from objects to types.

We refer to an approach of the kind depicted in Fig. 23 as a “cascading archi-
tecture” since two-level implementation “windows” are used repeatedly to cover
multiple modeling levels. Each of the tool’s partial architectures covers only two
levels, but in combination a hierarchy of multiple levels may be constructed (see



136 C. ATKINSON AND T. KÜHNE

FIG. 22. Two-level tools.

FIG. 23. Cascading architecture.

Fig. 22). The advantage of this cascading architecture is that one never needs to sup-
port more than two levels at the same time and access to or manipulation of data
is always very efficient, since the access types (the top level of the two) are known
at compile time. The disadvantage, however, is the need to perform the promotion
step which represents a similar development overhead to compilation in the context
of programming languages (in comparison to direct interpretation). This approach is
sometimes referred to as a generative approach since each tool is usually generated
automatically from the objects at the immediate level above. A significant number of
today’s metamodeling (language customization) tools are based on this architecture,
relying on the generation of modeling tools.

5.3 Flattened Architectures

The alternative to the generative, cascading approach is to dispense with the idea
of always associating metamodels with the type level (e.g., Java classes) of the sup-



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 137

FIG. 24. Flattened architecture.

porting implementation technology. This requires that elements of user models will
not be instances of metamodel elements anymore in the usual sense (e.g., using the
Java object-class relationship). Instead, the “instance of” relationship is just modeled
as data. As a result, in our example the user models, the language definition and the
relationship between them are just data at the same level.

Figure 24 shows how what we call a “flattened architecture” accommodates two of
the three levels of Fig. 20 in just one level. Figuratively speaking, it squeezes two of
the levels into one. One of the advantages of this architecture is the ability to change
content at the language level and immediately use the new definition for the creation
of user models. Furthermore, even when user models may no longer conform to
a changed language definition, they are still represented using the common (meta-
language) format. In comparison, models represented using a two-level cascading
style depend on their language definition to stay fixed. A change to the language
implies the need to migrate models represented in the old language definition to
the new language definition. Note that in Fig. 24 the role of the “meta-language”
level has turned into providing a common repository format, rather than defining the
primary concepts with which to build language definitions. It can, however, be used
for both roles—the MOF being a prominent example.

A disadvantage of the flattened architecture is reduced performance related to the
accessing and manipulation of model data since its definition has to be interpreted.
Moreover, access to the data has to occur in a reflective style, using very common ac-
cess methods, parameterized with (elements of) the language definition. This is less
straightforward and cannot be type-checked using the implementation technology
(e.g., Java type checking).

Note that the “user models” level may in general be internally structured. Users
can model at the type level just as easily as at the instance level. Figure 25 shows
how the “user models” level may be subdivided into two such levels.

We did not arrange the “language”, “user types and “user instance” levels in a
linear fashion because the “language” level describes the contents of both “user
types” and “user instances” levels. Figure 25 hence describes the OMG’s so-called
four-layer architecture, with “meta-language” corresponding to the MOF (M3), “lan-
guage” to “UML metamodel” (M2) and “user types”/“user instances” to “user mod-



138 C. ATKINSON AND T. KÜHNE

FIG. 25. Detailed flattened architecture.

els” (M1). The fourth layer (M0), the modeled world, is not shown in Fig. 25, since
it is outside tool or language definition stacks.

In the next section, we will take a closer look at the level boundary between “user
types” and “user instances”, since it is different in nature to any of the other bound-
aries in Fig. 25.

6. Ontological Metalevels

In the previous section we focused on a relationship between models and their
(meta-)models which we refer to as linguistic classification. This reflects the widely
accepted approach of characterizing metamodels as being language definitions and
“user models” as being statements expressed in that language. The “meta-” prefix
is motivated by the location of language definitions in the original, stack-oriented
visualization of description levels that was put forward by CDIF [15] and then be-
came the foundation of the UML infrastructure [16]. This hierarchy (of which the
three top levels are shown in Fig. 20) assumes that “user models” are type models
(of user data) and uses the same type-classification to describe “user models” with
a (language definition) model. Hence, the language definition apparently represents
second order classification with respect to user data, and it is therefore natural to
think of it as being “meta” with respect to “user data”. Note that this line of reason-
ing works well in the CDIF context, since user models are exclusively type models.
However, the case of the UML is more involved as already pointed out in the previ-
ous section. In the next section we investigate why the term “metamodel” is not as
appropriate in the case of the UML [9].

One should always qualify the term “metamodel” since although linguistic meta-
modeling is important there is an important alternative: ontological metamodeling.
Consider Fig. 25, where we have drawn a level boundary between “user types” and
“user instances”. Although we have drawn this boundary one would normally not
think of a user type model as defining a language of which user instance models are



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 139

statements expressed in that language. The underlying meaning of user types is of
course to create domain abstractions in terms of classification. We therefore refer to
the “instance of” relationship between a user instance and a user type as ontological
classification (as opposed to linguistic classification).

Note there is no specific reason why the number of user modeling levels should
be limited to two. It is perfectly possible to envisage three or more ontological
classification levels. Elements at the third level (i.e., the types of the types of the
instances) would warrant the label of metatypes, due to their second order classifi-
cation property. To distinguish such types from “language definition”-types we refer
to the former as ontological metatypes or domain metatypes and the latter as linguis-
tic (meta-)types, since the former are concerned with describing domain knowledge
rather than language features.

Discussing the nature of, and potential support for, ontological metatypes is impor-
tant in the context of this chapter, since language customization is often performed
not to enrich one’s vocabulary of modeling primitives, but to capture ontological
information due to a lack of a better alternative. After the following subsections
which clarify the notion of ontological metatypes and their support we will further
discuss the relationship between ontological (meta-) modeling and language cus-
tomization.

6.1 Ontological Metatypes

A good example of a domain concept which naturally corresponds to the notion
of a metatype is the concept of “ProductType”. This is an important concept in the
Pet Store example because it classifies the different kinds of products that are sold
in the store. Different kinds of products, such as “Animal”, are naturally thought of
as instances of “ProductType”. However, specific product objects, such as individ-
ual animals or concrete food items, could not naturally be thought of as instances of
“ProductType”. For example, it does not make sense to say that “parrotInstance2947”
(alias “Polly”) is a “ProductType”. The most natural relationship between these con-
cepts is illustrated in Fig. 26. Object “parrotInstance2947” is an instance of “Animal”
and “Animal” is an instance of ProductType. Since Fig. 26 shows concepts occupying
three distinct ontological levels, “ProductType” is naturally thought of as an (onto-
logical) metatype of “parrotInstance2947”.

Even though ontological classification hierarchies will naturally be much less deep
than generalization hierarchies, it is easily possible to think of requiring four or more
classification levels. For example, the Pet Store owner may receive frequent requests
for a “parrot just like Polly” or children saying “I want a Lassie”, intending to refer to
a Collie that looks like the famous movie character. The Pet Store design may there-
fore be changed to no longer interpret “Polly” and “Lassie” as referring to individual



140 C. ATKINSON AND T. KÜHNE

FIG. 26. Ontological meta levels.

animals but to a class of animals that looks like the prototypical instance. In this
case, element “Polly” becomes a type for all parrots looking like “Polly”, creating a
four-level classification hierarchy.

At this point it is important to address a potential source of confusion—the mixing
up of ontological metatypes and supertypes. They are often mixed up because they
are both more abstract than the notion that they classify or generalize and in natural
language they can both be related to the more concrete notion using the phrase “is-a”.
In other words, if in a particular domain it is natural to say “X is a Y”, it is possible
that Y may be a metatype or a supertype. However, the right choice can easily be
determined with a simple test: If instances of “X” can be considered to be instances
of “Y” as well then “Y” is a supertype not a metatype. Consider the situation in
Fig. 27.

In this example, the class “Animal” has both a superclass “Product” and a meta-
class “ProductType”. As already mentioned above, when discussing the relationships
between the concepts in this model in natural language it would be natural to state
that “Animal is-a ProductType”. However, it would also be natural to state that “an
Animal is-a Product”. So why is one cast as a classifier of “Animal” and the other
as a supertype? The answer is hinted at by the slightly different forms of the above
statements. In the second we prefixed the statement with the article “an”, while in
the first there was no such article. This reflects the fact that in the first case, as al-
ready mentioned above, it would not be natural to state that “parrotInstance2947
is-a ProductType” whereas it would be natural to state that “parrotInstance2947 is-a
Product”. This indicates that “parrotInstance2947” can be regarded an indirect in-
stance of “Product” as well, as shown in Fig. 27. This therefore makes the set of
animals a subset of the set of products and naturally places them in a specialization
relationship.

FIG. 27. Supertypes versus ontological meta types.



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 141

FIG. 28. Biological classification.

FIG. 29. Multi-level modeling support.

A natural example of a domain with multiple ontological levels and multiple spe-
cialization levels is the Linnaean classification system used in Biology. Figure 28
shows how generalization and ontological classification can be used together to place
our sample parrot within the kingdom of animals. Of course, this is overkill for the
Pet Store application. A cut down version of this scheme, however, could in principle
be used to organize the products sold by the store.

Consequently, the architecture shown in Fig. 25 should be extended to look like
the architecture in Fig. 29, i.e., it should feature an unbounded number of ontological
modeling levels.



142 C. ATKINSON AND T. KÜHNE

6.2 The Dual Facet Property

As soon as more than two ontological levels are used, e.g., as in Fig. 26, an inter-
esting question arises: what exactly is an element (e.g., “Animal”) that is both the in-
stance of a type (“ProductType”) and a type for its instances (“parrotInstance2947”)?
The top part of Fig. 30 highlights the two ways one can look at “Animal”.

In comparison to Fig. 26 we have added some sample properties to show that in
general an element (here “Animal”) has both slots (“taxRate”) and attributes (“price”
and “name”). The topmost occurrence of “Animal” depicts the “instance” role of
“Animal” in which it is seen as an instance of its classifier “ProductType”. We have
therefore used the UML notation for objects to reinforce this perspective in which
“Animal” has a “taxRate” slot with a value of “16” by virtue of the fact that its clas-
sifier, “ProductType” has an attribute “taxRate”. This is a normal UML class/object
relationship in which “Animal” plays the role of an object.

Just below in Fig. 30 we show the “class” perspective on “Animal” in which it is
seen as a classifier for its instances at the level below. We therefore use the UML
notion for classes, declaring two attributes for “Animal”, one of type Float and the
other of type String. Instances of “Animal” such as “parrotInstance2947” thus have
corresponding slots with appropriate values for these types, “2502” and “Polly”, re-

FIG. 30. Two views of intermediate-level model elements.



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 143

spectively. Again this is a normal UML class/object relationship but in this case
“Animal” plays the role of a class.

The bottom part of Fig. 30 shows how both “class” and “object” perspectives
on “Animal” can be integrated into a single model element. Note that this is not
official UML syntax. The UML’s support for more than two ontological levels is
rather limited as described in the following subsections.

Summarizing, when there are more than two ontological classification levels, it is
necessary to explicitly recognize that model elements—with the exception of those
at the top and bottom levels—have two distinct facets, both of which are a real and
meaningful part of the element. This is highlighted in Fig. 31 which shows a clabject,
i.e., a combined “class” and “object”. The instance facet of a clabject represents its
object-like properties and the type facet its class-like properties.

Note that although we have used the term “perspective” before, the facets of a
clabjects are not to be confused with the “instance” and “type” viewpoints shown in
Fig. 21. These viewpoints provided views of the same set of data either as instances
or as types. The instance and type facet of a clabject are two different entities and a
perspective, as mentioned above, may only mask one of them, but does not interpret
the same facet either as an instance or a type property. Elements that populate a multi-
level modeling environment are, hence, neither classes nor objects as understood in
classic two-level modeling environments.

The dual facet property of clabjects is not an issue that occurs in isolation with re-
spect to architectures, such as the one shown in Fig. 29. The dual facet phenomenon
arises whenever multiple ontological levels are modeled. The next subsections dis-
cuss ways of providing at least three ontological levels in the absence of a supporting
architecture such as the one in Fig. 29.

FIG. 31. Clabjects.



144 C. ATKINSON AND T. KÜHNE

6.3 The Item-Descriptor Pattern

Since ontological metatypes such as “ProductType” in Fig. 26 frequently occur in
practice modellers have always found ad-hoc ways of modeling them. A well-known
workaround that is used in two-level environments is the “Item Descriptor” pattern
[6] which is often employed when domain types need to be available as runtime data
[7]—that is, when domain types are required to be treated as instances. Sometimes
the motivation is to simply have a way to store and change type related data (such as
tax rates) [6], sometimes one actually needs to support the creation of new types at
runtime [8].

The basic idea of the Item-Descriptor pattern is to represent both application in-
stances and types as objects. Figure 32 shows this idea in the context of our case
study.

The “instance of” relationship between “Animal” and “parrotInstance2947” is part
of the runtime data and is described by the “instance of” association between “Pro-
ductType” and “Product”. Ignoring the type “Product” in Fig. 32 —which is just
required in order to have a way to produce instances like “parrotInstance2947”, since
the object “Animal” cannot do it—the hierarchy between “ProductType”, “Animal”,
and “parrotInstance2947” is exactly the same as in Fig. 26, except that the “instance
of” relationship between “Animal” and “parrotInstance2947” is user modeled instead
of being supported by a multi-level modeling environment. This observation high-
lights the “workaround” character of the Item-Descriptor pattern which represents
a poor man’s way of modeling at three ontological levels. Note how the instance
and type facets of “Animal” are split between “Animal” and “Product”. The disad-
vantages of applying this pattern include the lack of any supported type checking
between “Animal” and “parrotInstance2947”, the lack of support for inheritance be-
tween modeled types, and the addition of accidental complexity for scenarios that

FIG. 32. Item descriptor pattern.



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 145

could be more concisely described using proper support for ontological metamodel-
ing.

6.4 Powertypes

The above subsection described a way to introduce more ontological levels by
using a two-level technology. The UML, in fact, has some limited support for deal-
ing with more than two-levels. The best approximation of ontological metamodeling
support in the UML is the powertype concept. An example use of a powertype in our
Pet Store example is shown in Fig. 33 (which is an excerpt of Fig. 5).

The basic idea behind the powertype concept is to represent the separate facets of a
clabject as separate model elements and to establish a constraint between the separate
model elements. In Fig. 33, the abstractions that we wish to think of as clabjects
(with two facets) are “Animal” and “Food”. The type facet of these abstractions is
defined in their common supertype, “Product”, since any attributes and associations
defined on “Product” influence the form of their instances. The instance facet of
these abstractions, in contrast, is defined in their common classifier, “ProductType”,
since any attributes and associations defined in “ProductType” will be possessed by
“Animal” and “Food” in the form of slots and links respectively. The classifier of the
clabject abstraction(s), in this case “ProductType”, is referred to as the powertype of
the supertype (“Product”).

The aforementioned constraint between the elements defining the instance facet
(“ProductType”) and the type facet (“Product”) for clabjects is the requirement that
every instance of a class designated to be a powertype (“ProductType”) must also be a
subclass of another designated class (“ProductType”). This ensures that all instances

FIG. 33. Powertypes.



146 C. ATKINSON AND T. KÜHNE

of a powertype also obtain the desired type facet, which cannot otherwise be achieved
in a direct manner.

Note that the desire to influence the type facet of an element arises from the fact
that a particular concept (here “ProductType”) not only wants to specify properties
of its instances (e.g., “Animal”) but also properties of the instances of its instances,
e.g., the fact that “parrotInstance2947” has a “price” slot. One would like to associate
this property with the “ProductType” abstraction, since whenever a new instance of
“ProductType” is created, this instance needs to be guaranteed to have a “price”
attribute. We refer to such requirements as the need for deep characterization.

Obviously, when dealing with only two-level scenarios such a need does not arise
as the one type level can always control the one instance level. In a multi-level clas-
sification hierarchy, however, the limitation of a type to only influence its instances
at the intermediate level below, without influence on its instance’s instances, may

FIG. 34. Deep characterization using powertypes.



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 147

become an issue. “Deep characterization” then needs to be addressed, independently
of whether workarounds for representing the multiple levels are used or not.

As illustrated in Fig. 34, powertypes support “deep characterization” by requiring
that all instances of an ontological metaclass also be subclasses of a particular class.
It is this latter superclass which defines the attributes that ensure that all instances of
the instance of the powertype abstraction have a particular slot.

6.5 Deep Instantiation

Although the powertype mechanism is able to address “deep characterization” it
does not do so in a very elegant way. The basic problem is that in order to define the
type facet of a powertype’s instance an extra superclass has to be added. In essence,
therefore, two model elements (“ProductType” and “Product”) are being used to cap-
ture a single clabject abstraction.

In order to support a more elegant and direct way of representing deep character-
ization two ingredients are needed. One is a notation which combines the type and
instance facets of a clabject in a single model element (see the bottom of Fig. 30).
The other is a concept that allows the intended characterization depth of a clabject’s
properties to be specified. Figure 35 illustrates our example using the above men-
tioned ingredients.

The key idea behind the concept of characterization depth is to unify the con-
cepts of “attribute” and “slot” into the notion of a field and to indicate whether a
field should be thought of as a slot or an attribute by assigning it a potency value.
The potency value of a field indicates how many times its can be instantiated (with
respect to instantiation depth) with the understanding that instantiation reduces the
potency of a field by one. A field with potency 2 (such as the “price” attribute of
“ProductType”) needs to be instantiated twice in succession before it becomes a slot,
while a field with potency 1 (such as the “price” attribute of “Animal”) becomes a
slot after one instantiation. A field with potency 0 (such as the “price” slot of “par-
rotInstance2947”) cannot be instantiated at all. A field of potency 1 thus corresponds
to a regular attribute and field of potency 0 corresponds to a regular slot.

Potency values may not only be assigned to fields, but also methods, and more
importantly here to clabjects. The same principles apply as for fields, so for exam-
ple “parrotInstance2947” can be instantiated from “Animal” since the latter is an
instance of a potency two clabject.

Modeling scenarios such as the one depicted in Fig. 35 using clabjects and potency
reduces the number of modeling elements needed to address “deep characterization”
thus reducing the accidental complexity in a model.



148 C. ATKINSON AND T. KÜHNE

FIG. 35. Deep classification through deep instantiation.

7. Orthogonal Classification Architecture

In the previous section we introduced the notion of ontological metatypes and ex-
plained how they can help model domains with multiple classifications levels. In this
section we show how ontological and linguistic metamodeling can be accommodated
within a single unified modeling framework.

7.1 Strict Metamodeling

The first and most important issue to consider when defining the architecture of a
multi-level modeling environment is how the notion of “level” is actually defined. So
far we have appealed to intuition and have also used the “instance of” relationship in
a liberal way without specifying whether we mean the “linguistic” or the “ontologi-
cal” case. Without becoming more precise in this respect and, in particular, giving the
term “level” a meaning, it is not possible to unambiguously decide where modeling
elements, even fundamental ones such as “Class” or “Object”, reside in a multi-level
classification hierarchy.



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 149

There are only two basic ways of approaching this issue. One way is to de-
emphasize the idea of levels altogether and simply regard all model elements any-
where in the modeling framework as inhabiting some kind of model “soup”. With
this unstructured approach, there are no rigidly defined levels and model elements
are just placed anywhere. The other way is to rigidly enforce the idea of levels and
to adopt the notion that every “instance of” relationship crosses a level boundary and
that the “instance of” relationships thus implicitly define the hierarchies of levels. In
other words, every classifier must be at a different level from its instances—namely
at the level immediately above them. This notion, traditionally referred to as “strict
metamodeling”, is defined as follows:

In an n-level modeling architecture,M0, M1, . . . , Mn−1, every element of an
Mm-level model must be an instance of exactly one element of an Mm+1-level
model, for all 0 � m < n − 1, and any relationship other than the “instance of ”
relationship between two elements X and Y implies that level(X) = level(Y ).

7.2 Ontological versus Linguistic Dimensions

Because of its value in helping to organize the various languages and models in-
volved in model driven development, strict metamodeling has for some time been the
underlying organizational principle used in most modeling environments including
the UML. However, it has traditionally only been used (at least explicitly) to define
and relate the models within a single dimension. In the original four-level modeling
hierarchy there was no notion of different kinds of “instance of” relationships, and
every new level of classifiers was viewed as being stacked on top of just one other
level. There was no notion of levels existing within a single level as implied by the
idea of ontological versus linguistic classification. As a result, the interpretation of
the four-layer architecture in which user instances (i.e., user model elements repre-
senting individuals of the universe of discourse) reside at a level M0, below users
types (classifying individuals of the universe of discourse) at level M1, and the latter
below a level M2, containing the UML language definition, contradicted the strict
metamodeling tenet that all types must be directly at the next level above their in-
stances. User objects such as “polly” at level M0 need to be classified by “Object”
(“Instance Specification” since UML 2.0) at level M2. The corresponding “instance
of” relationships crossed two levels, violating strictness and questioning the design
and meaning of “levels”.

However, once one realizes that the “two-level crossing” “instance of” relation-
ships are linguistic “instance of” operations, an arrangement of levels that preserves
strictness is easily achieved. Figure 36 shows how one can think of the top language
definition layer as spanning all user modeling levels.



150 C. ATKINSON AND T. KÜHNE

FIG. 36. Orthogonal classification architecture.

One may now argue that the “instance of” relationships within the bottom row of
Fig. 36, the ones within the language usage level, break the rules of strictness because
they do not cross level boundaries. However, being ontological “instance of” rela-
tionships, they form their own separate, orthogonal classification hierarchy. In this
way, the notion of strictness is applicable to each (linguistic and ontological) classifi-
cation hierarchy separately. Figure 36 therefore shows strict metamodeling applied to
two dimensions. We refer to an environment like this that retains the strictness doc-
trine separately in orthogonal modeling dimensions as an Orthogonal Classification
Architecture.

In principle the number of levels in either direction is unlimited. However, the
number of levels usually needed in practice is small. As discussed in Section 7 above,
in the ontological dimension the number of levels rarely rises above four. We will
consider how many levels are useful in the linguistic level in the following section.

8. Languages versus Libraries

In this section we consider how the orthogonal classification architecture described
above may support “language customization”, the central theme of this chapter.

8.1 Class Libraries
In Section 6, where we introduced the distinction between ontological and lin-

guistic classification, we observed that in general a model element can have one



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 151

(or more) superclass(es) as well as an ontological classifier, and that these impart
properties to different facets of the model element. Up to now we have regarded the
linguistic metamodel (i.e., the language definition) as defining the conceptual build-
ing blocks with which a user creates a model of the domain of interest, however, it
is also possible to make concepts available to users in terms of predefined classes in
the ontological hierarchy.

In fact this is not just a “possibility” it is actually an approach that has been used
with great success in mainstream object-oriented environments such as Smalltalk
and Java for some time. Most of the abstractions used by a Java programmer when
developing a new application actually come from existing class “libraries” rather
than from the language itself. The root of the class inheritance hierarchy in every
Java program is the class “Object” defined in the core package. Not all of the prop-
erties of a Java class are therefore defined in the Java language definition; a number
of them are defined in the class “Object” which every class inherits from. How-
ever, in order to take advantage of even more predefined functionality or structure,
new Java classes are often defined as subclasses of more specialized classes. The
standard Java environment consists of a large number of classes in a collection of
different packages providing functionality ranging from I/O to database access and
GUI’s. In addition, there is a much larger resource of third party class libraries that
provide predefined functionality for all imaginable purposes. Moreover, these class
libraries can range from being highly general, such as those in the Java standard, to
very domain-specific, such as libraries providing financial services or capabilities for
different platforms. For examples, at the level of Java code, the EJB platform used in
the case study is made available to users in the form of predefined classes not only
to use in a client-server fashion but also to inherit from.

In object-oriented programming technology, therefore, libraries play a big role in
making domain-customized functionality available in the development of new ap-
plications. For some reason, this approach has never been used in the definition of
modeling environments. In particular, in the case of the UML, all the predefined
modeling abstractions are defined within the metamodel, and there is no notion of
predefined classes at the user model level that users can specialize when defining
their own classes.

However, there is no good reason why this should not be done. On the contrary,
there are many good reasons why it would be advantageous. Figure 37 shows for
example, how a (new) class “Animal” can be defined by inheriting from a preexisting
class in a predefined library of model elements. Some classes, like “Product”, are
specific to the retailing domain, whereas others, like “Object”, are general purpose.

The only limitation of straightforward class libraries of the kind just introduced
is that they can only influence the type facet of user model elements as explained
in Section 6. This means that they can define properties that instances of the model



152 C. ATKINSON AND T. KÜHNE

FIG. 37. Predefined library.

elements must have, but they can not specify properties (i.e., slots) for the model
elements themselves. However, specifying such properties is easily achieved by in-
troducing a predefined library of model elements at the ontological metalevel as
well. In Fig. 38, the model element, “Animal”, receives features from its supertypes
(“Product” and “Object”) as well as from its types (“ProductType” and “Class”).
The former influence the type facet of “Animal” and the latter the instance facet (and
possibly the type facet through the use of potency values higher than “one”).

8.2 Library Customization

In the previous sections the issue of customizing a software engineering environ-
ment for a particular domain was always discussed in terms of language customiza-
tion. However, as we have just seen, libraries can have as big an influence on the
building blocks used to describe software applications as a language can. Thus, we
also need to consider the role that library customization can play in the overall cus-
tomization process.

FIG. 38. Meta library example.



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 153

FIG. 39. Language versus library customization.

Figure 39 shows the “big picture” with the complete range of elements that pro-
vide the building blocks for, and influence the properties of, the elements modeled
by the user (in this case “Animal” and “collieInstance6452”). The elements at the
top language definition level (here called “repository”, see below) represent the lan-
guage, per se, while those in the ontological levels below represent the predefined
elements at the language user level. Note that predefined elements may appear at any
ontological level, including the bottom-most, for cases such as the Boolean values
“true” and “false”. As shown in Fig. 39, the predefined modeling elements can be
organized into different packages (libraries) reflecting different levels of abstraction
and domain-specificity. For example, the web store library contains elements that are
specific to the domain of web stores.

In general, therefore the customization of a modeling environment based on an Or-
thogonal Classification Architecture can be done in one of two places: the language
level (top) and the user level (bottom). Within the user level, customization may be
achieved at any of the present levels. Traditionally, in the context of modeling lan-
guages the emphasis has been on language level customization. However, there are
advantages to performing as much of the customization as possible at the user level
in terms of the ontological levels. This, of course, requires the core concepts (such as
“Class”, “Object”, etc.) to be available as library elements at ontological levels. As
these concepts then are no longer needed in the language definition, the latter can be
made very small, in fact, it becomes a minimal “repository format” that simply needs
to provide a medium for all modeling content in the ontological user levels. As a re-
sult, the “language” can become very small and stable, whereas the core modeling
concepts become customizable.



154 C. ATKINSON AND T. KÜHNE

Note that if you turn the diagram of Fig. 39 by 90 degrees to the right, and relabel
“Repository” with “MOF” then the hierarchy looks a lot like the original four-layer-
architecture stack, except that the MOF is not used in its role as a meta-metalanguage
at the top, but in its role as a level spanning repository format. However, in the ar-
chitecture of Fig. 39 no elements in the second (leftmost) ontological level need
to classify elements in the bottom (rightmost) ontological level, as was the case in
the original four-layer architecture interpretation. There is also no level-spanning
language definition, as in the latest four-layer architecture interpretation where M2

spans both user types and instances at level M1. The orthogonal classification archi-
tecture in combination with a “library metaphor” for predefining modeling concepts
therefore completely abandons the idea of a (fixed) language in the linguistic sense
and represents everything (flexibly) as user modeled libraries and models.

9. Transformations

In previous sections we have discussed how to best support the derivation of new
languages from existing base languages, but only in terms of the definition of the
abstract syntax of the new languages. This is justifiable since the abstract syntax
forms the basis for the definition of all other language elements. However, it will
not be economically viable to create domain-customized languages if the definition
of their semantics is difficult and laborious. Since a practically useful semantics in
a tool context must be a translational semantics, i.e., a semantics that is based on
mapping a new language onto a target language with known semantics, the ease of
creating a semantics boils down to the ease of creating a so called “exogenous” trans-
formation [12]. A comprehensive discussion of the various existing transformation
approaches is out of the scope of this chapter but we briefly want to illuminate the
implications that the various alternatives to language definition have on the effort
required to query the source model for the pieces of information required to perform
transformations.

9.1 Model Access

For the purpose of discussing different ways of accessing model elements in order
to collect relevant information for transformations it is instructive to think of a model
database which is queried for elements in the model. In each of the above applications
one wants to identify a precise subset of the full set of elements (no less and no more).
In transformations, such a set typically represents all elements that are mapped to
the target language in the same way, i.e., by applying the same sub-transformation.



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 155

FIG. 40. Transformation taxonomy.

Figure 40 shows a taxonomy of various ways of characterizing such model element
subsets.

Most alternatives fit under a common “content-driven” characterization since they
use model element values to ascertain whether they belong to a particular subset or
not. Note that even an element’s type or supertype can be regarded as a value as-
sociated with this element. The taxonomy of Fig. 40 generalizes the exploitation of
these last two values of an element to “is-a” driven since it is possible to phrase,
e.g., “Animal is-a ProductType” and “an Animal is-a Product”, and both are ways to
reference a set of elements in relation to another element that shapes the elements
in question in characteristic ways (through classification or generalization respec-
tively).

In Fig. 40 “property-driven” refers to the ability to use values from the instance
facet of elements, such as slot values in UML objects or tagged values in UML
classes. This allows a subset of elements (e.g., those branded with a certain stereo-
type) to be further subsetted depending on whether or not a certain tagged value is
present.



156 C. ATKINSON AND T. KÜHNE

The category “context-driven” refers to the consideration of values of the elements
which may be reached from them (excluding types and supertypes). This is useful
for identifying source patterns which will be mapped to target patterns.

The one alternative that represents its own top-level branch is “annotation driven”.
Annotations, such as marks [11], do not belong to the elements themselves and
should be kept independent from them since they will typically change as the tar-
get model or the transformation is changed. The underlying assumption here is that a
given model will be transformed to many target models depending on choices made
for implementation technologies, etc. Even if one manages to use the MDA metaphor
of using annotations “thought of as being applied to a transparent layer placed over
the model” [11], one will still have to update the bindings of the annotations to the
model elements whenever the annotations change. Hence, although the “transparent
layer” metaphor allows the source model to be unpolluted by target model details (in
the form of annotations), the recurring need to change annotations and their binding
to the source model vastly increases the cost of defining transformations. As a result,
one should maximize “content driven” alternatives to defining transformations and
avoid “annotation driven” ones. In the following, we discuss how the three differ-
ent approaches to language design address this and other issues related to defining
transformations.

9.2 DSL/DSM Paradigm

Domain-specific languages support “type driven” element selections well, since
elements are typically classified with a rich domain vocabulary such as “Button,
ShortCutButton, MenuButton”, etc. Even if the domain does not stipulate a very
fine grained classification it is easy to retrofit it into the domain-specific language
in order to support fine-grained guidance for transformations. In contrast, in a clas-
sic UML model, classes such as “ShoppingCart” and “Video” would just be known
as instances of M2-level element “Class” and typically annotations (in the form of
stereotypes or marks) would be used in order to guide the generation tool to e.g.,
produce a EJB session bean in the one and an EJB entity bean in the other case.
In a DSL approach one already has different linguistic classifiers for “Shopping-
Cart” and “Video” respectively and thus a way to guide the transformation accord-
ingly.

A drawback of the DSL approach regarding transformations is that it makes trans-
formations difficult to reuse. Since any domain-specific language is allowed—and in
fact, encouraged—to use a complete new set of modeling concepts, transformations
will have to be adapted for the new vocabulary even if the differences are just in
the names. This is further testimony to the fact that domain-customized languages
should be preferred over orphan domain-specific languages.



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 157

9.3 OMG Architecture

The use of a standard modeling language such as UML addresses the above
mentioned problem regarding the reuse of transformations by fixing a standardized
metamodel. Hence, transformations may use a “linguistic-type driven” approach (see
Fig. 40) independently of the current domain the user is working in.

This, however, creates another complication which results from the fact that trans-
formations will typically have to consider both the linguistic and the ontological
type for determining the correct target element type. For instance, one may want to
guide the transformation of object “Animal” by considering it as an instance of M2

element “Class” but also exploit its ontological type, e.g. element “ProductType”.
Transformations therefore need to consider both the linguistic and ontological type
of an element in order to determine the correct target element.

This example highlights another problem of the OMG approach to defining trans-
formations. It cannot be assumed that useful information to guide transformations
will be expressed with a certain mechanism. As we have seen in previous sections,
classes may be classified through powertypes or stereotypes, making it difficult to
keep transformations simple and reuse them. Moreover, the way to access informa-
tion, such as type information changes with the level one is assuming. For example,
objects have yet another different way of specifying their type. Access to the instance
facet of objects (through slots) is different to that of classes (through tagged values).
These are symptoms of lost opportunities to unify the ontological levels, ultimately
causing unnecessary complications for transformations which cannot be expressed
in a level-independent manner.

Furthermore, since ontological levels only implicitly exist within M1, often oppor-
tunities for a target independent way of annotating classes are lost. Instead of using
stereotypes to assign natural metatypes, such as “ActivityType” or “ProductType”,
they are typically used to directly indicate the generation of “EJB Session” or “EJB
Entity”. In fact, the MDA guide [11] even assumes that marks will be used to directly
indicate target elements. However, if this approach is followed, marks will have to
change each time the target model changes, for instance, due to a change in target
platform choice. We have already pointed out that this is to be avoided. It is much
better to use domain-specific and target-independent types and, if necessary, keep
information about which types need to be mapped to which target element types in
an external dictionary.

Finally, although there is no immediate technical reason for it, UML users assume
rich support for guiding transformations through stereotypes and little or no support
for guiding them through supertypes. This may lead to curious attempts to classify
class “Animal” as a “Product” (by using a stereotype) where a subtype relationship
would have been correct as explained in Section 4.3.2.



158 C. ATKINSON AND T. KÜHNE

9.4 Library Approach

The infrastructure approach presented in Sections 7 and 8 and its associated way
of hosting predefined concepts (presented as the “library approach”) implies an ap-
proach to defining transformations that rectifies the problems we have just identified
with the other approaches.

Assigning different transformations strategies to different model elements is easy,
even though one will often not have the benefit of having a fine-grained linguistic
classification as with DSL/DSM approaches. However, when faced with transform-
ing “ShoppingCart” and “Animal” in different ways, for example, one just introduces
the ontological metatypes “ActivityType” and “ProductType” respectively. This ob-
viates the need to resort to the undesirable use of annotations.

On the other hand, transformations can always rely on the existence of fixed
upper-ontologies (i.e., predefined libraries). Transformations may make use of more
specific (meta-)types (such as “ProductType”) but they can always rely on the ex-
istence of general ones (such as “Class”). This is not only beneficial for creating
reusable transformations but also means that it is not required to introduce domain-
specific (meta-)types unless one finds a need for them.

In order to guide transformations there is, therefore, no need to consider both
linguistic and ontological dimensions. Transformations using models based on the
library approach never need to consult linguistic types, as these are in any case too
general to provide any useful information. However, this does not imply a loss of
information. For instance, model element “Animal” is characterized as both “Prod-
uct” and “Object” in the ontological generalization hierarchy, since “Object” is a
supertype of “Product”. This makes it easy to refine and thus also reuse existing
mappings. A mapping that only exploited the fact that some elements are subtypes of
“Object” can be refined to one that exploits the fact that some elements are subtypes
of “Product” without implying a shift from linguistic classification to ontological
classification. Such a seamless way of adapting transformations is of paramount im-
portance for providing a cost effective way of defining semantics.

Furthermore, the uniform representation of elements in the ontological domain
makes it easy to access information in a level independent manner. For instance,
product types with a tax rate of 7% may be transformed into different target elements
than those with a taxe rate of 16%. Accessing these values, however, is no different
to accessing the price of animal instances, for example.

Finally, the library approach assigns equal weight to the type- and supertype prop-
erties of an element and makes deliberate use of supertype relationships for defining
the superstructure itself. The usefulness of using “supertype driven” model element
selection is indeed indirectly acknowledged in the MDA guide by a “Model Trans-
formation” example [11, Section 3.10.3].



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 159

10. Conclusion

In this chapter we have taken a grand tour of the underlying principles and the
practical technological issues involved in supporting a domain-customized language
approach to software engineering. We started by outlining the conceptual differences
between the notions of abstraction and domain-specificity and showed that they con-
ceptually map out a two dimensional language space. We also explained how the
notion of domain-specific languages relates to the notion of domain-customized lan-
guages in that the latter are a special form of the former which are explicitly derived
from an existing base language. With the notion of an essentially-customized lan-
guage we have furthermore characterized the optimal compromise regarding the
diverging goals of “wide intelligibility” (as achieved by modeling standards) and
of “desiring the best possible fit regarding an application domain” (as achieved by
DSLs). An essentially-domain-customized language is as domain-specific as neces-
sary and as compatible to its base language as possible.

After laying out these basic principles and showing how we used them to de-
velop models for our running case study—a Pet Store e-commerce system—we
went on to outline the range of theoretically possible language derivation types and
explained their pros and cons for the end user. We then described in detail the par-
ticular lightweight language customization mechanism offered by the UML. Known
as the “profile” mechanism, this allows the effects of metamodel specialization to
be achieved without actually making any changes directly to the metamodel. The
section that followed discussed the range of different architectures that can be used
in the construction of DCL support tools, ranging from simple “two-level” envi-
ronments through multi-tool cascading environments to multi-level, flattened archi-
tectures in which one or more modeling levels are flattened into a single modeling
level.

We then explored the distinction between ontological metamodeling and linguistic
metamodeling and argued that both forms are valuable, despite the fact that ontolog-
ical metamodeling has been neglected by current mainstream modeling approaches.
We then introduced the notion of having multiple ontological modeling levels within
a single linguistic level and showed how this naturally led to the notion of the Orthog-
onal Classification Architecture as a clean way of supporting ontological multi-level
modeling. The next section built on this by explaining how customization can be
characterized in terms of library specialization as well as language specialization,
and explained why it makes sense to realize most of the customization capabilities
needed by end users in the former way rather than the latter way. Finally, Section 9
finished with a discussion of how all the various notions discussed before relate to
and support the definition of transformations, an essential element of the DCL para-
digm.



160 C. ATKINSON AND T. KÜHNE

As the universally accepted general purpose modeling language the UML offers
the ideal foundation for the realization of a DCL paradigm of the kind explained in
this chapter. However, as pointed out in several sections, there are several places in
which the UML language and the UML infrastructure need to be improved. First,
the UML infrastructure should be founded on the Orthogonal Classification Archi-
tecture and should define most of the predefined modeling constructs in the form of
predefined libraries rather than as part of the linguistic metamodel. This will allow a
large proportion of language customization to be achieved through the much simpler
mechanism of library customization. Second, the language needs to provide clean
notational support for the concepts of clabjects and fields and the related mechanism
of potency.

We hope that the ideas and suggestions described in this chapter will help the
reader derive more benefits from the DCL technologies which are going to become
an importance part of software engineering in the near future.

REFERENCES

[1] Angermann A., Beuschel M., Rau M., Wohlfarth U., Matlab–Simulink–Stateflow, Grund-
lagen, Toolboxen, Beispiele, Oldenbourg Verlag, München, ISBN 3-486-57719-0, 2005.

[2] Atkinson C., Kühne T., Henderson-Sellers B., “Systematic Stereotype Usage”, J. Soft-
ware and Systems Modeling 2 (3) (2003) 153–163.

[3] Atkinson C., Kühne T., “Profiles in a Strict Metamodeling Framework”, in: Evans A.,
Kent S., Selic B. (Eds.), J. Science of Computer Programming 44 (1) (2001) 5–22.

[4] Boulanger R., The Csound Book: Perspectives in Software Synthesis, Sound Design, Sig-
nal Processing, and Programming, MIT Press, 2000.

[5] Cook S., Kleppe A., Mitchell T., “Defining UML family members using prefaces”, in:
Proc. of TOOLS Pacific, 1999.

[6] Coad P., “Object-oriented patterns”, Commun. ACM. 35 (9) (1992) 152–159.
[7] Engels G., Förster A., Heckel R., Thöne S., “Process modeling using UML”, in: Process-

Aware Information Systems, Wiley Publishing, New York, 2005, pp. 85–117.
[8] Johnson R., Woolf B., “Type object”, in: Pattern Languages of Program Design, vol. 3,

Addison–Wesley, 1997, pp. 47–66.
[9] Kühne T., “Matters of (meta-)modeling”, J. Software and Systems Modeling 5 (4) (2006)

369–385.
[10] Liskov B., Wing J., “Family values: A behavioural notion of subtyping”, MIT/LCS/TR-

562b, 1993.
[11] OMG, “MDA Guide Version 1.0.1”, OMG document omg/03-06-01, 2003.
[12] Mens T., Van Gorp P., “A taxonomy of model transformation”, Electr. Notes Theor. Com-

put. Sci. 152 (2006) 125–142.
[13] Object Management Group, “Meta-object facility 2.0 specification”, ptc/03-10-04, April

2002.



A TOUR OF LANGUAGE CUSTOMIZATION CONCEPTS 161

[14] Odell J., “Power types”, J. Object-Oriented Programming 7 (2) (May 1994) 8–12.
[15] Parker B., “Introducing EIA-CDIF: the CASE data interchange format standard”, in:

Proc. of the Second Symposium on Assessment of Quality Software Development Tools,
27–29 May, 1992, pp. 74–82.

[16] Object Management Group, “UML 2.0 Infrastructure Specification”, formal/05-07-05,
http://www.omg.org, 2005.

[17] Object Management Group, “UML 2.1 Superstructure Specification”, ptc/06-04-02,
http://www.omg.org, 2006.

[18] Warmers J., Kleppe A., The Object Constraint Language, Addison–Wesley, ISBN 0-321-
17936-6, 2003.



This page intentionally left blank



Advances in Business Transformation
Technologies

JUHNYOUNG LEE

IBM T. J. Watson Research Center
Hawthorne, NY 10532
USA
jyl@us.ibm.com

Abstract
The backbone of the World economy has shifted from agriculture to manufac-
turing to information. It is now entering a new phase known as an innovation-
based economy where economic value will be created in services we provide
with information to improve business, government, education, and people’s daily
workspace. Accordingly, the focus of computing and information technologies is
shifting to their applications to help enterprises, governments, and other organi-
zations improve and transform their current practices. This chapter will describe
the latest advances in the development of new methods and technologies sup-
porting the service-led economy. First, it will present a model-driven business
transformation approach. Business transformation is a key executive manage-
ment initiative that attempts to align the technology initiatives of an organization
closely with its business strategy and vision for a better business performance.
The presented approach employs models that map IT (Information Technology)
functions and capabilities to business performance, and help articulating the de-
livered business value of IT solutions and services. Also, it integrates a value
model with business models of processes and components to leverage the value
model at different levels and phases of business transformation. One of the key
requirements for the model-driven business transformation is the capability of
representing the semantics of various aspects of the models in a language and
enforcing them. Also, efficient engineering of the semantic models that works
well with the traditional software engineering mechanisms has become more and
more important in business or enterprise IT application development. The second
part of this chapter will address these requirements and discuss a novel approach
to engineering semantic models, which allows seamlessly supporting existing
software engineering models in Unified Modeling Language or other modeling
languages in semantic model-based enterprise application development. Finally,

ADVANCES IN COMPUTERS, VOL. 70 163 Copyright © 2007 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(06)70004-3 All rights reserved.



164 J. LEE

this chapter will describe a new approach to business process integration by us-
ing Web services. While the Web service technologies facilitate the creation of
business process solutions in an efficient, standard way, it is required to auto-
mate their discovery and composition to make it useful and scalable. We will
present a solution to these problems of the Web service-based business process
integration: the discovery of Web services based on the capabilities and proper-
ties of published services, and the composition of business processes based on
the business requirements of submitted requests.

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
1.1. Model-Driven Business Transformation . . . . . . . . . . . . . . . . . . . . . 165
1.2. Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
1.3. Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

2. Value-Oriented, Model-Driven Business Transformation . . . . . . . . . . . . . . . 169
2.1. Value-Oriented Business Model . . . . . . . . . . . . . . . . . . . . . . . . . . 172
2.2. Qualitative Business Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
2.3. Value-Oriented Business Analyses . . . . . . . . . . . . . . . . . . . . . . . . . 177
2.4. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
2.5. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
2.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

3. Model-Driven Ontology Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 187
3.1. Traditional Ontology Management Systems . . . . . . . . . . . . . . . . . . . 188
3.2. Model-Driven Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
3.3. Ontology Definition Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . 191
3.4. EMF-Based Ontology Engineering System . . . . . . . . . . . . . . . . . . . . 193
3.5. Model Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
3.6. Use Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
3.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

4. Business Process Composition with Web Services . . . . . . . . . . . . . . . . . . . 203
4.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
4.2. Business Requirement Specification . . . . . . . . . . . . . . . . . . . . . . . . 206
4.3. Service Profile Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
4.4. Service Discovery with Micro-Level Matching . . . . . . . . . . . . . . . . . . 209
4.5. Process Composition with Macro-Level Matching . . . . . . . . . . . . . . . . 212
4.6. Multiple-Choice Knapsack Algorithm . . . . . . . . . . . . . . . . . . . . . . . 212
4.7. Multi-Attribute Decision Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.8. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Appendix A: Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 165

1. Introduction

The backbone of the World economy has shifted from agriculture to manufac-
turing to information. It is now entering a new phase known as an innovation-
based economy [5,39] where economic value will be created in services we provide
with information to improve business, government, education, and people’s daily
workspace. Accordingly, the focus of computing and IT (Information Technology)
is shifting to the application of technologies to help enterprises, governments, and
other organizations improve and transform their current practices. To facilitate the
business transformation process, the service-led economy requires the development
of new business methods and the technology supporting those methods. Industry and
academia, to cope with this paradigm shift in the role of technology, forms a new
discipline called service science, management, and engineering [19] by converging
ongoing work in related fields of computer science, industrial engineering, opera-
tions research, management sciences, and social and legal sciences. Services science
would merge technology with an understanding of business processes and organiza-
tion. It would transform business by recognizing an organization’s pain points and
apply technologies to correct them.

1.1 Model-Driven Business Transformation

Among the emerging methods and the supporting technology for business trans-
formation in the service-led economy is the model-driven business transformation,
which utilizes a multi-layer model approach to linking business and IT semantics [20,
30]. The upper layers of the model represent business semantics in the terms familiar
to business executives, business managers and analysts such as business processes,
activities, Key Performance Indicators (KPIs), operational metrics, value drives, and
governance. The lower layers of the model represent IT architecture comprising a
wide range of services implemented in IT infrastructure such as service-oriented ar-
chitecture. The vision of this multi-layer model is to enable IT solutions to accurately
reflect and be driven by business intent. Figure 1 illustrates the multi-layer model ap-
proach to business transformation.

The key to this multi-layer model is that the layers are linked in meaningful
ways, so changes in one layer can ripple through other layers. The representation
and enforcement of the semantics of the different layers and also of the connections
between the layers is essential to the model-driven approach and also is an applica-
tion area of the semantic Web technology. This model-driven approach provides a
convergence of the business and IT models using a multi-layer model, which tightly
couples the business and IT models. In many ways, this vision is not new. Tech-
nologists have been working towards generalized business process integration and



166 J. LEE

FIG. 1. Model-driven business transformation.

automation for many years. However, this approach is different from the traditional
technology-oriented business integration, because it provides a top–down business
perspective which enforces a business-orientation of business transformation.

Once equipped with end-to-end tools for the model design, connection and trans-
formation, this approach has the potential to reduce the time-to-value of business
solution implementation. It would replace the manual creation of unstructured busi-
ness documents and informal business models with a guided transformation of a
structured multi-layer model. The IT solutions generated by this approach would
accurately and precisely reflect the original business semantics and are directly de-
ployable and executable in a service-oriented architecture. This model-driven busi-
ness transformation approach is a significant step towards closing the infamous
“business-IT gap” [35] achieving maintainable alignment between business design
and IT solutions.

Recent trends in componentization and modeling of IT and business would boost
this model-driven approach as a prominent methodology for the service-led econ-
omy. In recent years, enterprises componentize into discrete services to achieve oper-
ational efficiency, flexibility, and to sharpen their focus. Also, the consulting industry
increasingly utilizes sophisticated modeling techniques to understand and transform
businesses. In the IT domain, software modeling technologies and methodologies
such as the Object Management Group’s Unified Modeling Language [41] and



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 167

Model-Driven Architecture [4,40] are widely adopted and studied in both industry
and academia. In addition, the Web service initiative of the World Wide Consortium
(W3C) [57] and related technologies accelerate the shift towards Service-Oriented
Architectures [58] which fit the model-driven business transformation approach. The
trends in componentization and modeling of business and software effectively con-
verge to provide new layers of business understanding and responsiveness.

1.2 Semantic Web

Traditionally, a model has been used to represent things in various contexts in-
cluding studies of physics, mathematics, statistics, economics, geology, psychology,
computer science, to name a few. A model often dominates the understanding and
solution to the given problem in the domain. Additionally, the language used to spec-
ify a model often impacts on (either assists or limits) the thinking process with the
model. The most important component of the model-driven business transformation
approach is the model, i.e., the representation of the semantics of business and IT
resources. With the multiple layers in the model, another key component is the rep-
resentation of the meaning of the links across different layers. It is crucial to this
model-driven approach how we represent in a language and enforce the semantics of
the layers and also of their links.

Semantic Web [2,55], another W3C initiative, which intends to create a universal
medium for information exchange by giving semantics, in a manner understandable
by machines, to the content of resources, provides an appropriate option to address
this modeling requirement of the model-driven approach. The Semantic Web is com-
prised of the standards and tools of markup languages including Web Ontology
Language (OWL) [56] and Resource description Framework (RDF) [3,54]. These
languages based on Extensible Markup Language (XML) would be used to specify
ontological representation of models including the business and IT models and their
connections. An ontology or a semantic model is similar to a dictionary, taxonomy
or glossary, but with structure and formalism that enables computers to process its
content. It consists of a set of concepts, axioms, and relationships, and represents an
area of knowledge. Unlike taxonomy or glossary, a semantic model allows modeling
arbitrary relationships among concepts, representing logical properties and seman-
tics of the relationships (e.g., symmetricity, transitivity and inverse), and logically
reasoning and querying about the relationships.

The semantic markup languages would be used to specify the convergence of
business and IT models, and more importantly, their metamodels. The ontological
representation of the metamodel of a constituent model enables reasoning about
the instance model, which enables a causality analysis to deduce unknown or im-
plied relationships among entities within the instance model. The analysis would



168 J. LEE

be extended across multiple layers of models. The semantic model-based causality
analysis would reveal which entity has an impact on which entities (e.g., business
components and processes, performance indicators, IT systems, software classes and
objects, etc.) of the multiple layers of the model. This semantic model-based analy-
sis would be applied to a model that provides an introspective view of the business
within an enterprise. Also, it would be applied to a value network which yields an
extrospective view of businesses in an ecosystem.

In addition to its use in the model-driven business transformation, the semantic
model approach is also useful in business information and process integration. Sup-
pose a business solution requires integrating a number of data sources (or application
interfaces for process integration) which provide different but overlapping concep-
tual models. An approach to integrating them would be using a global semantic
model which essentially maps the data sources based on their meaning. The data
sources are defined as views into this global model, although there is no guarantee of
completeness. A query to the data sources would be expressed in the global semantic
model. The result set for the query would be constructed by finding all conjunctive
queries over the views that are contained in the top-layer query. A semantic model-
based approach to process integration would require a similar set of steps over a set
of overlapping application interfaces.

The model-driven business transformation approach proposes a new business
method and the supporting technology by coupling business and IT models. It pro-
vides a top-down business perspective which enforces a business-orientated business
transformation. It has the potential to provide a number of benefits over the tra-
ditional technology-oriented approach, including business-IT alignment, reasoning
about business design and transformation, real-time visibility into business opera-
tion, improved business performance management, rapid and repeatable IT solution
implementation, and adaptive IT solution implementation. The key to this model-
driven approach is that the layers are linked in meaningful ways, and that the se-
mantics of the links are effectively represented and reasoned. Therefore, changes in
one layer can accurately ripple through other layers. The semantic Web technology
is an enabler to fulfill the modeling requirements in representation and enforcement
of the semantics of the multi-layered model. It poses a key enabling technology for
the emerging service science, which will meld technology with an understanding of
business processes and organization.

1.3 Synopsis

This chapter first will present a value-oriented, model-driven approach to business
transformation that integrates the value model with business models of processes



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 169

and components to support multiple phases of value-oriented business transforma-
tion. The main idea of this solution is to enable business executives to take better
transformation decisions by building a unique model for a business that captures all
entities involved in creating value for the business, and defining qualitative and quan-
titative business analyses that could be performed on the business model. To show
how we can realize this idea, we will introduce the VIOLA system developed at IBM
Watson Research Center.

Then, we will discuss a novel approach to engineering ontologies and semantic
models, which allows seamlessly supporting existing software engineering models
in UML (or other modeling languages) in semantic model-based enterprise appli-
cation development. One of the key requirements for the model-driven business
transformation is the capability of representing the semantics of various aspects of
the models in a language and enforcing them. Also, efficient engineering of the se-
mantic models that works well with the traditional software engineering mechanisms
has become more and more important in business or enterprise IT application devel-
opment.

Finally, we will describe an approach to business process integration by using
Web services. Web service technologies facilitate the creation of business process
solutions in an efficient, standard way. However, it is required to automate their dis-
covery and composition to make the approach useful and scalable. This chapter will
present a solution to these problems of the Web service-based business process in-
tegration: the discovery of Web services based on the capabilities and properties of
published services, and the composition of business processes based on the business
requirements of submitted requests. The solution is comprised of multiple match-
ing algorithms, a micro-level matching algorithm, which matches the capabilities of
services with activities in a process request, and macro-level matching algorithms,
which are used to compose a business process by identifying services that satisfy the
business requirements and constraints of the request.

2. Value-Oriented, Model-Driven Business Transformation

Business transformation is a key executive management initiative that attempts to
align the technology initiatives of a company closely with its business strategy and
vision, and is achieved through efforts from both the business and IT sides of the
company. However, the technology side of the company often emphasizes functions
and capabilities, while the business side focuses on business impact and value. Be-
cause of this “business-IT gap” [35], business transformation processes for mid- to
large IT and services are long and costly. In addition, failures to demonstrate the busi-



170 J. LEE

ness value of the transformation processes often hinder the intended transformation
or cause an inconsistent and unmanaged investment portfolio.

In order to address this problem, this section presents a novel approach that maps
IT functions and capabilities to business performance, and demonstrates the deliv-
ered value of IT investments. This approach integrates the value model with business
models of processes and components to leverage the value model at different lev-
els and phases of business transformation. It innovatively extends the Model-Driven
Business Transformation [20,30] by linking values with key IT enablers all the way
down to the IT infrastructure, combines the Component Business Modeling [21] with
the value-oriented business analysis to strengthen its business analysis capabilities,
and utilizes the measurement provided by the value model to monitor and track value
and improvements during and after business transformation.

Component Business Modeling (CBM) is a business decomposition methodology
and a business modeling technique increasingly utilized by the consulting industry
to understand and transform businesses. CBM models a business as a set of business
components. A business component is a part of an enterprise that has the potential
to operate independently, in the extreme case as a separate company, or as part of
another company. A business component is a logical view of part of an enterprise
that includes the resources, people, technology and know-how necessary to deliver
some value. A component business map is a tabular view of the business components
in the scope of interest. The columns of the table represent business competencies
and the rows represent accountability levels. The business components are rectangles
within the table. Normally each rectangle is within only one cell of the table. Figure 2
shows a sample component business model.

A component business model represents the entire business in a simple framework
that fits on a single page. It is an evolution of traditional views of a business, such as
ones through business units, functions, geography, processes or workflow. The com-
ponent business model methodology helps identify basic building blocks of business,
where each building block includes the people, processes and technology needed by
this component to act as a standalone entity and deliver value to the organization.
This single page perspective provides a view of the business which is not constricted
by barriers that could potentially hamper the ability to make meaningful business
transformation. The component business model facilitates to identify which compo-
nents of the business create differentiation and value. It also helps identify where the
business has capability gaps that need to be addressed, as well as opportunities to
improve efficiency and lower costs across the entire enterprise.

The value analysis is another recent trend in today’s business environment where
enterprises are increasingly focusing on value rather than on the functions and ca-
pabilities of IT. They expect service providers to demonstrate value of technologies
throughout business transformation phases. An approach to meeting this requirement



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 171

F
IG

.2
.

C
om

po
ne

nt
bu

si
ne

ss
m

od
el

.



172 J. LEE

of business transformation is value modeling, which identifies and maps the enter-
prise’s key business and IT value drivers, and links them to the measurable business
and financial benefits. The value model can also help tracking the performance and
showing realized value during and after the implementation.

This section presents a value-oriented, model-driven approach to business trans-
formation that integrates the value model with business models of processes and
components to support multiple phases of value-oriented business transformation.
The main idea of this solution is to enable business executives to take better transfor-
mation decisions by building a unique model for a business that captures all entities
involved in creating value for the business, and defining qualitative and quantitative
business analyses that could be performed on the business model. This framework
developed at IBM Watson Research Center is referred to as the VIOLA system. In the
following sub-sections, we will discuss the VIOLA model of businesses in detail, the
qualitative business analysis capabilities VIOLA provides, the quantitative analyses,
i.e., value-oriented analyses of VIOLA. Finally, we will discuss the technical details
for the design and implementation.

2.1 Value-Oriented Business Model

Figure 3 gives a high-level view of the VIOLA model for enterprises. The model
is designed to capture business entities that are involved in creating or defining value
and their relationships. The business entities in the model include business compo-
nents, business processes and activities, operational metrics, Key Performance Indi-
cators, and value drivers. Operational metrics are used to measure the performance
of business at the activity and process levels. Key Performance Indicators (KPIs) are
higher level business metrics often associated with a number of operational metrics.
Value and cost drivers are factors that influence the business performance, i.e., cost
and value. They are linked with operational metrics and KPIs. In addition, the model
represents their relationships to resources, services, messages, IT infrastructure, and
solutions. Often, solutions refer to both IT and business capabilities to support busi-
ness objectives and strategies, or address pain points of enterprises.

To allow the user to explore this rich information captured by this model, the
VIOLA system provides multiple views into the model referred to as business maps.
Each business map shows various entities involved in running and understanding of
business and their relationships. The business maps provide visual models which
organize the above-mentioned business entities in a structured way. In addition, they
provide user interfaces which allows to the user interactively navigate and explore
the information space for an analysis purpose.

Figure 4 shows a screenshot of a business map from the VIOLA system that con-
tains the component business map, the value driver tree and the business activities.



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 173

FIG. 3. VIOLA model for businesses.

To build such a business map, we utilize industry standard taxonomies of business
processes and metrics such as APQC (American Productivity & Quality Center, Inc.)
Process Classification Framework [1], and add the links of the processes and metrics
to value drivers and business components. Additionally, the system allows the user
to customize the industry standards to the needs of a specific enterprise, and import
and export the enterprise-specific value driver trees.

2.2 Qualitative Business Analyses
The main advantage of the VIOLA model is the enablement of various types of

analyses that would allow the user to obtain interesting insights into the current state
of a business and its possible business transformation opportunities. The VIOLA sys-
tem is designed on two primary analysis capabilities: the qualitative business analysis
based on component business modeling and the quantitative analysis based on value
modeling. By linking them together, VIOLA provides an end-to-end suite of business
analysis capabilities, enabling business-driven, value-oriented business transforma-



174
J.LE

E

FIG. 4. Business map views.



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 175

tion. This section describes a few qualitative analysis capabilities of VIOLA, while
the next section focuses on the quantitative analysis.

2.2.1 Dependency Analysis

The dependency analysis allows the user to explore the business maps and un-
derstand the correlations and dependencies among business entities. For examples,
this capability can interactively identify one or more business components associ-
ated with a particular value driver. Conversely, it can find one or more value drivers
that are affected by the performance of a particular business component. The associ-
ations between value drivers and business components are discovered through their
relationships with business processes and activities. Similarly, VIOLA can identify
and show dependencies between business activities and IT applications, and also be-
tween business activities and solutions, both IT and business-driven. Furthermore,
the relationships are transitive, and so it is possible to infer the associations between
value drivers and IT applications/solutions, also between components and IT appli-
cations/solutions, and so on.

To support the dependency analysis, the VIOLA system captures the basic rela-
tionship information in the VIOLA business model. Once the explicit relationship
data are populated in the database using the model, the system utilizes a Semantic
Query Engine to infer implicit relationships among various business entities by us-
ing the explicit relationships and their logical properties. To provide the inference
capability, VIOLA utilized W3C’s OWL semantic Web markup language [56] and
the SnoBase Ontology Management system [31] developed at IBM Watson Research
Center.

SnoBase system programmatically supports ontology needs of applications in a
similar way a database management system supports data needs of applications.
For programmers, SnoBase provides a Java API (Application Programming Inter-
face) referred to as Java Ontology Base Connector (JOBC), which is the ontological
equivalent of Java Data Base Connector (JDBC). JOBC provides a simple-to-use
but powerful mechanism for application programmers to utilize ontologies without
dealing with the details of ontological information. In addition, SnoBase supports
a number of query languages including a variant of OWL-QL (OWL Query Lan-
guage) and RDQL (Query Language for RDF) as ontological equivalents of SQL of
relational database systems.

2.2.2 Heat Map Analysis

This analysis is an essential capability of CBM where the user discovers one or
more “hot” components that are associated with one or more business strategies



176 J. LEE

and/or pain points. In the traditional CBM analysis, this step was conducted man-
ually by the analyst depending on his/her knowledge and expertise in the business
domain. VIOLA automated the capability by taking values into account with the
dependency analysis.

First, the system allows the user to explore the value driver tree to identify one
or more value drivers that may be associated with a certain business strategy/pain
point. The discovery of “hot” components that affect the business strategy can be ac-
complished by executing a simple semantic query to the business model represented
in OWL. Then the system colors the identified hot components differently to distin-
guish ones that affect positively or negatively to the strategy. The VIOLA system
compares the industry benchmark and the as-is value of the operational metrics and
performance indicators associated with the components to decide on their color. Fig-
ure 4 displays a heat map showing a couple of hot components affecting positively to
a value driver, “Customer Retention,” which is highlighted in the value driver tree.

2.2.3 Shortfall Assessment

The Shortfall Assessment allows the user to map the existing IT infrastructure
against the “hot” components identified in the heat map analysis. It helps under-
stand how the current IT infrastructure, such as applications and network capabilities,
supports the business, especially, for those hot components. The analysis requires
collecting the information on the current IT infrastructure and representing it in a
semantic business model in OWL. Then the mapping of IT applications and capabil-
ities to the components becomes, again, an execution of a simple semantic query to
the semantic model.

VIOLA visualizes the mapping on the CBM map by overlaying IT applications on
components. Then, the user can visually classify possible IT shortfalls into several
types. Typically, four types of opportunities tend to arise. First, a gap indicates that
a hot component does not have any IT support. The enterprise may want to consider
an IT investment to improve the component’s performance and support the intended
business transformation. Second, a duplication indicates that a component is sup-
ported by multiple IT applications, possibly, deployed over time. The business may
want to consolidate the applications to improve performance and reduce cost in com-
munication and maintenance overhead. Third, a deficiency indicates that the current
application lacks key functionality, or is poorly designed, and so incurs a project
opportunity. Finally, an over-extension indicates that a system designed to support
one business component is extended beyond its core capability to support others.
Different definitions for the shortfall types may apply. With precise definitions of
the shortfall types, the VIOLA system also automates the shortfall classification and
recommends to the user the initially identified shortfalls.



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 177

It is important to note that an IT system can be involved with multiple situations.
The value model of the VIOLA system takes that fact into account, with an opti-
mized plan for implementation projects to maximize the investment. An integrated
management approach such as project portfolio management ensures that the project
opportunities are effectively taken into account, that the best use is made of available
resources by applying them to the highest priority opportunities, that the projects are
regularly assessed, and that management actions are taken to keep them aligned with
objectives.

2.2.4 Solution Identification

Once IT shortfalls are identified and classified, one or more solution catalogs
which provide information on various IT and business solutions to address the short-
falls and support the intended business transformation. VIOLA allows the user to
explore the solution space to identify one or more solutions that may address one
or more shortfalls of interest. The discovery of solutions for supporting components
associated with a shortfall can be automatically conducted by executing a semantic
query that correlates solutions and components by using their relationships to busi-
ness activities. In addition, VIOLA allows the user to manually correlate them, if
desired. If there is no prefabricated solution available from existing solution catalogs
to support a certain hot component and/or an IT shortfall, the VIOLA system helps
the user start composing a new solution, by providing a link to a solution composer
tool, such as IBM’s WebSphere Business Modeler [22], which utilizes and supports
service-oriented architecture [58].

2.3 Value-Oriented Business Analyses

Until now, we described the qualitative business analyses of VIOLA, focusing on
the identification of dependencies among business entities such as business com-
ponents, processes and activities, value drivers, IT applications and solutions. This
section highlights the quantitative business analysis capabilities.

2.3.1 Solution Value Estimation

This module allows the user to calculate the expected value of value drivers when
one or more solutions are implemented in the context of business transformation. The
details of the value modeling supporting this quantitative analysis will be given be-
low. The calculation uses as input the as-is value of value drivers and the contributing
factors of solutions to metrics that are associated with leaf nodes in the value driver
tree. The expected values are calculated for a subset of the value driver tree, contain-



178 J. LEE

ing all the leaf node value drivers that are directly affected by the solution(s) and all
their ancestors that are indirectly affected.

Once specific improvement opportunities for the target performance indicator are
identified, they can be prioritized, based on a value-model analysis of each oppor-
tunity. The value model takes into account factors such as implementation cost,
potential savings, increased revenue, reduced risk, and other financial metrics such
as Return On Investment (ROI) and Net Present Value (NPV), Net Profit Margin
(NPM) and Asset Turnover Ratio (ATR), and also improved Key Performance In-
dicators (KPIs) such as customer satisfaction, time for fulfillment, productivity and
product quality. Based on this value and the risk assessment models, the opportuni-
ties can be quantitatively understood in terms of measurable value.

An in-depth value analysis of individual opportunities can show the detailed ben-
efits of the IT project in terms of measurable value. For example, a duplication
situation provides an opportunity for a consolidation project. The value analysis of
this solution offers details of the project, including cost savings by shutting down
multiple, inadequate systems, the investment required for implementing a single
consolidated system, a comparative analysis of implementing a new system versus
integrating and improving existing systems, desirable financial metrics such as ROI,
reduced risk, and improved KPIs such as time for fulfillment and increased produc-
tivity. This analysis allows the enterprise to make services/solution decisions based
on the values, costs and priorities for business transformation.

2.3.2 Value Modeling

The value model of the VIOLA system models both tangible returns such as cost
savings and intangible benefits such as productivity enhancement, while most exist-
ing ROI analysis tools focus on direct benefits. This capability is important because
direct returns in cost reduction make up only half of technology ROI. A bench-
mark study on document management found that a majority of companies had seen
measurable increase in user productivity, whereas less than half recorded direct re-
turns.

The VIOLA value model captures business impact at the measurable metric level
and translates it into business value of generic value drivers such as revenue growth,
margin improvement, and increased capital efficiency. For this purpose, the model
provides a hierarchical structure of value drivers and metrics. The structure is re-
ferred to as a value driver tree where the root is the shareholder value or profitability,
and the leaf nodes are measurable operational metrics. The leaf metrics nodes are
connected to the root through multiple layers of performance indicators and value
drivers. The initial framework of a value driver tree can be derived from a standard
such as the metrics tree associated with the APQC Process Classification Framework.



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 179

Alternatively, correlations of value drivers and performance metrics can be identified
by a regression analysis of historical, empirical data. Once a basic value driver tree
is built, then it can be customized for a specific business in practices. The linkage
between any two nodes in the value driver tree is signified by the impact level of
a child to its parent, where the impact levels of all children add up to 100%. The
impact levels can be derived by mining empirical data or assigned speculative values
for sensitivity analyses. A sample value driver tree is shown in Fig. 5.

The completed value driver model is a probabilistic graphical model known as
Bayesian belief network or simply belief network. A Bayesian network is a directed
acyclic graph on nodes (e.g., value drivers) representing variables, and arcs repre-
senting probabilistic dependency relations among the variables and local probability
distributions for each variable given values of its parents. In VIOLA, the directed
arcs of the graph are interpreted as representing causal relationships. The belief net-

FIG. 5. A sample value driver tree.



180 J. LEE

work model can be used to answer probabilistic queries about the nodes. In other
words, it provides a probabilistic inference, which is a process of computing pos-
terior distribution of variables given evidence. For example, it can be used to find
out updated knowledge of the state of subset of variables when other variables (the
evidence variables) are observed.

The VIOLA value engine calculates the expected values of a set of value drivers
that are affected by the implementation of one or more IT solutions and/or business
capabilities. To support this calculation, the value model extends the value driver
tree by linking IT capabilities and solutions to business activities, and to operational
metrics in the value driver tree. Additionally, the expected value calculation requires
user input for certain edges in the trees. First, it requires the usage factor on each
edge between an IT capability and a business activity which indicates how much of
the activity the IT capability is used for. Second, it requires the improvement factor
on each edge between an activity and a metric node which indicates how much the
metric is improved by the IT capability. Again, the user input values can be derived

FIG. 6. A simple VIOLA value model.



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 181

by mining empirical data or assigned speculative numbers for sensitivity analyses.
Figure 6 shows a simple VIOLA value model.

The value engine uses a recursive algorithm to calculate the expected values of
value drivers affected by one or more IT capabilities. The mean value of a node, np,
in the value driver tree is derived as follows:

E[np] =
∑

i=1,k

(
E[nci

] × E[eci
]),

where E[nci] and E[eci] are the mean of a child node nci and its edge to np, respec-
tively, and k is the number of children np has.

The VIOLA value engine provides a robust sensitivity analysis for validating vari-
ous value propositions, because it can take the impact factors in range and present the
expected business values in confidence intervals. Also, it can capture synergistic or
cannibalizing effects of different IT capabilities and solutions as separate user input
(referred to as inflation and deflation factor) and take it into account for the value
calculation. In addition, the engine can capture statistical dependencies via correla-
tions. Finally, the value model can be extended by mapping value drivers to standard
financial measures and ROI terms for generating business reports, as described in the
previous section.

2.3.3 Business Reports

As results of the business analyses, both quantitative and qualitative, VIOLA can
generate a number of business intelligence reports for an executive summary of the
analyses, including sophisticated interactive charts, as follows: (1) Value Driver Re-
port, which summarizes the impact of investments in terms of value drivers in a
structured format, with a number of illuminating interactive charts; (2) Financial
Measure Report, which translates the impact of the solutions on value drivers to a
set of standard financial measures, again, with a number of illuminating interactive
charts. A sample report is shown in Fig. 7; and (3) ROI Report, which translates the
impact of the solutions into a set of cash flow measures over time and provides the
benefits of the investments in terms of standard ROI terms.

2.4 Implementation
To validate the proposed business model and the analysis capabilities described in

the previous sections, we implemented the VIOLA system. The functional architec-
ture of VIOLA consists of four layers:

• The Analysis Module Layer, which provides the presentation of business entities
and allows the user to interact with them. It provides a variety of capabilities for



182
J.LE

E

FIG. 7. A sample financial measure report.



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 183

both qualitative and quantitative analyses of business, and helps build business
transformation roadmaps driven by business strategies and based on measurable
values of technologies;

• The Analysis Engine Layer, which provides a set of generic algorithms for
supporting the analysis capabilities of the presentation and interaction layer,
including various engines for value analysis, semantic analysis, optimization
and data mining;

• The VIOLA Model Layer, which provides data schema for supporting the busi-
ness views and the analysis capabilities, including models for business com-
ponents, processes and activities, value drivers, operational metrics and perfor-
mance indicators, and IT infrastructure, as shown in Fig. 8; and

• The CBM Tool Layer, which is a set of CBM-related tools developed by IBM
Research including the Core Tool which allows creating and viewing CBM
maps, and the Repository which allows sharing of CBM maps.

The VIOLA system, including the CBM Tool Layer, was implemented on the
Eclipse platform. Eclipse is an open source community whose projects are focused
on providing an extensible development platform and application frameworks for
building software. The platform defines the set of frameworks and common services
that collectively make up “integration-ware” required to support the use of Eclipse

FIG. 8. Functional architecture of VIOLA.



184 J. LEE

as a component model, as a rich client platform and as a comprehensive tool integra-
tion platform. The Analysis Modules of VIOLA are implemented as Eclipse plug-ins
by using the Eclipse Plugin Development Environment (PDE). The plug-in develop-
ment environment provides a number of views and editors that make it easier to build
plug-ins for Eclipse. The PDE made integrating plug-ins straightforward for the im-
plementation of the VIOLA system, which utilized the several open source Eclipse
plug-in projects, in addition to the business analysis plug-ins.

For a structured data model for implementing the VIOLA model and future needs
for model interoperability, the CBM Tool and the VIOLA system use Eclipse Mod-
eling Framework. EMF is a modeling framework and code generation facility for
building tools and other applications based on a structured data model. It provides
the foundation for interoperability with other EMF-based tools and applications. For
the implementation of user interfaces, the CBM Tool and the VIOLA system utilized
Graphical Editing Framework [16]. GEF allows developers to create a rich graphical
editor from an existing application model. GEF employs an MVC (model-view-
controller) architecture which enables simple changes to be applied to the model
from the view.

VIOLA employed Derby (its Eclipse plug-in version) for data store. The Derby
project develops open source database technology that is pure Java, easy to use,
small footprint, standards based, and secure. Finally, the VIOLA system employed
Business Intelligence and Reporting Tool (BIRT) for implementing various reporting
capabilities. BIRT is an Eclipse-based open source reporting system for Web applica-
tions. It has two main components: a report designer based on Eclipse, and a runtime
component that runs on an application server. BIRT also offers a charting engine that
allows adding charts to applications.

2.5 Related Work

Value-oriented business transformation requires a structured approach to corre-
lating value with business processes and also with IT capabilities, measuring and
tracking value, and delivering value through business processes. Also, realization of
value-based business transformation depends on an end-to-end approach to identi-
fying business components and IT shortfalls associated with business pain points;
modeling to capture and represent relationships among business components and
activities, metrics, value drivers and IT solutions; sophisticated value modeling to
quantify business values of business activities and IT capabilities and prioritize IT
initiatives.

There are precursory thoughts on value-oriented business transformation found in
research reports from research firms. For example, a Forrester research report [17]
discusses “installing value-based thinking.” The report describes that a strategic IT



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 185

organization contributes, directly and indirectly, to the organization’s ability to exe-
cute its business plan. Therefore, strategic thinking for the IT manager must include
an analysis of the impact that major decisions will have outside the IT organization.
This focus must be driven down through the organization so that the business im-
plications of decisions are considered at all levels. The research firm also provides
related discussion on the application of balanced scorecard for IT and value metrics
for IT along with ROI analysis of IT, “IT Value Management,” a disciplined approach
to quantifying technology benefits, and improving the financial justification process
for technology investments, and calculating the value of specific business and IT
capabilities such as faster time-to-market [13,18,51].

There are numerous studies conducted for business process improvement, in-
cluding reengineering, process benchmarking, process management, theory of con-
straints, total quality management, Six Sigma, and ISO (International Organization
for Standardization) 9000 requirements for quality management system, to name
a few. However, the presented VIOLA methodology is different from these busi-
ness transformation methodologies in a number of ways. VIOLA directly focuses on
business value rather than is connected indirectly through processes. It provides a
holistic approach to realizing value in business. It adopts a multi-layer model link-
ing business and IT semantics. It departs from the traditional process-based model
of business, and employs a component-based model of business, which provides a
number of advantages for qualitative analysis for business. It employs a multi-level
model of key performance drivers, operational metrics and value drivers to support
quantitative business analysis. Finally, it utilizes semantic technology for represent-
ing semantics and relationships of business components, activities, metrics and value
drivers, and enables automated reasoning among them.

Also, there are numerous studies on return-on-investment, metrics measurement
and analysis models. Total Cost of Ownership (TCO) Model by the Gartner Group
provides a deterministic ROI model for calculation designed to help consumers and
enterprise managers assess direct and indirect costs as well as benefits related to the
purchase of computer software or hardware [14]. Kaplan and Norton’s the balanced
scorecard provides a method intended to give managers a fast, comprehensive view
of the performance of a business [28]. The VIOLA methodology is different from
these business performance approaches in a number of ways. It provides a compre-
hensive value model that captures a multi-level model of value drivers associated
business activities and components. Also, it provides a holistic approach to a multi-
layer model linking business and IT semantics.

Recently, a number of consulting companies also provide products and services in
line with the value-based thinking. For example, Stern Stewart & Co. and Accenture
offers the high performance business approach, which uses Economic Value Added
(EVA) as a metrics for demonstrating the client’s expected economic return from



186 J. LEE

a business and performance improvement project [50]. EVA shares similar objec-
tives with VIOLA and also provides certain elements that are similar to what we are
working on such as “client scorecard” to identify client key issues, a simple value
model, and connection of business activities with metrics. However, VIOLA is one
step ahead with the CBM approach to identify “hot” components and IT shortfalls,
the semantic modeling to capture and represent relationships among components, ac-
tivities, value drivers and IT solution; the value modeling that translates the business
value of IT solutions and prioritizes IT projects.

2.6 Summary

Ability to demonstrate the value of IT and services is critical to business trans-
formation initiatives and project portfolio management in enterprises. Value-based
transformation requires a structured and holistic approach to correlating value with
business processes and IT capabilities, measuring and tracking value, and delivering
value through business processes. This section presented a value-oriented, model-
driven business transformation methodology referred to as VIOLA. It provides an
end-to-end approach to link business value with key IT enablers and provide further
business transformation opportunities.

VIOLA comprises four modeling elements. First, model-driven business transfor-
mation provides a multi-layer model linking business and IT semantics, and enables
IT and services to accurately reflect and be driven by business value. The upper layers
of model represent business semantics in the terms familiar to business executives,
business managers and analysts such as key performance indicators, operational
metrics, business processes, activities and governance. The lower layers of model
represent IT architecture comprising a wide range of services implemented in IT
infrastructure such as service-oriented architecture.

Second, component business modeling provides a strategic-level business view
of an enterprise in a dashboard, and enables business analyses based on business
impacts. The CBM methodology enables a number of qualitative business analysis
for identifying “hot” components and IT shortfalls that are associated with busi-
ness pain points. Third, value modeling specifies multiple levels of key performance
drivers, operational metrics and value drivers, supports various quantitative business
analyses including sensitivity analyses, and enables business optimization and risk
assessment.

Finally, semantic business modeling put together business components, business
activities, performance drivers and IT by capturing their relationships. It formally
represents meaning of business components, metrics, and their relationships and
enables automated reasoning to identify dependencies and causality relationships
among business entities.



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 187

The VIOLA methodology and its software solution is a result from an ongoing
research project on business design and transformation at the IBM Research Center.
With a methodology and a research prototype in place, we work with practitioners to
validate them with real-world business transformation initiatives. In addition to the
tool and methodology, in practice, the availability of useful and accurate content and
information of business components, value drivers, processes and solutions is critical
to meaningful analyses.

3. Model-Driven Ontology Engineering

W3C’s Semantic Web [2,55] provides a common framework that allows data to
be shared and reused across application and enterprise. It is based on the Resource
Description Framework (RDF), which describes various resources using XML (Ex-
tensible Markup Language) for syntax and URIs (Uniform Resource Identifiers) for
naming [29], and Web Ontology Language (OWL), which provides modeling con-
structs for specifying and inferring about knowledge [49]. As the Semantic Web
shapes the future of the Web, it becomes more and more important in software
engineering and enterprise application development. To meet the needs, a number
of tools and systems for ontology development and management have been devel-
oped.

While these ontology engineering tools provide a relatively complete stack of on-
tology management support and are used successfully in certain domains, there still
remains a gap between the ontology engineering tools and the traditional software
engineering. For more than a decade, software engineering has been established
on different modeling languages and methodologies such as Object Management
Group’s Unified Modeling Language (UML). This difference in modeling languages
and methodologies causes difficulties in large-scale enterprise application develop-
ment involving the Semantic Web technologies. The existing ontology engineering
tools provide only an ad hoc approach to bridging this gap with limited functionality
and performance. The creation of ontologies and their use in software engineering
projects is currently cumbersome and not seamless. The transformation of UML
models to OWL ontologies and vice versa is conducted only in an ad hoc and in-
complete way. Therefore, it is difficult to utilize the vast investment of enterprises
in software engineering models, which are often accumulated over a decade, in on-
tology engineering. For the Semantic Web to have impact on enterprises and their
business, and also to be widely accepted as a value-adding technology, bridging this
gap in software and ontology engineering is critical.

The primary objective of the work presented in this section is to bridge this gap
between two different, but complementary engineering disciplines with a system-



188 J. LEE

atic approach. We leverage OMG’s Model-Driven Architecture (MDA) [3,40] and
Ontology Definition Metamodel (ODM) [38] to provide model transformation. This
approach allows seamlessly supporting existing models in UML and other languages
in Semantic Web-based software development. In addition, it allows exploiting the
availability and features of UML tools for creation of vocabularies and ontologies.
Furthermore, MDA enables code generation and facilitates tool development. This
section presents a model-driven approach to ontology engineering. It describes the
architecture of the ontology engineering system, and mappings between UML and
OWL for model transformation.

The rest of this section is structured as follows: In Section 3.1, we describe a
number of existing software tools for ontology development and management. It
discusses a gap between these ontology engineering tools and the traditional software
engineering tools. Sections 3.2 and 3.3 summarize technical background information
on the Model-Driven Architecture and Ontology Definition Metamodel, respectively.
In Section 3.4, we explain how EMF-based technologies for MDA and ODM are
used to realize the proposed system for ontology engineering. Section 3.5 presents an
implementation of the model transformation component. Section 3.6 describes use
scenarios illustrating how the features of the developed ontology engineering tool
can be utilized in real-world applications. Finally, Section 3.7 provides a summary.

3.1 Traditional Ontology Management Systems

In recent years, there has been a surge of interest in using ontological information
for communicating knowledge among software systems. As a result, an increasing
range of software systems engage in a variety of ontology management tasks, in-
cluding the creation, storage, search, query, reuse, maintenance, and integration of
ontologies. Recently, there have been efforts to externalize such ontology manage-
ment burden from individual software systems and put them together in middleware
known as an ontology management system. An ontology management system pro-
vides a mechanism to deal with ontological information at an appropriate level of
abstraction. By using programming interfaces and query languages the ontology
management system provides, application programs can manipulate and query on-
tologies without the need to know their details or to re-implement the semantics
of standard ontology languages. Examples of such ontology management systems
include Protégé [47], Jena [6], Sesame [48], Pellet [45], KAON [37], Jastor [27],
D2RQ [8], RStar [25,33], and SnoBase [31].

While these ontology engineering tools provide a stack of ontology management
support, they also show certain limitations in supporting large-scale software engi-
neering projects. Participating in a number of enterprise application development
projects by using the SnoBase and RStar Ontology Management System, we learned



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 189

firsthand that it is critical to provide a comprehensive development environment
including supporting tools and facilities for the application developers. A pick-and-
choose approach to the best of the breed tools from different environments does not
always work well for the majority of the developers and often results in a longer
learning curve for the developers. A comprehensive ontology development environ-
ment often means a tight integration of tools for software and ontology engineering,
and model import and transformation, among others.

Semantic markup languages such as W3C’s RDF and OWL are based on the work
in the logic and Artificial Intelligence communities, such as Description Logic and
Knowledge Representation. The syntax of these languages is less intuitive to those
trained for object-oriented programming and simple XML-based languages. The lack
of a tightly integrated development environment for software and ontology engineer-
ing makes the job of subject matter experts and software engineers difficult, and often
affects negatively to the adoption of the semantic technology in industry. An effec-
tive ontology application development environment should bridge this gap between
software engineering and ontology engineering by providing a seamlessly integrated
environment.

Another consideration for industry adoption of the semantic Web technology is
the interoperability of the semantic markup languages with the well-established and
widely-accepted industry standard modeling languages and methodologies such as
Entity Relationship (ER) modeling and Unified Modeling Language (UML). Enter-
prises developed software models in these languages for more than a decade and
invested significantly in building systems around them. Despite all the theoretical
advantages the semantic technology brings in, in practice, it is highly unlikely that
the enterprises abandon the legacy systems and develop new systems around the
semantic Web technology. Instead, users in industry would be interested in the inter-
operability of the modeling languages, and the reuse of the existing models and data
with the semantic Web technology. The traditional ontology management systems
currently provide only ad hoc and incomplete methods for the model interoperabil-
ity. To address the practical requirements of industry, this section presents a novel
approach to ontology engineering based on the Model Driven Architecture (MDA),
which enables software engineers and users to design, build, integrate and manage
ontologies and software applications in an integrated development environment.

3.2 Model-Driven Architecture

Before presenting the model-driven approach to ontology engineering, this section
summarizes the Object Management Group’s Model Driven Architecture, which is
one of the two pillars of the system’s architecture, along with Ontology Definition
Metamodel.



190 J. LEE

In the history of software engineering, there has been a notable increase of the
use of models and the level of abstraction in the models. Modeling has become
separated from underlying development and deployment platforms, making them
more reusable and easier to create and modify by domain experts, and requiring
less knowledge of specific deployment systems. This trend places software model-
ing closer to knowledge engineering. The current stage in this evolution is the Model
Driven Architecture, which grew out of the standards work conducted in the 1990s
for the Unified Modeling Language.

The basic idea of MDA is that the system functionality is defined as a platform-
independent model, using an appropriate specification language and then translated
to one or more platform-specific models for the actual implementation. To accom-
plish this goal, the MDA defines an architecture that provides a set of guidelines for
structuring specifications expressed as models. The translation between platform-
independent model and platform-specific models is normally performed using au-
tomated tools. Specifically, MDA defines three levels of abstraction: Computation
Independent Model (CIM), Platform Independent Model (PIM) and Platform Spe-
cific Model (PSM). CIM is a view of a system that does not show the details of
a system structure. In software engineering, it is also known as a domain model,
which is concerned by domain experts. It is similar to the concept of ontology. PIM
is a model that is computation dependent, but it is not aware of specific computer
platform details. In other words, it is targeted for a technology-neutral virtual ma-
chine. Specification of complete system is completed with PSM. The goal is to move
human work from PSM to CIM and PIM, and let the detail implementation for a spe-
cific platform be generated as much as possible by automated tools which perform
the transformation from PIM to PSM.

MDA comprises of a four-layer metamodel architecture: meta-metamodel (M3)
layer, metamodel (M2) layer, model (M1) layer, and instance (M0) layer. Also, it
utilizes several complementary standards from OMG including Meta-Object Facility
(MOF), Unified Modeling Language (UML) and XML Metadata Interchange (XMI).
On the top of the MDA architecture is the meta-metamodel, i.e., MOF. It defines an
abstract language and framework for specifying, constructing and managing tech-
nology neutral metamodels. It is the foundation for defining any modeling language
such as UML or even MOF itself. MOF also defines a framework for implementing
repositories that hold metadata (e.g., models) described by metamodels [36]. The
main objective of having the four layers with a common meta-metamodel is to sup-
port multiple metamodels and models and to enable their extensibility, integration
and generic model and metamodel management.

All metamodels, standard or custom, defined by MOF are positioned on the M2
layer. One of these is UML, a graphical modeling language for specifying, visual-
izing and documenting software systems. With UML profiles, basic UML concepts



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 191

(e.g., class, association, etc.) can be extended with new concepts (stereotypes) and
adapted to specific modeling needs. The models of the real world, represented by
concepts defined in the corresponding metamodel at M2 layer (e.g., UML meta-
model) are on M1 layer. Finally, at M0 layer, are things from the real world. Another
related standard is XMI. It defines mapping from MOF-defined metamodels to XML
documents and schemas. Because of versatile software tool availability for XML,
XMI representations of models, metamodels and meta-metamodel facilitate their
sharing in software application development.

MOF tools use metamodels to generate code for managing models and metadata.
The generated code includes access mechanisms, or application programming in-
terfaces, to read and manipulate, serialize and transform, and abstract the details of
various interfaces based on access patterns. Eclipse Modeling Framework (EMF)
[12] provides a Java implementation of a core subset of the MOF API. EMF started
out as an implementation of the MOF specification, and evolved into a generic mod-
eling framework and code generation facility for building tools and other applications
based on a structured data model. The MOF-like core metamodel in EMF is called
Ecore. From a model specification written in XMI, EMF generates tools and runtime
support to produce a set of Java classes for the model, a set of adapter classes that
enable viewing and command-based editing of the model, and a basic editor. Models
can be specified using annotated Java, XML documents, or modeling tools like Ra-
tional Rose, then imported into EMF. It is important to note that EMF provides the
foundation for interoperability with other EMF-based tools and applications. The
proposed MDA-based system leverages EMF for implementing ontology manage-
ment tools which run on the Eclipse environment, and utilizes its support for model
interoperability.

3.3 Ontology Definition Metamodel

MDA and its four-layer architecture provide a solid basis for defining metamodels
of any modeling language, and so provide a foundation for bringing together soft-
ware engineering and methodologies such as UML with the semantic technology
based on W3C’s RDF and OWL. Once a semantic markup language such as OWL
is defined in MOF, its users can utilize MOF’s capabilities for modeling creation,
model management, code generation, and interoperability with other MOF-defined
metamodels.

Another OMG standard, Ontology Definition Metamodel (ODM) [38] takes this
approach. To comprehend common ontology concepts, ODM uses as a starting point
OWL which is the result of the evolution of existing ontology representation lan-
guages. ODM defines individual constructs of OWL in MOF, creating an ODM
metamodel. To leverage graphical modeling capabilities of UML in dealing with



192 J. LEE

OWL constructs, ODM also defines an ontology UML profile to support UML no-
tation for ontology definition. This profile enables graphical editing of ontologies in
OWL using UML diagrams as well as other benefits of using mature UML CASE
(Computer-Aided Software Engineering) tools. Finally, the following bi-directional
mappings between metamodels complete the picture:

1. mappings between OWL and ODM,
2. mappings between ODM and the ontology UML profile, and
3. mappings from the ontology UML profile to other UML profiles.

Figure 9 shows a simple example of the bi-directional mappings between meta-
models. In practice, both UML and ODM models are serialized in XMI, and OWL
model in XML, the two-way mappings can be implemented by transformations based
on XSLT (Extensible Stylesheet Language Transformation) [9]. Gasevic et al. sum-
marized existing approaches and tools for transformation between UML models (or
UML profiles) and OWL models in [9,15], and pointed out that the XSLT-based
transformation is widely used in them. Our work utilized EMF-based transforma-
tions, instead of XSLT, to leverage EMF’s generic modeling framework and code
generation facility for building tools and other applications. We implemented EODM
(EMF-based ODM), which is the underlying object model generated from ODM by
using EMF, for model transformations among OWL, UML and other modeling lan-
guages. More details will be given in the next section.

FIG. 9. Bi-directional mapping among metamodels.



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 193

Before moving to the main body of this section, it is useful to briefly mention yet
another related effort from W3C, namely, Ontology Driven Architecture (ODA) [52].
It combines MDA with the semantic technology differently from the ODM approach.
It attempts to augment the MDA standards and methodology stack with the semantic
technology to improve the discipline. It aims to enable unambiguous representation
of domain terminology, distinct from the rules, enable automated consistency check-
ing and validation of invariant rules, preconditions, and post-conditions, and support
knowledge-based terminology mediation and transformation for increased scalabil-
ity and composition of components. This effort still is in its infancy and at a draft
stage.

3.4 EMF-Based Ontology Engineering System

For realizing the model-driven ontology engineering, we utilize the Eclipse Mod-
eling Framework, which is open source MDA infrastructure for integration of mod-
eling tools [12]. A model specification described in various modeling languages
including UML, XML Schema, and annotated Java source can be imported into EMF.
Then EMF produces a set of Java classes for the model, a set of adapter classes that
enable viewing and editing of the model, and a basic editor. In its current imple-
mentation, EMF does not provide formal semantics definitions, inference and the
related model specifications. Our work adds this capability to EMF for providing a
comprehensive ontology engineering environment and dynamic application integra-
tion.

For adding the semantic model transformation capability to EMF, we leverage
the specification of Ontology Definition Metamodel. By using EMF and ODM,
we generated a foundational memory model, i.e., Java classes, for the constructs
of OWL. This foundational memory model is referred to as EODM (EMF-based
Ontology Definition Metamodel). By adding several necessary helper classes and
methods to EODM, we can use it to create, edit, and navigate any models in
OWL.

Also, we added an OWL parser to EODM, which can load OWL files into EMF
and generate OWL files from EMF, i.e., serialize EMF models to standard OWL
files in XML. The parser utilizes an XMI adaptor which enables the transformation
between the OWL models and EODM Ecore models. The transformation is made
possible by the bi-directional mapping between OWL and the Ecore metamodel. The
transformation opens a way to interoperability between OWL models and other EMF
supported models, which currently include ones defined in UML, XML Schema, and
annotated Java classes. The support of other models such as Entity Relationship mod-
els in EMF will be provided in the near future. By leveraging the OWL parser and
the bi-directional transformation between the OWL models and the Ecore models,



194 J. LEE

ontology application developers can develop ontologies using their favorite model
building tools, import them into EMF, transform their models into OWL ontologies,
enrich them with semantics, leverage their inference capability, and utilize the com-
prehensive development facility of Eclipse and EMF.

To be more specific, the EODM Ecore model is the MOF core model that repre-
sents ontologies in memory. It is an intermediate model for imported and transformed
legacy models, as well as the generated ontology, Java code, Java editor and Java edit.
The development environment allows its users to manipulate EODM Ecore mod-
els, enrich it with semantic specification, and generate Java code. A default set of
bi-directional mappings between metamodels of legacy models and OWL are devel-
oped in EMF. Eclipse plug-in developers can extend the mappings to handle other
types of legacy models, or other elements in legacy models specifying semantics.
The generated Java editor and Java edit provide ready-to-use visual tools to popu-
late or manipulated instances of OWL models. The visual tools are actually copies
of the standard methods of supporting application development in EMF. Figure 10
illustrates logical operations of the EMF-based ontology engineering system.

FIG. 10. EMF-based ontology engineering system (logical view).



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 195

We had two primary design objectives for the EMF-based ontology engineering
system: first, support for the entire lifecycle of ontology engineering, and, second,
avoiding reinvention of tools and facilities that are already proven to work in soft-
ware engineering. To achieve these objectives, we designed a software stack which
consists of six interdependent layers.

At the core of this EMF-based ontology engineering system is the EODM model,
which is derived from the Ontology Definition Metamodel and implemented in
Eclipse Modeling Framework. The bottom layer, EODM core model, provides the
basic Java programming model for OWL ontologies with all the necessary getter
and setter functions. It is automatically generated by EMF from the UML models for
OWL. To this generated core model implementation, certain utility classes and meth-
ods are added, to benefit Java programmers. On top of the EODM core model comes
the OWL Parser which parses OWL ontologies, translates them into EODM models,
and serializes EODM models to standard RDF/XML files. EODM core and OWL
Parser form the foundation for the entire software stack. The top layer is composed
of three relatively independent components that are build on top of this foundation.
The first component is the OWL Inference Engine. It takes an EODM model as in-
put, and executes user queries, reasoning about instances and relationships among
instances and classes. The second component is the Model Transformation. It im-
ports existing conceptual models represented in various modeling languages such as
UML, ER diagrams, and Java interfaces. Then, it transforms the models into one or
more EODM models. Finally, the OWL Editor provides a graphical ontology author-
ing environment where OWL ontologies in graphic notations are serialized to OWL

FIG. 11. EMF-based ontology engineering system layers.



196 J. LEE

files in a standard XML format. Figure 11 shows the components of the EMF-based
ontology engineering system.

3.5 Model Transformation

The EMF-based ontology engineering system provides tightly integrated environ-
ment for software and ontology engineering, providing a stack of useful compo-
nents. EODM provides the run-time library that allows applications to input and
output OWL ontologies, manipulate them by using Java objects, invoke the infer-
ence engine and access result sets, and transform among ontologies and other legacy
models.

The EODM core model provides useful classes and methods to access OWL on-
tologies and their instances. Its metamodel is defined in the Ontology Definition
Metamodel (ODM) specification [38]. It is an MOF2 compliant metamodel that al-
lows users to define ontologies by using those constructs defined in RDF Schema
and OWL. ODM comprises of two packages that define the metamodels of RDF and
OWL, respectively. The OWL package inherits classes from the RDF package, and
extends it. Figure 12 illustrates the class definition of the RDF package. The UML
model of the packages is augmented by a number of bi-directional references to gen-
erate APIs that leverage notification and messaging mechanisms in EMF. Also, there
are certain design patterns, such as Factory and Singleton, embedded in the code
generation engine of EMF. Therefore, the EODM core model automatically com-
plies with the design practices and benefit software engineers.

This model transformation module in the EMF-based ontology engineering system
addresses the ontology acquisition and model interoperability issues, as we discussed
earlier. Enterprises developed IT models in various modeling languages such as
UML and ER diagrams for several decades and invested heavily in building systems
around them. It is important for the enterprises to protect their investment in the
legacy systems. Also, it is important to leverage domain knowledge captured in the
existing IT models. Thus, users in industry are interested in the interoperability of the
modeling languages and the reuse of the existing models with the semantic Web tech-
nology. The interoperability allows exploiting the availability and features of UML
tools for creation of vocabularies and ontologies. In addition, it allows augmenting
the legacy models with formal semantics, and enabling an inference capability with
the models, which can return sound and complete query results.

Figure 13 shows the Ecore metamodel and its role in MDA. Ecore is a java imple-
mentation of the MOF model. Therefore, we can we utilize Ecore as an intermediate
model to support model transformation between OWL and other modeling lan-
guages. For example, a UML class diagram can be, first, transformed into an Ecore
model by using the mapping between the UML metamodel and the Ecore metamodel,



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 197

FIG. 12. Class definition in ODM.

and, then, the resulting Ecore model can be transformed into an EODM model by us-
ing the mapping between the ODM metamodel and the Ecore metamodel. This way,
it is possible to construct an ontology from legacy models. On the other hand, an
OWL ontology can be transformed into a UML diagram. There already exist trans-
formations defined between the Ecore model and other modeling languages such
as UML, XSD and Java interfaces. In EODM, a mapping between the Ecore meta-
model and the ODM OWL metamodel is defined. Then, we can implement model
transformation by leveraging well-developed facilities of EMF as much as possible.
XSLT-based approaches are more or less affected by the syntax of OWL and XMI,
because the files written in these languages can be represented in different forms, but
with the same semantics [9,15]. Our approach is based on a memory model mapping
approach, and, thus, independent of the syntax of OWL and XMI. However, it is fair
and important to note that a problem of model transformation is about expressive-



198 J. LEE

(a) Ecore metamodel as an implementation of MOF

(b) Ecore metamodel structure

FIG. 13. Ecore metamodel in MDA.

ness differences between models. With the current Ecore model, an OWL ontology
cannot be fully transformed into a UML model without loss of semantics, and vice
versa. The expressiveness of the Ecore model is gradually improved to cover more
models.

Figure 14 depicts the bi-directional mappings defined between the Ecore meta-
model and the EODM OWL metamodel. An OWL ontology is transformed to an



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 199

F
IG

.1
4.

T
ra

ns
fo

rm
at

io
n

be
tw

ee
n

O
W

L
an

d
E

co
re

.



200 J. LEE

EPackage and vice versa; an OWL class to an EClass, etc. While the transforma-
tion from OWL to Ecore model looks straightforward, there are a few gaps. As
in UML, Eclass is a first-class entity in the Ecore model. All other entities such
as properties are subordinates to Eclass. In OWL, however, all entities in OWL
are equal. Thus, different entities must have different names in OWL. For exam-
ple, if two properties belonging to two different Eclasses have an identical name,
a straightforward transformation will cause a name conflict problem. The EODM
Transformation engine renames properties with an identical name to ensure a unique
name for every entity. Another gap comes from the difference in expressiveness from
different modeling languages. OWL is a formal language which is based on Descrip-
tion Logic. OWL is more expressive than the Ecore model. There are several OWL
constructs that the Ecore model does support, e.g., OWL property restrictions used
for precise definition of concepts. Therefore, some semantics are lost inevitably when
conducting transformation from OWL to Ecore. Also, The Ecore model does not
support inference of OWL. Particularly, anonymous classes created by using OWL
restrictions make the situation with inference even more difficult. To address these
gaps, the EODM Model Transformation engine currently employs the following tac-
tics:

• It appends all unsupported OWL constructs as comments;

• It utilizes the inference engine during transformation to capture all implicit sub-
sumption relationships;

• It only transforms named OWL classes, and discards all anonymous classes;
and

• It renames properties with an identical name to ensure a unique name for every
entity.

3.6 Use Scenarios

This section presents use scenarios illustrating how the features of the proposed
EMF-based ontology engineering tool can be utilized in real-world applications. Our
example is the model-driven business transformation [20,30]. Business transforma-
tion employs business models such as component business models [21] to identify
opportunities for reducing costs or improve business processes. The model-driven
approach to business transformation requires a model representation of a variety
of business entities such as business processes, components, competencies, activi-
ties, resources, metrics, KPIs (Key Performance Indicators), etc. and their relations.
Semantic models or ontologies provide useful representation of business models
because they can effectively represent different types of relations among business



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 201

entities. Also, the automatic reasoning capability of semantic models provides an ef-
fective method for analyzing business models for identifying cost-saving or process
improvement opportunities.

For example, business performance metrics are associated with business activ-
ities. By using the relations between business activities and metrics, and also the
relations between business components and business activities represented in a se-
mantic model, a business analyst can infer relations between business components
and metrics. This type of analysis provides business insights into how the corporate
can improve its performance metrics by addressing issues with the business compo-
nents associated with the selected set of metrics. Then, by identifying, again in the
semantic model, IT systems associated with the business components, the analyst
may be able to suggest recommendations about IT system management to improve
performance metrics.

The first step in realizing this model-driven business analysis scenario is the
construction of semantic models of various business entities including business
processes, components, competencies, activities, resources, operational metrics,
KPIs. In many cases in most enterprises, the classes and relations of these busi-
ness entities are already captured in certain legacy modeling languages such as UML
class diagrams, ER diagrams, relational data models, Java interfaces, spreadsheets,
or text documents. Therefore, the task of semantic model construction simplifies to
transforming the legacy models and merging them into OWL ontologies. The merged
OWL ontologies can be enriched with certain semantics such as generalization and
specification, and cardinality constraints to enhance the effects of business analysis
queries.

To summarize the model transformation process using the EMF-based ontology
engineering system, it starts by capturing formal and informal semantics of legacy
models. The model transformation engine transforms formal semantics of input
legacy models into OWL models, by utilizing pre-defined mappings between OWL
and the metamodels of the input models. The ontology engineering system allows
an expert to look into annotations and code of legacy models, and represent the
semantics in OWL models. Informal semantics are captured as additional axioms
and added to the OWL models by using the OWL editor. Optional functions of the
system, such as the source code analysis or natural language processing, facilitate
automatically capturing of certain informal semantics and improve the productivity
of human experts. The overall process of capturing of formal and informal semantics
of legacy models and representing them in OWL models is referred to as semantics
enrichment.



202 J. LEE

3.7 Summary

As the Semantic Web shapes the future of the Web, it becomes more and more
important in software engineering and enterprise application development. However,
the adoption of Semantic Web by industry has been slowed by a gap between ontol-
ogy engineering tools and the traditional software engineering. Ontology engineering
and software engineering have been established on different modeling languages and
methodologies, which has caused difficulties in large-scale enterprise application de-
velopment involving the Semantic Web technologies. Currently, transformation of
UML models to OWL ontologies and vice versa is conducted only in an ad hoc and
incomplete way.

This section presented a novel approach to bridging this gap between two dif-
ferent, but complementary engineering disciplines with a systematic approach. We
leveraged OMG’s Model-Driven Architecture and Ontology Definition Metamodel
to provide model transformation, utilizing underlying standards including MOF-
based metamodels, XMI representation, UML extension with profiling, and EMF
implementation of MOF. This approach allows seamlessly supporting legacy mod-
els in UML and other languages in Semantic Web-based software development. In
addition, it allows exploiting the availability and features of UML tools for creation
of vocabularies and ontologies. Furthermore, it supports code generation and facil-
itates tool development. This section presented the methodology and architecture
of the EMF-based ontology engineering system, and mappings between UML and
OWL for model transformation. Finally, it presented use scenarios illustrating how
the features of this system can be utilized in real-world applications.

This model-driven ontology engineering is still in its infancy. For this approach
to meet its promises and scale for industry applications, a number of technical chal-
lenges need to be addressed. Some directions for further investigation include:

• a complete definition of bi-directional mappings between the Ecore metamodel
and semantic metamodels to support sound and complete model transformation;

• support for more legacy modeling languages and methodologies in addition
to UML, XSD (XML Schema Definition) and Java interfaces which we have
addressed in the current system, e.g., relational data models and spreadsheets
traditionally popular in the business environment;

• validation of the proposed advantage of utilizing features of visual UML tools
for creating and editing ontologies in real-world applications;

• evaluation of EMF’s capability of code generation for facilitating tool develop-
ment;



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 203

• augmenting the proposed model transformation method with capabilities for
source code analysis and text mining to facilitate acquisition of certain informal
semantics of legacy models; and

• maturation of the holistic EMF-based ontology engineering framework by ap-
plying and validating it in real-world business applications.

4. Business Process Composition with Web Services

A business process refers to a process in which work is organized, coordinated,
and focused to produce a valuable product or service. Business processes comprise
both internal and external business partners and drive their collaboration to accom-
plish shared business goals by enabling highly fluid process networks. A business
process solution consists of a model of the underlying business process (referred to
as a process model or a flow model) and a set of (flow-independent) business logic
modules. The abstractions of the elementary pieces of work in a flow model are
called activities; the concrete realizations of these abstractions at process execution
time are referred to as activity implementations. The prevalent technique for creating
business process solutions follows a manual and tedious approach involving assimi-
lation of varied process design and vendor specifications and writing vast amount of
code that produces a tight inflexible coupling between processes.

Web services provide a set of technologies for creating business process solu-
tions in an efficient, standard way. The promise of Web services is to enable a
distributed environment in which any number of applications, or application compo-
nents, can interoperate seamlessly within an organization or between companies in a
platform-neutral, language-neutral fashion. From the perspective of business process
solutions, a Web service could represent an activity within a business process, or a
composite business process comprising a number of steps [32].

Building a business process solution by using Web services involves specifying
the potential execution order of operations from a collection of Web services, the
data shared among the Web services, which business partners are involved and how
they are involved in the business process, and joint exception handling for collections
of Web services. A basis for these specification tasks is the discovery, composition,
and interoperation of Web services, which are primary pillars of automatic process
integration and management solutions. In this section, we focus on the following
two problems of the Web service-based business process automation: (1) the loca-
tion of services based the capabilities of published services, and (2) the composition
of business processes based on the business requirements of submitted process re-
quests. This section discusses solutions to these problems, and, especially, focuses
on the following aspects: (1) the specification of the capabilities of services and the



204 J. LEE

requirements of requests, and (2) algorithms for matching published services and
submitted process requests in terms of service capabilities and requested business
requirements.

The rest of this section is structured as follows: Section 4.1 summarizes the pre-
vious work on the problems of interest, discusses their limitations, and explains how
the work presented in this section addresses them. Section 4.2 addresses issues in-
volved with the specification of business requirements in process request documents.
Section 4.3 discusses the specification of the attributes and capabilities of Web
services in UDDI (Universal Description, Discovery and Integration). Section 4.4
presents a matching algorithm for locating services based on service capabilities and
properties. Sections 4.5 and 4.6 present matching algorithms that are deigned to sat-
isfy the business requirements and provide optimal solutions in terms of meeting
certain business objectives. Section 4.7 describes a multi-attribute decision analysis
for the given problem. Finally, in Section 4.8, conclusions are drawn and future work
is outlined.

4.1 Related Work

Recently, there have been active studies related to the Web service-based process
automation in both academia and industry. Industrial effort for the business process
automation is centered on the Business Process Execution Language for Web Ser-
vices (BPEL4WS), which is an XML-based workflow definition language that allows
companies to describe business processes that can both consume and provide Web
services [23]. Along with complementary specifications, WS-Coordination and WS-
Transaction [24], BPEL4WS provides a basis for a business process automation
framework, and is viewed to become the basis of a Web service standard for com-
position. With the BPEL4WS specification, vendors such as IBM provide workflow
engines on which business processes written in BPEL4WS can be executed. Running
on Web application servers such as Apache Tomcat, the workflow engines support
the coordinated invocation, from within the process, of Web services.

The focus of BPEL4WS is limited to the specification of flow models and the
coordinated invocation of Web services via the workflow engine. The BPEL4WS
specification does not directly address the discovery of services and the composi-
tion of business processes fulfilling various business objectives. Instead, it assumes
that these tasks are executed separately, and that the business manager who creates
a BPEL4WS document has the information on the selected Web services before
creating the process document. Also, BPEL4WS is limited in specifying business
requirements and preferences that can be critical in selecting services in real-world
applications.



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 205

We claim that for automating business processes and, hence, for supporting “real-
time enterprises,” the discovery and composition of services should be seamlessly
integrated with the capabilities BPEL4WS provides, i.e., the flow model specification
and the coordinated invocation of services. If this integration is achieved, a business
manager can create a business process model without knowing upfront specific Web
services that will be used for implementing activities of the process. Instead, s/he
only needs to specify business requirements and preferences for the process along
with the flow model in the process document. Then, a set of services, which matches
the specified requirements and optimizes certain selected business objectives, will be
automatically identified and specified in the final version of the process document,
which will be passed to the workflow engine for the execution of the process.

In this section, we discuss issues involved with the specification of business re-
quirements and objectives in process request documents: what are the types of re-
quirements that need to be specified in request documents, how can BPEL4WS be
used and extended for specifying the requirements, and how can the specified re-
quirements be used in the discovery of services and the composition of processes?
Also, we discuss a related topic, i.e., how to specify the capabilities of Web services
using an existing Web service standard, most notably UDDI (Universal Description
Discovery and Integration), an XML-based standard, which provides a registry of
businesses and Web services [53].

There are studies, mostly from academia, done for the specification of service
capabilities and process requests by using semantic knowledge-based markup lan-
guages, notably, OWL-S (OWL-based Web service ontology language) [42]. It is a
service description language, providing a semantic view of Web services including
the abstract description of the service capabilities. Based on the semantic representa-
tion of services and requests, several algorithms for matching published Web services
and submitted service requests were proposed [10,43,44]. In this section, we pro-
pose to specify the business requirements and preferences in an extended format of
the business process specification standard, i.e., BPEL4WS, instead of depending on
OWL-S. We believe that it will facilitate the seamless integration of service discovery
and workflow specification, which have been traditionally studied separately.

For matching published services and submitted process requests in terms of ser-
vice capabilities and requested business requirements, we propose a system multiple
matching algorithms, a micro-level matching algorithm, which matches the capa-
bilities and attributes of published services with activities in a process request, and
macro-level matching algorithms, which are used to compose a business process by
selecting one service for each activity among the candidate services selected by the
micro-level algorithm. The output from the macro-level matching algorithms satis-
fies the business requirements and constraints of the submitted request, and provides
optimal solutions in terms of meeting a certain business objective, e.g., minimizing



206 J. LEE

the cost or execution time, or maximizing the total utility values of business-related
properties of interest.

Some previous work envisioned the task of business process composition as an
AI-inspired planning problem [10,46]. They represent a Web service by a rule that
expresses the service capable of producing a particular output, given a certain input.
Then, a rule-based expert system is used to automatically determine whether a de-
sired composite process can be realized using existing services, and construct a plan
that instantiates the process. We believe that this is an interesting approach in its own
right, but we do not discuss this approach further in this section.

4.2 Business Requirement Specification

In this section, we address issues involved with the specification of business
requirements and objectives in process request documents. We discuss what infor-
mation on business requirements and preferences need to be specified in process
request documents and how the information may be used in the discovery of ser-
vices and the composition of processes. We extend the BPEL4WS specification to
accommodate this information in business process documents. Instead of providing
a complete schema for specifying the requirements in BPEL4WS documents, we
simply provide a few motivational examples.

Business process documents written in BPEL4WS mostly consist of the following
parts, which are primary components of BPEL4WS [23]:

• Process definition,

• Partner definition,

• Container definition,

• Flow model, and

• Fault handling.

The process definition allows the user to give a name to the current process, and to
include the name spaces where service messages passed among the process activities
are defined. The partner definition declares the parties involved in this process. The
container definition declares the structures for holding messages among partners.
The flow model specifies the activities and the interaction among them. Finally, the
fault handling defines the joint handling of exceptions among services.

Note that the primary components of BPEL4WS do not allow companies who
use the business process to specify any business requirement on the process such
as the cost and the execution time limit of the process, and any preference such as
one on partner relationships. We propose to extend BPEL4WS for specifying the



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 207

requirements of business process requests, which are important to composing opti-
mal business process. The declarative specification of the business requirements in
BPEL4WS (along with the specification of the attributes and capabilities of services
in UDDI) facilitates the automatic service discovery and process composition. In the
rest of this section, we will provide a few examples in a variant of BPEL4WS.

Figure 15 shows an example of specifying several requirements for a business
process, i.e., cost, time and quality of services. Each requirement is presented with
a certain limit value (either maximum or minimum) and a weight, which represents
the relative importance of the requirement in selecting services for implementation.
In Section 4.6, we will explain how this requirement information is used in selecting
services for composing a business process with an algorithm for optimizing (e.g.,
minimizing or maximizing) certain business objectives, or a multi-attribute decision
analysis algorithm that maximizes the total utility value of selected service combi-
nations. Note that a set of business requirements such as given in Figure 15 can be
assigned both to the entire process and individual activities used in the process. For
simplicity, we will consider only the former cases in this section.

In addition to business requirements, users of business processes sometimes need
to express their preferences in selecting Web services for implementing processes.
An example is the preference regarding whom a company prefers (or does not prefer)
partnering with in a business process depending on its existing business relationship
with service providers. Examples of relationship among business entities include

FIG. 15. Specification of business requirements in BPEL4WS.



208 J. LEE

FIG. 16. Specification of business relationship requirements in BPEL4WS.

business partners, competitors, and parent-child. In some cases, same two companies
may have both partner and competitor relationships depending on products and/or
services. Also, there may be non-traditional relationships among business entities
depending on situations of the involved parties. Figure 16 shows examples of partner
business relationships specified in a variation of BPEL4WS, where four preferred
business relationships between partners, i.e., the service providers of two Web ser-
vices, “approver” and “assessor.”

We claim that the specification of the relationships among business entities is use-
ful and necessary in creating business process solutions that fit involved partners’
taste. To make use of the business entity relationships in selecting Web services, the
information on the relationships of Web service providers also need to be specified
in registries, i.e., UDDI, as well as the preference specified in the process request
document in BPEL4WS. We will discuss this topic in the next section.

4.3 Service Profile Specification

In this section, we discuss the specification of the attributes and capabilities of Web
services using an existing Web service standard, i.e., UDDI, so that the information
can be used for the matching algorithms that select Web services in terms of matches
between service capabilities and requested business requirements. Previous work in
[44] provided a useful example of service profile schema (“upper ontology”) com-
prising the actor of the service, the functionalities of the service expressed in terms of
the transformation produced by the service, and a set of functional attributes provid-
ing additional information, requirements, and constraints. This work also provides
a mapping of the service profile in OWL-S into UDDI records for performing se-



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 209

FIG. 17. Business relationship specification in UDDI.

mantic matching between services and requests. Our approach is based on this work
in [44]. However, our approach does not depend on OWL-S specification of service
profiles. Instead, we directly store semantic information of services in UDDI records
by using tModels data structures, which describe additional features of services in
UDDI.

In addition, our approach uses the publisherAssertion messages of UDDI spec-
ification (version 3) to specify relationships of business entities in UDDI records.
Furthermore, we propose to extend the feature to express various business relation-
ships (e.g., parent–child, partners, competitors, or any user-defined relationship), so
that certain requirements on business relationships among partners can be expressed
in process requests, if necessary, and met in Web service discovery. UDDI API for
the publisher assertions can also be extended accordingly. Figure 17 shows an exam-
ple of the specification of business relationships, i.e., parent–child and partnership,
by using a publisherAssertion message. Note that the partnership of two business
entities specified in this example depends on a condition, i.e., a product category.

4.4 Service Discovery with Micro-Level Matching
For the location of services for business activities based on service capabilities and

attributes, we adopt an intuitive matching algorithm that uses semantic knowledge as
well as other information retrieval filters. This algorithm returns a (pre-specified)
number of services that sufficiently match with an activity in the request. It is based



210 J. LEE

on the previous work in [10,43] which allows service providers to advertise their
services in OWL-S service profile markup, and match submitted requests again in
OWL-S profile markup with appropriate services. Unlike this previous work, our
work does not depend on OWL-S profile, but utilizes the specification of service ca-
pabilities and request requirements directly stored in UDDI records and BPEL4WS
documents, respectively. This algorithm is referred to as a micro-level matching al-
gorithm, because it mostly deals with a single atomic process of a request.

Figure 18 depicts the architecture of the micro-level matching algorithm. The
Parser module is capable of parsing an input BPEL4WS document and creates ob-
jects storing business requirements specified in the documents. The Inference Engine
module parses and reasons with ontologies that provide the working model of entities
and interactions in knowledge domains of interest, specified in the OWL language
[56]. The Capability Matching Engine interacts with the Inference Engine and the
UDDI augmented by the service profiles that specify the capabilities and attributes
of services. The engine generates a pre-selected number of non-dominated services
matched with the target attributes in the input request. The output is stored in the
Non-Dominated Match Vector. The matching process is customized by the specifi-
cation of Match Criteria that is parsed by the Criteria Setup module. The Capability
Matching Engine generates a Non-Dominated Match Vector for each Match Crite-
ria.

FIG. 18. Micro-level matching algorithm.



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 211

The Capability Matching Engine is based on the semantic matching algorithms
outlined in [10,43]. While the matching algorithm presented in [43] is constrained
to match only input and output messages of Web services, the algorithm proposed in
[10] generalized the previous algorithm to match for any attribute of services and re-
quests by parameterizing the match criteria such as quality, service categories as well
as input and output messages. Figure 19 outlines the main control loop of the match-
ing algorithm which is based on the work in [10]. The degree of match is a measure
of the semantic distance between the conceptual meanings of the service attributes
[10,43]. Each attribute has a lexical concept attached to it that is defined in the On-
tology Database available to the Inference Engine. We use three different degrees
of matches based on specialization relationship as defined in [43]. As given in the
degreeOfMatch module of Fig. 19, the degrees of match are preferentially ordered
based on the semantic distance that the degree represents: an EXACT match between
concepts is preferred to a PLUG_IN match, and a PLUG_IN match is preferred over a
SUBSUMES match [43].

As briefly mentioned above, the matching process is customized by the Match
Criteria component, which specifies a set of target attributes for match and their least
preferred degree of match, i.e., matchLimit. Any match on an attribute whose degree
falls below matchLimit is considered a fail. An example of the Match Criteria is
given in Table I.

FIG. 19. Capability matching algorithm.



212 J. LEE

TABLE I
MATCH CRITERIA

Attributes matchLimit

Category PLUG_IN
Input message SUBSUMES
Output message EXACT

4.5 Process Composition with Macro-Level Matching

The micro-matching algorithm works with other matching algorithms, macro-level
matching algorithms, which are used to compose a business process by selecting one
service for each activity in the request. The output from the macro-level matching
algorithms satisfies the business requirements of the submitted request, and provides
optimal solutions in terms of meeting a certain objective, e.g., minimizing the cost or
execution time, or maximizing a certain quality measure. In this section, we model
the macro-level matching problem as a variation of the multiple-choice knapsack
problem [34], and design a configurable, generic optimization engine, which can
be repeatedly run with variations of configuration criteria in search for a business
process solution best fit the need. In addition, we alternatively model the macro-
level matching problem as a multi-attribute decision making problem. This model
is particularly useful when it is not sufficient to provide an optimal solution for a
single measure, but requires maximizing the total utility value of multiple business
measures of interest. Our algorithm is based on multi-attribute decision analysis,
which computes the scores of the candidate service combinations by considering
their attributes values and capabilities, ranks the candidates by score, and selects
services among the top-rankers.

4.6 Multiple-Choice Knapsack Algorithm

Figure 20 displays the architecture of the macro-level matching algorithm. The
input to the matching algorithm is a set of Non-Dominated Match Vectors, one vec-
tor for each atomic activity in the request, which were generated by the micro-level
matching algorithm. The output of the optimization engine is a set of services se-
lected from the input, one service from each Non-Dominated Match Vector. The
match engine can be customized for different business objectives and constraints as
specified in another input to the engine, the Configuration.

We model the macro-level matching problem as a variation of the multiple-choice
knapsack problem [34]. The “multiple-choice” term in this problem designation
refers to the requirement of selecting exactly one service from each candidate list,



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 213

FIG. 20. Macro-level matching algorithm.

i.e., each Non-Dominated Match Vector. For a specific example, consider the follow-
ing problem:

We are given a set of m business activities in our business process request,
a1, . . . , am such that activity, ai , contains ni candidates of Web services from the
micro-level matching step. The j th candidate for activity ai has cost cij , and exe-
cution time tij . Given the total execution time limit T for this business process, the
goal of this macro-level matching algorithm is to compose an implementation plan
for this business process by selecting one and only one Web service candidate from
each candidate list such that the overall cost is minimized without exceeding our total
execution time limit.

If we use indicator variable xij to indicate whether the j th service from the candi-
date list for activity ai was selected, we can formalize the problem with the following
equations:

(1)minimize C =
m∑

i=1

ni∑

j=1

cij xij

(2)subject to
m∑

i=1

ni∑

j=1

tij xij � T

(3)
ni∑

j=1

xij = 1, i = 1, . . . , m,

(4)xij ∈ {0, 1}, ∀i, j.



214 J. LEE

The multiple-choice knapsack problem is known to be NP-hard [34]. It is possible to
exactly solve the above problems using branch-and-bound algorithms, but because
the worst-case running time of these algorithms is exponential in both the number of
activities and the number of candidates on each list, branch-and-bound algorithms are
often too slow to be useful. An alternative approach is to use dynamic programming
techniques, and there are a number of algorithms known in this direction [34]. By
using off-the-shelf software packages of optimization algorithms such as IBM’s OSL
(Optimization Solutions and Library) [26], the given problem can be implemented in
a straightforward manner.

With this model in place, we can vary the problem with different objective func-
tions and constraints. The variation of the problem can be implemented by using the
Configuration component in Fig. 20. For example, some processes may need to be
optimized for execution time, while other measures such as cost will be treated as a
constraint. In this case, the problem can be re-formulated as follows:

We are given a set of m business activities a1, . . . , am such that activity ai contains
ni candidates of Web services. The j th candidate for activity ai has cost cij , and
execution time tij . Given the total cost budget C for this business process, the goal
of this algorithm is to compose an implementation plan for this business process by
selecting one and only one Web service candidate from each candidate list such that
the overall execution time is minimized without exceeding our total execution time
limit.

If we use indicator variable xij to indicate whether the j th service from the candi-
date list for activity ai was selected, we can formalize the problem with the following
equations:

(5)minimize T =
m∑

i=1

ni∑

j=1

tij xij

(6)subject to
m∑

i=1

ni∑

j=1

cij xij � C,

(7)
ni∑

j=1

xij = 1, i = 1, . . . , m,

(8)xij ∈ {0, 1}, ∀i, j.

Yet another variation of this problem is an optimization on an interesting metric such
as the degree of match described in the previous section. For example, the problem
can be formulated as follows.



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 215

We are given a set of m business activities a1, . . . , am such that activity ai contains
ni candidates of Web services. The j th candidate for activity ai has combined degree
of match dij , cost cij , and execution time tij . Given the total cost budget C and the
total execution time limit T for this business process, the goal of this algorithm is to
compose an implementation plan for this business process by selecting one and only
one Web service candidate from each candidate list such that our overall degree of
match is maximized without exceeding our total cost budget and the total execution
time limit.

If we use indicator variable xij to indicate whether the j th service from the candi-
date list for activity ai was selected, we can formalize the problem with the following
equations:

(9)maximize D =
m∑

i=1

ni∑

j=1

dij xij

(10)subject to
m∑

i=1

ni∑

j=1

cij xij � C,

(11)
m∑

i=1

ni∑

j=1

tij xij � T ,

(12)
ni∑

j=1

xij = 1, i = 1, . . . , m,

(13)xij ∈ {0, 1}, ∀i, j.

Sometimes in a business process, the degree of match of an activity can be more
important than those of other activities. In such a case, the variant importance of
degree of match of different activities can be reflected in the model by the assignment
of weight wi for each ai . Then the objective model is slightly modified as follows:

(9’)maximize D =
m∑

i=1

wi

ni∑

j=1

dij xij .

In addition to varied business objectives, the optimization problem of matching
can be subject to business rules such as:

• the total number of service providers participating in a business process should
be limited to a certain number to avoid depending too heavily on just a few
partners,



216 J. LEE

• the total number of service providers participating in a process should be lim-
ited to a certain number to control the administrative overhead of managing
providers,

• the number of services granted to a service provider should be limited to a
certain number, and

• at least one (or some fixed number of) minority provider(s) need to be chosen.

These business rules can be expressed in linear inequalities with binary vari-
ables, and added as constraints to the multiple-choice knapsack problem model in a
straightforward manner. The problem can be solved in the same manner for identify-
ing the service set satisfying the given business objective and fulfilling the constraints
of the given business rules.

4.7 Multi-Attribute Decision Analysis

Another approach to solving the macro-level matching problem is a multi-attribute
decision analysis. This method is particularly useful when it is not sufficient to
provide an optimal solution for a single measure, but requires maximizing the to-
tal utility value computed by considering multiple business measures such as cost,
execution time, degree of match, quality, category, and business entity relationship.
While this algorithm provides an alternative solution to the macro-matching problem,
it can also be used with the optimization algorithm (of the multiple-choice knapsack
problem model) in a complementary way.

The input to this algorithm is a set of n service combinations s1, . . . , sn such that
service combination si contains m Web services, one service for each activity in
the given business process. Also, each service combination has k business attributes
x1, . . . , xk such that business attribute xj is assigned a relative weight wj (remember
the weight attribute of the <requirement> tag in Fig. 15). Then this algorithm uses
additive value function in order to compute the scores of the alternative service com-
binations. The system then ranks the alternative combinations by score, and selects
the winning combinations among the top-rankers.

The basic hypothesis of this multi-attribute decision analysis algorithm is that in
any decision problem, there exists a real valued function U defined along the set
of feasible alternatives, which the decision maker wishes to maximize. This func-
tion aggregates the criteria x1, . . . , xk . Besides, individual (single-measure) utility
functions U1(x1), . . . , Un(xn) are assumed for the k different attributes. The utility
function translates the value of an attribute into “utility units.” The overall utility
for an alternative is given by the sum of all weighted utilities of the attributes. For
an outcome that has levels x1, . . . , xk on the k attributes, the overall utility for an



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 217

alternative i is given by

(14)U(x1, . . . , xk) =
k∑

i=1

wiU(xi).

The alternative with the largest overall utility is the most desirable under this rule.
Each utility function U(xi) assigns values of 0 and 1 to the worst and best levels on
that particular objective and

(15)
k∑

i=1

wi = 1, wi > 0.

Consequently, the additive utility function also assigns values of 0 and 1 to the
worst and best conceivable outcomes, respectively. A basic precondition for the ad-
ditive utility function is preferential independence of all attributes, which has been
the topic of many debates on multi-attribute utility theory [7,11]. Even in cases with
inter-dependencies, the additive utility function is often used as a rough-cut approx-
imation for a more complex non-linear utility function.

4.8 Summary

In this section, we addressed two primary problems of the Web service-based
business process automation: the location of services on the basis of the capabili-
ties of published services, and the composition of business processes on the basis
of the business requirements of submitted process requests. We proposed a solution,
which comprises multiple matching algorithms, a micro-level matching algorithm
and a macro-level matching algorithm. The first algorithm reasons with semantic
information of services and returns services that sufficiently match with an activ-
ity in the request. The second algorithm solves a variation of the multiple-choice
knapsack problem that models the macro-level matching problem for optimizing a
business objective and fulfilling other business constraints. In addition, we proposed
a multi-attribute decision analysis algorithm, which can be used with the optimiza-
tion algorithm in a complementary fashion for a better process composition result.
This algorithm is particularly useful when it requires maximizing the total utility
value computed by taking multiple business measures into account. For securing in-
formation required for the execution of the matching algorithms, we explained how
existing standards, UDDI and BPEL4WS, could be used and extended to specify
service capabilities of services and business requirements, respectively.



218 J. LEE

ACKNOWLEDGEMENTS

The author thanks Ally Lu, Anca Ivan, Ankur Chandra, Chun Hua Tian, David
Cohn, David Yao, Gordon Xie, Grace Lin, Guy Rackham, Ko-Yang Wang, Kumar
Bhaskaran, Li Ma, Mei Gong, Rakesh Mohan, Rama Akkiraju, Richard Goodwin,
Rob Guttman, Rong Zeng Cao, Rosemarie Truman, Thomas Li, Timur Nurullaev,
Vivian Ding, Yahong Gu, Yue Pan, and Yunhee Jang for their constructive discus-
sion.

Appendix A: Acronyms

API Application Programming Interface
APQC American Productivity & Quality Center, Inc.
BIRT Business Intelligence and Reporting Tool
BPEL4WS Business Process Execution Language for Web Services
CASE Computer-Aided Software Engineering
CIM Computation Independent Model
EMF Eclipse Modeling Framework
EODM EMF-based Ontology Definition Metamodel
ER Entity Relationship
EVA Economic Value Added
GEF Graphical Editing Framework
IBM International Business Machines Corp.
IBM OSL IBM Optimization Solutions and Library
ISO International Organization for Standardization
IT Information Technology
KPI Key Performance Indicator
MDA Model-Driven Architecture
MOF Meta-Object Facility
MVC Model-View-Controller
ODA Ontology Driven Architecture
ODM Ontology Definition Metamodel
OWL Web Ontology Language
OWL-QL OWL Query Language
OWL-S OWL-based Web service ontology language
PDE Eclipse Plugin Development Environment
PIM Platform Independent Model
PSM Platform Specific Model
RDF Resource Description Framework



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 219

RDQL Query Language for RDF
ROI Return On Investment
SOA Service-Oriented Architecture
UDDI Universal Description, Discovery and Integration
UML Unified Modeling Language
URI Uniform Resource Identifier
W3C World Wide Web Consortium
WS Web Service
XMI XML Metadata Interchange
XML Extensible Markup Language
XSD XML Schema Definition
XSL Extensible Stylesheet Language Family
XSLT XSL Transformations

REFERENCES

[1] APQC, “Process classification framework”, http://www.apqc.org.
[2] Berners-Lee T., Hendler J., Lassila O., The Semantic WEB, Scientific American, 2001.
[3] Brickley D., Guha R., “RDF vocabulary description language 1.0: RDF schema”, W3C

Recommendation, http://www.w3.org/TR/rdf-schema/, 2004.
[4] Brown A., “An introduction to Model Driven Architecture – Part I: MDA and today’s

systems”, http://106.ibm.com/developerworks/rational/library/3100.html, 2004.
[5] Burton-Jones A., Knowledge Capitalism: Business, Work and Learning in the New Econ-

omy, Oxford University Press, UK, 1999.
[6] Carroll J.J., Dickinson I., Dollin C., Reynolds D., Seaborne A., Wilkinson K., “Jena:

Implementing the semantic Web recommendations”, in: Proc. of WWW, 2004.
[7] Clemen R.T., Making Hard Decisions: An Introduction to Decision Analysis, Wadsworth

Publishing Company, Belmont, CA, 1996.
[8] D2RQ V0.4: Treating non-RDF databases as virtual RDF graphs, http://www.wiwiss.

fu-berlin.de/suhl/bizer/d2rq/, 2004.
[9] Djuric D., Gaševic D., Devedžic V., “Ontology modeling and MDA”, J. Object Technol-

ogy 4 (1) (2005).
[10] Doshi P., Goodwin R., Akkiraju R., Roeder S., “A flexible parameterized semantic match-

ing engine”, IBM Research Report, 2002.
[11] Edwards W., “How to use multi-attribute utility measurement for social decision mak-

ing”, IEEE Transactions on Systems, Man, and Cybernetics SMC 7 (1977) 326–340.
[12] EMF (Eclipse Modeling Framework), http://www.eclipse.org/emf, 2004.
[13] Erickson J., Hughes L., “A disciplined approach to quantifying technology benefits”,

Forrester Report, December 13, 2004.
[14] Gartner, “Total cost of ownership”, http://www.gartner.com/4_decision_tools/

measurement/decision_tools/tco/tco.html.



220 J. LEE

[15] Gasevic D., Djuric D., Devedzic V., “Bridging MDA and OWL ontologies”, J. Web En-
gineering 4 (2) (2005) 119–134.

[16] GEF (Graphical Editing Framework), http://www.eclipse.org/gef, 2004.
[17] Gliedman C., “Instilling value-based thinking, asking the 20 key questions”, Forrester

Report, June 29, 2004.
[18] Gliedman C., “Calculating the value of faster time-to-market”, Forrester Report, February

19, 2004.
[19] Horn P., “The new discipline of services science”, Business Week Online,

http://www.businessweek.com/technology/content/jan2005/tc20050121_8020.htm, Jan-
uary 21, 2005.

[20] IBM, “Architecture of business”, IBM Global Technology Outlook 2004, http://www.
research.ibm.com, 2004.

[21] IBM, “Component business modeling”, http://www-1.ibm.com/services/us/bcs/html/
bcs_componentmodeling.html.

[22] IBM, “WebSphere business modeler”, http://www-306.ibm.com/software/integration/
wbimodeler/.

[23] IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems, “Business process
execution language for Web services, version 1.1”, http://www-128.ibm.com/
developerworks/library/specification/ws-bpel/, February 2005.

[24] IBM, BEA Systems, Microsoft, Arjuna, Hitachi, IONA, “Web services transac-
tions specifications”, http://www-128.ibm.com/developerworks/library/specification/ws-
tx/, August 2005.

[25] IBM Integrated Ontology Toolkit, http://www.alphaworks.ibm.com/tech/semanticstk,
2005.

[26] IBM Optimization Solutions and Library, http://www-3.ibm.com/software/data/bi/osl/
index.html.

[27] Jastor, http://jastor.sourceforge.net/.
[28] Kaplan R.S., Norton D.P., The Balanced Scorecard: Translating Strategy into Action,

Harvard Business School Press, September, 1996.
[29] Klyne G., Carroll J., “Resource Description Framework (RDF): Concepts and abstract

syntax”, W3C Recommendation, http://www.w3.org/TR/rdf-concepts/, 2004.
[30] Lee J., “Model-driven business transformation and semantic Web”, Commun. ACM (spe-

cial issue on semantic eBusiness vision) (December 2005).
[31] Lee J., Goodwin R., “Ontology management for large-scale enterprise systems”, J. Elec-

tronic Commerce Research and Applications 5 (3) (2006).
[32] Leymann F., Roller D., Schmidt M.T., “Web services and business process management”,

IBM Systems J. 41 (2) (2002).
[33] Ma L., Su Z., Pan Y., Zhang L., Liu T., “RStar: An RDF storage and query system for

enterprise resource management”, in: Proc. of ACM CIKM, 2004, pp. 484–491.
[34] Martello S., Toth P., Knapsack Problems, John Wiley & Sons, Chichester, 1990.
[35] McDavid D., “The business-IT gap: A key challenge”, IBM Research Memo, http://

www.almaden.ibm.com/coevolution/pdf/mcdavid.pdf.
[36] MOF: Meta-Object Facility, Version 1.4, http://www.omg.org/technology/documents/

formal/mof.htm.



ADVANCES IN BUSINESS TRANSFORMATION TECHNOLOGIES 221

[37] Oberle D., Volz R., Motik B., Staab S., “An extensible ontology software environment”,
in: Staab S., Studer R. (Eds.), Handbook on Ontologies, Springer, 2004, pp. 311–333,
(Chapter III).

[38] ODM: Ontology Definition Metamodel, http://www.omg.org/docs/ontology/04-08-
01.pdf, 2004.

[39] OECD, “A new economy? The changing role of innovation and information technology
in growth”, Paris, 2000.

[40] OMG, “Model Driven Architecture (MDA) guide, version 1.0.1”, http://www.omg.org/
cgi-bin/doc?omg/03-06-01, March 6, 2001.

[41] OMG, “Unified Modeling Language (UML)”, www.omg.org/uml/.
[42] OWL Services Coalition, OWL-S: Semantic markup for Web services, http://www.

daml.org/services/owl-s/1.0/owl-s.html.
[43] Paolucci M., Kawamura T., Payne T.R., Sycara K., “Semantic matching of Web services

capabilities”, in: Proc. of the 1st International Semantic Web Conference, June 2002.
[44] Paolucci M., Kawamura T., Payne T.R., Sycara K., “Importing the semantic Web in

UDDI”, in: Workshop on Web Services, e-Business, and the Semantic Web: Founda-
tions, Models, Architecture, Engineering and Applications, Toronto, Ontario, Canada,
May 2002.

[45] Pellet: An Open-Source Java Based OWL DL Reasoner, http://www.mindswap.
org/2003/pellet/index.shtml.

[46] Ponnekanti S.R., Fox A., “SWORD: A developer toolkit for web service composition”,
in: Proc. of the 11th World Wide Web Conference, Honolulu, Hawaii, May 7–11, 2002.

[47] Protégé, http://protege.stanford.edu/index.html, 2004.
[48] Sesame, “An open source RDF database with support for RDF schema inferencing and

querying”, http://www.openrdf.org/, 2002.
[49] Smith M.K., Welty C., McGuinness D.L., “OWL Web ontology language guide”,

http://www.w3.org/TR/owl-guide/, 2004.
[50] Stern Stewart & Co, “What is EVA?”, http://www.sternstewart.com/evaabout/whatis.php.
[51] Symons C., “The balanced scorecard for IT: Value metrics”, Forrester Report, November

15, 2004.
[52] Tetlow P., et al., “Ontology driven architectures and potential uses of the semantic

Web in systems and software engineering”, http://www.w3.org/2001/sw/BestPractices/
SE/ODA/, 2005.

[53] UDDI Version 3 Published Specification, http://www.uddi.org/pubs/uddi-v3.00-
published-20020719.htm, 19 July 2002.

[54] W3C, “Resource Description Framework (RDF)”, http://www.w3.org/RDF/.
[55] W3C, “Semantic Web”, W3C Document, http://www.w3.org/2001/sw/.
[56] W3C, “Web ontology language (OWL)”, http://www.w3.org/2004/OWL/.
[57] W3C, “Web services”, http://w3c.org/2002/ws/.
[58] W3C, “Web services architecture”, http://www.w3.org/TR/ws-arch/.



This page intentionally left blank



Phish Phactors: Offensive and Defensive
Strategies

HAL BERGHEL

School of Informatics and Internet Forensics Laboratory
University of Nevada, Las Vegas
USA

Department of Computer Science and Software Engineering
University of Canterbury
Christchurch
New Zealand

JAMES CARPINTER

Department of Computer Science and Software Engineering
University of Canterbury
Christchurch
New Zealand

JU-YEON JO

School of Informatics and Internet Forensics Laboratory
University of Nevada, Las Vegas
USA

Abstract
Phishing attacks attempt to fraudulently solicit sensitive information from

a user by masquerading as a known trustworthy agent. They commonly use
spoofed emails in association with fake websites in order to coerce a user into re-
vealing personal financial data. Phishing is now a serious problem with criminals
adopting the well-developed and well-known techniques to exploit Internet users
with sophisticated attacks. Phishers are known to have successfully attacked an
estimated 1.2 million users and stolen an estimated US$929 million in the twelve
months to May 2005.

ADVANCES IN COMPUTERS, VOL. 70 223 Copyright © 2007 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(06)70005-5 All rights reserved.



224 H. BERGHEL ET AL.

This chapter aims to provide the current status of phishing attack techniques
and defense methods. We first provide an overview of the fundamental phish-
ing techniques for delivering a successful attack, such as bulk emailing, fake
websites and detection avoidance using a variety of obfuscation techniques. We
then survey more sophisticated methods that may deceive even knowledgeable
and vigilant users. These techniques do not rely on naïve email users and simple
websites, but use highly realistic fake websites, generic hacking techniques (such
as DNS poisoning or cross site scripting) or actively exploit browser vulnerabili-
ties. For example, a Man-In-The-Middle attack or the use of DNS poisoning can
easily fool even an advanced user who may be aware of phishing attacks.

Quite a few defensive methods have been developed, although many are still in
the early stage of development. URL obfuscation can be rather reliably detected
using analysis algorithms. Fake websites can also be detected automatically with
a low false positive ratio by comparing them with the real websites. Clients can
utilize anti-phishing-capable devices or software such as anti-virus, anti-spam,
anti-spyware, or IDS. Web browsers can be armed with anti-phishing plug-ins
such as Spoofstick or SpoofGuard. Given the damage that can potentially done
by a phishing attack, a diverse range of efforts are being made to protect ordinary
users (such as in user education, reporting and response and legal protection).

The outlook is not entirely bleak against phishing given the technical and so-
cial remedies being pursued. If organizations prepare well, remain vigilant and
follow attack trends carefully, they can respond quickly and effectively with a
range of techniques to defend their customers’ data. If individuals take a re-
sponsibility for their protection and adopt a defense-in-depth approach, they can
shield themselves against the most sophisticated attacks. Although there is no
simple solution, active and aware users and organizations have the ability to form
a strangle-hold on this ever-growing threat.

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
1.1. History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
1.2. Current Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
1.3. Phishing Illustrated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

2. Core Phishing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
2.1. Bulk Emailing Combined with Fake Websites . . . . . . . . . . . . . . . . . . 233
2.2. Alternative Delivery Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 237
2.3. Obfuscation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

3. Advanced Phishing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
3.1. Malware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
3.2. Man-in-the-middle Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
3.3. Website-based Exploitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
3.4. Server-side Exploits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
3.5. Client-side Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
3.6. Context Aware Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252



PHISH PHACTORS 225

3.7. Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
4. Anti-Phishing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

4.1. Detecting Phishing Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
4.2. Retaliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
4.3. Client-side Security Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
4.4. Web Browser Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
4.5. Server-side Security Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
4.6. Alternative Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
4.7. Email Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

5. Comprehensive Anti-Phishing Efforts . . . . . . . . . . . . . . . . . . . . . . . . . . 261
5.1. User Vigilance and Education . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
5.2. Proactive Detection of Phishing Activities . . . . . . . . . . . . . . . . . . . . 262
5.3. Reporting and Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
5.4. Legal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

1. Introduction

Phishing attacks attempt to fraudulently solicit sensitive information from a user
by masquerading as a known trustworthy agent [5,60]. They most commonly use
‘spoofed’ emails in association with fake websites in order to coerce a user into
revealing personal financial data, such as credit card numbers, account user names
and passwords, or social security numbers [49]. By masquerading as well-known
banks, e-retailers and credit card companies, phishers often convince recipients to
respond [5]. Phishing attacks range in sophistication, from simply fooling a user
with a seemingly legitimate communication, to deliberately exploiting weaknesses
in software to prevent users from determining the true nature of the attack.

The idea of obtaining user information through fraudulent means is not unique;
phishing is merely a subset of two larger problems that exist in both the electronic
and ‘real-world’ domain:

• Social engineering: is any attempt to obtain confidential information by manip-
ulating legitimate users. Phishing uses email and counterfeit websites to achieve
this goal [61]. While most Internet security threats take advantage of software
vulnerabilities, this attack exploits trust relationships previously developed1 be-
tween the user and other users or organizations.

1 In some circumstances, the trust relationship is created and then immediately abused. For example, an
attacker might attempt to reset login credentials from an organization’s helpdesk by convincing the tech-



226 H. BERGHEL ET AL.

• Identity theft: uses the information gained through techniques such as social
engineering in a deliberate attempt to use another person’s identity. This can
then be used, for example, to gain access to their finances or frame them for a
crime [59]. Techniques used involved include stealing mail, rummaging through
garbage (‘dumpster diving’), stealing personal information from computer data-
bases, or infiltrating large organizations that store large amounts of information.
Phishing is merely a mechanism of obtaining this information.

Phishing shares many characteristics with two similar techniques: pharming and
the abuse of alternate data streams. Both require a higher level of skill to execute suc-
cessfully than simple phishing schemes. Pharming is a more active form of phishing,
with the user automatically directed away from the legitimate website to the fraud-
ulent website without warning [9]. Alternate data streams can be used to secretly
associate hostile executables with legitimate files; this is effectively ‘file phishing’
[8]. With minimal effort, a hidden executable can be masked and its function ob-
scured. Like phishing, the resulting environment is not entirely as it appears.

Another related technique is an independent scam website that lures victims
through voluntary web navigation or through a search engine instead of using active
emailing. An unsuspecting user may buy a product from a scam website, or make an
investment on a foreign company through a scam website. While its effect is similar
to phishing, the process of luring the victims is different. A scam website is a passive
form of phishing, silently waiting for a prey, but it can become more effective when
supplemented with phishing techniques. Many anti-phishing techniques covered in
this chapter are also useful for identifying those independent scam websites, for ex-
ample, Trustbar (see Section 4.4) displays the logos and certificate authority of the
website.

1.1 History

The word ‘phishing’ is a derivative of the word ‘fishing’ and describes the process
of using lures to ‘fish’ for (i.e., obtain) sensitive user information [2]. Exchanging ‘f’
for ‘ph’ is a common hacker replacement; it is most likely an acknowledgement of
the original term for hacking, known as ‘phreaking’. The original form of hacking,
known as phone phreaking, involved sending specific tones along a phone line that
allowed users to manipulate phone switches. This allowed free long distance calls,
or the billing of services to other accounts, etc.

The first recorded use of the term ‘phishing’ was in January 1996, in a posting to
the alt.2600 newsgroup by drspamcake@aol.com. It was in reference to the theft

nician that they are a legitimate user in some kind of unusual situation that requires standard procedures
to be bypassed.



PHISH PHACTORS 227

of AOL user accounts [13] by scamming passwords off unsuspecting users. The
technique itself predates the reference by drspamcake@aol.com: AOL users were
already being targeted via instant messages sent by users masquerading as AOL staff
members, who would request a user’s account details [60]. By 1995, AOL software
contained a ‘report password solicitation’ button, which gives an indication of the
magnitude of the threat.

Those seeking free AOL accounts initially took advantage of poor credit card
validation techniques and used algorithmically generated credit card numbers to ac-
quire accounts that could last up to a month. They turned to phishing for legitimate
accounts after AOL bought in measures in 1995 to prevent this type of behavior.
Hacked accounts were referred to as ‘phish’ and by 1997, phish were being actively
traded as a form of electronic currency [46]. For example, phish could be traded for
hacker software or ‘warez’.

Since that time, the definition of phishing has widened to cover not only obtaining
user account details, but also obtaining access to all personal and financial data. The
sophistication of the field has also grown: modern schemes go far beyond simple
instant messages, and typically target thousands of users using mass mailings and
fake websites.

1.2 Current Status

Phishing is now more than a mere annoyance: it is a common online crime that is
relatively easy to perform, has a low chance of being caught, and has a potentially
very high reward [27]. It is for these reasons that phishing has been embraced by
organized crime, both in the United States and in Eastern Europe (particularly in
Russia and the former Soviet bloc). It is also believed [23] that terrorist sympathizers,
operating out of Africa and the Middle East, are using phishing to steal identities and
cash.

Phishers typically send out massive emails in the hope that some naïve recipients
will respond. Although the majority of the recipients feel suspicious on such phishing
emails, some recipients are successfully convinced into the scam. Phishers success-
fully attacked an estimated 1.2 million users and cost an estimated US$929 million
in the twelve months to May 2005 [38]. US businesses lose an estimated $2 billion
a year as their clients become victims [39]. The Anti-Phishing Working Group2 [3]

2 Anti-Phishing Working Group is a global association of industrial and law enforcement organiza-
tions focused on eliminating the fraud and identity theft that result from phishing, pharming, and email
spoofing. It includes more than 1,600 companies and agencies worldwide including 8 of the top 10 US
banks and 4 of the top 5 US ISPs. It offers anti-phishing education, maintains phishing data, evaluates
the anti-phishing methods, and work with law enforcement and legislature. Its website is available at
http://www.antiphishing.org.



228 H. BERGHEL ET AL.

received 20,109 reports of phishing scams in May 2006, primarily targeting financial
institutions (92% of all reports). In year to May 2006, the average growth rate for
phishing attacks was 34% [3].

1.3 Phishing Illustrated
There are several steps that phishers follow. Two examples are illustrated here, for

posers and mongers, respectively. The posers are the bottom-feeders in the phishing
community that exhibit a very low level of sophistication. The phish mongers are
those who deploy these phish scams in such a way that they stand a measurable
chance of success against a reasonably intelligent and enlightened end-user [7].

1.3.1 Posers
The essential requirements of effective phishing require that the bait:

1. look real;
2. present itself to an appropriate target-of-opportunity;
3. satisfy the reasonableness condition (i.e., going after the bait is not an unrea-

sonable thing to do);
4. cause the unwary to suspend any disbelief;
5. clean up after the catch.

Figure 1 is modeled after some live phish captured on the net and meets all of the
five criteria identified above. First, the email looks real—at least to the extent that it
betrays nothing suspicious to a typical bank customer (a.k.a. target-of-opportunity).
The graphic appears to be a reasonable facsimile of a familiar logo, and the salu-
tation and letter is what we might expect in this context. Second, the target is the
subset of recipients who are Bank of America customers. The fact that the majority
of recipients are not is not a deterrent because there is no penalty for over-phishing
in the Internet waters. Third, the request seems entirely reasonable and appropriate
given the justification. Customers reason that if they were a bank, they might do
the same thing. Fourth, the URL-link seems to be appropriate to the brand. Unwary
Internet users might readily trade off any lingering disbelief for the opportunity to
correct what might be a simple error that could adversely affect use of a checking
or credit card account. The link to “verify.bofa.com” may be assumed to take us to
an equally plausible web form that would request an account name and password or
PIN.

The unwary in this case is M. Jones whose harvested web form appears to the
phisherman as in Fig. 2. This is a screenshot of an actual phishing server in our lab.

In order to complete the scam the fifth condition must apply. In this case, after
the private information is harvested, the circle is completed when the phishing server



P
H

IS
H

P
H

A
C

TO
R

S
229

FIG. 1. Phishing email that satisfies our five effectiveness criteria.3

3 Any legitimate emails from Bank of America (as well as most other corporate names used in this chapter) to a customer never put a reply URL in
the message. Instead they ask the customers to go to their corporate website directly, avoiding a direct response to what may be a fraudulent email.



230 H. BERGHEL ET AL.

FIG. 2. Phishing from phisherman’s perspective.

redirects the victim to the actual bank site. This has the effect of keeping the bank’s
server logs roughly in line in case someone makes an inquiry of the help desk. Fig-
ure 3 illustrates this activity.

1.3.2 Mongers

Mongers employ more sophisticated schemes. Look carefully at the cursor in
Fig. 4. The cursor seems to be sensing the link even though it is not particularly
close to it. The fact is that it is not sensing the link at all, but rather an image map.

A quick review of the source code, below, leads us to a veritable cornucopia of
trickery.

Several features make it interesting. First, the image map coordinates take up
nearly the whole page. Second, the image that is mapped is the actual text of the
email. So what appeared to be email was just a picture of email. Thus, the redirect
was actually not a secure connection to eBay at all as it appeared, but an insecure
connection to 218.1.XXX.YYY/.../e3b/. While Windows users see the “dots
of laziness” frequently when path expression is too long for the path pane in some
window, this is not a Windows path in a path pane. These “dots of laziness” are a
directory name. It is not clear why someone would create a directory named “. . .” as



P
H

IS
H

P
H

A
C

TO
R

S
231

FIG. 3. Phish clean-up.



232 H. BERGHEL ET AL.

FIG. 4. Phish mongering.

it certainly falls short of the mnemonic requirements most of us learned in intro to
programming.

On the other hand, it might blend in stealthily with the other *nix hidden files, “.”
and “..”, and possibly escape an onlooker’s suspicion. This suggests that the com-
puter at the end of 218.1.XXX.YYY may not be the phisher at all, but another
unsuspecting victim whose computer has been compromised (for that reason, the fi-
nal two octets of the IP address have been concealed). Another sign of intrigue is the
font color of almost pure white “#FFFFF3” for “Barbie Harley Davidson in 1803
in 1951 AVI.” Though their names are sullied, neither Barbie nor Harley Davidson
had anything to do with this scam. This white-on-white hidden text is there to throw
off the Bayesian analyzers in spam filters. As the email text is actually a graphic,
the Bayesian analysis likely concludes that this is about Barbie and her Harley given
that it has no other text to base its decision on. As opposed to the posers, this phish
monger is moderately clever.



PHISH PHACTORS 233

So far the most common of phishing attacks have been illustrated. The rest of this
chapter is organized as follows. In Section 2, the fundamental techniques used in
phishing are explained, such as bulk emailing, alternative delivery techniques, and
obfuscation techniques for masking the fake websites. Section 3 addresses advanced
phishing techniques, including Malware, man-in-the-middle attack, and website-
based attacks, etc. In Section 4, anti-phishing techniques are discussed; however,
technical solutions are only part of the picture in anti-phishing efforts and in Sec-
tion 5, more comprehensive efforts are examined. The chapter is then concluded in
Section 6.

2. Core Phishing Techniques

In order to achieve their goals, phishers typically use a mixture of two techniques:
social engineering and technical subterfuge [5]. Social engineering is the primary
technique used and appears to some extent in most attacks. Arguably, the use of
this technique distinguishes phishing from other forms of electronic fraud. Technical
subterfuge exploits software-based weaknesses in both servers and clients in order
to mask the true nature of the transaction from the victim or plants crimeware onto
PCs to steal credentials directly (often using Trojan keylogger spyware). Pharming
crimeware misdirects users to fraudulent sites or proxy servers, typically through
DNS hijacking or poisoning [5].

Both techniques are employed in the pursuit of the same goal: the victim must
be convinced to perform a series of steps to reveal confidential data. However, these
two techniques seek to attack from opposite ends of the spectrum: one targets human
weaknesses, the other technical vulnerabilities. In this section and the next, how
phishers exploit these vulnerabilities is examined.

2.1 Bulk Emailing Combined with Fake Websites
A basic phishing scheme needs four elements: a bulk mailing tool, a standard

email, a ghost (fake) website and a database of email addresses [20,49]. Typically,
the ghost website is set up, and then the bulk email tool distributes the phishing email
to all those addresses in the email database. The most successful phishing scams
have genuine looking content in both their e-mail (if used) and the fake website.
This includes:

• using images from the real website;

• in the e-mail, use official text (social engineering techniques apply here);

• many phishing sites simply copy the real website (using wget or the like).



234 H. BERGHEL ET AL.

The standard email sent is branded so it appears as though it was sent by a trusted
and reputable party (e.g., a financial institution). The most commonly spoofed com-
panies include Citibank, eBay and PayPal. It is likely that not all those users within
the email database will have accounts with the spoofed organization; this is some-
what unavoidable and it can reveal the operation of a phishing attack. A number of
techniques can be used within the email [20,34,46,49]:

• The email will use authentic logos and graphics obtained from the legitimate
website in order to imitate the company’s visible branding (see Fig. 5). The
email itself is likely to be a modified copy of a previous corporate mailing.

• It will also use a spoofed ‘mail from’ address to make the email appear to orig-
inate from the proper domain. This is a well-known flaw in the SMTP protocol:
phishers can set the ‘mail from’ and ‘reply to’ headers to an email address of
their choice.

• It will typically contain a URL that appears to link to the legitimate site; how-
ever, the URL will likely relay the user to the ghost website (the URL in Fig. 5
sends the user to http://218.246.224.203/). This obfuscation will gen-
erally require the use of HTML email. The use of HTML formatting also allows
the attacker to create a more authentic email by using legitimate graphics. This
would allow the attacker to include a HTML form inside the email itself to
solicit user information, although this is relatively uncommon.

• Using an HTML email to imitate a plain-text email can further increase the
difficultly an average user faces in identifying the hidden qualities of the email
(see Fig. 5).

• The email is also likely to contain URLs that refer the user to the legitimate site
(for example, to a help or contact page) in order to better mimic a mailing from
the legitimate organization (see Fig. 5).

• Assurances are included within the email to gain trust, such as “we will not ask
you for sensitive personal information. . . in an email” or the use of the TRUSTe
symbol (which identifies organizations with a high level of personal information
protection). Other security assurances are also used. For example, that the email
is free of viruses and is not spam.

• The HTML code behind the email is usually long, which limits the ordinary
user’s ability to locate and check the actual target of the URL contained in the
email (if they decide to do so).

The key objective of the email is to create a plausible premise that persuades the
user to release personal information. The contents of the email must be designed to
illicit an immediate user reaction, which prompts them to follow the enclosed link to
the website (see Fig. 5). For example, the email may [20]:



PHISH PHACTORS 235

FIG. 5. An example phishing email recorded by the Anti-Phishing Working Group (10/05/2005).

• refer to an unauthorized transaction from the victim’s bank account,

• reveal the user has won a prize,

• indicate the organization has lost their account details, requiring the user to
manually update them, or

• threaten to charge a fee without an immediate reply.

Ironically, many phishing emails take advantage of the user’s fear of online fraud
[20], using a premise that requires users to update their information due to a security
system upgrade or similar (see Fig. 5). While there are many different approaches,
each must create a scenario to convince the user to provide the requested information
in a timely manner (i.e., before the phishing site is shutdown).



236 H. BERGHEL ET AL.

Using a bulk email tool and an email database, the standard email can be sent
to millions of legitimate, active email addresses within a few hours. The use of a
network of trojaned machines can speed the process up considerably [34,46]. The
email database can be acquired from a number of sources on the Internet, for free
or for a fee. Such vendors target their email databases at spam distributors; however,
the databases they distribute are equally useful for both purposes.

A ghost, or fake, website is typically hosted by a hijacked PC,4 compromised by
other means [34,46,49]. A mechanism will need to be in place to facilitate infor-
mation retrieval (by the phisher); it is speculated anonymous login or email may be
used for this activity. Ideally, this machine would reside in a different country to
that of legitimate website’s organization as this increases the difficulties involved in
shutting the phishing website down. The domain name and email URL are designed
to prevent the target from noticing they are transacting with a ghost website rather
than the legitimate site. Subtle character replacements can achieve this: for example,
www.paypal.com could be imitated using www.paypa1.com (note the “one”
in the name) or www.paypal.cc. More sophisticated methods will be discussed
in Section 2.3 (URL obfuscation).

The content of the website is likely to be a near-exact copy of the legitimate site,
updated to allow the phisher to record user details. The ghost website is also likely
to contain introduction pages, processing pages and pages thanking the user for sub-
mitting their data, in a further attempt to increase authenticity. It may also use a
legitimate server-side certificate, signed by Verisign or similar, issued to the ghost
website. Alternatively, it could use an unsigned certificate under the assumption that
most users will be unable to interpret the security warning (if the security warning
has not already been disabled). Even invalid or fake certificates are likely to make
users feel more secure. The absence of SSL/TLS security may alert some users to
the true nature of the website; however, security indicators within the user’s browser
can potentially be forged using browser exploits (see Fig. 6).

Upon submitting their details to the ghost website, the user is often redirected to
the legitimate site to encourage the user to continue to believe they have revealed
their personal data to a legitimate organization. Alternatively, the phisher may use a
post-submission page to encourage the user not to access or use their accounts for
a specific timeframe, in order to mask the phisher’s exploitation of their sensitive
information (e.g., use of a credit card number). It is critical that the user does not re-
alize they have submitted their data to an illegitimate organization. If this occurs, the
personal data can be quickly rendered useless (e.g., their password will be changed
or accounts closed).

4 This can sometimes be detected by the use of a non-standard HTTP port embedded in the target URL.



PHISH PHACTORS 237

FIG. 6. A phishing website targeted at PayPal customers from the Anti-Phishing Working Group.

2.2 Alternative Delivery Techniques

Communication via email remains the most common and successful form of at-
tack; however, other electronic communication mechanisms are becoming increas-
ingly popular, such as web pages, IRC and instant messaging [46]. In all forms of
communication, the phisher must imitate a trusted source in order for the victim to
release their information.

2.2.1 Web-based Delivery

Rather than distributing the malicious URL (or similar) via email, an increasingly
popular technique is to place it in website content [46]. The website itself can be
hosted by the phisher, or by a third party host (which could be acquired freely, for a
fee, or via a Trojan horse attack). The level of sophistication varies: a malicious URL
could be disguised and placed on a popular website or comment board, or a website
developed for the express purpose of luring in potential victims.

If specialist website is employed to lure victims, the phisher may employ several
techniques [46]:



238 H. BERGHEL ET AL.

• Hidden items within the page (e.g., tiny graphics) may be used to identify suit-
able victims.

• Pop-up or frameless website may be used to hide the true source of the website.

• Malicious content may be embedded to exploit a vulnerability of the user’s
browser. This exploit can be leveraged to install software onto the user’s com-
puter without their knowledge. For example, software such as key loggers,
screen grabbers, back doors or other trojan horse programs may be installed.

• Trust relationships inside the user’s browser configuration may be abused in
order to allow scriptable components or access data storage areas.

In order to attract users to their website, fake banner advertising could be em-
ployed. Banner images belonging to the company the phisher is attempting to mimic
can be placed on popular websites and direct users to the phisher’s website, rather
than the legitimate website. Standard URL obfuscation techniques can be used to
hide this subtle redirection from the user. Many vendors provide online registration
for banner advertising; with a stolen credit card (or similar), a phisher can easily
acquire advertising while remaining concealed from law enforcement agencies.

2.2.2 IRC and Instant Messaging (IM)

While these techniques were popular in the early days of phishing, email has be-
come the technique of choice for modern day phishers. However, it is predicted [27,
46] that the use of these techniques will become more popular in the future, given that
these technologies are popular with home users and are gaining in their complexity
on a regular basis. Embedded dynamic content, such as multimedia, graphics, and
URLs, can now be sent with many IM programs, allowing standard email and web-
based phishing techniques to be easily mapped to this domain. Automated bots, that
interact unsupervised with IRC participants, could also be used by phishers to coerce
users into visiting their fake websites.

2.3 Obfuscation Techniques

In addition to the techniques previously mentioned, phishers have other techniques
to deliberately disguise the true nature of the message from the recipient.

URL obfuscation is an essential part of most phishing attacks. It fools the user
into believing they are following a link to a legitimate website; in actual fact, they
are being transported to the phisher’s fake website. The simplest technique for URL
obfuscation uses HTML; the legitimate website’s address is displayed to the user in
plain text, but the link is targeted at the phisher’s website. For example:



PHISH PHACTORS 239

<a href=’’http://www.evilsite.com’’>http://www.citibank.com</a>

is displayed to the user as:
http://www.citibank.com

but links to http://www.evilsite.com (see Fig. 5). This technique would
fool a basic user, who many not be aware than the display address of the hyperlink
can be different to its target. Other URL obfuscation techniques include [20,46,49]:

• Simple character replacement can obfuscate URLs, as using the legitimate URL
as a prefix to another domain (e.g., adding bank.com to www.citibank.
com to form www.citibank.com.bank.com). Variations of the legitimate
domain name can also be used (e.g., www.citibank-accounts.com). All
of these simple techniques would go unnoticed by an inexperienced user.

• An extension of the aforementioned technique involves the vulnerabilities of
the ASCII character set. Foreign characters are encoded using 2-byte Unicode
rather than 1-byte ASCII. Attackers can utilize visually similar characters in
different Unicode sets to exploit confusion, which is called Unicode attack [26].
Domain names can be registered in different languages: some foreign character
sets look identical to ASCII characters, but are interpreted differently during
the domain name lookup process. According to Fu et al. [26], there are eight
possible representations of alphabet character “s”, “o”, “u”, “p” and so on. Users
may not be able to distinguish the differences at a quick glance. A recent scam
allowed microsoft.com to be registered, using the Cyrillic ‘o’ instead of
the ASCII version; visually these characters are identical.

• Most browsers also accept alternative encoding schemes for hostnames, in order
to allow support for local languages.
◦ Escape encoding allows the inclusion of characters that may need special

syntax in order to be correctly interpreted (e.g., a space in a URL string may
indicate the end of the URL or it may be part of the URL). These are included
as %xx, where xx is the hexadecimal ASCII code for the character. This also
allows normal characters to be encoded in this way (e.g., %41 is ‘A’ and %20
is a space).

◦ Unicode encoding allows characters to be stored in multiple bytes. This per-
mits a far greater number of characters (65,536) that can be encoded in com-
parison with ASCII (128), and allows a unique identifier for every character
no matter what language or platform. In a Microsoft Windows environment,
these characters can be encoded as %u0000, where 0000 is the hexadecimal
code for the character (e.g., %u0056 is ‘V’).

◦ UTF-8 encoding is a commonly used format of Unicode, and preserves the
full ASCII character code range. This allows standard characters to be en-



240 H. BERGHEL ET AL.

coded (and obfuscated) in longer escape-coded sequences (for example, ‘.’
can be encoded as %F8%80%80%80%AE).

◦ Multiple encoding can occur when applications incorrectly parse escape-
encoded data multiple times and at multiple layers of the application. This
vulnerability can be exploited by phishers encoding characters multiple times
and in different fashions (e.g., %%35%63: the second part of the string,
‘%35%63’, decodes to ‘5C’. This string, combined with the prefix ‘%’, gives
‘%5C’, which decodes to ‘\’).

• The standardized URL encoding format allows for the insertion of a username
and password within the string (e.g., http://username:password@
mysite.com). Effectively, everything between the protocol name and the ‘@’
character is ignored; this allows the construction of obfuscated URLs such as
http://citibank.com:mybank@fakesite.cc. Due to the threat this
encoding format presented, some browsers no longer allow links of this form
(such as Microsoft Internet Explorer).

• Some online websites provide redirection URLs: these allow the construction
of URLs that give no indication of the actual target. Redirection URLs forward
users onto another predefined site when they are accessed. For example, the link
http://r.aol.com/cgi/redir?http://jne9rrfj4.CjB.neT/
?uudzQYRgY1GNEn was found in a Citibank phishing attack, and includes a
double redirect. The browser is first sent to r.aol.com, and then redirected
to jne9rrfj4.cjb.net, which redirects the user to the fake website.

• The website host name can be obfuscated by encoding it as an IP address
rather than a domain name. The use of a standard decimal IP address in place
of the host name will go provide some measure of obfuscation; however, en-
coding the IP address in dword (e.g., http://3532038435), octal (e.g.,
http://0322.0206.0241.0043), hexadecimal (e.g., http://0xD2.
0x86.0xA1.0x23) or a mixed format (e.g., http://0322.0x86.161.
0043) will confuse even more users.

Given the bulk nature of these emails, and the threat they pose to users, most
organizations opt to treat them as spam, and filter them before they reach users.
Several techniques can be used by phishers to make the filtering task more difficult,
and therefore reach more potential victims [46]:

• Text can be obfuscated to avoid spam filter detection. For example, lower-
case ‘L’s could be replaced with upper-case ‘I’s, both of which appear visually
similar to humans, but are interpreted quite differently by software. The simi-
larity between the letter “l” and the numeric “1” may also be exploited as in
www.ao1.com instead of www.aol.com.



PHISH PHACTORS 241

• Where possible, the phisher may seek to personalize the email to the intended
user, or at least make it unique (e.g., by inserting random text. See Fig. 5 for
an example of this). This will largely depend on the email database used. By
ensuring each email is unique will make it more difficult for the email to be
filtered by hash-based anti-spam techniques (e.g., Cloudmark [14]).

• The use of HTML email allows the spammer to hide random words within
the email (see Fig. 7). They can be included as comments or colored white to
avoid detection by the user. These hidden words can make the email seem more
legitimate to the spam filter, without altering the message eventually viewed by
the user.

JavaScript can be used by the phisher to execute a number of attacks. In terms of
obfuscation, it can be used to further hide the true destination of the link from the

FIG. 7. An example from the Anti-Phishing Working Group that illustrates the use of hidden text in
order to avoid detection by spam filters.



242 H. BERGHEL ET AL.

user. Most email and browser applications show the true destination of the link in
the status bar at the bottom of the windows when a user moves their mouse over the
link; this behavior can be overridden, so the legitimate link is displayed rather than
the link to the fake site.

Many of the obfuscation techniques and the attack techniques discussed here can
be readily identified if the user is sophisticated enough to read and interpret the
source code. JavaScript can be used to deter the user from doing so as it can disable
the page’s right click menu. Those users who right click can instead by greeted with
a pop-up message box (with a copyright notice or similar). However, this does not
prevent the user access the page source from alternative locations (such as through
the browser’s menu bar, if it is present).

3. Advanced Phishing Techniques

3.1 Malware

Malware is a term used to describe any form of malicious software, including
viruses, worms, trojans and others. For phishers, this software represents a new route
to defraud their victims that may complement or even replace the social engineering
techniques that phishing often relies upon. The potential for fraud here is greater:
rather than asking the victim for their information, they simply take it. The complete
replacement of social engineering in a phishing attack with malware arguably repre-
sents an entirely different class of attack. However, much malware still relies on the
targeted user to approve its installation and/or execution; it is for this reason social
engineering is likely to remain a core skill relied upon by phishers.

Known malware worms used for phishing include [42]:

• W32.Mimail.I,J,P,Q,S: these worms attempt to fool users into revealing credit
card information in response to a Microsoft Windows expiration notification or
a PayPal application. The requests are displayed as web pages served from the
local machine. Typically, the worm is attached to an email message (passive
worm), and a social engineering approach is used to encourage the user to run
the attachment. The worm is then copied to the local drive, where it embeds it-
self in the machine’s startup routine. It is self-propagating: it searches the user’s
documents for email addresses, and sends itself to all found addresses. Some
variants also attempt to retrieve other information (Internet account information,
RAS phone book entries, E-Gold information, and other personal information
such as the user’s credit card numbers, their birthday and their social security
number) and relay it to the phisher using HTTP POST/GET.



PHISH PHACTORS 243

• Backdoor.Lala and Backdoor.Lala.B: are trojan horses that permit unauthorized
access to remote computers. They also attempt to steal confidential informa-
tion (such as cached passwords and cookies), log keystrokes, and allow remote
file execution. Cookies associated with financial institutions, such as PayPal,
E-Bullion, Evocash, WebMoney and various banks, are targeted.

• PWSteal.Bancos and W32.Bibrog: are worms designed to monitor websites vis-
ited by the user. If the user attempts to visit particular bank websites in their
browser, the worm redirects them to a phishing site. This website records and
steals the user’s information. It replicates by sending itself to all email addresses
in the user’s Outlook contacts folder.

• More recently, the Korgo [56] worm was used to infect unpatched systems with
a keylogging trojan designed to steal online banking information and securely
relay it back to its creators. It collected any data entered into a web form by the
user. Mikko Hypponen, of F-Secure, advised users infected by Korgo to change
all their passwords and to cancel their credit cards. “This is not a joke,” he said.

• Other trojans and worms are known to record keystrokes or record data en-
tered in web form input fields (e.g., W32.Dumuru.Y, W32.Dumuru.Z, PW-
Steal.Tarno, PWSteal.Banpaes, PWSteal.Banpaes.B, the TROJ_WINCAP se-
ries and W32.Mimail.C).

Interestingly, Brazilian banks appear to be over-represented in malware-based
phishing schemes. In the six months to March 2004, twenty different malware appli-
cations were identified that targeted Brazilian banks [42].

Malicious users have long used software designed to log keystrokes and record
screen captures to obtain sensitive data. These utilities are being employed more
frequently in phishing attacks. These utilities can remain on a user’s computer for
an indefinite amount of time, and can record a far greater amount of information
than any one basic phishing attack. Depending on the extent to which the attacker is
willing to analyze the recorded logs, account information from a variety of sites can
be harvested (rather than a single account typically recorded by a standard phishing
scheme). Given the volume of data these techniques can potentially generate, the
attacker has three options to retrieve recorded information:

• Data streaming: data is sent to the attacker as soon as it is generated. This re-
quires a continuous connection between the attacker and victim.

• Batch collection: information is uploaded to the attacker’s server on a regular
basis, using FTP, HTTP, SMTP or similar.

• Backdoor collection: remote access software is placed on the victim’s computer
to allow the attacker to connect and download the recordings on demand.



244 H. BERGHEL ET AL.

Key loggers record all keystrokes entered by a user. With the use of appropriate
filtering techniques, the attacker can isolate credentials used to access various online
services. They vary in sophistication: some will record all key presses, while other
will only record key presses entered in the web browser. The Anti-Phishing Working
Group [3] recorded 215 phishing attacks in May 2006 (out of a total of 20,109) that
used key logging malware.

Screen capture utilities were, in part, a response to advanced anti-key logging tech-
niques used by some organizations; they record the other primary form of user input.
These utilities record a screen image on a regular basis, or part of a screen image
(i.e., the relevant observational area, such as the authentication area of a particular
website). Partial screen captures minimize the size of the require upload to the at-
tacker. Such techniques are successful against organizations such as Barclays Bank;
they require users to select several, randomly selected, characters from their ‘mem-
orable word’ from drop-down lists (e.g., the second and fourth letter) as part of their
technique.

Phishers and spammers typically share some commonalities: both typically want
to distribute substantial amounts of email quickly and without being detected. There
is some evidence [49] that these groups are exchanging techniques. Some techniques
applicable to phishing are [42]:

• Spam relays: are machines that accept email and forward it on to another SMTP
server. The trojan horse Backdoor.Hogle turns unsuspecting machines into spam
relays. By ‘recruiting’ a number of spam relay machines, the phisher could
send messages quicker and make it more difficult for authorities to trace the
message’s origin. It is estimated that phishers can use up to 1,000 computers in
their attacks [29].

• Reverse HTTP proxies: are used to hide the true location of the web server.
The domain name included in the mass email message is configured to point
to the IP address of a machine running the reverse HTTP proxy (such as a ma-
chine infected with the Backdoor.Migmaf trojan horse). The machine proxies
any HTTP requests back to the actual web server, and sends any responses back
to the client; at no time does the client know the IP address of the actual web
server. Additionally, the IP address that the hostname points to is changed on
a regular basis, making locating and neutralizing the actual web server particu-
larly difficult. The Backdoor.Migmaf trojan has been used in a PayPal phishing
scam.

3.2 Man-in-the-middle Attacks
The principles behind man-in-the-middle attacks are simple: the attacker acts as an

intermediary between the victim and the legitimate site and records the information



PHISH PHACTORS 245

exchanged between the two parties [46]. The attacker achieves an ideal vantage point
on the transaction, and can potentially remain unnoticed by both parties. The idea
behind this attack is not unique to this domain: it is used throughout network security
(e.g., TCP hijacking).

The intermediary machine utilized by the attacker is referred to as the proxy. Ide-
ally, it is transparent: it does not effect the communication between the legitimate
parties, and is not easily detected. Such proxies can be located on the same network
segment as the target, or en route to the legitimate website. To ensure the client routes
traffic through the proxy, browser proxy settings can be overridden (either by a soft-
ware exploit, or through the use of social engineering); however, this is now obvious
to the client. Proxy configuration is generally performed before the phishing email
message is sent: this ensures the transmitted data is recorded if the user follows the
enclosed link.

This form of attack can be successful for both HTTP and HTTPS (i.e., SSL/TLS)
connections [46]. SSL/TLS provides application-level security between the client
and the legitimate website; standard proxies between these two parties can only
record the cipher text. However, if the phishing email can ensure the user connects
to the proxy, rather than legitimate website, their data can be recorded. URL ob-
fuscation techniques are useful in achieving this. The proxy passes all of the user’s
requests to the legitimate website, and responses from the legitimate website are
passed back to the user. In the case of a SSL/TLS connection, a secure connection
is established between the proxy and the legitimate website. A secure connection
can also be maintained between user and the proxy via the methods described previ-
ously.

Using the legitimate website to process information submitted by the victim also
aids the phisher as it allows invalid data to be discarded. It not only makes the
phisher’s job of identifying valid accounts easier but it also makes the site appear
more authentic to the user [20].

DNS cache poisoning [46] attempts to corrupt the local cache maintained by a spe-
cific DNS server. When a user requests the IP address of a domain name, the request
is forwarded to the DNS server. If the DNS server does not have the IP address of the
domain in its cache, it will query an authoritative domain name server for the infor-
mation. The BIND attack, an example of DNS cache poisoning, requires the attacker
to spoof the reply from the authoritative name server; in the reply, the attacker can
set the IP address of the queried domain to any desired machine. By exploiting DNS
vulnerabilities, the phisher could potentially redirect traffic directed at a site such as
www.citibank.com to their fake website. DNS cache poisoning can be particularly
effective, as most ISPs operate one DNS server for all of their subscribers. If the
network’s DNS server is poisoned, all of the ISP’s customers will be redirected to
the fake website.



246 H. BERGHEL ET AL.

3.3 Website-based Exploitation

After the user has been successfully lured to the fake website, the phisher has a
variety of technologies to further disguise and obfuscate the true identity and nature
of the website. Website scripting and markup languages such as HTML, JavaScript,
DHTML, ActiveX, VBScript, etc. give the phisher tremendous power to completely
mimic the appearance of the legitimate website [46].

HTML frames can be used to obscure attack content. They enjoy wide browser
support and are simple to use, and therefore are ideal for phishing websites. For
example:

<frameset rows=“100%,*”, framespacing=“0”>
<frame name=“real” src=“http://www.citibank.com” scrolling=“auto”>
<frame name=“hidden” src=“http://fakesite.com” scrolling=“auto”>

</frameset>

The legitimate Citibank site is all that is viewable within the browser window; how-
ever, this code snippet also loads HTML from fakesite.com. The additional code
could [46]:

• deliver additional material, such as overriding page content or graphics,

• retrieve session IDs,

• execute screen captures, log keystrokes or monitor user behavior in the real
website,

• provide a fake HTTPS wrapper that would force the browser to display the
SSL/TLS padlock (or other security indicator),

• prevent the user from viewing the HTML source code,

• load images and HTML code in the background for later use, or

• imitate the functionality of the browser toolbar (if it is overlaid with a graphical
representation in order to hide the actual location of the content) in combination
with client-side scripting software.

Hidden frames can also hide the address of the phisher’s content server. Only the
URL of the document containing the frameset will be accessible from the browser
interface (e.g., from the location bar or the page properties dialog).

The use of DHTML allows the phisher to override the content of the legitimate
site, effectively building a new site on top of the real page [46]. The DIV tag allows
content to be placed within a virtual container, which can then be given an absolute
position within the document. It can be positioned to obscure existing content with
careful positioning. JavaScript can be used to dynamically generate the content. For
example:



PHISH PHACTORS 247

var d = document;
d.write(‘<DIV id=“fake”, style=“position:absolute; left:200;

top:200; z-index:2”>
TABLE width=500 height=1000 cellspacing=0
cellpadding=14><TR>’);

d.write(‘<TD colspan=2 bgcolor=\#FFFFFF valign=top height=125’);

This particular example uses JavaScript to generate the first few lines required to
construct a DIV that will be positioned to obscure existing website content.

Users are increasingly aware of the visual clues that mark a secure and legitimate
site [46]. For example: the https identifier at the beginning of the URL, the URL
itself, the zone of the page source (e.g., My Computer, Trusted, Internet, etc.), and
the padlock icon somewhere in the browser (indicating secure SSL/TLS commu-
nication). These visual clues can sometimes be difficult to mimic using traditional
techniques; however, specially created graphics can be loaded and positioned over
specific areas of the browser ‘chrome’ (the window frame, menus, toolbars, scroll
bars and other widgets that comprise the browser user interface) using scripting lan-
guages.

For graphical substitution to be successful, the graphics must be consistent with
the browser. It is trivial to detect the browser the user is using5; from this informa-
tion, the correct graphics can be overlaid. Areas of interest for graphical overlays
include [46]:

• location bar: altered to report the legitimate URL, rather than of the fake site
(see Fig. 6);

• SSL/TLS indicator: a padlock is overlaid in the correct location to (falsely)
indicate a secure connection;

• certificate details: fake details are displayed if a user reviews page properties or
security settings, and

• zone settings (Microsoft Internet Explorer): this can be altered from “Re-
stricted” or “Internet” to “Trusted.”

The release of Microsoft Windows XP SP2 prevented Internet Explorer from being
susceptible to some of the techniques for achieving these overlays, and other browser
makers are following suit [43]. Alternatively, the location bar can be spoofed with
JavaScript by [20]:

• Closing the actual location bar, and replacing it with a table. The first row of the
table will contain the address bar (as an image), and the second row of the table
will contain the rest of the page.

5 This also allows the phishing scam to only focus on the users that use browsers with specific security
vulnerabilities or that use browsers with specific functionality.



248 H. BERGHEL ET AL.

• Opening a small browser window that contains a white box with the legitimate
website address inside; this window is then positioned over the browser’s loca-
tion bar.

Furthermore, the attacker can use JavaScript to create popup windows that display
supplementary content. On arriving at the fake website, a phishing popup is created
while the main browser is redirected to the legitimate site. This gives increased cred-
ibility to the popup window [20] (see Figs. 8 and 9).

Unlike Internet Explorer and other browsers, Mozilla and Firefox do not compile
their graphical user interface into the browser itself. Instead, it is stored as XUL:
XML User Interface Language. The XUL data for these browsers is readily avail-
able, and can be rendered inside the browser’s content area. This could potentially
allow a phisher to perfectly mimic the appearance of the browser, but allow them to
arbitrarily set the location bar text or SSL/TLS padlock [43].

JavaScript can also be used to hijack inconspicuous events generated by the
browser [43]. File upload controls can be embedded as form elements in website
in order for phishers to retrieve specific files from the user; however, these elements
cannot have default values. By attaching an event handler to the OnDragStart event
(an Internet Explorer extension), the upload control can be appropriately populated if
the user drags their mouse. Ensuring they do so is a task left up to social engineering.
On the conclusion of the drag event, the form can be automatically submitted, along
with the stolen file. Several attacks are known that work on the same basic princi-
ple, some of which are no longer possible after certain Microsoft security updates.
Other exploits of this technique include inserting, and then activating, active content
in a user’s Favorites folder, inserting executable files into a user’s start up folder, or
installing a backdoor trojan (more specifically, installing Backdoor.Sokeven).

3.4 Server-side Exploits

Any discussion of the exploitation of server-side vulnerabilities to assist in a phish-
ing attack quickly transcends phishing and enters the realm of general hacking and
cracking; this would be somewhat beyond the scope of this chapter (see [34] for
some additional details). Suffice to say there are numerous techniques for exploit-
ing operating systems, applications and network protocols that a phisher could use if
they were determined to comprise a legitimate website in order to conduct a phish-
ing attack. However, two ‘non-invasive’ techniques of relevance to phishers will be
discussed: cross site scripting and preset sessions [46].

Cross site scripting (CSS or XSS) seeks to inject custom URLs or code into a web-
based application data field, and takes advantage of poorly developed systems [27].
Three techniques are typically used [46]:



P
H

IS
H

P
H

A
C

TO
R

S
249

FIG. 8. This illustrates the use of a pop-up window over the legitimate site in the hopes of increasing the scheme’s credibility. Obtained from the
Anti-Phishing Working Group.



250 H. BERGHEL ET AL.

FIG. 9. This shows another pop-up window over a legitimate webpage. Using scripts, it opens up the
real webpage and then opens a bare window popup asking for information.

• HTML substitution:

http://www.citibank.com/ebanking?URL=fakesite.com/login.htm

In this example, the standard legitimate website content is rendered, but the web
application uses a parameter to identify where to load specific page content (for
example the login box); in this case, that content is fetched from fakesite.com
(whose URL could be obfuscated using previously described techniques).

• Forced loading of external scripts:

http://www.citibank.com/ebanking?page=1\&response=fakesite.com
\%21secretScript.js\&go=2

In this example, a script to be executed is passed to the web application.

• Inline embedding of active content:



PHISH PHACTORS 251

http://www.citibank.com/ebanking?page=1\&client=<SCRIPT>...
</SCRIPT>

In this example, the script is placed in the URL and executed by the web appli-
cation.

Preset sessions use session identifiers. Session identifiers are typically used in
HTTP and HTTPS transactions as a mechanism for tracking users through the web-
site and to manage access to restricted resources (i.e., manage state). Session IDs
can be implemented in a variety of ways; for example, cookies, hidden HTML fields
or URL parameters. Most web applications allow the client to define the session ID.
This allows the phisher to embed a session ID within the URL (that refers to the
legitimate server) sent as part of the initial email [46]. For example,

https://mybank.com/ebanking?session=3V1L5e5510N

Once the email is sent, the phisher polls the legitimate server with the predefined
session ID; once the user authenticates against the given session ID, the phisher will
have access to all restricted content.

3.5 Client-side Vulnerabilities

Any discussion of client-side vulnerabilities is similar to that of its server-side
counterpart: there are a multitude of vulnerabilities that a smart phisher could take
advantage of in order to execute arbitrary code or to manipulate the browser. Given
their exposure to the Internet, it is not surprising browsers suffer from a significant
number of security vulnerabilities. Most browsers also support a number of plug-ins,
each of which carries its own security risks. While patches are typically available in a
timely manner, home users are notoriously poor at applying them quickly; therefore,
phishers have ample time to exploit most security vulnerabilities, if they choose to
do so.

Some past exploits used by phishers include [42,46]:

• Microsoft Internet Explorer URL mishandling: a URL such as:
The real URL: http://www.citibank.com%01@fakesite.com/
phisher.html

What the user sees: http://www.citibank.com

Where the browser goes: http://fakesite.com/phisher.html

By inserting a %01 string in the username portion of the URL, the location
bar displays http://www.citibank.com, while redirecting the user to
fakesite.com. Earthlink, Citibank and PayPal were all targeted using this
particular flaw.



252 H. BERGHEL ET AL.

• Microsoft Internet Explorer and Windows Media Player combination: this vul-
nerability allowed the execution of a Java JAR archive, disguised as a Windows
Media Player skin, which could access local files.

• RealPlayer heap corruption: RealPlayer is available as a plug-in for most
browsers, and allows the user to view the proprietary RealMedia format. By
creating a malformed RealMedia file, and embedding it in a website to ensure it
is automatically played, it is possible to cause a heap corruption, which would
allow the execution of arbitrary code.

While malware can often be eliminated with a regularly updated antivirus util-
ity, browser (or any client-side) exploits cannot be defended against until a patch is
available and applied.

3.6 Context Aware Attacks
Context aware attacks [37] manipulate the victim into readily accepting the au-

thenticity of any phishing emails they may receive. The first phase, which may
involve interaction with the victim, will be innocuous and not request any sensitive
information. Rather, the goal here is to ensure the victim will expect the message
sent in the second phase. The second phase marks the dispatch of the actual phish-
ing email; however, the email is expected by the victim, and therefore more likely
to be considered authentic. The actions suggested in the phishing email would often
arouse suspicion in the victim if viewed in isolation, but the preset context allows
this to be avoided. Jakobsson [37] presented a context aware phishing scenario to 25
users, and recorded a 46% success ratio.

A simple example of a context aware attack involves targeting an eBay seller [37]
(also see Fig. 10). Firstly, a seller is located who has an active auction and accepts
payments via PayPal (but preferably not by credit card). At the end of the auction, a
spoofed message is sent by the phisher from PayPal, indicating the successful buyer
has paid for the goods won at the auction, but using a credit card (which the seller
does not support). The email gives the seller two choices: either reject the payment,
or upgrade their account to support credit card transactions; both these options re-
quire the seller to log into their account. By embedding an obfuscated URL to a fake
website within the email, the phisher can easily record the seller’s credentials. In
this situation, the seller was expecting an email confirming payment; therefore, the
spoofed email is expected, and is therefore viewed with less skepticism.

3.7 Empirical Results
Dhamija and Tygar [17] characterize the most common successful techniques

employed by phishers. They reviewed the phishing attacks archived by the Anti-



PHISH PHACTORS 253

FIG. 10. This email is particularly well done, and illustrates a context-aware attack. On arriving at
the site, the user is presented with a pop-up over the legitimate site, which gives the user the option of
changing account details. It is not coercive and therefore not suspicious. They accept its legitimacy, as
they require the ability to change their details. Obtained from the Anti-Phishing Working Group.

Phishing Working Group [4] over a period from September 2003 to mid 2005. Their
findings were consistent with what is known about phishing: these attacks exploit
human tendencies to trust certain brands and logos and that many phishing schemes
prey on the widespread sense that the Internet is unsafe and that users must take the
steps suggested by the attacker to ensure the security of their data. Furthermore, they
concluded that the effectiveness of phishing schemes is raised when users cannot re-
liably verify security indicators. Unfortunately, this often the case, as browsers have
generally not been designed with security usability in mind. More specifically, they
identified the following phishing techniques as particularly serious:

• spoofed sender email addresses cannot be reliably detected,

• mimicked websites, with the same ‘look and feel’ as the legitimate site, cannot
be reliably identified,

• obfuscated domain names are often undetected,

• images of URLs cannot be reliably distinguished from actual URLs,

• browser chrome cannot be reliably distinguished from web page content,



254 H. BERGHEL ET AL.

• images of legitimate security indicators (e.g., the padlock icon) can be mistaken
for images of these icons,

• the meaning, and therefore the importance, of the SSL/TLS icon is not under-
stood, nor is the concept of a certificate,

• the absence of security indicators is not reliably noticed, and

• multiple windows and their attributes cannot be reliably distinguished.

In related work, Friedman et al. [25] established that users found it difficult to
determine whether a connection was secure under normal conditions. Intentional
phishing and spoofing attempts will only make this task more difficult.

4. Anti-Phishing Techniques

The realm of phishing techniques is large and constantly expanding [16]; however,
anti-phishing systems are not commonplace. Dhamija and Tygar [17] identify five
basic principles that illustrate why designing secure interfaces is difficult:

1. Limited human skills: any security system design should begin by considering
the strengths and weaknesses of the user, rather that starting from a traditional
cryptography, ‘what can we secure’, point of view. For example, it has been
shown [28] that users screen out commonly occurring notices (e.g., dialog
boxes). Most browsers show such a warning when unencrypted information is
submitted over the Internet; predictably, most users either ignore this message
entirely or disable it.

2. General-purpose graphics: operating and windowing systems that allow gen-
eral purpose graphics also permit spoofing. This has important implications for
the design of spoof-resistant systems, as we must assume that the design can
be easily copied.

3. Golden arches property: the marketing investment made by organizations in
promoting their brand and visual identity is designed to invoke trust between
the consumer and the organization. However, this trust can be abused: given
principle number two, particular care must be taken to prevent the user from
assigning trust exclusively based on graphics alone.

4. Unmotivated users: security is generally a secondary goal for a user conducting
an online transaction; their focus will be on completing the primary goal (e.g.,
purchase a product online) rather than ensuring their security. In response to
security warning like Fig. 11, most users just click “yes” without reading the
warning message.



PHISH PHACTORS 255

FIG. 11. Security warning pop-up message.

5. The ‘barn door’: once released, for whatever length of time, user information
can be exploited. Secure systems should focus on protecting user information
before they leave the user’s control.

The authors argue that any complete phishing solution should fulfill all of these
goals. In the following sections, we discuss available technical solutions for thwart-
ing phishing attacks.

4.1 Detecting Phishing Attacks

Wenyin et al. [58] propose a system for detecting phishing website based on vi-
sual similarity. By examining the similarities between text, images, overall layout
and overall style, an overall measure of similarity is produced. Experimental results
indicate a low level of false positives based on a collection of 328 suspicious web
pages. They intend the algorithm to be applied in a commercial setting by a monitor-
ing company.

An automatic response to a phishing email can be used to detect the authenticity
of the response [10]. It retrieves the embedded links in the email, visits the linked
website, provides phantom user information, and analyzes the response from the
fake website. If the visited website reacts differently from the expected behavior of
a legitimate website, it determines that the site is a phishing site.

Some consideration should also be given to the structure of URLs over the entire
website; simple URLs can be readily identified by users, and makes the identifica-
tion of obfuscated URLs somewhat easier. Such updates to custom web applications
can be done without interruption to users; however, secure application development
requires skilled developers and thorough testing. The number of attack vectors avail-
able to the phisher can be substantially reduced through the use of these techniques,



256 H. BERGHEL ET AL.

and is relatively cost effective for the organization (when compared with the cost of
an attack exploiting their web application).

Unicode attacks exploit the visual similarities between many Unicode characters
(Section 2.3). Such attacks can be detected by character-character similarity and
word-word similarity [26]. It has been demonstrated that this attack can be accom-
plished using the English alphabet, Chinese characters, or the Japanese alphabet.

4.2 Retaliation

Several anti-phishing companies offer retaliatory services [27]. They respond by
sending phishing sites so much fake financial information that the sites cannot ac-
cept information from would-be victims. Most phishing sites run off of web servers
installed on hijacked home computers and cannot handle much traffic. However, re-
taliatory services generally do not shut down phishing sites by overwhelming them
with traffic, as occurs in a denial-of-service attack. They just send the sites as much
traffic as they can handle and dilute their database with largely false information, a
process known as poisoning.

Similar technique is proposed by [10]. Phantom user information is provided to
the embedded website in the phishing email. By repeating this step rapidly, it can
poison the phishing database.

4.3 Client-side Security Measures

The installation of generic security software on a user’s local machine can cir-
cumvent a number of phishing attacks, in addition to protecting against a number of
other security risks. Four key pieces of software should be installed on each user’s
machine:

• Anti-virus protection: removes malware and protects against the installation of
new malware by phishers (and others). It should be regularly updated [22].

• Firewall/IDS: blocks unauthorized network connections that could indicate the
installation of an unauthorized phishing program or use of a non-standard port
for SSL traffic (which can indicate a phishing operation at work).

• Anti-spyware: removes spyware, which could potentially release sensitive user
information to potentially malicious parties.

• Anti-spam: filters out unsolicited bulk email, including many phishing attacks.

Most consumers already recognize the value of anti-virus systems; it would be
reasonable to assume they would be similarly interested in the Internet equivalents.
While the purchase price for all four components can be substantial, well-regarded



PHISH PHACTORS 257

freely available products are also available in each of the four categories. The combi-
nation of these services on a local machine can create some false positives; however,
the net defense-in-depth effect gained positively impacts on a user’s or an organiza-
tion’s security posture. Similar systems should also be deployed at the local network
level [36].

Sophisticated email clients are widely used; however, only advanced corporate
users require most of the functionality provided. The unnecessary functionality ex-
poses the user to additional exploitable vulnerabilities that can be used by phishers
[46]. The success of many phishing attacks can be attributed to the use of HTML
email as it is particularly successful in obfuscating hyperlinks. By disabling HTML
email in all email client applications, standard obfuscation and spoofing techniques
can be rendered ineffective; however, this makes legitimate HTML emails difficult
to read. The email client should also prevent the user from quickly executing danger-
ous content. At minimum, the user should be forced to save the attachment before
opening it. This gives anti-virus software a better opportunity to consider the file,
as well as preventing malicious code from compromising the rendering application
(i.e., the email application). The use of simple clients, plain text email and automated
attachment blocking can eliminate potential attack vectors for a phisher.

4.4 Web Browser Enhancement

Web browsers, when properly patched and configured, can be used as a defense
mechanism against phishing attacks. In some respects they are similar to email
clients: most browsers contain more functionality than the user will typically re-
quire [46]. The more functionality provided, the more security flaws are generally
exposed. For example, in typical web browsing, a user will only use 5% of Microsoft
Internet Explorer’s functionality. Therefore, a browser that is appropriate to the user
is important: simple web browsers are sufficient and more secure for most users who
simply seek to browse the web.

Web browsers should also be properly configured to protect against phishing at-
tacks. Popup windows should be disabled, along with native Java support, ActiveX
support, and multimedia auto-playback and auto-execute extensions. In addition,
non-secure cookies should not be stored, and new downloads should not be exe-
cutable from inside the browser before being copied to a local directory.

The plug-in architecture provided by most browsers is being used to support an
increasing number of anti-phishing systems. Security toolbars are widely in use. For
example: Spoofstick [52] displays a website’s real domain name; Netcraft Toolbar
[45] displays a information about the site; Trustbar [33] displays a logos and the cer-
tificate authority of the website; eBay Account Guard [21] indicates the true eBay



258 H. BERGHEL ET AL.

site; SpoofGuard [11] calculates the ‘spoof’ score; and Web Wallet [63] tries to en-
sure users submit their data to the intended site. Typically these plug-ins are added to
the browser toolbar, and confirm that the current URL is not part of a known phishing
attack by contacting a centralized server. Ultimately, their effectiveness is dependent
on the reporting mechanisms used by the system. Users often ignore toolbar mes-
sages and toolbars also make mistakes, so these toolbars must be used with caution
[62]. The embedded links in phishing emails often contain a different link from that
displayed in the text. For example,

<a href=http://123.132.234.87> http://www.goodsite.com</a>

An anti-phishing browser extension [40] would detect such discrepancy and warn
the user. Other approaches to identifying phishing websites include [51]:

• Social networking: the toolbar informs the user if other people they know have
viewed and trusted the site.

• ‘Golden arches’ property: the Trustbar takes advantage of the ‘Golden arches’
property described by Dhamija [16]. It displays the company’s logo, as well
as the logo of the company that signed the SSL/TLS server certificate (e.g.,
Verisign).

Dhamija and Tygar [17] propose the use of trusted security windows for the dis-
play and submission of credentials. The user would assign a unique security image
as the background of the security window. The image would be stored locally, and
could not be spoofed by a remote user. Therefore, the user would be aware when
they were looking at legitimate security information or entering their username and
password into an authentic form. The use of browser-generated random images or
server-generated random images (also known as dynamic security skins) can also
provide the user with a prominent visual indication of a secure connection. Z. Ye et
al. [64] proposed trusted paths from the browser to the human user that might work
under browser spoofing.

In the future, the anti-phish functions may become a built-in feature of web
browsers. Netscape plans to release a web browser designed to resist phishing which
will frequently update blacklists of suspected phishing websites and a whitelist of
trusted sites. When a user follows an e-mail link and visits a trusted site, the browser
will automatically render it, but block user access if the site is part of a known phish-
ing attack. When a user visits a site not on a whitelist or blacklist, the browser
renders it with enhanced security that disables ActiveX and JavaScript capabili-
ties, which phishers could use to exploit vulnerabilities. Microsoft intends to provide
anti-phishing functionality as a core part of its next browser, Internet Explorer 7.0.
Deepnet Explorer 1.4 [15], a browser shell that uses the current version of Internet
Explorer to render web pages, analyzes web addresses and warns users about those



PHISH PHACTORS 259

on a blacklist of suspect sites. Users can then choose to either stop or continue trying
to access a site.

4.5 Server-side Security Measures
Organizations should take a role in preparing users for an eventual phishing at-

tack [24]. Most major online vendors, such as major banks, PayPal or eBay, already
practice this to some extent (and to some effect) [46]. Communications from the or-
ganization should remind users not to release credentials to any other party, with an
emphasis on prompting the user to consider the legitimacy of the motivation (e.g.,
email hyperlink) that drove them to the page. General phishing resources should also
be made available to customers, detailing methods that can be used to ensure the
validity of a site and how a customer can report a phishing scheme. Reported attacks
should be responded to quickly, and users appropriately notified. Finally, all outgo-
ing communications should be standardized; this reduces the likelihood legitimate
communications could be confused with a phishing attack. All of these suggestions
have a low cost to the organization, but must be delivered in a consistent manner
where the customer is not overloaded with information.

Organizations can take a number of steps to validate their email communications
with their customers, in order to make phishing attacks more obvious [46]. Emails
can be personalized with some personal information known only to trusted organiza-
tions, such as greeting the customer by name, or including the last few digits of their
credit card. A trail of trust can be established if subsequent emails precisely refer-
ence previous communications. Digital signatures can also be used to securely sign
emails [1,55]; however, this relies on the user to validate the signature. Specialist
web applications can also be made available to users to check the email was in fact
sent from the organization. In order for these techniques to deter a phishing attack,
the user must be aware of their existence and actively look for them.

Poor development techniques can expose custom web applications to some phish-
ing techniques, such as cross-site scripting or the inline embedding of custom content
(as discussed previously). Some of the key security requirements for a custom web
application include [46]:

• all submitted content should be validated,

• session identifiers should be carefully monitored,

• tightly control URL redirection services provided,

• ensure safeguards are present in the authentication process (e.g., two-stage lo-
gins, anti-key logging processes, or personalized content), and

• use image cycling (regularly change the name of images on the site to render
fake websites, that link to the legitimate website, out-of-date).



260 H. BERGHEL ET AL.

4.6 Alternative Authentication

Two-factor authentication (e.g., username/password and a secure token) has been
suggested [46] as a possible solution to phishing attacks. By making the password
time-dependent (i.e., it can only be used once), the phisher is limited in their ability
to subsequently connect to the server. This system combats simple eavesdropping
and password guessing; however, it is not a complete solution to phishing attacks
[50,54]. Attack techniques such as man-in-the-middle or the use of Trojan horses
will not be stopped: man-in-the-middle will still grant the phisher access, and Trojan
horses will allow the phisher access to subsequent sessions from that machine. Two-
channel authentication6 is similarly vulnerable to active phishing attacks, but would
eliminate some phishing attack vectors.

Delayed password disclosure [51] requires the server to continuously authenticate
itself with the user. After a user enters each character of their password, a predefined
image selected by the user is displayed. The pattern of images would be difficult for
a phishing website to mimic. Mutual authentication is also achieved by using server
and client side certificates. However, this requires users to have their certificate with
them in order to connect to their bank; this inconvenience will limit the use of this
technology [13].

Sophisticated browser password management can also be used to circumvent
phishing attacks [51]. If the user allows the browser to manage all passwords, and
a domain name is associated with each password, a user’s credentials will only be
automatically entered at legitimate websites [31].

Bellovin [6] believes that new authentication mechanisms will fail until prior re-
lationships can be adequately captured. The use of certificates, both in email and on
websites, merely guarantees the sender/website owns that particular domain name.
It does not guarantee that this is the same party that the user gave money or sensitive
data to. He proposes a simple solution to illustrate this point: if users were provided
with the bank’s certificate when opening an account, the certificate could be used to
authenticate bank email and websites. The certificate is bound to a previous legiti-
mate transaction, rather than simply being bound to a name.

4.7 Email Security

By modifying existing spam email filtering approaches, phishing emails can be
detected and filtered by analyzing their content. According to [35], 54 out of 3,370
spam emails intercepted were phishing emails. Phishing emails typically contained

6 Two-channel authentication requires the user to authenticate over two different mediums. For example,
part of the authentication would involve the bank sending a challenge via SMS, and the user replying via
SMS.



PHISH PHACTORS 261

text related to banks and auction sites. By checking the text and other email char-
acteristics such as sender, domain, and links, they formulated a scoring system to
identify and block phishing mails.

Digital signatures can be used to make it easier to check the identity of the sender
and the integrity of the message. However, it is still possible for a phisher to send
a message using an anonymous public/private key pair. There are two popular stan-
dards for digitally signed email, S/MIME and PGP, which are supported by most
Internet mail clients.

5. Comprehensive Anti-Phishing Efforts

Van der Merwe et al. [44] identify five key counter-attack categories for users and
organizations to consider:

1. Education: users should be equipped with the skills to identify, and avoid, po-
tential phishing attacks [36]. To a certain extent, this approach has failed: the
vast majority of email correspondence reminds users that the organization will
NEVER ask them for their password. Despite these regular warnings, phish-
ing attacks continue to succeed in doing exactly that. Ironically, many phishing
emails also include similar warnings.

2. Preparation: the danger of a phishing attack should be recognized, and policies
put in place to manage or respond to such attacks. Different authentication
technologies should be assessed for potential vulnerabilities. This particular
category is of more relevance to organizations.

3. Avoidance: steps can be taken to avoid becoming the target of a phishing attack.
For example, the use of anti-spam systems to filter out phishing messages or
the use of Verisign verification on secure websites.

4. Intervention: when those behind phishing attacks step forward to influence the
outcome of the attack, their success will be entirely dependent on the user.
This relies on category one: the user should stop to think before submitting any
personal information over the Internet.

5. Treatment: after a phishing attack, systems must be able to recover, identify the
extent of the damage, and contact the appropriate organizations to prevent the
misuse of sensitive information.

In other words, phishing cannot be prevented just by technical means alone; rather,
a comprehensive response is necessary.



262 H. BERGHEL ET AL.

5.1 User Vigilance and Education
The behavior of users targeted by phishing attacks has been studied extensively in

[18,19,48]. [18] observed the responses of 22 participants and analyzed the results
by sex, age, education level, hours using the computer, etc. The study did not find
any of these factors made a significant difference in the susceptibility of the user
to the attack. Somewhat shockingly, even in the best case scenario, when users ex-
pected spoofs to be present and were motivated to discover them, many users could
not distinguish a legitimate website from a spoofed website. In fact, the best phish-
ing site was able to fool more than 90% of participants. In [19], 57 participants were
tested and found that people use various strategies to distinguish phishing websites;
however, these techniques were not necessarily effective. In [48], a user education
course was offered and found that the user-awareness was greatly improved. Individ-
ual users are the most essential piece in an anti-phishing effort and they must take an
active role to avoid becoming a victim of a phishing attack. Users can take several
simple steps to protect themselves and their privacy:

• If a user gets an email warning that their account will be shut down unless they
reconfirm billing information, they should not reply.

• Never respond to HTML email with embedded submission forms (i.e., never
enter information directly into an email).

• Never click on hyperlinks within email even if they look legitimate; instead,
directly type in the URL in the web browser.7

• Avoid emailing personal and financial information.

• Do not email back to confirm account information. Instead, call or log on to the
company’s website.

• For sites that indicate they are secure, review the SSL certificates by clicking the
lock icon. Call the company if any certificate warning messages are displayed
when you log into the website.

• Review credit card and bank account for unauthorized charges.

• Report suspicious activity.

• Ensure software updates are applied in a timely manner.

5.2 Proactive Detection of Phishing Activities
Various companies offer monitoring services, which are aimed at the early detec-

tion and elimination of phishing attacks. For example [27]:

7 This would still leave the user vulnerable to a DNS poisoning attack; however, it would defeat a
significant percentage of phishing attacks, which rely on malformed or disguised URLs.



PHISH PHACTORS 263

• Corillian monitors and evaluates suspicious traffic on weekends, when most
phishers conduct reconnaissance. By analyzing web logs, they are able to iden-
tify patterns of possible phishing behavior, such as downloading and saving
images, or linking to images from a remote site. The process of verifying stolen
accounts can also be detected.

• NameProtect identifies phishing attacks by monitoring spam from many sources
(e.g., honey pot accounts [34]) and by checking domain name registration
records for newly registered domains with names similar to that of their client.

• Cyota provides account information to phishers. The accounts themselves are
set up in order to observe the phishing and fraud process. This allows the orga-
nizations involved to learn more about the nature of the attack.

5.3 Reporting and Response

Early reporting of phishing schemes allows them to be shut down as soon as possi-
ble and also allows users to be provided with some warning (e.g., by the organization
involved or through anti-phishing software) [49]. Major banks and e-commerce busi-
nesses generally have reporting forms as part of their website; the US Bank provides
an email address to forward suspect emails to, while Citibank also lists recent scams
with a link to each one. Independent groups, such as the Anti-Phishing Working
Group, also maintain information regarding known phishing attacks. Digital Phish-
net is an organization formed to fight phishing attacks. It combines the forces of
nine of the top ten US banks and financial services providers, four of the top five
ISPs and five digital commerce and technology companies. They cooperate with
the FBI, Federal Trade Commission (FTC), US Secret Service and the US Postal
Inspection Service, under the aegis of the FBI’s Internet Crime Complaint Center
(IC3) [41].

Once reported, law enforcement officials are responsible for shutting the website
down, tracing the source of the emails, tracking stolen funds and prosecuting those
responsible. In Australia, the Australian High Tech Crime Centre and the Australian
Computer Emergency Response Team are responsible for pursuing reported phish-
ing attacks [49]. The URL contained within the phishing email will be used in a DNS
search to find the ISP responsible for hosting the attack. This information usually al-
lows the website to be quickly shutdown; however this may not be the case if the ISP
is overseas, or in an unfriendly country. A G8 taskforce, consisting of 37 member
countries, has recently been established to combat computer crime, including phish-
ing. Of the phishing attacks recorded in May 2006 [3], 34.1% were conducted from
inside the US, 15% from China, 8.17% from Korea, 3.94% from France, 3.38% from
Germany.



264 H. BERGHEL ET AL.

Through effective reporting, historical conceptions about the spread of phish-
ing attacks are changing [29]. Rather than spreading in a disorganized wild-
fire pattern, researchers now believe phishing attacks originate from specific IP
blocks. CipherTrust [12] believes most phishing attacks are likely to originate
from fewer than 5,000 networks. Messages sent from sources that do not typ-
ically send legitimate email are candidates for subsequent analysis. The IP ad-
dresses contained in such emails can then be followed to check for phishing at-
tacks. More research is likely to allow researchers to better characterize phishing
attacks.

5.4 Legal

In the United States, Democratic Senator Patrick Leahy introduced the Anti-
Phishing Act of 2005 on February 28, 2005 [30]. It allows prison time of up to five
years and fines of up to US $250,000 for people who design fake websites for the pur-
poses of stealing money or credit card numbers. California passed an anti-phishing
law in September 2005, permitting victims to seek recovery of actual damages or up
to $500,000 for each violation, whichever is greater [32]. Other US states, including
Texas, New Mexico and Arizona, have also passed an anti-phishing law.

Although not common, some phishers get arrested. A 45-year-old California man,
Jeffrey Brett Goodin, was arrested in January 2006 and charged with operating an on-
line phishing scheme that targeted America Online customers [47]. He was charged
with wire fraud and unauthorized use of a credit card. Goodin is alleged to have
sent e-mail messages to thousands of AOL users to entice them to visit fraudulent
websites he set up to collect personal information. Another phisher was arrested in
August 2005 in Iowa [57]. Jayson Harris was charged with 75 counts of wire fraud
for allegedly stealing credit card numbers and personal information in a phishing
scheme targeting Microsoft’s MSN customers. Other countries have followed the
lead of the U.S. by tracing and arresting phishers.

Companies are taking proactive approaches in cracking down the phishers. On
March 31, 2005, Microsoft filed 117 federal lawsuits in the US District Court for
the Western District of Washington. The lawsuits accuse phishers of using var-
ious methods to obtain passwords and confidential information. AOL reinforced
its efforts against phishing in early 2006 with three lawsuits seeking a total of
$18 million USD under the 2005 amendments to the Virginia Computer Crimes
Act.



PHISH PHACTORS 265

6. Conclusion

Much of the Internet’s malicious user population8 has historically been motivated
by challenge, curiosity, rebellion, vandalism, and the desire for respect and power.
Modern trends in phishing reveal a very different situation: criminals have adopted
the well-developed and well-known techniques of malicious users and are exploit-
ing Internet users with sophisticated phishing attacks. The concept of phishing has
mutated significantly since its creation almost ten years ago. Modern phishers are
financially motivated and likely to pursue their attacks more aggressively than the
average cracker [53]. The influence of organized crime further supports the changing
nature of crime on the Internet. Phishing is also being used target individual users in
an attempt to gain access to specific resources [27].

However, the outlook is not entirely bleak: anti-virus, anti-spyware and anti-spam
systems are continuing to evolve, as are Internet browsers. If organizations prepare
well, remain vigilant and follow attack trends carefully, they can respond quickly
and effectively with a range of techniques to defend their customer’s data. If individ-
uals take a responsibility for their protection and adopt a defense-in-depth approach,
consisting of a comprehensive and complementary toolkit of software and education,
they can defend themselves against the most sophisticated attacks. There is no sim-
ple solution, but active and aware users and organizations have the ability to form a
strangle-hold on this ever-growing threat. Consider yourself warned!

ACKNOWLEDGEMENTS

Fragments of this chapter have been taken from Berghel, “Phishing Mongers and
Posers” [7] with the permission of the publisher.

REFERENCES

[1] Anti-Phishing Working Group, “Proposed solutions to address the threat of email spoof-
ing scams”, 2003.

[2] Anti-Phishing Working Group, “Origins of the Word “Phishing” ”, 2005.
[3] Anti-Phishing Working Group, “Phishing activity trends report”, May 2006.
[4] Anti-Phishing Working Group, “Phishing archive”, 2005.
[5] Anti-Phishing Working Group, “What are phishing and pharming?”, http://www.

antiphishing.org, 2006.
[6] Bellovin S.M., “Spamming, phishing, authentication, and privacy”, Commun.

ACM 47 (12) (2004) 144.

8 Hackers, crackers and script kiddies.



266 H. BERGHEL ET AL.

[7] Berghel H., “Phishing mongers and posers”, Commun. ACM 48 (4) (2006) 21–25.
[8] Berghel H., Brajkovska N., “Wading into alternate data streams”, Commun. ACM 47 (4)

(2004) 21–27.
[9] CACM Staff, “News track”, Commun. ACM 48 (2) (2005) 9–10.

[10] Chandrasekaran M., et al., “PHONEY: Mimicking user response to detect phishing at-
tacks”, in: Proc. 2006 Int. Symposium of World of Wireless, Mobile and Multimedia.

[11] Chou N., Ledesma R., Teraguchi Y., Mitchell J.C., “Client-side defense against web-
based identity theft”, in: 11th Annual Network and Distributed System Security Sympo-
sium, 2004.

[12] CipherTrust, http://www.ciphertrust.com.
[13] Clayton R., “Insecure real-world authentication protocols (or why phishing is so prof-

itable)”, in: Thirteenth Cambridge Protocols Workshop, Sidney, Sussex, UK, 2005.
[14] Cloudmark, http://www.cloudmark.com.
[15] Deepnet Explorer Browser, http://www.deepnetexplorer.com.
[16] Dhamija R., “Detecting phishing attacks: A user task analysis”, in: Authentication for

Humans: Designing and Evaluating Usable Security Systems, PhD dissertation, School
of Management Information Systems, UC Berkeley, 2005.

[17] Dhamija R., Tygar J.D., “The battle against phishing: Dynamic security skins”, in: ACM
Symposium on Usable Security and Privacy, 2005.

[18] Dhamija R., Tygar J.D., Hearst M., “Why phishing works”, in: CHI 2006, April 22–27,
2006.

[19] Downs J., Holbrook M., Cranor L.F., “Decision strategies and susceptibility to phishing”,
in: Symposium on Usable Privacy and Security (SOUPS), July 12–14, 2006, pp. 79–90.

[20] Drake C.E., Oliver J.J., Koontz E.J., “Anatomy of a phishing email”, in: Conference on
Email and Anti-Spam, Mountain View, CA, USA, 2004.

[21] eBay Toolbar and Account Guard, http://pages.ebay.com/help/confidence/account-
guard.html.

[22] Federal Trade Commission, “How not to get hooked by a ‘phishing’ scam”, 2005.
[23] Fernandez J.D., et al., “Computer forensics: a critical need in computer science pro-

grams”, J. Comput. Small Coll. 20 (4) (2005) 315–322.
[24] Flinn S., Stoyles S., “Omnivore: Risk management through bidirectional transparency”,

in: Proceedings of the 2004 workshop on New security paradigms, ACM Press, Nova
Scotia, Canada, 2005, pp. 97–105.

[25] Friedman B., et al., “Users’ conceptions of web security: A comparative study”, in: ACM
CHI: Conference on Human Factors in Computer Systems, 2002.

[26] Fu A., et al., “The methodology and an application to fight against Unicode attacks”, in:
Proc. SOUPS, 2006.

[27] Geer D., “Security technologies go phishing”, Computer 38 (6) (2005) 18–21.
[28] Good N., et al., “Stopping spyware at the gate: A user study of privacy, notice and spy-

ware”, in: Symposium on Usable Security and Privacy, 2005.
[29] Goth G., “Phishing attacks rising, but dollar losses down”, Security & Privacy Magazine,

IEEE 3 (1) (2005) 8.
[30] Grant Gross, “Anti-Phishing Act pushes for 5 years and $250,000 fine”, http://www.

thestandard.com/internetnews/001048.php, March 5, 2005.



PHISH PHACTORS 267

[31] Halderman J.A., Waters B., Felten E.W., “A convenient method for securely managing
passwords”, in: Proceedings of the 14th International Conference on World Wide Web,
ACM Press, Chiba, Japan, 2005, pp. 471–479.

[32] Haskins W., “California passes nation’s first antiphishing law”, http://www.newsfactor.
com/news/California-Passes-First-Antiphishing-Law/story.xhtml?story_id=010000Z2F774,
October 4, 2005.

[33] Herzberg A., Gbara A., “TrustBar: Protecting (even naïve) web users from spoofing and
phishing attacks”, http://www.cs.biu.ac.il/~herzbea/Papers/ecommerce/spoofing.htm,
2004.

[34] The Honeynet Project & Research Alliance, Know Your Enemy: Phishing, The Honeynet
Project & Research Alliance, 2005.

[35] Inomata A., Rahman S., Okamoto T., Okamoto E., “A novel mail filtering method against
phishing”, in: PACRIM, 2005.

[36] Internet Security Systems, “Protect your business from phishing”, 2005.
[37] Jakobsson M., “Modeling and preventing phishing attacks”, in: Financial Cryptography

’05, 2005.
[38] Keizer G., “Phishing costs nearly $1 billion”, InformationWeek, 2005.
[39] Kerstein P., “How can we stop phishing and pharming scams?”, in: CSO, July 19, 2005.
[40] Kirda E., Kruegel C., “Protecting users against phishing attacks with antiphishing”, in:

COMPSAC, 2005.
[41] Kuchinskas S., “Phish fighters form alliance”, http://www.internetnews.com/bus-news/

article.php/3445511, December 8, 2004.
[42] Levy E., “Criminals become tech savvy”, Security & Privacy Magazine, IEEE 2 (2)

(2004) 65–68.
[43] Levy E., “Interface illusions”, Security & Privacy Magazine, IEEE 2 (6) (2004) 66–69.
[44] Merwe A.v.d., Looc M., Dabrowski M., “Characteristics and responsibilities involved

in a Phishing attack”, in: Proc. of the 4th International Symposium on Information and
Communication Technologies, Trinity College Dublin, Cape Town, South Africa, 2005,
pp. 249–254.

[45] Netcraft Toolbar, http://toolbar.netcraft.com.
[46] Ollmann G., “The phishing guide”, NGS Software Insight Security Research, 2005.
[47] Roberts P., “California man arrested in AOL phishing scheme”, http://www.eweek.

com/article2/0.1895.1916273.00.asp, January 27, 2006.
[48] Robia S., Ragucci J., “Don’t be a phish: Steps in user education”, in: ITiCSE ’06, June

26–28, 2006.
[49] Rudd B., An Analysis of Phishing and Possible Mitigation Strategies, SANS Institute,

2004.
[50] Schneier B., “Two-factor authentication: Too little, too late”, Commun. ACM 48 (4)

(2005) 136.
[51] Sinclair S., Smith S.W., “The TIPPI point: Toward trustworthy interfaces”, Security &

Privacy Magazine, IEEE 3 (4) (2005) 68–71.
[52] Spoofstick, http://www.spoofstick.com.
[53] Treese W., “The state of security on the internet”, netWorker 8 (3) (2004) 13–15.
[54] Tuliani J., The Future of Phishing, Cryptomathic Ltd., 2004.



268 H. BERGHEL ET AL.

[55] Tumbleweed, Using Digital Signatures to Secure Email and Stop Phishing Attacks (White
Paper), Tumbleweed Communications, 2005.

[56] Varghese S., “Korgo worm takes phishing to a new level”, Sydney Morning Herald, Syd-
ney, 2004.

[57] Wagner J., “MSN billing phisher arrested”, August 24, 2005; http://www.internetnews.
com/security/article.php/3529746.

[58] Wenyin L., et al., “Detection of phishing webpages based on visual similarity”, in: Spe-
cial Interest Tracks and Posters of the 14th International Conference on World Wide Web,
ACM Press, Chiba, Japan, 2005, pp. 1060–1061.

[59] Wikipedia, “Identity theft”, Wikipedia, the free encyclopedia, 2005.
[60] Wikipedia, “Phishing”, Wikipedia, the free encyclopedia, 2005.
[61] Wikipedia, “Social engineering (computer security)”, Wikipedia, the free encyclopedia,

2005.
[62] Wu M., et al., “Do security toolbars actually prevent phishing attacks?”, in: Proc. CHI,

2006.
[63] Wu M., et al., “Web wallet: Preventing phishing attacks by revealing user intentions”, in:

SOUPS, 2006.
[64] Ye Z., Smith S., Anthony D., “Trusted paths for browsers”, ACM Trans. Inform. System

Security 8 (2) (May 2005) 153–186.



Reflections on System Trustworthiness

PETER G. NEUMANN∗

Computer Science Laboratory
SRI International
EL-243, 333 Ravenswood Ave
Menlo Park, CA 94025-3493
USA

Abstract
We examine here a range of concerns relating to computer systems and net-
works, with particular attention to difficulties in system development, and the
resulting vulnerabilities, threats, and risks. We examine some approaches that
might achieve dramatic improvements in the ability to develop, operate, and use
trustworthy systems. The problems and their solutions typically require a com-
bination of technology and social policy.

1. A Total-System Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
2. Anticipating Disasters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
3. Trustworthiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
4. Risks in Trusting Untrustworthiness . . . . . . . . . . . . . . . . . . . . . . . . . . 275
5. Principles for Developing Trustworthy Systems . . . . . . . . . . . . . . . . . . . . 277

5.1. Saltzer–Schroeder Security Principles . . . . . . . . . . . . . . . . . . . . . . 277
5.2. Further Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

6. System Composition: Problems and Potentials . . . . . . . . . . . . . . . . . . . . 285
6.1. Other Manifestations of Composition . . . . . . . . . . . . . . . . . . . . . . 290
6.2. Approaches for Predictable Composition . . . . . . . . . . . . . . . . . . . . 291

7. A Crisis in Information System Security . . . . . . . . . . . . . . . . . . . . . . . . 294
8. Optimistic Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
9. An Example: Risks in Electronic Voting Systems . . . . . . . . . . . . . . . . . . . 297

10. The Need for Risk Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
11. Risks of Misinformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
12. Boon or Bane? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

*Principal scientist.

ADVANCES IN COMPUTERS, VOL. 70 269 Copyright © 2007 Elsevier Inc.
ISSN: 0065-2458/DOI: 10.1016/S0065-2458(06)70006-7 All rights reserved.



270 P.G. NEUMANN

1. A Total-System Perspective

Each of the following items presents pressing challenges relating to the construc-
tive use of information technology. The totality of all the interrelated challenges
requires concerted efforts that transcend the individual problems.

• Trustworthiness. Trustworthiness implies simply that something is worthy of be-
ing trusted to satisfy its expected requirements. Users often trust systems that are not
worthy of being trusted, with respect to attributes such as system and network secu-
rity, system reliability and survivability, human safety, interoperability, predictable
system behavior, and other important attributes that are for the most part not re-
ceiving enough concerted attention. Computer-communication infrastructures are
typically riddled with flaws. In the absence of more serious attacks, governments
and system developers seem to have been lulled into a false sense of security. At
present, neither proprietary nor source-available system developers are sufficiently
militant in satisfying critical needs. In mass-market software, the patch mentality
seems to have won out over well-designed and well-implemented systems.

• Total system life-cycle issues. Developing and operating trustworthy systems is
inherently difficult today. Typically, a system is not likely to be trustworthy unless the
relevant attributes were explicitly recognized from the beginning of system develop-
ment, reflected in sound system architectures and software development, explicitly
addressed in system procurements, and their fulfillment mandated throughout system
operation.

• System development practice. Costly failures have occurred in developing large
systems, such as the modernization efforts for the US Internal Revenue Service,
US and UK air traffic control systems, the FBI Virtual Case File, and German
TollCollect, to name just a few. Procurement and development of large-scale hard-
ware/software systems remain high-risk activities, with cost overruns, delays, and
even abandonment of entire projects.

• The Internet. Increasingly, many enterprises are heavily dependent on the Inter-
net, despite its existing limitations. Internet governance, control, and coordination
create many contentious international problems. The Internet infrastructure itself is
susceptible to denial-of-service attacks and compromise, while the lack of security
and dependability of most attached systems also creates problems (e.g., penetrations
such as open relays being used to host zombies and “bots”). Worms, viruses, and
other malware are often impediments, as are ubiquitous problems of spam e-mail
and phishing attacks that may result in identity theft.

• Critical national infrastructures. Despite some past recognition of the perva-
siveness of serious vulnerabilities, critical national infrastructures such as electrical



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 271

power, energy, telecommunications, transportation, finance, and government conti-
nuity are typically still vulnerable to attacks and accidental collapses. For example,
massive power outages keep recurring, despite supposed improvements. Telecom-
munications outages can have severe consequences, as can transportation shutdowns
and fuel shortages. Furthermore, these infrastructures have interdependencies that
result in widespread system failures.

• Accountability. Oversight of computer activities is often as weak as oversight of
corporate practices. On the other hand, audit mechanisms must also respect privacy
needs. As one example that fails on both counts, today’s unauditable all-electronic
voting systems are lacking in accountability in a would-be effort to protect voter
privacy. In fact, without the addition of some sort of voter-verified audit trail, they
provide no meaningful assurances that votes are correctly recorded and processed.
(For example, see the October 2004 special issue of the Communications of the ACM,
devoted to the integrity of election systems.)

• Privacy. Privacy is something that many people do not value until after they
have lost it. Personal privacy is relevant pervasively in our lives, especially in finan-
cial matters and health care. Some advocates of homeland security have postulated
the need to sacrifice privacy in order to attain security, although the necessity of this
tradeoff is highly debatable. Sacrificing privacy does not necessarily result in greater
security. (Benjamin Franklin’s quote is apt in this regard: “Those who would sac-
rifice liberty for security deserve neither.”) Furthermore, serious inroads to privacy
protection have occurred that may be difficult to reverse. Surveillance is becoming
more widespread, but often without adequately respecting privacy. Legitimate needs
for anonymity or at least pseudoanonymity (for example, to protect victims and le-
gitimate whistle-blowers) must not be suppressed or dismissed as dangerous.

• Education. In many countries, university curricula in software engineering and
trustworthiness inadequately reflect the needs of critical systems. Instruction is often
aimed at programming in the small, while more or less ignoring systems in the large.
This situation has potentially serious long-term implications worldwide.

As noted above, it is the totality of these problems that is of primary concern.
Simplistic local approaches are not effective. Greater foresight and pervasive system-
oriented thinking are urgently needed, along with greater private-public cooperation.

2. Anticipating Disasters

As Henry Petroski noted over twenty years ago [42], we generally learn less from
successes than from failures. The ACM Risks Forum [32] and Computer-Related



272 P.G. NEUMANN

Risks [34] include a startling number of failures and risks, and provide a goldmine
of opportunity for anyone who wants to learn from past mistakes. Intriguingly, or
perhaps ironically, most of the content of [34] is still as relevant today as it was in
1995. The same types of failures continue to recur, and the range of causes remains
much the same. Indeed, the scope and extent of the risks has increased steadily. For
example, the ACM Risks Forum continues to report computer system development
fiascos and operational failures of aircraft, air-traffic control, defense systems, train
crashes, electrical power, telecommunications, medical health systems, and finan-
cial problems. These difficulties include problems in reliability, system survivability,
security, privacy, and human well-being. Some of these problems have been es-
calating dramatically, such as spam, phishing attacks, identity thefts, and financial
losses.

In recent years, some unusual natural disasters have occurred, such as the 9.0-
magnitude Indonesian earthquake that triggered a tsunami killing more than 200,000
people in 11 countries around the Indian Ocean, the exceptionally heavy 2006 hur-
ricane season in the Caribbean area including the devastating effects of Katrina,
and a major mudslide in La Conchita, California. Although failures of information
technology obviously had no role in triggering these disasters, IT systems could
play significant roles in anticipating, detecting, monitoring, and responding to such
events, minimizing losses of life, injuries, and consequential damages. What have
we learned from such events, especially with respect to the need for proactive con-
tingency plans?

For example, a tsunami detection and early-warning system such as had already
been deployed in the Pacific Ocean could also have been used in the Indian Ocean.
Such a system could have given timely warnings to millions of people, and could
have saved many lives if local authorities had citizen alerts and evacuation plans in
place. Early warnings and preparedness for hurricanes and typhoons are improving as
computer prediction of possible storm paths is becoming more accurate and as many
authorities prepare disaster response plans and train for their deployment. However,
preparedness tends to improve only after disasters have occurred (and then often
only temporarily). In the case of the mudslide in the hills above La Conchita, which
followed an awesome sequence of rainstorms, sensors in the hills were designed to
trigger advance warnings, which evidently were not taken seriously enough. (A simi-
lar slide had occurred in an adjacent area nine years earlier, and insurance companies
had already declined to provide future coverage.)

Several problems arise in connection with developing detection and warning sys-
tems.

• Institutions (especially governments, corporations, and defense departments)
tend to fashion response plans for past situations rather than for potentially dev-
astating future situations. Unless a similar disaster has recently occurred in a sim-



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 273

ilar venue under similar conditions, few people worry about low-probability high-
impact events. A comparable tendency holds for trustworthy computing. A com-
puter networking event not unlike a tsunami occurred in 1988—namely, the Internet
Worm [47,54] that affected about 10% of the 60,000 Internet hosts active at the time.
As a result, an emergency response team (now US-CERT) was formed to help coor-
dinate responses and warn of vulnerabilities. Prior to the year 2000, a large upgrade
effort to avoid the Y2K crisis was generally successful; the situation could have
been much more serious without the intensive remediation efforts. Today, many new
threats such as malware and terrorist attacks could easily disable critical infrastruc-
tures and the Internet. However, because the cybersecurity equivalent of a tsunami
seems extremely unlikely to many people unfamiliar with the nature of the vulnera-
bilities, there is little interest in mounting efforts to increase system trustworthiness
and engage in other preventive measures. The consequences of major meltdowns
could be very dramatic, especially if accompanied by terrorist attacks.

• Institutions tend to optimize short-term costs and ignore long-term conse-
quences. Also, farsighted analyses of what might happen are always subject to poor
assumptions, faulty reasoning, and mandates to reach self-serving conclusions. This
is discussed further in Section 8.

• People generally do not like to make unnecessary preparations, and often resent
taking sensible precautions. Repeated false warnings tend to inure them, with a re-
sulting loss of responsiveness. Even justifiable warnings that are heeded (such as the
Y2K remediation or boarding up for an oncoming hurricane) are often denigrated if
the resulting effects are only relatively minor.

It is clear that much greater attention needs to be devoted to predicting, detecting,
and ameliorating both natural catastrophes and unnatural computer-related misuse,
attacks, disasters, and outages. Efforts are needed to dramatically improve the trust-
worthiness of those systems on which many lives depend, and to make those systems
more tolerant to human misbehavior as well as malfunctions and natural causes.

3. Trustworthiness

Estimates of system trustworthiness ultimately depend on having some sort of
logical basis for confidence that a system will predictably satisfy its critical re-
quirements. Measures of trustworthiness are particularly important for information
security, system integrity and reliability, human safety, fault tolerance, and overall
enterprise survivability in the face of wide ranges of adversities (including malfunc-
tions, deliberate attacks, and natural causes).



274 P.G. NEUMANN

Many lives increasingly depend on critical national infrastructures—all of which
in turn depend in varying degrees on the predictable behavior of computer-
communication resources. Indeed, these infrastructures often depend on the Internet
for information and control and may be vulnerable to attacks from any attached
computer systems.

Unless critical information system resources are sufficiently trustworthy, other
systems are at risk from failures and subversions. Unfortunately, for many of the key
application domains, the existing information infrastructures are lacking in trustwor-
thiness. For example, power grids, air-traffic control, high-integrity electronic voting
systems, the emerging US Department of Defense Secure Global Information Grid,
national infrastructures, and many collaborative and competitive Internet-based ap-
plications all need systems that are more trustworthy than we have today or are likely
to have in the foreseeable future.

Numerous steps are needed to develop trustworthy systems. Consider an analogy
with the planet’s natural environment—expectations for which are somewhat simi-
lar to expectations for trustworthy information systems. For example, pure air and
uncontaminated water are vital, as are the social systems that ensure them.

Although poorly chosen analogies can be misleading, the analogy with the nat-
ural environment is appropriate. Each of the following items is applicable to both
trustworthy information systems and natural environments.

• Their critical importance is generally underappreciated until something goes
fundamentally wrong—after which undoing the damage can be very difficult if
not impossible.

• Problems can result from natural circumstances, equipment failures, human er-
rors, malicious activity, or a combination of these and other factors.

• Dangerous contaminants may emerge and propagate, often unobserved. Some
of these may remain undetected for relatively long periods of time, whereas
others can have immediately obvious consequences.

• Once something has gone recognizably wrong, palliative countermeasures are
typically fruitless—too little, too late.

• Your own well-being may be dramatically impeded, but there is not much you
as an individual can do about aspects that are pervasive—perhaps international
or even global in scope.

• Detection, remediation, and prevention require cooperative social efforts, such
as public health and sanitation activities, as well as technological means includ-
ing increased trustworthiness.

• Up-front preventive measures can result in significant savings and increased
human well-being, ameliorating major problems later on.



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 275

• As discussed further in Section 8, long-term thinking is relatively rare. There
is frequently little governmental or institutional emphasis on proactive preven-
tion of bad consequences. Many of the arguments against far-sighted planning
and remediation are skewed, being based on faulty, narrowly scoped, or short-
sighted reasoning—especially relating to short-term profits rather than long-
term savings and other benefits.

• Commercial considerations tend to trump human well-being, with business
models sometimes considering protection of public welfare to be detrimental
to corporate and enterprise bottom lines.

In some contexts, pure water is becoming more expensive than oil. Fresh air is
already a crucial commodity. Short- and long-term effects of inadequately trustwor-
thy information systems can similarly be costly. Proactive measures are as urgently
needed for system trustworthiness as they are for breathable air, clean water, and en-
vironmental protection. It is difficult to remediate computer-based systems that were
not designed and implemented with trustworthiness in mind. It is also difficult to
remediate serious environmental damage.

Anticipating and responding to compelling long-term needs does not require extra-
ordinary foresight, whether for air, water, reversing global warming, or trustworthy
systems upon which to build infrastructures. Our long-term well-being—perhaps
even our survival—depends on our willingness to consider the future and commit-
ment to taking appropriate actions.

4. Risks in Trusting Untrustworthiness

The Internet provides ample opportunity for proving the age-old truism, “There’s
a sucker born every minute.” Carnival-style swindles and other confidence games
once limited to in-person encounters are now proliferating electronically, world-
wide, at low cost and effort. Blatantly obvious pre-Internet examples are the so-called
Nigerian-style postal scams that requested use of one’s bank account to help move
money; hoping for a proffered generous commission, the suckers are then separated
from their assets. These scams have been updated to today’s e-mail phishing and
e-mail scam attacks that efficiently harvest personal information from vastly more
people, and are considerably more sophisticated—for example, replicating a legiti-
mate website in every respect except for perhaps just one hard-to-detect bogus URL.
Indeed, it is becoming increasingly difficult to distinguish the real from the bogus,
and people continue to be victimized.

Many other kinds of scams, stings, and misrepresentations also exist. Deceptive
unsolicited e-mail (spam) offering bogus goods and services opens up new avenues



276 P.G. NEUMANN

for fraud and identity theft. Online activities are emerging with glaring opportunities
for swindles, manipulations, and assorted malfeasance, such as online auctions (with
irregularities such as nondelivery and secondary criminality), an alarming increase
in highly sophisticated phishing attacks, Internet gambling, and fraudulent websites
(e.g., with deceptive URLs creating the appearance of legitimacy). Any of these and
other situations could result in inordinate risks, such as financial ruin, blackmail,
compromised democracy, or even loss of life. But it is perhaps not surprising that
people fall for such schemes, particularly when the technology superficially appears
genuine.

Today’s unauditable paperless all-electronic voting systems present significant
risks (see Section 9). The risks are even greater for voting over the Internet. With
independent accountability seriously lacking today, e-voting can be likened to using
an off-shore gambling site not subject to any regulation and managed by unknown
and unaccountable agents.

We tend to trust third-party relationships with banks, telephone companies, air-
lines, and other service providers whose employees have in some way earned our
trust, collectively or individually. But what about untrustworthy third parties? Some
computer-based applications rely critically on the putative integrity and noncom-
promisibility of automated trusted third parties, with little if any easily demonstrated
human accountability. Examples include digital-certificate authorities, cryptographic
servers, surveillance facilities, sensitive databases for law enforcement, and credit-
information bureaus. With appealing short-term cost incentives for pervasive use of
outsourcing, the need for demonstrably trustworthy third-party institutions becomes
even more important. However, security, privacy, and accountability are often ig-
nored in efforts to save money.

Is placing trust in offshore enterprises inherently riskier than using domestic ser-
vices? Not necessarily. Corruption and inattention to detail are worldwide problems.
The deciding factor here is the extent to which comprehensive oversight can be main-
tained.

Is domestic legislation enough? Of course not. Any legislation should not be
overly simplistic; for example, it should avoid seeking solely technological fixes or
purely legislative solutions to deeper problems. Besides, serious complexities arise
from the fact that such problems are international in scope and demand international
cooperation.

Is there a role for liability (for flagrant misbehavior or injurious neglect) and dif-
ferential insurance rates—for example, based on how well a purveyor is living up to
what is expected of it? Such measures have significant potential, although they will
be strongly resisted in many quarters.

So, how can we provide some meaningful assurance that critical entities such as
direct or third parties are sufficiently trustworthy? Ideally, institutions providing,



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 277

controlling, managing, and monitoring potentially riskful operations should be de-
coupled from other operations, avoid conflicts of interest, and be subject to rigorous
independent oversight. Enronitis and collusion must be avoided, even if it means
that the costs are greater. Furthermore, the people involved need altruism, sufficient
foresight to anticipate the risks, and a commitment to effectively combat those risks.
At the very least, their backgrounds should be free of criminal convictions and other
activities that would cast serious suspicions on their trustworthiness. In addition, leg-
islators need to be able to see beyond the simplistic and palliative, to approaches that
address the real problems. Above all, the entire populace must become more aware
of the risks and the concerns outlined above, especially to the inherent combination
of technology and policy issues.

This conclusion should not be a surprise. Overall, there are many risks that must
be addressed. The old Latin expression “Caveat emptor” (Let the buyer beware) is
even more timely today.

5. Principles for Developing Trustworthy Systems

Everything should be made as simple as possible—but no simpler.
Albert Einstein

Developing trustworthy systems with complex requirements is inherently a com-
plex challenge. In general, simple solutions are hopelessly inadequate in such
cases. On the other hand, enormously complex systems—even if they purport to
be trustworthy—are likely to be unmanageable, from the perspective of developers,
system administrators, application operators, and end-users.

Ideally, there should be some middle ground. In particular, the recommended ap-
proach, considered in Section 6, is to develop trustworthy systems as conceptually
sound predictable compositions of simpler components, perhaps even with provably
sound combinations of provably sound components.

In anticipation of that approach, a relevant set of principles can be helpful in in-
creasing trustworthiness—if the principles are used intelligently as guidelines for
system development and operation.

5.1 Saltzer–Schroeder Security Principles
The ten basic security principles formulated by Jerry Saltzer and Mike Schroeder

[51] in 1975 are all still relevant today, in a wide range of circumstances. They are
actually of broader interest than just with respect to security. For example, each one
is also relevant to reliability, survivability, and human safety. In essence, these prin-
ciples are summarized as follows (overly tersely), for present purposes:



278 P.G. NEUMANN

• Economy of mechanism: Seek design simplicity (wherever and to whatever ex-
tent it is effective).

• Fail-safe defaults: Deny accesses unless explicitly authorized (rather than per-
mitting accesses unless explicitly denied).

• Complete mediation: Check every access, without exception.

• Open design: Do not assume that design secrecy will enhance security.

• Separation of privileges: Use separate privileges or even multiparty authoriza-
tion (e.g., two keys held by different entities) to reduce misplaced trust.

• Least privilege: Allocate minimal (separate) privileges according to need-to-
know, need-to-modify, need-to-delete, need-to-use, and so on. The existence of
powerful mechanisms such as superuser is inherently dangerous.

• Least common mechanism: Minimize the amount of mechanism common to
more than one user and depended on by all users.

• Psychological acceptability: Strive for ease of use and operation—for example,
with easily understandable and forgiving interfaces.

• Work factors: Make cost-to-protect commensurate with threats and expected
risks.

• Recording of compromises: Provide nonbypassable tamper-resistant and tamper-
evident audit trails of evidence.

These are of course basic guidelines, not hard-and-fast rules—especially in light
of some potential mutual contradictions. Two fundamental caveats must be recog-
nized. First, each principle by itself may be useful in some cases and not in others.
Second, when taken in combinations, groups of principles are not necessarily all re-
inforcing; indeed, they may in some cases conflict with one another. Consequently,
development must consider appropriate use of each principle in the context of the
overall effort. Examples of a principle having both positive and negative aspects are
scattered through the following discussion.

The Saltzer–Schroeder principles grew directly out of the MIT/Honeywell/
BellLabs Multics experience (e.g., [40]) begun in 1965 and discussed further later in
this section. Each of these principles has taken on almost mythic proportions among
the security elite, and to some extent buzzword cult status among many fringe par-
ties. Therefore, we do not explain each principle in detail—although considerable
depth of discussion is needed for successful application of each principle. Careful
reading of the Saltzer–Schroeder paper [51] is recommended if it is not already a
part of your library. Matt Bishop’s security books [7,8] are also useful in this regard,
placing the principles in a more general context.

Various caveats are considered in Section 12.



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 279

TABLE I
APPLICABILITY OF SALTZER–SCHROEDER PRINCIPLES

Principle Trustworthiness Assurance

Economy of
mechanism

is a vital aid to sound design.
Exceptions must be handled
completely.

can simplify local analysis.

Fail-safe defaults simplifies design, use, operation,
maintenance.

can simplify analysis.

Complete
mediation

is vital, but beware of compromise
from below.

can simplify analysis locally.

Open design Secret designs do not preclude
compromise. Open design can inspire
stronger system security.

Open designs do not preclude
compromise. Open design encourages
independent analysis.

Separation of
privileges

avoids many types of common flaws. focuses analysis more precisely.

Least privilege limits effects of flaws; simplifies
operation.

focuses analysis more precisely.

Least common
mechanism

avoids certain common flaws. modularizes analysis.

Psychological
acceptability

is relevant to usability and operations. Ease of use is helpful, must anticipate
crises.

Work factors are misleading if systems can be
compromised from
outside/within/below.

give a false sense of security if
unexpected compromises are ignored.

Compromise
recording

is an after-the-fact diagnostic and
deterrent.

is only an indirect contributor.

Table I summarizes how each of the Saltzer–Schroeder principles can contribute
to the goals of trustworthiness and assurance, particularly with respect to security,
reliability, and other survivability-relevant requirements. Intriguingly, most of these
principles can also be helpful in enhancing composability.

In particular, complete mediation, separation of privileges, and allocation of least
privilege are beneficial to composability and trustworthiness. Open design can con-
tribute significantly to composability, when subjected to internal review and external
criticism. (See Section 6.) However, conflicts persist about the importance of open
design with respect to trustworthiness, with some people still clinging tenaciously to
the notion that security by obscurity is sensible—despite risks of many flaws being so
obvious as to be easily detected externally, even without reverse engineering. Indeed,
the recent emergence of good decompilers for C and Java, along with the likelihood
of similar reverse engineering tools for other languages, suggests that such attacks
are becoming steadily more practical. Overall, the pretense of keeping a design se-



280 P.G. NEUMANN

cret and the supposed unavailability of source code are realistically not significant
deterrents, especially with ever-increasing skills among black-box system analysts.
However, there are cases in which reliance on security by obscurity is unavoidable—
as in the hiding of private and secret cryptographic keys, although the cryptographic
algorithms and implementations can be public.

Fundamental to trustworthiness is the extent to which systems and networks can
avoid being compromised by malicious or accidental human behavior and by events
such as hardware malfunctions and so-called acts of God. In [35], we consider com-
promise from outside, compromise from within, and compromise from below, with
fairly intuitive meanings. These notions appear throughout this chapter.

In theory, there are various cases where certain weak links can be avoided (such
as zero-knowledge protocols that can establish a shared key without any part of
the protocol requiring secrecy, Byzantine algorithms, and k-out-of-n cryptography),
although in practice they may be undermined by compromises from below (involv-
ing trusted and supposedly trustworthy insiders subverting the underlying operating
systems) or from outside (involving penetrations of the operating systems and mas-
querading as legitimate users).

From its beginning, the Multics development was strongly motivated by a set of
principles—some of which were originally stated by Ted Glaser and Neumann in the
first section of the first edition of the Multics Programmers’ Manual in 1965. (See
http://multicians.org.) It was also driven by extremely disciplined development. For
example, no coding effort was begun until a written specification had been approved
by the Multics advisory board; also, with just a few exceptions such as low-level
device drivers, all the code was written in a subset of PL/I just sufficient for the
needs of Multics, for which the first compiler (early PL, or EPL) had been developed
by Doug McIlroy and Bob Morris.

In addition to the Saltzer–Schroeder principles, further insights on principles and
discipline relating to Multics can be found in a paper by Fernando Corbató, Jerry
Saltzer, and Charlie Clingen [12] and in Corbató’s Turing lecture [11].

5.2 Further Principles

An earlier view of principled system development was given by Neumann in
1969 [33], relating to what is often dismissed as merely “motherhood”—but which
in reality is both profound and difficult to observe in practice. The principles under
consideration in that paper included automatedness, availability, convenience, de-
buggability, documentedness, efficiency, evolvability, flexibility, forgivingness, gen-
erality, maintainability, modularity, monitorability, portability, reliability, simplicity,
and uniformity. Some of those attributes indirectly affect security and trustworthi-
ness, whereas others affect the acceptability, utility, and long-term future of systems.



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 281

Considerable discussion in [33] was also devoted to (1) the risks of local optimiza-
tion and the need for a more global awareness of less obvious downstream costs of
development (e.g., writing code for bad—or nonexistent—specifications, and hav-
ing to debug really bad code), operation, and maintenance (see Section 8); and (2)
the benefits of higher-level implementation languages (which prior to Multics were
rarely used for the development of operating systems [11,12]).

In the context of developing predictably trustworthy systems, an expanded set of
principles is listed below. Although most of them might seem more or less obvious
to advanced developers, there are interpretations, hidden issues, and potential pitfalls
for their successful implementation. As a result, a seemingly paradoxical situation
arises: understanding and experience are required in order to make optimal use of
the principles. Thus, the learning experience is essentially iterative.

• Sound architecture. Recognizing that it is better to avoid design errors early
than to attempt to fix them later, composable architectures inherently capable
of evolvable, maintainable, robust implementations are required. Furthermore,
good interface design is as fundamental to good architectures as is their internal
designs. Both the architectural structure and the architectural interfaces (partic-
ularly the visible interfaces, but also some of the internal interfaces that must be
interoperable) can benefit from careful specification.

• Abstraction. The primitives at any given logical or physical layer should be rele-
vant to the functions and properties of the objects at that layer, and should mask
lower-layer detail where possible. Ideally, the specification of a given abstrac-
tion should be in terms of objects meaningful at that layer, rather than requiring
lower-layer (e.g., machine-dependent) concepts. Abstractions at one layer can
be related to the abstractions at other layers in a variety of ways, thus simpli-
fying the abstractions at each layer rather than collapsing different abstractions
into a more complex single layer. Particularly useful examples of abstraction
include trustworthiness kernels, virtual machine monitors, and similar layered
defenses.

• Modularity. Modularity relates to the characteristic of system structures in
which different entities (modules) can be relatively loosely coupled and com-
bined to satisfy overall system requirements, whereby a module could be modi-
fied or replaced as long as the new version satisfies the given interface specifica-
tion. In general, modularity is most effective when the modules reflect specific
abstractions and provide encapsulation within each module (see the next item).

• Encapsulation. Details that are relevant to a particular abstraction should be
local to that abstraction and subsequently isolated within the implementation of
that abstraction and the lower layers on which the implementation depends. One
example of encapsulation involves information hiding—for example, keeping



282 P.G. NEUMANN

internal state information inaccessible to the visible interfaces [41]. Another
example involves masking the idiosyncrasies of physical devices from higher-
layer system interfaces, and from the user interfaces as well.

• Layered and distributed protection. Protection (and generally defensive de-
sign for security, reliability, and so on) should be distributed to where it is
most needed, and should reflect the semantics of the objects being protected.
With respect to the reality of implementations that rely on—and perhaps pass
through—entities of different trustworthiness, layers of protection are vastly
preferable to flat concepts such as single sign-on (i.e., where only a single
authentication is required). With respect to psychological acceptability, single
sign-on has enormous appeal; however, it can leave enormous security vulner-
abilities as a result of compromise from outside, from within, or from below, in
both distributed and layered environments. Overall, psychological acceptability
can conflict with other principles, such as complete mediation, separation of
privileges, and least common privilege.

• Constrained dependency for integrity. Dependencies on less trustworthy entities
should be avoided unless potential negative effects can be somehow confined or
constrained. However, it is possible in some cases to surmount the relative un-
trustworthiness of mechanisms on which certain functionality depends—as in
various types of trustworthiness-enhancing mechanisms (see [36]). In essence,
do not trust anything on which you must depend—unless you are adequately
satisfied with demonstrations of its trustworthiness or the ability to surmount
its relative untrustworthiness. This intuitive extension of Biba’s notion of mul-
tilevel integrity [6] is considered further in Section 6.

• Architectural minimization of what must be trustworthy. Appropriate trustwor-
thiness should be situated where it is most needed, suitable to overall system
requirements, rather than required uniformly across widely distributed compo-
nents (with potentially many weak links) or totally centralized (with creation
of a single weak link and forgetting other vulnerabilities). Trustworthiness is
expensive to implement and to ensure. Thus, significant benefits can result from
minimizing what has to be trustworthy. This principle can contribute notably to
sound architectures. In combination with economy of mechanism, this provides
avoidance of both bloatware and adverse dependence on less trustworthy com-
ponents. For example, in some cases a simple end-to-end check can determine
the presence of intermediate compromises and avoid the necessity of trusting
everything else for integrity (apart from denial-of-service attacks).

• Object orientation. The OO paradigm bundles together abstraction, encapsu-
lation, modularity of state information, inheritance (subclasses inheriting the
attributes of their parent classes—e.g., for functionality and for protection), and



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 283

subtype polymorphism (subtype safety despite the possibility of application to
objects of different types). This paradigm facilitates programming generality
and software reusability, and if properly used can enhance software develop-
ment. This is a contentious topic—for example, in that most of the OO method-
ologies and languages are sloppy with respect to inheritance.

• Separation of policy and mechanism. Statements of policy should avoid inclu-
sion of implementation-specific details. Furthermore, mechanisms should be
policy neutral where that can be advantageous in achieving functional general-
ity. However, this principle must never be used in the absence of understanding
about the range of policies that needs to be implemented. There is a tempta-
tion to avoid anticipating meaningful policies, deferring them until later in the
development—and then discovering that the desired policies cannot be realized
with the given mechanisms. This is a characteristic chicken-and-egg problem
with abstraction.

• Separation of duties. In relation to separation of privileges, separate classes
of duties of users and computational entities should be identified, so that dis-
tinct system roles can be assigned accordingly. Distinct duties should be treated
distinctly, as in activities of system administrators, system programmers, and
unprivileged users.

• Separation of roles. Concerning separation of privileges, the roles recognized by
protection mechanisms should correspond in some readily understandable way
to the various duties. For example, a single all-powerful superuser role intrin-
sically violates separation of duties, separation of roles, separation of privilege,
and separation of domains. The separation of would-be superuser functions into
separate roles (as in Trusted Xenix) is a good example of desirable separation.
Once again (as with single sign-on), there is a potential conflict between princi-
ples: the monolithic superuser mechanism provides economy of mechanism, but
violates other principles. In practice, all-powerful mechanisms are sometimes
unavoidable, and sometimes even desirable despite the negative consequences
(particularly if confined to a secure subenvironment). However, they should be
avoided wherever reasonable.

• Separation of domains. Concerning separation of privileges, domains should
be able to enforce separate roles. For example, a single all-powerful superuser
mechanism is inherently unwise, and is in conflict with the notion of separation
of privileges. However, separation of privileges is difficult to implement if there
is inadequate separation of domains. Separation of domains can help enforce
separation of privilege, but can also provide functional separation (as in the
Multics ring structure, a kernelized operating system with a carefully designed
kernel, a capability-based architecture, or a virtual-machine monitor). The prin-



284 P.G. NEUMANN

ciple of least common mechanism is also somewhat related. It is desirable to
avoid sharing of trusted multipurpose mechanisms, including executables and
data, thereby minimizing the use of all-powerful mechanisms such as superuser
and shared buffers (such as the historically seminal FORTRAN common). As
one example of the flaunting of principles, exhaustion of shared resources pro-
vides a huge source of covert storage channels, whereas the natural use of a
common calendar clock provides a source of covert timing channels.

• Sound authentication. Authentication is a pervasive problem. Nonbypassable
authentication should be applicable to users, processes, procedures, and in gen-
eral to any active entity or object. Authentication relates to evidence that the
identity of an entity is genuine, that procedure arguments are legitimate, that
types are properly matched when strong typing is to be invoked, and other sim-
ilar aspects.

• Sound authorization and access control. Authorizations must be correctly and
appropriately allocated, and nonsubvertible. Crude all-or-nothing authorizations
are often riskful (particularly with respect to insider misuse and program-
ming flaws). In applications for which user-group-world authorizations are
inadequate, access-control lists and role-based authorizations may be prefer-
able. Finer-grained access controls may be desirable in some cases, such
as capability-based addressing and field-based database protection. However,
knowing who has access to what at any given time should be relatively easy to
determine.

• Administrative controllability. The facilities by which systems and networks
are administered must be well designed, understandable, well documented, and
sufficiently easy to use without inordinate risks.

• Comprehensive accountability. Well-designed and carefully implemented facil-
ities are essential for comprehensive monitoring, auditing, interpretation, and
automated response (as appropriate). Serious security and privacy issues must
be addressed relating to the overall accountability processes and audit data.

Similar to the summary in Table I, the additional principles also tend to contribute
to the goals of achieving composability, trustworthiness, and assurance.

At this point in the analysis, it should be no surprise that these and other principles
can contribute in varying ways to security, reliability, survivability, and other -ilities.
Furthermore, many of the principles and other “ilities” are linked. We cite just a few
of the interdependencies that must be considered.

For example, authorization is of limited use without authentication, whenever
identity is important. Similarly, authentication may be of questionable use with-
out authorization. In some cases, authorization requires fine-grained access controls.



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 285

Least privilege requires some sort of separation of roles, duties, and domains. Sepa-
ration of duties is difficult to achieve if there is no separation of roles. Separation of
roles, duties, and domains each must rely on a supporting architecture.

The comprehensive accountability principle is particularly intricate, as it depends
critically on many other principles being invoked. For example, accountability is in-
herently incomplete without authentication and authorization—without which trace-
back to the users or originating entities is doubtful. In many cases, monitoring may
be in conflict with privacy requirements and other social considerations [16], unless
extremely stringent controls are enforceable. Separation of duties and least privilege
are particularly important here. All accountability procedures are subject to security
attacks, and are typically prone to covert channels as well. Principles are becom-
ing increasingly important, and are fundamental to Peter Denning’s Great Principles
project (http://cs.gmu.edu/cne/pjd/GP).

6. System Composition: Problems and Potentials

The challenge of developing systems with realistic trustworthiness requirements
is inherently complex, despite persistent advice to keep it simple. However, consider
the goal of building trustworthy systems using predictably sound compositions of
well-designed components along with analysis of the properties that are preserved by,
transformed by, or emerging from the compositions. Conceptually, that can greatly
simplify and improve development. Indeed, composition is seemingly theoretically
relatively straightforward to achieve—especially if we follow the guidance of David
Parnas, Edsger Dijkstra, and others. Unfortunately, there is a huge gap between the-
ory and common practice: system compositions at present are typically ad hoc, based
on the intersection of potentially incompatible component properties, and dependent
on untrustworthy components that were not designed for interoperability and whose
behavior can undermine the compositions—often resulting in unexpected results
and risks. In practice, it is particularly difficult to determine all potentially nega-
tive effects of compositions of arbitrary components that were not designed with
composition explicitly in mind.

Composition is a concept that is meaningful with respect to many entities, includ-
ing requirements, specifications, protocols, implemented components, and analytic
results such as evaluations and formal proofs. In many cases, the composition of
different entities may have unpleasant results.

Other problems may arise because of the order in which operations are carried out,
even though the operations may be theoretically commutative or in some broader
sense equivalent (perhaps producing different but nevertheless acceptable results).



286 P.G. NEUMANN

For example, consider the combination of error-correcting coding (which adds redun-
dancy), compression (which removes redundancy), and cryptography (which ideally
makes meaningful content look essentially random). Compressing after encrypting
makes little sense, because there is little apparent redundancy. Similarly, compress-
ing after adding redundancy for error correction also makes little sense, because it
vitiates the overall error correction. Thus, if such a combination were to be effective,
compression should precede encryption, which then should be followed by error-
correcting coding.

With regard to subsystem composition, the following are particular concerns.

• Composability and compositionality. A distinction is sometimes made be-
tween two concepts pertaining to composition. Composability relates to the
predictability of the preservation or transformation of existing properties un-
der composition. Compositionality refers to the predictability of properties that
emerge as a result of compositions.

• Inadequate requirements. If stated requirements do not explicitly demand that
subsystems and other components be developed in ways that encourage com-
patibility and interoperability, composability is likely to be difficult to achieve.
Furthermore, poorly defined requirements are likely to hinder composability.

• Nonexistent or inappropriate specifications. If system and subsystem specifi-
cations do not adequately define the relationships among interfaces, inputs,
internal state information and state transitions, outputs, and exception con-
ditions, and if those specifications are oblivious to critical relationships with
related functionality, determining to what extent composability is possible be-
comes much more difficult. Composition of underconstrained specifications is
an inherent problem, because the extent to which the components compose is ill-
defined; supposed demonstrations of composability may actually be meaning-
less. Overly constrained specifications (e.g., including unnecessarily low-level
and possibly incompatible details) are also often an impediment to compos-
ability. Shared state information across components is a particular source of
potential problems.

• Properties that exist beyond what is defined by stated individual subsystem
interface specifications. Assuming the presence of meaningful specifications,
inadequacies of the specifications and inconsistencies between specifications
and implementations are characteristic problems. In general, specifications are
always inherently incomplete with respect to defining what should not happen,
even if they are fairly good at defining what should happen. (Abstraction is a
very important technique for simplifying specifications, but it suppresses detail
that may include undesirable aspects of behavior and may therefore negatively
affect compositional properties.) In addition, programming languages and com-



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 287

pilers themselves provide very few if any guarantees that something beyond
what is expected cannot occur. Examples include shared-buffer interactions and
unanticipated information residues from one invocation of a subsystem to a sub-
sequent or concurrent invocation of the same subsystem; buffer overflows and
other cases of inadequate bounds checks and inadequate runtime validation;
inadequate authentication; improper initialization and finalization; improper en-
capsulation, which can result in interference and other unexpected interactions;
race conditions; covert channels; and intentionally planted Trojan horses. This
list represents just the nose of the camel. All these problems can impair com-
posability. As one example, various Windows operating systems are actually
relatively modular (which is essential for orderly development), but the mod-
ules are not sufficiently encapsulated to prevent adverse effects resulting from
composition.

• Properties that manifest themselves only as a result of combinations of sub-
systems. Examples include adverse emergent properties (i.e., disruptive or even
constructive effects that are not evident in any of the individual subsystems but
that arise only when the subsystems are combined); adverse feedback interac-
tions between subsystems, such as infinite loops or dependence on functionality
that is less trustworthy; emergent covert channels that do not exist in any of
the subsystems in isolation; mutual incompatibilities in the interfaces—perhaps
resulting from internal state interference; global failure modes resulting from
local faults, as in the 1980 ARPANET collapse [48] and the 1990 AT&T long-
distance collapse (e.g., see [34]); so-called “man-in-the-middle” attacks (which
might alternatively be called untrustworthy interpositions), in which an inter-
poser can simulate the actions of each component; and other failure modes that
arise only in the overall system context. A fascinating noncomposability sit-
uation is noted in attempts to combine encryption with digital signatures [4]:
signatures are composable with public-key cryptography, but not with symmet-
ric cryptography, in which case security may break down. These impediments
to composability can arise essentially everywhere throughout the development
life cycle—for example, incompatibilities among different requirements and
policies, undesirable interactions in specifications and implementations, and
difficulties in reconfiguration and maintenance.

• Multivendor and multiteam incompatibilities. In the interest of having heteroge-
neous architectures that enable mixing and matching of alternative components,
it may be desirable to use multiple system developers. However, incompati-
bilities among interface assumptions, the existence of proprietary internal and
external interfaces, and extreme performance degradations resulting from the
inability to optimize across components can all result in difficulties in compos-
ing components.



288 P.G. NEUMANN

• Scalability. Composability typically creates many issues of scalability. For
example, performance may degrade badly or nonpredictably as multiple sub-
systems are conjoined. Composability can lead to a wide range of expected
performance implications—for example, linear, multiplicative, or exponential
in the number of composed subsystems. In practice, even further degradations
can result—for example, from design or implementation flaws or indirect ef-
fects of the composition, such as unrecognized dependence on substantively
slow interactions. Obviously, infinite loops and standstill deadlocks (“deadly
embraces”) are limiting cases of degradation, and can arise as a result of sub-
system compositions.

• Human issues. Above all, people are the ultimate source of many problems.
The supposed “good guys” can accidentally have profoundly negative effects
on composability, through poor system conception, inadequate requirements,
lack of comprehensive and accurate specifications, bad software-engineering
practice, misuse or bad choices of programming languages, badly managed de-
velopment, and sloppy operational practice (for example). Insider “bad guys”
can have various negative effects on the desired composability, such as installing
Trojan horses during development, operation, and reconfiguration that impair
interoperability and compromise security. Human activities can also directly
impair enterprise interoperability [18]. Outsider “bad guys” are generally less
likely to negatively affect composability externally, except as a result of pen-
etrations (through which they effectively become bad insiders), subversion of
the development process, tampering, and denials of service (often without any
internal access required).

There are many desiderata for achieving predictably assured composition, relating
to requirements, specifications, implementations, programming languages, configu-
ration information, and analyses thereof. Several relevant issues are noted below.

• Compatibility and interoperability. Compatibility implies merely the ability to
coexist within a common framework, whereas interoperability additionally im-
plies the ability to work together without adverse side effects. Both are essential
prerequisites for composability.

• Web interoperability. In recent years, considerable effort has been devoted to-
ward establishing a common definition of a Web portal concept that would
facilitate universal interoperability providing access to Web services. As one
example, Michael Alan Smith [53] has proposed a hierarchical General Portal
Model that attempts to unify seventeen different definitions from the litera-
ture. From the top, the layers address process interfaces (process identification,
transformation), resource discovery (resource identification, resource location,
resource binding), and network interfaces (security, network access). In this



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 289

context, a portal implies an “infrastructure providing secure, customizable, per-
sonalizable, integrated access to dynamic content from a variety of sources, in
a variety of formats, wherever it is needed.” Among other approaches is that of
a service-oriented architecture (e.g., [24]).

• Consistency and completeness of the interface specifications. Externally dis-
cernible functional behavior should be precisely what is specified, implying
bilateral consistency of behavior with respect to the functional specifications.
That is, the subsystem must do what it is supposed to do, and nothing else
beyond what is specified. However, because specifications are inherently in-
complete, many system failures (in security, reliability, performance, and so on)
can result from events that occur outside the scope of specifications and thus are
undetectable by any analyses based on those specifications.

• Independence of specification abstractions. As noted above, abstraction can
be an enormous aid to composability of specifications, as well as to assur-
ance proofs. However, it is essential that the details not explicitly represented
by each abstraction be independent of the details of other abstractions. Oth-
erwise, composability will most likely be impaired. One elegant example of
provable composability is seen in the orthogonality theorem of Chander, Dean,
and Mitchell [9], which provides soundness and completeness proofs for a trust
management kernel with a clean separation between authorization and struc-
tured distributed naming.

• Timing and synchronization issues. In general, Lamport-style safety properties
(i.e., nothing bad happens) compose better than liveness properties (something
good eventually happens with certainty) [25], but this boundary is blurred by
the inclusion of timing constraints, which are technically safety properties, but
generally not composable. It is also blurred by the existence of properties that
are neither safety nor liveness—such as information flow. Furthermore, time
(whether real time or relative time) is typically common to different abstrac-
tions, which is a reason that synchronization and timing constraints can present
serious impediments to facile composition. For example, see Kopetz [23] on
composability in the Time-Triggered Architecture.

• Explicit state visibility and information hiding. If a subsystem is stateless (i.e.,
it does not remember any of its own state information from one invocation to
the next), then it is less likely to have adverse interactions when that subsystem
is composed with other subsystems—although there are always issues such as
noncommutativity of operations and interference during concurrent execution.
In addition, nontrivial recovery, as in selective rollback, may be unnecessary.
However, statelessness is often not a desirable goal—although stack disciplines
effectively separate the internal state information from the subsystem itself and



290 P.G. NEUMANN

simplify composability. Assuming that a subsystem is stateful (i.e., it retains
at least some of its own state information from one incarnation to the next),
there is a choice between the classical notion of information hiding and ex-
plicit external visibility of state information (which tends to make explicit any
residues that might impair compositionality). On the other hand, because in-
formation hiding typically masks internal state information, it can hinder facile
composability if there are any implicitly shared states. However, this should
be detectable with sensible specifications and implementation. (For example,
pointers, loosely bound aliases, and other indirect references tend to create
problems.) Thus, the separation of common stateful entities can greatly facil-
itate composition. Information hiding is also very desirable for other reasons,
including isolation, security, system integrity, and tamper resistance.

One interesting historical approach is found in the formal specifications of
SRI’s Provably Secure Operating System (PSOS [19,38,39]), in which certain
state information is hidden but from which the state information that is explic-
itly visible at the module interface is derived. Because hidden state information
could not be accessed outside of the module (information hiding), it could not
be referenced in any other module specification. As a result, there can be no
module state residues or other state information that can be accessible to other
modules or subsequent invocations of the same module beyond what is explic-
itly declared as visible. This greatly increases the composability of modules
and the analysis of potential interactions. It also rules out certain characteristic
design flaws simply because it is impossible to represent them in the specifi-
cations, even accidentally! (Note that bad implementations can introduce bugs
that are not definable in specifications.)

6.1 Other Manifestations of Composition
As noted at the beginning of this section, composition is not limited only to com-

ponents. It has other manifestations as well.

• Policy composition. Serious problems can result when different policies are
in conflict or otherwise do not compose properly—especially if that lack of
composability is not discovered until much later in development. Furthermore,
attempting to compose policies often results in emergent properties that are not
evident from the constituent policies. For example, see work by Virgil Gligor
et al. with respect to the composability of separation-of-duty policies [21] and
application-specific security policies [20]. Gligor notes (among other things)
that policy composability does not necessarily imply the usefulness of the re-
sulting policies, and that existing compositionality criteria are not always re-
alistic. Preventing denials of service is a particularly thorny policy; besides,



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 291

policies that do not address denials of service are inherently incomplete. Of
considerable interest is work by Heiko Mantel relating to the general compos-
ability of secure system policies and components [28] (e.g., flow properties that
are preserved under refinement [27]). Many past efforts are of particular interest
to the research community, such as [2,29].

• Protocol composition. There is also ongoing work on protocol composability—
for example, see [13]. An interesting research challenge might be to consider
a particular collection of protocols (e.g., for authentication, encryption, and in-
tegrity preservation) and prove that they are mutually composable, subject to
certain constraints; the proofs could also be extended to demonstrating that their
modular implementations would be composable.

• Proof composition. A book on compositionality of proofs [15] is worth care-
ful reading for anyone interested in formal verification and high assurance of
systems.

• Certification composition. Rushby [49] has characterized some of the main is-
sues relating to the modular certification of an aircraft that is derived from
separate certification of its components, based on an extension of a formal ver-
ification approach. The crucial elements involve separation of assumptions and
guarantees (based on “assume-guarantee reasoning”) into normal and abnormal
cases.

6.2 Approaches for Predictable Composition
The following approaches can enhance the likelihood of predictable compositions.

• Dependency analysis. In many systems, unrecognized interdependencies among
different components can hinder composability. Similar comments are relevant
to contradictory or otherwise incompatible interdependencies among policies,
models, separately compiled software, and even proofs. Identifying such de-
pendencies and removing them or otherwise neutralizing them would be a
considerable aid to composability,

• Constrained and guarded dependency strategies. The principle of constrained
dependency for integrity is introduced in Section 5. Deterministic linearization
or other suitable prioritization of intersubsystem dependencies (such as a lat-
tice ordering) can avoid many adverse dependency problems, such as often
result from misguided locking strategies and search strategies, compatibility
mismatches in system upgrades, and unanticipated distributed interactions. For
example, in Dijkstra’s THE system paper [17], the use of a linearly ordered
hierarchical locking structure guaranteed that no deadly embraces could oc-
cur between two different layers of abstraction (although in subsequent years a



292 P.G. NEUMANN

deadly embrace was occasionally discovered within a particular layer). As an-
other example, Biba’s multilevel integrity [6] (MLI) requires in essence that
no computational entity (e.g., user, program, process, or data) may depend
on any other entities that are deemed less trustworthy (i.e., that are poten-
tially less highly trusted) with respect to integrity. In the broadened sense of
dependence considered here, the strict lattice ordering of multilevel integrity
attributes implied by Biba may be relaxed if any relative untrustworthiness can
be masked by creative system architecture or otherwise transcended—as in the
trustworthiness-enhancing mechanisms enumerated in [36] as well as other ar-
chitectural approaches such as isolation kernels and virtual machine monitors.
Also, see Abadi et al. [1] for a formalization of dependency.

• Functional consistency among layers of abstraction. The 1977 Robinson–Levitt
paper [45] on hierarchical formal specifications introduced the concept of for-
mal mappings between different layers of functional specifications that repre-
sent abstract implementations of each layer as a function of the lower layers.
Formal proofs at one layer can be derived by using the mapping functions
together with the formal specifications at appropriate layers. The relatively
unsung Robinson–Levitt mapping analysis is actually quite far-reaching, and
can be used directly to relate properties of a composed system to individ-
ual properties of its subsystems. As noted above with respect to correctness
and completeness of interface specifications, this approach is of course limited
by any incompleteness in the functional specifications and mapping functions.
The Robinson–Levitt approach was part of the SRI Hierarchical Development
Methodology (HDM) [46] used in the Provably Secure Operating System [19,
38,39] project in the 1970s. An extremely impressive new application of this
approach in a modern setting has been developed by John Rushby and Rance
DeLong [50], which uses the interpretation mechanism of SRI’s current formal
methods environment (PVS), and applies it to high-assurance separation ker-
nels (which explicitly provide both isolation and controlled sharing) as well as
virtual-machine architectures. An earlier informal application of explicit inter-
layer relationships is found in the analysis of the interlayer dependencies in the
Honeywell/Secure Computing Corporation (SCC) LOgical Coprocessor Ker-
nel (LOCK) [52]. (PSOS’s type-enforcement was the precursor of several SCC
systems, including the Sidewinder firewall.)

• Operating system and programming language approaches. Program modular-
ity, recursive and nested procedure-call protocols, clean stack disciplines, and
the absence of unintended residues can all greatly enhance composability. Virtu-
alized multiprocessing and rigorously enforced virtual machine separation have
considerable possibilities in enabling extremely efficient distributed process-
ing by abstracting out many of the usual pitfalls, especially when distributed



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 293

across networked systems. There is an important role for sound programming
languages that naturally enforce modular separation with abstraction and en-
capsulation, compilers that efficiently enforce the programming-language mod-
ularity and strong typing, systems that provide efficient interprocedure and in-
terprocess control flow, and optimizing compilers that do not throw out the baby
with the bathwater (e.g., by prematurely binding entities that need to remain
separated until later, creating less easily analyzed object code, seriously imped-
ing debugging, or compromising security separations provided by architectural
encapsulations and programming languages). (However, well-implemented ag-
gressive optimizers are less likely to violate security than programmers are.) As
one example, SPARK (the SPADE Ada Kernel, based on the Southampton Pro-
gram Analysis Development Environment) provides a language-based approach
to improving security and safety. Correctness-preserving transformations that
survive compilation and optimization are another approach with significant
promise. In particular, optimizing compilers must be fairly farsighted not to
compromise the integrity of source code in the context of its system execution,
although careful modularity with abstraction and encapsulation can diminish
some of those possible effects. An alternative approach to assuring the sound-
ness of the optimization is the translation validation approach considered at
NYU [55], in which a validation tool confirms that the object code produced by
the optimizer is a correct translation of the source code.

• Principled designs, implementations, and use. As a summary of this section,
the Saltzer–Schroeder principles and the further principles discussed above
are potentially extremely beneficial to the attainment of security and—more
generally—trustworthiness. Techniques particularly relevant to composabil-
ity include abstraction, hierarchical layering, encapsulation, design diversity,
composability, pervasive authentication, and access control, as well as ad-
ministrative and operational controllability, pervasive accountability and re-
covery, separation of policy and mechanism, assignment of least privilege,
separation of concerns, separation of roles, separation of duties, and sepa-
ration of domains. The object-oriented paradigm also has some merit, espe-
cially strong typing. (However, the would-be inheritance of implementations
without strict inheritance of specification subclasses tends to impede com-
posability. Every subclass instance must meet the specifications of all its
superclasses, or else all verifications of uses of the superclasses are unsup-
ported.)

Several recent proceedings are worthy of consideration with regard to composable
system architecture and software engineering [14,22,26,43].



294 P.G. NEUMANN

7. A Crisis in Information System Security

Section 4 considers risks in trusting entities that might not actually be trustworthy.
Nevertheless, flawed systems that can cause more security and reliability problems
than they solve are in widespread use.

Untrustworthy mass-market software might be used so extensively for various rea-
sons, even if the source code is proprietary and the vendor can arbitrarily download
questionable software changes without user intervention. Sometimes this is a path
of least resistance (with few perceived alternatives) or obliviousness. Or perhaps it
has the appearance of saving money in the short term. In some cases it is mandated
organizationally—ostensibly to simplify procurement, administration, and mainte-
nance, or because of a desire to remain within the monolithic mainstream. Often
security, reliability, and the risks of networking are considered less important, or
there is a belief that the free market will provide a cure. But the simplest answer is
probably “because it’s there.” However, irrespective of any reasons why people might
be willing to use flawed software, in certain cases it might be wiser not to use it at
all—especially where the risks are considerable.

In my fourth testimony (August 2001) in five years for committees of the US
House of Representatives, I made the following statement—amplifying similar state-
ments made in earlier years:

“Although there have been advances in the research community on informa-
tion security, trustworthiness, and dependability, the overall situation in practice
appears to continually be getting worse, relative to the increasing threats and
risks—for a variety of reasons. The information infrastructure is still fundamen-
tally riddled with security vulnerabilities, affecting end-user systems, routers,
servers, and communications; new software is typically flawed, and many old
flaws still persist; worse yet, patches for residual flaws often introduce new vul-
nerabilities. There is much greater dependence on the Internet, for Governmental
use as well as private and corporate use. Many more systems are being attached
to the Internet all over the world, with ever increasing numbers of users—some
of whom have decidedly ulterior motives. Because so many systems are so easily
interconnectable, the opportunities for exploiting vulnerabilities and the ubiquity
of the sources of threats are also increased. Furthermore, even supposedly stand-
alone systems are often vulnerable. Consequently, the risks are increasing faster
than the amelioration of those risks.”

In many respects, the situation does not seem to be getting better. The contin-
uing flurry of viruses, worms, and system crashes raises the level of disruption to
users and institutions. The incessant flow of identified vulnerability reports and the
further existence of flaws that are not widely known suggest serious problems. The
continual needs for installing copious patches in mass-market software (and the it-
erative problems they sometimes cause) suggest that we are not converging. Putting



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 295

the blame on inadequate system administration seems fatuous. Various exploitations
of flaws (such as worms and viruses) are further examples of endemic problems in
vulnerable systems that can be exploited. Unfortunately, too many people seem to be
oblivious to the underlying security problems.

Suggestions that we need to raise the bar may be countered with the argument that
past attacks have not really been serious, and we have had few pervasive disasters
of information system security, so why should we worry? Unfortunately, Murphy’s
Law suggests that if it can happen, it eventually will. Also, the general overemphasis
on reducing short-term costs allows long-term concerns to be ignored. (See the next
section.)

The Free Software/Open Source movements have been touted as possible al-
ternatives to the inflexibilities of closed-source proprietary code. Indeed, GNU-
Linux/BSD Unix variants are gaining considerable credibility, and are seemingly
less susceptible to malware attacks. However, by itself, availability of source code
is not a panacea, and sound software engineering is still essential. Even if an en-
tire system has been subjected to extremely rigorous open evaluation and stringent
operational controls, that may not be enough to ensure adequate behavior.

Many users and application developers have grown accustomed to flaky software,
perhaps because they do not have to meet critical requirements (as in nuclear power
control, power distribution, and flight and air-traffic control) and suffer no liability
for disasters. Perhaps it is time to follow the adage of “Just Say No” to bad software,
and to demand that software development be dramatically improved.

Many different approaches to software system development can be found in
practice, such as object-oriented programming, aspect-oriented programming, agile
software development, service-oriented architecture, design patterns, model-based
design, event-driven architecture, clean-room development, extreme programming,
formal methods, a long list of methodologies named after their progenitors, and so
on. The discipline of these and other approaches can be very helpful, but trustworthi-
ness demands much more than conventional software. Principled approaches are just
one more step forward, and need to be coupled with sound development practices.

8. Optimistic Optimization

Many people (corporate executives, managers, developers, and so on) tend to ig-
nore the long-term implications of decisions made for short-term gains, often based
on overly optimistic or fallacious assumptions. In principle, much greater bene-
fits can result from far-sighted vision based on realistic assumptions. For example,
serious environmental effects (including global warming, water and air pollution,
pesticide toxicity, and adverse genetic engineering) are largely ignored in pursuit



296 P.G. NEUMANN

of short-term profits. However, conservation and environmental protection appear
much more relevant when considered in the context of long-term costs and benefits.
Furthermore, governments are besieged by intense short-sighted lobbying by special
interests. Insider financial manipulations have serious long-term economic effects.
Research funding has been increasingly focusing on short-term returns, to the detri-
ment of the future.

Computer system development is a particularly frustrating example. Most sys-
tem developers are unable or unwilling to confront life-cycle issues up front and in
the large, although it is clear that up-front investments can yield enormous bene-
fits later in the life cycle. In particular, defining requirements carefully and wisely
at the beginning of a development effort can greatly enhance the entire subsequent
life cycle and reduce its costs. This process should ideally anticipate all essential re-
quirements explicitly, including (for example) security, reliability, scalability, and
relevant application-specific needs such as evolvability, maintainability, usability,
interoperability, and enterprise survivability. Many such requirements are typically
extremely difficult to add once system development is well underway. Furthermore,
certain types of requirements tend to change; thus, system architectures and inter-
faces should be relatively flaw-free and inherently adaptable without introducing
further flaws. Insisting on principled software engineering (such as modular abstrac-
tion, encapsulation, and type safety), sensible use of sound programming languages,
and use of appropriate support tools can significantly reduce the frequency of soft-
ware bugs. All these up-front investments can also reduce the subsequent costs of
debugging, integration, system administration, and long-term evolution—if sensibly
invoked.

Consideration of the value of up-front efforts is a decades-old concept. However,
it is often widely ignored or done badly, for a variety of reasons—such as short-term
profitability, rush to market, lack of commitment to quality, lack of liability concerns,
ability to shift late life-cycle costs to customers, inadequate education, experience
and training, and unwillingness to pursue other than seemingly easy answers.

Overly optimistic development plans that ignore these issues tend to win out over
more realistic plans, but can lead to difficulties later on—for developers, system
users, and even innocent bystanders. The past is littered with systems that did not
work properly and people who did not perform according to the assumptions embed-
ded in the development and operational life cycles. (An example is seen in the mad
rush to low-integrity paperless electronic voting systems with essentially no opera-
tional accountability, discussed in Section 9.) The lessons of past failures are widely
ignored. Instead, we have a caveat emptor culture, with developers and vendors dis-
claiming all warranties and liability.

Many would-be solutions result in part from short-sighted approaches. Firewalls,
virus checkers, and spam filters all have some benefits, but also some problems.



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 297

Firewalls would be more effective if they were not required to pass all sorts of exe-
cutable content, such as ActiveX and JavaScript—but many users want those features
enabled. (To date, viruses and worms have been rather benign, considering the full
potential of really malicious code.) However, active content and malware would be
much less harmful in a well-architected environment that could constrain executable
content in some sort of “sandbox” that has rigidly limited effects.

Spammers seem to adapt very rapidly to whatever defenses they encounter. For
example, they can test their current offerings against existing anti-spam products and
adapt accordingly. Furthermore, domestic legislation may simply drive spammers
offshore, without reducing the pain.

Better incentives are needed for far-sighted optimization, in larger contexts and
over longer periods of time, with realistic assumptions and appropriate architec-
tural flexibility to adapt to changing requirements. Achieving this will require many
changes in research and development agendas, software and system development
cultures, educational programs, laws, economy, commitment, and perhaps most
important—in obtaining well-documented success stories to show the way for others.
Particularly in critical applications, if it is not worth doing sensibly, perhaps it is not
worth doing at all. But as David Parnas has said, let’s not just preach motherhood;
let’s teach people how to be good mothers.

9. An Example: Risks in Electronic Voting Systems

The challenge of ensuring election system integrity provides a paradigmatic ex-
ample of the considerations of the previous sections. The election process is an
end-to-end phenomenon whose trustworthiness typically depends on the integrity
of every step in the process. Unfortunately, each of those steps represents various
potential weak links that can be compromised in many ways, accidentally and inten-
tionally, technologically or otherwise; each step must be safeguarded from the outset
and auditable throughout the entire process.

Irregularities reported in the 2000 and 2004 US national elections span the en-
tire process, concerning voter registration, disenfranchisement and harassment of
legitimate voters, huge delays in certain precincts, unbalanced distribution of vot-
ing equipment, absence of provisional ballots (required by the Help America Vote
Act), mishandling of absentee ballots, and problems in casting and counting ballots
for e-voting as well as other modes of casting and counting votes. Some machines
could not be booted. Some machines lost votes because of programming problems,
or recorded more votes than voters. Some touch-screen machines altered the intended
vote from one candidate to another. The integrity of the voting technologies them-
selves is limited by weak evaluation standards, secret evaluations that are paid for



298 P.G. NEUMANN

by the vendors, all-electronic systems that lack voter-verified audit trails and mean-
ingful recountability, unaudited post-certification software changes, even runtime
system or data alterations, and human error and misuse. (Gambling machines are
held to much higher standards.) Other risks arise from partisan vendors and elec-
tion officials. Furthermore, statistically significant divergences between exit polls
and unaudited results created questions in certain states. All these concerns add to
uncertainties about the integrity of the overall election processes.

With modern technology, the voting process could be more robust. Whether or not
the potential weak links are mostly technological, the process can certainly be made
significantly more trustworthy. Indeed, it seems to be better in many other countries
than in the US; for example, Ireland, India, and the Netherlands seem to be taking
integrity challenges seriously. As technologists, we should be helping to ensure that
is the case—for example, by participating in the standards process or perhaps by
aiding the cause of available source code and publicly accessible evaluations. How-
ever, the end-to-end nature of the problem includes many people whose accidental
or intentional behavior can alter the integrity of the overall process, and thus creates
many nontechnological risks.

With respect to computers used in elections, the principles outlined here would
enable considerable improvements in trustworthiness if they were observed in prac-
tice. For example, architecturally minimizing the parts of the total system that must
be trusted would by itself be a huge improvement, thereby reducing the extent of
the weak links. The same is true of the principle of separating policy and mecha-
nism.

The importance of understanding the idiosyncrasies of mechanisms and human
interfaces, and indeed understanding the entire process, is illustrated by the 2000
Presidential election—with respect to hanging chad, dimpled chad, uncleaned chad
slots, butterfly-ballot layouts, and the human procedures underlying voter registration
and balloting. Clearly, the entire election process has vulnerabilities, including the
technology and the surrounding administration. Looking into the future, a new ed-
ucational problem will arise if preferential balloting becomes more widely adopted,
whereby preferences for competing candidates are prioritized and the votes for the
lowest-vote candidate are iteratively reallocated according to the specified priorities.
This concept has many merits, although it certainly further complicates ballot layouts
and voter awareness!

Alternative approaches have been proposed to existing voting systems (which have
typically been lever machines, optically scanned paper, and paperless unauditable
direct-recording computer systems). In approximate order of increasing concep-
tual complexity, these include (with examples of each) paper-based systems (Ben
Adida [3], David Chaum [10], Ron Rivest [44]), cryptographic solutions (Andy



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 299

Neff [31], Josh Benaloh [5]), and voter-verified paper audit trails (VVPATs) (as an
add-on for existing all-electronic systems, as proposed by Rebecca Mercuri [30]).

The VVPAT approach attempts to overcome the lack of integrity in existing direct-
recording systems, but creates further complexity in the process. It is primarily a
short-term fix to the current situation, in which proprietary software and proprietary
evaluations against inherently incomplete voluntary standards provide relatively lit-
tle system integrity. Cryptographic approaches require considerable care in design,
analysis, implementation, and assurance, but also have the potential to avoid paper
records—if the end-to-end systems could be made sufficiently trustworthy. On the

TABLE II
APPLICABILITY OF PRINCIPLES TO ELECTIONS

Principle Computerization Human Procedures

Economy of
mechanism
(+ sound
architecture)

Simplistic mechanisms are
dangerous. Complex systems need
extensive analysis and predictable
composability.

Operational simplicity is essential for
poll workers. Perspicuous risk
assessment is desirable throughout.

Fail-safe
defaults

can simplify operation and improve
trustworthiness.

can mitigate against insider misuse,
fraud, and errors.

Complete mediation can be useful in principled system
architectures.

Weakness in depth requires
end-to-end oversight.

Open design
(+ openness
generally)

Proprietary closed-source software
and evaluations
are inherently suspect.

Diverse oversight is essential
throughout the entire process,
especially over weak links.

Separation of
privileges

can reduce insider misuse, human
error, system failures.

can avoid centralized vested control
throughout.

Least privilege (+
reduced needs for
trust)
(+ constrained
dependency)

eschews root-privilege
misuse, bootload subversion, trusting
untrustworthiness. Avoid software
built on subvertible underpinnings.

is important throughout the entire
process, obviates allocation of
excessive trust. Do not trust
potentially untrustworthy people.

Least common
mechanism

Beware of common flaws
and common fault modes.

Separate roles may
simplify assurance.

Psychological
acceptability

Voter- and official-friendly systems
can be helpful.

Ease of use and operation can help if
it is not simplistic.

Work factors
(+ objective risk
analyses)

must encompass all systems, not just
limited to strength of
cryptography/authentication.

must encompass the entire process
end-to-end, including developers and
operators.

Compromise
recording
(+ pervasive
monitoring)

Tamper-resistant audit trails are
critical whenever results are suspect,
and may help disincentivize fraud.

Manual procedures need oversight
against compromise from
outside/within/below,
not just when suspicions arise.



300 P.G. NEUMANN

other hand, the proposed paper-based systems have considerable conceptual simplic-
ity and avoid many of the integrity problems of computer-based systems. However,
these approaches address primarily only the vote recording and counting parts of the
election process. End-to-end integrity must also include voter registration, voter and
vote authentication, and postprocessing.

Table II tersely summarizes the potential relevance of principles (left column)
for overall system architectures and development, for both computer-related systems
(middle column) and operational procedures (right column) throughout the election
process. The table represents a broadening of the Saltzer–Schroeder principles to ad-
dress some additional aspects (suggested by what follows the plus sign in parentheses
in the principle column). It thus generalizes the original principles somewhat to in-
clude related concepts discussed herein that reach farther than what was originally
covered by Saltzer and Schroeder. It also reflects on the fact that these principles are
relevant to trustworthiness overall—including (for example) many types of human
errors and system failures that are not just limited to security issues. However, it
does not remind the reader that this set of principles is only part of what is needed.
Ultimately, expertise, experience, and good judgment are essential.

10. The Need for Risk Awareness

Around the world, our lives are increasingly dependent on technology. What
should be the responsibilities of technologists regarding technological and nontech-
nological issues?

• Solving real-world problems often requires technological expertise as well as
sufficient understanding of a range of economic, social, political, national, and in-
ternational implications. Although it may be natural to want to decouple technology
from the other issues, such problems typically cannot be solved by technology alone.
They need to be considered in the broader context.

• Although experts in one area may not be qualified to evaluate detailed would-be
solutions in other areas, their own experience may be sufficient to judge the concep-
tual merits of such solutions. For example, demonstrable practical impossibility or
fundamental limitations of the concept, or the existence of serious conflicts of inter-
est of the participants, or an obvious lack of personal and system-wide integrity are
causes for concern.

• Ideally, we need more open, holistic, and interdisciplinary examinations of the
underlying problems and their proposed solutions. (For example, see [37].)

Many concerns arise in important computer-related application areas, such as avi-
ation, health care, defense, homeland security, law enforcement and intelligence—
with similar conclusions. In each area, a relevant challenge is that of developing



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 301

and operating end-to-end trustworthy environments capable of satisfying stringent
requirements for human safety, reliability, system integrity, information security, and
privacy, in which many technological and nontechnological issues must be addressed
throughout the computer systems and operational practices. Overall, technologists
need to provide adequate trustworthiness in our socially important information sys-
tems, by technological and other means. Research and development communities in-
ternationally have much to offer in achieving trustworthy computer-communication
systems. However, they also have the responsibility of being aware of the other im-
plications of the use of these systems.

A deeper knowledge of fundamental principles of computer technology and their
implications will be increasingly essential in the future, for a wide spectrum of indi-
viduals and groups, each with its own particular needs. Our lives are becoming ever
more dependent on understanding computer-related systems and the risks involved.
Although this may sound like a meta-motherhood statement, wise implementation of
motherhood is decidedly nontrivial—especially with regard to risks.

Computer scientists who are active in creating the groundwork for the future need
to better understand system issues in the large, especially the practical limitations of
theoretical approaches. System designers and developers need broader and deeper
knowledge—including those people responsible for the human interfaces used in
inherently riskful operational environments; interface design is often critical. Partic-
ularly in those systems that are not wisely conceived and implemented, operators and
users of the resulting systems also need an understanding of certain fundamentals.
Corporation executives need an understanding of various risks and countermeasures.
In each case, knowledge must increase dramatically over time, to reflect rapid evolu-
tion. Fortunately, the fundamentals do not change as quickly as the widget of the day,
which suggests that pervasive emphasis on education and ongoing training is needed
with respect to the concepts of this chapter.

An alternative view suggests that many technologies can be largely hidden from
view, and that people need not understand (or indeed, might prefer not to know)
the inner workings. For example, David Parnas’s early papers on abstraction, en-
capsulation, and information hiding are important in this regard. Although masking
complexity is certainly possible in theory, in practice we have seen too many occa-
sions (for examples, see the ACM Risks Forum archives) in which the occurrence of
inadequately anticipated exceptions resulted in disasters. The complexities arising in
handling exceptions apply ubiquitously, to defense, medical systems, transportation
systems, personal finance, security, to our dependence on critical infrastructures that
can fail—and to anticipating the effects of such exceptions in design, implementa-
tion, and operation.

Thus, computer-related education is vital for everyone. The meaning of the Latin
word “educere” (to educate) is literally “to lead forth.” However, in general, many



302 P.G. NEUMANN

people do not have an adequate perception of the risks and their potential implica-
tions. When, for example, the information media tell us that air travel is safer than
automobile travel (on a passenger-mile basis, perhaps), the comparison may be less
important than the concept that both could be significantly improved. When we are
told that electronic commerce is secure and reliable, we need to recognize the cases
in which it is not.

With considerable foresight and wisdom, Vint Cerf has repeatedly said that “The
Internet is for Everyone.” The Internet can provide a fertile medium for learning for
anyone who wants to learn, but it also creates serious opportunities for the unchecked
perpetuation of misinformation and counterproductive learning that will need to be
unlearned.

In general, we learn what is most valuable to us from personal experience, not
by being force-fed lowest-common-denominator details. In that spirit, it is impor-
tant that education, training, and practical experiences provide motivations for true
learning. For technologists, education needs to have a pervasive systems orientation
that encompasses concepts of software and system engineering, security, and relia-
bility, as well as stressing the importance of suitable human interfaces. For everyone
else, there needs to be much better appreciation of the sociotechnical and economic
implications—including the risks issues. Above all, a sense of vision of the bigger
picture is perhaps what is most needed.

11. Risks of Misinformation

The problems of online misinformation are evidently worsening, because of the
growth of the Internet and our ever increasing dependence on online systems. In-
formation technology is a double-edged sword—perhaps even more so than many
other technologies. In the hands of enlightened individuals, institutions, and govern-
ments, its use can be enormously beneficial. In other hands, it can be detrimental.
Unfortunately, the dichotomy is often in the eye of the beholder, perhaps depending
on one’s objectives (e.g., personal financial gains, corporate profits, global economic
well-being, politics, privacy, and environmental concerns).

Given a collection of online information, many people behave as if it is inherently
authentic and accurate. This myth applies not only to websites, but also to many types
of special-purpose databases, such as those found in law enforcement, motor vehicle
departments, medicine, insurance, social security, credit information, and homeland
security. We have seen many cases in which misinformation (e.g., false flight data,
erroneous medical records, unentered acquittals, or tampered files) has resulted in
serious consequences. The same is true of imprecise information (e.g., resulting in



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 303

false arrests, or affecting everyone with a particular name such as “David Nelson”
who attempts to board an airplane).

Although an individual can occasionally observe that personal information about
one’s self is incorrect, more typically such erroneous information is hidden from the
individual in question, possibly in diversely inaccurate versions. Overall, it is usually
impossible for one to ensure that all such instances are correct—especially when
mirrored in unknown sites all over the world. Furthermore, it is difficult to determine
whether or not online information about anything else is authoritative. Worse yet, the
volume of questionable information is growing at an extraordinary rate, and attempts
to update substantive misinformation often have little effect—especially with the
persistence of incorrect cached versions.

We increasingly rely on the Internet for many purposes, including education and
enlightenment, irrespective of whether the sources are accurate. Oft-repeated overly
simplistic sound-bite mantras seem to be popular. Furthermore, some people seem
eager to waste time and energy that could be better spent elsewhere—or to drop
out. There is a tendency for entrenched positions to remain fixed. Are we losing our
ability to listen openly to other views and engage in constructive thought?

Another problem involves the inaccessibility of vital information. We seem to
have evolved into a mentality of “If it is not on the Internet, it does not exist.” Even
though there are many more data bytes available today than ever before, search en-
gines reportedly find only a small percentage of those pages, almost none of the
database-driven dynamic Web pages, and very little of what is in most public li-
braries. Copyright restrictions and proprietary claims further limit what is available.
For example, professional society digital libraries tend to be accessible only to those
members who pay to subscribe. Furthermore, overzealous filtering blocks many
authoritative sources of information. Are our education and information gathering
suffering from a lowest-common-denominator process?

The propagation of misinformation has long been a problem in conventional print
and broadcast media, but represents another problem that is exacerbated by the speed
and bandwidth of the Internet. In general, widely held beliefs in supposedly valid
information tend to take on lives of their own as urban myths; they tend to be trusted
far beyond what is reasonable, even in the presence of well-based demonstrations of
their invalidity.

In the face of such rampant misinformation, the truth can be difficult to accept,
partly because it can be so difficult to ascertain, partly because it can seem so
starkly inconsistent with popular misinformation, and partly because people want
to believe in simple answers. Thus, we are revisiting classical problems that might
now be considered as E-Epistemology, involving the nature and fundamentals of on-
line knowledge—especially with reference to its limits and validity. However, there
are some possible remedies, such as epistemic educational processes that teach us



304 P.G. NEUMANN

how to evaluate information objectively. For websites, this might entail examining
who are the sponsors, what affiliations are implied, where the information comes
from, whether multiple seemingly reinforcing items all stem from the same incorrect
source, whether purported website security and privacy claims are actually justified,
and so on.

12. Boon or Bane?

Predicting the long-term effects of computers is both difficult and easy: it is easy
to predict the future (often mistakenly), but very difficult to be correct. Here are some
suggested possible visions of the future.

• Computers play an increasing role in enabling and mediating communication
between people. They have great potential for improving communication, but there is
a real risk that they will simply overload us, keeping us from really communicating.
We already receive far more information than we can process. A lot of it is noise.
Will computers help us to communicate or will they interfere?

• Computers play an ever-increasing role in our efforts to educate our young. In
some countries, educators want to have computers in every school, or even one on
every desk. Computers can help in certain kinds of learning, but it takes time to
learn the arcane set of conventions that govern their use. Even worse, many children
become so immersed in the cartoon world created by computers that they accept it
as real, losing interest in other things. Will computers really improve our education,
or will children be consumed by them?

• Computers play an ever increasing role in our war-fighting. Most modern
weapon systems depend on computers. Computers also play a central role in military
planning and exercises. Perhaps computers will eventually do the fighting and pro-
tect human beings. We might even hope that wars would be fought with simulators,
not weapons. On the other hand, computers in weapon systems might simply make
us more efficient at killing each other and impoverishing ourselves. Will computers
result in more slaughter or a safer world?

• Information processing can help to create and preserve a healthy environment.
Computers can help to reduce the energy and resources we expend on such things
as transportation and manufacturing, as well as improve the efficiency of buildings
and engines. However, they also use energy, and their production and disposal create
pollution. They seem to inspire increased consumption, creating what some ancient
Chinese philosophers called “artificial desires.” Will computers eventually improve
our environment or make it less healthy?

• By providing us with computational power and good information, computers
have the potential to help us think more effectively. On the other hand, bad informa-



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 305

tion can mislead us, irrelevant information can distract us, and intellectual crutches
can cripple our reasoning ability. We may find it easier to surf the Web than to
think. Will computers ultimately enhance or reduce our ability to make good de-
cisions?

• Throughout history, many people have tried to eliminate artificial and unneeded
distinctions among people. We have begun to learn that everyone has much in
common—men and women of all colors, races, and nationalities. Computers have
the power to make borders irrelevant, to hide surface differences, and to help us over-
come long-standing prejudices. However, they also facilitate the creation of isolated,
antisocial groups that may spread hatred and false information. Will computers ulti-
mately improve our understanding of other peoples or lead to more misunderstanding
and hatred?

• Computers can help us to grow more food, build more houses, invent better
medicines, and satisfy other basic human needs. They can also distract us from our
real needs and make us hunger for more computers and more technology, which we
then produce at the expense of more essential commodities. Will computers ulti-
mately enrich us or leave us poorer?

• Computers can be used in potentially dangerous systems to make them safer.
They can monitor motorists, nuclear plants, and aircraft. They can control medical
devices and machinery. Because they do not fatigue and are usually vigilant, they can
make our world safer. On the other hand, the software that controls these systems
and the people involved may actually be untrustworthy. Bugs are not the exception;
they are the norm. Will computers ultimately make us safer or increase our level of
risk?

Much of the accumulated wisdom summarized in this chapter is not particularly
new. But it is also not widely practiced. Many people are so busy advancing and
applying technology that they do not look either back or forward. We should look
back to recognize what we have learned about computer-related risks (e.g., [34]).
We must look forward to anticipate the future effects of our efforts, including unan-
ticipated combinations of seemingly harmless phenomena. Evidence over the past
decades suggests we are not responding adequately to the challenges. Predilections
for short-term optimization without regard for long-term costs abound. We must
strive to make sure that we maximize the benefits and minimize the harm. Among
other things, we must build stronger and more robust computer systems while re-
maining acutely aware of the risks associated with their use. Perhaps disciplined
observance of the content of this chapter can help provide an impetus for the con-
siderable culture change that is required for the development of trustworthy systems,
networks, and enterprises in the future.



306 P.G. NEUMANN

ACKNOWLEDGEMENTS

This chapter was written in part under National Science Foundation Grant Num-
ber 0524111. Sections 5 and 6 are based on a report sponsored by Douglas Maughan
when he was the US Defense Advanced Research Projects Agency (DARPA) Pro-
gram Manager for the Composable High-Assurance Trustworthy System (CHATS)
program. Joshua Levy contributed some incisive comments on the final draft.

The author is very grateful to members of the ACM Committee on Computers and
Public Policy, who over the years have been extraordinarily constructive in guiding
the Inside Risks columns of the Communications of the ACM, which provided a
springboard for some of the material here. In particular, Peter Denning, Jim Horning,
David Parnas, Jerry Saltzer, and Lauren Weinstein have been especially helpful, as
has Tom Lambert at CACM. In particular, Section 12 is based on a column that
appeared in the March 2001 CACM, coauthored with David Parnas.

Section 3 was inspired by an article by Tim Batchelder, “An Anthropology of Air”,
Townsend Letter for Doctors and Patients, pp. 105–106, November 2005. “Because
[air] is negative space, it is difficult to see the value in preserving it.”

Lindsay Marshall at Newcastle has been extremely helpful in providing a nicely
searchable archive facility for the ACM Risks Forum. (The official archives of
all issues of the ACM Risks Forum since its inception in August 1985 can be
found at http://www.risks.org, which indirects to http://catless.ncl.ac.uk/Risks/, and
at ftp://www.sri.com/risks/.)

Will Tracz has consistently encouraged the author to contribute salient risks-
related highlights to the ACM SIGSOFT Software Engineering Notes, ever since Will
took over the editorship from Neumann’s founding stint (1976–1993).

The citations given herein represent just the tip of an enormous literature iceberg.
Additional references relevant to this chapter can easily be gleaned by searching the
Web or by browsing my website PGN, March 2007.

REFERENCES

[1] Abadi M., Banerjee A., Heintze N., Riecke J.G., “A core calculus of dependency”, in:
POPL ’99, Proc. of the 26th SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, San Antonio, Texas, January 20–22, 1999, pp. 147–160.

[2] Abadi M., Lamport L., “Composing specifications”, in: de Bakker J.W., de Roever W.-P.,
Rozenberg G. (Eds.), Stepwise Refinement of Distributed Systems: Models, Formalisms,
Correctness, REX Workshop, Mook, The Netherlands, May–June 1989, in: Lecture Notes
in Comput. Sci., vol. 230, Springer-Verlag, Berlin, 1989, pp. 1–41.

[3] Adida B., Neff C.A., “Ballot casting assurance”, in: Workshop on Electronic Voting Tech-
nology Workshop, Vancouver, BC, Canada, August 2006, USENIX.



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 307

[4] An J.H., Dodis Y., Rabin T., “On the security of joint signature and encryption”, in:
Advances in Cryptology, EUROCRYPT 2002, Amsterdam, The Netherlands, in: Lecture
Notes in Comput. Sci., Springer-Verlag, Berlin, May 2002, pp. 83–107.

[5] Benaloh J., “Simple verifiable elections”, in: Workshop on Electronic Voting Technology
Workshop, Vancouver, BC, Canada, August 2006, USENIX.

[6] Biba K.J., “Integrity considerations for secure computer systems”, Technical Report
MTR 3153, The Mitre Corporation, Bedford, Massachusetts, June 1975. Also available
from USAF Electronic Systems Division, Bedford, Massachusetts, as ESD-TR-76-372,
April 1977.

[7] Bishop M., Computer Security: Art and Science, Addison–Wesley, Reading, MA, 2002.
[8] Bishop M., Introduction to Computer Security, Addison–Wesley, Reading, MA, 2004.
[9] Chander A., Dean D., Mitchell J.C., “Reconstructing trust management”, J. Computer

Security 12 (1) (January 2004) 131–164.
[10] Chaum D., “Secret-ballot receipts and transparent integrity: Improving voter con-

fidence & electronic voting at polling places”, Technical report, March 2002,
http://www.chaum.org.

[11] Corbató F.J., “On building systems that will fail (1990 Turing Award Lecture, with a
following interview by Karen Frenkel)”, Commun. ACM 34 (9) (September 1991) 72–
90.

[12] Corbató F.J., Saltzer J., Clingen C.T., “Multics: The first seven years”, in: Proc. of the
Spring Joint Computer Conference, vol. 40, Montvale, New Jersey, AFIPS Press, 1972.

[13] Datta A., Küsters R., Mitchell J.C., Ramanathan A., Shmatikov V., “Unifying
equivalence-based definitions of protocol security”, in: Proc. of the ACM SIGPLAN and
IFIP WG 1.7 Fourth Workshop on Issues in the Theory of Security, Oakland, California,
IEEE Computer Society, April 2004.

[14] de Boer F.S., et al. (Eds.), Formal Methods for Components and Objects, 4th Interna-
tional Symposium, Lecture Notes in Comput. Sci., vol. 4111, Springer-Verlag, Berlin,
November 2005.

[15] de Roever W.-P., de Boer F., Hanneman U., Hooman J., Lakhnech Y., Poel M., Zwiers J.,
Concurrency Verification: Introduction to Compositional and Noncompositional Meth-
ods, Cambridge Tracts Theoret. Comput. Sci., vol. 54, Cambridge University Press, New
York, NY, 2001.

[16] Denning D.E., Neumann P.G., Parker D.B., “Social aspects of computer security”, in:
Proc. of the 10th National Computer Security Conference, September 1987.

[17] Dijkstra E.W., “The structure of the THE multiprogramming system”, Commun.
ACM 11 (5) (May 1968).

[18] Faughn A.W., “Interoperability: Is it achievable?”, Technical report, Harvard University
PIRP report, 2001.

[19] Feiertag R.J., Neumann P.G., “The foundations of a Provably Secure Operating System
(PSOS)”, in: Proc. of the National Computer Conference, AFIPS Press, 1979, pp. 329–
334, http://www.csl.sri.com/neumann/psos.pdf.

[20] Gligor V.D., Gavrila S.I., “Application-oriented security policies and their composition”,
in: Proc. of the 1998 Workshop on Security Paradigms, Cambridge, England, 1998.



308 P.G. NEUMANN

[21] Gligor V.D., Gavrila S.I., Ferraiolo D., “On the formal definition of separation-of-duty
policies and their composition”, in: Proc. of the 1998 Symposium on Security and Pri-
vacy, Oakland, California, IEEE Computer Society, May 1998.

[22] Gorton I., et al. (Eds.), Component-Based Software Engineering, 9th International Sym-
posium, Lecture Notes in Comput. Sci., vol. 4063, Springer-Verlag, Berlin, June/July
2006.

[23] Kopetz H., “Composability in the time-triggered architecture”, in: Proc. of the SAE World
Congress, Detroit, Michigan, SAE Press, 2000, pp. 1–8.

[24] Krafzig D., Banke K., Slama D., Enterprise SOA Service-Oriented Architecture Best
Practices, Prentice Hall, Upper Saddle River, NJ, 2004.

[25] Lamport L., “A simple approach to specifying concurrent program systems”, Commun.
ACM 32 (1) (January 1989) 32–45.

[26] Löwe W., et al. (Eds.), Software Composition, 5th International Workshop, Lecture Notes
in Comput. Sci., vol. 4089, Springer-Verlag, Berlin, March 2006.

[27] Mantel H., “Preserving information flow properties under refinement”, in: Proc. of the
2001 Symposium on Security and Privacy, Oakland, California, IEEE Computer Society,
May 2001, pp. 78–91.

[28] Mantel H., “On the composition of secure systems”, in: Proc. of the 2002 Symposium on
Security and Privacy, Oakland, California, IEEE Computer Society, May 2002, pp. 88–
101.

[29] McCullough D., “A hookup theorem for multilevel security”, IEEE Trans. Software En-
gineering 16 (6) (June 1990).

[30] Mercuri R., “Electronic vote tabulation checks and balances”, PhD thesis, Department of
Computer Science, University of Pennsylvania, 2001. http://www.notablesoftware.com/
evote.html.

[31] Neff C.A., “A verifiable secret shuffle and its application to e-voting”, in: Proc. of the
ACM Conference on Computer and Communications Security, Philadelphia, Pennsylva-
nia, November 2001, pp. 116–125.

[32] Neumann P.G., “Illustrative risks to the public in the use of computer systems
and related technology, index to RISKS cases”, Technical report, Computer Sci-
ence Laboratory, SRI International, Menlo Park, California. Updated regularly at
http://www.csl.sri.com/neumann/illustrative.html also in .ps and .pdf form for printing
in a denser format.

[33] Neumann P.G., “The role of motherhood in the pop art of system programming”, in: Proc.
of the ACM Second Symposium on Operating Systems Principles, Princeton, New Jersey,
ACM, October 1969, pp. 13–18, http://www.multicians.org/pgn-motherhood.html.

[34] Neumann P.G., Computer-Related Risks, ACM Press, New York, and Addison–Wesley,
Reading, MA, 1995.

[35] Neumann P.G., “Practical architectures for survivable systems and networks”, Technical
report, Final Report, Phase Two, Project 1688, SRI International, Menlo Park, California,
June 2000. http://www.csl.sri.com/neumann/survivability.html.

[36] Neumann P.G., “Principled assuredly trustworthy composable architectures”, Technical
report, Computer Science Laboratory, SRI International, Menlo Park, California, Decem-
ber 2004. http://www.csl.sri.com/neumann/chats4.html, .pdf and .ps.



REFLECTIONS ON SYSTEM TRUSTWORTHINESS 309

[37] Neumann P.G., “Holistic systems”, ACM Software Engineering Notes 31 (6) (November
2006) 4–5, http://www.csl.sri.com//neumann/holistic.pdf.

[38] Neumann P.G., Boyer R.S., Feiertag R.J., Levitt K.N., Robinson L. , “A provably secure
operating system: The system, its applications, and proofs”, Technical report, Computer
Science Laboratory, SRI International, Menlo Park, California, May 1980, 2nd edition,
Report CSL-116.

[39] Neumann P.G., Feiertag R.J., “PSOS revisited”, in: Proc. of the 19th Annual Computer
Security Applications Conference (ACSAC 2003), Classic Papers section, Las Vegas,
Nevada, IEEE Computer Society, December 2003, pp. 208–216, http://www.acsac.org/
and http://www.csl.sri.com/neumann/psos03.pdf.

[40] Organick E.I., The Multics System: An Examination of Its Structure, MIT Press, Cam-
bridge, MA, 1972.

[41] Parnas D.L., “On the criteria to be used in decomposing systems into modules”, Commun.
ACM 15 (12) (December 1972).

[42] Petroski H., To Engineer Is Human: The Role of Failure in Successful Design, St. Martin’s
Press, New York, 1985.

[43] Reussner R.H., et al. (Eds.), Architecting Systems with Trustworthy Components, Interna-
tional Seminar, Dagstuhl, Germany, Lecture Notes in Comput. Sci., vol. 3938, Springer-
Verlag, Berlin, December 2004.

[44] Rivest R.L., “The threeballot voting system”, Technical report, MIT, Cambridge, MA,
October 2006.

[45] Robinson L., Levitt K.N., “Proof techniques for hierarchically structured programs”,
Commun. ACM 20 (4) (April 1977) 271–283.

[46] Robinson L., Levitt K.N., Silverberg B.A., The HDM Handbook, Computer Science Lab-
oratory, SRI International, Menlo Park, California, June 1979 (three volumes).

[47] Rochlis J.A., Eichin M.W., “With microscope and tweezers: The Worm from MIT’s per-
spective”, Commun. ACM 32 (6) (June 1989) 689–698.

[48] Rosen E., “Vulnerabilities of network control protocols”, ACM SIGSOFT Software Engi-
neering Notes 6 (1) (January 1981) 6–8.

[49] Rushby J., “Modular certification”, Technical report, Computer Science Laboratory, SRI
International, Menlo Park, California, June 2002.

[50] Rushby J.M., DeLong R., “Compositional assurance for security: A MILS integration
protection profile”, Technical report, Computer Science Laboratory, SRI International,
Menlo Park, California, December 2006.

[51] Saltzer J.H., Schroeder M.D., “The protection of information in computer systems”, Proc.
IEEE 63 (9) (September 1975) 1278–1308.

[52] Saydjari O.S., Beckman J.M., Leaman J.R., “LOCKing computers securely”, in: 10th
National Computer Security Conference, Baltimore, Maryland, 21–24 September 1987,
pp. 129–141;
Reprinted in Turn R. (Ed.), Advances in Computer System Security, vol. 3, Artech House,
Dedham, Massachusetts, 1988.

[53] Smith M.A., “Portals: Toward an application framework for interoperability”, Commun.
ACM 47 (10) (October 2004) 93–97.



310 P.G. NEUMANN

[54] Spafford E.H., “The Internet Worm: Crisis and aftermath”, Commun. ACM 32 (6) (June
1989) 678–687.

[55] Zuck L., Pnueli A., Fang Y., Goldberg B., “VOC: A translation validator for optimizing
compilers”, in: Electronic Notes in Theoretical Computer Science, 2002.



Author Index

Numbers in italics indicate the pages on which complete references are given.

A

Abadi, M., 291, 292, 306
Abrahamson, L.A., 10, 12, 14, 15, 40, 52, 57
Adida, B., 298, 306
Akkiraju, R., 205, 206, 210, 211, 219
Albrecht, D., 64, 103
Allen, J., 72, 101
Allison, J., 6, 52
Amend, J.R., 24, 56
An, J.H., 287, 307
Angermann, A., 112, 160
Anthony, D., 258, 268
Anti-Phishing Working Group, 225–228, 233,

244, 253, 259, 263, 265
Antonopoulos, N., 67, 103
APQC, 173, 219
Ardissono, L., 70, 101
Arjuna, 204, 220
Atkinson, C., 132, 133, 160
Atkinson, J., 63, 102
Austin, J., 70, 101

B

Bailey, G.D., 23, 57
Balacheff, N., 2, 41, 53
Banerjee, A., 292, 306
Banke, K., 289, 308
Bannasch, S., 24, 52
Barta, R., 24, 52
BEA Systems, 204, 206, 220
Becker, H.J., 4, 52
Beckman, J.M., 292, 309
Begole, J.B., 24, 59
Belloti, F., 24, 52

Bellovin, S.M., 260, 265
Benaloh, J., 299, 307
Benamara, F., 68, 70, 101
Berg, R., 24, 31, 58
Berghel, H., 226, 228, 265, 266
Berners-Lee, T., 167, 187, 219
Berry, M., 65, 101
Beuschel, M., 112, 160
Bhalodia, J., 24, 59
Biba, K.J., 282, 292, 307
Bishop, M., 278, 307
Black, P., 12, 52
Bloedorn, E., 68, 101
Blumenfeld, P., 2, 24, 58
Bobrowsky, W., 24, 52
Boella, G., 70, 101
Booth, K.S., 24, 53
Borning, A., 44, 54
Borovoy, R., 24, 53
Boulanger, R., 112, 160
Boyer, R.S., 290, 292, 309
Boyle, J., 14, 52
Brajkovska, N., 226, 266
Bransford, J.D., 12, 54
Brecht, J., 46, 52
Brickley, D., 167, 188, 219
Brown, A., 167, 219
Brown, T., 2, 41, 53
Browne, M., 65, 101
Bullis, K., 5, 52
Burnstein, R.A., 14, 52
Burrill, G., 6, 52
Burstein, M., 72, 101
Burton-Jones, A., 165, 219

311



312 AUTHOR INDEX

C

CACM Staff, 226, 266
Callan, J., 67, 101
Carroll, J.J., 187, 188, 219, 220
Carroll, J.M., 19, 53
Cattagni, A., 4, 53
Chan, T.W., 2, 24, 41, 53, 56
Chander, A., 289, 307
Chandrasekaran, M., 255, 256, 266
Chang, K.E., 24, 59
Changjie, T., 67, 103
Chaudhury, R., 46, 52
Chaum, D., 298, 307
Chen, G.D., 24, 59
Chen, V., 24, 53
Cherniavsky, J., 2, 41, 53
Chiu, C., 14, 60
Chou, N., 258, 266
CipherTrust, 264, 266
Clayton, R., 227, 260, 266
Clemen, R.T., 217, 219
Clingen, C.T., 280, 281, 307
Cloudmark, 241, 266
Clow, J., 70, 101
Coad, P., 144, 160
Cohen, P., 70, 101
Colella, V., 24, 53
Conmy, D., 24, 56
Consortium for School Networking, 4, 53
Cook, S., 107, 160
Cook, T.D., 9, 53
Corbató, F.J., 280, 281, 307
Cortez, C., 4, 53
Cranor, L.F., 262, 266
Crawford, V., 5, 16, 53, 59
Crouch, C.H., 13, 14, 53, 54
Cuban, L., 2, 53
Cue, N., 14, 53
Cunnius, E., 24, 58
Curtis, D.A., 8, 55

D

Dabrowski, M., 261, 267
Dale, R., 69, 70, 103
Danesh, A., 24, 53

Datta, A., 291, 307
Davidian, A., 12, 15, 52
Davis, K., 46, 52
Davis, R., 24, 53
Davis, S., 12, 15, 53
de Boer, F.S., 291, 293, 307
De Gloria, A., 24, 52
de Roever, W.-P., 291, 307
Dean, D., 289, 307
Dede, C., 5, 53
DeLong, R., 292, 309
Demana, F., 10, 12, 54, 57
Demeure, I., 24, 54
Denning, D.E., 285, 307
Derry, S.J., 33, 56
Devedžic, V., 192, 197, 219, 220
Dhamija, R., 252, 254, 258, 262, 266
Di Eugenio, B., 73, 74, 79, 101, 102
Dickinson, I., 188, 219
Dieter, S., 24, 55
Digiano, C., 46, 52
Dijkstra, E.W., 291, 307
Dillenbourg, P., 2, 41, 53
Ding, X., 24, 56
Dizier, P., 68, 70, 101
Djuric, D., 192, 197, 219, 220
Dodis, Y., 287, 307
Dollin, C., 188, 219
Donovan, M.S., 12, 54
Doshi, P., 205, 206, 210, 211, 219
Downs, J., 262, 266
Dowton, S., 24, 58
Drake, C.E., 233–235, 239, 245, 247, 248, 266
Dufresne, R.J., 12, 14, 24, 54

E

eBay Toolbar and Account Guard, 257, 266
Edwards, W., 217, 219
Effelsberg, W., 14, 58
Eichin, M.W., 273, 309
Eisenberg, M., 24, 31, 58
Ellington, A.J., 7–9, 54
Engelbart, D.C., 33, 54
Engels, G., 144, 160
Erickson, J., 185, 219



AUTHOR INDEX 313

F

Fagen, A.P., 14, 54
Fait, H., 30, 55
Fang, Y., 293, 310
Farah, C., 24, 56
Farris, E., 4, 53
Faughn, A.W., 288, 307
Faure, C., 24, 54
Federal Trade Commission, 256, 266
Feiertag, R.J., 290, 292, 307, 309
Felten, E.W., 260, 267
Ferguson, G., 72, 101
Fernandez, J.D., 227, 266
Ferraiolo, D., 290, 308
Ferreira, A., 63, 71, 75, 79, 101, 102
Ferreti, E., 24, 52
Ferrio, T., 10, 54
Fishman, B., 2, 24, 58
Flinn, S., 259, 266
Foltz, P., 67, 102
Förster, A., 144, 160
Fossati, D., 73, 79, 101
Foster, D., 66, 103
Foster, M., 78, 103
Fox, A., 206, 221
Friedman, B., 44, 54, 254, 266
Fries, S., 14, 58
Fu, A., 239, 256, 266

G

Ganger, A.C., 14, 54
Gartner, 185, 219
Gaševic, D., 192, 197 219, 220
Gavrila, S.I., 290, 307, 308
Gay, G., 24, 58
Gbara, A., 257, 267
Gee, J.P., 6, 54
Geer, D., 227, 238, 248, 256, 262, 265, 266
Gerace, W.J., 12, 14, 24, 54
Gerber, L., 70, 101
Glass, M., 74, 101
Gliedman, C., 184, 185, 220
Gligor, V.D., 290, 307, 308
Goldberg, B., 293, 310
Goldman, S., 24, 54
Good, N., 254, 266

Goodwin, R., 175, 188, 205, 206, 210, 211,
219, 220

Gordin, D., 3, 58
Gorton, I., 293, 308
Goth, G., 244, 264, 266
Graham, A.T., 9, 54
Grant, W., 24, 58
Grant Gross, 264, 266
Grice, H., 71, 80, 102
Griswold, W.G., 14, 59
Grosz, B., 71, 72, 102
Guha, R., 167, 188, 219

H

Hake, R.R., 14, 54
Halderman, J.A., 260, 267
Haller, S., 68, 72–74, 79, 101, 102
Hanneman, U., 291, 307
Hantline, F., 10, 52
Harabagiu, S., 68, 102
Harrison, S., 24, 56
Hartline, F., 14, 54
Haskins, W., 264, 267
Hearst, M., 262, 266
Heckel, R., 144, 160
Hegedus, S.J., 11, 14, 24–26, 54, 55
Heintze, N., 292, 306
Heller, J.L., 8, 55
Henderson-Sellers, B., 132, 133, 160
Hendler, J., 167, 187, 219
Hennessy, S., 24, 55
Hermjakob, E., 70, 101
Herzberg, A., 257, 267
Hickman, L.A., 35, 55
Hitachi, 204, 220
Hoadley, C., 3, 58
Hofmann, T., 67, 102
Holbrook, M., 262, 266
Holscher, C., 63, 102
Hooman, J., 291, 307
Hoppe, U., 2, 41, 53
Horn, P., 165, 220
Horng, J.T., 24, 59
Horowitz, H.M., 14, 55
Horvitz, E., 64, 102
Horz, H., 14, 58
Hovy, U., 70, 101



314 AUTHOR INDEX

Howe, N., 5, 55
Hsi, S., 2, 24, 30, 41, 53, 55
Huang, J., 24, 53
Hughes, L., 185, 219
Hunsberger, L., 71, 72, 102
Hussain, S., 24, 56

I

IBM, 165, 170, 177, 200, 204, 206, 220
Inkpen, K.M., 24, 53
Inomata, A., 260, 267
Internet Security Systems, 257, 261, 267
IONA, 204, 220
Isard, S., 71, 103

J

Jaciw, A., 7–9, 55
Jackson, M., 14, 54
Jakobsson, M., 252, 267
Jansen, B., 62, 102
Jastor, 188, 220
Jenkins, H., 24, 56
Jie, Z., 67, 103
Jipping, M., 24, 55
Johnson, R., 144, 160
Junk, M., 70, 101
Jurafsky, D., 65, 73, 102

K

Kahn, P.H., 44, 54
Kaplan, R.S., 185, 220
Kaput, J., 11, 13, 14, 24–26, 54, 55, 59
Kasesniemi, E.L., 5, 55
Kawamura, T., 205, 208–211, 221
Keizer, G., 227, 267
Kerstein, P., 227, 267
Khoju, M., 7–9, 55
Kiang, J.K., 24, 56
Kiili, K., 23, 56
Kim, K., 24, 56
Kinshuk, 2, 41, 53
Kirda, E., 258, 267
Kleppe, A., 107, 110, 160, 161
Klopfer, E., 24, 56
Klyne, G., 187, 220

Koontz, E.J., 233–235, 239, 245, 247, 248, 266
Kopetz, H., 289, 308
Krafzig, D., 289, 308
Krajcik, J., 2, 16–18, 24, 56, 58, 59
Kraus, S., 71, 72, 102
Krikke, J., 24, 55
Kruegel, C., 258, 267
Kuchinskas, S., 263, 267
Kühne, T., 108, 109, 132, 133, 138, 160
Küsters, R., 291, 307

L

Laffey, J., 46, 56
Laham, D., 67, 102
Lajoie, S.P., 33, 56
Lakhnech, Y., 291, 307
Lamport, L., 289, 291, 306, 308
Landauer, T., 67, 102
Landay, J., 24, 53
Lassila, O., 167, 187, 219
Lau, F.W., 24, 53
Lau, T., 64, 102
Leaman, J.R., 292, 309
Lecolinet, E., 24, 54
Lederman, L.M., 14, 52
Ledesma, R., 258, 266
Lee, J., 165, 170, 175, 188, 200, 220
Lee, R., 24, 53
Lemon, O., 78, 103
Leonard, W.J., 12, 14, 24, 54
Lesmo, L., 70, 101
Levesque, H., 70, 101
Levitt, K.N., 290, 292, 309
Levy, A., 65, 67, 102
Levy, E., 242–244, 247, 248, 251, 267
Leymann, F., 203, 220
Li, F., 24, 53, 59
Lin, J., 24, 53
Lin, Y.-M., 46, 56
Linn, M., 16, 57
Liskov, B., 125, 160
Liu, B.J., 24, 59
Liu, T., 188, 220
Liu, T.C., 24, 56
Lochbaum, K., 71, 102
Looc, M., 261, 267
Looi, C., 2, 41, 53



AUTHOR INDEX 315

Löwe, W., 293, 308
Luchini, K., 24, 56

M

Ma, L., 188, 220
MacDonald, M., 14, 56
Maes, P., 67, 102
Maioramo, S., 68, 102
Maldonado, H., 24, 54
Mani, I., 68, 101
Mann, W., 71, 102
Mantel, H., 291, 308
Marcu, D., 68, 71, 102
Margarone, M., 24, 52
Martello, S., 212, 214, 220
Martin, J., 65, 73, 102
Marx, R., 2, 24, 58
Massen, C., 14, 57
Mauve, M., 14, 58
Mazur, E., 12–15, 53, 56
McCullough, D., 291, 308
McDavid, D., 166, 169, 220
McGee, D., 70, 101
McGuinness, D.L., 187, 221
McNairy, W.W., 14, 56
Means, B., 3, 58
Mens, T., 154, 160
Mercuri, R., 299, 308
Merwe, A.v.d., 261, 267
Mestre, J.P., 12, 14, 24, 54
Microsoft, 204, 206, 220
Miller, R.C., 24, 56
Mills, M., 24, 58
Milrad, M., 2, 41, 53
Mitchell, J.C., 258, 266, 289, 291, 307
Mitchell, T., 107, 160
Mitnik, R., 24, 56
Moher, T., 24, 56
Moissinac, J.C., 24, 54
Mokros, J.R., 16, 56
Moore, G., 6, 56
Moore, J., 68, 70, 78, 103
Morgan, M.E., 24, 56
Morrey, C., 24, 53
Motik, B., 188, 221
Myers, B.A., 24, 56

N

Nachmias, R., 16, 57
Nandihalli, N., 24, 56
Narayanaswami, C., 24, 57
National Center for Education Statistics, 4, 6,

8, 57
National Council of Teachers of Mathematics,

6, 57
Neff, C.A., 298, 299, 306, 308
Neumann, P.G., 271, 272, 280–282, 285, 287,

290, 292, 300, 305, 307–309
Newell, A., 33, 57
Nichols, J., 24, 56
Nicholson, A., 64, 103
Nicol, D.J., 14, 52
Norman, D.A., 16, 57
Norris, C., 2, 24, 41, 53, 58
Norton, D.P., 185, 220
Nussbaum, M., 4, 24, 53, 56, 60

O

Oberle, D., 188, 221
Object Management Group, 106, 109, 134,

138, 160, 161
Oblinger, D., 5, 57
Odell, J., 119, 161
OECD, 165, 221
Okamoto, E., 260, 267
Okamoto, T., 260, 267
Oliver, J.J., 233–235, 239, 245, 247, 248, 266
Ollmann, G., 227, 234, 236–240, 245–248,

251, 257, 259, 260, 267
OMG, 108, 156–158, 160, 166, 167, 188, 221
Organick, E.I., 278, 309
Owens, D.T., 12, 57

P

Pan, Y., 188, 220
Paolucci, M., 205, 208–211, 221
Papert, S., 5, 34, 57
Parker, B., 138, 161
Parker, D.B., 285, 307
Parnas, D.L., 282, 309



316 AUTHOR INDEX

Pasca, M., 68, 102
Patton, C., 2, 41, 46, 52, 53
Payne, T.R., 205, 208–211, 221
Pea, R.D., 2, 3, 13, 24, 26, 41, 53, 54, 57, 58
Pellegrino, J.W., 12, 54
Penuel, W.R., 24, 28, 40, 57–59
Petrosino, A.J., 44, 59
Petroski, H., 271, 309
Piazza, S., 14, 57
Pinhanez, C., 24, 57
Pnueli, A., 293, 310
Poel, M., 291, 307
Poesio, M., 71, 103
Ponnekanti, S.R., 206, 221
Pook, S., 24, 54
Poulis, C., 14, 57
Pownell, D., 23, 57
Price, M., 24, 53
Protégé, 188, 221

Q

Quintana, C., 24, 56

R

Rabin, T., 287, 307
Raghunath, M., 24, 57
Ragucci, J., 262, 267
Rahman, S., 260, 267
Ram, A., 67, 68, 103
Ramanathan, A., 291, 307
Ratto, M., 14, 57
Rau, M., 112, 160
Rautiainen, P., 5, 55
Reese, K., 24, 56
Reiter, E., 69, 70, 103
Resnick, M., 24, 31, 53, 57, 58
Reussner, R.H., 293, 309
Reynolds, D., 188, 219
Rheingold, H., 5, 23, 58
Riecke, J.G., 292, 306
Rieger, R., 24, 58
Rivest, R.L., 298, 309
Roberts, P., 264, 267
Robia, S., 262, 267
Robinson, L., 290, 292, 309
Robinson, S., 14, 58

Rochlis, J.A., 273, 309
Roeder, S., 205, 206, 210, 211, 219
Roller, D., 203, 220
Roschelle, J., 2, 3, 13, 24, 28, 39–41, 44, 46,

52, 53, 57–59
Rosen, E., 287, 309
Rudd, B., 225, 233, 234, 236, 239, 244, 263,

267
Rushby, J.M., 291, 292, 309

S

Salter, J., 67, 103
Saltzer, J.H., 277, 278, 280, 281, 307, 309
Sandro, S., 24, 55
SAP AG, 204, 206, 220
Sawyer, K., 3, 58
Saydjari, O.S., 292, 309
Scardamalia, M., 2, 41, 53
Scheele, N., 14, 58
Schiffrin, D., 78, 103
Schilit, B., 24, 53
Schleimer, B., 24, 53
Schmidt, M.T., 203, 220
Schnase, J., 24, 58
Schneier, B., 260, 267
Schroeder, M.D., 277, 278, 309
Schwartz, J., 23, 58
Seaborne, A., 188, 219
Seeley, C., 6, 58
Sesame, 188, 221
Shadish, W.R., 9, 53
Shapiro, B.R., 14, 57
Shapiro, S., 72, 90, 103
Sharples, M., 2, 41, 53
Shmatikov, V., 291, 307
Shu, K.S., 24, 53
Sidner, C., 71, 102
Siebel Systems, 204, 206, 220
Silverberg, B.A., 292, 309
Simon, H., 33, 57
Sinclair, S., 258, 260, 267
Singh, P., 24, 56
Slama, D., 289, 308
Smith, M.A., 288, 309
Smith, M.K., 187, 221
Smith, S.W., 258, 260, 267, 268
Sokoloff, D.R., 14, 58
Soloway, E., 2, 24, 41, 52, 53, 56, 58



AUTHOR INDEX 317

Soto, A., 24, 56
Spafford, E.H., 273, 310
Spink, A., 62, 102
Squire, K., 24, 56
Srinivasan, V., 24, 56
Staab, S., 188, 221
Steinkuehler, C., 6, 59
Stent, A., 70, 71, 103
Stern Stewart & Co, 186, 221
Stone, M., 70, 103
Stoyles, S., 259, 266
Strauss, W., 5, 55
Stroup, W.M., 11, 24, 26, 44, 59, 60
Strube, G., 63, 102
Su, Z., 188, 220
Sycara, K., 205, 208–211, 221
Symons, C., 185, 221

T

Tang, J.C., 24, 59
Tapscott, D., 5, 59
Tatar, D., 24, 28, 44, 56, 58, 59
Teraguchi, Y., 258, 266
Tetlow, P., 193, 221
The Honeynet Project & Research Alliance,

234, 236, 248, 263, 267
Thomas, M.O.J., 9, 54
Thompson, S., 71, 102
Thöne, S., 144, 160
Thornton, R.K., 14, 58
Tinker, R.F., 2, 16–18, 24, 56, 58, 59
Tong, L., 67, 103
Toth, P., 212, 214, 220
Treese, W., 265, 267
Trolio, M., 79, 102
Truong, T.M., 14, 59
Tuliani, J., 260, 267
Tumbleweed, 259, 268
Tygar, J.D., 252, 254, 258, 262, 266

U

Ungar, L., 66, 103

V

Vahey, P., 5, 16, 24, 28, 44, 53, 59
Van Dijk, T., 78, 103

Van Gorp, P., 154, 160
Van Kleek, M., 24, 59
VanDeGrift, T., 14, 59
Varghese, S., 243, 268
Vath, R., 24, 52
Volz, R., 188, 221
Voorhees, E., 68, 103

W

W3C, 167, 175, 177, 187, 210, 221
Wagner, J., 264, 268
Waits, B.K., 10, 54
Wang, C.Y., 24, 59
Wang, H.Y., 24, 56
Warmers, J., 110, 161
Waters, B., 260, 267
Webber, B., 70, 103
Webking, R., 14, 59
Wei, L.H., 24, 56
Weiner, N., 11, 59
Weld, D., 65, 67, 102
Welty, C., 187, 221
Wenk, L., 12, 14, 24, 54
Wenyin, L., 255, 268
Wessels, A., 14, 58
White, B., 4, 59
White, M., 78, 103
Wieczorek, A., 24, 56
Wikipedia, 225–227, 268
Wilder Foundation, 14, 59
Wilensky, U., 11, 24, 60
Wiley, J., 24, 56
Wiliam, D., 12, 52
Wilkinson, K., 188, 219
Wing, J., 125, 160
Wobbrock, J.O., 24, 56
Wohlfarth, U., 112, 160
Wolfman, S.A., 14, 59
Woods, H.A., 14, 60
Wooldridge, M., 71, 103
Woolf, B., 144, 160
Wright, H., 71, 103
Wu, M., 258, 268

Y

Yankelovich, N., 24, 59
Yarnall, L., 24, 57, 58



318 AUTHOR INDEX

Ye, Z., 258, 268
Yu, D., 73, 79, 101

Z

Zhang, L., 188, 220

Zuck, L., 293, 310

Zukerman, I., 64, 103

Zurita, G., 24, 60

Zwiers, J., 291, 307



Subject Index

A

Abstract syntax, 108–9
Abstractions, 111, 281, 286

in development process, 115–16
functional consistency among layers, 292
independence, 289
relationship to domain-specificity, 112–15

Access control, 284
Accountability, 271

comprehensive, 284, 285
ACM Risks Forum, 271–2, 301, 306
Action Module, 82
Action Selection Component, 82
Action selection strategy, 89, 90
Active document exchangers, 24
ActiveX, disabling, 257, 258
Activities, 203

design, 38
theorization, 38

Activity implementations, 203
Adaptive search agent, 88–9
“The Adventures of Jasper Woodbury”, 34
Aggregation, of student responses, 26
Air traffic control systems, 270
Algebra, graphing calculators in, 8–9
AlphaSmart devices, 49
Alternate data streams, 226
Analysis Engine Layer, 183
Analysis Module Layer, 181–3
Annotation-driven characterization, 155
Annotations, 156
Anti-phishing, 254–64

alternative authentication, 260
browser enhancement, 257–9
client-side security measures, 256–7
counter-attack categories, 261
difficulties, 254–5

email security, 260–1
legislation, 264
phishing attack detection, 255–6

proactive, 262–3
reporting and response, 263–4
retaliation, 256
server-side security measures, 259
techniques, 254–61
user vigilance/education, 261, 262

Anti-Phishing Working Group, 227–8, 244,
252–3, 263

Anti-spam, 256
Anti-spyware, 256
Anti-virus protection, 256, 296
AOL

anti-phishing lawsuits, 264
phishing attacks, 226–7, 264

“apply” dependency, 131
APQC Process Classification Framework, 173,

178
Architectures

cascading, 135–6
flattened, 136–8
four-layer, 137–8, 149
Model-Driven see MDA
MVC, 184
OMG, 157
Orthogonal Classification, 150, 153, 154
Service-Oriented, 167, 289
sound, 281
Time-Triggered, 289
two-level, 135–6

ARPANET collapse, 287
ASCII character set, vulnerabilities, 239
Aspectualisation, 76
Association assignment, 76

319



320 SUBJECT INDEX

Assurance, Saltzer–Schroeder principles and,
279

AT&T long-distance collapse, 287
Attachment blocking, 257
Australian Computer Emergency Response

Team, 263
Australian High Tech Crime Centre, 263
Authentication

accountability and, 285
authorization and, 284
sound, 284
two-factor, 260

Authorization
accountability and, 285
authentication and, 284
sound, 284

Automatic filtering, 66, 67
Awareness devices, 24

B

Backdoor trojans, 243, 244, 248
Balanced scorecard, 185
Banner advertising, 238
Base language, 107, 120
Base language view, 124
Bayesian belief network, 179–80
Behaviorism, 33
Behaviors, computational design of, 31
Belief network, 179–80
BIND attack, 245
BIRT, 184
Boomerang, 24, 28
BPEL4WS, 204

components, 206
Branch-and-bound algorithms, 214
Branding, model element, 128–9
Brazilian banks, 243
Browsers

detection, 247
enhancement, 257–9
vulnerability exploitation, 238, 251–2

Bulk email tools, 236
Business Intelligence and Reporting Tool

(BIRT), 184
Business-IT gap, 166, 169
Business maps, 172–3, 174

Business performance metrics, 201
Business process, 203
Business process composition with Web

services, 203–17
business requirement specification, 206–8
macro-level matching for, 212–17
related work, 204–6
service discovery, 209–12
service profile specification, 208–9
see also BPEL4WS

Business Process Execution Language for Web
Services see BPEL4WS

Business process improvement, studies, 185
Business process solution, 203
Business relationship specification, 207–8, 209
Business reports, 181
Business requirement specification, 206–8
Business rules, 215–16
Business transformation, 165

see also Model-driven business
transformation

Byzantine algorithms, 280

C

Calculus, 34
Capability Matching Engine, 210–11
Cartoons topic, dialogue interaction on, 98, 99
CATAALYST, 15
CBM, 170, 171, 175–6, 186, 200
CBM Tool Layer, 183, 184
CDIF, 138
Cell phones see Mobile phones
Cerf, Vint, 302
Certificates, security, 236, 247, 258, 260
Certification composition, 291
Child development, 35
CIM, 190
CinemaScreen, 67
CipherTrust, 264
Clabjects, 143, 147
Class libraries, 150–2
Classroom connectivity, emergent, 25–31
Classroom Presenter, 27
Classroom response systems see Networked

response systems
Classroom technologies

categorization, 44–5



SUBJECT INDEX 321

see also Handheld devices
ClassTalk, 10, 24
Clicker systems, 24
Client scorecard, 186
Client-side phishing vulnerabilities, 251–2
Client-side security measures, 256–7
Cloudmark, 241
Cognitive augmentation, 33–6

social participation vs, 39–40, 42
Cole, Mike, 37
Collaborative filtering see Social filtering
Collaborative learning, 26
Communication-based Approach, 71
Communications

computers in, 304
spatially directed, 31

Communicative goals, 78
Compatibility, 288
Component Business Modeling (CBM), 170,

171, 175–6, 186, 200
Componentization, 166
Composability, 286

Saltzer–Schroeder principles and, 279
Composition, 285–93
approaches for predictable, 291–3
certification, 291
concerns, 286–8
issues, 288–90
policy, 290–1
proof, 291
protocol, 291

Compositionality, 286
Compromises

from below, 280
from outside, 280
from within, 280
recording, 278, 279

Computation Independent Model (CIM), 190
Computer Networks topic, dialogue interaction

on, 98, 99
Computers, long-term effects, 304–5
ConcepTest, 13
Concrete embodiments, 36
Concrete syntax, 110
Conductor of performances, 26–7
Configuration component, 212, 214
Conservative Specialization Extensions,

125–6, 127, 131

Constraint languages, 110
Constraints, 130
Container definition, 206
Content-driven characterization, 155
Content generation, 69, 70
Content-Selection Text Acts (CTA), 72
Context, 37
Context aware attacks, 252
Context-driven characterization, 155, 156
Context Model, 79, 80
Controllability, administrative, 284
Conversation turns, 83, 91–2
Cookies, 243, 251, 257
Cooperative dialogue systems, 71
Cooperative principle, 80
Corillian, 263
Cost drivers, 172
Covert channels, 287
Crickets, 31
Criteria analyzer, 88
Criteria Setup, 210
Cross site scripting (CSS/XSS), 248–51, 259
Csound, 112
CSS, 248–51, 259
Cultural symbol systems, 39
Customization support environments, 133–8

flattened architectures, 136–8
multiple modeling levels, 134–5
two-level architectures, 135–6

Customized languages, 117, 121
Cyota, 263

D

D2RQ, 188
Data, short, asynchronous structured, 31
Data Doers, 24, 29–30
DCLs, 107, 117
Deadly embraces, 288, 291–2
Decompilers, 279
Deep characterization, 146–8
Deep instantiation, 147–8
Deepnet Explorer, 258
Deflation factor, 181
Degree of match, 211, 214–15
Denials of service, 290–1
Denotational semantics, 110



322 SUBJECT INDEX

Dependency
constrained, 282, 291–2
guarded, 291–2

Dependency analysis, 175, 291
Deprecation, 123
Derby, 184
Derivation description, 121
Derivations

fully-conformant, 121
non-conformant, 121
partially-conformant, 121
see also Extensions; Modifications;

Reductions
Derived languages, 107
Description Logic, 189, 200
Descriptive discourse, 74, 75
Descriptive macro-proposition, 77
Descriptive propositions, construction, 76–7
Descriptive texts, 75–7

dimensions, 75–6
generation, 82, 95–7

Design
behavioral, 31
of instructional technologies, 43–6

factors, 43
practices, 43–6

open, 278, 279
scenario based, 44

Design rationale, 44
Design tensions, 44
Detection and warning systems, 272–3
Dewey, John, 35, 37
DHTML, 246
Dialogue as Cooperation, 71
Dialogue Discourse Analyzer, 80, 81, 82
Dialogue Generator, 80–1, 90
Dialogue Grammars, 71
Dialogue Plans, 71
Dialogue Recording Module, 80
Dialogue structures, 90–1
Dialogue theory, 70
Digital ink, 27
Digital libraries, 303
Digital Phishnet, 263
Digital signatures, 259, 261

encryption and, 287
Disasters, anticipating, 271–3
Discourse, importance, 40–1

Discourse Analyzer see Dialogue Discourse
Analyzer

Discourse generator see Dialogue Generator
Discourse Text Acts (DTA), 72
Display panels, wall-mounted, 48
DIV tag, 246–7
DNS cache poisoning, 245, 262
Domain-customized languages see DCLs
Domain metatypes, 139–41
Domain model, 190
Domain name registration, 263
Domain-Specific Languages see DSLs
Domain-Specific Modeling (DSM), 113, 156
Domain-specificity, 112

in development process, 115–16
relationship to abstraction, 112–15

Domains, separation of, 283–4, 285
“Dots of laziness”, 230
DSLs, 107

orphan, 117
as problem-oriented, 114
transformations, 156

DSM, 113, 156
Dual facet property, 142–3
Dumpster diving, 226
Duties, separation of, 283, 285
Dynabook, 34
Dynamic Algebra, 8
Dynamic representation, 25–6
Dynamic security skins, 258

E

eBay Account Guard, 257
Eclass, 200
Eclipse, 183–4, 194
Eclipse Modeling Framework (EMF), 184,

191, 192, 193
see also EMF-based ontology engineering

system
ECLs, 121, 122
Economic Value Added (EVA), 185–6
Economy of mechanism, 278, 279
Ecore, 191, 193–4, 196–8, 202

transformation between OWL and, 198–200
Education

computer-related, 301–2



SUBJECT INDEX 323

computers in, 304
quality, impact of technology, 50–1
software engineering, 271

EJB, 120, 151
Election systems

integrity, 271
see also Electronic voting systems

Electronic dictionaries, 6
Electronic voting systems, 276, 297–300
Email

HTML, 234, 241, 257, 262
phishing, 233–6

automatic response to, 255
security, 260–1
validation, 259

Email databases, 236
Emergent properties, adverse, 287
EMF, 184, 191, 192, 193
EMF-based Ontology Definition Metamodel

(EODM), 192, 193–200
EMF-based ontology engineering system,

193–6
layers, 195
model transformation, 196–200
use scenarios, 200–1

Encapsulation, 281–2
Encryption, digital signatures and, 287
Engagement, student, 14, 15
Entity Java Bean (EJB), 120, 151
Entity Relationship (ER) modeling, 189, 193
Environmental issues, 274–5, 295–6

computers and, 304
Envisioning Machine, 39–40
EODM, 192, 193–200
EODM core model, 195, 196
EPackage, 200
ER modeling, 189, 193
Escape encoding, 239
Essentially-customized language (ECLs), 121,

122
EVA, 185–6
Exceptions handling, 301
Expert systems, 78
Explanatory discourse, 74, 75, 78
Explanatory texts, generation, 78, 81–2, 92–5
Exploratorium, 30
eXspot, 30–1

Extensible Markup Language (XML), 167,
187

Extensible Stylesheet Language
Transformation (XSLT), 192, 196

Extensions, 123–6
generalization, 124, 125
specialization, 124–6

additive, 126
conservative, 125–6, 127, 131
disjoint, 124–5

see also Lightweight extensions

F

Factory, 196
Fail-safe defaults, 278, 279
Fake websites see Ghost websites
Fault handling, in BPEL4WS, 206
FBI Virtual Case File, 270
FD function, 83
Feedback

importance, 36
user, 64
see also Formative assessment

Feedback interactions, adverse, 287
FID function, 83, 91–2
Fields, 147
Fifth Dimension, 37–8
Fifth Dimension Clearinghouse, 37
File phishing, 226
Filtering see Information Filtering
Financial Measure Report, 181, 182
Firefox, 248
Firewall/IDS, 256
Firewalls, 296–7
Flow model, 203, 206
Focused practice, 24
Foltz, 67
Force Concept Inventory (FCI), 13
Formal dimension, 76
Formal semantics, 201
Formative assessment, 24, 36
Forrester research reports, 184–5
Forums, 66
FPM function, 83
FRC function, 83
Free Software movement, 295



324 SUBJECT INDEX

G

Gaming devices, 6, 47–8
GEF, 184
General Portal Model, 288
Generalization extensions, 124, 125
Generation lexicon, 86
Generation methods, 70
Generation records, 70
Generation tasks, 70
Ghost websites

content, 236–7
exploitation, 246–8
hosting, 236
set-up, 233
URL to, 234, 238
see also Obfuscation techniques

Global failure modes, 287
GLOBE program, 17
Goal-Oriented Requirement language (GRL),

112
“Golden arches” property, 254, 258
Goodin, Jeffrey Brett, 264
Google, 64
Grammar categories, 85
Graphical Editing Framework (GEF), 184
Graphing calculators, 4, 5, 6–10, 24, 34

conclusions, 18–20
effectiveness, 9, 51
pedagogical affordances, 6–8
reasons for success, 10
research, 8–9
in SimCalc, 45–6

Graphing technology, 25
GRL, 112
Gulf of evaluation, 16

H

Hacking, 248, 265
Handheld devices

benefits, 4–6
challenge of scale, 50–1
design, 43–6

factors, 43
practices, 43–6

emergent classroom connectivity, 25–31
future prospects, 47–9

Internet connections, 23
market dominance, 21–2
physical networks, 22–3
see also Graphing calculators; Networked

response systems; Probeware
Handheld projects, classification, 24
Harris, Jayson, 264
HDM, 292
Heap corruption, 252
Heat map analysis, 175–6
Hidden text, 241
Hierarchical Development Methodology

(HDM), 292
Honey pot accounts, 263
Horizontal technology, vertical technology vs,

44–5
HTML

in emails, 234, 241, 257, 262
frames, 246
substitution, 250

HTTP connections, man-in-the-middle attacks,
245

HTTPS connections, man-in-the-middle
attacks, 245

Human issues, in system composition, 288
Hurricanes, 272
Hyperlinks, within email, 262
Hyperonym, 77

I

Identity theft, 226
IM, 238
Image cycling, 259
Image map assessments, 13
ImageMap, 24, 26–7
“imports” dependency, 130
Improvement factor, 180
Inference Engine, 210, 211
Inflation factor, 181
Informal semantics, 110, 201
Informatics, social practice and, 20
Information

evaluation, 303–4
inaccessibility, 303
relevant, 64

Information delivery/storage, 24



SUBJECT INDEX 325

Information Filtering (IF), 62, 66–7
results, 97–100
rules, 66
see also Automatic filtering; Intelligent

filtering; Social filtering
Information flow, 289
Information hiding, 281–2, 290
Information overload, 62, 64, 89
Information recording module, 80
Information Retrieval (IR) systems, 66, 88
Information status record, 88
INFOSCOPE, 67
Infrared (IR) connectivity, 22
Innovation-based economy, 165
Instant Messaging (IM), 238
Integration-ware, 183
Integrity, multilevel, 282
Intelligent agents, 65–6
Intelligent filtering, 67
Interaction Control, 81
Interaction loops, 11
Interaction Model, 80
Interactive Discourse Planning (IDP), 72–3
Interactive Web-driven Dialogue-based search

adaptive search agent, 88–9
analysis and results, 89–100

discourse generation plausibility, 89–97
filtering, 97–100

conclusions, 100
dialogue generation, 78–82

model components, 79–81
experimental methodology, 73–8
linguistic elements for dialogues, 83–8

Interface specifications
consistency and completeness, 289
properties beyond what defined by, 286–7

Interfaces
design, 281, 301
incompatibilities in, 287

Internal Revenue Service, 270
International Society of the Learning Sciences,

32
Internet

benefits, 302
connections to, 23
information accuracy issues, 302–4
limitations, 270, 302
scams, 275–6

see also Pharming; Phishing
Internet Crime Complaint Center (IC3), 263
Internet Explorer

functionality
anti-phishing, 258
unused, 257

graphical overlay prevention, 247
URL mishandling, 251
Windows Media Player and, 252

Internetworking, 21–2
Interoperability, 288
IP address, website host name as, 240
iPod, 45, 47
IRC, 238
IT Value Management, 185
Item-Descriptor pattern, 144–5

J

J2EE, 120
profile, 130

Jastor, 188
Java, 112

classes, 151
deprecation, 123

Java Ontology Base Connector (JOBC), 175
Java topic, dialogue interaction on, 98–9
JavaScript, in phishing, 241–2, 246–8
Jena, 188

K

k-out-of-n cryptography, 280
KAON, 188
Key Performance Indicators (KPIs), 172, 178,

200, 201
Keystrokes, recording, 243–4
Knowledge Forum, 34
Knowledge Representation, 189
Korgo worm, 243
KPIs, 172, 178, 200, 201

L

La Conchita, 272
Laboratory of Comparative Human Cognition,

37



326 SUBJECT INDEX

Language customization
lightweight see Lightweight extensions
see also Abstraction; Customization support

environments; Customized
languages; Derivations;
Domain-specificity; Library
customization; Metamodeling;
Ontological Metalevels;
Transformations

Language definitions, metamodels as, 138
Languages, 108–10

abstract syntax, 108–9
concrete syntax, 110
well-formedness rules, 109–10
see also Semantics

Laptops
in classroom, 49
$100, 49

Latent Semantic Analysis, 67
Leahy, Patrick, 264
Learning Sciences, 3, 32

perspectives, 33–41
cognitive augmentation, 33–6
comparison between, 39–40, 42
social participation, 36–41

research summary, 12
synthesis, 41–3

Least common mechanism, 278, 279, 284
Legislation, trustworthiness, 276
Liability, trustworthiness-related, 276
Libraries, class, 150–2
Library customization, 152–4
Library metaphor, 154
Life-cycle issues, 270, 296
Lightweight extensions, 127–33

advantages, 131–2
constraints, 130
disadvantages, 132–3
profiles, 130
stereotype properties, 129
stereotypes, 128–9, 191

usage patterns, 132–3
Linguistic classification, 138
Linguistic dimensions, 149–50
Linguistic functions, 83, 91–2
Linguistic (meta-)types, 139
Link destination, in status bar, 242
Linnaean classification system, 141

Liskov Substitution Principle, 125
Liveness properties, 289
Local messaging, 31, 43
Location bar, 247
LOgical Coprocessor Kernel (LOCK), 292
Logo, 34
Loops, infinite, 288

M

Macro-level matching algorithms, 205, 212–17
see also Multiple-choice knapsack algorithm

Mailing lists, 62, 66
Malware, 242–4
Man-in-the-middle attacks, 244–5, 260, 287
Mass-market software, untrustworthy, 294–5
Match Criteria, 210, 211–12
Match-My-Graph, 24, 28–9, 45, 46
Mathematics

of change and variation, 25–6
cognitive tools in learning, 34
graphing calculators in, 7–10
language games for learning, 28–9

MAXIMS, 67
Maxims of conversation, 71, 80
Maze, 38
MDA, 156, 167, 188, 189–91

layers, 190
MDA guide, 108, 157, 158
Mechanism, separation from policy, 283, 298
Mediation, complete, 278, 279
Meta-analysis, 9
Metaclasses, 132
Meta-languages, 134, 137
Metamodeling, 109

linguistic, 138
ontological, 138–9
strict, 148–9, 150

Metamodels, as language definitions, 138
Meta-Object Facility see MOF
Micro-level matching algorithm, 205, 210–12
Microsoft

anti-phishing lawsuits, 264
see also Internet Explorer

Misinformation, risks of, 302–4
Mixed-initiative dialogues, 72
MLI, 292



SUBJECT INDEX 327

Mobile phones, 45, 48
Wi-Fi based, 48

Model-Driven Architecture see MDA
Model-driven business transformation, 70,

165–9, 186, 201–2
value-oriented see Value-oriented business

transformation
Model-driven development, 115
Model-driven ontology engineering, 187–203

future research, 202–3
traditional ontology management systems,

188–9
see also EMF-based ontology engineering

system; MDA; ODM
Model Transformation, 195
Model-View-Controller, 184
Modeling languages see Languages
Modeling levels, multiple, 134–5
Modeling tools, generation, 136
Models

accessing elements, 154–6
definition, 108
problem-oriented, 111
solution-oriented, 111
token, 108
type, 108

Modifications, 126–7
Modularity, 281
MOF, 109, 134, 137, 154, 190–1
Mongers, 230–3
Monitoring

computers in, 305
privacy vs, 285

Mozilla, 248
Multi-attribute decision analysis, 212, 216–17
Multics, 278, 280, 283
Multilevel integrity (MLI), 292
Multiple-choice knapsack algorithm, 212–16
Multiteam incompatibilities, 287
Multivendor incompatibilities, 287
Museums, science, 30–1
MVC architecture, 184

N

NameProtect, 263
National Assessment of Education Progress

(NAEP), 8, 51

National infrastructures, critical, 270–1, 274
Natural-Language Generation see NLG
Natural Language Processing see NLP
NetCalc, 24, 45
Netcraft Toolbar, 257
Netscape, Web browser, 258
Networked response systems, 10–15

conclusions, 18–20
effects, 14–15
instructional processes using, 11
pedagogical affordances, 11–13
Peer Instruction, 12, 13–14
reasons for success, 15
social mediation and, 40

Networks, physical, 22–3
Newsgroups, 62, 66
Newtonian World, 39–40
NLG, 68, 69–72

content generation, 69, 70
overall sentence generation process, 87–8
surface generation, 69, 70, 88
see also Sentence Planning; Text Planning

NLP
in dialogue-related approaches, 68
see also NLG

Non-Dominated Match Vectors, 210, 212–13

O

Obfuscation techniques, 238–42
Object Management Group (OMG), 107, 108,

137, 157, 187
see also MDA; UML

Object orientation, 282–3
Object-oriented environments, 151
OCL, 110
ODA, 193
ODM, 188, 191–3, 196, 197

class definition in, 196, 197
OMG, 107, 108, 137, 157, 187

see also MDA; UML
OnDragStart event, 248
One-to-one computing, 5
Ontological dimensions, 149–50
Ontological metalevels, 138–48

deep instantiation, 147–8
dual facet property, 142–3



328 SUBJECT INDEX

Item-Descriptor pattern, 144–5
powertypes, 119, 145–7

Ontological metatypes, 139–41
Ontologies, 167
Ontology Database, 211
Ontology Definition Metamodel (ODM), 188,

191–3, 196, 197
class definition in, 196, 197

Ontology Driven Architecture (ODA), 193
Ontology management systems, traditional,

188–9
Open Source movement, 295
Operating systems, composability-enhancing

approaches, 292–3
Operational metrics, 172
Operational semantics, 110
Optimization, optimistic, 295–7
Optimization Solutions and Library (OSL),

214
Orphan languages, 117
Orthogonal Classification Architecture, 150,

153, 154
Orthogonality theorem, 289
OSL, 214
Oval, 67
OWL, 167, 175, 176, 187

in EODM, 193–200
in MDA, 191–2
transformation between Ecore and, 198–200

OWL Editor, 195
OWL Inference Engine, 195
OWL Parser, 195
OWL-QL, 175
OWL-S, 205, 208–9, 210

P

Page source code, 242
PalmPilot, 47
Parser, 210
Participation, transformation of, 39
Participatory simulation, 11, 20
Partner definition, 206
PartSims, 24
Passwords

browser management of, 260
delayed disclosure, 260

Patterns, 156
PayPal, phishing example, 252
PDE, 184
Peer Instruction, 12, 13–14
Pellet, 188
Perspectives, 142, 143
Pet Store case study, 117–20

domain-specific model, 119
ProductType, 139, 140, 142, 144

as powertype, 145–6
UML analysis model, 118–19
UML solution-oriented model, 120

PGP, 261
Pharming, 226, 233
Phishing, 225–65

bulk emailing with fake websites, 233–7
clean-up, 228–30, 231
client-side vulnerabilities, 251–2
context aware attacks, 252
current status, 227–8
empirical results, 252–4
history, 226–7
illustrative examples, 228–32
IM delivery, 238
IRC delivery, 238
malware, 242–4
man-in-the-middle attacks, 244–5, 260, 287
obfuscation techniques, 238–42
reporting, 263–4
requirements, 228
server-side exploits, 248–51
spread of attacks, 264
web-based delivery, 237–8
website-based exploitation, 246–8
see also Anti-phishing; Mongers; Posers

Phreaking, 226
Physics, 13–14, 39–40
Piaget, Jean, 35, 36
PIES, 68
PIM, 190
Planning problem, business process

composition as, 206
Platform Independent Model (PIM), 190
Platform Specific Model (PSM), 190
Plugin development environment (PDE), 184
Poisoning, 256
Policy, separation from mechanism, 283, 298
Policy composition, 290–1



SUBJECT INDEX 329

Pop-up windows
disabling, 257
in phishing, 248, 249, 250

Posers, 228–30
Potency value, 147
Powertypes, 119, 145–7
Pragmatic Analyzer, 80
Precognitive learning, 35, 36
Preferential balloting, 298
“Pre-flecting”, 30
Prejudices, 305
Presentation systems, 27
Preset sessions, 251
Privacy, 271

monitoring vs, 285
Privileges

least, 278, 279, 285
separation of, 278, 279, 283–4, 285

Probeware, 15–18, 24, 36
conclusions, 18–20
research, 17–18

Problem solving, 33, 35–6
graphing calculators in, 7–8
superficial vs inquiry-oriented, 35

Process Classification Framework, 173, 178
Process definition, 206
Process integration, 168
Process model see Flow model
ProductType, 139, 140, 142, 144

as powertype, 145–6
Profiles, 130
Programming languages, 108

composability-enhancing approaches, 292–3
Project portfolio management, 177
Projectors, 48
Promotion step, 135, 136
Proof composition, 291
Property-driven characterization, 155
Propositional structures, 84
Protection

distributed, 282
layered, 282

Protégé, 188
Protocol composition, 291
Provably Secure Operating System (PSOS),

290, 292
Proxies, 245
PSM, 190

Psychological acceptability, 278, 279, 282
publisherAssertion messages, 209
PVS, 292

Q

Question–Answering (QA) systems, 68
Questions, student, 28

R

Radio-frequency (RF) communication, 22–3
Rational Rose, 191
RDF, 167, 187, 196
RDQL, 175
Realization see Surface generation
RealPlayer, 252
Reasoning, graphing calculators in, 7–8
Redirection URLs, 240
Reductions, 121–2

conformant, 123
destructive, 122–3

Relevance feedback, 68
Repository, 153
Representations, 34

bag-of-words, 64, 65
mediating, 33

Requirements, inadequate, 286
Resource Description Framework (RDF), 167,

187, 196
Response aggregation, 12–13
Return On Investment (ROI), 178, 185
Reverse HTTP proxies, 244
RFID technology, in museum-based learning,

30–1
Rhetorical Structure Theory (RST), 71
Risk awareness, need for, 300–2
RNT function, 83
Robinson–Levitt mapping analysis, 292
ROI, 178, 185
ROI Report, 181
Roles, separation of, 283
RStar, 188

S

S/MIME, 261



330 SUBJECT INDEX

Safety properties, 289
Saltzer–Schroeder security principles, 277–80,

300
Scalability, 288
Scam websites, 226

see also Ghost websites
Scenario based design, 44
Science

cognitive tools in learning, 34
content learning, 17–18
data collection, 29–30
probeware in learning, 15–18

Science museums, 30–1
Scientific dimension, 76
Screen capture utilities, 244
Scripts

forced loading, 250
inline embedding, 250–1, 259

Seamless learning spaces, 41
Search agent, adaptive, 88–9
Search behavior investigations, 63
Search engines

in adaptive search agent, 88
problems, 64–5

Search systems, keywords-based, 63
Secure Global Information Grid, 274
Security

crisis in, 294–5
Saltzer–Schroeder principles, 277–80, 300
software, 256
toolbars, 257
warning messages, 254–5

Security windows, trusted, 258
Semantic Analyzer, 80
Semantic business modeling, 176, 186
Semantic functions, 84, 85
Semantic models, 167–8
Semantic module, 80
Semantic Network Processing System

(SNePS), 72, 90
Semantic Query Engine, 175
Semantic rules, 84–5
Semantic Web, 167–8, 187
Semantics, 110

denotational, 110
formal, 201
informal, 110, 201
operational, 110

static, 109
translational, 110, 154

Semantics enrichment, 201
Sensorial dimension, 76
Sentence Planning, 69, 70
Server-side phishing exploits, 248–51
Server-side security measures, 259
Service discovery, with micro-level matching,

209–12
Service-Oriented Architectures, 167, 289
Service profile specification, 208–9
Services, 165
Services science, 165
Sesame, 188
Session identifiers, 251
Shared-buffer interactions, 287
Shared Plan, 71
Shared public display, 31
Short Messaging System (SMS), 23
Shortfall Assessment, 176–7
Sidewinder, 292
SimCalc, 25–6, 28–9, 45–6
Simulink, 112
Single sign-on, 282
Singleton, 196
Situation Model, 79–80
Smalltalk, 151
SmartBoards, 48
SMS, 23
SNePS, 72, 90
SnoBase, 175, 188
Social engineering, 225, 233, 242
Social filtering, 66, 67
Social networking, 258
Social participation, 36–41

cognitive augmentation vs, 39–40, 42
Social practice, informatics and, 20
Sociocultural theory of learning, 40
Solution identification, 177
Solution technology, 111
Solution value estimation, 177–8
Source code

analysis, 203
page, 242

Spam, 275–6
monitoring, 263

Spam filters, 67, 256, 296–7



SUBJECT INDEX 331

detection avoidance, 240–1
Spam relays, 244
SPARK, 293
Spatial dimension, 76
Spatially directed communications, 31
Specialization extensions, 124–6

additive, 126
conservative, 125–6, 127, 131
disjoint, 124–5

Specifications
inappropriate, 286
incomplete, 286
see also Interface specifications

Speech Acts, 70, 80, 83–4
Speech Acts Theory, 70
Spider technology, 65
Spoofed email address, 234
SpoofGuard, 258
Spoofstick, 257
Spyware, removal, 256
SSL/TLS, 245

padlock, 246, 247, 248, 254, 262
server certificate, 258, 262

State visibility, explicit, 289–90
Statelessness, 289–90
Static semantics, 109
Stereotype properties, 129
Stereotypes, 128–9, 191

usage patterns, 132–3
Stimulus-response bonds, 33
Strictness, 148–50
Student–computer ratio, 4
Success, in learning, 43
Supertype-driven characterization, 158
Supertypes, 133, 140, 158
Superuser role, 283
Surface generation, 69, 70, 88
Surveillance, 271
Symbol systems, 42–3

cultural, 39
domain-specific, 42

Synchronization issues, 289
Syntactical structures, 85
System composition see Composition
System development

practice, 270
principles, 277–85
applicability to elections, 299

System life-cycle issues, 270, 296
System-oriented dialogues, 71–2
System sims, 24

T

Tablet PCs, 27, 49
Tag definitions, 129
Tagged values, 129, 155
Target-of-opportunity, 228
TCO, 185
Teacher control, variations in, 31
Technical subterfuge, 233
Technology-enhanced learning (TEL), 5
Text mining, 203
Text obfuscation, 240
Text Planning, 70
Text Retrieval Conference (TREC), 68
Text structuring see Sentence Planning
THE system, 291–2
Thinking, computers and, 304–5
Time on task, 36
Time-Triggered Architecture, 289
Timing issues, 289
tModels, 209
TollCollect, 270
Total Cost of Ownership (TCO), 185
Total-system perspective, 270–1
Transformations, 154–8

DSL/DSM paradigm, 156
library approach, 158
model access, 154–6
OMG architecture, 157
taxonomy, 155
see also Business transformation

Translation validation, 293
Translational semantics, 110, 154
Transparent layer, 156
Trojan horses, 243, 244, 260, 288

keylogging, 243
Trust relationships, abuse, 225, 238
Trustbar, 226, 257, 258
Trusted Xenix, 283
Trustworthiness, 270, 273–5

architectural minimization, 282, 298
future prospects, 304–5
natural environment analogy, 274–5



332 SUBJECT INDEX

optimistic optimization, 295–7
risk awareness need, 300–2
risks in lack of, 275–7
risks of misinformation, 302–4
security crisis, 294–5
system development principles, 277–85

applicability to elections, 299
see also Composition; Electronic voting

systems
Tsunamis, 272
Type-B noun, 86–7

U

UDDI, 205, 208–9
UML, 106–7, 160, 166, 187

interoperability with semantic markup
languages, 189

in MDA, 190
in ODM, 191–2
profiles, 190–1
superstructure, 134
support for more than two levels, 145
see also Lightweight extensions

Unicode attacks, 239, 256
Unicode encoding, 239
Unified Modeling Language see UML
Uniform Resource Identifiers (URIs), 187
Universal Description, Discovery and

Integration (UDDI), 205, 208–9
URIs, 187
URLs

mishandling, 251
obfuscation see Obfuscation techniques
redirection, 240
structure over website, 255

US-CERT, 273
Usage factor, 180
User instances, 137–8, 149
User Model, 79
User models, 138
User-oriented dialogues, 71
User types, 137–8, 149
UTF-8 encoding, 239–40
Utility classes/methods, 195
Utility functions, 216–17

V

Value analysis, 170–2
Value-based thinking, installing, 184–5
Value Driver Report, 181
Value driver tree, 178–9
Value drivers, 172, 176
Value models, 170, 172, 186

VIOLA, 178–81
Value-oriented business transformation,

169–87
related work, 184–6
see also VIOLA model

Value Sensitive Design, 44
Verisign, 258, 261
Vertical technology, horizontal technology

vs, 44–5
VIOLA model, 172–84

business reports, 181
differences from other approaches, 185
functional architecture, 181–3
implementation, 181–4
qualitative business analyses, 173–7
quantitative business analyses, 177–81
summary, 186–7

VIOLA Model Layer, 183
Virus checkers, 256, 296
Visual similarity, website, 255
Voter-verified paper audit trails (VVPATs), 299
Vygotsky, Lev, 35, 37, 39

W

W3C, 167, 187, 193
WAP, 23
“Warez”, 227
Warfare, computers in, 304
Water quality evaluation, 16, 17–18
Weapon systems, 304
Web browsers see Browsers
Web interoperability, 288–9
Web Ontology Language see OWL
Web portal, 288–9
Web search, main user issues, 64–5
Web services, 167, 203

see also Business process composition with
Web services

Web Wallet, 258



SUBJECT INDEX 333

WebWatcher, 67
Well-formedness rules, 109–10
What Works Clearinghouse, 9
Windows Media Player, 252
Windows operating systems, 287
Wireless Application Protocol (WAP), 23
“Wizard”, 38
Wizard of Oz (WOZ), 73–4
WordNet, 68
Work factors, in security, 278, 279
World Wide Consortium see W3C
Worms, 242, 243, 273
WS-Coordination, 204
WS-Transaction, 204

X

Xerox PARC, 34
XMI, 190, 191, 197
XML, 167, 187

XML Metadata Interchange (XMI), 190, 191,
197

XML Schema Definition (XSD), 202
XML User Interface Language (XUL), 248
XSD, 202
XSLT, 192, 196
XSS, 248–51, 259
XUL, 248

Y

Y2K crisis, 273
Yahoo, 66

Z

Zero-knowledge protocols, 280
Zone of proximal development, 39
Zone settings, 247



This page intentionally left blank



Contents of Volumes in This Series

Volume 42

Nonfunctional Requirements of Real-Time Systems
TEREZA G. KIRNER AND ALAN M. DAVIS

A Review of Software Inspections
ADAM PORTER, HARVEY SIY, AND LAWRENCE VOTTA

Advances in Software Reliability Engineering
JOHN D. MUSA AND WILLA EHRLICH

Network Interconnection and Protocol Conversion
MING T. LIU

A Universal Model of Legged Locomotion Gaits
S. T. VENKATARAMAN

Volume 43

Program Slicing
DAVID W. BINKLEY AND KEITH BRIAN GALLAGHER

Language Features for the Interconnection of Software Components
RENATE MOTSCHNIG-PITRIK AND ROLAND T. MITTERMEIR

Using Model Checking to Analyze Requirements and Designs
JOANNE ATLEE, MARSHA CHECHIK, AND JOHN GANNON

Information Technology and Productivity: A Review of the Literature
ERIK BRYNJOLFSSON AND SHINKYU YANG

The Complexity of Problems
WILLIAM GASARCH

3-D Computer Vision Using Structured Light: Design, Calibration, and Implementation Issues
FRED W. DEPIERO AND MOHAN M. TRIVEDI

Volume 44

Managing the Risks in Information Systems and Technology (IT)
ROBERT N. CHARETTE

Software Cost Estimation: A Review of Models, Process and Practice
FIONA WALKERDEN AND ROSS JEFFERY

Experimentation in Software Engineering
SHARI LAWRENCE PFLEEGER

Parallel Computer Construction Outside the United States
RALPH DUNCAN

Control of Information Distribution and Access
RALF HAUSER

Asynchronous Transfer Mode: An Engineering Network Standard for High Speed Communications
RONALD J. VETTER

335



336 CONTENTS OF VOLUMES IN THIS SERIES

Communication Complexity
EYAL KUSHILEVITZ

Volume 45

Control in Multi-threaded Information Systems
PABLO A. STRAUB AND CARLOS A. HURTADO

Parallelization of DOALL and DOACROSS Loops—a Survey
A. R. HURSON, JOFORD T. LIM, KRISHNA M. KAVI, AND BEN LEE

Programming Irregular Applications: Runtime Support, Compilation and Tools
JOEL SALTZ, GAGAN AGRAWAL, CHIALIN CHANG, RAJA DAS, GUY EDJLALI, PAUL HAVLAK,

YUAN-SHIN HWANG, BONGKI MOON, RAVI PONNUSAMY, SHAMIK SHARMA, ALAN

SUSSMAN, AND MUSTAFA UYSAL

Optimization Via Evolutionary Processes
SRILATA RAMAN AND L. M. PATNAIK

Software Reliability and Readiness Assessment Based on the Non-homogeneous Poisson Process
AMRIT L. GOEL AND KUNE-ZANG YANG

Computer-Supported Cooperative Work and Groupware
JONATHAN GRUDIN AND STEVEN E. POLTROCK

Technology and Schools
GLEN L. BULL

Volume 46

Software Process Appraisal and Improvement: Models and Standards
MARK C. PAULK

A Software Process Engineering Framework
JYRKI KONTIO

Gaining Business Value from IT Investments
PAMELA SIMMONS

Reliability Measurement, Analysis, and Improvement for Large Software Systems
JEFF TIAN

Role-Based Access Control
RAVI SANDHU

Multithreaded Systems
KRISHNA M. KAVI, BEN LEE, AND ALLI R. HURSON

Coordination Models and Language
GEORGE A. PAPADOPOULOS AND FARHAD ARBAB

Multidisciplinary Problem Solving Environments for Computational Science
ELIAS N. HOUSTIS, JOHN R. RICE, AND NAREN RAMAKRISHNAN

Volume 47

Natural Language Processing: A Human–Computer Interaction Perspective
BILL MANARIS

Cognitive Adaptive Computer Help (COACH): A Case Study
EDWIN J. SELKER

Cellular Automata Models of Self-replicating Systems
JAMES A. REGGIA, HUI-HSIEN CHOU, AND JASON D. LOHN

Ultrasound Visualization
THOMAS R. NELSON



CONTENTS OF VOLUMES IN THIS SERIES 337

Patterns and System Development
BRANDON GOLDFEDDER

High Performance Digital Video Servers: Storage and Retrieval of Compressed Scalable Video
SEUNGYUP PAEK AND SHIH-FU CHANG

Software Acquisition: The Custom/Package and Insource/Outsource Dimensions
PAUL NELSON, ABRAHAM SEIDMANN, AND WILLIAM RICHMOND

Volume 48

Architectures and Patterns for Developing High-Performance, Real-Time ORB Endsystems
DOUGLAS C. SCHMIDT, DAVID L. LEVINE, AND CHRIS CLEELAND

Heterogeneous Data Access in a Mobile Environment – Issues and Solutions
J. B. LIM AND A. R. HURSON

The World Wide Web
HAL BERGHEL AND DOUGLAS BLANK

Progress in Internet Security
RANDALL J. ATKINSON AND J. ERIC KLINKER

Digital Libraries: Social Issues and Technological Advances
HSINCHUN CHEN AND ANDREA L. HOUSTON

Architectures for Mobile Robot Control
JULIO K. ROSENBLATT AND JAMES A. HENDLER

Volume 49

A Survey of Current Paradigms in Machine Translation
BONNIE J. DORR, PAMELA W. JORDAN, AND JOHN W. BENOIT

Formality in Specification and Modeling: Developments in Software Engineering Practice
J. S. FITZGERALD

3-D Visualization of Software Structure
MATHEW L. STAPLES AND JAMES M. BIEMAN

Using Domain Models for System Testing
A. VON MAYRHAUSER AND R. MRAZ

Exception-Handling Design Patterns
WILLIAM G. BAIL

Managing Control Asynchrony on SIMD Machines—a Survey
NAEL B. ABU-GHAZALEH AND PHILIP A. WILSEY

A Taxonomy of Distributed Real-time Control Systems
J. R. ACRE, L. P. CLARE, AND S. SASTRY

Volume 50

Index Part I
Subject Index, Volumes 1–49

Volume 51

Index Part II
Author Index
Cumulative list of Titles
Table of Contents, Volumes 1–49



338 CONTENTS OF VOLUMES IN THIS SERIES

Volume 52

Eras of Business Computing
ALAN R. HEVNER AND DONALD J. BERNDT

Numerical Weather Prediction
FERDINAND BAER

Machine Translation
SERGEI NIRENBURG AND YORICK WILKS

The Games Computers (and People) Play
JONATHAN SCHAEFFER

From Single Word to Natural Dialogue
NEILS OLE BENSON AND LAILA DYBKJAER

Embedded Microprocessors: Evolution, Trends and Challenges
MANFRED SCHLETT

Volume 53

Shared-Memory Multiprocessing: Current State and Future Directions
PER STEUSTRÖM, ERIK HAGERSTEU, DAVID I. LITA, MARGARET MARTONOSI, AND MADAN

VERNGOPAL

Shared Memory and Distributed Shared Memory Systems: A Survey
KRISHNA KAUI, HYONG-SHIK KIM, BEU LEE, AND A. R. HURSON

Resource-Aware Meta Computing
JEFFREY K. HOLLINGSWORTH, PETER J. KELCHER, AND KYUNG D. RYU

Knowledge Management
WILLIAM W. AGRESTI

A Methodology for Evaluating Predictive Metrics
JASRETT ROSENBERG

An Empirical Review of Software Process Assessments
KHALED EL EMAM AND DENNIS R. GOLDENSON

State of the Art in Electronic Payment Systems
N. ASOKAN, P. JANSON, M. STEIVES, AND M. WAIDNES

Defective Software: An Overview of Legal Remedies and Technical Measures Available to Consumers
COLLEEN KOTYK VOSSLER AND JEFFREY VOAS

Volume 54

An Overview of Components and Component-Based Development
ALAN W. BROWN

Working with UML: A Software Design Process Based on Inspections for the Unified Modeling Language
GUILHERME H. TRAVASSOS, FORREST SHULL, AND JEFFREY CARVER

Enterprise JavaBeans and Microsoft Transaction Server: Frameworks for Distributed Enterprise
Components

AVRAHAM LEFF, JOHN PROKOPEK, JAMES T. RAYFIELD, AND IGNACIO SILVA-LEPE

Maintenance Process and Product Evaluation Using Reliability, Risk, and Test Metrics
NORMAN F. SCHNEIDEWIND

Computer Technology Changes and Purchasing Strategies
GERALD V. POST

Secure Outsourcing of Scientific Computations
MIKHAIL J. ATALLAH, K. N. PANTAZOPOULOS, JOHN R. RICE, AND EUGENE SPAFFORD



CONTENTS OF VOLUMES IN THIS SERIES 339

Volume 55

The Virtual University: A State of the Art
LINDA HARASIM

The Net, the Web and the Children
W. NEVILLE HOLMES

Source Selection and Ranking in the WebSemantics Architecture Using Quality of Data Metadata
GEORGE A. MIHAILA, LOUIQA RASCHID, AND MARIA-ESTER VIDAL

Mining Scientific Data
NAREN RAMAKRISHNAN AND ANANTH Y. GRAMA

History and Contributions of Theoretical Computer Science
JOHN E. SAVAGE, ALAN L. SALEM, AND CARL SMITH

Security Policies
ROSS ANDERSON, FRANK STAJANO, AND JONG-HYEON LEE

Transistors and 1C Design
YUAN TAUR

Volume 56

Software Evolution and the Staged Model of the Software Lifecycle
KEITH H. BENNETT, VACLAV T. RAJLICH, AND NORMAN WILDE

Embedded Software
EDWARD A. LEE

Empirical Studies of Quality Models in Object-Oriented Systems
LIONEL C. BRIAND AND JÜRGEN WÜST

Software Fault Prevention by Language Choice: Why C Is Not My Favorite Language
RICHARD J. FATEMAN

Quantum Computing and Communication
PAUL E. BLACK, D. RICHARD KUHN, AND CARL J. WILLIAMS

Exception Handling
PETER A. BUHR, ASHIF HARJI, AND W. Y. RUSSELL MOK

Breaking the Robustness Barrier: Recent Progress on the Design of the Robust Multimodal System
SHARON OVIATT

Using Data Mining to Discover the Preferences of Computer Criminals
DONALD E. BROWN AND LOUISE F. GUNDERSON

Volume 57

On the Nature and Importance of Archiving in the Digital Age
HELEN R. TIBBO

Preserving Digital Records and the Life Cycle of Information
SU-SHING CHEN

Managing Historical XML Data
SUDARSHAN S. CHAWATHE

Adding Compression to Next-Generation Text Retrieval Systems
NIVIO ZIVIANI AND EDLENO SILVA DE MOURA

Are Scripting Languages Any Good? A Validation of Perl, Python, Rexx, and Tcl against C, C++, and Java
LUTZ PRECHELT



340 CONTENTS OF VOLUMES IN THIS SERIES

Issues and Approaches for Developing Learner-Centered Technology
CHRIS QUINTANA, JOSEPH KRAJCIK, AND ELLIOT SOLOWAY

Personalizing Interactions with Information Systems
SAVERIO PERUGINI AND NAREN RAMAKRISHNAN

Volume 58

Software Development Productivity
KATRINA D. MAXWELL

Transformation-Oriented Programming: A Development Methodology for High Assurance Software
VICTOR L. WINTER, STEVE ROACH, AND GREG WICKSTROM

Bounded Model Checking
ARMIN BIERE, ALESSANDRO CIMATTI, EDMUND M. CLARKE, OFER STRICHMAN, AND

YUNSHAN ZHU

Advances in GUI Testing
ATIF M. MEMON

Software Inspections
MARC ROPER, ALASTAIR DUNSMORE, AND MURRAY WOOD

Software Fault Tolerance Forestalls Crashes: To Err Is Human; To Forgive Is Fault Tolerant
LAWRENCE BERNSTEIN

Advances in the Provisions of System and Software Security—Thirty Years of Progress
RAYFORD B. VAUGHN

Volume 59

Collaborative Development Environments
GRADY BOOCH AND ALAN W. BROWN

Tool Support for Experience-Based Software Development Methodologies
SCOTT HENNINGER

Why New Software Processes Are Not Adopted
STAN RIFKIN

Impact Analysis in Software Evolution
MIKAEL LINDVALL

Coherence Protocols for Bus-Based and Scalable Multiprocessors, Internet, and Wireless Distributed
Computing Environments: A Survey

JOHN SUSTERSIC AND ALI HURSON

Volume 60

Licensing and Certification of Software Professionals
DONALD J. BAGERT

Cognitive Hacking
GEORGE CYBENKO, ANNARITA GIANI, AND PAUL THOMPSON

The Digital Detective: An Introduction to Digital Forensics
WARREN HARRISON

Survivability: Synergizing Security and Reliability
CRISPIN COWAN

Smart Cards
KATHERINE M. SHELFER, CHRIS CORUM, J. DREW PROCACCINO, AND JOSEPH DIDIER



CONTENTS OF VOLUMES IN THIS SERIES 341

Shotgun Sequence Assembly
MIHAI POP

Advances in Large Vocabulary Continuous Speech Recognition
GEOFFREY ZWEIG AND MICHAEL PICHENY

Volume 61

Evaluating Software Architectures
ROSEANNE TESORIERO TVEDT, PATRICIA COSTA, AND MIKAEL LINDVALL

Efficient Architectural Design of High Performance Microprocessors
LIEVEN EECKHOUT AND KOEN DE BOSSCHERE

Security Issues and Solutions in Distributed Heterogeneous Mobile Database Systems
A. R. HURSON, J. PLOSKONKA, Y. JIAO, AND H. HARIDAS

Disruptive Technologies and Their Affect on Global Telecommunications
STAN MCCLELLAN, STEPHEN LOW, AND WAI-TIAN TAN

Ions, Atoms, and Bits: An Architectural Approach to Quantum Computing
DEAN COPSEY, MARK OSKIN, AND FREDERIC T. CHONG

Volume 62

An Introduction to Agile Methods
DAVID COHEN, MIKAEL LINDVALL, AND PATRICIA COSTA

The Timeboxing Process Model for Iterative Software Development
PANKAJ JALOTE, AVEEJEET PALIT, AND PRIYA KURIEN

A Survey of Empirical Results on Program Slicing
DAVID BINKLEY AND MARK HARMAN

Challenges in Design and Software Infrastructure for Ubiquitous Computing Applications
GURUDUTH BANAVAR AND ABRAHAM BERNSTEIN

Introduction to MBASE (Model-Based (System) Architecting and Software Engineering)
DAVID KLAPPHOLZ AND DANIEL PORT

Software Quality Estimation with Case-Based Reasoning
TAGHI M. KHOSHGOFTAAR AND NAEEM SELIYA

Data Management Technology for Decision Support Systems
SURAJIT CHAUDHURI, UMESHWAR DAYAL, AND VENKATESH GANTI

Volume 63

Techniques to Improve Performance Beyond Pipelining: Superpipelining, Superscalar, and VLIW
JEAN-LUC GAUDIOT, JUNG-YUP KANG, AND WON WOO RO

Networks on Chip (NoC): Interconnects of Next Generation Systems on Chip
THEOCHARIS THEOCHARIDES, GREGORY M. LINK, NARAYANAN VIJAYKRISHNAN, AND

MARY JANE IRWIN

Characterizing Resource Allocation Heuristics for Heterogeneous Computing Systems
SHOUKAT ALI, TRACY D. BRAUN, HOWARD JAY SIEGEL, ANTHONY A. MACIEJEWSKI,

NOAH BECK, LADISLAU BÖLÖNI, MUTHUCUMARU MAHESWARAN, ALBERT I. REUTHER,
JAMES P. ROBERTSON, MITCHELL D. THEYS, AND BIN YAO

Power Analysis and Optimization Techniques for Energy Efficient Computer Systems
WISSAM CHEDID, CHANSU YU, AND BEN LEE

Flexible and Adaptive Services in Pervasive Computing
BYUNG Y. SUNG, MOHAN KUMAR, AND BEHROOZ SHIRAZI



342 CONTENTS OF VOLUMES IN THIS SERIES

Search and Retrieval of Compressed Text
AMAR MUKHERJEE, NAN ZHANG, TAO TAO, RAVI VIJAYA SATYA, AND WEIFENG SUN

Volume 64

Automatic Evaluation of Web Search Services
ABDUR CHOWDHURY

Web Services
SANG SHIN

A Protocol Layer Survey of Network Security
JOHN V. HARRISON AND HAL BERGHEL

E-Service: The Revenue Expansion Path to E-Commerce Profitability
ROLAND T. RUST, P.K. KANNAN, AND ANUPAMA D. RAMACHANDRAN

Pervasive Computing: A Vision to Realize
DEBASHIS SAHA

Open Source Software Development: Structural Tension in the American Experiment
COSKUN BAYRAK AND CHAD DAVIS

Disability and Technology: Building Barriers or Creating Opportunities?
PETER GREGOR, DAVID SLOAN, AND ALAN F. NEWELL

Volume 65

The State of Artificial Intelligence
ADRIAN A. HOPGOOD

Software Model Checking with SPIN

GERARD J. HOLZMANN

Early Cognitive Computer Vision
JAN-MARK GEUSEBROEK

Verification and Validation and Artificial Intelligence
TIM MENZIES AND CHARLES PECHEUR

Indexing, Learning and Content-Based Retrieval for Special Purpose Image Databases
MARK J. HUISKES AND ERIC J. PAUWELS

Defect Analysis: Basic Techniques for Management and Learning
DAVID N. CARD

Function Points
CHRISTOPHER J. LOKAN

The Role of Mathematics in Computer Science and Software Engineering Education
PETER B. HENDERSON

Volume 66

Calculating Software Process Improvement’s Return on Investment
RINI VAN SOLINGEN AND DAVID F. RICO

Quality Problem in Software Measurement Data
PIERRE REBOURS AND TAGHI M. KHOSHGOFTAAR

Requirements Management for Dependable Software Systems
WILLIAM G. BAIL

Mechanics of Managing Software Risk
WILLIAM G. BAIL



CONTENTS OF VOLUMES IN THIS SERIES 343

The PERFECT Approach to Experience-Based Process Evolution
BRIAN A. NEJMEH AND WILLIAM E. RIDDLE

The Opportunities, Challenges, and Risks of High Performance Computing in Computational Science and
Engineering

DOUGLASS E. POST, RICHARD P. KENDALL, AND ROBERT F. LUCAS

Volume 67

Broadcasting a Means to Disseminate Public Data in a Wireless Environment—Issues and Solutions
A.R. HURSON, Y. JIAO, AND B.A. SHIRAZI

Programming Models and Synchronization Techniques for Disconnected Business Applications
AVRAHAM LEFF AND JAMES T. RAYFIELD

Academic Electronic Journals: Past, Present, and Future
ANAT HOVAV AND PAUL GRAY

Web Testing for Reliability Improvement
JEFF TIAN AND LI MA

Wireless Insecurities
MICHAEL STHULTZ, JACOB UECKER, AND HAL BERGHEL

The State of the Art in Digital Forensics
DARIO FORTE

Volume 68

Exposing Phylogenetic Relationships by Genome Rearrangement
YING CHIH LIN AND CHUAN YI TANG

Models and Methods in Comparative Genomics
GUILLAUME BOURQUE AND LOUXIN ZHANG

Translocation Distance: Algorithms and Complexity
LUSHENG WANG

Computational Grand Challenges in Assembling the Tree of Life: Problems and Solutions
DAVID A. BADER, USMAN ROSHAN, AND ALEXANDROS STAMATAKIS

Local Structure Comparison of Proteins
JUN HUAN, JAN PRINS, AND WEI WANG

Peptide Identification via Tandem Mass Spectrometry
XUE WU, NATHAN EDWARDS, AND CHAU-WEN TSENG

Volume 69

The Architecture of Efficient Multi-Core Processors: A Holistic Approach
RAKESH KUMAR AND DEAN M. TULLSEN

Designing Computational Clusters for Performance and Power
KIRK W. CAMERON, RONG GE, AND XIZHOU FENG

Compiler-Assisted Leakage Energy Reduction for Cache Memories
WEI ZHANG

Mobile Games: Challenges and Opportunities
PAUL COULTON, WILL BAMFORD, FADI CHEHIMI, REUBEN EDWARDS, PAUL GILBERTSON,

AND OMER RASHID

Free/Open Source Software Development: Recent Research Results and Methods

WALT SCACCHI



This page intentionally left blank


	Front cover
	Advances in Computers
	Copyright page
	Contents
	Contributors
	Preface
	Chapter 1. Designing Networked Handheld Devices to Enhance School Learning
	1. Introduction
	2. Historical Large Scale Successes
	3. Technology Context for Learning Applications
	4. Overarching Ideas from the Learning Sciences
	5. Design of Instructional Technologies
	6. Looking Forward
	7. Conclusion
	Acknowledgements
	References

	Chapter 2. Interactive Explanatory and Descriptive Natural-Language Based Dialogue for Intelligent Information Filtering
	1. Introduction
	2. Related Work
	3. A Model for Interactive Web-driven and Dialogue-based Search
	4. Analysis and Results
	5. Conclusions
	Acknowledgements
	References

	Chapter 3. A Tour of Language Customization Concepts
	1. Introduction
	2. Languages, Abstraction and Domain-Specificity
	3. Derivation Types
	4. Lightweight Language Customization 
	5. Customization Support Environments
	6. Ontological Metalevels
	7. Orthogonal Classification Architecture
	8. Languages versus Libraries
	9. Transformations
	10. Conclusion
	References

	Chapter 4. Advances in Business Transformation Technologies
	1. Introduction
	2. Value-Oriented, Model-Driven Business Transformation
	3. Model-Driven Ontology Engineering
	4. Business Process Composition with Web Services
	Acknowledgements
	Appendix A: Acronyms
	References

	Chapter 5. Phish Phactors: Offensive and Defensive Strategies
	1. Introduction
	2. Core Phishing Techniques
	3. Advanced Phishing Techniques
	4. Anti-Phishing Techniques
	5. Comprehensive Anti-Phishing Efforts
	6. Conclusion
	Acknowledgements
	References

	Chapter 6. Reflections on System Trustworthiness
	1. A Total-System Perspective
	2. Anticipating Disasters
	3. Trustworthiness
	4. Risks in Trusting Untrustworthiness
	5. Principles for Developing Trustworthy Systems
	6. System Composition: Problems and Potentials
	7. A Crisis in Information System Security
	8. Optimistic Optimization
	9. An Example: Risks in Electronic Voting Systems
	10. The Need for Risk Awareness
	11. Risks of Misinformation
	12. Boon or Bane?
	Acknowledgements
	References

	Author Index
	Subject Index
	Contents of Volumes in this Series

